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Preface

These lecture notes grew out of an M.Sc. course on differential ge-
ometry which I gave at the University of Leeds in Spring 1992. Their
main purpose is to introduce the beautiful theory of Riemannian ge-
ometry, a still very active area of mathematical research.

This is a subject with no lack of interesting examples. They are
indeed the key to a good understanding of it and will therefore play a
major role throughout this work. Of special interest are the classical Lie
groups allowing concrete calculations of many of the abstract notions
on the menu.

The study of Riemannian geometry is rather meaningless without
some basic knowledge on Gaussian geometry i.e. the geometry of curves
and surfaces in 3-dimensional Euclidean space. For this we recommend
the following text: M. P. do Carmo, Differential geometry of curves and
surfaces, Prentice Hall (1976).

These lecture notes are written for students with a good under-
standing of linear algebra, real analysis of several variables, the classical
theory of ordinary differential equations and some topology. The most
important results stated in the text are also proven there. Others are
left to the reader as exercises, which follow at the end of each chapter.
This format is aimed at students willing to put hard work into the
course. For further reading we recommend the excellent standard text:
M. P. do Carmo, Riemannian Geometry, Birkhäuser (1992).

I am very grateful to my enthusiastic students and many other
readers who have, throughout the years, contributed to the text by
giving numerous valuable comments on the presentation.

Norra Nöbbelöv the 15th of April 2024

Sigmundur Gudmundsson
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CHAPTER 1

Introduction

On the 10th of June 1854 Georg Friedrich Bernhard Riemann (1826-
1866) gave his famous ”Habilitationsvortrag” in the Colloquium of the
Philosophical Faculty at Göttingen. His talk ”Über die Hypothesen,
welche der Geometrie zu Grunde liegen” is often said to be the most
important in the history of differential geometry. Johann Carl Friedrich
Gauss (1777-1855) was in the audience, at the age of 77, and is said to
have been very impressed by his former student.

Riemann’s revolutionary ideas generalised the geometry of surfaces
which had earlier been initiated by Gauss. Later this lead to an exact
definition of the modern concept of an abstract Riemannian manifold.

The development of the 20th century has turned Riemannian ge-
ometry into one of the most important parts of modern mathematics.
For an excellent survey on this vast field we recommend the following
work written by one of the main actors: M. Berger, A Panoramic View
of Riemannian Geometry, Springer (2003).
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CHAPTER 2

Differentiable Manifolds

In this chapter we introduce the important concept of a differen-
tiable manifold. This generalises the curves and surfaces in R3 studied
in classical differential geometry. Our manifolds are modelled on the
standard differentiable structure on the classical vector spaces Rm via
compatible local charts. We give many explicit examples of differ-
entiable manifolds, study their submanifolds and differentiable maps
between them.

Let Rm be the m-dimensional real vector space equipped with its
standard topology Tm induced by the Euclidean metric d on Rm given
by

d(x, y) =
√

(x1 − y1)2 + . . .+ (xm − ym)2.

For a natural number r and an open subset U of Rm we will by
Cr(U,Rn) denote the r-times continuously differentiable maps from
U to Rn. By smooth maps U → Rn we mean the elements of the set

C∞(U,Rn) =
∞⋂
r=0

Cr(U,Rn).

The set of real analytic maps from U to Rn will be denoted by
Cω(U,Rn). For the theory of real analytic maps we recommend the
important text: S. G. Krantz and H. R. Parks, A Primer of Real An-
alytic Functions, Birkhäuser (1992).

Definition 2.1. Let (M, T ) be a topological Hausdorff space with
a countable basis. Then M is called a topological manifold if there
exists a positive integer m ∈ Z+ such that for each point p ∈ M we
have an open neighbourhood U of p, an open subset V of Rm and a
homeomorphism x : U → V . The pair (U, x) is called a local chart
(or local coordinates) on M . The natural number m is called the
dimension of M . To denote that the dimension of M is m we write
Mm.

According to Definition 2.1, an m-dimensional topological manifold
(Mm, T ) is locally homeomorphic to the standard Rm. We will now
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introduce a differentiable structure Â on M via its local charts and
turn it into a differentiable manifold.

Definition 2.2. Let M be an m-dimensional topological manifold.
Then a Cr-atlas on M is a collection

A = {(Uα, xα) |α ∈ I}

of local charts on M such that A covers the whole of M i.e.

M =
⋃
α

Uα

and for all α, β ∈ I the corresponding transition maps

xβ ◦ x−1
α |xα(Uα∩Uβ) : xα(Uα ∩ Uβ) ⊂ Rm → Rm

are r-times continuously differentiable i.e. of class Cr.

A local chart (U, x) onM is said to be compatible with a Cr-atlas

A on M if the union A ∪ {(U, x)} is a Cr-atlas on M . A Cr-atlas Â
on M is said to be maximal if it contains all the local charts that are
compatible with it.

A maximal atlas Â on M is also called a Cr-structure on M . The
pair (M, Â) is said to be a Cr-manifold, or a differentiable manifold

of class Cr, if M is a topological manifold and Â is a Cr-structure on
M . A differentiable manifold is said to be smooth if its transition
maps are C∞ and real analytic if they are Cω.

Remark 2.3. It should be noted that a given Cr-atlas A on a
topological manifold M determines a unique Cr-structure Â on M
containing A. It simply consists of all the local charts onM compatible
with A.

Example 2.4. For the standard topological space (Rm, Tm) we have
the trivial Cω-atlas

A = {(Rm, x) |x : p 7→ p}

inducing the standard Cω-structure Â on Rm.

Example 2.5. Let Sm denote the unit sphere in Rm+1 i.e.

Sm = {p ∈ Rm+1 | p21 + · · ·+ p2m+1 = 1},

equipped with the subset topology T induced by the standard Tm+1

on Rm+1. Let N be the north pole N = (1, 0) ∈ R × Rm and S be
the south pole S = (−1, 0) on Sm, respectively. Put UN = Sm \ {N},
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US = Sm \ {S} and define the homeomorphisms xN : UN → Rm and
xS : US → Rm by

xN : (p1, . . . , pm+1) 7→
1

1− p1
(p2, . . . , pm+1),

xS : (p1, . . . , pm+1) 7→
1

1 + p1
(p2, . . . , pm+1).

Then the Cω transition maps

xS ◦ x−1
N , xN ◦ x−1

S : Rm \ {0} → Rm \ {0}

are both given by

x 7→ x

|x|2
,

so A = {(UN , xN), (US, xS)} is a Cω-atlas on Sm. The corresponding

Cω-manifold (Sm, Â) is called the m-dimensional standard sphere.

Another interesting example of a differentiable manifold is the m-
dimensional real projective space RPm.

Example 2.6. On the set Rm+1 \ {0} we define the equivalence
relation ≡ by

p ≡ q if and only if there exists a λ ∈ R∗ such that p = λ · q.

Let RPm be the quotient space (Rm+1 \ {0})/ ≡ and

π : Rm+1 \ {0} → RPm

be the natural projection, mapping a point p ∈ Rm+1 \ {0} onto the
equivalence class [p] ∈ RPm i.e. the punctured line

[p] = {λ · p ∈ Rm+1 |λ ∈ R∗},

generated by p.

We then equip the set RPm with the quotient topology T induced
by π and Tm+1 on Rm+1. This means that a subset U of RPm is
open if and only if its pre-image π−1(U) is open in Rm+1 \ {0}. For
k ∈ {1, . . . ,m+ 1} we then define the open subset Uk of RPm by

Uk = {[p] ∈ RPm | pk ̸= 0}

and the local charts xk : Uk ⊂ RPm → Rm by

xk : [p] 7→ (
p1
pk
, . . . ,

pk−1

pk
, 1,

pk+1

pk
, . . . ,

pm+1

pk
).

If [p] = [q] ∈ Uk then p = λ · q for some λ ∈ R∗ so pl/pk = ql/qk for all
l. This shows that the maps xk : Uk ⊂ RPm → Rm are all well defined.
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A line [p] ∈ RPm is represented by a non-zero point p ∈ Rm+1 so
at least one of its components is non-zero. This shows that

RPm =
m+1⋃
k=1

Uk.

The corresponding transition maps

xk ◦ x−1
l |xl(Ul∩Uk) : xl(Ul ∩ Uk) ⊂ Rm → Rm

are given by

(
p1
pl
, . . . ,

pl−1

pl
, 1,

pl+1

pl
, . . . ,

pm+1

pl
) 7→ (

p1
pk
, . . . ,

pk−1

pk
, 1,

pk+1

pk
, . . . ,

pm+1

pk
),

so the collection

A = {(Uk, xk) | k = 1, . . . ,m+ 1}

is a Cω-atlas on RPm. The real-analytic manifold (RPm, Â) is called
the m-dimensional real projective space.

Remark 2.7. The above definition of the real projective space
RPm might seem very abstract. But later on we will embed RPm

into the vector space Sym(Rm+1) of symmetric (m+ 1)× (m+ 1) real
matrices. For this see Example 3.26.

Example 2.8. Let Ĉ be the extended complex plane given by

Ĉ = C ∪ {∞}

and put C∗ = C \ {0}, U0 = C and U∞ = Ĉ \ {0}. Then define the

local charts x0 : U0 → C and x∞ : U∞ → C on Ĉ by x0 : z 7→ z and
x∞ : w 7→ 1/w, respectively. Then the corresponding transition maps

x∞ ◦ x−1
0 , x0 ◦ x−1

∞ : C∗ → C∗

are both given by z 7→ 1/z so A = {(U0, x0), (U∞, x∞)} is a Cω-atlas on

Ĉ. The real analytic manifold (Ĉ, Â) is called the Riemann sphere.

For the product of two differentiable manifolds we have the following
important result.

Proposition 2.9. Let (M1, Â1) and (M2, Â2) be two differentiable
manifolds of class Cr. Let M =M1×M2 be the product space with the
product topology. Then there exists an atlas A on M turning (M, Â)
into a differentiable manifold of class Cr and the dimension of M sat-
isfies

dimM = dimM1 + dimM2.

Proof. See Exercise 2.1. □
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The concept of a submanifold of a given differentiable manifold
will play an important role as we go along and we will be especially
interesting in the connection between the geometry of a submanifold
and that of its ambient space.

Definition 2.10. Let m,n be positive integers with m ≤ n and
(Nn, ÂN) be a Cr-manifold. A subset M of N is said to be a sub-
manifold of N if for each point p ∈ M there exists a local chart
(Up, xp) ∈ ÂN such that p ∈ Up and xp : Up ⊂ N → Rm × Rn−m

satisfies
xp(Up ∩M) = xp(Up) ∩ (Rm × {0}).

The natural number (n−m) is called the codimension of M in N .

Proposition 2.11. Let m,n be positive integers with m ≤ n and
(Nn, ÂN) be a C

r-manifold. LetM be a submanifold of N equipped with
the subset topology and π : Rm ×Rn−m → Rm be the natural projection
onto the first factor. Then

AM = {(Up ∩M, (π ◦ xp)|Up∩M) | p ∈M}

is a Cr-atlas for M . Hence the pair (M, ÂM) is an m-dimensional

Cr-manifold. The differentiable structure ÂM is called the induced
differentiable structure on M by ÂN on N .

Proof. See Exercise 2.2. □

Remark 2.12. Our next aim is to prove Theorem 2.16 which is a
useful tool for the construction of submanifolds of Rm. For this we use
the classical inverse mapping theorem stated below. Note that if

F : U → Rn

is a differentiable Cr-map defined on an open subset U of Rm then its
differential dFp : Rm → Rn at the point p ∈ U is a linear map given by
the n×m matrix

dFp =

 ∂F1/∂x1(p) . . . ∂F1/∂xm(p)
...

...
∂Fn/∂x1(p) . . . ∂Fn/∂xm(p)

 .

If γ : R → U is a curve in U such that γ(0) = p and γ̇(0) = v ∈ Rm,
then the composition F ◦ γ : R → Rn is a curve in Rn and according
to the chain rule we have

dFp · v =
d

ds
(F ◦ γ(s))|s=0.

This is the tangent vector of the curve F ◦ γ at F (p) ∈ Rn.
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The above shows that the differential dFp can be seen as
a linear map that maps tangent vectors at p ∈ U to tangent
vectors at the image point F (p) ∈ Rn. This will later be gen-
eralised to the manifold setting.

We now state the classical inverse mapping theorem well known
from multivariable analysis.

Fact 2.13. Let U be an open subset of Rm and F : U → Rm be a
Cr-map. If p ∈ U and the differential

dFp : Rm → Rm

of F at p is invertible then there exist open neighbourhoods Up around p

and Uq around q = F (p) such that F̂ = F |Up : Up → Uq is bijective and

the inverse (F̂ )−1 : Uq → Up is a Cr-map. The differential (dF̂−1)q of

F̂−1 at q satisfies

(dF̂−1)q = (dFp)
−1

i.e. it is the inverse of the linear differential dFp of F at p.

Before stating the classical implicit mapping theorem we remind
the reader of the following well known notions.

Definition 2.14. Letm,n be positive integers, U be an open subset
of Rm and F : U → Rn be a Cr-map. A point p ∈ U is said to be
regular for F , if the differential

dFp : Rm → Rn

is of full rank, but critical otherwise. A point q ∈ F (U) is said to be
a regular value of F if every point in the pre-image F−1({q}) of q is
regular.

Remark 2.15. Note that if m,n are positive integers with m ≥ n
then p ∈ U is a regular point for

F = (F1, . . . , Fn) : U → Rn

if and only if the gradients gradF1, . . . , gradFn of the coordinate func-
tions F1, . . . , Fn : U → R are linearly independent at p, or equivalently,
the differential dFp of F at p satisfies the following condition

det(dFp · (dFp)
t) ̸= 0.

The next result is a useful tool for constructing submanifolds of the
classical vector space Rm.
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Theorem 2.16 (The implicit function theorem). Let m,n be pos-
itive integers with m > n and F : U → Rn be a Cr-map from an open
subset U of Rm. If q ∈ F (U) is a regular value of F then the pre-image
F−1({q}) of q is an (m − n)-dimensional submanifold of Rm of class
Cr.

Proof. Let p be an element of F−1({q}) and Kp be the kernel of
the differential dFp i.e. the (m− n)-dimensional subspace of Rm given
by Kp = {v ∈ Rm | dFp · v = 0}. Let πp : Rm → Rm−n be a linear map
such that πp|Kp : Kp → Rm−n is bijective, πp|K⊥

p
= 0 and define the

map Gp : U → Rn × Rm−n by

Gp : x 7→ (F (x), πp(x)).

Then the differential (dGp)p : Rm → Rm of Gp, with respect to the
decompositions Rm = K⊥

p ⊕Kp and Rm = Rn ⊕ Rm−n, is given by

(dGp)p =

(
dFp|K⊥

p
0

0 πp

)
,

hence bijective. It now follows from the inverse function theorem that
there exist open neighbourhoods Vp around p and Wp around Gp(p)

such that Ĝp = Gp|Vp : Vp → Wp is bijective, the inverse Ĝ
−1
p : Wp → Vp

is Cr, d(Ĝ−1
p )Gp(p) = (dGp)

−1
p and d(Ĝ−1

p )y is bijective for all y ∈ Wp.

Now put Ũp = F−1({q}) ∩ Vp then

Ũp = Ĝ−1
p (({q} × Rm−n) ∩Wp)

so if π : Rn × Rm−n → Rm−n is the natural projection onto the second
factor, then the map

x̃p = π ◦Gp|Ũp
: Ũp → ({q} × Rm−n) ∩Wp → Rm−n

is a local chart on the open neighbourhood Ũp of p. The point q ∈ F (U)
is a regular value so the set

A = {(Ũp, x̃p) | p ∈ F−1({q})}
is a Cr-atlas for F−1({q}). □

Applying the implicit function theorem, we obtain the following
interesting examples of the m-dimensional sphere Sm and its tangent
bundle TSm as differentiable submanifolds of Rm+1 and R2m+2, respec-
tively.

Example 2.17. Let F : Rm+1 → R be the Cω-map given by

F : (p1, . . . , pm+1) 7→ p21 + · · ·+ p2m+1.
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Then the differential dFp of F at the point p ∈ Rm+1 is given by
dFp = 2 · p, so

dFp · (dFp)
t = 4|p|2 ∈ R.

This means that 1 ∈ R is a regular value of F , so the fibre

Sm = {p ∈ Rm+1 | |p|2 = 1} = F−1({1})
of F is anm-dimensional submanifold of Rm+1. This is them-dimensional
standard sphere introduced in Example 2.5.

Example 2.18. Let F : Rm+1 ×Rm+1 → R2 be the Cω-map given
by

F : (p, v) 7→ ((|p|2 − 1)/2, ⟨p, v⟩).
Then the differential dF(p,v) of F at (p, v) satisfies

dF(p,v) =

(
p 0
v p

)
∈ R2×(2m+2).

A simple calculation shows that

det(dF · (dF )t) = det

(
|p|2 ⟨p, v⟩
⟨p, v⟩ |v|2 + |p|2

)
= 1 + |v|2 > 0

on the fibre F−1({0}). This means that

F−1({0}) = {(p, v) ∈ Rm+1 × Rm+1 | |p|2 = 1 and ⟨p, v⟩ = 0}
is a 2m-dimensional submanifold of R2m+2. We will later see that the
set TSm = F−1({0}) is what is called the tangent bundle of the
m-dimensional sphere Sm.

We now employ the implicit function theorem to construct the im-
portant orthogonal group O(m) as a submanifold of the linear space
Rm×m.

Example 2.19. Let Rm×m be the m2-dimensional vector space of
real m×m matrices and Sym(Rm) be its linear subspace consisting of
the symmetric matrices given by

Sym(Rm) = {x ∈ Rm×m |xt = x}.
A generic element x ∈ Sym(Rm) is of the form

x =

x11 · · · x1m
...

. . .
...

xm1 · · · xmm

 ,

where xkl = xlk for all k, l = 1, 2, . . .m. With this at hand, it is easily
seen that the dimension of the subspace Sym(Rm) is m(m+ 1)/2.
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Let F : Rm×m → Sym(Rm) be the map defined by

F : x 7→ xt · x.

Then the inverse image O(m) = F−1({e}) of F clearly satisfies

F−1({e}) = {x ∈ Rm×m |xtx = e}.

If γ : I → Rm×m is a curve in Rm×m such that γ(0) = x and
γ̇(0) = X, then

dFx(X) =
d

ds
(F ◦ γ(s))|s=0

=
d

ds
(γ(s)t · γ(s))|s=0

= (γ̇(s)t · γ(s) + γ(s)t · γ̇(s))|s=0

= X t · x+ xt ·X.

This means that for arbitrary elements x ∈ O(m) and X ∈ Rm×m we
have

dFx(xX) = (xX)t · x+ xt · (xX)

= X t xt · x+ xt · x X
= X t +X.

It is a well know fact from linear algebra, that for the linear vector
space Rm×m of real m×m matrices we have the direct sum

Skew(Rm)⊕ Sym(Rm)

i.e. every matrix X ∈ Rm×m has a unique decomposition X = Y + Z
where

Y = 1
2
(X −X t) ∈ Skew(Rm) and Z = 1

2
(X +X t) ∈ Sym(Rm).

This means that dFx(xY ) = 0, dFx(xZ/2) = Z and shows that the
differential dFx is surjective, so the identity matrix e ∈ Sym(Rm) is a
regular value for F .

It is now a direct consequence of the implicit function theorem that
O(m) is a submanifold of Rm×m of dimension m(m − 1)/2. We will
later see that the set O(m) can be equipped with a group structure
and is then called the orthogonal group.

The concept of a differentiable map U → Rn, defined on an open
subset of Rm, can be generalised to mappings between manifolds. We
will see that the most important properties of these objects, in the
classical case, are also valid in the manifold setting.
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Definition 2.20. Let (Mm, ÂM) and (Nn, ÂN) be Cr-manifolds.
A map ϕ :M → N is said to be differentiable of class Cr at a point
p ∈M if there exist local charts (U, x) ∈ ÂM around p and (V, y) ∈ ÂN

around q = ϕ(p) such that the transition map

y ◦ ϕ ◦ x−1|x(U∩ϕ−1(V )) : x(U ∩ ϕ−1(V )) ⊂ Rm → Rn

is of class Cr. The map ϕ is said to be differentiable of class Cr if it
is differentiable of class Cr at every point p ∈M .

A differentiable map γ : I → M , defined on an open interval I of
R, is called a differentiable curve in M . A real-valued differentiable
map f : M → R is called a differentiable function on M . The set
of smooth functions defined on M is denoted by C∞(M).

Remark 2.21. It should be noted that, in Definition 2.20, the
differentiablility of ϕ : M1 → M2 at a point p ∈ M is independent of
the choice of the local charts (U, x) and (V, y).

It is an easy exercise, using Definition 2.20, to prove the follow-
ing result concerning the composition of differentiable maps between
manifolds.

Proposition 2.22. Let (M1, Â1), (M2, Â2), (M3, Â3) be Cr-mani-

folds and ϕ : (M1, Â1) → (M2, Â2), ψ : (M2, Â2) → (M3, Â3) be
two differentiable maps of class Cr. Then the composition ψ ◦ ϕ :
(M1, Â1) → (M3, Â3) is a differentiable map of class Cr.

Proof. See Exercise 2.5. □

Definition 2.23. Two manifolds (M, ÂM) and (N, ÂN) of class
Cr are said to be diffeomorphic if there exists a bijective Cr-map
ϕ : M → N such that the inverse ϕ−1 : N → M is of class Cr. In
that case the map ϕ is called a diffeomorphism between (M, ÂM)

and (N, ÂN).

Proposition 2.24. Let (M, Â) be an m-dimensional Cr-manifold
and (U, x) be a local chart on M . Then the bijective continuous map
x : U → x(U) ⊂ Rm is a diffeomorphism.

Proof. See Exercise 2.6. □

It can be shown that the 2-dimensional unit sphere S2, in the Eu-
clidean R3, and the Riemann sphere Ĉ are diffeomorphic, see Exercise
2.7.

Definition 2.25. For a differentiable manifold (M, Â) we denote
by D(M) the set of all its diffeomorphisms. If ϕ, ψ ∈ D(M) then
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it is clear that the composition ψ ◦ ϕ and the inverse ϕ−1 are also
diffeomorphisms. The operation is clearly associative and the identity
map is its neutral element. This means that the pair (D(M), ◦) forms

a group, called the diffeomorphism group of (M, Â).

Definition 2.26. Two Cr-structures Â1 and Â2 on the same topo-
logical manifold M are said to be different if the identity map idM :
(M, Â1) → (M, Â2) is not a diffeomorphism.

It can be seen that even the real line R carries infinitely many
different differentiable structures, see Exercise 2.8.

Deep Result 2.27. Let (M, ÂM) and (N, ÂN) be differentiable
manifolds of class Cr of the same dimension m. If M and N are home-
omorphic as topological spaces and m ≤ 3 then (M, ÂM) and (N, ÂN)
are diffeomorphic.

The following remarkable result was proven by M. A. Kervaire and
J. M. Milnor in their celebrated paper Groups of Homotopy Spheres:
I, Annals of Mathematics 77 (1963), 504-537.

Deep Result 2.28. The 7-dimensional sphere S7 has exactly 28
different smooth differentiable structures.

The next useful statement generalises a classical result from the real
analysis of several variables.

Proposition 2.29. Let (N1, Â1) and (N2, Â2) be two differentiable
manifolds of class Cr and M1, M2 be submanifolds of N1 and N2, re-
spectively. If ϕ : N1 → N2 is a differentiable map of class Cr such
that ϕ(M1) is contained in M2 then the restriction ϕ|M1 : M1 → M2 is
differentiable of class Cr.

Proof. See Exercise 2.9. □

Example 2.30. The above Propositon 2.29 provides the following
list of interesting examples of differentiable maps between the manifolds
which we have introduced above.

(i) ϕ1 : R1 → S1 ⊂ C, ϕ1 : t 7→ eit,
(ii) ϕ2 : S

2 ⊂ R3 → S3 ⊂ R4, ϕ2 : (x, y, z) 7→ (x, y, z, 0),
(iii) ϕ3 : S

3 ⊂ C2 → S2 ⊂ C×R, ϕ3 : (z1, z2) 7→ (2z1z̄2, |z1|2−|z2|2),
(iv) ϕ4 : Rm+1 \ {0} → Sm ⊂ Rm+1, ϕ4 : x 7→ x/|x|,
(v) ϕ5 : S

m → RPm, ϕ5 : x 7→ [x].
(vi) ϕ6 = ϕ5 ◦ ϕ4 : Rm+1 \ {0} → RPm, ϕ6 : x 7→ [x/|x|],
(vii) ϕ7 : U(m) → R : x 7→ x11.
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In differential geometry, we are interested in manifolds carrying a
group structure compatible with their differentiable structures. Such
manifolds are named after the famous mathematician Sophus Lie (1842-
1899) and will play an important role throughout this work.

Definition 2.31. A Lie group is a smooth manifold G with a
group structure · such that the map ρ : G×G→ G with

ρ : (p, q) 7→ p · q−1

is smooth.

Example 2.32. Let (Rm,+, ·) be the m-dimensional real vector
space equipped with its standard differential structure. Then (Rm,+)
with ρ : Rm × Rm → Rm given by

ρ : (p, q) 7→ p− q

is a Lie group.

Definition 2.33. Let (G, ·) be a Lie group and p be an element of
G. Then we define the left translation Lp : G→ G of G by p with

Lp : q 7→ p · q.

Proposition 2.34. Let G be a Lie group and p be an element of
G. Then the left translation Lp : G→ G is a smooth diffeomorphism.

Proof. See Exercise 2.11 □

Proposition 2.35. Let (G, ·) be a Lie group and K be a submani-
fold of G which is a subgroup. Then (K, ·) is a Lie group.

Proof. The statement is a direct consequence of Definition 2.31
and Proposition 2.29. □

Example 2.36. Let (C∗, ·) be the set of non-zero complex num-
bers equipped with its standard multiplication. Then (C∗, ·) is a Lie
group. The unit circle (S1, ·) is an interesting compact Lie subgroup
of (C∗, ·). Another subgroup is the set of the non-zero real numbers
(R∗, ·) containing the positive real numbers (R+, ·) as a subgroup.

Definition 2.37. Let (G, ·) be a Lie group and V be a finite-
dimensional real vector space of dimension n. Then an n-dimensional
linear representation of G on V is a map

ρ : G→ Aut(V )

into the space of automorphisms of V i.e. the invertible linear endo-
morphisms such that for all g, h ∈ G we have

ρ(g · h) = ρ(g) ◦ ρ(h).
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Here ◦ denotes the composition in Aut(V ). The linear representation
ρ : G→ Aut(V ) is said to be faithful if it is injective.

Remark 2.38. It should be noted that for a given basis for the
vector space V and an element g ∈ G the automorphism ρ(g) ∈ Aut(V )
can be represented by an invertible matrix with respect to this basis
and then the operation ◦ is just the standard matrix multiplication.

Example 2.39. The Lie group of non-zero complex numbers (C∗, ·)
has a well known linear representation ρ : C∗ → Aut(R2) on R2 given
by

ρ : a+ ib 7→
(
a −b
b a

)
.

This is obviously injective and it respects the standard multiplicative
structures of C∗ and R2×2 since

ρ((a+ ib) · (x+ iy)) = ρ((ax− by) + i(bx+ ay))

=

(
ax− by −(bx+ ay)
bx+ ay ax− by

)
=

(
a −b
b a

)
∗
(
x −y
y x

)
= ρ(a+ ib) ∗ ρ(x+ iy).

As an introduction to Example 2.41 we now play the same game in
the complex case.

Example 2.40. Let ρ : C2 → C2×2 be the real linear map given by

ρ : (z, w) 7→
(
z −w̄
w z̄

)
.

Then an easy calculation shows that the following is true

ρ(z1, w1) ∗ ρ(z2, w2) =

(
z1 −w̄1

w1 z̄1

)
∗
(
z2 −w̄2

w2 z̄2

)
=

(
z1z2 − w̄1w2 −(w̄1z̄2 + z1w̄2)
w1z2 + z̄1w2 z̄1z̄2 − w1w̄2

)
= ρ(z1z2 − w̄1w2, w1z2 + z̄1w2).

We now introduce the quaternions H and the three dimensional
sphere S3 which carries a natural group structure.

Example 2.41. Let H be the set of quaternions given by

H = {(z, w) ∈ C2 | z, w ∈ C}.
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We equip H with an addition, a multiplication and the conjugation
satisfying

(i) (z1, w1) + (z2, w2) = (z1 + z2, w1 + w2),
(ii) (z1, w1) · (z2, w2) = (z1z2 − w̄1w2, w1z2 + z̄1w2),

(iii) (z, w) = (z̄,−w).

These extend the standard operations on C as a subset of H. It is easily
seen that the non-zero quaternions (H∗, ·) form a Lie group. Then the
map ρ : H∗ → Aut(C2) with

ρ : (z, w) 7→
(
z −w̄
w z̄

)
is a linear representation of H∗ on C2. On H we define the quaternionic
scalar product

H×H → H, (p, q) 7→ p · q̄
and a real-valued norm given by |p|2 = p · p̄. Then the 3-dimensional
unit sphere

S3 = {p ∈ H | |p| = 1}
in H ∼= C2 ∼= R4, with the restricted multiplication, forms a compact
Lie subgroup (S3, ·) of (H∗, ·). They are both non-abelian.

We will now introduce some of the classical real and complex matrix
Lie groups. As a reference on this topic we recommend the wonderful
book: A. W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser
(2002).

Example 2.42. Let Nil be the subset of R3×3 given by

Nil = {

1 x z
0 1 y
0 0 1

 ∈ R3×3 |x, y, z ∈ R}.

Then Nil has a natural differentiable structure determined by the global
coordinates ϕ : Nil → R3 with

ϕ :

1 x z
0 1 y
0 0 1

 7→ (x, y, z).

It is easily seen that if ∗ is the standard matrix multiplication, then
(Nil, ∗) is a Lie group.

Example 2.43. Let Sol be the subset of R3×3 given by

Sol = {

ez 0 x
0 e−z y
0 0 1

 ∈ R3×3 |x, y, z ∈ R}.
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Then Sol has a natural differentiable structure determined by the global
coordinates ϕ : Sol → R3 with

ϕ :

ez 0 x
0 e−z y
0 0 1

 7→ (x, y, z).

