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Preface

These are notes for my Michigan State University, Fall Semester 2015, course
MTHO914: Lie Algebras. The primary aim of the course was the introduction and
discussion of the finite dimensional semisimple Lie algebras over algebraically
closed fields of characteristic 0 and their representations.

Unfortunately there was not enough time to cover adequately many addi-
tional topics, including: Serre’s Theorem, the proof of PBW, the construction of
s, Weyl’s character formula, automorphisms, and the real forms of the complex
semisimple Lie algebras.

The problems and some of the proofs (particularly later in the course) are
incomplete, brief, or sketched. There is also material that was covered but

remains | to be included.

The notation O indicates my feeling that enough proof has been provided
(even when that is nothing). At the other end of the spectrum OO indicates
that the result has been stated but will not be proven. This is usually because
the result is too ambitious for the course but deserves to be pointed out.

The bibliography contains a long list of references, all helpful in the prepa-
ration for the course and notes. Three of these particularly stand out:

[EId15] A. Elduque, Course notes: Lie algebras, Universidad de Zaragosa,
2015, pp. 1-114.

[Maz10] V. Mazorchuk, “Lectures on sly(C)-modules,” Imperial College Press,
London, 2010.

[SteT0] 1. Stewart, “Lie Algebras,” Lecture Notes in Mathematics 127, Springer-
Verlag, Berlin-New York 1970.

I thank Professor V. Futorny for discussion of the topic and for pointing
me toward the first two references above, and I thank Professor A. Elduque for
giving me permission to use his excellent notes. The course would not have been
as good or interesting without helpful suggestions from these two professors and
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from Professor O. Mathieu.
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Chapter

Introduction

1.1 Algebras

Let K be a field. A K-algebra (xA,u) is a (left) K-space A equipped with a
bilinear multiplication. That is, there is a K-space homomorphism multiplication
p: A®g A — A. We often write ab in place of u(a ® b). Also we may write A
or (A, ) in place of (xA, 1) when the remaining pieces should be evident from
the context.

If A is a K-algebra, then its opposite algebra A°P has the same underlying
vector space but its multiplication u°P is given by puP(z ® y) = u(y ® z).

(1.1). LEMMA. The map pu: A®g A— A is a K-algebra multiplication if and
only if the adjoint map

ad: z— ad, given by adpa=zxa
is a K-vector space endomorphism of A into Endg(A) . m|

IfV = {v; |i€I}isakK-basis of A, then the algebra is completely described
by the associated multiplication coefficients or structure constants cfj € K given

by
§ : k
'UZ"U]' = Cijvk s
kel

for all 4, j.

We may naturally extend scalars from K to any extension field E. Indeed
E ®k A has a natural E-algebra structure with the same multiplication coeffi-
cients for the basis V.

Going the other direction is a little more subtle. If the E-algebra B has a
basis V for which all the cfj belong to K, then the K-span of the basis is a K-
algebra A for which B = E®k A. In that case we say that A is a K-form of the

1



2 CHAPTER 1. INTRODUCTION

algebra A. In many cases the E-algebra B has several pairwise nonisomorphic
K-forms.

Various generalizations of the above are available and often helpful. The
extension field E of K is a itself special sort of K-algebra. If C is an arbitrary
K-algebra, then C ®g A is a K-algebra, with opposite algebra A ®x C. The
relevant multiplication is u = pc ® pa:

p((e1 ® a1) ® (c2 ® az)) = pcle1 @ c2) ®@ palar @ az).

We might also wish to consider R-algebras for other rings R with identity.
For the tensor product to work reasonably, R should be commutative. A middle
ground would require R to be an integral domain, although even in that case
we must decide whether or not we wish algebras to be free as R-module.

Of primary interest to us is the case R = Z. A Z-algebra is a free abelian
group (that is, lattice) L = @, ; Zv; provided with a bilinear multiplication pz
which is therefore completely determined by the integral multiplication coeffi-
cients cfj. From this we can construct K-algebras Lx = K ®z L for any field K,
indeed for any K-algebra. For instance C ®zMat,,(Z) is the K-algebra Mat, (C)
of all n X n matrices with entries from the K-algebra C.

Suppose for the basis V of the K-algebra A all the cfj are integers—that is,
belong to the subring of K generated by 1. Then the Z-algebra L = @, ; Zv;
with these multiplication coefficients can be viewed as a Z-form of A (although
we only have its quotient by char(K) as a subring of A). The original K-algebra
A is then isomorphic to L.

1.2 Types of algebras

As dimg (A @k A) > dimg(A), every K-space admits K-algebras. We focus on
those with some sort of interesting additional structure. Examples are associa-
tive algebras, Jordan algebras, alternative algebras, composition algebras, Hopf
algebras, and Lie algebras—these last being the primary focus of our study. (All
the others will be discussed at least briefly.)

In most cases these algebra types naturally form subcategories of the additive
category gAlg of K-algebras, the maps ¢ of Hom,ag(A, B) being those linear
transformations ¢ € Homg(A, B) with ¢(zy) = p(x)p(y) for all z,y € A. As
the category xAlg is additive, each morphism has a kernel and image, which are
defined as usual and enjoy the usual properties.

A subcategory will often be defined initially as belonging to a particular
variety of K-algebras. For instance, the associative K-algebras are precisely
those K-algebras satisfying the identical relation

(ry)z = z(y2).

Alternatively, the associative K-algebras are those whose multiplication map p
satisfies

pp(z @ y) @ z) = plr @ ply @ 2)).
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As the defining identical relation is equivalent to its reverse (zy)z = z(yx), the
opposite of an associative algebra is also associative.

Similarly, the subcategory of alternative K-algebras is the variety of K-
algebras given by the weak associative laws

z(zy) = (zx)y and  x(yy) = (zy)y.

The opposite of an alternative algebra is also alternative.
Varietal algebras like these have nice local properties:

(i) A K-algebra is associative if and only if all its 3-generator subalgebras are
associative.

(ii) A K-algebra is alternative if and only if all its 2-generator subalgebras are
alternative.

The associative identity is linear in that each variable appears at most once
in each term, while the alternative identity is not, since a appears twice in each
term. The linearity of an identity implies that it only need be checked on a
basis of the algebra to ensure that it is valid throughout the algebra. That is,
there are appropriate identities among the various cfj that are equivalent to the
algebra being associative. (Exercise: find them.) This implies the (admittedly
unsurprising) fact that extending the scalars of an associative algebra produces
an associative algebra. It is also true that extending the scalars of an alternative
algebra produces another alternative algebra, but that needs some discussion
since the basic identity is not linear. (Exercise.)

The basic model for an associative algebra is Endg (V') for some K-space
V. Indeed, most associative algebras (including all with an identity) are iso-
morphic to subalgebras of various Endg (V). (See Proposition [(1.3)]) For finite
dimensional V' we often think in matrix terms by choosing a basis for V' and
then using that basis to define an isomorphism of Endg (V) with Mat,, (K) for
n = dimg(V).

Of course, every associative algebra is alternative, but we now construct the
most famous models for alternative but nonassociative algebras. If we start with
K = R, then we have the familiar construction of the complex numbers as 2 x 2

matrices: for a,b € K we set
a b
wn=( % ")

with multiplication given by

a b c d\ ac — bd ad + be
b a —d ¢ )]\ =bc—ad —bd+ac

and conjugation given by

(32)-(2)

As R is commutative and conjugation is trivial on R, these can be rewritten:
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For a,b € K and a — a an antiautomorphism of K, we set

b
(avb)K = ( _ag a ) )
a b c d\ _ ac — Jbi dg + be
b a —d ¢ ) \ —cb—ad —bd+ca

(52) =)

This then gives us the complex numbers C as the collection of all pairs (a, b)r
of real numbers. Feeding the complex numbers back into the machine produces
Hamilton’s quaternions H as all pairs (a,b)c with the multiplication and the
conjugation antiautomorphism described. As C is commutative the quaternions
are associative, but they are no longer commutative.

Finally with K = H, the resulting O of all pairs (a,b)y is the octonions of
Cayley and Graves. The octonions are indeed alternative but not associative,
although this requires checking. Again conjugation is an antiautomorphism.

In each case, the 2 x 2 “scalar matrices” are only those with b = 0 and
a = a € R, so we have constructed R-algebras with respective dimensions
dlmR((C) = 2, dlmR(H) = 4, dlmR(@) = 8.

with

and

A quadratic form on the K-space V' is a map ¢: V — K for which the
associated map b: V x V. — K given by polarization

b(z,y) = q(r +y) — q(r) — q(y)

is a nondegenerate bilinear form. (See Appendix [A| for a brief discussion of
bilinear forms.)

The R-algebras R, C, H, and O furnish examples of composition R-algebras.
A composition algebra is a K-algebra A with multiplicative identity, admitting
a nondegenerate quadratic form §: A — K that is multiplicative:

5(x)d(y) = d(zy),

for all z,y € A. The codimension 1 subspace 1+ consists of the pure imaginary
elements of A, and (in characteristic not 2) the conjugation map al + b = al —b,
for b € 11, is an antiautomorphism of A whose fixed point subspace is K1.

In the above R-algebras the form ¢ is given by d(x)1 = zZ:

a b a —b I 1 0
In O specifically, for a,b,c,d, e, f,g,h € R, we find

6(((0,, b)Ra (Cv d)]R)Cv ((6, f)Ra(g7 h)R)C)H = 5((17 ba ¢, da €, fa g, h) =
:G/2+b2+02+d2+€2+f2+gz+h2.
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Thus in O (and so its subalgebras R, C, and H) all nonzero vectors have nonzero
norm.

An immediate consequence of the composition law is that an invertible ele-
ment of A must be have nonzero norm. As §(z)1 = zZ in composition algebras,
the converse is also true. Therefore if 0 is the only element of the composition
algebra A with norm 0, then all nonzero elements are invertible and A is a divi-
sion algebra. Prime examples are the division composition R-algebras R, C, H,
and @. The following remarkable theorem of Hurwitz shows that this situation
is typical
(1.2). THEOREM. (HUrwITZ' THEOREM) If A is a composition algebra over
K, then dimg(A) is 1, 2, 4, or 8. oo

If the composition K-algebra A is not a division algebra, then it is called split.
It turns out that a split composition algebra over K is uniquely determined up
to isomorphism by its dimension. In dimension 1, the algebra is K itself, always
a division algebra. In dimension 4, a split composition K-algebra is always
Mato(K) with 6 = det, and the diagonal matrices provide a split subalgebra of
dimension 2.

Composition algebras of dimension 8 are called octonion algebras. The orig-
inal is the real division algebra O presented above and due to Graves (1843,
unpublished) and Cayley (1845) [SpV00| p. 23].

A split octonion algebra O°P(K) over any field K is provided by Zorn’s vector

matrices [Zor31]
m—[ @ b
¢ d

with a,d € K and b, & € K3. Multiplication is given by

bN(x 7\ _(ax+b-7 ag+wb \ ([ 0 &xZ
d 7w xC+dZ  C-y+dw -bxy 0

using the standard dot (inner) and cross (outer, exterior, vector) products of
3-vectors. The associated norm is

§(m)=ad—b-¢.
For any ¢ with ¥+ ¥ = k # 0 the subalgebra of all

_ a bv
M=\ k5 d

is a copy of the split quaternion algebra Mats(F') with norm the usual determi-
nant.

Zorn (and others) gave a slightly different version of the vector matrices,
replacing our entry ¢ with its negative. This gives the more symmetrical norm
form 8(m) = ad + b - & but makes the connection with standard matrix multi-
plication and determinants less clear.

oL

Extending coefficients in a composition algebra produces a composition alge-
bra (although this is more than an exercise). For every composition K-algebra
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O, there is an extension E of degree at most 2 over K with E ®k O a split com-
position E-algebra. In particular every composition algebra over algebraically
closed E is split and so unique up to isomorphism. The split algebra over C
(for instance given by Zorn’s vector matrices) has two isomorphism classes of
R-forms—the class of the split algebra O°P(R) and that of the Cayley-Graves
division algebra Q.

1.3 Jordan algebras

As mentioned above, the basic models for associative algebras are the endomor-
phism algebras Endg (V') for some K-space V' and the related matrix algebras
Mat,, (K). While Jordan and Lie algebras both have abstract varietal definitions
(given below for Jordan algebras and in the next section for Lie algebras), they
are first seen in canonical models coming from Endg (V).

We start with the observation that any pure tensor from V ® V is the sum
of its symmetric and skew-symmetric parts:

1 1
v®w:§(v®w+w®v)+§(v®w—w®0)~

In 1933 P. Jordan [JvNW34] initiated the study of the K-algebra AT =
(A, u™) = (A, 0) that is the associative K-algebra A equipped with the Jordan
product

1
prrey) =woy = g(zy+yz).

This requires, of course, that the characteristic of the field K not be 2. We
could also consider the algebra without the factor of %, but we keep it for various
reasons—in particular zox = 1(zz+azz) = 2z = 2? and loz = L (lz+z1) = z.
The model for all Jordan algebras is then End;f (V), the vector space of all
K-endomorphisms of V' equipped with the Jordan product.
Clearly the algebra End;f (V) is commutative. Not so obvious is the fact that

we also have the identity

(roz)o(yor) = ((wou)oy)ou,

for all z,y € Endf (V). (Exercise.)
We are led to the general, varietal definition: the K-algebra A is a Jordan
algebra if it is commutative and satisfies the identical relation

2?(yz) = (2”y)z.

The canonical models are End; (V') and so also Mat,! (K) (in finite dimension).

Any subspace of End%(V) that is closed under the Jordan product is cer-
tainly a Jordan subalgebra. Especially if 7 is an automorphism of Endg(V),
then its fixed-point-space is certainly closed under the Jordan product and so
is a subalgebra. More subtly, if 7 is an antiautomorphism of Endg(V), then it
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induces an automorphism of Endﬂ"’('(V) whose fixed points are again a Jordan
subalgebra.

For instance, in the K-algebra Mat,,(K) the transpose map is an antiauto-
morphism, so the symmetric matrices from Mat,, (K) form a Jordan subalgebra
of Mat;} (K). More generally, if A is a K-algebra with an antiautomorphism
a — a fixing K, then we can try the same trick with the K-algebra Mat,, (A).
The transpose-conjugate map
7+ (aiz) = (a;:)
is then an antiautomorphism of Mat,,(A4) (Exercise.), and so the associated fixed
space of Hermitian matrices

H,(A) = { M € Mat, (A) | M = M" }

is closed under the Jordan product

1
2
If A is associative then we have a Jordan algebra. Indeed this with A = C
and K = R was the original motivation for the physicist Jordan: in quantum
mechanics the observables for the Hilbert space C" are characterized by the
hermitian matrices H,,(C), a set which is not closed under the standard matrix
product but is a real Jordan algebra under the Jordan product.

When A is not associative, there is no reason to assume that this gives
H,,(A) the structure of an (abstract) Jordan algebra. But if we choose A to be
an octonion algebra over K and let n < 3, then this is in fact the case. (Recall
that the alternative law is a weak version of the associative law, so this is not
completely unreasonable.)

For the octonion K-algebra O, the Jordan algebra H3(O) is called an Albert
algebra. Each matrix of H3(O) has the shape

S|

a
b v
¥ c

™I Q2

with a,b,c € K (the fixed field of conjugation in O) and «, 3,y € O. Thus the
K-dimension of the Albert algebra H3(O) is 3+ 3 x 8 = 27.

1.4 Lie algebras and representation

In the previous section we only discussed the symmetric part of the tensor
decomposition displayed at the beginning of the section. But even at the time
of Jordan, the corresponding skew part had been studied for years, starting
with the Norwegian Sophus Lie and soon followed by Killing and Cartan (see
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[Bo01] and [Haw00]) If A is an associative algebra, then we define a skew algebra
A= =(A,u") = (A,[,]) by furnishing A with the multiplication

p(zey) =[z,yl =2y —yz.

(Note that the scaling factor % does not appear.) The algebras A~ and in
particular Endy (V) and Mat,, (K) are the canonical models for Lie algebras
over K.

In a given category, a representation of an object M is loosely a morphism of
M into one of the canonical examples from the category. So a linear represen-
tation of a group M is a homomorphism from M to some GLk (V). With this
in mind, we will say that a linear representation of an associative algebra A, a
Jordan algebra J, and a Lie algebra L (all over K), respectively, is a K-algebra
homomorphism ¢ belonging to, respectively, some

Hom,pig(A, Endg(V)), Homyag(J, Endﬁ(V)) . Homyai (L, Endg (V)),
which in the finite dimensional case can be viewed as
Homy,aig (A4, Mat,,(K)), Homya(J,Mat, (K)), Hom,ag(L, Mat, (K)).

The corresponding image of ¢ is then a linear associative algebra, linear Jordan
algebra, or linear Lie algebra, respectively. The representation is faithful if its
kernel is 0. The underlying space V' or K™ is then an A-module which carries
the representation and upon which the algebra acts.

It turns out that in each of these categories, many of the important examples
are linear. For instance

(1.3). PROPOSITION. Ewery associative algebra with a multiplicative identity
element is isomorphic to a linear associative algebra.

PRrROOF. Let A be an associative algebra. For each x € A, consider the map
ad: A — Endg(A) of Lemma given by x — ad, where ad, a = xa as
before. That lemma states that ad is a vector space endomorphism.

Thus we need to check that multiplication is respected. But the associative
identity

(zy)a = z(ya)
can be restated as
adyya = ad,ady a,

for all z,y,a € A. Hence ad,, = ad, ad, as desired.
The kernel of ad consists of those x with za = 0 for all a € A. In particular,
the kernel is trivial if A contains an identity element. |

It is clear from the proof that the multiplicative identity plays only a small
role—the result should and does hold in greater generality. But for us the main
message is that the adjoint map is a representation of every associative algebra.
The proposition should be compared with Cayley’s Theorem which proves that
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every group is (isomorphic to) a faithful permutation group by looking at the
regular representation, which is the permutation version of adjoint action.

What about Jordan and Lie representation? Of course we still have not
defined general Lie algebras, but we certainly want to include all the subalgebras
of Endg (V) and Mat,, (K).

As above, the multiplication map p of an arbitrary Lie algebra A = (A, [+, ])
will be written as a bracket, in deference to the commutator product in an
associative algebra:

wr®y)=[z,y].
In the linear Lie algebras Endy (V') and Mat,, (K) we always have
[z,2] =22 — 22 =0,
so we require that an abstract Lie algebra satisfy the null identical relation
[z,2] =0.

This identity is not linear, but we may “linearize” it by setting z = y + 2. We
then find

O=ly+zy+z=yyl+lyzl+[y+[z2=[y2 + [z,

giving as an immediate consequence the linear skew identical relation

[y,z] = —[z,y] :

If charK # 2, these two identities are equivalent. (This is typical of linearized
identities: they are equivalent to the original except where neutralized by the
characteristic.)

Our experience with groups and associative algebras tells us that having
adjoint representations available is of great benefit, so we make an initial hopeful
definition:

A Lie algebra is an algebra (x L, [-,-]) in which all squares [x,x] are
0 and for which the K-endomorphism ad: L — Endg (L) is a rep-
resentation of L.

Are Endg (V) and Mat,, (K) Lie algebras in this sense? Indeed they are:

ady ady a = adg(ya — ay)

= z(ya — ay) — (ya — ay)z
= rya — ray — yar + ayx
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hence

lad,, adyle = (ad, ad, —ad, ady)a
= (zya — zay — yaxr + ayzx) — (yra — yar — xay + axy)
= (zya — axy) — (yra — ayx)
= [zy,a] = [yz, d]
= [zy —yz,q]
=ad[zya-
That is, [ad,,ad,] = ad|,,,, as desired.

Let us now unravel the consequences of the identity ad, , = lad,, ad,] for
the algebra (L, [, -]):

12 = [ady, ady]2

[[ﬂﬁ,y],z] (ad, ad, — ad, ad,)z
[[z,y], 2] = (ady ady)z — (ady ad,)z
([z,9], 2] = [, [y, 2] = [y, [, 2]]
[z, 9], 2] = —[ly, 2], =] — [[2, 2], 4] -

That is,
[[.13, y]v Z] + [[yv Z]v x] + HZ7 J)], y] =0.
We arrive at the standard definition of a Lie algebra:

A Lie algebra is an algebra (gL, [-,-]) that satisfies the two identical
relations:

(i) [z,2] = 0;
(ii) (Jacobi Identity) [[z,y], 2] + [y, 2], 2] + [[2, =], y] = 0.
Negating the Jacobi Identity gives us the equivalent identity

[Zv [xvy]] + [fv [yv Z]] + [ya [va]] =0.

In particular, the opposite of a Lie algebra is again a Lie algebraﬂ

The Jacobi Identity and the skew law [y, z] = —[z,y] are both linear, and
these serve to define Lie algebras if the characteristic is not 2. This is good
enough to prove that tensor product extensions of Lie algebras are still Lie
algebras as long as the characteristic is not 2

In all characteristics the null law [z, 2] = 0 admits a weaker form of linearity.
Assume that we already know [y,y] = 0, [z,2] = 0, and [y, 2] = —[z,y]. Then
for all constants a, b we have

[ay + bz, ay + bz] = [ay, ay] + [ay, bz] + [bz, ay] + [bz, bz]

= a®[y, y] + ab([y, 2] + [z, 9]) + b*[z, ]
—04+0+0=0.

IExercise: the map = + —z is an isomorphism of the Lie algebra L with its opposite
algebra.
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This, together with the linearity of the Jacobi Identity, gives

(1.4). PROPOSITION. Let L be Lie K-algebra and E an extension field over
K. Then E ®k L s a Lie E-algebra. a

Our discussion of representation and our ultimate definition of Lie algebras
immediately give

(1.5). THEOREM. For any Lie K-algebra L, the map ad: L — Endg (L) is a
representation of L. The kernel of this representation is the center of L

Z(L)y={z€L|[z,a] =0, forallae L}. O

As was the case in Proposition [(1.3)| the small additional requirement that
the center of A be trivial gives an easy proof that A has a faithful representation
which has finite dimension provided A does. Far deeper is:

(1.6). THEOREM.

(a) (PBW THEOREM) Every Lie algebra has a faithful representation as a lin-
ear Lie algebra.

(b) (ADO-IwAaSAWA THEOREM) Every finite dimensional Lie algebra has a faith-
ful representation as a finite dimensional linear Lie algebra. oo

Both these theorems are difficult to prove, although we will return to the
easier PBW Theorem later as Theorem Notice that the Ado-Iwasawa
Theorem is not an immediate consequence of PBW. Indeed the representation
produced by the PBW Theorem is almost always a representation on an infinite
dimensional space.

For Jordan algebras, the efforts of this section are largely a failure. In
particular the adjoint action of a Jordan algebra A on itself does not give a
representation in Endg (A4). (Exercise.)

Jordan algebras that are (isomorphic to) linear Jordan algebras are usually
called special Jordan algebras, while those that are not linear are the exceptional
Jordan algebmsﬂ A.A. Albert [AIb34] proved that the Albert algebras—the
dimension 27 Jordan K-algebras described in Section[I-3}—are exceptional rather
than special. Indeed Cohn [Coh54] proved that Albert algebras are not even
quotients of special algebras. Results of Birkhoff imply that the category of
images of special Jordan algebras is varietal and does not contain the Albert
algebras, but it is unknown what additional identical relations suffice to define
this category.

280, taking a page out of the Montessori book, there are exactly two types of Jordan
algebras: those that are special and those that are exceptional.
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1.5 Problems

(1.7). PROBLEM.
(a) Give two linear identities that characterize alternative K-algebras when charK # 2.

(b) Let A be an alternative K-algebra and E an extension field over K. Prove that
E ®k A is an alternative E-algebra.

(1.8). PROBLEM. Let A be an associative K-algebra for K a field of characteristic
not equal to 2.

(a) Prove that in general the adjoint action of a Jordan algebra does not give a rep-
resentation. Consider specifically the Jordan algebra AT = (A,0) and its adjoint
map ad : At — Endﬂ‘g (A) where you can compare adaoa and adg 0 adq.

(b) Consider the two families of maps from A to itself:
1
Ly:z—aox = i(am—kxa)

and
U,: z— aza.

Prove that the K-subspace V' of A is invariant under all Lo, for a € V, if and only
if it is invariant under all Uy, for a € V.

HINT: The two parts of this problem are not unrelated.

REMARK. Observe that saying V is invariant under the L, is just the statement
that V is a Jordan subalgebra of Endﬂé (A), the map Lo being the adjoint. There-
fore the problems tells us that requiring Ug,-invariance is another way of locating
Jordan subalgebras, for instance the important and motivating spaces of hermitian
matrices Hy, (C) in Mat,, (C).

The crucial thing about U, s that division by 2 is not needed. Therefore the maps
U, and their properties can be, and are, used to extend the study of Jordan algebras
to include characteristic 2. The appropriate structures are called quadratic Jordan
algebras, although some care must be taken as the “multiplication” a x x = Uy (x)
is not bilinear. It is linear in its second variable but quadratic in its first variable;
for instance (aa) x x = o(a * x) for a € K.
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Examples of Lie algebras

We give many examples of Lie algebras (xL, [, -]). These also suggest the many
contexts in which Lie algebras are to be found.

2.1 Abelian algebras

Any K-vector space V is a Lie K-algebra when provided with the trivial product
[v,w] =0 for all v,w € V. These are the abelian Lie algebras.

2.2 Generators and relations

As with groups and most other algebraic systems, one effective way of producing
examples is by providing a generating set and a collection of relations among
the generators. For a K-algebra that would often be through supplying a basis
V = {wv; | i € I} together with appropriate equations restricting the various
associated cfj.

For a Lie algebra, the Jacobi Identity is linear and leads to (Exercise.) the
equations:

k m k. m k. m __
Z CiCrl + CiiCr + e =0,
k

for all 4,5,l,m € I.

The law [z, 2] = 0 gives the equations
L0,
Since the null law is not linear, we also must include the consequences of its
linearized skew law [z, y] = —[y, z]; so we also require
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An algebra whose multiplication coefficients satisfy these three sets of equations
is a Lie algebra. (Exercise.)

When presenting a Lie algebra it is usual to leave the non-Jacobi equations
implicit, assuming without remark that the bracket multiplication is null and
skew-symmetric.

For instance, we have the K-algebra L = Kh & Ke & Kf where we state

[eaf]:ha [h,@]:26, [ha.ﬂ:72f7

but in the future will not record the additional, necessary, but implied relations,
which in this case are

[h’h]:[e’e}:[fvf]:()v [fve]:_h) [e7h]:_2€7 [f7h}:2f-

Of course at this point in order to be sure that L really is a Lie algebra,
we must verify the Jacobi Identity equations for all quadruples (i,j,1,m) €
{h,e, f}*. (Exercise.)

2.3 Matrix algebras

Many Lie algebras occur naturally as matrix algebras. We have already men-
tioned Mat,, (K). This is often written gl,,(K), the general linear algebra, in part
because it is the Lie algebra of the Lie group GLy,(K); see Theorem [(3.7)[(a) be-
low. The Gothic (or Fraktur) font is also a standard for Lie algebras.

A standard matrix calculation shows that tr(MN) = tr(NM), so the subset
of matrices of trace 0 is a dimension n? — 1 subalgebra s, (K) of the algebra
gl,,(K), which itself has dimension n?. Indeed the special linear algebra sl,, (K) is
the derived subalgebra [gl,,(K), gl,,(K)] spanned by all [M, N] for M, N € gl,, (K);
see Section [4.1] below.

The subalgebras n; (K) and n;, (K) are, respectively, composed of all strictly
upper triangular and all strictly lower triangular matrices. Both have dimension
(Z) Next let 9,,(K) and b, (K) be the abelian subalgebras of, respectively, all
diagonal matrices (dimension n) and all diagonal matrices of trace 0 (dimension
n — 1). We have the triangular decomposition

al, (K) = 0.} (K) © 0, (K) & n,, (K)

and
sl (K) = 0} (K) @ b, (K) & 0, (K).

This second decompositions and ones resembling it will be important later.
Within the Lie algebra sls(K), consider the three elements

1 0 0 1 0 0
=0 5)e=(o0) =(00)
so that hy(K) = Kh, nj (K) = Ke, and n; (K) = Kf, and
sL(K)=Kh®Ke dKf.
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We then have (Exercise.)
[B,f]:h,, [h76]:263 [h7f]:_2f7

and the algebra presented at the end of the previous section is indeed a Lie
algebra, namely a copy of sls(K).

For the basic theory of bilinear forms, see Appendix [A] For bilinear b, the
K-space of endomorphisms

L£(V,b) = {z € Endg (V) | b(zv,w) = —b(v, zw) for all v,w € V' }

is then an Lie K-subalgebra of Endg (V). (Exercise.)

With V= K" and Endg (V) = Mat,(K) = gl,,(K), we have some special
cases of £ = £(V,b). Let G = (b(e;, €;))i,; be the Gram matriz of b on V (with
respect to the usual basis). The condition above then becomes

£(V,b) = {M € Mat,,(K) | MG = -GM " }.
For simplicity’s sake we assume that K does not have characteristic 2.

(i) Orthogonal algebras. If b is the usual nondegenerate orthogonal form
with an orthonormal basis, then so,(K) = £. As matrices,

50,(K) = { M € Mat,,(K) | M = -M"}.

