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Preface

These notes assemble the contents of the introductory courses I have been giving at
SISSA since 1995/96. Originally the course was intended as introduction to (complex)
algebraic geometry for students with an education in theoretical physics, to help them to
master the basic algebraic geometric tools necessary for doing research in algebraically
integrable systems and in the geometry of quantum field theory and string theory. This
motivation still transpires from the chapters in the second part of these notes.

The first part on the contrary is a brief but rather systematic introduction to two
topics, singular homology (Chapter 2) and sheaf theory, including their cohomology
(Chapter 3). Chapter 1 assembles some basics fact in homological algebra and develops
the first rudiments of de Rham cohomology, with the aim of providing an example to

the various abstract constructions.

Chapter 5 is an introduction to spectral sequences, a rather intricate but very pow-
erful computation tool. The examples provided here are from sheaf theory but this
computational techniques is also very useful in algebraic topology.

I thank all my colleagues and students, in Trieste and Genova and other locations,
who have helped me to clarify some issues related to these notes, or have pointed out
mistakes. In this connection special thanks are due to Fabio Pioli. Most of Chapter 3 is
an adaptation of material taken from [2]. I thank my friends and collaborators Claudio
Bartocci and Daniel Herndndez Ruipérez for granting permission to use that material.
I thank Lothar Go&ttsche for useful suggestions and for pointing out an error and the
students of the 2002/2003 course for their interest and constant feedback.

Genova, 4 December 2004
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Part 1

Algebraic Topology






CHAPTER 1
Introductory material

The aim of the first part of these notes is to introduce the student to the basics of
algebraic topology, especially the singular homology of topological spaces. The future
developments we have in mind are the applications to algebraic geometry, but also
students interested in modern theoretical physics may find here useful material (e.g.,

the theory of spectral sequences).

As its name suggests, the basic idea in algebraic topology is to translate problems
in topology into algebraic ones, hopefully easier to deal with.

In this chapter we give some very basic notions in homological algebra and then
introduce the fundamental group of a topological space. De Rham cohomology is in-
troduced as a first example of a cohomology theory, and is homotopic invariance is

proved.

1. Elements of homological algebra

1.1. Exact sequences of modules. Let R be a ring, and let M, M’', M" be
R-modules. We say that two R-module morphisms ¢: M' — M, p: M — M" form an
exact sequence of R-modules, and write

7

0— M —— ML M — 0,
if ¢ is injective, p is surjective, and ker p = Im q.
EXAMPLE 1.1. Set R = Z, the ring of integers (recall that Z-modules are just abelian

groups), and consider the sequence

exp

(1.1) 0-52Z—sCc22cr 1

where i is the inclusion of the integers into the complex numbers C, while C* = C — {0}
is the multiplicative group of nonzero complex numbers. The morphism exp is defined
as exp(z) = €*™*. The reader may check that this sequence is exact.

A morphism of exact sequences is a commutative diagram

0 M’ M M 0
0 N’ N N" 0

of R-module morphisms whose rows are exact.

3
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1.2. Differential complexes. Let R be a ring, and M an R-module.

DEFINITION 1.2. A differential on M is a morphism d: M — M of R-modules such
that d*> = dod = 0. The pair (M,d) is called a differential module.

The elements of the spaces M, Z(M,d) = kerd and B(M,d) = Imd are called
cochains, cocycles and coboundaries of (M, d), respectively. The condition d? = 0 implies
that B(M,d) C Z(M,d), and the R-module

H(M,d) = Z(M,d)/B(M, d)

is called the cohomology group of the differential module (M, d). We shall often write
Z(M), B(M) and H(M), omitting the differential d when there is no risk of confusion.

Let (M,d) and (M’,d') be differential R-modules.

DEFINITION 1.3. A morphism of differential modules is a morphism f: M — M’ of
R-modules which commutes with the differentials, fod =do f.

A morphism of differential modules maps cocycles to cocycles and coboundaries to
coboundaries, thus inducing a morphism H(f): H(M) — H(M').

PROPOSITION 1.4. Let 0 — M’ —— M 2 M" — 0 be an evact sequence of dif-
ferential R-modules. There exists a morphism 6: H(M") — H(M'") (called connecting

morphism) and an exact triangle of cohomology

) L )

wl 7

H(M")

PROOF. The construction of § is as follows: let ¢’ € H(M") and let m” be a
cocycle whose class is £”. If m is an element of M such that p(m) = m”, we have
p(d(m)) = d(m”) = 0 and then d(m) = i(m’) for some m’ € M’ which is a cocycle.
Now, the cocycle m’ defines a cohomology class §(§”) in H(M'), which is independent of
the choices we have made, thus defining a morphism 6: H(M") — H(M'). One proves
by direct computation that the triangle is exact. O

The above results can be translated to the setting of complexes of R-modules.

DEFINITION 1.5. A complex of R-modules is a differential R-module (M®,d) which
is Z-graded, M*® = @, ., M", and whose differential fulfills d(M") C M™1 for every
n e Z.

We shall usually write a complex of R-modules in the more pictorial form

o2 et demt g dn ) et Gne s
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For a complex M*® the cocycle and coboundary modules and the cohomology group
split as direct sums of terms Z"(M®) = kerd,, B"(M?®) = Imd,,—; and H"(M®) =
Z™(M?®)/B™(M?®) respectively. The groups H™(M?®) are called the cohomology groups
of the complex M?*.

DEFINITION 1.6. A morphism of complexes of R-modules f: N®* — M*® is a collec-
tion of morphisms {f,: N™ — M"|n € Z}, such that the following diagram commutes:

M+l It frt1 Nt

For complexes, Proposition 1.4 takes the following form:

PROPOSITION 1.7. Let 0 — N* —— M* —2 P* — 0 be an ezact sequence of com-
plezes of R-modules. There exist connecting morphisms &, : H"(P®*) — H"*Y(N®) and
a long exact sequence of cohomology

PROOF. The connecting morphism 6: H*(P®*) — H®(N°®) defined in Proposition
1.4 splits into morphisms 6, : H"(P*) — H"*1(N*) (indeed the connecting morphism
increases the degree by one) and the long exact sequence of the statement is obtained
by developing the exact triangle of cohomology introduced in Proposition 1.4. ([

1.3. Homotopies. Different (i.e., nonisomorphic) complexes may nevertheless
have isomorphic cohomologies. A sufficient conditions for this to hold is that the two
complexes are homotopic. While this condition is not necessary, in practice the (by far)
commonest way to prove the isomorphism between two cohomologies is to exhibit a
homototopy between the corresponding complexes.

DEFINITION 1.8. Given two complexes of R-modules, (M*®,d) and (N*,d’), and two
morphisms of complexes, f,g: M®* — N°®, a homotopy between f and g is a morphism
K: N®* — M* ! (ie., for every k, a morphism K: N*¥ — M*=1) such that d' o K + K o
d=f—g.
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The situation is depicted in the following commutative diagram.

! / ‘
§ / V)
.4>Nk1 Nk+14>---

/

PROPOSITION 1.9. If there is a homotopy between f and g, then H(f) = H(g),
namely, homotopic morphisms induce the same morphism in cohomology.
PROOF. Let & = [m] € H*(M*,d). Then
H(f)(€) = [f(m)] = [g(m)] + [d' (K (m))] + [K(dm)] = [g(m)] = H(g)(§)
since dm = 0, [d'(K(m))] = 0. O

DEFINITION 1.10. Two complezes of R-modules, (M®,d) and (N°®,d'), are said to
be homotopically equivalent (or homotopic) if there exist morphisms f: M®* — N°®,
g: N®* — M?*, such that:

fog: N®* — N°® is homotopic to the identity map idy;
go f: M®* — M?® is homotopic to the identity map idps.

COROLLARY 1.11. Two homotopic complexes have isomorphic cohomologies.

PROOF. We use the notation of the previous Definition. One has
H(f)o H(g) = H(fog)=H(idn) = idyy
H(g) o H(f) = H(go f) = H(idm) = idgpp
so that both H(f) and H(g) are isomorphism. O

DEFINITION 1.12. A homotopy of a complex of R-modules (M®,d) is a homotopy
between the identity morphism on M, and the zero morphism; more explicitly, it is a
morphism K: M® — M*~ ! such that do K + K od = idy.

PROPOSITION 1.13. If a complex of R-modules (M*®,d) admits a homotopy, then it is

exact (i.e., all its cohomology groups vanish; one also says that the complex is acyclic).

PROOF. One could use the previous definitions and results to yield a proof, but it
is easier to note that if m € M* is a cocycle (so that dm = 0), then
d(K(m)) =m — K(dm)=m
so that m is also a coboundary. O

REMARK 1.14. More generally, one can state that if a homotopy K: M* — M1
exists for k > ko, then H* (M,d) = 0 for k > ko. In the case of complexes bounded
below zero (i.e., M = @renMF) often a homotopy is defined only for k > 1, and it
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may happen that H°(M,d) # 0. Examples of such situations will be given later in this
chapter.

REMARK 1.15. One might as well define a homotopy by requiring o K —Kod = .. .;
the reader may easily check that this change of sign is immaterial.

2. De Rham cohomology

As an example of a cohomology theory we may consider the de Rham cohomology
of a differentiable manifold X. Let Q¥(X) be the vector space of differential k-forms
on X, and let d: Q¥(X) — QFF1(X) be the exterior differential. Then (Q*(X),d) is
a differential complex of R-vector spaces (the de Rham complex), whose cohomology
groups are denoted H ZjR(X ) and are called the de Rham cohomology groups of X . Since
QF(X) =0 for k > n and k < 0, the groups H¥,(X) vanish for k¥ > n and k < 0.
Moreover, since ker[d: Q°(X) — Q'(X)] is formed by the locally constant functions on
X, we have HJp(X) = RY, where C is the number of connected components of X.

If f: X — Y is a smooth morphism of differentiable manifolds, the pullback mor-
phism f*: QF(Y) — QF(X) commutes with the exterior differential, thus giving rise
to a morphism of differential complexes (2°(Y),d) — (Q°*(X),d)); the corresponding
morphism H(f): H3p(Y) — H3x(X) is usually denoted f¥.

We may easily compute the cohomology of the Euclidean spaces R™. Of course one
has H)p(R") = ker[d : C*(R") — Q}(R™)] = R.

PROPOSITION 1.1. (Poincaré lemma) H%,(R™) = 0 for k > 0.

PROOF. We define a linear operator K: QF(R") — QF-1(R") by letting, for any
k-form w € QF(R™), k > 1, and all = € R",

1
(Kw)(z) =k [/ t* Vi iy i (b)) dt| 2™ da2 A A date
0

One easily shows that dK + Kd = Id; this means that K is a homotopy of the de Rham
complex of R™ defined for £ > 1, so that, according to Proposition 1.13 and Remark
1.14, all cohomology groups vanish in positive degree. Explicitly, if w is closed, we have
w = dKw, so that w is exact. O

EXERCISE 1.2. Realize the circle S' as the unit circle in R?. Show that the in-
tegration of 1-forms on S' yields an isomorphism H;R(Sl) ~ R. This argument can
be quite easily generalized to show that, if X is a connected, compact and orientable
n-dimensional manifold, then H},(X) ~ R.

If a manifold is a cartesian product, X = X; x X, there is a way to compute the
de Rham cohomology of X out of the de Rham cohomology of X; and Xo (Kiinneth
theorem, cf. [3]). For later use, we prove here a very particular case. This will serve
also as an example of the notion of homotopy between complexes.
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PROPOSITION 1.3. If X is a differentiable manifold, then HF, (X x R)
~ H*-(X) for all k > 0.

PROOF. Let t a coordinate on R. Denoting by p1, p2 the projections of X x R onto
its two factors, every k-form w on X x R can be written as
(1.2) w = fpjwi + gpjws A pidt

where w; € QF(X), we € *71(X), and f, g are functions on X x R.! Let s: X — X xR
be the section s(z) = (x,0). One has p;os =idx (i.e., s is indeed a section of p;), hence
s*opi: Q°(X) — Q°(X) is the identity. We also have a morphism pjos*: Q°(X xR) —
(X xR). This is not the identity (as a matter of fact one, has pjos*(w) = f(x,0) pjwi).
However, this morphism is homotopic to idgex xr), While idge(x) is definitely homotopic
to itself, so that the complexes Q°(X) and Q°*(X x R) are homotopic, thus proving our
claim as a consequence of Corollary 1.11. So we only need to exhibit a homotopy
between pj o s* and idge(xxRr)-

This homotopy K: Q*(X x R) — Q* (X x R) is defined as (with reference to
equation (1.2))

K@) = (0 [ [ g(o.9)05] pn

The proof that K is a homotopy is an elementary direct computation,? after which one
gets
doK + K od=idgexxr) —P1 05"

In particular we obtain that the morphisms
Pi: Hip(X) = Hig(X xR),  s%: Hig(X x R) — Hjp(Xx)
are isomorphisms.

REMARK 1.4. If we take X = R" and make induction on n we get another proof of

Poincaré lemma.
EXERCISE 1.5. By a similar argument one proves that for all £ > 0

Hijp(X x %) = Hjp(X) © Hip'(X). O

Now we give an example of a long cohomology exact sequence within de Rham’s the-
ory. Let X be a differentiable manifold, and Y a closed submanifold. Let rg: QF(X) —

Un intrinsic notation this means that

OF(X x R) ~ C®(X x R) ®c=(x) [2°(X) ® Q"1 (X)].

2The reader may consult e.g. [3], §L.4.
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QF(Y) be the restriction morphism; this is surjective. Since the exterior differential com-
mutes with the restriction, after letting Q¥(X,Y) = ker r, a differential d’: Q*(X,Y) —
QFF1(X,Y) is defined. We have therefore an exact sequence of differential modules, in

a such a way that the diagram

Tk—1

00— QFYX)Y) — QF(X) —= QF 1Y) —=0

I

0 —— QF(X,Y) OF(X) — 2 QYY) —>0

commutes. The complex (Q2°(X,Y),d) is called the relative de Rham complex, ? and its
cohomology groups by H []ifR(X ,Y) are called the relative de Rham cohomology groups.
One has a long cohomology exact sequence

0 — HIR(X,Y)— Hlp(X) — Hip(Y) > Hip(X,Y)
—  HIp(X) = Hip(Y) 2 HIp(X,Y) — ...

EXERCISE 1.6. 1. Prove that the space kerd: QF(X,Y) — Q¥1(X,Y) is for all
k > 0 the kernel of r; restricted to Z*(X), i.e., is the space of closed k-forms on X
which vanish on Y. As a consequence Hlp(X,Y) = 0 whenever X and Y are connected.

2. Let n = dim X and dimY < n — 1. Prove that Hj,(X,Y) — H},(X) surjects,
and that HgR(X, Y) =0 for kK > n+ 1. Make an example where dim X = dimY and
check if the previous facts still hold true.

EXAMPLE 1.7. Given the standard embedding of S' into R?, we compute the relative
cohomology H$p(R?,S1). We have the long exact sequence

5
0 — Hir(R*S") — Hjp(R?) — Hip(S") = Hjp(R?, S")
5
- HéR(RQ) - HéR(Sl) - HgR(szsl) - Hz%R(RQ) —0.

As in the previous exercise, we have HCIICR(R2, S1) =0 for k > 3. Since Hlp(R?) ~ R,
HIo(R?) = H2p(R?) =0, HI5(S') ~ H)(S1) ~ R, we obtain the exact sequences

0— HIp(R% SY) - R SR — H(R2, ST — 0
0—R— Hiz(R% S -0

where the morphism r is an isomorphism. Therefore from the first sequence we get
HO-(R?,51) = 0 (as we already noticed) and H!5(R% S') = 0. From the second we
obtain HZp(R?, S1) ~ R. O

From this example we may abstract the fact that whenever X and Y are connected,
then HJ5(X,Y) = 0.

3Sometimes this term is used for another cohomology complex, cf. [3].
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EXERCISE 1.8. Consider a submanifold Y of R? formed by two disjoint embedded
copies of S'. Compute H3,(R%,Y).

3. Mayer-Vietoris sequence in de Rham cohomology

The Mayer-Vietoris sequence is another example of long cohomology exact sequence
associated with de Rham cohomology, and is very useful for making computations.
Assume that a differentiable manifold X is the union of two open subset U, V. For
every k, 0 < k < n = dim X we have the sequence of morphisms

(1.3) 0— QX)L QFU) e (V) B FUNV) =0
where
i(w) = (W, wy), p((w1,w2)) = wiuny — Wounv-
One easily checks that ¢ is injective and that kerp = Imi. The surjectivity of p is
somehow less trivial, and to prove it we need a partition of unity argument. From

elementary differential geometry we recall that a partition of unity subordinated to the
cover {U,V} of X is a pair of smooth functions fi, fo: X — R such that

supp(f1) U, supp(fe) €V,  fitfa=1.
Given 7 € Q¥(U N V), let
wi = for, we=-fiT.
These k-form are defined on U and V, respectively. Then p((wi,w2)) = 7. Thus the

sequence (1.3) is exact. Since the exterior differential d commutes with restrictions, we
obtain a long cohomology exact sequence

)
(1.4) 0 — HIR(X) — Hp(U)® HIR(V) — HI(UNV) > Hip(X) —
— Hyp(U) & Hip(V) — Hip(UNV) S H3p(X) — ...

This is the Mayer-Vietoris sequence. The argument may be generalized to a union
of several open sets.*

EXERCISE 1.1. Use the Mayer-Vietoris sequence (1.4) to compute the de Rham
cohomology of the circle S*.

ExXAMPLE 1.2. We use the Mayer-Vietoris sequence (1.4) to compute the de Rham
cohomology of the sphere S? (as a matter of fact we already know the Oth and 2nd
group, but not the first). Using suitable stereographic projections, we can assume that
U and V are diffeomorphic to R?, while UNV ~ S! x R. Since S* x R is homotopic to
S1, it has the same de Rham cohomology. Hence the sequence (1.4) becomes

0— HIp(5?) = RO®R - R — H}x(5%) — 0
0— R — H3p(5?%) — 0.

4The Mayer-Vietoris sequence foreshadows the Cech cohomology we shall study in Chapter 3.
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From the first sequence, since HJn(5?) ~ R, the map HJn(5%) — R @ R is injective,
and then we get H},(5?) = 0; from the second sequence, H3,(S?) ~ R.

EXERCISE 1.3. Use induction to show that if n > 3, then H¥,(S") ~ R for k = 0, n,
HE,(S™) = 0 otherwise.

EXERCISE 1.4. Consider X = S? and Y = S', embedded as an equator in S2.
Compute the relative de Rham cohomology H3,(S?, S1).

4. Elementary homotopy theory

4.1. Homotopy of paths. Let X be a topological space. We denote by I the
closed interval [0,1]. A path in X is a continuous map v: I — X. We say that X
is pathwise connected if given any two points x1, xo € X there is a path v such that
7(0) = z1, ¥(1) = 2.

A homotopy I' between two paths 71, v2 is a continuous map I': I x I — X such
that

F(tv 0) =N (t)a F(tv 1) = ’72(t)'

If the two paths have the same end points (i.e. 71(0) = 12(0) = z1, y1(1) = 12(1) = z2),
we may introduce the stronger notion of homotopy with fized end points by requiring
additionally that I'(0,s) = z1, I'(1,s) = 2 for all s € I.

Let us fix a base point zg € X. A loop based at x( is a path such that v(0) = (1) =
xo. Let us denote L(z() th set of loops based at xy. One can define a composition
between elements of £(xg) by letting

(72 - y)(t) = {

’71(2t), 0 S
722t —1), 3

This does not make £(z¢) into a group, since the composition is not associative (com-
posing in a different order yields different parametrizations).

ProroOSITION 1.1. If 1,29 € X and there is a path connecting x1 with x4, then
L(z1) = L(x2).

PROOF. Let ¢ be such a path, and let v1 € L(x1). We define v9 € L(x2) by letting

1

c(1-3t), 0<t<i

2t)=q nBt-1), 3<t<3
c(3t—2), 2<t<1

This establishes the isomorphism. O
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4.2. The fundamental group. Again with reference with a base point zg, we
consider in £(xo) an equivalence relation by decreeing that v1 ~ = if there is a homotopy
with fixed end points between ~; and 2. The composition law in £,, descends to a
group structure in the quotient

(X, z0) = L(z0)/ ~ .

m1(X, xg) is the fundamental group of X with base point xo; in general it is nonabelian,
as we shall see in examples. As a consequence of Proposition 1.1, if 21,29 € X and
there is a path connecting x; with xy, then m (X, z1) ~ 71 (X, z2). In particular, if
X is pathwise connected the fundamental group 71 (X, z¢) is independent of xy up to
isomorphism; in this situation, one uses the notation 7 (X).

DEFINITION 1.2. X is said to be simply connected if it is pathwise connected and

m1(X) = {e}.

The simplest example of a simply connected space is the one-point space {*}.

Since the definition of the fundamental group involves the choice of a base point, to
describe the behaviour of the fundamental group we need to introduce a notion of map
which takes the base point into account. Thus, we say that a pointed space (X, ) is a
pair formed by a topological space X with a chosen point zg. A map of pointed spaces
f+(X,20) — (Y,y0) is a continuous map f: X — Y such that f(zp) = yo. It is easy
to show that a map of pointed spaces induces a group homomorphism f,: 7(X, z¢) —
(Y, 50)-

4.3. Homotopy of maps. Given two topological spaces X, Y, a homotopy betwe-
en two continuous maps f, g: X — Y isamap F: X xI — Y such that F(z,0) = f(x),
F(z,1) = g(z) for all x € X. One then says that f and g are homotopic.

DEFINITION 1.3. One says that two topological spaces X, Y are homotopically equiv-
alent if there are continuous maps f: X — Y, g:' Y — X such that go f is homotopic
to idx, and f o g is homotopic to idy. The map f, g are said to be homotopical equiv-

alences,.

Of course, homeomorphic spaces are homotopically equivalent.

EXAMPLE 1.4. For any manifold X, take Y = X xR, f(z) = (,0), g the projection
onto X. Then F': X x I — X, F(x,t) = x is a homotopy between g o f and idx, while
G: X xRxI— X xR, G(z,s,t) = (z,st) is a homotopy between f o g and idy. So X
and X x R are homotopically equivalent. The reader should be able to concoct many

similar examples.

Given two pointed spaces (X, zg), (Y, y0), we say they are homotopically equivalent
if there exist maps of pointed spaces f: (X,z9) — (Y,v0), g9: (Y,y0) — (X, x0) that
make the topological spaces X, Y homotopically equivalent.
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PROPOSITION 1.5. Let f: (X,z9) — (Y,yo) be a homotopical equivalence. Then
for (X, 20) — (Y, 90) is an isomorphism.

PrROOF. Let g: (Y,y0) — (X,z0) be a map that realizes the homotopical equiva-
lence, and denote by F' a homotopy between g o f and idx. Let v be a loop based at
xg. Then go f o~y is again a loop based at xg, and the map

:IxI— X, [(s,t) = F(v(s),t)

is a homotopy between v and go f o, so that v = go f o~ in 7 (X, zp). Hence,
g« © fx = idg (X 20)- In the same way one proves that fi o g« = idr (y,y,), so that the
claim follows. O

COROLLARY 1.6. If two pathwise connected spaces X and Y are homotopic, then

their fundamental groups are isomorphic.

DEFINITION 1.7. A topological space is said to be contractible if it is homotopically

equivalent to the one-point space {x}.

A contractible space is simply connected.

EXERCISE 1.8. 1. Show that R™ is contractible, hence simply connected. 2. Com-
pute the fundamental groups of the following spaces: the punctured plane (R? minus a
point); R? minus a line; R™ minus a (n — 2)-plane (for n > 3).

4.4. Homotopic invariance of de Rham cohomology. We may now prove the
invariance of de Rham cohomology under homotopy.

LEMMA 1.9. Let X, Y be differentiable manifolds, and let f,g: X — Y be two

homotopic smooth maps. Then the morphisms they induce in cohomology coincide,
1t =gt

PROOF. We choose a homotopy between f and ¢ in the form of a smooth® map
F: X xR — Y such that

F(z,t)= f(x) if t<0, F(z,t)=g(x) if t>1.

We define sections sg,s1: X — X x R by letting so(z) = (2,0), s1(x) = (z,1). Then
f=Fosy, g= Fosy,so ft = sgoFﬂ and ¢f = sﬁloFﬁ. Let p1: X xR — X,
p2: X x R — R be the projections. Then s o p! = s* o p! = Id. By Proposition 1.3 p!

is an isomorphism. Then sg = sg, and f! = Ff = ¢t (]
ProprosiTION 1.10. Let X and Y be homotopic differentiable manifolds. Then
HE-(X) ~ HEL(Y) for all k > 0.
PRrROOF. If f, g are two smooth maps realizing the homotopy, then ffogf = gfo ff =
Id, so that both f* and g¢* are isomorphisms. O

SFor the fact that F can be taken smooth cf. [3].
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4.5. The van Kampen theorem. The computation of the fundamental group
of a topological space is often unsuspectedly complicated. An important tool for such
computations is the van Kampen theorem, which we state without proof. This theorem
allows one, under some conditions, to compute the fundamental group of an union UUV
if one knows the fundamental groups of U, V and U N V. As a prerequisite we need
the notion of amalgamated product of two groups. Let G, G1, G3 be groups, with fixed
morphisms f1: G — G1, fo: G — G4. Let F the free group generated by G1 II G5 and
denote by - the product in this group.® Let R be the normal subgroup generated by
elements of the form”

(zy)-y~'-z7' with z, y both in Gy or Gy

fi(g) - f2(9)_1 for g € G.

Then one defines the amalgamated product G * G2 as F//R. There are natural maps
g1: G1 — Gy *g Ga, g2: G2 — G1 *¢ G5 obtained by composing the inclusions with
the projection F' — F/R, and one has g1 o fi = g2 o f2. Intuitively, one could say that
G1 #g G2 is the smallest subgroup generated by G1 and Gy with the identification of
fi(g) and fa(g) for all g € G.

EXERCISE 1.11. (1) Prove that if G; = Gy = {e}, and G is any group, then
G1 *¢ G = {e}.

(2) Let G be the group with three generators a, b, ¢, satisfying the relation ab = cba.

Let Z — G be the homomorphism induced by 1 — ¢. Prove that G xz G is

isomorphic to a group with four generators m, n, p, ¢, satisfying the relation

1 1

mnm Intpgplqgt=e. U

Suppose now that a pathwise connected space X is the union of two pathwise con-
nected open subsets U, V', and that U NV is pathwise connected. There are morphisms
m(UNV)—=m(U), m(UNV) — w1 (V) induced by the inclusions.

PROPOSITION 1.12. 711(X) =~ 711 (U) #, wnvy (V).

This is a simplified form of van Kampen’s theorem, for a full statement see [7].

ExaMPLE 1.13. We compute the fundamental group of a figure 8. Think of the figure
8 as the union of two circles X in R? which touch in one pount. Let pi, ps be points
in the two respective circles, different from the common point, and take U = X — {p; },
V =X —{p2}. Then m(U) ~ m1(V) ~ Z, while U NV is simply connected. It follows
that m1(X) is a free group with two generators. The two generators do not commute;
this can also be checked “experimentally” if you think of winding a string along the

6F is the group whose elements are words z{'xs ... z;, or the empty word, where the letters z; are
either in G or Ga, €; = =1, and the product is given by juxtaposition.
"The first relation tells that the product of letters in the words of F' are the product either in G

or G2, when this makes sense. The second relation kind of “glues” G and G2 along the images of G.
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figure 8 in a proper way... More generally, the fundamental group of the corolla with n
petals (n copies of S! all touching in a single point) is a free group with n generators.

EXERCISE 1.14. Prove that for any n > 2 the sphere S™ is simply connected. Deduce
that for n > 3, R™ minus a point is simply connected.

EXERCISE 1.15. Compute the fundamental group of R? with n punctures.

4.6. Other ways to compute fundamental groups. Again, we state some re-
sults without proof.

ProproSITION 1.16. If G is a simply connected topological group, and H is a normal
discrete subgroup, then m(G/H) ~ H.

Since S' ~ R/Z, we have thus proved that

™1 (S 1) ~ 7.
In the same way we compute the fundamental group of the n-dimensional torus
T" = S x .- x S (n times) ~R"/Z",

obtaining 7 (1) ~ Z™.

EXERCISE 1.17. Compute the fundamental group of a 2-dimensional punctured torus
(a torus minus a point). Use van Kampen’s theorem to compute the fundamental
group of a Riemann surface of genus 2 (a compact, orientable, connected 2-dimensional

differentiable manifold of genus 2, i.e., “with two handles”). Generalize your result to

any genus.

EXERCISE 1.18. Prove that, given two pointed topological spaces (X, zg), (Y, o),
then

(X XY, (20, y0)) 2= 71 (X, z0) X T1(Y, 90). O
This gives us another way to compute the fundamental group of the n-dimensional
torus T™ (once we know 71(S1)).

EXERCISE 1.19. Prove that the manifolds S? and S? x S! are not homeomorphic.

EXERCISE 1.20. Let X be the space obtained by removing a line from R?, and a
circle linking the line. Prove that m1(X) ~ Z & Z. Prove the stronger result that X is
homotopic to the 2-torus.






CHAPTER 2
Singular homology theory

1. Singular homology

In this Chapter we develop some elements of the homology theory of topological
spaces. There are many different homology theories (simplicial, cellular, singular, Cech-
Alexander, ...) even though these theories coincide when the topological space they
are applied to is reasonably well-behaved. Singular homology has the disadvantage of
appearing quite abstract at a first contact, but in exchange of this we have the fact that
it applies to any topological space, its functorial properties are evident, it requires very
little combinatorial arguments, it relates to homotopy in a clear way, and once the basic
properties of the theory have been proved, the computation of the homology groups is
not difficult.

