
Lie Groups. Representation Theory and
Symmetric Spaces

University of Pennsylvania, Fall 2010

Wolfgang Ziller





Contents

1 Fundamentals of Lie Groups page 1
1.1 Lie groups and Lie algebras 1
1.2 Lie subgroups and homomorphisms 4
1.3 Coverings of Lie groups 6
1.4 Exponential Map 11
1.5 Adjoint representation 13
1.6 Automorphisms 14
1.7 Complexification 17

2 A Potpourri of Examples 20
2.1 Orthogonal Groups 20
2.2 Unitary Groups 23
2.3 Quaternions and symplectic groups 25
2.4 Non-compact symplectic groups 28
2.5 Coverings of classical Lie groups 30

3 Basic Structure Theorems 36
3.1 Nilpotent and Solvable Lie algebras 36
3.2 Semisimple Lie algebras 42
3.3 Compact Lie algebras 44
3.4 Maximal Torus and Weyl group 48

4 Complex Semisimple Lie algebras 53
4.1 Cartan subalgebra and roots 53
4.2 Dynkin diagram and classification 62
4.3 Weyl Chevally Normal Form 71
4.4 Weyl group 73
4.5 Compact forms 76
4.6 Maximal root 82
4.7 Lattices 86

iii



iv

5 Representation Theory 90
5.1 General Definitions 90
5.2 Representations of sl(2,C) 97
5.3 Representations of semisimple Lie algebras 101
5.4 Representations of classical Lie algebras 112
5.5 Real Representations of Real Lie Groups 118

6 Symmetric Spaces 129
6.1 Basic geometric properties 130
6.2 Cartan involutions 141
6.3 A Potpourri of Examples 147
6.4 Geodesics and Curvature 154
6.5 Type and Duality 157
6.6 Symmetric Spaces of non-compact type 163
6.7 Hermitian Symmetric Spaces 167
6.8 Topology of Symmetric Spaces 172

Bibliography 173



1

Fundamentals of Lie Groups

In this Chapter we discuss elementary properties of Lie groups, Lie algebras
and their relationship. We will assume a good knowledge of manifolds, vector
fields, Lie brackets, and the Frobenius theorem, see e.g. [Wa],[Sp] or [Le],
Ch. 1-8 and 17-19, and covering space theory, see e.g. [Ha] Ch. 1 or [Mu]
Ch. 9 and 12.

Although our presentation is sometimes somewhat different and shorter,
there are a number of good books on the basics in this Chapter, see e.g.
[Wa],[Sp] or [Le], Ch 20.

Lie groups and Lie algebras

It will always be understood without saying that all manifolds and vector
spaces are finite dimensional.

Definition 1.1 A Lie group G is an abstract group and a smooth n-
dimensional manifold so that multiplication G × G → G : (a, b) → ab and
inverse G → G : a → a−1 are smooth.

We will also occasionally consider complex Lie groups where the underlying
manifold is complex and multiplication and inverse are holomorphic.

This innocent combination of two seemingly unrelated properties has amaz-
ing consequences. As we will see, a Lie group is classified, up to coverings, by
a linear object, called a Lie algebra. Many of the questions about Lie groups
can be quickly converted into a Linear Algebra problems (though those may
be difficult) on the corresponding Lie algebra. Nevertheless, the translation
back to the Lie group is not always obvious and so we will emphasize the
Lie group aspect as well.
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2 Chapter 1 Fundamentals of Lie groups

Definition 1.2 A Lie algebra over K = R or C is a vector space V over K
with a skew-symmetric K-bilinear form (the Lie bracket) [ , ] : V × V → V

which satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0 (1.3) Jacobi

for all X, Y, Z ∈ V .

We relate the two via so called left invariant vector fields. We use the
standard notation

Lg : G → G, h → gh and Rg : G → G, h → hg

and define

Definition 1.4 A vector field X on a Lie group G is called left invariant if
d(Lg)h(X(h)) = X(gh) for all g, h ∈ G, or for short (Lg)∗(X) = X.

We then have

Proposition 1.5 If we denote by g the set of all left invariant vector fields,
then the linear map L : g → TeG with L(X) = X(e) is an isomorphism.

Proof A left invariant vector field must have the property that X(g) =
d(Lg)e(v), i.e. is determined by its value at e. Conversely, given v ∈ TeG the
vector field defined by X(g) = d(Lg)e(v) is left invariant: d(Lg)h(X(h)) =
d(Lg)h(d(Lh)e(v))) = d(Lgh)e(v) = X(gh). All that remains is to show that
X is smooth. But if m : G×G → G is multiplication, then dm : TG⊗TG →
TG is smooth as well and X(g) = dm(g,e)(0, v). Indeed, if s is a curve in
G with s′(0) = v, then dm(g,e)(0, v) = d

dt |t=0
(m(g, s(t)) = d

dt |t=0
(gs(t)) =

d(Lg)e(s′(0)) = d(Lg)e(v). Thus X is smooth.

Notice that this in particular implies that a Lie group is parallelizable, i.e.,
the tangent bundle is trivial.

Since diffeomorphisms respect Lie brackets, the Lie bracket of two left in-
variant vector fields is again left invariant: (Lg)∗[X, Y ] = [(Lg)∗X, (Lg)∗Y ] =
[X, Y ]. This induces a Lie bracket on g ' TeG. We call this the Lie algebra
of G. In general we will denote, without saying, the Lie algebra of a Lie
group with the corresponding German script letter. Thus, e.g., h is the Lie
algebra of H, and k is the Lie algebra of K.

Example 1.6 The most basic examples are matrix groups. Let V be a vectormatrix
space over K = R or C and End(V ) the set of all K-linear maps from V to V .
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Furthermore, GL(V ) ⊂ End(V ) is the subset of invertible linear maps. Then
GL(V ) is a Lie group under composition of maps and e = Id is the identity
element. Indeed, GL(V ) is an open subset of End(V ) and hence a manifold.
To see that multiplication and inverse are smooth, it is easiest to identify
with matrices. In terms of a basis of V , End(V ) ' M(n, n,K), the set of
n × n matrices with coefficients in K. Matrix multiplication then becomes
polynomial and inverses rational in the natural coordinates yij(A) = Aij , and
hence they are smooth. We denote its Lie algebra by gl(V ) or by End(V )
interchangeably. We will also use GL(n,K) for GL(Kn) as well as gl(n,K)
for its Lie algebra. For K = R we also have the subgroup GL+(n,R) = {A ∈
GL(n,R) | det A > 0}.

We now claim that the Lie algebra structure is given by [X,Y ] = XY −Y X

for X,Y ∈ gl(V ) ' M(n, n,K). To see this, observe that the left invariant
vector field X̄ with X̄(e) = X ∈ M(n, n,K) is given by X̄A := X̄(A) = AX

since left translation is linear. Hence X̄A(yij) = d(yij)A(X̄A) = (AX)ij since
yij is linear. Now [X̄, Ȳ ]e(yij) = X̄e(Ȳ (yij))− Ȳe(X̄(yij)). But X̄e(Ȳ (yij)) =
X̄e(A → (AY )ij) = (XY )ij and hence [X̄, Ȳ ]e(yij) = (XY − Y X)ij , which
proves our claim. Indeed, for a manifold with coordinates xi we have v =∑

v(xi) ∂
∂xi

.

Exercises 1.7

(1) Show that (Rn, +), Rn/Zn = Tn, and Rn × Tm are Lie groups with
“trivial" Lie algebra, i.e. all brackets are 0.

(2) Show that SL(n,R) = {A ∈ GL(n,R) | det A = 1} is a Lie group and
compute its Lie algebra.

(3) Classify all two dimensional Lie algebras.
(4) If X,Y are the left invariant vector fields with X(e) = v, Y (e) = w

and X̄, Ȳ the right invariant vector fields with X̄(e) = v, Ȳ (e) = w,
show that [X̄, Ȳ ] = −[X,Y ].

(4) If G is a Lie group show that the identity component Go is open,
closed and normal in G.

5) Let

G =




1 x y

0 1 z

0 0 1




be a group under matrix multiplication. G is called the Heisenberg
group. Show that G is a Lie group. If we regard x, y, z as coordi-
nates in R3, this makes R3 into a Lie group. Compute explicitly the
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left invariant vector fields in these coordinates and determine the Lie
brackets directly.

Lie subgroups and homomorphisms

The analogue of algebra homomorphisms is

Definition 1.8 Let H and G be Lie groups.

(a) φ : H → G is called a Lie group homomorphism if it is a group
homomorphism and smooth.

(b) φ is called a Lie group isomorphism if it is a group isomorphism
and φ and φ−1 are smooth.

Similarly, we define Lie algebra homomorphism and isomorphisms.
Note that φ is a group homomorphism iff φ ◦ Lg = Lφ(g) ◦ φ. A homo-

morphism φ : G → GL(n,R) resp. GL(n,C) is called a real resp. complex
representation.

Proposition 1.9 If φ : H → G is a Lie group homomorphism, thendphi
dφe : TeH → TeG is a Lie algebra homomorphism

Proof Recall that for any smooth map f , the (smooth) vector fields Xi are
called f -related to Yi if (df)p(Xi(p)) = Yi(f(p)) for all p and that in that case
[X1, X2] is f -related to [Y1, Y2]. Thus, if we denote by Xi the left invariant
vector field on H with Xi(e) = vi ∈ h, i = 1, 2, and by Yi the left invariant
vector field on G with Yi(e) = dφe(vi), all we need to show is that Xi and
Yi are φ related. Indeed, it will then follow that dφe([X1, X2]e) = [Y1, Y2]e.
They are φ related since

d(φ)g(X(g)) = d(φ)gd(Lg)e(v) = d(φ ◦ Lg)e(v) = d(Lφ(g) ◦ φ)e(v)

= d(Lφ(g))d(φ)e(v) = Y (φ(g)).

If φ : H → G is a Lie group homomorphism, we simply denote by dφ : h →
g the above Lie algebra homomorphism. We can now apply this to subgroups
of Lie groups.

Definition 1.10 Let G be a Lie group.
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(a) H is called a Lie subgroup of G if H ⊂ G is an abstract subgroup,
and H is a Lie group such that the inclusion is a smooth immersion.

(b) h is a Lie subalgebra of g if [X,Y ] ∈ h for all X, Y ∈ h.

The relationship between the two is again very simple.

Proposition 1.11 Let G be a Lie group.subgroup

(a) If H is a Lie subgroup of G, then h ' TeH ⊂ TeG ' g is a Lie
subalgebra.

(b) If h ⊂ g a Lie subalgebra, there exists a unique connected Lie subgroup
H ⊂ G with Lie algebra h.

Proof Part (a) follows immediately from Proposition 1.9 applied to the
inclusion. For part (b), define a distribution on G by ∆g = d(Lg)e(h) ⊂
TgG. This distribution is integrable since h is a subalgebra. Let H be the
maximal leaf through e ∈ G, which is by definition a one-to-one immersed
submanifold. Since (Lg)∗∆ = ∆, the left translation Lg permutes leafs.
Hence Lh−1(H) = H for all h ∈ H since both contain e, i.e. H is a subgroup.
Multiplication and inverse is smooth, since this is so in G, and restrictions
of smooth maps to leafs of a distribution are smooth. Uniqueness of H

follows since a subgroup H with TeH = h is a leaf of the distribution ∆
since TgH = d(Lg)e(h) = ∆g for g ∈ H.

When clear from context, we will often simply say subgroup instead of
Lie subgroup, and subalgebra instead of Lie subalgebra. The reason why we
allow Lie subgroups to be immersed, instead of just embedded, is so that
Proposition 1.11 (b) holds for all subalgebras h ⊂ g. Indeed, a line through
the origin in the Lie group (R2, +) with irrational slope is a Lie subgroup,
and its image in the Lie group R2/Z2 is an immersed submanifold but not
embedded.

Corollary 1.12 Let H,G be connected Lie groups. If φ, ψ : H → G areuniquedph
Lie group homomorphisms with dφ = dψ, then φ = ψ.

Proof Clearly H×G is a Lie group (multiplication is defined componentwise)
with Lie algebra h ⊕ g (brackets again defined componentwise). φ is a ho-
momorphism iff its graph Graph(φ) = {(h, φ(h)) | h ∈ H} ⊂ H ×G is a Lie
subgroup. Since its Lie algebra is clearly Graph(dφ) = {(v, dφ(v)) | v ∈ h},
the assumption dφ = dψ implies Graph(dφ) =Graph(dψ) and the claim
follows from the uniqueness in Proposition 1.11 (b).
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The following is a very useful and surprising fact. The proof is somewhat
technical, and we will therefore omit it for now.

Theorem 1.13 Let G be a Lie group.closedsubgroup

(a) A Lie subgroup H ⊂ G is embedded iff if it is closed.
(b) If H ⊂ G is an abstract subgroup and if it is closed, then H is a Lie

subgroup.

As we saw, to every Lie group we can associate its Lie algebra, and it is a
natural question wether the converse holds. The answer is yes, but the proof
is non-trivial. It follows from Ado’s theorem:

Theorem 1.14 Every Lie algebra (V, [ , ]) is isomorphic to a subalgebraAdo
of gl(n,R) for some n.

Combining this with Proposition 1.11 (b), we get

Corollary 1.15 For every Lie algebra (V, [ , ]) there exists a Lie groupexistenceG
G with g isomorphic to V .

A further natural question is wether every Lie group is isomorphic to a
subgroup of GL(n,R). As we will see, this is not the case.

Exercises 1.16

1) If φ : H → G is a Lie group homomorphism with dφe an isomorphism,
show that dφg an isomorphism for all g ∈ G.

2) Show that det : GL(n,R) → (R\{0}, · ) is a Lie group homomorphism
with d det = tr.

3) Let H, G be Lie groups and K ⊂ G a Lie subgroup. If φ : H → G is
a Lie group homomorphism with φ(H) ⊂ K, show that φ : H → K is
a Lie group homomorphism (the issue is smoothness).

Coverings of Lie groups

The theory of covering spaces is greatly simplified if restricted to Lie
groups. Although not necessary, we will use covering theory within the
realm of manifolds, i.e. coverings are local diffeomorphisms.
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Proposition 1.17 Let G be a connected Lie group.covering

(a) If G̃ is a connected manifold and π : G̃ → G is a covering, then G̃ has
a unique structure of a Lie group such that π is a homomorphism.

(b) A homomorphism φ : G̃ → G of Lie groups is a covering iff dφ is an
isomorphism.

Proof For part (a), choose an element ẽ ∈ π−1(e). Covering space theory
implies that G̃ × G̃

π×π−→ G × G
m−→ G has a lift m̃ : G̃ × G̃ → G̃, uniquely

defined by m̃(ẽ, ẽ) = ẽ. Similarly, the inversion I(g) = g−1 has a unique
lift Ĩ with Ĩ(ẽ) = ẽ. m̃ defines a multiplication on G̃ and Ĩ an inverse.
The group law properties for G̃ easily follow from those for G by using
the uniqueness properties of lifts under coverings. The map π is now by
definition a homomorphism and the uniqueness of the above lifts shows that
any two Lie group structures on G̃, such that π is a homomorphism, must
be isomorphic.

One direction in (b) is clear since coverings are local diffeomorphism. For
the other direction assume that dφ is an isomorphism. We need to show
that every point in G has an evenly covered neighbor hood. By the inverse
function theorem there exists a neighborhood U of e ∈ G̃ such that φ : U →
π(U) is a diffeomorphism. If Γ = kerφ, this implies that Γ∩U = {e}. Since
multiplication and inverse are continuous we can choose a neighborhood
V ⊂ U such that V · V −1 ⊂ U . Then the open sets γV, γ ∈ Γ, are all
disjoint since γu = γ′u′ implies that γ′−1γ = u′u−1 ∈ Γ ∩ V · V −1 ⊂ Γ ∩ U

and thus γ = γ′. Furthermore, φ−1(φ(V )) = ∪γγV since φ(a) = φ(v), v ∈ V

implies that φ(av−1) = e and hence a = γv for some γ ∈ Γ. Finally, since φ

is a homomorphism, φ : γU → π(U) is a diffeomorphism for all γ ∈ Γ. Hence
π(V ) is an evenly covered neighborhood of e which easily implies that φ(gV )
is an evenly covered neighborhood of φ(g) ∈ G.

It remains to show that π is onto. This immediately follows from the
following Lemma, which we will use frequently.

Lemma 1.18 A connected Lie group is generated by any neighborhoodgenerate
of the identity.

Proof Let U be a neighborhood of e ∈ G and V ⊂ U an open set with
V · V −1 ⊂ U . If we define H = ∪∞n=−∞V n, then H is clearly open and a
subgroup. It is also closed since its complement, being the union of all cosets
of H different from H, is open. Since G is connected, H = G.
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This finishes the proof of part (b).

We say that π : G̃ → G is a covering of Lie groups, or simply a covering, if
π is a covering and a homomorphism. Notice that Proposition 1.17 (a) says
that the assumption that φ be a homomorphism is actually not restrictive.
We can now state the classification of coverings of Lie groups.

Proposition 1.19 Let G, G̃ be connected Lie groups.Liecoverings

(a) If φ : G̃ → G is a covering of Lie groups, then kerφ is a discrete
subgroup of Z(G̃), the center of G̃.

(b) If Γ ⊂ G is a discrete subgroup of Z(G), then G/Γ is a Lie group and
the projection φ : G → G/Γ is a (normal) covering with deck group
{Lγ | γ ∈ Γ}.

Proof For part (a) we observe that, since φ is a local diffeomorphism, there
exists a neighborhood U of e ∈ G̃ such that U ∩ Γ = {e}, where Γ = kerφ.
Thus we also have γU∩Γ = {γ} since γu = γ′ implies that u = γ−1γ′. Hence
Γ is a discrete normal subgroup of G̃. But a discrete normal subgroup lies
in the center. Indeed, if we fix g ∈ G̃ and γ ∈ Γ, and let gt be a path with
g0 = e and g1 = g, then gtγg−1

t ∈ Γ which starts at γ and by discreteness is
equal to γ for all t.

Next we prove (b). Recall that an action of Γ on a manifold M is called
properly discontinuous if it satisfies the following two properties:

(1) For any p ∈ M there exists a neighborhood U of p such that the open
sets LgU are all disjoint.

(2) For any p, q ∈ M with p /∈ Γq there exist neighborhoods U of p and V

of q such that γU ∩ γ′V = ∅ for all γ, γ′ ∈ Γ.
Part (1) guarantees that M → M/Γ is a covering since the image of U

is an evenly covered neighborhood. Part(2) guarantees that the quotient is
Hausdorff, which is part of the definition of a manifold. Since most books on
coverings only talk about coverings of topological spaces, part (2) is some-
times deleted in the definition. One easily gives examples which satisfy (1)
but not (2).

In summary, if Γ acts properly discontinuously on M , then M/Γ is a
manifold and M → M/Γ a covering with deck group Γ.

In our case, let Γ be a discrete subgroup of the center. For part (1) let U

be a neighborhood of e ∈ G such that Γ∩U = {e}, which is possible since Γ
is discrete. Furthermore, choose V such that e ∈ V ⊂ U and V · V −1 ⊂ U .
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Then we claim that LgV are all disjoint. Indeed, if g1u = g2v, for some
u, v ∈ V , then g−1

2 g1 = vu−1 ∈ Γ ∩ U which implies g1 = g2.

For part (2), fix g1, g2 ∈ G with g1 /∈ Γg2. Let V ⊂ U be neighborhoods
of e as above, which in addition satisfy g−1

2 Γg1 ∩ U = ∅, which is possible
since g2Γg1 is discrete and does not contain e by assumption. Then we
claim that g1V and g2V are the desired neighborhoods of g1 and g2. Indeed,
if γ1g1u = γ2g2v for some γ1, γ2 ∈ Γ and u, v ∈ V , then g−1

2 γ−1
2 γ1g1 =

vu−1 ∈ g−1
2 Γg1∩U which is not possible. Thus the projection G → G/Γ is a

covering. Since Γ lies in the center, G/Γ is a group a since φ is a covering, it
is a manifold as well. Since φ is a local diffeomorphism, multiplication and
inverse is smooth. Furthermore, the deck group is {Lγ = Rγ | γ ∈ Γ} ' Γ
since φ(a) = φ(b) implies φ(ab−1) = e, i.e. a = γb for some γ ∈ Γ. In
other words, Γ acts transitively of the fibers of φ, which is the definition of
a normal cover.

In particular, the universal cover of a Lie group is again a Lie group.
As we saw in Corollary 3.10, a homomorphism φ is uniquely determined

by dφ. For the converse we have

Proposition 1.20 If H and G are Lie groups with H simply connected,dphexistence
then for any Lie algebra homomorphism ψ : h → g there exists a unique
Lie group homomorphism φ : H → G with dφ = ψ.

Proof Recall that Graph(ψ) = (v, ψ(v)) ⊂ h⊕g is a Lie subalgebra and hence
by Proposition 1.11 there exists a connected subgroup A ⊂ H ×G with Lie
algebra Graph(ψ). Let π1 and π2 be the projections from H ×G to the first
and second factor. They are clearly homomorphisms and π1 : A → G is a
covering since d(π1)|a is clearly an isomorphism. Since H is simply connected,
A is isomorphic to H. Thus we get a homomorphism π2 : G ' A → G which
by construction has derivative ψ.

If, on the other hand, H is not simply connected, it follows that there
exists a homomorphism φ : H̃ → G where π : H̃ → H is the universal cover.
Clearly φ descends to H → G iff kerπ ⊂ kerφ.
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Corollary 1.21isoLie

(a) Two simply connected Lie groups with isomorphic Lie algebras are
isomorphic.

(b) For every Lie algebra V , there exists a unique simply connected Lie
group G with g ' V .

(c) Any Lie group with Lie algebra g is isomorphic to G/Γ where G is
the simply connected Lie group with Lie algebra g, and Γ is a discrete
subgroup of Z(G).

Proof (a) Let ψ1 : h → g be a Lie algebra isomorphism with inverse ψ2. Let
φi be the Lie group homomorphism with dφi = ψi. Since ψ1 ◦ ψ2 = Id, it
follows that φ1 ◦ φ2 = Id by the uniqueness part of Proposition 1.20.

(b) by Theorem 1.14, there exists some Lie group G∗ ⊂ GL(n,R) with
Lie algebra V , and hence the universal cover of G∗ is the desired G. Its
uniqueness follows from (a).

(c) If G∗ is a Lie group with Lie algebra g, let G → G∗ be the universal
cover. The claim then follows from Proposition 1.19 (a).

Exercises 1.22

1) In the proof of Proposition 1.17, the astute reader may have noticed
that a step is missing. Namely, covering theory tells us that in order
to obtain the lifts m̃ and Ĩ, we need to show that (I ◦ π)∗(π1(G̃)) ⊂
π∗(π1(G̃)) and similarly for ((π × π) ◦ m)∗. Fill in the details why
this is true by showing that multiplication and inverse of loops in G

becomes multiplication and inverse in the group structure of π1(G).
2) Let φ : G̃ → G be a covering with G̃ and G connected. Show that

φ(Z(G̃)) = Z(G) and Z(G̃) = φ−1(Z(G)). Furthermore, Z(G̃) is
discrete iff Z(G) is discrete.

3) Show that the fundamental group of a connected Lie group is abelian.
3) Classify all 2-dimensional Lie groups.
4) Give an example of two Lie groups H, G and a Lie algebra homomor-

phism ψ : h → g such that there exists no Lie group homomorphism
φ : H → G with dφ = ψ.
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Exponential Map

We start with the concept of a one parameter group.

Definition 1.23 A homomorphism φ : (R, +) → G is called a one param-onepar
eter group. Equivalently, φ(t) ∈ G for all t with φ(t + s) = φ(t)φ(s) for all
t, s.

It follows from Proposition 1.20 that for each X ∈ TeG there exists a one
parameter group φX with dφX(t) = tX, or in other words φ′X(0) = X. We
thus define

Definition 1.24 If G is a Lie group with Lie algebra g, then the exponen-expdef
tial map is defined as:

exp: g → G where exp(X) = φX(1) with φ′X(0) = X

We now collect the basic properties of the exponential map.

Proposition 1.25 The exponential map exp: g → G satisfies:exp

(a) For each X ∈ g, φ(t) = exp(tX) is a one parameter group with
φ′(0) = X.

(b) The integral curve c of the left invariant vector field X ∈ g with
c(0) = g is c(t) = g exp(tX).

(c) exp is smooth with d(exp)0 = Id.
(d) If φ : H → G is a Lie group homomorphism, then φ(expH(X)) =

expG(dφ(X)) for X ∈ h.
(e) If H ⊂ G is a Lie subgroup then

h = {X ∈ g | expG(tX) ∈ H for |t| < ε for some ε > 0}.

Proof First observe that φX is an integral curve of X through e since

φ′X(s) =
d

dt
(φX(s + t))|t=0 =

d

dt
(φX(s)φX(t))|t=0

= d(LφX(s))e(φ′X(0)) = d(LφX(s))e(X) = X(φX(s)).

Thus φtX(s) = φX(ts), since, for fixed t, both are integral curves of tX

through e. To see this for the right hand side, observe that in general if γ(s)
is an integral curve of a vector field X, then γ(ts) is an integral curve of tX.
Hence exp(tX) = φtX(1) = φX(t), which implies (a). Since Lg takes integral
curves to integral curves, (b) follows as well.
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To see that exp is smooth, define a vector field Z on G× g by Z(g, X) =
(X(g), 0). Z is clearly smooth and by part (b), its flow is ψt(g, X) =
(g exp(tX), X). Thus ψ1(e,X) = (exp(X), X) is smooth in X and hence
exp is smooth as well. Finally, d(exp)0(X) = d

dt(exp(tX))|t=0 = X, which
proves the second claim in (c).

To prove (d), observe that a homomorphism takes one parameter groups
to one parameter groups. Thus ψ(t) = φ(exp(tX)) is a one parameter group
with ψ′(0) = dφ(d(exp)0(X) = φ(X) and hence ψ(t) = exp(tdφ(X)), which
proves our claim by setting t = 1.

Part (e) follows easily by applying (d) to the inclusion of H in G.

In particular, the exponential map of a Lie subgroup is simply the restric-
tion of the exponential map of G and we will therefore not distinguish them
from now on.

As we will see, part (d) is surprisingly powerful and part (e) often enables
one to compute the Lie algebra of a Lie subgroup.

Example 1.26 As we saw in Example 2.22, GL(n,R) and GL(n,C), thematrixexp
set of invertible matrices, are Lie groups. For these groups we claim that
exp(A) = eA, which explains the name exponential map. Indeed, from the
power series definition of eA it easily follows that e(t+s)A = etAesA, i.e.
φ(t) = etA is a one parameter group. Furthermore φ′(0) = A and hence
exp(A) = φ(1) = eA.

Exercises 1.27

(1) Show that exp(X)−1 = exp(−X).
(2) Show that the flow of a left invariant vector field X is Rexp(tX).
(3) If φ : H → G is a Lie group homomorphism, then kerφ is a Lie

subgroup of H with Lie algebra ker(dφ), and Im φ is a Lie subgroup
of G with Lie algebra Im(dφ). Furthermore, if φ is onto, H/ kerφ is
a Lie group, which is isomorphic to G.

(4) Let φ : H → G is a Lie group homomorphism. If φ is injective, show
it is an immersion and thus φ(H) a Lie subgroup of G. If φ is a group
isomorphism, show it is a Lie group isomorphism, i.e. φ smooth
implies φ−1 smooth.

(4) Carry out the details in Example 1.26
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Adjoint representation

For g ∈ G consider the conjugation map Cg = Lg ◦ Rg−1 . Since Cg is a
homomorphism

Ad(g) := d(Cg)e : g → g

is a Lie algebra homomorphism. Since Cgh = CgCh, it follows that Ad(gh) =
Ad(g)Ad(h) and thus

Ad: G → GL(g)

is a Lie group homomorphism, also called the adjoint representation. Before
we collect its basic properties, we make one more definition.

For X ∈ g let adX : g → g be defined by adX(Y ) = [X,Y ]. The Ja-
cobi identity is equivalent to saying that ad[X,Y ] = adX adY − adY adX =
[adx, adY ] i.e.

ad: g → End(g) ' gl(g)

is a Lie algebra homomorphism.

Proposition 1.28 The adjoint representation satisfies:Ad

(a) d(Ad)e(X) = adX , or simply dAd = ad.
(b) Ad(exp(X)) = eadX ,
(c) exp(Ad(g)(X)) = g exp(X)g−1,
(d) If G is connected, ker(Ad) = Z(G).

Proof For part (a) we see that for any Y ∈ g

d(Ad)e(X)(Y ) =
d
dt

∣∣∣
t=0

Ad(exp(tX))(Y )

=
d
dt

∣∣∣
t=0

d(Rexp(−tX)) ◦ d(Lexp(tX))(Y )

=
d
dt

∣∣∣
t=0

d(Rexp(−tX))(Y (exp(tX)))

= LXY = [X,Y ],

where LX is the Lie derivative. In the last passage, we used the definition
of Lie derivative, and the fact that Rexp(tX) is the flow of X.

Part (b) and (c) follow from Proposition 1.25 (d) using the homomorphism
Ad and Cg resp.

One direction of (d) is clear, if g ∈ Z(G), then Cg = Id and hence Ad(g) =
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Id. Conversely, if Ad(g) = Id then Cg and Id are two homomorphisms with
the same derivative, and hence by Corollary 3.10 are equal.

Example 1.29 In the case of GL(n,R) and GL(n,C), we have Ad(A)(B) =matrixAd
ABA−1 since conjugation is linear. Hence the fact that Lie brackets in
gl(n,R) and gl(n,C) are commutators (see Example 2.22) is an immediate
consequence of part (a).

Part(b) and (c) are particularly powerful, as the reader may see in the
following exercises.

Exercises 1.30 We now have the tools to prove a number of importantexeAd
facts.

(1) A connected Lie group is abelian iff its Lie algebra is abelian.
(2) A connected abelian Lie group is isomorphic to Tn×Rm where T =

R/Z.
(3) If H is a Lie subgroup of G, and both are connected, then H is normal

in G iff h is an ideal in g, i.e. [g, h] ⊂ h.
(4) If [X,Y ] = 0 then exp(X + Y ) = exp(X) exp(Y ).
(5) Z(G) is a Lie subgroup of G with Lie algebra z(g) = {X | adX = 0}.
(6) Complete the argument that Ad: G → GL(g) is a Lie group homo-

morphism by showing it is smooth.
(7) If H ⊂ G is a Lie subgroup show that the adjoint representation for

H is the restriction of the one for G.
(8) Show that exp: gl(n,C) → GL(n,C) is onto, but exp: gl(n,R) →

GL+(n,R) is not. Determine the image of exp: sl(2,R) → SL(2,R).

Automorphisms
We start with the following Definition.

Definition 1.31 Let g be a Lie algebra.
(a) A linear isomorphism A : g → g is an automorphism if it is a Lie

algebra homomorphism. Let Aut(g) ⊂ GL(g) be the set of automor-
phisms of g.

(b) A linear map A : g → g is a derivation if

A[X,Y ] = [AX, Y ] + [X, AY ], ∀X, Y ∈ g.

Let Der(g) ⊂ End(g) be the set of derivations of g.

They are of course related:
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Proposition 1.32 Aut(g) is a closed Lie subgroup of GL(g) with LieAut
algebra Der(g).

Proof Since Aut(g) is defined by the equation A[X, Y ] = [AX,AY ], it
is closed in GL(g) and by Theorem 1.13 is a Lie subgroup of GL(g). If
A(t)[X, Y ] = [A(t)X, A(t)Y ] with A(0) = e, then by differentiation we see
A′(0) ∈ Der. If A ∈ Der, we have

d
dt

∣∣∣
t=0

e−tA[etAX, etAY ] = −e−tAA[etAX, etAY ] + e−tA[etAAX, etAY ]

+ e−tA[etAX, etAAY ] = −e−tA (A[Z,W ]− [AZ,W ]− [Z, AW ]) = 0

where Z = etAX, W = etAY . Thus e−tA[etAX, etAY ] = [X, Y ] which shows
that etA ∈ Aut(g) for all t and the claim follows from Proposition 1.25 (e).

Notice that thus:

Ad: G → Aut(g) ⊂ GL(g)

is a Lie group homomorphism (why is it smooth?).
These Lie groups have further subgroups. Notice that the Jacobi identity

implies that adX([Y, Z]) = [adX(Y ), Z]+[Y, adX(Z), i.e. adX is a derivation.

Definition 1.33 Let g be a Lie algebra.

(a) A derivation A ∈ Der(g) is called an inner derivation if A = adX

for some X ∈ g. Set Int(g) = {adX | X ∈ g}. .
(b) Let Int(g) be the connected Lie subgroup of Aut(g) with Lie algebra

Int(g). Elements of Int(g) are called inner automorphism.

If G is a connected Lie group with Lie algebra g, then Ad(exp(X)) =
eadX implies that Int(g) = Ad(G) since they agree in a neighborhood of the
identity. Thus Ad: G → Int(g) is a Lie group homomorphism which is onto
with kernel Z(G). Hence, for any connected Lie group with Lie algebra g,
we have:

Int(g) ' ImAd ' G/Z(G) and Int(g) ' g/z(g).

Summing up, we have a chain of Lie groups

Int(g) ⊂ Aut(g) ⊂ GL(g),
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which induces a chain of Lie algebras

Int(g) ⊂ Der(g) ⊂ End(g).

One more property of this chain is that:

Proposition 1.34 The Lie group Int(g) is normal in Aut(g).normalInt

Proof Since Int(g) is by definition connected, it is, by Excercise 1.30 (3),
normal in Aut(g) iff Int(g) is an ideal in Der(g). One easily show that if
L is a derivation, then [L, adx] = L ◦ adx− adX ◦L = adLX (in fact this is
equivalent to being a derivation), which proves our claim.

Thus, if Aut(g)/ Int(g) is a Lie group, its Lie algebra is Der(g)/Int(g). In
general though, Int(g) may not be closed in Aut(g), and hence the quotient
is not always a Lie group.

We can also consider Aut(G) as the set of Lie group isomorphisms. By
Proposition 1.20, Aut(G) is isomorphic to Aut(g) if G is a simply connected
Lie group. One of the exercises below shows that Aut(G) is a closed Lie
subgroup of Aut(g).

Another important algebraic object is the Killing form defined by:

B : g× g → R (or C) , B(X, Y ) = tr(adX ◦ adY ) (1.35) Killing

Clearly, B is a symmetric bilinear form. Its behavior under automorphisms
is:

Proposition 1.36 Let g be a real or complex Lie algebra with KillingKillingAut
form B.

(a) If A ∈ Aut(g), then B(AX, AY ) = B(X, Y ).
(b) If L ∈ Der(g), then B(LX, Y ) + B(X,LY ) = 0.

Proof One easily show that if A is an automorphism, then adAX = A ◦
adX ◦A−1. Thus

B(AX,AY ) = tr(adAX ◦ adAY ) = tr(A ◦ adX ◦ adY ◦A−1) = tr(adX ◦ adY )

which proves our first claim. If L is a derivation, etL is an automorphism and
thus B(etLX, etLY ) = B(X,Y ). Differentiating at t = 0 proves our second
claim.

The Killing form does not have to be non-degenerate (although it is for the
important class of semisimple Lie algebras), it can even be 0. But we have
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Proposition 1.37 Let B be the Killing form of g with kernel kerB :=Killingkernel
{X ∈ g | B(X, Y ) = 0 for all Y ∈ g}. Then kerB is an ideal.

Proof If X ∈ ker(B) and Y ∈ g, then, since ady is a derivation, B([X,Y ], Z) =
−B(adY (X), Z) = B(X, adY (Z)) = 0. for all Z ∈ g. Thus [X,Y ] ∈ kerB,
which proves our claim.

Exercises 1.38

(1) Show that if G is a connected Lie group and G̃ is the universal cover
of G, then Aut(G) is the closed subgroup of Aut(G̃) ' Aut(g) (and
thus a Lie subgroup) which normalizes the deck group of the universal
cover G̃ → G.

(2) Show that φ : gl(n,C) → gl(n,C), φ(X) = X̄ is an automorphism
which is not inner.

(3) If z(g) = 0, then the center of Int(g) is trivial as well.
(4) Show that the Killing form of gl(n,R) and gl(n,C) is given by B(X,X) =

2n trX2 − 2(trX)2.
(5) Let h be an ideal in g. Show that the Killing form of h is the restriction

of the Killing form of g. Thus the Killing form of sl(n,C) or sl(n,R)
is B(X, X) = 2n trX2.

Complexification

Linear Algebra over C is much simpler than over R, so it often helps to
complexify. The same is true for Lie algebras. In particular, the classification
and representation theory of semisimple Lie algebras in Chapter ? and ? will
be done first over C, which will then be used to interpret the results over R
as well.

If g is a real Lie algebra, we define a complex Lie algebra gC by making
the Lie brackets complex linear, i.e.

gC = g⊗ C and [u + iv, x + iy] = [u, x]− [v, y] + i([u, y] + [v, x]).

We call gC the complexification of g. For example, gl(n,R)C is clearly
isomorphic to gl(n,C).

We can also start with a complex Lie algebra g and define a real Lie algebra
by forgetting the complex structure. We call this (real) Lie algebra gR the
realification of g. Notice that gl(n,C)R is not gl(n,R).
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It may sometimes be helpful to think of a complex Lie algebra as a pair
(g, I), where g is a real Lie algebra and I a complex structure, i.e. I2 =
− Id, with [Iu, v] = [u, Iv] = I[u, v]. It becomes a complex vector space by
declaring (a + ib)(u) = au + Iu for a + ib ∈ C, u ∈ g. We can associate
to the complex Lie algebra (g, I) its complex conjugate (g,−I) which we
denote by ḡ.

Proposition 1.39 If g is a complex Lie algebra, then (gR)C is isomorphiccomplexreal
to g⊕ ḡ.

Proof Let (g, I) be the complex Lie algebra and J the complex multiplication
due to the complexification of gR. For simplicity we identify u + Jv ∈ (gR)C
with (u, v) ∈ g⊕g and thus J(u, v) = (−v, u) and I(u, v) = (Iu, Iv). Since I

and J commute, the composition L = IJ satisfies L2 = Id. Let V± ⊂ (gR)C
be the −1 and +1 eigenspaces of L. Notice that V± = {(u,±Iu) | u ∈ g} are
complementary J invariant subspaces and since L[u, v] = [Lu, v] = [u, Lv]
they are also ideals. Hence (gR)C ' V− ⊕ V+. The linear maps f− : u ∈
g → (u,−Iu) ∈ V− and f+ : u ∈ g → (u, Iu) ∈ V+ clearly respects Lie
brackets. Since f−(Iu) = (Iu, u) = J(u,−Iu) = J(f−(u)) and f+(Iu) =
(Iu,−u) = −J(u, Iu) = −J(f+(u)) the map f− is complex linear and f+

complex antilinear. Thus (f−, f+) : (g, I)⊕ (g,−I) → V− ⊕ V+ ' (gR)C is a
complex linear isomorphism of Lie algebras..

The complex Lie algebra ḡ is often isomorphic to g, in fact this is the case iff
there exists a complex conjugate linear isomorphism f : g → g, i.e. f(λu) =
λ̄u. This is for example the case for gl(n,C) since f(A) = Ā is conjugate
linear.

If h is a real Lie algebra with hC isomorphic to g, we call h a real form of
g. Equivalently, a real subalgebra h ⊂ gR is a real form of g if g = {u + iv |
u, v ∈ h}. As we will see, not every complex Lie algebra has a real form, and
if it does, it can have many real forms.

Exercises 1.40
(1) Show that ḡ ' g iff g has a real form.
(2) Let g be the 3 dimensional complex Lie algebra spanned by X,Y, Z

with [X, Y ] = 0, [X, Z] = X, [Y, Z] = aY . Show that g has a real
form iff a ∈ R or a ∈ C with |a| = 1.

(3) If g is real, the real Lie algebra (gC)R is “unrelated" to g, e.g. not
isomorphic to g⊕g. For example, for g = sl(n,R) show that sl(n,C)R
has no non-trivial ideals.
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(4) If Bg is the Killing form of a Lie algebra g, show that Bg = Bg⊗C if
g is real, and BgR

= 2Re(Bg) if g is complex.



2

A Potpourri of Examples

As is always the case, examples are the heart of a subject. There are many
matrix groups, i.e. subgroups of GL(n,R) or GL(n,C), that we will later
come back to frequently. We therefore devote an extra chapter to studying
these Lie groups in detail.

Recall that for G = GL(n,R) and GL(n,C) we have the following:

[A,B] = AB −BA, exp(A) = eA, Ad(g)B = ABA−1 (2.1) MatrixAll

where A, B ∈ g and g ∈ G. Hence, by Proposition 1.11 (a), Proposition 1.25
(d) and Excercise 1.30 (7), the same holds for any of their Lie subgroups.
In most cases the subgroup is defined by equations. Since it is thus closed,
Theorem 1.13 implies that it is a Lie subgroup. We will use Proposition 1.25
(e) to identify the Lie algebra. We will use all of these results from now on
without repeating them.

Orthogonal Groups

Let V be an n-dimensional real vector space with a positive definite sym-
metric bilinear form 〈 · , · 〉, also called an inner product. We define the
orthogonal group

O(V ) = {A ∈ GL(V ) | 〈Au,Av〉 = 〈u, v〉 for all u, v ∈ V }
consisting of isometries A, and the special orthogonal group

SO(V ) = {A ∈ O(V ) | detA = 1}
The normal form for orthogonal matrices can be described as follows.

20
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Let R(θ) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
be a rotation by angle θ. Then there

exists an orthonormal basis such that the matrix representing A ∈ O(V )
has the form A = diag(R(θ1), . . . R(θm),±1,±1) if n = 2m + 2 or A =
diag(R(θ1), . . . , R(θm), ε), ε = ±1, if n = 2m + 1. In the first case we can
assume that the lower 2×2 block takes on the form diag(1, ε) since otherwise
it can be written as a rotation. In either case, by continuously changing the
angles, we can connect A to the matrix diag(1, . . . , 1, ε) with det = ε. This
shows that O(V ) has two components, and that SO(V ) is connected. In
particular they have the same Lie algebra, which is given by

o(V ) ' so(V ) ' {A ∈ gl(V ) | 〈Au, v〉+ 〈u, Av〉 = 0 for all u, v ∈ V }

so called skew adjoint endomorphism. Indeed, differentiating 〈A(t)u, A(t)v〉 =
〈u, v〉 along a curve A(t) ∈ SO(V ) with A(0) = Id, we see that A′(0) is skew
adjoint. Conversely, if A is skew adjoint, one shows that etA is orthogonal
by differentiating 〈etAu, etAv〉. This method works for all of the examples in
the next few sections, and we will therefore not repeat it.

It is often convenient to choose an orthonormal basis ui of V and identify
V ' Rn by sending ui to the standard orthonormal basis e1, . . . , en of Rn.
The endomorphism is then identified with a matrix and O(V ),SO(V ) are
isomorphic to:

O(n) = {A ∈ M(n, n,R) | AT A = Id} , SO(n) = {A ∈ O(n) | det A = 1}

consisting of orthogonal matrices A. This easily follows by writing the
inner product in Rn as 〈u, v〉 = uT v. The Lie algebra is now

so(n) = {A ∈ M(n, n,R) | A + AT = 0}

consisting of skew symmetric matrices A. Thus dim SO(n) = n(n− 1)/2.
Since AT A = Id is equivalent to the condition that the rows (or the columns)
form an orthonormal basis, it follows that O(n) is compact.

More generally, we consider a non-degenerate symmetric bilinear form
of signature (p, q) on V , where an orthonormal basis ui satisfies 〈u, v〉 =

p∑

i=1

aibi −
p+q∑

i=p+1

aibi for u =
∑

aiui, v =
∑

biui. Isometries are defined as

before as subgroups of GL(V ). After choosing an orthonormal basis, we can
write the inner product as 〈u, v〉 = uT Ip,qv where Ip,q = diag(Ip,−Iq) and Ik

is the k×k identity matrix. Thus 〈Au,Av〉 = 〈u, v〉 iff uT AtIp,qAv = uT Ip,qv



22 Chapter 2 A Potpourri of Examples

for all u, v and hence in terms of matrices the Lie group is isomorphic to

O(p, q) = {A ∈ M(n, n,R) | AT Ip,qA = Ip,q}
with Lie algebra

o(p, q) = {A ∈ M(n, n,R) | AT Ip,q + Ip,qA = 0},
If in addition det = 1, we denote it by SO(p, q), and by SO+(p, q) the identity
component. An important example is the Lorenz group O(p, 1).

We also have the complexification of so(n):

so(n,C) = {A ∈ M(n, n,C) | A + AT = 0}.
Notice that o(p, q) ⊗ C ' so(n,C) for all p, q with n = p + q since in the
basis ui we can change up+1, . . . , up+q to iup+1, . . . , iup+q. Thus so(n,C) has
many different real forms.

We finally discuss applications of the polar decomposition of matrices.
We will from now one denote by Symn(R) the set of n × n real symmetric
matrices and by Sym+

n (R) the positive definite ones.

Proposition 2.2 Given A ∈ GL(n,R), there exists a unique decomposi-polarreal
tion A = R eS with R ∈ O(n) and S ∈ Symn(R).

Proof We first claim that we can uniquely write A as A = RL with A ∈ O(n)
and L symmetric L = Lt and positive definite L > 0. Recall that L is called
positive definite if Lu · u > 0 for all u 6= 0, or equivalently all eigenvalues of
L are positive. Indeed, if this is possible, then AtA = LtRtRL = L2. Now
AtA is clearly symmetric, and positive definite since AtAu ·u = Au ·Au > 0.
Thus AtA has a unique (positive definite) square root. We therefore define
L =

√
AtA and set R = AL−1. Then R ∈ O(n) since RtR = L−1AtAL−1 =

L−1L2L−1 = Id. This proves existence and uniqueness. Next we claim that
we have a diffeomorphism from Symn(R) to Sym+

n (R) given by L → eL.
Clearly eL ∈ Sym+

n (R) since (eL)t = eLt and if Lv = λv, then eLv = eλv

which one sees by using the power series definition of eL. If B ∈ Sym+
n (R),

then there exists a basis of eigenvectors ui with Bui = µui and µi > 0.
Writing µi = eλ

i we define A by Aui = λiui and clearly eA = B. This shows
the map is onto. Since eigenvectors of A and eA are the same, it also follows
that the map is injective. Differentiability follows from the differentiability
of the exponential map.

This in particular implies:
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Corollary 2.3 GL(n,R) is diffeomorphic to O(n)× Rm, GL+(n,R) dif-diffeoreal
feomorphic to SO(n)×Rm and SL(n,R) is diffeomorphic to SO(n)×Rm−1

with m = n(n− 1)/2.

Thus GL(n,R) has 2 components and SL(n,R) is connected.
There exists a vast generalization of Proposition 2.13 for any Lie group:

Proposition 2.4 If G is a connected Lie group, then there exists a com-maxcompact
pact subgroup K, such that K is maximal in G among compact subgroups,
and unique up to conjugacy.

Exercises 2.5

(1) Show that in the polar decomposition of A ∈ O(p, q), p, q ≥ 1, R ∈
O(p)×O(q). Thus these groups are non-compact, have 4 components,
and O(p, q) and O(p′, q′) are isomorphic iff (p, q) = (p′, q′) or (p, q) =
(q′, p′).

