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Chapter 1

GEOMETRY: Making a Start

1.1 INTRODUCTION. Thefocus of geometry continuesto evolve with time. The renewed
emphasis on geometry today is aresponse to the realization that visualization, problem-solving
and deductive reasoning must be a part of everyone' s education. Deductive reasoning has long
been an integral part of geometry, but the introduction in recent years of inexpensive dynamic
geometry software programs has added visualization and individual exploration to the study of
geometry. All the constructions underlying Euclidean plane geometry can now be made
accurately and conveniently. The dynamic nature of the construction process means that many
possihilities can be considered, thereby encouraging exploration of a given problem or the
formulation of conjectures. Thus geometry isideally suited to the development of visualization
and problem solving skills as well as deductive reasoning skills. Geometry itself hasn’t
changed: technology has simply added a powerful new tool for use while studying geometry.
So what is geometry? Meaning literally “earth measure”, geometry began several thousand
years ago for strictly utilitarian purposes in agriculture and building construction. The explicit
3-4-5 example of the Pythagorean Theorem, for instance, was used by the Egyptiansin
determining a square corner for afield or the base of a pyramid long before the theorem aswe
know it was established. But from the sixth through the fourth centuries BC, Greek scholars
transformed empirical and quantitative geometry into alogically ordered body of knowledge.
They sought irrefutable proof of abstract geometric truths, culminating in Euclid’ s Elements
published around 300 BC. Euclid’streatment of the subject has had an enormous influence on
mathematics ever since, so much so that deductive reasoning is the method of mathematical
inquiry today. In fact, thisis often interpreted as meaning “ geometry is 2-column proofs’. In
other words geometry is aformal axiomatic structure —typically the axioms of Euclidean plane
geometry - and one objective of this course isto develop the axiomatic approach to various
geometries, including plane geometry. Thisis avery important, though limited, interpretation of
the need to study geometry, asthereis more to learn from geometry than formal axiomatic
structure. Successful problem solving requires a deep knowledge of alarge body of geometry



and of different geometric techniques, whether or not these are acquired by emphasizing the
‘proving’ of theorems.

Evidence of geometry isfound in all cultures. Geometric patterns have always been used to
decorate buildings, utensils and weapons, reflecting the fact that geometry underlies the creation
of design and structures. Patterns are visually appealing because they often contain some
symmetry or sense of proportion. Symmetries are found throughout history, from dinosaur
tracks to tire tracks. Buildings remain standing due to therigidity of their triangular structures.
Interest in the faithful representation of athree dimensional scene as aflat two-dimensional
picture has led artists to study perspective. In turn perspective drawing led to the introduction of
projective geometry, a different geometry from the plane geometry of Euclid. The need for
better navigation as trading distances increased along with an ever more sophisticated
understanding of astronomy led to the study of spherical geometry. But it wasn’t until the 19"
century, as aresult of astudy examining the role of Euclid’ s paraldl postulate, that geometry
came to represent the study of the geometry of surfaces, whether flat or curved. Finaly, in the
20™ century this view of geometry turned out to be avital component of Einstein’s theory of
relativity. Thusthrough practical, artistic and theoretical demands, geometry evolved from the
flat geometry of Euclid describing one's immediate neighborhood, to spherical geometry
describing the world, and finally to the geometry needed for an understanding of the universe.

The most important contribution to this evolution was the linking of algebra and geometry
in coordinate geometry. The combination meant that algebraic methods could be added to the
synthetic methods of Euclid. It also allowed the use of calculus aswell astrigonometry. The use
of caculusin turn alowed geometric ideas to be used in real world problems as different as
tossing aball and understanding soap bubbles. The introduction of algebra also led eventually
to an additional way of thinking of congruence and similarity in terms of groups of
transformations. This group structure then provides the connection between geometry and the
symmetries found in geometric decorations.

But what isthe link with the plane geometry taught in high school which traditionally has
been the study of congruent or similar triangles as well as properties of circles? Now
congruence is the study of properties of figures whose size does not change when the figures
are moved about the plane, while similarity studies properties of figures whose shape does not
change. For instance, a pattern in wallpaper or in afloor covering islikely to be interesting when
the pattern does not change under some reflection or rotation. Furthermore, the physical
problem of actually papering awall or laying atile floor is made possible because the pattern
repeatsin directions parallel to the sides of the wall or floor, and thereby does not change under
trandationsin two directions. In thisway geometry becomes a study of properties that do not
change under afamily of transformations. Different families determine different geometries or



different properties. The approach to geometry described above is known as Klein's Erlanger
Program because it was introduced by Felix Klein in Erlangen, Germany, in 1872.

This course will develop all of these ideas, showing how geometry and geometric ideas are a
part of everyone' s life and experiences whether in the classroom, home, or workplace. To thisis
added one powerful new ingredient, technology. The software to be used is Geometer’s
Sketchpad. It will be available on the machinesin thislab and in another lab on campus. Copies
of the software can also be purchased for use on your own machines for approximately $45
(IBM or Macintosh). If you are ‘uncertain’ of your computer skills, don’t be concerned - one
of the objectives of this course will be to develop computer skills. There' s no better way of
doing this than by exploring geometry at the same time.

In thefirst chapter of the course notes we will cover avariety of geometric topicsin order to
illustrate the many features of Sketchpad. The four subsequent chapters cover the topics of
Euclidean Geometry, Non-Euclidean Geometry, Transformations, and Inversion. Here we will
use Sketchpad to discover results and explore geometry. However, the goa is not only to study
some interesting topics and results, but to also give “proof” asto why the results are valid and
to use Sketchpad as a part of the problem solving process.

1.2 EUCLID’'SELEMENTS. The Elementsof Euclid were written around 300 BC. As Eves
says in the opening chapter of his*‘ College Geometry’ book,

“thistreatise by Euclid isrightfully regarded as the first great landmark in the history of

mathematical thought and organization. No work, except the Bible, has been more widely

used, edited, or studied. For more than two millenniait has dominated al teaching of
geometry, and over athousand editions of it have appeared since the first one was printed in

1482. ... It isno detraction that Euclid’ swork islargely a compilation of works of

predecessors, for its chief merit lies precisely in the consummate skill with which the

propositions were selected and arranged in alogical sequence ... following from a small
handful of initial assumptions. Nor isit adetraction that ... modern criticism has revealed
certain defects in the structure of the work.”

The Elementsis a collection of thirteen books. Of these, the first six may be categorized as
dealing respectively with triangles, rectangles, circles, polygons, proportion and similarity. The
next four deal with the theory of numbers. Book XI is an introduction to solid geometry, while
X1l dealswith pyramids, cones and cylinders. The last book is concerned with the five regular
solids. Book | begins with twenty three definitions in which Euclid attempts to define the notion
of ‘point’, ‘line’, ‘circle’ etc. Then the fundamental ideaisthat al subsequent theorems— or
Propositions as Euclid calls them — should be deduced logically from an initial set of
assumptions. In all, Euclid proves 465 such propositions in the Elements These arelisted in



detail in many texts and not surprisingly in this age of technology there are severa web-sites
devoted to them. For instance,

http://al eph0.clarku.edu/~djoyce/javal Geometry/Geometry.html

isavery interesting attempt at putting Euclid’ s Elementson-line using some very clever Java
appletsto allow real time manipulation of figures; it aso contains links to other similar web-
stes. The web-site

http://thales.vismath.org/euclid/

isavery ambitious one; it contains a number of interesting discussions of the Elements

Any initia set of assumptions should be as self-evident as possible and as few as possible so
that if one accepts them, then one can believe everything that follows logically from them. In the
ElementsEuclid introduces two kinds of assumptions:

COMMON NOTIONS:

1.

PP e

Thingswhich are equal to the same thing are also equal to one another.
If equals be added to equals, the wholes are equal.

If equals be subtracted from equals, the remainders are equal.

Things which coincide with one another are equal to one another.
Thewholeis greater than the part.

POSTULATES:. Let thefollowing be postulated.

Ll

To draw astraight line from any point to any point.

To produce afinite straight line continuously in astraight line.

To describe acircle with any center and distance.

That al right angles are equal to one ancther.

That, if astraight line falling on two straight lines makes the interior angles on the same side
less than two right angles, then the two straight linesif produced indefinitely, meet on that
side on which are the angles less than two right angles.

Today we usually refer to al such assumptions as axioms. The common notions are surely

self-evident since we use them all the time in many contexts not just in plane geometry —
perhaps that’ s why Euclid distinguished them from the five postulates which are more
geometric in character. The first four of these postulates too seem self-evident; one surely needs
these constructions and the notion of perpendicularity in plane geometry. The Fifth postulate is
of amore technical nature, however. To understand what it is saying we need the notion of
pardle lines.



1.2.1 Definition. Two straight linesin aplane are said to be parallel if they do not intersect,
i.e, do not mest.

The Fifth postulate, therefore, means that straight linesin the plane are not paralel when
thereisatransversal t such that the sum (a + b) of theinterior angles on one sideislessthan
the sum of two right angles; in fact, the postul ate states that the lines must meet on this side.

The figure above makes this clear. The need to assume this property, rather than showing
that it is a consequence of more basic assumptions, was controversial evenin Euclid stime. He
himself evidently felt reluctant to use the Fifth postulate, since it is not used in any of the proofs
of thefirst twenty-eight propositionsin Book |. Thus one basic question from the time of
Euclid was to decide if the Fifth Postulate is independent of the Common Notions and the first
four Postulates or whether it could be deduced from them.

Attempts to deduce the Fifth postulate from the Common Notions and other postulates led
to many statements logically equivalent to it. One of the best knowniis

1.2.2 Playfair’s Axiom: Through agiven point, not on agiven line, exactly oneline can be
drawn paralld to the givenline.

Its equivalence to the Fifth Postulate will be discussed in detail in Chapter 2. Thusthe Fifth
postulate would be a consequence of the Common notions and first four postulatesif it could
be shown that neither

ALTERNATIVE A: through agiven point not on agiven line, no line can be drawn paralld to
thegivenline, nor



ALTERNATIVE B: through agiven point not on agiven line, more than one line can be drawn
paralld to the given line

is possible once the five Common notions and first four postul ates are accepted as axioms.
Surprisingly, the first of these alternatives does occur in ageometry that was familiar already to
the Greeks, replacing the plane by a sphere. On the surface of the earth, considered as a sphere,
agreat circleisthe curve formed by the intersection of the earth’ s surface with a plane passing
through the center of the earth. The arc between any two points on agreat circle is the shortest
distance between those two points. Great circles thus play the role of *straight lines' on the
sphere and arcs of great circles play the role of line segments. In practical terms, arcs of great
circles are the most efficient paths for an airplane to fly in the absence of mountains or for a
ship to follow in open water. Hence, if weinterpret ‘point’ as having its usua meaning on a
sphere and ‘straight line' to mean great circle, then the resulting geometry satisfies Alternative
A because two great circles must aways intersect (why?). Notice that in this geometry ‘ straight
lines arefinitein length though they can till be continued indefinitely as required by the
second Postul ate.

This still leaves open the possibility of Alternative B. In other words, there might be
geometry in which Alternative B occurs, and hence a geometry in which Alternative B isa
legitimate logical substitute for Playfair’ s axiom. If so, the familiar results of Euclidean
geometry whose proofs rely on the Fifth postulate would not necessarily remain truein this
geometry. In the early 19" century Gauss, Lobachevsky, and Bolyai showed that there indeed
exists such alogically reasonable geometry —what we now call hyperbolic geometry. It is based
on Alternative B together with the five common notions and first four postulates of Euclid.
Towards the end of the 19" century simple ‘models’ of hyperbolic plane geometry were given
by Poincaré and othersin terms of two and three dimensional Euclidean geometry. As aresult
of thisdiscovery of hyperbolic geometry, the mathematical world has been radically changed
since Alternative B appears to run counter to all prior experiences. Thus Euclidean plane
geometry isonly one possible geometry - the one that follows by adopting the Fifth Postulate
as an axiom. For this reason, the Fifth Postulate is often referred to as the Euclidean parallel
postulate, and these notes will continue this convention. Some interesting consequences of the
Euclidean Parallel postulate beyond those studied in high school will be devel oped in Chapter 2.

Thefirgt three postulates of Euclid reflect the growth of formal geometry from practical
constructions — figures constructed from line segments and circles — and the same can be said
for many of the subsequent propositions proved by Euclid. We will see that software will allow
constructions to be made that Euclid could only describe in words or that previously one could
draw only in arudimentary fashion using ruler and compass. This software will provide arapid



and accurate means for constructing line-segments, lines, and circles, aswell as constructions
based upon these objects. It will enable usto construct accurate geometric configurations that in
turn can be altered to new figures having the same construction constraints. This ability to drag
the figure about has been available only within the past decade. It allows a student to carry out
geometric experiments quickly, producing accurate sketches from which ‘ conjectures’ can be
made. These conjectures can then be in turn verified in whatever manner is deemed appropriate.

The Geometer’ s Sketchpad referred to in these notes, is such a software program. It
provides accurate constructions and measures of geometric configurations of points, line
segments, circles, etc. and it has the ability to replay a given construction. The software can be
used to provide visually compelling evidence of invariance properties such as concurrence of
lines, the co linearity of points, or the ratios of particular measurements. In addition, Sketchpad
allowstrandations, rotations, reflections and dilations of geometric constructions to be made
either singly or recursively, permitting the study of transformationsin avisualy compelling way
aswill be seen in Chapters 2 and 4. Because the two-dimensional models of hyperbolic
geometry —the so called Poincaré disk and upper half-plane models - make extensive use of
circlesand arcs of circles, Geometer’s Sketchpad is aso particularly well-adapted to developing
hyperbolic plane geometry as we shall seein Chapters 3 and 5.

1.3GEOMETER’'S SKETCHPAD. Successful use of any software requires a good working
knowledge of its features and its possibilities. One objective of this courseis the development
of that working knowledge.

Basic geometric figures are constructed using the drawing tools in the toolbox and the
dynamic aspect of Sketchpad can be exploited by using the selection arrow to drag any figure
that has been constructed. The Measure menu allows us to measure properties of afigure. With
the Edit and Display menus labels can be added to figures, and those figures can be animated.
Using custom tools we also can replay complex geometric constructionsin asingle step. To
start with we will use some of the more basic tools of Sketchpad - amore extensivelisting is
givenin Appendix A.

General Instructions: The set of squares along the left-hand side of the screen comprises the
toolbox. The toolsin the toolbox are (from top to bottom):
Selection Arrow Tools: Press and hold down the mouse clicker for Rotate and Dilate
tools.
Point Tool: Creates points.
Compass (Circle) Tool: Createscircles



Straightedge (Segment) tool: Press and hold down the mouse clicker for Ray and Line
tools.

Text: Click on an object to display or hideitslabel. Double click on alabel, measurement
or caption to edit or change the style. Double click in blank areato create caption. With the
Selection arrow tool, 1abels can be repositioned by dragging.

Custom Tools: Allowsthe user to create and access custom tools.

These notes contain several Demonstrations. InaDemonstration, aproblem or task is
proposed and the solution to the problem or task is described in the body of the
Demonstration.

To get started using Sketchpad let’s consider this Demonstr ation.
1.3.1 Demonstration: Construct an equilateral triangle using Geometer’ s Sketchpad.

In other words, using Sketchpad construct atriangle that remains equilateral no matter how
we drag each of the vertices around the sketch using the Arrow tool. Here are the stepsfor one
of several possible constructions.

Open anew sketch. To create anew sketch, select “New Sketch” from under the File
menu. Using the Segment tool, draw aline segment, and label its endpoints A, B. This
defines one side of the equilatera triangle. The ideafor our construction will be to construct

the remaining sides so that they have length equal to that of AB . To accomplish thiswe will

construct acircle passing through A with radiusAB aswell asacircle passing through B
with the same radius. Either point of intersection of these circles can then form the third
vertex C of an equilatera triangle DABC . We proceed as follows:

Using the Select arrow, select vertices A and B. Select “Circle By Center And Point” from
under the Construct menu. Note that the order in which the points A and B are selected
determines which is the center of the circle and which point lies on the circle. Repeat to
congtruct acircle centered at the other endpoint.

Using the Select arrow, select the two circles. Select “Intersections’ from under the
Construct menu. Using the Text tool, label one of the pointsC.

To finish DABC , use the Segment tool to construct AC and CB . The resulting figure
should look similar to



To hide everything in this figure except the required equilateral triangle, first select the
undesired objects and then choose “Hide Objects’” from the Display Menu. You may click on
objectsindividually with the Arrow Tool or you may usethe Arrow Tool to drag over an area
and select more than one object at once. If you selected too many objects, you can deselect an
unwanted object with the Arrow Tool by smply clicking on it again.

Drag either A or B to verify that DABC remains equilateral. Does dragging vertex C havethe
same effect as dragging vertex A? The answer should be no. Thisis due to the fact that vertex C
is not afree point because it was constructed from A and B. The vertex Aisafree point so A
might be thought of as an independent variable and C as a dependent variable. To save your
figure select “ Save” from under the File menu. The convention is to save sketches with thefile
extension .gsp.

End of Demonstration 1.3.1.

We can use measuring features of Sketchpad to confirm that we do have an equilateral
triangle. Select the three sides of the equilateral triangle then select “Length” from the
M easur e menu. The lengths of the three segments should appear in the corner of your sketch.
Drag afree vertex of thetriangle. Of course, that fact that Sketchpad measures all sideswith
equal length does not provide a proof that your construction is correct. A proof would smply
consist of the observation that both circles have the same radius and each edge of thetriangleis
aradius of one of the circles.

1.3.2 Exercise. Using Sketchpad, construct each of the following figures so that the figure
retains its defining property when afree point on the figure is dragged:

a) arectangle, given perpendicular ssgments AB and AC ;



b) aparallelogram, given two segments AB and AC with A, B, and C free points;
c) arhombus, given two segments AB and AC with AB @ AC

d) a30-60-90 triangle, given line segment AB as the hypotenuse of the triangle.

1.4 GETTING STARTED. Let'sreview briefly some of the principal ideas typically taught in
high school geometry, keeping in mind the role of the Euclidean parallel postulate and the
guestion of how one might incorporate the use of dynamic geometric. Many of the early
propositions established by Euclid dealt with constructions which were a consegquence of the
first four postulates, so high school geometry often begins with the following constructions:

construct a congruent copy of agiven line segment (given angle)

bisect a given line segment (given angle)

construct the perpendicular bisector of agiven line segment

construct aline perpendicular to agiven line through a point on the given line

congtruct the perpendicular line to agiven line from apoint not on the given line

The Construct menu in Sketchpad allows us to do most of these constructionsin one or
two steps. If you haven’t done so aready, look at what is available under the Construct menu.
It isworth noting that Euclid’ s constructions were originally accomplished with only a compass
and straightedge. On Sketchpad this trandates to using only the Circle and Segment tools. We
will perform the compass and straightedge constructions once we have briefly reviewed the
well-known short cuts to proving triangle congruences.

Although Euclid sfifth postulate is needed to prove many of hislater theorems, he presents
28 propositionsin The Elements before using that postulate for the first time. Thiswill be
important later because all these results remain valid in ageometry in which Alternative B is
assumed and all but one of these remain valid in ageometry in which Alternative A is assumed.
For this reason we will make careful note of the role of the fifth postulate while continuing to
recall geometric ideas typically taught in high school geometry. For instance, the familiar
congruence properties of triangles can be proved without the use of the Fifth postulate. In high
school these may have been taught as *facts' rather than as theorems, but it should be
remembered that they could be deduced from the first four Postul ates.

Recdl that atriangle DABC issaid to be congruent to DDEF | written DABC @DDEF ,
when thereisacorrespondence A« D,B « E,C « Finwhichal three pairs of
corresponding sides are congruent and all three pairs of corresponding angles are congruent.
To establish congruence of triangles, however, it is not necessary to establish congruence of al
sidesand al angles.
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1.4.1 Theorem (SAS). If two sides and the included angle of one triangle are congruent
respectively to two sides and the included angle of another triangle, then the two triangles are
congruent.

1.4.2 Theorem (ASA). If two angles and the included side of one triangle are congruent
respectively to two angles and the included side of another triangle, then the two triangles are
congruent.

1.4.3 Theorem (SSS). If three sides of one triangle are congruent respectively to three sides of
another triangle, then the two triangles are congruent.

1.4.4 Theorem (HL). If the hypotenuse and aleg of one right triangle are congruent
respectively to the hypotenuse and leg of another right triangle, then the two triangles are
congruent.

These shortcuts to showing triangle congruence will be put to good use in the future. Asan
illustration of how we might implement them on Sketchpad consider the problem of
constructing atriangle congruent to agiven triangle. In more precise terms this can be
formulated as follows.

1.4.5 Demonstration: Open anew sketch and construct DABC ; now construct a new triangle
in this sketch congruent to DABC . Here is one solution based on the SSS shortcut.

11



green

A blue B

Open a new sketch and construct DABC  using the Segment tool in the toolbar on the left of
the screen. Make certain that it is the segment tool showing, not theray or linetool. To
verify that the correct tool is selected look at the toolbar, the selected tool should be shaded.
Now in the sketch window click down at the first vertex position, move the mouse to the
second vertex and release the mouse clicker. At this same position, click down on the
mouse, move the mouse to the third vertex, and release. Click down on the third vertex, and
release on thefirst vertex. Label the vertices A, B, and C using the Text tool, re-labeling if
necessary.

Change the color of AB toblue, BC tored, and AC to green. To change the color of a
line segment first select the segment then select “Color” from the Display menu and
choose the desired color.

Construct the point D elsewhere in your sketch. Now select the point D and the

segmentAB . Using the Construct menu select “Circle By Center And Radius’. Change
the color of the circle to blue.

Now select the point D and the ssgment AC . Using the Construct menu select “Circle By
Center And Radius’. Change the color of the circle to green.

Now construct any point on the green circle and label it F. Select that F and BC . Using the

Construct menu select “Circle By Center And Radius’. Change the color of the circleto
red.
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Construct one of the points of intersection between the red and the blue circle and |abel the
point by E. To do this you may use the point tool to click on the intersection point directly.
Alternatively, you can select both circles and using the Construct menu select “Point At
Intersection”.

Finally, use the segment tool to construct DE , EF , and DF . By SSS DABC is congruent
to DDEF . Drag the vertices of DABC to observe the dynamic nature of your construction.

End of Demonstration 1.4.5.
Two important results follow from the previous theorems about triangle congruence.
1.4.6 Theorem. In an isosceles triangle, the angles opposite the congruent sides are congruent.

1.4.7 Corollary. Inanisoscelestriangle, the ray bisecting the angle included by the
congruent sides bisects the side opposite to thisangle and is perpendicular to it.

1.4.8 Exer cise: Do the constructions below using only the Circle and Segment tools.
(You candrag, labd, hide etc.) In each case, prove that your construction works.
construct a congruent copy of agiven line segment (given angle)
bisect a given line segment (given angle)
construct the perpendicular bisector of a given line segment
construct aline perpendicular to agiven line through a point on the given line
congtruct the perpendicular line to agiven line from a point not on the given line

15 SIMILARITY AND TRIANGLE SPECIAL POINTS. One surprising discovery of a
high school geometry course isthe number of properties that the smplest of all geometric
figures—atriangle — has. Many of these results rely on shortcuts to proving triangle similarity.
The mathematical notion of similarity describes the idea of change of scale that isfound in such
forms as map making, perspective drawings, photographic enlargements and indirect
measurements of distance. Recall from high school that geometric figures are similar when they
have the same shape, but not necessarily the same size. More precisaly, triangles DABC and
DDEF are said to be similar, written DABC ~ DDEF , when all three pairs of corresponding
angles are congruent and the lengths of all three pairs of corresponding sides are proportional.
To establish similarity of triangles, however, it is not necessary to establish congruence of all
pairs of angles and proportionality of all pairs of sides. The following results are part of high

school geometry. It isimportant to note that unlike the shortcuts to triangle congruence, the
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shortcuts to triangle similarity do require Euclid’ s Fifth Postulate and therefore, any result that
uses one of these shortcuts cannot be assumed to hold in a non-Euclidean geometry. For the
remainder of this chapter, we will work within Euclidean geometry, i.e., we will accept the
vdlidity of Euclid’ s Fifth Postulate.

1.5.1 Theorem. (AA) If two angles of one triangle are congruent to two angles of another
triangle, then the triangles are similar.

1.5.2 Theorem. (SSS) If three sides of onetriangle are proportional respectively to three sides
of another triangle, then the triangles are similar.

1.5.3 Theorem. (SAS) If two sides of onetriangle are proportional respectively to two sides of
another triangle and the angles included by these sides are congruent, then the triangles are
smilar.

A very useful corollary of Theorem 1.4.11 isthe following:
1.5.4 Corollary. Given DABC, let At bethe midpoint of BC and let B¢ be the midpoint of
AC. Then DBETAC~ DABC withratio 1:2. Furthermore AB isparalel to AG.

B

We now consider some specia pointsrelated to atriangle. Recall first the definition of
concurrent lines.

Definition: Three or more lines that intersect in one point are called concurrent lines.

11



1.5.5 Theorem. The perpendicular bisectors of the sides of atriangle are concurrent at a point
caled the circumcenterr, denoted by O. Furthermore, O is equidistant from all three vertices of
thetriangle.

Proof: Consider DABC and label the midpoints of the sides A(, B(, and C(. Let O denotethe

point of intersection of the perpendicular bisectors of sides AB and AC.

It sufficesto provethat OA® BC. First note that DOBC¢@OAC( and DOABS@OCHX.
Why? It followsthat OB = OA=0C. Consequently, DOBAC@OCAL Why? Now, since
corresponding angles are congruent, we have that DOA®B @ OAL and since the sum of their

measures is180°, each must be aright angle. Q.E.D.

Since the circumcenter O is equidistant from
the vertices of thetriangle, acircle centered at
O will passthrough all three vertices. Sucha
circleiscaled the circumcircle of thetriangle.

Thus every triangle in Euclidean geometry can beinscribed in acircle. The sameisnot true
in non-Euclidean geometry. Seeif you can find where the Fifth Postulate was used in the
proof. Don’t worry if you can't. We will revisit this question in Chapter 3.

1=



Definition: The segment connecting the vertex of atriangle and the midpoint of its opposite
sdeiscalled amedian.

1.5.6 Theorem. The medians of atriangle are concurrent, at apoint called the centroid, denoted
by G. Furthermore, the centroid trisects each of the medians.
Proof: Consider DABC and label the midpoints of the sides A¢, B(, and C(. LetG denote the

point of intersection of the medians AA¢ and BBX.

We will show that DBEGAS~ DBGA. By Corollary 1.5.4, AB || AB( and therefore
DBAG @ BRAG since they form dternate interior angles. Similarly, DPGAB @ GABC. In

addition, ABC= é(AB) , again by Corollary 1.5.4. Thusthe trianglesin question are smilar

. . 1
withratio 1.2, by SAS. Consequently, AG = E(AG)'
Now, let Glrepresent the intersection of AAland CC(. We can use the same argument to

provethat At0= —; (AG9. It follows that the two points coincide, and thus the three medians

are concurrent at a point which trisects each median. Q.E.D.

Since our proof used the shortcuts to triangle similarity, this proof cannot be used to
establish the existence of the centroid of atriangle in non-Euclidean geometry. There are other
proofs of the existence of the centroid and some of them are independent of Euclid’ s Fifth
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Postulate. However, the proof that the centroid trisects each median is dependant on the Fifth
Postulate and hence is not true in non-Euclidean geometry.

Definition: The segment connecting the vertex of atriangle and perpendicular to its opposite
sideiscalled an altitude.

1.5.7 Theorem. The dtitudes of atriangle are concurrent at apoint called the orthocenter,
denoted by H.

Proof: In mathematics, onetriesto use results that have already been established when
possible. We can do so now, by relating the orthocenter of our triangle to the circumcenter of
another triangle. We do so asfollows. Through each vertex of DABC, draw aline paralld to
the opposite side. Labd the intersection points D, E, and F.

D B E

We claim that each dtitude of DABC isaline segment lying on a perpendicular bisector of
DDEF . Sincewe have dready established that the perpendicular bisectors of atriangle are
concurrent, it follows that as long as the altitudes intersect, they intersect in asingle point. (Of
course, you must convince yourself that the altitudes do intersect.) Let us prove that the atitude

of DABC at B lies on the perpendicular bisector of DE . By definition, the atitude of DABC
at B is perpendicular to AC and henceto DE, since DE isparale to AC. It remainsto show

that B is the midpoint of DE. Notethat ABDC and ACBF are both parallelograms. It follows,
since opposite sides of a parallelogram are congruent, that BD = AC and EB=AC. ThusB

bisects DE, and we are done. Q.E.D.
Question: Does the existence of the orthocenter depend on Euclid’ s Fifth Postulate?
Exercise 1.5.8 (a) Consider aset of 4 points consisting of 3 vertices of atriangle and the

orthocenter of that triangle. Prove that any one point of this set is the orthocenter of the triangle
formed by the remaining three points. Such aset is called an orthocentric system.
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1.5.9 Theorem. The bisectors of the angles of atriangle are concurrent at a point called the
incenter , denoted by I. Furtherrnore, the incenter is equidistant from the three sides of the
triangle, and thus is the center of the inscribed circle.

Proof: Let| denote the intersection of the angle bisectors of the angles at verticesA and B. We

must show that 1C bisectsthe angle at vertex C. LetD, E, and F denote the feet of the
perpendicular linesfrom | to the sides of the triangle.

Notethat DIDB @IEB and DIEA @IFA. Why? It followsthat ID=IE =IF.
Consequently, DIDC @IFC. Why? Therefore DICD @ ICF , as we needed to show.
Q.E.D.

Theincenter is equidistant from all three sides
of atriangle and so is the center of the unique
circle, theincircle or inscribing

circle, of atriangle.

A close look at the proof above showsthat it isindependent of Euclid’' s Fifth postulate and
hence every triangle, whether Euclidean or non-Euclidean, has an incenter and an inscribed
circle.
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It may come as an even greater surprise isthat triangles have many more properties than the

ones taught in high schoal. In fact, there are many special points and circles associated with
triangles other than the ones previoudy listed. The web-site
http://www.evansville.edu/~ck6/tcenter ¢/ lists a number of them; look also at
http://www.evansville.edu/~ck6/index.html. Sketchpad explorations will be given or
suggested in subsequent sections and chapters enabling the user to discover and exhibit many
of these properties. First wewill look at a Sketchpad construction for the circumcircle of a
triangle.

1.5.10 Demonstration: Construct the circumcircle of agiven triangle.

Open anew sketch. To construct DABC  use the Segment tool in the toolbar on the | eft of
the screen. Make certain that it is the segment tool showing, not the ray or linetool. Now in
the sketch window click down at the first vertex position, move the mouse to the second
vertex and release the mouse clicker. At this same position, click down on the mouse button,
move the mouse to the third vertex, and release. Click down on the third vertex, and release
on thefirst vertex. Re-label the vertices A, B, and C using the Text tool.

To construct amidpoint of a segment, use the Select arrow tool from the toolbar. Select a

segment on screen, say AB , by pointing the arrow at it and clicking. Select “Point At
Midpoint” from under the Construct menu. Upon releasing the mouse, the midpoint of

AB will be constructed immediately as a highlighted small circle. Repeat this procedure for
the remaining two sides of DABC . (Note that all three midpoints can be constructed
simultaneoudly.)

To construct a perpendicular bisector of a segment, use the Select arrow tool to select a
segment and the midpoint of the segment . Select “Perpendicular Line” from under the
Construct menu. Repeat this procedure for the remaining two sides of DABC .

These perpendicular bisectors are concurrent at a point called the circumcenter of DABC ,
confirming visualy Theorem 1.4.8.

To identify this point as a specific point, use the arrow tool to select two of the
perpendicular bisectors. Select “Point At Intersection” from under the Construct menu. In
practice this means that only two perpendicular bisectors of atriangle are needed in order to
find the circumcenter.
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To construct the circumcircle of atriangle, use the Select arrow to select the circumcenter
and avertex of thetriangle, in that order. Select “Circle By Center+Point” from under the
Construct menu. This sketch contains al parts of the construction.

%
/

~— |

To hide all the objects other than the triangle DABC and its circumcircle, use the Select
arrow tool to select al parts of the figure except the triangle and the circle. Select “Hide

Objects’ from under the Display menu. The result should ook similar to the following
figure.

W /e

The dynamic aspect of this construction can be demonstrated by using the ‘drag’ feature.
Select one of the vertices of DABC using the Select arrow and ‘drag’ the vertex to another
point on the screen while holding down on the mouse button. The triangle and its circumcenter



remain atriangle with a circumcenter. In other words, the construction has the ability to replay
itself. Secondly, once this construction is completed there will be no need to repest it every time
the circumcircle of atriangleis needed because atool can be created for use whenever a
circumcircleis needed. Thisfeature will be presented in Section 1.8, once a greater familiarity
with Sketchpad’ s basic features has been attained.

End of Demonstration 1.5.10.

1.6 Exercises. Thefollowing problems are designed to develop a working knowledge of
Sketchpad as well as provide some indication of how one can gain agood understanding of
plane geometry at the sametime. It isimportant to stress, however, that use of Sketchpad is not
the only way of studying geometry, nor isit aways the best way. For the exercises, in general,
when a construction is called for your answer should include a description of the construction,
an explanation of why the construction works and a print out of your sketches.

Exercise 1.6.1, Particular figuresl: In section 1.3 aconstruction of an equilateral triangle
starting from one side was given. This problem will expand upon those ideas.

a) Draw aline segment and label its endpoints A and B. Construct a square having AB as
one of its sides. Describe your construction and explain why it works.

a) Draw another line segment and label its endpoints A and B. Construct atriangle DABC
having aright angle at C so that the triangle remains right-angled no matter which vertex
is dragged. Explain your construction and why it works. Is the effect of dragging the
same at each vertex in your construction? If not, why not?

Exercise 1.6.2, Particular figuresll:
a) Construct aline segment and label it CD . Now construct an isosceles triangle having
CD asits base and dtitude half the length of CD . Describe your construction and
explain why it works.

a) Modify the construction so that the altitudeis twice the length of CD . Describe your
construction and explain why it works.

Exercise 1.6.3, Special points of triangles. For severa triangles which are not equilateral,
the incenter, orthocenter, circumcenter and centroid do not coincide and are four distinct points.
For an equilatera triangle, however, the incenter, orthocenter, circumcenter and centroid all
coincide at aunique point we'll 1abel by N.
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Using Sketchpad, in a new sketch place apoint and label it N. Construct an equilateral
triangle DABC such that N isthe common incenter, orthocenter, circumcenter and centroid
of DABC . Describe your construction and explain why it works.

Exercise 1.6.4, Euclid’s Constructions: Use only the segment and circle tools to construct
the following objects. (Y ou may drag, hide, and label objects.)

(8) Givenalinesegment AB and apoint C above AB construct the point D on AB so that CD

is perpendicular to AB. We call D thefoot of the perpendicular from C to AB . Prove that your
construction works.

(b) Construct the bisector of agiven an angle BABC . Prove that your construction works.

Exercise 1.6.5, Regular Octagons. By definition an octagon is a polygon having eight sides;
aregular octagon, as shown below, is one whose sides are all congruent and whose interior
angles are al congruent:

Think of all the properties of aregular octagon you know or can derive (you may assume that
the sum of the angles of atriangleis 180 degrees). For instance, one property isthat al the
verticeslieon acircle centered at apoint O. Use this property and others to complete the
following.