If the field K is algebraically closed, then it is always possible to find a
basis for which the Gram matrix J is in split form as the 2] x 2] matrix
with [ blocks < (1) (1) ) down the diagonal when n = 2! is even, and this
same matrix with an additional single 1 on the diagonal when n = 2] + 1
is odd.

For the split form over an arbitrary field K, we may write SOZ(K) in place
of s09;(K).

(ii) Symplectic algebras. If b is the usual nondegenerate (split) symplectic
form with symplectic basis S = {v;,w; | 1 < <1} subject to b(v;,v;) =
b(w;,w;) = 0 and b(v;, w;) = 0;; = —b(wj,v;), then spy(K) = £. As
matrices,

spoy(K) = { M € Maty(K) | MJ = —JM "},

where J is the 2 x 2] matrix with n blocks ( 1 ) down the diagonal.

-1 0

The notation is not uniform. Especially, when K = R the field is sometimes
omitted, hence one may find

gl,R) =gl(n,R) =gl(n) =gl,, sL(R)=sl(nR)=-sl(n)=sl,;
and
50, (R) = s0(n,R) =s0(n) = so, .

More confusingly, in the case of symplectic algebras the actual definition can
vary as well as the notation; see [Tulll, p. 160].
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2.4 Derivations

A derivation D on the K-algebra A is a linear transformation D € Endg(A)
with
D(fg) = fD(g) + D(f)g,

for all f,g € A. This should be recognized as the Leibniz product rule. Clearly
the set Derg (A) is a K-subspace of Endg (A), but in fact this provides an amazing
machine for constructing Lie algebras:

(2.1). THEOREM. Derg(A) < Endg (A). That is, the derivation space is a Lie
K-algebra under the bracket product.

ProoOF. Let D, E € Derg(A). Then, for all f,g € A,

(D, E|(fg) = (DE = ED)(fg) = DE(fg) — ED(fg)
= D(fEg+ (Ef)g) — E(fDg + (Df)g)
= D(fEg) + D((Ef)g) — E(fDg) — E((Df)g))
= fDEg+ DfEg+ EfDg+ (DEf)g

—[EDg— EfDg— DfEg— (EDf)g
= fDEg— fEDg+ (DEf)g — (EDf)g
= f([D, Elg) + ([D, E]f)g- O
The definition of derivations then tells us that the injection of Derg(A) into

Endy (A) gives a representation of the Lie derivation algebra Derg(A) on the
K-space A.

(2.2). COROLLARY. The image of A under the adjoint representation is a
subalgebra of Derg(A) and Endy (A).

PROOF. The image of A under ad is a K-subspace of Endg(A) by our very
first Lemma/|(1.1)l It remains to check that each ad, is a derivation of A.
We start from the Jacobi Identity:

lla, 9], 2] + [ly; 2], a] + [[2, 0], 4] = 0,

hence
—[ly. 2], a] = [[a, 9], 2] + [, al, 4] .-
That is,
[a, [y, 2] = [[a,y], 2] + [y, [a, 2]] ,

ad, [yv Z] = [ada Y, Z] + [y, ad, Z] . O

The map ad,, is then an inner derivation of A, and the Lie subalgebra InnDerg (A) =
{ad, | a € A} is the inner derivation algebra.
We have an easy but useful observation:
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(2.3). PROPOSITION. Every linear transformation of Endg(A) is a derivation
of the abelian Lie algebra A.

PROOF. For D € Endg(A) and a,b € A

Dla,b] =0=0+0=[Da,b] + [a, Db] . O

2.4.1 Derivations of polynomial algebras
(2.4). PROPOSITION.
(a) DerK(K) =0.

(b) If the K-algebra A has an identity element 1, then for each D € Derg(A)
and each ¢ € K1 we have D(c) = 0.

(c) Derg(K[t]) = {p(t)% | p(t) € K[t]}, a Lie algebra of infinite K-dimension
with basis {t'4 |t € N}.

PrOOF. Part (b) clearly implies (a).
(b) Let ¢ = ¢l € K1. Then for all x € A and all D € Derg(A) we have
D(cx) = ¢D(x)
as D is a K-linear transformation. But D is also a derivation, so
D(cx) = eD(x) + D(c)x .
We conclude that D(c)z =0 for all z € A, and so D(c) = 0.

(c) Let D € Derg(A). By (b) we have D(K1) = 0. As the algebra A is generated
by 1 and ¢, the knowledge of D(t) together with the product rule should give us
everything. Set p(t) = D(t).

We claim that D(t") = p(¢)it*~! for all i € N. We prove this by induction
on i, the result being clear for ¢ = 0,1. Assume the claim for ¢ — 1. Then

D(t") = D(t"" ') =t""'D(t) + D(t* ')t
=7 1p(t) +p(t) (i — D)t = p(t)it' ™",

as claimed.
As D is a linear transformation, if a(t) = Y/ a;t*, then

m ) m o m . . d
D(a(t)) = ;aiD(#) = ;aip(t)ltl b=p(t) ;wit = p(t)alt),
completing the proposition. O

In Derg(K[t]) there is the subalgebra A = Kh @ Ke @ Kf with e = 4

dat>
h= —215%7 f= —t2%7 and relations (Exercise.

)
[e7f]:h’ [h,€]=2€, [hvf]:_2f§
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so we have sl (K) again.

We next consider K[z,y]. A similar argument to that of the proposition
proves

Derg (Kz,y]) = {p(w,y)% + Q(x’y)a% | p(z, ), q(x,y) € Klz,y] }.

(See Problem [(2.8)l) We examine two special situations—a subalgebra and a
quotient algebra.

(i) Consider the Lie subalgebra that leaves each homogeneous piece of K[z, y]
invariant. This subalgebra has basis

0 0
hw—x%, e—xa—y, f

0,0
~ Yoz y_yay'

Set h:hm—hy:xa%—ya%. Then

[e7f]:ha [h,€]=2€, [hvf]=—2f7

giving sly(K) yet again. The 4-dimensional algebra Kh, ® Kh, ® Ke ® Kf
is isomorphic to gl,(K) with the correspondences

1 0 0 0
hz—<0 0) and hy_(O 1).

Each homogeneous piece of K[z, y] carries a representation of gly(K) and
slo(K) via restriction from the action of Derg(K[z,y]). The degree m
homogeneous component K[z, y],, is then a cyclic Ke- hence sls(K)-module
Mo(m+ 1) of dimension m + 1 with generator y™. This will be important
in Chapter [7]

(i) The algebra K[z,y] has as quotient the algebra K[z,z~1] of all Laurent
polynomials in x. A small extension of the arguments from Proposition

c) (Exercise.) proves that Derg (K[z, 27 !]) has K-basis consisting of
the distinct elements

d
L,=—-a2""—" formeZ.
dx

We write the generators in this form, since they then have the nice pre-
sentation

[Lin, L] = (m —n)Lypyn -

All the multiplication coefficients are integers. The Z-algebra with this
presentation has infinite dimension. It is called the Witt algebra over Z,
just as its tensor with K, Derg (K[z, 271]), is the Witt algebra over K.
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2.4.2 Derivations of nonassociative algebras

We may also consider derivations of the nonassociative algebras we have en-
countered, specifically the octonion K-algebra O and (in characteristic not 2) its
related Albert algebra—the exceptional Jordan K-algebra H3(O). The deriva-
tion algebra Derg(O) has dimension 14 (when charK # 3) and is said to have
type g2 while the algebra of inner derivations of the Albert algebra Hs(O) has
dimension 52 and is said to have type f4. Especially when K is algebraically
closed and of characteristic 0 we have the uniquely determined algebras go(K)
and f4(K), respectively.

2.4.3 Vector fields

We shall see in the next chapter that the tangent space to a Lie group at the
identity is a Lie algebra. As the group acts regularly on itself by translation,
this space is isomorphic to the Lie algebra of invariant vector fields on the group.

Indeed often a wvector field on the smooth manifold M is defined to be a
derivation of the algebra C®°(M) of all smooth functions; for instance, see
[Hel01l, p. 9]. Thus the space of all vector fields is the corresponding deriva-
tion algebra and so automatically has a Lie algebra structure.

For instance, the Lie group of rotations of the circle S* is the group SO (R)

of all matrices
cos(f) —sin(6)
sin(f)  cos(6) ’

which becomes e when we extend coefficients to the complex numbers. The
corresponding spaces of invariant vector fields have dimension 1.

The space C*°(S') of all smooth functions on the circle consists of those
functions that can be expanded as convergent Fourier series

Z G, sin(mO) + by, cos(mb) ,

meZ

which after extension to C becomes the simpler

This space has as a dense subalgebra the space of all Fourier polynomials, whose
canonical basis is { €™’ | m € Z }.

The group of all complex orientation preserving diffeomorphisms of the circle
(an “infinite dimensional Lie group”) is an open subset of C2°(S") and has as
corresponding space of smooth vector fields (not just those that are invariant)
all f d% for f smooth. The dense Fourier polynomial subalgebra with basis
L, = z'e“”ed% then has

(Lo, Ln] = (m —n) Ly g

giving the complex Witt algebra again.
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2.5 Other constructions

2.5.1 Extensions

As we have seen and expect, subalgebras and quotients are ways of constructing
new algebras out of old algebras. We can also extend old algebras to get new
ones. As with groups, central extensions are important since the information
we have about a given situation may come to us via the adjoint of in projective
rather than affine form.

The Virasoro algebra is a central extension of the complex Witt algebra. If
W is the Witt Z-algebra, then

Virg = (C®z W) @ Ce
with [w, ] =0 for all w € W and

2
(Lns L] = (1m0 = 0) Lon 4 + 5m,_n%c.
The multiplication coefficients are half-integers.

The Virasoro algebra is important in applications to physics and other sit-
uations. As seen after Proposition the Witt and Virasoro algebras both
contain the subalgebra CL_; & CLy @ CL; isomorphic to sl2(C). As we shall
find starting in Section large parts of the finite dimensional Lie algebra
theory depend upon the construction of Lie subalgebras sly(K). Similarly, the
infinite dimensional Lie algebras that come up in physics and elsewhere are often
handled using Witt and Virasoro subalgebras, which are in a sense the infinite
dimensional substitutes for the finite dimensional sl;(K).

Given a complex simple Lie algebra like sl5(C), the corresponding affine Lie
algebra comes from a two step process. First extend scalars to the Laurent
polynomials and second take an appropriate central extension. So:

~

sly(C) = (C[t,t ] ®@c 512(C)) @ Ce

where the precise cocycle on the complex Lie algebra C[t,t~!] ®c sl2(C) that
gives the extension is defined in terms of the Killing form on the algebra sl (C).
(See Chapter [6] below.)

In such situations it is more usual to write the Lie algebra C[t, =] ®c sla(C)
instead as sly(C) ®c C[t, 1], viewing its elements as “Laurent polynomials”
with coefficients from the algebra sl (C).

It is also possible to form split extensions of Lie algebras, with derivations
playing the role that automorphisms play in group extensions. (See Section )
The canonical derivation % on the Laurent polynomials induces a derivation of
the affine algebra which is then used to extend the affine algebra so that it has
codimension 1 in the corresponding Kac-Moody Lie algebra.
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2.5.2 Embeddings

We saw above that derivations of octonion and Jordan algebras give new Lie
algebras. Tits, Kantor, and Koecher [Tit66] used these same nonassociative
algebras to construct (the TKK construction) Lie algebras that are still more
complicated. In particular, the space

Derc(07(C)) @ (O(C)o @c H3(0(C))o) @ Derc(Hz(0®(C)))

of dimension 14+ (8 —1) x (27—1)+52 = 248 can be provided with a Lie algebra
product (extending that of the two derivation algebra pieces) that makes it into
the Lie algebra eg(C). Here O°P(C)q is 1+ in O%(C) and H3(Q*P(C)), is a
similarly defined subspace of codimension 1 in H3(O%(C)). The Lie algebra
eg(C) furthermore has the important subalgebras ¢s(C) of dimension 78 and
¢7(C) of dimension 133.

2.5.3 Nilpotent groups
Let G be a nilpotent group with lower central series
G=LYG)>L*(G)> - >L""HG) =1
where L*(@) is defined as [G, L*(G)]. For each 1 < k < n set
L, =LFG)/LF (@),

an abelian group as is the sum

As @ is nilpotent, always
[L'(G), /(@) < L™(G).

This provides the relations that turn the group L = Lg into a Lie ring—we do
not require it to be free as Z-module—within which we have

[Lis Lj] < Liyj -

Certain questions about nilpotent groups are much more amenable to study
in the context of Lie rings and algebras [High8]. A particular important instance
is the Restricted Burnside Problem, which states that an m-generated finite
nilpotent group of exponent e has order less than or equal to some function
f(m,e), dependent only on m and e. Professor E. Zelmanov received a Fields
Medal in 1994 for the positive solution of the Restricted Burnside Problem. His
proof [Zel97] makes heavy use of Lie methods.
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2.6 Problems

(2.5). PROBLEM. Classify up to isomorphism all Lie K-algebras of dimension 2. (Of
course, the abelian algebra gives the only isomorphism class in dimension 1.)

(2.6). PROBLEM. Prove that over an algebraically closed field K of characteristic not
2, the Lie algebra sl2(K) is isomorphic to so3(K), the orthogonal Lie algebra of 3 x 3
skew-symmetric matrices.

(2.7). PROBLEM. Find all subalgebras of sl2(K) that contain the subalgebra H = Kh.
HINT: Small characteristic can produce anomalous results.

(2.8). PROBLEM. Calculate Derg(K[z1,. .. zn]).

(2.9). PROBLEM. Consider the matriz subgroup UT,(K) of GL,(K), consisting of
the upper unitriangular matrices—those which have 1’s on the diagonal, anything above
the diagonal, and 0’s below the diagonal.

(a) Prove that G = UT,(K) is a nilpotent group.

(b) Starting with this group G, construct the Lie algebra L = L¢ as in Section .
Prove that L is isomorphic to the Lie algebra n} (K).

(2.10). PrOBLEM.  Consider the subgroup X, (K) of upper unitriangular matrices
that have 1’s on the diagonal, anything in the nondiagonal part of the first row and
last column, and 0’s elsewhere.

(a) By the previous problem X = X, (K) is nilpotent. Prove that for n > 2 it has
nilpotence class exactly 2 and that its center is equal to its derived group and
consists only of those matrices with 1’s down the diagonal and the only other
nonzero entries found in the upper-righthand corner.

(b) Starting with this group X, construct the Lie algebra L = Lx as in Section .
Prove that L is isomorphic to the Lie algebra on the space

n—1
M =Kz o @ (Kaz: @ Kyi)
i=1
with relations given by
[zi,v:] = —lyi, @] = 2,
for all i, and all other brackets among generators equal to 0.

REMARK. This Lie algebra is the Heisenberg algebra of dimension 2n —1 over K.
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Lie groups

(N. Jacobson [Jac79, p. 1]:) The theory of Lie algebras is an out-
growth of the Lie theory of continuous groups.

(R. Carter [Car0bl, p. xiii]:) Lie algebras were originally introduced
by S. Lie as algebraic structures used for the study of Lie groups.

It would be wrong for us to talk at length about Lie algebras without de-
voting at least some time to the way in which they arise in the theory of Lie
groups. We do that in an abbreviated form in this chapter.

For us, Lie’s work and the work that it motivated contain two basic obser-
vations:

(i) If G is a Lie group, then the tangent space to the identity is a Lie algebra
A(G).

(ii) The representation theory of the Lie group G and of the Lie algebra A(G)
are essentially the same.

The second observation displays real progress, since a Lie algebra is a linear
object whereas the Lie group is not. This is the same advantage obtained in the
passage from a nilpotent group to its associated Lie ring in Section

This chapter is included in order to place Lie algebras in one of their most
important contexts, historically and practically. Its material will not be used
in the rest of the notes or course. Therefore for ease of presentation we assume
uniformly throughout that the vector spaces, groups, and algebras we examine
are defined over the real numbers. Given our later focus on algebraically closed
fields of characteristic 0, it might make more sense to restrict to the complex
case; but that would require more sophisticated calculus/analysis than we care
to use.

23
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3.1 Representation theory as spectral theory

The two observations beg the question, “What is so good about representation
theory?” After all, many of our important Lie groups and algebras are already
defined in terms of matrices. Why worry about more representations?

Lie and those who followed him were interested in using Lie theory to solve
problems, and it is often easier to solve a problem in pieces rather than all at
once. An important example is the analysis of the action of a linear transfor-
mation in terms of its eigenspaces. Such decompositions are collected together
under the heading of spectral theory, and they are served by various canonical
form results.

The representation theory of groups (and other algebras) can be thought of
as a general form of spectral or canonical form theory. If the initial, say physical,
statement of a problem has some inherent symmetry, then that symmetry should
also be evident in the space of solutions. Lie noted that this action could be
exploited to decompose the solution space and so perhaps find nice descriptions
for the solutions. At the heart of matrix canonical form results is the feeling
that matrices containing lots of zeros are the easiest to deal with.

Lie was interested in particular in solving differential equations. Dresner
[Dre99, p. 16] shows how, starting from the differential equation

d,_ ' —x)

dz x ’
once one has noticed that the solution set is invariant under the change of
variables

r=x1 — zs =€ y=11 — ys = ey,
for all s € R, it is relative easy to construct an integrating factor

2 _1
p(z,y) = <$y3 - :C2y>

and so reach the closed form solution set
y =2z +c)/?.

The displayed symmetry group {e® | s € R} ~ (R,+) is continuous and
even smooth in its variable. This type of symmetry is evident in many physical
situations, and this led Lie (and others) to the study of smooth groups and
their representations. We shall see in Section that the most basic Lie group
(R, +) is also one of the most important.

3.2 Lie groups and Hilbert’s Fifth Problem

A Lie group is a smooth manifold G that is also a group. These two conditions
are linked by the requirements that the group multiplication m: G x G — G
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given by m(z,y) = xzy and the group inverse map i: G — G given by i(x) =
=1 are smooth maps on the manifold. Here (recalling that we are speaking
of real manifolds) by smooth we mean C*. (For a complex manifold, smooth
means holomorphic.)

Examples are provided by the closed subgroups of GL,,(R): those subgroups
containing the limit of every sequence of group matrices for which that limit
exists and is invertible. This already might be a surprise, since closure is a
topological property, determined only by examining C° continuity issues. The
C° condition is very weak when compared to the smooth C> assumptions of
the manifold definition.

If G is a Lie group, then certainly
(i) G is a topological group (that is, the maps m and ¢ are continuous) and
(ii) G is locally a finite dimensional Euclidean space.

One reading of Hilbert’s Fifth Problem is that, in fact, the Lie groups are exactly
the locally Euclidean topological groups. Once made precise, this version of the
Fifth Problem was proven by Montgomery and Zippin [MoZi55] and Gleason
[Gle52] in 1952. (See [Taold] for more.)

Cartan first proved that closed subgroups of GL,(R) are Lie groups. As
such, it is reasonable to focus on such examples when initially discussing Lie
groups. This is the approach take by several modern introductions to Lie groups
[EId15] Hall5 How83l vNe29, Ros02] [Sti08| [Tap05] and is largely what we do
here. In particular, those not comfortable with manifolds need not worry—just
focus on closed subgroups of GL,, (R).

Essentially everything we prove (or state) goes over to the general case, al-
though some of the definitions and proofs would require more subtlety. In par-
ticular, in place of the concrete functions exp and log provided by convergent
power series of matrices, one appeals to the uniqueness of solutions for appro-
priate ordinary differential equations and to the Inverse Function Theorem; see
[CSM93], pp. 69-74].

3.3 Some matrix calculus

For the matrix M = (m;;)i; € Maty(R), set |[M| = i m3;. This is the
standard Euclidean norm on R*; especially for k = | = 1 we have the usual
|(m)| = |m|. We can then define limits of matrix functions, using this norm to

determine “closeness.” In turn, this gives meaning to statements that a function
from one matrix space to another is continuous, for instance in our discussion
above of multiplication and inversion in Lie groups.

For smoothness we need derivatives as well. The usual derivative of f(x) at
T = a is given by

=jw=2

t—s0 t T odx | T
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If we rewrite this as

i 1050 = (@) + /(@)1

t—0 t

:O’

we are observing that near a (near t = 0), the line f(a) + f'(a)t is a good
approximation to the function f(¢ + a). This motivates the following definition
of the derivative of a matriz function; see [Spi6d], p. 16].

The linear transformation D: Maty, ;(R) — Mat,, ,(R) is the deriva-
tive at A of the matriz function F: Maty ;(R) — Mat,, ,(R) pro-
vided

L IF(T+4) - F(4) - D(T)

T—0 T =0

As derivatives are locally determined, to calculate the derivative of F' at A we
only need to know F' on some neighborhood of A in Maty, ;(R).

This definition is the appropriate one for checking properties, but our ap-
plications later in this chapter will only be concerned with the special case k =
I =1 and m = n. That is, we will consider matrix functions F': I — Mat,, (R)
for some open interval I in R that contains the point a. There we will use the
equivalent but more familiar formulation

F'(a) = lim M

t—0 t

€ Mat, (R).

Once we have checked that matrix limits and derivatives behave as hoped
and expectedﬂ (see, for instance, [EId15],[Hall5]), we have

(3.1). PROPOSITION.

a) If the power series A(t) = S o Apth converges for all |t| < r, then its
k=0
derivative A'(t) =Y 7, kAxt*™! also converges for all |t| < r.

(b) exp(A) =Y ;2 A" convergeﬂ for all A € Mat,,(R). For A, B € Mat, (R)
with [A,B] = 0 we have exp(A + B) = exp(A)exp(B). FEspecially I =
exp(A) exp(—A).

(c) For all A € Mat, (R) the unique solution of the matriz ordinary differential
equation
fe)y=f®A, fO)=I
is f(t) = exp(tA).
(d) log(1 + X) = Y52, (-1)* 1+ X* converges for all X with |X| < 1. For
|X| < 1, we have exp(log(l+ X)) =1+ X. a

'Exercise: Check the matrix versions of Leibniz’ £ (p(t)q(t)) = p(t)q’ (t) + p'(t)q(t) and of
the chain rule.

21t may be of psychological and/or actual help to realize that G(exp A)G~! = exp GAG ™!,
so that Jordan Canonical Form can be used to reduce the limit parts of this calculation to
the standard 1-dimensional case.
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It is important that we can only guarantee exp(A + B) = exp(A) exp(B)
when the matrices A and B commute. When they do, the corresponding power
series multiplication goes through exactly as in the standard case. But if they
do not commute, then things like BAB and AB? on the lefthand side can be
different, so collecting of like terms is greatly restricted.

Also note that we are defining the logarithm via its Taylor series, rather than
the usual calculus definitions that use an integral or that legislate it to be the
inverse function for the exponential. Thus for us it is only defined (convergent)
near the identity. This will be good enough. (See the proof of Proposition
below.)

The next proposition is an extension of the familiar result/definition from

calculus .
lim (1 + %) ,

o k—o0

exp(a)
which is the special case n = 1 and ¢(t) = 1 4 at of the proposition.

(3.2). PROPOSITION.  Let g: (—r,7) — GL,(R) be differentiable at 0 with
g(0) =1 and ¢'(0) = A. Then limy_, o g (%)k = exp(4).

PROOF. Set ¢(t) =log(g(t)) (for t small enough so that |g(¢) — I| < 1). By
the chain rule, ¢'(t) = ¢'(t)g(t)~! (again for small t), so ¢(0) = 0 and ¢’(0) = A.
Therefore by the definition of the matrix derivative of ¢ at 0 (with k =¢~1)

lim logg(t) —tA

t—0 t

= —A+ lim klogg(k™').
k—o0

= T —1y _ -1
0= fkli)ngok(logg(k ) —k~A)

That is, A = limy,_, klog g(k~!). As exponentiation is everywhere continuous,

exp(A) = exp (klirgloklogg(k‘l)> = lim exp (klog (k™))

i o (L)
i I\E)

as desired. O

3.4 One-parameter subgroups

If G is a Lie group, then a one-parameter subgroup of G is a continuous homo-
morphism ¢: (R,+) — G. This links the weakest C continuity property of
G (and R) with group theoretic structure. We shall see that this forces very
strong continuity—mnot just C*° but C* (analytic). For every A € Mat, (R), the
analytic map ¢ 4: R — Mat,, (R) given by ¢ 4(t) = exp(tA) is a one-parameter
subgroup of GL,(R) by Proposition Surprisingly, the converse is true.
This can be viewed as an important special case of Hilbert’s Fifth Problem.
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(3.3). THEOREM. Let ¢: (R,+) — G be a one-parameter subgroup of the
closed subgroup G of GL,,(R). Then there is a unique matriz A € Mat,, (R) with
o(t) = exp(tA) for all t € R. In particular ¢ is C and indeed analytic. We
have A = ¢'(0) = %<P|t=o-

PROOF. Our proof follows [EId15]. It has two parts. We first prove that ¢
is differentiable and then prove that it is an exponential.

Set F(t) = fot o(u) du. As ¢ is continuous, F is differentiable with F'(0) =0
and F'(t) = ¢(t), hence F'(0) = I. We use the fact that ¢ is a homomorphism
and make the change of variable v = u — t to find

F(t+s)= /OHS o(u) du

Next note that

hence

1=detI =det <lim F(s)) = lim (s~"det F(s)) ,

s—0 S s—0

as det is continuous. Especially, for some small sg we must have det F'(sg) # 0
and so F(sg) is invertible. But then the above tells us that

(t) = (F(t+ s0) = F(t))F(s0) ™"

is differentiable, as desired for the first part of our argument.

We now have ¢ differentiable with ¢(0) = I. As ¢ is a homomorphism

¢ (t) = }{%w — %%w
= fllli% @(t)% = o(t) }1&% M

= p(t)¢'(0)
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That is, for ¢'(0) = A the function ¢(t) solves the ordinary differential
equation
S (1) = (A and @(0)=1.

By the omnibus Proposition |(3.1)[c) we have ¢(t) = exp(tA), as claimed. O
(3.4). COROLLARY. det (exp(tA)) = ett(4),

PRrROOF. The map t — detexp(tA) is a one-parameter subgroup of GL;(R).
(Exercise.) Therefore there is a nonzero a € R with det exp(tA) = e'® for a =
4 det exp(tA)|i—o.

We have exp(tA) = I +tA + t2B(t) (for an appropriate convergent power
series B(t)), hence with A = (a;;);; the standard expansion of the determinant
gives

detexp(tA) = 1+ t(ay + -+ apn) + t2c(t) = 1 + ttr(A) + t3c(t) .
Therefore a = < det exp(tA)|;—o = tr(A). 0

Let G be a closed subgroup of GL,(R). A curve in G is a differentiable
map c: J — G, for some open interval J in R. In particular, a one-parameter
subgroup is a special type of curve.

There are several ways of defining the tangent space at the identity element
I of the group G. We offer two—a relatively weak C* (differentiable) version
and a very strong C* (analytic) condition. Set

(i) T/(G)={(0) | curve c: (—r,7) — G, some r € R*, ¢(0) =1};
(ii) A(G) ={A|exp(tA) <G},

Clearly A(G) C T;(G), but we will prove in Theorem below that we
have equality. Again, this is in the spirit of Hilbert’s Fifth Problem.
We first show that the tangent space is indeed a subspace.

(3.5). LEMMA. T;(G) is a subspace of Mat, (R).

ProOOF. Let A,B € T;(G) and a,b € R. We must show that aA + bB €
T1(G). Let differentiable

9: (—¢,9) — G, g(0)=1, g'(0)=A

and
h: (-s,s) — G, h(0)=1, h(0) =B

testify to A, B € T;(G).
First consider ¢(t) = h(bt) on (—r,r) with r = [b=1s| (= oo for b = 0). Then

c(0)=h(0)=1 and (' (0)=0>bh(0)="0B,

so T;(G) is closed under scalar multiplication.
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It remains to prove A+B € Tr(G). Forr = % min(q, s), the curve c: (—r,r) —

G given by . ’
elt) = 3 9(20) + h(20)).

has ) )
c(0) = 5(9(0) + h(0)) = 5(1—&-1) =1.
and ) )
d(0) = 5(2g’(0) +21/(0)) = 5(2A +2B)=A+B.
Thus A + B € T1(G) as desired. O

(3.6). THEOREM. A(G) =T;(G).

PrOOF. We have already pointed out that A(G) C T;(G). Now, for fixed
but arbitrary ¢ € R and for each B € T;(G), we must prove that the matrix
exp(tB) is in G, as then ¢t — exp(tB) will be a one-parameter subgroup of G,
exhibiting B € A(G) and providing the reverse containment A(G) 2 T;(G). By
the previous lemma T (G) is a R-space, so it is enough to prove that exp(A) € G
for all A € T;(G).

For some r € RT, let the curve g: (—r,7) — G have ¢g(0) = I and ¢’(0) = A.
Then for all integral k greater than some N we have g (%) € G. As G is a group,
. 1k e L . 1k
in turn g (E) € (. By Proposition this gives limy o0 ¢ (E) = exp(4),
which is always invertible. As G is a closed subgroup of GL,(R), we conclude
exp(A) € G as desired. a

It is now appropriate for us to define the tangent space at the identity element
I of the the group G, closed in GL,,(R), to be the R-space A(G) = T;(G).

