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1 Elementary probability

Many important concepts are already evident in simple situations so we start
with a review of elementary probability theory.

1.1 Why all the fuss? – can’t we just figure it out??

Questions in probability can be tricky, and we benefit from a clear under-
standing of how to set up the solution to a problem (even if we can’t solve
it!). Here is an example where intuition may need to be helped along a bit:

“Remove all cards except aces and kings from a deck, so that only eight
cards remain, of which four are aces and four are kings. From this abbreviated
deck, deal two cards to a friend. If he looks at his card and announces
(truthfully) that his hand contains an ace, what is the probability that both
his cards are aces? If he announces instead that one of his cards is the ace of
spades, what is the probability then that both his cards are aces? Are these
two probabilities the same?”

Probability theory provides the tools to organize our thinking about how
to set up calculations like this. It does this by separating out the two impor-
tant ingredients, namely events (which are collections of possible outcomes)
and probabilities (which are numbers assigned to events). This separation
into two logically distinct camps is the key which lets us think clearly about
such problems. For example, in the first case above, we ask “which outcomes
make such an event possible?”. Once this has been done we then figure out
how to assign a probability to the event (for this example it is just a ratio of
integers, but often it is more complicated).

First case: there are 28 possible ‘hands’ that can be dealt (choose 2 cards
out of 8). Out of these 28 hands, exactly 6 contain no aces (choose 2 cards
out of 4). Hence 28-6=22 contain at least one ace. Our friend tells us he has
an ace, hence he has been dealt one of these 22 hands. Out of these exactly
6 contain two aces (again choose 2 out of 4). Therefore he has a probability
of 6/22=3/11 of having two aces.

Second case: one of his cards is the ace of spades. There are 7 possibilities
for the other card, out of which 3 will yield a hand with 2 aces. Thus the
probability is 3/7.

Any implicit assumptions?? Yes: we assume all hands are equally likely.
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1.2 Sample space

The basic setting for a probability model is the random experiment or random
trial. This is your mental model of what is going on. In our previous example
this would be the dealer passing over two cards to your friend.

Definition 1 The sample space S is the set of all possible outcomes of the
random experiment.

Depending on the random experiment, S may be finite, countably infinite
or uncountably infinite. For a random coin toss, S = {H,T}, so |S| = 2. For
our card example, |S| = 28, and consists of all possible unordered pairs of
cards, eg (Ace of Hearts, King of Spades) etc. But note that you have some
choice here: you could decide to include the order in which two cards are
dealt. Your sample space would then be twice as large, and would include
both (Ace of Hearts, King of Spades) and (King of Spades, Ace of Hearts).
Both of these are valid sample spaces for the experiment. So you get the first
hint that there is some artistry in probability theory! namely how to choose
the ‘best’ sample space.

Other examples:

(1) Roll a die: the outcome is the number on the upturned face, so S =
{1, 2, 3, 4, 5, 6}, |S| = 6.

(2) Toss a coin until Heads appears: the outcome is the number of tosses
required, so S = {1, 2, 3, . . . }, |S| =∞.

(3) Choose a random number between 0 and 1: S = [0, 1]. (This is the
first example of an uncountable sample space).

(4) Throw a dart at a circular dartboard:

S = {(x, y) ∈ R2 |x2 + y2 ≤ 1}

For this review of elementary probability we will restrict ourselves to finite
and countably infinite sample spaces.
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1.3 Events

An event is a collection of possible outcomes of a random experiment. Usually
write A,B, . . . to denote events. So an event A is a subset of S, the sample
space, that is A ⊂ S. Usually an event contains the set of outcomes which
make the answer to a question ‘Yes’. Saying ‘the outcome is in A’ is the same
as saying ‘the event A is true’. For the first question in our card example,
one event of interest is that both cards are aces. This event is the collection
of all outcomes which make it true, namely the 6 hands with two aces.

There are two special events: the whole sample space S is called the
certain or the sure event. The empty set ∅ is the null event.

1.4 Combining events

We often want to combine events in various ways. For example given events
E,F,G, might want to investigate the event that at least 2 out of these 3
events are true. There are 3 basic operations for combining events.

Complement

Ec = “not E” = collection of outcomes not in E (1)

Intersection

E ∩ F = “E and F” = collection of outcomes in both E and F (2)

Union

E ∪ F = “E or F” = collection of outcomes in either E or F or both (3)

By combining operations can build up more and more complicated events.

Exercise 1 Given three events E,F,G, write formulas for the following
events: only E is true; both E and F but not G; at least two of the events
are true.

The union and intersection operations distribute like addition and multi-
plication respectively: for example

(E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G) (4)
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The complement squares to the identity: (Ec)c = E. De Morgan’s Laws are

(E ∩ F )c = Ec ∪ F c, (E ∪ F )c = Ec ∩ F c (5)

Exercise 2 Circuit with switches in parallel or in series. Describe event
that circuit is open in terms of events that each switch is open or closed.

1.5 Assigning probabilities

The second ingredient in our setup is the assignment of a probability to
an event. These probabilities can often be calculated from ‘first principles’.
In our card example we did this by counting and dividing. In other cases
the probabilities may be given as part of the description of the problem; for
example if you are told that a coin is biased and comes up Heads twice as often
as Tails. We next analyze the requirements for a satisfactory assignment.

The basic step is that every event E is assigned a probability P (E). This
is a number satisfying

0 ≤ P (E) ≤ 1 (6)

The meaning is “P (E) is the probability that event E is true”. The oper-
ational meaning (which will follow from the mathematical setup) is that if
the random experiment (our mental image of the process) is repeated many
times under identical conditions, then in the long-run the fraction of times
when E is true will approach P (E) as the number of trials becomes arbitrar-
ily large. Since this can never be checked in practice, it remains an article of
faith about how the universe works. Nevertheless it can be formulated as a
mathematical statement in probability theory, and then it can be shown to
be a consequence of the axioms of the theory. This result is called the Law
of Large Numbers and will be studied in detail later in the course.

There are lots of possible events, so there are consistency relations that
must be satisfied. Here are some:

(1) P (Ec) = 1− P (E)

(2) P (S) = 1
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(3) if E ⊂ F then P (E) ≤ P (F )

(4) if E ∩ F = ∅ (aka E and F are disjoint, or mutually exclusive), then

P (E ∪ F ) = P (E) + P (F ) (7)

(5) for any events E,F ,

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) (8)

(6) if E1, E2, . . . , En, . . . is a sequence of pairwise disjoint events, so that
Ei ∩ Ej = ∅ for all i 6= j, then

P (
∞⋃
n=1

En) =
∞∑
n=1

P (En) (9)

The last property (6) is crucial, and it cannot be deduced from the pre-
vious relations which involve only finitely many sets. This property is called
countable additivity and we will have much more to say about it later.

Other relations then follow from these. However it can be shown that
there are no other independent relations; if conditions (1) – (6) hold for all
events then P is a consistent assignment of probabilities on S. In this case
the assignment P is called a probability model or probability law on S.

Some work has gone into finding a minimal set of relations which generate
all others: one such minimal set is the two relations (2) and (6) above.

Exercise 3 Derive (1), (3), (5) from (2) and (4).

Exercise 4 Two events E and F ; the probability that neither is true is 0.6,
the probability that both are true is 0.2; find the probability that exactly one
of E or F is true.

In elementary probability theory where S is either finite or countably
infinite, every possible outcome s ∈ S is assigned a probability p(s), and
then the probability of any event A can be calculated by the sum

P (A) =
∑
s∈A

p(s) (10)
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This relation follows from (6) above, since A = ∪s∈A{s} is a countable union
of disjoint sets. The sum always converges, even if S is (countably) infi-
nite. Furthermore, if p : S → [0, 1], s 7→ p(s) is any map that satisfies the
condition ∑

s∈S

p(s) = 1 (11)

then it defines a probability law on S.

Exercise 5 For any sequence of events {An}, use Property (6) to show
that

P (
∞⋃
n=1

An) ≤
∞∑
n=1

P (An) (12)

[Hint: rewrite
⋃∞
n=1An as a union of pairwise disjoint sets]

1.6 Drawing breath

To summarize: we have laid down the mathematical foundations of prob-
ability theory. The key step is to recognize the two separate pillars of the
subject, namely on the one hand the sample space of outcomes, and on the
other hand the numerical probabilities which are assigned to events. Next
we use this basic setup to define the familiar notions of probability, such as
independence, random variables etc..

1.7 Conditional probability

P (B|A) = conditional probability that B is true given that A is true

Imagine the following 2-step thought experiment: you toss a coin; if it comes
up Heads, you draw one card at random from a standard deck; if it comes
up Tails you draw two cards at random (without replacement). Let A be
the event that you get Heads on the coin toss, and let B be the event that
you draw at least one Ace from the deck. Then P (B|A) is clearly 4/52 =
1/13. What about P (A ∩ B)? Imagine lining up all your many repeated
experiments, then for approximately one-half of them the event A will be
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true. Out of these approximately 1/13 will have B also true. So we expect
that P (A ∩ B) = (1/2)(1/13) = P (A)P (B|A). This line of reasoning leads
to the following definition:

P (B|A) =
P (B ∩ A)

P (A)
(13)

It is important to note that P (B|A) is defined only if P (A) 6= 0.

Exercise 6 Suppose that P (B|A) > P (B). What does this imply about
the relation between P (A|B) and P (A)?

Exercise 7 Show that

P (A1 ∩ A2 ∩ · · · ∩ An)

= P (A1)P (A2|A1)P (A3|A1 ∩ A2) . . . P (An|A1 ∩ A2 ∩ · · · ∩ An−1) (14)

Exercise 8 A standard deck of 52 playing cards is randomly divided into
4 piles of 13 cards each. Find the probability that each pile has exactly one
Ace.
[Hint: define events A1, . . . , A4 by

Ak = {the kth pile has exactly one Ace}, k = 1, 2, 3, 4 (15)

and use the previous Exercise]

One useful application is the formula for total probability: suppose that
there is a collection of events A1, A2, . . . , An which are mutually disjoint, so
Ai ∩ Aj = ∅ for all i 6= j, and also exhaustive, meaning they include every
outcome so that A1 ∪ A2 ∪ · · · ∪ An = S. Then for any event B,

P (B) = P (B ∩ A1) + P (B ∩ A2) + · · ·+ P (B ∩ An)

= P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An)(16)

Note that the first equality follows from Property (4) of the probability law.

11



Exercise 9 Derive Bayes formula: for mutually exclusive and exhaustive
events A1, . . . , An,

P (Ai|B) =
P (B|Ai)P (Ai)

P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An)
(17)

Exercise 10 A patient walks in who has a fever and chills. The doctor
wonders, “what is the chance that this patient has tuberculosis given the
symptoms I am seeing?” Let A be the event that the patient has TB, let
B be the event that the patient has fever and chills. Assume that TB is
present in 0.01% of the population, whereas 3% of the population exhibits
fever and chills. Assume that P (B|A) = 0.5. What is the answer to the
doctor’s question?

Exercise 11 Rework our old card problem using conditional probabilities.

1.8 Independence

Two events A,B are independent if

P (A|B) = P (A)⇐⇒ P (B|A) = P (B)⇐⇒ P (A ∩B) = P (A)P (B) (18)

In other words these three conditions are equivalent.
The collection of events A1, . . . , An, . . . is independent if for every finite

subset Ai1 , . . . , Aik ,

P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) · · ·P (Aik) (19)

Independence is very important in probability theory because it occurs
naturally in many applications, and also because it provides very useful tools
for solving problems.

Exercise 12 Successive coin tosses are independent. A biased coin has
probability p of coming up Heads. The coin is tossed 10 times. Find the
probability that it comes up Heads at least twice.

Exercise 13 Two dice are rolled many times, and each time the sum of
the numbers on the dice is recorded. Find the probability that the value 8
will occur before the value 7.
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1.9 Random variables

A random variable is a ‘random number’, meaning a number which is deter-
mined by the outcome of a random experiment. Usually denoted X, Y, . . . .
The range of X is the set of possible values for X. Mathematically, X is a
real-valued map on the sample space S:

X : S → R, s 7→ X(s) (20)

Another way to say this is that X is the result of a measurement of interest
on S.

In elementary probability we consider only discrete random variables
whose range is either finite or countably infinite. If the range of X is finite
then we say that X is a simple random variable. The event {X = x} is the
set of outcomes in S for which the value x is assigned to X. Mathematically,

{X = x} = {s ∈ S |X(s) = x} = X−1({x}) (21)

The probability of this event is written P (X = x). At this point the
sample space S recedes into the background, and we can concentrate just on
the range of possible values of X and their probabilities. This list is called
the probability mass function or pmf of X:

(x1, p1), (x2, p2), . . . (22)

where Ran(X) = {x1, x2, . . . } and pk = P (X = xk).

Exercise 14 Roll two fair dice, Y is the maximum of the two numbers on
their faces, find the pmf of Y .

Given just the pmf of X, is there a unique underlying sample space S
with its probability assignments? The answer is no. There are many sample
spaces which would yield the same pmf for X. But there is a minimal sample
space which does the job. Just take S to be the set of points in the range
of X, and assign probabilities to these points according to the pmf of X.
So S = {x1, x2, . . . } and P ({xk}) = pk. In this case the map which defines
X is particularly simple, it is just the identity function: X(xk) = xk. This
exercise also shows that there is a random variable defined for every pmf:
given a countable set of real numbers {xk} and a set of probabilities {pk}
satisfying

∑
k pk = 1, there is a random variable X whose pmf is {(xk, pk)}.
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To see an example, suppose we roll two fair dice and define

X =

{
0 if the dice are different

1 if the dice are the same

The obvious sample space has 36 elements, namely all pairs of outcomes
for the dice. The map X assigns value either 0 or 1 to every outcome, e.g.
X(1, 3) = 0, X(4, 4) = 1, etc. The pmf of X is

P (X = 0) =
1

6
, P (X = 1) =

5

6

We could instead take our sample space to consist of just two elements,
namely S = {0, 1} with probabilities (1/6, 5/6), then define X(0) = 0 and
X(1) = 1, and we end up with the same pmf for X. So all that really matters
for X is that it is possible to construct a sample space on which X can be
defined with this pmf, we don’t actually care about the details of the sample
space.

There are several special discrete random variables which are especially
important because they arise in many situations.

Bernoulli
Ran(X) = {0, 1}, p = P (X = 1), 1− p = P (X = 0). For example, a biased
coin has probability p of coming up Heads. Toss coin, X is number of Heads.

Binomial

Ran(X) = {0, 1, 2, . . . , n}, P (X = k) =

(
n
k

)
pk(1−p)n−k. Now X is number

of Heads for n tosses of a biased coin. As a shorthand write

X ∼ Bin(n, p) (23)

Poisson
Ran(X) = {0, 1, 2, . . . }, P (X = k) = e−λ λk

k!
. For example, X counts number

of occurrences of rare events, like radioactive decays from a sample.

There is an important relation between the Binomial and Poisson formu-
las.

Lemma 2 Fix λ = np, then

lim
n→∞, p→0

(
n
k

)
pk(1− p)n−k = e−λ

λk

k!
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Exercise 15 Biased coin, p is probability of Heads. Toss coin until Heads
appears. Let N be number of tosses, find the pmf of N . [This is the geometric
distribution].

1.10 Joint distributions

In many circumstances we encounter a collection of random variables which
are all related to each other. For example, X and Y could be the minimum
and maximum respectively of two rolls of the dice. Often we want to consider
these related random variables together.

Given a collection of discrete random variables X = (X1, X2, . . . , Xn),
let Ri be the range of Xi. Then the range of X is the Cartesian product
R1 × · · · × Rn. Their joint pmf is the collection of probabilities P (X1 =
x1, . . . , Xn = xn) for every point (x1, . . . , xn) in the range of X1, X2, . . . , Xn.
It is also convenient to view X as a random vector in Rn.

Exercise 16 Let X and Y be the minimum and maximum respectively of
two rolls of the dice. Find the joint pmf of X and Y .

The random variables X1, X2, . . . , Xn are defined on the same sample
space S. Just as for a single discrete random variable, if S is not known a
priori we can always construct a sample space for X1, X2, . . . , Xn by taking
S to be the range R1×· · ·×Rn, and defining the probability of a point using
the pmf. Then Xi is the projection onto the ith coordinate.

We can recover the pmf of X1 by itself from the joint pmf:

P (X1 = x1) =
∑

x2,...,xn

P (X1 = x1, X2 = x2, . . . , Xn = xn) (24)

This procedure is called finding the marginal pmf of X1. The same procedure
works for X2, . . . , Xn.

The random variables X1, X2, . . . , Xn are independent if for every point
(x1, . . . , xn) the events {X1 = x1}, {X2 = x2}, . . . , {Xn = xn} are indepen-
dent. Equivalently, X1, X2, . . . , Xn are independent if and only if the joint
pmf is the product of the marginals, that is for every point (x1, . . . , xn),

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) . . . P (Xn = xn) (25)
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Exercise 17 You have two coins, one is unbiased, the other is biased with
probability of Heads equal to 2/3. You toss both coins twice, X is the number
of Heads for the fair coin, Y is the number of Heads for the biased coin. Find
P (X > Y ). [Hint: X and Y are independent].

Exercise 18 Two biased coins have the same probability p of coming up
Heads. The first coin is tossed until Heads appears for the first time, let N
be the number of tosses. The second coin is then tossed N times. Let X be
the number of times the second coin comes up Heads. Find the pmf of X
(express the pmf by writing P (X = k) as an infinite series).

1.11 Expected value or expectation

Let X be a discrete random variable with pmf (x1, p1), (x2, p2), . . . . If the
range of X is finite the expected value or expectation of X is defined to be

EX =
∑
n

pnxn (26)

As an example can compute expected value of roll of die (= 7/2).

If the range of X is infinite, the sum is defined as follows: first divide X
into its positive and negative parts X+ and X−,

X+ = max{X, 0}, X− = X −X+ (27)

Define

EX+ =
∑

n :xn≥0

pnxn, EX− =
∑

n :xn<0

pn|xn| (28)

Both are sums of positive terms, hence each either converges or is +∞. Unless
both EX+ = EX− = +∞ we say that EX exists and define it to be

EX = EX+ − EX− (29)

The value of EX may be finite, or ±∞. If both EX+ = EX− = +∞ then
EX does not exist. Note that |X| = X+ +X−. Hence EX exists and is finite
if and only if E|X| exists and is finite.

EX has a nice operational meaning. Repeat the underlying random ex-
periment many times, and measure the value of X each time. Let Av(X;n)
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be the average of these values for n successive measurements. This average
value depends on n and is itself a random variable. However our experience
with the universe shows that Av(X;n) converges as n→∞, and this limit-
ing value is EX. Again this can never be verified by experiment but it can
be derived mathematically from the axioms.

Exercise 19 Find EX when: (a) X is maximum of two dice rolls (=
161/36), (b)X is number of tosses of biased coin until Heads first appears
(= 1/p).

1.12 Draw breath again

We have now met all the ingredients of elementary probability theory. With
these in hand you can tackle any problem involving finite sample spaces and
discrete random variables. We will shortly look in detail at one such class of
models, namely finite state Markov chains. First we consider some further
technical questions.