(8 Using Sketchpad draw two points and label them O and A, respectively. Construct aregular
octagon having O as center and A as one vertex. In other words, construct an octagon by center
and point.

(b) Open anew sketch and draw aline segment CD (don’t make it too long). Construct a

regular octagon having CD as one side. In other words, construct an octagon by edge.
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Exercise 1.6.6, Lost Center: Open anew sketch and select two points; label them O and A.
Draw the circle centered at O and passing through A. Now hide the center O of the circle. How
could you recover O? EASY WAY: if hiding O was the last keystroke, then “Undo hide point”
can be used. Instead, devise a construction that will recover the center of the circle - in other
words, given acircle, how can you find its center?

1.7 SKETCHPAD AND LOCUSPROBLEMS. The process of finding a set of points or its
equation from a geometric characterization is called alocus problem. The Trace' and 'Locus
features of Sketchpad are particularly well adapted for this. The Greeks identified and studied
the three types of conics: €llipses, parabolas, and hyperbolas. They are called conics because
they each can be obtained by intersecting a cone with a plane. Here we shall use easier
characterizations based on distance.

1.6.1 Demonstration: Determine the locus of apoint P which moves so that
dist(P, A) = dist(P,B)
where A and B are fixed points.

The answer, of course, isthat the locus of P is the perpendicular bisector of AB . Thiscan
be proved synthetically using properties of isoscelestriangles, aswell as algebraically. But
Sketchpad can be used to exhibit the locus by exploiting the ‘trace’ feature as follows.

Open a new sketch and construct points A and B near the center of your sketch. Near the
top of your sketch construct asegment CD whose length is aleast one half the length of
AB (by eyeballing).

Construct acircle with center A and radius of length CD . Construct another circlewith
center B and radius of length CD .

Construct the points of intersection between the two circles. (Aslong as your segment CD
islong enough they will intersect). Label the points P and Q. Select both points and under

the Display menu select Trace Intersections. Y ou should see aV' next to it when you click

and hold Display.
Now drag C about the screen and then release the mouse. Think of the point C as the driver.
What isthe locus of P and Q7
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To erase the locus, select Erase Traces under the Display menu. We can also display the
locus using the Locus command under the Construct menu. However, to use the ‘locus
feature our driver must be constructed to lie on apath. An example to be discussed shortly
will illustrate this.
End of Demonstration 1.7.1.
Now let’s use Sketchpad on alocus problem where the answer is not so well known or so
clear. Consider the case when the distances from P are not equal but whose ratio remains
constant. To be specific, consider the following problem.

1.7.2 Exercise: Determine the locus of apoint P which moves so that

dist(P, A) = 2 dist(P, B)

where A and B are fixed points. (How might one modify the previous construction to answer

this question?) Then, give the completionto Conjecture 1.7.3 below.

1.7.3 Conjecture. Given points A and B, the locus of apoint P which moves so that

dist(P, A) = 2 dist(P, B)

isalan

A natural question to address at this point is: How might one prove this conjecture? More
generaly, what do we mean by aproof or what sort of proof suffices? Doesit haveto bea
'synthetic’ proof, i.e. atwo-column proof? What about a proof using algebra? Is avisual proof
good enough? In what sense does Sketchpad provide a proof? A synthetic proof will be givenin
Chapter 2 once some results on similar triangles have been established, while providing an
algebraic proof ispart of alater exercise.

It isaso natural to ask: isthereis something special about the ratio of the distances being
equal to 2?

1.7.4 Exercise: Use Sketchpad to determine the locus of apoint P which moves so that

dist(P, A) = m dist(P, B)



where A and B are fixed pointsand m = 3,4,5,...,1/ 2,1 3,... . Use your answer to conjecture
what will happen when misan arbitrary positive number, m * 1?What's the effect of requiring
m >1?What happens when m <1 ? How does theresult of Demonstration 1.7.1 fitinto this
conjecture?

1.7.5 Demonstration, A Locus Example: Inthis Demonstration, we give an alternate way to
examine Exercise 1.7.2 through the use of the Locus Construction. Note: to use “Locus’ our
driver point must be constructed upon atrack. Open a new sketch and make sure that the
Segment tool is set at Line (arrows in both directions).
Draw aline near the top of the screen using the Line tool. Hide any points that are drawn
automatically on thisline. Construct two points on this line using the Point tool by clicking
on thelinein two different positions. Using the Text tool, label and re-label these two points
asVand U (with Vto theleft of U). Construct the lines through U and V perpendicular to

UV . Construct a point on the perpendicular line through U. Label it R
Construct aline through R paralld to the first line you drew. Construct the point of
intersection of thisline with the vertical line through V using “Point At Intersection” from

under the Construct menu. Label this point S. Construct the midpoint RS . Label this point
T. A figure similar to the following figure should appear on near the top of the screen.

Thisfigure will be used to specify radii of circles. Also, the “driver point” will beU and
the track it moves aong is the line containing UV .

Towards the middle of the screen, construct AB using the Segment tool. Construct the
circlewith center A and radius UV using “Circle By Center+Radius’ from under the
Construct menu. Construct the circle with center B and radius RT using “ Circle By
Center+Radius’ from under the Construct menu. Construct both points of intersection of
these two circles. Label or re-label these points P and Q. Both points have the property that
the distance from P and Q to Aistwice the distance from P and Q to B because the length

of UV istwicethat of thelength of RT . The figure on screen should be similar to:
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Hide everything except AB , the points of intersection P and Q of the two circles and the
point U.

Now select just the points P and U in that order. Go to “Locus’ in the Construct

menu. Release the mouse. What do you get? Repeat this construction with Q instead of
P.

The“Locus’ function causes the point U to move aong the object it ison (here, line RS) and
the resulting path of point P (and Q, in the second instance) is traced.

End of Demonstration 1.7.5.

Similar ideas can used to construct conic sections. First recall their definitions in terms of
distances:

1.7.6 Definition.
(&) Andlipseisthelocusapoint P which moves so that
dist(P, A) +dist(P,B) = const
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where A, B aretwo fixed points called the foci of the ellipse. Note: Theword “foci” isthe
plural form of the word “focus.”

(b) A hyperbolaisthe locus of apoint P which moves so that
dist(P, A) - dist(P,B) = const
where A, B are two fixed points (the foci of the hyperbola).

(c) A parabolaisthe locus apoint P which moves so that

dist(P, A) = dist(P, I)
where Aisafixed point (thefocus) and | isafixed line (thedirectrix). Note: By dist(P,l) we
mean dist(P,Q) where Q isonthelinel and PQ isperpendicular tol. The pointsA and B are

called the foci and theline | is called the directerix. The following figure illustrates the case of
the parabola

1.7.6a Demonstration: Construct an ellipse given points A, B for foci.

Open a new sketch and construct points A, B. Near the top of your sketch construct a
line segment UV of length greater than AB. Construct arandom point Q on UV
Construct acircle with center at A and radius UQ . Construct also a circle with center at
B and radius VQ . Label one of the points of intersection of these two circles by P.
Thus dist(P, A) +dist(P,B)=UV (why?).

Construct the other point of intersection the two circles. Now trace both points as you
drag the point Q. Your figure should like
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Why isthe locus of P an ellipse?

The corresponding constructions of a hyperbola and a parabola appear in later exercises.
End of Demonstration 1.7.6a.

1.8 CUSTOM TOOLSAND CLASSICAL TRIANGLE GEOMETRY . Wewill continue
to explore geometric ideas as we exploit the “tool” feature of Sketchpad while looking at a
sampling of geometry results from the 18" and 19" centuries. In fact, it's worth noting that
many of the interesting properties of triangles were not discovered until the 18", 19", and 20"
centuries despite the impression people have that geometry began and ended with the Greeks!
Custom Toolswill alow usto easily explore these geometric ideas by giving us the ability to
repeat constructions without having to explicitly repeat each step.

1.8.1 Question: Given DABC construct the circumcenter, the centroid, the orthocenter, and the
incenter. What specia relationship do three of these four points share?

To explore this question via Sketchpad we need to start with atriangle and construct the
required points. Aswe know how to construct the circumcenter and the other triangle pointsit
would be niceif we did not have to repesat al of the steps again. Custom Toolswill provide the
capability to repeat al of the steps quickly and easily. Now we will make a dight detour to
learn about tools then we will return to our problem.

To create atool, we first perform the desired construction. Our construction will have
certain independent objects (givens) which are usually points, and some objects produced by
our construction (results). Once the construction is complete, we select the givens aswell asthe
results. The order in which the givens are selected determines the order in which the tool will
match the givens each time it isused. Objectsin the construction that are not selected will not
be reproduced when the tool isused. Now select Create New T ool from the Custom Tools
menu. A dialogue box will appear which alows you to name your tool. Once thetool has been
created, it isavailable for use each time the sketch in which it was created is open.
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1.8.2 Custom Tool Demonstration: Create a custom tool that will construct a Square-By-
Edge.

Start with a sketch that contains the desired construction, in this case a Square-By-Edge.
Usethe Arrow Tool to select al the objects from which you want to make a script,
namely the two vertices that define the edge, and the four sides of the square.

Remember you can click and drag using the Arrow Tool to select more than one object
at once. Of coursg, if you do this, you must hide al intermediate steps.

Choose “ Create New Tool” from the Custom T ools menu. The dialogue box will
open, alowing you to name your tool. If you click on the square next to “ Show Script
View” in the dialogue box, you will see a script which contains alist of givens aswell
as the steps performed when the tool isused. At this point, you may also add comments
your script, describing the construction and the relationship between the givens and the
constructed object (Note: Once your tool has been created, you can access the script by
choosing Show Script View from the Custom Tools menu.)

In order to save your tool, you must save the sketch in which it was created. Aslong as
that sketch is open, the tools created in that sketch will be available for use. Itis
important that the sketch be given a descriptive name, so that the toolswill be easily
found.

To use your tool, you can do the following.
Open a sketch.
Create objects that match the Givensin the script in the order they are listed.
From the Custom T ools menu, select the desired tool. Match the givensin the order listed
and the constructed object appears in the sketch.
If you would like to see the construction performed step-by-step, you can do so asfollows:
Once you have selected tool you wish to use, select Show Script View from the Custom
Tools menu. Select all the given objects simultaneoudly and two buttons will appear at the
bottom of the script window: “Next Step” and “All steps’. If you click successively on
“Next Step”, you can walk through the steps of the script one at atime. 1f you click on
“All Steps’, the script is played out step by step without stopping, until it is complete.

End of Custom Tool Demonstration 1.8.2.
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In order to make atool available at all times, you must save the sketch in which it was
created in the Tool Folder, which islocated in the Sketchpad Folder. There are two waysto do
this. When we first create the tool, we can save the sketch in which it was created in the Tool
Folder, by using the dialogue box that appears when selecting Save or Save as under theFile
menu. Alternatively, if our sketch was saved elsewhere, we can drag it into the Tool Folder. In
either case, Sketchpad must be restarted before the tools will appear in the Custom Tools
menu.

IMPORTANT: Itisworth noting at thistime, that there are anumber of useful tools already
available for use. To accessthesetools, go to the Sketchpad Folder. There you will see afolder
called Samples. Inside the Samplesfolder, you will find afolder called Custom Tools. The
Custom Toolsfolder contains several documents, each of which contains a number of useful
tools. Y ou can move one or more of these documents, or even the entire Custom Tools folder,
into the Tool Folder to make them generally available. Remember to restart Sketchpad before
trying to access the tools. (Y ou may have to click on the Custom Toolsicon two or three times
before al the custom tools appear in the toolbar.)

1.8.2a Exercise: Open asketch and nameit “ Triangle Special Points.gsp” . Within this
sketch, create tools to construct each of the following, given the vertices A, B, and C of DABC :
a) thecircumcenter of DABC
b) the centroid of DABC
c) the orthocenter of DABC

d) theincenter of DABC ,
Save your sketch in the Tool Folder and restart Sketchpad.

1.8.2b Exercise: Inanew sketch draw triangle DABC . Construct the circumcenter of DABC
and label it O. Construct the centroid of DABC and label it G. Construct the orthocenter of
DABC and label it H. What do you notice? Confirm your observation by dragging each of the
vertices A, B, and C. Complete Conjectures 1.8.3 and 1.8.4 and also answer the questions
posed in the text between them.

1.8.3 Conjecture. (Attributed to Leonhard Euler in 1765) For any DABC the circumcenter,
orthocenter, and centroid are
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Hopefully you will not be satisfied to stop there!  Conjecture 1.8.3 suggested O, G, and H
are collinear, that isthey lie on the so-called Euler Line of atriangle. What else do you notice
about O, G, and H? Don't forget about your ability to measure lengths and other quantities.
What happens when DABC becomes obtuse? When will the Euler line pass through a vertex
of DABC ?

1.8.4 Conjecture. The centroid of atriangle _bisects/ trisects (Circle one) the segment
joining the circumcenter and the orthocenter.

End of Exercise 1.8.2b.

Another classical theorem in geometry is the so-called Simson Line of atriangle, named after
the English mathematician Robert Simson (1687-1768). The following illustrates well how
Sketchpad can be used to discover such results instead of being given them as accepted facts.
We begin by exploring Pedal triangles.

1.8.5 Demonstration on the Pedal Triangle:

In anew sketch construct three non-collinear points labeled A, B, and C and then construct
the three lines containing segments AB , BC , and AC . (We want to construct atriangle but
with the sides extended.) Construct afree point P anywhere in your sketch.

Construct the perpendicular from P to the line containing BC and label the foot of the

perpendicular as D. Construct the perpendicular from P to the line containing AC then and
the foot of the perpendicular asE. Construct the perpendicular from P to the line containing
AB and label the foot of the perpendicular asF.

Construct DDEF . Change the color of the sidesto red. DDEF iscalled the pedd triangle
of DABC with respect to the point P.
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End of Demonstration 1.8.5.

1.8.5a Exercise: Make a Script which constructs the Pedal Triangle DDEF for a given point
P and the triangle with three given vertices A, B and C. (Essentialy, save the script constructed
in Demonstration 1.8.5 asfollows. Hide everything except the points A, B, C,and P and the
pedal triangle DDEF . Select those objectsin that order with the Selection tool. Then choose
“Create New Tool” from the Custom T ool menu.)

Now you can start exploring with your pedal triangle tool.
1.8.5b Exercise: Whenis DDEF similar to DABC ? Can you find a position for P for which
DDEF isequilaterd? Construct the circumcircle of DABC and place P close to or even on the

circumcircle. Complete Conjecture 1.8.6 below.

1.8.6 Conjecture. P lieson the circumcircle of DABC if and only if the pedal triangleis

We shall turn to the proof of some of these results in Chapter 2.

1.9 Exercises. In these exercises we continue to work with Sketchpad, including the use of
scripts. We will look at some problemsintroduced in the last few sections as well as discover
some new results. Later on we' Il see how Yaglom’s Theorem and Napoleon’s Theorem both
relate to the subject of tilings.

Exercise 1.9.1, Some algebra: Write down the formulafor the distance between two points P
= (X, Y,) and Q = (x,,Y,) in the coordinate plane. Now use coordinate geometry to prove the
assertion in Conjecture 1.6.3 (regarding the locus of P when dist(P, A) = 2 dist(P, B)) that the
locusisacircle. To keep the algebra as smple as possible assume that A = (-a, 0) and B = (a, 0)
whereaisfixed. Set P = (x,y) and compute dist(P, A) and dist(P, B). Then use the condition
dist(P, A) = 2 dist(P, B) to derive arelation between x and y. Thisrelation should verify that the
locus of P isthe conjectured figure.

Exercise 1.9.2, Locus Problems.

(a) Given points A, B in the plane, use Sketchpad to construct the locus of the point P which
moves so that
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dist(P, A) - dist(P, B) = constant.
(b) Given point Aand linel in the plane, use Sketchpad to construct the locus of the point P
which moves so that

dist(P, A) = dist(P, ).

Hint: Construct arandom point Q on thelinel . Then think about relationship between Q and A
to P and use that to find the corresponding point P on the parabola.

Exercise 1.9.3, Yaglom’s Theorem. In anew sketch construct any parallelogram ABCD.
,7 / C
A B

On side AB construct the outward pointing square having AB as one of its sides.
Construct the center of this square and labdl it Z.

Construct corresponding squares on the other sides BC , CD , and DA, and label their
centersX, U, and V respectively.
What do you notice? Confirm your observation(s) by dragging the vertices of the origina
paralelogram.

Exercise 1.9.4, Miquel Point. In anew sketch draw an acute triangle DABC .
On side AB select apoint and label it D. Construct apoint E on side BC , and apoint F on
sideCA .
Construct the circumcircles of DADF , DBDE , and DCEF .
What do you notice? Confirm your observation(s) by dragging each of the points A, B, C, D, E,
and F. Now drag vertex A so that DABC becomes obtuse. Do your observation(s) remain valid

or do they change for obtuse triangles? What happensiif the three points D, E, and F are
collinear (alow D, E, and F to be on the extended sides of the triangle)?
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Exercise 1.9.5, Napoleon’s Theorem. Inanew sketch draw any acute triangle DABC ,
On side AB construct the outward pointing equilateral triangle havingAB as one of its
sides. Construct the corresponding equilateral triangle on each of BC , and CA .
Congtruct the circumcircle of each of the equilatera trianglesjust constructed.

What do you notice? Confirm your observation(s) by dragging the vertices of DABC .

Exercise 1.9.6. Open a new sketch and construct an equilateral triangle DABC . Select any
point P on the triangle or in itsinterior.
Construct the perpendicular segment from P to each of the sides of DABC .

Measure the length of the segment from P to BC ; call it r,. Measure the length of the

segment from P to CA ; call it by r,. Measure the length of the segment from PtoAB ; call it
r.. Computethesum r+r +r.
Drag P around to see how the value of r_+r +r_ changes asP varies. What do you notice?
Explain your answer by relating the value you have obtained to some property of DABC . (Hint:
look first at some special locationsfor P.)

Exercise 1.9.7. Confirm your observation in Conjecture 1.8.3 regarding the Euler Line for the
specia case of thetriangle DABC inwhichA=(-2,-1),B=(2,-1),and C=(1, 2). That is, find
the coordinates of the circumcenter O, the centroid G and the orthocenter H using coordinate
geometry and show that they all lie on a particular straight line.

1.10 SKETCHPAD AND COORDINATE GEOMETRY. Somewhat surprisingly
perhaps, use of coordinate geometry and some algebrais possible with Sketchpad. For instance,
graphs defined by y = f(x) or parametrically by (x(t),y(t)) can be drawn by regarding the
respective variable x or t as a parameter on afixed curve. Graphs can even be drawn in polar
coordinates.
1.10.1 Demonstration: Asanillustration let’s consider the problem of drawing the graph of
y=2x+ 1; itisastraight line having dope 2 and y-intercept 1 and the points on the graph have
the form (x,2x +1) . Sketchpad draws this graph by constructing the locus of (x,2x +1) asx
varies over aportion of the x-axis. This can be done viathe Trace Point or L ocus feature
described earlier, but is can also be done using the Animation feature asfollows.
Open a new sketch and from the Graph menu and choose “ Define Coordinate System”.
Select the x-axis and construct a point on this axis using the “ Construct Point on Object”
tool from the Construct menu. Label this point A.



To graph the function we want to let A vary aong the x-axis so let’ s illustrate the animation
featurefirst. Select Aand from the Edit menu choose “Action Button” and then move the
cursor over to the right and select “ Animation”. A menu will appear - by default the menu
will read “ Point A moves bidirectionally along the x-axis at medium speed”. Say “O.K.” ,
and an animation button will appear in the sketch. Double click on it to start or stop the
animation. Try this.

Select point A and then select “ Abscissa (x)” from the M easur e menu. The x-coordinate
of A will appear on the screen.

Y ou are now ready to begin graphing. Select “Calculate” from the M easuremenu. This
is used to define whatever function is to be graphed, say the function 2x + 1. Typein the
box on the calculator whatever function of x you want to graph, clicking on the x,-coordinate
on the screen for the x-variable in your function. The expression will appear on the sketch.
To plot apoint on the graph of y = 2x + 1 select x, and 2x, +1 from the screen and then
select “Plot as (x,y)” from the Graph menu. This plots a point on the coordinate plane on
your screen. Select this point and then select “ Trace Point” from the Display menu. If you
want, you can color the point so that the graph will be colored when you run the animation!
Now double click on the “ Animate”’ button on screen and watch the graph evolve.

End of Demonstration 1.10.1.
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1.10.1a  Exercise. Usethe construction detailed above to draw the graph of

y = x(x* - 1)e* as shown below.

Further examples are given in the later exercises.

1.11 ANINVESTIGATION VIA SKETCHPAD. Asafina illustration of the possibilities
for using Sketchpad before we actually begin the study of various geometries, let us see how it
might be used in problem-solving to arrive at a conjecture which we then prove by traditional
coordinate geometry and synthetic methods.

1.11.1 Demonstration. Let A,B,C and D be four distinct pointson acircle S whose center is

O.Now let P,Q,R and S bethe mirror images of O in the respective chords AB, BC,CD and

DA of S. Investigate the properties of the quadrilateral PQRS Justify algebraically or
synthetically any conjecture you make. Investigate the properties of the corresponding triangle
DPQR when there are only three distinct pointson S .

One natural first step in any problem-solving situation isto draw a pictureif at al possible-in
other words to realize the problem asavisua one.
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Open anew sketch. Draw acircleand label it S . Note the point on the circle which when
dragged allows the radius of the circle to be varied - thiswill be useful in checking if a
conjecture isindependent of aparticular S .
Construct four random pointson S and label them A, B,C and D. Construct the
corresponding chords AB, BC,CD and DA of S . Make surethat A B,C and D can be
moved freely and independently of each other - thiswill beimportant in testing if a
conjecture isindependent of the location of A, B,C and D.
To construct the mirror image P of O in AB select AB and then double click on it - the
small squares denoting that AB has been selected should ‘ star-burst’. Alternatively,
drag down on the Transform menu and select “mark mirror” indicating that
reflections can be made with respect to AB .
Select O and drag down on the Transform menu until “Reflect” is highlighted. The

mirror image of O in the mirror AB will be constructed. Label it P. Repeat this to construct
the respective mirror images Q, Rand S. Draw line segments to compl ete the construction of
the quadrilateral PQRS Y our figure should look similar to the following

The problem isto decide what properties quadrilateral PQRS has. Sketchpad isa

particularly good tool for investigating various possibilities. For example, as drawn, it looks as
if itsside-lengths are al equal. To check this, measure the lengths of al four sides of PQRS
Immediately we see that adjacent sides do not have the same length, but opposite sides do. Drag

each of A, B,C and D aswell asthe point specifying theradius of S to check if the equality

PQ=RSdoes not depend on the location of these points or theradiusof S . In thefigure as

27



drawn the side SP looks to be parallel to the opposite side RQ . To check this measure angles
DBRSP and BSRQ . Your figure should now look like:

m @ =1.69 inches
m SP = 1.69 inches

m PQ = 1.87 inches
m SR = 1.87 inches

m/RSP = 86°
m/SRQ = 94°

Since MPRSP + mD SRQ =180 °, this provides evidence that SP isparallel to RQ though it
does not proveit of course (why?). To check if the sum is always 180°, drag each of A, B,C
and D aswell asthe point specifying the radiusof S .

End of Demonstration 1.11.1.
All this Sketchpad activity thus suggests the following result.

1.11.2 Theorem. Let A, B,C and D be four distinct points on acircle S whose center is O.

Then the mirror images P.Q,R and Sof O in the respective chords AB, BC,CD and DA of S
are dwaysthe vertices of a paralelogram PQRS

While Sketchpad has provided very strong visua support for the truth of Theorem 1.11.2, it
hasn’t supplied a complete proof (why?). For that we have to use synthetic methods or
coordinate geometry. Nonetheless, preliminary use of Sketchpad often indicates the path that a
formal proof may follow. For instance, in the figure below
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anumber of line segments have been added. In particular, the lengths of the line segments
OA,0B,0C and OD are equal because each isaradial lineof S . This plus visual inspection
suggests that each of

OAPB, OBQC, OCRD, ODSA
isarhombus and that they all have the same side length, namely theradiusof S . Assuming that
thisistrue, how might it be used to prove Theorem 1.11.2? Observefirst that to prove that
PQRSisapardlelogram it is enough to show that PS=QR and PQ=SR (why?). To prove that
PS=QRit is enough to show that DSAP @DRCQ . At this point a clear diagram illustrating what
has been discussed is helpful. In general, agood diagram isolating the key features of afigure
often helps with a proof.
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One may color theinterior of each rhombus for example, by selecting the verticesin order then
by choosing “Polygon Interior” from the Construct menu. Y ou may construct the interior of
any polygon in this manner. Y ou can change the color of the interior by selecting the interior
and then by using the Display menu. Indeed, to show that DSAP @DRCQ we can use (SAS)
because
SA=RC, AP=CQ
since al four lengths are equal to theradius of S, while
mBSAP = mbDOB = mbRCQ .
Consequently, the key property needed in proving Theorem 1.10.2 isthe fact that each of
OAPB, OBQC, OCRD, ODSA
isarhombus. Although this still doesn’t constitute a complete proof (why?), it doesillustrate
how drawing accurate figures with Sketchpad can help greatly in visualizing the steps needed in
aproof.
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Proof of Theorem 1.11.2. (Synthetic) Recall the earlier figure

To prove that PQRSis a parallelogram it is enough to show that PS=QR and PQ=SR We prove
first that PS=QR by showing that DSAP = DRCQ .
Step 1. The construction of P ensures that OAPB is arhombus. Indeed, in the figure

OA=0OB, mBAEO = 90° and OE=EP. Thus, by (HL),

DAEO = DBEO = DAEP = DBEP .
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Consequently, OA=0B = AP=AQ and so OAPB isarhombus. Similarly, each of OBQC,
OCRD and OD&A isrhombus; in addition, they al have the same side length since
OA=0B=0C=0D.

Step 2. Now consider DSAP and DRCQ . By step 1, SA=AP and RC=CQ. On the other hand,
because Step 1 ensuresthat SA isparalle to both DO and RC , while PA isparald to BO

and QC , it follows that

mMBDSAP = mbDOB = mbRCQ .

Hence DSAP @DRCQ by (SAS).
Step 3. In exactly the same way asin Step 2, by showing that DPBQ @DSCR , we see that
PQ=SR Hence PQRSis aparallel ogram, completing the proof of Theorem 1.10.2.  QED

As often happens, a coordinate geometry proof of Theorem 1.11.2 is shorter than a
synthetic one - that’ s one reason why it’ s often a smart ideato try first using algebra when
proving agiven result! Nonetheless, an algebraic proof often calls for good agebra skills!

Proof of Theorem 1.11.2. (Algebraic) Now theideaisto set up the algebrainassimplea
form as possible. So take the unit circle x* +y* =1 for S ; the center O of S isthen the origin.
Asany pointon S hasthe form (cos0,sin0) for achoiceof 6 with0 £6 <2x , wecan
assume that

A =(cos,,sin6,), B =(cosh,,sind,) C=(cosb,,sinB,) D =(cosh,,sinb,),
and if weassumethat 0 £60, <6, <0, <0, < 2w , then pointson S will bein counter-clockwise

order. Thefirst thing to do now is calculate the coordinates of the mirror images of the originin
the respective chords AB, BC,CD and DA of S ; again apicture helps:
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Then

E =(3c0s0, +3c0s0,, 2sin0, +3sinbd,),

since E isthe midpoint of AB, while

P =(cosO, +cos6,, sinB, +sinb,) ,
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since OE=EP. (Notice that here again we are really using the fact OAPB is arhombus.)
Similarly,

Q =(cosB, +cosO,, sinb, +sinB,), R =(cosO, +cosO,, sinB, +sind,)
and

S =(cosH, +cosO,, sinB, +sinb,) .

To show that PQRSis a parallelogramiit is enough to show that PQ and SR have equal slope,
andthat QR and PS have equal slope. But

sinB, - sin®

PQ = = gopeSR.
gope Q COSB3 - COS@l Slope
Smilarly,
Slope@ :M = SlopeFTS .

cos0, - cosh,

Hence PQRSis a parallelogram completing an algebraic proof of Theorem 1.11.2. QED

The algebraic proof is undoubtedly simpler than the synthetic proof, but neither gives an
explanation of why the result is true which is what a good proof should do. For this we shall
have to wait until Chapter 2. Other investigative problems of asmilar nature are given in the
problems for this chapter.
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1.12 FALSE THEOREM S Weall know the power afigure can provide when trying to
understand why certain geometry results are true. In fact, figures seem to be essential for
understanding and providing proofs. One of the most crucia features of dynamic geometry
software is the possibility it providesfor ‘dragging’ agiven construction to provide many
different views of the same setting. This can be used for investigation of a given problem with a
view to formulating a conjecture or it can be used in the proof of agiven conjecture. Thereis,
however, adanger in relying on sketches, extra assumptions may be added by relying on the
sketch, special cases may be omitted, or absurd results can be derived from an inaccurate sketch.
WEe Il look at two examples of where figures can be deceiving.

1.12.1 False Theorem: All triangles are isosceles.

Proof: Let DABC be atriangle with | the angle bisector of D A, mthe perpendicular bisector of
BC cutting BC at midpoint E, and D theintersection of | and m. From D, draw perpendiculars
to AB and AC, cutting them at F and G, respectively. Findly, draw DB and DC. Thefollowing
figure shows a sketch of the situation.

DADF @ADG (AAS), so AF @AG and DF @DG. DBDE @CDE (SAS), so BD @CD.
Thisimplies DBDF @ CDG (HL), so FB @GC. Thus AB @AF + FB @AG+ GC = AC, and
so DABC isisosceles. QED
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1.12.2 Exercise: What iswrong with the proof of Theorem 1.12.1? Absolutely nothing is
wrong with the chain of reasoning, so where doesthe problem lie? Try constructing the given
configuration on Sketchpad. What do you observe?

1.12.3 False Theorem: Any rectangleinscribed in a square must itself be a square.

Proof. Consider the following picture of arectangle MNPQ inscribed in a square ABCD

P C
% ’

° ©B
A M

The rectangle PQMN certainly looks like a square doesn’t it? To prove that it iswe' |l show that
the diagonals of PQMN are perpendicular since the only rectangles having perpendicular
diagonals are squares. Construct the point of intersection of the diagonals of rectangle MNPQ;
label it O. Construct the perpendicular PR to AB ; construct also the perpendicular QS to BC.

ThenPR @QS . Since the diagonals of any rectangle are congruent, PM @QN . So DPMR
@DQNS , and hence PPMR @QNS . Now consider the quadrilateral MBNO. Its exterior angle
at vertex N is congruent to the interior angle at vertex M, so the two interior angles at verticesN
and M are supplementary. Thus the interior angles at vertices B and O must be supplementary.
But B ABCisaright angle and hence ® NOM must aso be aright angle. Therefore the
diagonals of the rectangle MNPQ are perpendicular; ensuring that MNPQ is a square.

QED
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1.12.4 Exercise. What iswrong with the proof of Theorem 1.12.4? Nothing actualy; every
step islogically correct! We could use Sketchpad to explore the various possibilities for
inscribing arectangle in a square by using the ‘dragging’ feature.

1.12.5 Demonstration: Construct afigureto reveal the error in the proof of Theorem 1.12.1.
Open a new sketch and draw a square ABCD; draw also the diagonals of this square and label
their point of intersection by O. To vary the inscribed rectangle MNPQ of the proof by
dragging we want to construct fixed opposite vertices, say P and Q, but construct opposite

verticesM and N so that they vary aswe drag N . Select apoint P on side CD and draw theline
passing through O and P; label by M its point of intersection with AB . Hide the line and then
constructPM . Now select apoint N on BC . Theideanow isthat everything constructed

starting from N will move asthe point N is dragged along BC , while nothing that was
congtructed before will move. Draw the line through N and O to determine the remaining vertex

Q on DA hidetheline through N and O. Construct NQ ; this ensures that vertex Q will move
as N moves. Finaly, draw the line segments PN, NM | QP , and QM aswell asthe

perpendicularsPR and QS. This gives the following figure

P

QR e
o A

m/ PNM = 95.7°
To check if the inscribed figure is arectangle, measure the angle ® PNM.

Drag the point N along BC .  Does the figure MNPQ move? Investigate when MNPQ is a
square. When isit arectangle, but not a square? When isit neither a square nor arectangle?
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Formulate a conjecture describing conditions under which MNPQ is arectangle. Prove your
conjecture! Why are al the stepsin the proof of the theorem above correct, yet theresult is
incorrect?

End of Demonstration 1.12.5.

The previous two examples should not suggest the banning of any figures but instead stress the
need for accurately drawn figures, rather than quick sketches. By using Sketchpad we construct
accurate figures and consider many different cases, thus reducing the likelihood of overlooking
something. Thefirst false theorem (al triangles are isosceles) could have been totally avoided if
we had started with an accurately drawn figure. The second fal se theorem (any rectangle
inscribed in asquareisitself a square) can be avoided by the use of the dragging feature.

1.13 Exer cises. The following provide multiple viewpoints on geometry: synthetic, agebraic
and dynamic.

Thevarious circles associated with a triangle may seem to involve interesting but non-practical
ideas. Thisis not the case as the following problems show. Indeed, one of the points we shall be
emphasizing throughout this course is that the study of geometry isimportant asastudy in
logical analysis, but it isaso very important for the uses that can be made of geometry.

Exercise 1.13.1. What isthe largest sphere that will pass through atriangular hole whose sides
are7in., 8in.,and 9in. long?

Exercise 1.13.2. A thin triangular-shaped iron plate is accidentally dropped into a
hemispherical tank, which is 10 ft. deep and full of water. It isnoticed that theiron triangleis
lying paralld to the surface of the water, so it is proposed to retrieve the triangle by lowering a
powerful magnet into the tank at the end of arope. What is the minimum Iength of rope needed
if the shortest side of the triangle is 10 ft. long and the angles of the triangle are 45, 60, and 75
degrees

Exercise 1.13.3. Using Sketchpad, open anew sketch and draw atriangle DABC .

On side BC construct the outward pointing square having BC as one of its sides; construct
the center of this square and labd it X.

Construct the corresponding outward pointing squares on CA and AB ; label their
respective centers Y and Z.
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Construct the segments AX and YZ .
What properties do AX and YZ have? Check your conjecture by dragging the vertices of
DABC around.

Exercise 1.13.4. Quadratic equations. The Greeks used geometry where now we would use
algebra. For instance, they knew how to construct the roots of the quadratic equation

x? - ax +b =0 for given valuesof a,b whena’ > 4b . Let's use Sketchpad to illustrate their
method. Draw a pair of perpendicular lines, which we'll think of asthe x- and y-axes. On they-
axis choose afixed point and label it 1; the distance of this point from the point of intersection
of the two perpendicular linesis to be thought of as specifying what unit length means. Given a,
b draw the point C having (a, b) as coordinates as well as the point on the y-axis having y-
coordinate 1. Now draw the circle having the line segment from this point on they -axisto C as
adiameter. Finadly, label the points of intersection of this circle with the x-axis by Aand B. You
should have afigurelooking like

S

Show that the x-coordinates of A, B are the roots of the equation x* - ax +b =0, Where was

the condition a* > 4b used? What is the equation of the circle you drew? This all 1ooks pretty
straightforward to us now that we have the anaytic geometry of circles availableto us, but it
should be remembered that amost 2,000 years el apsed after the Elements were written before
Descartes combined algebra with geometry!