It is easily seen that if ∗ is the standard matrix multiplication, then
(Sol, ∗) is a Lie group.

Example 2.44. The set of invertible real m×m matrices

GLm(R) = {x ∈ Rm×m | detx ̸= 0},

equipped with the standard matrix multiplication, has the structure of
a Lie group. It is called the real general linear group and its neutral
element e is the identity matrix. The subset GLm(R) of Rm×m is open
so dimGLm(R) = m2.

As a subgroup of GLm(R) we have the real special linear group
SLm(R) given by

SLm(R) = {x ∈ Rm×m | detx = 1}.

We will show in Example 3.11 that the dimension of the submanifold
SLm(R) of Rm×m is m2 − 1.

Another subgroup of GLm(R) is the orthogonal group

O(m) = {x ∈ Rm×m |xtx = e}.

As we have already seen in Example 2.19 this is a submanifold of Rm×m

of dimension of m(m− 1)/2.
As a subgroup of O(m) and even SLm(R) we have the special

orthogonal group SO(m) which is defined as

SO(m) = O(m) ∩ SLm(R)
= {x ∈ Rm×m |xtx = e and detx = 1}.

It can be shown that O(m) is diffeomorphic to SO(m) × O(1), see
Exercise 2.10. Note that O(1) = {±1} so O(m) can be seen as double
cover of SO(m). This means that

dimSO(m) = dimO(m) = m(m− 1)/2.

To the above mentioned real Lie groups we have their following
complex close relatives.

Example 2.45. The set of invertible complex m×m matrices

GLm(C) = {z ∈ Cm×m | det z ̸= 0},
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equipped with the standard matrix multiplication, has the structure of
a Lie group. It is called the complex general linear group and its
neutral element e is the identity matrix. The subset GLm(C) of Cm×m

is open so dimGLm(C) = 2m2.
As a subgroup of GLm(C) we have the complex special linear

group SLm(C) given by

SLm(C) = {z ∈ Cm×m | detx = 1}.
The dimension of the submanifold SLm(C) of Cm×m is 2(m2 − 1).

Another subgroup of GLm(C) is the unitary group U(m) given
by

U(m) = {z ∈ Cm×m | z̄tz = e}.
Calculations similar to those for the orthogonal group show that the
dimension of U(m) is m2.

As a subgroup of U(m) and SLm(C) we have the special unitary
group SU(m) which is defined as

SU(m) = U(m) ∩ SLm(C)
= {z ∈ Cm×m | z̄tz = e and det z = 1}.

It can be shown that U(1) is diffeomorphic to the circle S1 and that
U(m) is diffeomorphic to SU(m)×U(1), see Exercise 2.10. This means
that dimSU(m) = m2 − 1.

For the rest of this work we will assume, when not stating
otherwise, that all our manifolds and maps are smooth i.e. in
the C∞-category.
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Exercises

Exercise 2.1. Find a proof of Proposition 2.9.

Exercise 2.2. Find a proof of Proposition 2.11.

Exercise 2.3. Let S1 be the unit circle in the complex plane C
given by S1 = {z ∈ C | |z|2 = 1}. Use the maps x : C \ {i} → C and
y : C \ {−i} → C with

x : z 7→ i+ z

1 + iz
, y : z 7→ 1 + iz

i+ z

to show that S1 is a 1-dimensional submanifold of C ∼= R2.

Exercise 2.4. Use the implicit function theorem to show that the
m-dimensional torus

Tm = {(x, y) ∈ Rm × Rm |x21 + y21 = · · · = x2m + y2m = 1}
∼= {z ∈ Cm | |z1|2 = · · · = |zm|2 = 1}

is a differentiable submanifold of R2m ∼= Cm.

Exercise 2.5. Find a proof of Proposition 2.22.

Exercise 2.6. Find a proof of Proposition 2.24.

Exercise 2.7. Prove that the 2-dimensional sphere S2 as a differ-
entiable submanifold of the standard R3 and the Riemann sphere Ĉ are
diffeomorphic.

Exercise 2.8. Equip the real line R with the standard topology
and for each odd integer k ∈ Z+ let Âk be the Cω-structure defined on
R by the atlas

Ak = {(R, xk) |xk : p 7→ pk}.
Show that the differentiable structures Âk are all different but that the
differentiable manifolds (R, Âk) are all diffeomorphic.

Exercise 2.9. Find a proof of Proposition 2.29.

Exercise 2.10. Let the spheres S1, S3 and the Lie groups SO(n),
O(n), SU(n), U(n) be equipped with their standard differentiable
structures. Use Proposition 2.29 to prove the following diffeomorphisms

S1 ∼= SO(2), S3 ∼= SU(2),

SO(n)×O(1) ∼= O(n), SU(n)×U(1) ∼= U(n).

Exercise 2.11. Find a proof of Proposition 2.34.

Exercise 2.12. Let (G, ∗) and (H, ·) be two Lie groups. Prove that
the product manifold G×H has the structure of a Lie group.
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CHAPTER 3

The Tangent Space

In this chapter we introduce the notion of the tangent space TpM
of a differentiable manifoldM at a point p inM . This is a vector space
of the same dimension asM . We first study the standard Rm and show
how a tangent vector v at a point p ∈ Rm can be interpreted as a first
order linear differential operator, annihilating constants, when acting
on real-valued functions locally defined around p. Then we generalise
to the manifold setting. To explain the notion of the tangent space
we give several explicit examples. Here the classical Lie groups play
an important role. We then conclude this chapter by introducing the
notions of an immersion, an embedding and a submersion.

Let Rm be the m-dimensional real vector space with its standard
differentiable structure. If p is a point in Rm and γ : I → Rm is a
C1-curve such that γ(0) = p, then the tangent vector

γ̇(0) = lim
t→0

γ(t)− γ(0)

t

of γ at p is an element of Rm. Conversely, for an arbitrary element v
of Rm we can easily find a curve γ : I → Rm such that γ(0) = p and
γ̇(0) = v. One example is given by

γ : t 7→ p+ t · v.
This shows that the tangent space i.e. the set of tangent vectors at
the point p ∈ Rm can be identified with Rm.

We will now describe how the first order linear differential opera-
tors, annihilating constants, can be interpreted as tangent vectors. For
a point p ∈ Rm we denote by ε(p) the set of differentiable real-valued
functions defined locally around p. Then it is well known from mul-
tivariable analysis that if v ∈ Rm and f ∈ ε(p) then the directional
derivative ∂vf of f at the point p in the direction of v satisfies

∂vf = lim
t→0

f(p+ tv)− f(p)

t
= ⟨grad(f), v⟩.

Furthermore, the operator ∂ has the following properties

∂v(λ · f + µ · g) = λ · ∂vf + µ · ∂vg,
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∂v(f · g) = ∂vf · g(p) + f(p) · ∂vg,
∂(λ·v+µ·w)f = λ · ∂vf + µ · ∂wf,

for all λ, µ ∈ R, v, w ∈ Rm and f, g ∈ ε(p).

Motivated by the above well-known classical results, we now present
the following.

Definition 3.1. For a point p ∈ Rm, let TpRm be the set of first
order linear differential operators at p annihilating constants
i.e. the set of mappings α : ε(p) → R such that

(i) α(λ · f + µ · g) = λ · α(f) + µ · α(g),
(ii) α(f · g) = α(f) · g(p) + f(p) · α(g),

for all λ, µ ∈ R and f, g ∈ ε(p).

The set of first order linear differential operators, annihilating con-
stants, carries a natural structure of a real vector space. This is simply
given by the addition + and the multiplication · by real numbers sat-
isfying

(α + β)(f) = α(f) + β(f),

(λ · α)(f) = λ · α(f),

for all α, β ∈ TpRm, f ∈ ε(p) and λ ∈ R.
The following result provides an important identification between

Rm and the tangent space TpRm as defined above.

Theorem 3.2. For a point p ∈ Rm the map Φ : Rm → TpRm

defined by Φ : v 7→ ∂v is a linear vector space isomorphism.

Proof. The linearity of the map Φ : Rm → TpRm follows directly
from the fact that for all λ, µ ∈ R, v, w ∈ Rm and f ∈ ε(p) we have

∂(λ·v+µ·w)f = λ · ∂vf + µ · ∂wf.

Let v, w ∈ Rm be such that v ̸= w. Choose an element u ∈ Rm such
that ⟨u, v⟩ ≠ ⟨u,w⟩ and define f : Rm → R by f(x) = ⟨u, x⟩. Then

∂vf = ⟨u, v⟩ ≠ ⟨u,w⟩ = ∂wf

so ∂v ̸= ∂w. This proves that the linear map Φ is injective.

Let α be an arbitrary element of TpRm. For k = 1, . . . ,m let the
real-valued function x̂k : Rm → R be the natural projection onto the
k-th component given by

x̂k : (x1, . . . , xm) 7→ xk
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and put vk = α(x̂k). For the constant function 1 : (x1, . . . , xm) 7→ 1 we
have

α(1) = α(1 · 1) = α(1) · 1 + 1 · α(1) = 2 · α(1),
so α(1) = 0. By the linearity of α it then follows that α(c) = 0 for any
constant c ∈ R. Let f ∈ ε(p) and following Lemma 3.3, locally write

f(x) = f(p) +
m∑
k=1

(x̂k(x)− pk) · ψk(x),

where ψk ∈ ε(p) with

ψk(p) =
∂f

∂xk
(p).

We can now apply the differential operator α ∈ TpRm on the function
f and yield

α(f) = α(f(p) +
m∑
k=1

(x̂k − pk) · ψk)

= α(f(p)) +
m∑
k=1

α(x̂k − pk) · ψk(p) +
m∑
k=1

(x̂k(p)− pk) · α(ψk)

=
m∑
k=1

vk ·
∂f

∂xk
(p)

= ⟨v, (gradf)(p)⟩
= ∂vf,

where v = (v1, . . . , vm) ∈ Rm. This means that Φ(v) = ∂v = α so
the linear map Φ : Rm → TpRm is surjective and hence a vector space
isomorphism. □

Lemma 3.3. Let p be a point in Rm and f : U → R be a dif-
ferentiable function defined on an open ball around p. Then for each
k = 1, 2, . . . ,m, there exist functions ψk : U → R such that for all
x ∈ U

f(x) = f(p) +
m∑
k=1

(xk − pk) · ψk(x) and ψk(p) =
∂f

∂xk
(p).

Proof. It follows from the fundamental theorem of calculus that

f(x)− f(p) =

∫ 1

0

∂

∂t
(f(p+ t(x− p)))dt

=
m∑
k=1

(xk − pk) ·
∫ 1

0

∂f

∂xk
(p+ t(x− p))dt.
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The statement then immediately follows by setting

ψk(x) =

∫ 1

0

∂f

∂xk
(p+ t(x− p))dt.

□

As a direct consequence of Theorem 3.2 we now have the following
important result.

Corollary 3.4. Let p be a point in Rm and {ek | k = 1, . . . ,m} be
a basis for Rm. Then the set {∂ek | k = 1, . . . ,m} is a basis for the
tangent space TpRm at p.

Remark 3.5. Let p be a point in Rm, v ∈ TpRm be a tangent
vector at p and f : U → R be a C1-function defined on an open subset
U of Rm containing p. Let γ : I → U be a curve such that γ(0) = p
and γ̇(0) = v. Then the identification given by Theorem 3.2 tells us
that v acts on f by

v(f) = ∂v(f) = ⟨v, gradfp⟩ = dfp(γ̇(0)) =
d

dt
(f ◦ γ(t))|t=0.

This implies that the real number v(f) is independent of the choice of
the curve γ as long as γ(0) = p and γ̇(0) = v.

We will now employ the ideas presented above to generalise to the
manifold setting. Let M be a differentiable manifold and for a point
p ∈ M let ε(p) denote the set of differentiable real-valued functions
defined on an open neighborhood of p.

Definition 3.6. Let M be a differentiable manifold and p be a
point in M . A tangent vector Xp at p is a map Xp : ε(p) → R such
that

(i) Xp(λ · f + µ · g) = λ ·Xp(f) + µ ·Xp(g),
(ii) Xp(f · g) = Xp(f) · g(p) + f(p) ·Xp(g),

for all λ, µ ∈ R and f, g ∈ ε(p). The set of tangent vectors at p is called
the tangent space at p and denoted by TpM .

The tangent space TpM of M at p has a natural structure of a real
vector space. The addition + and the multiplication · by real numbers
are simply given by

(Xp + Yp)(f) = Xp(f) + Yp(f),

(λ ·Xp)(f) = λ ·Xp(f),

for all Xp, Yp ∈ TpM , f ∈ ε(p) and λ ∈ R.
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We have not yet defined the differential of a map between mani-
folds, see Definition 3.14, but still think that the following remark is
appropriate at this point. This will make it possible for us to explic-
itly determine the tangent spaces of some of the manifolds introduced
earlier.

Remark 3.7. Let M be an m-dimensional manifold and (U, x) be
a local chart around p ∈M . Then the differential

dxp : TpM → Tx(p)Rm

is a bijective linear map such that for a given element Xp ∈ TpM there
exists a tangent vector v in Tx(p)Rm ∼= Rm such that dxp(Xp) = v. The
image x(U) is an open subset of Rm containing x(p) so we can easily
find a curve c : I → x(U) with c(0) = x(p) and ċ(0) = v. Then the
composition γ = x−1 ◦ c : I → U is a curve in M through p since
γ(0) = p. The element d(x−1)x(p)(v) of the tangent space TpM denoted
by γ̇(0) is called the tangent to the curve γ at p. It follows from the
relation

γ̇(0) = d(x−1)x(p)(v) = Xp

that the tangent space TpM can be thought of as the set of all tangents
to curves through the point p.

If f : U → R is a C1-function defined locally on U then it follows
from Definition 3.14 that

Xp(f) = (dxp(Xp))(f ◦ x−1)

=
d

dt
(f ◦ x−1 ◦ c(t))|t=0

=
d

dt
(f ◦ γ(t))|t=0

It should be noted that the real number Xp(f) is independent of the
choice of the local chart (U, x) around p and the curve c : I → x(U) as
long as γ(0) = p and γ̇(0) = Xp.

We are now ready to determine the tangent spaces of some of the
differentiable manifolds that were introduced in Chapter 2. We start
with the m-dimensional unit sphere Sm in Rm+1. This should be seen
as an introduction to our Example 3.10.

Example 3.8. Let γ : I → Sm be a differentiable curve into the
m-dimensional unit sphere in Rm+1 with γ(0) = p and γ̇(0) = X. Then
the curve satisfies

⟨γ(t), γ(t)⟩ = 1
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and differentiation yields

⟨γ̇(t), γ(t)⟩+ ⟨γ(t), γ̇(t)⟩ = 0.

This means that ⟨p,X⟩ = 0, so every tangent vector X ∈ TpS
m must

be orthogonal to p. On the other hand if X ̸= 0 satisfies ⟨p,X⟩ = 0
then γ : R → Sm with

γ : t 7→ cos(t|X|) · p+ sin(t|X|) ·X/|X|

is a differentible curve into Sm with γ(0) = p and γ̇(0) = X. This
shows that the tangent space TpS

m is actually given by

TpS
m = {X ∈ Rm+1 | ⟨p,X⟩ = 0}.

For the following we need the next well known result from matrix
theory.

Proposition 3.9. Let Cm×m be the set of complex m×m matrices.
Then the exponential map Exp : Cm×m → Cm×m is defined by the
convergent power series

Exp : Z 7→
∞∑
k=0

Zk

k!
.

If Z,W are elements of Cm×m, then the following statements hold

(i) Exp(Zt) = Exp(Z)t,

(ii) Exp(Z̄) = Exp(Z),
(iii) det(Exp(Z)) = exp(traceZ),
(iv) if ZW = WZ then Exp(Z +W ) = Exp(Z) · Exp(W ).

Proof. See Exercise 3.2. □

We are now equipped with the necessary tools for determining the
tangent space TeO(m) of the orthogonal group O(m) at the neutral
element e ∈ O(m).

Example 3.10. Let γ : I → O(m) be a differentiable curve into
the orthogonal group O(m) such that γ(0) = e and γ̇(0) = X. Then
γ(s)t · γ(s) = e for all s ∈ I and differentiation gives

0 = (γ̇(s)t · γ(s) + γ(s)t · γ̇(s))|s=0

= X t · e+ et ·X
= X t +X.

This implies that each tangent vector X ∈ TeO(m) of the orthogonal
group O(m) at the neutral e is a skew-symmetric matrix.
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On the other hand, for an arbitrary skew-symmetric matrix X ∈
Rm×m we define the curve A : R → Rm×m by A : s 7→ Exp(sX). Then

A(s)t · A(s) = Exp(sX)t · Exp(sX)

= Exp(sX t) · Exp(sX)

= Exp(s(X t +X))

= Exp(0)

= e.

This shows that A is a curve in the orthogonal group, A(0) = e and
Ȧ(0) = X, so X is an element of the tangent space TeO(m). Hence

TeO(m) = {X ∈ Rm×m |X t +X = 0}.
It now immediately follows that the dimension of the tangent space

TeO(m) is m(m − 1)/2. We have seen in Example 2.19 that this is
exactly the dimension of the orthogonal group O(m).

According to Exercise 2.10, the orthogonal group O(m) is diffeo-
morphic to {±1} × SO(m) so dimSO(m) = dimO(m). Hence

TeSO(m) = TeO(m) = {X ∈ Rm×m |X t +X = 0}.

The real general linear groupGLm(R) is an open subset of Rm×m so
its tangent space TpGLm(R) is simply Rm×m at any point p ∈ GLm(R).

The tangent space TeSLm(R) of the special linear group SLm(R)
at the neutral element e ∈ SLm(R) can be determined as follows.

Example 3.11. If X is a matrix in Rm×m with trace X = 0 then
we define the differentiable curve A : R → Rm×m by

A : s 7→ Exp(sX).

Then A(0) = e, Ȧ(0) = X and

det(A(s)) = det(Exp(sX)) = exp(trace(sX)) = exp(0) = 1.

This shows that A is a curve in the special linear group SLm(R) and
that X is an element of the tangent space TeSLm(R) of SLm(R) at the
neutral element e. Hence the (m2 − 1)-dimensional linear space

{X ∈ Rm×m | traceX = 0}
is contained in the tangent space TeSLm(R) of SLm(R) at the neutral
element e.

On the other hand, the curve B : I → GLm(R) given by

B : s 7→ Exp(s · e) = exp(s) · e
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is not contained in SLm(R) so the dimension of TeSLm(R) is at most
m2 − 1 = dimGLm(R)− 1. This shows that

TeSLm(R) = {X ∈ Rm×m | traceX = 0}.

With the above arguments we have proven the following result.

Theorem 3.12. Let e be the neutral element of the classical real Lie
groups GLm(R), SLm(R), O(m), SO(m). Then their tangent spaces
at e are given by

TeGLm(R) = Rm×m,

TeSLm(R) = {X ∈ Rm×m | traceX = 0},
TeO(m) = {X ∈ Rm×m |X t +X = 0},
TeSO(m) = TeO(m) = TeO(m) ∩ TeSLm(R).

For the classical complex Lie groups, similar methods can be used
to prove the following result.

Theorem 3.13. Let e be the neutral element of the classical com-
plex Lie groups GLm(C), SLm(C), U(m), SU(m). Then their tangent
spaces at e are given by

TeGLm(C) = Cm×m,

TeSLm(C) = {Z ∈ Cm×m | traceZ = 0},
TeU(m) = {Z ∈ Cm×m | Z̄t + Z = 0},
TeSU(m) = TeU(m) ∩ TeSLm(C).

Proof. See Exercise 3.4 □

We now introduce the notion of the differential of a map between
manifolds. This will play an important role in what follows.

Definition 3.14. Let ϕ :M → N be a differentiable map between
differentiable manifolds. Then the differential dϕp of ϕ at a point p
in M is the map dϕp : TpM → Tϕ(p)N such that for all Xp ∈ TpM and
f ∈ ε(ϕ(p)) we have

(dϕp(Xp))(f) = Xp(f ◦ ϕ).

Remark 3.15. Let M and N be differentiable manifolds, p ∈ M
and ϕ : M → N be a differentiable map. Further let γ : I → M be a
curve in M such that γ(0) = p and γ̇(0) = Xp. Let c : I → N be the
curve c = ϕ ◦ γ in N with c(0) = ϕ(p) and put Yϕ(p) = ċ(0). Then it
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is an immediate consequence of Definition 3.14 that for each function
f ∈ ε(ϕ(p)), defined locally around ϕ(p), we have

(dϕp(Xp))(f) = Xp(f ◦ ϕ)

=
d

dt
(f ◦ ϕ ◦ γ(t))|t=0

=
d

dt
(f ◦ c(t))|t=0

= Yϕ(p)(f).

Hence dϕp(Xp) = Yϕ(p), or equivalently, dϕp(γ̇(0)) = ċ(0). This state-
ment should be compared with Remark 2.12.

The following result describes the most important properties of the
differential, in particular, the so called chain rule.

Proposition 3.16. Let ϕ : M1 → M2 and ψ : M2 → M3 be dif-
ferentiable maps between differentiable manifolds. Then for each point
p ∈M1 we have

(i) the map dϕp : TpM1 → Tϕ(p)M2 is linear,
(ii) if idM1 :M1 →M1 is the identity map, then d(idM1)p = idTpM1,
(iii) d(ψ ◦ ϕ)p = dψϕ(p) ◦ dϕp.

Proof. The statement (i) follows immediately from the fact that
for λ, µ ∈ R, Xp, Yp ∈ TpM and f ∈ ε(ϕ(p)) we have

dϕp(λ ·Xp + µ · Yp)(f) = (λ ·Xp + µ · Yp)(f ◦ ϕ)
= λ ·Xp(f ◦ ϕ) + µ · Yp(f ◦ ϕ)
= λ · dϕp(Xp)(f) + µ · dϕp(Yp)(f).

The statement (ii) is obvious. The statement (iii) is called the chain
rule. If Xp ∈ TpM1 and f ∈ ε(ψ ◦ ϕ(p)), then

(dψϕ(p) ◦ dϕp)(Xp)(f) = (dψϕ(p)(dϕp(Xp)))(f)

= (dϕp(Xp))(f ◦ ψ)
= Xp(f ◦ ψ ◦ ϕ)
= (d(ψ ◦ ϕ)p(Xp))(f).

This proves the last statement. □

As an immediate consequence of Proposition 3.16 we have the fol-
lowing interesting result generalising the corresponding statement in
multivariable analysis.

Corollary 3.17. Let ϕ : M → N be a diffeomorphism with the
inverse ψ = ϕ−1 : N → M . If p is a point in M then the differential
dϕp : TpM → Tϕ(p)N of ϕ at p is bijective and satisfies (dϕp)

−1 = dψϕ(p).
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Proof. The statement is a direct consequence of the following re-
lations

dψϕ(p) ◦ dϕp = d(ψ ◦ ϕ)p = d(idM)p = idTpM ,

dϕp ◦ dψϕ(p) = d(ϕ ◦ ψ)ϕ(p) = d(idN)ϕ(p) = idTϕ(p)N .

□

We are now ready to prove the following important result. This
is of course a direct generalisation of the corresponding statement in
Gaussian geometry i.e. the classical theory of surfaces in R3.

Theorem 3.18. Let Mm be an m-dimensional differentable mani-
fold and p be a point in M . Then the tangent space TpM of M at p is
an m-dimensional real vector space.

Proof. Let (U, x) be a local chart on M . Then Proposition 2.24
tells us that the map x : U → x(U) is a diffeomorphism. This implies
that the linear differential dxp : TpM → Tx(p)Rm is a vector space
isomorphism. The statement now follows directly from Theorem 3.2
and Corollary 3.17. □

Proposition 3.19. Let Mm be a differentiable manifold, (U, x) be
a local chart on M and {ek | k = 1, . . . ,m} be the canonical basis for
Rm. For an arbitrary point p in U we define the differential operator
( ∂
∂xk

)p in TpM by( ∂

∂xk

)
p
: f 7→ ∂f

∂xk
(p) = ∂ek(f ◦ x−1)(x(p)).

Then the set

{( ∂

∂xk
)p | k = 1, 2, . . . ,m}

is a basis for the tangent space TpM of M at p.

Proof. The local chart x : U → x(U) is a diffeomorphism and the
differential (dx−1)x(p) : Tx(p)Rm → TpM of the inverse x−1 : x(U) → U
satisfies

(dx−1)x(p)(∂ek)(f) = ∂ek(f ◦ x−1)(x(p))

=
( ∂

∂xk

)
p
(f)

for all f ∈ ε(p). The statement is then a direct consequence of Corollary
3.4. □

The rest of this chapter is devoted to the introduction of special
types of differentiable maps. They are the immersions, the embeddings
and the submersions.
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Definition 3.20. For positive integers m,n ∈ Z+ with m ≤ n, a
differentiable map ϕ : Mm → Nn between manifolds is said to be an
immersion if for each p ∈ M the differential dϕp : TpM → Tϕ(p)N
is injective. An embedding is an immersion ϕ : M → N which is a
homeomorphism onto its image ϕ(M).

Example 3.21. For positive integers m,n with m < n we have the
inclusion map ϕ : Rm+1 → Rn+1 given by

ϕ : (x1, . . . , xm+1) 7→ (x1, . . . , xm+1, 0, . . . , 0).

The differential dϕx at x is injective since dϕx(v) = (v, 0). The map
ϕ is obviously a homeomorphism onto its image ϕ(Rm+1) hence an
embedding. It is easily seen that even the restriction ϕ|Sm : Sm → Sn

of ϕ to the m-dimensional unit sphere Sm in Rm+1 is an embedding.

Definition 3.22. Let M be an m-dimensional differentiable man-
ifold and U be an open subset of Rm. An immersion ϕ : U → M is
called a local parametrisation ofM . If the immersion ϕ is surjective
then it is said to be a global parametrisation.

Remark 3.23. If M is a differentiable manifold and (U, x) is a
local chart on M , then the inverse x−1 : x(U) → U of x is a global
parametrisation of the open subset U of M .

Example 3.24. Let S1 be the unit circle in the complex plane C.
For a non-zero integer k ∈ Z define ϕk : S

1 → C by ϕk : z 7→ zk. For a
point w ∈ S1 let γw : R → S1 be the curve with γw : t 7→ weit. Then
γw(0) = w and γ̇w(0) = iw. For the differential of ϕk we have

(dϕk)w(γ̇w(0)) =
d

dt
(ϕk ◦ γw(t))|t=0 =

d

dt
(wkeikt)|t=0 = kiwk ̸= 0.

This shows that the differential (dϕk)w : TwS
1 ∼= R → TwkC ∼= R2 is

injective, so the map ϕk is an immersion. It is easily seen that ϕk is an
embedding if and only if k = ±1.

Example 3.25. Let q ∈ S3 be a quaternion of unit length and
ϕq : S1 → S3 be the map defined by ϕq : z 7→ qz. For w ∈ S1 let
γw : R → S1 be the curve given by γw(t) = weit. Then γw(0) = w,
γ̇w(0) = iw and ϕq(γw(t)) = qweit. By differentiating we yield

dϕq(γ̇w(0)) =
d

dt
(ϕq(γw(t)))|t=0 =

d

dt
(qweit)|t=0 = qiw.

Then |dϕq(γ̇w(0))| = |qwi| = |q||w| = 1 ̸= 0 implies that the differen-
tial dϕq is injective. It is easily checked that the immersion ϕq is an
embedding.
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We have introduced the real projective space RPm as an abstract
manifold in Example 2.6. In the next example we construct an in-
teresting embedding of RPm into the real vector space Sym(Rm+1) of
symmetric real (m+ 1)× (m+ 1) matrices.

Example 3.26. Let Sm be them-dimensional unit sphere in Rm+1.
For a point p ∈ Sm, let

ℓp = {λ · p ∈ Rm+1 |λ ∈ R}

be the line, through the origin, generated by p. Further let

Rp : Rm+1 → Rm+1

be the reflection about the line ℓp. Then Rp is an element of End(Rm+1)
i.e. the set of linear endomorphisms of Rm+1 which can be identified
with the set R(m+1)×(m+1) of real (m+1)×(m+1) matrices. It is easily
checked that the reflection Rp about the line ℓp is given by

Rp : q 7→ 2⟨p, q⟩p− q.

It then immediately follows from the relation

Rp(q) = 2⟨p, q⟩p− q = 2p⟨p, q⟩ − q = (2p · pt − e) · q

that the symmetric matrix in R(m+1)×(m+1) corresponding to Rp is just

(2p · pt − e).

We will now show that the map ϕ : Sm → Sym(Rm+1) given by

ϕ : p 7→ Rp

is an immersion. Let p be an arbitrary point on Sm and α, β : I → Sm

be two curves meeting at p i.e. α(0) = p = β(0), with Xp = α̇(0) and

Yp = β̇(0). For γ ∈ {α, β} we have

ϕ ◦ γ : t 7→ (q 7→ 2⟨q, γ(t)⟩γ(t)− q)

so

(dϕ)p(γ̇(0)) =
d

dt
(ϕ ◦ γ(t))|t=0

= (q 7→ 2⟨q, γ̇(0)⟩γ(0) + 2⟨q, γ(0)⟩γ̇(0)).

This means that

dϕp(Xp) = (q 7→ 2⟨q,Xp⟩p+ 2⟨q, p⟩Xp)

and

dϕp(Yp) = (q 7→ 2⟨q, Yp⟩p+ 2⟨q, p⟩Yp).
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Let us now assume that the tangent vectors Xp, Yp ∈ TpS
m are

linearly independent. Then the symmetric linear operators

dϕp(Xp), dϕp(Yp) : Rm+1 → Rm+1

satisfy

dϕp(Xp)(p) = 2Xp ̸= 2Yp = dϕp(Yp)(p).

This implies that the linear differential dϕp of ϕ at p is injective and
hence the map ϕ : Sm → Sym(Rm+1) is an immersion.

If two points p, q ∈ Sm are linearly independent, then the cor-
responding lines ℓp and ℓq are different. But these are exactly the
eigenspaces of Rp and Rq with the eigenvalue +1, respectively. This
shows that the linear endomorphisms Rp and Rq of Rm+1 are different
in this case.

On the other hand, if p and q are parallel i.e. p = ±q then Rp = Rq.
This means that the image ϕ(Sm) can be identified with the quotient
space Sm/ ≡ where ≡ is the equivalence relation defined by

x ≡ y if and only if x = ±y.