1.13 Function of a random variable

Let X : S → R be a discrete random variable, and g : R → R a real-valued
function. Then Y = g ◦X : S → R is also a random variable. Its range is

Ran(Y ) = g(Ran(X)) = {g(xk) |xk ∈ Ran(X)} (30)

and its pmf is

P (Y = y) = P ({s : g(X(s)) = y})
=

∑
s : g(X(s))=y

p(s)

=
∑

k:g(xk)=y

∑
s :X(s)=xk

p(s)

=
∑

k:g(xk)=y

P (X = xk) (31)

Write Y = g(X). To compute EY , first define the positive and negative
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parts Y + and Y − as before. Then

EY + =
∑
yj≥0

yjP (Y = yj)

=
∑
yj≥0

yj
∑

k:g(xk)=yj

P (X = xk)

=
∑
yj≥0

∑
k:g(xk)=yj

g(xk)P (X = xk)

=
∑
yj≥0

∑
k

1{g(xk)=yj} g(xk)P (X = xk) (32)

where 1A is the indicator function of the event A: it equals 1 if A is true, and
0 if false. All terms in the double summation are positive, so we can change
the order of summation without changing the value of the sum. Hence

EY + =
∑
k

∑
yj≥0

1{g(xk)=yj} g(xk)P (X = xk)

=
∑

k:g(xk)≥0

g(xk)P (X = xk) (33)

The same calculation shows that

EY − =
∑

k:g(xk)<0

g(xk)P (X = xk) (34)

Assuming EY is defined, so at least one of EY + and EY − is finite, we conclude
that

EY =
∑
k

g(xk)P (X = xk) (35)

or more casually

Eg(X) =
∑
x

g(x)P (X = x) (36)

This is a change of variables formula which allows us to compute expectations
of functions of X directly from the pmf of X itself.
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Exercise 20 Suppose ai,j ≥ 0 for all i, j ≥ 1, show that

∞∑
i=1

( ∞∑
j=1

ai,j

)
=
∞∑
j=1

( ∞∑
i=1

ai,j

)
(37)

where +∞ is a possible value for both sums.

Exercise 21 Show that E[·] is a linear operator.

Exercise 22 If Ran(N) = {1, 2, . . . } show that

EN =
∞∑
n=1

P (N ≥ n) (38)

Exercise 23 Compute EX2 where X is the number of tosses of a biased
coin until Heads first appears (= (2− p)/p2).

1.14 Moments of X

The kth moment of X is defined to be EXk (if it exists). The first moment
is the expected value of X, also called the mean of X.

Exercise 24 If the kth moment of X exists and is finite, show that the jth

moment exists and is finite for all 1 ≤ j ≤ k. [Hint: if j ≤ k show that
|X|j ≤ 1 + |X|k]

The variance of X is defined to be

VAR(X) = E
(
X − EX

)2

(39)

If the second moment of X exists then

VAR(X) = E[X2 − 2XEX + (EX)2] = EX2 − (EX)2 (40)

The standard deviation of X is defined as

STD(X) =
√

VAR(X) (41)
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Exercise 25 Suppose Ran(X) = {1, 2, . . . } and P (X = k) = c k−t where
t > 1 and c > 0 is an irrelevant constant. Find which moments of X are
finite (the answer depends on t).

The moment generating function (mgf) of X is defined for t ∈ R by

MX(t) = EetX =
∑
x

etxP (X = x) (42)

If X is finite then MX always exists. If X is infinite it may or may not exist
for a given value t. Since etx > 0 for all t, x, the mgf is either finite or +∞.
Clearly MX(0) = 1.

1.15 Function of a random vector

Suppose X1, . . . , Xn are random variables with joint pmf p(x1, . . . , xn). Let
g : Rn 7→ R, then

Eg(X1, . . . , Xn) =
∑

x1,...,xn

g(x1, . . . , xn) p(x1, . . . , xn) (43)

In particular if g(x1, . . . , xn) = xk is the projection onto the kth coordinate
then

Eg(X1, . . . , Xn) = EXk =
∑

x1,...,xn

xk p(x1, . . . , xn) =
∑
xk

xk p(xk) (44)

where p(xk) = P (X = xk) is the marginal pmf of Xk.

Commonly encountered applications of this formula include:

E(aX + bY ) = aEX + bEY (45)

COV(X, Y ) = E(X − EX)(Y − EY ) = E(XY )− (EX)(EY ) (46)

The last number is the covariance if X and Y and it measures the degree of
dependence between the two random variables.

Exercise 26 If X and Y are independent show that COV(X, Y ) = 0.
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Exercise 27 Calculate COV(X, Y ) when X, Y are respectively the max
and min of two dice rolls.

As noted above, if X and Y are independent then COV(X, Y ) = 0, that
is E(XY ) = (EX)(EY ). Application of this and a little algebra shows that
if X1, X2, . . . , Xn are all independent, then

VAR[X1 +X2 + · · ·+Xn] = VAR[X1] + VAR[X2] + · · ·+ VAR[Xn] (47)

Exercise 28 Using the linearity of expected value and the above property
of variance of a sum of independent random variables, calculate the mean and
variance of the binomial random variable. [Hint: write X = X1 + · · · + Xn

where Xk counts the number of Heads on the kth toss].

Exercise 29 Derive the formula

VAR[X1 +X2 + · · ·+Xn] =
n∑
k=1

VAR[Xk] + 2
∑
i<j

COV(Xi, Xj) (48)

1.16 Conditional distribution and expectation

If two random variables are independent then knowing the value of one of
them tells you nothing about the other. However if they are dependent, then
knowledge of one gives you information about the likely value of the other.
Let X, Y be discrete random variables. The conditional distribution of X
conditioned on the event {Y = y} is (assuming P (Y = y) 6= 0)

P (X = x |Y = y) =
P (X = x , Y = y)

P (Y = y)

For a non-negative random variable X and an event A with P (A) 6= 0,
define the conditional expectation of X with respect to A as

E[X|A] =
∑
x

xP (X = x|A) (49)
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Since all terms in the sum are positive, either the sum converges or else it is
+∞. For a general random variable X, write X = X+−X− and then define

E[X|A] = E[X+|A]− E[X−|A] (50)

assuming as usual that both terms are not infinite.
An important special case is where A = {Y = y} for some random

variable Y , with P (Y = y) 6= 0. Since E[X|Y = y] is defined for every
y ∈ Ran(Y ), it defines a real-valued function on S, and hence is itself a
random variable. It is denoted E[X|Y ] and is defined by

E[X|Y ] : S → R, s 7→ E[X|Y = Y (s)] (51)

Since the value of E[X|Y ](s) depends only on Y (s), it follows that E[X|Y ] is
a function of Y . Hence its expected value can be computed using our formula
for expectation of a function of a random variable:

E[E[X|Y ]] =
∑
y

E[X|Y = y]P (Y = y) (52)

Exercise 30 Assuming that EX exists, show that

E[E[X|Y ]] = EX (53)

Exercise 31 Let N,X1, X2, . . . be independent random variables on a dis-
crete sample space S. Assume the Xk are identically distributed with finite
mean EXk = µ. Also assume that Ran(N) = {1, 2, 3, . . . } = N, and that
EN <∞. Define

Y =
N∑
n=1

Xn (54)

Prove that EY = µEN .

Exercise 32 Same setup as in previous exercise, assume in addition that
both VAR[Xk] <∞ and VAR[N ] <∞. Prove that

VAR[Y ] = EN VAR[X] + µ2 VAR[N ] (55)
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Exercise 33 A rat is trapped in a maze with three doors. Door #1 leads
to the exit after 1 minute. Door #2 returns to the maze after three minutes.
Door #3 returns to the maze after five minutes. Assuming that the rat is at
all times equally likely to choose any one of the doors, what is the expected
length of time until the rat reaches the exit?

23



2 Discrete-time finite state Markov chains

Now we can ‘get moving’ with the Markov chain. This is the simplest non-
trivial example of a stochastic process. It has an enormous range of applica-
tions, including:

• statistical physics

• queueing theory

• communication networks

• voice recognition

• bioinformatics

• Google’s pagerank algorithm

• computer learning and inference

• economics

• gambling

• data compression

2.1 Definition of the chain

Let S = {1, . . . , N}. A collection of S-valued random variables {X0, X1, X2, . . . }
is called a discrete-time Markov chain on S if it satisfies the Markov condi-
tion:

P (Xn = j |X0 = i0, . . . , Xn−1 = in−1) = P (Xn = j |Xn−1 = in−1) (56)

for all n ≥ 1 and all states j, i0, . . . , in−1 ∈ S.
Regarding the index of Xn as a discrete time the Markov condition can be

summarized by saying that the conditional distribution of the present state
Xn conditioned on the past states X0, . . . , Xn−1 is equal to the conditional
distribution of Xn conditioned on the most recent past state Xn−1. In other
words, the future (random) behavior of the chain only depends on where the
chain sits right now, and not on how it got to its present position.
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We will mostly consider homogeneous chains, meaning that for all n and
i, j ∈ S

P (Xn = j |Xn−1 = i) = P (X1 = j |X0 = i) = pij (57)

This defines the N ×N transition matrix P with entries pij.
A transition matrix must satisfy these properties:

(P1) pij ≥ 0 for all i, j ∈ S

(P2)
∑

j∈S pij = 1 for all i ∈ S

Such a matrix is also called row-stochastic. So a square matrix is a transition
matrix if and only if it is row-stochastic.

Once the initial probability distribution of X0 is specified, the joint dis-
tribution of the Xi is determined. So let αi = P (X0 = i) for all i ∈ S, then
for any sequence of states i0, i1, . . . , im we have (recall Exercise **)

P (X0 = i0, X1 = i1, . . . , Xm = im) = αi0pi0,i1pi1,i2 . . . pim−1,im (58)

The transition matrix contains the information about how the chain
evolves over successive transitions. For example,

P (X2 = j|X0 = i) =
∑
k

P (X2 = j,X1 = k|X0 = i)

=
∑
k

P (X2 = j|X1 = k,X0 = i)P (X1 = k|X0 = i)

=
∑
k

P (X2 = j|X1 = k)P (X1 = k|X0 = i)

=
∑
k

pkj pik

=
∑
k

(P )ik (P )kj

= (P 2)ij (59)

So the matrix P 2 provides the transition rule for two consecutive steps of the
chain. It is easy to check that P 2 is also row-stochastic, and hence is the tran-
sition matrix for a Markov chain, namely the two-step chain X0, X2, X4, . . . ,
or X1, X3, . . . . A similar calculation shows that for any k ≥ 1

P (Xk = j|X0 = i) = (P k)ij (60)
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and hence P k is the k-step transition matrix. We write

pij(n) = (P n)ij = P (Xn = j|X0 = i) (61)

Note that pij = 0 means that the chain cannot move from state i to state j
in one step. However it is possible in this situation that there is an integer
n such that pij(n) > 0, meaning that it is possible to move from i to j in n
steps. In this case we say that state j is accessible from state i.
Example 1

Consider the following model. There are four balls, two White and two
Black, and two boxes. Two balls are placed in each box. The transition
mechanism is that at each time unit one ball is randomly selected from each
box, these balls are exchanged, and then placed into the boxes. Let Xn be
the number of White balls in the first box after n steps. The state space is
S = {0, 1, 2}. The transition matrix is

P =

 0 1 0
1/4 1/2 1/4
0 1 0

 (62)

Why is it a Markov chain? The transition mechanism only depends on the
current state of the system. Once you know the current state (= number of
balls in first box) you can calculate the probabilities of the next state.

Example 2
The drunkard’s walk. The state space is S = {0, 1, 2, 3, 4}, and Xn is

the drunkard’s position after n steps. At each step he goes left or right with
probability 1/2 until he reaches an endpoint 0 or 4, where he stays forever.
The transition matrix is

P =


1 0 0 0 0

1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
0 0 0 0 1

 (63)

Again the transition mechanism depends only on the current state, which
means that this is a Markov chain.

Exercise 34 Decide if the following are Markov chains. A deck of cards is
randomly shuffled. (1) The top card is selected, X is the value of this card.
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The card is replaced in the deck at a random position. The top card is again
drawn and so on. (2) The top card is selected, X is the value of this card.
The card is not replaced in the deck. The top card is again drawn and so on.

Exercise 35 Suppose that Sn =
∑n

i=1Xi, where {Xi} are IID random
variables which assume a finite number of values. Assume that the distribu-
tion of Xi is known. In each case, either show that the given sequence is a
Markov chain, or give an example to show that it is not.
i). {Sn}
ii). {Sγn} where γn = min{k ≤ n : Sk = max{S1, . . . , Sn}}
iii). The ordered pair (Sn, Sγn).
[Hint: for (ii) take Ran(X) = {0,−1, 1}]

A finite state Markov chain can be usefully represented by a directed
graph where the vertices are the states, and edges are the allowed one-step
transitions.

2.2 Absorbing chains

This is one special type of chain, exemplified by Example 2 above.

Definition 3 A state i is absorbing if pii = 1. A chain is absorbing if
for every state i there is an absorbing state which is accessible from i. A
non-absorbing state in an absorbing chain is called a transient state.

Consider an absorbing chain with r absorbing states and t transient states.
Denote by R the set of absorbing states and by T the set of transient states.
Re-order the states so that the transient states come first, then the absorbing
states. The transition matrix then has the form

P =

(
Q R
0 I

)
(64)

where I is the r × r identity matrix.

Exercise 36 For the drunkard’s walk, show that

Q =

 0 1/2 0
1/2 0 1/2
0 1/2 0

 , R =

1/2 0
0 0
0 1/2

 , I =

(
1 0
0 1

)
(65)
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Simple calculations show that for all n ≥ 1

P n =

(
Qn Rn

0 I

)
(66)

where Rn is a complicated matrix depending on Q and R.

Lemma 4 As n→∞,
(Qn)ij → 0

for all absorbing states i, j.

Proof: for a transient state i, there is an absorbing state k, an integer ni and
δi > 0 such that

pik(ni) = δi > 0 (67)

Let n = maxni, and δ = min δi, then for any i ∈ T , there is a state k ∈ R
such that

pik(n) ≥ δ (68)

Hence for any i ∈ T ,∑
j∈T

Qn
ij = 1−

∑
k∈R

P n
ik = 1−

∑
k∈R

pik(n) ≤ 1− δ (69)

In particular this means that Qn
ij ≤ 1− δ for all i, j ∈ T . So for all i ∈ T we

get ∑
j∈T

Q2n
ij =

∑
k∈T

Qn
ik

∑
j∈T

Qn
kj ≤ (1− δ)

∑
k∈T

Qn
ik ≤ (1− δ)2 (70)

This iterates to give ∑
j∈T

Qkn
ij → 0 as k →∞ (71)

for all i ∈ T . It remains to notice that∑
j∈T

Qm+1
ij =

∑
k∈T

Qm
ik

∑
j∈T

Qkj ≤
∑
k∈T

Qm
ik (72)
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and hence the sequence {
∑

k∈T Q
m
ik} in monotone decreasing in m. Therefore∑

j∈T

Qk
ij → 0 as k →∞ (73)

for all i ∈ T , which proves the result.

QED

Notice what the result says: the probability of remaining in the transient
states goes to zero, so eventually the chain must transition to the absorbing
states. So the quantities of interest are related to the time (=number of steps)
needed until the chain exits the transient states and enters the absorbing
states, and the number of visits to other transient states.

Consider the equation

x = Qx (74)

Applying Q to both sides we deduce that

x = Q2x (75)

and iterating this leads to

x = Qnx (76)

for all n. Since Qn → 0 it follows that x = 0. Hence there is no nonzero
solution of the equation x = Qx and therefore the matrix I−Q is non-singular
and so invertible. Define the fundamental matrix

N = (I −Q)−1 (77)

Note that

(I +Q+Q2 + · · ·+Qn)(I −Q) = I −Qn+1 (78)

and letting n→∞ we deduce that

N = I +Q+Q2 + · · · (79)

Theorem 5 Let i, j be transient states. Then
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(1) Nij is the expected number of visits to state j starting from state i
(counting initial state if i = j).

(2)
∑

j Nij is the expected number of steps of the chain, starting in state i,
until it is absorbed.

(3) define the t × r matrix B = NR. Then Bik is the probability that the
chain is absorbed in state k, given that it started in state i.

Proof: the chain starts at X0 = i. Given a state j ∈ T , for k ≥ 0 define
indicator random variables as follows:

Y (k) =

{
1 if Xk = j

0 else
(80)

Then for k ≥ 1

EY (k) = P (Y (k) = 1) = P (Xk = j) = pij(k) = (Qk)ij (81)

and for k = 0 we get EY (0) = δij. Now the number of visits to the state j in
the first n steps is Y (0) + Y (1) + · · ·+ Y (n). Taking the expected value yields
the sum

δij +Qij + (Q2)ij + · · ·+ (Qn)ij = (I +Q+Q2 + · · ·+Qn)ij (82)

which converges to Nij as n → ∞. This proves (1). For (2), note that the
sum of visits to all transient states is the total number of steps of the chain
before it leaves the transient states. For (3), use N =

∑
Qn to write

(NR)ik =
∑
j∈T

Nij Rjk

=
∑
j∈T

∞∑
n=0

(Qn)ijRjk

=
∞∑
n=0

∑
j∈T

(Qn)ijRjk (83)

and note that
∑

j∈T (Qn)ijRjk is the probability that the chain takes n steps
to transient states before exiting to the absorbing state k. Since this is the
only way that the chain can transition to k in n+ 1 steps, the result follows.
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QED

Exercise 37 For the drunkard’s walk,

Q2n+1 = 2−nQ, Q2n+2 = 2−nQ2 (84)

and

N =

3/2 1 1/2
1 2 1

1/2 1 3/2

 (85)

Also

B = NR =

3/4 1/4
1/2 1/2
1/4 3/4

 (86)

Exercise 38 Rework the drunkard’s walk, assuming that a step to the
right has probability 1/3 and a step to the left has probability 2/3.

Exercise 39 [Snell and Grinstead] A city is divided into three areas 1, 2, 3.
It is estimated that amounts u1, u2, u3 of pollution are emitted each day
from these three areas. A fraction qij of the pollution from region i ends up
the next day at region j. A fraction qi = 1 −

∑
j qij > 0 escapes into the

atmosphere. Let w
(n)
i be the amount of pollution in area i after n days.

(a) Show that w(n) = u+ uQ+ · · ·+ uQn−1.
(b) Show that w(n) → w.
(c) Show how to determine the levels of pollution u which would result in a
prescribed level w.

Exercise 40 [The gambler’s ruin] At each play a gambler has probability
p of winning one unit and probability q = 1− p of losing one unit. Assuming
that successive plays of the game are independent, what is the probability
that, starting with i units, the gambler’s fortune will reach N before reaching
0? [Hint: define Pi to be the probability that the gambler’s fortune reaches
N before reaching 0 conditioned on starting in state i. By conditioning on
the first step derive a recursion relation between Pi, Pi+1 and Pi−1.]
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2.3 Ergodic Markov chains

These are a kind of opposite to absorbing chains: the state never settles down
to a fixed value but continues making jumps forever. As before the case is
characterized by the transition matrix. Notation: for a matrix T write T ≥ 0
if Tij ≥ 0 for all i, j and T > 0 if Tij > 0 for all i, j.

Definition 6 Let P be the transition matrix of a Markov chain.

(1) The Markov chain is primitive if there is an integer n such that P n > 0.

(2) The Markov chain is irreducible if for all states i, j there is an integer
n(i, j) such that pij(n(i, j)) > 0.

Exercise 41 Recall the balls in boxes model:

P =

 0 1 0
1/4 1/2 1/4
0 1 0

 (87)

Since

P 2 =

1/4 1/2 1/4
1/8 3/4 1/8
1/4 1/2 1/4

 (88)

it follows that P is primitive.