Exercise 1.13.5. A gardener cut apiece of sod to fill aholein the shape of an acute trianglein

agrasslawn. When he came to put the grass sod in the hole he found that it fit perfectly, but
only with the wrong side up. To fit the sod in the triangular hole with the right side up he had to
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cut it. How did he cut it into three pieces so that the shape of each piece was unchanged when
he turned it over?

Exercise 1.13.6. Birthday Cake: For her birthday party, Sally’ s father baked a chocolate cake
in the shape of atriangular prism. Sally will have eight of her friends at her birthday party, and
everyone likes chocolate cake and icing. How is Sally to cut the cake efficiently so that she and
each of her friends get equal shares of cake and icing?

Exercise 1.13.7. Using Sketchpad, in anew sketch draw any convex quadrilateral ABCD.
Recall that a convex quadrilateral is onethat has all interior angles lessthan 180° .

On side AB construct the outward pointing square having AB as one of its sides.
Construct the center of this square and labdl it Z.

Construct corresponding squares on the other sides BC , CD , and DA, and label their
centersX, U and V respectively.

Draw the line segments ZU and XV . Make a conjecture about the properties of ZU and
XV . Check these properties by dragging the vertices of the quadrilateral ABCD. Drag one

of the vertices so that the quadrilateral becomes concave. Do the propertiesof ZU and XV
still hold true or do they change for concave quadrilaterals?
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Chapter 2

EUCLIDEAN PARALLEL POSTULATE

2.1 INTRODUCTION. Thereisawell-developed theory for a geometry based solely on the
five Common Notions and first four Postulates of Euclid. In other words, there is a geometry
in which neither the Fifth Postulate nor any of its aternativesis taken as an axiom. This
geometry is called Absolute Geometry, and an account of it can be found in several textbooks -
in Coxeter’s book “Introduction to Geometry”, for instance, - or in many college textbooks
where the focus is on devel oping geometry within an axiomatic system. Because nothing is
assumed about the existence or multiplicity of parale lines, however, Absolute Geometry is not
very interesting or rich. A geometry becomes alot more interesting when some Paralléel
Postulate is added as an axiom! In this chapter we shall add the Euclidean Parallel Postulate to
the five Common Notions and first four Postulates of Euclid and so build on the geometry of
the Euclidean plane taught in high schoal. It is more instructive to begin with an axiom different
from the Fifth Postul ate.

2.1.1 Playfair’s Axiom. Through agiven point, not on agiven line, exactly one line can be
drawn paral€ to the given line.

Playfair s Axiom is equivaent to the Fifth Postulate in the sense that it can be deduced from
Euclid sfive postulates and common notions, while, conversely, the Fifth Postul ate can deduced
from Playfair’s Axiom together with the common notions and first four postul ates.

2.1.2 Theorem. Euclid’ s five Postulates and common notions imply Playfair's Axiom.

Proof. First it hasto be shown that if P isagiven point not on agiven linel, then thereisat
least oneline through P that is parallel tol. By Euclid's Proposition | 12, it is possible to draw
alinet through P perpendicular tol. Inthefigure below let D be the intersection of | witht.
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By Euclid's Proposition | 11, we can construct aline m through P perpendiculartot. Thus
by construction t isatransversal to | and m such that the interior angles on the same side at P
and D are both right angles. Thus mis paralle to | because the sum of the interior anglesis
180°. (Note: Although we used the Fifth Postulate in the last statement of this proof, we could
have used instead Euclid's Propositions | 27 and | 28. Since Euclid was able to prove the first
28 propositions without using his Fifth Postulate, it follows that the existence of at least one
line through P that is pardllel to |, can be deduced from thefirst four postulates. For acomplete
list of Euclid's propositions, see “College Geometry” by H. Eves, Appendix B.)

To complete the proof of 2.1.2, we have to show that misthe only line through P that is
pardle tol. SoletnbealinethroughPwithm® n andlet E1 Pbeapointon n. Sincem
1 n, B EPD cannot be aright angle. If mb EPD <90°, asshown inthe drawing, then
mb EPD + mb PDA islessthan 180°. Hence by Euclid’ sfifth postulate, the line n must
intersect | onthe samesideof transversal tasE, and sonisnot parale tol. If mb EPD >
90°, then asimilar argument showsthat n and | must intersect on the side of | opposite E.
Thus, misthe one and only line through P that is parallel to . QED



A proof that Playfair’s axiom implies Euclid’ sfifth postulate can be found in most
geometry texts. On page 219 of his*“College Geometry” book, Eves lists eight axioms other
than Playfair’ s axiom each of whichislogically equivaent to Euclid’ sfifth Postulate, i.e., to the
Euclidean Parallel Postulate. A geometry based on the Common Notions, the first four
Postul ates and the Euclidean Parallel Postulate will thus be called Euclidean (plane) geometry.
In the next chapter Hyperbolic (plane) geometry will be developed substituting Alternative B for
the Euclidean Parallel Postulate (see text following Axiom 1.2.2)..

2.2 SUM OF ANGLES. One consegquence of the Euclidean Parallel Postulate is the well-
known fact that the sum of the interior angles of atriangle in Euclidean geometry is constant
whatever the shape of the triangle.

2.2.1 Theorem. In Euclidean geometry the sum of the interior angles of any triangleis aways
180°.
Proof: Let DABC be any triangle and construct the unique line DE through A, parald to the

sideBC, as shown in the figure

ThenmbBEAC = mDACB and mBDAB = mb ABC by the alternate angles property of parallel
lines, found in most geometry textbooks. ThusmbBACB + mBABC + mBDBAC = 180°. QED

Equipped with Theorem 2.2.1 we can now try to determine the sum of the interior angles of
figuresin the Euclidean plane that are composed of afinite number of line segments, not just
three line segments as in the case of atriangle. Recall that a polygonisafigurein the Euclidean

plane consisting of points P,, P,,..., P, called vertices, together with line segments PP, , PP, ,
....PP,, caled edges or sides. More generally, afigure consisting of the union of afinite
number of non-overlapping polygons will be said to be apiecewise linear figure. Thus




are piecewise linear figures asis the example of nested polygons below.

Thisexampleis aparticularly interesting one because we can think of it asafigure
containing a‘hole’. But isit clear what is meant by the interior angles of such figures? For
such a polygon as the following:

we obvioudy mean the angles indicated. But what about a piecewise linear figure containing
holes? For the example above of nested polygons, we shall mean the angles indicated below



This makes sense because we are really thinking of the two polygons as enclosing aregion
so that interior anglethen refersto the angle lying between two adjacent sides and inside the
enclosed region. What this suggestsis that for piecewise linear figures we will also need to
specify what is meant by itsinterior.

Thelikely formulafor the sum of the interior angles of piecewise linear figures can be
obtained from Theorem 2.2.1 in conjunction with Sketchpad. In the case of polygons thiswas
probably done in high school. For instance, the sum of the angles of any quadrilaterd, i.e., any
four-sided figure, is 360°. To seethisdraw any diagonal of the quadrilateral thereby dividing
the quadrilateral into two triangles. The sum of the angles of the quadrilateral isthe sum of the
angles of each of the two triangles and thus totals 360°. If the polygon has n sides, then it can
be divided into n-2 triangles and the sum of the angles of the polygon is equal to the sum of the
angles of the n-2 triangles. This proves the following resuilt.

2.2.2 Theorem. The sum of the interior angles of an n-sided polygon, n3 3,is (n- 2) X180°.

2.2.2a Demonstration.

We can use asimilar method to determine the sum of the angles of the more complicated
piecewise linear figures. One such figureis apolygon having “holes’, that is, a polygon
having other non-overlapping polygons (the holes) contained totally withinitsinterior. Open a
new sketch and draw afigure such as



An interesting computer graphics problemisto color in the piecewise linear figure between the
two polygons. Unfortunately, computer graphics programswill only fill polygons and the
interior of the figure is not a polygon. Furthermore, Sketchpad measures angles greater than
180° by using directed measurements. Thus Sketchpad would give a measurement of -90° for a
270° angle. To overcome the problem we use the same strategy as in the case of a polygon: join
enough of the vertices of the outer polygon to vertices on the inner polygon so that theregionis
sub-divided into polygons. Continue joining vertices until all of the polygonsaretrianglesasin
the figure below. Color each of these trianglesin adifferent color so that you can distinguish
them easily.

We call thisatriangular tiling of the figure. Now use Theorem 2.2.2 to compute the total
sum of the angles of all these new polygons. Construct a different triangular tiling of the same
figure and compute the total sum of angles again. Do you get the same value? Hence complete
the following result.



2.2.3 Theorem. When an n-sided piecewise linear figure consists of a polygon with one
polygonal holeinside it then the sum of itsinterior anglesis :
Note: Here, n equals the number of sides of the outer polygon plus the number of sides of the
polygonal hole.

End of Demonstration 2.2.2a.

Try to prove Theorem 2.2.3 algebraically using Theorem 2.2.2. The case of a polygon
containing h polygonal holesis discussed in Exercise 2.5.1.

23 SIMILARITY AND THE PYTHAGOREAN THEOREM

Of the many important applications of similarity, there are two that we shall need on many
occasionsin the future. The first is perhaps the best known of all resultsin Euclidean plane
geometry, namely Pythagoras' theorem. Thisisfrequently stated in purely algebraic terms as

a’+b® = ¢?, whereasin more geometrically descriptive termsit can be interpreted as saying
that, in area, the square built upon the hypotenuse of a right-angled triangle is equal to the
sum of the squares built upon the other two sides. There are many proofs of Pythagoras
theorem, some synthetic, some agebraic, and some visual aswell as many combinations of
these. Here you will discover an algebraic/synthetic proof based on the notion of smilarity.
Applications of Pythagoras theorem and of itsisoscelestriangle version to decorative tilings of
the plane will be made later in this chapter.

2.3.4 Theorem. (The Pythagorean Theorem) In any triangle containing aright angle, the
square of the length of the side opposite to the right angleis equal to the sum of the squares of
the lengths of the sides containing the right angle. In other words, if the length of the

hypotenuseis ¢ and the lengths of the other two sidesarea andb, then a® + b® = ¢’.
Proof: Let DABC be aright-angled triangle with right angle at C, and let CD be the

perpendicular from C to the hypotenuse AB as shown in the diagram below.



A B

ShowDCAB issimilar to DDAC.

ShowDCAB issimilar to DDCB.

Now let BD havelength x, sothat AD haslength c- x. By similar triangles,
a ¢ b

?

Now eiminate x from the two equationsto show a* + b* = ¢?.

Thereis an important converse to the Pythagorean theorem that is often used.

2.3.5 Theorem. (Pythagorean Converse) Let DABC be atriangle such that a°® + b = c”.
Then DABC isright-angled with B ACB aright angle.

2.3.5a Demonstration (Pythagorean Theorem with Areas)
Y ou may be familiar with the geometric interpretation of Pythagoras theorem. If we build
squares on each side of DABC then Pythagoras theorem relates the area of the squares.
Open anew sketch and draw aright-angled triangle DABC. Using the ‘ Square By Edge’
tool construct an outward square on each edge of the triangle having the same edge length
asthe side of the triangle on which it is drawn.
Measure the areas of these 3 squares: to do this select the vertices of a square and then
construct itsinterior using “Construct Polygon Interior” tool. Now compute the area of
each of these squares and then use the calculator to check that Pythagoras' theoremiis
valid for the right-angled triangle you have drawn.
End of Demonstration 2.3.5a.

This suggests a problem for further study because the squares on the three sides can be
thought of assimilar copies of the same piecewise linear figure with the lengths of the sides
determining the edge length of each copy. So what does Pythagoras theorem become when the



sguares on each side are replaced by, say, equilateral triangles or regular pentagons? In order to
investigate, we will need toolsto construct other regular polygons given one edge. If you
haven't already done so, move the document called Polygons.gsp into the Tool Folder and
restart Sketchpad or simply open the document to make its tools available.

2.3.5b Demonstration (Generalization of Pythagorean Theorem)
Draw anew right-angled triangle DABC and use the ‘ 5/Pentagon (By Edge)’ script to
construct an outward regular pentagon on each side having the same edge length asthe side
of the triangle on which it is drawn. As before measure the area of each pentagon. What do
you notice about these areas?
Repeat these constructions for an octagon instead of a pentagon. (Note: Y ou can create an
“Octagon By Edge” script from your construction for Exer cise 1.3.5(b).) What do you
notice about the areasin thiscase? Now complete the statement of Theorem 2.3.6 below
for regular n-gons.

End of Demonstration 2.3.5b.

2.3.6 Theorem. (Generalization of Pythagoras theorem) When similar copies of aregular
n-gon, n 3 3, are constructed on the sides of aright-angled triangle, each n-gon having the same
edge length as the side of the triangle on which it sits, then

The figure below illustrates the case of regular pentagons.




2.3.7 Demonstration. Reformulate the result corresponding to Theorem 2.3.6 when the
regular n-gons constructed on each side of aright-angled triangle are replaced by smilar
triangles.

This demonstration presents an opportunity to explain another feature of Custom Tools
called Auto-Matching. We will be using this feature in Chapter 3 when we use Sketchpad to
explore the Poincaré Disk model of the hyperbolic plane. In this problem we can construct the
first isosceles triangle and then we would like to construct two other similar copies of the
origina one. Here we will construct a“similar triangle script” based on the AA criteriafor
similarity.

Tool Composition using Auto-Matching
Open a new sketch and construct DABC with the vertices label ed.

Next construct the line (not a segment) DE.

Select the vertices B-A-C in order and choose "Mark Angle B-A-C" from the
Transform Menu. Click the mouse to deselect those points and then select the point D.
Choose “Mark Center D” from the Transform Menu. Deselect the point and then

sdect thelineDE. Choose “Rotate...” from the Transform Menu and then rotate by
Angle B-A-C.

Select the vertices A-B-C in order and choose “Mark Angle A-B-C” from the
Transform Menu. Click the mouse to deselect those points and then select the point E.
Choose “Mark Center E” from the Transform Menu. Desdlect the point and then
sdlect theline DE. Choose “Rotate...” from the Transform Menu and rotate by
Angle A-B-C.

Construct the point of intersection between the two rotated lines and label it F. DDEF is
similar to DABC. Hide the three lines connecting the points D, E, and F and replace
them with line segments.

Now from the Custom T ools menu, choose Create New Tool and in the dialogue box,
name your tool and check Show Script View. Inthe Script View, double click on the
Given “Point A” and adialogue box will appear. Check the box labeled
Automatically Match Sketch Object. Repeat the process for points B and C.

In the future, to use your tool, you need to have three points labeled A, B, and C aready
constructed in your sketch where you want to construct the similar triangle. Then you only
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need to click on or construct the points corresponding to D and E each time you want to use the
script. Your script will automatically match the points labeled A, B, and C in your sketch with
those that it needsto run the script. Notice in the Script View that the objects which are
automatically matched are now listed under “ Assuming” rather than under “Given Objects’.
If there are no objects in the sketch with label s that match those in the Assuming section, then
Sketchpad will require you to match those objects manually, asif they were “Given Objects.”

Now open anew sketch and construct atriangle with vertices labeled A, B, and C.

In the same sketch, construct aright triangle. Use the “similar triangle” tool to build

triangles similar to DABC on each side of theright triangle. For each similar triangle,

select the three vertices and then in the Construct menu, choose “ construct polygon

interior”. Measure the areas of the similar triangles and see how they are related.
End of Demonstration 2.3.7.

2.4 INSCRIBED ANGLE THEOREM: One of the most useful properties of acircleis
related to an angle that isinscribed in the circle and the corresponding subtended arc. Inthe
figure below, DABC isinscribed in the circle and Arc ADC is the subtended arc. We will say
that DAOC isacentra angle of the circle because the vertex islocated at the center O. The
measure of Arc ADC isdefined to be the angle measure of the central angle, DPAOC.

2.4.0 Demonstration. Investigate the relationship between an angle inscribed in acircle and
the arc it intercepts (subtends) on the circle.

Open a new script in Sketchpad and draw acircle, labeling the center of the circle by O.
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m/BCA = 53°
m/BDA = 53° D
m/BOA = 106°

Select an arbitrary pair of points A, B on the circle. These points specify two possible arcs -
let’ s choose the shorter onein the figure above, that is, the arc which is subtended by a
central angle of measure lessthan 180°. Now select another pair of points C, D on the
circle and draw line segments to form DBCA and DBDA. Measure these angles. What do
you observe?

If you drag C or D what do you observe about the angle measures? Now find the angle
measure of DBOA. What do you observe about its value?

Drag B until the line segment AB passes through the center of the circle. What do you now
observe about the three angle measures you have found?

Use your observations to complete the following statements; proving them will be part of later
EXercises.

2.4.1 Theorem. (Inscribed Angle Theorem): The measure of an inscribed angle of acircle
equals that of itsintercepted (or subtended) arc.

2.4.2 Corollary. A diameter of acircle aways inscribes a any
point on the circumference of the circle.

2.4.3 Corollary. Givenalinesegment AB, thelocus of apoint P such that DAPB = 90" isa

circlehaving AB as diameter.
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End of Demonstration 2.4.0.

The result you have discovered in Corollary 2.4.2 isavery useful one, especialy in
congtructions, sinceit gives another way of constructing right-angled triangles. Exercises 2.5.4
and 2.5.5 below are good illustrations of this. The Inscribed Angle Theorem can also be used
to prove the following theorem, which is useful for proving more advanced theorems.

2.4.4 Theorem. A quadrilateral isinscribed in acircleif and only if the opposite angles are
supplementary. (A quadrilateral that isinscribed in acircleiscaled acyclic quadrilateral.)

2.5 Exercises

Exercise 2.5.1. Consider a piecewise linear figure consisting of a polygon containing h holes
(non-overlapping polygonsin the interior of the outer polygon) has atotal of n edges, wheren
includes both the interior and the exterior edges. Express the sum of the interior anglesasa
function of nand h. Prove your result istrue.

Exercise 2.5.2. Prove that if aquadrilatera is cyclic, then the opposite angles of the
quadrilateral are supplementary, i.e., the sum of opposite anglesis 180°. [ Thiswill provide half
of the proof of Theorem 2.4.4. ]

Exercise 2.5.3. Give a synthetic proof of the Inscribed Angle Theorem 2.4.1 using the
properties of isosceles trianglesin Theorem 1.4.6. Hint: there are three casesto consider: here
y isthe angle subtended by the arc and 6 is the angle subtended at the center of thecircle. The
problemistorelatey too.

Case 1: The center of the circle lies on the subtended angle.

Case 2: The center of the circle lieswithin the interior of the inscribed circle.
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Case 3: The center of the circleliesin the exterior of the inscribed angle.

A

End of Exercise 2.5.3.

For Exercises 2.5.4, 2.5.5, and 2.5.6, recall that any line tangent to acircle at aparticular
point must be perpendicular to the line connecting the center and that same point. For al three
of these exercises, the Inscribed Angle Theorem is useful.

Exercise 2.5.4. Use the Inscribed Angle Theorem to devise a Sketchpad construction that will
congtruct the tangentsto a given circle from agiven point P outside the circle. Carry out your

congtruction. (Hint: Remember Corollary 2.4.2).

Exercise 2.5.5. In the following figure
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the line segmentsPA and PB are the tangents to acircle centered at O from a point P outside

thecircle. Provetha PA and PB are congruent.

Exercise 2.5.6. Let| and m be linesintersecting at some point P and let Q beapoint onl. Use
the result of Exercise 2.5.5 to devise a Sketchpad construction that constructs a circle tangentia
to| and m that passes through Q. Carry out your construction.

For Exercises 2.5.7 and 2.5.8, we consider regular polygons again, that is, polygons with
all sides congruent and all interior angles congruent. If aregular polygon has n sides we shall
say itisaregular n-gon. For instance, the following figure

isaregular octagon above, i.e., aregular 8-gon. By Theorem 2.2.2 the interior angle of aregular
n-gonis

- 28, oo
éTg180.

o

The measure of any central angleis . Inthefigure DDEF isan interior angle and

DABCisacentra angle.
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Exercise 2.5.7. Prove that the vertices of aregular polygon always lie on a circumscribing
circle. (Becareful! Don’'t assume that your polygon has a center; you must prove that thereis
apoint equidistant from all the vertices of the regular polygon.)

Exercise 2.5.8. Now suppose that the edge length of aregular n-gonis| and let R be the
radius of the circumscribing circle for the n-gon. The Apothem of then-gon isthe
perpendicular distance from the center of the circumscribing circle to a side of the n-gon.

The Apothem

(& With this notation and terminology and using some trigonometry complete the following
R=1 , =R , Apothem=R
Use thisto deduce

1 L, ey . _ 1)
(b) areaof n-gon = 5 nR smé?ﬂ, (c) perimeter of n-gon = 2nR sméﬁﬂ.

(d) Then use the well-known fact from calculus that
lim $M9 = ¢

e®0 0O

to derive the formulas for the area of acircle of radius R as well as the circumference of such a
circle.

Exercise 2.5.9. Use Exercise 2.5.8 together with the usual version of Pythagoras' theorem to
give an agebraic proof of the generalized Pythagorean Theorem (Theorem 2.3.6).

Exercise 2.5.10 Provethe converse to the Pythagorean Theorem stated in Theorem 2.3.5.
26 RESULTSREVISITED. Inthissection wewill see how the Inscribed Angle Theorem

can be used to prove resultsinvolving the Simson Line, the Miquel Point, and the Euler Line.
Recall that we discovered the Simson Line in Section 1.8 while exploring Pedal Triangles.
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2.6.1 Theorem (Simson Line). If P lieson the circumcircle of DABC, then the perpendiculars

from P to the three sides of the triangle intersect the sides in three collinear points.

Proof. Use the notation in the figure bel ow.
Why do P, D, A and E dl lie on the same circle? Why do P, A, C, and Ball lieon
another circle? Why do P, D, B and F dl lieon athird circle? Verify al three of these
statements using Sketchpad.

In circle PDAE, mBDPDE @b PAE = mb PAC. Why?
In circle PACB, mMDPAC @mbPBC = mbPBF . Why?
In circle PDBF, mBPBF @mbPDF . Why?

Since mMBDPDE @mb PDF , points D, E, and F must be collinear. QED

In Exercise 1.9.4, the Miquel Points of atriangle were constructed.
2.6.2 Theorem (Miquel Point) If three points are chosen, one on each side of atriangle, then
the three circles determined by a vertex and the two points on the adjacent sides meet at a point

caled the Miquel Point.
Proof. Refer to the notation in the figure below.
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Let D, E and F be arbitrary points on the sides of DABC. Construct the three circumcircles.
Suppose the circumcircles for DAFD and DBDE intersect at point G. We need to show the
third circumcircle also passes through G. Now, G may lieinside DABC, on DABC, or outside
DABC. We prove the theorem here in the case that G liesinside DABC, and |eave the other
two cases for you (see Exercise 2.8.1).

DFGD and BDAF are supplementary. Why?
DEGD and BDBE are supplementary. Why?

Notice MDFGD + mBDGE + mBEGF = 360°. Combining these facts we see the following.
(180°- mbA) +(180°- mbB)+mbEGF =360°. So mbEGF =180- mbC or BC and
DEGF are supplementary. ThusC, E, G, and F dl lie on acircle and the third circumcircle
must pass through G. QED

The proof of Theorem 2.6.3 below uses two results on the geometry of triangles, which were
proven in Chapter 1. Thefirst result states that the line segment between the midpoints of two
sidesof atriangleis paralle to the third side of the triangle and it is haf the length of the third
side (seeCorollary 1.5.4). The second results states that the point which is 2/3 the distance
from avertex (along a median) to the midpoint of the opposite side is the centroid of the triangle
(see Theorem 1.5.6).

2.6.3 Theorem (Euler Line). For any triangle, the centroid, the orthocenter, and the
circumcenter are collinear, and the centriod trisects the segment joining the orthocenter and the
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circumcenter. The line containing the centroid, orthocenter, and circumcenter of atriangleis
caledthe Euler Line.

Proof. Inthediagram below, Atisthe midpoint of the side oppositeto Aand O, G, and H are
the circumcenter, centroid, and orthocenter, respectively. Since A, G, and Atare collinear, we can
show that O, G, and H are dso collinear, by showing that DAGH @ A®GO. To do this, it
suffices to show that DAHG ~ DA®G . If we also show that the ratio of similiarity is 2:1, then

wewill aso provethat G trisects OH .

A

A

The proof that DAHG ~ DA®G with ratio 2:1 proceeds asfollows: Let | be the point where the

ray CO intersectsthe circumcircle of DABC. Then IB*CB (why?). It followsthat
DBCI ~DAO withratio 2:1 (why?) Itisaso truethat AIBH isaparaleogram (why?) and

hence AH =1B =2(0OA9. SinceG isthe median, we know that AG = 2(GA§¢. Thuswe have
two corresponding sides proportional. The included angles are congruent because they are
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dternate interior angles formed by the parallel lines AR and OA¢ and the transversal BA.

(Why are AH and OA( paralle?) Thus, DAHG ~ DA®G with ratio 2:1 by SAS.

Of course, aswe noted in Chapter 1, we must be careful not to rely too much on apicture
when proving atheorem. Use Sketchpad to find examples of triangles for which our proof
breaks down, i.e. trianglesin which we can’t form the triangles DAHG and DA©®G. What
sorts of triangles arise? Y ou should find two specia cases. Finish the proof of Theorem 2.6.3
by proving the result for each of these cases (see Exercise 2.8.2).

2.7 THE NINE POINT CIRCLE. Another surprising triangle property isthe so-called Nine-
Point Circle, sometimes credited to K.W. Feuerbach (1822). Sketchpad is particularly well
adapted to its study. The following Demonstration will lead you to its discovery.

2.7.0 Demonstration: Investigate the nine points on the Nine Point Circle.

TheFirst set of Threepoints:
In anew sketch construct DABC. Construct the midpoints of each of its sides; label these
midpoints D, E, and F.
Construct the circle that passes through D, E, and F. (Y ou know how to do this!)
Thiscircleis caled the Nine-Point Circle. Complete the statement: The nine-point circle
passes through

The Second set of Three points: In genera the nine-point circle will intersect DABC in three
more points. If yours does not, drag one of the vertices around until the circle does intersect
DABC in three other points. Label these points J, K, and L.
Construct the line segment joining J and the vertex opposite J. Change the color of this
segment to red. What is the relationship between the red segment and the side of the triangle
containing J? What is an appropriate name for the red segment?
Construct the corresponding segment joining K and the vertex opposite K and the segment
joining L to the vertex opposite L. Color each segment red. What can you say about the
three red segments?
Place a point where the red segments meet; label this point M and complete the following
statement: The nine-point circle aso passes through
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The Third set of Three points: Thered segmentsintersect the circle at their respective
endpoints (J, K, or L). For each segment there exists a second point where the segment
intersectsthe circle. Label them N, O and P.
To describe these points measure the distance between M and each of A, B, and C. Measure
also the distance between M and each of N, O, and P. What do you observe? Confirm your
observation by dragging the vertices of DABC.
Complete the following statement: The nine-point circle also passes through

Y ou should create a Nine Point Circle tool from this sketch and save it for future use.

End of Demonstration 2.7.0.

To understand the proof of Theorem 2.7.1 below, it is helpful to recall some results
discussed earlier. Asin the proof of the existence of the Euler Line, it is hecessary to usethe
fact that the segment connecting the midpoints of two sides of atriangleis paralle to the third
side of thetriangle. Also, werecall that aquadrilateral can be inscribed in acircleif and only if
the opposite angles in the quadrilateral are supplementary. It isnot difficult to show that an
isoscel es trapezoid has this property. Finaly, recall that atriangle can beinscribed in acircle
with aside of the triangle coinciding with a diameter of the circleif and only if thetriangleisa
right triangle.

2.7.1 Theorem (The Nine-point Circle) The midpoints of the sides of atriangle, the points
of intersection of the atitudes and the sides, and the midpoints of the segments joining the

orthocenter and the vertices al lie on acircle called the nine-point circle.

Y our fina figure should be similar to
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Proof:

(See Figure1) In DABC label the midpointsof BC,
CA, and AB, by A, B' and C' respectively. Thereisa
circlecontaining A', B and C'. In addition, we know
A'CAB' isaparalleogram, and so AC' = AB'.

(SeeFigure2) Construct the atitude from A
intersecting BC atD. As C' B isparalld to BC and
AD isperpendicular to BC, then AD must be
perpendicular toB C . Denote the intersection of B C
and AD by P. ThenDAPB @PDPB , PB @PB' and
AP @DP.

(SeeFigure 3) Consequently, DAPB @DPB by
SAS. So AB' = B'D. By trangtivity with AC' = AB'
wehaveB'D = AC'. ThusA'C'B'D isanisosceles

ISR S EE TR [ SRR U N —— |
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trapezoid. Hence, by the remarks preceding this
theorem, A', C', B', and D are points which lie on one
circle. (SeeFigure 4)

By asimilar argument, the feet of the other two
altitudes belong to this circle.

(See Figure 5) Let J denote the midpoint of the
segment joining vertex A and the orthocenter H. Then,
again by the connection of midpoints of the sides of a

triangle, C' J isparallel to BH.

(See Figure 6) Now C'A'|| AC and AC*BH but
BH||C'J. HenceC'A'~ C'J.

(SeeFigure 7) Therefore C' lieson acirclewith

diameter A' J.
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A similar argument showsthat B' lieson thecircle

with diameter A'J, and hence J liesonthecircle
determined by A, B', and C'. Likewise, the other two
midpoints of the segments joining the vertices with the
orthocenter lie on the same circle.

QED

2.8 Exercises. Inthisexercise set, Exercise 2.8.3 —2.8.7 are related to the nine point circle.

Exercise 2.8.1. Using Sketchpad, illustrate a case where the Miquel Point lies outside the
triangle. Prove Theorem 2.6.2 in this case.

Exercise 2.8.2. Prove Theorem 2.6.3 for the two special cases.
(a) Thetriangleisisosceles.
(b) Thetriangleisaright triangle.

Exer cise 2.8.3. For special triangles some points of the nine-point circle coincide. Open anew
sketch and draw an arbitrary DABC. Explorethe various possibilities by dragging the vertices of
DABC. Describe the type of triangle (if it exists) for which the nine points of the nine-point
circlereduceto:

4 points: 5 points:
6 points: 7 points:
8 points:

Exer cise 2.8.4. Open anew sketch and draw an arbitrary triangle DABC.
Congtruct the circumcenter O, the centroid G, the orthocenter H, and the center of the nine-
point circle N for thistriangle. What do you notice?
Measure the length of ON, NH, NG, and OH . What results for agenera triangle do your
calculations suggest?
Measure the radius of the nine-point circle of DABC. Measure the radius of the
circumcircle of DABC. What results for ageneral triangle do your calculations suggest?
Drag the vertices of the triangle around. Do your conjectures still remain valid?
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Exer cise 2.8.5. Open anew sketch and draw an arbitrary DABC. Let H be the orthocenter and
O bethe circumcenter of DABC. Construct the nine-point circlesfor DOHA, DOHB, and

DOHC. Use sketchpad to show that these nine-point circles have two pointsin common. Can
you identify these points? Check your observation by dragging the vertices A, B, and C around

If one starts with given vertices A, B, and C, then the locations of the midpoints P, Q, and R
of the sides of DABC are uniquely determined. Similarly, the locations of the feet of the
atitudes D, E, and F will be determined once A, B, and C are given. The remaining two problems
in this exercise set use the geometric properties we have developed so far to reverse this process,
i.e., we congtruct the vertices A, B, and C knowing the midpoints or the feet of the altitudes. Use
the notation from the following figure.

Exercise 2.8.6.

(a) Prove the line segment PQ isparalld to side AB.

(b) Given points P, Q, and R, show how to construct points A, B, and C so that P, Q, and Rare
the midpoints of the sides of DABC.

(c) Formulate a conjecture concerning the relation between the centroid G of DABC and the
centroid of DPQR.

Exercise2.8.7.
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(a) Assume DABC is acute (to ensure the feet of the altitudes lie on the sides of the triangle).
Provethat PC = PB = PE = PF and that P lies on the perpendicular bisector of the line segment

EF.

(b) Given points D, E, and F, show how to construct points A, B, and C so that D, E, and F are
the feet of the altitudes from the vertices of DABC to the opposite sides. (Hint: remember the
nine-point circle).

29 THE POWER OF A POINT AND SYNTHESIZING APOLLONIUS. Another
application of similarity will beto a set of ideas involving what is often called the power of a
point with respect to a circle. The principal result will be decidedly useful later in connection
with the theory of inversion and its relation to hyperbolic geometry.

Demonstration 2.9.0. Discover the formulafor the power of point P with respect to a given
circle.
Open anew sketch and draw acircle. Select any point P outside the circle and let A, B be the
points of intersection on the circle of alinel through P.

Compute the lengths PA, PB of PA, and PB respectively; then compute the product PAPB
of PAand PB. Drag | while keeping P fixed. What do you observe?

Investigate further by considering the case when | istangential to the given circle. Usethis
to explain your previous observation.

What happens to the product PA'PB when P istaken as a point on the circle?

Now let P be apoint insidethe circle, | aline through P and A, B its points of intersection
with the circle. Again compute the product PA-‘PB of PA and PB. Now vary I.

Investigate further by considering the case when | passes through the center of the given
circle.

Can you reconcile the three values of the product PA'-PB for P outside, on and inside the

given circle? Hint: consider thevalueof OP?2 — r? where O isthe center of the given
circleandr isitsradius.
End of Demonstration 2.9.0.

Thevalue of PAPB in Demonstration 2.9.0 is often called the power of P with respect to
the given circle. Now complete the following statement.
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2.9.1 Theorem. Let P beagiven point, S agiven circle, and | aline through P intersecting S at
Aand B. Then

1. theproduct PAPB of the distancesfromPto Aand Bis whenever Pis
outside, whenever itisinsde or whenitison S;

2. thevalue of the product PA'PBis equal to where O isthe center of S

andr istheradiusof S.

The proof of part 2 of Theorem 2.9.1 in the case when P is outside the given circleisan
interesting use of similarity and the inscribed angle theorem. In the diagram below let C be a

point on the circle such that PC is atangent to the circle. By the Pythagorean Theorem
OF” - r?* = PC? so it suffices to show that PAPB = PC?2.

2.9.2 Theorem. Givenacircle S and apoint P outside S, let | be aray through P intersecting
S at pointsA and B. If Cisapoint on thecircle such that PC isatangentto S at C then

PAPB = PC.

Proof. The equation PAPB = PC*suggests use of similar triangles, but which ones?

Let CD beadiameter of thecircle. By the Inscribed Angle Theorem mBPAC = mPBDC and

DCBD isaright angle. Thus mBBDC + mPDCB =90° and asPC istangent to thecircle
mBDCB + mb PCB = 90°. Therefore, MDPAC = mBPCB. By AA smilarity DPAC is

similar to DPCB proving PA/PC = PC/PB or PAPB = PC?. QED
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Theorem 2.9.3. Givenacircle S andapoint Pinside S, let| be aline through P intersecting
S at pointsAand B. Let CD be the chord perpendicular to the segment OP . Then the value of

the product PAPBisequal to r* - OP? = PC* where O isthe center of S andr isthe radius of
S.

Proof.

