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Preface

The main purpose of the present treatise is to give an account of some of the topics in
algebraic geometry which while having occupied the minds of many mathematicians
in previous generations have fallen out of fashion in modern times. Often in the his-
tory of mathematics new ideas and techniques make the work of previous generations
of researchers obsolete, especially this applies to the foundations of the subject and
the fundamental general theoretical facts used heavily in research. Even the greatest
achievements of the past generations which can be found for example in the work of
F. Severi on algebraic cycles or in the work of O. Zariski’s in the theory of algebraic
surfaces have been greatly generalized and clarified so that they now remain only of
historical interest. In contrast, the fact that a nonsingular cubic surface has 27 lines or
that a plane quartic has 28 bitangents is something that cannot be improved upon and
continues to fascinate modern geometers. One of the goals of this present work is then
to save from oblivion the work of many mathematicians who discovered these classic
tenets and many so many beautiful results.

In writing this book the greatest challenge the author has faced was distilling the
material down to what should be covered. The number of concrete facts, examples of
special varieties and beautiful geometric constructions that have accumulated during
the classical period of development of algebraic geometry is enormous and what the
reader is going to find in the book is really only a tip of the iceberg; a work that is
sort of a taste sampler of classical algebraic geometry. It avoids most of the material
found in other modern books on the subject, such as, for example, [9] where one can
find many of the classical results on algebraic curves. Instead, it tries to assemble
or, in other words, to create a compendium of material that either cannot be found, is
too dispersed to be found easily, or is simply not treated adequately by contemporary
research papers. On the other hand, while most of the material treated in the book
exists in classical treatises in algebraic geometry, their somewhat archaic terminology
and what is by now completely forgotten background knowledge makes these books
useful to but a handful of experts in the classical literature. Lastly, one must admit that
the personal taste of the author also has much sway in the choice of material.

The reader should be warned that the book is by no means an introduction to alge-
braic geometry. Although some of the exposition can be followed with only a minimum
background in algebraic geometry, for example, based on Shafarevich’s book [386], it
often relies on current cohomological techniques, such as those found in Hartshorne’s
book [206]. The idea was to reconstruct a result by using modern techniques but not
necessarily its original proof. For one, the ingenious geometric constructions in those
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proofs were often beyond the authors abilities to follow them completely. Understand-
ably, the price of this was often to replace a beautiful geometric argument with a dull
cohomological one. For those looking for a less demanding sample of some of the
topics covered in the book the recent beautiful book [24] maybe of great use.

No attempt has been made to give a complete bibliography. To give an idea of
such an enormous task one could mention that the report on the status of topics in
algebraic geometry submitted to the National Research Council in Washington in 1928
[389] contains more than 500 items of bibliography by 130 different authors only in
the subject of planar Cremona transformations (covered in one of the chapters of the
present book.) Another example is the bibliography on cubic surfaces compiled by J. E.
Hill [ 215] in 1896 which alone contains 205 titles. Meyer’s article [280] cites around
130 papers published 1896-1928. The title search in MathSciNet reveals more than
200 papers refereed since 1940, many of them published only in the last twenty years.
How sad it is when one considers the impossibility of saving from oblivion so many
names of researchers of the past years who have contributed so much to our subject.

A word about exercises: some of them are easy and follow from the definitions,
some of them are hard and are meant to provide additional facts not covered in the
main text. In this case we indicate the sources for the statements and solutions.

It is impossible to list all of my colleagues who helped me to improve the exposition
by contributing their comments and corrections. For all the errors still found in the book
the author bears sole responsibility.
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Chapter 1

Polarity

1.1 Polar hypersurfaces

1.1.1 The polar pairing

We will takeC as the base field although many constructions in this book work over
an arbitrary algebraically closed field. LetE be a finite-dimensional vector space. We
denote bySkE its symmetrick-th power and letE∨ denote its dual space of linear
functions. We have a canonical bilinear pairing

〈 , 〉 : E ⊗ E∨ → C (1.1)

that can be extended, using the universal properties of symmetric products, to a bilinear
pairing

SkE ⊗ SdE∨ → Sd−kE∨, d ≥ k. (1.2)

In coordinates, it can be described as follows. Pick up a basis(ξ0, . . . , ξn) of E and
let (t0, . . . , tn) be the dual basis inE∨. We can identify an element ofSdE∨ with a
homogeneous polynomialf of degreed in the variablest0, . . . , tn and an element of
SkE with a homogeneous polynomialψ of degreek in variablesξi. Since〈ξi, tj〉 =
δij , we view eachξi as the partial derivative operator∂i = ∂

∂ti
. Hence any element

ψ ∈ SkE can be viewed as a differential operator

Dψ = ψ(∂0, . . . , ∂n).

The pairing (1.2) becomes

〈ψ(ξ0, . . . , ξn), f(t0, . . . , tn)〉 = Dψ(f). (1.3)

For any monomial∂i = ∂i00 · · · ∂inn and any monomialtj = tj00 · · · tjnn , we have

∂i(tj) =

{
j!

(j−i)!t
j−i if j− i ≥ 0

0 otherwise.
(1.4)

1
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Here and later we use the vector notation:

i! = i0! · · · in!, i = (i0, . . . , in) ≥ 0⇔ i0, . . . , in ≥ 0, , |i| = i0 + · · ·+ in.

This gives an explicit expression for the pairing (1.2). Consider a special case when

ψ = (a0∂0 + · · ·+ an∂n)k = k!
∑
|i|=k

(i!)−1ai∂i.

Then
Dψ(f) = k!

∑
|i|=k

(i!)−1ai∂i(f). (1.5)

It follows from (1.4) that the pairing (1.2) is a perfect pairing, in particular there is
a canonical isomorphisms of linear spaces

SkE∨ ∼= (SkE)∨, SkE ∼= (SkE∨)∨. (1.6)

Let |E| (or Psub(E)) denote the projective space of one-dimensional subspaces of
E. A basisξ0, . . . , ξn in E defines an isomorphismE ∼= Cn+1 and identifies|E| with
the projective spacePn = Cn+1 \ {0}/C∗. For any non-zero vectorv ∈ E we denote
by [v] the corresponding point in|E|. If E = Cn+1 andv = (a0, . . . , an) ∈ Cn+1

we set[v] = [a0, . . . , an]. We call [a0, . . . , an] the projective coordinatesof a point
[a] ∈ Pn. Other common notations are(a0 : a1 : . . . : an) or simply(a0, . . . , an) if no
confusion arises.

The projective space comes with the tautological invertible sheafO|E|(1) whose
space of global sections is identified with the dual spaceE∨. Its d-th tensor power
is denoted byO|E|(d) and its sections are identified with the symmetricd-th power
SdE∨. For anyf ∈ SdE∨ we denote byV (f) the corresponding closed subscheme of
zeros off , we call it ahypersurfaceof degreed in |E| defined by equationf = 0. A
hypersurface of degree 1 is ahyperplane. A hypersurface could be also considered as
an effective divisor inPn, not necessary reduced. By definition,V (0) = Pn (the zero
divisor). Clearly, the set of hypersurfaces can be identified with the projective space
|SdE∨| ∼= PN(d,n), whereN(d, n) =

(
n+d
d

)
− 1.

The projective space|E∨| is called thedual projective space. We will often denote
it by |E|∨. Its points are hyperplanes in|E|. Using the isomorphisms (1.6), we can
also view|E∨| as the projective spaceP(E) of one-dimensional quotients ofE. Also
we may identify|SkE| with the projective space of hypersurfaces of degreek in the
dual projective space. They are classically known asenvelopesof classk.

We viewa0∂0 + · · · + an∂n 6= 0 as a pointa ∈ |E| with projective coordinates
[a0, . . . , an].

Definition 1.1. LetX = V (f) be a hypersurface of degreed in |E|. Leta = [v] ∈ |E|
for somev ∈ E. The hypersurface

Pak(X) := V (Dvk(f))

of degreed − k is called thek-th polar hypersurfaceof the pointx with respect to the
hypersurfaceV (f) (or of the hypersurface with respect to the point).
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Example1.1.1. Let d = 2, i.e.

f(t0, . . . , tn) =
n∑
i=0

αiit
2
i + 2

∑
0≤i<j≤n

αijtitj

is a quadratic form. ThenPa(V (f)) = V (g), where

Da(f) =
n∑
i=0

ai
∂f

∂ti
= 2

∑
0≤i,j≤n

aiαijtj , αji = αij .

The linear mapa 7→ 1
2Da(f) is a map fromE toE∨ which can be identified with an

element ofE∨⊗E∨ = (E⊗E)∨ which is the polar bilinear form associated tof with
matrix (αij).

Example1.1.2. Let Mn(K) be the vector space of square matrices of sizen with
coordinatestij . We view the determinant function∆ : Mn(K)→ K as an element of
Sn(Mn(K)∨), i.e. a polynomial of degreen in the variablestij . LetCij = ∂∆

∂tij
. For

any pointA = (aij) in Mn(K) the value ofCij atA is equal to theij-th cofactor of
A. Then

DAn−1(∆) = (n− 1)!
n∑

i,j=1

Cij(a)tij

is a linear function onMn identified with the cofactor matrix adj(A) ofA (called in the
classical literature theadjugate matrix, not the adjoint matrix as is customary to call it
now).

Let us give another definition of the polar hypersurfacesPak(X). Choose two
different pointsa = [a0, . . . , an] and b = [b0, . . . , bn] in Pn and consider the line
` = a, b spanned by the two points as the image of the map

ϕ : P1 → Pn, [t0, t1] 7→ t0a+ t1b := [a0t0 + b0t1, . . . , ant0 + bnt1]

(a parametric equation of`). The intersectioǹ∩X is isomorphic to the positive divisor
onP1 defined by the degreed homogeneous form

ϕ∗(f) = f(t0a+ t1b) = f(a0t0 + b0t1, . . . , ant0 + bnt1).

Using the Taylor formula at(0, 0), we can write

ϕ∗(f) =
∑

k+m=d

d!
k!m!

tk0t
m
1 Akm(a, b), (1.7)

where

Akm(p, q) =
∂dϕ∗(f)
∂tk0∂t

m
1

(0, 0).
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Using the Chain Rule, we get

Akm(a, b) = k!m!
∑
|i|=k

(i!)−1ai∂i(f)(b) = Dak(f)(b) = Dbmak(f) (1.8)

= m!
∑
|j|=m

(j!)−1bj∂j(f)(a) = m!Dbm(f)(a) = Dakbm(f).

Observe the symmetry
Akm(a, b) = Amk(b, a). (1.9)

When we fixa and letb vary in Pn we obtain a hypersurfaceV (A(a, x)) of degree
d − k which is thek-th polar hypersurface ofX = V (f) with respect to the pointa.
When we fixb and varya, we obtain them-th polar hypersurfaceV (A(x, b)) of X
with respect to the pointb.

Since we are in characteristic 0,Dam(f) 6= 0 for m ≤ d. To see this we use the
Euler formula:

d · f =
n∑
i=0

ti
∂f

∂ti
. (1.10)

Applying this formula to the partial derivatives we obtain

d(d− 1) . . . (d− k + 1)f = k!
∑
|i|=k

(i!)−1ti∂i(f) (1.11)

(also called the Euler formula). It follows from this formula that for everyk

a ∈ Pak(X)⇔ a ∈ X. (1.12)

In view of (1.8) and (1.9), we have

b ∈ Pak(X)⇔ a ∈ Pbd−k(X). (1.13)

1.1.2 The first polars

Let us consider some special cases. LetX = V (f) be a hypersurface of degreed.
Obviously, any0-th polar ofX is equal toX, and, by (1.13), thed-th polarPad(X) is
empty ifa 6∈ X andPn if a ∈ X. Now takek = 1, d− 1. Using (1.5), we obtain

Da(f) =
n∑
i=0

ai
∂f

∂ti
,

1
(d− 1)!

Dad−1(f) =
n∑
i=0

∂f

∂ti
(a)ti.

Together with (1.13) this implies the following.
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Theorem 1.1.1.For any smooth pointx ∈ X, we have

Pxd−1(X) = Tx(X).

If x is a singular pointPxd−1(X) = Pn. Moreover, for anyx ∈ Pn,

X ∩ Px(X) = {y ∈ X : x ∈ Ty(X)}.

Here and later on we denote byTx(X) theembedded tangent spaceof a projective
subvarietyX ⊂ Pn at its nonsingular pointx. It is a linear subspace ofPn equal to the
projective closure of the affine tangent spaceTx(X) of X atx (see [203], p. 181).

In classical terminology, the intersectionX ∩Pa(X) is called theapparent bound-
ary ofX from the pointa. If one projectsX toPn−1 from the pointa, then the apparent
boundary is the ramification divisor of the projection map.

The following picture makes an attempt to show what happens in the case whenX
is a conic.

UUUUUUUUUUUUUUUUUUUUUUUUUUU

iiiiiiiiiiiiiiiiiiiiiiiiiiig̀afbecd a

Pa(X)

X

Figure 1.1: Polar line of a conic

The set of first polarsPa(X) defines a linear system contained in the complete
linear system

∣∣OPn(d − 1)
∣∣. The dimension of this linear system≤ n. We will be

freely using the language of linear systems and divisors on algebraic varieties (see
[206]).

Proposition 1.1.2. The dimension of the linear system of first polars≤ r if and only
if, after a linear change of variables, the polynomialf becomes a polynomial inr + 1
variables.

Proof. Induction onn andn−r. The assertion is obvious ifr = n. Assumer = n−1.
Let

∑
ci∂if = 0 be a nontrivial linear relation between the first partial derivatives.

Consider an invertible linear change of variables

ti =
n∑
j=0

aijuj , i = 0, . . . , n,

whereai0 = ci, i = 0, . . . , n. By the Chain Rule,

∂f

∂u0
=

n∑
i=0

ci
∂f

∂ti
= 0.
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This proves the assertion in this case. Assumer < n − 1. By induction onn − r, we
may assume that, after a linear change of variables,f depends only on the variables
u0, . . . , ur+2. By induction onn, after a further change of variables, we may assume
thatf depends only on the variablesv0, . . . , vr+1.

It follows from Theorem1.1.1that the first polarPa(X) of a pointa with respect
to a hypersurfaceX passes through all singular points ofX. One can say more.

Proposition 1.1.3. Let a be a singular point ofX of multiplicitym. For eachr ≤
degX−m, Par (X) has a singular point ata of multiplicitym and the tangent cone of
Par (X) at a coincides with the tangent coneTCa(X) ofX at a. For any pointb 6= a,
ther-th polarPbr (X) has multiplicity≥ m− r at a and its tangent cone atb is equal
to ther-th polar ofTCa(X) with respect tob.

Proof. Let us prove the first assertion. Without loss of generality, we may assume that
a = [1, 0, . . . , 0]. ThenX = V (f), where

f = td−m0 fm(t1, . . . , tn) + td−m−1
0 fm+1(t1, . . . , tn) + · · ·+ fd(t1, . . . , tn).

The equationfm(t1, . . . , tn) = 0 defines the tangent cone ofX at b. The equation of
Par (X) is

∂rf

∂tr0
= (d−m) · · · (d−m−r)td−m−r0 fm(t1, . . . , tn)+ · · ·+r!fd−r(t1, . . . , tn) = 0.

It is clear that[1, 0, . . . , 0] is a singular point ofPar of multiplicity m with the tangent
coneV (fm(t1, . . . , tn)).

Now we prove the second assertion. Without loss of generality, we may assume
thata = [1, 0, . . . , 0] andb = [0, 1, 0, . . . , 0]. Then the equation ofPar (X) is

∂rf

∂tr1
= td−m0

∂rfm
∂tr1

+ · · ·+ ∂rfd
∂tr1

= 0.

The pointa is a singular point of multiplicity≥ (d−r)−(d−m) = m−r. The tangent
cone atb is equal toV (∂

rfm

∂tr1
) and this coincides with ther-th polar of TCb(X) =

V (fm) with respect toa.

For any nonsingular quadricQ, the mapx 7→ Px(Q) defines a projective isomor-
phism from the projective space to the dual projective space. This is a special case of a
correlation.

An invertible projective map (acollineation) k from a projective space|V | to the
dualP(W ) of a projective space|W | is called acorrelation. It is given by an invert-
ible linear mapφ : V → W∨ defined uniquely up to proportinality. A correlation
transforms points in|V | to hyperplanes in|W |. A point x ∈ |V | is calledconjugate
to a pointy ∈ |W | with respect to polarityk if y ∈ k(x). The maptφ−1 : V ∨ → W
transforms hyperplanes in|V | to points in|W |. It can be considered as as a correlation
between the dual spacesP(V ) andP(W ). It is denoted byk∨ and is called thedual
correlation. It is clear that(k∨)∨ = k. If H is a hyperplane in|V | andx is a point in
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H, then pointy ∈ |W | conjugate tox underk belongs to any hyperplaneH ′ in |W |
conjugate toH underk∨.

A correlation can be considered as a line in(V ⊗W )∨ = V ∨ ⊗W∨ spanned by
a non-degenerate bilinear form, or, in other words as a nonsingular correspondence of
type (1, 1) in |V | × |W |. The dual correlation is the image of the divisor under the
switch of the factors. A pair(x, y) ∈ |V | × |W | of conjugate points is just a point on
this divisor.

In the case whenV = W , we can define thecomposition of correlations. It is a
collineationk′◦k := k′◦k∨. Collineations and correlations form a groupΣPGL(V ) iso-
morphic to the group of outer automorphisms of PGL(V ). The subgroup of collineations
is of index 2.

A correlationk of order 2 in the groupΣPGL(V ) is called apolarity. In linear
representative, this means thattφ = λφ for some nonzero scalarλ. After transposing,
we obtainλ = ±1. The caseλ = 1 corresponds to the (quadric) polarity with respect
to a nonsingular quadric inPn which we discussed in this section. The caseλ = −1
corresponds to anull-system(or null polarity which we will discuss in Chapters 2 and
10. In terms of bilinear forms, a correlation is a quadric polarity (resp. null polarity) if
it can be represented by a symmetric (skew-symmetric) bilinear form.

Theorem 1.1.4. Any projective automorphism is equal to the product of two quadric
polarities.

Proof. Choose a basis inV to represent the automorphism by a Jordan matrixJ . Let
Jk(λ) be its block of sizek with λ at the diagonal. Let

Bk =


0 0 . . . 0 0 1
0 0 . . . 1 0
. . . . . . . . . . . .
0 1 . . . 0 0
1 0 . . . 0 0

 .

Then

Ck(λ) = BkJk(λ) =


0 0 . . . 0 0 λ
0 0 . . . λ 1
. . . . . . . . . . . .
0 λ . . . 0 0
λ 1 . . . 0 0

 .

Observe that the matricesBk andCk(λ) are symmetric. Thus each Jordan block ofJ
can be written as the product of symmetric matrices, henceJ is the product of two sym-
metric matrices. It follows from the definition of composition in the groupΣPGL(V ),
that the product of matrices representing the bilinear forms associated to correlations
is the matrix representing a projective transformation equal to the composition of the
correlations.
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1.1.3 The second polars

The (d − 2)- polar ofX = V (f) is a quadric, called thepolar quadricof X with
respect toa. It is defined by the quadratic form

q = Dad−2(f) = (d− 2)!
∑

|i|=d−2

(i!)−1ai∂i(f).

Using equation (1.8), we obtain

q = 2
∑
|i|=2

(i!)−1ti∂i(f)(a).

By (1.12), eacha ∈ X belongs to the polar quadricPad−2(X). Also, by Theorem
1.1.1,

Ta(Pad−2(X)) = Pa(Pad−2(X)) = Pad−1(X) = Ta(X). (1.14)

This shows that the polar quadric is tangent to the hypersurface at the pointa.
Let us see wherePa2(X) intersectsX. By (1.12)

Pa2(X) ∩X = {b ∈ X : a ∈ Pbd−2(X)} (1.15)

Consider the linè = a, b through two pointsa, b. Letϕ : P1 → Pn be its parametric
equation. It follows from (1.7) and (1.8) that

i(X, a, b)b ≥ s+ 1⇐⇒ a ∈ Pbd−k(X), k ≤ s. (1.16)

Fors = 1, by Theorem1.1.1, this condition implies thatb, and hencè, belongs to the
tangent planeTa(X). Fors = 2, this condition says that̀belongs to the second polar
Pa2(X) if and only if i(X, a, b)b ≥ 3.

Assume thatb is a singular point ofX of multiplicity s + 1. For a general point
a ∈ Pn, the linea, b intersectsX with multiplicity s+1 atb. Hence (1.16) implies that
Pbd−k(X) = Pn for k ≤ s, or, equivalently,b is a singular point ofX of multiplicity
s+ 1.

Definition 1.2. A line is called aflex tangenttoX at a pointa if

i(X, `)a > 2.

Proposition 1.1.5. Let ` be a line through a pointa. Then` is a flex tangent toX
at a if and only if it is contained in the intersection ofTa(X) with the polar quadric
Pad−2(X).

Note that the intersection of a quadric hypersurfaceQ = V (q) with its tangent
hyperplaneH at a pointa ∈ Q is a cone inH over the quadric̄Q in the imageH̄ of H
in |E/Ka|.

Corollary 1.1.6. Assumen ≥ 3. For eacha ∈ X there exists a flex tangent line. The
union of the flex tangent lines containing the pointa is the coneTa(X)∩Pad−2(X) in
Ta(X).
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Example1.1.3. Assumea is a singular point ofX. By Theorem1.1.1, this is equivalent
to Pad−1(X) = Pn. By (1.14), the polar quadricQ is also singular ata and thus it is a
cone over its image under the projection froma. The union of flex tangents is equal to
Q.

Example1.1.4. Assumea is a nonsingular point of a surfaceX ⊂ P3. A hyperplane
which is tangent toX at a cuts out inX a curveC with a singular pointa. If a is
an ordinary double point ofC, there are two flex tangents corresponding to the two
branches ofC ata. The polar quadricQ is nonsingular ata. It is a cone over a quadric
Q̄ in P1. If Q̄ consists of 2 points we have two flex tangents corresponding to the
two branches ofC at a. If Q̄ consists of one point (corresponding to non-reduced
hypersurface inP1), then we have one branch. The latter case happens only ifQ is
singular at some pointb 6= a.

1.1.4 The Hessian hypersurface

Let Q(a) be a polar quadric ofX = V (f) at some pointa ∈ Pn. The symmetric
matrix defining the corresponding quadratic form is equal to theHessian matrixof
second partial derivatives off

He(f) =
( ∂2f

∂ti∂tj

)
i,j=0,n

, (1.17)

evaluated at the pointa. The quadricQ(a) is singular if and only if the determinant
of the matrix is equal to zero (the singular points correspond to the null-space of the
matrix). The hypersurface

He(X) = V (det He(f)) (1.18)

describes the set of pointsa ∈ Pn such that the polar quadricPad−2(X) is singular. It
is called theHessian hypersurfaceof X. Its degree is equal to(d− 2)(n+ 1) unless it
coincides withPn.

Proposition 1.1.7. The following is equivalent:

(i) He(X) = Pn;

(ii) there exists a nonzero polynomialg(z0, . . . , zn) such that

g(∂0f, . . . , ∂nf) ≡ 0.

Proof. This is a special case of a more general result about thejacobian of n + 1
polynomial functionsf0, . . . , fn defined by

J(f0, . . . , fn) = det
(
(
∂fi
∂tj

)
)
.

SupposeJ(f0, . . . , fn) ≡ 0. Then the mapf : Cn+1 → Cn+1 defined by the functions
f0, . . . , fn is degenerate at each point (i.e.dfx is of rank< n+1 at each pointx). Thus
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the closure of the image is a proper closed subset ofCn+1. Hence there is an irreducible
polynomial which vanishes identically on the image.

Conversely, assume thatg(f0, . . . , fn) ≡ 0 for some polynomialg which we may
assume to be irreducible. Then

∂g

∂ti
=

n∑
j=0

∂g

∂zj
(f0, . . . , fn)

∂fj
∂ti

= 0, i = 0, . . . , n.

Sinceg is irreducible its set of zeros is nonsingular on a Zariski open setU . Thus the
vector ( ∂g

∂z0
(f0(x), . . . , fn(x)), . . . ,

∂g

∂zn
(f0(x), . . . , fn(x)

)
is a nontrivial solution of the system of linear equations with matrix(∂fi

∂tj
(x)), where

x ∈ U . Thus the determinant of this matrix must be equal to zero. This implies that
J(f0, . . . , fn) = 0 onU hence it is identically zero.

Remark1.1.1. It was claimed by O. Hesse that the vanishing of the Hessian implies
that the partial derivatives are linearly dependent. Unfortunately, his attempted proof
is wrong. The first counterexample was given by P. Gordan and M. Noether in [188].
Consider the polynomial

f = t2t
2
0 + t3t

2
1 + t4t0t1 = 0.

Note that the partial derivatives

∂f

∂t2
= t20,

∂f

∂t3
= t21,

∂f

∂t4
= t0t1

are algebraically dependent. This implies that the Hessian is identically equal to zero.
We have

∂f

∂t0
= 2t0t2 + t4t1,

∂f

∂t1
= 2t1t3 + t4t0.

Suppose that a linear combination of the partials is equal to zero. Then

c0t
2
0 + c1t

2
1 + c2t0t1 + c3(2t0t2 + t4t1) + c4(2t1t3 + t4t0) = 0.

Collecting the terms in whicht2, t3, t4 enters we get

2c3t0 = 0, 2c4t1 = 0, c3t1 + c4t0.

This givesc3 = c4 = 0. Since the polynomialst20, t
2
1, t0t1 are linearly independent we

also getc0 = c1 = c2 = 0.
The known cases when the assertion of Hesse is true ared = 2 (anyn) andn ≤ 3

(anyd) (see [188], [272], [73]).



1.1. POLAR HYPERSURFACES 11

Recall that the set of singular quadrics inPn is thediscriminant hypersurfaceD2(n)
in P

(n+1)(n+2)
2 −1 defined by the equation

det


t00 t01 . . . t0n
t01 t11 . . . t1n
...

...
...

...
t0n t1n . . . tnn

 = 0. (1.19)

By differentiating, we easily find that its singular points are defined by the determinants
of n×nminors of the matrix. This shows that the singular locus ofD2(n) parametrizes
quadrics defined by quadratic forms of rank≤ n − 1 (or corank≥ 2). Abusing the
terminology we say that a quadric is of rankk if the corresponding quadratic form is
of this rank. Note that

dim Sing(Q) = corankQ− 1.

Assume that He(f) 6= 0. Consider the rational mapp : Pn = |E| → |S2(E∨)| =
P(n+2

2 )−1 defined bya 7→ Pad−2(X). Note thatPad−2(f) = 0 impliesPad−1(f) = 0
and hence

∑n
i=0 bi∂if(a) = 0 for all b. This shows thata is a singular point ofX.

Thusp is defined everywhere except maybe at singular points ofX. So the mapp is
regular ifX is nonsingular, and the preimage of the discriminant hypersurface is equal
to the Hessian ofX. The preimage of the singular locus Sing(D2(n)) consists of the
subset of pointsa ∈ He(f) such thatdim Sing(Pad−2(X)) > 0. One expects that, in
general case, this will be equal to the set of singular points of the Hessian hypersurface.

Here is another description of the Hessian hypersurface.

Proposition 1.1.8. The Hessian hypersurfaceHe(X) is the locus of singular points of
the first polars ofX.

Proof. Let a ∈ He(X) and letb ∈ Sing(Pad−2(X)). Then

Db(Dad−2(f)) = Dad−2(Db(f)) = 0.

SinceDb(f) is of degreed − 1, this means thatTa(Pb(X)) = Pn, i.e.,a is a singular
point ofPb(X).

Conversely, ifa ∈ Sing(Pb(X)) for b ∈ Pn, thenDad−2(Db(f)) = 0, hence
Db(Dad−2(f)) = 0. This means thatb is a singular point of the polar quadric with
respect toa. Hencea ∈ He(X).

Let us find the affine equation of the Hessian hypersurface. Applying the Euler
formula (9.9), we can write

t0f0i = (d− 1)∂if − t1f1i − . . .− tnfni,

t0∂0f = df − t1∂1f − . . .− tn∂nf,
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wherefij denote the second partial derivative. Multiplying the first row of the Hessian
determinant byt0 and adding to it the linear combination of the remaining rows with
the coefficientsti, we get the following equality.

det(He(f)) =
d− 1
t0

det


∂0f ∂1f . . . ∂nf
f10 f11 . . . f1n
...

...
...

fn0 fn1 . . . fnn

 .

Repeating the same procedure but this time with the columns, we finally get

det(He(f)) =
(d− 1)2

t20
det


d
d−1f ∂1f . . . ∂nf

∂1f f11 . . . f1n
...

...
...

∂nf fn1 . . . fnn

 . (1.20)

Let φ(z1, . . . , zn) be the dehomogenization off with respect tot0, i.e.,

f(t0, . . . , td) = td0φ(
t1
t0
, . . . ,

tn
t0

).

We have

∂f

∂ti
= td−1

0 φi(z1, . . . , zn),
∂2φ

∂ti∂tj
= td−2

0 φij(z1, . . . , zn), i, j = 1, . . . , n,

where

φi =
∂f

∂zi
, φij =

∂2f

∂zi∂zj
.

Plugging these expressions in (1.20), we obtain, that up to a nonzero constant factor,

t
−(n+1)(d−2)
0 det(He(φ)) = det


d
d−1φ(z) φ1(z) . . . φn(z)
φ1(z) φ11(z) . . . φ1n(z)

...
...

...
φn(z) φn1(z) . . . φnn(z)

 , (1.21)

wherez = (z1, . . . , zn), zi = ti/t0, i = 1, . . . , n.

Remark1.1.2. If f(x, y) is a real polynomial in three variables, the value of (1.21) at
a pointa of the hypersurfaceV (f) multiplied by −1

f1(a)2+f2(a)2+f3(a)2
is equal to the

Gauss curvatureof X(R) at the pointa (see [164]).

1.1.5 Parabolic points

Let us see where He(X) intersectsX. A glance at the expression (1.21) reveals the
following fact.
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Proposition 1.1.9. Each singular point ofX belongs toHe(X).

Let us see now when a nonsingular pointa ∈ X lies in its Hessian hypersurface
He(X).

By Corollary1.1.6, the flex tangent lines inTa(X) sweep the intersection ofTa(X)
with the polar quadricPad−2(X). If a ∈ He(X), then the polar quadric is singular at
some pointb.

If n = 2, a singular quadric is the union of two lines, so this means that one of the
lines is a flex tangent line. A nonsingular pointa of a plane curveX such that there
exists a flex tangent ata is called aninflection pointor aflexof X.

If n > 2, the flex tangents lines at a pointa ∈ X ∩ He(X) sweep a cone over a
singular quadric inPn−2. Such a point is called aparabolic pointof X. The closure of
the set of parabolic points is theparabolic hypersurfacein X.

Theorem 1.1.10.LetX be a hypersurface of degreed in Pn. If n = 2, thenHe(X)∩X
consists of singular and inflection points ofX. In particular, each nonsingular curve
of degree≥ 3 has an inflection point, and the number of inflections points is less or
equal than3d(d− 2) or infinite. Ifn > 2, then the setX ∩He(X) consists of singular
points and parabolic points. The parabolic hypersurface inX is either the wholeX or
a subvariety of degree(n+ 1)d(d− 2) in Pn.

Example1.1.5. LetX be a surface of degreed in P3. If a is a parabolic point ofX, then
Ta(X)∩X is a singular curve whose singularity ata is unibranched. In fact, otherwise
X has at least two distinct flex lines which cannot sweep a cone over a singular quadric
in P1. The converse is also true. For example, a nonsingular quadric has no parabolic
points, and all nonsingular points of a singular quadric are parabolic.

A generalization of a quadratic cone is adevelopable surface. It is a special kind
of a ruled surface(see [164] and later Chapters) which are characterized by the con-
dition that the tangent plane does not change along a ruling. The Hessian surface of
a developable surface contains this surface. The residual surface of degree2d − 8 is
calledPro-Hessian surface. A concrete example of a developable surface is the quartic
surface

(x0x3 − x1x2)2 − 4(x2
1 − x0x2)(x2

2 − x1x3) = 0.

It is the surface swept out by the tangent lines of a rational normal curve of degree 3.
It is also thedeterminantal surfaceof a binary cubic, i.e. the surface parameterizing
binary cubicsa0x

3 + 4a1x
2y + 6a2xy

2 + a3y
3 which have a multiple root. The Pro-

Hessian of any quartic developable surface is the surface itself [60].

Assume now thatX is a curve. Let us see when it has infinitely many inflection
points. Certainly, this happens whenX contains a line component; each of its point
is an inflection point. It must be also an irreducible component of He(X). The set
of inflection points is a closed subset ofX. So, if X has infinitely many inflection
points, it must have an irreducible component consisting of inflection points. Each such
component is contained in He(X). Conversely, each common irreducible component
of X and He(X) consists of inflection points.

We will prove the converse in a little more general form taking care of not necessary
reduced curves.
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Proposition 1.1.11. A polynomialf(x0, x1, x2) is a factor of its Hessian polynomial
He(f) if and only if each factor off entering with multiplicity 1 is a linear polynomial.

Proof. Since each point on a non-reduced component ofX = V (f) is a singular point
(i.e. all the first partials vanish), and each point on a line component is an inflection
point, we see that the condition is sufficient forX ⊂ He(f). Suppose this happens
and letR be a reduced irreducible component of the curveX which is contained in
the Hessian. Take a nonsingular point ofR and consider an affine equation ofR with
coordinates(x, y). We may assume thatOR,x is included inÔR,x ∼= K[[t]] such that
x = t, y = trε, whereε(0) = 1. Thus the equation ofR looks like

f(x, y) = y − xr + g(x, y), (1.22)

whereg(x, y) does not contain termscy, c ∈ C. It is easy to see that(0, 0) is an
inflection point if and only ifr > 2 with the flex tangenty = 0.

We use the affine equation of the Hessian (1.21), and obtain that the image of

h(x, y) = det

 d
d−1f f1 f2
f1 f11 f12
f2 f21 f22


in K[[t]] is equal to

det

 0 −rtr−1 + g1 1 + g2
−rtr−1 + g1 −r(r − 1)tr−2 + g11 g12

1 + g2 g12 g22

 .

Since every monomial entering ing is divisible byy2, xy or xi, i > r, we see that
gy is divisible by t andgx is divisible by tr−1. Also g11 is divisible by tr−1. This
shows that

h(x, y) = det

 0 atr−1 + . . . 1 + . . .
atr−1 + . . . −r(r − 1)tr−2 + . . . g12

1 + . . . g12 g22

 ,

where. . . denotes terms of higher degree int. We compute the determinant and see
that it is equal tor(r− 1)tr−2 + . . .. This means that its image inK[[t]] is not equal to
zero, unless the equation of the curve is equal toy = 0, i.e. the curve is a line.

In fact, we have proved more. We say that a nonsingular point ofX is an inflection
point of order. r − 2 and denote the order by ordflxX if one can choose an equation
of the curve as in (1.22) with r ≥ 3. It follows from the previous proof thatr − 2 is
equal to the multiplicityi(X,He)x of the intersection of the curve and its Hessian at
the pointx. It is clear that ordflxX = i(`,X)x − 2, where` is the flex tangent line of
X atx. We have ∑

x∈X
i(X,He)x =

∑
x∈X

ordflxX = 3d(d− 2). (1.23)
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1.1.6 The Steinerian hypersurface

Recall that Hessian hypersurface of a hypersurfaceX = V (f) is the locus of pointsa
such that the polar quadricPad−2(X) is singular. TheSteinerian hypersurfaceSt(X)
of X is the locus of singular points of the polar quadrics. Thus

St(X) =
⋃

a∈He(X)

Sing(Pad−2(X)). (1.24)

The proof of Theorem1.1.8shows that it can be equivalently defined as

St(X) = {a ∈ Pn : Pa(X) is singular}. (1.25)

We also have
He(X) =

⋃
a∈St(X)

Sing(Pa(X)). (1.26)

A point b = [b0, . . . , bn] ∈ St(X) satisfies the equation

He(f)(a) ·

b0
...
bn

 = 0, (1.27)

wherea ∈ He(X). This equation defines a subvariety HS(X) of Pn × Pn given by
n + 1 equations of bidegree(d − 2, 1). When the Steinerian map is defined, it is just
its graph. The projection to the second factor is a closed subscheme ofPn with support
at St(X). This gives a scheme-theoretical definition of the Steinerian hypersurface
which we will accept from now on. It also makes clear why St(X) is a hypersurface,
not obvious from the definition. The expected dimension of the image of the second
projection isn− 1.

The following argument confirms our expectation. It is known that the locus of
singular hypersurfaces of degreed in |V | is a hypersurface

Dn(d) ⊂ |SdE∨|

of degree(n + 1)(d − 1)n defined by thediscriminantof a general degreed homo-
geneous polynomial inn + 1 variables (thediscriminant hypersurface). Let L be the
projective subspace of|Sd−1E∨| which consists of first polars ofX. Assume that no
polarPa(X) is equal toPn. Then

St(X) ∼= L ∩ Dn(d− 1).

So, unlessL is contained inDn(d− 1) we get a hypersurface. Moreover we obtain

deg(St(X)) = (n+ 1)(d− 2)n. (1.28)

Assume that the quadricPad−2(X) is of corank 1 (i.e. the matrix He(f)(a) is of
rankn). Then it has a unique singular pointb = [b0, . . . , bn], whose coordinates can be
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chosen to be any column or a row of the adjugate matrix adj(He(f)) evaluated at the
pointa. Thus St(X) is the image of the Hessian hypersurface under the rational map

st : He(X)− → St(X), a 7→ Sing(Pad−2(X)),

given by polynomials of degreen(d − 2). We call it theSteinerian map. Of course,
it is not defined when all polar quadrics are of corank> 1. Also, if the first polar hy-
persurfacePa(X) has an isolated singular point for a general pointa, we get a rational
map

st−1 : St(X)− → He(X), a 7→ Sing(Pa(X)).

These maps are obvioulsy inverse to each other. It is a difficult question to determine
the sets of indeterminacy points for both maps.

Proposition 1.1.12. The Steinerian hypersurface coincides with the wholePn if and
only ifX has a point of multiplicity≥ 3.

Proof. The first polars ofX form a linear system of hypersurfaces of degreed− 1. By
Bertini’s Theorem, a singular point of a general member of the linear system is one of
the base points. Thus St(X) = Pn implies thatX has a singular point. Without loss of
generality, we may assume that the points is[1, 0, . . . , 0]. Write the equation ofX in
the form

f = tk0gd−k(t1, . . . , tn) + tk−1
0 gd+1−k(t1, . . . , tn) + · · ·+ gd(t1, . . . , tn) = 0,

where the subscript indicates the degree of the polynomial. Then the first polarPa(X)
has the equation

a0

k∑
i=0

ktk−1−i
0 gd−k+i +

n∑
s=1

as

k∑
i=0

tk−i0

∂gd−k+i
∂ts

= 0.

The largest power oft0 in this expression is at mostk. The degree of the equation is
d − 1. Thusa is a singular point ofPa(X) if and only if k ≤ d − 3, or, equivalently,
whena is at least triple point ofX.

Assume thata = [v] be point on a hypersurfaceX = V (f) of degreed > 1.
Applying Euler’s formula to the partial derivatives off we find

(d− 1)
∂f

∂ti
=

n∑
j=0

tj
∂2f

∂titj
, i = 0, . . . , n.

This implies
(d− 1)∇(f)(v) = He(f)(v) · v, (1.29)

where∇(f)(v) denotes the gradient vector off at v (note that we do not put the
transpose overv since, without ambiguity,v must be considered as a column vector).
Assumea is a singular point ofX. Then∇(f)(v) = 0 and, using (1.27), we infer that
a ∈ He(X) anda ∈ St(X). This gives
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Proposition 1.1.13. The intersectionHe(X) ∩ St(X) contains the singular locus of
X.

One can assign one more variety to a hypersurfaceX = V (f). This is theCayleyan
variety. It is defined as the image Cay(X) of the rational map

HS(X)− → G1(Pn), (a, b) 7→ a, b,

whereG1(Pn) denotes the Grassmannian of lines inPn. The map is not defined at
the intersection of the diagonal with HS(X). We know that HS(a, a) = 0 means that
Pad−1(X) = 0, and the latter means thata is a singular point ofX. Thus the map is a
regular map for a nonsingular hypersurfaceX.

Note that in the casen = 2, the Cayleyan variety is a plane curve in the dual plane,
theCayleyan curveof X.

Proposition 1.1.14. LetX be a hypersurface of degreed ≥ 3 with no singular points
of multiplicity≥ 3. Then

deg Cay(X) =

{(
n+1

2

)
(d− 2)(1 + (d− 2)n−1) if d > 3,

1
2

(
n+1

2

)
(d− 2)(1 + (d− 2)n−1) if d = 3,

where the degree is considered with respect to the Plücker embedding of the Grass-
mannianG1(Pn).

Proof. By Proposition1.1.12, St(X) 6= P2, hence HS(X) is a complete intersection
of 3 hypersurfaces inPn × Pn of bidegree(d − 2, 1). It is known that the set of
lines intersecting a codimension 2 linear subspaceL is a hyperplane section of the
GrassmannianG1(Pn) in its Plücker embedding. WritePn = |V | andL = |W |.
Let ω = w1 ∧ . . . ∧ wn−1 for some basis(w1, . . . , wn−1) of W . The locus of pairs
of pointsa = Cv1, b = Cv2 lying on a line intersectingL is given by the equation
v1 ∧ v2 ∧ ω = 0. This is a hypersurfaceL of bidegree(1, 1) in Pn × Pn. Leth1, h2 be
the natural generators ofH∗(Pn × Pn,Z). We have

#HS(X) ∩ L = ((d− 2)h1 + h2)n+1(h1 + h2) =
(
n+1

2

)
(d− 2)n +

(
n+1

2

)
(d− 2)

=
(
n+1

2

)
(d− 2)((d− 2)n−1 + 1).

If d = 3, we will see later that He(X) = St(X) and the Steinerian map is an involution.
Thus to get the degree we have to divide the above number by 2.

Remark1.1.3. From the point of view of the classical invariant theory, the homoge-
neous forms defining the Hessian and Steinerian hypersurfaces ofV (f) are examples
of covariants off . The form defining the Cayleyan of a plane curve is an example of a
contravariant.
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1.2 The dual hypersurface

1.2.1 The polar map

The linear space of first polarsPa(X) defines a linear subsystem of the complete linear
system

∣∣OPn(d− 1)
∣∣ of hypersurfaces of degreed− 1 in Pn. Its dimension is equal to

n if the first partial derivatives off are linearly independent. By Proposition1.1.2this
happens if and only ifX is not a cone. We assume that this is the case. Let us identify
the linear system of first polars with|E| = Pn by assigning to eacha ∈ Pn the polar
hypersurfacePa(X). Let pX : Pn− → P̌n be the rational map defined by the linear
system of polars. It is called thepolar map. In coordinates, the polar map is given by

[t0, . . . , tn] 7→
[ ∂f
∂t0

, . . . ,
∂f

∂tn

]
.

Recall that a hyperplaneHa = V (
∑
aiξi) in the dual projective spacěPn is the point

a = [a0, . . . , an] ∈ Pn. The preimage of the hyperplaneHa underpX is the polar
Pa(f) = V (

∑
ai
∂f
∂ti

).
If X is nonsingular, the polar map is a regular map given by polynomials of degree

d− 1.
One can view the polar map as the rational map that sends a pointx to the polar

hyperplanePxd−1(X) = H. A point in the preimage of a hyperplaneH is called a
poleof H with respect toX.

Proposition 1.2.1. AssumeX is nonsingular. The ramification divisorRam(pX) of
the polar map is equal toHe(X).

Proof. Note for any finite mapφ : X → Y of nonsingular varieties, the ramification
divisor Ram(φ) is defined locally by the determinant of the linear map of locally free
sheavesφ∗(Ω1

Y )→ Ω1
X . The image of Ram(φ) in Y is called thebranch divisor. Both

of the divisors may be nonreduced. We have theHurwitz formula

KX = φ∗(KY ) + Ram(φ). (1.30)

The mapφ is étale outside Ram(φ), i.e., for any pointx ∈ X the homomorphism of
local ringOY,φ(x) → OX,x defines an isomorphism of their formal completions. In
particular, the preimageφ−1(Z) of a nonsingular subvarietyZ ⊂ Y is nonsingular
outside the support of Ram(φ). Applying this to the polar map we see that the sin-
gular points ofPa(X) = p−1

X (Ha) are contained in the ramification locus Ram(pX)
of the polar map. On the other hand, we know that the set of singular points of first
polars is the Hessian He(X). This shows that He(X) ⊂ Ram(pX). Applying the Hur-
witz formula, we haveKPn = OPn(−n − 1), KP̌n = OP̌n(−n − 1), p−1

X (KP̌n) =
OPn((−n− 1)(d− 1)). This givesdeg(Ram(pX)) = (n+ 1)(d− 2) = deg(He(X)).
This shows that He(X) = Ram(pX).

What is the branch divisor? One can show that the preimage of a hyperplaneHa

is singular if and only if it is tangent to the branch locus of the map. The preimage of
Ha is the polar hypersurfacePa(X). Thus the set of hyperplanes tangent to the branch
divisor is equal to the Steinerian St(X). This shows that the branch locus equals the
dual variety of St(X). Another implication of this is the following.
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Corollary 1.2.2. AssumeX is nonsingular. For any pointa ∈ He(X) the polar hyper-
plane ofX with the pole ata is tangent to the SteinerianSt(X) at a.

1.2.2 Dual varieties

Recall that thedual varietyX∨ of a subvarietyX in Pn = |E| is the closure in the dual
projective spacěPn = |E∨| of the locus of hyperplanes inPn which are tangent toX
at some nonsingular point ofX.

WhenX = V (f) is a hypersurface, we see that the dual variety is the image ofX
under the rational map given by the first polars. In fact,(∂0f(x), . . . , ∂nf(x)) in P̌n is
the hyperplaneV (

∑n
i=0 ∂if(x)ti) in Pn which is tangent toX at the pointx.

The following result is called theprojective duality. Many modern text-books con-
tain a proof (see [183], [203], [429]).

Theorem 1.2.3.
(X∨)∨ = X.

It follows from any proof in loc. cit. that, for any nonsingular pointy ∈ X∨ and
any nonsingular pointx ∈ X,

Tx(X) ⊂ Hy ⇔ Ty(X∨) ⊂ Hx.

The set of all hyperplanes iňPn containing the linear subspaceTy(X∨) is the dual
linear space ofTy(X∨) in Pn. Thus the fibre of theduality map(or Gauss map)

γ : Xns→ X∨, x 7→ Tx(X), (1.31)

over a nonsingular pointy ∈ X∨ is an open subset of the projective subspace inPn
equal to the dual of the tangent spaceTy(X∨). Here and laterXns denotes the set of
nonsingular points of a varietyX. In particular, ifX∨ is a hypersurface, the dual space
of Ty(X∨) must be a point, and hence the mapγ is birational.

Let us apply this to our case whenX is a nonsingular hypersurface. Then the map
given by first polars is a regular mapPn → P̌n defined by homogeneous polynomials
of degreed − 1. It is a finite map (after applying the Veronese map it becomes a
linear projection map). Therefore, its fibres are finite sets. This shows that the dual
of a nonsingular hypersurface is a hypersurface. Thus, the duality map, equal to the
restriction of the polar map, is a birational isomorphism

d : X ∼=
bir
X∨.

The degree of the dual hypersurfaceX∨ (if it is a hypersurface) is called theclass
of X. For example, the class of any plane curve of degree> 1 is well-defined.

Example1.2.1. LetDd(n) be the discriminant hypersurface in|SdE∨|. We would like
to describe explicitly the tangent hyperplane ofDd(n) at its nonsingular point. Let

D̃d(n) = {(X,x) ∈ |OPn(d)| × Pn : x ∈ Sing(X)}.
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Let us see that̃Dd(n) is nonsingular and the projection to the first factor

π : D̃d(n)→ Dd(n) (1.32)

is a resolution of singularities. In particular,π is an isomorphism over the open set
Dd(n)ns of nonsingular points ofDd(n).

The fact thatD̃d(n) is nonsingular follows easily from considering the projection
to Pn. For any pointx ∈ Pn the fibre of the projection is the projective space of hyper-
surfaces which have a singular point atx (this amounts ton + 1 linear conditions on
the coefficients). Thus̃Dd(n) is a projective bundle overPn and hence is nonsingular.

Let us see whereπ is an isomorphism. LetAi, |i| = d, be the projective coordinates
in

∣∣OPn(d)
∣∣ = |SdE∨| corresponding to the coefficients of a hypersurface of degree

d and lett0, . . . , tn be projective coordinates inPn. ThenD̃d(n) is given byn + 1
bihomogeneous equations of bidegree(1, d− 1):∑

|i|=d

isAit
i−es = 0, s = 0, . . . , n, (1.33)

Herees is thes-th unit vector inZn+1.
A point (X,x) = (V (f), [v0]) ∈ |OPn(1)| × Pn belongs toD̃d(n) if and only if,

replacingAi with the coefficient off atti andti with thei-th coefficient ofv0, we get
the identities.

We identify the tangent space of|SdE∨| × |E| at a point(X,x) with the space
SdE∨/Cf ⊕ E/Cv0. In coordinates, a vector in the tangent space is a pair(g, [v]),
whereg =

∑
|i|=d ait

i, v = (x0, . . . , xn) considered modulo pairs(λf, µv0). Differ-
entiating equations (1.33), we see that the tangent space is defined by the(n + 1) ×(
n+d
d

)
-matrix

M =

0BB@
. . . i0x

i−e0 . . .
P

|i|=d i0i0Aix
i−e0−e0 . . .

P
|i|=d i0inAix

i−e0−en

...
...

...
...

...
. . . inx

i−en . . .
P

|i|=d ini0Aix
i−en−e0 . . .

P
|i|=d ininAix

i−en−en ,

1CCA
wherexi−es = 0 if i− es is not a non-negative vector. It is easy to interpret solutions
of these equations as pairs(g, v) from above such that

∇(g)(v0) + He(f)(v0) · v = 0. (1.34)

Note that∇(f)(b) = 0 since[v0] is a singular point ofV (f) and He(f)(v0) · v0 = 0
as follows from (1.29). This confirms that pairs(λf, µv0) are always solutions. The
tangent mapdπ at the point(V (f), [v0]) is given by the projection(g, v) 7→ g, where
(g, v) is a solution of (1.34). Its kernel consist of pairs(λf, v) modulo pairs(λf, µv0).
For such pairs the equations (1.34) give

He(f)(v0) · v = 0. (1.35)

We may assume thatv0 = (1, 0, . . . , 0). Since[v0] is a singular point ofV (f) we can
write f = td−2

0 f2(t1, . . . , tn) + . . .. Computing the Hessian matrix at the pointv0 we
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see that it is equal to 
0 . . . . . . 0
0 a11 . . . a1n

...
...

...
...

0 an1 . . . ann

 , (1.36)

wheref2(t1, . . . , tn) =
∑

0≤i,j≤n aijtitj . Thus a solution of (1.35), not proportional
to v0 exists if and only ifdet He(f2) = 0. By definition, this means that the singular
point ofX atx is not an ordinary double point. Thus we obtain that the projection map
(1.32) is an isomorphism over the open subset ofDd(n) representing hypersurfaces
with an isolated ordinary singularity.

We can also find the description of the tangent space ofDd(n) at its pointX =
V (f) representing a hypersurface with a unique ordinary singular pointx. It follows
from calculation of the hessian matrix in (1.36), that its corank at the ordinary singular
point is equal to 1. Since the matrix is symmetric, the dot-product of a vector in its
nullspace is orthogonal to the column of the matrix. Since we know that He(f)(v0) ·
v0 = 0, this implies that the dot-product∇(g)(v0) · v0 is equal to zero. By Euler’s
formula this givesg(v0) = 0. The converse is also true. This proves that

T (Dd(n))X = {g ∈ Sd(E∨)/Cf : g(x) = 0}. (1.37)

Now we are ready to compute the dual variety ofDd(n). The conditiong(b) = 0,
where Sing(X) = {b} is equivalent toDbd(f) = 0. Thus the tangent hyperplane, con-
sidered, as a point in the dual space|SdE| = |(SdE∨)∨| corresponds to the envelope
bd = (

∑n
s=0 bs∂i)

d. The set of such envelopes is the Veronese varietyνd(|E|). Thus

Dd(n)∨ ∼= νd(Pn), (1.38)

Of course, it is predictable. Recall that the Veronese variety is embedded naturally
in |OPn(d)|∨. Its hyperplane section can be naturally identified with a hypersurface of
degreed in Pn. A tangent hyperplane is a hypersurface with a singular point, i.e. a
point inDd(n). Thus the dual ofνd(Pn) is Dd(n), and hence, by duality, the dual of
Dd(n) is νd(Pn).
Example1.2.2. Let Q = V (q) be a nonsingular quadric inPn. Let A = (aij) be a
symmetric matrix definingQ, i.e. q(t) = t · A · t. The tangent hyperplane ofQ at a
pointx = [x0, . . . , xn] ∈ Pn is the hyperplane

t0

n∑
j=0

a0jxj + · · ·+ tn

n∑
j=0

anjxj = 0.

Thus the vector of coordinatesy = (y0, . . . , yn) of the tangent hyperplane is equal to
the vectorA · x. SinceA is invertible, we can writex = A−1 · y. We have

0 = x ·A · x = (y ·A−1)A(A−1 · y) = y ·A−1 · y = 0.

Here we treatx or y as a row-matrix or as a column-matrix in order the matrix mul-
tiplication makes sense. SinceA−1 = det(A)−1adj(A), where adj(A) is the adjugate
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matrix, we obtain that the dual variety ofQ is also a quadric given by the adjugate
matrix of the matrix definingQ.

The description of the tangent space of the discriminant hypersurface from Exam-
ple1.2.1has the following nice application.

Proposition 1.2.4. LetX be a hypersurface of degreed in Pn. Supposex is a non-
singular point of the Steinerian hypersurfaceSt(X). ThenSing(Px(X)) consists of an
ordinary singular pointy and

Tx(St(X)) = Pyd−1(X) = {a ∈ Pn : y ∈ Pa(X)}.

Proof. The linear systemL of the first polars ofX intersects the discriminant hyper-
surfaceDd−1(n) at the pointPx(X). Since St(X) = p−1

X (L∩Dd−1(n)) is nonsingular
atx, the hypersurfacePx(X) is a nonsingular point ofDd−1(n), and hence its singular
set consists of an ordinary double pointy. This follows from the computations from
Example1.2.1. Corollary1.2.2and the description of the tangent space ofDd−1(n) at
its nonsingular point proves the assertion.

1.2.3 The Pl̈ucker formulas

Let C = V (f) be an irreducible plane curve of degreed. If C is nonsingular, its first
polarPa(C) with respect to a general point inP2 intersectsC atd(d− 1) pointsb such
thata ∈ Tb(C). This shows that the pencil of lines througha containsd(d−1) tangent
lines toC. A pencil of lines inP2 is the same as a line in the dual plane. Thus we see
that the dual curveC∨ hasd(d − 1) intersection points with a general line. In other
words

deg(C∨) = d(d− 1). (1.39)

If C is singular, the degree ofC∨ must be smaller. In fact, all polarsPa(C) pass
through singular points ofC and hence the number of nonsingular pointsb such that
a ∈ Tb(C) is smaller thand(d− 1). The difference is equal to the sum of intersection
numbers of a general polar and the curve at singular points

d(d− 1)− deg(C∨) =
∑

x∈Sing(C)

i(C,Pa(C))x. (1.40)

Let us compute the intersection numbers assuming thatC has only ordinary nodes and
cusps. Assumex is an ordinary node. Choose a coordinate system such thatx =
[1, 0, 0] and write the equation in the formf = td−2

0 f2(t1, t2) + . . .. We may assume
thatf2(t1, t2) = t1t2. Computing the partials and dehomogenizing the equations, we
find thatPa(f) = a1φx + a2φy, whereφ = xy + . . . is the affine equation of the
curve, andφx, φy its partials inx andy. Thus, we need to compute the dimension of
the vector space

C[x, y]/(φ, a1φx + a2φy) = C[x, y]/(xy + . . . , a1x+ a2y + . . .),

where. . . denotes the terms of higher degree. It is easy to see that this number is equal
to the intersection number at a node with a general line through the node. The number
is equal to 2.
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If x is an ordinary cusp, the affine equation ofC is y2 + x3 + . . . and we have to
compute the dimension of the vector space

C[x, y]/(f, a1fx + a2fy) = C[x, y]/(y2 + x3 + . . . , a1x
2 + a2y + . . .).

It is easy to see that this number is equal to the intersection number at a cusp with a
parabola whose tangent is equal to the liney = 0. The number is equal to 3.

Thus we obtain

Theorem 1.2.5. LetC be an irreducible plane curve of degreed. Assume thatC has
only ordinary double points and ordinary cusps as singularities. Then

deg(C∨) = d(d− 1)− 2δ − 3κ,

whereδ is the number of nodes andκ is the number of cusps.

Note that the dual curveC∨ of a nonsingular curve of degreed > 2 is always
singular. This follows from the formula for the genus of a nonsingular plane curve
and the fact thatC andC∨ are birationally isomorphic. The polar mapC → C∨ is
equal to the normalization map. A singular point ofC∨ corresponds to a line which is
either tangent toC at several points, or is a flex tangent. We skip a local computation
which shows that a line which is a flex tangent at one point with ordfl= 1 (anhonest
flex tangent) gives an ordinary cusp ofC∨ and a line which is tangent at two points
which are not inflection points (honest bitangent) gives a node. Thus we obtain that
the numbeřδ of nodes ofC∨ is equal to the number of honest bitangents ofC and the
numberκ̌ of ordinary cusps ofC∨ is equal to the number of honest flex tangents to
C∨.

Assume thatC is nonsingular andC∨ has no other singular points except ordinary
nodes and cusps. We know that the number of inflection points is equal to3d(d − 2).
Applying Theorem1.2.5toC∨, we get that

δ̌ =
1
2
(
d(d− 1)(d(d− 1)− 1)− d− 9d(d− 2)

)
=

1
2
d(d− 2)(d2 − 9). (1.41)

This is the (expected) number of bitangents of a nonsingular plane curve. For example,
we expect that a nonsingular plane quartic has 28 bitangents.

We refer for discussions of Plücker formulas to many modern text-books (e.g.
[163], [173], [197], [183]).

1.3 Polar polyhedra

1.3.1 Apolar schemes

LetE be a complex vector space of dimensionn+ 1. Recall from section 1.1 that we
have a natural pairing

SkE × SdE∨ → Sd−kE∨, (ψ, f) 7→ Dψ(f), d ≥ k,
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which extends the canonical pairingE × E∨ → C. By choosing a basis inE and the
dual basis inE∨, we view the ring Sym•E∨ as the polynomial algebraC[t0, . . . , tn]
and Sym•E as the ring of differential operatorsC[∂0, . . . , ∂n]. The polarity pairing is
induced by the natural action of operators on polynomials.

Definition 1.3. A homogeneous formψ ∈ SkE is calledapolar to a homogeneous form
f ∈ SdE∨ if Dψ(f) = 0. We extend this definition to hypersurfaces in the obvious
way.

Lemma 1.3.1. For anyψ ∈ SkE,ψ′ ∈ SmE andf ∈ SdE∨,

Dψ′(Dψ(f)) = Dψψ′(f).

Proof. By linearity and induction on the degree, it suffices to verify the assertions in
the case whenψ = ∂i andψ′ = ∂j . In this case they are obvious.

Corollary 1.3.2. Let f ∈ SdE∨. Let APk(f) be the subspace inSkE spanned by
apolar forms of degreek to f . Then

AP(f) =
∞⊕
k=0

APk(f)

is a homogeneous ideal in the symmetric algebraSym•E.

Definition 1.4. The quotient ring

Af = Sym•E/AP(f)

is called theapolar ring off .

The ringAf inherits the grading of Sym•E. Since any polynomialψ ∈ SrE with
r > d is apolar tof , we see thatAf is killed by the idealmd+1

+ = (∂0, . . . , ∂n)d+1.
ThusAf is an Artinian graded local algebra overC. Since the pairing betweenSdE
andSdE∨ has values inS0E∨ = C, we see that APd(f) is of codimension1 in SdE.
Thus(Af )d is a vector space of dimension1 over C and coincides with thesocleof
Af , i.e. the ideal of elements ofAf annulated by its maximal ideal.

Note that the latter property characterizes Gorenstein graded local Artinian rings,
see [156], [231].

Proposition 1.3.3. (F. S. Macaulay). The correspondencef 7→ Af is a bijection be-
tween|SdE∨| and graded Artinian quotient algebrasSym•E/I with one-dimensional
socle.

Proof. Let us show how to reconstructCf from Sym•E/I. Since(Sym•E/I)d is
one-dimensional, the multiplication ofd vectors inE composed with the projection to
SdE/Id defines a linear mapSdE → SdE/Id. Choosing a basis(Sym•E/I)d, we
obtain a linear functionf onSdE. It corresponds to an element ofSdE∨.
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Recall that any closed subschemeZ ⊂ Pn is defined by a unique saturated homo-
geneous idealIZ in C[t0, . . . , tn]. Its locus of zeros in the affine spaceAn+1 is the
affine coneCZ overZ isomorphic to Spec(C[t0, . . . , tn]/IZ).

Definition 1.5. Let f ∈ SdE∨. A subschemeZ ⊂ |E∨| = P(E) is calledapolar to
f if its homogeneous idealIZ is contained in AP(f), or, equivalently, Spec(Af ) is a
closed subscheme of the affine coneCZ of Z.

This definition agrees with the definition of an apolar homogeneous formψ. A
homogeneous formψ ∈ SkE is apolar tof if and only if the hypersurfaceV (ψ) is
apolar toV (f).

Consider the natural pairing

(Af )k × (Af )d−k → (Af )d ∼= C (1.42)

defined by multiplication of polynomials. It is well defined because of Lemma1.3.1.
The left kernel of this pairing consists ofψ ∈ SkE mod AP(f) ∩ SkE such that
Dψψ′(f) = 0 for all ψ′ ∈ Sd−kE. By Lemma1.3.1, Dψψ′(f) = Dψ′(Dψ(f)) = 0
for all ψ′ ∈ Sd−kE. This impliesDψ(f) = 0. Thusψ ∈ AP(f) and hence is zero
in Af . This shows that the pairing (6.13) is a perfect pairing. This is one of the nice
features of a Gorenstein artinian algebra (see [156], 21.2).

It follows that the Hilbert polynomial

HAf
(t) =

d∑
i=0

dim(Af )iti = adt
d + · · ·+ a0

is a reciprocal monic polynomial, i.e.ai = ad−i, ad = 1. It is an important invariant
of a homogeneous formf .

Example1.3.1. Let f = ld be thed-th power of a linear forml ∈ E∨. For any
ψ ∈ SkE = (SkE∨)∗ we have

Dψ(ld) = d(d− 1) . . . (d− k + 1)ld−kψ(l) = d!l[d−k]ψ(l),

where we setl[i] = 1
i! l
i. Here we viewψ ∈ SdE as a homogeneous function onE∨. In

coordinates,l =
∑n
i=0 aiti, ψ = ψ(∂0, . . . , ∂n) andψ(l) = ψ(a0, . . . , an). Thus we

see thatAPk(f), k ≤ d, consists of polynomials of degreek vanishing atl. Assume
for simplicity that l = t0. The idealAP (f) is generated by∂1, . . . , ∂n, ∂

d+1
0 . The

Hilbert polynomial is equal to1 + t+ · · ·+ td.

1.3.2 Sums of powers

For any pointa ∈ |E∨| we continue to denote byHa the corresponding hyperplane in
|E|.

Supposef ∈ SdE∨ is equal to a sum of powers of nonzero linear forms

f = ld1 + · · ·+ lds . (1.43)
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This implies that for anyψ ∈ SkE,

Dψ(f) = Dψ(
s∑
i=1

ldi ) =
s∑
i=1

ψ(li)d(d− 1) · · · (d− k + 1)ld−ki . (1.44)

In particular, takingd = k, we obtain that

〈ld1 , . . . , lds〉⊥SdE = {ψ ∈ SdE : ψ(li) = 0, i = 1, . . . , s} = (IZ)d,

whereZ is the closed subscheme of points{[l1], . . . , [ls]} ⊂ |E∨| corresponding to the
linear formsli.

This implies that the codimension of the linear span〈ld1 , . . . , lds〉 in SdE∨ is equal to
the dimension of(IZ)d, hence the formsld1 , . . . , l

d
s are linearly independent if and only

if the points[l1], . . . , [ls] impose independent conditions on hypersurfaces of degreed
in P(E) = |E∨|.

Supposef ∈ 〈ld1 , . . . , lds〉, then(IZ)d ⊂ APd(f). Conversely, if this is true, we
have

f ∈ APd(f)⊥ ⊂ (IZ)⊥d = 〈ld1 , . . . , lds〉.

If we additionally assume that(IZ′)d 6⊂ APd(f) for any proper subsetZ ′ of Z, we
obtain, after replacing the formsl′is by proportional ones, that

f = ld1 + · · ·+ lds .

Definition 1.6. A polar s-polyhedron off is a set of hyperplanesHi = V (li), i =
1, . . . , s, in |E| such that

f = ld1 + · · ·+ lds ,

and, considered as points[li] in P(E), the hyperplanesHi impose independent condi-
tions in the linear system|OP(E)(d)|.

Note that this definition does not depend on the choice of linear forms defining the
hyperplanes. Nor does it depend on the choice of the equation defining the hypersurface
V (f).

The following propositions follow from the above discussion.

Proposition 1.3.4. Let f ∈ SdE∨. ThenZ = {[l1], . . . , [ls]} is a polars-polyhedron
of f if and only if the following properties are satisfied

(i) IZ(d) ⊂ APd(f);

(ii) IZ′(d) 6⊂ APd(f) for any proper subsetZ ′ ofZ.

Proposition 1.3.5. A setZ = {[l1], . . . , [ls]} is a polars-polyhedron off ∈ SdE∨ if
and only ifZ, considered as a closed subscheme of|E∨|, is apolar tof but no proper
subscheme ofZ is apolar tof .
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1.3.3 Generalized polar polyhedra

Proposition1.3.5 allows one to generalize the definition of a polar polyhedron. A
polar polyhedron can be viewed as a reduced closed subschemeZ of P(E) = |E|∨
consisting ofs points. Obviously,h0(OZ) = dimH0(|E|∨,OZ) = s. More generally,
we may consider non-reduced closed subschemesZ of |E|∨ of dimension0 satisfying
h0(OZ) = s. The set of such subschemes is parameterized by a projective algebraic
variety Hilbs(|E|∨) called thepunctual Hilbert schemeof |E|∨ of 0-cycles of lengths.

Any Z ∈ Hilbs(P(E)) defines the subspace

IZ(d) = P(H0(P(E), IZ(d)) ⊂ H0(P(E),OP(E)(d)) = SdE.

The exact sequence

0→ H0(P(E), IZ(d))→ H0(P(E),OP(E)(d))→ H0(P(E),OZ) (1.45)

→ H1(P(E), IZ(d))→ 0

shows that the dimension of the subspace

〈Z〉d = P(H0(P(E), IZ(d))⊥) ⊂ P(SdE∨) (1.46)

is equal toh0(OZ)−h1(IZ(d))−1 = s−1−h1(IZ(d)). If Z = Zred = {p1, . . . , ps},
then〈Z〉d = 〈vd(p1), . . . , vd(ps)〉, wherevd : P(E) → P(SdE) is the Veronese map.
Hencedim〈Z〉 = s − 1 if the pointsvd(p1), . . . , vd(ps) are linearly independent. We
say thatZ is linearly d-independentif dim〈Z〉d = s− 1.

Definition 1.7. A generalizeds-polyhedronof f is a linearlyd-independent subscheme
Z ∈ Hilbs(P(E)) which is apolar tof .

Recall thatZ is apolar tof if, for eachk ≥ 0,

IZ(k) = H0(P(E), IZ(k)) ⊂ APk(f). (1.47)

In view of this definition a polar polyhedron is a reduced generalized polyhedron. The
following is a generalization of Proposition1.3.4.

Proposition 1.3.6. A linearly independent subschemeZ ∈ Hilbs(P(E)) is a general-
ized polars-polyhedron off ∈ SdE∨ if and only if

IZ(d) ⊂ APd(f).

Proof. We have to show that the inclusion in the assertion impliesIZ(d) ⊂ APk(f)
for anyk ≤ d. For anyψ′ ∈ Sd−kE and anyψ ∈ IZ(k), the productψψ′ belongs to
IZ(k). ThusDψψ′(f) = 0. By the duality,Dψ(f) = 0, i.e.ψ ∈ APk(f).

Example1.3.2. LetZ = m1p1 + · · ·+mkpk ∈ Hilbs(P(E)) be the union offat points
pk, i.e. at eachpi ∈ Z the idealIZ,pi

is equal to themi-th power of the maximal ideal.
Obviously,

s =
k∑
i=1

(
n+mi−1
mi−1

)
.
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Then the linear system|OP(E)(d) − Z)| consists of hypersurfaces of degreed which
have singularity atpi of multiplicity ≥ mi for eachi = 1, . . . , k. One can show (see
[231], Theorem 5.3 ) thatZ is apolar tof if and only if

f = ld−mi+1
1 g1 + . . .+ ld−mk+1

k gk,

wherepi = V (li) andgi is a homogeneous polynomial of degreemi − 1 or the zero
polynomial.

Remark1.3.1. It is not known whether the set of generalizeds-polyhedra off is a
closed subset of Hilbs(P(E)). It is known to be true fors ≤ d + 1 since in this
casedim IZ(d) = t := dimSdE − s for all Z ∈ Hilbs(P(E)) (see [231], p.48).
This defines a regular map of Hilbs(P(E)) to the GrassmannianG(t, SdE) and the set
of generalizeds-polyhedra is equal to the preimage of a closed subset consisting of
subspaces contained in APd(f). Also we see thath1(IZ(d)) = 0, henceZ is always
linearlyd-independent.

1.3.4 Secant varieties

The notion of a polar polyhedron has a simple geometric interpretation. Let

vd : |E∨| → |SdE∨|, l 7→ ld,

be the Veronese map of the dual projective space. Denote by Vern
d its image. Then

f ∈ SdE∨ \ {0} represents a point[f ] in P(SdE∨). A set of hyperplanesHi =
V (li), i = 1, . . . , s, represents a set of points[ldi ] in the Veronese variety Vernd . It is a
polar s-polyhedron off if and only if [f ] belongs to the linear span〈[ld1 ], . . . , [lds ]〉 of
dimensions − 1, a (s − 1)-secant of the Veronese variety, and does not belong to its
proper subspace.

Recall that for any irreducible nondegenerate projective varietyX ⊂ Pr of dimen-
sionn its t-secant varietySect(X) is defined to be the Zariski closure of the set of
points inPr which lie in the linear span of dimensiont of some set oft + 1 linearly
independent points inX.

Counting constants easily gives

dim Sect(X) ≤ min((n+ 1)(t+ 1)− 1, r).

The subvarietyX ⊂ Pr is calledt-defectiveif the inequality is strict. An example of a
1-defective variety is a Veronese surface inP5.

A fundamental result about secant varieties is the following Lemma whose modern
proof can be found, for example in [429], Proposition 1.10.

Lemma 1.3.7. (A. Terracini). Letp1, . . . , pt+1 be generalt + 1 points inX andp be
a general point in their span. Then

Tp(Sect(X)) = Tp1(X), . . . ,Tpt+1(X).
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The inclusion part

Tp1(X), . . . ,Tpt+1(X) ⊂ Tp(Sect(X))

is easy to prove. We assume for simplicity thatt = 1. Then Sec1(X) contains the cone
C(p1, X) which is swept out by the linesp1, q, q ∈ X. Therefore,Tp(C(p1, X)) ⊂
Tp(Sec1(X)). However, it is easy to see thatTp(C(p1, X)) containsTp1(X).

Corollary 1.3.8. Sect(X) 6= Pr if and only if for anyt + 1 general points ofX
there exists a hyperplane section ofX singular at these points. In particular, ifr ≤
(n+1)(t+1)−1, the varietyX is t-defective if and only if for anyt+1 general points
ofX there exists a hyperplane section ofX singular at these points.

Example1.3.3. LetX = Vernd ⊂ P
(
d+n
n

)
−1 be the image ofPn under a Veronese map

defined by homogeneous polynomials of degreed. Assume(n+1)(t+1) ≥
(
d+n
n

)
−1.

A hyperplane section ofX is isomorphic to a hypersurface of degreed in Pn. Thus
Sect(Vernd ) 6= |SdE∨| if and only if for anyt + 1 general points inPn there exists a
hypersurface of degreed singular at these points.

Taken = 1. Thenr = d andr ≤ (n+ 1)(t+ 1)− 1 = 2t+ 1 for t ≥ (d− 1)/2.
Sincet + 1 > d/2 there are no homogeneous forms of degreed which havet + 1
multiple roots. Thus the Veronese curveRd = vd(P1) ⊂ Pd is not t-degenerate for
t ≥ (d− 1)/2.

Taken = 2 andd = 2. For any two points inP2 there exists a conic singular at
these points, namely the double line through the points. This explains why a Veronese
surfaceV 2

2 is 1-defective.
Another example is Ver24 ⊂ P14 andt = 4. The expected dimension of Sec4(X)

is equal to14. For any 5 points inP2 there exists a conic passing through these points.
Taking it with multiplicity 2 we obtain a quartic which is singular at these points. This
shows that Ver24 is 4-defective.

The following Corollary of Terracini’s Lemma is called theFirst Main Theorem on
apolarity in [155]. The authors gave an algebraic proof of this Theorem without using
(or probably without knowing) Terracini’s Lemma.

Corollary 1.3.9. A general homogeneous formf ∈ SdE∨ admits a polars-polyhedron
if and only if there exist linear formsl1, . . . , ls ∈ E∨ such that for any nonzero
ψ ∈ SdE the idealAP (ψ) ⊂ Sym•E∨ does not contain{ld−1

1 , . . . , ld−1
s }.

Proof. A general formf ∈ SdE∨ admits a polar s-polyhedron if and only if the secant
variety Secs−1(Vernd ) is equal to the whole space. This means that the span of the
tangent spaces at some pointsqi = V (ldi ), i = 1, . . . , s, is equal to the whole space.
By Terracini’s Lemma, this is equivalent to that the tangent spaces of the Veronese
variety at the pointsqi are not contained in a hyperplane defined by someψ ∈ SdE =
(SdE∨)∗. It remains to use that the tangent space of the Veronese variety atqi is equal
to the projective space of all homogeneous forms of the formld−1

i l, l ∈ E∨ \ {0} (see
Exercises). Thus, for any nonzeroψ ∈ SdE, it is impossible thatPld−1

i l(ψ) = 0 for all

l and for alli. ButPld−1
i l(ψ) = 0 for all l if and only ifPld−1

i
(ψ) = 0. This proves the

assertion.
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The following fundamental result is due to J. Alexander and A. Hirschowitz [4].

Theorem 1.3.10.Vernd is t-defective if and only if

(n, d, t) = (2, 2, 1), (2, 4, 4), (3, 4, 8), (4, 3, 6), (4, 4, 13).

In all these cases the secant varietySect(Vernd ) is a hypersurface.

For the sufficiency of the condition, only the case(4, 3, 6) is not trivial. It asserts
that for 7 general points inP3 there exists a cubic hypersurface which is singular at
these points. Other cases are easy. We have seen already the first two cases. The third
case follows from the existence of a quadric through 9 general points inP3. The square
of its equation defines a quartic with 9 points. The last case is similar. For any 14
general points there exists a quadric inP4 containing these points.

Corollary 1.3.11. Assumes(n+1) ≥
(
d+n
n

)
. Then a general homogeneous polynomial

f ∈ C[t0, . . . , tn]d can be written as a sum ofd-th powers ofs linear forms unless
(n, d, s) = (2, 2, 2), (2, 4, 5), (3, 4, 9), (4, 3, 7), (4, 4, 14).

1.3.5 The Waring problems

The well-known Waring problem in number theory asks about the smallest number
s(d) such that each natural number can be written as a sum ofs(d) d-th powers of
natural numbers. It also asks in how many ways it can be done. Its polynomial analog
asks about the smallest numbers(d, n) such that a general homogeneous polynomial
of degreed in n+ 1 variables can be written as a sum ofs d-th powers of linear forms.

The Alexander-Hirschowitz Theorem completely solves this problem. We have
s(d, n) is equal to the smallest natural numbers0 such thats0(n+ 1) ≥

(
n+d
n

)
unless

(n, d) = (2, 2), (2, 4), (3, 4), (4, 3), (4, 4), wheres(d, n) = s0 + 1.
Other versions of the Waring problem ask the following questions:

• (W1) Given a homogeneous formf ∈ SdE∨, study the subvariety VSP(f ; s)o

of P(E)(s) (thevariety of power sums) which consists of polars-polyhedra off
or more general the subvariety VSP(f ; s) of Hilbs(P(E)) parameterizing gener-
alizeds-polyhedra.

• (W2) For givens find the equations of the closure PS(s, d;n) in SdE∨ of the
locus of homogeneous forms of degreed which can be written as a sum ofs
powers of linear forms.

Note that PS(s, d;n) is the affine cone over the secant variety Secs−1(Vernd ).
In the language of secant varieties, the variety VSP(f ; s)o is the set of linearly

independent sets ofs pointsp1, . . . , ps in Vernd such that[f ] ∈ 〈p1, . . . , ps〉 and does
not belong to the span of the proper subset of the set of these points. The variety
VSP(f ; s) is the set of linearly independentZ ∈ Hilbs(P(E)) such that[f ] ∈ 〈Z〉.
Note that we have a natural map

VSP(f ; s)→ G(s, SdE), Z 7→ 〈Z〉d,
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whereG(s, SdE) is the Grassmannian ofs-dimensional subspaces ofSdE. This map
is not injective in general.

Also note that for a general formf the variety VSP(f ; s) is equal to the closure
of VSP(f ; s)o in the Hilbert scheme Hilbs(P(E)) (see [231], 7.2). It is not true for
an arbitrary formf . One can also embed VSP(f ; s)o in P(SdE) by assigning to
{l1, . . . , ls} the productl1 · · · ls. Thus we can compactify VSP(f ; s)o by taking its
closure inP(SdE). In general, this closure is not isomorphic to VSP(f ; s).

Proposition 1.3.12. Assumen = 2. For generalf ∈ SdE∨ the varietyVSP(f ; s) is
either empty or a smooth irreducible variety of dimension3s−

(
2+d
d

)
.

Proof. We consider VSP(f ; s) as the closure of VSP(f ; s)o in the Hilbert scheme
Hilbs(P(E)). Recall thatZ ∈ Hilbs(P(E)) is a generalized polar polyhedron off
if and only if f ∈ IZ(d)⊥ but this is not true for any proper closed subschemeZ ′ of Z.
Consider the incidence variety

X = {(Z, f) ∈ Hilbs(P(E))× SdE∨ : Z ∈ VSP(f ; s)}.

It is known that for any nonsingular surface the punctual Hilbert scheme is nonsingular
(see [166]). Let U be the open subset of the first factor such that for any pointZ ∈
U , dim IZ(d) = dimSdE − s. The fibre of the first projection overZ ∈ U is an
open Zariski subset of the linear spaceIZ(d)⊥. This shows thatX is irreducible and
nonsingular. The fibres of the second projection are the varieties VSP(f ; s). Thus for
an open Zariski subset ofSdE∨ the varieties VSP(f ; s) are empty or irreducible and
nonsingular.

1.4 Dual homogeneous forms

1.4.1 Catalecticant matrices

Let f ∈ SdE∨. Consider the linear map (theapolarity map)

apkf : SkE → Sd−kE∨, ψ 7→ Dψ(f). (1.48)

Its kernel is the space APk(f) of forms of degreek which are apolar tof .
By the polarity duality, the dual space ofSd−kE∨ can be identified withSd−kE.

Applying Lemma1.3.1, we obtain

t(apkf ) = apd−kf . (1.49)

Assume thatf =
∑s
i=1 l

d
i for someli ∈ E∨. It follows from (1.44) that

apkf (S
kE) ⊂ 〈ld−k1 , . . . , ld−ks 〉,

and hence
rank(apkf ) ≤ s. (1.50)
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If we choose a basis inE and a basis inE∨, then apkf is given by a matrix of size(
k+n
k

)
×

(
n+d−k
d−k

)
whose entries are linear forms in coefficients off .

Choose a basisξ0, . . . , ξn in E and the dual basist0, . . . , tn in E∨. Consider a
monomial basis inSkE (resp. inSd−kE∨) which is lexicographically ordered. The
matrix of apkf with respect to these bases is called thek-th catalecticant matrixof
f and is denoted by Catk(f). Its entriescuv are parameterized by pairs(u,v) ∈
Nn+1 × Nn+1 with |u| = d− k and|v| = k. If we write

f = d!
∑
|i|=d

1
i!
aiti,

then
cuv = au+v.

This follows easily from the formula

∂i00 · · · ∂inn (tj00 · · · tjnn ) =

{
j!

(j−i)!t
j−i if j− i ≥ 0

0 otherwise.

Consideringai as independent variablesti, we obtain the definition of a general catalec-
ticant matrix Catk(d, n).

Example1.4.1. Let n = 1. Write f =
∑d
i=0

(
d
i

)
ait

d−i
0 ti1. Then

Catk(f) =


a0 a1 . . . ak
a1 a2 . . . ak+1

...
... . . .

...
ad−k ad−k+1 . . . ad

 .

A matrix of this type is called aHankel matrixor persymmetric matrix. It follows from
(1.50) that f ∈ PS(s, d; 1) implies that all(s + 1) × (s + 1) minors of Catk(f) are
equal to zero. Thus we obtain that Secs−1(Ver1d) is contained in the subvariety ofPd
defined by(s+ 1)× (s+ 1)-minors of the matrices

Catk(d, 1) =


t0 t1 . . . tk
t1 t2 . . . tk+1

...
... . . .

...
td−k td−k+1 . . . td

 , k = 1, . . . ,min{d− s, s}.

For example, ifs = 1, we obtain that the Veronese curve Ver1
d ⊂ Pd satisfies the

equationstitj − tktl = 0, wherei + j = k + l. It is well known that these equations
generate the homogeneous ideal of the Veronese curve.

Assumed = 2k. Then the Hankel matrix is a square matrix of sizek + 1. Its
determinant vanishes if and only iff admits a nonzero apolar form of degreek. The
set of suchf ’s is a hypersurface inC[t0, t1]2k. It contains the Zariski open subset of
forms which can be written as a sum ofk powers of linear forms (see section1.5.1).
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For example, takek = 2. Then the equation

det

a0 a1 a2

a1 a2 a3

a2 a3 a4

 = 0 (1.51)

describes binary quartics

f = a0t
4
0 + 4a1t

3
0t1 + 6a2t

2
0t

2
1 + 4a3t0t

3
1 + a4t

4
1

which lie in the Zariski closure of the locus of quartics represented in the form(α0t0 +
β0t1)4 + (α1t0 +β1t1)4. Note that a quartic of this form has simple roots unless it has
a root of multiplicity 4. Thus any binary quartic with simple roots satisfying equation
(1.51) can be represented as a sum of two powers of linear forms.

The cubic hypersurface inP4 defined by equation (1.51) is equal to the 1-secant
variety of a Veronese curve inP4.

Note that

dim APi(f) = dim Ker(apif ) =
(
n+k
i

)
− rank Cati(f).

Therefore,
dim(Af )i = rank Cati(f),

and

HAf
(t) =

d∑
i=0

rank Cati(f)ti. (1.52)

It follows from (1.49) that

rank Cati(f) = rank Catd−i(f)

confirming thatHAf
(t) is a reciprocal monic polynomial.

Supposed = 2k is even. Then the coefficient attk in HAf
(t) is equal to the

rank of Catk(f). The matrix Catk(f) is a square matrix of size
(
n+k
k

)
. One can show

that for a generalf , this matrix is invertible. A polynomialf is calleddegenerateif
det(Catk(f)) = 0. Thus, the set of degenerate polynomials is a hypersurface (catalec-
ticant hypersurface) given by the equation

det(Catk(2k, n)) = 0. (1.53)

The polynomialdet(Catk(2k, n)) in variablesti, |i| = d, is called thecatalecticant
determinant.

Example1.4.2. Let d = 2. It is easy to see that the catalecticant polynomial is the
discriminant polynomial. Thus a quadratic form is degenerate if and only if it is degen-
erate in the usual sense. The Hilbert polynomial of a quadratic formf is

HAf
(t) = 1 + rt+ t2,

wherer is the rank of the quadratic form.
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Example1.4.3. Supposef = td0 + · · · + tds , s ≤ n. Then ti0, . . . , t
i
s are linearly

independent for anyi, and hence rank Cati(f) = s for 0 < i < d. This shows
that

HAf
(t) = 1 + s(t+ · · ·+ td−1) + td.

LetP be the set of reciprocal monic polynomials of degreed. One can stratify the
spaceSdE∨ by setting, for anyp ∈ P,

SdE∨p = {f ∈ SdE∨ : HAf
= p}.

If f ∈ PS(s, d;n) we know that

rank Catk(f) ≤ h(s, d, n)k = min(s,
(
n+k
n

)
,
(
n+d−k
n

)
).

One can show that for a general enoughf , we have the equality (see [231], Lemma
1.7). Thus there is a Zariski open subset of PS(s, d;n) which belongs to the strata
SdE∨p , wherep =

∑d
i=0 h(s, d, n)iti.

1.4.2 Dual homogeneous forms

In Chapter 1 we introduced the notion of a dual quadric. IfQ = V (q), whereq is
a nondegenerate quadratic form, then the dual varietyQ̌ is a quadric defined by the
quadratic form̌q whose matrix is the adjugate matrix ofq. For any homogeneous form
of even degreef ∈ S2kE∨ one can define the dual homogeneous formf̌ ∈ S2kE in a
similar fashion using the notion of the catalecticant matrix.

Let
apkf : SkE → SkE∨ (1.54)

be the apolarity map (1.48). We can view this map as a symmetric bilinear form

Ωf : SkE × SkE → C, Ωf (ψ1, ψ2) = apkf (ψ1)(ψ2) = 〈ψ2,apkf (ψ1)〉. (1.55)

Its matrix with respect to a monomial basis inSkE and its dual monomial basis in
SkE∨ is the catalecticant matrix Catk(f).

Let us identifyΩf with the associated quadratic form onSkE (the restriction of
Ωf to the diagonal). This defines a linear map

Ω : S2kE∨ → S2SkE∨, f 7→ Ωf .

There is also a natural left inverse map ofΩ

P : S2SkE∨ → S2kE∨

defined by multiplicationSkE∨ × SkE∨ → S2kE∨. All these maps are GL(E)-
equivariant and realize the linear representationS2kE∨ as a direct summand in the
representationS2SkE∨.

Theorem 1.4.1. Assume thatf ∈ S2kE∨ is nondegenerate. There exists a unique
homogeneous form̌f ∈ S2kE (thedual homogeneous form) such that

Ωf̌ = Ω̌f .
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Proof. We know thatΩ̌f is defined by the adjugate matrix adj(Catk(f)) = (c∗uv) so
that

Ω̌f =
∑

c∗uvξ
uξv.

Let
f̌ =

∑
|u+v|=2k

d!
(u+v)!c

∗
uvξ

u+v.

Recall that the entriescuv of the catalecticant matrix depend only on the sum of the
indices. Thus the entries of the adjugate matrix adj(Catk(f)) = (c∗uv) depend only on
the sum of the indices. For anyti ∈ SkE∨, we have

Pti(f̌) =
∑

u,v,u+v≥i

d!
(u+v)!c

∗
uv

(u+v)!
(u+v−i)!ξ

u+v−i =
∑
|j|=k

d!
j! c

∗
ijξ

j

This checks that the matrix of the linear mapSkE∨ → SkE defined byΩf̌ is equal
to the matrix adj(Catk(f)). Thus the quadratic formΩf̌ is equal to the dual of the
quadratic formΩf .

Recall that the locus of zeros of a quadratic fromq ∈ S2E∨ consists of vectors
v ∈ E such that the value of the polarized bilinear formbq : E → E∨ atv vanishes at
v. Dually, the set of zeros of̌q ∈ S2E consists of linear functionl ∈ E∨ such that the
value ofbq̌ : E∨ → E at l is equal to zero. The same is true for the dual formf̌ . Its
locus of zeros consists of linear formsl such thatΩ−1

f (lk) ∈ SkE vanishes onl. The

degreek homogeneous formΩ−1
f (lk) is classically known as theanti-polar of l (with

respect tof ).

Definition 1.8. Two linear formsl,m ∈ E∨ are calledconjugatewith respect to a
nondegenerate formf ∈ S2kE∨ if

Ωf̌ (l
k,mk) = f̌(lkmk) = 0.

Proposition 1.4.2. Supposef is given by(1.43), where the powerslki are linearly
independent inSkE∨. Then each pairli, lj is conjugate with respect tof .

Proof. It follows from computation ofΩf in the proof of Proposition1.4.3that it suf-
fices to check the assertion for quadratic forms. Choose a coordinate system such that
li = t0, lj = t1 andf = t20 + t22 + · · ·+ t2s. Thenf̌ = ξ20 + · · ·+ ξ2s , whereξ0, . . . , ξs
are dual coordinates. Now the assertion is easily checked.

1.4.3 The Waring rank of a homogeneous form

Since any quadratic formq can be reduced to a sum of squares, one can characterize
its rank as the smallest numberr such that

q = l21 + · · ·+ l2r

for some linear formsl1, . . . , lr.
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Definition 1.9. Let f ∈ SdE∨. Its Waring rank wrk(f) is the smallest numberr such
that

f = ld1 + · · ·+ ldr (1.56)

for some linear formsl1, . . . , lr.

Proposition 1.4.3. Let Ωf be the quadratic form onSkE associated tof ∈ S2kE∨.
Then the Waring rank off is greater or equal than the rank ofΩf .

Proof. Suppose (1.43) holds withd = 2k. SinceΩf is linear with respect tof , we
haveΩf =

∑
Ωl2k

i
. If we choose coordinates such thatli is a coordinate functiont0,

we easily compute the catalecticant matrix ofl2ki . It is equal to the matrix with 1 at
the upper left corner and zero elsewhere. The corresponding quadratic form is equal to
(tk0)2. ThusΩl2k

i
= (lki )

2 and we obtain

Ωf =
r∑
i=1

Ωl2k
i

=
r∑
i=1

(lki )
2.

Thus the rank off is greater or equal than the rank ofΩf .

Corollary 1.4.4. Supposef is a nondegenerate form of even degree2k, then

wrk(f) ≥
(
k+n
n

)
.

A naive way to compute the Waring rank is by counting constants. Consider the
map

s : (E∨)r → C
(
d+n
n

)
, (l1, . . . , lr) 7→

∑
ldi . (1.57)

If r(n + 1) ≥
(
d+n
n

)
one expects that this map is surjective and hence wrk(f) ≤

r for generalf . Here “general” means that the coefficients off belong to an open

Zariski subset of the affine spaceC
(
d+n
n

)
. It follows from Theorem1.3.10that the

only exceptional cases when it is false and the maps fails to be surjective are the
following cases:

• n = 2, d = 2, r = 2,wrk(f) = 3;

• n = 2, d = 4, r = 5,wrk(f) = 6;

• n = 3, d = 4, r = 9,wrk(f) = 10;

• n = 4, d = 3, r = 7,wrk(f) = 8;

• n = 4, d = 4, r = 14,wrk(f) = 15;

Proposition 1.4.5. Letf be a general homogeneous form of even degree2k. Then

wrk(f) > rankΩf ,

except in the following cases, where the equality takes place,:
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• k = 1;

• n = 1;

• n = 2, k ≤ 4;

• n = 3, k = 2.

Proof. The first case is obvious. It follows from considering the map (1.57) that
wrk(f) ≥

(
n+2k
n

)
/(n+ 1). On the other hand the rank ofΩf for generalf is equal to

dimSkE =
(
n+k
n

)
.

We know that the casen = 1 is not exceptional so that we can compute the Waring
rank off by counting constants and get wrk(f) = k + 1 = rankΩf .

If n = 2, we get wrk(f) ≥ (2k + 2)(2k + 1)/6 = (k + 1)(2k + 1)/3 and
rankΩf =

(
k+2
2

)
= (k+2)(k+1)/2. We have(k+1)(2k+1)/3 > (k+2)(k+1)/2

if k > 4. By Theorem1.3.10,

wrk(f) =


6 if k = 2,

10 if k = 3,

15 if k = 4.

This shows that wrk(f) = rankΩf in all these cases.
If n = 3, we get

wrk(f) ≥ (2k + 3)(2k + 2)(2k + 1)/24 >
(
k+3
3

)
= (k + 3)(k + 2)(k + 1)/6

unlessk = 2.
Finally, it is easy to see that forn > 3

wrk(f) ≥ 1
n+1

(
2k+n
n

)
>

(
k+n
n

)
for k > 1.

1.4.4 Mukai’s skew-symmetric form

Letω ∈
∧2

E be a skew-symmetric bilinear form onE∨. It admits a unique extension
to a Poisson bracket{, }ω on Sym•E∨ which restricts to a skew-symmetric bilinear
form

{, }ω : Sk+1E∨ × Sk+1E∨ → S2kE∨. (1.58)

Recall that aPoisson bracketon a commutative algebraA is a skew-symmetric bilinear
mapA× A → A, (f, g) 7→ {f, g} such that its left and right partial mapsA → A are
derivations.

Let f ∈ S2kE∨ be a nondegenerate form andf̌ ∈ S2kE = (S2kE∨)∨ be its dual
form. For eachω as above defineσω,f ∈

∧2(Sk+1E) by

σω,f (f, g) = f̌({f, g}ω).
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Theorem 1.4.6.Letf be a nondegenerate form inS2kE∨ of Waring rankN . Assume
thatN = rankΩf =

(
n+k
n

)
. For anyZ = {`1, . . . , `N} ∈ VSP(f ;N)o let 〈Z〉k+1 be

the linear span of the powerslk+1
i in Sk+1E∨. Then

(i) 〈Z〉k+1 is isotropic with respect to each formσω,f ;

(ii) apk−1
f (Sk−1E) ⊂ 〈Z〉k+1;

(iii) apk−1
f (Sk−1E) is contained in the radical of eachσω,f .

Proof. To prove the first assertion it is enough to check thatσω,f (lk+1
i , lk+1

j ) = 0 for
all i, j. We have

σω,f (lk+1
i , lk+1

j ) = f̌({lki , lkj }ω) = f̌(lki l
k
j )ω(li, lj).

Since`ki are linearly independent, by Proposition1.4.2, f̌(lki l
k
j ) = Ωf̌ (l

k
i , l

k
j ) = 0.

This checks the first assertion.
For anyψ ∈ Sk−1E,

Dψ(f) = Dψ(
N∑
i=1

l2ki ) =
N∑
i=1

Dψ(l2ki ) = (2k)!
(k+1)!

N∑
i=1

Dψ(lk−1
i )lk+1

i .

This shows that apk−1
f (Sk−1E) is contained in〈Z〉k+1. It remains to check that for

anyψ ∈ Sk−1E, g ∈ Sk+1E∨ and anyω ∈
∧2

E, one hasσω,f (Dψ(f), g) = 0.
Choose coordinatest0, . . . , tn in E∨ and the dual coordinatesξ0, . . . , ξn in E. The
space

∧2
E is spanned by the formsωij = ξi ∧ ξj . We have

{Dψ(f), g}ωij = Dξi(Dψ(f))Dξj (g)−Dξj (Dψ(f))Dξi(g)

= Dξiψ(f)Dξj
(g)−Dξjψ(f)Dξi

(g) = Dψξi
(f)Dξj

(g)−Dψξj
(f)Dξi

(g).

For anya, b ∈ SkE∨,

f̌(ab) = Ωf̌ (a, b) = 〈Ω−1
f (a), b〉.

Thus
σωij ,f (Dψ(f), g) = f̌(Dψξi

(f)Dξj
(g)−Dψξj

(f)Dξi
(g))

= 〈ψξi, Dξj
(g)〉 − 〈ψξj , Dξi

(g)〉 = Dψ(Dξiξj
(g)−Dξjξi

(g)) = Dψ(0) = 0.

LetZ = {[l1], . . . , [ls]} ∈ VSP(f ; s)o be a polars-polyhedron of a nondegenerate
form f ∈ S2kE∨ and, as before, let〈Z〉k+1 be the linear span of(k + 1)-th powers of
the linear formsli. Let

L(Z) = 〈Z〉k+1/apk−1
f (Sk−1E). (1.59)

It is a subspace ofW = Sk+1E∨/apk−1
f (Sk−1E). By (1.49),

W∨ = apk−1
f (Sk−1E)⊥ = APk+1(f),
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where we identify the dual space ofSk+1E∨ with Sk+1E. Now observe that〈Z〉⊥k+1

is equal toIP(k + 1), where we identifyZ with the reduced closed subscheme of the
dual projective spaceP(E). This allows one to extend the definition ofL(Z) to any
generalized polars-polyhedronZ ∈ VSP(f ; s):

L(Z) = IZ(k + 1)⊥/apk−1
f (Sk−1E) ⊂ Sk+1E∨/apk−1

f (Sk−1E).

Proposition 1.4.7. Letf be a nondegenerate homogeneous form of degree2k of War-
ing rank equal toNk =

(
n+k
k

)
. LetZ,Z ′ ∈ VSP(f ; s). Then

L(Z) = L(Z ′)⇐⇒ Z = Z ′.

Proof. It is enough to show that

IZ(k + 1) = IZ′(k + 1) =⇒ Z = Z ′.

SupposeZ 6= Z ′. Choose a subschemeZ0 of Z of lengthNk − 1 which is not a
subscheme ofZ ′. Sincedim IZ0(k) ≥ dimSkE∨ − h0(OZ) =

(
n+k
k

)
−Nk + 1 = 1,

we can find a nonzeroψ ∈ IZ0(k). The sheafIZ/IZ0 is concentrated at one pointx
and is annihilated by the maximal idealmx. ThusmxIZ0 ⊂ IZ . Let ξ ∈ E be a linear
form onE∨ vanishing atx but not vanishing at any subscheme ofZ ′. This implies that
ξψ ∈ IZ(k + 1) = IZ′(k + 1) and henceψ ∈ IZ′(k) ⊂ APk(f) contradicting the
nondegeneracy off .

It follows from Theorem1.4.6that eachω ∈
∧2

E defines a skew-symmetric 2-
form σω,f on Sk+1E which factors through a skew-symmetric 2-form̄σω,f onW =
Sk+1E/apk−1

f (Sk−1E). We call it theMukai 2-form. For eachP ∈ VSP(f ;Nk)o the
subspaceL(Z) ⊂W is isotropic with respect tōσω,f .

1.5 First examples

1.5.1 Binary forms

This is the casen = 1. LetU be a 2-dimensional linear space andf ∈ SdU∨ \ {0}.
The hypersurfaceV (f) can be identified with a positive divisorD =

∑
mixi of de-

greed on |U | ∼= P1. Thus we can identify the space|SdU∨| with the symmetric
power|U |(d) := |U |d/Sd and with the Hilbert scheme Hilbd(|U |). A generalizeds-
polyhedron off is a positive divisorZ =

∑k
i=1mi[li] of degrees in P(U) = |U |∨

such that[f ] ∈ 〈Z〉 = P(H0(P(E), IZ(d))⊥). Note that in our caseZ is automat-
ically linearly independent (becauseH1(IZ(d)) = 0). Obviously,H0(P(U), IZ(d))
consists of polynomials of degreed which are divisible byψ = ξm1

1 · · · ξmk

k , where
ξi ∈ AP1(li). In coordinates, ifli = ait0 + bit1, thenξi = bi∂0 − ai∂1. Thusf
is orthogonal to this space if and only ifPψψ′(f) = 0 for all ψ′ ∈ Sd−s(U). By
the apolarity duality we obtain thatDψ(f) = 0, henceψ ∈ APs(f). This gives the
following.

Theorem 1.5.1. A positive divisorZ = V (lm1
1 · · · lmk

k ) of degrees is a generalized
s-polyhedron off if and only ifξm1

1 · · · ξmk

k ∈ APs(f).
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Corollary 1.5.2. Assumen = 1. Then

VSP(f ; s) = |APs(f)|.

Note that the kernel of the map

SkU → Sd−kU∨, ψ 7→ Dψ(f)

is of dimension≥ dimSkU − dimSd−kU∨ = k + 1− (d− k + 1) = 2k − d. Thus
Dψ(f) = 0 for some nonzeroψ ∈ SkU , whenever2k > d. This shows thatf has
always generalized polar k-polyhedron fork > d/2. If d is even, a binary form has an
apolard/2-form if and only if det Catd/2(f) = 0. This is a divisor in the space of all
binaryd-forms.

Example1.5.1. Taked = 3. Assume thatf admits a polar 2-polyhedron. Then

f = (a1t0 + b1t1)3 + (a2t0 + b2t1)3.

It is clear thatf has 3 distinct roots. Thus, iff = (a1t0 + b1t1)2(a2t0 + b2t1)2 has a
double root, it does not admit a polar2-polyhedron. However, it admits a generalized
2-polyhedron defined by the divisor2p, wherep = (b1,−a1). In the secant variety
interpretation, we know that any point in|S3E∨| either lies on a unique secant or on
a unique tangent line of the Veronese cubic curve. The space AP2(f) is always one-
dimensional. It is generated either by a binary quadric(−b1ξ0 + a1ξ1)(−b2ξ0 + a2ξ1)
or by (−b1ξ0 + a1ξ1)2.

Thus VSP(f ; 2)o consists of one point or empty but VSP(f ; 2) always consists of
one point. This example shows that VSP(f ; 2) 6= VSP(f ; 2)

o
in general.

1.5.2 Quadrics

It follows from Example1.3.3 that Sect(Vern2 ) 6= |S2E∨| if only if there exists a
quadric witht + 1 singular points in general position. Since the singular locus of a
quadricV (q) is a linear subspace of dimension equal to corank(q)− 1, we obtain that
Secn(Vern2 ) = |S2E∨|, hence any general quadratic form can be written as a sum of
n + 1 squares of linear formsl0, . . . , ln. Of course, linear algebra gives more. Any
quadratic form of rankn+ 1 can be reduced to sum of squares of the coordinate func-
tions. Assume thatq = t20 + · · · + t2n. Suppose we also haveq = l20 + · · · + l2n.
Then the linear transformationti 7→ li preservesq and hence is an orthogonal trans-
formation. Since polar polyhedra ofq andλq are the same, we see that the projective
orthogonal group PO(n+1) acts transitively on the set VSP(f ;n+1)o of polar(n+1)-
polyhedra ofq. The stabilizer groupG of the coordinate polar polyhedron is generated
by permutations of coordinates and diagonal orthogonal matrices. It is isomorphic to
the semi-direct product2n o Sn+1 (the Weyl group of root systems of typesBn, Dn),
where we use the notation2k for the 2-elementary abelian group(Z/2Z)k. Thus we
obtain

Theorem 1.5.3.Let q be a quadratic form inn+ 1 variables of rankn+ 1. Then

VSP(q;n+ 1)o ∼= PO(n+ 1)/2n o Sn+1.

The dimension ofVSP(q;n+ 1)o is equal to1
2n(n+ 1).
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Example1.5.2. Taken = 1. Using the Veronese mapν2 : P1 → P2, we consider a
nonsingular quadricQ = V (q) as a pointp in P2 not lying on the conicC = V (t0t2−
t21). A polar 2-gon ofq is a pair of distinct pointsp1, p2 onC such thatp ∈ 〈p1, p2〉.
The set of polar2-gons can be identified with the pencil of lines throughp with the
two tangent lines toC deleted. ThusW (q, 2)o = P1 \ {0,∞} = C∗. There are
two generalized 2-gons2p0 and2p∞ defined by the tangent lines. Each of them gives
the representation ofq as l1l2, whereV (li) are the tangents. We have VSP(f ; 2) =
VSP(f ; 2)

o ∼= P1.

In the next chapter we will discuss a good compactification of this space in the case
n = 2.

Let q ∈ S2E∨ be a nondegenerate quadratic form. For eachZ ∈ VSP(q;n + 1)
the linear spaceL(Z) = 〈Z〉2/Cq ⊂ S2E∨/Cq is of dimensionn. It is an isotropic
subspace ofW = S2E∨/Cq with respect to any Mukai’s 2-form̄σω,q. This defines a
map

µ : VSP(q;n+ 1)→ G(n,W ), Z 7→ L(Z). (1.60)

By Proposition1.4.7, the map is injective. The image of VSP(q, n + 1)o is contained
in the locusG(n,W )µ of subspaces which are isotropic with respect to any Mukai’s 2-
form σ̄q,ω. Since for generalf the variety VSP(q, n+1) is the closure of VSP(q, n+1)o

in the Hilbert scheme, the image of VSP(q;n + 1) is containedG(n,W )µ. Since
all nonsingular quadrics are isomorphic, the assertion is true for any nondegenerate
quadratic formf .

Recall that the Grassmann varietyG(n,W ) carries the natural rankn vector bundle
S, the tautological bundle. Its fibre over a pointL ∈ G(n,W ) is equal toL. It is a
subbundle of the trivial bundleWG(n,W ) associated to the vector spaceW . We have a
natural exact sequence

0→ S →WG(n,V ) → Q→ 0,

whereQ is theuniversal quotient bundle, whose fibre overL is equal toW/L. We
can consider each elementσ of

∧2
W∨ as a section of the trivial bundle

∧2
W∨
G(n,W ).

Restrictingσ to the subbundleS, we get a section of the vector bundle
∧2 S∗. Thus

we can view a Mukai’s 2-form̄σq,ω as sectionsq,ω of
∧2 S∨.

It follows from above that the image of the map (1.60) is contained in the set of
common zeros of the sectionssq,ω of

∧2 S∨.

Corollary 1.5.4. Let q be a nondegenerate quadratic form on a three-dimensional
vector spaceE. Then the image ofVSP(q; 3) in G(2,W ), embedded in the Plücker
space|

∧2
W |, is a smooth irreducible 3-fold equal to the intersectionX ofG(2,W )

with a linear space of codimension 3.

Proof. We havedimW = 5, soG(2,W ) ∼= G(2, 5) is of dimension6. Hyperplanes in
the Pl̈ucker space are elements of the space|

∧2
W∨|. Note that the functionssq,ω are

linearly independent. In fact, a basisξ0, ξ1, ξ2 in E gives a basisω01 = ξ0 ∧ ξ1, ω02 =
ξ0 ∧ ξ2, ω12 = ξ1 ∧ ξ2 in

∧2
E. Thus the space of sectionssq,ω is spanned by 3

sectionss01, s02, s12 corresponding to the formsωij . Without loss of generality, we
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may assume thatq = t20 + t21 + t22. If we takea = t0t1 + t22, b = −t20 + t21 + t22, we
see thats01(a, b) 6= 0, s12(a, b) = 0, s02(a, b) = 0. Thus a linear dependence between
the functionssij implies the linear dependence between two of the functions. It is easy
to see that no two functions are proportional. So our 3 functionssij , 0 ≤ i < j ≤ 2
span a 3-dimensional subspace of

∧2
W∨ and hence define a codimension 3 projective

subspaceL in the Pl̈ucker space|
∧2

W |. The image of VSP(q; 3) under the map
(1.60) is contained in the intersectionG(2, E) ∩ L. This is a 3-dimensional subvariety
ofG(2,W ), and hence containsµ(VSP(q; 3)) as an irreducible component. We skip an
argument, based on counting constants, which proves that the subspaceL belongs to an
open Zariski subspace of codimension 3 subspaces of

∧2
W for which the intersection

L ∩G(2,W ) is smooth and irreducible (see [137]).

If n > 2, the vector bundle
∧2 S∨ is of rankr =

(
n
2

)
> 1. The zero locus of

its nonzero section is of expected codimension equal tor. We have
(
n+1

2

)
sections

sij of
∧2 S anddimG(n,E) = n(

(
n+2

2

)
− n − 1). For example, whenn = 3, we

have 6 sectionssij each vanishing on a codimension 3 subvariety of 18-dimensional
GrassmannianG(3, 9). So there must be some dependence between the functionssij .

Remark1.5.1. One can also consider the varieties VSP(q; s) for s > n + 1. For
example, we have

t20 − t22 = 1
2 (t0 + t1)2 + 1

2 (t0 − t1)2 − 1
2 (t1 + t2)2 − 1

2 (t21 − t2)2

t20 + t21 + t22 = (t0 + t2)2 + (t0 + t1)2 + (t1 + t2)2 − (t0 + t1 + t2)2.

This shows that VSP(q;n + 2),VSP(q;n + 3) are not empty for any nondegenerate
quadricQ in Pn, n ≥ 2.

Exercises

1.1Show that the first polarPa(X) contains singular points ofX. SupposeX is a plane curve
andx ∈ X is its ordinary double point. Show that the pair consisting of the tangent line of
Pa(X) atx and the linea, x is harmonically conjugate (see section2.1.2) to the pair of tangents
to the branches ofX atx in the pencil of lines throughx. If x is an ordinary cusp, then tangent
line ofPa(X) atx is equal to the cuspidal tangent ofX atx.

1.2Show that a line contained in a hypersurfaceX belongs to all polars ofX with respect to any
point on this line.

1.3 Find the multiplicity of the intersection of a plane curveC with its Hessian at an ordinary
double point and at an ordinary cusp ofC. Show that the Hessian has a triple point at the cusp.

1.4 Suppose a hypersurfaceX in Pn has a singular pointx of multiplicity m > 1. Prove that
He(X) has this point as a point of multiplicity≥ (n+ 1)m− 2n.

1.5 Suppose a hyperplane is tangent to a hypersurfaceX along a closed subvarietyY of codi-
mension 1. Show thatY is contained in He(X).

1.6 Supposef is the product ofd distinct linear formsli(t0, . . . , tn). Let A be the matrix of
size(n+ 1)× d whosei-th column is formed by the coefficients ofli (defined, of course up to
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proportionality). Let∆I be the maximal minor ofA corresponding to a subsetI of [1, . . . , d]
andfI be the product of linear formsli, i 6∈ I. Show that

He(f) = (−1)n(d− 1)fn−1
X
I

∆2
If

2
I .

([288], p. 660).

1.7Let n = 2. Assume He(V (f)) = P2. Show thatf is the union of concurrent lines.

1.8 Show that the locus of the points on the plane where the first polars of a plane curveX are
tangent to each other is the Hessian ofX and the set of common tangents is the Cayleyan curve .

1.9Show that each flex tangent of a plane curveX, considered as a point in the dual plane, lies
on the Cayleayan ofX.

1.10 Show that the class of the Steinerian St(X) of a plane curveX of degreed is equal to
3(d− 1)(d− 2) but its dual is not equal to Cay(X).

1.11LetDm,n ⊂ Pmn−1 be the image in the projective space of the variety ofm× n matrices
of rank≤ min{m,n} − 1. Show that the variety

D̃m,n = {(A, x) ∈ Pmn−1 × Pn : A · x = 0}

is a resolution of singularities ofDm,n. Find the dual variety ofDm,n.

1.12Find the dual variety of the Segre varietyPn × Pn ↪→ Pn
2+2n.

1.13Prove that the degree of the dual variety of a nonsingular hypersurface of degreed in Pn is
equal tod(d− 1)n−1.

1.14LetX be the union ofk nonsingular conics in general position. Show thatX∨ is also the
union ofk nonsingular conics in general position. Check the Plücker formulas in this case.

1.15Let X has onlyδ ordinary nodes andκ ordinary cusps as singularities. Assume that the
dual curveX∨ has also only̌δ ordinary nodes anďκ ordinary cusps as singularities. Findδ̌ and
κ̌ in terms ofd, δ, κ.

1.16Give an example of a self-dual (i.e.X∨ ∼= X) plane curve of degree> 2.

1.17Let f ∈ S2E∨. Show that the mapE → E∨ defined byψ 7→ Dψ(f) corresponds to the
symmetric bilinear formE × E → C associated toQ.

1.18Show that the embedded tangent space of the Veronese variety Vern
d at a point represented

by the formld is equal to the projectivization of the linear space of homogeneous polynomials
of degreed of the formld−1m.

1.19Show using the following steps that Ver4
3 is 6-defective by proving that for 7 general points

pi in P4 there is a cubic hypersurface with singular points at thepi’s.

(i) Show that there exists a Veronese curveR4 of degree 4 through the seven points.

(ii) Show that the secant variety ofR4 is a cubic hypersurface which is singular alongR4.

1.20 Let q be a nondgenerate quadratic form inn + 1 variables. Show that VSP(q;n + 1)o

embedded inG(n,E) is contained in the linear subspace of codimensionn.

1.21Compute the catalecticant matrix Cat2(f), wheref is a homogeneous form of degree 4 in
3 variables.

1.22 Let f ∈ S2kE∨ andΩf be the corresponding quadratic form onSkE. Show that the
quadricV (Ωf ) in |SkE| is characterisezed by the following two properties:

• Its preimage under the Veronese mapνk : |E| → |SkE| is equal toV (f);
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• Ωf is apolar to any quadric in|SkE∨| which contains the image of the Veronese map
|E∨| = P(E) → |SkE∨| = |SkE|.

1.23Let Ck be the locus in|S2kE∨| of hypersurfacesV (f) such thatdet Catk(f) = 0. Show
thatCk is a rational variety. [Hint: Consider the rational mapCk− → |E|) which assigns to
V (f) the point defined by the subspace APk(f) and study its fibres].

1.24Give an example of a polar 4-gon of the cubict0t1t2 = 0.

1.25Find all binary forms of degreed for which VSP(f ; 2)o = ∅.

1.26Let f be a form of degreed in n+ 1 variables. Show that the variety VSP(f ;
`
n+d
d

´
)o is an

irreducible variety of dimensionn
`
n+d
d

´
.

1.27Describe the variety VSP(f ; 4), wheref is a nondegenerate quadratic form in 3 variables.

1.28Show that a smoothy point of a hypersurfaceX belongs to the intersection of the polar
hypersurfacesPx(X) andPx2(X) if and only if the line connectingx andy intersectsX at the
pointy with multiplicity ≥ 3.

Historical Notes

Although the polar lines of conics were known to mathematicians of Ancient Greece,
the first systematic study of polars of curves of higher degree started in the works of E.
Bobilier [32] and J. Pl̈ucker [318]. However, some of theory were known before to G.
Monge and J. Poncelet. According to the historical account in [160], vol. II, (see also
[97], p. 60) the name “polaire” was introduced by J. Gergonne. As was customary for
him, J. Steiner stated many properties of polar curves without proofs [394]. Other his-
torical information can be found in [28] and [308], p.279. The Hessian curve was first
introduced by J. Steiner [394] who called it theKerncurve(later the termKernfläche
was used for Hessian surfaces). The current name was coined by J. Sylvester in honor
of O. Hesse whose paper [209] provided many fundamental properties of the curve.
The Steinerian curve originates in the works of J. Steiner in more general setting of
nets of plane curves (not necessary the net of polars). The name was given by G.
Salmon and L. Cremona. The Cayleyan curve was introduced by A. Cayley in [48]
who called it thepippiana. The name was proposed by L. Cremona.

There are many beautiful results in the hessians in the classical literature, many
of them can be found in standard text-books of that time (e.g. [82], [160], [356]).
Excellent surveys of these results can be found in [28] and [308].

The theory of dual varieties, generalization of Plücker formulae to arbitrary dimen-
sion is still a popular subject of modern algebraic geometry. It is well-documented in
modern literature and for this reason this topic is barely touched here.

The theory of apolarity is one of the forgotten topics of classical algebraic geom-
etry. It originates from the works of Rosanes [341] and Reye [331]. According to G.
Salmon ([354], p. 346) the term “apolar” is due to Reye. We refer for survey of classi-
cal results to [308] and to a modern exposition of some of these results to [137] which
we followed in these notes.



Chapter 2

Conics

2.1 Self-polar triangles

2.1.1 The Veronese quartic surface

Recall that theVeronese varietyis defined to be the image of the map

|E| → |SdE|, [v] 7→ [vd].

If we identify |SdE| with the dual space ofSdE∨ = H0(|E|,O|E|(d)), then the map
is given by the complete linear system|O|E|(d)|. The Veronese variety is of dimension
n and degreedn. More generally, one defines a Veronese variety as the image ofPn in
PN(d,n)−1 under the map given by the complete linear system|OPn(d)| and a choice
of a basis inH0(Pn,OPn(d)).

Let d = n = 2, this is the case of theVeronese quartic surfaceVer22. The preimage
of a hyperplaneH ∈ |S2E∨| in |S2E| ∼= P5 is a conicC ∈ |S2E∨|. There are three
sorts of hyperplanes corresponding to the cases:C is nonsingular,C is a line-pair,C
is a double line. In the first caseH intersects the Veronese surface Ver2

2 = v2(P2)
transversally, in the second caseH is tangent to Ver22 at a single point, and in the third
caseH is tangent to Ver22 along a conic.

Choosing a basis inE we can identify the spaceS2E∨ with the space of symmetric
3×3 matrices. The Veronese surface is identified with matrices of rank 1. Its equations
are given by2×2 minors. The variety of matrices of rank≤ 2 is the cubic hypersurface
D2(2) given by the determinant. It singular along the Veronese surface.

Since any nonzero matrix of rank≤ 2 can be written as a sum of matrices of rank
1, we see thatD2(2) is equal to the first secant variety of Ver2

2.
A linear projection of Ver22 from a point not lying inD2(2) is an isomorphism onto

a quartic surfaceV4 in P4, called theprojected Veronese surface.
The image of Ver22 under a linear projection from a pointQ lying in D2(2) but not

lying on the surface is a non-normal quartic surfaceV ′4 in P4. To see this we may
assume thatQ = V (t20 + t21). The plane of conicsV (at20 + bt0t1 + ct21) containsQ and
intersects Ver22 along the conic of double linesV ((αt0 + βt1)2). The projection maps
this conic two-to-one to a double line of the image of Ver2

2.

45
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The image of Ver22 under a linear projection from its point is a cubic scroll inP3,
the image ofP2 under a map given by the linear system of conics with one base point.

2.1.2 Polar lines

LetC be a nonsingular conic. For any pointa ∈ P2 the first polarPa(C) is a line, the
polar line of a. For any linè there exists a unique pointa such thatPa(C) = l. The
pointa is called thepoleof `. The pointa considered as a line in the dual plane is the
polar line of the point̀ with respect to the dual coničC.

A set of three non-colinear lines`1, `2, `3 is called aself-polar trianglewith respect
toC if each`i is the polar line ofC with respect to the point of intersection of the other
two lines.

Recall that two unordered pairs{a, b}, {c, d} of points inP1 are calledharmoni-
cally conjugateif

−2ββ′ + αγ′ + α′γ = 0, (2.1)

whereV (αt20 + 2βt0t1 + γt21) = {a, b} andV (α′t20 + 2β′t0t1 + γ′t21) = {c, d}. It
follows that this definition does not depend on the order of points in each pair.

It is easy to check that (2.1) is equivalent to the polarity condition

Dcd(q) = Dab(q′) = 0, (2.2)

whereV (q) = {a, b}, V (q′) = {c, d}.

Proposition 2.1.1. Let`1, `2, `3 be a self-polar triangle ofC anda = `1 ∩ `2. Assume
a 6∈ C. Then the pairs of points̀3 ∩ C and (b, c) = (`1 ∩ `3, `2 ∩ `3) on the line
`3 are harmonically conjugate. Conversely, if{c, d} is a pair of points oǹ 3 which
is harmonically conjugate to the pairC ∩ `3, then the lines〈a, b〉, 〈a, c〉, `3 form a
self-polar triangle ofC.

Proof. Consider the pairC∩`3 as a quadricq in `3. We havec ∈ Pb(C), thusDbc(q) =
0. Restricting tò 3 and using (2.2), we see thatb, c form a harmonic pair with respect
to q. Conversely, ifDbc(q) = 0, the polar linePb(C) containsa and intersects̀3 at c,
hence coincides witha, c. Similarly,Pc(C) = a, b.

The polar linè = Pa(C) intersects the conicC at two pointsx, y such thata ∈
Tx(C) ∩ Ty(C).

Borrowing terminology from the Euclidean geometry, we call three non-collinear
lines inP2 a triangle. The lines themselves will be called thesidesof the triangle. The
three intersection points of pairs of sides are called theverticesof the triangle.

Let

f = a00t
2
0 + a11t

2
1 + a22t

2
2 + 2a01t0t1 + 2a02t0t2 + 2a12t1t2 = 0

be the equation of a nonsingular conicC. Choose projective coordinates inP2 such
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that`i = V (ti). Then

P[1,0,0](X) = `1 = V (
∂f

∂t0
) = V (a00t0 + a01t1 + a02t2), (2.3)

P[0,1,0](X) = `2 = V (
∂f

∂t1
) = V (a11t1 + a01t0 + a12t2),

P[0,0,1](X) = `2 = V (
∂f

∂t2
) = V (a22t2 + a02t0 + a12t1)

implies that

f =
1
2
(t20 + t21 + t22). (2.4)

Conversely, any conicV (l21 + l22 + l23) whereli are three linearly independent linear
forms, defines a self-polar triangle with the sidesV (li).

Any triangle inP2 defines the dual triangle in the dual planeP̌2. Its sides are the
pencils of lines with the base point of one of the vertices.

Proposition 2.1.2.The dual of a self-polar triangle of a conicC is a self-polar triangle
of the dual conicČ.

Proof. Choose the coordinate system such that the self-polar triangle is the coordinate
triangle. ThenC = V (t20 + t21 + t22) and the assertion is easily verified.

All of this is immediately generalized to nonsingular quadricsQ in Pn for arbitrary
n. We leave the generalization to the reader. For example, the problem of reducing
a quadratic form to the sum of squares (or toprincipal axes) is nothing more as the
problem of finding a self-conjugaten+ 1-polyhedron ofQ.

2.1.3 The variety of self-polar triangles

LetC be a nonsingular conic. The group of projective transformations ofP2 leavingC
invariant is isomorphic to the projective complex orthogonal group

PO3 = O3/(±I3) ∼= SO3.

It is also isomorphic to the group PSL2 via the Veronese map

ν2 : P1 → P2, [t0, t1] 7→ [t20, t0t1, t
2
1].

Obviously, PO3 acts transitively on the set of self-polar triangles ofC. We may assume
thatC is given by (2.4). The stabilizer subgroup of the self-polar triangle defined by
the coordinate lines is equal to the subgroup generated by permutation matrices and
orthogonal diagonal matrices. It is easy to see that it is isomorphic to the semi-direct
product(Z/2Z)2 o S3. An easy exercise in group theory gives that this group is
isomorphic to the permutation groupS4. Thus we obtain the following.

Theorem 2.1.3. The set of self-polar triangles of a nonsingular conic has a structure
of a homogeneous space SO3/Γ, whereΓ is a finite subgroup isomorphic toS4.
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Let us describe a natural compactification of the homogeneous space SO3/Γ. Let
V be a Veronese surface inP5. We viewP5 as the projective space of conics inP2

andV as its subvariety of double lines. A trisecant plane ofV is spanned by three
linearly independent double lines. A conicC ∈ P5 belongs to this trisecant if and only
if the corresponding three lines form a self-polar triangle ofC. Thus the set of self-
polar triangles ofC can be identified with the set of trisecant planes of the Veronese
surface which containC. The latter will also includedegenerate self-polar triangles
corresponding to the case when the trisecant plane is tangent to the Veronese surface at
some of its points of intersections. Projecting fromC to P4 we will identify the set of
self-polar triangles (maybe degenerate) with the set of trisecant lines of the projected
Veronese surfacēX. This is a closed subvariety of the Grassmann varietyG1(P4) of
lines inP4.

Let E be a linear space of odd dimension2k + 1 and letG(2, E) := G1(|E|) be
the Grassmannian of lines in|E|. Consider its Pl̈ucker embedding

∧2 : G(2, E) ↪→
G1(

∧2
E) = |

∧2
E|. Any nonzeroω ∈ (

∧2
E)∨ =

∧2
E∨ defines a hyperplaneHω

in |
∧2

E|. Considerω as a linear mapαω : E → E∨ defined byαω(v)(w) = ω(v, w).
The mapαω is skew-symmetric in the sense that its transpose map coincides with−αω.
Thus its determinant is equal to zero, and Ker(αω) 6= {0}. Letv0 be a nonzero element
of the kernel. Then for anyv ∈ E we haveω(v0, v) = αω(v)(v0) = 0. This shows that
ω vanishes on all decomposable 2-vectorsv0 ∧ v. This implies that the intersection of
the hyperplaneHω with G(2, E) contains all lines which intersect the linear subspace
Cω = |Ker(αω)| ⊂ |E| which we call thepoleof the hyperplaneHω.

Now recall the following result from linear algebra (see Exercise 2.1). LetA be
a skew-symmetric matrix of odd size2k + 1. Its principal submatricesAi of size2k
(obtained by deleting thei-th row and thei-th column) are skew-symmetric matrices of
even size. Let Pfi be the pfaffians ofAi (i.e. det(Ai) = Pf2i ). Assume that rank(A) =
2k, or, equivalently, not all Pfi vanish. Then the system of linear equationsA · x = 0
has one-dimensional null-space generated by the vector(a1, . . . , a2k+1), whereai =
(−1)i+1Pfi.

Let us go back to Grassmannians. Suppose we have ans + 1-dimensional sub-
spaceW in

∧2
E∨ spanned byω0, . . . , ωs. Suppose that for anyω ∈ W we have

rankαω = 2k, or equivalently, the poleCω ofHω is a point. It follows from the theory
of determinant varieties that the subvariety

{Cω ∈ |
2∧
E∨| : corankαω ≥ i}

is of codimension
(
i
2

)
in |

∧2
E∨| [204], [254]. Thus, ifs < 4, a generalW will satisfy

the assumption. Consider a regular mapΦ : |W | → |E| defined byω 7→ Cω. If we
takeω = t0ω0 + · · ·+ tsωs so thatt = (t0, . . . , ts) are projective coordinate functions
in |W |, we obtain thatΦ is given by2k+1 principal pfaffians of the matrixAt defining
ω.

We shall apply the preceeding to the casedimE = 5. Take a general 3-dimensional
subspaceW of

∧2
E∨. The mapΦ : |W | → |E ∼= P4 is defined by homogeneous

polynomials of degree 2. Its image is a projected Veronese surfaceS. Any trisecant
line of S passes through 3 points onS which are the poles of elementsw1, w2, w3



2.1. SELF-POLAR TRIANGLES 49

fromW . These elements are linearly independent since otherwise their poles lie on the
conic image of a line underΦ. But no trisecant line can be contained in a conic plane
section ofS. We considerω ∈ W as a hyperplane in the Plücker space|

∧2
E|. Thus

any trisecant line is contained in all hyperplanes defined byW . Now we are ready to
prove the following.

Theorem 2.1.4. Let X̄ be the closure inG1(P4) of the locus of trisecant lines of a
projected Veronese surface. Then̄X is equal to the intersection ofG1(P4) with three
linearly independent hyperplanes. In particular,X̄ is a Fano 3-fold of degree 5 with
canonical sheafωX̄ ∼= OX̄(−2).

Proof. We have already shown that the locus of poles of a general 3-dimensional linear
spaceW of hyperplanes in the Plücker space is a projected Veronese surfaceS and its
trisecant variety is contained inY = ∩w∈WHw ∩ G1(P4). So, its closureX̄ is also
contained inY . On the other hand, we know that̄X is irreducible and 3-dimensional
(it contains an open subset isomorphic to a homogeneous spaceX = SO(3)/S4). By
Bertini’s Theorem the intersection ofG1(P4) with a general linear space of codimen-
sion 3 is an irreducible 3-dimensional variety. This proves thatY = X̄. By another
Bertini’s theorem,Y is smooth. The rest is the standard computation of the canonical
class of the Grassmann variety and the adjunction formula. It is known that the canon-
ical class of the GrassmannianG = Gm(Pn) of m-dimensional subspaces ofPn is
equal to

KG = OG(−n− 1) (2.5)

(see Exercise 3.2). By the adjunction formula, the canonical class ofX̄ = G1(P4) ∩
H1 ∩H2 ∩H3 is equal toOX̄(−2).

Corollary 2.1.5. The homogeneous spaceX = SO(3)/S4 admits a smooth compacti-
ficationX̄ isomorphic to the intersection ofG1(P4), embedded via Plücker inP9, with
a linear subspace of codimension 3. The boundaryX̄ \X is an anticanonical divisor
cut out by a hypersurface of degree 2.

Proof. The only unproven assertion is one about the boundary. We use that the 3-
dimensional groupG = SL(2) acts transitively on a 3-dimensional varietyX minus
the boundary. For any pointx ∈ X consider the mapµx : G→ X, g 7→ g · x. Its fibre
over the pointx is the isotropy subgroupGx of x. The differential of this map defines
a linear mapg = Te(G) → Tx(X). When we letx vary inX, we get a map of vector
bundles

φ : gX = g×X → T (X).

Now take the determinant of this map

3∧
φ =

3∧
g×X →

3∧
T (X) = K∨

X ,

whereKX is the canonical line bundle ofX. The left-hand side is the trivial line
bundle overX. The map

∧3(φ) defines a section of the anticanonical line bundle.
The zeros of this section are the points where the differential of the mapµx is not
injective, i.e., wheredimGx > 0. But this is exactly the boundary ofX. In fact, the
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boundary consists of orbits of dimension smaller than 3, hence the isotropy of each
such orbit is of positive dimension. This shows that the boundary is contained in our
anticanonical divisor. Obviously, the latter is contained in the boundary. Thus we see
that the boundary is equal to the intersection ofG1(P4) with a quadric hypersurface.

Remark2.1.1. There is another construction of the varietyX̄ of self-polar triangles due
to S. Mukai and H. Umemura [289]. Let V6 be the space of homogeneous binary forms
f(t0, t1) of degree 6. The group SL(2) has a natural linear representation inV6 via
linear change of variables. Letf = t0t1(t40− t41). The zeros of this polynomials are the
vertices of a regular octahedron inscribed inS2 = P1. The stabilizer subgroup off in
SL(2) is isomorphic to the binary octahedron groupΓ ∼= S4. Consider the projective
linear representation of SL(2) in |V6| ∼= P5. In the loc. cit. it is proven that the closure
X̄ of this orbit in |V6| is smooth andB = X̄ \ X is the union of two orbitsKt50t1
andKt60. The first orbit is of dimension 2. The isotropy subgroup of the first orbit is
isomorphic to the multiplicative groupC∗. The second orbit is one-dimensional and
is contained in the closure of the first one. The isotropy subgroup is isomorphic to the
subgroup of upper triangular matrices. They also show thatB is equal to the image of
P1 × P1 under a SL(2)-equivariant map given by a linear system of curves of bidegree
(5, 1). ThusB is of degree 10, hence is cut out by a quadric. The image of the second
orbit is a smooth rational rational curve inB and is equal to the singular locus ofB.
The fact that the two varieties are isomorphic follows from the theory of Fano 3-folds.
It can be shown that there is a unique Fano threefoldV with Pic(V ) = Z 1

2KV and
K3
V = 40. We will discuss this variety in a later chapter.

2.1.4 Conjugate triangles

LetC = V (f) be a nonsingular conic,` be a line inP2, andp be its pole with respect
to C. From the point view of linear algebra, the one-dimensional subspace definingp
is orthogonal to the two-dimensional subspace defining` with respect to the symmetric
bilinear form defined byf .

Given a triangle with sides̀1, `2, `3, the poles of the sides are the vertices of the
triangle which is called theconjugate triangle. Its sides are the polar lines of the ver-
tices of the original triangle. It is clear that this defines a duality in the set of triangles.
Clearly, a triangle isself-conjugateif and only if it is a self-polar triangle.

Let `1, `2, `3 be three tangents toC at the pointsp1, p2, p3, respectively. They form
a triangle which can be viewed as acircumscribed triangle. It follows from Theorem
1.1.1that the conjugate triangle has verticesp1, p2, p3. It can be viewed as aninscribed
triangle. The lines`′1 = 〈p2, p3〉, `′1 = 〈p2, p3〉, `′1 = 〈p2, p3〉 are polar lines with
respect to the pointsq1, q2, q3, respectively.

Two lines inP2 are calledconjugatewith respect toC if the pole of one of the lines
belongs to the other line. It is a reflexive relation on the set of lines. Obviously, two
triangles are conjugate if and only if each of the sides of the first triangle is conjugate
to a side of the second triangle.
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Now let us consider the following problem. Given two triangles without common
sides, find a conicC such that the triangles are conjugate to each other with respect to
the conicC. Using equations (2.3) it is easy to get a necessary and sufficient condition
for this to be true. Letv1, v2, v3 be the coordinate vectors of the verticesp1, p2, p3

of the first triangle andw1, w2, w3 the coordinate vectors of the sides of the second
triangle. LetA be the symmetric matrix of the quadratic form defining the conic. We
have

A · vi = λiwi, i = 1, 2, 3 (2.6)

for some nonzero constantsλ1, λ2, λ3. Taking the dot-products, we get

vj · (A · vi) = λivj · wi, 1 ≤ i < j ≤ 3.

Since the matrixA is symmetric, we get 3 linear equations

λ1v2 · w1 − λ2v1 · w2 = 0
λ1v3 · w1 − λ3v1 · w3 = 0
λ2v3 · w2 − λ3v2 · w3 = 0.

Computing the determinant of the matrix of the coefficients of the system of linear
equations, we obtain a necessary condition for the existence of the symmetric matrix
A:

(v2 · w1)(v1 · w3)(v3 · w2)− (v3 · w1)(v1 · w2)(v2 · w3) = 0. (2.7)

Conversely, taking a nonzero solution(λ1, λ2, λ3) of these equations, we obtain that
the matrix

t[v1v2v3] · [w1w2w3] ·D = tV ·W ·D,
whereD is the diagonal matrix corresponding to the solution, is a symmetric nonsin-
gular matrix. Equation (2.6) can be rewritten in equivalent form

tV ·A · V = tV ·W ·D,

so that we can take
A = W ·D · V −1

which is obviously symmetric and nonsingular. Note equation (2.6) implies that each
triangle is self-conjugate with respect to some conic. Each such conic can be diagonal-
ized in the basis defined by the three vertices of the triangle.

Note that, by choosing projective coordinates such thatV = I3, the condition (2.6)
is equivalent to that the matrixW ·D is symmetric for some invertible diagonal matrix
D.

Note that, without much change, we can extend this argument to the projective
spaceP3 to find a necessary and sufficient condition in order that3 points in general
linear position are conjugate to3 hyperplanes in general linear position with respect to
a nonsingular quadric. As above, we assume that the coordinate vectors of the three
point is equal toV = [e1e2e3], wheree1, e2, e3 are the first unit vectors inC4. Then
we find a diagonal matrixD such thatW · D with the last row deleted is symmetric.
Then we extendW · D = (aij) to a square symmetric matrixA by adding one more
column(a14, a24, a34, a44), wherea44 is chosen such thatA is invertible. The matrix
A does the job (see [406]).
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Remark2.1.2. Consider a triangle (with an order on the set of sides, or vertices) as a
point in (P2)3 defined by its vertices. Then its sides are points in the dual plane which
are expressed as polynomials of degree 2 in coordinates of the vertices. Thus equation
(2.6) implies that the closure of the locus of the ordered pairs of conjugate triangles
with respect to some conic is a hypersurface in(P2)3 × (P2)3 = (P2)6 given by a
equation of multi-degree(1, 1, 1, 2, 2, 2) which is anti-symmetric in the first and the
last three variables.

2.2 Poncelet relation

2.2.1 Darboux’s theorem

Let C be a conic, and letT = {`1, `2, `3} be a circumscribed triangle. A conicC ′

which hasT as an inscribed triangle is called thePoncelet related conic. Since passing
through a point impose one condition, we have∞2 Poncelet related conics correspond-
ing to a fixed triangleT . VaryingT we expect to get∞5 conics, so that any conic is
Poncelet related toC with respect to some triangle. But surprisingly this is wrong! A
theorem of Darboux asserts that there is a pencil of divisorsp1 + p2 + p3 such that
the trianglesT with sides tangent toC at the pointsp1, p2, p3 define the same Poncelet
related conic.

We shall prove it here. In fact, for the future use we shall prove a more general
result.

Instead of circumscribed triangles we shall consider circumscribedn-polygons. An
n-polygonP in P2 is an ordered set ofn ≥ 3 points(p1, . . . , pn) in P2 such that no
three pointspi, pi+1, pi+2 are colinear. The pointspi are theverticesof P , the lines
pi, pi+1 are called thesidesof P (herepn+1 = p1). We say that two polygons are
equal if the sets of their sides are equal. The number ofn-polygons with the same set
of vertices is equal ton!/2n = (n− 1)!/2.

We say thatP circumscribes a nonsingular conicC if each side is tangent toC.
Given any ordered set(q1, . . . , qn) of n points onC, let `i be the tangent lines to
C at the pointsqi. Then they are the sides of then-polygonP with verticespi =
`i ∩ `i+1, i = 1, . . . , n (`n+1 = `1). This polygon circumscribesC. This gives a
one-to-one correspondence betweenn-polygons circumscribingC and ordered sets of
n points onC.

Let P = (p1, . . . , pn) be ann-polygon that circumscribes a nonsingular conicC.
A conicS is calledPonceletn-relatedtoC with respect toP if all pointspi lie onC.

Let us start with any two conicsC andS. We choose a pointp1 on S and a
tangent̀ 1 to C passing throughp1. It intersectsS at another pointp2. We repeat this
construction. If the process stops aftern steps (i.e. we are not getting new pointspi),
we get an inscribedn-polygon inS which circumscribesC. In this caseS is Poncelet
related toC. The Darboux Theoremwhich will prove later says that if the process
stops, then we can construct infinitely manyn-polygons with this property starting
from an arbitrary point onS.

Consider the following correspondence onC × S:

R = {(x, y) ∈ C × S : x, y is tangent toC atx}.
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Since, for anyx ∈ C the tangent toC at x intersectsS at two points, and, for any
y ∈ S there are two tangents toC passing throughy, we get thatE is of bidegree
(2, 2). This means if we identifyC,S with P1, thenR is a curve of bidegree(2, 2). As
is well-knownR is a curve of arithmetic genus 1.

Lemma 2.2.1. The curveR is nonsingular if and only if the conicsC andS intersect
at four distinct points. In this case,R is isomorphic to the double cover ofC (or S)
ramified over the four intersection points.

Proof. Consider the projection mapπS : R → S. This is a map of degree 2. A
branch pointy ∈ S is a point such that there only one tangent toC passing throughy.
Obviously, this is possible only ify ∈ C. It is easy to see thatR is nonsingular if and
only if the double coverπS : R → S ∼= P1 has four branch points. This proves the
assertion.

Note that the second projection mapπC : R → C must also have 4 branch points,
if R is nonsingular. A pointx ∈ C is a branch point if and only if the tangent ofC atx
is tangent toS. So we obtain that two conics intersect transversally if and only if there
are four different common tangents.

Take a point(x[0], y[0]) ∈ R and let(x[1], y[1]) ∈ R be defined as follows:y[1] is
the second point onS on the tangent tox[0], x[1] 6= x[0] is the point where the tangent
of C at [x[1] containsy[1]. This defines a self-mapτC,S : R → R. This map has
no fixed points onR and hence, if we fix a group law onR, is a translation mapta
with respect to a pointa. Obviously, we get ann-polygon if and only ifta is of order
n, i.e. the order ofa in the group law isn. As soon as this happens we can use the
automorphism for constructingn-polygons starting from an arbitrary point(x[0], y[0]).
This is the Darboux Theorem which we have mentioned in above.

Theorem 2.2.2. (G. Darboux) LetC andS be two nondegenerate conics intersecting
transversally. ThenC andS are Ponceletn-related if and only if the automorphism
τC,S of the associated elliptic curveR is of ordern. If C andS are Ponceletn related,
then starting from any pointx ∈ C and any pointy ∈ S there exists ann-polygon with
a vertex aty and one side tangent toC at y which circumscribesC and inscribed inS.

In order to give a more explicit answer when two conics are Poncelte related one
needs to recognize when the automorphismτC,S is of finite order. Let us choose pro-
jective coordinates such thatC is the Veronese conict0t2 − t21 = 0, the image ofP1

under the map[t0, t1] 7→ [t20, t0t1, t
2
2]. By using a projective transformation leaving

C invariant we may assume that the four intersection pointsp1, . . . , p4 of C andS
correspond to the points[1, 0], [1, 1], [0, 1], [1, a] ∈ P1, wherea 6= 0, 1. ThenR is
isomorphic the elliptic curve given by the affine equation

y2 = x(x− 1)(x− a).

The conicS belongs to the pencil of conics with base pointsp1, . . . , p4:

(t0t2 − t21) + λt1(at0 − (1 + a)t1 + t2) = 0.
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We choose the zero point in the group law onR to be the point(x[0], y[0]) = (p4, p4) ∈
C × S. Then the automorphismτC,S sends this point to(x[1], y[1]), where

y[1] = (λa, λ(1 + a) + 1, 0), x[1] = ((a+ 1)2λ2, 2a(1 + a)λ, 4a2).

Thusx[1] is the image of the point(1, 2a
(a+1)λ ) ∈ P1 under the Veronese map. The

pointy[1] corresponds to one of the two roots of the equation

y2 =
2a

(a+ 1)λ
(

2a
(a+ 1)λ

− 1)(
2a

(a+ 1)λ
− a).

So we need a criterion characterizing points(x,±
√
x(x− 1)(x− a) of finite order.

Note that different choice of the sign corresponds to the inversion involution on the
elliptic curve. So, the order of the points corresponding to two different choices of the
sign are the same. We have the following:

Theorem 2.2.3. (A. Cayley). LetR be an elliptic curve with affine equation

y2 = g(x),

whereg(x) is a cubic polynomial with three distinct nonzero roots. Write

y =
∞∑
k=0

akx
k.

Then a point(0,
√
g(0)) is of ordern if and only if∣∣∣∣∣∣∣∣∣
a2 a3 . . . am+1

a3 a4 . . . am+2

...
...

...
am+1 am+2 . . . a2m

∣∣∣∣∣∣∣∣∣ = 0, n = 2m+ 1,

∣∣∣∣∣∣∣∣∣
a3 a4 . . . am+1

a4 a5 . . . am+2

...
...

...
am+1 am+2 . . . a2m

∣∣∣∣∣∣∣∣∣ = 0, n = 2m.

Proof. We fix a square rootc0 of g(0) and consider the pointp = (0, c0). A necessary
and sufficient condition forp to be an-torsion point is that there exists a rational func-
tion f onR with a zero of ordern atp and a pole of ordern at the infinity point(∞, 0).
We shall assume thatn = 2k − 1 is odd. The other case is considered similarly. Since
f is regular on the affine part, it must be a restriction of a polynomialf(x, y) of some
degreed. Since the infinity is an inflection point, the degree off must be equal tok−1
andf(x, y) must have a zero of order2k − 1 at (0, c0) and a pole of orderk − 2 at
infinity. Now we expandy =

∑∞
k=0 akx

k and put

ym = a0 + a1x+ · · ·+ ak−1x
k−1.
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We have

y − yk = akx
k + · · ·+ a2k−2x

2k−2 + . . .

x(y − yk−1) = ak−1x
k + · · ·+ a2k−3x

2k−2 + . . .

. . . = . . .

xk−2(y − y2) = a2x
k + · · ·+ akx

2k−2 + . . . .

We can findn− 1 coefficientsc0, c1, . . . , ck−2 such that the polynomial

f(x, y) = c0(y − yk) + c1x(y − yk−1) + · · ·+ ck−2x
k−2(y − y2)

vanishes atx = 0 of order2k − 1 if and only if∣∣∣∣∣∣∣∣
ak ak−1 . . . a2

ak+1 ak . . . a3

. . . . . . . . . . . .
a2k−2 a2k−3 . . . ak

∣∣∣∣∣∣∣∣ = 0.

It is easy to see that this determinant is equal to one of the determinants from the
assertion of the theorem.

To apply the proposition we have to take

α =
2a

(a+ 1)λ
, β = 1 +

2a
(a+ 1)λ

, γ = a+
2a

(a+ 1)λ
.

Let us consider the varietyPn of pairs of conics(C,S) such thatS is Poncelet
n-related toC. We assume thatC andS intersect transversally. We already know that
Pn is a hypersurface inP5×P5. Obviously,Pn is invariant with respect to the diagonal
action of the group SL(3) (acting on the space of conics). Thus the equation ofPn is
an invariant of a pair of conics. This invariant was computed by F. Gerbradi [184]. It is
of bidegree( 1

4T (n), 1
2T (n)), whereT (n) is equal to the number of elements of order

n in the abelian group(Z/nZ)2.
Let us look at the quotient ofPn by PSL(3). Consider the rational mapβ : P5 ×

P5 → (P2)(4) which assigns to(C,S) the point setC ∩S. The fibre ofβ over a subset
B of 4 points in general linear position is isomorphic to an open subset ofP1 × P1,
whereP1 is the pencil of conics with base pointB. Since we can always transform
suchB to the set of points{[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]}, the group PSL(3) acts
transitively on the open subset of such 4-point sets. Its stabilizer is isomorphic to the
permutation groupS4 generated by the following matrices:0 −1 0

1 0 0
0 0 1

 ,

1 0 0
0 0 −1
0 1 0

 ,

1 0 −1
0 −1 −1
0 0 −1

 .

The orbit spacePn/PSL(3) is isomorphic to a curve in an open subset ofP1×P1/S4,
whereS4 acts diagonally. By considering one of the projection maps, we obtain that
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Pn/PSL(3) is an open subset of a cover ofP1 of degreeN equal to the number of Pon-
celetn-related conics in a given pencil of conics with 4 distinct base points with respect
to a fixed conic from the pencil. This number was computed by F. Gerbardi [184] and
is equal to1

2T (n). A modern account of Gerbardi’s result is given in [17]. A smooth
compactification ofPn/PSL(3) is the modular curveX0(n) which parametrizes the
isomorphism classes of the pairs(R, e), whereR is an elliptic curve ande is a point of
ordern in R.

Proposition 2.2.4. LetC andS be two nonsingular conics. Consider eachn-polygon
inscribed inC as a subset of its vertices, and also as a positive divisor of degreen on
C. The closure of the set ofn-polygons inscribed inC and circumscribingS is either
empty, or ag1

n, i.e. a linear system of divisors of degreen.

Proof. First observe that two polygons inscribed inC and circumscribingS which
share a common vertex must coincide. In fact, the two sides passing through the vertex
in each polygon must be the two tangents ofS passing through the vertex. They in-
tersectC at another two common vertices. Continuing in this way we see that the two
polygons have the same set of vertices. Now consider the Veronese embeddingvn of
C ∼= P1 in Pn. An effective divisor of degreen is a plane section of the Veronese curve
Ver1n = vn(P1). Thus the set of effective divisors of degreen onC can be identified
with the dual projective spacěPn. A hyperplane iňPn is the set of hyperplanes inPn
which pass through a fixed point inPn. The degree of an irreducible curveX ⊂ P̌n of
divisors is equal to the cardinality of the set of divisors containing a fixed general point
of Ver1n. In our case it is equal to 1.

2.2.2 Poncelet curves

Let C andS be two Ponceletn-related conics in the planeP2 = |E|. Recall that this
means that there existn pointsp1, . . . , pn onC such that the tangent lines`i = Tpi

(C)
meet onS. One can drop the condition thatS is a conic. We say that a plane curveS
of degreen− 1 is Poncelet relatedto the conicC if there existn points as above such
that the tangents toC at these points meet onS.

Before we prove an analog of Darboux’s Theorem for Poncelet related curves of
higher degree we have to relate these curves to curves of jumping lines of some special
rank 2 vector bundles on the projective plane, so called theSchwarzenberger bundles.

Let us writeP1 = |U | for some vector space of dimension 2 andP2 = |V | for
some vector space of dimension 3. A closed embeddingν : P1 ↪→ P2 has the image
isomorphic to a nonsingular conic, a Veronese curve. This defines an isomorphism

V ∨ = H0(|V |,O|V |(1)) ∼= H0(|U |,O|U |(2)) = S2U∨,

whose transpose defines an isomorphismV ∼= S2U . This gives a bijective correspon-
dence between nonsingular conics and linear isomorphismsV → S2U . Also, since
dim

∧2
U = 1, a choice of a basis in

∧2
U defines a linear isomorphismU ∼= U∨.

This gives an isomorphism of projective spaces|U | ∼= |U |∨ which does not depend on
a choice of a basis in

∧2
U . Thus a choice of a nonsingular conic in|V | defines also



2.2. PONCELET RELATION 57

an isomorphism|V ∨| → |S2U | which must be given by a nonsingular conic in|V ∨|.
This is of course the dual conic.

Fix an isomorphismP2 ∼= |S2U | defined by a choice of a conicC in P2. Consider
the multiplication mapS2U ⊗ Sn−2(U) → SnU . It defines a rank 2 vector bundle
Sn,C on P2 whose fibre at the pointx = [q] ∈ |S2U | is equal to the quotient space
Sn(U)/qSn−2(U). One easily see that it admits a resolution of the form

0→ Sn−2(U)(−1)→ SnU → Sn,C → 0, (2.8)

where we identify a vector spaceE with the vector bundleπ∗E, whereπ is the struc-
ture map to the point. The vector bundleSn,C is called the Schwarzenberger bundle
associated to the conicC. Its dual bundle has the fibre over a pointx = [q] equal to the
dual space

(SnU/qSn−2U)∨ = {f ∈ SnU∨ : Dq(f) = 0} = Ker(apq). (2.9)

If we embed the dual projective line|U∨|) in |SnU∨| by means of the Veronese map,
then the divisor of zeros ofq can be considered as a divisorV (q) of degree 2 on the
Veronese curve

Rn ⊂ |SnU∨|,

or, equivalently, as a 1-secant ofRn. A hyperplane containing this divisor is equal to
V (qg) for someg ∈ Sn−2U . Thus the space|Ker(apq)| can be identified with the
projective span ofV (q). In other words, the fibres of the dual projective bundleS∗n,C
are equal to the secants of the Veronese curveRn.

It follows from (2.8) that the vector bundleSn,C has the first Chern class of degree
n−1 and the second Chern class is equal ton(n−1)/2. Thus we expect that a general
section ofSn,C hasn(n− 1)/2 zeroes. We identify the space of sections ofSn,C with
the vector spaceSnU . A point [s] ∈ |SnU | can be viewed as a hyperplaneHs in
|SnU∨|. Its zeros are the secants ofRn contained inHs. SinceHs intersectsRn at
n-pointsp1, . . . , pn, any secantpi, pj is a secant contained inHs. The number of such
secants is equal ton(n− 1)/2.

Recall that we can identify the conic with|U | by means of the Veronese mapν2 :
|U | → |S2U |. Similarly, the dual conicC∨ is identified with |U∨|. By using the
Veronese mapνn : |U∨| → |SnU∨ we can identifyC∨ with Rn. Now a point onRn
is a tangent line on the original conicC, hencen pointsp1, . . . , pn from above are the
sides̀ i of ann-polygon circumscribingC. A secantpi, pj from above is a point inP2

equal to the intersection pointqij = `i ∩ `j . And then(n − 1)/2 pointsqij represent
the zeros of a sections of the Schwarzenberger bundleSn,C .

For any two linearly independent sectionss1, s2, their determinants1 ∧ s2 is a
section of

∧2 Sn,C and hence its divisor of zeros belongs to|OP2(n − 1)|. When
we consider the pencil〈s1, s2〉 spanned by the two sections, the determinant of each
members = λs1 + µs2 has the zeros on the same curveV (s1 ∧ s2) of degreem− 1.

Let us summarize this discussion by stating and the proving the following general-
ization of Darboux’s Theorem.

Theorem 2.2.5. Let C be a nonsingular conic inP2 and Sn,C be the associated
Scwarzenberger rank 2 vector bundle overP2. Thenn-polygons circumscribingC
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are parameterized by|Γ(Sn,C)|. The vertices of the polygonΠs defined by a sections
correspond to the subschemeZ(s) of zeros of the sections. A curve of degreen − 1
passing through the vertices corresponds to a pencil of a sections ofSn,C containings
and is equal to the determinant of a basis of the pencil.

Proof. A sections with the subscheme of zerosZ(s) with ideal sheafIZ(s) defines the
exact sequence

0→ OP2
s→ Sn,C → IZ(n− 1)→ 0.

A section ofIZ(n − 1) is a plane curve of degreen − 1 passing throughZ(s). The
image of a sectiont of Sn,C in Γ(IZ(n−1)) is the discriminant curves∧ t. Any curve
defined by an element fromΓ(IZ(n−1)) passes through the vertices of then-polygon
Πs and is uniquely determined by a pencil of sections containings.

One can explicitly write the equation of a Poncelet curve as follows. First we
choose a basisξ0, ξ1 of the spaceU and the corresponding basis(ξd0 , ξ

d−1
0 ξ1, . . . , ξ

d
1)

of the spaceSdU . The dual basis inSnU∨ is (
(
d
i

)
td−i0 ti1)0≤i≤d. Now the coordinates

in the plane|S2U | are t20, 2t0t1, t
2
2, so a point in the plane is a binary conicQ =

aξ20 +2bξ0ξ1 + cξ21 . For a fixedx = [Q] ∈ |S2U |, the matrix of the multiplication map
Sn−2U → SnU,G 7→ QG is

K(x) =



a
2b a

c 2b
...

c
...

...
...

... a

... 2b
c


A section ofSn,C is given byf =

∑n
i=0 ciξ

n−i
0 ξi1 ∈ SnU . Its zeros is the set of points

x such that the vectorc of the coefficients belongs to the column subspace of the matrix
K(x). Now we varyf in a pencil of binary forms whose coefficient vectorc belongs
to the nullspace of some matrixA of size (n − 1) × (n + 1) and rankn − 1. The
determinant of this pencil of sections is the curve in the plane defined by the degree
n− 1 polynomial equation inx = [a, b, c]

det
(
K(x) ·A

)
= 0.

Note that the conicC corresponding to our choice of coordinates isV (t21 − t0t2).
Remark2.2.1. Recall that a section ofSn,C defines an-polygon in the plane|S2U |
corresponding to the hyperplane sectionHs ∩ Rn. Its vertices is the scheme of zeros
Z(s) of the sections. Let π : X(s) → P2 be the blow-up ofZ(s). For a generals,
the linear system of Poncelet curves throughZ(s) embeds the surfaceX(s) in |SnU∨|
with the image equal toHs ∩ Sec1(Rn). The exceptional curves of the blow-up are
mapped onto the secants ofRn which are contained inHs. These are the secants
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pi, pj , whereHs ∩ Rn = {p1, . . . , pn}. The linear system defining the embedding is
the proper transform of the linear system of curves of degreen − 1 passing through
1
2n(n−1) points ofZ(s). This implies that the embedded surfaceX(s) has the degree
equal to(n−1)2− 1

2n(n−1) = 1
2 (n−1)(n−2). This is also the degree of the secant

variety Sec1(Rn) . For example, taken = 4 to get that the secant variety ofR4 is a
cubic hypersurface inP4 whose hyperplane sections are cubic surfaces isomorphic to
the blow-up of the six vertices of a complete quadrilateral.

2.2.3 Invariants of pairs of conics

The Poncelet Theorem is an example of aporismwhich can be loosely stated as fol-
lows. If one can find one object satisfying a certain special property then there are
infinitely many such objects. In case of Darboux’s Theorem this is the property of the
existence of a polygon inscribed in one conic and circumscribing the other conic. Here
we consider another example of a porism between two conics. This time the relation is
the following.

Given two nonsingular conicsC andS there exists a self-conjugate triangle with
respect toC which is inscribed inS. We say that the two conics areconjugateor
apolar.

Proposition 2.2.6.LetS andC be two nonsingular conics defined by symmetric matri-
cesA andB respectively. ThenC admits a self-conjugate triangle which is inscribed
in S if and only if

Tr(AB−1) = 0.

Moreover, if this condition is satisfied, for any pointx ∈ S \ (S ∩ C) there exists a
self-conjugate triangle inscribed inS with vertex atx.

Proof. LetQ be an invertible3×3 matrix. ReplacingA withA′ = QTAQ andB with
B′ = QTBQ we check that

Tr(A′B′−1) = Tr(QTAB−1(QT )−1) = Tr(AB−1).

This shows that the trace condition is invariant with respect to a linear change of vari-
ables. Thus we may assume thatC = V (t20+t21+t22). Suppose there is a self-conjugate
triangle with respect toC which is inscribed inS. Since the orthogonal group ofC
acts transitively on the set of self-conjugate triangles, we may assume that the triangle
is the coordinate triangle. Then the points[1, 0, 0], [0, 1, 0], and[0, 0, 1] must be onS.
Hence

S = V (at0t1 + bt0t2 + ct1t2),

and the condition Tr(AB−1) is verified.
Let us show the sufficiency of the trace condition. Choose coordinates as above.

Let
S = V (at20 + bt21 + ct22 + 2dt0t1 + 2et0t2 + 2ft1t2). (2.10)

The trace condition is
a+ b+ c = 0.
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Let x = [x0, x1, x2] be any point onS and` = V (x0t0 + x1t1 + x2t2) be the polar
line Px(C). Without loss of generality, we may assume thatx2 = −1 so that we can
write t2 = x0t0 + x1t1 and taket0, t1 as coordinates oǹ. The line` intersectsS at
two points[c0, c1] and[d0, d1] which are the zeros of the binary form

q = at20 + bt21 + c(x0t0 + x1t1)2 + 2dt0t1 + 2(et0 + ft1)(x0t0 + x1t1)

= (a+ 2ex0 + cx2
0)t

2
0 + (b+ 2fx1 + cx2

1)t
2
1 + 2(d+ ex1 + fx0 + cx0x1)t0t1.

The line` intersectsC at the points

y = (a0, a1, x0a0 + x1a1), z = (b0, b1, b0x0 + b1x1).

Their coordinates on the linèare the zeros of the binary form

q′ = t20 + t21 + (x0t0 + x1t1)2 = (1 + x2
0)t

2
0 + 2x0x1t0t1 + (1 + x2

1)t
2
1.

It follows from Proposition2.1.1that the pointsx, y, z are the vertices of a self-polar
triangle if and only if (2.1) holds. To check this condition we will use thata+b+c = 0
andax2

0 + bx2
1 + c+ dx0x1 − ex0 − fx1 = 0. We have

(a+2ex0 +cx2
0)(1+x2

1)+(b+2fx1 +cx2
1)(1+x2

0)−2(d+ex1 +fx0 +cx0x1)x0x1

= a+ b+ 2ex0 + cx2
0 + 2fx1 + cx2

1 + (a+ 2ex0 + cx2
0)x

2
1 + (b+ 2fx1 + cx2

1)x
2
0

−2(d+ ex1 + fx0 + cx0x1)x0x1

Replacinga+ b with −c = −ax2
0 − bx2

1 − 2dx0x1 + 2ex0 + 2fx1 we check that the
sum is equal to zero. Thus starting from any pointx onS we find that the triangle with
verticesx, y, z is self-conjugate with respect toC.

Remark2.2.2. Let P2 = |E| andC = V (q), S = V (f), whereq, f ∈ S2E∨. Let
Č = V (ψ), whereψ ∈ S2(E). Then the trace condition from Proposition2.2.6is

〈ψ, f〉 = 0, (2.11)

where the pairing is the polarity pairing (1.2). In other words,C is conjugate toS if
and only if the dual conic ofS is apolar toC.

Consider the set of self-polar triangles with respect toC inscribed inS. We know
that this set is either empty or of dimension≥ 1. We consider each triangle as a set of
its 3 vertices, i.e. as an effective divisor of degree 3 onS.

Proposition 2.2.7. The closureX of the set of self-polar triangles with respect toC
which are inscribed inS, if not empty, is ag1

3 , i.e. a linear system of divisors of degree
3.

Proof. First we use that two self-polar triangles with respect toC and inscribed in
S which share a common vertex must coincide. In fact, the polar line of the vertex
must intersectS at the vertices of the triangle. Then the assertion is proved using the
argument from the proof of Proposition2.2.4.
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Note that a generalg1
3 contains 4 singular divisors corresponding to ramification

points of the corresponding mapP1 → P1. In our case these divisors correspond to 4
intersection points ofC andS.

Another example of a poristic statement is the following.

Theorem 2.2.8. LetT andT ′ be two different triangles. The following assertions are
equivalent:

(i) there exists a conicS containing the vertices of the two triangles;

(ii) there exists a conicΣ touching the sides of the two triangles;

(iii) there exists a conicC with respect to which each of the triangles is self-polar.

Moreover, when one of the conditions is satisfied, there is an infinite number of triangles
inscribed inS, circumscribed aroundΣ, and all of these triangles are self-polar with
respect toC.

Proof. (iii)⇔ (ii) Let [l1], [l2], [l3] and[m1], [m2], [m3] be the sides of the two triangles
considered as points in the dual planeP̌2. Consider the linear systemsV = |OP̌2(2)−
[l1] − [l2[−[l3]| andW = |OP̌2(2) − [m1] − [m2] − [m3]| of conics passing through
the corresponding points. LetC = V (f). We can write

f = a1l
2
1 + a1l

2
2 + a3l

2
3 = b1m

2
1 + b2m

2
2 + b3m

2
3

for some scalarsai, bi. For anyV (ψ) ∈ V ∪ W we have〈ψ, f〉 = 0. This shows
that the span ofV andW in |OP̌2(2)| is contained in a hyperplane orthogonal tof .
ThusV ∩W 6= ∅ and a common conic vanishes at allli’s andmi’s. Hence the dual
conicΣ is touching the sides of the two triangles. Reversing the arguments, we find
that condition (ii) implies that there exists a conicV (f) such that〈ψ, f〉 = 0 for any
V (ψ) ∈ V ∪W . Since, for anyV (ψ) ∈ V ∪W , 〈ψ, l2i 〉 = 〈ψ, l2i 〉 = 0, we obtain
thatf belongs to the linear span ofl21, l

2
2, l

2
3, and also to the linear span ofm2

1,m
2
2,m

2
3.

This proves the equivalence of (ii) and (iii). More details for this argument can be seen
in the later chapter about the apolarity theory.

(iii)⇔ (i) This follows from Proposition2.1.2.
Let us prove the last assertion. Suppose one of the conditions of the Theorem is

satisfied. Then we have the conicsC,S,Σ with the asserted properties with respect to
the two trianglesT, T ′. By Proposition2.2.7, the set of self-polar triangles with respect
toC inscribed inS is ag1

3 . By Proposition2.2.4, the set of triangles inscribed inS and
circumscribingΣ is also ag1

3 . Two g1
3 ’s with 2 common divisors coincide.