Exercise 42 Define the two-state swapping chain:

P =

(
0 1
1 0

)
(89)

Then P 2 = I is the identity, hence for all n ≥ 1

P 2n = I =

(
1 0
0 1

)
, P 2n+1 = P (90)

So P is irreducible but not primitive.
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Let e denote the vector in Rn with all entries 1, so

e =


1
1
...
1

 (91)

Theorem 7 [Perron-Frobenius] Suppose P is a primitive n × n transition
matrix. Then there is a unique strictly positive vector w ∈ Rn such that

wTP = wT (92)

and such that

P k → ewT as k →∞ (93)

Proof: we show that for all vectors y ∈ Rn,

P ky → ewTy (94)

which is a positive multiple of the constant vector e. This implies the result.
Suppose first that P > 0 so that pij > 0 for all i, j ∈ S. Let d > 0 be the

smallest entry in P (so d ≤ 1/2). For any y ∈ Rn define

m0 = min
j

yj, M0 = max
j

yj (95)

and

m1 = min
j

(Py)j, M1 = max
j

(Py)j (96)

Consider (Py)i =
∑

j pijyj. This is maximized by pairing the smallest entry
m0 of y with the smallest entry d of pij, and then taking all other entries of
y to be M0. In other words,

M1 = max
i

(Py)i

= max
i

∑
j

pijyj

≤ (1− d)M0 + dm0 (97)
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By similar reasoning,

m1 = min
i

(Py)i ≥ (1− d)m0 + dM0 (98)

Subtracting these bounds gives

M1 −m1 ≤ (1− 2d)(M0 −m0) (99)

Now we iterate to give

Mk −mk ≤ (1− 2d)k (M0 −m0) (100)

where again

Mk = max
i

(P ky)i, mk = min
i

(P ky)i (101)

Furthermore the sequence {Mk} is decreasing since

Mk+1 = max
i

(PP ky)i = max
i

∑
j

pij(P
ky)j ≤Mk (102)

and the sequence {mk} is increasing for similar reasons. Therefore both se-
quences converge as k →∞, and the difference between them also converges
to zero. Hence we conclude that the components of the vector P ky converge
to a constant value, meaning that

P ky → me (103)

for some m. We can pick out the value of m with the inner product

m(eT e) = eT lim
k→∞

P ky = lim
k→∞

eT P ky (104)

Note that for k ≥ 1,

eT P ky ≥ mk(e
T e) ≥ m1(e

T e) = min
i

(Py)i(e
T e)

Since P is assumed positive, if yi ≥ 0 for all i it follows that (Py)i > 0 for
all i, and hence m > 0.

Now define

wj = lim
k→∞

P kej/(e
T e) (105)
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where ej is the vector with entry 1 in the jth component, and zero elsewhere.
It follows that wj > 0 so w is strictly positive, and

P k → ewT (106)

By continuity this implies

lim
k→∞

P kP = ewTP (107)

and hence wTP = wT . This proves the result in the case where P > 0.

Now turn to the case where P is primitive. Since P is primitive, there
exists integer N such that

PN > 0 (108)

Hence by the previous result there is a strictly positive w ∈ Rn such that

P kN → ewT (109)

as k → ∞, satisfying wTPN = wT . It follows that PN+1 > 0, and hence
there is also a vector v such that

P k(N+1) → evT (110)

as k → ∞, and vTPN+1 = vT . Considering convergence along the subse-
quence kN(N + 1) it follows that w = v, and hence

wTPN+1 = vTPN+1 = vT = wT = wTPN (111)

and so

wTP = wT (112)

The subsequence P kNy converges to ewTy for every y, and we want to show
that the full sequence Pmy does the same. For any ε > 0 there is K < ∞
such that for all k ≥ K and all probability vectors y

‖(P kN − ewT )y‖ ≤ ε (113)

Let m = kN + j where j < N , then for any probability vector y

‖(Pm − ewT )y‖ = ‖(P kN+j − ewT )y‖ = ‖(P kN − ewT )P jy‖ ≤ ε (114)
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which proves convergence along the full sequence.

QED

Note that as a corollary of the Theorem we deduce that the vector w is
the unique (up to scalar multiples) solution of the equation

wTP = wT (115)

Also since vT e =
∑
vi = 1 for a probability vector v, it follows that

vTP n → wT (116)

for any probability vector v.

Exercise 43 Recall the balls in boxes model:

P =

 0 1 0
1/4 1/2 1/4
0 1 0

 (117)

We saw that P is primitive. Solving the equation wTP = wT yields the
solution

wT = (1/6, 2/3, 1/6) (118)

Furthermore we can compute

P 10 =

 0.167 0.666 0.167
0.1665 0.667 0.1665
0.167 0.666 0.167

 (119)

showing the rate of convergence.

Aside on convergence [Seneta]: another way to express the Perron-Frobenius
result is to say that for the matrix P , 1 is the largest eigenvalue (in absolute
value) and w is the unique eigenvector (up to scalar multiples). Let λ2 be
the second largest eigenvalue of P so that 1 > |λ2| ≥ |λi|. Let m2 be the
multiplicity of λ2. Then the following estimate holds: there is C < ∞ such
that for all n ≥ 1

‖P n − ewT‖ ≤ C nm2−1 |λ2|n (120)
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So the convergence P n → ewT is exponential with rate determined by the
first spectral gap.

Concerning the interpretation of the result. Suppose that the distribution
of X0 is

P (X0 = i) = αi (121)

for all i ∈ S. Then

P (Xk = j) =
∑
i

P (Xk = j|X0 = i)P (X0 = i) =
∑
i

(P k)ij αi = (αTP k)j(122)

where α is the vector with entries αi. Using our Theorem we deduce that

P (Xk = j)→ wj (123)

as k →∞ for any initial distribution α. Furthermore if α = w then αTP k =
wTP k = wT and therefore

P (Xk = j) = wj (124)

for all k. So w is called the equilibrium or stationary distribution of the
chain. The Theorem says that the state of the chain rapidly forgets its
initial distribution and converges to the stationary value.

Now suppose the chain is irreducible but not primitive. Then we get a
similar but weaker result.

Theorem 8 Let P be the transition matrix of an irreducible Markov chain.
Then there is a unique strictly positive probability vector w such that

wTP = wT (125)

Furthermore

1

n+ 1

(
I + P + P 2 + · · ·+ P n

)
→ ewT (126)

as n→∞.

37



Proof: define

Q =
1

2
I +

1

2
P (127)

Then Q is a transition matrix. Also

2nQn =
n∑
k=0

(
n
k

)
P k (128)

Because the chain is irreducible, for all pairs of states i, j there is an integer
n(i, j) such that (P n(i,j))ij > 0. Let n = maxn(i, j), then for all i, j we have

2n(Qn)ij =
n∑
k=0

(
n
k

)
(P k)ij ≥

(
n

n(i, j)

)
(P n(i,j))ij > 0 (129)

and hence Q is primitive. Let w be the unique stationary vector for Q then

wTQ = wT ↔ wTP = wT (130)

which shows existence and uniqueness for P .
Let W = ewT then a calculation shows that for all n(

I + P + P 2 + · · ·+ P n−1
)

(I − P +W ) = I − P n + nW (131)

Note that I − P +W is invertible: indeed if yT (I − P +W ) = 0 then

yT − yTP + (yT e)w = 0 (132)

Multiply by e on the right and use Pe = e to deduce

yT e− yTPe+ (yT e)(wT e) = (yT e)(wT e) = 0 (133)

Since wT e = 1 > 0 it follows that yT e = 0 and so yT − yTP = 0. By
uniqueness this means that y is a multiple of w, but then yT e = 0 means
that y = 0. Therefore I − P +W is invertible, and so

I + P + P 2 + · · ·+ P n−1 = (I − P n + nW )(I − P +W )−1 (134)

Now WP = W = W 2 hence

W (I − P +W ) = W =⇒ W = W (I − P +W )−1 (135)
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therefore

I + P + P 2 + · · ·+ P n−1 = (I − P n)(I − P +W )−1 + nW (136)

and so

1

n

(
I + P + P 2 + · · ·+ P n−1

)
= W +

1

n
(I − P n)(I − P +W )−1 (137)

It remains to show that the norm of the matrix (I − P n)(I − P + W )−1 is
bounded as n → ∞, or equivalently that ‖(I − P n)‖ is uniformly bounded.
This follows from the bound

‖P nz‖ ≤
∑
ij

(P n)ij|zj| =
∑
j

|zj| (138)

Therefore 1
n
(I − P n)(I − P +W )−1 → 0 and the result follows,

QED

This Theorem allows the following interpretation: for an irreducible chain,
wj is the long-run fraction of time the chain spends in state j.

Exercise 44 A transition matrix is doubly stochastic if each column sum
is 1. Find the stationary distribution for a doubly stochastic chain with M
states.

Exercise 45 [Ross] Trials are performed in sequence. If the last two trials
were successes, then the next trial is a success with probability 0.8; other-
wise the next trial is a success with probability 0.5. In the long run, what
proportion of trials are successes?

Exercise 46 Let {Xn} be a primitive finite state Markov chain with tran-
sition matrix P and stationary distribution w. Define the process {Yn} by
Yn = (Xn−1, Xn). Show that {Yn} is a Markov chain, and compute

lim
n→∞

P (Yn = (i, j)) (139)
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Definition 9 Consider an irreducible Markov chain.

(1) starting in state i, mij is the expected number of steps to visit state j
for the first time (by convention mii = 0)

(2) starting in state i, ri is the expected number of steps for the first return
to state i

(3) the fundamental matrix is Z = (I − P +W )−1

Theorem 10 Let w be the stationary distribution of an irreducible Markov
chain. Then for all states i, j ∈ S,

ri =
1

wi
, mij =

zjj − zij
wj

(140)

where zij is the (i, j) entry of the fundamental matrix Z.

Proof: let M be the matrix with entries Mij = mij, let E be the matrix
with entries Eij = 1, and let D be the diagonal matrix with diagonal entries
Dii = ri. For all i 6= j,

mij = pij +
∑
k 6=j

pik(mkj + 1) = 1 +
∑
k 6=j

pikmkj (141)

For all i,

ri =
∑
k

pik(mki + 1) = 1 +
∑
k

pikmki (142)

Thus for all i, j,

Mij = 1 +
∑
k 6=j

pikMkj −Dij (143)

which can be written as the matrix equation

M = E + PM −D (144)

Multiplying on the left by wT and noting that wT = wTP gives

0 = wTE − wTD (145)

40



The ith component of the right side is 1−wiri, hence this implies that for all
i

ri =
1

wi
(146)

Recall the definition of the matrix Z = (I − P + W )−1, and vector e =
(1, 1, . . . , 1)T . Since Pe = We = e it follows that (I − P + W )e = e and
hence Ze = e and ZE = E = eeT . Furthermore wTP = wTW = wT and so
similarly wTZ = wT and W = WZ. Therefore from (144),

Z(I − P )M = ZE − ZD = E − ZD (147)

Since Z(I − P ) = I − ZW = I −W this yields

M = E − ZD +WM (148)

The (i, j) component of this equation is

mij = 1− zijrj + (wTM)j (149)

Setting i = j gives 0 = 1− zjjrj + (wTM)j, hence

mij = (zjj − zij)rj =
zjj − zij
wj

(150)

QED

2.4 Classification of finite-state Markov chains

Say that states i and j intercommunicate if there are integers n,m such that
pij(n) > 0 and pji(m) > 0. In other words it is possible to go from each state
to the other. A class of states C in S is called closed if pij = 0 whenever i ∈ C
and j /∈ C. The class is called irreducible if all states in C intercommunicate.

Note that if the chain is irreducible then all states intercommunicate and
hence for all i, j there is an integer n such that pij(n) > 0.

Theorem 11 The state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ · · · (151)

where T is the set of all transient states, and each class Ci is closed and
irreducible.
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Proof: (later)
If the chain starts with X0 ∈ Ci then it stays in Ci forever. If it starts

with X0 ∈ T then eventually it enters one of the classes Ci and stays there
forever.

Exercise 47 Determine the classes of the chain:

P =


1/2 1/2 0 0 0 0
1/4 3/4 0 0 0 0
1/4 1/4 1/4 1/4 0 0
1/4 0 1/4 1/4 0 1/4
0 0 0 0 1/2 1/2
0 0 0 0 1/2 1/2

 (152)
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3 Existence of Markov Chains

We have been making an implicit assumption about the Markov chains, and
now it is time to address this openly. Namely, we have been assuming that
the statement “letX0, X1, . . . be random variables . . . ” makes sense. Because
we use the joint distribution for the Xi we need to know that they all exist
as random variables on the same underlying sample space, with the same
underlying probability function. If we use a finite number of Xi then there is
no problem, we are still working with simple random variables. But we want
to consider an infinite number at the same time: for example what does it
mean to say (as we did) “ limn→∞ P (Xn = j) ”? To make sense of this at
the very least we need all Xn to be defined as random variables on the same
sample space. So let’s do that. We will handle the case of a countable state
space at the same time.

3.1 Sample space for Markov chain

Let S be the countable state space of a Markov chain. Let αi and pij be
respectively the initial distribution of X0 and the transition matrix of the
chain. This means that

P (X0 = i) = αi for all i ∈ S (153)

and also that

P (Xn+1 = j |Xn = i) = pij for all i, j ∈ S, all n ≥ 1 (154)

The joint distribution of the Xi follows from this: for example

P (X2 = k,X1 = j,X0 = i) = P (X2 = k |X1 = j)P (X1 = j |X0 = i)P (X0 = i)

= pjk pij αi

In general we have

P (X0 = i0, X1 = i1, . . . , Xn = in) = αi0 pi0i1 . . . pin−1in (155)

We want a sample space Ω with a probability function P defined on it so
that for all n

Xn : Ω→ S (156)
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and so that the joint pmf is given as above.

We take Ω = [0, 1], that is the closed interval of real numbers. We take
the probability function P to be the ‘usual’ length function (more about
this shortly). So an event in Ω is a subset of [0, 1], say A ⊂ [0, 1], and the
probability of A is the ‘length’ of A. For example if A = (a, b] then

P (A) = length(a, b] = |b− a| (157)

Of course we need to extend the notion of length to more general subsets.
But assuming that there is such an extension then we define the random
variables as follows.

a) Partition [0, 1] into S subintervals, call them

{I(0)
i } i ∈ S

with length(I
(0)
i ) = αi for each i. Since

∑
i αi = 1 this covers the whole

interval.

b) Partition each such interval I
(0)
i into further subintervals

{I(1)
i,j }j∈S

so that for every i, j ∈ S we have length(I
(1)
i,j ) = αi pij. Again note that∑

j pij = 1 so we are covering the whole interval I
(0)
i .

c) Inductively partition [0, 1] into intervals {I(n)
i0,i1,...,in

} such that they are

nested according to I
(n)
i0,i1,...,in

⊂ I
(n−1)
i0,i1,...,in−1

, and so that their lengths are

given by length(I
(n)
i0,i1,...,in

) = αi0 pi0i1 . . . pin−1in .

d) Define Xn by Xn(x) = in if x ∈ I(n)
i0,i1,...,in

for some choice of i0, i1, . . . , in−1.

It remains to verify that Xn have the required joint distribution. First
note that

P (X0 = i) = P (x ∈ I(0)
i ) = length I

(0)
i = αi (158)

Then note that

P (X1 = j,X0 = i) = P (x ∈ I(1)
i,j ) = length I

(1)
i,j = pij αi (159)

The general case follows just as easily.

To summarize: we have exhibited the random variables X0, X1, . . . as
functions on the same probability space namely Ω = [0, 1], equipped with
the probability function defined by the usual length.
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3.2 Lebesgue measure

To complete the demonstration we need to extend the notion of length to
include more general subsets of [0, 1]. Why is this? Suppose we want to
calculate

P (Xn = i infinitely often)

This event can be written as

{Xn = i infinitely often} =
∞⋃
n=1

∞⋂
k=n

{Xk = i} (160)

On the right side we have an infinite union of an infinite intersection of
intervals. What is the length of such a set? Clearly we need to extend the
notion of length.

The correct extension is called the Lebesgue measure, or just the measure.
We will delve into this shortly but here we just note that it is possible to do
it in such a way that we can consistently assign a probability to the right
side above, and in fact make sense of any such complicated event that might
arise in the study of our Markov chains.

45



4 Discrete-time Markov chains with count-

able state space

Moving from a finite state space to an infinite but countable state space leads
to novel effects and a broader class of applications. The basic setup is the
same as before: a finite or countably infinite state space S, a sequence of S-
valued random variables {X0, X1, . . . }, and a set of transition probabilities
{pij} for each pair of states i, j ∈ S. The Markov property is the same:

P (Xn = y |X0 = x0, . . . , Xn−1 = xn−1) = P (Xn = y |Xn−1 = xn−1) (161)

for all n ≥ 1 and all states y, x0, . . . , xn−1 ∈ S. Also the transition ‘matrix’
satisfies ∑

j∈S

pij = 1 for all i ∈ S (162)

4.1 Some motivating examples

The one-dimensional random walk has state space Z = {. . . ,−1, 0, 1, . . . },
and transition probabilities

pij =


p if j = i+ 1

q if j = i− 1

0 else

(163)

So at each time unit the chain takes one step either to the left or the right,
with probabilities q and p respectively. The chain has no absorbing states
so it keeps moving forever. Interesting questions are whether it wanders off
to infinity or stays around its starting position, and also rates of various
long-run behavior.

A second important example is the branching process. This describes the
growth of a population. The state is the number of individuals in succes-
sive generations. This changes because of the random number of births and
deaths. In the simplest case each individual produces a random number of
individuals B in the next generation:

Xn+1 =
Xn∑
i=1

Bi
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There is one absorbing state corresponding to extinction. So the interesting
question is whether the chain reaches extinction or keeps growing forever –
or more precisely, the probability that it ever reaches extinction.

4.2 Classification of states

Define

fij(n) = P (X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j |X0 = i) (164)

to be the probability that starting in state i the chain first visits state j after
n steps. Define

fij =
∞∑
n=1

fij(n) (165)

This is the probability that the chain eventually visits state j starting in
state i.

Definition 12 The state j is persistent if fjj = 1. The state j is transient
if fjj < 1.

There is a further separation of persistent states which occurs for infinite
state space.

Definition 13 The mean return time µj of state j is

µj =

{∑∞
n=1 nfjj(n) if j is persistent

∞ if j is transient
(166)

Note that µj may be finite or infinite for a persistent state (this is what we
called rj for the finite state space).

Definition 14 The persistent state j is null-persistent if µj =∞, and it is
non-null persistent if µj <∞.

So there are three types of states in a Markov chain: transient, null
persistent and non-null persistent. This is the classification of states.
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Exercise 48 Define generating functions

Pij(s) =
∞∑
n=0

snpij(n), Fij(s) =
∞∑
n=0

snfij(n) (167)

with the conventions pij(0) = δij and fij(0) = 0. Show that

Pii(s) = 1 + Fii(s)Pii(s) (168)

Show that state i is persistent if and only if
∑

n pii(n) =∞.
[Hint: recall Abel’s theorem: if an ≥ 0 for all n and

∑
n ans

n is finite for all
|s| < 1, then

lim
s↑1

∞∑
n=0

ans
n =

∞∑
n=0

an (169)

4.3 Classification of Markov chains

Say that states i and j intercommunicate if there are integers n,m such that
pij(n) > 0 and pji(m) > 0. In other words it is possible to go from each state
to the other.

Theorem 15 Let i, j intercommunicate, then they are either both transient,
both null persistent or both non-null persistent.

Proof: Since i, j intercommunicate there are integers n,m such that

h = pij(n)pji(m) > 0 (170)

Hence for any r,

pii(n+m+ r) ≥ pij(n)pjj(r)pji(m) = h pjj(r) (171)

Sum over r to deduce∑
k

pii(k) ≥
∑
r

pii(n+m+ r) ≥ h
∑
r

pjj(r) (172)
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Therefore either both sums are finite or both are infinite, hence either both
states are transient or both are persistent. [Omit the proof about null per-
sistent and non-null persistent].

QED

Exercise 49 Suppose that state i is transient, and that state i is accessible
from state j. Show that pij(n)→ 0 as n→∞.

A class of states C in S is called closed if pij = 0 whenever i ∈ C and
j /∈ C. The class is called irreducible if all states in C intercommunicate.

This usage is consistent with the finite state space case – if the chain is
an irreducible class then all states intercommunicate and hence for all i, j
there is an integer n such that pij(n) > 0.

Theorem 16 The state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ · · · (173)

where T is the set of all transient states. Each class Ci is closed and ir-
reducible, and contains persistent states. Either all states in Ci are null
persistent, or all states in Ci are non-null persistent.

Proof: mostly clear except maybe that Ci is closed. So suppose indeed that
there are states i ∈ C and j /∈ C with pij > 0. Since i is not accessible from
j, it follows that pji(n) = 0 for all n ≥ 1. Hence

1− fii = P (Xn 6= i for all n ≥ 1|X0 = i) ≥ P (X1 = j|X0 = i) = pij (174)

which means that fii < 1, but this contradicts the persistence of state i.