Of course GL,, (R) is closed in itself. Additionally SL,,(R) is closed in GL,, (R)
as it consists of all matrices X with det(X) —1=0.

(3.7). THEOREM.

(a) A(GL,(R)) = gl,,(R) and (exp(tA) | A € gl,(R)) = GL,(R)", the subgroup
of index 2 in GL,(R) of all matrices with positive determinant.

(b) A(SLy(R)) = sl,(R) and {exp(tA) | A € si,(R)) = SLy(R).

PrOOF. The equality A(GL,(R)) = Mat, (R) = gl,(R) is clear from Propo-

sition |(3.1)[b).
We next consider A € A(SL,,(R)). By Corollary|(3.4)} for the one-parameter
subgroup exp(tA) of SL,(R) we have

1 = det (exp(tA)) = et A

That is, tr(A) = 0 and A € sl,(R). Conversely, for A € s[,(R), by the same
corollary
1= e = det (exp(tA)) .
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This is true for arbitrary ¢, so t — exp(tA) is a one-parameter subgroup of
SL,(R). Thus A € A(SL,(R)), hence A(SL,(R)) = s, (R).

For each elementary matrix unit e;; € Mat,,(R) with ¢ # j, we have e;; €
sl,(R) and ef; = 0. Thus exp(te;;) = I + te;;, an elementary transvection
subgroup. By Gaussian elimination,

(exp(tA) | A e sl,(R)) <SL,(R) = (I +tey; |t #j,t€R)
< (exp(tA) | A esl,(R)).
Therefore {exp(tA) | A € sl,,(R)) = SL,(R).
If D = diag(dy1,...,di,...,dnyn) is a diagonal matrix, then exp(D) is also
diagonal with entries e%i. Every diagonal matrix with positive entries on
the diagonal can be found this way, and these together with SL, (R) generate

GLR(R)+. By Corollary every matrix exponential has positive determi-
nant; so (exp(tA) | A € gl,(R)) = GL,(R)". O

(3.8). COROLLARY. Although GL,(R)" has index 2 in GL,(R), the two groups
have the same tangent space at the identity

A(GL,(R)") = A(GL,(R)) = gl, (R). m

In the remaining results of this subsection, we let G be a closed subgroup of
Mat,, (R) and set L = A(G) = T1(G).

(3.9). LEMMA. Ifg€ G and A€ L, then gAg=' € L.
PROOF. As g € G and A € L, the group G contains exp(tA) and

© Lk 4k o k gk
glexp(tA))g' =g (Z t]:!l ) gr=> 9 (25];1 )g_l

k=0 k=0

= t(gARgTh) It (gAgT P
=2 il - !
P pars

= exp(t(gAg™)).

Therefore gAg™! € L. a

Thus we have the adjoint representation of the group G on its Lie algebra
L:
Ad: G — GLg(L) given by Ad,(A)=gAg".

It should come as no surprise that in general a Lie group acts on its Lie algebra,
the corresponding representation being always called adjoint.

(3.10). LEMMA. For A,B€ L,
Adexp(tB) (A) =A+ t(BA - AB) + tQD(t)

with D(t) = Ek,leN dlekABltk'H for di; € R.
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PRrROOF.

Adepen)(A) = (I +tB + 2By (t))A(I — tB + t*Bs(t))
= A+ t(BA— AB) +t°D(t). O
As written, the adjoint representation appears to involve matrix calculation
of degree dimg(L). On the other hand already L < Mat,, (R); so the next result,
among other things, makes the calculation more manageable.

(3.11). THEOREM. For B € L, Adexp(p) = exp(adp).

PrOOF. Clearly ¢ — Adcxp¢p) is a one-parameter subgroup of GLg(L), so
there is an X € Endg (L) with Adex,¢p) = exp(tX). By the lemma

Adexp(tB) (A) = (I +tadp +t2E(t))(A) )
for E(t) = 3 jen dru B* (B! — ad gt )t*+!. Thus

d d
X = 7 Adexp(tB) lt=0 = s (I +tadp +1E(t)) |i=o = adp . O

(3.12). THEOREM. L is a Lie subalgebra of Mat,, (R) = gl,,(R).
ProoOF. Let A, B € L. By Lemma for all t € R,
F(t)=A+t(BA— AB) +t*D(t)
is in the R-space L. Therefore, for each nonzero t € R,
t~1(F(t) — A) = (BA — AB) + tD(t)

is also in L.
The Lie algebra L is a subspace of Mat,, (R) and especially is closed, hence

lim (BA— AB) +tD(t) = [B, A]

t—0
is in L. We conclude [A, B] = —[B, A] € L. O

Thus we have the matrix version of Lie’s first observation from the beginning
of the chapter:

(i) If G is a closed subgroup of GL,,(R), then the tangent space to the identity
is a Lie algebra A(G).

In this case we say that A(G) is the Lie algebra of G.
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3.5 Equivalence of representation

In this section we discuss Lie’s second basic observation:

(ii) The representation theory of the Lie group G and of the Lie algebra A(G)
are essentially the same.

Even in the case of closed subgroups of GL,,(R), the results are more difficult
than those of the previous subsections. We offer them without proof, but see
[CSM95], pp. 75-81] and [Kir(8, §3.8] for nice discussions of the general results
and their proofs. In the closed group case, each of [Hall5l [Ros02 [Sti08] proves
the first two theorems of this section. Serre’s notes [Ser06] contain a proof of
Lie’s Third Theorem, which makes use of Ado’s Theorem [(T.6)|(b).

Theorem [(3.11)| could be summarized by the commutative diagram

AG) — A(GLk(L))

exp lexli’

G —24 5 GLg(L)

The next theorem provides an important extension of this.

(3.13). THEOREM. If f: G — H is a Lie group homomorphism, then there
is a unique Lie algebra homomorphism df : A(G) — A(H) with fexp = expdf.
That is, we have the following commutative diagram:

exp lexp od
H

This is the easiest theorem of the present section. Especially the candidate
for the differential df of f is evident, and we give it in the matrix case. If
A € A(G), then ¢(t) = exp(tA) is a one-parameter subgroup of G. If we
compose it with f, then fp(t) = f(exp(tA)) is a one-parameter subgroup of H.
Therefore there is a B € A(H) with fp(t) = exp(tB). We set df(A) = B. This
is clearly unique. The remaining verification (in the matrix case) that this gives
a Lie algebra homomorphism is achieved through calculations similar to those
of the previous two sections; see [EId15].

A functor F' from the category A to the category B is an equivalence if it is
faithful, full, and dense [Jac89):

(i) F is faithful if the maps F: Homa(X,Y) — Homg(F(X), F(Y)) are
always injections.
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(ii) F'is full if the maps F': Homa(X,Y) — Homg(F(X), F(Y)) are always
surjections.

(ili) F is densdlif for every object Z of B there is an object X of A with F(X)
isomorphic to Z in B.

One should think of category equivalence as saying that the two categories are
essentially the same, although the names of the isomorphism classes may have
been changed. (For instance, the category of all finite sets is equivalent to the
category of all finite subsets of the integers.) In particular, equivalent categories
have the same representation theory (subject to some changing of names).

Theorem could be restated to say that A with A(f) = df is a faithful
functor from the category of Lie groups rlLieGp to the category of Lie algebras
rLieAlg. The next two results say that, given appropriate restrictions, A is also
full and dense. Thus we get a category equivalence.

(3.14). THEOREM. (LIE’S SECOND THEOREM) If G and H are Lie groups
with G simply connected, then for each Lie algebra homomorphism d: A(G) —
A(H) there is a Lie group homomorphism f: G — H with d = df . oo

We must restrict to simply connected G. This is a stronger requirement than
path connectivity, which requires that, for every group element, there is a curve
containing the identity and that element. Path connectivity makes sense, since
our discussion of the tangent space can only reach those elements of G joined to
the identity by some curve. Indeed the Lie algebra of any Lie group is equal to
that of the connected component of the identity. As we saw in Corollary
the two groups GL,(R)" and GL, (R) have the same Lie algebra gl,,(R). That
is because any continuous path from the identity I of positive determinant 1
to a matrix of negative determinant would have to pass through a matrix of
determinant 0; the path would have to leave the group GL,, (R).

A simply connected group must be path connected but also satisfy an ad-
ditional requirement, which we do not give precisely. It asserts that all paths
from the identity to a given element in that component are fundamentally the
same. For example, the Lie groups (R,+) and S! ~ SO5(R) have the same
Lie algebra, abelian of dimension 1, but they are clearly not isomorphic. The
problem is that the circle S is not simply connected—going from the identity
1 to the opposite pole —1 via a clockwise path is fundamentally different from
traveling via a counter-clockwise path. The group (R, +) is simply connected,
so Lie’s Second Theorem provides a Lie group homomorphism from it to S!, say

. ( cos(r) —sin(r) ) |

sin(r)  cos(r)
but this map has no inverse.

(3.15). THEOREM. (LIE’S THIRD THEOREM) For all finite dimensional Lie
algebras L, there is a Lie group G with A(G) isomorphic to L. ag

3This is not standard terminology.
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As the Lie group G is a manifold, its Lie algebra must be finite dimensional.

(3.16). THEOREM. The functor A gives a category equivalence of the category
of simply connected Lie groups grLieGp®S and the category of finite dimensional
Lie algebras RLieAIgfd.

PrOOF. We have already observed that Theorem [(3.13)| says that A is
faithful. By Lie’s Second Theorem |(3.14)| it is full on gLieGp®®, and by Lie’s
Third Theorem it is dense to pLieAlg’?. ]

In particular, we now know that the (appropriately restricted) Lie group G
and Lie algebra A(G) have essentially the same representation theory.

3.6 Problems

(3.17). PROBLEM.

(a) In GLn(R) prove that exp(tA) exp(tB) = exp(t(A+ B)), for allt € R, if and only
if [A,B] = 0.
HINT: The function exp(t(A + B)) — exp(tA) exp(tB) is smooth on R.

(b) Let A = e12 and B = ea3 be matriz units in Mats(R). Do the calculations in
SL3(R) and sl3(R) that exhibit A+ B € sl3(R) but exp(A) exp(B) # exp(A + B).

REMARK. For small enough values of t, the smooth curve exp(tA)exp(tB) has norm
less than 1, so log(exp(tA) exp(tB)) exists. Its precise calculation in terms of A and
B is the content of the Campbell-Baker-Hausdorff Theorem, which begins

log(exp(t4) exp(tB)) = (A + B) + L[4, B+ ().

As such, it also provides a proof of (a). Even at this level it is more sophisticated
than what we have done up to now. In particular it involves composing log and exp
in the order logexp as opposed to the simpler explog, which we used in our proof of

Proposition |(3.2)
(3.18). PrROBLEM. Consider the group X = X,(R) of Problem ((2.10) Prove that

its Lie algebra is a Heisenberg algebra isomorphic to Lx.

(3.19). PROBLEM. Let G be a closed subgroup of GL,(R). Prove that if ¢ : I —
A(G) is a curve, differentiable on the open interval I, then ¢'(t) € A(G) for allt € I.

HINT: Ezamine the proof of Theorem|(3.12)
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Chapter

Basics of Lie Algebras

The previous chapters were, in a sense, introduction and justification. The
actual work starts here. We repeat our basic definition: a Lie algebra is a
K-algebra (gA, [-,-]) that satisfies the two identical relations:

(i) [x,:c} =0;

(ii) (Jacobi Identity) [[x,y], 2] + [[y, 2], 2] + [[z, 2], y] = 0.

Our overall goals are to classify and understand Lie algebras and their repre-
sentations under suitable additional hypotheses. We will focus on finite dimen-
sional Lie algebras over algebraically closed fields of characteristic 0, but various
parts of what we say are valid in a more general context. In particular, in this
chapter we make no restriction on dimension or field, except where expressly
noted.

4.1 Basic structure theory

Let L be a Lie K-algebra. A subalgebra of L is a K-subspace M that is closed
under the bracket multiplication. In this case we write M < L and L > M.

A Lie homomorphism is a K-linear transformation ¢: L — M with ¢([z,y]) =
[o(x), ¢(y)] for all z,y € L. The kernel of ¢ is then the kernel of ¢ as a linear
transformation. In view of the First Isomorphism Theorem below, the image of
i is sometimes referred to as the quotient algebra of L by the kernel.

The kernel I is a subalgebra, indeed it is an ideal of L—a subspace of L
with [z,a] € I for all z € L and a € I . We do not need to distinguish right
ideals from left ideals, since [a,z] = —[x,a] € I; all right and left ideals are
immediately 2-sided ideals.

We have the standard Isomorphism Theorems:

(4.1). THEOREM. Let L be a Lie K-algebra.

(a) (FIRST IsOMORPHISM THEOREM) If ¢: L — M is a Lie homomorphism
with kernel I, then the image algebra (L) is canonically isomorphic via

37
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p(a) — a+ I to the quotient algebra L/I provided with the Lie bracket
[a+I,b+1I]=a,bl+ 1.

(b) (SECOND ISOMORPHISM THEOREM) Let I be a subalgebra and J an ideal of
L. Then I+J is a subalgebra, INJ is an ideal of I and (I+J)/J ~1/(INJ).

(¢) (THIRD ISOMORPHISM THEOREM) If I is an ideal of L contained in the
ideal K, then L/K is isomorphic to (L/I)/(K/I). In particular, there is
a bijection between the set of ideals of L/I and the set of ideals of L that
contain 1. ]

By definition, the subspace I is an ideal precisely when it is invariant under
all inner derivations ad,. The ideal I is additionally characteristic in L if it is
invariant under all derivations of L, not just the inner derivations.

(4.2). LEMMA. Let J be an ideal of L and I a characteristic ideal of J.
(a) I is an ideal of L.
(b) If J is a characteristic ideal of L, then I is a characteristic ideal of L. O

As in the Second Isomorphism Theorem, old ideals can be used to construct
new ones.

(4.3). LEMMA. Let L be a Lie K-algebra.
(a) If A and B are ideals of L, then A+ B is an ideal of L.

(b) If A and B are characteristic ideals of L, then A+ B is a characteristic
ideal of L. O

For subspaces A and B of L we let the commutator [A, B] be the subspace
of L spanned by [a,b] for all a € A and b € B.

(4.4). LEMMA. Let L be a Lie K-algebra.
(a) If A and B are ideals of L, then [A, B] is an ideal of L.

(b) If A and B are characteristic ideals of L, then [A, B] is a characteristic
ideal of L.

PROOF. For each derivation D, we have D([a,b]) = [D(a),b] + [a, D(b)]. O

simple
abelian algebra; largest abelian quotient L/[L, L].

derived series; solvable algebras; length

7Z is kernel of ad

lower central series; nilpotent algebras; class
L'=1L, " =[L" L] =L, L"

LO = prth) — [L(”),L(”)]

upper central series?

Example: b=0&®n
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(4.5). PROPOSITION. Let L be a Lie K-algebra.
(a) [L™,L"] < L™,

(b) L™ < 12",

(¢) If L is nilpotent, then L is solvable.

PrOOF. Part (a) follows from induction on n, with n = 1 given by the
definition of L™*! and the induction step coming from the Jacobi Identity:
[Lmv Ln+1] = [Lmv [Lna LH
<L L, L)+ (L, L7 L)
< [Ln7Lm+1] + [L,Lm+"]
< Ln+m+1 JrLlerJrn

< Lm+n+l .

Now (b) follows from (a) and (c) follows from (b). O
(4.6). LEMMA. Let L be a Lie K-algebra.
(a) Subalgebras and quotient algebras of solvable L are solvable.

(b

)
) The sum of solvable ideals in L is a solvable ideal of L

(c) If dimg(L) is finite, then L has a unique mazimal solvable ideal.

(d) If the ideal I and the quotient L/I are solvable, then L is solvable. O
(4.7). LEMMA. Let L be a Lie K-algebra.

(a) Subalgebras and quotient algebras of nilpotent L are solvable.

(b) The sum of nilpotent ideals in L is a nilpotent ideal of L.

(¢) If dimg (L) is finite, then L has a unique mazimal nilpotent ideal. o

It is noteworthy that the last part of the previous lemma does not have
a counterpart here; the extension of a nilpotent Lie algebra by a nilpotent
Lie algebra need not be nilpotent. (Otherwise, all solvable Lie algebras would
also be nilpotent.) In Proposition below we will introduce an additional
necessary and sufficient condition for such extensions to be nilpotent.

If L has a unique maximal nilpotent ideal, then it is the nilpotent radical of
L. Similarly if L has a unique maximal solvable ideal, then it is the radical or
solvable radical of L. The nilpotent radical is of course contained in the solvable
radical. On the other hand, the last term in the derived series of a solvable ideal
is an abelian ideal and so is nilpotent. Therefore the solvable radical is 0 if and
only if the nilpotent radical is 0.

A Lie algebra is semisimple if its (solvable) radical is 0. By Lemma [(4.6)[(d)
the quotient of L by its radical is then always semisimple.
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4.2 Basic representation theory

repn; degree; dimension
modules; extrinsic and intrinsic; iso and equiv

“universal” algebra:

submodule; quotient;

simple; irreducible; trivial; indecomposable
cr; semisimple module

composition series

Jordan-Hélder

module duals

adjoint module and consequence for Lie structure

(4.8). THEOREM. (KRULL-SCHMIDT THEOREM) If V =D, Vi = Dj;c; Vi
are decompositions of the L-module V' into indecomposable summands, then
there is a bijection o: I — J with V; and V9 isomorphic for all i € 1. O

(4.9). THEOREM. LetV be a module for the Lie algebra L. Then the following
are equivalent:

(1) for every submodule W of V, there is a submodule W' with V. =W @ W';
(2) V is a sum of irreducible submodules;
(3) V is a direct sum of irreducible submodules. |

(4.10). THEOREM. For the finite dimensional and completely reducible module
V, let T be a set of representatives for the isomorphism classes of irreducible
submodules of V' and let V; be the sum of all irreducible submodules isomorphic
toicl. ThenV =@, Vi. O

(4.11). THEOREM. (SCHUR’S LEMMA) Let V' be a finite dimensional, irre-
ducible L-module over the algebraically closed field K. Then the scalars are the
only endomorphisms of V' that commute with the action of L. a

4.3 Further structure and representation

In general an extension of a nilpotent algebra by a nilpotent algebra need not
be nilpotent. We do get a nilpotent algebra if we have an additional Engel con-
dition, requiring the vanishing of an appropriate iterated commutator. Define
[A; B,n] by [A; B,1] = [A, B] and [4; B,k + 1] = [|A4; B, k], B].

(4.12). PROPOSITION. Let the Lie algebra L contain an ideal I such that I and
L/I are nilpotent. Further assume L has a subalgebra M such that L =1+ M.
Then L is nilpotent if and only if there is a positive m with [I; M, m] = 0.
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PROOF. See [Ste70, Lemma 2.1].
If L is nilpotent, then letting m be the class of L gives the required condition.
Now we consider the converse. We first claim that for all positive n and r

(I L,r) < I"P 4 (1™ M, 7).

We prove this by induction on r, the result being clear for r =1as L =1+ M.
Assume the result for r. Then
[I™;L,r+1)=[I"; L,r], L]
<[ I M) L+ M)
< [T+ M)+ (I M), 1)+ (17 M ], M.
The first two summands are in I"*1 (as I"*! and I" are ideals of L) and the
last is equal to [I™; M,r + 1]. This gives the claim.
Let k be the maximum of m and the nilpotence class of L/I. We prove

L** < I™ by induction on n, with the case n = 1 valid by the definition of k.
By definition, induction, the claim, and hypothesis

LRl — (LR Lk < [T Ly k) < T (1% MG K] < TV [ MK = 10

as desired.
For large enough n, nilpotent I has I™ = 0. Thus L*” = 0, and L is
nilpotent. O

The next lemma describes the elementary internal semidirect product for Lie
algebras. The corresponding external semidirect product or split extension of
Lie algebras is then the construction of the proposition that follows.

(4.13). LEMMA. Let Lie algebra L = M & I where M is a subalgebra and I is
an ideal. Then for m,n € M and i,j € I we have

[m+1i,n+ j] = [m,n] + [i, j] + [m, j] + [i,n],
where [m,n] € M and [i,j] + [m, j| + [i,n] = [i, j] + [m, 4] — [n,4] € 1. a

(4.14). PROPOSITION. Let M and I be Lie K-algebras, and let 6: M —
Derk(I) be a Lie homomorphism of M into the derivation algebra of I given by
m > 0. Then M & I with bracket multiplication

[(mai)v (naj)] = ([mvn}v ['Lv]] + 5m(3) - 571(2))

is a Lie K-algebra in which 0 & I is an ideal isomorphic to I and M &0 is a
subalgebra isomorphic to M. Furthermore, for each m € M, ad(; ) induces
(0,6m) on 0 I.

PRrROOF. Exercise: the only difficulty is the verification of the Jacobi Identity.
In doing that, the corresponding calculation from the lemma can be used as a
guide. O

We emphasize two cases.
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(4.15). EXAMPLE.

(a) If ¢ is a derivation of the Lie algebra A, then with M =K§ and I = A we
make L = Kd & A into a Lie algebra as in the proposition. Here A is an
ideal of codimension 1 upon which the derivation 0 is now induced by the
inner derwation ads of the new algebra L.

(b) Let V' be a module for the Lie algebra M. As in the proposition L = M &V
becomes a Lie algebra after we declare V(= I) to be an abelian Lie algebra:
[V,V] =0. (Any endomorphism of an abelian Lie algebra is a derivation by

Proposition |(2.3).)

The second example suggests some notation. Let ¢: L — Endg (V) be a
Lie representation of L. For z € L, we may write ad) for ¢(x). In particular
adafj is the usual adjoint action ad, of x on L in the adjoint representation.

(4.16). PROPOSITION. Let 6 be a derivation of L. For x,y € L and a,b € K:

n

6 - at= 01l = 3 ()16 - a1 (o). (6 - 0]

=0

PROOF. We prove this by induction on n with the case n = 0 being trivial
and the case n = 1 following from the definition of a derivation.

(6 —al —b1)"[z,y] = (§ — al — b1)((6 — al — b1)" [z, y])

—@F-al-b1)Y (” h 1) (6 — al)™ " (@), (8 — b1)(y)]

=0

=30 (7)ot - ar o), 6 - 1))
=0

+ (—al —b1) i: (" ; 1) [(6 —al)" " (x), (6 — b1)*(y)]
1=0
-y (" - 1) 156 — a1y (x), (5 — b1 (y)]
=0

i

£y (”21) (8= a1)" ™' (@), ~b(6 - b1)'(v)]
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=3 (") - a6 - 0y
n—1
#3716 a @, 6 - )]

0
= Z_: (n . 1) [(6 — a)" ™ (x), (8 — b1)"(y)]

N (”. - 1) (5 — a1y (), (5 — L)Y ()]
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4.4

(4.17).
(4.18).
(4.19).
(4.20).
(4.21).
(4.22).

(4.23).

CHAPTER 4. BASICS OF LIE ALGEBRAS

Problems

PROBLEM. For L =n calculate L¥ and L™
PROBLEM. Field indep exp(d) auto; see [Ros02, p. 51].
PROBLEM. mnilpotent derivations and automorphisms
PROBLEM. Jordan-Chevalley decomposition

PROBLEM. Lie algebra central extension.

PROBLEM. Action of L on V ®x W.

PROBLEM. Action of L on V*, given action on V.
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Nilpotent representations

5.1 Engel’s Theorem and Cartan subalgebras

(5.1). PROPOSITION. Let N be a nilpotent Lie algebra and V' a K-module.
For each element x of N and each A € K, the generalized eigenspace

Vern={veV|(x—-A)v=0,s0mek=kyr, €N}
for x on'V is an N-submodule of V.

ProOF. Let N have nilpotence class [. For v € V x set n =1+4+k; »,. Asin
Example ii), we calculate within the semidirect product of V' by L. By
Proposition |(4.16)| with y € L, 6 = ad,, a =0, and b = A,

(z —A1)"(yv) = (ady —A1)"[y, ]

since ad’, (y) = 0 for i > [ and (ad, —A1)?(v) — 0 for i > ky x..-
This shows that yV, » < V., hence the subspace V, y of V is in fact a
submodule. O

An endomorphism is nil if some power of it is 0, and a nil representation of
the Lie algebra N is one in which each element of N acts as a nil endomorphism.

(5.2). PROPOSITION. If o is an nil irreducible representation of the nilpotent
Lie algebra N, then o is the trivial 1-dimensional representation.

PrOOF. Certainly L™V = 0, where n is the nilpotence class of N. Suppose
LFV =0. If k =1, then LV = 0 and irreducible V has dimension 1, as desired.
For k > 1let z € L*~!. As the representation is nil, for nonzero v € V' there
is a positive n, with 2"« = 0. For minimal such n,,, the element w = 2™y

45
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is nonzero with zw = 0. Thus W = {v € V | zv = 0} is nonzero. For all y € L
and w e W
z(yw) = y(zw) — [z, yJlw=0—-0=0

as w € W and [x,y] € LF. Therefore yw € W, which is thus a nonzero
submodule. By irreducibility W = V, hence V' = 0. But this implies LF~1'V =
0, and we are done. O

(5.3). COROLLARY. If o is an finite dimensional nil representation of the
nilpotent Lie algebra N, then V has an N -composition series with all factors of
dimension 1 and trivial. |

(5.4). THEOREM. (ENGEL’'S THEOREM) If the adjoint representation of the
finite dimensional Lie algebra N is nil, then N is nilpotent.

PrOOF. We prove this by induction on dimg (V) with the result clearly true
in dimensions 0 and 1. Assume N # 0.

Let I be a maximal proper subalgebra of N. As adi = adiv |1 for x € I, the
adjoint representation of I is nil. Therefore by induction I is nilpotent.

By Corollarythere is a 1-dimensional submodule P/I for the nil action
of nilpotent I on N/I. Let x € P\ I and M = Kxz. Then

[P,P) = [M +1,M +1]

= [M, M) + [M, 1) + [I, M] + [I, 1]
= [M, 1] + [I, M] + [I,1]
<I

)

so P is a subalgebra of NV in which I is an ideal of codimension 1. By maximality
of I, N = P.

We now have N = M @ I with M = Kx ~ N/I an abelian algebra and
I a nilpotent ideal. Furthermore by hypothesis ad," = 0 for some k, hence
[I[;M,m] =[I;z,m]=0. By Proposition the algebra N is nilpotent. O

If A is a subspace of the Lie algebra L, then the normalizer of Ain L, N (A),
is{xz e L]| [z, A] < A}. The subspace A is then self-normalizing if A = N (A).

(5.5). LEMMA.
(a) If A is a subspace of the Lie algebra L, then N1 (A) is a subalgebra.

(b) If A is a self-normalizing subspace of the Lie algebra L, then A is a subal-
gebra.

PRrOOF. For z,y € N(A) and a € A, the Jacobi Identity gives
[[$> y]= a] = _[[y7 a]7 3;‘] - Ha7 SL’], y] €A,

so the vector space N1 (A) is a subalgebra. The second part then follows from
the first. ad
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(5.6). LEMMA. Let L be a Lie algebra, x € L, and
Luo={y|adi(y) =0, some k =k, 0, € N}

be the generalized eigenspace for x acting on L in the adjoint representation
with eigenvalue 0. Then Ly is a self-normalizing subalgebra of L.

PROOF. Let a € Ny(Lyo). Then [z,a] € Lyo, so ad®([z,a]) = 0 for

k = k3 0,[z,q]- But then ad**(a) = ad®([z,a]) = 0, hence a € L, and the
subspace L ¢ is self-normalizing. By the previous lemma it is then a subalgebra.
O

The element w of the finite dimensional Lie algebra is said to be reqular in
L if the dimension of the subalgebra L,, o is minimal. This dimension is then
the rank of L. As long as L # 0 this is positive since w € Ly, .

(5.7). THEOREM. Assume K has characteristic 0. Let w be a regular element
of the finite dimensional Lie algebra L and set H = Ly, . Then H is a nilpotent
and self-normalizing subalgebra of L.

Proor. We follow [EId15].

By the previous lemma, H is a self-normalizing subalgebra. We must prove
it to be nilpotent.

