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1

Fundamentals of Lie Groups

In this Chapter we discuss elementary properties of Lie groups, Lie algebras
and their relationship. We will assume a good knowledge of manifolds, vector
fields, Lie brackets, and the Frobenius theorem, see e.g. [Wal,[Sp] or |Le],
Ch. 1-8 and 17-19, and covering space theory, see e.g. |[Ha| Ch. 1 or [Mul]
Ch. 9 and 12.

Although our presentation is sometimes somewhat different and shorter,
there are a number of good books on the basics in this Chapter, see e.g.
[Wal,|Sp] or |[Le], Ch 20.

Lie groups and Lic algebras

It will always be understood without saying that all manifolds and vector
spaces are finite dimensional.

Definition 1.1 A Lie group G is an abstract group and a smooth n-
dimensional manifold so that multiplication G x G — G: (a,b) — ab and

1

mverse G — G:a — a~ " are smooth.

We will also occasionally consider complex Lie groups where the underlying
manifold is complex and multiplication and inverse are holomorphic.

This innocent combination of two seemingly unrelated properties has amaz-
ing consequences. As we will see, a Lie group is classified, up to coverings, by
a linear object, called a Lie algebra. Many of the questions about Lie groups
can be quickly converted into a Linear Algebra problems (though those may
be difficult) on the corresponding Lie algebra. Nevertheless, the translation
back to the Lie group is not always obvious and so we will emphasize the
Lie group aspect as well.
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Definition 1.2 A Lie algebra over K =R or C is a vector space V over K
with a skew-symmetric K-bilinear form (the Lie bracket) [, | : V xV —V
which satisfies the Jacobi identity

X, [Y, Z)) + [V, (2, X]] + [,[X, Y]] = 0 (1.3)
forall XY, Z € V.

We relate the two via so called left invariant vector fields. We use the
standard notation

Ly:G— G, h—ghand R;: G — G, h — hg
and define

Definition 1.4 A vector field X on a Lie group G is called left invariant if
d(Lg)n(X (h)) = X(gh) for all g,h € G, or for short (Lg)«(X) = X.

We then have

Proposition 1.5 If we denote by g the set of all left invariant vector fields,
then the linear map L: g — T.G with L(X) = X (e) is an isomorphism.

Proof A left invariant vector field must have the property that X(g) =
d(Lg)e(v), i.e. is determined by its value at e. Conversely, given v € T.G the
vector field defined by X (g) = d(Lg)e(v) is left invariant: d(Lg)x(X(h)) =
d(Lg)n(d(Lp)e(v))) = d(Lgp)e(v) = X(gh). All that remains is to show that
X is smooth. But if m: G x G — G is multiplication, then dm: TGR TG —
TG is smooth as well and X(g) = dmy)(0,v). Indeed, if s is a curve in
G with s'(0) = v, then dm,(0,v) = %Hzo(m(g,s(t)) = %‘tzo(gs(t)) =
d(Lg)e(s'(0)) = d(Lg)e(v). Thus X is smooth. O

Notice that this in particular implies that a Lie group is parallelizable, i.e.,
the tangent bundle is trivial.

Since diffeomorphisms respect Lie brackets, the Lie bracket of two left in-
variant vector fields is again left invariant: (Lg)«[X,Y] = [(Lg)«X, (Lg)+Y] =
[X,Y]. This induces a Lie bracket on g ~ T.G. We call this the Lie algebra
of G. In general we will denote, without saying, the Lie algebra of a Lie
group with the corresponding German script letter. Thus, e.g., b is the Lie
algebra of H, and ¢ is the Lie algebra of K.

Example 1.6 The most basic examples are matrix groups. Let V' be a vector
space over K = R or C and End (V) the set of all K-linear maps from V to V.
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Furthermore, GL(V) C End(V) is the subset of invertible linear maps. Then
GL(V) is a Lie group under composition of maps and e = Id is the identity
element. Indeed, GL(V') is an open subset of End(V') and hence a manifold.
To see that multiplication and inverse are smooth, it is easiest to identify
with matrices. In terms of a basis of V, End(V) ~ M(n,n,K), the set of
n X n matrices with coefficients in K. Matrix multiplication then becomes
polynomial and inverses rational in the natural coordinates y;;(A) = A;;, and
hence they are smooth. We denote its Lie algebra by gl(V') or by End(V)
interchangeably. We will also use GL(n,K) for GL(K") as well as gl(n, K)
for its Lie algebra. For K = R we also have the subgroup GL™(n,R) = {A €
GL(n,R) | det A > 0}.

We now claim that the Lie algebra structure is given by [X, Y] = XY -Y X
for X,Y € gl(V) ~ M(n,n,K). To see this, observe that the left invariant
vector field X with X (e) = X € M(n,n,K) is given by X4 := X(A) = AX
since left translation is linear. Hence X 4(yij) = d(yij)a(Xa) = (AX);; since
yij is linear. Now [X, Ve (ys;) = Xe(Y (i) — Ye(X (yi5)). But Xe(Y (yi5)) =
Xe(A — (AY)U) = (XY)” and hence [Xay]e(yij) = (XY - YX)Z'j, which
proves our claim. Indeed, for a manifold with coordinates z; we have v =
Yo v(zy) 8%1-'

Exercises 1.7

(1) Show that (R™,+), R"/Z, = T", and R™ x T™ are Lie groups with
“trivial" Lie algebra, i.e. all brackets are 0.

(2) Show that SL(n,R) = {A € GL(n,R) | det A =1} is a Lie group and
compute its Lie algebra.

(3) Classify all two dimensional Lie algebras.

(4) If X,Y are the left invariant vector fields with X (e) =
and X,Y the right invariant vector fields with X (e) =
show that [X,Y] = —[X,Y].

(4) If G is a Lie group show that the identity component G, is open,

closed and normal in G.
5) Let

1
G=10
0

O = 8
— N <

be a group under matrix multiplication. G is called the Heisenberg
group. Show that G is a Lie group. If we regard z,y, z as coordi-
nates in R3, this makes R? into a Lie group. Compute explicitly the

3



4 Chapter 1 Fundamentals of Lie groups

left invariant vector fields in these coordinates and determine the Lie
brackets directly.

' Lie subgroups and homomorphisms

The analogue of algebra homomorphisms is

Definition 1.8 Let H and G be Lie groups.

(a) ¢: H — G is called a Lie group homomorphism if it is a group
homomorphism and smooth.

(b) ¢ is called a Lie group isomorphism if it is a group isomorphism
and ¢ and ¢~' are smooth.

Similarly, we define Lie algebra homomorphism and isomorphisms.

Note that ¢ is a group homomorphism iff ¢ o Ly = Ly o ¢. A homo-
morphism ¢: G — GL(n,R) resp. GL(n,C) is called a real resp. complex
representation.

dphi || Proposition 1.9 If ¢: H — G is a Lie group homomorphism, then
doe: TeH — T.G is a Lie algebra homomorphism

Proof Recall that for any smooth map f, the (smooth) vector fields X; are
called f-related to Yj if (df),(Xi(p)) = Yi(f(p)) for all p and that in that case
[X1, Xo] is f-related to [Y7,Y2]. Thus, if we denote by X; the left invariant
vector field on H with X;(e) = v; € b, i = 1,2, and by Y; the left invariant
vector field on G with Y;(e) = d¢.(v;), all we need to show is that X; and
Y; are ¢ related. Indeed, it will then follow that de¢.([X1, Xa2le) = [Y1, Y2le-
They are ¢ related since

d(¢)g(X(g)) = d(¢)gd(Lg)e(v) = d(¢ 0 Lg)e(v) = d(Lg(g) © })e(v)
= d(Ly(g))d(9)c(v) = Y (&(9)).
0

If : H — (G is a Lie group homomorphism, we simply denote by d¢: h —
g the above Lie algebra homomorphism. We can now apply this to subgroups
of Lie groups.

Definition 1.10 Let G be a Lie group.
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(a) H is called a Lie subgroup of G if H C G is an abstract subgroup,
and H is a Lie group such that the inclusion is a smooth immersion.

(b) b is a Lie subalgebra of g if [X,Y] € b for all X,Y € b.
The relationship between the two is again very simple.

subgroup || Proposition 1.11 Let G be a Lie group.

(a) If H is a Lie subgroup of G, then h ~ T.H C T.G ~ g is a Lie
subalgebra.

(b) Ifh C g a Lie subalgebra, there exists a unique connected Lie subgroup
H C G with Lie algebra §.

Proof Part (a) follows immediately from Proposition 1.9 applied to the
inclusion. For part (b), define a distribution on G by Ay = d(Lg)e(h) C
T,G. This distribution is integrable since b is a subalgebra. Let H be the
maximal leaf through e € G, which is by definition a one-to-one immersed
submanifold. Since (Lg)+A = A, the left translation L, permutes leafs.
Hence Lj,-1(H) = H for all h € H since both contain e, i.e. H is a subgroup.
Multiplication and inverse is smooth, since this is so in G, and restrictions
of smooth maps to leafs of a distribution are smooth. Uniqueness of H
follows since a subgroup H with T.H = § is a leaf of the distribution A
since TgH = d(Lg)e(h) = A, for g € H. O

When clear from context, we will often simply say subgroup instead of
Lie subgroup, and subalgebra instead of Lie subalgebra. The reason why we
allow Lie subgroups to be immersed, instead of just embedded, is so that
Proposition [1.11] (b) holds for all subalgebras h C g. Indeed, a line through
the origin in the Lie group (R?,4) with irrational slope is a Lie subgroup,
and its image in the Lie group R?/Z? is an immersed submanifold but not
embedded.

uniquedph || Corollary 1.12 Let H,G be connected Lie groups. If ¢, ¢: H — G are
Lie group homomorphisms with d¢ = di, then ¢ = ).

Proof Clearly H x G is a Lie group (multiplication is defined componentwise)
with Lie algebra h @ g (brackets again defined componentwise). ¢ is a ho-
momorphism iff its graph Graph(¢) = {(h,¢(h)) | h € H} C H x G is a Lie
subgroup. Since its Lie algebra is clearly Graph(dg) = {(v,d¢(v)) | v € b},
the assumption d¢ = dip implies Graph(d¢) =Graph(dy) and the claim
follows from the uniqueness in Proposition [1.11/ (b). O
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The following is a very useful and surprising fact. The proof is somewhat
technical, and we will therefore omit it for now.

closedsubgroup || Theorem 1.13 Let G be a Lie group.

(a) A Lie subgroup H C G is embedded iff if it is closed.
(b) If H C G is an abstract subgroup and if it is closed, then H is a Lie
subgroup.

As we saw, to every Lie group we can associate its Lie algebra, and it is a
natural question wether the converse holds. The answer is yes, but the proof
is non-trivial. It follows from Ado’s theorem:

Theorem 1.14 Every Lie algebra (V,[, |) is isomorphic to a subalgebra
of gl(n,R) for some n.

Ado

Combining this with Proposition [1.11/ (b), we get

existencec || Corollary 1.15 For every Lie algebra (V,| , ]) there exists a Lie group
G with g isomorphic to V.

A further natural question is wether every Lie group is isomorphic to a
subgroup of GL(n,R). As we will see, this is not the case.

Exercises 1.16

1) If ¢: H — G is a Lie group homomorphism with d¢,. an isomorphism,
show that d¢g an isomorphism for all g € G.

2) Show that det: GL(n,R) — (R\{0},- ) is a Lie group homomorphism
with ddet = tr.

3) Let H,G be Lie groups and K C G a Lie subgroup. If ¢: H — G is
a Lie group homomorphism with ¢(H) C K, show that ¢: H — K is
a Lie group homomorphism (the issue is smoothness).

The theory of covering spaces is greatly simplified if restricted to Lie
groups. Although not necessary, we will use covering theory within the
realm of manifolds, i.e. coverings are local diffeomorphisms.
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I

covering || Proposition 1.17 Let G be a connected Lie group.

(a) If G is a connected manifold and 7: G — G is a covering, then G has
a unique structure of a Lie group such that m is a homomorphism.

(b) A homomorphism ¢: G — G of Lie groups is a covering iff d¢ is an
isomorphism.

Proof For part (a), choose an element é € 7—1(e). Covering space theory
implies that G x G =5 G x @ % @G has a lift m: G x G — G, uniquely
defined by m(€,é) = & Similarly, the inversion I(g) = g~! has a unique
lift I with I(é) = &. s defines a multiplication on G and I an inverse.
The group law properties for G easily follow from those for G by using
the uniqueness properties of lifts under coverings. The map 7 is now by
definition a homomorphism and the uniqueness of the above lifts shows that
any two Lie group structures on G, such that 7 is a homomorphism, must
be isomorphic.