LetC = V (f) andS = V (g) be two conics (not necessary nonsingular). Consider
the pencilV (t0f + t1g) of conics spanned byC andS. The zeros of the discrimi-
nant equationD = discr(t0f + t1g) = 0 correspond to singular conics in the pencil.
In coordinates, iff, g are defined by symmetric matricesA = (aij), B = (bij), re-
spectively, thenD = det(t0A + t1B) is a homogeneous polynomial of degree≤ 3.
Choosing different system of coordinates replacesA,B byQTAQ,QTBQ, whereQ
is an invertible matrix. This replacesD with det(Q)2D. Thus the coefficients ofD
are invariants on the space of pairs of quadratic forms onC3 with respect to the action
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of the group SL(3). To computeD explicitly, we use the following formula for the
determinant of the sum of twon× n matricesX + Y :

det(X + Y ) =
n∑
k=1

∑
1≤i1<...<ik≤n

∆i1,...,ik , (2.12)

where∆i1,...,ik is the determinant of the matrix obtained fromX by replacing the
columnsXi1 , . . . , Xik with the columnsYi1 , . . . , Yik . Applying this formula to our
case, we get

D = ∆t30 + Θt20t1 + Θ′t0t
2
1 + ∆′t31, (2.13)

where

∆ = detA (2.14)

Θ = det(A1A2B3) + det(A1B2A3) + det(B1A2A3) = Tr(B · adj(A))
Θ′ = det(B1B2A3) + det(B1A2B3) + det(A1B2B3) = Tr(A · adj(B))
∆′ = det(B)

where adj means the adjugate matrix of complementary minors. We immediately rec-
ognize the geometric meanings of vanishing of the coefficients ofD.

The coefficient∆ (resp.∆′) vanishes if and only ifC (resp.S) is a singular conic.
If ∆,∆′ are nonzero, then the coefficientΘ (resp.Θ′) vanishes if and only if there

exists a self-polar triangle ofC inscribed inS (resp. a self-polar triangle ofS inscribed
in C). This follows from Proposition2.2.6.

We can also express the condition that the two conics are Poncelet related.

Theorem 2.2.9. Let C andS be two nonsingular conics. A triangle inscribed inC
and circumscribingS exists if and only if

Θ′2 − 4Θ∆′ = 0.

Proof. Choose a coordinate system such thatC = V (t0t1 + t1t2 + t0t2). Suppose
there is a triangle inscribed inC and circumscribingS. Applying an orthogonal trans-
formation, we may assume that the vertices of the triangle are the references points
[1, 0, 0], [0, 1, 0] and[0, 0, 1]. LetS = V (g), where

g = at20 + bt21 + ct22 + 2dt0t1 + 2et0t2 + 2ft1t2. (2.15)

The condition that the triangle circumscribesS is that the points[1, 0, 0], [0, 1, 0], and
[0, 0, 1] lie on the dual coničS. This implies that the diagonal entriesbc − f2, ac −
e2, ab− d2 of the matrix adj(B) are equal to zero. Therefore, we may assume that

g = α2t20 + β2t21 + γ2t22 − 2αβt0t1 − 2αγt0t2 − 2βγt1t2. (2.16)

We get

Θ′ = Tr
(0 1 1

1 0 1
1 1 0

 ·
 0 2αβγ2 2αγβ2

2αβγ2 0 2βγα2

2αγβ2 2βγα2 0

)
= 4αβγ(α+ β + γ),
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Θ = Tr
( α2 −αβ −αγ
−αβ β2 −βγ
−αγ −βγ γ2

 −1 1 1
1 −1 1
1 1 −1

)
= −(α+ β + γ)2,

∆′ = −4(αβγ)2.

This checks thatΘ′2 − 4Θ∆′ = 0.
Let is prove the sufficiency of the condition. Take a tangent line`1 toS intersecting

C at two pointsx, y and consider tangent lines`2, `3 to S passing throughx andy,
respectively. The triangle with sides`1, `2, `3 circumscribesS and has two vertices on
C. Choose the coordinates such that this triangle is the coordinate triangle. Then, we
may assume thatC = V (at20 + 2t0t1 + 2t1t2 + 2t0t2) andS = V (g), whereg is as
in (2.16). ComputingΘ′2 − 4Θ∆′ we find that it is equal to zero if and only ifa = 0.
Thus the coordinate triangle is inscribed inC.

Remark2.2.3. Choose a coordinate system such thatC = V (t20 + t21 + t22). Then the
condition thatS is Poncelet related toC with respect to triangles is easily seen to be
equal to

c22 − c1c3 = 0,

where
det(A− tI3) = (−t)3 + c1(−t)2 + c2(−t) + c3

is the characteristic polynomial of a symmetric matrixA definingS. This is a quartic
hypersurface in the space of conics. The polynomialsc1, c2, c3 generate the algebra of
invariants ofS2(C3)∨ with respect to the group SL(3).

2.2.4 The Salmon conic

One call also look forcovariantsor contravariantsof a pair conics, that is, rational
maps|OP2(2)|× |OP2(2)| → |OP2(d)| or |OP2(2)|× |OP2(2)| → |OP2(d)|∗ which are
defined geometrically, i.e. not depending on bases of the projective spaces involved.

Recall the definition of thecross ratioof four distinct ordered pointspi = [ai, bi]
onP1

R = [p1p2; p3, p4] = (p1 − p2)(p3 − p4)/(p1 − p3)(p2 − p4), (2.17)

where
pi − pj = aibj − ajbi.

It is immediately checked that the cross ratio does not take the values0, 1,∞. It does
not depend on the choice of projective coordinates. It is also invariant under a permu-
tation of the four points equal to the product of two commuting transpositions. The
permutation(12) changesR to −R/(1 − R) and the permutation(23) changesr to
1/r. Thus there are at 6 possible cross ratios for an ordered set of 4 points

R,
1
R
, 1−R, 1

1−R
,

R

R− 1
,
R− 1
R

.

The number of distinct cross ratios may be reduced to three or two. The first case
happens if and only if one of them is equal to−1 (the other ones will be2 and1/2).
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The unordered set of four points in this case is called aharmonic quadruple. The
second case happens whenR satisfiesR2 +R+ 1 = 0, i.e.R is one of two third roots
of 1 not equal to 1. In this case we haveequianharmonic qudruple.

Two pairs of points{p1, p2} and{q1, q2} are harmonic conjugate in sense of def-
inition (2.1) if and only if R(p1q1; q2p2) = −1. To check this, we use that both
definitions are projectively invariant , so we can assume that{p1, p2} = {0,∞}. Then
the other pair becomes a pair of complex numbersz,−z and we check that the cross
ratio [0z;−z∞] = −1. We leave to prove the converse to the reader.

If we identify the projective space of binary forms of f degree 2 with the projective
plane, the relation (2.1) can be viewed as a symmetric hypersurfaceH of bidegree
(1, 1) in P2×P2. In particular, it makes sense to speak about harmonic conjugate pairs
of maybe coinciding points. We immediately check that a double point is harmonic
conjugate to a pair of points if and only if it coincides with one of the roots of this
form.

We can extend the definition of the cross ratio to any set of points no three of which
coincide by considering the cross ratios as the point

R = [(p1 − p2)(p3 − p4), (p1 − p3)(p2 − p4)] ∈ P1. (2.18)

It is easy to see that two points coincide if and only ifR = [0, 1], [1, 1], [1, 0]. This
corresponds toR = 0, 1,∞.

The expression in the left-hand side of this formula is the invariant of a pair(f, g)
of binary quadratic forms defined by taking the coefficient att for the discriminant
invariant off + tg. It is analogous to the invariantsΘ andΘ′ for a pair of conics.

Now let C = V (f) andS = V (g) be a pair of conics. Consider the pencil of
conicsC(λ, µ) = V (λf + µg). Write the equation of the dual conicC(λ, µ)∗ in the
formAλ2 + ψλµ+ Bµ2 = 0. It is easy to see thatV (A) = C∨ andV (B) = S∗ and
V (ψ) is the conic in the dual space defined by the symmetric matrix whoseij-entry is
equal to the coefficient atλµ in det(λaij + µbij), where(aij), (bij) are the matrices
defining the dual conics.

Considering a pencil of lines as aP1 one can define a cross ratio of 4 ordered lines
in a pencil. Four lines in a pencil define aharmonic pencilif the first two lines are
harmonic conjugate to the last two lines. An example of a harmonic pencil is the set of
linest1 = 0, t2 = 0, t1 − t2 = 0, t1 + t2 = 0..

A Salmon conicassociated to a pair of conicsC andS is defined to be the locus of
pointsx inOP2 such that the pairs of the tangents throughx toC and toS are harmonic
conjugate. Note that it makes sense evenx lies on one of the conics, we consider the
corresponding tangent as the double tangent.

Let us see that this locus is indeed a conic. The dual statement is that the locus of
lines which intersect two conics at two pairs of harmonic conjugate pairs of points is a
conic in the dual plane. We use the computations from the proof of Proposition2.2.6.
Without loss of generality, we assume thatC is given by the equationt20 + t21 + t22 = 0
and another one is given by a full equation (2.10). We work in the open subsetα2 6= 0
to uset0 and t1 as the coordinates oǹ. The condition that the linè = V (α0t0 +
α1t1 + α2t2) intersectsC andS at harmonic conjugate pairs of points is

(aα2
2 + 2eα2α0 + cα2

0)(α
2
2 + α2

1) + (bα2
2 + 2fα2α1 + cα2

1)(α
2
2 + α2

0)−
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2(dα2
2 + eα1α2 + fα0α2 + cα0α1)α0α1 = 0.

It is easy to see thatα2
2 factors out from the left-hand-side leaving us with the equation

of a conic

(b+ c)α2
0 + (a+ c)α2

1 + (a+ b)α2
2 + 2eα0α1 + 2fα1α2 − 2dα0α1 = 0. (2.19)

This is the equation of the dual of the Salmon conic.
The following is a remarkable property of the Salmon conic.

Theorem 2.2.10. Let C and S be two conics such that the dual conics intersect at
four distinct points representing the four common tangents ofC andS. Then the eight
tangency points lie on the Salmon conic associated withC andS.

Proof. Let x be a point where the Salmon conic meetsC. Then the tangent linè
throughx to C represents a double line in the harmonic pencil formed by the four
tangents throughx toC andS. As we remarked before the conjugate pair of lines must
contain`. Thus` is a common tangent toC andS and hencex is one of the eight
tangency points. Conversely, the argument is reversible and shows that every tangency
point lies on the Salmon conic.

Remark2.2.4. The Salmon conicF is obviously a covariant of a pair of conicsC,S.
Its dual conicF∨ is a contravariant ofC,S. The jacobianJ(C,C ′, F ) defined by the
determinant of the jacobian matrix of the three quadratic polynomials is an example
of a covariant of degree 3. Similarly, we get the contravariant of degree 3 equal to
the jacobian of the dual conics. It is proven in [191] that any covariant ofC,S is
given by a polynomial in homogeneous forms definingC,S, F, J(C,S, F ). Similarly,
any contravariant ofC,S is given by a polynomial in homogeneous forms defining
C∨, S∨, F∨, J(C∨, S∨, F∨).

Exercises

2.1 Let E be a vector space of even dimensionn = 2k over a fieldK of characteristic0 and
(e1, . . . , en) be a basis inE. Let ω =

P
i<j aijei ∧ ej ∈

V2 E∨ andA = (aij)1≤i≤j≤n

be the skew-symmetric matrix defined by the coefficientsaij . Let
Vk(ω) = ω ∧ · · · ∧ ω =

ak!e1 ∧ · · · ∧ en for somea ∈ F . The elementa is called thepfaffianof A and is denoted by
Pf(A).

(i) Show that
Pf(A) =

X
S∈S

ε(S)
Y

(i,j)∈S

aij ,

whereS is a set of pairs(i1, j1), . . . , (ik, jk) such that1 ≤ is < js ≤ 2k, s = 1, . . . , k,
{i1, . . . , ik, j1, . . . , jk} = {1, . . . , n}, S is the set of such setsS, ε(S) = 1 if the
permutation(i1, j1, . . . , ik, jk) is even and−1 otherwise.

(ii) Compute Pf(A) whenn = 2, 4, 6.

(iii) Show that, for any invertible matrixC,

Pf(tC ·A · C) = det(C)Pf(A).
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(iv) Using (iii) prove that
det(A) = Pf(A)2.

(iv) Show that

Pf(A) =

nX
i=1

(−1)i+j−1Pf(Aij)aij ,

whereAij is the matrix of ordern − 2 obtained by deleting thei-th andj-th rows and
columns ofA.

(v) Let B be a skew-symmetric matrix of odd order2k − 1 andBi be the matrix of order
2k − 2 obtained fromB by deleting thei-th row andi-th column. Show that the vector
(Pf(B1), . . . , (−1)i+1Pf(Bi), . . . ,Pf(B2k−1)) is a solution of the equationB · x = 0.

(vi) Show that the rank of a skew-symmetric matrixA of any ordern is equal to the largest
m such that there existsi1 . . . < im such that the matrixAi1...im obtained fromA by
deletingij-th rows and columns,j = 1, . . . ,m, has nonzero pfaffian .

2.2 Let P be a trisecant plane in the space of conics to the Veronese variety of double lines.
Consider it as a point in the GrassmannianG1(|S2E∨|) ∼= G1(P4). Show that the plane of
hyperplanes throughP , considered as a point in the dual GrassmannianG1(|S2E|), is a 2-
dimensional linear system of conics in the dual planeE∨| with 3 base points corresponding to
the double lines inP .

2.3Let V = ν2(P2) be a Veronese surface inP5.

(i) Show that a general3-dimensional subspaceL intersectsV at 4 points.

(ii) LetP be a plane inP5 andLP be the 2-dimensional linear system (anet) of conicsν∗2 (H)
in P2, whereH is a hyperplane inP5 containingP . Show thatP is a trisecant plane if
and only the set of base points ofLP consists of 3 points (counting with multiplicities).
Conversely, the linear system of conics through 3 points defines a unique trisecant plane.

(iii) Show that the set of nets of conics with three base points (a subvariety of the Grassman-
nian of 2-planes in the space of conics) contains an irreducible divisor parameterizing nets
with 3 distinct collinear points and an irreducible divisor parameterizing nets with 2 base
points, one of them is infinitely near.

(iv) Using (iii) show that the anticanonical divisor of degenerate triangles is irreducible.

(v) Show that the trisecant planes intersecting the Veronese plane at one point (corresponding
to net of conics with one base point of multiplicity 3) define a smooth rational curve in
the boundary of the variety of self-polar triangles. Show that this curve is equal to the set
of singular points of the boundary.

2.4 Let U ⊂ (P2)(3) be the subset of the symmetric product ofP2 parameterizing the sets of
three distinct points. For each setZ ∈ U let LZ be the linear system of conics containingZ.
Consider the mapf : U → G1(P4), Z 7→ LZ ∈ |OP2(2)|.

(i) Consider the divisorD in U parameterizing sets of 3 distinct collinear points. Show that
f(D) is a closed subvariety ofG1(P4) isomorphic toP2.

(ii) Show that the mapf extends to the Hilbert scheme(P2)[3] of 0-cyclesZ with h0(OZ) =
3 (which admits a natural mapπ : (P2)[3] → (P2)(3) which is a resolution of singulari-
ties).

(iii) Show that the closurēD of π−1(D) in the Hilbert scheme is isomorphic to aP3-bundle
overP2 and the restriction off to D̄ is the projection map to its base. item[(iv)] Define the
mapf̃ : P → |OP2(2)| which assigns to a point in the fibrep−1(Z) the corresponding
conic in the net of conics thoughZ. Show that the fibre of̃f over a nonsingular conicC
is isomorphic to the Fano variety of self-polar triangles of the dual conicC∨.
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(v) LetPs = f̃−1(D2(2)) be the preimage of the hypersurface of singular conics. Describe
the fibres of the projectionsp : Ps → (P2)[3] andf̃ : Ps → D2(2).

2.5Prove that then-th symmetric product ofPn is a rational variety.

2.6 Two pointsx, y are calledconjugatewith respect to a nonsingular conicC if the line x, y
intersectsC at two points which are harmonic conjugate tox, y. Prove thatx andy are conjugate
if and only if y ∈ Px(C) andx ∈ Py(C).

2.7 Prove that two unordered pairs{a, b}, {c, d} of points inP1 are harmonic conjugate if and
only if there is an involution ofP1 with fixed pointsa, b that switchesc andd.

2.8 Prove the followingHesse theorem. If two pairs of opposite vertices of a quadrilateral are
each conjugate for a conic, then the third pair is also conjugate. Such a quadrilateral is called a
Hesse quadrilateral. Show that four lines form a polar quadrilateral for a conic if and only if it
is a Hesse quadrilateral.

2.9Show that any polar triangle of a conic can be extended to a polar quadrilateral.

2.9Extend Darboux’s Theorem to the case of two conics which do not intersect transversally.

2.10Show that the secant lines of a Veronese curveRm in Pm are parameterized by the sur-
face in the GrassmannianG1(Pm) isomorphic toP2. Show that the embedding ofP2 into the
Grassmannian is given by the Schwarzenberger bundle.

2.11Let U be a 2-dimensional vector space. Use the construction of curves of degreen − 1
Poncelet related to a conic to exhibit an isomorphism of linear representations

V2(SnU) and
Sn−1(S2U) of SL(U).

2.12Assume that the pencil of sections of the Schwarzenberger bundleSn,C has no base points.
Show that the Poncelet curve associated to the pencil is nonsingular at a pointx defined by a
sections from the pencil if and only if the scheme of zerosZ(s) is reduced.

2.13 Find the geometric interpretation of vanishing of the invariantsΘ,Θ′ from (2.13) in the
case whenC or S is a singular conic.

2.14Express the condition that two conics are tangent in terms of the invariants∆,∆′,Θ,Θ′.

2.15Let p1, p2, p3, p4 be four distinct points on a nonsingular conicC. Let pi, pj denote the
line through the pointspi, pj . Show that the triangle with the verticesA = p1, p3 ∩ p2, p4,
B = p1, p2 ∩ p3, p4 andC = p1, p4 ∩ p2, p3 is a self-conjugate triangle with respect toC.

2.16Show that two pairs{a, b}, {c, d} of points inP1 are harmonic conjugate if and only the
cross ratio[a, c; b, d] is equal to−1.

2.17LetU be a linear space of dimension 2 andV = S2U . LetC be the Veronese conic in|V |,
the image of the Veronese mapv2 : |U | → |S2U |. Let us identify a nondegenerate quadratic
from q ∈ S2U∨ with a linear formlq ∈ V ∨ and letPq ∈ |V | be the polar point of the lineV (lq)
with respect toC. Consider the involutionσq of C defined by the projection fromPq.

(i) Show that, under the isomorphismv2 : |U | → C, the involutionsq is equal to the
involution defined by the polarity with respect toq, whereU is identified withU∨ by
means of am isomorphism

V2 U ∼= C.

(ii Show that, for any two quadratic formsq, q′ with no common zeros,σq andσq′ commute
if and only if two pairsV (q) andV (q′) of points in|U | are harmonic conjugate.

(iii) Show that, for any three quadratic formsq, q′, q′′ with no two sharing a zero,(sq ◦ sq′ ◦
sq′′)

2 = id|U| if and only if q, q′, q′′ are linearly dependent (the sufficiency condition
extends to any odd number ofq’s).

(iv) Show that, given three distinct pointsa, b, c onC, the pointsTa(C) ∩ b, c, Tb(C) ∩ a, c
andTc(C) ∩ a, b are collinear.
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2.18Let abcd be a quadrangle inP2, andp, q be the intersection points of two pairs of opposite
sidesa, b, c, d andb, c, a, d. Letp′, q′ be the intersection points of the linep, q with the diagonals
a, c andb, d. Show that the pairs(p, q) and(p′, q′) are harmonic conjugate .

2.19Show that the pair of points on a diagonal of a complete quadrilateral defined by its sides is
harmonic conjugate to the pair of points defined by intersection with other two diagonals.

2.20Find the condition on a pair of conics that the associate Salmon conic is degenerate.

Historical Notes

The Poncelet ’s Closure Theorem which is the second part of Darboux’s Theorem
2.2.2 was first discoverd by Poncelet himself [324]. We refer to the excellent ac-
count of the history of the Poncelet related conics to [34]. Other elementary and non-
elementary treatments of the Poncelet properties and their generalizations can be found
in [17],[18],
[195],[196]. The relationship between Poncelet curves and vector bundles is discussed
in [414], [299], [415], [417]. Among many equivalent definitions of the Schwarzen-
berger bundles we chose one discussed in [133]. The papers of [289] and [216],[217]
discuss the compactification of the variety of conjugate triangles. The latter two papers
of N. Hitchin also discuss an interesting connection with Painleve equations.

The notion of the conjugacy of conics is due to Rosanes [342]. Reye called two
conjugate conics apolar [333]. The condition (2.11) for conjugate conics was first
discovered by O. Hesse in [212]. He also proved that this property is poristic. The
condition for Poncelet relation given in terms of invariants of a pair of conics (The-
orem2.2.9) was first discovered by A. Cayley [52], [55]. The invariants of a pair of
quadrics in any dimension were studied by C. Segre [375]. A good modern discussion
of Poncelet’s theorem and its applications can be found in [165].

The proof of Theorem2.2.10is due to J. Coolidge [92], Chapter VI,§3. The result
was known to G. von Staudt [392] ((see [92], p. 66) and can be also found in Salmon’s
book on conics [355], p. 345. Although Salmon writes in the footnote on p. 345 that “I
believe that I was the first to direct the attention to the importance of this conic in the
theory of two conics”, this conic was already known to Ph. La Hire [264] (see [92], p.
44 ).



Chapter 3

Plane cubics

3.1 Equations

3.1.1 Weierstrass equation

LetX be a nonsingular projective curve of genus 1. By Riemann-Roch, for any divisor
D of degreed > 0, we havedimH0(X,OX(D)) = d. The complete linear system∣∣D∣∣ = |H0(X,OX(D))| defines an isomorphismX ∼= C, whereC is a curve of degree
d in Pd−1 (see [206], Chapter IV, Corollary 3.2). We consider here the cased = 3, i.e.,
a plane cubic modelC = V (f) of X. By Theorem1.1.8, C has an inflection pointp0.
Without loss of generality, we may assume thatp0 = [0, 0, 1] and the tangent line at
this point has the equationt0 = 0. This implies thatf = t0q(t0, t1, t2) + at31, whereq
is a quadratic polynomial. We may assume thatq = bt22 + t2L(t0, t1) + q′(t0, t1) for
some quadratic polynomialq′ and a linear polynomiall. Notice thatb 6= 0, otherwise,
we can expresst2 as a rational function int0, t1 and obtain thatE is a rational curve.
So, we may assume thatb = 1. Replacingt2 with t2 + 1

2 l(t0, t1) we may assume that
l = 0. Now the equation looks as

f = t0t
2
2 + at31 + bt21t0 + ct1t

2
0 + dt30 = 0.

By scaling, we may assume thata = 1. Replacingt1 with t1 + b
3 t0 6= 0, we may

assume thatb = 0. This gives us theWeierstrass equationof a nonsingular cubic:

t0t
2
2 + t31 + αt1t

2
0 + βt30 = 0 (3.1)

It is easy to see thatC is nonsingular if and only if the polynomialx3 +αx+ β has no
multiple roots, or, equivalently, its discriminant∆ = 4α3 + 27β2 is not equal to zero.

Two Weierstrass equations define isomorphic elliptic curves if and only if there
exists a projective transformation transforming one equation to another. It is easy to
see that it happens if and only if(α′, β′) = (λ3α, λ2β) for some nonzero constantλ.
This can be expressed in terms of theabsolute invariant

j =
4α3

4α3 + 27β2
. (3.2)

69
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Two elliptic curves are isomorphic if and only if their absolute invariants are equal.
The projection[t0, t1, t2] 7→ [t0, t1] exhibitsC as a double cover ofP1 with the

branch points[1, x], [0, 1], wherex3 +αx+β = 0. The corresponding points[1, x, 0],
and[0, 1, 0] onC are the ramification points. If we choosep0 = [0, 1, 0] to be the zero
point in the group law onC, then2p ∼ 2p0 for any ramification pointp implies thatp
is a 2-torsion point. Any 2-torsion point is obtained in this way. Here we use that the
group law on a cubic curve with the distinguished pointp0 chosen as the zero point is
given by the formula

p⊕ q ∈
∣∣p+ q − p0

∣∣. (3.3)

Note that, by Riemann-Roch, the complete linear system
∣∣p + q − p0

∣∣ consists of one
point.

It follows from the above computation that any nonsingular plane cubicV (f) is
projectively isomorphic to the plane cubicV (t22t0+t31+αt1t20+βt30). The functionsS :
F 7→ α, T : F 7→ β can be extended to invariants on the space of homogeneous cubic
forms with respect to the groups of unimodular linear transformations. The explicit
expresions ofS andT in terms of the coefficients off are rather long and can be found
in many places (e.g. [136]).

Definition 3.1. A nonsingular plane cubicV (f) is calledharmonic(resp.equianhar-
monic) if S(f) = 0 (resp.T (f) = 0).

Theorem 3.1.1.LetC = V (f) be a nonsingular plane cubic andc be any point onC.
The following conditions are equivalent.

(i) C is a harmonic (resp. equianharmonic) cubic.

(ii) The cross ratio of four roots of the polynomialt0(t31 +αt1t
2
0 +βt30), taken in any

order, is equal to−1 (resp. a third root of−1);

(iii) The group of automorphisms ofC leaving the pointc invariant is a cyclic group
of order 4 (resp. 6).

Proof. (i) ⇔ (ii) Direct computation.
(ii) ⇔ (iii) Let G be the group of automorphisms ofC leavingc fixed. By choos-

ing a projective embedding ofC given by the linear system|3c|, we obtain thatC is
isomorphic to a plane cubicV (f) given by a Weierstrass equationf = 0 andG is
isomorphic to the group of projective transformations ofP2 leaving the point[0, 0, 1]
invariant. By direct computation, it is easy to see thatG consists of transformations
T : [t0, t1, t2] 7→ [λ2t0, λ

2t1, λ
3t2] leavingf invariant. Now the assertion is easily

verified.

3.1.2 The Hesse equation

Since any flex tangent line intersects the curve with multiplicity 3, applying (1.23), we
obtain that the curve has exactly 9 inflection points. Using the group law on an elliptic
curve with an inflection point as the zero, we can interpret any inflection pointp as a
3-torsion point. This follows from (3.3) since the divisor of the rational functionl/l0
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mod (f), wherel = 0 is the equation of the inflection tangent atp andl0 = 0 is the
equation of the inflection tangent atp0, is equal to3p − 3p0. This of course agrees
with the fact the groupX[3] of 3-torsion points on an elliptic curveX is isomorphic to
(Z/3Z)2.

LetH be a subgroup of order 3 ofX. Since the sum of elements of this group add
up to 0, we see that the corresponding 3 inflection pointsp, q, r satisfyp+q+r ∼ 3p0.
It is easy to see that the rational function onC with the divisorp + q + r − 3p0 can
be obtained as the restriction of the rational functionm(t0, t1, t2)/l0(t0, t1, t2), where
m = 0 defines the line containing the pointsp, q, r. There are 3 cosets with respect
to each subgroupH. Since the sum of elements in each coset is again equal to zero,
we get 12 lines, each containing three inflection points. Conversely, if a line contains
three inflection points, the sum of these points is zero, and it is easy to see that the
three points forms a conjugacy class with respect to some subgroupH. Each element
of (Z/3Z)3 is contained in 4 cosets (it is enough to check this for the zero element).
Thus we obtain a configuration of 12 lines and 9 points, each line contains3 points,
and each point is contained in 4 lines. This is theHesse line arrangement(123, 94).

Let `1, `2 be two inflection lines. Choose projective coordinates such that the equa-
tions of these lines aret0 = 0 andt1 = 0. Then it is easy to see that the equation ofC
can be written in the form

f(x0, x1, x2) = t0t1(at0 + bt1 + ct2) + dt32, (3.4)

whereat0 + bt1 + ct2 = 0 is a third inflection line. Suppose the three lines are
concurrent. Then the equation can be further transformed to the formt0t1(t0 + t1) +
t32 = 0. Since the sets of three distinct points inP1 are projectively equivalent we can
change the coordinates to assume that the equation ist30 + t31 + t32 = 0. Obviously, it
is in the Hesse form. So we may assume that three lines are non-concurrent. Consider
the equation (3.4). By scaling the coordinatet2 we may assume thatc = 3. Let ε3 be a
primitive 3d root of 1. Define new coordinatesu, v by the formula

at0 + t2 = ε3u+ ε23v, bt0 + t2 = ε23u+ ε3v.

Then

abF (x0, x1, x2) = (ε3u+ ε23v − t2)(ε23u+ ε3v − t2)(−u− v + t2) + dt32

= −u3 − v3 + (d+ 1)t32 − 3uvt2 = 0.

SinceC is nonsingular, we haved 6= 1. After scaling the coordinatet2 we arrive at
theHesse canonical formor second canonical formor Hesse equationof a plane cubic
curve

t30 + t31 + t32 + 6mt0t1t2 = 0. (3.5)

Here the expression for the last coefficient is given to simplify future computations.
The condition that the curve is nonsingular is

1 + 8m3 6= 0. (3.6)

The curve given given by this equation is singular if and if8m3 + 1 = 0.
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By reducing the Hesse equation to a Weiestrass forms one can express the absolute
invariant (3.2) in terms of the parameterm:

j =
64(m−m4)3

(1 + 8m3)3
. (3.7)

3.1.3 The Hesse pencil

Consider a pencil of plane cubics defined by the equation

λ(t30 + t31 + t32) + µt0t1t2 = 0. (3.8)

It is called theHesse pencil. Its base points are

[0, 1,−1], [0, 1,−ε], [0, 1,−ε2],
[1, 0,−1], [1, 0,−ε2], [1, 0,−ε],
[1,−1, 0], [1,−ε, 0], [1,−ε2, 0], (3.9)

whereε = e2πi/3.As is easy to see they are the nine inflection points of any nonsingular
member of the pencil. The singular members of the pencil correspond to the values of
the parameters

(λ, µ) = (0, 1), (1,−3), (1,−3ε), (1,−3ε2).

The last three values correspond to the three values ofm for which the Hesse equation
defines a singular curve.

Any triple of lines containing the nine base points belong to the pencil and define a
singular member. Here they are:

V (t0), V (t1), V (t2),

V (t0 + t1 + t2), V (t0 + εt1 + ε2t2), V (t0 + ε2t1 + εt2) (3.10)

V (t0 + εt1 + t2), V (t0 + ε2t1 + ε2t2), V (t0 + t1 + εt2)

V (t0 + ε2t1 + t2), V (t0 + εt1 + εt2), V (t0 + t1 + ε2t2)

We leave to a suspicious reader to check that

(t0 + t1 + t2)(t0 + εt1 + ε2t2)(t0 + ε2t1 + εt2) = t30 + t31 + t32 − 3t0t1t2,

(t0 + εt1 + t2)(t0 + ε2t1 + ε2t2)(t0 + t1 + εt2) = t30 + t31 + t32 − 3εt0t1t2,

(t0 + ε2t1 + t2)(t0 + εt1 + εt2)(t0 + t1 + ε2t2) = t30 + t31 + t32 − 3ε2t0t1t2.

The 12 lines (3.10) and 9 inflection points (3.9) form the Hesse configuration corre-
sponding to any nonsingular member of the pencil.

Choose[0, 1,−1] to be the zero point in the group law onC. Then we can define
an isomorphism of groupsφ : (Z/3Z)2 → X[3] by sending[1, 0] to [0, 1,−ε], [0, 1]
to [1, 0,−1]. The points of the first row is the subgroupH generated byφ([1, 0]). The
points of the second row is the coset ofH containingφ((0, 1)).
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Remark3.1.1. Note that varyingm in P1 \ {− 1
2 ,−

ε
2 ,−

ε2

2 ,∞} we obtain a family of
elliptic curvesXm with a fixed isomorphismφm : (Z/3Z)2 → Xm[3]. By blowing up
the 9 base points we obtain a rational surfaceS(3) together with a morphism

f : S(3)→ P1

obtained from the rational mapP2− → P1, [t0, t1, t2] 7→ [t0t1t2, t30 + t31 + t32] by re-
solving (minimally) the indeterminacy points. The fibre off over a point(a, b) ∈ P2

is isomorphic to the member of the Hesse pencil corresponding to(λ, µ) = (−b, a).
One can show that this is amodular familyof elliptic curves with 3-level, i.e. the uni-
versal object for the fine moduli space of pairs(X,φ), whereX is an elliptic curve and
φ : (Z/3Z)2 → X[3] is an isomorphism of groups. There is a canonical isomorphism
P1 ∼= Y , whereY is the modular curve of level 3, i.e. a nonsingular compactification
of the quotient of the upper half-planeH = {a+ bi ∈ C : b > 0} by the group

Γ(3) = {A =
(
a b
c d

)
∈ SL(2,Z) : A ≡ I3 mod 3}

which acts onH by Möbius transformationsz 7→ az+b
cz+d . The boundary ofH/Γ(3) in Y

consists of 4 points (the cusps). They correspond to the singular members of the Hesse
pencil.

3.1.4 The Hesse group

The Hesse groupG216 is the group of projective transformations which preserve the
Hesse pencil of cubic curves. First we see the obvious symmetries generated by the
transformations

τ : [t0, , t1, t2] 7→ [t0, ε3t1, ε23t2]. (3.11)

σ : [t0, t1, t2] 7→ [t2, t0, t1]. (3.12)

They define a projective representation of the group(Z/3Z)2, called the Schr̈odinger
representation.

If we fix the group law by taking the origin to be[0, 1,−1], then the transformation
(3.11) induces on each nonsingular fibre the translation automorphism by the point
[0, 1,−ε]. The transformation (3.11) is the translation by the point[1, 0,−1] and the
transformation (3.12) is the translation by the point[1, 0,−1].

Theorem 3.1.2. The Hesse groupG216 is a group of order 216 isomorphic to the
semi-direct product

(Z/3Z)2 o SL(2,F3),

where the action ofSL(2,F3) on (Z/3Z)2 is the natural linear representation.

Proof. Let σ ∈ G216. It transforms a member of the Hesse pencil to another mem-
ber. This defines a homomorphismG216 → Aut(P1). An element of the kernelK
leaves each member of the pencil invariant. In particular, it leaves invariant the curve
V (t0t1t2). The group of automorphisms of this curve is generated by homotheties
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[t0, t1, t2] 7→ [t0, at1, bt2] and permutation of coordinates. Supposeσ induces a homo-
thety. Since it also leaves invariant the curveV (t30+t

3
1+t

3
2), we must have1 = a3 = b3.

To leave invariant a general member we also need thata3 = b3 = bc. This implies that
σ belongs to the subgroup generated by transformation (3.11). An even permutation
of coordinates belongs to a subgroup generated by transformation (3.12). The odd per-
mutationσ0 : [t0, t1, t2] 7→ [t0, t2, t1] acts on the group of3-torsion points of each
nonsingular fibre as the inversion automorphism. Thus we see that

K ∼= (Z/3Z)2 o 〈σ0〉.

Now let I be the image of Hes in Aut(P1). It acts by permuting the four singular
members of the pencil and thus leaves the set of zeros of the binary form

∆ = (8t31 + t30)t0

invariant. It follows from the invariant theory that this implies thatH is a subgroup
of A4. We claim thatH = A4. Consider the projective transformations given by the
matrices

σ1 =

1 1 1
1 ε ε2

1 ε2 ε

 , σ2 =

 1 ε ε
ε2 ε ε2

ε2 ε2 ε


The transformationsσ0, σ1, σ2 generate a subgroup isomorphic to the quaternion group
Q8 with center generated byσ0. The transformationσ3 : [t0, t1, t2] 7→ [εt0, t2, t1] sat-
isfiesσ3

3 = σ0. It acts by sending a curveXm to Xεm. It is easy to see that the
transformationsσ1, σ2, σ3, τ generate the group isomorphic to SL(2,F3). Its center is
(σ0) and the quotient by the center is isomorphic toA4. In other words, this group is
the binary tetrahedral group. Note that the whole group can be generated by transfor-
mationsσ, τ, σ0, σ1.

Recall that a linear operatorσ ∈ GL(V ) of a complex vector space of dimension
n is called acomplex reflectionif it is of finite order and the rank ofσ − idV is equal
to 1. The kernel ofσ − idV is a hyperplaneHv in V , called thereflection hyperplane
of σ. It is an invariant with respect toσ and its stabilizer is a cyclic group. Acomplex
reflection groupis a finite subgroupG of GL(V ) generated by complex reflections.
One can choose a unitary inner product onV such that any complex reflectionσ from
V can be written in the form

sα,η : v 7→ v + (η − 1)(v, α)v,

whereα is a vector of norm 1 perpendicular to the reflection hyperplaneHσ of σ, and
η is a non-trivial root of unity of order equal to the order ofσ.

Recall the basic facts about complex reflection groups (see, for example, [391]):

• The algebra of invariants(S•V )G ∼= C[t1, . . . , tn]G is freely generated byn
invariant polynomialsf1, . . . , fn (geometricallyV/G ∼= Cn)).

• The product of degreesdi of the polynomialsf1, . . . , fn is equal to the order of
G.
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• The number of complex reflections inG is equal to
∑

(di − 1).

All complex reflections group were classified by G. Shephard and J. Todd [387]. There
are 5 conjugacy classes of complex reflection subgroups of GL(3,C). Among them
is the group isomorphic to a central extension of degree 3 of the Hesse group. It is
generated by complex reflectionssα,η, whereV (α) is one of the 12 hyperplanes (3.10)
in |V | andα is the unit normal vector(a, b, c) to the hyperplaneV (at0 + bt1 + ct2)
andη3 = 1. Note that each reflectionsα,η leaves invariant the hyperplanes with nor-
mal vector orthogonal toα. For example,s[1,0,0],ε leaves invariant the hyperplanes
V (ti), i = 0, 1, 2. This implies that each of the 12 complex reflections leave the Hesse
pencil invariant. Thus the image ofG in PGL(3,C) is contained in the Hesse group.
It follows from the classification of complex reflection groups (or could be checked di-
rectly, see [391]) that it is equal to the Hesse group and the subgroup of scalar matrices
fromG is a cyclic group of order 3.

Each of the 12 reflection hyperplanes defines 2 complex reflections. This gives 24
complex reflections inG. This number coincides with the number of elements of order
3 in Hes and so there are no more complex reflections ionG. Let d1 ≤ d2 ≤ d3

be the degrees of the invariants generating the algebra of invariants ofG. We have
d1 + d2 + d3 = 27, d1d2d3 = 648. This easily givesd1 = 6, d2 = 9, d3 = 12.
There are obvious reducible curves of degree 9 and 12 inP2 invariant with respect
to G. The curve of degree 9 is the union of the lines whose normal vectors are the
coordinate vectors of the base points of the Hesse pencil. One can check that each such
line intersects a nonsingular member of the pencil at nontrivial 2-torsion points with
respect to the group law defined by the corresponding base point. For each nonsingular
member of the Hesse pencil this line is classically called theharmonic lineof the
corresponding inflection point. The equation of the union of 9 harmonic lines is

f9 = (t30 − t31)(t30 − t32)(t31 − t32) = 0. (3.13)

The curve of degree 12 is the union of the 12 lines (3.10). Its equation is

f12 = t0t1t2[27t30t
3
1t

3
2 − (t30 + t31 + t32)

3] = 0 (3.14)

A polynomial defining an invariant curve is arelative invariantof G (it is an invariant
with respect to the groupG′ = G ∩ SL(3,C)). One checks that the polynomialsf9 is
indeed an invariant, but the polynomialf12 is only a relative invariant. So, there exists
another curve of degree 12 whose equation defines an invariant of degree 12. What is
this curve? Recall that the Hesse group acts on the base of the Hesse pencil via the ac-
tion of the tetrahedron groupA4. It has 3 special orbits with stabilizers of order 2,3 and
3. The first orbit consists of 6 points such that the fibres over these points are harmonic
cubics. The second orbit consists of 4 points such that the fibres over these points are
equiequianharmoniccubics. The third orbit consists of 4 points corresponding to singu-
lar members of the pencil. It is not difficult to check that the product of the equations
of the equiequianharmoniccubics defines an invariant of degree 12. Its equation is

f ′12 = (t30 + t31 + t32)[(t
3
0 + t31 + t32)

3 + 216t30t
3
1t

3
2] = 0 (3.15)

An invariant of degree 6 is

f6 = 7(t60 + t61 + t62)− 6(t30 + t32 + t33)
2. (3.16)



76 CHAPTER 3. PLANE CUBICS

The product of the equations defining 6 harmonic cubics is an invariant of degree 18

f18 = (t30 + t31 + t32)
6 − 540t30t

3
1t

3
2(t

3
0 + t31 + t32)

3 − 5832t60t
6
1t

6
2 = 0 (3.17)

3.2 Polars of a plane cubic

3.2.1 The Hessian of a cubic hypersurface

LetX = V (f) be a cubic hypersurface inPn. We know that the Hessian He(X) is the
locus of pointsa ∈ Pn such that the polar quadricPa(V )) is singular. Also we know
that, for anya ∈ He(X),

Sing(Pa(X)) = {b ∈ P2 : Db(Da(f)) = 0}.

SincePb(Pa(X)) = Pa(Pb(X)) we obtain thatb ∈ He(X).

Theorem 3.2.1.The HessianHe(X) of a cubic hypersurfaceX contains the Steinerian
St(X). If He(X) 6= Pn, then

He(X) = St(X).

For the last assertion one only needs to compare the degrees of the hypersurfaces.
They are equal ton+ 3.

In particular, the rational map, if defined,

st−1
X : St(X)→ He(X), a 7→ Sing(Pa(X)) (3.18)

is a birational automorphism of the Hessian hypersurface. We have noticed this already
in Chapter 1.

Proposition 3.2.2. AssumeX has only isolated singularities. ThenHe(X) = Pn if
and only ifX is a cone over a cubic hypersurface inPn−1.

Proof. Let W = {(a, b) ∈ Pn × Pn : Pa,b2(X) = 0}. For eacha ∈ Pn, the fibre
of the first projection over the pointa is equal to the first polarPa(X). For anyb ∈
Pn, the fibre of the second projection over the pointb is equal to the second polar
Pb2(X) = V (

∑
∂if(b)ti). Let U = Pn \ Sing(X). For anyb ∈ U , the fibre of

the second projection is a hyperplane inPn. This shows thatp−1
2 (U) is nonsingular.

The restriction of the first projection toU is a morphism of nonsingular varieties. The
general fibre of this morphism is a regular scheme over the general point ofPn. Since
we are in characteristic 0, it is a smooth scheme. Thus there exists an open subset
W ⊂ Pn such thatp−1

1 (W )∩U is nonsingular. If He(X) = 0, all polar quadricsPa(X)
are singular, and a general polar must have singularities inside ofp−1

2 (Sing(X)). This
means thatp1(p−1

2 (Sing(X))) = Pn. For anyx ∈ Sing(X), all polar quadrics contain
x and either all of them are singular atx or there exists an open subsetUx ⊂ Pn such all
quadricsPa(X) are nonsingular atx for a ∈ Ux. Suppose that for anyx ∈ Sing(X)
there exists a polar quadric which is nonsingular atx. Since the number of isolated
singular points is finite, there will be an open set of pointsa ∈ Pn such that the fibre
p−1
1 (a) is nonsingular inp−1

2 (Sing(X)). This is a contradiction. Thus, there exists a
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point c ∈ Sing(X) such that all polar quadrics are singular atx. This implies thatc
is a common solution of the systems of linear equations He(f3)(a) · X = 0, a ∈ Pn.
Thus the first partials off3 are linearly dependent. Now we apply Proposition1.1.2to
obtain thatX is a cone.

Remark3.2.1. The example of a cubic hypersurface inP4 which we considered in
Remark1.1.1 shows that the assumption of the Theorem cannot be weakened. Its
singular locus is the planet0 = t1 = 0.

3.2.2 The Hessian of a plane cubic

Consider a plane cubicC = V (f) with equation in the Hesse canonical form (3.5).
The partials of13f are

t20 + 2mt1t2, t21 + 2mt0t2, t22 + 2mt0t1 (3.19)

Thus the Hessian ofC has the following equation:

He(C) =

∣∣∣∣∣∣
t0 mt2 mt1
mt2 t1 mt0
mt1 mt0 t2

∣∣∣∣∣∣ = (1 + 2m3)t0t1t2 −m2(t30 + t31 + t32). (3.20)

In particular, the Hessian of the member of the Hesse pencil corresponding to the pa-
rameter(λ, µ) = (1, 6m),m 6= 0, is equal to

t30 + t31 + t32 −
1 + 2m3

m2
t0t1t2 = 0, m 6= 0, (3.21)

or, if (λ, µ) = (1, 0) or (0, 1), then the Hessian is equal toV (t0t1t2).

Lemma 3.2.3. LetC be a nonsingular cubic. The following assertions are equivalent:

(i) dim Sing(Pa(C)) > 0;

(ii) a ∈ Sing(He(C));

(iii) He(C) is the union of three nonconcurrent lines;

(iv) C is isomorphic to a Fermat cubict30 + t31 + t31 = 0;

(v) He(C) is a singular cubic;

(vi) C is an equianharmonic cubic.

Proof. Use the Hesse equation for a cubic and for its Hessian. We see that He(C) is
singular if and only if eitherm = 0 or 1 + 8(− 1+2m3

6m2 )3 = 0. Obviously,m = 1 is a
solution of the second equation. Other solutions areε, ε2. This corresponds to He(C),
whereC os of the formV (t30 + t31 + t31), or is given by the equation

t30 + t31 + t31 + 6εit0t1t2 = (εit0 + εt1 + t2)3 + (t0 + εit1 + t2)3
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+(t0 + t1 + εit2)3 = 0,

wherei = 1, 2, or

t30 + t31 + t31 + 6t0t1t2 = (t0 + t1 + t2)3 + (t0 + εt1 + ε2t2)3

+(t0 + ε2t1 + εt2)3 = 0.

This computation proves the equivalence of (iii), (iv), (v).
Assume (i) holds. Then the rank of the Hessian matrix He is equal to 1. It is easy

to see that the first two rows are proportional if and only ifm(m3 − 1) = 0. It follows
from the previous computation that this implies (iv). The corresponding pointa is one
of the three intersection points of the lines such that the cubic is equal to the sum of
the cubes of linear forms defining these lines. Direct computation shows that (ii) holds.
This shows the implication (i)⇒ (ii).

Assume (ii) holds. Again the previous computations show thatm(m3−1) = 0 and
the Hessian curve is the union of three lines. Again (i) is directly verified.

The equivalence of (iv) and (vi) follows from Theorem3.1.1since the transfor-
mation[t0, t1, t2] → [t1, t0, e2πi/3t2] generates a cyclic group of order 6 of automor-
phisms ofC leaving the point[1,−1, 0] fixed.

Corollary 3.2.4. Assume thatC = V (f) is not isomorphic to a Fermat cubic. Then
the Hessian cubic is not singular, and the mapa 7→ Sing(Pa(C)) is an involution on
C without fixed points.

Proof. The only unproved assertion is that the involution does not have fixed points.
A fixed point a has the property thatDa(Da(f)) = Da2(f) = 0. It follows from
Theorem 1.1.1 that this implies thata ∈ Sing(C).

Remark3.2.2. Consider the Hesse pencil of cubics with parameters(λ, µ) = (m0, 6m)

C(m0,m) = V (m0(t30 + t31 + t32) + 6m1t0t1t2).

Taking the Hessian of each curve from the pencil we get the pencil

H(λ) = V (λ0t
3
0 + t31 + t32 + 6λ1t0t1t2).

The mapC(m0,m)→ He(C(m0,m)) defines a regular map

H : P1 → P1, [m0,m1] 7→ [t0, t1] = [−m0m
2
1,m

3
0 + 2m3

1] (3.22)

This map is of degree3. For a general value of the inhomogeneous parameterλ =
t1/t0, the preimage consists of three points with inhomogeneous coordinatem =
m1/m0 satisyfing the cubic equation

6λm3 − 2m2 + 1 = 0. (3.23)

We know that the points

[λ0, λ1] = [0, 1], [1,− 1
2 ], [1,− ε

2 ], [1,− ε
2

2 ]
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correspond to singular members of theλ-pencil. These are the branch points of the
mapH. Over each branch point we have two points in the preimage. The points

(m0,m1) = [1, 0], [1, 1], [1, ε], [1, ε2].

are the ramification points corresponding to cubics isomorphic to the Fermat cubic. A
non-ramication point in the preimage corresponds to a singular member.

Let C(m) = C(1,m). If we fix a group law on aH(m) = He(C(m)), we can
identify the involution described in Corollary3.2.4with the translation with respect to
a non-trivial 2-torsion pointη (see Exercises). Given a nonsingular cubic curveH(m)
together with a fixed-point-free involutionτ there exists a unique nonsingular cubic
C(m) such thatH(m) = He(C(m)) and the involutionτ is the involution described
in the corollary. Thus the 3 roots of the equation (3.23) can be identified with 3 non-
trivial torsion points onH(m). We refer to Exercises for a reconstruction ofC(m)
from the pair(H(m), η).

Recall that the Cayleyan curve of a plane cubicC is the locus of linesp, q in the
dual plane such thata ∈ He(C) andb is the singular point ofPa(C). Each such line
intersects He(C) at three pointsa, b, c. The following gives the geometric meaning of
the third intersection point.

Proposition 3.2.5. Let c be the third intersection point of a linè ∈ Cay(C) and
He(C). Then` is a component of the polarPd(C) whose singular point isc. The point
d is the intersection point of the tangents ofHe(C) at the pointsa andb.

Proof. Sinceb ∈ Sing(Pa(C)), we haveDb(Da(f)) = 0. Similarly, we obtain that
Db(Da(f)) = 0. This implies thatDx(Dab(f)) = 0 for anyx ∈ P2. This means that
the pointsa, b ∈ ` are conjugate with respect to all polar quadrics. LetU be the 2-
dimensional subspace ofC3 defining the linè . The restriction of the quadricsPx(C)
to ` is defined by a quadratic formqx onU . Let bx be the corresponding polar bilinear
form. Leta,b ∈ U be vectors spanning the linesa, b ∈ ` = |U |. For allx ∈ P2, we
havebx(a,b) = 0. Consider the unique polar conicQd = V (qd) passing through the
pointsa, b. We have

0 = 2bd(a + b) = qd(a + b)− qd(a)− qd(b) = qd(a + b).

This means that the conicQd intersects the linè at three points corresponding to the
vectorsa,b,a + b. Thus` is contained inQd. Also this implies thatQd is a singular
quadric, and henced ∈ He(C) and its singular pointc belongs tò . Thusc is the third
intersection point of̀ with C.

It remains to prove the last assertion. Chose a group law on the curve He(C)
by fixing an inflection point as the zero point. We know that the Steiner involution
is defined by the translationx 7→ x ⊕ η, whereη is a fixed 2-torsion point. Thus
b = a ⊕ η. It follows from the definition of the group law on a nonsingular cubic that
the tangentsTa(He(C)) andTb(He(C)) intersect at a pointd on He(C). In the group
law d + 2a = 0, henced = −2a. Sincea, b, c lie on a line, we getc = −a − b
in the group law. After subtracting, we getd − c = b − a = η. Thus the pointsx
andc is an orbit of the Steiner involution. This shows thatc is the singular point of
Pd(C). By Proposition1.2.4, Pd(C) contains the pointsa, b. Thusa, b is a component
of Pd(C).
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It follows from the above proposition that the Cayleyan curve of a nonsingular
cubicC parametrizes the line components of singular polar conics ofC. It is also
isomorphic to the quotient of He(C) by theSteinerian involutionfrom Corollary3.2.4
. Since this involution does not have fixed point the quotient map He(C)→ Cay(C) is
a unramified cover of degree 2. In particular, Cay(C) is a nonsingular curve of genus
1.

Let us find the equation of the Cayleyan curve. A line` belongs to Cay(X) of
and only the restriction of the linear system of polar conics ofX to ` is of dimension
1. This translates into the condition that the restriction of the partials ofX to ` is a
linearly dependent set of three binary forms. So, write` in the parametric form as the
image of the mapP1 → P2 given by[u, v] 7→ [a0u+ b0v, a1u+ b1v, a2u+ b2v]. The
the pull-backs of the partials from (3.19) define 3 binary forms inu, v (a0u+ b0v)2 +
2m(a1u+ b1v)(a2u+ b2v) and so on. The condition of linear dependence is given by
the vanishing of the determinant

det

a2
0 + 2ma1a2 2a0b0 + 2m(a1b2 + a2b1) b20 + 2mb1b2
a2
1 + 2ma0a2 2a1b1 + 2m(a0b2 + a2b0) b21 + 2mb0b2
a2
2 + 2ma0a1 2a2b2 + 2m(a0b1 + a1b0) b22 + 2mb0b2


The coordinates of̀ in the dual plane are

[ξ0, ξ1, ξ2] = [a1b2 − a2b1, a2b0 − a0b2, a0b1 − a1b0].

Computing the determinant we find that the equation of Cay(X) in the coordinates
ξ0, ξ1, ξ2 is

ξ30 + ξ31 + ξ32 + 6m′ξ0, ξ1, ξ2 = 0, (3.24)

wherem′ = (1 − 4m3)/6m. Using the formula (3.7) for the absolute invariant of
the curve, this can be translated into an explicit relationship between the absolute in-
variant of an elliptic curveE and the isogeneous elliptic curveE/(te), wherete is the
translation automorphism by a non-trivial 2-torsion point.

Note that this agrees with the degree of the Cayleyan curve found in Proposition
1.1.14.

3.2.3 The dual curve

Write the equation of a general line in the formt2 = ξ0t0 + ξ1t1 and plug in the Hesse
equation (3.21). The corresponding cubic equation has a multiple root if and only if
the line is a tangent. We have

(ξ0t0 + ξ1t1)3 + t30 + t31 + 6mt0t1(ξ0t0 + ξ1t1)

= (ξ30 + 1)t30 + (ξ31 + 1)t31 + (3ξ20ξ1 + 6mξ0)t20t1 + (3ξ0ξ21 + 6mξ1)t0t21 = 0.

The condition that there is a multiple root is that the discriminant of the homogeneous
cubic form int0, t1 is zero. The discriminant of the cubic format30+bt20t1+ct0t21+dt31
is equal to

D = b2c2 + 18abcd− 4ac3 − 4b3d− 27a2d2.
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After plugging in, we obtain

(3ξ20ξ1+6mξ0)2(3ξ0ξ21 +6mξ1)2+18(3ξ20ξ1+6mξ0)(3ξ0ξ21 +6mξ1)(ξ30 +1)(ξ31 +1)

−4(ξ30 + 1)(3ξ0ξ21 + 6mξ1)− 4(ξ31 + 1)(3ξ1ξ20 + 6mξ0)− [27(ξ30 + 1)2(ξ31 + 1)2

= −27 + 864ξ30ξ
3
1m

3 + 648ξ20ξ
2
1m− 648m2ξ0ξ

4
1 − 648m2ξ40ξ1 + 648m2ξ0ξ1

+1296m4ξ20ξ
2
1 − 27ξ61 − 27ξ60 + 54ξ30ξ

3
1 − 864ξ31m

3 − 864ξ30m
3 − 54ξ31 − 54ξ30 .

It remains to homogenize the equation and divide by(−27) to obtain the equation of
the dual curve

ξ60 + ξ61 + ξ62 − (2 + 32m3)(ξ30ξ
3
1 + ξ30ξ

3
2 + ξ32ξ

3
1)

−24m2ξ0ξ1ξ2(ξ30 + ξ31 + ξ32)− (24m+ 48m4)ξ20ξ
2
1ξ

2
2 = 0. (3.25)

According to the Pl̈ucker formula (9.49) the dual curve of a nonsingular member, being
of geometric genus 1, must have 9 cusps. They correspond to the flex tangent of the
original curve. The inflection points are given in (3.8). Computing the equations of the
tangents we find the following singular points of the dual curve:

[−2m, 1, 1], [1,−2m, 1], [1, 1,−2m], [−2mε, ε2, 1], [−2mε, 1, ε2],

[ε2,−2mε, 1], [1,−2mε, 1, ε2], [1, ε2,−2mε], [ε2, 1,−2m].

One easily checks that the polarPa(C) with pole at a base point of the Hesse pencil
contains the flex tangent ata as a line component. This shows that the Caylean curve
Cay(C) passes through the singular points of the dual cubic. The pencil spanned by
the dual cubic and the Cayleyan cubic taken with multiplicity 2 is a pencil of sextic
curves with 9 double points (anHalphen pencilof index 2). But this is another story.

3.2.4 Polar polygons

Since for any three general points inP2 there exists a plane cubic singular at these
points (the union of three lines), a general ternary cubic form does not admit polar
triangles. Of course this is easy to see by counting constants.

A plane cubic curve projectively isomorphic to the cubicC = V (t30 + t31 + t32) will
be called aFermat cubic. Obviously, such a curve admits a polar 3-polyhedron (polar
triangle).

Proposition 3.2.6. A plane cubic admits a polar triangle if and only if either it is a
Fermat cubic or it is equal to the union of three distinct concurrent lines.

Proof. SupposeC = V (l31 + l32 + l33). Without loss of generality, we may assume that
l31 is not proportional tol32. Thus, after coordinate changeC = V (t30 + t31 + l3). If
l[t0, t1, t2] does not depend ont2, the curveC is the union of three distinct concurrent
lines. Otherwise, we can change coordinates to assume thatl = t2 and get a Fermat
cubic.
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Remark3.2.3. If C is a Fermat cubic, then its polar triangle is unique. Its sides are the
three first polars ofC which are double lines.

By counting constants, we see that a general cubic admits a polar 4-polyhedron
(polar quadrangle). We call a polar quadrangle{l1, . . . , l4} nondegenerateif it is
defined by 4 points in|E| no three of which are collinear. It is clear that a polar
quadrangle is nondegenerate if and only if the linear system of conics in|E| through
the points̀ 1, . . . , `4 is an irreducible pencil (i.e. a linear system of dimension 1 whose
general member is irreducible). This allows us to define anondegenerate generalized
polar quadrangleof C as a generalized polyhedronZ of C such that|IZ(2)| is an
irreducible pencil.

Lemma 3.2.7. C admits a degenerate polar quadrangle if and only if it is one of the
following curves:

(i) a Fermat cubic;

(ii) a cuspidal cubic;

(ii) the union of three concurrent lines (not necessary distinct);

Proof. We have

t30 + t31 + t32 =
1
3
(t0 + t1)3 +

1
3
(t0 + at1)3 +

1
3
(t0 + a2t1)3 + t32,

wherea = e2πi/3.
We also have

t0t1(9t0 + 15t1) = (t0 + t1)3 + (t0 + 2t1)3 − 2t30 − 5t31,

t0t
2
1 = (2t0 + t1)3 + (t0 − 4t1)3 − 9t30 + 15t31,

(2− c3)t30 = (t0 + at1)3 + (t0 + bt1)3 − (ct0 + dt1)3 − (a3 + b3 − d3)t31,

wherea2 + b2 = cd2, a+ b = c2d, c3 + 2 6= 0.
All cuspidal cubics are projectively equivalently. So it is enough to demonstrate a

degenerate polar quadrangle forV (t30 + 6t21t2). We have

t30 + 6t21t2 = (t1 + t2)3 + (t2 − t1)3 − 2t32 + t30.

Now let us prove the converse. Suppose

f = l31 + l32 + l33 + l34,

wherel1, l2, l3 vanish at a common pointa which we identify with a vector inE. We
have

1
3
Da(f) = l1(a)l21 + l2(a)l22 + l3(a)l23 + l4(a)l4 = l4(a)l24.

This shows that the first polarPa(V (f)) is either the wholeP2 or a double lineV (l24).
In the first caseC is the union of three concurrent lines. Assume that the second case
occurs. We can choose coordinates such thata = [1, 0, 0] andl = V (t0). Write

f = f0t
3
0 + f1t

2
0 + f2t0 + f3,
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wherefi are homogeneous forms of degreei in variablest1, t2. ThenDa(f) =
∂0(f) = 3t20f0 + 2t0f1 + f2. This can be proportional tot20 only if f1 = f2 = 0.
ThusV (f) = V (f0t30 + f3(t1, t2)). If f3 has no multiple linear factors, we can choose
coordinates such thatf3 = t31 + t32, and get the cubic. Iff3 has a linear factor with
multiplicity 2, we reducef3 to the formt21t2. This is the case of a cuspidal cubic.
Finally, if f3 is a cube of a linear form, we reduce the latter to the formt31 and get three
concurrent lines.

Remark3.2.4. The locus of Fermat cubics is isomorphic to the homogeneous space
PSL(3)/32oS3. Its closure in|S3E∨| is a hypersurfaceF and consists of curves listed
in the assertion of the previous Lemma and also reducible cubics equal to the unions
of irreducible conics with its tangent lines. The explicit equation of the hypersurface
F is given by theAronhold invariantI4 of degree 4 in the coefficients of the cubic
equation. Its formula can be found in many text-books in invariant theory (e.g. [136]).
If the cubic is written in a Weierstrass formf = t0t

2
2 + t31 + at20t1 + bt30 = 0, then

I4(f) = λa, for some nonzero constantλ independent off . A nice expression forI4 in
terms of a pfaffian of a skew-symmetric matrix was given by G. Ottaviani [304].

Lemma 3.2.8. The following properties equivalent:

(i) AP1(f) 6= {0};

(ii) dim AP2(f) > 2;

(iii) V (f) is equal to the union of three concurrent lines.

Proof. By the apolarity duality

(Af )1 × (Af )2 → (Af )3 ∼= C,

we have

dim(Af )1 = 3− dimAP1(f) = dim(Af )2 = 6− dim AP2(f).

Thusdim AP2(f) = 3 + dimAP1(f). This proves the equivalence of (i) and (ii). By
definition, AP1(f) 6= {0} if and only ifDψ(f) = 0 for some nonzero linear operator
ψ =

∑
ai∂i. After a linear change of variables, we may assume thatψ = ∂0, and

then∂0(f) = 0 if and only if C does not depend ont0, i.e. C is the union of three
concurrent lines.

Lemma 3.2.9. Let Z be a nondegenerate generalized polar quadrangle off . Then
|IZ(2)| is a pencil of conics in|E∨| contained in the linear system|AP2(f)|. Con-
versely, letZ be a 0-dimensional cycle of length 4 in|E|. Assume that|IZ(2)| is an
irreducible pencil contained in|AP2(f)|. ThenZ is a nondegenerate generalized polar
quadrangle off .

Proof. The first assertion follows from the definition of nondegeneracy and Proposition
1.3.6. Let us prove the converse. LetV (λq1 + µq2) be the pencil of conics|IZ(2)|.
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Since AP(f) is an ideal, the linear systemL of cubics of the formV (q1l1 + q2l2),
wherel1, l2 are linear forms, is contained in|AP3(f)|. Obviously, it is contained in
|IZ(3)|. Since|IZ(2)| has no fixed part we may chooseq1 andq2 with no common
factors. Then the mapE∨⊕E∨ → IZ(3) defined by(l1, l2)→ q1l1 + q2l2 is injective
hencedimL = 5. Assumedim |IZ(3)| ≥ 6. Choose 3 points in general position on
an irreducible memberC of |IZ(2)| and 3 non-collinear points outsideC. Then find
a cubicK from |IZ(3)| which passes through these points. ThenK intersectsC with
total multiplicity 4 + 3 = 7, hence containsC. The other component ofK must be
a line passing through 3 non-collinear points which is absurd. So,dim |IZ(3)| = 5
and we haveL = |IZ(3)|. Thus|IZ(3)| ⊂ |AP3(f)| and, by Proposition1.3.6, Z is a
generalized polar quadrangle ofC.

Corollary 3.2.10. SupposeC = V (f) is not the union of three concurrent lines. The
subset ofVSP(C; 4) consisting of nondegenerated generalized polar quadrangles is
isomorphic to an open subset of the plane|AP2(f)∨|.

Example3.2.1. Let V (f) be the union of an irreducible conic and its tangent line.
After a linear change of variables we may assume thatf = t0(t0t1 + t22). It is easy
to check that AP2(f) is spanned byξ21 , ξ1ξ2, ξ

2
2 − ξ0ξ1. It follows from Lemma3.2.7

thatf does not admit degenerate polar quadrangle. Thus any polar quadrangles ofC is
the base locus of an irreducible pencil in|AP2(f)|. However, it is easy to see that all
nonsingular conics in|AP2(f)| are tangent at the point[0, 1, 0]. Thus no pencil has 4
distinct base points. This shows that

VSP(f ; 4)o = ∅.

Of course, VSP(f ; 4) 6= ∅. Any irreducible pencil in|AP2(f)| defines a generalized
polar quadrangle. It is easy to see that the only reducible pencil isV (λ∂2

1 + µ∂1∂2).
Thus VSP(f ; 4) contains a subvariety isomorphic to a complement of one point in
P2 = |AP2(f)∨|. To compactify it byP2 we need to find one more generalized polar
quadrangle. Consider the subschemeZ of degree 4 concentrated at the point[1, 0, 0]
with ideal at this point generated by(x2, xy, y3), where we use inhomogeneous co-
ordinatesx = ξ1/ξ0, y = ξ2/ξ0. The linear system|IZ(3)| is of dimension 5 and
consists of cubics of the formV (ξ0ξ1(aξ1 + bξ2) + g3(ξ1, ξ2)). ThusZ is linearly
3-independent. One easily computes AP3(f). It is generated by all monomials except
ξ20ξ1 andξ0ξ22 and also the polynomialξ0ξ22 − ξ20ξ1. We see that|IZ(3)| ⊂ |AP3(f)|.
ThusZ is a generalized polar quadrangle ofC. It is nondegenerate since|IZ(2)| is
the pencilV (λξ21 + µξ1ξ2). So, we see that VSP(f ; 4) is isomorphic to the plane
|AP2(f)|∗.
Example3.2.2. Let V (f) be an irreducible nodal cubic. Without loss of generality,
we may assume thatf = t22t0 + t31 + t21t0. The space of apolar quadratic forms is
spanned by∂2

0 , ∂1∂2, ∂
2
2 − ∂2

1 . The net|AP2(f)| is base point-free. It is easy to see
that its discriminant curve is the union of three distinct non-concurrent lines. Each line
defines a pencil with singular general member but without fixed part. So, VSP(f ; 4) =
|AP2(f)|∗.
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Example3.2.3. Let V (f) be the union of an irreducible conic and a line which in-
tersects the conic transversally. Without loss of generality, we may assume thatf =
t0(t20 + t1t2). The space of apolar quadratic forms is spanned byξ21 , ξ

2
2 , 6ξ1ξ2 − ξ20 .

The net|AP2(f)| is base point-free. It is easy to see that its discriminant curve is the
union of a conic and a line intersecting the conic transversally. The line defines a pencil
with singular general member but without fixed part. So, VSP(f ; 4) = |AP2(f)∨|.

Example3.2.4. Let V (f) be a cuspidal cubic. Without loss of generality, we may
assume thatf = t21t0 + t32. The space of apolar quadratic forms is spanned by
ξ20 , ξ0ξ2, ξ2ξ1. The net|AP2(f)| has 2 base points[0, 1, 0] and [0, 0, 1]. The point
[0, 0, 1] is a simple base point. The point[0, 1, 0] is of multiplicity 2 with the ideal
locally defined by(x2, y). Thus base point scheme of any irreducible pencil is not re-
duced. There are no polar 4-polyhedra defined by the base-locus of a pencil of conics
in |AP2(f)|. The discriminant curve is the union of two lines, each defining a pencil
with a fixed line component. So|AP2(f)∨| minus 2 points parametrizes generalized
polar 4-polyhedra. We know thatV (f) admits degenerate polar 4-polyhedra. Thus
VSP(f ; 4)o is not empty and consists of degenerate polar 4-polyhedra.

Example3.2.5. Let V (f) be a nonsingular cubic curve. We know that its equation can
be reduced to a Hesse formV (t30 + t31 + t32 +6at0t1t2), where1+8a3 6= 0. The space
of apolar quadratic forms is spanned byaξ0ξ1−ξ22 , aξ1ξ2−ξ20 , aξ0ξ2−ξ21 . The curve
V (f) is a Fermat cubic if and only ifa(a3− 1) = 0. In this case the net has 3 ordinary
base points and the discriminant curve is the union of 3 non-concurrent lines. The net
has 3 pencils with fixed part defined by these lines. Thus the set of nondegenerate
generalized polyhedrons is equal to the complement of 3 points in|AP2(f)∨|. We
know that a Fermat cubic admits degenerate polar 4-polyhedra.

SupposeV (f) is not a Fermat cubic. Then the net|AP2(f)| is base point-free. Its
discriminant curve is a nonsingular cubic. All pencils are irreducible. There are no
degenerate generalized polygons. So, VSP(f ; 4) = |AP2(f)∨|.

Example3.2.6. Assume thatV (f) = V (t0t1t2) is the union of 3 non-concurrent lines.
Then AP2(f) is spanned byξ20 , ξ

2
1 , ξ

2
2 . The net|AP2(f)| is base point-free. The dis-

criminant curve is the union of three non-concurrent lines representing pencils without
fixed point but with singular general member. Thus VSP(f ; 4) = |AP2(f)∨|.

It follows from the previous examples that|AP2(f)| is base point-free net of conics
if and only ifC does not belong to the closure of the orbit of Fermat cubics.

Theorem 3.2.11.Assume thatC does not belong to the closure of the orbit of Fermat
cubics. Then|AP2(f)| is a base point-free net of conics and

VSP(f ; 4) ∼= |AP2(f)∨| ∼= P2.

The varietyVSP(f ; 4)o is isomorphic to the open subset of|AP2(f)∨| whose comple-
ment is the curveB of pencils with non-reduced base-locus. The curveB is a plane
sextic with 9 cusps ifV (f) is a nonsingular curve, the union of three non-concurrent
lines ifV (f) is an irreducible nodal curve or the union of three lines, and the union of
a conic and its two tangent lines ifV (f) is the union of a conic and a line.
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Proof. The first assertion follows from the Examples3.2.2-3.2.6. Since the linear sys-
tem of conics|AP2(f)| is base point-free, it defines a regular map

φ : |E| → |AP2(f)∨|.

The preimage of a line is a conic from|AP2(f)|. The lines through a pointq in
|AP2(f)∨| define a pencil with base locusφ−1(q). Thus pencils with non-reduced
locus are parametrized by the branch curveB of the mapφ.

If C is a nonsingular cubic, we know from Example3.2.5 that the discriminant
curve∆ is a nonsingular cubic. A line in|AP2(f)| defines a pencil of conics. Its
singular members are the intersection points of the line and∆. It is easy to see that the
pencil has exactly 3 singular members if and only if its base point locus consists of 4
distinct points. Thus the curveB is the dual curve of∆. By the duality,∆ is dual of
B. We know that the dual of a nonsingular plane cubic is a plane sextic with 9 cusps.

If C is an irreducible nodal curve, we know from Example3.2.2that∆ is the union
of three non-concurrent lines. The locus of lines intersecting∆ not transversally is the
union of three pencils of lines. As aboveB must be the union of three non-concurrent
lines.

If C is the union of a conic and a line, we know from Example3.2.3 that ∆ is
the union of a conic and a line intersecting the conic transversally. Obviously,B must
contain an irreducible component dual to the conic. Other irreducible components must
be two tangent lines to the conic.

Finally, if C is the union of three lines, the mapφ is given by [t0, t1, t2] →
[t20, t

2
1, t

2
2] and as is easy to see its branch locus is the union of the coordinate lines.

Let C ⊂ |S3E∨| ∼= P9 be the locus of three concurrent lines. For eachV (f) ∈
|S3E∨|\C, the space AP2(f) is 3-dimensional. This defines a regular mapa : |S3E∨|\
C → G(3, S2E). Both the varieties are 9-dimensional. Fix a 3-dimensional subspace
L of S2E and consider the linear map

ã : S3E∨ → Hom(L,E∨), ã(f)(ψ) = Dψ(f).

Its kernel consists of cubic formsC such thatL ⊂ AP2(f). Note that the map̃a is a
linear map from a 10-dimensional space to a 9-dimensional space. One expects that
its kernel is 1-dimensional. This shows that, for a general pointL ∈ G(3, S2E) the
preimagea−1 is a one-point. Thus the mapa is birational.

Exercises

3.1Find the Hessian form of a nonsingular cubic given by the Weierstrass equation.

3.2Show that a cubic curve given by the Hessian equation (3.5) is a harmonic (resp. equianhar-
monic) cubic if and only if1− 20m3 − 8m6 = 0 (resp.m(m3 − 1) = 0).

3.3LetH = He(C) be the Hessian cubic of a nonsingular plane cubic curveC not isomorphic
to a Fermat cubic. Letτ : H → H be the Steinerian automorphism ofH which assigns to
a ∈ H the unique singular point ofPa(C).
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(i) Let H̃ = {(a, `) ∈ H × P̌2 : ` ⊂ Pa(C)}. Show that the projectionp1 : H̃ → H is an
unramified double cover.

(ii) Show thatH̃ ∼= H/〈τ〉. [Hint: for any (x, `) ∈ H̃, ` = 〈a, τ(a)〉 for a unique point
a ∈ C].

3.4LetC = V (f) ⊂ P2 be a nonsingular cubic.

(i) Show that the set of second polars ofC with respect to points on a fixed linèis a conic
in the dual plane. Its dual conicC(`) in P2 is called thepolar conicof the line.

(ii) Show thatC(`) is equal to the set of poles of` with respect to polar conicsPx(C), where
x ∈ `.

(iii) What happens to the conicC(`) when the linè is tangent toC?

(iv) Show that the polar conicC(`) of a nonsingular cubicC coincides with the locus of points
x such thatPx(C) is tangent tò .

(v) Show that the set of lines̀such thatC(`) is tangent tò is the dual curve ofC.

(vi) Let ` = V (a0t0 + a1t1 + a2t2). Show thatC(`) can be given by the equation

g(a, t) = det

0BBBB@
0 a0 a1 a2

a0
∂2f

∂t20

∂2f
∂t0∂t1

∂2f
∂t0∂t2

a1
∂2f
∂t1∂t0

∂2f

∂t21

∂2f
∂t1∂t2

a2
∂2f
∂t2∂t0

∂2f
∂t2∂t1

∂2f

∂t22

1CCCCA = 0.

(vii) Show that the dual curveC∨ of C can be given by the equation (theSchl̈afli equation)

det

0BBBB@
0 ξ0 ξ1 ξ2

ξ0
∂2g(ξ,T )

∂t20
(ξ) ∂2g(ξ,T )

∂t0∂t1
(ξ) ∂2g(ξ,T )

∂t0∂t2
(ξ)

ξ1
∂2g(ξ,T )
∂t1∂t0

(ξ) ∂2g(ξ,T )

∂t21
(ξ) ∂2g(ξ,T )

∂t1∂t2
(ξ)

ξ2
∂2g(ξ,T )
∂t2∂t0

(ξ) ∂2g(ξ,T )
∂t2∂t1

(ξ) ∂2g(ξ,T )

∂t22
(ξ)

1CCCCA .

3.5LetC ⊂ Pd−1 be an elliptic curve embedded by the linear system
˛̨
OC(dp0)

˛̨
, wherep0 is a

point inC. Assumed = p is prime.

(i) Show that the image of anyp-torsion point is an osculating point ofC, i.e., a point such
that there exists a hyperplane (anosculating hyperplane) which intersects the curve only
at this point.

(ii) Show that there is a bijective correspondence between the sets of cosets of(Z/pZ)2 with
respect to subgroups of orderp and hyperplanes inPp−1 which cut out inC the set ofp
osculating points.

(iii) Show that the set ofp-torsion points and the set of osculating hyperplanes define a
(p2
p+1, p(p+ 1)p)-configuration ofp2 points andp(p+ 1) hyperplanes (i.e. each point is

contained inp+ 1 hyperplanes and each hyperplane containsp points).

(iv) Find a projective representaion of the group(Z/pZ)2 in Pp−1 such that each osculating
hyperplane is invariant with respect to some cyclic subgroup of orderp of (Z/pZ)2.
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3.6 A point on a nonsingular cubic is called asextuple pointif there exists an irreducible conic
intersecting the cubic at this point with multiplicity 6. Show that there are 27 sextuple points.

3.7 The pencil of lines through a point on a nonsingular cubic curveC contains four tangent
lines. Show that the twelve contact points of three pencils with collinear base points onC lie on
16 lines forming a configuration(124, 163) (theHesse-Salmon configuration).

3.8 Show that the polar of the cubic with pole at its inflection point is the union of the tangent
line at this point and the harmonic linèwhich intersects the cubic at three points which are
the nonzero 2-torsion points with respect to the group law with the pole equal to the zero point.
Show that the nine harmonic lines and 12 singular points of singular members of the pencil form
a configuration(94, 123) (thedual Hesse configuration of lines and points).

3.9 Prove that the second polar of a nonsingular cubicC with respect to the pointa on the
Hessian He(C) is equal to the tangent lineTa(He(C)).

3.10Let a, b be two points on the Hessian curve He(C) forming an orbit with the respect to the
Steinerian involution. Show that the linea, b is tangent to Cay(C) at some pointd. Let c be
the third intersection point of He(C) with the linea, b. Show that the pairs(a, b) and(c, d) are
harmonically conjugate.

3.11Show that from each pointa on the He(C) one can pass three tangent lines to Cay(C). Let
b be the singular point ofPa(C). Show that the set of the three tangent lines consists of the line
a, b and the components of the reducible polar conicPb(C).

3.12LetC = V (
P

0≤i≤j≤k≤2 aijktitjtk). Show that the Cayleyan curve Cay(C) can be given
by the equation

det

0BBBBBB@
a000 a001 a002 ξ0 0 0
a110 a111 a112 0 ξ1 0
a220 a221 a222 0 0 ξ2
2a120 2a121 2a122 0 ξ2 ξ1
2a200 2a201 2a202 ξ2 0 ξ1
2a010 2a011 2a012 ξ1 ξ0 0

1CCCCCCA = 0

[82], p. 245. Generalize this formula to the case of a net of conics not necessary of polars to
a cubic curve. The corresponding curve parameterizing line components of singular conics is
called theHermite curve.

3.13Show that the group of projective transformations leaving a nonsingular plane cubic invari-
ant is a finite group of order 18, 36 or 54. Determine these groups.

3.14LetC be nonsingular projective curveC of genus 1.

(i) Show thatC is isomorphic to a curve in the weighted projective planeP(1, 1, 2) given by
the equationt22 + p4(t0, t1) = 0, wherep4 is a homogeneous polynomial of degree 4 (a
binary quartic).

(ii) Show that a general binary quartic can be reduced by a linear change of variables to the
form t40 + t41 + 6at20t

2
1. (Hint: write p4 as the product of two quadratic forms, and reduce

them simultaneously to sum of squares).

(iii) Show that forC such reduction witha 6= ± 1
3

is always possible.

(iv) Show that the linear symmetries of the reduced quartic define a group of automorphisms
of C which can be identified, after a choice of a group law onC, with the group of
translations by 2-torsion points.

(v) Show that the absolute invariant ofC is related to the coefficienta from part (i) via the

formulaj = (1+3a2)3

(9a2−1)2
.
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(vi) Show that a harmonic (resp. equianharmonic) cubic corresponds to the binary quartics
t40 ± 6t20t

2
1 + t41 (resp.t40 ± 2

√
−3t20t

2
1 + t41).

3.15Find all ternary cubicsC such that VSP(C; 4)o = ∅.

3.16Show that a plane cubic curve belongs to the closure of the Fermat locus if and only if it
admits a first polar equal to a double line or the whole space.

3.17Show that any plane cubic curve is equal to the set of intersection points of corresponding
members of a pencil of lines and a pencil of conics.

Historical Notes

The discovery that any plane cubic can be written by a Weierstrass equation is due
to Newton. It was Weierstrass who showed that the equation can be parametrized by
elliptic functions, the Weierstrass functions℘(z) and℘(z)′. The Hesse pencil was in-
troduced and studied by O. Hesse [209],[210]. It has also known as thesyzygetic pencil
(see [82]). More facts about the Hesse pencils and its connection to other constructions
in modern algebraic geometry can be found in [11].

The equations of the Cayleyan curve of a plane cubic given in the Hesse form can
be found in [356]. The equation from Exercise 3.12 is taken from [82]. The equation
of the dual cubic curve given in the Hesse form can be found in [356]. The Schl̈afli
equation from Exericise 3.4 was given by L. Schläfli in [360]. Its modern proof is given
in [183].

The polar polygons of a plane cubics were first studied by F. London [270] and G.
Scorza [368]. A modern treatment of some of their results is given in [132] (see also
[329] for related results).

As always we refer for more historical information and survey of many results
which were omitted in our exposition to classical books [82], [308], [143], [364].
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Chapter 4

Determinantal equations

4.1 Plane curves

4.1.1 The problem

Here we will try to solve the following problem. Given a homogeneous polynomial
f(t0, . . . , tn) find ad× d matrixA = (lij(t)) with linear forms as its entries such that

f(t0, . . . , tn) = det(lij(t)). (4.1)

We will also try to find in how many essentially different ways one can do it.
First let us reinterpret this problem geometrically and coordinate free. LetE be

a vector space of dimensionn + 1 and letV,W be vector spaces of dimensiond. A
square matrix corresponds to a linear mapV → W , or an element ofV ∨ ⊗ W . A
matrix with linear forms corresponds to an element ofE∨ ⊗ V ∨ ⊗W , or a linear map
φ′ : E → V ∨ ⊗W .

We shall assume that the mapφ is injective (otherwise the hypersurfaceV (f) is a
cone, so we can solve our problem by induction on the number of variables). Let

φ : |E| → |V ∨ ⊗W | (4.2)

be the regular map of the associated projective spaces. LetDd ⊂ |V ∨ ⊗W | be the
hypersurface parameterizing non-invertible linear maps. If we choose bases inV,W ,
thenDd is given by the determinant of a square matrix (whose entries will be coordi-
nates inV ∨⊗W ). The preimage ofDd in |E| is a hypersurfaceV (f) of degreed. Our
problem is to construct such a mapφ in order that a given hypersurface is obtained in
this way.

Note that the singular locusDsing
d of the determinantal varietyDd corresponds to

matrices of corank≥ 2. It is easy to see that its codimension in|V ∨ ⊗W | is equal to
4. If the image of|E| intersectsDsing

d , thenφ−1(Dd) will be a singular hypersurface.
So, a nonsingular hypersurface of dimension≥ 3 cannot be given by a determinantal
equation.

91
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4.1.2 Plane curves

Let us first consider the case of nonsingular plane curvesC = V (f) ⊂ P2. Assume
thatC admits a determinantal form. As we have explained, the image of the mapφ
does not intersectDsing

d . Thus, for anyx ∈ C, the corank of the matrixφ(x) is equal to
1 (here we consider a matrix up to proportionality since we are in the projective space).
The kernel of this matrix is a one-dimensional subspace ofV , i.e., a point in|V |. This
defines a regular map

r : C → |V |, x 7→ Ker(φ(x)).

Now let tφ(x) : W∨ → V ∨ be the transpose map. In coordinates, it corresponds to the
transpose matrix. Its kernel is isomorphic to Im(φ(x))⊥ and is also one-dimensional.
So we have another regular map

l : C → |W∨|, x 7→ Ker(tφ(x)).

Let
L = r∗O|V |(1), M = l∗O|W∨|(1).

These are invertible sheaves on the curveC. We can identifyV with H0(C,L)∨ and
W with H0(C,M) (see Lemma4.1.2below). Consider the composition of regular
maps

ψ : C r×l−→ |V | × |W∨| s2−→ |V ⊗W∨|, (4.3)

wheres2 is the Segre map. It follows from the definition of the Segre map, that the
tensorψ(x) is equal tor(x) ⊗ l(x). It can be viewed as a linear mapV ∨ → W∨.
In coordinates, the matrix of this map is the product of the column vector defined by
Ker(φ(x)) and the row vector defined by Ker(tφ(x)). It is a rank 1 matrix equal to the
adjugate matrix of the matrixA = φ(x) (up to proportionality). Recall that a square
matrix of rank 1 has a solution defined by any column of the adjugate matrix (since we
haveA · adj(A) = 0). Similarly, the kernel of the transpose ofA is given by any row
of the adjugate matrtix. Thus the entries of the matrixψ(x) are cofactors of the matrix
φ(x). Consider the rational map

Adj : |V ∨ ⊗W |− → |V ⊗W∨| (4.4)

defined by taking the adjugate matrix. Recall that the adjugate matrix should be consid-
ered as a linear map

∧d−1
V →

∧d−1
W and we can identify|

∧d−1
V ∨ ⊗

∧d−1
W |

with |V ⊗W∨|. Although it is not well-defined on vector spaces, it is well-defined, as
a rational map, on the projective spaces (see Example1.1.2). Let Ψ = Adj ◦ φ, then
ψ is equal to the restriction ofΨ to C. Since Adj is defined by polynomials of degree
d− 1 (after we choose bases inV,W ), we have

Ψ∗O|V⊗W∨|(1) = O|E|(d− 1).

This gives
ψ∗O|V⊗W∨|(1) = O|E|(d− 1)⊗OC = OC(d− 1).

On the other hand, we get

ψ∗O|V⊗W∨|(1) = (s2 ◦ (r × l))∗O|V⊗W∨|(1)
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= (r × l)∗
(
s∗2O|V⊗W∨|(1)

)
= (r × l)∗

(
p∗1O|V |(1)⊗ p∗2O|W∨|(1)

)
= r∗O|V |(1)⊗ l∗O|W |(1) = L ⊗M.

Herep1 : |V | × |W∨| → |V |, p2 : |V | × |W∨| → |W∨| are the projection maps.
Comparing the two isomorphisms, we obtain

Lemma 4.1.1.
L ⊗M ∼= OC(d− 1). (4.5)

Remark4.1.1. It follows from Example1.1.2that the rational map (4.4) is given by
the polars of the determinantal hypersurface. In fact, ifA = (tij) is a matrix with

independent variables as entries, then∂ det(A)
∂tij

= Mij , whereMij is theij-th cofactor

of the matrixA. The map Adj is a birational map since Adj(A) = A−1 det(A) and the
mapA→ A−1 is obviously invertible. So, the determinantal equation is an example of
a homogeneous polynomial such that the corresponding polar map is a birational map.
Such a polynomial is called ahomaloidal polynomial(see [134]).

Lemma 4.1.2. Letg = 1
2 (d− 1)(d− 2) be the genus of the curveC. Then

(i) deg(L) = deg(M) = 1
2d(d− 1) = g − 1 + d;

(ii) H0(C,L) ∼= V ∨, H0(C,M) = W ;

(iii) Hi(C,L(−1)) ∼= Hi(C,M(−1)) = {0}, i = 0, 1.

Proof. Let us first first prove (iii). A nonzero section ofH0(C,L(−1)) is a section ofL
which defines a hyperplane in|V |which intersects the imager(C) of the curveC along
a divisorr(D), whereD is cut out inC by a line. Since all such divisorsD are linear
equivalent, we see that for any line` the divisorr(` ∩ C) is cut out by a hyperplane in
|V |. Choosè such that it intersectsC atd distinct pointsx1, . . . , xd. Choose bases in
V andW . The image ofφ(`) in |V ∨⊗W | = P(Matd) is a pencil of matricesλA+µB.
We know that there ared distinct values of(λ, µ) such that the corresponding matrix is
of corank 1. Without loss of generality, we may assume thatA andB are nonsingular
matrices. So we haved distinct λi such that the matrixA + λiB is singular. Let
v1, . . . , vd be the generators of Ker(A + λiB). The corresponding points in|V | are
equal to the pointsr(xi). We claim that the vectorsv1, . . . , vd are linearly independent
vectors inV . The proof is by induction ond. Assumea1v1 + · · · + advd = 0. Then
Avi + λiBvi = 0 for eachi = 1, . . . , d gives

0 = A
( d∑
i=1

aivi
)

=
d∑
i=1

aiAvi = −
d∑
i=1

aiλiBvi.

We also have

0 = B
( d∑
i=1

aivi
)

=
d∑
i=1

aiBvi.
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Multiplying the second equality byλd and adding it to the first one, we obtain

d−1∑
i=1

ai(λd − λi)Bvi = B
(d−1∑
i=1

ai(λd − λi)vi
)

= 0.

SinceB is invertible, this gives

d−1∑
i=1

ai(λi − λd)vi = 0.

By induction, the vectorsv1, . . . , vd−1 are linearly independent. Sinceλi 6= λd, we
obtaina1 = . . . = ad−1 = 0. Sincevd 6= 0, we also getad = 0.

Sincev1, . . . , vd are linearly independent, the pointsr(xi) spanP(W ). Hence no
hyperplane contains these points. This provesH0(C,L(−1)) = 0. Similarly, we prove
thatH0(C,M(−1)) = 0. Applying Lemma4.1.1we get

L(−1)⊗M(−1) ∼= OC(d− 3) = ωC , (4.6)

whereωC is the canonical sheaf onC. By duality,

Hi(C,M(−1)) ∼= H1−i(C,L(−1)), i = 0, 1.

This proves (iii). Let us prove (i) and (ii). LetH be a section ofOC(1). The exact
sequence

0→ L(−1)→ L → L⊗OH → 0

gives, by passing to cohomology and applying (iii),

H1(C,L) = 0.

ReplacingL withM and repeating the argument, we obtain thatH1(C,M) = 0. We
know thatdimH0(C,L) ≥ dimV ∨ = d. Applying Riemann-Roch, we obtain

deg(L) = dimH0(C,L) + g − 1 ≥ d+ g − 1.

Similarly, we get
deg(M) ≥ d+ g − 1.

Adding up, and applying Lemma4.1.1, we obtain

d(d− 1) = degOC(d− 1) = deg(L) + deg(M) ≥ 2d+ 2g − 2 = d(d− 1).

Thus all the inequalities in above are the equalities, and we get assertions (i) and (ii).

Now we would like to prove the converse. LetL andM be invertible sheaves on
C satisfying (4.5) and properties from the previous Lemma hold.
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Let r : C → |V |, l : C → P(W∨) be the maps given by the complete linear
systems| L | and| M |. We defineψ : C → |V ⊗W∨| to be the composition ofr× l
and the Segre maps2. It follows from property (4.5) that the mapψ is the restriction
of the mapΨ : |E| → |V ⊗W∨| given by a linear system of plane curves of degree
d − 1. We can view this map as a tensor inSd−1(E∨) ⊗ V ⊗W∨. In coordinates,
it is a d × d matrixA(t) with entries from the space of homogeneous polynomials of
degreed − 1. SinceΨ|C = ψ, for any pointx ∈ C, we have rankA(x) = 1. LetM
be a2 × 2 submatrix ofA(t). SincedetM(x) = 0 for x ∈ C, we havef | detM .
Consider a3 × 3 submatrixN of A(t). We havedet adj(N) = det(N)2. Since the
entries of adj(N) are determinants of2 × 2 submatrices, we see thatf3 | det(N)2.
SinceC is irreducible, this immediately implies thatf2 | det(N). Continuing in this
way we obtain thatfd−2 divides all cofactors of the matrixA. ThusB = f2−dadj(A)
is a matrix with entries inE∨. Since rankB = rank adj(A), and rankA(x) = 1, we get
that rankB(x) = d − 1 for anyx ∈ C. So, if detB is not identically zero, we obtain
thatV (det(B)) is a hypersurface of degreed vanishing onC, hencedet(B) = λf for
someλ ∈ K∗. This shows thatC = V (det(B)). To see thatdet(B) 6= 0, we have
to use property (iii) of Lemma4.1.2. Reversing the proof of this property, we see that
for a general linè in |E| the images of the pointsxi ∈ ` ∩ C in |V | × P(W∨) are the
points(ai, bi) such that theai’s span|V | and thebi’s spanP(W∨). The images of the
xi’s in |V ⊗W∨| under the mapΨ span a subspaceL of dimensiond−1. If we choose
coordinates so that the pointsai andbi are defined by the unit vectors(0, . . . , 1, . . . , 0),
thenL corresponds to the space of diagonal matrices. The image of the line` under
Ψ is a Veronese curve of degreed − 1 in L. A general pointΨ(x), x ∈ `, on this
curve does not belong to any hyperplane inL spanned byd− 1 pointsxi’s, thus it can
be written as a linear combination of the pointsΨ(xi) with nonzero coefficients. This
represents a matrix of rankd. This shows thatdetA(x) 6= 0 and hencedet(B(x)) 6= 0.

To sum up, we have proved the following theorem.

Theorem 4.1.3.LetC ⊂ P2 be a nonsingular plane curve of degreed. LetPic(C)g−1

be the Picard variety of isomorphism classes of invertible sheaves onC of degree
g − 1 (or divisor classes of degreeg − 1). Let Wg−1 ⊂ Picg−1(C) be the sub-
set parameterizing invertible sheavesF with H0(C,F) 6= {0} (or effective divisors
of degreeg − 1). Let L0 ∈ Picg−1(C) \ Wg−1, andM0 = ωC ⊗ L−1

0 . Then
V ∼= H0(C,L0(1))∗ and W ∼= H0(C,M0(1)) have dimensiond and there is a
unique regular mapφ : P2 → |V ∨ ⊗ W | such thatC is equal to the preimage of
the determinantal hypersurfaceDd and the mapsr : C → |V | and l : C → P(W∨)
given by the complete linear systems| L0(1) | and | M0(1) | coincide with the
mapsx 7→ Ker(φ(x)) andx 7→ Ker(tφ(x)), respectively. Conversely, given a map
φ : P2 → |V ∨ ⊗W | such thatC = φ−1(Dd) there exists a uniqueL0 ∈ Picg−1(C)
such thatV ∼= H0(C,L0(1))∗, W ∼= H0(C,ωC(1) ⊗ L−1

0 ) and the mapφ is defined
byL as above.

Remark4.1.2. Let X be the set ofd × d matricesA(t) with entries inE∨ such that
f = detA(t). The groupG = GL(d)×GL(d) acts on the set by

(σ1, σ2) ·A = σ1 ·A · σ−1
2 .
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It follows from the Theorem that the orbit spaceX/G is equal to Picg−1(C) \Wg−1.
We mapL0 7→ M0 = ωC⊗L−1

0 is an involution on Picg−1\Wg−1. It corresponds
to the involution onX defined by taking the transpose of the matrix.

4.1.3 The symmetric case

Let us assume that the determinant representation of a plane irreducible curveC of
degreed is given by a pair of equal invertible sheavesL =M. It follows from Lemmas
4.1.1and4.1.2that

• L⊗2 ∼= OC(d− 1);

• deg(L) = 1
2d(d− 1);

• H0(C,L(−1)) = {0}.

Recall that the canonical sheafωC is isomorphic toOC(d− 3). Thus

(L(−1))⊗2 ∼= ωC . (4.7)

Definition 4.1. LetX be a curve with a canonical invertible sheafωX (e.g. a nonsin-
gular curve, or a curve on a nonsingular surface). An invertible sheafN whose tensor
square is isomorphic toωX is called atheta characteristic. A theta characteristic is
calledeven(resp.odd) if dim H0(X,N ) is even (resp. odd).

Using this definition we can express (4.7) by saying that

L ∼= N (1),

whereN is an even theta characteristic (becauseH0(C,N ) = {0}). Of course, the
latter condition is stronger. An even theta characteristic with no nonzero global sections
(resp. with nonzero global sections) is called anon-effective theta characteristic(resp.
effective theta characteristic).

Rewriting the previous subsection in the special caseL =M we obtain thatV ∨ =
H0(C,L) = H0(C,M) = W . The mapsl = r given by the linear systems| L | and
| M | and define a mapr × r : C → |V | × |V |. Its composition with the Segre map
|V | × |V | → |V ⊗ V | and the projection to|S2V | defines a map

φ : C → |S2V |.

In coordinates, it is given by

ψ(x) = r̃(x) · tr̃(x),

wherer̃(x) is the column of projective coordinates of the pointr(x). It is clear that
the image of the mapψ is contained in the variety of rank 1 quadrics in the dual space
|V ∨| = P(V ). It follows from the proof of Theorem4.1.3that there exists a linear map
φ : P2 → |S2V ∨| such that its composition with the rational map defined by taking the
adjugate matrix equals, after restriction toC, the mapψ. The image ofφ is a netN of
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quadrics in|V |. The image ofC is the locus of singular quadrics inN . For each point
x ∈ C, we denote the corresponding quadric byQx. The rational mapl (regular ifC is
nonsingular) is defined by assigning to a pointx ∈ C the singular point of the quadric
Qx. The imageX of C in |V | is a curve of degree equal todegL = 1

2d(d− 1).

Proposition 4.1.4. The restriction map

r : H0(|V |,O|V |(2))→ H0(X,OX(2))

is surjective. Under the isomorphism

H0(X,OX(2)) ∼= H0(C,L⊗2) ∼= H0(C,OC(d− 1)),

the space of quadrics in|V | is identified with the space of plane curves of degreed−1.
The net of quadricsN is identified with the linear system of first polars of the curveC.

Proof. Reversing the proof of property (iii) from Lemma4.1.2shows that the image
of C under the mapψ : C → |V ⊗W∨| spans the space. In our case, this implies that
the image ofC under the mapC → |S2V ∨ | spans the space of quadrics in the dual
space. If the image ofC in |V | were contained in a quadricQ, thenQ would be apolar
to all quadrics in the dual space, a contradiction. Thus the restriction mapr is injective.
Since the spaces have the same dimension, it must be surjective.

The composition of the mapi : P2 → |O|V |(2)|, x 7→ Qx, and the isomorphism
|O|V |(2)| ∼= |OP2(d − 1)| is a maps : P2 → |OP2(d − 1)|. A similar maps′ is given
by the first polarsx 7→ Px(C). We have to show that the two maps coincide. Recall
thatPx(C) ∩ C = {c ∈ C : x ∈ Tc(C)}. In the next Lemma we will show that the
quadricsQx, x ∈ Tc(C), form the line inN of quadrics passing through the singular
point ofQc equal tor(c). This shows that the quadricQr(x) cuts out inr(C) the divisor
r(Px(C)∩C). Thus the curvess(x) ands′(x) of degreed−1 cut out the same divisor
onC, hence they coincide.

Lemma 4.1.5. LetW ⊂ SdV ∨ be a linear subspace, andD ⊂ P(W ) be the locus of
singular hypersurfaces. Assumex ∈ D is a nonsingular point. Then the corresponding
hypersurface has a unique ordinary double pointy and the embedded tangent space
Tx(D) is equal to the hyperplane of hypersurfaces containingy.

Proof. AssumeW = SdV ∨. ThenD coincides with the discriminant hypersurface
D of all singular degreed hypersurfaces in|V |. In this case the assertion follows
from 1.2.1, where we described explicitly the tangent space ofD at any point. Since
D = P(W ) ∩ D andx ∈ D is a nonsingular point, the intersection is transversal and
Tx(D) = Tx(D) ∩ P(W ). This is our assertion.

We see that a pair(C,N ), whereC is a plane irreducible curve andN is a non-
effective even theta characteristic onC defines a netN of quadrics in|V |, whereV =
H0(C,N (1))∨. Conversely, given a netN of quadrics inPd−1 = |V |. It is known
that the singular locus of the discriminant hypersurfaceD2(d− 1) of quadrics inPd−1

is of codimension 2. Thus a general netN intersectsD2(d − 1) transversally along
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a nonsingular curveC of degreed. This gives a representation ofC as a symmetric
determinant and hence defines an invertible sheafL and a non-effective even theta
characteristicN . This gives a dominant rational map of varieties of dimension(d2 +
3d− 16)/2

G(3, S2V ∨)/PGL(V )− → |OP2(d)|/PGL(3). (4.8)

The degree of this map is equal to the number of non-effective even theta characteristics
on a general curve of degreed. We will see in the next chapter that the number of even
theta characteristics is equal to2g−1(2g +1), whereg = (d− 1)(d− 2)/2 is the genus
of the curve. A curveC of odd degreed = 2k + 3 has a unique vanishing even theta
characteristic equal toN = OC(k) with h0(N ) = (k + 1)(k + 2)/2. A general curve
of even degree does not have vanishing even theta characteristics.

Observe that under the isomorphism from Proposition4.1.4, the variety of quadrics
of rank 1 (i.e. double hyperplanes) is mapped isomorphically to the variety of plane
curves of degreed − 1 which are everywhere tangent to the curveC. We call these
curvescontact curvesof orderd−1. Thus any symmetric determinantal representation
of C determines an algebraic system of dimensiond − 1 of contact curves of degree
d− 1.

Proposition 4.1.6. Let C = V (f), whereC is equal to the determinant of ad × d
symmetric matrix(lij) of linear forms. Then the corresponding algebraic system of
contact curves of degreed− 1, considered as a hypersurface in|E| × |V | of bidegree
(d− 1, 2), is given by the equation

det


l11 . . . l1d u0

l21 . . . l2d u1

...
...

...
...

ld1 . . . ldd ud−1

u0 . . . ud−1 0

 = 0. (4.9)

Proof. Obviously, thebordered determinant(4.9) can be written in the form

d−1∑
i,j=0

Aijuiuj ,

whereAij is the(ij)-cofactor of the matrixA. For anyx ∈ C, the rank of the cofactor
matrix adjA(x) is equal to 1. Thus the quadratic form on the dual space of|V | with
coordinatesu0, . . . , ud−1 defined by the above equation is of rank 1. Hence it is equal
to the double hyperplaneH2 = (

∑
aiui)2, where[a0, . . . , ad−1] ∈ P(W ) belongs

to the null-space of the matrixA(x). Under the identification ofPd−1 = |V | with
|OP2(L)|∗, the hyperplaneH in the dual space corresponds to the pointl(x), where
l : C → Pd−1 is the map defined by the symmetric determinantal representation ofC.
This checks the assertion.

Consider the multiplication map

H0(C,N (1))⊗H0(C,N (1))→ H0(C,KC(2)). (4.10)
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Let us use the notationV = H0(C,N (1)) ∼= Pd−1 as above. Passing to the projective
spaces, we get a regular map

|V | × |V | → P(KC(2)) = |OP2(d− 1)|, (D1, D2) 7→ D1 +D2. (4.11)

It defines a hypersurfaceF ⊂ |V | × |V | × |E| = Pd−1 × Pd−1 × P2

F = {(D1, D2, x) ∈ |V | × |V | × |E| : x ∈ D1 +D2}. (4.12)

It is equal to the divisor of zeros of a tri-homogeneous form of degree(1, 1, d − 1),
symmetric in the variables of degree 1. In coordinates, it is equal to

F :
∑

0≤i,j≤d−1

aij(t0, t1, t2)uivj = 0,

whereaij = aji are homogeneous forms of degreed−1. The projectionF → Pd−1×
Pd−1 is a family of curves of degreed−1 parametrized byPd−1×Pd−1. The projection
to P2 is a family of divisors of type(1, 1) on Pd−1 × Pd−1. For anyx ∈ C, the set of
divisors(D1, D2) containingx is the union of two divisorsHx×Pd−1 andPd−1×Hx,
whereHx is the hypersurface of divisors in|N (1)| containing the pointx. Since this
divisor is singular, the curveC is contained in the locusΣ of points parameterizing
singular fibres ofF → P2. Note thatΣ is given by the determinant of the matrix(aij)
from above, and its degree is equal tod(d − 1). We can find the equation ofΣ using
the following beautiful determinant identity due to O. Hesse [213].

Lemma 4.1.7. LetA = (aij) be a square matrix of sizek. For anyx = (x1, . . . , xk)
andy = (y1, . . . , yk)∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1k x1

a21 a22 . . . a2k x2

...
...

...
...

...
ak1 ak2 . . . akk xk
x1 x2 . . . xk 0

∣∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1k y1
a21 a22 . . . a2k y2

...
...

...
...

...
ak1 ak2 . . . akk yk
y1 y2 . . . yk 0

∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1k x1

a21 a22 . . . a2k x2

...
...

...
...

...
ak1 ak2 . . . akk xk
y1 y2 . . . yk 0

∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

...
...

ak1 ak2 . . . akk

∣∣∣∣∣∣∣∣∣× U,
whereU = U(a11, . . . , akk;x1, . . . , xk; y1, . . . , yk) is a polynomial of degreek− 2 in
variablesaij and of degree 2 in variablesxi andyj .

Replacingx,y by x′ = αx + βy,y′ = γx + δy, the left-hand side changes by a

constant multiple equal to the square of the determinant of matrix
(
α β
γ δ

)
. This shows

that the polynomialU depends only on the Plücker coordinatespij of the linex,y.
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In the case whenC = V (|A(t)|), we can interpret the determinantal equality as
follows. We considerx andy as projective coordinates inPd−1. By Proposition4.1.6,
the left-hand side is equal tofg− h2, whereV (f)∩C = 2D(x), V (g)∩C = 2D(y)
andV (h) ∩ C = 2(D1 + D2). This shows thatfg − h2 vanishes on the curveC =
V (|A|). The residual curve is of degree2(d− 1)− d = d− 2. Thus varyingx,y, we
get a family of curves of degreed − 2 parametrized by the Plücker coordinates of the
lines spanned by the points[x1, . . . , xd], [y1, . . . , yd]. We can view this as a family of
quadric hypersurfaces in the Grassmannian of lines inPd−1 parametrized by the plane
P2.

4.1.4 Examples

Taked = 2. Then Picg−1(C) is one point represented by the divisor class of degree
−1. It is obviously non-effective. Thus there is unique (up to the equivalence relation
defined in Remark4.1.2) representation of a conic as a determinant. For example,

t0t1 − t22 = det
(
t0 t2
t2 t1

)
.

Taked = 3. Then Picg−1(C) = Pic0(C). If we fix a pointx0 ∈ C, thenx 7→
[x − x0] defines an isomorphism from Pic0(C) to the curveC. The divisorx − x0 is
effective if and only ifx = x0. Thus we obtain that

Pic0(C) \Wg−1 = C \ {x0}.

LetL0 = OC(D), whereD is a divisor of degree 0. ThenL = L0(1) = OC(H +D),
whereH is a divisor of 3 collinear points. Similarly,M0 = OC(−D) andM =
M0(1) = OC(H−D). Note that any positive divisor of degree3 is linearly equivalent
to H + D for some degree 0 divisorD. Thus any line bundleL = L0(1), where
L0 ∈ Pic0(C)\Wg−1 corresponds to a positive divisor of degree 3 not cut out by a line.
The linear system|L| gives a reembeddingC → C ′ ⊂ P2 which is not projectively
equivalent to the original embedding.

The mapr × l mapsC isomorphically onto a curveX ⊂ P2 × P2. Consider the
restriction homomorphism

α : V ∨ ⊗W ∼= H0(|V |,O|V |(1))⊗H0(|W∨|,O|W∨|(1))

∼= H0(|V | × |W∨|,O|V |(1) �O|W∨|(1)) α→ H0(X,O|V |(1) �O|W∨|(1)⊗OX)
∼= H0(C,L ⊗M) ∼= H0(C,OC(2)).

Lemma 4.1.8. The kernel of the restriction mapα is of dimension 3. Let

2∑
i,j=0

a
(k)
ij xiyj = 0, k = 1, 2, 3, (4.13)

be the sections of bidegree(1, 1) which span the kernel. LetX ⊂ P2 × P2 be the
variety defined by these equations. Then

X = (r × l)(C).
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Proof. The target space ofα is of dimension6 = dimH0(P2,OP2(2)). The domain
of α is of dimension9. In coordinates, an element of the kernel is a matrixA such that
xAy = 0 for any(x, y) ∈ C. Since the image ofC under the Segre map is equal to the
image of an elliptic curve under a map defined by the complete linear system of degree
6, it must spanP5. Thus we have 6 linearly independent conditions onA. This shows
that the kernel is of dimension 3. The projection ofX to the first factor is equal to the
locus of points[t0, t1, t2] such that the system

2∑
i,j=0

a
(k)
ij tiyj =

2∑
j=0

(
2∑
i=0

a
(k)
ij ti)yj = 0, k = 1, 2, 3

has a nontrivial solution. The condition for this is

det



2∑
i=0

a
(1)
i0 ti

2∑
i=0

a
(1)
i1 ti

2∑
i=0

a
(1)
i2 ti

2∑
i=0

a
(2)
i0 ti

2∑
i=0

a
(2)
i1 ti

2∑
i=0

a
(2)
i2 ti

2∑
i=0

a
(3)
i0 ti

2∑
i=0

a
(3)
i1 ti

2∑
i=0

a
(3)
i2 ti

 = 0. (4.14)

Thus, replacing[t0, t1, t2] with unknownst0, t1, t2, we obtain that the projection is
either a cubic curveC ′ or the whole plane. Assume that the second case occurs. Since
the determinant of a matrix does not change after taking the transpose of the matrix,
we see that the projection ofX to the second factor is also the whole plane. This
easily implies thatX is a graph of a projective automorphismP2 → P2. In appropriate
coordinatesX becomes the diagonal, and henceC embeds inP2×P2 by means of the
diagonal mapP2 → P2 × P2. But this means thatL ∼=M∼= OC(1). This contradicts
our choice ofL. Thus the projection ofX and ofC to the first factor is the cubic
curveC ′ equal toC reembedded by|L|. Similarly, the projection ofX and ofC to the
second factor is the cubic curveC ′′ which isC reembedded by|M|. This implies that
X = (r × l)(C).

Since any matrixA(t) can be written in the form (4.14), we see that a determinantal
equation of a plane cubic defines a model of the cubic as a complete intersection of
three bilinear hypersurfaces inP2 × P2.

4.1.5 Quadratic Cremona transformations

Note that (4.14) gives a determinantal equation for the reembedded curveC ′ = r(C).
Let us see that different plane models of the same elliptic curve differ by a birational
transformation of the plane.

Let ϕ : X → Pn be a regular map from a varietyX to a projective space. Recall
that it is defined by an invertible sheafF = f∗OPn(1) and a set ofn + 1 sections
(s0, . . . , sn). Two different maps differ by a projective automorphism ofPn if and only
if they are defined by isomorphic sheaves and isomorphic sets of sections. Suppose we
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have an automorphismσ : X → X. Then the compositionϕ ◦ σ : X → Pn is defined
by the invertible sheafσ∗L and sectionsσ∗(s0), . . . , σ∗(sn). Of course, the images of
both mapsϕ andϕ ◦ σ are the same, but there is no projective automorphism ofPn
which induces the automorphismσ. However, in some cases one can find a birational
automorphismT of Pn which does this job. Recall that, althoughT may be not defined
on a closed subsetZ ⊂ Pn, it could be defined on the wholeX. This happens, for
example, whenX is a nonsingular curve andZ ∩X is a set of points. In fact, we know
that any rational map of nonsingular projective curve to a projective variety extends to
a regular map. AssumeT is given by a linear system|V | of hypersurfaces of degreem
such that none of them vanish identically on the curveX. Letx1, . . . , xk be the points
onX ∩ Z. All polynomialsf ∈ V intersectX with some multiplicity. Letmi be the
minimal multiplicity (it is enough to compute it for a basis ofV ). Then it is easy to
see that the restriction ofT toX is given by a linear system defined by the line bundle
F = OX(m)⊗OX(−m1x1− . . .−mkxk). This is the invertible sheaf which defines
the regular mapT ◦ϕ : X → Pn. Sometimes this map defines a new embedding ofX.

Let us apply this to our situation. Fix a group law on an elliptic curveX with the
zero pointx0. Let τx be the translation automorphism defined by a pointx. Recall that

τx(y) = x⊕ y ∼ x+ y − x0.

For any divisorD =
∑
nixi, we have

τ∗x (D) =
∑

niτ
−1
x (xi) =

∑
ni(xi � x) ∼

∑
ni(xi + x0 − x)

=
∑

nixi + deg(D)(x0 − x).

In particular, we see thatτx acts identically on divisors of degree 0 and hence on divi-
sors of functions. This allows one to define the action ofτx on the divisor classes.

Suppose we have two divisorsD1, D2 of the same degreem 6= 0. ThenD1 −D2

is of degree 0. Thus we can find a degree 0 divisorG such thatmG ∼ D1 −D2 (we
use that the endomorphism of algebraic groups[m] : X → X,x 7→ m ·x is surjective).
LetG ∼ xG − x0 for a unique pointxG. Then

τ∗xG
(D1) = D1 +m(x0 − xG) = D1 −mG ∼ D2. (4.15)

This shows that translations act transitively on divisor classes of the same positive
degree.

Now suppose we have two embeddings of an elliptic curveφi : X → Pn, i = 1, 2,
which are given by a complete linear systems defined by the corresponding invertible
sheavesL1,L2. By the above we can find a pointx ∈ X such thatτ∗xL1 = L2

(recall that for any divisorD and any regular mapϕ : X → Y we haveϕ∗OY (D) =
OX(ϕ∗(D))). This shows that the embeddingsφ2 : X → Pn andφ1◦τx : X → Pn are
defined by the same invertible sheaf, and hence their images are projectively equivalent.
But the image ofφ1 ◦ τx is obviously equal to the image ofφ1. Thus there exists a
projective transformationσ which sendsφ1(X) to φ2(X) such that, for anyy ∈ X,

σ(φ1(τx(y))) = φ2(y).
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Thus if we changeφ1 byσ◦φ1 (by choosing different basis of the linear system defining
φ1), we find that one can always choose bases in linear systems|L1| and|L2| such that
the corresponding maps have the same image. In particular, any plane nonsingular
cubic can be obtained as the image of an elliptic curve under a map defined by any
complete linear system of degree3.

Now let us see how this implies that a translation automorphism of a nonsingular
plane cubic can be realized by a certain Cremona transformation of the plane.

Let

T : P2− → P2, [t0, t1, t2] 7→ [f0(t0, t1, t2), f1(t0, t1, t2), f2(t0, t1, t2)]

be a rational map ofP2 to itself given by polynomials of degree 2. The preimage of
a lineV (a0t0 + a1t1 + a2t2) is the conicV (a0f0 + a1f1 + a2f2). The preimage of
a general point is equal to the intersection of the preimages of two general lines, thus
the intersection of two conics from the netL of conics spanned byf0, f1, f2. If we
wantT to define a birational map we need the intersection of two general conics to be
equal to 1. This can be achieved if all conics pass through the same set of three points
p1, p2, p3 (base points). These points must be non-collinear, otherwise all polynomials
have a common factor, after dividing, we get a projective transformation. Birational
automorphisms ofP2 (Cremona transformations) which are obtained by nets of conics
through three non-collinear points are calledquadratic transformations. If we choose
a basis inP2 such thatp1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1] and a basis inL
given by the conicsV (t1t2), V (t0t2), V (t0t1), then the transformation is given by the
formula

T : [t0, t1, t2] 7→ [t1t2, t0t2, t0t1]. (4.16)

This is called thestandard Cremona transformation. In affine coordinates, it is given
by

T : (x, y) 7→ (x−1, y−1).

LetC be a nonsingular cubic curve containing the base pointsp1, p2, p3 of a quadratic
transformationT . Then the restriction ofT toC is given by the complete linear system
|2H−p1−p2−p3|, whereH is a line section ofC. It is of degree 3, and hence defines
an embeddingι : C ↪→ P2 such thatι∗OP2(1) ∼= OC(2H − p1 − p2 − p3). Since
H = (2H − p1 − p2 − p3)− (H − p1 − p2 − p3), it follows from (4.15) that

τ∗xOC(1) ∼= OC(2H − p1 − p2 − p3),

where3(x− x0) ∼ p1 + p2 + p3 −H. As we have explained earlier, this implies that
there exists a projective automorphismσ such thatT ′ = σ · T induces the translation
automorphismτx onC.

It follows from this that the group of translations acts transitively on the set of
determinantal equations ofC. One can change one discriminant equation to any other
one by applying a quadratic transformation ofP2 which leaves the curve invariant and
induces a translation automorphism of the curve.
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Example4.1.1. Let

f = t20t1 + t21t2 + t22t0 = det

 t0 t2 t2
−t1 t0 0
−t2 0 t1

 . (4.17)

Apply the Cremona transformation

T : [t0, t1, t2] 7→ [t0t1, t0t2, t1t2]. (4.18)

We have

(t0t1)2t0t2 + (t0t2)2t1t2 + (t1t2)2t0t1 = t0t1t2(t20t1 + t21t2 + t22t0).

ThusT transforms the curve to itself. Substituting (4.18) in the entries of the matrix
A(t) from (4.17), we get

det

 t0t1 t1t2 t1t2
−t0t2 t0t1 0
−t1t2 0 t0t2

 = t0t1t2 det

 t0 t2 t2
−t2 t1 0
−t1 0 t0

 .

Thus the new determinantal equation is

f = det

 t0 t2 t2
−t2 t1 0
−t1 0 t0

 . (4.19)

However, it is projectively equivalent to the old one. t0 t2 t2
−t2 t1 0
−t1 0 t0

 =

1 0 0
0 0 1
0 1 0

  t0 t2 t2
−t1 t0 0
−t2 0 t1

 1 0 0
0 0 1
0 1 0


Let r be the right kernel map defined by the second matrix. We have

r([0, 1, 0]) = [0, 0, 1], r([0, 0, 1]) = [0, 1,−1], r([1, 0, 0]) = [0, 1, 0].

Since the points[0, 1,−1], [0, 1, 0], [0, 0, 1] are on a line, we get

L = r∗OC(1) = OC(x1 + x2 + x3),

wherex1 = [0, 1, 0], x2 = [0, 0, 1], x3 = [1, 0, 0]. Thus the second determinantal
equation corresponds toL0 = L(−1) = OC(x1 + x2 + x3 − H), whereH is a line
section. Doing the same for the first matrix we find the same invertible sheafL0. Note
that3H ∼ 3(x1 +x2 +x3) sinceV (t0t1t2) cuts out the divisor3x1 +3x2 +3x3. This
shows that the Cremona transformation induces an automorphism of the curveC equal
to translationτx, wherex is a 3-torsion point. But we know from Lectrure 4 that such
automorphism is induced by a projective transformation. This explains why we are not
getting an essentially new determinantal equation.
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4.1.6 A moduli space

Let us consider the moduli space of pairs(C,A(t)), whereC is a nonsingular plane
curve of degreed, A(t) is a matrix of linear forms such thatC = V (det(A(t))). We
say that two pairs(C,A(t)) and (C,B(t)) are isomorphic if there exists invertible
matricesC andD such thatB(t) = CA(t)D. Equivalently, we consider the space
|Hom(E,Hom(V,W ))| = |E∨ ⊗ V ∨ ⊗ W | modulo the natural action of the group
G = GL(V ) × GL(W ) on the space Hom(V,W ). The determinant mapA(t) →
det(A(t)) is obvioulsy invariant and defines a map

det : |E∨ ⊗ V ∨ ⊗W |/G→ |O|E|(d)|.

We consider this map as a map of sets since there is an issue here whether the or-
bit space exists as an algebraic variety. But let us restrict this map over the subset
|O|E|(d)|ns of nonsingular plane curves of degreed. When we know that the fibre of
the mapdet over the curveC is bijective to Picg−1(C) \Wg−1. There is an algebraic
varietyPicg−1

d (therelative Picard scheme) and a divisorWd ⊂ Picd which admits a
morphismp

p : Picg−1
d \Wd → |O|E|(d)|ns

with fibres isomorphic to Picg−1(C) \Wg−1. One can show that there exists a Zariski
open subset|E∨ ⊗ V ∨ ⊗ W |ns of |E∨ ⊗ V ∨ ⊗ W | such that its quotient byG is
isomorphic toPicg−1

d and the determinant map agrees with the projectionp.
SincePicg−1

d contains an open subset which is covered by an open subset of a
projective space, the varietyPicg−1

d is unirational. It is a very difficult question to
decide whether the varietyPicg−1

d is rational. It is known only ford = 3 andd = 4
[167]. Let us sketch a beautiful proof of the rationality in the cased = 3 due to M. Van
den Bergh [418].

Theorem 4.1.9.Assumed = 3. ThenPic03 is a rational variety.

Proof. A point ofPic0 is a pair(C,L), whereC is a nonsingular plane cubic andL is
the isomorphism class of an invertible sheaf of degree 0. LetD be a divisor of degree
0 such thatOC(D) ∼= L. Choose a linè and letH = ` ∩ C = p1 + p2 + p3. Let
pi + D ∼ qi, i = 1, 2, 3, whereqi is a point. Sincepi − qi ∼ pj − qj , we have
pi + qj ∼ pj + qi. This shows that the lines〈pi, qj〉 and〈pj , qi〉 intersect at the same
point rij onC. Thus we have9 points:p1, p2, p3, q1, q2, q3, r12, r23, r13. We have

p1 + p2 + p3 + q1 + q2 + q3 + r12 + r23 + r13 ∼

∼ (p1+p2+p3)+(q1+q2+q3)+(H−p1−q2)+(H−p1−q3)+(H−p2−q3) ∼ 3H

This easily implies that there is a cubic curve which intersectsC at the nine points.
Together withC we get a pencil of cubics with the nine points as the set of its base
points. LetU = `3 × (P2)3/S3, whereS3 acts by

σ :
(
(p1, p2, p3), (q1, q2, q3)

)
=

(
(pσ(1), pσ(2), pσ(3)), (qσ(1), qσ(2), qσ(3))

)
.

The varietyU is easily seen to be rational. The projection to`3/S3
∼= P3 defines a

birational isomorphism between the product ofP3 and(P2)3. For eachu = (P,Q) ∈
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U , let c(u) be the pencil of cubics through the pointsp1, p2, p3, q1, q2, q3 and the points
rij = 〈pi, q〉, where(ij) = (12, (23), (13). Consider the setU ′ of pairs(u,C), C ∈
c(u). The projection(u,C) 7→ u has fibres isomorphic toP1. Thus the field of rational
functions onU ′ is isomorphic to the field of rational functions on a conic over the
field K(U). But this conic has a rational point. It is defined by fixing a point inP2

and choosing a member of the pencil passing though this point. Thus the conic is
isomorphic toP1 andK(U ′) is a purely transendental extension ofK(U). Now we
define a birational map fromPic03 toU ′. Each(C,L) defines a point ofU ′ by ordering
the set` ∩ C, then definingq1, q2, q3 as above. The member of the corresponding
pencil throughpi’s, qi’s andrij ’s is the curveC. Conversely, a point(u,C) ∈ U ′

defines a point(C,L) in Pic03. We defineL to be the invertible sheaf corresponding to
the divisorq1 + q2 + q3. it is easy that these map are inverse to each other.

Remark4.1.3. If we choose a basis in each spaceE, V,W , then a mapφ : E →
Hom(W,V ) is determined by the matricesAi = φ(ei), wheree1 = [1, 0, 0], e2 =
[0, 1, 0], e3 = [0, 0, 1]. Our moduli space is the space of triples(A1, A2, A3) of d × d
matrices up to the action of the groupG = GL(d)×GL(d) simultaneously by left and
right multiplication

(σ1, σ2) · (A1, A2, A3) = (σ−1
1 A1σ2, σ

−1
1 A2σ2, σ

−1
1 A3σ2).

Consider an open subset of mapsφ such thatA1 is an invertible matrix. Taking
(σ1, σ2) = (1, A−1

1 ), we may assume thatA1 = Id is the identity matrix. The sta-
bilizer subgroup of(Id, A2, A3) is the subgroup of(σ1, σ2) such thatσ1σ2 = 1. Thus
our orbit space is equal to the orbit space of pairs of matrices(A,B) up to simultaneous
conjugation. The determinantal curve has the affine equation

det(Id +XA+ Y B) = 0.

Compare this space with the space of matrices up to conjugation. As above this is
reduced to the problem of description of the mapsE → Hom(V,W ), wheredimE = 2
instead of3. The determinantal curve is replaced with a determinantal hypersurface in
P1 given by the equation

det(Id +XA) = 0.

Its roots are(−λ−1), whereλ are eigenvalues of the matrixA. If all roots are distinct
(this corresponds to the case of a nonsingular curve!), a matrix is determined uniquely
up to conjugacy by its eigenvalues, or equivalently by its characteristic polynomial. In
the case of pairs of matrices, we need additional information expressed in terms of a
point in Picg−1 \Wg−1.

4.2 Determinantal equations for hypersurfaces

4.2.1 Cohen-Macauley sheaves

Recall that a finitely generated moduleM over a local Noetherian commutative ringA
is calledCohen-Macaulay moduleif there exists a sequencea1, . . . , an of elements in
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the maximal ideal ofA such thatn is equal to the dimension of the ringA/Ann(M)
andai 6∈ Ann(M/(ai, . . . , ai−1)M), i = 2, . . . , n.

If A is a Noetherian commutative ring, not necessary local, a finitely generated
A-module is called Cohen-Macaulay if for any prime idealp the localizationMp is a
Cohen-Macaulay module overAp. A Noetherian commutative ring is called aCohen-
Macaulay ringif, considered as a module over itself, it is a Cohen-Macaulay module.

These definitions are globalized and give the notions of a Cohen-Macaulay scheme
and a Cohen-Macaulay coherent sheaf.

A coherent sheafF on Pn is calledarithmetically Cohen-Macaulay(an ACM-
sheaf) if the corresponding module

Γ∗(F) =
⊕
i∈Z

H0(Pn,F(j))

is a graded Cohen-Macaulay module over the ring of polynomialsS = Γ∗(OPn).
Using a local cohomology characterization of Cohen-Macaulay modules one shows
thatF is a ACM-sheaf if and only if the following conditions are satisfied:

(i) Fx is a Cohen-Macaulay module overOPn,x for eachx ∈ Pn;

(ii) Hk(Pn,F(j)) = 0, for 1 ≤ k ≤ dim Supp(F) − 1 and all j ∈ Z, where
Supp(F) denotes the support ofF .

It is known that for any Cohen-Macaulay module over a regular ringA

depth(M) + proj(M) = dimA,

where proj denotes the projective dimension, the minimal length of a free resolution of
M . A global analog of this equality for ACM-sheaves is

dim Supp(F) + proj(F) = n,

where proj(F) denotes the projective dimension ofF , the minimal length of a projec-
tive graded resolution for the moduleΓ∗(F).

Theorem 4.2.1. LetF be an ACM-sheaf overPn such thatdim Supp(F) = 1. Then
there exists an exact sequence

0→
r⊕
i=0

OPn(fi)
A−→

r⊕
i=0

OPn(ei)→ F → 0. (4.20)

Proof. Since proj(F) = 1, we get a resolution of gradedS-modules

0→
r⊕
i=0

S(fi)→
r⊕
i=0

S(ei)→ Γ∗(F)→ 0.

Passing to the corresponding sheaves inPn we obtain the exact sequence from the
assertion.
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The mapA is given by ar× r matrix whoseij-th entry is a homogeneous polyno-
mial of degreeei − fj . We may assume that the resolution is minimal. To achieve this
we must haveaij = 0 wheneverei = fj .

Clearly, the supportF is given by the determinant of the matrixA. It is a hypersur-
face of some degreed. We must have

d = (e1 + · · ·+ er)− (f1 + · · ·+ fr). (4.21)

Conversely, ifX = V (f) is given as a determinant of a matrixA whose entriesaij
are homogeneous polynomials of degreeei−fj such that equality (4.21) holds, then we
get a resolution (4.20) defined by the matrix. The cokernelF will be an ACM-sheaf.

Example4.2.1. TakeF = i∗OV (k). Then, the minimal resolution is of course

0→ OPn(−d+ k)→ OPn(k)→ F → 0. (4.22)

Herer = 1, f1 = −d+ k, e1 = k. The equation is the tautological oneX = det((f)),
where(f) is the 1 × 1 matrix with entryC. Note that according to the Lefschetz
Theorem on Hyperplane Sections, Pic(V ) = ZOV (1) if n > 3. Thus (4.20) reduces
to (4.22) and we cannot get any nontrivial determinantal equations for nonsingular
hypersurfaces of dimension≥ 3.

4.2.2 Determinants with linear entries

Let X be a hypersurface of degreed in Pn. LetM be an invertible sheaf onX. We
will takeF = ι∗(M), whereι : X ↪→ Pn denotes the natural closed embedding. Then
the condition(i) for a ACM-sheaf will be always satisfied (sinceFx is isomorphic to
OPn,x/(τx), whereτx = 0 is a local equation ofV ). Condition (ii) reads as

Hk(X,M(j)) = 0, 1 ≤ k ≤ n− 2, j ∈ Z. (4.23)

Assume that the following additional conditions are satisfied:

H0(X,M(−1)) = Hn−1(X,M(1− n)) = 0. (4.24)

Consider the resolution (4.20), twist it by −1 and apply the exact sequence of
cohomology. We must get

0→
rM
i=0

H0(Pn,OPn (−fi − 1))→
rM
i=0

H0(Pn,OPn (−ei − 1))→ H0(Pn,F(−1))→ 0,

0→ Hn−1(Pn,F(1− n))→
rM
i=0

H0(Pn,OPn (−fi − 2))→
rM
i=0

H0(Pn,OPn (−ei − 2))→ 0.

Here we used the standard facts (see [206]) that

Hk(Pn,OPn(j)) = 0, k 6= 0, n, j ∈ Z,

Hn(Pn,OPn(j)) ∼= H0(Pn,OPn(−n− 1− j)).
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Sincefi < ei, (4.24) givesei − 1 < 0 and−fi − 2 < 0, henceei ≤ 0, fi ≥ −1. This
impliesei = 0, fi = −1 for all i = 1, . . . , r. Applying (4.21), we getr = d. So, we
obtain a resolution

0→
d⊕
i=0

OPn(−1) A−→
d⊕
i=0

OPn → F → 0. (4.25)

This gives a determinantal expression ofX as ad× d determinant with linear forms as
its entries.

It is convenient to rewrite the exact sequence in the form

0→W1 ⊗OPn(−1) T−→W2 ⊗OPn → F → 0, (4.26)

whereW1,W2 are some linear spaces of dimensiond, andT is a linear map

T : V → Hom(W1,W2),

wherePn = |V |. The determinantal hypersurfaceX is the preimage in|V | of the
variety of linear operatorsW1 →W2 of rank less thand.

Applying the cohomology, we obtain a natural isomorphism

H0(Pn,F) ∼= W2. (4.27)

Twisting (4.25) byOPn(−n) and applying the cohomology, we find a natural isomor-
phism

Hn−1(Pn,F(−n)) ∼= W1 ⊗Hn(Pn,OPn(−n− 1)) ∼= W1. (4.28)

It follows from (4.26) and (4.27) that the invertible sheafM is generated by global
sections and defines a morphism

lT : V → P(W2) = |W∨
2 |.

For anyx ∈ X the pointlT (x) is the projectivization of the cokernel of the matrix
T (v), wherex = [v] for somev ∈ V .

Twisting (4.26) byOPn(1) and applying the functorHomOPn (−,OPn) to the exact
sequence (4.25) we obtain an exact sequence

0→W∨
2 ⊗OPn(−1)

tT−→W∨
1 ⊗OPn → Ext1OPn (F(1),OPn)→ 0. (4.29)

Now we apply Grothendieck’s Duality Theorem (see [89]) to obtain a natural isomor-
phism of sheaves

F ′ = Ext1OPn (F(1),OPn) ∼= ι∗HomOX
(F(1),OPn(d)) ∼= ι∗M∨(d− 1). (4.30)

Let
L =M∨(d− 1). (4.31)

We can rewrite (4.29) in the form

0→W∨
2 ⊗OPn(−1)

tT−→W∨
1 ⊗OPn → ι∗(L)→ 0. (4.32)
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Applying cohomology we see that the sheafL satisfies the same condition (4.24) as
M.

It follows from (4.26) and (4.27) that the invertible sheafL is generated by global
sections and defines a morphism

rT : V → P(W1) = |L|∨.

For anyx ∈ V the pointrT (x) is the projectivization of the kernel of the matrixT (v),
wherex = [v] for somev ∈ V .

4.2.3 The case of curves

Assumen = 2, i.e. X is a plane curveC of degreed. Then the condition (ii) for a
ACM-sheaf is vacuous. The condition (4.24) becomes

H0(C,M(−1)) = H1(C,M(−1)) = 0.

We will assume thatC is an irreducible and reduced curve andM is an invertible sheaf
onC satisfying the previous conditions.

Let ωC be the canonical sheaf ofC and

pa(C) = dimH1(C,OC) = dimH0(C,ωC)

be thearithmetic genusof C. By Riemann-Roch (the reader unfamiliar with the
Riemann-Roch on a singular curve may may consult [293] or assume thatC is nonsin-
gular),

degM(−1)) = h0(M(−1))− h1(M(−1)) + pa(C)− 1 = pa(C)− 1.

Also we obtain
L ⊗M ∼= OC(d− 1).

If C is a nonsingular curve, everything agrees with the theory from the previous section.

Example4.2.2. Let C be a plane irreducible cubic curve. ThenM(−1) must be an
invertible sheaf of degree 0 with no nonzero sections. It is known that Pic0(C) ∼=
C \Sing(C) and has a structure of an algebraic group isomorphic to the multiplicative
groupGm if C is a nodal cubic and isomorphic to the additive groupGa if C is a cus-
pidal cubic. Any nonzero element of this group defines a determinantal representation
of C. For any nonzeroa ∈ C, we have

t0t
2
2 + 2t31 = det

 1
a2 t0 t1 t1
t1 − 1

a2 t0 t1 − at2
t1 t1 + at2 0

 . (4.33)

Note that, for anyt = [t0, t1, t2] ∈ C the rank of the matrix is equal to 2, as it
should be because the sheafL is invertible. We cannot get a symmetric determinannt
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representation in this way becauseL ∼= M would imply thatL is a non-trivial 2-
torsion point of Pic(C). However, the additive group does not have non-trivial torsion
elements. On the other hand, we have

t0t
2
2 + t31 = det

−t1 0 −t2
0 −t0 −t1
−t2 −t1 0

 . (4.34)

The matrices have rank 1 at the singular point[1, 0, 0] of the curve. This shows that
C admits symmetric determinantal representations not defined by an invertible sheaf
on C. We refer to [25] for the theory of symmetric determinantal representaions of
singular plane curves with certain type of singularities. One can show that any deter-
minantal representation of a cuspidal cubic is equivalent either to one given in (4.33)
or to one given in (4.34). The latter one corresponds to a non-invertible ACM sheafE
onC satisfying

E ∼= HomOC
(E , ωC).

This sheaf ”compactifies” the Picard scheme ofC.

4.2.4 The case of surfaces

LetX be a normal surface of degreed in P3. We are looking for an invertible sheafM
onX such thatF = ι∗(M) is a ACM-sheaf onP3 satisfying an additional assumption
(4.24). It will give us a resolution (4.25). It follows from this resolution thatM
is generated by global sections. By Bertini’s theorem, a general section ofM is a
nonsingular curveC. Thus we can writeM = OX(C) for some nonsingular curveC.

SinceX is a hypersurface inP3, its local ring is a Cohen-Macaulay module over the
corresponding local ring ofP3. Thus the first condition for an ACM sheaf is satisfied.
Let us interpret the second conditionH1(X,M(j)) = 0, j ∈ Z. Recall that a subvari-
etyX ⊂ Pn is calledprojectively normalif the restriction mapr : H0(Pn,OPn(j))→
H0(X,OX(j)) is surjective for allj. If X is nonsingular in codimension1, one can
show that it is equivalent to requiring that the projective coordinate ring ofX is normal.
SupposeY ⊂ X for some hypersurfaceX. Then the restriction homomorphismr is
the composition of the homomorphismsr1 : H0(Pn,OPn(j)) → H0(X,OX(j)) and
r2 : H0(X,OX(j)) → H0(Y,OY (j)). It is easy to see thatX is projectively normal
(the cokernel ofr1 isH1(Pn,OPn(−d)) = 0). ThusY is projectively normal ifr2 is
surjective. The exact sequence

0→ JY (j)→ OX(j)→ OY (j)→ 0,

whereJY is the sheaf of ideals ofY in X, shows thatr2 is surjective if and only if
H1(Y,JY (j)) = 0 for all j ∈ Z. Applying this to our case, whereY = C ⊂ X ⊂ P3,
we get thatC is projectively normal if and only if

H1(X,OX(−C)(j)) = H1(X,ωX(−j)⊗OX(C))

= H1(X,OX(C)(d− 4− j)) = 0, j ∈ Z.
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Here we used the adjunction formula for the canonical sheaf and the Serre Duality
Theorem. Thus we see that the ACM-condition is the condition for the projective
normality ofC.

To get a resolution (4.25) we need the additional conditions

H0(X,OX(C)(−1)) = H2(X,OX(C)(−2)) = 0. (4.35)

Together with the ACM condition this is equivalent to

χ(OX(C)(−1)) = χ(OX(C)(−2)) = 0. (4.36)

LetOX(1) = OX(H). Consider the exact sequence

0→ OX(C)(−2)→ OX(C)(−1)→ OH(C −H)→ 0.

It gives
χ(OH(C −H)) = χ(OX(C)(−1))− χ(OX(C)(−2)).

By Bertini’s Theorem we may assume thatH is a nonsingular plane curve of degreed.
By Riemann-Roch onH, we get

deg(C)− d = deg(OH(C −H)) = d(d− 3)/2.

This gives

χ(OX(C)(−1))− χ(OX(C)(−2))⇐⇒ deg(C) = 1
2d(d− 1). (4.37)

The exact sequence

0→ OX(−1)→ OX(C)(−1)→ OC(C −H)→ 0

gives
χ(OC(C −H)) = χ(OX(C)(−1))− χ(OX(−1))

= χ(OX(C)(−1))− χ(OP3(−1)) + χ(OP3(−d− 1))

= χ(OX(C)(−1))−
(
d

3

)
.

Applying Riemann-Roch on the curveC, we get

χ(OC(C−H)) = degOC(C−H)+χ(OC) = degOC(C+KX−(d−3)H)+χ(OC)

= degKC − (d− 3) deg(C) + χ(OC) = − 1
2 (d− 3)d(d− 1) + g(C)− 1.

Thus we see that

χ(OX(C)(−1)) = 0⇐⇒ g(C) =
1
6
(d− 2)(d− 3)(2d+ 1).

Together with (4.37) we see that condition (4.35) is equivalent to the conditions

(i) C is a projectively normal curve;
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(ii) deg(C) = 1
2d(d− 1);

(iii) g(C) = 1
6 (d− 2)(d− 3)(2d+ 1).

Example4.2.3. Taked = 3. We getdeg(C) = 3, g(C) = 0. Sinceχ(OX(C)(−1)) =
−1, we easily getχ(OX(C)) = dimH0(X,OX(C)) = 3. The linear system|C|
mapsX to P2. This is a birational morphism whose inverse is the blow-up of 6 points
in P2. We will see later when we will be discussing cubic surfaces, that there are72
such linear systems. Thus a cubic surface can be written in72 essentially different
ways as a3× 3 determinant.

Example4.2.4. Taked = 4. We getdeg(C) = 6, g(C) = 3. The projective normality
is equivalent to the condition thatC is not hyperelliptic (Exercise 4.10). We also have
h0(OX(C)) = 4. According to Noether’s Theorem, the Picard group of a general
surface of degree≥ 4 is generated by a plane section. Since a plane section of a
quartic surface is of degree 4, we see that a general quartic surface does not admit a
determinantal equation. The condition thatX contains a curveC as above imposes one
algebraic condition on the coefficients of a quartic surface.

Remark4.2.1. Let X = V (detA(t)) be a determinantal equation of a nonsingular
surface of degreed in P3. LetC ⊂ H be a nonsingular plane section ofX. Then we
obtain a determinantal equation ofC. The left kernel sheaf forC is the restriction of the
sheafM toC, whereM = OX(C) is defined by the resolution (4.25). Since we know
thatdeg(M⊗OC) = d(d−1)/2, we obtain another proof thatdeg(C) = d(d−1)/2.

Remark4.2.2. For nonsingular hypersurfacesX in P3 the condition onM defining a
symmetric determinant is thatM is isomorphic to the sheafL defined as the cokernel
of the transpose of the matrix twisted by−1. Applying the functorHomOP3

(−,OX)
to the exact sequence

0→ OP3(−1)d → OdP3 → ι∗M→ 0,

we obtain
0→ OdP3 → OP3(1)d → Ext1OP3

(ι∗M,OP3)→ 0.

Twisting by−1, we get

ι∗L = Ext1OP3
(ι∗M,OP3)(−1) ∼= Ext1OP3

(ι∗M,OP3(−1)).

By the duality, we have

ωX ∼= Ext1OP3
(ι∗OX , ωP3) ∼= Ext1OP3

(ι∗OV ,OP3(−4)).

By standard properties of the sheavesExti we have

Ext1OP3
(ι∗M,OP3)(−1) ∼= ι∗(M∨ ⊗ Ext1OP3

(ι∗OX ,OP3(−4)))⊗OP3(3).

This gives
L =M∨ ⊗ ωX(3).

Thus, ifM∼= L, we must have

M⊗2 ∼= ωV (3) = OV (d− 1).
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We also must haveh0(M(−1)) = 0. Note that

Pic(X)[2] = {0}

for a nonsingular surface inP3, where, for any abelian groupA we denote byA[k] the
subgroup ofk-torsion elements. Thus there is at most one square root ofOX(d − 1).
Whend = 2k + 1 is odd, the square root is isomorphic toM = OV (k) but does
not satisfy the conditionh0(M(−1)) = 0. So, there are no symmetric determinantal
equations. Whend = 2k we have no contradiction. However, in both cases the nonex-
istence of symmetric determinantal equations follows from the general fact that the
determinantal variety of symmetricd× d matrices is singular in codimension 2. Thus
any linear projective space of dimension 3 intersects it the singular locus and cuts out a
singular surface. So, only singular surfaces admit a symmetric determinantal equation.
We will return to this later.

Exercises

4.1Show that any irreducible cubic curve admits a determinantal equation.

4.2Let (t0(t0 − t1), (t0 − t2)(t0 − t1), t0(t0 − t2)) define a rational map fromP2 to P2. Show
that it is a birational map and find its inverse.

4.3 Let C = V (f) be a nonsingular plane cubic,p1, p2, p3 be three non-collinear points. Let
(A0, A1, A2) define a quadratic Cremona transformation with fundamental pointsp1, p2, p3. Let
q1, q2, q3 be another set of three points such that the six pointsp1, p2, p3, q1, q2, q3 are cut out by
a conic. Let(B0, B1, B2) define a quadratic Cremona transformation with fundamental points
q1, q2, q3. Show that

F−3 det adj

0@A0B0 A0B1 A0B2

A1B0 A1B1 A1B2

A2B0 A2B1 A2B2

1A
is a determinantal equation ofC.

4.4Find a determinantal equation of the cubic curve from Example 4.1.1 which is not equivalent
to the equation from the example.

4.5Find a determinantal equation for theKlein quarticV (t30t1 + t31t2 + t32t0).

4.6Find determinantal equations for a nonsingular quadric surface inP3.

4.7 Let V ⊂ Matd be a linear subspace of dimension 3 of the space ofd × d matrices. Show
that the locus of pointsx ∈ Pd−1 such that there existsA ∈ V for whichx ∈ Ker(A) is defined
by

`
d
3

´
equations of degreed. In particular, for any determinantal equation of a curveC, the

images ofC under the mapsr : P2 → Pd−1 andl : P2 → Pd−1 are defined by such a system of
equations.

4.8LetX = V (det(A(t))) be a4 × 4-determinantal equation of a nonsingular quartic surface
X andOX(C) be the corresponding invertible sheaf represented by a non-hyperelliptic curveC
of genus 3 and degree 6. Show thatL = OX(−C)(3) is isomorphic toOX(C′) for some other
curve of genus 3 and degree 6. Find the interpretation of the sheafL in terms of the determinantal
equation.

4.9LetC be a non-hyperelliptic curve of genus 3 and degree 6 inP3.

(i) Show that the homogeneous ideal ofC in P3 is generated by four cubic polynomials
f0, f1, f2, f3.
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(ii) Show that the equation of any quartic surface containingC can be written in the formP
lifi = 0, whereli are linear forms.

(iii) Show that(f0, f1, f2, f3) define a birational mapf from P3 to P3. The image of any
quartic containingC is another quartic surface.

(iv) Show that the mapf is the right kernel map for the determinantal representation of the
quartic defined by the curveC.

4.10Show that a curve of degree 6 and genus 3 inP3 is projectively normal if and only if it is
not hyperelliptic.

4.11 Let C be a nonsingular plane curve of degreed andL0 ∈ Picg−1(C). Assume that
h0(L0) 6= 0. Show that the image ofC under the map given by the linear system|L0(1)| is
a singular curve.

Historical Notes

The fact that a general plane curve of degreed can be defined by the determinant of a
symmetricd× d matrix with entries homogeneous linear forms was first proved by A.
Dixon [125]. However, for curves of degree 4 this was proved almost 50 years earlier
by O. Hesse [214]. He also showed that it can be done in 36 ways. For cubic curves
the representation follows from the fact that any cubic curve can be written in three
ways as the Hessian curve. This fact was also proven by Hesse [209], p. 89. The first
modern treatment of Dixon’s result was given in [22] and [409].

It was proved by L. Dickson [124] that any plane curve can be written as the de-
terminant of not necessarily symmetric matrix with linear homogeneous forms as its
entries. The relationship between linear determinantal representations of an irreducible
plane curve of degreed and line bundles of degreed(d − 1)/2 was first established in
[91]. This was later elaborated by V. Vinnikov [421].

The theory of linear determinant representation for cubic surfaces was developed
by L. Cremona [106]. Dickson proves in [124] that a general homogeneous form of
degreed > 2 in r variables cannot be represented as a linear determinant unlessr = 3
or r = 4, d ≤ 3. We refer to [25] for a survey of modern development of determinantal
representations of hypersurfaces.
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Chapter 5

Theta characteristics

5.1 Odd and even theta characteristics

5.1.1 First definitions and examples

We have already defined a theta characteristic, odd and even, on a nonsingular curveC
(see section 4.1.3). In this chapter we will study them in more details .

It follows from the definition that two theta characteristics, considered as divisor
classes of degreeg−1, differ by a 2-torsion divisor class. Since the 2-torsion subgroup
Jac(C)[2] is isomorphic to(Z/2Z)2g, there are22g theta characteristics. However, in
general, there is no canonical identification between the set TChar(C) of theta charac-
teristics onC and the set Jac(C)[2]. One can say only that TChar(C) is an affine space
over the vector space of Jac(C)[2] ∼= F2g

2 .
There is one more structure on TChar(C). Recall that the subgroup of 2-torsion

points Jac(C)[2] is equipped with a natural symmetric bilinear form overF2, called the
Weil pairing. It is defined as follows (see [9], Appendix B). Letε, ε′ be two 2-torsion
divisor classes. Choose their representativesD,D′ with disjoint supports. Write
div(f) = 2D,div(f ′) = 2D′. Thenf(D′)/f ′(D) = ±1. Heref(

∑
i xi) =

∏
i f(xi).

Now we set

〈ε, ε′〉 =

{
1 iff(D′)/f ′(D) = −1
0 otherwise.

Note that the Weil pairing is a symplectic form, i.e. satisfies〈ε, ε〉 = 0. One can show
that it is a nondegenerate symplectic form.

For anyϑ ∈ TChar(C) define the function

qϑ : Jac(C)[2]→ F2, ε 7→ h0(ϑ+ ε) + h0(ϑ).

Proposition 5.1.1. The functionqϑ is a quadratic form onJac(C)[2] whose associated
symmetric bilinear form is equal to the Weil pairing.

Later we shall see that there are two types of quadratic forms associated to a fixed
nondegenerate symplectic form: even and odd. They agree with our definition of an

117
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even and odd theta characteristic. The number of even (odd) theta characteristics is
equal to2g−1(2g + 1) (2g−1(2g − 1)).

An odd theta characteristicϑ is obviously effective, i.e.h0(ϑ) > 0. If C is a
canonical curve, then divisorD ∈ |ϑ| satisfies the property that2D is cut out by a
hyperplaneH in the space|KC |∨, whereC is embedded. Such a hyperplane is called a
bitangent hyperplane. It follows from above that a canonical curve either has2g−1(2g−
1) bitangent hyperplanes or infinitely many. The latter case happens if and only if there
exists a theta characteristicϑ with h0(ϑ) > 1. Such a theta characteristic is called
vanishing theta characteristic. An example of a vanishing odd theta characteristic is
the divisor class of a line section of a plane quintic curve. An example of a vanishing
even theta characteristic is the uniqueg1

3 on a canonical curve of genus 4 lying on a
singular quadric.

The geometric interpretation of an even theta characteristic is more subtle. IfC is
a plane curve we explained in the previous chapter how a non-vanishing (equivalently,
non-effective) even theta characteristic determines a symmetric linear determinantal
representation ofC. The only known geometrical construction related to canonical
curves is the Scorza construction of a quartic hypersurface associated to a canonical
curve and a non-effective theta characteristic. We discuss this construction in section
5.5.

5.1.2 Quadratic forms over a field of characteristic 2

Recall that a quadratic form on a vector spaceV over a fieldF is a mapq : V → F
such thatq(av) = a2q(v) for anya ∈ F and anyv ∈ V and the map

bq : V × V → F, (v, w) 7→ q(v + w)− q(v)− q(w)

is bilinear (it is called thepolar bilinear form). We havebq(v, v) = 2q(v) for any
v ∈ V . In particular,q can be reconstructed frombq if char(F ) 6= 2. In the case
when char(F ) = 2, we getbq(v, v) ≡ 0, hencebq is a symplectic bilinear form. Two
quadratic formsq, q′ have the same polar bilinear form if and only ifq− q′ = l, where
l(v + w) = l(v) + l(w), l(av) = a2l(v) for anyv, w ∈ V, a ∈ F . If F is a finite field
of characteristic 2,

√
l is a linear form onV , and we obtain

bq = bq′ ⇐⇒ q = q′ + `2 (5.1)

for a unique linear form̀ : V → F .
Let e1, . . . , en be a basis inV andA = (aij) = (bq(ei, ej)) be the matrix of the

bilinear formbq. It is a symmetric matrix with zeros on the diagonal if char(F ) = 2. It
follows from the definition that

q(
n∑
i=1

xiei) =
n∑
i=1

x2
i q(ei) +

∑
1≤i<j≤n

xixjaij .

The rank of a quadratic form is the rank of the matrixA of the polar bilinear form. A
quadratic form is callednondegenerateif the rank is equal todimV . In coordinate-free
way this is the rank of the linear mapV → V ∨ defined bybq. The kernel of this map
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is called theradical of bq. The restriction ofq to the radical is identically zero. The
quadratic formq arises from a nondegenerate quadratic form on the quotient space. In
the following we assume thatq is nondegenerate.

A subspaceE of V is calledsingular if q|E ≡ 0. Each singular subspace is
an isotropic subspacewith respect tobq, i.e., bq(v, w) = 0 for any v, w ∈ E. The
converse is true only if char(F ) 6= 2.

Assume char(F ) = 2. Sincebq is a nondegenerate symplectic form,n = 2k, and
there exists a basise1, · · · , en such that the matrix ofbq is equal to

Jk =
(

0k Ik
Ik 0k

)
. (5.2)

Thus

q(
n∑
i=1

xiei) =
n∑
i=1

x2
i q(ei) +

k∑
i=1

xixi+k.

Assume additionally thatF ∗ = F ∗2, i.e., each element inF is a square (i.e.F is a
finite or algebraically closed field). Then, we can further reduceq to the form

q(
2k∑
i=1

xiei) = (
n∑
i=1

αixi)2 +
k∑
i=1

xixi+k, (5.3)

whereq(ei) = α2
i , i = 1, . . . , n. This makes (5.1) more explicit. Fix a nondegenerate

symplectic form〈, 〉 : V ×V → F . Each linear function onV is given by`(v) = 〈v, η〉
for a uniqueη ∈ V . By (5.1), two quadratic formsq, q′ with polar bilinear form equal
to 〈, 〉 satisfy

q(v) = q′(v) + 〈v, η〉2

for a uniqueη ∈ V . Choose a standard symplectic basis (i.e. the matrix of the bilinear
form with respect to this basis is equal to (5.2)). The quadratic form defined by

q0(
2k∑
I=1

xiei) =
k∑
i=1

xixi+k

has the polar bilinear form equal to the standard symplectic form. Any other form with
the same polar bilinear form is defined by

q(v) = q0(v) + 〈v, ηq〉2,

where

ηq =
2k∑
i=1

√
q(ei)ei.

From now on we assume thatF = F2, the field of two elements. In this case
a2 = a for anya ∈ F2. The formula (5.1) shows that the setQ(V ) of quadratic forms
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associated to the standard symplectic form is an affine space overV with addition
q + η, q ∈ Q(V ), η ∈ V , defined by

(q + η)(v) = q(v) + 〈v, η〉 = q(v + η) + q(η). (5.4)

The number

Arf(q) =
k∑
i=1

q(ei)q(ei+k) (5.5)

is called theArf invariant of q. One can show that it is independent of the choice of
a standard symplectic basis. A quadratic formq ∈ Q(V ) is calledeven(resp.odd) if
Arf(q) = 0 (resp. Arf(q) = 1).

If we choose a standard symplectic basis forbq and writeq in the formq0 + ηq,
then we obtain

Arf(q) =
k∑
i=1

αiαi+k = q0(ηq) = q(ηq). (5.6)

In particular, ifq′ = q + v = q0 + ηq + v,

Arf(q + v) + Arf(q) = q0(ηq + v) + q0(ηq) = q0(v) + 〈v, ηq〉 = q(v). (5.7)

It follows from (5.6) that the number of even (resp. odd) quadratic forms is equal to
the cardinality of the setq−1

0 (0) (resp.q−1
0 (1)). We have

|q−1
0 (0)| = 2k−1(2k + 1), |q−1

0 (1)| = 2k−1(2k − 1). (5.8)

This is easy to prove by using induction onk.
Let Sp(V ) be the group of linear automorphisms of the symplectic spaceV . If we

choose a standard symplectic basis then

Sp(V ) ∼= Sp(2k,F2) = {X ∈ GL(2k)(F2) : tX · Jk ·X = Jk}.

It is easy to see by induction onk that

|Sp(2k,F2)| = 2k
2
(22k − 1)(22k−2 − 1) · · · (22 − 1). (5.9)

The group Sp(V ) has 2 orbits inQ(V ), the set of even and the set of odd quadratic
forms. An even quadratic form is equivalent to the formq0 and an odd quadratic form
is equivalent to the form

q1 = q0 + ek + e2k,

where(e1, . . . , e2k) is the standard symplectic basis. Explicitly,

q1(
2k∑
i=1

xiei) =
k∑
i=1

xixi+k + x2
k + x2

2k.

The stabilizer subgroup Sp(V )+ (resp. Sp(V )−) of an even quadratic form (resp. an
odd quadratic form) is a subgroup of Sp(V ) of index2k−1(2k+1) (resp.2k−1(2k−1)).
If V = F2k

2 with the symplectic form defined by the matrixJk, then Sp(V )+ (resp.
Sp(V )−) is denoted by O(2k,F2)+ (resp. O(2k,F2)−).
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5.2 Hyperelliptic curves

5.2.1 Equations of hyperelliptic curves

Let us first describe explicitly theta characteristics on hyperelliptic curves. Recall that a
hyperelliptic curve of genusg is a nonsingular projective curveX admitting a degree 2
mapϕ : C → P1. By Hurwitz’s formula, there are2g+ 2 branch pointsp1, . . . , p2g+2

in P1. Let f2g+2(t0, t1) be a binary form of degree2g + 2 whose zeros are the branch
points. The equation ofC in P(1, 1, g + 1) is

t22 + f2g+2(t0, t1) = 0. (5.10)

Recall that a weighted projective spaceP(q) = P(q0, . . . , qn) is defined as the quotient
of Cn+1 \ {0}/C∨, whereC∨ acts by

t : [z0, . . . , zn] 7→ [tq0z0, . . . , tqnzn].

A more general definition ofP(q) which works overZ is P(q) = Proj Z[T0, . . . , Tn],
where the grading is defined by settingdeg Ti = qi. Hereq = (q0, . . . , qn) are integers
≥ 1. We refer to [129] or [230] for the theory of weighted projective spaces and their
subvarieties. Note that a hypersurface inP(q) is defined by a homogeneous polynomial
where the unknowns are homogeneous of degreeqi. Thus equation (5.10) defines a
hypersurface of degree2g + 2. Although, in general,P(q) is a singular variety, it
admits a canonical sheaf

ωP(q) = OP(q)(−|q|),

where|q| = q0 + · · ·+qn. Here the Serre sheaves are understood in the sense of theory
of projective spectrums of graded algebras. There is also the adjunction formula for a
hypersurfaceX ⊂ P(q) of degreed

ωX = OX(d− |q|). (5.11)

In the case of a hyperelliptic curve, we have

ωC = OC(g − 1).

The morphismϕ : C → P1 corresponds to the projection[t0, t1, t2]→ [t0, t1] and we
obtain that

ωC = ϕ∗OP1(g − 1).

The weighted projective spaceP(1, 1, g + 1) is isomorphic to the projective cone in
Pg+2 over the Veronese curvevg+1(P1) ⊂ Pg+1. The hyperelliptic curve is isomorphic
to the intersection of this cone and a quadric hypersurface inPg+1 not passing through
the vertex of the cone. The projection from the vertex to the Veronese curve is the
double coverϕ : C → P1. The canonical linear system|KC | mapsC to Pg with the
image equal to the Veronese curvevg−1(P1).
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5.2.2 2-torsion points on a hyperelliptic curve

Let c1, . . . , c2g+2 be the ramification points of the mapϕ. We assume thatϕ(ci) = pi.
Obviously,2ci − 2cj ∼ 0, hence the divisor class ofci − cj is of order 2 in Pic(C).
Also, for any subsetI of the setBg = {1, . . . , 2g + 2}, we have

αI =
∑
i∈I

ci −#Ic2g+2 =
∑
i∈I

(ci − c2g+2) ∈ Pic(C)[2].

Now observe that

αBg =
∑
i∈Bg

ci − (2g + 2)c2g+2 = div(φ) ∼ 0, (5.12)

whereφ = t2/(bt0−at1)g+1 andp2g+2 = (a, b) (we consider the fraction modulo the
equation (5.10) definingC). Thus

ci − cj ∼ 2ci +
∑

k∈Bg\{j}

ck − (2g + 2)c2g+2 ∼ αBg\{i,j}.

Adding toαI the zero divisorc2g+2 − c2g+2 we can always assume that#S is even.
Also adding the principal divisorαBg

, we obtain thatαI = αĪ , whereĪ denotesBg \I.

Let FBg

2
∼= F2g+2

2 be theF2-vector space of functionsBg → F2, or, equivalently,
subsets ofBg. The sum is defined by the symmetric sum of subsets

I + J = I ∪ J \ (I ∩ J).

The subsets of even cardinality form a hyperplane. It contains the subsets∅ andBg
as a subspace of dimension 1. LetEg denote the factor space. Elements ofEg are
represented by subsets of even cardinality up to the complementary set (bifid mapsin
terminology of A. Cayley). We have

Eg ∼= F2g
2 ,

hence the correspondenceI 7→ αI defines an isomorphism

Eg ∼= Pic(C)[2]. (5.13)

Note thatEg carries a natural symmetric bilinear form

e : Eg × Eg → F2, e(I, J) = #I ∩ J mod 2. (5.14)

This form is symplectic (i.e.e(I, I) = 0 for anyI) and nondegenerate. If we choose a
basis represented by the subsets

Ai = {2i− 1, 2i}, Bi = {2i, 2i+ 1}, i = 1, . . . , g, (5.15)

then the matrix of the bilinear forme will be equal toJg from (5.2)
Under isomorphism (5.13), this bilinear form corresponds to the Weil pairing on

2-torsion points of the Jacobian variety ofC.
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Remark5.2.1. The symmetric groupS2g+2 acts onEg via its action onBg and pre-
serves the symplectic forme. This defines a homomorphism

sg : S2g+2 → Sp(2g,F2).

If g = 1, Sp(2,F2) ∼= S3, and the homomorphisms1 has the kernel isomorphic to the
Klein group(Z/2Z)2. If g = 2, the homomorphisms2 is an isomorphism. Ifg > 2,
the homomorphismsg is injective but not surjective.

5.2.3 Theta characteristics on a hyperelliptic curve

For any subsetT of Bg set

ϑT =
∑
i∈T

ci + (g − 1−#Tc2g+2) = αT + (g − 1)c2g+2.

We have
2ϑT ∼ 2αT + (2g − 2)c2g+2 ∼ (2g − 2)c2g+2.

It follows from the proof of the Hurwitz formula that

KC = ϕ∗(KP1) +
∑
i∈Bg

ci.

Choose a representative ofKP1 equal to−2p2g+2 and use (5.12) to obtain

KC ∼ (2g − 2)c2g+2.

Thus we obtain thatϑT is a theta characteristic. Again adding and subtractingc2g+2

we may assume that#T ≡ g + 1 mod 2. SinceT and T̄ define the same theta
characteristic, we will consider the subsets up to taking the complementary set. We
obtain a setQg which has a natural structure of an affine space overEg, the addition is
defined by

ϑT + αI = ϑT+I .

Thus all theta characteristics are uniquely represented by the divisor classesϑT , where
T ∈ Qg.

An example of an affine space overV = F2g
2 is the space of quadratic formsq :

F2g
2 → F2 whose associated symmetric bilinear formbq coincides with the standard

symplectic form defined by the matrix (5.2). We identifyV with its dualV ∨ by means
of b0 and setq + l = q + l2 for anyl ∈ V ∨.

For anyT ∈ Qg we define the quadratic formqT onEg by

qT (I) = 1
2 (#(T + I)−#T ) = #T ∩ I + 1

2#I = 1
2#I + e(I, T ) mod 2.

We have (all equalities are modulo 2)

qT (I + J) + qT (I) + qT (J) = 1
2
(#(I + J) + #|+ #J) + e(I + J, T ) + e(I, T ) + e(J, T )

= 1
2
(2#I + 2#J − 2#I ∩ J) = #I ∩ J.
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Thus each theta characteristic can be identified with an element of the spaceQg =
Q(Eg) of quadratic forms onEg with polar forme.

Also notice that

(qT + αI)(J) = qT (J) + e(I, J) = 1
2#J + e(T, J) + e(I, J)

= 1
2#J + e(T + I, J) = qT+I(J).

Lemma 5.2.1. LetϑT be a theta characteristic on a hyperelliptic curveC of genusg
identified with a quadratic form onEg. Then the following properties are equivalent:

(i) #T ≡ g + 1 mod 4;

(ii) h0(ϑT ) ≡ 0 mod 2;

(iii) qT is even.

Proof. Without loss of generality, we may assume thatp2g+2 is the point(0, 1) at
infinity in P1. Then the field of rational functions onC is generated by the functions
y = t2/t0 andx = t1/t0. We have

ϑT =
∑
i∈T

ci + (g − 1−#T )c2g+2 ∼ (g − 1 + #T )c2g+2 −
∑
i∈T

ci.

Any functionφ from the spaceL(ϑT ) = {φ : div(φ) + ϑT ≥ 0} has a unique pole
at c2g+2 of order< 2g + 1. Since the functiony has a pole of order2g + 1 at c2g+2,
we see thatφ = ϕ∗(p(x)), wherep(x) is a polynomial of degree≤ 1

2 (g − 1 + #T )
in x. ThusL(ϑT ) is isomorphic to the linear space of polynomialsp(x) of degree
≤ 1

2 (g − 1 + #T ) with zeros atpi, i ∈ T . The dimension of this space is equal to
1
2 (g + 1−#T ). This proves the equivalence of (i) and (ii).