The quotient space is of course the real projective space RPm, in-
troduced in Example 2.6. This implies that the map ϕ induces an
embedding Φ : RPm → Sym(Rm+1) satisfying Φ : [p] 7→ Rp.

For each point p ∈ Sm the reflection Rp : Rm+1 → Rm+1 about the
line ℓp satisfies

Rp ·Rt
p = Rp ·Rp = e.

This shows that the image Φ(RPm) = ϕ(Sm) is not only contained in
the linear space Sym(Rm+1) but also in the orthogonal group O(m+1),
which we know from Example 2.19 is a submanifold of R(m+1)×(m+1).

The next result was proven by Hassler Whitney (1907-1989) in his
celebrated paper, Differentiable Manifolds, Ann. of Math. 37 (1936),
645-680.

Deep Result 3.27. For 1 ≤ r ≤ ∞ let M be an m-dimensional
Cr-manifold. Then there exists a Cr-embedding ϕ : M → R2m+1 of M
into the (2m+ 1)-dimensional real vector space R2m+1.

The following is interesting in view of Witney’s result.

Example 3.28. According to Example 3.26, the m-dimensional
real projective space RPm can be embedded into the linear space
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Sym(Rm+1). The embedding Φ : RPm → Sym(Rm+1) is given by

Φ : [p] 7→ Rp =


2p21 − 1 2p1p2 · · · 2p1pm+1

2p2p1 2p22 − 1 · · · 2p2pm+1
...

...
. . .

...
2pm+1p1 2pm+1p2 · · · 2p2m+1 − 1

 .

In the special case of the two dimensional real projective plane RP 2

we have the embedding Φ : RP 2 → Sym(R3) into the 6-dimensional
linear space Sym(R3) of symmetric real 3 × 3 matrices. This is given
by

Φ : [(x, y, z)] 7→

r11 r12 r13
r12 r22 r23
r13 r23 r33

 =

2x2 − 1 2xy 2xz
2yx 2y2 − 1 2yz
2zx 2zy 2z2 − 1

 .

The image Φ(RP 2) is clearly contained in the 5-dimensional hyperplane
of R6 defined by

r11 + r22 + r33 = −1.

With the following, we now show that the classical inverse function
theorem generalises to the manifold setting. The reader should compare
this with Fact 2.13.

Theorem 3.29 (The Inverse Mapping Theorem). Let ϕ :M → N
be a differentiable map between manifolds with dimM = dimN . If
p is a point in M such that the differential dϕp : TpM → Tϕ(p)N at
p is bijective then there exist open neighborhoods Up around p and Uq

around q = ϕ(p) such that ψ = ϕ|Up : Up → Uq is bijective and the
inverse ψ−1 : Uq → Up is differentiable.

Proof. See Exercise 3.8 □

We will now generalise the classical implicit mapping theorem to
manifolds. For this we need the following definition. Compare this
with Definition 2.14.

Definition 3.30. Let m,n be positive integers and ϕ :Mm → Nn

be a differentiable map between manifolds. A point p ∈ M is said to
be regular for ϕ if the differential

dϕp : TpM → Tϕ(p)N

is of full rank, but critical otherwise. A point q ∈ ϕ(M) is said to be
a regular value of ϕ if every point in the pre-image ϕ−1({q}) of {q}
is regular.

The reader should compare the following result with Theorem 2.16.
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Theorem 3.31 (The Implicit Mapping Theorem). Let ϕ : Mm →
Nn be a differentiable map between manifolds such that m > n. If
q ∈ ϕ(M) is a regular value, then the pre-image ϕ−1({q}) of q is
a submanifold of Mm of dimension an (m − n). The tangent space
Tpϕ

−1({q}) of ϕ−1({q}) at p is the kernel of the differential dϕp i.e.

Tpϕ
−1({q}) = {X ∈ TpM | dϕp(X) = 0}.

Proof. Let (V, y) be a local chart on N with q ∈ V and y(q) = 0.
For a point p ∈ ϕ−1({q}) we choose a local chart (U, x) onM such that
p ∈ U , x(p) = 0 and ϕ(U) ⊂ V . Then the differential of the map

ψ = y ◦ ϕ ◦ x−1|x(U) : x(U) → Rn

at the point 0 is given by

dψ0 = (dy)q ◦ dϕp ◦ (dx−1)0 : T0Rm → T0Rn.

The pairs (U, x) and (V, y) are local charts so the differentials (dy)q and
(dx−1)0 are bijective. This means that dψ0 is surjective since dϕp is. It
then follows from Theorem 2.16 that x(ϕ−1({q}) ∩ U) is an (m − n)-
dimensional submanifold of x(U). Hence ϕ−1({q}) ∩ U is an (m− n)-
dimensional submanifold of U . This is true for each point p ∈ ϕ−1({q})
so we have proven that ϕ−1({q}) is a submanifold of Mm of dimension
(m− n).

Let γ : I → ϕ−1({q}) be a curve such that γ(0) = p. Then

(dϕ)p(γ̇(0)) =
d

dt
(ϕ ◦ γ(t))|t=0 =

dq

dt
|t=0 = 0.

This implies that Tpϕ
−1({q}) is contained in and has the same dimen-

sion as the kernel of dϕp, so Tpϕ
−1({q}) = Ker dϕp. □

We conclude this chapter with a discussion on the important sub-
mersions between differentiable manifolds.

Definition 3.32. For positive integers m,n ∈ Z+ with m ≥ n a
differentiable map ϕ : Mm → Nn between two manifolds is said to be
a submersion if for each p ∈ M the differential dϕp : TpM → Tϕ(p)N
is surjective.

The reader should compare Definition 3.32 with Definition 3.20.

Example 3.33. If m,n ∈ Z+ such that m ≥ n then we have the
projection map π : Rm → Rn given by π : (x1, . . . , xm) 7→ (x1, . . . , xn).
Its differential dπx at a point x is surjective since

dπx(v1, . . . , vm) = (v1, . . . , vn).

This means that the projection is a submersion.
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The next item of the menu is the famous Hopf map. This is named
after the distingued differential topologist Heinz Hopf (1894-1971). His
construction has been very important both in topology and differential
geometry and has later been generalised in several different directions.
It provides us with an important submersion between spheres.

Example 3.34. Let S2 and S3 be the unit spheres in C×R ∼= R3

and C2 ∼= R4, respectively. Then the Hopf map ϕ : S3 → S2 is given
by

ϕ : (z, w) 7→ (2zw̄, |z|2 − |w|2).
For a point p = (z, w) in S3 the Hopf circle Cp through p is defined
by

Cp = {eiθ(z, w) | θ ∈ R}.
The following shows that the Hopf map is constant along each Hopf
circle

ϕ(eiθ(z, w)) = (2eiθze−iθw̄, |eiθz|2 − |eiθw|2)
= (2zw̄, |z|2 − |w|2)
= ϕ((z, w)).

Now define the vectors v1 = (i, 0), v2 = (0, 1), v3 = (0, i) ∈ C2 and, for
k = 1, 2, 3, the curves γk : R → S3 by

γk : t 7→ cos t · (1, 0) + sin t · vk.
Then γk(0) = e and γ̇k(0) = vk, so v1, v2, v3 are elements of the tangent
space TeS

3 of S3 at the neutral element e. They are linearly indepen-
dent and hence form a basis for the 3-dimensional TeS

3.

It can be shown that the Hopf map ϕ : S3 → S2 is surjective and
that the same applies to its differential dϕp : TpS

3 → Tϕ(p)S
2 for each

p ∈ S3. This means that ϕ is a submersion, so each point q ∈ S2

is a regular value of ϕ and the fibres ϕ−1({q}) of ϕ are 1-dimensional
submanifolds of S3. They are actually the Hopf circles given by

ϕ−1({(2zw̄, |z|2 − |w|2)}) = {eiθ(z, w) | θ ∈ R}.
This means that the 3-dimensional sphere S3 is a disjoint union of great
circles

S3 =
⋃
q∈S2

ϕ−1({q}).
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Exercises

Exercise 3.1. Let p be an arbitrary point of the unit sphere S2n+1

in Cn+1 ∼= R2n+2. Determine the tangent space TpS
2n+1 and show that

this contains an n-dimensional complex vector subspace of Cn+1.

Exercise 3.2. Use your local library to find a proof of Proposition
3.9.

Exercise 3.3. Prove that the matrices

X1 =

(
0 −1
1 0

)
, X2 =

(
1 0
0 −1

)
, X3 =

(
0 1
1 0

)
form a basis for the tangent space TeSL2(R) of the real special linear
group SL2(R) at the neutral element e. For each k = 1, 2, 3 find an
explicit formula for the curve γk : R → SL2(R) given by

γk : s 7→ Exp(sXk).

Exercise 3.4. Find a proof of Theorem 3.13.

Exercise 3.5. Prove that the matrices

Z1 =

(
0 −1
1 0

)
, Z2 =

(
i 0
0 −i

)
, Z3 =

(
0 i
i 0

)
,

form a basis for the tangent space TeSU(2) of the special unitary group
SU(2) at the neutral element e. For each k = 1, 2, 3 find an explicit
formula for the curve γk : R → SU(2) given by

γk : s 7→ Exp(sZk).

Exercise 3.6. For each non-negative integer k define ϕk : C → C
and ψk : C∗ → C by ϕk, ψk : z 7→ zk. For which such k are ϕk, ψk

immersions, embeddings or submersions ?

Exercise 3.7. Prove that the differentiable map ϕ : Rm → Tm

given by
ϕ : (x1, . . . , xm) 7→ (eix1 , . . . , eixm)

is a parametrisation of the m-dimensional torus Tm in Cm.

Exercise 3.8. Find a proof of Theorem 3.29.

Exercise 3.9. Prove that the differential dϕp : TpS
3 → Tϕ(p)S

2 of
the Hopf-map ϕ : S3 → S2, with

ϕ : (z, w) 7→ (2 zw̄, |z|2 − |w|2),
is surjective at the point p = (1, 0) ∈ S3.
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CHAPTER 4

The Tangent Bundle

In this chapter we introduce the tangent bundle TM of a differ-
entiable manifold M . Intuitively, this is the object that we obtain by
glueing at each point p in M the corresponding tangent space TpM .
The differentiable structure onM induces a natural differentiable struc-
ture on the tangent bundle TM turning it into a differentiable manifold
of twice the dimension of M. To explain the notion of the tangent bun-
dle we investigate several concrete examples. The classical Lie groups
will here play a particular important role.

We have already seen that for a point p ∈ Rm the tangent space
TpRm can be identified with the m-dimensional vector space Rm. This
means that if we at each point p ∈ Rm glue the tangent space TpRm to
Rm we obtain the so called tangent bundle of Rm

TRm = {(p, v) | p ∈ Rm and v ∈ TpRm}.
For this we have the natural projection π : TRm → Rm defined by

π : (p, v) 7→ p

and for each point p in M the fibre π−1({p}) over p is precisely the
tangent space TpRm at p.

Remark 4.1. Classically, a vector field X on Rm is a differen-
tiable map X : Rm → Rm but we would like to view it as a map
X : Rm → TRm into the tangent bundle and write

X : p 7→ (p,Xp).

Following Proposition 3.19, two vector fields X, Y : Rm → TRm can be
written as

X =
m∑
k=1

ak ·
∂

∂xk
and Y =

m∑
k=1

bk ·
∂

∂xk
,

where ak, bk : Rm → R are differentiable functions defined on Rm. If
f : Rm → R is another such function the commutator [X, Y ] acts on
f as follows

[X, Y ](f) = X(Y (f))− Y (X(f))
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=
m∑

k,l=1

(
ak

∂

∂xk
(bl

∂

∂xl
)− bk

∂

∂xk
(al

∂

∂xl
)
)
(f)

=
m∑

k,l=1

(
ak
∂bl
∂xk

∂

∂xl
+ akbl

∂2

∂xk∂xl

−bk
∂al
∂xk

∂

∂xl
− bkal

∂2

∂xk∂xl

)
(f)

=
m∑
l=1

{ m∑
k=1

(
ak
∂bl
∂xk

− bk
∂al
∂xk

)} ∂

∂xl
(f).

This shows that the commutator [X, Y ] is actually a differentiable vec-
tor field on Rm.

In this chapter we will generalise the above important ideas to the
manifold setting. We first introduce the following general notion of a
topological vector bundle.

Definition 4.2. Let E and M be topological manifolds and π :
E → M be a continuous surjective map. The triple (E,M, π) is said
to be an n-dimensional topological vector bundle over M if

(i) for each point p in M , the fibre Ep = π−1({p}) is an n-
dimensional vector space,

(ii) for each point p in M , there exists a local bundle chart
(π−1(U), ψ) consisting of the pre-image π−1(U) of an open
neighbourhood U in M containing the point p and a home-
omorphism ψ : π−1(U) → U ×Rn such that for each q ∈ U the
map ψq = ψ|Eq : Eq → {q}×Rn is a vector space isomorphism.

A bundle atlas for the topological vector bundle (E,M, π) is a
collection

B = {(π−1(Uα), ψα) |α ∈ I}
of local bundle charts such that

M =
⋃
α∈I

Uα

and for all α, β ∈ I there exists a map Aα,β : Uα ∩Uβ → GLn(R) such
that the corresponding continuous map

ψβ ◦ ψ−1
α |(Uα∩Uβ)×Rn : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

is given by
(p, v) 7→ (p, (Aα,β(p))(v)).

The elements of {Aα,β |α, β ∈ I} are called the transition maps of
the bundle atlas B.
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Definition 4.3. Let (E,M, π) be an n-dimensional topological vec-
tor bundle over M . A continuous map v : M → E is called a section
of the bundle (E,M, π) if π ◦ v(p) = p for each p ∈M .

Definition 4.4. A topological vector bundle (E,M, π) over M of
dimension n is said to be trivial if there exists a global bundle chart
ψ : E →M × Rn.

We now give two examples of trivial topological vector bundles.

Example 4.5. Let M be the one dimensional unit circle S1 in R2,
E be the two dimensional cylinder E = S1×R1 and π : E →M be the
projection map given by π : (p, t) 7→ p. Then (E,M, π) is a trivial line
bundle i.e. a trivial 1-dimensional vector bundle over the circle. This
because the identity map ψ : S1×R1 → S1×R1 with ψ : (p, t) → (p, t)
is a global bundle chart.

Example 4.6. For a positive integer n and a topological manifold
M we have the n-dimensional trivial vector bundle (M ×Rn,M, π)
overM , where π :M×Rn →M is the projection map with π : (p, v) 7→
p. The bundle is trivial since the identity map ψ :M ×Rn →M ×Rn

is a global bundle chart.

The famous Möbius band is an interesting example of a non-trivial
topological vector bundle.

Example 4.7. Let M be the unit circle S1 in R4 parametrised by
γ : R → R4 with

γ : s 7→ (cos s, sin s, 0, 0).

Further let E be the well known Möbius band in R4 parametrised by
ϕ : R2 → R4 with

ϕ : (s, t) 7→ (cos s, sin s, 0, 0) + t · (0, 0, sin(s/2), cos(s/2)).
Then E is a regular surface and the natural projection π : E → M
given by π : (x, y, z, w) 7→ (x, y, 0, 0) is continuous and surjective. The
triple (E,M, π) is a line bundle over the circle S1. The Möbius band
is not orientable and hence not homeomorphic to the product S1 ×R.
This shows that the bundle (E,M, π) is not trivial.

We now introduce the notion of a smooth vector bundle. As we
will see in Example 4.11 the tangent bundle (TM,M, π) of a smooth
manifold M belongs to the C∞-category.

Definition 4.8. Let E and M be differentiable manifolds and
π : E → M be a differentiable map such that (E,M, π) is an n-
dimensional topological vector bundle. A bundle atlas B for (E,M, π)
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is said to be differentiable if the corresponding transition maps are
differentiable. A differentiable vector bundle is a topological vector
bundle together with a maximal differentiable bundle atlas. By C∞(E)
we denote the set of all smooth sections of (E,M, π).

From now on we will assume, when not stating otherwise,
that all our vector bundles are smooth i.e. of the C∞-category.

Definition 4.9. Let (E,M, π) be a smooth vector bundle over a
manifold M . Then we define the operations + and · on the set C∞(E)
of smooth sections of (E,M, π) by

(i) (v + w)p = vp + wp,
(ii) (f · v)p = f(p) · vp

for all p ∈M , v, w ∈ C∞(E) and f ∈ C∞(M).

If U is an open subset of M then a set {v1, . . . , vn} of smooth
sections v1, . . . , vn : U → E on U is called a local frame for E if for
each p ∈ U the set {(v1)p, . . . , (vn)p} is a basis for the vector space Ep

i.e. the fibre π−1({p}) over p.
Remark 4.10. According to Definition 2.20, the set of smooth

real-valued functions on M is denoted by C∞(M). This satisfies the
algebraic axioms of a ring but not those of a field. With the above de-
fined operations on C∞(E) it becomes a module over the ring C∞(M)
and in particular a vector space over the field of real numbers, seen
as the constant functions in C∞(M).

The following example is the central part of this chapter. Here we
construct the differentiable tangent bundle of a differentiable manifold.

Example 4.11. LetMm be a differentiable manifold with maximal
atlas Â. Then define the set TM by

TM = {(p, v) | p ∈M and v ∈ TpM}
and let π : TM →M be the projection map satisfying

π : (p, v) 7→ p.

For each point p ∈M , the fibre π−1({p}) is the tangent space TpM
isomorphic to Rm. The triple (TM,M, π) is called the tangent bundle
of M . We will now equip this with the structure of a differentiable
vector bundle.

For every local coordinate x : U → Rm on the manifold M , we
define a local chart

x∗ : π−1(U) → Rm × Rm
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on the tangent bundle TM of M by the formula

x∗ : (p,
m∑
k=1

vk(p) ·
( ∂

∂xk

)
p
) 7→ (x(p), (v1(p), . . . , vm(p))).

Proposition 3.19 shows that the map x∗ is well defined. The collection

{(x∗)−1(W ) ⊂ TM | (U, x) ∈ Â and W ⊂ x(U)× Rm open}
is a basis for a topology TTM on TM and (π−1(U), x∗) is a local chart
on the topological manifold (TM, TTM) of dimension 2m. Note that
TTM is the weakest topology on TM such that the bundle charts are
continuous.

If (U, x), (V, y) ∈ Â are two local charts on the differentiable mani-
fold M such that p ∈ U ∩ V then it follows from Exercise 4.1 that the
transition map

(y∗) ◦ (x∗)−1 : x∗(π−1(U ∩ V )) → Rm × Rm

is given by

(a, b) 7→ (y ◦ x−1(a),
( m∑

k=1

∂y1
∂xk

(x−1(a)) · bk, . . . ,
m∑
k=1

∂ym
∂xk

(x−1(a)) · bk
)
).

Since we are assuming that y ◦ x−1 is differentiable it follows that the
map (y∗) ◦ (x∗)−1 is also differentiable. Accordingly, the collection

A∗ = {(π−1(U), x∗) | (U, x) ∈ Â}

is a differentiable atlas on the tangent bundle TM so (TM, Â∗) is a
differentiable manifold. Furthermore, it is clear that the surjective
projection map π : TM →M is differentiable.

For each point p ∈M the fibre π−1({p}) is the linear tangent space
TpM isomorphic to Rm. For a local coordinate x : U → Rm on M we
define the map x̄ : π−1(U) → U × Rm by

x̄ :
(
p,

m∑
k=1

vk(p) ·
( ∂

∂xk

)
p
) 7→ (p, (v1(p), . . . , vm(p))).

The restriction x̄p = x̄|TpM : TpM → {p} × Rm of x̄ to the tangent
space TpM is given by

x̄p :
m∑
k=1

vk(p) ·
( ∂

∂xk

)
p
7→ (v1(p), . . . , vm(p)),

so it is clearly a vector space isomorphism. This implies that the map

x̄ : π−1(U) → U × Rm
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is a local bundle chart. If (U, x), (V, y) ∈ Â are two local charts on M
such that p ∈ U ∩ V then the transition map

(ȳ) ◦ (x̄)−1 : (U ∩ V )× Rm → (U ∩ V )× Rm

is given by

(p, b) 7→ (p,
( m∑

k=1

∂y1
∂xk

(p) · bk, . . . ,
m∑
k=1

∂ym
∂xk

(p) · bk
)
).

It is clear that the matrix ∂y1/∂x1(p) . . . ∂y1/∂xm(p)
...

. . .
...

∂ym/∂x1(p) . . . ∂ym/∂xm(p)


is of full rank so the corresponding linear map A(p) : Rm → Rm is a
vector space isomorphism for all p ∈ U ∩ V . This shows that

Ā = {(π−1(U), x̄) | (U, x) ∈ Â}
is a bundle atlas turning (TM,M, π) into a topological vector bun-
dle of dimensionm. It follows from the above that (TM,M, π) together
with the maximal bundle atlas induced by Ā is a differentiable vec-
tor bundle.

We now introduce the fundamental notion of a vector field on a
differentiable manifold.

Definition 4.12. LetM be a differentiable manifold, then a section
X :M → TM of the tangent bundle is called a vector field. The set
of smooth vector fields X :M → TM is denoted by C∞(TM).

Example 4.13. We have earlier seen that the 3-dimensional unit
sphere S3 in H ∼= C2 ∼= R4 carries a group structure · given by

(z1, w1) · (z2, w2) = (z1z2 − w̄1w2, w1z2 + z̄1w2).

This turns (S3, ·) into a Lie group with neutral element e = (1, 0). Put
v1 = (0, 1), v2 = (i, 0) and v3 = (0, i) and for k = 1, 2, 3 define the
curves γk : R → S3 by

γk : t 7→ cos t · (1, 0) + sin t · vk.
Then γk(0) = e and γ̇k(0) = vk so v1, v2, v3 are elements of the tangent
space TeS

3 of S3 at the neutral element e. They are linearly indepen-
dent and hence form a basis for TeS

3.
The group structure on S3 can be used to extend vectors in TeS

3

to vector fields on S3 as follows. For a point p ∈ S3, let the map
Lp : S

3 → S3 be the left-translation on the Lie group S3 by p satisfying
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Lp : q 7→ p · q. Then define the vector fields X1, X2, X3 ∈ C∞(TS3) on
S3 by

(Xk)p = (dLp)e(vk)

=
d

dt
(Lp(γk(t)))|t=0

=
d

dt
(p · γk(t)))|t=0

= p · vk.
It is left as an exercise for the reader to show that at an arbitrary point
p = (z, w) ∈ S3 the values of Xk at p are given by

(X1)p = (z, w) · (0, 1) = (−w̄, z̄),
(X2)p = (z, w) · (i, 0) = (iz, iw),

(X3)p = (z, w) · (0, i) = (−iw̄, iz̄).

Our next task is to introduce the important Lie brackets on the set
of smooth vector fields C∞(TM) on the manifold M .

Definition 4.14. Let M be a differentiable manifold. For two
vector fields X, Y ∈ C∞(TM) we define the Lie bracket [X, Y ]p :
C∞(M) → R of X and Y at p ∈M by

[X, Y ]p(f) = Xp(Y (f))− Yp(X(f)).

Remark 4.15. The reader should note that ifM is a smooth man-
ifold, X ∈ C∞(TM) and f ∈ C∞(M) then the derivative X(f) is the
smooth real-valued function on M given by X(f) : p 7→ Xp(f) for all
p ∈M .

The next result shows that the Lie bracket [X, Y ]p is actually an el-
ement of the tangent space TpM ofM at p. The reader should compare
this with Definition 3.6 and Remark 4.1.

Proposition 4.16. Let M be a smooth manifold, X, Y ∈ C∞(TM)
be vector fields on M , f, g ∈ C∞(M) and λ, µ ∈ R. Then

(i) [X, Y ]p(λ · f + µ · g) = λ · [X, Y ]p(f) + µ · [X, Y ]p(g),
(ii) [X, Y ]p(f · g) = [X, Y ]p(f) · g(p) + f(p) · [X, Y ]p(g).

Proof. The result is a direct consequence of the following calcu-
lations.

[X, Y ]p(λf + µg)

= Xp(Y (λf + µg))− Yp(X(λf + µg))

= λXp(Y (f)) + µXp(Y (g))− λYp(X(f))− µYp(X(g))
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= λ[X, Y ]p(f) + µ[X, Y ]p(g).

[X, Y ]p(f · g)
= Xp(Y (f · g))− Yp(X(f · g))
= Xp(f · Y (g) + g · Y (f))− Yp(f ·X(g) + g ·X(f))

= Xp(f)Yp(g) + f(p)Xp(Y (g)) +Xp(g)Yp(f) + g(p)Xp(Y (f))

−Yp(f)Xp(g)− f(p)Yp(X(g))− Yp(g)Xp(f)− g(p)Yp(X(f))

= f(p){Xp(Y (g))− Yp(X(g))}+ g(p){Xp(Y (f))− Yp(X(f))}
= f(p)[X, Y ]p(g) + g(p)[X, Y ]p(f).

□

Proposition 4.16 implies that if X, Y are smooth vector fields onM
then the map [X, Y ] : M → TM given by [X, Y ] : p 7→ [X, Y ]p is a
section of the tangent bundle. In Proposition 4.18 we will prove that
this section is smooth. For this we need the following technical result.

Lemma 4.17. Let Mm be a smooth manifold and X : M → TM
be a section of TM . Then the following conditions are equivalent

(i) the section X is smooth,
(ii) if (U, x) is a local chart on M then the functions a1, . . . , am :

U → R given by

X|U =
m∑
k=1

ak
∂

∂xk
,

are smooth,
(iii) if f : V → R defined on an open subset V of M is smooth, then

the function X(f) : V → R with X(f)(p) = Xp(f) is smooth.

Proof. This proof is divided into three parts. First we show that
(i) implies (ii): The functions

ak = πm+k ◦ x∗ ◦X|U : U → π−1(U) → x(U)× Rm → R

are compositions of smooth maps so therefore smooth.
Secondly, we now show that (ii) gives (iii): Let (U, x) be a local

chart on M such that U is contained in V . By assumption the map

X(f |U) =
m∑
i=1

ai
∂f

∂xi

is smooth. This is true for each such local chart (U, x) so the function
X(f) is smooth on V .
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Finally we show that (iii) leads to (i): Note that the smoothness of
the section X is equivalent to x∗ ◦ X|U : U → R2m being smooth for
all local charts (U, x) on M . On the other hand, this is equivalent to

x∗k = πk ◦ x∗ ◦X|U : U → R
being smooth for all k = 1, 2, . . . , 2m and all local charts (U, x) on M .
It is trivial that the coordinate functions x∗k = xk for k = 1, . . . ,m are
smooth. But x∗m+k = ak = X(xk) for k = 1, . . . ,m hence also smooth
by assumption. □

Proposition 4.18. Let M be a manifold and X, Y ∈ C∞(TM) be
vector fields on M . Then the section [X, Y ] :M → TM of the tangent
bundle given by [X, Y ] : p 7→ [X, Y ]p is smooth.

Proof. Let f : M → R be an arbitrary smooth function on M
then [X, Y ](f) = X(Y (f)) − Y (X(f)) is smooth so it follows from
Lemma 4.17 that the section [X, Y ] is smooth. □

For later use we prove the following important result.

Lemma 4.19. Let M be a smooth manifold and

[·, ·] : C∞(TM)× C∞(TM) → C∞(TM)

be the Lie bracket on the tangent bundle TM of M . Then

(i) [X, f · Y ] = X(f) · Y + f · [X, Y ],
(ii) [f ·X, Y ] = f · [X, Y ]− Y (f) ·X,

for all X, Y ∈ C∞(TM) and f ∈ C∞(M).

Proof. If g ∈ C∞(M), then

[X, f · Y ](g) = X(f · Y (g))− f · Y (X(g))

= X(f) · Y (g) + f ·X(Y (g))− f · Y (X(g))

= (X(f) · Y + f · [X, Y ])(g).

This proves the first statement and the second follows from the skew-
symmetry of the Lie bracket. □

We now define the general notion of a Lie algebra. This is a funda-
mental concept in differential geometry.

Definition 4.20. A real vector space (V,+, ·) equipped with an
operation [·, ·] : V × V → V is said to be a real Lie algebra if the
following relations hold

(i) [λX + µY, Z] = λ[X,Z] + µ[Y, Z],
(ii) [X, Y ] = −[Y,X],
(iii) [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0,
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for all X, Y, Z ∈ V and λ, µ ∈ R. The important equation (iii) is called
the Jacobi identity.

Example 4.21. Let R3 be the 3-dimensional real vector space gen-
erated by X = (1, 0, 0), Y = (0, 1, 0) and Z = (0, 0, 1). Let × be the
standard cross product on R3 and define the skew-symmetric bilinear
operation [·, ·] : R3 × R3 → R3 by

[X, Y ] = X × Y = Z,

[Z,X] = Z ×X = Y,

[Y, Z] = Y × Z = X.

This turns R3 into a Lie algebra. Compare this with Exercise 4.7.

Theorem 4.22. Let M be a smooth manifold. The vector space
C∞(TM) of smooth vector fields on M equipped with the Lie bracket
[·, ·] : C∞(TM)× C∞(TM) → C∞(TM) is a Lie algebra.

Proof. See Exercise 4.4. □

Definition 4.23. If ϕ : M → N is a surjective map between
differentiable manifolds, then two vector fields X ∈ C∞(TM) and X̄ ∈
C∞(TN) are said to be ϕ-related if dϕp(Xp) = X̄ϕ(p) for all p ∈ M .
In that case we write dϕ(X) = X̄.

Example 4.24. Let S1 be the unit circle in the complex plane
and ϕ : S1 → S1 be the map given by ϕ(z) = z2. Note that this is
surjective but not bijective. Further let X be the vector field on S1

satisfying X(z) = iz. Then

dϕz(Xz) =
d

dθ
(ϕ(zeiθ))|θ=0 =

d

dθ
((zeiθ)2)|θ=0 = 2iz2 = 2Xϕ(z).

This shows that the vector field X is ϕ-related to X̄ = 2X.

Example 4.25. Let f : R → R be a surjective C1-function and
x, y ∈ R such that x ̸= y, f(x) = f(y) and f ′(x) ̸= f ′(y). Further
let γ : R → R be the curve with γ(t) = t and define the vector field
X ∈ C1(TR) by Xt = γ̇(t). Then for each t ∈ R we have

dft(Xt) = (f ◦ γ(t))′ = f ′(t).