One direction in (b) is clear since coverings are local diffeomorphism. For
the other direction assume that d¢ is an isomorphism. We need to show
that every point in G has an evenly covered neighbor hood. By the inverse
function theorem there exists a neighborhood U of e € G such that ¢: U —
m(U) is a diffeomorphism. If I" = ker ¢, this implies that ' N U = {e}. Since
multiplication and inverse are continuous we can choose a neighborhood
V C U such that V - V~! C U. Then the open sets vV, v € T, are all
disjoint since yu = 7/ implies that v/~ 'y =vw/ul e I'NV .-V cI'NnU
and thus v = /. Furthermore, ¢! (¢(V)) = U7V since ¢(a) = ¢(v), v € V
implies that ¢(av~!) = e and hence a = v for some ~ € I'. Finally, since ¢
is a homomorphism, ¢: YU — w(U) is a diffeomorphism for all v € T'. Hence
(V') is an evenly covered neighborhood of e which easily implies that ¢(gV)
is an evenly covered neighborhood of ¢(g) € G.

It remains to show that 7 is onto. This immediately follows from the
following Lemma, which we will use frequently.

generate || Lemma 1.18 A connected Lie group is generated by any neighborhood
of the identity.

Proof Let U be a neighborhood of e € G and V' C U an open set with
V.Vl c U. If we define H = US°

n=—oo

V™ then H is clearly open and a
subgroup. It is also closed since its complement, being the union of all cosets
of H different from H, is open. Since G is connected, H = G. O
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This finishes the proof of part (b). O

We say that 7: G — G is a covering of Lie groups, or simply a covering, if
7 is a covering and a homomorphism. Notice that Proposition [1.17 (a) says
that the assumption that ¢ be a homomorphism is actually not restrictive.
We can now state the classification of coverings of Lie groups.

Liecoverings | Proposition 1.19 Let G, G be connected Lie groups.

(a) If $: G — G is a covering of Lie groups, then ker ¢ is a discrete
subgroup of Z(G), the center of G.

(b) IfT" C G is a discrete subgroup of Z(G), then G/T" is a Lie group and
the projection ¢: G — G/T' is a (normal) covering with deck group

{Ly|~veT}.

Proof For part (a) we observe that, since ¢ is a local diffeomorphism, there
exists a neighborhood U of e € G such that U NT = {e}, where I' = ker ¢.
Thus we also have YUNI" = {7} since yu = +/ implies that v = y~'4/. Hence
I is a discrete normal subgroup of G. But a discrete normal subgroup lies
in the center. Indeed, if we fix g € G and v €T, and let g; be a path with
go = e and g1 = g, then g;vg, L€ I which starts at v and by discreteness is
equal to ~y for all t.

Next we prove (b). Recall that an action of I' on a manifold M is called
properly discontinuous if it satisfies the following two properties:

(1) For any p € M there exists a neighborhood U of p such that the open
sets LyU are all disjoint.

(2) For any p,q € M with p ¢ I'q there exist neighborhoods U of p and V
of ¢ such that yU N~V = for all 7,7 € T.

Part (1) guarantees that M — M/I" is a covering since the image of U
is an evenly covered neighborhood. Part(2) guarantees that the quotient is
Hausdorff, which is part of the definition of a manifold. Since most books on
coverings only talk about coverings of topological spaces, part (2) is some-
times deleted in the definition. One easily gives examples which satisfy (1)
but not (2).

In summary, if T' acts properly discontinuously on M, then M/T is a
manifold and M — M/T" a covering with deck group T

In our case, let T' be a discrete subgroup of the center. For part (1) let U
be a neighborhood of e € G such that 'NU = {e}, which is possible since I'
is discrete. Furthermore, choose V such that e € V. Cc U and V - V1 C U.
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Then we claim that L,V are all disjoint. Indeed, if gyu = gov, for some
u,v € V, then g5 'g1 = vu~! € T N U which implies g; = go.

For part (2), fix g1, g2 € G with g1 ¢ T'go. Let V C U be neighborhoods
of e as above, which in addition satisfy g, T, NU = 0, which is possible
since gol'gy is discrete and does not contain e by assumption. Then we
claim that g1V and g2V are the desired neighborhoods of g; and g2. Indeed,
if y1914 = ~2gov for some v1,72 € I' and u,v € V, then g;lfy;l’ylgl =
vu~l € g;ngl NU which is not possible. Thus the projection G — G/I is a
covering. Since I lies in the center, G/T " is a group a since ¢ is a covering, it
is a manifold as well. Since ¢ is a local diffeomorphism, multiplication and
inverse is smooth. Furthermore, the deck group is {L, = R, |y €'} ~ T
since ¢(a) = #(b) implies ¢(ab~!) = e, i.e. a = b for some v € I'. In
other words, I' acts transitively of the fibers of ¢, which is the definition of
a normal cover. O

In particular, the universal cover of a Lie group is again a Lie group.
As we saw in Corollary [3.10, a homomorphism ¢ is uniquely determined
by d¢. For the converse we have

dphexistence || Proposition 1.20 If H and G are Lie groups with H simply connected,

then for any Lie algebra homomorphism 1: § — g there exists a unique
Lie group homomorphism ¢: H — G with d¢ = 1.

Proof Recall that Graph(¢) = (v, 9 (v)) C hdgis a Lie subalgebra and hence
by Proposition [1.11] there exists a connected subgroup A C H x G with Lie
algebra Graph(t). Let m and ma be the projections from H x G to the first
and second factor. They are clearly homomorphisms and 71: A — G is a
covering since d(71)|q is clearly an isomorphism. Since H is simply connected,
A is isomorphic to H. Thus we get a homomorphism ms: G ~ A — G which
by construction has derivative . O

If, on the other hand, H is not simply connected, it follows that there
exists a homomorphism ¢: H — G where w: H — H is the universal cover.
Clearly ¢ descends to H — G iff ker m C ker ¢.

9
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isoLie || Corollary 1.21

(a) Two simply connected Lie groups with isomorphic Lie algebras are
isomorphic.

(b) For every Lie algebra V', there exists a unique simply connected Lie
group G with g ~ V.

(c) Any Lie group with Lie algebra g is isomorphic to G/T" where G is
the simply connected Lie group with Lie algebra g, and I is a discrete
subgroup of Z(G).

Proof (a) Let 11: h — g be a Lie algebra isomorphism with inverse 5. Let
¢; be the Lie group homomorphism with d¢; = ;. Since ¥1 o ¥y = Id, it
follows that ¢1 o ¢o = Id by the uniqueness part of Proposition [1.20.

(b) by Theorem [1.14 there exists some Lie group G* C GL(n,R) with
Lie algebra V| and hence the universal cover of G* is the desired G. Its
uniqueness follows from (a).

(c) If G* is a Lie group with Lie algebra g, let G — G* be the universal
cover. The claim then follows from Proposition 1.19 (a). O

Exercises 1.22

1) In the proof of Proposition 1.17, the astute reader may have noticed
that a step is missing. Namely, covering theory tells us that in order

to obtain the lifts m and I, we need to show that (I o 7). (71 (G)) C
T(m1(G)) and similarly for ((m x 7) o m),. Fill in the details why
this is true by showing that multiplication and inverse of loops in G
becomes multiplication and inverse in the group structure of m;(G).

2) Let ¢: G — G be a covering with G and G connected. Show that
#(Z(G)) = Z(G) and Z(G) = ¢~ (Z(G)). Furthermore, Z(G) is
discrete iff Z(@G) is discrete.

3) Show that the fundamental group of a connected Lie group is abelian.

3) Classify all 2-dimensional Lie groups.

4) Give an example of two Lie groups H, G and a Lie algebra homomor-
phism : h — g such that there exists no Lie group homomorphism
¢: H — G with dop = .
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I

onepar

exp

We start with the concept of a one parameter group.

Definition 1.23 A homomorphism ¢: (R,4+) — G is called a one param-
eter group. Equivalently, ¢(t) € G for all t with ¢(t+ s) = ¢(t)p(s) for all
t,s.

It follows from Proposition [1.20 that for each X € T.G there exists a one
parameter group ¢x with d¢x(t) = tX, or in other words ¢’y (0) = X. We
thus define

Definition 1.24 If G is a Lie group with Lie algebra g, then the exponen-
tial map is defined as:

exp: g — G where exp(X) = ¢x (1) with ¢'x(0) = X
We now collect the basic properties of the exponential map.
Proposition 1.25 The exponential map exp: g — G satisfies:

(a) For each X € g, ¢(t) = exp(tX) is a one parameter group with
#(0) = X.

(b) The integral curve ¢ of the left invariant vector field X € g with
c(0) =g is c(t) = gexp(tX).

(c) exp is smooth with d(exp)p = Id.

(d) If ¢: H — G is a Lie group homomorphism, then ¢(expy (X)) =
expg(dp(X)) for X € b.

(e) If H C G is a Lie subgroup then

={X € g|expg(tX) € H for |t| < € for some € > 0}.

Proof First observe that ¢x is an integral curve of X through e since

Hi () = S (6x (5 + D)o = £ (6x()0x (1)
= d(L¢X(s))e(¢/X(0)) = d(L¢X(s))e(X) = X(¢X(8))

Thus ¢ix(s) = ¢x(ts), since, for fixed ¢, both are integral curves of tX
through e. To see this for the right hand side, observe that in general if 7(s)
is an integral curve of a vector field X, then «(¢s) is an integral curve of tX.
Hence exp(tX) = ¢1x (1) = ¢x(t), which implies (a). Since L, takes integral
curves to integral curves, (b) follows as well.
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To see that exp is smooth, define a vector field Z on G x g by Z(g, X) =
(X(9),0). Z is clearly smooth and by part (b), its flow is ¥4(g,X) =
(gexp(tX), X). Thus ¢(e, X) = (exp(X),X) is smooth in X and hence
exp is smooth as well. Finally, d(exp)o(X) = %(exp(tX))“:O = X, which
proves the second claim in (c).

To prove (d), observe that a homomorphism takes one parameter groups
to one parameter groups. Thus ¥ (t) = ¢(exp(tX)) is a one parameter group
with ¢/(0) = dé(d(exp)o(X) = ¢(X) and hence ¥ (t) = exp(tdp(X)), which
proves our claim by setting ¢t = 1.

Part (e) follows easily by applying (d) to the inclusion of H in G. O

In particular, the exponential map of a Lie subgroup is simply the restric-
tion of the exponential map of G and we will therefore not distinguish them
from now on.

As we will see, part (d) is surprisingly powerful and part (e) often enables
one to compute the Lie algebra of a Lie subgroup.

Example 1.26 As we saw in Example 2.22 GL(n,R) and GL(n,C), the
set of invertible matrices, are Lie groups. For these groups we claim that
exp(A) = e, which explains the name exponential map. Indeed, from the

tA _sA

power series definition of e? it easily follows that e(t+9)4 = etdesA e,

#(t) = e is a one parameter group. Furthermore ¢/(0) = A and hence
exp(4) = p(1) = 4.

Exercises 1.27

(1) Show that exp(X)~! = exp(—X).

(2) Show that the flow of a left invariant vector field X is Rexp(ix)-

(3) If ¢: H — G is a Lie group homomorphism, then ker ¢ is a Lie
subgroup of H with Lie algebra ker(d¢), and Im ¢ is a Lie subgroup
of G with Lie algebra Im(d¢). Furthermore, if ¢ is onto, H/ker ¢ is
a Lie group, which is isomorphic to G.

(4) Let ¢: H — G is a Lie group homomorphism. If ¢ is injective, show
it is an immersion and thus ¢(H) a Lie subgroup of G. If ¢ is a group
isomorphism, show it is a Lie group isomorphism, i.e. ¢ smooth
implies ¢~! smooth.

(4) Carry out the details in Example [1.26
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' Adjoint representation

For g € G consider the conjugation map Cy = Ly o R,-1. Since Cy is a

homomorphism
Ad(g) :=d(Cyle: g — 9

is a Lie algebra homomorphism. Since Cyp, = CyCy, it follows that Ad(gh) =
Ad(g) Ad(h) and thus

Ad: G — GL(g)

is a Lie group homomorphism, also called the adjoint representation. Before
we collect its basic properties, we make one more definition.