Let
U = {1, 3, . . . , 2g + 1} ⊂ Bg (5.16)

be the subset of odd numbers inBg. If we take the standard symplectic basis inEg
defined in (5.15), then we obtain thatqU = q0 is the standard quadratic form associated
to the standard symplectic basis. It follows from (5.6) thatqT is an even quadratic form
if and only if T = U + I, whereqU (I) = 0. Let I consists ofk even numbers ands
odd numbers. ThenqU (I) = #U ∩ I + 1

2#I = m + 1
2 (k + m) = 0 mod 2. Thus

#T = #(U+S) = #U+#I−2#U ∩S = (g+1)+(k+m)−2m = g+1+k−m.
Thenm+ 1

2 (k+m) is even, hence3m+ k ≡ 0 mod 4. This implies thatk−m ≡ 0
mod 4 and#T ≡ g+1 mod 4. Conversely, if#T ≡ g+1 mod 4, thenk−m ≡ 0
mod 4 andqU (I) = 0. This proves the lemma.

5.2.4 Families of curves with odd or even theta characteristic

Let X → S be a smooth projective morphism whose fibreXs over a points ∈ S is a
curve of genusg > 0 over the residue fieldκ(s) of s. LetPicnX/S → S be therelative
Picard schemeof X/S. It represents the functor on the category ofS-schemes defined
by assigning to aS-schemeT the set of isomorphism classes of invertible sheaves on
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X ×S T of relative degreen over T modulo tensor product with invertible sheaves
coming fromT . TheS-schemePicnX/S → S is a smooth projective scheme overS.
Its fibre over a points ∈ S is isomorphic to the Picard varietyPicnXs/κ(s) over the
field κ(s). The relative Picard scheme comes with a universal invertible sheafU on
X ×S PicnX/S (locally in étale topology). For any pointy ∈ PicnX/S over a point
s ∈ S, the restriction ofU to the fibre of the second projection overy is an invertible
sheafUy onXs ⊗κ(s) κ(y) representing a point in Picn(Xs ⊗ κ(y)) defined byy.

For any integerm, raising a relative invertible sheaf intom-th power defines a
morphism

[m] : PicnX/S → PicmnX/S .

Takingn = 2g − 2 andm = 2, the preimage of the section defined by the relative
canonical classωX/S is a closed subscheme ofPicg−1

X/S . It defines a finite cover

T CX/S → S

of degree22g. The pull-back ofU to T CX/S defines an invertible sheafT over
P = X ×S T CX/S satisfyingT ⊗2 ∼= ωP/T CX/S

. By a theorem of Mumford [295],
the parity of a theta characteristic is preserved in an algebraic family, thus the func-
tion T CX/S → Z/2Z defined byy 7→ dimH0(Uy, Ty) mod 2 is constant on each
connected component ofT CX/S . Let T Cev

X/S (resp.T Codd
X/S) be the closed subset of

T CX/S , where this function takes the value0 (resp. 1). The projectionT Cev
X/S → S

(resp.T Codd
X/S → S) is a finite cover of degree2g−1(2g + 1) (resp.2g−1(2g − 1)).

It follows from above thatT CX/S has at least two connected components.
Now takeS = |OP2(d)|ns to be the space of nonsingular plane curvesC of degree

d andX → |OP2(d)|ns be the universal curve defined by{(x,C) : x ∈ C}. We set

T Cd = T CX/S , T C
ev/odd
d = T Cev/odd

X/S .

The proof of the following proposition can be found in [23].

Proposition 5.2.2. If d is even ord = 3, T Cd consists of two irreducible components
T Cevd and T Coddd . If d ≡ 1 mod 4, thenT Cevd is irreducible butT Coddd has two
irreducible components, one of which is the section ofT Cd → |OP2(d)|ns defined
byOP2((d − 3)/2). If d ≡ 3 mod 4, thenT Coddd is irreducible butT Cevd has two
irreducible components, one of which is the section ofT Cd → |OP2(d)|ns defined by
OP2((d− 3)/2).

LetT C0d be the open subset ofT Cev
d corresponding to the pairs(C, ϑ) with h0(ϑ) =

0. It follows from the theory of symmetric determinantal representations of plane
curves thatT C0d/PGL(3) is an irreducible variety covered by an open subset of a Grass-
mannian. Since the algebraic group PGL(3) is connected and acts freely on a Zariski
open subset ofT C0d, we obtain thatT C0d is irreducible. It follows from the previous
proposition that

T C0d = T Cev
d if d 6≡ 3 mod 4. (5.17)

Note that there exist coarse moduli spaceMev
g andModd

g of curves of genus to-
gether with an even (odd) theta characteristic. We refer to [95] for the proof of irre-
ducibility of these varieties and for construction of certain compactifications of these
spaces.
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5.3 Theta functions

5.3.1 Jacobian variety

Recall the classical definition of the Jacobian variety of a nonsingular projective curve
C of genusg overC. We considerC as a compact oriented 2-dimensional manifold of
genusg. We view the linear spaceH0(C,KC) as the space of holomorphic 1-forms on
C. By integration over 1-dimensional cycles we get a homomorphism ofZ-modules

ι : H1(C,Z)→ H0(C,KC)∗, ι(γ)(ω) =
∫
γ

ω.

The image of this map is a latticeΛ of rank2g in the complex spaceH0(C,KC)∗. The
quotient by this lattice

Jac(C) = H0(C,KC)∗/Λ

is a complexg-dimensional torus. It is called theJacobian varietyof C.
Recall that the cap product

∩ : H1(C,Z)×H1(C,Z)→ H2(C,Z) ∼= Z

defines a nondegenerate symplectic form on groupH1(C,Z) ∼= Z2g with a nonde-
generate symplectic form. Letα1, . . . , αg, β1, . . . , βg be a standard symplectic basis,
i.e.,

(αi, αj) = (βi, βj) = 0, (αi, βj) = δij .

We choose a basisω1, . . . , ωg of holomorphic 1-differentials onC such that∫
αi

ωj = δij . (5.18)

Let

τij =
∫
βi

ωi.

The complex matrixτ = (τij) is called theperiod matrix. The basisω1, . . . , ωg identi-
fiesH0(C,KC)∗ with Cg and the period matrix identifies the latticeΛ with the lattice
Λτ = [τ Ig]Z2g, where[τ Ig] denotes the block-matrix of sizeg × 2g. The period
matrix τ = <(τ) +

√
−1=(τ) satisfies

tτ = τ, =(τ) > 0.

As is well-known (see [197]) this implies that Jac(C) is a projective algebraic group,
i.e. an abelian variety. It is isomorphic to the Picard schemePic0

C/C.
We consider any divisorD =

∑
nxx on C as a 0-cycle onC. The divisors of

degree0 are boundaries, i.e.D = ∂γ for some1-chainβ. By integrating overβ we
get a linear function onH0(C,KC) whose coset moduloΛ = ι(H1(C,Z)) does not
depend on the choice ofβ. This defines a homomorphism of groupsp : Div0(C) →
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Jac(C). TheAbel-Jacobi Theoremasserts thatp is zero on principal divisors (Abel’s
part), and surjective (Jacobi’s part). This defines an isomorphism of abelian groups

aj : Pic0(C)→ Jac(C) (5.19)

which is called theAbel-Jacobi map. For any positive integerd let Picd(C) denote

the set of divisor classes of degreed. The group Pic0(C) acts simply transitively on
Picd(C) via addition of divisors. There is a canonical map

ud : C(d) → Picd(C), D 7→ [D],

where we identify the symmetric product with the set of effective divisors of degreed.
One can show that Picd(C) can be equipped with a structure of a projective algebraic
variety (isomorphic to the Picard schemePicdC/C) such that the mapud is a morphism
of algebraic varieties. Its fibres are projective spaces, the complete linear systems
corresponding to the divisor classes of degreed. The action of Pic0(C) = Jac(C) on
Picd(C) is an algebraic action equipping Picd(C) with a structure of a torsor over the
Jacobian variety.

Let
W r
g−1 = {[D] ∈ Picg−1(C) : h0(D) ≥ r + 1}.

In particular,W 0
g−1 was denoted byWg−1 in Theorem4.1.3, where we showed that the

invertible sheavesL0 ∈ Picg−1(C) defining a determinantal equation of a plane curve
of genusg belong to the set Picg−1(C) \W 0

g−1. The fundamental property of the loci
W r
g−1 is given by the followingRiemann-Kempf Theorem.

Theorem 5.3.1.

W r
g−1 = {x ∈Wg−1 : multxWg−1 ≥ r + 1}.

In particular, we get
W 1
g−1 = Sing(Wg−1).

From now on we will identify Pic0(C) with the points on the Jacobian variety
Jac(C) by means of the Abel-Jacobi map. For any theta characteristicϑ the subset

Θ = Wg−1 − ϑ ⊂ Jac(C)

is a hypersurface in Jac(C). It has the property that

h0(Θ) = 1, [−1]∗(Θ) = Θ, (5.20)

where[m] is the multiplication by an integerm in the group variety Jac(C). Con-
versely, any divisor on Jac(C) satisfying these properties is equal toWg−1 translated
by a theta characteristic. This follows from the fact that a divisorD on an abelian
varietyA satisfyingh0(D) = 1 defines a bijective mapA → Pic0(A) by sending a
point x ∈ A to the divisort∗xD − D, wheretx is the translation mapa 7→ a + x in
the group variety, and Pic0(A) is the group of divisor classes algebraically equivalent
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to zero. This fact implies that any two divisors satisfying properties (5.20) differ by
translation by a 2-torsion point.

We call a divisor satisfying (5.20) a symmetric theta divisor. An abelian variety
that contains such a divisor is called aprincipally polarized abelian variety.

Let Θ = Wg−1 − θ be a symmetric theta divisor on Jac(C). Applying Theorem
5.3.1we obtain that, for any 2-torsion pointε ∈ Jac(C), we have

multεΘ = h0(ϑ+ ε). (5.21)

In particular,ε ∈ Θ if and only if θ + ε is an effective theta characteristic. According
to ϑ, the symmetric theta divisors are divided into two groups: even and odd theta
divisors.

5.3.2 Theta functions

The preimage ofΘ under the quotient map Jac(C) = H0(C,KC)∗/Λ is a hypersurface
in the complex linear spaceV = H0(C,KC)∗ equal to the zero set of some holomor-
phic functionφ : V → C. This functionφ is not invariant with respect to translations
by Λ (only constants are because the quotient is compact). However, it has the property
that, for anyv ∈ V and anyλ ∈ Λ,

φ(v + λ) = eλ(v)(γ)φ(v),

whereeλ is an invertible holomorphic function onV . Such a function is called atheta
function. The set of zeros ofφ does not change if we replaceφ with φα, whereα is an
invertible holomorphic function onV . The functionseλ(v) will change into functions
eλ′(v) = eλ(v)φ(v + λ)φ−1(v). One can show that, after choosing an appropriateα
one may assume that

eλ(v) = exp(2πi(aγ(v) + bγ)),

whereaγ is a linear function andbγ is constant. We will assume that such a choice has
been made.

It turns out that the theta function corresponding to a symmetric theta divisorΘ
can be given in coordinates defined by a choice of a normalized basis (5.18) by the
following expression

θ [ ε
η ] (z; τ) =

∑
r∈Zg

expπi
[
(r + 1

2ε) · τ · (r + 1
2ε) + 2(z + 1

2η) · (r + 1
2ε)

]
, (5.22)

whereε,η ∈ {0, 1}g considered as a column or a raw vector fromFg2. The function
defined by this expression is called atheta function with characteristic. The invertible
functioneλ(z1, . . . , zg) for such a function is given by the expression

eλ(z) = exp−πi(m · τ ·m− 2z ·m− ε · n + η ·m),

where we writeλ = τ ·m + n for somem,n ∈ Zg. One can check that

θ [ ε
η ] (−z; τ) = exp(πiε · η)θ [ ε

η ] (z; τ). (5.23)
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This shows thatθ [ ε
η ] (−z; τ) is an odd (resp. even) function if and only ifε · η =

1 (resp. 0). In particular,θ [ ε
η ] (0; τ) = 0 if the function is odd. It follows from

(5.21) thatθ [ ε
η ] (0; τ) = 0 if θ is an odd theta characteristic or an effective even theta

characteristic.
Takingε,η = 0, we obtain theRiemann theta function

θ(z; τ) =
∑
r∈Zg

expπi(r · τ · r + 2z · r).

All other theta functions with characteristic are obtained fromθ(z; τ) by translate

θ [ ε
η ] (z; τ) = expπi(ε · η + ε · τ · ε)θ(z + 1

2τ · η + 1
2ε; τ).

In this way points onCg of the form 1
2τ · ε + 1

2η are identified with elements of the
2-torsion group1

2Λ/Λ of Jac(C). The theta divisor corresponding to the Riemann
theta function is equal toWg−1 translated by a certain theta characteristicκ called the
Riemann constant. Of course, there is no any distinguished theta characteristic, the
definition ofκ depends on the choice of a symplectic basis inH1(C,Z).

The multiplicitym of a point on a theta divisorΘ = Wg−1 − ϑ is equal to the
multiplicity of the corresponding theta function defined by vanishing partial derivatives
up to orderm − 1. Thus the quadratic form defined byθ can be redefined in terms of
the corresponding theta function as

qϑ( 1
2τ · ε

′ + 1
2η′) = mult0θ

[
ε+ε′

η+η′

]
(z, τ) + mult0θ [ ε

η ] (z, τ).

It follows from (5.23) that this number is equal to

ε · η′ + η · η′ + η′ · η′. (5.24)

A choice of a symplectic basis inH1(C,Z) defines a standard symplectic basis in
H1(C,F2) ∼= 1

2Λ/Λ = Jac(C)[2]. Thus we can identify 2-torsion points12τ · ε
′ + 1

2η′

with vectors(ε′,η′) ∈ F2g
2 . The quadratic form corresponding to the Riemann theta

function is the standard one

q0((ε′,η′)) = ε′ · η′.

The quadratic form corresponding toθ [ ε
η ] (z; τ) is given by (5.24). The Arf invariant

of this quadratic form is equal to

Arf(qϑ) = ε · η = q0((ε,η)).

5.3.3 Hyperelliptic curves again

In this case we can compute the Riemann constant explicitly. Recall that we identify
2-torsion points with subsets of even cardinality of the setBg = {1, . . . , 2g + 2}
which we can identify with the set of ramification or branch points. Let us define a
standard symplectic basis inC by choosing the 1-cycleαi to be the path which goes
from c2i−1 to c2i along one sheet of the Riemann surfaceC and returns toc2i−1 along
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the other sheet. Similarly, we define the 1-cycleβi by choosing the pointsc2i and
c2i+1. Chooseg holomorphic formsωj normalized by the condition (5.18). Let τ be
the corresponding period matrix. Notice that each holomorphic1-form changes sign
when we switch the sheets. This gives

1
2δij = 1

2

∫
αi

ωj =
∫ c2i

c2i−1

ωj =
∫ c2g+2

c2i−1

ωj −
∫ c2g+2

c2i

ωj

=
∫ c2g+2

c2i−1

ωj +
∫ c2g+2

c2i

ωj − 2
∫ c2g+2

c2i

ωj .

Since

2
(∫ c2g+2

c2i

ω1, . . . ,

∫ c2g+2

c2i

ωg

)
= aj(2c2i − 2c2g+2) = 0,

we obtain
ι(c2i−1 + c2i − 2c2g+2) = 1

2ei mod Λτ ,

where, as usual,ei denotes thei-th unit vector. LetAi, Bi be defined as in (5.15). We
obtain that

aj(αAi) = 1
2ei mod Λτ .

Similarly, we find that

ajc2g+2
(αBi

) = 1
2τ · ei mod Λτ .

Now we can match the setQg with the set of theta functions with characteristics. Recall
that the setU = {1, 3, . . . , 2g + 1} plays the role of the standard quadratic form. We
have

qU (Ai) = qU (Bi) = 0, i = 1, . . . , g.

Comparing it with (5.24), we see that the theta functionθ [ ε
η ] (z; τ) corresponding to

ϑU must coincide with the functionθ(z; τ). This shows that

ιg−1
c2g+2

(ϑU ) = ιc2g+2(ϑU − kc2g+2) = 0.

Thus the Riemann constantκ corresponds to the theta characteristicϑU . This allows
one to match theta characteristics with theta functions with theta characteristics.

Write any subsetI of Eg in the form

I =
g∑
i=1

εiAi +
g∑
i=1

ηiBi,

whereε = (ε1, . . . , εg), η = (η1, . . . , ηg) are binary vectors. Then

ϑU+I ←→ θ [ ε
η ] (z; τ).

In particular,
ϑU+I ∈ TChar(C)ev⇐⇒ ε · η = 0 mod 2.
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Example5.3.1. We give the list of theta characteristics for small genus. We also list
2-torsion points at which the corresponding theta function vanishes.

g = 1
3 even “thetas”:

ϑ12 = θ [ 1
0 ] (α12),

ϑ13 = θ [ 0
0 ] (α13),

ϑ14 = θ [ 0
1 ] (α14).

1 odd theta

ϑ∅ = θ [ 1
1 ] (α∅).

g = 2
10 even thetas:

ϑ123 = θ [ 01
10 ] (α12, α23, α13, α45, α46, α56),

ϑ124 = θ [ 00
10 ] (α12, α24, α14, α35, α36, α56),

ϑ125 = θ [ 00
11 ] (α12, α25, α15, α34, α36, α46),

ϑ126 = θ [ 11
11 ] (α12, α16, α26, α34, α35, α45),

ϑ234 = θ [ 10
01 ] (α23, α34, α24, α15, α56, α16),

ϑ235 = θ [ 10
00 ] (α23, α25, α35, α14, α16, α46),

ϑ236 = θ [ 01
00 ] (α23, α26, α36, α14, α45, α15),

ϑ245 = θ [ 11
00 ] (α24, α25, α13, α45, α16, α36),

ϑ246 = θ [ 00
00 ] (α26, α24, α13, α35, α46, α15),

ϑ256 = θ [ 00
01 ] (α26, α25, α13, α14, α34, α56).

6 odd thetas
ϑ1 = θ [ 01

01 ] (α∅, α12, α13, α14, α15, α16),

ϑ2 = θ [ 11
01 ] (α∅, α12, α23, α24, α25, α26),

ϑ3 = θ [ 11
01 ] (α∅, α13, α23, α34, α35, α36),

ϑ4 = θ [ 10
10 ] (α∅, α14, α24, α34, α45, α46),

ϑ5 = θ [ 10
11 ] (α∅, α15, α35, α45, α25, α56),

ϑ6 = θ [ 01
11 ] (α∅, α16, α26, α36, α46, α56).

g = 3
36 even thetasϑ∅, ϑijkl,
28 odd thetasϑij .

g = 4
136 even thetasϑi, ϑijklm
120 odd thetasϑijk.



132 CHAPTER 5. THETA CHARACTERISTICS

5.4 Odd theta characteristics

5.4.1 Syzygetic triads

We have already remarked that effective theta characteristics on a canonical curveC ⊂
Pg−1 correspond to hyperplanes everywhere tangent toC. We call thembitangent
hyperplanes(not to be confused with hyperplanes tangent at≥ 2 points).

An odd theta characteristic is effective and determines a bitangent hyperplane, a
unique one if it is non-vanishing. In this section we will study the configuration of
bitangent hyperplanes to a canonical curve. Let us note here that a general canonical
curve is determined uniquely by the configuration of its bitangent hyperplanes [42].

From now on we fix a nondegenerate symplectic space(V, ω) of dimension2g
overF2. LetQ(V ) be the affine space of quadratic forms with associated symmetric
bilinear form equal toω. The Arf invariant dividesQ(V ) into the union of two sets
Q(V )+ andQ(V )−, of even or odd quadratic forms. Recall thatQ(V )− is interpreted
as the set of odd theta characteristics whenV = Pic(C) andω is the Weil pairing. For
anyq ∈ Q(V ) andv ∈ V , we have

q(v) = Arf(q + v) + Arf(q).

Thus the function Arf is the symplectic analog of the functionh0(ϑ) mod 2 for theta
characteristics.

The set̃V = V
∐
Q(V ) is equipped with a structure of aZ/2Z-graded vector space

overF2. It complements the addition onV (the0-th graded piece) and the structure of
an affine space onQ(V ) (the1-th graded piece) by settingq+q′ := v, whereq′ = q+v.
One can also extend the symplectic form onV to Ṽ by setting

ω(q, q′) = q(q + q′), ω(q, v) = ω(v, q) = q(v).

Definition 5.1. A set of three elementsq1, q2, q3 in Q(V ) is called asyzygetic triad
(resp.azygetic triad) if

Arf(q1) + Arf(q2) + Arf(q3) + Arf(q1 + q2 + q3) = 0 (resp. = 1).

A subset ofk ≥ 3 elements inQ(V ) is called anazygetic setif any subset of three
elements is azygetic.

Note that a syzygetic triad defines a set of four quadrics inQ(V ) that add up to
zero. Such a set is called asyzygetic tetrad. Obviously, any subset of three elements in
a syzygetic tetrad is a syzygetic triad.

Another observation is that three elements inQ(V )− form an azygetic triad if their
sum is an element inQ(V )+.

For any odd theta characteristicϑ any divisorDη ∈ |ϑ| is of degreeg − 1. The
condition is that four odd theta characteristicsϑi form a syzygetic tetrad means that the
sum of divisorsDϑi are cut out by a quadric inPg−1. The converse is true ifC does
not have vanishing even theta characteristic.

Let us now compute the number of syzygetic tetrads.
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Lemma 5.4.1. Let q1, q2, q3 be a set of three elemenst onQ(V ). The following prop-
erties are equivalent:

(i) q1, q2, q3 is a syzygetic triad;

(ii) q1(q2 + q3) = Arf(q2) + Arf(q3);

(iii) ω(q1 + q2, q1 + q3) = 0.

Proof. The equivalence of (i) and (ii) follows immediately from the identity

q1(q2 + q3) = Arf(q1) + Arf(q1 + q2 + q3).

We have
ω(q1 + q2, q1 + q3) = q1(q1 + q3) + q2(q1 + q3)

= Arf(q1) + Arf(q3) + Arf(q2) + Arf(q1 + q2 + q3).

This shows the equivalence of (ii) and (iii).

Proposition 5.4.2. Let q1, q2 ∈ Q(V )−. The number of ways in which the pair can be
extended to a syzygetic triad of odd theta characteristics is equal to2(2g−1+1)(2g−2−
1).

Proof. Assume thatq1, q2, q3 is a syzygetic triad inQ(V )−. By the previous lemma,
q1(q2 + q3) = 0. Also, we haveq2(q2 + q3) = Arf(q3) + Arf(q2) = 0. Thusq1 and
q2 vanish atv0 = q2 + q3. Conversely, assumev ∈ V satisfiesq1(v) = q2(v) = 0 and
v 6= q1 + q2 so thatq3 = q2 + v 6= q1, q2. We have Arf(q3) = Arf(q2) + q2(v) = 1,
henceq3 ∈ Q(V )−. Sinceq1(v) = q1(q2 + q3) = 0, by the previous Lemmaq1, q2, q3
is a syzygetic triad.

Thus the number of the ways we can extendq1, q2 to a syzygetic triadq1, q2, q3 is
equal to the cardinality of the set

Z = q−1
1 (0) ∩ q−1

2 (0) \ {0, v0},

wherev0 = q1 + q1. It follows from (5.6) that v ∈ Z satisfiesω(v, v0) = q2(v) +
q1(v) = 0. Thus anyv ∈ Z is a representative of a nonzero element inW = v⊥0 /v0

∼=
F2g−2

2 on whichq1 andq2 vanish. It is clear thatq1 andq2 induce the same quadratic
form q onW . It is an odd quadratic form. Indeed, we can choose a symplectic basis in
V by taking as a first vector the vectorv0. Then computing the Arf invariant ofq1 we
see that it is equal to the Arf invariant of the quadratic formq. Thus we get

#Z = 2(#Q(W )− − 1) = 2(2g−2(2g−1 − 1)− 1) = 2(2g−1 + 1)(2g−2 − 1).

Corollary 5.4.3. Let tg be the the number of syzygetic tetrads of odd theta character-
istics on a nonsingular curve of genusg. Then

tg =
1
3
2g−3(22g − 1)(22g−2 − 1)(2g−2 − 1).
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Proof. Let I be the set of triples(q1, q2, T ), whereq1, q2 ∈ Q(V )− and T is a
syzygetic tetrad containingq1, q2. We count#I in two ways by projectingI to the
setP of unordered pairs of distinct elementsQ(V )− and to the set of syzygetic tetrads.
Since each tetrad contains6 pairs from the setP, and each pair can be extended in
(2g−1 + 1)(2g−2 − 1) ways to a syzygetic tetrad, we get

#I = (2g−1 + 1)(2g−2 − 1)
(
2g−1(2g−1)

2

)
= 6tg.

This gives

tg =
1
3
2g−3(22g − 1)(22g−2 − 1)(2g−2 − 1).

Let V be a vector space with a symplectic or symmetric bilinear form. Recall that
a linear subspaceL is called isotropic if the restriction of the bilinear form toL is
identically zero.

Corollary 5.4.4. Let{q1, q2, q3, q4} be a syzygetic tetrad inQ(V )−. ThenP = {q1 +
qi, . . . , q4+qi} is an isotropic 2-dimensional subspace in(V, ω) which does not depend
on the choice ofqi.

Proof. It follows from Lemma5.4.1(iii) that P is an isotropic subspace. The equality
q1 + · · ·+ q4 = 0 gives

qk + ql = qi + qj , (5.25)

where{i, j, k, l} = {1, 2, 3, 4}. This shows that the subspaceP of V formed by the
vectorsqj + qi, j = 1, . . . , 4, is independent on the choice ofi. One of its bases is the
set(q1 + q4, q2 + q4).

5.4.2 Steiner complexes

Let P be the set of unordered pairs of distinct elements inQ(V )−. The addition map
in Q(V )− ×Q(V )− → V defines a map

s : P → V \ {0}.

Definition 5.2. The union of pairs from the same fibres−1(v) of the maps is called a
Steiner compex. It is denoted byΣ(v).

It follows from (5.25) that any two pairs from a syzygetic tetrad belong to the same
Steiner complex. Conversely, let{q1, q′1}, {q2, q′2} be two pairs fromΣ(v). We have
(q1 + q′1) + (q2 + q′2) = v+ v = 0, showing that the tetrad(q1, q′1, q2, q

′
2) is syzygetic.

Proposition 5.4.5.There are22g−1 Steiner complexes. Each Steiner complex consists
of 2g−1(2g−1 − 1) elements paired by translationq 7→ q + v. An odd quadratic form
q belongs to a Steiner complexΣ(v) if and only ifq(v) = 0.
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Proof. Since22g − 1 = #(V \ {0}), it suffices to show that the maps : P → V \ {0}
is surjective. The symplectic group Sp(V, ω) acts transitively onV \{0} and onP, and
the maps is obviously equivariant. Thus its image is a non-emptyG-invariant subset
of V \ {0}. It must coincide with the whole set.

By (5.7), we haveq(v) = Arf(q + v) + Arf(q). If q ∈ Σ(v), thenq + v ∈ Q(V )−,
hence Arf(q + v) = Arf(q) = 1 and we getq(v) = 0. Conversely, ifq(v) = 0
andq ∈ Σ(v), we getq + v ∈ Q(V )− and henceq ∈ Σ(v). This proves the last
assertion.

Lemma 5.4.6. LetΣ(v),Σ(v′) be two Steiner complexes. Then

#Σ(v) ∩ Σ(v′) =

{
2g−1(2g−2 − 1) if ω(v, v′) = 0
2g−2(2g−1 − 1) if ω(v, v′) 6= 0.

Proof. Let q ∈ Σ(v) ∩ Σ(v′). Then we haveq + q′ = v, q + q′′ = v′ for some
q′ ∈ Σ(v), q′′ ∈ Σ(v′). This implies that

q(v) = q(v′) = 0. (5.26)

Conversely, if these equalities hold, thenq + v, q + v′ ∈ Q(V )−, q, q′ ∈ Σ(v), and
q, q′′ ∈ Σ(v′). Thus we have reduced our problem to linear algebra. We want to show
that the number of elements inQ(V )− which vanish at 2 nonzero vectorsv, v′ ∈ V
is equal to2g−1(2g−2 − 1) or 2g−2(2g−1 − 1) depending on whetherω(v, v′) = 0 or
1. Let q be one such quadratic form. Suppose we have anotherq′ with this property.
Write q′ = q + v0 for somev0. We haveq(v0) = 0 sinceq′ is odd and

ω(v0, v) = ω(v0, v′) = 0.

LetL be the plane spanned byv, v′. Assumeω(v, v′) = 1, then we can includev, v′ in
a standard symplectic basis. Computing the Arf invariant, we find that the restriction
of q to L⊥ is an odd quadratic form. Thus it has2g−2(2g−1 − 1) zeroes. Each zero
gives us a solution forv0. Assumeω(v, v′) = 0. ThenL is a singular plane forq since
q(v) = q(v′) = q(v + v′) = 0. ConsiderW = L⊥/L ∼= F2g−4

2 . The formq has
2g−3(2g−2− 1) zeros inW . Any representativev0 of these zeros defines the quadratic
form q + v0 vanishing atv, v′. Any quadratic form we are looking for is obtained in
this way. The number of such representatives is equal to2g−1(2g−2 − 1).

Definition 5.3. Two Steiner complexesΣ(v) and Σ(v′) are calledsyzygetic(resp.
azygeticif ω(v, v′) = 0)(resp.ω(v, v′) = 1).

Theorem 5.4.7. The union of three mutually syzygetic Steiner complexesΣ(v),Σ(v′)
andΣ(v + v′) is equal toQ(V )−.

Proof. Since
ω(v + v′, v) = ω(v + v′, v′) = 0,

we obtain that the Steiner complexΣ(v+ v′) is syzygetic toΣ(v) andΣ(v′). Suppose
q ∈ Σ(v) ∩ Σ(v′). Thenq(v + v′) = q(v) + q(v′) + ω(v, v′) = 0. This implies that
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Σ(v) ∩ Σ(v′) ⊂ Σ(v + v′) and henceΣ(v),Σ(v′),Σ(v + v′) share the same set of
2g−1(2g−2 − 1) elements. This gives

#Σ(v) ∪ Σ(v′) ∪ Σ(v + v′) = 6 · 2g−2(2g−1 − 1)− 2 · 2g−1(2g−2 − 1)

= 2g−1(2g − 1) = #Q(V )−.

Definition 5.4. A set of three mutually syzygetic Steiner complexes is called asyzygetic
triad of Steiner complexes. A set of three Steiner complexes corresponding to vectors
forming a non-isotropic plane is calledazygetic triadof Steiner complexes.

Let Σ(vi), i = 1, 2, 3 be a azygetic triad of Steiner complexes. Then#Σ(v1) ∩
Σ(v2) = 2g−2(2g−1−1). Each setΣ(v1)\(Σ(v1)∩Σ(v1)) andΣ(v1)\(Σ(v1)∩Σ(v1))
consists of2g−2(2g−1−1) elements. The union of these sets forms the Steiner complex
Σ(v3). The number of azygetic triads of Steiner complexes is equal to1

322g−2(22g−1)
(= the number of non-isortropic planes). We leave the proofs to the reader.

LetS4(V ) denote the set of syzygetic tetrads. By Corollary5.4.4, eachT ∈ S4(V )
defines an isotropic planePT in V . Let Isok(V ) denote the set ofk-dimensional
isotropic subspaces inV .

Proposition 5.4.8. LetS4(V ) be the set of syzygetic tetrads. For each tetradT let PT
denote the corresponding isotropic plane. The map

S4(V )→ Iso2(V ), T 7→ PT ,

is surjective. The fibre over a planeT consists of2g−3(2g−2 − 1) tetrads forming a
partition of the intersection of the Steiner complexesΣ(v), wherev ∈ P \ {0}.

Proof. The surjectivity of this map is proved along the same lines as we proved Propo-
sition 5.4.5. We use the fact the symplectic group Sp(V, ω) acts transitively on the set
of isotropic subspaces of the same dimension. LetT = {q1, . . . , q4} ∈ S4(V ). By
definition,PT \ {0} = {q1 + q2, q1 + q3, q1 + q4}. Suppose we have another tetrad
T ′ = {q′1, . . . , q′4} with PT = PT ′ . SupposeT ∩ T ′ 6= ∅. Without loss of generality,
we may assume thatq′1 = q1. Then, after reindexing, we getq1 + qi = q1 + q′i, hence
qi = q′i andT = T ′. Thus the tetradsT with PT = P are disjoint. Obviously, any
q ∈ T belongs to the intersection of the Steiner complexesΣ(v), v ∈ P \ {0}. It
remains to apply Lemma5.4.6.

A closer look at the proof of Lemma5.4.6 shows that the fibre overP can be
identified with the setQ(P⊥/P )−.

Combining Proposition5.4.8with the computation of the numbertg of syzygetic
tetrads, we obtain the known number of isotropic planes inV :

#Iso2(V ) =
1
3
(22g − 1)(22g−2 − 1). (5.27)
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Let Iso2(v) be the set of isotropic planes containing a nonzero vectorv ∈ V .
The set Iso2(v) is naturally identified with nonzero elements in the symplectic space
(v⊥/v, ω′), whereω′ is defined by the restriction ofω to v⊥. We can transfer the sym-
plectic formω′ to Iso2(v). We obtainω′(P,Q) = 0 if and only ifP +Q is an isotropic
3-subspace.

Let us consider the setS4(V, v) = α−1(Iso2(v)). This set consists of syzygetic
tetrads that are invariant with respect to the translation byv. In particular, each tetrad
from S4(V, v) is contained inΣ(v). We can identify the setS4(V, v) with the set of
cardinality 2 subsets ofΣ(v)/〈v〉.

There is a natural pairing onS4(V, v) defined by

〈T, T ′〉 = 1
2#T ∩ T ′ mod 2. (5.28)

Proposition 5.4.9. For anyT, T ′ ∈ S4(V, v),

ω′(PT , PT ′) = 〈T, T ′〉.

Proof. LetX = {{T, T ′} ⊂ S4(V ) : αv(T ) 6= αv(T ′)}, Y = {{P, P ′} ⊂ Iso2(v)}.
We have a natural map̃αv : X → Y induced byαv. The pairingω′ defines a function
φ : Y → F2. The corresponding partition ofY consists of two orbits of the stabilizer
groupG = Sp(V, ω)v onY . Suppose{T1, T2} and{T ′1, T ′2} are mapped to the same
subset{P, P ′}. Without loss of generality, we may assume thatT1, T

′
1 are mapped to

P . Thus

〈T1 +T ′2, T2 +T ′1〉 = 〈T1, T2〉+ 〈T ′1, T ′2〉+ 〈T1, T
′
1〉+ 〈T2, T

′
2〉 = 〈T1, T2〉+ 〈T ′1, T ′2〉.

This shows that the functionX → F2 defined by the pairing (5.28) is constant on fibres
of α̃v. Thus it defines a mapφ′ : Y → F2. Both functions are invariant with respect
to the groupG. This immediately implies that their two level sets either coincide or
are switched. However,#Iso2(v) = 22g−2 − 1 and hence the cardinality ofY is equal
to (22g−2 − 1)(22g−3 − 1). Since this number is odd, the two orbits are of different
cardinalities. Since the map̃αv isG-equinvariant, the level sets must coincide.

5.4.3 Fundamental sets

Recall that a standard symplectic basis in(V, ω) consists of vectors(v1, . . . , v2g) such
thatω(vi, vj) = 0 unlessj = g + i. Suppose we have an ordered setS of 2g + 1
vectors(u1, . . . , u2g+1) satisfyingω(ui, uj) = 1 unlessi = j. It defines a standard
symplectic basis by setting

vi = u1 + · · ·+ u2i−2 + u2i−1, vi+g = u1 + · · ·+ u2i−2 + u2i, i = 1, . . . , g.

Conversely, we can solve theui’s from thevi’s uniquely to reconstruct the setS from
a standard symplectic basis.

Definition 5.5. A set of2g+1 vectors(u1, . . . , u2g+1) satisfyingω(ui, uj) = 1 unless
i = j is called anormal systemin (V, ω).
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We have established a bijective correspondence between normal systems and stan-
dard symplectic bases.

Recall that a symplectic formω defines a nondegenerate null-system inV , i.e. a
bijective linear mapf : V → V ∨ such thatf(v)(v) = 0 for all v ∈ V . Fix a
basis(e1, . . . , e2g) in V and the dual basis(t1, . . . , t2g) in V ∨ and consider vectors
ui = e1 + · · ·+e2g−ei, i = 1, . . . , 2g andu2g+1 = e1 + · · ·+e2g. Then there exists a
unique null-systemV → V ∨ that sendsui to ti andu2g+1 to t2g+1 = t1+· · ·+t2g. The
vectorsu1, . . . , u2g+1 form a normal system in the corresponding symplectic space.

Let (u1, . . . , u2g+1) be a normal system. Denote the corresponding vectors by
pi,2g+2. We will identify nonzero vectors inV with points in the projective space|V |.
For anyi, j 6= 2g + 2 consider the line spanned bypi,2g+2 andpi,2g+2. Let pij be
the third nonzero point in this line. Now do the same with pointspij andpkl with the
disjoint sets of indices. Denote this point bypijkl. Note that the residual point on the
line spanned bypij andpjk is equal topik. Continuing in this way we will be able to
index all points in|V | with subsets of even cardinality (up to complementary sets) of
the setBg = {1, . . . , 2g + 2}. This notation will agree with the notation of 2-torsion
points for hyperelliptic curves of genusg. For example, we have

ω(pI , pJ) = #I ∩ J mod 2.

It is easy to compute the number of normal systems. It is equal to the number of
standard symplectic bases in(V, ω). The group Sp(V, ω) acts simply transitively on
such bases, so their number is equal to

#Sp(2g,F2) = 2g
2
(22g − 1)(22g−2 − 1) · · · (22 − 1). (5.29)

Now we introduce the analog of a normal system for quadratic forms inQ(V ).

Definition 5.6. A fundamental setinQ(V ) is an ordered azygetic set of2g+2 elements
in Q(V ).

The number2g + 2 is the largest possible cardinality of a set such that any three
elements are azygetic. This follows from the following immediate corollary of Lemma
5.4.1.

Lemma 5.4.10.LetB = (q1, . . . , qk) be an azygetic set. Then the set(q1+q2, . . . , q1+
qk) is a normal system in the symplectic subspace of dimensionk−2 spanned by these
vectors.

The Lemma shows that any fundamental set inQ(V ) defines a normal system in
V , and hence a standard symplectic basis. Conversely, starting from a normal system
(u1, . . . , u2g+1) and anyq ∈ Q(V ) we can define a fundamental set(q1, . . . , q2g+2)
by

q1 = q, q2 = q + u1, . . . , q2g+2 = q + u2g+1.

Since elements in a fundamental system add up to zero, we get that the elements of
a fundamental set also add up to zero.
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Proposition 5.4.11. There exists a fundamental set with all or all but one quadratic
forms are even or odd. The number of odd quadratic forms in such a basis is congruent
to g + 1 modulo 4.

Proof. Let (u1, . . . , u2g+1) be a normal system and(t1, . . . , t2g+1) be its image under
the mapV → V ∨ defined byω. Consider the quadratic form

q =
∑

1≤i<j≤2g+1

titj .

It is immediately checked that

q(uk) ≡
(
2g
2

)
= g(2g − 1) ≡ g mod 4.

Passing to the associated symplectic basis we can compute the Arf invariant ofq to get

Arf(q) =

{
1 if g ≡ 1 mod 2
0 otherwise.

This implies that

Arf(q + t2k) = Arf(q) + q(uk) =

{
0 if g ≡ 0, 3 mod 4

otherwise.

Consider the fundamental set formed by the quadricsq, 2q + y2
k, k = 1, . . . , 2g + 1.

Thus if g ≡ 0 mod 4 the set consists of all even quadratic forms. Ifg ≡ 1 mod 4,
the quadratic formq is odd, all other quadratic forms are even. Ifg ≡ 2 mod 4, all
quadratic forms are odd. Finally, ifg ≡ 3 mod 4, thenq is even, all other quadratic
forms are odd.

Definition 5.7. A fundamental set with all or all but one quadratic forms are even or
odd is called anormal fundamental set.

One can show (see [86], p. 271) that any normal fundamental set is obtained as in
the proof of the previous proposition.

Choose a normal fundamental set(q1, . . . , q2g+2) such that all the first2g + 1
quadrics are of the same type. Any quadratic formq ∈ Q(V ) can be written in the
form

q2g+2 +
∑
i∈I

t2i = q +
∑
i∈I

t2i ,

whereI is a subset of[1, 2g + 1]. We denote such a quadratic form byqS , where
S = I ∪ {2g + 2} considered as a subset of1, 2g + 2] modulo the complementary set.
We can and will always assume that

#S ≡ g + 1 mod 2.

The quadratic formqS can be characterized by the property that it vanishes on points
pij , wherei ∈ S andj ∈ {1, . . . , 2g + 2}.

The following properties can be checked.
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• qS + qT = pS+T ;

• qS + pI = qS+I ;

• qS(pT ) = 0 if and only if #S ∩ T + 1
2#S ≡ 0 mod 2;

• qS ∈ Q(V )+ if and only if #S ≡ g + 1 mod 4.

Again we see that a choice of a fundamental set defines the notation of quadratic forms
which agrees with the notation of theta characteristics for hyperelliptic curves.

Since fundamental sets are in a bijective correspondence with normal systems their
number is given by (5.29).

5.5 Scorza correspondence

5.5.1 Correspondences on an algebraic curve

A correspondenceof degreed between nonsingular curvesC1 andC2 is a non-constant
morphismT fromC1 to thed-th symmetric productC(d)

2 of C2. A correspondence can

be defined by its graphΓT ⊂ C1 ×C2. If Z ⊂ C(d)
2 ×C2 is the incidence variety (the

projectionZ → C
(d)
2 is the universal family for the functor represented byC

(d)
2 ), then

ΓT is the inverse image ofZ under the morphismT × id : C1 × C2 → C
(d)
2 × C2.

Set-theoretically,
ΓT = {(x, y) ∈ C1 × C2 : y ∈ T (x)}.

We have
T (x) = ΓT ∩ ({x} × C2), (5.30)

where the intersection is scheme-theoretical.
One can extend the map (5.30) to any divisors onC1 by settingT (D) = p∗1(D) ∩

ΓT . It is clear that a principal divisor goes to a principal divisor. Taking divisors of
degree 0, we obtain a homomorphism of the Jacobian varieties

φT : Jac(C1)→ Jac(C2).

The projectionΓT → C1 is a finite map of degreed. SinceT is not constant, the

projection toC2 is a finite map of degreed′. It defines a correspondenceC2 → C
(d′)
1

which is denoted byT−1 and is called theinverse correspondence. Its graph is equal
to the image ofT under the switch of factors mapC1 × C2 → C2 × C1.

We will be dealing mostly with correspondencesT : C → C(d) and will identify
T with its graphΓT . If d is the degree ofT andd′ is the degree ofT−1 we say that
T is the correspondence of type(d, d′). A correspondence issymmetricif T = T−1

We assume thatT does not contain the diagonal∆ of C × C. A united pointof a
correspondence is a common point with the diagonal. It comes with the multiplicity.

A correspondenceT : C → C(d) hasvalenceν if the divisor class ofT (x) + νx
does not depend onx.

Proposition 5.5.1. The following properties are equivalent:
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(i) the cohomology class[T ] in H2(C × C,Z) is equal to

[T ] = (d′ + ν)[{x} × C] + (d+ ν)[C × {x}]− ν[∆],

wherex is any point onC;

(ii) the divisor class ofT (x) + νx does not depend onx;

(iii) the homomorphismφT is equal to homomorphism[−ν] : Jac(C) → Jac(C) of
the multiplication by−ν.

Proof. (i) ⇒ (ii) Let p1, p2 : C × C → C be the projections. We use the well-known
fact that the natural homomorphism of the Picard varieties

p∗1(Pic0(C))⊕ p∗2(Pic0(C))→ Pic0(C × C)

is an isomorphism. Fix a pointx0 ∈ C and consider the divisorT + ν∆ − (d′ +
ν)({x0} × C) − (d + ν)(C × {x0}). By assumption, it is algebraically equivalent to
zero. Thus

T + ν∆ ∼ p∗1(D1) + p∗2(D2)

for some divisorsD1, D2 onC. Thus the divisor classT (x)+νx is equal to the divisor
class of the restriction ofp∗2(D2) to {x}×C. Obviously, it is equal to the divisor class
of D2, hence is independent onx.

(ii) ⇔ (iii) This follows from the definition of the homomorphismφT .
(ii) ⇒ (i). We know that there exists a divisorD on C such that the restriction

T + ν∆ − p∗2(D) to any fibre ofp1 is linearly equivalent to zero. By the seesaw
principle ([294] Chapter 2, Corollary 6),T + ν∆− p∗2(D) ∼ p∗1(D′) for some divisor
D′ onC. This implies that[T ] = degD′[{x}×C] + degD[C ×{x}]− ν[∆]. Taking
the intersections with fibres of the projections, we find thatd′ = degD′ − ν and
d = degD − ν.

Note that for a general curveC of genusg > 2

End(Jac(C)) ∼= Z

(see [256]), so any correspondence has valence. An example of a correspondence
without valence is the graph of an automorphism of order> 2 of C.

Observe that the proof of the proposition shows that for a correspondenceR with
valenceν

T ∼ p∗1(D′) + p∗2(D)− ν∆, (5.31)

whereD is the divisor class ofT (x) + νx andD′ is the divisor class ofT−1(x) + νx.
It follows from the proposition that the correspondenceT−1 has valenceν.

The next corollary is known as theCayley-Brill formula.

Corollary 5.5.2. LetT be a correspondence of type(a, b) on a nonsingular projective
curveC of genusg. Assume thatT has valence equal toν. Then the number of united
points ofT is equal to

d+ d′ + 2νg.
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This immediately follows from (5.31) and the formula∆ ·∆ = 2− 2g.

Example5.5.1. LetC be a nonsingular complete intersection of a nonsingular quadric
Q and a cubic inP3. In other words,C is a canonical curve of genus 4 curve without
vanishing even theta characteristic. For any pointx ∈ C, the tangent planeTx(Q) cuts
out the divisor2x + D1 + D2, where|x + D1| and |x + D2| are the twog1

3 ’s onC
defined by the two rulings of the quadrics. Consider the correspondenceT onC × C
defined byT (x) = D1 +D2. This is a symmetric correspondence of type(4, 4) with
valence2. Its 24 united points correspond to the ramification points of the twog1

3 ’s.

For any two correspondencesT1 andT2 onC one defines thecomposition of corre-
spondencesby consideringC×C×C with the projectionspij : C×C×C → C×C
onto two factors and setting

T1 ◦ T2 = (p13)∗
(
p∗12(T1) ∩ p∗23(T2)

)
.

Set-theoretically

T1 ◦ T2 = {(x, y) ∈ C × C : ∃z ∈ C : (x, z) ∈ T1, (z, y) ∈ T2}.

Also T1 ◦T2(x) = T1(T2(x)). Note that ifT1 = T−1
2 andT2 is of type(d, d′) we have

T1(T2(x))−dx > 0. Thus the graph ofT1 ◦T2 containsd∆. We modify the definition
of the composition by settingT1♦T2 = T1 ◦ T2 − s∆, wheres is the largest positive
multiple of the diagonal component ofT1 ◦ T2.

Proposition 5.5.3. LetT1 ◦ T2 = T1♦T2 + s∆. Suppose thatTi is of type(di, d′i) and
valencyνi. ThenT1♦T2 is of type(d1d2 − s, d′1d′2 − s) and valency−ν1ν2 + s.

Proof. Applying Proposition5.5.1, we can write

[T1] = (d′1 + ν1)[{x} × C] + (d1 + ν1)[C × {x}]− ν1[∆],

[T2] = (d′2 + ν2)[{x} × C] + (d2 + ν2)[C × {x}]− ν2[∆].

Easy computation with intersections gives

[T1♦T2] = (d′1d
′
2 − ν1ν2)[{x} × C] + (d1d2 − ν1ν2)[C × {x}] + (ν1ν2 − s)[∆].

= (d′1d
′
2 − s+ ν)[{x} × C] + (d1d2 − s+ ν)[C × {x}] + ν[∆],

whereν = −ν1ν2 + s. This proves the assertion.

Example5.5.2. In [15], vol. 6, p. 11, the symmetric correspondenceT♦T−1 is called
thedirect lateral correspondence. If (r, s) is the type ofT andγ is its valency, then it
is easy to see thatT ◦ T = T♦T−1 + s∆, and we obtain that the type ofT♦T−1 is
equal to(s(r − 1), s(r − 1)) and valencys− γ2. This agrees with Baker’s formula.

Here is one application of a direct lateral correspondence. Consider a correspon-
dence of valency 2 on a plane nonsingular curveC of degreed such thatT (x) =
Tc(C) ∩ C − 2x. In other words,T (x) are the remainingd − 2 intersection points of
the tangent atx with C. For any pointy ∈ C the inverse correspondence assigns to
y the divisorPy(C) − 2y, wherePy(C) is the first polar. A united point ofT♦T−1
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is one of the two points of the intersection of a bitangent with the curve. We have
s = d(d − 1) − 2, r = d − 2, ν = 2. Applying the Cayley-Brill formula, we find that
the numberb of bitangents is expressed by the following formula

2b = 2(d(d−1)−2)(d−3)+(d−1)(d−2)(d(d−1)−6) = d(d−2)(d2−9). (5.32)

As in the case of bitangents to the plane quartic, there exists a plane curve of degree
(d− 2)(d2− 9) (abitangential curvewhich cuts out onC the set of tangency points of
bitangents (see [356], pp. 342-357).

5.5.2 Scorza correspondence

Let C be a nonsingular projective curve of genusg > 0 andϑ be a non-effective
theta-characteristic onC.

Let
d1 : C × C → Jac(C), (x, y) 7→ [x− y] (5.33)

be the difference map. LetΘ = Wg−1 − ϑ be symmetric theta divisor corresponding
to ϑ. Define

Rϑ = d−1
1 (Θ).

Set-theoretically,

(Rϑ)red = {(x, y) ∈ C × C : h0(x+ ϑ− y) > 0}.

Lemma 5.5.4.Rϑ is a symmetric correspondence of type(g, g), with valence equal to
−1 and without united points.

Proof. SinceΘ is a symmetric theta divisor, the divisord−1
1 (Θ) is invariant with re-

spect to the switch of the factors ofX ×X. This shows thatRϑ is symmetric.
Fix a pointx0 and consider the mapi : C → Jac(C) defined byi(x) = [x− x0]. It

is known (see [30], Chapter 11, Corollary (2.2)) that

Θ · ι∗(C) = (C × {x0}) · d∗1(Θ) = g.

This shows thatRϑ is of type(g, g). Also it shows thatRϑ(x0)−x0 +ϑ ∈Wg−1. For
any pointx ∈ C, we haveh0(ϑ + x) = 1 becauseϑ is non-effective. ThusRϑ(x) is
the unique effective divisor linearly equivalent tox + ϑ. By definition, the valence of
Rϑ is equal to−1. Applying the Cayley-Brill formula we obtain thatRϑ has no united
points.

Definition 5.8. The correspondenceRϑ is called theScorza correspondence.

Example5.5.3. Assumeg = 1 and fix a point onC equippingC with a structure of an
elliptic curve. Thenϑ is a non-trivial 2-torsion point. The Scorza correspondenceRϑ
is the graph of the translation automorphism defined byη.

In generalRϑ could be neither reduced nor irreducible correspondence. However,
for general curveX of genusg everything is as expected.
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Proposition 5.5.5. AssumeC is general in the sense thatEnd(Jac(C)) ∼= Z. ThenRϑ
is reduced and irreducible.

Proof. The assumption that End(Jac(C)) ∼= Z implies that any correspondence on
C × C has valence. This implies that the Scorza correspondence is irreducible curve
and reduced. In fact, it is easy to see that the valence of the sum of two correspondences
is equal to the sum of valences. SinceRϑ has no united points, it follows from the
Cayley-Brill formula that the valence of each part must be negative. Since the valence
of Rϑ is equal to−1, we get a contradiction.

It follows from (5.31) that the divisor class ofRϑ is equal to

Rϑ ∼ p∗1(ϑ) + p∗2(ϑ) + ∆. (5.34)

SinceKC×C = p∗1(KC)+p∗2(KC), applying the adjunction formula and using that
∆ ∩R = ∅ and the fact thatp∗1(ϑ) = p∗2(ϑ), we easily find

ωRϑ
= 3p∗1(ωC). (5.35)

In particular, the arithmetic genus ofRϑ is given by

pa(Rϑ) = 3g(g − 1) + 1. (5.36)

Note that the curveRϑ is very special, for example, it admits a fixed-point free
involution defined by the switching the factors ofX ×X.

Proposition 5.5.6. Assume thatC is not hyperelliptic. LetR be a symmetric corre-
spondence onC×C of type(g, g), without united points and some valence. Then there
exists a unique non-effective theta characteristicϑ onC such thatR = Rϑ.

Proof. It follows from the Cayley-Brill formula that the valenceν of R is equal to
−1. Thus the divisor class ofR(x) − x does not depend onx. SinceR has no united
points, the divisor classD = R(x) − x is not effective, i.e.,h0(R(x) − x) = 0.
Consider the difference mapd1 : C × C → Jac(C). For any(x, y) ∈ R, the divisor
R(x) − y ∼ D + x − y is effective of degreeg − 1. Thusd1(R) +D ⊂ W 0

g−1. Let
σ : X ×X → X ×X be the switch of the factors. Then

φ(R) = d1(σ(R)) = [−1](d1(R)) ⊂ [−1](W 0
g−1 −D) ⊂W 0

g−1 +D′,

whereD′ = KC − D. SinceR ∩ ∆ = ∅ andC is not hyperelliptic the equality
d1(x, y) = d1(x′, y′) implies(x, y) = (x′, y′). Thus the difference mapd1 is injective
onR. This gives

R = d−1
1 (W 0

g−1 −D) = d−1
1 (W 0

g−1 −D′).

Restricting to{x} × C we see that the divisor classesD andD′ are equal. HenceD
is a theta characteristicϑ. By assumption,h0(R(x) − x) = h0(ϑ) = 0, henceϑ is
non-effective. The uniqueness ofϑ follows from formula (5.34).



5.5. SCORZA CORRESPONDENCE 145

Let x, y ∈ Rϑ. Then the sum of two positive divisors(Rϑ(x)− y) + (Rϑ(y)− x)
is linearly equivalent tox+ ϑ− y + y + ϑ− x = 2ϑ = KC . This defines a map

γ : Rϑ → |KC |, (x, y) 7→ (Rϑ(x)− y) + (Rϑ(y)− x). (5.37)

Recall from [197], p. 360, that the theta divisorΘ defines theGauss map

G : Θ0 → |KC |,

whereΘ0 is the open subset of nonsingular points ofΘ. It assigns to a pointz the
tangent spaceTz(Θ) considered as a hyperplane inTz(Jac(C)) ∼= H1(C,OC) ∼=
H0(C,OC(KC))∨. More geometrically,G assigns toD − ϑ the linear span of the
divisorD in the canonical space|KC |∨ (see [9], p. 246). Since the hyperplane sec-
tion of the canonicalC by the hyperplaneγ(x, y) contains the divisorsR(x)− y (and
R(y)− x), and they do not move, we see that

γ = G ◦ d1.

Lemma 5.5.7.
γ∗(O|KC |(1)) ∼= ORϑ

(Rϑ) ∼= p∗1(KC).

Proof. The Gauss mapG is given by the normal line bundleOΘ(Θ). Thus the mapγ
is given by the line bundle

d∗1(OΘ(Θ)) = ORϑ
(d∗1(Θ) ∼= ORϑ

(Rϑ).

It remains to apply formula (5.34).

The Gauss map is a finite map of degree
(
2g−2
g−1

)
. It factors through the mapΘ0 →

Θ0/(ι), whereι is the negation involution on Jac(C). The mapγ also factors through
the involution ofX ×X. Thus the degree of the mapRϑ → γ(Rϑ) is equal to2d(ϑ),
whered(ϑ) is some numerical invariant of the theta characteristicϑ. We call it the
Scorza invariant.

Let
Γ(ϑ) := γ(Rϑ).

We considered it as a curve embedded in|KC |. Applying Lemma5.5.7, we obtain

Corollary 5.5.8.

deg Γ(ϑ) =
g(g − 1)
d(ϑ)

.

Remark5.5.1. Let C be a canonical curve of genusg andRϑ be a Scorza correspon-
dence onC. For anyx, y ∈ C consider the degree2g divisorD(x, y) = Rϑ(x) +
Rϑ(y) ∈ |KC + x + y|. Since|2KC − (KC + x + y)| = |KC − x − y| we obtain
that the linear system of quadrics throughD(x, y) is of dimension1

2g(g + 1) − 2g =
dim |OPg−1(2)| − 2g + 1. This shows that the setD(x, y) imposes one less condition
on quadrics passing through this set. For example, wheng = 3 we get thatD(x, y)
is on a conic. Ifg = 3 it is the base set of a net of quadrics. We refer to [130] and
[158] for projective geometry of sets imposing one less condition on quadrics (called
self-associated sets).
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5.5.3 Scorza quartic hypersurfaces

The following construction due to G. Scorza needs some generality assumption onC.

Definition 5.9. A pair (C, ϑ) is calledScorza generalif the following properties are
satisfied

(i) Rϑ is a connected nonsingular curve;

(ii) d(ϑ) = 1;

(iii) Γ(ϑ) is not contained in a quadric.

We will see in the next chapter that a general canonical curve of genus 3 is Scorza
general. For higher genus this was proven in [405].

We continue to assume thatC is non-hyperelliptic. Consider the canonical embed-
dingC ↪→ |KC |∨ ∼= Pg−1 and identifyC with its image (the canonical model ofC).
For anyx ∈ C, the divisorRϑ(x) consists ofg pointsyi. If all of them distinct we have
g hyperplanesγ(x, yi) = 〈Rϑ(x)−yi〉, or,g points on the curveΓ(ϑ). More generally,
we have a mapC → C(g) defined by the projectionp1 : Rϑ → C. The composition of
this map with the mapγ(g) : C(g) → Γ(ϑ)(g) is a regular mapφ : C → Γ(ϑ)(g). Let
H ∩C = x1 + · · ·+ x2g−2 be a hyperplane section ofC. Adding up the images of the
pointsxi under the mapφ we obtaing(2g − 2) points onΓ(ϑ).

Proposition 5.5.9. LetD = x1 + · · · + x2g−2 be a canonical divisor onC. Assume
(C, ϑ) is Scorza general. Then the divisors

φ(D) =
2g−2∑
i=1

φ(xi)

span the linear system of divisors onΓ(ϑ) which are cut out by quadrics.

Proof. First note that the degree of the divisor is equal to2 deg Γ(ϑ). Let (x, y) ∈ Rϑ
andDx,y = γ(x, y) = (Rϑ(x)− y) + (Rϑ(y)− x) ∈ |KC |. For anyxi ∈ Rϑ(x)− y,
the divisorγ(x, xi) containsy. Similarly, for anyxj ∈ Rϑ(y)−x, the divisorγ(y, xj)
containsx. This means thatφ(Dx,y) is cut out by the quadricQx,y equal to the sum
of two hyperplanesȞx, Ȟy corresponding to the pointsx, y ∈ C ⊂ |KC |∨ via the
duality. The image of|KC | in Γ(ϑ)(g(2g−2)) spans a linear systemL (since any map of
a rational variety to Jac(Γ(ϑ)) is constant). SinceΓ(ϑ) is not contained in a quadric, it
generates|KC |. This shows that all divisors inL are cut out by quadrics. The quadrics
Qx,y span the space of quadrics in|KC | since otherwise there exists a quadric in|KC |∨
apolar to all quadricsQx,y. This would imply that for a fixedx ∈ C, the divisorRϑ(x)
lies in a hyperplane, the polar hyperplane of the quadric with respect to the pointx.
However, becauseϑ is non-effective,〈Rϑ(x)〉 spansPg−1. ThusdimL ≥ g(g+ 1)/2,
and, since no quadrics containsΓ(ϑ), L coincides with the linear system of divisors on
Γ(ϑ) cut out by quadrics.

LetE = H0(C,ωC)∨ so that|KC | = P(E∨) and|KC |∨ = |E|. We can identify
the space of quadrics in|E| with P(S2E). Using the previous proposition we obtain a
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mapP(E∨) → P(S2E). The restriction of this map to the curveΓ(ϑ) is given by the
linear system|OΓ(ϑ)(2)|. This shows that the map is given by quadratic polynomials,
so defines a linear map

α : S2(E∨)→ S2(E).

The proof of the proposition implies that this map is bijective.

Theorem 5.5.10.Assume(C, ϑ) is Scorza general. There exists a unique quartic hy-
persurfaceV (f) in |E| = Pg−1 such that the inverse linear mapα−1 is equal to the
polarization mapψ 7→ Dψ(f).

Proof. Considerα−1 : S2(E) → S2(E∨) as a tensorU ∈ S2(E∨) ⊗ S2(E∨) ⊂
(E∨)⊗4 viewed as a 4-multilinear mapE4 → C. It is enough to show thatU is
totally symmetric. Thenα−1 is defined by the apolarity map associated to a quartic
hypersurface. Fix a reduced divisorRϑ(x) = x1 + · · ·+ xg. LetHi be the hyperplane
in |E| spanned byRϑ(x)−xi. Choose a basis(t1, . . . , tg) inE∨ such thatHi = V (ti).
It follows from the proof of Proposition5.5.9that the quadratic mapP(E∨)→ P(S2E)
assigns to the hyperplaneHi the quadricQx,xi

equal to the union of two hyperplanes
associated tox andxi via the duality. The corresponding linear mapα satisfies

α(t2j ) = ξj(
g∑
i=1

biξi), j = 1, . . . , g,

where(ξ1, . . . , ξg) is the dual basis to(t1, . . . , tg), and(b1, . . . , bg) are the coordinates
of the pointx. This implies that

U(ξj ,
g∑
i=1

biξi, ξk, ξm) =

{
1 if j = k = m,

0 otherwise
= U(ξk,

g∑
i=1

biξi, ξj , ξm).

This shows thatU is symmetric in the first and the third arguments when the second
argument belongs to the curveΓ(ϑ). Since the curveΓ(ϑ) spansP(E∨), this is always
true. It remains to use thatU is symmetric in the first and the second arguments, as
well as in the third and the forth arguments.

Definition 5.10. Let (C, ϑ) be Scorza general pair consisting of a canonical curve of
genusg and a non-effective theta characteristicϑ. Then the quartic hypersurfaceV (f)
is called theScorza quartic hypersurfaceassociated to(C, ϑ).

We will study the Scorza quartic plane curves in the caseg = 3. Very little is
known about Scorza hypersurfaces for general canonical curves of genus> 3. We do
not even know whether they are nonsingular. However, it follows from the construction
that it is always a nondegenerate in the sense of section 1.4.1.

5.5.4 Theta functions and bitangents

Let C be a nonsingular curve of genusg > 0. Fixing a pointc0 onC allows one to
define an isomorphism of algebraic varieties

Picd(C)→ Jac(C), [D] 7→ [D − dc0].
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The composition of this map with the mapud : C(d) → Picd(C) is called theAbel-
Jacobi map

ud(c0) : C(d) → Jac(C).

If no confusion arises, we dropc0 from this notation. Ford = 1, this map defines an
embedding

u1 : C ↪→ Jac(C).

For the simplicty of the notation we will identifyC with its image. For anyc ∈ C
the tangent space ofC at a pointc is a one-dimensional subspace of the tangent space
of Jac(C) at c. By the unique translation automorphism we identify this space with
T0Jac(C) at the zero point. Under the Abel-Jacobi map the space of holomorphic1-
forms on Jac(C) is identified with the space of holomorphic forms onC. Thus we
can identifyT0Jac(C) with the dual spaceH0(C,KC)∨. As a result we obtain the
canonical mapof C

ϕ : C → P(H0(C,KC)∨) = |KC |∨ ∼= Pg−1.

If C is not hyperelliptic the canonical map is an embedding.
We continue to identifyH0(C,KC)∨ with T0Jac(C). A symmetric odd theta divi-

sorΘ = Wg−1−ϑ contains the origin of Jac(C). If h0(ϑ) = 1, this point is nonsingular
and henceΘ defines a hyperplane inT0(Jac(C)), the tangent hyperplaneT0Θ. Passing
to the projectivization we have a hyperplane in|KC |∨.

Proposition 5.5.11. The hyperplane in|KC |∨ defined byΘ is a bitangent hyperplane
to the imageϕ(C) under the canonical map.

Proof. Consider the difference map (5.33) d1 : C × C → Jac(C). In the case whenΘ
is an even divisor, we proved in (5.34) that

d∗1(Θ) ∼ p∗1(θ) + p∗2(θ) + ∆. (5.38)

Since two theta divisors are algebraically equivalent the same is true for an odd theta
divisor. The only difference is thatd∗1(Θ) contains the diagonal∆ as the preimage of
0. It follows from the definition of the Abel-Jacobi mapu1(c0) that

u1(c0)(C) ∩Θ = d−1
1 (Θ) ∩ p−1

1 (c0) = c0 +Dϑ,

whereDϑ is the unique effective divisor linearly equivalent toϑ. Let G : Θns →
P(T0Jac(C)) be the Gauss map defined by translation of the tangent space at a nonsin-
gular point ofΘ to the origin. It follows from the proof of Torelli Theorem [9] that the
Gauss map ramifies at any point whereΘ meetsu1(C). So, the image of the Gauss
map intersects the canonical image with multiplicity≥ 2 at each point. This proves the
assertion.

More explicitly, the equation of the bitangent hyperplane corresponding toΘ is
given by the linear term of the Taylor expansion of the theta functionθ [ ε

η ] correspond-
ing to Θ. Note that the linear term is a linear function onH0(C,KC)∨, hence can be
identified with a holomorphic differential

hΘ =
g∑
i=1

∂θ [ ε
η ] (z, τ)
∂zi

(0)ωi,
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where(z1, . . . , zg) are coordinates inH0(C,KC)∨ defined by a normalized basisω1,
. . . , ωg ofH0(C,KC). The sections ofH0(Jac(C),OJac(C)(Θ)) ∼= C can be identified
with holomorphichalf-orderdifferentials. To make this more precise, i.e. describe how
to get a square root of a holomorphic1-form, we use the following result (see [162],
Proposition 2.2).

Proposition 5.5.12.LetΘ be a symmetric odd theta divisor defined by the theta func-
tion θ [ ε

η ]. Then for allx, y ∈ C

θ [ ε
η ] (d1(x− y))2 = hΘ(ϕ(x))hΘ(ϕ(y))E(x, y)2,

whereE(x, y) is a certain section ofOC×C(∆) (theprime-form).

An attentive reader should notice that the equality is not well-defined in many ways.
First, the vectorϕ(x) is defined only up to proportionality and the value of a section of
a line bundle is also defined only up to proportionality. To make sense of this equality
we pass to the universal cover of Jac(C) identified withH0(C,KC)∨ and to the uni-
versal coverU of C × C and extend the difference map and the mapϕ to the map of
universal covers. Then the prime-form is defined by a certain holomorphic function on
U and everything makes sense. As the equality of the corresponding line bundles, the
assertion trivially follows from (5.38).

Let

r [ ε
η ] (x, y) =

θ [ ε
η ] (d1(x− y))
E(x, y)

.

SinceE(x, y) = −E(y, x) and θ [ ε
η ] is an odd function, we haver [ ε

η ] (x, y) =
r [ ε

η ] (y, x) for anyx, y ∈ C × C \∆. It satisfies

r [ ε
η ] (x, y)2 = hΘ(ϕ(x))hΘ(ϕ(y)). (5.39)

Note thatE(x, y) satisfiesE(x, y) = −E(y, x), sinceθ [ ε
η ] is an odd function, we

haver [ ε
η ] (x, y) = r [ ε

η ] (y, x) for anyx, y ∈ C × C \∆.
Now let us fix a pointy = c0, so we can define theroot functionon C. It is a

rational function on the universal cover ofC defined byr [ ε
η ] (x, c0).

Thus every honest bitangent hyperplane of the canonical curve defines a root-
function.

Suppose we have two odd theta functionsθ [ ε
η ] , θ

[
ε′

η′

]
. Then the ratio of the

corresponding root functions is equal to
θ[ ε

η ](d1(x−c0))
θ

»
ε′

η′

–
(d1(x−c0))

and its square is a rational

function onC, defined uniquely up to a constant factor depending on the choice of
c0. Its divisor is equal to the difference2ϑ − 2ϑ′. Thus we can view the ratio as

a section ofK
1
2
X with divisor θ − θ′. This section is not defined onC but on the

double cover ofC corresponding to the 2-torsion pointϑ − ϑ′. If we have two pairs
ϑ1, ϑ

′, ϑ2, ϑ
′
2 of odd theta characteristics satisfyingϑ1−ϑ′ = ϑ2−ϑ′2 = ε, i.e. forming

a syzygetic tetrad, the product of the two ratios is a rational function onC with divisor
ϑ1 +ϑ′2−ϑ′−ϑ2. Following Riemann [337] and Weber [422], we denote this function

by
√

ϑ1ϑ′1
ϑ2ϑ′2

. By Riemann-Roch,h0(ϑ1 + ϑ′2) = h0(KC + ε) = g − 1, hence any
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g pairs(ϑ1, ϑ
′), . . . , (ϑg, ϑ′g) of odd theta characteristics in a Steiner complex define

g linearly independent functions
√

ϑ1ϑ′1
ϑgϑ′g

, . . . ,

√
ϑg−1ϑ′g−1
ϑgϑ′g

. After scaling, and getting

rid of squares by using (5.39) we obtain a polynomial inhΘ1(ϕ(x)), . . . , hΘg
(ϕ(x))

vanishing on the canonical image ofC.

Example5.5.4. Let g = 3. We take three pairs of odd theta functions and get the
equation √

ϑ1ϑ′1 +
√
ϑ2ϑ′2 +

√
ϑ3ϑ′3 = 0. (5.40)

After getting rid of squares, we obtain the quartic equation ofC

(lm)2 + (pq)2 + (rs)2 − 2lmpq = 2lmrs− 2pqrs = (lm− pq− rs)2 − 4lmpq = 0,
(5.41)

where l,m, p, q, rs are the linear functions inz1, z2, z3 defining the linear terms of
the Taylor expansion at0 of the odd theta functions corresponding to three pairs in a
Steiner complex. The number of possible ways to write the equation of a plane quartic
in this form is equal to63 · 20 = 1260.

Remark5.5.2. For any non-zero2-torsion point, the linear system|KC + ε|mapsC to
Pg−2, the map is called thePrym canonical map. We have seen that the root functions√

ϑ1ϑ′1
ϑ2ϑ′2

belong toH0(C,KC + ε) and can be used to define the Prym canonical map.

For g = 3, the map is a degree 4 cover ofP1 and we expressed the quartic equation of
C as a degree 4 cover ofP1.

Exercises

5.1 Find 3 non-equivalent symmetric determinant expressions for the cubic curve given by a
Weierstrass equationt0t22 + t31 + at1t

2
0 + bt30 = 0.

5.2Find a symmetric determinant expression for the Fermat quarticV (t40 + t41 + t42).

5.3LetC be an irreducible plane curve of degreed with a (d− 2)-multiple point. Show that its
normalization is a hyperelliptic curve of genusg = d−2. Conversely, show that any hyperelliptic
curve of genusg admits such a plane model.

5.4 Show that a nonsingular curve of genus 2 has a vanishing theta characteristic but a non-
singular curve of genus 3 has a vanishing theta characteristic if and only if it is a hyperelliptic
curve.

5.5Show that a nonsingular non-hyperelliptic curve of genus 4 has a vanishing theta character-
istic if and only if its canonical model lies on a quadratic cone.

5.6Show that a nonsingular plane curve of degree 5 does not have a vanishing theta characteris-
tic.

5.7Find the number of vanishing theta characteristics on a hyperelliptic curve of genusg.

5.8Compute the number of syzygetic tetrads contained in a Steiner complex.

5.9Show that the composition of two correspondences (defined as the composition of the multi-
valued maps defined by the correspondences) with valencesν andν′ is a correspondence with
valence−νν′.
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5.10Let f : X → P1 be a non-constant rational function on a nonsingular projective curveX.
Consider the fibred productX×P1X as a correspondence onX×X. Show that it has valence and
compute the valence. Show that the Cayley-Brill formula is equivalent to the Hurwitz formula.

5.11 Suppose that a nonsingular projective curveX admits a non-constant map to a curve of
genus> 0. Show that there is a correspondence onX without valence.

5.12Show that any correspondence on a nonsingular plane cubic has valence unless the cubic is
harmonic or equianharmonic.

5.13Describe all symmetric correspondences of type(4, 4) with valence 1 on a canonical curve
of genus 4.

5.14 Let Rϑ be the Scorza correspondence on a curveC. Prove that a point(x, y) ∈ Rϑ is
singular if and only ifx andy are ramification points of the projectionsRϑ → C.

Historical Notes

It is a too large task to discuss the history of theta functions. We only mention that
the connection between odd theta functions with characteristics and bitangents to a
quartic curves goes back to Riemann [337], [422]. There are numerous expositions of
the theory of theta functions and jacobian varieties (e.g. [9], [83], [295]). The theory
of fundamental sets of theta characteristics goes back to A. Göpel and J. Rosenhein.
Its good exposition can be found in Krazer’s book [260]. As an abstract symplectic
geometry over the field of two elements it is presented in Coble’s book [87] which we
followed. Some additional material can be found in [86] (see also a modern exposition
in [346]).

The theory of correspondences on an algebraic curve originates from theCharles’
Principle of Correspondenc[68] which is the special case of the Cayley-Brill formula
in the caseg = 0. We have already encountered with its application to Poncelet poly-
gons in Chapter 2. This application was first found by A. Cayley [61]. He was also the
first to extend Chasles’s Principle to higher genus [61] although with incomplete proof.
The first proof of the Cayley-Brill formula was given by A. Brill [38]. The notion of
valence (die Werthigeit) was introduced by Brill. The fact that only correspondences
with valence exist on a general curve was first pointed out by A. Hurwitz [227]. He
also showed the existence of correspondences without valence. A good reference to
many problems solved by the theory of correspondences is Baker’s book [15], vol. 6.
We refer to [389] for a fuller history of the theory of correspondences.

The number of bitangents to a plane curve was first computed by J. Plücker [319],
[320]. The equations of bitangential curves were given by A. Cayley [53], G. Salmon
[356] and O. Dersch [123].. The number of bitangents of a plane curve is due to J.
Plücker [319].

The study of correspondences of type(g, g) with valence−1 was initiated by G.
Scorza [370], [371]. His construction of a quartic hypersurface associated to a non-
effective theta characteristic on a canonical curve of genusg was given in [372]. A
modern exposition of Scorza’ theory was first given in [132].
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Chapter 6

Plane Quartics

6.1 Bitangents

6.1.1 28 bitangents

A nonsingular plane quarticC is a non-hyperelliptic genus 3 curve embedded by its
canonical linear system|KC |. It has no vanishing theta characteristics, so the only
effective theta characteristics are odd ones. The number of them is28 = 22(23 − 1).
ThusC has exactly 28 bitangents . Each bitangent is tangent toC at two points that
may coincide. In the latter case a bitangent is called aflex bitangent.

We can specialize the results from section 5 of the previous chapter to the case
g = 3 takingV = Pic(C)[2] with the symplectic formω defined by the Weil pairing.
Elements ofQ(V )− will be identified with bitangents.

The union of bitangents forming a syzygetic tetrad cuts out inC is a divisor of
degree 8 equal toC ∩ Q for some conicQ. There aret3 = 315 syzygetic tetrads.
There is a bijection between the set of syzygetic tetrads and the set of isotropic planes
in Pic(C)[2].

There are 63 Steiner complexes of bitangents. Each complex consists of 6 pairs of
bitangents̀ i, `′i such that the divisor class of`i∩C−`′i∩C is a fixed nonzero 2-torsion
divisor class.

Two Steiner complexes have either four or six common bitangents, dependent on
whether they are syzygetic or not. Each isotropic plane in Pic(C)[2] defines three
Steiner complexes with common four bitangents. Two azygetic Steiner complexes have
6 common bitangents. The number of azygetic triads is equal to 336.

In the following we will often identify an odd theta characteristic with the corre-
sponding bitangent.

Let `i = V (li), i = 1, . . . , 4, be four syzygetic bitangents andQ = V (q) be the
corresponding conic. SinceV (l1l2l3l4) andV (q2) cut out the same divisor onC we
obtain thatC can be given by an equation

f = l1l2l3l4 + q2 = 0. (6.1)

153
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Conversely, iff can be written in the form (6.1), the linear formsli define four
syzygetic bitangents. So we see thatf can be written as in (6.1) in only finitely many
ways. This is confirmed by “counting constants”. We have 12 constants for the linear
forms and 6 constants for quadratic forms, they are defined up to scaling byλ1, . . . , λ5

subject to the conditionλ1 · · ·λ4 = λ2
5. Thus we have14 parameters for quartic curves

represented in the form (6.1). This is the same as the number of parameters for plane
quartics.

Let l = 0,m = 0, p = 0, q = 0, r = 0, s = 0 be the equations of 6 bitangents such
that(l,m, p, q) and(l,m, r, s) are two syzygetic tetrads of bitangents. In other words,
the three pairs(l,m), (p, q), (r, s) is a part of the set of 6 pairs in a Steiner complex of
bitangents. By (6.1), we can write

f = lmpq − a2 = lmrs− b2

for some quadratic formsa, b. Subtracting we have

lm(pq − rs) = (a+ b)(a− b).

If l dividesa+ b′ andm dividesa− b, then the quadricV ( 1
2 [(a+ b)+ (a− b)]) passes

through the pointl ∩m. But this is impossible since no two bitangents intersect at a
point on the quartic. Thus we obtain thatlm divides eithera+ b or a− b. Without loss
of generality, we getlm = a+ b, pq− rs = a− b, and hencea = 1

2 (lm+ pq− rs).
Thus we can define the quartic by the equation

−4f = −4lmpq+(lm+pq−rs)2 = (lm)2−2lmpq−2lmrs−2pqrs+(pq)2 +(rs)2 = 0.
(6.2)

It is easy to see that this is equivalent to the equation
√
lm+

√
pq +

√
rs = 0. (6.3)

Thus we see that a nonsingular quartic can be written in 315 ways in the form of
(6.1) and in1260 =

(
6
3

)
·63 ways in the form of (6.3). In the previous chapter we found

this equation by using theta functions.

Remark6.1.1. Consider the orbit spaceX = (C3)6/T , where

T = {(z1, z2, z3, z4, z5, z6) ∈ (C∗)6 : z1z2 = z3z4 = z5z6}

is a14-dimensional algebraic torus. Any orbitT (l,m, p, q, r, s) ∈ X defines the quar-
tic curveV (

√
lm+

√
pq +

√
rs). We have shown that the mapX → |OP2(4)| ∼= P14

is of degree1260. The group PGL(3) acts naturally on both spaces. One can show that
X/PGL(3) is a rational variety and we get a mapX/PGL(3)→ |OP2(4)|/PGL(3) ∼=
M3 of degree 1260.

The projection from the intersection point of two bitangents defines ag1
4 with two

non-reduced members. The intersection point of three bitangents gives ag1
4 which is

not expected on a general curve of genus 3. It is not known the maximal possible num-
ber of triple points of the arrangements of 28 lines formed by the bitangents. However,
we can prove the following.
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Proposition 6.1.1. No three bitangents forming an azygetic triad can intersect at one
point.

Proof. Let ϑ1, ϑ2, ϑ3 be the corresponding odd theta characteristics. The 2-torsion
divisor classesεij = ϑi − ϑj form a non-isotropic plane. Letε be a non-zero point
in the orthogonal complement. Thenqηi

(ε) + qηj
(ε) + 〈ηij , ε〉 = 0 implies thatqηi

takes the same value atε. We can always chooseε such that this value is equal to 0.
Thus the three bitangents belong to the same Steiner complexΣ(ε). Obviously, no two
differ by ε, hence we can form 3 pairs from them. These pairs can be used to define
the equation (6.3) of C. It follows from this equation that the intersection point of the
three bitangents lies onC. But this is impossible becauseC is nonsingular.

Remark6.1.2. A natural question is whether the set of bitangents determines the quar-
tic, i.e. whether two quartics with the same set of bitangents coincide. Surprizingly it
has not been answered by the ancients. Only recently it was proven that the answer is
yes: [41] (for general curve), [266] (for any nonsingular curve).

6.1.2 Aronhold sets

We know that in the caseg = 3 a normal fundamental set of 8 theta characteristics
contains 7 odd theta characteristics. The corresponding unordered set of 7 bitangents
is called anAronhold set. It follows from (5.29) that the number of Aronhold sets is
equal to#Sp(6,F2)/7! = 288.

A choice of an ordered Aronhold set defines a unique normal fundamental set that
contains it. The eighth theta characteristic is equal to the sum of the characteristics
from the Aronhold set. Thus an Aronhold set can be defined as an azygetic set of seven
bitangents.

A choice of an ordered Aronhold set allows one to index all 2-torsion divisor classes
(resp. odd theta characteristics) by subsets of even cardinality (resp. of cardinality2)
of {1, . . . , 8}, up to complementary set. Thus we have 63 2-torsion classesεab, εabcd
and 28 bitangents̀ij corresponding to 28 odd theta characteristicsϑij . The bitangents
from the Aronhold set correspond to the subsets(18, 28, . . . , 78).

We also know thatϑA − ϑB = εA+B . This implies, for example, that four bitan-
gents̀ A, `B , `C , `D form a syzygetic tetrad if and only ifA+B + C +D = 0.

Following Cayley we denote a pair of numbers from the set{1, . . . , 8} by a vertical
line |. If two pairs have a common number we make them intersect. For example, we
have

• Pairs of bitangents: 210 of type|| and 168 of type∨.

• Triads of bitangents:

1. (sygetic) 420 of typet, 840 azygetic of type|||,
2. (asyzygetic) 56 of type4, 1680 of type∨ |, and 280 of type99 �� ;

• Tetrads of bitangents:

1. (syzygetic) 105 azygetic of type||||, 210 of type�,
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2. (asygetic) 560 of type| 4, 280 of type 99 �� , 1680 of type 99 �� , 2520 of type
∨∨.

3. (non syzygetic but containing a syzygetic triad) 2520 of type|| ∨, 5040 of
type| t, 3360 of type , 840 of type�� ,, �� , 3360 of type99 �� 99 .

There are two types of Aronhold sets:????����, 99 �� 4. They are represented by the sets
(12, 13, 14, 15, 16, 17, 18) and(12, 13, 23, 45, 46, 47, 48). The number of the former
type is 8, the number of the latter type is 280. Note that the different types correspond
to orbits of the subgroup of Sp(6,F2) isomorphic to the permutation groupS8. For
example, we have two orbits ofS8 on the set of Aronhold sets consisting of 8 and 280
elements.

Lemma 6.1.2. Three odd theta characteristicsϑ1, ϑ2, ϑ3 in a Steiner complexΣ(ε),
no two of which differ byε, are azygetic.

Proof. Let ϑ′i = ϑi + ε, i = 1, 2, 3. Then{ϑ1, ϑ
′
1, ϑ2, ϑ

′
2} and{ϑ1, ϑ

′
1, ϑ3, ϑ

′
3} are

syzygetic and have two common theta characteristics. By Proposition5.4.9, the corre-
sponding isotropic planes do not span an isotropic 3-space. Thus〈ϑ1−ϑ2, ϑ3−ϑ1〉 =
1, henceϑ1, ϑ2, ϑ3 is an azygetic triad.

The previous Lemma suggests a way to construct an Aronhold set from a Steiner
setΣ(ε). Choose another Steiner setΣ(η) azygetic to the first one. They intersect at
6 odd theta characteristicsϑ1, . . . , ϑ6, no two of which differ byε. Consider the set
{ϑ1, . . . , ϑ5, ϑ6 + ε, ϑ6 + η}. We claim that this is an Aronhold set. By the previous
Lemma all triadsϑi, ϑj , ϑk, i, j, k ≤ 5 are azygetic. Any triadϑi, ϑ6+ε, ϑ6+η, i ≤ 5,
is azygetic too. In factqϑi

((ϑ6+ε)−(ϑ6+η)) = qϑi
(ε+η) 6= 0 sinceϑi /∈ Σ(ε+η). So

the assertion follows from Lemma5.4.1. We leave to the reader to check that remaining
triads{ϑi, ϑj , ϑ6 + ε}, {ϑi, ϑj , ϑ6 + η}, i ≤ 5, are azygetic.

Proposition 6.1.3. Any six lines in an Aronhold set are contained in a unique Steiner
complex.

We use that the symplectic group Sp(6,F2) acts transitively on the set of Aronhold
sets. So it is enough to check the assertion for one Aronhold set. Let it correspond
to the index set(12, 13, 14, 15, 16, 17, 18). It is enough to check that the first six are
contained in a unique Steiner complex. For this it is enough to exhibit a 2-torsion
divisor classε such thatqϑI

(ε) = 0 for the first six subsetsI and show its uniqueness.
Equivalently we have to show that there exists a unique subsetJ of [1, 8] of cardinality
2 or 4 such that it contains exactly one element from eachI. Obviously, the only such
subset is{1, 8}.

Recall that a Steiner subset of theta characteristics on a genus 3 curve consists of
12 elements. A subset of 6 elements will be called ahexad.

Corollary 6.1.4. Any Steiner complex contains26 azygetic hexads. Half of them are
contained in another Steiner complex, necessarily azygetic to the first one. Any other
hexad can be extended to a unique Aronhold set.



6.1. BITANGENTS 157

Proof. Let Σ(ε) be a Steiner complex consisting of6 pairs of odd theta characteristics.
Consider it asG-set, whereG = (Z/2Z)6 whose elements, identified with subsetsI
of [1, 6], act by switching elements ini-th pairs,i ∈ I. It is clear thatG acts simply
transitively on the set of azygetic sextupes inΣ(ε). For any azygetic complexΣ(η) the
intersectionΣ(ε)∩Σ(η) is an azygetic hexad. Note that two syzygetic complexes have
only 4 bitangents in common. The number of such hexads is equal to26 − #ε⊥ =
26−25 = 25. Thus the set of azygetic hexads contained in a unique Steiner complex is
equal to25 · 63. But this number is equal to the number7 · 288 of subsets of cardinality
6 of Aronhold sets. By the previous proposition, all such sets are contained in a unique
Steiner complex.

Let (ϑ1, . . . , ϑ7) be an Aronhold set. We use the corresponding normal fundamen-
tal set to index its elements by the subsets(18, 28, . . . , 78). By Proposition6.1.3the
hexadϑ2, . . . , ϑ7 is contained in a unique Steiner complexΣ(ε). Let η2 = ϑ2 + ε.
The only 2-torsion point at which all quadricsq28, . . . , q78 vanish is the pointp18 cor-
responding to the subset{1, 8}. Thusqη2 = q28 + p18 = q12. This shows that the
bitangent defined byη2 corresponds to(12). Similarly, we see that the bitangents cor-
responding toηi + ε, i = 3, . . . , 7 corresponds to(1i).

6.1.3 Riemann’s equations for bitangents

Here we show how to write equations of all bitangents knowing the equations of an
Aronhold set of bitangents.

Let `0, . . . , `6 be an Aronhold set of bitangents ofC. By Proposition6.1.1, any
three lines are not concurrent. By a linear transformation, and reodering, we may
assume

`0 = V (t0), `1 = V (t1), `2 = V (t2), `3 = V (t0 + t1 + t2)

and the remaining ones are`3+i = V (a0it0 + a1it1 + a2it2), i = 1, 2, 3.

Theorem 6.1.5. There exist linear formsu0, u1, u2 such thatC can be given by the
equation √

t0u0 +
√
t1u1 +

√
t2u2 = 0.

The formsui can be found from equations

u0 + u1 + u2 + x0 + x1 + x2 = 0,
u0

a01
+
u1

a11
+
u2

a21
+ k1a01x0 + k1a11x1 + k1a21x2 = 0,

u0

a02
+
u1

a12
+
u2

a22
+ k2a02x0 + k2a12x1 + k2a22x2 = 0,

u0

a03
+
u1

a13
+
u2

a23
+ k3a03x0 + k3a13x1 + k3a23x2 = 0,

wherek1, k2, k3 can be found from solving the following linear equations: 1
a01

1
a02

1
a03

1
a11

1
a12

1
a13

1
a21

1
a22

1
a23

 ·
λ1

λ2

λ3

 =

−1
−1
−1

 ,
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λ0a02 λ1a12 λ2a22

λ0a03 λ1a13 λ2a23

 ·
k1

k2

k3

 =

−1
−1
−1

 .

The equations of the remaining 21 bitangents are:

• u0 = 0, u1 = 0, u2 = 0,

• x0 + x1 + u2 = 0, x0 + x2 + u1 = 0, x1 + x2 + u0 = 0,

• 9 of type u0
a01

+ kia1ix1 + kia2ix2 = 0, i = 1, 2, 3,

• u0
1−kia1ia2i

+ u1
1−kia0ia2i

+ u2
1−kia01a1i

= 0, i = 1, 2, 3,

• u0
a0i(1−kia1ia2i)

+ u1
a1i(1−kia0ia2i)

+ u2
a2i(1−kia01a1i)

= 0, i = 1, 2, 3.

Proof. Applying Proposition6.1.3we can find three Steiner complexes partitioned in
pairs

(`1, ξ2), (`2, ξ1), (`3, ξ30), . . . , (`6, ξ60), (6.4)

(`2, ξ0), (`0, ξ2), (`3, ξ31), . . . , (`6, ξ61),
(`0, ξ1), (`1, ξ0), (`3, ξ32), . . . , (`6, ξ62).

In the following we often identify a bitangent with the corresponding odd theta char-
acterstic. We also write

`i = V (li), ξi = V (ui), ξij = V (lij)

for some linear formsli, ui, lij .
We use here that the intersection of two Steiner complexes cannot consist of five

tangents. Now we have

`1 − ξ2 = `2 − ξ1, `2 − ξ0 = `0 − ξ1, `0 − ξ2 = `1 − ξ0.

This implies that̀ 0 − ξ0 = `1 − ξ1 = `2 − ξ2, i.e. the pairs(`0, ξ0), (`1, ξ1), (`2, ξ2)
belong to the same Steiner complexΣ. One easily checks that

〈`0 − ξ0, `0 − ξ1〉 = 〈`1 − ξ1, `1 − ξ2〉 = 〈`2 − ξ2, `2 − ξ0〉 = 0,

and henceΣ is syzygetic to the three complexes (6.4) and therefore it does not contain
`i, i ≥ 3.

Now we use the three pairs(`0, ξ0), (`1, ξ1), (`2, ξ2) to writeC in the form (6.3)

√
x0u0 +

√
x1u1 +

√
x2u2 = 0.

By (6.1), we can introduce the quadratic forms:

q1 = −x0u0 + x1u1 + x2u3, (6.5)

q2 = x0u0 − x1u1 + x2u3,

q3 = x0u0 + x1u1 − x2u3,
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such that

C = V (4x0x1u0u1 − q23) = V (−4x0x2u0u2 − q21) = V (−4x1x2u1u2 − q23). (6.6)

Now we use the first Steiner complex from (6.4) to do the same by using the first three
pairs. We obtain

C = V (4x1u2l3l30 − q2),

whereq is a quadratic form. As in the proof of formula (6.3), we find that

q1 − q = 2λ1x1u2, q1 + q =
2(x2u2 − l3l30)

λ1
.

From this we get

q1 = λ1x1u2 +
x2u1 − l3l30

λ1
= −x0u0 + x1u1 + x2u3.

This gives

l3l30 = x2u1 − λ1(−x0u0 + x1u1 + x2u3) + λ2
1x1u2, (6.7)

l3l31 = x2u1 − λ1(x0u0 − x1u1 + x2u3) + λ2
1x2u0,

l3l32 = x2u1 − λ1(x0u0 + x1u1 − x2u3) + λ2
1x0u1.

The last two equations give

l3(
l31
λ2

+
l32
λ3

) = x0(−2u0 + λ3u1 +
u2

λ3
) + u0(λ2x2 +

x1

λ3
). (6.8)

The lines̀ 3, `0, andξ0 belong to the third Steiner complex (6.4), and by Lemma6.1.2
form an azygetic triad. By Proposition6.1.1, they cannot be concurrent. This implies
that the lineV (λ2x2 + u1

λ3
) passes through the intersection point of the linesξ0 and`3.

This gives a linear dependence between the linear functionsl3 = a0x0 + a1x1 + a2x2,
l0 = x0 andλ2x2 + x1

λ3
(we can assume thata0 = a1 = a2 = 1 but will do it later).

This can happen only if

λ2 = c1a2,
1
λ3

= c1a1,

for some constantc1. Nowλ2x2 + 1
λ3
x1 = c1(a2x2 + a1x1) = c1(l3− a0x0), and we

can rewrite (6.8) in the form

c1l3(
l31
λ2

+
l32
λ3
− c1u0) = x0(−c1(2 + a0c1)u0 +

u1

a1
+
u2

a2
).

This implies that
l31
λ2

+
l32
λ3

= c1u0 +
k1

c1
x0, (6.9)

k1l3 = −c1(2 + c1a0)u0 +
u1

a1
+
u2

a2
, (6.10)
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for some constantk1. Similarly, we get

k2l3 = −c2(2 + c2a1)u1 +
u0

a0
+
u2

a2
,

k3l3 = −c3(2 + c3a2)u2 +
u1

a0
+
u2

a1
.

It is easy to see that this implies that

k1 = k2 = k3 = k, c1 = −a0, c2 = −a1, c3 = −a2.

The equations (6.9) and (6.10) become

l31
α2

+
l32
λ3

= −a0u0 −
k

a0
x0, (6.11)

kl3 =
u0

a0
+
u1

a1
+
u2

a2
. (6.12)

At this point, we can scale the coordinates to assumea1 = a2 = a2 = 1, k = −1, and
obtain our first equation

x0 + x1 + x2 + u0 + u1 + u2 = 0.

Replacingl30 with l40, l50, l60, and repeating the argument we obtain the remaining
three equations relatingu0, u1, u2 with x0, x1, x2.

It remains to find the constantsk1, k2, k3. We have found 4 linear equations relating
6 linear functionsx0, x1, x2, u0, u1, u2. Since three of them form a basis in the space
of linear functions, there must be one relation. We may assume that the first equation
is a linear combination of the last three with some coefficientsλ1, λ2, λ3. This leads to
the system of linear equations from the statement of the theorem.

Finally, we have to find the equations of the bitangents. The equations (6.6) show
that the linesξ0, ξ1, ξ2 are bitangents. The equation (6.11) and similar equations

l32
α3

+
l30
λ1

= −a1u1 −
k

a1
x1,

l30
α1

+
l31
λ2

= −a2u2 −
k

a2
x2,

after adding up, give

l30
λ1

+
l31
λ2

+
l32
λ3

= −k(a0x0 + a1x1 + a2x2),

and then
l30
λ1

=
u0

a0
− k(a1x1 + a2x2),

l31
λ1

=
u1

a1
− k(a0x0 + a2x2),
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l32
λ1

=
u2

a2
− k(a0x0 + a1x1).

After our normalizationk = −1, a0 = a1 = a2 = 1, we get three equations of
the second type. Similarly, we get the expressions forl4i, l5i, l6i which are the nine
equations of the third type.

Let us use the Aronhold set(`0, . . . , `6) to index bitangents by subsets of[0, 7]
of cardinality 2. As we explained at the end of the previous section, the bitangents
ξ0, ξ1, ξ2 correspond to the subsets(12), (02), (01). The bitangentsξ3k, ξ4k, ξ5k, ξ6k
correspond to the subsets(k3), (k4), (k5), (k6), k = 0, 1, 2. What is left are the bi-
tangents corresponding to the subsets(45), (46), (56), (34), (35), (36). The first three
look like (12), (02), (01), both of type4. The second three look likeξ4k, ξ5k, ξ6k, both
of type 99 �� . To find the equations of bitangents of type4, we interchange the roles of
the lines̀ 0, `1, `2 with the lines̀ 4, `5, `6. Our lines will be the new lines analogous to
the linesξ0, ξ1, ξ2. Solving the system, we find their equations. To find the equations
of the triple of bitangents of type, we delete`3 from the original Aronhold set, and con-
sider the Steiner complex containing the remaining lines as we did in (6.4). The lines
making the pairs with̀4, `5, `6 will be our lines. We find their equations following as
we found the equations forξ4k, ξ5k, ξ6k.

Remark6.1.3. We will see later in Chapter 10 that any seven lines in general linear
position can be realized as an Aronhold set for a plane quartic curve. Another way to
see it can be found in [423], p. 447.

6.2 Quadratic determinant equations

6.2.1 Hesse-Coble-Roth construction

Let C be a nonsingular plane quartic. Leta ∈ Pic0(C) \ {0}. Consider the natural
bilinear map

µ : H0(C,OC(KC + a))×H0(C,OC(KC − a))→ H0(C,OC(2KC))

defined by the tensor multiplication of the sections. The associated map of complete
linear systems

ϕ : |KC + a| × |KC − a| → |2KC | = |OP2(2)| ∼= P5. (6.13)

assigns to a pair of divisorsD ∈ |KC + a| andD′ ∈ |KC − a| the divisorD +D′ ∈
|2KC | cut out by a unique conic which we denote by〈D,D′〉. If we choose a basis
(s1, s2) ofH0(C,OC(KC +a)) and a basis(s′1, s

′
2) ofH0(C,OC(KC −a)), then the

mapµ is given by

(λs1 + µs2, λ
′s′1 + µ′s′2) 7→ λλ′a11 + λµ′a12 + λ′µa21 + µµ′a22, (6.14)

wherea11, a12, a21, a22 ∈ H0(C,OC(2KC)) ∼= H0(P2,OP2(2)) are identified with
homogeneous polynomials of degree 2 in variablest0, t1, t2. Consider the variety

W = {(D1, D2, x) ∈ |KC + a| × |KC − a| × P2 : x ∈ 〈D1, D2〉}. (6.15)
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If we identify |KC + a| and|KC − a| with P1, we see that

W ⊂ P1 × P1 × P2

is a hypersurface defined by the multi-homogeneous equation

λλ′a11(t) + λµ′a12(t) + λ′µa21(t) + µµ′a22(t) = 0 (6.16)

of multi-degree(1, 1, 2).
Consider the projections

p1 : W → P1 × P1, p2 : W → P2. (6.17)

The fibre ofp1 over a point([λ, µ], [λ′, µ′]) is isomorphic (underp2) to a conic. It is
singular if and only if the discriminant of the conic (6.16) is equal to zero. It is easy to
see that this is a bihomogeneous polynomial in the variables(λ, µ), (λ′, µ′) of bidegree
(3, 3). Thus the locus∆1 of points[λ, µ], [λ′, µ′] such thatp−1

1 is a reducible conic is
a curve inP1 × P1 of bidegree(3, 3).

The fibre ofp2 over a pointx ∈ P2 is isomorphic (under the first projection) to a
curve of bidegree(1, 1) in P1 × P1. Under the Segre isomorphism betweenP1 × P1

and a quadric inP3, such a curve is isomorphic to a conic. This conic is reducible if
and only if the equation

λλ′a11(t) + λµ′a12(t) + λ′µa21(t) + µµ′a22(t) = 0

is a “cross” onP1 × P1 (i.e. the union of two lines belonging to different rulings). We
can rewrite the equation in the form

(λ, µ) ·
(
a11(t) a12(t)
a21(t) a22(t)

)
·
(
λ′

µ′

)
.

It defines a reducible curve if and only if there exists(λ0, µ0) such that, after plugging
in λ = λ0, µ = bµ0, any(λ′, µ′) will satisfy the equation. The condition for this is of
course

det
(
a11(t) a12(t)
a21(t) a22(t)

)
= 0. (6.18)

This defines a homogeneous equation of degree4 in variablest0, t1, t2. It is not
identically equal to zero otherwise the entriesa11, a21 must have a common linear
factor. The corresponding conics cut out the divisorsD1 + D′

1, D2 + D′
1, where

Di = div(si), D′
i = div(s′i). Their common points form a divisorD′

1 ∈ |KC + a|.
Sincea 6= 0, D′

1 cannot be cut out by a line. Thus (6.18) defines a quartic curve. It
must coincide with our curveC. To see this it is enough to show that each point ofC
satisfies the equation. Letx ∈ C, then we choose a uniqueD ∈ |KC + a| containing
x and take anyD′ ∈ |KC − a|. We obtain a subset of the conicp−1

2 (x) isomorphic to
P1. This shows thatp−1

2 (x) is a reducible conic.
Conversely, supposeC is given by a determinantal equation as above. For every

x ∈ C we have the left and the right kernel of the corresponding matrix. These are one-
dimensional vector spaces. The corresponding mapsφi : C → P1, i = 1, 2, are defined
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by quadratic polynomials(−a21(t), a11(t)) and(−a12(t), a11(t)), respectively. Note
that the common zeros of both coordinates belong to the curveC . Thus the linear
system defined by the two conics has four base points onC and henceφi is given by
a linear systemVi of degree 4. We may assume thatVi is contained in|KC + di| for
some divisor classesdi of degree 0. It is easy to see that the base loci of the two linear
systems add up to the zeros ofa11. This immediately implies thatd1 + d2 = 0.

Thus we have proved:

Theorem 6.2.1. An equation of a nonsingular plane quarticC can be written in the
form ∣∣∣∣a1 a2

a3 a4

∣∣∣∣ = 0,

whereai’s are homogeneous forms of degree 2. LetX be the set of matricesA with
quadratic forms as its entries such thatC = V (detA) modulo the equivalence relation
defined byA ∼ B if A = CBC ′ for some constant invertible matrices. The setX is
bijective to the setPic0(C) \ {0}.

Remark6.2.1. The previous Theorem agrees with the general theory developed in
Chapter 5. To define a quadratic determinant one considers the exact sequence

0→ OP2(−2)2 → O2
P2 → i∗(M)→ 0.

We have

h0(M) = 2, h0(M(−1)) = h1(M) = 0, h1(M(−1)) = 1.

By Riemann-Roch,deg(M) = 4, henceM = OC(KC + a), for somea ∈ Pic0(C).
Sinceh0(M(−1)) = 0, we obtaina 6= 0.

Remark6.2.2. We assume that the reader is familiar with the theory of 3-folds. The
varietyW which was introduced in (6.15) is a Fano 3-fold. Its canonical sheaf is equal
to

ωW ∼= OP1(−1) �OP1(−1) �OP2(−1).

If we use the Segre embeddingP1 × P1 × P2 ↪→ P11, thenωW can be identified with
OW (−1). The varietyW admits two structures of a conic bundle. They are induced
by the projectionsp1 : W → P1 × P1 andp2 : W → P2. The degeneration locus
of the first map is a curve∆1 of arithmetic genus 4, and the degeneration locus∆2 of
the second map is the curveC of genus 3. Note that each curve has a double cover
defined by considering the irreducible components of the fibres. The double cover over
∆2 splits since each component corresponds to one of the two rulings ofP1 × P1. The
double cover∆̃1 → ∆1 does not split. For a generalC, the curve∆1 is nonsingular
and the double cover over it is unramified. One shows that the intermediate Jacobian
variety ofW is isomorphic to the Prym variety of the cover∆̃1 → ∆1. It is aslo
isomorphic to the Prym variety of the trivial cover over∆2 which is the Jacobian ofC.
Thus we obtain that the intermediate Jacobian ofW is isomorphic to Jac(C).
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Remark6.2.3. Let

V = H0(P1 × P1 × P2,OP1(1) �OP1(1) �OP2(2)).

It is a vector space of dimension24. Let U be an open subset in|V | which consists
of sections (6.16) such that the corresponding determinant (6.18) defines a nonsingular
quartic curve. The groupG = SL(2)×SL(2) acts naturally onU and the orbit space is
isomorphic to the spacePic04 \ {zero section}. LetW be the 3-fold (6.17) defined by
a section fromU . The projectionW → P1 × P1 defines a curve∆1 of bidegree(3, 3)
parameterizing singular fibres. It comes with a double cover defined by choosing a
component of a reducible fibre. In this way we see thatU/G is birationally isomorphic
to the space of nonsingular curves of bidegree(3, 3) on P1 × P1 together with an
unramified double cover. If we further act byG′ = SL(3) the orbit space is birationally
isomorphic to the universal Jacobian space overM3 and, on the other hand, to the
moduli spaceR4 of curves of genus 4 together with a nontrivial 2-torsion divisor class.
It was proven by F. Catanese that the latter space is a rational variety.

6.2.2 Symmetric quadratic determinants

Assume now thata = ε is a 2-torsion divisor class. ThenH0(C,OC(KC + ε)) =
H0(C,OC(KC − ε)) and the bilinear mapµ is symmetric.

The determinantal equation ofC corresponding toε must be given by a symmetric
quadratic determinant ∣∣∣∣q11 q12

q12 q22

∣∣∣∣ = q11q22 − q212. (6.19)

Thus we obtain the following.

Theorem 6.2.2.An equation of a nonsingular plane quartic can be written in the form∣∣∣∣a1 a2

a2 a3

∣∣∣∣ = 0,

wherea1, a2, a3 are homogeneous forms of degree 2. LetX be the set of symmetric
2×2 matricesAwith quadratic forms as its entries such thatC = V (detA) modulo the
equivalence relation defined byA ∼ B if A = CBC ′ for some constant nonsingular
matrices. The setX is bijective to the setPic(C)[2] \ {0}.

Sinceϕ(D1, D2) = ϕ(D2, D1), the mapφ factors through a linear map

ϕ̄ : P2 → |OP2(2)|.

Here we identify|KC + ε| with P1 and the symmetric squareP1 × P1/S2 with P2

(a set ofk unordered points inP1 is a positive divisor of degreek, i.e. an element of
|OP1(k)| ∼= Pk). Explicitly, we view P2 asP(S2H0(C,OC(KC + ε))). The corre-
sponding linear mapS2H0(C,OC(KC + ε)) → S2H0(P2,OP2(2)) defines a regular
map

φ : P1 = |KC + ε| → |OP2(2)|
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which is quadratic. Explicitly,

φ((t0, t1)) = V (t20a11(t) + 2t0t1a12(t) + t21a22(t)).

Let L(ε) be a net of conics equal to the image of the mapϕ̄. By choosing a basis
(s0, s1) of H0(C,KC + ε) we may assume thatL(ε) is spanned by the conics

V (a11) = 〈2D1〉, V (a12) = 〈D1, D2〉, V (a22) = 〈2D2〉,

whereD1 = div(s0), D2 = div(s1). In particular, we see thatL(ε) has no base points
(since|KC + ε| has no base points).

The setB(ε) of singular conics inL(ε) is a plane cubic isomorphic to a plane
section of the discriminant hypersurfaceD2(2). Its preimage under the mapP1×P1 →
P2 is the degeneration curve∆1 of the conic bundleW → P1 × P1 from (6.17).

Remark6.2.4. We can viewφ as the composition of the Veronese mapv2 : P1 → P2

and the map̄ϕ. Let v2(P1) be the Veronese curve. The preimage ofD2(2) under the
mapφ is the locus of zeros of a binary sextic. It corresponds to the intersection scheme
of the cubicB(ε) and the conicv2(P1). One can show that the Jacobian variety of
the genus 2 curve corresponding to this binary sextic is isomorphic to the Prym variety
of the pair(C, ε). The curveC can be defined as the locus of pointx ∈ P2 such
that, viewed as hyperplanes in|OP2(2)|, the preimageφ−1(x) is a degenerate binary
quadratic form.

We apply Hesse’s determinantal identity for bordered determinants from Lemma
4.1.7and its interpretation to obtain the identity∣∣∣∣∣∣

a11 a12 u0

a21 a22 u1

u0 u1 0

∣∣∣∣∣∣×
∣∣∣∣∣∣
a11 a12 v0
a21 a22 v1
v0 v1 0

∣∣∣∣∣∣−
∣∣∣∣∣∣
a11 a12 u0

a21 a22 u1

v0 v1 0

∣∣∣∣∣∣
2

= |A|U(u, v; t).

Here[u0, u1], [v0, v1] are coordinates in each copy of|KC + ε| andU = 0 is the family
of conics parametrized by|KC + ε| × |KC + ε|.

Lemma 6.2.3. The cubic curveB(ε) is nonsingular if and only if the linear system
|KC + ε| does not contain a divisor of the form2a+ 2b.

Proof. The plane sectionL(ε)∩D2(2) is singular if and only ifL(ε) contains a singular
point ofD2(2) represented by a double line, or if it is tangent toD2(2) at a nonsingular
point. We proved in Chapter 2, section 2.1.2 that the tangent hypersurface ofD2(2) at
a nonsingular point represented by a reducible conicQ is equal to the space of conics
passing through the singular pointq of Q. If L is contained in the tangent hyperplane,
then all conics fromL(ε) pass throughq. But we have seen already thatL is base point
free. This shows thatL(ε) intersects transversally the nonsingular locus ofD2(2).

In particular,B(ε) is singular if and only ifL(ε) contains a double line. Assume that
this happens. Then we get two divisorsD1, D2 ∈ |KC + ε| such thatD1 +D2 = 2A,
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whereA = a1 +a2 +a3 +a4 is cut out by a linè . LetD1 = p1 +p2 +p3 +p4, D2 =
q1 + q2 + q3 + q4. Then the equality of divisors (not the divisor classes)

p1 + p2 + p3 + p4 + q1 + q2 + q3 + q4 = 2(a1 + a2 + a3 + a4)

implies that eitherD1 andD2 share a pointx, orD1 = 2p1 + 2p2, D2 = 2q1 + 2q2.
The first case is impossible, since|KC + ε − x| is of dimension 0. The second case
happens if and only if|KC + ε| contains a divisorD1 = 2a+ 2b. The converse is also
true. For each such divisor the line〈a, b〉 defines a residual pair of pointsc, d such that
D2 = 2c+ 2d ∈ |KC + ε| andϕ(D1, D2) is a double line.

Let
I = {(x, `) ∈ B(ε)× P̌2 : ` ⊂ ϕ(x)}. (6.20)

The first projectionp1 : I → B(ε) is a double cover ramified at singular points ofB(ε).
The imageB̃(ε) of the second projection is locus of lines inP2 which are irreducible
components of reducible conics fromL(ε). It is a plane curve of some degreed in the
dual plane or the whole plane.

Lemma 6.2.4. The curveB̃(ε) ⊂ P̌2 parameterizing irreducible components of re-
ducible conics from the linear systemL(ε) is a plane cubic. IfB(ε) is nonsingular,
then B̃(ε) is also nonsingular and is isomorphic to an unramified double cover of
B(ε).

Proof. Let us see thatd = deg(B̃(ε)) = 3. A line in the dual plane is the pencil of lines
in the original plane. Thusd is equal to the number of line components of reducible
conics inL which pass through a general pointq in P2. Sinceq is a general point, we
may assume thatq is not a singular point of any reducible conic fromL(ε). Then there
ared different reducible conics passing throughq.

We know thatL(ε) has no base points. Thenq must be a base point of a pencil of
conics inL(ε). Note that a general pencil of conics inL(ε) has 4 distinct base points.
To see this we consider the regular mapP2 → |L(ε)|∗ defined by the linear system
|L(ε)|. Its degree is equal to 4, hence it general fibre consists of 4 distinct points. It
is easy to check that a pencil of conics with 4 distinct base points contains 3 reducible
conics. This shows thatd = 3. If B(ε) is nonsingular, its double coverp1 : I → B(ε)
is unramified, henceI is an elliptic curve. Its imagẽB(ε) = p2(I) in P̌2 is a plane
cubic.

Note that two reducible conicsf(D1, D2) andf(D3, D4) in B(ε) share a common
irreducible component if and only ifD1 + D2 is cut out by two lines̀ and `′ and
D3 +D4 is cut out by two lines̀ and`′′. LetA be the divisor onC cut out by`. We
know that no two divisors from|KC + ε| share a common point. Also no divisor is cut
out by a line. This easily implies thatDi∩` consists of one point for eachi = 1, . . . , 4.
SinceD1+D2 ≥ A,D3+D4 ≥ A, we see that̀ contains at least 2 ramification points
of the mapC → P1 defined by the linear system|KC + ε|. Since we have only finitely
many such points, we see that there are only finitely many such lines`. In particular,
the second projectionp2 : I → B̃(ε) is an isomorphism over a dense Zariski subset of
B̃(ε).

If B(ε) is nonsingular, thenp2 : I → B̃(ε) is a birational map of an elliptic curve
to a cubic. Obviously, this cubic must be nonsingular.
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Theorem 6.2.5.LetS = {(`1, `′1), . . . , (`6, `′6)} be a Steiner complex of 12 bitangents
associated to a 2-torsion divisor classε. Then the 12 bitangents, considered as points
in the dual plane, lie on the cubic curvẽB(ε). If we assume that|KC + ε| does not
contain a divisor of the form2p+ 2q, then the cubic curve is nonsingular.

Proof. Let (ϑi, ϑ′i) be a pair of odd theta characteristics corresponding to a pair(`i, `′i)
of bitangents fromS. They define a divisorD = ϑi + ϑ′i ∈ |KC + ε| which is cut out
by two lines. Thusf(D,D) ∈ B(ε) and the bitangents̀i, `′i belong toB̃(ε). The rest
of the assertions follow from the previous lemmas.

Remark6.2.5. Let S1, S2, S3 be a syzygetic (azygetic) triad of Steiner complexes.
They define three cubic curves̃B(ε), B̃(η), B̃(η + ε) which have 4 (resp. 6) points in
common.

Remark6.2.6. The cubicB̃(ε) has at most ordinary nodes as singularities. We know
that the projectionp1 : I → B(ε) is a double cover unramified outside singular points
of B(ε) corresponding to double lines. IfB(ε) is an irreducible cuspidal cubic, the
complement of the cusp is isomorphic toC and hence does not admit nontrivial unram-
ified covers. IfB(ε) is the union of a conic and a line touching it at some point, then,
again the complement of the singular point is the disjoint union of two copies ofC and
hence does not admit an unramified cover. Finally, ifB(ε) is the union of 3 concurrent
lines, then the complement to the singular point is the disjoint union of three copies of
C, no unramified covers again. ThusB(ε) is nonsingular or a nodal cubic. It is easy
to see that its coverI is again nonsingular or a nodal curve of arithmetic genus 1. The
second projectionp2 : I → B̃(ε) is an isomorphism over the complement of finitely
many points. It is easy to see that the image of a nodal curve is a nodal curve.

Remark6.2.7. Let ∆1 be a curve of bidegree(3, 3) in P1×P1 parameterizing singular
fibres of the projectionp1 : W → P1×P1. Letπ : P1×P1 → P1×P1/S2 = P2 be the
quotient map. The curve∆1 is equal toπ−1(B(ε)). The coverπ|∆1 : ∆1 → B(ε) is
a double cover ramified along the points where∆1 intersects the diagonal. It consists
of pairs(D,D), whereD ∈ |KC + ε| such that2D is cut out by a reducible conic.
It is easy to see that this conic must be the union of two bitangents which form one
of 6 pairs of bitangents from the Steiner complex associated toε. The branch locus
of π : P1 × P1 → P2 is a conicC. It can be identified with the Veronese curve
v2(P1) which we discussed in Remark6.2.4. The cubicB(ε) intersects it transversally
at 6 points. If it is nonsingular,∆1 is a nonsingular curve of genus 4. IfB(ε) is an
irreducible cubic with a node (by the previous remark it cannot have a cusp),∆1 is an
irreducible curve of arithmetic genus 2 with two nodes. IfB(ε) is the union of a conic
and a line intersecting each other transversally, then∆1 is the union of a nonsingular
elliptic curve of bidegree(2, 2) and a nonsingular rational curve of bidegree(1, 1)
which intersect each other transversally. IfB(ε) is the union of three lines, then∆1

is the union of three nonsingular rational curves of bidegree(1, 1), each pair intersect
transversally.

Remark6.2.8. Let
V = H0(P1 × P2,OP1(2) �OP2(2)).

It is a vector space of dimension18. Let U be an open subset in|V | which consists
of sectionst20a11(t) + 2t0t1a12(t) + t21a22(t) such that the corresponding determinant
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(6.19) defines a nonsingular quartic curve. The groupG = SL(2) acts naturally on
U via its action onP1 and the orbit spaceX is a cover of degree63 of the space
|OP2(4)|ns of nonsingular plane quartics. The fibre overC4 is naturally identified with
the set of nonzero 2-torsion divisor classes onC4. SinceX is obviously irreducible and
of dimension 14, we obtain thatX is an irreducible unramified finite cover of degree
63 of |OP2(4)|ns. Let Z be the closed subset ofU of sections such that the linear
system of quadrics spanned bya11(t), a12(t), a22(t) contains a double line. Its image
in |OP2(4)|ns is a closed set. Thus a general quartic satisfies the assumption of Lemma
6.2.3for any ε. I do not know whether there exists a nonsingular quartic which does
not satisfy these assumptions for anyε.

If we further act onX by G′ = SL(3) via its natural action onP2 we obtain the
orbit space birationally isomorphic to the spaceR3 of isomorphism classes of genus
3 curves together with a nontrivial divisor class of order 2. This space is known to
be rational [140], [244]. This space is also birationally isomorphic to the space of
bielliptic curves of genus 4 (see Exercise 6.11).

Let f = q1q3 − q22 be an expression off as a symmetric determinant. Consider a
quadratic pencil of conics

q(λ, µ) := λ2q1 + 2λµq2 + µ2q3 = 0. (6.21)

Then the condition thatQ(λ, µ) is tangent toC is the vanishing of the discriminant
D = −q1q3 + q22 onC. Since it is identically vanishes onC, we see that every conic
from the pencil is tangent to our quarticC. Thus we obtain

Corollary 6.2.6. A nonsingular plane quartic can be in 63 different ways represented
as an evolute of a quadratic pencil of conics.

Remark6.2.9. A quadratic pencil of conics (6.21) can be thought as a subvarietyX
of P1 × P2 given by a bi-homogeneous equation of bidegree(2, 2). The projection to
P1 is a conic bundle with 6 degenerate fibres corresponding to six pairs of bitangents
in the Steiner complex corresponding to the pencil. The projection toP2 is a double
cover branched along the quarticC. Later on we will identifyX with the Del Pezzo
surface of degree 2 associated to a nonsingular plane quartic.

We refer to [359] for a refined analysis of the theory in the case when the quartic
curve is singular.

6.3 Even theta characteristics

6.3.1 Contact cubics

We specialize the results from section4.1.3. A nonsingular plane quartic has36 =
22(23+1) even theta characteristic. None of them vanishes sinceC is not hyperelliptic.
For any even theta characteristicϑ the linear system|KC + ϑ| defines a symmetric
determinant expression forC. Let P2 = |E| andV ∨ = H0(C,OC(KC + ϑ)). Recall
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that the symmetric determinantal expression forC corresponding toϑ defines a linear
map

E → S2V ∨ ⊂ Hom(V, V ∨)

which, after projectivization, defines a linear map of projective spaces

s : P2 → |OP3(2)|,

whereP3 = |V | = |KC + ϑ|∗. The image ofs is a net of quadricsN in P3 whose
locus of singular quadrics is equal toC. The set of singular points of quadrics from
N is a sextic modelS of C, the image ofC under a map given by the linear system
|KC + ϑ|.

The preimage unders of a hyperplane cuts out a divisorD ∈ |KC+ϑ|. The divisor
2D ∈ |3KC | is cut out by a unique cubic. This cubic is called acontact cubic. When
we varyD in |KC +ϑ| we get a 3-dimensional variety of contact cubics isomorphic to
P3. Thus we obtain 36 irreducible families of contact cubics.

Explicitly, ϑ defines a symmetric determinantal representationC = V (|A|), where
A = (lij) is a 4 × 4 symmetric matrix of linear forms in coordinates[t0, t1, t2] in
P2. Contact cubics in the algebraic system corresponding toϑ are parametrized by
coordinates[u0, u1, u2, u3] in P3 = |KC + ϑ|∗ and are given by the equation∣∣∣∣∣∣∣∣∣∣

l11 l12 l13 l14 u0

l21 l22 l23 l24 u1

l31 l32 l33 l34 u2

l41 l42 l43 l44 u3

u0 u1 u2 u3 0

∣∣∣∣∣∣∣∣∣∣
= 0. (6.22)

We can also interpret the determinantal identity from Lemma4.1.7which we write in
the self-explanatory form∣∣∣∣A u

u 0

∣∣∣∣× ∣∣∣∣A v
v 0

∣∣∣∣− ∣∣∣∣A u
v 0

∣∣∣∣2 = |A|U. (6.23)

It shows that two contact cubics cut out onC a set of 12 points that lie on a cubic curve.

Remark6.3.1. Consider the set of nets of quadrics inP3 as the GrassmannianG(3, 10)
of 3-dimensional subspaces inH0(P3,OP3(2)). Let U be an open subset defining
netsN of conics such that the locus of singular conics defines a nonsingular plane
quartic curveC ⊂ N together with an even theta characteristicϑ. The group SL(4)
actsG(3, 10) via its natural action inP3. The orbit space is birationally isomorphic to
the unramified cover of degree36 ofM3 parameterizing isomorphism classes of pairs
(C, ϑ), whereC is a nonsingular non-hyperelliptic curve of genus 3 andϑ is an even
theta characteristic. We will show later that this space is birationally isomorphic to
M3.

6.3.2 Cayley octads

The image ofs is a netN (i.e. two-dimensional linear system) of quadrics. Take a basis
Q1, Q2, Q3 of N . The base locus ofN is the complete intersection of these quadrics.
One expects to get 8 distinct points. Let us see that this is indeed true.
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Proposition 6.3.1. The set of base points of the net of quadricsN consists of 8 distinct
points, no three of which are collinear, no four are coplanar.

Proof. Suppose three points are on a line`. This includes the case when two points
coincide. This implies that̀ is contained in all quadrics fromN . Take a pointx ∈ `.
For any quadricQ ∈ N , the tangent plane ofQ at x contains the linè . Thus the
tangent planes form a pencil of planes through`. SinceN is a net, there must be
a quadric which is singular atx. Thus each point of̀ is a singular point of some
quadric fromN . However, the set of singular points of quadrics fromN is equal to the
nonsingular sexticS. This shows that no three points are collinear.

Suppose that 4 points lie in a planeπ. Restricting quadrics fromN to π defines
a linear system of conics through 4 points no three of which are collinear. It is of
dimension 1. Thus, there exists a quadric inN which containsπ. However, sinceC is
nonsingular all quadrics inN are of corank≤ 1.

Definition 6.1. A set of 8 distinct points inP3 which is a complete intersection of 3
quadrics is called aCayley octad.

From now on we assume that a cayley octad satisfies the properties from Theorem
6.3.1.

Letϕ : C → S ⊂ P3 be the map defined by the linear system|KC + ϑ|. Its image
is a sextic model ofC given by the right kernel of the matrix defining the determinantal
equation.

Theorem 6.3.2. Let q1, . . . , q8 be the Cayley octad defined by the net of quadricsN .
Each lineqi, qj intersectsS at two pointsϕ(pi), ϕ(pj). The line〈pi, pj〉 is a bitangent
ofC.

Proof. Fix a point q on `ij = 〈qi, qj〉 different from qi, qj . Each quadric fromN
vanishing atq has 3 common points with̀ij . Hence it contains̀ij . Since vanishing
at a point is one linear condition on the coefficients of a quadric, we obtain a pencil of
quadrics inN such that̀ ij is contained in its set of base points. Two quadrics intersect
along a curve of degree 4. Thus the base locus of the pencil is a reducible curve of
degree4 which contains a line component. The residual curve is a twisted cubic. Take
a nonsingular quadric in the pencil. Then the cubic is a curve of bidegree(2, 1) and
a line is a curve of bidegree(0, 1). Thus they intersect at 2 pointsx, y (not necessary
distinct). Any two nonsingular quadrics from the pencil do not intersect at these points
transversally. Hence they have a common tangent plane. For each point, an appropriate
linear combination of these quadrics will be singular at this point. The pencil does not
have any other singular quadrics. Indeed, a singular point of such a quadric must lie
on `ij and hence define a singular point of the base locus. So it must be one of the
two singular pointsx, y. No two quadrics from the same pencil share a singular point
since the setC of singular quadrics does not contain a line. This shows thatx, y ∈ S
and the pencil of quadrics is equal to the image of a line` in P2 under the maps. The
line ` intersectsC at two pointspi, pj such thatϕ(pi) = x, ϕ(pj) = y. Thus` is a
bitangent.

We can also see all even theta characteristics.
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Theorem 6.3.3. Let q1, . . . , q8 be the Cayley octad associated to an even theta char-
acteristicϑ. Letϑij be the odd theta characteristic corresponding to the lines〈qi, qj〉.
Then any even theta characteristic different fromϑ can be represented by the divisor
class

ϑi,jkl = ϑij + ϑik + ϑil −KC

for some distincti, j, k, l.

Proof. Suppose thatϑi,jkl is an odd theta characteristicϑmn. Consider the planeπ
which contains the pointsqi, qj , qk. It intersectsS at six points corresponding to the
theta characteristicsϑij , ϑik, ϑjk. Since the planes cut out divisors from|KC + ϑ|, we
obtain

ϑij + ϑik + ϑjk ∼ KC + ϑ

This implies that
ϑjk + ϑil + ϑmn ∼ KC + ϑ.

Hence〈qj , qk〉 and〈qi, ql〉 lie in a planeπ′. The intersection point of the lines〈qj , qk〉
and〈qi, ql〉 is a base point of two pencils inN and hence is a base point ofN . However,
it does not belong to the Cayley octad. This contradiction proves the assertion.

Remark6.3.2. Note that

ϑi,jkl = ϑj,ikl = ϑk,ijl = ϑl,ijk.

Thusϑi,jkl depends only on the choice of a subset of four elements in{1, . . . , 8}. Also
it is easy to check that the complementary sets define the same theta characteristic. This
shows that we get35 =

(
8
4

)
/2 different even theta characteristics. Together withϑ =

ϑ∅ we obtain 36 even theta characteristics. Observe now that the notationsϑij for odd
thetas andϑi,jkl, ϑ∅ agrees with the notation we used for odd even theta characteristics
on curves of genus 3. For example, any setϑ18, . . . , ϑ78 defines an Aronhold set. Or, a
syzygetic tetrad corresponds to four chords forming a spatial quadrangle, for example
p1, p3, p2, p4, p2, p3, p1, p4.

Here is another application of Cayley octads.

Proposition 6.3.4. There are 10080 azygetic hexads of bitangents ofC such that their
12 contact points lie on a cubic.

Proof. Let `1, `2, `3 be an azygetic triad of bitangents. The corresponding odd theta
characteristics add up toKC + ϑ, whereϑ is an even theta characteristic. Let O be
the Cayley octad corresponding to the net of quadrics for whichC is the Hessian curve
andS ⊂ P3 = |KC + ϑ|∗ be the corresponding sextic model ofC. We know that the
restriction map

|OP3(2)| → |OS(2)| = |OC(3KC)| = |OP2(3)|

is a bijection. We also know that the double planes in|OP3(2)| are mapped to contact
cubics corresponding toϑ. The cubic curvè1 + `2 + `3 is one of them. Using the in-
terpretation of bitangents as chords of the Cayley octad given in Theorem6.3.2, we see
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that the union of the three chords corresponding to`1, `2, `3 cut out onS six coplanar
points.This means that the three chords span a plane inP3. Obviously, the chords must
be of the formqi, qj , qi, qk, qj , qk, where1 ≤ i < j < k ≤ 8. The number of such
triples is

(
8
3

)
= 56. So, incidentally, we see that the number of points[u0, u1, u2, u3]

such that the determinant (6.22) represents the union of three lines is equal to 56. Fix-
ing such a triple of chords, we can find

(
5
3

)
= 10 triples disjoint from the fixed one.

The sum of the six corresponding odd theta characteristics is equal to3K and hence
the contact points are on a cubic. We can also see it by using the determinantal identity
(6.23). Thus any evenϑ contributes(56 × 10)/2 = 280 hexads from the assertion of
the proposition. The total number is equal to36 · 280 = 10080.

In Salmon’s book [356] one can find possible types of such hexads.

• 280 of type(12, 23, 31, 45, 56, 64);

• 168 of type(12, 34, 35, 36, 37, 38);

• 560 of type(12, 13, 14, 56, 57, 58).

Recall that the three types correspond to three orbits of the permutation groupS8 on
the set of azygetic hexads whose contact points are on a cubic. Note that not any
azygetic hexad has this property. For example, a subset of an Aronhold set does not
have this property.

For completeness sake, let us give the number of not azygetic hexads whose contact
points are on a cubic. Each such is the union of two syzygetic hexads with a unique
common bitangent. Using the classification of syzygetic tetrads octads one can find the
number of such pairs. It is equal to 5040. Here is the list.

• 840 of type(12, 23, 13, 14, 45, 15);

• 1680 of type(12, 23, 34, 45, 56, 16);

• 2520 of type(12, 34, 35, 36, 67, 68).

6.3.3 Seven points in the plane

Let p1, . . . , p7 be seven points in the projective plane. We assume that the points satisfy
the following condition:

(*) no three of the points are collinear and no six lie on a conic.

Consider the linear systemN of cubic curves through these points. The conditions on
the points imply that each member ofN is an irreducible cubic. A subpencil inN has
two base points outside the base locus ofN . The line spanned by these points (or the
common tangent if these points coincide) is a point in the dual planeP̌2. This allows
us to identify the netN with the plane, where our seven points lie. This is a special
property of Laguerre nets which discussed in Example7.1.3.
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Proposition 6.3.5. The linear systemN is of dimension 2. The rational mapN =
P2− → P2 = N∨ is of degree 2. It extends to a regular finite map of degree 2
φ : S → P2, whereS is the blow-up of the seven points. The branch curve ofφ is a
nonsingular plane quarticC. The ramification curveW is the proper transform of a
curve of degree 6 with double points at eachpi. Conversely, given a nonsingular plane
quarticC, the double cover ofP2 ramified overC is a nonsingular surface isomorphic
to the blow-up of 7 pointsp1, . . . , p7 in the plane satisfying (*).

We postpone the proof of this proposition until Chapter 8. The surfaceS is a Del
Pezzo surface of degree 2 .

Let σ : S → P2 be the blowing up map. The curvesEi = σ−1(pi) are exceptional
curves of the first kind,(−1)-curves for short. We will often identifyN with its proper
transform inS equal to| −KS | = | − σ∗(KP2)− E1 − . . .− E7|.

The preimage of a linè in N∨ is a nonsingular member ofN if and only if `
intersects transversallyC. In this case it is a double cover of` branched over̀ ∩ C.
The preimage of a tangent line is a singular member, the singular points lie over the
contact points. Thus, the preimage of a general tangent line is an irreducible cubic
curve with a singular point atσ(W ). The preimage of a bitangent is a member of
| −KS | with singular points (they may coincide if the bitangent is a flex bitangent). It
is easy to see that its image in the plane is either an irreducible cubicFi with a double
point atpi or the union of a linepi, pj and the conicQij passing through the point
pk, k 6= i, j. In this way we can account for all 28 = 7+21 bitangents. If we denote the
bitangents corresponding toFi by `i8 and the bitangents corresponding topi, pj +Qij
by `ij we can even accommodate the notation of bitangents by subsets of cardinality
2 of [1, 8]. We will see below that this notation agrees with the previous notation. In
particular, the bitangents corresponding to the curvesFi’s form an Aronhold set.

Note that quartic curveC does not determine the pointp1, . . . , p7 uniquely. There
are many ways to define the blowing morphismσ : S → P2. However, if we fix an
Aronhold set of bitangents there is only one way, up to composition with a projective
tranformation, to blow-down seven disjoint(−1)-curves such that the corresponding
cubic curvesFi are mapped to the bitangents from the Aronhold set. We will see this
later in Chapter 8. Thus a choice of an Aronhold set is equivalent to a choice of a set
of seven pointsp1, . . . , p7 definingC.

Consider the universal family

X = {(s, F ) ∈ S ×N : s ∈ F}.

The fibre of the first projectionπ1 : X → S over a points ∈ S can be identified, via
the second projection, with the pencilN (s) ⊂ N of curves passing through the point
s. The second fibrationπ2 : X → L is an elliptic fibration, its fibres isomorphic to the
corresponding members ofN . It has 7 rational sectionsEi defined by the(−1)-curves
Ei’s. The projectionπ2 : Ei → L is an isomorphism overL\{Fi}. The fibre over{Fi}
is identified, viaπ1, with Ei. Thus each sectionEi is isomorphic to the ruled surface
F1. The restriction of the projectionπ1 to Ei is the mapEi → Ei defined by the ruling
of F1.

There is another natural rational sectionE8 defined as follows. It is easy to see that
anyg1

2 on a nonsingular cubic curveF is obtained by projection from a pointp ∈ F to
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a line. The pointp is the intersection point ofF with the line spanned by any divisor
from theg1

2 . It was called by Sylvester thecoresidual pointof F (see [356], p. 134).
Take a general curveF ∈ N and restrictN toF . This defines ag1

2 onF parametrized
by the image ofF under the double coverφ : S → N∨. Let cF be the corresponding
coresidual point. IfF is an irreducible curve fromN with singular points not equal
to one of the base points, thecF is defined as follows. The nonsingular curves inN
passing throughs have a common tangent linès at s. The coresidual pointcF is
equal to the third intersection point of`s with F . If F is a reducible member equal
to the union of the line through two base points and the conic through the remaining
base points, then the coresidual pointcF is the point on the conic component equal to
the intersection of the two lines̀s corresponding to singular points ofF . Finally, if
F = Fi with singular points = pi, then we consider the pencil of curves fromN
which are tangent toFi at one of the branches. The coresidual point is equal in to
the base pointpi. The the correspondenceF 7→ cF allows one to identify the original
planeP2 with the planeN . It is easy to see that this identification coincides with the
identification defined by the property of a Laguerre net.

Let E8 ⊂ X be the closure of the set of points(σ−1(cF ), F ). The projection
π2 : E8 → N is the blow-up of the seven points corresponding to the curvesFi. The
restriction of the projectionπ1 to E8 is an isomorphism ontoS. ThusE8 defines a
rational section ofπ2 and a regular section ofπ1. The sectionE8 intersects the section
Ei along the exceptional curveEi identified withπ−1

2 ({Fi}) ∩ E8. The first seven
sections are disjoint.

Proposition 6.3.6. The linear systemH = |π∗1(σ∗OP2(1)) ⊗ OX (E8))| has the base
locus equal toE8 ∩ (E1 + · · · + E7). Let τ : X ′ → X be the blow-up of the base
locus. The proper transform ofH onX ′ defines a birational morphismα : X ′ → P3.
The proper transform of each divisorEi, i = 1, . . . , 8 blows down to a pointqi. The
exceptional divisor ofτ is blown down to the union of linesqi, q8. The rational map
π2 ◦ τ ◦ α−1 : P3 → N is given by the linear system of quadrics through the points
q1, . . . , q8.

It follows from this proposition that the set of pointsq1, . . . , q8 is a Cayley octad.
Conversely, letq1, . . . , q8 be a Cayley octad O. The netQ of quadrics through O
defines a rational mapP3− → P2 = Q∨ whose general fibre is a quartic elliptic curve.
Projecting fromq8, we obtain a netN of cubic curves through the pointsp1, . . . , p7

equal to the projections ofq1, . . . , q7. We can identify the linear systemsN andQ. The
linear systemQ parametrizes quartic curves of arithmetic genus 1 through the Cayley
octad O. The singular members ofQ andN are parametrized by the dual curveC∨ of
C. One can match the interpretation of bitangents via singular members of the net of
cubic curvesN and the net of quartic space curvesQ. The lineqi, qj defines a pencil
of quadrics that contains the line. Its base locus is a member of the netQ and consists
of the union of the line and a rational cubic curve intersecting the line at two points. If
(i, j) = (i, 8), projecting from this point we get a member ofL equal to the singular
cubic curveFi. Otherwise, it is projected to the union of the linepi, pj and a conicQij .
This shows that the notation of bitangents via the Cayley octad, or via the Aronhold
set, or via the set of seven points in the plane agree.
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Remark6.3.3. We know, via the determinantal representation of a quartic plane curve
that a choice of an even theta characteristic defines the projective equivalence class
of a Cayley octad from whichC is reconstructed as the Hessian curve of the corre-
sponding net of quadrics. On the other hand, a choice of an Aronhold set defines a
choice of the projective equivalence class of a set of 7 points in the plane from which
C is reconstructed as the branch curve of the double cover defined by the net of cubic
curves through the seven points. Proposition6.3.6shows that an Aronhold set defines
a Cayley octad. However, this Cayley octad comes with a choice of one of its points.
Conversely, a Cayley octad together with a choice of its points defines an Aronhold set
via the projection from this point. This shows that the moduli spaceMev

3 of curves of
genus 3 together with an even theta characteristic admits a rational map of degree 8
onto the moduli space of projective equivalence classes of sets of unordered 7 points in
P2.

6.4 Polar polygons

6.4.1 Clebsch and L̈uroth quartics

Since 5 general points inP(E∨) lie on a singular quartic (a double conic), a general
quartic does not admit a polar 5-polyhedron (polar pentagon) although the count of
constants suggests that this is possible. This remarkable fact was first discovered by
J. Lüroth in 1868. Suppose a quarticC admits a polar pentagon{[l1], . . . , [l5]}. Let
Q = V (q) be a conic inP(E∨) passing through the points[l1], . . . , [l5]. Thenq ∈
AP2(f). The space AP2(f) 6= {0} if and only if det Cat2(f) = 0. Thus the set of
quartics admitting a polar pentagon is the locus of the catalecticant invariant on the
spaceP(S4E∨). It is a polynomial of degree 6 in the coefficients of a homogeneous
form of degree 4.

Definition 6.2. A plane quartic admitting a polar pentagon is called aClebsch quartic.

A Clebsch quarticC = V (f) is callednondegenerateif dim AP2(f) = 1. Thus the
polar pentagon of a nondegenerate Clebsch quartic lies on a unique conic. We call it the
apolar conic. The apolar conic is reducible if and only if the corresponding operator is
the product of two linear operators. This means that the second polarPab(f) = 0 for
some pointsa, b ∈ |E|.

Proposition 6.4.1. Letf ∈ S4E∨ be such that the second polarDab(f) = 0 for some
a, b ∈ |E|. Then, in appropriate coordinate system

f = f3(t0, t1)t0 + f4(t1, t2), a 6= b,

f = f3(t1, t2)t0 + f4(t1, t2), a = b.

In particular,Daa(f) = 0 if and only ifV (f) has a triple point.

Proof. Supposea 6= b. Choose coordinates such thata = [1, 0, 0], b = [0, 0, 1] and
write

f =
4∑
i=0

fi(t1, t2)t4−i0 .
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ThenDaa(f) = ∂2

∂t20
= 0, Dab(f) = ∂2

∂t2∂t0
(f) = 0. Now the assertions easily follow.

We will assume that the apolar conic of a nondegenerate Clebsch quartic is irre-
ducible.

Let {[l1], . . . , [l5]} be a polar pentagon off such thatf = l41 + · · · + l45. For any
1 ≤ i < j ≤ 5, let aij = [li] ∩ [lj ] ∈ |E|. We can identifyaij with a linear operator
ψij ∈ E (defined up to a constant factor). Obviously,Dψij (f) coincides with the first
polarDaij (f). Applyingψij we obtain

Dψij
(f) = Dψij

(l41 + · · ·+ l45) = 4
∑
k 6=i,j

ψij(lk)l3k.

Thus [lk], k 6= i, j, form a polar triangle ofPaij (f). Since the associated conic is
irreducible no three points among the[lk]’s are linearly dependent. ThusPaij (V (f))
is a Fermat cubic.

Lemma 6.4.2. Let f ∈ S4E∨. Assume thatDab(f) 6= 0 for anya, b ∈ |E|. LetS be
the locus of pointsa ∈ |E| such that the first polar ofV (f) is isomorphic to a Fermat
cubic or belongs to the closure of its orbit. ThenS is a plane quartic.

Proof. Let I4 : S3E∨ → C be the Aronhold invariant vanishing on the locus of Fermat
cubics (see Remark3.2.4). It is a polynomial of degree 4 in coefficients of a cubic.

ComposeI4 with the polarization mapE × S4E∨ → S3E∨, (ψ, f) 7→ Dψ(f).
We get a bihomogeneous map of degree(4, 4) E × S4E∨ → C. It defines a degree 4
homogeneous map

S : S4E∨ → S4E∨. (6.24)

This map is called theClebsch quartic covariant. It assigns to a quartic form in three
variables another quartic form in three variables. By construction, this map does not
depend on the choice of coordinates. Thus it is acovariantof quartics, i.e. a GL(E)-
equivariant map fromS4E∨ to someSdE∨. By definition, the locus ofv ∈ E such
thatS(f)(v) = 0 is the set of vectorsv ∈ E such thatI4(Pa(f)) = 0, i.e.,V (Dv(f))
belongs to the closure of the orbit of a Fermat cubic.

Example6.4.1. Assume that the equation off is given in the form

f = at40 + bt41 + ct42 + 6dt21t
2
2 + 6et20t

2
1 + 6ht20t

2
1.

Then the explicit formula for the Clebsch covariant gives

S(f) = a′t40 + b′t41 + c′t42 + 6d′t21t
2
2 + 6e′t20t

2
1 + 6h′t20t

2
1,

where

a′ = 6e2h2,

b′ = 6h2f2,

c′ = 6f2g2,

d′ = bceh− f(be2 + ch2)− ehd2,

e′ = acdh− e(ch2 + ad2)− dhe2,
h′ = abde− h(ad2 + be2)− deh2.
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For a generalf the formula forS is too long.

Note that the Clebsch covariantS defines a rational map

S : P(S4E∨)− → P(S4E∨). (6.25)

Note that the map is not defined on the closed subset of quarticsV (f) such that
V (Pa(f)) belongs to the closure of the orbit of a Fermat cubic for anya ∈ |E|.

Proposition 6.4.3. The mapS is not defined onV (f) if and only ifV (f) is a Clebsch
quartic admitting a reducible apolar conic.

We refer for a proof to [132].
For any quartic curveC satisfying the assumption of the previous proposition, the

curveS(C) := V (S(f)) will be called theClebsch covariant quarticassociated to
C. We will show that for a general quarticC the Clebsch quarticS(C) comes with
a certain non-effective theta characteristicϑ such that the pair(S(C), ϑ) is Scorza
general and the Scorza quartic associated to(C, ϑ) is equal toC.

If C is a nondegenerate Clebsch quartic, then, as we explained in above, the vertices
of its polar pentagon must belong to the Clebsch covariant quarticS(C). This gives

Proposition 6.4.4. Let C = V (f) be a nondegenerate Clebsch quartic. Then each
polar pentagon ofC is inscribed in the quartic curveV (S(f)).

Lemma 6.4.5. A quartic curveC circumscribing a pentagon defined by 5 lines[li] can
be written in the formC = V (g), where

g = l1 · · · l5
∑
i=1

ai
li

for someai ∈ C.

Proof. Consider the linear system of quartics passing through 10 vertices of a pen-
tagon. The expected dimension of this linear system is equal to 4. Suppose it is larger
than4. Since each side of the pentagon contains 4 vertices, requiring that a quartic
vanishes at some additional point on the side forces the quartic contain the side. Since
we have 5 sides, we will be able to find a quartic containing the union of 5 lines, obvi-
ously a contradiction. Now consider the linear system of quartics whose equation can
be wriitten as in the assertion of the lemma. The equations have 5 parameters and it is
easy to see that the polynomialsl1 · · · l5/li, i = 1, . . . , 5, are linearly independent.

Definition 6.3. A plane quartic circumscribing a pentagon is called aLüroth quartic.

Thus we see that for any Clebsch quarticC the quarticS(C) is a Lüroth quartic.
One can prove that any Lüroth quartic is obtained in this way from a unique Clebsch
quartic (see [132]). Since the locus of Clebsch quartics is a hypersurface (of degree
6) in the space of all quartics, the locus of Lüroth quartics is also a hypersurface. Its
degree is equal to 54 ([286]) and the number is equal to one of the coefficients of the
Donaldson polynomial for the projective plane (see [267]).
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LetC = V (f) be a general Clebsch quartic. Consider the map

c : VSP(f ; 5)o → P(S2E) (6.26)

defined by assigning to{`1, . . . , `5} ∈ V SP (f ; 5)o the unique conic passing through
these points in the dual plane. This conic is apolar toC. The fibres of this map are
polar pentagons off inscribed in the apolar conic. We know that the closure of the set
of Clebsch quartics is defined by one polynomial in coefficients of quartic, the catalec-
ticant invariant. Thus the varierty of Clebsch quartics is of dimension 13. Consider
the map(E∨)5 → P(S4E∨) defined by(l1, . . . , l5) 7→ V (l41 + · · · + l44). The image
of this map is the variety of Clebsch quartics. A general fibre must be of dimension
15 − 13 = 2. However, scaling theli by the same factor, defines the same quartic.
Thus the dimesnion of the space of all polar pentagons of a general Clebsch quartic is
equal to 1. Over an open subset of the Clebsch locus, the fibres ofc are irreducible
one-dimensional varietes.

Proposition 6.4.6. LetC = V (f) be a nondegenerate Clebsch quartic andQ be its
apolar conic. Consider any polar pentagon ofC as a set of 5 points onQ (the dual
of its sides). ThenVSP(f ; 5)o is an open non-empty subset of a linear pencil onQ of
degree 5.

Proof. Consider the correspondence

X = {(x, {`1, . . . , `5}) ∈ Q× VSP(f ; 5)o : x = [li] for somei = 1, . . . , 5}.

Let us look at the fibres of the projection toQ. Suppose we have two polar pentagons
of f with the same side[l]. We can write

f − l4 = l41 + · · ·+ l44,

f − λl4 = m4
1 + · · ·+m4

4.

For anyψ ∈ S2E such thatψ([li]) = 0, i = 1, . . . , 4, we getDψ(f) = 12ψ(l)l2.
Similarly, for anyψ′ ∈ S2E such thatψ′([mi]) = 0, i = 1, . . . , 4, we getDψ′(f) =
12λψ′(l)l2. This implies thatψ(l)ψ′−ψ′(l)ψ = 0 defines an apolar conic toC. Since
C was a general Clebsch quartic, there is only one apolar conic. The set ofV (ψ)’s
is a pencil with base pointsV (li), the set ofV (ψ′) is a pencil with base pointsV (li).
This gives a contradiction unless the two pencils coincide. But then their base points
coincide and the two pentagons are equal. This shows that the projection toQ is a
one-to-one map. In particular,X is an irreducible curve.

Now it is easy to finish the proof. The set of degree 5 positive divisors onQ ∼= P1

is the projective space|OP1(5)|. The closureP of our curve of polar pentagons lies in
this space. All divisors containing one fixed point in their support form a hyperplane.
Thus the polar pentagons containing one common side[l] correspond to a hyperplane
section ofP. Since we know that there is only one such pentagon and we take[l] in an
open Zariski subset ofQ, we see that the curve is of degree 1, i.e. a line. So our curve
is contained in one-dimensional linear system of divisors of degree 5.
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6.4.2 The Scorza quartic

Here we assume thatC = V (f) is not projectively equivalent to the quartics from
Proposition6.4.1. Let us study the map (6.25) in more detail. LetS = S(C). For any
a ∈ S, the first polarPa(f) defines a Fermat curve (or its degeneration). As we saw
in the proof of Lemma3.2.7, these curves are characterized by the property that there
exists a pointb such that the first polar is a double line. This defines a correspondence

RC = {(a, b) ∈ S × S : Pb(Pa(C)) is a double line}.

Proposition 6.4.7. LetC = V (f) be a general plane quartic. ThenS = S(C) is a
nonsingular curve and there exists a non-effective theta characteristicϑ with d(ϑ) = 1
onS such thatRC coincides with the Scorza correspondenceRϑ onS.

Proof. Take linear formsli in general position and consider the Clebsch quarticC =
V (

∑
l4i ). ThenS(C) is the L̈uroth quartic given by the equation from Lemma6.4.5.

one can directly check that it is nonsingular. Thus the image of the Scorza map contains
a nonsingular curve, and hence for generalC the curveS(C) is nonsingular. The
variety of nonsingular L̈uroth quartics is an open subset in a hypersurface in the space
of quartics. The image of this open subset in the moduli spaceM3 of curves of genus
3 is of codimension 1. TakingC general enough we may assume thatS(C) does not
admit a non-constant map to curves of genus1 or 2. The moduli space of curves that
admit such maps is of higher codimension inM3. Thus we may assume that the image
of the Scorza map contains an open subsetU of nonsingular curves that do not admit
non-constant maps to curves of genus 1 or 2.

Assume thatS(C) ∈ U . Applying Proposition5.5.6, it suffices to check thatRC
is symmetric, of type(3, 3) and has valence−1. The symmetry ofRC is obvious. We
have a map fromS to the closureF of the Fermat locus defined bya 7→ V (Pa(f)).
For any curve inF , except the union of three lines, the set of points such that the first
polar is a double line is finite. It is equal to the set of double points of the Hessian curve
and consists of 3 points for Fermat curves, one point for cuspidal cubics and 2 points
for the unions of a conic and a line. IfC is general enough the image ofS in F does
not intersect the locus of the unions of three lines (which is of codimension 2). Thus
we see that each projection fromRC to S is a finite map of degree 3. ThusRC is of
type(3, 3).

For any general pointx ∈ S, the first polarPx(C) is projectively equivalent to
a Fermat cubic. The divisorRC(x) consists of the three vertices of its unique polar
triangle. For anyy ∈ RC(x), the sideH = [l] opposite toy is defined byPy(Px(C)) =
Px(Py(C)) = V (l2). It is a common side of the polar triangles ofPx(C) andPy(C).
We haveH ∩ S = y1 + y2 + x1 + x2, whereRC(x) = {y, y1, y2} andRC(y) =
{x, x1, x2}. This gives

y1 + y2 + x1 + x2 = (RC(x)− x) + (RC(y)− y) ∈ |KS |.

Consider a mapα : S → Pic2(S) given byx→ [R(x)−x]. Assumeα is not constant.
If we replace in the previous formulay with y1 or y2, we obtain thatα(y) = α(y1) =
α(y2) = KS − α(x). Thusα : S → α(S) is a map of degree≥ 3. It defines a finite
map of degree≥ 3 from S to the normalizationW of α(S). Since a rational curve
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does not admit non-constant maps to an abelian variety, we obtain thatW is of positive
genus. By Hurwitz formula, the genus ofW is less or equal than 2. By assumption,S
does not admit a non-constant map toW . HenceRC has valencev = −1. Using the
Cayley-Brill formula, we obtain thatRC has no united points. In particular,Paa(C) is
never a double line. ThusRC satisfies all the assumption of Proposition5.5.6.

It remains to verify thatd(ϑ) = 1. We may assume thatC is nondegenerate in the
sense of section 1.4.1. This means that the polarity mapψ 7→ Pψ(C) is bijective. It
follows from the definition of the correspondenceRC = Rϑ that the curveΓ(ϑ) is the
locus of lines[l] such thatPab(C) is the double lineV (l2) for somea, b ∈ S(C). This
implies that the mapRϑ → Γ(ϑ) is of degree 2, henced(ϑ) = 1.

Example6.4.2. Let C = V (f) be a nondegenerate Clebsch quartic andS = S(C)
be the L̈uroth quartic. It follows from Proposition6.4.4 that each polar pentagon is
inscribed inS. If we take two verticesx, y of a pentagon, thenPx,y(C) is a double
line representing one of the sides of the pentagon. This means that the apolar conic of
C is the curveΓ(ϑ), henced(ϑ) = 3. The theta characteristicϑ on a L̈uroth quartic
obtained in this way is called thepentagonal theta characteristic. We do not know any
other example of a theta characteristic withd(ϑ) 6= 1.

Recall from Proposition6.4.6that the polar pentagons ofC are parametrized byP1.
Two pentagons cannot have a common vertexx since the three sides not containingx
are equal to the irreducible components of the Hessian ofPx(C) and other two sides
are reconstructed from the vertices of the triangle formed by the Hessian. Assigning to
x ∈ S the unique polar pentagon with vertexx we obtain a regular mapϕ : S → P1 of
degree 10.

Proposition 6.4.8. Let C be a general plane quartic such that the associated pair
(S(C), ϑ) is Scorza general. Then the Scorza quartic associated to the pair(S(C), ϑ)
is equal toC.

Proof. Let C ′ be the Scorza quartic associated to(S(C), ϑ). It follows immediately
from (6.15) in the proof of Theorem5.5.10that for any point(x, y) ∈ Rϑ the second
polarPx,y(C ′) is a double line. This shows thatPx(C ′) is a Fermat cubic, and hence
S(C) = S(C ′). Let Qev be the variety parameterizing Scorza general pairs(C, ϑ).
Assigning to a pair the Scorza quartic curve, we define a mapQev → |OP2(4)|. The
Scorza mapS defines a rational mapS : |OP2(4)| → T Cev

4 . By Proposition5.2.2
the varietyT Cev

4 is irreducible. As we have just showed this map admits a rational
section. Since both varieties are irreducible varieties of the same dimension, the section
is dominant and injective, hence birational. This shows that the Scorza map is injective
on an open Zariski subset and the assertion is proved.

Passing to the rational quotients by PGL(3), we obtain

Corollary 6.4.9. LetMev
3 be the moduli space of curves of genus g together with an

even theta characteristic. The birational mapS : |OP2(4)| → Qev has the inverse
defined by assigning to a pair(C, ϑ) the Scorza quartic. It induces a birational iso-
morphism

M3
∼=Mev

3 .
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The composition of this map with the forgetting mapMev
3 →M3 is a rational self-map

ofM3 of degree 36.

Remark6.4.1. The Corollary generalizes to genus 3 the fact that the map from the
space of plane cubics|OP2(3)| to itself defined by the Hessian is a birational map to
the cover|OP2(3)|ev, formed by pairs(X, ε), whereε is a non-trivial 2-torsion point (an
even characteristic in this case). Note that the Hessian covariant is defined similarly to
the Clebsch invariant. We compose the polarization mapV ×S3E∨ → S2E∨ with the
discriminant invariantS2E∨ → C.

6.4.3 Polar hexagons

A general quartic admits a polar 6-polyhedron (polar hexagon). It follows from Propo-
sition1.3.12that the variety VSP(f ; 6) is a smooth irreducible 3-fold.

Let us see how to construct polar hexagons off explicitly. Let

f = l41 + · · ·+ l46,

where`i = V (li). We know that each pairli, lj , i 6= j, is conjugate with respect tof ,
i.e.,

Ωf̌ (l
2
i , l

2
j ) = f̌(l2i l

2
j ) = 0.

Letψi andψj ∈ S2E be the anti-polars ofli andlj with respect tof , i.e.

Dψi
(f) = l2i , Dψj

(f) = l2j .

It follows from (1.55) that
ψi([lj ]) = ψj([li]) = 0.

Assume thatψi is irreducible. Then the map

S2E × S2E → S4E, (α, β) 7→ αψi + βψj

has one-dimensional kernel spanned by(β,−α). This easily implies that the dimension
of the linear spaceL of quartic formsαψi + βψj , α, β ∈ S2E, is equal to 9. ThusL
coincides withIZ(4). Note that any form fromL vanishes onli, lj and common zeros
of α andβ. This shows thatZ ′ = {`i, `j} ∪ V (α) ∩ V (β) is a polar hexagon off .
By Proposition1.4.7it must coincide withZ. This shows that the points̀k, k 6= i, j
are reconstructed from the points`i, `j . It also suggests the following construction of
polar hexagons off .

Start with any[l] ∈ P(E∨) such that its anti-polarψ is irreducible and does not
vanish atl. This is an open condition on[l]. Note that the latter condition means that
[l] does not belong to the quarticV (f̌) ⊂ P(E∨). Let [l′] ∈ V (ψ) and letψ′ be the
anti-polar ofl′. For anyα, α′ ∈ S2E with α([l]) = α′([l′]) = 0, we have

Dαψ+α′ψ′(f) = Dα(Dψ(f)) +Dα′(Dψ′(f)) = Dα(l2) +Dα′(l′2) = 0.

This shows that the linear spaceL of quartic formsαψ+α′ψ′ is contained in AP4(f).
As before we compute its dimension to find that it is equal to 9. ThusL coincide with
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IZ(4), whereZ = {[l], [l′]}∪(V (α)∩V (α′)). By Proposition1.3.4,Z is a generalized
polar hexagon off (an ordinary one ifV (α) intersectsV (α′) transversally). Note that
this confirms the dimension of VSP(f ; 6). We can choose[l] in ∞2 ways, and then
choose[l′] in∞1 ways.

Remark6.4.2. Consider the variety

ṼSP(F ; 6) = {([l], Z) ∈ P(E∨)× VSP(f ; 6) : {[l]} ⊂ Z}.

The projection to the second factor is a degree 6 map. The general fibre over a point[l]
is isomorphic to the anti-polar conicV (ψ) of [l].

6.4.4 A Fano model of VSP(f ; 6)

Recall that eachZ ∈ VSP(f ; 6) defines a subspaceIZ(3) ⊂ AP3(f). Its dual space
IZ(3)⊥ ⊂ W = S3E∨/ap1f (E) is an isotropic subspace with respect to Mukai’s 2-
forms.

Lemma 6.4.10.Letf be a nondegenerate quartic form andZ ∈ VSP(f ; 6). Then

dim IZ(3) = 4.

Proof. Counting constants based on the exact sequence (1.45) shows thatdim IZ(3) ≥
10− 6 = 4. Assumedim IZ(3) > 4. LetZ1 be a closed subscheme ofZ of length5.
Again counting constant we getIZ1(2) 6= {0}. LetC be a conic from the linear system
|IZ1(2)|. Obviously,C 6∈ IZ(2) since otherwise AP2(f) 6= {0} contradicting the
nondegeneracy assumption onf . Choose a0-dimensional schemeZ0 of length 2 such
that each irreducible component ofC contains a subscheme ofZ ′ = Z0 ∪Z1 of length
≥ 4. It is always possible. Now, counting constants, we see thatdim IZ′(3) > 4−2 =
2. By Bézout’s Theorem, all cubicsK from |IZ′(3)| are of the formC + `, where` is
a line. Thus the residual lines form a linear system of lines of dimension≥ 2, hence
each line is realized as a component of some cubicK. However,|IZ′(3)| ⊂ |IZ(3) and
therefore all lines pass through the point inZ \ Z1. This is obviously impossible.

Applying the previous Lemma we obtain a well-defined map

µ : VSP(f ; 6)→ G(3,W ) ∼= G(3, 7), Z 7→ IZ(3)⊥.

By Proposition1.4.7, this map is injective. Its image is contained in the locus of sub-
spaces which are isotropic with respect to Mukai’s forms.

Theorem 6.4.11.(S. Mukai) Letf ∈ S4E∨ be a general quartic form in 3 variables.
Then the map

µ : VSP(f ; 6)→ G(3, 7)

is an isomorphism onto a smooth subvarietyX equal to the locus of common zeros of a
3-dimensional space of sections of the vector bundle

∧2 S, whereS is the tautological
vector bundle over the Grassmannian. The canonical class ofX is equal to−H, where
H is a hyperplane section ofX in the Pl̈ucker embedding.
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Proof. We refer for the proof to the original paper of Mukai [290], or to [137], where
some details of Mukai’s proof are provided.

Recall that aFano varietyof dimensionn is a smooth projective varietyX with
ample−KX . If Pic(X) ∼= Z and−KX = mH, whereH is an ample generator of the
Picard group, thenX is said to be ofindexm. Thedegreeof X is the self-intersection
numberHn . The numberg = 1

2H
n + 1 is called thegenus.

Remark6.4.3. The varietyX2 was omitted in the original classification of Fano vari-
eties with the Picard number 1 due to Gino Fano. It was discovered by V. Iskovskikh.
It has the same Betti numbers as theP3. It was proven by Mukai that every such variety
arises as a smooth projective model ofW (f ; 6) for a unique quartic forV (f).

Remark6.4.4. Another approach to Mukai’s description of VSP(f ; 6) for a general
plane quarticV (f) is due to K. Ranestad and F.-O. Schreyer [325]. It allows them
also to extend Theorem6.4.11to other 2 cases wheren = 2 and wrk(f) =

(
2+k
k

)
(k = 3, 4).

VSP(f ; 10) ⊂ G(4, 9) is a K3 surface of degree38 in P20, k = 3,

VSP(f ; 15)o ⊂ G(5, 11) is a set of 16 points, k = 4.

Although these descriptions were certainly known to Mukai, he did not provide the
details of his proofs.

Remark6.4.5. We refer to [278] for the beautiful geometry of the variety VSP(f ; 6),
whereV (f) is the Klein quartic.

6.5 Automorphisms of plane quartic curves

6.5.1 Automorphisms of finite order

Since an automorphism of a nonsingular plane quartic curveC leavesKC invariant, it
is defined by a projective transformation.

Lemma 6.5.1. Let σ be an automorphism of ordern > 1 of a nonsingular plane
quarticC = V (f). Then one can choose coordinates in such a way that a generator
of the cyclic group(σ) is represented by a diagonal matrixdiag[1, ζan, ζ

b
n], whereζn is

a primitiven-th root of unity, andf is given in the following list.

(i) (n = 2), (a, b) = (0, 1),

t42 + t22g2(t0, t1) + g4(t0, t1);

(ii) (n = 3), (a, b) = (0, 1),

t32g1(t0, t1) + g4(t0, t1);

(iii) (n = 3), (a, b) = (1, 2),

f = t40 + αt20t1t2 + t0t
3
1 + t0t

3
2 + βt21t

2
2;
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(iv) (n = 4), (a, b) = (0, 1),
t42 + g4(t0, t1);

(v) (n = 4), (a, b) = (1, 2),

t40 + t41 + t42 + αt20t
2
2 + βt0t

2
1t2;

(vi) (n = 6), (a, b) = (3, 2),

t40 + t41 + αt20t
2
1 + t0t

3
2;

(vii) (n = 7), (a, b) = (3, 1),
t30t1 + t31t2 + t0t

3
2;

(viii) (n = 8), (a, b) = (3, 7),
t40 + t31t2 + t1t

3
2;

(ix) (n = 9), (a, b) = (3, 2),
t40 + t0t

3
1 + t32t1;

(x) (n = 12), (a, b) = (3, 4),

f = t40 + t41 + t0t
3
2.

Here the subscripts in polynomialsgi indicate their degree.

Proof. Let us first choose coordinates such thatσ acts by the formula

σ : [x0, x1, x2] 7→ [x0, ζ
a
nx1, ζ

b
nx2].

We will often use thatf is of degree≥ 3 in each variable. This follows from the
assumption thatf is nonsingular.

Case 1: ab = 0, saya = 0.
Write f as a polynomial int2.

f = αt42 + t32g1(t0, t1) + t22g2(t0, t1) + t2g3(t0, t1) + g4(t0, t1). (6.27)

If α 6= 0, we must have4b = 0 mod n. This implies thatn = 2 or 4. In the first case
g1 = g3 = 0, and we get case (i). Ifn = 4, we must haveg1 = g2 = g3 = 0, and we
get case (iv).