If X̄ ∈ C1(TR) is a vector field which is f -related to X then

X̄f(x) = dfx(Xx) = f ′(x) ̸= f ′(y) = dfy(Xy) = X̄f(y).

This contradicts the existence of such a vector field X̄.
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The next item is hopefully helpful for understanding the proof of
Proposition 4.27.

Remark 4.26. Let ϕ : M → N be a differentiable map between
differentiable manifolds. For this situation we have in Definition 3.14
introduced the linear differential dϕp : TpM → Tϕ(p)N of ϕ at a point
p ∈M such that for all Xp ∈ TpM and f ∈ ε(ϕ(p)) we have

(dϕp(Xp))(f) = Xp(f ◦ ϕ),
or equivalently,

dϕ(X)(f)(ϕ(p)) = X(f ◦ ϕ)(p).
This equation is a comparison of two real numbers. But since it is true
for all points p ∈ M it induces the following relation at the level of
functions

dϕ(X)(f) ◦ ϕ = X(f ◦ ϕ).

The next result turns out to be important and will be employed
several times in what follows.

Proposition 4.27. Let ϕ : M → N be a surjective map between
differentiable manifolds, X, Y ∈ C∞(TM) and X̄, Ȳ ∈ C∞(TN) such
that dϕ(X) = X̄ and dϕ(Y ) = Ȳ . Then the Lie brackets [X, Y ] ∈
C∞(TM) and [X̄, Ȳ ] ∈ C∞(TN) are ϕ-related i.e.

dϕ([X, Y ]) = [X̄, Ȳ ].

Proof. Let p ∈M and f : N → R be a smooth function, then

dϕp([X, Y ]p)(f) = [X, Y ]p(f ◦ ϕ)
= Xp(Y (f ◦ ϕ))− Yp(X(f ◦ ϕ))
= Xp(dϕ(Y )(f) ◦ ϕ)− Yp(dϕ(X)(f) ◦ ϕ)
= dϕ(X)ϕ(p)(dϕ(Y )(f))− dϕ(Y )ϕ(p)(dϕ(X)(f))

= [X̄, Ȳ ]ϕ(p)(f).

□

For the important special case of a diffeomorphism we have the
following natural consequence of Proposition 4.27.

Proposition 4.28. Let M and N be differentiable manifolds and
ϕ :M → N be a diffeomorphism. If X, Y ∈ C∞(TM) are vector fields
on M , then dϕ(X) and dϕ(Y ) are vector fields on N and the tangent
map dϕ : C∞(TM) → C∞(TN) is a Lie algebra homomorphism i.e.

dϕ([X, Y ]) = [dϕ(X), dϕ(Y )].
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Proof. The fact that ϕ is bijective implies that dϕ(X) is a section
of the tangent bundle TN . That dϕ(X) is smooth follows directly from
the fact that

dϕ(X)(f)(ϕ(p)) = X(f ◦ ϕ)(p),
for all p ∈ M and f ∈ ε(ϕ(p)). The rest is an immediate consequence
of Proposition 4.27. □

Definition 4.29. Let M be a differentiable manifold. Two vec-
tor fields X, Y ∈ C∞(TM) are said to commute if their Lie bracket
vanishes i.e. [X, Y ] = 0.

The fact that a local chart on a differentiable manifold is a diffeo-
morphism has the following important consequence.

Proposition 4.30. Let M be a differentiable manifold, (U, x) be a
local chart on M and

{ ∂

∂xk
| k = 1, 2, . . . ,m}

be the induced local frame for the tangent bundle TM . Then the local
frame fields commute i.e.

[
∂

∂xk
,
∂

∂xl
] = 0 for all k, l = 1, . . . ,m.

Proof. The map x : U → x(U) is a diffeomorphism. The vector
field ∂/∂xk ∈ C∞(TU) is x-related to the coordinate vector field ∂ek ∈
C∞(Tx(U)). Then Proposition 4.28 implies that

dx([
∂

∂xk
,
∂

∂xl
]) = [∂ek , ∂el ] = 0.

The last equation is an immediate consequence of the following well
known fact

[∂ek , ∂el ](f) = ∂ek(∂el(f))− ∂el(∂ek(f)) = 0

for all f ∈ C2(x(U)). The result now follows from the fact that the
linear map dxp : TpM → Tx(p)Rm is bijective for all p ∈ U . □

We now introduce the notion of a left-invariant vector field on a
Lie group. This will play an important role later on and should be
compared with Example 4.13.

Definition 4.31. Let G be a Lie group. Then a vector field X ∈
C∞(TG) on G is said to be left-invariant if it is Lp-related to itself
for all p ∈ G i.e.

(dLp)q(Xq) = Xpq for all p, q ∈ G.

54



The set of left-invariant vector fields on G is called the Lie algebra of
G and denoted by g.

Remark 4.32. It should be noted that if e is the neutral element
of the Lie group G and X ∈ g is a left-invariant vector field on G, then

Xp = (dLp)e(Xe).

This shows that the value Xp of the left-invariant vector field X ∈ g at
p is completely determined by its value Xe at e. Hence the linear map
Φ : TeG→ g given by

Φ : Xe 7→ (X : p 7→ (dLp)e(Xe))

is a vector space isomorphism. As a direct consequence of this fact we
see that the Lie algebra g is a finite dimensional subspace of C∞(TG)
of the same dimension as that of the Lie group G.

Proposition 4.33. Let G be a Lie group. Then its Lie algebra g is
a Lie subalgebra of C∞(TG) i.e. if X, Y ∈ g are left-invariant then
[X, Y ] ∈ g.

Proof. If p ∈ G then the left translation Lp : G → G is a diffeo-
morphism so it follows from Proposition 4.28 that

dLp([X, Y ]) = [dLp(X), dLp(Y )] = [X, Y ]

for all X, Y ∈ g. This proves that the Lie bracket [X, Y ] of two left-
invariant vector fields X, Y ∈ g is also left-invariant. □

The following shows that the Lie algebra of a Lie group can be iden-
tified with the tangent space at its neutral element. This identification
turns out to be very useful.

Remark 4.34. The reader should note that the linear isomorphism
Φ : TeG→ g given by

Φ : Xe 7→ (X : p 7→ (dLp)e(Xe))

induces a natural Lie bracket [·, ·] : TeG × TeG → TeG on the tangent
space TeG of G at e via

[Xe, Ye] = [X, Y ]e.

This shows that we can simply identify the Lie algebra g of G with its
tangent space TeG at the neutral element e ∈ G.

Notation 4.35. For the classical matrix Lie groups, introduced
in Chapter 3, we denote their Lie algebras by glm(R), slm(R), o(m),
so(m), glm(C), slm(C), u(m) and su(m), respectively.

55



The next result is a useful tool for handling the Lie brackets of the
classical matrix Lie groups. They can simply be calculated by means
of the standard matrix multiplication.

Proposition 4.36. Let G be one of the classical matrix Lie groups
and TeG be the tangent space of G at the neutral element e. Then the
Lie bracket [·, ·] : TeG× TeG→ TeG on TeG is given by

[Xe, Ye] = Xe · Ye − Ye ·Xe,

where · is the standard matrix multiplication.

Proof. We prove the result for the general linear group GLm(R).
For the other real groups the result follows from the fact that they are
all subgroups of GLm(R). The same proof can be used in the complex
cases.

Let X, Y ∈ glm(R) be left-invariant vector fields, f : U → R be
a function defined locally around the identity element e and p be an
arbitrary point of U . Then the first order derivative Xp(f) of f at p is
given by

Xp(f) =
d

dt
(f(p · Exp(tXe)))|t=0 = dfp(p ·Xe) = dfp(Xp).

The general linear group GLm(R) is an open subset of Rm×m so we
can apply standard arguments from multivariable analysis. The second
order derivative Ye(X(f)) satisfies

Ye(X(f)) =
d

dt
(XExp(tYe)(f))|t=0

=
d

dt
(dfExp(tYe)(Exp(tYe) ·Xe))|t=0

= d2fe(Ye, Xe) + dfe(Ye ·Xe).

Here d2fe is the symmetric Hessian of the function f . As an immediate
consequence we obtain

[X, Y ]e(f) = Xe(Y (f))− Ye(X(f))

= d2fe(Xe, Ye) + dfe(Xe · Ye)
−d2fe(Ye, Xe)− dfe(Ye ·Xe)

= dfe(Xe · Ye − Ye ·Xe).

This last calculation implies the statement. □

Corollary 4.37. Let G be one of the classical matrix Lie groups
and TeG be the tangent space of G at the neutral element e. If p ∈ G
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and X, Y ∈ g are left-invariant vector fields on G then their Lie bracket
[X, Y ] ∈ g satisfies

[X, Y ]p = p · (Xe · Ye − Ye ·Xe),

where · is the standard matrix multiplication.

Proof. The statement is an immediate consequence of Proposition
4.36. □

The next remarkable result shows that the tangent bundle of any
Lie group is trivial.

Theorem 4.38. Let G be a Lie group. Then its tangent bundle
TG is trivial.

Proof. Let {(X1)e, . . . , (Xm)e} be a basis for the tangent space
TeG of G at the neutral element e. Then extend each tangent vector
(Xk)e ∈ TeG to the corresponding left-invariant vector field Xk ∈ g
satisfying

(Xk)p = (dLp)e((Xk)e).

For a point p ∈ G, the left translation Lp : G→ G is a diffeomorphism
so the set {(X1)p, . . . , (Xm)p} is a basis for the tangent space TpG of
G at p. This means that the map ψ : TG→ G× Rm given by

ψ : (p,
m∑
k=1

vk · (Xk)p) 7→ (p, (v1, . . . , vm))

is globally well-defined. This is a global bundle chart for TG, which
therefore is trivial. □
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Exercises

Exercise 4.1. Let (M, Â) be a smooth manifold, (U, x), (V, y) be
local charts such that U ∩ V is non-empty and

f = y ◦ x−1 : x(U ∩ V ) → Rm

be the corresponding transition map. Show that the local frames

{ ∂

∂xi
| i = 1, . . . ,m} and { ∂

∂yj
| j = 1, . . . ,m}

for TM on U ∩ V are related as follows

∂

∂xi
=

m∑
j=1

∂(fj ◦ x)
∂xi

· ∂

∂yj
.

Exercise 4.2. Let SO(m) be the special orthogonal group.

(i) Find a basis for the tangent space TeSO(m),
(ii) construct a non-vanishing vector field Z ∈ C∞(TSO(m)),
(iii) determine all smooth vector fields on SO(2).

The Hairy Ball Theorem. There does not exist a continuous
non-vanishing vector field X ∈ C0(TS2m) on the even dimensional
sphere S2m.

Exercise 4.3. Employ the Hairy Ball Theorem to show that the
tangent bundle TS2m is not trivial. Then construct a non-vanishing
vector field X ∈ C∞(TS2m+1) on the odd-dimensional sphere S2m+1.

Exercise 4.4. Find a proof of Theorem 4.22.

Exercise 4.5. The Lie algebra sl2(R) of the special linear group
SL2(R) is generated by

X =

(
0 −1
1 0

)
, Y =

(
1 0
0 −1

)
, Z =

(
0 1
1 0

)
.

Show that the Lie brackets of sl2(R) satisfy
[X, Y ] = 2Z, [Z,X] = 2Y, [Y, Z] = −2X.

Exercise 4.6. The Lie algebra su(2) of the special unitary group
SU(2) is generated by

X =

(
0 −1
1 0

)
, Y =

(
i 0
0 −i

)
, Z =

(
0 i
i 0

)
.

Show that the corresponding Lie bracket relations are given by

[X, Y ] = 2Z, [Z,X] = 2Y, [Y, Z] = 2X.
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Exercise 4.7. The Lie algebra so(3) of the special orthogonal group
SO(3) is generated by

X =

0 −1 0
1 0 0
0 0 0

 , Y =

0 0 −1
0 0 0
1 0 0

 , Z =

0 0 0
0 0 −1
0 1 0

 .

Show that the corresponding Lie bracket relations are given by

[X, Y ] = Z, [Z,X] = Y, [Y, Z] = X.

Compare this result with Example 4.21.

Exercise 4.8. Prove that the differential dϕp : TpS
3 → Tϕ(p)S

2 of
the Hopf-map ϕ : S3 → S2, with

ϕ : (z, w) 7→ (2 zw̄, |z|2 − |w|2),
is surjective at each point p ∈ S3.
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CHAPTER 5

Riemannian Manifolds

In this chapter we introduce the notion of a Riemannian manifold.
The Riemannian metric provides us with a scalar product on each
tangent space and can be used to measure angles and the lengths of
curves on the manifold. This defines a distance function and turns the
manifold into a metric space in a natural way. The Riemannian metric
is the most important example of what is called a tensor field.

LetM be a smooth manifold, C∞(M) denote the commutative ring
of smooth functions on M and C∞(TM) be the set of smooth vector
fields on M forming a module over C∞(M). Put

C∞
0 (TM) = C∞(M)

and for each positive integer r ∈ Z+ let

C∞
r (TM) = C∞(TM)⊗ · · · ⊗ C∞(TM)

be the r-fold tensor product of C∞(TM) over the commutative ring
C∞(M).

Definition 5.1. Let M be a differentiable manifold. A smooth
tensor field A on M of type (s, r) is a map

A : C∞
r (TM) → C∞

s (TM)

which is multilinear over the commutative ring C∞(M) i.e. satisfying

A(X1 ⊗ · · · ⊗Xk−1 ⊗ (f · Y + g · Z)⊗Xk+1 ⊗ · · · ⊗Xr)

= f · A(X1 ⊗ · · · ⊗Xk−1 ⊗ Y ⊗Xk+1 ⊗ · · · ⊗Xr)

+g · A(X1 ⊗ · · · ⊗Xk−1 ⊗ Z ⊗Xk+1 ⊗ · · · ⊗Xr),

for all X1, . . . , Xr, Y, Z ∈ C∞(TM), f, g ∈ C∞(M) and k = 1, . . . , r.

Notation 5.2. For the rest of this work we will for A(X1⊗· · ·⊗Xr)v
use the notation A(X1, . . . , Xr).

The next fundamental result provides us with the most important
property of a tensor field. It shows that the value A(X1, . . . , Xr)(p) of
A(X1, . . . , Xr) at a point p ∈M only depends on the values

(X1)p, . . . , (Xr)p
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of the vector fields X1, . . . , Xr at p and is independent of their values
away from p.

Proposition 5.3. Let A : C∞
r (TM) → C∞

s (TM) be a tensor field
of type (s, r) and p ∈ M . Let X1, . . . , Xr and Y1, . . . , Yr be smooth
vector fields on M such that (Xk)p = (Yk)p for each k = 1, . . . , r. Then

A(X1, . . . , Xr)(p) = A(Y1, . . . , Yr)(p).

Proof. We will prove the statement for r = 1, the rest follows by
induction. Put X = X1 and Y = Y1 and let (U, x) be a local chart on
M . Choose a function f ∈ C∞(M) such that f(p) = 1,

support(f) = {p ∈M | f(p) ̸= 0}
is contained in U and define the vector fields v1, . . . , vm ∈ C∞(TM) on
M by

(vk)q =

{
f(q) · ( ∂

∂xk
)q if q ∈ U ,

0 if q /∈ U .

Then there exist functions ρk, σk ∈ C∞(M) such that

f ·X =
m∑
k=1

ρk · vk and f · Y =
m∑
k=1

σk · vk.

This implies that

A(X)(p) = f(p)A(X)(p)

= (f · A(X))(p)

= A(f ·X)(p)

= A(
m∑
k=1

ρk · vk)(p)

=
m∑
k=1

(ρk · A(vk))(p)

=
m∑
k=1

ρk(p)A(vk)(p),

and similarly,

A(Y )(p) =
m∑
k=1

σk(p)A(vk)(p).

The fact that Xp = Yp shows that ρk(p) = σk(p) for all k. As a direct
consequence we see that

A(X)(p) = A(Y )(p).
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□

The result of Proposition 5.3 shows that the following multilinear
operator Ap is well-defined.

Notation 5.4. For a tensor field A : C∞
r (TM) → C∞

s (TM) of type
(s, r) we will by Ap denote the real multilinear restriction of A to the
r-fold tensor product TpM ⊗ · · · ⊗ TpM of the real vector space TpM
given by

Ap : ((X1)p, . . . , (Xr)p) 7→ A(X1, . . . , Xr)(p).

Next we introduce the notion of a Riemannian metric. This is the
most important example of a tensor field in Riemannian geometry.

Definition 5.5. Let M be a smooth manifold. A Riemannian
metric g on M is a tensor field g : C∞

2 (TM) → C∞
0 (TM) such that

for each p ∈M the restriction gp of g to the tensor product TpM ⊗ TpM
with

gp : (Xp, Yp) 7→ g(X, Y )(p)

is a real scalar product on the tangent space TpM . The pair (M, g) is
called a Riemannian manifold. The study of Riemannian manifolds
is called Riemannian geometry. The geometric properties of (M, g)
which only depend on the metric g are said to be intrinsic or metric
properties.

The classical Euclidean spaces are Riemannian manifolds defined
as follows.

Example 5.6. The m-dimensional Euclidean space Em is the
standard real vector space Rm equipped with its natural scalar product
given by

⟨X, Y ⟩ = X t · Y =
m∑
k=1

XkYk.

On Riemannian manifolds we have the notion of lengths of curves,
in a natural way.

Definition 5.7. Let (M, g) be a Riemannian manifold and γ : I →
M be a C1-curve in M . Then the length L(γ) of γ is defined by

L(γ) =

∫
I

√
g(γ̇(t), γ̇(t))dt.

The standard punctured round sphere Σm has the following descrip-
tion as a Riemannian manifold.
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Example 5.8. Equip the vector space Rm with the Riemannian
metric g given by

gp(X, Y ) =
4

(1 + |p|2)2
⟨X, Y ⟩.

The Riemannian manifold Σm = (Rm, g) is called the m-dimensional
punctured round sphere. Let γ : R+ → Σm be the curve with

γ : t 7→ (t, 0, . . . , 0).

Then the length L(γ) of γ can be determined as follows.

L(γ) = 2

∫ ∞

0

√
⟨γ̇, γ̇⟩

1 + |γ|2
dt = 2

∫ ∞

0

dt

1 + t2
= 2[arctan(t)]∞0 = π.

The important real hyperbolic space Hm can be modelled in differ-
ent ways. In the following Example 5.9 we present it as the open unit
ball. For the upper half space model see Exercise 8.8.

Example 5.9. Let Bm
1 (0) be the open unit ball in Rm given by

Bm
1 (0) = {p ∈ Rm | |p|2 < 1}.

By them-dimensional real hyperbolic space we meanBm
1 (0) equipped

with the Riemannian metric

gp(X, Y ) =
4

(1− |p|2)2
⟨X, Y ⟩.

Let γ : (0, 1) → Bm
1 (0) be the curve given by

γ : t 7→ (t, 0, . . . , 0).

Then the length L(γ) of γ can be determined as follows.

L(γ) = 2

∫ 1

0

√
⟨γ̇, γ̇⟩

1− |γ|2
dt = 2

∫ 1

0

dt

1− t2
= [log(

1 + t

1− t
)]10 = ∞ .

The following result tells us that a path-connected Riemannian
manifold (M, g) has the structure of a metric space (M,d) in a natural
way.

Proposition 5.10. Let (M, g) be a path-connected Riemannian
manifold. For two points p, q ∈ M let Cpq denote the set of C1-curves
γ : [0, 1] →M such that γ(0) = p and γ(1) = q and define the function
d :M ×M → R+

0 by

d(p, q) = inf{L(γ) | γ ∈ Cpq}.
Then (M,d) is a metric space i.e. for all p, q, r ∈M we have

(i) d(p, q) ≥ 0,
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(ii) d(p, q) = 0 if and only if p = q,
(iii) d(p, q) = d(q, p),
(iv) d(p, q) ≤ d(p, r) + d(r, q).

The topology on M induced by the metric d is identical to the one M
carries as a topological manifold (M, T ), see Definition 2.1.

Proof. See for example: P. Petersen, Riemannian Geometry, Grad-
uate Texts in Mathematics 171, Springer (1998). □

A Riemannian metric on a differentiable manifold induces a Rie-
mannian metric on its submanifolds as follows.

Definition 5.11. Let (N, h) be a Riemannian manifold and M be
a submanifold. Then the smooth tensor field g : C∞

2 (TM) → C∞
0 (M)

given by
g(X, Y ) : p 7→ hp(Xp, Yp)

is a Riemannian metric on M . It is called the induced metric on M
in (N, h).

We can now easily equip some of the manifolds introduced in Chap-
ter 2 with a Riemannian metric.

Example 5.12. The standard Euclidean metric ⟨, ⟩ on Rn induces
Riemannian metrics on the following submanifolds.

(i) the unit sphere Sm in Rn, with n = m+ 1,
(ii) the tangent bundle TSm in Rn, where n = 2(m+ 1),
(iii) the torus Tm in Rn, with n = 2m,

Example 5.13. The vector space Cm×m of complexm×mmatrices
carries the standard Riemannian metric h given by

h(Z,W ) = Re(trace(Z̄t ·W ))

for all Z,W ∈ Cm×m. This induces natural metrics on the submanifolds
of Cm×m such as Rm×m and the classical Lie groups GLm(R), SLm(R),
O(m), SO(m), GLm(C), SLm(C), U(m), SU(m).

Our next aim is to prove that every differentiable manifold M can
be equipped with a Riemannian metric g. For this we need Fact 5.15.

Definition 5.14. Let (M, Â) be a differentiable manifold. Then a
partition of unity on M consists of a family {fα : M → R |α ∈ I}
of differentiable real-valued functions such that

(i) 0 ≤ fα ≤ 1 for all α ∈ I,
(ii) every point p ∈ M has a neighbourhood which intersects only

finitely many of the sets

support(fα) = {p ∈M | fα(p) ̸= 0},
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(iii) ∑
α∈I

fα = 1.

Note that the sum in (iii) is finite at each point p ∈M .

For the proof of the following interesting result, it is important that
M is a Hausdorff space with a countable basis, see Defintion 2.1.

Fact 5.15. Let M be a differentiable manifold and (Uα)α∈I be an
open covering of M such that for each α ∈ I the pair (Uα, ϕα) is a local
chart on M . Then there exist

(i) a locally finite open cover (Wβ)β∈J such that each Wβ is con-
tained in Uα for some α ∈ I. Furthermore, for each β ∈ J ,
Wβ is an open neighbourhood for a local chart (Wβ, xβ), and

(ii) a partition of unity (fβ)β∈J such that the support(fβ) is con-
tained in the open subset Wβ.

Proof. See for example J. R. Munkres, Topology, Prentice Hall
(2000). □

We are now ready to prove the following important statement.

Theorem 5.16. Let (M, Â) be a differentiable manifold. Then
there exists a Riemannian metric g on M .

Proof. For each point p ∈ M , let (Up, ϕp) ∈ Â be a local chart
such that p ∈ Up. Then (Up)p∈M is an open covering and let (Wβ, x

β)
be local charts on M as in Fact 5.15. Let (fβ)β∈J be a partition of
unity such that the support(fβ) is contained in Wβ. Further, let ⟨, ⟩Rm

be the standard Euclidean metric on Rm. Then for each β ∈ J we
define

gβ : C∞
2 (TM) → C∞

0 (TM)

by

gβ(
∂

∂xβk
,
∂

∂xβl
)(p) =

{
fβ(p) · ⟨ek, el⟩Rm if p ∈ Wβ

0 if p /∈ Wβ

Note that at each point only finitely many of gβ are non-zero. This
means that the well defined tensor g : C∞

2 (TM) → C∞
0 (TM) given by

g =
∑
β∈J

gβ

is a Riemannian metric on M . □

We will now introduce the notion of isometries of a given Riemann-
ian manifold. These play a central role in differential geometry.
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Definition 5.17. A map ϕ : (M, g) → (N, h) between Riemannian
manifolds is said to be conformal if there exists a function λ :M → R
such that

eλ(p) · gp(Xp, Yp) = hϕ(p)(dϕp(Xp), dϕp(Yp)),

for all X, Y ∈ C∞(TM) and p ∈M . The positive real-valued function
eλ is called the conformal factor of ϕ. A conformal map with λ ≡ 0
i.e. eλ ≡ 1 is said to be isometric. An isometric diffeomorphism is
called an isometry.

It is interesting that the isometries of a given Riemannian manifold
actually form a group.

Definition 5.18. For a Riemannian manifold (M, g) we denote
by Iso(M) the set of its isometries. If ϕ, ψ ∈ Iso(M) then it is clear
that the composition ψ ◦ ϕ and the inverse ϕ−1 are also isometries.
The operation is clearly associative and the identity map is its neutral
element. The pair (Iso(M), ◦) is called the isometry group of (M, g).

Remark 5.19. It can be shown that the isometry group (Iso(M), ◦)
of a Riemannian manifold (M, g) has the structure of a Lie group. For
this see: R. S. Palais, On the differentiability of isometries, Proc. Amer.
Math. Soc. 8 (1957), 805-807.

We next introduce the notion of a Riemannian homogeneous space.
The classical reference for this important class of manifolds is: S.
Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. II,
John Wiley & Sons (1969).

Definition 5.20. The isometry group Iso(M) of a Riemannian
manifold (M, g) is said to be transitive if for all p, q ∈M there exists
an isometry ϕpq :M →M such that ϕpq(p) = q. In that case (M, g) is
called a Riemannian homogeneous space.

An important subclass of Riemannian homogeneous spaces is that
of symmetric spaces introduced in Definition 7.31.

Example 5.21. Let Sm be the unit sphere in the (m+1)-dimensional
Euclidean space Em+1. Then we have a natural action α : SO(m+1)×
Sm → Sm of the special orthogonal group SO(m+ 1) on Sm given by

α : (x, p) 7→ x · p,
where · is the standard matrix multiplication. The following shows
that this action is isometric

⟨x ·X, x · Y ⟩ = X txtxY = X tY = ⟨X, Y ⟩.
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This means that the special orthogonal group SO(m+1) is a subgroup
of the isometry group Iso(Sm). The full isometry group Iso(Sm) of the
unit sphere is the orthogonal group O(m + 1). It is easily seen that
SO(m+ 1) acts transitively on the sphere Sm so this is a Riemannian
homogeneous space.

Example 5.22. The standard Euclidean scalar product on the real
vector space Rm×m induces a Riemannian metric on the special orthog-
onal group SO(m) given by

g(X, Y ) = trace(X t · Y ).

Applying the left translation Lp : SO(m) → SO(m), with Lp : q 7→ pq,
we see that the tangent space TpSO(m) of SO(m) at p is simply

TpSO(m) = {p ·X |X t +X = 0}.
The differential (dLp)q : TqSO(m) → TpqSO(m) of Lp at q ∈ SO(m)
satisfies

(dLp)q : qX 7→ pqX.

We then have

gpq((dLp)q(qX), (dLp)q(qY )) = trace((pqX)tpqY )

= trace(X tqtptpqY )

= trace(qX)t(qY ).

= gq(qX, qY ).

This shows that the left translation Lp : SO(m) → SO(m) is an isom-
etry for all p ∈ SO(m).

We next introduce the important notion of a left-invariant metric
on a Lie group.

Definition 5.23. A Riemannian metric g on a Lie group G is said
to be left-invariant if for each p ∈ G the left translation Lp : G→ G
is an isometry. A Lie group (G, g) equipped with a left-invariant metric
is called a Riemannian Lie group.

Remark 5.24. It should be noted that if (G, g) is a Riemannian
Lie group and X, Y ∈ g are left-invariant vector fields on G then

gp(Xp, Yp) = gp((dLp)e(Xe), (dLp)e(Ye)) = ge(Xe, Ye).

This tells us that a left-invariant metric g on G is completely deter-
mined by the scalar product ge : TeG× TeG→ R on the tangent space
at the neutral element e ∈ G.

Theorem 5.25. A Riemannian Lie group (G, g) is a Riemannian
homogeneous space.
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Proof. For arbitrary elements p, q ∈ G the left-translation ϕpq =
Lqp−1 by qp−1 ∈ G is an isometry satisfying ϕpq(p) = q. This shows
that the isometry group Iso(G) is transitive. □

In Example 2.6 we have introduced the real projective space RPm

as an abstract differentiable manifold. We will now equip this with a
natural Riemannian metric.

Example 5.26. Let Sm be the unit sphere in Em+1 and Sym(Rm+1)
be the vector space of real symmetric (m + 1) × (m + 1) matrices
equipped with the Riemannian metric g given by

g(X, Y ) =
1

8
· trace(X t · Y ).

As in Example 3.26, we define the immersion ϕ : Sm → Sym(Rm+1) by

ϕ : p 7→ (Rp : q 7→ 2⟨q, p⟩p− q).

This maps a point p ∈ Sm to the reflection Rp : Rm+1 → Rm+1 about
the real line ℓp generated by p. This is clearly a symmetric bijective
linear map.

Let α, β : R → Sm be two curves meeting at a point p ∈ Sm i.e.
α(0) = p = β(0) and put X = α̇(0), Y = β̇(0). Then for a curve
γ ∈ {α, β} we have

dϕp(γ̇(0)) = (q 7→ 2⟨q, γ̇(0)⟩p+ 2⟨q, p⟩γ̇(0)).
If B is an orthonormal basis for Rm+1, then

g(dϕp(X), dϕp(Y )) =
1

8
· trace(dϕp(X)t · dϕp(Y ))

=
1

8

∑
q∈B

⟨q, dϕp(X)t · dϕp(Y )q⟩

=
1

8

∑
q∈B

⟨dϕp(X)q, dϕp(Y )q⟩

=
1

2

∑
q∈B

⟨⟨q,X⟩p+ ⟨q, p⟩X, ⟨q, Y ⟩p+ ⟨q, p⟩Y ⟩

=
1

2

∑
q∈B

{⟨p, p⟩⟨X, q⟩⟨q, Y ⟩+ ⟨X, Y ⟩⟨p, q⟩⟨p, q⟩}

=
1

2
{⟨X, Y ⟩+ ⟨X, Y ⟩}

= ⟨X, Y ⟩.
This proves that the immersion ϕ : Sm → Sym(Rm+1) is isometric. In
Example 3.26 we have seen that the image ϕ(Sm) can be identified with
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the real projective space RPm. This inherits the induced metric from
Sym(Rm+1). The map ϕ : Sm → RPm is what is called an isometric
double cover of RPm.