(2) Let g = diag(−1, 1, . . . , 1). Clearly g lies in O(n) but not in SO(n).
Show that Ad(g) lies in Aut(so(n)) but not in Int(so(n)).

(3) Show that the Killing form of o(n) is given by B(X, X) = (n−2) trX2.

Unitary Groups

Let V be a complex vector space, with a positive definite Hermitian inner
product 〈 , 〉, i.e. 〈λu, v〉 = λ̄〈u, v〉, 〈u, λv〉 = λ〈u, v〉, 〈u, v〉 = 〈v, u〉 and
〈u, u〉 > 0 iff u 6= 0. The analogue of the orthogonal group is the unitary
group

U(V ) = {A ∈ GL(V ) | (Av,Aw) = (v, w) for all v, w ∈ V }.
with Lie algebra

u(V ) = {A ∈ gl(V ) | 〈Au, v〉+ 〈u, Av〉 = 0 for all u, v ∈ V }
and the special unitary group

SU(V ) = {A ∈ U(V ) | detA = 1} with su(V ) = {A ∈ u(V ) | trA = 0}
If V = Cn, we write U(n) instead of U(V ). With respect to an orthonormal
basis ui, we have 〈u, v〉 =

∑
āibi = aT b̄ which easily shows that U(V ) is

isomorphic to

U(n) = {A ∈ GL(n,C) | A∗A = Id}, with u(n) = {X ∈ gl(n,C)
∣∣ A+A∗ = 0}
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where A∗ = ĀT is the transpose conjugate. Similarly,

SU(n) = {A ∈ U(n) | det A = 1} with su(n) = {A ∈ u(n) | trA = 0}.
Recall that for A ∈ U(n), we have | detA| = 1 and for A ∈ u(n), trA is
imaginary. Thus dim U(n) = n2 and dim SU(n) = n2 − 1

For every unitary matrix there exists an orthonormal basis of eigenvectors
ui with eigenvalues λi and |λi| = 1. Thus any matrix in U(n) can be deformed
within U(n) to the Identity matrix by changing the eigenvalues. Hence U(n)
is connected. Clearly, the same is true for SU(n) and we also have that U(n)
and SU(n) are compact.

Note that, although the matrices in u(n) are complex, u(n) is not a com-
plex subspace of gl(n,C), i.e. it is not a complex Lie algebra. If we complexify
we claim

u(n)⊗ C ' gl(n,C) and su(n)⊗ C ' sl(n,C).

In fact, a complex matrix A is the sum of a hermitian and skew hermitian
matrix: A = (A + A∗)/2 + (A − A∗)/2. Furthermore, i times a hermitian
matrix is skew hermitian. Thus for A ∈ gl(n,C) we have A = P + iQ with
P, Q skew hermitian, i.e. P,Q ∈ u(n).

For complex matrices we have the analogue of a polar decomposition.

Proposition 2.6 Given A ∈ GL(n,C), there exists a unique decomposi-polarreal
tion A = R eS with R ∈ U(n) and S hermitian, i.e. S = S∗.

The proof is the same as before, and hence

Corollary 2.7 GL(n,C) is diffeomorphic to U(n)×Rm, and SL(n,C) todiffeocomplex
SU(n)× Rm−2 with m = n2.

Thus GL(n,C) and SL(n,R) are connected and noncompact.

We finally discuss an embedding GL(n,C) ⊂ GL(2n,R). For this we use
the identification Cn ' R2n:

R2n ' Rn ⊕ Rn → Cn : (u, v) → u + iv (2.8) Cn=R2n

which induces an embedding:

GL(n,C) ⊂ GL(2n,R) : A + iB →
(

A −B

B A

)
(2.9) Cn=R2n

since (A + iB)(u + iv) = Au−Bv + i(Av + Bu). This is clearly an injective
Lie group homomorphism. One gets further embeddings:

U(n) ⊂ SO(2n), in fact U(n) = O(2n) ∩GL(n,C) = SO(2n) ∩GL(n,C)
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Indeed, the real part of the hermitian inner product on Cn is the euclidean
inner product on R2n:

〈u + iv, u′ + iv′〉 = (u + iv) · (u′ − iv′) = u · u′ + v · v′ + i(v · u′ − u · v′).
Furthermore, A preserves the hermitian inner product iff it preserves its
length, which, since real, is the same as preserving the euclidean length and
hence the euclidean inner product.

Exercises 2.10

(1) Show that U(n) is diffeomorphic to SU(n) × S1, but not isomorphic
(not even as groups). On the other hand, show that SU(n)× S1 is a
n-fold cover of U(n).

(2) Show that SU(2) =
{(

a −b̄

b ā

)
| a, b ∈ C with |a|2 + |b|2 = 1

}
. Hence

SU(2) is diffeomorphic to S3(1) ⊂ C2.
(3) Develop the definition and properties of U(p, q) and SU(p, q).
(4) Show that the automorphism A → Ā is outer for U(n), n ≥ 2 and

SU(n), n ≥ 3, but inner for SU(2).
(4) Show that the Killing form of su(n) is given by B(X, X) = 2n trX2.

Quaternions and symplectic groups

Besides R and C there is another important division algebra, the quater-
nions, denoted by H. It consists of the elements ±1,±i,±j±k which satisfy
i2 = j2 = k2 = −1, i, j, k anti-commute with each other, and 1 commutes
with i, j, k. An element q ∈ H has the form q = a + bi + cj + dk. We denote
by q̄ = a − bi − cj − dk the conjugate of q. Note that it satisfies qr = r̄q̄.
Under the identification H ' R4, q → (a, b, c, d) the Euclidean inner product
is given by 〈q, r〉 = Re(q̄r) with norm |q|2 = qq̄ = q̄q = a2 + b2 + c2 + d2.

One easily checks that |qr| = |q| · |r| which implies that S3(1) = {q ∈
H | |q| = 1} ⊂ R4 is a Lie group. The same is of course also true for
S1(1) = {q ∈ C | |q| = 1} ⊂ R2. These are the only spheres that can be Lie
groups, see Excercise 6.

Linear Algebra over the Quaternions must be done carefully since quater-
nions do not commute. When defining a vector space V over H, we let the
scalars act from the right. Thus a linear map L : V → W is H linear if
L(vq) = L(v)q for v ∈ V, q ∈ H. It has the following advantage. If we choose
a basis ui of V over H, and associate as usual to L the matrix A = (aij)
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with L(ui) =
∑

ji ujaji, then L acts via matrix multiplication: If u =
∑

uibi

and b = (b1, . . . , bn)T then L(u) =
∑

j(
∑

i ajibi)uj , i.e. Lu is equal to the
vector Ab in the basis ui. Thus composition of two H linear maps L and M

corresponds to the usual matrix multiplication of the matrices associated to
L and M as above.

On the other hand, certain things that we are used to from Linear Algebra
are not allowed, e.g. with the usual definition of the determinant, det(AB) 6=
detA detB. Also trAB 6= trBA and AB = B̄Ā in general. Eigenvectors are
not well behaved either: If A(v) = vq, then A(vr) = v(qr) = vr(r−1qr) and
thus if q is an eigenvalue, so is r−1qr for any r ∈ H. And the endomorphism
q Id is different from scalar multiplication by q. Somewhat surprisingly, H
’holomorhic’ maps are linear, i.e. if F : Hn → Hn is differentiable with dFp

H-linear for all p, then F is H-linear.
But it still makes sense to talk about GL(n,H) as a Lie group since multi-

plication of matrices corresponds to composition of H linear maps, and hence
the product of invertible matrices are invertible. Its Lie algebra is gl(n,H),
the set of all n × n matrices whose entries are quaternions. One easily sees
that exp and Ad satisfy the same properties as for GL(n,C). Thus the Lie
bracket is still [A, B] = AB − BA. But notice that SL(n,H) and sl(n,H)
cannot be defined in the usual fashion, although we will find a different
definition shortly.

A quaternionic inner product is a bilinear form with 〈qu, v〉 = q̄〈u, v〉,
〈u, qv〉 = 〈u, v〉q and 〈u, v〉 = 〈v, u〉 as well as 〈u, u〉 > 0 iff u 6= 0. We can
thus define the symplectic group Sp(V ) for a quaternionic vector space
with a quaternionic inner product as the set of isometries: 〈Av,Aw〉 = 〈v, w〉.
After a choice of an orthonormal basis, we identify V with Hn and the inner
product becomes 〈v, w〉 = v̄T ·w. The euclidean inner product on Hn ' R4n

is then given by Re v̄ ·w. Notice that it follows as usual that (AB)∗ = B∗A∗,
where again A∗ = ĀT . Thus Sp(V ) is isomorphic to:

Sp(n) = {A ∈ GL(n,H) | A∗A = Id}, sp(n) = {X ∈ gl(n,H) | A + A∗ = 0}
In particular, dim Sp(n) = 2n2 + n, and clearly, Sp(n) is again compact.

Next we discuss the embedding GL(n,H) ⊂ GL(2n,C). We identify Hn '
C2n:

C2n ' Cn ⊕ Cn → Hn : (u, v) → u + jv (2.11) Cn=R2n

This gives rise to the Lie group embedding:

GL(n,H) ⊂ GL(2n,C) : A + jB →
(

A −B̄

B Ā

)
(2.12) Hn=C2n
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since (A+jB)(u+jv) = Au+jBjBv+Ajv+jBu = Au−B̄v+j(Āv+Bu).
Here we have used jA = Āj for A ∈ gl(n,C). The claim that the embedding
is a Lie group homomorphism follows from the fact that matrix multiplication
corresponds to a composition of linear maps.

As a consequence

Sp(n) = U(2n) ∩GL(n,H) = SU(2n) ∩GL(n,H).

Indeed, the ’complex’ part of the quaternionic inner product on Hn is the
hermitian inner product on C2n:

〈u + jv, u′ + jv′〉 = (ū− jv) · (u′ + jv′) = ū · u′ + v̄ · v′ + j(v · u′ − u · v′).
Furthermore, Sp(n) ⊂ SU(2n), or equivalently sp(n) ⊂ su(2n), follows from
(2.12) since the image is skew hermitian with trace 0.

Under the identification Cn ⊕ Cn → Hn right multiplication by j corre-
sponds to the complex antilinear endomorphism J̄(u, v) = (−v̄, ū). Thus a
complex linear endomorphism is H linear iff it commutes with J̄ . We could
thus equivalently define:

GL(n,H) = {A ∈ GL(2n,C) | AJ̄ = J̄A}
and

Sp(n) = {A ∈ U(2n) | AJ̄ = J̄A}.
This can be useful if one is doubtful wether certain operations of matrices
are allowed over H. It also enables us to define:

SL(n,H) = {A ∈ SL(2n,C) | AJ̄ = J̄A}
with Lie algebra

sl(n,H) = {A ∈ sl(2n,C) | AJ̄ = J̄A}.
It is also the best way to prove the polar decomposition theorem:

Proposition 2.13 Given A ∈ GL(n,H), there exists a unique decompo-polarreal
sition A = R eS with R ∈ Sp(n) and S = S∗. Thus GL(n,H) is diffeomor-
phic to Sp(n)× Rm with m = 2n2 − n.

Exercises 2.14

(1) Show that a quaternionic vector space has an orthonormal basis and
hence Sp(n) is connected.

(2) Show that sl(n,H) ⊂ sl(2n,C) is a real form of sl(2n,C).
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(3) Show that the following properties do not hold for quaternionic matri-
ces: (AB)T = BT AT , AB = B̄Ā, det(AB) = detA detB, tr(AB) =
tr(BA). But it is true that (AB)∗ = B∗A∗.

(4) Convince yourself that letting the scalar act on the left in a quater-
nionic vector space and changing the identification in (2.12) to (u, v) →
u + vj does not work as well as above.

(5) Show that the Killing form of sp(n) is given by B(X, X) = 2n trX2.
(6) The geometrically inclined reader is encouraged to show that for a

non-abelian compact Lie group G, the left invariant 3-form ω(X, Y, Z) =
〈[X, Y ], Z〉, X, Y, Z ∈ g, is parallel, where 〈·, ·〉 is an inner product in-
variant under left and right translations. Show that this implies that
ω is harmonic, i.e. closed and co-closed, and hence non-zero in the De
Rham cohomology group H3

DR(G). Thus Sn is (homotopy equivalent)
to a Lie group iff n = 1, 3.

Non-compact symplectic groups

Let V be a real or complex vector space with a skew-symmetric non-
degenerate bilinear form

ω : V × V → R (or C)

We then define the symplectic group:

Sp(V, ω) = {A ∈ GL(V ) | ω(Av, Aw) = ω(v, w) for all v, w ∈ V }.
with Lie algebra

sp(V, ω) = {A ∈ gl(V ) | ω(Au, v) + ω(u,Av) = 0 for all u, v ∈ V }
One easily sees that there exists a symplectic basis, i.e., a basis x1, . . . , xn,

y1, . . . yn of V such that ω(xi, xj) = ω(yi, yj) = 0, and ω(xi, yj) = δij . In
particular, dimV is even. If we identify the basis with its dual basis, we
have ω =

∑
i dxi ∧ yi.

The matrix associated to ω with respect to a symplectic basis is

J :=
(

0 In

−In 0

)
.

in other words ω(u, v) = uT Jv. Thus Sp(R2n, ω) can be identified with a
matrix group:

Sp(n,R) = {A ∈ GL(2n,R) | AT JA = J}.
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Notice that we can embed GL(n,R) in Sp(n,R) by

B →
(

B 0
0

(
BT

)−1

)
.

since one easily checks that AT JA = J . In particular Sp(n,R) is not com-
pact. The Lie algebra of Sp(n,R) is

sp(n,R) ={X ∈ gl(2n,R) | XJ + JXT = 0}

=
{

X =
(

B S1

S2 −BT

)
| B ∈ gl(n,R) , Si ∈ Symn(R)

}

Thus dim Sp(n,R) = 2n2 + n.

In a similar way we define the symplectic group over C:

Sp(n,C) = {A ∈ GL(2n,C) | AT JA = J}
which preserves the complex symplectic form ω(u, v) = uT Jv, u, v ∈ Cn.
Notice that ω is defined to be skew-symmetric and not skew-hermitian.

Next, we observe that U(n) ⊂ Sp(n,R). Indeed, 〈u + iv, u′ + iv′〉 =
u · u′ + v · v′ + i(u · v′ − v · u′) = |(u, v)|2 + iω(u, v). Thus A ∈ U(n) iff it
preserves the euclidean norm as well as the symplectic form:

U(n) = O(2n) ∩ Sp(n,R) = SO(2n) ∩ Sp(n,R).

Similarly,

Sp(n) = U(2n) ∩ Sp(n,C) = SU(2n) ∩ Sp(n,C).

We finally discuss the polar decomposition theorem for symplectic groups.

Proposition 2.15polarsymp

(a) Given A ∈ Sp(n,R), there exists a unique decomposition A = R eS

with R ∈ U(n) and S ∈ sp(n,R) ∩ Sym2n(R).
(b) Given A ∈ Sp(n,C), there exists a unique decomposition A = R eS

with R ∈ Sp(n) and S ∈ sp(n,C) ∩ Sym2n(C).

Proof Given a matrix A with AJAT = J , we write it as A = RL with R ∈
O(2n) and L ∈ Sym+

2n(R). Hence RLJLRT = J or equivalently RT JR =
LJL or (RT JR)L−1 = LJ = J(−JLJ) since J2 = − Id. Now notice that in
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the equation (RT JR)L−1 = J(−JLJ) the first matrix on the left and right is
orthogonal, and the second one symmetric. Hence by the uniqueness of polar
decompositions, RT JR = J and L−1 = −JLJ , or LJL = J . This says that
RT = R−1 ∈ Sp(n,R), or equivalently R ∈ Sp(n,R), and L ∈ Sp(n,R). Thus
R ∈ O(2n)∩ Sp(n,R) = U(n) and L = eS with S ∈ sp(n,R)∩Sym2n(R). A
similar proof works for complex matrices.

In particular, Sp(n,R) and Sp(n,C) are connected and diffeomorphic to
U(n)× Rm and Sp(n)× Rm respectively.

Exercises 2.16

(1) Show that Sp(1,R) is isomorphic to SL(2,R) and Sp(1,C) to SL(2,C)..
(2) Show that sp(n)⊗ C ' sp(n,C).
(3) Show that A ∈ Sp(n,R) satisfies det A = 1.

Coverings of classical Lie groups

There are interesting coverings among the examples in the previous sec-
tions in low dimensions, which we discuss now. These will also follow from
the general theory developed in later sections, but we find it illuminating to
describe them explicitly. Recall that if H, G are connected, then φ : H → G„
is a covering iff dφ is an isomorphism. Since the Lie algebra of kerφ is ker dφ,
it follows that a homomorphism φ with kerφ discrete and dimH = dimG,
must be a covering.

We start with the fundamental groups of the compact Lie groups in the
previous sections.

Proposition 2.17fundgroup

(a) π1(SO(n) = Z2 for n ≥ 3 and π1(SO(2) = Z.
(a) π1(U(n) = Z and π1(SU(n) = 0 for n ≥ 1.
(b) π1(Sp(n) = 0 for n ≥ 1.

Proof (a) Clearly π1(SO(2)) = π1(S1) = Z. For n ≥ 3, the proof is by
induction. By Proposition 2.20, π1(SO(3)) = Z2. Now let SO(n+1) act on Sn

via p → Ap. The isotropy at e1 is {A ∈ SO(n+1) | Ae1 = e1} = {diag(1, B) |
B ∈ SO(n)} ' SO(n). Since the action is transitive, Sn = SO(n+1)/SO(n).
One thus has a fibration SO(n) → SO(n + 1) → Sn and we will use the long
homotopy sequence πi(SO(n)) → πi(SO(n + 1)) → πi(Sn). Since πi(Sn) = 0
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when i = 1, . . . , n−1, it follows that the inclusion π1(SO(n)) → π1(SO(n+1))
is onto for n ≥ 2 and injective for n ≥ 3. Thus Z2 = π1(SO(3)) = π1(SO(n))
for n ≥ 4 which proves our claim.

(b) The proof is similar. U(n + 1), as well as SU(n + 1), acts transitively
on S2n+1 ⊂ Cn+1 with isotropy U(n) resp. SU(n). From the long homotopy
sequence it follows that π1(U(n)) → π1(U(n + 1)) is an isomorphism for
n ≥ 1 and similarly for SU(n). Since π1(U(1)) = Z and π1(SU(1)) = 0, the
claim follows.

(c) Similarly, Sp(n + 1) acts transitively on S4n+3 ⊂ Hn+1 with isotropy
Sp(n) and π1(Sp(1)) = π1(S3)) = 0.

The polar decomposition theorems imply

Corollary 2.18pi1class

(a) π1(GL+(n,R)) = π1(SL(n,R)) = Z2 for n ≥ 3 and Z for n = 2.
(b) π1(GL(n,C)) = Z and π1(SL(n,C)) = 0 for n ≥ 2.
(c) π1(GL(n,H)) = π1(SL(n,H)) = 0 for n ≥ 2.
(d) π1(Sp(n,R)) = Z for n ≥ 1.

The fact that π1(Sp(n,R)) = Z is particularly important in symplectic
geometry since it gives rise to the Maslov index of a loop of symplectic
matrices.

As we saw in Chapter 1, coverings are closely related to the center of a
Lie group and we will now compute the center of the classical Lie groups.
In any of the examples we saw so far, they all consist of diagonal matrices.
This is in fact true in many cases. One easily shows:

Z(GL(n,R)) = R∗, Z(GL(n,C)) = C∗, Z(Sp(n,R)) = Z2

Z(U(n)) = S1, Z(SU(n)) = Z(SL(n,C)) == Zn, Z(Sp(n)) = Z2 (2.19)
Z(O(n)) = Z2, Z(SL(n,R)) = Z(SO(n)) = Z2 if n even, and {Id} if n odd.

There are some explicit covers that are often useful.

Proposition 2.202foldcovers1

(a) Sp(1) is a two-fold cover of SO(3) ' RP3.
(b) Sp(1)× Sp(1) is a two-fold cover of SO(4).
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Proof (a) We can regard the adjoint representation of Sp(1) = {q ∈ H |
|q| = 1} as the two fold cover:

φ : Sp(1) → SO(3) : q → {v → qvq̄} ∈ SO(ImH) ' SO(3).

Indeed, notice that v → qvq̄ is an isometry of H since |qvq̄| = |v|. Fur-
thermore φ(q)(1) = 1 and hence φ(q) preserves (R · 1)⊥ = ImH and lies
in SO(3) since Sp(1) is connected. The center of Sp(1) is clearly {±1}
and thus kerφ = {±1}. Since both groups are 3 dimensional, φ a cov-
ering. This implies that SO(3) = Sp(1)/{±1} which is diffeomorphic to
S3/{v → −v} = RP3.

(b) Similar, we have a cover

ψ : Sp(1)× Sp(1) → SO(4) : (q, r) → {v → qvr̄} ∈ SO(H) ' SO(4)

One easily sees that kerψ = {±(1, 1)} and hence ψ is a 2-fold cover as well.

Somewhat more difficult are the following 2-fold covers:

Proposition 2.212foldcovers2

(a) SL(4,C) is a two-fold cover of SO(6,C).
(a) Sp(2) is a two-fold cover of SO(5).
(b) SU(4) is a two-fold cover of SO(6).

Proof (a) Consider C4 with the standard hermitian inner product 〈·, ·〉. It
induces an hermitian inner product on ∧2C4 ' C6 given by

〈v1 ∧ v2, w1 ∧ w2〉 := det(〈vi, wj〉i,j=1,2).

If A ∈ GL(4,C), we define the linear map

∧2A : ∧2C4 → ∧2C4 : ∧2 A(v ∧ w) := (Av) ∧ (Aw).

If A ∈ U(4), then ∧2A ∈ U(6).
Next, we consider the bilinear form α on ∧2C4 given by

α : ∧2C4 × ∧2C4 → ∧4C4 ' C, : (u, v) → u ∧ v.

α is symmetric since v ∧ w = (−1)deg v deg ww ∧ v. One also easily sees that
it is non-degenerate and thus the matrices that preserve α is SO(6,C). If
A ∈ SL(4,C), then

α((∧2A)u, (∧2A)v) = (∧2A)u ∧ (∧2A)v = (∧4A)(u ∧ v)



Coverings of classical Lie groups Section 2.5 33

= det(A)(u ∧ v) = u ∧ v = α(u, v)

so ∧2A preserves α. This defines a map

ψ : SL(4,C) → SO(6,C) , A → ∧2A,

which is a homomorphism since ∧2(AB)(v∧w) = ABv∧ABw = (∧2A)(Bv∧
Bw) = (∧2A)(∧2B)(v ∧ w). If A ∈ kerψ, then Au ∧ Av = u ∧ v for all
u, v, which implies that A preserve planes and hence lines as well. Thus
Aei = ±1ei and one easily sees that this can only be if A = ± Id. Thus
kerψ = {± Id} and hence ψ is a 2-fold cover since both have the same
dimension.

(b) If A ∈ SU(4) ⊂ SL(4,C), then B := ψ(A) lies in U(6), and since it
also preserves α, in SO(6,C) as well. Thus B̄BT = Id and BBT = Id and
hence B̄ = B which means that B ∈ SO(6). Thus ψ also induces the desired
2-fold cover from SU(4) to SO(6).

(c) Now let A ∈ Sp(2). Recall that Sp(2) = SU(4) ∩ Sp(2,C) and let ω

be the symplectic 2-form on C4 that defines Sp(2,C). It can be regarded as
a linear map ω̃ : ∧2 C4 → C, : v ∧ w → ω(v, w). Since A preserves ω, we
also have ω̃(∧2A(v ∧ w)) = ω(Av,Aw) = ω(v, w) = ω̃(v ∧ w) and thus ∧2A

preserves ker ω̃. Thus ∧2A ∈ SO(6) has a fixed vector, which implies that
∧2A ∈ SO(5). Hence ψ also induces the desired 2-fold cover from Sp(2) to
SO(5).

One can also make the coverings in Proposition 2.21 more explicit by ob-
serving the following. If ei is the standard orthonormal basis with respect
to the hermitian inner product on C4, then ei ∧ ej , i < j is an orthonormal
basis of ∧2C4. One easily see that the six 2-forms

1√±2
(e1 ∧ e2 ± e3 ∧ e4),

1√±2
(e1 ∧ e3 ± e2 ∧ e4),

1√±2
(e1 ∧ e4 ± e2 ∧ e3)

form an orthonormal basis with respect to α, and with respect to 〈·, ·〉 as
well. Let B be the matrix of ∧2A in this basis. If A ∈ SL(4,C), then B lies
in SO(6,C). If A ∈ SU(4,C), B is a real matrix and is hence an element
in SO(6). One easily shows that the kernel of ω̃ is spanned by the above
six vectors with 1√−2

(e1 ∧ e3 − e2 ∧ e4) removed. Hence ∧2A, A ∈ Sp(2)
preserves this 5 dimensional space and thus B lies in SO(5). This enables
one, if desired, to write down explicitly the matrix ∧2A.

Notice that in Proposition 2.20 and Proposition 2.21, the groups on the
left are connected and simply connected and hence are the universal covers
of the groups on the right.
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Since π1(SO(n)) = Z2 for n ≥ 3, there exists a 2-fold universal cover which
is again a Lie group. These are the spinor groups Spin(n). By the above
Proposition 2.20 and Proposition 2.21, we have

Spin(3) = Sp(1), Spin(4) = Sp(1)× Sp(1),Spin(5) = Sp(2), Spin(6) = SU(4)

The higher spin groups have no simple description as above. We will come
back to them later, and will also see how to represent them as matrix groups.

Another important but non-trivial questions about the spin groups is what
their center is. From Z(SO(2n + 1)) = {e} and Z(SO(2n)) = Z2 it fol-
lows that Z(Spin(2n + 1)) = Z2 and |Z(Spin(2n))| = 4. But notice that
Z(Spin(4)) = Z2 ⊕ Z2 and Z(Spin(6)) = Z4. As we will see:

Z(Spin(n)) '



Z2 n = 2k + 1
Z4 n = 4k + 2
Z2 ⊕ Z2 n = 4k

This will in particular imply that besides SO(4n) there is another Lie group,
called SO′(4n), whose 2-fold universal cover is Spin(4n) as well.

Example 2.22 We now apply the above results to show that there are Liematrix
groups which are not matrix groups, i.e. are not Lie subgroups of GL(n,R)
or GL(n,C) for any n.

We saw above that SL(n,R) is not simply connected and we let G be the
2-fold universal cover of SL(n,R). We claim that G cannot be a matrix
group. So assume that there exists an injective Lie group homomorphism
φ : G → GL(n,C) for some n. Recall that g⊗C = sl(n,C) and that SL(n,C)
is simply connected. Thus the Lie algebra homomorphism dφ⊗C : sl(n,C) →
gl(n,C) can be integrated to a homomorphism ψ : SL(n,C) → GL(n,C) with
dψ = dφ⊗ C. In the following diagram

G = ˜SL(n,R)
φ //

π

²²

GL(n,C)

SL(n,R) i // SL(n,C)

ψ

OO

π denotes the 2-fold cover and i the inclusion. The above diagram is com-
mutative since all groups are connected, and the diagram is by definition
commutative on the level of Lie algebras. But this is a contradiction since φ

is injective but π ◦ i ◦ ψ is not since π is a 2-fold cover.

Exercises 2.23
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(1) Determine all Lie groups with Lie algebra o(n) for n ≤ 6 up to iso-
morphism. In particular show that SO(4) and S3×SO(3) are not
isomorphic (not even as groups).

(2) Determine all Lie groups with Lie algebra u(n) up to isomorphism.
How are they related to U(n)?

(3) Find a 2-fold cover SL(2,R) → SO+(2, 1) and SL(2,C) → SO+(3, 1).
Thus the first 2 Lorenz groups are SO+(2, 1) ' PSL(2,R) and SO+(3, 1) '
PSL(2,C). They can also be regarded as the isometry group of 2 and
3 dimensional hyperbolic space.

(3) Show that there are infinitely many covers of Sp(n,R) which are not
matrix groups.



3

Basic Structure Theorems

Although it will not be the focus of what we will cover in the future, we
will discuss here the basics of what one should know about nilpotent and
solvable groups. We do not include the proofs of all results, but present the
basic ideas.

Nilpotent and Solvable Lie algebras
Let g be a Lie algebra over R or C. We define inductively:

g0 = g; gk = [g, gk−1]

g0 = g; gk = [gk−1, gk−1]

where, for any two linear subspace a, b ⊂ g, [a, b] refers to the subalgebra
spanned by the Lie brackets [u, v], u ∈ a, v ∈ b. The first is usually called
the lower cental series and the second the derived series. Clearly both

{
gk

}
and {gk} are decreasing sequences of subalgebras.

Definition 3.1 A Lie algebra g is called k-step nilpotent if gk = 0 and
gk−1 6= 0, i.e., if the sequence

{
gk

}
terminates. g is called k step solvable

if gk = 0 and gk−1 6= 0.

A connected Lie group G is called nilpotent (solvable) if its Lie algebra g

is nilpotent (solvable). The basic properties for both types of Lie algebras is
given by the following Proposition.

36
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Proposition 3.2 Let g be a Lie algebra which is k step nilpotent resp. ksolvbasic
step solvable. The following are some basic facts:

(a) gi ⊂ gi for all i. In particular, g is solvable if it is nilpotent.
(b) gi and gi are ideals in g.
(c) If g is nilpotent, then

{
gk−1

}
lies in the center. If g is solvable, {gk−1}

is abelian.
(d) A subalgebra of a nilpotent (solvable) Lie algebra is nilpotent (solv-

able).
(e) If a ⊂ b is an ideal of the Lie algebra b, we let a/b be the quotient

algebra. If a is solvable (nilpotent), a/b is solvable (nilpotent).
solvexact (f) Let

0 → a → b → c → 0

be an exact sequence of Lie algebras. If a and c are both solvable,
then b is solvable. In general the corresponding statement is not true
for for nilpotent Lie algebras.

(g) Let a, b be solvable (nilpotent) ideals, then the vector sum a + b is a
solvable (nilpotent) ideal.

Proof We only present the proof of some of them, since most easily follow
by using the Jacobi identity and induction on i.

(b) The Jacobi identity implies that gi is an ideal in g, and similarly gi is
an ideal in gi−1. To see that gi is an ideal in g, one shows by induction on
k that gi is an ideal in gi−k.

(f) Let φ : a → b and ψ : b → c be the Lie algebra homomorphisms in the
exact sequence. Clearly, ψ(bk) ⊂ ck. Since ck = 0 for some k, exactness
implies that bk ⊂ Im(ak) and since am = 0 for some m, we also have bm = 0.

(g) Consider the exact sequence of Lie algebras

0 → a → a + b → (a + b)/a → 0.

Since (a + b)/a ' b/(a ∩ b), and since b, a ∩ b are solvable ideals, (a + b)/a

is a solvable ideal as well. Thus (f) implies that a + b is a solvable ideal.
The nilpotent case follows by showing that (a + b)k ⊂

∑

i

ai ∩ bk−i via

induction.

Example 3.3 a) The set of n × n upper-triangular matrices is an n-step
solvable Lie subalgebra of gl(n,R), and the set of n × n upper-triangular
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matrices with zero entries on the diagonal is an (n− 1)× (n− 1)-step nilpo-
tent subalgebra of gl(n,R). Thus any subalgebra of each is solvable resp.
nilpotent. We will shortly see that any solvable (nilpotent) Lie algebra is a
subalgebra of such upper triangular matrices.

b) Recall that an affine transformation of R is a map f : R → R so
f(x) = ax + b for a 6= 0. The group of affine transformations is isomorphic
to the Lie group consisting of matrices

{(
a b

0 1

)
| a 6= 0

}

The Lie algebra g of this Lie group is the algebra generated by X =
(

0 1
0 0

)

and Y =
(

0 1
0 0

)
Because these are upper-triangular matrices, g is solv-

able.
However, [X, Y ] = Y , so g is not nilpotent. It also provides an exam-

ple which shows that Proposition 3.2(f) is not true in the nilpotent case:
Consider the exact sequence of Lie algebras

0 → R ·X → g → R · Y → 0

Both R ·X and R · Y are nilpotent but g is not.

Since the sum of solvable ideals is solvable, we can make the following
definition.

Definition 3.4

(a) Given a Lie algebra g, the radical of g, denoted by rad(g), is the
unique maximal solvable ideal.

(b) g is called semisimple if g has no solvable ideals, i.e. rad(g) = 0.
Equivalently, g is semisimple if it has has no abelian ideal.

(c) g is called simple if the only ideals are {0} and g, and dim g > 1.

The assumption that dim g > 1 guarantees that a simple Lie algebra has
trivial center. We first observe that

Proposition 3.5 For any Lie algebra g, we have that g/ rad(g) is semisim-
ple.

Proof Assume a ⊂ g/ rad(g) is a solvable ideal. Since the quotient map
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π : g → g/ rad(g) is a homomorphism, π([π−1(a), g]) = [a, g] ⊂ a and thus
π−1(a) is an ideal in g. From the exact sequence

0 → rad(g) → π−1(a) → a → 0

it follows that π−1(a) is solvable, and hence by definition π−1(a) ⊂ rad(g).
Thus a must be trivial.

We mention, without proof the following theorem, which sometimes re-
duces a proof to the semisimple and the solvable case.

Theorem 3.6 [Levi-Malcev] Given a Lie algebra g, there exists a semisim-[Levi-Malcev
ple subalgebra h ⊂ g, unique up to an inner automorphism, such that
h + rad(g) = g, and h ∩ rad(g) = 0.

We now discuss the main result about nilpotent Lie algebras.

Theorem 3.7 [Engel] Let g ∈ gl(V ) be a Lie subalgebra whose elementEngel
are nilpotent, i.e., for each A ∈ g there exists a k such that Ak = 0. Then
there exists a basis, such that g lies in the subalgebra of upper triangular
matrices with zeros along the diagonal entries, and hence is nilpotent.

Proof This will easily follow from:

Lemma 3.8 Let g ∈ gl(V ) be a Lie subalgebra of nilpotent elements.nilplem
Then there exists a vector v such that Av = 0 for every A ∈ g.

Proof Recall that for X, Y ∈ g, we have [X,Y ] = XY − Y X. Thus Ak = 0
implies that (adX)2k = 0 since e.g. (adX)2(Y ) = X2Y − 2XY X + Y 2 and
the powers of X or Y accumulate on the left or the right. The rest of the
proof is by induction on the dimension of g, the case dim g = 1 being trivial.
Now suppose the lemma holds in dimension < n, and suppose dim g = n.
Let h ∈ g be a subalgebra of maximal dimension. Since adX(h) ⊂ h for
X ∈ h, we can define h′ = {adX : g/h → g/h | X ∈ h} ⊂ gl(g/h) as a Lie
subalgebra. By the above observation, every element of h′ is nilpotent and
since dim h′ < dim g, by induction, there exists an element Ā ∈ g/h such that
L(Ā) = 0 for every L ∈ h′ and thus an element A ∈ g such that adX(A) ∈ h

for all X ∈ h. In particular h + A is a subalgebra of g and by maximality
h + A = g.
Now let W := {w ∈ V | Xw = 0 for all X ∈ h}, which is non-zero by
induction hypothesis. A takes W to W since 0 = [X, A]w = XAw−AXw =
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XAw. But A|W is also nilpotent, and hence there exists a v ∈ W with
Av = 0. This vector v is clearly the desired vector.

We now return to the proof of Engel’s Theorem. We inductively choose
a basis e1, . . . , en with Ae1 = 0 and A(Vi) ⊂ Vi−1, i = 2, . . . , n, where
Vi := span{e1, . . . , ei}. The existence of e1 follows from the Lemma. Now
assume that we defined V1, . . . Vk such that A(Vi) ⊂ Vi−1, i = 1, . . . , k.
Then A induces a linear map Ā : V/Vk → V/Vk and Ā is again nilpotent.
Thus there exists a vector u ∈ V/Vk with Āu = 0 for all A ∈ g. If ek is a
preimage of u in V , we define Vk+1 = span{e1, . . . , ek+1} and by definition,
A(Vk+1) ⊂ Vk. This basis clearly has the desired properties.

We now derive several consequences.

Corollary 3.9 adX is nilpotent for all X ∈ g, iff g is nilpotent.uniquedph

Proof For one direction apply Engel’s Theorem to ad(g) ⊂ gl(g). For the
other observe that if g is nilpotent, then adX(gk) ⊂ gk+1 and hence adX is
nilpotent.

Corollary 3.10 A nilpotent Lie algebra g is isomorphic to a subalgebrauniquedph
of the nilpotent Lie algebra in gl(n,R) of upper triangular matrices with
zeros along the diagonals.

Proof Apply Ado’s Theorem.....

Theorem 3.11nilexp

(a) If G is a connected Lie group with nilpotent Lie algebra G, then
exp : g → G is a covering. In particular, if π1(G) = 0, then G is
diffeomorphic to Rn;

(b) If G ⊂ GL(V ) is such that g has only nilpotent elements, then exp :
g → G is a diffeomorphism.

Proof Proof to be added...

Corollary 3.12 If G is a Lie group whose Lie algebra has only nilpotent
elements, and π1(G) 6= 0, then G is NOT a matrix group.

This gives rise to many examples which are not matrix groups since a
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nilpotent Lie algebra always has a nontrivial center and hence there are
many discrete subgroups of Z(G).

The basic structure theorem for solvable Lie algebras is Lie’s Theorem. Its
proof is again by induction, in fact very similar to Engel’s Theorem, and we
will thus omit it here, but derive several important consequences.

Proposition 3.13 [Lie] Let g ∈ gl(Cn) be a solvable Lie subalgebra. ThenLie
there exists a λ ∈ g∗ and a vector v such that Av = λ(A)v for every A ∈ g.

Unlike Engel’s Theorem, this holds only over the complex numbers. As
before, this has the following consequence:

Corollary 3.14 If g ∈ gl(V ) be a solvable Lie algebra, then there exists
a basis such that g lies in the subalgebra of upper triangular matrices

Combining this with Ado’s Theorem one has

Corollary 3.15 Every solvable Lie algebra is a subalgebra of the Lie
algebra of upper triangular matrices in gl(n,C).

Corollary 3.16 g is solvable iff [g, g] is nilpotent.

Proof If [g, g] is nilpotent, clearly g is solvable. If g is solvable, we can embed
it as a subalgebra of the upper triangular matrixs, whose commutator has
0′s along the diagonal and hence is nilpotent.

The following result we will also present without proof.

Theorem 3.17 [Cartan’s Second Criterion] g is solvable iff B = 0 on
[g, g].

In one direction this is clear since g solvable implies [g, g] nilpotent and
the Killing form of a nilpotent Lie algebra is 0 since adX is nilpotent. Notice
that Cartan’s Second Criterion implies that a Lie algebra with B = 0 must
be solvable.

Exercises 3.18
(a) Give an example of a Lie algebra which is not nilpotent, but whose

Killing form vanishes.
(b)
(c)
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Semisimple Lie algebras

Recall that g is called semisimple if it has no solvable ideals, or equivalently
no abelian ideals. In particular the center of g is trivial. A more useful
characterization is:

Theorem 3.19 [Cartan’s Second Criterion] g is semisimple iff B is non-semisimplenondegB
degenerate.

Proof Recall that kerB is an ideal in g and that Ba = Bg|a for an ideal a in
g. Thus the Killing form of kerB is trivial which, by Cartan’s first criterium
implies that kerB is solvable. Hence, if g is semisimple, B is non-degenerate.

If, on the other hand, g is not semisimple, let a ⊂ g be an abelian ideal.
Choose a basis e1, . . . , ek, f1, . . . fl such that e1, . . . , ek is a basis of a. Then
for any X ∈ a and Y ∈ g we have adY adX(ei) = 0 and adY adX(fi) ∈
span{e1, . . . ek} and thus B(X, Y ) = tr(adY adX) = 0. This implies that
a ⊂ kerB and hence B is degenerate.

Notice that we actually proved two general statements: For any Lie algebra
g, kerB is a solvable ideal in g and a ⊂ kerB for any abelian ideal a in g.

Example 3.20 The Lie algebras sl(n,R), sl(n,C), su(n), so(n), sp(n,R), sp(n)
and o(p, q) are all semisimple. To see this, we first observe that B(X, Y ) =
α tr(XY ), where α is a non-zero constant that depends on the Lie algebra.
We saw this for some of the above Lie algebras in the exercises, and leave it
for the reader to check it for the others. Furthermore, one easily sees that
XT ∈ g if X ∈ g. We thus have

B(X,XT ) = tr(XXT ) = α
∑

i,j

x2
ij , X = (xij),

and thus B is non-degenerate.

The basic structure theorem for semisimple Lie algebras is:

Theorem 3.21 Let g be a semisimple Lie algebra. Then:semisimpleideals

(a) g = g1 ⊕ · · · ⊕ gk where gi are simple ideals.
(b) if a ∈ g is an ideal, then a =

⊕
j∈I gj for some I ⊂ {1, . . . , k}. In

particular, the decomposition in (a) is unique up to order.
(c) g = [g, g].
(d) Aut(g)/ Int(g) is discrete, or equivalent every derivation is inner.
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Proof Part (a) follows from the following 3 claims.
1. If a ⊂ g is an ideal, then a⊥ = {X ∈ g | B(X, Y ) = 0 for all Y ∈ a} is an
ideal.

Indeed, if X ∈ a⊥, Z ∈ a, Y ∈ g, then B([Y, X], Z)− = B([Y,Z], X) = 0
where we have used that adY is skew symmetric w.r.t. B.
2. If a is an ideal, then a ∩ a⊥ = 0.

First observe that for X,Y ∈ a ∩ a⊥, Z ∈ g, we have B([X,Y ], Z) =
−B([X, Z], Y ) = 0 since [X, Z] ∈ a and Y ∈ a⊥. Thus a ∩ a⊥ is an abelian
ideal which by semisimplicity must be 0.
3. dim a + dim a⊥ = dim g.

This is a general fact about non-degenerate bilinear forms. To see this,
let e1, . . . , ek be a basis of a. The equations B(ei, X) = 0, i = 1, . . . , k are
linearly independent since otherwise 0 =

∑
λiB(ei, X) = B(

∑
ei, X) for all

X ∈ g implies that B is degenerate. Thus the solution space has dimension
dim g− dim a.

Putting all three together, we have g = a ⊕ a⊥, a direct sum of 2 ideals.
Continuing in this fashion, we write g as a sum of simple ideals.

For (b) it is sufficient to show that if b is a simple ideal in g, then b = ai

for some i. But for a fixed j we have that b ∩ aj is in ideal in aj and thus
either b ∩ aj = 0 or b ∩ aj = aj . Thus there must exists an i with b = ai.

(c) For a simple Lie algebra g we have [g, g] = g since it is an ideal and
cannot be 0. The general claim now follows by combining with (a).

(d) Recall that the Lie algebra of inner derivations Int(g) is an ideal in
all derivations Der(g). Also, since the center of a semisimple Lie algebra
is 0, Int(g) ' ad(g) ' g and thus Int(g) is semisimple. Next we observe
that part 1.-3. in the proof of (a) also hold if we only assume that B|a is
non-degenerate (Notice that B|a is the Killing form of a since a is an ideal).
Thus Der(g) = Int(g)⊕ (Int(g))⊥. If D ∈ (Int(g))⊥ and adX ∈ Int(g) then
0 = [D, adx] = adDX and hence DX ∈ z(g) = 0. This implies that D = 0
and hence Der(g) = Int(g).

Exercises 3.22

(a) Show that g is semisimple (nilpotent, solvable) iff gC is semisimple
(nilpotent, solvable).

(b) Show that if gC is simple, then g is simple.
(c) If g is a Lie algebra such that adX is skew symmetric with respect

to some non-degenerate bilinear form, show that g ' z(g)⊕ b with b

semisimple.
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Compact Lie algebras

It is convenient to make the following definition.

Definition 3.23 A Lie algebra is called compact if it is the Lie algebra of a
compact Lie group.

Notice that in this terminology an abelian Lie algebra is compact. The
following is one of its basic properties.

Proposition 3.24biinvariant

(a) If g is a compact Lie algebra, then there exists an inner product on g

such that adX is skew-symmetric for all X ∈ g..
(b) If G is compact Lie group, then there exists a biinvariant metric on

G, i.e. a Riemannian metric such that Lg, Rg act by isometries for all
g ∈ G.

Proof This is a standard averaging procedure. Let G be a compact Lie group
with Lie algebra g. Choose any inner product 〈· , ·〉0 on g and define a new
inner product on g:

〈X,Y 〉 =
∫

G
〈Ad(g)X, Ad(g)Y 〉0 ω

where ω is a biinvariant volume form, i.e. L∗gω = R∗
gω = ω. One can easily

see the existence of such a volume form by first choosing a volume form ω0

on g and define it on G by ωg = L∗gω0. One now defines a function f : G → R
by R∗

gω = f(g)ω. Notice that f(g) is constant since both ω and R∗
gω are

left invariant. One easily sees that f(gh) = f(g)f(h) and thus f(G) is a
compact subgroup of R∗. But this implies that f(g) = 1 and hence ω is right
invariant.

We now claim that Ad(h) is an isometry in the new inner product:

〈Ad(h)X, Ad(h)Y 〉 =
∫

G
〈Ad(gh)X,Ad(gh)Y 〉0 ω

=
∫

G
〈Ad(g)X, Ad(g)Y 〉0 R∗

h−1(ω) = 〈X,Y 〉

Since Ad(G) acts by isometries, and dAd = ad, it follows that adX is skew
symmetric. This proves part (a).
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For part (b) we choose the inner product on g as above and define a metric
on G by

〈X,Y 〉g = 〈d(Lg−1)gX, d(Lg−1)gY 〉.
Then Lg is an isometry by definition, and Rg is one as well, since d(Rgh)e =
d(Rh)gd(Rg)e shows it is sufficient to prove d(Rg)e is an isometry, which
holds since

〈d(Rg)eX, d(Rg)eY 〉g = 〈d(Lg−1)gd(Rg)eX, d(Lg−1)gd(Rg)eY 〉
= 〈Ad(g−1)X,Ad(g−1)Y 〉 = 〈X,Y 〉

We now prove a basic structure theorem for compact Lie algebras.

Proposition 3.25 Let g be a Lie real algebra.compact

(a) B < 0 iff g is compact with z(g) = 0.
(b) If g is compact, then g = z(g)⊕ [g, g] with [g, g] semisimple.

Proof (a) If B < 0, then g is semisimple and hence has trivial center. Since
elements of Aut(g) are isometries of B, and−B is an inner product, Aut(g) ⊂
O(g). Since Aut(g) is also closed, it is compact. Since Aut(g)/ Int(g) is finite
when g is semisimple, Int(g) is the identity component of Aut(g) and hence
compact as well. But since z(g) = 0, the Lie algebra of Int(g) is isomorphic
to g. Hence Int(g) is the desired compact Lie group with Lie algebra g.

If g is compact, let 〈· , ·〉 be an Ad(G) invariant inner product on g.
Then B(X, X) = tr(adX adX) = − tr(adX(adX)T ) ≤ 0 and B(X,X) = 0 iff
adX = 0, i.e. X ∈ z(g). But since we assume that z(g) = 0, B is negative
definite.