If α = 0, then3b = 0 mod n. This implies thatn = 3 andg2 = g3 = 0. This
gives case (ii).

Case 2: ab 6= 0. Note that the case whena = b 6= 0 is reduced to Case 1 by scaling
the matrix of the transformation and permuting the variables. In particular,n > 2. Let
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1] be the reference points.

Case 2a: All reference points lie onC.
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This implies that the degree off in each variable is equal to 3. We can writef in
the form

f = t30a1(t1, t2) + t31b1(t0, t2) + t32c1(t0, t1)

+t20a2(t1, t2) + t21b2(t0, t2) + t22c2(t0, t1),

whereai, bi, ci are homogeneous forms of degreei. Sincef is invariant, it is clear that
any ti cannot enter in two different coefficientsa1, b1, c1. Without loss of generality,
we may assume that

f = t30t1 + t31t2 + t32t0 + t20a2(t2, t3) + t21b2(t0, t2) + t22c2(t0, t1).

Now we havea = 3a + b = 3b mod n. This easily impliesn = 7 and we can
take a generator of(g) such that(a, b) = (3, 1). By checking the eigenvalues of other
monomials, we verify that no other monomials enters inf . This is case (vii).

Case 2b: Only two reference points lie on the curve.
By normalizing the matrix and permuting the coordinates we may assume thatp1 =

[1, 0, 0] does not lie onC. Then we can write

f = t40 + t20g2(t1, t2) + t0g3(t1, t2) + g4(t1, t2),

wheret41, t
4
2 do not enter ing4.

Without loss of generality, we may assume thatt31t2 enters ing4. This gives3a +
b = 0 mod n. Supposet1t32 enters ing4. Thena+3b = 0 mod n. This givesn = 8,
and we may take a generator of〈σ〉 corresponding to(a, b) = (3, 7). This is case (viii).
If t1t32 does not enter ing4, thent32 enters ing3. This gives3b = 0 mod n. Together
with 3a+ b = 0 mod n this givesn = 3 and we takeg with (a, b) = (1, 2) or n = 9
and(a, b) = (3, 2). These are cases (iii) and (ix).

Case 2c: Only one reference point lies on the curve.
By normalizing the matrix and permuting the coordinates we may assume thatp1 =

[1, 0, 0], p2 = [0, 1, 0] do not lie onC. Then we can write

f = t40 + t41 + t20g2(t1, t2) + t0g3(t1, t2) + g4(t1, t2),

wheret41, t
4
2 do not enter ing4. This immediately gives4a = 0 mod n. Supposet32

enters ing3. Then3b = 0 mod n, hencen = 6 or n = 12. It is easy to see that

f = t30 + t31 + αt20t
2
1 + t0t

3
2.

If n = 6, then(a, b) = (3, 2) andα may be different from0. This is case (vi). If
n = 12, then(a, b) = (3, 4) andα = 0. This is case (x).

Case 2d: None of the reference point lies on the curve.
In this case we may assume that

f = t40 + t41 + t42 + t20g2(t1, t2) + t0g3(t1, t2) + αt31t2 + βt1t
3
2.

Obviously, 4a = 4b = 0 mod n. If n = 2, we are in case (i). Ifn = 4 and
(a, b) = (1, 1), multiplying all coordinates byζ3

4 , we are reduced to Case 1. Ifn = 4
and(a, b) = (1, 2), then we get case (v). The case(1, 3) is reduced to the case(1, 2) if
we multiply the coordinates byζ4.
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6.5.2 Automorphism groups

Recall some standard terminology from the theory of linear groups. LetG be a sub-
group of the general linear group GL(V ) of a finite-dimensional complex vector space.
The groupG is calledintransitive if the representation ofG in GL(V ) is reducible.
Otherwise, it is calledtransitive. The groupG is calledimprimitive if G contains a
proper intransitive normal subgroupG′. In this caseV decomposes into a direct sum
of G′-invariant proper subspaces, and elements fromG permute them. Finally,G is
primitive if V is an irreducible representation.

We employ the notation from [90]: a cyclic group of order n is denoted byn, the
semi-direct productAoB is denoted byA : B, a central extension of a groupA with
kernelB is denoted byB.A.

Theorem 6.5.2. The following is the list of all possible groups of automorphisms of a
nonsingular plane quartic.

Type Order Structure Equation Parameters

I 168 L2(7) t30t1 + t31t2 + t32t0

II 96 42 : S3 t40 + t41 + t42
III 48 4.A4 t42 + t41 ± 2

√
−3t20t21 + t40

IV 24 S4 t40 + t41 + t42 + a(t20t21 + t20t22 + t21t22) a 6= −1±
√
−7

2

V 16 4.22 t42 + t41 + at20t21 + t40 a 6= 0,±2
√
−3,±6

VI 9 9 t40 + t0t31 + t1t32
VII 8 D8 t42 + t40 + t41 + at20t21 + bt22t0t1 a, b 6= 0

VIII 6 6 t40 + at20t21 + t41 + t1t32 a 6= 0

IX 6 S3 t40 + t0(t31 + t32) + at20t1t2 + bt21t22 b 6= 0

X 4 22 t42 + t40 + t41 + at22t20 + bt20t21 + ct20t21 (a− b)(b− c)(a− c) 6= 0

XI 3 3 t32g1(t0, t1) + g4(t0, t1)

XII 2 2 t42 + t22g2(t0, t1) + t40 + at20t21 + t41

Table 6.1: Automorphisms of plane quartics

Proof. Case 1. LetG be an intransitive group realized as a group of automorphisms of
a nonsingular plane quartic. Since in our casedimV = 3, V must be the direct sum of
one-dimensional subspacesVi, or a one-dimensional subspaceV1 and a 2-dimensional
subspaceV2.

Case 1a: V = V1 ⊕ V2 ⊕ V3.
Choose coordinates(t0, t1, t2) such thatV1 is spanned by(1, 0, 0) and so on. Let

σ ∈ G be an element of ordern. Assumen > 4, i.e.n = 6, 7, 8, 9 or 12. It is clear that
two elements of different orders> 4 cannot belong toG since otherwiseG contains an
element of order> 12. If n = 8, the equation of type (viii) from Lemma6.5.1can be
transformed by a linear change of variablest1, t2 to the equation of a surface of type
II. If n = 12, then a linear change of variablest0, t2 transforms the equation to one of
type II (use thatt40+t0t32 can be transformed to the formu4

0+u4
2). If n = 6, 7, 9, we get

thatG is a cyclic group for a general curve with equation (vi), (vii), (ix) from Lemma
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6.5.1. This gives the rows of types VIII, I, and VI, respectively. AssumeG contains an
elementσ′ of orderm ≤ 4. Again, ifm does not dividen, we get an element of order
> 12 unlessm = 4, n = 6. It is easy to check that in this caseG is cyclic of order 12.
If m dividesn, we easily check thatG is cyclic of ordern.

Assumen = 4. If σ has two equal eigenvalues, then the equation can be reduced to
type (iv) from Lemma6.5.1. One can show that the binary quarticg4 can be reduced
by a linear transformation to the formt40 + t41 + at20t

2
1. For generala, the group of

automorphisms of the curve is generated by the transformations

σ = diag[i, i, 1], σ′ = diag[1,−1, 1], τ : [t0, t1, t2] 7→ [t1, t0, t2].

The elementσ generates the center and the quotient by the center is isomorphic to
(Z/2Z)2. This gives the group of Type V from the table. Ifσ has distinct eigenvalues,
then the equation can be reduced to the form (v) from the Lemma. It has an addi-
tional automorphism of order 4 equal toτ from above. The group is isomorphic to the
dihedral groupD8.

Assumen = 3. If G contains an element of order6= 3, we are in one of the previous
cases. Ifσ has two equal eigenvalues, then the equation ofC can be reduced to type (ii)
from Lemma6.5.1, where we may assumeg1 = t0. It is clear thatG = 〈σ〉. This gives
Type XI. If g has distinct eigenvalues, we get equation of type (iii). It has additional
symmetry defined by switching the variablest1, t2. This gives the permutation group
S3 of Type IX.

Finally if n = 2 we get Types XII if equation (i) from Lemma6.5.1has no addi-
tional symmetry of order 2. If we have additional symmetry of order 2, we may assume
that it is given by diag[1,−1,−1]. This implies thatg2 does not contain the monomial
t0t1 and the coefficientg4 does not contain the monomialst30t1, t0t

3
1. But then we get

an additional symmetry defined by switching the variablest0 and t1. After a linear
transformation of variables, this case is reduced to Type X.

Case 1b: V = V1 ⊕ V2,dimV2 = 2, whereV2 is an irreducible representation of
G. In particular, the image ofG in GL(V2) is not abelian.

Choose coordinates such that(1, 0, 0) ∈ V1 andV2 is spanned by(0, 1, 0) and
(0, 0, 1). We have a natural homomorphism

ρ : G→ GL(V1)×GL(V2) ∼= C∨ ×GL(2).

Since we are interested in projective representations, we may assume that the projection
of ρ(G) to GL(V1) is trivial and identifyG with a subgroupG′ of GL(V2).

Write

f = αt40 + t30g1(t1, t2) + t20g2(t1, t2) + t0g3(t1, t2) + g4(t1, t2).

SinceV2 is irreducible,g1 = 0. SinceV (f) is nonsingular, this implies thatα 6= 0.
Assumeg2 6= 0. Theng2 must beG′-invariant. SinceG′ is not abelian, this easily

implies that, after a linear change of variables, we may assume thatg2 = at1t2 andG′

is generated by the transformations

σ1 : [t1, t2] 7→ [ζnt1, ζ−1
n t2], σ2 : [t0, t1] 7→ [t2, t1], ζn = e2πi/n. (6.28)
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They form the group isomorphic to the dihedral groupD2n of order2n. Sinceg3 6= 0,
this group acts on the locusV (g3) of zeros ofg3 in P(V2). SinceG′ is non-abelian,
we obtain thatn = 3 andG′ ∼= D6

∼= S3. It is easy to see thatg3 = a(t31 + t32).
Finally, if g4 6= 0, its set of zeros must consist of two points taken with multiplicity 2.
We must getg4 = bt20t

2
1. This leads to the row Type IX in the Table 1. Ifg3 = 0, we

getg4 = at21t
2
2 which shows that the curve is singular in this case.

Assumeg1 = g2 = 0 but g3 6= 0. SinceV (g3) is invariant andV2 is irreducible,
V (g3) consists of three points permuted byG′ ∼= S3. We can choose coordinates to
assume thatg3 = t31 + t32, whereG′ acts as in (6.28) with n = 3. In order thatV (g4)
beG′-invariant we must haveg4 = at21t

2
2. So we get Type IX again.

Finally we can consider the caseg1 = g2 = g3 = 0. The image ofG in PGL(2)
must leaveV (g4) invariant. Since the curve is nonsingular,V (g4) consists of 4 distinct
points. After a linear change of variables we may assume thatg4 = t40 + t41 + at21t

2
2.

We know from Case 1a thatG contains a subgroupG1 isomorphic to4 · 22. There are
two special values ofa when the group is bigger. These are the cases where the elliptic
curve defined by the binary quartic is harmonic witha = ±6 or equianharmonic with
a = ±2

√
−3 (see Exercise 3.14). The quartic quartic acquires an additional symmetry

of order 2 in the first case and of order 3 in the second case.
To see the additional symmetries, we use the following identities:

x4 + y4 =
1

8

`
(x + y)4 + (x− y)4 + 6(x + y)2(x− y)2

´
, (6.29)

x4 + y4 + 2
√
−3x2y2 =

e−πi/3

4

`
(x + iy)4 + (x− iy)4 + 2

√
−3(x + iy)2(x− iy)2

´
.

Sinceg4(t0,
√
−1t1) = t40 + t41−at21t22, we get similar identities fora = −6,−2

√
−3.

The first identity shows that the formg4 can be reduced to the formt40 + t41. Hence,
, the curve is isomorphic to the Fermat quartic. The Hessian of this curve is the union
of three lines which are permuted by the group of automorphisms. This easily implies
that the group is isomorphic to the extension42 : S3 of order 96. This is Type II. The
second identity shows that, ifa = 2

√
−3, thenV (g4) has an additional symmetry of

order 3 defined by

(t0, t1) 7→
1

1− i
(t0 + it1, t0 − it1) =

1√
2
(eπi/4t0 + e3πi/4t1, e

πi/4t0 + e−πi/4t1).

It multiplies g4 by e4πi/3. The groupG of automorphisms of the quarticV (t40 + t41 +
2
√
−3t20t

2
1 + t42) is generated byσ1 : [t0, t1, t2] 7→ [t1, t0, t2], σ2 : (t0, t1, t2) 7→

[t0,−t1, t2], σ3 : [t0, t1, t2] 7→ [t0, t1, it2], and

σ4 : [t0, t1, t2] 7→ [
t0

1− i
+

it1
1− i

,
t0

1− i
− it1

1− i
, eπi/3t2].

The elementσ3 of order 4 generates the center ofG. We have

σ2
1 = σ2

2 = 1, (σ1σ2)2 = σ2
3 , σ

3
4 = 1, σ1σ4σ

−1
1 = σ4σ

−1
3 .

ThusG ∼= 4.A4. This is Type III.
Observe that the group4.A4 contains 4 elements of order 12. One can verify (see

Exercise 6.12) that the polynomialt40+t
4
1+2
√
−3t20t

2
1 can be reduced to the polynomial
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(t30 + t31)t1 by a linear change of variables. This gives the equation of the curve from
case (x) of Lemma6.5.1.

Case 3: The groupG contains a normal transitive imprimitive subgroupH. The
groupH contains a subgroup from Case 1 and the quotient by this subgroup permutes
cyclically the coordinates. It follows from the list in Lemma6.5.1that it can happen
only if

f = t40 + αt20t1t2 + t0(t31 + t32) + βt21t
2
2, (6.30)

f = t30t1 + t31t2 + t32t0, (6.31)

f = t40 + t41 + t42, (6.32)

f = t40 + t41 + t42 + a(t20t
2
1 + t20t

2
2 + t21t

2
2). (6.33)

In the first curve we have the additional automorphism of order 2 interchangingt1 and
t2. This gives Type X.

The second curve is theKlein quarticwhich will be discussed in the next section.
The third curve is theFermat quartic. We have seen this curve already in the

previous case.
In the forth case Aut(C) consists of permutations and sign changes of coordinates.

It is easy to see that this defines a subgroupG of Aut(C) of order 24. It acts by
permutations on the set of 4 bitangentsV (t0±t1±t2) ofC. This easily shows thatG is
isomorphic to the permutation groupS4 (or the octahedron group). One can show that
the full automorphism group of the curve coincides withS4 unlessa = 1

2 (−1±
√

7).
This is Type IV. In the latter case the curve is isomorphic to the Klein curve (see [70],
[169]).

Case 4: G is a simple group.
Here we use the classification of simple non-abelian finite subgroups of PGL(3)

(see [31]). There are only two transitive simple groups. One is the groupG of order
168 isomorphic to the group of automorphisms of the Klein quartic. It contains an
elementσ of order 7 and element of order 3 from the normalizer of the group〈σ〉.
ThusG contains a imprimitive subgroup of order divisible by 7. It follows from the
previous classification thatC must be as in case (x) withα = 0, so it is the Klein
quartic. This is Type I.

The other group is theValentiner groupof order 360 isomorphic to the alternating
groupA6. It is known that latter group does not admit a 3-dimensional linear represen-
tation (a certain central extension of degree3 does). Since any automorphism group of
a plane quartic acts on the 3-dimensional linear spaceH0(C,ωC) the Valentiner group
cannot be realized as an automorphism group of a plane quartic.

6.5.3 The Klein quartic

Recall the following well-known result of A. Hurwitz (see [206], Chapter IV, Exercise
2.5).
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Theorem 6.5.3. LetX be a nonsingular connected projective curve of genusg > 1.
Then

#Aut(X) ≤ 84(g − 1).

Forg = 3, the bound gives#Aut(X) ≤ 168 and it is achieved for the Klein quartic

C = V (t30t1 + t31t2 + t32t0). (6.34)

Recall that we know that its group of automorphisms contains an elementS of order 7
acting by the formula

S : [t0, t1, t2] 7→ [t0ε, ε2t1, ε4t2], ε = e2πi/7,

where we scaled the action to represent the transformation by a matrix from SL(3). An-
other obvious symmetry is an automorphismG2 of order 3 given by cyclic permutation
U of the coordinates. It is easy to check that

U−1SU = S2, (6.35)

so that the subgroup generated byS,U is a group of order 21 isomorphic to the semi-
direct product7 : 3.

By a direct computation one checks that the following unimodular matrix defines
an automorphismT of C of order 2:

i√
7

 ε− ε6 ε2 − ε5 ε4 − ε3
ε2 − ε5 ε4 − ε3 ε− ε6
ε4 − ε3 ε− ε6 ε2 − ε5

 . (6.36)

We have
T−1UT = U2, (6.37)

so that the subgroup generated byU, T is the dihedral group of order 6. One checks
that the 49 productsSaTSb are all distinct. In particular, the cyclic subgroup(S) is
not normal in the groupG generated byS, T, U . Since the order ofG is divisible by
2 · 3 · 7 = 42, we see that#G = 42, 84, 126, or 168. It follows from Sylow’s Theorem
that the subgroup(S) must be normal in the first three cases, so#G = 168, and by
Hurwitz’s Theorem

Aut(C) = G = 〈S,U, T 〉.

Lemma 6.5.4. The groupG = Aut(C) is a simple group of order 168.

Proof. SupposeH is a nontrivial normal subgroup ofG. Assume that its order is
divisible by 7. Since its Sylow 7-subgroup cannot be normal inH, we see thatH
contains all Sylow 7-subgroups ofG. By Sylow’s Theorem, their number is equal to
8. This shows that#H = 56 or 84. In the first caseH contains a Sylow 2-subgroup
of order 8. SinceH is normal, all its conjugates are inH, and, in particular,T ∈ H.
The quotient groupG/H is of order 3. It follows from (6.37) that the coset ofU must
be trivial. Since3 does not divide 56, we get a contradiction. In the second case,
H containsS, T, U and hence coincide withG. So, we have shown thatH cannot
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contain an element of order 7. Suppose it contains an element of order 3. Since all
such elements are conjugate,H containsU . It follows from (6.35), that the coset ofS
in G/H is trivial, henceS ∈ H contradicting the assumption. It remains to consider
the case whenH is a 2-subgroup. Then#G/H = 2a ·3 ·7, with a ≤ 2. It follows from
Sylow’s Theorem that the image of the Sylow 7-subgroup inG/H is normal. Thus its
preimage inG is normal. This contradiction finishes the proof thatG is simple.

Remark6.5.1. One can show that

G ∼= PSL2(F7) ∼= PSL3(F2).

The first isomorphism has a natural construction via the theory of automorphic func-
tions. The Klein curve is isomorphic to a compactification of the modular curveX(7)
corresponding to the principal congruence subgroup of full level 7. The second iso-
morphism has a natural construction via considering a model of the Klein curve over
a finite field of 2 elements (see [159]). When can see an explicit action ofG on 28
bitangents via the geometry of the projective lineP1(F7) (see [100], [237]).

The group Aut(C) has 3 orbits onC with non-trivial stabilizers of orders2, 3, 7.
They are of cardinality84, 56 and24, respectively.

The orbit of cardinality24 consists of inflection points ofC. We know that a cyclic
group of order 7 is normalized by an element of order 3. Thus the orbit is equal to the
union of 8 sets each consisting of an orbit of a group of order 3. An example of such a
group is the vertices of the triangle formed by the inflection tangent lines

t0 + t1 + t2 = 0, t0 + η3t1 + η2
3t2 = 0, t0 + η2

3t1 + η3t2 = 0.

This can be directly checked. From this it follows that the inflection points form the set
of vertices of 8 triangles. We know that the inflection points are the intersection points
of C and its Hessian given by the equation

He(f) = 5t20t
2
1t

2
2 − t0t51 − t50t2 − t1t52 = 0.

The orbit of cardinality 56 consists of the tangency points of 28 bitangents ofC.
An example of an element of order 3 is a cyclic permutation of coordinates. It has 2
fixed points[1, η3, η2

3 ] and[1, η2
3 , η3] onC. They lie on the bitangent with equation

4t0 + (3η2
2 + 1)t1 + (3η3 + 1)t2 = 0.

Define a polynomial of degree 14 by

Ψ = det


∂2f
∂t20

∂2f
∂t0t1

∂2f
∂t0t2

∂ψ
∂t0

∂2f
∂t1t0

∂2f
∂t21

∂2f
∂t1t2

∂ψ
∂t1

∂2f
∂t2t0

∂2f
∂t2t1

∂2f
∂t22

∂ψ
∂t2

∂ψ
∂t0

∂ψ
∂t1

∂ψ
∂t2

0

 .
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One checks that it is invariant with respect toG and does not containf as a factor.
Hence it cuts out inV (f) aG-invariant positive divisor of degree 56. It must consists
of aG-orbit of cardinality 56.

One can compute it explicitly (see [423], p. 524) to find that

Ψ = t140 + t141 + t142 − 34t0t1t2(t100 t2 + . . .)− 250t0t1t2(t30t
8
1 + . . .)+

375t20t
2
1t

2
2(t

6
0t

2
2 + . . .) + 18(t70t

7
1 + . . .)− 126t30t

3
1t

3
2(t

3
0t

2
1 + . . .).

Here the dots mean monomials obtained from the first one by permutation of variables.
The orbit of cardinality 84 is equal to the union of 21 sets, each consisting of 4

intersection points ofC with the line of fixed points of a transformation of order 2. An
example of such a point is

((ε4 − ε3)(ε− ε6)ε4, (ε2 − ε5)(ε− ε6)ε, (ε4 − ε3)(ε2 − ε5)ε2).

Similarly to the above, one considers the Jacobian determinantΞ = J(f, g, h) of
the polynomialsf, g, h. It is aG-invariant polynomial of degree 21. Its zeros onV (f)
give the orbit of 84 points. One can computeΞ explicitly (see [189], p. 372) to find
that

Ξ = t210 + t211 + t212 − 7t0t1t2(t170 t2 + . . .) + 217t0t1t2(t30t
15
1 . . .)−

308t20t
2
1t

2
2(t

13
0 t

2
2 + . . .)− 57(t140 t

7
2 + . . .)− 289(t70t

14
1 + . . .)+

4018t30t
3
1t

3
2(t

2
0t

10
1 + . . .) + 637t30t

3
1t

3
2(t

9
0t

3
1 + . . .)+

1638t0t1t2(t100 t
8
1 + . . .)− 6279t20t

2
1t

2
2(t

6
0t

9
1 + . . .)+

7007t50t
5
1t

5
2(t0t

5
1 + . . .)− 10010t40t

4
1t

4
2(t

5
0t

4
1 + . . .) + 3432t70t

7
1t

7
2.

Remark6.5.2. The polynomial of degree 14 that cuts out 56 contact points of bitan-
gents on the Fermat quartic looks very simple (see [15], vol. VI, p. 13):

Ξ = (t0t1t2)2(t80 + t81 + t82). (6.38)

A set of 12 bitangents can be easily seen by factoring the polynomialt4i + t4j , 0 ≤ i <
j ≤ 2. The remaining 16 bitangents can be derived from the identity

(t0+t1+t2)(t0+t1−t2)(t0−t1+t2)(t0−t1−t2)+2(t40+t41+t42) = (t20+t21+t2)2,

and other similar identities obtained by multiplying the coordinates by forth roots of 1.
An example of a plane quartic with 28 real bitangents can be found in [154].

.

Exercises

6.1Show that two syzygetic tetrads of bitangents cannot have two common bitangents.

6.2LetCt = V (tf + q2) be a family of plane quartics overC depending on a parametert. As-
sume thatV (f) is nonsingular andV (f) andV (q) intersect transversally at 8 pointsp1, . . . , p8.
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Show thatCt is nonsingular for allt in some open neighborhood of0 in usual topology and the
limit of 28 bitangents whent→ 0 is equal the set of 28 linespi, pj .

6.3Show that the locus of nonsingular quartics which admit a flex bitangent is a hypersurface in
the space of all nonsingular quartics.

6.4Consider the Fermat quarticV (t40 + t41 + t42). Find all bitangents and all Steiner complexes.
Show that it admits 12 flex bitangents.

6.5An open problem: what is the maximal possible number of flex bitangents on a nonsingular
quartic?

6.6 Show that a nonsingular plane quarticC admits 63 irreducible one-parameter families of
conics which are tangent toC at 4 points.

6.7 Let S = {(`1, `′1), . . . , (`6, `′6)} be a Steiner complex of 12 bitangents. Prove that the six
intersection points̀i ∩ `′i lie on a conic and all̀28

2

´
= 378 intersection points of bitangents lie

on 63 conics. [Hint: the conic is the Veronese curve from Remark6.2.4].

6.8 Find all possible types of azygetic hexads of bitangents. Which types are contained in a
Steiner complex?

6.9 Show that the pencil of conics passing through the four contact points of two bitangents
contains five members each passing through the contact points of a pair of bitangents.

6.10Show that the linear systemL(ε) of conics associated to a nonzero 2-torsion divisor class is
equal to the linear system of first polars of the cubicB(ε).

6.11Show that a choice ofε ∈ Jac(C)[2] \ {0} defines a conicQ and a cubicB such thatC is
equal to the locus of pointsx such that the polarPx(B) is touchingQ.

6.12Let C = V (a11a22 − a2
12) be a representation of a nonsingular quarticC as a symmetric

quadratic determinant corresponding to a choice of a 2-torsion divisor classε. Let C̃ be the
unramified double cover ofC corresponding toε. Show thatC̃ is isomorphic to a canonical
curve of genus 5 given by the equations

a11[t0, t1, t2]− t23 = a12[t0, t1, t2]− t3t4 = a22[t0, t1, t2]− t24 = 0

in P4.

6.13A nonsingular curve is calledbielliptic if it admits a double cover to an elliptic curve. Show
that the moduli space of bielliptic curves of genus 4 is birationally isomorphic to the moduli
space of isomorphism classes of genus 3 curves together with a nonzero 2-torsion divisor class.

6.14 Show that the curvesV (t40 + t41 + t42 + 2
√
−3t21t

2
2) andV (t40 + t42 + t0t

3
0 + t0t

3
1) are

isomorphic.

6.15A plane quarticC = V (f) is called aCaporali quarticif VSP(f ; 4)o 6= ∅.

(i) What is the dimension of the locus of the Caporali quartics?

(ii) Show that the Clebsch covariant quarticS(C) is reducible.

(iii) Find the intersection of the loci of Fermat quartics and Caporali quartics.

([40]).

6.16Let q be a nondegenerate quadratic form in 3 variables. Show thatW (q2; 6)o is a homoge-
neous space for the group PSL(2,C).

6.17LetC be a hyperelliptic curve of genusg. Show that the graph of the hyperelliptic involution
has valence2.

6.18Let f = t30t1 + t31t2 + t32t0. Show thatV (S(f)) = V (f).
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6.19 Show that the binary formf = t0(t0 + 2t1)
2 does not admit nondegenerate polar2-th

polyhedron.

6.20Show that the locus of lines̀= V (l) such that the anti-polar conic ofl2 with respect to a
quartic curveV (f) is reducible is a plane curve of degree 6 in the dual plane.

6.21Show that the Clebsch covariant of the Fermat quarticC is equal toC.

6.22Classify automorphism groups of irreducible singular plane quartics.

6.23For each nonsingular plane quartic curveC with automorphism groupG describe the ram-
ification scheme of the coverC → C/G.

6.24LetC be the Klein quartic. For any subgroupH of Aut(C) determine the genus ofH and
the ramification scheme of the coverC → C/H.

6.25Analyze the action of the automorphism group of the Klein quarticC on the set of even
theta characteristics. Show that there is only one which is invariant with respect to the whole
group. Find the corresponding determinantal representation ofC.

6.26Let C be a general plane quartic. A triangle of lines is called abiscribed triangleof C if
each side is a tangent line and each vertex is onC.

(i) Show that for any biscribed triangle there exists a unique contact cubic which is tangent
toC at the vertices of the triangle and at the tangency points of its sides.

(ii) Show that the contact cubic defined by a biscribed triangle corresponds to an even theta
characteristic onC. Using this show that there are288 = 8 · 36 biscribed triangles.

6.27Show that a smooth plane quartic admits an automorphism of order 2 if and only if among
its 28 bitangents four form a syzygetic set of bitangents intersecting at one point.

6.28Show that the dual curve of a general nonsingular plane quartic is a curve of degree 12 with
24 cusps and 28 nodes.

6.29Consider the curveS (resp.T ) in the dual plane equal to the closure of the locus of lines
that intersects a nonsingular quartic at 4 points with equianharmonic(resp. harmonic) cross ratio.
Show thatC (resp.C′) is of degree 4 (resp. 6) and intersects the dual quartic at its 24 cusps.

6.30 Let C = l4 + l41 + l42 + l43 + l44 be a Clebsch quartic. Show that the pentagonal theta
characteristic on the L̈uroth quarticS = S(C) defines the representation ofS as the determinant
of the4×4 matrix with diagonal entriesl+ li and off-diagonal entries equal tol (communicated
by B. van Geemen).

6.31Show that

(i) LetC andK be general conic and a cubic. Show that the set of pointsa such thatPa(C)
is tangent toPa(K) is a Lüroth quartic.

(ii) Show that the set of polar linesPa(C) which coincide with polar linesPa(K) is equal to
the set of seven Aronhold bitangents of the Lüroth quartic ([19]).

6.32Show that the set of 28 bitangents of the Klein quartic contains 21 subsets of four concurrent
bitangents and each bitangent has 3 concurrency points.

6.33Show that there exists a curve of degree 14 that cuts out the 56 contact points of 28 bitan-
gents of a plane quartic curve ([211]). Show that in the case of Klein’s quartic this curve can be
chosen to be invariant with respect to the Klein group of order 168.
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Historical Notes

The fact that a general plane quartic curve has 28 bitangents was first proved in 1850 by
C. Jacobi [234] although the number was apparently known to J. Poncelet. The proof
used Pl̈ucker formulas and so did not apply to any nonsingular curve. Using contact
cubics, Hesse extended this result to arbitrary nonsingular quartics [213].

The first systematic study of the configuration of bitangents began by O. Hesse
[213],[214] and J. Steiner [396]. Although the Steiner’s paper does not contain proofs.
They considered azygetic and syzygetic sets, Steiner complexes of bitangents although
the terminology was introduced later by Frobenius [170]. Hesse’s approach used the
relationship between bitangents and Cayley octads. The notion of a Steiner group of
bitangents was introduced by A. Cayley in [62]. Weber [422] changed it to a Steiner
complex in order not to be confused with the terminology of group theory.

The fact that the equation of a nonsingular quartic could be brought to the form
(6.1) was first noticed by J. Plücker [320]. Equation (6.3) arising from a Steiner com-
plex appears first in Hesse’s paper [214], §9. The determinantal identity for bordered
determinants (6.23) appears in [213]. The number of hexads of bitangents with contact
points on a cubic curve was first computed by Hesse [213] and Salmon [356].

The equation of a quartic as a quadratic determinant appeared first in Plücker [318],
p. 228 and in Hesse [214], §10. Both of them knew that it can be done in63 different
ways. Hesse also proves that the 12 lines of a Steiner complex, consider as points in
the dual plane, lie on a cubic. More details appear in Roth’s paper [344] and Coble’s
book [87].

Using his determinantal identity Hesse showed that a linear symmetric determi-
nantal representation of a plane curve of degreed defines ad − 1-dimensional family
of contact curves of degreed − 1. However, he acknowledges in [213] that he did
not prove that general curve of degreed > 4 admits such a representation. This was
proved much later by Dixon [125]. For quartic curves Hesse proves the existence of a
determinantal representation in 36 differerent ways.

The relationship between seven points in the projective plane and bitangents of a
plane quartic was first given by S. Aronhold [10]. The fact that Hesse’s construction
and Aronhold’ construction are equivalent via the projection from one point of a Cayley
octad was first noticed by A. Dixon [126].

The relation of bitangents to theta functions with odd characteristics goes back to
B. Riemann [337] and Weber [422] and was developed later by A. Clebsch [77] and G.
Frobenius [170], [172]. In particular, Frobenius found a relationship between the sets
of seven points or Cayley octads with theta functions of genus 3. Coble’s book [87]
has a nice exposition of Frobenius’s work. The equations of bitangents presented in
Theorem6.1.5were first found by Riemann, with more details explained by Weber.

The theory of covariants and contravariants of plane quartics was initiated by A.
Clebsch in his fundamental paper about plane quartic curves [75]. In this paper he
introduces his covariant quarticS(C), the catalecticant invariant and shows that its
vanishing is necessary for writing the equation of a quartic as a sum of five powers
of linear forms. Much later G. Scorza [369] proved that the rational mapS on the
space of quartics is of degree 36 and related this number with the number of even
theta characteristics. The interpretation of the apolar conic as the parameter space of
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inscribed pentagons was given by G. Lüroth [274].
The groups of automorphisms of nonsingular plane quartic curves were classified

by S. Kantor [241] and A. Wiman [426]. The first two curves from our table were
studied earlier by F. Klein [249] and W. Dyck [147]. Of course, the Klein curve is
the most famous of those and appears often in the modern literature (see, for example,
[388]).

The classical literature about plane quartics is enormous. We refer to Ciani’s paper
[71] for a nice survey of classical results, as well as to his own contributions to the
study of plane quartics which are assembled in [72]. Other surveys can be found in
[308] and [161].



Chapter 7

Planar Cremona
transformations

7.1 Homaloidal linear systems

7.1.1 Linear systems and their base schemes

Here we recall some known definitions from the theory of linear systems and rational
maps (see [265]). LetX be a nonsingular irreducible variety of dimensionn anda be a
sheaf of ideals onX. A resolutionof a is a projective birational morphismπ : Y → X
of nonsingular varieties such thatπ−1(a) := a · OY ∼= OY (−F ) for some effective
divisor F ′ on Y . Using the universal property of blow-up of ideals, we see that a
resolution ofa is a resolution of singularities of the normalization of the blow-up ofa.

Let ν : B(a) → X be the normalization of the blow-up of the ideala so that
ν−1(a) = OY (−F ′) for some effective divisor. The idealā = σ∗OB(a)(−F ′) is equal
to theintegral closureof the ideala. In the case whenX is affine, it consists of regular
functions onX such that, considered as rational functions onB(a), they belong to the
spaceH0(B(a),OB(a)(−F ′)). By the universal property of the blow-up,π factors:
π = ν ◦ π′ : Y → B(a)→ X, henceσ∗OB(a)(−F ′) = π∗OY (−F ′) = a.

We will be applying this to the case whena is equal to the base ideal of a linear
system.

To fix the notation, let us remind the definition. LetL be an invertible sheaf onX
andV ⊂ H0(X,L) be a linear subspace of positive dimension. The projective space
|V | is identified with the set of divisorsDs of zeros of sectionss from V \ {0}. In case
V = H0(X,L) we employ the notation|L| or |D|, whereL ∼= OX(D). The set of
divisorsDs, s ∈ V \ {0}, is called thelinear systemdefined by the subspaceV , in the
case|V | = |L|, it is called acomplete linear system. We assume that|V | has nofixed
component(i.e. effective divisorF 6= 0 such thatV is contained in the image of the
natural mapH0(X,L(−E))→ H0(X,L)).

The evaluation map
ev : V ⊗OX → L (7.1)

197
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defines a map of sheaves
V ⊗ L−1 → OX .

Its image is an ideal sheafb(|V |) in OX which is called thebase idealof |V |. The
closed subscheme Bs(|V |) of X defined by this ideal is called thebase schemeof |V |
and its support is thebase locusof |V |. We have

Bs(|V |) = ∩D∈|V |D,

where eachD is identified with a closed subscheme ofX. Let s0, . . . , sm be a basis of
V andDi = Dsi

∈ |V | be the corresponding divisors. Then

Bs(|V |) =
m⋂
i=0

Di.

By definition,
V ⊂ H0(X,L ⊗ b(|V |)). (7.2)

Let ν : B → X be the normalization of the blow-up of the ideal sheafb(|V |) and
ν−1(b(|V |)) = OB(−F ′). Applying the projection formula, we get

σ∗(σ∗L(−F ′)) = L ⊗ b(|V |),

hence
H0(X,L ⊗ b(|V |)) = H0(B, σ∗L(−F ′)).

Combining with (7.2), we obtain an injective linear map

σ∗ : V ↪→ H0(B, σ∗L(−F ′)).

Let π : Y → X be a resolution ofb(|V |) (also called a resolution of|V |). Sinceπ
factors throughσ, and the direct image ofOY (−F ) in B is equal toOB(−F ′), we
obtain an inclusion

π∗ : V → H0(Y, π∗L(−F )). (7.3)

Let
φ|V | : X− → P(V )

be the rational map defined by the linear system|V |. The rational mapφ|V | is given
by assigning to a pointx ∈ X \ Bs(|V |) the hyperplane in|V | of sections vanishing
at x. A choice of a basis inV defines projective coordinates inP(V ) and the explicit
formula

φ|V |(x) = [s0(x), . . . , sm(x)]. (7.4)

The rational mapφ|V | is regular if and only if the base locus of|V | is empty, or equiv-
alently, the evaluation map (7.1) is surjective. In this case|V | is calledbase point free.
It is calledvery ampleif its base locus is empty andφ|V | defines a closed embedding.
Let π : Y → X be a resolution of|V |, then|π∗(V )| is a base-free linear system in
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the complete linear system|σ∗(L)(−F ))|. Let σ : Y → P(V ∨) be the corresponding
regular map. We obtain a commutative diagram

Y

π

����
��

��
�� σ

""E
EE

EE
EE

E

X
φ|V | //_______ P(V ).

(7.5)

It follows from the definition of a rational map defined by a base-free linear system that
σ∗OP(V ) = (π∗L)(−F )) andσ∗(H0(P(V ),OP(V )(1))) coincides with the image of
V in H0(Y, (π∗L)(−F )). If we assume that the base idealb(|V |) is integrally closed,
then we can identify the complete linear system|(π∗L)(−F )| with |L⊗b(|V |)|, where
we identifyH0(X,L ⊗ b(|V |)) with a subspace ofH0(X,L) via the inclusion of
sheavesb(|V |)→ OX .

Note that one can also define the proper inverse imagef−1(|V |) of a linear system
|V ′| ⊂ L′ onX ′ under a rational mapf : X− → X ′. We considerf as a regular map
f : dom(f) → X ′ and use that any invertible sheaf of dom(f) and its section can be
uniquely extended to an invertible sheaf and its section onX.

For any rational mapφ : X− → X ′, a commutative diagram

Y

π

����
��

��
�� σ

  A
AA

AA
AA

A

X
φ //_______ X ′,

(7.6)

whereπ is a birational projective morphism andσ is a morphism, is called aresolution
of indeterminacy pointsof f . We will always assume thatY is normal andπ is an
isomorphism over dom(f). Thus a resolution ofb(|V |) defines a resolution of the
rational mapφ|V |.

Consider a resolution of indeterminacy points of the rational mapφ = φ|V | :
X− → P(V ). Thenπ−1(|V |) defines a regular mapσ, henceπ−1(b(|V |)) is an
invertible sheaf. By the universal property of the blow-up, the mapπ factors through
the blow-up ofb(|V |). Note that the pair(π, σ) defines a regular map fromY to the
normalizationγ̄φ of the graph Γφ of f , the Zariski closure of the graph of the map
φ : dom(φ) → X ′ in X ×X ′. It always defines a resolution of indeterminacy points
of φ. Whenφ = φ|V |, the graphΓφ|V | is isomorphic to the blow-up ofb(|V |).

To define a rational mapφ : X → X ′ of projective varieties, we choose a very am-
ple sheafL′ onX ′ which defines a closed embeddingι : X ′ ↪→ Pn = |H0(X ′,L′)∨|.
Let |V | = φ−1(|L′|) ⊂ |φ−1(L′)|. Thenφ|V | = ι ◦ φ : X− → X ′ ↪→ Pn.

Proposition 7.1.1. Assume that the imageX ′ of φ|V | is linearly normal inP(V ) and
the mapφ|V | : X− → X ′ is of degree 1. Then the map

π∗ : V → H0(Y, (π∗L)(−F ))

is bijective. In particular, the base idealb = b(|V |) is integrally closed and

|V | = |H0(Y,L ⊗ b)|.
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Proof. Recall that a projective subvarietyZ ⊂ Pn is calledlinearly normal if it is a
normal variety and the canonical restriction mapH0(Pn,OPn(1)) → H0(Z,OZ(1))
is bijective. Letσ : Y → X ′ ⊂ P(V ) be the map given by the linear system|π∗(V )| ⊂
|π∗L(−F )|. We know thatπ−1(|V |) = σ∗(|OP(V )(1)|), so it suffices to prove that the
linear systemσ∗(|OP(V )(1)|) is complete. By Zariski’s Main Theorem ([206], Chapter
3, §11),σ∗OY = ι∗OX′ , whereι : X ′ ↪→ P(V ) is the closed embedding. We have

H0(Y, σ∗OP(V )(1)) = H0(P(V ), σ∗(σ∗OP(V )(1)))

= H0(P(V ),OP(V )(1)⊗ σ∗OY ) = H0(X ′,OX′(1)).

By definition ofφ, we have|V | = φ−1(|OP(V )(1)|), hence

π∗(|V |) = π∗(φ−1(|OP(V )(1)|)) = σ∗(|OP(V )(1)|)).

SinceX ′ is linearly normal, the restriction map

H0(P(V ),OP(V )(1))→ H0(X ′,OX′(1))

is bijective. Henceσ∗(|OP(V )(1)|) = |σ∗OP(V )(1)|. This proves the assertion.

Supposeφ = φ|V | is of finite degreedeg φ = [C(X) : f∗(C(X ′))], where
X ′ = φ(X) = σ(Y ) is the image of the rational mapf . Consider a resolution of
indeterminacy points off . Letπ−1(b(|V |)) = OY (−F ) for some effective divisorF .
It follows from the intersection theory on algebraic varieties (see [173], Chapter 4,§4)
that

deg f degX ′ =
∫
Y

(π∗(D)− F )n,

whereD ∈ |V | anddegX ′ is the degree ofX ′ in the projective spaceP(V ∨).
In particular,f is a birational map if and only if∫

Y

(π∗(D)− F )dimX = degX ′. (7.7)

7.1.2 Exceptional configurations

From now on we assume thatX is a nonsingular surface and|V | is a linear system
without fixed components defining a rational mapf : X → Pm. Let π : Y → X,σ :
Y → Pm be its resolution of indeterminacy points. Resolving singularities ofY we
assume thatY is a nonsingular surface. We will assume thatY is a minimal resolution
of singularities.

We know (see [206], Chapter V,§5) that any birational morphismπ : Y → X of
nonsingular projective surfaces can be factored into a composition of blow-ups with
centers at closed points. Let

π : Y = YN
πN−→ YN−1

πN−1−→ . . .
π2−→ Y1

π1−→ Y0 = X (7.8)

be such a factorization. Hereπi : Yi → Yi−1 is the blow-up of a pointxi ∈ Yi−1. Let

Ei = π−1
i (xi), Ei = (πi+1 ◦ . . . ◦ πN )∗(Ei). (7.9)
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The divisorsEi are called theexceptional configurationsof the birational morphism
π : Y → X. Note thatEi should be considered as an effective divisor, not necessary
reduced.

For any effective divisorD 6= 0 onX let multxi
D be defined inductively in the

following way. We set multx1D to be the usual multiplicity ofD atx1. It is defined as
the largest integerm such that the local equation ofD atx1 belongs to them-th power
of the maximal idealmX,x1 . Suppose multxiD is defined. We take the proper inverse
transformπ−1

i (D) of D in Xi and define multxi+1(D) = multxi+1π
−1
i (D). It follows

from the definition that

π−1(D) = π∗(D)−
N∑
i=1

miEi,

wheremi = multxi
D. Now supposeπ : Y → X is a resolution of indeterminacy

points of a rational mapf defined by a linear system|V | ⊂ |L|. Let

mi = min
D∈|V |

multxiD, i = 1, . . . , N.

If D0, . . . , Dt are divisors corresponding to a basis ofV , then

mi = min{multxi
D0, . . . ,multxi

Dt}, i = 1, . . . , N.

It is clear that

π−1(|V |) = π∗(|V |)−
N∑
i=1

miEi. (7.10)

Let F =
∑N
i=1miEi, thenπ−1(|V |) is contained in the linear system|π∗(L)(−F )|.

Let b = b(|V |). The ideal sheafπ−1(b) = b · OY is the base locus ofπ−1(|V |) and
hence coincides withOY (−F ). Applying (7.7), we obtain thatdeg φ|V | = (π∗(D) −
F )2, whereD ∈ |L| and we considerφ|V | as a rational map fromX onto its image
X ′. Suppose that|L| is base point-free. Then we can chooseD such that it does not
contain base points of|V |. This gives

D2 − F 2 = deg φ|V | degX ′. (7.11)

Lemma 7.1.2. Letπ : Y → X be a birational morphism of nonsingular surfaces and
Ei, i = 1, . . . , N, be its exceptional configurations. Then

Ei · Ej = −δij ,

Ei ·KY = −1.

Proof. This follows from the standard properties of the intersection theory on surfaces.
For any morphism of nonsingular projective surfacesφ : X ′ → X and two divisors
D,D′ onX, we have

φ∗(D) · φ∗(D′) = deg(φ)D ·D′. (7.12)
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Also, if C is a curve such thatφ(C) is a point, we have

C · φ∗(D) = 0. (7.13)

Applying (7.12), we have

−1 = E2
i = (πi+1 ◦ . . . ◦ πN )∗(Ei)2 = E2

i .

Assumei < j. Applying (7.13) by takingC = Ej andD = (πi+1 ◦ . . . ◦ πj−1)∗(Ei),
we obtain

0 = Ej · π∗j (D) = (πj+1 ◦ . . . ◦ πN )∗(Ej) · (πj+1 ◦ . . . ◦ πN )∗(D) = Ej · Ei.

This proves the first assertion.
To prove the second assertion, we use that

KYi+1 = π∗i (KYi) + Ei.

By induction, this implies that

KY = π∗(KY0) +
N∑
i=1

Ei. (7.14)

Intersecting with both sides and using (7.13), we get

KY · Ej =
( N∑
i=1

Ei
)
·Ej = E2

j = −1.

Assume now thatφ|V | : X− → X ′ is a birational isomorphism of nonsingular
projective algebraic surfaces. By Bertini’s Theorem ([206], Chapter II, Theorem 8.18),
a general hyperplane sectionH ′ ofX ′ is a nonsingular irreducible curve of some genus
g. Sinceπ−1(|V |) has no base points, by another Bertini’s Theorem ([206], Chapter
II, Corollary 10.9), its general memberH is a nonsingular irreducible curve. Since
H ∈ |σ∗(H ′)|, we obtain thatH is of genusg and the mapσ : H → σ(H) is an
isomorphism. Using the adjunction formula, we obtain

H ·KY = 2g − 2−H2 = H ′2 +H ′ ·KX′ −H2.

WriteH = π∗(D)− F and apply the projection formula, to obtain

H ·KY = D ·KX − F ·KY .

Applying (7.11) and the previous Lemma, we obtain

Proposition 7.1.3. Supposeφ|V | : X− → X ′ is a birational rational map of nonsin-
gular projective algebraic surfaces. LetD ∈ |L|. Then

(i) D2 −
∑N
i=1m

2
i = H ′2 = degX ′;

(ii) D ·KX −
∑N
i=1mi = H ′ ·KX′ .
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7.1.3 The bubble space of a surface

Consider a factorization (7.8) of a birational morphism of nonsingular surfaces. Note
that, if the morphismπ1 ◦ · · · ◦ πi : Yi → X is an isomorphism on a Zariski open
neighborhood of the pointxi+1, the pointsxi can be identified with its image inX.
Other points are calledinfinitely nearpoints inX. To make this notion more precise
one introdices the notion of thebubble spaceof a surfaceX.

Let B(X) be the category of birational morphismsπ : X ′ → X of nonsingular

projective surfaces. Recall that a morphism from(X ′ π′→ X) to (X ′′ π
′′

→ X) in this
category is a regular mapφ : X ′ → X ′′ such thatπ′′ ◦ φ = π′.

Definition 7.1. Thebubble spaceXbb of a nonsingular surfaceX is the factor set

Xbb =
( ⋃

(X′π′→X)∈B(X)

X ′
)
/R,

whereR is the following equivalence relation:x′ ∈ X ′ is equivalent tox′′ ∈ X ′′ if the
rational mapπ′′−1 ◦ π′ : X ′− → X ′′ maps isomorphically an open neighborhood of
x′ to an open neighborhood ofx′′.

It is clear that for anyπ : X ′ → X from B(X) we have an injective mapiX′ :
X ′ → Xbb. We will identify points ofX ′ with their images. Ifφ : X ′′ → X ′ is a
morphism inB(X) which is isomorphic inB(X ′) to the blow-up of a pointx′ ∈ X ′,
any pointx′′ ∈ φ−1(x′) is calledinfinitely near pointto x′ of the first order. This is
denoted byx′′ � x′. By induction, one defines an infinitely near point of orderk,
denoted byx′′ �k x′. This defines a partial order onXbb.

We say that a pointx ∈ Xbb is of heightk, if x �k x0 for somex0 ∈ X. This
defines theheight functionon the bubble space

ht : Xbb→ N.

Clearly,X = ht−1(0). Points of height zero are calledproper pointsof the bubble
space. They will be identified with points inX.

Let ZXbb
be the free abelian group generated by the setXbb. Its elements are

integer valued functions onXbb with finite support. They added up as functions with
values inZ. We write elements ofZXbb

as finite linear combinations
∑
m(x)x, where

x ∈ Xbb andm(x) ∈ Z (similar to divisors on curves). Herem(x) is the value of the
corresponding function atx.

Definition 7.2. A bubble cycleis an elementη =
∑
m(x)x of ZXbb

satisfying the
following additional properties:

(i) m(x) ≥ 0 for anyx ∈ Xbb;

(ii)
∑
x′�xmx′ ≤ mx.

We denote the subgroup of bubble cycles byZ+(Xbb).



204 CHAPTER 7. PLANAR CREMONA TRANSFORMATIONS

Clearly, any bubble cycleη can be written in a unique way as a sum of bubble
cyclesZk such that the support ofηk is contained in ht−1(k).

We can describe a bubble cycle by a weighted graph, called theEnriques diagram,
by assigning to each point from its support a vertex, and joining two vertices by an
ordered edge if one of the points is infinitely near to another point of the first order. The
edge points to the vertex of lower height. We weight each vertex by the corresponding
multiplicity. It is clear that the Enriques diagram is a tree.

Let ξ =
∑
mxx be a bubble cycle. We order the points from the support ofη such

thatxi � xj impliesj < i. We refer to such an order as anadmissible order. We write
ξ =

∑N
i=1mixi. Then we representx1 by a point onX and defineπ1 : X1 → X to

be the blow-up ofX with center atx1. Thenx2 can be represented by a point onX1

as either infinitely near of order 1 tox1 or as a point equivalent to a point onX. We
blow upx2. Continuing in this way, we get a sequence of birational morphisms:

π : Yξ = YN
πN−→ YN−1

πN−1−→ . . .
π2−→ Y1

π1−→ Y0 = X, (7.15)

whereπi+1 : Yi+1 → Yi is the blow-up of a pointxi ∈ Yi−1. Clearly, the bubble cycle
η is equal to the bubble cycle

∑N
i=1mixi.

LetL be an invertible sheaf onX andη be a bubble cycle with an admissible order
and (7.15) be the corresponding sequence of blow-ups. LetEi, i = 1, . . . , N, be the
exceptional configurations. Set

|L − η| := {D ∈ |L| : π∗(D)−
N∑
i=1

miEi ≥ 0}.

This is a linear subsystem of|L|. Its elementsD satisfy the following linear conditions.
For anyx ∈ η with ht(x) = 0 we must have multxD ≥ m(x). This condition depends
only on the equivalence class ofx. Let y ∈ η with ht(y) = 1 andy � x for some
x ∈ η. Then we must have multy(φ∗(D)−m(x)E) ≥ my, wherey is represented by
a point on the exceptional curveE of the blow-upφ : S′ → X with center atx. Then
we go to level2 and so on.

LetF =
∑N
i=1miEi andaη = πη(OYη

(−F )). It is an integrally closed ideal sheaf
onX equal to the integral closurēb of the base idealb of the linear system|L−η|. We
have

|L − η| = |H0(X,L ⊗ aη)|.

The following formula is known as the Hoskin-Deligne formula (see [117], [219]).

Proposition 7.1.4.

length(aη) := dimH0(X,OX/aη) = 1
2

N∑
i=1

mi(mi + 1).

The exact sequence

0→ L⊗ aη → L → L⊗OX/aη → 0
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shows that
dim |L − η| ≥ dim |L| − length(aη). (7.16)

Thus the Hoskin-Deligne formula justifies the count of constants, passing through a
point with multiplicitym imposesm(m+ 1)/2 conditions.

The following proposition follows from Proposition7.1.1.

Proposition 7.1.5.Let |V | be a linear system in|L|without fixed components. Suppose
it defines a birational isomorphism onto a projectively normal surfaceX ′ in P(V ∨).
There exists a unique bubble cycleη such that|V | = |L − η|.

7.1.4 Cremona transformations

A birational mapf : Pn− → Pn is called aCremona transformation. The group
Bir(Pn) of birational transformations ofPn is denoted by Cr(n) and is called theCre-
mona group. It is isomorphic to the group of automorphisms of the field of rational
functions onPn identical on constants. In other words

Cr(n) ∼= AutC(C(z1, . . . , zn)).

As any rational map defined onPn, it is given by ann-dimensional linear system
|V | ⊂ |OPn(d)| for somed ≥ 1. We assume that the linear system has no fixed
component. The numberd is called thedegreeof the Cremona transformation. A
choice of a basis inV gives an explicit formula:

φ : [x0, . . . , xn] 7→ [f0(x0, . . . , xn), . . . , fn(x0, . . . , xn)],

wherefi(t0, . . . , tn) are homogeneous polynomials of degreedwithout common factor
of positive degre. A linear system|V | defining a Cremona transformation is called a
homaloidal linear system. Its base idealb(|V |) is the sheaf of ideals associated to the
homogeneous ideal generated by the polynomialsf0, . . . , fn. Its base scheme is the
closed subscheme ofPn defined by the equations

f0 = . . . = fn = 0.

As we explained above there is a resolution of indeterminacy points ofφ

Y
π

~~}}
}}

}}
}} σ

  A
AA

AA
AA

A

Pn
φ //_______ Pn

, (7.17)

whereY is a nonsingular andπ andσ are birational morphisms. LetE be the excep-
tional divisor of the resolution defined by the propertyπ−1(b(|V |)) · OY ∼= OY (−E).
Applying (7.7), we have

σ∗(H)n = (π∗(dH)− E)n = 1, (7.18)

whereH is a hyperplane inPn.
Applying Proposition7.1.1, we obtain
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Proposition 7.1.6. The base idealb of a homaloidal linear system is integrally closed
and its proper inverse transform on a resolution of indeterminacy points coincides with
the complete linear system|π∗OPn(d)(−F )|, whereπ−1(b) = OY (−F ).

Let us specialize the previous Proposition to the case of a Cremona transformation
f : P2− → P2 of degreed. In this caseL′ ∼= OP2(1) andL ∼= OP2(d). Since
ωP2 ∼= OP2(−3), applying Proposition7.1.5gives

Proposition 7.1.7.

1 = d2 −
N∑
i=1

m2
i , (7.19)

3 = 3d−
N∑
i=1

mi. (7.20)

It follows from Proposition7.1.6that a homaloidal linear system is equal to a linear
system|OP2(d)− η|. The bubble cycleη is called the bubble cycle the homaloidal net
or of the Cremona transformation it defines.

Theorem 7.1.8. A bubble cycleη =
∑N
i=1mixi on P2 is equal to the bubble cycle of

a homaloidal net of degreed if and only if|OP2(d)− η| contains an irreducible divisor
and equalities(7.19) and (7.20) hold.

Proof. We have already proved the necessity of the conditions. Consider the linear
system|V | = |OP2(d)− η|. It follows from the conditions that

1
2d(d+ 1)− 2 = 1

2

∑
mi(mi + 1).

Applying the Hoskin-Deligne formula and (7.16), we obtain thatdim |V | ≥ 2. By
assumption, the linear system|V | has no fixed components. Letπ : Y = Yη → P2

andπ−1(|V |) be the proper transform of|V | onYη. It has no base points and defines a
regular mapσ : Yη → Pn, n ≥ 2, which resolvesφ. By (7.19) and (7.18) this map is
birational on its imageX ′ anddegX ′ = 1. This proves the assertion.

The vector(d;m1, . . . ,mN ) is called thecharacteristicof the homaloidal net. It
depends on an admissible order of the bubble cycleη.

Of course, not any vector(d;m1, . . . ,mN ) satisfying equalities (7.19) and (7.20)
is realized as the characteristic vector of a homaloidal net. There are other neces-
sary conditions for a vector to be realized as the characteristic(d;m1, . . . ,mN ) for a
homaloidal net. For example, ifm1,m2 correspond to points of height 0 of largest
multiplicity, a line through the points should intersect a general member of the net
non-negatively. This gives the inequality

d ≥ m1 +m2.

Next we take a conic through 5 points with maximal multiplicities. We get

2d ≥ m1 + · · ·+m5.
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Then we take cubics through 9 points, quartics through 14 points and so on. The first
case which can be ruled out in this way is(5; 3, 3, 1, 1, 1, 1, 1). It satisfies the equalities
from the Theorem but does not satisfy the conditionm ≥ m1 +m2. We will discuss
the description of characteristic vectors later in this chapter.

7.1.5 Nets of isologues and fixed points

Let φ : P2− → P2 be a Cremona transformation. Letp be a point in the plane.
Consider the locus of pointsCφ(p) such thatx, φ(x), p are collinear. This locus is
calledisologueof p, the pointp is called itscenter. In terms of equations, ifφ is given
by polynomials(f0(t), f1(t), f2(t)) of degreed andp = (a0, a1, a2), then

Cφ(p) : det

 a0 a1 a2

t0 t1 t2
f0(t) f1(t) f2(t)

 = 0. (7.21)

It follows immediately thatdegCφ(p) = d + 1 unlessCφ(p) = P2. As we will see
later, this happens for special De Jonquières transformations. From now on we assume
that this is not the case for any pointp. ThenCφ(p) is a curve of degreed+1. It passes
through the base points ofφ (because the last row in the determinant is identical zero
for such point) and it passes through thefixed pointsof φ, i.e. pointsx ∈ dom(φ) such
thatφ(x) = x (because the last two rows are proportional). AlsoCφ(p) contains its
centerp (because the first two rows are proportional).

One more observation is that

Cφ(p) = Cφ−1(p).

Whenp varies in the plane we obtain anet of isologues. If F is the one-dimensional
component of the set of fixed points, thenF is a fixed component of the net of iso-
logues.

Remark7.1.1. It follows from the definition that the isologue curveC(p) is projectively
generatedby the pencil of lines̀ throughp and the pencil of curvesφ−1(`). Recall
that given two pencilsP andP ′ of plane curve of degreed1 andd2 and a projective
isomorphismα : P → P ′, the union of pointsQ ∩ α(Q), Q ∈ P, is a plane curveC.
Assuming that the pencils have no common base points,C is a plane curve of degree
d1 + d2. To see this we take a general line` and restrictP andP ′ to it. We obtain
two linear seriesg1

d andg1
d′ on `. The intersectionC ∩ ` consists of points common

to divisors fromg1
d andg1

d′ . The number of such points is equal to the intersection of
the diagonal ofP1 × P1 with a curve of bidegree(d, d′), hence it is equal tod+ d′. It
follows from the definition thatC contains the base points of the both pencils.

Proposition 7.1.9. Assume thatφ has no infinitely near base points. Then the mul-
tiplicity of a general isologue curve at a base pointx of multiplicity m is equal to
m.

Proof. Let u, v be local affine parameters atx. For each homogeneous polynomial
p(t0, t1, t2) vanishing atx with multiplicity ≥ m, let [p]k := [p]k(u, v) be the degree
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k homogeneous term in the Taylor expansion atx. If V (f) is a general member of the
homaloidal net, then[f ]k = 0 for k < m and[fm] 6= 0. LetBm be the space of binary
forms of degreem in variablesu, v. Consider the linear map

α : C3 → Bm, (a, b, c) 7→ [(bt2− ct1)f0(t) + (ct0− at2)f1(t) + (at1− bt0)f2(t)]m.

The map is the composition of the linear mapC3 → C3 defined by(a, b, c) 7→ ([bt2 −
ct1]0, [ct0 − at2]0, [at1 − bt0]0) and the linear mapC3 → Bm defined by(a, b, c) 7→
[af0 + bf1 + cf2]m. The rank of the first map is equal to 2, the kernel is generated by
(t0]0, [t1]0, [t2]0). Since no infinitely near point is a base point of the homaloidal net,
the rank of the second map is greater or equal than2. This implies that the mapα is
not the zero map. Hence there exists an isologue curve of multiplicity equal tom.

Remark7.1.2. Coolidge claims in [94], p. 460, that the assertion is true even in the case
of infinitely near points. The following example shows that this is wrong. Consider the
quadratic transformation defined by(f0, f1, f2) = (t0t2 + t22, t1t2 + t20, t

2
2). It has

one base point(0, 1, 0) and two infinitely near points, all of multiplicity 1. In affine
coordinatesx = t0/t1, y = t2/t1 the equations of the curves are(xy+ y2, x2 + y, y2).
The affine equations of the isologue curves are linear combinations of the minors of
the matrix (

x 1 y
xy + y2 x2 + y y2

)
.

The minors arex3 − y2,−x2,−y3. We see that the multiplicity of all isologue curves
at the base point(0, 1, 0) are equal to 2.

Corollary 7.1.10. Assume that the homaloidal net has no infinitely near base points
and the net of isologues has no fixed component. Then the number of fixed points ofφ
is equal tod+ 2, counting with appropriate multiplicities.

Proof. Take two general pointsp, q in the plane. In particular, the linè= p, q does not
pass through the base points of the homaloidal net and the fixed points. Alsop 6= Cφ(q)
andq 6∈ Cφ(p). Consider a pointx in the intersectionCφ(p) ∩ Cφ(q) which is neither
a base point nor a fixed point. Thenp, q ∈ x, φ(x), hencex ∈ ` ∩ Cφ(p) ∩ Cφ(q).
Conversely, ifx ∈ ` ∩ Cφ(p) andx 6= p, thenx, φ(x), p are collinear and, sinceq ∈ `,
we get thatx, φ(x), q are collinear. This implies thatx ∈ Cφ(q). This shows that the
base points of the pencil of isologue curvesCφ(p), p ∈ `, consists of base points of
the homaloidal net, fixed points andd points on` (counted with multiplicities). The
base points of the homaloidal net contribute

∑N
i=1m

2
i to the intersection. Applying

Theorem7.1.8, we obtain that fixed points contributed+2 = (d+1)2−d−
∑N
i=1m

2
i

to the intersection. The multiplicity of a fixed points is the index of intersection of two
general isologue curves.

Note that the Cremona transformation from Remark7.1.2has no fixed points.

Remark7.1.3. The assumption thatφ has no infinitely near points implies that the
graphΓ of φ is a nonsingular surface inP2×P2 isomorphic to the blow-up of the base
scheme of the homaloidal net. Leth1, h2 be the preimages of the cohomology classes
of lines under the projections. They generate the cohomology ringH∗(P2 × P2,Z).
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Let [Γ] be the cohomology class ofΓ and[∆] be the cohomology class of the diagonal
∆. Write [Γ] = ah2

1 + bh1h2 + ch2
2. Since the preimage of a general point underφ is a

point, we have[Γ] ·h2
2 = 1. Replacingφ with φ−1, we get[Γ] ·h2

1 = 1. Since a general
line intersects the preimage of a general line atd points we get[Γ] · h1 · h2 = d. This
gives

[Γ] = h2
1 + dh1h2 + h2

2. (7.22)

Similarly, we get
[∆] = h2

1 + h1h2 + h2
2. (7.23)

This implies that
[Γ] · [∆] = d+ 2.

This confirms the assertion of the previous Corollary. In fact, one can use the argument
for another proof of the Corollary if we assume (that follows from the Corollary) that
no point in the intersectionΓ ∩∆ lies on the exceptional curves of the projections.

The net of isologue curves without fixed components is a special case of aLa-
guerre net. It is an irreducible net of plane curves of degreed generated by the curves
V (f0), V (f1), V (f2) such that

t0f1(t) + t1f2(t) + t2f(t) = 0. (7.24)

Replacing the first row in the determinant defining an isologue curve withx0, x1, x2

we see that the net of isologue curves is a Laguerre net.
Take two general curvesCλ = V (λ0f0 + λ1f1 + λ2f2) andCµ = V (µ0f0 +

µ1f1 + µ2f2) from the net. Letp = [a0, a1, a2] belong toCλ ∩ Cµ. Assume thatp
is not a base point. Then(f0(a), f1(a), f2(a)) is a nontrivial solution of the system of
linear equations with the matrix of coefficients equal toλ0 λ1 λ2

µ0 µ1 µ2

a0 a1 a2

 .

This implies that the pointsλ = [λ0, λ1, λ2], µ = [µ0, µ1, µ2], a = [a0, a1, a2] are
collinear. Thus all intersection points ofCλ andCµ besides base points lie on the line.
Conversely, suppose a non-base point pointa 6= λ, µ lies on a lineλ, µ and belongs to
the curveCλ. Then(f0(a), f1(a), f2(a)) is a non-trivial solution of

λ0t0 + λ1t1 + λ2t2 = 0, a0t0 + a1t1 + a2t2 = 0,

hence satisfies the third equationµ0t0+µ1t1+µ2t2 = 0. This shows thata ∈ Cλ∩Cµ.
Thus we see that the intersectionCλ ∩ Cµ consists ofd− 1 non-base points hence the
number of base points counting with multiplicities is equal tod2 − d+ 1.

Now letN be an irreducible net of plane curves of degreed with the property that
any two its general members intersect atd − 1 collinear points outside the base locus.
Let us see thatN is a Laguerre net. We follow the proof from [94], p. 423. Let
V (f1), V (f2) be two general members intersecting atd − 1 points on a linel = 0 not
passing through base points. Letpi be the residual point onV (fi). Choose a general
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line l1 = 0 passing throughp2 and a general linel2 = 0 passing throughp1. Then
V (l1f1) andV (l2f2) contain the same set ofd+ 1 points on the linel = 0, hence we
can write

l1f1 + cl2f2 = lf3 (7.25)

for some polynomialf3 of degreed and some constantc. For any base pointq of
the net, we havel1(q)f1(q) + cl2(q)f2(q) = l(q)f3(q). Sincel(q) 6= 0 andf1(q) =
f2(q) = 0, we obtain thatf3(q) = 0. Thus the curveV (f3) passes through each base
point and hence belongs to the netN . This shows thatf1, f2 andf3 define a basis of
N satisfying (7.25). Changing the basis of the net, we may assume thatl1 = t0, cl2 =
t1,−l = t2 andt0f1 + t1f2 + t2f3 = 0 proving thatN is a Laguerre net.

Example7.1.1. Take a net of cubic curves with 7 base points. Then it is a Laguerre net
since two residual intersection points of any two general members are on a line. One
can prove this invoking the Hilbert-Burch Theorem9.3.6. Applying this Theorem we
obtain that the homogeneous ideal is generated by the maximal minors of a matrix(

l1 l2 l3
φ1 φ2 φ3

)
,

whereli are linear forms andφi are quadratic forms. Since the minorsfi, in appropriate
order, satisfy the equationl1f1 − l2f2 + l3f3 = 0, we obtain that the net is a Laguerre
net.

7.2 First examples

7.2.1 Involutorial quadratic transformations

Taked = 2. We find
∑
m2
i = 1,

∑
mi = 3. This easily impliesm1 = m2 =

m3 = 1, N = 3. The birational transformation of this type is called aquadratic
transformation. The homaloidal linear system consists of conics passing through a
bubble cyclex1 +x2 +x3. We have encountered these transformations in section4.1.5

Assumex1, x2, x3 are proper points. They are not collinear, since otherwise all
conics have a common line component. Letg be a projective transformation which
sends the pointsx1, x2, x3 to the pointsp1 = [0, 0, 1], p2 = [0, 1, 0], p3 = [1, 0, 0].
ThenT ◦ σ−1 is given by the linear system of conics through the pointsp1, p2, p3. We
can choose a basis formed by the conicsV (t1t2), V (t0t2), V (t0t1). The corresponding
Cremona transformation is given by the formula

τ1 : [t0, t1, t2] 7→ [t1t2, t0t2, t0t1]. (7.26)

In affine coordinatesz1 = t1/t0, z2 = t2/t0, the transformation is given by

(x, y) 7→ (x−1, y−1). (7.27)

Thus any quadratic transformation with no infinitely near base points is equal toσ ◦
τ1 ◦ σ′ for some projective transformationsσ, σ′. Note that

τ1 ◦ τ1 : [t0, t1, t2] 7→ [t0t2t0t1, t1t2t0t1, t1t2t0t2) = t0t1t2[t0, t1, t2] = [t0, t1, t2].



7.2. FIRST EXAMPLES 211

Thusτ1 is an involution. However, in general,σ ◦ τ1 ◦ σ′ is not an involution. The
transformationτ1 is called thestandard quadratic transformation.

Assume now thatx1 andx2 are proper points andx3 �1 x1. Again, after a linear
change of variables, we may assume thatx1 = [0, 0, 1], x2 = [1, 0, 0] andx2 cor-
responds to the tangent directiont0 = 0. The homaloidal linear system consists of
conics which pass throughx1, x3 and have a common tangentt0 = 0 at x1. We can
take a basis formed by the conicsV (t0t2), V (t0t1), V (t21). The corresponding Cre-
mona transformation is given by the formula

τ2 : [t0, t1, t2] 7→ [t21, t0t1, t0t2]. (7.28)

Any quadratic transformation with one infinitely near base point is equal toσ ◦ τ2 ◦ σ′
for some projective transformationsσ, σ′.

In the affine coordinates as above, the transformation is given by

(x, y) 7→ (x−1, yx−2). (7.29)

Assume now thatx3 � x2 � x1. By a linear change of variables we may as-
sume thatx1 = [0, 0, 1], x2 corresponds to the tangent directiont0 = 0, andx3

lies on the proper transform of the linet2 = 0. The homaloidal linear system con-
sists of conics which pass throughx1 and have a common tangentt0 = 0, and after
blowing upx1 still intersect at one point. We can take a basis formed by the conics
V (t0t2 − t21), V (t20), V (t0t1). The corresponding Cremona transformation is given by
the formula

τ3 : [t0, t1, t2] 7→ [t20, t0t1, t
2
1 − t0t2]. (7.30)

Any quadratic transformation with one infinitely near base point is equal toσ ◦ t2 ◦ σ′
for some projective transformationsσ, σ′.

In affine coordinates, the transformation is given by

(x, y) 7→ (x, x2 − y). (7.31)

Note that the casex2 �1 x1, x3 �1 x1 is not realized since a general member of
the linear system is singular atx1.

It is easy to see that the quadratic transformationsτi are involutorial.

Proposition 7.2.1. Letφ be an involutorial quadratic Cremona transformation. Then
there exists a projective transformationg such thatg◦φ◦g−1 = τi for somei = 1, 2, 3.

Proof. We assume thatφ has no infinitely near base point and prove thati = 1 in this
case. We leave other cases to the reader. Letp1, p2, p3 be the base points. Choose a pro-
jective transformationg such thatg(p1) = [1, 0, 0], g(p2) = [0, 1, 0], g(p3) = [0, 0, 1].
Thenφ′ = g ◦φ◦g−1 is an involution and has the base points[1, 0, 0], [0, 1, 0], [0, 0, 1].
We can choose a basis of the homaloidal net of conics through these points in the form
(t1t2, t0t2, t0t1). This shows that the transformationφ′ is given by the formula

φ′(x) = [a1x1x2+b1x0x2+c1x0x1, a2x1x2+b2x0x2+c2x0x1, a3x1x2+b3x0x2+c3x0x1].

The image of the linet0 is the point[a1, a2, a3]. Sinceφ′ is an involution, this point
must be a base point ofφ′. Similarly, we obtain that the points[b1, b2, b3] and[c1, c2, c3]
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are base points. Thus we may assume that the transformationφ′ = σ ◦ τ1, whereσ is
the projective transformation which permutes the coordinates. It is directly verified by
iteration thatσ must be the identity.

Example7.2.1. The first historical example of a Cremona transformation is theinver-
sionmap. Recall the inversion transformation from the plane geometry. Given a circle
of radiusR, a pointx ∈ R2 with distancer from the center of the circle is mapped to
the point on the same ray at the distanceR/r. The following picture illustrates this in
the caseR = 1.

��������������������� 1r

1
r

•

•

In the affine planeC2 the transformation is given by the formula

(x, y) 7→ (
Rx

x2 + y2
,

Ry

x2 + y2
).

In projective coordinates, the transformation is given by the formula

(x0, x1, x2) 7→ (x2
1 + x2

2, Rx1x0, Rx2x0).

Note that the transformation has three base points[1, 0, 0], [0, 1, i], [0, 1,−i]. It is an
involution and transforms lines not passing through the base points to conics (circles
in the real affine plane). The lines passing though one of the base points are trans-
formed to lines. The lines passing through the origin(1, 0, 0) are invariant under the
transformation. The conicx2

1 + x2
2 −Rx2

0 = 0 is the closure of the set of fixed points.

Example7.2.2. LetC1 andC2 be two conics intersecting at 4 distinct points. For each
general pointx in the plane letφ(x) be the intersection of the polar linesPx(C1) and
Px(C2). Let us see that this defines an involutorial quadratic transformation with base
points equal to the singular points of three reducible conics in the pencil generated by
C1 andC2. It is clear that the transformationφ is given by three quadratic polynomials.
SincePx(C1)∩ Px(C2) is equal toPx(C)∩ Px(C ′) for any two different members of
the pencil, takingC to be a reducible conic andx to be its singular point, we obtain that
φ is not defined atφ. Since the pencil contains three reducible members, we obtain that
φ has three base points, henceφ is given by a homaloidal net and hence is a birational
map. Obviously,x ∈ Pφ(x)(C1)∩Pφ(x)(C2), henceφ is an involution. Note that fixed
points of the transformation are the base points of the pencil of conics.
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7.2.2 Symmetric Cremona transformations

Assume that the bubble cycle defining the homaloidal netη consists of points taken
with equal multiplicitym. The Cremona transformations defined by such a bubble
cycle are calledsymmetric. Then the necessary conditions are

d2 −Nm2 = 1, 3d−Nm = 3.

Multiplying the second equality bym and subtracting from the first one, we obtain
d2 − 3dm = 1 − 3m. This gives(d − 1)(d + 1) = 3m(d − 1). The cased = 1
corresponds to a projective transformation. Assumed > 1. Then we getd = 3m − 1
and hence3(3m− 1)−Nm = 3. Finally, we obtain

(9−N)m = 6, d = 3m− 1.

This gives us 4 cases.

(i) m = 1, N = 3, d = 2;

(ii) m = 2, N = 6, d = 5;

(ii) m = 3, N = 7, d = 8;

(iii) m = 6, N = 8, d = 17.

The first case is obviously realized by a quadratic transformation with 3 fundamental
points.

The second case is realized by the linear system of plane curves of degree 5 with
6 double points. Take a bubble cycleη = 2x1 + · · ·+ 2x6, where the pointsxi in the
bubble space do not lie on a proper transforms of a conic and no three lie on the proper
transforms of a line. I claim that the linear system|V | = |OP2(2) − η| is homaloidal.
The space of plane quintics is of dimension 20. The number of conditions for passing
through a point with multiplicity≥ 2 is equal to 3. Thusdim |OP2(2) − η| ≥ 2. It
is easy to see that the linear system does not have fixed components. For example,
if the fixed component is a line, it cannot pass through more than 2 points, hence
the residual components are quartics with 4 double points, obviously reducible. If
the fixed component is a conic, then it passes through at most 5 points, hence the
residual components are cubics with at least one double points and passing through the
remaining points. It is easy to see that the dimension of such linear system is at most
1. If the fixed component is a cubic, then by the previous analysis we may assume
that it is irreducible. Since it has at most one singular point, the residual conics pass
through at least 5 points and the dimension of the linear system is equal to zero (or it is
empty). Finally, if the fixed component is a quartic, then the residual components are
lines passing through 3 points, again a contradiction.

Applying Bezout’s Theorem, we see that two general members of our linear system
intersect at 1 point outside of the base locus, also their genus is equal to 0. Thus the
linear system is a homaloidal.

Assume that all base points are proper points in the plane. Then the linear system
blows down the six conics, each passing through 5 base points.
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A homaloidal cycle of type (iii) is realized by aGeiser involution. We consider an
irreducible netN of cubic curves through 7 general pointsx1, . . . , x7 in the plane. For
any general pointx the subpencil of the net which consists of cubics passing throughx
has the base pointsx1, . . . , x7, x, y. The Geiser transformation assigns tox the point
y. It is clear that this transformation is involutorial and its base points arex1, . . . , x7.
To determine its degree, consider the rational mapf : P2− → N∨ given by the net.
We have used this map already in Proposition6.3.5from Chapter 6. A pencil inN is a
point inN∨ and its preimage consists of the base points of the net outside of the base
locus ofN . Thusf is of degree 2. The restriction off to a general linè is given by
the linear series of degree 3 and dimension 2, henceC = f(`) is a rational cubic curve.
The preimage of a general line inN∨ is a member ofN , i.e. a cubic through the base
points. The preimage ofC is a curve of degree 9 passing through the base points with
multiplicity 3. It consists of the union of̀ and the curveφ(`). Thusdeg φ(`) is equal
to 8. Sinceφ is an involution,φ(`) is a general member of the homaloidal net defining
the Geiser involution.

A homaloidal cycle of type (iv) is realized by aBertini involution. We consider a
pencil of cubic curves through a general set of 8 pointsx1, . . . , x8. Let q be its ninth
base point. For any general pointx in the plane letE(p) be the member of the pencil
containingx. Let φ(x) be the residual point in the intersection ofE(p) with the line
x, q. The transformationx→ φ(x) is the Bertini involution. If we takeq as the origin
in the group law on a nonsingularE(p), thenφ(x) = −x.

Consider the webN of curves of degree 6 whose general member passes through
each pointpi with multiplicity 2. The restriction ofN to anyE(p) is a pencil with
fixed part2p1 + · · · + 2p8 and the moving partg1

2 . One of the members of thisg1
2

is the divisor2q cut out by2E(p′), p 6= p′. As we have seen in section6.3.3 of
Chapter 6, the members of this pencil are cut out by lines through the coresidual point
onE(p). This point must coincide with the base point of the pencil. Thus members
of the pencil are divisorsx + φ(x). Now we use thatN defines a degree 2 rational
mapf : P2− → Q ⊂ P3, whereQ is a singular irreducible quadric inP3. The image
of the pointq is equal to the singular point ofQ. The restriction off to a general
line ` is given by the linear system of dimension 3 and degree 3. Its image of a line
in Q is a rational curveR of degree 6 intersecting each line onQ at 3 points and not
passing through the singular point ofQ. It is easy to see that it is a singular curve of
arithmetic genus 4 cut out by a cubic hypersurface. Since the preimage of a hyperplane
section underf is a curve fromN , the preimage ofR is a curve of degree 18 passing
through the base points ofN with multiplicities6. As in the previous case, we see that
the preimage ofR is equal to the union of̀ andφ(`). Sinceφ(`) is a member of the
homaloidal linear system definingφ, we obtain that the characteristic ofφ is equal to
(17, 6, 6, 6, 6, 6, 6, 6, 6).

7.2.3 De Jonquìeres transformations

Assume that there exists a pointq in the support ofη with multiplicity d− 1. We have

d2 − (d− 1)2 −
N∑
i=2

= 1, 3d− (d− 1)−
N∑
i=2

= 3.
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This easily implies
∑N
i=2mi(mi − 1) = 0, hence

m2 = . . . = mN = 1, N = 2d− 1.

For simplicity of the exposition we assume that the base scheme is reduced, i.e. all
base points are proper. The homaloidal system must consist of curves of degreed
with singular pointq of multiplicity d − 1 (monoidal curves) passing simply through
2d− 2 pointsx1, . . . , x2d−2. The corresponding Cremona transformation is calledDe
Jonquìeres transformation.

Changing the projective coordinates in the source plane, we may assume thatq =
[0, 0, 1]. Then the equation of a curve from the homaloidal linear system must look like

f(t0, t1, t2) = t2fd−1(t0, t1) + fd(t0, t1) = 0. (7.32)

Since a general curve from the homaloidal linear system intersects a line through the
pointsq, xi 6= xj with degreed+1 > d, no such line can exist. The base points satisfy
the condition

• no three pointsq, xi, xj , 1 < i < j are collinear.

Let us see that this condition is sufficient for the existence of the homaloidal net. Count-
ing constants, we see that the linear system curves of degreed− 1 passing through the
pointsx1, . . . , x2d−2 with point of multiplicity d−2 atq is non-empty and its expected
dimension is equal to zero. If it contains an irreducible curve, Bezout’s Theorem im-
plies that the linear system consists of this curve. Suppose there is an reducible curve
C in the linear system. A general line through the pointq intersectsC at one point
p 6= q. This implies thatC = C1 + `1 + · · · + `k, whereC1 is an irreducible curve
of degreed− 1− k and`i are lines passing throughq. It follows from the assumption
thatC1 passes through at least2d − 2 − k pointsxi’s. Let us assume that it does not
happen, i.e.

• no proper subset of2d − 2 − k pointsxi’s lie on an irreducible curve of degree
d− 1− k with singular pointq of multiplicity d− 2− k.

One can show that this condition is equivalent to the condition that the inverse of the
transformation has no infinitely near base points.

Let Γ be the unique irreducible curve of degreed− 1 with singular point of multi-
plicity d − 2 at q and passing through the pointsx1, . . . , x2d−2. Its equation must be
of the form

g(t0, t1, t2) = t2gd−2(t0, t1) + gd−1(t0, t1) = 0, (7.33)

where the subscript indicates the degree of the binary form. The union of this curve
and the pencil of lines throughq is a pencil contained in the homaloidal net. LetV (f),
wheref as in (7.32), be a curve from the net which is not contained in the pencil. The
Cremona transformationφ : P2− → P2 defined by the homaloidal net is obtained by a
choice of a basis in the homaloidal net. Consider the Cremona transformation

φ : [t0, t1, t2] 7→ [t0g(t0, t1, t2), t1g(t0, t1, t2), f(t0, t1, t2)] (7.34)
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defined by the choice of a special basis. Any other transformation with the same homa-
loidal net is equal to the compositions ◦ φ, wheres is a projective transformation.

It is easy to see thats ◦ φ transforms the pencil of lines throughq to the pencil
of lines through the points(q). A De Jonquìeres transformation is calledspecial if
s(q) = q. A special transformation is given by the formula

[t0, t1, t2] 7→ [(a1t0 + a2t1)g, (a3t0 + a4t1)g, (a5t0 + a6t1)g + a7f ]. (7.35)

In affine coordinatesx = t1/t0, y = t2/t0 it is given by the formula

(x, y) 7→ (
ax+ b

cx+ d
,
r1(x)y + r2(x)
r3(x)y + r4(x)

, (7.36)

whereri(x) are certain rational functions inx. All such transformations form a sub-
group of the Cr(2). It is called aDe Jonquir̀eres subgroup. Conversely, if a Cremona
transformation leaves invariant a pencil of lines, then it can be considered as an au-
tomorphism of the fieldC(x, y) leaving invariant the subfieldC(x). It is easy to see
that it can be given by a formula (7.36). After homogenizing, we get a formula of type
(7.35).

It is easy to invert the transformationφ defined by formula (7.34). We find thatφ−1

is a De Jonquìeres transformation given by the formula

[t0, t1, t2] 7→ [t0g′(t0, t1, t2), t1g′(t0, t1, t2), f ′d(t0, t1, t2)], (7.37)

where

g′(t0, t1, t2) = t2gd−2(t0, t1)− fd−1(t0, t1)
f ′(t0, t1, t2) = −t2gd−1(t0, t1) + fd(t0, t1).

Observe thatφ−1 is also an De Jonquiéres transformation. Note that, iffd−1 = −gd−1,
the transformation is an involution.

Note the following properties of a De Jonquirères transformation. The linesp1, pi
are blown down to2d− 2 pointsq1, . . . , q2d−2. The curveΓ is blown down to a point
q′. If we resolve the map byπ : X → P2, then the exceptional curveπ−1(q) is mapped
to the curveΓ′ of orderd − 1 with (d − 2)-multiple pointy1. The exceptional curves
π−1(pi) are mapped to linesq′, yi.

It is easy to see that the net of isologues of a De Jonquir̀es transformation is defined
unless it is a special De Jonquir̀es transformation. Thus it hasd + 2 fixed points. Let
us find the locus of fixed points of the special transformationT given by (7.34).

[t0, t1, t2] 7→ [(a1t0 + a2t1)g + b1f, (a3t0 + a4t1)g + b2f, (a5t0 + a6t1)g + a7f)].
(7.38)

They satisfy

rank

(
t0 t1 t2
t0g t1g f

)
= 1. (7.39)

Since we are excluding the point[0, 0, 1], this condition is equivalent to the equation

t2g − f = t22gd−2(t0, t1) + t2gd−1(t0, t1) = t2fd−1(t0, t1) + fd(t0, t1). (7.40)
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The closure of this set is a plane curveX of degreed with a (d − 2)-multiple point
at q. It is birationally isomorphic to a hyperelliptic curve of genusg = d − 2. The
corresponding double coverf : X → P1 is defined by the projection[t0, t1, t2] 7→
[t0, t1]. Its branch points are given by the discriminant of the quadratic equation (in the
variablet2):

D = (gd−1 − fd−1)2 + 4fdgd−2.

We have2d− 2 = 2g + 2 points as expected.
A space construction of a De Jonquières transformation due to Cremona [105].

Consider a rational curveR of bidegree(1, d − 2) on a nonsingular quadricQ in P3.
Let L be a line onQ which intersectsR at d − 2 distinct points. For each pointx in
the space there exists a unique line joining a point onL and onR. In fact, the plane
spanned byx andL intersectsR at a unique pointr outsideR ∩ L and the linex, r
intersectsL at a unique points. Take two general planesΠ andΠ′ and consider the
following birational transformationφ : Π− → Π′. Take a general pointp ∈ Π, find
the unique line joining a pointr ∈ R and a points ∈ L. It intersectsΠ′ at the point
φ(p). For a general linè in Π the union of linesr, s, r ∈ R, s ∈ L, which intersect
` is a ruled surface of degreed. Its intersection withΠ′ is a curve of degreed. This
shows that the transformationφ is of degreed. It has2d− 2 simple base points. They
ared− 1 points inΠ′ ∩R andd− 1 points which are common to the lineΠ ∩Π′ and
thed−1 lines joining the pointL∩Π with the points in the intersectionΠ∩R. Finally
the pointL ∩ Π′ is a base point of multiplicityn − 1. IdentifyingΠ andΠ′ by means
of an isomorphism, we obtain a De Jonquières transformation.

7.2.4 De Jonquìeres involutions and hyperelliptic curves

LetC be a hyperelliptic curve of genusg andg1
2 be its linear system defining a degree 2

map toP1. Consider the linear system|D| = |g1
2+a1+· · ·+ag|, wherea1, . . . , ag ∈ C.

We assume that the divisorD1 = a1 + · · · + ag is not contained in the linear system
|(g − 2)g1

2 | or, equivalently,|KC −D| = ∅. By Riemann-Roch,dim |D| = 2, hence
the linear system|D| defines a mapϕ : C → P2. The image ofϕ is a plane curve
Hg+2 of degreeg + 2 with ag-multiple pointq, the image of the divisorD1.

By choosing projective coordinates such thatq = [0, 0, 1], we can writeHg+2 by
an equation

t22fg(t0, t1) + 2t2fg+1(t0, t1) + fg+2(t0, t1) = 0. (7.41)

Let ` be a general line throughq. It intersectsHg+2 at two pointsa, b not equal toq.
For any pointx ∈ l let y be the fourth point such that the pairs(a, b) and(x, y) are
harmonically conjugate.

We would like to define a birational mapT : P2− → P2 whose restriction to a gen-
eral line throughq takes a point to its harmonically conjugate. Notice that such map is
not defined at the points where a line` throughq is tangent toHg+2. it is also unde-
fined at the pointq. Let x1, . . . , x2g+2 be the tangency points. They correspond to the
ramification points of the double mapC → P1. It is a fair guess that the transformation
T must be a De Jonquières transformation defined by the linear system

|(g + 2)`− (g + 1)q − x1 − . . .− x2g+2| (7.42)
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and the curveHg+2 must be the curve of fixed points. Let us see this.
Consider the first polar ofHg+2 with respect to the pointq. Its equation is

t2fg(t0, t1) + fg+1(t0, t1) = 0.

We know that it passes through the tangency pointsx1, . . . , x2g+2. Also it follows from
the equation that it has ag-multiple point atq. It suggests that the first polar is the curve
Γ which was used to define a De Jonquières transformation. Thus we taked = g+2 and
gi = fi in equation (7.33). To show that we get an involutorial transformation, we need
to check that the curveV (t2fg+1(t0, t1) + fg+2(t0, t1)) belongs to the linear system
(7.42). The pointsxi = [1, ai, bi] belong to the intersection of curvesΓ andHg+2.
In appropriate coordinate system, we may assume thatbi 6= 0. Pluggingfg(1, ai) =
−fg+1(1, ai)/bi in the equation ofHg+2, we obtain

b2i (
−fg+1(1, ai)

bi
) + 2bifg+1(1, ai) + fg+2(1, ai)

= bifg+1(1, ai) + fg+2(1, ai) = 0.

Thus the curve given by the equation

t2fg+1(t0, t1) + fg+2(t0, t1) = 0

belongs to the linear system (7.42). So, we can define the De Jonquières transformation
by the formula

t′0 = t0
(
t2fg(t0, t1) + fg+1(t0, t1)

)
, (7.43)

t′1 = t1
(
t2fg(t0, t1) + fg+1(t0, t1)

)
,

t′2 = −t2fg+1(t0, t1)− fg+2(t0, t1).

This transformation is an involution. It follows from (7.40) that the curve of fixed
points is the curveHg+2. Its restriction to a linel = V (t1 − tt0) is given by the
formula

t′0 = t2fg(1, t) + t0fg+1(1, t),
t′1 = t

(
t2fg(1, t) + t0fg+1(1, t)

)
,

t′2 = −t2fg+1(1, t)− t0fg+2(1, t).

In affine coordinatest2/t0 on the linet1 − tt0 = 0, the transformation is

x 7→ y =
−xfg+1(1, t)− fg+2(1, t)
xfg(1, t) + fg+1(1, t)

.

This gives
xyfg(1, t) + (x+ y)fg+1(1, t) + fg+2(1, t) = 0. (7.44)

The pair(x, y) satisfies the quadratic equationz2 − z(x + y) + xy = 0 and the pair
(a, b), wherea, b are the points of intersection of the line` with Hg+2 satisfies the
quadratic equationz2fg(1, t) + 2zfg+1(1, t) + fg+2(1, t) = 0. It follows from the
definition (2.1) of harmonical conjugates that equation (7.44) expresses the condition
that the pairs(x, y) and(a, b) are harmonic.
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Definition 7.3. The Cremona transformation defined by the formula(7.43) is called the
De Jonquìeres involutiondefined by the hyperelliptic curveHg+2 (7.41). It is denoted
by IHg+2.

Remark7.2.1. By conjugating the De Jonquières involution with a Cremona transfor-
mation given by the formula

(x′0, x
′
1, x

′
2) = (xg+1

0 , xg0x1, fg(x0, x1)x2 + fg+1(t0, t1),

we may assume that the hyperelliptic curve (7.41) is given by the equation

t22t
2g
0 + fg+2(t0, t1)fg(t0, t1)− fg+1(t0, t1)2 = 0.

Formula (7.43) simplifies. In affine coordinates it is given by

y′ = −f(x)
y

, x′ = x, (7.45)

wheref(x) is the dehomogenized polynomialfg+2(t0, t1)fg(t0, t1) − fg+1(t0, t1)2.
For any polynomialf this defines an involutary Cremona transformation which is con-
jugate toIHg+2 for someg.

7.3 Elementary transformations

7.3.1 Segre-Hirzebruch minimal ruled surfaces

First let us recall the definition of a minimal rational ruled surfaceFn. If n = 0
this is the surfaceP1 × P1. If n = 1 it is isomorphic to the blow-up of one point
in P2 with the rulingπ : F1 → P1 defined by the pencil of lines through the point.
If n > 1, we consider the cone inPn+1 over a Veronese curvevn(P1) ⊂ Pn, i.e.,
we identify Pn−1 with a hyperplane inPn and consider the union of lines joining a
point not on the hyperplane with all points invn(P1). The surfaceFn is a minimal
resolution of its vertex. The exceptional curve of the resolution is a smooth rational
curveEn with E2

n = −n. The projection from the vertex of the cone extends to a
morphismp : Fn → P1 which defines a ruling (aP1-bundle). The curveEn is its
section, called theexceptional section. In the casen = 1, the exceptional curveE1 of
the blow-upF1 → P2 is also a section of the corresponding rulingp : F1 → P1. It is
also called the exceptional section.

We will see a little later that the rulingp : Fn → P1 is a projective vector bundle
isomorphic to the projectivization of the vector bundleV(OP1 ⊕ OP1(−n)). Recall
that for any locally free sheafE of rankr + 1 over a schemeS one defines thevector
bundleV(E) as the scheme Spec(Sym(E)) (see [206]). A local sectionU → V(E)
is defined by a homomorphism Sym(E) → O(U) of O(U)-algebras, and hence by
a linear mapE|U → O(U). Thus the sheaf of local sections of the vector bundle
V(E) is isomorphic to the sheafE∨. The fibreV(E)x over a pointx ∈ X is equal to
SpecS•(E(x)) = E(x)∨, whereE(x) = E ⊗OX,x

κ(x) is the fibre ofE atx considered
as a vector space over the residue fieldκ(x) of the pointx.
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Theprojective bundleassociated with a vector bundleV(E) (or a locally free sheaf
E) is the schemeP(E) = Proj(Sym(E)). It comes with the natural morphismp :
P(E)→ S. In the same notation as above,

P(E)|U ∼= Proj(Sym(Or+1
U )) ∼= Proj(O(U)[t0, . . . , tr]) ∼= PrU .

For any pointx ∈ X, the fibreP(E)x overx is equal toP(E(x)) = |E(x)∨|.
By definition of the projective spectrum, we have an invertible sheafOP(E)(1). Its

sections overp−1(U) are homogeneous elements of degree 1 in Sym(Or+1
U ). This

gives for anyk ≥ 0,
p∗OP(E)(k) ∼= Symk(E).

Note that for any invertible sheafL overS, we haveP(E ⊗ L) ∼= P(E) as schemes,
however the sheavesO(1) are different.

For any schemeπ : X → S overS a morphism ofS-schemesf : X → P(E)
is defined by an invertible sheafL overX and a surjectionφ : π∗E → L. Then we
trivialize P(E) overU , the surjectionφ definesr+1 sections ofL|π−1(U). This gives
a local mapx 7→ [s0(x), . . . , sr(x)] from π−1(U) to p−1(U) = PrU . These maps are
glued together to define a global map. We haveL = f∗OP(E)(1).

In particular, takingX = P(E) andf the identity morphism, we obtain a surjection
p∗E → OP(E)(1). When we push it down, we get the identity mapp∗p∗E = E →
p∗OP(E)(1).

Example7.3.1. Let us takeX = S. Then anS-morphismS → P(E) is a section
s : S → P(E). It is defined by an invertible sheafL onS and a surjectionφ : E → L.
We haveL = s∗OP(E)(1). LetN = Ker(φ). This is a locally free sheaf of rankr.

Example7.3.2. Takex = Spec(κ(x)) to be a point inS, andi : x→ S be its inclusion
in S. Then an invertible sheaf on a point is the constant sheafκx and i∗E = Ex =
E/mxE = E(x) is the fibre of the sheafE . The inclusion ofx in S is defined by a
surjectionE(x)→ κx, i.e. by a point in the projective spaceP(E(x)) = |E(x)∨|. This
agrees with the description of fibres of a projective bundle from above.

Lemma 7.3.1. Let s : S → P(E) be a section,L = s∗OP(E)(1) andN = Ker(E →
L). Let us identifyS with s(S). ThenN ⊗L−1 is isomorphic to the conormal sheaf of
s(S) in P(E).

Proof. Recall (see [206], Proposition 8.12) that for any closed embeddingi : Y ↪→ X
of aS-scheme defined by the ideal sheafI we have an exact sequence

I/I2 → i∗Ω1
X/S → Ω1

Y/S → 0, (7.46)

where the first homomorphism is injective ifi is a regular embedding (e.g.X,Y are
regular schemes). The sheafI/I2 is called theconormal sheafof Y in X and is
denoted byN∨

Y/X . Its dual sheaf is called the normal sheaf ofY in X and is denoted
byNY/X .

Also recall that the sheafΩ1
Pn of regular 1-forms on projective space can be defined

by the exact sequence (thedual Euler sequence)

0→ Ω1
Pn → OPn(−1)→ OPn → 0. (7.47)
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It is generalized to any projective bundle

0→ Ω1
P(E)/S → p∗E ⊗ OP(E)(−1)→ OP(E) → 0. (7.48)

Here the homomorphismp∗E ⊗ OP(E)(−1) → OP(E) is equal to the homomorphism
p∗E → OP(E)(1) after twisting by−1. Thus

Ω1
P(E)/S(1) ∼= Ker(p∗E → OP(E)(1)). (7.49)

Applying s∗ to both sides we get

s∗Ω1
P(E)/S(1) ∼= N . (7.50)

SinceΩ1
s(S)/S = {0}, we get from (7.46)

s∗(Ns(S)/P(E)) ∼= s∗Ω1
P(E)/S

∼= N ⊗L−1.

Let us apply this to minimal ruled surfacesFn. It is known that any locally free
sheaf overP1 is isomorphic to the direct sum of invertible sheaves. SupposeE is of
rank2. ThenE ∼= OP1(a)⊕OP1(b) for some integersa, b. Since the projective bundle
P(E) does not change if we tensorE with an invertible sheaf, we may assume that
a = 0 andb = n ≥ 0.

Proposition 7.3.2. Let p : S → P1 be a morphism of a nonsingular surface such that
all fibres are isomorphic toP1. SupposeS has a sectionE with E2 = −n for some
n ≥ 0, thenS ∼= Fn.

Proof. Let f be the divisor class of a fibre ofp ands be the divisor class of the section
E. For any divisor classd on S such thatd · f = a, we obtain(d − as) · f = 0.
If d represents an irreducible curveC, this implies thatp(C) is a point, and hence
C is a fibre. Writing every divisor as a linear combination of irreducible curves, we
obtain that any divisor class is equal toaf + bs for some integersa, b. Let us write
KP(E) = af + bs. By adjunction formula, applied to a fibre and the sections, we get

−2 = (af + bs) · f, −2 + n = (af + bs) · s = a− 2nb.

This gives
KS = (−2− n)f − 2s. (7.51)

Assumen 6= 0. Consider the linear system|nf + s|. We have

(nf + s)2 = n, (nf + s) · ((−2− n)f − 2s) = −2− n.

By Riemann-Roch,dim |nf + s| ≥ n + 1. The linear system|nf + s| has no base
points because it contains the linear system|nf | with no base points. Thus it defines a
regular mapP(E)→ Pn. Since(nf + s) · s = 0, it blows down the sections to a point
p. Since(nf + s) · f = a, it maps fibres to lines passing throughp. The degree of the
image is(nf + s)2 = n. Thus the image of the map is a surface of degreen equal to
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the union of lines through a point. It must be a cone over the Veronese curvevn(P1) if
n > 1 andP2 if n = 1. The map is its minimal resolution of singularities. This proves
the assertion in this case.

Assumen = 0. We leave to the reader to check that the linear system|f + s|maps
S isomorphically to a quadric surface inP3.

Corollary 7.3.3.
P(OP1 ⊕OP1(−n)) ∼= Fn.

Proof. The assertion is obvious ifE = OP1 ⊕ OP1 . Assumen > 0. Consider the
section ofP(E) defined by the surjection

φ : E = OP1 ⊕OP1(−n)→ L = OP1(−n), (7.52)

corresponding to the projection to the second factor. Obviously,N = Ker(φ) ∼= OP1 .
Applying Lemma7.3.1, we get

Ns(P1)/P(E)
∼= OP1(−n).

Now, if C is any curve on a surfaceX, its ideal sheaf is isomorphic toOX(−C) and
hence the conormal sheaf is isomorphic toOX(−C)/OX(−2C). This easily implies
that

NC/X = OX(C)⊗OC . (7.53)

In particular, we see that the degree of the invertible sheafNC/X on the curveC is
equal to the self-intersectionC2.

Thus we obtain that the self-intersection of the sections defined by the surjection
(7.52) is equal to−n. It remains to apply the previous Proposition.

7.3.2 Elementary transformations

Let p : Fn → P1 be a ruling ofFn (the unique one ifn 6= 0). Let x ∈ Fn andFx be
the fibre of the ruling containingx. If we blow upx, the proper inverse transform ofFx
is an exceptional curve of the first kind. We can blow it down to obtain a nonsingular
surfaceS′. The projectionp induces a morphismp′ : S′ → P1 with any fibre isomor-
phic toP1. LetEn be the exceptional section or any section with the self-intersection
0 if n = 0 (such a section is of course equal to a fibre of the second ruling ofF0).
Assume thatx 6∈ En. The proper inverse transform ofEn on the blow-up has the self-
intersection equal to−n, and its image inS′ has the self-intersection equal to−n+ 1.
Applying Proposition7.3.2, we obtain thatS′ ∼= Fn−1. This defines a birational map

elmx : Fn− → Fn−1.

Assume thatx ∈ En. Then the proper inverse transform ofEn on the blow-up has
self-intersection−n− 1 and its image inS′ has the self-intersection equal to−n− 1.
Applying Proposition7.3.2, we obtain thatS′ ∼= Fn+1. This defines a birational map

elmx : Fn− → Fn+1.

A birational map elmx is called anelementary transformation.
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Figure 7.1: Elementary transformation

Remark7.3.1. Let E be a locally free sheaf over a nonsingular curveB. As we ex-
plained in Example7.3.2, a pointx ∈ P(E) is defined by a surjectionE(x) → κ(x),
whereκ(x) is considered as the structure sheaf of the closed pointx. Composing
this surjection with the natural surjectionE → E(x), we get a surjective morphism of
sheavesφx : E → κ(x). Its kernel Ker(φx) is a subsheaf ofE which has no torsion.
Since the base is a regular one-dimensional scheme, the sheafE ′ = Ker(φx) is locally
free. Thus we have defined an operation on locally free sheaves. It is also called an
elementary transformation.

Consider the special case whenB = P1 andE = OP1 ⊕ OP1(−n). We have an
exact sequence

0→ E ′ → OP1 ⊕OP1(−n)
φx−→ κx → 0.

The pointx belongs to the exceptional sectionEn if and only if φx factors through
OP1(−n) → κx. ThenE ′ ∼= OP1 ⊕ OP1(−n − 1) andP(E ′) ∼= Fn+1. The inclusion
of sheavesE ′ ⊂ E gives rise to a rational mapP(E)− → P(E ′) which coincides with
elmx. If x 6∈ En, thenφx factors throughOP1 , and we obtainE ′ ∼= OP1(−1) ⊕
OP1(−n). In this caseP(E ′) ∼= P(OP1 ⊕ OP1(−n + 1)) ∼= Fn−1 and again, the
inclusionE ′ ⊂ E defines a rational mapP(E)− → P(E ′) which coincides with elmx.
We refer for this sheaf-theoretical interpretation of elementary transformation to [205].
A more general definition applied to projective bundles over any algebraic variety can
be found in [408].

Let x, y ∈ Fn. Assume thatx ∈ En, y 6∈ En and p(x) 6= p(y). Then the
composition

tx,y = elmy ◦ elmx : Fn− → Fn

is a birational automorphism ofFn. Here we identify the pointy with its image in
elmx(Fn). Similarly, we get a birational automorphismty,x = elmy ◦ elmx of Fn. We
can also extend this definition to the case wheny �1 x, wherey does not correspond to
the tangent direction defined by the fibre passing throughx or the exceptional section
(or any section with self-intersection0). We blow upx, theny, and then blow down
the proper transform of the fibre throughx and the proper inverse transform of the
exceptional curve blown up fromx.
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7.3.3 Birational automorphisms ofP1 × P1

We will often identifyF0 = P1 × P1 with a nonsingular quadricQ in P3. Let us fix a
pointx0 ∈ Q. The linear projectionpx0 : Q\{x0} → P2 defines a birational map. Let
l1, l2 be two lines onQ passing throughx0 andq1, q2 be their projections. The inverse
mapp−1

x0
blows up the pointsq1, q2 and blows down the proper transform of the line

q1, q2. For any birational automorphismT of P2 the compositionp−1
x0
◦ T ◦ px0 is a

birational transformation ofQ. This defines an isomorphism of groups

Φx0 : Bir(P2) ∼= Bir(Q), T 7→ p−1
x0
◦ T ◦ px0 .

Explicitly, choose coordinates inP3 such thatQ = V (z0z3−z1z2) andx0 = [0, 0, 0, 1].
The inverse mapp−1

x0
can be given by the formulas

[t0, t1, t2] 7→ [t20, t0t1, t0t2, t1t2].

If T is given by the polynomialsf0, f1, f2, thenΦx0(T ) is given by the formula

[z0, z1, z2, z3] 7→ [f0(z′)2, f0(z′)f1(z′), f0(z′)f2(z′), f1(z′)f2(z′)], (7.54)

wherefi(z′) = fi(z0, z1, z2).

Remark7.3.2. Let z1, . . . , zn ∈ Q beF -points ofT different fromx0. Let T−1(x0)
be a point ifT−1 is defined atx0 or the principal curve ofT corresponding tox0 with
x0 deleted if it contains it. The Cremona transformationΦx0(T ) is defined outside
the setq1, q2, px0(z1), . . . , px0(zn), px0(T

−1(x0)). Here, we also include the case of
infinitely near fundamental points ofT . If some ofzi’s lie on a lineli or infinitely near
to points onli, their image underpx0 is considered to be an infinitely near point toqi.

Let Aut(Q) ⊂ Bir(Q) be the subgroup of biregular automorphisms ofQ. It acts
naturally on Pic(Q) = Zf + Zg, wheref = [l1], g = [l2]. The kernel Aut(Q)o of
this action is isomorphic to Aut(P1) × Aut(P1) ∼= PGL(2) × PGL(2). The quotient
group is of order 2, and its nontrivial coset can be represented by the automorphismτ
of Aut(P1 × P1) defined by(a, b) 7→ (b, a).

Proposition 7.3.4. Let σ ∈ Aut(Q)o. If σ(x0) 6= x0, thenΦx0(σ) is a quadratic
transformation with fundamental pointsq1, q2, px0(σ

−1(x0)). If σ(x0) = x0, then
Φx0(σ) is a projective transformation.

Proof. It follows from Remark7.3.2thatΦx0(σ) has at most 3 fundamental points if
σ(x0) 6= x0 and at most 2 fundamental points ifσ(x0) = x0. Since any birational map
with less than 3 fundamental points (including infinitely near) is regular, we see that in
the second caseΦx0(σ) is a projective automorphism. In the first case, the image of
the lineq1, q2 is equal to the pointpx0(σ(x0)). ThusΦx0(σ) is not projective. Since it
has at most 3 fundamental points, it must be a quadratic transformation.

Remark7.3.3. In general, the product of quadratic transformations is not a quadratic
transformation. However, in our case all quadratic transformations from Aut(Q) have a
common pair of fundamental points and hence their product is a quadratic transforma-
tion. The subgroupΦx0(Aut(Q)) of Cr(2) = Bir(P2) is an example of a subgroup of
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the Cremona group Cr(2) which is isomorphic to an algebraic linear group. According
to a theorem of Enriques-Fano, any subgroup of Cr(2) which is isomorphic to a linear
algebraic group, is contained in a subgroup isomorphic to Aut(Fn) for somen. There
is even a generalization of this result to the group Cr(n) = Bir(Pn) (see [122]). Instead
of minimal ruled surfaces one considers smooth toric varieties of dimensionn.

Take two pointsx, y which do not lie on the same fibre of each projectionp1 :
F0 → P1, p2 : F0 → P1. Letx = F1 ∩ F2, y = F ′1 ∩ F ′2, whereF1, F

′
1 are two fibres

of p1 andF2, F
′
2 are two fibres ofp2. Thentx,y is a birational automorphism ofF0.

Proposition 7.3.5.Φx0(tx,y) is a product of quadratic transformations. Ifx0 ∈ {x, y},
thenΦx0(tx,y) is a quadratic transformation. Otherwise,Φx0(tx,y) is the product of
two quadratic transformation.

Proof. Assume first thaty is not infinitely near tox. Supposex0 coincides with one
of the pointsx, y, sayx0 = x. It follows from Remark7.3.2thatΦx0(T ) is defined
outsideq1, q2, px0(y). On the other hand, the image of the lineq1, px0(y) is a point.
Here we assume that the projectionF0 → P1 is chosen in such a way that its fibres are
the proper transforms of lines throughq1 underp−1

x0
. ThusΦx0(T ) is not regular with

at most threeF -points, hence is a quadratic transformation.
If x0 6= x, y, we composetx,y with an automorphismσ of Q such thatσ(x0) = x.

Then
Φx0(tx,y ◦ σ) = Φx0(tx0,σ−1(y)) = Φx0(tx,y) ◦ Φx0(σ).

By the previous lemma,Φx0(σ) is a quadratic transformation. By the previous argu-
ment,Φx0(tx0,σ−1(y)) is a quadratic transformation. Also the inverse of a quadratic
transformation is a quadratic transformation. ThusΦx0(tx,y) is a product of two
quadratic transformations.

Now assume thaty � x. Take any pointz 6= x. Then one can easily checks that
tx,y = tz,y ◦ tx,z. Here we viewy as an ordinary point ontx,z(F0).

Proposition 7.3.6.LetT : Fn− → Fm be a birational map. Assume thatT commutes
with the projections of the minimal ruled surfaces toP1. ThenT is a composition of
biregular maps and elementary transformations.

Proof. Let (X,π, σ) be a resolution ofT . Let p1 : Fn → P1 andp2 : Fm → P1 be
the projections. We have

φ = p1 ◦ π = p2 ◦ σ : X → P1.

Let a1, . . . , ak be points inP1 such thatCi = φ−1(ai) = π∗(p−1
1 (ai)) is a reducible

curve. We haveπ∗(Ci) = p−1
1 (ai) andσ∗(Ci) = p−1

2 (ai). LetEi be the unique com-
ponent ofCi which is mapped surjectively top−1

1 (ai) andE′i be the unique component
of Ci which is mapped surjectively top−1

2 (ai). Letπ be a composition of blow-ups of
pointsx1, . . . , xN and letf be a composition of blow-ups of pointsy1, . . . , yN . The
preimages inX of the maximal points (with respect to the partial order on the set of
infinitely near points) are irreducible curves with self-intersection−1. LetE be a com-
ponent ofCi with E2 = −1 which is different fromEi, E′i. We can reorder the order
of the blow-ups to assume thatπ(E) = xN andf(E) = yN . LetπN : X → XN−1 be
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the blow-upxN andfN : X → YN−1 be the blow-upyN . SinceπN andfN are given
by the same linear system, there exists an isomorphismt : XN−1

∼= YN−1. Thus, we
can replace the resolution(X,π, f) with

(XN−1, π1 ◦ . . . ◦ πN−1, f1 ◦ . . . ◦ fN−1 ◦ t).

Continuing in this way, we may assume thatxN andyN are the only maximal points
of π andσ such thatp1(xN ) = p2(yN ) = ai. LetE = π−1(xN ) andE′ = f−1(yN ).
Let R 6= E′ be a component ofφ−1(ai) which intersectsE. Let x = π(R). Since
xN � x, and no other points is infinitely near tox, we getR2 = −2. Blowing down
E, we get that the image ofR has self-intersection−1. Continuing in this way we get
two possibilities

Ci = Ei + E′i, E2
i = E′i

2 = −1, Ei · E′i = 1,

Ci = Ei +R1 + · · ·+Rk + E′i, E2
i = E′i

2 = −1,

R2
i = −1, Ei ·R1 = . . . = Ri ·Ri+1 = Rk · E′i = 1

and all other intersections are equal to zero.
In the first case,T = elmxN

. In the second case, letg : X → X ′ be the blow-down
Ei, let x = π(R1 ∩ Ei). ThenT = T ′ ◦ elmx, whereT ′ satisfies the assumption of
the proposition. Continuing in this way we writeT as the composition of elementary
transformations.

7.3.4 De Jonquìeres transformations again

Let T be a De Jonquières transformation of degreed with fundamental pointsp1, . . . ,
p2d−1. Consider the pencil of lines throughp1. The restriction of the linear system
|d` − η| to a general line from this pencil is of degree 1, and hence maps this line to a
line. Since each such linèintersectsX at 2 points different fromp1, the image of̀ is
equal tò . ThusT leaves any line from the pencil invariant or blows down it to a point.
Let us blow upp1 to get a birational mapπ1 : S1 → P2. The surfaceS1 is isomorphic
to F1. Its exceptional section isE1 = π−1

1 (p1). The proper transform of the curveΓ
is a nonsingular curvēΓ. It intersectsE1 at d − 1 pointsz1, . . . , z2d−2 corresponding
to the branches ofΓ atp1. Let l1, . . . , ld−1 be the fibres of the projectionφ : S1 → P1

corresponding to the linesp1, pi, wherei = 2, . . . , 2d−1. The curveC̄ passes through
the pointsp̄i = π−1

1 (pi) ∈ li. Let π : X → P2, f : X → P2 be the resolution of
T obtained by blowing up the cycleη. The map factors throughπ′ : X → S which
is the blow-up with center at the points̄pi. The proper transform ofΓ′ = Γ̄ in X
is an exceptional curve of the first kind. The mapf blows down the proper inverse
transforms of the fibresli and the curveΓ′. If we stop before blowing downΓ′ we get
a surface isomorphic toS1. ThusT can be viewed also as a birational automorphism
of F1 which is the composition of2d− 2 elementary transformations

F1

elmp̄2
− → F0− → F1− → . . .− → F0− → F1.

If we takex0 to be the image ofl1 under elm̄p2 , to define an isomorphismΦx0 :
Bir(F0)→ Bir(P2), then we obtain thatT = Φx0(T

′), whereT ′ is the composition of



7.4. CHARACTERISTIC MATRICES 227

transformationstp̄i,p̄i+1 ∈ Bir(F0), wherei = 3, 5, . . . , 2d− 3. Applying Proposition
7.3.5, we obtain the following.

Theorem 7.3.7.A De Jonquìeres transformation is equal to a composition of quadratic
transformations.

7.4 Characteristic matrices

Consider a resolution (7.6) of a Cremona transformationφ

X
π

~~}}
}}

}}
}

σ

  B
BB

BB
BB

B

P2
φ //_______ P2.

Obviously, it gives a resolution of the inverse transformationφ−1. The roles ofπ and
σ are interchanged. Let

σ : X = XM
σM−→ XM−1

σM−1−→ . . .
σ2−→ X1

σ1−→ X0 = P2 (7.55)

be the factorization into a sequence of blow-ups similar to the one we had forπ. It
defines a bubble cycleξ and the homaloidal net|d′h−ξ| definingφ−1. LetE ′1, . . . , E ′M
be the corresponding exceptional configurations. We will always take forX a minimal
resolution. It must be isomorphic to the minimal resolution of the graph ofφ.

Lemma 7.4.1. LetE1, . . . , EN be the exceptional configurations forπ andE ′1, . . . , E ′M
be the exceptional configurations forσ. Then

N = M.

Proof. Let S be a nonsingular projective surface andπ : S′ → S be a blow-up map.
Then the Picard group Pic(S′) is generated by the preimageπ∗(Pic(S)) and the divisor
class[E] of the exceptional curve. Also we know that[E] is orthogonal to any divisor
class fromπ∗(Pic(S)) and this implies that

Pic(S′) = Z[E]⊕ π∗(Pic(S)).

In particular, takingS = P2, we obtain, by induction that

Pic(X) = π∗(Pic(P2))
N⊕
i=1

[Ei].

This implies that Pic(X) is a free abelian group of rankN + 1. Replacingπ with σ,
we obtain that the rank is equal to1 +M . ThusN = M .
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Remark7.4.1. It could happen that all exceptional configurations ofπ are irreducible
(i.e. no infinitely points are used to defineπ) but some of the exceptional configurations
of σ are reducible. This happens in the case of the transformation given in Exercise
7.2.

Definition 7.4. An ordered resolutionof a Cremona transformation is the diagram
(7.6) together with an order of a sequence of the exceptional curves forσ andπ.

Any ordered resolution ofT defines two bases in Pic(X). The first basis is

e′ : e′0 = σ∗(`), e′1 = [E ′1], . . . , e′N = [E ′N ].

The second basis is

e : e0 = π∗(`), e1 = [E1], . . . , eN = [EN ].

Write

e′0 = de0 −
N∑
i=1

miei, e′j = dje0 −
N∑
i=1

mijei, j > 0.

The matrix

A =


d d1 . . . dN
−m1 −m11 . . . −m1N

...
...

...
...

−mN −mN1 . . . −mNN

 (7.56)

is called thecharacteristic matrixof T with respect to an ordered resolution. It is the
matrix of change of basis frome to e′.

The first column ofA is the vector(d,−m1, . . . ,−mN ), where(d;m1, . . . ,mN )
is the characteristic ofφ. We write other columns in the form(dj ,−m1j , . . . ,−mNj).
They describe the exceptional configurationsE ′j of σ. If dj > 0, then images ofE ′j in
P2 under the mapπ is called atotal principal curvesor total P-curvesof φ. Its degree
is equal todj . It passes through the base pointsxk of φ with multiplicities≥ mjk.
The equality takes place if and only if no irreducible component ofEj is mapped to
xk under the mapX → Xk−1. The totalP -curve could be reducible, its irreducible
components areprincipal curvesor P -curves.

Note that eachE ′i contains an irreducible componentEi with self-intersection−1.
Under the mapπ it cannot be mapped to a point. In fact, assume that it is blown down
to a pointxi, a base point of height 1 ofφ. Since the self-intersection increases under
blowing-down,Ei = Ej for somej. Let α : X → X ′ be the blowing-down ofEi.
Thenπ ◦ α−1 : X ′ → P2 is a regular map, andπ ◦ α−1 : X ′ → P2 is a regular map.
ThusX ′ is nonsingular and resolves the indeterminacy points ofφ. This contradiction
proves the claim and shows that the image ofEi is a principal curve.

The characteristic matrix defines a homomorphism of free abelian groups

φA : Z1+N → Z1+N .
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We equipZ1+N with the standard hyperbolic inner product where the norm of a vector
v = (a0, a1, . . . , aN ) defined by

v2 = a2
0 − a2

1 − . . .− a2
N .

The groupZ1+N equipped with this integral quadratic form is customary denoted by
I1,N . It is an example of aquadratic lattice, a free abelian group equipped with an
integral valued quadratic form. We will discuss quadratic lattices in Chapter 9. Since
both basese ande′ are orthonormal with respect to the inner product, we obtain that
the characteristic matrix is orthogonal, i.e. belongs to the group O(I1,N ) ⊂ O(1, N).

Recall that the orthogonal group O(1, N) consists ofN + 1 ×N + 1 matricesM
such that

M−1 = JN+1 · tM · JN+1, (7.57)

whereJN+1 is the diagonal matrix diag[1,−1, . . . ,−1].
In particular, the characteristic matrixA−1 of φ−1 satisfies

A−1 = J ·At · J =


d m1 . . . mN

−d1 −m11 . . . −mN1

...
...

...
...

−dN −m1N . . . −mNN

 (7.58)

Remark7.4.2. A Cremona map given by polynomials(f0, f1, f2) can be considered
as a regular mapC3 → C3 of degree 1. Its divisor of critical points is equal to the
jacobian determinant

jac(f0, f1, f2) := det


∂f0
∂t0

∂f0
∂t1

∂f0
∂t2

∂f1
∂t0

∂f1
∂t1

∂f1
∂t2

∂f2
∂t0

∂f2
∂t1

∂f2
∂t2

 = 0.

Since the degree of the jacobian is equal to3d−3 we expect that the degree of the union
of principal curves is equal to3d− 3. Using (7.58), we find that(d, d1, . . . , dN ) is the
characteristic vector of the transformationφ−1. Hence it satisfies3d −

∑N
i=1 di = 3.

So, we confirm that the sum
∑N
i=1 di of the degrees of principal curves is equal to

3d− 3.

Recall that, for any rational mapφ : X ′− → X of irreducible algebraic varieties,
one can define the imageφ(Z ′) of an irreducible subvariety ofX ′ and the preimage
φ−1(Z) of an irreducible subvariety ofX. We choose an open subsetU ′ whereφ is
defined, and defineφ(Z) to be the closure ofφ(U ′ ∩ Z ′) in X. Similarly, we choose
an open subsetU of X, whereφ−1 is defined and defineφ−1(Z) to be equal to the
closure ofφ−1(U ∩ Z) in X.

The image of a total principal curveπ(Ej) under the Cremona map is equal to the
image of the base pointyj of φ−1 in the plane. It is the unique base pointyi of φ−1 of
height0 such thatyj � yi. Conversely, any irreducible curve blown down to a point
underφ coincides with aP -curve.
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Proposition 7.4.2. Let φ : P2− → P2 be a Cremona transformation withF -points
x1, . . . , xN andF -pointsy1, . . . , yN of φ−1. LetA be the characteristic matrixA.
LetC be an irreducible curve onP2 of degreen which passes through the pointsyi
with multiplicitiesni. Let n′ be the degree ofφ(C) and letn′i be the multiplicity of
φ(C) at xi. Then the vectorv = (n′,−n′1, . . . ,−n′N ) is equal toA−1 · v, where
v = (n,−n1, . . . ,−nN ).

Proof. Let (X,π, σ) be a minimal resolution ofφ. The divisor class of the proper
inverse transformπ−1(C) in X is equal tov = ne0−

∑
niei. If we rewrite it in terms

of the basis(e′0, e
′
1, . . . , e

′
N ) we obtain that it is equal tov′ = n′e0 −

∑
n′iei, where

v′ = Av. Now the image ofπ−1(C) underσ coincides withφ(C). By definition of the
curvesEi, the curveφ−1(C) is a curve of degreen′ passing through the fundamental
pointsyi of φ−1 with multiplicitiesn′i.

Let C be a principal curve ofφ andce0 −
∑N
i=1 ci be the class ofπ−1(C). Let

v = (c,−c1, . . . ,−cN ). Sinceφ(C) is a point,A · v = −e′j for somej.

Example7.4.1. The following matrix is a characteristic matrix of the standard quadratic
transformationτ1 or its degenerationsτ2, τ3.

A =


2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

 . (7.59)

Consider the caseφ = τ1. Sinceφ = φ−1, the fundamental pointsp1, p2, p3 of φ
andφ−1 are the same and we choose the same order on them. LetE1, E2, E3 be the
exceptional curves ofπ andE′1, E

′
2, E

′
3 be the exceptional curves ofσ. We know that

T blows down the linè ij = pi, pj to the pointpk, where{i, j, k} = {1, 2, 3}. The
linear system|σ∗(e′0)| is |2e0 − e1 − e2 − e3|, the proper inverse transform of`ij in X
has the divisor classe0 − ei − ej . Thuse′k = e0 − ei − ej . This gives us the matrix
(7.59).

Now assume thatφ = τ2. The resolutionπ : X → P2 is the composition of the
blow-up of the pointp1 = [0, 0, 1], followed by blowing up an infinitely near pointp2

corresponding to the tangent directiont0 = 0, and followed by the blowing up the point
p3 = [1, 0, 0]. LetE1 = E1+E2, E2 = E2, E3 = E3. HereE2

1 = −2, E2
2 = E2

3 = −1.
One sees easily that under the mapσ, the proper transform of the linet0 = 0 is blown
down to the pointp3, the proper transform of the linex1 together with the curveE1 is
blown down to the pointp1. Thuse′1 = (e0 − e1 − e3) + (e1 − e2) = e0 − e2 − e3,
e′2 = e0 − e1 − e3, e′3 = e0 − e1 − e2. We get the same matrix. Note that the second
column describes theP -curve as a curve from the linear system|` − p2 − p3|. Here
p2 is infinitely near point top1. By definition,p2 + p3 is not a bubble cycle sincep1 is
absent. So,|`− p2 − p3| is not representing a curve onP2. In fact,E ′1 is reducible and
contains a component which is blown down to a point underπ.

Now assumeφ = τ3. The resolutionπ is the composition of the blow-up ofp =
[0, 0, 1], followed by the blow-up the infinitely near point corresponding to the direction
t0 = 0, and then followed by the blow-up the intersection point of the proper transform
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of the linel = V (t0) with the exceptional curve of the first blow-up. We haveE1 =
E1+E2+E3, E2 = E2+E3, E3 = E3. HereE2

1 = E2
2 = −2, E2

3 = −1. The blowing
downσ : X → P2 consists of blowing down the proper inverse transform of the line`
equal toe0−e1−e2, followed by the blowing down the image ofE2 and then blowing
down the image ofE1. We havee′1 = (e0−e1−e2)+(e2−e3)+(e1−e2) = e0−e2−e3,
e′2 = (e0 − e1 − e2) + (e2 − e3) = e0 − e1 − e3, e′3 = e0 − e1 − e2. Again we get the
same matrix.

Observe that the canonical classKX is an element of Pic(X) which can be written
in both bases as

KX = −3e0 +
N∑
i=1

ei = −3e′0 +
n∑
i=1

e′i.

This shows that the matrixA considered as an orthogonal transformation ofI1,N leaves
the vector

kN = −3e0 + e1 + · · ·+ eN = (−3, 1, . . . , 1)

invariant. Here,ei denotes the unit vector inZ1+N with (i+ 1)-th coordinate equal to
1 and other coordinates equal to zero.

The matrixA defines an orthogonal transformation of(ZkN )⊥.

Lemma 7.4.3. The following vectors form a basis of(ZkN )⊥.

N ≥ 3 : α0 = e0 − e1 − e2 − e3, αi = ei − ei+1, i = 1, . . . , N,
N = 2 : α0 = e0 − 3e1, α1 = e1 − e2

N = 1 : α0 = e0 − 3e1.

Proof. Obviously, the vectorsαi are orthogonal to the vectorkN . Suppose a vectorv =
(a0, a1, . . . , aN ) ∈ (ZkN )⊥. Thus3a0+

∑N
i=1 ai = 0, hence−aN = 3a0+

∑N−1
i=1 ai.

AssumeN ≥ 3. We can write

v = a0(e0 − e1 − e2 − e3) + (a0 + a1)(e1 − e2) + (2a0 + a1 + a2)(e2 − e3)

+
N−1∑
i=3

(3a0 + a1 + · · ·+ ai)(ei − ei+1).

If N = 2, we write v = a0(e0 − 3e1) + (3a0 + a1)(e1 − e2). If N = 1, v =
a0(e0 − 3e1).

It is easy to compute the matrixQN = (aij) of the restriction of the inner product
to (ZkN )⊥ with respect to the basis(α0, αN−1). We have

(−8), if N = 1,
(
−8 3
3 −2

)
, if N = 2.

If N ≥ 3, we have

(aij) =


−2 if i = j,

1 if |i− j| = 1 andi, j ≥ 1,

1 if i = 0, j = 3,
0 otherwise.
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ForN ≥ 3 the matrixA + 2IN is the incidence matrix of the following graph (the
Coxeter-Dynkin diagramof typeT2,3,N−3).

• • • • • •

•

· · ·
α1 α2 α3 α4 αN−2 αN−1

α0

For3 ≤ N ≤ 8 this is the Coxeter-Dynkin diagram of the root system of the semi-
simple Lie algebrasl3 ⊕ sl2 of typeA2 + A1 if N = 3, of sl5 of typeA4 if N = 4,
of so10 of typeD5 if N = 5 and of the exceptional simple Lie algebra of typeEN if
N = 6, 7, 8.

We have
k2
N = 9−N.

This shows that the matrixQN is negative definite ifN < 9, semi-negative definite
with one-dimensional null-space forN = 9, and of signature(1, N − 1) for N ≥ 10.
By a direct computation one checks that its determinant is equal toN − 9.

Proposition 7.4.4. AssumeN ≤ 8. There are only finitely many posssible character-
istic matrices. In particular, there are only finitely many possible characteristics of a
homaloidal net with≤ 8 base points.

Proof. LetG be the group of real matricesM ∈ GL(N) such thattMQNM = QN .
SinceQN is negative definite forN ≤ 8, the groupG is isomorphic to the orthogonal
group O(N). The latter group is a compact Lie group. A characteristic matrix belongs
to the subgroup O(QN ) = G ∩ GL(N,Z). Since the latter is discrete, it must be
finite.

There are further properties of characteristic matrices for which we refer to [1] for
the modern proofs. The most important of these is the followingClebsch Theorem.

Theorem 7.4.5.LetA be the characteristic matrix. There exists a bijectionβ : N→ N
such that for any setI of columns withdi = n, i ∈ I, there exists a set of rowsJ with
#I = #J such thatµj = β(a), j ∈ J .

Note that subtracting two columns (or rows) with the same first entry, and taking
the inner product square, we easily get that they differ only at two entries by±1. This
implies a certain symmetry of the matrix if reorder the columns and rows according to
the Clebsch Theorem. We refer for the details to [1].

7.4.1 Composition of characteristic matrices

Suppose we have two birational mapsφ : P2− → P2, φ′ : P2− → P2. We would like
to compute the characteristic matrix of the compositionφ′ ◦ φ. Let

X
π

~~}}
}}

}}
}

σ

  A
AA

AA
AA

P2 //_______ P2

, X ′

π′

~~||
||

||
|| σ′

  B
BB

BB
BB

B

P2 //_______ P2

(7.60)
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be resolutions ofφ andφ′. We want to construct a resolution ofφ′ ◦ φ. Let

σ : X = XN
σN−→ XN−1

σN−1−→ . . .
σ2−→ X1

σ1−→ X0 = P2

be a composition of blow-ups ofσ and

π′ : Y = YM
π′M−→ YM−1

π′M−1−→ . . .
π′2−→ Y1

π′1−→ Y0 = P2

be a composition of blow-ups ofπ′. Let x1, . . . , xN be the fundamental points ofT
andy1, . . . , yN be the fundamental points ofφ−1. Letx′1, . . . , x

′
M be the fundamental

points ofT ′ andy′1, . . . , y
′
M be the fundamental points ofφ′−1. For simplicity we will

assume that no infinitely near points occur as fundamental points ofφ, φ′, φ−1, φ′−1.
We refer to the general case to [1].

Some of the fundamental points ofφ−1 may coincide with fundamental points of
φ′. This happens when a P-curve ofφ contains a fundamental point ofφ′. Let us
assume that

yi = x′i, i = 1, . . . , r.

In this case the fibred product ofX
σ→ P2 andY

π′→ P2 containsE ′i(1) × E
(2)
i , i =

1, . . . , r, as irreducible components. When we throw them away, we obtain an ordered
resolution(Z, π ◦ g, σ′ ◦ h) of φ′ ◦ φ, whereg : Z → X is a composition of blow-ups
x′r+1, . . . , x

′
M andh : Z → Y is the composition of the blow-ups ofyr+1, . . . , yN .

Consider the following bases of Pic(Z).

e1 =
(
g∗(e(1)0 ), g∗(e(1)1 ), . . . , g∗(e(1)N ), h∗(e(2)r+1), . . . , h

∗(e(2)M )
)
,

e2 =
(
g∗(e′0

(1)), g∗(e′1
(1)), . . . , g∗(e′N

(1)), h∗(e(2)r+1), . . . , h
∗(e(2)M )

)
,

e′2 =
(
h∗(e′0

(2)), h∗(e′1
(2)), . . . , h∗(e′M

(2)), g∗(e′r+1
(1)), . . . , g∗(eN ′(1))

)
,

e3 =
(
h∗(e(2)0 ), h∗(e(2)1 ), . . . , h∗(e(2)M ), g∗(e′r+1

(1)), . . . , g∗(e′N
(1))

)
,

Note that
g∗(e(1)0 ) = h∗(e′0

(2)).

The transition matrix from basise1 to basise2 is

Ã1 =
(

A1 0N,M−r
0M−r,N IM−r

)
,

whereA1 is the characteristic matrix ofφ. The transition matrix from basise2 to basis
e′2 is

P =

 Ir+1 0r+1,N−r 0r+1,N−r
0N−r,r+1 0N−r,N−r IN−r
0M−r,r+1 IM−r 0M−r,M−r

 .

The transition matrix from basise′2 to basise3 is

Ã2 =
(

A2 0M,N−r
0N−r,M IN−r

)
,
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whereA2 is the characteristic matrix ofτ2. The characteristic matrix oft2 ◦ t1 is equal
to the product

A = Ã1 ◦ P ◦ Ã2.

In the special case, whenr = N , i.e., all fundamental points ofφ−1 are fundamen-
tal points ofφ′, we obtain that the characteristic matrix ofφ′ ◦ φ is equal to(

A1 0N,M−N
0M−N,N IM−N

)
·A2. (7.61)

Example7.4.2. Assume thatr = 0, i.e. noF -point ofφ−1 coincide with aF -point of
φ′. Then the characteristic matrix ofφ′ ◦ φ is equal to

dd′ dd′1 . . . dd′M d1 . . . dN
−d′m1 −d′1m1 . . . −d′Mm1 −m11 . . . −mN1

...
...

...
...

...
...

...
−d′mN −d′1mN . . . −d′MmN −m1N . . . −mNN

−m′
1 m′

11 . . . m′
1M 0 . . . 0

...
...

...
...

...
...

...
−m′

M m′
1M . . . m′

MM 0 . . . 0


with the obvious meanings ofd,mi,mij , d

′,m′
j ,m

′
ij . In particular, we see that the

degree of the composition is equal to the product of the degrees of the factors.

Example7.4.3. Consider the standard quadratic transformationτ1 with base points
x1, x2, x3. Lety1, y2, y3 be the base points ofτ−1

1 . Let τ be a Cremona transformation
with base pointsx1, . . . , x

′
M and base pointsy′1, . . . , y

′
M of τ−1. Assume thatyi = x′i

for i ≤ r. LetA be the characteristic matrix of the compositionτ ◦ τ1. If r = 3, we
obtain from (6.30)

A =



2 1 1 1 0 0 . . . 0
−1 0 −1 −1 0 0 . . . 0
−1 −1 0 −1 0 0 . . . 0
−1 −1 −1 0 0 0 . . . 0
0 . . . . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...
0 . . . . . . 0 0 0 . . . 1


·


d d1 . . . dM
−m1 −m11 . . . −m1M

...
...

...
...

−mM −mM1 . . . −mMM

 .

Here we choose some order on the pointsy1, y2, y3 which affects the matrixA1.
For example, we obtain that the characteristic of the composition map is equal to

(2d−m1−m2−m3; d−m2−m3, d−m1−m3, d−m1−m2,m4, . . . ,mM ) (7.62)

Assumer < 3. We leave to the reader to check that the characteristic of the
composition map is equal to

(2d−m1 −m2; d−m2, d−m1, d−m1 −m2,m3, . . . ,mM ), r = 2, (7.63)
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(2d−m1; d, d−m1, d−m1,m2, . . . ,mM ), r = 1. (7.64)

It is not difficult to see that the same formulae are true in the case when some of the
pointsyi = xi are infinitely near.

7.4.2 The Weyl groups

LetEN = (ZkN )⊥ ∼= ZN equipped with the quadratic form obtained by the restriction
of the inner product inI1,N . AssumeN ≥ 3. For any vectorα ∈ EN with α2 = −2,
we define the following element in O(EN ):

rα : v 7→ v + (v, α)α.

It is called areflectionwith respect toα. It leaves the orthogonal complement toα
pointwisely fixed, and mapsα to−α.

Definition 7.5. The subgroupW (EN ) of O(EN ) generated by reflectionsrαi
is called

theWeyl groupof EN .

The following proposition is stated without proof. It follows from the theory of
groups generated by reflections.

Proposition 7.4.6. The Weyl groupW (EN ) is of infinite index inO(EN ) for N > 10.
For N ≤ 10,

O(EN ) = W (EN ) o (τ),

whereτ2 = 1 andτ = 1 if N = 7, 8, τ = −1 if N = 9, 10 andτ is induced by the
symmetry of the Coxeter-Dynkin diagram forN = 4, 5, 6.

Note that any reflection can be extended to an orthogonal transformation of the
latticeI1,N (use the same formula). The subgroup generated by reflectionsrαi , i 6= 0,
acts as the permutation groupSN of the vectorse1, . . . , eN .

Lemma 7.4.7. (Noether’s inequality) Letv = (d,m1, . . . ,mN ). Assumed > 0,m1 ≥
. . . ≥ mN ≥ 0,m3 6= 0, and

(i)
∑n
i=1m

2
i = d2 + a;

(ii)
∑N
i=1mi = 3d− 2 + a,

wherea ∈ {−1, 0, 1}. Then

m1 +m2 +m3 ≥ d+ 1.

Proof. We have

m2
1 + · · ·+m2

N = d2 − 1, m1 + · · ·+mN = 3d− 3.

Multiplying equality (ii) bym3 and subtracting it from the first one, we get

m1(m1 −m3) +m2(m2 −m3)−
∑
i≥4

mi(m3 −mi) = d2 + a− 3m3(d− 2−a
3 ).
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We can rewrite the previous equality in the form

(d− 2−a
3 )(m1 +m2 +m3 − d− 2−a

3 ) = (m1 −m3)(d− 2−a
3 −m1)+

(m2 −m3)(d− 2−a
3 −m2) +

∑
i≥4

mi(m3 −mi) + a+ ( 2−a
3 )2.

Sincea ≥ 0 and equality (i) impliesmi < d, we obtain that the right-hand side positive.
Sincem3 6= 0 we getd > 1 if a = −1 andd ≥ 1 if a = 0, 1. In any case we have
d− 2−a

3 > 0. This implies thatm1 +m2 +m3 > d+ 2−a
3 > d.

Corollary 7.4.8.
m1 > d/3.

We can apply Noether’s Lemma to the case whenv = (d,m1, . . . ,mN ) is the
characteristic vector of a homaloidal net or whende0 −

∑
miei is the class of an

exceptional configuration.

Definition 7.6. Letv = de0−
∑N
i=1miei ∈ I1,N .We say thatv is of homaloidal type

(resp. exceptional type) if it satisfies conditions (i) and (ii) from above witha = −1
(resp.a = 1). We say thatv is of properhomaloidal (exceptional type) if there exists
a Cremona transformation whose characteristic matrix hasv as the first (resp. second
column).

Lemma 7.4.9. Letv = de0 −
∑n
i=1miei belong to theWN -orbit of e1. Thend ≥ 0.

Let η =
∑N
i=1 xi be a bubble cycle andαη : I1,N → Pic(Yη) be an isomorphism of

lattices defined by choosing some admissible order ofη. Thenαη(v) is an effective
divisor.

Proof. The assertion is true forv = e1. In fact,αη(v) is the divisor class of the first
exceptional configurationE1. Letw = s1 ◦ · · · ◦ s1 ∈ WN be written as the product
of simple reflections andv = w(e1) = (d′,m′

1, . . . ,m
′
N ). Let us prove the assertion

by using induction on the length ofw as the minimal product of simple reflections that
d′ ≥ 0. The assertion is obvious ifk = 1 sincev′ = e0 − ei − ej or differs from
v by a permutation of themi’s. Suppose the assertion is true fort = k. Without
loss of generality, we may assume thatsk+1 is the reflection with respect to some root
e0−e1−e2−e3. Thend′ = 2d−m1−m2−m3 < 0 implies4d2 < (m1+m2+m3)2 ≤
3(m2

1 + m2
2 + m2

3), henced2 − m2
1 − m2

2 − m2
3 < −d

2

3 . If d ≥ 2, this contradicts
condition (i) of the exceptional type. Ifd = 1, we check the assertion directly by listing
all exceptional types.

To prove the second assertion, we use Riemann-Roch Theorem applied to the divi-
sor classD = αη(v). We haveD2 = −1, D ·KYη = −1, henceh0(D) + h0(KYη −
D) ≥ 1. Assumeh0(KYη − D) > 0. IntersectingKY − D with e0 = αη(e0), we
obtain a negative number. However, the divisor classe0 is nef onYη. This shows that
h0(D) > 0 and we are done.

Lemma 7.4.10. Let v be a proper homaloidal type. Then it belongs to theWN -orbit
of the vectore0.
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Proof. Let v = de0 −
∑N
i=1miei be a proper homaloidal type andη be the corre-

sponding homaloidal bubble cycle. Letw ∈WN andv′ = w(v) = d′e0−
∑N
i=1m

′
iei.

We havem′
i = ei · v′ = w−1(ei) · v. Sincew−1(ei) represents an effective divisor

onYη andv is the characteristic vector of the corresponding homaloidal net, we obtain
w−1(ei) · v ≥ 0, hencemi ≥ 0.

Obviously,mi ≥ 0. We may assume thatv 6= e0, i.e. the homaloidal net has at
least 3 base points. Applying the Noether inequality, we findmi,mj ,mk such that
mi +mj +mk > d. We choose maximal possible suchmi,mj ,mk. After reordering,
we may assume thatm1 ≥ m2 ≥ m3 ≥ . . . ≥ mN . Note that this preserves the
properness of the homaloidal type since the new order onη is still admissible. Applying
the reflectionswith respect to the vectore0−e1−e2−e3, we obtain a new homaloidal
typev′ = d′e0 −

∑N
i=1m

′
iei with d′ = 2d −m1 −m2 −m3 < d. By above, each

mi ≥ 0. So, we can apply Noether’s inequality again until we getw ∈ WN such that
the number of nonzero coefficientsm′

i of v′ = w(v) = is at most 2 (i.e. we cannot
apply Noether’s inequality anymore). A direct computation shows that such vector
must be equal toe0.

Remark7.4.3. It follows from Proposition7.4.2 that the composition of a quadratic
transformation with base pointsxi, xj , xk and a Cremona transformation with charac-
teristic vectorv has characteristic vector equal tov′ = s(w′) wheres is the reflection
with respect to the vectore0−ei−ej−ek. It is important to understand that the proof
does not show thatv′ is obtained in this way, and, in particular, is a proper homaloidal
type. If this were true we obtain a proof that any Cremona transformation is the prod-
uct of quadratic transformations. This is the content of the Noether Theorem below
whose proof is different. The original proof of Noether was along these lines, where
he wrongly presumed that one can always perform a standard quadratic transformation
with base points equal to the highest multiplicities, saym1,m2,m3. The problem here
is that the three pointsx1, x2, x3 may not represent the base points of a standard Cre-
mona transformation when one of the following three cases happen for the three base
pointsx1, x2, x3 of highest multiplicities

(i) x2 � x1, x3 � x1);

(ii) the base ideal in an affine neighborhood ofx1 is equal to(u2, v3).

Theorem 7.4.11.LetA be a characteristic matrix of a homaloidal net. ThenA belongs
to the Weyl groupW (EN ).

Proof. LetA1 = (d,−m1, . . . ,−mN ) be the first column ofA. Applying the previous
lemma, we obtainw ∈WN , identified with a(N + 1)× (N + 1)-matrix such that the
w · A1 = e0. Thus the matrixA′ = w · A has the first column equal to the vector
(1, 0, . . . , 0). SinceA′ is an orthogonal matrix (with respect to the hyperbolic inner
product), it must be the block matrix of the unit matrixI1 of size1 and an orthogonal
matrix O of sizen − 1. SinceO has integer entries it is equal to the product of a
permutation matrixP and the diagonal matrix with±1 at the diagonal. SinceA ·kN =
kN andw · kN = kN , this easily implies thatO is the identity matrixIN . Thus
w ·A = IN+1 andA ∈WN .
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Proposition 7.4.12.Every vectorv in theWN -orbit of e0 is a proper homaloidal type.

Proof. Let v = w(e0) for somew ∈ WN . Write w as the composition of simple
reflectionssk ◦ · · · ◦ s1. Choose an open subsetU of (P2)N such that an ordered set of
points(x1, . . . , xN ) ∈ U satisfies the following conditions:

(i) xi 6= xj for i 6= j;
(ii) if s1 = se0−ei−ej−ek

, thenxi, xj , xk are not collinear;
(iii) let α1 be the involutive quadratic transformation with base pointsxi, xj , xk

and(y1, . . . , yN ) be the set of points withyi = xi, yj = xj , yk = xk andyh = α1(xh)
for h 6= i, j, k. Then(y1, . . . , yN ) satisfies conditions (i) and (ii) fors1 is replaced
with s2. Next do it again by takings3 and so on. It is easy to see that in this wayU is a
non-empty Zariski open subset of(P2)N such thatw(e0) represents the characteristic
vector of a homaloidal net.

Corollary 7.4.13. Every vectorv in theWN -orbit of e1 can be realized as a proper
exceptional type.

Proof. Let v = w(e1) for somew ∈ WN . Thenη be a bubble cycle realizing the
homaloidal typew(e0) andφ be the corresponding Cremona transformation with char-
acteristic matrixA. Thenv is its second column, and hence corresponds to the first
exceptional configurationE ′1 for φ−1.

Remark7.4.4. It follows from Proposition7.4.12(resp. Corollary7.4.13) that any
vectorv = de0−

∑N
i=1miei ∈WN · e0 (resp.v ∈WN · e1) \ {e1, . . . , eN )) satisfies

d > 0,mi ≥ 0. We do not know a purely group theoretical proof of this fact.

7.4.3 Noether-Fano inequality

Let T be a Cremona transformation ofP2 defined by a linear system|d` −
∑
mixi|.

We order the multiplicitiesm1 ≥ . . . ≥ mN . Obviously, we may assume thatx1 ∈ P2.
Assume that one of the pointsx2 andx3 is not infinitely near tox1 of the first order.
Then replacingT with T ◦ Q, whereQ is a quadratic transformation such that the
fundamental points ofQ−1 are equal tox1, x2, x3, we obtain thatT ◦Q is given by a
linear system of degree2d−m1 −m2 −m3 < d (see (7.62)). Continuing in this way
we obtain thatQk ◦ · · ·Q1 ◦ T is given by a linear system of degree 1, i.e. a projective
transformation. Unfortunately, this proof is wrong (as was the original proof of M.
Noether). The reason is that at a certain step, maybe even at the first one, a quadratic
transformation cannot be applied because of infinitely near pointsx2 � x1, x3 � x1.
We will give a modified version of this proof due to V. Iskovskikh.

First we generalize Corollary7.4.8to birational maps of any rational surfaces. The
same idea works even for higher-dimensional varieties. LetT : S− → S′ be a bira-
tional map of surfaces. Letπ : X → S, σ : X → S′ be its resolution. Let|H ′| be a
linear system onX ′ without base points. Let

σ∗(H ′) ∼ π∗(H)−
∑
i

miEi
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for some divisorH on S and exceptional configurationsEi of the mapπ. Since|H ′|
has no base points,|f∗(H ′)| has no base points. Thusσ∗(H ′) intersects nonnegatively
any curve onX. In particular,

σ∗(H ′) · Ei = −miE2
i = mi ≥ 0. (7.65)

This can be interpreted by saying thatT−1(H ′) belongs to the linear system|H − η|,
whereη =

∑
mixi is a bubble cycle onS.

Theorem 7.4.14. (Noether-Fano inequality) Assume that there exists some integer
m0 ≥ 0 such that|H ′ + mKS′ | = ∅ for m ≥ m0. For anym ≥ m0 such that
|H +mKS | 6= ∅ there existsi such that

mi > m.

Moreover, we may assume thatxi ∈ S, i.e. ht(xi) = 0.

Proof. We know thatKX = π∗(KS) +
∑
i Ei. Thus we have the equality in Pic(X)

σ∗(H ′) +mKX = (π∗(H +mKS)) +
∑

(m−mi)Ei.

Applying σ∗ to the left-hand side we get the divisor classH ′ + mKS′ which, by as-
sumption cannot be effective. Since|π∗(H+mKS)| 6= ∅, applyingσ∗ to the right-hand
side, we get the sum of an effective divisor and the image of the divisor

∑
i(m−mi)Ei.

If all m−mi are nonnegative, it is also an effective divisor, and we get a contradiction.
Thus there existsi such thatm−mi < 0.

The last assertion follows from the fact thatmi ≥ mj if xj � xi.

Note that

Example7.4.4. AssumeS = S′ = P2, H = d` andH ′ = `. We have|H + KS′ | =
| − 2`| = ∅. Thus we can takem0 = 1. If d ≥ 3, we have for any1 ≤ a ≤ d/3,
|H ′ + aKS | = |(d − 3a)`| 6= ∅. This givesmi > d/3 for somei. This is Corollary
7.4.8.

Example7.4.5. Let S = Fn andS′ = Fr be the minimal Segre-Hirzebruch ruled
surfaces. Let|H ′| = |f ′| be the linear system defined by the ruling onS′. It has no
base points, so we can write[σ∗(H ′)] = π∗(af + bs)−

∑
miei, wheref, s the divisor

classes of a fibre and the exceptional section onS, andmi ≥ 0. Here(X,π, σ) is a
resolution ofT . ThusH = af + bs.

Recall thatKS = −2s− (2 + n)f,KS′ = −2s′ − (2 + r)f ′. Thus|H ′ +KS′ | =
|(−1− n)f − 2s| = ∅. We takem0 = 1. We have

|af + bs+mKS | = |(a−m(2 + n))f + (b− 2m)s|.

Assume that

1 < b ≤ 2a
2 + n

.

If m = [b/2], thenm ≥ m0 and both coefficientsa − m(2 + n) and b − 2m are
nonnegative. Thus we can apply Theorem7.4.14to find an indexi such thatmi >
m ≥ b/2.
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In the special case, whenn = 0, i.e. S = P1 × P1, the inequalityb ≤ a implies
that there existsi such thatmi > b/2.

Similar argument can be also applied to the caseS = P2, S′ = Fr. In this case,
|H| = |a`| and|aH +mKS | = |(a− 3m)`|. Thus, we can takem = [a/3] and findi
such thatmi > a/3.

7.4.4 Noether’s Reduction Theorem

We shall prove the following.

Theorem 7.4.15.The groupBir(F0) is generated by biregular automorphisms and a
birational automorphismtx,y for some pair of pointsx, y.

Applying Proposition7.3.5, we obtain the following Noether’s Reduction Theorem.

Corollary 7.4.16. Bir(P2) is generated by projective automorphisms and quadratic
transformations.

Now let us prove Theorem7.4.15.
Let T : Fn− → Fm be a birational map. Let

Pic(Fn) = Zf + Zs, Pic(Fm) = Zf ′ + Zs′,

wheref, f ′ are the divisor classes of fibres, ands, s′ are the divisor classes of excep-
tional sections. Similar to the case of birational maps of projective plane, we can define
an ordered resolution(X,π, σ) of T and its characteristic matrixA. We have two bases
in Pic(X)

e : π∗(f), s = π∗(s), ei = [Ei], i = 1, . . . , N,

e′ : π∗(f ′), s′ = π∗(s′), e′i = [E ′i ], i = 1, . . . , N.

For simplicity of notation, let us identifyf, s, f ′, s′ with their inverse transforms in
Pic(X). As in the case of Cremona transformations, one can define the characteris-
tic matrix of T . For example, its first column(a, b;m1, . . . ,mN ) expresses that the
preimage of the linear system|f ′| on Fm is the linear system|af + bs − η|, where
η =

∑
mixi is a bubble cycle overFn. The first column of the inverse matrix defines

preimage of|f | underT−1 (the same as the image underT ).

Example7.4.6. Let T = elmx : Fn− → Fn±1. Let f, s, e be the classes of a fibre, the
exceptional section, and the exceptional curveE on the blow-upπ : X → Fn of x.
Suppose|s−x| = ∅, i.e.,x does not lie on the exceptional divisor. Letf : X → Fn−1

be the blow-down the proper transform̄F of F . Then

f ′ = f, s′ = s+ f − e, e′ = f − e.

If |s− x| 6= ∅, we have

f ′ = f, s′ = s− e, e′ = f − e.
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It is easy to see that these transformations are inverse to each other, as it should be.
Thus we get

f = f ′, s = s′ − e′, e = f ′ − e′, if |s− x| 6= ∅,

f = f ′, s = s′ + f ′ − e′, e = f ′ − e′, otherwise.

Let T : Fn− → Fm. ComposingT with elmx, we get a map elmx ◦ T : Fn− →
Fm±1. The image of|f | onFm±1 is equal to

|(a−mi)f + bs− (b−mx)x′ −
∑
y 6=x

myy|, if |s− x| = ∅, (7.66)

|(a+ b−mi)f + bs− (b−mx)x′ −
∑
y 6=x

myy|, if |s− x| 6= ∅,

wherex′ is the image of the proper transform of the fibre passing throughx.

Lemma 7.4.17. Let T : F0− → F0 be a birational automorphism equal to a com-
position of elementary transformations. ThenT is equal to a composition of biregular
automorphisms ofF0 and a transformationtx,y for a fixed pair of pointsx, y, wherey
is not infinitely near tox.

Proof. It follows from Proposition7.3.5that tx,y, wherey �1 x can be written as a
composition of two transformations of typetx′,y′ with no infinitely near points. Now
notice that the transformationstx,y andtx′,y′ for different pairs of points differ by an
automorphism ofF0 which sendsx to x′ andy to y′. Suppose we have a composition
T of elementary transformations.

F0

elmx1
−− → F1

elmx2
−− → . . .

elmxk−1

−− → F1

elmxk

−− → F0.

If no F0 occurs among the surfacesFn here, thenT is a composition of even number
k of elementary transformations preserving the projections toP1. It is clear that not all
pointsxi are images of points inF0 lying on the same exceptional section asx1. Letxi
be such a point (maybe infinitely near tox1). Then we composeT with txi,x1 to obtain
a birational mapT ′ : F0− → F0 which is a composition ofk − 2 elementary trans-
formations. Continuing in this way we writeT as a composition of transformations
tx′,y′ .

If F1

elmxi−1

−− →F0

elmxi

−− →F1 occurs, then elmxi may be defined with respect to another
projection toP1. Then we write as a composition of the switch automorphismτ and
the elementary transformation with respect to the first projection. Then we repeat this
if such(F0,elmxj

) occurs again.

Let T : F0− → F0 be a birational transformation. Assume the image of|f |
is equal to|af + bs −

∑
mxx|. Applying the automorphismτ , if needed, we may

assume thatb ≤ a. Thus, using Example7.4.5, we can find a pointx with mx > b/2.
ComposingT with elmx, we obtain that the image of|f | in F1 is the linear system
|a′f ′ + bs′ −mx′x

′ −
∑
y 6=x′ myy|, wheremx′ = b−mx < mx. Continuing in this
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way using formula (7.66), we get a mapT ′ : F0− → Fq such that the image of|f |
is the linear system|a′f ′ + bs′ −

∑
mxx|, where allmx ≤ b/2. If b = 1, we get

all mi = 0. ThusT ′ is everywhere defined and henceq = 0. The assertion of the
Theorem is verified.

Assumeb ≥ 2. Since allmi ≤ b/2, we must have, by Example7.4.5,

b >
2a′

2 + q
.

Since the linear system|a′f ′ + bs′| has no fixed components, we get

(a′f ′ + bs′) · s′ = a′ − bq ≥ 0.

Thusq ≤ a′/b < (2 + q)/2, and henceq ≤ 1. If q = 0, we getb > a′. Applying τ ,
we will decreaseb and will start our algorithm again until we either arrive at the case
b = 1, and we are done, or arrive at the caseq = 1, andb > 2a′/3 and allmx′ ≤ b/2.

Let π : F1 → P2 be the blowing down the exceptional sections′ to a pointq. Then
the image of a fibre|f | on F1 underπ is equal to|` − q|. Hence the image of our
linear system inP2 is equal to|a′` − (a′ − b)q −

∑
p6=qm

′
pp|. Obviously, we may

assume thata′ ≥ b, hence the coefficient atq is non-negative. Sinceb > 2a′/3, we get
a′ − b < a′/3. By Example7.4.5, there exists a pointp 6= q such thatm′

p > a′/3. Let
π(x) = p andE1 be the exceptional curve corresponding tox andS be the exceptional
section inF1. If x ∈ S, the divisor classs − e1 is effective and is represented by the
proper inverse transform ofS in the blow-up ofx. Then

(a′f + bs−m′
xe1 −

∑
i>1

m′
iei) · (s− e1) ≤ a′ − b−m′

x < 0.

This is impossible because the linear system|a′f + bs−mxx−
∑
y 6=x y| onF1has no

fixed part. Thusx does not lie onS. If we apply elmx, we arrive atF0 and may assume
that the new coefficient atf ′ is equal toa′ −m′

x. Sincem′
x > a′/3 anda′ < 3b/2, we

see thata′−m′
x < b. Now we applyτ to decreaseb. Continuing in this way we obtain

thatT is equal to a product of elementary transformations and automorphisms ofF0.
We finish the proof of Theorem7.4.15by applying Lemma7.4.17.

Corollary 7.4.18. The groupCr(2) of Cremona transformations ofP2 is generated by
projective automorphisms and the standard Cremona transformationt0.

Proof. It is enough to show that the standard quadratic transformationsτ2 andτ3 are
generated byt0 and projective transformations. Letτ2 has fundamental points atp1, p2

and an infinitely near pointp3 �1 p1. Choose a pointq different fromp1, p2, p3 and not
lying on the linep1, p2. LetT be a quadratic transformation withF -points atp1, p2, q.
It is easy to check thatT ◦τ2 is a quadratic transformation withF -points(p1, p2, τ2(q)).
Composing it with projective automorphisms we get the standard quadratic transforma-
tion t1.

Now let us consider the standard quadratic transformationτ3 with F -pointsp3 �
p2 � p1. Take a pointq which is not on the line in the linear system|` − p1 − p2|.
Consider a quadratic transformationT with F -pointsp1, p2, q. It is easy to see that
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T ◦ τ3 is a quadratic transformation withF -pointsp1, p2, τ3(q). Composing it with
projective transformations we get the standard quadratic transformationτ2. Then we
write τ2 as a composition ofτ1 and projective transformations.

Exercises

7.1Consider a minimal resolutionX of the standard quadratic transformationτ1. Show thatτ1
lifts to an automorphismσ of X. Show thatσ has 4 fixed points and the orbit spaceX/(σ) is
isomorphic to the cubic surface with 4 nodes given by the equationt0t1t2 + t0t1t3 + t1t2t3 +
t0t2t3 = 0.

7.2Consider the rational map defined by

[t0, t1, t2] 7→ [t1t2(t0 − t2)(t0 − 2t1), t0t2(t1 − t2)(t0 − 2t1), t0t1(t1 − t2)(t0 − t2)].

Show that it is a Cremona transformation and find the Enriques diagram of the corresponding
bubble cycle.

7.3LetC be a plane curve of degreed with a singular pointp. Letπ : X → P2 be a sequence of
blow-ups which resolves the singularity. Define the bubble cycleη(C, p) =

P
mixi as follows:

x1 = p andm1 = multpC, x2, . . . , xk are infinitely near points top of order 1 such that the
proper transformC′ of C under the blow-up atp contains these points,mi = multxiC

′, i =
2, . . . , k, and so on.

(i) Show that the arithmetic genus of the proper transform ofC inX is equal to1
2
(d−1)(d−

2)− 1
2

P
imi(mi − 1).

(ii) Describe the Enriques diagram ofη(C, p), whereC = V (tb−a0 ta1 + tb2), p = [1, 0, 0], and
a ≤ b are positive integers.

7.4Show that two hyperelliptic plane curvesHg+2 andH ′
g+2 are birationally isomorphic if and

only if there exists a De Jonquières transformation which transforms one curve to another.

7.5 LetHg+2 be a hyperelliptic curve given by the equation (7.41). Consider the linear system
of hyperelliptic curvesHq+2 = V (t22gq(t0, t1) + 2t2gq+1(t0, t1) + gq+2(t0, t1)) such that
fggq+2 − 2fg+1gq+1 + fg+2gq = 0. Show that

(i) the curvesHq+2 exist if q ≥ (g − 2)/2;

(ii) the branch points ofHg+2 belong toHq+2 and vice versa;

(iii) the curveHq+2 is invariant with respect to the De Jonquières involutionIHg+2 defined
by the curveHg+2 and the curveHg+2 is invariant with respect to the De Jonquières
involution IHq+2 defined by the curveHq+2;

(iv) the involutionsIHg+2 andIHq+2 commute with each other;

(v) the fixed locus of the compositionHg+2 ◦ Hq+2 is given by the equationV (fg+q+3),
where

fg+q+3 = det

0@fg fg+1 fg+2

gq gq+1 gq+2

1 −t2 t22.

1A ;

(vi) the De Jonquìeres transformations which leave the curveHg+2 invariant form a group.
It contains an abelian subgroup of index 2 which consist of transformations which leave
Hg+2 pointwisely fixed.
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7.6Show that any De Jonquières transformation of finite order leaves a pencil of lines invariant.

7.7Consider the linear systemLa,b = |af + bs| onFn, wheres is the divisor class of
the exceptional section, andf is the divisor class of a fibre. Assumea, b ≥ 0. Show
that

(i) La,b has no fixed part if and only ifa ≥ nb;

(ii) La,b has no base points if and only ifa ≥ nb;

(iii) Assumeb = 1 anda ≥ n. Show that the linear systemLa,1 mapsFn in P2a−n+1

onto a surfaceXa,n of degree2a− n;

(iv) show that the surfaceXa,n is isomorphic to the union of linesva(x), va−n(x),
whereva : P1 → Pa, v2a−n : P1 → Pa−n are the Veronese maps, andPa and
Pa−n are identified with two disjoint projective subspaces ofP2a−n+1.

7.8 Show that the surfaceXa,n ⊂ P2a−n+1 contains a nonsingular curveC of genus
g = 2a− n+ 2 which is embedded inP2a−n+1 by the canonical linear system|KC |.
7.9Find the automorphism group of the surfaceFn.

7.10Show that a projective automorphismT of P2 which fixes two points is equal to
Φx0(g) for some automorphism ofF0 and a pointx0 ∈ F0.

7.11Compute a characteristic matrix of a De Jonquières transformation.

7.12Compute a characteristic matrix of symmetric Cremona transformation.

7.13Let C be an irreducible plane curve of degreed > 1 passing through the points
x1, . . . , xn with multiplicitiesm1 ≥ . . . ≥ mn. Assume that its proper inverse trans-
form under the blowing up the pointsx1, . . . , xn is a smooth rational curvēC with
C̄2 = −1. Show thatm1 +m2 +m3 > d.