QED

If the chain starts with X0 ∈ Ci then it stays in Ci forever. If it starts
with X0 ∈ T then eventually it enters one of the classes Ci and stays there
forever. We will restrict attention to irreducible chains now. The first issue
is to determine which of the three types of chains it may be. Recall the
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definition of a stationary distribution of the chain: this is a distribution π
such that πi ≥ 0 and

∑
i πi = 1, and for all j ∈ S,

πj =
∑
i

πi pij (175)

(it is conventional to use π for discrete chains, we do so from now on).

Theorem 17 Consider an irreducible chain with transition probabilities pij.

(1) The chain is transient if and only if
∑

n pjj(n) <∞ for any (and hence
all) states j ∈ S.

(2) The chain is persistent if and only if
∑

n pjj(n) = ∞ for any (and
hence all) states j ∈ S.

(3) There is a positive vector x satisfying xT = xTP , that is

xj =
∑
i∈S

xipij (176)

The chain is non-null persistent if and only if
∑

i xi <∞.

(4) If the chain has a stationary distribution then it is non-null persistent.

In case (3) we can normalize x by dividing by
∑

i xi and hence recover
the stationary distribution π. Thus as a Corollary we see that a chain has a
stationary distribution if and only if it is non-null persistent.
Proof: items (1), (2) were shown in the exercises. For item (4), suppose that
π is a stationary distribution and note that if the chain is transient then
pij(n)→ 0 for all states i, j and hence

πj =
∑
i

πipij(n)→ 0 (177)

(this needs a little care when the sum is infinite – see Comment after the
proof of Theorem 20).

Turn to item (3). Fix a state k, and let Tk be the time (number of steps)
until the first return to state k. Let Ni(k) be the time spent in state i during
this sojourn, or more precisely,

Ni(k) =
∞∑
n=1

1{Xn=i}∩{Tk≥n} (178)

50



It follows that Nk(k) = 1. Hence

Tk =
∑
i∈S

Ni(k) (179)

By definition

µk = E[Tk |X0 = k] (180)

Define ρi(k) = E[Ni(k) |X0 = k] then

µk =
∑
i∈S

ρi(k) (181)

It turns out that ρi(k) will yield the components of the stationary distribu-
tion.

First we claim that ρi(k) <∞. To see this, write

Lki(n) = E[1{Xn=i}∩{Tk≥n}] = P ({Xn = i} ∩ {Tk ≥ n}) (182)

so that E[Ni(k)] =
∑∞

n=1 Lki(n). Now

fkk(m+ n) ≥ Lki(n) fik(m) (183)

Choose m so that fik(m) > 0 (chain is irreducible) then

Lki(n) ≤ fkk(m+ n)

fik(m)
(184)

Hence

ρi(k) = E[Ni(k) |X0 = k]

=
∞∑
n=1

Lki(n)

≤
∞∑
n=1

fkk(m+ n)

fik(m)

≤ 1

fik(m)
<∞ (185)
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Next we claim that ρi is stationary. Note that for n ≥ 2,

Lki(n) =
∑
j 6=k

Lkj(n− 1)pji (186)

Hence

ρi(k) = Lki(1) +
∞∑
n=2

Lki(n)

= pki +
∑
j 6=k

∞∑
n=2

Lkj(n− 1)pji

= pki +
∑
j 6=k

ρj(k)pji

=
∑
j∈S

ρj(k)pji (187)

where in the last equality we used ρk(k) = 1 (true because Nk(k) = 1). Hence
ρi(k) is stationary.

So for every k ∈ S we have a stationary vector. The chain is non-null
persistent if and only if µk < ∞, in which case we can normalize to get a
probability distribution. It remains to show that this distribution is unique
and positive. For positivity, suppose that πj = 0 for some j, then

0 =
∑
i

πipij(n) ≥ πipij(n) (188)

for all i and n. Hence if i and j communicate then πi = 0 also. But the chain
is irreducible, hence πi = 0 for all i ∈ S. For uniqueness, use the following
Theorem 20.

QED

Definition 18 The state i is aperiodic if

1 = gcd{n | pii(n) > 0} (189)

If a chain is irreducible then either all states are aperiodic or none are.

Exercise 50 Construct the coupled chain Z = (X, Y ) consisting of the
ordered pair of independent chains with the same transition matrix P . If
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X and Y are irreducible and aperiodic, show that Z is also irreducible and
aperiodic. [Hint: use the following theorem: “An infinite set of integers which
is closed under addition contains all but a finite number of positive multiples
of its greatest common divisor” [Seneta]].

Definition 19 An irreducible, aperiodic, non-null persistent Markov chain
is called ergodic.

Theorem 20 For an ergodic chain,

pij(n)→ πj =
1

µj
(190)

as n→∞, for all i, j ∈ S.

Proof: Use the coupled chain described above. It follows that Z is also
ergodic. Suppose that X0 = i and Y0 = j, so Z0 = (i, j). Choose s ∈ S and
define

T = min{n ≥ 1 |Zn = (s, s)} (191)

This is the ‘first passage time’ to state (s, s). Hence

pik(n) = P (Xn = k)

= P (Xn = k, T ≤ n) + P (Xn = k, T > n)

= P (Yn = k, T ≤ n) + P (Xn = k, T > n)

≤ P (Yn = k) + P (T > n)

= pjk(n) + P (T > n) (192)

where we used the fact that if T ≤ n then Xn and Yn have the same distri-
bution. This and related inequality with i and j switched gives

|pik(n)− pjk(n)| ≤ P (T > n) (193)

But since Z is persistent, P (T <∞) = 1 and hence

|pik(n)− pjk(n)| → 0 (194)
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as n→∞. Furthermore, let π be a stationary distribution for X, then

πk − pjk(n) =
∑
i

πi (pik(n)− pjk(n))→ 0 (195)

as n→∞. Together (194) and (195) show that pjk(n) converges as n→∞ to
a limit which does not depend on j or on the choice of stationary distribution
for X. Hence there is a unique stationary distribution for X. Finally from
the previous Theorem we had ρk(k) = 1 and so

πk =
ρk(k)∑
j ρj(k)

=
1

µk
(196)

QED

Comment: the limit in (195) needs to be justified. Let F be a finite subset
of S then∑

i

πi |pik(n)− pjk(n)| ≤
∑
i∈F

πi |pik(n)− pjk(n)|+ 2
∑
i/∈F

πi

→ 2
∑
i/∈F

πi (197)

as n→∞. Now take an increasing sequence of finite subsets Fa converging
to S, and use

∑
i∈S πi = 1 to conclude that

∑
i/∈Fa πi → 0.

Exercise 51 Show that the one-dimensional random walk is transient if
p 6= 1/2. If p = 1/2 (called the symmetric random walk) show that the chain
is null persistent. [Hint: use Stirling’s formula for the asymptotics of n!:

n! ∼ nn e−n
√

2πn (198)

Exercise 52 Consider a Markov chain on the set S = {0, 1, 2, . . . } with
transition probabilities

pi,i+1 = ai, pi,0 = 1− ai
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for i ≥ 0, where {ai | i ≥ 0} is a sequence of constants which satisfy 0 < ai < 1
for all i. Let b0 = 1, bi = a0a1 · · · ai−1 for i ≥ 1. Show that the chain is

(a) persistent if and only if bi → 0 as i→∞
(b) non-null persistent if and only if

∑
i bi <∞,

and write down the stationary distribution if the latter condition holds.

Let A and β be positive constants and suppose that ai = 1−Ai−β for all
large values of i. Show that the chain is

(c) transient if β > 1
(d) non-null persistent if β < 1. Finally, if β = 1 show that the chain is

(e) non-null persistent if A > 1
(f) null persistent if A ≤ 1.

Exercise 53 For a branching process the population after n steps can be
written as

Xn =

Xn−1∑
i=1

Zi (199)

where X0 = 1, and where Zi is the number of offspring of the ith individual
of the (n − 1)st generation. It is assumed that all the variables Zi are IID.
Let π0 be the probability that the population dies out,

π0 = lim
n→∞

P (Xn = 0 |X0 = 1) (200)

Show that π0 is the smallest positive number satisfying the equation

π0 =
∞∑
j=0

πj0 P (Z = j) (201)

[Hint: define the generating functions φ(s) = EsZ and φn(s) = EsXn for
s > 0. Show that φn+1(s) = φ(φn(s)) and deduce that π0 is a fixed point of
φ.]
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4.4 Time reversible Markov chains

Consider an ergodic chain {. . . , Xn−1, Xn, . . . } with transition probabilities
pij and stationary distribution πj. We have

pij = P (Xn = j |Xn−1 = i) (202)

Now consider the reversed chain, where we run the sequence backwards:
{. . . , Xn, Xn−1, . . . }. The transition matrix is

qij = P (Xn−1 = j |Xn = i)

=
P (Xn−1 = j,Xn = i)

P (Xn = i)

= P (Xn = i |Xn−1 = j)
P (Xn−1 = j)

P (Xn = i)

= pji
P (Xn−1 = j)

P (Xn = i)
(203)

Assume that the original chain is in its stationary distribution so that P (Xn =
i) = πi for all i, then this is

qij = pji
πj
πi

(204)

Definition 21 The Markov chain is reversible if qij = pij for all i, j ∈ S.

The meaning of this equation is that the chain “looks the same” when
it is run backwards in time (in its stationary distribution). So you cannot
tell whether a movie of the chain is running backwards or forwards in time.
Equivalently, for all i, j ∈ S

πipij = πjpji (205)

The main advantage of this result is that these equations are much easier to
solve than the original defining equations for π. There is a nice result which
helps here.

Lemma 22 Consider a non-null persistent Markov chain with transition
probabilities pij. Suppose there is a positive vector xj > 0 with

∑
j xj < ∞,

such that for all i, j ∈ S

xipij = xjpji (206)

Then the chain is time reversible and xj is a multiple of the stationary dis-
tribution.
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So this result says that if you can find a positive solution of the simpler
equation then you have solved for the stationary distribution.

Exercise 54 A total of m white and m black balls are distributed among
two boxes, with m balls in each box. At each step, a ball is randomly selected
fro each box and the two selected balls are exchanged and put back in the
boxes. Let Xn be the number of white balls in the first box. Show that the
chain is time reversible and find the stationary distribution.

The quantity πipij has another interpretation: it is the rate of jumps of
the chain from state i to state j. More precisely, it is the long-run average
rate at which the chain makes the transition between these states:

lim
n→∞

P (Xn = i , Xn+1 = j) = πipij (207)

This often helps to figure out if a chain is reversible.

Exercise 55 Argue that any Markov chain on Z which makes jumps only
between nearest neighbor sites is reversible.

Exercise 56 Consider a Markov chain on a finite graph. The states are the
vertices, and jumps are made along edges connecting vertices. If the chain is
at a vertex with n edges, then at the next step it jumps along an edge with
probability 1/n. Argue that the chain is reversible, and find the stationary
distribution.
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5 Probability triples

5.1 Rules of the road

Why do we need to go beyond elementary probability theory? We already
saw the need even for finite state Markov chains. Here is an analogy. When
you drive along the road you operate under the assumption that the road will
continue after the next bend (even though you cannot see it before getting
there). So you can rely on an existence theorem, namely that the road system
of the country is constructed in such a way that roads do not simply ‘end’
without warning, and that you will not drive over a cliff if you follow the
road. Another way of saying this is that you trust that by following the rules
of the road you can proceed toward your destination. Of course whether you
reach your destination may depend on your map-reading ability and skill in
following directions, but that is another matter!

So let’s apply this analogy to probability theory. Our ‘rules of the road’
are the basic definitions and operations introduced before, including events,
probabilities, random variables and so on. Our destination may be quite
complicated, for example: “what is the probability that the pattern HHT-
THH will appear infinitely often if a coin is repeatedly tossed?”. In order to
answer this question we will take our simple rules and push them beyond the
limits of elementary probability. So we will not be able to use mental models
(imagine tossing infinitely many coins!) or rely on our intuition about what
is or is not reasonable. We want to know that our methods will make sense
out there, and that there will be a sample space and an event for which we
can compute this probability. We don’t want to ‘fall off a cliff’ and end up
proving that 0 = 1! So we need an existence theorem that gives conditions
(‘rules of the road’) which will guarantee that we will not end up with math-
ematical nonsense. This is the business addressed in this section. It turns
out to be difficult because there really are dangerous cliffs out there.

5.2 Uncountable sample spaces

We resolved the Markov chain existence question by pushing it onto the
problem of defining a measure on the interval [0, 1]. The resolution is a
general theory that applies to any probability model. So we introduce the
general theory first and then apply it to the Lebesgue measure. As a bonus
we will see how to define continuous random variables also.
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For uncountable sample spaces a new kind of difficulty arises when trying
to define a probability law. We want to maintain the consistency relations as
before, in particular countable additivity: if E1, E2, . . . , En, . . . is a sequence
of pairwise disjoint events, then we want

P (
∞⋃
n=1

En) =
∞∑
n=1

P (En) (208)

But there are so many subsets of an infinite sample space S that it turns
out to be impossible to satisfy countable additivity for all sequences of disjoint
sets. Something has to give. The resolution is to restrict the class of events
by excluding some subsets of S. The class of events should still be large
enough to include everything we encounter in practice, and it should also
include everything we can get by combining events in the usual way. The
correct formulation is called a σ-algebra.

5.3 σ-algebras

Definition 23 Let S be a nonempty set. A σ-algebra in S is a collection of
subsets A satisfying the following conditions:

(1) S ∈ A

(2) if A ∈ A then Ac ∈ A

(3) if A1, A2, . . . is a countable collection of sets in A, then their union⋃
nAn also belongs to A

These properties are expressed by saying A is closed under complements
and countable unions.

Exercise 57 Show that A is also closed under countable intersections.

We summarize this by saying that A is closed under the operations of
complement, countable union and countable intersection. Note however that
in general an uncountable union or intersection of sets in A will not be con-
tained in A. For this reason there may be subsets of S which are not in the
collection A.

Clearly the collection of all subsets of S is a σ-algebra.
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Exercise 58 Let A be the subsets of S which are either countable or whose
complement is countable. Show that A is a σ-algebra.

So in our new way of thinking a sample space S will be equipped with
a σ-algebra A, and only the sets in A will be considered as events. So the
probability law needs to be defined only on A.

Definition 24 A probability triple (S,A, P ) consists of a nonempty set S, a
σ-algebra A in S, and a map P : A → [0, 1] satisfying
(i) 0 ≤ P (A) for all A ∈ A,
(ii) P (S) = 1,
(iii) if A1, A2, . . . is a pairwise disjoint sequence of sets in A then

P (
∞⋃
n=1

An) =
∞∑
n=1

P (An) (209)

The axioms given are tightly compressed, and imply a host of other re-
lations. For example, a finite sequence A1, . . . , An can be augmented to
A1, . . . , An, ∅, . . . and then (iii) provides finite additivity. Since A ∩ Ac = ∅
and S = A ∪ Ac, it follows from (ii) and (iii) that

1 = P (S) = P (A) + P (Ac) (210)

This also implies monotonicity: if A ⊂ B then B = A∪ (B−A) is a disjoint
union, so P (B) = P (A) + P (B − A) ≥ P (A).

Exercise 59 Derive the inclusion-exclusion formula:

P (
n⋃
k=1

Ak) =
∑
i

P (Ai)−
∑
i<j

P (Ai ∩ Aj)

+
∑
i<j<k

P (Ai ∩ Aj ∩ Ak) + · · ·+ (−1)n+1 P (A1 ∩ · · · ∩ An)(211)

There is one important special case, namely whereA = 2S is the σ-algebra
of all subsets of S. When S is finite or countable and P is any map on S
satisfying

∑
s∈S p(s) = 1, then the probability triple can always be taken as

(S, 2S, P ), and in this case all subsets are events. But if S is uncountable
then it may not be possible to extend P to a map on the σ-algebra 2S.
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The important thing to recognize is that we are putting conditions on
(S,A, P ) by demanding that these properties are satisfied. As we will see
these conditions are enough to guarantee that we will ‘stay on the road’ if
we follow the rules.

5.4 Continuity

The axioms guarantee that P has a nice continuity property. A sequence
An of sets is increasing if An ⊂ An+1 for all n. The limit of this sequence
is defined to be

⋃∞
n=1An. Similarly a sequence An is decreasing if Acn is

increasing, and the limit is then
⋂∞
n=1An.

Lemma 25 If An are increasing then P (An) is increasing and limP (An) =
P (
⋃∞
n=1An). If An are decreasing then P (An) is decreasing and limP (An) =

P (
⋂∞
n=1An).

Proof: suppose An are increasing. For each n ≥ 1 define

Bn+1 = An+1 − An, B1 = A1 (212)

Then Bn are disjoint, and for every N ≥ 1

N⋃
n=1

An =
N⋃
n=1

Bn (213)

as well as

∞⋃
n=1

An =
∞⋃
n=1

Bn (214)
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Hence

P (
∞⋃
n=1

An) = P (
∞⋃
n=1

Bn)

=
∞∑
n=1

P (Bn)

= lim
N→∞

N∑
n=1

P (Bn)

= lim
N→∞

P (
N⋃
n=1

Bn)

= lim
N→∞

P (
N⋃
n=1

An)

= lim
N→∞

P (AN) (215)

QED

Exercise 60 Complete the proof for a decreasing sequence.

Recall that Exercise 5 derived countable subadditivity:

P (
∞⋃
n=1

An) ≤
∞∑
n=1

P (An) (216)

5.5 Draw breath

It is worth returning to the original reason for introducing σ-algebras, namely
the impossibility of satisfying the consistency relations (208) for all subsets
of S. At this point it is not clear that P can be defined even on the smaller
collection of sets A. In fact this is possible, and leads to powerful models in
probability theory.
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The issue of how to do this is tackled in probability theory by a general
strategy. First there is a small class of sets where it is ‘obvious’ how to define
the probabilities. The probabilities defined on this small class are then used
to construct a function called outer measure that assigns a value P ∗(E) to
every subset E ⊂ S. The value P ∗(E) agrees with the original probability
value on the small class of ‘obvious’ sets, but cannot be interpreted as a
probability for all sets. Finally a special σ-algebra A is identified where the
function P ∗ satisfies the properties (i), (ii), (iii) required for a probability
law. Then (S,A, P ∗) is the probability triple. When done in the right way
this leads to a sufficiently large σ-algebra that includes the events of interest
for the problem. Of course, once the probability law has been defined you
can start trying to compute probabilities of interesting events, which is where
the real hard work starts!

A theory is only as good as its useful examples. We will shortly look at
how Lebesgue measure is constructed. For the moment we note that property
(iii) of the triple does not lead to inconsistencies.

Lemma 26 Suppose {An} and {Bn} are each pairwise disjoint sequences of
sets in A, and also

∞⋃
n=1

An =
∞⋃
n=1

Bn (217)

Then

∞∑
n=1

P (An) =
∞∑
n=1

P (Bn) (218)

Proof: Let E =
⋃∞
n=1An =

⋃∞
n=1Bn. For all n,m define the set Cn,m =

An ∩Bm. Then the sets Cn,m are disjoint and belong to A, and

∞⋃
n=1

Cn,m = E ∩Bm = Bm,

∞⋃
m=1

Cn,m = An ∩ E = An (219)
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Hence

∞∑
n=1

P (An) =
∞∑
n=1

P (
∞⋃
m=1

Cn,m)

=
∞∑
n=1

∞∑
m=1

P (Cn,m)

=
∞∑
m=1

∞∑
n=1

P (Cn,m)

=
∞∑
m=1

P (
∞⋃
n=1

Cn,m)

=
∞∑
m=1

P (Bm) (220)

QED

So it follows that if a set A ∈ A can be decomposed in several different
ways as a countable union of disjoint sets then the relation (iii) is satisfied
in every case. This is an important consistency check for the definition of a
probability law.

Exercise 61 Let A and B be σ-algebras in S. Show that A ∩ B is also a
σ-algebra (note that C ∈ A ∩ B if and only if C ∈ A and C ∈ B).