1.1. Definitions. The basic blocks of singular homology are the continuous maps
from standard subspaces of Euclidean spaces to the topological space one considers. We
shall denote by Fy, Py, ..., P, the points in R"

Py =0, P, =1(0,0,...,0,1,0,...,0) (with just one 1 in the ith position).

The convex hull of these points is denoted by A,, and is called the standard n-simplex.
Alternatively, one can describe Ay as the set of points in R™ such that

n
2 >0, i=1,...,m, > z<L
=1

The boundary of A, is formed by n + 1 faces F. (i = 0,1,...,n) which are images of
the standard (n — 1)-simplex by affine maps R”~! — R". These faces may be labelled
by the vertex of the simplex which is opposite to them: so, F! is the face opposite to
P,

Given a topological space X, a singular n-simplex in X is a continuous map o: A,, —
X. The restriction of o to any of the faces of A,, defines a singular (n — 1)-simplex
0; =0 (or oo F! if we regard F! as a singular (n — 1)-simplex).

If Qo, ..., Qy are k41 points in R”, there is a unique affine map R*¥ — R™ mapping
Py, ..., P, to the Q’s. This affine map yields a singular k-simplex in R"™ that we denote
< Qo,...,Qr>. If Q; = P, for 0 < i < k, then the affine map is the identity on R¥, and
we denote the resulting singular k-simplex by ;. The standard n-simplex A, may so

17
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also be denoted < P, ..., P, >, and the face F! of A, is the singular (n — 1)-simplex
< PF,... ,Pi, ..., P, >, where the hat denotes omission.

Choose now a commutative unital ring R. We denote by Si(X, R) the free group
generated over R by the singular k-simplexes in X. So an element in Si(X,R) is a

“formal” finite linear combination (called a singular chain)
g = Z Qaj 04
J

with a; € R, and the o; are singular k-simplexes. Thus, S;(X, R) is an R-module, and,
via the inclusion Z — R given by the identity in R, an abelian group. For k > 1 we
define a morphism 0: Si(X, R) — Sk—1(X, R) by letting

k

80' = Z(—l)zUOF]z

=0

for a singular k-simplex ¢ and exteding by R-linearity. For k = 0 we define do = 0.

ExamMpLE 2.1. If Qq,...,Q are k + 1 points in R”, one has
k .
0< Qo Qe>=> (1)) < Qo Qir. - Q> .
1=0

PROPOSITION 2.2. 92 = 0.

PROOF. Let o be a singular k-simplex.

k k -1
0o = Y (~1)'d(coF) =D (-1)'> (-1) oo FjoFl_,
i=0 i=0 §=0
k ‘ k—1 ‘
= Z (-1)"* goFl o Fi~1+ Z (-1)"* goFioF]_,
j<i=1 0=i<j
Resumming the first sum by letting ¢ = j, j = ¢ — 1 the last two terms cancel. O

So (Se(X, R),0) is a (homology) graded differential module. Its homology groups
Hy (X, R) are the singular homology groups of X with coefficients in R. We shall use
the following notation and terminology:

Z(X,R) =ker0: Sp(X,R) — Sk—1(X, R) (the module of k-cycles);
Bi(X,R) =Im0: Sk+1(X, R) — Si(X, R) (the module of k-boundaries);
therefore, Hi(X, R) = Zy(X, R)/Bi(X, R). Notice that Zy(X, R) = So(X, R).

1.2. Basic properties.

PROPOSITION 2.3. If X is the union of pathwise connected components X;, then
Hk(X, R) ~ @ij(Xj,R) for all k > 0.
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PROOF. Any singular k-simplex must map Ay inside a pathwise connected com-
ponents (if two points of A would map to points lying in different components, that
would yield path connecting the two points). O

PROPOSITION 2.4. If X is pathwise connected, then Hy(X, R) ~ R.

ProOF. This follows from the fact that a O-cycle ¢ = Zj a; x;j is a boundary if and
only if } . aj = 0. Indeed, if ¢ is a boundary, then ¢ = 9(}_; b;;) for some paths ~;, so
that ¢ = >, b;(7;(1) —7;(0)), and the coefficients sum up to zero. On the other hand,
if Zj a; = 0, choose a base point g € X. Then one can write

c=Y ajuj =) ayzi— (Y aj)wo =) ajlz; —w0) =0 a;v;
j j j j j

if 7; is a path joining zg to x;.
This means that By(X, R) is the kernel of the surjective map Zy(X, R) = So(X, R) —
R given by > . ajxj— >, aj, so that Ho(X, R) = Zo(X, R)/Bo(X, R) ~ R. O

Let f: X — Y be a continuous map of topological spaces. If o is a singular k-simplex
in X, then foo is a singular k-simplex in Y. This yields a morphism S (f): Sx(X,R) —
Si(Y, R) for every k > 0. It is immediate to prove that Si(f) o9 = 0o Sk11(f):

k+1

Sk(f)(00) = fo )y (~1)fooFiy=0(foo)=0d(Sk(f)(0)).
1=0

This implies that f induces a morphism Hy(X, R) — Hy(Y, R), that we denote f,. It
is also easy to check that, if g: Y — W is another continous map, then Si(go f) =

Sk(g) o Sk(f), and (go f), = g, o f,.

1.3. Homotopic invariance.

ProprosiTION 2.5. If f,g: X — Y are homotopic map, the induced maps in homol-
ogy coincide.

It should be by now clear that this yields as an immediate consequence the homotopic
invariance of the singular homology.

COROLLARY 2.6. If two topological spaces are homotopically equivalent, their singu-
lar homologies are isomorphic.

To prove Proposition 2.5 we build, for every k£ > 0 and any topological space X, a
morphism (called the prism operator) P: Si(X) — Sk1+1(X x I) (here I denotes again
the unit closed interval in R). We define the morphism P in two steps.

Step 1. The first step consists in definining a singular (k + 1)-chain 741 in the
topological space Ay x I by subdiving the polyhedron A, x I C RFf! (a “prysm”
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Ao Ay

F1cURE 1. The prism 7o over Ay

over the standard symplesx Ay) into a number of singular (k + 1)-simplexes, and sum-
ming them with suitable signs. The polyhedron Ay x I C R**! has 2(k + 1) vertices
Ao, ..., Ak, By, ..., By, given by A; = (P;,0), B; = (P;,1). We define

k

Tha1 :Z(—l)i < Agy,..., A, B, ..., By >.
1=0

For instance, for £k = 1 we have
Ty =< Ao, By, B1 > — < Ag, 41, B1 > .

Step 2. If ¢ is a singular k-simplex in a topological space X, then o xid is a continous
map A x I — X x I. Therefore it makes sense to define the singular (k + 1)-chain
P(o) in X as

(2.1) P(o) = Ski1(o x id) (1)
The definition of the prism operator implies its functoriality:

ProrosiTION 2.7. If f: X — Y is a continuous map, the diagram

Sk(X) —"> (X x 1)

Sk(f) l l Skt1 (fxid)
P
Sk(Y) E—— Sk+1(Y X I)

commautes.

PROOF. It is just a matter of computation.

Sk+1(f xid)o P(o) = Sk1(f xid) o Spr1(o x id)(mk+1)
= Sp41(f oo xid)(me41) = P(Sk(f)) -

The relevant property of the prism operator is proved in the next Lemma.
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LEMMA 2.8. Let Ao, Ai: X — X X I be the maps Ao(z) = (2,0), M\i(z) = (x,1).
Then

(2.2) 8oP+P08:Sk(>\1)—Sk()\O)
as maps Si(X) — Sk(X x I).
PROOF. Let 0r: A — Ay be the identity map regarded as singular k-simplex in
Ag. Notice that P(dg) = mg+1-
We first check the identity (2.2) for X = Ay, applying both sides of (2.2) to d;. The
right side yields
< Bp,...,Br>— < Ap,... A > .

We compute now the action of the left side of (2.2) on dk.

k
OP(r) = > (-1)'0<Aq,...,A;Bi,..., By >

i

=0
k . -
= Z(—1)z+j<Ao,...,Aj,...Ai,Bi,...,Bk>

+ Z(—1)i+j+1<Ao,...Al‘,Bi,...,Bj,...Bk>.

All terms with ¢ = j cancel with the exception of < By,...,Br > — < Ag,... A >. So

we have

8P(5k) = < Bg,....,Bpr>—<Ag,...A; >

k
+ Z(*1)“_]‘<Ao,...,A]’,...Ai,Bi,...,Bk>
j<i=1
k . .
— Z(—1)Z+]<Ao,...Ai,BZ’,...,BJ‘,...Bk>.
i<j=1
On the other hand, one has
k .
06 = (1)) < Py,...,Pj,..., P>
j=0
Since
P(<P0,...,1f’j,...,Pk>) = Z(—l)i<Ao,...,Ai,BZ’,...,B]‘,...,Bk>
1<j
— Z(*l)i<Ao,...,A]’,...,Ai,Bi,...,Bk>
i>j

we obtain the equation (2.2) (note that exchanging the indices ¢, j changes the sign).
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We must now prove that if equation (2.2) holds when both sides are applied to Jx,
then it holds in general. One has indeed

OP(0) = 0Sk+1(0 x id)(P(dk)) = Sk(o x id) (0P (o))

P(0o) = PO(Sk(o)(0r))

= P(Sk-1(0)(96k)) = Sk(o x id)(P(0dy))

so that
OP(c) 4+ P(0o) = Sky1(o xid)(OP (o)) + P(9d))

= Spy1(0 x id)(Sk(A1) = Sk(Xo)) = Sk(A1) = Sk(Xo)

where g, A1 are the obvious maps Ap — Ay x 1. O
Equation (2.2) states that P is a hotomopy (in the sense of homological algebra)

between the maps A\g and A1, so that one has (A1), = (A\2), in homology.

Proof of Proposition 2.5. Let F be a hotomopy between the maps f and g. Then,
f=Fo)\y, g=F o\, so that

fo=(FoX), =F,o(X), = F, o (A1), = (F o)1), = g,

COROLLARY 2.9. If X is a contractible space then

Hy(X,R) ~ R, Hy,(X,R)=0 for k>0.

1.4. Relation between the first fundamental group and homology. A loop
~v in X may be regarded as a closed singular 1-simplex. If we fix a point zg € X, we
have a set-theoretic map x: L(xzo) — S1(X,Z). The following result tells us that x
descends to a group homomorphism y: m (X, xg) — H1(X,Z).

ProposITION 2.10. If two loops v1, 2 are homotopic, then they are homologous

as singular 1-simplexes. Moreover, given two loops at xq, 1, 2, then x(y2 0 y1) =
X(1) + x(72) in Hi(X,Z).

PRrROOF. Choose a homotopy with fixed endpoints between +; and 79, i.e., a map
I': I x I — X such that

I'(¢,0) = 7(t), (¢, 1) = y2(2), I'0,s) =TI'(1,s) =z for all s € I.

Define the loops v3(t) = I'(1,t), v4(t) = T'(0,¢), v5(t) = T'(¢,t). Both loops ~y3 and
~4 are actually the constant loop at xy. Consider the points Py, P, P>, @ = (1,1) in
R?, and define the singular 2-simplex

o=TIo< P, P,Q>-To< P, A,Q >
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P, Y2 Q
V4 73
Y5
Py 7 Py
FIGURE 2

(cf. Figure 2). We then have

Jdo = To< P,Q >-To< Py,Q >+To< Py, P, >
— To< P,Q >+To< Py,Q > —To< Py, P, >
= WB—BFTN—T2t+tVvB+ra=71—"72

This proves that x(y1) and x(7y2) are homologous. To prove the second claim we need
to define a singular 2-simplex o such that

9o =y1+72 =72 -

Consider the point T" = (0, %) in the standard 2-simplex As and the segment X
joining T with P; (cf. Figure 3). If @ € Ay lies on or below X, consider the line joining
Py with @, parametrize it with a parameter ¢ such that ¢t = 0 in Py and ¢ = 1 in the
intersection of the line with ¥, and set 0(Q) = 71(t). Analogously, if @ lies above or
on X, consider the line joining P> with ), parametrize it with a parameter ¢ such that
t =11in P and t = 0 in the intersection of the line with X, and set o(Q) = v2(t). This

defines a singular 2-simplex o: Ay —X, and one has

Jo = o0o0< P,Py>—00< Py, Py > 400 < Py, P >
= Y272 7+
O

We recall from basic group theory the notion of commutator subgroup. Let G be
any group, and let C(G) be the subgroup generated by elements of the form ghg='h~1,
g,h € G. The subgroup C(G) is obviously normal in G; the quotient group G/C(G) is
abelian. We call it the abelianization of G. It turns out that the first homology group
of a space with integer coefficients is the abelianization of the fundamental group.

ProposITION 2.11. If X is pathwise connected, the morphism x: m(X,z9) —
Hy(X,Z) is surjective, and its kernel is the commutator subgroup of m (X, xo).
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Py

72
Q

T V2

1
Q by
Py 7 Py
FIGURE 3

PROOF. Let ¢ =3, a;jo; be a l-cycle. So we have
0=0c=> ai(o;(1) - 05(0)).
J

In this linear combination of points with coefficients in Z some of the points may coin-
cide; the sum of the coefficients corresponding to the same point must vanish. Choose a
base point zy € X and for every j choose a path a; from z( to ¢;(0) and a path 3; from
xo to (1), in such a way that they depend on the endpoints and not on the indexing
(e.g, if 0j(0) = 01(0), choose oj = ). Then we have

> ai(Bj — o) =0.
j

Now if we set 7; = a;; + 0 — 3; we have ¢ = Zj a;0;. Let v; be the loop gL oo
then,
(7)) = 1
so that x is surjective.
To prove the second claim we need to show that the commutator subgroup of
m1(X, xo) coincides with ker y. We first notice that since Hi(X,Z) is abelian, the

commutator subgroup is necessarily contained in ker y. To prove the opposite inclusion,
let v be a loop that in homology is a 1-boundary, i.e., v = 8Zj a;jo;. So we may write

(2.3) 0 =Y; — Y15+ V25

for some paths 7y;, k =0, 1,2. Choose paths (cf. Figure 4)
ag; from xg to 71;(0) =2;(0) = Py
a; from xg to 72i(1) =0;(0) = P
agj from i) to ’71]'(1) = ’}/Oj(l) = P2

and consider the loops

_ 1 -1 — o1 ) ) 4l ) )
Boj = agj -1, 025, Py =g 05 g, Poj = oy - Y25 - Qg



2. RELATIVE HOMOLOGY 25

Py
Oégj
Yoj
Oélj
FIGURE 4

Note that the loops

-1 -1
B = Boj - Brj - B2y = ag; -7y Y05 - 725 " Qoj

are homotopic to the constant loop at z( (since the image of a singular 2-simplex is
contractible). As a consequence one has the equality in 71 (X, z¢)

I;[5;]% = e.

This implies that the image of II;[3;]% in 71 (X, zo)/C(m1(X, zo)) is the identity. On the
other hand from (2.3) we see that « coincides, up to reordering of terms, with Hjﬂ;lj , SO
that the image of the class of v in m (X, zo)/C(71(X, z0)) is the identity as well. This
means that v lies in the commutator subgroup. O

So whenever in the examples in Chapter 1 the fundamental groups we computed
turned out to be abelian, we were also computing the group H;(X,Z). In particular,

COROLLARY 2.12. H{(X,Z) =0 if X is simply connected.

EXERCISE 2.13. Compute Hi(X,Z) when X is: 1. the corolla with n petals, 2. R"
minus a point, 3. the circle S', 4. the torus 72, 5. a punctured torus, 6. a Riemann

surface of genus g.

2. Relative homology

2.1. The relative homology complex. Given a topological space X, let A be
any subspace (that we consider with the relative topology). We fix a coefficient ring R
which for the sake of conciseness shall be dropped from the notation. For every k& > 0
there is a natural inclusion (injective morphism of R-modules) Sx(A) C Sk(X); the ho-
mology operators of the complexes Se(A), Se(X) define a morphism §: Sx(X)/Sk(A) —
Si—1(X)/Sk—1(A) which squares to zero. If we define

SK(X)  Ska(X)
Se(A)  Si1(A)

Zi (X, A) = ker 0:
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— Ima: Sk1(X)  Sk(X)
Sk+1(4)  Sk(A)

Bi(X, A)
we have B (X, A) C Z,(X, A).

DEFINITION 2.1. The homology groups of X relative to A are the R-modules
Hy(X,A)=Z,(X,A)/B(X,A). When we want to emphasize the choice of the ring R
we write Sk(X, A; R).

The relative homology is more conveniently defined in a slightly different way, which
makes clearer its geometrical meaning. It will be useful to consider the following diagram

0

Z(X,A)

|

Sk(A) X) — S(X)/Sp(4) —= 0

RN

0 — Byo1(A) —> Bpa(X) > Bj (X, 4) ——0

Zi(X)
Sk (

Let
Zp(X,A) ={ce Sp(X)|0ce Sp_1(A)}
Bp(X,A) = {c € Sp(X)|c=0b+ ¢ with b € Sp1(X), ¢ € Sp(A)}.

Thus, Zk(X, A) is formed by the chains whose boundary is in A, and B(A) by the
chains that are boundaries up to chains in A.

LEMMA 2.2. Zy(X, A) is the pre-image of Z (X, A) under the quotient homomor-
phism qy; that is, an element ¢ € Si(X) is in Zp(X, A) if and only if qi(c) € Z;(X, A).

PROOF. If gi(c) € Z, (X, A) then 0 = J o gi(c) = qr—1 © d(c) so that c € Z;(X, A).
If c € Zy(X, A) then gi_1 0 d(c) = 0 so that gx(c) € Z,(X, A). O

LEMMA 2.3. ¢ € Si(X) is in Bip(X, A) if and only if qx(c) € B (X, A).

PROOF. If ¢ = 0b + ¢ with b € Si1(X) and ¢ € Sk(A) then gx(c) = qx 0 b =
d o qry1(b) € B(X,A). Conversely, if gi(c) € B (X, A) then gx(c) = 0 o gx41(b) for
some b € Sk41(X), then ¢ — 9b € ker gx_1 so that ¢ = 9b+ ¢ with ¢’ € S(4). O

PROPOSITION 2.4. For all k > 0, Hp(X,A) ~ Zy(X,A)/Br(X, A).
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ProoF. What we should do is to prove the commutativity and the exactness of the
rows of the diagram

0 — SK(A) —= Bi(X, A) —=> B},(X, A) —> 0

N
0 — Su(A) —> Zu(X, A) —%> Z{(X, A) —> 0

Commutativity is obvious. For the exactness of the first row, it is obvious that S(A) C
By(X, A) and that gx(c) = 0 if ¢ € Sp(A). On the other hand if ¢ € B(X, A) we have
c=0b+c with b € Sp1(X) and ¢ € Si(A), so that gx(c) = 0 implies 0 = g 0 Ib =
00 qr+1(b), which in turn implies ¢ € Si(A). To prove the surjectivity of gx, just notice
that by definition an element in Bj (X, A) may be represented as 0b with b € Si41(X).

As for the second row, we have Si(A4) C Z;(X, A) from the definition of Z;(X, A).
If ¢ € Sp(A) then gr(c) = 0. If ¢ € Zk(X,A) and gi(c) = 0 then ¢ € Si(A) by the
definition of Z; (X, A). Moreover g is surjective by Lemma 2.2. O

2.2. Main properties of relative homology. We list here the main properties
of the cohomology groups Hy (X, A). If a proof is not given the reader should provide
one by her/himself.

o If Ais empty, Hy(X,A) ~ Hp(X).

e The relative cohomology groups are functorial in the following sense. Given topo-
logical spaces X, Y with subsets A C X, B C Y, a continous map of pairs is a con-
tinuous map f: X — Y such that f(A) C B. Such a map induces in natural way a
morphisms of R-modules f,: He(X, A) — Ho(Y, B). If we consider the inclusion of pairs
(X,0) — (X, A) we obtain a morphism He(X) —¢ H(X, A).

e The inclusion map i: A — X induces a morphism H.(A) — H.(X) and the
composition He(A) — He(X) — He(X, A) vanishes (since Z;(A) C Bi(X, A)).

e If X = U;X; is a union of pathwise connected components, then Hy(X,A) ~
®;Hi(X;,A;) where Aj = AN Xj.

PROPOSITION 2.5. If X is pathwise connected and A is nonempty, then Hy(X, A)
=0.

PrOOF. If ¢ = > ajz; € So(X) and v; is a path from zg € A to z;, then
9(>_; ajx;) = c— (-, aj)zo so that ¢ € By(X, A). O

COROLLARY 2.6. Hy(X, A) is a free R-module generated by the components of X
that do not meet A.

Indeed H;(X;, Aj) =0 if A; is empty.

PROPOSITION 2.7. If A = {xo} is a point, Hp(X,A) ~ Hi(X) for k > 0.
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Zk(X, A) = {C € Sk(X) ’80 S Skfl(A)} = Zk(X) when k£ > 0
Br(X,A) = {ce Sk(X)|c=0b+ with b € Si1(X), ¢ € Sp(A)}
—  By(X) when k > 0.
([l

2.3. The long exact sequence of relative homology. By definition the relative
homology of X with respect to A is the homology of the quotient complex Se¢(X)/Se(A).
By Proposition 1.7, adapted to homology by reversing the arrows, one obtains a long
exact cohomology sequence

—>H1(A) HHl(X) —>H1(X,A)

EXERCISE 2.8. Assume to know that Hi(S',R) ~ R and Hy(S',R) = 0 for k >
1. Use the long relative homology sequence to compute the relative homology groups
Ho(R?, S1; R).

3. The Mayer-Vietoris sequence

The Mayer-Vietoris sequence (in its simplest form, that we are going to consider
here) allows one to compute the homology of a union X = U UV from the knowledge
of the homology of U, V and U NV. This is quite similar to what happens in de Rham
cohomology, but in the case of homology there is a subtlety. Let us denote A=UNV.
One would think that there is an exact sequence

0 — Sp(A) = Sp(U) & (V) L Sp(X) — 0

where 7 is the morphism induced by the inclusions A <— U, A — V, and p is given by
p(o1,02) = 01 — 02 (again using the inclusions U — X, V < X). However, it is not
possible to prove that p is surjective (if o is a singular k-simplex whose image is not
contained in U or V| it is not in general possible to write it as a difference of standard
k-simplexes in U, V'). The trick to circumvent this difficulty consists in replacing Se(X)
with a different complex that however has the same homology.

Let 44 = {U,} be an open cover of X.

DEFINITION 2.1. A singular k-chain o = Zj a;jo; is U-small if every singular k-

simplex o; maps into an open set U, € U for some a. Moreover we define SHX) as

the subcomplex of Se(X) formed by U-small chains.*

The homology differential O restricts to S:'(X), so that one has a homology H(X).

1Again7 we understand the choice of a coefficient ring R.
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Ey

Ey
FIGURE 5. The join B(< Ey, By >)

PROPOSITION 2.2. H}X) ~ H,(X).

To prove this isomorphism we shall build a homotopy between the complexes S?(X )
and Se(X). This will be done in several steps.

Given a singular k-simplex < Qo,...,Qk > in R™ and a point B € R™ we consider
the singular simplex < B, Qq, - .., Qr >, called the join of B with < Qq,...,Qr >. This
operator B is then extended to singular chains in R™ by linearity. The following Lemma
is easily proved.

LEMMA 2.3. 0o B+ Bod =1d on S,(R") if k > 0, while 0o B(c) =0 — (>
ifO' = Zj a;T; € S()(Rn)

j CL]')B

Next we define operators 3: Si(X) — Sip(X) and T': Sp(X) — Sg+1(X). The
operator Y is called the subdivision operator and its effect is that of subdividing a
singular simplex into a linear combination of “smaller” simplexes. The operators X
and T, analogously to what we did for the prism operator, will be defined for X = Ay
(the space consisting of the standard k-simplex) and for the “identity” singular simplex
Op: A — Ag, and then extended by functoriality. This should be done for all k. One
defines

Y (do) = do, T(d0) = 0.
and then extends recursively to positive k:

Y(0r) = Br(X(96)),  T(0r) = Br(dr — X(dx) — T'(Od%))

where the point By, is the barycenter of the standard k-simplex Ay,

k
1
B,=——S P,.
k k+1jz_% J

EXAMPLE 2.4. For k = 1 one gets X(01) =< B1P1 > — < B1Py >; for k = 2, the
action of ¥ splits Ay into smaller simplexes as shown in Figure 6. O
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P
My MO
Bo
Py Ms Py

FIGURE 6. The subdivision operator ¥ splits As into the chain
< By, My, Py > — < By, My, P > — < By, M1, P> > + < By, M1, Py >
+ < Bz,Mg,Pl > —< BQ,MQ,PO >

The definition of 3 and T for every topological space and every singular k-simplex
oin X is
5(0) = S(0)(3(dk),  T(0) = Sk+1(0)(T'(0))-

LEMMA 2.5. One has the identities

doX=%o00, 0oT+Tod=1d-%.

PROOF. These identities are proved by direct computation (it is enough to consider
the case X = Ay). O

The first identity tells us that ¥ is a morphism of differential complexes, and the
second that 7T is a homotopy between 3 and Id, so that the morphism 3, induced in
homology by ¥ is an isomorphism.

The diameter of a singular k-simplex ¢ in R” is the maximum of the lengths of
the segments contained in o¢. The proof of the following Lemma is an elementary
computation.

LEMMA 2.6. Let 0 =< Ey,...,Ep >, with Eg, ..., Er € R™. The diameter of every
simplex in the singular chain (o) € Sp(R™) is at most k/k + 1 times the diameter of
.

PROPOSITION 2.7. Let X be a topological space, s = {Uy} an open cover, and o
a singular k-simplex in X. There is a natural number r > 0 such that every singular
simplex in X7 (o) is contained in a open set U,,.

PrROOF. As Aj is compact there is a real positive number € such that ¢ maps a
neighbourhood of radius e of every point of A into some U,. Since

T

Iim — =0
T—IEIOO (k+1)r



3. THE MAYER-VIETORIS SEQUENCE 31

there is an r > 0 such that ¥"(dy) is a linear combination of simplexes whose diameter
is less than e. But as X" (o) = Si(0)(X"(dx)) we are done. O

This completes the proof of Proposition 2.2. We may now prove the exactness of
the Mayer-Vietoris sequence in the following sense. If X = U UV (union of two open
subsets), let U={U,V}and A=UNV.

PROPOSITION 2.8. For every k there is an exact sequence of R-modules
0 — Sp(A) 5 S(U) @ Sp(V) & SE(X) — 0.

PROOF. One has a diagram of inclusions
U
N
A X
SN
Vv

Defining i(0) = ({y o 0, —fy o o) and p(o1,02) = ju © 01 + jyv © 02, the exactness of the
Mayer-Vietoris sequence is easily proved. O

The morphisms i and p commute with the homology operator 9, so that one obtains
a long homology exact sequence involving the homologies He(A), He(V) @ Ho(V') and
H(X). But in view of Proposition 2.2 we may replace H(X) with the homology
H.(X), so that we obtain the exact sequence

+— Hy(A) — Ha(U) ® Ha(V) — H(X)
— Hi(A) = Hi(U) ® Hi(V) — Hi(X)
— Ho(A) — Ho(U) ® Ho(V) — Ho(X) — 0
EXERCISE 2.9. Prove that for any ring R the homology of the sphere S™ with
coefficients in R, n > 2, is

R for k=0and k=n
0 for O<k<nandk>n.

Hi(S™,R) = {

EXERCISE 2.10. Show that the relative homology of S? mod S' with coefficients in
Z is concentrated in degree 2, and Ho(S?,S') ~Z @ Z.

EXERCISE 2.11. Use the Mayer-Vietoris sequence to compute the homology of a
cylinder S' x R minus a point with coefficients in Z. (Hint: since the cylinder is

homotopic to S!, it has the same homology). The result is (calling X the space)
Ho(X,Z)~7Z, H\(X,Z)~Z&Z, HyX,Z)=0.

Compare this with the homology of S? minus three points.
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4. Excision

If a space X is the union of subspaces, the Mayer-Vietoris suquence allows one to
compute the homology of X from the homology of the subspaces and of their intersec-
tions. The operation of ezcision in some sense gives us information about the reverse
operation, i.e., it tells us what happen to the homology of a space if we “excise” a sub-
pace out of it. Let us recall that given a map f: (X, A) — (Y, B) (i.e,amap f: X =Y
such that f(A) C B) there is natural morphism f,: He(X, A) — H.(Y, B).

DEFINITION 2.1. Given nested subspaces U C A C X, the inclusion map (X —U, A—

U) — (X,A) is said to be an excision if the induced morphism Hp(X —U,A—-U) —
Hy (X, A) is an isomorphism for all k.

If(X-UA-U)— (X,A) is an excision, we say that U “can be excised.”

To state the main theorem about excision we need some definitions from topology.

DEFINITION 2.2. 1. Let i: A — X be an inclusion of topological spaces. A map
r: X — A is a retraction of ¢ if roi =1d4.

2. A subspace A C X is a deformation retract of X if Idx is homotopically equivalent
toior, where r: X — A is a retraction.

Ifr: X — Ais aretraction of i: A — X, then 1,01, = Idp, (4), so that i,: He(A) —
H,(X) is injective. Moreover, if A is a deformation retract of X, then He(A) ~ Ho(X).
The same notion can be given for inclusions of pairs, (A, B) — (X,Y); if such a map is
a deformation retract, then Ho(A, B) ~ Ho(X,Y).

EXERCISE 2.3. Show that no retraction S™ — S™ ! can exist.

THEOREM 2.4. If the closure U of U lies in the interior int(A) of A, then U can be
excised.