For part (b) we first observe that in the proof of Proposition 3.21 (a),
we only use the skew symmetry of adX and non-degeneracy of B to show
that, for any ideal a, g = a ⊕ a⊥ with a⊥ an ideal. Thus, using an Ad(G)
invariant inner product 〈· , · 〉 , the same is true here. Hence g = z(g)⊕b with
b = (z(g))⊥ and b an ideal. As we saw above, B(X, X) ≤ 0 and B(X,X) = 0
iff X ∈ z(g). This implies that Bb = (Bg)|b is non-degenerate and hence b is
semisimple. Thus [g, g] = [b, b] = b which proves our claim.

Corollary 3.26 A compact Lie group with finite center is semisimple.

A more difficult and surprising result is
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Proposition 3.27 [Weyl] If G is a compact Lie group with finite cen-compactpi1
ter, then π1(G) is finite and hence every Lie group with Lie algebra g is
compact.

Proof The proof will be geometric and assume some knowledge from Rieman-
nian geometry, since it will be a consequence of the Bonnet-Myer’s theorem.
As follows from Proposition 3.25 (a), −B is an Ad(G) invariant inner prod-
uct and as in the proof of Proposition 3.24 (b) extends to a Riemannian
metric on G such that Lg and Rg are isometries. We will show that Ric ≥ 1

4 ,
and the claim follows from Bonnet Myers. We first claim that the formulas
for the connection and the curvature tensor are given by:

∇XY =
1
2
[X,Y ] , and R(X, Y )Z = −1

4
[[X, Y ], Z]

where X,Y, Z ∈ g. For convenience, set 〈, 〉 = −B. For the connection, we
use the fact that 〈X, Y 〉 is constant since X,Y and 〈, 〉 are left invariant. We
fist show that ∇XX = 0, which follows from

〈∇XX, Z〉 = X(〈X,Z〉)− 〈X,∇XZ〉 = −〈X,∇XZ〉
= −〈X,∇ZX〉+ 〈X, [X, Z]〉 = −〈X,∇ZX〉 = −1

2
Z(−〈X, X〉) = 0

for all Z ∈ g, where we also used 〈X, [X, Z]〉 = 0 by skew symmetry of
adX . For the reader with a more sophisticated back ground in geometry we
observe that a quicker argument for 〈∇XX, Z〉 = −〈X,∇ZX〉 is the fact
that the vector field X is Killing since its flow is Rexp(tX) and hence ∇X is
skew symmetric.

For the curvature tensor we use the Jacobi identity:

〈R(X, Y )Z〉 = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

=
1
4
[X, [Y, Z]]− 1

4
[Y, [X, Z]]− 1

2
[[X,Y ], Z]

= −1
4
[Z, [X, Y ]]− 1

2
[[X, Y ], Z] = −1

4
[[X, Y ], Z]]

Finally, we compute the Ricci tensor:

Ric(X,Y ) = tr{Z → R(Z, X)X} = −1
4

tr{Z → adX adX(Z)} = −1
4
B(X, X)

which finishes the proof.

Thus if g is a compact Lie algebra with trivial center, every Lie group with
Lie algebra g is compact. As a consequence one can reduce the classification
of compact Lie groups to that of simple Lie groups.
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Corollary 3.28 Every compact Lie group is isomorphic to

(Tn×G1 × · · · ×Gm)/Γ

where Gi are compact, simply connected, simple Lie groups and Γ is a
finite subgroup of the center.

Proof Let G be a compact Lie group. By Proposition 3.25 (b) and Propo-
sition 3.21 (a) g is isomorphic to Rn × g1 × · · · × gm with gi simple. Hence
the connected, simply connected Lie group with Lie algebra g, which is also
the universal cover of G, is isomorphic to G̃ = Rn ×G1 × · · · ×Gm with Gi

simply connected and simple. By Weyl’s Theorem Gi is compact as well.
From general covering space theory we know that G = G̃/Γ̃ with Γ̃ a dis-
crete subgroup of the center. But the center of Gi is finite and hence the
projection from Γ̃ to G1 × · · · × Gm, which is a homomorphism, has finite
index and its kernel Γ̄ is a discrete subgroup of Rn. Since G is compact,
Rn/Γ̄ must be compact as well and hence isomorphic to a torus Tn. Thus
the finite group Γ = Γ̃/Γ̄ acts on Tn×G1 × · · · ×Gm with quotient G.

The proof of Proposition 3.27 also implies:

Corollary 3.29 If G is a compact Lie group, then exp: g → G is onto.expcompact

Proof As we saw before, for a biinvariant metric we have ∇XX = 0. This
implies that the geodesics through e ∈ G are the one parameter groups c(t) =
exp(tX). Indeed, c is an integral curve of X and ∇ċċ = ∇XX = 0 means
that c is a geodesic. Thus exp is the usual exponential map of the biinvariant
metric: expe : TeG → G. Since G is compact, the metric is complete, and by
Hopf-Rinow expe = exp is onto.

Exercises 3.30

(a) If G is a compact Lie group, show that it is isomorphic to Tn×G1 ×
· · · ×Gm with Gi compact and simple.

(b) If g is a compact Lie algebra, show that Int(g) = {eadX | X ∈ g}.
(c) If g is a Lie algebra such that adX is skew symmetric with respect to

some inner product, show that g is compact. Similarly, if G is a Lie
group which admits a biinvariant metric, show that some subcover of
G is compact.
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Maximal Torus and Weyl group

In order to understand compact (simple) Lie groups in more detail, we will
use the following theorem. A Lie algebra g certainly has abelian subalgebras,
e.g. one dimensional ones. We say that t ⊂ g is a maximal abelian
subalgebra if t is abelian, and t ⊂ t′ with t′ abelian implies t′ = t.

Proposition 3.31 Let G be a compact Lie group and t ⊂ g a maximalmaximaltorus
abelian subalgebra.

(a) For any X ∈ g, there exists a g ∈ G such that Ad(g)(X) ∈ t

(b) If t1, t2 are two maximal abelian subalgebras, then there exists a g ∈ G

such that Ad(g)t1 = t2

Proof Let T = exp(t) and suppose T is not closed. Then T ′ = exp(t) is a
(connected) closed subgroup of G, and hence a Lie group. Since T is abelian,
so is T ′. Since T ′ is strictly bigger than T , t′ is also strictly bigger than t,
a contradiction. Thus T is compact and hence a torus which means we can
choose an X ∈ t such that exp(sX) is dense in T .

We first claim, after fixing the above choice of X, that t = {Z | [X, Z] = 0},
i.e. [X, Z] = 0 implies Z ∈ t. Indeed, Ad(exp(sX))(Z) = es adX Z = Z, and
by density of exp(sX) in T , Ad(T )(Z) = Z which implies [Z, t] = 0 since
dAd = ad. By maximality of t, Z ∈ t.

Let 〈, 〉 be an Ad(G)-invariant inner product. For a fixed Y ∈ t, we define
the function

F : G → R g → 〈X, Ad(g)Y 〉
Since G is compact, there exists a critical point g0 of F . At such a point we
have

dFg0(Zg0) =
d

dt |t=0
〈X, Ad(exp(tZ)g0)Y 〉 =

d

dt |t=0
〈X, Ad(exp(tZ))Ad(g0)Y 〉

= 〈X, [Z, Ad(g0)Y ]〉 = −〈[X, Ad(g0)Y ], Z〉 = 0 for all Z ∈ g

Thus for a critical point g0 we have

[X, Ad(g0)Y ] = 0 and hence Ad(g0)Y ∈ t

which proves part (a).
For part (b) choose Xi ∈ ti such that exp(sXi) is dense in exp(ti) . By

(a), there exists a g ∈ G, such that Ad(g)X1 ∈ t2. Since t2 is abelian,
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[Y,Ad(g)X1] = 0 or [Ad((g−1)Y, X1] = 0 for all Y ∈ t2. Thus Ad(g−1)t2 ⊂
t1, which implies that dim t2 ≤ dim t1. Reversing the role of t1 and t2, we
see that dim t1 ≤ dim t2 and hence dim t2 = dim t1. Thus Ad(g−1)t2 = t1 or
t2 = Ad(g)t1.

In terms of the group G this can be reformulated as follows. If t is maximal
abelian, we call T = exp(t) a maximal torus.

Corollary 3.32 Let G be a compact Lie group with maximal torus T .
Then every element of G is conjugate to an element of T . Furthermore,
any two maximal tori are conjugate to each other.

Proof Given an element g ∈ G, Corollary 3.29 implies that there exists an
X ∈ t such that exp(X) = g. By Proposition 3.31 there exists an h ∈ G such
that Ad(h)X ∈ t. Then hgh−1 = h exp(X)h−1 = exp(Ad(h)X) ∈ exp(t) =
T . The second claim follows similarly.

We can thus define:

Definition 3.33 Let G be a compact Lie group. The the dimension of a
maximal torus is called the rank of G, denoted by rk(G), or rk(g) for its Lie
algebra.

Before proceeding, we show:

Lemma 3.34 Assume that G is compact, S ⊂ G is a torus, and g com-torusmaxabelian
mutes with S. Then there exists a maximal torus containing both S and
g. In particular, a maximal torus is its own centralizer.

Proof Let A be the closure of the subgroup generated by g and S. Then A

is closed, abelian and compact, and hence its identity component A0 also a
torus. Since gS generates A/A0, A is isomorphic to Tk×Zm for some k and
m. One easily sees that one can thus choose an element a ∈ A such that A

is the closure of {an | n ∈ Z}. Since a lies in a maximal torus T , so does S

and g.

An orbit Ad(G)X, X ∈ g is called an adjoint orbit. Proposition 3.31
says that every adjoint orbit meets t. To see how many times it meets t, we
define the Weyl group W = N(T )/T , where N denotes the normalizer.
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Proposition 3.35 Let G be a compact Lie group with maximal torus Tadjointorbit
and Weyl group W = N(T )/T .

(a) W is a finite group which acts effectively on t via w · X = Ad(n)X
with w = n · T .

(b) The adjoint orbit Ad(G)X, X ∈ t meets t in the Weyl group orbit
W ·X.

(c) Whenever the adjoint orbit Ad(G)X, X ∈ g meets t, it does so or-
thogonally.

Proof (a) N(T ) is clearly a closed subgroup of G and hence a compact Lie
group. We claim that T is its identity component, and hence W is finite. To
see this, recall that the Lie algebra of N(T ) is n(t) = {X ∈ g | [X, t] ⊂ t}
and choose X0 ∈ t such that exp(sX) is dense in T . If X ∈ n(t), then
〈[X, X0], Z〉 = −〈[Z,X0], X〉 = 0 whenever Z ∈ t. Since [X, X0] ∈ t by
assumption, this implies that [X,X0] = 0 and hence X ∈ t, which proves
our claim.

Since Ad(T )|t = Id, the action of W on t is well defined. If g ∈ N(T ) and
Ad(g)|t = Id, then g exp(X)g−1 = exp(Ad(g)X) = exp(X), for X ∈ t, and
hence g ∈ Z(T ), the centralizer of T . But Lemma 3.34 implies that g ∈ T ,
which shows the action of W is effective.

(b) We need to show that if Ad(g)X = Y for some X,Y ∈ t, then there
exists an n ∈ N(T ) with Ad(n)X = Y . Let ZX = {g ∈ G | Ad(g)X =
X} be the centralizer of X in G. Then T ⊂ ZX and g−1Tg as well since
Ad(g−1)Tg)X = Ad(g−1)Ad(T )Y = Ad(g−1)Y = X. We can now apply
Proposition 3.31 (b) to the identity component of ZX to find an h ∈ ZX

with hTh−1 = g−1Tg. Thus gh ∈ N(T ) and Ad(gh)X = Ad(g)Ad(h)X =
Ad(g)X = Y , i.e. n = gh is the desired element.

(c) If Ad(G)X meets t in Y , then the tangent space of the orbit Ad(G)X =
Ad(G)Y is TY (Ad(G)Y ) = {[Z, Y ] | Z ∈ g}. If U ∈ t, then 〈[Z, Y ], U〉 =
−〈[U, Y ], Z〉 = 0, which says that the orbit mets t orthogonally at Y .

Example 3.36 (a) Let G = SO(3) with SO(2) ⊂ SO(3) a maximal torus
and N(T ) = O(2) and hence W = Z2. We can identify o(3) ' R3 such that
the adjoint action of SO(3) on o(3) is via ordinary rotations and SO(2) are
the rotations fixing the z-axis. Thus the maximal abelian subalgebra t is the
z-axis and W acts on it via reflection in 0 ∈ t. An SO(3) orbit is a sphere of
radius r which meets t orthogonally in the W orbit ±r.
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We now discuss maximal tori and Weyl groups for all the classical Lie
groups.

Classical Lie groups

(a) G = U(n)

We claim that the maximal torus consists of the diagonal matrices

Tn = diag(z1, . . . , zn), |zi| = 1 with Weyl group W = Sn

and thus rk(U(n)) = n. Indeed, if B ∈ U(n) commutes with a matrix A ∈ T ,
then B preserves the eigenspaces of A. Choosing the diagonal entries of A

distinct, we see that B must be diagonal as well. If B normalizes elements
of T , by the same argument it can at most permute the diagonal elements
of A ∈ T . Thus the Weyl group is a subgroup of the permutation group Sn.
Since

Ad
((

0 1
−1 0

)) (
a 0
0 b

)
=

(
b 0
0 a

)

it follows that every permutation is contained in the Weyl group, i.e W = Sn.
The adjoint orbits are given by Ad(G)H, H ∈ t and contain a unique H ′

with h1 ≤ h2 ≤ · · · ≤ hn. They are homogeneous with G acting transitively
with isotropy those matrices which commute with H. The isotropy depends
on how many components in H are equal to each other and is thus given
by U(n1)U(n2) · · ·U(nk) with

∑
ni = n, if h1 = · · · = hn1 ect. Thus the

adjoint orbits are U(n)/U(n1)U(n2) · · ·U(nk). Another interpretation is as
a flag manifold

F (n1, . . . , nk) = {V1 ⊂ V2 · · · ⊂ Vk ⊂ Cn | dimVi−dimVi−1 = ni, i = 1, . . . , n}
where V0 = 0.

For G = SU(n), we add the restriction z1 · · · zn = 1 but the Weyl group is
the same. Thus rk(SU(n)) = n− 1.

(b) G = Sp(n)

Recall that U(n) ⊂ Sp(n) and we claim that Tn ⊂ U(n) ⊂ Sp(n) is also a
maximal torus in Sp(n). Indeed, if B + jC ∈ sp(n) commutes with A ∈ tn,
we have AB = BA and ĀC = CA which is only possible when C = 0.
The Weyl group contains all permutations as before. But now we can also
change the sign of each individual diagonal entry since jzj−1 = z̄. Thus
W = Sn o (Z2)n with Sn acting on (Z2)n via permutations.
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(c) G = SO(2n)

With an argument similar to the above, one sees that the maximal torus
is

Tn = diag(R(θ1), . . . , R(θn)) with R(θ) =
(

cos θ − sin θ

sin θ cos θ

)

Let Eij be the matrix whose only non-zero entries are a 1 in row i and column
j. The Weyl group contains all permutations of θi since conjugation with
A = E(2i+1)(2k+1)+E(2i+2)(2k+2)+E(2k+1)(2i+1)+E(2k+2)(2i+2) interchanges θi

with θk, and A ∈ SO(2n). In addition, conjugation with B = E(2i+1)(2i+2) +
E(2i+2)(2i+1) changes the sign of θi. But det B = −1. On the other hand, con-
jugating with C = E(2i+1)(2i+2) +E(2i+2)(2i+1) +E(2k+1)(2k+2) +E(2k+2)(2k+1)

changes the sign of both θi and θk, and det C = 1. Thus all even sign changes
are contained in the Weyl group. Hence W = Sn o (Z2)n−1.

(d) G = SO(2n + 1)

In this case one easily sees that Tn ⊂ SO(2n) ⊂ SO(2n+1) is the maximal
torus. The Weyl group contains all permutations as before, but also all sign
changes since conjugation with E(2i+1)(2i+2) + E(2i+2)(2i+1) − E(2n+1)(2n+1)

has determinant 1 and changes the sign of θi only. Thus W = Sn o (Z2)n

Exercises 3.37

(1) Show that diag(±1, . . . ,±1) ∩ SO(n) ⊂ SO(n) is maximal abelian,
but not contained in any torus.

(2) Determine the adjoint orbits of Sp(n) and SO(n).
(3)
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Complex Semisimple Lie algebras

In this Chapter we will discuss the classification of complex semisimple Lie
algebras and their relationships to real compact Lie algebras. Throughout
this Chapter g will be a complex semisimple Lie algebra. We sometimes
write it as the complexification of a compact real Lie algebra, which we will
denote by k, i.e. kC ' g.

4.1 Cartan subalgebra and roots
Let g be a complex semisimple Lie algebra. Recall that A ∈ End(V ) is

called semisimple if it can be diagonalized.

Definition 4.1 h ⊂ g is a Cartan subalgebra of g if the following hold:Cartansubalg

(a) h is a maximal abelian subalgebra.
(b) If X ∈ h, adX is semisimple.

Unlike in the compact case, the existence is non-trivial.

Theorem 4.2 Every complex semisimple Lie algebra has a Cartan sub-Cartanex
algebra h ⊂ g. Moreover, h is unique up to inner automorphisms and
Ng(h) = Zg(h) = h.

Proof We will add a proof later on.....

Thus we again define rk(g) = dim h.
As we will see later on, every complex semisimple Lie algebra has a com-

pact real form. It may thus be comforting to the reader that in this case the
existence of a Cartan subalgebra easily follows from Proposition 3.31.

53
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Theorem 4.3 Let k be a compact semisimple Lie algebra with kC ' g and
t ⊂ k a maximal abelian subalgebra. Then t⊗C is a Cartan subalgebra of
g with Ng(h) = Zg(h) = h.

Proof Since a basis of t is a (complex) basis of h, and t is abelian, h is
abelian. With respect to an Ad(K)-invariant inner product on k, adX is
skew-symmetric for all X ∈ k and can hence be diagonalized over C. Since
adX , adY commute: [adX , adY ] = ad[X,Y ] = 0, they can be diagonalized
simultaneously. Hence adX+iY = adX +i adY , X + iY ∈ tC can be diag-
onalized as well. Let h

′ be an abelian subalgebra of g strictly containing
h. Then for X + iY ∈ h

′ we have [t, X + iY ] = [t, X] + i[t, Y ] = 0 and
hence [t, X] = [t, Y ] = 0 which implies X, Y ∈ t by maximality of t. Thus
h is a Cartan subalgebra of g. In the proof of Proposition 3.35 we saw that
Ng(t) = t, and hence the same follows for h.

Let h be a Cartan subalgebra of g. Since adX , X ∈ g are diagonalizable
and [adX , adY ] = ad[X,Y ] = 0 for X,Y ∈ g, they can be diagonalized si-
multaneously. Thus there exists a common basis of eigenvectors {e1, . . . , en}
with adX(ei) = λi(X)ei for all X ∈ h. One easily sees that λi is linear in X.
This motivates the following definition:

Definition 4.4 Let g be a complex semisimple Lie algebra with Cartan subal-
gebra h. Given a linear map α ∈ h∗ = Hom(h,C), define the root space of
α as gα = {X ∈ g | [H, X] = α(H)X for all H ∈ h}. If gα 6= 0, α is called
a root of g with respect to h, or simply a root. Let ∆ ⊂ h∗ be the set of all
non-zero roots of g.

As we will see later on, the root spaces are one dimensional. The roots
characterize the Lie algebra up to isomorphism, and we will encode a com-
plete description in a diagram called the Dynkin diagram.

From now on g will always be a complex semisimple Lie algebra with a
fixed Cartan subalgebra h. We will also use, without always saying explicitly,
the following convenient convention. Vectors in h will be denoted by H and
vectors in gα by Xα. Although 0 is not considered a root, we will sometimes
denote h = h0 since Zg(h) = h implies that these are the only vectors with
weight 0.

We start with some simple properties of the root system.
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Theorem 4.5 Let ∆ be the set of roots with respect to a Cartan subal-rootsbasic
gebra h ⊂ g. Then one has the following properties.

(a) g = h⊕
∑

α∈∆

gα.

(b) If α, β ∈ ∆, then [gα, gβ] ⊂ gα+β .
(c) {α | α ∈ ∆} spans h∗.
(d) If α, β ∈ ∆, and α + β 6= 0, then B(gα, gβ) = 0.
(e) If α ∈ ∆, then −α ∈ ∆.
(f) B|h is non-degenerate.

Proof (a) This follows from the fact that g is the sum of all common
eigenspaces of adX , X ∈ h.

(b) follows from the Jacobi identity:

[H, [Xα, Xβ]] = [[H, Xα], Xβ] + [Xα, [H, Xβ]] = (α(H) + β(H))[Xα, Xβ]

(c) If the roots do not span h∗, there exists a vector H with α(H) = 0 for
all α ∈ ∆. This implies that H ∈ z(g) which is 0 since g is semisimple.

(d) If α + β 6= 0 and γ ∈ ∆, then adXα adXβ
: gγ → gγ+α+β is a map

between disjoint root spaces. Thus adXα adXβ
is nilpotent which implies

that its trace is 0.

(e) Part (d) implies that only g−α can have non-zero inner products with
gα. Since B is non-degenerate, the claim follows.

(f) This also follows from non-degeneracy of B since B(h, gα) = 0 for
α 6= 0.

Since B|h is non-degenerate, we can identify h∗ with h and denote the
image of α by Hα, i.e. B(Hα,H) = α(H). For simplicity, we denote from
now on the inner product B on h, as well as the inner product induced on
h∗, by 〈·, ·〉. Thus 〈α, β〉 = 〈Hα, Hβ〉 = α(Hβ) = β(Hα). Later on it will be
convenient to re-normalize the Killing form. The reader may confirm that
in all of the proofs in this section, all that is needed is that adX is skew
symmetric with respect to a non-degenerate bilinear form.

We now derive some less elementary properties of the root system.
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Theorem 4.6 Let ∆ be the set of roots with respect to a Cartan subal-rootsadvanced
gebra h ⊂ g and α ∈ ∆. Then one has the following properties.

(a) [Xα, X−α] = 〈Xα, X−α〉 ·Hα and [gα, g−α] = C ·Hα.
(b) 〈α, α〉 6= 0.
(c) dim gα = 1.

Proof (a) By skew-symmetry of adX , we have

〈[Xα, X−α],H〉 = −〈[H, X−α], Xα〉 = α(H)〈X−α, Xα〉 =

〈H, Hα〉〈Xα, X−α〉 = 〈 〈Xα, X−α〉Hα,H〉
for all H ∈ h, which implies the first claim. By non-degeneracy of B, there
exists an X−α for each Xα with 〈Xα, X−α〉 6= 0, and the second claim follows
as well.

(b) By non-degeneracy of B|h, there exists a β ∈ ∆ such that 〈α, β〉 6= 0.
Consider the subspace V ⊂ g defined by

V =
∑

n∈Z
gβ+nα.

Observe that V is preserved by adHα since it preserves root spaces, and also
by adXα and adX−α since they ‘move up and down’ the summands. Now
choose Xα, X−α such that [Xα, X−α] = Hα. Then

tr(adHα)|V = tr(ad[Xα,X−α])|V = tr(adXα adX−α − adX−α adXα)|V = 0.

We can also compute the trace differently since (adH)|gγ
= γ(H) · Id

tr(adHα)|V =
∑

n

tr(adHα)|gβ+nα
=

∑
n

(β + nα)(Hα) dβ+nα

where we have set dim(gγ) = dγ . Hence

−β(Hα)
∑

n

dβ+nα = α(Hα)
∑

n

n · dβ+nα

which implies that 〈α, α〉 = α(Hα) 6= 0 since dβ > 0.
(c) Using the same method, we define

V = CX−α + CHα +
∑

n≥1

gnα.

One checks that it is again preserved by adHα , adXα and adX−α and taking
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the trace of adHα we get

〈α,−α〉+
∑

n≥1

dnα〈α, nα〉 = 〈α, α〉(−1 + d1 +
∑

n≥1

n dnα) = 0

Thus, since α is a root, dα = 1, which proves our claim. Notice that it also
implies that dnα = 0 for n ≥ 2, i.e, if nα, n ∈ Z, is a root, then n = 0,±1.
We will be able to use this fact later on.

As we already saw in the previous proof, the next concept is useful.

Definition 4.7 Let α, β ∈ ∆ be roots. The α string containing β is thestring
set of roots of the form

{β + nα | n ∈ Z}.

Here is its main property and some applications.

Theorem 4.8 Let ∆ be the set of roots. Thenstrings

(a) There exists integers p, q ≥ 0, such that the α string containing β

consists of consecutive roots, i.e., −p ≤ n ≤ q and

2〈β, α〉
〈α, α〉 = p− q (4.9) integer

(b) If β = cα with α, β ∈ ∆ and c ∈ C, then c = 0 or c = ±1.
(c) If α, β, α + β ∈ ∆, then [Xα, Xβ] 6= 0 for any Xα ∈ gα, Xβ ∈ gβ .

Proof Let [r, s] be a component of the set of integers n ∈ Z such that
β + nα ∈ ∆. Setting V =

∑s
n=r gβ+nα, we compute tr(adHα)|V as before:

tr(adhα)|V =
s∑

n=r

(β + nα)(Hα) = (s− r + 1)β(Hα) + α(Hα)
s∑

n=r

n

= (s− r + 1)β(Hα) + α(Hα)
(s + r)(s− r + 1)

2
= 0

and thus 2〈α,β〉
〈α,α〉 = −(r+s). If [r′, s′] is another disjoint interval of consecutive

roots in the α string containing β, it follows that s + r = s′ + r′, which is
clearly impossible. Thus the string is connected, and since n = 0 belongs to
it, our claim follows.

(b) If β = cα, we can apply (4.9) to the α string containing β and the β

string containing α and obtain 2c ∈ Z and 2
c ∈ Z. Thus if c 6= 0,±1, it follows
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that c = ±1
2 or ±2. But we already saw in the proof of Proposition 4.5 (c),

that β = 2α and α = 2β is not possible.
(c) Assume that [Xα, Xβ] = 0. The α string containing β satisfies −p ≤

n ≤ q. This implies that V =
∑0

n=−p gβ+nα is invariant under adHα , adXα

and adX−α and taking the trace of adHα we get

tr(adHα)|V =
0∑

n=−p

(β + nα)(Hα) = (p + 1)β(Hα)− p(p + 1)
2

α(Hα) = 0

Thus 2〈α,β〉
〈α,α〉 = p. On the other hand, (4.9) implies that 2〈α,β〉

〈α,α〉 = p − q and
hence q = 0. But q ≥ 1 since α + β is a root, a contradiction.

We next consider a real subspace of the Cartan subalgebra:

hR =
∑
α

R ·Hα ⊂ h.

Its importance is given by:

Proposition 4.10

(a) B is positive definite on hR.
(b) hR is a real form of h, i.e. h = hR + ihR.

Proof (a) First notice that, given H, H ′ ∈ h,

〈H,H〉 = B(H, H ′) = tr(adH adH′) =
∑

α∈∆

α(H)α(H ′).

If we let 2〈α,β〉
〈α,α〉 = nα,β ∈ Z, we obtain

〈α, α〉 =
∑

γ∈∆

γ(Hα)2 =
1
4
〈α, α〉2

∑

γ∈∆

n2
α,γ

and since 〈α, α〉 6= 0,

〈α, α〉 =
2∑

γ n2
α,γ

∈ Q , and 〈α, β〉 =
nα,β∑
γ n2

α,γ

∈ Q.

Thus γ|hR , γ ∈ ∆ and hence B|hR are real valued. Moreover, for each 0 6=
H ∈ hR there exists a root β such that β(H) 6= 0, and hence

B(H, H) =
∑

γ∈∆

γ(H)2 ≥ β(H)2 > 0,

(b) Clearly hR ⊗ C = h and thus h is spanned by hR and ihR. If X ∈
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hR ∩ ihR, i.e. X = iY with Y ∈ hR, then 〈X, X〉 ≥ 0 by (a) and 〈X, X〉 =
〈iY, iY 〉 = −〈Y, Y 〉 ≤ 0, which implies X = Y = 0.

If k is a compact semisimple Lie algebra with t a maximal abelian sub-
algebra, then t ⊗ C = h is a Cartan subalgebra of g := kC. The roots of
adX , X ∈ t are purely imaginary since it is real and skew-symmetric. It has
the following normal form: On t ir is 0, and t⊥ ⊂ k is the direct sum of
orthogonal 2 dimensional ‘root spaces’ in which adX has the form

(
0 α(X)

−α(X) 0

)

in an orthonormal basis {v, w} and for some α ∈ t∗. In the basis {v +
iw, v − iw} it becomes diag(iα(X),−iα(X)) and hence giα = C · (v + iw)
and g−iα = C · (v − iw) = ḡα. If on the other hand β is a root of g with
respect to h, it takes on real values on hR and thus hR = it.

Conversely, if we start with a complex semisimple Lie algebra g and k is
a compact real form with Cartan subalgebra h = t ⊗ C, then g−α = ḡα

and gRα := (gα ⊕ g−α) ∩ t is a real 2 dimensional subspace of k on which
adX , X ∈ ihR takes on the above form.

We now discuss the root systems of the classical Lie groups.

Classical Lie groups

Although convenient in the the proofs, it is in practice better to normalize
the Killing form. We will do so for each classical Lie group separately, in order
to make the standard basis of the Cartan subalgebra into an orthonormal
basis. Notice that all statements in the above propositions are unaffected.

g = sl(n,C)

A Cartan subalgebra is given by

h = {H = diag(h1, . . . , hn) | hi ∈ C,
∑

hi = 0} ⊂ Cn+1

Let Eij be the matrix whose only non-zero entry is a 1 in row i and column
j. Then [H,Eij ] = (hi − hj)Eij . If we let ei be the standard basis of Cn+1

with H =
∑

hiei and ωi the dual basis of (Cn+1)∗. Then we have the roots

∆ = {±(ωi − ωj) | i < j} with root spaces gωi−ωj = CEij for i 6= j



60 Chapter 4 Complex Semisimple Lie algebras

The Killing form is given by

B(H, H) =
∑

α∈∆

α(H)α(H) = 2
∑

i<j

(hi − hj)2 = 2n
∑

h2
i

since 0 = (
∑

hi)2 =
∑

h2
i + 2

∑
i<j hihj . We normalize the inner product

〈· , ·〉 = 1
2nB so that ei is an orthonormal basis of Cn+1 and thus Hωi−ωj =

ei − ej . Clearly

hR = {diag(h1, . . . , hn) | hi ∈ R}.
A word of caution: Notice that ωi is not orthonormal basis of h∗.Hence the
inner product should only be applied when

∑
hi = 0 or

∑
ωi = 0. All roots

have length
√

2.

g = so(2n,C)

Although there are other choices for a maximal torus, which are sometimes
more convenient, we prefer, due to geometric applications later on, the com-
plexification of the maximal torus of SO(2n) discussed in. Let Fij = Eij−Eji.
A simple way to remember the Lie brackets [Fij , Fkl] in so(n) is as follows.
If all 4 indices are distinct, the Lie bracket is 0. Otherwise

[Fij , Fjk] = Fik where i, j, k are all distinct

Since Fji = −Fij , this determines all Lie brackets.
The Cartan subalgebra is given by

h = {H = h1F12 + h2F34 + · · ·+ hnF2n−1,2n | hi ∈ C}.
In order to describe the root vectors, define

Xkl = F2k−1,2l−1 + F2k,2l + i(−F2k,2l−1 + F2k−1,2l)

Ykl = F2k−1,2l−1 − F2k,2l + i(F2k,2l−1 + F2k−1,2l)

A straightforward computation shows that

[H, Xk,l] = −i(hk − hl)Xk,l , [H,Yk,l] = i(hk + hl)Yk,l.

The remaining eigenvalues and eigenvectors are obtained by conjugating the
above ones. We set ei = iF2i−1,2i ∈ hR and let ωi be the basis dual to ei.
We therefore have the root system

∆ = {±(ωi + ωj), ±(ωi − ωj) | i < j}
One easily shows that the Killing form is B = 4(n − 1)

∑
ω2

i and we use
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the normalized inner product 〈· , ·〉 = 1
4(n−1)B. Then ei and ωi become an

orthonormal basis of h and h∗, and H±ωi±ωj = ±ei±ej . Notice that all roots
again have length

√
2.

g = so(2n + 1,C)

We choose the same maximal torus as in so(2n,C) ⊂ so(2n + 1,C). The
roots and root vectors in so(2n,C) remain roots in so(2n + 1,C). But we
have additional root vectors:

[H,F2k−1,2n+1 + iF2k,2n+1] = ihk(F2k−1,2n+1 + iF2k,2n+1)

and their conjugates. Thus the root system is

∆ = {±ωi, ±(ωi + ωj), ±(ωi − ωj) | i < j}
with Killing form B = 2(2n−1)

∑
ω2

i . In the inner product 〈· , ·〉 = 1
2(2n−1)B

ei and ωi are orthonormal basis and the root vectors are ±ei,±ei±ej . Notice
there are short roots of length 1 and long roots of length

√
2.

g = sp(n,C)

Recall that

sp(n,C) =
{(

B S1

S2 −BT

)
| B ∈ gl(n,C) , Si ∈ Symn(C)

}

For a Cartan subalgebra we choose

h = {H = diag(h1, . . . , hn,−h1, . . . , hn) | hi ∈ C}.
If we let

Xk,l = En+k,l + En+l,k , X̄k,l = Ek,n+l + El,n+k, k ≤ l

Yk,l = Ek,l −En+l,n+k, k < l

then

[H, Xk,l] = −(hk + hl)Xk,l , [H, X̄k,l] = (hk + hl)X̄k,l

[H, Yk,l] = (hk − hl)Yk,l

Notice that this includes [H, Xk,k] = −2hkXk,k, [H, X̄k,k] = 2hkX̄k,k. We
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normalize the Killing form so that ei = Ei,i−En+i,n+i ∈ hR, and its dual ωi

are orthonormal basis. The roots are

∆ = {±2ωi, ±(ωi + ωj), ±(ωi − ωj) | i < j}
The Killing form is B = 4(n + 1)

∑
ω2

i and we use the normalized inner
product 〈· , ·〉 = 1

4(n+1)B in which ei and ωi become an orthonormal basis
of h and h∗. The root vectors are thus ±ei ± ej . Here there are roots of
length 2 and of length

√
2. Notice the difference between the root system

for so(2n + 1,C) and sp(n,C). Both Lie algebras have the same dimension
and rank, but the difference in root systems will enable us to prove they are
not isomorphic.

Exercises 4.11

(1) Find a basis for the root spaces of sl(n,C) and sp(n,C) in their com-
pact real form SU(n) and Sp(n) with respect to the maximal torus
from previous sections.

(2) For each classical Lie algebra, start with a fixed root and find all other
roots by using only the string property in Theorem 4.8.

(3) Show that the only complex semisimple Lie algebra of rank 1 is iso-
morphic sl(2,C).

4.2 Dynkin diagram and classification

Recall that the α-string containing β is of the form {β + nα | −p ≤ n ≤ q}
and

nαβ :=
2〈α, β〉
〈α, α〉 = p− q

We will call nαβ the Cartan integers. Note that 〈α, β〉 < 0 implies α+β ∈
∆, and 〈α, β〉 > 0 implies α− β ∈ ∆. If, on the other hand 〈α, β〉 = 0, then
all we can say is that one can add α as many times as one can subtract it.

But notice that we always have the following important property:

If α, β ∈ ∆ then β − 2〈α, β〉
〈α, α〉 α ∈ ∆ (4.12) subtract

Moreover

nαβ · nβα =
2〈α, β〉
〈α, α〉 ·

2〈β, α〉
〈β, β〉 = 4 cos2(](Hα,Hβ)) ∈ {0, 1, 2, 3, 4}
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since the product above is an integer, and is≤ 4. Note that 4 cos2(](Hα,Hβ)) =
4 iff α = ±β and otherwise nαβ = 0,±1,±2,±3. Also, if α and β are neither
parallel nor orthogonal, one of nαβ, nβα is ±1, and the other is ±1,±2,±3.
We summarize the possible options in the following table. Notice though
that the α string containing β could have more roots in it if β + α (in the
case nαβ > 0) is a root as well.

nαβ nβα ](Hα, Hβ) Relative Size α String Containing β

0 0
π

2
N/A N/A

1 1
π

3
|β|2 = |α|2 β, β − α

-1 -1
2π

3
|β|2 = |α|2 β, β + α

2 1
π

4
|β|2 = 2|α|2 β, β − α, β − 2α

-2 -1
3π

4
|β|2 = 2|α|2 β, β + α, β + 2α

3 1
π

6
|β|2 = 3|α|2 β, β − α, β − 2α, β − 3α

-3 - 1
5π

6
|β|2 = 3|α|2 β, β + α, β + 2α, β + 3α

Table 4.13. Relationship between α, β if |β| ≥ |α|.rootstable

As we will see, the last possibility |α|2 = 3|β|2 is only possible for one
simple Lie group, namely for the exceptional Lie group G2.

These relationships are clearly very restrictive. As an example, we use
them to classify semisimple Lie algebras of rank 2. For simplicity, we nor-
malize the Killing form so that short root vectors have length 1. One has
the following 4 possibilities.

1) There are 2 orthogonal roots ±α,±β and no others, i.e. all roots are
orthogonal. This is the Lie algebra sl(2,C)⊕ sl(2,C).

2) There are 2 roots α, β with angle π
3 , and thus |α|2 = |β|2 = 1 and

〈α, β〉 = 1
2 . Hence β − α is a root with |β − α|2 = 1. The 6 roots are

arranged at the vertices of a regular hexagon. There is clearly no room for
any further roots satisfying the angle conditions in Table 4.13. This is the
Lie algebra sl(3,C).

3) There are 2 roots α, β with angle π
4 , and thus |α|2 = 1, |β|2 =

2, 〈α, β〉 = 1 and β − α, β − 2α are roots as well. This implies |β − α|2 =
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1, |β − 2α|2 = 2 and 〈α, β − α〉 = 〈β, β − 2α〉 = 0. Thus there are 8 roots,
arranged on the corners and midpoints of a square of side length 1. There
is no room for any further roots satisfying the angle conditions. This is the
Lie algebra so(5,C).

4) There are 2 roots α, β with angle π
6 , and thus |α|2 = 1, |β|2 = 3, 〈α, β〉 =

3
2 and β, β−α, β−2α, β−3α are roots as well. Since 2〈β, β−3α〉/〈β, β〉 = −1,
(β − 3α) + β = 2β − 3α must be a root as well. The 6 roots ±α,±(β −
α),±(β − 2α) have length 1 and form a regular hexagon. The 6 roots
±β,±(β − 3α),±(2β − 3α) have length squared 3 and form another reg-
ular hexagon. Two adjacent root vectors have angle π

6 . There is no room
for further root vectors. The Lie algebra has dimension 14. At this point it
is not clear that such a Lie algebra exists, but we will see later on that it is
one of the exceptional Lie algebras g2.

To study root systems of higher rank, we need to organize the roots more
systematically. For this we introduce a partial ordering.

Definition 4.14order

(a) We call H0 ∈ h regular if α(X) 6= 0 for all α ∈ ∆ and singular
otherwise.

(b) We say that α ≤ β for α, β ∈ ∆ if α(H0) ≤ β(H0) and set

∆+ = {α ∈ ∆ | α(H0) > 0}.
(c) A root α ∈ ∆+ is called simple or fundamental if α 6= β + γ for

any β, γ ∈ ∆+}.
(d) We call F = {α1, . . . , αn} the set of fundamental roots.

From now on we fix a regular element H0 and hence ∆+ and F .

Proposition 4.15

(a) If αi, αj ∈ F , then 〈αi, αj〉 ≤ 0 for i 6= j.
(b) The elements of F are linearly independent.
(c) If α ∈ ∆+, then α =

∑
niαi with ni ≥ 0. In particular, F is a basis

of h∗R

Proof (a) If 〈αi, αj〉 > 0, then αi − αj ∈ ∆, so either αi − αj ∈ ∆+ or
αj − αi ∈ ∆+. Hence either αi = αj + (αi − αj) or αj = αi + (αj − αi) is
not in F , a contradiction.
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(b) Let F = {α1, ..., αk}. Assume
∑

niαi = 0. Moving negative coeffi-
cients to the right hand side, we have

∑
piαi =

∑
qiαi with pi, qi > 0 and

each αi appears in at most one summand. Then

〈
∑

piαi,
∑

pjαj〉 = 〈
∑

piαi,
∑

qjαj〉 =
∑

piqj〈αi, αj〉 ≤ 0,

as each product of distinct fundamental roots is non-positive and pi, qi are
positive. Therefore

∑
piαi =

∑
qiαi = 0, and hence all ni are zero.

(c) If α is not simple, it is the sum of 2 positive roots and continuing in this
fashion, we can write α as a sum of simple roots, possibly with repetitions.

We encode the roots as follows, where we have set nij = nαiαj :

Definition 4.16 Let ∆ be the root system with fundamental roots F =dynkin
{α1, . . . , αn}. We define its Dynkin diagram as follows:

(a) Draw one circle for each αi ∈ F .
(b) Connect αi, αj ∈ F by nij nji many lines.
(c) If nij nji > 1, make the circle corresponding to the shorter root solid.

Another convention in (c) is to draw an arrow from the longer root to the
shorter root. We often denote the Dynkin diagram of g by D(g).

One can also encode the root system via its Cartan Matrix A = (nij).
This matrix in fact plays a significant role in many areas of mathematics.

Classical Lie groups

We now exhibit the Dynkin diagrams of the classical Lie groups. It is
conventional to use the following abbreviations for the Dynkin diagrams and
their corresponding Lie algebras, where the index denotes their rank. An for
sl(n + 1,C), Bn for so(2n + 1,C), Cn for sp(n,C), and Dn for so(2n,C).
We choose the Cartan algebras as in the previous section and retain the
notation.

An = sl(n + 1,C)

The roots are ∆ = {±(ωi − ωj) | 1 ≤ i < j ≤ n + 1}. We choose a regular
element H0 = diag(h1, . . . , hn+1) with h1 > h2 > · · · > hn+1 and

∑
hi = 0.

Thus ∆+ = {ωi − ωj | i < j}. One easily sees that the simple roots are
F = {ω1 − ω2, ω2 − ω3, . . . , ωn − ωn+1} and all Cartan integers are 1. Thus
the Dynkin diagram is:
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h h h h hr r r
ω1 − ω2 ω2 − ω3 ωn − ωn+1

Bn = so(2n + 1,C)

The roots are ∆ = {±ωi, ±(ωi + ωj), ±(ωi − ωj) | i < j} and we choose
a regular element H0 = diag(h1, . . . , hn) with h1 > h2 > · · · > hn. Then
∆+ = {ωi, ωi + ωj , ωi − ωj | i < j} and F = {ω1 − ω2, . . . , ωn−1 − ωn, ωn}.
Thus the Dynkin diagram is:

h h h h xr r r
ω1 − ω2 ω2 − ω3 ωn−1 − ωn ωn

Cn = sp(n,C)

The roots are ∆ = {±2ωi, ±(ωi + ωj), ±(ωi − ωj) | i < j} and we choose
a regular element H0 = diag(h1, . . . , hn) with h1 > h2 > · · · > hn. Then
∆+ = {2ωi, ωi +ωj , ωi−ωj | i < j} and F = {ω1−ω2, . . . , ωn−1−ωn, 2ωn}.
Thus the Dynkin diagram is:

x x x x hr r r
ω1 − ω2 ω2 − ω3 ωn−1 − ωn 2ωn

Dn = so(2n,C)

The roots are ∆ = {±(ωi + ωj), ±(ωi − ωj) | i < j} and we choose
a regular element H0 = diag(h1, . . . , hn) with h1 > h2 > · · · > hn. Then
∆+ = {ωi+ωj , ωi−ωj | i < j} and F = {ω1−ω2, . . . , ωn−1−ωn, ωn−1+ωn}.
Thus the Dynkin diagram is:
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h h h h

h

h

HHHHH

©©©©©

r r r
ω1 − ω2 ω2 − ω3

ωn−1 − ωn

ωn−1 + ωn

ωn−2 − ωn−1

We will now show that one can recover the root system from the Dynkin
diagram. Let F = {α1, . . . , αn} be the fundamental roots of ∆. If α ∈ ∆+,
write α =

∑
niαi with ni ∈ Z, ni ≥ 0 and define the level of α to be

∑
i ni.

Lemma 4.17 Given α ∈ ∆+ of level n, there exists an α∗ of level n − 1level
and a simple root αi ∈ F such that α = α∗ + αi.

Proof Let 0 6= α =
∑

niαi, with
∑

ni = n. Then 〈α, α〉 =
∑

ni〈α, αi〉 > 0.
Since ni ≥ 0, there exists at least one simple root, say αk, with 〈α, αk〉 > 0
and nk ≥ 1. Thus α−αk is a root, and is positive since nk ≥ 1. But α−αk

has level n− 1 and α = (α− αk) + αk, which proves our claim.

From the Dynkin diagram we recover the integers nij nji. Since the values
of nij are only ±1,±2,±3, and since the diagram tells us which root the
shorter one is, Table 4.13 determines the values of nij . We thus recover the
lengths and inner products between all simple roots. Next, we reconstruct
all positive roots one level at a time. To go from one level to the next, we
need to decide if a simple root can be added. But this is determined by the
string property of roots since we already know how many times it can be
subtracted.

Example 4.18 The exceptional Lie group G2 has Dynkin diagramg2

h x
α β

According to Table 4.13, we have 2〈α,β〉
〈α,α〉 = −1 and 2〈α,β〉

〈β,β〉 = −3. Thus we have
only one root of level one, namely α + β. According to the string property,
we cannot add α, but we can add β to obtain α + 2β, the only root of level
2. To this we cannot add α since twice a root cannot be a root, but we can
add β again to obtain α+3β, the only root of level 4. We are not allowed to
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add β anymore, but we can add α since 2〈α+3β,α〉
〈α,α〉 = 2 + 6〈β,α〉

〈α,α〉 = −1. To the
root 2α + 3β of level 5 we clearly cannot add α or beta, and hence we are
done. There are 6 positive roots, 6 negative ones, and hence the Lie algebra
has dimension 14.

Next we will show that one can reduce the classification to connected
Dynkin diagrams.

Proposition 4.19 The Lie algebra g is simple iff the Dynkin diagram
D(g) is connected.

Proof Assume that g ' g1 ⊕ g2 and hi ⊂ gi Cartan subalgebras with root
systems ∆i. Then h = h1 ⊕ h2 clearly is a Cartan subalgebra of g. If
αi ∈ ∆i with root spaces gαi , then gα1 ⊕ 0 and 0⊕ gα2 are root spaces with
roots βi(H1,H2) = αi(Hi). The ideals g1 and g2 are clearly orthogonal with
respect to the Killing form and hence 〈Hβ1 ,Hβ2〉 = 0 . If Hi are regular
elements of hi, then (H1,H2) is a regular element for h. Now one easily sees
that the Dynkin diagram D(g) breaks up into two components, namely the
Dynkin diagrams D(g1) and D(g2) with no arrows connecting them.

Conversely, given two connected components Di of a Dynkin diagram, all
simple roots in one are orthogonal to all simple roots in the other. Let hi be
the subspace generated by the simple root vectors of each. Then h = h1⊕h2

with 〈h1, h2〉 = 0. Constructing all positive roots from the simple ones as
above, one level at a time, we see that the set of roots brake up into two
sets, ∆+ = ∆+

1 ∪∆+
2 with the root vectors of ∆+

i lying in hi. Furthermore,
if αi ∈ ∆+

i , α1 + α2 is never a root. Of course ∆− = −∆+. We can thus let
gi be the span of hi and the root spaces corresponding to roots in ∆i. This
implies that gi are ideals and g = g1 ⊕ g2.