For fixed but arbitrary h € H and « € K, the element w + ah belongs to H.
Consider the linear transformation ady 44 of L, which leaves the subspace H
invariant and so also acts on the quotient space L/H. Therefore its characteristic
polynomial x%(z) € K[2] is ¢o(2)7Va(z) where

r—1
palz) =2+ fil@)?
=0

is the characteristic polynomial of ad, 4, on H and

n—r—1
Yal(2) ="+ Y gi(a)
j=0
is the characteristic polynomial of ad,,tn on L/H. The standard calculation
of the characteristic polynomial as a determinant reveals the polynomials f;(x)
of K[z] to have degree at most r while the g;(x) have degree at most n — 7 .
As H = Ly, o we have 79(0) # 0 hence go(0) # 0. Especially the polynomial
go(z) of degree at most n — r is not identically 0. As K has characteristic 0 we
have |K| > n, so there are distinct elements aq, ..., a,+1 of K with go(ax) # 0
for 1 <k <r+1. In particular Lyya,n0 < H for each k. As w is regular, this
forces Lyta,h,0 = H, which is to say ¢4, (2) = 2" for 1 < k <r+ 1. But then
each of the polynomials f;(x), for 1 <i < r, vanishes at aq,...,a-41. As these
polynomials have degree at most r, they must be identically 0.
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Therefore p,(z) = 2" for all values of o € K, and every w + ah is nil on H.
As h was fixed but arbitrary, we find that every element of H is nil on H. By
Engel’s Theorem |(5.4)] H is nilpotent as desired. a

A Cartan subalgebra of the Lie algebra L is a nilpotent, self-normalizing
subalgebra. The theorem tells us that Cartan subalgebras always exist in finite
dimension and characteristic 0. More is true: for finite dimensional Lie alge-
bras over algebraically closed fields of characteristic 0, the automorphism group
of L is transitive on the Cartan subalgebras (so all arise as in the theorem);
see [JacT9l p. 273]. At times we may abuse notation or terminology by not
mentioning the specific Cartan subalgebra being used since they are all essen-
tially equivalent. We shall address conjugacy of Cartan subalgebras of finite
dimensional semisimple algebras in Corollary

There are many characterizations of Cartan subalgebras. The following is
important here.

(5.8). PROPOSITION. Suppose H is a nilpotent subalgebra of the finite dimen-
sional Lie algebra L. Then H is a Cartan subalgebra if and only if in the action
of H on L via the adjoint, H is equal to

Lyo={zecL|adf(x)=0 for allh € H and some k =k 0, € N},
the largest subspace of L upon which H is nil.

Proor. The nilpotent algebra H is certainly contained in Lz . We show
that H is proper in Ly o if and only if H is not self-normalizing. As the Cartan
subalgebras are by definition the self-normalizing nilpotent subalgebras, this
will give the result.

Let x € NL(H) \ H. Then, for each h € H we have [h,z] € H. As H is
nilpotent, adf[h,z] is 0 for sufficiently large k = kj. But then ad}™'(z) = 0
and z is in Ly but not in H.

Suppose Ly,o > H. By Corollary there is a trivial H-submodule P/H
of dimension 1 in Lo(H)/H. For v € P\ H, we have [z, H| < H. That is, x is
in the normalizer of H but not in H. a

5.2 Weight spaces and vectors

(5.9). THEOREM. Assume K is algebraically closed of characteristic 0. Let V
be an indecomposable KN -module for the nilpotent Lie algebra N with 0 < n =
dimg (V). Then there is a 1-dimensional Lie homomorphism A: N — K with

V={veV|(@-Xz))" 'w=0forallz € N}.

PrROOF. We may replace N with its image in Endg (V) ~ Mat,, (K). As
K is algebraically closed, all x € N have eigenvalues in their action on V.
By standard linear algebra (say, Jordan Canonical Form), for each z € N the
module V is the direct sum of its generalized eigenspaces

Vex={veV|(x—A)*v=0,s0me k=k,r, €N}.
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Indeed max, (kz ) <n—1, s0
Vix={veV|(z-A)"1v=0}.

By Proposition|(5.1)} indecomposability, and the above remarks, each x € N
has a unique eigenvalue A(z) on V, and for every x the whole space V is equal
to the generalized z-eigenspace V. (4

V=Vire)={veEV|(@—Az)1)" 'v=0}.

In particular tr(z) = nA(x). As K has characteristic 0, we find that A(z) =
n~1tr(z) is a linear map A\: N — K. Furthermore

Mz, y]) =ntr(zy —yx) =0,

for all z,y € N; that is, Ay, v = 0. Therefore the linear transformation
A: N — Kis a 1-dimensional representation of the abelian Lie algebra N/[N, N]
and so of N itself. O

A 1-dimensional representation of a Lie algebra L is called a weight of the
algebra. All weights of L belong to the dual of the K-space L/[L,L]. For an
L-module V' and weight A of L,

Via=W={veV|(z—Ax))*v=0for allz € L and some k = k, », € N}

is the corresponding weight space in V. These are the generalized eigenspaces
for the action of L. A nonzero vector v € V,  is a weight vector if it is an actual
eigenvector for all L (kg x, =1 for all z € L). The corresponding eigenspace of
weight vectors is then V') = V)\“’D

For every nonzero Lie algebra, the trivial representation is the trivial weight
or zero weight. We have already encountered a weight space in Proposition
(5.8), where the Cartan subalgebra H was characterized among all nilpotent
subalgebras of L by being equal to its corresponding weight space L .

A nonzero weight of L is a root.

(5.10). THEOREM. Assume K is algebraically closed of characteristic 0. For
the nilpotent Lie algebra N and the N-module V' of finite dimension n, N has
only finitely many weights on V' ; each weight space

Via=Va={veV|(xz—-A2))" 'o=0 forallz € N}
s a submodule; and V is the direct sum of its weight spaces.

PrROOF. As V is finite dimensional, we can write V' as a direct sum of finitely
many nonzero indecomposable submodules. By the previous theorem, each of
these summands is contained in one of the the weight spaces V,, for some weight

11t should be noted that in certain places it is the eigenspaces V;, that are termed weight
spaces. Perhaps the subspaces V7, might be called generalized weight spaces.



50 CHAPTER 5. NILPOTENT REPRESENTATIONS

pof N. Let the submodule V(1) be the sum of those indecomposable summands
with weight u. The previous theorem gives

V) <{veV|(@-uz)l)" 'lv=0forallze N} <V,.

V=PV,

pedJ

Now we have

where J is a finite set of weights for N on V. In particular, every v € V' can be
uniquely written v =3 5, v, with v, € V(p).
Let X\ be an arbitrary weight of NV on V', and consider 0 # v € V). We claim:

v, #0 = p=A.

As the various nonzero v, are linearly independent and each V() is a submod-
ule, (z — A(z)1)™v = 0 implies (z — A(z)1)"v, = 0 and so v, € VANV (u) <
AN VH'

Assume v, # 0. For fixed but arbitrary x € N, choose k (= kg x(z),0) € N
minimal with (z — A(z)1)*v, = 0. Set u = (z — A(z)1)¥"lv, # 0, so that
(x — A(x))u = 0; that is, zu = A(x)u. As V(u) is a submodule, u € V(u) < V;
so there is an m € Z* with (z — pu(z)1)™u = 0. But

(2 — p(@)L)u = zu — p(e)u = Ma)u — pla)u = (Ma) — p(2))u,

hence

0= (z—p@)1)"u = (Az) — pz)"u.
Now u # 0 forces A(z) — p(x) = 0. That is, for all x € N we have A(z) = p(x),
hence A = u as claimed.

For every weight A, each nonzero v € V) must project nontrivially onto at
least one of the summands V() for u € M. By the claim, there is only one
such summand, namely V()), and v € V(A). Thus A € J and there are only
finitely many weights for N on V. Also V) < V(X) < V), hence

V) ={veV|(@-Xz))" 'v=0forallz € N} =V,.

Finally V is the direct sum of the submodules V (i), so it is equally well the
direct sum of the weight spaces V), each a submodule. O

5.3 The Cartan decomposition

We can use the results of the previous sections to consider a Lie algebra as a
module for any of its nilpotent subalgebras.

(5.11). THEOREM. Let L be a finite dimensional Lie algebra over the alge-
braically closed field K of characteristic 0. Let a and 3 be weights of L for the
nilpotent subalgebra N. Then

(LN Lngl < Lnays,
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where the weight space Ly  for A € (N/[N, N|)* is taken to be 0 when X is not
a weight. Furthermore

[LIJI\JLou %,B] < L%,a-i-ﬁ .
PrOOF. Let ¢ € N, y € L,, and z € Lg. Then, for n = 2dimg(N), by
Proposition |(4.16)| and Theorem |(5.10)|

n

(a1 = 51"l 2] = 3 (1) (s 1)), s 612 = 0.

=0

Therefore, [y, 2] € Layg.
If additionally y € Ly, and z € Ly, then the identity holds with n = 1,

('R}

hence [LY o, L 5] < LY oqp- :

The most important case is that where N = H is a Cartan subalgebra of L.

Theorem |(5.10)| tells us that
L = @L}—L)\ = @L)\a
A A

where A runs over the finite set of weights of H(= Ly ) on L. This is a Cartan
decomposition of the Lie algebra L—the decomposition of L as the direct sum
of its weight spaces for a Cartan subalgebra H.

Here and above we see the common abuse of notation and terminology that
refers to the weights and weight spaces of L without specifying the Cartan
subalgebra H being used, say, writing L) in place of Ly . Usually H will
be clear from the context, and in the cases of most interest to us all Cartan
algebras are equivalent; see the remarks on page [48| and see Corollary on
semisimple algebras.

Recall that a root of L is a nonzero weight. For o and S roots of L, the
a-string through B is the longest string of roots

B—sa,...,B—ia,...,B,...,B+ja,...,0+tc.

That is, all the maps in the string are roots, but 8 — (s + 1)a and f+ (t + 1)«
are not roots.
We have a first application of this concept.

(5.12). PROPOSITION.  Let L be a finite dimensional Lie algebra over the
algebraically closed field K of characteristic 0, and let o and [ be roots of L.
Then B is a rational multiple of a when restricted to the subspace [Ly, L_4)].

PRrOOF. This is [Ste70, Lemma 3.2].
The result is trivial if —« is not a root, so we may assume it is. Let

B—sa,...,.B,...,0+ta

be the a-string through 8 and M the corresponding subspace

M=Lg so®  ®Ls® - ®Lgtta-
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By Theorem |(5.11)| we have [M,L_,] < M and [M, L,] < M.
Let y € L, and z € L_,, and set = [y,2]. As y and z normalize M, so
does x. We have

tr(ad, |a) = Z di(B +ic)(z),

i=—35

where d; = dimg (Lg44q). But ad, = [ad,,ad,] and so it has trace 0. Therefore

0= Y di(B+ia)(x),

hence p
Bz) = —a(z)
€
ford=—Y"!_ _id; and e = 3;_ _d; # 0. By linearity, this holds for all z in
[La, L_s]. O

5.4 Problems

(5.13). PROBLEM. Prove that any subalgebra of the Lie algebra L that contains Lzo
is self-normalizing.
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Killing forms and semisimple Lie
algebras

6.1 Killing forms

Let L be a finite dimensional Lie K-algebra and V an L-module. The Killing
form of Lon V, kY : L x L — K is is a bilinear form given by

ry (2,y) = tr(ad; ady)),

where we recall our convention that ad! is the image of € L in Endg (V). For
the basic theory of bilinear forms, refer to Appendix [A]

If the relevant Lie algebra L should be evident from the context, then we
write kY. Finally, if V = L, the representation being the adjoint, we may drop
reference to V' as well, since we then have the usual definition of the Killing
form

k(z,y) = tr(ad, ady) .

(6.1). PROPOSITION.
(a) The Killing form kY is a symmetric, bilinear form on L.

(b) If W is an L-submodule of V', then

V/W
nZ:mEV+HL/ .

(¢) The Killing form is an invariant form (or associative form): for all z,y,z €
L

Kg([xvy]’z) = Kg(mv [y,z]) :

(d) If I is an ideal of L, then I+ = {xz € L | kY (x,y) =0, forally € I} is
also an ideal of L.

53
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PRrROOF.

(a) The trace is linear in its argument with target K, and multiplication in

Endg (V) is bilinear; so kY is a bilinear form on L. It is symmetric since

tr(ab) = tr(ba) in Endg (V).

(b) This is evident if we write the module action in matrix form, using a basis
that extends a basis of W to one for all V.

(c)

’%X([Iy y]a Z) = tr(ad&,y] ad;/)

r(adY ad‘y/ ad) — ad;/ ad) ad’)
r(adY adL/ ad)) — tr(ad;/ adY ad?)
r(adY adL/ ad)) — tr(adY ad? adg‘//)
r(adY (ad;/ ad) —adY ad://))

= r(ad;/ adE;,z])

= w(z, [y, 2]) -

d) Foralla € I,y € L, and b € I+ we have by (c
Y

0= ry (la,y],b) = w7 (a, [y, b))
That is, [y,b] € I+ for all y € L and b € I+; so I+ is an ideal. o

(6.2). COROLLARY. Let I be an ideal of the finite dimensional Lie algebra L.
Then I < Rad(ni/l) and Kkt = kl|1wr = kE|1x1

PROOF. From the second part of the proposition

L I L/I
HLZKZL-FKL/ .

As T acts as 0 on L/I, we certainly have I < Rad(/ii/l). The rest of the
corollary follows easily. O

Some care must be taken in the use of this result. In sl,(K) the Borel
algebra b, (K) = n;}} (K) & h,,(K) is the split extension of its derived subalgebra
nf(K) = [6,(K), b,(K)] by the Cartan subalgebra b, (K). Let L = b,(K) and
I = n}(K). Then nilpotent I consists of strictly upper triangular matrices, so k1
is identically 0; L/I ~ b,,(K) is abelian and so né% is identically 0. Nevertheless

kE =kl 4+ k2T is not identically 0 on solvable by, (K) provided n > 2.

(6.3). THEOREM. Let L (£ 0) be a finite dimensional Lie algebra over the field
K of characteristic 0. If L = [L, L], then the Killing form & is not identically 0.
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PRrOOF. For any extension field E of K, if x” is identically 0, then so is kF®x -,
Therefore in proving the theorem we may assume that K is algebraically closed.

Let L = @Ae% L) be the Cartan decomposition for L relative to the Cartan
subalgebra H = Lj and finite set of weights ®y. Thus

L=I[L L= l@ Ly, EB Ly| = @[LMLH]

AEDg A€dg A

In particular

H= PILr L-

AED,

As nonzero nilpotent H > [H, H] and L = [L, L], we have H < L; so the set of
roots ® = &g \ {0} is nonempty.

Let 5 € ®. By the definition of roots, 3|y # 0 but S|z g = 0. Therefore
there is an a € ®q with 8|z 1.} # 0. Furthermore « is not the zero weight as
again S|z ) = 0. Thus by Proposition there is a rational number 73 .
with

5|[LQ,L,Q] = Tﬁ,aahLmL,a] .

Choose an @ € [Ly, L_,] with 8(x) # 0, hence 75 o # 0 and a(z) # 0. Then

k(x,z) = tr(ad, ad,)
Z /\ dlm]K L)\)

AED
=0+ ) Ax)*dimg(Ly)
Aed
= Oé(l‘)Z Z T?\,oe dimK(L)\) s
Aed

which is not equal to 0, as not all 7y , are zero and all dimg(Ly) are positive
integers. Since k(z,x) # 0, the form & is not identically 0 on L, as desired. O

(6.4). COROLLARY. (CARTAN’S SOLVABILITY CRITERION) Let L be a finite
dimensional Lie algebra over the field K of characteristic 0. If the Killing form
1s identically 0, then L is solvable.

PrOOF. Assume the Killing form & is identically 0. The proof is by induction
on dimg (L), with the dimension 0 and 1 cases clear. By the Theorem L # [L, L].
By Corollarythe Killing form for [L, L] comes from restriction of the Killing
form for L and so is also identically 0. Therefore by induction [L, L] is solvable,
and then L is as well by Lemma |(4.6)| m|

A slightly more complicated condition on x is both necessary and sufficient
for solvability; see [EId15]: L is solvable if and only if |7 <7,z is identically 0.
A case in point is that of the Borel algebras b, (K), mentioned above, which, are
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solvable with a nonzero Killing form whose restriction to the derived subalgebra
[6,,(K), b, (K)] is identically 0.

We then have the natural result that lives at the opposite end of the solv-
ability and degeneracy spectrum.

(6.5). THEOREM. (CARTAN’S SEMISIMPLICITY CRITERION) Let L be a finite
dimensional Lie algebra over the field K of characteristic 0. Then L is semisim-
ple if and and only if its Killing form is nondegenerate.

PROOF. Let k be the Killing form and R = Rad(k), an ideal by Proposition
(6.1)l But r|pxr = k% is identically 0, so R is solvable by Cartan’s Solvability
Criterion If L is semisimple, then R = 0 and « is nondegenerate.

Now let S be a nonzero solvable ideal of L, and take I to be the last nonzero
term in its derived series. Therefore abelian I is in Rad(xl), and also I <

Rad(/ﬁé/ ) by Corollary Hence by Proposition
0# I <Rad(kl)NRad(x:/") = Rad(kL + /") = Rad (k)

and k is degenerate. ]

We also have a result which resolves a possible confusion involving terminol-
ogy.

(6.6). THEOREM. Let L be a finite dimensional Lie algebra over the field
K of characteristic 0. Then L is semisimple if and only if, as L-module, it is
completely reducible with no trivial 1-dimensional ideals.

In this case all minimal ideals (irreducible submodules) are nontrivial simple
subalgebras, and they are pairwise perpendicular with respect to the Killing form.

PROOF. Let x be the Killing form on L, and let I be an ideal in semisimple
L. Then I NI+ is an ideal by Proposition and the restriction of x to
it is identically 0. Therefore by Cartan’s Solvablility Criterion the ideal
I NIt is solvable and hence 0 in semisimple L. Therefore finite dimensional
L = 1@ I+, and every ideal I is complemented in L. By Theorem L is
completely reducible as L-module. In particular, minimal ideals and irreducible
submodules are the same and are simple. If any of these were trivial simple
ideals, they would be solvable ideals, which is not the case. Finally for the
minimal ideal I, the complement I must be the sum of all other minimal
ideals, so these simple summands are pairwise perpendicular.

Conversely, assume that L is completely reducible with the decomposition
L= @?;0 S; into simple ideals with no summand trivial. Any solvable ideal
I projects onto each summand S; as a solvable subideal. Since no summand
is trivial, each of these projections is onto the zero ideal; so I itself is zero.
Therefore L is semisimple. O
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6.2 Semisimple algebras I: sl;(K) subalgebras

We take the view that the classification of finite dimensional, semisimple Lie
algebras over algebraically closed fields of characteristic 0 has four basic parts:

(i) the reduction of the classification to that of root systems;

(ii) the classification of root systems;
(iii) the uniqueness of Lie algebras corresponding to the various root systems;
(iv) the existence of Lie algebras corresponding to the various root systems.

In this section we handle a large potion of the first part.

We first set some notation to be used throughout this section. In particular
L (# 0) will be a finite dimensional, semisimple Lie algebra over the algebraically
closed field K of characteristic 0.

By Theorem we may choose a Cartan subalgebra H in L. By Propo-
sition we have H = Ly, = Lo, the zero weight space. Let ® be the set of
all roots for H on L, a finite set by Theorem The set of all weights is
oy = {0} U D.

For each A € ®, we have the weight space Ly = Ly, giving the Cartan
decomposition

L=Ho L.
Aed
Since L is nonzero and semisimple, the nilpotent Cartan subalgebra H = Ly is
proper in L, hence the root set ® is nonempty.

The Killing form £ = k¥ = r; = k% is nondegenerate by Cartan’s Semisim-

plicity Criterion

(6.7). PROPOSITION. Let a and 3 be weights.

(a) k(La,Lg) =01ifa+ 8 #0.

(b) klaxu is nondegenerate, and H+ = @, L.

(¢) If 0 # x € Ly, then k(x,L_4) # 0. Especially, o € ® implies —a € .

PrOOF. (a) Recall that for all weights p,v we have [L,,L,] < L,4, by
Theorem and this extends to all A\, u € (H/[H, H])* when we define Ly
to be 0 whenever A is not a root.

For x € Ly, y € Lg, and v € ®q,

ad, ady L’Y = [xv [y7 LW]] < [Lav [Lﬁv LW]] < [LOM Lﬂ+7} < LaJrﬁJrW :

Therefore tr(adg ady) is 0 if o + /5 is not equal to 0.

(b) By (a) H* = Ly > @ycq Lr. Therefore H- N H < Rad(x) = 0, and
K| xu is nondegenerate. Then L = H @ @), .4 Ly yields Ht+ = Prco L

(c) If k(x,L_,) = 0, then by (a) we have x € Rad(x) = 0. Therefore if « is
a root, then x(Ly, L_q) # 0, hence —« is also a root. a
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(6.8). THEOREM.  The Cartan subalgebra H is abelian.

PrOOF. Let z,y € H. Then

k(z,y) = tr(ad, ady) Z Mz)A\(y)dim Ly .
Aed

If w e [H, H], then A(w) = 0 for all A\ € ®; so k(w,y) = 0 for all w € [H, H]
and y € H. That is, [H, H] < HN H* = 0 by Proposition b). Therefore
H is abelian. O

(6.9). THEOREM. We have L = L™. That is, for every A € O the generalized
H-eigenspace Ly is equal to the eigenspace LY .

PROOF. By Theorem [(6.6)| semisimple L is the direct sum of simple ideals,
so we need only prove thlb for simple L. By the previous theorem H = Lj; ,, so
by Theorem - the subspace

He@re=ne@rLy

acd acd

is a nonzero subalgebra of simple L. That is

L=H"o@Ly=L1". m
acd

As abelian H = H/[H, H] is finite dimensional and nondegenerate under &,
for every linear functional p € H* there is a unique ¢, € H with x(t,, h) = p(h)
for all h € H. Especially t_,, = —t,.

(6.10). PROPOSITION.

(a) H=73 ,co Kt
(b) For each a € ® we have a(ty) = k(ta,ta) # 0.

(¢) For o € ®, x € L, and y € L_, we have [x,y] = £(z,y)ta. Especially
[Los L—o] =[x, L_o] = [La,y] = Kty for all nonzero x € Ly, and y € L_,,.

PrROOF. (a) Let J = Y, Kty < H and choose h € J+- N H. Then
A(h) = Kk(tr,h) =0 for all A € ® and indeed for all A € &g since H = Ly. Thus
for a basis of L consisting of bases for the various Ly (ordered appropriately
using Theorem every ad,, for x € H, is represented by a matrix that is
upper triangular and ady, itself is strictly upper triangular. But then adj ad, is
always strictly upper triangular, hence h € Rad(x) = 0. Therefore J-NH =0
with J < H, so J = H because L has finite dimension.

(b) By nondegeneracy of x on H and (a), there is a root 8 with 0 ##

k(tg,ta) = B(ta). Then Proposition yields

0 7é 6(ta) = T,@,aa(ta) = Tﬁ,aﬁl(taata) s
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and £(ta,ta) # 0.
(c) By the previous theorem Kz is a 1-dimensional H-submodule of L. For
allhe Handy e L_,

We thus have k(h, [z,y] —k(x,y)ts) = 0 for all h. By the nondegeneracy of x on
H, this gives [z,y] = k(z,y)to < Kt,. By Proposition ¢) we may choose
y € L_o with k(x,y) # 0, hence [z, L_,] = Kt,. O

Define h, = mtw possible by Proposition |(6.10)|(c).

(6.11). THEOREM. For each o € ® and each 0 # x € L, there is ay € L_,,
with
Kz & Ky & Kt, = Kax & Ky & Kh,

a subalgebra isomorphic to sly(K).

Proor. For any nonzero z € L, the previous proposition allows us to

choose a y € L_,, with k(z,y) = n(tf 7+ Then
[z, y] (z,y)t 2z t h
=K a = a = Na;
Y Y lﬂ(ta,ta)
2
ho,z] = ———[ta,
hovs) = s lfans
2 2
= ta = ta,ta = 2z;
Rt U)o = oy rlte ta)e = 20
2 —2 -2
hOé} = 7t&? :7t7a7 = 7, N\ t*Ol
[has 9] K(tmta)[ vl K(tmta)[ Yl K(tmta)( a)(t-a)y
-2 -2
Ii(ta,ta)a( Ol)y Fé(to”ta)’{}( (6 2] a)y Y
Therefore
Kz @& Ky & Kt, = Kax & Ky & Kh,
is a subalgebra, and by Section it is a copy of sy (K). a

(6.12). COROLLARY. Let L = H ® @ cp La be the Cartan decomposition
for L and for each a € ® choose a basis {eq; | 1 < j < dimg(Ly) } for Le.
For each a € ® and 1 < j < dimg(Lq) there is a subalgebra S, ; in L that is
isomorphic to sly(K) and has eq j € So ;. Furthermore L = Z(X’j Sevj- O

6.3 Problems

(6.13). PROBLEM. Let L be a finite dimensional Lie algebra in characteristic 0.
Prove that L is solvable if k| xr,1) is identically 0.
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Chapter

Representations of sly(K)

We have seen at the end of the last chapter that a finite dimensional semisimple
Lie algebra L over an algebraically closed field K of characteristic 0 is sewed
together out of copies of sl3(K). We could have proceeded with the program out-
lined at the beginning of Section toward a refined description of the Cartan
decomposition, leading to the introduction of root systems. But the relevant cal-
culations essentially come from the structure of L as an sly(K)-module. Indeed
we have already made one such calculation. Specifically, arguments involving
a-strings usually depend upon the finite dimensional representation theory of
sl5(K). So Proposition is actually a consequence of the fact that all fi-
nite dimensional sls(K)-representations can be realized over the rationals. (See

Theorem [(7.28)(a).)

Accordingly, in this chapter we take some time off to describe the repre-
sentation theory of slp(K) in a manner more detailed than actually needed for
the program. (For the semisimple classification, we only need the much easier

Theorem )

In fact, sl3(K) is the only semisimple Lie algebra whose irreducible represen-
tations have been completely cataloged, but we do not do it in its entirety. For
that, one should consult the excellent book [Maz10], which is the motivation for
much in this chapter.

The irreducible, finite dimensional sl (K)-modules can be described quickly
(and we have already seen them on page , but we shall also pursue certain
(possibly) infinite dimensional modules. For the module properties considered
we will be guided by the desire to include all finite dimensional modules, so
their properties will motivate our definitions—specifically the presence of weight
vectors.

Throughout this chapter, we let K be an algebraically closed field of charac-
teristic 0.

61
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7.1 Weight modules

Within the Lie algebra sly(K), we have focused on three elements

10 0 1 0 0
=08 = (a) o =(e)

which provide the presentation

[e7f]:ha [h,€]=2€, [hvf]=—2f7

for the 3-dimensional algebra sl3(K) = Kh @ Ke @ Kf. This is the Cartan
decomposition of L = sl3(K) for the Cartan subalgebra H = Kh = Ly with
weight spaces Ke = Ly and Kf = L_,.

The following lemma tells us these 1-spaces can be characterized extrinsically
(as Cartan subalgebra and its weight spaces), so this presentation is in a sense
canonical.

(7.1). LEMMA.  The algebra sly(K) is simple. FEvery Cartan subalgebra of
slo(K) is equivalent under Aut(slz(K)) to Kh, and the only subalgebras contain-
g Kh are

sly(K), Kh, Bt = Kh @ Ke, B~ = Kh @ Kf.

PROOF.H With respect to the basis {h, e, f} the Gram matrix of the Killing
form & is

o O
= O O
O = O

so k is nondegenerate as charKK # 2. Therefore by Cartan’s Semisimplicity
Criterion the algebra sly(K) of dimension 3 is semisimple. Were it not
simple, it would have an abelian ideal of dimension 1, which is not the case.

A Cartan subalgebra is thus abelian (Theorem and so is contained in
the normalizer of the subalgebra generated by each of its elements. By Jordan
Canonical Form, every nonzero element of sly(K) is conjugate under GL2(K) <

Aut(sl3(K)) to one of
0 a b 0
o0/ % o -»

for nonzero a,b € K. The normalizer of the subalgebra with the first shape
contains elements of the second type and is not nilpotent. The abelian subalge-
bra Kh of all matrices of the second type is self-normalizing and so is a Cartan
subalgebra by Proposition

The rest of the Lemma follows by Problem or by calculation with
respect to the Cartan decomposition given by Kh. m|

The Cartan subalgebra Kh of sl3(K) has dimension 1, so the elements A of its
dual space are described entirely by the element A(h) € K via A(kh) = kA(h) for

IExercise: This proof is overkill. Do the calculations needed to make it elementary—that

is, free of reference to results like Proposition and Theorems and
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all k& € K. We therefore abuse notation and terminology somewhat by setting
A(h) = A € K and saying that the element A of K is a weight when, more
properly, it is the associated linear functional \: Kh — K given by kh — Ak
that is the weight.

Let V be an sl (K)-module. We let the images of h, e, and f in Endyg (V') be,
respectively, HV, EY, EV, usually abbreviated to H, E;, E_. (In the notation
introduced on page these are adx, adZ, and ad}/.)

Recall that we write V" for those € V) with [k, 2] = A(h)z, such a nonzero
x being a weight vector for the weight A. The space of weight vectors Vy" is
the actual H-eigenspace, a subspace of the generalized H-eigenspace V). If finite
dimensional V) # 0 then V¥ # 0 by Jordan Canonical Form.

The sly(K)-module V is torsion-free if, for all nonzero f(z) € K[z] and all
nonzero v € V, we have f(H)v #£ 0.

Torsion-free modules and weight vectors provide us with a basic dichotomy.

(7.2). PROPOSITION. If V is an irreducible sly(K)-module, then either V is
torsion-free or V contains a weight vector.