PROOF. We consider the cover 44 = {X — U,int(A)} of X. Let ¢ = 2. aj0j €
Zk(X, A), so that 0c € Sk_1(A). In view of Proposition 2.2 we may assume that c is -
small. If we cancel from o those singular simplexes o; taking values in int(A), the class
[c] € H(X, A) is unchanged. Therefore, after the removal, we can regard c as a relative
cycle in X —U mod A—U;; this implies that the morphism Hy(X —-U, A—U) — Hp(X, A)
is surjective.

To prove that it is injective, let [¢] € Hi(X — U, A—U) be such that, regarding c as
a cycle in X mod A, it is a boundary, i.e., ¢ € Bi(X, A). This means that

c=0b+¢ with b€ Spi1(X), ¢ € Si(A).

We apply the operator X" to both sides of this inequality, and split X" (b) into by + ba,
where b; maps into X — U and by into int(A). We have

ET(C) —0b; = Er(cl) + 0bs .
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The chain in the left side is in X — U while the chain in the right side is in A; therefore,
both chains are in (X —U)N A=A —U. Now we have

ET(C) = ET(C/) + 0by + Oby

with X7 (¢/)+0bgy € Sp(A—U) and 9by € Si11(X —U) so that ¥"(c) € Bg(X U, A-U),
which implies [¢] =0 (in Hy(X —U,A-U)). O

EXERCISE 2.5. Let B an open band around the equator of S2, and zy € B. Compute
the relative homology He(S? — z¢, B — 20; Z).

To describe some more applications of excision we need the notion of augmented

homology modules. Given a topological space X and a ring R, let us define

*: So(X,R) — R

Z ajo; Z aj .
J J
We define the augmented homology modules
HY(X,R) =ker&/By(X,R),  HL(X,R)=Hy(X,R) for k> 0.

If A C X, one defines the augmented relative homology modules H,g(X,A;R) in a

similar way, i.e.,
HY(X,A;R) = Hy(X,A;R) it A#0,  H.(X,A;R) = H(X,R)if A=10.

EXERCISE 2.6. Prove that there is a long exact sequence for the augmented relative

homology modules.

EXERCISE 2.7. Let B™ be the closed unit ball in R**!, S™ its boundary, and let Eff
be the two closed (northern, southern) emispheres in S™.

1. Use the long exact sequence for the augmented relative homology modules to
prove that H,g(S”) ~ H,i(S",E;) and H}i_l(Snfl) o~ Hﬁ(B”,S"*I). So we have
HE(B", 8" 1) =0 for k < n, HY(B", 5" ") ~ R

2. Use excision to show that HE(S”, E;)~ H,E(B”, Sy,

3. Deduce that H,i(S”) o~ H}iil(Snfl).

EXERCISE 2.8. Let S™ be the sphere realized as the unit sphere in R"*!, and let
r: 8" — S™ — S™ be the reflection
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Prove that r,: H,(S™) — H,(S™) is the multiplication by —1. (Hint: this is trivial for
n = 0, and can be extended by induction using the commutativity of the diagram

~

H,(S") — H}_,(S"1)
Tp Tp
H,(S™) o~ Hﬁ,l(sn_l)
which follows from Exercise 2.7.
EXERCISE 2.9. 1. The rotation group O(n + 1) acts on S™. Show that for any

M € O(n + 1) the induced morphism M,: H, (S™) — H,(S™) is the multiplication by
det M = +£1.

2. Let a: 8™ — S™ be the antipodal map, a(z) = —z. Show that a,: H,(S™) —
H,(S™) is the multiplication by (—1)"*!,

EXAMPLE 2.10. We show that the inclusion map (E,;,S""!) — (S E,) is an
excision. (Here we are excising the open southern emisphere, i.e., with reference to the
general theory, X = S™ U = the open southern emisphere, A = E".)

The hypotheses of Theorem 2.4 are not satisfied. However it is enough to consider
the subspace
V:{mES”|x0>—%} .
V can be excised from (S™, E;). But (E;},S"!) is a deformation retract of (S™ —
V,E; — V) so that we are done. O

We end with a standard application of algebraic topology. Let us define a wvector
field on S™ as a continous map v: S™ — R"*! such that v(x) -z = 0 for all x € S™ (the
product is the standard scalar product in R**1).

PROPOSITION 2.11. A mowhere vanishing vector field v on S™ exists if and only if

n 1s odd.

PROOF. If n = 2m 4 1 a nowhere vanishing vector field is given by

v(zo, ..., Tamt1) = (—T1,T0, =23, T2, . .., —T2m+1, L2m) -

Conversely, assume that such a vector field exists. Define

@) |
) = @)

this is a map S™ — S™, with w(x) - x = 0 for all x € S™. Define
F:8"xI — S"
F(z,t) = x costm+ w(x) sintn.

Since
F(z,0) =z, F(z,3) = w(x), F(z,1) = —x
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the three maps Id, w, a are homotopic. But as a consequence of Exercise 2.9, n must
be odd. O






CHAPTER 3
Introduction to sheaves and their cohomology

1. Presheaves and sheaves

Let X be a topological space.

DEFINITION 3.1. A presheaf of Abelian groups on X is a rule! P which assigns an
Abelian group P(U) to each open subset U of X and a morphism (called restriction map)
ouy: P(U) — P(V) to each pair V. C U of open subsets, so as to verify the following
requirements:

(1) P(0) = {0};
(2) puu is the identity map;
(3) if W CV CU are open sets, then ouw = @v.w © QU -

The elements s € P(U) are called sections of the presheaf P on U. If s € P(U) is
a section of P on U and V' C U, we shall write s}y, instead of ou,v(s). The restriction
P of P to an open subset U is defined in the obvious way.

Presheaves of rings are defined in the same way, by requiring that the restriction
maps are ring morphisms. If R is a presheaf of rings on X, a presheaf M of Abelian
groups on X is called a presheaf of modules over R (or an R-module) if, for each open
subset U, M(U) is an R(U)-module and for each pair V' C U the restriction map
ovyv: MU) — M(V) is a morphism of R(U)-modules (where M(V) is regarded as
an R(U)-module via the restriction morphism R(U) — R(V)). The definitions in this
Section are stated for the case of presheaves of Abelian groups, but analogous definitions

and properties hold for presheaves of rings and modules.

DEFINITION 3.2. A morphism f: P — Q of presheaves over X is a family of mor-
phisms of Abelian groups fu: P(U) — Q(U) for each open U C X, commuting with the

IThis rather naive terminology can be made more precise by saying that a presheaf on X is a
contravariant functor from the category Ox of open subsets of X to the category of Abelian groups.
O x is defined as the category whose objects are the open subsets of X while the morphisms are the

inclusions of open sets.

37
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restriction morphisms; i.e., the following diagram commutes:

PU) L o)

Yu,v JWMV

Pv) L ov)

DEFINITION 3.3. The stalk of a presheaf P at a point x € X is the Abelian group

Py = lim P(U)
U

where U ranges over all open neighbourhoods of x, directed by inclusion.

REMARK 3.4. We recall here the notion of direct limit. A directed set I is a partially
ordered set such that for each pair of elements ¢, j € I there is a third element k£ such
that i < k and j < k. If I is a directed set, a directed system of Abelian groups is
a family {G;}icr of Abelian groups, such that for all ¢ < j there is a group morphism
fij: Gi — Gy, with fi; = id and fij o fjr = fir. On the set & = [[,.; Gy, where []
denotes disjoint union, we put the following equivalence relation: g ~ h, with g € G;
and h € Gj, if there exists a k € I such that f;;(g) = fjx(h). The direct limit [ of the
system {G; };cr, denoted [ = li_nr)lz,E ; Gi, is the quotient & / ~. Heuristically, two elements
in & represent the same element in the direct limit if they are ‘eventually equal.” From
this definition one naturally obtains the existence of canonical morphisms G; — [. The
following discussion should make this notion clearer; for more detail, the reader may
consult [13]. O

If 2 € U and s € P(U), the image s, of s in P, via the canonical projection
P(U) — P, (see footnote) is called the germ of s at x. From the very definition of direct
limit we see that two elements s € P(U), s € P(V), U, V being open neighbourhoods

/

of z, define the same germ at z, ie. s, = s,

if and only if there exists an open
neighbourhood W C U NV of = such that s and s' coincide on W, sy = 8"y

DEFINITION 3.5. A sheaf on a topological space X is a presheaf F on X which fulfills
the following azioms for any open subset U of X and any cover {U;} of U.

S1) If two sections s € F(U), 5 € F(U) coincide when restricted to any U;, sy, =
S|y, they are equal, s = 5.

S2) Given sections s; € F(U;) which coincide on the intersections, siju,nu;, =
Sj|u,nU; for every i,j, there exists a section s € F(U) whose restriction to

each U; equals s;, i.e. S|y, = Si-

Thus, roughly speaking, sheaves are presheaves defined by local conditions. The
stalk of a sheaf is defined as in the case of a presheaf.
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EXAMPLE 3.6. If F is a sheaf, and F, = {0} for all z € X, then F is the zero sheaf,
F(U) = {0} for all open sets U C X. Indeed, if s € F(U), since s, = 0 for all z € U,
there is for each z € U an open neighbourhood U, such that s;;, = 0. The first sheaf
axiom then implies s = 0. This is not true for a presheaf, cf. Example 3.15 below. [

A morphism of sheaves is just a morphism of presheaves. If f : F — G is a morphism
of sheaves on X, for every x € X the morphism f induces a morphism between the stalks,
fr + Fo — Gz, in the following way: since the stalk JF, is the direct limit of the groups
F(U) over all open U containing x, any g € F, is of the form g = s, for some open
U > x and some s € F(U); then set f,(g9) = (fu(s))z-

A sequence of morphisms of sheaves 0 — F' — F — F” — 0 is ezact if for every
point € X, the sequence of morphisms between the stalks 0 — F, — F, — Fo — 0
is exact. If 0 - F' — F — F” — 0 is an exact sequence of sheaves, for every open
subset U C X the sequence of groups 0 — F'(U) — F(U) — F"(U) is exact, but the
last arrow may fail to be surjective. Instances of this situation are shown in Examples
3.11 and 3.12 below.

EXERCISE 3.7. Let 0 — F/ — F — F” — 0 be an exact sequence of sheaves. Show
that 0 — F' — F — F" is an exact sequence of presheaves.

ExAMPLE 3.8. Let G be an Abelian group. Defining P(U) = G for every open
subset U and taking the identity maps as restriction morphisms, we obtain a presheaf,
called the constant presheaf Gx. All stalks (Gx), of Gx are isomorphic to the group
G. The presheaf Gx is not a sheaf: if V; and V5 are disjoint open subsets of X, and
U = V1 UV, the sections g1 € Gx (V1) = G, g2 € Gx(Va) = G, with g1 # go, satisfy the
hypothesis of the second sheaf axiom S2) (since V3 NV = () there is nothing to satisfy),
but there is no section g € GX(U) = @ which restricts to g1 on V; and to gs on V5.

EXAMPLE 3.9. Let Cx (U) be the ring of real-valued continuous functions on an open
set U of X. Then Cx is a sheaf (with the obvious restriction morphisms), the sheaf of
continuous functions on X. The stalk C, = (Cx), at x is the ring of germs of continuous
functions at x.

ExaAMPLE 3.10. In the same way one can define the following sheaves:

The sheaf C§ of differentiable functions on a differentiable manifold X.

The sheaves QF of differential p-forms, and all the sheaves of tensor fields on a
differentiable manifold X.

The sheaf of holomorphic functions on a complex manifold and the sheaves of holo-

morphic p-forms on it.

The sheaves of forms of type (p,q) on a complex manifold X.

ExXAMPLE 3.11. Let X be a differentiable manifold, and let d: Q% — QS be the
exterior differential. We can define the presheaves Z% of closed differential p-forms, and
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B of exact p-differential forms,
Z0(U) = {w € R (U) | dw = 0},
B (U) = {we Q% U)|w=dr forsome 7 Q' (U)}.
Z% is a sheaf, since the condition of being closed is local: a differential form is closed if
and only if it is closed in a neighbourhood of each point of X. On the contrary, B is
not a sheaf. In fact, if X = R?, the presheaf BY of exact differential 1-forms does not
fulfill the second sheaf axiom: consider the form
xdy — ydz

e
defined on the open subset U = X — {(0,0)}. Since w is closed on U, there is an
open cover {U;} of U by open subsets where w is an exact form, wyy, € By (U;) (this is
Poincaré’s lemma). But w is not an exact form on U because its integral along the unit

circle is different from 0.

This means that, while the sequence of sheaf morphisms 0 — R — C§¥ LN Z)l( — 0

is exact (Poincaré lemma), the morphism C(U) 4, Z1(U) may fail to be surjective.

ExAMPLE 3.12. Let X be a complex manifold, Z the constant sheaf with stalk the
integers, O the sheaf of holomorphic functions on X, and O* the sheaf of nowhere
vanishing holomorphic functions. In analogy with the exact sequence (1.1) we may
consider the sequence

(3.1) 07— 02201

This is an exact sequence of sheaves, in particular exp: C — C* is surjective as a map
of sheaves, since in a neighbourhood of every point, an inverse my be found by applying
the logarithm function. However, since the latter is multi-valued, surjectivity fails on
non-simply connected open sets. See Example 3.11.

1.1. Etalé space. We wish now to describe how, given a presheaf, one can natu-
rally associate with it a sheaf having the same stalks. As a first step we consider the case
of a constant presheaf Gx on a topological space X, where G is an Abelian group. We
can define another presheaf Gx on X by putting Gx(U) = {locally constant functions
f: U — G}, 2 where Gx(U) = G is included as the constant functions. It is clear that
(Gx). = G, = G at each point x € X and that Gx is a sheaf, called the constant sheaf
with stalk G. Notice that the functions f: U — G are the sections of the projection
7 [[,ex Gz — X and the locally constant functions correspond to those sections which
locally coincide with the sections produced by the elements of G.

Now, let P be an arbitrary presheaf on X. Consider the disjoint union of the stalks
P = [l,cx P» and the natural projection 7: P — X. The sections s € P(U) of the

2A function is locally constant on U if it is constant on any connected component of U.
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presheaf P on an open subset U produce sections s: U < P of 7, defined by s(x) = s,
and we can define a new presheaf P by taking P¥(U) as the group of those sections
0: U — P of m such that for every point & € U there is an open neighbourhood V C U
of x which satisfies o, = s for some s € P(V).

That is, P? is the presheaf of all sections that locally coincide with sections of P. It
can be described in another way by the following construction.

DEFINITION 3.13. The set P, endowed with the topology whose base of open subsets
consists of the sets s(U) for U open in X and s € P(U), is called the étalé space of the
presheaf P.

EXERCISE 3.14. (1) Show that 7: P — X is a local homeomorphism, i.e., every
point u € P has an open neighbourhood U such that 7: U — n(U) is a
homeomorphism.

(2) Show that for every open set U C X and every s € P(U), the section s: U — P
is continuous.

(3) Prove that P is the sheaf of continuous sections of 7: P — X.

(4) Prove that for all 2 € X the stalks of P and P? at z are isomorphic.

(5) Show that there is a presheaf morphism ¢: P — P

(6) Show that ¢ is an isomorphism if and only if P is a sheaf. O

P is called the sheaf associated with the presheaf P. In general, the morphism
¢: P — PY is neither injective nor surjective: for instance, the morphism between the
constant presheaf G x and its associated sheaf Gx is injective but nor surjective.

EXAMPLE 3.15. As a second example we study the sheaf associated with the presheaf
B% of exact k-forms on a differentiable manifold X. For any open set U we have an
exact sequence of Abelian groups (actually of R-vector spaces)

0— BY(U) — Z5(U) — HY (U) = 0

where H’}’( is the presheaf that with any open set U associates its k-th de Rham coho-
mology group, H% (U) = HIE)R(U). Now, the open neighbourhoods of any point x € X
which are diffeomorphic to R" (where n = dim X) are cofinal® in the family of all open
neighbourhoods of z, so that (H%), = 0 by the Poincaré lemma. In accordance with
Example 3.6 this means that (7% )% = 0, which is tantamount to (B%)% ~ Z%.

In this case the natural morhism H’)“( — (H’)“()h is of course surjective but not
injective. On the other hand, B — (B’)“()h = Z% is injective but not surjective. O
3Let I be a directed set. A subset J of I is said to be cofinal if for any i € I there is a j € J

such that i < j. By the definition of direct limit we see that, given a directed family of Abelian groups
{G;}ier, if {G;};es is the subfamily indexed by J, then

limG; ~lim Gy
— —
iel jeJ

that is, direct limits can be taken over cofinal subsets of the index set.
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DEFINITION 3.16. Given a sheaf F on a topological space X and a subset (not
necessarily open) S C X, the sections of the sheaf F on S are the continuous sections
0:8— F ofm: F — X. The group of such sections is denoted by T'(S, F).

DEFINITION 3.17. Let P, Q be presheaves on a topological space X. *

(1) The direct sum of P and Q is the presheaf P @& Q given, for every open subset
UcCX,by(PeQ)(U)=PU)® Q) with the obvious restriction morphisms.

(2) For any open set U C X, let us denote by Hom(Pyy, Qi) the space of mor-
phisms between the restricted presheaves Py and Qy; this is an Abelian group in a
natural manner. The presheaf of homomorphisms is the presheaf Hom(P, Q) given by
Hom(P, Q)(U) = Hom(Py, Q) with the natural restriction morphisms.

(8) The tensor product of P and Q is the presheaf (P ® Q)(U) =P({U) ® Q(U).

If 7 and G are sheaves, then the presheaves F @ G and Hom(F, G) are sheaves.
On the contrary, the tensor product of 7 and G previously defined may not be a sheaf.

Indeed one defines the tensor product of the sheaves F and G as the sheaf associated
with the presheaf U — F(U) ® G(U).

It should be noticed that in general Hom(F, G)(U) % Hom(F(U), G(U)) and
Hom(F, G)» # Hom(Fy, Ga).

1.2. Direct and inverse images of presheaves and sheaves. Here we study
the behaviour of presheaves and sheaves under change of base space. Let f: X — Y be

a continuous map.

DEFINITION 3.18. The direct image by f of a presheaf P on X is the presheaf f.P
on'Y defined by (fP)(V) = P(f~1(V)) for every open subset V. C Y. If F is a sheaf
on X, then f.JF turns out to be a sheaf.

Let P be a presheaf on Y.

DEFINITION 3.19. The inverse image of P by f is the presheaf on X defined by

U— lim P((V).
—
ucf=H(v)
The inverse image sheaf of a sheaf F on'Y is the sheaf f~1F associated with the inverse
image presheaf of F.

The stalk of the inverse image presheaf at a point € X is isomorphic to Py(,).
It follows that if 0 — F' — F — F” — 0 is an exact sequence of sheaves on Y, the
induced sequence
0— f_l}" N f—lj_—_> f_l}"” =0

4Since we are dealing with Abelian groups, i.e. with Z-modules, the Hom modules and tensor

products are taken over Z.
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of sheaves on X is also exact (that is, the inverse image functor for sheaves of Abelian
groups is exact).

The étalé space ﬁ of the inverse image sheaf is the fibred product > Y x y F. It
follows easily that the inverse image of the constant sheaf Gx on X with stalk G is the
constant sheaf Gy with stalk G, f~'1Gx = Gy.

2. Cohomology of sheaves

We wish now to describe a cohomology theory which associates cohomology groups

to a sheaf on a topological space X.

2.1. Cech cohomology. We start by considering a presheaf P on X and an open
cover Y of X. We assume that U is labelled by a totally ordered set I, and define

Uio...ip = Uio AEEEER Uip .

We define the Cech complex of {1 with coefficients in P as the complex whose p-th term
is the Abelian group

PPy = [ PWi.s,)-
10<-+<ip
Thus a p-cochain « is a collection {Oéio...ip} of sections of P, each one belonging to the
space of sections over the intersection of p + 1 open sets in 4. Since the indexes of the
open sets are taken in strictly increasing order, each intersection is counted only once.
The Cech differential §: CP(U, P) — CPHL(U, P) is defined as follows: if & = {av,..i, }
€ CP(4,P), then
p+1
{(00)igcipiny = D (D g iyaUg iy -
k=0

Here a caret denotes omission of the index. For instance, if p = 0 we have o = {«;} and

It is an easy exercise to check that 6> = 0. Thus we obtain a cohomology theory. We

denote the corresponding cohomology groups by H* (4, P).

LEMMA 3.1. If F is a sheaf, one has an isomorphism HO(U, F) ~ F(X)

PrROOF. We have HO(U, F) = kerd: CO(Y, P) — CH(U, P). So if a € HO(L, F) by
(3.2) we see that
Cklu;nU, = %|U;NU -
By the second sheaf axiom this implies that there is a global section & € F(X) such
that &y, = ;. This yields a morphism HO(U, F) — F(X), which is evidently surjective
and is injective because of the first sheaf axiom. O

SFor a definition of fibred product see e.g. [16].
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EXAMPLE 3.2. We consider an open cover i of the circle S' formed by three sets
which intersect only pairwise. We compute the Cech cohomology of { with coefficients
in the constant sheaf R. We have CO(4,R) = C'({,R) = R& R & R, CF(U,R) =
0 for £ > 1 because there are no triple intersections. The only nonzero differential
do: CO(U,R) — CL(U, R) is given by

do(xo, z1,x2) = (x1 — X2, T2 — T0, T — X1).

Hence

H°(U,R) = kerdy ~ R

H'(U,R) = C*(U,R)/Imdy ~ R.
O

It is possible to define Cech cohomology groups depending only on the pair (X, F),
and not on a cover, by letting

H*(X, F) = lim "H* (4, F).
U

The direct limit is taken over a cofinal subset of the directed set of all covers of X (the
order is of course the refinement of covers: a cover U = {V;}cs is a refinement of 4l if
there is a map f: I — J such that V) C U; for every i € I). The order must be fixed
at the outset, since a cover may be regarded as a refinement of another in many ways.
As different cofinal families give rise to the same inductive limit, the groups H” (X, F)
are well defined.

2.2. Fine sheaves. Cech cohomology is well-behaved when the base space X is
paracompact. (It is indeed the bad behaviour of Cech cohomology on non-paracompact
spaces which motivated the introduction of another cohomology theory for sheaves,
usually called sheaf cohomology; cf. [6].) In this and in the following sections we consider
some properties of Cech cohomology that hold in that case.

DEFINITION 3.3. A sheaf of rings R on a topological space X is fine if, for any
locally finite oper cover U = {U;Yier of X,° there is a family {s;}icr of global sections
of R such that:

(1) diersi=1;
(2) for every i € I there is a closed subset S; C U; such that (s;), = 0 whenever

6We recall that an oper cover i is locally finite if every point in X has an open neighbourhood which
intersects only a finite number of elements of l. It is possible to show that whenever X is paracompact,

any open cover has a locally finite refinement [17].
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The family {s;} is called a partition of unity subordinated to the cover Y. For
instance, the sheaf of continuous functions on a paracompact topological space as well
as the sheaf of smooth functions on a differentiable manifold are fine, while sheaves of

complex or real analytic functions are not.

DEFINITION 3.4. A sheaf F of Abelian groups on a topological space X is said to be
acyclic if H*(X,F) =0 for k > 0.

PROPOSITION 3.5. Let R be a fine sheaf of rings on a paracompact space X. FEvery
sheaf M of R-modules is acyclic.

PROOF. Let U = {U;}ier be a locally finite open cover of X, and let {p;} be a
partition of unity of R subordinated to 4. For any a € C?(4, M) with ¢ > 0 we set

(Ka)io---iqﬂ = Pj Qjig..ig—1 — E Pj Qiggiy..ig—1 +...

jeI jel

71<ig 10<j<t1

q

- z (_1) § p] a’lo‘..lkfljlk...zq_l .
k=0 .
JeI
tp—1<J<ig

This defines a morphism K : C*(4, M) — C*~1(4, M) such that §K + Kd = id (i.e.,
K is a homotopy operator); then o = K« if a = 0, so that H*(4, M) = 0 for k& > 0.
Since on a paracompact space the locally finite open covers are cofinal in the family

of all covers, we can take direct limit on such covers, thus getting H k(X ,M) =0 for
k> 0. O

ExaMPLE 3.6. Using this result we may recast the proof of the exactness of the
Mayer-Vietoris sequence for de Rham cohomology in a slightly different form. Given a
differentiable manifold X, let 4 be the open cover formed by two sets U and V. Since
C?(U,QF) = 0 (there are no triple intersections) we have an exact sequence

0 — HO8L, QF) — CO(u, Q%) & (4, Q%) — 0.

which in principle is exact everywhere but at C (4, Q%). However since the sheaves QF
are acyclic by Proposition 3.5, one has H' (4, QF) = 0, which means that ¢ is surjective,
and the sequence is exact at that place as well. We have the identifications

HO(L0F = 0F(X), %y, ob =) e rV), cly o=k Uunv)
so that we obtain the exactness of the Mayer-Vietoris sequence.
2.3. Long exact sequences in Cech cohomology. We wish to show that when

X is paracompact, any exact sequence of sheaves induces a corresponding long exact
sequence in Cech cohomology.
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LEMMA 3.7. Let X be any topological space, and let
(3.3) 0P —-P—->P =0

be an exact sequence of presheaves on X. Then one has a long exact sequence

0— HYX,P') - HY(X,P) — H'(X,P") - H'(X,P') — ...
— H*(X,P") — H*X,P) —» H*X,P") — H*+(X,P") — ...

PRrOOF. For any open cover U the exact sequence (3.3) induces an exact sequence
of differential complexes

0— C*(8,P) — C*(U,P) = C*(U,P") — 0
which induces the long cohomology sequence

0— HY(U, P — HU,P) — HO WU, P") — HY(U,P) — ...
— ﬁk(ﬂ,P’) — Hk(il,P) — ﬁk(ﬂ,P”) — IZ[’““(LL,P’) — ...

Since the direct limit of a family of exact sequences yields an exact sequence, by taking
the direct limit over the open covers of X one obtains the required exact sequence. [

LEMMA 3.8. Let X be a paracompact topological space, P a presheaf on X whose
associated sheaf is the zero sheaf, let i1 be an open cover of X, and let o € C’k(ﬂ,P).
There is a refinement 20 of 4 such that 7(a)) = 0, where 7: CF(4,P) — CF(20,P) is
the morphism induced by restriction.

PROOF. We shall need to use the following fact [5, ?]: given an open cover i =
{U;}ier of a paracompact space X,” there is an open cover U = {V; };c; having the same
cardinality of 4, such that V; C U;.

O

PROPOSITION 3.9. Let P be a presheaf on a paracompact space X, and let P? be the
associated sheaf. For all k > 0, the natural morphism H*(X,P) — H*(X,P") is an

isomorphism.

PROOF. One has an exact sequence of presheaves
0— Q1 =P —Pl—Qy—0
with
(3.4) Q1 =0} =0.
This gives rise to

(3.5) 0-Q —=P—T—=0, 0-T—=P"—=Q —0

Tt is enough that X is normal, however, any paracompact space is normal [17].
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where 7 is the quotient presheaf P/Qy, i.e. the presheaf U — P(U)/Q1(U). By Lemma
3.8 the isomorphisms (3.4) yield H*(X, Q1) = H*(X, Qs) = 0. Then by taking the long
exact sequences of cohomology from the exact sequences (3.5) we obtain the desired

isomorphism. O

Using these results we may eventually prove that on paracompact spaces one has

long exact sequences in Cech cohomology.

THEOREM 3.10. Let
0—-F -F—=F" —0
be an exact sequence of sheaves on a paracompact space X. There is a long exact
sequence of Cech cohomology groups
0— HX,F)— HY(X,F)— H(X,F") - H (X, F) — ...
— H*X,F) — H¥X,F) —» H*(X, F") —» H*"Y (X, F') — ...

PROOF. Let P be the quotient presheaf F/F'; then P? ~ F”. One has an exact
sequence of presheaves
0—-F —-F—->P—0.
By taking the associated long exact sequence in cohomology (cf. Lemma 3.7) and using
the isomorphism H*(X,P) = H*(X,F") one obtains the required exact sequence. [

ExAMPLE 3.11. The long exact sequence in cohomology associated with the exact
sequence (3.1) starts with

0— H(U,Z) — H°(U,0) — H (U,0*) - HY(U,Z) — ...

This shows that the obstruction to the sequence (3.1) to be exact as a sequence of
presheaves is the first cohomology group with coefficients in Z. Since X, being a mani-
fold, is paracompact and locally Euclidean , the Cech cohomology of Z coincides with the
singular cohomology (see Proposition 3.29); therefore the above mentioned obstruction
is the non-simply connectedness of U.

2.4. Abstract de Rham theorem. We describe now a very useful way of com-
puting cohomology groups; this result is sometimes called “abstract de Rham theorem.”
As a particular case it yields one form of the so-called de Rham theorem, which states
that the de Rham cohomology of a differentiable manifold and the Cech cohomology of
the constant sheaf R are isomorphic.

DEFINITION 3.12. Let F be a sheaf of abelian groups on X. A resolution of F is a
collection of sheaves of abelian groups {LF}ren with morphisms i: F — L, dy: LF —
LFHY such that the sequence

0 FLpody prd

is exact. If the sheaves L*® are acyclic (fine) the resolution is said to be acyclic (fine).
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LEMMA 3.13. If 0 — F — L® is a resolution, the morphism ix: F(X) — LX) is
mjective.
PROOF. Let Q be the quotient £°/F. Then the sequence of sheaves
0—-F—L'-0Q0—0
is exact. By Exercise 3.7, the sequence of abelian groups
0— F(X) — L%X) — Q(X)

is exact. This implies the claim. ]

However the sequence of abelian groups
0— LX) Lﬁl(X) &,

is not exact. We shall consider its cohomology H®(L*(X),d). By the previous Lemma
we have H?(L*(X),d) ~ H°(X,F).

THEOREM 3.14. If 0 — F — L® is an acyclic resolution there is an isomorphism
H*(X,F) ~ H*(L*(X),d) for all k > 0.