In particular

Corollary 4.20 The classical Lie algebras sl(n,C), sp(n,C), as well as
so(n,C) with n 6= 2, 4, are all simple.

Notice that for so(4,C) the roots are ±(ω1 + ω2), ±(ω1 − ω2). Hence
the 2 positive roots are orthogonal and its Dynkin diagram is the discon-
nected union of 2 circles, corresponding to the fact that so(4,C) ' so(3,C)⊕
so(3,C).

For the classification of the Dynkin diagrams, it is sufficient to make the
following assumptions on the roots.
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Definition 4.21 An abstract root system is the data (V, 〈·, ·〉, ∆), whererootsystem
V is a real vector space, 〈·, ·〉 a positive definite inner product, and D a set
of (root) vectors in V that span V , and such that:

(a) If α, β ∈ ∆, then 2〈α,β〉
〈α,α〉 ∈ Z;

(b) If α, β ∈ ∆, and β = c · α, then c = 0,±1;
(c) If α, β ∈ ∆, then β − 2〈α,β〉

〈α,α〉 α ∈ ∆.

Notice that (c) is weaker than the string property. Given this definition of
a root system, however, it is possible to re-obtain many of the results we
proved. The Dynkin diagram is defined similarly: A vector H0 ∈ V is called
regular if 〈H0, v〉 6= 0 for all v ∈ ∆. This determines the positive root vectors
∆+ = {v ∈ ∆ | 〈H0, v〉 > 0} and one defines the Dynkin diagrams as before.
A root system is called simple if ∆ cannot be decomposed into two mutually
orthogonal sets of root vectors. As above, one shows that the root system is
simple iff its Dynkin diagram is connected. This gives rise to a classification
of Dynkin diagrams.

Theorem 4.22 Given a simple root system (V, 〈·, ·〉, ∆), its Dynkin dia-diagramclass
gram is one of the following:

(a) The Dynkin diagram associated to one of the classical semisimple Lie
algebras An, n ≥ 1; Bn, n ≥ 3; Cn, n ≥ 2; Dn, n ≥ 4.

(b) One of the exceptional Dynkin diagrams G2, F4, E6, E7, E8.

The exceptional diagrams are given by:

h xG2

h h x xF4

h h h h h

h

E6

h h h h h h

h

E7
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h h h h h h h

h

E8

The proof of this classification is purely combinatorial and pretty straight
forward but tedious. We will thus omit the proof.

Notice that sl(3,C), so(3,C), sp(1,C) all have the same Dynkin diagram
and hence, by the above, are isomorphic. Furthermore, B2 = C2 and A3 =
D3, corresponding to the fact that so(5) and sp(2), resp. su(4) and so(6) are
isomorphic as real Lie algebras, and hence via complexification as complex
ones as well, see Proposition 2.21. This explains the restriction on the indices
in Theorem 4.22. Notice though that the equality of Dynkin diagrams does
not (yet) imply that the corresponding compact Lie algebras are isomorphic
since a complex Lie algebra can have many real forms.

To finish the classification of semisimple complex Lie algebras we still need
to prove the following.

Theorem 4.23 Let g be a complex simple Lie algebra.diagramclass2

(a) The Dynkin diagram of g is independent of the choice of a Cartan
subalgebra and a choice of ordering.

(b) Two simple Lie algebras are isomorphic iff their Dynkin diagrams are
the same.

(c) Each Dynkin diagram arises from a complex simple Lie algebra.

In the next two sections we will be able to prove part (a) and (b). For
part (c) one can either exhibit for each Dynkin diagram a simple Lie group,
as we have done for the classical ones, or give an abstract proof that such
Lie algebras exist, see... We prefer the first approach and will construct the
exceptional Lie algebras in a later chapter.

Exercises 4.24

(1) Show that a string has length at most 4.
(2) For some of the classical Lie algebras of low rank, start with the

Dynkin diagram and find all roots by the process performed in Ex-
ample 4.18

(3) Given a root system as defined in Definition 4.21, prove the string
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property of roots and convince yourself that we recover all the prop-
erties we proved for the roots and Dynkin diagram of a semisimple
Lie algebra in the case of a root system.

4.3 Weyl Chevally Normal Form

There exists a basis of a simple Lie algebra which is almost canonical
and has important consequences. Before we describe the basis, we introduce
another useful concept. Recall that associated to a root α ∈ ∆, we have
the root vectors Hα defined by 〈Hα,H〉 = α(H). We call the renormalized
vector

τα =
2

〈α, α〉Hα

the co-root or inverse root. Notice in particular that α(τα) = 2 and that,
unlike the root vectors Hα, the coroots τα are independent of the scaling of
the inner product. Another reason why they are important, although we will
see further ones later on, is that

[τα, Xβ] =
2〈α, β〉
〈α, α〉 Xβ = β(τα)Xβ = nα,βXβ

and thus the coefficients are integers. From now on we will also choose
Xα ∈ gα, X−α ∈ g−α such that

[Xα, X−α] = τα.

Much less trivial is that we can choose the whole basis of g such that all Lie
brackets have integer coefficients. This is the content of the Weyl Chevally
normal form:

Theorem 4.25 Let g be a complex simple Lie algebra with root systemWeylbasis
∆, positive roots ∆+ ordered by some H0, and fundamental roots F =
{α1, . . . , αn}. Then there exists a basis for g consisting of the coroots
ταi ∈ h, 1 ≤ i ≤ n and Xα ∈ gα, X−α ∈ g−α, for all α ∈ ∆+, such that:

(a) [ταi , Xβ] = nαi,βXβ,
(b) [Xα, X−α] = τα,
(c) If α, β, α + β ∈ ∆, then [Xα, Xβ] = ±(t + 1)Xα+β, where t is the

largest integer such that β − tα ∈ ∆,

for an appropriate choice of signs.
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Some comments are in order. We already saw that (a) holds, and (b) is
clearly possible for appropriate choice of Xα. So the main content is part (c).
If α, β, α + β ∈ ∆, we already saw that [Xα, Xβ] = Nα,βXα+β for some non-
zero Nα,β ∈ C. One first shows that Nα,βN−α,−β = −(t + 1)2 for any choice
of Xα satisfying (b). Then one shows that one can choose Xα inductively
so that Nα,β = −N−α,−β by induction on the level of the roots (after fixing
an ordering). Along the way one is forced to make certain sign changes. To
explain the issue, say that γ has level k and γ = α+β where the level of α, β

is less than k. If one chooses a sign for Nα,β , then the signs for Nα∗,β∗ with
γ = α∗ + β∗ are determined. It turns out that one can make an arbitrary
choice for one of these at each level.

The vectors Xα can of course be changed by cα as long as cαc−α = 1. Up
to these choices of cα, and the above choice of signs at each level, the basis
is unique.

We now derive several consequences.

Corollary 4.26 There exists a basis such that all structure constants areintegralbasis
integers.

In particular, the classical and exceptional Lie algebras exist over any field.
More importantly

Proposition 4.27 Let gi be two semisimple Lie algebras with Cartaniso
subalgebras hi and root systems ∆i. If f : ∆1 → ∆2 is a bijection such
that f(−α) = −f(α) and f(α + β) = f(α) + f(β) whenever α, β, α + β ∈
∆1, then there exists an isomorphism φ : g1 → g2 with φ(h1) = h2 which
induces f on the respective set of roots.

Proof Since f preserves addition of roots, the chain properties of roots imply
that f also preserves the length and inner products of all roots (after scaling
both inner products appropriately). Hence we can define f∗ : h1 → h2 first by
sending n linearly independent root vectors in h1 to the corresponding ones
in h2. This defines an isometry, after appropriate scaling, since length and
inner products are determined by the string property. By the same reasoning
f∗ carries all root vectors to corresponding root vectors. Next we define an
order with respect to an arbitrary choice of a regular vector H0 ∈ h1 and
f(H0) ∈ h2, which one easily sees is regular as well. We then choose the
basis ταi , Xα for both inductively as in the proof of Theorem 4.25, making
the same sign changes along the way. By setting f∗(Xα) = Xf(α) we get the
desired isomorphism.
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As we saw earlier, one can recover the whole root system from its Dynkin
diagram. Thus

Corollary 4.28 Two semisimple Lie algebras with the same DynkinDynkiniso
diagram are isomorphic.

Exercises 4.29

(1) Prove the existence of the covers in Proposition 2.20 and Proposi-
tion 2.21 just from the Dynkin diagrams.

(2) If ∆ is a root system as defined in Definition 4.21, let ∆∗ = {τα | α ∈
∆} be the set of coroots. Show that ∆∗ is a root system as well. For
the simple Lie algebras with root system ∆, identify the Lie algebra
with root system ∆∗.

4.4 Weyl group

To obtain more information we will study the Weyl group of a complex
semisimple Lie algebra. In the next section we will see that it is equal to the
Weyl group of its compact real form.

Let g be a complex semisimple Lie algebra with Cartan subalgebra h and
root system ∆. For α ∈ ∆ we define the reflections in the hyperplane
{X ∈ hR | α(X) = 0} which are given by

sα : h → h : sα(H) = H − 2〈H, α〉
〈α, α〉 Hα = H − 〈H, α〉τα.

This is indeed the desired reflection since α(H) = 0 implies sα(H) = H and
sα(Hα) = Hα − 2Hα = −Hα. It also induces a reflection in h∗, which we
again denote by sα, which acts on roots:

sα(β) = β − 2〈β, α〉
〈α, α〉 α = β − β(τα)α.

Notice that the string property implies that sα(β) ∈ ∆ if α, β ∈ ∆, i.e. sα

permutes roots (resp. root vectors). Thus sα preserves hR. It also follows
from Proposition 4.27 that sα is the restriction of an automorphism of g to
h, although we will later see that it is even an inner automorphism. Notice
that property (c) of a root system has the geometric interpretation that the
root system is invariant under the Weyl group.
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Definition 4.30

(a) The Weyl group W (g) is the group generated by the reflections
sα, α ∈ ∆.

(b) The Weyl chambers are the components of the complement of

∪α∈∆ kerα.

Notice that the union of the Weyl chambers are precisely the regular elements
of g. We will denote a generic Weyl Chamber by WC.

Proposition 4.31Weyl-ordering

(a) If two regular elements H1, H2 lie in the same Weyl chamber, then
they define the same ordering. Thus Weyl chambers are in one-to-one
correspondence with orderings of the root system.

(b) W (g) takes Weyl chambers to Weyl chambers and acts transitively
on the Weyl chambers.

Proof (a) The ordering is determined by the set of positive roots. But a
Weyl chamber is convex and hence connected, so if a root is positive on one
vector it must be positive on all.

(b) To see that Weyl chambers are taken toWeyl chambers we need to show
that singular vectors are taken to singular ones. But by duality sα(β)(H) =
β(sα(H)) or sα(β)(sα(H)) = β(H). Since sα(β) ∈ ∆ if α, β ∈ ∆, this
implies that if H is singular, so is sα(H).

If WC ′ is another Weyl chamber, we can choose a sequence of Weyl cham-
bers WC = WC1, . . . , WCk = WC ′ such that WCi shares a "wall" kerαi

with WCi+1. The reflection in this wall clearly takes WCi to WCi+1 and
hence the composition of such reflections takes WC to WC ′. Thus w also
takes Cartan integers to Cartan integers and these determine the Dynkin
diagram.

If we specify an ordering, we sometimes denote the Weyl chamber corre-
sponding to this ordering as WC+.

We are now ready to show that the Dynkin diagram is independent of any
choices.
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Proposition 4.32 Let g1, g2 be two semisimple Lie algebras with CartanG-Dynkin
algebras hi and roots ∆i.

(a) If A : g1 → g2 is an isomorphism with A(h1) = h2, then α ◦A ∈ ∆1 if
α ∈ ∆2.

(b) The Dynkin diagram of g does not depend on the choice of Cartan
subalgebra and ordering.

(c) Isomorphic Lie algebras have the same Dynkin diagram.

Proof (a) Since α ∈ ∆2, we have [H, Xα] = α(H)Xα and applying the iso-
morphism A−1 we get [A−1(H), A−1(Xα)] = α(H)A−1(Xα) or [H ′, A−1(Xα)] =
α(A(H ′))A−1(Xα) which proves our claim.

(b) Let hi be two different Cartan subalgebras of g and WCi ⊂ hi two
Weyl chambers defining an ordering and hence fundamental roots Fi. Then
by Theorem 4.2 there exists A ∈ Aut(g) such that A(h1) = h2 and by part
(a) A takes roots to roots. This implies that A takes Weyl chambers to
Weyl chambers and hence by Proposition 4.31 (b) there exists w ∈ W (g2)
with w(A(WC1)) = WC2. w is also a restriction of an automorphism B

and replacing A by BA we can assume that A(WC1) = WC2. Hence A

takes positive roots to positive ones and simple ones to simple ones. Since an
automorphism is an isometry with respect to the Killing form, inner products
are also the same, which implies the Dynkin diagrams are the same.

(c) Let A : g1 → g2 be the isomorphism and h1 a Cartan subalgebra of g1

and H0 a regular element. Clearly A(h1) is a Cartan subalgebra in g2 and A

takes roots with respect to h1 to roots with respect to A(h1). Hence A(H0)
is regular in A(h1). Now we proceed as in (b).

We have now established the desired one-to-one correspondence between
semisimple Lie algebras and Dynkin diagrams, and between simple Lie alge-
bras and connected Dynkin diagrams.

Exercises 4.33
(1) Show that if α is a root, then there exists a w ∈ W such that wα is

a simple root.
(2) Show that there are at most two possible values for the length of

roots. We can thus talk about long roots and short roots. Show that
the set of long roots form a subalgebra and identify it for each of the
classical simple Lie algebras.
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4.5 Compact forms

In this section we relate our classification results to compact Lie algebras
and show the two definitions of a Weyl group are the same.

Proposition 4.34 Every complex semisimple Lie algebra g has a compactcompactrealform
real form.

Proof Choose a Cartan subalgebra h ⊂ g and an ordering ∆+. Next, choose a
basis τα, Xα, X−α as in Theorem 4.25 and let k be the real span of iτα, i(Xα+
X−α), Xα−X−α, α ∈ ∆+. We claim that this is indeed a compact real form.
First, we check that it is a subalgebra:

[iτα, i(Xβ + X−β)] = [−τα, Xβ]− [τα, X−β] = −2〈α, β〉
〈α, α〉 (Xβ −X−β)

[iτα, (Xβ −X−β)] =
2〈α, β〉
〈α, α〉 i(Xβ + X−β)

For the remaining brackets, recall that in the proof of Theorem 4.25 one
shows that Nα,β = −N−α,−β where [Xα, Xβ] = Nα,βXα+β. Thus for example

[Xα−X−α, i(Xβ +X−β] = Nα,βi(Xα+β + X−α−β)+ Nα,−βi(Xα−β + Xβ−α).

and similarly for the others.
It is also clear that k is a real form. To see that it is compact, we will show

that B|k < 0. Since the Killing form restricted to a real form is again the
Killing form, i.e. Bg|k = Bk, Proposition 3.25 finishes our proof. Recall that
〈Xα, Xβ〉 = 0 unless α + β = 0 and hence the above root space vectors are
orthogonal to each other, and to k as well. Furthermore, from [Xα, X−α] =
〈Xα, X−α〉Hα it follows that 〈Xα, X−α〉 = 2/〈α, α〉. Thus 〈Xα−X−α, Xα−
X−α〉 = −2/〈α, α〉 < 0 and 〈i(Xα + X−α), i(Xα + X−α)〉 = −2/〈α, α〉 < 0.
Since B|hR > 0, we have B|ihR < 0, and the claim follows.

As a special case, we observe the following. Since

[τα, Xα] = 2Xα, [τα, X−α] = −2X−α, [Xα, X−α] = τα

we obtain a subalgebra

slα = spanC{τα, Xα, X−α} ⊂ g (4.35) sla
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which isomorphic to sl(2,C), the isomorphism given by

τα →
(

1 0
0 −1

)
, Xα →

(
0 1
0 0

)
, X−α →

(
0 0
1 0

)

Furthermore,

kα = spanR{iτα, i(Xα + X−α), Xα −X−α} ⊂ k (4.36) ka

is a compact subalgebra isomorphic to su(2), the isomorphism given by

iτα →
(

i 0
0 −i

)
, i(Xα+X−α) →

(
0 i

i 0

)
, Xα−X−α →

(
0 1
−1 0

)
.

Notice that kα ⊗ C ⊂ k⊗ C ' g agrees with slα. Furthermore, kα generates
a subgroup of K which is isomorphic to SU(2) or SO(3) depending on the
choice of α.

These 3-dimensional subalgebras slα and kα, generated by each root α ∈ ∆,
are crucial in understanding the structure of g.

The uniqueness of the compact real form is closely connected to the clas-
sification of all real forms.

Theorem 4.37 Let g be a complex semisimple lie Algebra, and k a com-realform
pact real form. Given A ∈ Aut(k) with A2 = Id, we can decompose k

as

k = m⊕ n, A|m = Id, A|n = − Id .

Then

(a) q = m⊕ in is a subalgebra of g and is a real form of g.
(b) Every real form of g arises in this fashion, unique up to inner auto-

morphisms of g.

The proof is non-trivial and we will omit it here. But we make the following
observations.

Since A[X, Y ] = [AX, AY ], we have:

[m,m] ⊂ m, [m, p] ⊂ p, [p, p] ⊂ m,

This implies in particular that q is a subalgebra of g. And k⊗C = g clearly
implies that q ⊗ C = g, i.e. q is a real form. Since k is compact, its Killing
form is negative definite. This implies that it is negative definite on m and
positive definite on in. Thus q is a non-compact real form, unless n = 0. In
particular:
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Corollary 4.38 Any two compact real forms of g are conjugate in g.uniquecompactform

This implies a classification for compact semisimple Lie algebras:

Corollary 4.39 There is a one-to-one correspondence between complexcompactclass
semisimple Lie algebras and compact real forms. Hence there is a one-to-
one correspondence between (connected) Dynkin diagrams and compact
simple Lie algebras.

As we saw, for the classical simple Lie algebras we have:

(g, k) = (sl(n,C), su(n)), , (so(n,C), so(n)), , (sp(n,C), sp(n)).

Hence SU(n), SO(n), Sp(n) are, up to covers, the classical simple compact
Lie groups, and the exceptional simply connected ones are, using the name
name as the one for the complex Lie algebra, G2, F4, E6, E7, E8. Any other
compact Lie group is up to covers, a product of these simple ones, possibly
with a torus as well.

Theorem 4.37 enables one to classify all non-compact real simple Lie al-
gebras as well.

Example 4.40 The real forms of sl(n,C) are sl(n,R), su(p, q) and sl(n,H).
Include proof....

We now show that the two definitions of a Weyl group agree, which enables
us to prove a further property of the Weyl group.

Proposition 4.41 Let K be a compact semisimple Lie group and g = kCWeylKG
with t ⊂ k maximal abelian and h = t⊗ C ⊂ g a Cartan subalgebra.

(a) the action of the Weyl group N(T )/T of K on t agrees with the
restriction of the action of W (g) to ihR.

(b) The Weyl group acts simply transitively on the set of Weyl chambers,
i.e. if w ∈ W (g) takes a Weyl chamber to itself, w = Id.

Proof For one direction we need to show that for all w ∈ W (g), there exists
an n ∈ N(T ) such that w = iAd(n)|t. It is clearly sufficient to do this for
the reflections sα, α ∈ ∆.

Recall that the 3 vectors

Aα = iτα, Bα = Xα + X−α, Cα = i(Xα −X−α)
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form a subalgebra of k isomorphic to su(2) with

[Aα, Bα] = 2Cα, [Bα, Cα] = 2Aα, [Aα, Cα] = −2Bα.

We now consider the one parameter group g(s) = exp(sBα) and claim
that n = g(π

2 ) is the desired reflection sα. For this we need to show
that Ad(n)H = H if α(H) = 0 and Ad(n)Hα = −Hα. In the first case
Ad(g(s))H = Ad(exp(sBα))(H) = eadsBα H = H since [Bα,H] = [Xα −
X−α,H] = α(H)(Xα + X−α) = 0.

For the second case observe that

adsBα(Aα) = −2sCα, ad2
sBα

(Aα) = −4s2Aα, ad3
sBα

(Aα) = 8s3Cα

and hence

Ad(g(s))(Aα) = Ad(exp(sBα))(Aα) = eadsBα (Aα) =
∑

i

adi
sBα

(Aα)
i!

=
∑

i

(2s)2i(−1)iAα

(2i)!
−

∑

i

(2s)2i+1(−1)iCα

(2i + 1)!

= cos(2s)Aα − sin(2s)Cα

= −Aα if s =
π

2

This finishes the proof of one direction. For the other direction we need
to show that if n ∈ N(T ), then Ad(n)|t = w|it for some w ∈ W (g).

Recall that if A ∈ Aut(g) with A(h) ⊂ h, then A permutes roots. Thus
Ad(n) permutes roots and hence takes Weyl chambers to Weyl chambers. Fix
an ordering and hence a positive Weyl chamber WC+. Then Ad(n)WC+ is
another Weyl chamber and hence there exists w ∈ W (g) with w Ad(n)(WC+) =
WC+. We already saw that w = Ad(n′) for some n′ ∈ N(T ) and hence
Ad(n′n)(WC+) = WC+. We will now show that this implies n′n ∈ T and
hence Ad(n)t = Ad(n′)−1

t = w−1 = w.
So let g ∈ N(T ) with Ad(g)(WC+) = WC+ and choose H0 ∈ WC+.

Since N(T )/T is finite, there exists a k such that Ad(gk)|t = Id and we can
define H∗

0 = 1
k

∑k
i=1 Ad(g)(H0). Since WC+ is convex, H∗

0 ∈ WC+ is non-
zero and clearly Ad(g)H∗

0 = H∗
0 . Let S be the closure of the one parameter

group exp(isH∗
0 ) ⊂ T . Notice that g exp(isH∗

0 )g−1 = exp(isAd(g)(H∗
0 )) =

exp(isH∗
0 ), i.e. g ∈ ZK(S) the centralizer of S in K. From Lemma 3.34 it

follows that ZK(S) is the union of all maximal tori that contain S and is
hence connected. Its Lie algebra Zg(s) clearly contains t but is also contained
in Zg(H∗

0 ). But H∗
0 is regular and hence Zg(H∗

0 ) = ker(adH∗
0
) = t since adH∗

0
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does not vanish on any of the root spaces. Thus Zg(s) = t as well and hence
ZK(S) = T . But this implies that g ∈ ZK(S) = T , which finishes the proof
of (a). Notice that we have proved part (b) at the sam time.

Combining both we obtain:

Corollary 4.42 If g is a complex semisimple Lie algebra, then W (g) ⊂WeylInt
Int(g).

Proof Recall that Int(g) is the Lie subgroup of GL(g) with Lie algebra
{adX | X ∈ g}. In particular, it is generated be linear maps of the form
eadX , X ∈ g. If k is a compact and semisimple (real) Lie algebra, then
Int(k) is compact as well since its Lie algebra Int(k) ' k/z(k) ' k is compact
and semisimple. Since the exponential map of a compact Lie group is onto,
we can actually say Int(k) = {eadX | X ∈ k}. In particulat there is a
natural embedding Int(k) → Int(kC) via complex extension of adX . In the
proof of Proposition 4.34, starting with a complex Lie algebra g with Cartan
subalgebra h, we constructed a compact real form k with maximal abelian
subalgebra t ⊂ k such that h = t ⊗ C. In the proof of Proposition 4.41 we
showed that each w ∈ W (g) is of the form Ad(n)|t⊗C for some n ∈ N(T ) ⊂
K. By the above, since Ad(n) ∈ Int(k), we have that w ∈ Int(g).

Our final application is:

Proposition 4.43 Let K be a compact semisimple simply connected LieDynkinSym
group and g = kC with Dynkin diagram D(g). Then

Aut(K)/ Int(K) ' Aut(k)/ Int(k) ' Aut(g)/ Int(g) ' Sym(D(g))

where Sym(D(g)) is the group of symmetries of the Dynkin diagram.

Proof The first equality is clear. For the second one we have a homomor-
phism φ : Aut(k) → Aut(g) via complex extension and as we saw in the
proof of the previous Corollary, it also induces φ : Int(k) → Int(g) via com-
plex extension of adX . Thus we get a homomorphism φ̄ : Aut(k)/ Int(k) →
Aut(g)/ Int(g). To see that φ̄ is onto, let A ∈ Aut(g). Then A(k) is an-
other real form of g and by Corollary 4.38, there exists an L ∈ Int(g) with
L(A(k)) = k. Thus LA ∈ Aut(k). To see that φ̄ is one-to-one, we use that
fact that Int(g) ∩Aut(k) = Int(k).

For the last isomorphism, we start with A ∈ Aut(g). As we saw before,
we can assume, modulo Int(g), that A(h) = h, A(∆+) = ∆+ and hence
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A(F ) = F . A thus permutes the simple roots, but since it is also an isometry
in the Killing form, inner products are preserved and hence the induced
permutation of vertices of the Dynkin diagram also preserves the connections,
i.e. it induces a symmetry of the Dynkin diagram.

Conversely, if we start with a symmetry of the Dynkin diagram, we can
apply Corollary 4.28 to get an automorphism that induces this symmetry.
We are left with showing that if A induces a trivial symmetry of the Dynkin
diagram, then A ∈ Int(g). But this condition is equivalent to saying that
A|h = Id. Thus to finish the proof we need the following Lemma which is of
independent interest.

Lemma 4.44 If h ⊂ g is a Cartan subalgebra and A ∈ Aut(g) withtrivial
A|h = Id, then there exists an X ∈ h such that A = eadX .

Proof An automorphism permutes roots and takes root spaces to corre-
sponding root spaces. Since A fixes all roots by assumption, A(gα) ⊂ gα

and since dim gα = 1, we have A|gα
= cα Id for some cα. If αi are the simple

roots, then there exists a unique X ∈ h with cα = eαi(X). Now let B = eadX

and we want to show A = B. We can do this level by level, using the fact
that both A and B are automorphisms and that the claim is true by choice
at level one.

Example 4.45 The Dynkin diagrams Bn, Cn, G2, F4, E7, E8 have no sym-
metries and hence for these Lie algebras and corresponding compact groups,
every automorphism is inner. For An = sl(n,C) there is one outer automor-
phism, up to inner ones, given by φ(A) = Ā, and the same for SU(n). For
so(2n,C) or SO(2n,R) we can choose conjugation with diag(−1, 1, . . . , 1)
to represent the outer automorphism. Most interesting is the diagram for
so(8,C):

h h

h

h

HHHHH

©©©©©

which has the permutation group S3 as its symmetry group. Rotation by 180
degrees gives rise to so called triality automorphisms, which we will discuss
in a later section.



82 Chapter 4 Complex Semisimple Lie algebras

Exercises 4.46

(1) Show that the real forms of o(n,C) are .... and those of sp(n,C) are
....

(2)

4.6 Maximal root

A useful concept is that of a maximal root and the extended Dynkin dia-
gram. Let g be a complex semisimple Lie algebra, h ⊂ g a Cartan subalgebra,
∆+ a system of positive roots and F = {α1, . . . , αn} the set of fundamental
roots.

Definition 4.47 αm ∈ ∆+ is a maximal root if α + β /∈ ∆+ for all
β ∈ ∆+.

Its basic properties are given by

Proposition 4.48 Let g be a complex simple Lie algebra.maxroot

(a) There exists a unique maximal root αm.
(b) If αm =

∑
niαi, then ni > 0.

(c) If αm =
∑

niαi and β =
∑

miαi ∈ ∆+, then mi ≤ ni for each
i = 1, . . . , n. In particular β < αm if β 6= αm.

(d) αm is the unique maximal element in the ordering and the unique
root of maximal level.

Proof (a) We first show by induction on the level of roots that if αm + αi /∈
∆+ for all αi ∈ F , then αm is maximal. Indeed, let β ∈ ∆+ such that
αm + β ∈ ∆+. If β has level one, we are done. If not, β = β′ + αi for some
i and β′ has smaller level. Then

0 6= [Xαm , [Xαi , Xβ′ ]] = [[Xαm , Xαi ], Xβ′ ]] + [[Xαi , [Xαm , Xβ′ ]]

since αm+β′+αi is a root. Since αm+αi is not a root, we have [Xαm , Xαi ] =
0, and hence αm + β′ must be a root.

Thus if αm has maximal level, it must be a maximal root. This implies
the existence of a maximal root. We will prove uniqueness after proving (b).

(b) First observe that 〈αm, αi〉 ≥ 0 since otherwise αm +αi is a root. Also
recall that 〈αi, αj〉 ≤ 0 for all i 6= j.
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Let αm =
∑

niαi with ni ≥ 0 and assume there exists a k with nk = 0.
Then 〈αm, αk〉 =

∑
ni〈αi, αk〉 ≤ 0 which implies that 〈αm, αk〉 = 0. This

in turn implies that 〈αi, αk〉 = 0 whenever ni 6= 0. We can thus divide the
simple roots F = A ∪B with A = {αi | ni = 0} and B = {αi | ni 6= 0}. We
then have that 〈γ, δ〉 = 0 for all γ ∈ A and δ ∈ B. By induction on level,
this implies that A and B generate 2 ideals, contradicting the assumption
that g is simple.

To prove uniqueness, let αm, βm be two roots at maximal level. Then
〈αm, βm〉 ≥ 0 since otherwise αm + βm is a root. If 〈αm, βm〉 = 0, then 0 =
〈αm, βm〉 =

∑
ni〈αi, βm〉. Since also 〈αi, βm〉 ≥ 0 and ni > 0, this implies

〈αi, βm〉 = 0 for all i. But αi form a basis of hR, and hence 〈αm, βm〉 > 0.
Thus αm − βm is a root and either αm = βm + (αm − βm) or βm = αm +
(βm − αm) contradicts maximality.

(c) Notice that if β 6= αm has level i, then there exists an αi such that
β +αi is a root of level i+1 since otherwise β is a maximal root by our first
claim. This proves both (c) and (d).

We can now define the extended Dynkin diagram as follows. To the
simple roots α1, . . . αn add the root −αm where αm is maximal. Then draw
circles and connect by lines according to the same rules as for the Dynkin
diagram. Finally, put the integer ni over the dot corresponding to αi.
One easily sees that for the classical groups we have:

An : ∆+ = {ωi − ωj , i < j} αm = ω1 − ωn+1

Bn : ∆+ = {ωi, ωi ± ωj , i < j} αm = ω1 + ω2

Cn : ∆+ = {2ωi, ωi ± ωj , i < j} αm = 2ω1

Dn : ∆+ = {ωi ± ωj , i < j} αm = ω1 + ω2

and hence the extended Dynkin diagrams are

An :

h h h h hr r r
1 1 1

1

1 1

h

HHHHHHHHHHH ©©©©©©©©©©©

−αm
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Bn :

h

h

©©©©©

HHHHH

1

1

−αm

h h h h xr r r
2 2 2 2 2

Cn : x h h h h xr r r
1 2 2 2 2 1

−αm

Dn :

h

h

©©©©©

HHHHH

1

1

−αm

h h h h

h

h

HHHHH

©©©©©

r r r
2 2 2

1

1

2

extendedDynkin Extended Dynkin diagrams

(include exceptional ones as well)
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We can use these extended Dynkin diagrams to give a classification of
certain subalgebras of g.

Let g be a complex semisimple Lie algebra. We say that h ⊂ g is an equal
rank subalgebra if rk h = rk g and that h is maximal if for every subalgebra
k with h ⊂ k ⊂ g we have k = h or k = g.

Notice that if we have a Dynkin diagram or an extended Dynkin diagram
D and if we remove one of the circles, we obtain a Dynkin diagram D′ ⊂ D

for a possibly non-simple Lie algebra. If we reconstruct the positive roots
from the simple ones level by level, the diagram D′ generates a subalgebra
of g.

Theorem 4.49 (Borel-Siebenthal) Let g be a complex simple Lie al-equalrank
gebra with maximal root αm =

∑
niαi and extended Dynkin diagram

D.

(a) If D′ is obtained from D by removing αi with ni > 1, then D′ gener-
ates a maximal equal rank semisimple subalgebra h.

(b) If D′ is obtained from D by removing −αm and αi with ni = 1, then
D′ generates a subalgebra k and h = k ⊕ R is a maximal equal rank
semisimple subalgebra.

The proof is non-trivial and we will omit it here. Since complex simple
Lie algebras are in one-to-one correspondence with compact simple ones via
their real form, this also gives a classification of the equal rank subalgebras
for compact Lie groups.

Example 4.50 In the case of Dn we can delete a simple root with ni = 2
to obtain the subalgebras Dk ⊕Dn−k or a simple root with ni = 1 to obtain
Dn−1 ⊕ R or An−1 ⊕ R. In terms of compact groups, this gives the block
embeddings

SO(2k)× SO(2n− 2k) ⊂ SO(2n) U(n) ⊂ SO(2n)

Exercises 4.51

(1) Show that the maximal root has maximal length among all roots.
(2) Show that if h ⊂ g1⊕g2 is an equal rank subalgebra, then h = h1⊕h2

with hi ⊂ gi equal rank subalgebras.
(3) Show that the equal rank subgroups (not necessarily just maximal

ones) of the classical compact Lie groups are given by

S(U(n1)× · · · ×U(nk)) ⊂ SU(n) with
∑

ni = n
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U1 × · · · × Uk ⊂ Sp(n), where Ui = Sp(ni) or U(ni) and
∑

ni = n

U1×· · ·×Uk ⊂ SO(2n) where Ui = SO(2ni) or U(ni) and 2
∑

ni = n

U0 × · · · × Uk ⊂ SO(2n + 1) where U0 = SO(2k + 1) and

Ui = SO(2ni) or U(ni) , i ≥ 1, and 2
∑

ni = n− k

4.7 Lattices

We end this chapter by describing several lattices of hR and h∗R . Recall
that a lattice in a vector space V is a discrete subgroup which spans V . It
follows that there exists a basis v1, . . . , vn such that all lattice points are
integral linear combinations of vi. Conversely, given a basis vi, the integral
linear combinations of vi form a lattice.

Let K be a compact Lie group with maximal torus T . If g = kC, then, as
we saw, t ⊗ C is a Cartan subalgebra of g and hR = it. Denote by ∆ the
roots of g with respect to h.

Definition 4.52 Let K be a compact real group, with kC = g. Then we
have the following lattices in hR.

(a) The central lattice ΓZ = {v ∈ hR | α(v) ∈ Z for all α ∈ ∆}.
(b) The integral lattice ΓI = {X ∈ hR | expK(2πiX) = e}.
(c) The coroot lattice ΓC = spanZ{ταi = 2Hαi

〈αi,αi〉 | αi ∈ F}.
These lattices can of course also be considered as lattices in t. Notice that the
integral lattice depends on a particular choice of the Lie group K, while the
root lattice and the central lattice only depend on the Lie algebra g. Also,
ΓI is indeed a lattice since exp: t → T is a homomorphism and d(exp)0 an
isomorphism. The basic properties of these lattices are:

Proposition 4.53 Let K be a connected compact Lie group with universallattices
cover K̃. Then we have

(a) ΓC ⊂ ΓI ⊂ ΓZ ,
(b) ΓZ = {X ∈ hR | expK(2πiX) ∈ Z(K)} and hence ΓZ/ΓI = Z(K).
(c) ΓI/ΓC = π1(K), and hence ΓZ/ΓC = Z(K̃).
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Proof We start with the proof of (b). Recall that Z(K) ⊂ T and that
exp: t → T is onto. Thus, if g ∈ Z(K), we can write g = exp(X) for some
X ∈ t. Since Z(K) is the kernel of Ad, it follows that Ad(exp(X)) = eadX =
Id, and since adX is skew symmetric, the eigenvalues of adX lie in 2πiZ .
On the other hand, the eigenvalues of adX are 0 and iα(X), α ∈ ∆. This
implies that α(X) ∈ 2πi ΓZ . The converse direction works similarly.

(a) By (4.9), β(τα) ∈ Z which implies that ΓC ⊂ ΓZ . To prove the stronger
claim that ΓC ⊂ ΓI , let α ∈ ∆ and recall that iτα, i(Xα + X−α), Xα −X−α

form a subalgebra of k isomorphic to su(2). It is the image of a homomor-
phism dφ : su(2) → k which integrates to a homomorphism φ : SU(2) → K.

Furthermore, iτα = dφ(X) with X =
(

i 0
0 −i

)
. Since expSU(2)(2πX) = e,

this implies that expK(2πiτα) = expK(dφ(2πX)) = φ(expSU(2)(2πX)) = e.
It remains to prove that ΓI/ΓC = π1(K). For this we construct a ho-

momorphism f : ΓI → π1(K) as follows. If X ∈ ΓI , then by definition
t → exp(2πitX), 0 ≤ t ≤ 1 is a loop in K and hence represents an element of
π1(K). Recall that pointwise multiplication of loops in K is homotopic to the
composition of loops. Since we also have exp(t(X + Y )) = exp(tX) exp(tY )
for X,Y ∈ t, it follows that f is a homomorphism. As is well known, each
element of π1(M) of a Riemannian manifold M can be represented by a
geodesic loop (the shortest one in its homotopy class). We can apply this to
K equipped with a biinvariant metric. The geodesics through e are of the
form t → exp(tX), X ∈ k. By the maximal torus theorem there exists a
g ∈ K such that g exp(tX)g−1 = exp(tAd(X)) with Ad(X) ∈ t. This new
loop is homotopic to the original one since K is connected. Thus each element
π1(K) can be represented by a geodesic loop t → exp(tX), 0 ≤ t ≤ 1, X ∈ t

and hence iX ∈ ΓI . Thus f is onto.
If X ∈ ΓC , we can write the loop as the image of the corresponding loop in

SU(2) under the above homomorphism φ. Since SU(2) is simply connected,
ΓC lies in the kernel of f . To see that ker f = ΓC is more difficult and will
be proved later on.

Example 4.54 We now use Proposition 4.53 to compute the center of
Spin(n), the universal cover of SO(n).

We start with Spin(2n + 1). We use the basis ei of t as before, and
hence the roots are ±ωi, ±ωi ± ωj , i < j. Thus ΓI = ΓZ is spanned
by ei and ΓC by the coroots ±2ei, ±ei ± ej , i < j. This implies that
ΓZ/ΓI = Z(SO(2n+1)) = e and ΓI/ΓC = π1(SO(2n+1)) = Z2 spanned by
e1. Hence also ΓZ/ΓC = Z(Spin(2n + 1)) = Z2.

More interesting is the case of SO(2n). Here the roots are ±ωi±ωj , , i < j.
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Hence ΓC is spanned by the coroots ±ei ± ej , i < j and ΓI by ei. Further-
more, ΓZ = {∑ aiei | ai ± aj ∈ Z} and hence spanned by 1

2

∑±ei, the sum
being over an even number of indices. This implies that

π1(SO(2n)) = ΓI/ΓC = Z2 generated by e1

Z(SO(2n)) = ΓZ/ΓI = Z2 generated by
1
2

∑
ei

Z(Spin(2n)) = ΓZ/ΓC =
{
Z2 ⊕ Z2 n = 2k

Z4 n = 2k + 1

Here the generators of ΓZ/ΓC are e1 + 1
2

∑k
i=2 ei and −e1 + 1

2

∑k
i=2 ei if n

even, and 1
2

∑
ei if n odd.

Remark 4.55 It is worth pointing out that besides the Lie group SO(4n)
there exists another Lie group, which we will denote by SO′(4n), which has
center and fundamental group equal to Z2. For this, recall that for n > 4,
there exists only one outer automorphism A of Spin(n), and it descends to
an outer automorphism of SO(4n) as well. This automorphism acts on the
center Z2 ⊕ Z2 non-trivially. Hence there exists a basis (1, 0), (0, 1) with
A(1, 0) = (0, 1). Since A descends, SO(4n) is obtained by dividing by Z2

generated by (1, 1). Since there exists no automorphism taking (1, 0) to
(1, 1), the Lie group obtained by dividing by Z2 generated by (1, 0) is not
isomorphic to SO(4n). Notice though that SO(8) ' SO′(8) due to the triality
automorphism. Furthermore, SO′(4) ' SU(2)× SO(3).

We also have the following dual lattices, which will be important in the
next chapter.

Definition 4.56 Let g be a semisimple Lie algebra. Then we have the
following lattices in h∗R.

(a) The weight lattice ΓW = {λ ∈ h∗R | λ(τα) ∈ Z for all α ∈ ∆}.
(b) The root lattice ΓR = spanZ{αi | αi ∈ F}.

Proposition 4.57 ΓR ⊂ ΓW and ΓW /ΓR ' Z(K̃).colattices

Proof The inclusion is a basic property of roots. For the second claim, we
first the following general comments. A lattice Γ ⊂ V defines a dual lattice in
V ∗ via Γ∗ = {λ ∈ V ∗ | λ(v) ∈ Z for all v ∈ Γ}. If two lattices Γi ⊂ V satisfy
Γ1 ⊂ Γ2, then Γ∗2 ⊂ Γ∗1 and Γ2/Γ1 ' Γ∗1/Γ∗2. Now it is clear that ΓW is dual
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to ΓC and ΓR is dual to ΓZ . The claim now follows from Proposition 4.53.

Exercises 4.58

(1) Compute the various lattices for K = SU(n) and K = Sp(n) and use
them to determine center and fundamental group of K.

(2) Show that π1(Ad(K) = ΓZ/ΓC if K is a compact semisimple Lie
group.

(3) Show that all 6 lattices are invariant under the Weyl group.



5

Representation Theory

Our goal in this chapter is to study the representation theory of Lie algebras.
We will see that every representation of a complex semisimple Lie algebra
splits into a sum of irreducible representations, and that the irreducible rep-
resentations can be described explicitly in terms of simple data.

5.1 General Definitions

Let G be a real or complex Lie group, with corresponding Lie algebra g.
A real (resp. complex ) representation of G on a real (resp. complex)

vector space V is a Lie group homomorphism

π : G → GL(V );

A real (resp. complex) representation of g on a real (resp. complex)
vector space V is is a Lie algebra homomorphism

π : g → gl(V );

Of course if g is complex, V must be complex as well. When a representation
is fixed, we often denote π(X)(v) by X · v or just Xv and π(g)(v) by g · v or
gv.

A representation π of either a Lie group or a Lie algebra is faithful if π

is injective. A representation π of a Lie group is almost faithful if ker(π)
is discrete. Notice that since ker(π) is also a normal subgroup, it lies in the
center of G. We can thus compute the kernel by just checking it on central
elements.

If G is simply connected, there is a bijection between representations π of G
and representations dπ of g. Notice that π is almost faithful iff dπ is faithful.

90
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Because of this bijection, we will first study Lie algebras representations, and
come back to Lie group representations at the end.

Let π and π′ be two (real or complex) representations on a vector space V

resp. V ′ by a Lie group G or Lie algebra g, distinguished by π(g) and π(X)
for short.

We define the direct sum π ⊕ π′ acting on V ⊕ V ′ as

(π ⊕ π′)(g) · (v, v′) = (π(g) · v, π′(g) · v′))
(π ⊕ π′)(X) · (v, v′) = (π(X) · v, π′(X) · v′)

The tensor product π ⊗ π′ acting on V ⊗ V ′ as

(π ⊗ π′)(g) · (v ⊗ v′) = π(g) · v ⊗ π′(g) · v′
(π ⊗ π′)(X) · (v ⊗ v′) = (π(X) · v)⊗ v′ + v ⊗ (π′(X) · v′)

The k-th exterior power Λkπ acting on ΛkV as

(Λkπ)(g)(v1 ∧ v2 ∧ · · · ∧ vk) = gv1 ∧ gv2 ∧ · · · ∧ gvn

(Λkπ)(X)(v1 ∧ v2 ∧ · · · ∧ vk) =
∑

i

v1 ∧ · · · ∧Xvi ∧ · · · ∧ vn

and similarly the k-th symmetric power Skπ acting on SkV .
If π is a representation of G resp. g and π′ one of G′ resp. g′, we define

the exterior tensor product π⊗̂π′, which is a representation of G × G′

resp. g⊕ g′ acting on V ⊗ V ′ as

(π⊗̂π′)(g, g′)(v ⊗ v′) = π(g) · v ⊗ π′(g′) · v′
(π⊗̂π′)(X, X ′) · (v ⊗ v′) = π(X) · v ⊗ v′ + v ⊗ π′(X ′) · v′

Notice that the tensor product is a representation of the same Lie algebra,
whereas the exterior tensor product is a representation of the sum of two Lie
algebras.

Now assume that V has a real inner product in case of a real representa-
tion or an hermitian inner product in case of a complex representation. We
can then associate to π the contragredient representation π∗. If we denote
the adjoint of a linear map L by L∗, then on the group level it is defined by
π∗(g)v = (π(g−1))∗v and on the Lie algebra level as π∗(X)v = −(π(X))∗v.
We often think of a representation as acting on Rn endowed with its canon-
ical inner product. In that case π∗(g)v = π(g−1)T and π∗(X)v = −π(X)T v.
If G is a Lie group or g is a real Lie algebra we call a real representation π

orthogonal if π(G) ⊂ O(V ) resp. π(g) ⊂ o(V ) and a complex representa-
tion unitary if π(G) ⊂ U(V ) resp. π(g) ⊂ u(V ). Notice that this definition
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does not make sense if g is a complex Lie algebra since u(n) is not a complex
vector space.

Given a complex representation, we define the complex conjugate rep-
resentation π̄ by π̄(g) = π(g) resp. π̄(X) = π(X). Notice that if π is unitary,
π̄ = π∗, and if π is orthogonal, π = π∗.

Let h be a real Lie algebra, and π : h → gl(V ) a complex representation.
We define

π̃ : h⊗ C→ gl(V ) : (X + iY ) · v = (X · v) + i(Y · v)

Given a complex Lie algebra g, a complex representation π, and a real form
h ⊂ g, we obtain a complex representations of h via restriction. One thus
has a one-to-one correspondence between complex representations of h and
h⊗ C.

If g be a real Lie algebra, and π : g → gl(V ) a real representation. We
define

πC = π ⊗ C : g → gl(V ⊗ C) : X · (v + iw) = (X · v) + i(X · w)

as a complex representation of g. Unlike in the previous construction, the
correspondence between π and πC is not so clear since in general a com-
plex representation is not the complexification of a real representation. We
postpone a discussion of this relationship to a later section.

Finally, if π is a complex representation on V we denote by πR the under-
lying real representation on VR where we forget about the complex multipli-
cation on V .

Let π, π′ two representations of G resp. g. We say that π and π′ are
equivalent, denoted by π ' π′, if there is an isomorphism L : V → V ′ such
that π′(X)(Lv) = L(π(X)v) for every X ∈ g, v ∈ V . Such an L is also
called an intertwining map.

A (real or complex) representation π is called irreducible if there are no
non-trivial subspaces W ⊂ V with π(W ) ⊂ W .

A useful observation is the following.
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Lemma 5.1 (Schur’s Lemma)schur

(a) If π is an irreducible complex representation on V and L an inter-
twining map, then L = a Id for some a ∈ C.

(b) If π is an irreducible real representation on V , then the set of inter-
twining maps is an associative division algebra and hence isomorphic
to R,C or H.