PROOF. Assume V has torsion, so that there are 0 £ v € V and 0 # f(z) €
K[z] with f(H)v = 0. Choose f(x) to be monic and of minimal degree subject to
this. Thus f(z) =[]/, (z — a;) for distinct o; € K. With w = [[I, (H — a;)v,
we then have w a weight vector for A = a,. O

Our goal in this chapter is to classify all irreducible modules containing a
weight vector. As v,Hv,H?v,...,H% ... must be linearly dependent in finite
dimensional V', this classification will include the classification of all irreducible
finite dimensional sl3(K)-modules.

(7.3). LEMMA. Let V be an sla(K)-module.

(a) E.E_. — E_.E. = eH; HE. — E.H = 2¢E..

(b) E.E_. = eH + E_E.; HE. = E.(H + 2¢); E.H = (H — 2¢)E..
(¢) If f(z) € K[z] is a polynomial and n € N, then

FHE? =EZf(H+2en) and EZf(H) = f(H — 2en)EL .

(d) If v € V) then Ecv € Vyyo..
(e) Ifve VY then Ecv € Vo and E_Ecv € V2.

PROOF. The first part consists of the equations demonstrating that V is an
slp(K)-module. The second part is then a rewritten version of the first, and the
third part follows by induction. (Exercise.)

Let v € V). Then by the previous part

(H—= (A 42)*(Ew) = (H= (A +26)*E)v = (Ec(H = M)*)o = E.(H = \)*v),
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which is 0 for large enough k, hence Ecv € Vy;o.. Further let v € V. Then
the equalities holds and are 0 for k = 1, proving that Ecv € V)", , as claimed
at the beginning of the last part. The end follows directly. ]

Parts of the lemma also follow directly from Theorem [(5.11)] when we con-
sider the weight spaces for the nilpotent subalgebra Kh (= N) of the semidirect
product algebra sla(K) @ V (= L), as discussed under Example b).

A weight module for sl3(K) is a module that is generated by weight vectors,
which for an irreducible module is equivalent to containing a weight vector. By
the previous result, the sum of all the spaces V" of weight vectors is a submodule
of V, so V is a weight module if and only if V{¥ = V) for all A. This in turn is
equivalent to the statement that HY = H is “diagonal” or “semisimple” in its
action on V. These remarks include the usual definitions of a weight module;
see [Mazl10l p. 59].

If v is a A-weight vector, then always

A =Hv= (E+E_ — E_E+)U = E+E_U — E_E+U

where by the lemma E{E_v and E_E v both belong to V). We say that the
weight vector v is coheremﬂ if there is are constants Ay and A_ in K with

EiE_v=Av and E_Ejv=JA_v,
where necessarily Ay — A_ = A.

(7.4). LEMMA. If dimg (V') = 1, then each weight vector v € V' is coherent.
O

We shall see (in Proposition|(7.24)) that weight vectors in irreducible sl (K)-
modules are always coherent. Irreducible modules are always cyclic, so our
classification results will come from careful study of cyclic modules generated
by coherent weight vectors.

Two special types of coherent weight vectors are of particular note. In the
sl3(K)-module V, we will call the nonzero vector v a highest weight vector for
the weight A € K provided v a weight vector in V" for H and additionally
Ei(v) =0, so that E_E;(v) =0, A_ =0, and Ay = A. Equivalently, Kv < V)
is not just a Kh-submodule but is also a submodule for the Borel subalgebra
BT = Kh @ Ke. Similarly nonzero v is a lowest weight vector for the weight
A € K provided Kv < V) is a B~ -submodule; that is, v is weight vector of V"
for H and also E_(v) =0, hence E{E_(v) =0, Ay =0, and A_ = A.

(7.5). THEOREM. LetV be a finite dimensional module for sly(K). Then V
contains highest weight vectors and lowest weight vectors.

PROOF. Suppose V) # 0, and choose 0 # v € V¥ (possible, as mentioned
above). By Lemma |(7.3)(d) and finite dimensionality, there are integers ¢ with

2Unlike the other terminology in this chapter, this is not standard. But it is somewhat
related to a concept of coherence within the representation theory.
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0# ELv e Vi, but 0 = E'v, and s with 0 # E3v € V¥, but 0 = E¥" .
Thus vy = Efkv is a highest weight vector and v_ = E® v is a lowest weight
vector. 0O

An elementary arithmetic lemma will be of help.

(7.6). LEMMA. Let A, Ay, A € K with Ay — A = A, Set e € {£} = {£1},
and consider the two sequences ac(i), for i € Z, where ac(i) = 1 for —ei € N.
The following are equivalent:

(1) ac(i)=(G—€e)A—i)+Ae=i(A—i+e€)+A_¢ forallei € ZT.

(2) ac(e) = A and ac(i) —ac(i —€) = e(A—2(i —€)) for all ei € Z7T.

(3) ac(e) = A and a_(i)ay(i+1) —ap(i)a_(i — 1) = X\ —2i for all i € Z.
Proor. (Exercise.) a

(7.7). COROLLARY. Let A =Xy —A_ and € € {£} = {£1}. From the two
half-infinite sequences

ac(i) =G —e)A—i)+ A =i(A—i+e)+ A foralleicZ*
create the new doubly infinite sequence
b(j) =a—_(j) forj € Z™ and b(j) =ay(j+1) for j € N.
Then b(j) =j(A—j—1)+ Ay forallj € Z. O
We now investigate the structure of a cyclic submodule.

(7.8). THEOREM. Let v be a weight vector for the weight X in the sly(K)-
module V. Set vg = v, and let € € {£} = {£1}.
For alli € Z7" define

vei = EL (v) = EL (v9) = E_c(ve(i-))
which we may rewrite as:
Ec(v;)) = vi—e forei e =N
Then
(a) H(v;) = (A —2i)v; for all i € Z;
(b) Assume v is coherent. Set E.CE_.v = A.v, hence Ay — A_ = A. Then
Ec(vi) = ac(i)vi_e forei € ZT

where ac(i) = (i — €)(A — i) + A, as in Lemma|(7.6)
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PRrROOF. (a) We prove this by induction on |i|, the case |i| = 0 holding by
definition. For an ¢ with [i| > 0, define € € {£} = {£1} by i = €|i|. We use
Lemma [(7.3)[ and induction to calculate

HUi = HE,EUi,6
= E,E(H — 26)1)2',5
=E_(AN—2(i —€)) — 2¢)v;_
= (/\ - Zi)E_evi_e

(b) We proceed by induction on the positive integer ei. The case ei = 1
serves to define the two constants a.(€) = A, where A — A_. = e\ by coherence
of v. Assume ez > 2. Then

Ee(vi) =EE_cv;_c

= (eH + E_(E.)v;_ by Lemma |(7.3)|
=eHv;_« + E_cEcv;_
=e(A—2(1 — €))vi—e + E_cac(i — €)v;—2e by (a) and induction

=€e(A—2(i — €))Vi—e + ac(i — €)v;— as —e(i —2¢) € =N
— ac(i)vie by Lemma [(7.6)
This completes the induction and proof. O

7.2 Verma modules

Theorem motivates the following construction:

(7.9). DEFINITION. Let A, A, A € Kwith Ay —A_ = A, Set M(A\ A, ) =
D,cz Kvi. Define the linear transformations H, E, and E_ on M(X\, A, A
by

H(’UZ) = ()\ — 21)1)1 s

Ee(vi) = ae(i)vi—e )
fori € Z and € € {£} = {£1} with

ac(i) = (i —e)(A—1) + A for ei € Z and
ac(i)=1 for ei € —N.

In this action and with respect to the basis {v; | i € Z}, the linear trans-
formation H is “diagonal,” in the sense that it takes each 1-space Kuv; to itself.
Similarly E is “lower diagonal,” always taking Kv; to Kv;_1, and E_ is “upper
diagonal,” taking Kv; to Kv;11. The corresponding nonzero coefficients, the
transformation coefficients, are

A2 as (i) a_ (i)
HZ'UZ'*%’UZ' E+Z'Ui*>’l)i,1 E,Z'Ui*>’l)i+1
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We exhibit the actions on M (X, A, A_) pictorially as below. In the picture
every basis vector appears twice—once on the line displaying the action of E_
and once on the line displaying the action of E. Passage between the two lines
gives the action of H.

a_(—2) Ao
E_ - > V_9g —--—-- ?V_1 ——--- > Vo V1 V2
l)\+4 lAJrQ l)\ l)\—Q l/\—4
v_ _ Vg $-c--- $--—== <-----
Es 2T U T R T ey 2

(7.10). THEOREM. The maps
h—H, e—E;, f—E_

give M(A, A, A_), as defined in |[(7.9) above, the structure of a cyclic sla(K)-
module generated by the coherent weight vector vy for the weight A and having
EEE,EUQ = )\E’Uo.

PRrROOF. Within the definition [(7.9)| we find E.E_cvg = ac(€)vg = Acvo.
To verify [H,E.] = HE. — EcH we check equality on the basis vectors v;:

[H,EJv; = (HE. — E.H)v;
= HE.v; — EcHv;
=Ha(i)vi—e — Ec(A — 2i)v;
= ac(i)Hv;—c — (A — 29)Ecv;
=ac(i)(A—2(i — €))vi—e — (A — 20)ac(?)v;—.
— (A= 20— ) — (A= 20)) a. (i)
= 2¢E.v;;

so [H, E.] = 2¢E,, as desired.
We must also verify [E4,E_] = H:

[E+,E_Jv; =E4E_v; —E_E v
=Eja_(9)vip1 — E_ap(9)vi—q
=a_(i)ayr(i+ 1)v; —ay(d)a—(i — 1)v;
— (a_(Das (i +1) — as (a_(i— 1)) v
= (A — 2i)v; = Huy,

where between the last two lines we have used Lemma |(7.6)] Accordingly
[E+,E_] = H, which together with the preceding paragraph proves that we
have a representation and module. O

The module My (A, A4, A_) is a generalized Verma module for sly(K) with
weight A\. As an immediate consequence of the previous two results we have a
universal property for generalized Verma modules:
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(7.11). COROLLARY. Letwv be a coherent weight vector for the weight X\ in the
sly(K)-module V with EYEY v = Acv. Then the map vy + v extends to a Lie
module homomorphism taking the generalized Verma module M(A, Ay, A_) onto
the sy (K)-submodule of V' generated by v. O

(7.12). COROLLARY.
(a) V=M A, A2) =D, ertor Vi with dimg (V) =1 for all p € A+ 2Z.
(b) Every weight vector in V is coherent.

(c) Any H-submodule, and so any sla(K)-submodule, of V' is a sum @ ,c; Vi,
for some subset I C X\ + 27Z. O

As already mentioned, each of the operators H and E. is “nearly diagonal”
on the the basis {v; | i € Z }. If we replace various of the v; with nonzero scalar
multiples, this will not change the near-diagonal structures, but it will change
the values of the certain of the transition coefficients. A particular case is of
interest.

(7.13). PROPOSITION. For constants 0 # b,d € K with bd = 1, and an integer
J, consider the new basis {v} | i € Z} for My (A Ay, A_) given by

vl =, ifi > j

Then the transition parameters for this basis are equal to the transition param-
eters with respect to the original basis with only two exceptions:

a_(j)=ba_(j) and a/,(j +1) =day(j +1).
PROOF. If i >j+1lori=j+1and e=—
Ec(v;) = Ec(vi) = ae(i)vi—e = ac(i)v;_..
Similarly if i < jor ¢ =j and e = +
E.(v)) = Ec(bv;) = ac(i)bv;_e = ac(i)vi_, .
On the other hand,
Bt (V1) = E4(vj41) = a4.(j + 1)vj = bday (j + 1)v; = da.(j + 1)v]
and
E_(u)) = E_(buy) = bE_ (1) = ba_(j)os1 =ba_(j)v)y,. O

(7.14). THEOREM.  For a given 6 € {£1}, if as(d) = Xs is not equal to
0, then the map A5 'vs +— v{ extends to an isomorphism of M(X\, Ay, A\_) with
M, N, NT) where X' = X+ 20 and N 5 = As.
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ProoF. For M(A, Ay, A_) we start with

E_ - »V_g ----- YU_q ----- » v V1 U2

l)\+4 PH P l)\—Q L\—zx

- - $-o--- S
E, Vg &5 U1 T Yo <73 U1 L@ U2

Assume A_ # 0, and in the proposition set j = —1, b = AZ', and d = A_.
We then find

a-(=2) 1 1 1
E. - yvly oo vl vg v vy
L\+4 L\+2 L\ Pﬂ L\fzx
E v’ L vl 4-c--- V) 4o A
+ -2 LUl 0 Ny L e (2) 2

Therefore the map v; — v, gives an isomorphism of M(A, Ay, A_) with the
generalized Verma module M(A + 2, _, a_(—2)).

On the other hand, if Ay # 0 then in the proposition we set j =0, b = Ay,
and d = A;l to reveal an isomorphism of M(\ Ay, A_) with the generalized
Verma module M(A —2,a1(2), A4). |

(7.15). COROLLARY.
(a) If ac(i) is nonzero for all pairs (e,1), then M(X Ay, A_) is irreducible.

(b) If MM\ Ay, A_) is reducible, then there is a p € X+ 2Z with M(A, Ay, A_)

isomorphic to M(p, i, 0) or to M(p, 0, —p).

PROOF. (a) By the theorem, under these circumstances M(A, Ay, A_) is
cyclically generated by every Kuv;; so by Corollary there are no nonzero,
proper submodules.

(b) By (a) if M(A, Ay, A_) is reducible, then there is at least one pair (¢, 1)
with a.(i) = 0. Choose the smallest |i| = ei for which this is true. Then
aec(ej) # 0 for 1 < j < |i|], and by the theorem M (A, A\, A_) is isomorphic to
M(py pray o) with p =X —2i and p. = a.(i) = 0. a

We therefore must analyse the submodule structure of the modules M (u, u, 0)
and M(u,0,—p). For this we have two important definitions.

(7.16). DEFINITION. Let A € K and set M (\) = @,y Kv; withv_1 =0 €
M (N). Define the linear transformations H, E;, and E_ on M (\) by

H(Ul) = (/\ — 22’)1)1- 5
Ee(vi) = ae(i)fvife P
forieN, ee {£} ={£1}, and a(i) by

ay(i)=i(A—i+1) foricZ* and
a_(i)=1 forieN:
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E, U0 ¢~ " UL ¢-rn Vg $moo-
(7.17). DEFINITION. Let A € K and set M_(\) = @,y Kv_; with vy =0 €
M_(X). Define the linear transformations H, E;, and E_ on M_()\) by
H(’l}z) = ()\ — 22)1}1 5
Ee(vi) = ae(i)vi—e )

forie =N, e € {£} = {£1}, and a (i) by

a_(i)=i(A—i—1) forie —~Z" and
ay(i) =1 forie —N:
E_L --—--- ?V_9 (}jf(j? V-1 ==~ > Vo
P+4 PH JA
E+ V_2 1 V_1 1 Vo

The space M (1)), defined above and with the described action, is the Verma
module for sly(K) with highest weight A. Similarly M_(\) with the described
action is the Verma module for sly(K) with lowest weight A. At this point,
these names are presumptive, since we have not proven that the maps h — H,
e E4, and f — E_ give M (X) or M_(\) the structure of a cyclic sly(K)-
module generated by the weight vector vy with highest or lowest weight A. This
will be a consequence of the next theorem, where we will see each of these as
quotient modules and submodules of appropriate generalized Verma modules.

(7.18). THEOREM. For each A € K we have following nonsplit exzact sequences
of sly(K)-modules:

(a)
) 0— M_(A+2) — M(AX0) — M (\) —0;

(b)
0— Mi(A—=2) — M()\0,-)\) — M_(\) — 0.

PRrROOF. For M(A, \,0) we have
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Thus K_ = ), ., Kuv; is a proper submodule and is, in fact, isomorphic to
M_(A\+2). The quotient M(\, A,0)/K _ is next seen to be a copy of M (). The
extension is nonsplit since, by Corollary c)7 the only possible submodule
complement to K_ would be Y. Kv; whereas E vy € K_.

For M(A,0,—)) instead

ieN

a_(—2)
E- U2 =77 $v_g - v U1 U2
P-s—zx L\H JA Pﬂ J,\fz;
v— v v V] €= Vg $-----
E+ 2 1 1 1 0 1 L@ 2

Here K =} .., Kv; is a proper submodule and is isomorphic to M, (A — 2).
The quotient M(\,0,A)/K is a copy of M_(\). Again the extension is nonsplit

as the only possible complement to K} would be Y. _Kv_; but E_vg € K.
O

i€EN

Especially, the spaces M,(\) are indeed sl3(K)-modules, as presumed above.
(7.19). COROLLARY.

(a) Let v be a highest weight vector for the weight A in the sly(K)-module V.
Then the map vg — v extends to a Lie module homomorphism taking the
Verma module M4 (X\) with highest weight A onto the sly(K)-submodule of
V' generated by v.

(b) Let v be a lowest weight vector for the weight X\ in the sly(K)-module V.
Then the map vg — v extends to a Lie module homomorphism taking the
Verma module M_(X) with lowest weight X onto the sla(K)-submodule of V
generated by v. O

(7.20). THEOREM.

(a) The module M.(X) is irreducible if and only if e\ ¢ N.

(b) If A =n € €N, then M.(n) is indecomposable with two composition factors:
0 — M.(—n —2¢) — Mc(n) — My(en +1) — 0,

with M (—n—2¢) irreducible of infinite dimension and My(en+1) irreducible
of finite dimension en + 1.

Proor. By Corollary every submodule is ), ; Kv; for some I C eN.
As it is E_.-invariant, a nonzero submodule must be Zk<i€N Kuv,; for some

k € N. When a.(i) is nonzero for all i € eN, the module M () itself is the only
such E.-invariant subspace. Therefore M ()\) is irreducible unless

ac(i) =i(A—i+e)=i((A+e)—i)=0
for some ¢ € eZ*. For a fixed A\ and ¢ this can only happen for

i=A+teceZt,
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which is to say
A=1i—e€eN.

Especially if A ¢ eN, then M.()) is irreducible.

Now suppose A = n = em € ¢N for m € N, so that e(m + 1) = A + ¢ with
ae(Ate€) = 0. Then Ke = P, ;5,1 Kvj is a submodule of M, (}), complemented
by the (m-+1)-subspace @:’;:O Kuv,. In particular M, () is reducible, completing
(a)

For the submodule K. = @ Kuv; we calculate

ej>m+1
HWeme1)) = Huare) = A =2(A+€) = =X\ = 2c = —n — 2¢.

Thus K. is isomorphic to M.(—n — 2¢), an infinite dimensional irreducible mod-
ule as e(—n —2¢) = —en—2 € Z~. The extension is nonsplit since, by Corollary
(c) and the Third Isomorphism Theorem, the only possible complementary
submodule would be @2’:0 Kwv;, whereas E_cvenm € Ke.

For m € N, the quotients M.(em)/K. have dimension m + 1 and are irre-
ducible, since there are no further solutions to i((A + €) — i) = 0. By Theorem
every finite dimensional irreducible sls(K)-module has both high weight
vectors and low weight vectors. In particular each M, (em)/K,. must also be
M_.(—ek)/K_, for some k, dimension considerations forcing m = k. That is,
the two finite dimensional modules M,(em)/K, are isomorphic. We conclude
that, up to isomorphism, there is a unique irreducible sly(K)-module of each
positive dimension m + 1. This we have denoted My(m + 1). O

For example, with € = + and A = m = 3 we have

E 1 1 1 1 1
- Yo U1 U2 U3 V4 Us
E, V0 ¢-3~- UL 4 7- Vg ¢-o- U3 Vg $--3-- Vs

and the submodule K = €, , Kv; of M, (3) is revealed as a copy of M (—5),
while the quotient module is My (4) with dimension 4 and weights {3,1, —1, —3}.

We have already seen on page [18| a version of the module My(m + 1). Let

0 0 0 0
— T — d = y— d h—r——y—
e Iay and f Yo an T yay
in Derg (K[z,y]) acting on K[z, y],,, the space of homogeneous polynomials of
total degree m in K[z, y]. The polynomial 2™ is a weight vector with highest
weight m, while y™ is a lowest weight vector with weight —m; we have a module
isomorphism with My (m)/K; given by v; + Ky — 2™ "y*, for 0 <14 < n.

The next result is a corollary of the previous one and is of fundamental
importance. Versions of it are at the heart of the representation theory for all
semisimple Lie algebras over algebraically closed fields of characteristic 0. In

particular, see Theorem [(9.10)| below.
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(7.21). THEOREM.

(CLASSIFICATION OF IRREDUCIBLE HIGHEST WEIGHT sl3(K)-MODULES) For ev-
ery A € K, up to isomorphism there is a unique irreducible sly(K)-module Ly (X)
with highest weight A. Indeed

(a) if N ¢ N, then Ly (A\) = My (\) of infinite dimension;
(b) if A\ =n €N, then Ly (\) = My(n+ 1) of finite dimension n + 1.
These are pairwise nonisomorphic. O

There is, of course, a corresponding result for irreducible lowest weight mod-
ules.

Every irreducible finite dimensional sls(K)-module is a highest weight mod-
ule, so we also have the following result which was mentioned in the introduction
to this chapter and will aid us to complete the classification of semisimple Lie
algebras over K.

(7.22). THEOREM. Up to isomorphism the finite dimensional irreducible
sly(K)-modules are the modules Mo(m + 1) for m € N. These modules are
all self-dual. In Mo(m + 1) the weights are —m,—m+2, ... m—2,m, and each
weight space has dimension 1. m]

7.3 The Casimir operator

(7.23). PROPOSITION.  Let V be an sly(K)-module, and in Endg (V) define
the element
C=C"=H")?+1+2EYEY +EVEY).

(a) C=(H—¢€)?+4EE_..
(b) CH =HC and CE. = E.C.
ProoOF. We make frequent use of Lemma
C=H?+1+2EE_+E_E)
=H?>+1+2(EE_.—eH+EE_,)

= (H? —2¢H + 1) + 4E.E_,
= (H—e)? +4EE_..

HC =H(H —€)> + 4(HE.)E_,
= (H —€)’H + 4E.((H + 2¢)E_,)
=(H —¢)*H + 4E.E_(H + 2¢ — 2¢)
=CH.
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= (H — ¢)?E. + 4E.E_ E,
Ec(H — e+ 2¢)? + 4E.E_ E,
Ec((H +¢)* +4E_E,)
E.C. O

The somewhat mysterious C = CV is the Casimir operatorf] on V. Tt has its
uses.

(7.24). PROPOSITION. In an irreducible weight module for sly(K) every weight
vector v for X\ is coherent.

PROOF. If the sl3(K)-module V is irreducible, then by Schur’s Lemma|(4.11)|
the Casimir operator C acts as a scalar: there is a ¢ € K with Cv = cv for all v €
V. Let v be a weight vector in V, say, for the weight \. As C = (H—¢)2+4E.E_,,

we have E.E_. = 2(C — (H — ¢)?). Thus

1 2
EE_cv= Z(C —(H=¢)*)v
1 2
= Z(Cv— (H —¢€)*v)
_c— ()\—e)2v

4

O

2
That is, v is a coherent weight vector for A with A, = #.

(7.25). COROLLARY. Let V be an irreducible weight module for sly(K) con-
taining the weight vector v for A with E.E_.v = A\cv. Then the Casimir operator
acts as scalar multiplication by 4\ + (X — €)?. O

The spectrum Spec(V') of an sz (K)-module V is the set of weights associated

with weight vectors in the module.

(7.26). THEOREM. An irreducible weight module for sl3(K) is isomorphic to
one of the following:

(1) Mo(m+ 1) for m € N with spectrum [—m, m] N (m + 2Z);
(2) My (N) for A ¢ N with spectrum A — 2N;

(3) M_()\) for —X ¢ N with spectrum A + 2N;
(4)

4) M(X, )\+,)\ ) with A_ = Ay — X and spectrum \ + 27, such that the poly-

nomial 2 — (X — 1)z — Ay € K[x] has no integer roots.

3In other places one my find our Casimir operator C replaced by aC + b for constants
a,b € K. This has no affect on its uses. We follow the convention of [Maz10|, which gives the

nice renditions of Proposition a).
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All these modules are irreducible and every weight space has dimension 1.

No module from one case is isomorphic to a module from one of the other
cases. Within each of the first three cases, two modules are isomorphic if and
only if they have the same parameter. In the last case, M(A\, Ay, A_) is isomor-
phic to M(p, puy, p—) if and only if p— X € 2Z and pyp — Ay = T(A—p)(A+p—2).

PROOF. By the previous proposition, an irreducible weight module V is
generated by a coherent weight vector. If the module is not isomorphic to some
MM Ay, A2) (as in the last case), then by Corollary it is a quotient of a
Verma module M.(A) . By Theorem the module V is then isomorphic to
one of the examples in the first three conclusions, all irreducible. In any event,
all weight spaces have dimension 1.

The various spectra are also clear, and show that no module from one case
is isomorphic to one from another case, nor can different parameters in any one
of the first three cases produce isomorphic modules.

It remains to decide under what circumstances M (A, A4, A_) is irreducible
and when two such modules can be isomorphic.

By Corollaries and [(7.15)|(a) the module M(X, A4, A_) is irreducible if
and only if b(j) = j(A — j — 1) + A} is nonzero for all j € Z. This is the case
precisely when

tA—z -1+ Xy =22+ (A= Dz + ), € K[z

has no integral roots.

Suppose that M(A Ay, A_) and M(u, g4, u—) are isomorphic. By spectral
considerations, we must have A 4+ 2Z = u + 2Z. By symmetry we may assume
that p = X\ — 2¢ for some 7 € N. In that case, isomorphism holds if and only if,
in terms of the transformation coefficients for M(A, Ay, A_), we have

pr=ar(i+1)=((+1)—1)A=(G+1)+ Ay =i(A—i—1)+Ap.

As 1 = A\ —2i we have 1 = ’\_T“, so this becomes pip — Ay = 2(A—p)(A+p—2),

as claimed. O

If V' is an irreducible module containing the (coherent) weight vector v for
A with ECE_.v = A, then the Casimir scalar is ¢ = 4\, + (A — ¢€)? by Corollary
For instance, for V' = My(m + 1) we have A = m and A_ = 0 so that
c=4(0)+ (m+1)? = (m+ 1)~

This also allows effective relabelling of the irreducible modules M(A, A, A_).
Indeed this module can now be characterized by the two parameters \ + 2Z €
(K, +)/2Z and c (= 4\, + (A — €)?), two such irreducible modules being isomor-
phic if and only if they have the same parameter pair. (Exercise.) This is the
approach taken in [Maz10, Theorem 3.32]. The corresponding requirement for
irreducibility is that ¢ # (u+ 1)? for all u € X + 2Z. (Exercise.)

7.4 Finite dimensional sl;(K)-modules

We have a second hidden use of the Casimir operator.
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(7.27). THEOREM. (WEYL’S THEOREM) Ewvery finite dimensional sly(K)-
module is completely reducible.

PrOOF. Equivalently, an extension V of a finite dimensional irreducible
slp(K)-module W ~ Mj(m~+1) by a second finite dimensional irreducible module
is always split. Consider

0— My(m+1) —V — My(n+1) — 0.

By passing to the dual of V, if necessary, we may assume m < n. If m < n,
then the weight space V,, has dimension 1. But then (say, by Corollary
and Theorem [(7.20))), V;, generates a submodule U of V that is isomorphic to
My(n + 1) and splits the extension as V = W @ U. Therefore we may assume
m=n.

Each of the weight spaces Vj, for k € [—=m, m] N (m + 2Z) has dimension 2
with V;,, = kerE; and V_,,, = kerE_. By Lemma [(7.3)(d) we have

Vi = ETV = ETV_,,,

with ker E'' = @me 4o Vi and A = ET' an invertible linear transformation

from V_,, to V,,.
For C = CV, the Casimir operator, we calculate the map CA = AC from
V_m to V,, in two ways. For v € V_,, we first have

(CA)v = C(Av)
= ((H +1)*> + 4E_E)(Av)
= (H +1)*(Av),
as Av € V,,, = ker E. Similarly as v € V_,,, =kerE_,
(AC)v = A(Co)
=A((H —1)> +4E,E_)v

=A(H - 1)
=ET(H-1)%
=(H—-1-2m)*Ev by Lemma |(7.3)|(c)

= (H —1-2m)*(Av)
Therefore, from V_,, to V,,,, the map AC = CA is equal to
(H+1)?A=(H—1-2m)*A.
Since A is a bijection from V_,, to V,,, this says that, as a map from V,,, to V,,,
0=H+1)2—(H-1-2m)>=Am+4)(H-—m).

We already knew that (H — m)?V,, = 0, because the weight space V,, has
dimension 2. Now we have learned that (H — m)V;, =0, so V;;, = VY consists
entirely of weight vectors (and 0).
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Let u € V;, \ W. Then again by Corollary and Theorem ((7.20))), the

weight vector u generates a submodule U of V' that is isomorphic to My(m +1)
and splits the extension as V =W @ U. O

Weyl’s Theorem is valid for all finite dimensional semisimple algebras over
K, not just sly(K). The proof uses the appropriate generalization of the current
Casimir operator.

From Theorem [(7.26)(a) and Weyl’s Theorem [(7.27)| we immediately have:
(7.28). THEOREM.