PROOF. Define QF = kerdy: £F — £FT!. The resolution may be split into
0—>J-‘—>£9{—>Q1—>0, 0—-0F -k 5ot 0. k>1

Since the sheaves £* are acyclic by taking the long exact sequences of cohomology we
obtain a chain of isomorphisms

. . . - HO(X, OF)
k ~ k 1 1 N oee e Y 1 k 1 ~ !
HY(X,F)~H" " (X,Q") ~ ~ H (X, Q" ") ~ ImHU(X,ﬁkfl)

By Exercise 3.7 HO(X, Q%) = QF(X) is the kernel of dy: £L¥(X) — £F! so that the
claim is proved. ]

COROLLARY 3.15. (de Rham theorem.) Let X be a differentiable manifold. For all
k >0 the cohomology groups HE p(X) and H*(X,R) are isomorphic.

PrOOF. Let n = dim X. The sequence
(3.6) OHRHQ%LQ}(L-"%Q"X%O
(where QY% = C%) is exact (this is Poincaré’s lemma). Moreover the sheaves Q% are
modules over the fine sheaf of rings C§, hence are acyclic. The claim then follows for

the previous theorem. ]

COROLLARY 3.16. Let U be a subset of a differentiable manifold X which is diffeo-
morphic to R™. Then H*(U,R) =0 for k > 0. O
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2.5. Soft sheaves. For later use we also introduce and study the notion of soft
sheaf. However, we do not give the proofs of most claims, for which the reader is referred
to [2, 6, 25]. The contents of this subsection will only be used in Section 5.5.

DEFINITION 3.17. Let F be a sheaf a on a topological space X, and let U C X be
a closed subset of X. The space F(U) (called “the space of sections of F over U”) is
defined as

FU) = tim F(V)
VoU
where the direct limit is taken over all open neighbourhoods V of U.

A consequence of this definition is the existence of a natural restriction morphism

DEFINITION 3.18. A sheaf F is said to be soft if for every closed subset U C X the

restriction morphism F(X) — F(U) is surjective.

PROPOSITION 3.19. If0 — F' — F — F" — 0 is an ezact sequence of soft sheaves
on a paracompact space X, for every closed subset V- C X the sequence of groups

0—F (V)= FV)—F'(V)—=0
18 exact.
PRrROOF. The proof of Proposition 3.2 can be easily adapted to this situation. O

COROLLARY 3.20. The quotient of two soft sheaves on a paracompact space is soft.

Proor. If F’" = F/F' is the quotient of two soft sheaves, by Proposition 3.19 the
restriction morphism F(X) — F(V) is surjective (where V is any closed subset of X),
so that F"(X) — F"(V) is surjective as well. O

PROPOSITION 3.21. Any soft sheaf of rings R on a paracompact space is fine.

ProoF. Cf. Lemma I1.3.4 in [2]. O

PROPOSITION 3.22. Every sheaf F on a paracompact space admits soft resolutions.

PROOF. Let S°(F) be the sheaf of discontinuous sections of F (i.e., the sheaf of
all sections of the sheaf space F). The sheaf S°(F) is obviously soft. Now we have an
exact sequence 0 — F — S%(F) — F; — 0. The sheaf Fj is not soft in general, but it
may embedded into the soft sheaf SY(F;), and we have an exact sequence 0 — F; —

S°(F;) — F» — 0. Upon iteration we have exact sequences
0 — Fi —2 SH(F) 2 Firy — 0
where S¥(F) = S°(F.). One can check that the sequence of sheaves
0— F - 8F) Lo str) L

(where fi = ig11 0 pr) is exact. O



50 3. SHEAVES AND THEIR COHOMOLOGY

PROPOSITION 3.23. If F is a sheaf on a paracompact space, the sheaf S°(F) is
acyclic.

PROOF. The endomorphism sheaf End(SY(F)) is soft, hence fine by Proposition
3.21. Since S°(F) is an End(S°(F))-module, it is acyclic.® O

PROPOSITION 3.24. On a paracompact space soft sheaves are acyclic.

PROOF. If F is a soft sheaf, the sequence 0 — F(X) — S'F(X) — F(X) — 0
obtained from 0 — F — S°F — F; — 0 is exact (Proposition 3.19). Since F and
SOF are soft, so is F1 by Corollary 3.20, and the sequence 0 — F1(X) — SIF(X) —
Fa(X) — 0 is also exact. With this procedure we can show that the complex S*(F)(X)
is exact. But since all sheaves S®(F) are acyclic by the previous Proposition, by the
abstract de Rham theorem the claim is proved. ]

Note that in this way we have shown that for any sheaf F on a paracompact space
there is a canonical soft resolution.

2.6. Leray’s theorem for Cech cohomology. If an open cover il of a topolog-
ical space X is suitably chosen, the Cech cohomologies H®(U, F) and H*(X,F) are
isomorphic. Leray’s theorem establishes a sufficient condition for such an isomorphism
to hold. Since the cohomology H*®(i, F) is in generally much easier to compute, this
turns out to be a very useful tool in the computation of Cech cohomology groups.

We say that an open cover U = {U; };¢s of a topological space X is acyclic for a sheaf
Fif H’“(Uio,,,ip, F) = 0 for all k > 0 and all nonvoid intersections U,..;, = Uj,N---NUj;,,
N ip el

THEOREM 3.25. (Leray’s theorem) Let F be a sheaf on a paracompact space X, and
let 3 be an open cover of X which s acyclic for F and is indezed by an ordered set.
Then, for all k > 0, the cohomology groups H*(U, F) and H*(X,F) are isomorphic.

To prove this theorem we need to construct the so-called Cech sheaf complex. For
every nonvoid intersection Uy, i, let jig.i,: Ui..i, — X be the inclusion. For every p
define the sheaf

(3.7) CP(L, F) = H (Jio...ip )« FlU;

1< <ip

0--ip

(every factor (jio---ip)*”ﬂUio.”ip is the sheaf F first restricted to Uj,..;, and the extended by
zero to the whole of X). The Cech differential induces sheaf morphisms &: CP(i, F) —
CPHL(U, F). From the definition, we get isomorphisms

(3.8) CP (L, F)(X) ~ CP(L, F),

8We are cheating a little bit, since the sheaf of rings End(S°(F)) is not commutative. However a

closer inspection of the proof would show that it works anyways.
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i.e., by taking global sections of the Cech sheaf complex we get the Cech cochain group
complex. Moreover we have:

LEMMA 3.26. For all p and k,

Brx, e F) ~ [ E*Ui.i,. 7).

i< <ip

PROOF. By the definition of the Cech cohomology groups we have

H*(X,CP(8U, F)) = lim H* (T, CP (4, F))

um
T
where 9 runs over all open covers of X. The groups H* (0, CP(i, F)) are the cohomology

of the complex C*(2, CP(U, F)), which may be written as

CH (0, CP(3L, F)) — H CP (U, F)(Viy..0,))

Lo <---<ly,

T II 7VesnUi.s,)

bo<o <l ip<+<ip

~ Ok(mlozk,ﬂU
where U, ;, is the restriction of the cover U to Uj,. ;,. This implies the claim. O

1

iQ---ip

We may now prove Leray’s theorem. As an immediate consequence of the fact
that F fulfils the sheaf axioms, the complex é'(il, F) is a resolution of F. Under the
hypothesis of Leray’s theorem, by Lemma 3.26 this resolution is acyclic. By the abstract
de Rham theorem, the cohomology of the global sections of the resolution is isomorphic
to the cohomology of F. But, due to the isomorphisms (3.8), the cohomology of the
global sections of the resolution is the cohomology H® (L, F).

2.7. Good covers. By means of Leray’s theorem we may reduce the problem of
computing the Cech cohomology of a differentiable manifold with coefficients in the
constant sheaf R (which, via de Rham theorem, amounts to computing its de Rham
cohomology) to the computation of the cohomology of a cover with coefficients in R;
thus a problem which in principle would need the solution of differential equations on
topologically nontrivial manifolds is reduced to a simpler problem which only involves
the intersection pattern of the open sets of a cover.

DEFINITION 3.27. A locally finite open cover 3 of a differentiable manifold is good

if all nonempty intersections of its members are diffeomorphic to R™.

Good covers exist on any differentiable manifold (cf. [19]). Due to Corollary 3.16,
good covers are acyclic for the constant sheaf R. We have therefore
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PROPOSITION 3.28. For any good cover L of a differentiable manifold X one has
isomorphisms
H*(U,R) ~ H*(X,R), k>0.
O

The cover of Example 3.2 was good, so we computed there the de Rham cohomology
of the circle S*.

2.8. Comparison with other cohomologies. In algebraic topology one attaches
to a topological space X several cohomologies with coefficients in an abelian group
G. Loosely speaking, whenever X is paracompact and locally Fuclidean, all these
cohomologies coincide with the Cech cohomology of X with coefficients in the constant

sheaf GG. In particular, we have the following result:

PROPOSITION 3.29. Let X be a paracompact locally Fuclidean topological space, and
let G be an abelian group. The singular cohomology of X with coefficients in G is
isomorphic to the Cech cohomology of X with coefficients in the constant sheaf G. O

3. Sheaf cohomology

Another kind of sheaves which can be introduced is that of flabby sheaves (also called
“flasque”). A sheaf F on a topological space X is said to be flabby if for every open
subset U C X the restriction morphism F(X) — F(U) is surjective. It is easy to prove
that flabby sheaves are soft: if U C X is a closed subset, by definition of direct limit,
for every s € F(U) there is an open neighbourhood V of U and a section s’ € F(V)
which restricts to s. Since F is flabby, s’ can be extended to the whole of X. So on a
paracompact space, flabby sheaves are acyclic, and by the abstract de Rham theorem
flabby resolution can be used to compute cohomology. We should also notice that the
canonical soft resolution S*(F) we constructed in Section 2.5 is flabby, as one can easily
check by the definition itself. We shall then call S®*(F) the canonical flabby resolution
of the sheaf F (this is also called the Godement resolution of F).

One can further pursue this line and use flabby resolutions (for instance, the canon-
ical flabby resolution) to define cohomology. That is, for every sheaf F, its cohomology
is by definition the cohomology of the global sections of its canonical flabby resolution
(it then turns out that cohomology can be computed with any acyclic resolution). This
has the advantage of producing a cohomology theory (called sheaf cohomology) which
is bell-behaved (e.g., it has long exact sequences in cohomology) on every topological
space, not just on paracompact ones. In this section we briefly outline the basics of
this theory; for a more comprehensive treatment the reader may refer to [6, 4, 2], or to
[23] where a different and more general approach to sheaf cohomology (using injective
resolutions) is pursued; also the original paper by Grothendieck [9] can be fruitfully
read. It follows from our treatment that on a paracompact topological space the sheaf
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and Cech cohomology coincide, but in general they do not. In the next chapter we shall
establish the relation between the two cohomologies in terms of a spectral sequence
(cf. also [12], especially the exercise section, for a discussion of the comparison between
the two cohomologies).

DEFINITION 3.1. If F is a sheaf on a topological space X, its sheaf cohomology
groups are defined as
H'(X,F) = H'(S*(F)(X))
fori>0.

The following two results are basic for this construction. Here X is any topological

space.

PROPOSITION 3.2. If0 — F' — F — F" — 0 is an exact sequence of sheaves, with
F' flabby, for any open set U C X the sequence of abelian groups

0—F(U)— FU)—F"(U)—0
is exact (namely, the sequence is exact as a sequence of presheaves).

PROOF. Let U C X and s” € F"(U). We need to show the existence of s € F(U)
such that p(s) = s” under the map p: F — F”. Let I be the set of all pairs (W, s),
where W C U is open, and s € F(W) represents s” on W (i.e., p(s) = s‘”W) The set I is
nonempty since the morphism p is surjective in the sense of sheaves. The set I may be
given a partial ordering “by extension”, i.e., (W,s) < (W',t) if W C W' and s = .
The set has an upper bound (the union of all its elements) and then by Zorn’s lemma
it has a maximal element (W,3). If z € U \ W there is a neighbourhood V of z and
a section ¢t € F (V) which represents s” in V. Over the intersection V N W the section
5 —t lies in F’ and since F' is flabby it may be extended to V. We can then modify ¢
so that § =t in V N W, which contradicts the fact that (W, 5) is maximal. Then such
a x cannot exist, and W = U. O

COROLLARY 3.3. The quotient of two flabby sheaves is flabby.

PROOF. If we have the sequence 0 — F' — F — F’ — 0, with 7’ and F flabby,
we may apply the previous Lemma. If s € F”(U) there exists s € F(U) such that

p(s) = s”. Since F is flabby, s extends to a section ¢ of F on X, and then p(t) extends
S”. D

COROLLARY 3.4. If
0-L0—rct— ...

1s an exact sequence of flabby sheaves, for every open set U C X the sequence of abelian
groups
0— L0U) - LYU) — ...

15 exact.
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COROLLARY 3.5. Flabby sheaves are acyclic with respect to sheaf cohomology, i.e.,
HP(X,F) =0 for all p> 0 if F is a flabby sheaf.

PROOF. Apply the previous corollary to the canonical flabby resolution of . [

COROLLARY 3.6. Flabby sheaves are acyclic with respect to Cech cohomology, i.e.,
ﬁp(i,[, F) =0 for every open cover i of X and for all p > 0 if F is a flabby sheaf.

PROOF. Since F is flabby, the sheaves CP(, F) defined in Eq. (3.7) are flabby as
well. By Corollary 3.4 the sequence

o8, F)(X) S CL, Ay X)) S

is exact. Since CP(4, F)(X) = CP(i, F), this implies that the Cech complex C*(i, F)

is exact. O

As a further consequence, we have the isomorphism between Cech and sheaf coho-
mology on a paracompact space.

COROLLARY 3.7. For any sheaf F on a paracompact space X, the Cech cohomology
H*(X,F) and the sheaf cohomology H*(X,F) are isomorphic.

ProoOF. By the previous Corollary, the canonical flabby resolution of F is acyclic
for the Cech cohomology, so that the abstract de Rham theorem implies the claim. [

We want to show that sheaf cohomology is well behaved with respect to exact
sequences of sheaves on any topological space. Let us denote by Sh,x, K(Sh,x) and
K (Ab) the categories of sheaves (of abelian groups) on X, of complexes of sheaves on
X, and of complexes of abelian groups, respectively. The canonical flabby resolution

allows one to define two functors:
F — S%F)
F2 . Sh/X — K(Ab)
F o= SU(P)X)

PROPOSITION 3.8. The two functors Fy, Fy are exact (i.e., they map exact sequences

to exact sequences).
Proor. If
(3.9) 0->F - F—->F"=0

is an exact sequence of sheaves we have for every x € X an exact sequence

0— H}';—> H}—””—) H]:;’—>O

rzeX rzeX rzeX
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so that the sequence of complexes of sheaves
0— S*(F)—S*F)—S(F")—0

induced by (3.9) is exact. This proves that F} is exact. Moreover, by Proposition 3.2

the sequence
(3.10) 0— S*(FH)X)— S*(F)(X)— S(F")NX)—0
is exact as well, so that F5 is exact. O

COROLLARY 3.9. If 0 - F' — F — F" — 0 is an exact sequence of sheaves, there
1$ a long exact sequence of cohomology
0— HYX,F') - HYX,F) - H'(X,F") - H' (X, F') — ...

3.11
(3.11) — HNX,F') —» HY(X,F) —» H¥( X, F") - H" (X, F') — ...

PrOOF. The long exact sequence of cohomology associated with the exact sequence

of complexes of abelian groups (3.10) is just the sequence (3.11). O

An immediate consequence of this result is that the proof of the abstract de Rham
theorem for the Cech cohomology on a paracompact space may be applied to provide a
proof of the same theorem for sheaf cohomology on any space; thus, on any topological
space, the sheaf cohomology of a sheaf F is isomorphic to the cohomology of the complex
of global sections of a resolution of F which is acyclic for the sheaf cohomology.






CHAPTER 4

More homological algebra
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CHAPTER 5
Spectral sequences

Spectral sequences are a powerful tool for computing homology, cohomology and
homotopy groups. Often they allow one to trade a difficult computation for an easier
one. Examples that we shall consider are another proof of the Cech-de Rham theorem,

the Leray spectral sequence, and the Kiinneth theorem.

Spectral sequences are a difficult topic, basically because the theory is quite intrin-
cate and the notation is correspondingly cumbersome. Therefore we have chosen what
seems to us to be the simplest approach, due to Massey [20]. Our treatment basically
follows [3].

1. Filtered complexes
Let (K,d) be a graded differential module, i.e.,

K=@K", dEK'—-K",  d&@=0.
nez

A graded submodule of (K,d) is a graded subgroup K’ C K such that dK’' C K, i.e.,

K =@K", K"cK", d:K"-E""
nez

A sequence of nested graded submodules

K=KyD>DKiDKyD...

is a filtration of (K,d). We then say that (K, d) is filtered, and associate with it the
graded complex!

Gr(K) = Kp/Kpr1, K,=Kifp<o0,
PEZ

Note that by assumption (since every K, is a graded subgroup of K,) the filtration
is compatible with the grading, i.e., if we define K;; =K'n K, then

(5.1) K'=KyD>K!'DKyD...
is a filtration of K*, and moreover dK} C Kg“.

IThe choice of having K, = K for p < 0 is due to notational convenience.

59
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EXAMPLE 5.1. A double complex is a collection of abelian groups KP4, with p,q >
0,2 and morphisms 6 : KP? — KPtha 5, KP4 — KP4+1 guch that

(512:52220, 0109 + 0201 = 0.
Let (T, d) be the associated total complex:

T'= @ K77,  d:T'— T'"" defined by d = 61 + 6
pFHq=i

(note that the definition of d implies d?> = 0). Then letting

T,= P K™

i>p, =0

we obtain a filtration of (7', d). This satifies T}, ~ T for p < 0. The successive quotients
of the filtration are

T,/ Tyir = @ 7.
geN

0

DEFINITION 5.2. A filtration Ko of (K,d) is said to be regular if for every i > 0
the filtration (5.1) is finite; in other words, for every i there is a number £(i) such that
K =0 forp>£(i).

For instance, the filtration in Example 5.1 is regular since Tg =0 for p > i, and
indeed
i—p
T, =T'NT, =P K.
§=0

2. The spectral sequence of a filtered complex
At first we shall not consider the grading. Let K, be a filtration of a differential

module (K, d), and let
G=PK,.

PEZL

The inclusions K,41 — K, induce a morphism i: G — G (“the shift by the filtering
degree”), and one has an exact sequence

(5.2) 0-G—~c2-p-o0

2This assumption is made here for simplicity but one could let p, g range over the integers; however

some of the results we are going to give would be no longer valid.
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with E ~ Gr(K). The differential d induces differentials in G and E, so that from (5.2)
one gets an exact triangle in cohomology (cf. Section 1.1)

7

(5.3) H(G) H(G)
NP
H(E)
where k is the connecting morphism.

Let us now assume that the filtration K, has finite length, i.e., K, = 0 for p greater
than some ¢ (called the length of the filtration).

Since dK, C K, for every p, we may consider the cohomology groups H (K)). The
morphism ¢ induces morphisms i: H(Kpy1) — H(K),). Define G; to be the direct sum
of the terms on the sequence (which is not exact)

0 — H(Ky) —— H(K; ) —— ...
S H(K) 4 H(K) s H(K ) == ...,
Le, G1 = @,ez H(Kp) ~ H(G). Next we define G as the sum of the terms of the
sequence
0 — i(H(Ky))) — i(H(Kp-1)) — - ..
—i(H(Ky)) —» H(K) "= H(K_1) —— ...

Note that the morphism i(H (K7)) — H(K) is injective, since it is the inclusion of the
image of i: H(K;) — H(K) into H(K). This procedure is then iterated: G3 is the sum
of the terms in the sequence

0 —i(i(H(Ky)))) — i(i(H (Ke-1))) — i(i(H(K2))
and now the morphisms i(i(H(K3)) — i(H(K1)) and i(H(K1)) — H(K) are injective.
When we reach the step ¢, all the morphisms in the sequence

0 — i“(H(Ky))) — i NH (K1) — - ..

are injective, so that Gyyo ~ Gy, and the procedure stabilizes: G, ~ G,41 for r > ¢+41.
We define Goo = Gy41; we have
Goo =D Fy

PEL
where F,, = P(H(K,)), i.e., F, is the image of H(K),) into H(K). The groups F,
provide a filtration of H(K),

(5.4) H(K):F()DFlD-“DFgDFnglzo.
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We come now to the construction of the spectral sequence. Recall that since dK),, C
K,, and F = @p K,/K,11, the differential d acts on E, and one has a cohomology
group H(FE) wich splits into a direct sum

H(E) ~ P H(Kp/Kpy1,d).
PEZL

The cohomology group H(FE) fits into the exact triangle (5.3), that we rewrite as

i1

N
FE

where By = H(E). We define d;: By — E; by letting di = j; o k1; then d3 = 0 since
the triangle is exact. Let Fy = H(FE1,d;) and recall that Gy is the image of G; under
i: G1 — G1. We have morphisms

(5.5) G

G

i2: Go — Ga, , Jo: Go — Lk, ky: By — Go
where
(i) 42 is induced by i1 by letting is(i1(z)) = i1(i1(x)) for x € Gy;

(ii) j2 is induced by ji by letting ja(i1(x)) = [j1(z)] for = € G1, where []| denotes
taking the homology class in Ey = H(F1,dy).

(iii) ko is induced by ki by letting ka([e]) = i1(k1(e)).

EXERCISE 5.1. Show that the morphisms js and ko are well defined, and that the
triangle

i2

N
Es

is exact. O

(5.6) Go

Go

We call (5.6) the derived triangle of (5.5). The procedure leading from (5.5) to the
triangle (5.6) can be iterated, and we get a sequence of exact triangles

where each group FE, is the cohomology group of the differential module (E,_;,d,—1),
with dr—l = jr—l o) kr—l-

As we have already noticed, due to the assumption that the filtration K, has finite
length ¢, the groups G, stabilize when r > ¢ + 1, and the morphisms i,: G, — G,
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become injective. Thus all morphisms k,.: E, — G, vanish in that range, which implies
d, = 0, so that the groups F, stabilize as well: E,.1 ~ E, for r > ¢+ 1. We denote by
Eo = Eyy1 the stable value.

Thus, the sequence
OHGOOLGOOHEOOHO
is exact, which implies that F is the associated graded module of the filtration (5.4)
of H(K):
B~ @D Fp/Fpia-
p<t

DEFINITION 5.2. A sequence of differential modules {(E,,d,)} such that H(E,,d,)
~ F,.y1 is said to be a spectral sequence. If the groups E, eventually become stationary,
we denote the stationary value by FEo. If Es is isomorphic to the associated graded

module of some filtered group H, we say that the spectral sequence converges to H.

So what we have seen so far in this section is that if (K, d) is a differential module
with a filtration of finite length, one can build a spectral sequence which converges to

REMARK 5.3. It may happen in special cases that the groups F, stabilize before
getting the value r = £ 4+ 1. That happens if and only if d, = 0 for some value r = rg.
This implies that d, = 0 also for r > rg, and E,;; ~ E, for all > ry. When this
happens we say that the spectral sequence degenerates at step ryo. O

Now we consider the presence of a grading.

THEOREM 5.4. Let (K, d) be a graded differential module, and Ko a regular filtration.

There is a spectral sequence {(E,,d,)}, where each E, is graded, which converges to the
graded group H®(K,d).

Note that the filtration need not be of finite length: the length £(7) of the filtration

of K is finite for every i, but may increase with 4.

PROOF. For every n and p we have d(Kg) C K;H'l, therefore we have cohomology

groups H"(Kp). As a consequence, the groups G, are graded:
G~PF = i (HK))
nez n,peE”

and the groups FE, are accordingly graded. We may construct the derived triangles as
before, but now we should pay attention to the grading: the morphisms ¢ and j have
degree zero, but k has degree one (just check the definition: k is basically a connecting
morphism).

Fix a natural number n, and let » > ¢(n + 1) 4 1; for every p the morphisms

iy FOTL o gt
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are injective, and the morphisms
k.: B — Ftt

are zero. These are the same statements as in the ungraded case. Therefore, as it
happened in the ungraded case, the groups E;' become stationary for r big enough.
Note that G%, = @pezFy, where Fii = i*™TU(H" (K, 1)), and that the morphism
ioo sends Fl | injectively into F for every n, and there is an exact sequence

0— G —=,G" — E" —0.

This implies that E, is the graded module associated with the graded complex H*(K,d).
O

The last statement in the proof means that for each n, F,' is a filtration of H" (K, d),
and BT ~ @pGZ F;f/F;H

3. The bidegree and the five-term sequence

The terms E, of the spectral sequence are actually bigraded; for instance, since the
filtration and the degree of K are compatible, we have

Kp/Kp1 =~ EBKS/KEH = EBK;Z;Jrq/Kin]
q€Z q€Z
and Ey = F is bigraded by
Ey= P Ey?  with E}¢ = KprO/KP
PgEZ
Note that the total complex associated with this bidegree yields the gradation of F.
Let us go to next step. Since d: Ki™9 — K£+q+1, ie., d: EfY — Eg’qH, and
E, = H(E,d), if we set
VY = HO(ED®,d) ~ H(Ky [ Kpin)
we have E1 ~ @, oz B7.
If we go one step further we can show that
dy: EP? — EPThe
Indeed if z € EV? ~ HPT(K,/K,11) we write z as x = [e] where e € Kgﬂ/Kgif so
that ky(z) =iy (k(e)) € HPTITH(K, 1) and
di(w) = ji(k1(x)) = ji(k(e)) € HPF I (Kpar [ Kpyo) ~ EY T

As a result we have Fy ~ @ ED? with

P,qEL
Eg’q ~ H”(EI’q, dy).

The same analysis shows that in general E, ~ @ EP? with

D,qEZL

. P p+r,q—r+1
dr: EPY — EY
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and moreover we have

0,9 ~ P+aq /) pPta
BRI~ FPH/Frr

The next two Lemmas establish the existence of the morphisms that we shall use to
introduce the so-called five-term sequence, and will anyway be useful in the following.

LEMMA 5.1. There are canonical morphisms H1(K) — EXY.

PrROOF. Since K, ~ K for p < 0 we have F}} ~ H"(K,) = H"(K) for p < 0,
hence E2? = 0 for p < 0 and Ex! ~ FJ/F! ~ HY(K)/F{, so that there is a surjective
morphism H?(K) — Eod.

Note now that a nonzero class in E>¢ cannot be a boundary, since then it should

r,q+r—1

come from FE, = 0. So cohomology classes are cycles. Since cohomology classes

are elements in ngl, we have inclusions ngl c B (ngl is the subgroup of cycles
in E? ’q). This yields an inclusion ESC’? C E,Q 4 for all r.

Combining the two arguments we obtain morphisms H?(K) — EX, O

LEMMA 5.2. Assume that K} = 0 if p > n (so, in particular, the filtration is
reqular). Then for every r > 2 there is a morphism EPY H?(K).

PROOF. The hypothesis of the Lemma implies that EX'? = 0 for ¢ < 0 (indeed,
FPH — " (HP+9(K,,)) for r big enough, so that F¥T9 = 0 if ¢ < 0 since then K2 = 0).
As a consequence, for r > 2 the differential d,: EF® — EP™'™" maps to zero, i.e., all
elements in EP are cycles, and determine cohomology classes in Erfl. This means we
have a morphism EY 0 Effl, and composing, morphisms E¥ 0 grd

Since F}' = 0 for p > n we have EPY ~ Fy/F)) , ~ Fy so that one has an injective

morphism E%’ — HP(K). Composing we have a morphism EF’ — HP(K). O

PROPOSITION 5.3. (The five-term sequence). Assume that K} = 0 if p > n. There
s an exact sequence
0— B2 = HYK) — ES'—25 E20  H2(K).
PROOF. The morphisms involved in the sequence in addition to ds have been defined
in the previous two Lemmas. We shall not prove the exactness of the sequence here, for
a proof cf. e.g. [6]. O

4. The spectral sequences associated with a double complex

In this Section we consider a double complex as we have defined in Example 5.1.

Due to the presence of the bidegree, the result in Theorem 5.4 may be somehow refined.
We shall use the notation in Example 5.1. The group

- Q-G @ K

PEZL pEZ n>p, qeN
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has natural gradation G = ®,czG" given by

n—p
(5.7) =Py ~PpPr

PEL p€eZ j=0

but it also bigraded, with bidegree

G = TP+,
Notice that if we form the total complex €, ,_,, G"? we obtain the complex (5.7) back:
q n—p
@ GPY ~ EB @Kerq—j,j - @Kn—j,j - G".
p+q=n p+qg=n j=0 7=0

The operators 61, 99 and d = §; + d9 act on G:

61: G — Gntha 8y = G — GMatL d: GF — gk,

We analyze the spectral sequence associated with these data. The first three terms
are easily described. One has

0,9 ~, TP+q JTPTE ~ 1D
E, _Tp /Tp+1_K

so that the differential dy: Ef? — Eg’q+1 coincides with 69: KP4 — KP4+l and one

has
(5.8) Ef’q ~ HY(KP* 09).

At next step we have di: EP? — EPTY with EP? ~ HPH(T, /T, 1) and T,/Tpi1 ~
@D,z K. Hence the differential

dy: Hp+q(@ KP™) — Hp+q+1(@ Kp+1,n)
neZ nez

is identified with §1, and

(5.9) EDY ~ HP(EY 6.