(c) If π is an irreducible real (resp. complex) representation of G on V

and 〈·, ·〉1, 〈·, ·〉2 two inner products (resp. hermitian inner products)
on V such that π(g) is an isometry with respect to both, then 〈·, ·〉1 =
a〈·, ·〉2 for some a ∈ R (resp. a ∈ C).

Proof (a) Since we are over the complex numbers, there exists an eigenvalue a

and corresponding eigenspace W ⊂ V of L. The representation π preserves
W since L(π(g)w) = π(g)(Lw) = aπ(g)w for w ∈ W . By irreducibility,
W = V , i.e., L = a Id.

(b) First notice that if L is an intertwining map, the kernel and image are
invariant subspaces, and hence L is an isomorphism. Sums and composi-
tions of intertwining maps are clearly again intertwining maps, and so is the
inverse. This shows it is a division algebra. A theorem of Frobenius states
that an associative division algebra is isomorphic to R,C or H.

(c) Define L : V → V by 〈v, w〉1 = 〈v, Lw〉2 for all v, w. Since 〈·, ·〉1 is
symmetric, L is self adjoint with respect to 〈·, ·〉2. Since π acts by isometries,

〈gv, gLw〉2 = 〈v, Lw〉2 = 〈v, w〉1 = 〈gv, gw〉1 = 〈gv, Lgw〉2
and thus π(g)L = Lπ(g). Hence π(g) preserves eigenspaces of L and by
irreducibility, and since L is self adjoint, L = a Id, i.e. 〈·, ·〉1 = a〈·, ·〉2.

The same holds in (c) if π is a representation of a Lie algebra g and π(X)
is skew symmetric (resp. skew hermitian).

Remark 5.2 According to (b), real irreducible representations fall into 3
categories according to wether the set of intertwining maps is isomorphic
to R,C or H. We say that the representation if of real, complex, resp.
quaternionic type.

Real representations of complex type correspond to those whose image lies
in GL(n,C) ⊂ GL(2n,R). In this case the intertwining maps are of the form
a Id+bI, a, b ∈ R, where I is the complex structure on R2n.

Representations of quaternionic type correspond to those whose image lies
in GL(n,H) ⊂ GL(4n,R). In this case the intertwining maps are of the form
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a Id+bI + cJ + dK, a, b, c, d ∈ R, where I, J,K are the complex structure
on R4n ' Hn given by multiplication with i, j, k ∈ H componentwise.

We will study this division of real representations into representation of
real, complex, resp. quaternionic type in more detail later on.

We say that a representation π is completely decomposable if there
exists a decomposition V = W1 ⊕ · · · ⊕ Wk and representations πi on Wk

such that π ' π1 ⊕ · · · ⊕ πr with πk irreducible. It is easy to see that a
representation is completely decomposable iff every invariant subspace has
a complementary invariant subspace.

What makes representations of semisimple Lie algebras special is:

Proposition 5.3 Let K be a compact Lie group and g a real or complexcompred
semisimple Lie algebra.

(a) Every real (complex) representation of K is orthogonal (unitary) and
completely decomposable.

(b) Every real or complex representation of g is completely decomposable.
(b) If g is real, every real (complex) representation is orthogonal (unitary)

Proof (a) Let π be a complex rep of K. Starting with an arbitrary hermitian
inner product 〈·, ·〉 on V we can average as usual over K:

〈X,Y 〉′ =
∫

K
〈ψ(k)X, ψ(k)Y 〉dk

such that π(k) acts as an isometry in 〈·, ·〉′. Thus π is unitary. Similarly
for a real representation. In either case, if W is an invariant subspace, the
orthogonal complement is also invariant. This proves complete decompos-
ability.

(b) Let g be a complex semisimple Lie algebra with a real or complex
representation. Let k ⊂ g be the compact real form and let K be the unique
simply connected Lie group with Lie algebra k. Since k is semisimple, K

is compact. Restricting we obtain a representation π|k : k → gl(V ) which
integrates to a representation ψ : K → GL(V ) with dψ = π. Thus ψ is
orthogonal (unitary) and hence also dψ = π|k and by complexification also
π.

(c) If g is real semisimple, and π a rep of g, then πC is a rep of gC , and
arguing as before is completely decomposable. Restricting, this implies that
π is completely decomposable
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Notice that a complex rep of a complex Lie algebra can not be unitary since
su(n) ⊂ gl(n,C) is not a complex subspace.

We end this section with the following general claim.

Proposition 5.4 Let g be a complex semisimple Lie algebra and π atensorprod
complex irreducible representation.

(a) If g = g1 ⊕ g2, then there exist irreducible representations π1 of g1,
π2 of g2, such that π = π1⊗̂π2;

(b) Conversely, if πi are irreducible representations of gi, then π1⊗̂π2, is
an irreducible representation of g1 ⊕ g2.

(c) Every representation of an abelian Lie algebra is one dimensional. If
g = g1 ⊕ t where g is semisimple and t abelian, then π = π1⊗̂π2 for
some representation π1 of g1 and π2(x) = f(x), x ∈ t for some f ∈ t∗.
π2 is effective iff dim t = 1 and f injective.

Proof (a) Let π be an irrep of g1⊕g2 on R. We will consider gi as embedded
in the i-th coordinate. Let σ be the restriction of π to g1. Then we can
decompose R into σ irreducible subspaces: X = V1 ⊕ V2 ⊕ · · · ⊕ Vk. Let
pri : V → Vi be the projection onto the i-th coordinate. This is clearly a g1

equivariant map. Fixing y ∈ g2, we have a linear map Lij(y) : Vi → Vj , : v →
prj(y · v). Since the action of g1 and g2 commute, Lij(y) is g1 equivariant.
Thus by Schur’s Lemma it is either 0 or an isomorphism. We claim that
Vi ' Vj for all i, j. If not, fix i and let W be the direct sum of all irreps
Vj not isomorphic to Vi. If W is not all of V , there exists a k with Then
the above observation would imply that Lij(y) = 0 for all g1 ⊕ g2 invariant.
Thus Vi must be isomorphic to Vj for all i, j. Fix g1 equivariant isomorphisms
V := V1, V ' Vi and define π1 : v → x · v to be the rep of g1 on V . Hence
R = V ⊕V ⊕· · ·⊕V with g1 acting as x·(v1, . . . , vk) = (x·v1, . . . , x·vk). If φi is
the embedding into the ith coordinate, we have linear maps Mij(y) : V → V

given by Mij(y)(v) = prj(y · φi(v)). This is again g1 equivariant and by
Schur’s Lemma, for each y ∈ g2, Mij(y) = bij(y) Id for some constant bij ,
or equivalently y · φi(v) =

∑
j bij(y)φj(v). This can be interpreted as a

representation of g2. To be explicit, let W be a k-dimensional vector space
and fix a basis w1, . . . , wk. Then y · wi :=

∑
j bij(y)wj for y ∈ g2 defines

a representation π2 of g2 on W . We now claim that π ' π1⊗̂π2. To see
this, define an isomorphism F : V ⊗W → R by F (v ⊗ wi) = φi(v). F is g1

equivariant since F (x · (v ⊗ wi)) = F ((x · v) ⊗ wi) = φi(x · v) = x · φi(v) =
x · F (v ⊗ wi) for x ∈ g1. Furthermore, F (y · (v ⊗ wi)) = F (v ⊗ (y · wi)) =
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∑
bij(y)v⊗wj =

∑
bij(y)φj(v) and y ·F (v⊗wi) = y ·φi(v) =

∑
j bij(y)φj(v)

for all y ∈ g2 implies that it is g2 equivariant as well, and hence F is a g

equivariant isomorphism.
(b) Let vi ∈ Vi be maximal weight vectors of πi and Fi the fundamental

roots of gi. Starting with v1⊗v2 we can apply X−α ·(v1⊗v2) = (X−α ·v1)⊗v2,
α ∈ F1, and separately X−β · (v1 ⊗ v2) = v1 ⊗ (X−β)v2, α ∈ F2. Applying
these repeatedly, we can generate all of V1 ⊗ V2 starting with v1 ⊗ v2.

(c) The first part follows immediately from Schur’s Lemma since all en-
domorphisms commute and can be diagonalized simultaneously. The rep is
then clearly given by some f ∈ t∗. The second claim follows as in part (a)
and the last claim is obvious.

Thus understanding complex representations of complex semisimple Lie
algebras reduces to classifying irreducible complex representations of simple
Lie algebras. This will be the topic of the next section.

We added the case of an abelian Lie algebra as well since in a later sec-
tion we will study representations of compact Lie algebras and compact Lie
groups.

Exercises 5.5

(1) If g is real and π a complex representation with π̃ is extension to
g⊗ C, show that π is irreducible iff π̃ is irreducible.

(2) Let π be the (irreducible) representation of G = SO(2) acting on R2

via rotations. Show explicitly how π ⊗ C decomposes.
(3) If π is a complex representation and πR the underlying real one, show

that π is irreducible iff πR is irreducible.
(5) If π is a rep of the Lie group G, show that π is irreducible iff dπ is

irreducible.
(6) If π is a complex representation of g (real or complex), show that

(πR)C is isomorphic to π ⊕ π̄.
(6) Show that π is completely decomposable iff every invariant subspace

has a complementary subspace. Give an example that a representa-
tion of a nilpotent or solvable Lie group is not completely decompos-
able.
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5.2 Representations of sl(2,C)

From now on, g is a complex semisimple Lie algebra, with a fixed Cartan
subalgebra h ⊂ g and corresponding roots ∆. We choose an ordering defined
by a regular vector H0 ∈ hR and thus positive roots ∆+ and fundamental
roots F = {α1, . . . , αn}, n = rk g. We will use the abbreviations Xαi = Xi

and X−αi = X−i whenever convenient. We often write Xv or X · v instead
of π(X)v and will use the short form “rep” for representation and “irrep" for
irreducible representation.

A functional µ ∈ h∗ is called a weight of π if

Vµ = {v ∈ V | H · v = µ(H)v for all H ∈ h}
is nonempty. In that case, Vµ is the weight space, and mµ = dim Vµ the
multiplicity of µ. We denote by Wπ the set of weights of π.

Note that, in particular, if π is the adjoint representation of g, then the
weights of π are precisely the roots of g, as previously defined, with the
weight spaces Vα being the root spaces gα. Moreover, mα = 1 for every root
α. On the other hand, 0 is also a weight and has multiplicity dim h.

Lemma 5.6 For all α ∈ ∆, Xα ∈ gα and weights µ we haverootweight

Xα · Vµ ⊂ Vµ+α

Proof Let v ∈ Vµ, i.e. H · v = µ(H)v. Since π preserves Lie brackets,
π([X, Y ] = π(X)π(Y )− π(Y )π(X) or in our short form XY · v = Y X · v +
[X, Y ] · v for all X,Y ∈ g. Thus

H · (Xα · v) = HXα · v = XαH · v + [H, Xα] · v
= µ(H)Xα · v + α(H)Xα · v = (µ + α)(H)Xα · v

which means that Xα · v ∈ Vµ+α.

The basis for understanding irreps of g is the classification of irreps of
sl(2,C) since, as we saw in (4.35), every root α spans a unique subalgebra
slα generated by τα, Xα, X−α which is isomorphic to sl(2,C).

Recall that we can represent sl(2,C) as span{H,X+, X−}, where

H =
(

1 0
0 −1

)
X− =

(
0 0
1 0

)
X+ =

(
0 1
0 0

)
(5.7) sl2mat
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and

[H, X+] = 2X+, [H,X−] = −2X−, [X+, X−] = H. (5.8) sl2br

A Cartan subalgebra is given by C ·H with respect to which the roots are
±α with α(H) = 2. Furthermore, X+ ∈ gα, X− ∈ g−α are an appropriate
choice for Xα and X−α, and τα = H since α(τα) = 2.

Example 5.9 We fist give an explicit example of a representation of SL(2,C)su2pol
and, via its derivative, of sl(2,C). Define Vk be the space of homogeneous
polynomials of degree k in two complex variables z, w. Thus

Vk = spanC{zk, zk−1w, zk−2w2, . . . , zwk−1, wk} dimVk = k + 1

The Lie group SL(2,C) acts on Vk via g ·p = p◦g−1. If we let g = exp(tH) =
diag(et, e−t) then g · zrwk−r = (e−tz)r(etw)k−r = et(k−2r)zrwk−r. By differ-
entiating, we obtain a representation of sl(2,C) with

H · zrwk−r = (k − 2r)zrwk−r

Thus the weights are k − 2r, r = 0, . . . , k with weight space C · zrwk−r.
Furthermore,

X+ · zrwk−r =
d

dt |t=0
etX+ · zrwk−r =

d

dt |t=0

(
1 t

0 1

)
· zrwk−r

=
d

dt |t=0
(z − tw)r(w)k−r = −rzr−1wk−r+1.

Similarly X− · zrwk−r = −(k − r)zr+1wk−r−1, which easily implies that
the representation is irreducible since X− increases the degree of z and X+

decreases it.

We will now show that these are in fact all of the irreducible representations
of sl(2,C).
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Proposition 5.10 For every integer k ≥ 1, there exists an irrep πk :sl2rep
sl(2,C) → Vk, with dimVk = k +1 and conversely every irrep of sl(2,C) is
isomorphic to πk for some k. Moreover, there exists a basis v0, v1, . . . , vk

of V such that X+ · v0 = 0, X− · vk = 0 and

H · vi = (k − 2i)vi, X− · vi = vi+1, X+ · vi = γivi−1.

with γi = i(k − i + 1). In particular, the weights are given by

Wπk
= {µ ∈ h∗ | µ(H) = k, k − 2, k − 4, . . . ,−k}

or equivalently

Wπk
= {µ, µ− α, µ− 2α, . . . , µ− kα | µ(τα) = k}
= {k

2
α, (

k

2
− 1)α, . . . ,−k

2
α}

and all weights have multiplicity one.

Proof Let π be an irrep of sl(2, |C). Since we work over C, there exists an
eigenvector v for π(H), i.e. H · v = av, a ∈ C. The sequence of vectors
v, X+ · v, X2

+ · v = X+ · X+ · v, . . . terminates, since the vectors, having
eigenvalue (weights) a, a + 2, . . . by Lemma 5.6, are linearly independent.
Thus we set v0 = (X+)s · v with X+ · v0 = 0. We rename the weight of v0

to be b ∈ C, i.e. H · v0 = bv0. We now inductively define the new sequence
of vectors vi+1 = X− · vi = Xi− · v0. They have eigenvalues b, b − 2, . . . ,
i.e. H · vi = (b − 2i)vi and there exists a largest k such that vk 6= 0 but
vk+1 = X− · vk = 0. Next we claim that

X+ · vi = γivi−1, with γi = i(b− i + 1).

The proof is by induction. It clearly holds for i = 0 since X+v0 = 0.
Furthermore,

X+vi+1 = X+X−vi = [X+, X−]vi + X−X+vi = (b− 2i)vi + γivi,

i.e., γi+1 = γi + b− 2i which easily implies the claim.
It is now clear that W = spanC{v0, v1, . . . , vs} is invariant under the action

of sl(2,C) since X− moves down the chain and X+ moves up the chain of
vectors. Hence by irreducibility W = V . Furthermore, 0 = X+vk+1 =
µk+1vk implies that µk+1 = 0, i.e., b = k. Putting all of these together, we
see that the irrep must have the form as claimed in the Proposition.

Conversely, such a representation exists as we saw in Example 5.42.

We can thus reperesent the representation also in matrix form:
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πk(H) =




k 0
k − 2

. . .
0 −k


 ,

πk(X−) =




0 0
1 0

. . . . . .
0 1 0


 ,

πk(X+) =




0 γ1 0

0
. . .
. . . γk

0 0




.

Notice that π(H) is semisimple and π(X±) are nilpotent. This illustrates
one of the differences with a complex rep of a compact Lie algebra since in
that case every rep is unitary and hence all matrices π(X) can be diagonal-
ized.

Example 5.11 (a) The rep πk of sl(2,C) integrates to a rep of SL(2,C)so3pol
since the group is simply connected. But this representation does not have
to be faithful. If it has a kernel, it must lie in the center and hence we only
have to test the rep on central elements. In Example 5.42 we gave an explicit
description of the rep of SL(2,C) which must be the integrated version of πk

by uniqueness. Thus the central element − Id acts trivially for k even and
non-trivially for k odd which means that π2k+1 is a faithful irrep of SL(2,C)
and π2k a faithful irrep of PSL(2,C).

The rep of SL(2,C) also induces a rep of the compact subgroup SU(2) ⊂
SL(2,C). Since su(2) ⊗ C ' sl(2,C), this rep is irreducible, and conversely
every complex irrep of SU(2) is of this form. Again it follows that π2k+1 is
a faithful irrep of SU(2) and π2k a faithful irrep of SO(3). Thus SO(3) has
complex irreps only in odd dimension, in fact one in each up to isomorphism.

(b) There also exists a natural real irrep for SO(3). Let Vk be the vector
space of homogeneous polynomials in the real variables x, y, z. The Laplace
operator is a linear map ∆: Vk → Vk−2 and one easily sees that it is onto.
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The kernel Hk = {p ∈ Vk | ∆p = 0} is the set of harmonic polynomials.
SO(3) acts on Vk as before, and since ∆ is invariant under SO(3), it acts on
Hk as well. One can show that this rep is irreducible, has dimension 2k + 1,
and its complexification is irreducible as well and hence isomorphic to π2k in
Example (a). Thus all real irreps of SO(3) are odd dimensional and unique.
The story for real irreps of SU(2) is more complicated. As we will see, there
exists one in every odd dimension (only almost faithful) and a faithful one
in every dimension 4k, given by (π2k−1)R.

We will use this information about the representations of sl(2,C) now to
study general complex representations of complex semisimple Lie algebras.
A key property of the reps of sl(2,C) is that the eigenvalues of π(τα) are
integers, and are symmetric about 0. Furthermore, if µ is the weight of
πk with µ(τα) = k, then the other weights are of the form µ, µ − α, µ −
2α, . . . , µ− kα = sα(µ).

5.3 Representations of semisimple Lie algebras

Recall that we have an ordering, after choosing a fixed regular element
H0 ∈ hR, defined on h∗R by µ1 ≤ µ2 if µ1(H0) ≤ µ2(H0) and µ1 < µ2 if
µ1(H0) < µ2(H0). Furthermore, ΓW = {µ ∈ h∗R | µ(τα) ∈ Z for all α ∈ ∆}
is the weight lattice.

Proposition 5.12 Let g be a complex semisimple Lie algebra and π airrep1
complex irreducible representation with weights Wπ.

(a) V is the direct sum of its weight spaces.
(b) If µ ∈ Wπ, then µ(τα) = 〈µ, τα〉 = 2〈µ,α〉

〈α,α〉 ∈ Z for all α ∈ ∆, i.e.,
µ ∈ ΓW .

(c) There exists a unique (strictly) maximal weight λ, i.e. µ < λ for all
µ ∈ Wπ, µ 6= λ. Furthermore, 〈λ, τα〉 ≥ 0 and mλ = 1.

(d) Each weight is of the form λ−m1α1 − · · · −mnαn with αi ∈ F and
mi ∈ Z, mi ≥ 0.

(e) λ uniquely determines the representation π, i.e. if π, π′ are two
representations with equal highest weight λ, then π ' π′.
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Proof By definition π(H) = µ(H) Id on Vµ for all H ∈ h. Recall that for
each α ∈ ∆, we have the subalgebras slα = spanC{τα, Xα, X−α} isomorphic
to sl(2,C) with τα = H, Xα = H+, X−α = H− the basis in (5.7). By
Proposition 5.10 the eigenvalues of π(τα) (on each irreducible summand of
π|slα) are integers, which implies (b) since π(τα) = µ(τα) Id on Vµ. Further-
more, π(τα) can be diagonalized for all τα and since ταi is a basis of h, and
h is abelian, the commuting endomorphisms π(H), H ∈ h, have a common
basis of eigenvectors. This implies (a). Notice that it can happen that π|slα
is trivial, since µ(τα) = 0 for all µ ∈ Wα is possible.

(c) It is clear that (weakly) maximal weights (in the ordering on h∗R) exist.
Let λ be a maximal weight, and let v ∈ Vλ. Then by definition Xα · v = 0
for any α ∈ ∆+. Now consider

V0 = span{X−β1 · · ·X−βs · v}, β1, . . . βs ∈ F.

where βi are not necessarily distinct. We claim that V0 is invariant under g.
It is clearly invariant under X−α, α ∈ ∆+, and under h. Thus we just need
to prove that V0 is invariant under the action of Xα, α ∈ F , which we prove
by induction on s. If s = 0, we know that Xα · v = 0.

Suppose now that Xα ·X−β1 · · ·X−βr · v ∈ V0 for any r < s. Then

XαX−β1 · · ·X−βs · v = [Xα, X−β1 ]X−β2 · · ·X−βs · v + X−β1 ·Xα · · ·X−βs · v
By induction, the second term on the right hand side belongs to V0. Fur-
thermore, [Xα, X−β1 ] is either a multiple of τα if β1 = α, or 0 otherwise since
α− β1 cannot be a root be the definition of F . In either case, the first term
belongs to V0 as well, and hence V0 is invariant under g. By irreducibility of
π, V0 = V . In particular, all weights are of the form

µ = λ−m1α1 − · · · −mnαn, mi ≥ 0.

which implies that if µ ∈ Wπ is a weight different from λ, its order is strictly
less than λ. Furthermore, Vλ is spanned by v, and hence mλ = 1. If λ(τα) <

0, the fact that the eigenvalues of π(τα) are centered around 0 implies that
λ + α is an eigenvalue of π(τα) and hence a weight of π as well. But this
contradicts maximality of λ and hence λ(τα) ≥ 0.

(d) To prove that λ uniquely determines the representation, suppose we
have two representations π, π′ acting on V, V ′ with the same maximal weight
λ. Choose v ∈ Vλ, v′ ∈ V ′

λ. Then (v, v′) ∈ V ⊕V ′ is a weight vector of π⊕π′

with weight λ. By the same argument as above, the space W ⊂ V ⊕ V ′

generated by X−α · (v, v′), α ∈ ∆+, induces an irreducible representation

σ = π ⊕ π′|W : g → gl(W )
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If we let p1 : V ⊕ V ′ → V and p2 : V ⊕ V ′ → V ′ be the projections onto
the first and second factor, then p = p1|W is an intertwining map between
σ and π and similarly p = p2|W is an intertwining map between σ and
π′. By irreducibility, these intertwining maps are isomorphisms, and hence
π ' σ ' π′, which proves (d).

The uniquely determined weight λ in the above Proposition will be called
the highest weight of π. Notice that it can also be characterized by the
property that λ + αi /∈ Wπ for all αi ∈ F .

In general, an element µ ∈ ΓW (not necessarily associated to any repre-
sentation) is called a dominant weight if µ(τα) ≥ 0 for all α ∈ ∆+. Notice
that in this terminology we do not specify a representation. In fact in an
irreducible representation there can be other dominant weights besides the
highest weight.

We denote by Γd
W ⊂ ΓW the set of all dominant weights. If π is a rep with

highest weight λ, then Proposition 5.12 (b) implies that λ ∈ Γd
W . We also

have the following existence theorem:

Theorem 5.13 If λ ∈ Γd
W is a dominant weight, then there exists anexrep

irreducible representation π with highest weight λ.

Thus there is a one-to-one relationship between dominant weights and
irreducible representations. We therefore denote by πλ the unique irrep with
highest weight λ ∈ Γd

W .
There are abstract constructions of the representations πλ, see e.g., [Ha],

200-230. We will content ourselves with giving an explicit construction of
the irreducible reps of the classical Lie groups.

Before doing so, we prove some further properties of weights. Recall that
we denote by W the Weyl group of g, which is generated by the reflections
sα(β) = β − 〈β, τα〉α acting on hR and h∗R, for any α ∈ ∆. Furthermore,
WC+ = {v ∈ hR | α(v) = 〈v, α〉 > 0 for all α ∈ ∆+} is the positive Weyl
chamber with respect to our chosen ordering. Dually, the positive Weyl
chamber in h∗R is defined by WC∗ = {µ ∈ h∗R | µ(v) > 0 for all v ∈ WC+}.
The closure of these Weyl chambers is denoted by WC+ and WC∗. Finally,
recall that for any v ∈ hR, there exists a unique w ∈ W such that wv ∈
WC+and similarly for h∗R.
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Proposition 5.14 Let π = πλ be an irreducible representation of g.irrep2

(a) If µ ∈ Wπ and w ∈ W , then wµ ∈ Wπ and mwµ = mµ.
(b) λ has maximal length and W acts transitively on weights of length

|λ| with λ being the only element among them in WC∗.
(c) Let µ ∈ Wπ and α ∈ ∆+ with µ(τα) = r > 0. Then in the string

of weights µ, µ− α, µ− 2α, . . . , µ− rα = sα(µ) the multiplicities are
are weakly increasing on the first half, and weakly decreasing on the
second half. The same holds if µ(τα) < 0 for the string µ, µ + α, µ +
2α, . . . , sα(µ).

Proof (a) It is sufficient to prove the claim for w = sα and any µ ∈ Wπ.
Set r := µ(τα) and hence wµ = µ − rα. We can assume that r > 0 since
the claim is obvious when r = 0 and we can replace α by −α otherwise.
Every v ∈ Vµ generates an irreducible representation σ of slα by repeatedly
applying Xα and X−α to v. σ is clearly one of the irreducible summands
in π|slα and hence the weights of σ are restrictions of the weights of π. The
weight of Xs−α · v is µ− sα. According to Proposition 5.10, the eigenvalues
of σ(τα) are symmetric around 0. Since (µ−sα)(τα) = r−2s, it follows that
µ − sα, is a weight of σ (and hence π) and Xs−α · v 6= 0 for s = 1, . . . r. In
particular, µ − rα = wµ is a weight and Xr−α : Vµ → Vµ−rα is injective, i.e.
mµ ≤ mµ−rα. Since w is an involution, mµ ≥ mµ−rα as well and hence they
are equal. The same argument implies (c) since (µ − sα)(τα) is positive on
the first half of the string, and the second half are the Weyl group images of
the first half.

(b) Let µ be a weight of maximal length and w ∈ W such that wµ ∈ WC∗.
Thus 〈wµ,α〉 ≥ 0 for all α ∈ ∆+. Since w acts by isometries, |wµ| = |µ| and
hence wµ has maximal length as well. Thus |wµ + α| > |wµ| which implies
that wµ + α cannot be a weight. This means that wµ is a highest weight
and by uniqueness wµ = λ.

A useful consequence is

Corollary 5.15 If π is a representation in which the Weyl group actsirrepweyl
transitively on all weights, and one, and hence all weights have multiplicity
one, then π is irreducible.

Proof Let λ be some highest weight. Then v0 ∈ Vλ generates an irreducible
subrep πλ acting on W ⊂ V . By applying Proposition 5.14 (a) to πλ, it
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follows that all weights of π are already weights of πλ. Since the weight
spaces are all one dimensional, they are contained in W as well, which implies
that V = W .

We can determine all weights of a representation from the highest one in
the following fashion. According to Proposition 5.12 (e), all weights µ ∈ Wπλ

are of the form µ = λ−m1α1−· · ·−mnαn with αi ∈ F and mi ∈ Z, mi ≥ 0.
We call

∑
mi the level of the weight. Thus λ is the only weight of level 0.

We can now apply Proposition 5.14 (c) to inductively determine all weights,
level by level. It is convenient to apply Proposition 5.14 (c) immediately for
all r although this goes down several levels. Notice that every weight of level
k is indeed reached from level k − 1 since otherwise it would be a highest
weight. This process is similar to our construction of all positive roots from
the simple ones. But notice that the level of the roots are defined in the
opposite way to the level of the weights. In general, one problem though is
that it is difficult to determine the multiplicity of the weights. The reason is
that we can land in Vµ, where µ has level r, possibly in several ways starting
with weight vectors at level r − 1 by applying some X−i. It is not clear
when these vectors are linearly independent or not. Thus multiplicities, and
hence the dimension of πλ, are not so easy to determine just by knowing λ.
We come back to this problem later on. We illustrate this process in two
examples.

Example 5.16 (a) Recall from Example 4.18 that g2 has two simple rootsg2reps
α, β with α(τβ) = −3 and β(τα) = −1.

Let us consider the representation πλ with λ(τα) = 0 and λ(τβ) = 1. We
now apply Proposition 5.12 and the chain property in the Excercise below.
It is convenient to record the pair (µ(τα), µ(τβ)) next to every weight. Notice
that (α(τα), α(τβ)) = (2,−3) and (β(τα), β(τβ)) = (−1, 2) and these numbers
must be subtracted from the pair, whenever subtracting α resp. β from a
weight. The weight of level 0 is λ (0, 1) and hence λ− β (1,−1) is the only
weight at level 1. We can only subtract α to obtain λ−α−β (−1, 2) at level
2, and similarly λ − α − 2β (0, 0) at level 3, λ − α − 3β (1,−2) at level 4,
λ− 2α− 3β (−1, 1) at level 5 and λ− 2α− 4β (0,−1) at level 6. No further
simple roots can be subtracted. Since there is only one weight at each level,
all weights have multiplicity one, and the dimension of the representation is
7. We will later see that this corresponds to the fact that the compact group
G2 ⊂ SO(7) as the automorphism group of the octonians.

(b) Recall that for sl(4,C) we have 3 simple roots α, β, γ and all Cartan
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integers are −1. We study the rep with the following highest weight λ where
we also record the values that need to be subtracted when subtracting a
simple root.

(λ(τα), λ(τβ), λ(τγ)) = (0, 1, 0)

(α(τα), α(τβ), α(τγ)) = (2,−1, 0)

(β(τα), β(τβ), β(τγ)) = (−1, 2,−1)

(γ(τα), γ(τβ), γ(τγ)) = (0,−1, 2)

One then obtains weights λ − β (1,−1, 1) at level 1, λ − β − α (−1, 0, 1)
and λ− β − γ (1, 0,−1) at level 2, λ− β − α− γ (−1, 1,−1) at level 3, and
λ− 2β − α− γ (0,−1,−1) at level 4. Notice that since there were two ways
to go from level 2 to level 3, it is not clear if λ− β − α− γ has multiplicity
one or two. But Proposition 5.14 (c) implies that if it has multiplicity two,
so does λ − 2β − α − γ. Thus the dimension is either 6 or 8. Using the
isomorphism sl(4,C) ' so(6,C), we will shortly see that this is the rep ρ6

that defines so(6,C). Thus all multiplicities are actually 1. But this example
shows that this process, although it illustrates the geometry of the weights,
is not efficient in general.

To get a better understanding of the geometry of the weights of an irrep,
the following facts a are instructive (will include a proof later).

Proposition 5.17 Let π = πλ be an irreducible representation of g.convexityweights

(a) All weights of πλ occur in the convex hull of the Weyl orbit of λ.
(b) An element of the weight lattice in the convex hull of W ·λ is a weight

of πλ iff µ = λ−m1α1 − · · · −mnαn with mi ∈ Z and mi ≥ 0..

Notice that by Proposition 5.14 (c) the full weight diagram exhibits a
certain Weyl symmetry since strings are Weyl group symmetric as well. In
fact this easily implies Proposition 5.17 (a).

We also add the action of the Weyl group has a few more properties we
have not discussed yet:

Proposition 5.18 Let W be the Weyl group of g and WC+ the positiveWeyl geom
Weyl chamber.

(a) If x, y ∈ WC+ with w · x = y for some w ∈ W , then w = Id.
(b) If x ∈ WC+, then w · x < x for all w ∈ W .



Representations of semisimple Lie algebras Section 5.3 107

We will also include a proof later on. [Now include more pictures of weight
diagrams].

Since λ uniquely characterizes the representation πλ, we can describe the
representation by the n integers

mi = λ(ταi) =
2〈λ, αi〉
〈αi, αi〉 αi ∈ F.

We thus obtain the diagram of a representation by placing these integers
above the corresponding simple root. For simplicity, a 0 integer is not dis-
played. Every diagram with integers over its dots

h h h r r r
m1 m2 m3

thus corresponds to an irrep of the corresponding Lie algebra. For example,
the irrep πk of sl(2,C) of dimension k + 1 is denoted by

πk : h
k

We will always use the following notation for the defining representation
of the classical Lie groups, which we also call tautological representations.

µn : su(n) on Cn, ρn : so(n,C) on Cn, νn : sp(n,C) on C2n (5.19) defreps

We often use the same letter for the action of SU(n)or su(n) on Cn, the action
of SO(n) or so(n) on Rn, and Sp(n) or sp(n) on C2n. We now determine
their weights and diagrams, using the previously established notation for the
roots and weights.

For µn the weights are ω1, . . . ωn with weight vectors ei. The highest weight
is clearly ω1.

For ρn (both n even and odd), the weights are ±ω1, . . . ,±ωn with weight
vectors e2i+1 ± ie2i+2. ω1 is again the highest weight.

For νn the weights are ω1, . . . ωn with weight vectors e1, e2, . . . , en and
−ω1, · · · −ωn with weight vectors en+1, . . . , e2n. The highest weight is again
ω1.

Thus in all 3 cases m1 = 1 and m2 = m3 =, · · · = 0 and hence the diagram
has only one integer over it, a 1 over the first dot.

It is also easy to determine the diagram of the adjoint representation of
the classical Lie groups. The highest weight is the maximal root αm, which
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we determined earlier: ω1 − ωn+1 for An, ω1 + ω2 for Bn and Dn and 2ω1

for Cn. Thus their diagrams (where we need to assume n ≥ 6 for so(n)) are
given by:

f f f q q q
1

adso(n) : f f q q q
2

adsp(n) :

f f f f fq q q
1 1

adsu(n) :

It is natural to define as a basis the fundamental weights

λi, i = 1, . . . , n, where λi(ταj ) = δij

We call the corresponding representations πλi
the fundamental repre-

sentations. Thus their diagram is

h h h r r rr r r
1

αi

πλi :

Clearly the dominant weights λi form a basis of the weight lattice ΓW ,
and every highest weight λ of an irrep is of the form λ =

∑
miλi with

mi = λ(ταi) ≥ 0.
If we want to write λ as a linear combination of roots, we have:

Lemma 5.20 Let C = (cij), cij = 2〈αi,αj〉
〈αj ,αj〉 = αi(ταj ) be the Cartan matrix

inverse
of a simple Lie algebra g with inverse C−1 = (bij), an λi the fundamental
dominant weights.

(a) αi =
∑

cijλj and λi =
∑

bijαj with bij positive rational numbers
with denominators dividing detC.

(b) det C = |Z(K̃)| where K is the compact simply connected Lie group
with k a compact real form of g.

Proof If αi =
∑

k aikλk, then cij = 〈αi, ταj 〉 =
∑

k aik〈λk, ταj 〉 =
∑

k aikδkj =
aij . This explains the first half of (a) and that bij are rational numbers with
denominators dividing det C.

Next we claim that bij ≥ 0, which follows from the following easy geometric
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fact about a dual basis: ταi is a basis of hR with 〈ταi , ταj 〉 ≤ 0 if i 6= j, i.e. all
angles are obtuse. This implies that the dual basis λi has only obese angles,
i.e. 〈λi, λj〉 ≥ 0 for i 6= j. But we also have 〈λi, λj〉 = 〈λi,

∑
k bjkαk〉 =∑

k bjk〈λi, αk〉 =
∑

k bjk
|αk|2

2 〈λi, ταk
〉 = bji

|αi|2
2 and hence bji ≥ 0.

To see that they are positive, assume that bij = 0 for some i, j. Then
〈λi, αj〉 =

∑
k 6=j bik〈αk, αj〉 ≤ 0 since 〈αk, αj〉 ≤ 0 if k 6= j and bik ≥ 0.

Since also 〈λi, αj〉 ≥ 0, this implies that each term must vanish. Thus if
〈αk, αj〉 < 0, i.e. αk and αj are connected in the Dynkin graph, then bik = 0.
But g is simple and hence the Dynkin diagram is connected. Connecting the
simple root αi to all other simple roots step by step, it follows that bik = 0
for all k. This cannot be since C is invertible.

(b) In Proposition 4.57 we proved that Z(K̃) = ΓW /ΓR where ΓR is the
root lattice. Since the matrix that expresse a basis of ΓR in terms of a basis
of ΓW is given by the Cartan matrix C, the claim follows.

If we apply Proposition 5.12 and Proposition 5.14 and Lemma 5.20 to the
adjoint representation πad we obtain another proof of Proposition 4.48 since
the highest weight of πad is the maximal root αm.

From our previous study of the root system for the classical Lie groups and
their connections to the compact group K, we obtain the following values
for detCg:

detCsl(n,C) = n, detCso(2n+1,C) = det Csp(n,C) = 2, det Cso(2n,C) = 4

Example 5.21 We illustrate the concepts with two simple examples.A2B2reps
(a) The root system for so(5,C) is given by ∆+ = {ω1 ± ω2, ω1, ω2}

and the Weyl group acts by permutations and arbitrary sign changes on ωi.
The roots are the vertices and the midpoints of the sides in a unit square
and α = ω1 − ω2, β = ω1 the fundamental roots. The Cartan integers are
α(τβ) = −2 and β(τα) = −1. Thus

C =
(

2 −2
−1 2

)
C−1 =

1
2

(
2 2
2 2

)

and hence the fundamental weights are

λ1 = α + β, λ2 =
1
2
α + β.

The root lattice is generated by α, β and the weight lattice by λ1, λ2. Clearly
one has index two in the other.
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For the fundamental representation πλ2 it is clear from the picture that
is has dimension 4: The Weyl group image of λ2 are weights of multiplicity
one and are the 4 points in the weight lattice closest to the origin. Further-
more, since λ2 is not a sum of roots, 0 cannot be a weight. By using the
isomorphism so(5,C) ' sp(2) we see that this rep is just ν2.

We already saw that λ1 = ρ5. So besides the 4 weights which are Weyl
group images of λ2, 0 is a weight as well. [Need a picture here]

(b) The root system for sl(3,C) is ∆+ = {ωi − ωj , i < j} with simple
roots α = ω1 − ω2, β = ω2 − ω3. The roots lie at the vertices of a regular
hexagon. They have the same length and hence

C =
(

2 −1
−1 2

)
C−1 =

1
3

(
2 1
1 2

)

and hence

λ1 =
2α + β

3
, λ2 =

α + 2β

3
.

[Need a picture here and the weight diagram of a more complicated rep].

We will shortly give simple descriptions of the fundamental reps of all
classical groups. But we first make some general remarks.

If πλ, πλ′ are two irreps of g acting on V resp. V ′, then we can construct
from them several new representations whose weights we now discuss. Let
Wπ = {λi} and Wπ′ = {λ′j} be the weights of π resp. π′ and v0 resp. v′0 a
highest weight vector.

We can take the tensor product πλ ⊗ πλ′ acting on V ⊗ V ′. If vi resp.
v′j are weight vectors with weights λi resp. λ′j , then clearly vi ⊗ v′j is a
weight vector for πλ ⊗ πλ′ with weight λi + λ′j . Hence all weights are of the
form λ + λ′ − m1α1 − · · · − mnαn with mi ≥ 0 which implies that λ + λ′

is a highest weight with mλ+λ′ = 1. This says that πλ+λ′ is an irreducible
subrepresentation of πλ ⊗ πλ′ , which we simply write as πλ+λ′ ⊂ πλ ⊗ πλ′ .
Furthermore, πλ+λ′ has multiplicity one in πλ⊗πλ′ , i,e, it can occur only once
as a subrep. In general there will be other highest weights generating further
irreducible summands in πλ⊗πλ′ . The problem of decomposing πλ⊗πλ′ into
its irreducible summands can be quite difficult. As an example we derive the
Clebsch-Gordon formula for the irreps πk of sl(2,C):

πk ⊗ π` = πk+` + πk+`−2 + · · ·+
{

0, k + ` even;
π1, k + ` odd.

(5.22) clebsch

To see this, let vi, v′i be the basis of weight vectors for the reps πk and π`
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constructed in Proposition 5.10. Then v0⊗v′0 is a maximal weight vector with
weight k + ` giving rise to the irreducible summand in πk+`. Furthermore,

X−·v0⊗v′0 = v1⊗v′0+v0⊗v′1, X+·(`v1⊗v′0−kv0⊗v′1) = k`v0⊗v′0−`kv0⊗v′0 = 0

which means that mk+`−2 = 2 and `v1 ⊗ v′0 − kv0 ⊗ v′1 is a maximal weight
vector. Thus πk+`−2 is also an irreducible summand in πk+`. Continuing in
this fashion, we obtain (5.22).

Given a rep πλ acting on V , we can define a new rep Λkπ acting on ΛkV .
If v1, . . . , vk are linearly independent weight vectors with weights λ1, . . . , λk

then clearly v1∧v2∧· · ·∧vk is a weight vector with weight λ1 +λ2 + · · ·+λk.
But the decomposition of Λkπ into irreducible subreps can be quite difficult.

Let us the discuss the simplest case k = 2 a little further. For each
simple root α ∈ F with λ(τα) > 0, we obtain irreducible subrep π2λ−α of
Λ2πλ with multiplicity one. To see this, let v0 be a highest weight vector.
Then v0 ∧ X−α · v0 is a weight vector with weight 2λ − α. Furthermore,
Xα(v0∧X−αv0) = v0∧XαX−αv0 = v0∧ [Xα, X−α]v0 = v0∧λ(τα)v0 = 0, and
if β is a simple root distinct from α, then Xβ(v0∧X−αv0) = v0∧XβX−αv0 =
v0∧[Xβ, X−α]v0 = 0 since β−α is not a root. Thus v0∧X−α ·v0 is a maximal
weight vector and 2λ− α is a maximal weight. Clearly, v0 ∧X−α · v0 is the
only weight vector with weight 2λ−α and hence π2λ−α has multiplicity one
in Λ2πλ.

Similarly, if λ(τα) > 0, then π2λ ⊂ S2πλ with multiplicity one. The proof
clearly shows more generally:

Proposition 5.23 If πλ1 , . . . , πλk
resp πλ are irreducible representationsproductweight

of g, then πλ1+···+λk
⊂ πλ1 ⊗ · · · ⊗ πλk

, πkλ ⊂ Sk(πλ1) and π2λ−α ⊂ Λ2πλ

whenever 〈λ, α〉 > 0, all with multiplicity one.

Exercises 5.24
(1) Show that a simple Lie algebra has at most two different lengths

among its roots and that the Weyl group acts transitively on roots of
equal length.

(2) For each of the classical Lie algebras, and for each root α, determine
the 3-dimensional subalgebras slα ' sl(2,C) up to inner automor-
phisms. For each of the compact Lie groups K = SU(n), SO(n) Sp(n),
and for each root α, the subalgebra kα gives rise to a compact sub-
group Kα ⊂ K. Classify Kα up to conjugacy, and in each case deter-
mine wether it is isomorphic to SU(2) or SO(3). Show that for the
maximal root we always obtain an SU(2).
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(3) Let πλ be an irrep with λ(τα) = k > 0. Show that for all 1 ≤ ` ≤ k,
π2λ−`α ⊂ S2πλ if ` even and π2λ−`α ⊂ Λ2πλ if ` odd, both with
multiplicity one. You should be able to prove this easily for k = 1, 2, 3.

(4) A somewhat more difficult exercise is the following. We say that
α1, . . . αk is a chain of simple roots if 〈αi, αi+1〉 6= 0 and 〈αi, αj〉 = 0
whenever j ≥ i + 2. Given such a chain of roots, let πλ be an irrep
with 〈λ, αi〉 > 0 for i = 1, k and 〈λ, αi〉 = 0 for 2 ≤ i ≤ k − 1. Show
that π2λ−α1−···−αk

is an irreducible subrep of both S2πλ and Λ2πλ.
(5) Show that π ⊗ π = Λ2π ⊕ S2π and hence rule (4) and (5) apply to

the tensor product as well.

5.4 Representations of classical Lie algebras

We will now discuss weight lattices, dominant weights and fundamental
representations of the classical Lie algebras.

It follows from Proposition 5.23 that, starting with the fundamental rep-
resentations πλi , one can recover all other irreps as sub representations of
tensor products and symmetric powers of πλi . In order to prove Theorem 5.13
for the classical Lie groups, we thus only need to construct their fundamen-
tal representations. This will be done mostly with exterior powers of the
tautological representations.

An = sl(n + 1,C)

Recall that ∆+ = {ωi − ωj | i < j}and
F = {α1 = ω1 − ω2, α2 = ω2 − ω3, . . . , αn = ωn − ωn+1} .

The Weyl group W ' Sn acts as permutation on wi and the inner product
makes ωi into an orthonormal basis (of Cn+1).

If we define λi = ω1 + ω2 + · · · + ωi one clearly has 〈λi, ταj 〉 = δij . Thus
πλi is the ith fundamental representation.

The weight lattice is

ΓW =
{∑

ciλi | ci ∈ Z
}

=
{∑

kiωi | ki ∈ Z
}

Furthermore

Γd
W =

{∑
niλi

∣∣ ni ≥ 0
}

=
{∑

kiωi

∣∣ k1 ≥ k2 . . . kn+1 ≥ 0
}
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Let µn be the tautological representation of sl(n + 1),C) on Cn+1. It has
weights ω1, . . . ωn and thus µn = πλ1 . We now claim that πλk

' Λkµn.

Indeed, we have a basis of ΛkCn+1 given by the weight vectors

ei1 ∧ · · · ∧ eik , with weight ωi1 + · · ·+ ωin for all i1 < · · · < ik.

The weight vectors are linearly independent and all have distinct weights.
Furthermore the Weyl group permutes all weights and thus Corollary 5.15
implies that Λkµn is irreducible. Clearly, ω1 + ω2 + · · · + ωk is the highest
weight vector, which implies our claim.

Summarizing, we have

• Fundamental representations πλk
= ∧kµn with λk = ω1 + . . . + ωk and

dimπλk
=

(
n
k

)
.

• ΓW = {∑ ciλi | ci ∈ Z} = {∑ kiωi | ki ∈ Z},
• Γd

W =
{∑

niλi

∣∣ ni ≥ 0
}

=
{∑

kiωi

∣∣ k1 ≥ k2 . . . kn−1 ≥ 0
}
.

Bn = so(2n + 1,C)

Recall that ∆+ = {ωi±ωj , ωi, | 1 ≤ i < j ≤ n} with coroots {ωi±ωj , 2ωi}
and simple roots

F = {α1 = ω1 − ω2, . . . , αn−1 = ωn−1 − ωn, αn = ωn} .

The Weyl group W ' Sn o Zn
2 acts as permutations and arbitrary sign

changes on ωi. The inner product makes ωi into an orthonormal basis of h∗.
One easily sees that the fundamental weights are

{
λi = ω1 + . . . + ωi i < n

λn = 1
2(ω1 + . . . ωn)

The 1/2 is due to the fact that the coroot of αn is 2αn.
This implies that the weight lattice is

ΓW =
{

1
2

∑
kiωi | ki ∈ Z, ki all even or all odd

}

and

Γd
W =

{
1
2

∑
kiωi ∈ ΓW | k1 ≥ k2 ≥ · · · ≥ kn ≥ 0

}

The tautological representation ρ2n+1 has weights ±ω1, . . . ,±ωn, 0 and
highest weight ω1. Thus πλ1 = ρ2n+1. One easily sees that Λkρ2n+1 has
weights ±ωi1 ± · · ·±ωi` for all i1 < · · · < i` and any ` ≤ k, and we call ` the
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length of the weight (if we include an ei∧en+i term, the length of the weight
decreases by two and decreases by one if e2n+1 is included). We now claim
Λkρ2n+1 is irreducible for all 1 ≤ k ≤ n with highest weight ω1 + . . .+ωk. (It
is in fact irreducible for n < k ≤ 2n as well, but Λ2n+1−kρ2n+1 ' Λkρ2n+1 '
for 1 ≤ k ≤ n). First observe that λ := ω1 + . . . + ωk is certainly a highest
weight (has largest value on our standard choice of regular vector defining
the order) and thus defines an irreducible summand in πλ ⊂ Λkρ2n+1. By
applying the Weyl group to λ, we obtain all weights of length ` = k. Since
〈λ, ωk〉 > 0, λ − ωk = ω1 + . . . + ωk−1 is a weight as well. Repeating and
applying the Weyl group, we see that all weights belong to πλ. Furthermore,
since the weights for the usual wedge product basis are all distinct, each
weight has multiplicity one. Thus Proposition 5.15 implies that Λkρ2n+1 is
irreducible.