7.14Let (m,m1, . . . ,mn) be the characteristic vector of a Cremona transformation.
Show that the number of base points withmi > m/3 is less than 9.

7.15Compute the characteristic matrix of the compositionT ◦ T ′ of a De Jonquìeres
transformationT with F -points p1, p2, . . . , p2d−1 and characteristic vector(d, d −
1, 1, . . . , 1) and a quadratic transformationT ′ with F -pointsp1, p2, p3.

7.16 Let σ : A2 → A2 be an automorphism of the affine plane given by a formula
(x, y)→ (x+P (y), y), whereP is a polynomial of degreed in one variable. Consider
σ as a Cremona transformation. Compute its characteristic matrix. In the cased = 3
write as a composition of projective transformations and quadratic transformations.

7.17Show that every Cremona transformation is a composition of the following maps
(“links”):

(i) the switch involutionτ : F0 → F0;

(ii) the blow-upσ : F1 → P2;

(iii) the inverseσ−1 : P2− → F1;

(iv) an elementary transformation elmx : Fq− → Fq±1.
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7.18Show that any Cremona transformation is a composition of De Jonquières trans-
formations and projective automorphisms.

7.19 Let x0 = [0, 1] × [1, 0] ∈ P1 × P1, y0 = τ(x0), whereτ : P1 → P1 is the
switch of the factors. Show thatty0,x0 is given by the formula[u0, u1] × [v0, v1] 7→
[u0, u1]× [u0v1, u2v0]. Check that the compositionT = τ ◦ ty0,x0 satisfiesT 3 = id.

7.20LetC1 andC2 be two plane conics that span an irreducible pencil of conics. For
any pointx in the plane letT (x) be the intersection of the polar linesPx(C1) and
Px(C2). Show thatT is a quadratic Cremona transformation.

Historical Notes

A comprehensive history of the theory of Cremona transformations can be found in
several sources [224], [389], [94]. Here we give only a brief sketch.

The general study of plane Cremona transformations was first initiated by L. Cre-
mona in his two papers [104] and [105] published in 1863 and 1864. However, ex-
amples of birational transformations were known since the antiquity, for example, the
inversion transformation. The example of a quadratic transformation which we pre-
sented in Example7.2.2goes back to Poncelet [324], although the first idea of a gen-
eral quadratic transformation must be credited to C. MacLaurin [275]. It was generally
believed that all birational transformations must be quadratic and much work was done
in developing the general theory of quadratic transformations. The first transforma-
tion of arbitrary degree was constructed in 1859 by E. De Jonquières in [119], the De
Jonquìeres transformations. His memoir remained unpublished until 1885 although
an abstract was published in 1864 [118]. In his first memoir [104] Cremona gives a
construction of a general De Jonquières transformation without reference to De Jon-
quières. We reproduced his construction in section7.2.3. Cremona gives the credit to
De Jonquìeres in his second paper. Symmetric transformations of order 5 were first
studied by M. Sturm [399], of order 8 by C. Geiser [182], and of order 17 much later
by E. Bertini [27].

In his second paper Cremona lays foundation of the general theory of plane bira-
tional transformations. He introduces the notion of fundamental points and principal
curves, establishes the equalities (7.1.7), proves that the numbers of base points of the
transformation and its inverse coincide, proves that principal curves are rational and
computes all possible characteristic vectors up to degree10. The notion of a homa-
loidal linear system was introduced by Cremona later, first for space transformations
in [108] and then for plane transformations in [109]. The word homaloid means flat
and was used by J. Sylvester to mean a linear subspace of a projective space. More
generally it was applied by A. Cayley to rational curves and surfaces. Cremona also
introduces the net of isologues and proves that the number of fixed points of a general
transformation of degreed is equal tod+ 2. In the special case of De Jonquière trans-
formations this was also done by De Jonquière in [119]. The notion of isologue curves
belongs to him as well as the formula for the number of fixed points.

The first major result in the theory of plane Cremona transformations after Cre-
mona’s work was Noether’s Theorem. The statement of the theorem was guessed by
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W. Clifford in 1869 [84]. The original proof of M. Noether in [301] based on Noether’s
inequality contained a gap which we explained in Remark7.4.3. Independently, J.
Rosanes found the same proof and made the same mistake [340] . In [302] Noether
tried to correct his mistake, taking into account the presence of infinitely near base
points of highest multiplicities where one cannot apply a quadratic transformation. He
took into account the case of infinitely near points with different tangent direction but
overlooked the cuspidal case. The theorem was accepted for thirty years until in 1901
C. Segre pointed out that the cuspidal case was overlooked [374]. In the same year G.
Castelnuovo [45] gave a complete proof along the same lines as used in this chapter. In
1916 J. Alexander [3] raised objections to Castelnuovo’s proof and gives a proof with-
out using De Jonquières transformations [3]. This seems to be a still accepted proof. It
is reproduced, for example, in [2].

The characteristic matrices of Cremona transformation were used by S. Kantor
[241] and later by P. Du Val [144]. The latter clearly understood the connection to
reflection groups. The description of proper homaliodal and exceptional types as orbits
of the Weyl groups were essentially known to H. Hudson. There are numerous modern
treatment of this started from M. Nagata [296] and culminated in the monography of
M. Alberich-Carramiana [1]. A modern account of Clebsch’s Theorem and its history
can be also found there.

We intentionally omitted the discussion of finite subgroups of the Cremona group
Cr(2), the modern account of this classification and the history can be found in [141].



Chapter 8

Del Pezzo surfaces

8.1 First properties

8.1.1 Varieties of minimal degree

Recall that a subvarietyX ⊂ Pn is callednondegenerateif it is not contained in a
proper linear subspace. Letd = deg(X). We have the following well-known (i.e., can
be found in modern text-books, e.g. [197], [203]) result.

Theorem 8.1.1.LetX be an irreducible nondegenerate subvariety ofPn of dimension
k and degreed. Thend ≥ n−k+1, and the equality holds only in one of the following
cases:

(i) X is an irreducible quadric hypersurface;

(ii) a Veronese surfacev2(P2) in P5;

(iii) a cone over a Veronese surfacev2(P2) in P5;

(iv) a rational normal scroll.

Recall that arational normal scrollis defined as follows. Choosek disjoint lin-
ear subspacesL1, . . . , Lk in Pn which span the space. Letai = dimLi. We have∑k
i=1 ai = n− k + 1. Consider Veronese mapsvai

: P1 → Li and defineSa1,...,ak;n

to be the union of linear subspaces spanned by the pointsva1(x), . . . , vak
(x), where

x ∈ P1. It is clear thatdimSa1,...,ak;n = k and it is easy to see thatdegSa1,...,ak;n =
a1 + · · ·+ ak anddimSa1,...,ak;n = k. In this notation, it is assumed thata1 ≤ a2 ≤
. . . ≤ ak.

A rational normal scroll of dimension 2 witha1 = a, a2 = n−1−awill be denoted
bySa,n. Its degree isn−1 and it lies inPn. For example,S1,3 is a nonsingular quadric
in P3 andS0,3 is an irreducible quadric cone.

Corollary 8.1.2. Let S be an irreducible nondegenerate surface inPn of degreed.
Thend ≥ n− 1 and the equality holds only in one of the following cases:

247
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(i) X is a nonsingular quadric inP3;

(ii) X is an irreducible quadric cone inP3;

(iii) X is a Veronese surfacev2(P2) in P5;

(iv) X is a rational normal scrollSa,n ⊂ Pn.

Del Pezzo surfaces come next.

Definition 8.1. A Del Pezzo surfaceis a nonsingular surface with ample−KS . Aweak
Del Pezzo surfaceis a nonsingular surface with−KS nef and big.

Recall that a divisorD is callednef if for any irreducible curveC the intersection
numberC · D is non-negative. It is calledbig if D2 > 0. Note that, if we require
C · D > 0 instead ofC · D ≥ 0, thenD is an ample divisor. This follows from the
Moishezon-Nakai criterion of ampleness .

8.1.2 A blow-up model

Lemma 8.1.3. LetS be a weak Del Pezzo surface. Then, any irreducible curveC on
S with negative self-intersection is a smooth rational curve withC2 = −1 or −2.

Proof. By adjunction

C2 + C ·KS = degωC = 2 dimH1(C,OC)− 2.

By definition of a weak Del Pezzo surface, we haveC ·KS ≤ 0. Thus0 > C2 > −2
andH1(C,OC) = 0. It is easy to show that the latter equality implies thatC ∼= P1

(the genus of the normalization of an irreducible curve is less or equal to the arithmetic
genus defined asdimH1(C,OC) and the difference is positive if the curve is singular).

We will call a smooth rational curve with negative self-intersection−n a (−n)-
curve.

Lemma 8.1.4. LetS be a weak Del Pezzo surface. Then

Hi(S,OS) = 0, i 6= 0.

Proof. We write 0 = −KS + KS and apply the following Ramanujam’s Vanishing
Theorem ([265], vol. I, Theorem 4.3.1): for any nef and big divisorD on a nonsingular
projective varietyX

Hi(X,OX(KX +D)) = 0, i > 0.

Theorem 8.1.5. LetS be a weak Del Pezzo surface. Then, eitherX ∼= Fn, n = 0, 2,
or X is obtained fromP2 by blowing upN ≤ 8 points in the bubble space.
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Proof. SinceKS is not nef, a minimal model forS is either a minimal ruled surface
V (over some base curveB) or P2. SinceH1(S,OS) = 0, we must haveB ∼= P1

(use that the projectionp : V → B satisfiesp∗OV ∼= OB and this defines a canonical
injective mapH1(B,OB) → H1(V,OV )). ThusV = Fn or P2. AssumeV = Fn.
If n > 2, the exceptional section ofV has self-intersectionr < −2. Its proper inverse
transform onS has self-intersection≤ r. This contradicts Lemma8.1.3. Thusn ≤ 2.
If n = 1, then composing the mapS → F1 with p, we get a birational morphism
S → P2. AssumeX 6∼= Fn, wheren = 0, 2. Then the birational morphismf :
X → Fn is equal to the composition ofφ : S → V ′ and a blow-upb : V ′ → Fn of
a pointp ∈ Fn. Assumen = 0, and let`1, `2 be two lines onF0 containingp. Let
V ′ → P2 be the blow-down of the proper transforms of the lines. Then the composition
S → V ′ → P2 is a birational morphism toP2. Assumen = 2. The pointp does not
belong to the exceptional section since otherwise its proper inverse transform inS has
self-intersection< −2. Let ` be the fibre ofp : F2 → P1 which passes throughp.
Then elmp mapsF2 to F1 and hence blowing down the proper inverse transform of
` defines a birational morphismS → V ′ → F1. Composing it with the birational
morphismF1 → P2, we get a birational morphismπ : S → P2.

The last assertion follows from the known behavior of the canonical class ofS
under a blow-up. Ifπ : S → P2 is a birational morphism which is a composition ofN
blow-ups, then

K2
S = K2

P2 −N = 9−N. (8.1)

By definition,K2
S > 0, soN < 9.

Definition 8.2. The numberd = K2
S is called thedegreeof a weak Del Pezzo surface.

Lemma 8.1.6. LetX be a nonsingular projective surface withH1(X,OX) = 0. Let
C be an irreducible curve onX such that| −KX − C| 6= ∅ andC 6∈ | −KX |. Then
C ∼= P1.

Proof. We have−KX ∼ C + D for some nonzero effective divisorD, and hence
KX + C ∼ −D 6∼ 0. This shows that|KX + C| = ∅. By Riemann-Roch,

0 = dimH0(X,OX(KX + C)) = 1
2 ((KX + C)2 − (KX + C) ·KX) + 1

−dimH1(X,OX) + dimH2(X,OX) ≥ 1 + 1
2 (C2 +KX · C) = dimH1(C,OC).

ThusH1(C,OC) = 0, and as we noted earlier, this implies thatC ∼= P1.

Proposition 8.1.7. LetS be a weak Del Pezzo surface.

(i) Letf : S → S̄ be a blowing down a(−1)-curveE. ThenS̄ is a weak Del Pezzo
surface.

(ii) Let π : S′ → S be the blowing-up with center at a pointx not lying on any
(−2)-curve. AssumeK2

S > 1. ThenS′ is a weak Del Pezzo surface.
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Proof. (i) We haveKS = f∗(KS̄) + E, and hence, for any curveC on S̄, we have

KS̄ · C = f∗(KS̄) · f∗(C) = (KS − E) · f∗(C) = KS · f∗(C) ≤ 0.

AlsoK2
S̄

= K2
S + 1 > 0. ThusS̄ is a weak Del Pezzo surface.

(ii) SinceK2
S > 2, we haveK2

S′ = K2
S − 1 > 0. By Riemann-Roch,

dim | −KS′ | ≥ 1
2 ((−KS′)2 − (−KS′ ·KS′)) = K2

S′ ≥ 0.

Thus| −KS′ | 6= ∅, and hence, any irreducible curveC with −KS′ · C < 0 must be
a proper component of some divisor from| −KS′ | (it cannot be linearly equivalent to
−KS′ because(−KS′)2 > 0). LetE = π−1(x). We have−KS′ · E = 1 > 0. So we
may assume thatC 6= E. Let C̄ = f(C). We have

−KS′ · C = π∗(−KS) · C − E · C = −KS · C̄ −multx(C̄).

Sincef∗(KS′) = KS andC 6= E, the curveC̄ is a proper irreducible component of
some divisor from| −KS |. By Lemma8.1.6, C̄ ∼= P1. Thus multxC̄ ≤ 1 and hence
0 > −KS′ · C ≥ −KS · C̄ − 1. This gives−KS · C̄ = 0 andx ∈ C̄ and hencēC is a
(−2)-curve. Sincex does not lie on any(−2)-curve we get a contradiction.

Definition 8.3. A blowing down structureon a weak Del Pezzo surfaceS is a compo-
sition of birational morphisms

π : S = SN
πN−→ SN−1

πN−1−→ . . .
π2−→ S1

π1−→ P2,

where eachπ : Si → Si−1 is the blow-up a pointxi in the bubble space ofP2.

Recall from section7.4that a blowing-down structure of a weak Del Pezzo surface
defines a basis(e0, e1, . . . , eN ) in Pic(S), wheree0 is the class of the full preimage of
a line andei is the class of the exceptional configurationsEi defined by the pointxi.
We call it geometric basis. A blowing-down structure defines an isomorphism of free
abelian groups

φ : ZN+1 → Pic(S) such thatφ(kN ) = KS ,

wherekN = −3e0+e1+· · ·+eN . We call such an isomorphism ageometric marking.

Definition 8.4. A pair (S, φ), whereS is a weak Del Pezzo surface andφ is a marking
(resp. geometric marking)ZN+1 → Pic(S) is called amarked weak Del Pezzo surface
(resp.geometrically marked weak Del Pezzo surface).

Corollary 8.1.8. Let η =
∑r
i=1 xi be a bubble cycle onP2 andSη be its blow-up.

ThenSη is a weak Del Pezzo surface if and only if

(i) r ≤ 8;

(ii) the Enriques diagram ofη is the disjoint union of chains;

(iii) |OP2(1)− η′| = ∅ for anyη′ ⊂ η consisting of four points;

(iv) |OP2(2)− η′| = ∅ for anyη′ ⊂ η consisting of 7 points.
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Proof. The necessity of condition (i) is clear. We know thatS does not contain curves
with self-intersection< −2. In particular, any exceptional cycleEi of the birational
morphismπ : S → P2 contains only smooth rational curvesE with E2 = −1 or−2.
This easily implies that the bubble points corresponding to each exceptional configura-
tion Ei represent a totally ordered chain. This checks condition (ii).

Suppose (iii) does not hold. LetD be an effective divisor from the linear system
|OP2(1) − η′|. We can change the admissible order onη to assume thatη′ = x1 +
x2 + x3 + x4. Then the divisor class of the proper transform ofD in Yη is equal to
e0 − e1 − e2 − e3 − e4 −

∑
i≥4miei. Its self-intersection is obviously≤ −3.

Suppose (iv) does not hold. LetD ∈ |OP2(2)− η′|. Arguing as above we find that
the divisor class of the proper transform ofD is equal to2e0−

∑7
i=1 ei−

∑
i≥7miei.

Its self-intersection is again≤ −3.
Let us prove the sufficiency. LetEN = π−1

N (xN ) be the last exceptional con-
figuration of the blow-downYη → P2. It is an irreducible(−1)-curve. Obviously,
η′ = η − xN satisfies conditions (i)-(iv). By induction, we may assume thatS′ = Sη′
is a weak Del Pezzo surface. Applying Proposition8.1.7, we have to show thatxN
does not lie on any(−2)-curve onS′. Condition (ii) implies that it does not lie on any
irreducible component of the exceptional configurationsEi, i 6= N . We will show in
the next section that any(−2)-curve on a week Del Pezzo surfaceS′ of degree≤ 7 is
either blown down to a point under the canonical mapSη′ → P2 or equal to the proper
inverse transform of a line through 3 points, or a conic through 5 points. IfxN lies on
the proper inverse transform of such a line (resp. a conic), then condition (iii) (resp.
(iv)) is not satisfied. This proves the assertion.

A set of bubble points satisfying conditions (i)-(iv) is called a set of points inalmost
general position.

We say that the points are ingeneral positionif the following holds:

(i) all points are proper points;

(ii) no three points are on a line;

(iii) no 6 points on a conic;

(iv) no cubic passes through the points with one of the point being a singular point.

Proposition 8.1.9. The blow-up ofN ≤ 8 points inP2 is a Del Pezzo surface if and
only if the points are in general position.

8.2 TheEN -lattice

8.2.1 Lattices

A (quadratic)lattice is a free abelian groupM ∼= Zr equipped with a symmetric bilin-
ear formM×M → Z. A relevant example of a lattice is the second cohomology group
modulo torsion of a compact 4-manifold (e.g. a nonsingular projective surface) with
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respect to the cup-product. Another relevant example is the Picard group modulo nu-
merical equivalence of a nonsingular projective surface equipped with the intersection
pairing.

The values of the symmetric bilinear form will be often denoted by(x, y) or x · y.
We writex2 = (x, x). The mapx 7→ x2 is an integral valued quadratic form onM .
Conversely, such a quadratic formq : M → Z defines a symmetric bilinear form by
the formula(x, y) = q(x+ y)− q(x)− q(y). Note thatx2 = 2q(x).

LetM∨ = HomZ(M,Z) and

ιM : M →M∨, ιM (x)(y) = x · y.

We say thatM is nondegenerateif the homomorphismιM is injective. In this case the
group

Disc(M) = M∨/ιM (M)

is a finite abelian group. It is called thediscriminant groupof M . If we choose a basis
to represent the symmetric bilinear form by a matrixA, then the order of Disc(M) is
equal to|det(A)|. The number disc(M) = det(A) is called thediscriminantof M . A
different choice of a basis changesA to tCAC for someC ∈ GL(n,Z), so it does not
changedet(A). A lattice is calledunimodularif |disc(M)| = 1.

TensoringM with reals, we get a real symmetric bilinear form onMR ∼= Rr. We
can identifyM with an abelian subgroup of the inner product spaceRr generated by
a basis inRr. The Sylvester signature(t+, t−, t0) of the inner product spaceMR is
called thesignatureof M . We write(t+, t−) if t0 = 0. For example, the signature of
H2(X,Z)/Torsion∼= Zb2 for a nonsingular projective surfaceX is equal to(2pg +
1, b2 − 2pg − 1), wherepg = dimH0(X,OX(KX)). The signature on the lattice of
divisor classes modulo numerical equivalence Num(X) = Pic(X)/≡ ∼= Zρ is equal
to (1, ρ− 1) (this is called theHodge Index Theorem, see [206], Chap. V, Thm. 1.9).

LetN ⊂M be a subgroup ofM . The restriction of the bilinear form toN defines
a structure of a lattice onN . We say thatN together with this form is asublatticeof
M . We say thatN is of finite indexm if M/N is a finite group of orderm. Let

N⊥ = {x ∈M : x · y = 0,∀y ∈ N}.

Note thatN ⊂ (N⊥)⊥ and the equality takes place if and only ifN is a primitive
sublattice(i.e.M/N is torsion-free).

We will need the following lemmas.

Lemma 8.2.1.LetM be a nondegenerate lattice andN be its nondegenerate sublattice
of finite indexm. Then

|disc(N)| = m2|disc(M)|.

Proof. SinceN is of finite index inM the restriction homomorphismM∨ → N∨ is
injective. We will identifyM∨ with its image inN∨. We will also identifyM with its
imageιM (M) in M∨. Consider the chain of subgroups

N ⊂M ⊂M∨ ⊂ N∨.
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Choose a basis in M, a basis in N, and the dual bases inM∨ andN∨. The inclusion
homomorphismN →M is given by a matrixA and the inclusionN∨ →M∨ is given
by its transposetA. The orderm of the quotientM/N is equal to|det(A)|. The order
of N∨/M∨ is equal to|det(tA)|. They are equal. Now the chain from above has
the first and the last quotient of order equal tom and the middle quotient is of order
|disc(M)|. The total quotientN∨/N is of order|disc(N)|. The assertion follows.

Lemma 8.2.2. LetM be a unimodular lattice andN be its nondegenerate primitive
sublattice. Then

|disc(N⊥)| = |disc(N)|.

Proof. Consider the restriction homomorphismr : M → N∨, where we identifyM
with M∨ by means ofιM . Its kernel is equal toN⊥. Composingr with the projection
N∨/ιN (N) we obtain an injective homomorphism

M/(N +N⊥)→ N∨/ιN (N).

Notice thatN⊥∩N = {0} becauseN is a nondegenerate sublattice. ThusN⊥+N =
N⊥ ⊕ N is of finite indexi in M . Also the sum is orthogonal, so that the matrix
representing the symmetric bilinear form onN ⊕ N⊥ can be chosen to be a block
matrix. We denote the orthogonal direct sum of two latticesM1 andM2 byM1 ⊕M2.
This shows that disc(N ⊥ N⊥) = disc(N)disc(N⊥). Applying Lemma8.2.1, we get

#(M/N ⊥ N⊥) =
√
|disc(N⊥)||disc(N)| ≤ #(N∨/N) = |disc(N)|.

This gives|disc(N⊥)| ≤ |disc(N)|. SinceN = (N⊥)⊥, exchanging the roles ofN
andN⊥, we get the opposite inequality.

Lemma 8.2.3. LetN be a nondegenerate sublattice of a unimodular latticeM . Then

ιM (N⊥) = Ann(N) := Ker(r : M∨ → N∨) ∼= (M/N)∨.

Proof. Under the isomorphismιM : M →M∨ the image ofN⊥ is equal to Ann(N).
Since the functor HomZ(−,Z) is left exact, applying it to the exact sequence

0→ N →M →M/N → 0,

we obtain an isomorphism Ann(N) ∼= (M/N)∨.

A morphism of latticesσ : M → N is a homomorphism of abelian groups preserv-
ing the bilinear forms. IfM is a nondegenerate lattice, thenσ is necessary injective.
We say in this case thatσ is anembeddingof lattices. An embedding is calledprim-
itive if its image is a primitive sublattice. An invertible morphism of lattices is called
an isometry. The group of isometries of a latticeM to itself is denoted by O(M) and
is called theorthogonal groupof M .

Let MQ := M ⊗ Q ∼= Qn with the symmetric bilinear form ofM extended to
a symmetricQ-valued bilinear form onMQ. The groupM∨ can be identified with
the subgroup ofMQ consisting of vectorsv such that(v,m) ∈ Z for anym ∈ M .
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Suppose thatM is nondegenerate lattice. The finite group Disc(M) can be equipped
with a quadratic form defined by

q(x̄) = (x, x) mod Z,

wherex̄ denotes a cosetx + ιM (M). If M is aneven lattice, i.e. m2 ∈ 2Z for all
m ∈ M , then we take values modulo2Z. The group of automorphisms of Disc(M)
leaving the quadratic form invariant is denoted by O(Disc(M)).

The proof of the next Lemma can be found in [300].

Lemma 8.2.4. LetM ⊂ N be a sublattice of finite index. Then the inclusionM ⊂
N ⊂ N∨ ⊂ M∨ defines the subgroupN/M in Disc(M) = M∨/M such that the
restriction of the quadratic form ofDisc(M) to it is equal to zero. Conversely, any
such subgroup defines a latticeN containingM as a sublattice of finite index.

The group O(M) acts naturally on the dual groupM∨ preserving its bilinear form
and leaving the subgroupιM (M) invariant. This defines a homomorphism of groups

αM : O(M)→ O(Disc(M)).

Lemma 8.2.5. LetN be a primitive sublattice in a nondegenerate latticeM . Then an
isometryσ ∈ O(N) extends to an isometry ofM acting identically onN⊥ if and only
if σ ∈ Ker(αN ).

8.2.2 TheEN -lattice

Let I1,N = ZN+1 equipped with the symmetric bilinear form defined by the diagonal
matrix diag(1,−1, . . . ,−1) with respect to the standard unit basis

e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , eN = (0, . . . , 0, 1)

of ZN+1. Any basis defining the same matrix will be called anorthonormal basis. The
latticeI1,N is a unimodular lattice of signature(1, N).

Consider the special vector inI1,N defined by

kN = (−3, 1, . . . , 1) = −3e0 +
N∑
i=1

ei. (8.2)

We define theEN -latticeas a sublattice ofI1,N given by

EN = (ZkN )⊥.

Sincek2
N = 9 − N , it follows from Lemma8.2.2, thatEN is a negative definite

lattice forN ≤ 8. Its discriminant group is a cyclic group of order9−N . Its quadratic
form is given by the value on its generator equal to− 1

9−N mod Z (or 2Z if N is odd).

Lemma 8.2.6. AssumeN ≥ 3. The following vectors form a basis ofEN

α1 = e0 − e1 − e2 − e3, αi = ei−1 − ei, i = 2, . . . , N.
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The matrix of the symmetric bilinear form ofEN with respect to this basis is equal to

CN =



−2 0 0 1 0 0 0 0 . . . 0
0 −2 1 0 0 0 0 0 . . . 0
0 1 −2 1 0 0 0 0 . . . 0
1 0 1 −2 1 0 0 0 . . . 0
0 0 0 1 −2 1 0 0 . . . 0
0 0 0 0 1 −2 1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . . . . 0 0 0 −2 1


.

Proof. By inspection, eachαi is orthogonal tokN . Suppose(a0, a1, . . . , aN ) is or-
thogonal tokN . Then

3a0 + a1 + · · ·+ aN = 0. (8.3)

We can write this vector as follows

(a0, a1, . . . , aN ) = a0α1 + (a0 + a1)α2 + (2a0 + a1 + a2)α3

+(3a0 + a1 + a2 + a3)α4 + · · ·+ (3a0 + a1 + · · ·+ aN−1)αN .

We use here that (8.3) implies that the last coefficient is equal to−aN . We leave the
computation of the matrix to the reader.

One can express the matrixCN by means of the incidence matrixAN of the fol-
lowing graph withN vertices We haveCN = −2IN +AN .

• • • • • •

•

· · · N ≥ 4

• • • N = 3

Table 8.1: Coxeter-Dynkin diagram of typeEN

8.2.3 Roots

A vectorα ∈ EN is called aroot if α2 = −2. A vector(d,m1, . . . ,mN ) ∈ I1,N is a
root if and only if

d2 −
N∑
i=1

m2
i = −2, 3d−

N∑
i=1

mi = 0. (8.4)

Using the inequality(
∑N
i=1mi)2 ≤ N

∑N
i=1m

2
i , it is easy to find all solutions.
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Proposition 8.2.7. LetN ≤ 8 and

αij = ei − ej , 1 ≤ i < j ≤ N,
αijk = e0 − ei − ej − ek, 1 ≤ i < j < k ≤ N.

Any root inEN is equal to one of the following:

N= 3 : ±αij ,±α1,2,3. Their number is8.

N= 4 :±αij ,±αi,j,k. Their number is20.

N= 5 : ±αij ,±αi,j,k. Their number is40.

N= 6 :±αij ,±αi,j,k,±(2e0 − e1 − . . .− e6). Their number is72.

N= 7 : ±αij ,±αi,j,k,±(2e0 − e1 − . . .− e7 − ei). Their number is126.

N= 8 :±αij ,±αi,j,k,±(2e0− e1− . . .− e8− ei− ej),±(3e0− e1− . . .− e8− ei).
Their number is240.

ForN ≥ 9, the number of roots is infinite. From now on we assume

3 ≤ N ≤ 8.

An ordered setB of roots{β1, . . . , βr} is called aroot basisif they are linearly inde-
pendent overQ and

βi · βj ≥ 0.

A root basis is called irreducible if it is not equal to the union of non-empty subsetsB1

andB2 such thatβi · βj = 0 if βi ∈ B1 andβj ∈ B2. The symmetricr × t-matrix
C = (aij), whereaij = βi · βj is called theCartan matrixof the root basis.

Recall that asymmetric Cartan matrixis a symmetric negative (positive) definite
matrixC = (aij) of sizen with aii = −2(2) andaij ≥ 0(≤ 0) for i 6= j. All such
matrices can be classified. Each Cartan matrix is a block-sum of irreducible Cartan
matrices. There are two infinite series of irreducible matrices of typesAn andDn

and three exceptional irreducible matrices of typeEn, wheren = 6, 7, 8. The matrix
C + 2In(C − 2In), whereC is an irreducible Cartan matrix, is the incidence matrix of
the Coxeter-Dynkin diagram of typeAn, Dn, En.

For 3 ≤ n ≤ 5, we will useEn to denote the Coxeter-Dynkin diagrams of types
A2 +A1(N = 3),A4(N = 4) andD5(N = 5).

SinceEN is a negative definite lattice forN ≤ 8, any root basis generates a nega-
tive definite sublattice. Hence the matrix of the symmetric form satisfies the conditions
of a Cartan matrix. This gives the following.

Proposition 8.2.8. The Cartan matrixC of an irreducible root basis inEN is equal to
an irreducible Cartan matrix of typeAr, Dr, Er with r ≤ N .

Definition 8.5. A canonical root basisin EN is a root basis with Cartan matrix of type
EN .
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An • • • •· · ·

Dn • • • • •

•

. . .

E6 • • • • •

••

E7 • • • • • •

••

E8 • • • • • • •

••

Table 8.2: Coxeter-Dynkin diagrams of types A,D, E

An example of a canonical root basis is the basis formed by the roots

β1 = α123, βi = αi−1,i, i = 2, . . . , N. (8.5)

Theorem 8.2.9.Any canonical root basis is obtained from a unique orthonormal basis
(v0, v1, . . . , vn) in I1,N such thatkN = −3v0 + v1 + · · ·+ vN by the formula

β1 = v0 − v1 − v2 − v3, βi = vi−1 − vi, i = 2, . . . , N. (8.6)

Proof. Given a canonical root basis(β1, . . . , βN ) we solve forvi in the system of
equations (8.6). We have

vi = vN +
N∑
i=2

βi, i = 1, . . . , N − 1,

v0 = β1 + v1 + v2 + v3 = β1 + 3vN + 3
N∑
i=4

βi + 2β3 + β2,

−kN = 3v0 − v1 − · · · − vN = 9vN + 9
N∑
i=4

βi + 6β3 + 3β2

−(vN +
N∑
i=2

βi)− (vN +
N∑
i=3

βi)− . . .− (vN + βN )− vN .
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This gives

vN = − 1
9−N

(kN + 3β1 + 2β2 + 4β3 +
N∑
i=3

(9− i)βi+1).

Intersecting both sides withβi we find(vN , βi) = 0, i = 1, . . . , N−1, and(vN , βN ) =
1. Thus allvi belong to(kN ⊥ EN )∨. The discriminant group of this lattice is
isomorphic to(Z/(9 − N)Z) and the only isotropic subgroup of order9 − N is the
diagonal subgroup. This shows thatE∨N is the only sublattice of(kN ⊥ EN )∨ of index
9 −N , hencevi ∈ E∨N for all i. It is immediately checked that(v0, v1, . . . , vN ) is an
orthonormal basis andkN = −3v0 + v1 + · · ·+ vN .

Corollary 8.2.10. LetO(I1,N )kN
be the stabilizer of the vectorkN in O(I1,N ). Then

O(I1,N )kN
acts simply transitively on the set of canonical root bases inEN .

Let β = (β1, β2, . . . , βN ) be a canonical root basis andα be a root. By applying
a uniqueσ ∈ O(I1,N )kN

we may assume thatσ(β1) = e0 − e1 − e2 − e3, σ(βi) =
ei − ei+1, i ≥ 2, andσ(α) is one of the vectors from Lemma8.2.7. It is immediately
checked that each such vector is equal to a linear combination of the rootsσ(αi) with
either all non-negative or all non-positive integer coefficients. So each canonical root
basisβ = (β1, . . . , βN ) defines a partition of the set of rootsR

R = R+

∐
R−,

whereR+ is the set of non-negative linear combinations ofβi. The roots fromR+

(R−) are calledpositive(negative) roots with respect to the root basisβ. It is clear that
R− = {−α : α ∈ R+}.

For any canonical root basisβ, the subset

Cβ = {x ∈ I1,N
R : (x, βi) ≥ 0}

is called aWeyl chamberwith respect toβ. A subset of a Weyl chamber which consists
of vectors such that(v, βi) = 0 for some subsetI ⊂ {1, . . . , N} is called aface. A
face corresponding to the empty set is equal to the interior of the Weyl chamber. The
face corresponding to the subset{1, . . . , N} is spanned by the vectorkN .

For any rootα and anyx ∈ I1,N , let

rα(v) = v + (v, α)α.

It is immediately checked thatrα ∈ O(I1,N )kN
, rα(α) = −α and rα(v) = v if

(v, α) = 0. The isometryrα is called thereflectionin the rootα. By linearityrα acts
as an orthogonal transformation of the real inner product spaceR1,N := I1,N

R .
The following is a basis fact from the theory of finite reflection groups. We refer

for the proof to numerous text-books on this subject (e.g. [37], [240]).

Theorem 8.2.11.LetC be a Weyl chamber defined by a canonical root basisβ. Let
W (EN ) be the subgroup ofO(EN ) generated by reflectionsrβi . For anyx ∈ R1,N

there existsw ∈ W (EN ) such thatw(x) ∈ C. If x,w(x) ∈ C, thenx = w(x) and
x belongs to a face ofC. The union of Weyl chambers is equal toR1,N . Two Weyl
chambers intersect only along a common face.
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Corollary 8.2.12. The groupW (EN ) acts simply transitively on canonical root bases,
and Weyl chambers. It coincides with the groupO(I1,N )kN

.

The first assertion follows from the theorem. The second assertion follows from
Corollary8.2.10sinceW (EN ) is a subgroup of O(I1,N )kN

.

Corollary 8.2.13. Then
O(EN ) = W (EN )× 〈τ〉,

whereτ is an isometry ofEN which is realized by a permutation of roots in a canonical
basis leaving invariant the Coxeter-Dynkin diagram. We haveτ = 1 for N = 7, 8 and
τ2 = 1 for N 6= 7, 8.

Proof. By Lemma8.2.5, the image of the restriction homomorphism O(I1,N )kN
→

O(EN ) is equal to the kernel of the homomorphismα : O(EN ) → O(Disc(EN )).
It is easy to compute O(Disc(EN )) and find that it is isomorphic toZ/τZ. Also it
can be checked thatα is surjective and the image of the symmetry of the Coxeter-
Dynkin diagram is the generator of O(Disc(EN )). It remains to apply the previous
corollary.

The definition of the groupW (EN ) does not depend on the choice of a canonical
basis and hence coincides with the definition of Weyl groupsW (EN ) from Chapter 7.
Note that Corollary8.2.12also implies thatW (EN ) is generated by reflectionsrα for
all rootsα in EN . This is true forN ≤ 10 and is not true forN ≥ 11.

Proposition 8.2.14. If N ≥ 4, the groupW (EN ) acts transitively on the set of roots.

Proof. Let (β1, . . . , βN ) be a canonical basis from (8.5). Observe that the subgroup of
W (EN ) generated by the reflections with respect to the rootsβ2, . . . , βN is isomorphic
to the permutation groupSN . It acts on the set{e1, . . . , eN} by permuting its elements
and leavese0 invariant. This implies thatSN acts on the rootsαij , αijk, via its action
on the set of subsets of{1, . . . , N} of cardinality2 and3. Thus it acts transitively on
the set of rootsαij and on the set of rootsαijk. Similarly, we see that it acts transitively
on the set of roots2e0 − ei1 − . . .− ei6 and−k8 − ei if N = 8. Also applyingrα to
α we get−α. Now the assertion follows from the following computation

rβ1(−k8 − e8) = 2e0 − e1 − e4 − . . .− e8,

rβ1(2e0 − e1 − . . .− e6) = α456,

rβ1(α124) = α34.

In a similar way one defines the Weyl group associated to any Cartan matrix and
Coxeter-Dynkin diagram of some typeT . We consider the negative lattice with the
symmetric bilinear form defined by the Cartan matrix. We call it aroot latticeof the
corresponding type. A basis in this lattice in which the matrix of the symmetric bilinear
form is equal to the Cartan matrix is called aroot basis. The subgroup of the orthogonal
group of a root lattice generated by reflection in basis vectors is the Weyl groupW (T )
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of type T . It acts transitively on the set of root bases and coincides with the group
generated by reflections in all roots.

The types of root bases in the latticeEN can be classified by the following pro-
cedure due to A. Borel and J. De Siebenthal [33] and, independently by E. Dynkin
[148].

LetD be the Coxeter-Dynkin diagram. Consider the extended diagram by adding
one more vertex which is connected to other edges as shown on the followingextended
Coxeter-Dynkin diagrams. Consider the following set of elementary operations over
the diagramsD and their disconnected sumsD1 + · · · +Dk. Extend one of the com-
ponentsDi to get the extended diagram. Consider its subdiagram obtained by deleting
subset of vertices. Now all possible root bases are obtained by applying recursively
the elementary operations to the initial Coxeter-Dynkin diagram of typeEN and all its
descendants.

Ãn • • • •
•TTTTTTTTTT

hhhhhhhhhhh· · ·

D̃n • • • • • •

••

· · ·

Ẽ6 • • • • •

•

•

Ẽ7 • • • • • •

•

•

•

Ẽ8 • • • • • • •

•

•

•

Table 8.3: Extended Coxeter-Dynkin diagrams of typesÃ, D̃, Ẽ

8.2.4 Fundamental weights

Let β = (β1, β2, . . . , βN ) be a canonical root basis inEN . Consider its dual basis
(ω1, . . . , ωN ) in E∗N ⊗Q defined byωi(βj) = δij . Its elements are calledfundamental
weights. We use the expressions forβi from Theorem8.2.9. Let us identifyE∗N with
(k⊥N )∗ = I1,N/ZkN . Then we can take for representatives ofωj the following vectors
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from I1,N :

ω1 = v0,

ω2 = v0 − v1,
ω3 = 2v0 − v1 − v2,
ωi = vi + · · ·+ vN , i = 4, . . . , N.

Definition 8.6. A vector inI1,N is called anexceptional vectorif it belongs to the
W (EN )-orbit of ωN .

Proposition 8.2.15. A vectorv ∈ I1,N is exceptional if and only ifkN · v = −1 and
v2 = −1. The set of exceptional vectors is the following

N = 3, 4 : ei, e0 − ei − ej ;
N = 5 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e5;
N = 6 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e6 + ei;
N = 7 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e7 + ei + ej ;−k7 − ei;
N = 8 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e7 + ei + ej ;−k8 + ei − ej ;

−k8 + e0 − ei − ej − ek,−k8 + 2ei1 − . . .− ei6 .

The number of exceptional vectors is given by the following table:

N 3 4 5 6 7 8
# 6 10 16 27 56 240

.

Proof. Similarly to the case of roots, we solve the equations

d2 −
N∑
i=1

m2
i = −1, 3d−

N∑
i=1

mi = 1.

First we immediately get the inequality(3d−1)2 ≤ N(d2+1) which gives0 ≤ d ≤ 4.
If d = 0, the condition

∑
m2
i = d2 +1 andkN · v = −1 gives the vectorsei. If d = 1,

this gives the vectorse0 − ei − ej , and so on. Now we use the idea of Noether’s
inequality from Chapter 7 to show that all these vectors(d,m1, . . . ,mN ) belong to the
same orbit ofW (EN ). We apply permutations fromSN to assumem1 ≥ m2 ≥ m3,
then use the reflectionrα123 to decreased.

Corollary 8.2.16. The orders of the Weyl groupsW (EN ) are given by the following
table:

N 3 4 5 6 7 8
#W (EN ) 12 5! 24 · 5! 23 · 32 · 6! 26 · 32 · 7! 27 · 33 · 5 · 8!

.
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Proof. Observe that the orthogonal complement ofeN in I1,N is isomorphic toIN−1.
Sincee2

N = −1, by Lemma8.2.5, the stabilizer subgroup ofeN in O(I1,N ) is equal
to O(I1,N−1). This implies that the stabilizer subgroup ofeN in W (EN ) is equal to
W (EN−1). Obviously,W (E3) ∼= S3 × S2 andW (E3) ∼= S5. Thus#W (E5) =
16 · #W (E4) = 24 · 5!,#W (E6) = 27 · #W (E5) = 23 · 32 · 6!, #W (E7) =
56 ·#W (E6) = 26 · 32 · 7!,#W (E8) = 240 ·#W (E7) = 27 · 33 · 5 · 8!.

Proposition 8.2.17.For any two different exceptional vectorsv, w

(v, w) ∈ {0, 1, 2}.

Proof. This can be seen directly from the list, however we prefer to give a proof inde-
pendent of the classification. It is immediately seen that all vectorsei are exceptional.
Thus the orbitW (EN ) · ωN = W (EN ) · e1 is contained in the orbit ofW (E8) · e1.
Thus exceptional vectors inEN are exceptional vectors inE8. So it suffices to con-
sider the caseN = 8. Since(v,k8) = (w,k8), we havev − w ∈ E8. SinceE8

is a negative definite even lattice we have(v − w, v − w) = −2 − 2(v, w) ≤ −2.
This gives(v, w) ≥ 0. NowAssume(v, w) > 2. Let h = 2k8 + v + w. We have
(v+w)2 = −2 + 2(v, w) ≥ 4 andh2 = 4− 8 + (v+w)2 ≥ 0, h · k8 = 0. ThusI1,8

contains two non-proportional orthogonal vectorsh andk8 with non-negative norm
square. Since the signature ofI1,N is equal to(1, N), we get a contradiction.

8.2.5 Gosset polytopes

Consider the real vector spaceI1,N ⊗ R with the inner product〈, 〉 defined by the
quadratic form onI1,N multiplied by−1. All exceptional vectors lie in the affine
spaceVN = {x ∈ VN : (kN , x) = 1} and belong to the unit sphereSN . Let ΣN be
the convex hull of the exceptional vectors. It follows from Proposition8.2.17(or from
the list of exceptional vectors) that all exceptional vectors are the vertices ofΣN . For
any two vectorsw,w′ ∈ SN , the vectorw − w′ belongs to the even quadratic lattice
EN , hence2 ≤ 〈w−w′, w−w′〉 = 2−2〈w,w′〉. This shows that the minimal distance
〈w − w′, w − w′〉1/2 between two vertices is equal to

√
2 and occurs only when the

vectorsw andw′ are orthogonal. This implies that the edges ofΣN correspond to pairs
of orthogonal exceptional vectors. The difference of such vectors is a rootα = w−w′
such that〈α,w〉 = 1. The reflectionssα : x 7→ x − 〈x, α〉α sendsw to w′. Thus
the reflection hyperplaneHα = {x ∈ VN : 〈x, α〉 = 0} intersects the edge at the
mid-point. It permutes two adjacent vertices. The Weyl groupW (EN ) acts onΣN
with the set of vertices forming one orbit. The edges coming out of a fixed vertex
correspond to exceptional vectors orthogonal to the vertex. For example, if we take the
vertex corresponding toeN , then the edges correspond to exceptional vectors for the
root systemEN−1. Thus the vertex figure at each vertex (i.e. the convex hull of mid-
points of edges coming from the vertex) is isomorphic toΣN−1. A convex polytope
with isomorphic vertex figures is called a semi-regular polytope (a regular polytope
satisfies the additional property that all facets are isomorphic).

The polytopesΣN are Gosset polytopes discovered by T. Gosset in 1900 [190].
Following Gosset they are denoted by(N − 4)21. We refer to [98], p. 202, for their
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following facts about their combinatorics. Each polytopeΣN has twoW (EN )-orbits
on the set of facets. One of them is represented by the convex hull of exceptional
vectorse1, . . . , eN orthogonal to the vectore0. It is a (N − 1)-simplexαN−1. The
second one is represented by the convex hull of exceptional vectors orthogonal toe0 −
e1. It is a cross-polytopeβN−1 (a cross-polytopeβi is the bi-pyramide overβi−1 with
β2 being a square). The number of facets is equal to the index of the stabilizer group
of e0 or e0 − e1 in the Weyl group. The rest of faces are obtained by induction onN .
LetNk be the number ofk-faces ofΣN .

Their number is given in the following table (see [98], 11.8).

k/N 3 4 5 6 7 8

0 6 10 16 27 56 240
1 3α+ 6α 30 80 216 756 6720
2 2α+ 3β 10α+ 20α 160 720 4032 60480
3 5α+ 5β 40α+ 80α 1080 10080 241920
4 16α+ 10β 432α+ 12096 483840

216α
5 72α5+ 2016α+ 483840

27β 4032α
6 576α+ 69120α+

126β 138240α
7 17280α+

+2160β

Table 8.4: Gosset polytopes

The Weyl groupW (EN ) acts transitively on the set ofk-faces whenk ≤ N − 2.
Othwerwise there are two orbits, their cardinality can be found in the table. The dual
(reciprocal) polytopes are not semi-regular anymore since the group of symmetries has
two orbits on the set of vertices. One is represented by the vectore0 and another by
e0 − e1.

8.2.6 (−1)-curves on Del Pezzo surfaces

Let φ : I1,N → Pic(S) be a geometric marking of a weak Del Pezzo surfaceS. The
intersection form on Pic(S) equips it with a structure of a lattice. Sinceφ sends an
orthonormal basis ofI1,N to an orthonormal basis of Pic(S), the isomorphismφ is an
isomorphism of lattices. The imageK⊥

S of EN is isomorphic to the latticeEN .
The image of an exceptional vector is the divisor classE such thatE2 = E ·KS =

−1. By Riemann-Roch,E is an effective divisor class. Write it as a sum of irreducible
componentsE = R1 + . . . + Rk. Intersecting withKS , we obtain that there exists
a unique component, sayR1 such thatR1 · KS = −1. For all other components we
haveRi ·KS = 0. It follows from the adjunction formula that any such component is
a (−2)-curve. So, ifS is a Del Pezzo surface, the image of any exceptional divisor is
a (−1)-curve onS, and we have a bijection between the set of exceptional vectors in
EN and(−1)-curves onS. If S is a weak Del Pezzo surface, we use the following.
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Lemma 8.2.18.LetD be a divisor class withD2 = D ·KS = −1. ThenD = E+R,
whereR is a nonnegative sum of(−2)-curves, andE is either a(−1)-curve orK2

S = 1
andE ∈ | −KS | andE · R = 0, R2 = −2. MoreoverD is a (−1)-curve if and only
if for each(−2)-curveRi onS we haveD ·Ri ≥ 0.

Proof. Let e0 = π∗(`), whereπ : S → P2 is a birational morphism and̀is a line. We
know thate20 = 1, e0 ·KS = −3. Thus((D · e0)KS + 3D) · e0 = 0 and hence(

(D · e0)KS + 3D
)2 = −6D · e0 − 9 + (D · e0)2K2

S < 0.

Thus−6D·e0−9 < 0 and henceD·e0 > −9/6 > −2. This shows that(KS−D)·e0 =
−3 − D · e0 < 0, and sincee0 is nef, we obtain that|KS − D| = ∅. Applying
Riemann-Roch we getdim |D| ≥ 0. Write an effective representative ofD as a sum of
irreducible components and use thatD · (−KS) = 1. Since−KS is nef, there is only
one componentE entering with coefficient1 and satisfyingE · KS = −1, all other
components are(−2)-curves. IfD ∼ E, thenD2 = E2 = −1 andE is a(−1)-curve.
Let π : S′ → S be a birational morphism of a weak Del Pezzo surface of degree 1
(obtained by blowing up8 − k points onS in general position not lying onE). We
identifyE with its preimage inS′. Then(E +KS′) ·KS′ = −1 + 1 = 0, hence, by
Hodge Index Theorem, eitherS′ = S andE ∈ | −KS |, or

(E +KS′)2 = E2 + 2E ·KS′ +K2
S′ = E2 − 1 < 0.

SinceE ·KS = −1,E2 is odd. Thus, the only possibility isE2 = −1. If E ∈ |−KS |,
we haveE ·Ri = 0 for any(−2)-curveRi, henceE ·R = 0, R2 = −2.

AssumeR 6= 0. Since−1 = E2 + 2E · R + R2 andE2 ≤ 1, R2 ≤ −2, we get
E ·R ≥ 0, where the equality take place only ifE2 = 1. In both cases we get

−1 = (E +R)2 = (E +R) ·R+ (E +R) · E ≥ (E +R) ·R.

Thus ifD 6= E, we getD ·Ri < 0 for some irreducible component ofR. This proves
the assertion.

The number of(−1)-curves on a Del Pezzo surface is given in Table8.2.15. It is
also can be found in Table8.4. It is the number of vertices of the Gosset polytope.
Other faces give additional information about the combinatorics of the set of(−1)-
curves. For example, the number ofk-faces of typeα is equal to the number of sets of
k non-intersecting(−1)-curves.

We can also see the geometric realization of the fundamental weights:

w1 = e0, w2 = e0 − e1, w3 = 2e0 − e1 − e2, wi = e1 + . . .+ eN , i = 4, . . . , N.

The image ofw1 under a geometric marking represents the divisor class ofπ∗(OP2(1)),
whereπ : S → P2 is the blowing-down morphism defining the geometric marking.
The image ofw2 represents the linear systemπ∗(|OP2(1) − p1|) defining a structure
of a conic bundle onS. The image ofw3 is the pre-image of the homaloidal linear
system of conics through the pointsp1, p2, p3. Finally, the images of the remaining
fundamental weights represent isolated linear system of disjoint(−1)-curves.
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Recall the usual attributes of the minimal model program. Let Eff(S) be theeffec-
tive coneof a smooth projective surfaceS, i.e. the open subcone in Pic(S)⊗R spanned
by effective divisor classes. LetEff(S) be its closure. The Cone Theorem [257] states
that

Eff(S) = Eff(S)KS≥0 +
∑
i

R[Ci],

whereEff(S)KS≥0 = {x ∈ Eff(S) : x ·KS ≥ 0} and[Ci] areextremal raysspanned
by classes of smooth rational curvesCi such that−Ci ·KX ≤ 3.

Recall that a subconeτ of a coneK is extremal if there exists a linear functionφ
such thatφ(K) ≥ 0 andφ−1(0) ∩K = τ . In the case whenK is a polyhedral cone,
an extremal subcone is a face ofK.

Theorem 8.2.19.LetS be a Del Pezzo surface of degreed. Then

Eff(S) =
k∑
i=1

R[Ci],

where the set of curvesCi is equal to the set of(−1)-curves ifd 6= 8, 9. If d = 8 andS
is isomorphic toP1 × P1, thenk = 2, and the[Ci]’s are the classes of the two rulings
onS. If d = 8 andS ∼= F1, thenk = 2 andC1 is the class of the exceptional section,
andC2] is the class of a fibre. Ifd = 9, thenk = 1 and[C1] is the class of a line.

Proof. SinceS is a Del Pezzo surface,Eff(S)KS≥0 = {0}, so it suffices to find the
extremal rays. It is clear thatE · KS = −1 implies that any(−1)-curve generates
an extremal ray. Choose a geometric marking onS to identify Pic(S) with I1,N . Let
C be a smooth rational curve such thatc = −C · KS ≤ 3. By adjunction formula,
C2 = −2 + c. If c = 1, C is a (−1)-curve. If c = 2, applying Corollary7.4.7,
we follow the proof of Proposition8.2.15to obtain that all vectors withv ∈ I1,N

satisfyingv · kN = −2 and(v, v) = 0 belong to the same orbit ofW (EN ). Thus,
if d < 8, we may assume thatv = e0 − e1, but thenv = (e0 − e1 − e2) + e2 is
equal to the sum of two exceptional vectors, hence[C] is not extremal. Ifc = 3, then
C2 = 1, C · KS = −3. Again, we can apply Noether’s inequality and the proof of
Lemma7.4.10to obtain that all such vectors belong to the same orbit. Takev = e0 and
write e0 = (e0 − e1 + e2) + e1 + e2 to obtain that[C] is not extremal ifd < 8. We
leave the casesd = 8, 9 to the reader.

Corollary 8.2.20. Assumed < 8. Letφ : I1,N → Pic(S) be a geometric marking of a
Del Pezzo surface. Thenφ−1(Eff(S)) is equal to the Gosset polytope.

Recall from [257] that any extremal faceF of Eff(S) defines a contraction mor-
phismφF : S → Z. The two types of extremal faces of a Gosset polytope define
two types of contraction morphismsαk-type andβk-type. The contraction ofαk-type
blows down the set of disjoint(−1)-curves which are the vertices of the set. The con-
traction ofβk-type defines a conic bundle structure onS. It is a morphism ontoP1

with general fibre isomorphic toP1 and singular fibres equal to the union of two(−1)-
curves intersecting transversally at one point. Thus the number of facets of typeβ of
the Gosset polytope is equal to the number of conic bundle structures onS.
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Another attribute of the minimal model program is thenef coneNef(S) in Pic(S)⊗
R spanned by divisor classesD such thatD · C ≥ 0 for any effective divisor classC.
The nef cone is the dual ofEff(S). Under a geometric marking it becomes isomorphic
to the dual of the Gosset polytope. It has two types of vertices represented by the
normal vectors to facets. One type is represented by the Weyl group orbit of the vector
e0 and another by the vectore0 − e1.

8.2.7 Effective roots

Let φ : I1,N → Pic(S) be a geometric marking of a weak Del Pezzo surface of degree
d = 9 − N . The image of a rootα ∈ EN is a divisor classD such thatD2 = −2
andD · KS = 0. We say thatα is aneffective rootif φ(α) is an effective divisor
class. Let

∑
i∈I niRi be its effective representative. Since−KS is nef, we obtain that

Ri · KS = 0. SinceK2
S , we also getR2

i < 0. Together with the adjunction formula
this implies that eachRi is a(−2)-curve. Since a(−2)-curve does not move, we will
identify it with its divisor class.

Proposition 8.2.21. Let S be a weak Del Pezzo surface of degreed = 9 − N . The
numberr of (−2)-curves onS is less or equal thanN . The sublatticeNS of Pic(S)
generated by(−2)-curves is a root lattice of rankr.

Proof. Since each nodal curve is contained inK⊥
S andRi ·Rj ≥ 0 for i 6= j, it suffices

to prove that the set of(−2)-curves is linearly independent overQ. Suppose that this
is not true. Then we can find two disjoint sets of curvesRi, i ∈ I, andRj , j ∈ J, such
that ∑

i∈I
niRi ∼

∑
j∈J

mjRj ,

whereni,mj are some non-negative rational numbers. Taking intersection of both
sides withRi we obtain that

Ri · (
∑
i∈I

niRi) = Ri · (
∑
j∈J

mjRj) ≥ 0.

This implies that

(
∑
i∈I

niRi)2 =
∑
i∈I

ni
(
Ri · (

∑
i∈I

niRi)
)
≥ 0.

Since(ZKS)⊥ is negative definite, this could happen only if
∑
i∈I niRi ∼ 0. Since

all coefficients are non-negative, this happens only if allni = 0. For the same reason
eachmi is equal to0.

It is clear that, ifα is a nodal root, then−α is not a nodal root. Letη = x1 +
· · ·+ xN be the bubble cycle defined by the blowing down structureS → P2 defining
the geometric marking. It is clear thatφ(αij) = [Ei − Ej ] is effective if and only if
xi �i−j xj . It is also clear thatαij is nodal if and only ifi = j + 1.

A root αijk is effective if and only if there exist pointsxi′ , xj′ , xk′ such that
xi �i−i′ xi′ , xj �j−j′ xj′ , xk �k−k′ xk′ , and there is a line in the plane whose



8.2. THE EN -LATTICE 267

proper transform inS belongs to the classe0 − ei′ − ej′ − ek′ . The rootαi′,j′,k′ is a
nodal root.

The root2e0 − ei1 − . . . − ei6 is nodal if and only if its image in Pic(S) is the
divisor class of the proper transform of an irreducible conic passing through the points
xi1 , . . . , xi6 .

The root3e0 − e1 − . . .− e8 − ei is nodal if and only if its image in Pic(S) is the
divisor class of the proper transform of an irreducible cubic with double points atxi
and passing through the rest of the points.

Definition 8.7. A Dynkin curveis a reduced connected curveR on a projective nonsin-
gular surfaceX such that its irreducible componentsRi are−2-curves and the matrix
(Ri ·Rj) is a Cartan matrix. The type of a Dynkin curve is the type of the corresponding
root system.

Under a geometric marking a Dynkin curve on a weak Del Pezzo surfaceS corre-
sponds to an irreducible root base in the latticeEN . We use the Borel-De Siebenthal-
Dynkin procedure to determine all possible root bases inEN .

Theorem 8.2.22. Let R be a Dynkin curve on a projective nonsingular surfaceX.
There is a birational morphismf : X → Y , whereY is a normal surface satisfying
the following properties:

(i) f(R) is a point;

(ii) the restriction off toX \R is an isomorphism;

(iii) f∗ωY ∼= ωX .

Proof. LetH be a very ample divisor onX. Since the intersection matrix of compo-
nents ofR =

∑n
i=1Ri has non-zero determinant, we can find rational numbersri such

that

(
n∑
i=1

riRi) ·Rj = −H ·Rj , j = 1, . . . , n.

It is easy to see that the entries of the inverse of a Cartan matrix are nonpositive. Thus
all ri’s are nonnegative numbers. ReplacingH by some multiplemH, we may assume
that all ri are nonnegative integers. LetD =

∑
riRi. SinceH + D is an effective

divisor and(H+D) ·Ri = 0 for eachi, we haveOX(H+D)⊗ORi
= ORi

. Consider
the standard exact sequence

0→ OX(H)→ OX(H +D)→ OD → 0.

ReplacingH by mH, we may assume, by Serre’s Duality, thath1(OX(H)) = 0
andOX(H) is generated by global sections. Lets0, . . . , sN−1 be sections ofOX(H)
which define an embedding inPN−1. Consider them as sections ofOX(H +D). Let
sN+1 be a section ofOX(H +D) which maps to1 ∈ H0(X,OD). Consider the map
f ′ : X → PN defined by the sections(s0, . . . , sN ). Thenf ′(D) = (0, . . . , 0, 1) and
f ′|X ⊂ D is an embedding. So we obtain a mapf : X → PN satisfying properties (i)
and (ii). SinceX is normal,f ′ factors through a mapf : X → Y , whereY is normal.
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Let ωY be the canonical sheaf ofY (it is defined to be equal to the sheafj∗ωY \f ′(R),
wherej : Y \ f ′(R)→ Y is the natural open embedding). We have

ωX = f∗ωY ⊗OX(A)

for some divisorA. SinceKX · Ri = 0 for eachi, andf∗ωY ⊗ ORi
= ORi

we get
A·Ri = 0. Since the intersection matrix ofR is negative definite we obtainA = 0.

Definition 8.8. A pointy ∈ Y of a normal varietyY is called acanonical singularity
if there exists a resolutionπ : X → Y such thatπ∗ωY ∼= ωX . In the casedimY = 2,
a canonical singularity is called a RDP (rational double point).

We state the next well-known theorem without proof.

Theorem 8.2.23.Let y ∈ Y be a RDP andπ : X → Y be a resolution such that
π∗ωY ∼= ωX . Thenπ−1(y) is a Dynkin curve. Moreover(Y, y) is analytically equiva-
lent to one of the following singularities

An : z2 + x2 + yn+1 = 0, n ≥ 1, (8.7)

Dn : z2 + y(x2 + yn−2 = 0, n ≥ 4,
E6 : z2 + x3 + y4 = 0,
E7 : z2 + x3 + xy3 = 0,
E8 : z2 + x3 + y5 = 0.

The corresponding Dynkin curve is of respective typeAn, Dn, En.

Remark8.2.1. The singularity of typeA1 is called in classical and modern literature
a node. For this reason a(−2)-curve is also callednodal although the same term is
also used for an irreducible singular curve with ordinary double points (nodes) as a
singularities.

8.2.8 Cremona isometries

Definition 8.9. An orthogonal transformationσ of Pic(S) is called aCremona isome-
try if σ(KS) = KS andσ sends any effective class to an effective class. The group of
Cremona isometries will be denoted byCris(S).

It follows from Corollary8.2.12that Cris(S) is a subgroup ofW (S).

Proposition 8.2.24. An isometryσ of Pic(S) is a Cremona isometry if and only if it
preserves the canonical class and sends a(−2)-curve to a(−2)-curve.

Proof. Clearly, any Cremona isometry sends the class of an irreducible curve to the
class of an irreducible curve. Since it also preserves the intersection form, it sends a
(−2)-curve to a(−2)-curve.

Let us prove the converse. LetD be an effective class in Pic(S) withD2 ≥ 0. Then
−KS ·D > 0 and(KS −D) ·D < 0. This gives−KS ·σ(D) > 0, σ(D)2 ≥ 0. Since
(KS − σ(D)) · (−KS) = −K2

S + σ(D) · KS < 0, we have|KS − σ(D)| = ∅. By
Riemann-Roch,|σ(D)| 6= ∅.

So it remains to show thatσ sends any(−1)-curve to an effective divisor class.
This follows from the next lemma.
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Corollary 8.2.25. LetR be the set of effective roots of a marked Del Pezzo surface
(S, φ). Then the group of Cremona isometriesCris(S) is isomorphic to the subgroup
of the Weyl group ofEN which leaves the subsetR invariant.

LetW (S)n be the subgroup ofW (S) generated by reflections with respect to(−2)-
curves. It acts on a markingϕ : I1,N → Pic(S) by composing on the left.

Lemma 8.2.26.Let

Cn = {D ∈ Pic(S) : D ·R ≥ 0 for any(−2)-curveR}.

For anyD ∈ Pic(S) there existsw ∈ W (S)n such thatw(D) ∈ Cn. If D ∈ Cn

andw(D) ∈ Cn for somew ∈ W (S)n, thenw(D) = D. In other words,Cn is a
fundamental domain for the action ofW (S)n in Pic(S).

Proof. The set of(−2)-curves form a root basis in the Picard lattice Pic(S) andW (S)n

is its Weyl group. The setCn is a chamber defined by the root basis. Now the assertion
follows from the theory of finite reflection groups which we have already employed for
a similar assertion in the case of canonical root bases inEN .

Corollary 8.2.27. Fix a lineE on a weak Del Pezzo surface. There is a natural bijec-
tion

(−1)-curves onS ←→W (S)n\W (S)/W (S)E .

LetE be a(−1)-curve andw ∈W (S). By Lemma8.2.18there existsg ∈W (S)n

such thatg(w(E)) is a(−1)-curve . This(−1)-curve is the unique(−1)-curvel(E,w)
in the orbit ofw(E) with respect to the action ofW (S)n. By Lemma8.2.26, for any
(−1)-curveE′ there existsw ∈W (S) such thatw(E) = E′. This shows that the map

ΦE : W (S)→ set of(−1)-curves, w 7→ l(E,w),

is surjective. Suppose thatl(E,w) = l(E,w′). Thengw(E) = w′(E) for some
g ∈ W (S)n. Thus,w−1gw′(E) = E, and hencew′−1gw ∈ W (S)E andw′ ∈
W (S)nwW (S). Conversely, eachw′ in the double cosetW (S)nwW (S) defines the
same(−1)-curvel(E,w).

Theorem 8.2.28. For any marked weak Del Pezzo surface(S, ϕ), there existsw ∈
W (S)n such that(S,w ◦ ϕ) is geometrically marked weak Del Pezzo surface.

Proof. We use induction onN = 9 − K2
S . Let ei = φ(ei), i = 0, . . . , k. It follows

from the proof of Lemma8.2.18, that eachei is an effective class. AssumeeN is the
class of a(−1)-curveE1. Let πN : S → SN−1 be the blowing down ofEN . Then
e0, e1, . . . , eN−1 are equal to the preimages of the divisor classese′0, e

′
1, . . . , e

′
N−1

on SN−1 which define a marking ofSN−1. By induction, there exists an element
w ∈ W (SN−1)n such thatw(e′0), w(e′1), . . . , w(e′N−1) define a geometric marking.
SinceπN (EN ) does not lie on any(−2)-curve (otherwiseS is not a weak Del Pezzo
surface), we see that for any(−2)-curveR on SN−1, π∗N (R) is a (−2)-curve onS.
Thus, under the canonical isomorphism Pic(S) ∼= π∗N (Pic(SN−1)) ⊥ ZeN , we can
identify W (SN−1)n with a subgroup ofW (S)n. Applying w to (e0, . . . , eN−1) we
get a geometric marking ofS.
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If eN is not a (−1)-curve, then we apply an elementw ∈ W (S)n such that
w(eN ) ∈ Cn. By Lemma8.2.18, w(eN ) is a (−1)-curve. Now we have a basis
w(e0), . . . , w(eN ) satisfying the previous assumption.

Let ϕ : I1,N → Pic(S) andϕ′ : I1,N → Pic(S) be two geometric markings
corresponding to two blowing-down structuresπ = π1◦. . .◦πN andπ′ = π′1◦. . .◦π′N .
ThenT = π′ ◦π−1 is a Cremona transformation ofP2 andw = ϕ◦ϕ′−1 ∈W (EN ) is
its characteristic matrix. Conversely, ifT is a Cremona transformation withF -points
x1, . . . , xN such that their blow-up is a weak Del Pezzo surfaceS, a characteristic
matrix of T defines a pair of geometric markingsϕ,ϕ′ of S and an elementw ∈
W (EN ) such that

ϕ = ϕ′ ◦ w.

Two different geometric markingsπ, π′ of S define a Cremona transformation of
π′ ◦ π−1 : P2− → P2.

Example8.2.1. Let S be a Del Pezzo surface of degree 3 andπ : S → P2 be the
blow-up of 6 points. Lete0, e1, . . . , e6 be the geometric marking and andα = 2e0 −
e1 − . . .− e6. The reflectionw = sα transforms the geometric markinge0, e1, . . . , e6
to the geometric markinge′0, e

′
1, . . . , e

′
6, wheree′0 = 5e0 − 2(e1 + . . . + e6), e′i =

2e0− (e1 + . . .+e6)+ei, i = 1, . . . , 6. The corresponding Cremona transformation is
the symmetric involutorial transformation of degree 5 with characteristic matrix equal
to 

5 2 2 2 2 2 2
−2 0 −1 −1 −1 −1 −1
−2 −1 0 −1 −1 −1 −1
−2 −1 −1 0 −1 −1 −1
−2 −1 −1 −1 0 −1 −1
−2 −1 −1 −1 −1 0 −1
−2 −1 −1 −1 −1 −1 0


. (8.8)

Corollary 8.2.29. AssumeS is a Del Pezzo surface. Then any markingϕ : I1,N →
Pic(S) is a geometric marking. The Weyl group ofEN acts simply transitively on the
set of markings by composing on the right.

Corollary 8.2.30. There is a bijection from the set of geometric markings onS and the
set of left cosetsW (S)/W (S)n.

Proof. The groupW (S) acts simply transitively on the set of markings. By Theorem
8.2.28, each orbit ofW (S)n contains a unique geometric marking.

Corollary 8.2.31. The groupCris(S) acts on the set of geometric markings ofS.

Proof. Let (e0, . . . , eN ) defines a geometric marking, andσ ∈ Cris(S). Then there
existsw ∈ W (S)n such thatω(σ(e0)), . . . , ω(σ(eN )) defines a geometric marking.
Sinceσ(e1) is a (−1)-curveE1, it belongs toCn. Hence, by Lemma8.2.26, we get
w(σ(e1)) = σ(e1). This shows thatw ∈ Wn(S̄), whereS → S̄ is the blow-down
σ(E1). Continuing in this way, we see thatw ∈ W (P2)n = {1}. Thusw = 1 and we
obtain thatσ sends a geometric marking to a geometric marking.
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Example8.2.2. The action of Cris(S) on geometric markings is not transitive in gen-
eral. For example, consider 6 distinct pointsx1, . . . , x6 in P2 lying on an irreducible
conicC. LetS be their blow-up andφ be the corresponding geometric marking. This
is a weak Del Pezzo surface with a(−2)-curveR equal to the proper inverse trans-
form of the conic. LetT be the quadratic transformation withF -points atx1, x2, x3.
ThenC ∈ |2` − x1 − x2 − x3| and hence is equal toT−1(`), where` is a line in
P2. This line contains the pointsqi = T (pi), i = 4, 5, 6. Let q1 = T (p2, p3), q2 =
T (p1, p3), q3 = T (p1, p2). Then the blow-up of the pointsq1, . . . , q6 is isomorphic to
S and defines a geometric markingφ′. Letw be the corresponding element of the Weyl
groupW (Q6) ∼= W (E6). We have

R = 2e0 − e1 − . . .− e6 = e′0 − e′4 − e′5 − e′6.

However, the elementw ∈ W (S) defined by the two bases sendsei to e′i. Thus
w(R) 6= R and hencew 6∈ Cris(S). Note thatw is the reflection with respect to the
rootα = e0 − e1 − e2 − e3 andα ·R = −1, so that

rα(R) = R− α = (2e0 − e1 − . . .− e6)− (e0 − e1 − e2 − e3) = e0 − e4 − e5 − e6.

Since the pointsp4, p5, p6 are not collinear, this is not an effective class. The group
Cris(S) in this case consists of permutations of the vectorse1, . . . , e6 and is isomorphic
to S6. Its index inW (E6) is equal to72. The groupW (S)n is generated by the
reflectionrα. Thus we get12#W (E6) = 36 · 6! geometric markings and the group
Cris(S) has 36 orbits on this set.

LetS be a weak Del Pezzo surface of degreed and Aut(S) be its group of biregular
automorphims. By functoriality Aut(S) acts on Pic(S) leaving the canonical classKS

invariant. Thus Aut(S) acts on the latticeQX = (ZKS)⊥ preserving the intersection
form. Let

ρ : Aut(S)→ O(QX), σ 7→ σ∗,

be the corresponding homomorphism.

Proposition 8.2.32. The image ofρ is contained in the groupCris(S). If S is a Del
Pezzo surface, the kernel ofρ is trivial if d ≤ 5. If d ≥ 6, then the kernel is a linear
algebraic group of dimension2d− 10.

Proof. Clearly, any automorphism induces a Cremona isometry of Pic(S). We know
that it is contained in the Weyl group. An element in the kernel does not change any
geometric basis of Pic(S). Thus it descends to an automorphism ofP2 which fixes an
ordered set ofk = 9 − d points in general linear position. Ifk ≥ 4 it must be the
identity transformation. Assumek ≤ 3. The assertion is obvious whenk = 0.

If k = 1, the surfaceS is the blow-up of one point. Each automorphism leaves the
unique exceptional curve invariant and acts trivially on the Picard group. The group
Aut(S) is the subgroup of Aut(P2) fixing a point. It is a connected linear algebraic
group of dimension 6 isomorphic to the semi-direct product ofC2 o GL(2).

If k = 2, the surfaceS is the blow-up of two distinct pointsp1, p2. Each automor-
phism leaves the proper inverse transform of the linep1, p2 invariant. It either leaves
the exceptional curvesE1 andE2 invariant, or switches them. The kernel of the Weyl
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reprsentation consists of elements which do not switchE1 andE2. It is isomorphic to
the subgroup of Aut(P2) which fixes two points inP2 and is isomorphic to the group
G of invertible matrices of the form1 0 ∗

0 ∗ ∗
0 0 ∗

 .

Its dimension is equal to4. The image of the Weyl representation is a group of order 2.
So Aut(S) = Go C2.

If k = 3, the surfaceS is the blow-up of 3 non-collinear points. The kernel of the
Weyl representation is isomorphic to the group of invertible diagonal3 × 3 matrices
modulo scalar matrices. It is isomorphic to a 2-dimension torus(C∗)2.

Corollary 8.2.33. Assume thatd ≤ 5, thenAut(S) is isomorphic to a subgroup of the
Weyl groupW (E9−d).

We will see later examples of automorphisms of weak Del Pezzo surfaces of degree
1 or 2 which act trivially on Pic(S).

8.3 Anticanonical models

8.3.1 Anticanonical linear systems

Lemma 8.3.1. LetS be a weak Del Pezzo surface withK2
S = d. Then

dimH0(S,OS(−rKS)) = 1 + 1
2r(r + 1)d.

Proof. By Ramanujam’s Vanishing Theorem, for anyr ≥ 0 andi > 0,

Hi(S,OS(−rKS)) = Hi(S,OS(KS + (−r − 1)KS)) = 0. (8.9)

The Riemann-Roch Theorem gives

dimH0(S,OS(−rKS)) = 1
2 (−rKS −KS) · (−rKS) + 1 = 1 + 1

2r(r + 1)d.

Theorem 8.3.2.LetS be a weak Del Pezzo surface of degreed andN be the union of
(−2)-curves onS. Then

(i) | −KS | has no fixed part.

(ii) If d > 1, then| −KS | has no base points.

(iii) If d > 2, |−KS | defines a regular mapφ to Pd which is an isomorphism outside
N . The image surfacēS is a normal nondegenerate surface of degreed. The
image of each connected component ofN is a RDP ofφ(S).
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(iv) If d = 2, | −KS | defines a regular mapφ : S → P2. It factors as a birational
morphismf : S → S̄ onto a normal surface and a finite mapπ : S̄ → P2

of degree 2 branched along a curve of degree 4. The image of each connected
component ofN is a RDP ofS̄.

(v) If d = 1, | − 2KS | defines a regular mapφ : S → P3. It factors as a birational
morphismf : S → S̄ onto a normal surface and a finite mapπ : S̄ → Q ⊂ P3

of degree 2, whereQ is a quadric cone. The morphismπ is branched along a
curve of degree 6 cut out onQ by a cubic surface. The image of each connected
component ofN underf is a RDP ofS̄.

Proof. The assertions are easily verified ifS = F0 or F2. So we assume thatS is
obtained fromP2 by blowing upk = 9− d pointsxi.

(i) Assume there is a fixed partF of | −KS |. Write | −KS | = F + |M |, where
|M | is the mobile part. IfF 2 > 0, by Riemann-Roch,

dim |F | ≥ 1
2 (F 2 − F ·KS) ≥ 1

2 (F 2) > 0,

and henceF moves. ThusF 2 ≤ 0. If F 2 = 0, we must also haveF ·KS = 0. Thus
F =

∑
niRi, whereRi are(−2)-curves. Hence[f ] ∈ (ZKS)⊥ and henceF 2 ≤ −2

(the intersection form on(ZKS)⊥ is negative definite and even). ThusF 2 ≤ −2. Now

M2 = (−KS − F )2 = K2
S + 2KS · F + F 2 ≤ K2

S + F 2 ≤ d− 2,
−KS ·M = K2

S +KS · F ≤ d.

Suppose|M | is irreducible. Sincedim |M | = dim | − KS | = d, the linear system
|M | defines a rational map toPd whose image is a nondegenerate irreducible surface
of degree≤ d−3 (strictly less if|M | has base points). This contradicts Theorem8.1.1.

Now assume that|M | is reducible, i.e. defines a rational map to a nondegenerate
curveW ⊂ Pd of some degreet. By Theorem8.1.1, we havet ≥ d. SinceS is
rational,W is a rational curve, and then the preimage of a general hyperplane section
is equal to the disjoint sum oft linearly equivalent curves. ThusM ∼ tM1 and

d ≥ −KS ·M = −tKS ·M1 ≥ d(−KS ·M1).

Since−KS ·M = 0 impliesM2 < 0 and a curve with negative self-intersection does
not move, this gives−KS ·M1 = 1, d = t. But thenM2 = d2M2

1 ≤ d − 2 gives a
contradiction.

(ii) Assumed > 1. We have proved that| −KS | is irreducible. A general member
of | −KS | is an irreducible curveC with ωC = OC(C +KS) = OC . If C is smooth,
then it is an elliptic curve and the linear system|OC(C)| is of degreed > 1 and has
no base points. The same is true for a singular irreducible curve of arithmetic genus 1.
This is proved in the same way as in the case of a smooth curve. Consider the exact
sequence

0→ OS → OS(C)→ OC(C)→ 0.

Applying the exact sequence of cohomology, we see that the restriction of the linear
system|C| = | −KS | toC is surjective. Thus we have an exact sequence of groups

0→ H0(S,OS)→ H0(S,OS(C))→ H0(S,OC(C))→ 0.



274 CHAPTER 8. DEL PEZZO SURFACES

Since|OC(C)| has no base points, we have a surjection

H0(S,OC(C))⊗OC → OC(C).

This easily implies that the homomorphism

H0(S,OS(C))⊗OC → OS(C)

is surjective. Hence|C| = | −KS | has no base points.

(iii) Assumed > 2. Let x, y ∈ S be two points outsideE. Let f : S′ → S be the
blowing up ofx andy. By Proposition8.1.7, blowing them up, we obtain a weak Del
Pezzo surfaceS′ of degreed−2. We know that the linear system|−KS′ | has no fixed
components. Thus

dim | −KS − x− y| = dim | −KS′ − Ex − Ey| ≥ 1.

This shows that| − KS | separates points. Also, the same is true ify �1 x andx
does not belong to any(−1)-curveE onS or x ∈ E andy does not correspond to the
tangent direction defined byE. Since−KS · E = 1 andx ∈ E, the latter case does
not happen.

Sinceφ : S− → S̄ is a birational map given by a complete linear system| −KS |,
its image is a nondegenerate surface of degreed = (−KS)2. Since−KS · R = 0
for any (−2)-curve, we see thatφ blows downR to a pointp. If d = 3, thenS̄ is a
cubic surface with isolated singularities (the images of connected components ofN ).
It is well-known that a hypersurface with no singularities in codimension1 is a normal
variety. ThusS̄ is a normal surface. Ifd = 4, thenS is obtained by a blow-up one point
on a weak Del Pezzo surfaceS′ of degree 3. This point does not lie on a(−2)-curve.
Thus,S̄′ is obtained fromS̄ by a linear projection from a nonsingular point. SinceS̄′

is normal,S̄ must be normal too (its local rings are integral extensions of local rings
of S̄′, and their fields of fractions coincide). Continuing in this way we see thatS̄ is
normal for anyd > 2.

The fact that singular points of̄S are RDP is proven in the same way as we have
proved assertion (iii) of Theorem8.2.22.

(iv) Assumed = 2. By (ii), the linear system| − KS | defines a regular map
φ : S → P2. SinceK2

S = 2, the map is of degree 2. Using Stein’s factorization [206],
it factors through a birational morphism onto a normal surfacef : S → S̄ and a finite
degree 2 mapπ : S̄ → P2. Also we know thatf∗OS = OS̄ . A standard Hurwitz’s
formula gives

ωS̄
∼= π∗(ωP2 ⊗ L), (8.10)

wheres ∈ H0(P2,L⊗2) vanishes along the branch curveW of π. We have

OS(KS) = ωS = (π ◦ f)∗OP2(−1) = f∗(π∗OP2(−1)).

It follows from the proof of Theorem8.2.22(iii) that singular points ofS̄ are RDP.
Thusf∗ωS̄ = ωS , and hence

f∗ωS̄
∼= f∗(π∗OP2(−1)).
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Applying f∗ and using the projection formula and the fact thatf∗OX = OY , we get
ωS̄
∼= π∗OP2(−1). It follows from (8.10) thatL ∼= OP2(2) and hencedegW = 4.

Proof of (v). Letπ : S → P2 be the blow-up of8 pointsx1, . . . , x8. Then|−KS | is
the proper inverse transform of the pencil|3`− x1 − . . .− x8| of plane cubics passing
through the pointsx1, . . . , x8. Let x9 be the ninth intersection point of two cubics
generating the pencil. The pointx′9 = π−1(x9) is the base point of|−KS |. By Bertini’s
Theorem, all fibres except finitely many, are nonsingular curves (the assumption that
the characteristic is zero is important here). LetF be a nonsingular member from
| −KS |. Consider the exact sequence

0→ OS(−KS)→ OS(−2KS)→ OF (−2KS)→ 0. (8.11)

The linear system|OF (−2KS)| onF is of degree 2. It has no base points. We know
from (8.9) thatH1(S,OS(−KS)) = 0. Thus the restriction map

H0(S,OS(−2KS))→ H0(F,OF (−2KS))

is surjective. By the same argument as we used in the proof of (ii), we obtain that
| − 2KS | has no base points. By Lemma8.3.1, dim | − 2KS | = 3. Let φ : S → P3

be a regular map defined by| − 2KS |. Its restriction to any nonsingular memberF of
| −KS | is given by the linear system of degree 2 and hence is of degree 2. Therefore,
the mapf is of degreet > 1. The image ofφ is a surface of some degreek. Since
(−2KS)2 = 4 = kt, we conclude thatk = t = 2. Thus the image ofφ is a quadric
surfaceQ in P3 and the images of membersF of |−KS | are lineslF onQ. I claim that
Q is a quadric cone. Indeed, all lineslF intersect at the pointφ(x′9). This is possible
only if Q is a cone.

Let S
π→ S′

φ′→ Q be the Stein factorization. Note that a(−2)-curveR does not
pass through the base pointx′9 of | − KS | (because−KS · R = 0). Thusπ(x′9) is a
nonsingular pointq′ of S′. Its image inQ is the vertexq of Q. Sinceφ′ is a finite map,
the local ringOS′,q′ is a finite algebra overOQ,q of degree 2. After completion, we
may assume thatOS′,q′ ∼= C[[u, v]]. If u ∈ OQ,q, thenv satisfies a monic equation
v2 + av + b with coefficients inOQ,q, where after changingv to v + 1

2a we may
assume thata = 0. ThenOQ,q is equal to the ring of invariants inC[[u, v]] under
the automorphismu 7→ u, v 7→ −v which as easy to see isomorphic toC[[u, v2]].
However, we know thatq is a singular point so the ringOQ,q is not regular. Thus
we may assume thatu2 = a, v2 = b and thenOQ,q is the ring of invariants for the
action(u, v) 7→ (−u,−v). This action is free outside the maximal ideal(u, v). This
shows that the finite mapφ′ is unramified in a neighborhood ofq′ with q′ deleted. In
particular, the branch curveQ of φ′ does not pass throughq. We leave to the reader
to repeat the argument from the proof of (iv) to show that the branch curveW of φ
belongs to the linear system|OQ(3)|.
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8.3.2 Anticanonical model

Let X be a normal projective algebraic variety andD be a Cartier divisor onX. It
defines the graded algebra

R(X,D) =
∞⊕
r=0

H0(S,OS(rD))

which depends only (up to isomorphism) on the divisor class ofD in Pic(X). Assume
R(X,D) is finitely generated, thenXD = Proj R(X,D) is a projective variety. If
s0, . . . , sn are homogeneous generators ofR(X,D) of degreesq0, . . . , qn there is a
canonical closed embedding into the weighted projective space

XD ↪→ P(q0, . . . , qn).

Also the evaluation homomorphism of sheaves of graded algebras

R(X,D)⊗OX → Sym•(L)

defines a morphism
ϕcan : X = Proj(Sym•(L))→ XD.

For everyr > 0 the inclusion of subalgebras Sym•(H0(X,OX(rD))) → R(X,D)
defines a rational map

τr : XD− → P(H0(X,OX(rD))).

The rational mapφ|rD| : X− → P(H0(X,OX(rD))) defined by the complete linear
system|rD| factors throughϕ

φ|rd| : X
ϕ
− → XD

τr

− → P(H0(X,OX(rD))).

A proof of the following proposition can be found in [116], 7.1.

Proposition 8.3.3. Suppose|rD| has no base points for somer > 0 andDdimX > 0.
Then

(i) R(X,D) is a finitely generated algebra;

(ii) XD is a normal variety;

(iii) dimXD = maxr>0 dimφ|rD|(X);

(iv) if dimXD = dimX, thenϕ is a birational morphism.

We apply this to the case whenX = S is a weak Del Pezzo surface andD = −KS .
Applying the previous Proposition, we easily obtain that

X−KS
∼= S̄,
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where we use the notation of Theorem8.3.2. The varietyS̄ is called theanticanonical
modelof S. If S is of degreed > 2, the mapτ1 : S̄ → Pd is a closed embedding,
henceR(S,−KS) is generated byd+1 elements of order 1. Ifd = 2, the mapτ1 is the
double cover ofP2. This shows thatR(S,−KS) is generated by 3 elementss0, s1, s2
of degree1 and one elements3 of degree 2 with a relations23 + f4(s0, s1, s2) = 0 for
some homogeneous polynomialf4 of degree 2. This shows that̄S is isomorphic to a
hypersurface of degree 4 inP(1, 1, 1, 2) given by an equation

t23 + f4(t0, t1, t2) = 0. (8.12)

In the cased = 1, by Lemma8.3.1we obtain that

dimR(S,−KS)1 = 2, dimR(S,−KS)2 = 4, dimR(S,−KS)3 = 7.

Let s0, s1 be generators of degree 1,s2 be an element of degree 2 which is not in
S2(R(S,−KS)1) and lets3 be an element of degree3 which is not in the subspace
generated bys30, s0s

2
1, s

2
0s1, s

3
1, s2s0, s2s1. The subringR(S,−KS)′ generated by

s0, s1, s2, s3 is isomorphic toC[t0, t1, t2, t3]/(F (t0, t1, t2, t3)), where

F = t23 + t32 + f4(t0, t1)t2 + f6(t0, t1),

and f4(t0, t1) and f6(t0, t1) are binary forms of degrees 4 and 6. The projection
[t0, t1, t2, t3] 7→ [t0, t1, t2] defines a double cover of the quadratic coneQ ⊂ P3 which
is isomorphic to the weighted projective planeP(1, 1, 2). Using Theorem8.3.2one can
show that the rational map̄S− → ProjR(S,−KS)′ is an isomorphism. This shows
that the anticanonical model̄S of a weak Del Pezzo surface of degree 1 is isomorphic
to a hypersurfaceV (F ) of degree 6 inP(1, 1, 2, 3).

Remark8.3.1. The singularities of the branch curves of the double coverS → P2

(d = 2) andS → Q (d = 1) aresimple singularities. This means that in appropriate
analytic (or formal) coordinates they are given by one of the following equations:

An : x2 + yn+1 = 0, n ≥ 1, (8.13)

Dn : y(x2 + yn−2 = 0, n ≥ 4,
E6 : x3 + y4 = 0,
E7 : x3 + xy3 =,
E8 : x3 + y5 = 0.

This easily follows from Theorem8.2.23.

8.4 Normal surfaces of degreed in Pd

8.4.1 Classification

We will always assume that surfaces are nondegenerate, i.e. do not lie in a hyperplane.
We saw that the image of a weak Del Pezzo surface of degreed > 2 under the map
given by the linear system| −KS | is a nondegenerate surface of degreed in Pd. We
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call this surface ananticanonical modelof S. It is a normal surface with canonical
singularities.

Another example of a normal surface of degreed in Pd is the projection of a nor-
mal scroll of degreed in Pd+1, whered > 3. Its hyperplane sections are Veronese
curves. Since the projection of such a curve from a general point in the hyperplane is a
nonsingular curve, the projected surface is normal.

We shall see that except cones over nonsingular elliptic curves of degreed in a
hyperplane ofPd, there is nothing else.

Theorem 8.4.1. A normal nondegenerate surface of degreed in Pd is one of the fol-
lowing surfaces:

(i) a projection of a normal surface of degreed in Pd+1;

(ii) a cone over a nonsingular elliptic curve of degreed lying in a hyperplane;

(iii) an anticanonical model of a weak Del Pezzo surface.

First we need the following.

Lemma 8.4.2. LetC be a nondegenerate nonsingular irreducible curve of degreed >
2 in Pd−1. Theng ≤ 1 and the equality takes place if and only if the restriction map
r : H0(Pd−1,OPd−1(1))→ H0(C,OC(1)) is surjective.

Proof. LetH be a hyperplane section ofC. We have

dimH0(C,OC(H)) = d+ 1− g + dimH1(C,OC(H)) ≥ d, (8.14)

and the equality takes place if and only ifC is projectively normal. Thus we obtain

g ≤ 1 + dimH1(C,OC(H)) = 1 + dimH0(C,OC(KC −H)). (8.15)

If |KC −H| = ∅, theng ≤ 1 and the equality takes place if and only ifr is surjective.
Assume|KC −H| 6= ∅. By Clifford’s Theorem [206],

dimH0(C,OC(KC −H)) ≤ 1 + 1
2 deg(KC −H) = 1 + (g − 1− 1

2d) = g − 1
2d,

unlessKC = H or C is a hyperelliptic curve andKS − H = kg1
2 for somek > 0.

If we are not in one of the exceptional cases, we obtaing ≤ 1 + g − 1
2d which is a

contradiction. IfKC = H, we getd = 2g−2 and (8.14) givesg = 2g−2+1−g+1 ≥
2g − 2, henceg = 2 andd = 2g − 2 = 2, a contradiction. IfKC − H = kg1

2 , then
H = (g − 1)g1

2 − kg1
2 = (g − 1 − k)g1

2 . SincedegH > 2, we getk < g − 2. Thus
dimH0(C,OC(KC −H)) = k+ 1, and (8.15) givesg ≤ 1 + k+ 1 < 2 + g− 2 = g,
a contradiction again. Thus|KC −H| = ∅ and we are done.

Theorem 8.4.3. LetX be a nondegenerate normal surface of degreed in Pd. Assume
thatX is not a projection of a surface of degreed in Pd+1 and has at most canonical
singularities. ThenX is an anticanonical model of a weak Del Pezzo surfaceS.
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Proof. First of all V is a rational surface. By projection from a general point on the
surface we obtain thatX is birationally isomorphic to a surface of degreed−1 in Pd−1.
Continuing in this way we obtain thatX is birationally isomorphic to a cubic surface
Y in P3. SinceX has canonical singularities,Y cannot be a cubic cone. We will see in
the next Chapter that an irreducible cubic surface is rational except when it is a cone.
Let π : S → X be a minimal resolution of singularities. SinceX has only canonical
singularities,π∗ωX ∼= ωS . SinceX is normal,π∗(OS) = OX , and by the projection
formula,

π∗ωS ∼= ωX .

This implies that the canonical homomorphismH1(X,ωX)→ H1(S, ωS) is injective.
SinceS is a nonsingular rational surface, we getH1(S, ωS) ∼= H1(S,OS) = 0. Thus

H1(X,ωX) ∼= H1(X,OX) = 0.

Let C be a general hyperplane section ofX. SinceX is normal, it is a smooth curve.
By the previous lemma, its genus is0 or 1. The exact sequence

0→ OX → OX(1)→ OC(1)→ 0 (8.16)

shows that the restriction homomorphismH0(X,OX(1))→ H0(C,OC(1)) is surjec-
tive. If C is of genus0, we haveh0(OC(1)) = degOC(1) + 1 = d+ 1. This implies
thath0(OX(1)) = d + 1, hence|OX(1)| is not complete andX is a projection of a
surface inPd+1.

Thus we may assume thatC is an elliptic curve. Let us identify it with its preimage
underπ. By the adjunction formula,

OC = ωC = OS(KS + C)⊗OC .

By Riemann-Roch,

dimH0(S,OS(KS + C)) = 1
2 (KS · C + C2) + 1 = 1.

Thus|KS+C| consists of an isolated curveD. SinceD·π∗(H) = 0 for any hyperplane
sectionH of V not passing through the singularities, we obtain that each irreducible
componentR of D is contained in the exceptional curve of the resolutionπ. Since
V has only canonical singularities,R is a (−2)-curve. Since(KS + C) · R = KS ·
R + C · R = 0 for any irreducible component of a resolution, we getD2 = 0. Since
the sublattice of Pic(S) generated by the components of a Dynkin curve is negative
definite, we getD = 0. ThusKS + C ∼ 0 and−KS = π∗OV (1) is nef and big.
So,S is a weak Del Pezzo surface of degreeK2

S = d. Clearly,S is its anticanonical
model.

Corollary 8.4.4. LetX be a nondegenerate normal surface of degreed in Pd. Assume
thatX has at most canonical singularities and is not a projection of a surface of degree
d in Pd+1. Thend ≤ 9. Moreover,V is either surface of degree8 in P8 isomorphic to
the image ofFn (n = 0, 2) under the map defined by the linear system| − 2KFn

|, or
a projection of the Veronese surfacev3(P2) ⊂ P9.
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Proof. Use that a weak Del Pezzo surface of degree≥ 3 not isomorphic toF0 or
F2 is the blow-up ofN ≤ 8 bubble pointsx1, . . . , xN in P2 and the linear system
| −KS | = |3` − x1 − . . . − xN |. It is a subsystem of the complete linear system|3`|
defining a Veronese mapv3 : P2 → P9.

Now everything is ready to prove Theorem8.4.1. It remains to show that a normal
surfaceS of degreed in Pd is not a projection of a surface of degreed in Pd and its
singularities are not canonical singularities, then it must be isomorphic to a cone over
a curve of degreed. By Lemma8.4.2, the curve must be a nonsingular elliptic curve.

Assume thatd = 3. If the surfaceS has a point of multiplicity3, it must be a
cone over a cubic curve, and the assertion is checked. Assume that a singular point is
of multiplicity 2. By projecting the surface toP3 from this point, we find a birational
morphism from a nonsingular modelS onto the projective plane. Then repeating the
proof of Theorem8.4.3, we obtain thatS is an anticanonical model of weak Del Pezzo
surface of degree 3. Now, ifd > 3, the projection ofS from a general subspace of
codimension3 is a surface of degree3 in P3. By the above it must be a cone over a
cubic curve, henceS is a cone.

Recall that a nondegenerate subvarietyX of a projective spacePn is calledprojec-
tively normalif X is normal and the natural restriction map

H0(Pn,OPn(m)→ H0(X,OX(m))

is surjective for allm ≥ 0. This can be restated in terms of vanishing of cohomology

H1(Pn, IX(m)) = 0, m > 0 (resp.m = 1),

whereIX is the ideal sheaf ofX. It is known thatX is projectively normal if and only
if its projective coordinate ringk[X] is a normal domain. One shows that the integral
closure is the ring

k[X] =
⊕
m≥0

H0(X,OX(m)).

Theorem 8.4.5. Let X be an anticanonical model of a weak Del Pezzo surface of
degreed ≥ 4. ThenX is projectively normal.

Proof. The linear normality follows immediately from exact sequence (8.16) (use that
h0(OC(1)) = degOC(1) = d). LetH be a general hyperplane. Tensoring the exact
sequence

0→ OPn(m− 1)→ OPn(m)→ OH(m)→ 0

with IX we get an exact sequence

0→ IX(m− 1)→ IX(m)→ IH∩X(m)→ 0. (8.17)

We know from the proof of Lemma8.4.2thatE = H ∩ X is an irreducible linearly
normal curve of genus 1. LetH ′ be a general hyperplane inH = Pd−1. The exact
sequence

0→ IE(m− 1)→ IE(m)→ IH′∩E(m)→ 0
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gives a surjectionH1(E, IE(1)) → H1(E, IE(2)). By linear normality ofE we
obtainH1(E, IE(1)) = H1(E, IE(2)) = 0. Continuing in this way we prove the
projective normality ofE ⊂ H. The same cohomology game with exact sequence
(8.17) gives a surjective maprm : H1(X, IX(m− 1))→ H1(X, IX(m)) for m ≥ 1.
The exact sequence

0→ IX → OPd → OX → 0

together with vanishing ofH1(X,OX) andH1(Pd,OPd) show thatH0(X, IX) = 0.
The surjectivity ofr1 impliesH1(X, IX(1)) = 0. Now the surjectivity ofr2 implies
H1(X, IX(2)) = 0, and so on.

8.4.2 Rational normal scrolls of degreed in Pd

Now we know that a normal surface of degreed in Pd which is not an anticanonical
weak Del Pezzo surface is either a projection of a Veronese surface inP4 or a projection
of a rational normal scrollSa,d+1 of degreed in Pd+1.

Proposition 8.4.6. Let S = Sa,d+1 be a rational normal scroll of dimension 2 and
degreed in Pd+1. ThenSa,d+1 is isomorphic to the image of a minimal ruled surface
Fd−2a under the regular map defined by the complete linear system|e + (d − a)f |,
wheree is the divisor class of a sectionE0 with e2 = −(d − 2a) andf is the divisor
class of a fibre.

Proof. LetC be a general member of the linear system|e+ (d− a)f |. It is easy to see
that the linear system has no fixed components, soC is an irreducible curve. We have
C2 = d andC · f = 1. ThusC is a section ofFd−2a. The restriction of the linear
system toC is a linear system of degreed. By Riemann-Roch, its dimension is equal
to dim |e+ (d− a)f | − 1 = d. Thus a hyperplane section of the image surfaceS is a
smooth Veronese curve, henceS is a normal surface of degreed in Pd+1. The image
of a sectionE is a Veronese curveR1 of degreea in the subspace defined by the linear
system|(d − a)f |. The image of a sectionE ∈ |e + (d − 2a)f |, disjoint fromE0, is
a Veronese curveR2 of degreed− a in a subspace of dimensiond− a. The image of
a fibre is a line joining a point inR1 with a point onR2. The two curves are identified
with the base of the ruled surface. So, we obtain the definition ofSa,d+1 as the join of
two Veronese curves.

We postpone the proof of the converse until the later chapter where we will study
ruled surfaces in projective spaces.

We have already noted thatSa,3 in P3 is either a nonsingular quadricS1,3 or an
irreducible quadric coneS0,3. It corresponds to the linear system|e + f | in F0 in the
first case, and the linear system|e+ 2f | onF2.

A rational normal scroll of degree 3 inP4 is eitherS0,4 or S1,4. The first surface
is the cone over a Veronese curve of degree 3 inP3, the second surface is the image of
F1 under the map defined by the linear system|e + 2f |. Its projection from a general
point inP4 is a non-normal cubic surface inP3. We will describe them later.

A rational normal scroll of degree 4 inP5 is eitherS0,5 or S1,5, or S2,5. The first
surface is the cone over a Veronese curve of degree 4 inP4, the second surface is the
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image ofF2 under the map defined by the linear system|e + 3f |, the third surface is
the image ofF0 under the map defined by the linear system|e+ 2f |.

There is another way to get a rational normal scrollSa,d+1. We leave a proof of the
following proposition to the reader.

Proposition 8.4.7. LetL = |OP2(d)− (d− 1)p1− p2− . . .− pd| be the linear system
of plane curves of degreed with ad− 1-multiple point atp1 and simple base points at
p1, . . . , pd (maybe infinitely near). Then the image ofP2 under the rational map given
byL is isomorphic toSa,d+1, whered−1−a is the number of pointspi, i > 0 infinitely
near top1. Conversely, eachSa,d+1 can be obtained in this way.

8.4.3 Surfaces of degree≥ 7

A weak Del Pezzo surface of degree9 is isomorphic toP2 and its anticanonical model
is isomorphic to the Veronese surfacev3(P2) of degree 9 inP9. It does not contain
lines.

A Del Pezzo surface of degree8 is isomorphic either toP1 × P1 or to F1, the
blow-up of one point in the plane. The anticanonical model of the first surface is a
hyperplane section of the Veronese 3-foldv2(P3) ⊂ P9. It does not contain lines.

The anticanonical model ofF1 is a projection of the Veronese surfacev3(P2) from
its point. It contains one line.

A weak Del Pezzo surface of degree 8 is isomorphic to the ruled surfaceF2. Its
bicanonical model is a section of the Veronese 3-fold by a tangent hyperplane.

The anticanonical model of a weak Del Pezzo surface of degree 7 is a projection
of the Veronese surface from a secant line of the surface. If the secant line is a tangent
line, the projection acquires a singular point of typeA1 .

Let ρ : Aut(S) → O(Pic(S)) be the representation of the automorphism group in
the Picard group of a Del Pezzo surfaceS. We described its kernel in section8.2.8. If
S = F0, then the image is the group of order 2 which permutes the divisor classes of
the two rulings onF0. If S is of degree 2, then again the image is of order 2. It acts by
permuting the classes of the two exceptional curves. In the remaining cases, the image
is trivial.

8.4.4 Surfaces of degree 6 inP6

LetX be a nondegenerate surface of degree 6 inP6 with at most canonical singularities.
By Theorem8.4.3 its minimal resolutionσ : S → X is a weak Del Pezzo surface
of degree 6 andX is isomorphic to its anticanonical model. Letπ : S → P2 be
the blowing-down structure onS. It is the blow-up of three pointsx1, x2, x3 in an
almost general position. In this case it means that the corresponding bubble cycle
η = x1 + x2 + x3, up to admissible order, is one of the following

(i,i’) x1, x2, x3 are three proper non-collinear (collinear) proper points;

(ii, ii’) x2 � x1, x3 are non-collinear (collinear) proper points;

(iii, iii’) x3 � x2 � x1 are non-collinear (collinear) r points.
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In cases (i),(ii) and (iii) the homaloidal net|OP2(2)−η| with η = x1 +x2 +x3 defines
a quadratic Cremona transformationφ. ThusS is a resolution(π, σ) of φ with the
birational morphismσ : S → P2 defined by blowing down 3 exceptions configurations
with the divisor classese0−e1−e2, e0−e1−e3, e0−e2−e3, wheree0, e1, e2, e3 is a
geometric basis defined byπ. LetΓφ be the graph ofφ. The canonical mapα : S → Γφ
is a resolution of singularities. Letτ : S → P8 be the composition

Φ : S → Γφ ↪→ P2 × P2 s
↪→ P8,

where the last map is the Segre map. This map is given by the linear system|e0 + e′0|,
wheree′0 = 2e0 − e1 − e2 − e3 and|e′0| is the homaloidal net defining the quadratic
mapφ. Sincee0 + e′0 = 3e0 − e1 − e2 − e3 = −KS we obtain thatΦ is defined by
the anticanonical linear system onS and hence its image is a surface of degree 6 inP6.
This shows thatX is isomorphic to the intersection of the Segre varietys(P2 × P2)
with a linear subspace of codimension 2. It also implies thatX ∼= Γφ.

Since there are three possible quadratic transformations up to composition with a
projective automorphism, we obtain three non-isomorphic surfacesX;

• X1 corresponding to three non-collinear proper pointsx1, x2, x3;

• X2 corresponding to three non-collinear pointsx2 � x1, x3;

• X3 corresponding to three non-collinear pointsx3 � x2 � x1.

The surfaceXi is isomorphic to the graph of the quadratic transformationτi from
section7.2.1. The surfaceX1 is nonsingular and has 6 lines on it. They form a hexagon.
The surfaceX2 has one RDP of typeA1. It has 3 lines, two of them pass through the
singular point. The surfaceX3 has one RDP of typeA2. It has 1 line passing through
the singular point.

LetX ′
1, X

′
2, X

′
3 be the surfaces corresponding to cases (i)’, (ii)’ and (iii)’, respec-

tively. They are not linear sections of the Segre variety. We leave to check the following
properties of the surfaces to the reader.

The surfaceX ′
1 has a unique RDP of typeA1 and has three lines passing through

this point.
The surfaceX ′

2 has two RDPs of typeA1. It has 2 lines, one of them joins the two
singular points.

The surfaceX ′
3 has 2 singular points of typesA2 andA1. It has one line passing

through the point of typeA2.

Remark8.4.1. The surfacesX1, X2, X
′
2, X

′
3 are examples oftoric surfaces. They

contain an open Zariski subset isomorphic to a complex torus(C∨)2 which acts on
X extending its action on itself by translations. Ifx1 = [1, 0, 0], x2 = [0, 1, 0], x3 =
[0, 0, 1], then the torus inX1 is the preimage inX1 of the complement of the coordinate
axesti = 0. Its complement inX1 is the hexagon of lines. The same description of
the torus is true in the caseX3 (resp.X2) if we choosex2 to be the tangent direction
t2 = 0 (resp. andx3 = [0, 0, 1]). The corresponding fans defining the toric surfaces
are the following.
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Let Sec(S) be the secant variety ofS. Its expected dimension is equal to 5. In fact,
we have

Proposition 8.4.8. LetS be a weak Del Pezzzo surface whose anticanonical modelX
is contained in the Severi varietyS2,2 = s(P2 × P2) ⊂ P8. Then

dim Sec(S) = 5.

Proof. It is well know that the secant variety ofS2,2 is the determinantal cubic hyper-
surfaceD of degenerate3 × 3 matrices whose entries are 9 unknowns inP8. Let z be
a general point inD and consider theentry varietyYz = TzD ∩ S2,2 representing the
points onY lying on the secants throughz. The cone overYz with vertex atz is the
union of secants passing throughz. Since the projection of a cubic from its point is a
quadric andTzX is a plane, it is easy to see thatYz is a conic. SinceX is the intersec-
tion of S2,2 by a linear subspace of codimension2, the entry varieties of Sec(X) must
be either conics or pairs of points. SinceX contains only one-dimensional family of
conics (represented by lines through pointsx1, x2, x3), we get that through any general
point of Sec(X) passes only one conic. This easily gives thatdim Sec(X) = 5, as is
expected.

Theorem 8.4.9.AssumeX is a nonsingular surface of degree 6 inP6. ThenX is pro-
jectively equivalent to the subvariety given by equations expressing the rank condition

rank

t0 t1 t2
t3 t0 t4
t5 t6 t0

 ≤ 2.

The secant varietySec(X) is the cubic hypersurface defined by the determinant of this
matrix.



8.4. NORMAL SURFACES OF DEGREE D IN PD 285

Proof. We know thatX is isomorphic to the blow-up of three non-collinear proper
points. We may assume thatx1 = [1, 0, 0], x2 = [0, 1, 0], x2 = [0, 0, 1]. The linear
system| − KX | is the proper transform of the linear system of cubics through the
three points. It is generated by the cubicsV (f), wheref is a monomial in coordinates
z0, z1, z2 in P2 different fromz3

0 , z
3
1 , z

3
2 . Let us order them in the following way

z0z1z2, z
2
1z2, z1z

2
2 , z0z

2
2 , z

2
0z2, z0z

2
1 , z

2
0z1.

The surfaceX is projectively equivalent to the image ofP2 under the rational map
given by these 7 homogeneous polynomialst0, . . . , t6. The relations between these
polynomials are the minors of the matrix. This shows thatX is contained in the in-
tersection of 9 quadrics given by the minors. On the other hand, by Lemma8.3.1, we
haveh0(X,OX(−2KS)) = 19. SinceX is projectively normal, the dimension of the
linear system of quadrics containingX is equal to8. This shows that the nine minors
generate the linear system of quadrics containingX [225]. Let B be the base scheme
of the linear system of quadrics. SupposedimB > dimX. A general hyperplane
section ofS is a projectively normal elliptic curve of degree 6 inP5. It is known that
it is given by 9 linearly independent quadrics. This shows thatdimB = dimX. It
follows from the theory of determinant varieties [9], Chapter 2, Prop. 4.1, thatB is
a Cohen-Macaulay surface containing a nonsingular surfaceX. It must coincide with
X.

Since the rank of the sum of two matrices of rank≤ 1 is at most 2, we see that
Sec(X) is contained in the determinantal cubic hypersurface. By the previous propo-
sition, it must be its irreducible component. However, by loc. cit., the determinantal
cubic is irreducible.

Let us describe the group of automorphisms of a Del Pezzo surface of degree6. The
surface is obtained by blowing up 3 non-collinear pointsp1, p2, p3. We may assume
that their coordinates are[1, 0, 0], [0, 1, 0], [0, 0, 1]. We know from section8.2.8that
the kernel of the representationρ : Aut(S)→ O(Pic(S)) is a 2-dimensional torus. The
root system is of typeA2 + A1, so the Weyl group is isomorphic toS3 × C2. Let us
show that the image of the Weyl representation is the whole group.

The subgroupS3 is the image of the group of automorphisms ofS induced by auto-
morphisms of the projective plane which which permute the coordinates. The generator
of the cyclic group of order 2 is induced by the standard Cremona transformation. It
is easy to see this as follows. The surfaceS is isomorphic to the blow-up of 2 points
on P1 × P1 not lying on the same fibre of any ruling. By coordinate change, we may
assume that the points have coordinatesx1 = ([1, 0], [1, 0]) andx2 = ([0, 1], [0, 1]).
The torus is represented by homotheties on each factor of the product. The standard
Cremona transformation is represented by the automorphism given in inhomogeneous
coordinates on the factors by(x, y) 7→ (1/x, 1/y). The subgroupS3 is generated by
two elements of order 2 defined by a switch and the automorphism ofS induced by the
product of elementary transformations elmx1 ◦ elmx2 .

We leave to the reader to verify the following.

Theorem 8.4.10.LetS be a Del Pezzo surface of degree6. Then

Aut(S) ∼= (C∨)2 o (S3 ×S2).
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If we represent the torus as the quotient group(C∨)3 by the diagonal subgroup∆(C∨),
then the subgroupS3 acts permutations of factors, and the cyclic subgroupS2 acts by
the negation.

Note that the Weyl groupS3 × S2 realized by automorphisms acts on the set of
lines onS. Its incidence graph is a hexagon. The groupS3 is isomorphic to the
dihedral groupD6 and acts on the graph in the same way as the dihedral group acts by
symmetries of a regular hexagon. The generator ofS2 is also a symmetry but it is not
induced by a motion of the plane.

Finally we mention that the Gosset polytopeΣ3 = −121 corresponding to a Del
Pezzo surface of degree 6 is an octahedron. This agrees with the structure ofW (E3)
isomorphic to the octahedron group. The surface has 2 blowing-down morphismsS →
P2 corresponding to twoα-facets and three conic bundle structures corresponding to
the pencils of lines through three points on the plane.

8.4.5 Surfaces of degree 5

LetX be a nondegenerate surface of degree 5 inP5 with at most canonical singularities.
By Theorem8.4.3its minimal resolutionσ : S → X is a weak Del Pezzo surface of
degree 5 andX is isomorphic to its anticanonical model.

Proposition 8.4.11.LetX be a nonsingular Del Pezzo surface of degree 5 inP5. Then
X is isomorphic to a linear section of the Grassmann varietyG(2, 5) of lines inP4.

Proof. We use some elementary facts about Grassmannians which we recall in a later
Chapter. It is known that the degree ofG = G(2, 5) in the Pl̈ucker embedding is equal
to 5 anddimG = 6. Also is known that the canonical sheaf is equal toOG(−5).
By the adjunction formula, the intersection ofG with a general linear subspace of
codimension 4 is a nonsingular surfaceX with ωX ∼= OX(−1). This must be a Del
Pezzo surface of degree 5. Since all Del Pezzo surfaces of degree 5 are isomorphic, the
assertion follows.

Remark8.4.2. Let E be the restriction of the tautological rank 2 quotient bundle on
G to X. ThenE is isomorphic to a rank 2 bundle onS generated by 5 sections with
Chern classesc1 = −KS andc2 = 2. One can show that this vector bundle is given by
an extension

0→ OS → E → IZ(3)→ 0,

whereIZ is the ideal sheaf of the closed subscheme defined by any two pointsx, y
such thatx1, . . . , x4, x, y are in an almost general position.

Corollary 8.4.12. LetX be a Del Pezzo surface of degree5 in P5. Then its homoge-
neous ideal is generated by 5 linearly independent quadrics.

Proof. SinceX is projectively normal, applying Lemma8.3.1, we obtain that the linear
system of quadrics containingX has dimension equal to4. It is known that the homo-
geneous ideal of the GrassmannianG(2, 5) is generated by 5 quadrics. So, restricting
this linear system to its linear section, we obtain the quadrics containingX defineX
scheme theoretically.
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Let X be an anticanonical model of a Del Pezzo surface of degree 5. The linear
system of cubics inP5 containingX has dimension24. Let us see that any nonsingular
cubic fourfold containingX is rational (the rationality of a general cubic fourfold is
unknown at the moment).

Lemma 8.4.13. Let X be an anticanonical model of weak Del Pezzo surfaceS of
degree 5 inP5. For any general pointz ∈ P5 there exists a unique secant ofX
containingz.

Proof. It is known that Sec(X) = P5. This follows from Severi’s Theorem that any
nondegenerate surface inP5 with secant variety of dimension 4 is a Veronese surface
(see [429]). Let x, y ∈ X such thatz ∈ ` = x, y. We may assume that they are distinct
nonsingular points onX. Consider the projectionp` : X− → P3 with center equal to
`. Its image is a cubic surface isomorphic to the anticanonical model of the blow-up of
S at the preimagesx′, y′ of x, y onS. Here we use that the pointsx′, y′ do not lie on
(−2)-curves onS, hence the blow-up ofx′, y′ is a weak Del Pezzo surface of degree
3. The mapp` is an isomorphism outsidex, y. Supposez belongs to another secant
`′ = x′, y′. Then the plane generated by` and`′ defines a point on the cubic surface
such that the preimage under the projection mapπ` containsx′, y′. This contradiction
proves the assertion.

Theorem 8.4.14.LetF be an irreducible cubic fourfold containing a nondegenerate
nonsingular surface of degree 5 inP5. ThenF is a rational variety.

Proof. Consider the linear system|IX(2)| of quadrics containingX. It defines a mor-
phismY → P4 whose fibres are proper transforms of secants ofX. This shows that
the subvariety ofG(2, 6) formed by secants ofX is isomorphic toP4. Let take a gen-
eral pointz in F . By the previous Lemma, there exists a unique secant ofX passing
throughz. By Bezout’s Theorem, no other point outsideX lies on this secant. This
gives rational injective mapF− → P4 defined outsideX. Since a general secant inter-
sectsF at three points, with two of them onX, we see that the map is birational.

Remark8.4.3. According to a result of A. Beauville [25], Proposition 8.2, any smooth
cubic fourfold containingX is a pfaffian cubic hypersurface, i.e. is given by the de-
terminant of a skew-symmetric matrix with linear forms as its entries. Conversely, any
pfaffian cubic fourfold contains a nondegenerate surface of degree 5, i.e. an anticanon-
ical weak Del Pezzo or a scroll.

Let us look at singularities and lines on a weak Del Pezzo surface of degree 5.
Let π : S → P2 be the blowing down structure onS. It is the blow-up of four

points non-collinear pointsx1, x2, x3, x4 in an almost general position. In this case it
means that the corresponding bubble cycleη = x1 + x2 + x3 + x4, up to admissible
order, is one of the following:

(i) x1, x2, x2, x3, x4 are proper points;

(ii) x2 � x2, x3, x4 ;

(iii) x3 � x2 � x1, x4;
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(iv) x2 � x1, x4 � x3, x2 � x1;

(v) x4 � x3 � x2 � x1.

As we have seen in section8.2.7the singularities ofX correspond to root bases in the
latticeE4. The possibilities are

A1, A1 +A1, A2, A1 +A2, A3, A4.

All these cases are realized:

A1 : x2 � x1, x2, x3, no three points are collinear;

A1 +A1 : x2 � x1, x4 � x3, no three points are collinear;

A2 : x3 � x2 � x1, x4, no three points are collinear;

A1 +A2 : x3 � x2 � x1, x4;x1, x2, x3 are collinear;

A3 : x4 � x3 � x2 � x1, x4, x1, x2, x3are not collinear;

A4 : x4 � x3 � x2 � x1, x1, x2, x3are collinear.

Since any set of four points in general position is projectively equivalent to the set

x1 = [1, 0, 0], x1 = [1, 0, 0], x1 = [1, 0, 0], x1 = [1, 0, 0],

we obtain that all Del Pezzo surfaces of degree 6 or 5 are isomorphic.
A Del Pezzo surface of degree 5 has 10 lines. The union of them is a divisor in

| − 2KS |. The incidence graph of the set of 10 lines is the famousPetersen graph.
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Table 8.5: Petersen graph

The number of lines on a weak Del Pezzo surface depends on the structure of its
Dynkin curves, or, equivalently, singularities of its anticanonical model. It is easy to
derive the following table for the number of lines on a singular anticanonical model of
a weak Del Pezzo surface of degree 5.

The Weyl groupW (E4) is isomorphic to the Weyl groupW (A4) ∼= S5. If S has
only one(−2)-curve, then the group of Cremona isometries is isomorphic toS4. It
acts on the set of 10 elements with 7 orbits. There are 3 orbits with stabilizer of order
12 and 4 orbits with stabilizer of order 24.
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A1 A1 +A1 A2 A1 +A2 A3 A4

7 4 3 1 1 1

Table 8.6: Lines on a Del Pezzo surface of degree 5

The Gosset polytopeΣ4 = 021 has 5 facets of typeα corresponding to contractions
of 5 disjoint lines onS and 5 pencils of conics corresponding to the pencils of lines
through a point in the plane and the pencil of conics through the four points.

Let us study automorphisms of a Del Pezzo surface of degree 5.

Theorem 8.4.15.LetS be a Del Pezzo surface of degree 5. Then

Aut(S) ∼= S5.

Proof. The groupS5 is generated by its subgroup isomorphic toS4 and an element
of order 5. The subgroupS4 is realized by projective transformations permuting the
pointsx1, . . . , x4. The action is realized by the standard representattion ofS4 in the
hyperplanez1 + · · · + z4 = 0 of C4 identified withC3 by the projection to the first
3 coordinates. An element of order 5 is realized by a quadratic transformation with
fundamental pointsx1, x2, x3 defined by the formula

T : [t0, t1, t2] 7→ [t0(t2 − t1), t2(t0 − t1), t0t2]. (8.18)

It maps the linet0 = 0 to the pointx2, the linet1 = 0 to the pointx4, the linet2 = 0
to the pointx1, the pointx4 to the pointx3.

Note that the group of automorphisms acts on the Petersen graph of 10 lines and
defines an isomorphism with the group of symmetries of the graph.

LetS be a Del Pezzo surface of degree 5. The group Aut(S) ∼= S5 acts on linearly
on the spaceV = H0(S,OS(−KS)) ∼= C6. Let us compute the character of this
representation. Choose the following basis in the spaceV :

(t20t1 − t0t1t2, t20t2 − t0t1t2, t21t0 − t0t1t2, t21t2 − t0t1t2, t22t0 − t0t1t2, t22t1 − t0t1t2).
(8.19)

Let s1 = (12), s2 = (23), s3 = (34), s4 = (45) be the generators ofS5. It fol-
lows from the proof of Theorem8.4.15thats1, s2, s3 generate the subgroup of Aut(S)
which is realized by projective transformations permuting the pointsp1, p2, p3, p4. The
last generator is realized by a quadratic transformationT . Choose the following rep-
resentatives of the conjugacy classes inS5 different from the conjugacy class of the
identity element id:

g1 = (12), g2 = (123) = s2s1, g3 = (1234) = s3s2s1,

g4 = (12345) = s4s3s2s1, g5 = (12)(34) = s1s3, g6 = (123)(45) = s3s2s1s4.

The subgroup generated bys1, s2 acts by permuting the coordinatest0, t1, t2. The
generators3 acts as the projective transformation

s3 : (y1, . . . , y6) 7→ (−y1, y1+y2,−y3, y3+y4,−y1−y−2+y4+y6, y2−y3−y4+y5),
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where(y1, . . . , y6) is the basis from (8.19). Finally s4 acts by formula (9.57). The
simple computation gives the character vector of the representation

χ = (χ(id), χ(g1), χ(g2), χ(g3), χ(g4), χ(g5), χ(g6)) = (6, 0, 0, 0, 1,−2, 0).

Using the character table ofS5 we find thatχ is the character of an irreducible repre-
sentation isomorphic to the second exterior power of the standard 4-dimensional rep-
resentation ofS5 (see [175], p. 28).

Now let us consider the linear representation ofS5 on the symmetric squareS2(V ).
Its characterχS2V can be easily found using the standard facts about linear represen-
tation of finite groups. Using the formula

χS2V (g) = 1
2 (χ(g)2 + χ(g2)),

we getχS2V = (21, 3, 0,−1, 1, 5, 0). Taking the inner product with the character of
the trivial representation we get 1. This shows that the subspace of invariant vectors
dimS2V S5 is one-dimensional. Similarly, we find thatdimS2V contains one copy of
the one-dimensional sign representation ofS5. The equation of the union of 10 lines
is

F = t0t1t2t3(t20 − t21)(t20 − t22)(t21 − t22) = 0.

It is easy to check thatF transforms underS5 as the sign representation. It is less
trivial but straightforward to find a generator of the vector spaceS2V S5 . It is equal to

G = 2
∑

t4i t
2
j − 2

∑
t4i tjtk −

∑
t3i t

2
j tk + 6t20t

2
1t

2
2.

Its singular points are the reference points. In another coordinate system, the equation
looks even better:

t60 + t61 + t62 + (t20 + t21 + t22)(t
4
0 + t41 + t42)− 12t20t

2
1t

2
2 = 0.

(see [151]). The singular points are([1,−1,−1], [−1, 1,−1], [−1,−1, 1], [1, 1, 1]. The
S5-invariant plane sexticW = V (G) is called theWiman sextic. Its proper transform
on S is a smooth curve of genus 6 in| − 2KS |. All curves in the pencil of sextics
spanned byV (λF + µG) (the Wiman pencil) areA5-invariant. It contains twoS5-
invariant membersV (F ) andV (G).
Remark8.4.4. It is known that a Del Pezzo surface of degree 5 is isomorphic to the
GIT-quotient of the space(P1)5 by the group SL(2) (see [130]). The groupS5 is
realized naturally by the permutation of factors. The isomorphism is defined by as-
signing to any pointx on the surface the five ordered points(p1, . . . , p5 = x), where
p1, . . . , p4 are the tangent directions of the conic in the plane passing through the points
x1, x2, x3, x4, x.

8.5 Quartic Del Pezzo surfaces

8.5.1 Equations

Here we study in more details weak Del Pezzo surfaces of degree 4. They are obtained
by blowing up 5 points inP2 and hence vary in a family. Surfaces of degree 3 will be
studied in the next Chapter.
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Theorem 8.5.1. LetX be an anticanonical model of a weak Del Pezzo surfaceS of
degree 4. ThenS is a complete intersection of two quadrics inP4. Moreover, ifX is
nonsingular, then the equations of the quadrics can be reduced, after a linear change
of variables, to the diagonal forms:

4∑
i=0

t2i =
4∑
i=0

ait
2
i = 0,

whereai 6= aj for i 6= j.

Proof. By Theorem8.4.5, X is projectively normal inP4. This gives the exact se-
quence

0→ H0(P4, IX(2))→ H0(P4,OP4)→ H0(X,OX(2))→ 0.

By Lemma8.3.1,

dimH0(X,OX(2)) = dimH0(S,OS(−2KS)) = 13.

This implies thatX is the base locus of a pencilt0Q0 + t1Q1 = 0 of quadrics. Assume
X is nonsingular. The determinant equation shows that it contains 5 singular quadrics
counting with multiplicities. A linear pencil of quadrics is defined by a line` in the
projective space|OPd(2)| of quadrics inPd. Let∆ be the discriminant hypersurface. Its
singular locus consists of quadrics of corank> 1. None of these quadrics is contained
in our pencil since otherwise the base locus is obviously singular. For any nonsingular
pointQ ∈ ∆, the tangent space of∆ atQ can be identified with the linear space of
quadrics passing through the singular point ofQ (see Example1.2.1). Again, since
the base locusX of our pencil is a nonsingular surface, we obtain thatX does not
contain a singular point of a singular quadric from the pencil. This shows that the line
` intersects∆ transversally, and hence contains exactly5 = deg ∆ singular quadrics.

Now we are in business. Letp1, . . . , p5 be the singular points of singular quadrics
from the pencil. We claim that the points spanP4. In fact, otherwise we obtain a pencil
P of quadrics in some hyperplaneH with ≥ 5 singular members, hence all quadrics in
this pencil must be singular. By Bertini’s Theorem, there is a pointq ∈ H singular for
all quadrics, hence the base locus of the pencil consists of the union of 4 lines through
q taken with multiplicities. The base locus ofP is the hyperplane sectionH ∩ X of
X. SinceX is nonsingular and its hyperplane section is a curve of arithmetic genus 1,
it is easy to see that it does not contain the union of 4 lines with a common point. So,
the pointsp1, . . . , p5 spanP4. Choose coordinates such thatp1 = [1, . . . , 0] and so on.
LetQt = V (ft) be a quadric from the pencil. Its first polar with respect topi is given
by the equationlt = ∂ft

∂xi
= 0. Since one of the quadrics in the pencil has a singular

point atpi, the polar does not depend ont. So we may assume thatlt = ai(t0, t1)li,
whereli is a linear function in the variablesx0, . . . , x4 andai(t0, t1) = ait0 + bit1
is a linear function in variablest0, t1. The linear functionsli are obviously linearly
independent, since otherwise all quadrics have a common singular point contradicting
the nonsingularity of the base locus. Again let us choose coordinates to assume that
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li = xi. By Euler’s formula,

ft =
4∑
i=0

ai(t0, t1)x2
i = t0(

4∑
i=0

aix
2
i ) + t1(

4∑
i=0

bix
2
i ).

Note that the singular quadrics from the pencil correspond to[t0, t1] = [bi,−ai]. Their
singular points are[1, 0, . . . , 0] and so on. After a linear change of variables in the
coordinates of the pencil, we may assume thatbi = 1, i = 0, . . . , 4. This gives the
equations from the assertions of the theorem. Since all points[bi, ai] = [1, ai] are
distinct, we see thatai 6= aj for i 6= j.

Let X be an anticanonical model of a Del Pezzo surfaceS of degree 4. It is a
nonsingular quartic surface given by the equations from Theorem8.5.1. Following the
classical terminology an anticanonical model of a weak Del Pezzo surface of degree 4
is called aSegre quartic surface.

One can say more about equations of singular weak Del Pezzo quartics. LetQ be a
pencil of quadrics inPn. We view it as a line in the space of symmetric matrices of size
n + 1 spanned by two matricesA,B. Assume thatQ contains a nonsingular quadric,
so that we can chooseB to be a nonsingular matrix. Consider theλ-matrixA+λB and
compute its elementary divisors. Letdet(A+λB) = 0 hasr distinct rootsα1, . . . , αr.
For every rootαi we have elementary divisors of the matrixA+ λB

(λ− αi)e
(1)
i , . . . , (λ− αi)e

(si)
i , e

(1)
i ≤ . . . ≤ e

(si)
i .

TheSegre symbolof the pencilQ is the collection

[(e(1)1 . . . e
(s1)
1 )(e(1)2 . . . , e

(s2)
2 ) . . . (e(1)r . . . , e(sr)

r )].

It is a standard result in linear algebra (see, for example, [176] or [221]) that one can
simultaneously reduce the pair of matrices(A,B) to the form(A′, B′) (i.e. there exists
an invertible matrixC such thatCACt = A′, CBCt = B′) such that the correspond-
ing quadratic formsQ′1, Q

′
2 have the following form

Q′1 =
r∑
i=1

si∑
j=1

p(αi, e
(j)
i ), Q′2 =

r∑
i=1

si∑
j=1

q(e(j)i ), (8.20)

where

p(α, e) = α
e∑
i=1

tite+1−i +
e−1∑
i=1

ti+1te+1−i,

q(e) =
e∑
i=1

tite+1−i.

It is understood here that eachp(α, e) andq(e) are written in disjoint sets of variables.
This implies the following.
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Theorem 8.5.2.LetX andX ′ be two complete intersections of quadrics andP,P ′ be
the corresponding pencils of quadrics. Assume thatP andP ′ contains a nonsingular
quadric. LetH andH ′ be the set of singular quadrics inP andP ′ considered as
sets marked with the corresponding part of the Segre symbol. ThenX is projectively
equivalent toX ′ if and only if the Segre symbols ofP andP ′ coincide and there exists
a projective isomorphismφ : P → P ′ such thatφ(H) = H ′ and the marking is
preserved.

Applying this to our casen = 4, we obtain the following possible Segre symbols:

r = 5 [11111];

r = 4 [(11)111], [2111];

r = 3 [(11)(11)1], [(11)21], [311], [221], [(12)11];

r = 2 [14], [(13)1], [3(11)], [32]; [(12)2], [(12)(11)];

r = 1 [5], [(14)].

Herer is the number of singular quadrics in the pencil. Note that the case[(1, 1, 1, 1, 1)]
leads to linearly dependent matricesA,B, so it is excluded for our purpose. Also in
cases[(111)11], [(1111)1], [(112)1], [(22)1], there is a reducible quadric in the pencil,
so the base locus is a reducible. Finally, the cases[(23)], [(23)], [(113)], [(122)], and
[(1112)] correspond to cones over a quartic elliptic curve.

8.5.2 Cyclid quartics

LetX be a nonsingular quartic surface inP4. Let us projectX to P3. First assume that
the center of the projectionp lies onX. Then the image of the projection is a cubic
surfaceY in P3 isomorphic to the blow-up ofX at the pointp. Letπ : X ∼= S → P2 be
the blowing-down map. SinceS is a Del Pezzo surface, the inverse ofπ is the blow-up
of 5 distinct pointsp1, . . . , p5 no three of which are collinear. Letp6 = π(p). The cubic
surfaceY is an anticanonical model of the blow-up of the bubble cyclep1 + · · ·+ p6.
If π(p) 6∈ {p1, . . . , p5}, no linepi, pj , i < j ≤ 5, containsp6 and, moreover,p6 does
not lie on the conic throughp1, . . . , p5, we obtain a nonsingular cubic surface. The
conditions are of course equivalent to thatp does not lie on any of 16 lines onX. If it
does we obtain a singular cubic surface with double rational points. The types depend
on the set of lines containingp.

Now let us assume that the center of the projectionp does not lie onX. LetQp be
the unique quadric from the pencil which containsp. We assume thatQ is a nonsingular
quadric. We will see that the projection ofX from p is a quartic surface singular along
a nonsingular conic. In classical literature such a quartic surface is called acyclide
quartic surface.

Theorem 8.5.3. Assume that the quadricQp is nonsingular. Then the projectionY of
X from p is a quartic surface inP3 which is singular along a nonsingular conic. Any
irreducible quartic surface inP3 which is singular along a nonsingular conic arises
in this way from a Segre quartic surfaceX in P4. The surfaceX is nonsinguar if and
only if Y is nonsingular outside the conic.
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Proof. First of all let us see thatY is indeed a quartic surface. If not, the projection
is a finite map of degree 2 onto a quadric. In this case the restriction of the pencil of
quadrics containingX to a line throughp intersectingX has two base points. This
implies that there is a quadric in the pencil containing this line and hence containing
the pointp. SinceQp is the unique quadric containingp, we see that it contains all
lines connectingp with some point onX. Since the lines through a point on a nonsin-
gular quadric are contained in the tangent hyperplane at this point, we wee thatX is
contained in a hyperplane which contradicts the non-degeneracy of the surface.

Let H be the tangent hyperplane ofQp at p andC = H ∩ X. The intersection
H ∩Qp is an irreducible quadric inH with singular point atp. The curveC lies on this
quadric and is cut out by a quadricQ′ ∩H for some quadricQ′ 6= Q from the pencil.
Thus the projection fromp defines a degree 2 map fromC to a nonsingular conicC
equal to the projection of the coneH ∩ Qp. It spans the plane inP3 equal to the
projection of the hyperplaneH. Since the projection defines a birational isomorphism
fromX to Y which is not an isomorphism over the conicK, we see thatY is singular
alongC. It is also nonsingular outsideC (since we assume thatX is nonsingular).

Conversely, letC be a nonsingular conic inP3. Consider the linear system|IC(2)|
of quadrics throughC. Choose coordinates to assume thatC is given by equations
t0 = t21+t22+t23 = 0. Then|IC(2)| is spanned by quadricsV (t0ti) andV (t21+t22+t23).
It defines a rational mapf : P3− → P4 given by the formula

[y0, . . . , y4] = [t20, t0t1, t0t2, t0t3, t
2
1 + t22 + t23].

Its image is the nonsingular quadricQ1 given by the equation

y2
1 + y2

2 + y2
3 − y0y4 = 0. (8.21)

The inverse rational map is of course the projection from the point[0, . . . , 0, 1] (the
image of the planet0 = 0). Let Y be an irreducible quartic surface inP3 singular
alongC. Its equation must be of the form

(t21 + t22 + t23)
2 + 2t0(t21 + t22 + t23)g1(t1, t2, t3) + t20g2(t0, t1, t2, t3) = 0, (8.22)

whereg1 andg2 are homogeneous polynomials of degree 1 and 2, respectively. Its
image lies onQ1 and is cut out by the quadricQ2 with equation

y2
4 + y4g1(y1, y2, y3) + g2(y0, y1, y2, y3) = 0. (8.23)

Thus the image ofY is a Segre quarticX in P4 defined by equations (8.21) and (8.22).
Obviously,X does not contain the pointp = [0, 0, 0, 0, 1]. Then mapf is an iso-
morphism outside the planet0 = 0. HenceX is nonsingular if and only ifY has no
singular points outsideC.

Remark8.5.1. After some obvious linear change of variables we can reduce the equa-
tion of a cyclide surface to the equation

(t21 + t22 + t23)
2 + t20g2(t0, t1, t2, t3) = 0, (8.24)
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The analog of a quartic cyclide surface inP2 is a quartic curve with two double points
(acyclide curve). Let ` be the line through the nodes. We may assume that its equation
is x0 = 0 and the coordinates of the points are[0, 1, i], [0, 1,−i]. Then the equation of
a cyclide curve can be reduced to the form

(x2
1 + x2

2)
2 + x2

0g2(x0, x1, x2) = 0.

A conic passing through singular points of the cyclide is the projectivized circle

(x1 − ax0)2 + (x2 − bx0)2 − cx2
0 = 0.

The linear system of circles mapsP2 to P3 with the image a quadric inP3. The coor-
dinates inP3 corresponding to a choice of four linearly independent circles are called
in the classical literature thetetrahedral coordinates. An equation of a circle in this
coordinates is a linear equation. A cyclide curve is given by a quadric equation in
tetrahedral coordinates.

Similarly, quadric surfaces inP3 which contain the singular conic of the cyclide
surface with equation (8.23) are projectivized balls

(t1 − at0)2 + (t2 − bt0)2 + (t3 − t0)2 − ct20 = 0

in P3. The linear system of such balls is 4-dimensional and mapsP3 to P4 with the
image a quadric hypersurface. A choice of 5 linearly independent balls defines apen-
taspherical coordinatesin P4. The equation of a ball in these coordinates is a linear
equation. By choosing a special basis formed by “orthogonal balls”, one my assume
that the quadric hypersurface inP4 is given by the sum of squares of the coordinates.
In these special pentaspherical coordinates many geometric relationships between balls
are expressed easier in terms of their linear equations (see [246]). For example, in pen-
taspherical coordinates the equation of a cyclide quartic surface is the intersection of
two quadrics. This explains the relation with quartic surfaces inP4.

It remains to consider the projection of a nonsingular Segre surface from a pointp
lying on a singular quadricQ from the pencil. First we may assume thatp is not the
singular point ofQ. Then the tangent hyperplaneH of Q at p intersectsQ along the
union of two planes. ThusH intersectsX along the union of two conics intersecting at
two points. This is a degeneration of the previous case. The projection is adegenerate
cyclide surface. It is an irreducible quartic surface singular along the union of two lines
intersecting at one point. Its equation can be reduced to the form

t21t
2
2 + t20g2(t0, t1, t2, t3) = 0.

Finally let us assume that the center of the projection is the singular point of a
cone from the pencil. We have already observed that in this case we have a degree 2
mapX → V , whereV is a nonsingular quadric inP3. The branch locus of this map
is a nonsingular quartic elliptic curve of bidegree(2, 2). If we choose the diagonal
equations ofX as in Theorem8.5.1, and take pointp = (1, 0, 0, 0, 0), then cone with
vertex atp is given by the equation

(a2 − a1)t21 + (a3 − a1)t22 + (a3 − a1)t23 + (a4 − a1)t24 = 0.
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It is projected to the quadric with the same equations in coordinates[t1, . . . , t4] in P3.
The branch curve is cut out by the quadric with the equation

t21 + t22 + t23 + t24 = 0.

A more general cyclid quartic surfaces are obtained by projection from singular
quartic surfaces inP3. They have been all classified by C. Segre [376].

8.5.3 Lines and singularities

Applying the procedure of Borel-De Sibenthal-Dynkin, we obtain the following list of
types of root bases inE5:

D5, A3 + 2A1, D4, A4, 4A1, A2 + 2A1, A3 +A1, A3, 3A1, A2 +A1, A2, 2A1, A1.

All of these types can be realized as the types of root bases defined by(−2)-curves.
First we give the answer in terms of the blow-up model ofX.

D5 : x5 � x4 � x3 � x2 � x1, x1, x2, x3 are collinear;

A3 + 2A1 : x3 � x2 � x1, x5 � x4, x1, x4, x5 are collinear;

D4 : x4 � x3 � x2 � x1, x1, x2, x5 are collinear;

A4 : x5 � x4 � x3 � x2 � x1;
4A1 : x2 � x1, x4 � x3, x1, x2, x5 andx3, x4, x5 are collinear;

2A1 +A2 : x2 � x1, x4 � x3, x1, x2, x5 andx3, x4, x5 are collinear;

A1 +A3 : x3 � x2 � x1, x5 �4, x1, x4, x5 are collinear;

A3 : x4 � x2 � x1; or x3 � x2 � x1, x1, x4, x5 are collinear;

A1 +A2 : x3 � x2 � x1, x5 � x4, x1, x4, x5 are collinear;

3A1 : x2 � x1, x4,� x3, x1, x3, x5 are collinear;

A2 : x3 � x2 � x1;
2A1 : x2 � x1, x3 � x2,or x1, x2, x3, x1, x4, x5 are collinear;

A1 : x1, x2, x3 are collinear.
This can be also stated in terms of equations indicated in the next table. The number

of lines is also easy to find by looking at the blow-up model. We have the following
table (see [407]).

D5 A3 + 2A1 D4 A4 4A1 A2 + 2A1 A3 +A1 A3

[(41)] [(21)(11)] [(31)1] [5] [(11)(11)1] [3(11)] [(21)2] [(21)11]
1 2 2 3 4 4 3 4

A3 A2 +A1 3A1 A2 2A1 2A1 A1

[41] [32] [(11)21] [311] [(11)111] [221] [2111]
5 6 6 8 8 9 12

Table 8.7: Lines and singularities on a weak Del Pezzo surface of degree 4
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Example8.5.1. The quartic surfaces with singular points of type4A1 or 2A1 + A3

have a remarkable property that they admit a double cover ramified only at the singular
points. We refer to [96] for more details about these quartics surfaces. The projections
of these surfaces toP3 are cubic symmetroid surfaces discussed in the next Chapter.
The cover is the quadric surfaceF0 in the first case and the quadric coneQ in the
second case.

The Gosset polytopeΣ5 = 121 has 16 facets of typeα and 10 facets of typeβ.
They correspond to contractions of 5 disjoint lines and pencils of conics arising from
the pencils of lines through one of the 5 points in the plane and pencils of conics
through four of the 5 points.

8.5.4 Automorphisms

By Theorem8.5.1 a Del Pezzo surface of degree 4 is isomorphic to a nonsingular
surface of degree 4 inP4 given by equations

f1 =
4∑
i=0

t2i = 0, f2 =
4∑
i=0

ait
2
i = 0,

where the coefficientsai are all distinct.
We know that the representation of Aut(S) in W (S) ∼= W (D5) is injective.

Proposition 8.5.4.
W (D5) ∼= 24 o S5,

where2k denotes the elementary abelian group(Z/2Z)k.

Proof. Of course, this is a well-known fact from the theory of reflection groups. How-
ever, we give a geometric proof exhibiting the action ofW (D5) on Pic(S). Fix a
geometric basise0, . . . , e5 corresponding to a blow-up model ofS and consider 5 pairs
of pencils of conics defined by the linear systems

Li = |e0−ei|, L′i = |−KS−(e0−ei)| = |2e0−e1−e2−e3−e4−e5 +ei|, i = 1, . . . , 5.

Let α1, . . . , α5 be the canonical root basis defined by the geometric basis andri be
the corresponding reflections. Thenr2, . . . , r5 generateS5 and act by permuting the
5 pairs of pencils. Consider the productr1 ◦ r5. It is immediately checked that it
switchesL4 withL′4 andL5 withL′5 leavingLi, L′i invariant fori = 1, 2, 3. Similarly, a
conjugate ofr1◦r5 inW (D5) does the same for some other pair pair of the indices. The
subgroup generated by the conjugates is isomorphic to24. Its elements switch theLi
with L′i in an even number of pairs of pencils. This defines a surjective homomorphism
W (D5) → S5 with kernel containing24. Comparing the orders of the groups we see
that the kernel is24 and we have an isomorphism of groups asserted in the proposition.

The image of the addition map|Li|×|L′i| → |−KS | defines a 3-dimensional linear
system contained in| −KS |. It defines the projectionψi : S → P3. SinceDi ·D′

i = 2
for Di ∈ Li, D

′
i ∈ L′i, the degree of the map is equal to 2. So the image ofψ is a
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quadric inP3. This shows that the center of the projection is the vertex of one of the
five singular quadric cones in the pencil of quadrics containing the anticanonical model
X of S. The deck transformationgi, i = 1, . . . , 5, of the cover is an automorphism and
these five automorphisms a subgroupH of Aut(S) isomorphic to24. One can come
to the same conclusion by looking at the equations ofX. The group of projective
automorphims generated by the transformations which switchti to −ti realizes the
subgroup24.

LetG be the subgroup ofW (D5) realized by permutations of the set{e1, . . . , e5}.
It is isomorphic toS5 andW (S) is equal to the semi-direct productH o G. Now
suppose that Aut(S) contains an elementg 6∈ H. Composing it with elements fromH,
we may assume thatg ∈ G. Since elements ofG leavee0 invariant,g is realized by
a projective transformation ofP2 leaving the set of pointsx1, . . . , x5 invariant. Since
there is a unique conic through these points, the group is isomorphic to a finite group of
PSL(2) leaving invariant a binary quintic without multiple roots. All these groups can
be easily found. It follows from the classification of finite subgroups of SL(2) and their
algebra of invariants that the only possible groups are the cyclic groupsC2, C3, C4, C5,
the permutation groupS3, and the dihedral groupD10 of order 10. The corresponding
binary forms are projectively equivalent to the following binary forms:

(i) C2 : u0(u2
0 − u2

1)(u
2
0 + au2

1), a 6= −1, 1;

(ii) C4 : u0(u2
0 − u2

1)(u
2
0 + u2

1);

(iii) C3, C6 : u0u1(u0 − u1)(u0 − ηu1)(u0 − η2u2
1), η = e2πi/3;

(iv) C5, D5 : (u0 − u1)(u0 − εu1)(u0 − ε2u1)(u0 − ε3u1)(u0 − ε4u1),

whereε = e2πi/5. The corresponding surfaces are projectively equivalent to the fol-
lowing surfaces:

(i) C2 : t20 + t22 + a(t21 + t23) + t24 = t20 − t22 + b(t21 − t23) = 0, a 6= −b, b;

(ii) C4 : t20 + t21 + t22 + t23 + t24 = t20 + it21 − t22 − it23 = 0;

(iii) S3 : t20 + ηt21 + η2t22 + t23 = t20 + η2t21 + ηt22 + t24 = 0;

(iv) D10 : t20 + εt21 + ε2t22 + ε3t23 + ε4t24 = ε4t20 + ε3t21 + ε2t22 + εt23 + t24 = 0.

8.6 Del Pezzo surfaces of degree 2

8.6.1 Lines and singularities

Let S be a weak Del Pezzo surface of degree 2. Recall that the anticanonical linear
system defines a birational morphismφ′ : S → X, whereX is the anticanonical model
of S isomorphic to the double cover ofP2 branched along a plane quartic curveC with
at most simple singularities (see section6.3.3. Let φ : S → P2 be the composition of
φ and the double cover mapσ : X → P2. The restriction ofφ to a(−1)-curveE is a
map of degree−KS · E = 1. Its image in the plane is a linè. The preimage of̀ is
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the union ofE and a divisorD ∈ | −KS − E|. Since−KS ·D = 1, the divisorD is
equal toE′ + R, whereE′ is a (−1)-curve andR is the union of(−2)-curves. Also
we immediately find thatE ·D = 2, D2 = −1. There are three possible cases:

(i) E 6= E′, E · E′ = 2;

(ii) E 6= E′, E · E′ = 1;

(iii) E 6= E′, E = E′.

In the first case, the image ofE is a line` tangent toC at two nonsingular points. The
image ofD−E′ is a singular point ofC. By Bezout’s Theorem,̀ cannot pass through
the singular point. HenceD = E′ and` is a bitangent ofW .

In the second case,E ·D − E′ = 1. The line` passes through the singular point
φ(D − E′) and is tangent toC at a nonsingular point.

Finally, in the third case,̀ is a component ofW .
Of course, whenS is a Del Pezzo surface, the quarticC is nonsingular, and we

have 56 lines paired into 28 pairs corresponding to 28 bitangents ofC. Letπ : S → P2

be the blow-up of seven pointsx1, . . . , x7 in general position. Then 28 pairs of lines
are the proper inverse transforms of the isolated pairs of curves:

21 pairs: a line throughxi, xj and the conic through the complementary five points;
7 pairs: a cubic with a double point atxi and passing through other points plus the

exceptional curveπ−1(xi).
We use the procedure of Borel-De Siebenthal-Dynkin to compile the list of root

bases inE7. It is convenient first to compile the list of maximal (by inclusions) root
bases of typeA,D,E (see [240], §12).

Type rankn− 1 rankn
An Ak +An−k−1

Dn An−1, Dn−1 Dk +Dn−k, k ≥ 2
E6 D5 A1 +A5, A2 +A2 +A2

E7 E6 A1 +D6, A7, A2 +A5

E8 D8, A1 + E7, A8, A2 + E6, A4 +A4

Table 8.8: Maximal root bases

HereD2 = A1 +A1 andD3 = A3.
From this easily find the following table of root bases inE7. Note that there are

two roots bases of typesA1 + A5, A2 + 2A1, 3A1, A1 + A3 and4A1 which are not
equivalent with respect to the Weyl group.

The simple singularities of plane quartics were classified by P. Du Val [145], Part
III.

A1: one node;

2A1: two nodes;

A2: one cusp;

3A1: irreducible quartic with three nodes;
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r Types
7 E7, A1 +D6, A7, 3A1 +D4, A1 + 2A3, A5 +A2, 7A1

6 E6, D5 +A1, D6, A6, A1 +A5, 3A2, 2A1 +D4, 2A3,
3A1 +A3, 6A1, A1 +A2 +A3, A2 +A4

5 D5, A5, A1 +D4, A1 +A4, A1 + 2A2, 2A1 +A3,
3A1 +A2, A2 +A3, 5A1

≤ 4 D4, Ai1 + · · ·+Aik , i1 + · · ·+ ik ≤ 4

Table 8.9: Root bases in theE7-lattice

3A1: a cubic and a line;

A1 +A2: one node and one cusp;

A3: one tacnode (two infinitely near ordinary double points);

4A1: a nodal cubic and a line;

4A1: two conics intersecting at 4 points;

2A1 +A2: two nodes and one cusp;

A1 +A3: a node and a tacnode;

A1 +A3: cubic and a tangent line;

A4: one rhamphoid cusp (two infinitely near cusps);

2A2: two cusps;

D4: an ordinary triple point;

5A1: a conic and two lines;

3A1 +A2: a cuspidal cubic and a line;

2A1 +A3: two conics tangent at one point;

2A1 +A3: a nodal cubic and its tangent line;

A1 +A4: a rhamphoid cusp and a node;

A1 + 2A2: a cusp and two nodes;

A2 +A3: a cusp and a tacnode;

A5: one oscnode (two infinitely near cusps);

A5: a cubic and its flex tangent;

D5: nodal cubic and a line tangent at one branch;

A1 +D4: a nodal cubic and line through the node;

E6: an irreducible quartic with onee6-singularity;

D6: triple point with one cuspidal branch;

A1 +A5: two conics intersecting at two points with multiplicities 3 and 1;

A1 +A5: a nodal cubic and its flex tangent;

6A1: four lines in general position;

3A2: a three cuspidal quartic;



8.6. DEL PEZZO SURFACES OF DEGREE 2 301

2A1 +D4: two lines and conic through their intersection point;

D5 +A1: cuspidal cubic and a line through the cusp;

2A3: two conics intersecting at two points with multiplicities 2;

3A1 +A3: a conic plus its tangent line plus another line;

A1 +A2 +A3: cuspidal cubic and its tangent;

A6: one oscular rhamphoid cusp (three infinitely nearx1 � x2 � x1 cusps);

A2 +A4: one rhamphoid cups and a cusp;

E7: cuspidal cubic and its cuspidal tangent;

A1 +D6: conic plus tangent line and another line through point of contact;

D4 + 3A1: four lines with three concurrent;

A7: two irreducible conics intersecting at one point;

A5 +A2: cuspidal cubic and a flex tangent;

2A3 +A1: conic and two tangent lines.
Note that all possible root bases are realized except7A1 (this can be realized in

characteristic 2). One can compute the number of lines but this rather tedious. For
example, in the caseA1 we have 44 lines and the nodal Weyl groupW (S)n acts on the
setW (S)/W (S)E with 6 orbits of cardinality 2 and 44 orbits of cardinality 1. This
gives that a one-nodal quartic has 21 bitangents (i.e. lines with two nonsingular points
of tangency).

The Gosset polytopeΣ7 = 321 has 575 facets of typeα and 126 facets of type
β. They correspond to contractions of 7 disjoint(−1)-curves and pencils of conics
arising from 7 pencils of lines through one of the 7 points in the plane, 35 pencils of
conics through 4 points, 42 pencils of cubic curves through 6 points with a node at one
of these points, 35 pencils of 3-nodal quartics through the 7 points, and 7 pencils of
quintics through the 7 points with 6 double points.

8.6.2 The Geiser involution

Let S be a weak Del Pezzo surface of degree 2. Consider the degree 2 regular map
φ : S → P2 defined by the linear system|−KS |. In the blow-up model ofS, the linear
system| − KS | is represented by the net of cubic curvesN with seven base bubble
pointsx1, . . . , x7 in P2. It is an example of a Laguerre net considered in Remark7.1.3.
Thus we can viewS as the blow-up of 7 points in the planeP2 which is canonically
identified with | − KS |. The target planeP2 can be identified with the dual plane
| −KS |∨ of | −KS |. The plane quartic curveC belongs to| −KS |∨.

If S is a Del Pezzo surface, thenφ is a finite map of degree 2 and any subpencil of
| −KS | has no fixed component. Any pencil contained inN has no fixed components
and has 2 points outside the base points of the net. Assigning the line through these
points, we will be able to identify the planeP2 with the netN , or with | − K|. This
is the property of a Laguerre net. The inverse map is defined by using the coresidual
points of Sylvester. For every nonsingular memberD ∈ N , the restriction of| −KS |
toD defines ag1

2 realized by the projection from the coresidual point onD. This map
extends to an isomorphismN → P2.
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LetX ⊂ P(1, 1, 1, 2) be an anticanonical model ofS. The mapφ factors through
a birational mapσ : S → X that blows down the Dynkin curves and a degree 2 finite
map φ̄ : X → P2 ramified along a plane quartic curveC with simple singularities.
The deck transformationγ of the coverφ̄ is a birational automorphism ofS called
theGeiser involution. In fact, the Geiser involution is a biregular automorphism ofS.
Sinceσ is a minimal resolution of singularities ofX, this follows from the existence of
a equivariant minimal resolution of singularities of surfaces [269] and the uniqueness
of a minimal resolution of surfaces.

Proposition 8.6.1. The Geiser involutionγ has no isolated fixed points. Its locus of
fixed points is the disjoint union of smooth curvesW+R1+· · ·+Rk, whereR1, . . . , Rk
are among irreducible components of Dynkin curves. The curveW is the normalization
of the branch curve of the double coverφ : S → P2. A Dynkin curve of typeA2k has no
fixed components, a Dynkin curve of typeA2k+1 has one fixed component equal to the
central component. A Dynkin curve of typeD4, D5, D6, E6, E7 have fixed components
marked by square on their Coxeter-Dynkin diagrams.

D4 • •

•

�

D5 • ••

•

•�

D6 • ••

•

• •� �

E6 • • • • •

•�

E7 • • • • •

•

�� �

Assume thatS is a Del Pezzo surface. Then the fixed locus of the Geiser involution
is a smooth irreducible curveW isomorphic to the branch curve of the cover. It belongs
to the linear system| − 2KS | and hence its image in the plane is a curve of degree 6
with double points atx1, . . . , x7. It is equal to the jacobian curve of the net of cubics,
i.e. the locus of singular points of singular cubics from the set. It follows from the
Lefschetz Fixed-Point-Formula that the trace ofγ in Pic(S) ∼= H2(S,Z) is equal to
e(W ) − 2 = −6. This implies that the trace ofσ onQS = (KS)⊥ is equal to−7.
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Since rankQS = 7 this implies thatγ acts as the minus identity onQS . It follows
from the theory of finite reflection groups that the minus identity isogeny of the lattice
E7 is represented by the elementw0 in W (E7) of maximal length as a word in simple
reflections. It generates the center ofW (E7).

We can also consider the Geiser involution as a Cremona involution of the plane. It
coincides with the Geiser involution described in Chapter 7. The characteristic matrix
of a Geiser involution with respect to the basese0, . . . , e7 andσ∗(e0), . . . , σ∗(e7) is
the following matrix:

8 3 3 3 3 3 3 3
−3 −2 −1 −1 −1 −1 −1 −1
−3 −1 −2 −1 −1 −1 −1 −1
−3 −1 −1 −2 −1 −1 −1 −1
−3 −1 −1 −1 −2 −1 −1 −1
−3 −1 −1 −1 −1 −2 −1 −1
−3 −1 −1 −1 −1 −1 −2 −1
−3 −1 −1 −1 −1 −1 −1 −2


. (8.25)

We can consider this matrix as the matrix of the elementw0 ∈ O(I1,7) in the basis
e0, e1, . . . , e7. It is immediately checked that its restriction toE7 is equal to the minus
identity transformation. As an element of the Weyl groupW (E7) it is usually denoted
by w0. This is element of maximal length as a word in simple reflections. The group
〈w0〉 is equal to the center ofW (E7).

The elementw0 acts on the Gosset polytope321 as the reflection with respect to the
center defined by the vector12k7 = − 1

56

∑
vi, wherevi are the exceptional vectors.

The 28 orbits on the set of vertices correspond to 28 bitangents of a nonsingular plane
quartic.

8.6.3 Automorphisms of Del Pezzo surfaces of degree 2

Let S be a Del Pezzo surface of degree 2. The Geiser involutionγ belongs to the
center ofW (S). The quotient group Aut(S)/〈γ〉 is the group of automorphisms of the
branch coverφ : S → P2. We use the classification of automorphisms of plane quartic
curves from Chapter 6. LetG′ be a group of automorphisms of the branch curveV (f)
given by a quartic polynomialf . Let χ : G′ → C∗ be the character ofG′ defined by
σ∗(f) = χ(σ)f . Let

G = {(g′, α) ∈ G′ × C∗ : χ(g′) = α2}.

This is a subgroup of the groupG′×C∗. The projection toG′ defines an isomorphism
G ∼= 2.G′. The extension splits if and only ifχ is equal to the square of some character
of G′. In this caseG ∼= G′ × 2. The groupG acts onS given by equation (8.12) by

(σ′, α) : [t0, t1, t2, t3] 7→ [σ′∗(t0), σ′∗(t1), σ′∗(t2), αt3].

Any group of automorphisms ofS is equal to a groupG as above. This easily gives the
classification of possible automorphism groups of Del Pezzo surfaces of degree 2.



304 CHAPTER 8. DEL PEZZO SURFACES

Type Order Structure Equation Parameters

I 336 2× L2(7) t23 + t30t1 + t31t2 + t32t0

II 192 2× (42 : S3) t23 + t40 + t41 + t42
III 96 2× 4A4 t23 + t42 + t40 + at20t21 + t41 a2 = −12

IV 48 2×S4 t23 + t42 + t41 + t40+ a 6= −1±
√
−7

2

+a(t20t21 + t20t22 + t21t22)

V 32 2×AS16 t23 + t42 + t40 + at20t21 + t41 a2 6= 0,−12, 4, 36

VI 18 18 t23 + t40 + t0t31 + t1t32
VII 16 2×D8 t23 + t42 + t40 + t41 + at20t21 + bt22t0t1 a, b 6= 0

VIII 12 2× 6 t23 + t32t0 + t40 + t41 + at20t21
IX 12 2×S3 t23 + t42 + at22t0t1 + t2(t30 + t31) + bt20t21
X 8 23 t23 + t42 + t41 + t40 distincta, b, c 6= 0

+at22t20 + bt21t22 + ct20t21
XI 6 6 t23 + t32t0 + f4(t0, t1)

XII 4 22 t23 + t42 + t22f2(t0, t1) + f4(t0, t1)

XIII 2 2 t23 + f4(t0, t1, t2)

Table 8.10: Groups of automorphisms of Del Pezzo surfaces of degree 2

We leave to a curious reader the task of classifying automorphism groups of weak
Del Pezzo surfaces. Notice that in the action of Aut(S) in the Picard group they cor-
respond to certain subgroups of the group Cris(S). Also the action is not necessary
faithful, for example the Geiser involution acts trivially on Pic(S) in the case of a weak
Del Pezzo surface with singularity of typeE7.

8.7 Del Pezzo surfaces of degree 1

8.7.1 Lines and singularities

Let S be a weak Del Pezzo surface of degree 1. Its anticanonical modelX is a finite
cover of degree 2 of a quadratic coneQ ramified over a curveB in the linear system
|OQ(3)| with at most simple singularities. The list of types of possible Dynkin curves
is easy to compile. First we observe that all diagrams listed for the case of theE7-
lattice are included in the list. Also all the diagramsA1 + T , whereT is from the
previous list are included. We give only the new types.

r Types
8 E8, A8, D8, 2A4, A1 +A2 +A5, A3 +D5, 2D4,

A2 + E6, A3 +D5, 4A2

7 D7, A2 +D5, A3 +A4, A3 +D4

6 A2 +D4

Table 8.11: Root bases in theE8-lattice
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Note that there are two root bases of typesA7, 2A3, A1 + A5, 2A1 + A3 and4A1

which are not equivalent with respect to the Weyl group.
The following result of P. Du Val [145] will be left without proof. Note that Du Val

uses the following notation:

A1 = [], An = [3n−1], n ≥ 2, Dn = [3n−3,1,1], n ≥ 4,

E6 = [33,2,1], E7 = [34,2,1], E8 = [35,2,1].

Theorem 8.7.1.All types of root bases inE8 can be realized by Dynkin curves except
the cases7A1, 8A1, D4 + 4A1.

In fact, describes explicitly the singularities of the branch sextic similarly to the
case of weak Del Pezzo surfaces of degree 2.

The number of lines on a Del Pezzo surface of degree 1 is equal to 240. Note the
coincidence with the number of roots. The reason is simple, for any rootα ∈ E8, the
sum−k8 + α is an exceptional vector. The image of a line under the coverφ : S → Q
is a conic. The plane spanning the conic is atritangent plane, i.e. a plane touching
the branch sexticW at three points. There are 120 tritangent planes, each cut out a
conic inQ which splits under the cover in the union of two lines intersecting at three
points. Note that the effective divisorD of degree 3 onW such that2D is cut out by a
tritangent plane, is an odd theta characteristic onW . This gives another explanation of
the number120 = 23(24 − 1).

The Gosset polytopeΣ8 = 421 has 17280 facets of typeα corresponding to con-
tractions of sets of 8 disjoint(−1)-curves, and 2160 facets of typeβ corresponding to
conic bundle structures arising from the pencils of conics|de0 −m1e1 − . . .−m8| in
the plane which we denote by(d;m1, . . . ,m8):

• 8 of type(1; 1, 07),

• 70 of type(2; 14, 05),

• 168 of type(3; 2, 15, 02),

• 280 of type(4; 23, 14, 0),

• 8 of type(4; 3, 17),

• 56 of type(5; 26, 1, 0),

• 280 of type(5; 3, 23, 14),

• 420 of type(6; 32, 24, 12),

• 280 of type(7, 34, 23, 1),

• 56 of type(7, 4, 3, 26),

• 8 of type(8; 37, 1),

• 280 of type(8; 4, 34, 23),
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• 168 of type(9; 42, 35, 2),

• 70 of type(10; 44, 34),

• 8 of type(11; 47, 3),

8.7.2 Bertini involution

Let S be a weak Del Pezzo surface of degree 1. Consider the degree 2 regular map
φ : S → Q defined by the linear system| − 2KS |. In the blow-up model ofS, the
linear system| − 2KS | is represented by the webW of sextic curves with eight base
bubble pointsx1, . . . , x8 in P2. If S is a Del Pezzo surface, thenφ is a finite map of
degree 2.

LetX ⊂ P(1, 1, 2, 3) be the anticanonical model ofS. The mapφ factors through
the birational mapσ : S → X that blows down the Dynkin curves and a degree 2
finite mapφ̄ : X → Q ramified along a curve of degree 6 cut out by a cubic surface.
The deck transformationβ of the coverφ̄ is a birational automorphism ofS called the
Bertini involution. As in the case of the Geiser involution, we prove that the Bertini
involution is a biregular automorphism ofS.

Proposition 8.7.2. The Bertini involutionβ has one isolated fixed point, the base point
of | −KS |. The one-dimensional part of the locus of fixed points is the disjoint union
of smooth curvesW +R1 + · · ·+Rk, whereR1, . . . , Rk are among irreducible com-
ponents of Dynkin curves. The curveW is the normalization of the branch curve of
the double coverφ : S → Q. A Dynkin curve of typeA2k has no fixed components, a
Dynkin curve of typeA2k+1 has one fixed component equal to the central component.
A Dynkin curve of typeD4, D7, D8, E8 have fixed components marked by square on
their Coxeter-Dynkin diagrams. The fixed components of Dynkin curves of other types
given in the diagrams from Proposition8.6.1.

D7 • ••

•

• • •� �

D8 • ••

•

• • • •� � �

E8 • • • • • •

•

�� � �

Assume thatS is a Del Pezzo surface. Then the fixed locus of the Bertini involution
is a smooth irreducible curveW of genus 4 isomorphic to the branch curve of the cover
and the base point of| −KS |. It belongs to the linear system| − 3KS | and hence its
image in the plane is a curve of degree 9 with triple points atx1, . . . , x8. It follows
from the Lefschetz fixed-point-formula that the trace ofβ in Pic(S) ∼= H2(S,Z) is
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equal to1 + e(W ) − 2 = −7. This implies that the trace ofσ onQS = (KS)⊥ is
equal to−8. Since rankQS = 8 this implies thatγ acts as the minus identity onQS .
It follows from the theory of finite reflection groups that the minus identity isogeny of
the latticeE7 is represented by the elementw0 in W (E8) of maximal length as a word
in simple reflections. It generates the center ofW (E8).