One should notice that by exchanging the two degrees in K (i.e., considering another
double complex 'K such that 'KP9 = K%P), we obtain another spectral sequence, that
we denote by {'E,, 'd,}. Both sequences converge to the same graded group, i.e., the
cohomology of the total complex (but the corresponding filtrations are in general differ-
ent), and this often provides interesting information. For the second spectral sequence

we get,

(5.10) 'EIP ~ HP(K*9,5y)
(5.11) 'EIP ~ HI(EP®5,).
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ExAaMPLE 5.1. A simple application of the two spectral sequences associated with a
double complex provides another proof of the Cech-de Rham theorem, i.e., the isomor-
phism H*(X,R) ~ H} ,(X) for a differentiable manifold X. Let & = {U;} be a good
cover of X, and define the double complex

KP9 = CP(, Q7).

i.e., K*is the complex of Cech cochains of {f with coefficients in the sheaf of differential
g-forms. The first differential §; is basically the Cech differential §, while & is the
exterior differential d.® Actually 6 and d commute rather than anticommute, but this
is easily settled by defining the action of §; on KP? as §; = (—1)9§ (this of course
leaves the spaces of boundaries and cycles unchanged). We start analyzing the spectral
sequences from the terms F4. For the first, we have

B o e ) > [ HyelUis).

1< <ip
Since all Uy, 4, are contractible we have
EPY ~ CP(YU,R)
EP?T = 0forq+#0.
As a consequence we have EY? = 0 for ¢ # 0, while
EPY ~ HP(C*(U,R),8) = HP(3,R).

This implies that do = 0, so that the spectral sequence degenerates at the second step,
and E2 = 0 for ¢ # 0 and EE ~ HP(4,R). The resulting filtration of H?(T, D) has
only one nonzero quotient, so that HP(T, D) ~ HP({,R).

Let us now consider the second spectral sequence. We have
'EYY ~ HI(K*P §) = HY(C®(U, QP),5) = HI(U, QP).

Since the sheaves QP are acyclic, we have

EPY ~ HO®U,QP) ~ QP(X)

EP?T = 0forq#0.
At next step we have therefore 'EY? = 0 for ¢ # 0, and

,0 °

'EYY ~ HP(Q*(X),d)) ~ H} 5(X) .

Again the spectral sequence degenerates at the second step, and we have HP(T, D) ~
HY, o (X). Comparing with what we got from the first sequence, we obtain H}) ,(X) ~
HP(4,R). Taking a direct limit on good covers, we obtain HP(X,R) ~ HY, ,(X).

3Here a notational conflict arises, so that we shall denote by D the differential of the total complex
T.



68 5. SPECTRAL SEQUENCES

REMARK 5.2. From this example we may get the general result that if at step r,
with r > 1, we have EP"? = 0 for ¢ # 0 (or for p # 0) then the sequence degenerates at
step r, and EP? ~ HP(T,d) (or Ey? ~ HY(T, d)).

5. Some applications

5.1. The spectral sequence of a resolution. In this section we extend Example
5.1 to a much general situation. Let (L£°, f) be a complex of sheaves on a paracompact
topological space X, and let 4 be an open cover of X. We introduce the double complex
KP4 = CP(4, £7). We shall denote by H?(L*) the cohomology sheaves of the complex
L*. These are the sheaves associated with the quotient presheaves

i Ker fi LYU) — LTTHU)
HAU) = Im f: L9~1(U) — LYU)

The F4 term of the first spectral sequence is
EP? ~ HI(KP*®,85) = HI(CP(U, L), f)) = CP(4, HI(L?)).
The second term of the sequence is
EY® ~ HP(BY?,61) ~ HP(C* (W, HI(L*)), 8) =~ HP (U, HI(L®))
where, since X is paracompact, we have replaced the presheaves H® with the corre-

sponding sheaves H® (possibly replacing the cover i by a suitable refinement).

For the second spectral sequence we have
"BV~ HI(K*P §1) ~ HI(C*(U, LP),61) ~ HP(U, L)
'EIP ~ HP('E}®,69) ~ HP(HI(L, L*), f).

Let assume now that £® is a resolution of a sheaf F; then H?(L®) = 0 for g # 0,
and ‘H°(L®) ~ F. The first spectral sequence degenerates at the second step, and we
have EY"? = 0 for ¢ # 0 and Eg’o ~ HP(U,F). The second spectral sequence does not
degenerate, but we may say that it converges to the graded group H®(4, F) (since the
same does the first sequence). By taking direct limit over the cover i, we have:

PROPOSITION 5.1. Given a resolution L® of a sheaf F on a paracompact space X,
there is a spectral sequence €, whose second term is €57 = HI(HP(X, L®), f), which

converges to the graded group H®(X,F).

The canonical filtrations of a double complex always satisfy the hypothesis of Lemma
5.2. So, considering the first spectral sequence, we obtain morphisms (again taking a
direct limit)

HY(LY(X), f) = HY(X, F).
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In general these are not isomorphisms. The same morphisms could be obtained by
breaking the exact sequence 0 — F — L® into short exact sequences, taking the asso-
ciated long exact cohomology sequences and suitably composing the morphisms, as in
the proof of the abstract de Rham theorem 3.14.

A further specialization is obtained if the resolution £°® is acyclic; then the second
spectral sequence degenerates at the second step as well, and we get isomorphisms
HP(X,F)~ HP(L*(X), f), i.e., we have another proof of the abstract de Rham theorem
3.14.

5.2. The spectral sequence of a fibred space. Let F be a sheaf on a para-
compact space X and 7w: X — Y a continuous map, where Y is a second paracompact
space. We shall use the fact that every sheaf of abelian groups on space admits flabby
resolutions (cf. Sections 3.2.5 and 3.3). We shall associate a spectral sequence to these

data. We consider the complex

(5.12) 0 — mF — m Ly Lﬂr*ﬁl 1, ...

where (L®, f) is a flabby resolution of F. The morphism 7,F — m Ly is injective, but
otherwise the complex (5.12) is no longer exact. However, the sheaves m,L® are flabby.
We denote by RFr,F the cohomology sheaves H*(m,.L£*).These sheaves are called the
higher direct images of F. Note that Rr,F ~n.F.

PROPOSITION 5.2. The sheaf RFm,F is isomorphic to the sheaf associated with the
presheaf P¥ on'Y defined by P*(U) = H* (==Y (U), F).

This implies that the sheaves RFr,F do not depend, up to isomorphism, on the
choice of the resolution.

PROOF. RFr,F is by definition the sheaf associated with the presheaf

ker f: LF(n=1(U)) — LK (7~ (1))
Im f: LE-N (7= Y(U)) — L (7= 1(U))

Since the restriction of a flabby sheaf to an open subset is flabby, by the abstract de

U~ = HM (L (= '(U), ).
Rham theorem we have isomorphisms
L7 1), f) = HY(n~1(U), F),

whence the claim follows. O

Let us consider the double complex CP(4, m,L£9), where il is a locally finite open
cover of Y. The two spectral sequences we have previously studied yield at the second

term

EPY ~ HP(Y, RI7, F)
TERY ~ HI(HP (AU, 7, L), f)
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Since the sheaves 7, L® are soft (hence acyclic) the second spectral sequence degenerates,
and one has 'E5’ = 0 for p # 0, and

"B ~ 'Eg’q ~ HI(H(Y,m.L%), f)
~ HYLY(X),[f) ~HIX,F).
Again after taking a direct limit, we have:

PROPOSITION 5.3. Given a continuous map of paracompact spaces w: X — Y and a
sheaf F on X, there is a spectral sequence €4 whose second term is €5 = HP (Y, Ri, F),
which converges to the graded group H*(X,F).

We describe without proof the relation between the stalks of the sheaf RFm,F
at points ¥y € Y and the cohomology groups H*(7~1(y), F); here F is to be consid-

! ~1F) where

, i.e., more precisely we should write H*(7~1(y), iy

ered as restricted to m—
iy: ™ Y(y) — X is the inclusion. Since

(RM'mF)y = lim (RFm F)(U) = lim H* (=~ (U), F),
yeU yeU
while H*(7m~1(y), F) is the direct limit of the groups H*(V, F) where V ranges over all
open neighbourhoods of w~!(y), there is a natural map
(5.13) (RFm.F)y — H (77 (y), F) .
This is an isomorphism under some conditions, e.g., if Y is locally compact and 7 is
proper (cf. [6]). This happens for instance when both X and Y are compact.

As a simple Corollary to Proposition 5.3 one obtains Leray’s theorem:

COROLLARY 5.4. If every point y € Y has a system of neighbourhoods whose pre-
images are acyclic for F, then H*(X,F) ~ H*(Y,m.F) for all k > 0.

PROOF. The hypothesis of the Corollary means that every y € Y has a system of
neighbourhoods {U} such that H*(z='(U),F) = 0 for all ¥ > 0. This implies that
REm,F = 0 for k > 0, so that the only nonzero terms in the spectral sequence &, are
0372”0 ~ HP(Y,m.F). The sequence degenerates and the claim follows. U

5.3. The Kiinneth theorem. Let X, Y be topological spaces, and G an abelian
group. We shall denote by the same symbol G the corresponding constant sheaves on
the spaces X, Y and X x Y. The Kiinneth theorem computes the cohomology groups
H*(X xY,G) in terms of the groups H*(X,Z) and H*(Y,G).

We shall need the following version of the universal coefficient theorem.

ProposiTION 5.5. If X is a paracompact topological space and G a torsion-free
group, then H*(X,G) ~ H*(X,Z) ®z G for all k > 0.

Proor. Cf. [21]. O
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PROPOSITION 5.6. Assume that the groups H*(Y,G) have no torsion over Z, and

that X and Y are compact Hausdorff and locally Euclidean. Then,

HYX xY,G)~ @ HY(X,Z)® H(Y,G).

p+q=k

PRrROOF. Let m: X x Y — X be the projection onto the first factor. If U is a
contractible open set in U, then by the homotopic invariance of the cohomology with
coefficients in a constant sheaf (which follows e.g. from its isomorphism with singular
cohomology) we have H*(U x Y,G) ~ H*(Y,G). If V C U, the morphism H®*(U x
Y,G) — H*(V x Y,QG) corresponds to the identity of H*(Y,G). Under the present
hypotheses the morphism (5.13) is an isomorphism. These facts imply that RP7,.G is the
constant sheaf on X with stalk HP(Y, G). The second term of the spectral sequence of
Proposition 5.3 becomes €57 ~ HP(X, H1(Y,G)). By the universal coefficient theorem,
since the groups H?(Y, G) have no torsion over Z, we have €59 ~ HP (X, Z)®,H1 (Y, G).
O






Part 2
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CHAPTER 6
Complex manifolds and vector bundles

In this chapter we give a sketchy introduction to complex manifolds. The reader is
assumed to be acquainted with the rudiments of the theory of differentiable manifolds.

1. Basic definitions and examples

1.1. Holomorphic functions. Let U C C be an open subset. We say that a
function f: U — C is holomorphic if it is C'' and for all = € U its differential D f,: C —
C is not only R-linear but also C-linear. If elements in C are written z = x + 4y, and
we set f(z,y) = a(x,y) + i6(z,y), then this condition can be written as

(6-1) Oy = ﬁya Qy = — Bz

(these are the Cauchy-Riemann conditions). If we use z, z as variables, the Cauchy-
Riemann conditions read f; = 0, i.e. the holomorphic functions are the C'' function of

the variable z. Moreover, one can show that holomorphic functions are analytic.

The same definition can be given for holomorphic functions of several variables.

DEFINITION 6.1. Two open subsets U, V of C™ are said to biholomorphic if there
exists a bijective holomorphic map f: U — V whose inverse is holomorphic. The map
f itself is then said to be biholomorphic.

1.2. Complex manifolds. Complex manifolds are defined as differentiable mani-
folds, but requiring that the local model is C", and that the transition functions are

biholomorphic.

DEFINITION 6.2. An n-dimensional complex manifold is a second countable Haus-
dorff topological space X together with an open cover {U;} and maps 1;: U; — C™ which
are homeomorphisms onto their images, and are such that all transition functions

;o 1/Jj_ll QﬁJ<UZ N Uj) — 1/}Z(UZ N Uj)
are biholomorphisms.

EXAMPLE 6.3. (The Riemann sphere) Consider the sphere in R? centered at the
origin and having radius %, and identify the tangent planes at (0, 0, %) and (0,0, —%) with
C. The stereographic projections give local complex coordinates z;, zo; the transition
function zo = 1/2; is defined in C* = C — {0} and is biholomorphic.

75
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1-dimensional complex manifolds are called Riemann surfaces. Compact Riemann
surfaces play a distinguished role in algebraic geometry; they are all algebraic (i.e. they
are sets of zeroes of systems of homogeneous polynomials), as we shall see in Chapter
8.

EXAMPLE 6.4. (Projective spaces) We define the n-dimensional complex projective
space as the space of complex lines through the origin of C"*1, i.e.
B Ccntl _ {0}
-——
By standard topological arguments P, with the quotient topology is a Hausdorff second-

Pr

countable space.

Let m: C"*1 — {0} — P, be the projection, If w = (w,...,w") € C"*! we shall
denote 7(w) = [w?, ..., w"]. The numbers (w’,...,w") are said to be the homogeneous
coordinates of the point 7(w). If (u°, ... u™) is another set of homogeneous coordinates
for m(w), then u' = Mw’, with A € C* (i =0,...,n).

Denote by U; € C**! the open set where w' # 0, let U; = 77((?,-), and define a map

0 i—1 1+1 n
wi:UiHCn, w([wo,,w”])—<w ...,w - ,w - ,...,w).

wt’ wt T owt w?

The sets U; cover P,,, the maps ¢; are homeomorphisms, and their transition functions
-1
vio; : 4i(U;) — ¢i(Us),
1 i—1 itl n
_ z z z 1 z
¢io¢j1(zl,...,zn):<.,..., —, ey Ty >,

2t 2t

j-th argument
are biholomorphic, so that P, is a complex manifold (we have assumed that ¢ < j). The
map 7 restricted to the unit sphere in C"*! is surjective, so that P, is compact. The
previous formula for n = 1 shows that P; is biholomorphic to the Riemann sphere.

The coordinates defined by the maps 1);, usually denoted (2!,...,2"), are called

affine or Euclidean coordinates.

EXAMPLE 6.5. (The general linear complex group). Let
My, , = {k x n matrices with complex entries, k < n}

Mk,n = {matrices in M}, of rank k}, i.e.

¢
Mk,n = U{A € My, suchthat detA;# 0}
i=1
where A;, ..., Ay are the £ x k minors of A. M}, , is a complex manifold of dimension
kn; Mkn is an open subset in M}, ,,, as its second description shows, so it is a complex

manifold of dimension kn as well. In particular, the general linear group Gl(n,C) =

M,, , is a complex manifold of dimension n?. Here are some of its relevant subgroups:
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(i) U(n) = {A € Gl(n,C) such that AAf =T};

(ii)) SU(n) = {A € U(n) such that detA=1};
these two groups are real (not complex!) manifolds, and dimg U(n) = n?, dimg SU(n) =
n? — 1.

(iii) the group Gl(k,n;C) formed by invertible complex matrices having a block

form

A 0
o we(a0)

where the matrices A, B, C are k x k, (n — k) x k, and (n — k) x (n — k), respectively.
Gl(k,n;C) is a complex manifold of dimension k2 +n? —nk. Since a matrix of the form
(6.2) is invertible if and only if A and C are, while B can be any matrix, Gi(k,n;C) is
biholomorphic to the product manifold Gl(k,C) x Gl(n — k,C) x My, . O

1.3. Submanifolds. Given a complex manifold X, a submanifold of X is a pair
(Y,¢), where Y is a complex manifold, and ¢: Y — X is an injective holomorphic map
whose jacobian matrix has rank equal to the dimension of Y at any point of Y (of course
Y can be thought of as a subset of X).

EXAMPLE 6.6. Gl(k,n;C) is a submanifold of Gl(n,C).

EXAMPLE 6.7. For any k < n the inclusion of C**! into C"*! obtained by setting
to zero the last n — k coordinates in C"*! yields a map Pj, — P,,; the reader may check
that this realizes P, as a submanifold of P,,.

EXAMPLE 6.8. (Grassmann varieties) Let
G,n = {space of k-dimensional planes in C"}

(so Gy, =P, —1). This is the Grassmann variety of k-planes in C". Given a k-plane,
the action of Gl(n,C) on it yields another plane (possibly coinciding with the previous
one). The subgroup of Gl(n,C) which leaves the given k-plane fixed is isomorphic to
Gl(k,n;C), so that
Gl(n,C)
Gen ™~ 47—~ -
’ Gl(k,n;C)
As the reader may check, this representation gives G}, the structure of a complex
manifold of dimension k(n—k). Since in the previous reasoning GI(n, C) can be replaced
by U(n), and since Gl(k,n; C)NU(n) = U(k) xU(n—k), we also have the representation
U(n)
U(k)xU(n—k)

Gk,n =

showing that G}, ,, is compact.
An element in G}, singles out (up to a complex factor) a decomposable element in
AkC™
A=V A A
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where the v; are a basis of tangent vectors to the given k-plane. So Gy, imbeds into
P(A*C™) = Py, where N = ((})) — 1 (this is called the Plicker embedding. If a basis
{vi,...,v,} is fixed in C", one has a representation

n
A= Z Plllk Uiy /\/\Ulka

i1y yip=1

the numbers P;, ; are the Pliicker coordinates on the Grassmann variety.

2. Some properties of complex manifolds

2.1. Orientation. All complex manifolds are oriented. Consider for simplicity the
1-dimensional case; the jacobian matrix of a transition function 2’ = f(2) = a(x,y) +
if(x,y) is (by the Cauchy-Riemann conditions)

g [0 ay) _ [ ay
B ﬁy Oy Oy
so that det J = a2 + ag > 0, and the manifold is oriented.

Notice that we may always conjugate the complex structure, considering (e.g. in the
1 0

1-dimensional case) the coordinate change z — Z; in this case we have J = 0 _1

i

so that the orientation gets reversed.

2.2. Forms of type (p,q). Let X be an n-dimensional complex manifold; by the
identification C" ~ R?", and since a biholomorphic map is a C*° diffeomorphism, X
has an underlying structure of 2n-dimensional real manifold. Let T X be the smooth
tangent bundle (i.e. the collection of all ordinary tangent spaces to X). If (z1,...,2") is
a set of local complex coordinates around a point © € X, then the complexified tangent
space T, X ®r C admits the basis

(o) (o). (o) - (5).)

This yields a decomposition
TXC=TXaT"'X

which is intrinsic because X has a complex structure, so that the transition functions

are holomorphic and do not mix the vectors 82,. with the a‘; . As a consequence one has

a decomposition
NT*X®C= @ Q"X  where  QPIX = AP(T'X)* ® AYT"X)".
pt+q=1
The elements in QP9X are called differential forms of type (p,q), and can locally be
written as

0= My jioge (2, 2) 2"V Ao Ndz™ AdZTT A A dE
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The compositions
Qprtlax

/
Opax J> APHa+1*

T

define differential operators 9, d such that

0*=0"=00+00=0

(notice that the Cauchy-Riemann condition can be written as 0f = 0).

3. Dolbeault cohomology

Another interesting cohomology theory one can consider is the Dolbeault cohomology
associated with a complex manifold X. Let QP4 denote the sheaf of forms of type (p, q)
on X. The Dolbeault (or Cauchy-Riemann) operator 9: QP4 — QP4+! squares to zero.

Therefore, the pair (2P*(X), 0) is for any p > 0 a cohomology complex. Its cohomology
groups are denoted by Hg’q(X), and are called the Dolbeault cohomology groups of X.

We have for this theory an analogue of the Poincaré Lemma, which is sometimes

called the d-Poincaré Lemma (or Dolbeault or Grothendieck Lemma).

PROPOSITION 6.1. Let A be a polycylinder in C™ (that is, the cartesian product of
disks in C). Then Hg’q(A) =0 forq>1.

Proor. Cf. [10]. O

Moreover, the kernel of the morphism 9: QP — QP! is the sheaf of holomorphic
p-forms QP. Therefore, the Dolbeault complex of sheaves 2P® is a resolution of QP,
i.e. for all p=0,...,n (where n = dimc X) the sheaf sequence

o prl 0 0

0— QF — QPO Pl -0

is exact. Moreover, the sheaves QP are fine (they are C-modules). Then, exactly as
one proves the de Rham theorem (Theorem 3.3.15), one obtains the Dolbeault theorem:

PROPOSITION 6.2. Let X be a complex manifold. For all p,q > 0, the cohomology
groups Hg’q(X) and HY(X,QP) are isomorphic. O
4. Holomorphic vector bundles

4.1. Basic definitions. Holomorphic vector bundles on a complex manifold X are
defined in the same way than smooth complex vector bundles, but requiring that all the

maps involved are holomorphic.
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DEFINITION 6.1. A complex manifold E is a rank n holomorphic vector bundle on
X if there are

(i) an open cover {Uy} of X

(ii) a holomorphic map 7: E — X

(i4i) holomorphic maps o : m 1 (Uy) — Us x C*
such that

(i) ™ = pry otby, where = pr; is the projection onto the first factor of U, x C";

(it) for all p € Uy NUg, the map

pryotg 0 Yy (p,0): C" — C"

1 a linear isomorphism.

Vector bundles of rank 1 are called line bundles.

With the data that define a holomorphic vector bundle we may construct holomor-
phic maps
gag: UaNUg — Gl(n,C)
given by
93 (p) - & = pry o 0 U5 (1)

These maps satisfy the cocycle condition
9op 9y Gya =1d  on UsNUgNU,.

The collection {Uy, 14} is a trivialization of E.

For every z € X, the subset E, = 7~ 1(z) C E is called the fibre of E over z. By
means of a trivialization around x, E, is given the structure of a vector space, which is
actually independent of the trivialization.

A morphism between two vector bundles E, F' over X is a holomorphic map f: F —
F such that for every x € X one has f(F,) C F,, and such that the resulting map
fz: B — F, is linear. If f is a biholomorphism, it is said to be an isomorphism of

vector bundles, and E and F' are said to be isomorphic.

A holomorphic section of E over an open subset U C X is a holomorphic map
s: U — FE such that m o s = Id. With reference to the notation previously introduced,
the maps
S()i: Ua — E, S(a)i(T) = (x, e;), i=1,...,n
where {e;} is the canonical basis of C", are sections of E over U,. Let E(U,) denote
the set of sections of E over U,; it is a free module over the ring O(U,,) of holomorphic
functions on Uy, and its subset {s(4); }i=1,...» is a basis. On an intersection U, NUg one

has the relation .

Sy = O _(9aB)ik S(8)k-
=1
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EXERCISE 6.2. Show that two trivializations are equivalent (i.e. describe isomorphic
bundles) if there exist holomorphic maps A, : Uy, — Gl(n,C) such that

(6'3) g:xﬁ = Aa Jap )\51
U

EXERCISE 6.3. Show that the rule that to any open subset U C X assigns the
O% (U)-module of sections of a holomorphic vector bundle E defines a sheaf £ (which
actually is a sheaf of Ox-modules).

If £ is a holomorphic (or smooth complex) vector bundle, with transition functions
Jag, then the maps

(6.4) Jop = (ggﬁ)_l

(where T denotes transposition) define another vector bundle, called the dual vector
bundle to E, and denoted by E*. Sections of E* can be paired with (or act on) sections
of E, yielding holomorphic (smooth complex-valued) functions on (open sets of) X.

EXAMPLE 6.4. The space E = X x C™, with the projection onto the first factor, is
obviously a holomorphic vector bundle, called the trivial vector bundle of rank n. We
shall denote such a bundle by C" (in particular, C denotes the trivial line bundle). A
holomorphic vector bundle is said to be trivial when it is isomorphic to C™.

Every holomorphic vector bundle has an obvious structure of smooth complex vector
bundle. A holomorphic vector bundle may be trivial as a smooth bundle while not being
trivial as a holomorphic bundle. (In the next sections we shall learn some homological
techniques that can be used to handle such situations).

ExAMPLE 6.5. (The tangent and cotangent bundles) If X is a complex manifold,
the “holomorphic part” T’ X of the complexified tangent bundle is a holomorphic vector
bundle, whose rank equals the complex dimension of X. Given a holomorphic atlas
for X, the locally defined holomorphic vector fields % ey a% provide a holomorphic
trivialization of X, such that the transition functions of 7X are the jacobian matrices
of the transition functions of X. The dual of 7" X is the holomorphic cotangent bundle

of X.

EXAMPLE 6.6. (The tautological bundle) Let (w', ..., w"*!) be homogeneous coor-
dinates in P,,. If to any p € IP,, (which is a line in C"!) we associate that line we obtain
a line bundle, the tautological line bundle L of P,,. To be more concrete, let us exhibit
a trivialization for L and the related transition functions. If {U;} is the standard cover
of P,,, and p € U;, then w’ can be used to parametrize the points in the line p. So if
p has homogeneous coordinates (w’,...,w"), we may define v;: 7= (U;) — U; x C as
Yi(u) = (p,w’) if p = w(u). The transition function is then g; = w'’/w¥. The dual
bundle H = L* acts on L, so that its fibre at p = m(u), u € C*"*! can be regarded as
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the space of linear functionals on the line Cu = L,, i.e. as hyperplanes in C"*!. Hence
H is called the hyperplane bundle. Often L is denoted O(—1), and H is denoted O(1)
— the reason of this notation will be clear in Chapter 7.

In the same way one defines a tautological bundle on the Grassmann variety G ;
it has rank k.

EXERCISE 6.7. Show that that the elements of a basis of the vector space of global
sections of L can be identified homogeneous coordinates, so that dim H(P,, L) = n +
1. Show that the global sections of H can be identified with the linear polynomials
in the homogeneous coordinates. Hence, the global sections of H" are homogeneous

polynomials of order r in the homogeneous coordinates. (|

4.2. More constructions. Additional operations that one can perform on vector
bundles are again easily described in terms of transition functions.

(1) Given two vector bundles E7 and FEs, of rank r; and ry, their direct sum Fy @ Eo
is the vector bundle of rank r; + ro whose transition functions have the block matrix

(ggg : )
(2)
0 9op

(2) We may also define the tensor product Ey ® Ea, which has rank rijry and has
1) (2

transition functions g, 5903 This means the following: assume that Fy and F» trivialize

form

over the same cover {U,}, a condition we may always meet, and that in the given
trivializations, Fy and Ep have local bases of sections {s(4);} and {t(q)}. Then £y ® Ey
has local bases of sections {s(4); ® t(4);} and the corresponding transition functions are

given by

T1 T2

S(a) ®t k—zz zmgag kn ()m®t([3)n

m=1n=1

In particular the tensor product of line bundles is a line bundle. If L is a line
bundle, one writes L™ for L ® --- ® L (n factors). If L is the tautological line bundle
on a projective space, one often writes L™ = O(—n), and similarly H" = O(n) (notice
that O(—n)* = O(n)).

(3) If E is a vector bundle with transition functions g,g, we define its determinant
det £ as the line bundle whose transition functions are the functions det g,g. The
determinant bundle of the holomorphic tangent bundle to a complex manifold is called

the canonical bundle K.

EXERCISE 6.8. Show that the canonical bundle of the projective space P, is isomor-
phic to O(—n — 1).

EXAMPLE 6.9. Let 7: C*"*! — {0} — P, be the usual projection, and let (w!,...,
w"™*1) be homogeneous coordinates in P,,. The tangent spaces to P, are generated by
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the vectors m%, and these are subject to the relation

n+1

~ 0
2w g =0
=1

If ¢ is a linear functional on C™t! the vector field

v(w) = (w) 8?ui

(1 is fixed) satisfies v(Aw) = Av(w) and therefore descends to P,. One can then define

a map

E: HO") TP,

n+1 9
(01, yOpt1) — Z; oi(w) B

(recall that the sections of H can be regarded as linear functionals on the homogeneous
coordinates). The map F is apparently surjective. Its kernel is generated by the section
oi(w) =w',i=1,...,n+ 1; notice that this is the image of the map

C — HO ), 1= (wh,... 0",

)

The morphism H®"+1) — TP, may be regarded as a sheaf morphism Op, (1)®"+1)
— TP,, the second sheaf being the tangent sheaf of P,, i.e., the sheaf of germs of
holomorphic vector fields on P,,, and one has an exact sequence

0— Op, — Op (1)) L TP, —0

called the Fuler sequence. O

5. Chern class of line bundles

5.1. Chern classes of holomorphic line bundles. Let X a complex manifold.
We define Pic(X) (the Picard group of X)) as the set of holomorphic line bundles on X
modulo isomorphism. The group structure of Pic(X) is induced by the tensor product
of line bundles L® L'; in particular one has L® L* ~ C (think of it in terms of transition
functions — here C denotes the trivial line bundle, whose class [C] is the identity in
Pic(X)), so that the class [L*] is the inverse in Pic(X) of the class [L].

Let O denote the sheaf of holomorphic functions on X, and O* the subsheaf of
nowhere vanishing holomorphic funtions. If L ~ L’ then the transition functions gz,
g&ﬂ of the two bundles with respect to a cover {U,} of X are 2-cocycles O*, and satisfy

A

/ o . %

9B = YaB~— with Aa € OF(Uy),
¢ )‘ﬁ

so that one has an identification Pic(X) ~ H'(X,0*). The long cohomology sequence
associated with the exact sequence

07— 02,0 50
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(where exp f = e?™1) contains the segment
HY(X,Z) - H\(X,0) — H'(X,0") -~ H%(X,Z) — H*(X,0)
where 0 is the connecting morphism. Given a line bundle L, the element
er(L) = 8([L]) € H¥(X, Z)
is the first Chern class' of L. The fact that § is a group morphism means that
ci(L® L) =c(L)+ e (L).

In general, the morphism § is neither injective nor surjective, so that
(i) the first Chern class does not classify the holomorphic line bundles on X; the
group
Pic’(X) =kerd ~ H'(X,0)/Im H (X, Z)
classifies the line bundles having the same first Chern class.

(ii) not every element in H?(X,Z) is the first Chern class of a holomorphic line
bundle.