Proposition 5.27. Let RP 2 be the two dimensional real projective
plane equipped with the Riemannian metric introduced in Example 5.26.
Then the surface area of RP 2 is 2π.

Proof. Example 5.26 shows that if m is a positive integer then
the map ϕ : Sm → RPm is an isometric double cover. Hence this is
locally volume preserving. This implies that them-dimensional volume
satisfies

vol(Sm) = 2 · vol(RPm).

In particular,

area(RP 2) = 1
2
· area(S2) = 2π.

□

Long before John Nash became famous in Hollywood he proved the
next remarkable result in his paper: J. Nash, The imbedding problem
for Riemannian manifolds, Ann. Math. 63 (1956), 20-63. It implies
that every Riemannian manifold can be realised as a submanifold of a
Euclidean space. The original proof of Nash has later been simplified,
see for example: M. Günther, On the perturbation problem associated
to isometric embeddings of Riemannian manifolds, Ann. Global Anal.
Geom. 7 (1989), 69-77.

Deep Result 5.28. For 3 ≤ r ≤ ∞, let (M, g) be a Riemannian
Cr-manifold. Then there exists an isometric Cr-embedding of (M, g)
into a Euclidean space Rn. If the manifold (M, g) is compact then
n ≤ m(m+ 1) but n ≤ (3m+ 11)/2 otherwise.

Remark 5.29. Note that in Example 5.26 we have embedded the
compact Riemannian manifold RPm isometrically into the Euclidean
space Sym(Rm+1) of dimension (m+ 2)(m+ 1)/2.

Remark 5.30. We will now see that local parametrisations are
very useful tools for studying the intrinsic geometry of a Riemannian
manifold (M, g). Let p be a point on M and ψ̂ : U → M be a local

parametrisation of M with q ∈ U and ψ̂(q) = p. The differential

dψ̂q : TqRm → TpM is bijective so, following the inverse mapping
theorem, there exist neighbourhoods Uq of q and Up of p such that the

restriction ψ = ψ̂|Uq : Uq → Up is a diffeomorphism. On Uq we have the
canonical frame {e1, . . . , em} for TUq so {dψ(e1), . . . , dψ(em)} is a local
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frame for TM over Up. We then define the pull-back metric g̃ = ψ∗g
on Uq by

g̃(ek, el) = g(dψ(ek), dψ(el)).

Then ψ : (Uq, g̃) → (Up, g) is an isometry so the intrinsic geometry of
(Uq, g̃) and that of (Up, g) are exactly the same.

Example 5.31. Let G be a classical Lie group and e be the neutral
element of G. Let {X1, . . . , Xm} be a basis for the Lie algebra g of G.
For p ∈ G define ψp : Rm → G by

ψp : (t1, . . . , tm) 7→ Lp(
m∏
k=1

Exp(tkXk(e)))

where Lp : G→ G is the left translation given by Lp(q) = pq. Then

(dψp)0(ek) = Xk(p)

for all k. This means that the differential (dψp)0 : T0Rm → TpG is an
isomorphism so there exist open neighbourhoods U0 of 0 and Up of p
such that the restriction of ψ to U0 is bijective onto its image Up and
hence a local parametrisation of G around p.

The following idea will later turn out to be very useful. It provides
us with the existence of a local orthonormal frame of the tangent bundle
of a Riemannian manifold.

Example 5.32. Let (M, g) be a Riemannian manifold and (U, x)
be a local chart on M . Then it follows from Proposition 3.19 that the
set

{ ∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xm
}

of local vector fields is a frame for the tangent bundle TM on the
open subset U ofM . Then the Gram-Schmidt process produces a local
orthonormal frame

{E1, E2, . . . , Em}
of TM on U .

We will now study the normal bundle of a submanifold of a given
Riemannian manifold. This is an important example of the notion of
a vector bundle over a manifold, see Definition 4.2.

Definition 5.33. Let (N, h) be a Riemannian manifold and (M, g)
be a smooth submanifold equipped with the induced metric. For a
point p ∈M we define the normal space NpM of M at p by

NpM = {X ∈ TpN |hp(X, Y ) = 0 for all Y ∈ TpM}.
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For all p ∈M we have the orthogonal decomposition

TpN = TpM ⊕NpM.

The normal bundle of M in N is defined by

NM = {(p,X) | p ∈M and X ∈ NpM}.

Theorem 5.34. Let (N, h) be a Riemannian manifold and (M, g)
be a smooth submanifold equipped with the induced metric. Then the
normal bundle (NM,M, π) is a smooth vector bundle over M of di-
mension (n−m).

Proof. See Exercise 5.6. □

Example 5.35. Let Sm be the unit sphere in Rm+1 equipped with
its standard Euclidean metric ⟨, ⟩. If p ∈ Sm then the tangent space
TpS

m of Sm at p is

TpS
m = {X ∈ Rm+1 | ⟨p,X⟩ = 0},

so the normal space NpS
m of Sm at p satisfies

NpS
m = {λ · p ∈ Rm+1 |λ ∈ R}.

This shows that the normal bundle NSm of Sm in Rm+1 is given by

NSm = {(p, λ · p) ∈ R2m+2 | p ∈ Sm and λ ∈ R}.

We will now determine the normal bundle NSO(m) of the special
orthogonal group SO(m) as a submanifold of Rm×m.

Example 5.36. Let the linear space Rm×m of real m×m matrices
be equipped with its standard Euclidean scalar product satisfying

g(X, Y ) = trace(X tY ).

Then we have a natural action α : SO(m) × Rm×m → Rm×m of the
orthogonal group SO(m) on Rm×m given by

α : (p, x) 7→ Lp(x) = p · x.
Then for any point p ∈ SO(m) and tangent vectors X, Y ∈ Rm×m it
follows that

g(pX, pY ) = trace((pX)t(pY ))

= trace(X tptpY )

= trace(X tY )

= g(X, Y ).

This tells us that this action of SO(m) on Rm×m is isometric.
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As we have already seen in Example 3.10 the tangent space TeSO(m)
of SO(m) at the neutral element e satisfies

TeSO(m) = {X ∈ Rm×m |X t +X = 0}.
This means that the tangent bundle TSO(m) of SO(m) is given by

TSO(m) = {(p, pX) | p ∈ SO(m) and X ∈ TeSO(m)}.
The real vector space Rm×m has a natural linear decomposition

Rm×m = Sym(Rm)⊕ TeSO(m),

where every element X ∈ Rm×m can be decomposed X = X⊤ + X⊥

into its skew-symmetric and symmetric parts given by

X⊤ =
1

2
(X −X t) and X⊥ =

1

2
(X +X t).

If X ∈ TeSO(m) and Y ∈ Sym(Rm) then

g(X, Y ) = trace(X tY )

= trace(Y tX)

= trace(XY t)

= trace(−X tY )

= −g(X, Y ).

This shows that g(X, Y ) = 0 so the normal space NeSO(m), of SO(m)
in Rm×m at the neutral element e, satisfies

NeSO(m) = Sym(Rm).

This means that in this situation the normal bundleNSO(m) of SO(m)
is given by

NSO(m) = {(p, p Y ) | p ∈ SO(m) and Y ∈ Sym(Rm)}.

A Riemannian metric g on a differentiable manifold M can be used
to construct families of natural metrics on the tangent bundle TM of
M . The best known such examples are the Sasaki and Cheeger-Gromoll
metrics. For a detailed survey on the geometry of tangent bundles
equipped with these metrics we recommend the paper: S. Gudmunds-
son, E. Kappos, On the geometry of tangent bundles, Expo. Math. 20
(2002), 1-41.
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Exercises

Exercise 5.1. Let Rm and Cm be equipped with their standard
Euclidean metrics given by

g(z, w) = Re
m∑
k=1

zkw̄k

and let
Tm = {z ∈ Cm | |z1| = ... = |zm| = 1}

be the m-dimensional torus in Cm with the induced metric. Let ϕ :
Rm → Tm be the standard parametrisation of the m-dimensional torus
in Cm satisfying ϕ : (x1, . . . , xm) 7→ (eix1 , . . . , eixm). Show that ϕ is
isometric.

Exercise 5.2. The stereographic projection from the north pole
of the m-dimensional sphere

ϕ : (Sm \ {(1, 0, . . . , 0)}, ⟨, ⟩) → (Rm,
4

(1 + |x|2)2
· ⟨, ⟩)

is given by

ϕ : (x0, . . . , xm) 7→
1

1− x0
· (x1, . . . , xm).

Show that ϕ is an isometry.

Exercise 5.3. Let B2
1(0) be the open unit disk in the complex plane

equipped with the hyperbolic metric

g(X, Y ) =
4

(1− |z|2)2
· ⟨X, Y ⟩.

Equip the upper half plane {z ∈ C | Im(z) > 0} with the Riemannian
metric

g(X, Y ) =
1

Im(z)2
· ⟨X, Y ⟩.

Prove that the holomorphic function f : B2
1(0) → {z ∈ C | Im(z) > 0}

given by

f : z 7→ i+ z

1 + iz
is an isometry.

Exercise 5.4. Equip the unitary groupU(m) with the Riemannian
metric g given by

g(Z,W ) = Re(trace(Z̄t ·W )).
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Show that for each p ∈ U(m) the left translation Lp : U(m) → U(m)
is an isometry.

Exercise 5.5. For the general linear group GLm(R) we have two
Riemannian metrics g and h satisfying

gp(pZ, pW ) = trace((pZ)t · pW ), hp(pZ, pW ) = trace(Zt ·W ).

Further let ĝ, ĥ be their induced metrics on the special linear group
SLm(R) as a subset of GLm(R).

(i) Which of the metrics g, h, ĝ, ĥ are left-invariant ?
(ii) Determine the normal space NeSLm(R) of SLm(R) in GLm(R)

with respect to g
(iii) Determine the normal bundleNSLm(R) of SLm(R) inGLm(R)

with respect to h.

Exercise 5.6. Find a proof of Theorem 5.34. (Hint: Use Example
5.32).

Exercise 5.7. Equip the tangent space TeSL2(R), of the special
linear group SL2(R) at the neutral element e, with the scalar product

⟨A,B⟩ = 1

2
trace (At ·B).

Show that {X, Y, Z} is an orthonornal basis for TeSL2(R), where

X =

(
0 −1
1 0

)
, Y =

(
1 0
0 −1

)
, Z =

(
0 1
1 0

)
.

Exercise 5.8. Equip the tangent space TeSU(2), of the special
unitary group SU(2) at the neutral element e, with the scalar product

⟨A,B⟩ = 1

2
Re trace (Āt ·B).

Show that {X, Y, Z} is an orthonornal basis for TeSU(2), where

X =

(
0 −1
1 0

)
, Y =

(
i 0
0 −i

)
, Z =

(
0 i
i 0

)
.
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CHAPTER 6

The Levi-Civita Connection

In this chapter we introduce the Levi-Civita connection on the tan-
gent bundle of a Riemannian manifold. This is the most important
example of the general notion of a connection on a smooth vector bun-
dle.

We deduce the explicit Koszul formula for the Levi-Civita connec-
tion and show how this simplifies in the important cases of Riemannian
Lie groups. We also give an example of a metric connection on the nor-
mal bundle of a submanifold of a Riemannian manifold and study its
properties.

On the m-dimensional Euclidean vector space Rm we have the well
known differential operator

∂ : C∞(TRm)× C∞(TRm) → C∞(TRm)

on the tangent bundle TRm. This maps a pair of vector fields X, Y on
Rm to the classical directional derivative ∂XY of Y in the direction
of X given by

(∂XY )(x) = lim
t→0

Y (x+ t ·X(x))− Y (x)

t
.

The best known fundamental properties of the operator ∂ are ex-
pressed by the following: If λ, µ ∈ R, f, g ∈ C∞(Rm) and X, Y, Z ∈
C∞(TRm) then

(i) ∂X(λ · Y + µ · Z) = λ · ∂XY + µ · ∂XZ,
(ii) ∂X(f · Y ) = X(f) · Y + f · ∂XY ,

(iii) ∂(f ·X + g · Y )Z = f · ∂XZ + g · ∂YZ.

The next result shows that the classical differential operator ∂ is
compatible with both the standard differentiable structure on Rm and
its Euclidean metric.

Proposition 6.1. Let the real vector space Rm be equipped with
the standard Euclidean metric ⟨, ⟩ and X, Y, Z ∈ C∞(TRm) be smooth
vector fields on Rm. Then

(iv) ∂XY − ∂YX = [X, Y ],
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(v) X(⟨Y, Z⟩) = ⟨∂XY ,Z⟩+ ⟨Y, ∂XZ⟩.

Our principal aim is now to generalise the differential operator ∂,
on the classical Euclidean space Em = (Rm, <,>), to the so called
Levi-Civita connection ∇ on a general Riemannian manifold (M, g).

In this important process, we first introduce the general concept of
a connection on a smooth vector bundle, see Definition 4.8.

Definition 6.2. Let M be a smooth manifold and (E,M, π) be a

smooth vector bundle over M . Then a connection ∇̂ on (E,M, π) is
an operator

∇̂ : C∞(TM)× C∞(E) → C∞(E),

such that for all λ, µ ∈ R, f, g ∈ C∞(M), X, Y ∈ C∞(TM) and smooth
sections v, w ∈ C∞(E), we have

(i) ∇̂X(λ · v + µ · w) = λ · ∇̂Xv + µ · ∇̂Xw,
(ii) ∇̂X(f · v) = X(f) · v + f · ∇̂Xv,
(iii) ∇̂(f ·X + g · Y )v = f · ∇̂Xv + g · ∇̂Yv.

A smooth section v ∈ C∞(E) of the vector bundle (E,M, π) is said

to be parallel with respect to the connection ∇̂ if and only if, for all
vector fields X ∈ C∞(TM), we have

∇̂Xv = 0.

In the special important case when the vector bundle, over a differ-
entiable manifold, is the tangent bundle we have the following notion
of torsion. It should be noted that here we are not assuming that the
manifold is equipped with a Riemannian metric.

Definition 6.3. Let M be a smooth manifold and ∇̂ be a connec-
tion on the tangent bundle (TM,M, π). Then we define its torsion

T : C∞(TM)× C∞(TM) → C∞(TM)

by

T (X, Y ) = ∇̂XY − ∇̂YX − [X, Y ],

where [, ] is the Lie bracket on C∞(TM). The connection ∇̂ is said to
be torsion-free if its torsion T vanishes i.e. if for all X, Y ∈ C∞(TM),
we have

[X, Y ] = ∇̂XY − ∇̂YX.

For the tangent bundle of a Riemannian manifold we have the fol-
lowing natural notion.
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Definition 6.4. Let (M, g) be a Riemannian manifold. Then a con-

nection ∇̂ on the tangent bundle (TM,M, π) is said to be metric, or
compatible with the Riemannian metric g, if for all X, Y, Z ∈ C∞(TM)

X(g(Y, Z)) = g(∇̂XY ,Z) + g(Y, ∇̂XZ).

The following turns out to be very important for what follows.

Observation 6.5. Let (M, g) be a Riemannian manifold and ∇ be
a metric and torsion-free connection on its tangent bundle (TM,M, π).
Then it is easily seen that the following equations hold

g(∇XY ,Z) = X(g(Y, Z))− g(Y,∇XZ),

g(∇XY ,Z) = g([X, Y ], Z) + g(∇YX,Z)
= g([X, Y ], Z) + Y (g(X,Z))− g(X,∇YZ),

0 = −Z(g(X, Y )) + g(∇ZX, Y ) + g(X,∇ZY )

= −Z(g(X, Y )) + g(∇XZ + [Z,X], Y ) + g(X,∇YZ − [Y, Z]).

When adding these relations we yield the following so called Koszul
formula for the operator ∇
2 · g(∇XY ,Z) = {X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+g(Z, [X, Y ]) + g([Z,X], Y ) + g([Z, Y ], X)}.
If {E1, . . . , Em} is a local orthonormal frame for the tangent bundle,
see Example 5.32, then

∇XY =
m∑
i=1

g(∇XY ,Ei)Ei.

It follows from the Koszul formula that the coefficients in this sum are
uniquely determined by the Lie bracket [, ] and the Riemannian metric
g. This sum is also independent of the chosen local orthonormal frame.
As a direct consequence we see that there exists at most one torsion-
free and metric connection on the tangent bundle of (M, g).

This leads us to the following natural definition of the all important
Levi-Civita connection.

Definition 6.6. Let (M, g) be a Riemannian manifold then the
operator

∇ : C∞(TM)× C∞(TM) → C∞(TM)

given by

g(∇XY ,Z) = 1
2
{X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))
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+g(Z, [X, Y ]) + g([Z,X], Y ) + g([Z, Y ], X)}

is called the Levi-Civita connection on M .

Remark 6.7. It is very important to note that the Levi-Civita
connection is an intrinsic object on (M, g) i.e. only depending on the
differentiable structure of the manifold and its Riemannian metric.

Proposition 6.8. Let (M, g) be a Riemannian manifold. Then
the Levi-Civita connection ∇ is a connection on the tangent bundle
(TM,M, π).

Proof. It follows from Definition 3.6, Theorem 4.22 and the fact
that g is a tensor field that

g(∇X(λ · Y1 + µ · Y2), Z) = λ · g(∇XY1, Z) + µ · g(∇XY2, Z)

and that

g(∇Y1 + Y2
X,Z) = g(∇Y1X,Z) + g(∇Y2X,Z)

for all λ, µ ∈ R and X, Y1, Y2, Z ∈ C∞(TM). Furthermore, for all
f ∈ C∞(M), we have

2 · g(∇XfY , Z)
= {X(f · g(Y, Z)) + f · Y (g(X,Z))− Z(f · g(X, Y ))

+f · g([Z,X], Y ) + g([Z, f · Y ], X) + g(Z, [X, f · Y ])}
= {X(f) · g(Y, Z) + f ·X(g(Y, Z)) + f · Y (g(X,Z))

−Z(f) · g(X, Y )− f · Z(g(X, Y )) + f · g([Z,X], Y )

+g(Z(f) · Y + f · [Z, Y ], X) + g(Z,X(f) · Y + f · [X, Y ])}
= 2 · {X(f) · g(Y, Z) + f · g(∇XY ,Z)}
= 2 · g(X(f) · Y + f · ∇XY ,Z)

and

2 · g(∇f ·XY ,Z)

= {f ·X(g(Y, Z)) + Y (f · g(X,Z))− Z(f · g(X, Y ))

+g([Z, f ·X], Y ) + f · g([Z, Y ], X) + g(Z, [f ·X, Y ])}
= {f ·X(g(Y, Z)) + Y (f) · g(X,Z) + f · Y (g(X,Z))

−Z(f) · g(X, Y )− f · Z(g(X, Y ))

+g(Z(f) ·X, Y ) + f · g([Z,X], Y )

+f · g([Z, Y ], X) + f · g(Z, [X, Y ])− g(Z, Y (f) ·X)}
= 2 · f · g(∇XY ,Z).
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This proves that ∇ is a connection on the tangent bundle (TM,M, π).
□

The next result is generally called the Fundamental Theorem of
Riemannian Geometry.

Theorem 6.9. Let (M, g) be a Riemannian manifold. Then the
Levi-Civita connection is the unique metric and torsion-free connection
on the tangent bundle (TM,M, π).

Proof. The difference g(∇XY ,Z) − g(∇YX,Z) equals twice the

skew-symmetric part (w.r.t the pair (X, Y )) of the right hand side of
the equation in Definition 6.6. This implies that

g(∇XY ,Z)− g(∇YX,Z) = 1
2
{g(Z, [X, Y ])− g(Z, [Y,X])}

= g([X, Y ], Z).

This proves that the Levi-Civita connection is torsion-free.

The sum g(∇XY ,Z) + g(∇XZ, Y ) equals twice the symmetric part

(w.r.t the pair (Y, Z)) on the right hand side of Definition 6.6. This
yields

g(∇XY ,Z) + g(Y,∇XZ) = 1
2
{X(g(Y, Z)) +X(g(Z, Y ))}

= X(g(Y, Z)).

This shows that the Levi-Civita connection is compatible with the Rie-
mannian metric g on M . The stated result follows now immediately
from Proposition 6.8. □

From Lie theory, we have the following important notion of the
adjoint representation of a Lie algebra.

Definition 6.10. LetG be a Lie group with Lie algebra g. Then the
adjoint representation of g is the linear operator ad : g → End(g)
mapping an element Z ∈ g onto the linear endomorphism adZ : g → g
with

adZ : X 7→ [Z,X].

For the compact classical Lie groups, introduced in Chapter 2, we
have the following interesting result.

Proposition 6.11. Let G be one of the classical compact Lie groups
O(m), SO(m), U(m) or SU(m), equipped with its left-invariant Rie-
mannian metric given by

g(X, Y ) = Re(trace(X̄ t · Y )).
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If Z ∈ g is a left-invariant vector field on G then the linear endomor-
phism adZ : g → g is skew-symmetric i.e. for all X, Y ∈ g we have

g(adZ(X), Y ) + g(X, adZ(Y )) = 0.

Proof. See Exercise 6.2. □

The following result shows that the Koszul formula simplifies con-
siderably in the important case when the manifold is a Riemannian Lie
group.

Proposition 6.12. Let (G, g) be a Lie group equipped with a left-
invariant metric and X, Y, Z ∈ g be left-invariant vector fields on G.
Then its Levi-Civita connection ∇ satisfies

g(∇XY ,Z) =
1
2
{g(Z, [X, Y ]) + g(adZ(X), Y ) + g(X, adZ(Y ))}.

In particular, if for all Z ∈ g the linear endomorphism adZ : g → g is
skew-symmetric with respect to the Riemannian metric g, then

∇XY = 1
2
[X, Y ].

Proof. See Exercise 6.3. □

The next example shows how the Levi-Civita connection can be
presented by means of local coordinates. Hopefully, this will convince
the reader that those should be avoided whenever possible.

Example 6.13. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Further let (U, x) be a local chart on M and
put Xi = ∂/∂xi ∈ C∞(TU), so {X1, . . . , Xm} is a local frame for TM
on U . Then we define the Christoffel symbols Γk

ij : U → R of the
connection ∇ with respect to (U, x) by

∇Xi
Xj =

m∑
k=1

Γk
ij ·Xk.

On the open subset x(U) of Rm we define the Riemannian metric g̃ by

g̃(ei, ej) = gij = g(Xi, Xj).

This turns the diffeomorphism x : U → x(U) into an isometry, so that
the local geometry of U with g and that of x(U) with g̃ are precisely
the same. The differential dx is bijective so Proposition 4.28 implies
that

dx([Xi, Xj]) = [dx(Xi), dx(Xj)] = [∂ei , ∂ej ] = 0
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and hence [Xi, Xj] = 0. It now follows from the definition of the
Christoffel symbols and the Koszul formula that for each l = 1, 2, . . . ,m
we have

m∑
k=1

gkl · Γk
ij =

m∑
k=1

g(Xk, Xl) · Γk
ij

= g(
m∑
k=1

Γk
ij ·Xk, Xl)

= g(∇Xi
Xj, Xl)

= 1
2
{Xi(g(Xj, Xl)) +Xj(g(Xl, Xi))−Xl(g(Xi, Xj))}

= 1
2
{∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

}.

This means that for each pair (i, j) we have a system of m linear equa-
tions in the m variables Γk

ij where k = 1, 2, . . . ,m. Because the metric

g is positive definite we can solve this as follows: Let gkl = (g−1)kl be
the components of the inverse g−1 of g then the Christoffel symbols Γk

ij

satisfy

Γk
ij =

1
2

m∑
l=1

gkl{∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

}.

We are now interested in the relation between the Levi-Civita con-
nection of a Riemannian manifold and that of its submanifolds, see
Theorem 6.20. For this we need the following natural notion of an
extension.

Definition 6.14. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. Further let
X̃ ∈ C∞(TM) be a vector field onM and Ỹ ∈ C∞(NM) be a section of
its normal bundle. Let U be an open subset of N such that U ∩M ̸= ∅.
Two vector fields X, Y ∈ C∞(TU) are said to be local extensions of
X̃ and Ỹ to U if X̃p = Xp and Ỹp = Yp for all p ∈ U ∩M . If U = N

then X, Y are said to be global extension of X̃ and Ỹ , respectively.

Fact 6.15. Let (N, h) be a Riemannian manifold and (M, g) be a
submanifold equipped of N with the induced metric, X̃ ∈ C∞(TM),
Ỹ ∈ C∞(NM) and p ∈ M . Then there exists an open neighbourhood
U of N containing p and X, Y ∈ C∞(TU) extending X̃ and Ỹ on U ,
respectively.

Remark 6.16. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. Let Z ∈
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C∞(TN) be a vector field on N and Z̃ = Z|M : M → TN be the
restriction of Z to M . Note that Z̃ is not necessarily an element of
C∞(TM) i.e. a vector field on the submanifold M . For each p ∈ M
the tangent vector Z̃p ∈ TpN has a unique orthogonal decomposition

Z̃p = Z̃⊤
p + Z̃⊥

p ,

into its tangential part Z̃⊤
p ∈ TpM and its normal part Z̃⊥

p ∈ NpM .

For this we write Z̃ = Z̃⊤ + Z̃⊥.

Proposition 6.17. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. If Z ∈
C∞(TN) is a vector field on N then the sections Z̃⊤ of the tangent
bundle TM and Z̃⊥ of the normal bundle NM are smooth.

Proof. See Exercise 6.8. □

The following important remark depends on a later observation.
For pedagogical reasons we have chosen to first present the argument
needed in Remark 7.3.

Remark 6.18. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. Further let
X̃, Ỹ ∈ C∞(TM) be vector fields on M and X, Y ∈ C∞(TU) extend
X̃, Ỹ on an open neighbourhood U of p in N . It will be shown in
Remark 7.3 that (∇XY )p only depends on the value Xp = X̃p and the

value of Y along some curve γ : (−ϵ, ϵ) → N such that γ(0) = p and
γ̇(0) = Xp = X̃p.

Since Xp ∈ TpM we may choose the curve γ such that the image

γ((−ϵ, ϵ)) is contained in M . Then Ỹγ(t) = Yγ(t) for t ∈ (−ϵ, ϵ). This

means that (∇XY )p only depends on X̃p and the value of Ỹ ∈ C∞(TM)

along γ, hence independent of how the vector fields X̃ and Ỹ are ex-
tended.

Remark 6.18 shows that the following important operators ∇̃ and
B are well defined.

Definition 6.19. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then we define the
operators

∇̃ : C∞(TM)× C∞(TM) → C∞(TM)

and

B : C∞(TM)× C∞(TM) → C∞(NM)
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by
∇̃X̃Ỹ = (∇XY )⊤ and B(X̃, Ỹ ) = (∇XY )⊥.

Here X and Y are some local extensions of X̃, Ỹ ∈ C∞(TM). The
operator B is called the second fundamental form of M in (N, h).

The next result provides us with the important relationship between
the Levi-Civita connection of a Riemannian manifold and that of its
submanifolds.

Theorem 6.20. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then the operator

∇̃ : C∞(TM)× C∞(TM) → C∞(TM),

given by
∇̃X̃Ỹ = (∇XY )⊤,

is the Levi-Civita connection of the submanifold (M, g).

Proof. See Exercise 6.9. □

The important second fundamental form of a submanifold of a Rie-
mannian manifold has the following important properties.

Proposition 6.21. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then the second fun-
damental form B of M in N is symmetric and tensorial in both its
arguments.

Proof. See Exercise 6.10. □

We now introduce the notion of a minimal submanifold of a Rie-
mannian manifold.

Definition 6.22. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then M is said to be
minimal in N if its second fundamental form

B : C∞(TM)⊗ C∞(TM) → C∞(NM)

is traceless i.e.

trace B =
m∑
k=1

B(Ẽk, Ẽk) = 0.

Here {Ẽ1, Ẽ2, . . . , Ẽm} is any local orthonormal frame for the tangent
bundle TM .

In the next Example 6.23, we show how the second fundamental
form of a surface in the Euclidean 3-space corresponds to the classical
shape operator.
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Example 6.23. Let us now consider the classical Gaussian situa-
tion of a regular surface Σ2 as a submanifold of the three dimensional
Euclidean space R3.

Let U be an open subset of Σ and {Z̃, W̃} be a local orthonormal
frame for the tangent bundle TU of U around a point p ∈ U and Ñ be
the local Gauss map with Ñ = Z̃ × W̃ . Further let Z,W,N be local
extensions of Z̃, W̃ , Ñ , forming a local orthonormal frame for TR3.

Further, let X̃, Ỹ be local vector fields on M ∩ U around a point
p ∈ Σ and X, Y be some local extension of X̃, Ỹ to U . Then the second
fundamental form B of Σ in R3 satisfies

B(X̃, Ỹ ) = (∂XY )⊥

= < ∂XY ,N > N

= − < Y, ∂XN > N

= − < Y, dN(X) > N

= < Ỹ , Sp(X̃) > Ñ,

where Sp : TpΣ → TpΣ is the classical shape operator at p.

Then the trace of B satisfies

trace B = (< Sp(Z̃), Z̃ > + < Sp(W̃ ), W̃ >) Ñ

= (trace Sp) Ñ

= (k1 + k2) Ñ .

Here k1 and k2 are the eigenvalues of the symmetric shape operator
Sp i.e. the principal curvatures at p. This shows that the surface
Σ is a minimal submanifold of R3 if and only if the classical mean
curvature vanishes i.e.

H =
1

2
(k1 + k2) = 0.

We conclude this chapter by observing that the Levi-Civita con-
nection of a Riemannian manifold induces a metric connection on the
normal bundle of its submanifolds, in a natural way.

Proposition 6.24. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then the operator

∇̄ : C∞(TM)× C∞(NM) → C∞(NM)

given by

∇̄X̃Ỹ = (∇XY )⊥
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is a well defined connection on the normal bundle NM . Here X and
Y are some local extensions of X̃ ∈ C∞(TM) and Ỹ ∈ C∞(NM),
respectively. Furthermore, the connection ∇̄ is metric i.e. it satisfies

X̃(h(Ỹ , Z̃)) = h(∇̄X̃Ỹ , Z̃) + h(Ỹ , ∇̄X̃Z̃),

for all X̃ ∈ C∞(TM) and Ỹ , Z̃ ∈ C∞(NM).