We can also consider the Bertini involution as a Cremona involution of the plane. It
coincides with the Bertini involution described in Chapter 7. The characteristic matrix
of a Geiser involution with respect to the basese0, . . . , e8 andσ∗(e0), . . . , σ∗(e8) is
the following matrix:

17 6 6 6 6 6 6 6 6
−6 −3 −2 −2 −2 −2 −2 −2 −2
−6 −2 −3 −2 −2 −2 −2 −2 −2
−6 −2 −2 −3 −2 −2 −2 −2 −2
−6 −2 −2 −2 −3 −2 −2 −2 −2
−6 −2 −2 −2 −2 −3 −2 −2 −2
−6 −2 −2 −2 −2 −2 −3 −2 −2
−6 −2 −2 −2 −2 −2 −2 −3 −2
−6 −2 −2 −2 −2 −2 −2 −23 −3


.

We can consider this matrix as the matrix of the elementw0 ∈ O(I1,8) in the basis
e0, e1, . . . , e8. It is immediately checked that its restriction toE9 is equal to the minus
identity transformation. As an element of the Weyl groupW (E8), it is usually denoted
by w0. This is element of maximal length as a word in simple reflections. The group
〈w0〉 is equal to the center ofW (E8).

The elementw0 acts on the Gosset polytope421 as the reflection with respect to
the center defined by the vectork8 = − 1

240

∑
vi, wherevi are the exceptional vectors.

The 120 orbits on the set of vertices correspond to 120 tritangent planes of the branch
curve of the Bertini involution.

8.7.3 Rational elliptic surfaces

We know that the linear system| − KS | is an irreducible pencil with one base point
x0. Let τ : F → S be its blow-up. The proper inverse transform of| − KS | in F is
a base-point-free pencil of curves of arithmetic genus1. It defines an elliptic fibration
ϕ : F → P1. The exceptional curveE = τ−1(x0) is a section of the fibration.
Conversely, letϕ : F → P1 be an elliptic fibration on a rational surfaceF which
admits a sectionE and relative minimal in the sense that no fibre contains a(−1)-
curve. It follows from the theory of elliptic surfaces that−KF is the divisor class of
a fibre andE is a (−1)-curve. Blowing downE, we obtain a rational surfaceS with
K2
S = 1. SinceKF is obviously nef, we obtain thatKS is nef, soS is a weak Del

Pezzo surface of degree 1.
Let ϕ : F → P1 be a rational elliptic surface with a sectionE. The sectionE

defines a rational pointe on a generic fibreFη, considered as a curve over the functional
field K of the base of the fibration. It is a smooth curve of genus 1, so it admits
a group law with the zero equal to the pointe. It follows from the theory of relative
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minimal models of surfaces that any automorphism ofFη overK extends to a biregular
automorphism ofF overP1. In particular, the negation automorphismx→ −x extends
to an automorphism ofF fixing the curveE. Its descent to the blowing down ofE is
the Bertini involution.

Let D be a Dynkin curve onS. The pointx0 cannot lie onD. In fact, otherwise
the proper transformR′ of a component ofD that containsx0 is a (−3)-curve onF .
However,−KF is nef onF henceKF · R′ ≤ 0 contradicting the adjunction formula.
This implies that the preimageτ∗(D) of D on F is a Dynkin curve contained in a
fibre. The whole fibre is equal to the union ofτ∗(D) + R, whereR is a (−2)-curve
intersecting the zero sectionE. Kodaira’s classification of fibres of elliptic fibrations
shows that the intersection graph of the irreducible components of each reducible fibre
is equal to one of the extended Coxeter-Dynkin diagrams.

The classification of Dynkin curves on a weak Del Pezzo surfaces of degree 1 gives
the classification of all possible collections of reducible fibres on a rational elliptic
surface with a section.

The equation of the anticanonical model inP(1, 1, 2, 3)

t23 + t32 + f4(t0, t1)t2 + f6(t0, t1) = 0, (8.26)

after dehomogenizationt = t1/t0, x = t2/t
2
0, y = t3/t

3
0 become theWeierstrass

equationof the elliptic surface

y2 + x3 + a(t)x+ b(t) = 0.

The classification of all possible singular fibres of rational elliptic surfaces (not neces-
sary reducible) in terms of the Weierstrass equation was done by several people, e.g.
[311].

8.7.4 Automorphisms of Del Pezzo surfaces of degree 1

Let S be a Del Pezzo surface of degree 1. We identify it with its anticanonical model
(8.26) The vertex ofQ has coordinates[0, 0, 1] and its preimage in the cover consist of
one point[0, 0, 1, a], wherea2 + 1 = 0 (note that[0, 0, 1, a] and[0, 0, 1,−a] represent
the same point inP(1, 1, 2, 3). This is the base point of|−KS |. The members of|−KS |
are isomorphic to genus 1 curves with equationsy2 +x3 +f4(t0, t1)x+f6(t0, t1) = 0.
Our groupḠ acts onP1 via a linear action on(t0, t1). The locus of zeros of∆ =
f3
4 +27f2

6 is the set of points inP1 such that the corresponding genus 1 curve is singular.
It consists ofa simple roots andb double roots. The zeros off4 are either common
zeros withf6 and∆, or represent nonsingular elliptic curves with automorphism group
isomorphic toZ/6Z. The zeros off6 are either common zeros withf4 and ∆, or
represent nonsingular elliptic curves with automorphism group isomorphic toZ/4Z.
The groupḠ leaves both sets invariant.

Recall thatḠ is determined up to conjugacy by its set of points inP1 with non-
trivial stabilizers. IfḠ is not cyclic, then there are three orbits in this set of cardinalities
n/e1, n/e2, n/e3, wheren = #Ḡ and(e1, e2, e3) are the orders of the stabilizers. Let
Γ be a finite noncyclic subgroup of PGL(2). We have the following possibilities:

(i) Γ = D2k, n = 2k, (e1, e2, e3) = (2, 2, k);
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(ii) Γ = T , n = 12, (e1, e2, e3) = (2, 3, 3);

(iii) Γ = O, n = 24, (e1, e2, e3) = (2, 3, 4);

(iv) Γ = I, n = 60, (e1, e2, e3) = (2, 3, 5).

If Γ̄ is a cyclic group of ordern, there are 2 orbits of cardinality 1.
The polynomialsf4 andf6 are relative invariants of̄G. Each orbit defines a binary

form (the orbital form) with the set of zeros equal to the orbit. One can show that any
projective invariant is a polynomial in orbital forms. This immediately implies that
Ḡ 6∼= A5 and if Ḡ ∼= S4, thenf4 = 0.

We choose to represent̄G by elements of SL(2), i.e. we consider̄G as a quotient of
a binary polyhedral subgroupG ⊂ SL(2) by its intersection with the center of SL(2).
A projective invariant ofḠ becomes a relative invariant ofG. We use the description
of relative invariants and the corresponding characters ofG from [391]. This allows us
to list all possible polynomialsf4 andf6.

The following is the list of generators of the groupsḠ, possible relative invariants
f4, f6 and the corresponding character.

We use that a multiple root off6 is not a root off4 (otherwise the surface is singu-
lar).

Case 1: Ḡ is cyclic of ordern. Hereεn denote a primitiven-th root of 1.

n f4 χ(σ) f6 χ(σ)
2 at40 + bt20t

2
1 + ct41 1 at60 + t20t

2
1(bt

2
0 + ct21) + dt61 1

t0t1(at20 + bt21) -1 t0t1(at40 + bt20t
2
1 + ct41) 1

3 t0(at30 + bt31) ε23 ct60 + dt30t
3
1 + et61 1

t1(at30 + bt31) ε3 t0t
2
1(ct

3
0 + dt31) ε23

t20t
2
1 1 t20t1(ct

3
0 + dt31) ε3

4 at40 + bt41 -1 t20(ct
4
0 + dt41) -i

t0t
3
1 i t0t1(at40 + bt41) -1

t30t1 -i t21(ct
4
0 + dt41) i

t20t
2
1 1 t30t

3
1 1

5 t40 ε25 t0(at50 + t51) ε35
t40 ε25 t1(at50 + t51) ε25

t30t1 ε5 t0(t50 + t51) ε35
t30t1 ε5 t1(t50 + t51) ε25
t20t

2
1 1 t0(t50 + t51) ε35

6 t40 ε3 t60 + t61 -1
t30t1 ε6 t60 + t61 -1
t20t

2
1 1 t60 + t61 -1

t0(t50 + t51) ε35
> 6 t40 ε2n t61 ε−3

n

t0t
5
1 ε−2

n

Case 2: Ḡ = Dn is a dihedral group of ordern = 2k. It is generated by two
matrices

σ1 =
(
ε2k 0
0 ε−1

2k

)
, σ2 =

(
0 i
i 0

)
.
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(i) k = 2:
f4 = a(t40 + t41) + bt20t

2
1, χ(σ1) = χ(σ2) = 1,

f4 = at0t1(t20 − t21), χ(σ1) = χ(σ2) = −1;

f4 = a(t40 − t41), χ(σ1) = 1, χ(σ2) = −1,

f4 = at0t1(t20 + t21), χ(σ1) = −1, χ(σ2) = 1;

f6 = at0t1
(
a(t40 + t41) + bt20t

2
1

)
, χ(σ1) = 1, χ(σ2) = −1;

f6 = a(t60 + t61) + bt20t
2
1(t

2
0 + t21), χ(σ1) = −1, χ(σ2) = −1;

f6 = a(t60 − t61) + bt20t
2
1(t

2
0 − t21), χ(σ1) = −1, χ(σ2) = 1;

f6 = t0t1(t40 − t41), χ(σ1) = χ(σ2) = 1.

Note that the symmetric groupS3 acts on the set of 3 exceptional orbits by projec-
tive transformations. This shows, that up to linear change of variables, we have the
following essentially different cases.

f4 = a(t40 + t41) + bt20t
2
1, χ(σ1) = χ(σ2) = 1;

f4 = at0t1(t20 + t21), χ(σ1) = −1, χ(σ2) = 1;

f6 = at0t1
(
a(t40 + t41) + bt20t

2
1

)
, χ(σ1) = 1, χ(σ2) = −1;

f6 = t0t1(t40 − t41), χ(σ1) = χ(σ2) = 1.

(ii) k = 3:
f4 = t20t

2
1, χ(σ1) = χ(σ2) = 1;

f6 = t60 + t61 + at30t
3
1, χ(σ1) = χ(σ2) = −1;

f6 = t60 − t61, χ(σ1) = χ(σ2) = 1.

(iii) k = 4:
f4 = t40 ± t41, χ(σ1) = χ(σ2) = ±1;

f6 = at0t1(t40 ± t41), χ(σ1) = χ(σ2) = ∓1;

(iv) k = 6:
f4 = at20t

2
1, f6 = t60 ± t61, χ(σ1) = χ(σ2) = ∓1.

Case 3: Ḡ = A4. It is generated by matrices

σ1 =
(
i 0
0 −i

)
, σ2 =

(
0 i
i 0

)
, σ3 =

1√
2

(
ε−1
8 ε−1

8

ε58 ε8

)
.

Up to the variable changet0 → it0, t1 → t1, we have only one case

f4 = t40 + 2
√
−3t20t

2
1 + t41, f6 = t0t1(t40 − t41).
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Case 4: Ḡ = S4. It is generated by matrices

σ1 =
(
ε8 0
0 ε−1

8

)
, σ2 =

(
0 i
i 0

)
, σ3 =

1√
2

(
ε−1
8 ε−1

8

ε58 ε8

)
.

There is only one, up to a change of variables, orbital polynomial of degree≤ 6. It
is

f6 = t0t1(t40 − t41).

The corresponding characters are

χ(σ1) = −1, χ(σ2) = 1, χ(σ3) = 1.

In this casef4 = 0.
In the next Theorem we list all possible groupsG′ = Aut(S)/〈β〉 and their lifts

G to subgroups of Aut(S). We extend the action of̄G on the coordinatest0, t1 to an
action on the coordinatest0, t1, t2. Note that not all combinations of(f4, f6) admit
such an extension.

In the following list, the vectora = (a0, a1, a2, a3) will denote the transformation
[t0, t1, t2, t3] 7→ [a0t0, a1t1, a2t2, a3t3]. The Bertini transformationβ corresponds to
the vector(1, 1, 1,−1).

1. Cyclic groupsG′

(i) G′ = 2, G = 〈(1,−1, 1, 1), β〉 ∼= 22

f4 = at40 + bt20t
2
1 + ct41, f6 = dt60 + et40t

2
1 + ft20t

4
1 + gt61.

(ii) G′ = 2, G = 〈(1,−1,−1, i)〉,

f4 = at40 + bt20t
2
1 + ct41, f6 = t0t1(dt40 + et20t

2
1 + ft41).

(iii) G′ = 3,G = 〈(1, ε3, 1,−1)〉 ∼= 6,

f4 = t0(at30 + bt31), f6 = at60 + bt30t
3
1 + ct61.

(iv) G′ = 3, G = 〈(1, ε3, ε3,−1)〉,

f4 = t20t
2
1, at60 + bt30t

3
1 + ct61.

(v) G′ = 3, G = 6, a = (1, 1, ε3,−1),

f4 = 0.

(vi) G′ = 4, G = 〈(i, 1,−1, i), β〉 ∼= 4× 2,

f4 = at40 + bt41, f6 = t20(ct
4
0 + dt41).

(vii) G′ = 4, G = 〈(i, 1,−i,−ε8)〉 ∼= 8,

f4 = at20t
2
1, f6 = t0t1(ct40 + dt41),
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(viii) G′ = 5, G = 〈(1, ε5, 1,−1)〉 ∼= 10,

f4 = at40, f6 = t0(bt50 + t51).

(ix) G′ = 6, G = 〈(1, ε6, 1, 1), β〉 ∼= 2× 6.

f4 = t40, f6 = at60 + bt61.

(x) G′ = 6, G = 〈(ε6, 1, ε23, 1), β〉 ∼= 2× 6,

f4 = t20t
2
1, f6 = at60 + bt61.

(xi) G′ = 6, G = 〈(−1, 1, ε3, 1), β〉 ∼= 2× 6,

f4 = 0, f6 = dt60 + et40t
2
1 + ft20t

4
1 + gt61,

(xii) G′ = 10, G = 〈(1, ε10,−1, i)〉 ∼= 20,

f4 = at40, f6 = t0t
5
1.

(xiii) G′ = 12, G = 〈(ε12, 1, ε23,−1), β〉 ∼= 2× 12,

f4 = at40, f6 = t61.

(xiv) G′ = 12, G = 〈(i, 1, ε12, ε8)〉 ∼= 24,

f4 = 0, f6 = t0t1(t40 + bt41).

(xv) G′ = 15, G = 〈(1, ε5, ε3, ε30)〉 ∼= 30,

f4 = 0, f6 = t0(t50 + t51).

2. Dihedral groups

(i) G′ = 22, G = D8,

f4 = a(t40 + t41) + bt20t
2
1, f6 = t0t1[c(t40 + t41) + dt20t

2
1],

σ1 : [t0, t1, t2, t3] 7→ [t1,−t0, t2, it3],

σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3],

σ4
1 = σ2

2 = 1, σ2
1 = β, σ2σ1σ

−1
2 = σ−1

2 .

(ii) G′ = 22, G = 2.D4,

f4 = a(t40 + t41) + bt20t
2
1, f6 = t0t1(t40 − t41),

σ1 : [t0, t1, t2, t3] 7→ [t0,−t1,−t2, it3],

σ2 : [t0, t1, t2, t3] 7→ [t1, t0,−t2, it3],

σ2
1 = σ2 = (σ1σ2)2 = β.



8.7. DEL PEZZO SURFACES OF DEGREE 1 313

(iii) G′ = D6, G = D12,

f4 = at20t
2
1, f6 = t60 + t61 + bt30t

3
1,

σ1 : [t0, t1, t2, t3] 7→ [t0, ε3t1, ε3t2,−t3],

σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3],

σ3
1 = β, σ2

2 = 1, σ2σ3σ
−1
2 = σ−1

1 .

(v) G′ = D8, G = D16,

f4 = at20t
2
1, f6 = t0t1(t40 + t41),

σ1 : [t0, t1, t2, t3] 7→ [ε8t0, ε−1
8 t1,−t2, it3],

σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3],

σ4
1 = β, σ2

2 = 1, σ2σ1σ
−1
2 = σ−1

1 .

(vi) G′ = D12, G = 2.D12,

f4 = at20t
2
1, f6 = t60 + t61,

σ1 : [t0, t1, t2, t3] 7→ [t0, ε6t1, ε23t2, t3],

σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3], σ3 = β.

We have
σ6

1 = σ2
2 = σ3

3 = 1, σ2σ1σ
−1
2 = σ−1

1 σ3.

3. Other groups

(i) G′ = A4, G = 2.A4,

f4 = t40 + 2
√
−3t20t

2
1 + t42, f6 = t0t1(t40 − t41),

σ1 =


i 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 1

 , σ2 =


0 i 0 0
i 0 0 0
0 0 1 0
0 0 0 1

 , σ3 =
1√
2


ε−1
8 ε−1

8 0 0
ε58 ε8 0 0
0 0

√
2ε3 0

0 0 0
√

2

 .

(ii) G′ = 3×D4, G = 3×D8,

f4 = 0, f6 = t0t1(t40 + at20t
2
1 + t41).
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(iii) G′ = 3×D6, G = 6.D6
∼= 2× 3.D6,

f4 = 0, f6 = t60 + at30t
3
1 + t61.

It is generated by

σ1 : [t0, t1, t2, t3] 7→ [t0, t1, ε3t2, t3],

σ2 = [t0, t1, t2, t3] 7→ [t0, ε3t1, t2, t3],

and

σ3 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3].

We haveσ3 · σ2 · σ−1
3 = σ−1

2 σ4
1 .

(iv) G′ = 3×D12, G = 6.D12,

f4 = 0, f6 = t60 + t61.

It is generated by

σ1 : [t0, t1, t2, t3] 7→ [t0, t1, ε3t2, t3],

σ2 = [t0, t1, t2, t3] 7→ [t0, ε6t1, t2, t3],

σ3 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3].

We haveσ3 · σ2 · σ−1
3 = σ−1

2 σ1.

(v) G′ = 3×S4, G = 3× 2.S4,

f4 = 0, f6 = t0t1(t40 − t41),

σ1 =

ε8 0 0 0

0 ε−1
8 0

0 0 −1 0
0 0 0 i

 , σ2 =

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 i

,

σ3 =
1√
2

ε−1
8 ε−1

8 0 0
ε58 ε8 0 0

0 0
√

2 0

0 0 0
√

2

, σ4 =

1 0 0 0
0 1 0 0
0 0 ε3 0
0 0 0 1

.

The following table gives a list of the full automorphism groups of Del Pezzo sur-
faces of degree 1.
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Type Order Structure f4 f6 Parameters

I 144 3× (T : 2) 0 t0t1(t40 − t41)

II 72 3× 2D12 0 t60 + t61
III 36 6×D6 0 t60 + at30t31 + t61 a 6= 0

IV 30 30 0 t0(t50 + t51)

V 24 T a(t40 + αt20t21 + t41) t0t1(t40 − t41) α = 2
√
−3

VI 24 2D12 at20t21 t60 + t61 a 6= 0

VII 24 2× 12 t40 t61
VIII 20 20 t40 t0t51
IX 16 D16 at20t21 t0t1(t40 + t41) a 6= 0

X 12 D12 t20t21 t60 + at30t31 + t61 a 6= 0

XI 12 2× 6 0 g3(t20, t21)

XII 12 2× 6 t40 at60 + t61 a 6= 0

XIII 10 10 t40 t0(at50 + t51) a 6= 0
XIV 8 Q8 t40 + t41 + at20t21 bt0t1(t40 − t41) a 6= 2

√
−3

XV 8 2× 4 at40 + t41 t20(bt40 + ct41)

XVI 8 D8 t40 + t41 + at20t21 t0t1(b(t40 + t41) + ct20t21) b 6= 0

XVII 6 6 0 f6(t0, t1)

XVIII 6 6 t0(at30 + bt31) ct60 + dt30t31 + t61
XIX 4 4 g2(t20, t21 t0t1f2(t20, t21)

XX 4 22 g2(t20, t21 g3(t20, t21)

XXI 2 2 f4(t0, t1) f6(t0, t1)

Table 8.12: Groups of automorphisms of Del Pezzo surfaces of degree 1

Exercises

8.1 Prove thatH1(S,OS) = 0 for a weak Del Pezzo surfaceS without using the Ramanujam
Vanishing Theorem.

8.2 Let f : X ′ → X be a resolution of a surface with canonical singularities. Show that
R1f∗(OX′) = 0.

8.3 Describe all possible types of simple singularities which may occur on a plane curve of
degree 4.

8.4LetG(2, 5) be the Grassmannian of lines inP4 embedded inP9 by the Pl̈ucker embedding.
Show that the intersection ofG(2, 5) with a general linear subspace of codimension4 is an
anticanonical model of a weak Del Pezzo surface of degree 5.

8.5LetS be a weak Del Pezzo surface of degree 6. Show that its anticanonical model is isomor-
phic to a hyperplane section of the Segre varietys(P1 × P1 × P1) in P7.

8.6Let S be a weak Del Pezzo surface of degree 5. Show that its anticanonical model contains
5 pencils of conics and the group of automorphisms Aut(X) on this set of pencils defines an
isomorphism Aut(S) → S5.

8.7 Prove that any nondegenerate surface of degree 5 inP5 is isomorphic to an anticanonical
model of a Del Pezzo surface or a scroll.
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8.8Describe all weak Del Pezzo surfaces which are toric varieties (i.e. contain an open Zariski
subset isomorphic to the torus(C∨)2 such that each translation of the torus extends to an auto-
morphism of the surface).

8.9Describe all possible singularities on a weak Del Pezzo surface of degreed ≥ 5.

8.10A Dupont cyclide surfaceis a quartic cyclide surface with 4 isolated singular points. Find
an equation of such a surface.

8.11Show that a weak quartic Del Pezzo surface is isomorphic to a minimal resolution of the
double cover of the plane branched along the union of two conics. Show that the surface is a Del
Pezzo surface if and only if the conics intersect transversally.

8.12 Let S be a Del Pezzo surface of degree 4 obtained by blowing up 5 points in the plane.
Show that there exists a projective isomorphism from the conic containing the five points and the
pencil of quadrics whose base locus is an anticanonical model ofS such that the points are sent
to singular quadrics.

8.13 Show that the anticanonical model of a Del Pezzo surface of degree 8 isomorphic to a
quadric is given by the linear system of plane quartic curves with two fixed double points.

8.14 Prove that a Del Pezzo surface of degree6 in P6 has the property that all hyperplanes
intersecting the surface along a curve with a singular point of multiplicity≥ 3 have a common
point inP6 (according to [413] this distinguishes this surface among all other smooth projections
of the Veronese surfacev3(P2) ⊂ P9 to P6).

8.15Show that the linear system of quadrics with8 − d base points in general mapP3 onto a
3-fold in Pd+1 of degreed. Show that an anticanonical model of a Del Pezzo surface of degree
8 > d ≥ 3 is projectively equivalent to a hyperplane section of this threefold.

8.16 Show that the projection of an anticanonical Del Pezzo surfasce of degreed ≥ 3 for a
general point is a surface of degreed in Pd−1 with the double curve of degreed(d− 3)/2.

8.17Show that the Wiman pencil of 4-nodal plane sextics contains two 6-nodal rational curves
and 2 unions of 5 conics [153].

Historical Notes

As the name suggests, P. Del Pezzo was the first who laid the foundation of the theory.
In his paper of 1887 [120] he proves that a non-ruled nondegenerate surface of degreed
in Pd can be birationally projected to a cubic surface inP3 from d−3 general points on
it. He showed that the images of the tangent planes at the points are skew lines on the
cubic surface and deduced from this thatd ≤ 9. He also gave a blow-up model of Del
Pezzo surfaces of degreed ≥ 3, found the number of lines and studied some singular
surfaces. J. Steiner was probably the first who related 7 points in the plane with curves
of genus 3 by proving that the locus of singular points of the net of cubic curves is
a plane sextic with nodes at the seven points [395]. A. Clebsch should be considered
as a founder of the theory of Del Pezzo surfaces of degree 2. In his memoir [82] on
rational double plane he considers a special case of double planes branched along a
plane quartic curve. He shows that the preimages of lines are cubic curves passing
through a fixed set of 7 points. He identifies the branch curve with the Steiner sextic
and relates the Aronhold set of 7 bitangents with the seven base points. Although C.
Geiser was the first to discover the involution defined by the double cover, he failed to
see the double plane construction.
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E. Bertini in [27], while describing his birational involution of the plane, proves that
the linear system of curves of degree 6 with eight double base points has the property
that any curve from the linear system passing through a general pointx must also
pass through a unique pointx′ (which are in the Bertini involution). He mentions that
the same result was proved independently by L. Cremona. This can be interpreted by
saying that the linear system defines a rational map of degree 2 onto a quadric surface.
Bertini also shows that the set of fixed points of the involution is a curve of degree 9
with triple points at the base points.

The quartic cyclides inP3 with a nodal conic were first studied in 1864 by G.
Darboux[113] and M. Moutard [287] and a year later by E. Kummer [263]. The de-
tailed exposition of Darboux’ work can be found in [114], [115]. Some special types of
these surfaces were considered much earlier by Ch. Dupin [142]. Kummer was the first
to observe the existence of five quadratic cones whose tangent planes cut out two con-
ics on the surface (theKummer cones). They correspond to the five singular quadrics
in the pencil defining the corresponding quartic surface inP4. A. Clebsch finds a plane
representation of a quartic cyclide by considering a web of cubics through five points
in the plane [79]. He also finds in this way the configuration of 16 lines previously dis-
covered by Darboux and proves that the Galois group of the equation for the 16 lines
is isomorphic to24 o S5. An ‘epoch-making memoir’ (see [384], p. 141) of C. Segre
[376] finishes the classification of quartic cyclides by considering them as projections
of a quartic surface inP4. Jessop’s book [236] contains a good exposition of the the-
ory of singular quartic surfaces including cyclides. At the same time he classified the
anticanonical models of singular Del Pezzo surfaces of degree 4 in terms of pencil of
quadrics they are defined by. The Segre symbol describing a pencil of quadratic forms
was introduced earlier by A. Weiler [425]. The theory of canonical forms of pencils
of quadrics based was developed by K. Weierstrass [424] based an earlier work of J.
Sylvester [402].

One easily deduces from his classification the classification of singular points on
weak anticanonical models of weak Del Pezzo surfaces. The classification of lines was
found by other method by G. Timms [407].

The classification of double singular points on algebraic surfaces inP3 started from
the work of G. Salmon [348] who introduced the following notationC2 for an ordinary
node,Bk for binode (the tangent cone is the union of two different planes) which
depend on how the intersection of the planes intersect the surface, anunodeUk with
tangent cone being a double plane. The indices here indicates the differencek between
the degree of the dual surface and the dual of the nonsingular surface of the same
degree. This nomenclature can be applied to surfaces in spaces of arbitrary dimension
if the singularity is locally isomorphic to the above singularities. For anticanonical Del
Pezzo surfaces the defectk cannot exceed8 and all corresponding singularities must
be rational double points of typesA1 = C2, Ak−1 = Bk, Dk−2 = Uk, k = 6, 7,
E6 = U8. Much later P. Du Val [145] have characterized these singularities as ones
which do not affect the conditions on adjunctions, the conditions which can be applied
to any normal surface. He showed that each RDP is locally isomorphic to either a
nodeC2, or binodeBk, or an unodeUk, or other unnodesU8∗ = E6, U

∗
8 = E7 and

E∗10 = E8 (he renamedU8 with E∗8 . A modern treatment of RDP singularities was
given by M. Artin [12].
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In the same series of papers Du Val classifies all possible singularities of anticanon-
ical models of weak Del Pezzo surfaces of any degree and relates them to Coxeter’s
classification of finite reflection groups. For Del Pezzo surfaces of degree 1 and 2 this
classification have been rediscovered in terms of possible root bases in the correspond-
ing root lattices by T. Urabe [416]. The relationship of this classification to the study of
the singular fibres of a versal deformation of a simple elliptic singularities was found
by H. Pinkham [314] J. Mérindol [279] and E. Looijenga (unpublished).

The Weyl groupW (E6) andW (E7) as the Galois group of 27 lines on a cubic sur-
face and the group of 28 bitangents on a plane quartic were first studied by C. Jordan
[238]. These groups are discussed in many classical text-books in algebra (e.g. [423],
B. II, [124]). S. Kantor [241] realized the Weyl groupW (En) as groups of linear trans-
formations preserving a quadratic form of signature(1, n) and a linear form. A Coble
[85], Part II, was the first who showed that the group is generated by the permutations
group and one additional involution. So we should credit him the discovery of the Weyl
groups as reflection groups. Apparently independently of Coble, this fact was redis-
covered by P. Du Val [144]. We refer to [37] for the history of Weyl groups, reflection
groups and root systems. Apparently these parallel directions of study of Weyl groups
had been reconciled only recently.

The Gosset polytopes were discovered in 1900 by T. Gosset [190]. The notation
n21 belongs to him. They had been later rediscovered by E. Elte and H.S.M. Coxeter
(see [101]) but only Coxeter realized that their groups of symmetries are reflection
groups. The relationship between the Gosset polytopesn21 and curves on Del Pezzo
surfaces of degree5 − n was found by Du Val [144]. In the case ofn = 2, it goes
back to [363]. The fundamental paper of Du Val is the origin of a modern approach
to the study of Del Pezzo surfaces by means of root systems of finite-dimensional Lie
algebras [121], [277].

We refer to modern texts on Del Pezzo surfaces [384], [277], [121], [258].



Chapter 9

Cubic surfaces

9.1 Lines on a nonsingular cubic surface

9.1.1 More about theE6-lattice

Let us study theE6-lattice in more details. Asixer in E6 is a set of 6 mutually orthog-
onal exceptional vectors inI1,6. An example of a sixer is the set{e1, . . . , e6}.

Lemma 9.1.1. Let{v1, . . . , v6} be a sixer. Then there exists a unique rootα such that

(vi, α) = 1, i = 1, . . . , 6.

Moreover,(w1, . . . , w6) = (rα(v1), . . . , rα(v6)) is a sixer satisfying

(vi, wj) = 1− δij .

The root associated to(w1, . . . , w6) is equal to−α.

Proof. The uniqueness is obvious sincev1, . . . , v6 are linearly independent, so no vec-
tor is orthogonal to all of them. Let

v0 =
1
3
(−k6 + v1 + · · ·+ v6) ∈ R1,6.

First we show thatv0 ∈ I1,6. SinceM∨ = M it is enough to show that, for any
x ∈ I1,6, (v0, x) ∈ Z. Consider the sublatticeN of I1,6 spanned byv1, . . . , v6,k6.
We have(v0, vi) = 0, i > 0, and(v0,k6) = −3. Thus(v0,M) ⊂ 3Z. By computing
the discriminant ofN , we find that it is equal to9. By Lemma8.2.1N is a sublattice
of index 3 inI1,6. Hence for anyx ∈ I1,6 we have3x ∈ N . This shows that

(v0, x) =
1
3
(v0, 3x) ∈ Z.

Now let us set
α = 2v0 − v1 − . . .− v6.

319
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We check thatα is a root, and(α, vi) = 1, i = 1, . . . , 6.
It remains to check the second assertion. Sincerα preserves the symmetric bilinear

form, {w1, . . . , w6} is a sixer. We have

(vi, wj) =
(
vi, rα(vj)

)
=

(
vi, vj + (vj , α)α

)
= (vi, vj) + (vi, α)(vj , α)

= (vi, vj) + 1 = 1− δij .

Finally we check that

(rα(vi),−α) =
(
r2α(vi),−rα(α)

)
= −(vi, α) = 1.

The two sixers with opposite associated roots form adouble-sixof exceptional
vectors.

We recall the list of exceptional vectors inE6 in terms of the standard orthonormal
basis inI1,6.

ai = ei, i = 1, . . . , 6; (9.1)

bi = 2e0 − e1 − . . .− e6 + ei, i = 1, . . . , 6; (9.2)

cij = e0 − ei − ej , 1 ≤ i < j ≤ 6. (9.3)

Theorem 9.1.2.The following is the list of 36 double-sixers with corresponding asso-
ciated roots:

1 of typeD
a1 a2 a3 a4 a5 a6 αmax

b1 b2 b3 b4 b5 b6 −αmax
,

15 of typeDij

ai bi cjk cjl cjm cjn αij

aj bj cik cil cim cin −αij
,

20 of typeDijk

ai aj ak clm cmn cln αijk

cjk cik cij bn bl bm −αijk
.

The reflection with the respect to the associated root interchanges the rows preserving
the order.

Proof. We have constructed a map from the set of sixers (resp. double-sixers) to the
set of roots (resp. pairs of opposite roots). Let us show that no two sixers{v1, . . . , v6}
and{w1, . . . , w6} can define the same root. Sincew1, . . . , w6,k6 span a sublattice of
finite index inI1,6, we can write

vi =
6∑
j=1

ajwj + a0k6 (9.4)
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with someaj ∈ Q. Assume thatvi 6= wj for all j. Intersecting both sides withα, we
get

1 = a0 + · · ·+ a6. (9.5)

Intersecting both sides with−k6, we get1 = a1 + · · · + a6 − 3a0, hencea0 =
0. Intersecting both sides withwj we obtain−aj = (vi, wj). Applying Proposition
8.2.17, we getaj ≤ −1. This contradicts (9.5). Thus eachvi is equal to somewj .

The verification of the last assertion is straightforward.

Proposition 9.1.3. The groupW (E6) acts transitively on sixers and double-sixers.
The stabilizer subgroup of a sixer (resp. double-six) is of order6!, 2 · 6!.

Proof. We know that the Weyl groupW (EN ) acts transitively on the set of roots and
the number of sixers is equal to the number of roots. This shows that all sixers form
one orbit. The stabilizer subgroup of the sixer(a1, . . . ,a6) (and hence of a root) is
the groupS6. The stabilizer of the double-sixerD is the subgroup〈S6, sα0〉 of order
2.6!.

It is easy to see that two different double-sixes can share either 4 or 6 exceptional
vectors. More precisely, we have

#D ∩Dij = 4, #D ∩Dijk = 6,

#Dij ∩Dkl =

{
4 if #{i, j} ∩ {k, l} = 0
6 otherwise

,

#Dij ∩Dklm =

{
4 if #{i, j} ∩ {k, l,m} = 0, 2
6 otherwise

,

#Dijk ∩Dlmn =

{
4 if #{i, j} ∩ {k, l} = 1
6 otherwise

.

A pair of double-sixers is called asyzygetic duad(resp.azygetic duad) if they have
4 (resp. 6) exceptional vectors in common.

The next Lemma is an easy computation.

Lemma 9.1.4. Two double-sixers with associated rootsα, β form a syzygetic duad if
and only if(α, β) ∈ 2Z.

This can be interpreted as follows. Consider the vector space

Q̄ = Q/2Q ∼= F6
2 (9.6)

equipped with the quadratic form

q(x+ 2Q) = 1
2 (x, x) mod 2.
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Notice that the latticeE6 is aneven lattice, i.e. its quadratic formx 7→ x2 takes only
even values. So the definition makes sense. The associated symmetric bilinear form is
the symplectic form

(x+ 2Q, y + 2Q) = (x, y) mod 2.

Each pair of opposite roots±α defines a vectorv in Q̄ with q(v) = 1. It is easy
to see that the quadratic formq has Arf-invariant (see Chapter 5, Part I) equal to 1
and hence vanishes on 28 vectors. The remaining 36 vectors correspond to 36 pairs of
opposite roots or, equivalently, double-sixers.

Note that we have a natural homomorphism of groups

W (E6) ∼= O(6,F2)− (9.7)

obtaned from the action ofW (E6) onQ/2Q. It is an isomorphism. This is checked by
verifying that the automorphismv 7→ −v of the latticeQ does not belong to the Weyl
groupW and then comparing the known orders of the groups. 3 It follows from above
that an syzygetic pair of double-sixers corresponds to orthogonal vectorsv, w. Since
q(v+w) = q(v)+ q(w)+ (v, w) = 0, we see that each nonzero vector in the isotropic
plane spanned byv, w comes from a double-sixer.

A triple of pairwise syzygetic double-sixers is called asyzygetic triadof double-
sixers. They span an isotropic plane. Similarly, we see that a pair of azygetic double-
sixers span a non-isotropic plane in̄Q with three nonzero vectors corresponding to a
triple of double-sixers which are pairwise azygetic. It is called anazygetic triadof
double-sixers.

We say that three azygetic triads form aSteiner compex of triads of double-sixers
if the corresponding planes in̄Q are mutually orthogonal. It is easy to see that an
azygetic triad contains 18 exceptional vectors and thus defines a set of 9 exceptional
(the omitted ones). The set of 27 exceptional vectors omitted from three triads in a
Steiner complex is equal to the set of 27 exceptional vectors in the latticeI1,6. There
are 40 Steiner complexes of triads:

10 of type

Γijk,lmn = (D,Dijk, Dlmn), (Dij , Dik, Djk), (Dlm, Dln, Dmn),

30 of type

Γij,kl,mn = (Dij , Dikl, Djkl), (Dkl, Dkmn, Dlmn), (Dmn, Dmij , Dnij).

Theorem 9.1.5.The Weyl groupW (E6) acts transitively on the set of triads of azygetic
double-sixers with stabilizer subgroup isomorphic to the groupS3 × (S3 o S2) of
order 432. It also acts transitively on Steiner complexes of triads of double-sixers. A
stabilizer subgroup is a maximal subgroup ofW (E6) of order1296 isomorphic to the
wreath productS3 oS3.

Proof. We know that a triad of azygetic double-sixers corresponds to a pair of roots (up
to replacing the root with its negative)α, β with (α, β) = ±1. This pair spans a root
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sublatticeQ of E6 of typeA2. Fix a root basis. Since the Weyl group acts transitively
on the set of roots, we findw ∈ W such thatw(α) = αmax. Since(w(β),αmax) =
(β, α) = 1, we see thatw(β) = ±αijk for somei, j, k. Applying elements from
S6, we may assume thatw(β) = −α123. Obviously, the rootsα12,α23,α45,α56 are
orthogonal tow(α) andw(β). These roots span a root sublattice of type2A2. Thus
we obtain that the orthogonal complement ofQ in E6 contains a sublattice of type
2A2 ⊥ A2. Since|disc(A2)| = 3, it follows easily from Lemma8.2.1thatQ⊥ is a
root lattice of type2A2. Obviously, any automorphism which leaves the two rootsα, β
invariant leaves invariant the sublatticeQ and its orthogonal complementQ⊥. Thus
the stabilizer contains a subgroup isomorphic toW (A2) ×W (A2) ×W (A2) and the
permutation of order 2 which switches the two copies ofA2 in Q⊥. SinceW (A2) ∼=
S3 we obtain that a stabilizer subgroup contains a subgroup of order2 · 63 = 432.
Since its index is equal to 120, it must coincide with the stabilizer group.

It follows from above that a Steiner complex corresponds a root sublattice of type
A2 ⊥ A2 ⊥ A2 contained inE6. The groupW (A2) oS3 of order3 · 432 is contained
in the stabilizer. Since its index is equal to 40, it coincides with the stabilizer.

Remark9.1.1. The notions of syzygetic (azygetic) pairs, triads and a Steiner complex
of triads of double-sixer is analogous to the notions of syzygetic (azygetic) pairs, triads,
and a Steiner complex of bitangents of a plane quartic (see Chapter 6). In both cases
we deal with a 6-dimensional quadratic spaceF6

2. However, the difference is that the
quadratic forms are of different types.

A triple v1, v2, v3 of exceptional vectors is called atritangent trio if

v1 + v2 + v3 = −k6.

If we view exceptional vectors as cosets inI1,6/Zk6, this is equivalent to saying that
the cosets add up to zero.

It is easy to list all tritangent trios.

Lemma 9.1.6. There 45 tritangent trios:
30 of type

ai,bj , cij , i 6= j,

15 of type

cij , ckl, cmn, {i, j} ∪ {k, l} ∪ {m,n} = {1, 2, 3, 4, 5, 6}.

Theorem 9.1.7.The Weyl group acts transitively on the set of tritangent trios.

Proof. We know that the permutation subgroupS6 of the Weyl group acts on tritangent
trios by permuting the indices. Thus it acts transitively on the set of tritangent trios of
the same type. Now consider the reflection with respect to the rootα123. We have

rα123(a1) = e1 + α123 = e0 − e3 − e4 = c34,

rα123(b2) = (2e0 − e1 − e3 − e4 − e5 − e6)−α123 = e0 − e5 − e6 = c56,

rα123(c12) = e0 − e1 − e2 = c12.
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Thusw transforms the tritangent trio(a1,b2, c12) to the tritangent trio(c34, c56, c12).
This proves the assertion.

Remark9.1.2. The stabilizer subgroup of a tritangent trio is a maximal subgroup of
W (E6) of index 45 isomorphic to the Weyl group of the root system of typeF4.

Let Π1 = {v1, v2, v3} andΠ2 = {w1, w2, w3} be two tritangent trios with no
common elements. We have

(vi, w1 + w2 + w3) = −(vi,k6) = 1,

and by Proposition8.2.17, (vi, wj) ≥ 0. This implies that there exists a uniquej such
that(vi, wj) = 1. After reordering, we may assumej = i. Let ui = −k6 − vi − wi.
Sinceu2

i = −1, (ui, k6) = −1, the vectorui is an exceptional vector. Since

u1 + u2 + u3 =
3∑
i=1

(−k6 − vi − wi) = −3k6 −
3∑
i=1

vi −
3∑
i=1

wi = −k6,

we get a new tritangent trioΠ3 = (u1, u2, u3). The unionΠ1 ∪ Π2 ∪ Π3 contains 9
linesvi, wi, ui, i = 1, 2, 3. There is a unique triple of tritangent trios which consists
of the same 9 lines. It is formed by tritangent triosΠ′i = (vi, wi, ui), i = 1, 2, 3. It is
easy to see that any pair of triples of tritangents trios which consist of the same set of 9
lines is obtained in this way. Such a pair of triples of tritangent trios is called a pair of
conjugate triads of tritangent trios.

We can easily list all conjugate pairs of triads of tritangent trios:

(I)
ai bj cij
bk cjk aj
cik ak bi

, (II)
cij ckl cmn
cln cim cjk
ckm cjn cil

, (III)
ai bj cij
bk al ckl
cik cjl cmn

.

Here a triad is represented by the columns of the matrix and its conjugate triad by the
rows of the same matrix. Altogether we have20 + 10 + 90 = 120 different triads.

There is a bijection from the set of pairs of conjugate triads to the set of azygetic
triads of double-sixers. The 18 exceptional vectors contained in the union of the latter
is the complementary set of the set of 9 exceptional vectors defined by a triad in the
pair. Here is the explicit bijection.

ai bj cij
bk cjk aj
cik ak bi

↔ Dij , Dik, Djk;

cij ckl cmn
cln cim cjk
ckm cjn cil

↔ D,Dikn, Djlm;

ai bj cij
bk al ckl
cik cjl cmn

↔ Dmn, Djkm, Djkn.

Recall that the set of exceptional vectors omitted from each triad entering in a Steiner
complex of triads of azygetic double-sixers is the set of 27 exceptional vectors. Thus a
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Steiner complex defines three pairs of conjugate triads of tritangent trios which contains
all 27 exceptional vectors. We have 40 such triples of conjugate pairs.

Theorem 9.1.8. The Weyl group acts transitively on the set of 120 conjugate pairs of
triads of tritangent trios. A stabilizer subgroupH is contained in the maximal subgroup
ofW (E6) of index 40 realized as a stabilizer of a Steiner complex. The quotient group
is a cyclic group of order 3.

Proof. This follows from the established bijection between pairs of conjugate triads
and triads of azygetic double-sixers and Theorem9.1.5. In fact it is easy to see directly
the transitivity of the action. It is clear that the permutation subgroupS6 acts transi-
tively on the set of pairs of conjugate triads of the same type. Since the Weyl group acts
transitively on the set of tritangent trios, we can send a tritangent trio(cij , ckl, cmn) to
a tritangent trio(ai,bj , cij). As is easy to see from inspection that this sends a con-
jugate pair of type III to a pair of conjugate triads of type I. Also it sends a conjugate
pair of type II to type I or III. Thus all pairs areW -equivalent.

Remark9.1.3. Note that each monomial entering into the expression of the determinant
of the matrix expressing a conjugate pair of triads represents three orthogonal excep-
tional vectors. If we take only monomials corresponding to even permutations (resp.
odd) we get a partition of the set of 9 exceptional vectors into the union of 3 triples
of orthogonal exceptional vectors such that each exceptional vector from one triple has
non-zero intersection with two exceptional vectors from any other triple.

9.1.2 Lines and tritangent planes

Let S be an nonsingular cubic surface inP3. Fix a geometric markingφ : I1,6 →
Pic(S). We can transfer all the notions and the statements from the previous section
to the Picard lattice Pic(S).. The image of an exceptional vector is the divisor class
e with e2 = e · KS = −1. Under the anti-canonical embedding it defines the class
of a line. So, we will identify exceptional vectors with lines onS. We have 27 lines.
A tritangent trio of exceptional vectors define a set of three coplanar lines. The plane
containing them is called atritangent plane. We have 45 tritangent planes.

Now we can translate all the notions and the statements from the previous section
to the geometric language, replacing the word an exceptional vector with the word line.
Thus we have 72 sixes of lines, 36 double-sixes and 40 Steiner complexes of triads of
double-sixes. Ife0, e1, . . . , e6 define a geometric marking, then we can identify the
classes of theei of the exceptional curves of the blow-upS → P2 with exceptional
vectorsai. We identify the proper transforms of the conic through the six points ex-
cluding thepi with the exceptional vectorbi. Finally we identify the line through the
pointspi andpj with the exceptional vectorcij . Under the geometric marking the Weyl
groupW (E6) becomes isomorphic to the index 2 subgroup of the isometry group of
Pic(S) leaving the canonical class invariant (see Corollary8.2.13). It acts transitively
on the set of lines, sixes, double-sixes, tritangent planes, and on the set of conjugate
pairs of triples of tritangent planes.

We do not know any elementary geometric proof of the fact any nonsingular cubic
surface contains 27 lines. The first proofs of A. Cayley and G. Salmon apply only to
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general nonsingular cubic surfaces. Without the assumption of genericity, any proof I
know uses the representation of the surface as the blow-up of 6 points. For complete-
ness sake, let us reproduce the original proof of Cayley [50].

Theorem 9.1.9. A general nonsingular cubic surface contains 27 lines and 45 tritan-
gent planes.

Proof. First of all, let us show that any cubic surface contains a line. LetHyp(3; 3) be
the projective space of cubic surfaces inP3 andG = G1(P3) be the Grassmann variety
of lines inP3. Consider the incidence varIety

X = {(S, `) ∈ Hyp(3; 3)×G : ` ⊂ S}.

The assertion follows if we show that the first projection is surjective. It is easy to
see that the fibres of the second projections are linear subspaces of codimension 4.
ThusdimX = 4 + 15 = 19 = dim Hyp(3, 3). To show the surjectivity of the first
projection, it is enough to find a cubic surface with only finitely many lines on it. Let
us consider the surfaceS given by the equation

t1t2t3 − t30 = 0.

Suppose a linè lies onS. Let [a0, a1, a2, a3] ∈ `. If a0 6= 0, thenai 6= 0, i 6= 0.
On the other hand, every line hits the planesti = 0. This shows that̀ is contained
in the planet0 = 0. But there are only three lines onS contained in this plane:
ti = t0 = 0, i = 1, 2 and3. ThereforeS contains only 3 lines. This proves the first
assertion.

We already know that every cubic surfaceS = V (f) has at least one line. Pick
up such a linè . Without loss of generality, we may assume that it is given by the
equation:

t2 = t3 = 0.

Thus
f = t2Q0(t0, t1, t2, t3) + t3Q1(t0, t1, t2, t3) = 0, (9.8)

whereQ0 andQ1 are quadratic forms. The pencil of planesΠλ,µ = V (λt2 − µt3)
through the linè cuts out a pencil of conics onS. The equation of the conic in in the
planeΠλ,µ is of the form

A00(λ, µ)t20 +A11(λ, µ)t21 +A22(λ, µ)t22+

2A01(λ, µ)t0t1 + 2A12(λ, µ)t1t2 + 2A02(λ, µ)t0t2 = 0,

whereA00, A11, A01 are binary forms of degree 1,A02, A12 are binary forms of degree
2 andA22 is a binary form of degree 3. The discriminant equation of this conic is equal
to ∣∣∣∣∣∣

A00 A01 A02

A01 A11 A12

A02 A12 A22

∣∣∣∣∣∣ = 0.

This is a homogeneous equation of degree 5 in variablesλ, µ. Thus we expect 5 roots of
this equation which gives us 5 reducible conics. This is the tricky point because we do
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not know whether the equation has 5 distinct roots. First we can exhibit a nonsingular
cubic surface and a line on it and check that the equation has indeed 5 distinct roots.
For example, let us consider the cubic surface

2t0t1t2 + t3(t20 + t21 + t22 + t23) = 0.

The equation becomesλ(λ4 − µ4) = 0. It has 5 distinct roots. This implies that,
for general nonsingular cubic surface, we have 5 reducible residual conics. Note that
no conic is a double line since otherwise the cubic surface is singular (its equations is
reduced tot20t1 + t3Q = 0 which is a surface with singular point defined byt0 = t3 =
Q = 0).

Thus each solution of the quintic equation defines a tritangent planeΠi of S con-
sisting of three lines, one of them is`. Thus we found 11 lines onX: the line` and
5 pairs of lines̀ i, `

′
i lying in the planeΠi. Pick up some plane, sayΠ1. We have 3

lines`, `1, `2 in Π1. Replacing̀ by `1, and then bỳ 2, and repeating the construction,
we obtain 4 planes through̀1 and 4 planes through̀2 not containing̀ and each con-
taining a pair of additional lines. Altogether we found3 + 8 + 8 + 8 = 27 lines onS.
To see that all lines are accounted for, we observe that any line intersecting either`, or
`1, or `2 lies in one of the planes we have considered before. So it has been accounted
for. Now letL be any line. We find a planeΠ throughL that contains three linesL,L′

andL′′ on S. This plane intersects the lines`, `′, and`′′ at some pointsp, p′ andp′′

respectively. We may assume that these points are distinct. Otherwise we find three
non-coplanar lines inS passing through one point. As we shall see later this implies
thatS is singular at this point. Since neitherL′ norL′′ can pass through two of these
points, one of these points lie onL. HenceL is coplanar with one of the lines̀, `1, `′2.
ThereforeL has been accounted for.

It remains to count tritangent planes. Each line belongs to 5 tritangent planes, each
tritangent plane contains 3 lines. This easily gives that the number of tritangent planes
is equal to 45.

Remark9.1.4. To make the argument work for any nonsingular cubic surface we may
use that the number of singular conics in the pencil of conics residual to a line deter-
mines the topological Euler-Poincaré characteristic of the surface. Using the additivity
of the Euler-Poincaré characteristic of a CW-complex, we obtain the formula

χ(X) = χ(B)χ(F ) +
∑
b∈B

(χ(Fb)− χ(F )), (9.9)

wheref : X → B is any regular map of an algebraic variety onto a curveB with
general fibreF and fibresFb over pointsb ∈ B. In our caseχ(B) = χ(F ) = 2 and
χ(Fb) = 3 for a singular conic-fibre. This givesχ(S) = 4 + s, wheres is the number
of singular conics. Since any two nonsingular surfaces are homeomorphic (they are
parameterized by an open subset of a projective space), we obtain thats is the same for
all nonsingular surfaces. We know thats = 5 for the example in above, hences = 5
for all nonsingular surfaces. Also we obtainχ(S) = 9 which of course agrees with the
fact thatS is the blow-up of 6 points in the plane.
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The closure of the effective coneEff(S) of a nonsingular cubic surface is isomor-
phic to the Gosset polytopeΣ6 = 221. It has 72 facets corresponding to sixers and 27
faces corresponding to conic bundles onS. In a geometric basise0, e1, . . . , e6 they are
expressed by the linear systems of types|e0−e1, |2e0−e1−e2−e3−e4|, |3e0−2e1−
e2 − . . .− e6|. The center ofEff(S) is equal toO = − 1

3KS = (E1 + . . .+ E27)/27,
whereE1, . . . , E27 are the divisor classes of lines. A double-six represents two oppo-
site facets whose centers lie on a line passing throughO. In fact, if we consider the
double-six(ei, e′i = 2e0 − e1 − . . .− e6 + ei), i = 1, . . . , 6, then

1
12

(
6∑
i=1

ei) +
1
12

6∑
i=1

e′i = −1
3
KS = O.

The line joining the opposite face is perpendicular to the facets. It is spanned by the
root corresponding to the double-six. The three linesEi, Ej , Ek in a tritangent plane
add up to−KS . This can be interpreted by saying that the center of the triangle with
verticesEi, Ej , Ek is equal to the centerO. This easily implies that the three lines
joining the centerO with Ei, Ej , Ek are coplanar.

Remark9.1.5. Let ai, bi, cij denotes the set of 27 lines on a nonsingular cubic surface.
Consider them a 27 unknowns and cubic formF equal to the sum of 45 monomials
aibjcij , cijcklcmn corresponding to tritangent planes. It was shown by E. Cartan in
his dissertation that the group of projective automorphisms of the cubic hypersurface
V (F ) in P26 is isomorphic to the simple complex Lie group of typeE6. We refer to
[273] for integer models of this cubic.

9.1.3 Schur’s quadrics

Let q ∈ S2E∨ be a quadratic form on a finite-dimensional vector spaceV . Recall that
the apolarity map defines a linear map

apq1 : E → E∨, v 7→ Pv(q),

which we identify withq. For any linear subspaceL ⊂ E, we have thepolar subspace
with respect toq

L⊥q = {x ∈ E : bq(x, y) = 0,∀y ∈ L} = q(L)⊥ = ∩v∈LPv(q)⊥. (9.10)

If q is nondegenerate, then
L⊥q = q−1(L⊥).

If M is a linear subspace ofE∨, we define itspolar subspacewith respect toq by

M⊥
q = q(M⊥).

If q is nondegenerate, thenM⊥
q is the orthogonal complement ofM∨ with respect to

the dual quadratic form̌q onE∨ defined by the linear mapq−1 : E∨ → E.
All of this can be extended to the projective space|E| and a quadric hypersurface

Q = V (q) in |E|. For example, for any linear subspaceL ⊂ |E|, the dual subspaceL⊥
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is a linear subspace of|E|∨ spanned by the hyperplanes (considered as points in|E∨|)
containingL. Also, if Q is a quadric hypersurface in|E| andL is a linear subspace of
|E|, then the polar subspace ofL with respect toQ is equal to

L⊥Q = ∩a∈LPa(Q). (9.11)

Also, for any linear subspaceW of |E∨|,

W⊥
Q = (∩a∈W⊥Pa(Q))⊥. (9.12)

Obviously, it is enough to do the intersection for a spanning set of the subspace.

Let {`1, . . . , `6} be a set of skew lines on a nonsingular cubic surfaceS ⊂ P3 =
|E|. A nonsingular quadricQ in P3 defines six skew lines̀′1, . . . , `

′
6, where`′i is polar

to `i with respect toQ.
The following beautiful result of Ferdinand Schur [367] shows that there exists a

unique nonsingular quadricQ such that the ordered set(`′1, . . . , `
′
6) is an ordered set of

skew lines onS which together with the ordered set(`1, . . . , `6) makes a double-sixer.

Theorem 9.1.10.Let (l1, . . . , l6), (l′1, . . . , l
′
6) be a double-sixer of lines on a nonsin-

gular cubic surfaceS. There exists a unique nonsingular quadric inP3 such thatl′i is
the polar line ofli with respect toQ for eachi = 1, . . . , 6.

Proof. Fix an ordered double-sixer(`1, . . . , `6), (`′1, . . . , `6) on a nonsingular cubic
surfaceS. Choose a geometric markingφ : I1,6 → Pic(S) such thatφ(ei) = ei =
[`i], i = 1, . . . , 6. Then the linear system

∣∣φ(e0)
∣∣ defines a birational mapπ : S → P2

which blows the lines̀ i to the pointspi. The image of the lines̀′i is the conicCi
passing through allpj exceptpi. The preimage ofl′i with respect toφ is the exceptional
vectorbi. Let φ′ : I1,6 → Pic(S) be the geometric marking such thatφ′(ei) = `′i. It
is obtained fromφ by composingφ with the reflectionsαmax ∈ O(I1,6). We have
φ′(e0) = φ(sαmax(e0)) = φ(5e0 − 2e1 − . . . − 2e6). Thus the linear system|e′0| =
|5e0 − 2e1 − . . . − 2e6| defines a birational mapπ′ : S → P2 which blows down the
lines l′i to pointsqi. Note that there is no canonical identification of twoP2’s. One
views them as different planes1P2 and2P2.

For any linè in 1P2, its full preimage inS belongs to the linear system|e0|. Since
e0 · (−KS) = 3, the curves in|e0| are rational curves of degree 3 (maybe reducible).
Similarly, the preimages of lines̀′ in 2P2 are rational curves of degree 3 onS. Now

π∗(`) + π′∗(`′) ∈ |e0 + 5e0 − 2e1 − . . .− 2e6| = | − 2KS |.

Thus the union of two rational curvesπ∗(`) andπ′∗(`′) is cut out by a quadricQl,l′
in P3 = | − KS |∨. Note that the intersection of a quadric and a cubic is a curve of
arithmetic genus 4. Our curves are reducible curves of arithmetic genus 4. When we
vary ` and`′, the corresponding quadrics span a hyperplaneH in | − 2KS |. The map

1P̌2 × 2P̌2 → H, (l, l′) 7→ Ql,l′ , (9.13)

is isomorphic to the Segre map.
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Recall that our surfaceS lies in P3 ∼= | − KS |∨. Consider the dual spacěP3 =
| − KS | and letQ̌ be the quadric in this space which is apolar to all quadrics in the
hyperplaneH, i.e. orthogonal toH with respect to the apolarity map

S2(H0(S,OS(−KS))× S2(H0(S,OS(−KS))∨)→ C.

In particular, if a quadric fromH is a pair of planesΠ1 ∪ Π2 corresponding to points
a = Π⊥1 andb = Π⊥2 in P̌3, thenPa,b(Q̌) = 0.

Now choose 3 special linespi, pj , pi, pk, pj , pk in the first plane and similar lines
qi, qj , qi, qk, qj , qk in the second plane. ThenRij = π∗(pi, pj) = lij + li + lj , where
`ij = φ(cij). Similarly,R′jk = π′∗(qj , qk) = l′j + l′k + l′jk, where

l′jk ∼ e′0 − l′j − l′k = (5e0 − 2
6∑
i=1

ei)− (2e0 −
6∑
i=1

ei + lj)− (2e0 −
6∑
i=1

ei + ek)

= e0 − ej − ek ∼ lij .
Thus the lines̀ ′jk and`ij coincide.

Now notice that the curveRij +R′jk is cut out by the reducible quadricHij ∪Hjk,
whereHij is the tritangent plane containing the lines`i, `′j , `ij andHjk is the tritangent
plane containing the lines̀j , `′k, `jk.

Let a ∈ P(E) = |E∨| andHa = a⊥ be the corresponding hyperplane in|E|. If
〈a, b〉Q̌ = 0 for a, b ∈ P(E), then

Q̌(a) = (Ha)⊥Q̌ ∈ Hb.

LetPij = (Hij)⊥Q̌. Since each pair of planesHab,Hbc, considered as points in the dual

space, are orthogonal with respect toQ̌, the pointPij belongs toHki ∩Hjk ∩Hji. It
is easy to see that this point isaj ∩ bi. Sinceai ∩ bj ∈ Hij , the pointsPij andPji are
polar to each other with respect tǒQ. Similarly, we find that the points(Pki, Pik) are
polar with respect tǒQ, hence the lines̀i and`′i are polar with respect toQ.

�����������������������������

�������������������

`′i

`′j

`′k

`i `j `k

`ij

`jk

•

•

• •

Pji

Pki

Pij Pik

Let us show thaťQ is a nondegenerate quadric. SupposeQ̌ is degenerate, then its
set of singular points Sing(Q̌) is a linear space of positive dimension equal to the kernel
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of the symmetric bilinear form associated tǒQ. Thus, for any subspaceL of P3, the
polar subspaceL⊥

Q̌
with respect toQ̌ lies in Sing(Q̌)⊥. Therefore, the pointsPij lie in

a proper subspace ofP3. But this is obvioulsy impossible, since some of these points
lie on a pair of skew lines and spanP3. Thus we can define the dual quadricQ of Q̌
and obtain that the lines̀i and`′i are polar with respect toQ.

Let us show the uniqueness ofQ. Suppose we have two quadricsQ1 andQ2 such
that`′i = (`i)⊥Qi

, i = 1, . . . , 6. LetQ be a singular quadric in the pencil spanned byQ1

andQ2. LetK be its space of singular points.
Assume first thatdimK = 0. Without loss of generality, we may assume thatK 6∈

l1 ∪ l2. Thendim(l1)⊥Q = dim(l2)⊥Q = 1. On the other hand,l′1 ⊂ (l1)⊥Q, l
′
2 ⊂ (l2)⊥Q.

Thus we have the equalities. But nowl1 ⊂ K⊥
Q = P3, henceK ⊂ (l1)⊥Q = l′1 and

similarly,K ⊂ l′2. Sincel′1, l
′
2 are skew, we get a contradiction.

Assume now thatdimK = 1. SinceK cannot intersect all six linesli (otherwise
it is contained inS and there are no such lines inS), we may assume thatK does not
intersectl1. Then, as above,l′1 = (l1)⊥Q andK = l′1. Now,K does not intersectl′2.
Repeating the argument, we obtain thatK = l2. Thusl′1 = l2, which is a contradiction.

Finally assume thatdimK = 2. ThenK intersects all lines. Then(li)⊥Q are all of
dimension≥ 2 and containK. SinceK may contain at most two lines from the double-
six, we may assume that(l1)⊥Q = (l2)⊥Q = K. Sincel′1 ⊂ (l1)⊥Q = K, l′2 ⊂ (l2)⊥Q = K,
we see that the linesl′1, l

′
2 are coplanar and hence intersect. This is a contradiction.

Definition 9.1. The quadricQ is called theSchur quadricwith respect to a given
double-six.

Consider the intersection curveC of the Schur quadricQ with the cubic surface
S. Obviously, it belongs to the linear system| − 2KS |. Let π : S → P2, π′ : S →
P2 be the birational morphisms defined by the double-sixer(l1, . . . , l6), (l′1, . . . , l

′
6)

corresponding toQ. The image ofC underπ (or π′) is a curve of degree 6 with double
points at the pointspi = π(li). We call this curve theSchur sextic. It is defined as soon
as we choose 6 points onP2 such thatS is isomorphic to the blow-up of these points.

Proposition 9.1.11. The six double points of the Schur sextic are bi-flexes, i.e. the
tangent line to each branch is tangent to the branch with multiplicity≥ 3.

Proof. LetQ be the Schur quadric corresponding a Schur sextic.li ∩Q = {a, b} and
l′i ∩Q = {a′, b′}. We know that

Pa(Q) ∩Q = {x ∈ Q : a ∈ PT (Q)x}.

Sincel′i = (li)⊥Q, we have

l′i ∩Q = (Pa(Q) ∩ Pb(Q)) ∩Q = {a′, b′}.

This implies thata′, b′ ∈ PT (Q)a and hence the linesa, a′, a, b′ span the tangent space
ofQ at the pointa. The tangent planePT (Q)a contains the linel′i and hence intersects
the cubic surfaceS alongl′i and a conicKa. We have

PT (Ka) = PT (S)a ∩ PT (Q)a = PT (Q ∩ S)a.
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Thus the conicKa and the curveC = Q ∩ S are tangent at the pointa. Since the line
l′i is equal to the proper inverse transform of the conicCi in P2 passing through the
pointspj , j 6= i, the conicKa is the proper inverse transform of some line` in the
plane passing throughpi. The pointa corresponds to the tangent direction atpi defined
by a branch of the Schur sextic atpi. The fact thatKa is tangent toC at a means that
the line` is tangent to the branch with multiplicity≥ 3. Since similar is true, when we
replacea with b, we obtain thatpi is a bi-flex of the Schur sextic.

Remark9.1.6. A bi-flex is locally given by an equation whose Taylor expansion looks
like xy + xy(ax+ by) + f4(x, y) + . . .. This shows that one has impose 5 conditions
to get a bi-flex. To get 6 bi-flexes for a curve of degree 6 one has to satisfy 30 linear
equations. The space of homogeneous polynomials of degree 6 in 3 variables has
dimension 28. So, the fact that such sextics exist is very surprising.

Also observe that the set of quadricsQ such thatl⊥Q = l′ for a fixed pair of skew
lines (l, l′) is a linear (projective) subspace of codimension 4 of the 9-dimensional
space of quadrics. So the existence of the Schur quadric is quite unexpected!

I do not know whether for a given set of 6 points onP2 defining a nonsingular cubic
surface, there exists a unique sextic with bi-flexes at these points.

Example9.1.1. Let S be theClebsch diagonal surfacegiven by two equations inP4:

5∑
i=1

ti =
5∑
i=1

t3i = 0. (9.14)

It exhibits an obvious symmetry defined by permutations of the coordinates. Leta =
1
2 (1 +

√
5), a′ = 1

2 (1−
√

5) be two roots of the equationx2 − x− 1 = 0. One checks
that the skew lines

l : t1 + t3 + at2 = at3 + t2 + t4 = at2 + at3 − t5 = 0

and
l′ : t1 + t2 + a′t4 = t3 + a′t1 + t4 = a′t1 + a′t4 − t5 = 0

lie onS. Applying to each line even permutations we obtain a double-six. The Schur
quadric is

∑
t2i =

∑
ti = 0.

Let π1 : S → P2, π2 : S → P2 be two birational maps defined by blowing down
two sixers forming a double-six. We will see later in section9.3.2that there exists a
3× 3-matrixA = (aij(t)) with entries in linear forms such thatS = V (|A|). The two
maps are given by taking the left (resp. the right) nullspaces ofA. The adjugate matrix
adj(A) of cofactors is a matrix of rank 1 when restricted toS. The coordinates of its
proportional columns (resp. rows) are quadrics spanning the linear systemπ∗1(OP2(1)
(resp.π∗1(OP2(1)). Let x = [x0, . . . , x3] be any point inP3. The polar quadric ofS
with center atx is given by the equation∣∣∣∣∣∣
Da11 Da12 Da13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 a12 a13

Da21 Da22 Da23

a31 a32 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

Da31 Da32 Da33

∣∣∣∣∣∣ = 0,
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whereD is the linear differential operator
∑
xi

∂
∂ti

. Since|A| = |tA|, we see that
the polar quadric belongs to the image of the map (9.13). By definition of the Schur
quadric, its dual quadric is apolar to the polar. This proves the following.

Proposition 9.1.12. The duals of 36 Schur quadrics belong to the 5-dimensional pro-
jective space of quadrics apolar to the 3-dimensional linear system of polar quadrics
of S.

This result was first mentioned by H. Baker in [14], its proof appears in his book
[15], Vol. 3, p. 187. In the notation of Theorem9.1.2, let Qα is the Schur quadric
corresponding to the double-six defined by the rootα (see Theorem9.1.2). Any three of
typeQαmax , Qα123 , Qα456 are linearly dependent. AmongQαij

’s at most 5 are linearly
independent ([339]).

9.1.4 Eckardt points

A point of intersection of three lines in a tritangent plane is called anEckardt point.
As we will see later the locus of nonsingular cubic surfaces with an Eckardt point is of
codimension 1 in the moduli space of cubic surfaces.

Proposition 9.1.13. There is a bijective correspondence between Eckardt points on
a nonsingular cubic surfaceS and automorphisms of order2 with one isolated fixed
point.

Proof. Let p ∈ S be an Eckardt point and letπ : S′ → S be the blow-up ofp. This is
a Del Pezzo surface of degree 2. The preimage of the linear system| −KS − p| is the
linear system|−KS′ |. It defines a degree 2 regular mapf : S′ → P2 whose restriction
to S \ π−1(p) ∼= S \ {p} is the linear projection ofS with center atp. LetR1, R2, R3

be the proper inverse transforms of the lines inS from the tritangent plane defined by
p. These are(−2)-curves onS′. Their image inP2 is a singular point of the branch
curveB of degree 4. The image ofE = π−1(p) is a line passing through 3 singular
points of a quartic curve. It must be an irreducible component ofB. ThusB is the
union of a linè and a cubic curveC which intersect at three distinct pointsx1, x2, x3.
LetX be the double cover of the blow-up ofP2 at the pointsx1, x2, x3 ramified along
the proper transform of the curveB. We have a birational mapf : S′− → X which
is a regular map outside the union of curvesRi. It is easy to see that it extends to the
wholeS′ by mapping the curvesRi isomorphically to the preimages of the pointsxi
under the mapX → P2.

Thus f : S′− → X is a finite map of degree 2, and hence is a Galois cover
of degree 2. The corresponding automorphism ofS′ leaves the curveE pointwisely
invariant, and hence descends to an automorphismσ of the cubic surfaceS. Since it
must leave|−KS | invariant, it is induced by a linear projective transformationḡ of P3.
Its set of fixed points inP3 is the pointp and a plane which intersectsS along a curve
C ′. The linear projection fromp mapsC ′ isomorphically to the plane cubicC. Thusσ
has one isolated fixed point onS.

Conversely, assumeS admits an automorphismσ of order 2 with one isolated fixed
point p. As above we see thatσ is induced by a projective transformation̄σ. Diag-
onalizing the corresponding linear map ofC4, we see that̄g has one eigenspace of
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dimension 1 and one eigensubspace of dimension 3. Thus inP3 it fixes a point and a
planeΠ. The fixed locus ofσ is the pointp and a plane sectionC ′ not passing through
p. Let P be the tangent plane ofS at p. It is obviously invariant and its intersection
with S is a cubic plane curveZ with a singular point atp. Its intersection withC ′ gives
3 fixed nonsingular points onZ. If Z is irreducible, its normalization is isomorphic to
P1 which has only two fixed points of any non-trivial automorphism of order 2. ThusZ
is reducible. If it consists of a line and a conic, then one of the components has 3 fixed
points including the pointp. Again this is impossible. So we conclude thatZ consists
of three concurrent lines and hence a tritangent plane. It is clear that the automorphism
associated to this tritangent plane coincides withσ.

Example9.1.2. Consider a cubic surface given by equation

f3(t0, t1, t2) + t33 = 0,

whereC = V (f3) is a nonsingulat plane cubic. Let` be a flex tangent ofC. It is easy to
see that the preimage ofC under the projection[x0, x1, x2, x3] 7→ [x0, x1, x2] splits in
the union of three lines passing through a common point (the preimage of the inflection
point). Thus the surface contains 9 Eckardt points. Note that the corresponding 9
tritangent planes contain all 27 lines.

Example9.1.3. Consider a cubic surface given by equation

4∑
i=0

ait
3
i =

4∑
i=0

ti = 0,

whereai 6= 0. We will see later that a general cubic surface is projectively equivalent
to such surface. Assumea0 = a1. Then the pointp = [1,−1, 0, 0, 0] is an Eckardt
point. In fact, the tangent plane at this point ist0 + t1 = t2 + t3 + t4 = 0. It cuts
out the surface along the union of three lines intersecting at the pointp. Similarly, we
have an Eckardt point wheneverai = aj for somei 6= j. Thus we may have 1,2,3,4,
6 or 10 Eckardt points dependent on whether we have two coefficients are equal, or
two pairs of the coefficients are equal, or three coefficients are equal, or two and three
coefficients are equal, or four or five coefficients are equal. The other possibilities for
the number of Eckardt points are 9 as in the previous example or 18 in the case when
the surface is isomorphic to a Fermat cubic surface.

For the future need let us prove the following.

Proposition 9.1.14. Let p1 andp2 be two Eckardt points onS such that the linè =
p1, p2 is not contained inS. Then` intersectsS in a third Eckardt point.

Proof. Let σ be an automorphism ofS defined by the projection from the pointp1.
Thenl intersectsS at the pointp3 = g(p2). Note the projection of any linèpassing
throughp2 must contain a singular point of the branch locus since otherwise` intersects
the line component of the branch locus at a nonsingular point and hence passes through
p1. Thus` intersects one of the lines passing throughp1 and the plane spanned by these
two lines cuts outS in an additional line passing throughp3. In this way we find three
lines throughp3.
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Proposition 9.1.15. No more than two Eckardt points lie on a line contained in the
surface.

Proof. Consider the linear projection from one of the Eckardt pointsp1. Its branch
curve is the union of a plane cubicC and a line intersecting at three points. The second
Eckardt pointp2 is projected to one of the intersection points, sayq. The plane spanned
by the lines〈p1, p2〉 and one of the other 2 lines passing throughp2 is a tritangent plane
with Eckardt pointp2. Since it is invariant with respect to the involutionσ defined by
p1, the pointp2 is a fixed point and hence lies on the curve of fixed points ofσ. The
projection of the tritangent plane is a line which intersectsC only at the pointq. Hence
q is an inflection point. Clearly this shows that if there is a third Eckardt pointp3, it
must coincide withp2.

9.1.5 27 lines and 28 bitangents

Let S be a nonsingular cubic surface andx0 ∈ S be a point on it. Projecting from the
point, we obtain a map of degree 2φ : S′ → P2, whereS′ is the blow-up ofx0. If
x0 is not an Eckardt point, the ramification divisor of this map is equal to the proper
transform of the intersectionW of S with the polar quadricPx0(S). The curveW is
a curve of degree 6 which has a double point atx0 (because the second polar is the
tangent plane ofS atx0). If x0 is an Eckardt point, the curveW is the union of three
lines passing throughx0 and an irreducible curve of degree 3. The ramification locus
is the union of the proper transform ofW and the exceptional curveE0 blown up from
x0. The branch divisor ofφ is a plane curveC of degree 4. Ifx0 is an Eckardt point,
C is the union of a cubic curve and a line. The three intersection points are the images
of the three lines passing throughx0.

The surfaceS′ is a weak Del Pezzo surface of degree 2. Ifx0 does not lie on any
line, thenS′ is a Del Pezzo surface. Assume the latter. Thenφ : S′ → P2 is a finite
map of degree 2 given by the anti-canonical linear system| −KS′ |. The curveC is a
nonsingular curve of degree 4. Let` be a line onS. Then its projection is a linè̄ in
the plane. The pre-image of̄` under the projection is the plane section ofS spanned
by ` andx0. It consists of the linè and a conicγ. The conic passes throughx0. The
intersection points̀ andγ belong to the ramification locus. Thus the line¯̀ intersects
C at two points, hence it is a bitangent. In this way we obtain 27 bitangents ofC. The
last one is of course the imageλ̄0 ofE0 in the plane. Its pre-image is equal to the union
of E0 and the plane section ofS by the tangent plane atx0. Thus we see that the 28
bitangens ofC correspond to 28 pairs of(−1)-curves onS′. The two(−1)-lines in
each pair are exchanged by the Bertini involution.

Let (`1, . . . , `6) be a sixer onS. We continue to assume thatx0 does not lie on any
line in S. Letσ : S → P2 be the blowing-down of the sixer to pointsp1, . . . , p6. Then
the surfaceS′ is obtained by blowing upp1, . . . , p6 andp7 = σ(x0). This shows that
the 7 bitangents̄̀1, . . . , ¯̀6, λ̄0 form an Aronhold set of bitangents. Thus we see that
we have 72 Aronhold sets containing a common bitangent.

Next we assume thatx0 lies on a line. Then its proper transform onS′ is blown
down to a singular point of the quartic curveC. Sincex0 lies on at most 3 lines, we see
thatC has at most 3 nodes. If the number of nodes is equal to 3, thenx0 is an Eckardt
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point, andC acquires a line component. In other casesC is an irreducible curve with
at most 2 singular points.

Conversely, letC be a plane quartic. We know that a minimal resolution of the
double cover of the plane ramifies overC is isomorphic is a weak Del Pezzo surface
S′ of degree 2. This surfaceS′ is obtained by blowing up a point on a nonsingular
cubic surfaceS if and only if there exists a(−1)-curveE0 onS′ which intersects all
(−2)-curves onS′. Since the mapS′ → P2 is given by| − KS′ |, the image of this
(−1)-curve in the plane is a line passing through singular points ofC. This easily
implies thatC has at most three nodes, and it has three nodes, thenC is the union of a
line an an irreducible cubic. Otherwise, it is an irreducible quartic curve.

9.2 Singularities

9.2.1 Non-normal cubic surfaces

Let X be an irreducible cubic surface inP3. Assume thatX is not normal. Then
its singular locus contains a one-dimensional partC. Let C1, . . . , Ck be irreducible
components ofC andmi be the multiplicity of a general pointηi of Ci as a point on
X. A general section ofX is a plane cubic curveH. Its intersection points withCi
are singular points of multiplicitymi. Their number is equal todi = deg(Ci). By
Bertini’s theorem,H is irreducible. Since an irreducible plane cubic curve has only
one singular point of multiplicity 2, we obtain thatC is irreducible and of degree 1.

Let us choose coordinates in such a way thatC is given by the equationst0 = t1 =
0. Then the equation ofX must look like

l0t
2
0 + 2l1t0t1 + l2t

2
1 = 0,

whereli, i = 0, 1, 2, are linear forms int0, t1, t2. This shows that the left-hand side
containst2 andt3 only in degree 1. Thus we can rewrite the equation in the form

t2f + t3g + h = 0, (9.15)

wheref, g, h are binary forms int0, t1, the first two of degree 2, and the third one of
degree3.

Supposef, g have no common zeros. Then the mapP1 → P1 defined by(f, g) is of
degree 2, and hence has two ramification points. This implies thatf = al2 + bm2, g =
a′l2 + b′m2 for some linear polynomialsl,m. After linear change of variables we
may assume thatl = t0,m = t1. Thus every monomial in the left-hand side of the
equation (9.15) is divisible either byt20 or by t21. Thus we can rewrite it in the form
pt20 + qt21, wherep, q are linear forms int0, t1, t2, t3. Without loss of generality, we
may assume thatp has a non-zero coefficient att3. After a linear change of variables
we may assume thatp = t3. If q has zero coefficient att2, our surface is a cone over
a singular plane cubic. If the coefficient is non-zero, after a linear change of variables
we may assume thatq = t3 and the equation becomes

t2t
2
0 + t3t

2
1 = 0.



9.2. SINGULARITIES 337

Supposef, g has one common non-multiple zero. After a linear change of variables
t0, t1, we may assume thatf = t0t1, g = t0(t0 + t1) and the equation becomes

t2t0t1 + t3t0t1 + t3t
2
0 + t0t1(at0 + bt1) + ct30 + dt31 = 0.

After the linear change of variables

t2 7→ t2 + t3 + at0 + bt1, t3 7→ t3 + ct0,

we reduce the equation to the form

t2t0t1 + t3t
2
0 + dt31 = 0.

Obviously,d 6= 0. Multiplying by d2 and changingt0 7→ dt0, t1 → dt1, t2 7→ d−1t2,
we may assume thatd = 1.

Finally, if g is proportional tof , sayg = λf , replacingt2 with t2 +λt3, we reduce
the equation9.15to the formt2f + h = 0. In this caseX is again a cone.

Summarizing we get

Theorem 9.2.1.LetX be an irreducible non-normal cubic surface. Then, eitherX is
a cone over an irreducible singular plane cubic, or it is projectively equivalent to one
of the following cubic surfaces singular along a line:

(i) t20t2 + t21t3 = 0;

(ii) t2t0t1 + t3t
2
0 + t31 = 0.

The two surfaces are not projectively isomorphic.

The last assertion follows from considering the normalizationX̄ of the surfaceX.
In both cases it is a nonsingular surface, however in (i), the preimage of the singular
line is irreducible, but in the second case it is reducible.

9.2.2 Normal cubic surfaces

A normal cubic surfaceS has only isolated singularities. Letp be a singular point.
Choose projective coordinates such thatp = [1, 0, 0, 0]. Then the equation of the
surface can be written in the form

t0f2(t1, t2, t3) + f3(t1, t2, t3) = 0,

wheref2 andf3 are homogeneous polynomials of degree given by the subscripts. If
f2 = 0, the surface is a cone over a nonsingular plane cubic curve. Iff2 6= 0, then
p is a singular point of multiplicity 2. Projecting fromp we see thatS is birationally
isomorphic toP2. Let π : S′ → S be a minimal resolution of singularities ofS. The
sheafR1π∗OS′ has support only at singular points ofS. SinceS is normal,π∗OS′ =
OS . Applying the Leray spectral sequence we obtain an exact sequence

0→ H1(S,OS)→ H1(S′,OS′)→ H0(S,R1π∗OS′)→ H2(S,OS).
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SinceS′ is a nonsingular rational surface, we haveH1(S′,OS′) = 0. The canonical
sheaf ofS is OS(−1), hence, by Serre’s duality,H2(S,OS) = H0(S, ωS) = 0.
Thus we obtain thatH0(S,R1π∗OS′) = 0. This shows that, for any singular points
s ∈ S, we have(R1π∗OS′)s = 0. As is known (see [328]) this characterizes canonical
singularities (or RDP) of a surface.

This gives

Theorem 9.2.2.LetS be a normal cubic surface inP3. ThenS is either a cone over a
nonsingular plane cubic curve or an anticanonical model of a weak Del Pezzo surface
of degree 3.

9.2.3 Canonical singularities

From now on we assume thatX is a cubic surface with canonical singularities, i.e.X
is an anticanonical model of a weak Del Pezzo surfaceS of degree 3.

All possible Dynkin curves onS can be easily found from the list of root bases
in E7. These are all root bases inE7 of rank≤ 6 except of typesD6, D5 + A1 and
2A1 +D4. These do not occur since the discriminants of the corresponding sublattices
of E6 do not satisfy the assertion of Lemma8.2.1. Let us list the remaining types of
root bases:

(r = 6) E6, A6, D4 +A2,
s∑

k=1

Aik , i1 + · · ·+ is = 6

(r = 5) D5, D4 +A1,
s∑

k=1

Aik , i1 + · · ·+ is = 5

(r = 4) D4,

s∑
k=1

Aik , i1 + · · ·+ is = 4

(r = 3) A3, A2 +A1, 3A1

(r = 2) A2, A1 +A1

(r = 1) A1.

Lemma 9.2.3. Letp0 = (1, 0, 0, 0) be a singular point ofV (f3). Write

f3 = t0g2(t1, t2, t3) + g3(t1, t2, t3),

whereg2, g3 are homogeneous polynomials of degree 2,3. Letp = (t0, t1, t2, t3) ∈
V (f3). If the line p0, p is contained inV (f3), then the pointq = (t1, t2, t3) is a
common point of the conicV (g2) and the cubicV (g3). If, moreover,p is a singular
point ofV (f3), then the conic and the cubic intersect atq with multiplicity> 1.

Proof. This is easy to verify and is left to the reader.

Corollary 9.2.4. V (f3) has at most 4 singular points. Moreover, ifV (f3) has 4 sin-
gular points, then each point is of typeA1.
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Proof. Let p0 be a singular point. Choose coordinates such thatp0 = (1, 0, 0, 0) and
apply Lemma9.2.3. Suppose we have more than 4 singular points. The conic and
the cubic will intersect at at least four singular points with multiplicity> 1. Since
they do not share an irreducible component (otherwisef3 is reducible), this contradicts
Bézout’s Theorem. Suppose we have 4 singular points andp0 is not of typeA1. Since
p0 is not an ordinary double point, the conicV (g2) is reducible. Then the cubicV (g3)
intersects it at 3 points with multiplicity> 1 at each point. It is easy to see that this
also contradicts B́ezout’s Theorem.

Lemma 9.2.5.The cases,Ai1 +· · ·+Aik , i1+· · ·+ik = 6, except the cases3A2, A5+
A1 do not occur.

Proof. AssumeM = Ai1+· · ·+Aik , i1+· · ·+ik = 6. ThendM = (i1+1) · · · (ik+1).
Since3|dM , one of the numbers, sayi1 + 1, is equal either to 3 or6. If i1 + 1 = 6,
thenM = A5 + A1. If i1 + 1 = 3, then(i2 + 1) . . . (ik + 1) must be a square,
and i2 + · · · + ik = 4. It is easy to see that the only possibility arei2 = i3 = 2
andi2 = i3 = i4 = i5 = 1. The last possibility is excluded by applying Corollary
9.2.4.

Lemma 9.2.6. The casesD4 +A1 andD4 +A2 do not occur.

Proof. Let p0 be a singular point ofS of typeD4. Again, we assume thatp0 =
(1, 0, 0, 0) and apply Lemma9.2.3. As we have already noted, the singularity of type
D4 is analytically (or formally) isomorphic to the singularityz2 + xy(x + y) = 0.
This shows that the conicV (g2) is a double linè . The planez = 0 cuts out a germ
of a curve with 3 different branches. Thus there exists a plane section ofS = V (f3)
passing throughp0 which is a plane cubic with 3 different braches atP . Obviously, it
must be a union of 3 lines with a common point atp0. Now the cubicV (g3) intersects
the line` at 3 points corresponding to the lines throughp0. ThusS cannot have more
singular points.

Let us show that all remaining cases are realized. We will exhibit the corresponding
Del Pezzo surface as the blow-up of 6 bubble pointsp1, . . . , p6 in P2.

A1: 6 points inP2 on an irreducible conic;

A2: p3 �1 p1;

4A1: p2 �1 p1, p4 �1 p2;

A3: p4 �1 p3 �1 p2 �1 p1;

A2 +A1: p3 �1 p2 �1 p1, p5 �1 p4;
A4: p5 �1 p4 �1 p3 �1 p2 �1 p1;

3A1: p2 �1 p1, p4 �1 p3, p6 �1 p5;
2A2: p3 �1 p2 �1 p1, p6 �1 p5 �1 p4;
A3 +A1: p4 �1 p3 �1 p2 �1 p1, p6 �1 p5;
A5: p6 �1 p5 �1 p4 �1 p3 �1 p2 �1 p1;
D4: p2 �1 p1, p4 �1 p3, p6 �1 p5 andp1, p3, p5 are collinear;

A2 + 2A1: p3 �1 p2 �1 p1, p5 �1 p4, and|`− p1 − p2 − p3| 6= ∅;
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A4 +A1: p5 �1 p4 �1 p3 �1 p2 �1 p1 and|2`− p1 − . . .− p6| 6= ∅;
D5: p5 �1 p4 �1 p3 �1 p2 �1 p1 and|`− p1 − p2 − p6| 6= ∅;
4A1: p1, . . . , p6 are the intersection points of 4 lines in a general linear position;

2A2 +A1: p3 �1 p2 �1 p1, p6 �1 p5 �1 p4 and|`− p1 − p2 − p3| 6= ∅;
A3 + 2A1: p4 �1 p3 �1 p2 �1 p1, p6 �1 p5 and|`− p1 − p2 − p3| 6= ∅;
A5 +A1: p6 �1 p5 �1 p4 �1 p3 �1 p2 �1 p1 and|2`− p1 − . . .− p6| 6= ∅;
E6: p6 �1 p5 �1 p4 �1 p3 �1 p2 �1 p1 and|`− p1 − p2 − p3| 6= ∅;
3A2: p3 �1 p2 �1 p1, p6 �1 p5 �1 p4, |`−p1−p2−p3| 6= ∅, |`−p4−p5−p6| 6= ∅;

Projecting from a singular point and applying Lemma9.2.3we see that each sin-
gular cubic surface can be given by the following equation.

A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is a nonsingular conic which in-
tersectsV (g3) transversally;

A2: V (t0t1t2 + g3(t1, t2, t3)),whereV (t1t2) intersectsV (g3) transversally;

2A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is a nonsingular conic which is
simply tangent toV (g3) at one point;

A3: V (t0t1t2 +g3(t1, t2, t3)), whereV (t1t2) intersectsV (g3) at the point[0, 0, 1] and
at other 4 distinct points;

A2 +A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) is tangent toV (t2) at [1, 0, 0];

A4: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) is tangent toV (t1) at [0, 0, 1];

3A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is nonsingular and is tangent to
V (g3) at 2 points;

2A2: V (t0t1t2 + g3(t1, t2, t3)), whereV (t1) intersectsV (g3) transverally andV (t2)
is a flex tangent toV (g3) at [1, 0, 0];

A3 +A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) passes through[0, 0, 1] andV (t1) is
tangent toV (g3) at a point[1, 0, 0];

A5: V (t0t1t2 + g3(t1, t2, t3)), whereV (t1) is a flex tangent ofV (g3) at the point
[0, 0, 1];

D4: V (t0t21 + g3(t1, t2, t3)), whereV (t1) intersects transversallyV (g3);

A2 + 2A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) is tangentV (t1t2) at two points
not equal to[0, 0, 1];

A4 +A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) is tangent toV (t1) at [0, 0, 1] and is
tangent toV (t2) at [1, 0, 0];

D5: V (t0t21 + g3(t1, t2, t3)), whereV (t1) is tangent toV (g3) at [0, 0, 1];

4A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is nonsingular and is tangent to
V (g3) at 3 points;

2A2 + A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is tangent toV (g3) at 2
points[1, 0, 0] with multiplicity 3;

A3+2A1: V (t0t1t2+g3(t1, t2, t3)), whereV (g3) passes through[0, 0, 1] and is tangent
to V (g1) and toV (g2) at one point not equal to[0, 0, 1];
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A5 +A1: V (t0t1t2 +g3(t1, t2, t3)), whereV (t1) is a flex tangent ofV (g3) at the point
[0, 0, 1] andV (t2) is tangent toV (g3);

E6: V (t0t21 + g3(t1, t2, t3)), whereV (t1) is a flex tangent ofV (g3).

3A2: V (t0t1t2+g3(t1, t2, t3)), whereV (t1), V (t2) are flex tangents ofV (g3) at points
different from[0, 0, 1].

Remark9.2.1. Applying a linear change of variables, one can simplify the equations.
For example, in the caseXXI, we may assume that the inflection points are[1, 0, 0]
and[0, 1, 0]. Theng3 = t33+t1t2L(t1, t2, t3). Replacingt0 with t′0 = t0+L(t1, t2, t3),
we reduce the equation to the form

t0t1t2 + t33 = 0. (9.16)

Another example is theE6-singularity (case XX). We may assume that the flex point
is [0, 0, 1]. Theng3 = t32 + t1g2(t1, t2, t3). The coefficient att23 is not equal to zero,
otherwise the equation is reducible. After a linear change of variables we may assume
thatg2 = t23 + at21 + bt1t2 + ct22. Replacingt0 with t0 + at1 + bt2, we may assume
thata = b = 0. After scaling the unknowns, we get

t0t
2
1 + t1t

2
2 + t32 = 0. (9.17)

The following table gives the classification of possible canonical singularities of a
cubic surface, the number of lines and the class of the surface (i.e., the degree of the
dual surface).

Type Singularity Lines Class Type Singularity Lines Class
I ∅ 27 12 XII D4 6 6
II A1 21 10 XIII A2 + 2A1 8 5
III A2 15 9 XIV A4 +A1 4 5
IV 2A1 16 8 XV D5 3 5
V A3 10 8 XVI 4A1 9 4
VI A2 +A1 11 7 XVII 2A2 +A1 5 4
VII A4 6 7 XVIII A3 + 2A1 5 4
VIII 3A1 12 6 XIX A5 +A1 2 4
IX 2A2 7 6 XX E6 1 4
X A3 +A1 7 6 XXI 3A2 3 3
XI A5 3 6

Table 9.1: Singularities of cubic surfaces

Note that the number of lines can be checked directly by using the equations. The
map fromP2 toS is given by the linear system of cubics generated byV (g3), V (t1g2),
V (t2g2), V (t3g2). The lines are images of lines or conics which has intersection 1 with
a general member of the linear system. We omit the computation of the class of the
surface.
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9.3 Determinantal equations

9.3.1 Cayley-Salmon equation

Let l1, l2, l3 be three skew lines inP3. LetPi be the pencil of planes through the line
li. Let us identifyPi with P1 and consider the rational map

f : P1 × P1 × P1 − → P3

which assigns to the triple of planes(Π1,Π2,Π3) the intersection pointΠ1 ∩ Π2 ∩
Π3. This map is undefined at a triple(Π1,Π2,Π3) such that the linelij = Πi ∩ Πj

is contained inΠk, where{i, j, k} = {1, 2, 3}. The linelij obviously intersects all
three lines. The union of such lines is the nonsingular quadricQ containingl1, l2, l3
(count parameters to convince yourself that any 3 skew lines are contained in a unique
nonsingular quadric). A plane fromPi intersectsQ alongli and a linemi onQ from
another ruling. The triple belongs to the indeterminacy locusI of f if and only if
m1 = m2 = m3. Consider the map

φ : P1 × P1 × P1 → (P1)3, (Π1,Π2,Π3) 7→ (m1,m2,m3).

We see thatI = φ−1(∆), where∆ is the small diagonal. Obviouslyφ is an isomor-
phism, soI is a smooth rational curve. Let∆ij be one of the three diagonals (the
locus of points with equali-th andj-th coordinates). Its preimageDi = φ−1(∆ij) is
blown down underf to the linelk. In fact, if (Π1,Π2,Π3) ∈ D12, thenm1 = m2

andΠ1 ∩ Π2 ∩ Π3 = m1 ∩ l3. Clearly,D12, D13, D23 are divisors onP1 × P1 × P1

of degree(1, 1, 0), (1, 0, 1), (0, 1, 1), respectively. The mapf can now be resolved by
blowing up the curveI, followed by blowing down the proper inverse transforms of the
divisorsDij to the lineslk. One should compare it with the standard birational map
from the quadricP1 × P1 to P2 defined by the projection from a point.

Note that in coordinates,f(Π1,Π2,Π3) is the line of solutions of a system of 3
linear equations, thus depends linearly in coefficients of each equation. This shows
that the rational map is given by a linear system of divisors of degree(1, 1, 1). Let S
be a cubic surface containing the linesl1, l2, l3. Its full preimage underf is a divisor
of degree(3, 3, 3). It contains the divisorsD12, D13, D23 whose sum is the divisor
of degree(2, 2, 2). LetR be the residual divisor of degree(1, 1, 1). It is equal to the
proper inverse transform ofS. Let

R = V
( ∑
i,j,k=0,1

ai,j,kλiµjγk
)
,

where(λ0, λ1), (µ0, µ1), (γ0, γ1) are coordinates in the pencilsP1,P2,P3.
Thus we obtain

Theorem 9.3.1.(F. August). Any cubic surface containing 3 skew linesl1, l2, l3 can be
generated by 3 pencils of planes in the following sense. There exists a correspondence
R of degree(1, 1, 1) onP1 × P2 × P3 such that

S = {x ∈ P3 : x ∈ Π1 ∩Π2 ∩Π3 for some(Π1,Π2,Π3) ∈ R}.
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Let us rewriteR in the form

R = V (λ0A0(µ0, µ1, γ0, γ1) + λ1A1(µ0, µ1, γ0, γ1)),

whereA0, A1 are bihomogeneous forms in(λ0, λ1) and(γ0, γ1). Suppose thatS con-
tains two distinct linesl,m which intersectl2, l3 but do not intersectl1. Let Π2 =
l, l2,Π3 = l, l3. Since any planeΠ in P1 intersects̀ , the point(Π,Π2,Π3) is mapped
to S but not contained in any divisorD12, D13, D23. Thus it belongs toR. SinceΠ
is arbitrary, the point(Π2,Π3) is the intersection point of the curvesV (A0), V (A1) in
P2 × P3. This shows that the curvesV (A0), V (A1) of bidegree(1, 1) intersect at two
distinct points. Change coordinatesµ, γ to assume that these points are([0, 1], [1, 0])
and ([1, 0], [0, 1]). Plugging in the equations ofA0 = 0, A1 = 0, we see that the
curvesV (A0), V (A1) belong to the pencil spanned by the curvesV (µ0γ0), V (µ1γ1).
Changing the coordinates(λ0, λ1) we may assume that

R = V (λ0µ0γ0 + λ1µ1γ1). (9.18)

The surfaceS is the set of solutions(t0, t1, t2, t3) of the system of equations

λ0l1(t0, t1, t2, t3) = λ1m1(t0, t1, t2, t3),
µ0l2(t0, t1, t2, t3) = µ1m2(t0, t1, t2, t3),
γ0l3(t0, t1, t2, t3) = γ1m3i(t0, t1, t2, t3).

whereli,mi are linear forms and

λ0µ0γ0 + λ1µ1γ1 = 0.

Multiplying the left-hand sides and the right-hand sides, we get

S = V (l1l2l3 +m1m2m3). (9.19)

Corollary 9.3.2. Assume additionally thatS contains 2 distinct lines which intersect
two of the linesl1, l2, l3 but not the third one. ThenS can be given by the equation

l1l2l3 −m1m2m3 = 0. (9.20)

An equation of cubic surface of this type is called aCayley-Salmon equation.
Observe thatS contains the lines̀ij = V (lij). Obviously,`ii = li and`23, `32 are

the two lines which intersect̀2, `3 but not`1. The lines̀ 12, `21 intersect̀ 1, `2 but not
l3 (since otherwiseV (A0), V (A1) in above have more than two intersection points).
Similarly, we see that̀13, `31 intersect̀ 1, `3 but not`2. Thus we have 9 different lines.
As is easy to see they form a pair of two conjugate triads of tritangent planes (which
can be defined as in the nonsingular case)

l11 l12 l13
l21 l22 l23
l31 l32 l33

. (9.21)
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Thus the condition onS imposed in Corollary2.2.9 implies thatS contains a pair
of conjugate triples of tritangent planes. Conversely, such a set of 9 lines gives a
Cayley-Salmon equation ofS. In fact, each triple of the tritangent planes definesS
along the same set of 9 lines. ThusS is contained in the pencil spanned by surfaces
V (l1l2l3), V (m1m2m3). It is clear that two Cayley-Salmon equations defining the
same set of 9 lines can be transformed to one another by a linear change of variables.
Thus the number of essentially different Cayley-Salmon equations is equal to the num-
ber of pairs of conjugate triads of tritangent planes.

Theorem 9.3.3. Let S be a normal cubic surface. The number of different Cayley-
Salmon equations forS is equal to 120 (type I), 10 (type II), 1 (type III,IV, VIII), and
zero otherwise.

Proof. We know that the number of conjugate pairs of triads of tritangent trios of ex-
ceptional vectors is equal to 120. Thus the number of conjugate triads of triples of
tritangent planes on a nonsingular cubic surface is equal to 120. It follows from the
proof of Corollary2.2.9that a pair of conjugate triples of tritangent planes on a singu-
lar surface exists only if we can find 3 skew lines and 2 lines which intersect two of
them but not the third. Also we know that the number of lines onS must be at least 9.
So we have to check only typesII − V I andV III. We leave to the reader to verify
the assertion in these cases.

Corollary 9.3.4. LetS be a nonsingular cubic surface. ThenS is projectively equiva-
lent to a surface

V (t0t1t2 + t3(t0 + t1 + t2 + t3)l(t0, . . . , t3)).

A generalS can be written in this form in exactly 120 ways (up to projective equiva-
lence).

Proof. Consider a Cayley-Salmon equationl1l2l3 + m1m2m3 = 0 of S. Let (9.21)
be the corresponding 9 lines onS. If l1, l2, l3,mj are linearly independent, we choose
a coordinate system such thatl1 = t0, l2 = t1, l3 = t2,mj = t3. If not, the lines
`1j , `2j , l3j intersect at one pointpj = l1 ∩ l2 ∩ l3. Assume that this is not the case for
all j so thatS is projectively equivalent toV (t0t1t2 + t3m2m3). letm2 =

∑
aiti. If

one of theai’s is equal to zero, saya3 = 0, the linear formm2 is a linear combination of
coordinatest0, t1, t2. We have assumed that this does not happen. Thus, after scaling,
the coordinates we may assume thatm2 =

∑
ti. This gives the promised equation.

Since we can start with any conjugate pair of triads of tritangent planes, the previous
assumption is not satisfied only if any such pair consists of tritangent planes containing
three concurrent lines. We will see later that the number of such tritangent planes on
a nonsingular surface is at most 18. So we can always start with a conjugate triad of
tritangent planes for which each plain does not contain concurrent lines.

Corollary 9.3.5. let S be a normal surface of typeI − IV or V III. Then there exists
a 3× 3 matrixA(t) with linear forms int0, . . . , t3 such that

S = V
(
det(A(t))

)
.
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Proof. Observe that

l1l2l3 +m1m2m3 = det

 l1 m1 0
0 l2 m2

m3 0 l3

 .

9.3.2 Hilbert-Burch Theorem

By other methods we will see that Corollary9.3.5can be generalized to any normal
cubic surface of type different from XX. We will begin with the approach using the
following well-known result from Commutative Algebra (see [156]).

Theorem 9.3.6. (Hilbert-Burch). LetI be an ideal in polynomial ringR such that
depth(I) = codimI = 2 (thusR/I is a Cohen-Macaulay ring). Then there exists a
projective resolution

0 −→ Rn−1 φ2−→ Rn
φ1−→ R −→ R/I −→ 0.

Thei-th entry of the vector(a1, . . . , an) definingφ1 is equal to(−1)ici, whereci is the
complementary minor obtained from the matrixA definingφ2 by deleting itsi-th row.

We apply this theorem to the case whenR = C[X0, X1, X2] andI is the homo-
geneous ideal of a closed0-dimensional subschemeZ of P2 = Proj(R) generated by
four linearly independent homogeneous polynomials of degree 3. LetIZ be the ideal
sheaf ofZ. Then(IZ)m = H0(P2, IZ(m)). By assumption

H0(P2, IZ(2)) = 0. (9.22)

Applying the Hilbert-Burch Theorem, we find a resolution of the graded ringR/I

0 −→ R(−4)3
φ2−→ R(−3)4

φ1−→ R −→ R/I → 0,

whereφ2 is given by a3×4 matrixA(X) whose entries are linear forms inX0, X1, X2.
Passing to the projective spectrum, we get an exact sequence of sheaves

0 −→W2 ⊗OP2(−4)
φ2−→W1 ⊗OP2(−3)

φ1−→ IZ −→ 0,

whereW2,W1 are vector spaces of dimension3 and4. Twisting byOP2(3), we get the
exact sequence

0 −→W2 ⊗OP2(−1)
φ̃2−→W1 ⊗OP2

φ̃1−→ IZ(3) −→ 0. (9.23)

Taking global sections, we obtainW1 = H0(P2, IZ(3)). Twisting byOP2(−2),
and using a canonical isomorphismH2(P2,OP2(−3)) ∼= C, we obtain thatW2 =
H1(P2, IZ(1)). The exact sequence

0→ IZ(1)→ OP2(1)→ OZ → 0



346 CHAPTER 9. CUBIC SURFACES

shows that

W2
∼= Coker(H0(P2,OP2(1))→ H0(OZ)) ∼= Coker

(
C3 → Ch

0(OZ)
)
.

SincedimW2 = 3, we obtain thath0(OZ) = 6. ThusZ is a0-cycle of length6.
Now we see that the homomorphism̃φ2 of vector bundles is defined by a linear

map
t : E → Hom(W2,W1), (9.24)

whereP2 = |E|. We can identify the linear mapt with the tensorE∨⊗W ∗
2 ⊗W1. Let

us now view this tensor as a linear map

u : W ∗
1 → Hom(E,W ∗

2 ). (9.25)

In plain language, ift is viewed as a system of 3 linear equations with unknowns
t0, t1, t2, t3 whose coefficients are linear forms in variablesx0, x1, x2, thenu is the
same system rewritten as a system of 3 equations with unknownsx0, x1, x2 whose
coefficients are linear forms in variablest0, t1, t2, t3.

The linear map (9.24) defines a rational map

f : |E| → |W ∗
1 | = |IZ(3)|∗, [v] 7→ |t(v)(W2)⊥|.

This is the map given by the linear system|IZ(3)|. In coordinates, it is given by
maximal minors of the matrixA(X) definingφ2. For anyα ∈ t(v)(W2)⊥, we have
u(α)(v) = 0. This shows that rank(u(α)) < 3. ThusS is contained in the locus of
[α] such thatα belongs to the preimage of the determinantal locus in Hom(E,W ∗

2 ),
i.e. the locus of linear maps of rank< 3. It is a cubic hypersurface in the space
Hom(E,W ∗

2 ). Thus the imageS′ of f is contained in a determinantal cubic surface
S. Since the intersection scheme of two general membersC1, C2 of the linear system
|IZ(3)| is equal to the0-cycleZ of degree 6, the image off is a cubic surface. This
gives a determinantal representation ofS.

Theorem 9.3.7. AssumeS is a normal cubic surface which does not have a singular
point of typeE6. ThenS admits a determinantal representationS = V (det(A)),
whereA is a matrix whose entries are linear forms. A surface with a singular point of
typeE6 does not admit such a representation.

Proof. AssumeS has no singular point of typeE6 and letX be a minimal resolution
of S. Then the set of(−2)-curves is a proper subset of the set of roots of the lattice
K⊥
X and span a proper sublatticeM of Pic(X). Let α be a root inK⊥

X which does
not belong toM . Since the Weyl groupW (X) acts transitively on the set of roots,
we can choose a markingφ : I1,6 → Pic(X) such thatα = 2e0 − e1 − . . . − e6.
Let w ∈ W (X)n be a an element of the Weyl group generated by reflections with
respect to(−2)-curves such thatw ◦ φ is a geometric marking defining a geometric
basise′0, e

′
1, . . . , e

′
6. Sincew preservesM , w(α) = 2e′0 − e′1 − . . .− e′6 is not a linear

combination of(−2)-curves. However, any effective rootx is a linear combination of
(−2)-curves (use thatx · KX) = 0 and for any irreducible componentE of x with
E2 6= −2 we haveE ·KX < 0). NowX is obtained by blowing up a set of 6 points
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(maybe infinitely near) not lying on a conic. It is easy that this blow-up is isomorphic
to the blow-up of a0-dimensional cycleZ of length6. Blowing up a sequence ofk
infinitely near pointspk �1 . . . �1 p1 is the same as to blow up the ideal(x, yk).
The linear system|IZ(3)| is equal to the linear system of cubics through the points
p1, . . . , p6. The idealIZ is generated by a basis of the 3-dimensional linear system
|IZ(3)| defining a rational mapP2− → S ⊂ P3. Thus we can apply the Hilbert-Burch
Theorem to obtain a determinant representation ofS.

AssumeS has a singular point of typeE6 andA(t) = (Aij)1≤i,j≤3. Consider the
system of linear equations

3∑
j=1

lij(t0, . . . , t3)xj = 0, i = 1, 2, 3. (9.26)

For anyx = [x0, x1, x2] ∈ P2 the set of pointsp = [t0, t1, t2, t3] such thatA(t)x =
0 is a linear space. Consider the rational mapπ : S → P2 which assigns tot ∈
S the solutionx of A(t)x = 0. Sinceπ is not bijective, there exists a linèon S
which is blown down to a point[a1, a2, a3]. This means that the equations (9.26) with
[x0, x1, x2] substituted with[a1, a2, a3] define three planes intersecting along a line.
Thus the three planes are linearly dependent, hence we can write

α(aj
3∑
j=1

l1j) + β(aj
3∑
j=1

l2j) + γ(
3∑
j=1

l3j)

=
3∑
j=1

aj(αl1j + βl2j + γl3j) = 0,

for someα, β, γ not all zeros. Choose coordinates forx such that[a1, a2, a3] =
[1, 0, 0]. Then we obtain that the entries in the first column ofA(t) are linearly de-
pendent. This allows us to assume thatl11 = 0 in the matrixA(t). The equations
l21 = l31 = 0 define the linè . The equationsl12 = l13 = 0 define a linem. Obvi-
ously,l 6= m since otherwiseS has equation

−l12l21l33 + l12l31l23 + l13l21l32 − l13l31l23 = 0,

which shows that the linel = m is the double line ofS. So, we see thatS has at least
two lines, but a surface of typeXX has only one line.

We have already seen that each timeS is represented as the image ofS under
a rational map given by the linear system|IZ(3)|, whereZ is a 0-cycle of length6
satisfying condition (9.22), we can writeS by a determinantal equation. A minimal
resolution of indeterminacy points defines a blowing down morphismπ : X → P2

of the weak Del Pezzo surfaceX isomorphic to a minimal resolution ofS. The in-
verse map is given by assigning tot ∈ S the nullspaceN(A(t)). ChangingZ to a
projectively equivalent set replaces the matrixA(t) by a matrixA(t)C, whereC is an
invertible scalar matrix. This does not change the equation ofS. Thus the number
of essentially different determinantal representations is equal to the number of linear
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systems|e0| onX which define a blowing down morphismX → P2 such that the cor-
responding geometric markings(e0, e1, . . . , e6) ofX satisfy|2e0−e1− . . .−e6| = ∅.
This gives

Theorem 9.3.8. The number of essentially different determinantal representations of
S is equal to the number of unordered geometric markings(e0, e1, . . . , e6) of Pic(X)
such that|2e0 − e1 − . . .− e6| = ∅. It is equal to 72 ifS is nonsingular.

Consider again (9.24) as a tensort ∈ W1 ⊗ V ∨ ⊗W ∗
2 which defines a linear map

t : W ∗
1 → Hom(W2, V

∨). We have the corresponding rational map

g : S → P(W2) ∼= P2, [w] 7→ Ker(t∗).

Let P3 = P(W ∗
1 ). Consider the projective resolution

0 −→ OP3(−1)⊗W2
φ−→ OP3 ⊗ V ∨ −→ F → 0,

whereφ is defined by the linear map viewed as a3 × 3 matrix with entries inW1 =
(W ∗

1 )∗. Since the determinant of the matrix is equal to the equation ofS, the sheafF
is locally isomorphic toOS . We can write it asF = OS(D) for some divisor class
D. Taking global sections, we obtainH0(S,OS(D)) ∼= V ∨. Thus the linear system
|D| on S defines our rational mapπ : S → |E|. Twisting byOP3(−3) and taking
cohomology, we obtain an isomorphismW2

∼= H2(S,OS(−3H +D)), whereH is a
hyperplane section. SinceOS(H) ∼= OS(−KS), we obtain an isomorphism

W2
∼= H2(S,OS(3KS +D)) ∼= H0(S,OS(−2KS −D))∗.

Let π′ : X → P(W2) be the rational map of a minimal resolution defined byg. The
preimage ofD onX is equal to the classe0 and−KS = 3e0 − e1 − . . . − e6, where
(e0, e1, . . . , e6) is a geometric marking ofX defined by the blowing down morphism
π′. Thusπ′ is given by the linear system|5e0 − 2e1 − . . .− 2e6|. If S is nonsingular,
π blows down 6 skew linesl1, . . . , l6 to 6 pointsp1, . . . , p6 on |E| and the mapg =
π′ blows down the proper inverse transformsm1, . . . ,m6 of conicsCj through the
pointspi, i 6= j to some pointsq1, . . . , q6 in P(W2). The lines(l1, . . . , l6;m1, . . . ,m6)
form a double-sixer onS. It follows from above, that the lines(m1, . . . ,m6) define a
determinantal representation ofS corresponding to the transpose of the matrixA(t).

Remark9.3.1. We can also deduce Theorem9.3.8 from the theory of determinantal
equation from Chapter4. Applying this theory we obtain thatS admits a determinantal
equation with entries linear forms if it contains a projectively normal curveC such that

H0(S,OS(C)(−1)) = H2(S,OS(C)(−2)) = 0. (9.27)

Moreover, the set of non-equivalent determinantal representations is equal to the set
of divisor classes of such curves. Letf : X → S be a minimal resolution andC ′ =
f∗(C). Sincef∗OS(−1) = OX(KX), the conditions (9.27) are equivalent to

H0(X,OX(C ′ +KX)) = H2(X,OX(C ′ + 2KX)) = 0. (9.28)
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SinceC ′ is nef, H1(X,OX(C ′ + KX)) = 0. Also H2(X,OX(C ′ + KX)) =
H0(X,OX(−C ′)) = 0. By Riemann-Roch,

0 = χ(X,OX(C ′ +KX)) = 1
2 ((C ′ +KX)2 − (C ′ +KX) ·KX) + 1

= 1
2 (C ′2 + C ′ ·KX) + 1.

ThusC ′ is a smooth rational curve, henceC is a smooth rational curve. It is known that
a projectively normal rational curve inPn must be of degreen. Thus−KX · C ′ = 3,
henceC ′2 = 1. The linear system|C ′| defines a birational mapπ : X− → P2.
Let e0 = [C ′], e1, . . . , e6 be the corresponding geometric basis of Pic(X). We have
KX = −3e0 + e1 + · · ·+ e6 and the condition

0 = H2(X,OX(C ′ + 2KX)) = H0(X,OX(−C ′ −KX)) = 0

is equivalent to
|2e0 − e1 − . . .− e6| = ∅. (9.29)

9.3.3 The cubo-cubic Cremona transformation

Consider a system of linear equations in variablest0, t1, t2, t3:

3∑
j=1

lij(z0, z1, z2, z3)tj = 0, i = 1, 2, 3, 4, (9.30)

where lij are linear forms in variablesz0, z1, z2, z3. It defines a rational mapΦ :
P3− → P3 by assigning to[a0, . . . , a3] ∈ P3 the space of solutions of the system (9.30)
with zi substituted withai. In coordinate-free way, we can consider the system as a
linear mapτ : W → Hom(W1,W2), wheredimW = 4,dimW1 = 4,dimW2 = 3.
The mapΦ : P(W ) → P(W1) is defined by sendingw ∈ W to the linear space
Ker(τ(v)) ⊂W1. The inverse mapΦ−1 is defined by rewriting the system as a system
with unknownszi. Or, in corrdinate-free language, by viewing the tensorτ ∈ W∨ ⊗
W ∗

1 ⊗ W2 as a linear mapW1 → Hom(W,W2). Let D be the set of linear maps
(considered up to proportionality)W1 →W2 of rank≤ 2. The mapΦ is not defined at
the preimage ofD in |W |. It is given by the common zeros of the four maximal minors
∆i of the matrix(lij(z)). The mapΦ is given by

[z0, . . . , z3] 7→ [∆1,−∆2,∆3,−∆4].

Lemma 9.3.9. The scheme-theoretical locusZ of common zeros of the cubic polyno-
mials∆i is a connected curve of degree 6 and arithmetic genus3.

Proof. We apply the Hilbert-Burch Theorem to the ringR = C[z0, z1, z2, z3] and the
homogeneous idealI of Z. We get a resolution

0 −→ R(−4)3
φ2−→ R(−3)4

φ1−→ I −→ 0. (9.31)
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Twisting byn and computing the Euler-Poincaré characteristic we obtain the Hilbert
polynomial of the schemeZ

P (Z;n) = χ(P3,OZ(n)) = 6n− 2.

This shows thatZ is one-dimensional, and comparing with Riemann-Roch, we see that
deg(Z) = 6 andχ(OZ) = −2. The exact sequence

0→ IZ → OP3 → OZ → 0

givesdimH0(OZ) = 1 if and only if H1(P3, IZ) = 0. The latter equality follows
from considering the resolution ofIZ . ThusZ is connected andpa(Z) = 1−χ(OZ) =
3.

The inverse map is also given by cubic polynomials. This explains the classical
name for the transformationT , the cubo-cubic transformation. The preimages of
planes underΦ are cubic surfaces inP(W ) containing the curveZ. The images of
planes underΦ are cubic surfaces inP(W1) containing the curveZ ′, defined similarly
toZ for the inverse mapΦ−1.

Now let V be a 3-dimensional subspace ofW . Then restricting the linear map
t : W → Hom(W1,W2) to V we obtain a determinantal representation of the cubic
surfaceS = Φ(|E|) ⊂ P(W1). The mapΦ : |E| − → P(W1) is not defined at the
set|E| ∩ Z. Tensoring (9.31) with O|E| we obtain a projective resolution for the ideal
sheaf ofZ ∩ |E| in |E| (use that Tor1(R/J, I) = 0, whereJ is the ideal generated
by the hyperplane inW definingV see [156], Exercise A3.16). If|E| intersectsZ
transversally at 6 points, we see thatS is a nonsingular cubic surface.

9.3.4 Cubic symmetroids

A cubic symmetroidis a hypersurface inPn admitting a representation as a symmetric
(3 × 3)-determinant whose entries are linear forms inn + 1 variables. Here we will
be interested in cubic symmetroid surfaces. An example of a cubic symmetroid is a
4-nodal cubic surface

t0t1t2 + t0t1t3 + t0t2t3 + t1t2t3 = det

 t0 0 t2
0 t1 −t3
−t3 t3 t2 + t3

 .

It is called theCayley cubic surface. By choosing the singular points to be the reference
points[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], it is easy to see that cubic surfaces
with 4 singularities of typeA1are projectively isomorphic. Note that the condition for
a determinantal representation of a cubic surface with canonical singularities to be a
symmetric determinantal representation is the existence of an isomorphism

OS(C) ∼= OS(C)(2).

This is obviously impossible for a nonsingular cubic surface.
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Lemma 9.3.10.LetL ⊂ |OP2(2)| be a pencil of conics. Then it is projectively isomor-
phic to one of the following pencils:

(i) λ(t0t1 − t0t2) + µ(t1t2 − t0t2) = 0;

(ii) λ(t0t1 + t0t2) + µt1t2 = 0;

(iii) λt22 + µ(t0t1 + t0t2 + t1t2) = 0;

(iv) λt2(t2 − t0) + µt1(t0 + t2) = 0;

(v) λt20 + µ(t0t2 + t21) = 0;

(vi) λt20 + µt21 = 0;

(vii) λt0t1 + µt0t2 = 0;

(viii) λt0t1 + µt20 = 0.

Proof. LetC1 = V (f1), C2 = V (f2) be two generators of a pencil. IfC1 andC2 have
a common irreducible component we easily reduce it, by a projective transformation
to cases (vii) or (viii). Assume now thatC1 do not have a common component. Let
k = #C1 ∩ C2.

Assumek = 4. Then, no three of the intersection points lie on a line since otherwise
the line is contained in both conics. By a linear transformation we may assume that the
intersection points are[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]. The linear system of conics
passing through these points is given in (i).

Assumek = 3. After a linear change of variables we may assume thatC1, C2 are
tangent at[1, 0, 0] with tangency directiont1 + t2 = 0 and intersect transversally at
[0, 1, 0] and [0, 0, 1]. The linear system of conics passing through the three points is
λt0t1 + µt0t2 + γt1t2 = 0. The tangency condition givesλ = µ. This gives case (ii).

Assumek = 2. Let [1, 0, 0] and[0, 1, 0] be the base points. First we assume that
C1 andC2 are tangent at both points. Obviously, one of the conics from the pencil is
the double linet22 = 0. We can also fix the tangency directions to bet1 + t2 = 0 at
[1, 0, 0] andt0 + t2 = 0 at [0, 1, 0]. The other conic could bet0t1 + t0t2 + t1t2 = 0.
This gives case (iii).

Now we assume thatC1 andC2 intersect transversally at[1, 0, 0] and with mul-
tiplicity 3 at [0, 1, 0] with tangency directiont0 + t2 = 0. A conic passing through
[1, 0, 0] and tangent to the linet0 + t2 = 0 at the point[0, 1, 0] has equationat22 +
b(t0t1 + t1t2) + dt0t2 = 0. It is easy to check that the condition of triple tangency is
a+ d = 0. This gives case (iv).

Finally assume thatk = 1. Obviously, the pencil is spanned by a conic and its
tangent line taken with multiplicity 2. By a projective transformation it is reduced to
form given in case (v) if the conic is irreducible and case (vi) if the conic is a double
line.

Theorem 9.3.11.LetS be an irreducible cubic symmetroid. Assume thatS has only
canonical singularities. ThenS is projectively isomorphic to one of the following de-
terminantal surfaces:
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(i) C3 = V (t0t1t2 + t0t1t3 + t0t2t3 + t1t2t3) with four RDP of typeA1;

(ii) C′3 = V (t0t1t2 + t1t
2
3− t2t23) with two RDP of typeA1 and one RDP of typeA3;

(iii) C′′3 = V (t0t1t2 − t23(t0 + t2)− t1t22) with one RDP of typeA1 and one RDP of
typeA5.

Proof. LetA = (lij) be a symmetric3 × 3 matrix with linear entrieslij(t0, t1, t2, t3)
defining the equation ofS. It can be written in the formA(t) = t0A0 + t1A1 + t2A2 +
t3A3, whereAi, i = 1, 2, 3, 4, are symmetric3× 3 matrices. LetW be a linear system
of conics spanned by the conics

Ci = [t0, t1, t2] ·A ·

t0t1
t2

 = 0.

The matricesAi are linearly independent since otherwiseS = V (detA(t)) is a cone
with vertex[c0, c1, c2, c3], where

∑
ciAi = 0. ThusW is a web of conics. LetP2 =

|E| so thatW = P(W ) for a 4-dimensional linear subspaceW of S2E∨. Consider
the polarityS2E ∼= (S2E∨)∨. Then the projectivization of the dual ofW is a pencil
L of apolar conics in dual projective spaceP(E∨). Since the apolarity is equivariant
with respect to the representation of SL(3) in S2E and inS2E∨, we see that we may
assume thatL is given in one of the cases from the previous lemma. Here we have to
replace the unknownsti with the differential operators∂i. We list the corresponding
dual 4-dimensional spaces of quadratic forms.

(i) t0t
2
0 + t1t

2
1 + t2t

2
2 + 2t3(t0t2 + t1t2 + t1t2) = 0;

(ii) t0t
2
0 + t1t

2
1 + t2t

2
2 + 2t3(t0t1 − t0t2) = 0;

(iii) t0t
2
0 + t1t

2
1 + 2t2(t0t1 − t1t2) + 2t3(t0t2 − t1t2) = 0;

(iv) t0t
2
0 + t1t

2
1 + 2t2(t22 + t0t2) + 2t3(t1t2 − t0t1) = 0;

(v) t0(2t0t2 − t21) + t1t
2
2 + 2t2t0t1 + 2t3t1t2 = 0;

(vi) t0t
2
2 + 2t1t0t1 + 2t2t1t2 + 2t3t0t2 = 0;

(vii) t0t
2
0 + t1t

2
1 + t2t

2
2 + 2t3t0t1 = 0;

(viii) t0t
2
1 + t1t

2
2 + 2t2t0t2 + 2t3t1t2 = 0.

The corresponding determinantal varieties are the following.

(i)

det

t0 t3 t3
t3 t1 t3
t3 t3 t2

 = t0t1t2 + t23(−t0 − t2 − t1 + t3) = 0.

It has 4 singular points[1, 0, 0, 0], (0, 1, 0, 0], [0, 0, 1, 0], and [1, 1, 1, 1]. The
surface is isomorphic to the4-nodal cubic surfaceC3.
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(ii)

det

 t0 t3 −t3
t3 t1 0
−t3 0 t2

 = t0t1t2 + t1t
2
3 − t2t23 = 0.

It has 2 ordinary nodes[0, 1, 0, 0], [0, 0, 1, 0] and a RDP[1, 0, 0, 0] of typeA3.

(iii)

det

0@t0 t2 t3
t2 t1 −2(t2 + t3)
t3 −2(t2 + t3) 0

1A = 4(t2 + t3)
2t0 + (t2 + t3)t2t3 + t1t

2
3 = 0.

The surface has a double line given byt3 = t2 + t3 = 0. This case is excluded.

(iv)

det

 t0 −t3 t2
−t3 t1 t3
t2 t3 2t2

 = 2t0t1t2 − t23(t0 + 4t2)− t1t22 = 0.

The point[1, 0, 0, 0] is of typeA1 and the point[0, 1, 0, 0] is of typeA5.

(v)

det

 0 t2 t0
t2 −t0 t3
t0 t3 t1

 = t1t
2
2 + 2t0t2t3 + t30 = 0.

The surface has a double linet0 = t2 = 0. This case has to be excluded.

(vi)

det

 0 t1 t3
t1 0 t2
t3 t2 t0

 = −t1(t0t1 + 2t2t3) = 0.

This surface is reducible, the union of a plane and a nonsingular quadric.

(vii)

det

t0 0 0
0 t1 t3
0 t3 t2

 = t0(t1t2 − t23) = 0.

The surface is the union of a plane and a quadratic cone.

(viii)

det

 0 0 t2
0 t0 t3
t2 t3 t1

 = t0t
2
2 = 0.

The surface is a cone.
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Remark9.3.2. If S is a cone over a plane cubic curveC. ThenS admits a symmetric
determinantal representation if and only ifC admits such a representation. We refer to
Chapter ? for determinantal representations of plane cubics.

If S is irreducible non-normal surface, thenS admits a symmetric determinantal
representation. This corresponds to cases (iii) and (v) from the proof of the previous
theorem. Case (iii) (resp. (v)) gives a surface isomorphic to the surface from case (i)
(resp. (ii)) of Theorem9.3.11. We also see that a reducible cubic surface which is not
a cone admits a symmetric determinantal representation only if it is the union of an
irreducible quadric and a plane which intersects the quadric transversally.

The 4-nodal cubic surface exhibits an obvious symmetry defined by the permutation
groupS4. It also admits a double cover ramified only over its singular points. In fact,
all three determinantal normal cubic surfaces with singularities of types4A1, 2A1+A3

andA1 +A5 admit such a cover. It is defined by the family{(`,Q) ∈ (P̌2)×W : ` ⊂
Q}, whereW is the web of conics whose Hessian surface is the cubic surface. Note
that the three cubic surfaces can be obtained as the projections of quartic surfaces with
singularities of types4A1 and2A1 +A3 which have the similar covering property.

This cover can be seen in many different ways. We give only one, the others can be
found in Exercises.

We consider only the Cayley cubic surfaceS. First, note thatS can be obtained
as the blow-up of the vertices of a complete quadrangle. LetX ′ be a weak Del Pezzo
surface of degree 2 obtained as a minimal resolution of the double cover ofP2 branched
along the union of the four sides of the complete quadrangle. The double cover extends
to a double coverf : X ′ → X of a minimal resolutionX of S branched over the
exceptional curves of the singularities. The ramification locus off consists of the
union of 4 disjoint(−1)-curves. Blowing them down we get a weak Del Pezzo surface
Y of degree6. The cover descends to a double cover ofS ramified over the nodes.

9.4 Representations as sums of cubes

9.4.1 Sylvester’s pentahedron

Counting constants we see that it is possible that a general homogeneous cubic form in
4 variables can be written as a sum of 5 cubes of linear forms in finitely many ways.
Since there are no cubic surfaces singular at 5 general points, the theory of apolarity
tells us that the count of constants gives a correct answer. The following result of J.
Sylvester gives more:

Theorem 9.4.1. A general homogeneous cubic form in 4 variables can be written
uniquely as a sum

f = l31 + l32 + l33 + l34 + l35,

whereli are linear forms in 4 variables.

Proof. Suppose

f =
5∑
i=1

l3i =
5∑
i=1

m3
i .
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Letxi, yi be the points iňP3 corresponding to the hyperplanesV (li), V (mi). Consider
the linear system of quadrics iňP3 which pass through the pointsx5, y1, . . . , y5. If x5

is not equal to anyyj , this is a linear projective subspace of dimension3. Applying
the corresponding differential operators tof we find 4 linearly independent relations
between the linear formsl1, l2, l3, l4. This shows that the pointsx1, x2, x3, x4 are
coplanar. It does not happen for generalf . Thus we may assume thatx5 = y5, so that
we can writem5 = λ5l5 for someλ5. After subtraction, we get

4∑
i=1

l3i + (1− λ3
5)l

3
5 =

4∑
i=1

m3
i .

Now we consider quadrics throughy1, y2, y3, y4. They span a 6-dimensional linear
space. Its elements define linear relations between the formsl1, . . . , l5. Since the di-
mension of the linear span of these forms is equal to 4 (the genericity assumption),
we obtain that there exists a 4-dimensional linear system of quadrics inP̌3 vanishing
at x1, . . . , x5, y1, . . . , y4. Assume that all of these points are distinct. Two different
quadrics from the linear system intersect along a curveB of degree 4. If this curve
is irreducible, a third quadric intersects it at≤ 8 points. So, the curveB must be re-
ducible. Recall that the linear system of quadrics through an irreducible curve of degree
3 is of dimension 2. Thus, one of the quadrics in our linear system must contain a curve
of degree≤ 2 and so the base locus contains a curve of degree≤ 2. The dimension of a
linear system of quadrics containing an irreducible conic is of dimension 4 and its base
locus is equal to the conic. Since the pointsxi’s are not coplanar, we see that this case
does not occur. Assume that the base locus contains a line. Then 3 linearly independent
quadrics intersect along a line` and a cubic curveR. A forth quadric will intersectR
at≤ 4 points outsidè . Thus we have at most 4 points amongx1, . . . , x5, y1, . . . , y4
which do not lie oǹ . This implies that 5 points lie on the linè. Since no three points
among thexi’s andyj ’s can lie on a line, we obtain a contradiction.

Thus one of thexj ’s coincides with someyi. We may now assume thatm4 = λ4l4
and get

3∑
i=1

l3i + (1− λ3
4)l

3
4 + (1− λ3

5)l
3
5 =

3∑
i=1

m3
i .

Take a plane throughy1, y2, y3 and get a linear dependence

a1l
2
1 + a2l

3
2 + a3l

2
3 + a4(1− λ3

4)l
2
4 + a5(1− λ2

5)l
2
5.

Herea4, a5 6= 0, since otherwise the pointsy1, y2, y3 andx4 = y4 or x4 = y5 are
coplanar. A linear dependence between squares of linear forms means that the corre-
sponding points in the dual space do not impose independent conditions on quadrics.
The subvariety of(P3)5 of such 5-tuples is a proper closed subset. By generality as-
sumption, we may assume that our set of 5 pointsx1, . . . , x5 is not in this variety. Now
we getλ3

4 = λ3
5 = 1 and

3∑
i=1

l3i =
3∑
i=1

m3
i .
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A plane throughy1, y2, y3 gives a linear relation betweenl21, l
2
2, l

2
3 which as we saw

before must be trivial. Thus the pointsx1, x2, x3, y1, y2, y3 lie in the same planeΠ.
A linear systemQ of quadrics inP3 through 3 non-collinear points does not have
unassigned base points (i.e. its base locus consists of the three points). Since linear
relations betweenl1, l2, l3 form a one-dimensional linear space,Q contains a hyper-
plane of quadrics vanishing at additional 3 pointsx1, x2, x3. Thus the linear system of
quadrics through a set of 4 pointsx1, x2, x3, yi or y1, y2, y3, xi has 2 unassigned base
points lying in the same plane. By restricting the linear system to the plane, we see that
this is impossible unless all 6 points are collinear. This is excluded by the generality
assumption. This final contradiction shows thatmi = λili and

∑3
i=1(1 − λ3

i )l
3
i = 0.

Since a general form cannot be written as a sum of 4 cubes, we getλ3
i = 1 andl3i = m3

i

for all i = 1, . . . , 6.

Corollary 9.4.2. A general cubic surface is projectively isomorphic to a surface inP4

given by the equations
4∑
i=0

ait
3
i =

4∑
i=0

ti = 0. (9.32)

The coefficients(a0, . . . , a4) are determined uniquely up to permutation and a common
scaling.

Proof. Assume that the linear formsl1, . . . , l5 in the Sylvester presentation span the
linear space of linear form. Letb1l1 + . . .+b5l5 = 0 be a unique, up to proportionality,
linear relation. Consider the embedding ofP3 into P4 given by the formula

[x0, . . . , x4] 7→ [y0, . . . , y5] = [l0(x), . . . , l5(x)].

Then the surface is isomorphic to the intersection of the cubic hypersurfaceV (
∑
y3
i )

with the hyperplaneV (
∑
biyi). Now change the coordinates byti = biyi. In the

new coordinates we get equation (9.32), whereai = b3i . The Sylvester presentation is
unique, up to permutation of the linear functionsli, multiplication li by third roots of
1, and a common scaling. It is clear that the coefficients(a0, . . . , a4) are determined
uniquely up to permutation and common scaling.

We refer to equations (9.32) as aSylvester equationof a general cubic surface.
Suppose a cubic formf can be written as the sum of powers of distinct non-

proportional linear formsl1, . . . , l5. It is obvious thatV (f) is a cone if and only if
the formsli are linearly independent. Assume thatV (f) is not a cone. If no four of
the formsli are linearly dependent we use the proof of Corollary9.4.2to reduce the
equation of the cubic surface to the Sylvester form. We say in this case that the cubic
surface isSylvester non-degenerate. If four of the forms are linearly dependent, after
a linear change of variables, we may assume thatl1 = x0, l2 = x1, l3 = x2, l4 =
x3, l5 = ax0 + bx1 + cx2. The equation becomes

f = x3
3 + g(x0, x1, x2), (9.33)

whereg3 is a ternary cubic form. A cubic surface given by such equation is called
cyclic. Conversely, anyf as above such thatV (g) admits a polar quadrangle can be
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written as a sum of 5 powers of linear independent linear forms with four of them
linearly dependent. If three of the forms are linearly dependent, the equation becomes

x3
0 + x3

1 + (ax0 + bx1)3 + x3
2 + x3

3 = 0.

If the binary formx3
0 +x3

1 +(ax0 + bx1)3 has no multiple zeros, we can further reduce
it to the sum of cubes and obtain that the surface is isomorphic to the Fermat cubic.

9.4.2 The Hessian surface

The Sylvester Theorem gives the equation of the Hessian surface of a Sylvester non-
degenerate cubic surface.

Definition 9.2. LetS = V (f) be a Sylvester non-degenersate cubic surface andf =∑5
i=1 l

3
i be its equation. The set of 5 planesV (li) is called theSylvester pentahedron.

This is the polar pentahedron off . The pointsV (li, lj , lk), 1 ≤ i < j < k ≤ 5, are
called thevertices, and the linesV (li, lj), 1 ≤ i < j ≤ 5, are called theedges.

Theorem 9.4.3. LetS = V (f) be a general cubic surface andHe(S) be the Hessian
surface ofS. Assumef =

∑5
i=1 l

3
i . ThenHe(S) contains the edges of the Sylvester

pentahedron, and the vertices are its ordinary double points. The equation ofHe(S)
can be written in the form

l1l2l3l4l5

5∑
i=1

a2
i

li
= 0,

where
∑5
i=1 aili = 0.

Proof. Recall that

He(S) = {x ∈ P3 : Px(S) is singular}.

For any pointx ∈ V (li, lj) we haveDx(f) =
∑
k 6=i,j λkl

2
k. This is a quadric of

rank≤ 3. Thus each edge is contained in He(S). Since each vertex lies in 3 non-
coplanar edges it must be a singular point. Observe that any edge contains 3 vertices.
Any quartic containing 10 vertices and two general points on each edge contains the
10 edges. Thus the linear system of quartics containing 10 edges is of dimension
34 − 30 = 4. Obviously, any quartic with equation

∑5
i=1

λi

li
= 0 contains the edges.

Thus the equation of He(S) can be written in this form. We derive the same conclusion
in another way which will also allow us to compute the coefficientsλi.

Consider the isomorphism fromS to a surface inP4 given by two equations

5∑
i=1

z3
i =

5∑
i=1

aizi = 0.

This isomorphism is given by the mapP3 → P4 defines by the linear formsli. The
polar quadricV (Px(f)) is given by two equations inP4

∑
li(a)z2

i =
5∑
i=1

aizi = 0.
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It is singular if and only if the matrix(
l1(x)z1 l2(x)z2 l3(x)z3 l4(x)z4 l5(x)z5
a1 a2 a3 a4 a5

)
is of rank 1 at some pointz = (z1, . . . , z5) = (l1(t), . . . , l5(t)). This can be expressed
by the equalitiesli(x) = λai/li(t), i = 1, . . . , 5. Since

∑5
i=1 aili(x) = 0, we obtain

0 =
5∑
i=1

aili(x) =
5∑
i=1

a2
i /li(t).

This gives the asserted equation of He(S).

We can also obtain the equation of the Hessian of a general cubic surface in terms
of its Sylvester equation (9.32),

a0 · · · a4t0 · · · t4
4∑
i=0

1
aiti

= 0 (9.34)

Remark9.4.1. Recall that the Hessian of any cubic hypersurface admits a birational
automorphismσ which assigns to the polar quadric of corank 1 its singular point.
Let X be a minimal nonsingular model of He(S). It is a K3 surface. The birational
automorphismσ extends to a biregular automorphism ofX. It exchanges the proper
inverse transforms of the edges with the exceptional curves of the resolution. One can
show that for a generalS, the automorphism ofX has no fixed points, and hence the
quotient is an Enriques surface.

Suppose now thatV (f) is not Sylvester non-degenerate butf admits a representa-
tion as a sum of cubes of 5 linearly independent linear forms. As we observed in the
previous section, the equation of the surface can be brought to the form

x3
0 + x1 + x3

2 + (ax0 + bx1 + cx2)3 + x3
3 = 0.

The Hessian surface is the union of the planeV (x3) and the cone over the Hessian of
the cubic curveV (x3

0 + x1 + x3
2 + (ax0 + bx1 + cx2)3). It has the equation

x3[x0x1x2 + (ax0 + bx1 + cx2)(a2x1x2 + b2x0x2 + c2x0x1)] = 0.

A cubic form may not admit a polar pentahedral, so its equation may not be written
as a sum of powers of liner forms. For example, consider a cubic surface given by the
equation

x3
0 + x3

1 + x3
2 + x3

3 + 3x2
3(ax0 + bx1 + cx2) = 0.

For a general choice of the coefficients, the surface is nonsingular and non-cyclic. Its
Hessian has the equation

x0x1x2x3 + x0x1x2(ax0 + bx1 + cx2)− x2
3(a

2x1x2 + b2x0x2 + c2x0x1) = 0.
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It is an irreducible surface and its singular points[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0] are
singular points of typeA3. The point[0, 0, 0, 1] is a singular point of typeA1. So we
see that the surface cannot be Sylvester non-degenerate. The surface does not admit a
polar pentahedral, it admits a generalized polar pentahedral in which two of the planes
coincide. We refer to [338] and [112] for more examples of Sylvester-degenerate cubic
surfaces and their Hessians.

Proposition 9.4.4. Let a cubic surface be given by Sylvester equation(9.32). Then it
is nonsingular if and only if, for all choices of signs,

5∑
i=1

± 1
√
ai
6= 0. (9.35)

Proof. The surface is singular if and only if

rank

(
a0t

2
0 a1t

2
1 a2t

2
2 a3t

2
3

1 1 1 1

)
= 1.

This givesait2i = c, i = 0, . . . , 3. for somec 6= 0. Thusti = ±c/√ai for some choice
of signs, and we get

3∑
i=0

ait
3
i = c

3∑
i=0

ti = c
3∑
i=0

± c
√
ai

= 0.

Conversely, if (9.35) holds for some choice of signs, then the point[± 1√
a0
, . . . ,± 1√

a3
]

satisfies
∑
ti = 0 and

∑
ait

3
i = 0. It also satisfies the equationsait2i = ajt

2
j . Thus it

is a singular point.

9.4.3 Cremona’s hexahedral equations

The Sylvester Theorem has the deficiency that it cannot be applied to any nonsingular
cubic surface. The Cremona’s hexahedral equations which we consider here work for
any nonsingular cubic surface. As we will see later in this chapter allows one to define
a regular map of degree 36 from an open Zariski subsetU of P4 toMnscub. Its fibres
can be viewed as a choice of a double-sixer on the surface.

Theorem 9.4.5.(L. Cremona). Assume that a cubic surfaceS is not a cone and admits
a Cayley-Salmon equation (e.g.S is a nonsingular surface). ThenS is isomorphic to
a cubic surface inP5 given by the equations

6∑
i=1

t3i =
6∑
i=1

ti =
6∑
i=1

aiti = 0. (9.36)

Proof. Let F = V (l1l2l3 +m1m2m3) be a Cayley-Salmon equation ofS. Let us try
to find some constants such that, after scaling, the linear forms they add up to zero.
Write

l′i = λili, m′
i = µimi, i = 1, 2, 3.
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SinceS is not a cone, four of the linear forms are linearly independent. After reorder-
ing the linear forms, we may assume that the linear formsl1, l2, l3,m1 are linearly
independent. Let

m2 = al1 + bl2 + cl3 + dm1, m3 = a′l1 + b′l2 + c′l3 + d′l4.

The constantsλi, µi must satisfy the following system of equations

λ1 + aµ2 + a′µ3 = 0,
λ2 + bµ2 + b′µ3 = 0,
λ3 + cµ2 + c′µ3 = 0,
µ1 + dµ2 + d′µ3 = 0,
λ1λ2λ3 + µ1µ2µ3 = 0.

The first four linear equations allow us to express linearly all unknowns in terms of
µ2, µ3. Plugging in the last equation, we get a cubic equation inµ2/µ3. Solving it, we
get a solution. Now set

z1 = l′2 + l′3 − l′1, z2 = l′3 + l′1 − l′2, z3 = l′1 + l′2 − l′3,

z4 = µ′2 + µ′3 − µ′1, z5 = µ′3 + µ′1 − µ′2, z6 = µ′1 + µ′2 − µ′3.
One checks that these six linear forms satisfy the equations from the assertion of the
theorem.

Corollary 9.4.6. (T. Reye) A general homogeneous cubic formf in 4 variables can be
written as a sum of 6 cubes in∞4 different ways. In other words,

dim VSP(f ; 6)o = 4.

Proof. This follows from the proof of the previous theorem. Consider the map

(C4)6 → C20, (l1, . . . , l6) 7→ l31 + · · ·+ l36.

It is enough to show that it is dominant. We show that the image contains the open
subset of nonsingular cubic surfaces. In fact, we can use a Clebsch-Salmon equation
l1l2l3 +m1m2m3 for S = V (f) and apply the proof of the Theorem to obtain that, up
to a constant factor,

f = z3
1 + z3

2 + z3
3 + z3

4 + z3
5 + z3

6 .

Now let us see in how many ways one can write a surface by a Cremona hexahedral
equation.

Suppose a nonsingularS is given by equations (9.36) which one callsCremona
hexahedral equations. They allow us to locate 15 lines onS such that the remaining
lines form a double-six. The equations of these lines inP5 are

zi + zj = 0, zk + zl = 0, zm + zn = 0,
6∑
i=1

aizi = 0,
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where{i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}. Let us denote the line given by the above
equations bylij,kl,mn.

Let us identify a paira, b of distinct elements in{1, 2, 3, 4, 5, 6} with a transposi-
tion (ab) in S6. We have the product(ij)(kl)(mn) of three commuting transpositions
corresponding to each linelij,kl,mn. The groupS6 admits a unique (up to a compo-
sition with a conjugation) outer automorphism which sends each transposition to the
product of three commuting transpositions. In this way we can match lineslij,kl,mn
with exceptional vectorscab of theE6-lattice. To do it explicitly, one groups together
5 products of three commuting transpositions in such a way that they do not contain a
common transposition. Such a set is called atotal and the triples(ij, kl,mn) are called
synthemes. Here is the set of 6 totals

T1 = (12)(36)(45), (13)(24)(56), (14)(26)(35), (15)(23)(46), (16)(25)(34),
T2 = (12)(36)(45), (13)(25)(46), (14)(23)(56), (15)(26)(34), (16)(24)(35),
T3 = (12)(35)(46), (13)(24)(56), (14)(25)(36), (15)(26)(34), (16)(23)(45),
T4 = (12)(34)(56), (13)(25)(46), (14)(26)(35), (15)(24)(36), (16)(23)(45),
T5 = (12)(34)(56), (13)(26)(45), (14)(25)(36), (15)(23)(46), (15)(24)(35),
T6 = (12)(35)(46), (13)(26)(45), (14)(23)(56), (15)(24)(36), (16)(25)(34).

Two different totalsTa, Tb contain one common product(ij)(kl)(mn). The correspon-
dence(a, b) 7→ (ij)(kl)(mn) defines the outer automorphism

α : S6 → S6. (9.37)

For example,α((12)) = (12)(34)(56) andα((23) = (13)(45)(56).
After we matched the lineslij,kl,mn with exceptional vectorscab, we check that this

matching defines an isomorphism of the incidence subgraph of the lines with the sub-
graph of the incidence graph of 27 lines on a cubic surface whose vertices correspond
to exceptional vectorscab .

Theorem 9.4.7. Each Cremona hexahedral equations of a nonsingular cubic surface
S defines an ordered double-sixer of lines. Conversely, a choice of an ordered double-
sixer defines uniquely Cremona hexahedral equations ofS.

Proof. We have seen already the first assertion of the theorem. If two surfaces given
by hexahedral equations define the same double-six, then they have common 15 lines.
Obviously, this is impossible. Thus the number of different hexahedral equations ofS
is less or equal than 36. Now consider the identity

(z1 + · · ·+ z6)
(
(z1 + z2 + z3)2 + (z4 + z5 + z6)2 − (z1 + z2 + z3)(z4 + z5 + z6)

)
= (z1 + z2 + z3)3 + (z4 + z5 + z6)3 = z3

1 + · · ·+ z3
6

+3(z2 + z3)(z1 + z3)(z1 + z2) + 3(z4 + z5)(z5 + z6)(z4 + z6).

It shows that Cremona hexahedral equations define a Cayley-Salmon equation

(z2 + z3)(z1 + z3)(z1 + z2) + (z4 + z5)(z5 + z6)(z4 + z6) = 0,
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where we have to eliminate one unknown with help of the equation
∑
aizi = 0. Ap-

plying permutations ofz1, . . . , z6, we get 10 Cayley-Salmon equations ofS. Each
9 lines formed by the corresponding conjugate pair of triads of tritangent planes are
among the 15 lines determined by the hexahedral equation. It follows from the classi-
fication of the conjugate pairs that we have 10 such pairs composed of linescij ’s (type
II). Thus a choice of Cremona hexahedral equations defines exactly 10 Cayley-Salmon
equations ofS. Conversely, it follows from the proof of Theorem9.4.5 that each
Cayley-Salmon equation gives three Cremona hexahedral equations (unless the cubic
equation has a multiple root). Since we have 120 Cayley-Salmon equations forS we
get36 = 360/10 hexahedral equations forS. They match with 36 double-sixers.

9.4.4 The Segre cubic primal

Let p1, . . . , pm be a set of points inPn, wherem > n + 1. For any ordered subset
(pi1 , . . . , pin+1) of n+1 points we denote by(i1 . . . in+1) the determinant of the matrix
whose rows are projective coordinates of the points(pi1 , . . . , pin+1) in this order. We
consider(i1 . . . in+1) as a section of the invertible sheaf⊗n+1

j=1 p
∗
ij
OPn(1) on (Pn)m.

It is called abracket-function. A monomial in bracket-functions such that each index
i ∈ {1, . . . ,m} occurs exactlyd times defines a section of the invertible sheaf

Ld =
n⊗
i=1

p∗iOPn(d).

According to the Fundamental Theorem of Invariant Theory (see [136]) the subspace
(Rmn )(d) of H0((Pn)m,Ld) generated by such monomials is equal to the space of
invariantsH0((Pn)m,Ld)SL(n+1, where the group SL(n+1) acts linearly on the space
of sections via its diagonal action on(Pn)m. The graded ring

Rmn =
∞⊕
d=0

(Rmn )(d) (9.38)

is a finitely generated algebra. Its projective spectrum is isomorphic to the GIT-quotient

Pmn := (Pn)m//SL(n+ 1)

of (Pn)m by SL(n + 1). Let r1, . . . , rN be homogeneous generators ofRmn . The
complement of it set of common zerosU ss admits a regular mapU ss→ Pmn . The set
U ss does not depend on the choice of generators. Its points are calledsemi-stable. Let
U s be the largest open subset such that the fibres of the restriction mapU s→ Pmn are
orbits. Its points are calledstable.

It follows from the Hilbert-Mumford numerical stability criterion that a points set
(p1, . . . , pm) in P1 is semi-stable (resp. stable) if and only if at most1

2m (resp.< 1
2m)

points coincide. We have already seen the definition of the bracket-functions in the
casem = 4. They define the cross ratio of 4 points

[p1, p2, p3, p4] =
(12)(34)
(13)(24)

.
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The cross ratio defines the rational map(P1)4− → P1. It is defined on the open setU s

of points where no more that2 coincide and it is an orbit space over the complement
of three points0, 1,∞.

In the case of points inP2 the condition of stability (semi-stability) is that at most
1
3m (resp.< 1

3m) coincide and at most23m (resp.< 2
3m) points are on a line.

Proposition 9.4.8. Let (q1, · · · , q6) be an ordered set of distinct points inP1. The
following conditions are equivalent.

(i) There exists an involution ofP1 such that the pairs(q1, q2), (q3, q4), (q5, q6) are
orbits of the involution.

(ii) The binary formsgi, i = 1, 2, 3 with zeros(q1, q2), (q3, q4) and q5, q6) are lin-
early dependent.

(iii) Let pi be the image ofqi under a Veronese mapP1 → P2. Then the lines
p1, p2, p3, p4, p5, p6 are concurrent.

(iv) The bracket-function(14)(36)(25)− (16)(23)(54) vanishes on(q1, . . . , q6).

Proof. (i) ⇔ (ii) Let f : P1 → P1 be the degree 2 map defined by the involution.
Let f be given by[t0, t1] 7→ [g1(t0, t1), g2(t0, t1)], whereg1, g2 are binary forms of
degree 2. By choosing coordinates in the target space we may assume thatf(q1) =
f(q2) = 0, f(q3) = f(q4) = 1, f(q5) = f(q6) = ∞, i.e. g1(q1) = g1(q2) =
0, g2(q3) = g2(q4) = 0, (g1 − g2)(q5) = (g1 − g2)(q6) = 0. Obviously, the binary
formsg1, g2, g3 = g1 − g2 are linearly dependent. Conversely, supposeg1, g2, g3 are
linearly dependent. By scaling we may assume thatg3 = g1 − g2. We define the
involution by[t0, t1] 7→ [g1(t0, t1), g2(t0, t1)].

(ii) ⇔ (iii) Without loss of generality, we may assume thatqi = [1, ai] andg1 =
t21 − (a1 + a2)t0t1 + a1a2t

2
0, g2 = t21 − (a3 + a4)t0t1 + a3a4t

2
0, g3 = t21 − (a5 +

a6)t0t1 + a5a6t
2
0. The condition that the binary forms are linearly dependent is

det

1 a1 + a2 a1a2

1 a3 + a4 a3a4

1 a5 + a6 a5a6

 = 0. (9.39)

The image ofqi under the Veronese map[t0, t1] 7→ [t20, t0t1, t
2
2] is the pointpi =

[1, ai, a2
i ]. The linepi, pj has the equation

det

x0 x1 x2

1 ai a2
i

1 aj a2
j

 = (aj − ai)(aiajx0 − (ai + aj)x1 + x2) = 0.

Obviously, the lines are concurrent if and only if (9.39) is satisfied.
(iii) ⇔ (iv) We have1 a1 + a2 a1a2

1 a3 + a4 a3a4

1 a5 + a6 a5a6

 ·
 a2 b2 c2

−a −b −c
1 1 1
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=

(a− a1)(a− a2) (b− a1)(b− a2) (c− a1)(c− a2)
(a− a3)(a− a4) (b− a3)(b− a4) (c− a3)(c− a4)
(a− a5)(a− a6) (b− a5)(b− a6) (c− a5)(c− a6)

 .

Substitutinga = a1, b = a3, c = a5 and computing the determinant we obtain that it is
equal to

(a3 − a5)(a5 − a1)(a1 − a3) det

 0 a2 − a3 a5 − a2

a1 − a4 0 a4 − a5

a6 − a1 a3 − a6 0


= (a3−a5)(a5−a1)(a1−a3)[(a1−a4)(a3−a6)(a5−a2)+(a6−a1)(a2−a3)(a4−a5)].

Since the points are distinct the vanishing of determinant (9.39) is equivalent to vanish-
ing of (a1 − a4)(a3 − a6)(a5 − a2) + (a6 − a1)(a2 − a3)(a4 − a5), i.e. the vanishing
of the bracket-function(14)(36)(25)− (16)(23)(54) on our point set.

We let

[ij, kl,mn] := (il)(kn)(jm)− (jk)(lm)(ni). (9.40)

For example,[12, 34, 56] = (14)(36)(25)−(16)(23)(45). The expressions[ij, kl,mn]
are elements of the linear space(R6

1)(1). Note as multi-linear functions onV they be-
long to the5-dimensional irreducible component of the representation ofS6 in (V ∨)⊗6

corresponding to the partition6 = 3 + 3. In other words, the expression is invariant
under permuting elements in the same pair, it is invariant under permuting the pairs by
an even permutation, and changes the sign under permuting the pairs by an odd permu-
tation. It is known (and is easy to check) that the linear representation of type3 + 3 is
isomorphic to the composition ofα with the tensor product of the sign-representation
with the standard irreducible representation ofS6 in the space

Vst = {(a1, . . . , a6) ∈ C6 : a1 + · · ·+ a6 = 0}.

Let us identify the set(1, 2, 3, 4, 5, 6) with the set of points(∞, 0, 1, 2, 3, 4, 5) of
the projective lineP1(F5). The group PSL(2,F5) ∼= A5 identified with the group of
Moebius transformationsz 7→ az+b

cz+d acts naturally on this set. Letu0 = [∞0, 14, 23]
and letui, i = 1, . . . , 4, be obtained fromu0 via the action of the transformation
z 7→ z + i. Let

U1 := u0 + u1 + u2 + u3 + u4

=
(
[∞0, 14, 23] + [∞1, 20, 34] + [∞2, 31, 40] + [∞3, 42, 01] + [∞4, 03, 12]

)
.

Obviously,U1 is invariant under the subgroup of order 5 generated by the transfor-
mationz 7→ z + 1. It is also invariant under the transformationτ : z 7→ −1/z. It
is well-known thatA5 is generated by these two transformations. The orbit ofU∞
under the groupA6 acting by permutations of∞, 0, . . . , 4 consists of 6 functions
U1, U2, U3, U4, U5, U6. We will rewrite them now returning to our old notation of
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indices by the set(1, 2, 3, 4, 5, 6).
U1

U2

U3

U4

U5

U6

 =


0 [12, 36, 45] [13, 24, 56] [14, 35, 26] [15, 46, 23] [16, 25, 34]

0 [15, 26, 34] [13, 46, 52] [16, 35, 24] [14, 56, 23]
0 [16, 32, 45] [14, 25, 36] [12, 35, 46]

0 [12, 34, 56] [15, 36, 24]
0 [13, 45, 26]

0

 ·


1
1
1
1
1
1

,
(9.41)

where the matrix is skew-symmetric. We immediately observe that

U1 + U2 + U3 + U4 + U5 + U6 = 0. (9.42)

Next observe that the triples of pairs[ij, kl,mn] in each row of the matrix constitute
a total from (9.37). The permutation groupS6 acts in theR1

6(1) as an irreducible5-
dimensional linear representation defined by the Young tableau of type(2, 2, 2). The
composition of this representation with the outer automorphism (9.37) is isomorphic
to the standard representationVst of S6 tensored with the sign representation. For
example,(12) acts asU1 7→ −U2, U2 7→ −U1, Ui 7→ Ui, i > 2. Under the outer
automorphism (9.37) of S6 we have

(12) 7→ (12)(36)(45), (3456)→ (1524)

One checks that(U1, . . . , U6) are transformed under(12)(3456) to (−U2,−U1,−U4,
−U5,−U6,−U3). This implies that the space of invariant functions is one-dimensional
and is spanned by the functionU1−U2. On the other hand, we check immediately that
the function[12, 36, 54] is invariant underσ. This givesU1 − U2 = c[12, 36, 54]
for some scalarc. Evaluating these functions on a point set(p1, . . . , p6) with p1 =
p2, p3 = p6, p4 = p5 we find thatc = 6. Now applying permutations we obtain:

U1 − U2 = 6[12, 36, 54], U1 − U3 = 6[13, 42, 65], U1 − U4 = 6[14, 53, 26], (9.43)

U1 − U5 = 6[15, 64, 32], U1 − U6 = 6[16, 52, 34], U2 − U3 = 6[15, 26, 34],

U2 − U4 = 6[13, 46, 52], U2 − U5 = 6[16, 35, 24], U2 − U6 = 6[14, 23, 56],

U3 − U4 = 6[16, 45, 32], U3 − U5 = 6[14, 52, 63], U3 − U6 = 6[12, 46, 53],

U4 − U5 = 6[12, 43, 56], U4 − U6 = 6[15, 36, 24], U5 − U6 = 6[13, 54, 62].

Similarly, we find thatU1 + U2 is the only anti-invariant function underσ and hence
coincides withc(12)(36)(45). After evaluation the functions at a point set(p1, . . . , p6)
with p1 = p3, p2 = p4, p5 = p6 we find thatc = 4. In this way we get the relations:

U1 + U2 = 4(12)(36)(45), U1 + U3 = 4(13)(42)(56), U1 + U4 = 4(41)(53)(26), (9.44)

U1 + U5 = 4(15)(46)(32), U1 + U6 = 4(16)(25)(34), U2 + U3 = 4(15)(26)(43),

U2 + U4 = 4(13)(46)(25), U2 + U5 = 4(16)(35)(42), U2 + U6 = 4(14)(23)(56),

U3 + U4 = 4(16)(54)(32), U3 + U5 = 4(14)(25)(63), U3 + U6 = 4(12)(46)(53),

U4 + U5 = 4(12)(34)(56), U4 + U6 = 4(15)(36)(24), U5 + U6 = 4(13)(45)(62).

Using (9.42), we obtain
U1 = (12)(36)(45) + (13)(42)(56) + (14)(35)(26) + (15)(46)(32) + (16)(25)(34),(9.45)

U2 = (12)(36)(45) + (13)(46)(25) + (14)(56)(23) + (15)(26)(43) + (16)(24)(53),

U3 = (12)(53)(46) + (13)(42)(56) + (14)(52)(36) + (15)(26)(43) + (16)(23)(45),

U4 = (12)(34)(56) + (13)(46)(25) + (14)(35)(26) + (15)(24)(36) + (16)(23)(45),

U5 = (12)(34)(56) + (13)(54)(26) + (14)(52)(36) + (15)(46)(32) + (16)(24)(53),

U6 = (12)(53)(46) + (13)(54)(26) + (14)(56)(23) + (15)(36)(24) + (16)(25)(34).



366 CHAPTER 9. CUBIC SURFACES

We see that our functions are in bijective correspondence with 6 totals from above. We
call the functionsU1, . . . , U6 theJoubert functions.

It is easy to see that the functionsUi do not vanish simultaneously on semi-stable
point sets. Thus they define a morphism

J : P 6
1 → P5.

Theorem 9.4.9. The morphismJ defined by the Joubert functions is an isomorphism
onto the subvarietyS3 of P5 given by the equations

5∑
i=0

zi =
5∑
i=0

z3
i = 0. (9.46)

Proof. It is known that the graded ringR6
1 is generated by the following bracket-

functions (standard tableaux)

(12)(34)(56), (12)(35)(46), (13)(24)(56), (13)(25)(46), (14)(25)(36)

(see [130]). The subspace ofR6
1(1) generated by the Joubert functions is invariant

with respect toS6. SinceR6
1(1) is an irreducible representation, this implies that the

relation
∑
Ui = 0 spans the linear relations between the Joubert functions. Consider

the sumΣ =
∑
U3
i . Obviously, it is invariant with respect toA6. One immediately

checks that an odd permutation inS6 transforms each sumΣ to−Σ. This implies that
Σ = 0 whenever two pointspi andpj coincide. HenceΣ must be divisible by the
product of15 functions(ij). This product is of degree5 in coordinates of each point
but Σ is of degree 3. This implies thatΣ = 0. Since the functionsUi generate the
graded ringR6

1, by definition of the spaceP 6
1 , we obtain an isomorphism fromP 6

1 to
a closed subvariety ofS3. Since the latter is irreducible and of dimension equal to the
dimension ofP 6

1 , we obtain the assertion of the theorem.

The cubic threefoldS3 is called theSegre cubic primal. We will often consider it
as a hypersurface inP4.

It follows immediately by differentiating that the cubic hypersurfaceS3 has 10
double points. They are the pointsp = [1, 1, 1,−1,−1,−1] and others obtained by
permuting the coordinates. We will see in a later chapter that this is maximal possible
for a cubic hypersurface of dimension 3 with isolated singularities. A pointp is given
by the equationszi + zj = 0, 1 ≥ i ≤ 3, 4 ≥ j ≤ 6. Using (9.42) this implies thatp is
the image of a point set withp1 = p4 = p6 or p2 = p3 = p5. Thus the singular points
of the Segre cubic primal are the images of semi-stable but not stable point sets.

Also S3 has 15 planes with equationszi + zj = zk + zl = zl + zm = 0. Let
us see that they are the images of point sets with two points coincide. Without loss of
generality, we may assume thatz1 + z2 = z3 + z4 = z5 + z6 = 0. Again from (9.42),
we obtain that(12)(36)(45), (16)(23)(45) and(13)(26)(45) vanish. This happens if
and only ifp4 = p5.

We know that the locus of point sets(q1, . . . , q6) such that the pairs(qi, qj), (qk, ql),
and(qm, qn) are orbits of an involution are defined by the equation[ij, kl,mn] = 0.
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By (9.43), we obtain that they are mapped to a hyperplane section ofS3 defined by the
equationza − zb = 0, whereα((ab)) = (ij)(kl)(mn).

It follows from Cremona hexahedral equations that a nonsingular cubic surface is
isomorphic to a hyperplane section of the Segre cubic. In a theorem below we will
make it more precise. But first we need some lemmas.

Lemma 9.4.10. Let p1, . . . , p6 be six points inP2. Let{1, . . . , 6} = {i, j} ∪ {k, l} ∪
{m,n}. The condition that the linespi, pj , pk, pl, pm, pn are concurrent is

(ij, kl,mn) := (kli)(mnj)− (mni)(klj) = 0. (9.47)

Proof. The expression(kli)(mnx)−(mni)(klx) can be considered as a linear function
defining a line onP2. Plugging inx = pi we see that it passes through the pointpi.
Also if x is the intersection pointq of the linespk, pl andpm, pn, then, writing the
coordinates ofx as a linear combination of the coordinates ofpk, pl, and ofpm, pn,
we see that the line passes through the pointq. Now equation (9.47) expresses the
condition that the pointpj lies on the line passing throughpi and the intersection point
of the linespk, pl andpm, pn. This proves the assertion.

We have already noted that[ij, kl,mn] ∈ R6
1(1) are transformed byS6 in the same

way as(ij)(kl)(mn) up to the sign representation. Also the functions(ij, kl,mn) ∈
R6

2(1) are transformed byS6 in the same way as the functions(ijk)(lmn) up to the
sign representation. However, the corresponding irreducible components in(V ∨)⊗6

exchange the type. The functions(ij, kl,mn) belong to the component of type(2, 2, 2)
and the functions(ijk)(mnl) belong to the component of type(3, 3).