The image of ¢; is a subgroup NS(X) of H?(X,Z), called the Néron-Severi group of X.
EXERCISE 6.1. Show that all line bundles on C™ are trivial.

EXERCISE 6.2. Show that there exist nontrivial holomorphic line bundles which are
trivial as smooth complex line bundles. ]

Notice that when X is compact the sequence
0— H°X,Z) — H*(X,0) — H*(X,0%) — 0

is exact, so that Pic®(X) = HY(X,0)/H'(X,Z). If in addition dim X = 1 we have
H?(X,0) = 0, so that every element in H?(X, Z) is the first Chern class of a holomorphic
line bundle.?

From the definition of connecting morphism we can deduce an explicit formula for
a Cech cocycle representing ¢; (L) with respect to the cover {Ug}:

{c1(L)}apy = 355 (108 gap + 10g gpy + 108 ga) -

From this one can easily prove that, if f : X — Y is a holomorphic map, and L is a line
bundle on Y, then

c1(f*L) = fH(er(L))

IThis allows us also to define the first Chern class of a vector bundle E of any rank by letting
Cl(E) = C1 (det E)

2Here we use the fact that if X is a complex manifold of dimension n, then H” (X,0) =0 for all
k> n.
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5.2. Smooth line bundles. The first Chern class can equally well be defined
for smooth complex line bundles. In this case we consider the sheaf C of complex-
valued smooth functions on a differentiable manifold X, and the subsheaf C* of nowhere
vanishing functions of such type. The set of isomorphism classes of smooth complex line
bundles is identified with the cohomology group H'(X,C*). However now the sheaf C
is acyclic, so that the obstruction morphism & establishes an isomorphism H'(X,C*) ~
H?(X,Z). The first Chern class of a line bundle L is again defined as ¢;(L) = §([L]),
but now ¢ (L) classifies the bundle (i.e. L ~ L' if and only if ¢; (L) = ¢1(L’)).

EXERCISE 6.3. (A rather pedantic one, to be honest...) Show that if X is a complex
manifold, and L is a holomorphic line bundle on it, the first Chern classes of L regarded
as a holomorphic or smooth complex line bundle coincide. (Hint: start from the inclusion
O < C, write from it a diagram of exact sequences, and take it to cohomology ...) O

6. Chern classes of vector bundles

In this section we define higher Chern classes for complex vector bundles of any rank.
Since the Chern classes of a vector bundle will depend only on its smooth structure, we
may consider a smooth complex vector bundle E on a differentiable manifold X. We
are already able to define the first Chern class ¢1(L) of a line bundle L, and we know
that c1(L) € H?(X,Z). We proceed in two steps:

(1) we first define Chern classes of vector bundles that are direct sums of line bundles;

(2) and then show that by means of an operation called cohomology base change we
can always reduce the computation of Chern classes to the previous situation.

Step 1. Let 0y, i = 1...k, denote the symmetric function of order i in k arguments.>.
Since these functions are polynomials with integer coefficients, they can be regarded as
functions on the cohomology ring H®*(X,Z). In particular, if aq,...,a; are classes in
H?(X,7), we have o;(av, ..., o) € H¥(X, 7).

If E=L1®---& L, where the L;’s are line bundles, for i = 1...k we define the i-th
Chern class of E as

CZ(E) = O'i(cl(Ll), .. .,Cl(Lk)) S H%(X, Z) .

3The symmetric functions are defined as

Ui(l’h---,mk): Z Tjy o Xy

1<j1<--<j;i<n

Thus, for instance,

o1(z1,..., k) =21+ + Tk
02(5517---73%) =212 + X123+ - + Tp—_1Tk
or(x1,. ., xE) =210 T

As a first reference for symmetric functions see e.g. [24].
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We also set co(E) = 1; identifying H°(X,Z) with Z (assuming that X is connected) we
may think that c¢o(E) € H(X,Z).

Step 2 relies on the following result (sometimes called the splitting principle), which
we do not prove here.

PROPOSITION 6.1. Let E be a complex vector bundle on a differentiable manifold
X. There exists a differentiable map f: Y — X, where Y is a differentiable manifold,
such that

(1) the pullback bundle f*E is a direct sum of line bundles;
(2) the morphism f*: H*(X,Z) — H*(Y,Z) is injective;
(8) the Chern classes c;(f*E) lie in the image of the morphism f*.

DEFINITION 6.2. The i-th Chern class c¢;(E) of E is the unique class in H*(X,Z)
such that f(c;(E)) = ¢;(f*E).

We also define the total Chern class of E as
k
c(F) = ¢i(F)e HYX,Z).
i=0

The main property of the Chern classes are the following.
(1) If two vector bundles on X are isomorphic, their Chern classes coincide.

(2) Functoriality: if f: Y — X is a differentiable map of differentiable manifolds,
and FE is a complex vector bundle on X, then

fHei(B)) = ci(fE).
(3) Whitney product formula: if E, F' are complex vector bundles on X, then
c(E®F)=c(E)Uc(F).

(4) Normalization: identify the cohomology group H?(P,,Z) with Z by identifying
the class of the hyperplane H with 1 € Z. Then ¢;(H) = 1.

These properties characterize uniquely the Chern classes (cf. e.g. [14]). Notice that,
in view of the splitting principle, it is enough to prove the properties (1), (2), (3) when
E and F are line bundles. Then (1) and (2) are already known, and (3) follows from
elementary properties of the symmetric functions.

The reader can easily check that all Chern classes (but for ¢g, obviously) of a trivial
vector bundle vanish. Thus, Chern classes in some sense measure the twisting of a
bundle. It should be noted that, even in smooth case, Chern classes do not in general
classify vector bundles, even as smooth bundles (i.e., generally speaking, ¢(E) = ¢(F)
does not imply E ~ F'). However, in some specific instances this may happen.

EXERCISE 6.3. Prove that for any vector bundle E one has ¢;(E) = c¢i(det E). O
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7. Kodaira-Serre duality

In this section we introduce Kodaira-Serre duality, which will be one of the main
tools in our study of algebraic curves. To start with a simple situation, let us study
the analogous result in de Rham theory. Let X be a differentiable manifold. Since the
exterior product of two closed forms is a closed form, one can define a bilinear map

Hpp(X) © Hyp(X) = Hpg(X), [l —[rAw.

As we already know, via the Cech-de Rham isomorphism this product can be identified
with the cup product. If X is compact and oriented, by composition with the map*

[ Hpp(X) =R, fM:/w
X X X

where n = dim X, we obtain a pairing

Hpp(X) ® Hpp (X) =R, [1]®[w] = [lrnv]

which is quite easily seen to be nondegenerate. Thus one has an isomorphism
Hpp(X)" = Hyy (X)
(this is a form of Poincaré duality).

If X is an n-dimensional compact complex manifold, in the same way we obtain a
nondegenerate pairing between Dolbeault cohomology groups

(6.5) HP(X) @ HY P (X)) — C,

and a duality
Hg’q(X)* ~ Hg_p’"_q(X).

EXERCISE 6.1. (1) Let E be a holomorphic vector bundle on a complex manifold
X, denote by £ the sheaf of its holomorphic sections, and by £°° the sheaf of its smooth
sections. Show (using a local trivialization and proving that the result is independent
of the trivialization) that one can define a C-linear sheaf morphism

(6.6) Op: E° — Q¥ g g™
which obeys a Leibniz rule
Op(fs) = fops+0f®s
for s € £*°(U), f € C>*(U).
(2) Show that dg defines an exact sequence of sheaves

6.7) 0P olgee 22 grlggee %2, 98 qpng e )

4This map is well defined because different representatives of [w] differ by an exact form, whose

integral over X vanishes.
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Here 2 is the sheaf of holomorphic p-forms. In particular, £ = ker(dg: £*° — Q%' ®
E™).

(3) By taking global sections in (6.7), and taking coholomology from the resulting (in
general) non-exact sequence, one defines Dolbeault cohomology groups with coefficients

in B, denoted H(X, E). Use the same argument as in the proof of de Rham’s theorem
to prove an isomorphism

(6.8) Hg’q(X,E) ~ HI(X, P RE).
O

By combining the pairing (6.5) with the action of the sections of E* on the sections

of E we obtain a nondegenerate pairing
Hg’q(X, E)® 1’1%1_10’"_‘1(X7 E*)—=C
and therefore a duality
Hg’q(X, E)" ~ Hgfp’"fq(X, E").
Using the isomorphism (6.8) we can express this duality in the form
HP(X, QI &)~ H"P(X, Q"1 &Y).

This is the Kodaira-Serre duality. In particular for ¢ = 0 we get (denoting K = Q" =
det T* X, the canonical bundle of X)

HP(X,€)* ~ H" (X, K ® £*).

This is usually called Serre duality.

8. Connections

In this section we give the basic definitions and sketch the main properties of con-
nections. The concept of connection provides the correct notion of differential operator
to differentiate the sections of a vector bundle.

8.1. Basic definitions. Let E a complex, in general smooth, vector bundle on a
differentiable manifold X. We shall denote by & the sheaf of sections of E, and by Q%
the sheaf of differential 1-forms on X. A connection is a sheaf morphism

V:E-QV®E
satisfying a Leibniz rule
V(fs)=fV(s)+df ®s
for every section s of E and every function f on X (or on an open subset). The Leibniz

rule also shows that V is C-linear. The connection V can be made to act on all sheaves
Q’;( ® &, thus getting a morphism

V: 0k e -0 ee,
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by letting
Vw®s)=dw®s+ (—1)fu e V(s).

If {Uy} is a cover of X over which F trivializes, we may choose on any U, a set
{sa} of basis sections of £(U,) (notice that this is a set of r sections, with r = rk E).
Over these bases the connection V is locally represented by matrix-valued differential
1-forms wy:

V($a) = wa ® Sq -

Every wq is as an r x r matrix of 1-forms. The w,’s are called connection I1-forms.

EXERCISE 6.1. Prove that if g,3 denotes the transition functions of £ with respect
to the chosen local basis sections (i.e., so = gag 53), the transformation formula for the

connection 1-forms is

The connection is not a tensorial morphism, but rather satifies a Leibniz rule; as a
consequence, the transformation properties of the connection 1-forms are inhomogeneous

and contain an affine term.

EXERCISE 6.2. Prove that if £ and F' are vector bundles, with connections V1 and
Vo, then the rule

V(s®t) =Vi(s) @t +s® Va(t)
(minimal coupling) defines a connection on the bundle £ ® F' (here s and ¢ are sections

of E and F', respectively).

EXERCISE 6.3. Prove that is E is a vector bundle with a connection V, the rule
<V*1),s>=d<T1,s>—<T1,V(s) >

defines a connection on the dual bundle E* (here 7, s are sections of E* and FE, respec-
tively, and <, > denotes the pairing between sections of E* and E). O

It is an easy exercise, which we leave to the reader, to check that the square of the

connection
V. 0hket -0 es
is f-linear, i.e., it satisfies the property
V3(fs) = fV*(s)

for every function f on X. In other terms, V? is an endomorphism of the bundle E
with coefficients in 2-forms, namely, a global section of the bundle Q% ® End(E). It is
called the curvature of the connection V, and we shall denote it by ©. On local basis
sections s, it is represented by the curvature 2-forms O, defined by

O(84) = O ® Sq4-
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EXERCISE 6.4. Prove that the curvature 2-forms may be expressed in terms of the
connection 1-forms by the equation (Cartan’s structure equation)

(6.10) On = dwy — wo N Wy .
EXERCISE 6.5. Prove that the transformation formula for the curvature 2-forms is

Ou = 9ap Op 9;51 .

Due to the tensorial nature of the curvature morphism, the curvature 2-forms obey a
homogeneous transformation rule, without affine term. ]

Since we are able to induce connections on tensor products of vector bundles (and
also on direct sums, in the obvious way), and on the dual of a bundle, we can induce
connections on a variety of bundles associated to given vector bundles with connec-
tions, and thus differentiate their sections. The result of such a differentiation is called
the covariant differential of the section. In particular, given a vector bundle E with
connection V, we may differentiate its curvature as a section of Q3% ® End(FE).

PROPOSITION 6.6. (Bianchi identity) The covariant differential of the curvature of

a connection is zero, VO = 0.

PRrROOF. A simple computation shows that locally VO is represented by the matrix-
valued 3-forms

dOqy + Wo NOy — Oy N wy -
By plugging in the structure equation (6.10) we obtain VO = 0. O
8.2. Connections and holomorphic structures. If X is a complex manifold,
and F a C*° complex vector bundle on it with a connection V, we may split the latter

into its (1,0) and (0,1) parts, V/ and V", according to the splitting Q% ®C = Q;OGBQ%.
Analogously, the curvature splits into its (2,0), (1,1) and (0,2) parts,

0 =0* ol 4 a%.
Obviously we have
@2,0 _ (V’)Q, 91,1 _ V/ o V” + V” ° V/, @0,2 _ (V”)2.

In particular V" is a morphism Q%! ® & — Qg&q"ﬂ ®&. If ©2 = 0, then V" is a
differential for the complex Q5° ® €. The same condition implies that the kernel of the

map
(6.11) VhE-0Y ee

has enough sections to be the sheaf of sections of a holomorphic vector bundle.
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PROPOSITION 6.7. If ©%2 = 0, then the C™ wector bundle E admits a unique
holomorphic structure, such that the corresponding sheaf of holomorphic sections is iso-
morphic to the kernel of the operator (6.11). Moreover, under this isomorphism the

operator (6.11) concides with the operator dg defined in Ezercise 6.1.
Proor. Cf. [18], p. 9. O

Conversely, if E is a holomophic vector bundle, a connection V on F is said to be
compatible with the holomorphic structure of E if V/ = 0.

8.3. Hermitian bundles. A Hermitian metric h of a complex vector bundle F is
a global section of E ® E* which when restricted to the fibres yields a Hermitian form
on them (more informally, it is a smoothly varying assignation of Hermitian structures
on the fibres of E'). On a local basis of sections {s}, of E, h is represented by matrices
he of functions on U, which, when evaluated at any point of U,, are Hermitian and
positive definite. The local basis is said to be unitary if the corresponding matrix h is
the identity matrix.

A pair (E,h) formed by a holomorphic vector bundle with a hermitian metric is
called a hermitian bundle. A connection V on FE is said to be metric with respect to h

if for every pair s, t of sections of E one has

dh(s,t) = h(Vs,t)+ h(s, Vt).
In terms of connection forms and matrices representing h this condition reads
(6.12) dhg = 0o ha + ha 0o

where ~ denotes transposition and ~ denotes complex conjugation (but no transposition,
i.e., it is not the hermitian conjugation). This equation implies right away that on a
unitary frame, the connection forms are skew-hermitian matrices.

PROPOSITION 6.8. Given a hermitian bundle (E,h), there is a unique connection V
on E which is metric with respect to h and is compatible with the holomorphic structure
of E.

PRrROOF. If we use holomophic local bases of sections, the connection forms are of
type (1,0). Then equation (6.12) yields

(6.13) Qo = Ohog h!

and this equations shows the uniqueness. As for the existence, one can easily check
that the connection forms as defined by equation (6.13) satisfy the condition (6.9) and
therefore define a connection on E. This is metric w.r.t. A and compatible with the
holomorphic structure of E by construction. O



92 6. COMPLEX MANIFOLDS AND VECTOR BUNDLES

EXAMPLE 6.9. (Chern classes and Maxwell theory) The Chern classes of a complex
vector bundle F can be calculated in terms of a connection on E via the so-called Chern-
Weil representation theorem. Let us discuss a simple situation. Let L be a complex line
bundle on a smooth 2-dimensional manifold X, endowed with a connection, and let F’
be the curvature of the connection. F' can be regarded as a 2-form on X. In this case
the Chern-Weil theorem states that

(6.14) er(L) Z/XF

"o

where we regard c;(L) as an integer number via the isomorphism H?(X,Z) ~ Z given
by integration over X. Notice that the Chern class of F' is independent of the connection
we have chosen, as it must be. Alternatively, we notice that the complex-valued form F
is closed (Bianchi identity) and therefore singles out a class [F] in the complexified de
Rham group H},(X) ®r C ~ H?(X,C); the class 5=[F] is actually real, and one has
the equality ‘

i
T om
in H%,(X). If we consider a static spherically symmetric magnetic field in R, by

c1(L) [F]

solving the Maxwell equations we find a solution which is singular at the origin. If we
do not consider the dependence from the radius the vector potential defines a connection
on a bundle L defined on an S? which is spanned by the angular spherical coordinates.
The fact that the Chern class of L as given by (6.14) can take only integer values is
known in physics as the quantization of the Dirac monopole.



CHAPTER 7
Divisors

Divisors are a powerful tool to study complex manifolds. We shall start with the one-
dimensional case. The notion will be later generalized to higher dimensional manifolds.

1. Divisors on Riemann surfaces

Let S be a Riemann surface (a complex manifold of dimension 1). A divisor D on

S is a locally finite formal linear combinations of points of S with integer coefficients,

D:Zaipi, a; €Z, p; €S,

where “locally finite” means that every point p in S has a neighbourhood which contains
only a finite number of p;’s. If S is compact, this means that the number of points is
finite. We say that the divisor D is effective if a; > 0 for all i. We shall then write
D >0.

The set of all divisors of S forms an abelian group, denoted by Div(sS).

Let f a holomorphic function defined in a neighbourhood of p, and let z be a local
coordinate around p. There exists a unique nonnegative integer a and a holomorphic
function h such that

f(z) = (2= 2(p))* h(2)
and h(p) # 0. We define
ord, f = a.

Notice that
(7.1) ord, fg = ord, f + ord, g.

If f is a meromorphic function which in a neighbourhood of p can be written as f = g/h,
with g and h holomorphic, we define

ord, f = ord, g — ordy, h.
We say that f has a zero of order a at p if ord, f = a > 0 (then f is holomorphic in a
neighbourhood of p), and that it has a pole of order a if ord, f = —a < 0.
With each meromorphic function f we may associate the divisor
(f) = Zordpf e
peS
if f = g/h with g and h relatively prime, then (f) = (g) — (h).

93
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1.1. Sheaf-theoretic description of divisors. The group of divisors Div can
be described in sheaf-theoretic terms as follows. Let M* be the sheaf of meromorphic
functions that are not identically zero. We have an exact sequence

0—-0" =M - M"/O* =0
of sheaves of abelian groups (notice that the group structure is multiplicative).

PROPOSITION 7.1. There is a group isomorphism Div(S) ~ H°(S, M*/O*).

PrOOF. Given a cover U = {U,} of X, one has a commutative diagram of exact
sequences

HO(S, M*/O%)

OO, M*) —— CO8, M*/O*) —— [, HY(Ua, O%) = 0

6J{ é
CHU, O%) —— CHU,M*) —— CHH, M*/O)

where H'(U,, O*) = 0 because U, ~ C holomorphically (here § denotes the Cech
cohomology operator). This diagram shows that a global section s € H°(S, M*/O*)
can be represented by a 0-cochain {f, € M*(U,)} € C°(4, M*) subject to the condition
fa/fs € O*(UyNUpg), so that ord, fo does not depend on «, and the quantity ord, s is
well defined. We set D =} ord, s - p.

Conversely, given D = )" a;p;, we may choose an open cover {U,} such that each
U, contains at most one p;, and functions g;, € O(U,) such that that g;, has a zero of

order one at p; if p; € U,. We set
fa = Hg;l(i'
i

Then fo/fz € O*(Ua NUp), so that {f,} determines a global section of M*/O*.

The two constructions are one the inverse of the other, so that they establish an
isomorphism of sets. The fact that this is also a group homomorphism follows from the

formula (7.1), which holds also for meromorphic functions. O

1.2. Correspondence between divisors and line bundles. Let D € Div(5),
and let {U,} be an open cover of S with meromorphic functions { f,} which define the
divisor, according to Proposition 7.1. Then the functions

JaB = Ja € 0" (U, NUp)

/s
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obviously satisfy the cocycle condition, and define a line bundle, which we denote by [D].
The line bundle [D] in independent, up to isomorphism, of the set of functions defining
D; if {f!,} is another set, then ord,, f, = ordy, f/, so that the functions h, = fo/ f}, are
holomorphic and nowhere vanishing, and

go=do_Jals _  hg
B faha The

so that the transition functions ggﬁ define an isomorphic line bundle.
1t D= DW + DO then f, = £V£P by eq. (7.1), so that [DD) + D@ = [DD]
[D®)], and one has a homomorphism Div(S) — Pic(S).

We offer now a sheaf-theoretic description of this homomorphism. Let f = {f,} €
HO(S, M*); let us set fo = ga/ha, With go,ha € O(U,) relatively prime. We have
(f) = (g9) — (h), with (g) and (h) effective divisors. The line bundle [(f)] has transition

functions

Ja hﬂ fa
g :77:7:1
P gsha  fs

(since f is a Cech cocycle) so that [(f)] = C, i.e. [(f)] is the trivial line bundle.

Conversely, let D be a divisor such that [D] = C; then the transition functions of
[D] have the form

h
Jap = h—“ with  he € O*(Uy).
s

Let {fo} be meromorphic functions which define D, so that one also has g, = %’ and

fao _ I8 _Js.
- gocﬂ - )
ha ha hg

the quotients 3= therefore determine a global nonzero meromorphic function, namely:

PROPOSITION 7.2. The line bundle associated with a divisor D is trivial if and only

if D is the divisor of a global meromorphic function.

In view of the identifications Div(S) ~ H(S, M*/O*) and Pic(S) ~ H'(S, 0*) this
statement is equivalent to the exactness of the sequence
H°(S, M*) — H°(S, M*/O*) — H'(S,0%).
DEFINITION 7.3. Two divisors D, D' € Div(S) are linearly equivalent if D' = D+(f)
for some f € HY(S, M).

Quite evidently, D and D’ are linearly equivalent if and only if [D] ~ [D’], so that

there is an injective group homomorphism

Div(S)/{linear equivalence} — Pic(S).
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1.3. Holomorphic and meromorphic sections of line bundles. If L is a line
bundle on S, we denote by O(L) the sheaf of its holomorphic sections, and by M (L) the
sheaf of its meromorphic sections, the latter being defined as M(L) = O(L)®@o M. If L
has transition functions g, 3 with respect to a cover {U,} of S, then a global holomorphic
section s € H°(S,O(L)) of L corresponds to a collection of functions {s, € O(U,)}
such that s, = gngsg on U, N Ug. The same holds for meromorphic sections. A first
consequence of this is that, if s, s’ € H°(S, M(L)), we have

S 9ap5s 5p
== = on U,NUg,

s, 9apSy  Sj

so that the quotient of s and s’ is a well-defined global meromorphic function on S.
Let s € H°(S, M(L)); we have
Z—Z = Gop € O (Ua N Up)
so that
ord, s, = ord, sg forall peU,NUg;

the quantity ord, s is well defined, and we may associate with s the divisor

(s) = Zordp s p.
peS
By construction we have [(s)] ~ L. Obviously, s is holomorphic if and only if (s) is
effective.

So we have

PROPOSITION 7.4. A line bundle L is associated with a divisor D (i.e. L = [D] for
some D € Div(S)) if and only if it has a global nontrivial meromorphic section. L is the
line bundle associated with an effective divisor if and only if it has a global nontrivial

holomorphic section.

PROOF. The “if” part has already been proven. For the “only if” part, let L = [D]
with D a divisor with local equations f, = 0. Then f, = g f3, where the functions
Jap are transition functions for L; the functions f, glue to yield a global meromorphic
section s of L. If D is effective the functions f, are holomorphic so that s is holomorphic

as well. ]

COROLLARY 7.5. The line bundle [p] trivializes over the cover {Uy, U}, where Uy =
S —A{p} and Us is a neighbourhood of p, biholomorphic to a disc in C.

PROOF. Since [p] is effective it has a global holomorphic section which vanishes only
at p, so that [p] is trivial on U;. Of course it is trivial on U as well. O

So the same happens for the line bundles [kp], k € Z.
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For the remainder of this section we assume that S is compact. Let us define the
degree of a divisor D = > a;p; as the integer

deg D :Zai.

For simplicity we shall write O(D) for O([D]).

COROLLARY 7.6. If deg D < 0, then H°(S,O(D)) = 0. O

If L is a line bundle we denote by [ ¢ ¢1(L) the number obtained by integrating over S
a differential 2-form which via de Rham isomorphism represents! the Cech cohomology
class c1(L) regarded as an element in H2(S,R).

PROPOSITION 7.7. For any D € Div(S) one has

/Scl(D) =degD.

Before proving this result we need some preliminaries. We define a hermitian metric
on a line bundle L as an assignment of a hermitian scalar product in each L, which is
C®° in p; thus a hermitian metric is a C* section h of the line bundle L* ® L* such that
each h(p) is a hermitian scalar product in L. In terms of a local trivialization over an
open cover {U,} a hermitian metric is represented by nonvanishing real functions h,, on
Uy. On U,NUg one has hy = ‘ga/g|2h/g, so that the 2-form %55) log h,, does not depend
on «, and defines a global closed 2-form on S, which we denote by ©.

LEMMA 7.8. The class of © is the image in Hyx(S) of c1(L).

PROOF. We need the explicit form of the de Rham correspondence. One has exact
sequences
(7.2) 0—-R—-C*—=2'-0, 0-2'-0'-2%2-0.

(Here Q! is the sheaf of smooth real-valued 1-forms.) From the long exact cohomology
sequences of the second sequence we get

H°(S,QY — H°(S,2%) — H'(S,2') — 0
so that the connecting morphism HY(S, 2%) — H(S,Z!) induces an isomorphism
H?,(S) — H'(S,Z'). Since we may write © = %d@ log h, a cocycle representing
the image of (0] in H'(S, Z') is {0, — 03}, with
0, = ﬁ@log hg.-
Notice that
0o — 03 = 5=0 (log hq — log hg) = 5= dlog gags
so that d(6, — 03) = 0.

IThe reader should check that the integral does not depend on the choice of the representative.
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If we consider now the first of the sequences (7.2) we obtain from its long cohomology

exact sequence a segment
0— HYS,2') - H*(S,R) = 0
so that the connecting morphism is now an isomorphism. If we apply it to the 1-cocycle
{0o — 03} we get the 2-cocycle of R
277 108 g + 557 108 95y + 977 108 Gy = (c1(L))apy-

0

PROOF OF PROPOSITION 7.7: Since ¢; and deg are both group homomorphisms, it is
enough to consider the case D = [p|. Consider the open cover {U;,Us}, where U; =
S — {p}, and Uy is a small patch around p. Then

s S =0.J5_B(e)

where B(e) is the disc |z| < €, with z a local coordinate around p, and z(p) = 0. Since
00 = %d(a— ), and assuming that Pi|U,—B(e) = |22, which can always be arranged, we
have

cl(D):%lim 8log222% —=1
/s 2T =0 dB(e) 2 dB(e) #

having used Stokes’ theorem and the residue theorem (note a change of sign due to a
reversal of the orientation of 0B(e)). O

This result suggests to set
deg L = / c1(L)
S

for all line bundles on S.

COROLLARY 7.9. Ifdeg L < 0, then H°(S,O(L)) = 0.

PROOF. If there is a nonzero s € H°(S, O(L)), then L = [D] with D = (s). Since
deg D < 0 by the previous Proposition, this contradicts Corollary 7.6. g

COROLLARY 7.10. A global meromorphic function on a compact Riemann surface
has the same number of zeroes and poles (both counted with their multiplicities).

PRrROOF. If f global meromorphic function, we must show that deg(f) = 0. But f
is a global meromorphic section of the trivial line bundle C, whence

deg(f) = /S e1(C) = 0.
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1.4. The fundamental exact sequence of an effective divisor. Let us first
define for all p € S the sheaf k, as the I-dimensional skyscraper sheaf concentrated at
p, namely, the sheaf

kE,(U)=C if pel, k,(U)=0 if p¢U.
k, has stalk C at p and stalk 0 elsewhere.

Let D = Y a;p; be an effective divisor. Then the line bundle L = [D] has at least
one section s; this allows one to define a morphism O — O(D) by letting f +— f sy for
every f € O(U). We also define the skyscraper sheaf kp = ). (kp,)* concentrated on
D.

PROPOSITION 7.11. The sequence
(7.3) 0—-0—0D)—kp—0

1S exact.

PROOF. We shall actually prove the exactness of the sequence
(7.4) 0—-0(-D)— 0 —kp—0

from which the previous sequence is obtained by tensoring by O(D).? Notice also that
kp ®0 O(D) ~ kp because in a neighbourhood of every point p; the sheaf O(D) is
isomorphic to O.

The exactness of the sequence (7.4) follows from the fact the any local holomorphic
function can be represented around p; in the form (Taylor polynomial)

a;—1
F(&) = o)+ Y 2 f®e0) (2 = 20)* + (2 — )" 9(2)
k=1

a;

where zp = z(p), and g is a holomorphic function. The term (z — zp)% g(z) is a section

of O(—D), while the first two terms on the right single out a section of kp. O

The sheaf O(—D) can be regarded as the sheaf of holomorphic functions which at
p; have a zero of order at least a;. Since O(D) ~ O(—D)*, the O(D) may be identified

with the sheaf of meromorphic functions which at p; have a pole of order at most a;.
In particular one may write
0—O0(-2p) = O —k,®T,;5—0
where 7775 is considered as a skyscraper sheaf concentrated at p (indeed the quantity
f'(20) determines an element in 7,5).

If E is a holomorphic vector bundle on S, let us denote E(D) = E ® [D]. Then by
tensoring the exact sequence (7.4) by O(FE) we get

2Here we use the fact that tensoring all elements of an exact sequence by the sheaf of sections of a
vector bundle preserves exactness. This is quite obvious because by the local triviality of E the stalk of
O(E) at p is O, with k the rank of E.
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0— O(E(-D))— O(E)— Ep —0

where Ep = EBZ-EI%‘” is a skyscraper sheaf concentrated on D.