By AA smilarity DACP issimilar to DDBP so that PA/PC = PD/PB. Thus PA -PB=PC-PD.
By HL, DCPO is congruent to DDPO so that PC=PD. By the Pythagorean Theorem

PD’ + OP* = OD?. Re-arranging and substituting, we obtain PCxPD = r” - OP?. Therefore,
PAXPB = r*- OP? asdesired. QED

Thereis aconverse to theorem 2.9.2 that also will be useful later. You will be asked to
provide the proof in Exercise 2.11.1 below.

2.9.4 Theorem. Givenacircle S and apoint P outside S, let | be aray through P intersecting

S at pointsAand B. If Cisapoint on S such that PAPB = PC? then PC isatangentto S at
C.

In Chapter 1 we used Sketchpad to discover that when a point P moves so that the distance
from P to two fixed points A, B satisfies the condition PA = 2PB then the path traced out by P is
acircle. Infact, thelocus of apoint P such that PA= mPB isawaysacircle, when misany
positive constant not equal to one. From restorations of Apollonius’ work ‘Plane Loci * we
infer that he considered this locus problem, now called the “ Circle of Apollonius’. However,

28



thisisamisnomer since Aristotle who had used it to give a mathematica justification of the
semicircular form of the rainbow had already known the result.

That thislocusisacircle was confirmed algebraically using coordinate geometry in
Chapter 1. However, it can be also be proven by synthetic methods and the synthetic proof
exploits properties of similar triangles and properties of circles. Since the synthetic proof will
suggest how we can construct the Circle of Apollonius with respect to fixed points A, B through
an arbitrary point P we shall go through the proof now. The proof requires several lemmeas,
which we consider below.

2.9.5 Lemma Given DABC, let D be onAB, and E on AC such thatDE isparalel toBC.
Then

AD _ AE AB _AC
DB~ EC DB EC’

Proof. Let F be the intersection of BC with theline parallel to AB passing through E. Then
DAED ~ DECF by AA similarity and '2:3 = écE: . The quadrilateral EFBD isaparalelogram,

AD AE AB A
therefore EF=DBand — =—— . A smilar argument shows—— = _AC QED
DB EC DB EC

2.9.5a Lemma (Converse of Lemma 2.9.5). Given DABC, let D be onAB, and E on AC
AD AE AB _AC

suchthat — =— ~— (seefigure below), thenDE isparalel toBC.
DB EC DB EC
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Proof. Assumeﬂ?) =&: . Thelinethrough
DB EC

D pardlel to BC intersects AC at point F with

DF pardld toBC . By Lemma2.9.5,

AB _ AC AB AC
———.BUt—z_aIS)aSO
DB FC DB EC

AC _ AC

c —— = —— whichimpliesthat F = E. Thus
B FC EC

)

E = DF ispardlel toBC.
AD

If — :E,theproofissimilar. QED
DB EC

2.9.6 Theorem The bisector of the internal angle DABC of DABC divides the opposite side
AC intheratio of the adjacent sides BA and BC. In other words,

AD _ AB

DC BC
Proof. Suppose BD bisects DABC in DABC. At C construct aline parallel to BD, intersecting
AB at E, producing the figure below.

But then DABD @B CBD and DBEC @PABD
since they are corresponding angles of parallel lines.
In addition, PBCE @D CBD sincethey are dternate
interior angles of parallel lines. Hence DCBE is
isosceles and BE = BC. By the previouslemma

AB _ AD
BE DC
But BE=BC, so
AB_ AD
BC DC
This completes the proof.
QED
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2.9.7 Exercise. The converseto Theorem 2.9.6 states that if

AB _ AD

BC DC’
then BD bisects DABC in the figure above. Prove this converse. Y ou may use the converse to
Lemma2.9.5, proven in Lemma2.9.5a

2.9.8. Theorem The bisector of an external angle of DABC cuts the extended opposite side at a

point determined by the ratio of the adjacent sides. That isto say, if AB is extended and
intersects the line containing the bisector of the exterior angle of C at E, then

AC _AE
BC BE
Proof: There are two cases to consider.
Either mBDBAC < mBABC or mBBAC > mbABC. (If mBBAC =mbABC,
then the bisector of the exterior angle at C isparallel to AB.)

Assumetha mBBAC < mBABC . Then (as shown in the figure) the bisector of DBCG
will intersect the extension of AB at E, and AE >AB. AtB, construct aline parallel to CE,
intersecting AC at F.
Then BPBFC @PECG

sincethey are
corresponding angles

of parald lines;
And BDECG @PBCE

since CE bisects
BBCG ; and
DBCE @DPCBF sincethey are alternate interior angles of parald lines.

rir

_ . AC AE
Hence DBFCisisoscelesand FC = BC. Now by a previous lemma, = :E' But
FC= BC, (0] A_C :E .

BC BE

This proves the assertion for the case when mBBAC < mbABC .
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If mBDBAC > mBDABC , thentheline containing the bisector of DBCG intersectsthe

extension of AB at point E on the other side of A, with A between E and B. A similar argument
proves the assertion for this case aswell and the theoremisproved. QED

2.9.9 Exercise. The converse to Theorem 2.9.8 states that if

AC _ AE
BC BE

in the figure above, then CE bisects the external angle of DABC at C. Prove this conjecture.

We are now able to complete the proof of the main theorem.

2.9.10 Theorem (Circle of Apollonius). The set of al points P such that the ratio of the
distancesto two fixed points A and B (that is P%B) isconstant (but not equal to 1) isacircle.

Proof: Assume the notation above and that PA = mPBwhere m >1 isacongtant. There are two
points on AB indicated by C and D in the figure with the desired ratio. By the converseto

Theorem 2.9.6 and the converse to Theorem 2.9.8, PCand PD aretheinterna and external
angle bisectors of the angle at P. Thusthey are perpendicular (why?), so DPCPD isaright

angle. Thismeansthat P lieson acircle with diameter CD. QED
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In the previous proof what happensin the casewhere m<1? Also, seeExercise2.11.2.

210 TILINGSOF THE EUCLIDEAN PLANE. The appeal of many of the most interesting
decorations or constructions we see around us, whether manufactured or in nature, is dueto
underlying symmetries. Two good illustrations of this are the so-called ‘ Devils and Angels
designs by the Dutch graphic artist M. C. Escher. Underlying both is the idea of tilings of the
plane, in the first example the Euclidean plane, in the second example the hyperbolic plane.
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But examples can be found everywhere from floor coverings, to wallpaper, to the mosaics of
Roman villas and to decorations of structures as varied as Highway 183 in Austin and ISlamic
mosques. An understanding of the geometry underlying these designs and their symmetries
increases our understanding and appreciation of the artistic design aswell as geometry itself.
The classification of these symmetriesis actually afascinating problem linking both algebra and
geometry, aswe shall see later.

Some of the smplest, yet most striking designs come from ‘tilings' by regular polygons or
by congruent polygons. Examples can be found everywhere in Ilamic art because of the ban
imposed by the Koran on the use of living formsin decoration and art. This style of
ornamentation is especially adapted to surface decoration sinceit is strongly rooted in Euclidean
plane geometry. Sketchpad will enable us to reproduce these complicated and colorful designs.
Once the underlying geometry has been understood, however, we can make our own designs
and so learn alot of Euclidean plane geometry in the process. Four examplesillustrate some of
the basic idess.



Example 1

The above example shows atypical Arabic design. Thiswas drawn starting from aregular
hexagon inscribed in acircle.

Demonstration 2.10.0. Construct the design in Example 1 using Sketchpad.
First draw aregular hexagon and its circumscribing circle. Now construct aregular 12-
sided regular polygon having the same circumscribing circle to give afigure like the one
below.

= —

To construct a second 12-sided regular polygon having one side adjacent to the first regular
hexagon, reflect your figure in one of the sides of the first regular hexagon. Now complete
the construction of the previous Arabic design.

End of Demonstration 2.10.0.
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2.10.1 Exercise. If theradius of the circumscribing circle of theinitial regular hexagonisR,
determine algebraically the area of the six-pointed star inside one of the circles.

Continuing this example indefinitely will produce a covering of the plane by congruent
copies of three polygons - a square, arhombus and a six-pointed star. Notice that all these
congruent copies have the same edge length and adjacent polygons meet only at their edges, i.e.,
the polygons do not overlap. The second example

Example 2
if continued indefinitely also will provide a covering of the plane by congruent copies of two
regular polygons - two squares, in fact. Again adjacent polygons do not overlap, but now the
individual tiles do not meet along full edges.

The next example

Example 3
isone very familiar one from floor coverings or celling tiles; when continued indefinitely it
provides a covering of the plane by congruent copies of asingle, regular polygon - a square.
But now adjacent polygons meet along the full extent of their edges. Finally, notice that
continuations of the fourth example
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Example 4
produce a covering of the plane by congruent copies of two regular polygons, one a square the
other an octagon; again the covering is edge-to-edge.
To describe al these possibilities at once what we want isagenera definition of coverings
of the plane by polygons without overlaps. Specializations of this definition can then be made
when the polygons have specia features such as the onesin the first four examples.

2.10.2. Definition. A tiling or tessellation of the Euclidean planeisacollection T,, T,, ..., T,,,
of polygons and their interiors such that

no two of the tiles have any interior pointsin common,

the collection of tiles completely coversthe plane.

When all the tilesin aplane tiling are congruent to a single polygon, thetiling is said to have
order one, and the single region is caled the fundamental region of thetiling. If eachtileis
congruent to one of n different tiles, also called fundamental regions thetiling is said to have
order n.

Now we can add in specia conditions on the polygons. For instance, when the polygons are
all regular we say that the tiling isaregular tiling. Both the second, third and fourth examples
above areregular tilings, but the first is not regular since neither the six-pointed polygon nor the
rhombusisregular. To distinguish the second example from the others we shall make a crucia
distinction.

2.10.3. Definition. A tessellation is said to be edge-to-edge if two tiles intersect along afull
common edge, only at acommon vertex, or not at al.

Thus examples one, three and four are edge-to-edge, whereas example two is not edge-to-
edge. The point of this edge-to-edge condition isthat it reduces the study of regular tilingsto
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combinatorial problemsfor the interior angles of the regular polygons meeting at avertex. Itis
in thisway that the Euclidean plane geometry of this chapter, particularly the sums of angles of
polygons, comes into play. So from now on atiling will always mean an edge-to-edgetiling
unlessit isexplicitly stated otherwise.

A magjor problem in the theory is to determine whether a given polygon can serve as
fundamental region for atiling of order one, or if acollection of n polygons can serve as
fundamental regionsfor atiling of order n. The case of a square is well-known from floor
coverings and was given dready in example 3 above.

2.10.4. Demonstr ation. Investigate which regular polygons could be used to create an edge-to-
edge regular tiling of order one.

Usethe*3/Triangle (By Edge)’ script to show that an equilateral triangle can tile the plane
meaning that it can serve as fundamental region for aregular tiling of order one. Try the same
with aregular hexagon using the ‘ 6/Hexagon (By Edge)’ script - what in nature does your
picture remind you of ? Now use the * 5/Pentagon (By Edge) to check if aregular pentagon can
be used afundamental region for aregular tiling of order one. Experiment to see what patterns
you can make. One example is given below; can you find others?

End of Demonstration 2.10.4.

Can you tile the plane with aregular pentagon? To see why the answer is no we prove the
following result.
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2.10.5. Theorem. The only regular polygonsthat tile the plane are equilateral triangles, squares
and regular hexagons. In particular, aregular pentagon does not tile the plane.

Proof. Suppose aregular p-sided polygon tiles the plane with g tiles meeting at each vertex.

Since the interior angle of aregular p-sided polygon has measure 180?%22, it follows that
g180(1- 2/ p) =360. But then
1 1 1
—+—==, ie,(p-2(g- 2)=4.
P q 2
The only integer solutions of this last equation that make geometric sense are the pairs

(p.q) =(36), (4.4), or (6,3).

These correspond to the case of equilateral triangles meeting 3 at each vertex, squares meeting 4
at each vertex and regular hexagons meeting 3 at each vertex. QED

Tilings of the plane by congruent copies of aregular polygon does not make avery
attractive design unless some pattern is superimposed on each polygon - that’s a design
problem we shall return to later. What we shall do first istry to make the tiling more attractive
by using more than one regular polygon or by using polygons that need not be regular. Let’s
look first at the case of an equilateral triangle and a square each having the same edge length.

Demonstration 2.10.5a. Construct aregular tiling of order 2 where the order of the polygons
is preserved at each vertex.
Open a new sketch and draw a square (not too big since thisis the starting point) and draw
an equilateral triangle on one of its sides so that the side lengths of the triangle and the
sguare are congruent. Use the scripts to see if these two regular polygons can serve asthe
fundamental regions of aregular tiling of order 2 where the order of the polygonsis
preserved at each vertex. Here' s one such example.
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5
Notice that the use of colors can bring out a pattern to the ordering of the polygons at each
vertex. Aswe move in counter-clockwise order around each vertex we go from

S(green) ® Jyellow) ® T(white) ® T(blue) ® T(white)
(and then back to S(green)) where S= square and T = equilateral triangle. Thisis one example
of an edge-to-edge regular tiling of order two. Consider how many are there.

End of Demonstration 2.10.5a.

2.10.6 Theorem. Up to smilarity there are exactly eight edge-edge regular tilings of order at
least 2, where the cyclic order of the polygonsis preserved at each vertex.

Keeping the order S® S® T® T® T of squares and triangles produced one such tiling.
Convince yourself that S® T® T® S® T produces adifferent tiling. Why are these the only
two possible orderings for two squares and three triangles? How many permutations are
possiblefor thelettersS ST, T,and T?

What are the other six tilings? Algebraic conditions limit drastically the possible patterns so
long asthetiling is edge-to-edge and that the order of the polygonsis the same at each vertex.
Using the angle sum formulas for regular polygons one can easily see that you need at least
three polygons around a vertex, but can have no more than six. In the case of a p-gon, ag-gon,
and anr-gon at each vertex, you get the equation

0 0
ch- 2 gd- 2 "2 —360

180§ 0 g+180 q I+ 180§

Y ou can check that (4,8,8), (4,6,12), and (3,12,12) are solutions. (There are afew other solutions
aswell, but they will not make geometric sense.) ThusS® O® O,S® H® D,and T® D® D
all producetilings, where O stands for Octagon, H for hexagon, and D for Dodecagon. We are
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still missing three tilings, but you can have fun looking for them! (See Exercise2.11.3.) Now
wewill take alook at some less regular tilings.

It is surprising how much of geometry can be related to tilings of the plane. Let’s consider
two instances of this, the second being Pythagoras' theorem. Thefirst instance is atheorem
known familiarly as Napoleon' s theorem after the famous French general though thereisno
evidence that he actually had anything to do with the theorem bearing his name! Recall that
earlier we proved the form of Pythagoras' theorem saying that the area of the equilateral triangle
on the hypotenuse is equal to the sum of the areas of the equilateral triangles on the other two
sides. On the other hand, Napoleon’ s theorem says that the centers of these three equilateral
triangles themselves form an equilateral triangle, aswe saw in Exercise 1.8.5. The figure below
makes this result clearer.

Here D, E, and F are the centers of the three equilateral triangles where by center is meant
the common circumcenter, centroid and orthocenter of an equilateral triangle. Napoleon's
theorem saysthat DDEF isequilateral - it certainly looks asif its Sides are congruent and
measuring them on Sketchpad will establish congruence. Y ou will provide a proof of the result
in Exercise 2.11.5. The question we consider hereis how all thisreatesto tilings of the plane.
Notice now that we have labeled the interior angles of the triangle because we are going to alow
polygons which are not necessarily regular. Since theinterior can then be different, the
particular interior angle of polygons that appears at a vertex is going to be just asimportant as
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which polygon appears. Now we will see how we can continue the figure above indefinitely and
thustile the plane.

One should notice that the edge-to-edge condition imposes severe restrictions on the angles
that can occur at avertex. Label the anglesin the original figure asfollows.

Of course, the angles of the equilateral triangles are al the same but we have used different
lettersto indicate that they are the interior angles of equilateral triangles of different size. Since
a+b+c+d+ e+ f =360 three copies of the right-angled triangle and one copy of each of
the three different sizes of equilateral triangle will fit around a vertex with no gaps or overlaps.
The figure can thus be constructed indefinitely by maintaining the same counter-clockwise
order a® e® c® f® b® d at each vertex. Now draw the figure for yoursdlf! It may be
instructive to use a different color for each equilateral triangle to highlight the fact that the
equilateral triangles are not necessarily congruent.

2.10.6a Demonstration.
Open anew sketch and in the top left-hand corner of the screen draw aright-angled triangle
as shown in the figure above. Make sure that your construction is dynamic in the sense that
the triangle remains right-angled whenever any one of the verticesis dragged.
Usethe ‘Circle By Center + Radius' construction to construct a congruent copy of your
triangle in the center of the screen. Draw an outwardly pointing equilateral triangle on each
side of thisright-angled triangle.
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Continue adding congruent copies of the right-angled triangle and the equilateral trianglesto
the sides of the triangles aready in your figure. (One way to add congruent copies of the
right triangle isto use your * Auto-Matching’ similar triangle script. Just label your
origina right triangle appropriately.)
Experiment alittle to see what figures can be produced. Check that your construction is
dynamic by dragging the vertices of thefirst right-angled triangle you drew.

End of Demonstration 2.10.6a.

Here' sonethat looks asif it might tile the plane if continued indefinitely.

Napoleon Tiling

The figure above of the Napoleon Tiling has an overlay of hexagons over it. To see whereit
came from, apply Napoleon’s Theorem to thetiling. That is around each right triangle connect
the centers of the equilateral triangle to create a new equilateral triangle. Six of those new
equilateral triangles make up each hexagon above. Thus Napoleon’s theorem brings out an
underlying symmetry in the design because it showed that aregular tiling of the plane by
regular hexagons could be overlaid on the figure. The same design could have been obtained by
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putting a design on each regular hexagon and then tiling the plane with these patterned regular
hexagons.

This brings out a crucia connection between tilings and the sort of designs that are used for
covering walls, floors, ceilings or any flat surface. A designis said to be wallpaper design if a
polygonal portion of it provides atiling of the plane by trandationsin two different directions.
Thus all the examples obtained in this section are wallpaper designs. It isvery clear that the
Islamic design in problem 2.10.1 is awall-paper design because the portion of the design inside
theinitia regular hexagon will tile the plane as the figure below clearly shows.

2.10.7. Exercise. Find asguare portion of Example 4 in Seection 2.10 that tiles the plane. In
other words, show that that example is awallpaper design.

Example 2 is sometimes called the “ Pythagorean Tiling”. It is created by atrandation of
two adjacent non-congruent squares. Thistiling occurs often in architectural and decorative
designs as seen in thissidewalk tiling. To see why thistiling might be called a*“ Pythagorean
Tiling” open anew sketch and draw thetiling asit appears in example 2 using two squares of
different sizes. Construct an overlaying of this design by atiling, which consists of congruent
copies of asingle square. What is the area of this square? Use Pythagoras' theorem to relate
this areato the area of the two original squares you used to construct your pattern.



2.11 Exercises.

Exercise2.11.1. Prove Theorem 2.9.4. Givenacircle S andapoint Poutside S, letl bea
ray through P intersecting S at pointsAand B. If Cisapointon S such that PAPB = PC?,

then PC istangentto S at C.

Exercise 2.11.2: Given points A, B and P use Sketchpad to construct the Circle of Apollonius
passing through P. In other words, construct the set of points Q such that QA = mQB where
PA/PB=m.

Exercise 2.11.3. Produce two different order-preserving edge-to-edge regular tilings of order 2,
just using triangles and hexagons. Produce an order-preserving edge-to-edge regular tiling of
order 3 using triangles, squares, and hexagons. (We now have the eight tilings mentioned in
Theorem 2.10.5!)

Exercise 2.11.4. Using Sketchpad construct the Napoleon Tiling. Choose aregular hexagon in
your figure and describeits areain terms of the origina triangle and the three equilateral
triangles constructed on its sides. Now choose a different (larger or smaller area) regular
hexagon having a different area and describe the area of this hexagon in terms of the origina
triangle and the three equilateral triangles.

Exercise 2.11.5. While the tiling above makes avery convincing case for the truth of
Napoleon’s theorem it doesn’t prove it in the usual meaning of ‘ proof’. Here is a coordinate
geometry proof based on the figure on the following page and on the notation in that figure.

(&) Thepoints D, E, and F are the centers of the equilateral triangles constructed on the sides

of the right-angled triangle DABC. Show that length BF =c//3. Determine aso the lengths of

AD and BE.

(b) If BPABC =6 and BDCAB = ¢, writethevaluesof sinf, cosf, sing, and cos¢ in terms
of a,b, andc.

(c) Write down the addition formulas for sine and cosine.

cos(u +V) = , Sin(U+V) =
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(d) Let thelengths of FE, DF, and DE bex, y and z respectively. Use the Law of Cosines
to show that

z2 :%(312 +b? + 2abcos 30° )

Determine corresponding values for x and y. Deducethat x=y = z.

o

=

Use all the previous results to finish off a coordinate geometry proof of Napoleon’s theorem.

Exercise 2.11.6. Instead of starting with aright-angled triangle, start with an arbitrary DABC
and draw equilateral triangles on each of its sides and repeat the previous construction.
Open anew sketch and draw asmall triangle near the top corner of the screen; label the
vertices A, B, and C. By using the ‘ Circle By Center+Radius' tool you can construct
congruent copies of thistriangle.
Draw one congruent copy of DABC in the center of the screen. Draw an equilateral triangle
on each of itssides.
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Continue this construction preserving cyclic order at each vertex to obtain atiling of the
plane. The following figure is one such example.

Construct the centers of all the equilateral triangles and draw hexagons asin the case of
right-angled triangles. Do you think Napoleon’ s theorem remains valid for any triangle, not
just right-angled triangles?

Exercise 2.11.7. Can the plane betiled by copies of the diagram for Y aglom’s Theorem (given
below) as in the manner of thetiling corresponding to Napoleon’s Theorem? If so, produce the
tiling using Sketchpad. Recall that Y aglom’s Theorem said if we place squares on the sides of
aparalelogram, the centers of the squares also form a square.
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2.12 Onefinal Exercise.

Exercise 2.12.1. To theleft in the figure below are two triangles, one obtuse, the other right-
angled. Theinterior angles of the two triangles have been labeled. Since the sum of these six
anglesis 360° there should be atiling of the plane by congruent copies of these two trianglesin
which the cyclic order of the angles at each vertex is the same as the one shown in the figure to
theright.

Open a new sketch and continue this construction to provide atiling of the plane. Unlike the
previoustilings, the triangles in thistiling are not congruent. Explain why thistiling is more
like a Nautilus Shell.
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Construct the circumcenters of the three outwardly pointing obtuse triangles on the sides of
one of the right-angled triangles and join these circumcenters by line segments. What, if
any, isthe relation of the triangle having these three circumcenters as vertices and the
origina obtuse triangle? Isthere any relation with the origina right-angled triangle? Use
Sketchpad if necessary to check any conjecture you make. (Don’t forget to drag!)

Investigate what happens if you construct instead the three circumcenters of the right-angled
triangles on the sides of one of the obtuse triangles? Draw the triangle having these
circumcenters as vertices. What, if any, is the relation between the origina right-angled triangle
and the triangle having the three circumcenters as vertices? I s there any relation with the original
obtuse triangle? Again use Sketchpad if necessary to check visually any conjecture you make.
(Don't forget to drag!)
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Chapter 3
NON-EUCLIDEAN GEOMETRIES

In the previous chapter we began by adding Euclid’ s Fifth Postulate to his five common
notions and first four postulates. This produced the familiar geometry of the * Euclidean’
plane in which there exists precisely one line through a given point paralel to agivenline
not containing that point. In particular, the sum of the interior angles of any triangle was
always 180° no matter the size or shape of the triangle. In this chapter we shall study
various geometriesin which paralel lines need not exist, or where there might be more than
one line through a given point parallel to agiven line not containing that point. For such
geometries the sum of theinterior angles of atriangle isthen always greater than 180° or
alwayslessthan 180°. Thisinturnisreflected in the area of atriangle which turns out to be
proportional to the difference between 180° and the sum of the interior angles.

First we need to specify what we mean by a geometry. Thisistheideaof an Abstract
Geometry introduced in Section 3.1 along with several very important examples based on
the notion of projective geometries, which first arose in Renaissance art in attempts to
represent three-dimensiona scenes on atwo-dimensional canvas. Both Euclidean and
hyperbolic geometry can be realized in thisway, as later sectionswill show.

3.1 ABSTRACT AND LINE GEOMETRIES. One of the weaknesses of Euclid's
development of plane geometry was his‘ definition’ of points and lines. He defined a point
as*“... that which hasno part” and alineas*“... breadthless length”. These really don’t
make much sense, yet for over 2,000 years everything he built on these definitions has been
regarded as one of the great achievementsin mathematical and intellectua history! Because
Euclid’ s definitions are not very satisfactory in this regard, more modern devel opments of
geometry regard points and lines as undefined terms. A model of amodern geometry then
consists of specifications of points and lines.

3.1.1 Definition. An Abstract Geometry G consists of apair { P, L} where P isaset and
L isacollection of subsets of P. The eements of P are called Points and the e ements of

L arecdled Lines. We will assume that certain statements regarding these points and lines

aretrue at the outset. Statements like these which are assumed true for a geometry are



called Axioms of the geometry. Two Axiomswe require are that each pair of points P, Q in

P belongsto at least onelinel in £, and that each linel in £ contains at least two elements
of P.

We can impose further geometric structure by adding other axioms to this definition as
the following example of afinite geometry - finite because it contains only finitely many
points - illustrates. (Here we have added athird axiom and dightly modified the two
mentioned above.)

3.1.2 Definition. A 4-POINT geometry is an abstract geometry G = { P, L} inwhichthe
following axioms are assumed true:

Axiom 1: P contains exactly four points;
Axiom 2: each pair of distinct pointsin 2P belongsto exactly oneline;

Axiom 3: eachlinein £ contains exactly two distinct points.

The definition doesn't indicate what objects points and lines are in a 4-Point geometry,
it smply imposes restrictions on them. Only by considering amodel of a 4-Point geometry
can we get an explicit description. Look at atetrahedron.

It has 4 vertices and 6 edges. Each pair of verticeslieson
exactly one edge, and each edge contains exactly 2 vertices.
Thus we get the following result.

3.1.3 Example. A tetrahedron contains amodel of a4-
Point geometry in which
P ={vertices of thetetrahedron} and £ = {edges of the tetrahedron}.

This exampleis consistent with our usual thinking of what a point in a geometry should
be and what aline should be. But points and linesin a 4-Point geometry can be anything so
long asthey satisfy al the axioms. Exercise 3.3.2 provides avery different model of a4-
Point geometry in which the points are opposite faces of an octahedron and the lines are the
vertices of the octahedron!



Why do we bother with models? Well, they give us something concrete to look at or
think about when we try to prove theorems about a geometry.

3.1.4 Theorem. In a4-Point geometry there are exactly 6 lines.

To prove this theorem synthetically all we can do is use the axioms and argue logically
from those. A model helps us determine what the stepsin the proof should be. Consider the
tetrahedron model of a 4-Point geometry. It has 6 edges, and the edges are the lines in the
geometry, so the theorem is correct for this model. But there might be a different model of a
4-Point geometry in which there are more than 6 lines, or fewer than 6 lines. We have to
show that there will be exactly 6 lines whatever the model might be. Let’ s use the
tetrahedron model again to see how to provethis.

Label thevertices A, B, C, and D. These are the 4 points in the geometry.

Concentrate first on A. There are 3 edges passing through A, one containing B, one
containing C, and one containing D; these are obvioudly distinct edges. This exhibits 3
distinct lines containing A.

Now concentrate on vertex B. Again there are 3 distinct edges passing through B, but we
have already counted the one passing a so through A. So there are only 2 new lines
containing B.

Now concentrate on vertex C. Only the edge passing through C and D has not been
counted aready, so thereis only one new line containing C.

Finally concentrate on D. Every edge through D has been counted already, so there are
no new lines containing D.

Since we have looked at al 4 points, there are atotal of 6 linesin all. This proof applies
to any 4-Point geometry if we label the four points A, B, C, and D, whatever those points are.
Axiom 2 saysthere must be one line containing A and B, one containing A and C and one
containing A and D. But the Axiom 3 saysthat the line containing A and B must be distinct
from the line containing A and C, aswell astheline containing A and D. Thus there will
always be 3 distinct lines containing A. By the same argument, there will be 3 distinct lines
containing B, but one of these will contain A, so there are only 2 new lines containing B.
Similarly, there will be 1 new line containing C and no new lines containing D. Hencein
any 4-Point geometry there will be exactly 6 lines.

Thisis usualy how we prove theorems in Axiomatic Geometry: look at amodel, check
that the theorem istrue for the model, then use the axioms and theorems that follow from
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these axiomsto give alogically reasoned proof. For Euclidean plane geometry that model
isawaysthe familiar geometry of the plane with the familiar notion of point and line. But it
isnot be the only model of Euclidean plane geometry we could consider! To illustrate the
variety of forms that geometries can take consider the following example.

3.1.5 Example. Denote by P? the geometry in which the ‘points  (here called P-points)
consist of al the Euclidean lines through the origin in 3-space and the P-lines consist of all
Euclidean planes through the origin in 3-space.

Since exactly one plane can contain two given lines through the origin, there exists
exactly one P-line through each pair of P-pointsin P? just asin Euclidean plane geometry.

But what about parallel P-lines? For an abstract geometry G we shall say that two lines m,

and| in G areparallel when| and m contain no common points. This makes good sense

and is consistent with our usual idea of what parallel means. Since any two planes through
the origin in 3-space must always intersect in aline in 3-space we obtain the following
result.

3.1.6 Theorem. In P? there are no parallel P-lines.

Actually, P* isamode of Projective plane geometry. The following figureillustrates
some of the basic ideas about P?.



The two Euclidean lines passing through A and the origin and through B and the origin
specify two P-pointsin P?, while the indicated portion of the plane containing these lines

through A and B specify the ‘ P-line segment’ AB.

Because of Theorem 3.1.6, the geometry P? cannot be amode! for Euclidean plane
geometry, but it comes very ‘close’ . Fix a plane passing through the origin in 3-space and
cal it the Equatorial Plane by analogy with the plane through the equator on the earth.

3.1.7 Example. Denote by E? the geometry in which the E-points consist of all lines
through the origin in 3-space that are not contained in the equatorial plane and the E-lines
consist of al planes through the origin save for the equatorial plane. In other words, E? is
what isleft of P* after one P-line and all the P-points on that P-linein P* are removed.

The claimisthat E? can be identified with the Euclidean plane. Thus there must be
parallel E-linesin this new geometry E*. Do you see why? Furthermore, E* satisfies
Euclid’ s Fifth Postul ate.

The figure below indicates how E? can be identified with the Euclidean plane. Look at a
fixed sphere in Euclidean 3-Space centered at the origin whose equator is the circle of
intersection with the fixed equatorial plane. Now look at the plane which is tangent to this
sphere at the North Pole of this sphere.



Every line through the origin in 3-space will intersect this tangent plane in exactly one point
unlessthelineis paralel in the usua 3-dimensiona Euclidean sense to the tangent plane at
the North Pole. But these parallél lines are precisely the lines through the origin that liein
the equatoria plane. On the other hand, for each point A in the tangent plane at the North
Pole there is exactly one line in 3-space passing through both the origin and the given point
Ain the tangent plane. Thusthereisa 1-1 correspondence between the E-pointsin E? and
the pointsin the tangent plane at the North Pole. In the same way we see that thereisa 1-1
correspondence between E-linesin E? and the usual Euclidean linesin the tangent plane.

The figure above illustrates the 1-1 correspondence between E-line segment AB in E? and

the line ssgment AB in Euclidean plane geometry.

For reasons, which will become very important later in connection with transformations,
this 1-1 correspondence can be made explicit through the use of coordinate geometry and
ideas from linear algebra. Let the fixed sphere centered at the origin having radius 1. Then
the point (X, y) in the Euclidean plane isidentified with the point (X, y, 1) in the tangent plane
at the North Pole, and this point is then identified with theline{ o (X, y, 1): - ¥ <a <¥ }
through the origin in 3-space.

Since there are no parallel linesin P? it is clear that the removal from P? of that one P-
line and al P-points on that P-line must be very significant.

3.1.8 Exercise. What points do we need to add to the Euclidean plane so that under the
identification of the Euclidean plane with E? the Euclidean plane together with these
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additional points are in 1-1 correspondence with the pointsin P*? What line do we need to
add to the Euclidean plane so that we get a 1-1 correspondence with all the linesin P*?

Note first that by restricting further the points and linesin P> we get amodel of a
different geometry. The set of al lines passing through the origin in 3-space and through
the 45" parallel in the Northern Hemisphere of the fixed sphere model determines aconein
3-space to be denoted by L.

3.1.9 Definition. Denote by H* the geometry whose h-points consists of Euclidean lines
through the origin in 3-space that liein the inside the cone L and whose h-lines consist of
theintersections of theinterior of L and planes through the origin in 3-space.

Again the Euclidean lines through A and B represent h-points A and Bin H? and the ‘ h-

line segment’ AB is (asindicated in the above figure by the shaded region) the sector of a
plane containing the Euclidean lines through the origin which are passing through points
on the line segment connecting A and B. H? isamodel of Hyperbolic plane geometry. The
reason why it'samodel of a'plane geometry is clear because we have only defined points
and lines, but what isnot at all obviousiswhy the name 'hyperbolic' is used. To understand
that let's try to use H? to create other models. For instance, our intuition about 'plane
geometries suggests that we should try to find modelsin which h-points really are points,



not lines through the origin! One way of doing thisis by looking at surfaces in 3-space,
which intersect the linesinside the cone L exactly once. There are two natural candidates,
both presented here. The second one presented realizes Hyperbolic plane geometry as the
points on a hyperboloid, - hence the name 'Hyperbolic' geometry. Thefirst one presented
realizes Hyperbolic plane geometry as the pointsinside adisk. Thisfirst one, known asthe
Klein Model, is very useful for solving the following exercise because its h-lines are realized
as open Euclidean line segments. In the next section we study athird model known asthe
Poincare Disk

3.1.10 Exer cise. Given an h-line | in Hyperbolic plane geometry and an h-point P not on
the h-line, how many h-lines parallel to | through P are there?

3.1.11 Klein Model. Consider the tangent plane M, tangent to the unit sphere at its North
Pole, and let the origin in M be the point of tangency of M with the North Pole. Then M
intersectsthe coneL inacircle, cal it S, and it intersects each lineinside L in exactly one
point inside S. In fact, thereis a 1-1 correspondence between the linesinside L and the
pointsinside S. On the other hand, the intersection of M with planesis aEuclidean line, so
thelinesin H? arein 1-1 correspondence with the chords of S, except that we must
remember that pointson circle S correspond to lineson L.  So the linesin the Klein model
of Hyperbolic plane geometry are exactly the chords of S, omitting the endpoints of a
chord. In other words, the hyperbolic h-linesin this model are open line segments. The
following picture contains some points and linesin the Klein model,

the dotted line on the circumference indicating that these points are omitted.
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3.1.11a Exercise. Solve Exercise 3.1.10 using the Klein model.