For X € g let adx: g — g be defined by adx(Y) = [X,Y]. The Ja-
cobi identity is equivalent to saying that ad[xy) = adx ady —ady adx =
[ads, ady] i.e.

ad: g — End(g) ~ gl(g)

is a Lie algebra homomorphism.

ad ]| Proposition 1.28 The adjoint representation satisfies:

(a) d(Ad).(X) = adx, or simply d Ad = ad.
(b) Ad(exp(X)) = e,

(c) exp(Ad(g)(X)) = gexp(X)g~',

(d) If G is connected, ker(Ad) = Z(QG).

Proof For part (a) we see that for any Y € g

AAD(X)Y) = | Adtep(ex)))
= % tZOd(ReXp(ftX)) o d(LeXp(tX))(Y)
_ %tzgd(RCXp(_tX»(Y(exp(tX)))

= LxY = [X7Y]a

where Lx is the Lie derivative. In the last passage, we used the definition
of Lie derivative, and the fact that Ry, ¢x) is the flow of X.

Part (b) and (c) follow from Proposition1.25/(d) using the homomorphism
Ad and Cy resp.

One direction of (d) is clear, if g € Z(G), then Cy = Id and hence Ad(g) =
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Id. Conversely, if Ad(g) = Id then C,; and Id are two homomorphisms with
the same derivative, and hence by Corollary 3.10/ are equal. O

Example 1.29 In the case of GL(n,R) and GL(n,C), we have Ad(A)(B) =
ABA™! since conjugation is linear. Hence the fact that Lie brackets in
gl(n,R) and gl(n,C) are commutators (see Example 2.22) is an immediate
consequence of part (a).

Part(b) and (c) are particularly powerful, as the reader may see in the
following exercises.

Exercises 1.30 We now have the tools to prove a number of important
facts.

(1) A connected Lie group is abelian iff its Lie algebra is abelian.

(2) A connected abelian Lie group is isomorphic to T" xR™ where T =
R/Z.

(3) If H is a Lie subgroup of G, and both are connected, then H is normal
in G iff h is an ideal in g, i.e. [g,h] C b.

(4) If [X,Y] =0 then exp(X +Y) = exp(X) exp(Y).

(5) Z(G) is a Lie subgroup of G with Lie algebra 3(g) = {X | adx = 0}.

(6) Complete the argument that Ad: G — GL(g) is a Lie group homo-
morphism by showing it is smooth.

(7) If H C G is a Lie subgroup show that the adjoint representation for
H is the restriction of the one for G.

(8) Show that exp: gl(n,C) — GL(n,C) is onto, but exp: gl(n,R) —
GL™(n,R) is not. Determine the image of exp: sl(2,R) — SL(2,R).

We start with the following Definition.

Definition 1.31 Let g be a Lie algebra.

(a) A linear isomorphism A: g — g is an automorphism if it is a Lie
algebra homomorphism. Let Aut(g) C GL(g) be the set of automor-
phisms of g.

(b) A linear map A: g — g is a derivation if

AX,Y]=[AX,Y] + [X,AY], VXY €g.
Let ®er(g) C End(g) be the set of derivations of g.

They are of course related:
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aut | Proposition 1.32 Aut(g) is a closed Lie subgroup of GL(g) with Lie
algebra Der(g).

Proof Since Aut(g) is defined by the equation A[X,Y] = [AX, AY],
is closed in GL(g) and by Theorem [1.13 is a Lie subgroup of GL(g). If
)X

A)[X,Y] = [A(t)X, A(t)Y] with A(0) = e, then by differentiation we see
A'(0) € Der. If A € ’Det, we have

d

e tioe*tA[etAX, Y] = —e A X, Y] + et e AX, Y

+e X, eMAY) = —e M (A[Z, W] — [AZ, W] — [Z, AW]) =

where Z = e!4 X, W = Y. Thus e *4[e!1 X, e!Y] = [X, Y] which shows
that ¢4 € Aut(g) for all ¢ and the claim follows from Proposition 1.25 (e).
U

Notice that thus:
Ad: G — Aut(g) C GL(g)

is a Lie group homomorphism (why is it smooth?).
These Lie groups have further subgroups. Notice that the Jacobi identity
implies that adx ([Y, Z]) = [adx (Y), Z]+[Y,adx(Z), i.e. adx is a derivation.

Definition 1.33 Let g be a Lie algebra.

(a) A derivation A € Der(g) is called an inner derivation if A = ady
for some X € g. Set Int(g) ={adx | X € g}. .

(b) Let Int(g) be the connected Lie subgroup of Aut(g) with Lie algebra
Jnt(g). Elements of Int(g) are called inner automorphism.

If G is a connected Lie group with Lie algebra g, then Ad(exp(X)) =
e2dx implies that Int(g) = Ad(G) since they agree in a neighborhood of the
identity. Thus Ad: G — Int(g) is a Lie group homomorphism which is onto
with kernel Z(G). Hence, for any connected Lie group with Lie algebra g,
we have:

Int(g) ~ Im Ad ~ G/Z(G) and Int(g) ~ g/3(g).

Summing up, we have a chain of Lie groups

Int(g) C Aut(g) C GL(g),
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which induces a chain of Lie algebras
Int(g) C Der(g) C End(g).

One more property of this chain is that:

\ Proposition 1.34 The Lie group Int(g) is normal in Aut(g).

Proof Since Int(g) is by definition connected, it is, by Excercise [1.30 (3),
normal in Aut(g) iff Int(g) is an ideal in Der(g). One easily show that if
L is a derivation, then [L,ad,| = Lo ad, —adx oL = adpx (in fact this is
equivalent to being a derivation), which proves our claim. O

Thus, if Aut(g)/Int(g) is a Lie group, its Lie algebra is Der(g)/Int(g). In
general though, Int(g) may not be closed in Aut(g), and hence the quotient
is not always a Lie group.

We can also consider Aut(G) as the set of Lie group isomorphisms. By
Proposition 1.20, Aut(G) is isomorphic to Aut(g) if G is a simply connected
Lie group. One of the exercises below shows that Aut(G) is a closed Lie
subgroup of Aut(g).

Another important algebraic object is the Killing form defined by:

B:gxg—R (orC) , B(X,Y)=tr(adyoady) (1.35)

Clearly, B is a symmetric bilinear form. Its behavior under automorphisms
is:

KillingAut | Proposition 1.36 Let g be a real or complex Lie algebra with Killing
form B.

(a) If A € Aut(g), then B(AX, AY) = B(X,Y).
(b) If L € Dex(g), then B(LX,Y) + B(X,LY) = 0.

Proof One easily show that if A is an automorphism, then adax = Ao
adx oA~!. Thus

B(AX,AY) = tr(adax oaday) = tr(A o adx oady 0A™!) = tr(adx o ady)

which proves our first claim. If L is a derivation, e*” is an automorphism and

thus B(er' X, etY) = B(X,Y). Differentiating at ¢ = 0 proves our second
claim. O

The Killing form does not have to be non-degenerate (although it is for the
important class of semisimple Lie algebras), it can even be 0. But we have
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Killingkernel || Proposition 1.37 Let B be the Killing form of g with kernel ker B :=

{X€eg|B(X,Y)=0 forallY € g}. Then ker B is an ideal.

Proof If X € ker(B) andY € g, then, since ad, is a derivation, B([X,Y], Z) =
—B(ady(X),Z) = B(X,ady(Z)) = 0. for all Z € g. Thus [X,Y] € ker B,
which proves our claim. O

Exercises 1.38

(1) Show that if G is a connected Lie group and G is the universal cover
of G, then Aut(G) is the closed subgroup of Aut(G) ~ Aut(g) (and
thus a Lie subgroup) which normalizes the deck group of the universal
cover G — G.

(2) Show that ¢: gl(n,C) — gl(n,C), ¢(X) = X is an automorphism
which is not inner.

(3) If 3(g) = 0, then the center of Int(g) is trivial as well.

(4) Show that the Killing form of gl(n, R) and gl(n, C) is given by B(X, X ) =
2ntr X2 — 2(tr X)2.

(5) Let h be an ideal in g. Show that the Killing form of b is the restriction
of the Killing form of g. Thus the Killing form of sl(n,C) or sl(n,R)
is B(X,X) = 2ntr X2.

Linear Algebra over C is much simpler than over R, so it often helps to
complexify. The same is true for Lie algebras. In particular, the classification
and representation theory of semisimple Lie algebras in Chapter 7 and 7 will
be done first over C, which will then be used to interpret the results over R
as well.

If g is a real Lie algebra, we define a complex Lie algebra g. by making
the Lie brackets complex linear, i.e.

gc =9®Cand [u+iv,z +iy] = [u, 2] — [v, 9] + i([v, y] + [v, 2]).
We call g. the complexification of g. For example, gl(n,R). is clearly
isomorphic to gl(n,C).
We can also start with a complex Lie algebra g and define a real Lie algebra

by forgetting the complex structure. We call this (real) Lie algebra g, the
realification of g. Notice that gl(n,C), is not gl(n,R).
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It may sometimes be helpful to think of a complex Lie algebra as a pair
(g,1), where g is a real Lie algebra and I a complex structure, i.e. I? =
—1Id, with [Iu,v] = [u, Iv] = I[u,v]. It becomes a complex vector space by
declaring (a + ib)(u) = au + Iu for a +ib € C, u € g. We can associate
to the complex Lie algebra (g, I) its complex conjugate (g, —I) which we
denote by g.

complexreal | Proposition 1.39 If g is a complex Lie algebra, then (g,). is isomorphic
togdg.

Proof Let (g, I) be the complex Lie algebra and J the complex multiplication
due to the complexification of gg. For simplicity we identify u + Jv € (g,).
with (u,v) € g&g and thus J(u,v) = (—v,u) and I(u,v) = ({u, Iv). Since I
and J commute, the composition L = I.J satisfies L? = Id. Let Vi C (g.)
be the —1 and +1 eigenspaces of L. Notice that Vi = {(u, £Iu) | u € g} are
complementary J invariant subspaces and since L[u,v] = [Lu,v] = [u, Lv]
they are also ideals. Hence (g,). ~ V_ @ V4. The linear maps f_: u €
g — (u,—Iu) € V_ and fr:u € g — (u,lu) € Vi clearly respects Lie
brackets. Since f_(Iu) = (Tu,u) = J(u,—Iu) = J(f-(u)) and fy(Iu) =
(Tu,—u) = —J(u,Iu) = —J(f+(u)) the map f_ is complex linear and fi
complex antilinear. Thus (f_, fy): (g,1)® (g,—1) = V_ &V} ~ (g,). is a
complex linear isomorphism of Lie algebras.. O

The complex Lie algebra g is often isomorphic to g, in fact this is the case iff
there exists a complex conjugate linear isomorphism f: g — g, i.e. f(\u) =
Au. This is for example the case for gl(n,C) since f(A) = A is conjugate
linear.

If b is a real Lie algebra with b, isomorphic to g, we call h a real form of
g. Equivalently, a real subalgebra h C g, is a real form of g if g = {u + iv |
u,v € h}. As we will see, not every complex Lie algebra has a real form, and
if it does, it can have many real forms.

Exercises 1.40

(1) Show that g ~ g iff g has a real form.

(2) Let g be the 3 dimensional complex Lie algebra spanned by X,Y, Z
with [X,Y] =0, [X,Z] = X, [Y,Z] = aY. Show that g has a real
form iff a € R or a € C with |a| = 1.

(3) If g is real, the real Lie algebra (g.),
isomorphic to g&@ g. For example, for g = sl(n, R) show that sl(n,C),
has no non-trivial ideals.

is “unrelated" to g, e.g. not
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(4) If By is the Killing form of a Lie algebra g, show that By = Bggc if
g is real, and By = 2Re(By) if g is complex.



2
A Potpourri of Examples

As is always the case, examples are the heart of a subject. There are many
matrix groups, i.e. subgroups of GL(n,R) or GL(n,C), that we will later
come back to frequently. We therefore devote an extra chapter to studying
these Lie groups in detail.

Recall that for G = GL(n,R) and GL(n,C) we have the following;:
[A,B] = AB — BA, exp(A)=e?, Ad(g)B=ABA™"  (2.1)

where A, B € g and g € G. Hence, by Proposition [1.11] (a), Proposition [1.25
(d) and Excercise [1.30/ (7), the same holds for any of their Lie subgroups.
In most cases the subgroup is defined by equations. Since it is thus closed,
Theorem [1.13 implies that it is a Lie subgroup. We will use Proposition [1.25
(e) to identify the Lie algebra. We will use all of these results from now on
without repeating them.