(a) The spectrum of a finite dimensional sla(K)-module V' has one of the fol-
lowing types:
(i) [=m,m]N (m+2Z) for some m € N;

(i) ([=m,m] N (m + 2Z))U([—n,n] N (n + 2Z)) for some even m and some
odd n from N.

In particular, V' contains a sly(K)-invariant Q-submodule Vo with V. =
K ®Q VQ.

(b) The number of composition factors, indeed irreducible summands, in a finite
dimensional sl (K)-module V' is dimg (Vp) + dimg (V7). O

7.5 Problems

(7.29). PROBLEM.  Let A, Ay, A= € K with Ax — A = A. Set M,(M\A4,A2) =
@B,z Kvi. Define the linear transformations H, E4, and E— on M.(A\, A4, A-) by
H(vi) = (A — 20)v; 5
Et(vi) = vi-1;
E_ (’Uz) = b(i)’l)iJrl 5

for all i € Z with b(i) = i(A—i— 1)+ Ay (as in Corollary|((7.7)).
(a) Prove that the maps
h—H, e—Ey, f—E_
give M (A, Ay, A=) the structure of an sla(K)-module in which each weight space
has dimension 1.
(b) Prove that if the generalized Verma module M (X, Ay, A=) is irreducible, then it is
isomorphic to M.( A\, Ay, A_).

(c) Prove that Mo(m + 1) is never a quotient of My(\, Ay, A=). In particular if the
generalized Verma module M(\, Ay, A_) is reducible, then it need not be isomorphic
to Mu(A A4, ).

REMARK. The modules M,(A, A+, A_) are those used in Mazorchuk’s excellent book
[Maz10, Chapter 3.

(7.30). PROBLEM. CG decompose Mo(m + 1) @x Mo(n + 1).
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Chapter

Semisimple Lie algebras

We return to the classification of finite dimensional, semisimple Lie algebras
over algebraically closed fields of characteristic 0, begun in Section [6.2

We recall some notation to be used throughout this chapter (except Section
. Again L (# 0) will be a finite dimensional, semisimple Lie algebra over the
algebraically closed field K of characteristic 0.

By Theorem there is a Cartan subalgebra H in L, and H is abelian by

Theorem By Proposition we have H = Ly, = Lo, the zero weight
space. Let @ be the set of all roots for H on L, a finite set by Theorem

For each A € ®, we have the weight space Ly = Ly x = LY (by Theorem
(6.9)]), giving the Cartan decomposition

L=He L.
Aed

Since L is nonzero and semisimple, the abelian Cartan subalgebra H = Lg is
proper in L, hence the root set ® is nonempty.

The Killing form x = k¥ = r; = k% is nondegenerate by Cartan’s Semisim-

plicity Criterion Furthermore the restriction of x to abelian H is nonde-
generate by Proposition b). Thus for every linear functional p € H*, and
especially for every root in ®, there is a unique ¢, € H with (¢, h) = u(h) for
all h e H.

Let Eg = > ,cqo Qo < H*. Define on H* (> Eg) the symmetric bilinear
form

(2, y) = Kt ty) .

For the root a € ¥, define h, = mtm possible by Proposition|(6.10)(c).

Similarly for each o € ®, we let oV = o= m—Qa)a, the coroot correspond-

2
W (tarta)

79
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ing to the root a. Then

#lha) = (@QM) - rihe)

2
H(ta,ta)m( 123} 04)

= (/1" aV) :

8.1 Semisimple algebras II: Root systems

Our notation is that of the introduction to this chapter.
On page[51] we introduced a-strings. We return to the idea, now in a broader
context.

(8.1). PROPOSITION. Let V (# 0) be a finite dimensional L-module with weight
set Dy (with respect to the Cartan subalgebra H). Let « € ® and p € Py .

(2) LoV < Vo and LBV < V5 with LYV # 0 if g+ a € ®(V).

(b) If V. # 0 then V,;' # 0, hence 0 # V' < V. In particular, if V' is irreducible
then V. =V,

c) There are s,t € N with V1o # 0 if and only if k € [—s,1].

(c)

(d) plha) = (p,a”) =s—t €L
) 1]
) w

e) If (n, ") <0, then p+ a € Py .

(
(f ( )Oé € Oy .

PROOF. Part (a) is primarily an application of Theorem|(5.11)|in the semidi-
rect product T = L@V (as described in Example[(4.15)(b)). We have L, < T,
and V, <1, so

LoV = [La, V] < [T T] < Thyar -

As V is an ideal of T, we further have LoV, = [La, V.| < Tyia NV = Vija.
Theorem gives LyV" < Vi, in the same way. All that remains to be

shown from a) is that L&”V;" # 0 provided pu + a € ®(V), and that will follow
from arguments below.

If V,, # 0 then, by standard linear algebra, the pairwise commuting endo-
morphlsms h1,...,h; have a common nonzero elgenvectorﬂ Therefore if V, # 0
then V¥ # 0. By this and (a), V" is a nonzero submodule of V. Thus When Vv
is irreducible it is equal to V*. This gives (b).

By (b) from now on we may assume that Viixa = V% 10

Following Theorem [(6.11)] we choose & € Lo and y € L_, with hq = [z,y]
and S = Kh, ® Kz ® Ky a subalgebra of L isomorphic to sl3(K). The subspace

M= Viira
kEZ

IExercise: induction on [ with [ = 1 coming from Jordan Canonical Form.
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of V is then an S-module. For each k we have
(1 + ka)(ha) = p(ha) + ka(ha) = (1, a") + 2k,
so by Theorem a) we have (u,a") € Z and
Spec(M) = [~m,m] N (m + 2Z) = [-m,m] N ((u, ") + 27)
where m € N satisfies
—m = (u—sa)(hy) and m = (u+ta)(ha)

for appropriate s,¢t € N. In particular Vj1xa = Mutra # 0 if and only if k €
[—s,t]. Especially when ¢ > 0 we have 0 # xM,, < M, 1o = V,tq (completing

(a)).

We solve
— (1= sa)(ha) = (1 + ta)(ha)
to find (u, ") = p(hy) = s—t. If (u, @) is negative, then t > 0 and p+a € Py .
Finally
p—(pa’)=p—(s—tha=p+(-s+t)
with k = (=s+1t) € [=s,t], 50 V,_(yav) # 0 and g — (u, @) € py € Oy, O

We now view L as a finite dimensional module for itself and its various sl;(K)

subalgebras (found in Theorem [(6.11))).
(8.2). THEOREM.

(a) Let a, B € ® with 8 # ta, and let 8 —sa,...,B,..., 8+ ta be the a-string
of roots through 3. Then B(he) = (B,a"V) =s—t € Z.

(b) Let o, f,ac+ B € ®. Then [Lq,Lg] = Latp.
(¢) For a € ® we have dimg(Ly) =1 and ® NKa = {+£a} in H*.

PrOOF. The first part follows immediately from the previous proposition
when we consider the adjoint action of L on itself. For the second part, Theorem
and the proposition give 0 # [Ly, Lg] < Lo+. Therefore once we have
proven in (c) that all L, have dimension 1, parts (a) and (b) will be complete.

The final part effectively comes from taking o = p in the proposition. As
before, Theorem provides us with « € L, and y € L, with h, = [z,y]
and S = Kh, ® Kz @ Ky isomorphic to sl (K).

Consider the subspace

N =Ky & Kho & P Lia -

1€EZT

We claim that N is an S-module. By Proposition c¢) we have [z,Ky] =
Khe, = [y, La]- To see that N is z-invariant we check

[, Ky] = Khy, [#,Khe] < La, and [z, Li—1)a] < Lio fori>1.
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Similarly N is a Ky-submodule as
v, Ky] =0, [y,Kho] <Ky, [y, La] = Khq, and L(i—1)a > [y, Lia] fori>1.
Therefore N is an S-module. Its weights are
—a(hy) =—=2, 0(hy) =0, alhy) =2,

and
(ia)(hg) = 2i when ¢ > 1 and N;q = Ljp, #0.

By Theorem a) we must have N;, = L;o, = 0 for all ¢ > 1. Furthermore
Ny = Kh,, has dimension 1, so by Theorem (b) the module N is irreducible
and a copy of My(3). (Indeed N = Ky & Kh, & Kz = 5, the adjoint module
with S acting on itself.) Especially the dimension of L, = Ny is 1 for every
a € d. |

(8.3). THEOREM.

(a) For o, € ® we have (B,a) € Q,(8,a") = % €Z, and B — %a =
6_ (B7av)oz €.

(b) The form (-,-) is positive definite on Eg.
(¢) Any Q-basis of Eg is a K-basis of H*.

PRrOOF. (a) We apply Proposition [(8.1)c,e) with V' = L and p = . This
gives (a) directly except for the claim that (5, a) € Q.
For every v € Eg we have

(777) = K’(t’Y7t’Y) = Z B(t’y)Q
ped
since always dim Lg is 1 (by the previous theorem). Especially for o € ®
0< ()= Blta)* =D (B0
Bed Bed

hence

4 208,0)\° _ .
(@) ﬂz( o) 7
Thus (o, a) € Q and indeed
(0,0) 2(8,0)

2 (o, )

(ﬁva): €Q.

(b) Let v = 3" cq Vo € Eg with 74 € Q. Then, as above,

(1:7) =D Bt = (Z w@a)) = (Z va(ﬁ,a)> >0,

ped BED \aed Bed \acd
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as it is a sum of rational squares by (a). Furthermore if (y,7) = 0 then 5(t,)
is 0 for all B € ®. That is, k(tg,ty) = 0 for all 3 € ®. Since the tg span H by
Proposition this in turn gives t, € H N H* = 0 (by Proposition ,
hence v = 0.

(c) Let {b; | i € I} be a Q-basis for Eg. As & C Eg, we have H* =
> icr Kb;. Thus there is a subset J C I with {b; | j € J } a K-basis of H*.

Suppose h € (@;c,Qbj)" N Eg. Then H* = @, ;Kb; < h*+. By
Proposition and the definition of our form, it is nondegenerate on H™;
so we must have h = 0. But now in nondegenerate (indeed, positive definite)

N
Eg = @;c; Qb; we have (GajeJ ij) = 0 for the finite dimensional subspace

@®,c,Qb;. We conclude that J = I and B, ;Qb; = Eq. Thus its Q-basis
{biliel}={bj|jeJ}isaK-basisof H*. O

8.2 Classification of root systems

This section and its notation are independent of the rest of the chapter.
Let E be a finite dimensional Euclidean space, and let 0 # v € E. The linear

transformation
2(z,v)

(,0)

Ty! T X —

is the reflection with center v.

(8.4). LEMMA. Let0#wv € E.

(a) ry € O(E), the orthogonal group of isometries of E.

(b) If g € O(E) then rJ = rg).

(¢) If Ru™ = Rw if and only if v € Rx or (v,z) = 0. O

(8.5). DEFINITION. Let E be a finite dimensional real space equipped with a
Euclidean positive definite form (-,-). Let ® be a subset of E with the following
properties:

(i) 0 ¢ ® and finite ® spans E;

ii) for each a € ® the reflection r: © +— = — 22 takes @ to itself;
(a,0)

(iii) for any o € ® we have RaN ® = {xa};

(iv) (CRYSTALLOGRAPHIC CONDITION) for each «, 8 € ® we have 28.0) ¢ 7.

(@)

Then (E,®) is an abstract root system with the elements of ® the roots. Its
rank is dimg(FE).

The subgroup W(®) equal to (1, | o € ®) is the Weyl group of the system.
More generally, for any ¥ C ®, we let W(X) = (rq |a € 2).
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As before, for each a € ® the element oV = (Ofa)a is the corresponding

coroot. Then ®V is itself an abstract root system with W(®V) = W(®). (Exer-
cise.) The Crystallographic Condition takes the form: 2(((55)) = (B,aY) € L.

The perpendicular direct sum of abstract root systems is still an abstract
root system. We say that (E, ®) is irreducible if it is not possible to write E
as the direct sum of systems of smaller dimension. That is, we cannot have
E = Fy 1 Es, with each F; spanned by nonempty ®; = ® N E;.

We say that two abstract root systems (E, ®) and (E’, ®) are equivalent root
systems if there is an invertible linear transformation ¢ from FE to E’ taking
® to @' and such that, for each o, 8 € ® we have (o, 8Y) = (p(a),(8)Y).
Equivalence does not change the Weyl group. Equivalence is slightly weaker
than isomorphism, where ¢ is an isometry of F and E’. Equivalence respects
irreducibility. Indeed every equivalence becomes an isomorphism after we rescale
each irreducible component of ®' by an appropriate constant. (Exercise.)

The motivation for the current section is:

(8.6). THEOREM. Let L be a finite dimensional semisimple Lie algebra over
the algebraically closed field K of characteristic 0. For ® = ®L the set of roots
with respect to the Cartan subalgebra H, set Eg = Y-, .4 Qv and E* = R®gEy.
Then (E*, ®%) is an abstract root system.

PROOF. This follows by Theorem a) and Theorem |(8.3)| O

We shall often abuse the terminology by talking of a root system rather than
an abstract root system. The more precise terminology is designed to distinguish
between an intrinsic root system (EZ, ®%); as in the theorem, and an extrinsic
root system—an abstract root system.

We may also abuse notation by saying that ® is a root system, leaving the
enveloping Euclidean space E implicit.

Let v1,...,v, be a basis of E. We give the elements of E (and so ®) the
lexicographic ordering:
(i) for 0 #x =" xv;, we set 0 <z if and only if 0 < x; and
x; =0 when i < j, for some 1 < j <nj;
(ii) for x # vy, we sety < x if and only if 0 < x — y;
(i) for x # vy, we set x >y if and only if y < x.
This gives us a partition of ® into the positive roots ®* ={a e ® |0 < a}

and the negative roots @~ = {a € ® | 0 > o} = —®T. The positive root § is

then a simple root or fundamental root if it is not possible to write § as a + 8
with a, 3 € ®T. We let A = {d1,...,9;} be the set of simple roots in 7.

(8.7). THEOREM. Let (E,®) be a root system with A = {d1,...,0;} the set of
simple roots in ®T.

(a) @t =dN Y No;.
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(b) For distinct a, f € A we have (a, 5) < 0.
(¢) A is a basis of E.

PRrROOF. (a) The lexicographic ordering gives us a total order on ®*, say
ap < - < ag < - < ay where N = |[®T|. We induct on the index k. If a,
B, and o + 8 are all in ®T, then o < o + 8 > . Especially o is simple. Now
consider «y. If it is simple, we are done. Otherwise o), = o; + o; with 4,7 < k.
By induction «; and «; are both in ® N Zﬁzl N§;, so ay, is as well.

(b) Consider

4(a, B)?
(o, @)(B, )

where 0, g is the angle between the vectors o and 3.

This must be one of 0,1,2,3,4 with 4 occurring only when a = —5. We
only need consider 1,2, 3, so at least one of the integers (a, 3Y) and (8,a") is
+1. Without loss, we may assume (o, 8Y) is +1.

Suppose (o, 3Y) =1, so that a" = a — (o, V)3 =a— B isaroot. f a—f3
is positive, then « = 8 + (o — ) contradicts « € A. If o — 3 is negative, then
B — « is a positive root and 8 = a + (8 — «) contradicts 5 € A. We conclude
that

(o, 87)(B,0") = = 4cos(fa,5)” € Z,

—1=(a,pY) =

and so (a, ) < 0.

(c) By (a) the set A spans ®* hence ® and so all E (by the definition
(8.5)|(iii)). We must show it to be linearly independent.

Suppose 22:1 di0, = 0 with d;. € R. We rewrite this as

i€l jeJ
where all d; and dj = —d; are nonnegative and {1,...,1} is the disjoint union
of I and J.
First

(z,2) = (Zdiai,2d35j> = Y did}(6;,6;) <0

il jeJ i€l je

by (b), so we must have 2 = 0. On the other hand, the definition of our ordering
tells us that if any of the nonnegative d; for ¢ € I or d;- for j € J are nonzero,
then x = 37, ;did; = > ,;c;d;6; > 0. Therefore d; = 0 for all i € I and
d; =dj =0for all j € J. That is, A is linearly independent. m|

(8.8). COROLLARY.

(a) @ is the disjoint union of ®* and ®~ = —®* where, for each ¢ = +, each
sum of roots from ®€ is either not a root or is a root in P°.
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(b) For the set A of simple roots in ®F, every root o has a unique representation

22:1 d;0; where all the d; are nonnegative integers when « is a positive root
and all the d; are nonpositive integers when « is negative. ]

The set A is the simple basis in ®T for ® and E, uniquely determined by
®T, and [ = n = dim E is the rank of the system. We also describe A as an
obtuse basis since (a, §) < 0 for distinct «, 5 € A. If the root « has its unique

expression a = Zlizl d;6; for integers d; then the height of the root « is the

integer ht(a) = 22:1 d;, positive for positive roots and negative for negative
roots.

In the root system (E,®) if ® is the disjoint union of F'™ and FF~ = —F*
where, for each € = 4, each sum of roots from F¢ is either not a root or is a root
in F¢, then we say that F'* is a positive system in (E,®). From the corollary,
the basic example is . We next see that, up to the action of W(®), this is
the only example.

(8.9). PROPOSITION.
(a) Fordé € A, we have (®T\ 6)™ = @1\ 4.

(b) Let F* be a positive system and set Ag = FTNA. If§ € A\ Aqg then
(F1)™s is a positive system with (F1)"s NA = {5} UA,.

(c) For every positive system F* in (E,®) there is a w € W(®) with (FT)* =
ot

(d) (PN =3 ifw= Hézl 7s,., for any permutation o € Sym(l).

PROOF. SKETCH: (a) comes from Theorem |(8.7)(b). This then gives (b)
which in turn gives (c) (as A C F* implies ®* = FT) and (d). ad

Thus the set ®* of positive roots in ® is determined uniquely up to the
action of the Weyl group. This in turn means that simple bases for ® are all
equivalent up to the action of the Weyl group. Conversely, each simple basis
determines the Weyl group.

(8.10). THEOREM. Let (E,®) be a root system and A = {d1,...,0;} a simple
basis in ®T. Then W(®) = W(A) is a finite group with every element of
{ra | € ®} conjugate to some element of {rs | d € A}.

PrOOF. The Weyl group W(®) permutes the finite set ® and so induces a
finite group of permutations. This permutation group is a faithful representation
of W(®) since ® spans E.

As o™ = —a and 179 = r,e (as in Lemma |(8.4)(b)), it is enough to show
that for each a € T there is an element w of W(A) with o € A. We do this
by induction on the height ht(a). If ht(a) = 1, then o € A and there is nothing
to prove.

Assume ht(a) > 1. Let a = 22:1 d;6; with d; € N by Theorem a). As

0< (o,a) = <a,§di(2) = gdi(a,éi)
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there is an j with d; > 0 and («,d;) > 0 hence (a,dy) > 0. Without loss we
may take j = 1.

Since ht(a) > 1, by Definition [(8.5)(iii) there must be a second index k # 1
with di > 0. Then

a™ = a— (a,0))d
l
=2

Because dj, > 0 the root a1 remains positive, but since (a,dy) > 0 its height
is less than that of «. Therefore, by induction there is a u € W(A) with
(am1)" € A, hence o™ € A for w =rs;u € W(A). O

(8.11). LEMMA. Let « and 8 be independent vectors in the Euclidean space
E. Then (rq,rg) is a dihedral group in which the rotation rorg generates a nor-
mal subgroup of index 2 and order mq g (possibly infinite) and the nonrotation
elements are all reflections of order 2. In particular, the group (rq,73) is finite,
of order 2mq, g, if and only if the 1-spaces spanned by o and B meet at the acute
angle == a

Mo,

The Coxeter graph of the set of simple roots A has A as vertex set, with «
and 3 connected by a bond of strength mq g — 2 where (ry,7g) is dihedral of
order 2m g. In particular, distinct o and /5 are not connected if and only if
they commute. The Coxeter graph is irreducible if it is connected.

(8.12). LEMMA. If ¥ is an irreducible component of the Cozeter graph of A,
then E =3 cxRo L} ca\sRy and

W(@) = W(A) = W(D) & WA\ 5) = W(y) & W (@)

where By, = V(@) = xWE) gng Pavs = (AN LYW = (A\ )WA\D) - Here
Oy and ®a\x are perpendicular and have union ®.

Proor. This is an immediate consequence of Lemmas |(8.4)[ and [(8.11)[ and
of Theorem |(8.10)| O

We repeat Theorem B{(2.3)| from Appendix

(8.13). THEOREM. The Cozeter graph for an irreducible finite group generated
by the | distinct Euclidean reflections for an obtuse basis is one of the following:
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0O

It is not at all clear which Coxeter graphs actually correspond to root sys-
tems. The last two properties of root systems play no role in the proof of the
previous theorem. We next see that only a few of the graphs Is(m) can actually
occur if the Coxeter graph comes from a root system.

(8.14). PROPOSITION. Let o, 3 € ® with o # +8. Then, up to order of a,
and admissible rescaling, we have one of

(avﬁv)(ﬁﬁav) ‘ COS(T(‘/ma”@) ‘ Ma,B ‘ (O‘aﬂv) ‘ (ﬁ7av) ‘ (ava) ‘ (ﬁwé)) ‘ (avﬁ)

0 0 2 0 0 * 1 0

1 1
1 1 3 -1 -1 1 1| -1
2 Y2 4 -2 -1 2 1 -1
3 ¥3 6 -3 -1 3 1 -3

PRrROOF. For all a, 8 € & we have

\Vi \Y _M— COS L 2
(o, BV)(B, ) = @) (5.5) =4 (mwa) €L.

This must be an integer factorization (o, 8Y)(8, ") in the range 0 to 4. Indeed
4 could only happen for « = £+, which has been excluded. Therefore we have
the four possibilities of the first column.

In the second column, we then have cos(m/ma,5) = 31/(a, BY)(3,a"), where
we are in the first quadrant since m,, g, the order of r,7g, is at least 2. We then

have mqy g = —~——, where c is the cosine value from the preceding column.
’ arccos(c) ’
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We have not yet chosen order or scaling for a and 3, and we do that in
the next two columns while choosing the factorization of (a, 3Y)(8,a). If
necessary, we replace 3 by —f so that both (o, 8Y) and (3, a") are nonpositive.

Next we rescale the pair «, 8 so that (3, 8) = 1 always and note that

(@.8Y) _ (a,0)
(B,a¥)  (B,5)
This gives us the next two columns of the table, although in the first line we

have no information about the squared length of a.
Finally as (8, 8) = 1, we have

(2B L
@8 =3 () =5l o

The Dynkin diagram of A is essentially a directed version of its Coxeter
graph. In accordance with the previous proposition, each two node subgraph
of the Coxeter graph is replaced with a new, possibly directed, edge in the the
Dynkin diagram. All A; x A; edges (that is, a nonedge) and Ay edges (single
bond) are left undisturbed. On the other hand

BC; O=—0 becomes By =Cy CG==0O
Similarly
I 4
2(6)  C : becomes G O=0

The arrow (or “greater than”) sign on the edge is there to indicate that the root
at the tail (or “big”) end is longer than the root at the tip (“small”) end. Also
notice that G2 has three bonds rather than 4. This change in notation indicates
that the long root has squared length 3 times that of the short root, as in the
table of the proposition. Similarly in By = C5, the long root has squared length
equal to twice that of the short root. (The roots at the two ends of Ay have
equal length.)

By the proposition, in classifying Dynkin diagrams we need only consider
Coxeter graphs for which all mq g come from 2,3,4,6. In particular Hs and
H, do not lead to root systems nor do the Is(m), except for Ay = I5(2), By =
Cy = I5(4), and Gy = I3(6). The need for both names By = Cs becomes clearer
when we combine the previous two results to find:

(8.15). THEOREM. The Dynkin diagram for an irreducible abstract root system
of rank 1 is one of the following:

A O+0—O0—O0—0—0
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O

It turns out that every Dynkin diagram in the theorem does come from a
(unique up to equivalence) root system. We will deal with this existence issue
in our discussion of existence of semisimple Lie algebras.

8.3 Semisimple algebras III: Uniqueness

We resume the notation of the introduction to the chapter. Additionally, in the
root system (E*X, ®L) = (E, ®) we choose (as in the previous section) a partition
® = ot U P~ associated with the simple basis A = {d1,...,d,}. The integers
(o, BY) with a, 8 € ® are the Cartan integers. Then for the simple basis A
the Cartan matriz Cart(A) of A is the [ x [ integer matrix with (7, j) entry the
Cartan integer ¢; j = (05,6} ). All diagonal entries are (6,0") = 2. The Cartan
matrix of A is often called the Cartan matrix of L, although this terminology is
currently loose for us since we have not shown that all Cartan subalgebras are

equivalent (but see Corollary [(8.36)).

(8.16). THEOREM. Let Ly and Lo be finite dimensional semisimple Lie alge-
bras over the algebraically closed field K of characteristic 0. Then the following
are equivalent.

(1) Ly and Lo are isomorphic;
(2) the associated root systems (Eq,®1) and (E2, ®2) are equivalent;

(3) the associated simple bases Ay and Ag have isomorphic Dynkin diagrams;
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(4) the associated simple bases A1 and As have equivalent Cartan matrices;
that is, there is a permutation matriz P with Cart(Ag) = P Cart(A1)PT.

It is reasonably clear that (3) and (4) are equivalent and both imply (2). On
the other hand (2) implies (3) and (4) by Proposition [(8.9){c).

That (1) implies (2) requires the result (already mentioned) that two Cartan
subalgebras are equivalent under an automorphism of L. We will prove this later
in Corollary in an ad hoc and after-the-fact manner. See page for
the ultimate proof of the theorem.

At present we will deal with the crucial (2) = (1) part of the theorem
above:

(8.17). THEOREM. Let L and L' be finite dimensional semisimple Lie algebras
over the algebraically closed field K of characteristic 0. Let the associated root
systems (E,®) and (E',®') be isomorphic. Then L and L' are isomorphic.
Indeed the isomorphism of (E,®) and (E',®’') extends to an isomorphism of L
and L' that takes the Cartan subalgebra H associated with (E,®) to the Cartan
subalgebra H' associated with (E', ®').

Before proving this, we point out an interesting and helpful corollary.

(8.18). COROLLARY. Any nontrivial automorphism of the Dynkin diagram of
semisimple L extends to a nontrivial automorphism of L. |

Such automorphisms are usually referred to as graph automorphisms.
(8.19). PROPOSITION. Let a € ®*. Then with k the height of o there are
aq € A for1 <a<k with

b k
Zaa€¢+foreach1§b§k and a:Zaa.
a=1 a=1
PROOF. The proof is by induction on k = ht(«). If k = 1, then a = a1 € A,

and we are done. Assume k > 1. Let o = 22:1 d;0;.

‘We have l

0< (a,0) = Zdi(a,@),

so some (a, d;) is positive as is the integer (c, 5;/) . Without loss we may assume
j=1.
The root

l
a" = a — (0, 0Y)81 = (di — (0, 6Y))01 + Y did;
=2

belongs to the d;-string through «, as does « itself. By Theorem [(8.2)]

l
ﬂ:a—§1 :(dlfl)é‘l‘i’Zdlél

=2
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is also a root in that string and has height £k — 1 > 0. Especially it is positive.
Therefore by induction there are 5, € A for 1 < a < k — 1 with

b k—1
Zﬁa€®+foreach1§b§k—1 and B:Zﬁa,
a=1 a=1

As a = [+ 61, with a, = B, for 1 <a < k—1 and o = d;, we have the result.
O

(8.20). COROLLARY. Lety € ®~. Then with k the height of v there are
Yo € —=A for1l <a < —k with

b

Z'yaefb_foreachlgbg—k and 7:2%,
a=1 —

PROOF. Set a = —v and then v, = —ay. m]

Choose e; € L5 and e_; € L_s, and set h; = [e;, e—;]. Do this in accordance
with Theorem |(6.11)| so that S; = Kh; © Ke; ® Ke_; is isomorphic to sla(K)
with the standard 1relautions7 which we record along with others in the next
proposition.

For 6;,0; € Alet ¢; j = (0;,0;) be the associated Cartan integer.

(8.21). PROPOSITION. The Lie algebra L is generated by the elements h;, e;, e_;
for 1 <i <. We have the following relations in L:

(a

(b) [hi,e;] = cjiej and [hi,e_;] = —cje—; for all1 <i,j <1I;

[hi, hj] =0 for all 1 <i,5 <I;

)
)
() [eise—i] = hi for all1 <i<I;
(d) [es,e—;] =0 for all i # j;

)

(e ad1 “i(e;) =0 and adijfj*i(e_j) =0 forl<i,j <l withi#j.

PrROOF. We have the Cartan decomposition

L=He& L

acd

By Proposition [(6.10)] and Theorem [(8.7)(c), the L, have dimension 1 and the
h; generate H. By Theorem |(5.11)|always [Lq, Lg] < Lotp for a,,é’ € d. Asall
the L, have dimension 1, thls is true with equality by Theorem [(8.2)l Therefore
by induction on the helght of v € ® and using the previous proposmon and its
corollary, we find that L. is in the subalgebra generated by the various h;, e;, e_;.
That subalgebra is therefore L itself.