5.6 σ-algebra generated by a class

For a finite collection of sets, you can enumerate all the sets obtained by
taking complements, unions and intersections of these sets. This larger col-
lection is called the σ-algebra generated by the original set. This procedure
does not work if you start with an infinite collection of sets, hence another
method of construction is needed.

Let C be a collection of subsets of S. Define σ(C) to be the smallest σ-
algebra in S containing C. More precisely, C ⊂ σ(C) and if A is any σ-algebra
containing C then σ(C) ⊂ A. This is called the σ-algebra generated by C.
The construction of σ(C) is quite strange but it gives a flavor of how things
are done in the world of measure theory. First we note the following.
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Lemma 27 Let T be a collection of σ-algebras, then B =
⋂
A∈T A is a σ-

algebra.

Proof: let Bk be a sequence in B, then Bk ∈ A for every A ∈ T , hence⋃
Bk ∈ A for every A ∈ T , hence

⋃
Bk ∈ B. Similarly B is closed under

complement.

QED

Now define T to be the collection of all σ-algebras in S which contain C.
Then

σ(C) =
⋂
A∈T

A (221)

To see why this is true, note that
⋂
A∈T A is a σ-algebra, it contains C, and

it is the smallest σ-algebra which does so.

Exercise 62 Let C denote the collection of all half-open intervals (a, b] ⊂ R
where a < b. Show that σ(C) contains all intervals of the form (a, b), [a, b]
and [a, b) with a < b.

5.7 Borel sets

The Borel sets constitute an important σ-algebra in R. They are built up
by starting with the half-open intervals (a, b] where a < b. Let C be the
collection of all such intervals. Then the σ-algebra of Borel sets is defined to
be B = σ(C), that is the smallest σ-algebra containing all of these intervals.

The Borel σ-algebra B plays an important role because it is large enough
that we can construct continuous random variables on (R,B, P ). Of course
we have not specified P yet but there are plenty of ways to do this. For the
moment we note some properties of B. Recall that we showed in Exercise 35
that B contains all intervals of the form (a, b), [a, b] and [a, b) with a < b.

Exercise 63 Show that B contains all open and closed sets in R.
[Hint: use the fact that every open set in R is a countable union of pairwise
disjoint open intervals].
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In fact (though we will not prove it here) B is also the σ-algebra generated
by the open sets in R.

For the next exercise, recall that a function f : R → R is continuous if
and only if f−1(A) is open for every open set A ⊂ R.

Exercise 64 Let f : R→ R be continuous. Define

C = {E ⊂ R : f−1(E) ∈ B} (222)

Show that C is a σ-algebra. Show that C contains all open sets. Deduce that
B ⊂ C.

5.8 Lebesgue measure

This is the prototype for probability functions on continuous spaces. The
subsets of R with an obvious length are the intervals:

l(a, b] = l(a, b) = |a− b| (223)

We want to extend this to a measure on the Borel sets. First define outer
measure for all subsets:

m∗(A) = inf
{ ∞∑
n=1

l(In) : A ⊂
∞⋃
n=1

In

}
(224)

where the infimum is taken over all countable collections of intervals whose
union contains A. There is some work to do now. Must check that m∗(I) =
l(I) for every interval, so that m∗ really is an extension of the length function.
This is quite non-trivial, and requires using compactness properties of R.

The next step is to select a good collection of sets where countable addi-
tivity will hold.

Definition 28 A set E ⊂ R is measurable if for every set A ⊂ R we have

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec) (225)

So whenever a measurable set E divides a set A into two disjoint pieces
A ∩ E and A ∩ Ec, the sum of the measures must equal the measure of the
whole. Let M be the collection of all measurable sets. The key result is the
following.
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Lemma 29 M is a σ-algebra, and M contains the Borel sets. If En are
pairwise disjoint sets in M, then

m∗(
⋃

En) =
∑

m∗(En) (226)

It follows that m∗ defines a measure onM, and this is called the Lebesgue
measure. Can check that it is translation invariant. The σ-algebra M is
strictly larger than the Borel sets B, but for most purposes the distinction
is irrelevant, and we restrict the measure to B. We will denote Lebesgue
measure by λ henceforth.

Exercise 65 Show Q has measure zero. Same for any countable set. Same
for the Cantor set.

Despite the complexity of their definition, the Borel sets are not too much
different from open and closed sets, as the following result shows.

Lemma 30 Let B ∈ B be a Borel set. Then for every ε > 0, there is a
closed set F and an open set G such that F ⊂ B ⊂ G, and λ(B − F ) < ε
and λ(G−B) < ε.

Proof: first we construct the open set G which contains B. By definition of
outer measure, for every ε > 0 there is a countable union of open intervals
{In} such that B ⊂

⋃
In and

λ(B) = m∗(B) >
∞∑
n=1

l(In)− ε

Let G =
⋃
In, then G is open, B ⊂ G and

λ(G−B) = λ(G)− λ(B) ≤
∞∑
n=1

l(In)− λ(B) < ε

For the closed set inside F , take F c to be the open set containing Bc as
above.

QED

Exercise 66 Show that outer measure m∗ is translation invariant, that is
m∗(A+ {x}) = m∗(A) for every A ⊂ R and every x ∈ R.
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Exercise 67 Show that Lebesgue measure is complete: if B is measurable
and λ(B) = 0, then every subset A ⊂ B is also measurable and λ(A) = 0.

5.9 Lebesgue-Stieltjes measure

The study of continuous random variables will lead us to a generalization of
Lebesgue measure. Suppose that F : R → R is a non-decreasing function
which is continuous on the right. So if x < y then F (x) ≤ F (y), and for all
x

F (x) = lim
h→0+

F (x+ h) (227)

Then we can assign a new measure to half-open intervals as follows:

µ(a, b] = F (b)− F (a) (228)

The construction of the Lebesgue measure can now be repeated with the
measure µ used instead of l for the intervals. Everything goes through and
we end up with a new measure µF defined on B.

Lemma 31 Let F be a non-decreasing function which is continuous on the
right, and satisfies limx→−∞ F (x) = 0. Then there is a unique measure µF
on B such that for all a < b,

µF (a, b] = F (b)− F (a) (229)

Exercise 68 Define

F (x) =


0 for x ≤ 0

x2 for 0 < x < 1
2

1
2

for 1
2
≤ x < 1

1 for x ≥ 1

(230)

Calculate µF (0, 1/2), µF (0, 1/2], µF ({1/2}), µF [1/2, 1), µF [1/2, 1].
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5.10 Lebesgue-Stieltjes measure on Rn

The Borel sets on Rn are denoted B(Rn). This is the σ-algebra generated by
the open sets in Rn, and is also the σ-algebra generated by the rectangles
(a1, b1]×· · ·× (an, bn]. Let F : Rn → R be increasing and right continuous in
each component, then there is a unique measure µF on (Rn,B(Rn)) satisfying

F (x1, . . . , xn) = µF ((−∞, x1]× · · · × (−∞, xn]) (231)

for all (x1, . . . , xn) ∈ Rn. This is the Lebesgue-Stieltjes measure defined by
F . One special case arises when F is a product, that is F (x1, . . . , xn) =
F1(x1) . . . Fn(xn). In this case

µF = µF1 × · · · × µFn (232)

is a product measure on Rn.

5.11 Random variables

Let S, T be sets, and let A, C be σ-algebras of subsets of S, T respectively. A
map f : S → T is called measurable if f−1(C) ∈ A for every C ∈ C.

Definition 32 Consider a probability triple (S,A, P ). A random variable
on S is a measurable function from (S,A) to (R,B).

So the preimage of every Borel set must be a measurable set. By σ-
algebra properties, it is sufficient to check this for the sets that generate B,
namely the half-open intervals. Even this can be simplified to the following
statement: X is a random variable if and only if for every a ∈ R, the set
X−1(−∞, a] is in A.

Exercise 69 Let A ∈ A, and let 1A be the indicator function of A. Show
that 1A is a random variable.

Exercise 70 Let f, g : R → R be measurable. Show that f + g and fg
are also measurable.

In the previous section we studied the case where Ran(X) is countable,
that is where X is discrete, and S is countable. Measurability does not arise
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in this case because all subsets of S are measurable. Furthermore the pmf
contains all information about probabilities involving X; this is just the list
of probabilities of the (countably) many different values for X.

In general for uncountable S the pmf makes no sense. What takes its
place is the cdf (cumulative generating function). This is the real-valued
function FX : R→ [0, 1] defined by

FX(x) = P (X ≤ x) = P ({ω : X(ω) ≤ x}) = P (X−1(−∞, x]) (233)

Notice it is well-defined because X−1(−∞, x] ∈ A for all x. It is convenient
to drop the subscript X unless we need it to distinguish between cdf’s.

Important properties are:

(a) 0 ≤ F (x) ≤ 1 for all x ∈ R

(b) if x < y then F (x) ≤ F (y)

(c) limx→∞ F (x) = 1, limx→−∞ F (x) = 0

(d) F is right continuous: if xn is a decreasing sequence and lim xn = x
then limF (xn) = F (x)

Exercise 71 Prove (a)–(d).

Exercise 72 Prove that

P (X = x) = F (x)− lim
h↓0

F (x− h) (234)

As far as the random variable X is concerned, everything that can be
known about P is contained in the cdf F . More precisely, for any Borel set
B, the probability P (X ∈ B) = P (X−1(B)) can be computed from F . This
is because F is a non-decreasing function on R which is continuous on the
right, and hence there is a unique Lebesgue-Stieltjes measure µF on R which
satisfies

µF (a, b] = F (b)− F (a) (235)
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for every a < b. Looking at this we find that

P (a < X ≤ b) = µF (a, b] (236)

So the probability of any half-open interval (a, b] is uniquely determined
by F in this way. By our Lebesgue-Stieltjes theorem, we know that µF is
the unique measure on B which satisfies this. Therefore µF (B) is uniquely
determined by F .

This is very nice because it means that we can concentrate on the cdf
FX and forget about the underlying probability triple. All the information
about X is contained in this one function.

Another way to express this is to note that a measurable function “pushes
forward” a measure. Since X is a measurable function from (S,A, P ) to
(R,B), it pushes forward the measure P to the measure µF on (R,B), namely

µF (B) = P (X ∈ B), B ∈ B (237)

Exercise 73 Let f : S → T be a measurable function from (S,A, µ) to
(T, C). For C ∈ C define

ν(C) = µ(f−1(C)) (238)

Prove that ν is a measure on (T, C).

5.12 Continuous random variables

Although the measure µF is always defined it may be quite difficult to work
with. In many cases X satisfies an additional condition which greatly sim-
plifies the measure. Recall that a map g : R→ R is continuous if given any
ε > 0, there is a δ > 0 such that

|g(y)− g(x)| < ε (239)

for every interval (x, y) with

|y − x| < δ (240)

There is also a slightly stronger condition: a map g : R → R is absolutely
continuous if given any ε > 0, there is a δ > 0 such that

n∑
i=1

|g(yi)− g(xi)| < ε (241)
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for every finite collection {(xi, yi)} of nonoverlapping intervals with

n∑
i=1

|yi − xi| < δ (242)

This rather formidable definition is important because of the following The-
orem.

Theorem 33 A function F is an indefinite integral if and only if it is abso-
lutely continuous.

In other words, the function F is absolutely continuous if and only if there
is an integrable function f such that for all a, x ∈ R,

F (x) =

∫ x

a

f(t) dt+ F (a) (243)

Comment: we have not defined the Lebesgue integral yet! this will be done
shortly. In the meantime we will work with examples where f(t) is continuous
and so the Riemann integral is sufficient.

Definition 34 The random variable X is continuous if the function FX is
absolutely continuous.

Comment: strictly we should define X in this case to be absolutely continu-
ous. But everyone uses this notation so we follow suit.

If X is continuous then its cdf is completely determined by the pdf fX ,
which satisfies the following:

(1) fX is measurable and non-negative

(2) for all a ∈ R, P (X ≤ a) = FX(a) =
∫ a
−∞ fX(x) dx

It follows as a consequence that for a continuous random variable X,

P (a < X ≤ b) =

∫ b

a

fX(x) dx (244)
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and therefore that P (X = x) = 0 for every x ∈ R. Thus for continuous
random variables the events {X < a} and {X ≤ a} have the same proba-
bility, and so on. The value of fX at any particular point is irrelevant, as it
does not affect the value of the integral. Notice the normalization condition∫∞
−∞ fX(x)dx = 1.

Many special cases are important, we list a few here.

Uniform The pdf is

f(x) =

{
1
b−a for a ≤ x ≤ b

0 otherwise
(245)

where a < b. Loosely, X is ‘equally likely’ to be anywhere in the interval
[a, b].

Exponential The pdf is

f(x) =

{
ke−kx for x ≥ 0

0 for x < 0
(246)

where k > 0. This is often the model for the time until failure of a device.

Normal The pdf is

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (247)

where µ ∈ R is the mean and σ2 > 0 is the variance. The special case µ = 0,
σ = 1 is called the standard normal. This is the best known and most widely
used random variable, we will see why later.

Exercise 74 Compute the cdf’s of the uniform and exponential.

Exercise 75 For the exponential, show that

P (X > s+ t|X > s) = P (X > t)

for all s, t > 0. This is the famous ‘memoryless’ property of the exponential.
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Exercise 76 Verify that the normal is correctly normalized using the fol-
lowing integration formula: for a > 0 and all b,∫ ∞

−∞
e−ax

2+bxdx =

√
π

a
eb

2/4a (248)

Exercise 77 Here is another continuous random variable. Imagine drop-
ping a coin onto a tiled floor. The tiles are squares of unit side length, the
coin has radius r < 1

2
. Let R be the distance from the coin’s center to the

nearest square center. Find the pdf of R.

5.13 Several random variables

Often have to consider several random variables together. This presents no
problems. By assumption the random variables X1, . . . , Xn are each defined
on the same probability triple (S,A, P ). Define the map X = (X1, . . . , Xn) :
S → Rn. Then X is a vector-valued random variable. We must check that
for every Borel set B ⊂ Rn, the set X−1(B) is measurable. But this is
guaranteed by the condition that each component function Xk is a random
variable.

The joint cdf of X1, . . . , Xn is defined by

FX(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) (249)

Once again all the information about X is contained in this function, and it
defines a measure µF on Rn which determines the probabilities for all events
{X ∈ B}. The two most commonly encountered cases are where each Xk

is discrete and where each Xk is continuous. In the latter case the random
variable X has a joint pdf fX which determines probabilities according to

P (X ∈ B) =

∫
B

fX(x1, . . . , xn)dx1 . . . dxn (250)

5.14 Independence

Recall that a collection of events A1, . . . , An is independent if

P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) · · ·P (Aik) (251)
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for all subsets Ai1 , . . . , Aik .
For each i = 1, . . . , n let Ai be a collection of events. Then the sequence

of collections A1, . . . ,An is independent if for each choice of Ai ∈ Ai for
i = 1, . . . , n, the events A1, . . . , An are independent.

Finally, for a random variable X define σ(X) to be the σ-algebra gener-
ated by X, namely the smallest σ-algebra with respect to which X is mea-
surable. In other words, σ(X) is the smallest σ-algebra which contains all
the events {X−1(B)} for all Borel sets B in R.

As a special case, if X is discrete then Ran(X) = {x1, x2, . . . } is count-
able. Let Ai = X−1(xi), then σ(X) is the σ-algebra generated by the events
A1, A2, . . . .

Definition 35 The random variables X1, X2, . . . , Xn are independent if
σ(X1), σ(X2), . . . , σ(Xn) are independent.

Explicitly, X1, X2, . . . , Xn are independent if for all Borel sets B1, B2, . . . , Bn,

P (X1 ∈ B1, . . . , Xn ∈ Bn) = P (X1 ∈ B1) . . . P (Xn ∈ Bn) (252)

(we allow Bi = R so this checks all subsets of the Xi). The Borel sets are
generated by intervals, so it is enough to check this for Borel sets of the form
B = (−∞, a], and thus independence is equivalent to

FX1,...,Xn(x1, . . . , xn) = FX1(x1) . . . FXn(xn) (253)

for all (x1, . . . , xn) ∈ Rn.
If all Xi are continuous, then independence is equivalent to factorization

of the joint pdf, that is

fX1,...,Xn(x1, . . . , xn) = fX1(x1) . . . fXn(xn) (254)

Exercise 78 A dart is randomly thrown at a square dartboard with unit
side length. It lands at the point (X, Y ). Find the probability that |X−Y | ≤
1/4.

5.15 Expectations

Let X be a random variable with cdf F , then µF is the Lebesgue-Stieltjes
measure on R induced by F . The expected value of X is computed using this
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measure. This is done by defining an integral using this measure in exact
analogy to how the usual Lebesgue integral is defined starting from Lebesgue
measure. We outline the steps below. For convenience we drop the subscript
X on F .

First, recall the indicator function 1A for a set A. For any Borel set B
define ∫

1B dF = µF (B) = P (X ∈ B) (255)

By linearity this extends to simple functions of the form φ =
∑n

i=1 ci 1Ai :∫
φ dF =

n∑
i=1

ci

∫
1Ai dF (256)

Exercise 79 Suppose a simple function φ is written in two ways as a sum
of indicator functions:

φ =
n∑
i=1

ci 1Ai =
m∑
j=1

dj 1Bj (257)

Show that
∫
φ dF is the same when calculated with either expression. [Hint:

first show that a simple function has a unique representation of this form
with disjoint sets {Bj}, then show that the statement holds in this case].

Most of the work goes into showing that any measurable function g can
be approximated by a sequence of simple functions φn, and that the integrals
of the simple functions converge as n → ∞. We will assume these results
here and jump to the conclusion, which is that the integral of a bounded
non-negative measurable function g is defined to be∫

g dF = sup
φ≤g

∫
φ dF (258)

where the sup runs over simple functions which are upper bounded by g. The
following properties of the integral can then be deduced.

Lemma 36 The integral
∫
·dF is defined for all non-negative measurable

functions on R, and satisfies
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(i)
∫
cg dF = c

∫
g dF for all c ∈ R

(ii)
∫

(g + h) dF =
∫
g dF +

∫
h dF

(iii)
∫
g dF ≥ 0 for g ≥ 0

(iv) if gn ↑ g then
∫
gn dF ↑

∫
g dF

The last property (4) is called the monotone convergence theorem and
plays an important role in the theory.

Exercise 80 Let g be bounded and measurable, say |g(x)| ≤ M . For all
n ≥ 1 define the sets

Ek =
{
x :

kM

n
≥ g(x) >

(k − 1)M

n

}
, −n ≤ k ≤ n (259)

Define the simple functions

ψn(x) =
M

n

n∑
k=−n

k 1Ek(x), φn(x) =
M

n

n∑
k=−n

(k − 1) 1Ek(x) (260)

Show that φn(x) ≤ g(x) ≤ ψn(x) for all x and all n. Deduce that

inf
g≤ψ

∫
ψ dF = sup

g≥φ

∫
φ dF (261)

where the infimum and supremum are taken over simple functions.

There is one other important convergence result. First, if g is measurable
write g = g+ − g−. If both

∫
g± dF <∞ then say g is integrable and define∫

g dF =

∫
g+ dF −

∫
g− dF (262)

Lemma 37 (Dominated Convergence Theorem) Suppose {gn} are in-
tegrable, and gn → g as n → ∞. Suppose also that there is an integrable
function h such that |gn| ≤ h, then∫

gn dF →
∫
g dF (263)
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Exercise 81 Use the Dominated Convergence Theorem to show that the
following limit exists, and compute it:

lim
n→∞

∫ 1

0

n sin
( 1

n
√
x

)
dx (264)

Now that we have the integral defined, we can define the expectation.

Definition 38 Let X be a random variable with cdf F . For any real-valued
measurable function g : R→ R,

E[g(X)] =

∫ ∞
−∞

g(x) dF (265)

If X is discrete and Ran(X) = {x1, x2, . . . } then

E[g(X)] =
∑
i

g(xi)P (X = xi) (266)

If X is continuous with pdf f then

E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx (267)

5.16 Calculations with continuous random variables

There are various useful formulas for calculations which deserve a special
mention.