Orthogonal Groups
Let V be an n-dimensional real vector space with a positive definite sym-

metric bilinear form ( -, - ), also called an inner product. We define the
orthogonal group

O(V)={A e GL(V) | (Au, Av) = (u,v) for all u,v € V'}
consisting of isometries A, and the special orthogonal group
SO(V)={Ae€O(V)|detA=1}

The normal form for orthogonal matrices can be described as follows.

20
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cos(0) —sin(0)
sin(f)  cos(0)
exists an orthonormal basis such that the matrix representing A € O(V)
has the form A = diag(R(61),...R(0m),£1,£1) if n = 2m +2 or A =
diag(R(01),...,R(0m),€), € = £1, if n = 2m + 1. In the first case we can
assume that the lower 2 x 2 block takes on the form diag(1, €) since otherwise

Let R(0) = < ) be a rotation by angle 6. Then there

it can be written as a rotation. In either case, by continuously changing the
angles, we can connect A to the matrix diag(1,...,1,€) with det = e. This
shows that O(V) has two components, and that SO(V') is connected. In
particular they have the same Lie algebra, which is given by

o(V) ~s0(V) ~{Aegl(V)| (Au,v) + (u, Av) = 0 for all u,v € V'}

so called skew adjoint endomorphism. Indeed, differentiating (A(t)u, A(t)v)
(u,v) along a curve A(t) € SO(V) with A(0) = Id, we see that A’(0) is skew
adjoint. Conversely, if A is skew adjoint, one shows that e/ is orthogonal
by differentiating (e*4u, e!4v). This method works for all of the examples in

the next few sections, and we will therefore not repeat it.

It is often convenient to choose an orthonormal basis u; of V' and identify
V ~ R" by sending u; to the standard orthonormal basis ey, ..., e, of R".
The endomorphism is then identified with a matrix and O(V'),SO(V) are
isomorphic to:

O(n) ={A e M(n,n,R) | ATA=1d} , SO(n) ={A € O(n) | det A =1}

consisting of orthogonal matrices A. This easily follows by writing the
inner product in R™ as (u,v) = u’v. The Lie algebra is now

so(n) ={A € M(n,n,R) | A+ AT =0}

consisting of skew symmetric matrices A. Thus dim SO(n) = n(n —1)/2.
Since AT A = Id is equivalent to the condition that the rows (or the columns)
form an orthonormal basis, it follows that O(n) is compact.

More generally, we consider a non-degenerate symmetric bilinear form
of signature (p,q) on V, where an orthonormal basis u; satisfies (u,v) =

P ptq
E a;b; — g a;b; for v =Y au;, v =) bju;. Isometries are defined as
i=1 i=p+1

before as subgroups of GL(V'). After choosing an orthonormal basis, we can
write the inner product as (u,v) = u’ I, ;v where I, , = diag(I,, —1I,) and I}
is the k x k identity matrix. Thus (Au, Av) = (u,v) iff ul AL, ;Av = uT'I, v

I



22 Chapter 2 A Potpourri of Examples

—_—

for all u,v and hence in terms of matrices the Lie group is isomorphic to
O(p,q) ={A e M(n,n,R) | AT, ;A = I}
with Lie algebra
o(p,q) = {A € M(n,n,R) | ATL, 4+ I, 4A = 0},
If in addition det = 1, we denote it by SO(p, q), and by SO™ (p, q) the identity

component. An important example is the Lorenz group O(p, 1).

We also have the complexification of so(n):
so(n,C) = {A € M(n,n,C) | A+ AT =0}.

Notice that o(p,q) ® C ~ so(n,C) for all p,q with n = p + ¢ since in the
basis u; we can change upi1, ..., Uptq t0 iUpt1, ..., iUptq. Thus so(n,C) has
many different real forms.

We finally discuss applications of the polar decomposition of matrices.

We will from now one denote by Sym,,(R) the set of n x n real symmetric
matrices and by Sym.’ (R) the positive definite ones.

polarreal | Proposition 2.2 Given A € GL(n,R), there exists a unique decomposi-
tion A= Re® with R € O(n) and S € Sym,(R).

Proof We first claim that we can uniquely write A as A = RL with A € O(n)
and L symmetric L = L' and positive definite L > 0. Recall that L is called
positive definite if Lu - u > 0 for all w # 0, or equivalently all eigenvalues of
L are positive. Indeed, if this is possible, then A*A = L*R*'RL = L?. Now
At A is clearly symmetric, and positive definite since A’ Au-u = Au- Au > 0.
Thus A’A has a unique (positive definite) square root. We therefore define
L =+VA'A and set R = AL™!. Then R € O(n) since R'R = L71A'AL! =
L~'L2L~' =1d. This proves existence and uniqueness. Next we claim that
we have a diffeomorphism from Sym,(R) to Sym. (R) given by L — er.
Clearly & € Sym(R) since (e£)! = e and if Lv = Av, then elv = etv
which one sees by using the power series definition of e’. If B € Sym.! (R),
then there exists a basis of eigenvectors u; with Bu; = pu; and u; > 0.
Writing u; = ef‘ we define A by Au; = \ju; and clearly e = B. This shows
the map is onto. Since eigenvectors of A and e” are the same, it also follows
that the map is injective. Differentiability follows from the differentiability
of the exponential map. O

This in particular implies:



Unitary Groups Section 2.2 | 23

I

diffeoreal || Corollary 2.3 GL(n,R) is diffeomorphic to O(n) x R™, GL*(n,R) dif-
feomorphic to SO(n) x R™ and SL(n, R) is diffeomorphic to SO(n) x R™~1
with m =n(n —1)/2.

Thus GL(n,R) has 2 components and SL(n,R) is connected.
There exists a vast generalization of Proposition 2.13| for any Lie group:
maxcompact || Proposition 2.4 If G is a connected Lie group, then there exists a com-

pact subgroup K, such that K is maximal in G among compact subgroups,
and unique up to conjugacy.

Exercises 2.5

(1) Show that in the polar decomposition of A € O(p,q), p,q > 1, R €
O(p) xO(q). Thus these groups are non-compact, have 4 components,
and O(p, q) and O(p', ¢’) are isomorphic iff (p,q) = (p',¢') or (p,q) =
(¢, p).

(2) Let g = diag(—1,1,...,1). Clearly g lies in O(n) but not in SO(n).
Show that Ad(g) lies in Aut(so(n)) but not in Int(so(n)).

(3) Show that the Killing form of o(n) is given by B(X, X) = (n—2) tr X2.

Let V' be a complex vector space, with a positive definite Hermitian inner
product (, ), i.e. (Au,v) = Mu,v), (u, W) = Mu,v), (u,v) = (v,u) and
(u,u) > 0 iff u # 0. The analogue of the orthogonal group is the unitary
group

U(V)={A e GL(V) | (Av, Aw) = (v,w) for all v,w € V}.
with Lie algebra
w(V)={Aegl(V) | (Au,v) + (u, Av) = 0 for all u,v € V'}
and the special unitary group
SUV)={Ac€U(V)|det A=1} with su(V)={Acu(V)|trA=0}

If V.=C", we write U(n) instead of U(V'). With respect to an orthonormal
basis u;, we have (u,v) = . a;b; = a’b which easily shows that U(V) is
isomorphic to

U(n) = {A € GL(n,C) | A*A = Id}, with u(n) = {X € gi(n,C)| A+A4* =0}
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where A* = AT is the transpose conjugate. Similarly,
SU(n) ={A € U(n) | det A = 1} with su(n) = {A € u(n) | tr A = 0}.

Recall that for A € U(n), we have |det A| = 1 and for A € u(n), tr A is
imaginary. Thus dim U(n) = n? and dim SU(n) =n? — 1

For every unitary matrix there exists an orthonormal basis of eigenvectors
u; with eigenvalues \; and |A\;| = 1. Thus any matrix in U(n) can be deformed
within U(n) to the Identity matrix by changing the eigenvalues. Hence U(n)
is connected. Clearly, the same is true for SU(n) and we also have that U(n)
and SU(n) are compact.

Note that, although the matrices in u(n) are complex, u(n) is not a com-

plex subspace of gl(n, C), i.e. it is not a complex Lie algebra. If we complexify
we claim

u(n) ® C ~ gl(n,C) and su(n)® C ~ sl(n,C).
In fact, a complex matrix A is the sum of a hermitian and skew hermitian
matrix: A = (A + A*)/2 + (A — A*)/2. Furthermore, i times a hermitian
matrix is skew hermitian. Thus for A € gl(n,C) we have A = P + iQ with
P, Q skew hermitian, i.e. P,Q € u(n).

For complex matrices we have the analogue of a polar decomposition.

polarreal || Proposition 2.6 Given A € GL(n,C), there exists a unique decomposi-

tion A = Re® with R € U(n) and S hermitian, i.e. S = S*.

The proof is the same as before, and hence

diffeocomplex

Corollary 2.7 GL(n,C) is diffeomorphic to U(n) x R™, and SL(n, C) to

SU(n) x R™=2 with m = n?.
Thus GL(n,C) and SL(n,R) are connected and noncompact.

We finally discuss an embedding GL(n,C) C GL(2n,R). For this we use
the identification C" ~ R?":

R ~R"®R" - C" : (u,v) — u+ iv (2.8)

which induces an embedding:

: A —-B
GL(n,C) € GL(2n,R): A+iB — ( 3 > (2.9)

since (A+iB)(u+iv) = Au— Bv+i(Av+ Bu). This is clearly an injective
Lie group homomorphism. One gets further embeddings:

U(n) € SO(2n), in fact U(n) = O(2n) N GL(n,C) = SO(2n) N GL(n,C)
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Indeed, the real part of the hermitian inner product on C" is the euclidean
inner product on R?":

(u+iv,u' + i) = (u+iv) - (v —iv)=u-u +v-0v +i(v-u —u-).

Furthermore, A preserves the hermitian inner product iff it preserves its
length, which, since real, is the same as preserving the euclidean length and
hence the euclidean inner product.

Exercises 2.10

(1) Show that U(n) is diffeomorphic to SU(n) x S, but not isomorphic
(not even as groups). On the other hand, show that SU(n) x S! is a
n-fold cover of U(n).

a

2) Show that SU(2) = _,b a,b € C with |a|? + |b|?> =1 ;. Hence
(2) b a

SU(2) is diffeomorphic to S?(1) c C2.

(3) Develop the definition and properties of U(p, q) and SU(p, q).

(4) Show that the automorphism A — A is outer for U(n),n > 2 and
SU(n),n > 3, but inner for SU(2).

(4) Show that the Killing form of su(n) is given by B(X, X) = 2ntr X2.

symplectic groups

Besides R and C there is another important division algebra, the quater-
nions, denoted by H. It consists of the elements +1, +¢, 5 + k which satisfy
i? = j2 = k? = —1, i, 4, k anti-commute with each other, and 1 commutes
with 4, j, k. An element g € H has the form ¢ = a + bi + ¢j + dk. We denote
by ¢§ = a — bi — ¢j — dk the conjugate of ¢q. Note that it satisfies g7 = 7q.
Under the identification H ~ R*, ¢ — (a, b, ¢, d) the Euclidean inner product
is given by (g,7) = Re(gr) with norm |q|> = ¢ = qq = a® + b* + % + d°.

One easily checks that |gr| = |q| - || which implies that S?(1) = {q €
H | |¢f = 1} € R is a Lie group. The same is of course also true for
SY(1) = {g € C | |g| = 1} C R% These are the only spheres that can be Lie
groups, see Excercise 6.

Linear Algebra over the Quaternions must be done carefully since quater-
nions do not commute. When defining a vector space V' over H, we let the
scalars act from the right. Thus a linear map L: V — W is H linear if
L(vq) = L(v)q for v € V, q € H. It has the following advantage. If we choose
a basis u; of V over H, and associate as usual to L the matrix A = (a;j)
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with L(u;) = > ;; ujaji, then L acts via matrix multiplication: If u = > u;b;
and b = (by,...,b,)" then L(u) = >-;(>2; ajibi)uj, ie. Lu is equal to the
vector Ab in the basis u;. Thus composition of two H linear maps L and M
corresponds to the usual matrix multiplication of the matrices associated to
L and M as above.