3.1.12 Hyperboloid model. Consider the hyperbola 2% - x* = 1 inthe x,z-plane. Its
asymptotes are the lines z= £ x. Now rotate the hyperbola and its asymptotes about the z-
axis. The asymptotes generate the cone L, and the hyperbola generates a two-sheeted
hyperboloid lying inside L ; denote the upper hyperboloid by B. Then every line through the
origin in 3-space intersects B exactly once— see Exercise 3.1.13; infact, thereisa

1-1 correspondence between the points on B and the pointsin H2. Thelinesin H?
correspond to the curves on B obtained by intersecting the planes though the originin 3-
gpace. With this model, the hyperboloid B is aredlization of Hyperbolic plane geometry.

3.1.13 Exercise. Provethat every linethrough the origin in 3-space intersects B (in the
Hyperbolic model above) exactly once.

3.2 POINCARE DI SK. Although the line geometries of the previous section provide a
very convenient, coherent, and illuminating way of introducing models of non-Euclidean
geometries, they are not convenient onesin which to use Sketchpad. More to the point, they
are not easy to visualize or to work with. The Klein and Hyperboloid models are more
satisfactory ones that conform more closely to our intuition of what a ‘ plane geometry’
should be, but the definition of distance between points and that of angle measure conform
lessso. We instead focus on the Poincaré Model D, introduced by Henri Poincaré in 1882,
where ‘h-points are points as we usually think of them - pointsin the plane - while ‘h-
lines arearcsof particular Euclidean circles. Thistoo fitsin with our usual experience of
Euclidean plane geometry if one thinks of a straight line through point A asthe limiting
case of acircle through point A whose radius approaches ¥ asthe center moves out aong
aperpendicular line through A. The Poincaré Disk Model alows the use of standard
Euclidean geometric ideas in the development of the geometric properties of the models and
hence of Hyperbolic plane geometry. We will seelater that D isactually amodel of the
"same"' geometry as H? by constructing a 1-1 transformation from H? onto D.

Let C beacirclein the Euclidean plane. Then D isthe geometry in which the ‘ h-points
arethe pointsinside C and the *h-lines’ arethe arcsinside C of any circle intersecting C at
right angles. This means that we omit the points of intersection of these circleswith C. In
addition, any diameter of the bounding circle will aso be an h-line, since any straight line
through the center of the bounding circle intersects the bounding circle at right angles and
(as before) can be regarded as the limiting case of a circle whose radius approaches infinity.
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Asinthe Klein model, points on the circle are omitted and hyperbolic h-lines are open --
- inthis case, open arcs of circles. Aswe arereferring to pointsinside C as h-points and
the hyperbolic linesinside C as h-lines; it will also be convenient to call C the bounding
circle. Thefollowing figure illustrates these definitions:

A,B,E,F, and G are
h-points.

F

mh/ G
E h-segment

o h-ra

h-line

More technically, we say that acircle intersecting C at right anglesis orthogonal to C. Just
as for Euclidean geometry, it can be shown that through each pair of h-points there passes
exactly one h-line. A coordinate geometry proof of thisfact isincluded in Exercise 3.6.2.
We suggest a synthetic proof of thisin Section 3.5. Thus the notion of h-line segment
between h-points A and B makes good sense: it is the portion between A and B of the unique
h-line through A and B. Inview of the definition of h-lines, the h-line segment between A
and B can aso be described as the arc between A and B of the unique circle through A and B
that is orthogonal to C. Similarly, an h-ray starting at an h-point Ain D is either one of the
two portions, between A and the bounding circle, of an h-line passing through A.

Having defined D, thefirst two thingsto do are to introduce the distance, d, (A, B),
between h-points A and B as well as the angle measure of an angle between h-rays starting
at some h-point A. The distance function should have the same properties as the usual
Euclidean distance, namely:

(Pogitive-definiteness): For all pointsAandB (At B),
d,(A/B)>0 and d,(AA)=0;
(Symmetry): For al points A and B,
dy(A, B) = d,(B, A);
(Triangle inequality): For all points A, B and C,
d.(A,B) £ d (AC) +d(C,B).
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Furthermore the distance function should satisfy the Ruler Postulate.

3.2.0. Ruler Postulate: The pointsin each line can be placed in 1-1 correspondence to the
real numbersin such away that:
each point on the line has been assigned a unique real number (its coordinate);
each real number is assigned to a unique point on the ling;
for each pair of pointsA, B ontheline, d. (A, B) = |a- b|, wherea and b are the
respective coordinates of A and B.

The function we adopt for the distance looks very arbitrary and bizarre at first, but good
sense will be made of it later, both from a geometric and transformational point of view.
Consider two h-points A, Bin D and let M, N be the points of intersection with the bounding
circle of the h-linethrough A, B asin the figure:

We set

4 (AB) = i EAM)I(B, N)j
ed(A N)d(B,M)

where d(A, M) isthe usua Euclidean distance between points A and M. Using properties
of logarithms, one can check that the role of M and N can be reversed in the above formula
(see Exercise 3.3.7).

3.2.1 Exercise. Show that d, (A, B) satisfies the positive-definiteness and symmetry
conditions above.
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We now introduce angles and angle measure in D. Just asin the Euclidean plane, two
h-rays starting at the same point form an angle. In the figure below we see two intersecting
h-lines forming DBAC .

To find the hyperbolic measure m DBAC of BDBAC we appeal to angle measure in
Euclidean geometry. To do that we need the tangents to the arcs at the point A. The
hyperbolic measure of the angle DBAC is then defined to be the Euclidean measure of the
Euclidean angle between these two tangents, i.e. mDBAC = mb# .

Just asthe notions of points, lines, distance and angle measure are defined in Euclidean
plane geometry, these notions are dl defined in D. And, we can exploit the hyperbolic tools
for Sketchpad, which correspond to the standard Euclidean tools, to discover facts and
theorems about the Poincaré Disk and hyperbolic plane geometry in generd.

Load the “Poincaré” folder of scripts by moving the sketch “Poincare Disk.gsp” into
the Tool Folder. To accessthis sketch, first open the folder “Samples’, then
“Sketches’, then “Investigations’. Once Sketchpad has been restarted, the following
scriptswill be available:

Hyper bolic Segment - Given two points, constructs the h-segment joining
them

Hyperbolic Line - Constructs an h-line through two h-points

Hyperbolic P. Bisector - Constructs the perpendicular bisector between two h-
points

Hyperbolic Perpendicular - Constructs the perpendicular of an h-line through
athird point not on the h-line.

Hyperbolic A. Bisector — Constructs an h-angle bisector.

Hyperbolic Circle By CP - Congtructs an h-circle by center and point.
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Hyperbolic Circle By CR — Constructs an h-circle by center and radius.
Hyper bolic Angle — Gives the hyperbolic angle measure of an h-angle.
Hyper bolic Distance - Gives the measure of the hyperbolic distance between
two h-points which do not both lie on a diameter of the Poincare disk.

The sketch “Poincare Disk.gsp” contains a circle with a specially labeled center called,
‘P. Disk Center’, and point on the disk called, ‘P. Disk Radius'. Thetools listed above
work by using Auto-Matching to these two labels, so if you use these tools in another
sketch, you must either label the center and radius of your Poincare Disk accordingly, or
match the disk center and radius before matching the other givens for thetool. We are
now ready to investigate properties of the Poincaré Disk. Use thelinetool to investigate
how the curvature of h-lines changes as the line moves from one passing close to the
center of the Poincaré disk to one lying close to the bounding circle. Notice that thisline
tool never produces h-lines passing through the center of the bounding circle for
reasons that will be brought out in the next section. In fact, if you experiment with the
tools, you will find that the center of the Poincare Disk and the h-lines which pass
through the center are problematic in general. Special tools need to be created to deal
with these cases.

(Thereis another very good software simulation of the Poincaré disk available on the web at
http://math.rice.edu/~joel/NonEuclid.

Y ou can download the program or run it online. The site also contains some background
material that you may find interesting.)

3.2.2 Demonstration: Parallel Lines. Asin Euclidean geometry, two h-linesin D are said
to be parallel when they have no h-pointsin common.

In the Poincaré disk construct an h-linel and an h-point P not on |. Use the h-linescript

to investigate if an h-linethrough P pardlel to | can be drawn. Can more than one be
drawn? How many can be drawn? End of Demonstration 3.2.2.

3.2.3 Shortest Distance. In Euclidean plane geometry the line segment joining points P
and Q isthe path of shortest distance; in other words, aline segment can be described both
in metric terms and in geometricterms. More precisely, there are two natural definitions of

13



aline segment PQ, one as the shortest path between P and Q, ametric property, the other as
all points between P, Q on the unique line | passing through P and Q - a geometric property.
But what do we mean by between? That is easy to answer in terms of the metric: theline

segment PQ consists of all points Ron | such that d,(P,R +d,(R Q) =d (P,Q). Thislast
definition makes good sense also in D since there we have defined a notion of distance.

3.2.3a Demonstration: Shortest Distance.
In the Poincaré disk select two points A and B. Use the “Hyperbolic Distance” tool to
investigate which points C minimize the sum
d.(C,A) +d,(C,B).
What does your answer say about an h-line segment between A and B?
End of Demonstration 3.2.3a.

3.2.4 Demonstration: Hyperbolic Versus Euclidean Distance. Since Sketchpad can
measure both Euclidean and hyperbolic distances we can investigate hyperbolic distance and
compare it with Euclidean distance.
Draw two h-line segments, one near the center of the Poincaré disk, the other near the
boundary. Adjust the segments until both have the same hyperbolic length. What do
you notice about the Euclidean lengths of these arcs?
Compute the ratio

d.(A B)
d(A, B)

of the hyperbolic and Euclidean lengths of the respective hyperbolic and Euclidean line
segments between points A, B in the Poincaré disk. What isthe largest value you can
obtain? End of Demonstration 3.2.4.

3.2.5 Demonstration: Investigating d, further.
Does this definition of d, depend on where the boundary circle liesin the plane?
What is the effect on d, if we change the center of the circle?
What is the effect on d,, of doubling the radius of the circle?

By changing the size of the disk, but keeping the points in the same proportion we can

answer these questions. Draw an h-line segment AB and measureits length.
Over on the toolbar change the select arrow to the Dilate tool. Select “P. Disk
Center”, then Transform “Mark Center.” Under the Edit menu “Select All,” then
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deselect the “Distance =". Now, without deselecting these objects, drag the P. Disk Radius
to vary the size of the P-Disk and of all the Euclidean distances between objectsinside
proportionally. What effect does changing the size of the P-Disk proportionaly (relative to
the P-Disk Center) have on the hyperbolic distance between the two endpoints of the
hyperbolic segment?

Over on the toolbar change the select arrow to the Rotate tool. Select “P-Disk
Center”, then Transform “Mark Center.” Under the Edit menu “Select All,” then
deselect the “Distance =".  Now, without deselecting these objects, drag the P-Disk
Radius to rotate the orientation of the P-Disk. What effect does changing the orientation of
the P-Disk uniformly have on the hyperbolic distance between the two endpoints of the
hyperbolic segment?

Over on the toolbar, change the Rotate tool back to the select arrow. Under the Edit
menu “ Select All,” then deselect the “ Distance =". Grab the P-Disk Center, and drag the
Disk around the screen. What effect does changing the location of the P-Disk have on the
hyperbolic distance between the two endpoints of the h-line segment?

End of Demonstration 3.2.5.

3.3 Exercises. ThisExercise set contains questions related to Abstract Geometries and
properties of the Poincaré Disk.

Exercise 3.3.1. Prove that in a4-Point geometry there passes exactly 3 lines through each
point.

Exercise 3.3.2. Thefigureto theright isan
octahedron. Use thisto exhibit amodel of a4-Point
geometry that is very different from the tetrahedron
model we used in class. Four of the faces have been
picked out. Use these as the 4 points. What must the
lines beif the octahedron isto be amodel of a 4-
Point geometry? Make sure you check that all the
axioms of a 4-Point geometry are satisfied.

Exercise 3.3.3. We have stated that our definition for the hyperbolic distance between two
points satisfies the ruler postulate, but it is not easy to construct very long h-line segments
say ones of length 10. The source of this difficulty isthe rapid growth of the exponential
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function. Suppose that the radius of the bounding circleis 1 and let A be an h-point that has
Euclidean distancer from theorigin (r <1, of course). The diameter of the bounding circle
passing through Aisan h-line  Show the hyperbolic distance from the center of the
bounding circleto Ais

(1+r)
(- 1)
Find r when the hyperbolic distance from A to the center of the bounding circleis 10.

In

Exercise 3.3.4. Use Exercise 3.3.3 to prove that the second statement of the ruler postulate
holds when the hyperbolic line is adiameter of the bounding circle and if to each point we
assign the hyperbolic distance between it and the center of the bounding circle. That is, why
are we guaranteed that each real number is assigned to a unique point on the line? Hint:
Show your function for r from Exercise 3.3.3 is 1-1 and onto the interval (-1,1).

Exercise 3.3.5. Explain why the ruler postul ate disallows the use of the Euclidean distance
formulato compute the distance between two points in the Poincaré Disk.

Exer cise 3.3.6. Using Sketchpad open the Poincaré Disk Starter and find a counterexample
within the Poincaré Disk to each of the following.

(a) If alineintersects one of two paraléel lines, then it intersects the other.

(b) If two lines are parald to athird line then the two lines are paralel to each other.

Exercise 3.3.7. Using properties of logarithms and properties of absolute value, show that,
with the definition of hyperbolic distance,

A M(B NG _ || SI(A N)A(B M)
ed(A, N)d(B,M) éd(A M)d(B,N)g ’

i.e, theroles of M and N can be reversed and the same distance value results.

d.(A, B) =|In

34 CLASSIFYING THEOREMS. For many years mathematicians attempted to deduce
Euclid'sfifth postulate from the first four postulates and five common notions. Progress
camein the nineteenth century when mathematicians abandoned the effort to find a
contradiction in the denid of the fifth postulate and instead worked out carefully and
completely the consequences of such adenial. It was found that a coherent theory arises if
one assumes the Hyperbolic Paralel Postulate instead of Euclid's fifth Postulate.
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Hyperbolic Parallel Postulate: Through a point P not on agiven linel there exists at
least two lines paralld to .

The axioms for hyperbolic plane geometry are Euclid’s 5 common notions, the first
four postulates and the Hyperbolic Parallel Postulate. Three professional mathematicians
are credited with the discovery of Hyperbolic geometry. They were Carl Friedrich Gauss
(1777-1855), Nikolai Ivanovich Lobachevskii (1793-1856) and Johann Bolyai (1802-
1860). All three developed non-Euclidean geometry axiomatically or on asynthetic basis.
They had neither an analytic understanding nor an analytic model of non-Euclidean
geometry. Fortunately, we have amodel now; the Poincaré disk D isamodel of hyperbolic
plane geometry, meaning that the five axioms, consisting of Euclid’ sfirst four postulates
and the Hyperbolic Parallel Postulate, are true statements about D, and so any theorem that
we deduce from these axioms must hold truefor D. In particular, there are severa lines
though a given point parallel to agiven line not containing that point.

Now, an abstract geometry (in fact, any axiomatic system) is said to be categorical if
any two models of the system are equivalent. When ageometry is categorical, any
statement which is true about one model of the geometry istrue about all models of the
geometry and will be true about the abstract geometry itself. Euclidean geometry and the
geometries that result from replacing Euclid’ sfifth postulate with Alternative A or
Alternative B are both categorical geometries.

In particular, Hyperbolic plane geometry is categorical and the Poincaré disk D isa
model of hyperbolic plane geometry. So any theorem valid in D must be true of Hyperbolic
plane geometry. To prove theorems about Hyperbolic plane geometry one can either
deduce them from the axioms (i.e, give asynthetic proof) or prove them from the model D
(i.e, give an andytic proof).

Since both the model D and Hyperbolic plane geometry satisfy Euclid’ sfirst four
postulates, any theorems for Euclidean plane geometry that do not require the fifth postulate
will also betrue for hyperbolic geometry. For example, we noted in Section 1.5 that the
proof that the angle bisectors of atriangle are concurrent is independent of the fifth
postulate. By comparison, any theorem in Euclidean plane geometry whose proof used the
Euclidean fifth postulate might not be valid in hyperbolic geometry, though it is not
automatically ruled out, as there may be a proof that does not use the fifth postulate. For
example, the proof we gave of the existence of the centroid used the fifth postulate, but other
proofs, independent of the fifth postulate, do exist. On the other hand, al proofs of the
existence of the circumcenter must rely in some way on the fifth postulate, asthisresult is
false in hyperbolic geometry.
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Exercise 3.4.0 After the proof of Theorem 1.5.5, which proves the existence of the
circumcenter of atriangle in Euclidean geometry, you were asked to find where the fifth
postulate was used in the proof. To answer this question, open a sketch containing a
Poincare Disk with the center and radius appropriately labeled (P. Disk Center and P. Disk
Radius). Draw a hyperbalic triangle and construct the perpendicular bisectors of two of the
sides. Drag the vertices of the triangle and see what happens. Do the perpendicular
bisectors always intersect? Now review the proof of Theorem 1.5.5 and identify where the
Paralldl postulate was needed.

We could spend awhole semester devel oping hyperbolic geometry axiomatically! Our
approach in this chapter is going to be either anaytic or visual, however, and in chapter 5 we
will begin to devel op some transformation techniques once the idea of Inversion has been
adequately studied. For the remainder of this section, therefore, various objectsin the
Poincaré disk D will be studied and compared to their Euclidean counterparts.

3.4.1 Demonstration: Circles. A circleisthe set of points equidistant from a given point
(the center).
Open a Poincaré Disk, construct two points, and label them by A and O.
Mesasure the hyperbolic distance between A and O, d, (A, O), Select the point A and
under theDisplay menu select Trace Points. Now drag A while keeping d, (A, O)
constant.
Can you describe what a hyperbolic circle in the Poincaré Disk should look like?
To confirm your results, use the circle script to investigate hyperbolic circlesin the
Poincaré Disk. What do you notice about the center? End of Demonstration 3.4.1.

3.4.2 Demonstration: Triangles. A triangleisathree-sided polygon; two hyperbolic
triangles are said to be congruent when they have congruent sides and congruent interior
angles. Investigate hyperbolic triangles in the Poincaré Disk.

Construct a hyperbalic triangle DABC and use the “Hyperbolic Angle” tool to
measure the hyperbolic angles of DABC (keep in mind that three points are necessary
to name the angle, the vertex should be the second point clicked).

Calculate the sum of the three angle measures. Drag the vertices of the triangle around.
What is alower bound for the sum of the hyperbolic angles of atriangle? What is an
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upper bound for the sum of the hyperbolic angles of atriangle? What is an appropriate
conclusion about hyperbolic triangles? How does the sum of the angles change asthe
triangleis dragged around D?

The proofs of SSS, SAS, ASA, and HL as valid shortcuts for showing congruent
triangles did not require the use of Euclid’s Fifth postulate. Thusthey areall valid
shortcuts for showing triangles are congruent in hyperbolic plane geometry. Use SSSto
produce two congruent hyperbolic trianglesin D. Drag one triangle near the boundary and
one triangle near the center of D. What happens?

We also had AA, SSS, and SAS shortcuts for similarity in Euclidean plane geometry.
Isit possible to find two hyperbolic triangles that are smilar but not congruent? Y our
answer should convince you that it isimpossible to magnify or shrink atriangle without
distortion! End of Demonstration 3.4.2.

3.4.3 Demonstration: Special Triangles. An equilatera triangleisatriangle with 3 sides
of equal length. An isosceles triangle has two sides of equal length.
Create atool that constructs hyperbolic equilatera trianglesin the Poincaré disk. Isan
equilateral triangle equiangular? Arethe angles aways 60° asin Euclidean plane
geometry?
Can you construct a hyperbolic isoscel es triangle? Are angles opposite the congruent
sides congruent? Does the ray bisecting the angle included by the congruent sides bisect
the side opposite? Isit aso perpendicular? How do your results compare to Theorem
1.4.6 and Corollary 1.4.7? End of Demonstration 3.4.3.

3.4.4 Demonstration: Polygons.
A rectangle isaquadrilateral with four right angles. Isit possible to construct a
rectanglein D?
A regular polygon has congruent sides and congruent interior angles.
To construct aregular quadrilateral in the Poincaré Disk start by constructing an h-circle
and any diameter of the circle. Label the intersection points of the diameter and the circle
asAand C. Next construct the perpendicular bisector of the diameter and label the

intersection points with the circle as B and D. Construct the line segments AB, BC,
CD, and DA.
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ABCD is a regular quadrilateral.

Then ABCD isaregular quadrilateral. Why doesthiswork? Create atool from your

sketch.

The following theorems are true for hyperbolic plane geometry as well as Euclidean

plane geometry: Any regular polygon can beinscribed in acircle. Any regular polygon

can be circumscribed about a circle. Consequently, any regular n-gon can be divided
into n congruent isoscelestriangles just as in Euclidean plane geometry.

Modify the construction to produce aregular octagon and regular 12-gon. Create tools

from your sketches.

End of Demonstration 3.4.4.

By now you may have started to wonder how one could define area within hyperbolic
geometry. In Euclidean plane geometry there are two natural ways of doing this, one
geometric, the other analytic. In the geometric definition we begin with the area of afixed
shape, asquare, and then build up the area of more complicated figures as sums of squares
so that we could say that the area of afigureisn square inches, say. Since squares don’t
exist in hyperbolic plane geometry, however, we cannot proceed in thisway.

Now any definition of area should have the following properties:

Every polygonal region has one and only one area, (a positive real number).

Congruent triangles have equal area.

If apolygonal regionis partitioned into a pair of sub regions, the area of the region will

equal the sum of the areas of the two sub regions.

Recall, that in hyperbolic geometry we found that the sum of the measures of the angles of
any triangle isless than 180. Thus we will define the defect of atriangle as the amount by
which the angle sum of atriangle misses the value 180.

3.4.5 Definition. The defect of triangle D ABC isthe number
6(DABC) =180 - mbA- mbB- mbC
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More generally, the defect can be defined for polygons.

3.4.6 Definition. The defect of polygon RP,...P, isthe number
8 (DP,P,...P,) =180(n- 2) - mDP, - mPP, - ...- mBP,

It may perhaps be surprising, but thiswill allow us to define a perfectly legitimate area
function where the area of apolygon RP,...P,isktimesits defect. The value of k can be

specified once a unit for angle measure is agreed upon. For exampleif our unit of angular
measurement is degrees, and we wish to express angles in terms of radians then we use the

constant k =m/180". It can be shown that this area function defined below will satisfy all
of the desired propertieslisted above.

3.4.7 Definition. Thearea Area,(RR ...P) of apolygon RP,...P, isdefined by
Area, (RR...P)=kd(RR,...R)
wherek is a positive constant.

Note, that this puts an upper bound on the area of al triangles, namely 180 k. (More
generally, 180 x(n- 2) >k for n-gons.) This definition becomes even stranger when we look
at particular examples.

3.4.7a Demonstration: Areasof Triangles.
Open a Poincare disk. Construct a hyperbolic ‘triangle’ D,OMN having one vertex O at
the origin and the remaining two vertices M, N on the bounding circle. Thisisnot a
triangle in the strict sense because points on the bounding circle are not pointsin the
Poincare disk. Nonetheless, it isthe limit of ahyperbolic triangle D,OAB as A, B

approach the bounding circle.
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Disk Radius

The'triangle’ D,OMN is called a Doubly-Asymptotic triangle.

Determine the length of the hyperbolic line ssgment AB using the length script. Then
measure each of the interior angles of the triangle and compute the area of D,OAB (use

k=1). What happensto these values as A, B approach M, N along the hyperbolic line
through A, B? Set

Area, (D,OMN) =lim Area, (D, OAB)

Explain this value by relating it to properties of D,OMN .
Repeat this construction, replacing the center O by any point C in the Poincaré disk.
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P-Disk Center

Wheat value do you obtain for Area, (D, CAB)? Now let A, B approach M, N along the
hyperbolic line through A, B and set

Area, (D,CMN) = lim Area, (D,CAB);
again we say that D,(CMN) isadoubly-asymptotic triangle. Relate the value of
Area, (D,CMN) to propertiesof D,CMN .
Select an arbitrary point L on the bounding circle and let C approach L. We call
D,LMN atriply-asymptotic triangle. Now set

Area, (D,LMN) = lim Area,(D,CMN).

Explain your value for Area, (D,LMN) interms of the propertiesof D,LMN .
End of Demonstration 3.4.7a.

Y our investigations may lead you to conjecture the following result.
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3.4.8 Theorem.

(a) The areaof ahyperbolic triangle is at most 180k even though the lengths of its sides
can be arbitrarily large.

(b) The area of atriply-asymptotic triangle is always 180Kk irrespective of the location of
its vertices on the bounding circle.

By contrast, in Euclidean geometry the area of atriangle can become unboundedly large
asthe lengths of its sides become arbitrarily large. In fact, it can be shown that Euclid’s
Fifth Postulate is equivalent to the statement: there is no upper bound for the areas of
triangles

3.4.9 Summary. The following results are true in both Euclidean and Hyperbolic
geometries:

SAS, ASA, SSS, HL congruence conditions for triangles.

| sosceles triangle theorem (Theorem 1.4.6 and Corollary 1.4.7)

Any regular polygon can beinscribed in acircle.

Thefollowing results are strictly Euclidean
Sum of the interior angles of atriangle is180°.
Rectangles exist.

The following results are strictly Hyperbolic
The sum of theinterior angles of atriangleislessthan 180°.
Parallel lines are not everywhere equidistant.
Any two similar triangles are congruent.

Further entriesto thislist are discussed in Exercise set 3.6.

As calculus showed, there is dso an anaytic way introducing the area of aset Ain the
Euclidean plane asadoubleintegra

(‘!‘) dxdy.
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An entirely analogous analytic definition can be made for the Poincaré disk. What is needed
is asubstitute for dxdy. If we use standard polar coordinates (r,0) for the Poincaré disk,
then the hyperbolic area of aset Aisdefined by

« 4rdrdoe .
Area,(A) = 7

Of course, when Ais an n-gon, it has to be shown that thisintegral definition of area
coincides with the value defined by the defect of A up to afixed constant k independent of
A. Caculating areas with thisintegral formula often requires a high degree of algebraic
ingenuity, however.

3.50RTHOGONAL CIRCLES. Orthogondl circles, i.e. circlesintersecting at right
angles, arise on many different occasions in plane geometry including the Poincaré disk
model D of hyperbolic plane geometry introduced in the previous section. In fact, their
study constitutes a very important part of Euclidean plane geometry known as Inversion
Theory. Thiswill be studied in some detail in Chapter 5, but here we shall develop enough
of the underlying ideas to be able to explain exactly how the tools constructing h-lines and
h-segments are obtai ned.

Note first that two circlesintersect at right angles when the tangents to both circles at
thelr point of intersection are perpendicular. Another way of expressing thisis say that the
tangent to one of the circles at their point of intersection D passes through the center of the
other circle asin the figure below.

Does this suggest how orthogonal circles might be constructed?
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3.5.1 Exercise. Givenacircle C, centered at O and apoint D on thiscircle, construct a
circle C, intersecting C, orthogonally at D. How many such circles C, can be drawvn?

It should be easily seen that there are many possibilitiesfor circle C,. By requiring extra
properties of C, there will be only one possible choice of C,. In thisway we see how to
construct the unigue h-line through two points P, Q in D.

3.5.2 Demonstration. Given acircle C, centered at O, apoint Anot on C, , aswell asa

point D on C,, construct acircle C, passing through A and intersecting C, at D
orthogonally. How many such circles C, can be drawn?

C1 Q

Sketchpad provides avery illuminating solution to this problem.
Open anew sketch. Draw circle C,, labeling its center O, and construct point A not on
thecircleaswell asapoint D onthecircle.

Construct the tangent line to the circle C, at D and then the segment AD.

Construct the perpendicular bisector of AD. Theintersection of this perpendicular

bisector with the tangent line to the circle at D will be the center of acircle passing

through both A and D and intersecting the circle C, orthogonally at D. Why?
Thefigure below illustrates the construction when A isoutside circle C,
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What turns out to be of critical importanceisthe locus of circle C, passing through Aand D
and intersecting the given circle C, orthogonally at D, asD moves. Use Sketchpad to
explore the locus.

Sdlect the circle C,, and under the Display menu select trace circle. Drag D.
Alternatively you can select the circle C,, then select the point D and under the
Construct menu select locus.

The following figure was obtained by choosing different D on the circle C, and using a
script to construct the circle through A (outside C,) and D orthogonal to C,. Thefigureyou
obtain should look similar to this one, but perhaps more cluttered if you have traced the
circle.
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Y our figure should suggest that all the circles orthogonal to the given circle C, that pass
through A have a second common point on the line through O (the center of C,) and A. In
the figure above this second common point islabeled by B. [Does the figure remind you of
anything in Physics - the lines of magnetic force in which the points A and B are the poles
of the magnet. say?] Repeat the previous construction when Aisinside C, and you should
see the same result.

End of Demonstration 3.5.2.

At this moment, Theorem 2.9.2 and its converse 2.9.4 will come into play.

3.5.3 Theorem. Fix acircle C, with center O, apoint A not on the circle, and point D on the
circle, Now let B be the point of intersection of the line through O with the circle through A
and D that is orthogonal to C,. Then B satisfies

OAOB =0D".
In particular, the point B isindependent of the choice of point D. The figure below
illustrates the theorem when Ais outside C, .

28



OA = 1.65 inches
OB = 0.52 inches

OA-OB = 0.86 inches?
0D? = 0.86 inches?

Proof. By construction the segment OD istangential to the orthogonal circle. Hence
OAOB =0D? by Theorem 2.9.2. QED

Theorem 3.5.3 has an important converse.

3.5.4 Theorem. LetC, beacircleof radiusr centered at O. Let Aand B be pointsonaline

through O (neither Aor Bon C,). If OAOB =r? then any circle through A and B will
intersect the circle C, orthogonally.

Proof. LetD denoteapoint of intersection of the circle C, with any circle passing through
Aand B. Then OAOB = OD?. So by Theorem 2.9.4, the line segment OD will be tangential
to the circle passing through A, B, and D. Thus the circle centered at O will be orthogonal to
the circle passing through A, B, and D. QED

Theorems 3.5.3 and 3.5.4 can be used to construct a circle orthogonal to agiven circle
C, and passing through two given points P, Q inside C,. In other words, we can show how
to construct the unique h-line through two given points P, Q in the hyperbolic plane D.

3.5.5 Demonstration.
Open anew sketch and draw the circle C,, labeling its center by O. Now select arbitrary
pointsP and Q insideC,.
Choose any pointD on C,.
Construct the circle C, passing through P and D that is orthogonal to C,. Draw the ray
starting at O and passing through P. Let B be the other point of intersection of thisray
with C,. By Theorem 3.5.3 OP.OB = OD?. Confirm this by measuring OP, OB, and

OD inyour figure.
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Congtruct the circumcircle passing through the vertices P, Q and B of DPQB. By
Theorem 3.3.4 this circumcircle will be orthogonal to the given circle.

OP-OB = 1.15 inches?
0OD? = 1.15 inches?

Cy

If Pand Q lie on adiameter of C, then the construction described above will fail. Why?
This explains why there had to be separate scripts in Sketchpad for constructing h-lines
passing through the center of the bounding circle of the Poincaré model D of hyperbolic
plane geometry.

The pointsA, B described in Theorem 3.5.3 are said to be Inver se Points. The mapping
taking Ato B is said to belnversion. The properties of inversion will be studied in detail in
Chapter 5 in connection with tilings of the Poincaré model D. Before then in Chapter 4, we
will study transformations. End of Demonstration 3.5.5.

3.6 Exercises. In this set of exercises, we'll look at orthogonal circles, aswell as other
results about the Poincaré Disk.

Exercise 3.6.1. To link up with what we are doing in class on orthogonal circles, recal first
that the equation of acircle C in the Euclidean plane with radiusr and center (h, K) is
(x-h)*+ (y-K?>=r?
which on expanding becomes
X -2hx+y -2ky+ 2 + K= r2
Now consider the special case when C has center at the origin (0, 0) and radius 1. Show
that the equation of the circle orthogonal to C and having center (h, k) is given by
X -2hx+y?-2ky+1=0.

Exercise 3.6.2. One very important use of the previous problem occurs when C isthe
bounding circle of the Poincaré disk. Let A= (a,,a,) and B = (b,, b,) be two pointsinside
thecircleC, i.e., two h-points. Show that there is one and only one choice of (h, k) for which
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the circle centered at (h, k) is orthogonal to C and passes through A, B. Thisgivesa
coordinate geometry proof of the basic Incidence Property of hyperbolic geometry saying
that there is one and only one h-line through any given pair of pointsin the Poincaré Disk.
Assume that A and B do not lie on adiagonal of C.

Exercise 3.6.3. Open aPoincaré Disk and construct a hyperbolic right triangle. (A right
triangle has one 90° angle.) Show that the Pythagorean theorem does not hold for the
Poincaré disk D. Where does the proof of Theorem 2.3.4 seem to go wrong?

Exercise 3.6.4. Open aPoincaré Disk. Find atriangle in which the perpendicular bisectors
for the sides do not intersect. In Hyperbolic plane geometry, can any triangle be
circumscribed by acircle? Can any triangle be inscribed by acircle? Why or why not?

Exer cise 3.6.5. Find a counterexample in the Poincaré Disk model for each of the

following theorems. That is show each theorem is strictly Euclidean.

() The opposite sides of a parallelogram are congruent. (A paralelogram is a quadrilateral
where opposite sides are paralld.)

(b) The measure of an exterior angle of atriangle is equal to the sum of the measure of the
remote interior angles.

Exercise 3.6.6. Using Sketchpad open a Poincaré Disk. Construct a point P and any
diameter of the disk not through P. Devise a script for producing the h-line through P

perpendicular to the given diameter (also an h-line).

Exercise 3.6.7. The defect of a certain regular hexagon in hyperbolic geometry is 12. (k=1)

Find the measure of each angle of the hexagon.
If O isthe center of the hexagon, find the measure of each interior angle of each sub-
triangle making up the hexagon, such as DABO as shown in the figure.
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Are each of these sub-triangles equilateral triangles, as they would beif the geometry
were Euclidean?

Exercise 3.6.8. Given DABC as shown with 8, and 9, as defects of the sub triangles
DABD and DADC

prove 8 (DABC) =9, +9,.
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Chapter 4

TRANSFORMATIONS

4.1 TRANSFORMATIONS, ISOMETRIES. The term transformation has several
meanings in mathematics. It may mean any change in an equation or expression to simplify
an operation such as computing a derivative or an integral. Another meaning expresses a
functional relationship because the notion of afunction is often introduced in terms of a
mapping

f-A® B

between sets A and B; for instance, the functiony = x* can be thought of as a mapping

f: x® x° of one number lineinto another. On the other hand, in linear algebra courses a
linear transformation maps vectors to vectors and subspaces to subspaces. When we use
the term transformation in geometry, however, we have all of these interpretationsin mind,
plus another one, namely the ideathat the transformation should map a geometry to a
geometry. A formal definition makesthis precise.

Recall firstthat if f: A® B isamapping such that every point in the range of f has a
unique pre-image in A, then f is said to beone to oneor injective. If therange of fis all of B,
then f is said to be onto or surjective. When the function is both one to one and onto, it is
caled abijection or is said to bebijective. The figures below illustrate these notions
pictorialy.
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4.1.1 Definition. Letg, = (?,, £,) and G, = (P,, L,) be two abstract geometries, and let f :
P, ® P, afunction that is bijective. Then we say that f is ageometric transformationif f
also maps .z, onto ~,.