Comparing the highest weights, we see that πλk
' Λkρ2n+1 for k =

1, . . . , n − 1 whereas Λnρ2n+1 ' π2λn . Indeed, πλn is a new representa-
tion called the spin representation, and denoted by ∆n, that cannot be
described in an elementary fashion. A construction of this representation will
be done in a later section. But for now we can say that 1

2(±ω1 ± · · · ± ωn)
are all weights of πλn with multiplicity one since they are the Weyl orbit
of λn. By going through the inductive procedure of constructing weights
from the highest one, one easily sees that there are no further weights. Thus
dimπλn = 2n.

Notice that in the case of n = 1, where there is only one positive root
ω, we can interpret ∆1 as what we called π1 in Proposition 5.10 since the
highest weight is 1

2ω. A more interesting case is n = 2. Here we can use
the isomorphism so(5,C) ' sp(2,C) to see that ∆2 = µ2. For n = 3 we
will see that this representation gives rise to interesting subgroups of SO(8)
isomorphic to Spin(7). Notice that the two half spin reps of so(8,C) have
dimension 8.

Summarizing, we have

• Fundamental representations πλk
= ∧kρ2n+1 with λk = ω1 + . . . + ωk

for k = 1, . . . , n − 1 and dimπλk
=

(
2n+1

k

)
, and the spin representation

πλn = ∆n with dim∆n = 2n.
• ΓW =

{
1
2

∑
kiωi | ki ∈ Z, ki all even or all odd

}
,

• Γd
W =

{
1
2

∑
kiωi ∈ ΓW | k1 ≥ k2 ≥ · · · ≥ kn ≥ 0

}
.

Dn = so(2n,C)
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Recall that ∆+ = {ωi ± ωj | 1 ≤ i < j ≤ n} with simple roots

F = {α1 = ω1 − ω2, . . . , αn−1 = ωn−1 − ωn, αn = ωn−1 + ωn} .

Since all roots have the same length, roots and coroots agree. The Weyl
group W ' Sn o Zn−1

2 acts as permutations and an even number of sign
changes on ωi. The inner product makes ωi into an orthonormal basis of h∗.

One easily sees that the fundamental weights are




λi = ω1 + . . . + ωi i ≤ n− 2
λn−1 = 1

2(ω1 + · · ·+ ωn−1 − ωn)
λn = 1

2(ω1 + . . . + ωn−1 + ωn)

The weight lattice is the same as in the previous case, but the condition
for 1

2

∑
kiωi being dominant is now k1 ≥ k2 ≥ · · · ≥ |kn|. The first string

of inequalities is due to the requirement that ωi − ωj , i < j must be non-
negative, and the last since ωn−1 + ωn must be non-negative.

The tautological representation ρ2n has weights ±ω1, . . . ,±ωn and highest
weight ω1. Thus πλ1 = ρ2n. One difference with the previous case is that
Λkρ2n has weights ±ωi1±· · ·±ωi` only for all i1 < · · · < i` with ` even (there
is no 0 weight in this case). We claim that Λkρ2n is irreducible with highest
weight ω1 + . . . + ωk for all k = 1, . . . , n− 1. The argument is similar to the
previous case. But since ωi are not roots, we can lower the degree only by
an even number: Since 〈λ, ωk−1 +ωk〉 > 0, λ− (ωk−1 +ωk) = ω1 + . . .+ωk−2

is a weight. The other difference is that the Weyl group allows only an even
number of sign changes. But this is no problem for k < n and the proof is
finished as before.

Comparing highest weights, we see that πλk
= ∧kρ2n for k = 1, . . . , n− 2.

For the remaining ones we claim:

Λn−1ρ2n = πλn−1+λn , Λnρ2n = π2λn−1 ⊕ π2λn . (5.25) decompextson

For the first one we showed the rep is irreducible, and we just take inner
products with coroots. For the second one we claim that both ω1 + · · · +
ωn−1 + ωn and ω1 + · · ·+ ωn−1 − ωn are highest weights since adding any of
the simple roots does not give a weight. Applying the Weyl group action one
gets two irreps and since there are no other weights, the claim follows. This
is particularly important for n = 2 (the discussion still works even though
so(4) is not simple) where it gives rise to self duality.

The representations πλn−1 and πλn are again new representations, called
half spin representations and denoted by ∆−

n and ∆+
n . Applying the

Weyl group, we see that the weights of these reps are 1
2(±ω1 ± · · · ± ωn)

where the number of −1 is even for ∆+
n , and odd for ∆−

n . One again easily
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shows that they have multiplicity 1 and exhaust all weights of ∆±
n . Thus

dim∆±
n = 2n−1.

It is interesting to interpret the above discussion and spin reps for n = 2, 3
using low dimensional isomorphism (see the exercises below). In the case of
n = 4 we get 3 fundamental irreps of SO(8) in dimension 8: ∆+, ∆− and
ρ8. Our theory implies that they are inequivalent, but we will see that they
are outer equivalent.

Summarizing, we have

• Fundamental representations πλk
= ∧kρ2n+1 with λk = ω1 + . . . + ωk and

dimπλk
=

(
2n+1

k

)
for k = 1, . . . , n − 2, and the half spin representation

πλn−1 = ∆−
n with λn−1 = 1

2(ω1 + · · · + ωn−1 − ωn) and πλn = ∆+
n with

λn = 1
2(ω1 + . . . + ωn−1 + ωn) and dim∆±

n = 2n−1.
• ΓW =

{
1
2

∑
kiωi | ki ∈ Z, ki all even or all odd

}
,

• Γd
W =

{
1
2

∑
kiωi ∈ ΓW | k1 ≥ k2 ≥ · · · ≥ |kn|

}
.

Cn = sp(n,C)

Here we have the roots ∆+ = {ωi±ωj , 2ωi, | 1 ≤ i < j ≤ n} with coroots
{ωi ± ωj , ωi} and simple roots

F = {α1 = ω1 − ω2, . . . , αn−1 = ωn−1 − ωn, αn = 2ωn} .

The Weyl group W ' Sn o Zn
2 acts as permutations and arbitrary sign

changes on ωi. The inner product makes ωi into an orthonormal basis of h∗.
One easily checks that the fundamental weights are λi = ω1+ · · ·+ωi. The

weights of µn acting on C2n are ±ω1, . . . ,±ωn with highest weight ω1. Thus
πλ1 = µn. The rep Λkµn has weights ±ωi1 ± · · · ± ωi` for all i1 < · · · < i`
with ` even. But now Λkµn is not irreducible anymore. To understand why,
recall that the rep µn respects a symplectic form β on C2n by definition. We
can regard β ∈ (Λ2C2n)∗, which enables one to define a contraction

ϕk : ΛkC2n → Λk−2C2n : α → βyα

where βyα is defined by

ϕ(βyv) = (ϕ ∧ β)(v), ∀ϕ ∈ (Λk−2C2n)∗, v ∈ ΛkC2n.

This can also be expressed as

ϕk(v1 ∧ · · · ∧ vk) =
∑

i<j

β(vi, vj)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk.
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Now we claim that ϕk is equivariant with respect to the action induced by
the action of sp(n,C) on C2n. This is clear for the action of the Lie group
Sp(n,C) since it respects β, and hence, via differentiating, for the action
of sp(n,C) as well. Hence ker I is an invariant subspace. We claim that
this subspace is irreducible and is precisely the irrep πλk

. To see this, recall
that in the standard basis of C2n we have β(ei, en+i) = −β(en+i, ei) = 1
and all others are 0. Furthermore, ei has weight ωi and , en+i as weight
−ωi. Thus all weight vectors with weight ±ωi1 ± · · · ± ωik lie in ker I. Since
the Weyl group acts transitively on these weights, ker I is an irrep. Notice
that the difference with so(2n + 1,C) is that here 〈λ, τωk

〉 = 1 and hence
λ−2ωk = ω1 + . . .+ωk−1−ωk is a weight, i.e. the length cannot be reduced.

By taking inner products with coroots, we see that ker I ' Λkµn. Induc-
tively one shows:

Λkµn = πλk
⊕ πλk−2

⊕ · · · ⊕
{

νn k odd
1 k even

where 1 is the trivial one-dimensional representation.
Notice for example that Λ2µn = πλ2 ⊕ 1. The existence of the trivial rep

in Λ2µn is clear, since it represents the symplectic form β ∈ Λ2C2n.
Notice also that S2µn has weights ±ωi±ωj (which include 2ωi with multi-

plicity 1, and 0 with multiplicity n. These are precisely the roots of sp(n,C)
and hence S2µn = πad, a fact we saw earlier.

Summarizing, we have

• Fundamental representations πλk
with λk = ω1+ . . .+ωk and πλk

⊂ ∧kµn.
• ΓW = {∑ kiωi | ki ∈ Z},
• Γd

W = {∑ kiωi ∈ ΓW | k1 ≥ k2 ≥ · · · ≥ kn ≥ 0}.

Exercises 5.26

(1) Check that the above discussion still holds for so(4,C) and identify
ρ4 and the spin reps as exterior tensor products. Discuss (5.25) in
this context and relate it to self duality in dimension 4 as discussed
in Chapter 2.

(2) Classify the irreps of so(4,C) and determine their weights, multiplic-
ities and dimensions.

(3) The spin rep of so(6,C) becomes a irrep of su(4) under the isomor-
phism so(6,C) ' su(4). Relate the spin reps to reps of su(4) and
explain (5.25) in this case.
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(4) Use the explicit description of the cover Sp(2) → SO(5) to determine
the induced homomorphism of maximal tori and hence the induced
map on weight lattice, root lattice and integral lattice. Discuss how
the weights of their fundamental representations match.

(5) Repeat the discussion in exercise (4) for the two fold cover SU(4) →
SO(6).

(6) Determine the dimension of πλk
for sp(n,C).

5.5 Real Representations of Real Lie Groups

In the previous section we classified complex irreducible representations of
complex semisimple Lie algebras. In this section we want to study how to
derive from this knowledge real representations of real Lie algebras, and apply
this e.g. to classify all subgroups of classical Lie groups up to conjugacy.

We start with the following definitions. Recall that a complex bilinear
form b is called invariant under π if b(X · v, w) + b(v,X · w) = 0.

Definition 5.27 Let π be a complex representation of the complex Lie algebraorthsympdef
g.

(a) π is called orthogonal if there exists a non-degenerate symmetric
bilinear form invariant under π.

(b) π is called symplectic if there exists a non-degenerate skew-symmetric
bilinear form invariant under π.

(c) π is called of complex if it neither orthogonal nor quaternionic.
(d) π is called of self dual if π ' π∗.

In other words, π is orthogonal (resp. symplectic) if there exists a basis of
V such that π(g) ⊂ o(n,C) ⊂ gl(n,C) (resp. π(g) ⊂ sp(n, C) ⊂ gl(2n,C)).

If π acts on V , recall that we have the dual representation π∗ acting on
V ∗ via π∗(X)(f)(v) = −f(π(X)(v)). If we choose a basis of V , and the dual
basis of V ∗, we have π∗(X) = −π(X)T on the level of matrices. The choice of
sign is necessitated due to the fact that on the group level we need to define
π∗(g) = π(g−1)T in order for π∗ to be a Lie group representation. In particu-
lar, if we have diagonalized π(h) with respect to some basis of eigenvectors in
V , i.e. X ·(ei) = µi(X)ei, then the dual basis fi are eigenvectors of π∗(h) with
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weights −µi since (X · fi)(ej) = −fi(X · ej) = −µj(X)fi(ej) = −µj(X)δij ,
i.e. X ·fi = −µi(X)fi. Thus Wπ∗ = −Wπ. Notice also that µi and −µi have
the same multiplicity.

Proposition 5.28 Let π be a complex representation of g.orthsymp1

(a) π is orthogonal or symplectic iff π is self dual.
(b) If π is irreducible, then the property of being orthogonal, symplectic

or complex are mutually exclusive.
(c) π⊕π∗ is both orthogonal and symplectic. In particular, π⊕π is both

orthogonal and symplectic if π is either orthogonal or symplectic.
(d) π is orthogonal iff π ' π1⊕· · ·⊕πk⊕ (σ1⊕σ∗1)⊕· · ·⊕ (σ`⊕σ∗` ) where

πi are orthogonal irreducible representations and σi are complex or
symplectic irreducible representations.

(e) π is symplectic iff π ' π1⊕· · ·⊕πk⊕ (σ1⊕σ∗1)⊕· · ·⊕ (σ`⊕σ∗` ) where
πi are symplectic irreducible representations and σi are complex or
orthogonal irreducible representations.

Proof (a) An invariant non-degenerate bilinear form b can equivalently be
regarded as an equivariant isomorphism V ' V ∗ via v → fv ∈ V ∗ with
fv(w) = b(v, w)}. Indeed, X · v → fX·v(w) = b(X · v, w) = −b(v, X · w) =
−fv(X · w).

Part (b) follows since by Schur’s Lemma there can be only one equivariant
linear map V → V ∗ up to complex multiples.

(c) Define the bilinear form b on V ⊕V ∗ by b((v, f), (w, g)) = f(w)+εg(v)
for some ε = ±1. Then b is clearly bilinear. Since b((w, g), (v, f)) = g(v) +
εf(w), b is symmetric if ε = 1 and skew-symmetric if ε = −1. b is non-
degenerate since B((v, f), (w, g)) = 0 for all (w, g) implies that v = 0 by
first setting w = 0 and f = 0 by setting g = 0. Finally, b is invariant since
b((X · v, X · f), (w, g)) = (X · f)(w) + εg(X · v) = −f(X ·w)− ε(X · g)(v) =
−b((v, f), (X · w, X · g)).

(d) and (e) Let b be the non-degenerate symmetric (skew-symmetric) bi-
linear form on V and V = V1 ⊕ · · · ⊕ Vr a decomposition into irreducible
sub-representations πi acting on Vi. Then b : Vi × Vj → C induces an equiv-
ariant linear map Vi → V ∗

j for all i, j. By irreducibility, this is either an
isomorphism or 0. If b|Vi×Vi

6= 0, then πi is orthogonal (resp. symplectic). If
it is 0, there exists a j 6= i with b|Vi×Vj

6= 0 and hence π∗i ' πj , which proves
our claim.
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The following are also elementary but important properties.

Proposition 5.29 Let orth stand for an orthogonal representation andorthsymp2
symp for a symplectic one. Then

(a) orth⊗ orth = orth, symp⊗ symp = orth and orth⊗ symp = symp.
(b) Λk(orth) = orth and Skorth = orth.
(c) Sksymp and Λksymp are orthogonal if k even and symplectic if k

odd.
(d) If π is complex, then π ⊗ π∗ is orthogonal.

Proof (a) If bi are non-degenerate bilinear forms on Vi then b(v1 ⊗ w1, v2 ⊗
w2) = b1(v1, w1)b2(v2, w2) is a bilinear form on V1⊗V2 which one easily sees
is non-degenerate.

(b) and (c) If b is a non-degenerate bilinear form on V , then

b(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk) = det(b(vi, wj)1≤i,j≤k)

is a non-degenerate bilinear form on ΛkV .
Similarly,

b(v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk) =
∏

σ∈Sk

b(v1, wσ(1))b(v2, wσ(2)) . . . b(vk, wσ(k))

is a non-degenerate bilinear form on SkV .
(d) On V ⊗ V ∗ we have the symmetric bilinear form b(v1 ⊗ f1, v2 ⊗ f2) =

f1(v2)f2(v1) which one easily shows is non-degenerate.

For the classical Lie groups we now want to determine which represen-
tations belong to which category. For this we need to first decide which
representations are self dual. For this we define the opposition element
op ∈ W to be the unique Weyl group element which sends the positive Weyl
chamber WC+ to its negative, see Proposition 4.41 (b). Clearly if − Id ∈ W ,
then op = − Id.

Proposition 5.30 Let πλ be an irreducible representation.selfdual1

(a) πλ is self dual iff −Wπ = Wπ.
(b) The highest weight of πλ∗ is op(−λ) and hence πλ is self dual

iff op(λ) = −λ.
(c) op = − Id if g ' Bn, Cn, D2n, G2, F4, E7, E8.
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Proof (b) Since the weights of π∗ are the negatives of the weights of π, −λ

is the minimal weight in π∗. Thus it is maximal in the reverse ordering. The
element op ∈ W reverses the order, and hence op(−λ) is the highest weight
of π∗ in our given ordering.

(a) If −λ ∈ Wλ, then Proposition 5.14 (b) implies that there exists an
element w in the Weyl group with w(−λ) = λ. But since the Weyl group
acts simply transitively on the Weyl chambers, w = op and thus (b) applies.

(c) It follows from Proposition 4.27 that there exists an automorphism
A ∈ Aut(g) such that A|h = − Id since it simply takes all roots to their
negative. For the Lie algebras listed, except for D2n, every automorphism is
inner since the Dynkin diagram has no automorphisms, see Proposition 4.43.
Thus there exists an element k in the compact real form of g such that
Ad(k)|t = − Id which means that k ∈ N(T ) and hence − Id ∈ W .

For D2n recall that the Weyl group contains an even number of sign
changes in ω1, . . . , ω2n and thus − Id ∈ W .

Corollary 5.31 Every representation of Bn, Cn, D2n, G2, F4, E7, E8 isselfdual2
self dual. A representation of An, D2n+1 or E6 is self dual iff its diagram
is invariant under the (unique) non-trivial diagram automorphism.

Proof The first part follows from Proposition 5.30 (b) and (c), except in the
case of. For the Lie algebras An, D2n+1 the element op can be described as
follows.

For An the Weyl group consists of all permutations in ω1, . . . , ωn+1 and
α1 = ω1 − ω2, . . . , α2 = ωn − ωn+1 are the simple roots. Hence the permu-
tation ωi → ωn+2−i takes αi → −αn+1−i and hence takes WC+ to −WC∗.
This also implies that if λ =

∑
aiλi, then the dominant weight of π∗λ is∑

an+1−iλi.

For Dn with n odd, op is the Weyl group element that sends ωi → −ωi for
i = 1, . . . , n − 1 and fixes ωn. Indeed, it sends the first n − 2 roots to their
negative and sends αn−1 = ωn−1−ωn → ωn−1+ωn = −αn and αn → −αn−1.
Thus if λ =

∑
aiλi, the dominant weight of π∗λ interchanges an−1 and an.

A similar discussion for E6 will be carried out in a later section.

The last piece of information we need is the following.
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Proposition 5.32 Let πλ and πλ′ be irreducible representations.sumtype

(a) If πλ and πλ′ are self dual, then πλ+λ′ ⊂ πλ ⊗ πλ′ , as well as πkλ ⊂
Skπλ are of the same type as πλ ⊗ πλ′ resp. Skπλ, as determined by
Proposition 5.29 (a)-(c).

(b) If πλ is complex, then πλ+op(−λ) ⊂ πλ ⊗ π∗λ is orthogonal.

Proof (a) Recall that πλ+λ′ ⊂ πλ⊗πλ′ and that it has multiplicity one. Since
πλ is self dual, op(λ) = −λ and similarly for λ′ and thus op(λ+λ′) = −λ−λ′,
i.e. πλ+λ′ is self dual. Let V = U ⊕ W1 ⊕ · · · ⊕ Wk be the decomposition
of πλ ⊗ πλ′ into irreducible subspaces with U corresponding to πλ+λ′ . If b is
the non-degenerate bilinear form on V , then either bU⊗U 6= 0, and U has the
same type as V , or there exists an i with bU⊗Wi 6= 0. But then U ' W ∗

i and
since U is self dual, Wi ' U , contradicting the fact that U has multiplicity
one in V . A similar argument for for Skπ.

(b) Since op(λ + op(−λ)) = −(λ + op(−λ)), the representation πλ+op(−λ)

is self dual. Furthermore, (πλ)∗ = πop(−λ), and hence the proof proceeds as
in (a).

Remark 5.33 The proof more generally shows that if π is a self dual rep
and σ ⊂ π occurs with multiplicity one and is self dual also, then σ has the
same type as π.

We can now use all these rules to decide when an irrep of a classical Lie
group is complex, orthogonal or symplectic.

Proposition 5.34 For the representations of sl(n + 1,C) with dominantslntype
weight λ =

∑
aiλi we have:

(a) πλ is self dual iff ai = an+1−i.
(b) If n = 2k or n = 4k − 1, all self dual representations are orthogonal.
(c) If n = 4k + 1, then a self dual representation is orthogonal if a2k+1 is

even and symplectic if a2k+1 is odd.

Proof Part (a) follows from Corollary 5.31. Since π∗λi
= πλn+1−i , Proposi-

tion 5.32 (b) implies that πλi+λn+1−i is orthogonal. Together with Proposi-
tion 5.32 (a), this implies (b) for n = 2k since there is no “middle” root.

If n + 1 = 2k, πλk
is self dual and we need to decide its type. But in

this case we have the bilinear form ΛkC2k × ΛkC2k → Λ2kC2k ' C given by
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(v, w) → v ∧ w which is symmetric if k is even and skew symmetric when k

is odd. Now Proposition 5.32 again finishes the proof.

For the remaining classical Lie algebras we only determine the type of the
fundamental representation πλk

since the type of all other irreps is deter-
mined by it.

Proposition 5.35ontype

(a) The representations πλk
, k = 1, . . . , n − 1 for so(2n + 1,C) and

πλk
, k = 1, . . . , n− 2 for so(2n,C) are orthogonal.

(b) The representations πλk
, k = 1, . . . , n for sp(n,C) are symplectic if k

is odd and orthogonal if k even.

Proof Part (a) follows since ρn is orthogonal and πλk
= Λkρn. For part (b)

recall that Λkµn is not irreducible and that its irreducible summand with
highest weight ω1+· · ·+ωk is πλk

. This irreducible summand is self dual since
all irreps of sp(n,C) are self dual. As in the proof of Proposition 5.32, one sees
that πλk

has the same type as Λkµn, which together with Proposition 5.29
finishes the proof.

It remains to determine the type of the spin representations. We will
supply the proof of the following claims in a later section.

Proposition 5.36spintype

(a) The spin representation ∆n of so(2n + 1,C) is orthogonal if n = 4k

or 4k + 3 and symplectic otherwise.
(b) For the spin representation ∆±

n of so(2n,C) we have:
∆±

4kis orthogonal, ∆±
4k+2 symplectic, and ∆±

2k+1 is complex with
(∆+

2k+1)
∗ = ∆−

2k+1.

We now relate these results to studying representations of real Lie algebras.
Let g be a complex semisimple Lie algebra and g0 ⊂ g a real form. As we saw,
complex representations of g0 are in one-to-one correspondence to complex
representations of g via restriction, i.e. if π : g → gl(V ) is a rep on the
complex vector space V , then π0 := πg0 is a complex rep of g0. Conversely,
via extension, π0 determines π since π(X + iY ) · v = π0(X) · v + iπ0(Y ) · v.
Thus R ⊂ V is an invariant subspace under π iff it is invariant under π0 and
hence irreps π are in one-to-one correspondence to irreps π0. On the other
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hand, if σ : g0 → gl(W ) is a real irrep, then σC = σ ⊗C is a complex rep on
WC = W ⊗ C, but does not need to be irreducible.

For simplicity we will restrict ourselves to compact real forms. Thus let
k be a compact semisimple Lie algebra with k ⊗ C ' g. For clarity, in the
following we will usually denote complex reps of k by π and real reps by σ.

For complex reps of k we can interpret our division of reps into 3 types
in a different way, which is sometimes easier to use. Recall that τ : V → V

is called conjugate linear if τ(λv) = λ̄τ(v) and is an intertwining map if
X · τ(v) = τ(X · v). Notice that conjugate linear intertwining map only
makes sense for a real Lie algebra.

Proposition 5.37 Let π be a complex irreducible representation of arealconj
compact semisimple Lie k on V . Then there exists a symmetric (skew-
symmetric) bilinear form on V invariant under π iff there exists a conjugate
linear intertwining map τ with τ2 = Id (resp. τ2 = − Id).

Proof [Proof still incomplete.....] Recall that there exists a hermitian inner
product 〈·, ·〉h on V such k acts by skew-hermitian linear maps (e.g., average
an arbitrary inner product over a compact Lie group K with Lie algebra k).

Given an intertwining map τ with τ2 = Id, we can define the eigenspaces
V± = {v | τ(v) = ±v} and since τ is conjugate linear iV+ = V−. Clearly
V = V+⊕V− as well and π preserves each eigenspace since it commutes with
τ . Thus σ = π|V+

is a real representation with σ ⊗ C = π. There exists an
inner product on V+ preserved by σ and the complex bilinear extension is
an invariant symmetric bilinear form.

Conversely, given a bilinear form b we define L by b(v, w) = 〈L(v), w〉h.
Then L is conjugate linear since

〈L(λv), w〉h = b(λv, w) = λb(v, w) = λ〈L(v), w〉h = 〈λ̄L(v), w〉h
Furthermore, L commutes with π since

〈L(X ·v), w〉h = b(X ·v, w) = −b(v,X ·w) = −〈L(v), X ·w〉h = 〈X ·L(v), w〉h.

Although L is not hermitian, it is self adjoint with respect to the real inner
product Re〈·, ·〉h and hence has only real eigenvalues. Since L(iv) = −iL(v)
there are as many positive ones as negative ones. Let W1, resp. W2 be
the real span of the eigenvectors with positive eigenvalues resp. negative
eigenvalues. π preserves Wi since it commutes with L. Thus if we define τ

by τ|W1
= Id and τ|W2

= − Id it also commutes with π.
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we claim that there exists an orthonormal basis v1, . . . , vn such that L(vi) =
λivi by mimiking the usual argument: Since V is a complex vector space,
there exists an eigenvector v1 with L(v1) = λ1v1. If 〈w, v1〉h = 0, then
〈L(w), v1〉h = b(w, v1) = b(v1, w) = 〈L(v1), w〉h = λ̄1〈v1, w〉h = 0 and hence
v⊥1 is preserved and we can repeat the argument. Since L is conjugate lin-
ear, this implies L(

∑
xivi) =

∑
λix̄ivi. By collecting equal eigenvalues, we

write V = V1⊕, · · · ⊕ Vk and since π commutes with L, π preserves these
eigenspaces. Hence we can replace λi by 1, i.e. define τ(

∑
xivi) =

∑
x̄ivi,

and τ still commutes with π. This is thus our desired conjugate linear invo-
lution.

The second case does not seem to work so easily.... Also, in the above,
where do we use that the eigenvalues are real? Why does the proof not work
in the second case the same? Still confused....

Next a simple Lemma. Recall that for a complex representation π acting
on V we denote by πR the real representation on VR where we forget the
complex structure. Furthermore, π̄ denotes the rep on V̄ which is V endowed
with the complex structure −J , if J is the original complex structure on V .

Lemma 5.38complexify

(a) If π is a complex representation of a real Lie algebra g0 then (πR)⊗C '
π ⊕ π̄.

(b) if π is a complex representation of a compact Lie algebra k, then
π̄ ' π∗.

Proof (a) On the level of vector spaces the claim is that there exists a natural
isomorphism of complex vector spaces (VR)⊗ C ' V ⊕ V̄ . Let J : VR → VR
be the complex structure that defines the complex vector space V . J extends
complex linearly to (VR)⊗C via J(v⊗z) = J(v)⊗z. Let V± := {v⊗1∓Jv⊗i |
v ∈ V } be the ±i eigenspaces of J . Clearly V = V+⊕V−. Furthermore, if we
define F± : V → V±, F±(v) = v⊗1∓Jv⊗ i, then F+ is complex linear since
F+(Jv) = Jv⊗ 1 + v⊗ i = i(−Jv⊗ i + v⊗ 1) = iF+(v) and F− is conjugate
linear since F−(Jv) = Jv ⊗ 1 − v ⊗ i = −i(Jv ⊗ i + v ⊗ 1) = −iF−(v).
Thus V+ ' V and V− ' V̄ as complex vector spaces. The representation
π commutes with J by definition and hence preserves the ±i eigenspaces.
Since g acts via X · (v⊗ z) = (X · v)⊗ z the linear maps F± are equivariant.

(b) If k is a compact Lie algebra, there exists a hermitian inner product
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〈·, ·〉h on V such that π acts via skew-hermitian endomorphisms. Clearly
G : V → V ∗ defined by G(v)(w) = 〈v, w〉h is conjugate linear: G(λv)(w) =
〈λv, w〉h = λ̄〈v, w〉h = λ̄G(v)(w) and thus defines a complex isomorphism
V̄ ' V ∗. Furthermore, G commutes with π since G(X ·v)(w) = 〈X ·v, w〉h =
−〈v, X · w〉h = (X ·G(v))(w).

Proposition 5.39 Let σ be a real irreducible representation of k. Thenrealcomp
one and only one of the following holds:

(a) σ ⊗ C ' π with π an orthogonal irreducible representation.
(b) σ ⊗ C ' π ⊕ π∗ with π an irreducible complex representation.
(c) σ ⊗ C ' π ⊕ π with π an irreducible symplectic representation.

In case (b) and (c) σ ' πR.

Proof Let σ act on V and V ⊂ V ⊗C as v → v⊗1. Furthermore, σ⊗C acts
as X · (v⊗ z) = (X · v)⊗ z. There exists a real inner product on V such that
σ acts by skew-symmetric endomorphisms. Extending the inner product to
a complex symmetric bilinear form, shows that σ ⊗ C is orthogonal in the
sense of Definition 5.27. If σ⊗C is irreducible, we are in case (a). If not, let
W ⊂ V ⊗ C be a (non-trivial) irreducible invariant subspace. Then σ ⊗ C
also preserves W̄ := {w ⊗ z̄ | w ⊗ z ∈ W}. Since it thus also preserves
W ∩ W̄ , either W = W̄ or W ∩ W̄ = 0 by irreducibility of W . In the first
case, X = W ∩V is a real σ invariant subspace of dimension smaller than V ,
contradicting irreducibility of σ. Thus W∩W̄ = 0 and hence V ⊗C = W⊕W̄

since otherwise (W ⊕ W̄ )∩V is a σ invariant subspace of dimension smaller
than V . If we denote by π the representation induced on W , this implies
that σ⊗C ' π⊕ π̄ ' π⊕π∗. If π � π∗, the representation π is complex and
we are in case (b). Finally, we need to show if π ' π∗, then π is symplectic.
If not, it must be orthogonal and hence there exists a conjugate linear map
τ : W → W with τ2 = Id. But then {w ∈ W | τ(w) = w} is a real form of
W and invariant under π, and the same for W̄ , contradicting irreducibility
of σ.

To see the last claim, observe that any w ∈ W we can write uniquely as
v1⊗1+v2⊗ i and that both vi 6= 0 since W ∩W̄ = 0. Thus the map w → v1

gives an isomorphism of real representations.

We say that the real representation σ is of real type in case (a), of
complex type in case (b) and quaternionic type in case (c). To justify
this terminology we show:
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Proposition 5.40 Let σ be a real irreducible representation of k. Thenrealcomp
with respect to some basis we have

(a) If σ is of real type, σ(k) ⊂ o(n) ⊂ o(n,C) ⊂ gl(n,C).
(b) If σ is of quaternionic type, σ(k) ⊂ sp(n) ⊂ sp(n,C) ⊂ gl(2n,C).
(c) If σ is of complex type, σ(k) ⊂ u(n) ⊂ u(n)⊗ C ' sl(n,C).

Proof To be filled in....

We now come to our last interpretation. Recall that for the set of inter-
twining operators of a real irrep the only possibilities are R,C or H, whereas
for a complex irrep it is always C.

Proposition 5.41 Let σ be a real irreducible representation of k and Iσrealcomp
the algebra of intertwining operators.

(a) If σ is of real type, then Iσ ' R.
(b) If σ is of complex type, then Iσ ' C.
(c) If σ is of quaternionic type, then Iσ ' H.

Proof To be filled in....

Notice that this gives us now a recipe for finding all real irreps. Start with
complex irreps π which are either complex or symplectic and take σ = πR.
Notice that dimR σ = 2 dimC π. If π is complex, σ commutes with the
complex structure on VR. If π is symplectic, σ commutes with the 3 complex
structure on VR given by right multiplication with i, j, k on Hn ' R4n. For
an orthogonal complex rep π there exists a conjugate linear intertwining
operator τ with τ2 = Id and V := {v | τ(v) = v} is an invariant subspace
which defines the real rep σ = π|V . In this case dimR σ = dimC π. It is
customary to use the notation σ = [π]R in all 3 cases.

Example 5.42 Let us try to find all real irreps of SU(2) and SO(3). Wesu2pol
know that SU(2) has one complex irrep in every dimensions of the form Skµ2

where µ2 is the tautological rep on C2. They are all self dual, symplectic
for odd k and orthogonal for even k. Hence SU(2) has one irrep in every
odd dimension and one in every dimension 4k. Only the ones in odd dimen-
sion descend to SO(3) and these are the irreps on the set of homogeneous
harmonic polynomials in 3 real variables. The effective reps of SU(2) have
dimension 4k.
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We will still fill in how to compute the effective representation of a compact
Lie group. For this we need to solve the following problem. Given an irrep σ

of k, let ψ be the unique representation of the compact simply connected Lie
group K with Lie algebra k such that dψ = σ. We then need to determine
the (finite) group kerψ and would like to do this in terms of the dominant
weight λ with σ ' (πλ)R resp. σ ⊗ C ' πλ. To be added....

Exercises 5.43

(1) Verify that the bilinear forms in Proposition 5.29 are non-degenerate.
(2) Determine the real irreps of SO(4).
(3) For the orthogonal representation π2k of SU(2), find the conjugate

linear map τ with τ2 = Id and determine an orthonormal basis of the
real subspace invariant under π2k. Do this in terms of homogeneous
polynomials of degree 2k.

(4)
(5)
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Symmetric Spaces

Our goal in this chapter is to give a geometric introduction to the theory
of symmetric spaces. In many books, see e.g. [He], this is done, or quickly
reduced to, an algebraic level. We will always try to relate to the geometry
of the underlying Riemannian manifold and often use it in proofs. Some
familiarity with Riemannian geometry (Levi-Cevita connection, geodesics,
exponential maps, Jacobi fields, isometries and curvature) are assumed. We
will denote by Br(p) = {q ∈ M | d(p, q) < r} a ball of radius r. It is called a
normal ball if it is the diffeomorphic image of a ball in the tangent space. We
denote by I(M) the isometry group and by I0(M) the identity component.
The following is a non-trivial fact, see e.g. [KN] for a proof.

Theorem 6.1 Assume that M is complete. Thenisometrygroup

(a) The isometry group I(M) is a Lie group and the stabalizer I(M)p is
compact for all p ∈ M .

(b) If M is compact, then I(M) is compact.

Recall that if G acts on M , then Gp = {g ∈ G | gp = p} is the stabalizer,
or the isotropy group, of p ∈ M . If G acts transitively on M with H = Gp,
then G/H → M , gH → gp, is a diffeomorphism. On G/H we have the
left translations Lg : G/H → G/H, where Lg(aH) = g(aH) = (ga)H which
under the above identification become Lg(aH) = gap = gp, i.e. simply the
action of G on M .

We also have the isotropy representation of H on TpM given by h →
d(Lh)p. If G acts by isometries, the isotropy action is effective, i.e. d(Lh)p =
Id implies Lh = Id since isometries are determined by their derivative at one
point. This is not true for a general homogeneous space.

129
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6.1 Basic geometric properties

We start with a local and global definition

Definition 6.2 Let (M, 〈·, ·〉 ) be a Riemannian manifold.symmetricspace
(a) M is called (global) symmetric if for all p ∈ M there exists an isom-

etry sp : M → M with sp(p) = p and d(sp)p = − Id.
(b) M is called locally symmetric if for all p ∈ M there exists a radius r

and an isometry sp : Br(p) → Br(p) with sp(p) = p and d(sp)p = − Id.

In case (a) we will usually not include the word “global”. We will often call
sp the symmetry around p.

Some simple consequences:

Proposition 6.3 Let (M, 〈·, ·〉 ) be a symmetric space.symmsimple

(a) If γ is a geodesic with γ(0) = p, then σp(γ(t)) = γ(−t).
(b) M is complete.
(c) M is homogeneous.
(d) If M is homogeneous and there exists a symmetry at one point, M is

symmetric.

Proof (a) Since an isometry takes geodesics to geodesics, and since the
geodesic c(t) = sp(γ(t)) satisfies c′(0) = d(sp)p(γ′(0)) = −γ′(0) the unique-
ness property of geodesics implies that c(t) = γ(−t).

(b) By definition, this means that geodesics are defined for all t. If M is
not complete, let γ : [0, t0) → M be the maximal domain of definition of the
geodesic γ. Then applying sγ(t0−ε) to γ, and using part (a), enables one to
extend the domain of definition to [0, 2t0 − 2ε) and 2t0 − 2ε > t0 when ε is
small.

(c) Let p, q ∈ M be two points. We need to show that there exists an
isometry f with f(p) = q. By completes, Hopf-Rinow implies that there
exists a geodesic γ : [0, 1] → M with γ(0) = p and γ(1) = q. Thus by part
(a) sγ( 1

2
)(γ(0)) = γ(1).

(d) If sp is the given symmetry, then one easily checks that Lg ◦ sp ◦ Lg−1

is a symmetry at gp.

A geometric way of interpreting the Definition is thus that sp “flips”
geodesics starting at p. This of course also holds in the case of locally sym-
metric spaces on a normal ball. Notice that for any Riemannian manifold
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the candidate sp is hence always defined on a normal ball as sp(exp(tv)) =
exp(−tv) and it is then a strong condition that sp is an isometry. To be
globally symmetric it is also a strong condition that if two geodesics go from
p to q the ones in opposite direction need to end at the same point, clearly
very unlikely in general.

Before continuing the general theory, a few examples.

Example 6.4 (a) Manifolds of constant curvature are locally symmetric, andsymmexamples
simply connected ones are globally symmetric. For Rn with a flat metric the
reflection around p given by sp(p+v) = p−v is clearly the desired symmetry.

For a sphere of radius 1, the reflection in the line R · p : sp(v) = −v +
2〈v, p〉p, where ||p|| = ||v|| = 1 is an isometry. Ir fixes p, and on the tangent
space {v ∈ Rn | 〈v, p〉 = 0} the derivative, which is dsp = sp by linearity, is
equal to − Id.

For hyperbolic space we use the Lorentz space model

{v ∈ Rn+1 | 〈v, v〉 = −1, xn+1 > 0} with inner product 〈x, y〉 =
k=n∑

n=1

xkyk−xn+1yn+1.

Then the reflection sp(v) = −v − 2〈v, p〉p does the job as well.

(b) A compact Lie group G with a bi-invariant inner product is a sym-
metric space. For this we first claim that se(g) = g−1 is the symmetry at
e ∈ G. Clearly se(e) = e and since sp(exp(tX) = exp(−tX) for all X ∈ g,
we also have d(se)e = − Id. Here we have used the fact that the exponential
map of a biinvariant metric is the same as the exponential map of the Lie
group, see .

We now show that it is an isometry. This is clearly true for d(se)e. Since
we have se◦Lg = Rg−1 ◦se, it follows that d(se)g ◦d(Lg)e = d(Rg−1)e◦d(se)e.
Since left and right translations are isometries, d(se)g is an isometry as well.
Using Proposition 6.40, we see that G is symmetric.

(c) The Grassmannians of k-planes: Gk(Rn), Gk(Cn), Gk(Hn) have a nat-
ural metric in which they are symmetric spaces. We carry out the argument
for the real one Gk(Rn), the others being similar.

For this we use an embedding into the Euclidean vector space

V = {P ∈ M(n, n,R) | P = P T } with 〈P,Q〉 = tr(PQ).

It sends E ∈ Gk(Rn) to the orthogonal projection P = PE ∈ V onto E, i.e.
P 2 = P with Im(P ) = E. Note that conversely, any P ∈ V with P 2 = P ,
is an orthogonal projection onto Im(P ) since Rn is the orthogonal sum of
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its 0 and 1 eigenspaces. In order for E to be k-dimensional, we require in
addition that trP = k. Thus we can alternatively define

Gk(Rn) = {P ∈ V | P 2 = P, trP = k}.
A ∈ O(n) acts on V via P → APAT = APA−1 and hence takes the k−plane
ImP to A(ImP ). It thus acts transitively on Gk(Rn) with isotropy at E0 =
span{e1, . . . , ek} equal to O(k)O(n− k). Thus Gk(Rn) = O(n)/O(k) O(n−
k) = SO(n)/S(O(k)O(n−k)) is a manifold. Here O(k)O(n−k) = {diag(A,B) |
A ∈ O(k), B ∈ O(n − k)} is the block embedding, and S(O(k)O(n − k))
satisfies det(AB) = 1. In particular, dimGk(Rn) = n(n − k). Notice that
Gk(Rn) is also an embedded submanifold of V since it is an orbit of the
action of O(n).

The inner product on V induces a Riemannian metric on Gk(Rn). Now
let rE : Rn → Rn be the reflection in E, i.e. (rE)|E = Id and (rE)|E⊥ = − Id.
We claim that sE(Q) = rEQrE is the symmetry at E. Before proving this,
note that since rT

E = rE = r−1
E , we can regard sE either as conjugation with

the isometry rE , or as a basis change given by rE . The latter implies that
Im(sE(Q)) = rE(Im(Q)), i.e. sE reflects k-planes.

To see that sE is the desired symmetry, first observe that sE take V to
V and d(sE) = sE preserves the inner product: 〈d(sE)(P ), d(sE)(Q)〉 =
tr(rEPrErEQrE) = tr(PQ) = 〈P, Q〉. Furthermore, one easily checks that
sE takes projections to projections and preserves the trace, and hence induces
an isometry on Gk(Rn). Clearly sE(PE) = PE since it takes E to E and is
0 on E⊥. By differentiating a curve P0 + tQ+ · · · ∈ Gk(Rn), i.e. (PE + tQ+
· · · )2 = PE + tQ + · · · , we see that TE(Gk(Rn)) = {Q ∈ V | PEQ + QPE =
Q, and trQ = 0}. If Q is a tangent vector and v ∈ E, then PEQ(v) +
QPE(v) = Q(v) implies that PEQ(v) = 0, or equivalently Q(v) ∈ E⊥ and
thus rEQrE(v) = rEQ(v) = −v. Similarly, if v ∈ E⊥, then PEQ(v) +
QPE(v) = Q(v) implies that PEQ(v) = Q(v), i.e. Q(v) ∈ E and thus
rEQrE(v) = rEQ(−v) = −v. Thus d(sE)E = − Id.

Finally, notice that since 〈P, P 〉 = tr(P 2) = tr P = k, the image lies
in a sphere of radius

√
k. Furthermore, since tr(P ) = k, it lies in an affine

subspace of codimension 1, and hence in a round sphere of dimension n(n+1)
2 −

2. This embedding is also called the Veronese embedding, and turns out to
be a minimal submanifold.

We can add one more condition, namely prescribing the orientation on E.
This gives rise to the oriented Grassmannian G0

k(Rn) = SO(n)/SO(k) SO(n−
k), and is clearly a symmetric space as well with the same symmetry sE .
There is a 2-fold cover G0

k(Rn) → Gk(Rn) which forgets the orientation. No-
tice that this is not possible for the Grassmanians Gk(Cn) = U(n)/U(k) U(n−
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k) = SU(n)/S(U(k) U(n − k)) and Gk(Hn) = Sp(n)/Sp(k) Sp(n − k) since
a complex or quaternionic subspace has a natural orientation given by the
complex structure (which preserves E by definition).

Especially important is the case k = 1. These are the symmetric spaces
of rank 1, i.e., RPn, resp. Sn, with their constant curvature metric, and
CPn, HPn with their Fubuni-Study metric. Notice that the lowest dimen-
sional Veronese surface is a (minimal) embedding of RP2 in S4. We will
study these spaces in more detail later on and will see that they all have
positive sectional curvature. There is one more rank one symmetric space,
the Caley plane CaP2 which can be described as F4/Spin(9).

Now now discuss the important concept of transvections

Tt = sγ( t
2
) ◦ sγ(0)

defined for every geodesic γ in M . Its main properties are:

Proposition 6.5 Let M be a symmetric space and γ a geodesic.tranvections

(a) Tt translates the geodesics, i.e., Tt(γ(s)) = γ(t + s)
(b) d(Tt)γ(s) is given by parallel translation from γ(s) to γ(t+ s) along γ.
(c) Tt is a one-parameter group of isometries, i.e. Tt+s = Tt ◦ Ts.

Proof (a) Notice that sγ(r) takes γ(t) to γ(2r − t). Thus

Tt(γ(s)) = sγ( t
2
) ◦ sγ(0)(γ(s)) = sγ( t

2
)(γ(−s)) = γ(t + s)

(b) Since symmetries are isometries, they takes parallel vector fields to
parallel vector fields. Let X be a parallel vector field along the geodesic
γ. Then (sγ(0))∗(X) is parallel and since d(sγ(0))γ(0)(X) = −X we have
(sγ(0))∗(X) = −X for all t. Applying a symmetry twice changes the sign
again and hence d(Tt)γ(s)(X(γ(s)) = X(γ(t + s)). This implies in particular
that d(Tt)γ(s) is given by parallel translation.

(c) A basic property of isometries is that they are determined by their value
and derivative at one point. Clearly Tt+s(γ(0)) = γ(t+s) = Tt◦Ts(γ(0)) and
by part (b) d(Tt+s)γ(0) is given by parallel translation from γ(0) to γ(t + s).
On the other hand, d(Tt ◦ Ts)γ(0) = d(Tt)γ(s) ◦ d(Ts)γ(0) is given by first
parallel translating from γ(0) to γ(s) and then from γ(s) to γ(t + s). These
are clearly the same, and hence Tt+s and Tt ◦ Ts agree.

We thus have:
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Corollary 6.6 Let M be a symmetric space.geodesics

(a) Geodesics in M are images of one parameter groups of isometries.
(b) I0(M) acts transitively on M .

Part (b) follows since Tt ∈ I0(M) and since any two points in M can be
connected by a geodesic. It is also more generally true that if a Lie group G

acts transitively, so does G0. Part (a) on the other hand is very special, and
is not satisfied, even for most homogeneous spaces.

Recall that for a Riemannian manifold and a fixed point p one defines the
holonomy group Holp = {Pγ | γ(0) = γ(1) = p} given by parallel translation
along piecewise smooth curves, and we let Hol0p be its identity component.
Notice that if q is another base point, and γ a path from p to q, then
Holq = Pγ(Holp)P−1

γ and thus they are isomorphic (though not naturally).
We thus often denote it by Hol.