Parts (a) and (c) are part of the definitions for the generating set. Part (d)
holds as d; — §; is never a root for 9;,6; € A.
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For part (b) with e = &+
[hisecj] = Ocj(hi)ec; = €(85,6; Jecj = ecjiec; .
Finally in (e), for 6;,6; € A the ¢;-string through §; is
8iy 05 +0iy ..., 0 —(8;,08,)6;
by Theorem Noting that ¢;; = c_;j _;, we have

ade, 7 (e;) € L0040, = Lioy—@poypt1 =0 O

The following remarkable result gives uniqueness and existence at the same
time for Lie algebras over K and every abstract root system (E, ®). We do not
prove this difficult theorem, but we do use its relations (from the proposition)
as the entry to our uniqueness proof for L.

(8.22). THEOREM. (SERRE’S THEOREM) Let K be an algebraically closed field
of characteristic 0, and let C = (¢; ;)i ; be the Cartan matriz of the abstract root
system (E,®). Then the generators and relations of Proposition give a
presentation of a semisimple Lie algebra L over K with Cartan matriz C and
root system equivalent to (E,®). og

Our uniqueness proof is motivated by that of [EId15]. The basic observation
is that, with respect to the Cartan basis { h;,eq | 1 < i <1, a € ®}, most
of the adjoint actions are nearly monomial. We then show (starting as in the
proposition) that, for an appropriate choice of the basis vectors, the actual
multiplication coefficients are rational and depend somewhat canonically upon
the root system ®.

An example is the following working lemma.

(8.23). LEMMA. Let§ € AU—-A and 8 € O with 8 # £, and let § —
$0,...,B,...,B+td be the §-string of roots through 5. Let S5 = Khs®KesBKe_s
be isomorphic to sly(K) with the standard relations from Proposition ,
Then for x € Lg we have [es, [e—s, x]] = t(s + 1)x.

PROOF. In the notation of Chapter[7](for instance Definition[(7.16)), we may
take © = v; with ¢ = ¢ and A = m = s + ¢ so that the coefficient (A —i + 1) =
Hs+t—t+1)=t(s+1). O

We could rephrase this to say: there is a nonzero rational constant x (4, 5)
depending only on ¢ and g with

ad._, ade; €5 = x(9, B)es .
This is the model for our uniqueness results below, in particular Theorem

For each § € AU A, set a5 = ad.;. Consider words w = wy ... w; in the
alphabet

A=ATUA for AT ={as|0€A}, A~ ={as|0€-A}.
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k
If w=as, - as,, then we define [|w[| =377_, ;.
For each such word w we set

e(w) = wg -+ we e(wy)

where we initialize with e(as) = es. Note that e(w) € L.

By Proposition and its corollary, for every a € @€ there is a word
w in the alphabet A€ with Ke(w) = L,. Indeed it is possible to do this with
k = |ht(a)|. For each «, choose and fix one such word w, and set e, = e(w,).
If below we say that something “depends on «” we may actually mean that it
depends upon « and the fixed choice of representative word w,.

(8.24). LEMMA. For each word w from the alphabet A® there is a constant
Xw € Q with e(w) = Xwe|jw| -
PROOF. SKETCH: Let w = wipwg_1---wy and set w, = as. Use Lemma

and induction on k, with &k = 1 being immediate. For ,7 € €A always
-0+~ ¢ ®. Thus as endomorphisms a_sa, = a,a_s unless vy = 6. O

(8.25). THEOREM. We have L= @._, Kh; ® @, Keo with
(i) [hishy] =0;

(11) [hlv ea] = (aa 5;/)604;

(111) [60”6,3] = Xa,8€a+8; Xa,p € Q ifa 7£ 75;

. l
(iv) [ease—a]l = Zj:l Xj.aljs Xja € Q.

Here the constants x. only depend upon the appropriate configuration (that is,
w(a), w(B), 7) from the root system (EL, ®F).

PRrROOF. The first two are immediate. Now we consider the various [eq, eg],
which we verify by induction on min(| ht(a)|, | ht(B)]). As [eq,es] = —leg, €a]
we may assume | ht(a)| < |ht(8)]).

First suppose 1 = | ht(a)|; that is, a € eA (e € +). If 8 = « then [eq, e8] =
Oeq, and if § = —a € —€A then [eq, eg] = ho = 23:1 Xj.ahj (with all but one
of the constants equal to 0). For 3 # +a, we have [eq, eg] = e(w) for w = aqwg;
50 [eq, €8] = Xw€a+B8 = Xa.B€a+s Dy the lemma.

Now assume 1 < k = |ht(a)| < |ht(5)]. Let wq = wrwy—1 -+ - w1y, and set
wg = as and w = wg_1 ---wi(# 0). Furthermore let v = ||w||. Note that
1< [ht(y)] < | ht(a)] < | bt(8)]), and especially 7 # —F # 6.

We calculate (using induction and the lemma)

[ea, eg] = [e(wa), eg]
= [[657 e(w)]7 65]
= [es, [e(w), eg]] — [e(w), [es, es]]
= Xw([es, [y, esl] — [ey, [es, €5]])
= Xw(X~,8l€s, €4+8] — Xo,8€4: €545]) -
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At this point, there are two cases to consider, depending upon whether or
not
at+B=0+y+B=v+0+p

is equal to O.
If a + 8 # 0 then by induction
o, €8] = Xw(X~,8les: €4+8] — Xo,8le, €548])
= X (X, BX6,7+BE5+7+8 — X6,8X~,6+BEv+5+5)
= Xw(X7,8X5.7+8 = X8,8X~,6+8)€~+5+8
= Xa,B €a+p

where the rational constant

Xa8 = Xw(X7.8X6,7+8 — X6,8X~.6+6)
depends only on « and 8 (and the associated w, = asw with v = ||w]|).
If a4+ =0then —§ =v+ p and —y = J + 8. By induction again
eas e—a] = [eas €g]
= Xw(X~.p¢5; ev+6] = X5,5(€5, €546])
= Xw(Xy,—ales, e—5] = Xo,~aley, e-4])

l l
= Xw (X%—a ( > Xj,éhj> — Xo,—a ( > Xm%))
j=1

j=1

(X~y,—aXj,s = X6,—aXjy) P
1

l
= Xw

J
!
Z Xj.ahj s
=1

where the rational constants

Xja = Xw(Xy,—aXj,6 = X8,—aXj)

are entirely determined by j, «, and the associated w, = asw with v = ||w|. O

PROOF OF THEOREM |(8.17)}

The isomorphism between the root systems (F, ®) and (E’, ') gives rise (by
Proposition [(8.9)[c)) to a map h; — hf (1 <i <1) and eq > €}, (o € ®) that
by the theorem extends to an isomorphism of the Lie algebras L and L’. O

8.4 Semisimple algebras I'V: Existence

We have encountered various concepts of irreducibility. A reflection group is
irreducible if it acts irreducibly on its underlying space. A Coxeter graph or
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Dynkin diagram is irreducible if it is connected. A root system is irreducible
if it is not the perpendicular direct sum of two proper subsystems. A Cartan
matrix is irreducible if it cannot be written as a direct sum of two smaller Cartan
matrices.

In the context of interest to us, semisimple Lie algebras, all of these concepts
are equivalentﬂ The philosophy is always that in a classification one should
easily reduce to the irreducible case. This remains true with our semisimple Lie
algebras.

(8.26). THEOREM. A finite dimensional semisimple Lie algebra over the
algebraically closed field K is the perpendicular direct sum of its minimal ideals,
all simple Lie algebras.

A semisimple algebra is simple if and only if its Dynkin diagram is irre-
ducible, and the simple summands of the previous paragraph are in bijection
with with irreducible components of the Dynkin diagram of the algebra.

PRrROOF. The first paragraph is essentially a restatement of Theorem

Let I be an ideal of the semisimple Lie algebra L. As the Cartan subalgebra
H is diagonal in its adjoint action on L (by Theorem 7 the ideal I is the
direct sum of its intersection H NI and the Ly for A in some subset A; of ®.
Furthermore, as L is generated as an algebra by the Ls for 6 € A, we must have
A; = A; N A nonempty.

By Theoremthere isanideal J with L=1&J. If 6 € Ay and v € Ay,
then

[Lg,LV] <Ly <INJ=0.

Therefore [Ls, L] = 0, so 6 + v ¢ ® by Theorem Thus ¢ and v are not
h

connected in the Dynkin diagram of A by Proposition |(8.14)l That is, Ay is a
union of irreducible components of A.

Conversely, suppose that ¥ is an irreducible component of A and hence of
the corresponding Coxeter graph. Then by Lemma the root system ® is
the union of the perpendicular subsystems &5, = ®NEP, .5, Zo and Pa\x = PN
Dsc A\ Z4§. Therefore @y is the root system for the subalgebra Ly; generated
by the L, for 0 € %, an ideal of L.

We have now shown that ideals come from disjoint unions of irreducible
components of A and that irreducible subdiagrams correspond to ( “span”) ideals
perpendicular to all others. In particular, the simple ideals are in bijection with
the irreducible components of the Dynkin diagram. ]

(8.27). ExaMPLE. Let L = sl;11(K), the Lie algebra of trace 0 matrices in
Mat;,1(K) forl € ZT.

a) L is simple of type a;(K) and dimension 1*> + 2I.
(a) p yp

(b) All Cartan subalgebras have rank 1 and are conjugate under SLi;1(K) <
Aut(L) to H, the abelian and dimension | subalgebra of all diagonal matrices
with trace 0.

2Luckily.
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(c) The H-root spaces are the various Ke; ; for 1 < i # j <1+ 1 with corre-
sponding root €; — €; in the Euclidean space RAT N1+ ~ RE

(d) The simple roots of A are 6; = &; — ;41 = 6, for 1 < i <, and so the
Dynkin diagram is A;.

(e) The Weyl reflection r., ., induces on R! < R*! the permutation (i,7) of
the Weyl group W(A;) ~ Sym(l + 1).

PROOF. (a) The dimension is (I + 1)® — 1, as the only restriction is on the
trace. Indeed, at least as vector space L is H @ @i#j Ke; ;. The rest of this
part then follows from (d) and Theorem

(b) L is irreducible on the natural module V = K!*! (for instance, because
the range of e; ; is the basis subspace Ke;). Therefore by Theorem c) we
have V. = V% which is to say that every Cartan subalgebra C of L can be
diagonalized. Thus there is a g € GL;4+1(K) and indeed in SL;41(K) (as I > 1)
with the Cartan subalgebra C9 in H. But a self-normalizing subalgebra of L
within abelian H must be H itself, so H is a Cartan subalgebra and CY = H.

(c) If h = diag(hi,...,hi41) € H, then [h,e; ;] = (h; — hj)e; ;. Therefore
Ke; ; is a root space L,. When we let the canonical basis of V* = R*1 be
€iy .- €141, we find a(h) = (g, — ;) (h); that is, o = ¢; — ¢; from the Euclidean
l-space R'*1 n1t.

(d) The lexicographic order induced by €1 > €3 > -+ > g4 yields the
simple base A described. Note that all roots o have a¥ = a. If i < j then
(6i,0;) is 0 unless j = i+ 1 where it is —1. Thus the Dynkin diagram of A and
Lis Al.

(e) For 1<k <i+1

Te,—c;(€r) = ek — (er, (61 — €5)¥) (e — &5)

= e — (er,€i —&5)(ei — &) -

Thusre, ., (ex) = e ifk & {4,7} whiler., ., (e;) = ¢ and 7., ¢, () = &;. That
is, re, ¢, induces the 2-cycle (e;,¢;) on the set {e1,...,6;41}. These generate
the symmetric group. O

(8.28). THEOREM. Let L be one of the Lie algebras so(K) with (n,n) =
(21, +1) or spy (K) with (n,n) = (21, —1) or s09;+1(K) with (n,n) = (2141, +1).
Set V. =K" to be the natural module for L. Let C be a Cartan subalgebra for L.
Then, in its action on V, L has a basis of C-weight vectors with Gram matriz

(1) down the diagonal
when n = 2l s even, and this same matriz with an additional single 1 on the
diagonal when n =21+ 1 is odd.

in split form as the 2l x 21 matriz with [ blocks < 2

PRrROOF. In all cases L is irreducible on V, so by Theorem |(8.2)(c) we have
V =V for all choices of Cartan subalgebra C.
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Let b be the nondegenerate (Id,n)-form on V for n = +1 with L equal to
those z € Endg (V) ~ Mat,, (K) with

b(zv,w) = —b(v, zw)
forall v,w € V. Let v € V5, and w € Vg ,,. Then for all h € C
A(R)b(v, w) = b(hv,w) = =b(v, hw) = —u(h)b(v, w) .

That is, (A+u)(h) b(v, w) is identically 0 for & € C. In particular, if A # —p then
b(v,w) = 0 and V¢, \ and V¢, are perpendicular. The space V' is nondegenerate,
so for all weights A of C on V' we must (Ve x, Veo,—x) # 0.

Let A # 0, and choose 0 # v € Vo a. As v ¢ Rad(V,b) thereis a w € Vo _y
with b(v,w) # 0. We have b(v,v) = 0 = b(w,w) (as A # —A). Therefore we
may rescale one of the pair {v, w} so that the Gram matrix of the nondegenerate

2-space W = Kv @ Kw has the stated form ( 2 (1) ) As C leaves W = W,

invariant, it also acts on V; = W+. Continuing in this fashion we leave V written
as a perpendicular direct sum Wy @ Wo @ - - - W,,, & Vj where the basis {v;, w; }
of W; consists of A\;- and —\;-weight vectors for A; # 0 and Vj is the 0-weight
space, nondegenerate if nonzero. If V) has dimension 0, then m = [, n = 2[, and
we are done. If Vj = Kv has dimension 1, then m =1, and n =2l + 1. As b is
nondegenerate and K is algebraically closed, we may rescale to b(v,v) = 1, and
again we are done.

If dimg (V) > 2, then for any nondegenerate 2-space Wy of Vp, by Lemma
A (of Appendix [A]) there is again a basis {vg, wo} of weight vectors in Wy

with the same Gram matrix 2 é . We continue in this fashion within WOL
until we exhaust Vo (n = 2[) or reach a subspace of dimension 1 (n = 2[ + 1),
and we are done. O

(8.29). EXAMPLES. Forn € {£} = {£1}, let the K-space V =V, = K* have
basis {e;,e—; | 1 < i <1} and be is equipped with the split (Id,n)-form b = b,
given by

ble;,e—;) =1,ble_;,e;) =n, otherwise b(eq,ep) =0.

The Lie algebra L = L, is then composed of all x € Endg (V') ~ Maty (K) with
by (v, w) = —by (v, zw)

for allv,w € V. Thus Ly is the orthogonal Lie algebra s09;(K), and L_ is the
symplectic Lie algebra spy;(K)

(1) s09(K): orthogonal case n = +1.

(a) The algebra Ly = s09,(K) is simple of type 0,(K) and dimension 21> —I.

(b) All Cartan subalgebras have rankl and are conjugate under Aut(s09;(K))
to H, the abelian and dimension | subalgebra of all diagonal matrices
with basis e;; —e_; —; for 1 <i <.
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(¢) Forh= Zﬁf:l hi(exr—e—k,—r) € H weleteg: h — hy give the chosen
basis for H* ~ R, The H-root spaces are spanned by the following
weight vectors and have the corresponding roots:

Vector ‘ Root
ei,j — B,j,,i E; — Ej
ei—j — € | (& —&j)
€i,—j — €j,—i 5i+5j
emij—e—ja | —(€i+¢5)

(d) The simple roots of A are 0; = ¢; — €41 =0 for 1 <i<1—1 and
Op=¢€_1+e = 5ZV, and so the Dynkin diagram is Dj.
(e) The Weyl reflection re,—.,., induces on R' the permutation (i,i+ 1)

while re,_, +e, fizes e for k <1 —1 but has re,_,1¢,(€1—-1) = —&1 and
Te,_1+e,(E1-1) = —&1. So the Weyl group W(Dy) is 2!=1: Sym(l).

(i) spy(K): symplectic case n = —1.

(a) The algebra L_ = spo,(K) is simple of type ¢;(K) and dimension 21*+1.

(b) All Cartan subalgebras have rank and are conjugate under Aut(spy; (K))
to H, the abelian and dimension | subalgebra of all diagonal matrices
with basis e;; —e_; —; for 1 <1 <.

(¢) For h = Zi«:l hi(epr —e—k—r) € H we let e: h — hy give the
chosen basis for H*. The H-root spaces are spanned by the following
weight vectors and have the corresponding roots:

Vector Root
€ij ~€—j—i | Ei—Ej
e—i—j — €5 | —(€i —¢;)

€j,—j +€j—; g+ ¢€j

e—igte—ji | —(€i+¢5)
€, —i 2¢;
€_i; —2g;

(d) The simple roots of A are §; = e; —ei41 = 6, for 1 <i<I1—1 and
& = 2¢; (with §) = €;), and so the Dynkin diagram is C).

(e) The Weyl reflection re,—.,., induces on R' the permutation (i,i+ 1)
while roc, is the diagonal reflection taking €, to —e;. So the Weyl group
W(Cy) is 2% Sym(l).

PROOF. (a) It is helpful to consider the 2{ x 2] matrices of Matg;(K) as I x {

. . . . a; i bi _;
matrices whose entries are the various 2 x 2 submatrices ( 3 a Hd >
—ig Oij

The requirements for such a matrix to be in L,, are then

(ai,j bi,—; )(0 1):_(0 1)((1”» b_ji )
boij a—i—j n 0 n 0 bj—i a—j—; )’
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which is to say then

< nbi,—j  ai;j > _ ( —bj—i —a—j ) .
na—i—j bi; —naz; —nb—j

Thus
nbi,—j = —bj,—i
Qij = —0—j,—i
na—g,—; = —Naj;
boij=—nb—j

We rewrite and view these as four separate equations subject to the restriction
1<i<ji<l

az,] - _a/fj,fl
g —j = —0j4

bi—j = —nbj

b—z,] - _nb—],z

Thus the matrices of L, can have anything above the diagonal 2 x 2 blocks
(where i < j), these entries determining those below the diagonal blocks. This
contributes 4(I(1 —1)/2) = 212 — 2l to the dimension, the relevant basis elements
being, for 1 <i < j </,

€ij = €—j—is €—i—j ~€ji, Ci—j —N€j—i, €—ij —NC—ji-

In the diagonal blocks ¢ = j we must have

Qi = —Q—j,—i
A—j,—i = — Qi
i,—i = —Nbi,—i
boii=—nb_i;.

The first two equations are equivalent and contribute [ to the overall dimension,
the corresponding basis elements being e; ; —e_; _; for 1 < ¢ <[. In the second
two equations, if n = 41 there are no nonzero solutions (as K has characteristic
0), while if n = —1 the equations are trivially valid and so contribute a full 21
to the dimension, the basis elements being e; _; and e_; ; for 1 <+¢ <.
Therefore
dimg (Ly) = (21> —21) +1 =21 —1

and
dimg(L_) = (21> — 20) + 1 + 21 = 21> + 1.
The rest of (a) then will follow from (d) and Theorem

(b) The calculations of (a) reveal L, to be irreducible on V', so by Theorem
any Cartan subalgebra is conjugate under Aut(L,) into the diagonal
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subalgebra of the algebra. But this diagonal subalgebra is abelian, so the self-
normalizing Cartan subalgebra within it must be the whole diagonal subalgebra.
As we saw under (a) it has basis e; ; —e_;; for 1 <i <|.

(¢) The basis we described under (a) turns out (unsurprisingly) to be a basis
of weight vectors. For instance:

l

[th €Lk — €—k, k) €i,—j 7]6],—1] = Z hk[ek k—€—k,—k, €,—j 7]6],—1]

k=1 k=1
l
= hl(enn — ek r)ei—j —mej i) = (ei,—j —nej—i)(erk — €k k)
k=1
l
= hi((expei—j — exrne;—i) — (—€i_je gk +nej i€ k)
k=1
= (hi€i,—; — hjnej,—i) — (=hjei,—; +nhiej ;)
= (hi + ) = (hi + hj)nej,—i
= (h; + hj)(ei,—j —nej—i) -
Therefore e;,_; — nej —; is a weight vector for the root €; +¢;.

The other entrles in the tables follow by similar calculations. For instance:

1 1
[th(ek,k —e_k—k), ei,i] = Z hiler e — €k —k s €—is)

k=1 k=1
l
= E hi(er,k€—ii — €—k,—k€—ii — € i€hk + €—i i€k k)
k=1
= —hje_;_je_i; — hje_; €55
= —the_m- .
Thus in the symplectic (n = —1) case e_; ; is a weight vector for the root —2¢;.

(d) Lexicographic order is induced by £1 > €3 > -+ > g;. The simple roots
are then evident. Note that in the symplectic case €;_1 + £; remains a positive
root, but it is no longer simple as g;_1 +¢; = (5,1 — €1) + 2¢;.

(e) The reflections in ¢; — ¢; were calculated under Example e), and
the reflection in 2¢; is clear. All that needs checking is

Ter 14e(E1-1) = 11— (g1, e1-1+€)(e1-1+e) =1 —(g—1+e) = —g. O

(8.30). EXAMPLE. Let the K-space V =V, = K2*! have the basis { eg, €, e_; |
1 <1 <1} and be equipped with the split orthogonal form b given by

bleo,e0) =1, b(e;j,e—;) =ble—i,e;) =1, otherwise b(eq,ep) =0.

The Lie algebra L is the orthogonal Lie algebra s09;11(K), composed of all x €
Endg (V') ~ Matg; 41 (K) with

b(xv,w) = —b(v, zw)
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for allv,w e V.
(a) The algebra L = s0911(K) is simple of type b;(K) and dimension 21 + 1.

(b) All Cartan subalgebras have rank | and are conjugate under Aut(sog41(K))
to H, the abelian and dimension | subalgebra of all diagonal matrices with
basis e;; —e_; _; for 1 <i <.

(¢c) For h = 22:1 hi(exr —e—p—k) € H we let e h — hy, give the chosen
basis for H*. The H-root spaces are spanned by the following weight vectors
and have the corresponding roots:

Vector Root
€ij —€—j,—i € —&j
ei—j =€ | —(&i — &)
€j,—j +€j—i €; +€j
eijteji| —(&+&)
€i,0 — €0,—i &
€—i,0 — €0, —&;

(d) The simple roots of A are 6; =¢; —€j41 =0, for 1 <i<l—1 and §; = ¢
(with 6 = 2¢;) and so the Dynkin diagram is By.

(e) The Weyl reflection r,_,,, induces on R' the permutation (i,i+ 1) while
re, s the diagonal reflection taking €; to —e;. So the Weyl group W(B;) is
2! Sym(1).

PROOF. As the Gram matrices indicate, the algebra sog41(K) can be
thought of as an extension of s09;(K). As such, most of the arguments from
the previous example (case n = +1) are valid here. Furthermore the ultimate
similarity of the root systems means that the symplectic case n = —1 of the
previous example is also relevant here. (Perhaps all three algebras should be
handled at once.)

(a) We think of the Gram matrix Gg;11 as the Gram matrix Gg; for s09;(K)
with a new row and column indexed 0, corresponding to the basis element ey of
V = K?+1 the diagonal entry being b(eg,e0) = 1 and all other entries in the
new row and column being 0. Then MGoy1 = —Go 1M T if and only if

(1) M070 = 0;
(2) the rest of row My . contains any vector v € K2
(3) the rest of column M, o contains —vGy;;

(4) deleting row 0 and column 0 from M leaves a matrix of s09;(K), as described
in Example [(8.29)(i).
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Thus a basis for L is that for s09;(K) from Example|(8.29)(i), supplemented with
the 2[ elements e; o —ep,—; and e_; o0 — e ;. The dimension is then 22142 =
21?2 + 1. The rest of (a) will then follow from (d) and Theorem as before.

(b) Again by Theorem a Cartan subalgebra is conjugate under Aut (L)
into and then to the abelian diagonal subalgebra of the algebra, which remains
the rank [ space with basis e; ; —e_; _; for 1 <4 <.

(c) The weight vectors and roots for the subalgebra soq;(K) are unchanged.
We must additionally calculate:

l l

[th(ek,k —€_k—k), €0 — 60,—1] = Z hilex, — e—k,—k > €i,0 — €0,
=1 =1
!

= Z hi(ex,k€i0 — €0,—i€—k,—k)

k=1
= hie;0 — hieo,—

= hi(ei,o - 60,—2’) .

Parts (d) and (e) follow, as in Example |(8.29)(ii). m
In the classical examples above we have seen the following useful observation
in action.
(8.31). TurorREM. If (EL ®L) has rank I, then dimg (L) =1+ |®|. O

For instance, a Lie algebra of type go must have dimension 2 + 12 = 14.

(8.32). THEOREM. The Lie algebra 94(K) has a graph automorphism of order
3. Its fized points contain a Lie algebra of type g2(K). Especially g2(K) of
dimension 14 exists.

PrOOF. SKETCH: The circular symmetry of the Dynkin diagram D, shows,
with Corollary that L = 04(K) has an automorphism of order 3. Its fixed
point algebra M contains a proper sls(K) subalgebra corresponding to the cen-
tral node of the diagram, so M has a nontrivial semisimple section of dimension
greater than three and less than 28 = dimg(L). There are few possibilities, and
in the end it must be go(K). This should be verified by examination of the ac-
tion of the element of order three and in particular its fixed weights a; = €5 —e3
and

ay = (g1 —¢e2) + (63 —€4) + (€3 + €4) = €1 — €2 + 2¢3,

which form a simple basis for a root system of type G in R3 N (—1,1,1)+. O
(8.33). PROPOSITION.

(a) If eg(K) exists, then it has a proper subalgebra e7(K).

(b) If e7(K) exists, then it has a proper subalgebra es(K).

(c) If eg(K) exists, then it has a proper subalgebra f4(K).
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PROOF. The first two parts are clear from the Dynkin diagram.
SKETCH: The last part follows as the Dynkin diagram Eg has an automor-
phism of order 2 which by Corollary |(8.18) - extends to an automorphism of
e(K). Its fixed point subalgebra contains a subalgebra §4(K). (Compare with

Theorem - O

We leave unproven:
(8.34). THEOREM.
(a) The Lie algebra es(K) exists and has dimension 248.

(b) The Lie algebras e7(K), ¢5(K), and f4(K) have respective dimensions 133,
78, and 52. 0o

8.5 Semisimple algebras V: Classification

We now can prove almost all of:

(8.35). THEOREM. (CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS) Let L
be a finite dimensional semisimple Lie algebra over the algebraically closed field
K of characteristic 0. Then L can be expressed uniquely as a direct sum of
simple subalgebras. Each simple subalgebra is isomorphic to exactly one of the
following, where in each case the rank is l:

(a) a;(K) =~ sl11(K), for rank | > 1, of dimension 1> + 2I;
(b
(c
(d

(
b;(K) ~ 509,41 (K), for rank | > 3, of dimension 212 + I;
(

¢ (K) ~ spy,(K), for rank 1 > 2, of dimension 212 + I;

| 2

K

(=

| 2

I 021(K), for rank 1 > 4, of dimension 21> —;

-

(
(
¢s(K) of rank | = 8 and dimension 248;

(

(
¢7(K) of rank I =7 and dimension 133;

g) es(

(

(
(h) §4(K) of rank | = 4 and dimension 52;

)

)

)

) 0 (K)

e) ¢(K) of rank | = 6 and dimension 78;
)

)

)

(i)

None of these simple algebras is isomorphic to one from another case or to any
other algebra from the same case. All exist.

92(K) of rank I = 2 and dimension 14.

PROOF. A simple algebra must be of one of these eight types by Theorems
[(8.15)] and |(8.26)] (The rank restrictions in the first four classic cases are made
to avoid diagram duplication such as By = C3 and A3 = D3). In each case there
is, up to isomorphism, at most one example by Theorem
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In the four classical cases, each exists by Examples|(8.27)] [(8.29)] and |(8.30)|
with the given rank and dimension. These results also show that no algebra
from any one classical case is isomorphic to any other from its own case (by
dimension considerations) or from any other case, since all Cartan subalgebras
are conjugate under the corresponding automorphism groups.

The rank 2 algebra g2(K) exists and has dimension 14 by Theorem

Leaving aside existence and dimension for the moment, the exceptional alge-
bras eg(K), e7(K), es(K), and f4(K) all (if they exist) have different dimensions
and so can not in any case be isomorphic to each other by Proposition
Furthermore, none is isomorphic to a classical algebra (as mentioned above) or
to g2(K) of dimension 14, since the smallest, namely f4(K), contains two disjoint
subalgebras sl3(K) = a3(K) and so has dimension at least 8 + 8 = 16.

The actual existence and dimensions for the algebras es(K), e7(K), e¢6(K),
and f4(K) are contained in (our only unproven result) Theorem O

As mentioned in the proof, the only parts of the theorem that we have not
proven are those from Theorem [(8.34)l For the following corollary that theorem
is not necessary as Proposition |(8.33)| suffices.

(8.36). COROLLARY. Let L be a finite dimensional semisimple Lie algebra over
the algebraically closed field K of characteristic 0. Then all Cartan subalgebras
of L are conjugate under the action of Aut(L).