Change of variables Let X be continuous and Y = g(X) for some mea-
surable function g. The cdf of Y is obtained by using

P (Y ≤ y) = P (g(X) ≤ y) =

∫
x : g(x)≤y

fX(x)dx (268)

Exercise 82 Let Z be a standard normal, show the pdf of Y = Z2 is

fY (y) =

{
0 for y ≤ 0

1√
2π
y−1/2 e−y/2 for y > 0

(269)
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If g is invertible there is a formula. Suppose that X = (X1, . . . , Xn) are
continuous with joint pdf fX. Suppose that g is a one-to-one, continuously
differentiable map on Rn. Let T be the inverse of g, and suppose that its
Jacobian J is nonzero everywhere. Define Y = (Y1, . . . , Yn) = g(X1, . . . , Xn).
Then Y is continuous and its pdf is

fY(x) = fX(T (x)) |J(x)| (270)

Exercise 83 Suppose X1, X2 are normal with the joint pdf

f(x, y) =
3

2π
e−

1
2
(2x2+2xy+5y2) (271)

Define U = X1−X2 and V = X1 + 2X2, show that the joint pdf of (U, V ) is

fU,V (u, v) =
1

2π
e−

1
2
(u2+v2) (272)

Events involving independent random variables The probability of an
event involving two independent random variables X, Y can be computed
using an iterated integral. More precisely, for any event B,

P ((X, Y ) ∈ B) =

∫ ∞
−∞

P ((x, Y ) ∈ B) dFX

=

∫ ∞
−∞

(∫
y : (x,y)∈B

dFY

)
dFX (273)

Exercise 84 Suppose X is exponential and Y is uniform on [0, 1], and X, Y
are independent. Show that

P (X + Y ≤ 1) = e−1 (274)
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Although we have not yet defined conditioning with respect to a con-
tinuous random variable, it is often useful to rewrite this result using the
conditioning notation. So we write

P ((x, Y ) ∈ B) = P ((X, Y ) ∈ B |X = x) (275)

then our formula becomes

P ((X, Y ) ∈ B) =

∫ ∞
−∞

P ((X, Y ) ∈ B |X = x) dFX

= E[P ((X, Y ) ∈ B |X)] (276)

As an illustration, suppose that X, Y are independent exponentials with
mean 1 and we want P (X + Y ≥ z) where z ≥ 0. Now

P (X + Y ≥ z |X = x) = P (Y ≥ z − x |X = x) = P (Y ≥ z − x) (277)

because they are independent. Thus

P (Y ≥ z − x) =

{
e−(z−x) for z − x ≥ 0

1 for z − x < 0
(278)

and hence

P (X + Y ≥ z) =

∫ ∞
0

P (X + Y ≥ z |X = x)e−xdx

=

∫ ∞
0

P (Y ≥ z − x)e−xdx

=

∫ z

0

e−zdx+

∫ ∞
z

e−xdx

= ze−z + e−z (279)

Similar reasoning applies to several independent random variables. The same
technique can be applied even when the random variables are dependent.

Exercise 85 Suppose X is uniform on [0, 1] and Y is uniform on [0, X].
Calculate EY .

Comment: for a continuous random variable X the event {X = x} has
probability zero, so our earlier definition of conditional probability does not
give meaning to the expression P (A |X = x). We will return later to this
problem.
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5.17 Stochastic processes

In subsequent sections we will often want to work with an infinite sequence
of random variables X1, X2, . . . with some prescribed joint distributions. For
Markov chains with countable state space we did this by defining them on
[0, 1] with Lebesgue measure. But for continuous r.v.’s we need a better way.
We consider the basic case where the Xk are all independent. In this case all
the information is contained in the individual cdf’s F1, F2, . . . .

Theorem 39 Let {Fk} be a sequence of cdf ’s on R. There exists on some
probability space (S,A, P ) an independent sequence of random variables {Xk}
such that Xk has cdf Fk.

A few words about the proof. The general strategy runs as before: first
define probabilities for a small class of sets, then extend to a larger σ-algebra.
The process is constructed on the infinite product space R∞ = R×R× · · · .
A point in R∞ is a sequence s = (s1, s2, . . . ). A set A ⊂ R∞ is called a
cylinder set if there are integers (i1, . . . , ik) and measurable sets Bi1 , . . . , Bik

such that

A = {s | si1 ∈ Bi1 , . . . , sik ∈ Bik} (280)

The probability of this cylinder set is defined to be

P (A) = µFi1 (Bi1) . . . µFik (Bik)

= P (Xi1 ∈ Bi1) . . . P (Xik ∈ Bik) (281)

It is not hard to show that P is finitely additive on the cylinder sets.

Exercise 86 Let A,B be disjoint cylinder sets such that A ∪ B is also a
cylinder set. Show that P (A ∪B) = P (A) + P (B).

The hard work comes in showing countable additivity for P on the cylin-
der sets. As for the Lebesgue measure this needs a compactness argument.

Exercise 87 Suppose that T is a collection of sets and P is a probability
with the following properties: if T1, . . . , Tn ∈ T are pairwise disjoint, such
that

⋃n
i=1 Ti ∈ T then

P (
n⋃
i=1

Ti) =
n∑
i=1

P (Ti) (282)
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Suppose also that whenever T1, T2, · · · ∈ T such that Tn+1 ⊂ Tn and
⋂∞
n=1 Tn =

∅, it follows that

P (Tn)→ 0 as n→∞ (283)

Prove that P is countably additive on T : if T1, · · · ∈ T are pairwise disjoint,
such that

⋃∞
i=1 Ti ∈ T then

P (
∞⋃
i=1

Ti) =
∞∑
i=1

P (Ti) (284)

Once these properties are established there is a general machinery for
extending P to a measure on the σ-algebra generated by the cylinder sets. In
the case where the random variables are discrete the construction is somewhat
simplified although the compactness property is still needed. In this case the
state space R∞ can be replaced by S∞ where S is discrete. The process can
then be constructed on ([0, 1],B) where B is the Borel σ-algebra on [0, 1] (this
is clear when S = {0, 1}).
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6 Limit Theorems for stochastic sequences

This section is concerned with sums and averages of random variables. We
already noted that E(X) has an operational meaning, namely that if an
experiment is repeated many times under identical conditions and X is mea-
sured each time, then E(X) is the long-run average value of the measurements
of X. To analyze this we need to look at the average of many trials. This
leads to the Law of Large Numbers (LLN) and also to the Central Limit
Theorem (CLT).

6.1 Basics about means and variances

The Limit Theorems mostly concern sequences of random variables. For a
sequence of r.v.’s X1, X2, . . . , Xn the sample mean is defined to be

X =
1

n
(X1 + · · ·+Xn) (285)

The expected value is a linear operator so the mean is easily found:

EX =
1

n
(EX1 + · · ·+ EXn) (286)

The variance is not linear. However in most applications the variables Xi are
independent, and in this case the variance distributes also:

VAR[X] =
1

n2
(VAR[X1] + · · ·+ VAR[Xn]) (287)

Recall the notation for mean and variance:

µ = EX, σ2 = VAR[X] = EX2 − µ2 (288)

6.2 Review of sequences: numbers and events

Before considering convergence of random variables we first recall how con-
vergence is defined for ordinary sequences of numbers. Consider a sequence
of real numbers a1, a2, . . . . The sequence converges to a if for every ε > 0
there is an integer N <∞ such that

|an − a| < ε for all n ≥ N (289)
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Exercise 88 Prove the sequence an = n sin(x/n) converges to x.

There is another way to formulate convergence that suits our needs better.
Recall some definitions: the number b is an upper bound for the set A ⊂ R
if x ≤ b for all x ∈ A. The number c is the least upper bound for A if c is
an upper bound, and if c ≤ b for every upper bound b. A basic ingredient of
real analysis is the fact that every bounded set has a least upper bound. We
will write sup (supremum) for the least upper bound. The inf (infimum) is
defined in a similar way as the greatest lower bound.

The sup of the sequence {an} is the least upper bound, written as sup an.
Similarly for inf an. The lim sup of an is defined as

lim sup an = lim an = inf
n≥1

sup
k≥n

ak (290)

The meaning is: eventually the sequence is bounded above by liman + ε for
any ε > 0. The lim inf is defined similarly:

lim inf an = lim an = sup
n≥1

inf
k≥n

ak (291)

So loosely speaking this means that the sequence eventually ends up in the
interval [liman, liman]. This gives a way to define convergence: the sequence
converges if and only if liman = liman, in which case we define lim an to be
this common value.

Exercise 89 Show that this definition of convergence agrees with the pre-
vious one.

Exercise 90 Compute liman and liman for an = (n cos(nπ))/(n+ 1).

Now we turn to sequences of events A1, A2, . . . . It is assumed that all sets
An are subsets of the same state space S. By analogy with real sequences
define

limAn =
∞⋂
n=1

∞⋃
k=n

Ak, limAn =
∞⋃
n=1

∞⋂
k=n

Ak (292)

What does this mean? Suppose first that ω ∈ limAn, then for every n ≥ 1,
ω ∈

⋃∞
k=nAk, meaning that ω belongs to at least one of the sets An, An+1, . . . .
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Thus ω appears in the sets An infinitely often; no matter how far along in
the sequence you go, ω will belong to a set further along. Thus

limAn = {ω ∈ S |ω ∈ An i.o.} (293)

where i.o. stands for infinitely often. Similarly, if ω ∈ limAn, then for some
n, it must be true that x ∈ Ak for all k ≥ n, meaning that ω belongs to every
set Ak beyond some point in the sequence. So

limAn = {ω ∈ S |ω ∈ An eventually} (294)

From this it is clear that

limAn ⊂ limAn (295)

And this leads to the definition of convergence: the sequence {An} converges
if and only if limAn = limAn, in which case limAn is defined to be this
common event.

Note that the operations used to construct limAn and limAn are all oper-
ations that preserve the σ-algebra structure. So if {An} are measurable (i.e.
events) then so are limAn and limAn.

Consider now a sequence of random variables X1, X2, . . . . Each of these
is a measurable function on a probability triple (S,A, P ).

Exercise 91 Show that

{s | supXn(s) ≤ x} =
∞⋂
n=1

{s |Xn(s) ≤ x}

{s | inf Xn(s) ≥ x} =
∞⋂
n=1

{s |Xn(s) ≥ x} (296)

It follows that supXn and inf Xn are also random variables. Therefore so
are

limXn = inf
n≥1

sup
k≥n

Xk, limXn = sup
n≥1

inf
k≥n

Xk (297)

So convergence of Xn concerns the properties of these random variables. If
these are equal at some point s ∈ S then we define the common value to
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limXn(s). This is generally not a definition of the random variable limXn

since it may not exist on the whole space. This will not matter as we will be
concerned only with the set where it is defined.

Definition 40 The sequence {Xn} converges to X almost surely (a.s.) if

P ({s ∈ S | limXn(s) = X(s)}) = 1 (298)

Note: this is saying both that Xn converges on a set of measure 1, and
also that the limiting value equals X on a set of measure 1. The following
result gives a useful way to prove convergence.

Lemma 41 {Xn} converges to X a.s. if and only if for every ε > 0,

P (|Xn −X| ≥ ε i.o.) = 0 (299)

Proof: let s ∈ S. The sequence Xn(s) fails to converge to X(s) if and only
if there is some ε > 0 such that |Xn(s)−X(s)| > ε infinitely often. Hence

{s | lim
n
Xn(s) 6= X(s)} =

⋃
ε

{s | |Xn(s)−X(s)| ≥ ε i.o.} (300)

Thus for all ε > 0,

P (lim
n
Xn 6= X) ≥ P (|Xn −X| ≥ ε i.o.) (301)

Thus if {Xn} converges to X a.s. then P (limnXn 6= X) = 0, and hence (301)
implies (299). Conversely, the union over all ε in (300) can be restricted to
rational values, because the event {s | |Xn(s)−X(s)| ≥ ε i.o.} is increasing as
ε decreases. Hence if (299) holds for every ε > 0, then by countable additivity
the union over rational values in (300) is zero. Thus by continuity the right
side of (300) has probability zero also, and hence so does the left side, and
so {Xn} converges to X a.s..

QED
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6.3 The Borel-Cantelli Lemmas and the 0− 1 Law

Lemma 42 (First Borel-Cantelli Lemma) Let An be a sequence of events,
and suppose that

∑
n P (An) <∞. Then

P (lim supAn) = P (An i.o.) = 0 (302)

Proof: By definition

lim supAn =
∞⋂
n=1

∞⋃
k=n

Ak ⊂
∞⋃
k=n

Ak (303)

holds for all n. Hence

P (lim supAn) ≤ P (
∞⋃
k=n

Ak) ≤
∞∑
k=n

P (Ak) (304)

which goes to zero as n→∞ because the infinite sum converges.

QED

Lemma 43 (Second Borel-Cantelli Lemma) Let An be a sequence of in-
dependent events, and suppose that

∑
n P (An) =∞. Then

P (lim supAn) = P (An i.o.) = 1 (305)

Proof: Sufficient to show that P (lim supAn)c = 0. Now

(lim supAn)c =
∞⋃
n=1

∞⋂
k=n

Ack (306)

so sufficient to show that for all n ≥ 1,

P (
∞⋂
k=n

Ack) = 0 (307)
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Using independence and the inequality 1− x ≤ e−x valid for all real x gives

P (
∞⋂
k=n

Ack) ≤ P (
n+m⋂
k=n

Ack)

=
n+m∏
k=n

P (Ack)

=
n+m∏
k=n

(1− P (Ak))

≤ exp[−
n+m∑
k=n

P (Ak)] (308)

By assumption
∑n+m

k=n P (Ak)→∞ as m→∞, hence exp[−
∑n+m

k=n P (Ak)]→
0.

QED

These Lemmas have a surprising consequence, namely that for an inde-
pendent sequence An, the event lim supAn, i.e. the event that An is true
infinitely often, either has probability zero or probability one – it can never
have probability 1/2 or 3/4 etc. This is the Borel 0 − 1 Law. For example,
toss a coin and consider the event “does the pattern HHTTHH appear in-
finitely often?”. By lumping together every 6 successive tosses you get an
independent sequence, and then it follows that the event is either certain or
impossible (in this case it is certain).

The 0− 1 law was generalized by Kolmogorov to include all events which
are determined by the tail of the sequence A1, A2, . . . . More precisely, the
tail field is defined to be

τ =
∞⋂
n=1

σ(An, An+1, . . . ) (309)

where σ(A,B, . . . ) is the σ-algebra generated by the events A,B, . . . . So the
meaning of the tail field is that it contains events which for any n do not
depend on the first n events A1, . . . , An.
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Lemma 44 (Kolmogorov’s 0− 1 Law) If the events A1, A2, . . . are in-
dependent, with tail field τ , and A is any event in τ , then P (A) = 0 or
P (A) = 1.

Corollary 45 If X is measurable with respect to τ , then X is constant al-
most surely.

The meaning of these 0 − 1 laws is that every event in the tail field is
either certain or impossible, and any measurement which depends only on
the tail field is constant. For example, consider the long-run average

X = lim
n→∞

1

n

(
X1 + · · ·+Xn

)
We don’t know yet that the right side converges. But supposing it does, then
the left side is a random variable that depends only on the tail σ-field – for
example if you throw away the first 1,000,000 measurements of X it will not
change this limit. Hence its value must be a constant. If the Xi all have
mean µ, then so does X. But a constant is equal to its mean, therefore if it
exists we deduce that X = µ. The next few sections concern the proof that
X exists.

6.4 Some inequalities

First recall Markov’s inequality: for any random variable X and for any
numbers a > 0 and k > 0,

P (|X| ≥ a) ≤ 1

ak
E[|X|k] (310)

The proof is easy:

E[|X|k] =

∫
|x|kdF

≥
∫
|x|≥a
|x|kdF

≥ ak
∫
|x|≥a

dF

= akP (|X| ≥ a) (311)
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An important special case of Markov’s inequality is called Chebyshev’s
inequality: take X = Y − EY and k = 2 to get

P (|Y − EY | ≥ a) ≤ 1

a2
Var(Y ) (312)

Exercise 92 Take Y exponential, find a large enough so that the right side
of Chebyshev’s inequality is less than 0.1.

6.5 Modes of convergence

The Limit Theorems concern the behavior of sums of random variables as
the number of summands grows without bound. We need to know how to
determine convergence and limiting behavior. There are several ways to do
this. One is the notion of strong convergence introduced above which is
repeated below in item (1).

Consider a sequence of random variables {X1, X2, . . . }.

(1) the sequence converges to X almost surely (a.s.) if

P ( lim
n→∞

Xn = X) = 1 (313)

or more precisely, the event {ω | limn→∞Xn(ω) = X(ω)} has probabil-
ity one.

(2) the sequence converges to X in L2 if

E|Xn −X|2 → 0 (314)

as n→∞.

(3) the sequence converges to X in probability if for every ε > 0

P (|Xn −X| > ε)→ 0 (315)

as n→∞.

(4) the sequence converges to X weakly if

lim
n→∞

P (Xn ≤ t) = P (X ≤ t) (316)

for all t where the cdf FX(t) = P (X ≤ t) is continuous.
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These notions of convergence are related as the following lemma shows.
Notice that only (1) is a statement about a limiting event.

Lemma 46

(1), (2) =⇒ (3) =⇒ (4) (317)

Proof: (2) =⇒ (3) follows from the Chebyshev inequality: for any ε > 0

P (|Xn −X| ≥ ε) ≤ E(Xn −X)2

ε2
(318)

The right side converges to zero as n→∞, therefore so does the left side.
(1) =⇒ (3): for any ε > 0 and any n, a.s. convergence guarantees that

P (
⋃
k≥n

{ω | |Xk −X| ≥ ε})→ 0 (319)

Hence

P ({ω | |Xk −X| ≥ ε}) ≤ P (
⋃
k≥n

{ω | |Xk −X| ≥ ε})→ 0 (320)

(3) =⇒ (4): let F (t) = P (X ≤ t), Fn(t) = P (Xn ≤ t) then

F (t− ε) = P (X ≤ t− ε)
= P (X ≤ t− ε,Xn ≤ t) + P (X ≤ t− ε,Xn > t)

≤ P (Xn ≤ t) + P (Xn −X ≥ ε) (321)

By assumption the second term goes to zero as n→∞, and so

F (t− ε) ≤ lim inf Fn(t) (322)

A similar argument works to lower bound F (t + ε) by lim supFn(t). Hence
for all ε > 0,

F (t− ε) ≤ lim inf Fn(t) ≤ lim supFn(t) ≤ F (t+ ε) (323)

If t is a continuity point of F then taking ε ↓ 0 shows that Fn(t)→ F (t).

QED
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Exercise 93 Suppose that Xn converges to X in probability, and that f
is uniformly continuous. Show that f(Xn) converges to f(X) in probability.

Exercise 94 Let Xn be uniform (discrete) on the set {1, 2, . . . , n}. Show
that for 0 ≤ x ≤ 1,

lim
n→∞

P (n−1Xn ≤ x) = x (324)

6.6 Weak law of large numbers

The first version is easy to prove and the most widely used, so we start
here. We have a sequence of random variables X1, X2, . . . which are all
independent and identically distributed (IID). We should think of these as
successive independent measurements of the same random variable. They
have a common mean µ and variance σ2. We assume that both of these are
finite. Recall that two variables X, Y are uncorrelated if EXY = EX EY , or
equivalently COV[X, Y ] = 0. This is weaker than independence.

Theorem 47 Let Sn = X1 + · · ·+Xn where Xi have a common mean µ and
variance σ2 (both assumed finite), and where the variables are all uncorre-
lated. Then as n→∞,

Sn
n
→ µ in L2 and in probability (325)

Proof: by Lemma 46 it is sufficient to prove convergence in L2. Since ESn =
nµ we have

E
(Sn
n
− µ

)2

= VAR
Sn
n

=
1

n2
VAR[X1 + · · ·+Xn] =

1

n2
nσ2 =

σ2

n
(326)

Hence Sn/n→ µ in L2.