In other words, a 1-1 transformation f : #; ® P, is geometric if takes the set 2, of all
pointsin g, onto the set #, of all pointsin G,, and takesthe set £, of al linesin g, onto the
set £, of al linesin G,. Itisthislast property that distinguishes geometric transformations
from more generd transformations. A more sophisticated way of formulating definition
4.1.1issmplytosay that f: g, ® g, ishijective. Notice that the definition makes good
sense for models of both Euclidean and hyperbolic geometries. For instance, we shall see
later that there is geometric bijection from the model H? of hyperbolic geometry in terms of
lines and planesin three space and the Poincaré disk model D in terms of points and arcs of
circles.

Some simple examples from Euclidean plane geometry make the formalism much
clearer. Let g, and g, both be models of Euclidean plane geometry so that #, and #, can be
identified with all the pointsin the plane. For f: », ® %, to be geometric it must map the
plane onto itself, and do so in a1-1 way, aswell as map any straight linein the planeto a
straight line. It will be important to see how such transformations can be described both
algebraically and geometrically. It iseasy to come up with functions mapping the plane
onto itself, but it is much more restrictive for the function to map a straight line to a straight

line. For example, (x,y)® (x,y’) maps the plane onto itsalf, but it maps the straight line

y =X tothecubic y= x°.

4.1.2 Examples. (a) Let

f:(xy)® (y.x)
be the function mapping any point P =(X,y) inthe planeto itsreflection P¢= (y, X) inthe
line y = x. Since successive reflectionsP ® P¢® P maps P back to itself, this mapping is
1-1 and maps the plane onto itself. But does it map a straight line to a straight line? Well the
equation of anon-vertica straight lineis y = mx + b. The mapping f interchanges x and y,
so f mapsthe straight line y = mx + b tothe straight line y = (x - b)/ m. Algebraicaly, f
maps a non-vertical straight lineto itsinverse. Geometrically, f maps the graph of the
straight line y = mx + b to the graph of itsstraight lineinverse y = (x - b)/ m asthefigure
below shows



y=(x-b)/m

One can show also that f maps any vertical straight line to a horizontal straight line, and
conversely. Hence f maps the family of al linesin Euclidean plane geometry onto itself -
hencef is ageometric transformation of Euclidean plane geometry.

(b) More generally than in (a), given any fixed line m, let f be the mapping defined by
reflectionin the line m. In other words, f maps any point in the plane to its ‘ mirror image
with respect to the mirror linem. For instance, when mis the x-axis, then f takes the

pointP =(X,Y) in the plane to itsmirror image P¢= (X, - y) with respect to the x-axis. In
generd it is not so easy to express an arbitrary reflection in agebraic terms (see Exercise
Set 4.3), but it is easy to do so in geometric terms. Given apoint P, let m¢be the straight line
through P that is perpendicular to m. Then P¢ isthe point on m¢ on the opposite side of m
to P that is equidistant from m. Again afigure makes this much clearer

<

What isimportant to note here isthat all these geometric notions make sensein hyperbolic
geometry, so it makes good sense to define reflections in a hyperbolic line. Thiswill be



donein Chapter 5 where we will see that this hyperbolic reflection can beinterpreted in
terms of theidea of inversion as hinted at in the last section of Chapter 3.

(c) Let f be arotation through 90° counter-clockwise about the some fixed point in the
plane. In algebraic terms, when the fixed point isthe origin, f is given agebraically by
f:(X,¥Y)® (-y,x).Sofis1-1and maps the plane onto itself. What does f do to the
straight line y = mx + b? (see Exer cise Set 4.3)

(d) Letf be atrandation of the plane in some direction. Then fisgiven algebraicaly by
f:(x,y)® (x+a,y+b) for somerea numbersaandb. Again,itisclear that fis1-1 and
maps the plane onto itself.

Sketchpad is particularly useful for working with transformations because the basic
transformations are al built into the program. We can use Sketchpad to look at the
properties of reflections, rotations, and trandations.

4.1.2a Demonstr ation.

Open anew sketch on Sketchpad and draw aline. Thiswill be the mirror line.

Construct a polygon in the general shape of an “ [F~. Coloritsinterior.

To reflect the polygon across the mirror line, select the line and use the Transform
menu to select “Mark Mirror”. Under the Edit menu, select “Select All”. Then under
the Transform menu, select “ Reflect”.

Try dragging some of the vertices of the polygon to investigate the properties of
reflection in the mirror line. What happens when the mirror line is dragged?

Y our figure should ook like the following:



The orientation of the reflected“[F ” is said to be oppositeto that of the origina «[F

because the clockwise order of the vertices of the image isthe reverse of the clockwise order
of the vertices of the pre-image. In other words, a reflection rever ses orientation.

Measure the area of each image polygon and its pre-image. Measure corresponding side
lengths. M easure corresponding angles. Check what happens to your measurements as
the vertices of the pre-image are dragged. What happens to the measurements when the
mirror lineis dragged? Now, complete Conjecture4.1.3.

End of Demonstration 4.1.2a.

4.1.3 Conjecture. Reflections distance, angle measure and area.

4.1.4 Definition. A geometric transformation f of the Euclidean planeis said to be an
isometry when it preserves the distance between any pair of pointsin the plane. In other

words, fisan isometry of the Euclidean plane, when the equality d(f (a), f (b)) = d(a,b)
holds for every pair of points a, b in the plane.

By using triangle congruences one can prove the following.

4.1.5 Lemma. Any isometry preserves angle measure.



The earlier Sketchpad activity supports the conjecture that every reflection of the
Euclidean planeisan isometry. A proof of this can be given using congruence properties.

4.1.6 Theorem. Every reflection of the Euclidean planeis an isometry.

Proof. In the figure below P and Q are arbitrary points, while P¢ and Qdare their respective
images with respect to reflection in the mirror linem. D and E are the intersection points

between the mirror line and the segmentsPP¢andQQ¢. For convenience we have assumed
that P, Q lie on the same side of the mirror line. Use the definition of areflection to show

first that DEDQ is congruent to DEDQC, and hencethat DQ is congruent to DQ¢. Now use

thisto show that DPDQ is congruent to DPMQCQ. HencePQ is congruent to Pd.
QED

How would this proof have to be modified if P, Q lie on opposite sides of the mirror line?
Notice by combining Lemma4.1.5 with Theorem 4.1.6 we now have a proof of Conjecture
4.1.3.

Two other very familiar transformations of the Euclidean plane are rotations through a
given angle about a given fixed point, and trandation in agiven direction by afixed amount.



The most precise definition of these are terms of compositions of reflections (aswe'll seein
the next section), but direct geometric definitions can be given.

A
o

) P’
A “p

A ¢)

P
Rotation )
Translation

Formaly, arotation p,, about the point Athrough adirected angle 6 isthe

transformation that fixes A and otherwise sends a point P to the point P¢such that AP is
congruent to APdand 0 isthe directed angle measure of DPAPC. A trandation T, isthe

transformation that sends every point P the same distance direction, as determined by a
givenvector v. Again, Sketchpad makestheideaclear.

4.1.6a Demonstr ation.

Open anew sketch and draw an o[F

First we'll look at rotations. Construct apoint and label it A. Thiswill be the ‘ center’
of therotation, i.e., the fixed point. Select the point A and then use the Transform menu
to select “Mark Center A".

Under the Edit menu, select “ Select All”. Then under the Transform menu select
“Rotate”. The rotate screen will pop up with the angle of rotation 6 selected. You can
change the degrees in a positive or negative direction.

Investigate if rotation preserves distance, angle measure and area. Does rotation preserve
or reverse orientation?

Now for translations. Open anew sketch and draw an “[F~. construct aline segment
in acorner of your sketch and label the endpoints A and B. First select the endpointsin
that order and the use the Transform menu to “Mark Vector A->B”.



Using the Marquee (Arrow Tool) select the «[F'»_ Under the Transform menu sdlect
“Trandate’. The trandate screen will pop up with “By Marked Vector” selected.
Click on “OK”.

Investigate if trandation preserves distance, angle measure and area. Does rotation
preserve or reverse orientation?  Now, complete Conjecture 4.1.7.
End of Demonstration 4.1.6a.

4.1.7 Conjecture. Therotation p,, is and also

orientation. Thetrandation T, ; is and aso

orientation.

4.2 COMPOSITIONS. The usua composition of functions plays avery important rolein
the theory of transformations. Recall the general idea of composition of functions. Given
functionsf: A® Bandg: B® C, mappingaset Aintoaset BandBintoaset C

respectively, then the composition

(g- f)(@)=9g(f(a)), @l A)
mapsAinto C. Pictorialy, composition can be represented by the figure below
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Noticethat if f: A® Bandg: B® C arebijective, then the composition will also be
bijective.

4.2.1 Exercise. Show thatif f: g, ® g, and g: g, ® G, are hijective, then the composition
ge f ishijectivefrom g, onto G,. In other words, the composition of geometric
transformationsis again geometric.

The concept of geometric transformation is very general. What we do isimpose
restrictions on atransformation f: g, ® g, by imposing extra structure on g, and g, and



then requiring that f preserve this extra structure. For instance, when a distance functionis
defined on g, and g,, we can focus on geometric transformationsf: g, ® g, that preserve
the distance between points - what we called isometries in the case of Euclidean geometry.
If anotion of angle measure is defined on g, and g,, then we could focus on geometric
transformations that preserve the angle between lines; such transformations are called
conformal transformations. A complex-valued functionf: W® W whichis1-1 and
invertible on aset Win the complex planeis conformal whenever fisanalytic. Thisisone
reason why analytic function theory is closely connected with geometry. (There are many
interesting ideas for semester projects hereif one knows something about complex
numbers and analytic function theory.)

4.2.2 Theorem. Let f and g be isometric transformations of the Euclidean plane. Then the
composition go f of fand g also isan isometric transformation of the Euclidean plane.

Proof. Let P and Q be arbitrary pointsin the plane. Sincef isan isometry,
dist(P,Q) =dist(f(P), f (Q)).
But g also isan isometry, so
dist(f(P), f(Q) =dist(g(f(P),9(f(Q))).
Combining these two results we see that
dist(P,Q) =dist((g- f)(P).(g° f)(Q)).

Hence the composition go f preserves lengths and so is an isometry. QED

This theorem shows why there are close connections between geometry and group
theory. For if f: ¢ ® gisageometric transformation, then f will have aninverse

f 1 6® gaand f ' will be ageometric transformation; in addition, if f isan isometry, then

f* will be an isometry. Thus the set of all geometric transformationsf: ¢ ® g isagroup
under composition, while the set of al isometriesisasubgroup of this group. Now let's
look more closely at the set of all isometries of the Euclidean plane - in more elaborate
language, we are going to study the Isometry Group of the Euclidean plane. In the previous
section we saw that any reflection is an isometry. Theorem 4.2.2 ensures that the
composition of two reflections will be an isometry, and hence the composition of three, four
or more reflections will be isometries aswell. But how can we describe the composition of
reflectionsin geometric terms? Let’ s first use Sketchpad to see what happens for the
composition of two reflections.

4.2.2a Demonstration. The Composition of Two Reflections.



Open anew sketch and draw two mirror linesl and|’. Draw an “ [F" somewherein the
plane.

Now reflect this“[F " first in the mirror linel and then in the mirror line I”, producing a
new image of «[Fn

Describe carefully the position of the fina image“F” in relation to the first “[F .
What happensif thelines| and I’ are paralel. What if they are not paralel?

Y ou should now be able to complete Conjecture 4.2.3.
End of Demonstration 4.2.2a.

4.2.3 Conjecture. The composition of reflectionsin two mirror linesisa
when the mirror lines are parallel. The composition of reflections
intwo mirror linesisa when the mirror lines intersect.

To investigate this more carefully, let’s go once more to Sketchpad.

4.2.3a Demonstration.

Open a new sketch and draw intersecting lines by first choosing three points A, B, and C
then drawing two line segments AB and AC. The reason for constructing the mirror lines
in thisway isthat dragging on B or C changes the angle between the mirror lines by
rotating one of them about the vertex A.

Now draw an “[F” on one side of amirror line and then reflect it successively in the
two mirror lines, producing a new image “[F which should appear to be arotation of
the first “IF . Measurefirst the angle between the mirror lines and then measure the

angle by line segments joining the vertex A to corresponding points on the first “ [F
and itsimage. Compare the two values. This suggeststhat Theorem 4.2.4 istrue.

End of Demonstration 4.2.3a.

4.2.4 Theorem. Successive reflection in two intersecting mirror lines produces a rotation
about the point of intersection through twice the angle between the mirror lines.
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Proof. Consider the following figure, where P isfirst reflected in the mirror line AB with
image P'. Then P' isreflected in the mirror line AC withimage P". There are two pairs of

congruent triangles. By construction PD = DP", so DPAD is congruent to DP®D by the
SAS criterion. Thus DPAD = DPCAD . By asimilar argumentD PCAE = DP®AE.
Combining these two equdities we see that DPAP@=2DDAE. QED

P

Now lets go back to Sketchpad and look at the case of paralel mirror lines.
Open a new sketch and draw two paralel lines. On one side of these lines draw an

“[F~ and then reflect this successively in the two mirror lines. Drag one of the mirror
lines so that it remains parallel to the other mirror line - you can do this by grabbing the

line and then dragging. Theimage “ [ should then appear to be atrandate of the first
one.
M easure the distance between the paralel mirror lines and then measure the distance

between corresponding points on the first “[F and the image «[F Compare the two
vaues.

4.2.5 Theorem. Successive reflection in parallel mirror lines produces atrandation in a
direction perpendicular to the mirrors through a distance equal to twice the distance between
the mirrors.

11



Proof. See Exercise Set 4.3.

Next it makes senseto look at the composition of three reflections and see if we can
describe the result in terms of rotations and trandations aswell. First we need to introduce
one more Euclidean motion of the plane.

4.2.6 Definition. A glidereflection is the composition of areflection with atrandation
parald to theline of reflection.

We should note that sketchpad does not have the glide reflection transformation built
into the program. But we could easily build our own using scripts or custom
transformations. We'll see how to use custom transformations in the next section.

A transformation in the plane has dir ect orientation if it preserves the orientation of
any triangle. If the transformation does not preserve the orientation but reversesit then it has
opposite orientation. Thusif amotion isthe product of an even number of reflections
then it will have direct orientation. If amotion isthe product of an odd number of
reflections then it will have opposite orientation. Rotations and trand ations are exampl es of
orientation while reflections and glide reflections show
orientation. This observation will help us when trying to describe the results of composing
three reflections.

There are different cases that need to be considered when looking the possible outcomes

of reflecting in three mirror lines.
4.2.6a Demonstration.
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Three Parallel Lines: What do you get when you reflect something in three paralléel
lines? Draw three paralld lines and a ssmple polygona figure. Reflect the figure
successively about the 3 lines. (Hide intermediate figures to avoid confusion)

What sort of transformation is this? What do the connected midpoints create?

Draw at least 3 segments joining corresponding points on the pre-image to the find
image. For each adjoining segment construct a midpoint and connect them together.
Ignoring the three original lines what does this line suggest? How does your answer
depend on the order of the lines? Investigate what happens when you change the order
of reflection. (Drag the lines, say from #1 to #2)

Two Parallel Linesand One Non Parallel: What is this a composition of ?

Draw two parald lines and one that crosses them both. Now draw asimple figure on
the outside of the parallel line and below the transverse line. Reflect it about the parallel
line, then again about the other parald line. What kind of motion isthis? Now reflect it
in the transversal. What isthis motion called and what is the result of the two combined?
Doesit make any difference where the figure ends if you reflect it in another sequence,
say reflecting it in the transversal first? Does it matter if the transversal is perpendicular
to the pardld lines?

No Parallel Lines: What sort of transformation does this case result in?

Draw three linesthat only intersect each other in one place. They should look like a
triangle with its sides extended. Pick a place and draw yourself asmall figure. Begin
reflecting over the lines. What is the end result?

Three Concurrent Lines: What isthe line of reflection for this case? To construct
concurrent lines make sure the lines intersect at one point. Draw such lines. Draw a
small figure between two of thelines. (It will be contained in aV shaped segment)
Begin your reflections here. What sort of transformation isthis? If you reflect a point
all the way around the six lines what do you get? Start with a point where you had
drawn your figure. Reflect it around each of the lines until you get back to the start. Is
the last point is the same place asthe first?

13



What happensif two of the mirror lines are identical? What happensif al three are
identical?
Y ou should be able to complete the following:
Product of Two Reflections If the 2 lines of the reflection are parallée
then themotionisa

Product of Two Reflections If the 2 lines of the reflection are not parallel
then themotionisa

Product of Three Reflections If dl 3 of the lines of the reflection are
parald then the motionisa

Product of Three Reflections If 2 of the lines of the reflection are parallel th
themotionisa

Product of Three Reflections If the 3 lines of the reflection are concurrent
then themotionisa

Product of Three Reflections If the 3 lines of reflection intersect each
other only once then the motionisa

End of Demonstration 4.2.6a.
With these notes in mind we can realize two of the most important theoremsin the
theory of isometric transformations of the Euclidean plane.

4.2.7 Theorem. Any isometry of the Euclidean plane can be written as a composition of no
more than 3 reflections.

As a consequence of our exploration on composition of reflections we get the
following aswell.

4.2.8 Theorem. Any isometry of the Euclidean plane can be written as one of the following
transformations: reflection, rotation, trandation or glide reflection.
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Crucial to the proof of Theorem 4.2.7 will be the following. To show if we are given an
isometry and three points A, B, and C with image points D, E, and F we can take the
composition of (at most) three reflectionsand also map A, B,and Cto D, E, and F
respectively. If the orientation of the pointsis preserved it will take two reflections, and
otherwiseit will take three reflections.

Open anew sketch and draw two congruent triangles, DABC and DDEF . We will find
atransformation which maps DABC to DDEF .

Draw aline segment between A and D and find the midpoint. Consgtruct the linel
perpendicular to the line segment and through the midpoint. Reflect DABC inl and A
will be mapped onto D. So there is one point in the correct position and one reflection.

If B and C also land on E and F then you would be done. If thisis not this case, then
we areto map B¢to E by reflecting through the perpendicular bisector of BEE where

B¢ istheimage of B under thefirst reflection. This maps B¢ to E and keeps D fixed.
Why does D stay fixed?

15



Thisleavesyou with only C" (from the original C) to be mapped. If it falls on F after
the second reflection then you would be done, but if it does not, map C" to map to F by

reflecting about theline DE . Why is DE  the perpendicular bisector of FC@ ?

Now you are done and it has taken 3 reflections to get from the pre-image to the final
image.

Before proving Theorem 4.2.7 we need to establish another property of isometries.

4.2.9 Lemma. Anisometry maps any three non-collinear pointsinto non-collinear points.

Proof. Let A, B, and C be non-collinear points. Then by the triangle inequality the non-
collinearity means that

dist(A B) +dist(B,C) > dist(A,C).

16



Now let AGB¢and C¢betheimagesof A, B, and C. Since the isometry preserves distances,
dist(A¢BQ + dist(BECd > dist( AGCH.

But thisensuresthat A¢ B¢and C¢ cannot be callinear, proving thelemma.  QED

Proof of Theorem 4.2.7. Given an isometry F, choose a set of non-collinear points A, B,
and C. Let A¢=F(A),B¢=F(B), and C¢=F(C) betheir images. Supposethat F has
preserved orientation of DABC. Then the Sketchpad activity on * Composition of reflections
shows that there exist reflections § and S, so that their composition § oS has the
properties

(§ °S)(A) = AL, (§ - S)(B) =B, (§ - S)(C) = Cu.
Wewill prove that
(§ °S)(P) =F(P).
holds for every point P. So set
(S *S)(P) = P¢, F(P) = Pg.
We have to show that P¢= Pdi. Because § o S and F are isometries,
dist(A¢PQ = dist( AG Pa), dist(B¢PQ) =dist(B¢PE, dist(CGPY = dist(Ch P .

Thus Ad, B¢, and C¢will all lie on the perpendicular bisector of the segment P@Pd if

P¢t Pd. But this can happen only if Ad, B¢, and Cdare collinear. But A, B, and C are not
collinear, so A¢, B¢, and C( are not collinear. Hence P¢= P& showingthat S-S =F.If F
does not preserve the orientation of DABC then the same proof will show that F can be
written as the composition of either one reflection or three reflections. This completes the
proof. QED
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4.3 Exercises. The problemsin this assignment are a combination of algebraic and
geometric ones.

Exercise 4.3.1. Show that the function f :(x,y)® (- y,X) mapsthe straight line
y=mx + b tothestraight line y = - (x+ b)/ m. Explain the relationship between the dopes
of these two linesin terms of the transformation in 4.1.2 (c).

Exercise 4.3.2. Show that reflection in theline y = mx isgiven by

e 2m 4 Eﬂ‘nz-l('j a®?2m g Emf-lob
fi(xy ® € -5 X, ~ X+ S <.
%y éem2+1ij ént +19 'ent +19 em2+1ﬂy;a

Hint: Let thereflection of the point P = (x,y) be P' = (X, y). You need to find two equations
and then solvefor X, y. Let Q be the midpoint of PP'; so what are its coordinates? The point
Q adso lieson themirror liney = mx; so what does this say about the coordinates of Q'?
Usethisto get the first equation for X, y. Theline PP is perpendicular to the mirror line =
mx. How can we use thisto get a second equation for X, y? Now solve the two equations
you have obtained.

Exercise 4.3.3. Prove synthetically that every rotation p,, isanisometry.

Exercise 4.3.4. Provethat successive reflectionsin parallel mirror lines produce a
trandation in adirection perpendicular to the mirrors through a distance equal to twice the
distance between the mirrors.

Exer cise 4.3.5. Suppose you wish to join the two towns A(1,5) and B(8,2) viaapipeline. A
pumping station isto be placed along a straight river bank (the x-axis). Determine the
location of a pumping station, P(x,0), that minimizes the amount of pipe used? Solvethis
by transformations.
by calculus.
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A(1,5)

B(8,2)

P(x,0)

Exercise 4.3.6 Buried Treasure. Among his great-grandfather’ s papers, José found a
parchment describing the location of a hidden treasure. The treasure was buried by a band
of pirates on a deserted idand which contained an oak tree, apine tree, and agalows where
the pirates hanged traitors. The map looked like the accompanying figure and gave the
following directions.

“Count the steps from the gallows to the oak tree. At the oak, turn 90° to the right. Take
the same number of steps and then put a spike in the ground. Next, return to the gallows
and walk to the pine tree, counting the number of steps. At the pinetree, turn 90° to the | eft,
take the same number of steps, and then put another spike in the ground. The treasureis
buried halfway between the spikes.”

José found the idland and the trees but could not find the gallows or the spikes, which
had long since rotted. José dug al over theidland, but because the idand was large, he gave
up. Devise aplan to help José find the treasure.

19



apike 1

Cak

Treasne

izallowra

apike 2

44 TILINGSREVISITED. Toillustrate further the idea of reflections, rotations,
trandations, and glide reflections we want to begin the geometric analysis of ‘wallpaper’
designs. A wallpaper design isatiling of the plane that admits trandational symmetry in
two directions. That isthe design can be “moved” in two different directions and coincide
with itself. The checkerboard below would produce awallpaper design if continued
indefinitely.
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First we notice that certain rotations are admissible. For the checkerboard we can rotate
by 90° (quarter-turn) about the center of any green or white square and repeat the same
figure. Also we can rotate by 180° (half-turn) about the vertex of any square and repeat the
samefigure. There are wallpaper designs that admit 60° (sixth-turn) rotations and
120° (third-turn) rotations. What is more remarkable is that these are the only rotations
allowed in any wallpaper design! A simple argument shows why. (See Crowe) To get you
started on the fifth-turn case, try the following. Choose one center of rotation P and then
choose another center of rotation that is closest to Q. Next argue why this cannot happen.
The n-th turn caseis even easier.
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This restriction on rotations provides a convenient way to analyze wallpaper patterns.
In fact, it can be shown that there are only 17 different types of wallpaper designs!

Four which have no rotations at all;
Five whose smallest rotation is 180°;
Three whose smallest rotation is 120°;
Three whose smallest rotation is 90°;
Two whose smallest rotation is 60°;

Thereisasmple flowchart one can use to classify any wallpaper design. The symbols

for the patterns have special meaning: m means mirror, g means glide, and anumber like 2
or 4 means half-turn or quarter-turn.
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Let’s go back to our checkerboard design - we shall think of it as extending over the whole
plane to form atiling by congruent copies of asingle square. An aternating coloring has
been added for extraeffect. Thistiling will be left unchanged by various reflections and
rotations about various points.
Go back to the checkerboard figure and mark in the mirror lines with respect to which a
reflection leaves the design unchanged. Mark the mirror linesin bold. Mark in red the
centers of rotation through 90° that leave the design unchanged. Mark also in blue the
centers of rotation through 180" that |eave the design unchanged.

Y our pattern should look like the one below.

C\ a4 A

@

Thistilingisclassified as“p4m”. The smallest rotations allowed are quarter -turns and
there are reflectionsin four directions.
Successive use of the reflections and rotations fixing the design would replicate the

& L

whole tiling from just one white square and one colored tile. Can the whole tiling be
generated from any part smaller than theses two squares? Find the smallest piece from
which the whole tiling could be generated by successive reflections and rotations. This
smallest pieceis called a Fundamental Domain.
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How would the pattern of reflections and rotations differ if the tiling consisted of all
white squares? What is a Fundamental domain of the new monochromatic tiling?

Y ou can continue to examine wallpaper designsin the next set of exercises. Now we
will assemble al the results and ideas devel oped about transformations and tilings to show
how to use Sketchpad to construct figures with a prescribed symmetry. First let’s see how
to use Custom Tools to define our own transformations.

4.4.1 Demonstration. Custom transfor mations.

A custom transformation is a sequence of one or more transformations. The basic steps
are given below.

Transform an object one or more times.

Hide any intermediate objects or format them as you wish them to appear when you
apply your transformation.

Select the pre-image and image, and select and show the labels of al marked
transformation parameters.

Create anew tool. The pre-image and transformation parameters will become given
objectsin the custom tool.

In the custom tool's Script View, set each of the given transformation
parameters—mirrors, centers, and so forth—to automatically match objects with the
samelabdl..

For example, let’s define arotation p,, throughagivenangle 6 about agiven point A.

Open a new sketch and construct apoint A and any point P. Mark A as a center of
rotation. Then construct the point P¢ which isthe rotation of P about A through an
angled (chooseany6 ).

Next select P and P¢ and A. Choose “ Create New Tool from theTools menu. Typea
name that describes the transformational sequence. In the Script View window, double
click on Paoint A in the “Given” section and check the box “ Automatically Match
Sketch Object”.

Y ou can now apply your custom transformation to any figurein your sketch. Draw any
polygonal figurein your sketch and construct itsinterior. Select the polygon interior
and apply the tool.
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Repest this process to define areflection S, about a given mirror linem and atrandation T,
inagiven direction.
End of Demonstration 4.4.1.

When you define a multi-step transformation, Sketchpad remembers the formatting
you' ve applied to each step’simage—whether you' ve colored it, or hidden it, and so forth.
When you apply the transformation to new objects, Sketchpad creates intermediate images
with exactly the same formatting. If you are interested only in the final image of the
sequence of transformational steps, and not in the intermediate images, hide each
intermediate image between your two selected objects before defining the transformation. 1f
you want your transformed images to have a certain color, then be sure your image has the
appropriate color when you define the transformation.

4.4.2 Demonstration. Producing a picture with p4g symmetry.

To utilize these ideas and generate the symmetries necessary for producing a picture having

p4g symmetry:
Create atool which performs a4-fold rotation about A; cal it 4-foldrot. Construct a 2-
fold rotation about B; call it 2-foldrot. Finally construct a reflection about the side BC of
DABC .

Construct aright-angled isosceles triangle DABC  having aright angle at A; thiswill be
the fundamental domain of the figure.

Now you are free to draw any figure having p4g symmetry. Below is one example.
The origina D has been left in. The picture was constructed from one triangle inside the
fundamental domain and one circle. The most interesting designs usually occur when the
initial figure ‘pokes outside the fundamental domain. The vertices of the original triangle
can be dragged to change the appearance of the design; the original design can be dragged
too. This often resultsin aradical change in the design.



End of Demonstration 4.4.2

Earlier, as a consequence of the Euclidean pardllel postulate, we saw that the sum of the
angles of atriangle is aways 180° no matter the shape of the triangle; similarly the sum of
the angles of aquadrilateral is aways 360° no matter the shape of the quadrilateral.
Somewhat later we gave amore careful proof of thisfact by determining the sum of the
angles of any polygon - in fact we saw that the value depends only on the number sides of
the polygon. Thisvalue was then used to show that equilatera triangles, squares and
regular hexagons are the only regular polygons that tile the Euclidean plane. But nothing
was said about the possibility of non-regular polygonstiling the plane. In fact, any triangle
or quadrilatera can tilethe plane. The figure below illustrates the case of a convex
quadrilateral. ABCD was the origina quadrilateral and E, F, G, H are the respective
midpoints. One can obtain the figure below by rotating by 180" about the midpoint of each
side of the quadrilateral. (Y ou can tile the plane with any triangle by the same method —try
it
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To do thisfor yourself, you can use custom transformations. Define atransformation
for each midpoint. I’ ve drawn a different figure in each of the corners of the chosen
quadrilateral to help me distinguish among the corners. Use your four rotations to produce
atiling of the plane by congruent copies of the original quadrilatera with one copy of each
of the four corners occurring at every vertex. Join neighboring images of the midpoints by
line segments. What resulting repeating diagram emerges? Y ou should see an overlay of
parallelograms. Can you find a parallelogram and points so that successive rotations of the
parallelogram through 180" about the points would produce the same tiling?

45 DILATIONS. Inthissection we would like ook at another type of mapping, dilation,
that isfrequently used in geometry. Dilation will not be an isometry but it will have another
useful property, namely that it preserves angle measure.

4.5.1 Definition. A geometric transformation of the Euclidean Planeis said to be
conformal when it preserves angle measure. That is, if A', B', and C' arethe images of A,
B, and C then mBA®GIC¢= mDABC.

4.5.2 Definition. A dilation with center O and dilation constant k * 0 is atransformation
that leaves O fixed and maps any other point P to the point P¢ on the ray OP such that
OP¢= k>OP.
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4.5.2a Demonstration. Dilation with Sketchpad.

Sketchpad has the dilation transformation built into the program.
Open a new sketch and construct a point O and DABC.
Sdlect O and then “Mark Center O.” under the Transform menu.
Select DABC and then select “dilate” from the Transform menu.

Enter the desired scale factor (dilation constant). (In the figure above the dilation
constant isequal to 2. Notice that in the dialogue box, the scale factor isgiven asa

, : . 2 1
fraction. In thiscase, wewould either enter 1 or 0—5.)

What istheimage of a segment under dilation? Isthe dilation transformation is
conformal?

Next construct a circle and dilate about the center O by the same constant. What isthe
image of acircle?

End of Demonstration 4.5.2a.

4.5.3 Theorem. Theimage of PQ under dilation isaparallel segment, P&Q¢ such that
PRC=[k [PQ
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Proof. From SAS similarity it follows that DPOQ ~ DP®Q¢ and thus P&Q¢=| k | PQ. The
proof needs to be modified when O,P, and Q are collinear.

4.5.4 Theorem. The dilation transformation is conformal.
Proof. See Exercise Set 4.6.

One can easily see that the following theorem is also true. The ideafor the proof isto
show that al points are afixed distance from the center.

4.5.5 Theorem. Theimage of acircle under dilation is another circle.

Proof. Let O be the center of dilation, Q be the center of the circle, and P be a point on the

POQE_0Qe
PQ OQ

circle. Q" will bethe center of theimage circle. By Theorem 4.5.3,

PIQ¢=

PQC;SQQ:' Now each segment in the right-hand expression has a fixed length so

P'Q’ isaconstant. Thusfor any position of P, P’ lieson acircle with center Q'.

Using dilations we can provide an aternate proof for the fact that the centroid of a
triangle trisects the segment joining the circumcenter and the orthocenter (The Euler Line).
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Given DABC with centroid G, orthocenter H, and circumcenter O. Let Ad, B¢, and C( be
the midpoints of the sides. First note that O is the orthocenter of DA(BIC (¢ and that G
divideseach medianinto a2:3ratio. Thusif we dilate DABC about G with adilation

constant of - % , DABC will get mapped to DAMBIC ¢ and H will get mapped to O (their
orthocenters must correspond). Hence O, G, and H must be collinear by the definition of

adilation and OG = % HG. QED.

4.6 Exercises.
Exercise 4.6.1. Recall thetwo regular tilings of order 2 produced with squares and
triangles. Classify each asawallpaper design.
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Exercise 4.6.2. Classify the following wallpaper design. Isthere any relation to the

3

checkerboard tiling?

Exercise 4.6.3. What type of wallpaper design is Escher’ sversion of ‘Devilsand Angels
for Euclidean geometry?
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Exercise 4.6.4. On sketchpad use custom transformations to create awallpaper design
other than a p4g.

Exercise 4.6.5. Let ABCD beaquadrilateral. Inthefigure below E,F,G, and H arethe
midpoints of the sides. Provethat EFGH isaparalelogram. Hint: Similar triangles.
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Exercise 4.6.6. Escher’slizard graphic is shown below. Mark all the pointsin the picture
about which there are rotations by 180°. What do you notice about these points? Exhibit a
parallelogram and three points about which successive rotations through 180° would
produce Escher’ s design. What is the wallpaper classification for the lizard design?

Exercise 4.6.7. Now pretend that you are Escher. Start with a parallelogram PQRS. Draw
some geometric design inside this parallelogram - a combination of circles and polygons,
say. Choose three points and define rotations through 180" about these points so that
successive rotations about these three point tiles the plane with congruent copies of your
design. Try making a second design allowing some of the circles and polygons to fall
outside the initial parallelogram - this usually produces a more interesting picture. Here's
one based on two circlesand an arc of acircle
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Exercise 4.6.8. Prove Theorem 4.5.4. Thedilation transformation is conformal.

4.7 USING TRANSFORMATIONSIN PROOFS

Transformations can aso be useful in proving certain theorems, sometimes providing a
more illuminating proof than those accomplished by synthetic or anaytic methods. We
“discovered” Y aglom’s Theorem in the second assignment and re-visited it while looking
a tilings. Thereisan easy proof that uses transformations.

4.7.1 Theorem. Let ABCD be any parallelogram and suppose we construct squares
externally on each side of the parallelogram. Then centers of these squares also form a
square.



Proof. Consider the rotation about P by 90°. (Try it on sketchpad.) The square centered at

P will rotate onto its original position and AB must rotateto A’ A, so the square centered at
Q will rotate to onto the square centered at S. Thus their centers will coincide. Thistells us

that the segment PQ rotates 90° onto the segment PS, and therefore PQ=PSand

MDD QPS=90. Do the same for the other centers Q, R, and S. Thus PQRSis a square.
QED

Earlier in this chapter we looked at the Buried Treasure problem (Exer cise 4.3.6). After
working with the Treasure sketch one notices that the location of the treasureis likely to be
independent of the position of the gallows. If we use this observation as an assumption, then
perhaps we can gain an understanding as to where the treasure is buried with respect to the
trees.