ProoOF. By Theorem if two Cartan subalgebras of semisimple L
give rise to isomorphic root systems, then the subalgebras are conjugate under
Aut(L). Therefore if L contains two nonconjugate Cartan subalgebras, this
must arise from one of the simple algebras in the theorem being isomorphic to
another simple algebra with a different root system and hence in a different
case. But, as the theorem states, this does not happen. m]

PROOF OF THEOREM |(8.16)|

Directly after the statement of the theorem we observed that its parts (2),
(3), and (4) are equivalent. Theorem was then devoted to proving that
(2) implies (1). Now that we know that all Cartan subalgebras are conjugate via
an automorphism, we cannot have two isomorphic algebras with nonisomorphic
root systems; that is, (1) implies (2). m|

8.6 Problems

(8.37). PROBLEM. Prove: ®" is a root system with simple basis AV and W(®") =
W(P).

(8.38). PROBLEM. We may consider a-strings in the more general context of abstract
root systems (E,®). Let a and B (# +a) be roots in ®. Prove that the integers k
for which B + ka is a root are those from an interval [—s,t] with s,t € N and that
(B,a")=s5—t.

REMARK. Compare this with Theorem .
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(8.39). PROBLEM. Totally positive word or totally negative word is the same as
minimal word.

(8.40). PROBLEM. Highest root. &+ — &~ .



Chapter

Representations of semisimple
algebras

Again L (# 0) will be a finite dimensional, semisimple Lie algebra over the
algebraically closed field K of characteristic 0. Now we study the representation
theory of L. We take our lead from Chapter [7] by looking at properties satisfied
by finite dimensional irreducible modules and then studying cyclic modules that
are not necessarily finite dimensional or irreducible but do possess some of those
properties.

Starting in Section [9.2] we continue the notation and terminology detailed in
the introduction to Chapter

9.1 Universal enveloping algebras

In Section we introduced representation of Lie algebras in extrinsic and
intrinsic form. Starting from that we introduce another point of view.

Let V be an E-space V. For f € N, let V®/ be the f* tensor power of
the module V' (with V®° = K). The tensor algebra T(V) is the associative

E-algebra
T(V)=Ever
neN

with multiplication determined by the linear extension of
M(U1®"'®Uk,'w1®"'®wm):vl®"'®vk®wl®"'®wm~

If V happens to be the Lie algebra M over E, then its universal enveloping
algebra U(M) is the quotient T(M)/I where [ is the ideal in T(M) generated
by all the elements © ® y —y ® x — [z, y]1 for z,y € M. The construction gives
us a natural representation vy : M — U(M)~. Especially U(M)-modules are

107



108 CHAPTER 9. REPRESENTATIONS OF SEMISIMPLE ALGEBRAS

M-modules. This correspondence is readily seen to be universal in at least two
senses.

(9.1). THEOREM.

(a) If o: M — Endg (V) is a representation of M, then there is a unique
associative algebra morphism oy : U(M) — Endg (V) with ¢ = pyua.

(b) The two module categories pyMod and y(aryMod are isomorphic. a

One advantage is immediate. For associative algebras A, every cyclic A-
module is a quotient of 4 A. As irreducible modules are always cyclic, every
cyclic and irreducible M- and U(M)-module is a quotient of U(M). This is an
improvement. For instance in Chapter [7| we found that 3-dimensional sly(K)
has irreducible modules of arbitrarily large finite dimension as well as infinite
dimensional irreducibles. (Among other things, this implies that the universal
enveloping algebra for sly(K) is infinite dimensional.)

Therefore to study M-modules, we begin with a more detailed study of
U(M).

(9.2). THEOREM. (POINCARE-BIRKHOFF-WITT THEOREM) Let the Lie al-
gebra M have the E-basis {v; | i € I} for some totally ordered set (I,<).

(a) (WEAK PBW) The universal enveloping algebra U(M) has as E-spanning
set the collection of all monomials v, ---v;, forn € Nand i; < --- < iy,
(where n =0 corresponds to the monomial 1).

(b) (STRONG PBW) The universal enveloping algebra U (M) has as E-basis the
collection of all monomials v;, ---v;, forn € N and i; < --- < i, (where
n = 0 corresponds to the monomial 1)

ProOF. Weak PBW follows easily by induction from the fact that
Uﬂ}j = Uj’l)i — [’Ui, 1}]‘] .

Strong PBW is much harder. There are (at least) two standard proofs. We
prefer that of Serre [Ser06]. (But we do not give it here.) a

For many applications Weak PBW is enough, but there are places where
Strong PBW is unavoidable.

(9.3). COROLLARY.
(a) The representation var: M — U(M)™ is faithful.
(b) Every Lie algebra has a faithful representation as a linear Lie algebra.

PrOOF. The first part follows from the Strong PBW Theorem, and the
second part follows from the first. o

We encountered the second part early in these notes as Theorem |(1.6)(a).
As mentioned above, the faithful representation guaranteed by (a) may well be
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infinite dimensional, even when M has finite dimension. For semisimple M ,the
adjoint representation suffices for (b) (and so, by universality, for (a) as well),
since the kernel of the adjoint representation is the solvable ideal Z(M), which
is 0 for semisimple M. This was also noted earlier in Theorem

9.2 Finite dimensional modules, highest weights

We return to the notation and terminology detailed in the introduction to Chap-
ter B

Recall that a weight module for L is a module V that is spanned by its weight
vectors V) or, equivalently by Proposition a), is generated as L-module
by its weight vectors.

(9.4). PROPOSITION. For the finite dimensional cyclic L-module V' = Lv with
0#v eV, the following are equivalent:

(1) LTv=0.
(2) p+a¢ dy for all € dT.
(3) u+6 ¢ Py foralld € A.

PROOF. Statement (1) implies (2) by Proposition|(8.1)(a), and (2) certainly
implies (3). Finally, (3) implies (1) since the subalgebra L¥ is generated by the
weight spaces Ls for 6 € A by Theorem [(8.2)[ and Proposition |(8.19)| a

For the cyclic L-module V' = Lv with 0 # v € V}, if LTv = 0, then \ is
a highest weight, v is a highest weight vector, and the module V is a highest
weight module. In general, for nonzero w in the L-module W, if Btw < Kuw,
then the vector w is a mazrimal vector, so it is a highest weight vector in the
cyclic submodule of W that it generates.

If (A\,8Y) € Z for all § € A, then X is an integral weight. By Theorem
a) all roots are integral weights, but there are others. If for all § € A we
have (\,6Y) > 0 then X is a dominant weight.

(9.5). THEOREM. Ewery finite dimensional L-module V' contains a mazimal
vector v for some dominant integral weight \. Especially, if finite dimensional
V' is irreducible then V is a weight module generated by a maximal vector v with
dominant integral highest weight .

PrOOF. Every weight in &y is integral by (d) Choose among the
finitely many members of @y a weight X that maximizes Y 5.5 (A,0"). Then X
is dominant integral, and a weight vector v for it is maximal. If V is irreducible,
then it is the cyclic module generated by v, so A is a highest weight. a

(9.6). ProPoOSITION.  Let @t = {aq,...,ay} for N = |®T|. Let V be
a highest weight module generated by the nonzero mazimal vector v for the
weight \.
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(a) V is spanned by the various vectors fi, --- fi, - fi,v™ forn € N and i; <
ig < - <iy. This vector belongs to VA*ZQQ o,

(b) For every weight 1 € ®y we have dimg (V) < co. Especially V\ = Kv™ of
dimension 1.

(¢) Every quotient of V is a highest weight module for A. Every submodule of
V' is a weight module.

(d) V has a unique mazimal submodule and a unique irreducible quotient.
PROOF.

(a) SKETCH: This follows from the PBW Theorem and Proposition |(9.7)]
(Weak PBW is actually enough for this.)

(b) For a fixed A and p the number of solutions to

,u:)\—znzai].
j=1

is finite, so this follows from (a). Furthermore Z;—;l a;; = 0 gives the only
solution when p = .

(¢) A quotient of a highest weight module is a highest weight module. A sub-
module of a weight module is a weight module.

(d) V is cyclic, generated by the weight vector v. As V is a weight module,
every proper submodule is contained in €, £uEDy V.. Thus they generate
the unique maximal proper submodule (still contained in this subspace),
which is then the kernel for the unique irreducible quotient. O

9.3 Verma modules and weight lattices

Set L™ be @ cq+ L—a, further LT = @ 4+ Lo, and BY = H® LT, all three
subalgebras of L by Theorem

The Strong PBW Theorem b) and the Cartan decomposition L =
L~ @ BT provide a useful tensor factorization of the universal algebra U(L):

(9.7). PROPOSITION. Then U(L) =U(L™) ®x U(B™). 0

For each A € H*, let the associated 1-dimensional B*- and U(B™)-module
be Kvy with (A + w)vy = A(h)vy for h € H and w € Lt. The Verma module
M () is then U(B*)-module Kv™ induced up to the U(L)- and L-module

M) =U(L) ®@yp+) Kuy = U(L™) @k Koy,

where we have applied Proposition |(9.7)|
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(9.8). THEOREM.

(a) For A € H*, the Verma module M(X\) and its unique irreducible quotient
L(X) are nonzero highest weight modules for X\. If X\ # u then L(\) and
L(p) are not isomorphic.

(b) Let V' be an L-module generated by the highest weight vector v for X. Then
the map vy — v extends to a surjective map from M(\) to V. |

A lattice in the Euclidean space E is the Z-module spanned by some basis.
The root lattice associated with the root system (EL, ®%) = (E, L) is

AR_ZZa_@Z(S

acd

The associated integral weight lattice or just weight lattice is
Aw ={peE|(pd)eZ,1<i<l}.

It gets its name from the fact that every weight of a finite dimensional L-module
belongs to the weight lattice by Proposition d). Especially Ap < Aw.
A Z-basis for Ay is provided by the fundamental weights w;, for 1 < i <1,
defined by
(Wi 6;) =1 and (w;,6])=0fori#j

so that Ay = @ﬁzlzwi. The integral dominant weights or just dominant weights
are then those of Ay, = ®!_;Nw; .

It is initially of some concern that the root lattice’s natural home is H*(~ K')
while the weight lattice is defined within £ ~ R!. The next result obviates that
worry by showing that Ay < Eg = ®l_,Qé;, where Ejg is a rational subspace
naturally contained in H* and in £ = K ®q Eg, both by definition.

(9.9). PROPOSITION.
(a) Aw < Z[d'|®z Ar < Eg where d = det(Cart A).

(b) 8 = 35— (6:,0) ;.

ProOOF. Write each w%- € FE as a linear combination of the simple basis
A={.. 0k ..} wi=D>,_40r0k. Then

(wi, & (Zazk5k, ]> Zazk Ok, ;)

Let the matrix A = (a; ) x and the Cartan matrix C' = Cart A = ((Sk,(s}/)k,j.
From the definition of the fundamental weights we get I = AC hence A = C~1.
Thus by Cramer’s Rule each a; ;. belongs to Z[d '], as claimed.
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Alternatively, when we write §; = 2221 ¢i xwi we find

V
(6:,65) —(E Ci k Wk 7) E Cik(Wry 0}) = cij - O

As the ¢; ; are all nonpositive, this implies that simple roots are rarely fun-
damental weights.

(9.10). THEOREM.
(CLASSIFICATION OF IRREDUCIBLE HIGHEST WEIGHT MODULES)

(a) For every A € H*, up to isomorphism there is a unique irreducible L-module
L(X) with highest weight . These are nonzero and pairwise nonisomorphic.

(b) If L(\) is of finite dimension then A € A,
(c) If X € A, then L(X) is of finite dimension.

PROOF. (a) This follows directly from Theorem
(b) This is contained in Theorem |(9.5)|
(¢) We postpone discussion of this to the next section. a

So, for instance, when L = sl5(K) = a1 (K) where [ = 1, we have A = {6;} =
{2} and Ar = 2Z. Thus §) =1 =uw; andszngngithA{;,:
Now compare the current theorem with Theorem where we catalogued
the highest weight irreducible sly(K)-modules—there is (up to isomorphism)
exactly one Ly (\) = L(A) for every A € K >~ H* and it has finite dimension if
and only if A € N = A;FV.

9.4 Tensor products of modules

It is well-known, and easy to check, that if A and B are associative E-algebras
and V and W are, respectively, unital A- and B-modules, then V Qg W is
naturally a unital A ®g B-module via

(a®@b)(vw)=av bw.

Furthermore, if V and W are irreducible, then so is V ®@g W. (Exercise.)

In the special case A = B, we get representations of A ®g A from represen-
tations of A. We would hope then to use this to get new representations of A
itself. As A is an algebra, we already have the natural multiplication map

u: A®g A — A

but the arrow goes in the wrong direction for us to get A-modules from A ®g A-
modules. Instead we need a comultiplication

v:A— AQg A;
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that is, an E-algebra map from A into its tensor square A®2. Then the A @ A-
module V ® W is a v(A)-module by restriction and so an A-module. This is
unlikely to be irreducible even if V' and W are, and to some extent this is the
point: decomposition of the reducible A-module V' ® W will often give rise to
new irreducible A-modules[]

This is the case with groups, where the natural embedding of G on the
diagonal of G x G leads via g — g ® g to the group algebra comultiplication

EG — E(G x G) ~ EG @ EG..

Therefore, when V and W are G-modules, V ®g W is also naturally a G-module.
Abstraction from these observations leads to the study of Hopf algebras and
related classes of algebras where the representation theory is very rich. Group
algebras are the most fundamental examples of Hopf algebras.

Luckily for us, the universal enveloping algebra of a Lie algebras is also a
Hopf algebra. In particular it has a suitable comultiplicationﬂ

(9.11). THEOREM. Let A be a Lie E-algebra. Then the map
A—U(A) @z U(4)

given by x — =z ® 1+ 1® x is an injective Lie algebra mapping of A into
(U(A4) @& U(A4))~.

ProOOF. This is clearly an linear transformation, injective by the PBW
Theorem |(9.2)l We then check

t@1+1@z,y®1+1®y] =
=re1+102)(ye1+10y) - (Y1+1ey)(r®@1+11® )
=y l+yRrt+zry+1lay)— (yr@l+2zy+yRx+1Q yz)
=y l+1zy)— (yz@ 1+ 1® yx)
=@@y—yr)@1+1Q (zy —yx). |
The construction can be motivated by first considering the diagonal comul-

tiplication for the group algebra of a Lie group and then translating that into
the Lie algebra context, using derivatives:

exp(tx) — o(t) = exp(tz) ® exp(tx)
=(1+tz+- )@ A +tet--)
=1@l+trel+10tr +tr @tz +---
=1@1+tlz@1+1®x) +t3(---)

IThe trivial comultiplications a — a ® 1 and a — 1 ® a merely recover V and W.

2 A Hopf algebra is equipped not only with an associative multiplication and unit but also
with an associative comultiplication (so that several representations can be tensored together)
and counit. It is this last that precludes the comultiplication from being trivial in the sense
of the previous footnote.
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so that p
%ap(t)hzo =r®1l+1x.
This construction is particularly useful in the context of highest weight mod-

ules.

(9.12). PROPOSITION. Let V be a highest weight L-module generated by the
mazimal vector vt for A, and let W be a highest weight L-module generated
by the mazimal vector w for p. Then in the L-module V @x W, the vector
vt ®@ wT is a mazimal vector for the weight A + pu.

PRrOOF. For h € H we have
(hel+1h)@Tewt)=hel)vTowh)+1eh)(vTew")
= (Ah)vT @ w) + (v @ p(h)w')
=Ah) (v @ w") + ph) (vt @ wh)
A(R) + p(h) (v @ w)

For u € L™ we have
wel+lou) (v ow) =we ) ow") + (1o u) (vt @wh)
=0@wh)+ @ ®0) =0 O

The construction can then be iterated with as (finitely) many tensor products
as one desires.

(9.13). COROLLARY. Let the dominant weight A = Zfi:l fiwi € A, (with
fi € N). Then the L-module

V()\) _ L(w1)®f1 R ® L(wi)®f" R ® L(wl)@m

contains a mazximal vector for X. In particular, if the L(w;) are finite dimen-
sional for 1 < i <1, then L(\) is finite dimensional. a

Therefore to prove part (c¢) of Theorem it suffices to construct, for

every simple Lie algebra L of Theorem |(8.35) and for each of its fundamen-
tal weights w;, a finite dimensional irreducible L-module with highest weight
w;. (Identification with L(w;) then comes from the uniqueness of Theorem
(9.10)|(a).) Such constructions we address (at least for sl;4;(K) and s09;(K)) in
the next section.

It must be noted that there are more elegant (and shorter) ways of prov-
ing Theorem c). By Proposition f) the set of weights ®p(y) for
the irreducible module L(A) is invariant under the Weyl group W(®). As all
multiplicities are finite (by Proposition [(9.6)(b)), the module L(}) is finite di-
mensional if and only if the weight set ®,(,) is finite. This is the beginning of
an argument, carried out almost entirely within the root system @, that shows
the number of weights “under” the integral highest weight A is finite if and only
if A is dominant integral. See [Eld15].
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9.5 Fundamental modules

For each simple root §; there is a corresponding fundamental weight w; with
(wi, ) = 1 and (w;, ;) = 0 for i # j. The usual convention is to write the
dimension of the fundamental irreducible module L(w;) next to the node of the
Dynkin diagram corresponding to J;. Thus:

() - () s (E) ()

A O
5 ((21;) (D) - (%) o2
;O

As we shall now see, the fundamental irreducible module L(w;) for L =
5141 (K) = a;(K) is the i*"-exterior power A’V of the natural module V = K!*1,
The dimension of A"V is thus (ltl). These irreducible modules for sly (K) =
ag;—1(K) remain irreducible and fundamental upon restriction to the split or-
thogonal algebra L = s09(K) = 9;(K) provided 1 < i < [ — 2, but the two
remaining fundamental modules for 9;(K) come from the associated Clifford al-
gebra, a generalization of the exterior algebra for the natural module K?!. This
pattern maintains—most of the fundamental modules for the simple algebras L
come by restriction from the exterior powers of the associated “natural” module,
usually L(wq).

If V is a K-space and T(V) its tensor algebra, then the corresponding exterior
algebra A(V') is the quotient of T(V') by its ideal generated by all v®v for v € V.
As the ideal is homogeneous, the quotient A(V') inherits the N-grading of T(V):

ANV) =EP k().

keN

Here A¥(V) is the image of V®¥. The arguments of the previous section (par-
ticularly those of Proposition and its corollary) show it to be a module
for Endg (V) and Endg (V).

We shall only be considering the finite dimensional case dimg (V) =n € Z*.

(9.14). THEOREM. Let vy,...,v, be a K-basis of V.

(a) A®(V) has dimension (}) with basis consisting of the monomials v;, - - - v;,
forip <o <ig.

(b) A(V) has dimension 2™ with basis consisting of the monomials vy, - - - v;, for
i1 < - <ip for0<k<n.

ProoF. This follows easily since vv = 0 and vw = —wv for v,w € V. a

(9.15). THEOREM. Consider sl;11(K) = a;(K). Set V.= K!*1. In the root
system ® C RTIN1L let the simple basis of roots be 6y = e, —epp1 forl <k <.
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(a) wg = 25:1 g+ gl for 1 <k <1l with c, = —k(l+1)71.
(b) L(wy) = A*V for 1 <k <1.

PrOOF. (a) Easily (Z?:l €5,0;) is 1 if k = ¢ and 0 otherwise. The linear
functional Z;?:l g; is not in the weight lattice R'™1 N1+, but this can be easily
fixed by adding the multiple ¢, 1 for ¢, = —k(I+1)~!, which induces the trivial
functional.

(b) SKETCH: Calculating as in the previous section, we find that the basis
vector v;, - --v;, is a weight vector for the weight 2521 Ei;-

By Proposition [(8.1)[f) the Weyl group Sym(l + 1) acts on the set of weights,
so all of the possible weights Z§:1 €4, occur for the irreducible quotient L(wy).
Comparing dimensions, we conclude that L(wy) = A*V. ]

(9.16). THEOREM.  Consider s09(K) = 9;(K). Set V. = K2.. In the root
system ® C R! let the simple basis of roots be 6 = ) — g1 for 1 <k <1—1
and 6, = ;-1 + €.

(a) wr = 25:1 gj for 1 < k < 1—2, but w1 = 3(—& + (Zé;ll ) and
w1 = g(e+ (5 E))-
(b) L(wy) = A*V for1 <k <1—2.

(¢) L(wg) = C(V)*, for k € {l —1,1}. These are 2'~'-dimensional submodules
of the Clifford algebra C(V') of dimension 2!.

PROOF. (a) This is easily checked.

(b) SKETCH: For 1 < k <[ — 2 the fundamental weight (actually, the asso-
ciated linear functionals) remain the same, as do the corresponding modules.

To treat the remaining two fundamental weights precisely requires study of
the Clifford algebra at greater length than possible here. O

The Weyl group W(D;) contains W(A;_1) ~ Sym(l) as a subgroup, so the
exterior power A~V remains irreducible, but it is no longer fundamental as
the weight Eé;ll g =wi—1 +w.

The Clifford algebra C(V') is a generalization of the exterior algebra. It is
the quotient of the tensor algebra T(V') by the ideal generated by v®@v—b(v,v)1
for all v € V. Thus the exterior algebra is the Clifford algebra for the trivial
orthogonal form which is identically 0 on V' x V. The Clifford algebra also has
dimension 2! with the same monomial basis as the exterior algebra. (Exercise.)

The diagram D; has an automorphism of order 2 that switches the simple
roots &;_1 and ¢; and so the fundamental weights w;_1; and w;. The corre-
sponding automorphism of 9;(K) thus switches the corresponding fundamental
representations. In fact, this graph automorphism is induced by any reflection
of 0F;(K). Such reflections have determinant —1 and so do not belong to the
group SOZ,(K). Nevertheless they act on the Clifford algebra, switching the two
modules C(V)* and C(V)~.
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Bilinear forms

A.1 Basics

Let o be an automorphism of K with fixed field F. For the K-space V', the map
b: V xV — K is a o-sesquilinear form provided it is biadditive and

b(pv, qu) = pb(v,w)q”

for all v,w € V and p,q € K. The case 0 = 1 is that of bilinear forms.
The form is reflexive if

bv,w) =0 < blw,v)=0.

Important examples are the (o, n)-hermitian forms: those o-sesquilinear forms
with always

b(v,w) = nb(w,v)’
for some fixed nonzero 7. Observe that

2

b(’l}, ’LU) = nb(wa v)7 = 77(77b(U7 w)o)g =1 b(v, w)g .

Assuming that b is not identically 0, there are v, w with b(v,w) = 1; so nn? = 1.
But then for all ¢ € K

a = blav,w) = b(cw,w)"2 =a” ,
and o2 = 1.
For a (o, n)-hermitian form that is bilinear we have 0 = 1, and so 1 = nn? =
n?, giving n = +£1. The case (0,n) = (1,1) is that of symmetric bilinear forms
or orthogonal forms, while (o,n) = (1, —1) gives alternating forms or symplectic
forms.

117
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For S C V write S+ for the subspace {v € V | b(v,s) =0, for all s € S}
and say that V' and b are nondegenerate provided its radical

Rad(V,b) = Rad(V) = Rad(b) = V+

is equal to {0}. If E < R and b is an orthogonal form, we say that b is positive
definite if it has the property

b(z,z) > 0 always and b(z,z) =0 < =z =0.

This is stronger than nondegeneracy.
The form b restricts to a form on each subspace U of V', and U is a nondegen-
erate subspace provided its radical under this restriction is 0; that is, UNU+ = 0.

(1.1). LEMMA.  For the (Id,n)-hermitian form b: V x V. — E the map
PP w = b(-,w) is a E-homomorphism of V into V* and the map \°: v+ b(v,-)
is a E-homomorphism of V into V*. Here ker p® = VL = ker A°. O

(1.2). LEMMA. For the nondegenerate (1d, n)-hermitian form b: V xV — E
let U be a finite dimensional subspace of V.

(a) The codimension of UL in'V is equal to the dimension of U, and U++ = U.

(b) The restriction of h to U is nondegenerate if and only if V. =U @ U+. O

Write the vector v =), viz; for the basis X = {x; [ i € I } as the column
I-tuple v = (..., v;,...). The Gram matric G = G, of the form b is the I x I
matrix (b(z;,2;))i,;, and we have a matrix representation of the form b:

b(v,w)=v" Guw.

If YV is a second basis and A is the I x I base change matrix that takes vectors

written in the basis ) to their corresponding representation in the basis X', then
Gy =ATGyA.

(1.3). COROLLARY. The nondegenerate (1d, n)-hermitian formb: VxV — E
on the finite dimensional space V' is nondegenerate if and only if its Gram matrix
is invertible. ]

This point of view makes it clear that if b: V x V' — E is nondegenerate
and F is and extension field of E, then we have an induced nondegenerate form
bF (F@EV) X (F@EV) — .

A.2 Canonical forms

One natural example of an orthogonal form on V' is one that has an orthonormal
basis; that is, the Gram matrix is the identity matrix.

In many situations, particularly over algebraically closed fields, other bases
are of interest. We next define the split forms of orthogonal and symplectic

type:
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For n € {&} = {£1}, the K-space V = V,, = K% has basis {e;,e_; |
1 <i <1} and is equipped with the split (Id, n)-form b = b, given
by

bles,e—;) =1,b(e—;,e;) =n, otherwise b(eq,ep) =0.
The form is split orthogonal when 1 = +1 and split symplectic when
n=-—1
The K-space V = V,, = K2*! has basis { e, e;,e—; | 1 <i <1} and
is equipped with the split orthogonal form b given by

bleg,e0) =1, bes,e—;) = ble_;,e;) = 1, otherwise b(eq,ep) = 0.

(1.4). LEMMA. Consider the (Id,n)-hermitian formb: V. xV — E on the E-
space V' of dimension 2 with charE # 2. Suppose b(x,xz) = 0 but x ¢ Rad(V,b).

Then V is nondegenerate, and there is a second vector y with b(y,y) = 0,
b(z,y) = 1, and V = Ex ® Ey. That is, the Gram matriz for b in the basis
. 0 1
. O
o0 1)

(1.5). THEOREM. Consider the nondegenerate symplectic formb: VxV — E
on the finite dimensional E-space V. The form is split.

PROOF. For a symplectic for b(z,x) = 0 always. Use the lemma and induc-
tion. O

(1.6). THEOREM. Consider the nondegenerate orthogonal formb: V xV —
E on the finite dimensional E-space V' over the algebraically closed field E of
characteristic not 2.

(a) If dimg(V) > 2, then V contains nonzero vectors x with b(x,z) = 0.
(b) The form is split.

PRrROOF. The first part allows the second part to be proved by induction
using the lemma. O
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Appendix

Finite Groups Generated by
Reflections

Let E be a finite dimensional Euclidean space, and let 0 # v € E. The linear

transformation
2(z,v)
v

(v, v)

Ty: XX —

is the reflection with center v.
(2.1). LEMMA. Let0#wv € E.

(a) r, belongs to O(E), the orthogonal group of isometries of E, being the re-
flection in the hyperplane orthogonal to v. In particular v, = T4, for all
nonzero scalars a.

(b) If g € O(E) then rd = rg¢.
(¢) If Ru™ = Ru if and only if v € Rz or (v,z) = 0. a

(2.2). LEMMA. Let o and 8 be independent vectors in the Euclidean space E.
Then (rqo,rg) is a dihedral group in which the rotation rorg generates a normal
subgroup of index 2 and order mqy g (an integer at least two or infinite) and
the nonrotation elements are all reflections of order 2. In particular, the group
(ra,rg) is finite, of order 2mq g, if and only if the 1-spaces spanned by o and
B meet at the acute angle —"—. O

Ma,p

We are concerned in this appendix with finite subgroups of O(F) generated
by a set {r, | v € A} of reflections (necessarily finite itself).

The Cozeter graph of this reflection set has A as vertex set, with « and 8
connected by a bond of strength m, g — 2 where (rq,7g) is dihedral of order
2mg, 3, for the positive integer mqy g > 2. In particular, distinct o and 3 are not
connected if and only if mq g = 2 if and only if they commute.
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(2.3). THEOREM. The Cozxeter graph for an irreducible finite group generated
by the | distinct Euclidean reflections for an obtuse basis is one of the following:

A O+O—O0—O0—0—0

PRrROOF. By Lemma |(2.1)|the graphs are all connected. We do not provide a
complete proof of the theorem; but we do a proof, typical for these arguments,
of one important property:

Claim: The Coxeter graph is a tree.

PrOOF. Let C = (vo,v1,...,Vpn—1,Un = ¥g) be a circuit in the
graph. Normalize so that (v;,v;) = 1 for all 4, and let G be the
Gram matrix of C. Then each diagonal entry of G is 1 and in each
row (and column) there are exactly two other nonzero entries. As
the full basis is obtuse, each of these nonzero (v;,v;41) is negative.
Furthermore by Lemma B above, each of these has absolute
value at least % Therefore for

O#£z=)Y vi=(11,..,1)"
=1

we have
(r,2) =2"Gx <0.

As Euclidean (-, ) is positive definite, this is a contradiction. a
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Similar arguments then show that the given graphs are the only ones that
are possible. O
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