QED

The weak law can be used to justify the ‘obvious’ meaning of probabilities
as limiting frequencies of occurrence.

Exercise 95 [Shannon’s Theorem] Suppose that Xi are IID discrete tak-
ing values {1, . . . , r} with positive probabilities p1, . . . , pr. For a sequence
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i1, . . . , in define

pn(i1, . . . , in) = pi1 . . . pin (327)

Define Yn = pn(X1, . . . , Xn). Show that

− 1

n
log Yn → −

r∑
i=1

pi log pi (328)

with probability 1.

The second version is more general and applies to a broader range of
situations, for example when the variance may not exist.

Theorem 48 Let Sn = X1 + · · · + Xn where Xi are IID, and assume that
E|Xi| <∞, so that µ = EXi exists. Then

Sn
n
→ µ in probability (329)

We will not prove the Theorem here, but note that the conclusion is
weaker than in Theorem 47, because it only guarantees convergence in prob-
ability.

6.7 Strong law of large numbers

The Strong Law gives conditions for a.s. convergence of the sample mean of
a sequence of random variables. We state a first version of the SLLN which
can be proved without too much work. Then we state a stronger version that
needs more work.

Theorem 49 Let X1, X2, . . . be IID random variables with µ = EX. As-
sume that E|X|p <∞ for p = 1, 2, 3, 4. Let Sn = X1 + · · ·+Xn, then

Sn
n
→ µ a.s. as n→∞ (330)

Proof: without loss of generality we assume µ = 0, as this can be achieved
by replacing X by X − µ. Then we wish to show that n−1Sn → 0 a.s.. or
more precisely that the event

{ω | lim
n→∞

n−1Sn(ω) = 0} (331)
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has probability one. Lemma 41 established that this is equivalent to the
following statement: for every ε > 0,

P (|n−1Sn| ≥ ε i.o.) = 0 (332)

Let

An = {ω | |n−1Sn(ω)| ≥ ε} (333)

The event {ω | |n−1Sn(ω)| ≥ ε i.o.} is just lim sup An. So we want to show
that P (lim sup An) = 0. By Borel-Cantelli we just need to show that∑

k P (Ak) is convergent and we are done.
Obviously the convergence of the sum depends on how quickly the terms

P (Ak) go to zero as k →∞. As long as they go faster than k−1 we are fine.
So that is what we will show. We use Markov’s inequality, but now with
exponent 4:

P (Ak) = P (|Sk| ≥ kε) ≤ ES4
k

k4ε4
(334)

We have

ES4
k =

∑
a,b,c,d

EXaXbXcXd (335)

where each index runs from 1 to k. Since EXk = 0 and the variables are
independent, if a 6= b 6= c 6= d then

EXaXbXcXd = EXaEXbEXcEXd = 0 (336)

Similarly if three indices are different, say a = b 6= c 6= d then

EXaXbXcXd = EX2
aEXcEXd = 0 (337)

So the only nonzero contributions arise when there are either two or one
distinct indices. This gives

ES4
k =

∑
a

EX4
a + 3

∑
a6=b

EX2
aEX2

b = k(EX4) + 3k(k − 1)(EX2) (338)

As a function of k this expression grows proportionately to k2, so we have a
constant C such that

ES4
k ≤ Ck2 (339)
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Inserting in our bound gives

P (Ak) ≤
C

k2ε4
(340)

and since the series
∑
k−2 is finite this proves the result.

QED

So this proves the Strong Law. It can be extended by weakening the
conditions as follows.

Theorem 50 The Strong Law holds for an IID sequence X1, X2, . . . if E|Xi| <
∞.

Exercise 96 Define the sequence Xn inductively by setting X0 = 1, and
selecting Xn+1 randomly and uniformly from the interval [0, Xn]. Prove that
1
n

logXn converges a.s. to a constant, and evaluate the limit.

6.8 Applications of the Strong Law

Renewal theory offers a nice application. Suppose the Xi are positive and
IID, then think of Tk = X1 + · · · + Xk as the time of the kth occurrence of
some event. For example, Xi could be the lifetime of a component (battery,
lightbulb etc) which gets replaced as soon as it breaks. Then Tk is the time
when the kth component fails, and

Nt = sup{n |Tn ≤ t} (341)

is the number of breakdowns up to time t.

Lemma 51 Assuming that EXi = µ <∞, then as t→∞ we have

Nt

t
→ 1

µ
a.s. (342)

Comment: The result says that the rate of breakdowns converges to the
inverse of the lifetime of the components – a result which agrees with our
intuition.
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Proof: the proof is an application of the SLLN. We know from SLLN that

Tn
n
→ µ a.s. (343)

as n→∞. Also we have

TNt ≤ t < TNt+1 (344)

so therefore

TNt
Nt

≤ t

Nt

≤ TNt+1

Nt + 1

Nt + 1

Nt

(345)

Now Tn < ∞ for all n and hence Nt → ∞ as t → ∞. By SLLN there is an
event B1 with P (B1) = 1 such that

Nt →∞ as t→∞ and
Tn
n
→ µ as n→∞ (346)

Therefore on this event we also have

TNt
Nt

→ µ and
Nt + 1

Nt

→ 1 as t→∞ (347)

Hence by the pinching inequalities we get

t

Nt

→ 1

µ
as t→∞ (348)

QED
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7 Moment Generating Function

One useful way to present the information about a random variable is through
its moment generating function (mgf). We will use this representation to
derive the Central Limit Theorem and also large deviation bounds.

7.1 Moments of X

For k ≥ 0 the quantity E[Xk] is called the kth moment of the r.v. X. These
are defined by integrals which may or may not exist:

EXk =

∫
xk dF (x) (349)

To see an example where moments do not exist, consider the Cauchy distri-
bution with pdf

f(x) =
a

π

1

x2 + a2
(350)

with a > 0. The slow decay of f as x → ∞ means that all integrals∫
|x|pf(x)dx with p ≥ 1 do not exist. So the moments of X do not exist

for all k ≥ 1.
The first and second moments are the most important features of a ran-

dom variable and usually exist. They produce the mean and variance which
are the most widely used statistics of X.

Exercise 97 Compute the mean and variance for the uniform and the
exponential pdf’s.

7.2 Moment Generating Functions

The moment generating function (mgf) M(t), if it exists, is defined for t ∈ R
by

M(t) = E[etX ] =

∫
R
etx dF (x) (351)

Let us assume for the moment that M(t) exists for all t in an interval con-
taining 0. Then ignoring technical issues for a moment we may differentiate
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and find

d

dt
M(t) =

d

dt

∫
R
etxdF (x)

=

∫
R

d

dt
etxdF (x)

=

∫
R
x etxdF (x)

= E[XetX ] (352)

Now setting t = 0 we find

d

dt
M(t)|t=0 = EX (353)

Thus the first derivative of the mgf gives the mean value. By taking the
second derivative we find

d2

dt2
M(t)|t=0 = EX2 (354)

and similarly for all k ≥ 1 (again assuming that this formal operation can be
justified)

dk

dtk
M(t)|t=0 = EXk (355)

This explains the name mgf, and also gives a procedure for recovering the
moments from the mgf. As an example, consider the normal distribution.
The pdf is

f(x) =
1√
2π

e−x
2/2 (356)

The mgf is

M(t) =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx (357)

Complete the square to get

M(t) =
1√
2π

∫ ∞
−∞

et
2/2e−(x−t)2/2dx = et

2/2 (358)
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This is defined for all t ∈ R.

Exercise 98 For the exponential with pdf f(x) = ke−kx show that M(t)
is defined for all t < k. Deduce that the nth moment is n!k−n.

Back to technicalities. Assume that M(t) is defined throughout an inter-
val (−t0, t0) containing 0. So the function etx is integrable for all t ∈ (−t0, t0).
Recall the Taylor series expansion∣∣∣etx∣∣∣ =

∣∣∣ ∞∑
k=0

(tx)k

k!

∣∣∣ ≤ ∞∑
k=0

|tx|k

k!
= e|tx| (359)

By assumption the right side is integrable on (−t0, t0) and uniformly bounds
the partial sums, so the Dominated Convergence Theorem implies

∞∑
k=0

tk

k!

∫
xk dF =

∞∑
k=0

∫
(tx)k

k!
dF =

∫ ∞∑
k=0

(tx)k

k!
dF =

∫
etx dF = M(t)(360)

This is the Taylor series expansion for M(t), and the Taylor coefficients are∫
xkdF = E[Xk]. Since this is valid in a nonzero interval around 0 it follows

that

dk

dtk
M(t)|t=0 = EXk (361)

as desired. So the key requirement is existence of the mgf in some open
interval containing 0.

Exercise 99 Suppose X is continuous and has a power-law tail, meaning
that there are C,K <∞ and s > 1 such that

f(x) ≥ C |x|−s for |x| ≥ K (362)

Show that M(t) exists only at t = 0. Do the moments exist?

Exercise 100 Suppose M(t1) < ∞ and M(t2) < ∞, where t1 < t2. Show
that M(s) <∞ for all t1 ≤ s ≤ t2.

The next property states that the mgf of a sum is the product of the
mgf’s. This is one of the most useful properties of the mgf.
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Suppose X1, . . . , Xn are independent and their mgf’s M1, . . . ,Mn all exist
in some interval containing 0. Then the mgf of X1 + · · · + Xn exists in the
same interval and is equal to

E[et(X1+···+Xn)] = M1(t)M2(t) . . .Mn(t) (363)

Exercise 101 Find the mgf of a sum of n IID random variables uniform
on [0, L].
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8 The Central Limit Theorem

The Law of Large Numbers says that the sample mean converges to the true
mean, but does not say anything about how the convergence occurs. The
Central Limit Theorem gives more precise information, and in particular
shows a universal behavior for the mode of convergence. Recall that Z is a
standard normal random variable if

P (a ≤ Z < b) =
1√
2π

∫ b

a

e−x
2/2 dx (364)

Recall also that mgf of the standard normal is

MZ(t) = et
2/2 (365)

We will say that the sequence of random variables Xn converges to X in
distribution if for all a < b

P (a ≤ Xn < b)→ P (a ≤ X < b) (366)

as n→∞. This is also called weak convergence.

Theorem 52 Let X1, X2, . . . be IID with finite mean EXi = µ and finite
variance VAR[Xi] = σ2. Let Sn = X1 + · · ·+Xn. Then the sequence

Sn − nµ
σ
√
n

(367)

converges to the standard normal in distribution.

Recall that the LLN says that Sn−nµ
n

converges to zero a.s.. So the CLT
tells us about the rate of convergence, namely that if we scale up by the
factor

√
n then the sequence settles down to a nonzero limit (the factor of σ

is pulled out for convenience).
Proof: (actually just a sketch) First define

Yn =
Xn − µ
σ

, Tn = Y1 + · · ·+ Yn (368)

Then Yn has mean zero and variance 1, and

Tn =
Sn − nµ

σ
(369)
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So it is sufficient to prove that the sequence Tn/
√
n converges weakly to the

standard normal. The strategy of proof uses the moment generating function.
Let

Mn(t) = EetTn/
√
n, M(t) = EetY (370)

Now Tn is a sum of independent random variables, and hence etTn/
√
n is a

product:

etTn/
√
n = etY1/

√
n . . . etYn/

√
n (371)

Because these are independent, the expectation factors:

Mn(t) = E[etY1/
√
n] . . .E[etYn/

√
n] = M(t/

√
n)n (372)

Now clearly t/
√
n → 0 as n → ∞, so we can make a good approximation

using the Taylor series expansion for etY :

M(t/
√
n) = E[1 +

tY√
n

+
(tY )2

2n
+ · · · ]

= 1 +
t2

2n
+Rn(t) (373)

where Rn(t) denotes the remaining terms in the series, and where we used
EY = 0 and EY 2 = 1. If we substitute back into (372), this gives

Mn(t) =
(

1 +
t2

2n
+Rn(t)

)n
=

(
1 +

t2

2n

)n (
1 +Rn(t) (1 +

t2

2n
)−1
)n

(374)

The first factor on the right side of (374) has a simple limit as n→∞:

lim
n→∞

(
1 +

t2

2n

)n
= et

2/2 (375)

which of course is the mgf of the standard normal. Therefore the proof of
Theorem 52 reduces to the following steps:

Step 1: show that for all t,

lim
n→∞

(
1 +Rn(t) (1 +

t2

2n
)−1
)n

= 1 (376)
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and hence deduce from (374) that Mn(t)→ et
2/2.

Step 2: show that the pointwise convergence of the mgf’s Mn(t) to a limit
M∞(t) implies the pointwise convergence of the cdf’s Fn(x) to a cdf F∞(x).

Step 3: show that there is only one cdf with mgf et
2/2, and hence conclude

that the cdf’s Fn(x) converge pointwise to the cdf of the standard normal.

There are serious technical problems to be overcome is completing the
three steps described above. Not least is the issue that the mgf of Y may
not exist (recall the example of the Cauchy distribution). The way out of
this difficulty is peculiar: we use complex values of t. Specifically, the mgf is
replaced by the characteristic function (chf)

φ(t) = EeitY =

∫
eitY dF (377)

where i =
√
−1. This clever idea turns out to resolve all the technical

difficulties. First, because the magnitude of eity is one, the integral always
exists: there is no integration problem. As a second benefit there is an explicit
formula (very similar to the inversion formula for the Fourier transform)
which returns F (y) as a function of φ(t): this settles the problem raised in
Step 3. There is still work to be done, but there are no remaining obstacles.

QED

8.1 Applications of CLT

The CLT is useful as it gives an approximation for probabilities when n is
large.

Binomial Flip a fair coin and let Xk = 1 if Heads, Xk = 0 if Tails on kth

flip. So Sn is the total number of Heads after n flips. Since EX = 1/2 and
VAR[X] = 1/4 the CLT says that√

4

n
(Sn −

n

2
)→ Z (378)

where Z is a standard normal. More precisely stated, for any a < b

P (a <

√
4

n
(Sn −

n

2
) ≤ b)→ 1√

2π

∫ b

a

e−t
2/2 dt (379)
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The CLT is an asymptotic result and gives no information about the rate of
convergence. In special cases it is possible to say something about this, as
we will see in the next section.

Exercise 102 Let Xi, i = 1, . . . , 10 be independent random variables,
each being uniformly distributed over [0, 1]. Use the CLT to estimate the
probability that X1 + · · ·+X10 exceeds 7.

Exercise 103 If X and Y are Poisson random variables with means λ and
µ, then X + Y is Poisson with mean λ + µ. Use this fact and the CLT to
calculate

lim
n→∞

e−n
n∑
k=0

nk

k!

[Hint: let Xn be Poisson with mean n, and write the quantity above as the
probability of an event involving Xn]

8.2 Rate of convergence in LLN

The LLN says that Sn/n converges to the mean µ, but says little about
the rate of convergence. In fact the convergence is exponentially fast, as
the following large deviations result shows. We need a somewhat stronger
assumption to prove the result. This assumption is that the moment gener-
ating functions of the variables Xn exist and are finite in some open interval
containing zero. Recall that this condition guarantees that all the moments
are finite and can be obtained by differentiation of the mgf.

Lemma 53 Suppose X1, X2, . . . are IID with mean µ. Suppose also that
there are a, b > 0 such that MXi(t) < ∞ for all t ∈ (−a, b). Then for all n
and all ε > 0,

P

(
Sn
n
≥ µ+ ε

)
≤ e−nλ (380)

where

e−λ = inf
0<s<b

(e−s(µ+ε)MXi(s)) < 1 (381)
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Proof: first note that for 0 < s < b, for any random variable Y ,

P (Y ≥ 0) = P (esY ≥ 1)

≤ EesY

1
= MY (s) (382)

where we used Markov’s inequality in the second step. Since this holds for
all s we get

P (Y ≥ 0) ≤ inf
0<s<b

MY (s) (383)

Now let Yi = Xi − µ− ε, then

MYi(s) = e−s(µ+ε)MXi(s) (384)

Hence

P (
Sn
n
≥ µ+ ε) = P (Y1 + · · ·+ Yn ≥ 0)

≤ inf
0<s<b

MY1+···+Yn(s)

= inf
0<s<b

(MYi(s))
n (385)

and the result follows.

QED

Exercise 104 LetX1, X2, . . . be IID with distribution P (X = 1) = P (X =
−1) = 1/2. Find an exponentially decreasing bound for P (Sn

n
≥ 0.1).
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9 Measure Theory

Here we outline the main ideas which lie behind the construction of proba-
bility triples.

9.1 Extension Theorem

Definition 54 Let Ω be a sample space. A collection of subsets of S ⊂ Ω
is a semialgebra if it contains ∅ and Ω, it is closed under finite intersection,
and the complement of any set in S is a finite disjoint union of elements of
S.

The following two examples are the most important and in fact are the
motivation for this definition.

Exercise 105 Show that the collection of all intervals (a, b] ⊂ R with
−∞ ≤ a < b ≤ ∞ is a semialgebra.

Exercise 106 Let Ω be the set of all infinite sequences (r1, r2, . . . ) where
ri ∈ {1, 2, . . . , N} for each i = 1, 2, . . . . For each n ∈ N and each a1, a2, . . . , an ∈
{1, 2, . . . , N} define the cylinder set

Ca1,a2,...,an = {(r1, r2, . . . ) ∈ Ω | ri = ai for 1 ≤ i ≤ n} (386)

Show that the collection of cylinder sets is a semialgebra.

We will suppose that we have a semialgebra with a proto-measure defined
on it, satisfying certain reasonable conditions. The next theorem guarantees
that the measure can be extended to a σ-algebra. (We will consider proba-
bility measures but the same ideas apply to all finite and σ-finite measures).

Theorem 55 Let S be a semialgebra of subsets of Ω. Let P : S → [0, 1]
satisfy the following conditions:

a) P (∅) = 0, P (Ω) = 1

b) for any pairwise disjoint finite collection A1, . . . , An ∈ S, with the union⋃n
i=1Ai ∈ S, we have

P
( n⋃
i=1

Ai

)
≥

n∑
i=1

P (Ai) (387)
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c) if A ⊂
⋃∞
n=1An with A1, A2, · · · ∈ S (countable) then

P (A) ≤
∞∑
n=1

P (An) (388)

The proof is quite long so we break it up into a number of lemmas. First
job is to define the outer measure for all sets in Ω:

P ∗(A) = inf{
∞∑
i=1

P (Ai) |A ⊂
⋃
i

Ai, A1, A2, · · · ∈ S} (389)

Next we must verify the properties of P ∗ which allow the extension to work.

Lemma 56 P ∗(A) = P (A) for all A ∈ S.

Proof: by monotonicity of P we have P (A) ≤
∑

i P (Ai) for every covering,
hence P (A) ≤ P ∗(A). On the other hand, take A1 = A and the rest empty
set then

∑
i P (Ai) = P (A) and hence P ∗(A) ≤ P (A).

QED

Exercise 107 Show that P ∗ is monotonic, that is if A ⊂ B then P ∗(A) ≤
P ∗(B).

So this says that P ∗ agrees with P on the semialgebra S hence it really
is an extension. The next property says that P ∗ is countably subadditive.

Lemma 57 For any collection of sets B1, B2, · · · ⊂ Ω,

P ∗
( ∞⋃
n=1

Bn

)
≤

∞∑
n=1

P ∗(Bn) (390)

Proof: take any ε > 0. For each n there is a cover {An,k} such that Bn ⊂
∪kAn,k and

P ∗(Bn) ≥
∑
k

P (An,k)− ε2−n
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Since ∪n,kAn,k is a cover for ∪nBn we have

P ∗
( ∞⋃
n=1

Bn

)
≤
∑
n,k

P (An,k) ≤
∑
n

(P ∗(Bn) + ε2−n) ≤
∑
n

P ∗(Bn) + ε (391)

Since this holds for every ε > 0, the result follows.

QED

Definition 58 A set A ⊂ Ω is measurable if for every E ⊂ Ω

P ∗(E) = P ∗(E ∩ A) + P ∗(E \ A) (392)

Denote by M the collection of all measurable sets.