Its basic properties are:

Theorem 6.7 Assume that M is complete. ThenholonomyLieGroup

(a) Hol is a Lie group and its identity component Hol0 is compact.
(b) Hol0 is given by parallel translation along null homotopic curves.
(c) If M is simply connected, Holp is connected

,
There exists a natural surjective homomorphism π1(M) → Holp /Hol0p

given by [γ] → Pγ which, by part (b), is well defined. This clearly implies
part (c), and that Holp has at most countably many components since this
is true for the fundamental group of a manifold. To prove that Hol is a Lie
group, it is thus sufficient to prove that Hol0 is a Lie group. This follows
from the (non-trivial) theorem that an arcwise connected subgroup of a Lie
group is a Lie group. It was a long standing conjecture that Holp ⊂ O(TpM)
is closed and hence compact. This turned out to be false, see [?].

Since G = I(M) acts transitively on M , we can write M = G/K where
K = Gp is the isotropy group at p. Notice that Holp is a subgroup of O(TpM)
by definition, as is K via the isotropy representation.

Corollary 6.8 If M = G/K is a symmetric space with G = I(M), thenholonomy
Holp ⊂ K.
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Proof Every closed curve γ can be written as a limit of geodesic polygons
γi. For example, cover γ with finitely many totally normal balls, and con-
nect nearby points by minimal geodesics. By refining the subdivision, we
can make the sequence converge in C1. This implies that also Pγi → Pγ

since parallel vector fields locally satisfy a differential equation, and its solu-
tions depend continuously on the coefficients and initial conditions. Along a
geodesic polygon parallel translation is given by a composition of isometries,
namely tranvections along each side. This composition fixes the point p and
hence lies in K. Since K is compact, Pγ ∈ K as well.

Notice that the proof even works for a locally symmetric space.
This is an important property of symmetric spaces since it gives rise to

many examples with small holonomy group. Generically one would expect
that Holp = O(n). As we will see, for a symmetric space Hol0p = K0 in most
cases. On the other hand, if M = Rn with its Euclidean inner product, we
have {e} = Holp ⊂ K0 = SO(n). As it turns out, this is essentially the only
exception.

We can now combine this information with one of the most important ap-
plications of holonomy groups, the DeRham decomposition theorem. Recall
that M is called decomposable if M is a product M = N1 × N2 and the
Riemannian metric is a product metric. If this is not possible, M is called
indecomposable.

Theorem 6.9 Let M be a simply connected Riemannian manifold, p ∈deRham
M and Holp the holonomy group. Let TpM = V0 ⊕ V1 ⊕ · · · ⊕ Vk be a
decomposition into Holp irreducible subspaces with V0 = {v ∈ TpM | hv =
v for all h ∈ Holp}. Then M is a Riemannian product M = M0×· · ·×Mk,
where M0 is isometric to flat Rn. If p = (p0, p1, . . . , pk), then TpiMi ' Vi

and Mi is indecomposable if i ≥ 1. Furthermore, the decomposition is
unique up to order and Holp ' Holp1 × · · ·×Holpk

with Holpi the holonomy
of Mi at pi. Finally, I0(M) = I0(M0)× · · · × I0(Mk).

Since for a symmetric space Holp ⊂ K, this implies

Corollary 6.10 If M = G/K is a simply connected symmetric space,Kirred
and M is indecomposable, then K acts irreducible on the tangent space.

This motivates the definition:

Definition 6.11 A symmetric space G/K, where G = I(M) and K = Gp,symmirred
is called irreducible if K0 acts irreducibly on TpM , and reducible otherwise.
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Notice that we do not assume that K acts irreducibly. One of the reason is
that otherwise S2(1)× S2(1) would be an irreducible symmetric space, since
switching the two factors is an isometry that generates another component.
Notice also that the definition does not change if we replace G by G = I0(M)
since G/K = G0/(K ∩G0) and K ∩G0, although it may not be connected,
at least has the same Lie algebra as K.

By the above, if a simply connected symmetric space is indecomposable
as a Riemannian manifold, it is irreducible as a symmetric space. On the
other hand, irreducible does not imply indecomposable, even in the simply
connected case, since for flat Rn we have K = O(n) which acts irreducibly.
On the other hand, this is essentially the only exception, as we will see later
on: If M = G/K is irreducible, then M = Rn×M ′ with a product metric of
a flat metric on Rn and a symmetric metric on M ′ which is indecomposable.

The DeRham decomposition theorem implies:

Corollary 6.12 If M = G/K is a simply connected symmetric space,symmdecomp
then M is isometric to M1 × · · · × Mk with Mi irreducible symmetric
spaces.

Proof We can decompose TpM into irreducible subspaces Vi under the
isotropy representation of K0. Since Holp = Hol0p ⊂ K0, these can be further
decomposed into irreducible subspaces under Holp. Applying Theorem 6.9,
M has a corresponding decomposition as a Riemannian product. Collecting
factors whose tangent spaces lie in Vi, we get a decomposition M1×· · ·×Mk

with M1 ' Rn flat (if a flat factor exists) and TpiMi ' Vi. If sp is the
symmetry at p = (p1, . . . , pk), then the uniqueness of the decomposition
also implies that sp = (sp1 , . . . , spk

) since, due to d(sp)p = − Id, sp cannot
permute factors in the decomposition. Thus each factor Mi is a symmetric
space which is irreducible by construction.

Thus a symmetric space which is reducible is locally an isometric product of
symmetric spaces, which follows by going to the universal cover.

Another important consequence:

Corollary 6.13 A simply connected symmetric space M = G/K withsymmirredsimple
G simple is irreducible.

Indeed, if M = M1 × · · · × Mk, then I0(M) = I0(M1) × · · · × I0(Mk)
which implies that G is not simple. We will see that with one exception, the
converse is true as well.

One easily sees:
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Corollary 6.14 An irreducible symmetric space is Einstein, i.e. Ric =symmEinstein
λ〈· , · 〉 for some constant λ. Furthermore, the metric is uniquely deter-
mined up to a multiple.

Proof This follows from the following general useful Lemma:

Lemma 6.15 Let B1, B2 be two symmetric bilinear forms on a vectorSchurMetric
space V such that B1 is positive definite. If a compact Lie group K acts
irreducibly on V such that B1 and B2 are invariant under K, then B2 =
λB1 for some constant λ.

Proof Since B1 is non-degenerate, there exists an endomorphism L : V → V

such that B2(u, v) = B1(Lu, v). Since K acts by isometries, B1(kLu, v) =
B1(Lu, k−1v) = B2(u, k−1v) = B2(ku, v) = B1(Lku, kv) and hence Lk = kL

for all k ∈ K. In addition, the symmetry of Bi implies that B1(Lu, v) =
B2(u, v) = B2(v, u) = B1(Lv, u) = B1(u, Lv), i.e. L is symmetric with
respect to B1 and hence the eigenvalues of L are real. If E ⊂ V is an
eigenspace with eigenvalue λ, then kL = Lk implies that E is invariant
under K. Since K acts irreducibly, E = {0} or E = V . Thus L = λ Id for
some constant λ and hence B2 = λB1. Notice thatλ 6= 0 since otherwise
B2 = 0.
This clearly implies that the metric is unique up to a multiple. Since isome-
tries preserve the curvature, Ric is also a symmetric bilinear form invariant
under K, which implies the first claim.

Another reason why holonomy groups are important, is the holonomy prin-
ciple. If Sp is a tensor on TpM invariant under Holp, we can define a tensor
S on all of M by parallel translating along any path. This is independent of
the path since parallel translating along a closed path preserves Sp. It is an
easy exercise to show that S is then smooth. Furthermore, S is parallel, i.e.
∇S = 0, since ∇XS = d

dt |t=0
P ∗

γ (Sγ(t)), where γ is a path with γ′(0) = X.
For example, if the representation of Holp is a complex representation, then
the complex structure on TpM extends to a parallel complex structure on
M , and such structures are integrable, and the metric is in fact Kähler. We
will come back to applications of this principle to symmetric spaces later on.

We now discuss some properties of locally symmetric spaces. If R is the
curvature tensor, then ∇R is the tensor defined by

(∇XR)(Y,Z)W = ∇X(R(Y, Z)W )−R(∇XY,Z)W −R(Y,∇XZ)W
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−R(Y, Z)∇XW.

This easily implies that ∇R = 0 iff for every parallel vector fields Y, Z, W

along a geodesic γ, R(Y, Z)W is parallel along γ as well.

Proposition 6.16 Let M be a Riemannian manifold.parallelR

(a) M is locally symmetric iff ∇R = 0.
(b) If M is locally symmetric and simply connected, then M is globally

symmetric.
(c) Let M1 and M2 be two symmetric spaces with M1 simply connected

and pi ∈ Mi fixed. Given an isometry A : Tp1M1 → Tp2M2 with
A∗(R2) = R1, there exists an isometric covering f : M1 → M2 with
dfp1 = A.

Proof (a) If M is locally symmetric with local symmetry sp, then ∇R = 0
since if we set L = d(sp)p we have

−(∇XR)(Y, Z)W = L((∇XR)(Y,Z)W )

= (∇LXR)(LY, LZ)LW = (∇XR)(Y, Z)W

since an isometry respects curvature. Notice that the same argument implies
that any tensor of odd order invariant under sp must vanish.

For the converse, we need to show that s(expp(tv)) = expp(−tv) is an
isometry on a small normal ball. For this we compute the derivative of expp

via Jacobi fields. Recall that a Jacobi field along a geodesic γ is defined
as J(t) = ∂

∂s |s=0
γs(t) where γs are geodesics with γ0 = γ. Equivalently,

Jacobi fields are solutions of the Jacobi equation J ′′ + R(J, γ′)γ′ = 0. Thus,
by differentiating γs(t) = expp(t(v + sw)), we see that d(expp)v(w) = J(1)
where J(t) is a Jacobi field along the geodesic γ(t) = expp(tv) with J(0) = 0
and∇vJ = w. Since the curvature is invariant under parallel translation, the
Jacobi equation in an orthonormal parallel frame has the form J ′′+R◦J = 0
where R is a constant matrix, namely the curvature endomorphism v →
R(v, γ′)γ′ at any point γ(t). Since the coefficients of the second order linear
differential equation are constant, it follows that if J(t) is a solutions, so is
J̄(t) = J(−t) along the geodesic expp(−tv) with initial conditions J̄(0) =
0 and J̄ ′(0) = −∇vJ = −w. Thus |d(expp)v(w)| = |J(1)| = |J̄(1)| =
|d(expp)−v(−w)| which means that sp is an isometry.

(c) Here we need the Cartan-Ambrose-Hicks Theorem, which we first re-
call. The setup is as follows. Let Mi be two complete Riemannian manifolds
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with M1 simply connected and pi ∈ Mi. Let A : Tp1M1 → Tp2M2 be an isom-
etry with the following property. If γ is a geodesic in M1 with γ(0) = p1, we
denote by γ̄ the geodesic in M2 with γ̄(t) = expp2

(tA(γ′(0)). If γ is a piece-
wise geodesic starting at p1 we also have a corresponding piecewise geodesic
γ̄ where the "break" vectors in γ̄ are obtained by parallel translation the
ones of γ to p1, mapping them to M2 with A, and parallel translating in
M2 by the corresponding distance. If Pγ denotes parallel translation, we
require that P ∗

γ ((R1)γ(1)) = A∗(P ∗̄
γ ((R2)γ̄(1))). Then Cartan-Ambrose-Hicks

says that there exists a local isometry f : M1 → M2 with dfp1 = A. It is an
easy exercise that a local isometry is a covering. Notice that it is clear how f

should be defined since it needs to take a broken geodesic γ to γ̄. See [CE],
Theorem 1.36 for details of the proof.

We can now apply this to the case where Mi are symmetric spaces. In
that case P ∗

γ ((R1)γ(1)) = (R1)γ(0) since (a) implies that ∇R1 = 0 and hence
the curvature tensor is invariant under parallel translation. Similarly for R2

and hence we only need A∗(R2) = R1 to obtain the existence of f . Since
both Mi are assumed to be simply connected, the covering f is an isometry.

Part (b) is now an easy consequence. Since M is locally symmetric, and
since the local symmetry preserves curvature, it follows that s∗p(Rp) = Rp.
We can now apply the Cartan-Ambrose-Hicks Theorem to A := d(sp)p =
− Id to obtain a global isometry f with f(p) = p and dfp = − Id.

Part (c) says in particular that a globally symmetric space is determined, up
to coverings, by the curvature tensor at one point. This is an analogue of
the fact that a Lie algebra g determines the Lie group G up to coverings.

It is instructive to use the Cartan-Ambrose-Hicks Theorem to give a proof
of Theorem ??, an important property we use frequently. This is in fact also
the most important step in proving that the isometry group is a Lie group.

Proposition 6.17 Let M be a Riemannian manifold with K the set ofKcompact
all isometries fixing a point p ∈ M . Then K is compact.

Proof Recall that the topology in I(M), and hence K, is given by uni-
form convergence on compact subsets. Via the isotropy representation K ⊂
O(TpM) and hence the claim is equivalent to K being closed in O(TpM). So
let fi ∈ K and choose a subsequence, again denoted by fi, such that d(fi)p

converges to an isometry A ∈ O(TpM). We need to show that A is the
derivative of an isometry f and that fi → f uniformly on compact subsets.
Let γv be the geodesic starting at p with γ′v(0) = v. Then γi = fi(γv) is
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a geodesic with γ′i(0) = exp(d(fi)p(v)) → Av. Thus γi(t) → γAv(t) uni-
formly on compact subsets and hence Pγi → PγAv and Rγi(t) → RγAv(t)

since parallel translation and curvature depends continuously on the pa-
rameter. The same holds for broken geodesics. Since fi are isometries,
they satisfy the requirements of the Cartan-Ambrose-Hicks Theorem, and
by taking limits, so does the isometry A. Thus there exists an isomet-
ric covering f : M → M with dfp = A. f must be an isometry by ei-
ther going over to the universal cover or by observing that f preserves
the volume. Finally, we need to show that fi → f . First observe that
fi(γv(t)) → γAv(t) = exp(tAv) = exp(dfp(tv)) = f(exp(tv)) = f(γv(t)) and
similarly for broken geodesics. Choose a point q, Br(q) a normal ball around
q, and fix a geodesic γ from p to q. Now compose γ with the unique geodesic
from q to a point q′ ∈ Br(q). By applying Cartan-Ambrose-Hicks to this
broken geodesic, we see that (fi)|Br(q) → f|Br(q) uniformly.

Remark 6.18 If G is a transitive isometric action on a Riemannian manifold
M with isotropy Gp = K, it may not always be true that K is compact. For
example, recall that for Rn the the full isometry group is G = O(n) o Rn,
a semidirect product of rotations and translations. Of course in this case
G0 = O(n) is compact. But now we can take any subgroup L ⊂ O(n) and
write Rn = L o Rn/L and the isotropy is compact iff L is compact. The
general issue can be formulated as follows. Let G ⊂ I(M) be a subgroup, and
K = I(M)p. Then Gp = G ∩K and Gp is compact iff G is closed in I(M).
On the other hand, any metric invariant under G is also invariant under the
closure Ḡ, and conversely. Thus it is natural to assume that G is closed in
I(M) and hence Gp is compact. We will always make this assumption from
now on.

Exercises 6.19

(1) Show that the only quotient of Sn(1) which is symmetric is RPn.
(i) Show that the Grassmannians G0

k(Rn), Gk(Cn), Gk(Hn) are simply
connected.

(2) If G acts by isometries, show that Gp is compact iff G is closed in the
isometry group I(M), which holds iff the action of G on M is proper,
i.e. G×M → M ×M, (g, p) → (p, gp) is proper.

(3) Show that if G acts transitively on M , then so does G0.
(4) Show that a symmetric space is irreducible iff the universal cover is
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irreducible. You first need to prove the following general claim. If a
connected Lie group G acts on M , and π : M̃ → M is a cover, then
there exists a cover σ : G̃ → G with an action of G̃ on M̃ such that π

is equivariant, i.e. π(g · p) = σ(g) · π(p).
(5) Show that the fundamental group of a symmetric space is abelian.
(6) If (M,∇) is a manifold with connection, then M is called locally

affine symmetric if the the local geodesic symmetry preserves ∇, and
affine symmetric if this holds for a globally defined geodesic symmetry.
Show that M is locally affine symmetric iff T = ∇R = 0, where
T is the torsion of ∇. Show that a simply connected locally affine
symmetric space is affine symmetric.

6.2 Cartan involutions

Since Proposition 6.16 (c) shows that a simply connected symmetric space
is determined by the curvature tensor at one point, it suggests that there
should be an equivalent algebraic definition of a symmetric space, which we
develop in this Section.

First some notation. If M = G/H, H = Gp0 is a homogeneous space, we
obtain an action of G on G/H, which we write as p → gp when thinking
of M , or on the level of cosets kH → g(kH) = gkH which we also denote
by Lg. If h ∈ H, Lh takes p0 to p0 and hence d(Lh)p0 : Tp0M → Tp0M .
This defines a representation H → GL(Tp0M) called the isotropy repre-
sentation, which we sometimes denote by χ = χG/H . This representation
may be highly ineffective. But if G acts effectively and by isometries on
M , then χ is effective since isometries are determined by their derivative.
On the other hand, we will often write a homogeneous space in an ineffec-
tive presentation. Recall that if G acts on M then the ineffective kernel
N = {g ∈ G | gp = p for all p ∈ M} is a normal subgroup of G and G/N

induces an effective action on M . In the case of homogeneous spaces N ⊂ H

and hence N is a subgroup normal in G and H. Conversely, the ineffective
kernel is the largest normal subgroup that G and H have in common. In-
deed, if n lies in such a normal subgroup, Ln(gH) = ngH = gn′H = gh

since n′ ∈ H. Notice in particular that Z(G) ∩ Z(H) ⊂ N . In the ex-
amples we usually let G act almost effectively on G/H. The only excep-
tion is in the case of U(n) where we allow Z(U(n)) to lie in the ineffective
kernel as well. This makes explicit computations often simpler. As an ex-
ample, consider CPn = U(n + 1)/U(n)U(1) = SU(n + 1)/S(U(n)U(1) =
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(SU(n + 1)/Zn+1)/(S(U(n)U(1))/Zn+1). The last presentation is effective,
the second one almost effective, but the first one is the most convenient one.

We will often use the following observation. The long homotopy sequence
K → G → G/K implies that K is connected if M is simply connected and
G is connected. Conversely, if G is simply connected and K connected, then
M is simply connected.

We use the following convention when possible. We will denote by G/H

a general homogeneous space and reserve the notation G/K for symmetric
spaces. Recall that a symmetric space M can be written as M = G/K, where
G = I0(M) and K = Gp0 . It is important that from now on we let G be the
identity component of I(M) and not the full isometry group. Notice that
this in particular means that sp does not necessarily lie in G. Nevertheless,
conjugation by sp preserves G.

Proposition 6.20 Let M = G/K with G = I0(M) and K = Gp be asymmauto1
symmetric space.

(a) The symmetry sp gives rise to an involutive automorphism

σ = σp : G → G , g → spgsp.

(b) If Gσ = {g ∈ G | σ(g) = g} is the fixed point set of σ, then

Gσ
0 ⊂ K ⊂ Gσ.

Proof (a) Since sp ∈ I(M) and s−1
p = sp, σ, σ is a conjugation and hence an

automorphism that preserves I0(M). Since sp is involutive, so is σ.
(b) To see that K ⊂ Gσ, let h ∈ K. Then σ(h) · p = sphsp · p = p =

h · p. Furthermore, dσ(h)p = (dsp)pdhp(dsp)p = dhp. Since isometries are
determined by their derivatives, σ(h) = h and hence K ⊂ Gσ.

To see that Gσ
0 ⊂ K let exp tX ⊂ Gσ

0 be a 1-parameter subgroup. Since
σ(exp tX) = exp tX, it follows that sp exp tXsp = exp tX and hence sp(exp tX·
p) = exp tX · p. But sp fixes only p in a normal ball about p since d(sp)p =
− Id and hence exp tX · p = p for all t. Thus exp tX ∈ K and since Gσ

0 is
generated by a neighborhood of e, the claim follows.

The involution σ is called the Cartan Involution of the symmetric space.

Before we prove a converse, we need to discuss some general facts about
Riemannian homogeneous spaces.
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If G acts by isometries on a manifold M , we can associate to each X ∈ g

a vector field X∗ on M called an action field which is defined by

X∗(p) =
d

dt |t=0
(exp(tX) · p).

These action fields are Killing vector fields since their flow acts by isometries.
A word of caution: [X∗, Y ∗] = −([X,Y ])∗ since the flow of X∗is given by
left translation, but the flow of X ∈ g is given by right translation.

We say that G/H, H = Gp0 , is a Riemannian homogeneous space if Lg is
an isometry for all g ∈ G. We say that the homogeneous space is reductive
if there exists a subspace p ⊂ g, such that g = h ⊕ p and AdH(p) ⊂ p. We
can then identify

p ' Tp0M via X → X∗(p0). (6.21) tangentident

This is an isomorphism since X∗(p0) = 0 iff X ∈ h.

Lemma 6.22 Let G/H be a homogeneous space and g = h⊕p a reductiveisorep
decomposition.

(a) If σ ∈ Aut(G) with σ(H) = H, then under the identification (6.21),
we have dσ = dσ̄p0 , where σ̄ : G/H → G/H is defined by σ̄(gH) =
σ(g)H.

(b) Under the identification (6.21), the isotropy representation of G/H is
given by d(Lh)p0 = Ad(h)|p.

(c) A homogeneous metric on G/H, restricted to Tp0M , induces an inner
product on p invariant under AdH .

(d) An inner product on p, invariant under AdH , can be uniquely ex-
tended to a homogenous metric on G/H.

Proof (a) Let H = Gp0 . Then

(dσ(X))∗(p0) =
d

dt |t=0
(exp(tdσ(X)) · p0) =

d

dt |t=0
(σ(exp(tX)) · p0)

=
d

dt |t=0
σ̄(exp(tX)H) = dσ̄p0(X

∗(p0))

Part (b) follows from (a) by letting σ = Ch be conjugation by h ∈ H and
observing that σ̄(gH) = hgh−1H = hgH = Lh(gH). Clearly (b) implies (c).
For part (d), the inner product on p induces one on Tp0M which is preserved
by d(Lh)p0 . We then define the metric at gp0 by using (Lg)p0 : Tp0M →
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Tgp0M . This definition is independent of the choice of g since the metric at
p0 is LH invariant.

Remark 6.23 If G/H does not have a reductive decomposition, one can
still prove an analogue of (a) and (b) by replacing (6.21) with Tp0M ' g/h.
But the isotropy representation is in general not effective, even if the action
of G on M is.

A Riemannian homogeneous space G/H is always reductive since χ(H) is
compact (resp. has compact closure in O(Tp0M)). We simply choose an inner
product on g invariant under AdH and let p be the orthogonal complement
of h. Reductive decompositions are not necessarily unique. Notice that
this is simply a representation theory problem since, given one reductive
decomposition, it can only be unique if the representation of AdH on h and
p do not have any equivalent sub-representations.

For a symmetric space we have a natural reductive decomposition, called
the Cartan decomposition.

Proposition 6.24 Let M = G/K with Gσ
0 ⊂ K ⊂ Gσ for an involu-symmred

tive automorphism σ of G. Furthermore, let k and p be the +1 and −1
eigenspaces of dσ. Then k is indeed the Lie algebra of K and

g = k⊕ p, [k, k] ⊂ k, [p, p] ⊂ k.

Furthermore, AdK(p) ⊂ p, in particular [k, p] ⊂ p.

Proof [k, k] ⊂ k simply says that k is a subalgebra and Gσ
0 ⊂ K ⊂ Gσ implies

that K and Gσ have the same Lie algebra, which is clearly the +1 eigenspace
of dσ. Since the automorphism σ respects Lie brackets, [p, p] ⊂ k follows as
well. It also implies that [k, p] ⊂ p, but AdK(p) ⊂ p is stronger if K is not
connected. To prove this, observe that for any automorphism α : G → G one
has dα ◦ Ad(g) = Ad(α(g)) ◦ dα. If h ∈ K and X ∈ p, i.e., σ(h) = h and
dσ(X) = −X, this implies that dσ(Ad(h)X) = Ad(h)dσ(X) = −Ad(h)X,
i.e., Ad(h)X ∈ p.

We will use this reductive decomposition from now on. Notice that in this
language the symmetric space is irreducible iff the Lie algebra representation
of k on p given by Lie brackets is irreducible

We are now ready to prove a converse of Proposition 6.20.
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Proposition 6.25 Let G be a connected Lie group and σ : G → G ansymmauto2
involutive automorphism such that Gσ

0 is compact. Then for any compact
subgroup K with Gσ

0 ⊂ K ⊂ Gσ, the homogeneous space G/K, equipped
with any G-invariant metric, is a symmetric space, and such metrics exist.

Proof Let g = h ⊕ p be the reductive decomposition in Proposition 6.24.
Homogeneous metrics on G/K correspond to AdK invariant inner products
on p. Such inner products exists since K is compact.

We now claim that any such metric is symmetric. Since it is homogeneous,
it is sufficient to find a symmetry at one point. Since σ(K) = K, we get an
induced diffeomorphism σ̄ : G/K → G/K, σ̄(gK) = σ(g)K, and we claim
that this is the symmetry at the base point coset (K). Clearly σ fixes the base
point and since dσ|p = − Id, Lemma 6.22 (a) implies that d(σ̄)(K) = − Id as
well.

Remark 6.26 It may seem that we have proved that there is a one to one
correspondence between symmetric spaces and Cartan involutions. There is
one minor glitch: If we start with a Cartan involution as in Proposition 6.25,
it may not be true that G = I(M)0, as required in Proposition 6.20. This is
illustrated by the example Rn = L o Rn/L for any L ⊂ O(n). Notice that
in this case the Cartan involution is σ(A, Tv) = (A, T−v). Notice also that
this example shows that one symmetric space can have a presentation as in
Proposition 6.25 in several different ways, clearly not desirable. We will see
that Rn is essentially the only exception.

We can now reduce a symmetric space to an infinitesimal object.

Proposition 6.27 Let g be a Lie algebra and g = k⊕p be a decompositionsymminfinitesimal
(as vector spaces) with

[k, k] ⊂ k, [k, p] ⊂ p [p, p] ⊂ k.

If G is the simply connected Lie group with Lie algebra g and K ⊂ G the
connected subgroup with Lie algebra k, then

(a) There exists an involutive automorphism σ : G → G such that K =
Gσ

0 .
(b) If K is compact, then every G-invariant metric on G/K is symmetric.
(c) G/K is almost effective iff g and k have no ideal in common.

Proof (a) Let L : g → g be the linear map with L|k = Id, L|p = − Id.
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Then one easily checks that the Lie bracket condition is equivalent to L

being an automorphism of g. Since G is simply connected, there exists an
automorphism σ with dσ = L, and since dσ2 = L2 = Id, σ is involutive. The
Lie algebra of Gσ is the fixed point set of dσ = L, i.e it is equal to k. This
proves that K = Gσ

0 . (b) now clearly follows from Proposition ??.
(c) Recall that G/K is almost effective if the kernel of the left action has

finite ineffective kernel, and that this is equivalent to saying that the largest
subgroup of K normal in G (and hence of course in K as well), is discrete,
i.e. has trivial Lie algebra. Since normal subgroups correspond to ideals, the
claim follows.

A decomposition of a Lie algebra g as above is again called a Cartan decom-
position of g. It is called orthogonal if it satisfies the condition in (b), and
effective, if it satisfies the condition in (c). Thus a symmetric space gives
rise to an effective orthogonal Cartan decomposition, and conversely such a
Cartan decomposition defines a symmetric space. Again, the correspondence
is not quite one to one.

We point out an elementary result that will be useful when discussing the
symmetric spaces involving classical Lie groups.

Proposition 6.28totgeod

(a) If M is a symmetric space and N ⊂ M is a submanifold such that for
all p ∈ M , sp(N) = N , then N is totally geodesic and symmetric.

(b) Let σ : G → G be an involutive automorphism and G/K the corre-
sponding symmetric space. If L ⊂ G with σ(L) ⊂ L, then L

/
(L∩K)

is a symmetric space such that L
/
(L∩K) ⊂ G/K is totally geodesic.

Proof (a) Recall that N ⊂ M is totally geodesic if every geodesic in N is
also a geodesic in M , or equivalently the second fundamental form B : TpN×
TpN → (TpN)⊥ vanishes. But the isometries sp preserves TpN and hence
(TpN)⊥, and thus B as well. Since the tensor B has odd order, it vanishes,
see the proof of Proposition 6.16 (a).

(b) This follows from (a) since the symmetry at eK is given by σ̄(gK) =
σ(g)K and if N = L

/
(L∩K) ⊂ G/K, then σ(L) ⊂ L implies that σ̄(N) ⊂ N .

Exercises 6.29
(1) Show that when G acts on a manifold M (not necessarily transitive

or Riemannian) then (Ad(g)X)∗ = (Lg)∗(X∗).
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(2) Let GL(n,R) act on Rn − {0} via matrix multiplication. Compute
the isotropy at a point and the isotropy representation on g/h and
show that this homogeneous space has no reductive decomposition.

(3) Show that up to scaling, there exists a unique metric on Sn invariant
under SO(n + 1), a one parameter family invariant under U(n) ⊂
SO(2n) on S2n−1, and a 7 parameter family invariant under Sp(n) ⊂
SO(4n) on S4n−1.

(4)
(5)

6.3 A Potpourri of Examples

In this section we will describe all of the symmetric space which are quo-
tients of classical Lie groups in a geometric fashion. We also compute the
isotropy representation and fundamental group and discuss some low dimen-
sional isomorphisms.

Grassmann manifolds

We first revisit some examples we already studied in Section 6.1. We
denote by Gk(Rn) the set of unoriented k-planes in Rn and by G0

k(R
n) the

set of oriented k-planes. The Lie group O(n), and also G = SO(n), clearly
acts transitively on k planes. If p0 is the k-plane spanned by the first k-basis
vectors e1, · · · , ek, then the isotropy is embedded diagonally:

Gp0 = S(O(k) O(n− k)) =
{(

A 0
0 B

)
| A ∈ O(k), B ∈ O(n− k),

}

with det Adet B = 1. In the case of the oriented planes we clearly have
Gp0 = SO(k) SO(n− k) embedded diagonally.

We denote from now on by Ip,q the (p+q)× (p+q) diagonal matrix with p

entries of−1 on the diagonal and q entries of +1. Then σ(A) = Ik,n−kAIk,n−k

is an automorphism of G which is +Id on the upper k×k and lower (n−k)×
(n− k) block and − Id in the two off blocks. Thus Gσ = S(O(k)O(n− k)).
It has two components, and according to Proposition 6.25, gives rise to two
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symmetric spaces, Gk(Rn) and G0
k(Rn). The −1 eigenspace p of dσ and a

computation shows that the isotropy representation is given by:

p =
{(

0 X

−XT 0

)
| X ∈ M(p, q,R)

}
and Ad((A,B))X = AXBT ,

where (A,B) ∈ S(O(k)O(n − k)). Thus χG/H = ρp⊗̂ρq and this rep is
irreducible, as long as (p, q) 6= (2, 2). Thus the Grassmannians, except for
G2(R4) and G0

2(R4), are irreducible. (Notice that an exterior tensor product
over R of real irreducible reps may not be irreducible, as it was over C).

In order to obtain a geometric interpretation of what the symmetry does
to a plane, let rE be the reflection in the plane E. We claim that the
symmetry sE is simply reflection in E, i.e. if we let v1, . . . , vk be basis of F ,
then rE(v1), . . . , rE(vk) is a basis of sE(F ). To see this, we can assume that
E = span{e1, . . . , ek} and F = span{g(e1), . . . g(ek)} for some g ∈ SO(n).
Then, as we saw in the proof of Proposition 6.25, the symmetry at E is given
by gH → σ(g)H. Thus in the first k columns of g, i.e. g(e1), . . . g(ek), the
first k components are fixed, and the last n− k are changed by a sign. But
this is precisely what the reflection in E does.

Recall that π1(SO(m)) → π1(SO(n)) is onto for all n > m ≥ 2. This
easily implies that G0

k(Rn) is simply connected, and thus π1(Gk(Rn)) = Z2.
The 2-fold cover G0

k(Rn) → Gk(Rn) of course simply forgets the orientation.
Similarly, for the complex and quaternionic Grassmannian Gk(Cn) =

U(n)/U(k)U(n− k) and Gk(Hn) = Sp(n)/Sp(k) Sp(n− k) with Cartan in-
volution again given by conjugation with Ik,n−k. Both are simply connected
and no sub-covers are symmetric.

As mentioned before, the special cases with k = 1, i.e., G1(Rn+1) =
RPn, G1(Cn+1) = CPn, G1(Hn+1) = HPn are especially important. They
are also called rank 1 symmetric spaces. There is one more rank 1 symmetric
space, the Cayley plane CaP2 = F4/ Spin(9).

Compact Lie groups

If K is a compact Lie group, we have an action of K × K on it given
by (a, b) · h = ahb−1 with isotropy ∆K = {(a, a) | a ∈ K}. Thus we can
also write K = K ×K/∆K. Notice that K ×K acts by isometries in the
bi-invariant metric on K. We have the involutive automorphism σ(a, b) =
(b, a) with Gσ = ∆K which makes K × K/∆K into a symmetric space.
Furthermore, p = {(X,−X) | X ∈ g} with isotropy representation the
adjoint representation Ad(k)(X,−X) = (Ad(k)X,−Ad(k)X). Thus the
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symmetric space K is irreducible iff K is simple. Notice that the natural
isomorphism p ' TeK ' k is given by (X,−X) → 2X. One should keep
in mind this multiplication by 2 when relating formulas for the symmetric
space to formulas for K.

SO(2n)/ U(n): Orthogonal Complex structures

If (V, 〈·, ·〉) is an inner product space, we will study the set of complex
structures which are isometries, i.e., M = {J ∈ O(V ) | J2 = − Id}. V must
be even dimensional and we set dimV = 2n. If J ∈ M , we can find a normal
form as follows. Choose a unit vector v1 ∈ V arbitrarily and let vn+1 = J(v1).
Then J(vn+1) = −v1 and hence span v1, vn+1 is J invariant. Since J is also
orthogonal, it preserves its orthogonal complement, and repeating we obtain
an orthonormal basis v1, . . . , vn, vn+1, . . . v2n in which J is the matrix

J =
(

0 − Id
Id 0

)
.

This implies that the action of O(V ) on M , given by A · J = AJA−1, is
transitive on M . Indeed, A ·J ∈ M if J ∈ M and if J and J ′ are orthogonal
complex structures, then the isometry A which takes one orthonormal basis
of each normal form to the other, satisfies A · J = J ′. Let us fix one such
orthogonal complex structures J0 and let vi be a corresponding choice of
orthonormal basis. The isotropy at J0 is the set of A ∈ O(V ) with A ◦
J0 = J0 ◦ A, i.e. the set of J0 complex linear maps w.r.t. J0. Thus M =
O(V )/U(V ). Notice that this has 2 components and we call the set of
complex structures J with det J = detJ0 the oriented complex structures
(w.r.t. the orientation induced by J0). Let us call this component again M .

We can use J0 to identify V with Rn⊕Rn = Cn with its canonical complex
structure J0(u, v) = (−v, u) and then M = {J ∈ SO(2n) | J2 = − Id} =
SO(2n)/U(n) where U(n) ⊂ SO(2n) is the canonical embedding A + iB →(

A B

−B A

)
.

We now take the involutive automorphism of SO(2n) given by σ(A) =
J0AJ0. Then clearly Gσ = U(n) and thus SO(2n)/U(n) is a symmetric
space, and since Gσ is connected, no subcover of M is symmetric. Using the
usual embedding U(n) ⊂ SO(2n), we get

h =
{(

X Y

−Y X

)
| X,Y ∈ gl(n,R), X = −XT , Y = Y T

}
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and

p =
{(

X Y

Y −X

)
| X, Y ∈ gl(n,R), X = −XT , Y = −Y T

}

The isotropy representation is more difficult to compute, but one can show
that χ = Λ2µn, which is irreducible. Thus M is an irreducible symmetric
space. It is not hard to see that π1(U(n)) → π1(SO(2n)) is onto (choose
canonical representatives) and hence M is simply connected.

Notice that if J is a complex structure, then J is orthogonal iff J is skew
symmetric. Thus there is a natural embedding M ⊂ o(2n). The metric
obtained by restricting the inner product 〈A,B〉 = 1

2 trAB on o(2n) to M is
the above symmetric metric since it is invariant under the adjoint action of
SO(2n) on o(2n). It leaves M invariant, in fact M is an orbit of the action,
and since M is isotropy irreducible the metric is unique up to scaling, and
hence must be symmetric.

If we look at low dimensional cases, we have SO(4)/U(2) ' S2. Indeed,
SU(2) is a normal subgroup of SO(4) and SO(4)/SU(2) ' SO(3) and thus
SO(4)/ U(2) = SO(3)/SO(2) = S2. If n = 3 one easily sees that that
SO(6)/ U(3) ' SU(4)/S(U(3)U(1)) = CP3 and if n = 4 that SO(8)/U(4) '
SO(8)/ SO(2) SO(6). Notice that the last claim seems at first sight somewhat
peculiar since π1(U(3)) = Z and π1(SO(2) SO(6)) = Z⊕ Z2.

U(n)/O(n): Lagrangian subspaces of R2n

Let (V, ω) be a symplectic vector space and set dimV = 2n. A subspace
L ⊂ V with ω|L = 0 and dimL = n is called Lagrangian. We will show that
M , the set of all Lagrangian subspaces of V , is a symmetric space. As we
saw in Chapter 3, there exists a symplectic basis with which we can identify
V ' Rn⊕Rn and ω with the canonical symplectic form ω0((u, v), (u′, v′)) =
u ·v′−u′ ·v = 〈J0(u, v), (u′v′)〉, or equivalently ω0 =

∑
dxi∧dyi. Thus there

exists an inner product 〈·, ·〉 and an orthogonal complex structure J on V

such that ω(u, v) = 〈Ju, v〉. Another way to say that L is Lagrangian is thus
that J(L) ⊥ L, i.e., M is also the set of all totally real subspaces w.r.t. J .

A third interpretation is that M is the set of conjugate linear intertwin-
ing maps τ of the complex vector space (V, J) with τ2 = Id, which are
orthogonal. Indeed, as we saw in the proof of Proposition 5.37, if V± are the
eigenspaces of τ with eigenvalues ±1, then JV− = V + and 〈V+, V−〉 = 0, i.e.
J(V−) ⊥ V− and hence V− is Lagrangian. Conversely, if L is Lagrangian,
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we define τ as above. τ is sometimes also called a real structures since
V− ⊗ C = V and conversely, a subspace L ⊂ V with L ⊗ C = V , defines a
conjugate linear intertwining maps τ .

For simplicity identify from now on (V, ω, J) ' (R2n, J0, ω0). The sym-
plectic group Sp(n,R) clearly takes Lagrangian subspaces to Lagrangian sub-
spaces. Recall that U(n) ⊂ Sp(n,R) and we claim that U(n) acts transitively
on M . For this, let L be Lagrangian, choose an orthonormal basis v1, . . . , vn

of L and let vn+i = J0(vi). Since L is Lagrangian, and hence J0(L) ⊥ L,
v1, . . . , v2n is an orthonormal basis and ω(vi, vj) = ω(vn+i, vn+j) = 0. Fur-
thermore, ω(vi, vn+j) = δij and hence ω =

∑
dvi ∧ dvn+i. Thus the lin-

ear map A that takes vi to the standard basis e1, . . . , e2n lies in Sp(n,R),
but also in O(2n) and hence in Sp(n,R) ∩ O(2n) = U(n). It takes L

into the Lagrangian subspace L0 = {e1, . . . en}. This shows that U(n) in-
deed acts transitively on M . The isotropy at L0 is O(n) ⊂ U(n) since(

A B

−B A

)
∈ U(n) ⊂ SO(2n) fixes L0 iff B = 0. Hence M = U(n)/O(n).

We also have Mo = U(n)/SO(n) which can be interpreted as the set of
oriented Lagrangian subspaces. and is a 2-fold cover of M .

If we choose the automorphism of U(n) defined by σ(A) = Ā, then Gσ =
O(n) and thus M , as well as Mo is a symmetric space. By embedding
U(n) ⊂ O(2n) we clearly have

h =
{(

X 0
0 X

)
| X ∈ gl(n,R), X = −XT

}

and

p =
{(

0 Y

−Y 0

)
| Y ∈ gl(n,R), Y = Y T

}

Identifying a matrix in p with Y , the isotropy representation is given by
Ad(diag(A, A))(Y ) = AY AT , i.e. χ = S2ρn. Notice that this rep is not irre-
ducible since the inner product is an element of S2(Rn) which is fixed by ρn.
This corresponds to the fact that Y = Id ∈ p lies in the center of u(n). Thus
M is not an irreducible symmetric space. Notice that we have a submanifold
SU(n)/ SO(n) ⊂ U(n)/O(n) and since σ preserves SU(n), Proposition 6.28
implies that the embedding is totally geodesic. SU(n)/SO(n) is sometimes
called the set of special Lagrangian subspaces. The isotropy representation
of SU(n)/SO(n) is irreducible, i.e., it is an irreducible symmetric space.

There is a natural tautological embedding U(n)/O(n) ⊂ Gn(R2n) and we
claim it is totally geodesic. For this we just observe that conjugation with
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In,n takes
(

A B

−B A

)
∈ U(n) ⊂ O(2n) to

(
A −B

B A

)
and thus A+iB →

A−iB = σ(A+iB), i.e. the Cartan involution for the Grassmannian restricts
to the Cartan involution for the set of Lagrangian subspaces.

Finally, we consider some low dimensional isomorphisms. Clearly, we have
that SU(2)/SO(2) = S2 = CP1 is the set of Lagrangian subspaces of R4. The
5-dimensional manifold SU(3)/SO(3) is sometimes called the Wu manifold.
The long homotopy sequence of the homogeneous space implies that it is
simply connected with π2 = Z2, i.e. as close to a homology S5 as one can
get. Finally, one easily sees that SU(4)/SO(4) = SO(6)/ SO(3) SO(3), which
seems natural since SU(4) is a 2-fold cover of SO(6) and SO(4) is a 2-fold
cover of SO(3) SO(3).

U(2n)/Sp(n): Quaternionic structures on C2n

Recall that if (V, J, 〈· , · 〉) is a hermitian vector space, a conjugate linear
intertwining maps τ with τ2 = − Id is called a quaternionic structure of V .
Since τ is conjugate linear Jτ = −τJ and thus J, τ, J◦τ are 3 anti-commuting
complex structures which make V into a vector space over H. We can then
define the compact symplectic group as Sp(V ) = {A ∈ U(n) | Aτ = τA}.
We denote by M the set of quaternionic structures which are unitary. In
coordinates, Cn ⊕ Cn ' Hn, with (u, v) → u + jv and τ0(u, v) = (−v̄, ū) =
(u, v)j.

We claim that U(2n) acts transitively on M . Let V± be the eigenspaces of
τ with eigenvalues ±i. Then we have again that JV− = V+ and 〈V−, V+〉 = 0.
If we let u1, . . . , un be an orthonormal basis of V−, then u1, . . . , un, J(u1), . . . , J(un)
is an orthonormal basis of V . If we have two such structures τ, τ ′ the unitary
map that takes the orthonormal basis for τ into that for τ ′ takes τ to τ ′ as
well. The isotropy at τ0 is equal to Sp(n) and thus M = U(2n)/Sp(n).

The automorphism σ(A) = τ0Aτ−1
0 makes M into a symmetric space since

U(2n)σ = Sp(n). It is not irreducible, but the totally geodesic submanifold
SU(2n)/Sp(n) ⊂ U(2n)/Sp(n) is an irreducible symmetric space.

τ ∈ M is a skew-hermitian matrix and thus M is embedded as an adjoint
orbit in {A ∈ M(2n, 2n,C) | A = −ĀT } under the action of U(2n) by
conjugation, with metric induced by the trace form.

In the first non-trivial dimension we have SU(4)/Sp(2) = SO(6)/SO(5) =
S5.
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Sp(n)/U(n): Complex Lagrangian subspaces of C2n

As in the case of real Lagrangian subspaces, we let M be the set of sub-
spaces of C2n which are Lagrangian w.r.t. the complex skew symmetric bilin-
ear form ω. One easily sees that Sp(n,C)∩U(n) = Sp(n) acts transitively on
M with isotropy U(n). Thus M = Sp(n)/U(n) and it is a symmetric space
with respect to the involution σ(A + jB) = A − jB with Sp(n)σ = U(n).
It is a totally geodesic submanifold of Gn(C2n). M is irreducible symmetric
and Sp(2)/U(2) = SO(5)/SO(2) SO(3) = G2(R5).

SL(n,R)/SO(n): Inner products on Rn

The set of inner products on Rn is a non-compact symmetric space. If
〈· , · 〉0 is the standard inner product on Rn, then any other inner product
can be written as 〈u, v 〉 = 〈Lu, v〉 for some self adjoint linear map L. Thus
the set of inner products can be identified with the set M = {A ∈ GL(n,R) |
A = AT , A > 0} of positive definite symmetric matrices. The inner product
〈X, Y 〉 = trXY on the set of symmetric matrices translates via left transla-
tions to any other A ∈ M , i.e. 〈X, Y 〉A = tr(A−1XA−1Y ). The Lie group
GL(n,R) acts on M via g·A = gAgT and one easily sees that it acts by isome-
tries. The action is transitive since the linear map that takes an orthonormal
basis of one inner product to an orthonormal basis of another clearly takes the
inner products into each other (the action is by basis change). The isotropy
at Id is clearly O(n) and hence M = GL(n,R)/O(n) = GL+(n,R)/SO(n).
The involutive automorphism σ(A) = (AT )−1 has fixed point set O(n) and
hence M is a symmetric space. In the Cartan decomposition, h is the set of
skew symmetric matrices, and p the set of symmetric matrices. The isotropy
representation is given by conjugation, i.e. χ(A)X = AXA−1 for A ∈ O(n)
and X ∈ p. In other words, χ = S2ρn. It has a fixed vector Id but is irre-
ducible on its orthogonal complement. SL(n,R)/SO(n) is a totally geodesic
submanifold of M and an irreducible symmetric space.

Finally, we claim that the symmetry sId is given by sId(A) = A−1. On the
level of cosets it takes g O(n) to σ(g)O(n) = (gT )−1 O(n). Since A > 0 we
can find g with A = ggT and hence sId(A) = sId(ggT ·O(n)) = ((ggT )T )−1 =
(ggT )−1 = A−1.

SO(p, q)/S(O(p) O(q)): Positive p-planes in Rp,q
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In order to discuss another non-compact symmetric space, let Rp,q be Rp+q

with an inner product 〈· , · 〉 of signature (p, q). Let M = {L ∈ Gp(Rp+q) |
〈u, u〉 > 0 for all u ∈ L}. The group of isometries of 〈· , · 〉 is O(p, q) and it
clearly acts transitively on M with isotropy at L = {e1, . . . , en} is O(p)O(q).
Thus M = O(p, q)/O(p)O(q) = SO+(p, q)/ S(O(p)O(q)). The involutive
automorphism is conjugation by Ip,q which makes M into a symmetric space.
The set of oriented positive p-planes Mo = SO(p, q)/SO(p) SO(q) is a sym-
metric space as well. Particularly important is the hyperbolic space Hn+1 =
SO(p, 1)/O(p).