2. Divisors on higher-dimensional manifolds
We start with some preparatory material.

DEFINITION 7.1. An analytic subvariety V of a complex manifold X is a subset of
X which is locally defined as the zero set of a finite collection of holomorphic functions.

An analytic subvariety V' is said to be reducible if V. = Vi U Vo with Vi and Vs
properly contained in V. V is said to be irreducible if it is not reducible.

A point p € V is a smooth point of V if around p the subvariety V is a submanifold,
namely, it can be written as fi(z',...,2") = ... fu(z',...,2") = 0 with rankJ = k,
where {z',...,2"} is a local coordinate system for X around p, and J is the jacobian
matriz of the functions f1,... fr. The set of smooth points of V' is denoted by V*; the
set Vo =V — V* is the singular locus of V. The dimension of V is by definition the
dimension of V*.

If dmV =dim X — 1, V will be called an analytic hypersurface.

PROPOSITION 7.2. Any analytic subvariety V' can be expressed around a pointp € V
as the union of a finite number of analytic subvarieties V; which are irreducible around
p, and are such that V; ¢ V.

Proor. This follows from the fact that the stalk O, is a unique factorization domain
([10] page 12).3 Let us sketch the proof for hypersurfaces. In a neighbourhood of p the
hypersurface V is given by f = 0. Denoting by the same letter the germ of f in p,
since O, (where O is the sheaf of holomorphic functions on X) is a unique factorization

domain we have

where the f;’s are irreducible in O, and are defined up to multiplication by invertible
elements in O,; if V; is the locus of zeroes of f;, then V' = U;V;. Since f; irreducible, V;
is irreducible as well; since it is not true that f; = gf; for some g € O, which vanishes
at p, we also have V; Z V. O

We may now give the general definition of divisor:

3Let us recall this notion: one says that a ring R is an integral domain if uv = 0 implies that either
u =0orv=0. An element v € R in an integral domain is said to be irreducible if v = vw implies
that v or w is a unit; R is a unique factorization domain if any element v can be written as a product

U=1Uj---...Un, where the u; are irreducible and unique up to multiplication by units.
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DEFINITION 7.3. A divisor D on a complex manifold X is a locally finite formal
linear combination with integer coefficients D = Y a;V;, where the V;’s are irreducible

analytic hypersurfaces in X.

If V C X is an analytic irreducible hypersurface, and p € V', we may choose around
p a coordinate system {w, 22, ..., 2"} such that V is given around p by w = 0. Given a
function f defined in a neighbourhood of p, let a be the greatest integer such that

flw, 2%, 2") = wh(w, 2%,...,2")

with h(p) # 0. The function f has the same representation in all nearby points of V,
so that a is constant on the connected components of V', namely, it is constant on V/,

so that we may define

ordy f = a.

With this proviso all the theory previously developed applies to this situation; the
only definition which no longer applies is that of degree of a line bundle, in that ¢i(L)
is still represented by a 2-form, while the quantities that can be integrated on X are
the 2n-forms if dimc X = n. Proposition 7.7 must now be reformulated as follows. Let
D = 3" a;V; be a divisor, and let V;* be the smooth locus of V;. We then have:

PROPOSITION 7.4. For any divisor D € Div(X) and any (2n — 2)-form ¢ on X,
a(D)Ng=) a .
PROOF. The proof is basically the same as in Proposition 7.7 (cf. [10] page 141). O

3. Linear systems

In this section we consider a compact complex manifold X of arbitrary dimension.
Let D = Y a;V; € Div(X), and define |D| as the set of all effective divisors linearly
equivalent to D. We start by showing that there is an isomorphism

\: PH(X,0(D)) — |D|.

We fix a global meromorphic section sy of [D], and set
(7.5) SGH%KOQDH<;>+DEWM
0

one should notice that ord,, (%) > —ay; if p; € V; so that (%) + D is indeed effective.
If & = as with a € C* then (i) = (s—/> so that equation (7.5) does define a map

S0 S0
PH°(X,O(D)) — |D|. This map is
(i) injective because if A(s1) = A(s2) then s1/ss is a global nonvanishing holomorphic

function, i.e. s1 = a sy with a € C*.
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(i) Surjective because if Dy € |D| then D; = D + (f) for a global meromorphic
function f with ord,,(f) > —a; if p; € Vi. So fsp is a global holomorphic section of [D].

DEFINITION 7.1. A linear system is the set of divisors corresponding to a linear
subspace of PH(X,O(D)). A linear system is said to be complete if it corresponds to
the whole of PH(X,O(D)).

So a linear system is of the form E = {Dj}xep,, for some m. The number m is
called the dimension of E. A one-dimensional linear system is called a pencil, a two-
dimensional one a net, and a three-dimensional one a web. Since all divisors in a linear

system have the same degree, one can associate a degree to a linear system.

REMARK 7.2. If the elements )\, ..., Ay, are independent in P, (which means that
they are images of linearly independent elements in C™*1), and E = {D)}xcp,, is a
linear system, then

Dy, N---ND,, = ﬂ D,.
AEP,
For instance, if m = 1, and D), and D), have local equations f = 0 and g = 0, then D)
has local equation cyf 4+ c1g = 0 if A = coAo + c1 1. So Dy, N Dy, C Nxep, Dy, which
implies D/\o N D)\l = Mier, D,.

DEFINITION 7.3. If E = {Dj\}acp,, is a linear system, we define its base locus as
B(E) = ﬁAerD)\.

EXAMPLE 7.4. If E = {Dj}\ep, is a pencil, every p € X — B(E) lies on a unique
D), so that there is a well-defined map X — B(E) — P;. This map is holomorphic. We
may indeed write a local equation for D) in the form

(7.6) fih o 2+ g2 2" =0

where f and f are local defining functions for Dy and Dy (holomorphic because the
divisors in E are effective). f and ¢ do not vanish simultaneously on X — B(FE),
so that they do not vanish separately either. Then the above map is given by A\ =

—f(zY .2 g2t 2. U

EXAMPLE 7.5. Since H'(P,,0) = H?(P,,0) = 0, the line bundles on P, are
classified by H?(P,,Z) ~ Z. Moreover, since c;(H) = 1 under this identification
(i.e. deg H = 1), all divisors are linearly equivalent to multiples of H; in other terms,
on P, the only complete linear system of degree d is |dH]|.

Notice that |H| is base-point free, i.e. B(|H|) = 0. O

A fundamental result in the theory of linear systems is the following.

PROPOSITION 7.6. (Bertini’s theorem) The generic element of a linear system is
smooth away from the base locus.
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By this we mean that the set of divisors in a linear system E which have singular
points outside the base locus form a subvariety of F of dimension strictly smaller than
that of F.

PROOF. If F is linear system, and D € FE has singularities outside B(FE), Bertini’s
theorem would be violated by all pencils containing D. It is therefore sufficient to
prove the theorem for pencils; in this case genericity means that the divisors having
singularities out of the base locus are finite in number.

Solet E = {Dj}aep, be apencil, locally described by eq. (7.6), where the coordinates
{z,..., 2"} can be defined on an open subset A C X whose image in C" is a polydisc.
Let py be a singular point of D) which is not contained in the base locus. We have the

conditions

(7.7) f(pa) +Ag(pr) =0

of af
(7.8) () + A%

02"
F(02);9(pa) # 0.
We then have A = — f(px)/g(py), so that

(pA):()? 7::17"'777’

of — /99 =0 in p
0zt g 0% o
and
0 .
(7.9) i <£> =0 in py.

Let Y be the locus in A x P; cut out by the conditions (7.7) and (7.8); Y is an analytic
variety, so the same holds true for its image V in A. Actually V is nothing but the locus
of all singular points of the divisors D). Equation (7.9) shows that f/g is constant on
the connected components of V' — B, that is, every connected component of V' — B meets
only one divisor of the pencil. Since the connected components of V' — B are finitely
many by Proposition 7.2, the divisors which have singularities outside B(E) are finite

in number. O

4. The adjunction formula

If V is a smooth analytic hypersurface in a complex manifold X, we may relate
the canonical bundles Ky and Kx. We shall denote by ¢y : V' — X the inclusion; one
has an injective morphism TV — (5,7 X of bundles on V. If we choose around p € V'
a coordinate system (z',...,2") for X such that z' = 0 locally describes V, then the

0
vector field 9.1 restricted to V' locally generates the quotient sheaf Ny = [, TX/TV,

so that Ny iszthe sheaf of sections of a line bundle, which is called the normal bundle
to V.
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The dual Ny;, the conormal bundle to V', is the subbundle of +j,7* X whose sections

are holomorphic 1-forms which are zero on vectors tangent to V.

We first prove the isomorphism
(7.10) Ny >~ 3, [=V].
We consider the exact sequence of vector bundles on V'
0= Ny =T X =TV -0
whence we get?
(7.11) 1w Kx ~ Ky @ Ny

If, relative to an open cover {U,} of X, the divisor V is locally given by functions
fa € O(U,), the line bundle [V] has transition functions go3 = fa/fg. The 1-form
dfajvru, is a section of Ny

which never vanishes because V is smooth. On
VIVNUy’
Us NUg we have

dfe = d(gapf5) = dgas f5 + 9ap dfs = gap dfs

the last equality holding on V N U, N Ug. This equation shows that the 1-forms df,
do not glue to a global section of Ny;, but rather to a global section of the line bundle
Ny ® 15,[V], so that this bundle is trivial, and the isomorphism (7.10) holds.

By combining the formula (7.10) with the isomorphism (7.11) we obtain the adjunc-
tion formula:
(7.12) Ky ~ 1, (Kx ® [V]).
Sometimes an additive notation is used, and then the adjunction formula reads
Ky = Kxy + [V]jv-
EXAMPLE 7.1. Let V be the divisor cut out from P3 by the quartic equation
(7.13) wg +wi 4+ ws +wi =0

where the w;’s are homogeneous coordinates in P5. It is easily shown the V' is smooth,
and it is of course compact: so it is a 2-dimensional compact complex manifold, called
the Fermat surface. By a nontrivial result, known as Lefschetz hyperplane theorem
([10] p. 156) one has H'(V,R) = 0, so that H'(V,0y) = 0. Then the group Pic’(V),
which classifies the line bundles whose first Chern classes vanishes, is trivial: if a line
bundle L on V is such that ¢;(L) = 0, then it is trivial, and every line bundle is fully
classified by its first Chern class. (The same happens on P3, since H!(P3, Op,) = 0).

4We use the fact that whenever
0—-F—F—-G—0

is an exact sequence of vector bundles, then det F' ~ det ¥ ® det G, as one can prove by using transition

functions.
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We also know that Kp, = Op,(—4H), where H is any hyperplane in P3. Therefore
1, Kx ~ Oy(—4Hy), where Hy = HNV is a divisor in V.

Let us compute c1([V]jy)) = ¢jc1([V]). We use the following fact: if D1, Dy, D3 are
irreducible divisors in P35, then we can move the divisors inside their linear equivalence
classes in such a way that they intersects at a finite number of points. This number is
computed by the integral

|| et ner(iDal) nea((Ds)

where one considers the Chern classes ¢1([D;]) as de Rham cohomology classes. If we
take D1 =V, Dy = D3 = H the number of intersection points is 4, because such is the
degree of the algebraic system formed by the equation (7.13) and by the equations of
two (different) hyperplanes. Since the class h, where h = c1([H]), generates H?(P3,Z),
we have c1([V]) = 4h, that is, V ~ 4H. Then [V] ~ Oy (4Hy).

From the adjunction formula we get Ky ~ C: the canonical bundle of V is trivial.
Since we also have H} (V) =0, V is an example of a K3 surface.






CHAPTER 8
Algebraic curves I

The main purpose of this chapter is to show that compact Riemann surfaces can be
imbedded into projective space (i.e. they are algebraic curves), and to study some of
their basic properties.

1. The Kodaira embedding

We start by showing that any compact Riemann surface can be embedded as a
smooth subvariety in a projective space Pp; this is special instance of the so-called
Kodaira’s embedding theorem. Together with Chow’s Lemma this implies that every
compact Riemann surface is algebraic.

We recall that, given two complex manifolds X and Y, we say that (Y,¢) is a
submanifold of X is ¢ is an injective holomorphic map ¥ — X whose differential ¢4, :
T,Y — T, X is of maximal rank (given by the dimension of V) at all p € Y. In other
terms, ¢ maps isomorphically Y onto a smooth subvariety of X.

PROPOSITION 8.1. Any compact Riemann surface can be realized as a submanifold
of Pn for some N.

PROOF. Pick up a line bundle L on S such that deg L > deg K + 2 (choose an
effective divisor D with enough points, and let L = [D]). By Serre duality we have

(8.1) HY(S,0(L —2p)) ~ H*(S,O0(L —2p) ' @ K)* =0

for any p € S, since deg(K — L +2p) < 0 (here L —2p = L ® [—2p]). Consider now the
exact sequence

0— O(L—2p) — O(L) = TS @ I, — 0
(the morphism d), is Cartan’s differential followed by evaluation at p, while ev,, is the
evaluation of sections at p). Due to (8.1) we get

0 — H(S,O(L — 2p)) — H(S,O(L)) > T*S & I, — 0

so that dim |D| > 1. Let N = dim |D|, and let {so,...,sny} be a basis of |D|. If U is an
open neighbourhood of p, and ¢: L;; — U x C is a local trivialization of L, the quantity

(8.2) [posg,...,p0sN] €Py
107
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does not depend on the trivialization ¢; we have therefore established a (holomorphic)
map i1,: S — Py.! We must prove that (1) ¢y, is injective, and (2) the differential (v,),
never vanishes. (1) It is enough to prove that, given any two points p,q € S, there is a

section s € HO(S,O(L)) such that s(p) # As(q) for all A € C*; this in turn implied by
the surjectivity of the map

HY(S,0(L)) 2% L, ® Ly, s s(p) + s(q).
To show this we start from the exact sequence
0= OL-p—q) —OL) 25 L, L, — 0
and note that in coholomology we have
H(S,0(L—p—q)) =Ly & Ly — H'(S,0(L—p—q)) =0

since
H'(S,0(L—p—q)) = H(S,0(L—p—q) ' ©K)" =0
because deg(L —p—q) ' ® K = deg K —deg L + 2 < 0.

(2) We shall actually show that the adjoint map (¢cz)*: T*

L
tive. The cotangent space T);S can be realized as the space of equivalence classes of

(p)IPN — TS is surjec-

holomorphic functions which have the same value at p (e.g; the zero value) and have
a first-order contact (i.e. they have the same differential at p). Let ¢ be a trivializing
map for L around p; we must find a section s € H°(S,O(L)) such that ¢ o s(p) = 0
(i.e. s(p) = 0) and (¢ o s)* is surjective at p. This is equivalent to showing that the

d
map H°(S,O(L —p)) —— T, S is surjective, since O(L — p) is the sheaf of holomorphic
sections of L vanishing at p. We consider the exact sheaf sequence

0 — O(L — 2p) — O(L — p) —2 TS — 0
by Serre duality,
H'(S,0(L —2p))* ~ H°(S,0(-L+2p+ K)) =0
so that H°(S, O(L — p)) i>T];"S is surjective. O
Given any complex manifold X, one says that a line bundle L on X is very ample
if the construction (8.2) defines an imbedding of X into PH?(X,O(L)). A line bundle

L is said to be ample if L™ is very ample for some natural n. A sufficient condition for

a line bundle to be ample may be stated as follows (cf. [10]).

DEFINITION 8.2. A (1,1) form w on a complex manifold is said to be positive if it

can be locally written in the form
W = 1Wwjj dz* A dZF

IThis map actually depends on the choice of a basis of |D|; however, different choices correspond

to an action of the group PGI(N + 1,C) on Px and therefore produce isomorphic subvarieties of Px.
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with w;j a positive definite hermitian matriz.

ProprosITION 8.3. If the first Chern class of a line bundle L on a complex manifold
can be represented by a positive 2-form, then L is ample. O

While we have seen that any compact Riemann surface carries plenty of very ample
line bundles, this in general is not the case: there are indeed complex manifolds which
cannot be imbedded into any projective space.

A first consequence of the imbedding theorem expressed by Proposition 8.1 is that
any line bundle on a compact Riemann surface comes from a divisor, i.e. Div(S)/linear

equivalence =~ Pic(S).

PROPOSITION 8.4. If M is a smooth 1-dimensional® analytic submanifold of projec-
tive space P, (i.e. M is the imbedding of a compact Riemann surface into P, ), and L
is a line bundle on M, there is a divisor D on M such that L = [D].

PrOOF. We must find a global meromorphic section of L. Let Hjs be the restriction
to M of the hyperplane bundle H of P,, and let V' be the intersection of M with a
hyperplane in P,, (so [V] ~ Hy, and since V is effective, Hys has global holomorphic
sections). We shall show that for a big enough integer m the line bundle L + mHy,
(= L ® H}}) has a global holomorphic section s; if ¢ is a holomorphic section of Hjy,
the required meromorphic section of L is s/t".

We have an exact sequence
0— Op(—Hy) ——= 0y — ky —0
so that after tensoring by L + mH,y,
(8.3) 0 — On(L + (m — 1) Hy) —— On(L +mHyy) — ky — 0.

(Here —— denotes the morphism given by multiplication by s). The associated long
cohomology exact sequence contains the segment

HO(M,Opn (L +mHy)) — CN — HY (M, Oy (L + (m — 1)Hyy))
where N = degV. But
HY(M,0p(L+ (m—1)Hy)) ~ H (M, Ky @ O(—L — (m — 1)Hy;))* =0

by Serre duality and the vanishing theorem (if m is big enough, deg Ky ® O(—L —
(m —1)Hys) < 0). Therefore the morphism r in (8.3) is surjective, and H(M, Op;(L +
mHyy)) # 0. U

We shall now proceed to identify compact Riemann surfaces with (smooth) algebraic
curves. Given a homogeneous polynomial F' on C"*! the zero locus of F in PP, is by

definition the projection to P, of the zero locus of F in C**1.

2This result is actually true whatever is the dimension of M, cf. [10].
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DEFINITION 8.5. A (projective) algebraic variety is a subvariety of P,, which is the
zero locus of a finite collection of homogeneous polynomials. We shall say that an

algebraic variety is smooth if it is so as an analytic subvariety of Py,.

The dimension of an algebraic variety is its dimension as an analytic subvariety of
P,,. A one-dimensional algebraic variety is called an algebraic curve.

The following fundamental result, called Chow’s lemma, it is not hard to prove; we
shall anyway omit its proof for the sake of brevity (cf. [10] page 167).

PROPOSITION 8.6. (Chow’s lemma) Any analytic subvariety of P, is algebraic.

EXERCISE 8.7. Use Chow’s lemma to show that HO(P,, HY) — where H is the
hyperplane line bundle — can be identified with the space of homogeneous polynomials
of degree d on C"1. O

Using Chow’s lemma together with the imbedding theorem (Proposition 8.1) we
obtain

COROLLARY 8.8. Any compact Riemann surface is a smooth algebraic curve.

We switch from the terminology “compact Riemann surface” to “algebraic curve”,

understanding that we shall only consider smooth algebraic curves.?

We shall usually denote an algebraic curve by the letter C.

2. Riemann-Roch theorem

A fundamental result in the study of algebraic curves in the Riemann-Roch theorem.
Let C be an algebraic curve, and denote by K its canonical bundle.* We denote g =
hY(K), and call it the arithmetic genus of C' (this number will be shortly identified with
the topological genus of C).

PropoOsSITION 8.1. (Riemann-Roch theorem) For any line bundle L on C' one has
RO(L) — hY(L) = deg L — g + 1.

ProoOF. If L = C is the trivial line bundle, the result holds obviously (notice that
HY(C,0)* ~ H°(C, K) by Serre duality). Exploiting the fact that L = [D] for some
divisor D, it is enough to prove that if the results hold for L = [D], then it also holds
for L'’ = [D 4 p] and L” = [D — p].

In the first case we start from the exact sequence

0—-0D)—OD+p)—k,—0

3Stlrictly speaking an algebraic curve consists of more data than a compact Riemann surface S,
since the former requires an imbedding of S into a projective space, i.e. the choice of an ample line
bundle.

4We introduce the following notation: if & is a sheaf of Oc-modules, then h'(€) = dim H(C, £).
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which gives (since H'(C, k,) = 0)
0 — H°(S,0(D)) — H°(S,0(D + p)) — C — H'(S,0(D)) — H'(S,0(D +p)) — 0
whence
RUL) — (L) =ho(L) =W (L) +1=degL —g+2=degL —g+1.
Analogously for L”. O

By using the Riemann-Roch theorem and Serre duality we may compute the degree
of K, obtaining
deg K = 2¢g — 2.

This is called the Riemann-Hurwitz formula. It allows us to identify g with the topolog-
ical genus giop of C' regarded as a compact oriented 2-dimensional real manifold S. To
this end we may use the Gauss-Bonnet theorem, which states that the integral of the Eu-
ler class of the real tangent bundle to S is the Euler characteristic of S, x(.S) = 2—2giop.
On the other hand the complex structure of C' makes the real tangent bundle into a
complex holomorphic line bundle, isomorphic to the holomorphic tangent bundle T'C
and under this identification the Euler class corresponds to the first Chern class of T'C.
Therefore we get deg K = 2gt0p — 2, namely,”

g = Gtop-
3. Some general results about algebraic curves

Let us fix some notations and give some definitions.

3.1. The degree of a map. Let C' be an algebraic curve, and w a smooth 2-
form on C, such that fcw = 1; the de Rham cohomology class [w] may be regarded
as an element in H?(C,Z), and actually provides a basis of that space, allowing an
identification H?(C,Z) ~ Z. If f: C' — C is a nonconstant holomorphic map between
two algebraic curves, then f*[w] is a nonzero element in H?(C’,Z), and there is a well
defined integer n such that

Flwl = nlw',

where ' is a smooth 2-form on C’ such that fC, W' =1. If p e C we have

dee s o) = [ alrih= [ Fah=n [ al)=n

so that the map f takes the value p exactly n times, including multiplicities in the sense
of divisors; we may say that f covers C' n times.® The integer n is called the degree if f.

5This need not be true if the algebraic curve C' is singular. However the Riemann-Roch theorem is
still true (provided we know what a line bundle on a singular curve is!) with g the arithmetic genus.
6Since two holomorphic functions of one variable which agree on a nondiscrete set are identical,

and since C” is compact, the number of points in f~*(p) is always finite.
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3.2. Branch points. Given again a nonconstant holomorphic map f: C' — C, we
may find a coordinate z around any ¢ € C’ and a coordinate w around f(q) such that
locally f is described as

(8.4) w=2z".

The number r —1 is called the ramification indez of f at q (or at p = f(q)), and p = f(q)
is said to be a branch point if r(p) > 1. The branch locus of f is the divisor in C’
B'=% (ra)-1)-q
qeC’
or its image in C
B=> (r(q)— 1) f(q)-
qeC’
For any p € C we have

a€f~1(p)
deg f*(p) = Z r(q) = n.
q€f~1(p)

From these formulae we may draw the following picture. If p € C’ does not lie in
the branch locus, then exactly n distinct points of C’ are mapped to f(p), which means
that f: C' — B’ — C — B is a covering map.” It p € C’ is a branch point of ramification
index r — 1, at p exactly r sheets of the covering join together.

There is a relation between the canonical divisors of C’ and C' and the branch locus.
Let 1 be a meromorphic 1-form on C', which can locally be written as

From (8.4) we get

so that
ord, f*n = ordypyn+r— 1.
This implies the relation between divisors
(fm)=fm+ Y (rp)=1)-p
peC’

On the other hand the divisor (n) is just the canonical divisor of C, so that
Ko = Ko + B’

A (holomorphic) covering map f: X — Y, with X connected, is a map such that each p € Y has a
connected neighbourhood U such that ffl(U) = Ua U, is the disjoint union of open subsets of X which

are biholomorphic to U via f.
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From this formula we may draw an interesting result. By taking degree we get

deg Kov =ndeg Ko + Y (r(p) — 1);
peC”’

by using the Riemann-Hurwitz formula we obtain

(8.5) g(C") =n(g(C) =D +1+3 > (r(p)—1).
peC’

EXERCISE 8.1. Prove that if f: ¢’ — C is nonconstant, then f*: H(C, K¢) —
HY(C', K¢v) is injective. (Hint: a nonzero element w € H°(C, K¢) is a global holomor-
phic 1-form on C' which is different from zero at all points in an open dense subset of
C'. Write an explicit formula for f*w....) O

Both equation (8.5) and the previous Exercise imply
9(C") = 9(C).

3.3. The genus formula for plane curves. An algebraic curve C is said to be
plane if it can be imbedded into Ps. Its image in P is the zero locus of a homogeneous
polynomial; the degree d of this polynomial is by definition the degree of C. As a
divisor, C is linearly equivalent to dH (indeed, since Pic(Py) ~ Z, any divisor D on Py
is linearly equivalent to mH for some m; if D is effective, m is the number of intersection
points between D and a generic hyperplane in P2, and this is given by the degree of the
polynomial cutting D). 8

We want to show that for smooth plane curves the following relation between genus
and degree holds:

(8.6) 9(C) = 3(d—1)(d —2).

(For singular plane curves this formula must be modified.) We may prove this equa-
tion by using the adjunction formula: C is imbedded into P, as a smooth analytic
hypersurface, so that

Ko = L*(Kv[{»2 + C),
where ¢: C'— Py. Recalling that Kp, = —3H we then have K¢ = (d — 3)/*H.

8We are actually using here a piece of intersection theory. The fact is that any k-dimensional
analytic subvariety V of an n-dimensional complex manifold X determines a homology class [V] in the
homology group Hai(X,Z). Assume that X is compact, and let W be an (n — k)-dimensional analytic
subvariety of X; the homology cap product Hax(X,Z) N Hon—2k(X,Z) — Z, which is dual to the cup
product in cohomology, associates the integer number [V] N [W] with the two subvarieties. One may
pick up different representatives V' and W’ of [V] and [W] such that V' and W’ meet transversally,
i.e. they meet at a finite number of points; then the the number [V] N [W] counts the intersection points
(cf. [10] page 49).

In our case the number of intersection points is given by the number of solutions to an algebraic
system, given by the equation of C' in Py (which has degree d) and the linear equation of a hyperplane.

For a generic choice of the hyperplane, the number of solutions is d.
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To carry on the computation, we notice that, as a divisor on C, t1*H = C N H, so
that

deg'"H = d,
and
deg Ko =d(d—3) =29 —2
whence the formula (8.6).
EXAMPLE 8.2. Consider the affine curve in C? having equation
yP=a%-1.

By writing this equation in homogeneous coordinates one obtain a curve in Py which
is a double covering of P; branched at 6 points. By the Riemann-Hurwitz formula we
may compute the genus, obtaining ¢ = 2. Thus the formula (8.6), which would yield
g = 10, fails in this case. This happens because the curve is singular at the point at
infinity. g

3.4. The residue formula. A meromorphic 1-form on an algebraic curve C is a
meromorphic section of the canonical bundle K. Given a point p € C, and a local
holomorphic coordinate z such that z(p) = 0, a meromorphic 1-form ¢ is locally written
around p in the form ¢ = f dz, where f is a meromorphic function. Let a be coefficient
of the 27! term in the Laurent expansion of f around p, and let B a small disc around

a:/ o)
OB

so that the number a does not depend on the representation of . We call it the residue

p; by the Cauchy formula we have

of ¢ at p, and denote it by Res,(¢).

Given a meromorphic 1-form ¢ its polar divisor is D = ), p;, where the p;’s are the
points where the local representatives of ¢ have poles of order 1.

PROPOSITION 8.3. Let D =), p; be the polar divisor of a meromorphic 1-form .
Then ), Resp, () = 0.

PROOF. Choose a small disc B; around each point p;. Then

ZReSpi(cp)=/ @:—/ dp=0.
i oU; B; C—-U; B;
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3.5. The g = 0 case. We shall now show that all algebraic curves of genus zero
are isomorphic to the Riemann sphere P1. Pick a point p € C; the line bundle [p] is
trivial on C' — {p}, and has a holomorphic section sy which is nonzero on C' — {p} and
has a simple zero at p (this means of course that (sg) = p). On the other hand, since by
Serre duality h'(Q) = h%(K) = 0, by taking the cohomology exact sequence associated
with the sequence

0—-0—-0({p) —k,—0
we obtain the existence of a global section s of [p] which does not vanish at p. Of course
s vanishes at some other point sg. Then the quotient f = s/sq is a global meromorphic
function, with a simple pole at p and a zero at py.” By considering co as the value of f
at p, we may think of f as a holomorphic nonconstant map f: C — Py; this map takes
the value oo only once. Suppose that f takes the same value a at two distinct points
of C; then then function f — a has two zeroes and only one simple pole, which is not
possible. Thus f is injective. The following Lemma implies that f is surjective as well,

so that it is an isomorphism.

LEMMA 8.4. Any holomorphic map between compact complex manifolds of the same
dimenston whose Jacobian determinant is not everywhere zero is surjective.

PRrROOF. Let f: X — Y be such a map, and let n = dim X = dimY. Let w
be a volume form on Y'; since the Jacobian determinant of f is not everywhere zero,
and where it is not zero is positive, we have | Jfw > 0. Assume ¢ # Im f. Since
H?™(Y — {q},R) = 0 (prove it by using a Mayer-Vietoris argument), we have w = dn

onY — {¢}. But then
[ o= fa=o
X X

a contradiction. 0

90therwise one can directly identify the sections of L with meromorphic functions having (only) a

single pole at p, since such functions can be developed around p in the form
a
1) =2+ g0,

where g is a holomorphic function. a € C should be indentified with the projection of f onto kp. (Here

z is a local complex coordinate such that z(p) = 0.)