So a measurable set is one that divides every set into two pieces whose
measures add up to the original measure. This is the additivity property
that we want so we are using P ∗ to select the sets where it works out.

Lemma 59 P ∗ is countably additive on M.

Proof: Let A1, A2, · · · ∈ M be disjoint, we want to show that P ∗ is additive
on their union. First, since A1 ∈M we have

P ∗(A1 ∪ A2) = P ∗(A1) + P ∗(A2) (393)

and by extension P ∗ is finitely additive on M. Furthermore for any m

m∑
n=1

P ∗(An) = P ∗(
m⋃
n=1

An) ≤ P ∗(
∞⋃
n=1

An) (394)

This holds for all m, hence

∞∑
n=1

P ∗(An) ≤ P ∗(
∞⋃
n=1

An) (395)

The reverse inequality holds by countable subadditivity, hence equality holds.

QED

Next we want to show that M is a σ-algebra. Start with algebra.
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Lemma 60 M is closed under complement, finite intersections and finite
unions, and contains S.

Proof: Complement is obvious. Also Ω ∈ M. Consider the intersection
property: let A,B ∈M, and E ⊂ Ω, then it is sufficient to show that

P ∗(E) ≥ P ∗(E ∩ (A ∩B)) + P ∗(E ∩ (A ∩B)c) (396)

(the reverse inequality holds by subadditivity). Now

P ∗(E ∩ (A ∩B)c) ≤ P ∗(E ∩ Ac ∩Bc) + P ∗(E ∩ A ∩Bc) + P ∗(E ∩ Ac ∩B)(397)

Two applications of the definition of measurability for A and B give the
result.

QED

This result implies finite additivity in the following sense: for any disjoint
sets A1, . . . , An ∈M, and any E ⊂ S,

P ∗(E ∩
n⋃
i=1

Ai) =
n∑
i=1

P ∗(E ∩ Ai) (398)

Exercise 108 Prove this.

Lemma 61 Let A1, A2, · · · ∈ M be pairwise disjoint. Then their union is
in M.

Proof: let Bm =
⋃m
i=1Ai, then Bm ∈M, so for any E ⊂ S

P ∗(E) = P ∗(E ∩Bm) + P ∗(E ∩Bc
m)

=
m∑
i=1

P ∗(E ∩ Ai) + P ∗(E ∩Bc
m)

≥
m∑
i=1

P ∗(E ∩ Ai) + P ∗(E ∩Bc
∞) (399)

where we write B∞ for the countable union. Since this holds for all m we get

P ∗(E) ≥
∞∑
i=1

P ∗(E ∩ Ai) + P ∗(E ∩Bc
∞)

≥ P ∗(E ∩B∞) + P ∗(E ∩Bc
∞) (400)
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and this does it.

QED

Now we can easily conclude that M is a σ-algebra: a general countable
union of sets can be written as a countable union of disjoint sets and then
the previous lemma says that this is in M.

Exercise 109 Fill in the details of this statement.

The final step is to show that the original semialgebra S does belong to
M.

Lemma 62 S ⊂M.

Proof: this needs a bit of work. Let E ⊂ Ω, then for any ε > 0 there are
A1, A2, · · · ∈ S such that E ⊂ ∪nAn and

P ∗(E) ≥
∑
n

P (An)− ε

Now let A ∈ S. Recall that Ac is a disjoint union of elements of S, say
Ac = C1 ∪ · · · ∪ Ck. Now

P ∗(E ∩ A) + P ∗(E ∩ Ac) ≤ P ∗(∪nAn ∩ A) + P ∗(∪nAn ∩ Ac)
= P ∗(∪n(An ∩ A)) + P ∗(∪n ∪ki=1 (An ∩ Ck))

≤
∑
n

(
P (An ∩ A) +

k∑
i=1

P (An ∩ Ck)
)

≤
∑
n

P (An)

≤ P ∗(E) + ε (401)

Since ε is arbitrary this does it.

QED

Putting everything together we deduce the result that P ∗, when restricted
toM, is a measure that extends P . Hence (Ω,M, P ∗) is a probability triple.
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Exercise 110 A measure P on A is complete if the following is true: if
A ∈ A and P (A) = 0, then every subset B ⊂ A is also in A. Prove that M
as constructed above is complete.

Having this Extension Theorem under our belt provides a way to con-
struct measures, by starting with a semialgebra and a probability function
satisfying the hypotheses of the theorem. In many natural cases this can be
done.

9.2 The Lebesgue measure

Here the semialgebra consists of the intervals, we can throw in all the open,
half-open and closed intervals. The measure P is just the usual length (we
won’t worry about finiteness here – or we could just look at subsets of [0, 1]).
So the hard work is to show that the length function on intervals satisfies the
conditions of the Extension Theorem. The verification of (387) is straight-
forward, since there are a finite number of intervals involved. The condition
(388) is harder to prove.

Lemma 63 Let I ⊂ R be a closed bounded interval and suppose I ⊂
⋃
n In

where I1, I2, . . . are open intervals. Then

P (I) ≤
∑
n

P (In) (402)

Proof: by compactness of I there is a finite cover Ij1 , . . . , Ijk (this is the
Heine-Borel theorem). So

I ⊂ Ij1 ∪ · · · ∪ Ijk

The result now follows by ordering the intervals and adding up their lengths.

QED

Exercise 111 Show that (388) holds for this semialgebra.
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9.3 Independent sequences

Recall the cylinder sets introduced at the start of this section. It was shown
in the Exercise that this collection forms a semialgebra. The probability
function is defined by

P (Ca1,a2,...,an) = P (a1) . . . P (an) (403)

where {P (a)} is a probability assignment on {1, 2, . . . , N}. The hard part of
the Extension Theorem for this example boils down to the following case.

Lemma 64 Let C1, C2, . . . be a decreasing sequence of cylinder sets such
that

⋂
Cn = ∅. Then

lim
n→∞

P (Cn) = 0 (404)

The proof of this lemma uses compactness of the product space {1, 2, . . . , N}N

when {1, 2, . . . , N} is equipped with the discrete topology. The finite inter-
section property (f.i.p.) says that a space is compact if and only if every
collection of closed sets with an empty intersection has a finite subcollection
whose intersection is empty. The cylinder sets are closed and hence the f.i.p.
implies the result.

This construction works for any sequence of IID discrete random vari-
ables.

9.4 Product measure

Given two probability triples (S1,A1, P1) and (S2,A2, P2), let

J = {A×B |A ∈ A1, B ∈ A2} (405)

and define a probability function on J by

P (A×B) = P1(A)P2(B) (406)

The elements of J are called measurable rectangles.

Exercise 112 Verify that J is a semialgebra.

The Extension Theorem may now be applied to define a probability mea-
sure on a σ-algebra containing J . The resulting probability triple is called
the product measure of (S1,A1, P1) and (S2,A2, P2).

112



10 Applications

10.1 Google Page Rank

The worldwide web is a directed graph, where vertices (or nodes) are web-
pages and whose edges are links between pages. The goal of the Page Rank
algorithm is to assign a rank to each page. The rank of a webpage is intended
to be a measure of interest for the webpage, which is taken as a proxy for
the page’s importance.

In its simplest version the rank is described by a very simple and intuitive
rule. Let xj be the rank of the jth page, then

xj =
∑
i

wij xi (407)

where wij is the influence of the ith page’s rank on the value of the jth page’s
rank. This influence is assigned by a simple rule: for each vertex i let ki be
the number of outward directed links at i. Then

wij =

{
(ki)

−1 if there is a link i 7→ j

0 otherwise
(408)

Each node has a total ‘influence’ of size 1, and this is spread equally among
its outgoing links. So a webpage that links to many others has a diluted
effect on the ranks of other webpages. Also, a very popular webpage will
have a lot of incoming links and hence will have a higher rank. And note
that the rank of a webpage depends on the ranks of the other pages which
link into it.

Assuming that the weights {wij} are known the equations (407) can be
solved for the ranks {xi}. In fact if we define the matrix T with entries
Tij = wij, and let x be the row vector with entries xi then we can write this
as a matrix equation:

x = xT (409)

Of course this is exactly the equation satisfied by the stationary distribution
of a Markov chain. So as long as T is ergodic (more on this later) we can
solve it by iterating the map starting from a seed. Suppose there are N nodes
on the graph then the usual choice for a seed is

x0 =
(
1/N 1/N · · · 1/N

)
(410)

113



Then we define

x1 = x0T, x2 = x1T = x0T
2, . . . , xn = x0T

n (411)

The Perron-Frobenius theorem says that xn converges to the solution of the
equation x = xT . So this gives an iterative way to compute x assuming that
the weights are known. Note that N is several billion!!

The ‘random surfer model’ describes a person who randomly clicks on
links and so jumps around the web from page to page. We can imagine the
surfer’s current page as the state of a Markov chain with N states. Then the
transition matrix of this chain is exactly T , and hence the surfer’s probability
distribution will eventually converge to the stationary distribution. This
gives another justification for the choice of this model.

There are some problems with this model. One problem is that the matrix
T has many zero entries, and checking that it is ergodic is not easy. A more
serious problem is the rate of convergence of the iteration xn+1 = xn T as
n→∞. Recall our convergence result from before:

Aside on convergence [Seneta]: another way to express the Perron-Frobenius
result is to say that for the matrix P , 1 is the largest eigenvalue (in absolute
value) and w is the unique eigenvector (up to scalar multiples). Let λ2 be
the second largest eigenvalue of P so that 1 > |λ2| ≥ |λi|. Let m2 be the
multiplicity of λ2. Then the following estimate holds: there is C < ∞ such
that for all n ≥ 1

‖P n − ewT‖ ≤ C nm2−1 |λ2|n (412)

So the convergence P n → ewT is exponential with rate determined by the
first spectral gap.

So to get rapid convergence we want the second eigenvalue of T to be as
small as possible. But in general unless something special is happening we
expect that λ2 ∼ 1− 1/N where N is the number of states. Since N is huge
this is a disaster for the algorithm.

The solution is to modify the weights as follows:

wij =

{
α(ki)

−1 + (1− α)/N if there is a link i 7→ j

(1− α)/N otherwise
(413)
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Here α is a new parameter which can be chosen freely. Apparently Google
uses α ∼ 0.85.

The meaning in the random surfer model is that the surfer occasionally
gets bored and then randomly jumps to any page on the web. So it mixes
things up by allowing the surfer to jump between pages which are not linked.
Since the probability for this is very small it is reasonable that we end up
with a rank not very different from before. But the rate of convergence is
hugely increased.

Exercise 113 Define the transition matrix Tα for 0 ≤ α ≤ 1 by

(Tα)ij =

{
α(ki)

−1 + (1− α)/N if there is a link i 7→ j

(1− α)/N otherwise
(414)

So T1 is the original page rank matrix. Also define the matrix E by

(E)ij = (1− α)/N for all i, j = 1, . . . , N (415)

a) Show that Tα = αT1 + (1− α)/N E.
b) Let x, y be probability vectors satisfying

∑
xi =

∑
yi = 1. Show that

xT − yT = α(xT1 − yT1) (416)

c) For all probability vectors x, y show that

‖xT − yT‖ ≤ α ‖x− y‖ (417)

d) Show that the second largest eigenvalue of T has absolute value at most
α.
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10.2 Music generation

A student in my class wanted to generate ‘Bach-like’ music using a Markov
chain. He based his analysis on the Back cello suit 1 prelude 1. This piece
has 593 notes, of which there are 32 different notes.

Using the relative frequencies of occurrence he computed several different
transition matrices and drew samples from each to see how they sound.

First: the original piece.

Second: just using relative frequencies, jumps are completely random.

Third: using relative frequencies for successive two-note sequences.

Fourth: using using relative frequencies for successive three-note sequences.
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10.3 Bayesian inference and Maximum entropy prin-
ciple

Bayesian inference is based on the idea that you have partial knowledge about
the outcome of a random experiment. As you acquire more information about
the outcome you are able to update your knowledge.

Let X be a discrete random variable whose value we want to estimate.
The prior distribution P0 represents our current state of knowledge about X:

P (X = xi) = P0(xi) for all xi ∈ Ran(X) (418)

If you know nothing about X then P0 is the uniform distribution. Conversely
if you know for sure that X = xi then P0(xi) = 1 and P0(xj) = 0 for all other
values xj.

Now you measure another random variable Y , and you get the result
Y = y. Based on this result, how can you update your probability? The
answer is provided by Bayes rule:

P (X = xi |Y = y) =
P (Y = y |X = xi)P0(xi)∑
j P (Y = y |X = xj)P0(xj)

(419)

In practice the measurement usually has two ingredients, namely a control
part (which you may be able to choose) and the measurement outcome. Let
R be the control part and Y the outcome. Then we get

P (X = xi |Y = y,R) =
P (Y = y |X = xi, R)P0(xi)∑
j P (Y = y |X = xj, R)P0(xj)

(420)

10.3.1 Example: locating a segment

Imagine the following task. A 1D array has N adjacent registers. All registers
are set to zero except for a connected segment which are all 1’s. You have
to locate the segment, but you can only make measurements on individual
registers. The length and endpoints of the segment are unknown.

Let X = (a, b) be the positions of the two ends of the segment, so 1 ≤
a < b ≤ N . A priori we know nothing about X, so the prior distribution is
uniform, that is

P0(a, b) =

{
c for a < b

0 else
(421)
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where c−1 = N(N − 1)/2. See Fig 1 where N = 20.

At the first step we decide to measure the value Y at some register R1.
Depending on the value obtained (either 0 or 1) we update our probability
for X using the Bayes rule (420) above. See Fig 2 where R1 = 7, and Y1 = 0.

We continue making measurements. At each step we choose a position R
to measure, then based on the outcome Y we update the probability for X.
See Figs 3,4 where R2 = 15, Y2 = 1 and R3 = 12, Y3 = 0.

10.3.2 Maximum entropy rule

How do we decide where to make the next measurement? Better yet, how do
we program a robot to make this decision? One way is to use the maximum
entropy rule.

Let X be a discrete random variable with pmf {(xi, pi)}. The entropy of
X is

H(X) = −
∑
i

pi log pi (422)

Conventionally use base 2 logarithm, then entropy unit is bits. The entropy
satisfies

0 ≤ H(X) ≤ logN (423)

where N is the number of possible values for X. H(X) measures the amount
of randomness in X: if X is certain then H(X) = 0, if X is uniform then
H(X) = logN .

Shannon’s observation was that entropy is necessary for information trans-
mission. More entropy means more possible variation, and hence greater ca-
pacity for storing and transmitting information. Conversely, by measuring
a random variable with higher entropy you are able to learn more. This is
the principle of maximum entropy: choose the measurement for which the
outcome will have the highest entropy.

10.3.3 Back to example

Let’s apply this in our example. Fig 5 shows the entropy of the outcomes
corresponding to different choices for the initial measurement. It is maxi-
mized at 7 and 13. Next, we measure at 7 and get our outcome Y = 0,
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thus obtaining the updated pmf for X. Now we compute the entropies for
outcomes based on this in Fig 6. It is maximized at 13, 15. We measure at
15 and get Y = 1. At the next step the entropy is maximized at 10, 11 in
Fig 7. We measure at 12 to get Y = 0. The entropy is shown in Fig 8. Note
that the entropy gets concentrated near the boundary of the segment as we
progress, indicating that we will learn most by measuring here.

The preceding example has been extended to 2D location problems, and is
being studied as a prototype for computer vision algorithms for autonomous
robots.
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10.4 Hidden Markov models

The main idea is that there is a Markov chain operating in the background,
but we cannot directly observe the states of this chain. Instead we observe
a random variable which is correlated with the state, but does not uniquely
identify it. We may wish to infer the actual state from the observed state,
but we cannot do this with 100% certainty.

10.4.1 The cheating casino

Here is a simple example. A casino uses two kinds of dice. One type is fair,
the other is biased with probability 1/2 to come up 6, and equal probabilities
for the other values. The casino secretly switches between the two types of
dice. Suppose they switch from fair to biased with probability 0.01 before
each roll, and switch from biased to fair with probability 0.5. You (the player)
do not know which dice are being used, you only see the rolls of the dice.

This is a hidden 2-state Markov model. The two states are the types of
dice. The observed rolls occur with different probabilities depending on the
current state. You may wish to figure out which dice were used based on the
observed sequence of rolls. This is called ‘decoding’ the state sequence from
the observation sequence.

10.4.2 Formal definition

The HMM consists of

an underlying N -state ergodic Markov chain X0, X1, . . . with transition
matrix T (ergodicity is not essential but simplifies the analysis)

for each underlying state, a conditional probability distribution for the
M possible observations v1, . . . , vM :

bj(k) = P (v = k |X = j), j = 1, . . . , N, k = 1, . . . ,M (424)

an initial probability distribution for X0

With this you can in principle compute the probability of any particular
sequence of observations.
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10.4.3 Applications

Here are two applications. First, in speech recognition: a speech signal is
divided into frames (approx 20 ms long). Each frame is assigned to one
of a pre-determined set of possible categories. The speech signal is then a
long sequence of these categories. The task is to figure out the underlying
sequence of words which produced the observed signal. Randomness arises
through variations in the sounds uttered and in the time taken to say the
words. Second, in DNA sequence analysis: the sequence consists of the 20
amino acids, while the underlying structure is the protein family. Variations
arise from insertions and deletions in the protein sequences.

Given a particular HMM, we want to find the likelihood of an observed
sequence (for example to compare different parameter values or models).
This is done using the forward-backward procedure.

10.4.4 The forward-backward procedure

Let Y = (y0, y1, y2, . . . , yn) be the observed sequence, and letX = (X0, X1, . . . , Xn)
be an underlying chain sequence. Then

P (Y ) =
∑
X

P (Y |X)P (X)

=
∑
j1,...,jn

bj1(y1) · · · bjn(yn) πj0 pj0,j1 · · · pjn−1,jn

where πj = P (X0 = j) is the initial distribution. The number of operations
here scales as Nn, so we need a more efficient method than direct computa-
tion.

For all 0 ≤ m ≤ n define the forward joint probability

αm(j) = P (Y0 = y0, Y1 = y1, . . . , Ym = ym, Xm = j) (425)

Note that

α0(j) = P (Y0 = y0, X0 = j)

= P (Y0 = y0 |X0 = j)P (X0 = j)

= bj(y0) πj

121



Also we have an induction rule:

αn+1(j) =

[∑
i

αn(i) pij

]
bj(yn+1) (426)

Exercise 114 Derive (426).

Finally we get our desired probability as

P (Y ) =
∑
j

αn(j) (427)

Note that each step in (426) needs only N2 operations, so this is much more
efficient than before.

In a similar way we define the backward joint probability

βm(j) =

{
P (Ym+1 = ym+1, . . . , Yn = yn |Xm = j) 0 ≤ m ≤ n− 1

1 m = n
(428)

Exercise 115 Show that for 0 ≤ m ≤ n− 1

βm(j) =
∑
i

pji bi(ym+1) βm+1(i) (429)

10.4.5 Viterbi algorithm

This addresses the following question: given a sequence of observations, what
is the ‘best’ guess for the underlying Markov chain sequence which produced
it? The Viterbi algorithm answers this by finding the state sequence which
maximizes the joint probability P (X, Y ) where Y is the observed sequence.
This is equivalent to maximizing the conditional probability P (X|Y ).

Define

δm(j) = max
j0,...,jm−1

P (X0 = j0, X1 = j1, . . . , Xm = j, Y0 = y0, . . . , Ym = ym)(430)

So δm(j) is the highest probability along a single path of the Markov chain,
up to tim em, which accounts for the first m observations and ends in state
j. The initialization is

δ0(j) = πj bj(y0) (431)
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We also have an induction step:

δm+1(j) =
[

max
i
δm(i) pij

]
bj(ym+1) (432)

Exercise 116 Derive (432).

Define

ψm(j) = arg max
i

[
δm−1(i) pij

]
(433)

The termination step is

P ∗ = max
i

δn(i), y∗n = arg max
i

δn(i) (434)

The optimal sequence y∗m is then computed by backtracking:

y∗m = ψm+1(y
∗
m+1) (435)
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