Let
Ū1

Ū2

Ū3

Ū4

Ū5

Ū6

 =


0 (12, 36, 45) (13, 42, 65) (14, 53, 26) (15, 46, 32) (16, 52, 34)

0 (15, 26, 43) (13, 46, 25) (16, 24, 53) (14, 56, 32)
0 (16, 32, 45) (14, 52, 63) (12, 53, 46)

0 (12, 43, 56) (15, 36, 24)
0 (13, 54, 62)

0

 ·


1
1
1
1
1
1

.
Observe that the matrix used here is obtained from the matrix in (9.41) defining the
functionsUi by replacing[ij, kl,mn] with (ij, kl,mn). Equations (9.43) extend to the
functionsŪi.

Lemma 9.4.11.We have the relation

Ū1 + Ū2 + Ū3 = −6(146)(253) (9.48)

and similar relations obtained from this one by permuting the numbers(1, . . . , 6).

Proof. Adding up, we get

Ū1 + Ū2 + Ū3 =
(
(14, 53, 26) + (14, 52, 63) + (14, 56, 23)

)
+

(
(16, 52, 34)

+(16, 24, 53) + (16, 32, 45)
)

+
(
(46, 31, 52) + (46, 15, 32) + (46, 12, 53)

)
.
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Next we obtain

(14, 53, 26) + (14, 52, 63) + (14, 56, 23) = (142)(536)− (146)(532) + (146)(523)

−(143)(526) + (142)(563)− (143)(562) = −2(146)(253),

(16, 52, 34) + (16, 24, 53) + (16, 32, 45) = (163)(524)− (164)(523) + (165)(243)

−(163)(245) + (164)(325)− (165)(324) = −2(146)(253),

(46, 31, 52) + (46, 15, 32) + (46, 12, 53) = (465)(312)− (462)(315) + (463)(152)

−(461)(153) + (465)(123)− (463)(125) = 2
`
(465)(312)− (462)(315) + (463)(152)

´
.

Now we use the Plücker relation (10.1)

(ijk)(lmn)− (ijl)(kmn) + (ijm)(kln)− (ijn)(klm) = 0. (9.49)

It gives
(465)(312)− (462)(315) + (463)(152) = −(146)(253).

Collecting all of this together, we get the assertion.

Let (p1, . . . , p6) be a fixed ordered set of 6 points inP2. Consider the following
homogeneous cubic polynomials in coordinatesx = (x0, x1, x2) of a point inP2.

F1 = (12x)(36x)(54x) + (13x)(42x)(65x) + (14x)(53x)(26x) + (15x)(64x)(32x) + (16x)(25x)(43x),

F2 = (12x)(36x)(54x) + (13x)(46x)(52x) + (14x)(65x)(23x) + (15x)(26x)(34x) + (16x)(24x)(35x),

F3 = (12x)(35x)(46x) + (13x)(42x)(65x) + (14x)(52x)(63x) + (15x)(26x)(34x) + (16x)(32x)(45x),

F4 = (12x)(43x)(56x) + (13x)(46x)(52x) + (14x)(53x)(26x) + (15x)(63x)(24x) + (16x)(32x)(45x),

F5 = (12x)(43x)(56x) + (13x)(54x)(62x) + (14x)(52x)(63x) + (15x)(64x)(32x) + (15x)(24x)(35x),

F6 = (12x)(35x)(46x) + (13x)(54x)(62x) + (14x)(65x)(23x) + (15x)(63x)(24x) + (16x)(25x)(43x).

Theorem 9.4.12.The rational mapP2 → P5 given by the polynomialsF1, . . . , F6 has
the image given by the equations

z3
1 + z3

2 + z3
3 + z3

4 + z3
5 + z3

6 = 0, (9.50)

z1 + z2 + z3 + z4 + z5 + z6 = 0,

a1z1 + a2z2 + a3z3 + a4z4 + a5z5 + a6z6 = 0,

where(a1, . . . , a6) are the values of(Ū1, . . . , Ū6) at the point set(p1, . . . , p6).

Proof. Takex = (1, 0, 0), then each determinant(ijx) is equal to the determinant(ij)
for the projection ofp1, . . . , p6 to P1. Since all the bracket-functions are invariant with
respect to SL(3) we see that any(ijx) is the bracket function for the projection of the
points toP1 with center atx. This shows that the relations for the functionsUi imply
the similar relations for the polynomialsFi. This is what classics called theClebsch
transference principle. Let us find the additional relation of the form

∑5
i=0 aizi = 0.

Consider the cubic curve

C = a1F1(x) + · · ·+ a6F6(x) = 0,
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wherea1, . . . , a6 are as in the assertion of the theorem. We have already noted that
(ij, kl,mn) are transformed byS6 in the same way as(ij)(kl)(mn) up to the sign rep-
resentation. Thus the expression

∑
i aiFi(x) is transformed to itself under an even per-

mutation and transformed to−
∑
i aiFi(x) under an odd permutation. Thus the equa-

tion of the cubic curve is invariant with respect to the order of the pointsp1, . . . , p6).
Obviously,C vanishes at the pointspi. Suppose we prove thatC vanishes at the inter-
section point of the linesp1, p2 andp3, p4, then by symmetry it vanishes at the inter-
section points of all possible pairs of lines, and hence contains 5 points on each line.
SinceC is of degree 3 this implies thatC vanishes on 15 lines, henceC is identical
zero and we are done.

So, let us prove that the polynomialC vanishes atp = p1, p2 ∩ p3, p4. Recall from
analytic geometry (or multi-linear algebra) thatp can be represented by the vector
(v1 × v2)× (v3 × v4) = (v1 ∧ v2 ∧ v3)v4 − (v1 ∧ v2 ∧ v4)v3 = (123)v4 − (124)v3.
Thus the value of(ijx) atp is equal to

(ijp) = (123)(ij4)− (124)(ij3) = (12)(ij)(34). (9.51)

Applying the transference principle to (9.44), we obtain

F1(x) + F2(x) = 4(12x)(36x)(45x), F4(x) + F5(x) = 4(12x)(34x)(56x),

F1(x) + F6(x) = 4(16x)(25x)(34x), F3(x) + F6(x) = 4(12x)(53x)(46x),

F2(x) + F3(x) = (15x)(26x)(43x).

This implies thatF1 +F2, F4 +F5, F1 +F6, F3 +F6, F2 +F3 all vanish atp. Thus
the value ofC atp is equal to

(a4 − a5)F4(p) + (a2 + a6 − a1 − a3)F6(p)

= (a4 − a5)(F4(p) + F6(p)) + (a2 + a6 + a5 − a1 − a3 − a4)F6(p)

= (a4 − a5)(F4(p) + F6(p)) + (a2 + a5 + a6)(F1(p) + F3(p).

Here we used thata1 + · · ·+ a6 = 0 andF1(p) +F3(p) + 2F6(p) = 0. Using Lemma
9.4.11, we find

a4−a5 = (a4+a1+a2)−(a5+a1+a2) = 6(125)(436)−6(126)(435) = 6(12, 43, 56).

a2 + a5 + a6 = 6(346)(125).

Using (9.44) and (9.51), we get

F4(p) + F6(p) = (51p)(42p)(36p) = (42p)(12, 34, 15)(12, 36, 34),

F1(p) + F3(p) = (13p)(42p)(56p) = (42p)(12, 56, 34)(12, 13, 34).

Collecting this together we obtain that the value of1
6C atp is equal to

(12, 43, 56)(42p)[(12, 34, 15)(12, 36, 34) + (125)(436)(12, 13, 34)).
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It remains to check that

(12, 34, 15)(12, 36, 34) + (125)(436)(12, 13, 34)

= (125)(314)(123)(364) + (125)(463)(123)(134) = 0.

Recall that the Segre cubic has 15 planes defined by the equations

Πij,kl.mn : zi + zj = zk + zl = zm + zn = 0,

where{i, j} ∪ {k, l} ∪ {m,n} = [1, 6]. The intersection of this plane with the hyper-
planeH :

∑
aizi = 0 is the union of three lines on the cubic surface. In this way we

see 15 lines. Each hyperplaneHij : zi = zj = 0 cuts out the Segre cubicS3 along
the union of three planesΠij,kl,mn,, where the union of{k, l} and{m,n} is equal to
[1, 6] \ {i, j}. The hyperplaneH intersectsHij ∩ S3 along the union of three lines.
Thus we see 15 tritangent planes and 15 lines forming a configuration(153). This is
a subconfiguration of the configuration(275, 453) of 27 lines and 45 tritangent planes
on a nonsingular cubic surface. The dual of the hyperplanesHij define 15 points in
the dualP4. The duals of the planesΠij,kl,mn are 15 lines. The 15 lines and 15 points
form a configuration(153) in the dual space. The Igusa-Richmond quartic dual of the
Segre cubic is singular along the 15 lines.

9.4.5 Moduli spaces of cubic surfaces

The methods of the Geometric Invariant Theory (GIT) allows one to construct the mod-
uli space of nonsingular cubic surfacesMcub as an open subset of the GIT-quotient

P(S3(C4)∨)//SL(4) = Proj
∞⊕
d=0

Sd(S3(C4)∨)∨)SL(4). (9.52)

The analysis of stability shows that, except one point, the points of this variety represent
the orbits of cubic surfaces with ordinary double points. The exceptional point corre-
sponds to the isomorphism class of a unique surface with threeA2-singularities. So,
the GIT-quotient can be taken as a natural compactificationM̄cub of the moduli space
Mcub. The computations from the classical invariant theory due to G. Salmon [353],
[358] and A. Clebsch [74] (see a modern exposition in [226]) show that the invari-
ant graded ring in (9.52) is generated by elementsId of degreesd = 8, 16, 24, 32, 40,
and100 (a modern proof of completeness can be found in [26]). The first four basic
invariants are invariants with respect to the groupGof invertible matrices with the de-
terminant equal to±1. This explains why their degrees are divisible by 8 (see [136]).
The last invariant is what the classics called a skew invariant, it is not an invariant ofG
but an invariant of SL(4). There is one basic relation expressingI2

100 as a polynomial
in the remaining invariants. The graded subalgebra generated by elements of degree
divisible by 8 is freely generated by the first 5 invariants. Since the projective spectrum
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of this subalgebra is isomorphic to the projective spectrum of the whole algebra, we
obtain an isomorphism

M̄cub
∼= P(8, 16, 24, 32, 40) ∼= P(1, 2, 3, 4, 5). (9.53)

The discriminant∆ of a homogeneous cubic form in four variables is expressed in
terms of the basic invariants by the formula

∆ = (I2
8 − 64I16)2 − 214(I32 + 2−3I8I24) (9.54)

(the exponent−3 is missing in Salmon’s formula, it has been corrected in [112]).
We may restrict the invariants to the open Zariski subset of Sylvester nondegenerate

cubic surfaces, It allows one to identify the first four basic invariants with symmetric
functions of the coefficients of the Sylvester equations. Salmon’s computations give

I8 = σ2
4 − 4σ3σ5, I16 = σ1σ

3
5 , I24 = σ4σ

4
5 , I32 = σ2σ

6
5 , I40 = σ8

5 , (9.55)

whereσi are elementary symmetric polynomials. Evaluating∆ from above, we obtain
a symmetric polynomial of degree 8 obtained from (9.35) by eliminating the irrational-
ity.

The invariantI40 restricts to(a0a1a2a3a4)8. It does not vanish on the set of
Sylvester non-degenerate cubic surfaces. Its locus of zeros is the closure of locus of
Sylvester-degenerat nonsingular cubic surfaces.

The skew invariantI100 is given by the equation

I100 = (a0a1a2a3a4)19 det


a0 a1 a2 a3 a4

a−1
0 a−1

1 a−1
2 a−1

3 a−1
4

a2
0 a2

1 a2
2 a2

3 a2
4

a3
0 a3

1 a3
2 a3

3 a3
4

 .

It vanishes on the closure of the locus of nonsingular surfaces with an Eckardt point .
Observe that it vanishes ifai = aj and that agrees with Example9.1.3.

Following [112] we can interpret (9.55) as a rational map

P(C4)/S5
∼= P(1, 2, 3, 4, 5)− → M̄cub

∼= P(1, 2, 3, 4, 5).

We have

σ1 =
I16
σ3

5

, σ2 =
I32
σ6

5

, σ3 =
I2
24 − I8I40

σ9
5

, σ4 =
I24I40
σ12

5

, σ5 =
I2
40

σ15
5

.

This gives the inverse rational map

M̄cub− → P(C4)/S5.

The map is not defined at the set of points where all the invariantsI8d vanish exceptI8.
It is shown in [112], Theorem 6.1 that the set of such points is the closure of the orbit
of a Fermat cubic surface.

One can also make explicit the GIT-spaceP 6
2 of ordered sets of 6 points in the

plane. It can be viewed as a compactification of the the moduli spaceMm
cub of marked
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nonsingular cubic surfaces, i.e. nonsingular cubic surfaces together with a choice of
a geometric marking (or, equivalently, a choice of an order of its 27 lines) SinceŪi ∈
R6

2(1), we obtain a regular map

Φ : P 6
2 → P4

defined by(Ū1, . . . , Ū6). It can be shown that this map is of degree 2 and factors
through theassociation involution(see [130]). Let (p1, . . . , p6) be a general point set
andS be a cubic surface isomorphic to its blow-up. The point set defines six skew
lines `1, . . . , `6 on S. Let `′1, . . . , `

′
6 be the six skew lines such that(`1, . . . , `6) and

(`′1, . . . , `
′
6) form the double-six. The blowing down of`′1, . . . , `

′
6 defines an ordered

set of points(p′1, . . . , p
′
6) whose orbit is the value of the association involution on the

orbit of (p1, . . . , p6). This agrees with Theorem9.4.7. Note that the graded ringR6
2

is generated by the functions̄Ui (or (ijk)(lmn)) and a functionΥ from R6
2(2). The

association involution is the identity on(R6
2) and sendsΥ to−Υ.

The morphismΦ is S6-equivariant, whereS6 acts onP 6
2 via permuting the factors

in (P2)6 and acts inP4 via the composition of the standard irreducible5-dimensional
representation and the outer automorphismα. This representation corresponds to the
partition6 = 2 + 2 + 2 and differs from the representation of type3 + 3 by the sign-
representation. Passing to invariants we obtain a map of degree 2:

P 6
2 /S6 → P4/S6

∼= P(2, 3, 4, 5, 6). (9.56)

This defined a birational isomorphism between the moduli space of nonsingular cubic
surfaces together with a choice of a double-sixer and the weighted projective space
P(2, 3, 4, 5, 6) (or, equivalently, the moduli space of sets unordered six points in the
plane modulo the association involution).

The set of fixed points of the association involutionτ onP 6
2 is represented by or-

dered point sets(p1, . . . , p6) lying on a conic.The involution commutes with the action
of S6. Its descent̄τ to the quotientP 6

2 /S6 acquires more fixed points represented by
point sets(p1, . . . , p6) such that the associated set is projectively equivalent to the same
set but in different order. For example, assume that the linesp1, p2, p3, p4, p5, p6 have
a common point. By Lemma9.4.10, this happens if and only the function(12, 34, 56)
vanishes at this set. By (9.43) (with Ui replaced byŪi), this is equivalent to vanish-
ing of Ū4 − Ū5 which is equal toa4 − a5 in the Cremona hexahedral equation. The
intersection point of the three lines defines an Eckardt point on the cubic surfaceS cor-
responding to the set(p1, . . . , p6). By Proposition9.1.13, the projection from this point
defines an automorphismg of S such that in the geometric basis(e1, . . . , e6) of Pic(S)
defined by(p1, . . . , p6) it g∗ acts as the permutation(12)(34)(56). This shows that the
set(p2, p1, p4, p3, p6, p5) is projectively equivalent to the set(p1, . . . , p6). Conversely,
one can show that a point set(p1, . . . , p6) corresponding to a nonsingular cubic surface
defines is a fixed point of the involution̄τ lies in the locus of zeros of some function
Ūi − Ūj , i 6= j [85], Part I (16).

It follows from the above discussion that the ramification locus of the double cover
(9.56) is equal to the locus of zeros of the product of two functions: the functionΥ
defining the locus of point sets on a conic and the function∆ equal to the product
of the differences̄Ui − Ūj . The branch locus inP4/S6 is equal to the locus of the
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product of two functions: one is the symmetric functionσ2
2 − 4σ4 defining the Igusa-

Richmond quartic inP4 and the functionD2, whereD equal to the discriminant of the
polynomial(X − a1) · · · (X − a6). The first part of the branch locus is isomorphic to
P(2, 3, 5, 6) and hence is irreducible. The second part is isomorphic to the discriminant
hypersurface, also known to be irreducible.

Remark9.4.2. It is easy to see that under the Veronese mapν : P1 → P2, we have
ν∗((ij)(kl)(mn)) = [ij][kl][mn](ij)(kl)(mn) ∈ R6

1. Under the isomorphismP 6
1
∼=

S3 these functions define the quadrics through the singular points of the Segre cubic
S3. This can be interpreted by asserting that the composition of rational maps

P 6
1

ν2
− → P 6

2
Φ−→ P4

is given by polar quadrics of the Segre cubic. One can show that its image is a hy-
persurface of degree 4 isomorphic to the dual hypersurface ofS3 (see[130]). This
hypersurface is isomorphic to the Igusa-Richmond quartic.

A cubic surface inP3 can be given as a hyperplane section of a cubic threefold in
P4 = |W |. In this way the theory of projective invariant of cubic surfaces becomes
equivalent to the theory of projective invariants of PGL(5) in the spaceS3W∨ ×W∨.
The Cremona hexahedral equations of a cubic surface represents a subvariety of this
representation isomorphic toC6. The Clebsch transference principle (see for a modern
explanation [226]) allows one to express projective invariants of GL(4) as polynomial
functions onC6. The degree of an invariant polynomial of degreem equal to their
weights3m/4. In particular, the basic polynomialsI8, . . . , I100 become polynomials
J6, J12, J18, J24, J30, J75 in (a1, . . . , a6) of degrees indicated in the subscript. The
first five polynomials are symmetric polynomials ina1, . . . , a6, the last one is a skew-
symmetric polynomial. For example,

J6 = 24(4σ3
2 − 3σ2

3 − 16σ2σ4 + 12σ6)

(see [85] Part III, p. 336, and [390]).
The skew-invariantJ75 defining the locus of cubic surfaces with an Eckardt points

is reducible. It contains as a factor of degree 15 the discriminant
∏
i<j(ai − aj) of the

polynomial(X − a1) · · · (X − a6). The remaining factor of degree 60 is equal to the
product of 30 polynomials of the form

T1256;3 = (126)(356)(134)(253)− (136)(256)(123)(354), (9.57)

where we use Lemma9.4.11to express the product of two brackets as a functionai +
aj + ak. The vanishing ofT1256;3 expresses the condition that the conic through the
pointsp1, p2, p3, p5, p6 is touched atp3 by the linep3, p4 (equivalently, the tritangent
plane defined by the linese3, 2e0− e1− e2− e3− e5− e6, e0− e3− e4 has an Eckard
point).

We can also find the expression of the discriminant invariant∆ (9.54) in terms of
the coefficientsa0, . . . , a5.

The cubic surface given by(a0, . . . , a5) is singular if and only ifp1, . . . , p6 lie on a
conic or there are three collinear point among them. Applying Lemma9.4.11, we find
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that the latter condition is expressed by vanishingai+ak +ak for some distincti, j, k.
Since the coefficients add up to 0, we see that we have 10 linear equations of this sort.
The former condition is given by the equation

d2 = (341)(561)(532)(462)− (342)(562)(531)(461) (9.58)

similar to (9.57). If we replace in this expression6 with x, and letx vary we get an
equation of a conic. Whenx = 1, 2, 3, 4, 5, the expression vanishes. Thus this conic
passes through the pointsp1, . . . , p5. Putting backx = 6, we wee (9.58) vanishes if
and only if the six points are on a conic.

The expressiond2 is an invariant of degree 2 of 6 points from the ringR6
2 which

coincides with the functionΥ. The squared2
2 is a polynomial of degree 4 in a spanning

set ofR6
2(1). It is a symmetric expression in(1, . . . , 6) equal toσ2

2−4σ4. Thus we see
that the discriminant invariant in(a0, . . . , a5), being of of degree 24, must be a scalar
multiple of the product of powers of(σ2−4σ4) and powers of(ai+aj +ak), 1 ≤ i <
j < k ≤ 5. The only way to make a symmetric polynomial of degree 24 in this way
is to take all factors in the first power. We also use thatσ1 vanishes on(a0, . . . , a5).
The computer computation gives the following expression in terms of the elementary
symmetric polynomials.

∆ = (σ2
2 − 4σ4)(σ

4
3σ

2
4 − 2σ2σ

3
3σ4σ6 + σ2

2σ
2
3σ

2
5 + 2σ2

3σ4σ
2
5 − 2σ2σ3σ

4
5 + 2σ2σ3σ4σ6−

8σ2
3σ

2
4σ6 − 2σ3

2σ3σ5σ6 + 8σ2σ3σ4σ5σ5σ6 + 2σ2
2σ

2
5σ6 + σ4

2σ
2
6 − 8σ2

2σ4σ
2
6 + 16σ2

4σ
2
6)

Remark9.4.3. The story goes on. The groupW (E6) acts birationally on the space
P 6

2 by changing the markings and Coble describes in [85], Part III, rational invariants
of this action. He also defines a linear system of degree 10 of elements of degree 3
in R6

2 which gives aW (E6)-equivariant embedding of a certain blow-up ofP 6
2 in P9

corresponding to some irreducible 10-dimensional linear representation of the Weyl
group. We refer for a modern treatment of this construction to [88], [178]. Other
W (E6)-equivariant birational models ofR6

2 were given in [298] and [199]. We also
refer to a recent construction of the GIT-moduli space of cubic surfaces as a quotient
of a complex 4-dimensional ball by a reflection group [5],[139]. The embedding of the
moduli spaces inP9 by means of automorphic forms on the 4-dimensional complex
ball is discussed in [168], [6].

9.5 Automorphisms of cubic surfaces

9.5.1 Elements of finite order in Weyl groups

Let W be the Weyl group of a simple root system of typeA,D,E. The conjugacy
classes of elements of finite order can be classified. We will follow the classification
due to R. Carter [43].

We know that eachw ∈ W is equal to the product of reflections with respect to
rootsα. Let l(w) be the smallest numberk of roots such thatw can be written as such
a product. This number is equal to the number of eigenvalues ofw in QC different
from 1. If w = rα1 . . . rαl(w) , then the corresponding roots are linearly independent.
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Each elementw can be written as the productw = w1w2, wherew2
1 = w2

2 = 1
and l(w) = l(w1) + l(w2). Moreover, ifw1 = rα1 . . . rαl(w1) , where the rootsαi

are orthogonal to each other. The same is true forw2 = rβ1 · · · rβl(w2) . Each such
decomposition defines theCarter graphΓ(w) of w. Its vertices correspond to each
root in the decomposition of

w = rα1 . . . rαl(w1)rβ1 · · · rβl(w2) .

Two vertices corresponding toαi andβj are joined by an edge if(αi, βj) 6= 0.

Example9.5.1. SupposeQ is the root lattice of typeAn. Its Weyl group is the symmet-
ric groupSn+1. Letσ = (i1, . . . , i2k) be a2k-cycle. It is the product of transpositions
(i1i2) . . . (i2k−1i2k). Write

σ = (i1i2)(i3i4)(i3i4)(i2i3)(i3i4) . . . (i2k−1i2k) = (i1i2)(i3i4)(i2i4) . . . (i2k−1i2k).

Continuing in this way we will be able to writeσ as the product of two involutions

σ = [(i1i2)(i3i4) . . . (i2k−1i2k)][(i2i3)(i4i5) . . . (i2k−2i2k−1)].

Each transposition(ij) is the reflection with respect to the rootei − ej , where we
consider the latticeQ as the sublattice ofZn+1 formed by the vectors perpendicular to
e1 + · · ·+en+1. Now it is easy to see that the Carter graph ofσ is the Dynkin diagram
of typeA2k. The same conclusion can be derived in the case whenσ is cycle of odd
length. Since any permutation is the product of commuting cycles, we obtain that the
Carter graph of a permutation is equal to the disconnected sum of graphs of typeAk.

Carter proves that two elements in the Weyl groupW (Q) are conjugate if and only
if their graphs coincide. Anytime we embed the root latticeQ in a root latticeQ′, we
get an embedding of the Weyl groupsW (Q) ↪→ W (Q′). Since the conjugacy class in
W (Q) is determind by the Carter graph, we see that two nonconjugate elements in the
subgroup stay nonconjugate in the group.

Each Carter graphΓ has the following properties:

• Its vertices correspond to linearly independent roots.

• Each subgraph ofΓ which is a cycle contains even number of vertices.

• Each graph without cycles is a Dynkin diagram of some root latticeQ′. The
corresponding sublattice ofQ defines the embedding ofW (Q′) inW (Q) and the
conjugacy class corresponding toΓ can be represented by the Coxeter element
in W (Q).

Recall that theCoxeter elementis a product of reflections corresponding to simple roots
(forming a root basis ofQ). Its order is theCoxeter numberof the Weyl group.

The graphs corresponding to subroot lattices can be described by the Borel-De
Siebenthal-Dynkin.

Letw ∈W (Q), its characteristic polynomial in its linear action onQC can be read
off from the diagram.

The following table contains the list of connected components of Carter’s graphs,
the orders of the corresponding elements and the characteristic polynomial.
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Graph Order Characteristic polynomial
Ak k + 1 tk + tk−1 + · · ·+ 1
Dk 2k − 2 (tk−1 + 1)(t+ 1)
Dk(a1) l.c.m(2k − 4, 4) (tk−2 + 1)(t2 + 1)
Dk(a2) l.c.m(2k − 6, 6) (tk−3 + 1)(t3 + 1)
...

...
...

Dk(a k
2−1) evenk (t

k
2 + 1)2

E6 12 (t4 − t2 + 1)(t2 + t+ 1)
E6(a1) 9 t6 + t3 + 1
E6(a2) 6 (t2 − t+ 1)2(t2 + t+ 1)
E7 18 (t6 − t3 + 1)(t+ 1)
E7(a1) 14 t7 + 1
E7(a2) 12 (t4 − t2 + 1)(t3 + 1)
E7(a3) 30 (t5 + 1)(t2 − t+ 1)
E7(a4) 6 (t2 − t+ 1)3(t+ 1)
E8 30 t8 + t7 − t5 − t4 − t3 + t+ 1
E8(a1) 24 t8 − t4 + 1
E8(a2) 20 t8 − t6 + t4 − t2 + 1
E8(a3) 12 (t4 − t2 + 1)2

E8(a4) 18 (t6 − t3 + 1)(t2 − t+ 1)
E8(a5) 15 t8 − t7 + t5 − t4 + t3 − t+ 1
E8(a6) 10 (t4 − t3 + t2 − t+ 1)2

E8(a7) 12 (t4 − t2 + 1)(t2 − t+ 1)2

E8(a8) 6 (t2 − t+ 1)4

Table 9.2: Carter graphs and characteristic polynomials

9.5.2 Subgroups ofW (E6)

We will need some known information about the structure of the Weyl groupW (E6).

Lemma 9.5.1. LetH be a maximal subgroup ofW (E6). Then one of the following
cases occurs:

(i) H ∼= 24 : S5 of order24 · 5! and index 27;

(ii) H ∼= S6 × 2 of order2 · 6! and index 36;

(iii) H ∼= 31+2
+ : 2S4 of order1296 and index 40;

(iv) H ∼= 33 : (S4 × 2) of order1296 and index 40;

(v) H ∼=
(
2.(A4 × A4).2

)
.2 of order is1152 and index 45.

Here we use the ATLAS [90] notations for cyclic groups:Z/nZ = n and semi-
direct products:H n G = H : G, 31+2

+ denotes the group of order33 of exponentp,
A.B is a group with normal subgroup isomorphic toA and quotient isomorphic toB.
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We recognize a group from (i) as the stabilizer subgroup of an exceptional vector
(or a line on a cubic surface). If we choose a simple root basis(α0, . . . ,α5) such
that the exceptional vector is equal toα∗5, thenH is generated by the reflectionssi =
sαi

, i 6= 5. It is naturally isomorphic to the Weyl groupW (D5).
A groupH of type (ii) is the stabilizer subgroup of a double-six. The subgroupS6

permutes the lines, the subgroup2 switches the two sixers. In the geometric root basis
α0 = e0 − e1 − e2 − e3,αi = ei − ei+1, the stabilizer subgroup of the double-sixer
(e1, . . . , e6; e′1, . . . , e

′
6), wheree′i = 2e0−e1−. . .−e6+ei, generated by permutations

of ei’s and the reflection with respect to the maximal root2e0 − e1 − . . .− e6.
A group of type (iv) is the stabilizer subgroup of a Steiner triad of a double-sixers.
A group of type (v) is the stabilizer subgroup of a tritangent plane (or a triple of

exceptional vectors added up to 0).

Proposition 9.5.2.W (E6) contains a unique normal subgroupW (E6)′. It is a simple
group and its index is equal to 2.

Proof. Choose a root basis(α0, . . . , α5) in the root latticeE6. Let s0, . . . , s5 be the
corresponding simple reflections. Each elementw ∈ W (E6) can be written as a prod-
uct of the simple reflections. Let`(w) is the minimal length of the word needed to write
w as such a product. For example,`(1) = 0, `(si) = 1. One shows that the function
` : W (E6) → Z/2Z, w 7→ `(w) mod 2 is a homomorphism of groups. Its kernel
W (E6)′ is a subgroup of index 2. The restriction of the function` to the subgroup
H ∼= S6 generated by the reflectionss1, . . . , s5 is the sign function. SupposeK is a
normal subgroup ofW (E6)′. ThenK ∩ H is either trivial or equal to the alternating
subgroupA6 of index 2. It remains to use thatH × (r) is a maximal subgroup of
W (E6) andr is a reflection which does not belong toW (E6)′.

Remark9.5.1. Recall that we have an isomorphism (9.7) of groups

W (E6) ∼= O(6,F2)−.

The subgroupW (E6)′ is isomorphic to the commutator subgroup of O(6,F2)−.

Let us mention other realizations of the Weyl groupW (E6).

Proposition 9.5.3.
W (E6)′ ∼= SU4(2),

whereU4(2) is the group of linear transformations with determinant 1 ofF4
4 preserving

a nondegenerate Hermitian product with respect to the Frobenius automorphism ofF4.

Proof. Let F : x 7→ x2 be the Frobenius automorphism ofF4. We view the expression

3∑
i=0

x3
i =

3∑
i=0

xiF(xi)

as a nondegenerate hermitian form inF4
4. Thus SU4(2) is isomorphic to the subgroup

of the automorphism group of the cubic surfaceS defined by the equation

t30 + t31 + t32 + t33 = 0
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over the fieldF̄2. The Weyl representation (which is defined for nonsingular cubic
surfaces over fields of arbitrary characteristic) of Aut(S) defines a homomorphism
SU4(2) → W (E6). The group SU4(2) is known to be simple and of order equal to
1
2 |W (E6)|. This defines an isomorphism SU4(2) ∼= W (E6)′.

Proposition 9.5.4.

W (E6) ∼= SO(5,F3), W (E6)′ ∼= SO(5,F3)+,

whereSO(5,F3)+ is the subgroup of elements of spinor norm 1.

Proof. Let Q̄ = Q/3Q. Since the discriminant of the latticeE6 is equal to 3, the
symmetric bilinear form defined by

〈v + 3Q,w + 3Q〉 = −(v, w) mod 3

is degenerate. It has one-dimensional radical spanned by the vector

v0 = 2α1 + α1 + 2α4 + α5 mod 3Q.

The quadratic formq(v) = (v, v) mod 3 defines a nondegenerate quadratic form on
V = Q̄/F3v0 ∼= F5

3. We have a natural injective homomorphismW (E6)→ O(5,F2).
Comparing the orders, we find that the image is a subgroup of index 2. It must coincide
with SO(5,F3). Its unique normal subgroup of index 2 is SO(5,F3)+.

Remark9.5.2. Let V be a vector space of odd dimension2k + 1 over a finite fieldFq
equipped with a nondegenerate symmetric bilinear form. An elementv ∈ V is called a
plus vector(resp.minus vector) if (v, v) is a square inF∗q (resp. is not a square∈ F∗q).
The orthogonal group O(V ) has three orbits in|E|: the set of isotropic lines, the set
of lines spanned by a plus vector and the set of lines spanned by a minus vector. The
isotropic subgroup of a non-isotropic vectorv is isomorphic to the orthogonal group
of the subspacev⊥. The restriction of the quadratic form tov⊥ is of Witt indexk if
v is a plus vector and of Witt indexk − 1 if v is a minus vector. Thus the stabilizer
group is isomorphic to O(2k,Fq)±. In our case, whenk = 2 andq = 3, we obtain that
minus vectors correspond to cosets of roots inQ̄, hence the stabilizer of a minus vector
is isomorphic to the stabilizer of a double-six, i.e. a maximal subgroup ofW (E6) of
index 36. The stabilizer subgroup of a plus vector is a group of index 45 and isomorphic
to the stabilizer of a tritangent plane. The stabilizer of an isotropic plane is a maximal
subgroup of type (iii), and the stabilizer subgroup of an isotropic line is a maximal
subgroup of type (iv).

9.5.3 Automorphisms of finite order

Since any automorphism of a nonsingular cubic surfaceS preserves| − KS |, it is
induced by a projective transformation. After diagonalization we may assume that any
automorphism is represented by a diagonal matrix with roots of unity as its entries.
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Lemma 9.5.5. LetS = V (f) be a nonsingular cubic surface which is invariant with
respect to a projective transformationσ of ordern > 1. Then, after a linear change
of variables,f is given in the following list. Also, a generator of the group〈σ〉 can be
defined by[x0, x1, x2, x3] 7→ [x0, ζ

a
n, ζ

b
nx2, ζ

c
nx3], whereζn is a primitiven-th root of

unity:

(i) (n = 2), (a, b, c) = (0, 0, 1),

f = t23l1[t0, t1, t2] + t30 + t31 + t32 + at0t1t2.

(ii) (n = 2), (a, b, c) = (0, 1, 1),

f = t0t2(t2 + at3) + t1t3(t3 + bt3) + t30 + t31.

(iii) (n = 3), (a, b, c) = (0, 0, 1),

f = t33 + t30 + t31 + t32 + at0t1t2.

(iv) (n = 3), (a, b, c) = (0, 1, 1),

f = l3(t0, t1) +m3(t2, t3).

(v) (n = 3), (a, b, c) = (0, 1, 2),

f = l3(t0, t1) + t2t3l1(t0, t1) + t32 + t33.

(vi) (n = 4), (a, b, c) = (0, 2, 1),

f = t23t2 + t30 + t31 + t22(t0 + at1).

(vii) (n = 4), (a, b, c) = (2, 3, 1),

f = t30 + t0t
2
1 + t1t

2
3 + t1t

2
2.

(viii) (n = 5), (a, b, c) = (4, 1, 2),

f = t20t1 + t21t2 + t22t3 + t23t0,

(ix) (n = 6), (a, b, c) = (0, 3, 2),

f = l3(t0, t1) + t33 + t22(t0 + at1).

(x) (n = 6), (a, b, c) = (0, 2, 5),

f = t30 + t31 + t23t2 + t32.

(xi) (n = 6), (a, b, c) = (4, 2, 1),

f = t23t1 + t30 + t31 + t32 + λt0t1t2.
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(xii) (n = 6), (a, b, c) = (4, 1, 3),

f = t30 + bt0t
2
3 + t22t1 + t31.

(xiii) (n = 8), (a, b, c) = (4, 3, 2),

f = t23t1 + t22t3 + t0t
2
1 + t30.

(xiv) (n = 9), (a, b, c) = (4, 1, 7),

f = t23t1 + t21t2 + t22t3 + t30.

(xv) (n = 12), (a, b, c) = (4, 1, 10),

f = t23t1 + t22t3 + t30 + t31.

Here the subscripts inli,mi indicate the degree of the polynomial.

Proof. Choose a coordinate system whereσ diagonalizes as in the statement of the
lemma. Letp1 = [1, 0, 0, 0], . . . , p4 = [0, 0, 0, 1] be the reference points. They are
fixed under the action ofσ in P3. We will use frequently thatf is of degree≥ 2 in
each variable. This follows from the assumption that the surface is nonsingular. We
will also give a normal form of the equation with minimal number of parameters which
is easy to get and is left to the reader.

Case 1: Two of a, b, c, saya, b, are equal to zero. Writef as a polynomial int3.
Assumep3 6∈ V (f). Then

f = t33 + t23l1(t0, t1, t2) + t3l2(t0, t1, t2) + l3(t0, t1, t2).

Sincef is an eigenvector with the eigenvalue equal toζ3c
n andl3 6= 0, we must have

n = 3 andl1 = l2 = 0. This is case (iii). Assumep3 ∈ V (f). Then

f = t23l1(t0, t1, t2) + t3l2(t0, t1, t2) + l3(t0, t1, t2).

As above this givesn = 2, l2 = 0. This is case (i).
Case 2: One of(a, b, c), saya, is equal to zero. Writef as a polynomial in the

form
f = l3(t0, t1) + t0l2(t2, t3) + t1m2(t2, t3) +m3(t2, t3).

Assume thatl2 = m2 = 0. If m3 is of degree 3 int3 or t2, sayt2, then3b = 0
mod n. If l3 is of degree 3 int3 too, we get3c = 0 mod n, hencen = 3. Without
loss of generality, we may assume that(b, c) = (1, 1) or (2, 1). In the first casem3 is
any polynomial int2, t3 of degree≥ 2 in t2, t3. This is case (iv). In the second case
m3 = t33 + t32. This is a special case of case (v).

If m3 is of degree2 in t3, thenl3 containst23t2, hence2c + b = 0 mod n. This
givesn = 6, (a, b, c) = (0, 2, 5). This is case (x).

Assume now thatl2 orm2 is not equal to zero. Ift22, t
2
3 do not enter inl2 andm2,

thent0t1 must enter in one of them. This givesb+ c = 0 mod n. If t32 or t32 enters in
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m3, then3b = 0 mod n or 3c = 0 mod n. This givesn = 3, (a, b, c) = (0, 1, 2) or
(0, 2, 1). This is case (v). Ift32, t

3
3 do not enter inm3, thent22t3 andt2t23 both enter and

we get2b+ c = b+ 2c = 0 mod n. This again impliesn = 3 and we are in case (v).
Now we may assume thatt22 enters inl2 or m2, then2b = 0 mod n. If t23 also

enters inl2 orm2, then2c = 0 mod n. This impliesn = 2 andm3 = 0. This is case
(ii).

If t23 does not enter inl2 andm2, thenm3 is of degree≥ 2 in t3. If t33 enters inm3,
then3c = 0 mod n, hencen = 6 and(a, b, c) = (0, 3, 2). Thus

f = l3(t0, t1) + t22m1(t0, t1) + t33.

This gives case (ix).
If t23 andt32 do not enter inl2 and inm2 but t2t3 enters in one of these polynomials,

then we getb + c = 0 mod n. If t23t2 enters inl3, thenb + 2c = 0 mod n, hence
4c = 0 andn = 4, (a, b, c) = (0, 2, 1) or (0, 2, 3). This is case (vi).

Case 3: 0, a, b, c are all distinct. Note that if two of(a, b, c) are equal, then, by
scaling and permuting coordinates, we will be in the previous Cases. This obviously
implies thatn > 3. Also monomialst2i tj andtit2j cannot both enter inf .

Case 3a. All the reference pointsPi belong to the surface.
In this casef does not contain cubes of the variablesti and we can write

f = t20A1(t1, t2, t3) + t21B1(t0, t2, t3) + t22C1(t0, t1, t3) + t23D1[t0, t1, t2],

whereA1, B1, C1, D1 are nonzero linear polynomials. Since all0, a, b, c are distinct,
each of these linear polynomials contains only one variable. If the coefficients atti and
tj contain the same variabletk, then the planeV (tk) is tangent to the surface along a
line. It is easy to see that this does not happen for a nonsingular surface. Thus, without
loss of generality, we may assume that

f = t20t1 + t21t2 + t22t3 + t23t0.

Thena+b = 2b+c−a = 2c−a = 0 mod n. This impliesn = 5, (a, b, c) = (4, 1, 2).
This is case (viii).

Case 3b. Three reference points belong to the surface.
By scaling and permuting variables we may assume thatp1 does not belong to

V (f). The equation containst30 but does not contain the cubes of other variables.
Sincef is σ-invariant,t20 does not enter inf . We can write

f = t30 + t0f2(t1, t2, t3) + f3(t1, t2, t3). (9.59)

Each line`i = p1, pi does not belong to the surface and contains two fixed points
of σ. Suppose each linèi intersectsV (f) only at one pointpi. Thenf2 does not
contain squares of the variables andf3 contains squares of each variable but not cubes.
Without loss of generality, we may assume thatf3 containst22t3. Then2b + c = 0
mod n. Sincet2t23 does not enter inf3, the monomialt23t1 must enter. This gives
2c+ a = 0 mod n. Solving for(a, b, c) we find thatn = 9, (a, b, c) = (4, 1, 7). The
polynomialf2 cannot containtitj and hence is equal to zero. This gives us case (xiv).
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Now we are in the situation when one of the lines`i intersectsV (f) at a pointp
different frompi. If there is no other point in the intersection, thenp is a third fixed
point of σ on the line. This is impossible, and therefore`i intersects the surface at
three distinct pointspi, p, q. Sinceσ permutesP andQ, we see that the restriction of
σ2 to `i is the identity. Without loss of generality, we may assume thati = 2 and,
hence2a = 0 mod n. Obviously,t21t2, t

2
1t3 do not enter inf3 and one oft22 or t23

does not enter inf2. Assumet22 does not enter inf2. Then the monomialst22t1 or t22t3
enters ing3 with nonzero coefficient. In the first case2b + a = 0 mod n. This gives
n = 4, (a, b, c) = (2, 1, 3) or (2, 3, 1). This leads to case (vii).

In the second case, we get2b+ c = 0 mod n. Sincet23t2 does not enter inf3, t23t1
must enter giving2c+a = 0 mod n. This easily givesn = 8 and(a, b, c) = (4, 3, 2).
This leads to case (xiii).

Case 3c. Two reference points do not belong to the surface. We may assume that
p1, p2 are not in the surface. Thust30, t

3
1 enter inf , hence3a = 0 mod n. We may

assume thatf is as in (9.59), wheret1 enters inf3. Clearly,t21 does not enter ing2. If
t23 (or t22) enters ing2, then2c = 0 mod n, and we getn = 6, (a, b, c) = (2, b, 3) or
(4, b, 3). Sinceb 6= 3, t22 does not enter ing2. Thust22t3 or t22t1 enter ing3. In the first
case2b+ c = 0 mod 6, hence2b = 3 mod 6 which is impossible. Thust22t1 enters
giving 2b+a = 0 mod 6. This gives case(a, b, c) = (4, 1, 3) or (2, 5, 3). This is case
(xii).

Now we may assume thatt23 andt22 do not enter inf2. If t22t1 enters, we are led to
the previous case (xii). So we may assume thatt22t3 enters giving2b + c = 0. This
implies thatt23t1 enters, hence2c+a = 0 mod n. This easily givesn = 12, (a, b, c) =
(4, 1, 10). This is case (xv).

Case 3d. Three reference points do not belong to the surface.
We may assume thatp1, p2, p3 are not in the surface. Thust30, t

3
1, t

3
2 enter inf ,

hence3a = 3b = 0 mod n. We may assume thatf is as in (9.59), wheret1, t2 enter
in f3. Clearly,t21, t

2
2 do not enter inf2. If t23 enters inf2, then2c = 0 mod n, and we

getn = 6, (a, b, c) = (2, 4, 3) or (4, 2, 3). This gives case (xi).
Assumet23 does not enter inf2. Without loss of generality, we may assume that

t23t1 enters inf3. This gives2c + a = 0 mod n. From this follows thatn = 6 and
(a, b, c) = (4, 2, 1). This case is isomorphic to case (xi).

Case 3e. No reference point belongs to the surface.
In this case eacht3i enters inf , hence3a = 3b = 3c = 0 mod n. This is

impossible forn > 3.

In the natural representation of Aut(S) in W (E6) each nontrivial automorphismσ
defines a conjugacy class inW (E6). The following table gives the list of the conjugacy
classes. This can be found in [90], [43], [277].

Here we mark with the cross the conjugacy classes realized by automorphisms of
nonsingular cubic surfaces. Also#C(w) denotes the cardinality of the centralizer of
an elementw from the conjugacy class, Tr denotes the trace in the Picard lattice (equal
to the trace in the root lattice plus 1), Char denotes the characteristic polynomial in
Pic(S) andpe(t) = te + te−1 + · · ·+ 1.
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Atlas Carter Manin Ord #C(w) Tr Char
x 1A ∅ c25 6 51840 7 (t− 1)7

x 2A 4A1 c3 2 1152 -1 p4
1(t− 1)3

x 2B 2A1 c2 2 192 3 p2
1(t− 1)5

2C A1 c16 2 1440 5 p1(t− 1)6

2D 3A1 c17 2 96 1 p3
1(t− 1)4

x 3A 3A2 c11 3 648 -2 p3
2(t− 1)

x 3C A2 c6 3 216 4 p2(t− 1)5

x 3D 2A2 c9 3 108 1 p2
2(t− 1)3

x 4A D4(a1) c4 4 96 3 (t2 + 1)2(t− 1)3

x 4B A1 +A3 c5 4 16 1 p1p3(t− 1)3

4C 2A1 +A3 c19 4 96 -1 p2
1p3(t− 1)3

4D A3 c18 4 32 3 p3(t− 1)4

x 5A A4 c15 5 10 2 p4(t− 1)3

x 6A E6(a2) c12 6 72 2 p2(t2 − t+ 1)2(t− 1)
x 6C D4 c21 6 36 1 p2

1(t
2 − t+ 1)(t− 1)3

x 6E A1 +A5 c10 6 36 -1 p1p5(t− 1)
x 6F 2A1 +A2 c8 6 24 0 p2

1p2(t− 1)3

6G A1 +A2 c7 6 36 2 p1p2(t− 1)4

6H A1 + 2A2 c10 6 36 -1 p1p
2
2(t− 1)2

6I A5 c23 6 12 1 p5(t− 1)2

x 8A D5 c20 8 8 1 p1(t4 + 1)(t− 1)2

x 9A E6(a1) c14 9 9 1 (t6 + t3 + 1)(t− 1)
10A A1 +A4 c25 10 36 0 p1p4(t− 1)2

x 12A E6 c13 12 12 0 p2(t4 − t2 + 1)(t− 1)
12C D5(a1) c24 12 12 2 (t3 + 1)(t2 + 1)(t− 1)2

Table 9.3: Conjugacy classes inW (E6)

To determine to which conjugacy class ourσ corresponds under the Weyl represen-
tation we use the topological Lefschetz Fixed-Point Formula.

The next Theorem rewrites the list from Lemma9.5.5in the same order, renaming
the cases with indication to which conjugacy class they correspond. Also, we simplify
the formulae forf by scaling, and reducing a cubic ternary form to the Hesse form,
and a cubic binary form to sum of cubes, and a quadratic binary forms to the product of
the variables. Each time we use that the forms are nondegenerate because the surface
is nonsingular.

Theorem 9.5.6. Let S be a nonsingular cubic surface admitting a non-trivial auto-
morphismσ of ordern. ThenS is equivariantly isomorphic to one of the following
surfacesV (f) with

σ = [x0, ε
a
nx1, ε

b
nx2, ε

c
nx3] : (9.60)

• 4A1 (n = 2), (a, b, c) = (0, 0, 1),

f = t23f1(t0, t1, t2) + t30 + t31 + t32 + αt0t1t2;
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• 2A1 (n = 2), (a, b, c) = (0, 1, 1),

f = t0t2(t2 + αt3) + t1t3(t2 + βt3) + t30 + t31;

• 3A2 (n = 3), (a, b, c) = (0, 0, 1),

f = t30 + t31 + t32 + t33 + αt0t1t2;

• A2 (n = 3), (a, b, c) = (0, 1, 1),

f = t30 + t31 + t32 + t33;

• 2A2 (n = 3), (a, b, c) = (0, 1, 2),

f = t30 + t31 + t2t3(t0 + at1) + t32 + t33;

• D4(a1) (n = 4), (a, b, c) = (0, 2, 1),

f = t23t2 + f3(t0, t1) + t22(t0 + αt1);

• A3 +A1 (n = 4), (a, b, c) = (2, 1, 3),

f = t30 + t0t
2
1 + t1t

2
3 + t1t

2
2;

• A4 (n = 5), (a, b, c) = (4, 1, 2),

f = t20t1 + t21t2 + t22t3 + t23t0;

• E6(a2) (n = 6), (a, b, c) = (0, 3, 2),

f = t30 + t31 + t33 + t22(αt0 + t1);

• D4 (n = 6), (a, b, c) = (0, 2, 5),

f = f3(t0, t1) + t23t2 + t32;

• A5 +A1 (n = 6), (a, b, c) = (4, 2, 1),

f = t23t1 + t30 + t31 + t32 + λt0t1t2;

• 2A1 +A2 (n = 6), (a, b, c) = (4, 1, 3),

f = t30 + βt0t
2
3 + t22t1 + t31;

• D5 (n = 8), (a, b, c) = (4, 3, 2),

f = t23t1 + t22t3 + t0t
2
1 + t30;
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• E6(a1) (n = 9), (a, b, c) = (4, 1, 7),

f = t23t1 + t21t2 + t22t3 + t30;

• E6 (n = 12), (a, b, c) = (4, 1, 10),

f = t23t1 + t22t3 + t30 + t31.

Proof. We will be computing the trace ofσ∗ by using theLefschetz fixed-point formula∑
(−)iTr(g|Hi(X,Q)) = e(Fix(g)).

We use the classification from Lemma9.5.5.

Order 2.
In case (i), the fixed locus is the nonsingular elliptic curve given by equationst3 =

f3 = 0 and isolated point[0, 0, 0, 1]. The Euler-Poincaré characteristic of the fixed
locus is equal to 1. Hence the trace in Pic(S) is equal to−1. This gives the conjugacy
class2A. In case (ii), the fixed locus is the linet0 = t1 = 0 and three isolated
points lying on the linet2 = t3 (not contained in the surface). The Euler-Poincaré
characteristic of the fixed locus is equal to5. Hence the trace in Pic(S) is equal to3.
This gives the conjugacy class2A1.

Order 3.
In case (iii), the fixed locus is a nonsingular elliptic curve given by equationst3 =

f3 = 0. The Euler-Poincaré characteristic of the fixed locus is equal to 0. Hence the
trace in Pic(S) is equal to−2. This gives the conjugacy class3A2.

In case (iv), the fixed locus is the set of 6 points lying on the linest0 = t1 = 0 and
t2 = t3 = 0. Here we use that the polynomialsf3, g3 do not have multiple roots since
otherwiseS is singular. The Euler-Poincaré characteristic of the fixed locus is equal to
6. Hence the trace in Pic(S) is equal to4. This gives the conjugacy classA2.

In case(iv)′, the fixed locus consists of 3 points lying on the linet2 = t3 = 0.
Hence the trace in Pic(S) is equal to1. This gives the conjugacy class2A2.

In case (v), the fixed locus is the set of 3 points lying on the linet2 = t3 = 0.
Again we use thatf3 does not have multiple roots. The Euler-Poincaré characteristic
of the fixed locus is equal to 3. Hence the trace in Pic(S) is equal to1. This gives the
conjugacy class2A2.

Order 4.
In case (vi), the fixed locus is the set of 5 points lying on the linest0 = t1 = 0

and two reference pointsP3 = [0, 0, 1, 0] andP4 = [0, 0, 0, 1]. The Euler-Poincaré
characteristic of the fixed locus is equal to 5. Hence the trace in Pic(S) is equal to3.
This gives the conjugacy classD4(a1) or 4D. To distinguish the two classes, we notice
thatσ2 acts as in case (i). This implies thatσ2 belongs to the conjugacy class4A1. On
the other hand, the characteristic polynomial of4D shows that4D2 is the conjucacy
class2A1. Thus we have the conjugacy classD4(a1).

In case (vii), we have three isolated fixed points[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0].
Thus the trace is equal to 1. This gives the conjugacy classA1 +A3.
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Order 5.
This is the unique conjugacy class of order 5. It is realized in case (viii). We have

4 isolated fixed points confirming that the trace is equal to 2.

Order 6.
In case (ix) we have 4 isolated fixed points so that the trace is equal to 2. This gives

possible conjugacy classesE6(a2), D4, A1 + A2. We know that our surface isσ2-
equivariantly isomorphic to a surface from case (iii). Thusσ2 belongs to the conjugacy
class3A2. Using the characteristic polynomials we check that only the square of the
conjugacy classE6(a2) is equal to3A2.

In case (x) we have 4 isolated fixed points. This gives that the trace is equal to2.
It is clear thatσ3 acts as in case (i), thusσ3 belongs to4A1. Also σ2 acts as in case
(iv). This shows thatσ2 belongs toA2. Comparing the characteristic polynomials, this
leaves only the possibility thatσ belongs toD4.

In case (xi) we have only one isolated fixed point[0, 0, 0, 1]. This gives that the
trace is equal to−1 and henceσ belongs toA1 +A5.

In case (xii) we have 2 isolated fixed points so that the trace is equal to 2. The only
conjugacy class with trace zero is2A1 +A2.

Order 8.
D5 is the unique conjugacy class of order 8. Its trace is 1. This agrees with case

(xiii), where we have 3 fixed points.

Order 9.
E6(a1) is the unique conjugacy class of order 9. Its trace is 1. This agrees with

case (xiv), where we have 3 fixed points.

Order 12.
We have 2 fixed points giving the trace ofσ equal to 0. This chooses the conjugacy

classE6.

Remark9.5.3. Some of the conjugacy classes (maybe all ?) are realized by automor-
phisms of minimal resolutions of singular surfaces. Also two non-conjugate elements
from Aut(S) may define the same conjugacy class inW (E6). An example is an auto-
morphismσ from the conjugacy class3A2 and its square.

9.5.4 Automorphisms groups

In the following table we use the notationH3(3) for the Heisenberg group of unipotent
3× 3-matrices with entries inF3.

Theorem 9.5.7. The following is the list of all possible groups of automorphisms of
nonsingular cubic surfaces.

Proof. Let S be a nonsingular cubic surface andG be a subgroup of Aut(S). Suppose
G contains an element of order 3 from the conjugacy classA2. Applying Theorem
9.5.6, we see thatS is isomorphic to the Fermat surfaceV (t30 + t31 + t32 + t33). It
has 27 lines given by the equationst0 + εt1 = 0, t2 + ηt3 = 0, ε3 = η3 = −1, or
their transforms under permuting the variables. It is clear that any automorphism of
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Type Order Structure f(t0, t1, t2, t3) Parameters

I 648 33 : S4 t30 + t31 + t32 + t33
II 120 S5 t20t1 + t0t22 + t2t23 + t3t21
III 108 H3(3) : 4 t30 + t31 + t32 + t33 + 6at1t2t3 20a3 + 8a6 = 1

IV 54 H3(3) : 2 t30 + t31 + t32 + t33 + 6at1t2t3 a− a4 6= 0,

8a3 6= −1,

20a3 + 8a6 6= 1

V 24 S4 t30 + t0(t21 + t22 + t23) 9a3 6= 8a,

+at1t2t3 8a3 6= −1

VI 12 S3 × 2 t32 + t33 + at2t3(t0 + t1) + t30 + t31 a 6= 0

VII 8 8 t23t2 + t22t1 + t30 + t0t21
VIII 6 S3 t32 + t33 + at2t3(t0 + bt1) + t30 + t31 a3 6= −1

IX 4 4 t23t2 + t22t1 + t30 + t0t21 + at31 a 6= 0

X 4 22 t20(t1 + t2 + at3) + t31 + t32
+t33 + 6bt1t2t3 8b3 6= −1

XI 2 2 t31 + t32 + t33 + 6at1t2t3 b3, c3 6= 1,

+t20(t1 + bt2 + ct3) b3 6= c3,

8a3 6= −1

Table 9.4: Groups of automorphisms of cubic surfaces

S permutes the planesti + εtj = 0 and hence Aut(S) consists of permutations of the
variables and multiplying the variables by cube roots of unity. This gives case I. It is
easy to see that each planeti + εtj = 0 is a tritangent plane with an Eckardt point.
Thus we have 18 Eckardt points, maximal possible.

Assume thatG contains an element of order 5. Applying Theorem9.5.6, we see
thatS is isomorphic to theClebsch diagonal surface

t20t1 + t0t
2
2 + t2t

2
3 + t3t

2
1 = 0. (9.61)

Consider the embedding ofS in P4 given by the linear functions

z0 = t0 + t1 + t2 + t3 (9.62)

z1 = ζ3
5 t0 + ζ4

5 t1 + ζ2
5 t2 + ζ5t3,

z2 = ζ5t0 + ζ3
5 t1 + ζ4

5 t2 + ζ2
5 t3,

z3 = ζ4
5 t0 + ζ2

5 t1 + ζ5t2 + ζ3
5 t3,

z4 = ζ2
5 t0 + ζ5t1 + ζ3

5 t2 + ζ4
5 t3.

Then one easily checks that
∑4
i=0 zi = 0 and (9.61) implies that also

∑4
i=0 z

3
i = 0.

This shows thatS is isomorphic the following surface inP4:

4∑
i=0

z3
i =

4∑
i=0

zi = 0. (9.63)
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These equations exhibit an obvious symmetry which is the groupS5. The line

z0 = z1 + z2 = z3 + z4 = 0

lies onS. Its S5-orbit consists of 15 lines. The remaining 12 lines form a double-
six. Their equations are as follows. Letω be a primitive 5-th root of unity. Letσ =
(a1, . . . , a5) be a permutation of{0, 1, 2, 3, 4}. Each line`σ spanned by the points
[ωa1 , . . . , ωσ5 ] and [ω−a1 , . . . , ω−a5 ] belongs to the surface. This gives12 = 5!/10
different lines. One checks immdiately that two lines`σ and`σ′ intersect if and only if
σ′ = σ ◦ τ for some odd permutationτ . The groupS5 (as well its subgroupS4) acts
transitively on the double-six. The alternating subgroup stabilizes a sixer.

Observe thatS has 10 Eckardt points[1,−1, 0, 0, 0] and other ones obtained by
permutations of coordinates. Also notice that any point, say[1,−1, 0, 0] is joined by
a line in the surface to three other points[0, 0, 1,−1, 0], [0, 0, 0, 1,−1], [0, 0, 1, 0,−1].
The graph whose vertices are Eckardt points and edges are the lines is a famous tri-
valentPetersen graphwhose group of symmetry is isomorphic toS5.

AssumeG is larger thanS5. Consider the representation ofG in the symmetry
group of the graph of Eckardt points. Its image is equal toS5, hence its kernel is
non-trivial. LetH be a maximal subgroup ofW (E6) which containsG. It follows
from Lemma9.5.1 thatG must containS6 or an involution. The restriction of the
representation toS6 must be trivial, since the kernel is non-trivial and is not equal to
A6. This is impossible sinceS6 contains ourS5. If the kernel contains an involution,
then the involution fixes 10 points. Since no involutions inW (E6) has trace equal to
8, we get a contradiction. Thus Aut(S) ∼= S5.

Assume thatG contains an elementσ : [t0, t1, t2, t3] 7→ [ε3t0, t1, t2, t3] from the
conjugacy class3A2. Then we are in case (iii) of Theorem9.5.6. The plane cubic curve
C = V (t31+t32+t33+at1t2t3) has the projective group of automorphisms isomorphic to
32 : 2. Its normal subgroup32 is generated by a cyclic permutation of coordinates and
the transformation[t1, t2, t3] 7→ [t1, ε3t2, ε23t3]. Together withσ this generates a group
G1 of order 54 isomorphic to3.(32 : 2). Note that for a special valuea,C may acquire
an additional isomorphism of order4 or 6). It happens when1 − 20a3 − 8a6 = 0 or
a(a3− 1) = 0, respectively (see Exercises to Chapter 3). Ifζ = −1+

√
3

2 is a root of the
first equation, then the extra automorphism of order 4 is given by the formula

[t1, t2, t3] 7→ [t1 + t2 + t3, t1 + ζt2 + ζ2t3, t1 + ζ2t2 + ζt3].

It is easy to see that the group Aut(S) is isomorphic to3.(32 : 4), the center is generated
by the transformation which multipliesx0 by a third root of unity.

If a4 = a, the curveC is projectively isomorphic to the Fermat cubict31 + t32 + t33,
hence we are in case I. According to example9.1.2S contains 9 tritangent planes with
Eckardt points. Each plane is the preimage of a line under the projection to the plane
Π containing the curvef of fixed points.

Suppose there is a symmetryτ not belonging toG1. SinceG1 acts transitively on
the set of Eckardt points, we may assume thatτ fixes a tritangent plane containing an
Eckardt point. Thusτ fixes the planeΠ and hence is an automorphism of the plane
cubicC. This proves thatG = G1 if C has no extra automorphisms,G = G′ if C has
an automorphism of order 4, andS is of type I ifC has an automorphism of order 6.
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Assume thatS contains an elementσ of order 8. ThenS is isomorphic to the
surface from case (xiii) of Theorem9.5.6. The only maximal subgroup ofW (E6)
which contains an element of order 8 is a subgroupH of order 1152. As we know it
stabilizes a tritangent plane. In our case the tritangent plane ist2 = 0. It has the Eckardt
pointx = [0, 0, 0, 1]. ThusG = Aut(S) is a subgroup of the linear tangent spaceTxS.
If any element ofG acts identically on the set of lines in the tritangent plane, then
it acts identically on the projectivized tangent space, and henceG is a cyclic group.
Obviously this implies thatG is of order 8. Assume that there is an elementτ which
permutes cyclically the lines. LetG′ be the subgroup generated byσ andτ . Obviously,
τ3 = σk. SinceG does not contain elements of order 24, we may assume thatk = 2
or 4. Obviously,τ normalizes〈σ〉 since otherwise we have two distinct cyclic groups
of order 8 acting on a line with a common fixed point. It is easy to see that this is
impossible. Since Aut(Z/8Z)) ∼= (Z/2Z)2 this implies thatσ andτ commute. Thus
στ is of order 24 which is impossible. This shows that Aut(S) ∼= Z/8Z.

It is easy to see that the square of the conjugacy classesD4, 2A1+A2 is equal toA2,
the square ofE6(a2) is equal to3A2, and the square ofA1 +A5 is equal to2A2. Also
the cube of the conjugacy classE6(a1) and the fourth power ofE6 is equal to3A2.
Since surfaces with automorphism of order 3 from the conjugacy classes3A2, A2,
and also with an automorphisms of order 5 and 8 have been already classified we
may assume that Aut(S) does not contain elements of order 5,8,9,12. By the previous
analysis we may assume that any element of order 3 belongs to the conjugacy class
2A2, and elements of order 6 to the conjugacy classE6(a2) orA1 +A5.

Assume Aut(S) contains an elementσ from conjugacy class2A2. Then the surface
is σ-equivariantly isomorphic to the surface from case (v) of Theorem9.5.6.

t32 + t33 + t2t3t0 + f3(t0, t1) = 0.

We can reduce this equation to the form

t32 + t33 + t2t3(t0 + at1) + t30 + t31 = 0. (9.64)

The fixed points ofσ are the pointsqi = [ai, bi, 0, 0], wheref3(ai, bi) = 0. Observe
that we have 3 involutionsσi, i = 0, 1, 2, defined by

[t0, t1, t2, t3]→ [t0, t1, ζi3t3, ζ
2i
3 t2].

The set of fixed points ofσi is the nonsingular plane sectiont3 = ζii t2 and an isolated
fixed pointpi = [0, 0, 1,−ζi3]. Thus eachσi belongs to the conjugacy class4A1. The
point pi is an Eckardt point in the tritangent planet0 − ζi3t2 − ζ2i

3 t3 = 0. Notice that
they lie on the linet0 = t1 = 0. This line is uniquely determined byσ, it is spanned by
isolated fixed point ofσ in P3. It is immediately checked thatσi ◦ σj = (σj ◦ σi)−1 =
σi+2j for i 6= j. This implies that the groupG1 generated byσ, σ0, σ1, σ2 is isomorphic
to S3. The elementσ belongs to a unique such group determined by the line`. The
elements of order 2 inG1 correspond to the Eckardt points onl.

Suppose one of the fixed point ofσ, sayq1, is an Eckardt point. A straightforward
computation shows that this happens only if in equation (9.64) b3 = −1. Also it shows
that only one of the fixed points could be an Eckardt point.
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Let P3 be the 3-Sylow subgroup ofG = Aut(S). It is a cyclic group of order
3. Since#Aut(S) = 2a · 3b, the Sylow Theorems gives that the number of 3-Sylow
subgroups divides2a3b and≡ 1 mod 3. This shows that this number is equal to22k.
If k > 1, thenG is contained in a maximal subgroups ofW (E6) of order divisible by
24. This is a group isomorphic to24 : S5 or S6×2. In the first caseG stabilizes a line
in S, and then any element of order 3 has 2 fixed points on this line. But, as we saw
in above the fixed points of an element of order 3 do not lie on a line contained in the
surface. In the second case, we use that any subgroup ofS6 containing 16 subgroups
of order 3 must coincide withS6. Certainly, it is impossible. Thusk = 0 or 1.

If k = 0, thenG has a unique cyclic subgroup〈σ〉 of order 3. So, either Aut(S) =
G1
∼= S3, orG contains an involutionτ 6∈ G1. If G 6= S3, the natural homomorphism

G/〈σ〉 → Aut(〈σ〉) ∼= Z/2Z has a non-trivial kernel of order2a−1. Let τ be an
element of order 2 from the kernel. Since it commutes withσ, it leaves invariant the
set of 3 collinear fixed points ofσ. Thus it fixesa = 1 or 3 fixed points ofσ. If
τ is of type2A1, then it has 5 isolated fixed points. The group〈σ〉 leaves this set
invariant and has2 or 5 fixed points in this set. This shows thatτ must be of type4A1

and hence its isolated fixed point is one of the fixed points ofσ which is an Eckardt
point. As we have observed earlier, there could be only one such point. Hence there
is only one additional element of order 2. The line joining this point with an Eckardt
pointpi must be contained inS, since otherwise, by Proposition9.1.14we have a third
Eckardt point on this line. Thusτ commutes with any involutionσi in G1. Hence
Aut(S) ∼= S3 × 2. The involutionτ fixes the isolated fixed points of eachσi. This
shows that in the one-dimensional subspacex0 = x1 = 0, it has 3 fixed points. This
implies that it is the identity in this subspace. Thusτ acts nontrivially only on the
variablest0, t1. This implies thatb = 1 and the equation ofS is of type VI. It is easy
to see that automorphism of order 6 inG belongs to the conjugacy classA1 +A5.

If k = 1, G is isomorphic to a transitive subgroup ofS4 which contains anS3.
It must be isomorphic toS4. Each subgroup of Aut(S) isomorphic toS3 defines a
line with 3 Eckardt points. Since any two such subgroups have a common element of
order 2, each line intersects other 3 lines at one point. This shows that the four lines are
coplanar and form a complete quadrangle in this plane. Also, since each of the three
diagonalsdi has only two Eckardt points on it, we see that each diagonal is contained in
the surface. Now choose coordinates such that the plane of the quadrangle has equation
t0 = 0 and the diagonals have the equationst0 = ti = 0. The equation of the surface
must now look as follows.

at30 + t20f1(t1, t2, t3) + t0f2(t1, t2, t3) + ct1t2t3 = 0.

The group Aut(S) leaves the quadrangle invariant and hence acts by permuting the
coordinatest1, t2, t3 and multiplying them by±1. This easily implies that the equation
can be reduced to the form of type V.

The surface with automorphism group isomorphic toS3 has equation of type VIII.
Assume that Aut(S) contains an elementσ from conjugacy class2A1. Then the

equation of the surface looks like

at0t2t3 + t1(t22 + t23 + bt2t3) + t30 + t31 = 0.
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It exhibits an obvious symmetry of order 3 defined by

[t0, t1, t2, t3] 7→ [t0, t1, ζ2t2, ζ2
2 t3].

Thus we are in one of the above cases.
Suppose Aut(S) contains an elementσ of order 4. Ifσ belongs to the conjugacy

class 4B, thenσ2 belongs to2A1 and hence this case has been already considered. If
σ belongs to4A1 then the equation of the surface looks like

t2t
2
3 + t30 + at31 + t22(t0 + t1) = 0.

Here we have to assume that the surface is not isomorphic to the surface of type VII. It
follows from the proof of the next Corollary that in all previous cases, except type VII,
the automorphism group is generated by involutions of type4A1. Thus our surface
cannot be reduced to one of the previous cases.

Finally it remains to consider the case when only involutions of type4A1 are
present. Suppose we have 2 such involution. They define two Eckardt pointsp1 and
p2. In order the involution commute the line joining the two points must be contained
in S. Suppose we have a third involution defining a third Eckardt pointp3. Then we
have a tritangent plane formed by the linespi, pj . Obviously, it must coincide with
each tritangent plane corresponding to the Eckardt pointspi. This contradiction shows
that we can have at most 2 commuting involutions. This gives the last two cases of our
theorem. The condition that there is only one involution of type4A1 is that the line
l1(t0, t1, t2) = 0 does not pass through a flex point off3(t0, t1, t2) = 0.

Corollary 9.5.8. Let Aut(S)o be the subgroup ofAut(S) generated by involutions of
type4A1. ThenAut(S)o is a normal subgroup ofAut(S) such that the quotient group
is either trivial or a cyclic group of order 2 or 4. The order is 4 could occur only for
the surface of type VII. The order 2 occurs only for surfaces of type X.

Proof. We do it case by case. For surfaces of type I, the group Aut(S) is generated by
transformations of type

[t0, t1, t2, t3] 7→ [t0, t1, εt3, t2],

whereε3 = 1. It is easy to see that it is an involution of type4A1 corresponding to the
Eckardt point[0, 0, 1,−ε].

For surfaces of type II given by equation (9.63), the group Aut(S) is generated by
transpositions of coordinates. They correspond to involutions of type4A1 associated
with Eckardt points of type[1,−1, 0, 0, 0].

In the case of surfaces of type III, we use that a line inP3 joining 2 Eckardt points
contains the third Eckardt point. Thus any such line generate a subgroup isomorphic
to S3. We have 12 lines which contain 9 flex points. They are the projections of
these lines inP2 from the center of projection[1, 0, 0, 0]. One can show that the group
generated by these 12 subgroups must coincide with the whole group.

The remaining cases follow from the proof of the theorem.
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Exercises

9.1 Let Y ⊂ P4 be the image ofP2 under a rational map given by the linear system of conics
through a fixed pointp.

(i) Show thatY is a surface of degree 3 and its projection from a general pointO in P4 is a
non-normal cubic surface inP3 of type (i) from Theorem9.2.1.

(ii) Show that the projection ofY from a pointO lying in the plane spanned by the image
of the exceptional curve of the blow-up ofP2 at p and the image of a line throughp is a
non-normal cubic surface of type (ii) from Theorem9.2.1.

(iii) Show that any non-normal cubic surface inP3 which is not a cone can be obtained in this
way.

9.2Show that the dual of the 4-nodal cubic surfrace is isomorphic to the quartic surface given by
the equation √

t0 +
√
t1 +

√
t2 +

√
t3 = 0.

9.3Let τ : (x, y) 7→ (x−1, y−1) be the standard Cremona transformation. Show thatτ extends
to a biregular automorphismσ of a weak Del Pezzo surfaceS of degree 6 and the orbit space
S/〈σ〉 is isomorphic to a 4-nodal cubic surface.

9.4 Show that a cubic surface can be obtained as the blow-up of 5 points onP1 × P1. Find the
conditions on the 5 points such that the blow-up is isomorphic to a nonsingular cubic surface.

9.5Compute the number ofm-tuples of skew lines on a nonsingular surface form = 2, 3, 4, 5.

9.6 Suppose a quadric intersects a cubic along the union of three conics. Show that the three
planes defined by the conics pass through three lines in a tritangent plane.

9.7Let Γ andΓ′ be two rational normal cubics inP3 containing a common pointp. For a general
planeΠ throughp let Π ∩ Γ = {p, p1, p2},Π ∩ Γ′ = {p, p′1, p′2} andf(p) = p1, p1 ∩ p′1, p′2.
Consider the set of planes throughp as a hyperplaneH in the dual spacěP3. Show that the
image of the rational mapH− → P3,Π 7→ f(Π) is a nonsingular cubic surface and every such
cubic surface can be obtained in this way.

9.8Show that the linear system of quadrics inP3 spanned by quadrics which contain a degree 3
rational curve on a nonsingular cubic surfaceS can be spanned by the quadrics defined by the
minors of a matrix defining a determinantal reprfesentation ofS.

9.9 Show that the linear system of cubic surfaces inP3 containing 3 skew lines defines a bira-
tional map fromP3 to P1 × P1 × P1.

9.10Show that non-normal cubic surfaces are scrolls, i.e. contain a one-dimensional family of
lines.

9.11 Show that all singular surfaces of typeV II,X,XI,XIII − XXI are isomorphic and
there are two non-isomorphic surfaces of typeXII.

9.12Prove that the linear system of cubic surfaces inP3 containing three skew lines defines a
birational map fromP3 to P7 whose image is equal to the Segre variety(P1)3.

9.13Compute the number of determinantal representations of a singular cubic surface.

9.14Find determinantal representations of an irreducible non-normal cubic surface.

9.15Let ` be a line on a cubic surface with canonical singularities andE be its proper inverse
transform on the corresponding weak Del Pezzo surfaceX. LetN be the sublattice of Pic(X)
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spanned by irreducible components of exceptional divisors ofπ : X → S. Define the multiplic-
ity of ` by

m(l) =
#{σ ∈ O(Pic(X)) : σ(E)− E ∈ N}

#{σ ∈ O(Pic(X)) : σ(E) = E} .

Show that the sum of the multiplicities is always equal to 27.

9.16Show that the 24 points of intersection of a Schur quadric with the corresponding double-six
lie on the Hessian of the surface ([15], vol. 3, p. 211).

9.17Consider a Cayley-Salmon equationl1l2l3 − l′1l
′
2l
′
3 = 0 of a nonsingular cubic surface.

(i) Show that the six linear polynomialsli, l′i satisfy the following linear equations

3X
j=1

aij lj =

3X
j=1

a′ij l
′
j = 0, i = 1, 2, 3,

where
3X
i=1

aij = 0, j = 1, 2, 3, ai1ai2ai3 = a′i1a
′
i2a

′
i3, i = 1, 2, 3.

(ii) Show that for eachi = 1, 2, 3 the nine planes

aij li − a′ij l
′
j = 0, i, j = 1, 2, 3

contain 18 lines common to three planes. The 18 lines obtained in this way form three
double-sixers associated to the pair of conjugate triads defined by the Cayley-Salmon
equation.

(iii) Show that the Schur quadrics defined by the three double-sixers can be defined by the
equations

3X
j=1

a2ja3j l
2
j −

3X
j=1

a2ja3j l
′
j
2 = 0,

3X
j=1

a1ja3j l
2
j −

3X
j=1

a1ja3j l
′
j
2 = 0,

3X
j=1

a1ja2j l
2
j −

3X
j=1

a1ja2j l
′
j
2 = 0

([127]).

9.18 ([128]) Prove the following theorem of Schläfli: Given five skew lines inP3 and a line
intersecting them all, there exists a unique cubic surface that contains a double-sixer including
the seven lines.

9.19Consider the Cremona hexahedral equations
P
x3
i =

P
xi = 0 andxi − xj = 0. Show

that these equations define a 4-nodal cubic surface.

9.20 Show that the pull-back of a bracket-function(ijk) under the Veronese map is equal to
(ij)(jk)(ik).

9.21 Show that the condition that 6 points inP2 lie on a conic is(134)(156)(235)(246) −
(135)(146)(234)(256 = 0.

9.22Let S be the cubic surface obtained by blowing up a semi-stable point set(p1, . . . , p6) in
P2. Use the Clebsch transference principle to give the following interpretation of the morphism
Ψ : P 6

2 → P 6
1
∼= S3 ⊂ P5.
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(i) Show that the projection of the set(p1, . . . , p6) to P1 with center at a general pointx ∈
P2 is a set of distinct points inP1 whose orbit inP 6

1 depends only on the image of
(p1, . . . , p6) in P 6

2 .

(ii) Show that the projection map extends to a morphism fromS to P 6
a that coincides with

the mapΨ.

(iii) Show that the image(q1, . . . , q6) of a points set(p1, . . . , p6) is a set such that the
pairs(q1, q2), (q3, q4), (q5, q6) are orbits of an involution ofP1 if and only if the triples
(p1, p3, p5), (p1, p4, p6), (p2, p3, p6) and(p2, p4, p5) are on lines which form a quadri-
lateral.

9.23Show that the Segre cubic primal is isomorphic to a tangent hyperplane section of the cubic
fourfold with 9 lines given by the equationxyz − uvw = 0 (Perazzo primal[310], [16]).

9.24Show that the dual surface of the Segre 4-nodal cubic is a Steiner quartic surface surface
with equation

√
x+

√
y +

√
z +

√
z = 0, cleared of radicals.

9.24Consider the followingCayley’s family of cubic surfacesin P3 with parametersl,m, n, k

w[x2 + y2 + z2 + w2 + (mn+
1

mn
)yz + (ln+

1

ln
)xz + (lm+

1

lm
)xy

+(l +
1

l
)xw + (m+

1

m
)yw + (n+

1

n
)zw] + kxyz = 0.

Find the equations of 45 tritangent planes whose equations depend rationally onl.m.n, k.

9.25Show that the polar quadric of a nonsingular cubic surface with respect to an Eckardt point
is equal to the union of two planes.

9.26Show that the equation of the dual of a nonsingular cubic surface can be written in the
form A3 + B2 = 0, whereA andB are homogeneous forms of degree 4 and 6, respectively.
Show that the dual surface has 27 double lines and a curve of degree 24 of singularities of type
A2.

9.27Show that a plane section of the Hessian of a general cubic surface is a smooth Lüroth
quartic.

9.28Show that the degree of the dual of the Hessian of a general cubic surface is equal to
16.

Historical Notes

Good sources for the references here are [208], [280], and [308]. According to [280],
the study of cubic surfaces originates from the work of J. Plücker [315] on intersection
of quadrics and cubics and L. Magnus [276] on maps of a plane by a linear system
of cubics. However, it is customary to think that the theory of cubic surfaces starts
from Cayley’s and Salmon’s discovery of 27 lines on a nonsingular cubic surface [50],
[349] (see the history of discovery in [357], n. 529a, p. 183). Salmon’s proof was
based on his computation of the degree of the dual surface [348] and Cayley’s proof
uses the count of tritangent planes through a line which we gave in the text. It is
reproduced in many modern discusssions of cubic surfaces (e.g. [328]). The number
of tritangent planes was computed by [349] and Cayley [50]. Cayley gives an explicit
four-dimensional family of cubic surfaces with a fixed tritangent plane. In 1851 J.
Sylvester claims without proof that a general cubic surface can be written uniquely
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as a sum of 5 cubes of linear forms [403]. This fact was proven 10 years later by A.
Clebsch [76]. In 1854 L. Schl̈afli discovers 36 double-sixes on a nonsingular cubic
surface. This and other results about cubic surfaces were published later in [361]. In
1855 H. Grassmann proves that three collinear nets of planes generate a cubic surface
[194]. The fact that a general cubic surface can be obtained in this way (this implies
that it can be obtained as the image of the projeective plane under a rational map given
by cubic surfaces) has a long history. In 1862 F. August proves that a general cubic
surface can be generated by three pencils of planes [13]. L. Cremona shows in [106]
that this implies that a general cubic surfaces admits Grassmann’s generation. In 1904
R. Sturm in 1904 pointed out that Cremona’s proof had a gap. The gap was fixed by
C. Segre in [381]. In the same paper Segre proves that any normal cubic surface which
does no contain a singularity of typeE8 has a linear determinantal representation. In
1956 J. Steiner introduces what we called Steiner systems of lines [397]. This gives
120 essentially different Cayley-Salmon equations of a nonsingular cubic surface. The
existence of which was first shown by Cayley [50] and Salmon [349].

Cubic surfaces with a double line were classified in 1862 by A. Cayley [57] and,
via a geometric approach, by L. Cremona [102]. In 1863 L. Schl̈afli [360] classified
singular cubic surfaces with isolated singularities, although most of these surfaces were
already known to G. Salmon [349]. The old notations forAk-singularities areC2 for
A1 (conic-node),Bk+1 (biplanar nodes) forAk, k,> 1 andUk+1 (uniplanar node) for
Dk. The subscript indicates the decrease of the class of the surface. In [65] Cayley
gives a combinatorial description of the sets of lines and tritangent planes on singular
surfaces. He also gives the equations of the dual surfaces. Even before the discovery of
27 lines, in a paper of 1844 [48], Cayley studied what we now call the Cayley 4-nodal
cubic surface. He finds its equation and describes its plane sections which amounts
to describe its realization as the image of the plane under the map given by the linear
system of cubic curves passing through the vertices of a complete quadrilateral. Schläfli
and later F. Klein [248] and L. Cremona [106] also studied the reality of singular points
and lines.

In 1866 A. Clebsch proves that a general cubic surface can be obtained as the
image of a birational map from the projective plane given by cubics through 6 points
[78]. Using this he shows that the Schläfli notationai, bi, cij for 27 lines correspond
to the images of the exceptional curves, conics through 5 points and lines through two
points. This important result was independently proven by L. Cremona in his memoir
[106] of 1868 that got him the prize (shared with R. Sturm) offered by R. Steiner
through the Royal Academy of Sciences of Berlin in 1864 and awarded in 1866. Some
of the results from this memoir are discussed from a modern point of view in [138].
Many results from Cremona’s memoir are independently proved by R. Sturm [398],
and many of them were announced by J. Steiner (who did not provide proofs). In
particular, Cremona proves the result, anticipated in the work of Magnus, that any
cubic surface can be obtained as the image of a plane under the cubo-cubic birational
transformation ofP3. Both of the memoirs had a lengthy discussion of Steiner systems
of tritangent planes. We refer to [138] for a historical discussion of Cremona’s work
on cubic surfaces.

The Cremona hexahedral equations were introduced by L. Cremona in [110] in
1878. Although known to T. Reye [332] (in geometric form, no equations can be found
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in his paper), Cremona was the first who proved that the equations are determined by
a choice of a double-six. The invariant theory of Cremona hexaedral equations was
studied by A. Coble in [85]. The Segre cubic arised in the work of C. Segre on cubic
threefolds with singular points. Its realization as the GIT-moduli space of ordered sets
of six points inP1 is due to Coble.

F. Eckardt gives a complete classification of cubic surfaces with Eckardt points
(called Ovalpoints in [358]) in terms of their Hessian surface [149]. He also considers
singular surfaces. A modern account of this work can be found [112]. The Clebsch
Diagonalfl̈ache with 10 Eckardt points was first studied by A. Clebsch in [81]. It has
an important role in Klein’s investigation of the Galois group of a quintic equations
[251]. The group of automorphisms of a nonsingular cubic surfaces was computed by
S. Kantor [241] and A. Wiman [426].

In 1897 J. Hutchinson showed in [229] that the Hessian surface of a nonsingular
cubic surface could be isomorphic to the Kummer surface of the Jacobian of a genus
2 curve. This happens if the invariantI8I24 + 8I32 vanishes [343]. The group of
automorphisms of the Hessian of a cubic surface was described only recently [135].

The relationship of the Gosset polynomial221 to 27 lines on a cubic surface was
first discovered in 1910 by P. Schoute [363] (see [412]). The Weyl groupW (E6) as
the Galois group of 27 lines was first studied by C. Jordan. Together with the group of
28 bitangents of a plane quartic isomorphic toW (E7), it is discussed in many classical
text-books in algebra (e.g. [423], B. II, [ 124]). S. Kantor [241] realized the Weyl group
W (En) as groups of linear transformations preserving a quadratic form of signature
(1, n) and a linear form. A Coble [85], Part II, was the first who showed that the
group is generated by the permutations group and one additional involution. So we
should credit him the discovery of the Weyl groups as reflection groups. Apparently
independently of Coble, this fact was rediscovered by P. Du Val [144]. We refer to
[37] for the history of Weyl groups, reflection groups and root systems. Note that the
realization of the Weyl group as a reflection group in the theory of Lie algebras was
obtained by H. Weyl in 1928, ten years later after Coble’s work.

The Gosset polytopes were discovered in 1900 by T. Gosset [190]. The notationn21

belongs to him. They had been later rediscovered by E. Elte and H.S.M. Coxeter (see
[101]) but only Coxeter realized that their groups of symmetries are reflection groups.
The relationship between the Gosset polytopesn21 and curves on Del Pezzo surfaces
of degree5 − n was found by Du Val [144]. This fundamental paper is the origin of
a modern approach to the study of Del Pezzo surfaces by means of root systems of
finite-dimensional Lie algebras [121], [277].

Yu. Manin’s book [277] is a good source on cubic surfaces over non-algebraically
closed field and B. Segre’s book [383] has a lot of information about real cubic surfaces.
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Geometry of Lines

10.1 Grassmannians of lines

10.1.1 Generalities about Grassmannians

Let V be a vector space of dimensionn. Let us recall some basic facts about Grass-
mann varieties ofm-dimensional subspaces ofV and fix the notations. We will denote
by G(m,V ) the variety ofm-dimensional subspaces ofV and byG(V,m) the vari-
ety of equivalence classes ofm-dimensional quotients ofV . By taking the dual of
the quotient map we will often identifyG(m,V ) with G(V ∨,m). In this notation,
G1(V ) = |V | andG(V, 1) = P(V ). Also, by taking the kernel of the quotient or tak-
ing the dual of a subspace we can identifyG(m,V ) with G(n −m,V ∨). Thus there
are natural isomorphisms of varieties

G(m,V ) ∼= G(V ∨,m) ∼= G(n−m,V ∨) ∼= G(V, n−m).

We will also use the notationGm−1(|V |) forG(m,V ) andGm−1(P(V )) forG(V,m).
If we fix coordinates inV to identifyV with Cn we writeG(m,n) instead ofG(m,Cn)
and, similarly,G(n,m) for G(Cn,m).

Passing to the exterior powers, an inclusion of subspacesL ↪→ V defines a line∧m
L ↪→

∧m
V in P(

∧m
V ∨) = |

∧m
V |. This defines thePlücker embedding

G(m,V ) ↪→ P(
∧m

V ∨). In coordinates, a point inG(m,n) is represented by a matrix
A of sizem×n and rankm. Its rows are formed by a basis of the subspace. The corre-
sponding point[A] in G(m,n) is the orbit ofA with respect of the action of the group
GL(m) by left multiplication. The maximal minorspI = |AI |, I = (i1 < . . . < im) of
the matrixA formed by the columns with indices from the subsetI are the coordinates
of [A] in the Pl̈ucker embedding ofG(m,n). They are called theGrassmannian(or
Plücker) coordinatesof [A]. Adding one additional row toA formed by an element of
the basis, we obtain by equating to zero the maximal minors thePlücker relations

n∑
k=1

(−1)kpi1,....im−1,jkpj1,...,jk−1,jk+1,...,jm+1 = 0, (10.1)

397
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where(i1, . . . , im−1) and(j1, . . . , jm+1) are two strictly increasing subsets of[1, n].
These relations are easily obtained by considering the left-hand-side expression as an
alternating(m+1)-multilinear function on(Cm)m+1 whose arguments are columns of
a generalm× n-matrix with indices inj1, . . . , jm+1. It is known that these equations

defineG(m,n) scheme-theoretically inP(n
m)−1.

All matrices with |Aij | 6= 0 for a fixed pair(i, j) form a Zariski open subset of
G(m,n) isomorphic to the affine spaceAm(n−m). The coordinates in this space are
the entries ofA−1

ij A taken from the columnsAk, k 6= i, j. This shows thatG(m,n) is
a smooth rational variety of dimensionm(n−m).

The Grassmann varietyG = G(V,m) represents a functorG(V,m) which assigns
to a schemeS the set of pairs(E , σ) consisting of a rankm vector bundlesE together
with a surjective map of sheavesσ : V ⊗ OS → E up to a natural equivalence of sur-
jections. Given such a pair(E , σ), one defines a morphismS → G(V,m) by assigning
to a points ∈ S, the surjectionV → E(x) or a point ofG(n−m,V ) by assigning the
kernel of this surjection. The universal surjection in the sense of representable functors
is defined by a vector bundleV ⊗OG → QG, whereQG is a vector bundle of rankm
overG, called theuniversal quotient bundleoverG. Its kernel is denoted bySG and
is called theuniversal subbundleoverG. By definition we have an exact sequence of
locally free sheaves (thetautological exact sequenceonG)

0→ SG → V ⊗OG → QG → 0. (10.2)

and its dual exact sequence

0→ Q∨G → V ∨ ⊗OG → S∨G → 0. (10.3)

The surjectionV ∨ ⊗OG → S∨G is the universal surjection for the functorG(V ∨, n−
m).

Passing to the exterior powers we obtain the surjections
∧m

V ⊗ OG →
∧mQG

and
∧m

V ∨ ⊗OG →
∧m S∨G. The first one defines a closed embedding

G = P(
n∧
QG)→ P(

m∧
V )×G→ P(

m∧
V ),

the second one defines a closed embedding

G = P(
m∧
S∨G)→ P(

n−m∧
V ∨)×G→ P(

n−m∧
V ∨).

The second one coincides with the Plücker embedding ofG(n − m,V ) from above,
the first one is the Plücker embedding ofG(m,V ∨).

Here we use the notationP(E) for the projectivization of the vector bundleE over
a schemeY . As usual we identify vector bundlesV(E) with their locally free sheaves
of sectionsE so thatV(E) = Spec(S•E∨), whereS• denotes the graded symmetric
algebra functor (see [206]). So

P(E) := Proj(S•E∨).



10.1. GRASSMANNIANS OF LINES 399

We will use the notation
|E| := P(E∨).

A map of locally sheavesα : E → E ′ defines a canonical homomorphism of symmetric
algebrasS•E ′∨ → S•E ′∨ and the corresponding morphism of vector bundlesV(E ′)→
V(E). Passing to the projective spectra, we get only a rational mapP(E ′) → P(E).
However, ifα is surjective, the rational map is a closed embedding morphism. This
what we used in the above descriptions of the Plücker embeddings.

Let π : P(E) → Y be the canonical structure morphism of aY -scheme. There
exists a unique invertible sheaf (line bundle)L onP(E) together with a surjective mor-
phism of sheavesπ∗E → L such that the corresponding morphism

E ∼= π∗π
∗E → π∗(L)

is an isomorphism (see [206]). This sheaf is denoted byOP(E)(1). Note that, for any
invertible sheafM, the projective bundlesP(E) andP(E ⊗M) are isomorphic and

OP(E⊗M)
∼= OP(E)(1)⊗ π∗M.

WhenY is a point andE is a vector spaceE, then we obtain the usual identification of
the space of global sections of the sheafOP(E∨)(1) with the vector spaceE.

The construction of the projective bundleP(E) considered as a relative notion of
a projective space is generalized to the notion of a relative GrassmannianG(E ,m). If
f : S → Y is aY -scheme, thenS-points ofG(E ,m) are surjective maps of locally
free sheavesf∗E → F , whereF is a locally free sheaf of rankm on S. We have
G(E , 1) = P(E). By definition,G(m, E) = G(E∨,m). There is also a universal
surjective mapπ∗(E)→ F , whereπ : G(E ,m)→ Y is the structure morphism andF
is a locally free sheaf of rankm overG(E ,m). The surjection

∧m E →
∧m F defines

a closed embeddingG(E ,m) ↪→ P(π∗
∧m F) ⊂ P(E). This is the relative Plücker

embedding. We denote the sheaf
∧m F by OG(E,m)(1). In the case whenm = 1,

G(E , 1) = P(E) and the sheafOG(E,m)(1) coincides with the sheafOP(E)(1). P
Let G = G(V,m) = G(n −m,V ). The surjectionV ∨ ⊗ OG → S∨G defines the

closed embeddingP(S∨G) ↪→ P(V ∨ ⊗ OG) = |V | × G. Its image is theincidence
variety

ZG = {(x,Π) ∈ |V | ×G(n−m,V ) : x ∈ Π}.

Let
p : ZG → |V |, q : ZG → G(n−m,V )

be the corresponding projections. By definition the projectionq is the projective bundle
P(S∨G) = |SG|.

The fibre of the projectionp over a pointx = [v] ∈ |V | is a surjection ofV with
kernel containingv. It can be identified with a point in the GrassmannianG(V/Cv,m−
1) = G(n−m− 1, V/Cv). Recall that the quotient spaceV/Cv, v ∈ V are the fibres
of the quotient sheafV ⊗ O|V |/O|V |(−1) which is isomorphic to the twisted tangent
sheafT|V |(−1) via the Euler exact sequence

0→ O|V | → O|V |(1)⊗ V → T|V | → 0.
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Assumem = n− 2, thenG(V/Cv,m) ∼= P(V/Cv). This gives

ZG ∼= P(T|V |(−1)∨) = P(Ω1
|V |(1)). (10.4)

We omit a rather technical proof of the following.

Proposition 10.1.1.The projectionp : ZG → |V | is isomorphic to the relative Grass-
mannianG(Ω1

|V |,m).

The universal surjection for the relative GrassmannianZG → |V | is equal to
p∗Ω1

|V |(1)→ q∗QG. Thus

OG(Ω1
|V |,m)(1) ∼= q∗(

m∧
QG) (10.5)

OP(S∨G)(1) ∼= p∗O|V |(1). (10.6)

Let us compute the canonical sheafωG of G.

Lemma 10.1.2. Let TG be the tangent bundle ofG = Gr(|V |). There is a natural
isomorphism of sheaves

TG ∼= S∨G ⊗QG,
ωG ∼= OG(−n),

whereOG(1) is taken with respect to the Plı̈cker embedding.

Proof. The first formula was an Exercise from Chapter 2, so we give its solution. It is
easy to see (same as for the projective space) that the tangent space T`G is canonically
isomorphic to Hom(L, V/L) ∼= L∨ ⊗ V/L = (SG)(`)∗ ⊗ (QG)(`), where` = |L|.
One can show that this isomorphism can be extended to the isomorphism of sheaves
(see the details in [7]). Globalizing we easily get the first isomorphism.

Since
∧m

V →
∧m

S∨G defines the Plücker embedding, we have

c1(S∨G) = c1(OG(1)).

Now the second isomorphism follows from a well-known formula for the first Chern
class of tensor product of vector bundles (see [206], Appendix A), where we use that∧m

SG∨ ∼= OG(1).

Recall the relative Euler sequence for the projective bundleP(E), whereE is a
locally free sheaf of rankr over a varietyY .

0→ OP(E) → π∗(E)(1)→ TP(E)/Y → 0 (10.7)

where as usualF(m) meansF ⊗OP(E)(1)⊗m.
This gives the following formula for the relative canonical sheaf ofP(E)

ωP(E)/Y
∼= π∗(

r∧
E)(−r), (10.8)
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Applying this formula to the projective bundleZG = P(S∨G) we obtain

ωZG/G
∼= q∗(

m∧
S∨G)⊗ p∗O|V |(−m) ∼= q∗OG(1)⊗ p∗O|V |(−m) (10.9)

ωZG
∼= ωZG/G ⊗ q

∗(ωG) ∼= q∗OG(−n)⊗ p∗O|V |(−m)

ωZG/|V |
∼= ωZG

⊗ p∗ω−1
|V |
∼= q∗OG(−n)⊗ p∗O|V |(n−m)

10.1.2 Schubert varieties

Let us recall some fact about the cohomology ringH∗(G,Z), whereG = Gr(PN ) (see
[173], Chapter 14).

Fix a flag
A0 ⊂ A1 ⊂ . . . ⊂ Ar ⊂ PN

of subspaces of dimensiona0 < a1 < . . . < ar, and define theSchuber variety

Ω(A0, A1, . . . , Ar) = {Π ∈ G : dim Π ∩Ai ≥ i, i = 0, . . . , r}.

This is a closed subvariety ofG of dimension
∑r
i=0(ai − i). Its cohomology class

[Ω(A0, A1, . . . , Ar)] in H∗(G,Z) depends only ona0, . . . , ar. It is called aSchubert
cycleand is denoted by(a0, . . . , ar). Leta0 = N − r− d, ai = N − r+ i, i ≥ 1. The
varieties

Ω(A0) := Ω(A0), . . . , Ar) = {Π ∈ G : Π ∩A0 6= ∅}
are called thespecial Schuber varieties. Their codimension is equal tod.

Under the Poincaré dualityH∗(G,Z) → H∗(G,Z), the cycles(a0, . . . , ar) are
mapped toSchubert classes{λ0, . . . , λr} defined in terms of the Chern classes

σs = cs(QG) ∈ H2s(G,Z), s = 1, . . . , N − r

by the determinantal formula

{λ0, . . . , λr} = det(σλi+j−i)0≤i,j≤r,

whereλi = N − r + i − ai, i = 0, . . . , r. The classesσs are dual to the classes of
special Schubert varieties(N − r − s,N − r + 1, . . . , N).

The tautological exact sequence (10.2) shows that

1 = (
∑

cs(QG))(
∑

cs(SG)).

In particular,
σ1 = −c1(SG) = c1(S∨G) = c1(OG(1)).

A proof of the following result can be found in [173] or [221].

Proposition 10.1.3.The cohomology ringH∗(G.Z) is generated by the special Schu-
bert classesσs = {s, 0, . . . , 0}. The Schubert cycles(a0, . . . , ar) with

∑r
i=0(ai−i) =

d freely generateH2d(G,Z). The Schubert classes{λ0, . . . , λr} with d =
∑r
i=0 λi

freely generateH2d(G,Z). In particular,

Pic(G) ∼= H2(G,Z) = Zσ1.
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It follows from the above proposition thatH∗(G,Z) is isomorphic to the Chow ring
CH(G) of algebraic cycles onG. Under this isomorphismH2m(G,Z) ∼= CHm(H).
Under the Poincaré isomorphismγ 7→ αγ the intersection form on cycles〈γ, µ〉 is
defined by

〈γ, µ〉 =
∫
µ

αγ =
∫
G

αγ ∧ αµ := αγ · αµ.

The intersection form on CH∗(G) is defined by the intersection form onH2∗(G,Z)
and is completely determined byPieri’s formulas

{λ0, . . . , λr} · σs =
∑
{µ0, . . . , µr}, (10.10)

where the sum is taken over all{µ} such thatN − r ≥ λ0 ≥ . . . µr ≥ λr and∑
λi = s+

∑
µi.

Here are some special cases. We setσs,t = {s, t, 0, . . . , 0}

σ2
1 = σ2 + σ1,1,

σ1 · σ2 = σ3 + σ2,1

σ1 · σ1,1 = σ2,1.

For example, the degree ofG is equal toσdimG
1 . We refer to [173], Example

14.7.11, for the following formula computing the degree ofGr(PN )

degGr(PN ) =
1!2! . . .dimG!

(N − r)!(N − r + 1)! . . . N !
(10.11)

Example10.1.1. Let us look at the GrassmanianG1(P3) of lines inP3. We know that
this is a nonsingular quadric inP5. The Schubert class of codimension 1 is represented
by the special Schubert varietyΩ(`) of lines intersecting a given linè. We have two
codimension 2 Schubert cyclesσ2 andσ1,1 represented by the Schubert varietiesΩ(x)
of lines containing a given point andΩΠ of lines containing in a given planeΠ. Each of
these varieties is isomorphic toP2. In classical terminologyΩ(x) is called anα-plane
andΩΠ a β-plane. We have one-dimensional Schubert cycleσ2,1 represented by the
Schubert varietyΩ(x,Π) of lines in a planeπ containing a given pointx ∈ Π. It is
isomorphic toP1. Finally we have a0-dimensional Schubert variety{l} representing
lines contained in a given linè. Thus

CH(G(2, 4)) = Z[G]⊕ Zσ1 ⊕ (Zσ2 + Zσ1,1)⊕ Zσ2,1 ⊕ Z[point].

Note that the two classes in codimension 2 represent two different rulings of the Klein
quadric by planes.

We have
σ2 · σ1,1 = 0, σ2

2 = 1, σ2
1,1 = 1. (10.12)

Write σ2
1 = aσ2 + bσ1,1. Intersecting both sides withσ2 andσ1,1, we obtaina =

b = 1 confirming Pieri’s formula (10.10). Squaringσ2
1 , we obtaindegG = σ4

1 = 2,
confirming the fact thatG is a quadric inP5.
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A surfaceS in G1(P3) is called acongruence of lines. Its cohomology class[S] is
equal tomσ2 + nσ1,1. The numberm (resp.n) is classically known as theorder of S
(resp.class). It is equal to the number of lines inS passing through a general point in
P3 (resp. contained in a general plane). The summ+ n is equal toσ1 · [S] and hence
coincides with the degree ofS in P5.

As one of many applications of Schubert calculus let us prove the following nice
result which can be found in many classical text-books (first proven by L. Cremona
[103]).

Theorem 10.1.4.The number of common secants of two general Veronese cubics in
P3 is equal to 10.

Proof. Consider the congruence of lines formed by secants of a Veronese cubic. Through
a general point inP3 passes one secant. In a general plane lie 3 secants. Thus the order
of the congruence is equal to 1 and the class is equal to 3. Using (10.12), we see that
the two congruences intersect at 10 points.

Remark10.1.1. Let R1 andR2 be two general Veronese cubic curves inP3 and let
Ni be the net of quadrics throughRi. The linear systemW of quadrics in the dual
space apolar to the linear systemN spanned byN1 andN2 is of dimension 3. The
Steinerian quartic defined by this linear system contains 10 lines, the singular lines of
10 reducible quadrics fromW. The dual of these lines are the ten common secants of
R1 andR2 (see [334], [281], [87]). Also observe that the 5-dimensional linear system
N mapsRi to a curveCi of degree 6 spanning the planeΠi in N∨ apolar to the plane
Nj . The ten pairs of intersection points ofCi with the ten common secants correspond
to the branches of the ten singular points ofCi.

10.1.3 Secant varieties of Grassmannians of lines

From now on, we will restrict ourselves with the Grassmannian of lines.
By contraction, we can identify

∧2
V with the space of linear mapsu : V ∨ → V

such that the transpose maptu is equal to−u. The rank ofu is the rank of the map.
Sincetu = −u, the rank takes even values. The imageL = u(V ∨) of a map of rank 2 is
a 2-dimensional subspaceL of V which can be identified with a line in|V |. Conversely,
for any 2-dimensional subspaceL ⊂ V , the image of the map

∧2
L→

∧2
V is a one-

dimensional subspace of
∧2

V and its nonzero elementu has rank equal to 2. In this
way one obtains an isomorphism from the Grassmannian varietyG1(|V |) = G(2, V )
of lines in|V | and the variety of rank 2 tensors in

∧2
V up to proportionality.

After fixing a basis inV , we can identify
∧2

V with the space ofn × n skew-
symmetric matricesA = (pij) andG(2, V ) with the locus of matrices of rank2. The
entriespij , i < j, define projective coordinates onP(

∧2
V ), thePlücker coordinates.

In particular,G(2, V ) is the zero set of the4 × 4 pfaffians ofA. In fact, a stronger
assertion is true.

Proposition 10.1.5. The homogeneous ideal ofG(2, V ) ⊂ P(
∧2

V ) is generated by
4× 4 pfaffians of a general skew-symmetric matrix of sizen.
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Another way to look atG(2, V ) is to use the decomposition

V ⊗ V ∼= S2V ⊕
2∧
V

to identifyG(2, V ) with the projection of the Segre varietys2(|V |) ⊂ |V | × |V | to
|
∧2

V | with center equal to the subspace|S2V | ⊂ |V ⊗ V |.
By (10.1.5) the ideal ofG(2, V ) is generated by

(
n
4

)
quadratic forms of rank 6:

pijpkl − pikpjl + pilpjk = Pfaf


0 pij pik pil
−pij 0 pjk pjl
−pik −pjk 0 pkl
−pil −pjl −pkl 0


with 1 ≤ i < j < k < l ≤ n. If n = 4 thenG is theKlein quadric

V (p12p34 − p13p24 + p14p23) ⊂ P5 (10.13)

defining the Grassmannian of lines inP3.
The formula (10.11) for the degree of the Grassmannian gives in our special case

degG(2, n) =
(2n− 4)!

(n− 2)!(n− 1)!
(10.14)

One can also compute the degrees of Schubert varieties

deg Ω(a0, a1) =
(a0 + a1 − 1)!

a0!a1!
(a1 − a0). (10.15)

Let p ∈ P(
∧2

V ) andup be a representative ofp in
∧2

V . We say thatp is of rank
r if up is of rankr. It is clear thatup has rank≤ 2k if and only if there exist matrices
s1, . . . , sk of rank 2 such that

up = s1 + · · ·+ sk.

In other words,p has rank≤ 2k if and only if p ∈ S, whereS is a space of dimension
k − 1 which is at leastk-secant toG. This gives the following.

Proposition 10.1.6.The variety

Gk =: {p ∈ P(
2∧
V ) : p has rank≤ 2k + 2}

is thek-secant varietySeck(G) ofG = G(2, V ).

Let t = [n−4
2 ], thent is the maximal numberk such that SeckG 6= P(

∧2
V ). So

the Pl̈ucker space is stratified by the rank of its points and the strata are the following:

Pn−1 \ Sect(G), Sect(G) \ Sect−1, . . . ,Sec1 \G, G. (10.16)



10.1. GRASSMANNIANS OF LINES 405

It follows from the previous remarks that Seck(G) \Seck−1(G) is the orbit of a matrix
of rank2k + 2 and sizen under the action of GL(n). Therefore,

dim Seck(G) = dim GL(n)/Hk,

whereHk is the stabilizer of a skew symmetric matrix of rank2k + 2 (e.g. with the
standard symplectic matrixJ2k+2 in the left upper corner and zero elsewhere). An easy
computation gives the following.

Proposition 10.1.7.Let0 ≤ k ≤ t, then

dk = dim Seck(G) = (k + 1)(2n− 2k − 3)− 1.

LetX ⊂ Pr be a reduced and nondegenerate variety: thek-th defectof X can be
defined as

δk(X) = min
(
(k + 1) dimX + k, r

)
− dim Seck(X),

which is the difference between the expected dimension of thek-secant variety ofX
and the effective one. We say thatX is k-defectiveif Seck(X) is a proper subvariety
andδk(X) > 0.

Example10.1.2. Letn = 2t+4, then Sect(G) ⊂ P(
∧2

V ) is the pfaffian hypersurface
of degreet+ 2 in P(

∧2
V ) parameterizing singular skew-symmetric matrices(pij) of

size2t+4. The expected dimension of Sect(G) is equal to4t2 +8t+5 which is larger
thandim P(

∧2
V ) =

(
2t+4

2

)
− 1. Thusdt(G) = dim Sect(G) + 1 andδt(G) = 1.

In the special casen = 6, we havet = 2 anddimG = 8. Recall that a nonde-
generate subvarietyX ⊂ PN with dimX = [ 2N3 ]− 1 is called aSeveri-Zak varietyif
Sec1(X) 6= PN . There are four non-isomorphic Severi-Zak varieties andG(2, 6) is one
of them. The other three are the Veronese surface inP5, the Segre varietys2(P2 × P2)
in P8 and theE6-variety of dimension16 in P26.

Using Schubert varieties one can describe the projective tangent space of Seck(G)
at a given pointp /∈ Seck−1(G). Considerp as a linear mapV ∨ → V and letK be
its kernel. The rank ofp is equal to2k + 2. Thus the orthogonal subspaceK⊥ ⊂ V
defines a linear subspaceΛp = |K⊥| of |V | of dimension2k + 1. Let Ω(Λp) be the
corresponding special Schubert variety and〈Ω(Λp)〉 be its linear span in the Plücker
space.

Proposition 10.1.8.
Tp(Seck(G)) = 〈Ω(Λp)〉.

Proof. Since Seck(G)\Seck−1(G) is a homogeneous space for GL(n) we may assume
that the pointp is represented by a bivectorω =

∑k+1
i=1 ei ∧ ei+1. The corresponding

subspaceK⊥ is spanned bye1, . . . , e2k+2. A line ` intersectsP(Λp) if and only if it
can be represented by a bivectorv ∧ w, wherev ∈ K⊥. ThusW = 〈Ω(Λp)〉 is the
span of bivectorsei∧ej , where eitheri or j is less or equal than2k. In other words,W
is given by vanishing of

(
n−2k−2

2

)
Plücker coordinatespab, wherea, b > 2k + 2. It is

easy to see that this agrees with formula (10.1.7) for dim Seck(G). So, it is enough to
show thatW is contained in the tangent space. We know that the equations of Seck(G)
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are given by pfaffians of size4k+ 4. Recall the formula for the pfaffians from Chapter
2, Exercise 2.1,

Pfaf(A) =
∑
S∈S
±

∏
(ij)∈S

aij ,

whereS is a set of pairs(i1j1), . . . , (i2k+2, j2k+2) such that1 ≤ is < js ≤ 4k + 4,
s = 1, . . . 2k + 2, {i1, . . . , i2k+2, j1, . . . , j2k+2} = {1, . . . , 4k + 4}. Consider the
Jacobian matrix of Seck(G) at the pointp. Each equation of Seck(G) is obtained by
a choice of a subsetI of {1, . . . , n} of cardinality 4k + 4 and writing the pfaffian
of the submatrix of(pij) formed by the columns and rows with indices inI. The
corresponding row of the Jacobian matrix is obtained by taking the partials of this
equation with respect to allpij evaluated at the pointp. If a, b ≤ 2k + 2, then one of
the factors in the product

∏
(ij)∈S pij corresponds to a pair(i, j), wherei, j > 2k+ 2.

When we differentiate with respect topab its value atp is equal to zero. Thus the
corresponding entry in the Jacobian matrix is equal to zero. So, all nonzero entries in a
row of the Jacobian matrix correspond to the coordinates of vectors fromW which are
equal to zero. ThusW is contained in the space of solutions.

Takingk = 0, we obtain

Corollary 10.1.9.
T`(G) = 〈Ω(`)〉.

Let Λ be any subspace ofPn−1 of dimension2k + 1. Consider the set of points

PΛ = {p ∈ P(
2∧
V ) : Λ = Λp}.

This is the projectivization of the linear space of skew-symmetric matrices of rank2k+
2 with the given nullspace of dimension2k+2. An easy computation using the formula
(10.1.7) for dk = dim Seck(G) shows that its dimension is equal to(2k+1)(k+1)−1.

Let

γk : Seck(G) \ Seck−1(G)→ G(dk + 1,
2∧
V ), dk = dim Seck(G),

be theGauss mapwhich assigns to a point its embedded tangent space. Applying
Proposition10.1.8, we obtain

Corollary 10.1.10.
γ−1
k (〈Ω(Λ)〉) = PΛ.

In particular, any hyperplane in the Plücker space containingΩ(Λ) is tangent to
Seck(G) along the subvarietyPΛ of dimension(2k + 1)(k + 1)− 1.

Example10.1.3. Let n = 6. The secant variety Sec1(G) is a cubic hypersurface in
P14 defined by the pfaffian of6× 6 skew-symmetric matrix whose entries are Plücker
coordinatespij . The Gauss map is the restriction to Sec1(G) of the polar mapP :
P14− → P̌14 given by the partials of the cubic. The singular locus of Sec1(G) is G.
The Pl̈ucker equations ofG are the partials of the pfaffian cubic hypersurface. The
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mapP is a Cremona transformation inP14 defined by the linear system of quadrics
defining the Pl̈ucker equations ofG. It can be resolved by blowing upG and then
blowing down the proper inverse transform of Sec1(G) to a subvariety isomorphic to
G∗, whereG∗ = G(2, V ∨). The image of the exceptional locus of the blow-up is equal
to Sec1(G∗). Three other Severi-Zak varieties define a similar Cremona transformation
(of P5, P8 andP26). It is given by the partials of the cubic form defining the first secant
variety.

Let X be a subvariety ofG, andZX be the preimage ofX under the projection
q : ZG → G. The image ofZX in Pn−1 is the union of lines̀ ∈ X. We will need the
description of its set of nonsingular points.

Proposition 10.1.11.The projectionpX : ZX → Pn is smooth at(x, l) if and only if

diml Ω(x) ∩ Tl(X) = dim(x,`) p
−1
X (x)

Proof. Let (x, l) ∈ ZX and letF be the fibre ofpX : ZX → Pn passing through the
point (x, l) identified with the subsetΩ(x) ∩ X under the projectionq : ZX → G.
Then

Tx,l(F ) = Tl(Ω(x)) ∩ Tl(X) = Ω(x) ∩ Tl(X). (10.17)

This proves the assertion.

Corollary 10.1.12. LetY = pX(ZX) ⊂ Pn−1 be the union of linesl ∈ X. AssumeX
is nonsingular andp−1

X (x) is a finite set. Supposediml Ω(x) ∩ Tl(X) = 0 for some
l ∈ X containingx. Thenx is nonsingular as a point ofY .

10.2 Linear complexes of lines

10.2.1 Linear complexes and apolarity

An effective divisorD ⊂ G = G(2, n) is called acomplex of lines. Since we know
that Pic(G) is generated byOG(1) we see that

D ∈| OG(d) |

for somed ≥ 1.Thedegreeof D is d.
An example of a complex of degreed in G(2, n) is theChow formof a subvariety

X ⊂ Pn−1 of codimension 2 (see [183]). It parametrizes lines which have non-empty
intersection withX. Its degree is equal to the degree ofX. WhenX is linear, this is of
course the special Schubert varietyΩ(X).

A linear complexis a complex of degree one, that is a hyperplane sectionX = H∩
G of G. If no confusion arises we will sometimes identifyX with the corresponding
hyperplane〈H〉. A linear complex is calledspecialif it is tangent toG at some point
` ∈ G, i.e.X = Ω(`).

If we write Pn−1 = |V | for some vector spaceV of dimensionn, then a linear
complexX is defined by a linear form on

∧2
V , i.e. an elementω ∈

∧2
V ∨. We
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writeX = Xω. In coordinates, a linear complex (or, more precisely, the corresponding
hyperplane) can be written as ∑

1≤i<j≤n

aijpij = 0.

For example, the complexpij = 0 parametrizes the lines intersecting the coordinate
(n− 3)-planexk = 0, k 6= i, j, in Pn−1.

Remark10.2.1. Recall from Remark10.2.4that we have a natural isomorphism

2∧
V ∨ ∼= H0(|V |,Ω1

|V |(1)).

Also we know that the projectionq : Z → |V | ∼= Pn−1 is isomorphic toP(Ω1
|V |(1)).

Thus a linear line complex can be viewed as a divisor in the linear system|OP(E)(1)|,
whereE = Ω1

|V |(1)). The projective bundleP(E) is isomorphic to the projectivization

of the tangent bundleV(Ω1
|V |). As usual, we can choose local coordinatesz1, . . . , zn−1

in |V | defining the basis( ∂
∂z1

, . . . , ∂
∂zn−1

) in tangent spaces, then the a linear line

complexω ∈
∧2

V ∨ is locally given by an expression

n−1∑
i=1

Ai(z1, . . . , zn−1)dzi = 0,

wheredzi are coordinates in the tangent space. This equation is called thePfaff partial
differential equation. More generally, any line complex of degreed can be considered
as the zero set of a section ofOP(E)(d) and can be locally defined by theMonge’s
partial differential equation

n∑
i1+...+in−1=d

Ai1,...,indz
i1
1 . . . dz

in−1
n−1 = 0.

If F (. . . , pij , . . .) = 0 is the equation of the complex in Plücker coordinates, we deho-
mogenize it, by taking homogeneous coordinates[x1, . . . , xn] = (1, z1, . . . , zn−1) in
Pn−1 and replace the Plúcker coordinates withp1,j = dzj , pij = zidzj − zjdzi, i > 1.
The resulting equation become a Monge’s partial differential equations. Recall that
a solution of a Monge equation is a curvezi = φi(t) such that replacingzi with
φi(t) anddzi with dφi

dt we get the identity (in some open set). The tangent line to the
curve at a pointz defines a point inq−1(z) belonging to the divisorp−1(V (F )), where
p”Z → G1(Pn−1) is the natural projection.

The projective equivalence classes of linear complexes coincide with the orbits of
GL(V ) acting naturally on|

∧2
V ∨|. The GL(V )-orbit of a linear complexXω is

uniquely determined by therank2k of ω. We will identify ω with the associated linear
mapV → V ∨. Let Ker(ω) be the radical of the bilinear formω (or the kernel of the
corresponding linear mapV → V ∨) and

Cω = |Ker(αω)|. (10.18)
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It is called thecenterof a linear complexH. We have encountered with this in Chapter
2. This is a linear subspace ofP(V ) of dimensionn− 1− 2k, where2k is the rank of
Xω.

Proposition 10.2.1.LetXω be a linear complex andCω be its center. Then

Ω(Cω) ⊂ Xω,

G1(Cω) = Sing(Xω).

Proof. Since GL(V ) acts transitively on the set of linear complexes of equal rank, we
may assume thatω =

∑k
i=1 e

∗
i ∧e∗k+i, wheree∗1, . . . , e

∗
n is a basis ofV ∨ dual to a basis

e1, . . . , en of V . The linear space Ker(ω) is spanned byei, i > 2k. A line l intersects
Cω if and only if it can be represented by a bivectorv ∧ w ∈

∧2
V , wherev ∈ Cω.

The linear span ofΩ(Cω) is spanned by bivectorsei ∧ ej , wherei < 2k. It is obvious
that it is contained in the hyperplane〈Xω〉 ⊂

∧2
V defined byω = 0. This checks the

first assertion.
It follows from Corollary10.1.9that

` ∈ Sing(Xω)⇐⇒ T`(G) ⊂ Xω ⇐⇒ Ω(`) ⊂ Xω.

SupposeΩ(`) ⊂ Xω but ` does not belong toCω. We can find a point iǹ represented
by a vectorv =

∑
aiei, whereai 6= 0 for somei ≤ 2k. Then the line represented by a

2-vectorv∧ ek+i intersects̀ but does not belong toXω (sinceω(v∧ ek+i) = ai 6= 0).
ThusΩ(`) ⊂ Xω implies` ⊂ Cω. Conversely, this inclusion impliesΩ(`) ⊂ Ω(Cω) ⊂
Xω. This proves the second assertion.

It follows from the proposition that any linear complex is singular unless its rank is
equal to2[n2 ], maximal possible. Thus the set of hyperplanes in the Plücker space which
are tangent toG can be identified with the set of linear complexes of rank≤ 2[n−2

2 ].
ConsiderG(2, V ∨) in its Plücker embedding inP(

∧2
V ). Exchanging the roles ofV

andV ∨, we obtain the following beautiful result.

Corollary 10.2.2. Let t = [n−4
2 ], thenSect(G) is equal to the dual variety of the

GrassmannianG(2, V ∨) in P(
∧2

V ).

Whenn = 4, 5 we see thatG(2, V ) is dual toG(2, V ∨). Whenn = 6 we obtain
that the dual ofG(2, V ∨) is equal to Sec1(G(2, V )). This agrees with Example10.1.3.

Let αω : V → V ∨ be defined by a skew-symmetric bilinear formω onV . For any
linear subspaceE of V let

E⊥ω = αω(Λ)⊥ = {w ∈ V : ω(v, w) = 0,∀v ∈ E}.

For any subspaceΛ = P(E) ⊂ Pn let

iω(Λ) = P(E⊥ω ).

It is clear that[v ∧ w] ∈ G belongs toXω if and only if ω(v, w) = 0, and hence if
and only ifv, w ∈ E⊥, whereE is the span ofv andw. Thus

Xω = {` ∈ G : ` ⊂ iω(`)}. (10.19)
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Clearly iω(Λ) contains the centerCω = P(Ker(αω)) of H. Its dimension is equal to
n+ 1− dim Λ + dim Λ ∩ Cω.

Sinceω is skew-symmetric, for any pointx ∈ P(E),

x ∈ iω(x).

Whenω is nonsingular, we obtain a bijective correspondence between points and hy-
perplanes classically known as anull-system.

In the special case whenn = 3 andCω = ∅ this gives thepolar dualitybetween
points and planes. The planeΠ(x) corresponding to a pointx is called thenull-plane
of x. The pointxΠ corresponding to a planeΠ is called thenull-point of Π. Note that
x ∈ Π(x) andxΠ ∈ Π. Also in this case the lines̀andiω(`) are calledpolar lines.
They never intersect unless they coincide.

We also have a correspondence between lines inP3

iω : G1(P3)→ G1(P3), ` 7→ iω(`).

Note that the lines̀ andiω(`) are always skew or coincide. The set of fixed points of
iω onG1(P3) is equal toXω. It is easy to see thatiω corresponds to the projection
of the Klein quadricG = G1(P3) in P5 from the pointc dual to the hyperplane〈Xω〉
with respect toG. Thus

G/(iω) ∼= P4.

The hyperplane〈Xω〉 is the polar hyperplanePc(G). The ramification divisor of the
projectionG → P4 is the linear compexXω = Pc(G) ∩ G. The branch divisor is a
quadric inP4.

Proposition 10.2.3. LetXω be a nonsingular linear complex inG(2, n). Let ` be a
line in Pn−1. Then any linè ′ ∈ Xω intersecting` also intersectsiω(`). The linear
complexXω consists of lines intersecting the line` and the codimension 2 subspace
iω(`).

Proof. Let x = ` ∩ `′. Sincex ∈ `′, we havè ′ ⊂ iω(`′) ⊂ iω(x). Sincex ∈ `,
we haveiω(`) ⊂ iω(x). Thusiω(x) contains̀ ′ andiω(`). SinceXω is nonsingular,
dim iω(x) = n− 2, hence the linè′ intersects the(n− 3)-planeiω(`).

Conversely, supposè′ intersects̀ at a pointx and intersectsiω(`) at a pointx′.
Thenx, x′ ∈ iω(`′) and hencè′ = x, x′ ⊂ iω(`′). Thus`′ belongs toXω.

Definition 10.1. A linear complexXω in |
∧2

V | is calledapolarto a linear complex
Xω∗ in |

∧2
V ∨| if ω∗(ω) = 0.

In the casen = 3, we can identify|
∧2

V | with |
∧2

V ∨| by using the polarity
defined by the Klein quadric. Thus we can speak about apolar linear complexes inP3.
In Plücker coordinates, this gives the relation

a12b34 + a13b24 − a14b23 + a23b14 − a24b13 + a34b12 = 0. (10.20)

Lemma 10.2.4. LetXω andXω′ be two nonsingular linear compexes inP3 andA =
αω andB = αω′ : V → V ∨, B : V → V ∨ be the corresponding linear maps. Then
Xω andXω′ are apolar to each other if and only ifg = B−1 ◦ A, considered as a
transformation of|V |, satisfiesg2 = 1.
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Proof. Take two skew lines̀, `′ in the intersectionXω∩Xω′ . Choose coordinates inV
such that̀ and`′ are two opposite edges of the coordinate tetrahedronV (t0t1t2t3), say
` : t0 = t2 = 0, and`′ : t1 = t3 = 0. Then the linear complexes have the following
equations in Pl̈ucker coordinates

H : ap12 + bp34 = 0; H ′ : cp12 + dp34 = 0.

The condition thatXω andXω′ are apolar isad+ bc = 0. Now we have

A =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , B =


0 c 0 0
−c 0 0 0
0 0 0 d
0 0 −d 0

 ,

B−1 =


0 −c−1 0 0
c−1 0 0 0
0 0 0 −d−1

0 0 d−1 0

 .

This gives

AB−1 =


a/c 0 0 0
0 a/c 0 0
0 0 b/d −
0 0 0 b/d

 =
a

c


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

This shows that(AB−1)2 defines the identical transformation of|V |. It is easy to see
that conversely, this implies thatad+ bc = 0.

In particular, a pair of apolar linear complexes defines an involution of|V |. Any
pair of linear complexes defines a projective transformation of|V | as follows. Take a
pointx, define its null-planeΠ(x) with respect toω and then take its null-pointy with
respect toω′. For apolar complexes we must get an involution. That is, the null-plane
of y with respect toω must coincide with the null-plane ofx with respect toω′.

Since any set of mutually apolar linear complexes is linearly independent, we see
that the maximal number of mutually apolar linear complexes is equal to 6. If we
choose these complexes as coordinateszi in

∧2
V we can write the equation of the

Klein quadric as the sum

Q =
5∑
i=0

z2
i .

Since each pair of apolar linear complexes defines an involution inP(
∧2

V ) we ob-
tain 15 involutions. They form an elementary abelian group of order24 of projective
transformations inP3. This group is called theHeisenberg group. The group originates
from a linear non-abelian groupH′2 of order 32, a central extension ofH2

1→ µ2 → H′2 → H2 → 1.
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An example of six mutually apolar linear complexes is the set

(z0, . . . , z5) = (p12 + p34, i(p34 − p12), p13 − p24,−i(p24 + p13), p14 + p23, i(p23 − p14)),

wherei =
√
−1. These coordinates in the Plücker space are called theKlein coordi-

nates.
A set of six mutually apolar linear complexes define a(166)-configurations of

points and planes. It is formed by 16 points and 16 planes inP3 such that each point is
a null-point of 6 planes, each with respect to one of the six complexes. Also each plane
is a null-plane of 6 points with respect to one of the six complexes. To construct such
a configuration one can start from any pointp1 = [a0, a1, a2, a3] ∈ P3 such that no
coordinate is equal to zero. Assume that our six apolar complexes correspond to Klein
coordinates. The first complex isp12 +p34 = e∗1 ∧ e∗2 + e∗3 ∧ e∗4. It transforms the point
p1 to the plane−a1t0 + a0t1 + a3t2 − a2t3 = 0. Taking other coordinates we get 5
more null-planes

a1t0 − a0t1 + a3t2 − a2t3 = 0,
a2t0 − a3t1 − a0t2 + a1t3 = 0,
a2t0 + a3t1 − a0t2 − a1t3 = 0,
a3t0 + a2t1 − a1t2 − a0t3 = 0,
−a3t0 + a2t1 − a1t2 + a0t3 = 0.

Next we take the orbit ofp1 with respect to the Heisenberg group. It consists of 16
points. Computing the null-planes of each point we find altogether 16 planes forming
with the 16 points a(166)-configurations. The following table gives the coordinates of
the 16 points.

a0, a1, a2, a3 a1, a0, a3, a2 a0,−a1, a2,−a3 a1,−a0, a3,−a2

a2, a3, a0, a1 a3, a2, a1, a0 a2,−a3, a0,−a1 a3,−a2, a1,−a0

a0, a1,−a2,−a3 a1, a0,−a3,−a2 a0,−a1,−a2, a3 a1,−a0,−a3, a2

a2, a3,−a0,−a1 a3, a2,−a1,−a0 a2,−a3,−a0, a1 a3,−a2,−a1, a0

A point (α, β, γ, δ) in this table is contained in 6 planesat0 + bt1 + ct2 + dt3 = 0,
where(a, b, c, d) is one of the following

(δ,−γ, β,−α), (δ, γ,−β,−α), (γ, δ,−α,−β),

(−γ, δ, α,−β), (−β, α, δ,−γ), (β,−α, δ,−γ).

Dually, a planeαt0+βt1+γt2+δt3 = 0 contains 6 points[a, b, c, d], where(a, b, c, d)
is as above.

Note that one checks directly that the six null-points of each of the 16 planes of
the configuration lie on a conic. So we have a configuration of 16 conics inP3 each
contains6 points of the configuration. Also observe that any two conics intersect at 2
points.

There is a nice symbolic way to exhibit the(166)-configuration. After we fix an
order on a set of 6 mutually apolar linear complexes we can identify nonzero elements
of the Heisenberg groupH2 with 2-element subsets of the set{1, 2, 3, 4, 5, 6} with
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addition defined by the symmetric sum where we replace a subset of cardinality 4 with
its complementary subset. The empty set corresponds to the zero. A subset of two
elements{i, j} corresponds to the involution defined by a pair of apolar complexes.
We take the ordered set of apolar linear complexes defined by the Klein coordinates.
First we match the orbit of the point[a0, a1, a2, a3] from the table from above with
the first of the following tables. To find the 6 planes which contain a point from the
(ij)-th spot we look at the same spot in the second of the following tables. Take the
involutions in thei-th row andj-th column but not at the(ij)-spot. These involutions
are matched with the planes containing the point. As always we identify a planea0t0 +
a1t1 +a2t2 +a3t3 with the point[a0, a1, a2, a3]. For example, the point∅ is contained
in 6 planes(15), (13), (26), (46), (24), (35). Conversely, take a plane corresponding to
the(ij)-th spot in the second table. The point contained in this plane can be found in
the same row and the same column in the first table excluding the(ij)-th spot. For
example, the plane∅ contains the points(45), (34), (35), (16), (12), (26).

∅ (45) (34) (35)
(16) (23) (25) (24)
(12) (36) (56) (46)
(26) (13) (15) (14)

(14) (15) (13) (26)
(46) (56) (36) (12)
(24) (25) (23) (16)
(35) (34) (45) ∅

.

Another way to remember the rule of the incidence is a follows. A point corresponding
to an involution(ab) is contained in a plane corresponding to an involutiuon(cd) if and
only if

(ab) + (cd) + (24) ∈ {∅, (16), (26), (36), (46), (56)}.

Consider a regular mapP3 → P4 defined by the polynomials

x4 + y4 + z4 + w4, x2w2 + y2z2, y2w2 + x2z2, z2w2 + x2y2, xyzw.

Observe that this map is invariant with respect to the action of the Heisenberg group
H2. So, it defines a regular map

Φ : P3/H2 → P4.

Proposition 10.2.5.The mapΦ defines an isomorphism

P3/H2
∼= I4,

whereI4 is a quartic hypersurface given by the equation

X2V 2−2XY ZW+Y 2Z2+Y 2W 2−Y 2V 2+Z2W 2−Z2V 2−W 2V 2+V 4 = 0. (10.21)

Proof. Since the map is given by 5 polynomials of degree 4, the degree of the map
times the degree of the image must be equal to43. We know that its degree must
be multiple of 16, this implies that either the image isP3 or a quartic hypersurface.
Since the polynomials are linearly independent the first case is impossible. A direct
computation gives the equation of the image.
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A quartic hypersurface projectively isomorphic to the hypersurfaceI4 will be called
an Igusa-Richmond quartic primal. We will see a little later that it is the dual hyper-
surface of the Segre cubic primal.

Note that the fixed-point set of each non-trivial element of the Heisenberg group
H2 consists of two skew lines given by equations

t0 ± t1 = t2 ± t3 = 0, t0 ± it1 = t2 ± it3 = 0, t0 = t1 = 0,

and equations obtained from those by permuting coordinates. Each line has a stabilizer
subgroup of index 2. Thus the images of the 30 lines is the set of 15 double lines on
I4. The stabilizer subgroup acts on the line as a Klein group22. It has 6 points with
non-trivial stabilizer of order 2. Altogether we have30 × 6 = 180 such points which
form 15 orbits. These orbits and the double lines from a(153)-configuration. The local
equation ofI4 at one of these orbits isv2 + xyz = 0.

It was shown by J. Igusa that the quartic hypersurface defined by equation (10.21)
is isomorphic to a compactificationA2(2) of the moduli space of principally polarized
abelian surfaces with level 2 structure. We refer to [130], [180], [177] for a moduli-
theoretical interpretation of theH2-equivariant mapΦ : P3 → I4.

10.2.2 6 lines

We know that any 5 lines inP3 are contained in a linear complex. In fact, in a unique
linear complex when the lines are linearly independent as vectors in

∧2
V . A set

of 6 lines is contained in a linear complex only if they are linearly dependent. The
6 × 6 matrix of its polar coordinates must have a nonzero determinant. An example
of 6 dependent lines is the set of lines intersecting a given line`. They are contained
in the linear span of the Schubert linear complexΩ(`). We will give a geometric
characterization of a set of 6 linearly dependent lines which contains a subset of 5
linearly independent lines.

Lemma 10.2.6. Let σ : P1 → P1 be an involution. Then its graph is an irreducible
curveΓg ⊂ P1 × P1 of bidegree(1, 1) such thatι(Γg) = Γg, whereι is the automor-
phism(x, y) 7→ (y, x). Conversely, any curve onP1×P1 with these properties is equal
to the graph of some involution.

Proof. This is easy and left to the reader.

Corollary 10.2.7. Letσ, τ be two different involutions ofP1. Then there exists a unique
common orbit{x, y} with respect toσ andτ .

We will need the following result of M. Chasles.

Theorem 10.2.8.LetQ be a nondegenerate quadric inP3 andσ be an automorphism
of order 2 ofQ which is the identity on one of the rulings. Then the set of lines inP3

which are either contained in this ruling or intersect an orbit of lines in the second
ruling form a linear complex. Conversely, any linear complex is obtained in this way
from some pair(Q, σ).
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Proof. Consider the setX of lines defined as in the first assertion of the Theorem. Take
a general planeΠ and a pointx ∈ Π. Consider the Schubert varietyΩ(x,Π). It is a
line in the Pl̈ucker space. The plane interesectsQ along a conicC. Each line from
Ω(x,Π) intersectsC at two points. This defines an involution onC. Each line from
the second ruling intersectsC at one point. Henceσ defines another involution onC.
By Corollary 8.21 there is a unique common orbit. Thus there is a unique line from
Ω(x,Π) which belongs toX. ThusX is a linear complex.

Let `1, `2, `3 be any three skew lines inX. Let Q be a quadric containing these
lines. It is obviously nonsingular. The lines belong to some ruling ofQ. Take any line
` from the other ruling. Its polar linè′ = iH(`) intersects̀ 1, `2, `3 (because it is skew
to ` or coincides with it). Hencè′ lies onQ. Now we have an involution on the second
ruling defined by the polarity with respect toX. If m ∈ X and is not contained in the
first ruling, thenm intersect a linè from the second ruling, by Proposition10.2.3, it
also intersects̀′. This is the description ofX from the assertion of the Theorem.

Remark10.2.2. Let C be the curve inG(2, 4) parameterizing lines in a ruling of the
quadricQ. Take a general linè in P3. ThenΩ(`) contains two lines from each ruling,
the ones which pass through the pointsQ ∩ `. This implies thatC is a conic in the
Plücker embedding. A linear complexX either intersects each conic at two points and
contains two or one line from the ruling or containsC and hence contains all lines from
the ruling.

Lemma 10.2.9. Let ` be a line intersecting a nonsingular quadricQ in P3 at two
different pointsx, y. Let Tx(Q) ∩ Q = `1 ∪ `2 andTy(Q) ∩ Q = m1 ∪m2, where
`1,m1 and`2,m2 belong to the same ruling. Then the polar line`⊥Q intersectsQ at the
pointsx′ = `1 ∩m2 andy′ = `2 ∩m1.

Proof. Each line onQ is self-polar to itself. ThusPx(Q) is the tangent planeTx(Q)
and, similarly,Py(Q) = Ty(Q). This shows that̀⊥Q = Tx(Q) ∩ Ty(Q) = x′, y′.

Lemma 10.2.10. let `1, `2, `3, `4 be four skew lines inP3. Suppose not all of them
are contained in a quadric. Then there are exactly 2 lines which intersect all of them.
These lines may coincide.

Proof. This is of course well-known. It can be checked by using the Schubert calculus
sinceσ4

1 = #∩4
i=1 Ω(`i) = 2. A better geometric proof can be given as follows. LetQ

be the quadric containing the first 3 lines. Then`4 intersectsQ at two pointsp, q which
may coincide. The lines through these points belonging to the ruling not containing
`1, `2, `3 intersect̀ 1, . . . , `4. Conversely, any line intersecting`1, . . . , `4 is contained
in this ruling (because it intersectsQ at 3 points) and passes through the points`4 ∩Q.

Theorem 10.2.11.Let (`1, . . . , `6) be a set of 6 lines and let(`′1, . . . , `
′
6) be the set

of polar lines with respect to some nonsingular quadricQ. Assume that the first five
lines are linearly independent in the Plücker space. Then(`1, . . . , `6) belong to a
nonsingular linear complex if and only if there exists a projective transformationT
such thatT (`i) = `′i. This condition does not depend on the choice ofQ.
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Proof. First let us check that this condition does not depend on a choice ofQ. For each
line ` let `⊥Q denote the polar line with respect toQ. SupposeA(`) = `⊥Q for some
projective transformationA. LetQ′ be another nonsingular quadric. We have to show
that`⊥Q′ = B(`) for some other projective transformationB depending only onA but
not on`. Let us identifyV with Cn+1 and a quadricQ with a nonsingular symmetric
matrix. ThenA(`) = `⊥Q means thatxQAy = 0 for any vectorsx, y in `. We have to
find a matrixB such thatxQ′By = 0. We have

xQAy = xQ′(Q′−1QA)y = xQ′By,

whereB = Q′−1QA. This checks the claim.
Suppose the set(`1, . . . , `6) is projectively equivalent to(`′1, . . . , `

′
6), where`′i are

polar lines with respect to some quadricQ. ReplacingQ with a quadric containing
the first 3 lines̀ 1, `2, `3, we may assume that`′i = `i, i = 1, 2, 3. We identifyQ
with P1 × P1. If `j ∩ Q = (aj , bj), (a′j , b

′
j) for j = 4, 5, 6, then, by Lemma10.2.9,

`′j ∩Q = (aj , b′j), (a
′
j , bj). Supposè′i = A(`i). ThenA fixes 3 lines in the first ruling

hence sendsQ to itself. It is also identical on the first ruling. It acts on the second
ruling by switching the coordinates(bi, b′j), j = 4, 5, 6. ThusA2 has 3 fixed points on
P1, henceA2 is the identity. This shows thatA = σ as in the Chasles Theorem. Hence
the lines̀ i, `

′
i, i = 1, . . . , 6, belong to the linear complex.

Conversely, assumè1, . . . , `6 belong to a nonsingular linear complexH. Applying
Lemma10.2.10, we find two lines̀ ,m intersecting̀ 1, `2, `3, `4 (two transversals). By
Proposition10.2.3, the polar line`′ = iH(`) intersects̀ 1, `2, `3, `4. Hence it must
coincide with either̀ orm. The first case is impossible. In fact, if` = `′, then` ∈ H.
The pencil of lines through̀∩ `1 in the planè , `1 is contained inH. Similarly, the
line Ω(` ∩ `2, `, `2) is contained inH. Let Π be the plane of lines spanned by these
two lines inG. It is contained inH. ThusΠ cuts out inG a pair of lines. ThusH is
singular at the point of intersections of these two lines. A contradiction.

Thus we see that̀, `′ = m is a pair of polar lines. Now the pair of transversals
n, n′ = iH(n) of `1, `2, `3, `5 is also a pair of polar lines. Consider the quadricQ
spanned bỳ1, `2, `3. The four transversals are the four lines from the second ruling of
Q. We can always find an involutionσ onQ which preserves the first ruling and such
thatσ(`) = `′, σ(n) = n′. Consider the linear complexH ′ defined by the pair(Q, σ).
Since`1, . . . , `5 belong toH, and any complex is determined by 5 linearly independent
lines, we have the equalityH = H ′. Thus`6 intersectsQ at a pair of lines in the second
ruling which are in the involutionσ. But σ is defined by the polarity with respect to
H (since`1, `2, `3 ∈ H and the two involutions share two orbits corresponding to the
pairs(l, l′), (n, n′)). This implies(`1, . . . , `6) = σ(`′1, . . . , `

′
6), where`′i = `⊥i .

Corollary 10.2.12. Let `1, . . . , `6 be 6 skew lines on a nonsingular cubic surfaceS.
Then they are linearly independent in the Plücker space.

Proof. We first check that any 5 lines among the six lines are linearly independent.
Assume that̀ 1, . . . , `5 are linearly dependent. Then one of them, say`5, lies in the
span of`1, `2, `3, `4. Let (`′1, . . . , `

′
6) is the set of six skew lines which together with
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(`1, . . . , `6) form a double-sixer. Theǹ1, `2, `3, `4 lie in the linear complexΩ(`′5),
hencè 5 lies in it too. But this is impossible because`5 is skew tò ′

5.
We know that there exists the unique quadricQ such that̀ ′i are polar toQ with

respect toQ (the Schur quadric). But(`′1, . . . , `
′
6) is not projectively equivalent to

(`1, . . . , `6). Otherwise,S and its imageS′ under the projective transformationT will
have 6 common skew lines. It will also have common transversals of each subset of
4. Thus the degree of the intersection curve is larger than 9. This shows that the cubic
surfacesS andS′ coincide andT is an automorphism ofS. Its action on Pic(S) is a
reflection with respect to the root corresponding to the double-sixer. It follows from
Theorem 2.5.15 thatS does not admit such an automorphism.

Remark10.2.3. The group SL(4) acts diagonally on the Cartesian productG6. Con-
sider the sheafL onG6 defined as the tensor product of the sheavesp∗iOG(1), where
pi : G6 → G is the i-th projection. The group SL(4) acts naturally in the space of
global sections ofL and its tensor powers. Let

R =
∞⊕
i=0

H0(G6,Li)SL(4).

This is a graded algebra of finite type and its projective spectrum Proj(R) is denoted by
G6//SL(4). This is an example of a GIT-quotient. The varietyG6 has an open invariant
Zariski subsetU which is mapped toG6//SL(4) with fibres equal to SL(4)-orbits.
This implies thatG6//SL(4) is an irreducible variety of dimension 9. Given6 ordered
general lines inP3 their Pl̈ucker coordinates make a6×6 matrix. Its determinant can be
considered as a section from the first graded pieceR1 of R. The locus of zeros of this
section is a closed subvariety ofG6 whose general point is a 6-tuple of lines contained
in a linear complex. The image of this locus inG6//SL(4) is a hypersurfaceF . Now
the duality of lines by means of a nondegenerate quadric defines an involution onG6.
Since it does not depend on the choice of a quadric up to projective equivalence, the
involution descends to an involution ofG6//SL(4). The fixed points of this involution
is the hypersurfaceF . One can show that the quotient by the duality involution is an
open subset of a certain explicitly described 9-dimensional toric varietyX (see [136]).

Finally, observe that a nonsingular cubic surface together with a choice of its ge-
ometric marking defines a double-sixer, which is an orbit of the duality involution in
G6//SL(4) and hence a unique point inX which does not belong to the branch locus
of the double coverG6//SL(4)→ X. This embeds the 4-dimensional moduli space of
marked nonsingular cubic surfaces in a 9-dimensional toric variety.

10.2.3 Linear systems of linear complexes

Let W ⊂
∧2

V ∨ be a linear subspace of dimensionr + 1. After projectivization
and restriction toG(2, V ) ∼= G1(Pn−1) it defines ar-dimensional linear system of
linear complexes. We have encountered already a net of linear complexes inG(2, 5) in
Chapter 2. Let

Bs(|W |) = ∩ω∈WXω ⊂ G(2, V ).
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It is called thebase-locusof |W |. It is a subvariety ofG(2, V ) of dimension2n−5−r.
Its canonical class is given by the formula

ωBs(|W |) ∼= OBs(|W |)(r + 1− n). (10.22)

In particular, it is a Fano variety ifr < n− 1, a Calabi-Yau variety ifr = n− 1 and a
variety of general type ifr > n− 1.

We also define thecenter varietyC|W |

C|W | =
⋃
ω∈W

Cω.

It is also called thesingular varietyof W .
For anyx = [v] ∈ C|W | there existsω ∈ W such thatω(v, v′) = 0 for all v′ ∈ V ,

or equivalently, the linè = x, y is contained inXω for all y. This implies that the
codimension ofΩ(x) ∩ Bs(|W |) in Ω(x) is≤ r, less than expectedr + 1. Conversely,
sinceΩ(x) is irreducible, if the codimension of the intersection≤ r, thenΩ(x) must
be contained in someXω, and hencex ∈ Cω. Thus we have proved the following.

Proposition 10.2.13.

C|W | = {x ∈ |V | : dim Ω(x) ∩ Bs(|W |) > n− r − 3}

= {x ∈ |V | : Ω(x) ⊂ Xω for someω ∈W}.

For any linear subspaceΛ in |V | we can define thepolar subspacewith respect to
|W | by

i|W |(Λ) =
⋂
ω∈W

iω(Λ).

Sincex ∈ iω(x) for any linear complexXω, we obtain that, for anyx ∈ |V |,

x ∈ i|W |(x).

It is easy to see that

dim iω(x) = n− 1− r + dim |{ω ∈W : x ∈ Cω}|. (10.23)

Now we are ready to give examples.

Example10.2.1. A pencilW | of linear complexes of lines inP3 is defined by a line in
the Pl̈ucker spaceP5 which intersects the Klein quadric at≤ 2. The intersection points
correspond to special linear complexes of lines intersecting a given line. Thus, the base
locus|W | of a general pencil of line complexes consists of lines intersecting two skew
lines. It is a nonsingular congruence of lines inG1(P3) of order and degree equal to 1.
It is isomorphic to a nonsingular quadric inP3. It may degenerate to the union of an
α-plane and aβ-plane if the two lines are coplanar (in this case|W | ⊂ G1(3)) or to a
singular quadric if the two lines coincide.
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Example10.2.2. Assumer = 1 so we have a pencil of linear complexes. Assume
n = 2k + 1 and |W | does not intersect the set of linear complexes with corank> 1
(it is of codimension3 in |

∧2
V ∨|). Then we have a map|W | ∼= P1 → P2k which

assigns to[ω] ∈ |W | the centerCω of Xω. The map is given by the pfaffians of the
principal minors of a skew-symmetric matrix of sizen× n, so the center varietyC|W |
of |W | is a rational curveRk of degreek in P2k. By Proposition10.2.13any secant
line of Rk must be contained in Bs(|W |). For example, takingn = 3, we obtain that
the center variety is a conic in a plane, and the set of secants of the conic is contained
in Bs(|W |).

Now assume thatr = 2. We obtain thatC|W | is a projection of the Veronese
surfaceνk(P2) and the variety of trisecant lines of the surface is contained in Bs(|W |).
We have seen it already in the casek = 2 (see Chapter 2, 2.1.3).

Example10.2.3. Let r = 3 andn = 5 so we have a web|W | of linear complexes in
P9 = P(

∧2
V ∨). We assume that|W | is general enough. It intersects the Grassmann

varietyG∗ = G(2, V ∨) in finitely many points. We know that the degree ofG(2, 5)
is equal to 5, thus|W | intersectsG∗ at 5 points. Consider the rational map|W | =
P3− → C|W | ⊂ P4 which assigns to[ω] ∈ |W | the center ofXω. As in the previous
examples, the map is given by pfaffians of skew-symmetric matrices of size4×4. They
all vanish at the set of 5 pointsp1, . . . , p5. The preimage of a general line inP4 is equal
to the residual set of intersections of three quadrics, and hence consists of three points.
Thus the map is birational map onto a cubic hypersurface. Any line joining two of the
5 points is blown down to a singular point of the cubic hypersurface. Thus the cubic is
isomorphic to the Segre cubic primal. Observe now that the singular surface of|W | is
equal to the projection of the incidence variety{(x, `) ∈ P4 ×Bs(|W |) : x ∈ `} to P4.
It coincides with the center varietyC|W |.

One can see the center varietyC|W | of |W | as the degeneracy locus of the map of
vector bundles

σ : W ⊗O|V | → Ω1
|V |(2)

overPn−1 defined by identification ofH0(|V |,Ω1
|V |(2)) with

∧2
V ∨ by means of the

dual Euler sequence

0→ Ω1
|V | → V ∨ ⊗O|V |(−1)→ O|V | → 0 (10.24)

twisted byO|V |(2). One uses that the map

V ∨ ⊗ V ∨ = H0(|V |, V ∨ ⊗O|V |(1))→ H0(|V |,O|V |(2)) = S2V ∨

has kernel isomorphic to
∧2

V ∨. Passing to the duals and using the Euler sequence we
obtain thatC|W | is equal to the degeneracy locus of the map

φ : V ⊗O|V |(−1)→W∨ ⊗O|V |.

For anyx = [v] ∈ |V |, the map of fibresφ(x) sends a vectorv′ to the linear function
onW defined byω 7→ ω(v, v′). This linear function is equal to zero if and only if
the line[v], [v′] intersects Bs(|W |). Applying Proposition10.2.13, we obtain that the
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degeneracy locus of pointx = [v] for which the rank ofφ(x) is smaller thanr+1 must
be equal toC|W |.

If we choose coordinates and take a basis ofW defined byr + 1 skew-symmetric
bilinear formsωk =

∑
a
(k)
ij dti ∧ dtj , then the matrix is
∑n
s=1 a

(1)
1,sts . . .

∑n
s=1 a

(1)
n,sts

...
...

...∑n
s=1 a

(r+1)
1,s ts . . .

∑n
s=1 a

(r+1)
n,s ts

 ,

whereakij = −akji.
The expected dimension of the degeneracy locus is equal ton−r−1. Assume that

this is the case. It follows from Example 14.3.2 in [173] that

degC|W | = cn−r−1(Ω1
|V |(2)) =

n−r−1∑
i=0

(−1)i
(
n− i− i

r

)
. (10.25)

Example10.2.4. Assumen = 2k is even. Ifω ∈ W is nondegenerate, thenCω = ∅.
Otherwise,dimCω ≥ 1. Thus the varietiesC|W | is ruled by linear subspaces. For a
generalW of dimension1 < r < n − 1, the dimensions of these subspaces is equal
to 1 and each point inC|W | is contained in a unique lineCω. In other words,C|W | is
a scroll with 1-dimensional generators parameterized by the subvarietyB of |W | pa-
rameterizing degenerateω’s. ThusB is equal to the intersection of|W | with a pffafian
hypersurface of degreek in |Λ2V ∨|. The scrollsC|W | are calledPalatini scrolls. If
n = 4, the only Palatini scroll is a quadric inP3. In P5 we get a 3-dimensional Palatini
scroll of degree 7 defined by a web of linear complexes. The baseB of the Palatini
scroll is a cubic surface . We refer to [303] for the study of this scroll. There is also
a Palatini ruled surface of degree 6 defined by a net of linear complexes. Its base is a
plane cubic curve. If we takeW with dimW = 5, we get a quartic hypersurface inP5.

Remark10.2.4. Whenn = dimV = 2k + 1 is even, the isomorphism

2∧
V ∨ ∼= H0(|V |,Ω2

|V |(2))

from the dual Euler sequence (10.24) defines a bijections between symplectic struc-
tures on the vector spaceV defined by non-degenerate 2-formsθ ∈

∧2
V ∨ andcon-

tact structureson Pn−1 ∼= |V | defined by surjective mapsT|V | → O|V |(−2) dual to
sectionsθ of Ω2

|V |(2)) satisfyingθ ∧ θk is a nowhere vanishing volume form.

10.3 Quadratic complexes

10.3.1 Generalities

Recall that a quadratic complex is the intersectionK of the GrassmanianG(2, V ) ⊂
|
∧2

V | with a quadric hypersurfaceQ. SinceωG ∼= OG(−n), by the adjunction
formula

ωK ∼= OK(2− n).
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If K is nonsingular, i.e. the intersection is transversal, we obtain thatK is a Fano
variety of indexn− 1.

Consider the incidence varietyZ ⊂ P(QG) and letZK be its restriction overK.
We denote bypK : ZK → Pn−1 andqK : ZK → K the natural projections. For each
pointx ∈ Pn−1 the fibre ofpK is isomorphic to the intersection of the Schubert variety
Ω(x) with Q. We know thatΩ(x) is isomorphic toPn−2 embedded inP(

∧2
V ) as a

linear subspace. Thus the fibre is isomorphic to a quadric inPn−2. This shows that
K admits a structure of aquadric bundle, i.e. a fibration with fibres isomorphic to a
quadric hypersurface. The important invariant of a quadric bundle is itsdiscriminant
locus. This is the set of points of the base of the fibration over which the fibre is
a singular quadric or the whole space. In our case we have the following classical
definition.

Definition 10.2. The singular variety∆ of a quadratic complex is the set of points
x ∈ Pn−1 such thatΩ(x) ∩Q is a singular quadric inΩ(x) = Pn−1 or Ω(x) ⊂ Q.

We will need the following fact from linear algebra rarely found in modern text-
books on the subject.

Lemma 10.3.1. LetA = (aij), B = (bij) be two matrices of sizesk ×m andm× k
with k ≤ m. Let |AI |, |BI |, I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ m, be maximal
minors ofA andB. For anym×m-matrixG = (gij)

|A ·G ·B| =
∑
I,J

gIJ |AI ||BJ |,

wheregIJ = gi1j1 · · · gikjk .

Proof. Consider the product of the following block-matrices(
A ·B A
0mk Im

)
·
(
Ik 0km
−B Im

)
=

(
0kk A
−B Im

)
,

where0ab is the zero matrix of sizea × b andIa is the identity matrix of sizea × a.
The determinant of the first matrix is equal to|A · B|, the determinant of the second
matrix is equal to 1. Applying the Laplace formula, it easy to see that the determinant
of the product is equal to

∑
|AI ||BI |. We apply this formula replacingA with A ·G.

Write anj-th column ofA ·G as the sum
∑m
i=1 gijAi. Then

|(A ·G)j1,...,jk | =
∑

1≤i1<...<ik≤m

gi1j1gi2j2 · · · gikjk |Ai1,...,ik |.

This proves the assertion.

Suppose we have a bilinear formb : E × E → K on a vector spaceE over a
field K with matrixG =

(
b(ei, ej)

)
with respect to a basise1, . . . , em. Let L be a

subspace ofE with basisf1, . . . , fk. Then the matrixGL = b(fi, fj) is equal to the
producttA ·G · A, where thefj =

∑
aijei. It follows from the previous Lemma that

|GL| =
∑
I,J gIJ |AI ||AJ |. If we extendb to

∧k
E by the formula

b(v1, . . . , vk;w1, . . . , wk) = det
(
b(vi, wj)

)
,
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then the previous formula gives an explicit expression forb(f1∧ . . .∧fk, f1∧ . . .∧fk).
If E = Rn and we takeb to be the Euclidean inner-product, we get the well-known
formula for the area of the parallelogram spanned by vectorsf1, . . . , fk in terms of the
sum of squares of maximal minors of the matrix with columns equal tofj . If m = 3
this is the formula for the length of the cross-product of two vectors.

Proposition 10.3.2.∆ is a hypersurface of degree2(n− 2).

Proof. Consider the map

i : |V | → |
2∧
V |, x 7→ Ω(x). (10.26)

If x = [v0], the linear subspace of
∧2

V corresponding toΩ(x) is the image ofV in∧2
V under the mapv 7→ v ∧ v0. This is a(n − 1)-dimensional subspaceΛ(x) of∧2
V and hence defines a point in the Grassmann varietyG(n− 1,

∧2
V ). If we write

v0 =
∑
aiei, where we assume thatan 6= 0, thenΛ(x) is spanned by the vectors

ei ∧ v0 =
∑
j 6=i ajej ∧ ei, i = 1, . . . , n − 1. Thus the rows of the matrix of Plücker

coordinates of the basis are linear functions in coordinates ofv0. Its maximal minors
are polynomials of ordern. Observe now that each(in)-th column containsan in
the i-th row and has zero elsewhere. This easily implies that all maximal minors are
divisible byan. Thus the Pl̈ucker coordinates ofΛ(x) are polynomials of degreen− 2
in coordinates ofv0. We see now that the mapi is given by a linear system of divisors
of degreen − 2. Fix a quadricQ in |

∧2
V | which does not vanish onG. For any

n − 2-dimensional linear subspaceL of |
∧2

V | the intersection ofQ with L is either
a quadric or the wholeL. Let us consider the locusD of L’s such that this intersection
is not a nonsingular quadric. We claim that this is a hypersurface of degree2.

Let b : E × E be a nondegenerate symmetric bilinear form on a vector spaceE of
dimensionr. The restriction ofb to a linear subspaceW ⊂ E with a basis(w1, . . . , wk)
is a degenerate bilinear form if and only if the determinant of the matrix

(
b(wi, wj)

)
is equal to zero. If we writewi =

∑
aijej in terms of a basis inE, we see that this

condition is polynomial of degree2k in coefficientsaij . By the previous Lemma this
polynomial can be written as a quadratic polynomial in maximal minors of the matrix
(aij). Applying this to our situation we interpret the maximal minors as the Plücker
coordinates ofL and obtain thatD is a quadric hypersurface.

It remains to use that∆ = i−1(Z), wherei is given by polynomials of degree
n− 1.

Let
∆k = {x ∈ ∆ : corankQ ∩ Ω(x) ≥ k}.

These are closed subvarieties of∆k.
Let

∆̃ = {(x, `) ∈ ZK : rankdpK
(x, `) < n− 1}. (10.27)

In other words,̃∆ is the locus of points inZK where the projectionpK : ZK → Pn−1

is not smooth. This set admits a structure of a closed subscheme ofZK defined locally
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by vanishing of the maximal minors of the jacobian matrix of the mappK . Globally,
we have the standard exact sequence of the sheaves of differentials

0→ p∗KΩ1
Pn−1

δ−→ ΩZK
→ Ω1

ZK/Pn−1 → 0, (10.28)

and the support of̃∆ is equal to the set of points whereΩ1
ZK/Pn−1 is not locally free.

Locally the mapδ is given by a matrix of size(n − 1) × (2n − 4). Thus∆̃ is given
locally by (n− 1)× (n− 1) minors of this matrix and is of dimensionn− 1.

Tensoring (7.11) with the residue fieldκ(p) at a pointp = (x, `) ∈ ZK , we see
that∆̃ is equal to the degeneracy locus of points where the mapδp : (p∗KΩ1

Pn−1)p →
(Ω1

ZK
)p is not injective. UsingThom-Porteous formula(see [173]), we can express the

class of∆̃ in H∗(ZK ,Z).

Definition 10.3. Let Ω be a complex of lines of degreed in G(2, n). A line ` in Ω is
calledsingularif ` is a singular point of the intersectionΩ(x) ∩Ω for somex ∈ Pn−1

or any point onΩ(x) if Ω(x) ⊂ Ω. The locus of singular lines is called thesingular
varietyof Ω.

Proposition 10.3.3. Assumen = 2k. AssumeΩ is nonsingular. Then the singular
varietyS(Ω) of Ω is equal to the intersection ofΩ with a hypersurface of degreek(d−
1).

Proof. Let ` be a singular line ofΩ andΩ = G ∩X for some smooth hypersurface of
degreed. We haveΩ(x) ⊂ T`(Ω) = T`(G) ∩ T`(X). ThusΩ(x) ⊂ T`(X) ∩ G. By
Proposition10.2.3, the linear complexK = T`(X) ∩ G consists of lines intersecting
a line and its polar(n − 3)-plane unlessK is singular. SinceΩ(x) is not contained in
the Schubert variety of lines intersecting a codimension 2 linear subspace, we obtain
thatK is singular. This shows that the singular varietyS(Ω) of Ω consists of lines in
Ω such thatT`(X) coincides with a tangent hyperplane ofG. In other words,

S(Ω) = γ−1(G∨),

whereγ : Ω → X∨ is the restriction of the Gauss mapX → X∨ to Ω. SinceΩ is
nonsingular,X is nonsingular at any point ofX ∩ G, and henceγ is well-defined. It
remains to use thatγ is given by polynomials of degreed− 1, the partials ofX.

Let n = 4 and letΩ be a complex defined by a hypersurfaceX = V (Φ) of degree
d in the Pl̈ucker space. The equation ofS(Ω) in Plücker coordinates is easy to find.
Let Φij = ∂Φ

∂pij
(l), where[l] = `. The tangent hyperplane toX at the point̀ is given

by the equation ∑
1≤i<j≤4

Φij(l)pij = 0.

Since the dual quadricG∗ is given by the same equation asG, we obtain the equation
of S(X)

Φ12Φ34 − Φ13Φ24 + Φ14Φ23 = 0.
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10.3.2 Intersection of 2 quadrics

LetQ1, Q2 be two quadrics inPn−1 andX = Q1∩Q2. We assume thatX is nonsingu-
lar. It follows from the proof of Proposition8.5.1that this is equivalent to the condition
that the pencilP of quadrics spanned byQ1, Q2 has exactlyn singular quadrics of
corank 1. This set can be identified with a set ofn pointsp1, . . . , pn in P1 ∼= P.

If n = 2g + 2 is even, we get the associated nonsingular hyperelliptic curveC of
genusg, the double cover ofP1 branched atp1, . . . , p2g+2.

The varietyX is a Fano variety of degree 4 inPn−1, n ≥ 4, of dimensionn−3. Its
canonical class is equal to−(n− 4)H, whereH is a hyperplane section. Whenn = 5
it is a quartic Del Pezzo surface.

Theorem 10.3.4. (A. Weil). Assumen = 2g + 2. LetF (X) be the variety ofg − 1-
dimensional linear subspaces contained inX. ThenF (X) is isomorphic to the Jaco-
bian variety of the curveC and also to the intermediate Jacobian ofX.

Proof. We will restrict ourselves only with the caseg = 2 leaving the general case to
the reader. For each̀∈ F (X) consider the projection mapp` : X ′ = X \`→ P3. For
any pointx ∈ X not on`, the fibre overp`(x) is equal to the intersection of the plane
`x = 〈`, x〉 with X ′. The intersection of this plane with a quadricQ from the pencilP
is a conic containing̀ and another linè′. If we take two nonsingular generators ofP
we see that the fibre is the intersection of two lines or the whole`′ ∈ F (X) intersecting
`. In the latter case, all points on`′ \ ` belong to the same fibre. Since all quadrics from
the pencil intersect the plane〈`, `′〉 along the same conic, there exists a unique quadric
Q`′ from the pencil which contains〈`, `′〉. It belongs to one of the two rulings of planes
onQ`′ (or a unique family if the quadric is singular). Note that each quadric from the
pencil contains at most one plane in each ruling which contains` (two members of the
same ruling intersect along a subspace of even codimension). Thus we can identify the
following sets:

pairs(Q, r), whereQ ∈ P, r is a ruling of planes inQ,

B = {`′ ∈ F (X) : ` ∩ `′ 6= ∅}.

If we identify P3 with the set of planes ofP3 containing̀ , then the latter set is a subset
of P3. LetD be the union of̀ ′’s from B. The projection mapp` mapsD to B with
fibres isomorphic to〈`, `′〉 \ {`}.

Extendingp` to a morphismf : X̄ → P3, whereX̄ is the blow-up ofX with
center at̀ , we obtain thatf is an isomorphism outsideB and the fibres over points in
B are isomorphic toP1. Observe that̄X is contained in the blow-up of̄P3 along`. The
projectionf is the restriction of the projection̄P5 → P3 which is a projective bundle of
relative dimension2. It is known how the intermediate Jacobian behaves change under
blowing up of a smooth subvariety. This easily implies that Jac(X) ∼= Jac(B).

The crucial observation now is thatB is isomorphic to our hyperelliptic curveC.
In fact, consider the incidence variety

X = {(Q, `) ∈ P ×G(2, 6) : ` ⊂ Q}.
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Its projection toP has fibre overQ isomorphic to the rulings of planes inQ. It consists
of two connected components outside the set of singular quadrics and one connected
component over the set of singular quadrics. Taking the Stein factorization we get a
double cover ofP = P1 branched along6 points. It is isomorphic toC.