CHAPTER 9
Algebraic curves 11

In this chapter we further study the geometry of algebraic curves. Topics covered
include the Jacobian variety of an algebraic curve, some theory of elliptic curves, and
the desingularization of nodal plane singular curves (this will involve the introduction
of the notion of blowup of a complex surface at a point).

1. The Jacobian variety

A fundamental tool for the study of an algebraic curve C is its Jacobian variety
J(C), which we proceed now to define. Let V be an m-dimensional complex vector
space, and think of it as an abelian group. A lattice A in V is a subgroup of V of the

form

2m
(9.1) A= {Z n;v;, nN; € Z}
i=1

where {v;}i=1,. 2m is a basis of V' as a real vector space. The quotient space T' = V/A
has a natural structure of complex manifold, and one of abelian group, and the two
structures are compatible, i.e. T' is a compact abelian complex Lie group. We shall
call T a complex torus. Notice that by varying the lattice A one gets another complex
torus which may not be isomorphic to the previous one (the complex structure may be
different), even though the two tori are obviously diffeomorphic as real manifolds.

ExAMPLE 9.1. If C is an algebraic curve of genus g, the group Pic?(C), classifying
the line bundles on C' with vanishing first Chern class, has a structure of complex torus
of dimension g, since it can be represented as H'(C,O)/H(C,Z), and H'(C,Z) is a
lattice in H'(C, ©). This is the Jacobian variety of C. In what follows we shall construct
this variety in a more explicit way. ([

Consider now a smooth algebraic curve C' of genus g > 1. We shall call abelian
differentials the global sections of K (i.e. the global holomorphic 1-forms). If w in
abelian differential, we have dw = 0 and w A w = 0; this means that w singles out a
cohomology class [w] in H(C,C), and that

(9.2) /Cw/\w:0.

117
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Moreover, since locally w = f(z) dz, we have
(9.3) i/w/\w>0 if  w#0.
C

If v is a smooth loop in C, and w € H(C, K), the number fvw depends only on
the homology class of v and the cohomology class of w, and expresses the pairing <, >
between the Poincaré dual spaces Hy(C,C) = H,(C,Z) ®z C and H'(C,C).

Pick up a basis {[y1], ..., [y24]} of the 2g-dimensional free Z-module H;(C,Z), where
the v;’s are smooth loops in C, and a basis {w1, . ..,w,} of HY(C, K). We associate with
these data the g x 2¢g matrix {2 whose entries are the numbers

Ql‘j—/ Wi.
Vi

This is called the period matriz. Its columns €2; are linearly independent over R: if for
alli=1,...¢

2g 29
0= Z)\jQZ‘j = Z)\]/ Wi
j=1 j=1 77

then also Z?il Aj fw w; = 0. Since {w;,@;} is a basis for H'(C,C), this implies
Zfi 1 Ajlyi] = 0, that is, A; = 0. So the columns of the period matrix generate a
lattice A in C9. The quotient complex torus J(C) = C9/A is the Jacobian variety of C.

Define now the intersection matriz () by letting Q;jl = [vj] N [v] (this is the Z-
valued “cap” or “intersection” product in homology). Notice that @ is antisymmetric.
Intrinsically, @ is an element in Homgz(H!(C,Z), H;(C,Z)). Since the cup product in
cohomology is Poincaré dual to the cap product in homology, for any abelian differentials

w, T we have
WU [r] =< Qw], [7] > .
The relations (9.2), (9.3) can then be written in the form
QQO=0, iQQQ>0
(here ~ denotes transposition, and T hermitian conjugation). In this form they are called
Riemann bilinear relations.

A way to check that the construction of the Jacobi variety does not depend on the
choices we have made is to restate it invariantly. Integration over cycles defines a map

is Hy(C,Z) — H(C, K)*, z'(m)(w)_/w.
vy

This map is injective: if i([y])(w) = 0 for a given v and all w then 7 is homologous to
the constant loop. Then we have the representation J(C) = H°(C, K)*/H,(C,Z).

EXERCISE 9.2. By regarding J(C) as H(C,K)*/H(C,Z), show that Serre and
Poincaré dualities establish an isomorphism J(C) ~ Pic®(C). O
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1.1. The Abel map. After fixing a point pg in C' and a basis {wi,...,wy} in
H°(C, K) we define a map

(9.4) w: C — J(C)

= ([ )

Actually the value of p(p) in CY will depend on the choice of the path from py to p;

by letting

however, if §; and d2 are two paths, the oriented sum d; — §o will define a cycle in
homology, the two values will differ by an element in the lattice, and u(p) is a well-
defined point in J(C).

From (9.4) we may get a group homomorphism

(9.5) w: Div(C) — J(C)
by letting
wD) = ulp) =Y pla) it D= p-) g
i j i j
All of this depends on the choice of the base point pg, note however that if deg D = 0
then the choice of pg is immaterial.

PROPOSITION 9.3. (Abel’s theorem) Two divisors D, D’ € Div(C) are linearly equiv-
alent if and only if u(D) = u(D").

PRrROOF. For a proof see [10] page 232. O

COROLLARY 9.4. The Abel map p: C — J(C) is injective.

ProoFr. If u(p) = p(q) by the previous Proposition p ~ ¢ as divisors, but since
g(C) > 1 this implies p = ¢ (this follows from considerations analogous to those in
subsection 8.3.5). O

Abel’s theorem may be stated in a fancier language as follows. Let Divy(C') be
the subset of Div(C) formed by the divisors of degree d, and let Pic?(C) be the set of
line bundles of degree d.! One has a surjective map ¢: = Divy(C) — Pic?(C) whose
kernel is isomorphic to H°(C, M*)/H°(C,0*). Then u filters through a morphism
v: Pic?(C) — J(C), and one has a commutative diagram

Divy(C) —— Picd(C)

INotice that Pic?(C) ~ Picd/(C’) as sets for all values of d and d’.
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moreover, the morphism v is injective (if (L) = 0, set L = ¢(D) (i.e. L = [D]); then
w(L) = 0, that is, L is trivial).

We can actually say more about the morphism v, namely, that it is a bijection. It
is enough to prove that v is surjective for a fixed value of d (cf. previous footnote).

Let C? be the d-fold cartesian product of C' with itself. The symmetric group Sy of
order d acts on C%; we call the quotient Sym?(C) = C?%/S, the d-fold symmetric product
of C. Sym?¢(C) can be identified with the set of effective divisors of C' of degree d. The
map p defines a map pg: Sym?(C) — J(O).

Any local coordinate z on C yields a local coordinate system {z',..., 2%} on C?,

Zi(pla s 7pd) = Z(pi)a

and the elementary symmetric functions of the coordinates z* yield a local coordinate
system for Sym?(C'). Therefore the latter is a d-dimensional complex manifold. More-
over, the holomorphic map

C*—= J(C),  (p1,.-..pa) — pu(p1) + -+ p(pa)

is S-invariant, hence it descends to a map Sym?(C) — J(C), which coincides with .
So the latter is holomorphic.

EXERCISE 9.5. Prove that Sym?(PP;) ~ P,4. (Hint: write explicitly a morphism in
homogeneous coordinates.) O

The surjectivity of v follows from the following fact, usually called Jacobi inversion

theorem.
PROPOSITION 9.6. The map jig: Sym9(C) — J(C) is surjective.

PROOF. Let D = 3" p; € SymY(C), with all the p;’s distinct, and let z* be a local
coordinate centred in p;; then {z!,... 29} is a local coordinate system around D. If D’

is near D we have
) 9 (P
. Z (uADY) = = B
(9.6) G (Mg( ) 04 /po wj = h;

where hj; is the component of w; on dzt.

Consider now the matrix

wi(p1) ... wi(pg)
(9.7) . . e

wg(p1) ... wy(pg)
We may choose p; so that wi(p1) # 0, and then subtracting a suitable multiple of w;
from ws,...,w, we may arrange that wa(p1) = -+ = wy(p1) = 0. We next choose py so
that wa(p2) # 0, and arrange that w3(p2) = -+ = wy(p3) = 0, and so on. In this way the

matrix (9.7) is upper triangular. With these choices of the abelian differentials w; and of
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the points p; the Jacobian matrix {h;;} is upper triangular as well, and since w;(p;) # 0,
its diagonal elements h;; are nonzero at D, so that at the point D corresponding to our
choices the Jacobian determinant is nonzero. This means that the determinant is not
everywhere zero, and by Lemma 8.4 one concludes. (]

PROPOSITION 9.7. The map g4 is generically one-to-one.

PRroOF. Let u € J(C), and choose a divisor D € pu;'(u). By Abel’s theorem the
fibre u;l(u) is formed by all effective divisors linearly equivalent to D, hence it is a
projective space. But since dim.J(C) = dimSym?(C) the fibre of y, is generically
0-dimensional, so that generically it is a point. O

This means that p, establishes a biholomorphic correspondence between a dense
subset of Sym?(C') and a dense subset of .J(C); such maps are called birational.

COROLLARY 9.8. Every divisor of degree > g on an algebraic curve of genus g is
linearly equivalent to an effective divisor.

PROOF. Let D € Divy(C) with d > g. We may write D = D'+ D" with deg D' = ¢
and D" > 0. By mapping D’ to J(C) by Abel’s map and taking a counterimage in
Sym9(C) we obtain an effective divisor E linearly equivalent to D’. Then E + D" is
effective and linearly equivalent to D. O

COROLLARY 9.9. Ewvery elliptic smooth algebraic curve (i.e. every smooth algebraic
curve of genus 1) is of the form C/A for some lattice A C C.

PROOF. We have J(C) = C/A, and the map p; concides with g,

u(p) = /p:w

By Abel’s theorem, p(p) = u(q) if and only if there is on C' a meromorphic function
f such that (f) = p — ¢; but on C there are no meromorphic functions with a single
pole, so that u is injective. p is also surjective by Lemma 8.4 (this is a particular case
of Jacobi inversion theorem), hence it is bijective. [l

COROLLARY 9.10. The canonical bundle of any elliptic curve is trivial.

PROOF. We represent an elliptic curve C' as a quotient C/A. The (trivial) tangent
bundle to C is invariant under the action of A, therefore the tangent bundle to C' is
trivial as well. (]

Another consequence is that if C' is an elliptic algebraic curve and one chooses a
point p € C, the curve has a structure of abelian group, with p playing the role of the
identity element.
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1.2. Jacobian varieties are algebraic. According to our previous discussion, any
1-dimensional complex torus is algebraic. This is no longer true for higher dimensional
tori. However, the Jacobian variety of an algebraic curve is always algebraic.

Let A be a lattice in C™. Any point in the lattice singles out univoquely a cell in the
lattice, and two opposite sides of the cell determine after identification a closed smooth
loop in the quotient torus 7= C™/A. This provides an identification A ~ H;(T,Z).

Let now ¢ be a skew-symmetric Z-bilinear form on Hy(T,Z). Since Homgz (A2 H; (T,
7),7) ~ H*(T,Z) canonically (check this isomorphism as an exercise), ¢ may be re-

garded as a smooth complex-valued differential 2-form on 7'.

PROPOSITION 9.11. The 2-form & which on the basis {e;} is represented by the
intersection matriz Q= is a positive (1,1) form.

Proor. If {e;, j = 1...2n} are the real basis vectors in C" generating the lattice,
they can be regarded as basis in Hi(7,Z). They also generate 2n real vector fields on
T (after identifying C™ with its tangent space at 0 the e; yield tangent vectors to T at
the point corresponding to 0; by transporting them in all points of T' by left transport
one gets 2n vector fields, which we still denote by e;). Let {z!,...,2"} be the natural
local complex coordinates in T'; the period matrix may be described as

Qij:/ dzi.

J

After writing ¢ on the basis {dz’, dz’} one can check that the stated properties of ¢ are
equivalent to the Riemann bilinear relations.? O

There exists on J(C) a (in principle smooth) line bundle L whose first Chern class
is the cohomology class of £&. This line bundle has a connection whose curvature is
(cohomologous to) 27”5 ; since this form is of type (1,1), L may be given a holomorphic
structure. With this structure, it is ample by Proposition 8.3.% This defines a projective
imbedding of J(C'), so that the latter is algebraic.

2. Elliptic curves

Consider the curve ¢’ in C? given by an equation
(9-8) y* = P(x),

280 we are not only proving that the Jacobian variety of an algebraic curve is algebraic, but, more
generally, that any complex torus satisfying the Riemann bilinear relations is algebraic.

3We are using the fact that if a smooth complex vector bundle E on a complex manifold X has a
connection whose curvature has no (0,2) part, then the complex structure of X can be “lifted” to E.
Cf. [19]. Otherwise, we may use the fact that the image of the map ¢; in H2(J(C),Z) (the Néron-Severi
group of J(C), cf. subsection 6.5.1) may be represented as H2(J(C),Z) N H"'(J(C),Z), i.e., as the
group of integral 2-classes that are of Hodge type (1,1). The class of ¢ is clearly of this type.
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where z, y are the standard coordinates in C2, and P(x) is a polynomial of degree 3.
By writing the equation (9.8) in homogeneous coordinates, C’ may be completed to an
algebraic curve C' imbedded in P — a cubic curve in Py. Let us assume that C is
smooth. By the genus formula we see that C' is an elliptic curve.

EXERCISE 9.1. Show that w = dx/y is a nowhere vanishing abelian differential on
C'. After proving that all elliptic curves may be written in the form (9.8), this provides
another proof of the triviality of the canonical bundle of an elliptic curve. (Hint: around
each branch point, z = /P(z) is a good local coordinate...)

The equation (9.8) moreover exhibits C' as a cover of IP1, which is branched of order
2 at the points where y = 0 and at the point at infinity. One also checks that the point
at infinity is a smooth point. We want to show that every smooth elliptic curve can be
realized in this way.

So let C' be a smooth elliptic curve. If we fix a point p in C and consider the exact
sequence of sheaves on C

0— O(p) — O@2p) = ky — 0,

proceeding as usual (Serre duality and vanishing theorem) one shows that H°(C, O(2p))
is nonzero. A nontrivial section f can be regarded as a global meromorphic function
holomorphic in C'— {p}, having a double pole at p. Moreover we fix a nowhere vanishing
holomorphic 1-form w (which exists because K is trivial). We have

Resy(fw) =0.

We realize C' as C/A; these singles out a complex coordinate z on the open subset of C
corresponding to the fundamental cell of the lattice A. Then we may choose w = dz,
and f may be chosen in such a way that
1
fe)= 5 +00).
On the other hand, the meromorphic function df /w is holomorphic outside p, and has
a triple pole at p. We may choose constants a, b, ¢ such that

f:ag+bf+c:i3+0(z).
w z

The line bundle O(3p) is very ample, i.e., its complete linear system realizes the Kodaira
imbedding of C' into projective space. By Riemann-Roch and the vanishing theorem we
have h?(3p) = 3, so that C is imbedded into Py. To realize explicitly the imbedding we
may choose three global sections corresponding to the meromorphic functions 1, f, f.
We shall see that these are related by a polynomial identity, which then expresses the
equation cutting out C' in Ps.

We indeed have, for suitable constants «, (3, -,

= 1 o} 1 1 68 v 1
2 _ - 3 _ -
f = +;2 -1—0(2), [ = G -1-23 +22 -I-O(Z),
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so that, setting 6 = a — 3,
- - 1
Ppf— 40 =0().

So the meromorphic function in the left-hand side is holomorphic away from p, and has
at p a simple pole. Such a function must be constant, otherwise it would provide an
isomorphism of C' with the Riemann sphere.

Thus C may be described as a locus in P, whose equation in affine coordinates is
(9.9) V4 Py=a—dz+e

for a suitable constant e. By a linear transformation on y we may set 5 = 0, and then
by a linear transformation of x we may set the two roots of the polynomial in the right-
hand side of (9.9) to 0 and 1. So we express the elliptic curve C' in the standard form

(Weierstrafl representation)?

(9.10) y? =x(z—1)(z—N).

EXERCISE 9.2. Determine for what values of the parameter A the curve (9.10) is
smooth.

We want to elaborate on this construction. Having fixed the complex coordinate
z, the function f is basically fixed as well. We call it the Weierstrafi P-function. Its
derivative is P/ = —2f. Notice that P cannot contain terms of odd degree in its Laurent
expansion, otherwise P(z) — P(—z) would be a nonconstant holomorphic function on
C. So

P(z) = % + a2’ 4 bz* + O(2°)

P(z) = —% + 2az + 4bz3 + O(2°)

1  3a
(P(2))* = Stz 30+ O(z%)
4 8a

(P'(2)?*= - — T 16b + O(z)

6
z
for suitable constants a,b. From this we see that P satisfies the condition

(P")? — 4P3 + 20 a = constant’

one usually writes go for 20 ¢ and g3 for the constant in the right-hand side.

In terms of this representation we may introduce a map j: M; — C, where M; is
the set of isomorphism classes of smooth elliptic curves (the moduli space of genus one

4Even though the Weierstral representation only provides the equation of the affine part of an
elliptic curve, the latter is nevertheless completely characterized. It is indeed true that any affine plane
curve can be uniquely extended to a compact curve by adding points at infinity, as one can check by

elementary considerations.
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curves) °
3
JC) = 250
95 — 2793
One shows that this map is bijective; in particular M; gets a structure of complex
manifold. The number j(C) is called the j-invariant of the curve C. We may therefore
say that the moduli space M is isomorphic to C. ©

EXERCISE 9.3. Write the j-invariant as a function of the parameter A in equation
(9.10). Do you think that A is a good coordinate on the moduli space M;?

The holomorphic map
v:C =Py 2 [1L,P(2),P(2)]
imbeds C' into Py as the cubic curve cut out by the polynomial
F=y®—42° + go7 + g3

(we use the same affine coordinates as in the previous representation). Since f=df Jw

we have

and the inverse of 1 is the Abel map,”

v (p) = /p 7 mod A
p

0
having chosen pg at the point at infinity, po = ¥(0) = [0, 0, 1].

In terms of this construction we may give an elementary geometric visualization of
the group law in an elliptic curve. Let us choose py as the identity element in C'. We
shall denote by p the element p € C regarded as a group element (so pg = 0). By Abel’s
theorem, Proposition 9.3, we have that

p1+p2+p3=0 if and and only if p1 +p2+ps ~ 3po

(indeed one may think that p = u(p), and one has u(p1 + p2 + ps — 3po) = 0).

Let M(z,y) = max + ny + g be the equation of the line in Py through the points
p1, p2, and let py be the further intersection of this line with C' C P,. The function
M(z) = M(P(z),P'(z)) on C vanishes (of order one) only at the points p1, p2, p4, and
has a pole at pg. This pole must be of order three, so that the divisor of M (z) is
p1+ D2+ ps—3po, i.€; p1 +p2+ps—3po ~ 0.

5The fancy coefficient 1728 comes from arithmetic geometry, where the theory is tailored to work
also for fields of characteristic 2 and 3.

6By uniformization theory one can also realize this moduli space as a quotient H/S1(2, Z), where H is
the upper half complex plane. This is not contradictory in that the quotient H/SI(2, Z) is biholomorphic
to C! (Notice that on the contrary, H and C are not biholomorphic). Cf. [11].

"One should bear in mind that we have identified C' with a quotient C/A.
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If p1 + po + p3 ~ 3 po, then p3 ~ p4, so that pg = py, and p1, P2, p3 are collinear.
Vice versa, if p1, p2, p3 are collinear, p1 4+ p2 4+ p3 — 3 po is the divisor of the meromorphic
function M, so that p1 +p2+p3—3pg ~ 0. We have therefore shown that p1+p2+p3 =0
if and only if p1, p2, p3 are collinear points in Psy.

EXAMPLE 9.4. Let C be an elliptic curve having a Weierstral representation y? =
23 — 1. C is a double cover of Py, branched at the three points

p1 = (170)7 b2 = (Oé,O), b3 = (C)é2,0)

(where o = e2mi/ 3) and at the point at infinity pg. The points p1, p2, p3 are collinear, so
that §; + pa2 + p3 = 0.

The two points g1 = (0,4), g2 = (0, —i) lie on C. The line through ¢, g2 intersects
C' at the point at infinity, as one may check in homogeneous coordinates. So in this case
the elements 1, g2 are one the inverse of the other, and g; + g2 ~ 2py. More generally,
if ¢ € C is such that § = —p, then p + g ~ 2pg, and ¢ is the further intersection of C
with the line going through p, po; if p = (a,b), then ¢ = (a,—b). So the branch points
p; are 2-torsion elements in the group, 2p; = 0. U

3. Nodal curves

In this section we show how (plane) curve singularities may be resolved by a proce-

dure called blowup.

3.1. Blowup. Blowing up a point in a variety® means replacing the point with all
possible directions along which one can approach it while moving in the variety. We
shall at first consider the blowup of C? at the origin; since this space is 2-dimensional,
the set of all possible directions is a copy of P;. Let x,y be the standard coordinates in
C2, and wo, w; homogeneous coordinates in P;. The blowup of C? at the origin is the
subvariety I of C? x P; defined by the equation

rwy —ywy=0.

To show that I' is a complex manifold we cover C? x P; with two coordinate charts,
Vo = C? x Uy and V; = C? x U, where Uy, U; are the standard affine charts in Py,
with coordinates (z,y,t" = w1 /wg) and (z,y,t' = wo/w1). T is a smooth hypersurface
in C? x Py, hence it is a complex surface. On the other hand if we put homogeneous
coordinates (vg, v1,v2) in C2, then I' can be regarded as a open subset of the quadric in
Py x P; having equation v wy — vo wg = 0, so that I' is actually algebraic.

80ur treatment of the blowup of an algebraic variety is basically taken from [1].
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Since T is a subset of C? x P; there are two projections
(9.11) r——"Pr
|
C2
which are holomorphic. If p € C? — {0} then o~1(p) is a point (which means that there
is a unique line through p and 0), so that

o: T —o 10) — C?— {0}

is a biholomorphism.? On the contrary ¢~'(0) ~ P; is the set of lines through the origin
in C?.

The fibre of 7 over a point (wg,w;) € Py is the line z w; —ywy = 0, so that 7 makes
I' into the total space of a line bundle over P;. This bundle trivializes over the cover
{Up, Uy}, and the transition function g: Uy N Uy — C* is g(wp, w1) = wp/w1, so that
the line bundle is actually the tautological bundle Op, (—1).

This construction is local in nature and therefore can be applied to any complex
surface X (two-dimensional complex manifold) at any point p. Let U be a chart around
p, with complex coordinates (z,y). By repeating the same construction we get a complex
manifold U’ with projections

U —"- P

d

U
and

o:U' =o' (p) = U~ {p}

is a biholomorphism, so that one can replace U by U’ inside X, and get a complex
manifold X’ with a projection o: X’ — X which is a biholomorphism outside o~!(p).
The manifold X’ is the blowup of X at p. The inverse image E = o~ (p) is a divisor
in X', called the exceptional divisor, and is isomorphic to P;. The construction of the
blowup I' shows that X’ is algebraic if X is.

ExXAMPLE 9.1. The blowup of Py at a point is an algebraic surface X; (an example
of a Del Pezzo surface); the manifold ', obtained by blowing up C? at the origin, is
biholomorphic to X; minus a projective line (so X; is a compactification of T). ([

3.2. Transforms of a curve. Let C be a curve in C? containing the origin. We
denote as before I' the blowup of C? at the origin and make reference to the diagram
(9.11). Notice that the inverse image o~ 1(C) C T contains the exceptional divisor E,
and that 0=1(C) \ E is isomorphic to C — {0}.

9807 according to a terminology we have introduce in a previous chapter, the map o is a birational

morphism.
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DEFINITION 9.2. The curve o~ 1(C) C T is the total transform of C. The curve
obtained by taking the topological closure of 0= 1(C)\ E in T is the strict transform of
C.

We want to check what points are added to o1 (C) \ E when taking the topological
closure. To this end we must understand what are the sequences in C? which converge to
0 that are lifted by o to convergent sequences. Let {pr = (zk,yr) }ren be a sequence of
points in C? converging to 0; then o~ (z, yz) is the point (x4, Yk, wo, w1) with z3 wy —
yr wo = 0. Assume that for k& big enough one has wy # 0 (otherwise we would assume
wy # 0 and would make a similar argument). Then w;/wy = yx/xk, and {0~ (px)}
converges if and only if {yx/x;} has a limit, say h; in that case {o~1(px)} converges to
the point (0,0,1,h) of E. This means that the lines r; joining 0 to px approach the
limit line 7 having equation y = hk. So a sequence {px = (zk,yx)} convergent to 0 lifts
to a convergent sequence in I' if and only if the lines r; admit a limit line r; in that
case, the lifted sequence converges to the point of F representing the line r.

The strict transform C’ of C' meets the exceptional divisor in as many points as
are the directions along which one can approach 0 on C, namely, as are the tangents
at C at 0. So, if C is smooth at 0, its strict transform meets F at one point. Every
intersection point must be counted with its multiplicity: if at the point 0 the curve C
has m coinciding tangents, then the strict transform meets the exceptional divisor at a

point of multiplicity m.

DEFINITION 9.3. Let the (affine plane) curve C' be given by the equation f(z,y) = 0.
We say that C' has multiplicity m at 0 if the Taylor expansion of f at 0 starts at degree
m.

This means that the curve has m tangents at the point 0 (but some of them might
coincide). By choosing suitable coordinates one can apply this notion to any point of a

plane curve.

ExXAMPLE 9.4. A curve is smooth at 0 if and only if its multiplicity at 0 is 1. The
curves zy = 0, 4> = 22 and y? = 2% have multiplicity 2 at 0. The first two have two
distinct tangents at 0, the third has a double tangent. O

If the curve C' has multiplicity m at 0 than it has m tangents at 0, and its strict
transform meets the exceptional divisor of I" at m points (notice however that these

points are all distinct only if the m tangents are distincts).

DEFINITION 9.5. A singular point of a plane curve C is said to be nodal if at that
point C has multiplicity 2, and the two tangents to the curve at that point are distinct.

EXERCISE 9.6. With reference to equation (9.10), determine for what values of A
the curve has a nodal singularity.
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EXERCISE 9.7. Show that around a nodal singularity a curve is isomorphic to an

open neighbourhood of the origin of the curve zy = 0 in C2.

ExaMPLE 9.8. (Blowing up a nodal singularity.) We consider the curve C' C C?
having equation z® + 22 — y? = 0. This curve has multiplicity 2 at the origin, and its
two tangents at the origin have equations y = £x. So C has a nodal singularity at the
origin. We recall that I' is described as the locus

{(u, v, wo,w1) € C* x Py | wwy =vw;}.
The projection o is described as

(9.12) rT=1u x = vwiy/wy

Yy = uwp/wy y=uv
in I'NVj and I' NV}, respectively. By substituting the first of the representations (9.12)
into the equation of C we obtain the equation of the restriction of the total transform
toI'NU;:

wr(u+1—-1%) =0

where t = wo/wi. u? = 0 is the equation of the exceptional divisor, so that the
equation of the strict transform is u 4+ 1 — t?> = 0. By letting u = 0 we obtain the
points (0,0,1,1) and (0,0,1, —1) as intersection points of the strict transform with the
exceptional divisor. By substituting the second representation in eq. (9.12) we obtain
the equation of the total transform in I' N Uy; the strict transform now has equation
t3v +t? — 1, yielding the same intersection points.

The total transform is a reducible curve, with two irreducible components which

meet at two points.

EXERCISE 9.9. Repeat the previous calculations for the nodal curve xy = 0. In
particular show that the total transform is a reducible curve, consisting of the excep-
tional divisor and two more genus zero components, each of which meets the exceptional

divisor at a point.

EXAMPLE 9.10. (The cusp) Let C be curve with equation y?> = z3. This curve

has multiplicity 2 at the origin where it has a double tangent.'® Proceeding as in the
previous example we get the equation v¢> = 1 for ¢’ in I'NVj, so that C’ does not meet
E in this chart. In the other chart the equation of C’ is t? = u, so that C’ meets E at
the point (0,0,0,1); we have one intersection point because the two tangents to C' at

the origin coincide.

The strict transform is an irreducible curve, and the total transform is a reducible

curve with two components meeting at a (double) point. O

101ndeed this curve can be regarded as the limit for &« — 0 of the family of nodal curves z®+a? 2% —

y? = 0, which at the origin are tangent to the two lines y = +a .
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3.3. Normalization of a nodal plane curve. It is clear from the previous ex-
amples that the strict transform of a plane nodal curve C (i.e., a plane curve with only
nodal singularities) is again a nodal curve, with one less singular point. Therefore after
a finite number of blowups we obtain a smooth curve N, together with a birational
morphism 7w: N — C. N is called the normalization of C.

EXAMPLE 9.11. Let us consider the smooth curve Cy in C? having equation y? =
x* — 1. Projection onto the z-axis makes Cy into a double cover of C, branched at the
points (£1,0) and (+4,0). The curve Cy can be completed to a projective curve simply
by writing its equation in homogeneous coordinates (wg,w;,w2) and considering it as
a curve C in Py; we are thus compactifying Cy by adding a point at infinity, which in
this case is not a branch point. The equation of C' is

wi wi —wi +wg =0.

This curve has genus 1 and is singular at infinity (as one could have alredy guessed since
the genus formula for smooth plane curves does not work); indeed, after introducing

affine coordinates £ = wy/we, 7 = wy/wy (in this coordinates the point at infinity on
the z-axis is n = £ = 0) we have the equation

62 — ,,74 o 54
showing that C' is indeed singular at infinity. One can redefine the coordinates &, n so

that C' has equation
E=n)E+n*) =0

showing that C' is a nodal curve. Then it can be desingularized as in Example 9.8. [

A genus formula. We give here, without proof, a formula which can be used to
compute the genus of the normalization N of a nodal curve C'. Assume that N has ¢
irreducible components Ny, ..., N¢, and that C' has  singular points. Then:

g(C)=> g(Ni) +1—t+5.
1

For instance, by applying this formula to Example 9.8, we obtain that the normalization

is a projective line.
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