On the other hand, certain things that we are used to from Linear Algebra
are not allowed, e.g. with the usual definition of the determinant, det(AB) #
det Adet B. Also tr AB # tr BA and AB = BA in general. Eigenvectors are
not well behaved either: If A(v) = vq, then A(vr) = v(qr) = vr(r~'qr) and
thus if ¢ is an eigenvalue, so is 7~ 1¢r for any r € H. And the endomorphism
q1Id is different from scalar multiplication by q. Somewhat surprisingly, H
‘holomorhic” maps are linear, i.e. if F': H"® — H" is differentiable with dF),
H-linear for all p, then F is H-linear.

But it still makes sense to talk about GL(n, H) as a Lie group since multi-
plication of matrices corresponds to composition of H linear maps, and hence
the product of invertible matrices are invertible. Its Lie algebra is gl(n, H),
the set of all n X n matrices whose entries are quaternions. One easily sees
that exp and Ad satisfy the same properties as for GL(n,C). Thus the Lie
bracket is still [A, B] = AB — BA. But notice that SL(n,H) and sl(n, H)
cannot be defined in the usual fashion, although we will find a different
definition shortly.

A quaternionic inner product is a bilinear form with (qu,v) = g(u,v),
(u, qu) = (u,v)q and (u,v) = (v, u) as well as (u,u) > 0 iff u # 0. We can
thus define the symplectic group Sp(V) for a quaternionic vector space
with a quaternionic inner product as the set of isometries: (Av, Aw) = (v, w).
After a choice of an orthonormal basis, we identify V' with H" and the inner
product becomes (v, w) = 9! - w. The euclidean inner product on H" ~ R*"
is then given by Rev-w. Notice that it follows as usual that (AB)* = B*A*,

where again A* = A”. Thus Sp(V) is isomorphic to:
Sp(n) = {A € GL(n,H) | A*A = Id}, sp(n) ={X €gl(n,H) | A+ A" =0}
In particular, dim Sp(n) = 2n? 4+ n, and clearly, Sp(n) is again compact.

Next we discuss the embedding GL(n, H) C GL(2n,C). We identify H" ~
C2n:

C"~C"pC" —H" : (u,v) = u+ jv (2.11)

This gives rise to the Lie group embedding:

GL(n, H) C GL(2n,C): A+ jB — ( 4 ) (2.12)
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since (A+jB)(u+jv) = Au+jBjBv+ Ajv+jBu = Au— Bv+j(Av+ Bu).
Here we have used jA = Aj for A € gl(n,C). The claim that the embedding
is a Lie group homomorphism follows from the fact that matrix multiplication
corresponds to a composition of linear maps.

As a consequence

Sp(n) = U(2n) N GL(n,H) = SU(2n) N GL(n, H).
Indeed, the ’complex’ part of the quaternionic inner product on H"” is the
hermitian inner product on C?":
(u+ ju,u’ +j0"y = (@—jv)- (W + 50 )=t v +0- v +jv-u —u-2).

Furthermore, Sp(n) C SU(2n), or equivalently sp(n) C su(2n), follows from
(2.12) since the image is skew hermitian with trace 0.

Under the identification C" & C* — H" right multiplication by j corre-
sponds to the complex antilinear endomorphism J(u,v) = (—,%). Thus a
complex linear endomorphism is H linear iff it commutes with J. We could
thus equivalently define:

GL(n,H) = {4 € GL(2n,C) | AJ = JA}
and
Sp(n) = {A € U(2n) | AJ = JA}.

This can be useful if one is doubtful wether certain operations of matrices
are allowed over H. It also enables us to define:

SL(n,H) = {A € SL(2n,C) | AJ = JA}
with Lie algebra
sl(n,H) = {4 € 5l(2n,C) | AJ = JA}.
It is also the best way to prove the polar decomposition theorem:

polarreal | Proposition 2.13 Given A € GL(n,H), there exists a unique decompo-
sition A = Re® with R € Sp(n) and S = S*. Thus GL(n,H) is diffeomor-
phic to Sp(n) x R™ with m = 2n? — n.

Exercises 2.14

(1) Show that a quaternionic vector space has an orthonormal basis and
hence Sp(n) is connected.
(2) Show that sl(n,H) C sl(2n,C) is a real form of sl(2n,C).
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(3) Show that the following properties do not hold for quaternionic matri-
ces: (AB)T = BTAT | AB = BA, det(AB) = det Adet B, tr(AB) =
tr(BA). But it is true that (AB)* = B*A*.

(4) Convince yourself that letting the scalar act on the left in a quater-
nionic vector space and changing the identification in (2.12)) to (u,v) —
u 4+ vj does not work as well as above.

(5) Show that the Killing form of sp(n) is given by B(X, X) = 2ntr X2.

(6) The geometrically inclined reader is encouraged to show that for a
non-abelian compact Lie group G, the left invariant 3-form w(X,Y, Z) =
([X,Y],2), X,Y,Z € g, is parallel, where (-, -) is an inner product in-
variant under left and right translations. Show that this implies that
w is harmonic, i.e. closed and co-closed, and hence non-zero in the De
Rham cohomology group H3,,(G). Thus S" is (homotopy equivalent)
to a Lie group iff n =1, 3.

'Non-compact symplectic groups

Let V be a real or complex vector space with a skew-symmetric non-
degenerate bilinear form

w:V xV =R (or C)
We then define the symplectic group:
Sp(V,w) = {A € GL(V) | w(Av, Aw) = w(v,w) for all v,w € V}.
with Lie algebra
sp(Viw) ={A € gl(V) | w(Au,v) + w(u, Av) = 0 for all u,v € V'}

One easily sees that there exists a symplectic basis, i.e., a basis x1,...,xy,
Y1,...yn of V such that w(z;, z;) = w(y,y;) = 0, and w(zs,y;) = 6. In
particular, dim V" is even. If we identify the basis with its dual basis, we
have w = ). dx; A y;.

The matrix associated to w with respect to a symplectic basis is

(0 I,
(0 m)
in other words w(u,v) = u?Jv. Thus Sp(R?",w) can be identified with a

matrix group:

Sp(n,R) = {A € GL(2n,R) | ATJA = J}.
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Notice that we can embed GL(n,R) in Sp(n,R) by

B B 0
— _ .
0o (BT
since one easily checks that ATJA = J. In particular Sp(n,R) is not com-

pact. The Lie algebra of Sp(n,R) is
sp(n,R) ={X € gl(2n,R) | XJ + JXT =0}

B
= {X = < S5 _S;T ) | Begl(n,R), S; € Symn(R)}
Thus dim Sp(n,R) = 2n% + n.

In a similar way we define the symplectic group over C:
Sp(n,C) = {A € GL(2n,C) | ATJA = J}
which preserves the complex symplectic form w(u,v) = u?Jv, u,v € C"

Notice that w is defined to be skew-symmetric and not skew-hermitian.

Next, we observe that U(n) C Sp(n,R). Indeed, (u + iv,u’ + ') =
w-uw +v-v il —v-u) = |(u,v)]? 4+ iw(u,v). Thus A € U(n) iff it
preserves the euclidean norm as well as the symplectic form:

U(n) = O(2n) N Sp(n,R) = SO(2n) N Sp(n, R).
Similarly,
Sp(n) = U(2n) N Sp(n,C) = SU(2n) N Sp(n, C).

We finally discuss the polar decomposition theorem for symplectic groups.

polarsymp || Proposition 2.15

(a) Given A € Sp(n,R), there exists a unique decomposition A = Re’
with R € U(n) and S € sp(n,R) N Syma,(R).

(b) Given A € Sp(n,C), there exists a unique decomposition A = R e’
with R € Sp(n) and S € sp(n, C) N Symay(C).

Proof Given a matrix A with AJAT = J, we write it as A = RL with R €
O(2n) and L € Sym3, (R). Hence RLJLRT = J or equivalently RTJR =
LJL or (R'JR)L™' = LJ = J(—~JLJ) since J?> = —Id. Now notice that in
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the equation (RT JR)L~! = J(—JLJ) the first matrix on the left and right is
orthogonal, and the second one symmetric. Hence by the uniqueness of polar
decompositions, R'JR = J and L=' = —JLJ, or LJL = J. This says that
RT = R~ € Sp(n,R), or equivalently R € Sp(n,R), and L € Sp(n,R). Thus
R € 0(2n)NSp(n,R) = U(n) and L = e° with S € sp(n, R) N Syma,(R). A

similar proof works for complex matrices. O

In particular, Sp(n,R) and Sp(n,C) are connected and diffeomorphic to
U(n) x R™ and Sp(n) x R™ respectively.

Exercises 2.16

(1) Show that Sp(1, R) is isomorphic to SL(2,R) and Sp(1, C) to SL(2,C)..
(2) Show that sp(n) ® C ~ sp(n,C).
(3) Show that A € Sp(n,R) satisfies det A = 1.

-ssical Lie groups

There are interesting coverings among the examples in the previous sec-
tions in low dimensions, which we discuss now. These will also follow from
the general theory developed in later sections, but we find it illuminating to
describe them explicitly. Recall that if H, G are connected, then ¢: H — G,
is a covering iff d¢ is an isomorphism. Since the Lie algebra of ker ¢ is ker d¢,
it follows that a homomorphism ¢ with ker ¢ discrete and dim H = dim G,
must be a covering.

We start with the fundamental groups of the compact Lie groups in the
previous sections.

fundgroup || Proposition 2.17

(a) m1(SO(n) = Zg for n > 3 and 71 (SO(2) = Z.
(a) m(U(n) = Z and 7 (SU(n) = 0 for n > 1.
(b) m1(Sp(n) =0 for n > 1.

Proof (a) Clearly m1(SO(2)) = 71(S!) = Z. For n > 3, the proof is by
induction. By Proposition2.20), 71 (SO(3)) = Zs. Now let SO(n+1) act on S”
viap — Ap. The isotropy at e; is {A € SO(n+1) | Ae; = e1} = {diag(1, B) |
B € SO(n)} ~ SO(n). Since the action is transitive, S” = SO(n+1)/SO(n).
One thus has a fibration SO(n) — SO(n+ 1) — S™ and we will use the long
homotopy sequence m;(SO(n)) — m;(SO(n+ 1)) — m;(S™). Since m;(S™) =0
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when i =1,...,n—1, it follows that the inclusion 7 (SO(n)) — 71(SO(n+1))
is onto for n > 2 and injective for n > 3. Thus Zs = m1(SO(3)) = m1(SO(n))
for n > 4 which proves our claim.

(b) The proof is similar. U(n + 1), as well as SU(n + 1), acts transitively
on §?"+1 ¢ C"*! with isotropy U(n) resp. SU(n). From the long homotopy
sequence it follows that m;(U(n)) — m(U(n + 1)) is an isomorphism for
n > 1 and similarly for SU(n). Since 71(U(1)) = Z and 71 (SU(1)) = 0, the
claim follows.

(c) Similarly, Sp(n + 1) acts transitively on S$¥*3 C H"*! with isotropy
Sp(n) and 71 (Sp(1)) = m1(S?)) = 0. O

The polar decomposition theorems imply

pilclass | Corollary 2.18

(a) m(GLT(n,R)) = 71(SL(n,R)) = Zy for n > 3 and Z for n = 2.
(b) m1(GL(n,C)) = Z and m1(SL(n,C)) =0 for n > 2.

(c) m(GL(n,H)) = m1(SL(n,H)) = 0 for n > 2.

(d) m(Sp(n,R)) =Z for n > 1.

The fact that m(Sp(n,R)) = Z is particularly important in symplectic
geometry since it gives rise to the Maslov index of a loop of symplectic
matrices.

As we saw in Chapter 1, coverings are closely related to the center of a
Lie group and we will now compute the center of the classical Lie groups.
In any of the examples we saw so far, they all consist of diagonal matrices.
This is in fact true in many cases. One easily shows:

Z(GL(n,R)) = R*, Z(GL(n,C)) = C*, Z(Sp(n,R)) = Z,
Z(U(n)) =S', Z(SU(n)) = Z(SL(n, )) ==Zn, Z(Sp(n)) = Zz (2.19)
Z(0(n)) = Za, Z(SL(n,R)) = Z(SO(n)) = Z3 if n even, and {Id} if n odd.

There are some explicit covers that are often useful.

2foldcoversi || Proposition 2.20
(a) Sp(1) is a two-fold cover of SO(3) ~ RP3.
(b) Sp(1) x Sp(1) is a two-fold cover of SO(4).
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Proof (a) We can regard the adjoint representation of Sp(1) = {q € H |
lg| = 1} as the two fold cover:

¢: Sp(l) — SO(3) : g — {v—qug} € SO(ImH) ~ SO(3).