The map’ singtructions are very symmetrical. Since the only reference points are the two
trees, a symmetry argument will be used with objects reflected across the perpendicular
bisector of the segment joining the trees. Choose a position for the gallows (G) near the
Oak tree, and itsreflection (G’) near the Pine tree (Figure 1).

Figure 1
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Line of Symmetry

The treasure must lie upon the line of symmetry; or elseit isin two different places.
Therefore, the treasure lies upon the perpendicular bisector of the Pine Oak segment.

To calculate where upon the perpendicular bisector the treasure lies, we next choose G
to be apoint on the line of symmetry, specifically the midpoint between the Pine (P) and the

Oak (O) trees (Figure 2). We will need to find GT. Since G is the midpoint of OP, we see
that GO = GP; in addition, by following the treasure map directions, we seethat GP = PS
and GO = OR.
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Figure 2

Oak (O) Spikel (R)
G + Treasure (T)
Pine (P) Spike2 (S)

OR = PS by transitivity. OR || PS since they are both perpendicular to the same line,
therefore ORSP is a parallelogram, specifically arectangle. OP = RS and since G isthe

midpoint of OP and T isthe midpoint of RS it followsthat GP = TS. Therefore GTSP isa
parallelogram, more specifically a square. So one solution to help José is the following: he
needs to find and mark the midpoint between the Pine and the Oak. Then starting at the pine
tree he should walk toward the marker while counting his steps, then make a 90° turn to the
right and pace off the same number of paces. The treasure is at this point.

We can provide a proof of our result by coordinate geometry or by transformations.

1. Solution by coordinate geometry:

José should be happy now with his treasure, but in the preceding argument we made afairly
big assumption, so our conclusion is only as strong as our assumptions. Using coordinate
geometry we can develop a proof of the treasure’ s location without making such
assumptions.

Pick convenient coordinate axes. The pine and oak trees are the only clear references.

L et the pine tree be the origin and the oak tree some point on the y-axis (0, a). The

galows arein an unknown position, say (X, Y).

Calculate the position of Spike 2 (S). Rotating the gallows position -90° about the pine

tree gives the coordinate of Sas(y, X).
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Cdculate the position of Spikel (R). Rotating the gallows position 90° about the oak
tree will take alittle more effort. If the oak tree were the origin then the rotation of 90°
would be simple. So lets reduce our task to amore simple task. Trand ate the entire
picture, T ,, - Thiswill place the oak tree on the origin. Rotate the translated gallows
(X, y - @) 90° about the originto (-y + a, x). Now trandatethe picture T , , and the
pictureis back where it began. The position of Risnow (-y + a,x + a).

Our last task isto calculate where the treasure is located.

Use the midpoint formulato Figure 3

calculate the position of the Spike 1

treasure hafway between

the spikes. ({cﬁ)
Spikel: R(-y+ a,x + a)

Spike 2: S(y, X)
Treasure: T (a/2, a/2)

Coordinate geometry proves J&H;w
that the position of the Ple
treasure isinvariant with

respect to the gallows. Spike 2

Treazure

2. Explanation by | sometries:

So far the explanations have given a solution, but they haven't given us much insight as
to why the location of the treasure isindependent of the position of the gallows. Sketchpad
can assist in the explanation using transformations.

4.7.2 Demonstration. The Buried Treasure Problem using Sketchpad.

The exact position of the gallowsis unknown, therefore we indicate the position of the
Gallows by the letter G and make no more assumptions about its position. Construct the
segment joining the Oak tree (O) and Pine tree (P). Construct lines| and k perpendicular to

OP passing through O and P respectively. Lines| and k are parallel to each other. Construct

GA asthealtitude of the DPOG. By the instructions given in the map, construct the
positions of the spikes (Rand S), and the treasure (T). Hide all unnecessary lines and
points. (Figure 4)
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Figure 4

Spikel (R)
Oz (O)

Treasure (T)

Spike2 (S)

In the coordinate proof the spike positions were found by rotating the position of the
gallows about the trees. We will use this technique again in this proof. Rotate D OAG 90°

about O, forming D OBR. Rotate D PAG -90° about P, forming DPCS It is simple to show
Bliesonl and C lieson k. Since isometries preserve distance the following congruencies

hold: GA @RB; GA @BC, and by transitivity RB @5C . Since RB||SC,
DBRT @D CST. By SAS DRBT @D SCT. From thiswe can conclude B, T, C are

collinear, T is the midpoint of BC and
therefore equidistant from | and k. (See
Figureb).

Figure5 >

With T established as the midpoint of

BC, wewill change our focusto the
trapezoid OBCP (See Figure 6). Naming

M the midpoint of OP, yields the median
MT . Thelength of the median is the average of the two bases, thusMT = 3 (OB + PC). But

by the original rotation we know that OB + PC = OA + AP = OP; thusMT = 3OP. From
this we can conclude that DPMT is an isosceles right triangle.

j
Spike2 (S)

Figure 6
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End of Demonstration 4.7.2.
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4.8 STEREOGRAPHIC PROJECTION. In al the previous discussions the geometric
transformation has mapped one model of a geometry onto the same model. But in map-
making, for instance, the problem isto map the sphere model to a different model, in fact to
amodel realized as some geometry redlized in the plane. One very important example of this
is the transformation known as Stereographic Projection. We shall seethis playsalso a
crucia rolein describing the geometric transformation taking the line model of hyperbolic
geometry in terms of lines and planesinside a cone in 3-space to the Poincaré model D.

To construct the stereographic projection of the sphere onto the plane, first draw the
equatoria plane - thiswill serve as the plane onto which the sphere is mapped. Now take
any point P on the sphere other than the South Pole and draw the ray starting at the South
Pole and passing through P. Label by P¢ the point of intersection of thisray with the
equatorial plane. For clarity in the figure below the ray has been drawn as the line segment
joining the South Pole and P.

Equator

Equatorial plane

Q
South Pole

Stereographic projection isthe mapping P ® Pdfrom the sphere to the equatoria plane. It
has a number of important properties:

1. When P lies on the equator, then P = Pdso the image of the equator isitself. More
precisaly, the equator iseft fixed by the transformation P ® Pd. For convenience, let's
agreeto cal thiscircle the equatorial circle.

2. When P liesin the Northern hemisphere then P¢ liesinside the equatoria circle, whileif
P liesin the Southern hemisphere, P¢ lies outside the equatorial circle.
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. Since the ray passing through the South Pole and P approaches the tangent line to the
sphere at the South Pole, and so becomes parallel to the equatoria plane, as P
approaches the South Pole, the image of the South Pole under stereographic projection
isidentified with infinity in the equatorial plane.

. Thereisa1-1 correspondence between the equatoria plane and the set of all points on
the sphere excluding the South Pole.

. Theimage of any line of longitude, i.e., any great circle passing through the North and
South Poles, isastraight line passing through the center of the equatorial circle.
Conversely, the pre-image of any straight line through the center of the equatorial circle
isaline of longitude on the sphere.

. Theimage of any line of latitude on the sphereisacirclein the equatoria plane
concentric to the equatoria circle.

. Theimage of any great circle on the sphereisacircle in the equatorial plane. Now every
great circle intersects the equator at diametrically opposite points on the equator. On the
other hand, the points on the equator are fixed by stereographic projection, so we see
that the image of any great circle on the sphereisacircle in the equatorial plane passing
through diametrically opposite points on the equatoria circle

. Stereographic projection is conformal in the sensethat it preserves angle measure. In
other words, if the angle between the tangents at the point of intersection of two great
circlesis 6 , then the angle between the tangents at the points of intersection of the
images of these great circlesisagan o .

Many books devel op the properties of stereographic projection listed above by

using the idea of inversion in 3-space. These same properties can, however, be established
algebraically. Thisiswhat we'll do at this juncture because it brings in results learned

earlier in calculus courses. Let S be the sphere in 3-space centered at the origin having

radius 1. The pointson S can described by

EMT), EX+mP+C=1,

sointhefigureabove, let P =P(E,n,C) and let P¢= P&x,y) beitsimagein the equatorial
plane under stereographic transformation where the center of the equatoria circleistaken as
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the origin. In particular, the equation of the equatorial circleis x° + y* =1. To determine the

relation between (§,m,C) and (X,y) we use smilar trianglesto show that

: __§ _.M
(A) P P(E;T],C)® P¢X!y)! X_].TZ;, y—_-

Thisis the algebraic formulation of stereographic projection. Since £ +n” + ¢* = 1, the
coordinates of Px,y) satisfy therelation

2., 1-T% _1-¢
(B) X +f‘(1+@)2‘1+z'

Asillustration, consider the casefirst of the North Pole P =(0,0,1) . Under stereographic
projection P mapsP =(0,0,1) mapsto P¢=(0,0) intheequatoria plane, i.e, totheorigin
in the equatorial plane. By contrast, the South Poleisthe point P =(0,0,- 1) anditisthe
only point of the spherewith T =- 1. Thusthe South Pole isthe only point on S for which
the denominator 1 +C = 0. Thus the south Pole maps to infinity in the equatoria plane, and
itistheonly point on S which does so. That P(§,m,C) ® P¢X,y) isal-1 mapping from
S\ (0,0, - 1) onto the equatorial plane can aso be shown solving the equations

givenapoint (§,m,2) in S\ (0,0, -1) or apoint (X,y) inthe equatoria plane.

Now let’ sturn to the important question of what P doesto circleson S . Every
such circleistheintersection with S of aplane; for instance, agreat circleisthe intersection
of S and aplane through the origin. In calculus you learned that aplaneis given by the
equation

© AE+Bn+CC =D
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where the vector (A, B,C) isthe normal to the plane and is the distance of

D
the plane from the origin. The simplest caseisthat of aline of longitude. Algebraicaly, this
istheintersection of S with avertical plane through the origin, so the normal liesin the
(§,m)-plane meaning that C = D = 0 in the equation above. Thus aline of longitude isthe

set of points (§,m,C) such that
AE+Bn =0, E®+n°+C°=1.

Theimage of any such point under P isthe set of points (X,y) inthe equatorial plane such
that Ax + By = 0, which isthe general equation of a straight line passing through the origin.
Conversdly, given any straight linel in the equatoria plane, it will begivenby Ax+ By =0
for some choice of constants A, B. So | will be the image of the great circle defined by the
plane AE + Bny =0. This showsthat thereisa 1-1 correspondence between lines of
longitude and straight lines through the center of the equatorial circle, proving property 5
above.

Theimage of aline of latitudeis easily determined also since aline of latitude isthe
intersection of S with ahorizontal plane, i.e., aplanet =D with - 1< D < 1. But then, by
the general relation (B) theimage of the line of latitude determined by the planeT =D
consists of al points (x,y) inthe equatoria plane such that

Thisisthe equation of acircle centered at the origin and radius /(1- D)/ (1+D); asD

variesover therange - 1< D < 1, thisdescribes the family of al circles centered at the
origin. So P definesa 1-1 mapping of the lines of latitude onto the family of &l circles
concentric with the equatorial circle.

The proof of property 7 isalittle more tricky. Consider first the case of a plane
passing through the points (0,£1,0) on S; we could think of these as being the East and
West ‘Poles'. Also, the plane need not be vertical because otherwise itsintersection with S



would be aline of longitude dealt with earlier in property 6. Thus we are led to considering
agreat circle determined by the plane

C =gtano,

whered isfixed, - % <0 < EZ ;infact, © isthe angle between the plane and the (€,m)-plane.

By relations (A) and (B), the points (X, y) in theimage of the intersection with S of the
planeC =& tano will satisfy the equations

\ = 15 ’ X2+y2:1-2;:1-§tan6 .
1+ Etanb 1+C 1+E&tanb

After eliminating § from these equations we see that the image point (X, y) satisfiesthe
equation

x°+y* =1- 2xtan0.

In other words, the image of the greet circle determined by the planeC =& tan6 isthecircle

(x +tanB)’ +y° = 1+ (tand)’ = (sech)’

whichisthecircle centered at (- tan6,0) having radius 1/ cost . Asproblem 7in
Assignment 6 shows, thisisacircle passing though diametrically opposite points of the

circle x* + y* =1; infact, it passes through the points y = +1 which are the image of the
points of intersection of the great circles determined by the plane T =& tan6 and the
equator in S.

But how do we deal with amore general great circle that is not aline of longitude
and does not pass through the East and West Poles? The fundamental ideawe' Il useis that

arotation of the sphere about the T -axis through an angle ¢ will fix the T -coordinate of a
point P(§,m,C) on S whilerotating the &,n -coordinates, but it will also rotate the x, y-
coordinates of theimageP&x, y) by the same angle ¢ . So the effect of rotating agreat circle
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isto rotate itsimage under stereographic projection. Since arotation isan isometry, it maps
acircleto acircle. Hence theimage of any great circleisacircle. Let’sdo the details.

4.8.1 Theorem. Under therotation p, , about the origin the point (§,m) is mapped to the
point (E¢n@ = p,,,Em) where
EC=Ecosh - nsing, meE=Esing +mcosp .
More generaly, the point (€,m,C) is mapped to the point (§¢n¢C) .
Under p,, theplaneT =& tand ismapped to the plane T = (& cosp +msing)tano .

The angle between this plane and the (§,m)-planeisagain 6 and the intersection of the
planewith S isagreat circle passing through the equator at the points

(- sing,cos¢,0), (sing,- cosd,0).

Now by (A), the point (§¢n¢C) ismapped to (x¢yd where

Xx¢=xcosp - ysing, y¢=xsing +ycosp.

Consequently, stereographic projection commutes with the rotation p,, in the sense that

(D) Popy,=pPoy°P-

Since the isometry p,, , will map circlesto circles, we obtain the following result,

completing the proof of property 7 listed above.
4.8.2 Theorem. Stereographic projection maps the great circle determined by the rotated

planeC =(& cosp +nsing)tan6 to thecirclein the equatoria plane obtained after rotation
by py,, Of theimage of the great circle determined by the planeT =§ tanf .

The genera result of property 8 can be established using similar transformation
ideas to those in the proof of Theorem 4.8.2.
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Chapter 5
INVERSION

The notion of inversion has occurred severa times aready, especially in connection with
Hyperbolic Geometry. Inversion isatransformation different from those of Euclidean
Geometry that also has some useful applications. Also, we can delve further into hyperbolic
geometry once we have developed some of the theory of inversion. Thiswill lead usto the
description of isometries of the Poincaré Disk and to constructions via Sketchpad of tilings of
the Poincaré disk just like the famous ‘ Devils and Angels picture of Escher.

5.1 DYNAMIC INVESTIGATION. One very ingtructive way to investigate the basic
properties of inversion isto construct inversion viaa custom tool in Sketchpad. One way of
doing this was described following Theorems 3.5.3 and 3.5.4 in Chapter 3, but in this section
we' |l describe an alternative construction based more closely on the definition of inversion.
Recall the definition of inversion given in section 5 of chapter 3.

5.1.1 Definition. Fix apoint O and acircle C centered at O of radiusr . For apoint P,

Pt O,theinverseof P istheunique point P¢ ontheray starting from O and passing through
P suchthat OP>OP¢=r?.

The point O iscalled the center of inversion and circle C iscalled the circle of inversion,
whiler iscalled theradius of inversion.

OP = 0.51 inches
OP' = 1.08 inches
r = 0.74 inches
. . 2
OP*OP' = 0.55 inches

r2 =0.55 inches2




To create atool that constructs the inverse of apoint P given the circle of inversion and its
center, we can proceed as follows using the dilation transformation.

Open anew sketch and draw acircle by center and point. Label the center by O and label
the point onthe circle by R. Construct a point P not on the circle. Construct the ray from
the center of the circle, passing through P. Construct the point of intersection between the
circleand theray, labdl it D.

Mark the center of the circle - thiswill be the center of dilation. Then select the center of the
circle, the point P, and then the point of intersection of the ray and the circle.Go to “Mark
Ratio” under the Transform menu. This defines the ratio of the dilation.

Now select the point of intersection of the ray and the circle, and dilate by the marked ratio.
The dilated point isthe inverse point to P. Label the dilated point Pq.

Sdect O, R, P,and P'.

Under the Custom Tools Menu, choose “ Create New Tool” and check “ Show Script
View” . You may wish to use Auto-Matching for O and R as we are about to use our
inversion script to explore many examples. Under the Givens List for your script, double
click on O and R and check the box “ Automatically Match Sketch Object”. To make use
of the Auto-Matching you need to start with acircle that has center labeled by O and a point
onthecirclelabeled by R.

Save your script.

Use your tool to investigate the following.

5.1.2 Exercise. Whereistheinverse of P if
P isoutside the circle of inversion?
Pisingddethecircle of inversion?
Pisonthecircle of inversion?
P isthe center of the circle of inversion?
Using our tool we can investigate how inversion transforms various figures in the plane by

using the construct “Locus’ property in the Construct menu. Or by using the “trace”
feature. For instance, let’sinvestigate what inversion doesto a straight line.

Congtruct acircle of inversion. Draw a straight line and construct afree point on theline.
Labd thisfree point by P.
Use your tool to construct the inverse point P¢ to P.



Select the points Pdand P. Then select “Locus’ in the Construct menu. (Alternatively, one
could trace the point Pdwhile dragging the point P.)

5.1.3 Exercise. What istheimage of astraight line under inversion? By considering the
various possibilities for the line describe the locus of the inversion points. Be as detailed asyou
can.

A ling, which

A line, which . . . .
istangent to the circle of inversion

passes through the circle of inversion

Image:
Image: X
P
J
A line, which passes A line, which doesn’t
through the center of the circle of inversion intersect the circle of inversion
Image: Image:




5.1.4 Exercise. What isthe image of acircle under inversion? By considering the various
possibilities for the line describe the locus of the inversion points. Be as detailed as you can.

P P.
A circle, which A circle, which intersectsthe
Istangent to the circle of inversion circle of inversion in two points.
Image: Image:
Q
. (@]

A circle, which passes through

the center of the circle of inversion A circle passing through the center of the

circle of inversion, aso internally tangent

Image:

Image:




A circlewhich is orthogonal to the circle of
inversion.
Image:

Y ou should have noticed that some circles are transformed into another circle under the
inversion transformation. Did you notice what happens to the center of the circle under
inversion in these cases? Try it now.

End of Exercise5.1.4.

Y ou can easily construct the inverse image of polygona figures by doing the following.
Construct your figure and itsinterior. Next hide the boundary lines and points of your figure so
that only theinterior isvisible. Next select the interior and choose “Point on Object” from the
Construct Menu. Now construct the inverse of that point and then apply the locus
construction. Hereisan example.



5.1.5 Exercise. What is the image of other figures under inversion? By considering the various
possibilities for the line describe the locus of the inversion points. Be as detailed as you can.

A triangle, externa to the

circle of inversion
A triangle, with one vertex asthe

center of the circle of inversion
Image: Image:

A triangle internd to the
circle of inversion

Image:




5.2PROPERTIES OF INVERSION. Circular inversion is not atransformation of the
Euclidean plane since the center of inversion does not get mapped to a point in the plane.
However if we include the point at infinity, we would have a transformation of the Euclidean
Plane and this point at infinity. Also worth noting isthat if we apply inversion twice we obtain
the identity transformation. With these observations in mind we are now ready to work through
some of the basic properties of inversion. Let C be the circle of inversion with center O and
radiusr. Also, when we say “lin€”, we mean the line including the point at infinity. The first
theoremis easily verified by observation.

5.2.1 Theorem. Points inside C map to points outside of C, points outside map to pointsinside,
and each point on C mapsto itself. The center O of inversion mapsto {¥}

5.2.2 Theorem. Theinverse of aline through O isthelineitself.
Again, this should be immediate from the definition of inversion, however note that the line
is not pointwise invariant with the exception of the points on the circle of inversion. Perhaps

more surprising is the next theorem.

5.2.3 Theorem. The inverseimage of aline not passing through O isacircle passing through
0.

Proof. Let P bethefoot of the perpendicular from O to theline. Let Q be any other point on
theline. Then P¢ and Q¢ are the respective inverse points. By the definition of inverse points,
OP>OP¢=0Qx0Q¢. We can usethisto show that DOPQ issmilar to DOQIP4. Thusthe
image of any Q on thelineisthe vertex of aright angle inscribed in a circle with diameter OPC.



The proof of the converse to the previous theorem just involves reversing the steps. The
converse states, the inverse image of acircle passing through O isaline not passing through O.
Notice that inversion is different from the previous transformations that we have studied in that
lines do not necessarily get mapped to lines. We have seen that there is a connection between
linesand circles.

5.2.4 Theorem. The inverseimage of acircle not passing through O isacircle not passing
through O.

Proof. Construct any line through the center of inversion which intersects the circle in two
pointsP and Q. Let P¢ and Qtbetheinverse pointsto P and Q. We know that
OP>OP¢=0Qx0Q¢=r>. Also by Theorem 2.9.2 (Power of aPoint), OP>0Q = OA”> = k.
OP>OP¢_ OQx0Q¢ _ r or OP¢_ OQe_ r?
OP>x0Q OPx0Q k 0Q OP k
dilation.

Thus . In other words, everything reducesto a

5.2.5 Theorem. Inversion preserves the angle measure between any two curvesin the plane.
That is, inversion is conformal.

Proof. It sufficesto look at the case of an angle between aline through the center of inversion
and acurve. Inthefigurebelow, P and Q aretwo points on the given curve and P¢ andQare

the corresponding points on the inverse curve. We need to show that mBDOPB = mBDEP® .
The sketchpad activity below will lead usto the desired resuilt.



> A

m/OPB = 69.67°
m/EP'D = 69.67°

Open anew sketch and congtruct the circle of inversion with center O and radiusr.
Construct an arc by 3 pointsinside the circle and label two of the pointsas P and Q. Next
congtruct the inverse of the arc by using the locus construction and label the points P¢ and
Q4. Finally construct the line OP (it will beits own inverse).

Next construct tangents to each curve through P and P¢ respectively.

Noticethat P, Q, P¢, and Q¢ al lieon acircle. Why? Thus BDQPP¢ and BP®RQ®) are
supplementary (Inscribed Angle Theorem).

Thus mBOPQ = nbP®®. Check this by measuring the angles.

Next drag Q towards the point P. What are the limiting position of the anglesDOPQ and
DPEQ®O?

What result does this suggest?

5.2.6 Theorem. Under inversion, theimage of acircle orthogonal to C isthe samecircle
(setwise, not pointwise).

Proof. SeeExercise5.3.1.

&@(P.M) dQN)o
ed(P,N) d(Q,M)2

5.2.7 Theorem. Inversion preserves the generalized cross ratio of any

four distinct points P,Q,M, and N in the plane.



Proof. SeeExercise5.3.3.

Recall our script for constructing the inverse of apoint relied on the dilation transformation. A
compass and straightedge construction is suggested by the next resullt.

5.2.8 Theorem. The inverse of apoint outside the circle of inversion lies on the line segment
joining the points of intersection of the tangents from the point to the circle of inversion.

- . OA OP _
Proof. By similar triangles OAP and OP@A, $¢: oA Use thisto conclude that P and P’

areinverse points.

5.3 Exercises. Theseexercises are al related to the properties of inversion.
Exercise5.3.1. Prove Theorem5.2.6. That isif Cisthecircleof inverson and Ctis

orthogonal toit, draw any line through O which intersects Cdin A and B and show that A and B
must be inverse to each other.
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Exercise5.3.2. Let C bethecircle of inversion with center O. Show that if P¢ and Qdare the
inverseimages of P and Q then DOPQ ~ DOQ®P.

Exercise 5.3.3. Do thefollowing to prove Theorem 5.2.7. Let P, Q, N, and M be any four

distinct pointsin the plane. Use Exercise 5.3.2 to show that PM = oP and PN = OP.
PM¢ OMC¢ PNNC ONd¢

PM _ PM¢ ON¢
PN PN¢ OM¢
PM_QN _ POM¢ QNG
PN QM P®N¢ QM ¢

Show that these imply

Complete the proof that

Exercise 5.3.4. Use Theorem 5.2.8 and Sketchpad to give compass and straightedge
congtructions for the inverse point of P when P isinside the circle of inversion and when P is
outside the circle of inversion.

Exercise 5.3.5. Let C bethecircle having the line segment AB asadiameter, and let P and P’
be inverse points with respect to C. Now let E be apoint of intersection of C with thecircle

11



having the line segment PP¢ as diameter. See the figure below. Provethat BOED =90°.
(Hint: Recall the theorems about the Power of a Point in Chapter 2.)

Exercise 5.3.6. Again, let C bethe circle having the line ssgment AB asadiameter, and let P
and P¢ be inverse points with respect to C. Now let Cdbe the circle having the line segment

PP¢ as diameter. See the figure above. Prove that A and B are inverse points with respect to CC.
(Hint: Recall the theorems about the Power of a Point in Chapter 2.)

5.4 APPLICATIONS OF INVERSION There are many interesting applications of inversion.
In particular thereis a surprising connection to the Circle of Apollonius. There are also
interesting connections to the mechanical linkages, which are devicesthat convert circular
motion to linear motion. Finaly, as suggested by the properties of inversion that we discovered
there is a connection between inversion and isometries of the Poincaré Disk. In particular,
inversion will give us away to construct “hyperbolic reflections’ in h-lines. We will usethis
in the next section to construct tilings of the Poincaré Disk.

First let’slook at the Circle of Apollonius and inversion in the context of a magnet. A
common experiment isto place a magnet under a sheet of paper and then sprinkle iron filings
on top of the paper. Theiron filings line up along circles passing through two points, the North
and South poles, near the end of the magnets. These are the Magnetic lines of force. The theory
of magnetism then studies equipotential lines. These turn out to be circles each of whichis
orthogonal to all the magnetic lines of force. Thetheory of inversion was created to deal with
the theory of magnetism. We can interpret these magnetic lines of force and equipotentia lines
within the geometry of circles.

12



Open anew sketch and construct a circle having center O and a point on the circle labeled R.
Next construct any point P inside the circle and the inverse point P¢.  Construct the
diameter AB of the circle of inversion that passes through the point P.

Finally construct the circle with diameter PP¢ and construct any point Q on thiscircle.
Construct the segments AQ and BQ. Select them using the arrow tool in that order (while
holding down the shift key) and choose “Ratio” from the M easur emenu. Y ou should be

computing theratio ﬂ
BQ
Drag the point Q. What do you notice? What doesthis tell you about the circle with

diameter PP(?

5.4.1 Conjecture. If P and P¢ areinverse points with respect to circle C and lie on the
diameter AB of C then the circle with diameter PP¢ is

Towards the proof of the conjecture we'll need the following.

5.4.2 Theorem. Given P and P¢ which are inverse points with respect to acircle C and lieon

the diameter AB of C, then AP = ﬂ
BP BP¢
A 060 P B P >
OP OB
Proof. SinceP and P¢ areinverse points OP xOP¢= OB’ o OB = ot Now one can check
a+tb_c+d OP+OB _OB+OPt AP _ APC

that if & b=c/d then

so that QED
a-b c-d OP-OB OB- OPt" BP BP¢

The completion of the proof can be found in Exercise Set 5.6.
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Another interesting application of inversion underlies one possible mechanical linkage that
converts circular motion to linear motion. Such a change of motion from circular to linear
occursin many different mechanical settings from the action of rolling down the window of
your car to the pistons moving within the cylinders in the engine of the car. The Peaucellier
linkage figure below shows the components. The boldface line segments represent rigid rods
such that PR=PS=QR= QS and OP =0Q. There are hinges at the join of theserods at O,
P, Q, R and S Points P, Q, and R can move freely while Sisfreeto moveon acircleC and O
isfixed on that circle. Surprisingly, as Smoves around the circle the point R traces out a
straight line. It isaninteresting exercise to try to construct this linkage on Sketchpad. Try it!
In case you get stuck, one such construction is given below. The “proof” that R should trace
out astraight lineis part of the next assignment.
5.4.2a Demonstration. Constructing a Peaucellier Linkage.

Open anew sketch and construct acircle. Draw the ray OS5 where O and Sare points on
thecircle.

In the corner of your sketch construct two line segments| and m. (See below. Segment |

will determinethe length of OP and segment mwill determine the length of PS.) Color |
red, and color m blue.

Congtruct acircle with center O and the same length as segment | and another circle with
center Sand the same length as segment m. Color the circles appropriately. Adjust | and m

14



if necessary so that the circlesintersect outside of C. Next construct the intersection points
of the circles and label them P and Q, respectively.

Congtruct acircle with center P and radius the same as segment m. Label the intersection

point with the rayOS by R Join the points to construct the rhombus PRQS and color the
segments blue.

Construct the segments OP and OQ, then color them red.

Finally select the point R and choose “ Trace Points’ from the Display Menu and then
drag Smaking sure that O is staying fixed. (Or aternatively, select the point R and then the
point Sand then choose “Locus’ from the Construct Menu.)

Do you notice anything specia

about the line that istraced out?
Can you describeit in another ©
way?

Try various positions for O.

End of Demonstration 5.4.2a.

Finaly, let’ sreturn to the
Poincaré disk and Hyperbolic
Geometry. We only need to put a
few things together to realize that
inversion gives us away to construct
h-reflectioninan h-linel. If lisa
diameter of C, take just the Euclidean
reflection in the Euclidean line
containing |. Since thisis a Euclidean isometry, cross ratios, h-distance, and h-angle measure
are preserved. If | isthe arc of acircle C orthogonal to the Poincaré Disk, consider inversion
with C asthecircle of inversion. This provides the desired h-reflection since | mapsto itself, the
half planes of | map to each other and an inversion is h-distance preserving and h-conformal.
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Poincare/D

Putting this together our knowledge of inversion we can actually construct specific isometric
transformations of the Poincaré Disk. We'll seethat there are several useful reasons for doing
so. First, let’s check this out on Sketchpad.
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5.4.2b Demonstration. I nvestigating constructions on the Poincaré Disk.

Wewill consider two waysto reflect atriangle in a Poincaré disk. Thefirst way usesthe
definition of areflection.

P. Disk Radius

Open a Poincaré Disk.

Construct any h-line| and then an h-triangle ABC.

First construct the h-line through the vertex A perpendicular to |. Then construct the
intersection point of | and the perpendicular line, 1abel it E. Next construct an h-circle
by center E and point A. Theimage point A¢ will be the intersection of the circle and
the perpendicular line.

Repest for B, and C. Connect Ad, B¢, and C¢ with h-segments.

Next, try this again but now using the notion of inversion. First we need atool that
allows you to construct the inverse of a point, by only clicking on two points on the
hyperbolic segment and on the point to reflect.

17



Open Poincaré Disk and construct a hyperbolic segment.

Select 3 points on the arc and construct the circle through the 3 points by any method. L abel
the center of your circle O and one point onthecircle R.

Construct a point P. Now, construct the inverse of P aswe did before. Y ou could even run
your inverse point script.

Hide everything except the Poincaré Disk, the hyperbolic segment, and the points P and P’.
Create anew tool and automatically match the Poincaré Disk center and radius.

Now use the script to construct the inverse point for each of A, B, and C. What do you
notice?

End of Demonstration 5.4.2b.

5.4.3 Demonstration. Mapping a point P to the Origin. Given apoint P in the Poincaré
Disk, describe and then construct the hyperbolic isometry mapping P onto the origin.

Using Sketchpad we were able to perform an h-reflection, but the question hereisto
congtruct a specific h-reflection. What this boils down to is describing the circle C *with
respect to which inversion maps P onto the origin. To ensure that C¢isan h-linewe aso
require that Cdbe orthogonal to the bounding circle C for the Poincaré Disk.

O=P-Disk-Cent

18



We have to construct the circle C¢ so that C¢ is orthogonal to C and DP xDO = DE?.
Surprising the solution is easy. Let D bethe inverse point to P with respect to the circle C.

Then DOXPO = OE?. Consequently, DPXDO = DO(DO - PO)= DO’ - OE” = DE”. Thus,
D isthe center of the desired circle as O and P will be inverse points. To determine the radius

we need to describe E. The condition DP xDO = DE? ensures that DOED ~ DEPD . Hence the
line segment EP is perpendicular to the line segment OD. Thus to determine E we just need to
draw the perpendicular to OD and find the intersection point with C. The point D isthe
intersection of this last perpendicular with the ray from O passing through P.

End of Demonstration 5.4.3.

Suppose now that we are given any two points P and Q in the Poincaré Disk. We can, in
fact, construct a hyperbolic isometry of the Disk that maps P onto Q. All we haveto do
isfirst construct an isometry mapping P to the origin, and then construct an isometry mapping
the originto Q. We can also use this result to prove some results about Hyperbolic geometry.
We discovered that the sum of the interior angles of an h-triangleis less than 180 degrees. This
iseasily seen when the origin is one of the vertices of the triangle for then two of the sides of
the h-triangle will be Euclidean Line segments. Given an arbitrary h-triangle we can always
map one vertex to the origin using the result above and since inversion is a hyperbolic isometry
we can see theresult isal so true for any triangle.

55TILINGSOF THE HYPERBOLIC PLANE. Let's pull together many of the ideas
developed in this course by investigating tilings of the hyperbolic plane —in its Poincaré disk
model — and then use this to explain the geometry underlying the most sophisticated of

Escher’ s repeating graphic designs. Earlier in Chapter 2 we saw that very few regular polygons
could be used to provide edge-to-edge tilings of the Euclidean plane. In fact, only equilateral
triangles meeting six at a vertex, squares meeting four times at a vertex, and finally regular
hexagons, meeting three times at avertex. Aswe have extended to the hyperbolic plane the
notion of distance between points and the angle between lines, we can now formulate the notion
of aregular h-polygon in exactly the same was as before. A regular h-polygon isafigureinthe
hyperbolic plane whose edges are h-line segments that have the same length and the same
interior angles. What should be noted isthat the interior angles of aregular h-polygon can have
arbitrary values so long as those values are less than their Euclidean values. Thusfor any n,
any regular h-polygon with n sideswill tile the Hyperbolic plane, so long as the interior angle
evenly divides 360! Thefirst question we face isthe following:
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5.5.1 Demonstration. How do we construct aregular n-gon that will tile the
hyperbolic plane?

h-angle ABC = 90.0°

We will construct our regular n-gon centered at the center of the Poincaré Disk. The edges
of the regular n-gon are arcs of circlesthat are orthogonal to the Poincaré Disk. We can find
the center of one of those circles by some basic trigonometry. The central h-angles of aregular

n-gon are all equal to 2Tc/n For our n-gon to tile the plane the interior h-angles must all be

equa to ZJkahere kisan appropriate positive integer. Any regular n-gon is comprised of n
congruent isosceles triangles. DAGC is one of thoseisoscelestriangles.  We will focus our
atention on DAFC, where AF isthe perpendicular

bisector of GC .

Assume the Poincaré Disk has center (0,0) and radius
1 and that the desired orthogonal circle has center

(h,0) and radiusr. Thekey stepisto extend AC to
AE which gives theright DABE .

p/k

p/n p/2

A=(0, F
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PoincareD

orthogonal circle

We are given that m(h - angleDFAC) = J‘/n and m(h - angleBDACF) = “/k

Using trigonometry,
SiN(DECB) = EB/r and sin(®CAB) = EB/h.
Thus,
r>sin(PECB) = h>sin(BCAB)
Now,
1+r? =h?

Sin(BECB) =n /2- w /k
sin(BCAB) ==zt /n

yidding v/h? - 1>6in(zw /2 - 7 /K) = hosin(w /).