Now the projection mapp` maps each linè′ intersecting̀ to a point inP3. We
will identify the set of these points with the curveB. A general plane inP3 intersects
B atd = degB points. The preimage of the plane under the projectionp` : X− → P3

is isomorphic to the complete intersection of 2 quadrics inP4. It is a Del Pezzo surface
of degree 4 and hence is obtained by blowing up 5 points inP2. Thusd = 5. An easy
argument using Riemann-Roch shows thatB lies on a unique quadricQ ⊂ P3. Its
preimage under the projection̄X → P3 is the exceptional divisorE of the blow-up
X̄ → X. One can show that the normal bundle of` in X is trivial, soE ∼= P1 × P1

and henceQ is a nonsingular quadric. Thus(X, `) defines a biregular modelB ⊂ P3

of C such thatB is of degree5 and lies on a unique nonsingular quadricQ. One can
show that the latter condition is equivalent to that the invertible sheafOB(1)⊗ ω−2

B is
not effective. It is easy to see thatB is of bidegree(2, 3).

Let us construct an isomorphism between Jac(C) andF (X). Recall that Jac(C) is
birationally isomorphic to the symmetric squareC(2) of the curveC. The canonical
mapC(2) → Pic2(C) defined byx + y 7→ [x + y] is an isomorphism over the com-
plement of one point represented by the canonical class ofC. Its fibre overKC is the
linear system|KC |. Also note that Pic2(C) is canonically identified with Jac(X) by
sending a divisor classξ of degree 2 to the classξ −KC .

Each line`′ skew to` is projected to a secant line ofB. In fact, 〈`, `′〉 ∩ X is a
quartic curve in〈`.`′〉 ∼= P3 that contains two skew line components. The residual part
is the union of two skew linesm,m′ intersecting both̀ and`′. Thus`′ is projected to
the secant line joining two points onC which are the projections of the linesm,m′. If
m = m′, then`′ is projected to a tangent line ofB. Thus the open subset of lines in
X skew to` is mapped bijectively to an open subset ofC(2) represented by “honest”
secants ofC, i.e. secants which are not 3-secants. Each line`′ ∈ F (X)\{`} intersect-
ing ` is projected to a pointb of B. The linef of the ruling ofQ intersectingB with
multiplicity 3 and passing through a pointb ∈ B defines a positive divisorD of degree
2 such thatf∩B = b+D. The divisor class[D] ∈ Pic2(C) is assigned tò′. So we see
that each trisecant line ofB (they are necessary lie onQ) defines three lines passing
through the same point of̀. By taking a section ofX by a hyperplane tangent toX
at a pointx ∈ X,we see thatx is contained in 4 lines (taken with some multiplicity).
Finally, the line` itself corresponds toKC . This establishes an isomorphism between
Pic2(C) andF (X).

Note that we have proved thatX is a rational variety by constructing an explicit
rational map fromX to P3. This map becomes a regular map after we blow up a line
` on X. The image of the exceptional divisor is a quadric. This map blows down
the union of lines onX that intersect̀ to a genus 2 curveC of degree 5 lying on the
quadric. The inverse mapP3− → X ⊂ P5 is given by the linear system of cubic
hypersurfaces through the curveC. It becomes a regular map after we blow-upC.
Since any trisecant ofC defined by one of the rulings of the quadric blows down to
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a point, the image of the proper transform of the quadric is the line` on X. The
exceptional divisor is mapped to the union of lines onX intersecting̀ .

10.3.3 Kummer surfaces

We consider the casen = 4. The quadratic complexK is the intersection of two
quadricsG ∩ Q. We shall assume thatK is nonsingular. LetC be the associated
hyperelliptic curve of genus 2.

First let us look at the singular surface∆ of K. By Proposition10.3.2 it is a
quartic surface. For any pointx ∈ ∆ the conicCx = K ∩ Ω(x) is the union of
2 lines. A line inG is always equal to a one-dimensional Schubert variety. In fact,
G is a nonsingular quadric of dimension 4, and hence contains two 3-dimensional
families of planes. These are the families realized by the Schubert planesΩ(x) and
Ω(Π). Hence a line must be a pencil in one of these planes, which shows thatCx =
Ω(x,Π1) ∪ Ω(x,Π2) for some planesΠ1,Π2 in P3. Any line inK is equal to some
Ω(x,A) and hence is equal to an irreducible component of the conicCx. Thus we see
that any line inK is realized as an irreducible component of a conicCx, x ∈ K. It
follows from Theorem10.3.4that the variety of linesF (K) in K is isomorhic to the
Jacobian variety ofC.

Proposition 10.3.5.The varietyA of lines inK is a double cover of the quartic surface
∆. The cover ramifies over the set∆1 of points such that the conicCx = p−1

K (x) is a
double line.

Let x ∈ ∆ andCx = Ω(x,Π1) ∪ Ω(x,Π2). A singular point ofCx representing a
line inK is called asingular lineofK. If x 6∈ ∆1, thenCx has only one singular point
equal toΩ(x,Π1) ∩ Ω(x,Π2). Otherwise, it has the whole line of them.

Let S ⊂ K be the singular surface ofK. By Proposition10.3.3, S is a complete
intersection of three quadrics.

By adjunction formula, we obtainωS ∼= OS . The assertion thatS is nonsingular
follows from its explicit equations (10.29) given below. ThusS is a K3-surface of
degree 8.

Theorem 10.3.6. The set of pairs(x, `), where` is a singular line containingx is
isomorphic to the varietỹ∆ ⊂ ZK , the locus of points where the morphismpK :
ZK → P3 is not smooth. It is a nonsingular surface with trivial canonical class. The
projectionpK : ∆̃→ ∆ is a resolution of singularities. The projectionqK : ∆̃→ S is
an isomorphism. The surfaceS is equal toK ∩R, whereR is a quadric inP5.

Proof. The first assertion is obvious since the fibres ofpK : ZK → P3 are isomorphic
to the conicsCx. To see thatqk is one-to-one we have to check that a singular line`
cannot be a singular point of two different fibresCx andCy. The planesΩ(x) andΩ(y)
intersect at one point̀= x, y and hence spanP4. If Q is tangent to both planes at the
same point̀ , then the two planes are contained inT`(Q) ∩ T`(G), henceK = Q ∩G
is singular at̀ . This contradicts our assumption onK. Thus the projectioñ∆ → S is
one-to-one. Since the fibres ofqK : ZK → K are projective lines, this easily implies
that the restriction ofqK to ∆̃ is an isomorphism ontoS.
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Theorem 10.3.7.The set∆1 consists of 16 points, each point is an ordinary double
point of the singular surface∆.

Proof. Let A be the variety of lines inK. We know that it is a double cover of∆
ramified over the set∆1. Since∆ is isomorphic toS outside∆1, we see thatA admits
an involution with a finite setF of isolated fixed points such that the quotient is bira-
tionally isomorphic to a K3 surface. The open setA \ F is an unramified double cover
of the complement ofs = #F projective lines in the K3 surfaceS. For any varietyZ
we denote byec(Z) the topological Euler characteristic with compact support. By the
additivity property ofec, we getec(A− S) = e(A)− s = 2(es(S)− 2s) = 48− 4s.
Thuse(A) = 48−3s. SinceA ∼= Jac(C), we havee(A) = 0. This givess = 16. Thus
∆ has 16 singular points. Each point is resolved by a(−2)-curve onS. This implies
that each singular point is a rational double point of typeA1, i.e. an ordinary double
point.

Definition 10.4. For any abelian varietyA of dimensiong the quotient ofA by the
involutiona 7→ −a is denoted byKum(A) and is called theKummer varietyofA.

Note that Kum(A) has22g singular point locally isomorphic to the cone over the
Veronese varietyvg(Pg−1). In the caseg = 2 we have 16 ordinary double points. It
is easy to see that any involution with this property must coincide with the negation
involution (look at its action in the tangent space, and use thatA is a complex torus).
This gives

Corollary 10.3.8. The singular surface ofK is isomorphic to the Kummer surface of
the Jacobian variety of the hyperelliptic curveC of genus 2.

Proposition 10.3.9.The surfaceS contains two sets of 16 disjoint lines.

Proof. The first set is formed by the linesqK(p−1
K (zi)), wherez1, . . . , z16 are the sin-

gular points of the singular surface. The other set comes from the dual picture. We can
consider the dual incidence variety

ŽK = {(Π, `) ∈ P̌3 ×K : ` ⊂ Π}.

The fibres of the projection tǒP3 are conics. Again we define the singular surface∆̌ as
the locus of planes such that the fibre is the union of lines. A line in the fibre is a pencil
of lines in the plane. These pencils form the set of lines inK. The lines are common
to two pencils if lines are singular lines ofK. Thus we see that the surfaceS can be
defined in two ways using the incidenceZK or ŽK . As before we prove thať∆ is the
quotient of the abelian surfaceA and is isomorphic to the Kummer surface ofC. The
lines inS corresponding to singular points of∆̌ is the second set of 16 lines.

Choosing six mutually apolar linear complexes we write the equation of the Klein
quadric as a sum of squares. The condition of non-degeneracy allows one to reduce the
quadricQ to the diagonal form in these coordinates. Thus the equation of the quadratic
complex can be written in the form

5∑
i=0

t2i = 0,
5∑
i=0

ait
2
i = 0. (10.29)



428 CHAPTER 10. GEOMETRY OF LINES

SinceK is nonsingularai 6= aj , i 6= j. The parameters in the pencil corresponding
to 6 singular quadrics are(t0, t1) = (−a0, 1), i = 0, . . . , 5. Thus the hyperelliptic
curveC has the equation

y2 = (t1 + a0t0) · · · (t1 + a5t0),

which has to be considered as an equation of degree6 in P(3, 1, 1). Since the dual of
the quadricQ has the equation

∑
a−1
i ui, and the dual ofG has the equation

∑
ui = 0,

the preimage of̌G under the Gauss map defined byQ is the quadric
∑
a−1
i ti = 0. This

shows that the surfaceS, a nonsingular model, of the Kummer surface, is given by the
equations

5∑
i=0

t2i =
5∑
i=0

ait
2
i =

5∑
i=0

a2
i t

2
i = 0. (10.30)

We know that the surface given by the above equations contains 32 lines. Consider
6 lines`i in P2 given by the equations

X0 + aiX1 + a2
iX2 = 0, i = 0, . . . , 5. (10.31)

Since the points(1, ai, a2
i ) lie on the conicX0X2−X2

1 = 0, the lines̀ i are tangent to
the conic.

Lemma 10.3.10. Let X ⊂ P2k−1 be a variety given by complete intersection ofk
quadrics

qi =
2k−1∑
j=0

aijt
2
j = 0, i = 1, . . . , k.

Consider the groupG of projective transformations ofP2k−1 that consists of transfor-
mations

[t0, . . . , t2k−1] 7→ [ε0t0, . . . , ε2k−1t2k−1],

whereεi = ±1 and ε0 · · · ε2k−1 = 1. ThenX/G is isomorphic to the double cover
of Pk−1 branched along the union of2k hyperplanes with equations explicitly given
below.

Proof. LetR = C[t0, . . . , t2k−1]/(q1, . . . , qk) be the ring of projective coordinates of
X. Then the subring of invariantsRG is generated by the cosets oft20, . . . , t

2
2k−1 and

t0 · · · t2k−1. Since(t0 · · · t2k−1)2 = t20 · · · t22k−1, we obtain that

RG ∼= C[T0, . . . , T2k−1, T ]/I,

whereI is generated by

2k−1∑
j=0

aijTj , i = 1, . . . , k, T 2 − T0 · · ·T2k−1.
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LetA = (aij) be the matrix of the coefficientsaij . Its rank is equal tok. Choose new
coordinatesT ′i in C2k such thatT ′i+k−1 =

∑2k−1
j=0 aijTj , i = 1, . . . , k. Write

Ti =
k−1∑
j=0

bijT
′
j mod (T ′k, . . . , T

′
2k−1), i = 0, . . . , 2k − 1.

Then

X/G ∼= ProjRG ∼= Proj(C[T ′0, . . . , T
′
k−1, T ])/(T 2 −

2k−1∏
i=0

k−1∑
j=0

bijT
′
j).

ThusX/G is isomorphic to the double cover ofPk−1 branched along the hyperplanes

k−1∑
j=0

bijzj , j = 0, . . . , 2k − 1.

Corollary 10.3.11. Suppose the set of2k points

[a00, . . . , ak0], . . . , [a0 2k−1, . . . , ak 2k−1]

in Pk−1 is projectively equivalent to an ordered set of points on a Veronese curve of
degreek − 1. ThenX/G is isomorphic to the double cover ofPk−1 branched along
the hyperplanes

a0jz0 + . . .+ ak−1jzk−1 = 0, i = 0, . . . , 2k − 1.

Proof. Choose coordinates such that the matrixA = (aij) has the form

A =


1 1 . . . 1
α1 α2 . . . α2k

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
2k

 .

Let
Dj =

∏
1≤i≤k,i6=j

(αj − αi)

and
f(x) = (x− α1) · · · (x− αk) = a0 + a1x+ . . .+ akx

k,

fj(x) =
f(x)

Dj(x− αj)
= a0j + a1jx+ . . .+ ak−1jx

k−1, j = 1, . . . , k.

We have

B =


1 1 . . . 1
α1 α2 . . . αk
...

...
...
...

αk−1
1 αk−1

2 . . . αk−1
k


−1

=


a01 a11 . . . ak−11

a02 a12 . . . ak−12

...
...

...
a0k a1k . . . ak−1k

 .
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Multiplying A byB on the left we obtain

B ·A =


1 0 0 . . . 0 f1(αk+1) . . . f1(α2k)
0 1 0 . . . 0 f2(αk+1) . . . f2(α2k)
...

...
...

...
...

...
...

...
0 0 0 . . . 1 fk(αk+1) . . . fk(α2k)



=


f1(α1) . . . f1(αk) f1(αk+1) . . . f1(α2k)
f2(α1) . . . f2(αk) f2(αk+1) . . . f2(α2k)

...
...

...
...

...
...

fk(α1) . . . fk(αk) fk(αk+1) . . . fk(α2k)

 .

The polynomialsf1(x), . . . , fk(x) form a basis in the space of polynomials of degree
≤ k−1. Thus we see that the columns of the matrixB ·A can be taken as the projective
coordinates of the images of points[1, α1], . . . , [1, α2k] ∈ P1 under a Veronese map.
Under a projective transformation defined by the matrixB, the columns of matrixA is
projectively equivalent to the set of points defined by the columns of the matrixB ·A.
Write the matrixB · A in the block-form[Ik C]. Then the null-space of this matrix
is the columns space of the matrix[−C Ik]. It defines the same set of points up to a
permutation.

The following Lemma is due to A. Verra.

Lemma 10.3.12.LetX be the base locus of a linear systemN of quadrics of dimen-
sionk − 1 in P2k−1. Suppose that

• N contains a nonsingular quadric;

• X contains a linear subspaceΛ of dimensionk − 2;

• X is not covered by lines intersectingΛ.

ThenX is birationally isomorphic to the double cover ofN branched over the Hessian
hypersurface ofN .

Proof. Let Λ be a linear subspace of dimensionk − 2 contained inX. Take a general
pointx ∈ X and consider the spanΠ = 〈Λ, x〉. By our assumptionx is not contained
in any line. The restriction of the linear systemN to Π is a linear system of quadrics
in Π ∼= Pk−1 containingΛ andx in its base locus. The residual components of these
quadrics are hyperplanes inΠ containingx. The base locus of this linear system of
hyperplanes consists only ofx since otherwisex will be contained in a line onX inter-
sectingΛ. By our assumption this is excluded. Thus the dimension of the restriction of
N toΠ is equal tok−2. This implies that there exists a unique quadric inN containing
Π. This defines a rational mapX− → N . A general member ofN is a nonsingular
quadric inP2k−1. It contains two rulings of(k − 1)-planes. Our(k − 1)-planeΠ
belongs to one of the rulings. The choice of a ruling to whichΠ belongs, defines a
rational map to the double coverY → N branched along the Hessian variety ofN
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parameterizing singular quadrics. The latter is constructed by considering the second
projection of the incidence variety

{(Π, Q) ∈ Gk(P2k−1)×N : Π ∈ N}

and applying the Stein factorization. Now we construct the inverse rational mapY− →
X as follows. Take a nonsingular quadricQ ∈ N and choose a ruling of(k−1)-planes
in Q. If Q = V (q), thenΠ = |L|, whereL is an isotropick-dimensional linear sub-
space of the quadratic formq, hence it can be extended to a unique maximal isotropic
subspace ofq in any of the two families of such subspaces. ThusΛ is contained in a
unique(k − 1)-planeΠ from the chosen ruling. The restriction ofN to Π is a linear
system of quadrics of dimensionk − 2 with Λ contained in the base locus. The free
part of the linear system is a linear system of hyperplanes through a fixed pointx. This
point belongs to all quadrics inN , hence belongs toX. So this point is taken to be the
value of our map at the pairQ plus a ruling.

Applying this Lemma to the case when the linear system of quadrics consists of
diagonal quadrics. We see that the Hessian hypersurface inN is the union of hyper-
planes

k∑
i=0

aijti = 0, j = 0, . . . , 2k + 1.

This shows that in the case when the hyperplanes, considered as points in the dual
space, lie on a Veronese curve, the base locusX ofN is birationally isomorphic to the
quotientX/G.

This applies to our situation, and gives the following.

Theorem 10.3.13.The surfaceS is birationally isomorphic to the double cover ofP2

branched along the six lines̀i. It is also birationally isomorphic to the quotientS/G,
whereG consists of involutions[t0, . . . , t5] 7→ [ε0t0, . . . , ε5t5] with ε0 · · · ε5 = 1.

Remark10.3.1. Consider the double coverF of P2 branched over 6 lines̀1, . . . , `6
tangent to an irreducible conicC. It is isomorphic to a hypersurface inP(3, 1, 1, 1)
given by the equationz2 − f6(x0, x1, x2), whereV (f6) is the union of 6 lines. The
restriction off6 to the conicC is the divisor2D, whereD is the set of points where
the lines are tangent toC. SinceC ∼= P1 we can find a cubic polynomialg(x0, x1, x2)
which cuts outD in C. Then the preimage ofC in F is defined by the equation
z2 − g2

3 = 0 and hence splits into the union of two curvesC1 = V (z − g3) and
C2 = V (z+ g3) each isomorphic toC. These curves intersect at 6 points. The surface
F has 15 ordinary double points over the pointspij = `i ∩ `j . Let F̄ be a minimal
resolution ofF . It follows from the adjunction formula for a hypersurface in a weighted
projective space that the canonical class ofF is trivial. ThusF̄ is a K3 surface. Since
C does not pass through the pointspij we may identifyC1, C2 with their preimages in
F̄ . SinceC1

∼= C2
∼= P1, we haveC2

1 = −2. Consider the divisor classH on F̄ equal
toC1 + L, whereL is the preimage of a line inP2. We have

H2 = C2
1 + 2C1 · L+ L2 = C2

1 + (C1 + C2) · L+ L2 = −2 + 4 + 2 = 4.
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We leave to the reader to check that the linear system|H| mapsF̄ to a quartic surface
in P3. It blows down all 15 exceptional divisors of̄F → F to double points and blows
downC1 to the sixteenth double point.

Conversely, letY be a quartic surface inP3 with 16 ordinary double points. Pro-
jecting the quartic from a double pointq, we get a double cover ofP2 branched along
a curve of degree6. It is the image of the intersectionR of Y with the polar cubic
Pq(Y ). Obviously,R the singular points ofY are projected to 15 singular points of the
branch curve. A plane curve of degree 6 with 15 singular points must be the union of 6
lines`1, . . . , `6. The projection of the tangent cone atq is a conic everywhere tangent
to these lines.

Theorem 10.3.14.A Kummer surface is projectively isomorphic to a quartic surface
in P3 with equation

A(x4 + y4 + z4 + w4) + 2B(x2w2 + y2z2) + 2C(y2w2 + x2z2)

+2D(z2w2 + x2y2) + 4Exyzw = 0, (10.32)

where
A(A2 + E2 −B2 − C2 −D2) + 2BCD = 0. (10.33)

Proof. Choosing apolar linear complexes, we transform the Klein quadric to the form
t21 + . . . + t26 = 0. Consider the Heisenberg group with nonzero elements defined
by involutions associated to a pair of apolar linear complexes. The Heisenber group is
induced by transformations ofP3 listed in section 10.2.1. In these coordinates the equa-
tion of the Kummer surface must be invariant with respect to these transformations. It
is immediately checked that this implies that the equation must be as in (10.32).

It remains to check the conditions on the coefficients. We know that a Kummer
surface contains singular points. Taking the partial equations, we find

Ax3 + x(By2 + Cz2 +Dw2) + Eyzw = 0,

Ay3 + y(Bx2 + Cw2 +Dz2) + Exzw = 0,

Az3 + z(Bw2 + Cx2 +Dy2) + Exyw = 0,

Aw3 + w(Bz2 + Cz2 +Dx2) + Exyz = 0.

Multiplying the first equation byy and the second equation byx, and adding up the
two equations, we obtain

(A+B)(x2 + y2) + (C +D)(z2 + w2) = α
x2 + y2

x2y2
,

whereα = −Exyzw. Similarly, we get

(C +D)(x2 + y2) + (A+B)(z2 + w2) = α
z2 + w2

z2w2
.
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Multiplying the first equation byA + B and the second equation byC + D and sub-
tracting the second equation from the first one, we obtain

(A+B)2 − (C +D)2 + E2 = α(A+B)(
1

x2y2
+

1
z2w2

).

Similarly, we get

(A−B)2 − (C −D)2 + E2 = −α(A−B)(
1

x2y2
+

1
z2w2

),

hence,
(A+B)2 − (C +D)2 + E2

(A−B)2 − (C −D)2 + E2
+
A+B

A−B
= 0.

From this we easily derive (10.33).

Equation (10.33) defines a cubic hypersurface inP4 isomorphic to the Segre cubic
primal given by equation (9.46). The formulas making this isomorphism are

A = z0 + z3, (10.34)

B = z0 + z1 + 2z3 + 2z4,
C = z0 + z2 + 2z3 + 2z4,
D = −z0 − 2z1 − 2z2 − z3,
E = −2z0 + 2z3.

Also it can be checked that equation (10.33) expresses the condition that the hyperplane
H : AX+BY +CZ+DW+EV = 0 is a tangent hyperplane of the Igusa-Richmond
quartic primal (10.21). Thus the Segre cubic primal is projectively isomorphic to the
dual hypersurface of the Igusa-Richmond quartic primalI4. Under theH2-equivariant
mapP3 → P4 described in Proposition10.2.5, the Kummer surface is equal to the
preimage of the section of the Igusa-Richmond quartic by the hyperplaneH. Since
P3/H2

∼= I4, we obtain that the Kummer surface is isomorphic to the hyperplane
sectionH ∩ I4. We had already observed thatI4 has 15 double lines. A section by
a tangent hyperplane defines a quartic surface with 16 singular points confirming the
fact that the Kummer surface has 16 singular points.

The sixteen singular points of the Kummer surfaceY given by (10.32) form an
orbit ofH2. As we know this orbit defines a(166)-configuration. A plane containing a
set of 6 points cuts out onY a plane quartic curve with 6 singular points, no three lying
on a line. This could happen only if the plane is tangent to the surface along a conic.
This conic, or the corresponding plane, is called atrope. Again this confirms the fact
that in any generalH2-orbit a set of coplanar 6 points from the(166)-configuration lies
on a conic.

On a nonsingular model ofY isomorphic to the octic surfaceS in P5 the excep-
tional curves (the singular lines of the quadratic complex) of the 16 singular points and
the proper transforms of 16 tropes form the(166)-configuration of lines.

The existence of 16 tropes on the Kummer surface also follows from the following
beautiful fact. Consider the Gauss map fromY to its dual surfaceY ∨ given by cubic
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partials. Obviously, it should blow down each trope to a singular point ofY ∨. ThusY ∨

has at least 16 singular points. It is easy to see, as in the case of usual Plücker formulas,
that each ordinary double decreases the degree of the dual surface by 2. Thus the degree
of the dual surfaceY ∨ is expected to be equal to36 − 32 = 4. In fact we have the
following beautiful fact.

Theorem 10.3.15.A Kummer surface is projectively isomorphic to its dual surface.

Proof. In the proof of Theorem10.3.14we had computed the partial cubics of equation
(10.32). The linear system of the partial cubics is invariant with respect to the action
of the Heisenberg groupH2 and defines an isomorphism of projective representations.
If we choose a basis appropriately, we will be to identifyH− 2-equivariantly the dual
of the linear system with the original spaceP3. We know that the image of the surface
is a quartic surface with 16 singular points. Since the tropes of the original surfaces
are mapped to singular points of the dual surface, we see that the two surfaces share
the same configurations of nodes and tropes. Thus they share 16 conics, and hence
coincide (since the degree of intersection of two different irreducible surfaces is equal
to 16).

Remark10.3.2. One can see the duality also from the duality of the quadratic com-
plexes. If we identify the spaceV = C4 with its dual space by means of the stan-
dard basise1, e2, e3, e4 and its dual basise∗1, e

∗
2, e

∗
3, e

∗
4, then the Pl̈ucker coordinates

pij = e∧i e
∗
j in

∧2
V can be identified with the Plücker coordinatesp∗ij = ei ∧ ej in∧2

V ∨. The Klein quadrics could be also identified. Now the duality isomorphism
G(2, V ) → G(2, V ∨), ` 7→ `⊥, becomes compatible with the Plücker embeddings.
The quadratic complex given in Klein coordinates by two diagonal quadrics (10.29) is
mapped under the duality isomorphism to the quadratic complex given by two diago-
nal quadrics

∑
y2
i = 0,

∑
a−1
i y2

i = 0, the dual quadrics. However, the intersection of
these two pairs of quadrics is projectively isomorphic under the scaling transformation
yi 7→

√
aiyi. This shows that, under the duality isomorphism, the singular surfaces

of the quadratic complex and its dual are projectively isomorphic. It follows from the
definition of the duality that the tropes of the Kummer surface correspond toβ-planes
that intersect the quadratic complex along the union of two lines.

The Kummer surface admits an infinite group of birational automorphisms. For a
general one, the generators of this group have been determined in modern works of J.
Keum [245] and S. K̄ondo [259]. We give only examples of some automorphisms.

• Projective automorphisms defined by the Heisenberg group. They correspond to
translations by 2-torsion points on the abelian surface cover.

• Involutions defined by projections from one of 16 nodes.

• Switches defined by choosing a duality automorphism and composing it with
elements of the Heisenberg group.

• Cubic transformations given in coordinates used in equation (10.32) by

(x, y, z, w) 7→ (yzw, xzw, xyw, xyz)

and composing them with elements ofH2.
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10.3.4 Harmonic complex

Consider a pair of quadricsQ1 andQ2 in P3. A Harmonic complexor a Battaglini
complexis the closure inG1(P3) of the locus of lines which intersectQ1 andQ2 at
two harmonically conjugate pairs. Let us see that this is a quadratic complex and find
its equation.

Let A = (aij), B = (bij) be two symmetric matrices defining the quadrics. Let
` = x, y, wherex = [v], y = [w] for somev, w ∈ C4. Let ` = [sv + tw] be a
parametric equation of̀. Then the restriction ofQ1 to ` is a binary form ins, t defined
by (vAw)s2 + 2(vAw)st + (wAw)t2 and the restriction ofQ2 to ` is defined by the
bilinear form(vBw)s2 + 2(vBw)st + (wBw)t2. By definition, the two roots of the
binary forms are harmonically conjugate if and only if

(vAv)(wBw) + (wAw)(vBv)− 2(vAw)(vBw) = 0.

Let [vw] be the matrix with two columns equal to the coordinate vectors ofv andw.
We can rewrite the previous expression in the form

det
(
t[vw][AvBw]

)
+ det

(
t[v, w][BvAw]

)
= 0. (10.35)

The expression is obviously a quadratic form on
∧2(C4) and also a symmetric bilinear

form on the space of symmetric matrices. Take the standard basisEij + Eji, Eii, 1 ≤
i ≤ j ≤ n, of the space of symmetric matrices and compute the coefficients of the
symmetric bilinear forms in terms of coordinates ofv andw. We obtain

aij;kl = 4(xixjykyl+xkxlyiyj)−2(xkyl+xlyk)(xjyi+xiyj) = 2(p′ikp
′
jl+p′ilpjk),

wherep′ab = pab if a < b and−pab, otherwise. Thus (10.35) is equal to∑
(aijbkl + aklbij)(p′ikp

′
jl + p′ilp

′
jk) = 0.

This is an equation of a quadratic complex. If we assume thataij = bij = 0 if i 6= j,
then the equation simplifies∑

(aiibjj + ajjbii)p2
ij = 0. (10.36)

Note that we do not need to assume thatA 6= B. If A = B, then the definition of
harmonic self-conjugate pair implies that the two points in the pair coincide, i.e. the
line is tangent to the quadric. This is a special case of the harmonic complex, the locus
of tangent lines to a quadric.

Consider a pencilP of quadricsλQ1 + µQ2. Let us assume for simplicity that the
equations of the quadrics can be simultaneously diagonalized. Then a quadric fromP
touch a linè if and only if

(λaii + µbii)(λajj + µbjj)p2
ii

= (λ2aiiajj + λµ(aiibjj + ajjbii) + µ2biibjj)p2
ij = 0.
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The restriction of the pencil tò is a linear seriesg1
1 unless̀ has a base point in which

case the line intersects the base locus of the pencil. The two quadrics which touch`
correspond to the points[λ, µ] ∈ P which satisfy the equation in above. Denote by
A, 2B,C the coefficients atλ2, λµ, µ2. The map

G(2, n)→ P2, ` 7→ [A,B,C]

is a rational map defined on the complement of codimension 3 subvariety ofG(2, n)
given by the equationsA = B = C = 0. Its general fibre is the loci of lines which
touch a fixed pair of quadrics in the pencil. It is given by intersection of two quadric
complexes. In casen = 3, we recognize a well-known fact that two conics have four
common tangents. The preimage of a lineAt0 + 2Bt1 +Ct2 = 0 with AC −B2 = 0
is a complex of lines such that there is only one quadric in the pencil which touch the
line. Hence it equals the Chow variety of the base locus, a hypersurface of degree 4 in
G(2, n).

Let us consider the casen = 4. In this case a harmonic complex is a special case
of a quadratic complex given by two quadrics

q1 = p12p34 − p13p24 + p14p23 = 0,
q2 = a12p

2
12 + · · ·+ a34p

2
34 = 0.

We assume thatq2 is a nonsingular quadric, i.e. allaij 6= 0. It is easy to see that the
pencilλq1 + µq2 = 0 has 6 singular quadrics corresponding to the parameters

[1,±
√
a12a34], [1,±

√
a13a24], [1,±

√
a14a23].

Thus we diagonalize both quadrics to reduce the equation of the quadratic complex to
the form

t20 + . . .+ t25 = 0,

k1(x2
0 − x2

1) + k2(x2
2 − x2

3) + k3(x2
4 − x2

5) = 0.

The genus 2 curve corresponding to the intersection of the two quadrics is a special
one. Its branch points are[1,±k1], [1,±k2], [1,±k3]. The involution ofP1 defined by
[t0, t1] 7→ [t0,−t1] leaves the set of branch points invariant and lifts to an involution
of the genus 2 curve. It follows from the description of binary forms invariant under
a projective automorphism of finite order given in section8.7.4that there is only one
conjugacy class of involutions of order 2 and each binary sextic whose set of zeros is
invariant with respect an involution can reduced to the form(t20 − t21)(t20 − αt21)(t20 −
βt21). Thus we see that the harmonic complexes form a hypersurface in the moduli
space of smooth complete intersections of two quadrics inP5. It is isomorphic to the
hypersurface inM2 formed by isomorphism classes of genus 2 curves admitting two
commuting involutions.

Proposition 10.3.16.The singular surface of a harmonic complex is projectively iso-
morphic to a quartic surface given by equation(10.32) with coefficientE equal to 0.
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Proof. We use that in Klein coordinates our quadratic complex has additional symme-
try defined by the transformation

(t0, t1, t2, t3, t4, t5) 7→ (−it1, it0,−it3, it2,−it5, it4).

Here we may assume thatt0 = i(p14 − p23), t1 = p14 + p23, etc. The transformation
of P3 that induces this transformation is defined by[x, y, z, w] 7→ [−x, y, z, w]. Equa-
tion (10.32) shows that in order the Kummer surface be invariant with respect to this
transformation the coefficientE must be zero.

Note that under the isomorphism from the cubic (10.33) to the Segre cubic primal
given by formulas (10.34), the coefficientE is equal to−z0 + z3. This agrees with a
remark before Lemma9.4.10.

Consider the Kummer surfaceS given by equation (10.32) with E = 0. Inter-
secting the surface with the planex = 0 we obtain the plane quartic with equation
Q(x2, y2, z2) = 0 whereQ = A(s2 +u2 + v2) + 2Bsu+ 2Csv+ 2Duv. Its discrim-
inant is equal toA(A2−B2−C2−D2)+2BCD. Comparing it with (10.33) we find
that the quadratic form is degenerate. Thus the plane section of the Kummer surface is
the union of two conics with equations(ax2 + by2 + cz2)(a′x2 + b′y2 + c′z2) = 0.
The four intersection points of these conics are singular points ofS. This easily fol-
lows from the equations of the derivatives of the quartic polynomial definingS. Thus
we see that the 16 singular points of the Kummer surface lie by four in the coordinate
planesx, y, z, w = 0. Following A. Cayley [49], a Kummer surface with this property
is called aTetrahedroidquartic surface.

Note the obvious symmetry of the coordinate hyperplane sections. The coordinates
of 16 nodes can be put in the following symmetric matrix:

0 ±a12 ±a13 ±a14

±a21 0 ±a23 ±a24

±a31 ±a32 0 ±a34

a41 ±a42 ±a43 0

 .

The complete quadrangle formed by four nodesp1, . . . , p4 in each coordinate plane
has the property that the linespi, pj andpk, pl with {i, j, } ∩ {k, l} = ∅ intersect at the
vertices of the coordinate tetrahedron. One can also find the 16 tropes. Take a vertex of
the coordinate tetrahedron. There will be two pairs of nodes, not in the same coordinate
plane, each pair lying on a line passing through the vertex. For example,

[0, a12, a13, a14], [0, a12,−a13, a14], [0, a21, 0, a23, a24], [0, a21, 0,−a23, a24].

The plane containing the two pairs contains the third pair. In our example, the third pair
is [a41,−a42, a43, 0], [a41,−a42,−a43, 0]. This is one of the 16 tropes. Its equation is
a24x+ a14y − a12w = 0. Similarly, we find the equations of all 16 tropes

±a34y ± a42z ± a23w = 0,
±a34x± a41z ± a13w = 0,
±a24x± a41y ± a12w = 0,
±a23x± a31y ± a12z = 0.
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Remark10.3.3. For experts on K3 surfaces, let us compute the Picard lattice of a
general Tetrahedroid. Letσ : S̃ → S be a minimal resolution ofS. Denote byh the
class of the preimage of a plane section ofS and byei, i = 1, . . . , 16, the classes of the
exceptional curves. Letc1 andc2 be the classes of the proper transforms of the conics
C1, C2 cut out by one of the coordinate plane, sayx = 0. We have

c1 + c2 = h− e1 − e2 − e3 − e4.

Obviously,c1 · c2 = 0 andh · ci = 2 andc2i = −2. Consider another coordinate plane
and another pair conics. We can write

c3 + c4 = h− e5 − e6 − e7 − e8.

This shows that the classes of the eight conics can be expressed as linear combinations
of classesh, ei andc = c1. It is known that the Picard group of a general Kummer
surface is generated by the classesei and the classes of tropesti satisfying2ti =
h− ei1 − . . .− ei6 . The Picard group of a Tetrahedroid acquires an additional classc.

The Jacobian variety of a genus 2 curveC with two commuting involutions contains
an elliptic curve, the quotient ofC by one of the involutions. In the symmetric product
C(2) it represents the graph of the involution. Thus it is isogeneous to the product of
two elliptic curves.

Note that the pencil of quadrics passing through the set of 8 points(C1 ∩ C2) ∪
(C3 ∩ C4) defines a pencil of elliptic curves oñS with the divisor class

2h− e1 − e2 − e3 − e4 − e5 − e6 − e7 − e8 = c1 + c2 + c3 + c4.

Sincec1 · c2 = c3 · c4 = 0, Kodaira’s classification of fibres of elliptic fibrations shows
that c1, c2, c3, c4 are the classes of irreducible components of a fibre of typeI4. This
implies that the four intersection points(C1 ∪ C2) ∩ (C3 ∪ C4) lie on the edges of the
coordinate tetrahedron.

The parametersA,B,C,D used to parameterize Tetrahedroid surfaces have be
considered as points on the cubic surface

A(A2 −B2 − C2 −D2) + 2BCD = 0.

One can write an explicit rational parameterization of this surface using the formulas

A = 2abc, B = a(b2 + c2), C = b(a2 + c2), D = c(a2 + b2).

The formulas describe a rational mapP2− → P3 of degree 2 given by the linear system
of plane cubics with 3 base pointsp1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1]. It extends
to a degree 2 map from a Del Pezzo surface of degree 6 onto a 4-nodal cubic surface.
In fact, if one considers the standard Cremona involution[a, b, c] 7→ [a−1, b−1, c−1],
then we observe that the map factors through the quotient by this involution. It has 4
singular points corresponding to the fixed points

[a, b, c] = [1, 1, 1], [−1, 1, 1], [1,−1, 1], [1, 1,−1].
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of the Cremona involution. The corresponding singular points are the points[1, 1, 1, 1],
[1, 1,−1,−1], [1,−1, 1,−1], [1,−1,−1, 1].

If we change the variablesX2 = bcx2, Y 2 = acy2, X2 = abx2,W = w, the
equation

A(x4 + y4 + z4 + w4) + 2B(x2w2 + y2z2) + 2C(y2w2 + x2z2)

+2D(z2w2 + x2y2) = 0

is transformed to equation

(X2 + Y 2 + Z2)(a2X2 + b2Y 2 + c2Z2)−

[a2(b2 + c2)X2W 2 + b2(c2 + a2)Y 2W 2 + c2(a2 + b2)Z2W 2] + a2b2c2W 4 = 0,

or, equivalently,

a2x2

x2 + y2 + z2 − a2w2
+

b2y2

x2 + y2 + z2 − b2w2
+

c2z2

x2 + y2 + z2 − c2w2
= 0. (10.37)

Whena, b, c are real numbers, the real points(x, y, z, 1) ∈ R3 on this surface describe
the propagation of light along the interface between two different media. The real
surface with equation (10.37) is called a Fresnel ’sWave surface. It has 4 real nodes

(±c
√
a2 − b2
a2 − c2

, 0,±a
√
b2 − c2
a2 − c2

, 1),

where we assume thata2 > b2 > c2. It has four real tropes given by planesαx+βy+
γz + w = 0, where

(α, β, γ, 1) = (± c

b2

√
a2 − b2
a2 − c2

, 0,± a

b2

√
b2 − c2
a2 − c2

, 1),

One of the two conics cut out on the surface by coordinate planes is a circle. On the
planew = 0 at infinity one of the conics is the ideal conicx2 + y2 + z2 = 0.

10.3.5 Tetrahedral complex

Consider the union of 4 planes inP3 which define a coordinate tetrahedron in the space.
Let q1, q2, q3, q4 be its vertices,̀ij = qi, qj be its edges andπi = qj , qk, ql be its faces.
Let [A,B] ∈ P1 andK be the closure of the set of lines inP3 intersecting the four
faces at 4 distinct points with the cross ratio equal to[A,B]. Here we assume that
the vertices of the tetrahedron are ordered in some way. It is easy to see thatK is a
complex line. It is called atetrahedral complex.

Proposition 10.3.17.K is a quadratic complex of lines. Ifpij are the Pl̈ucker coordi-
nates with respect to the coordinates defined by the tetrahedron, thenK is equal to the
intersection of the Grassmannian with the quadric

Ap12p34 −Bp13p24 = 0. (10.38)

Conversely, this equation defines a tetrahedral complex.
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Proof. Let ` be a line spanned by the points[a1, a2, a3, a4] and [b1, b2, b3, b4]. It in-
tersects the faceπi at the point corresponding to the coordinates on the line[s, t] =
[bi,−ai], i = 1, . . . , 4. We assume that̀ does not pass through one of the vertices.
Then` intersects the faces at four points not necessary distinct with cross ratio equal
to [p12p34, p13p24], wherepij are the Pl̈ucker coordinates of the line. So, the equa-
tion of the tetrahedral complex containing the line is[p12p34, p13p24] = [a, b] for some
[a, b] ∈ P1.

Note that any tetrahedral complexT contains the set of points inG(2, 4) satisfying
pis = pit = pik = 0 (the lines in the coordinate planeti = 0). Also, any line
containing a vertex satisfiespij = pjk = pik = 0 and hence also is contained inK.
Thus we obtain thatK contains 4 planes from one ruling of the Klein quadric and 4
planes from another ruling. Each plane from one ruling intersects three planes from
another ruling along a line and does not intersect the fourth plane.

Observe that the tetrahedral complex is reducible if and only if the corresponding
cross ratio is equal to0, 1,∞. In this case it is equal to the union of two hyperplanes
representing lines intersecting one of the two opposite edges. An irreducible tetrahedral
complex has 6 singular points corresponding to the edges of the coordinate tetrahedron.
Their Pl̈ucker coordinates are all equal to zero except one.

Proposition 10.3.18. The singular surface of an irreducible tetrahedral complexK
defined by is equal to the tetrahedron of planes defining it.

Proof. We know that the degree of the singular surface is equal to 4. So, it suffices to
show that a general point in one of the planes of the tetrahedron belongs to the singular
surface. The lines in this plane belong to the complex. So, the lines in the plane
passing through a fixed pointp0 is an irreducible component of the conicΩ(p0) ∩K.
This shows thatp0 belongs to the singular surface ofK.

From now on we consider only irreducible tetrahedral complexes. There are differ-
ent geometric ways to describe a tetrahedral complex.

First we need the following lemma, known as thevon Staudt’s Theorem.

Lemma 10.3.19.Let ` be a line belonging to a tetrahedral complexT defined by the
cross ratioR. Assume that̀ does not pass through the vertices and consider the pencil
of planes through̀ . Then the cross ratio of the planes in the pencil passing through
the vertices is equal toR.

Proof. Let e1, e2, e3, e4 be a basis inV = C4 corresponding to the vertices of the
tetrahedron. Choose the volume formω = e1 ∧ e2 ∧ e3 ∧ e4 and consider thestar-
duality in

∧2
V defined by(α, β) = (α∧β)/ω. Under this duality(ei ∧ ej , ek ∧ el) =

1(−1) if (i, j, k, l) is an even (odd) permutation of(1, 2, 3, 4) and0 otherwise. Let
γ =

∑
1≤i<j≤4 pijei ∧ ej be the 2-form defining the linè andγ∗ =

∑
p′ijei ∧ ej

define the dual linè∗, whereei ∧ ej is replaced with(ei ∧ ej , ek ∧ el)ek ∧ ei, where
i, j, k, l are all distinct. The linè (resp. `∗) intersects the coordinate planes at the
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points represented by the columns of the matrix

A =


0 p12 p13 p14

−p12 0 p23 p24

−p13 −p23 0 p34

−p14 −p24 −p34 0

 , resp.B =


0 p34 −p24 p23

−p34 0 p14 −p13

p24 −p14 0 p12

−p23 p13 −p12 0

 .

We haveA ·B = B ·A = 0. It follows from the proof of the previous proposition that
the cross ratio of the four points on`∗ is equal to(p′13p

′
24, p

′
12p

′
34) = (p24p13, p24p13).

Thus` and`∗ belong to the same tetrahedral complex . Now a plane containing` can
be identified with a point oǹ∗ equal to the intersection point. A plane containinge1
and` is defined by the 3-form

e1 ∧ γ = p23e1 ∧ e2 ∧ e3 + p24e1 ∧ e2 ∧ e4 + p34e1 ∧ e3 ∧ e4

and we check thate1 ∧ γ ∧ (−p34e2 + p24e3 − p23e4) = 0 sinceB · A = 0. This
means that the plane containinge1 intersects̀ ∗ at the first point oǹ ∗ defined by the
first column. Thus under the projective map from the pencil of planes through` to
the line`∗, the plane containinge1 is mapped to the intersection point of`∗ with the
opposite face of the tetrahedron defined byt0 = 0. Similarly, we check that the planes
containing other vertices correspond to intersection points of`∗ with the opposite faces.
This proves the assertion.

Proposition 10.3.20.A tetrahedral complex is the closure of secants of rational cubic
curves inP3 passing through the vertices of the coordinate tetrahedron.

Proof. Let R be one of those curves andx ∈ R. Projecting fromx we get a conic
C in the plane with four points, the projections of the vertices. Let` = x, y be a
secant ofR. The projectionȳ of y is a point on the conicC and the pencil of lines
throughȳ is projectively equivalent to the pencil of planes through the secant`. Under
this equivalence the planes passing through the vertices of the tetrahedron correspond
to the lines connecting their projection with̄y. Applying von Staudt’s Theorem, we
conclude the proof.

Consider the action of the torusT = (C∗)4 on P3 by scaling the coordinates in
V = C4. Its action on

∧2
V is defined by

(t1, t2, t3, t4) : (p12, . . . , p34) 7→ (t1t2p12, . . . , t3t4p34), (t1, t2, t3, t4) ∈ T.

It is clear that the Klein quadric is invariant with respect to this action. This defines
the action ofT on the Grassmannian of lines. It is also clear that the equations of a
tetrahedral complexK are also invariant with respect to this action, soT acts on a
tetrahedral complex. If̀ ∈ K has nonzero Plücker coordinates (a general line), then
the stabilizer of̀ is equal to the kernel of the action ofT in P3, i.e. equal to the
diagonal group of(z, z, z, z), z ∈ C∨. Thus the orbit of̀ is 3-dimensional, and since
K is irreducible and 3-dimensional, it is a dense Zariski subset ofK. Thus we obtain
thatK is equal to the closure of a general line inG(2, 4) under the torus action. Since
any general line belongs to a tetrahedral complex we get an equivalent definition of
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a tetrahedral complex as the closure of a torus orbit of a line with nonzero Plücker
coordinates.

Here is another description of a tetrahedral complex. Consider a projective auto-
morphismφ : P3 → P3 with four distinct fixed points and letK be the closure of lines
x, φ(x), wherex is not a fixed point ofφ. I claim thatK is an irreducible tetrahedral
complex. Choose the coordinates inC4 such that the matrix ofφ is a diagonal matrix
with 4 distinct eigenvaluesλi. ThenK is the closure of lines defined by 2-vectors
γ = A · v ∧ v, v ∈ C4. A straightforward computation shows that the Plücker coor-
dinates ofγ are equal topij = titj(λi − λj), where(t1, . . . , t4) are the coordinates
of the vectorv. Thus if we takev with nonzero coordinates we obtain thatK contains
the torus orbit of the vector with nonzero Plücker coordinatespij = λi − λj . As we
explained in above,K is an irreducible tetrahedral complex.

It is easy to see that the map which assigns to a pointx ∈ P3 the linex, φ(x)
defines a birational transformationΦ : P3− → K with fundamental points at the fixed
points ofφ. It is given by quadrics. The linear system of quadrics through 4 general
points inP3 is of dimension 5 and defines a rational map fromP3 to P5. The preimage
of a general plane is equal to the intersection of 3 general quadrics in the linear system.
Since there are 4 base points, we obtain that the residual intersection consists of 4
points. This implies that the linear system defines a map of degree 2 onto a quadric
in P5 or a degree 1 map onto a threefold of degree 4. Since a tetrahedral complex is
obtained in this way and any 4 general points inP3 are projectively equivalent, we see
that the image must be projectively isomorphic to a tetrahedral complex. Observe, that
the 6 lines joing the pairs of fixed points ofφ are blown down to singular points of the
tetrahedral complex. Also, we see the appearance of 8 planes, four of these planes are
the images of the exceptional divisors of the blow-up ofP3 at the fixed points, and the
other four are the images of the planes spanned by three fixed points. We see that the
blow-up ofP3 is a small resolution of the tetrahedral complex.

There is another version of the previous construction. Take a pencil of quadrics
Q with nonsingular base curve. Consider the rational mapP3− → G1(P3) which as-
signs to a pointx ∈ P3 the intersection of the polar planesPx(Q), Q ∈ Q. This is
a line inP3 unlessx is a singular point of one of quadrics inQ. Under our assump-
tion on the pencil, there are exactly 4 such points which we can take as the points
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]. Thus we see that the rational map is of the
same type as in the previous construction and its image is a tetrahedral complex.

10.4 Ruled surfaces

10.4.1 Scrolls

A scroll or a ruled varietyis an irreducible subvarietyS of PN such that there exists
an irreducible familyX0 of linear subspaces of dimensionr sweepingS such that a
general point ofS lies in unique ar-plane from the family and no point lies in infinitely
many generators. Following the classical terminology, the linear subspaces are called
generators. Note that the condition that any point lies in finitely many generators
excludes cones.
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We identifyX0 with its image in the Grassmann varietyGr(PN ). For anyx ∈ X0

let Λx denote the ruling defined by the pointx. The universal family

{(x, p) ∈ X0 × Pn−1 : p ∈ Λx}

is isomorphic to the restrictionZX0 of the incidence varietyZG → Gr(PN ) overX0.
Let SX0 be the restriction of the dual of the universal subbundleSG to X0. We have
ZX0

∼= P(S∨X0
). The projectionZX0 → Pn−1 is a finite morphism of degree 1 which

sends the fibres of the projective bundleZX0 → X0 to generators. For any finite
morphismν : X → X0 of degree1, the pull-backE = ν∗(S∨X0

) defines a projective
bundleP(E) and a finite morphism̃ν : P(E) → ZX0 such that the compositionf :
P(E) → ZX0 → S is a finite morphism sending the fibres to generators. Recall
that the projectionZG → PN = |V | is defined by a surjection of locally free sheave
α : V ∨ ⊗ OG → S∨G. Thus the morphismf : P(E) → S ⊂ PN is defined by a
surjection

ν∗(α) : V ∨ ⊗OX → E .

In particular, the morphismf is a given by a linear system|V ∨| ⊂ |OP(E)(1)|.
Thus we see that any scroll is obtained as the image of a birational morphism

f : P(E)→ PN = |V |

defined by a linear system in|OP(E)(1)|. The linear system can be identified with the
image ofV ∨ → H0(X, E) under the surjective mapV ∨ ⊗ OX → E . This map also
gives a finite mapν : X → X0 ⊂ G(r + 1, V ). The baseX of the projective bundle
π : P(E) → X can be always assumed to be a normal variety. Thenν : X → X0 is
the normalization map.

A scroll defined by the complete linear system|P(E)(1)| is a linearly normal sub-
variety of Pn−1. It is called anormal scroll. Any scroll is a projection of a normal
scroll. Note that in many text-books a normal scroll is assumed to be a nonsingular
variety. We have already classified smooth rational normal scrolls of dimension 2 in
Chapter 8.

For anyX-schemeg : Y → X anX-morphismY → P(E) is defined by an
invertible sheafL on Y and surjective map of sheavesg∗E → L. It is equal to the
composition of the canonical mapsY = P(L) → P(g∗E) = Y ×X P(E) and the
projection to the second factor. Takingg to be the identity mapX → X, we obtain a
bijection between sections ofπ : P(E) → X and surjective maps of sheavesE → L,
whereL is an invertible sheaf onX.

A surjective map of locally free sheavesE → F defines a closed embedding
P(F) ↪→ P(E). If rankF = r′+1, the image ofP(F) under the mapf : P(E)→ Pn−1

is ar′-directrix of the scroll, a closed subvariety intersecting each generator along ar′-
plane. Ifr′ = 0, we get a section ofP(E). Its image isdirectrix of the scroll, a closed
subvariety of the scroll that intersects each generator at one point. Note that not every
directrix comes from a section, for example a generator could be a directrix.

SupposeE → E1 andE → E2 are two surjective maps of locally free sheaves
sheaves on a smooth curveX. Let E → E1 ⊕ E2 be the direct sum of the maps and
E ′ be the image of this map which is locally free sinceX is a smooth curve. Assume
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that quotient sheaf(E1 ⊕ E2)/E ′ is a skyscrapper sheaf. Then the surjectionE → E ′
corresponds to a closed embeddingj : P(E ′) ↪→ P(E). We call the projective bundle
P(E ′) the join of P(E1) andP(E2) and denote it by〈P(E1),P(E2)〉. The compositions
E → E ′ → Ei are surjective maps, hence the projectionsE ′ → Ei are surjective and
therefore define closed embeddingP(Ei) ↪→ 〈P(E1),P(E2)〉.

It follows from (10.8) that

ωP(E)/X
∼= π∗(det E)(−r − 1). (10.39)

If X admits a canonical sheafωX , we get

ωP(E)
∼= π∗(ωX ⊗ π∗ det E)(−r − 1). (10.40)

Let ξ = c1(OP(E)(1)). Recall that the Chern classesci(E) can be defined by using
the identity inH∗(P(E),Z) (see [206], Appendix A):

(−ξ)r+1 + π∗(c1(E))(−ξ)r + . . .+ π∗(cr+1(E)) = 0.

Let d = dimX. Multiplying the previous identity byξd−1, we get

ξd+r =
r+1∑
i=1

(−1)iπ∗(c1(E))ξd+r−i. (10.41)

Assume thatd = dimX = 1. Thenci(E) = 0 for i > 1 andc1(E) can be identified
with the degree ofdet E (the degree ofE). Sinceξ intersects the class of a general fibre
with multiplicity 1, we obtain

ξr+1 = deg E . (10.42)

Since|H| gives a finite map of degree 1, the degree of the scrollS = f(P(E)) is equal
toHr+1 = ξr+1. Also E = ν∗(S∨G), hence

deg E = ν∗(c1(S∨G)) = ν∗(σ1) = deg ν(X) = degX0,

where the latter degree is taken in the Plücker embedding ofG. This gives

degS = degX0. (10.43)

The formula is not true anymore ifd = dimX > 1. For example, whend = 2 we get
the formula

degS = ξr+2 = π∗(c1(E))ξr+1 − π∗(c2(E))ξr.

= π∗(c1(E)2 − c2(E))ξr = c21(E)− c2(E) = ν∗(σ2),

whereσ2 is the special Schubert class.

Example10.4.1. Exercise 19.13 from [203] asks to show that the degree ofSX may
not be equal todegX if dimX > 1. An example is the scrollS of lines equal to the
Segre varietys2,1(P2 × P1) ⊂ P5. Its degree is equal to 3. If we identify the spaceP5

with the projective space of one-dimensional subspaces of the space of matrices of size
2×3, the Segre variety is the subvariety of matrices of rank 1. If we take homogeneous
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coordinatest0, t1, t2 in P2 and homogeneous coordinatesz0, z1 in P1, thenS is given
by

rank

(
t0z0 t1z0 t2z0
t0z1 t1z1 t2z1

)
≤ 1.

When we fix(t0, t1, t2), the parametric equation of the corresponding line inP5 is
z0[t0, t1, t2, 0, 0, 0]+z1[0, 0, 0, t0, t1, t2]. The Pl̈ucker coordinates of the line are equal
to pi4+j = titj , 0 ≤ i ≤ j ≤ 2, with other coordinates equal to zero. Thus we see that
the varietyX parameterizing the generators ofS spans a subspace of dimension 5 in
P9 and is isomorphic to a Veronese surface embedded in this subspace by the complete
linear system of quadrics. Thus the degree ofX is equal to 4.

From now on we shall assume thatX = C is a smooth curveC so that the map
ν : C → C0 ⊂ Gr(Pn−1) is the normalization map of the curveC0 parameterizing
generators.

LetS1 andS2 be two scrolls inP(W ) corresponding to vector bundlesE1 andE2 of
ranksr1 andr2 and surjectionsW⊗OX → E1 andW⊗OX → E2. Let 〈P(E1),P(E2)〉
be the join inP(W ⊗OX) = X × P(W ) andS be the projection of the join toP(W ).
It is a scroll inP(W ) whose generators are the joins of the corresponding generators of
S1 andS2. Two generators corresponding to a pointx 6∈ {x1, . . . , xm} span a linear
subspace of expected dimensionr1 + r2 + 1. The generators corresponding to a point
xj span a subspace of dimensionr1 + r2−h1. The scrollS is denoted by〈S1, S2〉 and
is called thejoin of scrollsS1 andS2. Sincedeg E ′ = deg E1 + deg E2, we obtain

deg〈S1, S2〉 = degS1 + degS2 −
m∑
i=1

hi. (10.44)

Let us consider some special examples.

Example10.4.2. Let Wi ⊗ OC → Ei define scrollsSi in P(Wi), i = 1, 2. Consider
the surjectionW ⊗ OC = (W1 ⊕W2) ⊗ OC → E1 ⊕ E2. It defines the scroll equal
to the join of the scrollS1 ⊂ P(W1) ⊂ P(W ) and the scrollS2 ⊂ P(W2) ⊂ P(W ).
Its degree is equal todegS1 + degS2. For example, letEi be an invertible sheaf on
C defining a closed embeddingτi : C ⊂ P(Wi) so thatSi = τi(X) are curves of
degreeai spanningP(Wi). Then the join ofS1 andS2 is a surface of degreea1 + a2

with generators parameterized byX. Specializing further, we takeX = P1 andEi =
OP1(ai) with a1 ≤ a2. The scroll〈S1, S2〉 is the rational normal scrollSa1,a1+a2−1.
Iterating this construction we obtain rational normal scrollsSa1,...,ak,n ⊂ Pn, where
n = a1 + . . .+ ak − k + 1.

Example10.4.3. Suppose we have two scrollsS1 andS2 in Pn defined by surjections
αi : W ⊗OCi

→ Ei, where rankEi = ri + 1. Let Γ0 ⊂ C1 ×C2 be a correspondence
of bidegree(α1, α2) andµ : Γ → Γ0 be its normalization map. Letpi : Γ → Ci be
the composition ofµ and the projection mapsC1×C2 → Ci. Consider the surjections
p∗i (αi) : W ⊗ OΓ → p∗i Ei. Let 〈P(p∗1E1),P(p∗1E1)〉 be the corresponding join in
P(W ⊗ OΓ). Let S be the image of the join inP(W ). We assume that it is a scroll
whose generators are parameterized by an irreducible curveC0 ⊂ Gr1+r2−1(P(W ))
equal to the closure of the image of the mapφ : Γ → Gr1+r2−1(P(W )) defined by
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φ(z) = ν1(p1(z)), ν2(p1(z)). Let a be the degree of this map. Then

degS =
1
a
(α1 degS1 + α2 degS2 − h),

where
h = h0(Coker(µ∗(W ⊗OΓ → p∗1E1 ⊕ p∗2E2))).

Here are some special examples. We can take forS1 andS2 two curves inPn
of degreesd1 andd2 intersecting transversally atm pointsx1, . . . , xm. Let Γ be the
graph of an isomorphismσ : S1 → S2. Leth be the number of pointsx ∈ S1 such that
σ(x) = x. Obviously, these points must be among the pointsxi’s. Assume thatx1 and
σ(x1) do not lie on a common trisecant for a general pointx1 ∈ S1. Thenh0 = 1 and
the scrollS is a scroll of lines of degreed1 + d2 − h.

We could also takeS1 = S2 andσ be an automorphism ofS1 with h fixed points.
Then the degree of the scrollS is equal to2d− h if σ2 is not equal to the identity and
1
2 (2d− h) otherwise.

10.4.2 Cayley-Zeuthen formulas

From now on until the end of this chapter we will be dealing only with scrolls with
one-parameter family of generators. A two-dimensional scroll is called aruled surface.
This classical terminology disagrees with the modern one, where a ruled surface means
a P1-bundleP(E) over a smooth projective curve (see [206]). Our ruled surfaces are
their images under a degree 1 morphism given by a linear system in|OP(E)(1)|.

We will denote the baseX of P(E) by C to distinguish this case from the general
case. We denote byC0 ⊂ G1(PN ) the irreducible curve parameterizing generators of
P(E) and letν : C → C0 be the normalization map.

Let us remind some well-known facts about projective1-bundlesX = P(E) over
smooth curves which can be found in [206], Chapter V,§2.

After tensoringE with an appropriate invertible sheaf we can writeP(E) = P(E0),
whereE0 is normalized in the sense thatH0(C, E0) 6= {0} butH0(C, E0 ⊗ L) = {0}
for any invertible sheaf of negative degree. In this case the integere = −deg E0 ≥ 0 is
an invariant of the surface and the tautological invertible sheafOP(E0)(1) determined
by E0 is isomorphic toOX(E0), whereE2

0 = −e. If e < 0 the curveE0 is the unique
curve onX with negative self-intersection. In fact, the cohomology groupH2(X,Z) is
freely generated by the class of a section[E0] and the class[F ] of a fibre. We can write
for any curveE onX, [E] = a[E0] + b[F ]. Since we can assume thatE is irreducible
and different from a fibre, intersecting withF gives usa = E · F > 0. Intersecting
with E0, we obtain that−ae + b ≥ 0, henceb > 0. Now 0 > E2 = −a2e + 2ab =
a(−ae + b) + ab > 0 gives us a contradiction. The same argument withE2 = 0
implies that[E] = a[E0]. In the special case wheng = 0 we getE ∼ aE0. It follows
from Riemann-Roch and the formula for the canonical class thatE0 moves in a pencil,
hencea = 1 andE ∈ |E0| (recall thatE0 was assumed to be irreducible).

Let σ0 : C → P(E) be the section ofπ : P(E) → C with the image equal toE0.
Thenσ∗0OP(E)(E0) ∼= OC(e). If we identifyE0 andC by means ofσ0, thenOC(e) ∼=
OX(E0) ⊗OE0 so thatdeg e = e. A sectionσ : C → X is equivalent to a surjection
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of locally free sheavesE → L ∼= σ∗OX(σ(C)). In particular,degL = σ(C)2. The
canonical class ofP(E) is given by the formula

KX ∼ −2E0 + π∗(KC + e) (10.45)

which is a special case of (10.8).
Let |H| be a complete linear system of dimensionN > 2 on P(E) defined by an

ample sectionH. Sinceπ∗(OX(H)) = E0 ⊗ L for some invertible sheafL, we can
write

H ∼ E0 + π∗(a)

for some effective divisor classa onC of degreea. SinceH is irreducible, intersecting
both sides withE0 we find thata ≥ e. Using the Moishezon-Nakai criterion of am-
pleness it is easy to see thatH is ample if and only ifa > e. We shall assume thatH
is ample. Assume also thata is not special in the sense thatH1(C,OC(a)) = 0 and
|e + a| has no base points onC. Then the exact sequence

0→ OX(π∗(a))→ OX(H)→ OE0(H)→ 0

shows that the restriction of|H| toE0 is a complete linear system without base points.
It is clear that any possible base point of|H| must lie onE0, hence under the above
assumptions|H| has no base points. It defines a finite mapf : X → S ⊂ PN . The
surfaceS is linearly normal surface inPN swept by lines, the images of fibres. The
family of lines is defined by the image ofC in G1(PN ). The next proposition shows
that the map is of degree 1, henceS is a ruled surface.

Proposition 10.4.1. Let |H| be an ample section onX = P(E) and |V | be a linear
system in|H| that defines a finite mapf : P(E) → S ⊂ PN . Then the degree of the
map is equal to 1.

Proof. Supposef(x) = f(y) for some general pointsx, y ∈ X. LetFx andFy be the
fibres containingx andy. Since|H| has no base points, its restriction to any fibre is a
linear system of degree 1 without base points. Suppose the degree of the map is greater
than 1. Take a general fibreF , then, for any general pointx ∈ F , there is another
fibreFx such thatf(Fx) andf(F ) are coplanar. This implies that there exists a divisor
H(x) ∈ |H − Fx − F |. We can writeH(x) = Fx + F + R(x) for some curveR(x)
such thatR(x) · Fx = R(x) · F = 1. When we movex alongF we get a pencil of
divisorsH(x) contained in|H − F |. The divisors of this pencil look likeFx + R(x)
and hence all have singular point atR(x) ∩ Fx. Since the fibreFx moves withx, we
obtain that a general member of the pencil has a singular point which is not a base point
of the pencil. This contradicts Bertini’s Theorem on singular points [206], Chapter 3,
Corollary 10.9.

Corollary 10.4.2. LetS be an irreducible surface inPN containing a one-dimensional
irreducible family of lines. SupposeS is not a cone. ThenS is a ruled surface equal
to the image of projective bundleP(E) over a smooth curveC under a birational mor-
phism given by a linear subsystem in|OP(E)(1)|.
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Proof. Let C0 ⊂ G1(Pn) be the irreducible curve parameterizing the family of lines
andν : C → C0 be its normalization. The preimage of the universal familyZC0 → C0

is a projective bundleP(S∨C0
) overC. SinceS is not a cone, the mapf : P(E) → S

is a finite morphism. The map is given by a linear subsystem of|OP(E)(1)|. Sincef is
a finite morphism, the line bundleOP(E)(1) = f∗(OP(S∨C0

(1)) is ample. It remains to
apply the previous proposition.

An example of a nonsingular quadric surface seems contradicts the previous state-
ment. However, the variety of lines on a nonsingular quadric surface is not irreducible
and consists of two projective lines embedded inG1(P3) as the union of two disjoint
conics. So the surface has two systems of ruling, and it is a two-way scroll.

It follows from (10.43) that the degree of the ruled surfaceS = f(P(E)) is equal to
the degree ofC in the Pl̈ucker space. It is also equal to the self-intersectionH2 of the
tautological line bundle onP(E). The latter is equal toH2 = (E0 + aF )2 = 2a − e.
The genus ofC is called thegenusof the ruled surface.

Proposition 10.4.3.LetS = f(P(E)) ⊂ Pn be a projection of a minimal ruled surface
P(E) embedded in projective space by a linear system|H|, whereH ∼ E0 + π∗(a).
LetD be a directrix onS which is not contained in the singular locus ofS. Then

deg D ≥ a− e.

The equality takes place if and only if the preimage ofD on P(E) is in the same coho-
mology class asE0.

Proof. The assumption onD implies thatdeg D = H · E, whereE is the preimage of
D onP(E). Intersecting withH we getH ·E = E ·E0+a. If E 6= E0, thenH ·E ≥ a,
if [E] = [E0], thenE · E0 = a− e. The equality takes place if and only ifE · E0 = 0
ande = 0. SinceE is a section, we can write[E] = [E0] + m[F ], and intersecting
with E0, we getm = 0.

Now we know thatf : P(E)→ S is of degree 1, we obtain that the ruled surface is
non-normal at every point over which the map is not an isomorphism.

Recall thedouble-point formulafrom [173], 9.3. Letf : X → Y be a morphism of
nonsingular varieties of dimensionsm andn, respectively. Let ˜X ×X be the blow-up
of the diagonal ofX×X andE be the exceptional divisor. We think about points inE
as points inX together with a tangent directiontx atx. Let D̃(f) be the preimage of

the diagonal ofY ×Y under the composition of the maps˜X ×X → X×X f×f→ Y ×Y
minusE. One can view points iñD(f) as either pointsx ∈ X such that there exists
x′ 6= x with f(x) = f(x′), or as points(x, tx) such thatdfx(tx) = 0. LetD(f) be the
image ofD̃(f) under one of the projections ˜X ×X → X. This is called thedouble
point setof the morphismf . Define thedouble point class

D(f) = f∗f∗[X]− (c(f∗TY )c(TX)−1)n−m ∩ [X] ∈ Hn−m(X,Q), (10.46)

wherec denote the total Chern class[X] + c1 + . . . + cm of a vector bundle. In case
D(f) has the expected dimension equal to2m− n, we have

D(f) = [D(f)] ∈ Hn−m(X,Z).



10.4. RULED SURFACES 449

Assume now thatf : X → S is the normalization map andS is a surface inP3.
SinceS is a hypersurface, it does not have isolated non-normal points. This implies
thatD(f) is either empty, or of expected dimension2m − n = 1. The double point
class formula applies, and we obtain

[D(f)] = f∗(S) + f∗(KY )−KX . (10.47)

In fact, it follows from the theory of adjoints (see [265]) that the linear equivalence
class ofD(f) is expressed by the same formula.

We say that a surfaceS in Pn hasordinary singularitiesif its singular locus is a
double curveΓ onS. This means that the completion of the local ring ofS at a general
point of Γ is isomorphic toC[[z1, z2, z3]]/(z1z2). The curveΓ may have alsopinch
pointswith completion isomorphic toC[[z1, z2, z3]]/(z2

1 − z2z3) and also triple points
with completion isomorphic toC[[z1, z2, z3]]/(z1z2z3). The curveΓ is nonsingular
outside triple points, the curveD(f) is nonsingular outside the preimages of the triple
points. It has3t double points.

Under these assumptionsΓ is smooth, the map̃D(f) → D(f) → Γ is of degree
2. It is ramified at pinch points only, and the preimage of a triple point consists of 6
points.

Assume thatS is a surface inP3 with ordinary singularities,f : X → S be the
normalization map, andΓ be the double curve ofS. The degree of any curve onX,
is the degree with respect tof∗(OP3(1)). Let us introduce the following numerical
invariants in their classical notation:

• µ0 = the degree ofS;

• µ1 = the rank ofS, the class of a general plane section ofS;

• µ2 = the class ofS;

• ν2 = the number of pinch-points onS;

• t = the number of triple points onS;

• ε0 = deg Γ;

• ε1 = the rank ofΓ, the number of tangents toΓ intersecting a general line inP3;

• ρ = theclass of immersionof Γ equal to the degree of the image ofD(f) under
the Gauss mapG : X → P̌3;

• g(Γ) = the genus ofΓ;

• c = the number of connected components ofΓ;

• κ = the degree of the ramification divisorp : X → P2, wherep is the composi-
tion of f and the general projection ofS.

The following Theorem summarizes different relations between the listed invariants
of S. These relations are called theCayley-Zeuthen formulas.
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Theorem 10.4.4.The following relations hold:

(i) µ1 = µ0(µ0 − 1)− 2ε0;

(ii) ε0(µ0 − 2) = ρ+ 3t;

(iii) µ1(µ0 − 2) = κ+ ρ;

(iv) 2g(Γ)− 2c = ε1 − 2ε0;

(v) ν2 = 2ε0(µ0 − 2)− 6t− 2ε1;

(vi) 2ρ− 2ε1 = ν2;

(vii) µ2 = µ0(µ0 − 1)2 + (4− 3µ0)ε1 + 3t− 2ν2;

(viii) 2ν2 + µ2 = µ1 + κ.

Proof. (i) A general plane section is a plane curve of degreeµ0 with ε0 ordinary double
points as singularities. Thus (i) is just the Plücker formula. Note also thatµ1 is equal
to the degree of thecontact curve, the closure of smooth pointsp ∈ S such that a
general pointq ∈ P3 is contained inTp(S), or, equivalently, the residual curve toΓ of
the intersection ofS and the first polarPq(S). Taking a general planeH and a general
point q ∈ H, we obtain thatdeg ∆ is equal to the class ofH ∩ S.

(ii) The numberρ is equal to the number of tangent planes toS at points inΓ which
pass through a general pointq in P3. Here a tangent plane to a singular pointp ∈ Γ
means the tangent plane to one of the two branches ofS atq, or equivalently, the image
of a preimage ofp onX under the Gauss map. Consider the intersection of the second
polarPq2 with the contact curveΓ. It follows from subsection1.1.3thatPq2(S)∩ S is
equal to the locus of pointsp such that the linep, q intersectsS at p with multiplicity
≥ 3. This means thatPq2(S) ∩ Γ consists oft triple points points and points such that
q belongs to a tangent plane ofS atp. The latter number is equal toρ. As we observed
in subsection1.1.3, Pq2 has a point of multiplicity3 atp, hence each triple point enters
with multiplicity 3 in the intersection ofp, q with Γ. It remains to use that the degree
of the second polar is equal toµ0 − 2.

(iii) Now let us consider the intersection of the second polarPq2(S) with the con-
tact curve∆. This intersection consists of linesq, p such thatp is either one ofκ
ramification points of the projection of the surface fromq or p is one ofρ points on
Γ ∩∆, where the tangent plane containsp. In fact, these points lie on the intersection
of ∆ andΓ.

(iv) - (vi) Let π = h1(OD(f)) be the arithmetic genus of the curveD(f) ands be
the number of connected components ofD(f). Applying (10.47), we get

−2χ(D(f),OD(f)) = 2π − 2c = (D(f) +KX) ·D(f)

= (µ0 − 4) degD(f) = 2ε0(µ0 − 4).

The curveD(f) has3t ordinary double points and the projection from the normaliza-
tion of D(f) to Γ is a degree 2 cover ramified atν2 points. Applying the Hurwitz
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formula, we obtain2π − 2c − 6t = 2(2g(Γ) − 2c) + ν2. ProjectingΓ from a gen-
eral line defines a degreeε0 map from the normalization ofΓ to P1. The number
of ramification points is equal toε1. Applying the Hurwitz formula again, we get
2g(Γ)− 2c = −2ε0 + ε1. This gives (iv) and also

ν2 = 2ε0(µ0 − 4)− 6t− 2(2g(Γ)− 2c) = 2ε0(µ0 − 4)− 6t− 2ε1 + 4ε0

= 2ε0(µ0 − 2)− 6t− 2ε1.

This is equality (v). It remains to use (ii) to get (vi).
(vii) The formula for the class of a surface with ordinary singularities has a modern

proof in [173], Example 9.3.8. In our notation it gives (vii).

µ2 = µ0(µ0 − 1)2 + (4− 3µ0)ε1 + 3t

Using this and (i) we get

µ2 + 2ν2 = (µ0 − 1)(µ1 + 2ε0) + 4ε0 − 3µ0ε0

= µ0µ1 − µ1 + 2ε0 + ρ− ε0µ0 + 3t.

It remains to use (ii) and (iii).

Corollary 10.4.5. Let S be a surface inP3 with ordinary singularities andX be its
normalization. Then

(i) K2
X = µ0(µ0 − 4)2 − (3µ0 − 16)ε0 + 3t− ν2;

(ii) c2(X) = µ0(µ2
0 − 4µ0 + 6)− (3µ0 − 8)ε0 + 3t− 2ν2;

(iii) χ(X,OX) = 1 +
(
µ0−1

3

)
− 1

2 (µ0 − 4)ε0 + 1
2 t−

1
4ν2.

Proof. (i) Applying (10.47), we get

KX = (µ0 − 4)H −D(f), (10.48)

whereH ∈ |f∗(OP3(1))|. The first polar ofS with respect to a general point cuts out
onS the union ofΓ and∆. Taking the preimage onX we get

(µ0 − 1)H = D(f) + f∗(∆).

It follows from the local computation thatΓ and∆ intersect simply atν2 pinch points
andρ additional points (see the proof of (iii) in Theorem10.4.4). This gives

D(f)2 = (µ0 − 1)H ·D(f)− ρ− ν2 = 2ε0(µ0 − 1)− ρ− ν2

= 2ε0(µ0 − 1)− ε0(µ0 − 2) + 3t− ν2 = ε0(µ0 − 2) + 3t− ν2.

This gives
K2
X = (µ0 − 4)2µ0 − 4(µ0 − 4)ε0 +D(f)2

= (µ0 − 4)2µ0 − (3µ0 − 16)ε0 + 3t− ν2.
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(ii) The preimage of a pinch point onX is a point inX such that the rank of the
tangent mapTX → f∗(TP3) drops by 2. According to the modern theory of degeneracy
loci (see [173]), this set is given by the relative second Chern classc2(f∗(TP3)/TX).
Computing this Chern class we find

ν2 = c1(X)2 − c2(X) + 4KX ·H + 6µ0.

Applying (10.48), we get

ν2 = K2
X − c2(X) + 4(µ0 − 4)µ0 − 8ε0 + 6µ0. (10.49)

Together with (i) we get (ii). Formula (iii) follows from theNoether formula

12χ(X,OX) = K2
X + c2(X).

Next we apply the Cayley-Zeuthen formulas to the case whenS is a ruled surface in
P3 with ordinary singularities andX = P(E). We know thatµ0 is equal to the degree
d of C0 in its Plücker embedding. The next Theorem shows that all the numerical
invariants can be expressed in terms ofµ0 andg.

Theorem 10.4.6.Let S be a ruled surface inP3 of degreeµ0 and genusg. Assume
thatS has only ordinary singularities. Then

(i) ε0 = 1
2 (µ0 − 1)(µ0 − 2)− g;

(ii) ν2 = 2(µ0 + 2g − 2);

(iii) µ1 = 2µ0 − 2 + 2g;

(iv) µ2 = µ0 = µ0;

(v) κ = 3(µ0 + 2g − 2);

(vi) ρ = (µ0 − 2)(2µ0 − 5) + 2g(µ0 − 5);

(vii) t = 1
6 (µ0 − 4)[(µ0 − 2)(µ0 − 3)− 6g];

(viii) ε1 = 2(µ0 − 2)(µ0 − 3) + 2g(µ0 − 6);

(ix) 2g(Γ)− 2s = (µ0 − 5)(µ0 + 2g − 2).

Proof. A general plane section ofS is a plane curve of degreed with deg Γ ordinary
singularities. This gives (i).

The canonical class formula gives

KP(E) = −2H + π∗(KC̄ + d), (10.50)

whereOC̄(d) ∼= ν∗(OC0(1)) is of degreed = µ0.
Comparing it with formula (10.45), we find that

H ∼ E0 + π∗(f), (10.51)



10.4. RULED SURFACES 453

where2f = d− e. In particular,e+ d is always an even number.
Applying (10.50), we getK2

P(E) = 4µ0 − 4(2g − 2 + µ0). Topologically,P(E) is

the product ofP1 andC. This givesc2(X) = 2(2− 2g). Applying (10.49), we find

ν2 = 4µ0−4(2g−2+µ0)−2(2−2g)+4(µ0−4)µ0−4(µ0−1)(µ0−2)−8g+6µ0

= 2(µ0 + 2g − 2).

From (i) of Theorem10.4.4, we get (iii).
To prove (iv) we have to show that the degree ofS is equal to the degree of its dual

surface. The image of a generator ofS under the Gauss map is equal to the dual line
in the dualP3, i.e. the set of hyperplanes containing the line. SinceS has only finitely
many torsor generators, the Gauss map is a birational map, this shows thatS∗ is a ruled
surface. IfS is defined by the vector bundleE = S∨G⊗OC0 , then the dual ruled surface
is defined by the bundleQG ⊗OC0 , whereOG is the universal quotient bundle. Exact
sequence (10.2) shows thatdetQG⊗OC0

∼= detS∨G⊗OC0 . In particular, the degrees
of their inverse images underν : C → C0 are equal. Thus the degrees ofS andS∗ are
equal.

Now (i) and (viii) of Theorem10.4.4and our formula (i) give (v). Using (iii) and
(ii) of the same Theorem, we get formulas (vi) and (vii). Finally, (vi) of the Theorem
gives formulas (viii) and (ix).

The double-point formula gives

OP(E)(D(f)) ∼ OP(E)(µ0 − 2)⊗ π∗(ωC(1)).

A general point ofΓ is contained in two rulings and formula (10.47) implies that
a general ruling intersectsµ0 − 2 other rulings. Consider a symmetric correspondence
onC defined by

T = {(x, y) ∈ C × C : |H − `x − `y| 6= ∅}.

A point (x, x) ∈ T corresponds to a generator which is called atorsal generator. The
plane inP3 cutting out this generator with multiplicity≥ 2 is tangent to the ruled
surface at any smooth point of the generator. For a general pointx, we have#T (x) =
d−2. Since all generators̀y, y ∈ T (x), intersect the same linèx the pointsy ∈ T (x)
lie in the tangent hyperplane ofG1(P3) at the pointx. This implies that the divisor
2x+T (x) belongs to the linear system|OC(1)| and, in particular,T has valency equal
to 2. Applying the Cayley-Brill formula from Corollary5.5.2, we obtain the following

Proposition 10.4.7. The number of torsal generators of a ruled surface inP3 with
ordinary singularities is equal to2(µ0 + 2g − 2).

Comparing with Theorem10.4.6we find that the number of torsal generators is
equal to the numberν2 of pinch points.

Whenn = 4 we expect that a ruled surface has only finitely many singular non-
normal points and forn = 5 we expect that it is nonsingular.

The following example is a ruled surface with a triple curve of singularities.
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Example10.4.4. Let C be a nonsingular curve of genus 3 and degree6 embedded in
P3 by the linear system|KC + a|, wherea is a non-effective divisor of degree 2. By
Riemann-Roch, we haveh0(D + x) = 1. Let p + q + r ∈ |a + x|. For each point
x ∈ C the linear system|KC −x| is of degree 3 and dimension 1. Also, we obtain that
h0(a+KC−p−q−r) = h0(KX−x) = 2. Thus the linear system|a+KC−p−q−r|
of planes through the pointsp, q, r is a pencil. This means that the pointsp, q, r are on
a trisecant line ofC. Let S be the union of the trisecants parameterized by the curve
C. Obviously,S is not a cone. Applying Corollary10.4.2, we obtain thatS is a ruled
surface.

ProjectingC from any pointx on it, we get a plane curve of degree5 of genus
3. It must have 3 double points. Thus there are 3 trisecants passing throughx. This
shows thatC is the triple curve ofS but not a double curve. Let us show that the
degree ofS is equal to 8. The linear system of cubic surfaces containingC defines a
Cremona transformation ofP3. It blow-up the curveC and then blows down the proper
transform ofS to a curve in another copy ofP3 isomorphic toC. This is an example
of a cubo-cubic space Cremona transformation. An equation of the surfaceS can be
obtained as the jacobian of 4 cubic polynomials defining the rational map. Its degree is
equal to 8.

A general plane section is a plane curve of degree 8 of genus 3. It has 6 singular
points of multiplicity 3. Applying formula (10.47) we see that the linear equivalence
class of the curveD(f) is equal to2H − π∗(KC + d) for some divisord of degreed.
However, the curveD(f) comes with multiplicity 2, so the curveC in S is the image
of a curveC̃ onZC from the linear system|H − π∗(f)|, where2f ∼ KC + d. So every
generator intersects it at 3 points as expected. One can show thatd ∼ KC + 2a so that
f ∼ KC + a. Note that the curvẽC defines a(3, 3)-correspondence on the curveC
with the projectionspC andqC to C. Its genus is equal to19 and each projection is
a degree 3 cover ramified at 24 points. In the case when the divisora is an even theta
characteristic, the curvẽC is the Scorza correspondence which we studied in section
5.5.2.

Next example shows that the double curve of a ruled surface may be disconnected.

Example10.4.5. Consider three nonsingular nondegenerate curvesXi, i = 1, 2, 3, in
P3 with no two having common points. LetS be the set of lines intersecting each
curve. Let us show that these lines sweep a ruled surface of degree2d1d2d3, where
di = degCi. Recall that the set of lines intersecting a curveX of degreeX is a
divisor inG1(P3) of degreed. This is theChow formof C (see [183]). Thus the set of
lines intersecting 3 curves is a complete intersection of three hypersurfaces inG1(P3),
hence a curve of degree2d1d2d3. If we assume that the curves are general enough so
that the intersection is transversal, we obtain that the ruled surface must be of degree
2d1d2d3. The set of lines intersecting two curvesX1 andX2 is a surfaceW inG1(P3)
of degree2d1d2. Its intersection with the Schubert varietyΩ(Π), whereΠ is a general
plane consists ofd1d2 lines. It follows from the intersection theory onG1(P3) that
the intersection ofW with theα-planeΩ(p) is of degreed1d2. Thus we expect that
in a general situation the number of generators ofS passing through a general point
onX3 is equal tod1d2. This shows that a general point ofX3 is a singular point of
multiplicity d1d2. Similarly, we show thatX1 is a singular curve of multiplicityd2d3
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andX2 is a singular curve of multiplicityd1d3.

Remark10.4.1. According to [111] the double curveΓ is always connected ifµ0 ≥
g + 4. If it is disconnected, then it must be the union of two lines.

10.4.3 Developable ruled surfaces

A ruled surface is calleddevelopableif the tangent planes at nonsingular points of any
ruling coincide. In other words, any generator is a torsal generator. One expects that
the curve of singularities is a cuspidal curve. In this subsection we will give other
characterizations of developable surfaces.

Recall the definition of the vector bundle ofprincipal partson a smooth varietyX.
Let ∆ be the diagonal inX ×X andJ∆ be its sheaf of ideals. Letp andq be the first
and the second projections toX from the closed subscheme∆m defined by the ideal
sheafJm+1

∆ . For any invertible sheafL onX one defines the sheaf ofm-th principal
partsPm(L) of L as the sheafPmX (L) = p∗q

∗(L) onX. Recall that them-th tensor
power of the sheaf of 1-differentialsΩ1

X can be defined asp∗(Jm∆ /Jm+1
∆ ) (see [206]).

The exact sequence

0→ Jm∆ /Jm+1
∆ → OX×X/Jm+1

∆ → OX×X/Jm∆ → 0

gives an exact sequence

0→ (Ω1
X)⊗m ⊗ L → PmX (L)→ Pm−1

X (L)→ 0. (10.52)

We will be interested in the case whenX0 = C0 is an irreducible curve of genusg and
X = C is its normalization. By induction, the sheafPmC (L) is a locally free sheaf of
rankm+ 1, and

degPmC (L) = (m+ 1) degL+m(m+ 1)(g − 1). (10.53)

For any subspaceV ⊂ H0(C,L) there is a canonical homomorphism

V → H0(∆m, q∗L) = H0(C, p∗q∗L) = H0(C,PmC (L))

which defines a morphism of locally free sheaves

αm : VC := OC ⊗ V → PmC (L). (10.54)

Note that the fibre ofPmC (L) at a pointx can be canonically identified withL/mm+1
C,x L

and the mapαm at a pointx is given by assigning to a sections ∈ V the elements
mod mm+1

C,x L. If m = 0, we getPmC (L) = L and the map is the usual map given by
evaluating a section at a pointx.

Suppose that(V,L) defines a morphismf : C → P(V ) such that the induced
morphismf : C → f(C) = C0 is the normalization map. We haveL = f∗(OP(1)).
LetPm ⊂ PmC (L) be the image ofαm. Since the composition ofα1 with the projection
P1
C → L is generically surjective (becauseC0 spansP(V )), the mapα1 is generically

surjective. Similarly, by induction, we show thatαm is generically surjective for allm.
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SinceC is a smooth curve, this implies that the sheavesPm are locally free of rank
m+ 1. They are called theosculating sheaves. Let

σm : C → G(m+ 1, V ∨)

be the morphisms defined by the surjectionαm : VC → Pm. The morphismσm can
be interpreted as assigning to each pointx ∈ C them-th osculating planeof f(C)
at the pointf(x). Recall that it is am-dimensional subspace ofP(V ) such that it has
the highest order contact with the branch ofC0 defined by the pointx ∈ C. One can
always choose a system of projective coordinates inP(V ) ∼= Pn such that the branch
of C0 corresponding tox can be parameterized in the ring of formal power series by

x0 = 1, xi = ti+s1+...+si + highest order terms, i = 1, . . . , n, (10.55)

wheresi ≥ 0. Then the osculating hyperplane is given by the equationxn = 0. The
codimension 2 osculating subspace is given byxn−1 = xn = 0 and so on. A point
x ∈ C (or the corresponding branch off(C)) with s1 = . . . = sn = 0 is called an
ordinary point, other points are calledhyperosculatingor stationarypoints . It is clear
that a pointx is ordinary if and only if the highest order of tangency of a hyperplane at
x is equal ton. For example, for a plane curve, a point is ordinary if the corresponding
branch is nonsingular, or, equivalently, the differential of the mapf atx is not equal to
0.

The imageσm(C) in Gm(Pn) is called them-th associated curve. Locally, the
mapσm is given by assigning to a pointx ∈ C the linear subspace ofCn+1 generated
by f̃(x), f̃ ′(x), . . . , f̃ (m)(x), wheref̃ : C → Cn+1 is a local lift of the mapf to a
map to the affine space, and̃f (k) are its derivatives (see [197], Chapter II,§4).

Let P(Pm) → C × P(V ) be the morphism corresponding to the surjectionαm.
The projection of the image toP is called them-th osculating developableof (C,L, V )
(or of C0). Form = 1 it is a ruled surface, called thedevelopable surfaceor tangent
surfaceof C0.

Let rm be the degree ofPm. We have already observed that the composition of the
mapσm with the Pl̈ucker embedding is given by the sheafdetPm. Thusrm is equal to
the degree of them-th associated curve ofC0. Also, we know that the degree of a curve
in the GrassmannianG(m + 1, V ∨) is equal to the intersection of this curve with the
Schubert varietyΩ(A), wheredimA = n−m− 1. Thusrm is equal to them-rankof
C0, the number of osculatingm-planes intersecting a general(n−m−1)-dimensional
subspace ofP. Finally, we know that the 1-rankr1 (called therank of C0), divided by
the number of tangents through a general point on the surface, is equal to the degree of
the tangent surface. More generally,rm is equal to the degree of them-th osculating
developable (see [312]). The(n−1)-rankrn−1 is called theclassofC0. If we consider
the(n − 1)-th associated curve inG(n, n + 1) as a curve in the dual projective space
|V |, then the class ofC0 is its degree. The(n − 1)-th associated curveC∨ is called
the dual curveof C0. Note that the dual curve should not be confused with the dual
variety ofC0. The latter coincides with the(n − 2)-th osculating developable of the
dual curve.
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Proposition 10.4.8.Letr0 = degL = deg f(C). For any pointx ∈ C let si(x) = si,
where thesi’s are defined in(10.55), andki =

∑
x∈C si(x). Then

rm = (m+ 1)(r0 +m(g − 1))−
m∑
i=1

(m− i+ 1)ki

and
n∑
i=1

(n− i+ 1)ki = (n+ 1)(r0 + n(g − 1)).

In particular,
r1 = 2(r0 + g − 1)− k1.

Proof. Formula (10.53) gives the degree of the sheaf of principal partsPmC (L). We
have an exact sequence

0→ Pm → PmC (L)→ F → 0,

whereF is a skyscraper sheaf whose fibre atx ∈ C is equal to the cokernel of the map
αm(x) : V → L/mC,xL. It follows from formula (10.55) thatdimF(x) is equal to
s1 +(s1 + s2)+ . . .+(s1 + . . .+ sm) =

∑m
i=1(m− i+1)si. The standard properties

of Chern classes give

degPm = degPmC (L)− h0(F) = (m+ 1)(r0 +m(g − 1))−
m∑
i=1

(m− i+ 1)ki.

The second formula follows from the first one by takingm = n in which casern = 0
(the surjection of bundles of the same rankVC → Pn must be an isomorphism).

Adding uprm−1 andrm+1 and subtracting2rm, we get

Corollary 10.4.9.

rm−1 − 2rm + rm+1 = 2g − 2− km+1, m = 0, . . . , n,

wherer−1 = rn = rn+1 = 0.

The previous formulas can be viewed as Plücker formulas for space curves. If
n = 2 andC is a plane curve withδ ordinary nodes andκ ordinary cusps, we have for
the degreed∨ of the dual curve

d∨ = d(d− 1)− 2δ − 3κ = 2d+ (d(d− 3)− 2δ − 2κ)− κ = 2d+ 2g − 2− κ.

In this cased∨ = r1, d = r0 andκ = k1, so the formulas agree.

Example10.4.6. If Rn is a rational normal curve inPn, then it has no hyperosculating
hyperplanes (since no hyperplane intersects it with multiplicity> n). Sorm = (m +
1)(n −m) = rn−m−1. Its dual curve is a rational normal curve in the dual space. Its
tangent surface is of degreer1 = 2(n − 1) and the(n − 1)-th osculating developable
is the discriminant hypersurface for binary forms of degreen. For example, forn = 3,
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the tangent surface ofR3 is a quartic surface with equationQ0Q1 + Q2
2 = 0, where

Q0, Q1, Q2 are some quadrics containingR3. To see this one considers a rational map
P3− → N∨ ∼= P2 defined by the netN of quadrics containingR3. After we blow-
upR3 we get a regular mapY → P2 which blows down the proper transform of the
tangent surface to a conic inP2. Its equation can be chosen in the formt0t1 + t22 = 0.
The preimage of this conic is the quartic surfaceQ0Q1 +Q2

2 = 0. It containsR3 as its
double curve. Also it is isomorphic to the discriminant hypersurface for binary forms
of degree 3.

Conversely, assume thatC has no hyperosculating hyperplanes. Then allki = 0,
and we get

n−1∑
m=0

(n−m)(rm−1−2rm+ rm+1) = −(n+1)r0 =
n−1∑
m=0

(2g−2) = n(n+1)(g−1).

(10.56)
This impliesg = 0 andr0 = n.

Example10.4.7. LetE be an elliptic curve embedded inPn by a complete linear sys-
tem|(n+1)x0|, wherex0 is a point onE. ThenE has(n+1)2 hyperosculating hyper-
planes corresponding ton+1-torsion divisorsd such that(n+1)d ∈ |(n+1)x0|. Thus
kn−1 = (n + 1)2. The second formula in Proposition10.4.8shows thatki = 0, i 6=
n − 1. Thus we obtainrm = (m + 1)(n + 1),m = 0, . . . , n − 1. For example, the
tangent surface of an elliptic quartic curve inP3 is of degree 8. Also, the dual ofE is a
curve of degreer2 = 12. It has16 singular points corresponding to 16 hyperosculating
planes.

Example10.4.8. AssumeC is a canonical curve inPg−1. Recall that aWeierstrass
point of a smooth curve of genusg > 1 is a pointx such that

W (x) =
g∑
i=1

(h0(x) + . . .+ h0(ix)− i) > 0.

Letai = h0(x)+. . .+h0(ix). We havea1 = 1 andai = i if and only ifh0(x) = . . . =
h0(ix) = 1. By Riemann-Roch, this is equivalent to thath0(KC − ix) = g − i, i.e.
the pointx imposes expected number of conditions for a hyperplane to have a contact
with C of orderi atx. A pointx is a Weierstrass point if and only if there existsi ≤ g
such that the number of such conditions is less than expected by the amount equal to
ai − i. With notation (10.55), this shows that

s1 + . . .+ si−1 = ai − i, i = 2, . . . , g.

In particular, the pointx is hyperosculating if and only if it is a Weierstrass point. We
have

W (x) =
g−1∑
i=1

(s1 + . . .+ si) =
g−1∑
i=1

(g − i− 1)si.

Applying the Pl̈ucker formulas withr0 = 2g− 2, n = g− 1 and computation from
(10.56), we obtain

−2g(g−1) =
g−1∑
m=0

(g−m−1)(rm−1−2rm+rm+1) =
g−1∑
m=0

(g−1−m)(2g−2−km)
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= (2g − 2)
g−1∑
m=0

(g − 1−m) +W (x).

This gives a formula forW =
∑
x∈CW (x)

W = g(g − 1)(g + 1). (10.57)

Sinceh0(2x) = 1 for all points onC (becauseC is not hyperelliptic), we getk1 = 0.
Applying Proposition6.38, we obtain that the rankr1 of C is equal to6(g − 1). If
g = 3, this agrees with the formula for the degree of the dual quartic. In this case the
tangent surface is the plane. Ifg = 4, we getr1 = 18. For a general curve of genus 4
all Weierstrass points are ordinary (i.e.W (x) = 1), hence we have 60 hyperosculating
planes at Weierstrass points. The linear system of cubics throughC defines a birational
map fromP3 to a cubic hypersurface inP4 with an ordinary double point. The image
of the tangent surface is the enveloping cone at the node, the intersection of the cubic
with its first polar with respect to the node. Its degree is equal to 6, so the tangent
surface is the proper inverse image of the cone under the rational map.

We refer for the proof of the following proposition to [312].

Proposition 10.4.10.Letf∨ : C → P̌n be the normalization of then−1-th associated
curve off : C → Pn, the dual curve off(C). Then

(i) rm(f∨(C)) = rn−m−1(f(C));

(ii) (f∨)∨ = f ;

(iii) ki(f∨) = ki(f).

Recall from Chapter 1 that the dual variety ofC0 is the closure iňPn of the set
of tangent hyperplanes to smooth points ofC0. If x0 = f(x) is a smooth point, the
set of tangent hyperplanes atx is a codimension 2 subspace of the dual space equal to
(n− 2)-th developable scroll of the dual curve. By the duality, we obtain that the dual
of the(n− 2)-th developable scroll of a curveC0 is the dual curve ofC0. In particular,
if n = 3, we obtain that the dual of the tangent surface to a nondegenerate curveC0

in P3 is the dual curve ofC0, and the dual of a nondegenerate curveC0 in P3 is the
tangent surface of its dual curve.

Proposition 10.4.11. Let S be a ruled surface inP3. The following properties are
equivalent:

(i) all tangent planes toS at smooth points of a fixed ruling coincide;

(ii) S is a tangent surface corresponding to some curveC0 lying onS;

(iii) the tangent lines of the curveC0 ⊂ G1(P3) parameterizing the rulings are con-
tained inG1(P3).

Proof. (i) ⇒ (ii). Consider the Gauss mapS → P̌3 which assigns to a smooth point
onS the tangent plane. Obviously, it blows down generators ofS, hence the image of
S is a curveČ0 in the dual space. This curve is the dual variety ofS. Its dual variety
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is our surfaceS, and hence coincides with the tangent surface of the dual curveC0 of
Č0.

(ii) ⇒ (iii) Let qC : ZC → C be the projection from the incidence variety and
D ∈ |OZC

(1)|. The tangent plane at points of a ruling`x cuts out the ruling with
multiplicity 2. Thus the linear system|D − 2`x)| is non-empty (as always we identify
a ruling with a fibre ofqC). The exact sequence

0→ OZC
(D − 2`x)→ OZC

(D − `x)→ O`x(D − `x)→ 0

shows thath0(Olx(D−`x)) = 1, i.e. |D−`x| has a base-pointy(x) on`x. This means
that all plane sections ofS containing̀ x have residual curves passing through the same
point y(x) on `x. Obviously, this implies that the pointy(x) is a singular point ofS
and the differential of the projectionpC : ZC → S at y(x) is not surjective. Applying
Proposition10.1.11, we obtain that the tangent lineTx(C) is contained in theα-plane
Ω(y(x)) ⊂ G1(P3).

(iii) ⇒ (i) Applying Proposition10.1.11, we obtain that each̀x has a pointy(x)
such that its image inS is a singular point and the differential ofpC at y(x) is not
surjective. This implies thaty(x) is a base point of the linear system|D − `x| on `x.
As above, this shows that|D−2`x| is not empty and hence there exists a plane tangent
to S at all points of the ruling̀x.

The set of pointsy(x) ∈ `x, x ∈ C is a curveC0 onS such that each ruling̀x is
tangent to a smooth point onC0. SoS is the tangent surface ofC0. The curveC0 is
called thecuspidal edgeof the tangent surface. It is a curve onS such that at its general
points the formal completion ofOS,s is isomorphic toC[[z1, z2, z3]]/(z2

1 + z3
2).

10.4.4 Quartic ruled surfaces inP3

Here we will discuss the classification of quartic ruled surfaces inP3 due to A. Cayley
and L. Cremona. Note that we have already classified ruled surfaces of degree 3 in
Chapter 9. They are non-normal cubic surfaces and there are two kinds of them. The
double curveΓ is a line and the mapD(f) → Γ is an irreducible (reducible) degree 2
cover. The surfaceZC is isomorphic toF1 = P(OP1 ⊕ OP1(−1)). The linear system
|H| which gives the mapf : F1 → P3 is equal to|E+2F |, whereE is the exceptional
section andF is a fibre. The curveD(f) ∈ |H − F | = |E + F |. In the first case the
surfaceS has ordinary singularities andD(f) is an irreducible curve. In the second
caseD(f) ∈ |H| and consists of the exceptional section and a fibre.

Now let us deal with quartic surfaces. We do not assume that the surface has only
ordinary singularities. We start with the following.

Proposition 10.4.12.The genus of a ruled quartic surface is equal to0 or 1.

Proof. A general plane sectionH of S is a plane quartic. Its geometric genusg is the
genus ofS. If g = 3, the curveH is nonsingular, henceS is normal and therefore
nonsingular. SinceKS = 0, it is not ruled. Ifg = 2, the singular curve ofS is a line.
The plane sections through the line define a pencil of cubic curves onS. Its preimage
on the normalizationX of S is a pencil of elliptic curves. SinceX is aP1-bundle over
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a curve of genus2, a general member of the pencil cannot map surjectively to the base.
This contradiction proves the assertion.

So we have two classes of quartic ruled surfaces: rational surfaces (g = 0) and
elliptic ruled surfaces(g = 1). Each surfaceS is defined by some curveC0 of degree 4
inG1(P3). We denote byX the minimal ruled surfaceP(E) obtained from the universal
family ZC0 by the base changeν : C → C0, whereν is the normalization map. We
will denote byE0 an exceptional section ofX defined by choosing a normalized vector
bundleE0 with P(E0) isomorphic toX.

We begin with classification of rational quartic ruled surfaces.

Proposition 10.4.13. A rational quartic ruled surface is a projection of a rational
normal scrollS1,5 or S2,5 of degree4 in P5.

Proof. It follows from (10.50) that the surfaceX = P(E) is isomorphic toFe, where
e = 0 or 2. In both cases the complete linear system|H| maps the surface to a surface
of degree4 in P5.

Let D(f) be the double-point class. We know that the singular curveΓ onS is the
image of a curveD(f) from D(f). Applying (10.47), this gives

D(f) ∼ 2H − 2F =

{
2E0 + 2F if X ∼= F0,

2E0 + 4F if X ∼= F2.

Since a general plane section ofS is a rational curve,D(f) andΓ consist of at most
three irreducible components. The linear system

|H| =

{
E0 + 2F if X ∼= F0,

E0 + 3F if X ∼= F2,

maps a componentDi of D(f) to an irreducible componentΓi of Γ of degreedi =
1
mi
H · Di, wheremi is the degree of the mapDi → Γi. The numbermi is equal to

the multiplicity of a general point onΓi as a singular point of the surface unlessΓi is
a curve of cusps. In the latter casemi = 1 butDi enters inD with multiplicity 2. A
fibre Fx = π−1(x) could be also a part ofD. In this caseΓ has a singular point at
ν(x). If it is an ordinary double point, the fibre component enters with multiplicity 1,
if it is a cusp, it enters with multiplicity 2. Other cases will not occur. Finally, we use
thatdim |H −Di| > 0 if Γi is contained in a plane, i.e. a line or a conic.

This gives us the following cases making a “rough classification” according to pos-
sible singular locus of the surface.

1. X ∼= F0 :

(i) D(f) = D1, d1 = 3;

(ii) D(f) = D1 +D2, D1 ∈ |E0|, D2 ∈ |E0 + 2F |, d1 = 1, d2 = 2;

(iii) D(f) = D1 +D2 + F1 + F2, D1, D2 ∈ |E0|, d1 = d2 = 1;

(iv) D(f) = 2D1, D1 ∈ |E0 + F |, d1 = 1;
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(iv)’ D(f) = 2D1, D1 ∈ |E0 + F |, d1 = 3;

(v) D(f) = 2D1 + 2F1, D1 ∈ |E0|, d1 = 1;

(vi) D(f) = 2D1 + F1 + F2, D1 ∈ |E0|, d1 = 2;

(vi)’ D(f) = 2D1 + 2F1, D1 ∈ |E0|, d1 = 2.

2. X ∼= F2 :

(i) D(f) = D1, d1 = 3;

(ii) D(f) = E0 +D1 + F,D1 ∈ |E0 + 3F |, d1 = 1, d2 = 2;

(iii) D(f) = 2E0 + 2F1 + 2F2, d1 = 1;

(iv) D(f) = 2D1, D1 ∈ |E0 + 2F |, d1 = 1.

Theorem 10.4.14.There are 12 different types of rational quartic ruled surfaces cor-
responding to 12 possible cases from above.

Proof. It suffices to realize all possible cases from above. We know that any quartic
ruled surface inP3 must be a projection of a rational normal scroll of degree 4 inP5. If
X = F0 it is the scrollS1,5 and, ifX = F2, it is the scrollS2,5. So the different types
must correspond to different choices of the center of the projection.

Let us introduce some special loci inP5 which will play a role for choosing the
center of the projection.

Let X = F0. We will identify curves onX with their images inS1,5. A conic
directrix is a curveE ∈ |E0|. Consider the union of planes spanning theE’s. It is a
scroll Σ1 of dimension 3 parameterized by|E0| ∼= P1. Let us compute its degree. Fix
two generators corresponding to fibresF1 andF2 of F0. Then|H − F1 − F2| = |E0|.
If we fix three pairs of generatorsF (i)

1 , F
(i)
2 , i = 1, 2, 3, each spanning aP3, then we

can establish a correspondenceΓ of tri-degree(1, 1, 1) on |E0| × |E0| × |E0| such
that the point(x, y, z) ∈ Γ corresponds to three hyperplanes from each linear system
|H − F

(i)
1 − F

(i)
2 | which cut out the same curveE ∈ |E0|. The three hyperplanes

intersect along the plane spanningE. This shows that our scroll is the join of three
disjoint lines in the dualP5 which can be identified with the sameP1. Applying formula
(10.44), we obtain that the degree ofΣ1 is equal to3.

The next scroll we consider is the unionΣ2 of 3-dimensional spaces spanned by
tangent planes ofS1,5 along points on a fixed generator. This 3-dimensional space is
spanned by the tangent lines of two fixed conic directrices at the points where they
intersect the generator. Thus our scroll is the join of the tangent scrolls of the two
directrices with respect to the correspondence between the directrices defined by the
generators. The degree of this scroll is given by the formula in Example10.4.3. Since
the tangent lines of a conic are parameterized by the conic, and the two conics are
disjoint, the degree ofΣ2 is equal to 4. Obviously,Σ1 is a2-directrix ofΣ2. Since the
tangent plane toS1,5 at a pointx is spanned by the generator passing through this point
and the tangent line of the conic directrix passing through this point, we obtain thatΣ2

coincides with the tangent scroll ofS1,5.
One more scroll we need is constructed as follows. Consider directrices ofS1,5

defined by the images of curvesΓ3 ∈ |E0 + F |. We identify them with the images.
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These are directrices of degree 3. LetΣ3 be the union of tangent planes toS1,5 at
the points ofΓ3. These tangent planes can be obtained as joins of tangent lines ofΓ3

at pointsx ∈ Γ3 and the pointsx′ on a conic directrixE such that the pointsx, x′

lie on the same generator. ThusΣ3 is obtained by construction from Example10.4.3
as the join of the tangent scroll ofΓ3 and the conic. The degree of the tangent scroll
has been computed there in and it is equal to 4. Thus the degree ofΣ3 is equal to
4 + 2 − 1 = 5, where we subtracted 1 because the conic andΓ3 meet at one point
dropping the dimension of the join by 1.

Let p` : S1,5 → S be the projection map from a linè. We will use that any two
pointsx1, x2 in the double locusD(f) which are projected to the same point must
lie on a secant ofD(f) passing through these points and intersecting`. The secant
becomes a tangent line ifx1 = x2 is a critical point ofp`.

• Type 1 (i).

Take a linè in P5 which intersects the quartic scrollΣ2 at four distinct points and is not
contained in any 3-dimensional space spanned by a cubic directrixΓ3 ∈ |E0 +F |. Let
D be an irreducible component ofD(f) andx be a general point ofD. We know from
the classification of all possible components ofD(f) that the degree of the projection
map must be 2 or 3. If the degree is equal to 3, thenD ∈ |E0 + F | is a cubic directrix
and its projection is a line. This implies that` belongs to the linear span ofD. By
assumption oǹ this does not happen. So the degree is equal to 2. The map which
assigns to a pointx ∈ D the intersection point of̀ and the secant passing throughx
is a degree 2 mapD → `. The intersection points of̀with Σ2 are the branch points
of this map. By Hurwitz’s formula, the normalization ofD is a genus 1 curve, hence
the arithmetic genus is≥ 1. The classification of possibleD’s shows that this could
happen only ifD is a nonsingular curve from|2E0 + 2F |. So this realizes Type 1(i).

The quartic scrollS can be described as follows. Consider a Veronese cubicR3 in
P3 and letS be the set of its secants contained in a non-special linear line complex. The
set of secants ofR3 is a surface inG = G1(P3) of degree 4 in its Plücker embedding.
This can be seen by computing its cohomology class inG. A generalα-planeΩ(p)
contains only one secant. A generalβ-planeΩ(Π) contains three secants. This shows
that the degree of the surface of secants is equal to 4. The surface must be a Veronese
surface inP5 because it does not contain lines. The intersection of the surface with a
general linear line complex is a curveC of degree 4. It defines a quartic ruled surface
SC . Take a pointp ∈ R3 and consider the set of secants`x, x ∈ C such thatp ∈ `x.
The intersection of the Schubert planeΩ(p,P3) with the Veronese surface is a conic.
Its intersection with the linear line complex must consist of 2 lines. Thus through each
point ofR3 passes two generators of the surfaceSC . The curveR3 is the double curve
of S.

• Type 1 (ii).

In this case we takè intersectingΣ1 at some pointx0 in the plane spanned by some
conic directrixE ∈ |E0|. The projection ofE is a line and the map is 2:1. Note that in
this case the pointx0 is contained in two tangents toE so two of the four intersection
points of` andΣ2 coincide. It also shows thatΣ1 is contained in the singular locus
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of Σ2. The remaining two points iǹ∩ Σ2 are the branch points of the double cover
E′ → `, whereE′ ∈ |E0 + 2F | is the residual component ofD(f). Arguing as above
we see that it is a smooth rational curve of degree 4. Its projection is a conic.

• Type 1 (iii).

This time we takè intersectingΣ1 at two pointsp1, p2. These points lie in planes
Π1 andΠ2 spanned by directrix conicsE1 andE2. The projection from̀ maps these
conics to disjoint double lines ofS. Let us now find two generatorsF1 andF2 which
are projected to the third double line. Consider the pencilPi of lines in the planeΠi

with base pointpi. By intersecting the lines of the pencil with the conicEi, we define
an involution onEi and hence an involutionγi on the pencil|F | ∼= P1 (interchanging
the generators intersectingEi at two points in the involution). Now we have two invo-
lutions on|F | whose graphs are curves of type(1, 1). They have two common pairs
in the involution which give us two generators onS1,5 intersectingEi at two points on
a line`i throughpi. The3-dimensional subspace spanned by`, `1 and`2 contains the
two generators. They are projected to a double line ofS.

• Type 1 (iv).

The image ofD1 on S1,5 is a rational normal cubicR3 spanning a3-planeM of P5.
We project from a general line in this subspace. The restriction of the projection toD1

is a degree 3 map. So the projection ofD1 is a triple line ofS.
Another possibility here is to project from a line directrix` of the tangent scroll

Σ3. Each point oǹ lies in a tangent plane to a cubic directrixΓ3 ∈ |E0 + F |. So
the projection from̀ mapsΓ3 to a rational curveR3 of degree 3 and maps the tangent
lines toΓ3 to tangent lines toR3. Thus the scrollS is a developable quartic surface
considered in Example10.4.6. Let us find a line directrix onΣ3. We know thatΣ3 is
equal to the image of a projective bundleP(E), whereE is a vector bundle overP1 of
rank 3 and degree5. Thusdeg E∨(1) = −5 + 3 = −2, and applying Riemann-Roch,
we obtainh0(E∨(1)) ≥ deg E∨(1) + 3 > 0. This implies that there is a non-trivial
map of sheavesE → OP1(1). Let L be the image of this map. It defines a section
σ : P1 → P(E) such thatσ∗(OP(E)(1)) ∼= L. Thus the restriction ofOP(E)(1) to
D = σ(P1) is of degree≤ 1. SinceΣ3 is a scroll in our definition, the sheafOP(E)(1)
is ample, hence the degree must be equal to 1. So, the image ofD in Σ3 is a line
directrix.

• Type 1 (v).

This is a degeneration of the previous case. The rational normal cubic degenerates into
the union of a directrix conic and a generator. The projection is a degree 2 map on the
conic and degree 1 on the line. The double curveΓ is a triple line. It is a generator
and a directrix at the same time. Through each point onΓ passes two generators other
than itself. As in the previous case a plane containingΓ contains only one of other
generators.

• Type 1 (vi).
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Consider a hyperplane sectionL ∩ Σ1, whereL contains two generatorsF1 andF2 of
S1,5. The quartic curveL ∩ S1,5 consists of the two generators and a directrix conicD
from |E0|. Thus the cubic surfaceL ∩ Σ1 contains a plane, and the residual surface is
a quadricQ containingD. Take a linè in the 3-dimensional subspaceM spanned by
F1 andF2 which is tangent to the quadricM ∩ Q. The projection from̀ mapsS1,5

to a quartic ruled surface with double line equal to the image of the two generatorsF1

andF2 and the cuspidal conic equal to the image of the directrix conicD.

• Type 1 (vi)’.

The same as in the previous case but we chooseL to be tangent along a generatorF1.
The double locus is a reducible cuspidal cubic.

• Type 2 (i).

Type 2 corresponds to projection of the rational normal quartic scrollS2,5
∼= F2 in

P5. The exceptional sectionE0 is a line directrix onS2,5. The curves from the linear
system|E0 + 2F | are cubic directrices. The analog of the tangent scrollΣ2 here is the
join Σ′2 of the tangent surface of a cubic directrixD with the lineE0. It is the union of
3-dimensional spaces spanned by a tangent line toD andE0. We know that the degree
of the tangent scroll of rational normal cubic is of degree 4. Thus the degree ofΣ′2 is
equal to 4. The rest of the argument is the same as in case 1 (i). We take` intersecting
Σ′2 at 4 distinct points and not contained in a 3-space spanned by a cubic directrix. The
double curve is a smooth elliptic curve of degree 6 from|2E0 + 4F |.

• Type 2 (ii).

This time we takè intersecting the planeΠ spanned byE0 and a generatorF . We
also do not take it in any 3-plane spanned by a cubic directrix. ThenE0 andF will
project to the same line onF , double line. The residual part of the double locus must
be a curveE from |E0 +3F |. Since no cubic directrix is a part of the double locus, we
see thatE is an irreducible quartic curve. Its image is a double conic onF .

• Type 2 (iii).

We choose a linè intersecting two planes as in the previous case. Since the two planes
have a common lineE0, they span a 3-dimensional subspace. It contains 3 lines which
are projected to the same line onF , a triple line ofF .

• Type 2 (iv).

Take a cubic curve from|E0 + 2F | and a line in the 3-dimensional space spanned by
the cubic. The cubic is projected to a triple line.

Remark10.4.2. We have seen that a developable quartic surface occurs in case 1 (iv).
Let us see that this is the only case when it may occur.
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The vector bundle of principal partsP1
C(L) must be given by an extension

0→ Ω1
C ⊗ L → P1

C(L)→ L → 0, (10.58)

whereC is a rational cubic inP3 andL = OC(1) ∼= OP1(3). It is known that the
extension

0→ Ω1
C → P1

C → OC → 0,

from which the previous extension is obtained by twisting withL, does not split. Its
extension class is defined by a non-zero element in Ext1(OC ,Ω1

C) ∼= H1(C,Ω1
C) ∼= C

(this is the first Chern class of the sheafOP1(1)). After tensoring (10.58) withOP1(−2)
we get an extension

0→ OP1(−1)→ P1
P1(L)(−2)→ OP1(1)→ 0.

The locally free sheafE = P1
C(L)(−2) has 2-dimensional space of globals sections.

Tensoring withOP1(−1)) and using that the coboundary homomorphism

H0(P1,OP1)→ H1(P1,OP1(−2))

is non-trivial, we obtain thatE(−1) has no non-zero sections, henceE is a normalized
vector bundle of degree 0 defining the ruled surfaceP(E). There is only one such
bundle overP1, the trivial bundleOP1 ⊕ OP1 . UntwistingE , we obtain that the sheaf
P1
R(L) is isomorphic toOP1(2)⊕OP1(2), soP(P1

R(L)) ∼= F0 and the complete linear
system defined by the tautological invertible sheaf corresponding toP1

R(L) embedsF0

in P5 as the rational normal scrollS1,5. The divisorD(f) must be divisible by 2 and
the only case when it happens is case 1 (iv)’.

We can also distinguish the previous cases by a possible embedding of the quartic
curveC0 parameterizing generators ofS in G = G1(P3). SincedegC0 = 4 in the
Plücker embedding, the curve is always contained in a hyperplaneL on P5. If further-
more,C0 lies in a codimension 2 subspace, then this subspace is either contained in
one tangent hyperplane ofG or is equal to the intersection of two tangent hyperplanes
(because the dual variety ofG is a quadric). So we have the following possibilities:

I C0 is a rational normal quartic contained in a hyperplaneL which is not tangent
toG;

II C0 is a rational normal quartic contained in a hyperplaneL which is tangent to
G at a pointO not contained inC0;

III C0 is a rational normal quartic contained in a hyperplaneL which is tangent to
G at a pointO contained inC0;

IV C0 is a rational quartic curve contained in the intersection of two different tan-
gent hyperplanes ofG;

V C0 is a rational quartic curve contained in a 3-dimensional subspace through
which passes only one tangent hyperplane ofG1(P3). The tangency point is an
ordinary node ofC0.
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A quartic surface of type 1 (i) or 1 (iv)’ from Theorem10.4.14belongs to type I.
Following W. Edge [150] we re-denote types 1 (i) and 1 (iv)’ with I.

In type 1 (ii) the line component of the double curve is a directrix, so all generators
belong to a line complex tangent toG1(P3) at the pointO representing this directrix.
This is Edge’s type II. Through any pointp on the directrix passes two generators, the
pointO belongs to a secant ofC0 formed by the lineΩ(p,Π), whereΠ is the plane
spanned by the two generators. It is a nonsingular point ofC0. We have Edge’s type II
(C).

In case 1(iii) we have two directrices which are not generators. This means thatC is
contained in the intersection of two special linear complexes tangent toG1(P3) at two
points. This is type IV (B). The tangency points correspond to the line directrices onS.
The curveC0 is contained in the intersection of two special linear complexes which is
a nonsingular quadric. The curveC0 has an ordinary node at the point corresponding
to two generators mapped to a double line onF .

In case 1 (iv), the triple line is a directrix ofS, so we are again in case II but in this
case the pointO intersects theα-planeΩ(p) at three non-collinear points and intersects
theβ-planeΩ(Π) at one point. This is Edge’s type II (A).

In case 1 (v) the double curve is a triple line. One of the generatorsF is contained
in D(f) with multiplicity 2 and is mapped to the triple line. ThusS is contained in a
unique special line complex which is tangent toG at a cusp ofC0. SinceC0 is singular,
it is contained in a 3-dimensional space. SoC is contained in a quadric cone equal to
the intersection ofG1(P3) with two line complexes. The singular point of this cone is
the singular point ofC0. This is Edge’s Type III (A).

In case 1 (vi) two generators onS1,5 are projected to a double generator ofS. The
curveC0 has an ordinary double point, hence it lies in two line complexes. The double
generator is the only line directrix onS. Thus there is only one special line complex
containingS and its tangency point is an ordinary double point ofC0. This is Edge’s
Type V (A). In case 1 (vi)’, we also have Type V (A), only this time the singular point
of C0 is a cusp.

In case 2 (i) the line directrix̀ corresponding toE0 defines a line complex con-
tainingC. Thus we are in case II. The Schubert planeΩ(p,P3), p ∈ `, contains only
one point, theα-planeΩ(π), ` ⊂ π, contains three points. This is Edge’s type II (B).

In case 2 (ii) we have a line directrix which is at the same time is a generatorg .
This shows that we are in case III. The curveC has a cuspidal singularity at the point
O corresponding to the generatorg. The curveC intersects any planeΩ(p,P3), p ∈ g,
in one point and every planeΩ(π,P3), g ⊂ π, at two points. This is Edge’s type III
(B).

In case 2 (iii) we have a triple line onS formed by the projection of the line directrix
E0 of S2,5 and its two generators. We are in case V, where the singular point ofC is
the singular point of the quadric cone. This is Edge’s type V (B).

In case 2 (iv) we have a triple line projected from a rational cubic curve. We have
two line directrices ofS, one is a triple line. The curveC is nonsingular. This is type
IV (A) of Edge.

Finally, we have to classify elliptic ruled quartic surfaces inP3. Let π : X → C
be a minimal ruled surface with a baseC. We writeX in the formX = P(E0), where
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E0 is a normalized rank 2 locally free sheaf. SinceKC = 0 in our case, the canonical
class formula (10.8) gives

KX = −2E0 + π∗(e), (10.59)

wheree = −deg e ≥ 0.
Let |H| be a linear system onX which defines the normalization mapf : X → S.

We can writeH ≡ E0 +mF . SinceH is ample, intersecting both sides withE0, we
getm > e. We also haveH2 = 2m−e = 4. This gives two possibilitiese = 0,m = 2
ande = 2 andm = 3. In the second caseH · E0 = 1, hence|H| has a fixed point on
E0. This case is not realized (it leads to the case whenS is a cubic cone). The formula
for the double-point locus givesD(f) ≡ 2H − π∗(d), whered = deg d = 4. Thus we
obtain

H ≡ E0 + 2F,E2
0 = 0, D(f) ≡ 2E0.

By Riemann-Roch,dim |H| = 3. Sincedim |H−E0| = dim |2F | = 1, we obtain that
the image ofE0 is a line. Since the restriction of|H| toE0 is a linear series of degree
2, the image ofE0 is a double line. We have two possibilities:D(f) consists of two
curvesE0 +E′0 orD(f) is an irreducible curveD withH ·D = 4. Since|H−D| = ∅,
we obtain that the image ofD is a space quartic, so it cannot be the double locus. This
leaves us with two possible casesD(f) is the union of two disjoint curvesE0 +E′0 or
D(f) = 2E0.

In the first caseH · E0 = H · E′0 = 2 anddim |H − E0| = dim |H − E′0| =
dim |2F | = 1. This shows that the images ofE0 andE′0 are two skew double lines
onS. The curveC is a nonsingular elliptic curve inG1(P3). It spans a 3-dimensional
subspace equal to the intersection of two special line complexes.

SinceX = P(E) has two disjoint sections with self-intersection0, the sheafE splits
into the direct sumL1⊕L2 of invertible sheaves of degree0. This easily follows from
[206], Chapter V, Proposition 2.9. One of them must have a nonzero section, i.e. must
be isomorphic toOC . So we obtain

X ∼= P(OC ⊕OC(a)),

wheredeg a = 0. Note thatX cannot be the direct productC × P1 because in this
case the image of anyC × {x} must be a double line, in other words, in this case|H|
defines a degree 2 map. So, we havea � 0.

In the second case two double lines come together forming the curve of tacnodes.
In this case the curveC lies only in one special linear line complex. The pencil of
hyperplanes containingC intersects the dual Klein quadric at one point.

Let σ : E → OC(e) be the surjective map of sheaves corresponding to the section
E0. Sincedeg E = deg e = 0, we havedeg ker(σ) = 0. ThusE can be given as an
extension of invertible sheaves

0→ OC(b)→ E → OC(e)→ 0,

wheredeg b = 0. Suppose this extension splits, thenX has two disjoint sections with
self-intersection zero. By the above, we see that the map defined by the linear system
|H|maps each section to a double line ofS. This leads to the first case. So in our case,
there are no disjoint sections, and hence the extension does not split. This implies that
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Ext1(OC(e),OC(b)) = H1(C,OC(e − b)) 6= {0}. This is possible only ifb ∼ e.
SinceE has a non-zero section, we also haveH0(C,OC(e)) 6= {0}, i.e. e ∼ 0. Thus
we obtain thatE is given by a non-split extension

0→ OC → E → OC → 0.

In fact, it is known that any elliptic ruled surface withe = 0 which corresponds to
a non-split vector bundle, must be isomorphic to the ruled surfaceP(E), whereE is
defined by the above extension (see [206], Chapter V, Theorem 2.15).

Let us summarize our classification with Table10.1.

Type Double cuve Edge Cremona Cayley Sturm
I (i),(iv)’ R3 I 1 10 III

I (ii) L+K II (C) 2 7 V
I (iii) L+L’+G IV (B) 5 2 VII
I (v) 3L II (A) 8 9 IX
I (iv) 3L III (A) 3 - XI

I (vi),(vi)’ 2L+G V (A) 6 5 VIII

II (i) R3 II (B) 7 8 IV
II (ii) L+K III (B) 4 - VI

II (iii) 3L V (B) 10 6 XII
II (iv) 3L IV (A) 9 3 X

g = 1 L+L’ VI(A) 11 1 I
g = 1 2L VI(B) 12 4 II

Table 10.1: Quartic ruled surfaces

HereR3 denotes a curve of degree 3,L denotes a line,K is a conic andG is a
generator.

A finer classification of quartic ruled surfaces requires to describe the projective
equivalence classes. We refer to [323] for a modern work on this. Here we only explain,
following [35], the fine classification assuming that the double curve is a Veronese
cubicR3. First, by projective transformation we can fixR3 which will leave us only
with 3-dimensional subgroupG of PGL(4) leavingR3 invariant. It is isomorphic to
PSL2.

Let N be the net of quadrics inP3 that containsR3. It defines rational map
α : P3− → N∨. The preimage of a points in N∨, i.e. a pencil inN , is the base
locus of the pencil. It consists of the curveR3 plus a line intersectingR3 at two points.
This makes an identification between points inN∨ ∼= P2 and secants ofR3. The
preimage of a conicK in N∨ is a quartic surface which is the union of secants ofR3.
It is a quartic ruled surface. Conversely, every quartic ruled surfaceS containingR3 as
its double curve is obtained in this way. In fact, we know thatS is the union of secants
of R3 and hence the linear system of quadrics containingR3 should blow down each
secant to a point inN∨. The preimage of a general line in the plane is a quadric that
cuts out onS a curve of degree8 that consists of the curveR3 taken with multiplicity
2 and two lines. This shows that the image ofS is a conic. Thus we find a bijection
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between quartic surfaces with double curveR3 and conic in the plane. The groupG
is naturally isomorphic to the group of projective transformations ofN∨. It is well-
known that the projective representation of PSL2 in P2 leaves a nonsingular conicK0

invariant. The quartic surface corresponding toK0 is the only quartic surface invariant
underG. This is of course the developable quartic ruled surface (see Example10.4.6).
In this way our classification is reduced to the classification of orbits in the space of
nonsingular conicsP5 under the action of the group PSL2 of projective automorphisms
leavingK0 invariant. The orbit space is of dimension2. Let K be a conic different
fromK0. There are 5 possible cases for the intersectionK ∩K0: 4 distinct points, one
double coincidence, two double coincidences, one triple coincidence and one quartu-
ple coincidence. Together withK0 it gives 6 different types. The first type has two
parameters, the cross ratio of 4 points and a point in the pencil of conics with the same
cross ratio. The second type is a one-parameter family. All other types have finitely
many orbits. We refer to [323] and [35] for explicit equations.

There are many direct geometric constructions of quartic ruled surfaces. The first
historical one uses Cayley’s construction of a ruled surface as the union of lines inter-
secting three space curves (see Example10.4.5). For example, taking(d1, d2, d3) =
(2, 2, 1) and(a12, a13, a23) = (2, 0, 1) gives a quartic ruled surface with a double conic
and a double line which intersect at one point. Another construction is due to L. Cre-
mona. It is a special case of the construction from Example10.4.3, where we take
the curvesC1 andC2 of degree 2. If the two conics are disjoint, a correspondence of
bidegree(1, 1) gives a quartic ruled surface. We can also take two conics intersecting
at 2 points and a correspondence of the next section we will discuss a more general
construction due to B. Wong [427].

Finally, we reproduce equations of quartic ruled surfaces (see [150], p. 69).

I : Q(xz − y2, xw − yz, yw − z2) = 0,

whereQ =
∑

1≤i≤j≤3

aijTiTj is a nondegenerate quadratic form;

II(A) : zy2(ay + bx) + wx2(cy + dx)− ex2y2 = 0;
II(B) : same as in (I) witha2

22 + a22a13 − 4a12a23 + a11a33 = 0;
II(C) : (cyz + bxz + axy + zw − wx)2 − xz(ax− by + cz)2 = 0;
III(A) : ax2y2 − (x+ y)(x2w + y2z) = 0;
III(B) : (xw + yz + azw)2 − zw(x+ y)2 = 0;
IV (A) : x(az + bw)w2 − y(cz + dw)z2 = 0;
IV (B) : y2z2 + axyzw + w2(bz + cx)x = 0,

(yz − xy + awx)2 − xz(x− z + bw)2 = 0;
V (A) : : (yz − xy + axw)2 − xz(x− z)2 = 0;
V (B) : (az2 + bzw + cw2)(yz − xw)− z2w2 = 0;
V I(A) : ax2w2 + xy(bz2 + czw + dw2) + ey2z2 = 0;
V I(B) : (xw − yz)2 + (ax2 + bxy + cy2)(xw − yz) +

(dx3 + ex2y + fxy2 + gy3)x = 0.
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10.4.5 Ruled surfaces inP3 and tetrahedral line complexes

Fix a pencilQ of quadrics inP3 with nonsingular base curve. The pencil contains
exactly four singular quadrics of corank 1. We can fix coordinate systems to transform
the equations of the quadrics to the diagonal forms

3∑
i=0

aiti = 0,
3∑
i=0

biti = 0.

The singular points of four singular quadrics in the pencil are the reference points
A1 = [1, 0, 0, 0], A2 = [0, 1, 0, 0], A3 = [0, 0, 1, 0], A4 = [0, 0, 0, 1]. For any point
not equal to one of these points the intersection of polar planesPx(Q), Q ∈ Q, is a
line in P3. This defines a rational mapT : P3− → G1(P3) ⊂ P5 whose image is
a tetrahedral line complex (see the end of section10.3.5). In coordinates, the Plücker
coordinatespij of the lineT ([x0, x1, x2, x3]) are given by

pij = (aibj − ajbi)xixj .

For any space curveC of degreem not passing through the pointsA1, . . . , A4, its
image under the mapT is a curve of degreed = 2m in the tetrahedral complex. It
defines a ruled surface inP3 of degree2d, the union of linesT (x), x ∈ C. If we
consider the graphGT ⊂ P3 × G1(P3) of T , its projection toG1(P3) is the universal
family ZC . Its projection toP3 is our ruled surface.

LetΠ be a plane inP3 not containing the pointsAi. For anyQ ∈ Q, the intersection
of polarsPx(Q), x ∈ Π, is a point inP3. VaryingQ in the pencil we get a cubic curve.
Explicitly, if we choose three non-collinear points[y(j)

0 , y
(j)
1 , y

(j)
2 ], j = 1, 2, 3, in the

planeΠ, the cubic curve is the image of the mapQ → P3 given by the solution line of
the system of linear equations

3∑
i=0

(u0ai + u1bi)y
(j)
i ti = 0, j = 1, 2, 3.

In coordinate-free approach, we letQ = |U |, Π = |W | andP3 = |V | for some linear
spaces, then the polar map defines a bilinear mapP : W ⊗ U → V ∨, or, equivalently,
a linear map

U → Hom(W,V ∨). (10.60)

Choose a volume form onV to identify
∧3

V ∨ with V and a volume form onW to
identify

∧3
W with C. The composition of the previous map with the map

Hom(W,V ∨)→
3∧

Hom(W,V ∨) = Hom(
3∧
W,

3∧
V ∨) ∼= V

is a mapU → V given by polynomials of degree 3, the corresponding map of projective
spaces does not depend on the choice of volume forms, and defines a map of degree3

fΠ : Q = |U | → P3 = |V |. (10.61)
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Its image is a cubic curveR3(Π) in P3. Each line` in Π defines a ruled surface of
degree2, i.e. a quadric, which must containR3(Π). So one can identify the net of
quadrics containingR3(Π) with the dual planeΠ∗. More generally, the ruled surface
S corresponding to any curveC of degreem in Π is a surface of degree2m containing
R3(Π). Consider a pointx ∈ Π as the intersection of two lines inΠ. Then the lineT (x)
is contained in the intersection of the two quadrics corresponding to the lines, hence
it is a secant of the curveR3(Π). Thus we obtain that generators ofS are secants of
R3(Π). If m = 2, this gives thatT (C) is the intersection of a Veronese surface by a
linear line complex, a general choice ofΠ gives us quartic surfaces of type I (i).

Take a line` in Π. It defines a quadric containingR3(Π) It comes with a ruling
on the quadrics whose generators are secants ofR3(Π). The set of lines inΠ which
parametrizes singular quadrics containingR3(Π) is a conic inΠ∨. The dual conicK0

in Π parametrizes pencil of quadrics containingR3(Π) with residual line tangent to
R3(Π). The corresponding ruled quartic surface is the developable quartic surface, a
special case of type I (iii).

Take again a linè on Π. Recall that it corresponds to a quadricQ` containing
R3(Π). The points on the line are pencils of quadrics containingQ`. If ` is tangent to
K0, then the tangency point is a pencil of quadrics which all tangent toR3(Π) at one
point. The point is the singular point of a unique singular quadric in the pencil.

The linesT (x), x ∈ `, are generators of the quadricQ` which intersectR3(Π)
at two points. If` is tangent toK0 thenQ` is a singular quadric and all the lines
T (x), x ∈ `, pass through the singular point ofQ`. The curveR3(Π) also passes
through this point. In this case, the line` intersects a curveC of degreem in Π
atm-points different fromK0, all the generators ofS corresponding to these points
must pass through one point onR3(Π). The converse is also true, if the generators
T (x), x ∈ C, all pass through the same point onR3(Π), then these points lie on a
line tangent toK0. Thus we obtain thatR3(Π) ism-multiple curve onS. This agrees
with case1(i) of quartic ruled surfaces. Also note thatC intersects atK0 at2m points
corresponding to generators tangent toR3(Π). If m = 2, we get four torsal generators.

Now let us see what happens if we choose special planeΠ. For example, let us take
Π passing through one of the pointsA1, . . . , A4, sayA1. Then the mapfΠ defined in
(10.61) is not anymore of degree 3. Under the map (10.60), the quadricQ which has
A1 as its singular point is mapped to a linear mapW → V ∨ of rank 2. Composing
with the determinant map, it goes to zero. Thus the map (10.61) has a base point atQ,
and hence extends to a map of degree 2. Thus the cubicR3(Π) degenerates to a conic
R2(Π). The lines inΠ correspond to quadrics containing the conicR2(Π) and some
line intersecting the conic. This is a degeneration of the singular curve to the union of
a conic and a line.

Finally, let us see how elliptic quartic surfaces arise. TakeΠ passing through the
pointsA1 andA2. Take a nonsingular cubicC in the plane which passes throughA1

andA2. The linear system of quadrics defining the rational mapT has two of its base
points onC. Thus its image inG1(P3) is a quartic elliptic curve. We see that a ruled
surface o degree 6 which corresponds to a general cubic degenerates in this case to the
union of a quartic surface and two planes (the images of the blow-ups ofA1 andA2).
The cubicR3(Π) degenerates to a line, one of the two double lines ofS. A quadric
corresponding to a line throughA1 or A2 degenerates to a plane with a choice of a
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pencil of lines in it. This plane does not depend on the line, only the pencil of lines
in the plane does. The line passing throughA1 andA2 is blown down underT to a
point inG1(P3) defining the second double line ofS. This is the intersection line of
the planes corresponding toA1 andA2.

Exercises

10.1Let Pn ⊂ C[t] be the space of polynomials of degree≤ n. Let f0, . . . , fm be a basis of a
subspaceL of Pn of dimensionm+ 1. Consider theWronskianof the set(f0, . . . , fm)

W (f0, . . . , fm) = det

0BBBB@
f0 f1 . . . fm

f ′0(t) f ′1(t) . . . f
′
m(t)

...
...

...
...

f
(m)
0 (t) f

(m)
1 (t) . . . f

(m)
m (t)

1CCCCA .

Show that the map

G(m+ 1, n+ 1) → P(m+1)(n−m), L 7→ [W ((f0, . . . , fm)]

is well defined and is a finite map of degree equal to the degree of the Grassmannian in its Plücker
embedding.

10.2Show that anỳ n
2

´
− 1 lines inG(2, n) lie in a linear line complex. Using this, prove that

one can choose coordinates inPn−1 so that any linear line complex can be given by Plücker
equationsp12 + λp34 = 0, whereλ = 0 if and only if the complex is special.

10.3Show that the tangent lines of any smooth curve of genusg and degreed in Pn−1 is con-
tained in a linear complex if2(d+ g − 1) <

`
n
2

´
.

10.4Show that any lineark-planeΛ ofGr(Pn) coincides with the locus ofm-planes containing
a fixed(m − 1)-plane and contained in a fixed(m + k)-plane or with the locus ofm-planes
contained in a fixed(k+1)-plane and containing a fixed(k−m)-plane. Identify these loci with
appropriate Schubert varieties.

10.5Using the previous exercise, show that any automorphism ofG(m,n) arises from a unique
projective automorphism ofPn−1 unlessn = 2m in which case PGL(n) is isomorphic to a
subgroup of index 2 of Aut(Gr(Pn−1)).

10.6How many lines intersect a set ofm generalk-planes inPn?

10.7Show that Seck(G(2, n)) is equal to the set of singular points of Seck+1(G(d, n)) for all
k = 0, . . . , [n−4

2
]. If n = 2m show thatG(2, n) is the locus of(m − 1)-fold points of the

pfaffian hypersurface of degreem.

10.8 Using the Schubert calculus prove that the projective plane embedded inG(2, n) as the
surface of secants of a Veronese curve of degreed in Pd has degree2d−1 and is isomorphic to a
Veronese surface in its linear span.

10.9Show that tangent lines of a nonsingular quadric inP3 belong to a quadratic line complex.

10.10LetQ1andQ2 be two nonsingular quadrics inP3 with a choice of a ruling of lines on each
of them. Any general linè intersectsQ1 ∪Q2 at four lines, two from each ruling. Together with
`, these lines span four planes in the pencil of planes through`. Show that the closure of the
locus of lines̀ such that the four planes is projective equivalent to the four intersection points
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of ` with Q1 andQ2 form a Battaglini line complex. Also show that any general Battaglini line
complex can be obtained in this way [379].

10.11Show that the linear system of quadrics inP4 passing through a Veronese curveΓ of degree
4 defines a rational mapsΦ : P4− → P5 whose image is nonsingular quadric inP5 identified
with G(2, 4). Show that:

(i) the secant varietyS1(Γ) is mapped to a Veronese surface;

(ii) the mapΦ extends to a regular map of the blow-up ofP4 alongΓ which maps the ex-
ceptional divisor to a ruled hypersurface of degree6 which is singular along the Veronese
surface;

(iii) the image of a hyperplane inP4 is a tetrahedral complex of lines;

(iv) the image of a plane inP4 not intersectingΓ is a Veronese surface;

(v) the image of a trisecant plane ofΓ is a plane inG(2, 4). Show that planes from other
family are the images of a cubic ruled surface singular alongΓ.

10.12Show that four general lines inP4 determine the unique fifth one such that the correspond-
ing points inG(2, 5) ⊂ P9 lie in the same three-dimensional subspace. Any plane which meets
four lines meets the fifth line.

10.13Show that two linear complexesXω andXω′ in G1(P3) are apolar to each other if and
only if iω(Xω′) = Xω.

10.14Show that a general web of linear complexes inG(2, 5) contains five special complexes.

10.15Show that the projection of a tetrahedral quadratic from its nonsingular point is isomorphic
to the Segre cubic primal .

10.16Show that the projection of the Segre cubic primal from its nonsingular point is a double
cover with branch locus isomorphic to a Kummer surface.

10.17Show that a general5-plane inP9 intersectsG(2, 5) along a quintic Del Pezzo surface

10.18Show that tangent lines to a nonsingular quadric inP3 form a quadratic complex. If the
quadric has equation

P
ait

2
i = 0, then the equation of the complex is

P
0≤i<j≤3 aiajp

2
ij = 0.

Show that the singular surface of the complex is equal to the quadric taken with multiplicity 2.

10.19LetN be a general 2-dimensional linear system of quadrics inP3. Show that the set of lines
contained on a quadric fromN is parameterized by a cubic line complex (called aMontesano
complex) [285].

10.20Consider a smooth curveC of degreed and genusg in P3 and choose two general lines`
and`′. Find the degree of the scroll of lines that intersectC, ` and`′.

10.21Let F be a surface of degree 6 inP3 which has the edges of the coordinate tetrahedron as
its double lines. Find an equation ofF and show that its normalization is an Enriques surface.

10.22Show that the Hessian of a developable quartic ruled surface is equal to the surface itself
taken with multiplicity 2. The Steinerian in this case is the whole space [420].

10.23Show that a generator intersecting the double curve of a ruled surface at a pinch point is a
torsal generator.

10.24Classify all ruled surfaces inP3 which have two line directrices.

10.25For each type of a quartic ruled surface find the type of its dual quartic ruled surface.

10.26Find projective equivalence classes of quartic ruled surfaces with a triple line.
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Historical Notes

The main sources for these notes are [268], [271], [380], [308], and [432]. Line Ge-
ometry originates from J. Plücker who was the first to consider lines in the 3-space as
elements of a new four-dimensional space. These ideas had appeared first in [316] and
the details were published much later in [318]. The study of lines inP3 was very much
motivated by mechanics and optics. An early differential geometrical treatment of line
geometry can be found in works of E. Kummer [261] and [262]. The six Pl̈ucker co-
ordinatespij of a line were first introduced by H. Grassmann in 1844 [193] in a rather
obscure notation. Unaware of the work of Grassmann, in 1859 A. Cayley introduces
the coordinates in its modern form as six determinants of a2 × 4-matrix and exhibits
the quadric equation satisfied by the coordinates [54]. In the subsequent paper, under
the same title, he introduced, what is now called, the Chow form of a space curve. The
notions of a linear complex of lines and a congruence of lines (the intersection of two
linear complexes) are due to Plücker and the first proofs of some of his results were
given by G. Battaglini [20]. Among other earlier contributers to theory of general line
complexes we cite M. Pash [309].

Plücker began the study of quadratic line complexes by introducing its singular
quartic surface with 16 nodes. Although in a special case, many Plı̈cker’s results about
quadratic complexes were independently obtained by Battaglini. In his dissertation and
later published paper [247], Klein introduced the coordinate system determined by six
mutually apolar linear complexes and showed that the singular surface can be identified
with a Kummer surface. The notion of the singular surface of a quadratic complex is
due to Klein. We refer to [224] and [235] for the history of Kummer surfaces and their
relationship with Line Geometry.

Plücker defined a linear complex as we understand it now, i.e. as a set of lines
whose coordinates satisfy a linear equation. The set of lines in a linear complex passing
through a pointx lie in a planeΠ(x), this defines a linear correlation from the space to
the dual space. The correlations arising in this way satisfy the propertyx ∈ Π(x). They
were first considered by Giorgini [185] and Möbius [284] and were called Nullsystems
by von Staudt ([392], p. 191). The notions of a null-line and a null-plane belong to
Möbius. Chasles’ Theorem10.2.8gives a purely geometric definition of a Nullsystem
[66]. Linear systems of linear complexes were extensively studied in Sturm’s book
[401].

In 1868, in his Inauguraldissertation at Bonn published later in [247], [250], F.
Klein pointed out that Weierstrass’s theory of canonical forms for a pair of quadratic
forms can be successfully used for the classification of quadratic complexes. This was
accomplished later by A. Weiler (see also [419], [378]). The classification consists
of 49 different types of complexes corresponding to different Segre symbols of the
pencil of quadrics. As we have already noticed earlier, the Segre symbol was first
introduced by A. Weiler [425] and Segre acknowledges this himself in [378]. In each
case the singular surface is described. For example some of ruled quartic surfaces can
be obtained as singular surfaces of a degenerate quadratic complex. A full account
of the classification and the table can be found in Jessop’s book [235]. Many special
quadratic complexes were introduced earlier by purely geometric means. Among them
are the tetrahedral complexes and Battaglini’s harmonic complexes [21] considered in
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the present chapter. A complete historical account of tetrahedral complexes can be
found in Lie’s book [268]. Its general theory is attributed to T. Reye [330] and even
they are often called Reye complexes. However, in different disguises, tetrahedral
complexes appear in much earlier works, for example, as the locus of normals to two
confocal surfaces of degree 2 [29] (see a modern exposition in [385], p. 376), or as the
locus of lines spanned by an argument and the value of a projective transformation [68],
or as the locus of secants of twisted cubics passing through the vertices of a tetrahedron
[292]. We refer to [345] and [207] for the role of tetrahedral complexes in Lie’s theory
of differential equations and transformation groups.

The modern multi-linear algebra originates in Grassmann’s work [192], [193]. We
refer to [36] for the history of multi-linear algebra. The editorial notes for the English
translation of [193] are very helpful to understand Grassmann’s work. As a part of
Grassmann’s theory, a linear k-dimensional subspace of a linear space of dimension
n corresponds to a decomposablek-vector. Its coordinates can be taken as the coor-
dinates of the linear subspace and of the associated projective subspace ofPn−1. In
this way Grassmann was the first to give a higher-dimensional generalization of the
Cayley-Pl̈ucker coordinates of lines inP3. The equations (10.1) of Grassmann vari-
eties could not be found in his book. The fact that any relation between the Plücker
coordinates follow from these relations was first proven by G. Antonelli [8] and much
later by W. Young [428]. In [365] and [366] H. Schubert defines, what we now call,
Schubert varieties, computes their dimensions and degrees in the Plücker embedding.
In particular, he finds the formula for the degree of a Grassmann variety. A modern
account of Schubert’s theory can be found in Hodge-Pedoe’s book [218], v. II and
Fulton’s book [173].

The study of linear complexes in arbitrary[n] (the classical notation[n] for Pn
was introduced by Schubert in [365]) was initiated in the work of S. Kantor [243], F.
Palatini [306] and G. Castelnuovo [46] (in casen = 4). Palatini scroll was first studied
in [307] and appears often in modern literature on vector bundles (see, for example,
[305]). Quadratic complexes of lines inP4 were extensively studied by B. Segre [382].

Although ruled surfaces were studied earlier (more from differential point of view),
A. Cayley was the fist who laid the foundations of the algebraic theory of ruled surface
[51], [57], [58]. The term scroll belongs to Cayley. The study of non-normal surfaces
in P3, and, in particular, ruled surfaces, began by G. Salmon [351], [352]. Salmon’s
work was extended by A. Cayley [63], [64]. The formulas of Cayley and Salmon were
revised in a long memoir of H. Zeuthen [430]. The fact that the class of a ruled surface
is equal to its degree is due to Cayley. The degree of a ruled surface defined by three
directrices from Examples10.4.5was first determined by G. Salmon [350]. Cubic
ruled surfaces were classified by A. Cayley in [58], Part II, and, independently, by L.
Cremona [102]. The classification of quartic ruled surfaces were started by A. Cayley
[58], Parts II and III. However he had missed two types. A complete classification was
given later by L. Cremona [107]. An earlier attempt for this classification was made by
M. Chasles [68]. The classification based on the theory of tetrahedral complexes was
given by B. Wong [427]. Ruled surfaces of degree 5 were classified by H. Schwarz
[373]. Much later this classification was extended to surfaces of degree 6 by W. Edge
[150]. Edge’s book and Sturm’s book [400], vol. 1, give a detailed exposition of
the theory of ruled surfaces. The third volume of Sturm’s book contains an extensive
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account of the theory of quadratic line complexes.
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Circ. Mat. Palermo,13 (1889), 347–373.

[71] E. Ciani,Le curve piani di quarte ordine, Giornale di Matematiche,48 (1910),
259–304.

[72] E. Ciani,Scritti Geometrici Scelti, Cedam, Padova, 1937.

[73] C. Ciliberto, F. Russo, A. Simis,Homaloidal hypersurfaces and hypersurfaces
with vanishing Hessian, Adv. Math.218(2008), 1759–1805.

[74] A. Clebsch,Ueber Transformation der homogenen Funktionen driiter Ordnung
mit vier Ver̈derlichen, J. für die reine und angew. Math.58 (1860), 109–126.

[75] A. Clebsch,Ueber Curven vierter Ordnung, J. Reine Angew. Math.59 (1861),
125–145.

[76] A. Clebsch,Ueber die Knotenpunkte der Hesseschen Fläche, insbesondere bei
Oberfl̈achen dritter Ordnung, Journ. f̈ur reiner und angew. Math.,59 (1861),
193–228.



484 BIBLIOGRAPHY

[77] A. Clebsch,Ueber die Anwendung der Abelschen Funktionen in der Geome-
trie, J. für die reine und angew. Math.63, (1864), 142-184.

[78] A. Clebsch,Die Geometrie auf den Flächen dritter Ordnung, J. für reine und
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[106] L. Cremona,Mémoire de ǵeoḿetrie pure sur les surfaces du troisiéme ordre,
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[308] E. Pascal,Repertorium der Ḧoheren Mathematik, Bd.2: Geometrie, Teubniger,
Leipzig, 1910.

[309] M. Pash,Ueber die Brennfl̈achen der strahlsysteme und die Singularitẗenfl̈ache,
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(−1)-curve,173
(−n)-curve,248
(166)-configuration,412
EN -lattice,254
α-plane,402
β-plane,402

Abel-Jacobi map,148
Abel-Jacobi Theorem,127
abelian variety

principally polarized,128
absolute invariant,69
ACM-sheaf,107
adjugate matrix,3
Alexander-Hirschowitz Theorem,30
almost general position,251
anticanonical model,277
apolar

homogeneous form,24
subscheme,25

apolar conics,58, 68
apolar ring,24
apolarity map,31
apparent boundary,5
Arf invariant,120
Aronhold invariant,83, 176
Aronhold set,173, 335
associated curve,456
association involution,372
azygetic set

in symplectic space,132
azygetic triad

in a symplectic space,132
of Steiner complexes,136

base ideal
of a linear system,198

base scheme,198
Battaglini complex,435
Battaglini line complex,474
Bertini involution,214, 306
Bertini’s Theorems,202
bielliptic curve,193
bifid map,122
big divisor,248
binode,317
bitangent

defined by Aronhold set,155
honest,23
of the Fermat quartic,192
real,192
their number,143

bitangent hyperplane
of a canonical curve,118

bitangent hyperplanes,132
bitangential curve,143, 151, 194
blowing down structure,250
bordered determinant,98
bracket-function,362
branch divisor,18
bubble cycle,203

admissible order,204
of a homaloidal net,206

bubble space,203
height function,203
proper points,203

canonical map,148
canonical singularity,268
Caporali quartic,193
Cartan cubic,328
Cartan matrix,256
Carter graph,375
catalecticant
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determinant,33
hypersurface,33

catalecticant matrix,31
Cayleayan curve

of plane cubic,79
Cayley cubic surface,350
Cayley octad,170
Cayley’s family of cubic surfaces,394
Cayley-Salmon equation,343, 393
Cayley-Zeuthen formulas,449
Cayleyan curve,17, 42
Cayleyan variety,17
center,409
center variety,418
characteristic,206
characteristic matrix,228
Chasles’s Theorem,414
Chow form,407, 454
class,2, 19

of a space curve,456
class of immersion,449
Clebsch covariant quartic,177
Clebsch diagonal surface,332, 387
Clebsch quartic,175

apolar conic of,175
nondegenerate,175

Clebsch quartic covariant,176
Clebsch Theorem,232
Clebsch transference principle,368, 373
collineation,6
complex

degree,407
linear,407
rank,408

complex of lines,407
complex reflection,74
complex reflection group,74
Cone Theorem,265
congruence of lines,403

class,403
order,403

conjugate
linear forms,35

conjugate conics,58
conjugate points,66
conjugate triangle,50

contact cubic,169
contact curve,450
contact curves,98
contact structure,420
contravariant

of a pair of conics,63
coresidual point,173
correlation,6

composition,7
conjugate points,6
dual,6
polarity,7

correspondence,140
direct lateral,142
inverse,140
symmetric,140
united point,140
valence,140

covariant,176
of a pair of conics,63

Coxeter element,375
Coxeter number,375
Coxeter-Dynkin diagram

extended,260
Cremona group,205, 216
Cremona hexahedral equations,360
Cremona transformation,205

cubo-cubic,350, 454
degree,205
fixed points,207
of P14, 407
of degree 5,270
ordered resolution,228

cremona transformations
symmetric,213

cross ratio,63, 64, 67, 70, 362, 439
cubic curve

dual curve,81
equianharmonic,70
harmonic,70
Hesse form,71

cubic hypersurface,43, 58, 76, 77, 284,
346, 366, 406, 459

catalecticant,33
determiantal inP6, 285
determinant,45
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determinantal,284
pfaffian,406

cubic surface,58
4-nodal,393
as a base of a Palatini scroll,420
cyclic, 356
determinantal representation,348
its Hessian,358
its hessian surface,357
moduli,417
Sylvester non-degenerate,356
symmetroid,350

cubic surfaces
lines on it,325
marked,372

cubic symmetroid,297, 350
cuspidal edge,460
cyclide curve,295
cyclide quartic,293
cyclide surface

degenerate,295
Dupont,316

Darboux Theorem,53
De Jonquìeres involution,219
De Jonquìeres transformation,215

special,207, 216
De Jonquir̀eres subgroup,216
defect,405
defective,28
defective variety,405
degenerate polynomial,33
Del Pezzo surface,248

degree,249
effective cone,265
marked,250
nef cone,266
of degree 2,173
of degree 4,316
of degree 5,315, 474
of degree 6,315
of degree 7,282
of degree 8,282, 316
of degree 9,282
quartic,290
weak,248

determinantal variety,48
developable quartic surface,472
developable surface,13

of a space curve,456
difference map,143
directrix,443
discriminant,15
discriminant hypersurface,11, 15, 19

its dual hypersurface,21
double point class,448
double point set,448
double-six,320

azygetic duad,321
syzygetic duad,321

double-sixer
azygetic triad,322
Steiner complex of triads,322
syzygetic triad,322

dual homogenous form,34
dual hypersurface,19

of a plane cubic,87
dual space curve,456
duality map,19
Dynkin curve,267

Eckardt point,333
defining an involution,333

Eckatdt points,371
effective cone,265
elementary transformation,222

of vector bundles,223
Enriques diagram,204
Enriques surface,474
envelope,2
equianharmonic quadruple,63
Euler formula,4
Euler sequence

dual,220
exceptional section,219
exceptional type,236
exceptional vector,261
extremal ray,265

Fano variety,183, 421
degree,183
genus,183
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index,183
fat point,27
Fermat cubic,81
Fermat quartic,189
flex, 13
flex bitangent,153
flex tangent,8

honest,23
fundamental set,138

normal,139
fundamental weights,260

Gauss curvature,12
Gauss map,19, 145, 148, 406
Geiser involution,214, 301, 302
general position,251
generalized polyhedron

nondegenerate,82
genus 4 curve,459
geometric basis,250
geometric marking,250
GIT-quotient,362, 417
graph

of a rational map,199
Grassmannian

of lines,65, 397
of planes,66
homogeneous ideal,403

Grassmannian coordinates,397
Grassmannian variety

secant variety,404

Halphen pencil,81
Hankel matrix,32
Harmonic complex,435
harmonic conjugate,63, 66, 67
harmonic line,75, 88
harmonic pencil,64
harmonic quadruple,63
harmonically conjugate,46
Heisenberg group,411
Hermite curve,88
Hesse canonical form,71
Hesse group,73
Hesse line arrangement,71

dual,88

Hesse pencil,72
Hesse quadrilateral,66
Hesse Theorem,66
Hesse-Salmon configuration,88
Hessian hypersurface,9
Hessian matrix,9
hexad,156
Hilbert-Burch Theorem,345
Hodge Index Theorem,252
homaloid,245
homaloidal polynomial,93
homaloidal type,236
Hoskin-Deligne formula,204
Hurwitz formula,18
hyperelliptic curve

Weil pairing,122
hyperosculating point,456
hyperplane,2
hypersurface,2

Igusa-Richmond quartic,373
Igusa-Richmond quartic primal,414
Igusa-Ricmond quartic,370
incidence variety,399
infinitely near point,203
infinitely near points,203
inflectioin point,13
inflection point

order,14
integral closure

of an ideal,197
inversion transformation,212
isologue,207

center,207
curve,216
net,207

isotropic subspace,119

jacobian
of three conics,65

jacobian curve,302
jacobian determinant,229
Jacobian variety,126
join

of projective subbundles,444
of scrolls,445
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Joubert functions,366

Klein coordinates,412
Klein quadric,404
Klein quartic,114, 189

its hessian,191
Kummer cones,317
Kummer variety,427

Lüroth quartic,177
Laguerre net,209
lattice,229, 251

discriminant,252
discriminant group,252
embedding,253
even,254, 322
isometry,253
nondegenerate,252
orthogonal group,253
primitive embedding,253
signature,252
sublattice,252

finite index,252
unimodular,252

Lefschetz fixed-point formula,385
linear complex

apolar,410
special,407

linear group
imprimitive, 186
intransitive,186
primitive, 186
transitive,186

linear system,197
base locus,198
base point free,198
complete,197
fixed component,197
homaloidal,205
very ample,198

linearlyd-independent,27
lines

conjugate,50

m-rank,456
marking,250

geometric,250
minimal degree varieties,247
minimal rational ruled surface,219
minus vector,378
Moishezon-Nakai criterion of ampleness,

248
Monge’s equation,408
monoidal curve,215
Montesano complex,474
Mukai’s 2-form,39

nef divisor,248
net,66
nodal curve,268
node,268
Noether formula,452
Noether’s Reduction Theorem,240
nondegenerate variety,247
normal scroll,443
normal system,137
null polarity,7
null-plane,410
null-point,410
null-system,7, 138, 410

ordinary point,456
ordinary singularities,449
oscnode,300
osculating developable,456
osculating hyperplane,87
osculating plane,456
osculating sheaves,456

P-curve,228
P-curves

total,228
Płücker relations,397
Palatini scroll,420
parabolic hypersurface,13
parabolic point,13
pentaspherical coordinates,295
Perazzo primal,394
period matrix,126
persymmetric matrix,32
Peterson graph,288, 388
Pfaff differential equation,408
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pfaffian,83, 403, 406, 419
pfaffian ,48, 65, 403
pfaffian hypersurface,405
Picard scheme,126
Pier’s formula,402
pinch point,449
pippiana,44
Plücker coordinates,397, 403
Plücker embedding,397
Plücker formulas,22

for space curves,457
plane cubic,69
plane cubic curve

second canonical form,71
plus vector,378
Poisson bracket,37
polar subspace,328
polar bilinear form,118
polar duality,410
polar hexagon,181
polar hypersurface,2
polar line,46
polar lines,410
polar map,18
polar pentagon,175
polar polyhedron,26

generalized,27
nondegenerate,82

polar quadrangle,82
polar quadric,8
polar subspace,328, 418
polar triangle,81
polarity,7
pole,18, 46, 48
polygon,51

side,52
vertex,52

Ponceletn-related,52
Poncelet related conic,51
Poncelet related curve,56
porism,58
power sums

variety,30
prime-form,149
principal axes,47
principal curve,228

total,228
principal parts,455
Principle of Correspondence,151
Pro-Hessian surface,13
projective bundle,220
projective coordinates,2
projective duality,19
projective generation

of plane curves,207
projective space,2

dual,2
projectively normal,280
projectively normal subvariety,200
Prym canonical map,150
Prym variety

genus 3 curve,165
of a genus 4 curve,163

quadratic form
even,120
odd,120

quadratic line complex
of tangents to a quadric,435

quadratic transformation,210
involutorial,211
standard,211

quadric bundle,421
discriminant locus,421

quadrilateral,58, 66, 394
quartic curve

bitangent,153

Ramanujam’s Vanishing Theorem,248
rank

of a curve,456
rational double point,268
rational elliptic surface,307
rational normal quartic curve,474
rational normal scroll,247, 281
reflection,235, 258
relative invariant,75
relative Picard scheme,124
resolution

of a linear system,198
of an ideal,197
of indeterminacy points,199



INDEX 513

Reye complex,476
rhamphoid cusp,300
Riemann constant,129
Riemann-Kempf Theorem,127
root

effecvtive,266
root basis,256, 259

canonical,256
root lattice,259
roots

positive, negative,258
ruled surface,13, 446

of degree 4,470
elliptic, 461
elliptic of degree 6,420
genus,448
of degree 8,454

ruled varietry,442

Salmon conic,64
Schl̈afli equation,87
Schl̈afli theorem,393
Schuber variety,401
Schubert class,401
Schubert cycle,401
Schubert variety

special,401
Schur quadric,331, 417
Schur sextic,331
Schwarzenberger bundle,56
Scorza correspondence,143, 454
Scorza general,146
Scorza quartic hypersurface,147
scroll,442

r-directrix,443
cubic hypersurface,46
generator,442
rational normal,247, 281

secant variety,28
its entry varieties,284
of a Veronese curve,33

Segre cubic primal,366, 419, 474
dual variety of,414

Segre cubic surface,394
Segre quartic surface,292
Segre symbol,292, 317

Segre variety,405
self-associated sets,145
semi-stable points,362
Severi variety,284
Severi-Zak variety,405
simple singularities

of plane quartics,299
simple singularity,277
singular line,426

of a complex of lines,423
singular subspace,119
singular variety,423

of a quadratic complex of lines,
421

of complexes of lines,418
socle,24
stable points,362
standard Cremona transformation,103
standard tableaux,366
star-duality,440
stationary point,456
Steiner complex

azygetic,135
in a symplectic space,134
syzygetic,135

Steiner quartic surface,394
Steinerian hypersurface,15
Steinerian involution,80
Steinerian map,16
sublattice

primitve,252
Sylvester equation,356
Sylvester pentahedron,357

edges,357
vertices,357

symplectic group,120
syntheme,361
syzygetic pencil,89
syzygetic tetrad

in a symplectic space,132
syzygetic triad

in a symplectic space,132
of Steiner complexes,136

tangent cone,6
tangent space
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embedded,5
tangent surface,456

of a normal elliptic curve,458
of rational normal curve,458

tautological bundle,41
tautological exact sequence,398
tetrahedral complex,439, 471
tetrahedral coordinates,295
Tetrahedroid,437
theta characteristic,96, 117

effective,96
even,96
non-effective,96
odd,96
pentagonal,180
Scorza invariant,145

theta divisor
symmetric,128

theta divisors
even or odd,128

theta function,128
Riemann,129
with characteristic,128

Thom-Porteous formula,423
toric surface,283
torsal generator,453
total,361
triangle,46

biscribed,194
circumscribed,50
conjugate,50
inscribed,50
polar,46
polar degenerate,48
self-conjugate,50
side,46
vertex,46

tritangent
conjugate triads,324

tritangent plane,305, 325
trope,433

universal quotient bundle,398
universal quotient bundle,41
universal subbundle,398
unode,317

Valentiner group,189
vanishing theta characteristic,118
vector bundle,219
Veronese 3-fold,282
Veronese curve

secant variety,58
Veronese quartic curve

secant variety,33
Veronese surface,45, 65

projected,45, 419
secant variety,45

Veronese variety,45
its dual hypersurface,21

von Staudt’s Theorem,440

Waring problem,30
Waring rank,35
Wave surface,439
Weierstrass equation,69
Weierstrass point,458
weighted projective space,121

adjunction formula,121
weights

miniscule
tritangent trio,323

Weil pairing,117
Weyl chamber,258

face,258
Weyl group,235, 259
Wiman pencil,290, 316
Wiman sextic,290
Wronskian,473
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