Indeed, notice that v — quvq is an isometry of H since |qvg| = |v|. Fur-
thermore ¢(¢)(1) = 1 and hence ¢(q) preserves (R - 1)+ = ImH and lies
in SO(3) since Sp(1) is connected. The center of Sp(1) is clearly {£1}
and thus ker¢ = {£1}. Since both groups are 3 dimensional, ¢ a cov-
ering. This implies that SO(3) = Sp(1)/{£1} which is diffeomorphic to
S /{v — —v} = RP3,

(b) Similar, we have a cover
¥: Sp(1) x Sp(1) — SO(4) : (¢q,7) — {v — quvr} € SO(H) ~ SO(4)

One easily sees that kert) = {£(1,1)} and hence v is a 2-fold cover as well.
O

Somewhat more difficult are the following 2-fold covers:

2foldcovers2 | Proposition 2.21

(a) SL(4,C) is a two-fold cover of SO(6,C).
(a) Sp(2) is a two-fold cover of SO(5).

(b) SU(4) is a two-fold cover of SO(6).

Proof (a) Consider C* with the standard hermitian inner product (-,-). It
induces an hermitian inner product on A2C* ~ C8 given by

(V1 A vg, w1 A wa) = det((v;, wy)ij=1,2)-
If A€ GL(4,C), we define the linear map
AZA: N2CH — APC 0 AT A(w Aw) = (Av) A (Aw).

If A€ U(4), then A2A € U(6).
Next, we consider the bilinear form a on A2C* given by

a: N2CH x A2CH = AIC > C: (u,v) — u A

« is symmetric since v A w = (—1)4e8vdeewy; Ay, One also easily sees that
it is non-degenerate and thus the matrices that preserve « is SO(6,C). If
A € SL(4,C), then

al((A2A)u, (N2Aw) = (N2A)u A (A2A)v = (ATA)(u A v)
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= det(A)(uAv) =uAv=a(u,v)
so A2A preserves a.. This defines a map
1 : SL(4,C) — SO(6,C) , A — A?A,

which is a homomorphism since A?(AB)(vAw) = ABvAABw = (A?A)(BvA
Bw) = (A2A)(A2B)(v Aw). If A € kert, then Au A Av = u A v for all
u, v, which implies that A preserve planes and hence lines as well. Thus
Ae; = *£le; and one easily sees that this can only be if A = £1d. Thus
ker¢p = {£Id} and hence 1 is a 2-fold cover since both have the same
dimension.

(b) If A € SU(4) C SL(4,C), then B := 9(A) lies in U(6), and since it
also preserves a, in SO(6,C) as well. Thus BBT = Id and BBT = Id and
hence B = B which means that B € SO(6). Thus 1 also induces the desired
2-fold cover from SU(4) to SO(6).

(c) Now let A € Sp(2). Recall that Sp(2) = SU(4) N Sp(2,C) and let w
be the symplectic 2-form on C* that defines Sp(2,C). It can be regarded as
a linear map @: A2C* — C,: v Aw — w(v,w). Since A preserves w, we
also have @(A2A(v A w)) = w(Av, Aw) = w(v,w) = @(v A w) and thus A2A
preserves ker@. Thus A2A € SO(6) has a fixed vector, which implies that
A%2A € SO(5). Hence 1 also induces the desired 2-fold cover from Sp(2) to
SO(5). O

One can also make the coverings in Proposition 2.21] more explicit by ob-
serving the following. If e; is the standard orthonormal basis with respect
to the hermitian inner product on C*, then e; A ej, © < j is an orthonormal
basis of A2C*. One easily see that the six 2-forms

\/3:72(61/\62:’263/\64), \/3:;2(61/\63:t62/\64), \/172
form an orthonormal basis with respect to «, and with respect to (-,-) as
well. Let B be the matrix of A?A in this basis. If A € SL(4,C), then B lies
in SO(6,C). If A € SU(4,C), B is a real matrix and is hence an element
in SO(6). One easily shows that the kernel of @ is spanned by the above
six vectors with \/%—2(61 A ez — ez A eq) removed. Hence A2A, A € Sp(2)

(61 Neygtes /\63)

preserves this 5 dimensional space and thus B lies in SO(5). This enables
one, if desired, to write down explicitly the matrix AZA.

Notice that in Proposition 2.20/ and Proposition 2.21) the groups on the
left are connected and simply connected and hence are the universal covers
of the groups on the right.

I
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Since m1(SO(n)) = Zs for n > 3, there exists a 2-fold universal cover which
is again a Lie group. These are the spinor groups Spin(n). By the above
Proposition 2.20/ and Proposition 2.21, we have

Spin(3) = Sp(1), Spin(4) = Sp(1) x Sp(1), Spin(5) = Sp(2), Spin(6) = SU(4)

The higher spin groups have no simple description as above. We will come
back to them later, and will also see how to represent them as matrix groups.

Another important but non-trivial questions about the spin groups is what
their center is. From Z(SO(2n + 1)) = {e} and Z(SO(2n)) = Zy it fol-
lows that Z(Spin(2n + 1)) = Zg and |Z(Spin(2n))| = 4. But notice that
Z(Spin(4)) = Za & Zg and Z(Spin(6)) = Z4. As we will see:

Zo n=2k+1
Z(Spin(n)) ~ < Z4 n =4k + 2
Zo ®Zo n =4k

This will in particular imply that besides SO(4n) there is another Lie group,
called SO’(4n), whose 2-fold universal cover is Spin(4n) as well.

Example 2.22 We now apply the above results to show that there are Lie
groups which are not matrix groups, i.e. are not Lie subgroups of GL(n,R)
or GL(n,C) for any n.

We saw above that SL(n,RR) is not simply connected and we let G be the
2-fold universal cover of SL(n,R). We claim that G cannot be a matrix
group. So assume that there exists an injective Lie group homomorphism
¢: G — GL(n, C) for some n. Recall that g® C = sl(n,C) and that SL(n,C)
is simply connected. Thus the Lie algebra homomorphism d¢p®C: sl(n,C) —
gl(n, C) can be integrated to a homomorphism ¢: SL(n,C) — GL(n,C) with
diyp = d¢p @ C. In the following diagram

—~ ¢
G = SL(n,R) —= GL(n,C)

P

SL(n,R) ——SL(n, C)

7 denotes the 2-fold cover and i the inclusion. The above diagram is com-
mutative since all groups are connected, and the diagram is by definition
commutative on the level of Lie algebras. But this is a contradiction since ¢
is injective but 7 o4 0 1) is not since 7 is a 2-fold cover.

Exercises 2.23
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(1) Determine all Lie groups with Lie algebra o(n) for n < 6 up to iso-
morphism. In particular show that SO(4) and S* x SO(3) are not
isomorphic (not even as groups).

(2) Determine all Lie groups with Lie algebra u(n) up to isomorphism.
How are they related to U(n)?

(3) Find a 2-fold cover SL(2,R) — SO™(2,1) and SL(2,C) — SO*(3,1).
Thus the first 2 Lorenz groups are SO™ (2, 1) ~ PSL(2,R) and SO*(3,1) ~
PSL(2,C). They can also be regarded as the isometry group of 2 and
3 dimensional hyperbolic space.

(3) Show that there are infinitely many covers of Sp(n,R) which are not
matrix groups.



3

Basic Structure Theorems

Although it will not be the focus of what we will cover in the future, we
will discuss here the basics of what one should know about nilpotent and
solvable groups. We do not include the proofs of all results, but present the
basic ideas.

'Nilpotent and Solvable Lic algebras

Let g be a Lie algebra over R or C. We define inductively:
o’=90 g =[50
90 = 6; Ok = [Ok—1, 9k—1]

where, for any two linear subspace a,b C g, [a,b] refers to the subalgebra
spanned by the Lie brackets [u,v], u € a,v € b. The first is usually called
the lower cental series and the second the derived series. Clearly both { gk}
and {gx} are decreasing sequences of subalgebras.

Definition 3.1 A Lie algebra g is called k-step nilpotent if g¥ = 0 and
gF1 £ 0, i.e., if the sequence {gk} terminates. g is called k step solvable

if g =0 and gx—1 # 0.

A connected Lie group G is called nilpotent (solvable) if its Lie algebra g
is nilpotent (solvable). The basic properties for both types of Lie algebras is
given by the following Proposition.

36
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solvbasic || Proposition 3.2 Let g be a Lie algebra which is k step nilpotent resp. k
step solvable. The following are some basic facts:

(a) g; C g* for all i. In particular, g is solvable if it is nilpotent.

(b) g' and g; are ideals in g.

(c) If g is nilpotent, then {g*~'} lies in the center. If g is solvable, {gj_1}
is abelian.

(d) A subalgebra of a nilpotent (solvable) Lie algebra is nilpotent (solv-
able).

(e) If a C b is an ideal of the Lie algebra b, we let a/b be the quotient
algebra. If a is solvable (nilpotent), a/b is solvable (nilpotent).

solvexact (f) Let

0—-a—b—c¢c—0

be an exact sequence of Lie algebras. If a and ¢ are both solvable,
then b is solvable. In general the corresponding statement is not true
for for nilpotent Lie algebras.

(g) Let a, b be solvable (nilpotent) ideals, then the vector sum a+ b is a
solvable (nilpotent) ideal.

Proof We only present the proof of some of them, since most easily follow
by using the Jacobi identity and induction on .

(b) The Jacobi identity implies that g’ is an ideal in g, and similarly g; is
an ideal in g;—1. To see that g; is an ideal in g, one shows by induction on
k that g; is an ideal in g;_y.

(f) Let ¢p: a — b and ¢: b — ¢ be the Lie algebra homomorphisms in the
exact sequence. Clearly, ¥(bg) C cg. Since ¢ = 0 for some k, exactness
implies that by C Im(ag) and since a,, = 0 for some m, we also have b,, = 0.

(g) Consider the exact sequence of Lie algebras
0—a—a+b— (a+b)/a—0.

Since (a+b)/a~b/(anb), and since b, a N b are solvable ideals, (a + b)/a
is a solvable ideal as well. Thus (f) implies that a + b is a solvable ideal.
The nilpotent case follows by showing that (a 4+ b)F C Z a’ N 6P via

(A
induction. O

Example 3.3 a) The set of n x n upper-triangular matrices is an n-step
solvable Lie subalgebra of gl(n,R), and the set of n x n upper-triangular
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matrices with zero entries on the diagonal is an (n — 1) x (n — 1)-step nilpo-
tent subalgebra of gl(n,RR). Thus any subalgebra of each is solvable resp.
nilpotent. We will shortly see that any solvable (nilpotent) Lie algebra is a
subalgebra of such upper triangular matrices.

b) Recall that an affine transformation of R is a map f : R — R so
f(z) = ax + b for a # 0. The group of affine transformations is isomorphic
to the Lie group consisting of matrices

o) resoy

The Lie algebra g of this Lie group is the algebra generated by X = < 8 (1) >

0 . . .
and Y = < 0 0 ) Because these are upper-triangular matrices, g is solv-
able.
However, [X,Y] = Y, so g is not nilpotent. It also provides an exam-

ple which shows that Proposition 3.2(f) is not true in the nilpotent case:
Consider the exact sequence of Lie algebras

0—-R-X—-g—R-Y—0
Both R- X and R - Y are nilpotent but g is not.

Since the sum of solvable ideals is solvable, we can make the following
definition.

Definition 3.4

(a) Given a Lie algebra g, the radical of g, denoted by rad(g), is the
unique maximal solvable ideal.

(b) g is called semisimple if g has no solvable ideals, i.e. rad(g) = 0.
Equivalently, g is semisimple if it has has no abelian ideal.

(c) g is called simple if the only ideals are {0} and g, and dimg > 1.

The assumption that dimg > 1 guarantees that a simple Lie algebra has
trivial center. We first observe that

Proposition 3.5 For any Lie algebra g, we have that g/ rad(g) is semisim-
ple.

Proof Assume a C g/rad(g) is a solvable ideal. Since the quotient map
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7 : g — g/rad(g) is a homomorphism, 7([7~!(a),g]) = [a,g] C a and thus
7~ 1(a) is an ideal in g. From the exact sequence

0 — rad(g) — 7 *(a) - a—0

it follows that 7—1(a) is solvable, and hence by definition 7~ !(a) C rad(g).
Thus a must be trivial. O

We mention, without proof the following theorem, which sometimes re-
duces a proof to the semisimple and the solvable case.