Solving for h we get,

sin?(n/2- n/K)
\ sn(re /2 - w 1K) - sin’(e /n)
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where h isthe center of the orthogonal circle which determines the edge of aregular n-gon with

interior angles equal to <Y, .

Examples:

Regular hexagon meeting 4 at vertex (i.e. interior angles are equal to 2rt /4 ): k=4, n=6 thus
h=J2»1414

Regular quadrilateral meeting 6 at vertex (i.e. interior angles are equal to 2wt /6): k=6. n=4,
thus h=/3» 1.732

Regular pentagon meeting 4 at vertex (i.e. interior angles are equal to 2t /4): k=4, n=5
thus h=/J/5+1 » 1.798

To construct the n-gon, once we know h, we can do the following. We'll do the specific case of
aregular pentagon,

h-angle ABC = 90.0°

Open the Poincaré Disk Starter.

Draw aray through the disk center. Construct the point of intersection with the Poincare
Disk. Label it B.

Select the P. Disk Center and “Mark Center” under the Transform menu. Now dilate B
by the scale factor = h =1.798. This new point is the center of the desired circle, label it H.

Let O denote the P. Disk Center (do not change the label in your sketch since any script

that uses auto-matching will not work). Construct acircle with diameter OH . Then
congtruct one of the points of intersection with the Poincaré Disk, labd it D.
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Congtruct the circle C by
center H and point D.

Rotate C about the P-disk
Center by 72 degrees. Do
this 5 times.

Construct the 5 points of
intersection that are closest to
the P-Disk Center. These
points are the vertices of the
pentagon. Connect them
with h-segments. Hide
anything that is unwanted.

End of Demonstration 5.5.1.
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5.5.1a Demonstration. Tiling the hyperbolic plane.

Once we have an appropriate starter n-gon that will tile the hyperbolic plane by meeting k at a
vertex (i.e. theinterior angles equal 2rt/k) we can tile plane successively h-reflecting the figure.
Thingswill go alittle quicker if we also alow ourselvesrotations aswell. Choose one side of
the regular n-gon and reflect the vertices of the n-gon across this h-segment (we can accomplish
thiswith an appropriate tool since thisis equivalent to inverting the vertices with respect to the
circle). Then connect the images of these vertices by h-segments. One could continue this
process producing atiling of the plane (up to the memory limitations of SketchPad). To make
the process go faster one could also use (Euclidean) rotations about the P-Disk Center of 2xt/n
degrees.

For example, starting with our regular hexagon, we can create a hyperbolic asin the figure
below!

End of Demonstration 5.5.1a.
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Now go back to Escher’s Devils and Angels graphic in the hyperbolic plane (see below).
Escher isusing “colored” tilesto tile the hyperbolic plane. Can you determine what regular
polygon is underlying thetiling? How many are meeting at each vertex?

i p..n-i-.q-._._‘;a:: PR r
e

e

iz

5.6 Exercises. These exercisesfollow up on the connection between inversion and Apollonius
Circle and between inversion and linkages.

Exercise 5.6.1. Complete the proof of Conjecture 5.4.2. That isif P and P¢ are inverse points

with respect to circle C and lie on the diameter AB of C and Q any point on the circle with

AQ_AP

diameter PP¢ then BO . Follow the steps below to give a coordinate geometry proof.
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Let A=(-1,0), B=(1,0), and the P be the point (a,0). What are the coordinates of P¢?

What are the coordinates of the midpoint of the line ssgment PP¢?

What is the equation of thecircle C¢'?

Determinethe ratio PA/PB .

Determine the ratio QA/QB.

Complete the solution by showing AQ = AP :
BQ BP

The remaining exercises refer to the Peaucellier linkage and the figure below.
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Exercise 5.6.2. Using the fact that PRQSis arhombus, prove that its diagonals are
perpendicular and bisect each other.

Exercise 5.6.3. Provethat OSOR isaconstant by proving that OSOR = OP? - PR*. When
do S Rlieon thecircle centered at O having radius vOP? - PR? ?

Exercise 5.6.4. Deduce from Exercise 5.6.3 that the locus of Risastraight linel as Svaries
over circleC.

Exercise 5.6.5. Provethat | is perpendicular to the line passing through O and the center of the
circleC.

Exercise5.6.6. AsSvariesover thecircle C does Rvary over dl of the (infinite) linel? If not,

give a precise description of the line segment that R describes. Can Sgo around all of circle C?
If not, give aprecise description of the arc of C that Straces.
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Mathematics, Addison Wedey, 1990, Ch 9

Lauwerier, Hans, Fractals: Endlessly Repeated Geometrical Figures, QA 614.86 L3813
1991 PMA

Martin, Tami, Fracturing Our Ideas about Dimension, NCTM Student Math Notes,
insert in NCTM News Bulletin, november, 1991

Nievergdt, Yves, Fractals on Hewlett-Packard Supercalculators, New Directionsin Math
series, Wadsworth, 1991, $8

Norton, Alec, Review of Measure, Topology, and Fractal Geometry, by Gerald A. Edgar,
American Mathematical Monthly, April 1992, p. 378 [Parts of the review will be too
technical, but other parts arerelevant.]

Geodesic structures
Edmondson, Amy C. A Fuller Explanation: The Synergetic Geometry of R.
Buckminster Fuller, Birkhauser, 1987
Fuller, Buckminster, Utopia or Oblivion: the Prospects for Humanity
Kenner, Hugh, Geodesic Math and How to Use It
Laycock, Mary, Bucky for Beginners, Dale Seymour
Mottel, Syeus, Charas. The Improbable Dome Builders
Prenis, John, The Dome Builder's Handbook




Wenniger, Magnus, Spherica Models

Yarnal, William, Dome Builder's Handbook no.2

Bolt, Brian, More Mathematical Activitiesfor Teachers, Cambridge University Press,
1985, pp. 45 - 50 (rigid structures)

Kenner, Hugh. / Geodesic math and how to useit. / Berkeley 1976 TH 2170 K46
Architecture Library

Pugh, Anthony, Polyhedra, aVisua Approach, Univ.of California Press, 1976
Domebook 2, Pecific Domes, 1971

Geometric constructions by paper folding
Cundy, Henry M. and A.P. Rallett, Mathematical Models, 1961
Fukuta, Jiro, Problem E 3369, Amer Math Monthly, Feb 1990, p. 150
Johnson, Donovan, Paper folding for the Mathematics ClassNCTM, 1957
Martin, George E., Transformatio Geometry, Springer, section 5.2
Olson, Alton T., Mathematics through Paper Folding, NCTM, 1975 (?)
Pappas, Theoni, Mathematics Appreciation, Dale Seymour
Pedoe, Dan, Geometry and the Visud Arts
Row, T. Sundara, Geometric Excursionsin Paper Folding
Smart
Y ates, Robert, Carl, Geometrical Tools, QA 464 Y 3 1949

Geometrical Puzzles

Bolt, Brian, Mathematical Cavalcade

Bolt, Brian, More Mathematical Activities

Conway, J. and Guy, R., Winning Ways
Domoryad, A. P., Mathematical games and pastimes
Dunn, Angela, Mathematical Bafflers, Dover
Klarner, D., Thr Mathematical Gardener
Moscovich, Mind Benders, Games of Shape
Mott-Smith, Geoffrey, Mathematical Puzzles, Dover
Slocum, J. and Botermasn. J., Puzzles Old and New

Geometric quilt designs
Labelle, Judith and Carol Ann Waugh, Patchworking
Washburn and Crowe

Geometry in Animal Form and Function

Haldane, J. B. S. (John Burdon Sanderson), 1892-1964. / On being the right size and
other essays. / Oxford 1985 QH 311 H318 1985 Life Science Library



Stewart, lan and Martin Golubitsky, Fearful Symmetry, Penguin, 1992, chapters 7 and 8
Thompson, D'Arcy Wentworth, On Growth and Form (2 vols), Cambridge U. Press,
1972

Geometry in Ancient China
Knorr, Wilbur, textual Studiesin Ancient and Medieval Geometry, Birkhauser, 1989

Geometry in Architecture

Baglivo, Jenny, and Jack A. Graver: Incidence and Symmetry in Design and
Architecture, Cambridge Universtiy Press, Cambridge, 1983

Hay, D. R., The Orthographic Beauty of the Parthenon, 1853

Ghyka, Matila, The Geometry of Art and Life, Dover

Pedoe, Dan, Geometry and the Visud Arts

Mathematics Teacher, January, 1990

Salvadori, Mario, Why Buildings Stand Up, W.W. Norton, 1980

Geometry in Astronomy
McGraw-Hill Encyclopediaof Science and Technology
Milnor, John, On the geometry of the Kepler problem, Amer Math
Monthly 90(1983)353-364
Rosenfeld, B.A. and M.D. Sergeeva, Stereographic Projection, Mir
Saari, Donald g., A Vidt to the Newtonian N-body Problem via Complex Variables,
Amer. Math Monthly 97, Feb 1990

Geometrv in Design
Baglivo, Jenny, and Jack A. Graver: Incidence and Symmetry in Design and
Architecture, Cambridge Universtiy Press, Cambridge, 1983
Barratt, Krome, Logic and Design, the Syntax of Art, Science and Mathematics,
Eastview, Westfield, NJ, 1980
Edwards, Edward B., Pattern and Design with Dynamic Symmetry: How to Create Art
Deco Geometric Designs, Dover
Hambridge, Jay, The Elements of Dynamic Symmetry, Dover
Loeb, Arthur L., Concepts and Images. Visual Mathematics, Birkhauser, 1993, QA 36,
L64, 1993, PMA

Geometrv of Crystals and Molecular Structure
American Scientist, January- February 1993 "avariety of insights that geometric
methods give into fullerenes.”
Buerger, Martin Julian, Introduction to Crystal Geometry
Gallian, Joseph A., 1986, Contemorary Abstract Algebra, Heath, Chapter 30
Galiulin, R.V., Diamond Latticework: The fearful symmetry of crystalline structures,
Quantum, Jan/Feb 1991, pp. 6-11




Gallian, Joseph A., 1986, Contemorary Abstract Algebra, Heath, Chapter 30

Hilbert and Cohn-=V ossen, Geometry and the Imagination

Holden, Alan. / Crystals and crystal growing. / 1st ed. Garden City, NY 1960, QD 921
H58 Undergraduate Library

Holden, Alan. / The nature of solids. / New Y ork 1965 531 H711N

Klein, Herbert, Manula of Minerology

Mercer, lan F., Crystals, Harvard University Press, Cambridge, MA, 1990 (Elementary,
good pictures)

Montesinos, Jose Maria, Classical tessellations and three-manifolds 1944- / Berlin
1987, QA 166.8 M66 1987 Phys-Math-Astron Library (the mathematics may be too
advanced, but it has some good pictures)

Newman, The World of Mathematics

Smith, Deane, Bibliography on molecular and crystal structure models

Steinhardt, Paul, American Scientist, v.74, 1986, p. 586 (quasicrystals)

Senechal, Marjorie, Crystalline Symmetries: An Informal Mathematical Introduction
Senechal, Marjorie and G. Fleck, Shaping Space: A Polyhedral Approach, Birkhauser,
1988

Steinhardt, Paul, Endeavor, v. 14, 1990, p. 112 (quasicrystals)

Sterling, Bruce, Buckymania, Fantasy and Science Fiction, July, 1992, 85-90
http://www.nyu.edu/pages/mathmol/K _12.html

Geometry of Escher Prints

Coxeter, H.S. M., M. C. Escher Art and Science, North Holland, 1986

Ernst, The Magic Miirror of M.C. Escher, Random HOuse, 1984

Escher, M. C., Escher on Escher, exploring the infinite, Harry N. Abrams, 1989
Escher, M. C., Graphic Work of Escher, M. C., Hauthor Books, 1960

Escher, M. C., Universe of Mind Play

Schattschneider, Doris, Visions of Symmetry, W.H. Freeman, 1990

WORLD OF ESCHER, INC., http://www.texas.net/escher/

Art and Man, Dec 1985/Jan 1986, "How Escher Created”, pp.4-5

Britton, Jill, and Dale Seymour, Introduction to Tessellations

Gardner, Martin, Mathematical Carnival

MacGillavry, Caroline, Fantasy and Symmetry: The Periodic Drawings of
M.C. Esher

MacGillavry, Symmetry Aspects of Escher's Periodic Drawings, Scheltman and
Hokema, Bohn, 1976

M.C. Escher: Art and Science

Smart, Modern Geometry

Geometry of Galileo
Galileo, Galilei, Operations of the Geometric and Military Compass

Geometry of Golf
Beadey, John D., The Mathematics of Games, Oxford Univ Press, 1989
Boomer, Perry, On Learrning Golf, Knopf, 1846, pp. 187-196




Clemence, Willian James, A cinematographica study of the variation in momentum
when swinging varying clubhead weights

Jones, Robert Tyre, Bobby Jones on The Basic Golf Swing, Doubleday, 1969, pp.
54,57, 62-3

Thomas, Alvin, The use of avisual perceptua devicein teaching the downswing in golf
Wiren, Gary, Golf, pp.16-17,26-27, 34-35, 42-45

Wrigglesworth, Frank L., A cinematographical analysis of the short chip in golf

Geometry in Higher Dimensions
Banchoff, Thomas F., Beyond the Third Dimension, (Book 1990, video 1992)
Francis, George K, A Topological Picture Book
Gardner, Martin, Mathematical Carnival, MAA, 1984, QA 95 G286
Leonardo (International Society for the Arts, Sciences, and technology), The Fourth
Dimensionin Art, Science, and  Mathematics, 1992
Robbins, Fourfield: Computers, Art and the Fourth Dimension, book and video, both
1992. Software for Macintosh available for $10 from Media Magic, 1-800-882-8284
Rucker, Rudy, The Fourth Dimension, 1984
Steen, ed., On the Shoulders of Giants

Geometry of billiards
Gardner, Martin, Scientific American, v. 212, May 1965
Gardner, Martin, Scientific American, v. 236, April 1977
Griffel, D.H., Mathematical Gazette, June, 1989
Jepsen, Charles, Two Y ear College Mathematics Journa, November, 1979
Schultz, Harrisand Ray C. Shifless, Mathematical Gazette, June, 1988

Geometry of crystals
Anderson, Hyde, Inorganic Crystal Stuuctures
Brown and Forsyth, The Crystal Structure of Solids
Jaffe, Howard, Introduction to Crystal Chemistry
Lockwood, E.H., and R.H. MacMillan, Geometric Symmetr
WEélls, David, Hidden Connections, Double Meanings, Cambridge, 1988

Geometry of genetics
M athematics Untwists the Double Helix, Science, 23 February 1990

Geometry of Idamic art
Berggren, J.L., Episodesin the Mathematics of Medieval 1dam, QA 27 A67 B46 1988




Dury, Art of Idam

Ettinghausen and Graber, The Art and Architecture of Islam, 650-1250

Faruqui, Idam and Art

James, Idamic Art

Knorr, Wilbur, textual Studiesin Ancient and Medieval Geometry, Birkhauser, 1989
Kuhnel, Iamic Arts

El-said and Parman, Geometric Conceptsin Ilamic Art, Dale Seymour Publications,
1976

Rice, Idamic Art

Prussin, Labelle, Hatumere: ISamic Design in West Africa

Soucek, Content and Context of Visual Artsin the Islamic World

Van der Waerden, Geometry and Algebrain Ancient Civilizations, Springer, 1983
Washburn and Crowe

Geometry of knots
Bain, G. Cdtic Art, Dover, 1973
Brown, Ronnie, and John Robinson, Symbolism: Scul ptures and Tapestries by John
Robinson, Mathematics and Knots, (School of Mathematics, U. of Wales, Bangor,
Gwynedd LL57 1UT, Wales, UK), 1989, 36 pp., £6 + £1 surface, £250 air) ISBN O-
9514947-08. Also, 27 pp, ISBN 0-9514947-16
Cipra, Bary A., "To Have and Have Not: When Are Knots Alike?', Science, v.242, Sept
9, 1988
Devlin, Keith, Mathematics: the New Golden Age
Geometry Center, Ujniversity of Minnesota, Not Knot (video), 1991
Holden, Orderly Tangles, QA 491 H626 UGL |
Moran, Siegfried, The Mathematical Theory of Knots, Elsevier, 1989
Peterson, Ivars, The Mathematical Tourist
Peterson, Ivars, "Unknotting a Knotty Tale, Science News, v. 133, May 21, 1988 "Tying
up aKnotty Loose End," Science News, v.134, Oct 29, 1988 Geometry of Molecular
Structure
Gillespie, R.J., Molecular Geometry, Van Nostrand, 1972
Hout, R.F. Jr., A Pictoria Approach to Molecular Structure and Reactivity, Willey, 1984
Richards, W.G., Structure and Spectra of molecules, Wiley, 1985, pp.27-43
Quasicrystals: Rules of the Game, Science, 2 March 1990

Geometry of optics
Bowden and Schiffer, The role of Mathematics in Science, Chapter 3 (MAA?) (Not in
UTCat?)Consortium, November, 1986
Herzberger, Modern Geometrical Optics, pp. 71-148, 383-420




Leathem, The Elementary Theory of the Symmetrical Optical Instrument, pp.1-25, 39-
42, 44-57

Martin, Geometrical Optics, pp.1-43,107-130,173-196

Pitchford, Studies in Geometrical Optics, pp.1-12, 50-60, 72-86, 180-209

Southall, The principles and methods of Geometrica Optics, pp.1-32, 35, 198-262
Pedoe, Dan, Geometry and the Visud Arts

The geometry of perspective drawing
Beskin, N.M., Images of Geometric Solids, Mir
Leonardo (International Society for the Arts, Sciences, and technology), Art and
Technology, 1992
Moore, CharlesG., To View an Ellipse in Perspective, College Mathematics Journal,
1989, 134 - 136
Penna, Michael A. and Richard Patterson, Projective Geometry and its Application to
Comuter Graphics

The geometry of relativity
Penrose, Roger, The Geometry of the Universe, in Steen, Lynn A., Mathematics Today,
QA7 M3447 PMA

Geometry of textiles
New Y ork Times Educational Supplement, April 3, 1988 Washburn and Crowe
Grunbaum, B., Periodic ornamentation of the fabric plane: lessons from Peruvian
fabrics, Symmetry 1(1990), 45 -68.
Grunbaum, Branko, and G.C. Shepard, Satins and Twills: An Introduction to the
Geometry of Fabrics, Mathematics Magazine, 53, 1980, 131-161 and 313

Geometry of the kaleidoscope
Arithmetic Teacher, February, 1970
Ball and Coxeter
Brewster, Sir David, article on imagesin mirrors, EncyclopediaBritannica, c. 1818
(Brewster invented the kal eidoscope)
Coxeter, Regular Polytopes
Baker, Cozy, Through the Kaleidoscope ... and Beyond, Beechcliff Books, Annapalis,
1987 pp. 13-22,170-178, 188-195
Mathieu, Jean Paul, Optics, parts 1 and 2, vol. 62, 1075




Weiting, Thomas W., The Mathematical Theory of Chromatic Plane Ornaments, Marcel
Dekker, NY, 1982, pp 31-36,346-362

Williamson, Samuel J. and Cummins, Herman Z. Light and Color in Nature and Art,
Wiley, NY, 1983, pp.223-270

The Golden Ratio in geometry
Baravelle, H.V., The Geometry of the Pentagon and the Golden Section, Math. Teacher,
Jan. 1948
Dantzig, Tobias, The Bequest of the Greeks
Ghyka, Matila, The Geometry of Art and Life, Dover
Huntley, H.E. The Divine Proportion, Dover
Musser, Gary and William F. Burger, Mathematics for Elementary Teachers
Newman, Rochelle and Martha Boles, The Golden Relationship: Art, Math, Nature
Oqgilvy, Charles, Excursions in Geometry
Pappas, Theoni, Mathematics Appreciation, Dale Seymour
Pedoe, Dan, Geometry and the Visud Arts
Posamentier, Alfred and Gordon Sheridan, Investigationsin Geometry, Addison-
Wesley, 1982
Runion, Garth E. The Golden Section and Related Curiosa, Scott Foresman, 1972
Smart, Modern Geometry
Vada, S., Fibonacci and Lucas Numbers, and the Golden Section: Theory and
Applications, QA 241, V24, 1989 PMA

Indian Geometry
Amma, T.A. Saraavati, Geometry in Ancient and Medieva India, PMA QA 444 S26
1979
Knorr, Wilbur, textual Studiesin Ancient and Medieval Geometry, Birkhauser, 1989
Sarasvati, Svami Satya Prakesh, PMA QA 443.5 P72 1987
Van der Waerden, Geometry and Algebrain Ancient Civilizations, Springer, 1983
Baeyer, Hans C., Impossible Crystals, Discover 11, February, 1990, 69 — 78
Boles, Martha and Rochelle Newman, Universal Patterns Book 1: The Golden
Relationship: Art, MAth and Nature
Cook, Theodore A., The Curves of Life, Dover
Hargittai, | and C.A. Pickover, Spiral Symmetry, World Scientific, 1992
Kesder, James E., Goldern Triangle, Mathematics Teacher, April, 1994, p. 324




Loeb, Arthur L., Concepts and Images. Visual Mathematics, Birkhauser, 1993, QA 36,
L64, 1993, PMA

Markowski, George, Misconceptions about the Golden ratio, College Mathematics
Journal, January, 1992, 2 - 19

Mathematics Teacher, February 1991, 133-138, The artist's View of Pointsand Lines
National Council of Teachers of Mathematics, Historical Topicsfor the Mathematics
Classroom

Willard, Claude-Jacques, Le nombre d'or: utilisation en mathematiques et dans les
beaux-arts, Paris, 1987

Honeycombs
Peressini, Anthony L., The Design of Honeycombs, Umap Module Unit 502

Thompson, D'Arcy, On Growth and Form, Cambridge U Press, 1917
Toth, L. Feges, What the bees know and what they do not know, Bull. Amer. Math. Soc.
vol 70 (1964), pp. 468 - 481

| ndian Geometry

Datta, Bibhutibhusan, The Science of the Sulba, 1932
Taylor, Charles, Ancient and Modern geometry of Conics, pp. Xvii-xxxiii

Inversion
Pedoe, Dan, Acourse of Geometry, QA 445 P43 PMA
Rosenfeld, B.A. and M.D. Sergeeva, Stereographic Projection, Mir
Smart, Modern Geometry

JaDan@e Geometry
Fukagawa, Hedetos and Dan Pedoe, Japanese Temple Geometry Problems, The
Charles Babbage Research Centre, P.O. Box 272, St. Norbert Postal Station, Winnipeg,
Canade, R3V 1L 6, 1989
Sokolowsky, Dan, Review of "Japanese Temple Problems’, American Mathematical
Monthly, April, 1991

K nots
- Adams, Colin, The Knot Book: An Elementary Introduction to the Mathematical Theory
of Knots, 1994, Freeman
Gialamas. Stafanos and Gialamos, Panagiotis, Knots Everywhere, Consortium, Spring,
1993, pp. 4 - 5 (Contains other references)
Gialamas, S. Knots Everywhere, Chicago: Aristotle Press, 1993
Livingston, Charles, KNot Theory, MAA 1993 (Fairly advanced?)
Prasolov, V.V., Intuitive Topology, AMS, 1994

Line of Sight Problems
Stewart, lan, MAthematical Recreations. Shedding litle Darkness, Scientific American
272:2 (August 1996) 100-103
Scientific American 270:5 (May 1994) 118 - 120 (Number of guards needed for an art

gdlery)-




L| nkages and geometry
Bolt, Brian, More Mathematical Activitiesfor Teachers, Cambridge University Press,
1985, pp.12-14, 114
Bolt, Brian, Mathematics Meets Technology, Cambridge Univ press, 1991
Choate, Jonathan, Linkages, Consortium, Summer 1995, pp. 6 —7
Cundy, Henry M. and A.P. Rallett, Mathematical Models, 1961
Kempe, A. B., How to draw astraight line: alecture on linkages, Macmillan
Shyers, Joan, COMAP Module 594
Solovyov, Yury, Making the Crooked Straight: Inversors and Watt's Steam Engine,
Quantum, November/December 1990, pp. 20 — 23
Kempe, A.B., How to Draw a Straight Line, NCTM, 1977
Smart, Modern Geometry
Meserve, Bruce E., Linkages as visua aids, Mathematics Teacher 39m 1946, 372-79
Multi-sensory Aidsin the Teaching of Mathematics, NCTM Eighteenth 'Y earbook (?
Y ates, Robert, Carl, Geometrical Tools, QA 464 Y 3 1949
Y ates, A Mathematical Sketch and Moded Book, Educat.Pub, 1949 (?)

Map coloring
- K. Appel, and W. Haken, The four color proof suffices, Mathematical

Intelligencer,8(1986), 10-20

K. Appel, and W. Haken, th esolution of the four color problem, Scientific  American,
October 1977, pp.108 — 121

Barnette, David, Map Coloring, Polyhedra, and the Four-Color Problem, MAA, 1984
Keeports, David, A Map-coloring agorithm, Mathematics teacher, December, 1991, pp.
759-76

Appel, Kenneth and Wolfgang Haken, The Four Color Problem, in Steen, Lynn A,
Mathematics Today, QA7 M3447 PMA

Ball and Coxeter

Brink, Raymond W., ed, Selected Papers on Geometry QA 446 S44, PMA

Coxeter, H.M.S,, The Four Color Problem, 1890-1940, Math. Teacher, April, 1959
Devlin, Keith, Mathematics: the New Golden Age

Gardiner, A., Mathematical Puzzling

Hilbert and Cohn-V ossen, Geometry and the Imagination

Ringel G., Map Color Problem

Saaty, Thomas, The Four Color Problem

Smart, Modern Geometry

Spitznagel, Edward, Selected Topicsin Mathematics

Map Projections
Consortium, Summer, 1989 (References therein)

Mayan Geometry
Scientific American, August 1989

Minimal Surfaces
Boys, Charles, Soap Bubbles, Dover, 1959




Hildebrandt, Stefan and Anthony J. Tromba, Mathematics and Optimal  Form, 1985
(Available from Dae Seymour)

Leonardo (International Society for the Arts, Sciences, and technology), Art and
Technology, 1992

Taylor, Jean E., Crystals, in Equilibrium and Otherwise, video, 1990 American
Mathematical Monthly, April 1992, p. 376

Courant and Robbins, What is Mathematics?

Hildebrandt, Stefan and Anthony J. Tromba, Mathematics and Optimal Form
senberg, Cyril, The science of soap films and soap bubbles, Dover

NCTM News Bulletin, November, 1995, p. 2 ("Double Bubbles Give Mathematicians
No Trouble")

Scientific American, 1976

Selected Papersin Geometry, pp. 40-47

Optics

Conrady, A. E., Applied Optics and Optical Design, val.1, Dover

Drucker, Danidl, Reflection Properties of Curves and Surfaces, Mathematics Magazine,
June 1992

House, Peggy, Interactions of Science and Mathematics: A Set of Activities, Eric
Clearinghouse for Science, Mathematics and Environmental Education, Ohio State
University, College of Education, 1200 Chambers Road, Columbus, Ohio 43212
Maesumi, Mohsen, Parabolic Mirrors, Elliptic and Hyperbolic Lenses, American
Mathematical Monthly, June-July 1992, pp. 558-560

Riddle, Analytic Geometry, 3rd edition, pp. 138-143 (reflection properties of conics)

Paper Folding
- Envelopes. / Boltianskii, V. G. (Vladimir Grigor'evich) / New Y ork 1964 QA 621 B65

Physics-Math-Astronomy Library

"Excursionsin Geometry" by C. Stanley Ogilvy

Dutch, Stephen, Folding n-pointed stars and snowflakes, Mathematics Teacher,
November, 1994, pp. 630 - 637

Perspective Drawing
Dixon, Robert, Mathographics, Dover, 1987, pp.79-86
Edgerton, S. Y., Jr., The Renaissance Rediscovery of Linear Perspective, Basic Books,
NY, 1975

Pick's Theorem(Overlap's with Euler's Theorem?)
Grunbaum, Branko and G. C Shephard, Pick's Theorem, American Mathematical
Monthly, February, 1993, pp 150 - 161 (Additionla references p. 150)

Polyhedra
Ball and Coxeter

Bassetti, Fred, at a, Math Projects: Polyhedral Shapes, 1968
Critchlow, Keith, Order in Space, Dale Seymour



Cundy, H. Martyn and A.P. Rollett, Mathematical Models, Clarendon Press, 1954
Federico, Descartes on Polyhedra

Ghyka, Matila, The Geometry of Art and Life, Dover

Hilbert and Cohn-V ossen, Geometry and the Imagination, pp.89-93, 290-295, 143-157
Hilton, Peter, and Jean Pedersen, Build Y our Own Polyhedra

Holden, Allan, Shapes, Spaces, and Symmetry, 1971

Jimenez,et a, The construction of Platonic bodies from constant width continuous
strips, Int J. Math. Educ. Sci. Technol, 1990, vol 21, no.1, 37-50

Laycock, Mary, Straw Polyhedra, Creative Publications, 1970

Lockwood, E.H., and R.H. MacMillan, Geometric Symmetry

Loeb, et a, On the I cosahedron, the Pentagonal Dodecahedron, and the Rhombic
Triacontahedron, Symmetry, v.1, no.1, 1990, 29-36.

Lyusternik, Convex Figures and Polyhedral

Ogilvy, Excursionsin Geometry, pp. 129-134

Pearce, Peter, and Susan Pearce, Polyhedra Primer, Dale Seymour

Pedoe, Dan, Geometry and the Visud Arts

Posamentier, Alfred and Gordon Sheridan, Investigationsin Geometry, Addison-
Wesley, 1982

Senechal, Marjorie and George Fleck, Shaping Space, Birkhauser, 1988

Toth, L. Fejes, Regular Figures, Pergamon Press, 1964

Wenninger, Magnus J., Polydron Models, Cambridge U. Press, 1970

Wenninger, Magnus J., Polyhedron Models for the Classroom, NCTM, 1966
Williams, Robert, The Geometrical Foundation of Natural Structure, Dale Seymour

Polyominoes
Ball and Coxeter

Dudeney, Canturbury Puzzles and Others, p.119-120
Gardner, Scientific American v. CCXIlIl, p.96-104
Canadian Journal of Mathematics, vol. XXV, pp585-602

Projective Geometry
Brill and Steuben, Demystifying the Projective Plane, Math. Magazine 63,
no.1, Feb 1990
Posamentier, Alfred and Gordon Sheridan, Investigationsin Geometry, Addison-
Wesley, 1982

Smart, Modern Geometry
Pedoe, Dan, Geometry and the Visud Arts



Proofs of the Pythagorean theorem
Fredrichs, Kurt Otto, From Pythagorasto Einstein, QA 460 P99 F7 PMA
Beamer, James E, Using puzzles to teach the Pythagorean Theorem, Mathematics
Teacher, May 1989
Euclid, Elements
Heath, Thomas, Manual of Greek Mathematics
Loomis, Elisha Scott, The Pythagorean Proposition
Newman, The World of Mathematics (Vol 1)
Posamentier, Alfred and Gordon Sheridan, Investigationsin Geometry, Addison-
Wesley, 1982
Prentice-Hall Encyclopedia of Mathematics, 1982
Swetz, Frank J. and T.l. Kao, Was Pythagoras Chinese?, NCTM 1977

Proofs without words
Variousjournals (Amer Math Monthly, Math Magazine)

Space Tessellations
Ball and Coxeter
Critchlow, Keith, Order in Space, Dale Seymour
Ghyka, Matila, The Geometry of Art and Life, Dover
Loeb, et a, On the | cosahedron, the Pentagonal Dodecahedron, and the Rhombic
Triacontahedron, Symmetry, v.1, no.1, 1990, 29-36.
Holden, Allan, Shapes, Space, and Symmetry, 1971
Williams, Robert, The Geometrical Foundation of Natural Structure, Dale Seymour

Quilts
- Nephew, Sara, Equilatera triangle patchwork quilts, Dover

Whitman, Nancy, Line and Rotational Symmetry, Mathematics Teacher, April, 1991
Zadavsky, Claudia, "Symmetry in American Art", Arithmetic teacher, September, 1990

Sphere Packing
Packing your n-Dimensional Marbles, Science, 2 March 1990
The nth Dimension, Forbes, v.138, Dec 29, 1986
Curvesfor atighter fit, Science News, v. 138, May 19, 1990, pp316-317
Loosely packed spheres, Science News, v. 137, June 16, 1990, p. 382

Thompson, Thomas M., From Error-correcting Codes through Sphere Packingsto
S|mple Groups, MAA, 1984




Williams, Robert, The Geometrical Foundations of Natural Structure

Spirals
Davis, Philip J., Spirals. From Theodorus to Chaos, 1993
Lawlor, Robert, Sacred Geometry, 1982
Leonardo (International Society for the Arts, Sciences, and technology), Art and
Technology, 1992
Pickover, Clifford and I. Hargittai, Spiral Symmetry, 1992
Edwards, Edward B., Pattern and Design with Dynamic Symmetry, Dover, 1967, pp.13-
24, 45-46, 68 - 69, 92-95, 104-105, 111-112, 118-122
Hargittai, Istvan, and Clifford A. Pickover, eds, Spiral Symmetry, QA 483 S68 1992
WEélls, David, Hidden Connections, DOuble Meanings, Cambridge, pp. 83 - 86

Squaring the circle
Ball and Coxeter
Bold, Famous Problems of Geometry
Dixon, Robert, Mathographics, Dover, 1987, pp.44

String designs
Envelopes. / Boltianskii, V. G. (Vladimir Grigor'evich) / New Y ork 1964 QA 621 B65
Physics-Math-Astronomy Library
Irvine, Max, Cable Structures, Dover

Symmetry in physics
Altmann, Simon L., Icons and Symmetries, Oxford Univ. Press, 1992
Stewart, lan and Martin Golubitsky, Fearful Symmetry, Penguin, 1992

Strip (frieze) patterns
Crowe, Donad, Symmetry, Rigid Motions, and Patterns, Himap (bib)
Hargittal, Istavan, ed., Symmetry: Unifying Human Understanding
Lockwood, E.H., and R.H. MacMillan, Geometric Symmetry
Washburn and Crowe
Newman, Rochelle and Martha Boles, The Golden Relationship: Art, Math, Nature

Symmetry in Everyday Objects
Gallian, Joseph A., Symmetry in Logos and Hubcaps

Taxicab geometry
Krause, Eugene F., Taxicab Geometry, Addison-Wesley




Posamentier, Alfred and Gordon Sheridan, Investigations in Geometry, Addison
Wesley, 1982

Tilings (Tessellations of the plane)
Ball and Coxeter
Boorman, Phil, More About Tessellating Hexagons, Math Teacher, Summer, 1971
Clemens, Stanley, Tessdllations of Pentagons, Math Teaching, June, 74
Coxeter, H.M.S., Twelve Geometric Essays, pp.76,115,168
Dubrovm, Fomenko, and Novikov, Modern Geometry - Methods and A pplications,
p.169
Dunn, James, A. More About Tessellating Hexagons, Mathematics Teaching, Summer,
1971
Gardner, Martin, Penrose Tiles and Trapdoor Ciphers QA 95 G 298 PMA
Ghyka, Matila, The Geometry of Art and Life, Dover
Grunbaum, Branko and G.C. Shepard, Tilings and Patterns, 1987
Hilbert and Cohn-V ossen, Geometry and the Imagination
Klarner, D.A. (ed.), The Mathematical Gardner
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