Similarly, for SO(p, q,C)/S(U(p)U(q)) and SO(p, q,H)/Sp(p) Sp(q) with
the complex and quaternionic hyperbolic spaces CHn+1 = SU(p, 1)/U(p)
and HHn+1 = Sp(p, 1)/Sp(p) Sp(1). These 3 hyperbolic spaces, together
with F4,−20/Spin(9), are the non-compact rank 1 symmetric spaces with
sectional curvature between −4 and −1. Here F4,−20 is the Lie group corre-
sponding to a particular real form of f4 ⊗ C.

There are several more non-compact symmetric space, but we will see
shortly that they are obtained by a duality from the compact ones.

Exercises 6.30

(1) Show that the Grassmannian G0
2(R4) is isometric to S2(1) × S2(1),

up to some scaling on each factor. Furthermore, G2(R4) = S2(1) ×
S2(1)/{(a, b) ∼ (−a,−b)}. Decompose ρ2⊗̂ρ2 into irreducible sub-
representations and discuss the relationship.

(2) Compute the fundamental groups of U(n)/O(n), U(n)/ SO(n) and
SU(n)/SO(n).

(3) Show that U(n)/SO(n) is diffeomorphic to S1×SU(n)/SO(n).
(4) Show that SO(6)/U(3) = CP3 and SU(4)/SO(4) = SO(6)/SO(3) SO(3).
(5) What is the set of unitary complex structures on C2n.

6.4 Geodesics and Curvature

Motivated by Proposition 6.20 and Proposition 6.25, we define:

Definition 6.31 (G,K, σ) is called a symmetric pair if K is compact, σsymmpair
is an involution of G with Gσ

0 ⊂ K ⊂ Gσ, and G acts almost effectively on
G/K.
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Remark 6.32 As we saw, a symmetric space gives rise to a symmetric pair
with G = I0(M), and a symmetric pair gives rise to a symmetric space,
although at this point the correspondence in not yet one-to-one, and a sym-
metric space can give rise to many symmetric pairs in infinitely many ways.
Notice that in terms of the Cartan decomposition g = k ⊕ p, the condition
that G acts almost effectively is equivalent to saying that g and p do not
have any ideal in common.

A word of caution: If a Riemannian homogeneous space G/H is a sym-
metric space, it may not be true that (G,H) is a symmetric pair unless G =
I0(M). For example, Sn(1) = SO(n+1)/SO(n) and (SO(n+1),SO(n)) is a
symmetric pair. But SU(n) ⊂ SO(2n) also acts transitively on S2n−1(1) with
isotropy SU(n−1), i.e. S2n−1(1) = SU(n)/SU(n−1). But (SU(n), SU(n−1))
is not a symmetric pair since one easily shows that there exists no automor-
phism σ of SU(n) with Gσ = SU(n−1). On the other hand, if Rn = LoRn/L

with L ⊂ O(n) as above, it is still true that (LoRn, L) is a symmetric pair
since σ(A, Tv) = (A, T−v) preserves LoRn.

We start with a description of the geodesics of a symmetric space. Recall
that we identify p ' Tp0M via X → X∗(p0).

Proposition 6.33 Let (G,K) be a symmetric pair with Cartan decom-symmgeod
position g = k⊕ p. If X ∈ p, then γ(t) = exp(tX) · p0 is the geodesic in M

with γ(0) = p0 and γ′(0) = X ∈ p ' Tp0M .

Proof : Recall that the automorphism σ induces the symmetry s at the
point p0 given by s(gH) = σ(g)H. With respect to the symmetric metric on
G/H, let (G′,K ′) be the symmetric pair with G′ = I0(M) and with Cartan
involution σ′(g) = sgs and corresponding Cartan decomposition g′ = k′⊕ p′.
We first prove the claim for the symmetric pair (G′,K ′).

Let γ be the geodesic in M with γ(0) = p0 and γ′(0) ∈ Tp0M . Then the
transvection Tt = sγ( t

2
) ◦ sγ(0) is the flow of a Killing vector field X ∈ g′.

Since γ(t) = Tt · p0, it follows that γ′(0) = X∗(p0). Furthermore, σ′(Tt) =
sγ(0)sγ( t

2
)sγ(0)sγ(0) = sγ(0)sγ( t

2
) = (sγ( t

2
) ◦ sγ(0))−1 = (Tt)−1 = T−t. Differen-

tiating we obtain dσ′(X) = −X and thus X ∈ p′.
Next we look at the symmetric pair (G,H). We can assume that G/H

is effective, since we can otherwise divide by the finite ineffective kernel
without changing the Lie algebras. We first show that σ′|G = σ. Indeed, if
g ∈ G then Lsgs = Lσ(g) since Lsgs(hK) = Lsg(σ(h)K) = Ls(gσ(h)K) =
σ(g)hK = Lσ(g)(hK). Thus effectiveness implies that σ(g) = sgs = σ′(g).
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Next we prove that p = p′ which finishes the claim. Since they have the
same dimension, it is sufficient to show that p ⊂ p′. But if u ∈ p, i.e.
dσ(u) = −u, then σ′|G = σ implies that dσ′(u) = −u, i.e. u ∈ p′.

There is a simple formula for the connection and curvature of a symmetric
space. Recall that we identify p ' Tp0M via X → X∗(p0).

Proposition 6.34 Let (G,K) be a symmetric pair with Cartan decom-symmcurv
position g = k⊕ p.

(a) For any vector field Y on G/K and X ∈ p, we have (∇X∗Y )(p0) =
[X∗, Y ](p0).

(b) If X, Y, Z ∈ p, then (R(X∗, Y ∗)Z∗)(p0) = −[[X, Y ], Z]∗(p0).

Proof : (a) For X ∈ p, consider the geodesic γ(t) = exp tX ·p0 in M. We have
the corresponding transvection Tt = sγ( t

2
)sγ(0) = Lexp tX which is the flow of

X∗. Also (dTt)γ(s) is parallel translation along γ. Thus if Y is any vector field
on M, we have ∇X∗Y = d

dt |t=0
(P−1

t Y (γ(t))) = d
dt |t=0

(dT−1
t )γ(t)Y (γ(t)) =

[X∗, Y ].
(b) We first compute (everything at p0)

∇X∗∇Y ∗Z
∗ = [X∗,∇Y ∗Z

∗] = ∇[X∗,Y ∗]Z
∗ +∇Y ∗ [X∗, Z∗]

since isometries preserve the connection and the flow of X∗ consists of isome-
tries. Since [p, p] ⊂ k we have [X,Y ]∗(p0) = 0 and hence

∇X∗∇Y ∗Z
∗ = ∇Y ∗ [X∗, Z∗] = −∇Y ∗ [X, Z]∗ = −[Y ∗, [X,Z]∗] = [Y, [X, Z]]∗.

Thus

R(X∗, Y ∗)Z∗ = ∇X∗∇Y ∗Z
∗ −∇Y ∗∇X∗Z∗ −∇[X∗,Y ∗]Z

∗

= [Y, [X, Z]]∗ − [X, [Y,Z]]∗ = −[[X, Y ], Z]∗

by the Jacobi identity.

We usually simply state

∇XY = [X, Y ], R(X,Y )Z) = −[[X, Y ], Z]

with the understanding that this only holds at p0.
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Remark 6.35 Part (a) gives rise to a geometric interpretation of the Cartan
decomposition in terms of Killing vector fields, assuming that G = I0(M):

k = {X ∈ g | X∗(p0) = 0} p = {X ∈ g | ∇vX
∗(p0) = 0 for all v ∈ Tp0M}

The first equality is obvious and for the second one, we observe that (a)
implies that (∇X∗Y ∗)(p0) = [X, Y ]∗(p0) = 0 for X,Y ∈ p since [p, p] ⊂ k.
Equality then follows by dimension reason. One also easily sees that g =
k⊕ p is a Cartan decomposition. Elements of p are often called infinitesimal
transvections.

We finish with a simple characterization of totally geodesic submanifolds
of symmetric spaces:

Proposition 6.36 Let G/H be a symmetric space corresponding to thetotgeodclass
Cartan involution σ, and g = h⊕ p a Cartan decomposition. If a ⊂ p is a
linear subspace with [[a, a], a] ⊂ a, called a Lie triple system, then exp(a)
is a totally geodesic submanifold.

Proof First observe that h′ = [a, a] ⊂ h, the subspace spanned by all
[u, v], u, v ∈ a, is a subalgebra: Using the Jacobi identity, [h′, h′] = [[a, a], [a, a]] =
[[[a, a], a], a] = [a, a] since a is a Lie triple system. Furthermore, [h′, a] =
[[a, a], a] ⊂ a and clearly [a, a] ⊂ h′ Thus g′ = [a, a] ⊕ a is a subalgebra of
g. Let G′ ⊂ G be the connected subgroup with Lie algebra g and H′ ⊂ H

the one with Lie algebra h′. Since dσ clearly preserves g′, it follows that σ

preserves G and the claim follows from Proposition 6.28.

It may seem that the Proposition would enable one to easily classify totally
geodesic submanifolds of symmetric spaces. Unfortunately, this is not the
case. Even totally geodesic submanifolds of Grassmannians have not been
classified. On the other had, we will see that it is of theoretical use.

6.5 Type and Duality

We now continue the general theory of symmetric spaces. We start with
an important definition.

Definition 6.37 Let (G,K) be a symmetric pair with B the Killing formsymmtype
of g. The symmetric pair is called of compact type if B|p < 0, of non-
compact type if B|p > 0 and of euclidean type if B|p = 0.

We first observe
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Proposition 6.38 Let (G, K) be a symmetric pair.Cartandecomp2

(a) If (G,K) is irreducible, it is either of compact type, non-compact type
or euclidean type.

(b) If M = G/K is simply connected, then M is isometric to a Rieman-
nian product M = M0 ×M1 ×M2 with M0 of euclidean type, M1 of
compact type and M2 of non-compact type.

(c) If (G,K) is of compact type, then G is semisimple and G and M are
compact.

(d) If (G, K) is of non-compact type, then G is semisimple and G and M

are non-compact.
(e) (G, K) is of euclidean type iff [p, p] = 0. Furthermore, if G/K is

simply connected, it is isometric to Rn.

Proof : (a) If (G,K) is irreducible, then Schur’s Lemma implies that B|p =
λ〈·, ·〉, where 〈·, ·〉 is the metric on p. Thus M is of compact type if λ < 0, of
non-compact type if λ > 0 and of euclidean type if λ = 0.

(b) From Corollary 6.12 it follows that M is isometric to M1 × · · · ×Mk

with Mi irreducible symmetric spaces. The claim thus follows from (a).
(c) and (d) If σ is the automorphism of the pair, then dσ preserves B

and hence B(k, p) = 0 since dσ|k = Id and dσ|p = − Id. Next we claim that
B|k < 0. Indeed, since K is compact, there exists an inner product on g such
that adX : g → g is skew symmetric if X ∈ k. Thus B(X, X) = tr ad2

X ≤ 0
and B(X, X) = 0 iff X ∈ z(g). But z(g) ∩ k = 0 since g and k have no ideals
in common. Hence, if B(X, X) = 0, we have X = 0, i.e. B|k < 0.

Thus G is semisimple if (G, K) is of compact or non-compact type. If it
is of compact type, then B < 0 and hence G, and thus also M , is compact.
Similarly, for the non-compact type.

(e) If B|p = 0, then B(k, p) = 0 and B|k < 0 implies that p = kerB.
But kerB is an ideal in g and, together with [p, p] ⊂ k, this implies that
[p, p] ⊂ p∩ k = 0. Conversely, if [p, p] = 0, together with [k, p] ⊂ p, one easily
sees that B|p = 0.

If [p, p] = 0, Proposition 6.34 implies that the sectional curvature is 0. If
M is simply connected, it follows that M is isometric to Rn.

The symmetric spaces of euclidean type are thus not so interesting, and we
will say that M = G/K has no (local) euclidean factor if in the splitting
of the universal cover, none of the irreducible factors are of euclidean type.
This clearly holds iff each point has a neighborhood which does not split
of a euclidean factor. For simplicity we often leavs out the word “local”.
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These spaces will from now be our main interest. We start with the special
curvature properties of each type

Proposition 6.39 Let (G, K) be a symmetric pair with .symmsec

(a) If (G,K) is of compact type, then sec ≥ 0.
(b) If (G,K) is of non-compact type, then sec ≤ 0.
(c) In both cases, a 2-plane spanned by u, v ∈ p has zero curvature iff

[u, v] = 0.
(d) If (G, K) is irreducible, and 〈·, ·〉 = ±B|p, then sec(X,Y ) = ±||[X,Y ]||2.

Proof : It is clearly sufficient to prove this for an irreducible symmetric space.
In that case B|p = λ〈·, ·〉 for some λ 6= 0, where 〈·, ·〉 is the metric on p. If
u, v ∈ p ' TpM is an orthonormal basis of a 2-plane, then

λ sec(u, v) = λ〈R(u, v)v, u〉 = −λ〈[[u, v], v], u〉
= −B([[u, v], v], u) = B([u, v], [u, v])

where we have used the fact that adu is skew symmetric for B. Since [u, v] ∈ k

and since B|k < 0 we have B([u, v], [u, v]) < 0 and thus sec is determined by
the sign of λ.

This implies in particular that if (G, K) has non-compact type, then G is
simple. We can reduce the classification of symmetric pairs easily to the case
where G is simple

Proposition 6.40 Let (G,K) be an irreducible symmetric pair which issymmsimple
not of eucildean type. Then either G is simple, or (G,K) = (K ×K, ∆K)
and G/K is isometric to a compact simple Lie group with bi-invariant
metric.

Proof : Proposition 6.38 implies that g is semisimple, and thus g = g1 ⊕
· · · ⊕ gr with gi simple. This decomposition into simple ideals is unique
up to order, and hence the Cartan involution σ permutes gi. We can thus
write g = h1 ⊕ · · · ⊕ hs as a sum of ideals such that hi is either gk for
some k with σ(gk) = gk, or hi = gk ⊕ gl for some k, l and σ(gk) = gl. σ|hi

induces a further decomposition hi = ki ⊕ pi into ±1 eigenspaces and hence
k = k1 ⊕ · · · ⊕ ks and p = p1 ⊕ · · · ⊕ ps. Notice that pi 6= 0 for all i since
otherwise σ|li = Id which means that li is an ideal that g and k have in
common, contradicting effectiveness. Since [ki, pj ] = 0 for i 6= j, we have
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[k, pi] ⊂ pi and irreducibility implies that s = 1. If G is not simple, this
implies that g = h⊕ h with σ(a, b) = (b, a) and hence gσ = ∆h. This is the
symmetric pair K ×K/∆K, where K is any compact simple Lie group with
Lie algebra k.

We can now determine the isometry group.

Proposition 6.41 Let (G,K) be a symmetric pair with no euclideansymmisom
factor and Cartan decomposition g = k⊕ p. Then

(a) [p, p] = k.
(b) Hol0p = K0, where Holp is the holonomy group.
(c) If G/K is effective, then G = I0(M).

Proof : (a) By Proposition 6.12 we can assume that G/K is irreducible. Thus
B|p is non-degenerate. If a ∈ k with B(a, [u, v]) = 0 for all u, v ∈ p, then
0 = B(a, [u, v]) = −B(u, [a, v]) for all u and hence [a, v] = 0 for all v ∈ p.
Since Ad(exp(ta)) = et ada this implies that Ad(exp(ta))|p = Id. But G/K is
almost effective and hence the isotropy representation has finite kernel. Thus
exp(ta) = e for all t and hence a = 0. This implies that k = {[u, v] | u, v ∈ p}.

(b) Recall that we already saw that Hol0p ⊂ K0. One geometric interpre-
tation of the curvature is in terms of parallel translation: If x, y, z ∈ TpM ,
consider small rectangles in M with one vertex at p, whose sides have length
s and at p are tangent to x, y. Parallel translating z around these rectangles
gives a curve z(t) ∈ TpM and R(x, y)z = z′′(0). Since z(t) ∈ Hol0p, the skew
symmetric endomorphism R(x, y) lies in the Lie algebra of Hol0p. But Propo-
sition 6.34 implies that R(x, y) = − ad[x,y] restricted to p ' TpM . Since
[p, p] = k, this implies that Holp and K have the same Lie algebra.

(c) Recall that the involutive automorphism σ induces the symmetry s at
the identity coset p0 = (K) by s(gK) = σ(g)K. Let G′ = I0(M) be the full
isometry group and K ′ its isotropy group at p0. Then K ⊂ K ′ by effective-
ness and hence k ⊂ k′. The symmetry s at p0 induces the automorphism σ′

of G′ defined by σ′(g) = sgs which makes (G′,K ′) into a symmetric pair.
This symmetric pair is also irreducible since M is locally irreducible. Thus
we have another Cartan decomposition g′ = k′ ⊕ p′ into the ±1 eigenspaces
of dσ′. and part (a) implies that [p′, p′] = k′. In the proof of Proposition 6.33
we showed that p = p′. Thus k = [p, p] = [p′, p′] = k′ and hence g = g′. Effec-
tiveness now implies that G = I0(M) since they have the same Lie algebra.
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We next discuss the important concept of duality. Let (G,K) be a sym-
metric pair with π1(G/K) = 0. Since G is connected, K is connected as
well. Let g = k ⊕ p be the Cartan decomposition of g. We can consider g

as a real subalgebra of g ⊗ C and define a new real Lie algebra g∗ ⊂ g ⊗ C
by g = k ⊕ ip. This is indeed a subalgebra since [k, k] ⊂ k, [k, p] ⊂ p and
[p, p] ⊂ k and hence [k, ip] ⊂ ip and [ip, ip] = −[p, p] ⊂ k. Now let G∗ be
the simply connected Lie group with Lie algebra g∗ and K∗ the connected
subgroup with Lie algebra k ⊂ g∗. Then G∗/K∗ is simply connected and
almost effective since g and k, and hence also g∗ and k∗, have no ideals in
common. We call (G∗, K∗) the dual of (G,K). Notice that K and K∗ have
the same Lie algebra, but may not be isomorphic.

Thus, if (G,K) is a simply connected symmetric pair, we have a dual
(G∗, K∗) which is another simply connected symmetric pair. This relation-
ship has the following properties.

Proposition 6.42 Let (G,K) be a symmetric pair with dual symmetricsymmduality
pair (G∗,K∗) .

(a) If (G,K) is of compact type, then (G∗, K∗) is of non-compact type
and vice versa.

(b) If (G, K) is of Euclidean type, then (G∗,K∗) is of Euclidean type as
well.

(c) The pairs (G, K) and (G∗,K∗) have the same (infinitesimal) isotropy
representation and hence (G,K) is irreducible iff (G∗,K∗) is irre-
ducible.

(d) If (G, K) and (G∗,K∗) are effective and simply connected without
euclidean factors, then K = K∗.

Proof : (a) Recall that if g is a real Lie algebra, then Bg = BgC |g . By
construction gC ' g∗C. If (G,K) is of compact type, i.e. Bg(u, u) < 0 for
u ∈ p, then Bg∗(iu, iu) = −B(u, u) > 0, i.e. (G∗,K∗) is of non-compact
type and vice versa. Part (b) clearly follows from Proposition 6.38 (e). Part
(c) is clear as well since the action of k on p resp. ip is the same.

(d) Since (G,K) has no euclidean factors, Proposition 6.41 (c) implies
that G = I0(M). Also recall that K is connected. Now observe that if
R is the curvature tensor of G/K, then Proposition 6.16 (c) implies that
K = K0 = {A ∈ GL(Tp0)M | A∗(R) = R}0 since G/K is effective and
simply connected. Similarly, K∗

0 = K∗ = {A ∈ GL(Tp0)M | A∗(R∗) = R∗}0

where R∗ is the curvature tensor of G∗/K∗. But Proposition 6.34 implies that
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R∗(iX, iY )iZ = −[[iX, iY ], iZ] = [[X, Y ], Z] = −R(X,Y )Z for X, Y, Z ∈ p

and hence K = K∗.

We thus have a one-to-one correspondence between simply connected effec-
tive symmetric pairs of compact type and simply connected effective symmet-
ric pais of non-compact type, which also take irreducible ones to irreducible
ones.

Example 6.43 (a) We will give several examples of duality. The most basicsymmexamples
one is the duality between Sn and Hn. Multiplication by i on the tangent
space in the definition of duality illustrates why sin(x), cos(x) in spherical
geometry is replaced by sinh(x) = sin(ix) and cosh(x) = i cos(ix). It is
just as easy to discuss the duality between G/K = SO(p + q)/SO(p) SO(q)
and G∗/K = SO(p, q)/SO(p) SO(q). Recall that in both cases the Cartan
involution is given by σ(A) = Ad(Ip,q). We write the matrices in block form,
the upper left a p×p block, and the lower one a q× q block. Also recall that
o(p + q) = {A ∈ M(p + q) | A + AT = 0} and o(p, q) = {A ∈ M(p + q) |
AIp,q + Ip,qA

T = 0}. Thus one easily sees that in the Cartan decomposition

p =
{(

0 X

−XT 0

)
| X ∈ M(p, q)

}
, p∗ =

{(
0 X

XT 0

)
| X ∈ M(p, q)

}
.

Here it is of course not true that p∗ = ip but a computation shows that the
inner automorphism Ad(diag(i, . . . , i,−1, · · ·−1)) (the first p entries are i) of
so(n,C) takes ip to p∗ and preserves h and thus conjugates g∗ into a new Lie
algebra g′ that satisfies the above setup of duality. The inner automorphism
gives rise to an isomorphism (G∗,K) ' (G′, K) of symmetric pairs.

The same relationship holds if we replace R by C or H. Thus CPn is dual
to CHn and HPn is dual to HHn.

(b) Maybe the simplest example of duality is between SU(n)/SO(n) and
SL(n,R)/SO(n). Since the involutions are given by dσ(A) = Ā and dσ(A) =
−AT we have k = {A ∈ M(n, n,R) | A = −AT } in both cases, and p = {A ∈
su(n) | Ā = −A} as well as p∗ = {A ∈ M(n, n,R) | A = AT }. But p

can also be written us p = {iA | A ∈ M(n, n,R) and A = AT } and thus
p∗ = ip ⊂ sl(n,C).

(c) Somewhat more subtle is the dual of the symmetric pair (G,K) =
(L×L,∆L) corresponding to a compact Lie group K ' L. We claim that on
the Lie algebra level it is the pair ((lC)R, l) with Cartan involution σ(A) = Ā,
i.e. g∗ is lC regarded as a real Lie algebra.

To see this, recall that g = l⊕ l with Cartan involution σ(X, Y ) = (Y,X)
and thus k = {(X,X) | X ∈ l} and p = {(X,−X) | X ∈ l}. We now want
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to describe g∗ = k + ip ⊂ gC = lC ⊕ lC in a different fashion. For this let
p′ = {(iX, iX) | X ∈ l} ⊂ lC ⊕ lC and g′ = k ⊕ p′. The linear isomorphism
of lC ⊕ lC defined by (X1 + iY1, X2 + iY2) → (X1 + iY1, X2 − iY2) is an
isomorphism of real Lie algebras and takes k to k and ip to p′. Thus the dual
pair (g∗, k) is isomorphic to (g′, k). But notice that g′ = {(X + iY,X + iY ) |
X, Y ∈ l} = ∆lC ⊂ lC ⊕ lC and k = ∆l ⊂ lC ⊕ lC. Thus (g′, k) is isomorphic
to (lC, l). The Cartan involution is then clearly given by conjugation.

6.6 Symmetric Spaces of non-compact type
Although the classification of symmetric spaces is easier for the one’s of

compact type, and by duality implies the classification of symmetric spaces
of non-compact type, the geometry of the one’s of non-compact type have
many special properties. We will study these in this Section.

We first remark the following. If (G,K) has compact type, we have a
natural positive definite inner product g given by −B. In the case of non-
compact type, we also have such a natural inner product.

Lemma 6.44 If (G,K) is a symmetric space of non-compact type, then theinnprodnoncomptype
inner product B∗(X,Y ) = −B(σ(X), Y ) on g has the following properties:

(a) B∗ is positive definite,
(b) If X ∈ k, then adX : g → g is skew symmetric,
(c) If X ∈ p, then adX : g → g is symmetric.

Proof Part (a) follows from B|k < 0, B|p > 0, B(k, p) = 0 and σ|k = Id,
σ|p = − Id. For (b) and (c), notice that adX and σ commute if X ∈ k or
X ∈ p. The claim now easily follows from the fact that adX is always skew
symmetric for B.

We can now state the main properties,

Proposition 6.45 Let (G,K) be a symmetric pair of non-compact typesymmnoncompact
with Cartan involution σ. Then

(a) G is non-compact and semisimple and Gσ and K are connected.
(b) K is a maximal compact subgroup of G.
(c) Z(G) ⊂ K, or equivalently, if G/K is effective, then Z(G) = {e}.
(d) G is diffeomorphic to K × Rn and G/K is diffeomorphic to Rn and

simply connected.
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Proof : Recall that by Proposition 6.39 the symmetric metric on G/K has
non-positive curvature and by Proposition 6.33 the exponential map of M =
G/K is given by expM : p → G/K : X → exp(X)K. By Hadamard, expM

is a local diffeomorphism and onto by Hopf-Rinow. We now show that it is
injective and hence a diffeomorphism. So assume that exp(X)h = exp(X ′)h′

for some h, h′ ∈ K. Then Ad(exp(X))Ad(h) = Ad(exp(X ′))Ad(h′) and
thus eadX Ad(h) = eadX′ Ad(h′). But by 6.44 eadX is symmetric and Ad(h)
orthogonal. By uniqueness of the polar decomposition, Ad(h) = Ad(h′) and
adX = adX′ , and hence X − X ′ ∈ z(g) = 0 since G is semisimple. Thus
X = X ′ (and h = h′ as well). In particular, G/K is simply connected and
hence K connected.

Next, we show that f : p × K → G : (X, h) → exp(X)h is a diffeo-
morphism. Indeed, f is clearly differential and by the same argument as
above, f is one-to-one. Given g ∈ G, there exists a unique X ∈ p such that
exp(X)K = gK and hence a unique h ∈ K such that exp(X)h = g. X, and
hence h, clearly depends differentiably on g and hence f is a diffeomorphism.

The argument can be repeated for f ′ : p × Z(G) · K → G : (X, h) →
exp(X)h and shows that f ′ is a diffeomorphism as well, and hence Z(G) ·K
is connected. Since G is semisimple, Z(G) is finite and hence Z(G) ⊂ K.

We finally show that K is maximal compact in G. Let L be a compact
group with K ⊂ L ⊂ G and hence k ⊂ l ⊂ g. Since L is compact, there
exists an inner product on g invariant under Ad(L) and hence B|l ≤ 0, and
since z(g) = 0, in fact B|l < 0. But since B|k < 0 and B|p > 0, it follows
that k = l. Thus K = L0 and hence K is normal in L. Since L is compact,
L/K is a finite group. Thus there exists an g ∈ L, which we can write as
g = exp(X)h with h ∈ K and hence gn = exp(nX)h′ = h̄ = exp(0)h̄ ∈ K

where h, h̄ ∈ K. But this contradicts the fact that f is a diffeomorphism.

The next important property of non-compact semisimple groups is the
following, whose proof we will supply later on.

Proposition 6.46 Let g be a non-compact semisimple Lie algebra. ThenCartandecompnoncompact
there exists a Cartan involution σ ∈ Aut(g) with corresponding Cartan
decomposition g = k ⊕ p into ±1 eigenspaces and σ is unique up to inner
automorphisms.

As a consequence we show
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Proposition 6.47 Let G be a non-compact semisimple Lie group withmaxcompact
finite center. Then there exists a maximal compact subgroup K, unique
up to conjugacy, such that G is diffeomorphic to K × Rn. Furthermore,
if G/K is effectively G∗/K∗, then (G∗,K∗) is a symmetric pair of non-
compact type. If Z(G) = {e}, then (G,K) is a symmetric pair.

Proof Let g = k ⊕ p be a Cartan decomposition and K ⊂ G the connected
subgroup with Lie algebra k. We have a finite cover π : G → G/Z(G) and
define K∗ = π(K). Since G∗ has no center, G∗ ' Ad(G∗) ' Int(G∗) '
Int(g) ⊂ Aut(g). Aut(g) is closed in GL(g) since it is defined by equations,
and since g is semisimple, Aut(g)/ Int(g) is finite, and thus Ad(G∗) is closed
as well. If h ∈ K∗, then Ad(h) is an isometry of B∗, i.e., Ad(K∗) ⊂ O(p, B∗)
and thus K∗ ' Ad(K∗) is compact. The Cartan decomposition induces
an involutive automorphism σ and in turn α of G∗ with dα = σ. Clearly
(G∗)α

0 = K∗ and thus (G∗,K∗) is a symmetric pair of non-compact type. In
particular, G∗/K∗ is simply connected and K∗ is maximal compact in G∗.
Clearly G∗/K∗ = G/π−1(K∗) and hence G/K → G∗/K∗ is a finite cover
and thus a diffeomorphism, i.e. G∗/K∗ is the effective version of G/K. Since
kerπ ⊂ K, it easily implies that K is maximal compact as well.

Finally, to see that K is unique up to conjugacy, we use the fact that
M = G/K has non-positive curvature and is simply connected. This implies
that any compact group H acting on M by isometries has a fixed point on
M . Indeed, a standard second variation argument shows that d2(p, ·) is a
strictly convex proper function on M , i.e., along every geodesic, d2(p, ·) is
convex. Fix any p ∈ M , then define a function f : M → M via

f(q) =
∫

H
d2(q, hp)dh.

This is again a convex, proper function (now in q). Hence f has a unique
minimum at some p0 ∈ M , and clearly Hp0 = p0 since f is invariant under
H.

Now let H ⊂ G be a second maximal compact subgroup. By the above,
H has a fixed point, say p0 = gK for some g, i.e. hgK = gK. Thus
g−1Hg = K, or H = gKg−1.

Remark 6.48 The assumption that G has finite center is essential. As an
example, let G∗ = SL(2,R) and G its universal cover. This is an infinite cover
since π1(SL(2,R)) = Z. SO(2) is a maximal compact subgroup of SL(2,R),
but the maximal compact subgroup of G is {e} since π−1(SO(2)) = R which
has no non-trivial compact subgroups. Hence (G, K) is not a symmetric
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pair. On the other hand, the universal cover of SL(2,R) is diffeomorphic to
R3.

Nevertheless, part of Proposition 6.49 remains true:

Proposition 6.49 Let G be a non-compact semisimple Lie group. Thenmaxcompact
there exists a maximal compact subgroup L, unique up to conjugacy, such
that G is diffeomorphic to L× Rn.

Proof We proceed as in the proof of Proposition 6.49. Let g = k ⊕ p be a
Cartan decomposition and K ⊂ G the connected subgroup with Lie algebra
k. Notice that (G,K) may not be a symmetric pair since K is not neces-
sarily compact. Nevertheless, the effective version (G∗,K∗) is a symmetric
pair. Thus G/K = G∗/K∗ is a Riemannian symmetric space such that left
translation by g ∈ G acts by isometries on G/K. If L′ ⊂ G is a compact
subgroup, an argument as in Proposition 6.49 shows that there exists a fixed
point, and thus an element g ∈ G with gL′g−1 ⊂ K. We now claim that
there exists a unique maximal compact subgroup L ⊂ K (not just unique
up to conjugacy) and hence gL′g−1 ⊂ L, and if L′ is maximal compact in G,
then gL′g−1 = L. To see this, recall that B|k < 0 and hence k is a compact
Lie algebra. Recall that this implies that any Lie group with Lie algebra k,
in particular K, is isomorphic to R` × L with L compact. L is then clearly
maximal compact in K. By Proposition 6.45, G is diffeomorphic to K ×Rn

and hence diffeomorphic to L× Rn+`.

Combining this with the Levi decomposition theorem one can prove:

Theorem 6.50 Let G be a Lie group with finitely many components.maxcompactgen
Then there exists a maximal compact subgroup K, unique up to conjugacy,
such that G is diffeomorphic to K × Rn.

We now show that in some sense the symmetric space SL(n,R)/SO(n) is
the universal symmetric space of non-compact type.

Proposition 6.51 Let (G,K) be a effective symmetric pair of non-compactembnoncompact
type. Then there exists an isometric embedding φ : G/K → SL(n,R)/SO(n)
with totally geodesic image, given by φ(gK) = Ad(g) · SO(n).

Proof Since G/H is effective, Z(G) = {e} and hence Ad is an embedding.
To see that the image lies in SL(g), i.e. detAd(g) = 1, it is sufficient to show
that tr(adX) = 0 for all X ∈ g. To see why this is so, we choose a compact
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real form k ⊂ gC. By compactness, tr(adX) = 0 holds for X ∈ k, hence also
in gC and therefore in g as well.

We endow g with the inner product B∗ in which case Ad(K) ⊂ SO(g).
Furthermore, Ad(G) ∩ SO(g) = Ad(K) since.... Recall that the involution
σ for the symmetric pair (SL(n,R), SO(n)) is given by σ(A) = (AT )−1. It
is sufficient to show that σ(Ad(G)) ⊂ Ad(G) since Proposition 6.28 then
implies that

G/H = Ad(G)/Ad(H) = Ad(G)/(Ad(G) ∩ SO(g)) ⊂ SL(g)/SO(g)

has totally geodesic image.
Thus we need to show that ad(X)T ∈ Ad(G) for all X ∈ g. With respect

to B∗, adX is skew-symmetric for X ∈ h and symmetric for X ∈ p. If
Z ∈ g, split Z = Z1 + Z2 with Z1 ∈ h, and Z2 ∈ p. Then (adZ)T =
(adZ1)T + (adZ2)T = − adZ1 + adZ2 = − ad(Z1 − Z2) ∈ ad(g).

Finally, we show that φ is an isometric embedding. Since φ is clearly
equivariant, we only need to check this at the base point. But on G/H the
metric is given by B∗

|p = B|p and on the complement p∗ = {A ∈ Sym(g) |
A = AT } for SL(n,R)/SO(n) by trAB. Since B(X,Y ) = tr adX adY and
dφ(X) = adX , the claim follows.

6.7 Hermitian Symmetric Spaces

There is an important subclass of symmetric spaces, namely those that
preserve a complex structure. They have many special properties.

First some general definitions. (M, J) is called an almost complex man-
ifold if J is a complex structure Jp on each tangent space TpM . Furthermore,
(M, J) is called an complex manifold if there are charts with image an
open set in Cn such that the coordinate interchanges are holomorphic. The
tautological complex structure on Cn induces an almost complex structure
on M . An almost complex structure is called integrable, if it is induced in
this fashion from local charts. It is then simply called a complex structure.
There exists a tensor which measures integrability, the Nijenhuis tensor N :

1
2
N(X, Y ) = [JX, JY ]− [X, Y ]− J [JX, Y ]− J [X, JY ].
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Theorem 6.52 (Newlander-Nirenberg) If J is an almost complexintcomplex
structure, J is integrable iff N = 0.

(M, 〈·, ·〉, J) is called almost Hermitian if the metric g and the almost
complex structure J are compatible, i.e. 〈JX, JY 〉 = 〈X,Y 〉. Notice that
since J2 = − Id this is equivalent to J being skew adjoint, i.e. 〈JX, Y 〉 =
−〈X,JY 〉. It is calledHermitian if J is integrable. To an almost Hermitian
manifold we can associate a 2-form ω(X,Y ) = 〈JX, Y 〉. It is a 2-form since
ω(X, Y ) = 〈JX, Y 〉 = −〈X,JY 〉 = −ω(Y, X). Furthermore, ωn 6= 0 since
we can find an orthonormal basis ui, vi, i = 1, . . . , n with Jui = vi and
Jvi = −ui and hence ω =

∑
dui ∧ dvi. M is called almost Kähler if

(M, J) is almost Hermitian and dω = 0, and Kähler if in addition J is
integrable. In particular an almost Kähler manifold is symplectic and hence
H2i

DR 6= 0 since [ωi] 6= 0.
There are some simple relationships with ∇J . Recall that ∇J = 0 iff JX

is parallel if X is parallel, i.e. parallel translation is complex linear.

Proposition 6.53 LetJ be an almost complex structure and g a metric.kaehler

(a) If (M, g, J) is almost Hermitian and ∇J = 0, then M is Kähler.
(b) If (M, g, J) is Hermitian, then dω = 0 iff ∇J = 0.

Proof : The main ingredient is the following identity

4g((∇XJ)Y,Z) = 6dω(X, JY, JZ)− 6dω(X, Y, Z) + g(N(Y,Z), JX),

which is easily verified. In addition it is a general fact for differential forms
that dω is the skew symmetrization of ∇ω. Furthermore, since the metric is
parallel, ∇J = 0 iff ∇ω = 0. This easily implies the claims.

It is a general fact for differential forms that the coboundary operator δ

is a contraction of the covariant derivative: δω = −∑
(∇eiω)(ei, . . . ) where

ei is an orthonormal basis. Thus for a Kähler manifold, ω is also co-closed
and hence harmonic, i.e. ∆ω = (dδ + δd)ω = 0. Clearly if J is a complex
(resp. almost complex) structure, there exists a metric such that M is Her-
mitian (almost Hermitian). But being Kähler is a strong condition. E.g.
the Betti numbers are all even, and cupping with [ω] is injective in DeRham
cohomology up to half the dimension (strong Lefschetz theorem).

We also remark that being Kähler is equivalent to saying that the holon-
omy group at a point is contained in U(n) ⊂ SO(2n) since by the holonomy
principle this is equivalent to having a parallel complex structure.
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As we will see, all of the above are equivalent for a symmetric space.
Maybe the most natural definition of a Hermitian symmetric space is:

Definition 6.54 A symmetric space M is called a Hermitian symmetrichermsymm
space of it is a Hermitian manifold and the symmetries sp are holomorphic.
.

Here we could replace Hermitian by almost Hermitian since the Nijenhuis
tensor N vanishes if sp is complex linear. Indeed, this implies that (sp)∗(N) =
N , and since N has odd order, d(sp)p = − Id implies N = 0. There is a local
characterization of being Hermitian symmetric:

Proposition 6.55 Let (G,K) be a symmetric pair with Cartan decom-hermsymmlocal
position g = k⊕ p. If J : p → p satisfies

(a) J is orthogonal and J2 = − Id,
(b) J ◦Ad(h) = Ad(h) ◦ J for all h ∈ K.

Then M is a Hermitian symmetric space, and in fact Kähler.

Proof : Following our general principle, we define Jgp = (Lg)∗(J), i.e., Jgp =
d(Lg)p ◦ J ◦ d(Lg−1)gp. This is well defined since Ad(h) preserves Jp = J .
Thus we obtain an almost complex structure on G/K. Furthermore, Lg

preserves this almost complex structure.
We now claim that the symmetries sp preserve J as well, i.e. (sp)∗(J) = J .

Recall that sgp ◦Lg = Lg ◦sp which implies that (sp)∗(J) is another complex
structure which is G invariant: (Lg)∗ ◦ (sp)∗(J) = (Lg ◦ sp)∗(J)) = (sgp ◦
Lg)∗(J) = (sgp)∗ ◦ (Lg)∗(J) = (sgp)∗(J). But J and (sp)∗(J) agree at p,
and hence everywhere. As we saw above, this implies in particular that J is
integrable and hence M is Hermitian symmetric.

To see that M is Kähler observe that ∇J is a tensor of odd order and is
preserved by sp and hence vanishes.

Thus, any symmetric space whose isotropy representation is complex linear
is a Hermitian symmetric space.

Corollary 6.56 Let (G, K) be a symmetric pair. Thensymmirredsimple

(a) (G, K) is Hermitian symmetric iff the dual is Hermitian symmetric.
(b) If (G,K) is irreducible and Hermitian symmetric, then it is Kähler

Einstein.

Here are two more characterizations of being Hermitian symmetric.
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Proposition 6.57 Let (G, K) be an irreducible symmetric pair.hermsymmdeRham

(a) The complex structure J is unique up to sign.
(b) (G, K) is Hermitian symmetric iff K is not semisimple.
(c) If (G, K) is of compact type, it is Hermitian symmetric iff H2

DR(M) 6=
0.

Proof : We start with (c). One direction is clear. Hermitian symmetric
implies Kähler and hence H2

DR(M) 6= 0. Now assume that H2
DR(M) 6= 0

and let ω be a closed form whose deRham class is non-zero. We first claim
that we can assume that ω is G invariant. Indeed, since G is connected, it
acts trivially on cohomology and hence we can average over G: ω̃p =

∫
G ωgpdg

and ω̃ lies in the same deRham class as ω.
Now define J : p → p by ωp(X, Y ) = 〈JX, Y 〉 for all X, Y ∈ p. Then

〈JX, Y 〉 = ω(X, Y ) = −ω(Y, X) = −〈JY, X〉, i.e. J is skew-adjoint. Since
ω is G-invariant and well defined on M , ωp is Ad(H)-invariant. Thus J

commutes with Ad(H). But Ad(H) acts irreducibly on p, and so since J2

is self-adjoint and commutes with Ad(H) as well, it follows that J2 = λ Id
for some λ < 0. Thus J2 = −µ2 Id, for some µ > 0. Now we let J ′ = 1

µJ ,
then (J ′)2 = − Id. Since J ′ is skew-adjoint and J ′2 = − Id, J ′ is orthogonal.
Now Proposition 6.55 implies that G/K is Hermitian symmetric.

(b) By duality, we can assume that (G, K) is of compact type. If G/K is
Hermitian symmetric, we just showed that H2

DR(M) 6= 0. Recall that G is
connected, K has only finitely many components, and π1(G) is finite since
G is semisimple. Thus π1(M) is finite as well. If M̃ is the (finite) universal
cover, it is well know that the DeRham cohomology of M is the DeRham
cohomology of M̃ invariant under the deck group. Thus H2

DR(M̃) 6= 0 as
well. By applying Hurewicz, we conclude that Z ⊂ π2(M̃) = π2(M). Now
we use the fact that π2(G) = 0 for every compact Lie groups G. Using the
long homotopy sequence again, we see that Z ⊂ π1(K) which means that K

cannot be semisimple. This argument can clearly be reversed to prove the
other direction.

(a) If Ji are two orthogonal invariant complex structures, then ωi(X,Y ) =
〈JiX, Y 〉 defines two non-degenerate symplectic forms and as in the case of
inner products, one easily shows that ω1 = λω2 for some 0 6= λ ∈ R. But
then J2

i = − Id implies that λ = ±1.

We finally give a list of more detailed information similar to the ones we
obtained for symmetric spaces of non-compact type.
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Proposition 6.58 Let (G,K) be an effective irreducible Hermitian sym-hermsymmprops
metric space not of Euclidean type. Then

(a) K is connected and π1(G/K) = 0,
(b) Z(G) = {e} and rk K = rk G.
(c) Z(K) = S1 and K is the centralizer of Z(K) in G.
(d) The complex structure J is given by J = Ad(i), for i ∈ S1.
(e) Every isometry in I0(M) is holomorphic.

Proof : We start with the claim that Z(K) = S1. Recall that K acts
irreducibly and effectively on p and that Z(K) acts as intertwining operators
of the isotropy representation. But the algebra of intertwining operators of
a real irreducible representation is either R, C or H. Since the action is also
orthogonal, and Z(K) is abelian and not finite, this leaves only Z(K) = S1.
This must act via complex multiplication on R2n ' Cn and hence J = Ad(i)
satisfies J2 = − Id and commutes with Ad(K). By uniqueness, this must be
the complex structure on G/K.

Next, we claim that K is the centralizer of Z(K). Let L be the the
centralizer of Z(K) = S1. Clearly K ⊂ L and hence k ⊂ l. As we saw, the
centralizer of a circle is the union of all tori containing the circle and hence
connected. Notice that if g ∈ L, then kgk−1 ∈ L for all k ∈ K and thus
Ad(K) preserves l and hence l ∩ p. But irreducibility implies that l ∩ p = 0
and hence l = k. This shows that K must be connected and hence L = K.
Since S1 is contained in a maximal torus T and clearly T ⊂ L, it also follows
that rk K = rkG. Since Z(G) is contained in every maximal torus of G, it
follows that Z(G) ⊂ K and hence effectiveness implies Z(G) = {e}.

To see that M is simply connected, let π : G̃ → G be the universal cover
and choose an element z ∈ G̃ such that π(z) = i ∈ S1 = Z(K). The
involution σ̃ : G̃ → G̃ given by σ̃(g) = zgz−1 satisfies dσ̃ = dσ under the
identification dπ since σ(g) = Ad(i). G̃σ̃ is the centralizer C(z) := K̃ and,
as before, C(z) is connected. Since dπ takes the Lie algebra of G̃σ̃ to that of
Gσ, it follows that π(G̃σ̃) = Gσ. Also notice that Z(G̃) ⊂ C(z) and hence
π−1(K) = K̃. Thus G/K = G̃/π−1(K) = G̃/K̃ which is simply connected
since G̃ is, and K̃ is connected.

(e) follows since Proposition 6.41 implies that I0(M) = G and since Lg

are holomorphic (see the proof of Proposition 6.55 and use uniqueness).

From the classification it follows that:
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Proposition 6.59 Let (G,K) be a simply connected irreducible Hermitianhermsymmclass
symmetric space. If G is a classical Lie group, then G/K is one of U(n +
m)/U(n)U(m), SO(2n)/U(n), Sp(n)/ U(n) or SO(n + 2)/SO(n) SO(2).

6.8 Topology of Symmetric Spaces

We first discuss some general facts about the topology of homogeneous
spaces before we specialize to the case of a symmetric space.

Let a compact Lie group G act on a compact oriented manifold M and
denote by Ωk

G(M) the space of k-forms ω on M invariant under the action
of G, i.e. g∗(ω) = ω for all g ∈ G. Since dg∗(ω) = g∗(dω), d induces
a differential on Ωk

G(M) and we denote by (Ωk
G(M), d) the corresponding

complex.

Proposition 6.60 Let G be a compact Lie group acting on a manifoldDeRhamInv
M . Then the cohomology of the complex (Ωk

G(M), d) is isomorphic to
the G invariant DeRham cohomology H∗

DR(M)G. If G is connected, then
H∗

DR(M)G ' H∗
DR(M).

Proof : We have an averaging operator

A(ω) =
∫

G
g∗(ω)dg,

and clearly A(ω) is G-invariant. A induces a natural homomorphism of
complexes

A : (Ωk(M), d) → (Ωk
G(M), d)

since d
∫
G g∗(ω)dg =

∫
G dg∗(ω)dg =

∫
G g∗(dω) and hence dA(ω) = A(dω).

A thus takes closed forms to closed forms and we get an induced map
A∗ : H∗(Ωk

G(M), d)) → H∗
DR(M) in cohomology. We claim that A∗ is injec-

tive with image H∗
DR(M)G. Indeed, if ω ∈ Ωk

G(M) with A∗([ω]) = 0, then
ω = dη for some η ∈ Ωk−1(M). But then ω = dη′ for some η′ ∈ Ωk−1

G (M)
since ω = A(ω) = A(dη) = dA(η).

If ω ∈ Ωk
G(M), then clearly [ω] is G-invariant, i.e. [ω] ∈ H∗

DR(M)G.
Conversely, if α ∈ H∗

DR(M)G, let ω ∈ Ωk(M) be a closed form with [ω] = α.
Then α = g∗(α) = [g∗(ω)] and hence α = [A∗(ω)] since the integration takes
place in the linear subspace of closed forms with cohomology class α.
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