[Levi-Malcev| Theorem 3.6 [Levi-Malcev| Given a Lie algebra g, there exists a semisim-
ple subalgebra b C g, unique up to an inner automorphism, such that

h+rad(g) =g, and h Nrad(g) = 0.

We now discuss the main result about nilpotent Lie algebras.

Engel| Theorem 3.7 [Engel| Let g € gl(V) be a Lie subalgebra whose element
are nilpotent, i.e., for each A € g there exists a k such that A¥ = 0. Then
there exists a basis, such that g lies in the subalgebra of upper triangular
matrices with zeros along the diagonal entries, and hence is nilpotent.

Proof This will easily follow from:

nilplem| Lemma 3.8 Let g € gl(V) be a Lie subalgebra of nilpotent elements.
Then there exists a vector v such that Av = 0 for every A € g.

Proof Recall that for X,Y € g, we have [X,Y] = XY — Y X. Thus A¥ =0
implies that (adx)?* = 0 since e.g. (adx)?(Y) = X2Y —2XY X + Y2 and
the powers of X or Y accumulate on the left or the right. The rest of the
proof is by induction on the dimension of g, the case dim g = 1 being trivial.
Now suppose the lemma holds in dimension < n, and suppose dimg = n.
Let h € g be a subalgebra of maximal dimension. Since adx(h) C b for
X € b, we can define ' = {adx : g/b — g/b | X € b} C gl(g/h) as a Lie
subalgebra. By the above observation, every element of b’ is nilpotent and
since dim b’ < dim g, by induction, there exists an element A € g/h such that
L(A) =0 for every L € b’ and thus an element A € g such that ady(A4) € b
for all X € . In particular h + A is a subalgebra of g and by maximality
h+A=g.

Now let W := {w € V | Xw = 0 for all X € b}, which is non-zero by
induction hypothesis. A takes W to W since 0 = [X, Ajlw = X Aw — AXw =
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XAw. But Apy is also nilpotent, and hence there exists a v € W with
Av = 0. This vector v is clearly the desired vector. O

We now return to the proof of Engel’s Theorem. We inductively choose
a basis ej,...,e, with Ae; = 0 and A(V;) C Vi1, i = 2,...,n, where
V; := span{ej,...,e;}. The existence of e; follows from the Lemma. Now
assume that we defined Vi,...V} such that A(V;) C Viq, ¢ = 1,...,k.
Then A induces a linear map A: V/V;, — V/Vi and A is again nilpotent.
Thus there exists a vector u € V/Vj with Au=0forall Acg. Ife,isa
preimage of u in V', we define Vi1 = span{ey,...,ex+1} and by definition,
A(Vi41) C Vi. This basis clearly has the desired properties. O

We now derive several consequences.

\ Corollary 3.9 adx is nilpotent for all X € g, iff g is nilpotent.

Proof For one direction apply Engel’s Theorem to ad(g) C gl(g). For the
other observe that if g is nilpotent, then ady (g*) C gF¥™! and hence ady is
nilpotent. O

uniquedph || Corollary 3.10 A nilpotent Lie algebra g is isomorphic to a subalgebra
of the nilpotent Lie algebra in gl(n,R) of upper triangular matrices with
zeros along the diagonals.

Proof Apply Ado’s Theorem..... O

nilexp| Theorem 3.11

(a) If G is a connected Lie group with nilpotent Lie algebra G, then
exp : ¢ — G is a covering. In particular, if m1(G) = 0, then G is
diffeomorphic to R";

(b) If G € GL(V) is such that g has only nilpotent elements, then exp :
g — G is a diffeomorphism.

Proof Proof to be added... O

Corollary 3.12 IfG is a Lie group whose Lie algebra has only nilpotent
elements, and w1 (G) # 0, then G is NOT a matrix group.

This gives rise to many examples which are not matrix groups since a
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nilpotent Lie algebra always has a nontrivial center and hence there are
many discrete subgroups of Z(G).

The basic structure theorem for solvable Lie algebras is Lie’s Theorem. Its
proof is again by induction, in fact very similar to Engel’s Theorem, and we
will thus omit it here, but derive several important consequences.

Proposition 3.13[Lie| Let g € gl(C™) be a solvable Lie subalgebra. Then
there exists a A € g* and a vector v such that Av = \(A)v for every A € g.

Unlike Engel’s Theorem, this holds only over the complex numbers. As
before, this has the following consequence:

Corollary 3.14 If g € gl(V') be a solvable Lie algebra, then there exists
a basis such that g lies in the subalgebra of upper triangular matrices

Combining this with Ado’s Theorem one has

Corollary 3.15 Every solvable Lie algebra is a subalgebra of the Lie

algebra of upper triangular matrices in gl(n,C).

| Corollary 3.16 g is solvable iff [g, g] is nilpotent.

Proof 1f [g, g] is nilpotent, clearly g is solvable. If g is solvable, we can embed
it as a subalgebra of the upper triangular matrixs, whose commutator has
0’'s along the diagonal and hence is nilpotent. O

The following result we will also present without proof.

Theorem 3.17 [Cartan’s Second Criterion| g is solvable iff B = 0 on
l9.9].

In one direction this is clear since g solvable implies [g, g] nilpotent and
the Killing form of a nilpotent Lie algebra is 0 since adx is nilpotent. Notice
that Cartan’s Second Criterion implies that a Lie algebra with B = 0 must
be solvable.

Exercises 3.18

(a) Give an example of a Lie algebra which is not nilpotent, but whose
Killing form vanishes.

(b)

(c)
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‘Semisimple Lie algebras

Recall that g is called semisimple if it has no solvable ideals, or equivalently
no abelian ideals. In particular the center of g is trivial. A more useful
characterization is:

semisimplenondegB| Theorem 3.19 |Cartan’s Second Criterion| g is semisimple iff B is non-

degenerate.

Proof Recall that ker B is an ideal in g and that By = By, for an ideal a in
g. Thus the Killing form of ker B is trivial which, by Cartan’s first criterium
implies that ker B is solvable. Hence, if g is semisimple, B is non-degenerate.

If, on the other hand, g is not semisimple, let a C g be an abelian ideal.
Choose a basis ey, ..., eg, fi,... f; such that e, ..., e is a basis of a. Then
for any X € a and Y € g we have ady adx(e;) = 0 and ady adx(f;) €
span{ey,...e;} and thus B(X,Y) = tr(ady adx) = 0. This implies that
a C ker B and hence B is degenerate. O

Notice that we actually proved two general statements: For any Lie algebra
g, ker B is a solvable ideal in g and a C ker B for any abelian ideal a in g.

Example 3.20 The Lie algebras sl(n, R), sl(n, C), su(n),so(n),sp(n,R), sp(n)
and o(p, q) are all semisimple. To see this, we first observe that B(X,Y) =
a tr(XY), where « is a non-zero constant that depends on the Lie algebra.
We saw this for some of the above Lie algebras in the exercises, and leave it
for the reader to check it for the others. Furthermore, one easily sees that
XT ¢ gif X € g. We thus have

BX,XT)=tr(XXT)=a) a3, X = (),

1,3

and thus B is non-degenerate.

The basic structure theorem for semisimple Lie algebras is:

semisimpleideals| Theorem 3.21 Let g be a semisimple Lie algebra. Then:

(a) g =91 D - D gx where g; are simple ideals.
b) if a € g is an ideal, then a = ._.g; for some I C {1,...,k}. In
jel¥)
particular, the decomposition in (a) is unique up to order.
(c) g =gl
d) Aut Int(g) is discrete, or equivalent every derivation is inner.
g g ) q Y
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Proof Part (a) follows from the following 3 claims.
1. If a C g is an ideal, then at = {X € g| B(X,Y) =0 for all Y € a} is an
ideal.

Indeed, if X € at, Z € a, Y € g, then B([Y, X],Z)— = B([Y, Z], X) = 0
where we have used that ady is skew symmetric w.r.t. B.

2. If a is an ideal, then a N at = 0.

First observe that for X,Y € anat, Z € g, we have B([X,Y],Z) =
~B([X,Z],Y) =0 since [X,Z] € a and Y € at. Thus ana' is an abelian
ideal which by semisimplicity must be 0.

3. dima + dimat = dimg.

This is a general fact about non-degenerate bilinear forms. To see this,
let eq,...,ex be a basis of a. The equations B(e;, X) =0, i = 1,...,k are
linearly independent since otherwise 0 = > A\;B(e;, X) = B(>_ e;, X) for all
X € g implies that B is degenerate. Thus the solution space has dimension
dimg — dima.

Putting all three together, we have g = a @ a', a direct sum of 2 ideals.
Continuing in this fashion, we write g as a sum of simple ideals.

For (b) it is sufficient to show that if b is a simple ideal in g, then b = a;
for some ¢. But for a fixed j we have that b N a; is in ideal in a; and thus
either bNa; =0 or bNa; = a;. Thus there must exists an ¢ with b = a;.

(c) For a simple Lie algebra g we have [g,g] = g since it is an ideal and
cannot be 0. The general claim now follows by combining with (a).

(d) Recall that the Lie algebra of inner derivations Jnt(g) is an ideal in
all derivations Det(g). Also, since the center of a semisimple Lie algebra
is 0, Jnt(g) ~ ad(g) ~ g and thus Jnt(g) is semisimple. Next we observe
that part 1.-3. in the proof of (a) also hold if we only assume that B, is
non-degenerate (Notice that Bjq is the Killing form of a since a is an ideal).
Thus Der(g) = Int(g) ® (Int(g))*. If D € (Int(g))* and adx € Int(g) then
0 = [D,ad;] = adpx and hence DX € 3(g) = 0. This implies that D = 0
and hence Der(g) = Int(g). O

Exercises 3.22

(a) Show that g is semisimple (nilpotent, solvable) iff g¢ is semisimple
(nilpotent, solvable).

(b) Show that if g¢ is simple, then g is simple.

(c) If g is a Lie algebra such that ady is skew symmetric with respect
to some non-degenerate bilinear form, show that g ~ 3(g) ® b with b
semisimple.

I
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' Compact Lic algebras

It is convenient to make the following definition.

Definition 3.23 A Lie algebra is called compact if it is the Lie algebra of a
compact Lie group.

Notice that in this terminology an abelian Lie algebra is compact. The
following is one of its basic properties.

biinvariant | Proposition 3.24

(a) If g is a compact Lie algebra, then there exists an inner product on g
such that adx is skew-symmetric for all X € g..

(b) If G is compact Lie group, then there exists a biinvariant metric on
G, i.e. a Riemannian metric such that Ly, R4 act by isometries for all
g€ G.

Proof This is a standard averaging procedure. Let G be a compact Lie group
with Lie algebra g. Choose any inner product (-, -)o on g and define a new
inner product on g:

<xw=[}mwx&mwmw

where w is a biinvariant volume form, i.e. Lyjw = Rjw = w. One can easily
see the existence of such a volume form by first choosing a volume form wyq
on g and define it on G by wy = Lywp. One now defines a function f: G — R
by Rjw = f(g)w. Notice that f(g) is constant since both w and Rjw are
left invariant. One easily sees that f(gh) = f(g)f(h) and thus f(G) is a
compact subgroup of R*. But this implies that f(g) = 1 and hence w is right
invariant.
We now claim that Ad(h) is an isometry in the new inner product:

(Ad(h)X, Ad(h)Y) = /G (Ad(gh)X, Ad(gh)Y )y w

= [ (@)X Adlg)V )0 (o) = (X.7)

Since Ad(G) acts by isometries, and d Ad = ad, it follows that adx is skew
symmetric. This proves part (a).
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For part (b) we choose the inner product on g as above and define a metric
on G by

(X,Y)y = (d(Lg-1)gX,d(Lg1)sY).
Then L, is an isometry by definition, and R, is one as well, since d(Rgp)e =

d(Rp)gd(Ry)e shows it is sufficient to prove d(Ry). is an isometry, which
holds since

<d(Rg)eX7d(Rg)eY>g = <d(Lg—1)gd(Rg)eXa d(Lg—l)gd(Rg)eY>
= (Ad(g™H)X,Ad(g)Y) = (X,Y)

We now prove a basic structure theorem for compact Lie algebras.

compact | Proposition 3.25 Let g be a Lie real algebra.

(a) B <0 iff g is compact with 3(g) = 0.
(b) If g is compact, then g = 3(g) @ [g, g] with [g, g] semisimple.