Proof. See Exercise 6.11. □
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Exercises

Exercise 6.1. LetM be a smooth manifold and ∇̂ be a connection
on the tangent bundle (TM,M, π). Prove that the torsion of ∇̂

T : C∞(TM)× C∞(TM) → C∞(TM),

given by
T (X, Y ) = ∇̂XY − ∇̂YX − [X, Y ],

is a tensor field of type (1, 2).

Exercise 6.2. Find a proof of Proposition 6.11.

Exercise 6.3. Find a proof of Proposition 6.12.

Exercise 6.4. Let Sol be the 3-dimensional subgroup of SL3(R)
given by

Sol = {

ez 0 x
0 e−z y
0 0 1

 | p = (x, y, z) ∈ R3}.

Let X, Y, Z ∈ g be left-invariant vector fields on Sol such that

Xe =
∂

∂x
|p=0, Ye =

∂

∂y
|p=0 and Ze =

∂

∂z
|p=0.

Show that

[X, Y ] = 0, [Z,X] = X and [Z, Y ] = −Y.
Let g be the left-invariant Riemannian metric on G such that {X, Y, Z}
is an orthonormal basis for the Lie algebra g. Calculate the following
vector fields:

∇XY , ∇YX, ∇XZ, ∇ZX, ∇YZ and ∇ZY .

Exercise 6.5. Let the special orthogonal group SO(m) be equipped
with the Riemannian metric

g(X, Y ) = 1
2
· trace(X t · Y ).

Prove that g is left-invariant and that for vector fields X, Y ∈ so(m)
we have

∇XY = 1
2
· [X, Y ].

Let A,B,C ∈ so(3) be the left-invariant vector fields on SO(3) such
that

Ae =

 0 −1 0
1 0 0
0 0 0

 , Be =

 0 0 −1
0 0 0
1 0 0

 , Ce =

 0 0 0
0 0 −1
0 1 0

 .
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Show that {A,B,C} is an orthonormal basis for so(3) and determine
the value of the left-invariant vector fields ∇AB,∇BC,∇CA ∈ so(3) at

the neutral element e ∈ SO(3).

Exercise 6.6. Let the special linear group SL2(R) be equipped
with the left-invariant metric

gp(pA, pB) = 1
2
· trace(At ·B).

Let X, Y, Z ∈ sl2(R) be the left-invariant vector fields on SL2(R) with

Xe =

(
0 −1
1 0

)
, Ye =

(
1 0
0 −1

)
, Ze =

(
0 1
1 0

)
.

Determine the value of the left-invariant vector fields∇XY ,∇YZ,∇ZX ∈
sl2(R) at the neutral element e ∈ SL2(R).

Exercise 6.7. Let the special unitary group SU(2) be equipped
with the left-invariant metric

gp(pA, pB) = 1
2
Re trace (Āt ·B).

Let X, Y, Z ∈ su(2) be the left-invariant vector fields on SU(2) with

Xe =

(
0 −1
1 0

)
, Ye =

(
i 0
0 −i

)
, Ze =

(
0 i
i 0

)
.

Determine the value of the left-invariant vector fields∇XY ,∇YZ,∇ZX ∈
su(2) at the neutral element e ∈ SU(2).

Exercise 6.8. Find a proof of Proposition 6.17.

Exercise 6.9. Find a proof of Theorem 6.20.

Exercise 6.10. Find a proof of Proposition 6.21.

Exercise 6.11. Find a proof of Proposition 6.24.
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CHAPTER 7

Geodesics

The main purpose of this chapter is the introduction of the im-
portant notion of geodesics on Riemannian manifolds. Geodesics are
solutions to a second order system, of non-linear ordinary differen-
tial equations, heavily depending on the geometry of the manifolds
involved.

In this process we develop the idea of parallel vector fields along
curves in Riemannian manifolds. We show that geodesics are solutions
to two different variational problems. They are both critical points of
the so called energy functional and locally the shortest paths between
their endpoints. We then study the important notion of totally geodesic
submanifolds.

Definition 7.1. Let (TM,M, π) be the tangent bundle of a smooth
manifoldM . A vector field X along a curve γ : I →M is a smooth
map X : I → TM such that π ◦ X = γ. By C∞

γ (TM) we denote the
set of all smooth vector fields along γ. For X, Y ∈ C∞

γ (TM) and
f ∈ C∞(I) we define the addition + and the multiplication · by

(i) (X + Y )(t) = X(t) + Y (t),
(ii) (f ·X)(t) = f(t) ·X(t).

This turns (C∞
γ (TM),+, ·) into a module over C∞(I) and a real vector

space over the constant functions, in particular. For a given smooth
curve γ : I → M in M the smooth vector field X : I → TM with
X : t 7→ (γ(t), γ̇(t)) is called the tangent field along γ.

The next result provides us with a differential operator for vector
fields along a given curve and shows how this is closely related to the
Levi-Civita connection.

Proposition 7.2. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇ and γ : I → M be a C1-curve in M . Then there
exists a unique operator

D

dt
: C∞

γ (TM) → C∞
γ (TM),

such that for all λ, µ ∈ R, f ∈ C∞(I) and X, Y ∈ C∞
γ (TM), we have
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(i) D(λ ·X + µ · Y )/dt = λ · (DX/dt) + µ · (DY/dt),
(ii) D(f ·X)/dt = df/dt ·X + f · (DX/dt), and
(iii) for each t0 ∈ I, there exists an open subinterval J of I such that

t0 ∈ J and if X ∈ C∞(TM) is a vector field with Xγ(t) = Y (t)
for all t ∈ J , we have(DY

dt

)
(t0) = (∇̇γX)γ(t0).

Proof. Here we start by proving the uniqueness part of the state-
ment, hence we assume that such an operator exists. For a point
t0 ∈ I, choose a local chart (U, x) on M and an open subinterval
J ⊂ I such that t0 ∈ J , γ(J) ⊂ U and for i = 1, 2, . . . ,m we put
Xi = ∂/∂xi ∈ C∞(TU). Then any vector field Y along the restriction
of γ to J can be written in the form

Y (t) =
m∑
j=1

αj(t) ·
(
Xj

)
γ(t)
,

for some functions αj ∈ C∞(J). The conditions (i) and (ii) imply that

(7.1)
(DY
dt

)
(t) =

m∑
k=1

α̇k(t) ·
(
Xk

)
γ(t)

+
m∑
j=1

αj(t) ·
(DXj

dt

)
γ(t)
.

For the local chart (U, x), the composition

x ◦ γ(t) = (γ1(t), . . . , γm(t)) =
m∑
i=1

γi(t) · ei

parametrises a curve in Rm contained in x(U). Hence the tangent map
dx satisfies

dxγ(t)(γ̇(t)) =
d

dt
(x ◦ γ(t)) = (γ̇1(t), . . . , γ̇m(t)).

Because the local coordinate x : U → x(U) is a diffeomorphism, its
linear differential dx : TU → TRm is bijective, satisfying

dx(
∂

∂xi
) = ei,

for i = 1, 2, . . . ,m. This immediately implies that

γ̇(t) =
m∑
i=1

γ̇i(t) ·
(
Xi

)
γ(t)

and the condition (iii) shows that(DXj

dt

)
γ(t)

= (∇̇γXj)γ(t)
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=
m∑
i=1

γ̇i(t) · (∇Xi
Xj)γ(t)

=
m∑

i,k=1

γ̇i(t) · Γk
ij(γ(t)) · (Xk)γ(t).

By substituting this into relation into equation (7.1) we yield

(7.2)
(DY
dt

)
(t) =

m∑
k=1

{
α̇k(t) +

m∑
i,j=1

αj(t) · γ̇i(t) · Γk
ij(γ(t))

}
·
(
Xk

)
γ(t)
.

This shows that there exists at most one such differential operator.

It is easily seen that if we use equation (7.2) for defining an operator
D/dt then this satisfies the necessary conditions of Proposition 7.2.
That proves the existence part of the stated result. □

The calculations of the last proof have the following important con-
sequence.

Remark 7.3. Let us assume the set up of Proposition 7.2. It then
follows from the fact that the Levi-Civita connection is tensorial in its
first argument and the following equation

(∇̇γX)γ(t0) =
m∑
k=1

{
α̇k(t0) +

m∑
i,j=1

αj(t0) · γ̇i(t0) · Γk
ij(γ(t0))

}
·
(
Xk

)
γ(t0)

that the value (∇ZX)p of ∇ZX at p only depends on the value Zp of Z

at p and the values of X along some curve γ satisfying γ(0) = p and
γ̇(0) = Zp. This allows us to use the notation ∇γ̇Y for DY/dt.

The Levi-Civita connection can now be used to define the notions
of parallel vector fields and geodesics on a Riemannian manifold. We
will show that they are solutions to ordinary differential equations.

Definition 7.4. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇ and γ : I → M be a C1-curve. A vector field X
along γ is said to be parallel if

∇̇γX = 0.

A C2-curve γ : I →M is said to be a geodesic if its tangent field γ̇ is
parallel along γ i.e.

∇̇γγ̇ = 0.
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The next result shows that for a given initial value at a point we
yield a parallel vector field globally defined along any curve through
that point.

Theorem 7.5. Let (M, g) be a Riemannian manifold and I = (a, b)
be an open interval on the real line R. Further let γ : [a, b] → M be a
continuous curve which is C1 on I, t0 ∈ I and v ∈ Tγ(t0)M . Then there
exists a unique parallel vector field Y along γ such that Y (t0) = v.

Proof. Let (U, x) be a local chart on M such that γ(t0) ∈ U and
for i = 1, 2, . . . ,m define Xi = ∂/∂xi ∈ C∞(TU). Let J be an open
subinterval of I such that the image γ(J) is contained in U . Then the
tangent of the restriction of γ to J can be written as

γ̇(t) =
m∑
i=1

γ̇i(t) ·
(
Xi

)
γ(t)
.

Similarly, let Y be a vector field along γ presented by

Y (t) =
m∑
j=1

αj(t) ·
(
Xj

)
γ(t)
.

Then(
∇̇γY

)
(t) =

m∑
j=1

{
α̇j(t) ·

(
Xj

)
γ(t)

+ αj(t) ·
(
∇̇γXj

)
γ(t)

}
=

m∑
k=1

{
α̇k(t) +

m∑
i,j=1

αj(t) · γ̇i(t) · Γk
ij(γ(t))

}(
Xk

)
γ(t)
.

This implies that the vector field Y is parallel i.e. ∇̇γY = 0 if and

only if the following first order linear system of ordinary differential
equations is satisfied

α̇k(t) +
m∑

i,j=1

αj(t) · γ̇i(t) · Γk
ij(γ(t)) = 0,

for all k = 1, . . . ,m. It follows from Fact 7.6 that to each initial value
α(t0) = (v1, . . . , vm) ∈ Rm, with

Y0 =
m∑
k=1

vk ·
(
Xk

)
γ(t0)

,
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there exists a unique solution α = (α1, . . . , αm) to the above system.
This gives us the unique parallel vector field Y

Y (t) =
m∑
k=1

αk(t) ·
(
Xk

)
γ(t)

along J . Since the Christoffel symbols are bounded along the compact
set [a, b] it is clear that the parallel vector field can be extended to the
whole of I = (a, b). □

The following result is the well-known theorem of Picard-Lindelöf.

Fact 7.6. Let f : U → Rn be a continuous map defined on an open
subset U of R× Rn and L ∈ R+ such that

|f(t, y1)− f(t, y2)| ≤ L · |y1 − y2|
for all (t, y1), (t, y2) ∈ U . If (t0, x0) ∈ U then there exists a unique local
solution x : I → Rn to the following initial value problem

x′(t) = f(t, x(t)), x(t0) = x0.

For parallel vector fields we have the following important result.

Lemma 7.7. Let (M, g) be a Riemannian manifold, γ : I →M be
a C1-curve and X, Y be parallel vector fields along γ. Then the function
g(X, Y ) : I → R, given by

g(X, Y ) : t 7→ gγ(t)(Xγ(t), Yγ(t)),

is constant. In particular, if γ is a geodesic then g(γ̇, γ̇) is constant
along γ.

Proof. Using the fact that the Levi-Civita connection is metric
we obtain

d

dt
(g(X, Y )) = g(∇̇γX, Y ) + g(X, ∇̇γY ) = 0.

This proves that the function g(X, Y ) is constant along γ. □

The following result turns out to be a very useful tool. We will
employ this in Chapter 9.

Proposition 7.8. Let (M, g) be a Riemannian manifold, p ∈ M
and {v1, . . . , vm} be an orthonormal basis for the tangent space TpM .
Let γ : I →M be a C1-curve such that γ(0) = p and X1, . . . , Xm be the
parallel vector fields along γ such that Xk(0) = vk for k = 1, 2, . . . ,m.
Then the set {X1(t), . . . , Xm(t)} is an orthonormal basis for the tangent
space Tγ(t)M for all t ∈ I.

Proof. This is a direct consequence of Lemma 7.7. □
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Geodesics play a very important role in Riemannian geometry. For
these we have the following fundamental existence and uniqueness re-
sult.

Theorem 7.9. Let (M, g) be a Riemannian manifold. If p ∈ M
and v ∈ TpM then there exists an open interval I = (−ϵ, ϵ) and a
unique geodesic γ : I →M such that γ(0) = p and γ̇(0) = v.

Proof. Let γ : I → M be a C2-curve in M such that γ(0) = p
and γ̇(0) = v. Further let (U, x) be a local chart on M such that p ∈ U
and for i = 1, 2, . . . ,m put Xi = ∂/∂xi ∈ C∞(TU). Let J be an open
subinterval of I such that the image γ(J) is contained in U . Then the
tangent of the restriction of γ to J can be written as

γ̇(t) =
m∑
i=1

γ̇i(t) ·
(
Xi

)
γ(t)
.

By differentiation we then obtain

∇̇γγ̇ =
m∑
j=1

∇̇γ
(
γ̇j(t) ·

(
Xj

)
γ(t)

)
=

m∑
j=1

{
γ̈j(t) ·

(
Xj

)
γ(t)

+
m∑
i=1

γ̇i(t) · γ̇j(t) ·
(
∇Xi

Xj

)
γ(t)

}
=

m∑
k=1

{
γ̈k(t) +

m∑
i,j=1

γ̇i(t) · γ̇j(t) · Γk
ij(γ(t))

}
·
(
Xk

)
γ(t)
.

Hence the curve γ is a geodesic if and only if

γ̈k(t) +
m∑

i,j=1

γ̇i(t) · γ̇j(t) · Γk
ij(γ(t)) = 0

for all k = 1, 2, . . . ,m. It follows from Fact 7.10 that for initial values
q = x(p) and w = (dx)p(v) there exists an open interval (−ϵ, ϵ) and a
unique solution (γ1, . . . , γm) satisfying the initial conditions

(γ1(0), . . . , γm(0)) = q and (γ̇1(0), . . . , γ̇m(0)) = w.

□

The following result is a second order consequence of the well-known
theorem of Picard-Lindelöf.

Fact 7.10. Let f : U → Rn be a continuous map defined on an
open subset U of R× R2n and L ∈ R+ such that

|f(t, y1)− f(t, y2)| ≤ L · |y1 − y2|
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for all (t, y1), (t, y2) ∈ U . If (t0, (x0, x1)) ∈ U and x0, x1 ∈ Rn then
there exists a unique local solution x : I → Rn to the following initial
value problem

x′′(t) = f(t, x(t), x′(t)), x(t0) = x0, x′(t0) = x1.

Remark 7.11. The Levi-Civita connection ∇ on a given Riemann-
ian manifold (M, g) is an inner object i.e. completely determined by
the differentiable structure on M and the Riemannian metric g, see
Remark 6.7. Hence the same applies for the condition

∇̇γγ̇ = 0

for any given curve γ : I →M . This means that the image of a geodesic
under a local isometry is again a geodesic.

We can now determine the geodesics in the Euclidean spaces.

Example 7.12. Let Em = (Rm, ⟨, ⟩) be the standard Euclidean
space of dimension m. For the global chart idRm : Rm → Rm the metric
on Em is given by gij = δij. As a direct consequence of Example 6.13
we see that the corresponding Christoffel symbols satisfy

Γk
ij = 0 for all i, j, k = 1, . . . ,m.

Hence a C2-curve γ : I → Rm is a geodesic if and only if γ̈(t) = 0. For
any p ∈ Rm and any v ∈ TpRm ∼= Rm define the curve

γ(p,v) : R → Rm by γ(p,v)(t) = p+ t · v.
Then γ(p,v)(0) = p, γ̇(p,v)(0) = v and γ̈(p,v) = 0. It now follows from
the uniqueness part of Theorem 7.9 that the geodesics in Em are the
straight lines.

For the classical situation of a surface in the three dimensional
Euclidean space we have the following well known result.

Example 7.13. Let Σ be a regular surface as a submanifold of the
three dimensional Euclidean space E3. If γ : I → Σ is a C2-curve, then
Theorem 6.20 tells us that

∇̇γγ̇ = (∂γ̇γ̇)
⊤ = γ̈⊤.

This means that γ is a geodesic if and only if the tangential part γ̈⊤ of
its second derivative γ̈ vanishes.

Definition 7.14. A geodesic γ : J → (M, g) in a Riemannian
manifold is said to be maximal if it can not be extended to a geodesic
defined on an interval I strictly containing J . The manifold (M, g)

97



is said to be complete if for each point (p, v) ∈ TM there exists a
geodesic γ : R → M , defined on the whole of R, such that γ(0) = p
and γ̇(0) = v.

The next statement generalises the classical result of Example 7.13.

Proposition 7.15. Let (N, h) be a Riemannian manifold with Levi-
Civita connection ∇ and M be a submanifold of N equipped with the
induced metric g. A C2-curve γ : I → M is a geodesic in M if and
only if

(∇̇γγ̇)
⊤ = 0.

Proof. The result is an immediate consequence of Theorem 6.20
stating that the Levi-Civita connection ∇̃ of (M, g) satisfies

∇̃̇γγ̇ = (∇̇γγ̇)
⊤.

□

With this at hand, we can now determine the geodesics on the
standard unit spheres.

Example 7.16. Let Em+1 = (Rm+1, ⟨, ⟩) be the standard (m+ 1)-
dimensional Euclidean space and Sm be the unit sphere in Em+1 with
the induced metric. At a point p ∈ Sm the normal space NpS

m of Sm

in Em+1 is simply the line generated by p. If γ : I → Sm is a C2-curve
on the sphere, then

∇̃̇γγ̇ = (∇̇γγ̇)
⊤ = (∂γ̇γ̇)

⊤ = γ̈⊤ = γ̈ − γ̈⊥ = γ̈ − ⟨γ̈, γ⟩γ.

This shows that γ is a geodesic on the sphere Sm if and only if

(7.3) γ̈ = ⟨γ̈, γ⟩γ.
For a point (p,X) ∈ TSm define the curve γ = γ(p,X) : R → Sm by

γ : t 7→
{

p if X = 0
cos(|X|t) · p+ sin(|X|t) ·X/|X| if X ̸= 0.

Then one easily checks that γ(0) = p, γ̇(0) = X and that γ satisfies the
geodesic equation (7.3). This shows that the non-constant geodesics on
Sm are precisely the great circles and that the sphere is complete.

Having determined the geodesics on the standard spheres, we can
now easily find the geodesics on the real projective spaces.

Example 7.17. Let Sym(Rm+1) be equipped with the metric

g(A,B) =
1

8
trace(At ·B).

98



Then we know from Example 5.26 that the map ϕ : Sm → Sym(Rm+1)
with

ϕ : p 7→ (2ppt − e)

is an isometric immersion and that the image ϕ(Sm) is isometric to
the m-dimensional real projective space RPm. This means that the
geodesics on RPm are exactly the images of geodesics on Sm. This
shows that the real projective space is complete.

We will now show that the geodesics are critical points of the so
called energy functional. For this we need the following two definitions.

Definition 7.18. Let (M, g) be a Riemannian manifold and γ :
I →M be a Cr-curve on M . A variation of γ is a Cr-map

Φ : (−ϵ, ϵ)× I →M

such that for all s ∈ I, Φ0(s) = Φ(0, s) = γ(s). If the interval is
compact i.e. of the form I = [a, b], then the variation Φ is said to be
proper if for all t ∈ (−ϵ, ϵ) we have Φt(a) = γ(a) and Φt(b) = γ(b).

Definition 7.19. Let (M, g) be a Riemannian manifold and γ :
I → M be a C2-curve on M . For every compact interval [a, b] ⊂ I we
define the energy functional E[a,b] by

E[a,b](γ) =
1

2

∫ b

a

g(γ̇(t), γ̇(t))dt.

A C2-curve γ : I → M is called a critical point for the energy
functional if every proper variation Φ of γ|[a,b] satisfies

d

dt
(E[a,b](Φt))|t=0 = 0.

We will now prove that geodesics can be characterised as the critical
points of the energy functional.

Theorem 7.20. A C2-curve γ : I = [a, b] → M is a critical point
for the energy functional if and only if it is a geodesic.

Proof. For a C2-map Φ : (−ϵ, ϵ) × I → M , Φ : (t, s) 7→ Φ(t, s)
we define the vector fields X = dΦ(∂/∂s) and Y = dΦ(∂/∂t) along Φ.
The following shows that the vector fields X and Y commute.

∇XY −∇YX = [X, Y ]

= [dΦ(∂/∂s), dΦ(∂/∂t)]

= dΦ([∂/∂s, ∂/∂t])

= 0,
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since [∂/∂s, ∂/∂t] = 0. We now assume that Φ is a proper variation of
γ. Then

d

dt
(E[a,b](Φt)) =

1

2

d

dt
(

∫ b

a

g(X,X)ds)

=
1

2

∫ b

a

d

dt
(g(X,X))ds

=

∫ b

a

g(∇YX,X)ds

=

∫ b

a

g(∇XY ,X)ds

=

∫ b

a

(
d

ds
(g(Y,X))− g(Y,∇XX))ds

= [g(Y,X)]ba −
∫ b

a

g(Y,∇XX)ds.

The variation is proper, so Y (t, a) = Y (t, b) = 0. Furthermore

X(0, s) = ∂Φ/∂s(0, s) = γ̇(s),

so

d

dt
(E[a,b](Φt))|t=0 = −

∫ b

a

g(Y (0, s), (∇̇γγ̇)(s))ds.

The last integral vanishes for every proper variation Φ of γ if and only
if ∇̇γγ̇ = 0. □

A geodesic γ : I → (M, g) is a special case of what is called a
harmonic map ϕ : (M, g) → (N, h) between Riemannian manifolds.
Other examples are the conformal immersions ψ : (M2, g) → (N, h)
which parametrise the minimal surfaces in (N, h). The study of har-
monic maps between Riemannian manifolds was initiated by the sem-
inal paper: J. Eells, J. H. Sampson, Harmonic mappings of Riemann-
ian manifolds, Amer. J. Math. 86, (1964), 109-160. For a modern
reference on harmonic maps see H. Urakawa, Calculus of Variations
and Harmonic Maps, Translations of Mathematical Monographs 132,
AMS (1993).

Our next goal is to prove the important result of Theorem 7.23. For
this we introduce the exponential map, which is a fundamental tool in
Riemannian geometry.
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Definition 7.21. Let (Mm, g) be an m-dimensional Riemannian
manifold, p ∈M and

Sm−1
p = {v ∈ TpM | gp(v, v) = 1}

be the unit sphere in the tangent space TpM at p. Then every non-
zero element w ∈ TpM can be written as w = rw · vw, where rw = |w|
and vw = w/|w| ∈ Sm−1

p . For v ∈ Sm−1
p let γv : (−αv, βv) → M be

the maximal geodesic such that αv, βv ∈ R+ ∪ {∞}, γv(0) = p and
γ̇v(0) = v. The unit sphere is compact and for this reason it can be
shown that the real number

ϵp = inf{αv, βv | v ∈ Sm−1
p }

is positive so the open ball

Bm
ϵp(0) = {v ∈ TpM | gp(v, v) < ϵ2p}

is non-empty. The exponential map expp : Bm
ϵp(0) → M at p is

defined by

expp : w 7→
{

p if w = 0
γvw(rw) if w ̸= 0.

Note that for v ∈ Sm−1
p the line segment λv : (−ϵp, ϵp) → TpM

with λv : t 7→ t · v is mapped onto the geodesic γv i.e. locally we have
γv = expp ◦λv. One can prove that the map expp is differentiable and
it follows from its definition that the differential

d(expp)0 : TpM → TpM

is the identity map for the tangent space TpM . Then the Inverse Map-
ping Theorem 3.29 tells us that there exists an rp ∈ R+ such that if
Up = Bm

rp(0) and Vp = expp(Up) then expp |Up : Up → Vp is a diffeomor-
phism parametrising the open subset Vp of M .

Example 7.22. Let Sm be the unit sphere in the standard Eu-
clidean Rm+1 and expp : TpS

m → Sm be the exponential map of Sm at
the north pole p = (0, 1) ∈ Rm ×R. Then we clearly have expp(0) = p.
If Y ∈ TpS

m is a unit vector i.e. |Y | = 1, then the line through the
origin, generated by Y , is parametrised by λY : R → TpS

m satisfying
λY (s) = s · Y with

λY (0) = 0 and λ̇Y (0) = Y.

Furthermore, there exists a unique geodesic γY : R → Sm such that

γY (0) = p and γ̇Y (0) = Y.

According to Example 7.16, this satisfies

γY (s) = cos s · p+ sin s · (Y, 0).
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From this we see that the exponential map expp : TpS
m → Sm satisfies

expp : s · Y 7→ (cos s · p+ sin s · (Y, 0)).
This maps the line λY onto the geodesic γY and is clearly injective on
the open ball

Bm
π (0) = {X ∈ TpS

m | |X| < π}
of radius π. We will see in Theorem 7.23 that the geodesic

γY : s 7→ expp(s · Y )

is the shortest path between p and γY (r) as long as r < π. Note that
each point on the (m− 1)-dimensional sphere

T π
p S

m = {Z ∈ TpS
m | |Z| = π}

is mapped to the south pole −p = (0,−1), so the globally defined
exponential map expp : TpS

m → Sm is not injective.
The exponential map expp takes the origin 0 ∈ TpS

m to the point
p ∈ Sm. This means that its tangent map d(expp)0 at 0 is defined on
the tangent space T0TpS

m of TpS
m at 0 ∈ TpS

m, which we identify with

TpS
m. Since the two tangents λ̇Y (0) and γ̇Y (0) satisfy λ̇Y (0) = γ̇Y (0)

we see that the tangent map

d(expp)0 : TpS
m → TpS

m

is simply the identity map of the tangent space TpS
m.

The next result shows that on a Riemannian manifold the geodesics
are locally the shortest paths between their endpoints.

Theorem 7.23. Let (M, g) be a Riemannian manifold. Then the
geodesics are locally the shortest paths between their endpoints.

Proof. Let p ∈M , U = Bm
r (0) in TpM and V = expp(U) be such

that the restriction
ϕ = expp |U : U → V

of the exponential map at p is a diffeomorphism. We define a metric g̃
on U such that for each X, Y ∈ C∞(TU) we have

g̃(X, Y ) = g(dϕ(X), dϕ(Y )).

This turns ϕ : (U, g̃) → (V, g) into an isometry. It then follows from
the construction of the exponential map, that the geodesics in (U, g̃)
through the point 0 = ϕ−1(p) are exactly the lines λv : t 7→ t · v where
v ∈ TpM .

Now let q be an arbitrary non-zero element of Bm
r (0) and λq :

[0, 1] → Bm
r (0) be the geodesic λq : t 7→ t · q. Further let σ : [0, 1] → U

be any C1-curve such that σ(0) = 0 and σ(1) = q. Along the curve
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σ we define the vector field X with X : t 7→ σ(t) and the tangent
field σ̇ : t → σ̇(t) to σ. Then the radial component σ̇rad of σ̇ is the
orthogonal projection of σ̇ onto the line generated by X i.e.

σ̇rad : t 7→ g̃(σ̇(t), X(t))

g̃(X(t), X(t))
X(t).

Then it is easily checked that

|σ̇rad(t)| =
|g̃(σ̇(t), X(t))|

|X(t)|

and
d

dt
|X(t)| = d

dt

√
g̃(X(t), X(t)) =

g̃(σ̇(t), X(t))

|X(t)|
.

Combining these two relations we yield

|σ̇rad(t)| ≥
d

dt
|X(t)|.

This means that

L(σ) =

∫ 1

0

|σ̇(t)|dt

≥
∫ 1

0

|σ̇rad(t)|dt

≥
∫ 1

0

d

dt
|X(t)|dt

= |X(1)| − |X(0)|
= |q|
= L(λq).

This proves that in fact that λq is the shortest path connecting p and
q. □

We now introduce the important notion of totally geodesic subman-
ifolds of a Riemannian manifold.

Definition 7.24. Let (N, h) be a Riemannian manifold and M
be a submanifold of N with the induced metric. Then M is said to
be totally geodesic in N if its second fundamental form vanishes
identically i.e. B ≡ 0.

For the totally geodesic submanifolds we have the following impor-
tant characterisation.
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Proposition 7.25. Let (N, h) be a Riemannian manifold with its
Levi-Civita connection ∇ and M be a submanifold of N equipped with
the induced metric. Then the following conditions are equivalent

(i) M is totally geodesic in N
(ii) a curve γ : I →M is a geodesic in M if and only it is geodesic

in N .

Proof. The result is a direct consequence of the decomposition
formula

∇̇γγ̇ = (∇̇γγ̇)
⊤ + (∇̇γγ̇)

⊥ = ∇̃̇γγ̇ +B(γ̇, γ̇)

and the polar identity for the symmetric second fundamental form

4 ·B(X, Y ) = B(X + Y,X + Y )−B(X − Y,X − Y ).

□

Corollary 7.26. Let (N, h) be a Riemannian manifold, p ∈ N
and V be an m-dimensional linear subspace of the tangent space TpN
of N at p. Then there exists (locally) at most one totally geodesic
submanifold M of N such that TpM = V .

Proof. See Exercise 7.5. □

Proposition 7.27. Let (N, h) be a Riemannian manifold and M
be a submanifold of N with the induced metric. For a point (p, v) of
the tangent bundle TM , let γ(p,v) : I → N be the maximal geodesic in
N with γ(0) = p and γ̇(0) = v. Then M is totally geodesic in (N, h) if
γ(p,v)(I) is contained in M for all (p, v) ∈ TM . The converse is true if
M is complete.

Proof. See Exercise 7.6. □

Proposition 7.28. Let (N, h) be a Riemannian manifold andM be
a submanifold of N which is the fixpoint set of an isometry ϕ : N → N .
Then M is totally geodesic in N .

Proof. Let p ∈ M , v ∈ TpM and c : J → M be a curve in M
such that c(0) = p and ċ(0) = v. Since M is the fix point set of ϕ
we know that ϕ(c(t)) = c(t) for all t ∈ J and hence that ϕ(p) = p
and dϕp(v) = v. Further let γ : I → N be the maximal geodesic in
N with γ(0) = p and γ̇(0) = v. The map ϕ : N → N is an isometry
so the curve ϕ ◦ γ : I → N is also a geodesic. The uniqueness result
of Theorem 7.9, ϕ(γ(0)) = γ(0) and dϕ(γ̇(0)) = γ̇(0) then imply that
ϕ(γ) = γ. Hence the image of the geodesic γ : I → N is contained in
M , so following Proposition 7.27 the submanifoldM is totally geodesic
in N . □
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Corollary 7.29. Let m < n be positive integers. Then the m-
dimensional sphere

Sm = {(x, 0) ∈ Rm+1 × Rn−m | |x|2 = 1}
is a totally geodesic submanifold of

Sn = {(x, y) ∈ Rm+1 × Rn−m | |x|2 + |y|2 = 1}.

Proof. The statement is a direct consequence of the fact that Sm

is the fixpoint set of the isometry ϕ : Sn → Sn of Sn with (x, y) 7→
(x,−y). □

Corollary 7.30. Let m < n be positive integers. Let Hn be the n-
dimensional hyperbolic space modelled on the upper half space R+×Rn−1

equipped with the Riemannian metric

g(X, Y ) =
1

x21
· ⟨X, Y ⟩,

where x = (x1, . . . , xn) ∈ Hn. Then the m-dimensional hyperbolic space

Hm = {(x, 0) ∈ Hn |x ∈ Rm}
is totally geodesic in Hn.

Proof. See Exercise 7.8. □

We conclude this chapter by introducing the important notion of a
Riemannian symmetric space.

Definition 7.31. A symmetric space is a connected Riemannian
manifold (M, g) such that for each point p ∈ M there exists a global
isometry ϕ :M →M which is a geodesic symmetry fixing p. By this we
mean that ϕ(p) = p and the tangent map dϕp : TpM → TpM satisfies
dϕp(X) = −X for all X ∈ TpM .

Example 7.32. Let p be an arbitrary point on the unit sphere Sm

in the standard Euclidean Rn+1. Then the reflection ρp : Rn+1 → Rn+1

about the line generated by p is given by

ρp : q 7→ 2⟨q, p⟩p− q.

This is a linear map hence identical to is differential ρp : Rn+1 → Rn+1.
The restriction ϕ = ρp|Sm : Sm → Sm is an isometry that fixes p.
Its tangent map dϕp : TpS

m → TpS
m satisfies dϕp(X) = −X for all

X ∈ TpS
m. This shows that the homogeneous space Sm is symmetric.

Proposition 7.33. Every Riemannian symmetric space is com-
plete.

Proof. See Exercise 7.10. □
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The following important result is a direct consequence of the famous
Hopf-Rinow theorem.

Theorem 7.34. Let (M, g) be a complete Riemannian manifold
which is path-connected. If p, q ∈ M then there exists a geodesic γ :
R →M such that γ(0) = p and γ(1) = q.

Proof. See Exercise 7.11. □

The following shows that every Riemannian symmetric space is ho-
mogeneous, see Definition 5.20.

Theorem 7.35. Every Riemannian symmetric space is homoge-
neous.

Proof. See Exercise 7.12. □

The Riemannian symmetric spaces were classified by Élie Cartan
in his seminal study from 1926. They constitute 20 countably infinite
families and 24 single exceptional cases and are quotents of Riemannian
Lie groups. They come in dual pairs (U/K,G/K), where U/K is
compact and G/K is non-compact.

The best known simply connected examples are the dual spheres
Sm and the hyperbolic spaces Hm of constant sectional curvature

Sm = SO(m+ 1)/SO(m), Hm = SOo(m, 1)/SO(m).

We also have their complex counterparts i.e. the complex projective
and hyperbolic spaces

CPm = SU(m+ 1)/S(U(m)×U(1)),

CHm = SU(m, 1)/S(U(m)×U(1)).

The standard reference to the theory of Riemannian symmetric
spaces is: Sigurdur Helgason, Differential Geometry, Lie Groups, and
Symmetric Spaces, Graduate Studies in Mathematics 34, AMS (2001).
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Exercises

Exercise 7.1. The result of Exercise 5.3 shows that the two di-
mensional hyperbolic disc H2 introduced in Example 5.9 is isometric
to the upper half plane M = {(x, y) ∈ R2 | y ∈ R+} equipped with the
Riemannian metric

g(X, Y ) =
1

y2
· ⟨X, Y ⟩.

Use your local library to find all geodesics in (M, g).

Exercise 7.2. Let the special orthogonal group SO(m) be equipped
with its standard left-invariant Riemannian metric

g(A,B) = trace(At ·B).

Prove that a C2-curve γ : (−ϵ, ϵ) → SO(m) is a geodesic if and only if

γt · γ̈ = γ̈t · γ.

Exercise 7.3. Let the special orthogonal group SO(m) be equipped
with its standard left-invariant Riemannian metric

g(A,B) = trace(At ·B).

Use the result of Exercise 7.2 to show that every geodesic γ : R →
SO(m), satisfying γ(0) = p and γ̇(0) = p ·X, is of the form

γ(s) = p · Exp(sX),

where p ∈ SO(m) and X ∈ TeSO(m).

Exercise 7.4. For the real parameter θ ∈ (0, π/2) define the 2-
dimensional torus T 2

θ by

T 2
θ = {(cos θ · eiα, sin θ · eiβ) ∈ S3 |α, β ∈ R}.

Determine for which θ ∈ (0, π/2) the torus T 2
θ is a minimal submanifold

of the 3-dimensional sphere

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}.

Exercise 7.5. Find a proof of Corollary 7.26.

Exercise 7.6. Find a proof of Proposition 7.27.

Exercise 7.7. Determine the totally geodesic submanifolds of the
m-dimensional real projective space RPm. (Hint: Use the result of
Example 5.26).

Exercise 7.8. Find a proof of Corollary 7.30.
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Exercise 7.9. Let the special orthogonal group SO(m) be equipped
with the left-invariant metric

g(A,B) = trace(At ·B)

and letK be a Lie subgroup of SO(m). Prove thatK is totally geodesic
in SO(m).

Exercise 7.10. Find a proof of Proposition 7.33.

Exercise 7.11. Use your local library to find a proof of Theorem
7.34.

Exercise 7.12. Find a proof of Theorem 7.35.
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CHAPTER 8

The Riemann Curvature Tensor

In this chapter we introduce the Riemann curvature tensor and the
sectional curvature of a Riemannian manifold. These notions generalise
the Gaussian curvature playing a central role in Gaussian geometry i.e.
the classical differential geometry of curves and surfaces. We derive
the important Gauss equation comparing the sectional curvatures of
a submanifold and that of its ambient space. We prove that the Eu-
clidean spaces, the standard spheres and the hyperbolic spaces all have
constant sectional curvature. We then determine the Riemannian cur-
vature tensor for manifolds of constant sectional curvature and also for
an important class of Lie groups.

Definition 8.1. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Then for a vector field X ∈ C∞(TM) we have
the first order covariant derivative

∇X : C∞(TM) → C∞(TM)

of vector fields in the direction of the given X satisfying

∇X : Z 7→ ∇XZ.

We will now generalise this idea and introduce the important co-
variant derivatives of tensor fields of types (0, r) and (1, r). Before we
do this, in a formal way, we now provide the following motivation.

Motivation 8.2. Let (M, g) be a Riemannian manifold with its
Levi-Civita connection ∇. Let A : C∞

2 (TM) → C∞
1 (TM) be a tensor

field on M of type (1, 2). If we differentiate the vector field A(Y, Z) in
the direction of X applying the following ”naive” product rule

∇X(A(Y, Z)) = (∇XA)(Y, Z) + A(∇XY ,Z) + A(Y,∇XZ)

we obtain

(∇XA)(Y, Z) = ∇X(A(Y, Z))− A(∇XY ,Z)− A(Y,∇XZ).

Here ∇XA is called the ”covariant derivative” of the tensor field A in
the direction of X.
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The above idea turns out to be very useful and leads to the following
formal Definitions 8.3 and 8.6.

Definition 8.3. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. For a tensor field A : C∞

r (TM) → C∞
0 (TM) of

type (0, r) we define its covariant derivative

∇A : C∞
r+1(TM) → C∞

0 (TM)

by

∇A : (X,X1, . . . , Xr) 7→ (∇XA)(X1, . . . , Xr) =

X(A(X1, . . . , Xr))−
r∑

k=1

A(X1, . . . , Xk−1,∇XXk, Xk+1, . . . , Xr).

A tensor field A of type (0, r) is said to be parallel if ∇A ≡ 0.

The following result can be seen as, yet another, compatibility of
the Levi-Civita connection ∇ of (M, g) with the Riemannian metric g.

Proposition 8.4. Let (M, g) be a Riemannian manifold with its
Levi-Civita connection ∇. Then the Riemannian metric g is a parallel
tensor field of type (0, 2).

Proof. See Exercise 8.1. □

Example 8.5. Let (M, g) be a Riemannian manifold. Then we
already know that its Levi-Civita connection ∇ is tensorial in its first
argument i.e. if X, Y ∈ C∞(TM) and f, g ∈ C∞(M) then we have

∇(f ·X + g · Y )Z = f · ∇XZ + g · ∇YZ.

This means that a vector field Z ∈ C∞(TM) onM induces the natural
tensor field Z : C∞

1 (TM) → C∞
1 (TM) of type (1, 1) given by

Z : X 7→ ∇XZ,

satisfying

Z(f ·X + g · Y ) = f · Z(X) + g · Z(Y ).

For a tensor field of type (1, r) we now have the following definition
of its covariant derivative, much in the spirit of the above mentioned
Motivation 8.2.

Definition 8.6. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. For a tensor field A : C∞

r (TM) → C∞
1 (TM) of

type (1, r) we define its covariant derivative

∇A : C∞
r+1(TM) → C∞

1 (TM)
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by
∇A : (X,X1, . . . , Xr) 7→ (∇XA)(X1, . . . , Xr) =

∇X(A(X1, . . . , Xr))−
r∑

k=1

A(X1, . . . , Xk−1,∇XXk, Xk+1, . . . , Xr).

A tensor field A of type (1, r) is said to be parallel if ∇A ≡ 0.

Definition 8.7. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇ and X, Y ∈ C∞(TM) be two vector fields on M .
Then the second order covariant derivative

∇2
X, Y : C∞(TM) → C∞(TM)

is defined by
∇2
X, Y : Z 7→ (∇XZ)(Y ),

where Z is the natural tensor field of type (1, 1) induced by Z ∈
C∞(TM), see Example 8.5.

As a direct consequence of Definitions 8.6 and 8.7 we see that if
X, Y, Z ∈ C∞(TM) are vector fields on M , then the second order
covariant derivative ∇2

X, Y satisfies

∇2
X, YZ = ∇X(Z(Y ))−Z(∇XY ) = ∇X∇YZ −∇∇XY

Z.

This leads us to the following important definition.

Definition 8.8. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Then its Riemann curvature operator

R : C∞(TM)× C∞(TM)× C∞(TM) → C∞(TM)

is defined as twice the skew-symmetric part of the second covariant
derivative ∇2 i.e.

R(X, Y )Z = ∇2
X, YZ −∇2

Y,XZ.

The next remarkable result shows that the curvature operator is
actually a tensor field.

Theorem 8.9. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Then the Riemann curvature operator

R : C∞
3 (TM) → C∞

1 (TM)

satisfying

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X, Y ]Z

is a tensor field on M of type (1, 3).
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Proof. See Exercise 8.2. □

The reader should note that the Riemann curvature tensor is an
intrinsic object since it only depends on the intrinsic Levi-Civita con-
nection. The following result shows that the curvature tensor has many
beautiful symmetries.

Proposition 8.10. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Then its Riemann curvature tensor R satisfies
the following symmetry conditions.

(i) R(X, Y )Z = −R(Y,X)Z,
(ii) g(R(X, Y )Z,W ) = − g(R(X, Y )W,Z),
(iii) R(X, Y )Z +R(Z,X)Y +R(Y, Z)X = 0,
(iv) g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ),
(v) 6 ·R(X, Y )Z = R(X, Y + Z)(Y + Z)−R(X, Y − Z)(Y − Z)

+R(X + Z, Y )(X + Z)−R(X − Z, Y )(X − Z).

Here X, Y, Z,W ∈ C∞(TM) are vector fields on M .

Proof. See Exercise 8.3. □

Part (iii) of Proposition 8.10 is the so called first Bianchi identity.
The second Bianchi identity is a similar result concerning the covariant
derivative ∇R of the curvature tensor. This will not be treated here.

Our next task is to obtain a better understanding of the Riemann
curvature tensor and compare it with the Gaussian curvature, so im-
portant in the Gaussian geometry of surfaces in the three dimensional
Euclidean space. For this see Example 8.19.

Definition 8.11. Let (M, g) be a Riemannian manifold and p ∈M .
Then a section V at p is a 2-dimensional subspace of the tangent space
TpM . The set

G2(TpM) = {V |V is a section of TpM}
of sections is called the Grassmannian of 2-planes at p.

Remark 8.12. In Gaussian geometry the tangent space TpΣ of a
surface Σ in the Euclidean R3 is two dimensional. This means that
in this case there is only one section at p ∈ Σ, namely the full two
dimensional tangent plane TpΣ.

Before introducing the notion of the sectional curvature we need
the following useful technical lemma.

Lemma 8.13. Let (M, g) be a Riemannian manifold, p ∈ M and
X, Y, Z,W ∈ TpM be tangent vectors at p such that the two sections

112



spanR{X, Y } and spanR{Z,W} are identical. Then

g(R(X, Y )Y,X)

|X|2|Y |2 − g(X, Y )2
=

g(R(Z,W )W,Z)

|Z|2|W |2 − g(Z,W )2
.

Proof. See Exercise 8.4. □

We now introduce the notion of sectional curvature at a point. The
result of Lemma 8.13 shows that this is well defined.

Definition 8.14. Let (M, g) be a Riemannian manifold and p ∈M .
Then the function Kp : G2(TpM) → R given by

Kp : spanR{X, Y } 7→ g(R(X, Y )Y,X)

|X|2|Y |2 − g(X, Y )2

is called the sectional curvature of the section V = spanR{X, Y } at
the point p ∈M . In this case we usually write K(X, Y ) for K(V ).

It can be shown that, for a fixed p ∈M , the GrassmannianG2(TpM)
is diffeomorphic to the compact quotient manifold SO(m)/SO(2) ×
SO(m−2). Hence the continuous real-valued functionKp : G2(TpM) →
R both has a minimum and a maximum at p ∈M .

Definition 8.15. Let (M, g) be a Riemannian manifold and Kp :
G2(TpM) → R be the sectional curvature function at an arbitrary point
p ∈M . Then we define the functions δ,∆ :M → R by

δ : p 7→ min
V ∈G2(TpM)

Kp(V ) and ∆ : p 7→ max
V ∈G2(TpM)

Kp(V ).

The Riemannian manifold (M, g) is said to be

(i) of non-negative curvature if δ(p) ≥ 0 for all p,
(ii) of positive curvature if δ(p) > 0 for all p,
(iii) of non-positive curvature if ∆(p) ≤ 0 for all p,
(iv) of negative curvature if ∆(p) < 0 for all p,
(v) of constant curvature if δ = ∆ is constant,
(vi) flat if δ ≡ ∆ ≡ 0.

The next example shows how the Riemann curvature tensor can be
presented by means of local coordinates. Hopefully this will convince
the reader that those should be avoided whenever possible.

Example 8.16. Let (M, g) be a Riemannian manifold and (U, x)
be a local chart on M . For i, j, k, l = 1, . . . ,m put

Xi =
∂

∂xi
, gij = g(Xi, Xj) and Rl

ijk = g(R(Xi, Xj)Xk, Xl).
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Then

Rl
ijk =

m∑
s=1

gsl

(
∂Γs

jk

∂xi
− ∂Γs

ik

∂xj
+

m∑
r=1

{Γr
jk · Γs

ir − Γr
ik · Γs

jr}
)
,

where the functions Γk
ij are the Christoffel symbols of the Levi-Civita

connection ∇ of (M, g) with respect to (U, x), see Example 6.13.

Proof. Using the fact that [Xi, Xj] = 0, see Proposition 4.30, we
then obtain

R(Xi, Xj)Xk = ∇Xi
∇Xj

Xk −∇Xj
∇Xi

Xk

=
m∑
s=1

{∇Xi
(Γs

jk ·Xs)−∇Xj
(Γs

ik ·Xs)}

=
m∑
s=1

(
∂Γs

jk

∂xi
·Xs +

m∑
r=1

Γs
jkΓ

r
isXr −

∂Γs
ik

∂xj
·Xs −

m∑
r=1

Γs
ikΓ

r
jsXr

)

=
m∑
s=1

(
∂Γs

jk

∂xi
− ∂Γs

ik

∂xj
+

m∑
r=1

{Γr
jkΓ

s
ir − Γr

ikΓ
s
jr}

)
Xs.

□

Example 8.17. Let Em = (Rm, ⟨, ⟩) be the standardm-dimensional
Euclidean space. Then the set

{ ∂

∂x1
,
∂

∂x2
. . . ,

∂

∂xm
}

is a global frame for the tangent bundle TRm. In this situation we have
gij = δij, so Γk

ij ≡ 0 by Example 6.13. This implies that R ≡ 0 so Em

is flat.

We will now present the famous Gauss equation comparing the
curvature tensor of a submanifold and that of its ambient space in
terms of the second fundamental form of the submanifold. This is a
fundamental result in Riemannian geometry.

Theorem 8.18. Let (N, h) be a Riemannian manifold with Levi-
Civita connection ∇. Further let (M, g) be a submanifold of N equipped
with the induced metric and Levi-Civita connection ∇̃. Let X, Y, Z,W ∈
C∞(TN) be vector fields on N extending X̃, Ỹ , Z̃, W̃ ∈ C∞(TM) on
M . Then we have

g(R̃(X̃, Ỹ )Z̃, W̃ )− h(R(X, Y )Z,W )

= h(B(Ỹ , Z̃), B(X̃, W̃ ))− h(B(X̃, Z̃), B(Ỹ , W̃ )).
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Here R̃ and R are the Riemann curvature tensors of (M, g) and (N, h),
respectively, and B the second fundamental of M as a submanifold of
N .

Proof. Employing the definitions of the curvature tensors R̃, R,
the Levi-Civita connection ∇̃ and the second fundamental form B of
M as a submanifold of N we obtain the following:

g(R̃(X̃, Ỹ )Z̃, W̃ )

= g(∇̃X̃∇̃̃YZ̃ − ∇̃̃Y∇̃X̃Z̃ − ∇̃[X̃, Ỹ ]Z̃, W̃ )

= h((∇X(∇YZ)
⊤)⊤ − (∇Y (∇XZ)

⊤)⊤ − (∇[X, Y ]Z)
⊤,W )

= h((∇X(∇YZ − (∇YZ)
⊥))⊤ − (∇Y (∇XZ − (∇XZ)

⊥))⊤,W )

−h((∇[X, Y ]Z − (∇[X, Y ]Z)
⊥)⊤,W )

= h(∇X∇YZ −∇Y∇XZ −∇[X, Y ]Z,W )

−h((∇X(∇YZ)
⊥,W ) + h(∇Y (∇XZ)

⊥,W )

= h(R(X, Y )Z,W )

+h((∇YZ)
⊥, (∇XW )⊥)− h((∇XZ)

⊥, (∇YW )⊥)

= h(R(X, Y )Z,W )

+h(B(Ỹ , Z̃), B(X̃, W̃ ))− h(B(X̃, Z̃), B(Ỹ , W̃ )).

□

We will now employ the Gauss equation to the classical situation
of a surface in the three dimensional Euclidean space.

Example 8.19. Let Σ be a regular surface in the Euclidean 3-
dimensional E = (R3, ⟨, ⟩). Let {X̃, Ỹ } be a local orthonormal frame
for the tangent bundle TΣ of Σ around a point p ∈ Σ and Ñ be the local
Gauss map with Ñ = X̃ × Ỹ . Further let X, Y,N be local extensions
of X̃, Ỹ , Ñ , such that {X, Y,N} is a local orthonormal frame for TR3.
Then the second fundamental form B of Σ in R3 satisfies

B(X̃, Ỹ ) = (∂XY )⊥

= < ∂XY ,N > N

= − < Y, ∂XN > N

= − < Y, dN(X) > N

= < Ỹ , Sp(X̃) > Ñ,
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where Sp : TpΣ → TpΣ is the shape operator of Σ at p. If we now
apply the fact that R3 is flat, then the Gauss equation tells us that the
sectional curvature K(X̃, Ỹ ) of Σ at p satisfies

K(X̃, Ỹ ) = < R̃(X̃, Ỹ )Ỹ , X̃ >

= < B(Ỹ , Ỹ ), B(X̃, X̃) > − < B(X̃, Ỹ ), B(Ỹ , X̃) >

= detSp.

In other words, the sectional curvature K(X̃, Ỹ ) is the determinant of
the shape operator Sp i.e. the classical Gaussian curvature.

An interesting consequence of the Gauss equation is the following
useful result. For important applications see Exercises 8.7 and 8.8.

Corollary 8.20. Let (N, h) be a Riemannian manifold and M be
a totally geodesic submanifold of N equipped with the induced metric
g. Let X, Y, Z,W ∈ C∞(TN) be vector fields extending X̃, Ỹ , Z̃, W̃ ∈
C∞(TM). Then we have

g(R̃(X̃, Ỹ )Z̃, W̃ ) = h(R(X, Y )Z,W ).

Proof. This follows directly from the fact that the second funda-
mental for B of M in N vanishes identically. □

Corollary 8.21. Let (N, h) be a Riemannian manifold and M be
a totally geodesic submanifold of N equipped with the induced metric g.
Let X, Y ∈ C∞(TN) be orthogonal unit vector fields extending X̃, Ỹ ∈
C∞(TM). Then at a point p ∈M we have

K̃p(X̃, Ỹ ) = Kp(X, Y ).

Here K̃ and K are the sectional curvatures on (M, g) and (N, h), re-
spectively.

Proof. The statement is a direct consequence of Corollary 8.20.
□

Example 8.22. The unit sphere Sm in the standard Euclidean
Em+1 has constant sectional curvature +1 (see Exercises 8.6 and 8.7)
and the real hyperbolic space Hm has constant sectional curvature −1
(see Exercise 8.8).

The next example provides an interesting geometric connection be-
tween the classical Gaussian curvature of a surface and the sectional
curvature operator of its general Riemannian ambient manifold.
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Example 8.23. Let (M, g) be a Riemannian manifold, p ∈M and
V be a section at p i.e. a 2-dimensional subspace of the tangent space
TpM . Further, let Up be an open neighbourhood of TpM , containing
the origin 0 ∈ TpM , such that the exponential map expp : Up → M is
a local diffeomorphism onto the open image expp(Up) in M . Then

Σp(V ) = expp(Up ∩ V )

is a Gaussian surface in M i.e. a 2-dimensional submanifold with the
induced metric. Further let ∇ and ∇̃ be the Levi-Civita connections
on M and Σp(V ), respectively, and B be the second fundamental form
of Σp(V ) in M .

If X ∈ V is a tangent vector then the curve γ : I → Σp(V ) with
γ(s) = expp(s ·X) is a geodesic inM such that γ(0) = p and γ̇(0) = X.
This implies that, at the point p ∈ Σ, we have

0 = ∇XX = (∇XX)⊤ + (∇XX)⊥ = ∇̃XX +B(X,X).

In particular, B(X,X) = 0 for all X ∈ V . If {X, Y } is an orthonormal
basis for V , then the polar identity gives

4 ·B(X, Y ) = B(X + Y,X + Y )−B(X − Y,X − Y ) = 0.

This shows that the second fundamental form B vanishes at the point
p. It then follows by the Gauss equation in Theorem 8.18 that the
sectional curvature Kp(V ) and the Gaussian curvature of Σp(V ) are
equal at p.

Our next aim is to show that the curvature tensor, of a manifold of
constant sectional curvature, has a rather simple form. This we present
as Theorem 8.28. But first we need some preparations.

Lemma 8.24. Let (M, g) be a Riemannian manifold, p ∈ M and
Y ∈ TpM . Then the linear map Ȳ : TpM → TpM given by

Ȳ : X 7→ R(X, Y )Y

is a symmetric endomorphism of the tangent space TpM .

Proof. If X, Y, Z ∈ TpM then it follows from Proposition 8.10
that

g(Ȳ (X), Z) = g(R(X, Y )Y, Z)

= g(R(Y, Z)X, Y )

= g(R(Z, Y )Y,X)

= g(X, Ȳ (Z)).

□
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Remark 8.25. For a Riemannian manifold (M, g) and p ∈ M let
Y ∈ TpM be a tangent vector at p with |Y | = 1. Further let N (Y ) be
the orthogonal complement of the line generated by Y in TpM i.e.

N (Y ) = {X ∈ TpM | g(X, Y ) = 0}.
The fact that Ȳ (Y ) = 0 and Lemma 8.24 ensure the existence of an
orthonormal basis of eigenvectors X1, . . . , Xm−1 of the restriction of the
symmetric endomorphism Ȳ to N (Y ). Without loss of generality, we
can assume that the corresponding eigenvalues satisfy

λ1(p) ≤ · · · ≤ λm−1(p).

If X ∈ N (Y ), |X| = 1 and Ȳ (X) = λ ·X then

Kp(X, Y ) = g(R(X, Y )Y,X) = g(Ȳ (X), X) = λ.

This means that the eigenvalues must satisfy the following inequalities

δ(p) ≤ λ1(p) ≤ · · · ≤ λm−1(p) ≤ ∆(p).

In order to prove the interesting result of Theorem 8.28 we introduce
the following tensor field.

Definition 8.26. For a Riemannian manifold (M, g) let the tensor
field R1 : C

∞
3 (TM) → C∞

1 (TM), of type (1, 3), be defined by

R1(X, Y )Z = g(Y, Z)X − g(X,Z)Y.

We now have the following useful technical lemma. The proof is
based on standard arguments from linear algebra.

Lemma 8.27. Let (M, g) be a Riemannian manifold and X, Y, Z ∈
C∞(TM) be vector fields on M . Then

(i) |R(X, Y )Y − δ+∆
2
R1(X, Y )Y | ≤ 1

2
(∆− δ)|X||Y |2

(ii) |R(X, Y )Z − δ+∆
2
R1(X, Y )Z| ≤ 2

3
(∆− δ)|X||Y ||Z|

Proof. Because of linearity we can, without loss of generality, as-
sume that |X| = |Y | = |Z| = 1. If X = X⊥ +X⊤ with X⊥ ⊥ Y and
X⊤ is a multiple of Y then R(X, Y )Z = R(X⊥, Y )Z and |X⊥| ≤ |X|
so we can also assume that X ⊥ Y . Then

R1(X, Y )Y = g(Y, Y )X − g(X, Y )Y = X.

The first statement (i) follows from the fact that the symmetric
endomorphism of TpM with

X 7→
(
R(X, Y )Y − ∆+ δ

2
·X

)
restricted to N (Y ) has eigenvalues in the closed interval [ δ−∆

2
, ∆−δ

2
].

118



It is easily checked that the operator R1 satisfies the symmetry
conditions of Proposition 8.10 and hence D = R− ∆+δ

2
·R1 does so as

well. This implies that

6 ·D(X, Y )Z = D(X, Y + Z)(Y + Z)−D(X, Y − Z)(Y − Z)

+ D(X + Z, Y )(X + Z)−D(X − Z, Y )(X − Z).

The second statement (ii) then follows from (i) and

6|D(X, Y )Z| ≤ 1

2
(∆− δ){|X|(|Y + Z|2 + |Y − Z|2)

+|Y |(|X + Z|2 + |X − Z|2)}

=
1

2
(∆− δ){2|X|(|Y |2 + |Z|2) + 2|Y |(|X|2 + |Z|2)}

= 4(∆− δ).

□

The following result is an immediate consequence of Lemma 8.27.

Theorem 8.28. Let (M, g) be a Riemannian manifold of constant
sectional curvature κ. Then its curvature tensor R satisfies

R(X, Y )Z = κ · (g(Y, Z)X − g(X,Z)Y ).

Proof. The result is an immediate consequence of Lemma 8.27
and the fact that κ = δ = ∆. □

The following result shows that the curvature tensor takes a rather
simple form for the important class of Lie groups treated in Proposition
6.12.

Proposition 8.29. Let (G, g) be a Lie group equipped with a left-
invariant metric, such that for all X ∈ g the endomorphism

adX : g → g

is skew-symmetric, with respect to g. Then, for left-invariant vector
fields X, Y, Z ∈ g, the curvature tensor R satisfies

R(X, Y )Z = −1

4
· [[X, Y ], Z].

Proof. See Exercise 8.9. □

Corollary 8.30. Let (G, g) be a Lie group equipped with a left-
invariant metric, such that for all Z ∈ g the endomorphism

adZ : g → g
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is skew-symmetric, with respect to g. Let X, Y ∈ g be left-invariant
vector fields such that |X| = |Y | = 1 and g(X, Y ) = 0. Then the
sectional curvature K(X, Y ) satisfies

K(X, Y ) =
1

4
· |[X, Y ]|2 ≥ 0.

Proof. See Exercise 8.10. □

We conclude this chapter by defining the Ricci and scalar curvatures
of a Riemannian manifold. These are obtained by taking traces over the
curvature tensor and play an important role in Riemannian geometry.

Definition 8.31. Let (M, g) be a Riemannian manifold, then we
define

(i) the Ricci operator ric : C∞
1 (TM) → C∞

1 (M) by

ric(X) =
m∑
i=1

R(X, ei)ei,

(ii) the Ricci curvature Ric : C∞
2 (TM) → C∞

0 (TM) by

Ric(X, Y ) =
m∑
i=1

g(R(X, ei)ei, Y ),

(iii) the scalar curvature Scal ∈ C∞(M) by

Scal =
m∑
j=1

Ric(ej, ej) =
m∑
j=1

m∑
i=1

g(R(ei, ej)ej, ei).

Here {e1, . . . , em} is any local orthonormal frame for the tangent bun-
dle.

In the case of constant sectional curvature we have the following
result.

Corollary 8.32. Let (Mm, g) be a Riemannian manifold of con-
stant sectional curvature κ. Then its scalar curvature satisfies the fol-
lowing

Scal = m · (m− 1) · κ.
Proof. Let {e1, . . . , em} be any local orthonormal frame. Then

Theorem 8.28 implies that

Ric(ej, ej) =
m∑
i=1

g(R(ej, ei)ei, ej)

=
m∑
i=1

g(κ(g(ei, ei)ej − g(ej, ei)ei), ej)
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= κ(
m∑
i=1

g(ei, ei)g(ej, ej)−
m∑
i=1

g(ei, ej)g(ei, ej))

= κ(
m∑
i=1

1−
m∑
i=1

δij) = (m− 1) · κ.

To obtain the formula for the scalar curvature Scal we only need to
multiply the constant Ricci curvature Ric(ej, ej) by m. □

As a reference on further notions of curvature we recommend the
interesting book, W. Kühnel, Differential Geometry: Curves - Surfaces
- Manifolds, Student Mathematical Library 77, AMS (2015).
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Exercises

Exercise 8.1. Let (M, g) be a Riemannian manifold. Prove that
the tensor field g of type (0, 2) is parallel with respect to the Levi-Civita
connection.

Exercise 8.2. Let (M, g) be a Riemannian manifold. Prove that
the Riemann curvature operator R is a tensor field of type (1, 3).

Exercise 8.3. Find a proof for Proposition 8.10.

Exercise 8.4. Find a proof for Lemma 8.13.

Exercise 8.5. Let Rm and Cm be equipped with their standard
Euclidean metric g given by

g(z, w) = Re
m∑
k=1

zkw̄k

and let Tm = {z ∈ Cm | |z1| = ... = |zm| = 1} be the m-dimensional
torus in Cm with the induced metric. Find an isometric immersion
ϕ : Rm → Tm, determine all geodesics on Tm and prove that the torus
is flat.

Exercise 8.6. Let the Lie group S3 ∼= SU(2) be equipped with the
Riemannian metric

g(Z,W ) = 1
2
· Re(trace(Z̄tW )).

(i) Find an orthonormal basis for TeSU(2).
(ii) Prove that (SU(2), g) has constant sectional curvature +1.

Exercise 8.7. Let Sm be the unit sphere in Rm+1 equipped with
the standard Euclidean metric ⟨, ⟩. Use the results of Corollaries 7.29,
8.20 and Exercise 8.6 to prove that (Sm, ⟨, ⟩) has constant sectional
curvature +1.

Exercise 8.8. LetHm be them-dimensional hyperbolic space mod-
elled on the upper half space R+×Rm−1 equipped with the Riemannian
metric

g(X, Y ) =
1

x21
· ⟨X, Y ⟩,

where x = (x1, . . . , xm) ∈ Hm. For k = 1, . . . ,m let the vector fields
Xk ∈ C∞(THm) be given by

(Xk)x = x1 ·
∂

∂xk
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and define the operation ∗ on Hm by

(α, x) ∗ (β, y) = (α · β, α · y + x).

Prove that

(i) (Hm, ∗) is a Lie group,
(ii) the vector fields X1, . . . , Xm are left-invariant,
(iii) [Xk, Xl] = 0 and [X1, Xk] = Xk for k, l = 2, ...,m,
(iv) the metric g is left-invariant,
(v) (Hm, g) has constant curvature −1.

Compare with Exercises 6.4 and 7.1.

Exercise 8.9. Find a proof for Proposition 8.29.

Exercise 8.10. Find a proof for Corollary 8.30.
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CHAPTER 9

Curvature and Local Geometry

This chapter is devoted to the study of the local geometry of a Rie-
mannian manifold and how this is controlled by its curvature tensor.
For this we introduce the notion of a Jacobi field which is a standard
tool in differential geometry. With this at hand we obtain a funda-
mental comparison result describing the curvature dependence of local
distances.

Definition 9.1. Let (M, g) be a Riemannian manifold. By a 1-
parameter family of geodesics we mean a C3-map

Φ : (−ϵ, ϵ)× I →M

such that the curve γt : I →M given by γt : s 7→ Φ(t, s) is a geodesic for
all t ∈ (−ϵ, ϵ). The variable t ∈ (−ϵ, ϵ) is called the family parameter
of Φ.

The following result suggests that the Riemann curvature tensor is
closely related to the local behaviour of geodesics.

Proposition 9.2. Let (M, g) be a Riemannian manifold and Φ :
(−ϵ, ϵ) × I → M be a 1-parameter family of geodesics. Then for each
t ∈ (−ϵ, ϵ) the vector field Jt : I → TM along γt, given by

Jt(s) =
∂Φ

∂t
(t, s),

satisfies the second order linear ordinary differential equation

∇̇γt∇̇γtJt +R(Jt, γ̇t)γ̇t = 0.

Proof. Along Φ we define the vector fields X(t, s) = ∂Φ/∂s and
J(t, s) = ∂Φ/∂t. The fact that [∂/∂t, ∂/∂s] = 0 implies that

[J,X] = [dΦ(∂/∂t), dΦ(∂/∂s)] = dΦ([∂/∂t, ∂/∂s]) = 0.

Since Φ is a family of geodesics we have ∇XX = 0 and the definition
of the curvature tensor then implies that

R(J,X)X = ∇J∇XX −∇X∇JX −∇[J,X]X

= −∇X∇JX
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= −∇X∇XJ.
Hence for each t ∈ (−ϵ, ϵ) we have

∇̇γt∇̇γtJt +R(Jt, γ̇t)γ̇t = 0.

□

The result of Proposition 9.2 leads to the following natural notion.

Definition 9.3. Let (M, g) be a Riemannian manifold, γ : I →M
be a geodesic and X = γ̇ be the tangent vector field along γ. A C2

vector field J along γ is called a Jacobi field if and only if

(9.1) ∇X∇XJ +R(J,X)X = 0

along γ. We denote the space of all Jacobi fields along γ by Jγ(TM).

We now give an example of a 1-parameter family of geodesics in the
Euclidean space Em+1.

Example 9.4. Let c, n : R → Em+1 be smooth curves such that
the image n(R) of n is contained in the unit sphere Sm. If we define a
map Φ : R× R → Em+1 by

Φ : (t, s) 7→ c(t) + s · n(t)
then for each t ∈ R the curve γt : s 7→ Φ(t, s) is a straight line and
hence a geodesic in Em+1. By differentiating this with respect to the
family parameter t we yield the Jacobi field J ∈ Jγ0(TE

m+1) along γ0
satisfying

J(s) =
d

dt
Φ(t, s)|t=0 = ċ(0) + s · ṅ(0).

The Jacobi equation (9.1) is linear in J . This means that the space
of Jacobi fields Jγ(TM), along the geodesic γ, is a vector space. We
are now interested in determining its dimension.

Proposition 9.5. Let (Mm, g) be a Riemannian manifold, p ∈M ,
γ : I →M be a geodesic with γ(0) = p and X = γ̇ be the tangent vector
field along γ. If v, w ∈ TpM are two tangent vectors at p then there
exists a unique Jacobi field J along γ such that

Jp = v and (∇XJ)p = w.

Proof. In the spirit of Proposition 7.8 let {X1, . . . , Xm} be an
orthonormal frame of parallel vector fields along γ. If J is a vector
field along γ then

J =
m∑
i=1

aiXi,
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where ai = g(J,Xi) are C
2-functions on the real interval I. The vector

fields X1, . . . , Xm are parallel so

∇XJ =
m∑
i=1

ȧiXi and ∇X∇XJ =
m∑
i=1

äiXi.

For the curvature tensor we have

R(Xi, X)X =
m∑
k=1

bkiXk,

where bki = g(R(Xi, X)X,Xk) are smooth functions on the real interval
I, heavily depending on the geometry of (M, g). This means that
R(J,X)X is given by

R(J,X)X =
m∑

i,k=1

aib
k
iXk

and that J is a Jacobi field if and only if

m∑
i=1

(äi +
m∑
k=1

akb
i
k)Xi = 0.

This is clearly equivalent to the following second order system of linear
ordinary differential equations in a = (a1, . . . , am) : I → Rm

äi +
m∑
k=1

akb
i
k = 0 for all i = 1, 2, . . . ,m.

A global solution will always exist and is uniquely determined by the
initial values a(0) and ȧ(0). This implies that the Jacobi field J exists
globally and is uniquely determined by the initial conditions

J(0) = v and (∇XJ)(0) = w.

□

As an immediate consequence of Proposition 9.5 we have the fol-
lowing interesting result.

Corollary 9.6. Let (Mm, g) be a Riemannian manifold and γ :
I →M be a geodesic in M . Then the vector space Jγ(TM), of Jacobi
fields along γ, has the dimension 2m.

The following Lemma 9.7 shows that when proving results about
Jacobi fields along a geodesic γ we can always assume, without loss of
generality, that that they are parametrised by arclength i.e. |γ̇| = 1.
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Lemma 9.7. Let (M, g) be a Riemannian manifold, γ : I → M
be a geodesic and J be a Jacobi field along γ. If λ is a non-zero real
number and σ : λI → I is given by σ : t 7→ t/λ, then γ ◦ σ : λI → M
is a geodesic and J ◦ σ is a Jacobi field along γ ◦ σ.

Proof. See Exercise 9.1. □

The next result shows that both the tangential and the normal parts
of a Jacobi field are again Jacobi fields. Furthermore we completely
determine the tangential Jacobi fields.

Proposition 9.8. Let (M, g) be a Riemannian manifold, γ : I →
M be a geodesic with |γ̇| = 1 and J be a Jacobi field along γ. Let J⊤

be the tangential part of J given by

J⊤ = g(J, γ̇)γ̇ and J⊥ = J − J⊤

be its normal part. Then J⊤ and J⊥ are Jacobi fields along γ and there
exist a, b ∈ R such that J⊤(s) = (as+ b)γ̇(s) for all s ∈ I.

Proof. In this situation we have

∇̇γ∇̇γJ
⊤ +R(J⊤, γ̇)γ̇ = ∇̇γ∇̇γ(g(J, γ̇)γ̇) +R(g(J, γ̇)γ̇, γ̇)γ̇

= g(∇̇γ∇̇γJ, γ̇)γ̇

= −g(R(J, γ̇)γ̇, γ̇)γ̇
= 0.

This shows that the tangential part J⊤ of J is a Jacobi field. The
fact that Jγ(TM) is a vector space implies that the normal part J⊥ =
J − J⊤ of J also is a Jacobi field.

By differentiating g(J, γ̇) twice along γ we obtain

d2

ds2
(g(J, γ̇)) = g(∇̇γ∇̇γJ, γ̇) = −g(R(J, γ̇)γ̇, γ̇) = 0

so g(J, γ̇(s)) = (as+ b) for some a, b ∈ R. □

Corollary 9.9. Let (M, g) be a Riemannian manifold, γ : I → M
be a geodesic and J be a Jacobi field along γ. If

g(J(t0), γ̇(t0)) = 0 and g((∇̇γJ)(t0), γ̇(t0)) = 0

for some t0 ∈ I, then g(J(t), γ̇(t)) = 0 for all t ∈ I.

Proof. This is a direct consequence of the fact that the function
g(J, γ̇) satisfies the second order ordinary differential equation f̈ = 0

and the initial conditions f(t0) = 0 and ḟ(t0) = 0. □
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Our next aim is to show that if the Riemannian manifold (M, g) has
constant sectional curvature then we can completely solve the Jacobi
equation

∇X∇XJ +R(J,X)X = 0

along any given geodesic γ : I →M . For this we introduce the follow-
ing useful notation. For a real number κ ∈ R we define the functions
cκ, sκ : R → R by

cκ(s) =


cosh(

√
|κ|s) if κ < 0,

1 if κ = 0,

cos(
√
κs) if κ > 0.

and

sκ(s) =


sinh(

√
|κ|s)/

√
|κ| if κ < 0,

s if κ = 0,

sin(
√
κs)/

√
κ if κ > 0.

It is a well known fact that the unique solution to the initial value
problem

f̈ + κ · f = 0, f(0) = a and ḟ(0) = b

is the function f : R → R given by f(s) = a · cκ(s) + b · sκ(s).
We now give examples of Jacobi fields in the three model geometries

of dimension two, the Euclidean plane, the sphere and hyperbolic plane,
all of constant sectional curvature.

Example 9.10. Let C be the complex plane equipped with the
standard Euclidean metric ⟨, ⟩ of constant sectional curvature κ =
0. The rotations about the origin produce a 1-parameter family of
geodesics Φt : s 7→ s · eit. Along the geodesic γ0 : s 7→ s we yield the
Jacobi field

J0(s) =
∂Φt

∂t
(0, s) = is

with |J0(s)|2 = s2 = |sκ(s)|2.

Example 9.11. Let S2 be the unit sphere in the standard three
dimensional Euclidean space C× R equipped with the induced metric
of constant sectional curvature κ = +1. Rotations about the R-axis
produce a 1-parameter family of geodesics Φt : s 7→ (sin(s) · eit, cos(s)).
Along the geodesic γ0 : s 7→ (sin(s), cos(s)) we have the Jacobi field

J0(s) =
∂Φt

∂t
(0, s) = (i sin(s), 0)

with |J0(s)|2 = sin2(s) = |sκ(s)|2.
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Example 9.12. Let B2
1(0) be the open unit disk in the complex

plane equipped with the hyperbolic metric

g(X, Y ) =
4

(1− |z|2)2
⟨X, Y ⟩

of constant sectional curvature κ = −1. Rotations about the origin
produce a 1-parameter family of geodesics Φt : s 7→ tanh(s/2) · eit.
Along the geodesic γ0 : s 7→ tanh(s/2) we obtain the Jacobi field

J0(s) =
∂Φt

∂t
(0, s) = i · tanh(s/2)

with

|J0(s)|2 =
4 · tanh2(s/2)

(1− tanh2(s/2))2
= sinh2(s) = |sκ(s)|2.

We are now ready to show that, in the case of constant sectional
curvature, we can completely solve the Jacobi equation along any geo-
desic.

Example 9.13. Let (M, g) be a Riemannian manifold of constant
sectional curvature κ and γ : I →M be a geodesic with |X| = 1 where
X = γ̇ is the tangent vector field along γ. Following Proposition 7.8
let P1, P2, . . . , Pm−1 be parallel vector fields along γ such that

g(Pi, Pj) = δij and g(Pi, X) = 0.

Then any vector field J along γ may be written as

J(s) =
m−1∑
i=1

fi(s)Pi(s) + fm(s)X(s).

Since the vector fields P1, P2, . . . , Pm−1, X are parallel along the curve
γ, this means that J is a Jacobi field if and only if

m−1∑
i=1

f̈i(s)Pi(s) + f̈m(s)X(s) = ∇X∇XJ

= −R(J,X)X

= −R(J⊥, X)X

= −κ(g(X,X)J⊥ − g(J⊥, X)X)

= −κJ⊥

= −κ
m−1∑
i=1

fi(s)Pi(s).
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This is equivalent to the following system of ordinary differential equa-
tions

(9.2) f̈m(s) = 0 and f̈i(s) + κfi(s) = 0 for all i = 1, 2, . . . ,m− 1.

It is clear that for the initial values

J(s0) =
m−1∑
i=1

viPi(s0) + vmX(s0),

(∇XJ)(s0) =
m−1∑
i=1

wiPi(s0) + wmX(s0)

or equivalently

fi(s0) = vi and ḟi(s0) = wi for all i = 1, 2, . . . ,m

we have a unique explicit solution to the system (9.2) on the whole of
the interval I. It is given by

fm(s) = vm + swm and fi(s) = vicκ(s) + wisκ(s)

for all i = 1, 2, . . . ,m − 1. It should be noted that if g(J,X) = 0 and
J(0) = 0 then

(9.3) |J(s)| = |(∇XJ)(0)| · |sκ(s)|.

In the next example we give a complete description of the Jacobi
fields along a geodesic on the 2-dimensional sphere.

Example 9.14. Let S2 be the unit sphere in the three dimensional
Euclidean space C × R equipped with the induced metric of constant
sectional curvature κ = +1. Further let γ : R → S2 be the geodesic
given by γ : s 7→ (eis, 0). Then the tangent vector field along γ satisfies

γ̇(s) = (ieis, 0).

It then follows from Proposition 9.8 that all the Jacobi fields tangent
to γ are given by

JT
(a,b)(s) = (as+ b)(ieis, 0),

where a, b ∈ R. The unit vector field P : R → TS2 given by

s 7→ ((eis, 0), (0, 1))

is clearly normal along γ. In S2 the tangent vector field γ̇ is parallel
along γ so P must be parallel. This implies that all the Jacobi fields
orthogonal to γ̇ are given by

JN
(a,b)(s) = (0, a cos s+ b sin s),

where a, b ∈ R.
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In the general situation, when we do not assume constant sectional
curvature, the exponential map can be used to produce Jacobi fields as
follows.

Example 9.15. Let (M, g) be a complete Riemannian manifold,
p ∈ M and v, w ∈ TpM . Then s 7→ s(v + tw) defines a 1-parameter
family of lines in the tangent space TpM which all pass through the
origin 0 ∈ TpM . Remember that the exponential map

expp|Bm
εp (0)

: Bm
εp(0) → expp(B

m
εp(0))

maps lines in TpM through the origin onto geodesics on M . Hence the
map

Φt : s 7→ expp(s(v + tw))

is a 1-parameter family of geodesics through p ∈M , as long as s(v+tw)
is an element of Bm

εp(0). This means that

J(s) =
∂Φt

∂t
(t, s)|t=0 = d(expp)s(v+tw)(sw)|t=0 = d(expp)sv(sw)

is a Jacobi field along the geodesic γ : s 7→ Φ0(s) with γ(0) = p and
γ̇(0) = v. Here

d(expp)s(v+tw) : Ts(v+tw)TpM → Texpp(s(v+tw))M

is the linear tangent map of the exponential map expp at s(v + tw).
Now differentiating with respect to the parameter s gives

(∇XJ)(0) =
d

ds
(d(expp)sv(sw))|s=0 = d(expp)0(w) = w.

The above calculations show that

(9.4) J(0) = 0 and (∇XJ)(0) = w.

For the proof of our main result, stated in Theorem 9.17, we need
the following technical lemma.

Lemma 9.16. Let (M, g) be a Riemannian manifold with sectional
curvature uniformly bounded above by ∆ and γ : [0, α] → M be a
geodesic on M with |X| = 1 where X = γ̇. Further let J : [0, α] → TM
be a Jacobi field along γ such that g(J,X) = 0 and |J | ≠ 0 on (0, α).
Then

(i) d2

ds2
|J |+∆ · |J | ≥ 0,

(ii) if f : [0, α] → R is a C2-function such that

(a) f̈ +∆ · f = 0 and f > 0 on (0, α),
(b) f(0) = |J |(0), and
(c) ḟ(0) = d

ds
|J |(0),
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then f(s) ≤ |J(s)| on (0, α),
(iii) if J(0) = 0, then |∇XJ(0)| · s∆(s) ≤ |J(s)| for all s ∈ (0, α).

Proof. (i) Using the facts that |X| = 1 and ⟨X, J⟩ = 0 we obtain

d2

ds2
|J | =

d2

ds2

√
g(J, J) =

d

ds
(
g(∇XJ, J)

|J |
)

=
g(∇X∇XJ, J)

|J |
+

|∇XJ |
2|J |2 − g(∇XJ, J)

2

|J |3

≥
g(∇X∇XJ, J)

|J |

= −g(R(J,X)X, J)

|J |
= −K(X, J) · |J |
≥ −∆ · |J |.

(ii) Define the function h : [0, α) → R by

h(s) =

{
|J(s)|
f(s)

if s ∈ (0, α),

lims→0
|J(s)|
f(s)

= 1 if s = 0.

Then

ḣ(s) =
1

f 2(s)

{ d
ds

|J(s)| · f(s)− |J(s)| · ḟ(s)
}

=
1

f 2(s)

∫ s

0

d

dt

{ d
dt
|J(t)| · f(t)− |J(t)| · ḟ(t)

}
dt

=
1

f 2(s)

∫ s

0

{ d2
dt2

|J(t)| · f(t)− |J(t)| · f̈(t)
}
dt

=
1

f 2(s)

∫ s

0

f(t) ·
{ d2
dt2

|J(t)|+∆ · |J(t)|
}
dt

≥ 0.

This implies that ḣ(s) ≥ 0 so f(s) ≤ |J(s)| for all s ∈ (0, α).
(iii) The function f(s) = |∇XJ(0)| · s∆(s) satisfies the differential

equation

f̈(s) + ∆f(s) = 0

and the initial conditions f(0) = |J(0)| = 0, ḟ(0) = |∇XJ(0)| so it

follows from (ii) that |∇XJ(0)| · s∆(s) = f(s) ≤ |J(s)| for all s ∈
(0, α). □
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Let (M, g) be a Riemannian manifold of sectional curvature which is
uniformly bounded above, i.e. there exists a ∆ ∈ R such that Kp(V ) ≤
∆ for all V ∈ G2(TpM) and p ∈ M . Let (M∆, g∆) be another Rie-
mannian manifold which is complete and of constant sectional curva-
ture K ≡ ∆. Let p ∈M , p∆ ∈M∆ and identify TpM ∼= Rm ∼= Tp∆M∆.

Let U be an open neighbourhood of Rm around 0 such that the
exponential maps (exp)p and (exp)p∆ are diffeomorphisms from U onto
their images (exp)p(U) and (exp)p∆(U), respectively. Let (r, p, q) be
a geodesic triangle i.e. a triangle with sides which are shortest paths
between their endpoints. Furthermore let c : [a, b] →M be the geodesic
connecting r and q and v : [a, b] → TpM be the curve defined by
c(t) = (exp)p(v(t)). Put c∆(t) = (exp)p∆(v(t)) for t ∈ [a, b] and then
it directly follows that c(a) = r and c(b) = q. Finally put r∆ = c∆(a)
and q∆ = c∆(b).

Theorem 9.17. For the above situation the following inequality for
the distance function d is satisfied

d(q∆, r∆) ≤ d(q, r).

Proof. Define a 1-parameter family s 7→ s · v(t) of straight lines
in TpM through 0. Then

Φt : s 7→ (exp)p(s · v(t)) and Φ∆
t : s 7→ (exp)p∆(s · v(t))

are 1-parameter families of geodesics through p ∈ M , and p∆ ∈ M∆,
respectively. Hence

Jt = ∂Φt/∂t and J∆
t = ∂Φ∆

t /∂t

are Jacobi fields satisfying the initial conditions

Jt(0) = 0 = J∆
t (0) and (∇XJt)(0) = v̇(t) = (∇XJ

∆
t )(0).

Employing Equation (9.3), Lemma 9.16 and the fact that M∆ has con-
stant sectional curvature ∆ we now yield

|ċ∆(t)| = |J∆
t (1)|

= |(∇XJ
∆
t )(0)| · s∆(1)

= |(∇XJt)(0)| · s∆(1)
≤ |Jt(1)|
= |ċ(t)|

The curve c is the shortest path between r and q so we have

d(r∆, q∆) ≤ L(c∆) ≤ L(c) = d(r, q).

□

134



We now add the assumption that the sectional curvature of the
manifold (M, g) is uniformly bounded below i.e. there exists a δ ∈ R
such that δ ≤ Kp(V ) for all V ∈ G2(TpM) and p ∈ M . Let (Mδ, gδ)
be a complete Riemannian manifold of constant sectional curvature δ.
Let p ∈ M and pδ ∈ Mδ and identify TpM ∼= Rm ∼= TpδMδ. Then a
similar construction as above gives two pairs of points q, r ∈ M and
qδ, rδ ∈Mδ and shows that

d(q, r) ≤ d(qδ, rδ).

Combining these two results we obtain locally

d(q∆, r∆) ≤ d(q, r) ≤ d(qδ, rδ).
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Exercises

Exercise 9.1. Find a proof of Lemma 9.7.

Exercise 9.2. Let (M, g) be a Riemannian manifold and γ : I →M
be a geodesic such that X = γ̇ ̸= 0. Further let J be a non-vanishing
Jacobi field along γ with g(X, J) = 0. Prove that if g(J, J) is constant
along γ then (M, g) does not have strictly negative curvature.
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APPENDIX A

A Note on Classical Lie Algebras

Let Rm×m be the vector space of real m×m matrices. For this we have
the direct sum

Rm×m = Skew(Rm)⊕ Sym(Rm)

of its linear subspaces

Skew(Rm) = {X ∈ Rm×m |X t +X = 0}

and

Sym(Rm) = {Y ∈ Rm×m |Y t − Y = 0}
of skew-symmetric and symmetric matrices, respectively. This means
that every matrix A ∈ Rm×m has a unique decomposition A = X + Y ,
where

X = 1
2
(A− At) ∈ Skew(Rm) and Y = 1

2
(A+ At) ∈ Sym(Rm).

We now equip Rm×m with its standard Euclidean scalar product given
by

⟨E,F ⟩ = trace (EtF ).

Then it is easily seen that the two subspaces Skew(Rm) and Sym(Rm)
are orthogonal i.e. if X t = −X and Y t = Y then ⟨X, Y ⟩ = 0.

The real special linear group SLm(R) = {x ∈ Rm×m | detx = 1} has
Lie algebra slm(R) consisting of the real traceless matrices i.e.

slm(R) = {A ∈ Rm×m | traceA = 0}.

For this we have an orthogonal decomposition slm(R) = so(m) ⊕ p,
where so(m) = Skew(Rm) is the Lie algebra of the special orthogonal
subgroup SO(m) of SLm(R) and p consists of the symmetric traceless
elements of Rm×m i.e.

p = {Y ∈ Rm×m |Y = Y t and traceY = 0}.

For the Lie algebra sl2(R) we have the basis {X, Y1, Y2} with

X =

[
0 −1
1 0

]
, Y1 =

[
0 1
1 0

]
, Y2 =

[
1 0
0 −1

]
.
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Here the Lie subalgebra so(2) is generated by X and its orthogonal
complement p by Y1 and Y2. If we now employ the exponential map
Exp : Rm×m → Rm×m for real matrices we get

s 7→ Exp(sX) =

[
cos s − sin s
sin s cos s

]
, s 7→ Exp(s Y1) =

[
cosh s sinh s
sinh s cosh s

]
,

s 7→ Exp(s Y2) =

[
es 0
0 e−s

]
.

These are all curves into the special linear group

SL2(R) = {x ∈ R2×2 | detx = 1}.
Two of them show that this is unbounded in Rm×m and hence non-
compact.

−−−−−−− ∗ −−−−−−−
The vector space Cm×m of complex m×m matrices is the complexifi-
cation of the real vector space Rm×m i.e. the direct sum

Cm×m = Rm×m ⊕ iRm×m.

For this we have the decomposition

Cm×m = sHerm(Cm)⊕ Herm(Cm)

into its linear subspaces

sHerm(Cm) = {Z ∈ Cm×m | Z̄t + Z = 0}
and

Herm(Cm) = {W ∈ Cm×m | W̄ t −W = 0}
of skew-Hermitian and Hermitian matrices, respectively. This means
that every matrix B ∈ Cm×m has a unique decomposition B = Z +W ,
where

Z = 1
2
(B − B̄t) ∈ sHerm(Cm) and W = 1

2
(B + B̄t) ∈ Herm(Cm).

We can now extend the Euclidean scalar product on Rm×m to the stan-
dard Hermitian scalar product on Cm×m, given by

⟨E,F ⟩ = Re trace (ĒtF ).

Then it is easily seen that the two subspaces sHerm(Cm) and Herm(Cm)
are orthogonal i.e. if Z̄t = −Z and W̄ t = W then ⟨Z,W ⟩ = 0.

The complex special linear group SLm(C) = {z ∈ Cm×m | det z = 1}
has Lie algebra slm(C) consisting of the complex traceless matrices i.e.

slm(C) = {B ∈ Cm×m | traceB = 0}.
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This is clearly slm(R) ⊕ i slm(R) i.e. the complexification of the Lie
algebra slm(R) of SLm(R). For slm(C) we have an orthogonal decom-
position slm(C) = su(m)⊕m, where

su(m) = {Z ∈ Cm×m | Z̄ + Z = 0, traceZ = 0}
is the Lie algebra of the special unitary subgroup SU(m) of SLm(C)
and m consists of the Hermitian traceless elements of Cm×m i.e.

m = {W ∈ Cm×m | W̄ t −W = 0, traceW = 0}.
It should be noted that the Lie algebra su(m) satisfies

su(m) = so(m)⊕ i p,

where p is the orthogonal complement of so(m) in slm(R) = so(m)⊕ p
discussed above. This shows that so(m) is the intersection

so(m) = su(m) ∩ slm(R)
and at the group level we have SO(m) = SU(m) ∩ SLm(R).

For the Lie algebra sl2(C) = sl2(R)⊕ i sl2(R) we have orthogonal basis
B = {X, Y1, Y2, iX, i Y1, i Y2}.

Note that here the Lie algebra su(2) of SU(2) satisfies

su(2) = so(2)⊕ i p

and is generated by X, i Y1, i Y2, where

X =

[
0 −1
1 0

]
, i Y1 =

[
0 i
i 0

]
, i Y2 =

[
i 0
0 −i

]
.

If we now employ the exponential Exp : Cm×m → Cm×m for complex
matrices we get

s 7→ Exp(sX) =

[
cos s − sin s
sin s cos s

]
, s 7→ Exp(s i Y1) =

[
cos s i sin s
i sin s cos s

]
,

s 7→ Exp(s i Y2) =

[
eis 0
0 e−is

]
.

These are all curves into the special unitary group

SU(2) = {z ∈ C2×2 | z̄tz = e, det z = 1}
and they are bounded in Cm×m since SU(2) is compact.
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