Proof (a) If B < 0, then g is semisimple and hence has trivial center. Since
elements of Aut(g) are isometries of B, and — B is an inner product, Aut(g) C
O(g). Since Aut(g) is also closed, it is compact. Since Aut(g)/Int(g) is finite
when g is semisimple, Int(g) is the identity component of Aut(g) and hence
compact as well. But since 3(g) = 0, the Lie algebra of Int(g) is isomorphic
to g. Hence Int(g) is the desired compact Lie group with Lie algebra g.

If g is compact, let (- , -) be an Ad(G) invariant inner product on g.
Then B(X, X) = tr(adx adyx) = — tr(adx(adx)?) <0 and B(X, X) = 0 iff
adxy =0, i.e. X € 3(g). But since we assume that 3(g) = 0, B is negative
definite.

For part (b) we first observe that in the proof of Proposition [3.21] (a),
we only use the skew symmetry of adx and non-degeneracy of B to show
that, for any ideal a, g = a ® a* with a' an ideal. Thus, using an Ad(G)
invariant inner product (- ,- ) , the same is true here. Hence g = 3(g) ©b with
b = (3(g))* and b an ideal. As we saw above, B(X,X) <0and B(X,X) =0
iff X € 3(g). This implies that By = (Bg)|p is non-degenerate and hence b is
semisimple. Thus [g, g] = [b, b] = b which proves our claim. O

| Corollary 3.26 A compact Lie group with finite center is semisimple.

A more difficult and surprising result is
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compactpii || Proposition 3.27 [Weyl| If G is a compact Lie group with finite cen-
ter, then 71 (G) is finite and hence every Lie group with Lie algebra g is

compact.

Proof The proof will be geometric and assume some knowledge from Rieman-
nian geometry, since it will be a consequence of the Bonnet-Myer’s theorem.
As follows from Proposition 3.25/ (a), —B is an Ad(G) invariant inner prod-
uct and as in the proof of Proposition [3.24 (b) extends to a Riemannian
metric on G such that L, and R, are isometries. We will show that Ric > i,
and the claim follows from Bonnet Myers. We first claim that the formulas
for the connection and the curvature tensor are given by:

VyY = %[X, Y], and R(X,Y)Z = —i[[X, Y], Z|

where XY, Z € g. For convenience, set (,) = —B. For the connection, we
use the fact that (X,Y) is constant since X,Y and (,) are left invariant. We
fist show that VxX = 0, which follows from

(VxX,Z)=X({(X,Z2)) —(X,VxZ) =—(X,VxZ)
1

= (X, V2X) + (X, [X, 2)) = ~(X,VzX) =~ Z(~(X, X)) = 0
for all Z € g, where we also used (X,[X,Z]) = 0 by skew symmetry of
ady. For the reader with a more sophisticated back ground in geometry we
observe that a quicker argument for (VxX,Z) = —(X,VzX) is the fact
that the vector field X is Killing since its flow is Regp(;x) and hence VX is
skew symmetric.

For the curvature tensor we use the Jacobi identity:

(R(X,Y)Z) =VxVyZ —VyVxZ -V xyZ

1 1 1
1 1 1
= =412 Y] = XY 2] = —{[[X,Y], 7]

Finally, we compute the Ricci tensor:

1 1
Ric(X,Y)=tr{Z - R(Z, X)X} = ~1 tr{Z — adx adx(Z2)} = _ZB(X’X)
which finishes the proof. O

Thus if g is a compact Lie algebra with trivial center, every Lie group with
Lie algebra g is compact. As a consequence one can reduce the classification
of compact Lie groups to that of simple Lie groups.



Maximal Torus and Weyl group Section 3.4 47

I

Corollary 3.28 FEvery compact Lie group is isomorphic to
(T" XGy X -+ x Gp)/T

where G; are compact, simply connected, simple Lie groups and I' is a
finite subgroup of the center.

Proof Let G be a compact Lie group. By Proposition [3.25/ (b) and Propo-
sition 3.21 (a) g is isomorphic to R™ X g1 X -+ X g,, with g; simple. Hence
the connected, simply connected Lie group with Lie algebra g, which is also
the universal cover of GG, is isomorphic to G=R"xGyx- X G, with G;
simply connected and simple. By Weyl’s Theorem G; is compact as well.
From general covering space theory we know that G = G /f with T a dis-
crete subgroup of the center. But the center of G; is finite and hence the
projection from I to Gi X - -+ X Gy, which is a homomorphism, has finite
index and its kernel T is a discrete subgroup of R™. Since G is compact,
R™/T must be compact as well and hence isomorphic to a torus T™. Thus
the finite group I' = f‘/f acts on T" xG1 X - -+ X Gy, with quotient G. O

The proof of Proposition 3.27 also implies:

\ Corollary 3.29 If G is a compact Lie group, then exp: g — G is onto.

Proof As we saw before, for a biinvariant metric we have Vx X = 0. This
implies that the geodesics through e € G are the one parameter groups c(t) =
exp(tX). Indeed, c is an integral curve of X and V.¢ = VxX = 0 means
that c is a geodesic. Thus exp is the usual exponential map of the biinvariant
metric: exp,: T.G — G. Since G is compact, the metric is complete, and by
Hopf-Rinow exp, = exp is onto. O

Exercises 3.30

(a) If G is a compact Lie group, show that it is isomorphic to T" xG; x
-+ X G, with G; compact and simple.

(b) If g is a compact Lie algebra, show that Int(g) = {X | X € g}.

(c) If g is a Lie algebra such that adx is skew symmetric with respect to
some inner product, show that g is compact. Similarly, if G is a Lie
group which admits a biinvariant metric, show that some subcover of
G is compact.
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'Maximal Torus and Weyl group

In order to understand compact (simple) Lie groups in more detail, we will
use the following theorem. A Lie algebra g certainly has abelian subalgebras,
e.g. one dimensional ones. We say that t C g is a maximal abelian
subalgebra if t is abelian, and t C t' with ¢’ abelian implies ¢ = t.

maximaltorus || Proposition 3.31 Let G be a compact Lie group and t C g a maximal
abelian subalgebra.

(a) For any X € g, there exists a g € G such that Ad(g)(X) € t
(b) Ifty,ty are two maximal abelian subalgebras, then there exists a g € G
such that Ad(g)t; = t2

Proof Let T = exp(t) and suppose T is not closed. Then T = exp(t) is a
(connected) closed subgroup of G, and hence a Lie group. Since T is abelian,
so is T". Since T" is strictly bigger than T, t' is also strictly bigger than t,
a contradiction. Thus T is compact and hence a torus which means we can
choose an X € t such that exp(sX) is dense in 7.

We first claim, after fixing the above choice of X, that t = {Z | [X, Z] = 0},
i.e. [X,Z] =0 implies Z € t. Indeed, Ad(exp(sX))(Z) = e**xZ = Z and
by density of exp(sX) in 7', Ad(T')(Z) = Z which implies [Z,t] = 0 since
d Ad = ad. By maximality of t, Z € t.

Let (,) be an Ad(G)-invariant inner product. For a fixed Y € t, we define
the function

F:G—-R g— (X, Ad(g9)Y)

Since G is compact, there exists a critical point gy of F'. At such a point we
have

= jt|t0<X’ Ad(exp(tZ)go)Y) = ;;t't()(X, Ad(exp(tZ)) Ad(go)Y)

= (X,[Z,Ad(g0)Y]) = —([X,Ad(g0)Y],Z) =0forall Z € g

ngo (Zgo)

Thus for a critical point gg we have
[X,Ad(g0)Y] =0 and hence Ad(go)Y €t

which proves part (a).
For part (b) choose X; € t; such that exp(sX;) is dense in exp(t;) . By
(a), there exists a g € G, such that Ad(g)X; € t2. Since to is abelian,



Maximal Torus and Weyl group Section 3.4 | 49

I

[V, Ad(g)X1] = 0 or [Ad((¢71)Y,X1] =0 for all Y € t5. Thus Ad(g~ ")ty C
t1, which implies that dimt; < dimt;. Reversing the role of t; and ta, we
see that dim t; < dim t and hence dim to = dim t;. Thus Ad(g~!)to = t; or
t2 = Ad(g)’q. O

In terms of the group G this can be reformulated as follows. If t is maximal
abelian, we call T' = exp(t) a maximal torus.

Corollary 3.32 Let G be a compact Lie group with maximal torus T.
Then every element of GG is conjugate to an element of T'. Furthermore,
any two maximal tori are conjugate to each other.

Proof Given an element g € G, Corollary [3.29 implies that there exists an
X € tsuch that exp(X) = g. By Proposition 3.31] there exists an h € G such
that Ad(h)X € t. Then hgh™! = hexp(X)h™! = exp(Ad(h)X) € exp(t) =
T. The second claim follows similarly. O

We can thus define:

Definition 3.33 Let G be a compact Lie group. The the dimension of a
mazimal torus is called the rank of G, denoted by tk(G), orrk(g) for its Lie
algebra.

Before proceeding, we show:

torusmaxabelian | Lemma 3.34 Assume that G is compact, S C G is a torus, and g com-

mutes with S. Then there exists a maximal torus containing both S and

g. In particular, a maximal torus is its own centralizer.

Proof Let A be the closure of the subgroup generated by g and S. Then A
is closed, abelian and compact, and hence its identity component Ag also a
torus. Since ¢S generates A/Ag, A is isomorphic to T* xZ,, for some k and
m. One easily sees that one can thus choose an element a € A such that A
is the closure of {a™ | n € Z}. Since a lies in a maximal torus 7', so does S
and g. O

An orbit Ad(G)X, X € g is called an adjoint orbit. Proposition 13.31
says that every adjoint orbit meets t. To see how many times it meets t, we
define the Weyl group W = N(T')/T , where N denotes the normalizer.
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adjointorbit || Proposition 3.35 Let G be a compact Lie group with maximal torus T
and Weyl group W = N(T)/T.

(a) W is a finite group which acts effectively on t via w- X = Ad(n)X
withw =n-T.

(b) The adjoint orbit Ad(G)X, X € t meets t in the Weyl group orbit
w-X.

(c) Whenever the adjoint orbit Ad(G)X, X € g meets t, it does so or-
thogonally.

Proof (a) N(T) is clearly a closed subgroup of G and hence a compact Lie
group. We claim that T is its identity component, and hence W is finite. To
see this, recall that the Lie algebra of N(T') is n(t) = {X € g | [X,t] C t}
and choose Xy € t such that exp(sX) is dense in 7. If X € n(t), then
(X, Xo], Z) = —([Z,X0],X) = 0 whenever Z € t. Since [X, Xy] € t by
assumption, this implies that [X, Xo] = 0 and hence X € t, which proves
our claim.

Since Ad(T)}; = Id, the action of W on t is well defined. If g € N(T') and
Ad(g); = 1d, then gexp(X)g~ = exp(Ad(g)X) = exp(X), for X € t, and
hence g € Z(T'), the centralizer of T. But Lemma 3.34 implies that g € T,
which shows the action of W is effective.

(b) We need to show that if Ad(g)X =Y for some X,Y € t, then there
exists an n € N(T) with Ad(n)X =Y. Let Zx = {g € G | Ad(¢9)X =
X} be the centralizer of X in G. Then T C Zx and g 'Tg as well since
Ad(g ) Tg)X = Ad(g7')Ad(T)Y = Ad(¢g-H)Y = X. We can now apply
Proposition 3.31 (b) to the identity component of Zx to find an h € Zx
with hTh™! = g~'Tg. Thus gh € N(T) and Ad(gh)X = Ad(g) Ad(h)X =
Ad(g)X =Y, i.e. n = gh is the desired element.

(c) If Ad(G)X meets tin Y, then the tangent space of the orbit Ad(G)X

Ad(G)Y is Ty (AA(GQ)Y) = {[Z,Y] | Z € g}. If U € t, then ([Z,Y],U)
—([U,Y], Z) = 0, which says that the orbit mets t orthogonally at Y. O

Example 3.36 (a) Let G = SO(3) with SO(2) € SO(3) a maximal torus
and N(T) = O(2) and hence W = Zs. We can identify 0(3) ~ R3 such that
the adjoint action of SO(3) on 0(3) is via ordinary rotations and SO(2) are
the rotations fixing the z-axis. Thus the maximal abelian subalgebra t is the
z-axis and W acts on it via reflection in 0 € t. An SO(3) orbit is a sphere of
radius r which meets t orthogonally in the W orbit +r.
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We now discuss maximal tori and Weyl groups for all the classical Lie
groups.

Classical Lie groups

(a) G =U(n)

We claim that the maximal torus consists of the diagonal matrices
T" = diag(z1,...,2n), |zi| =1 with Weyl group W =S,

and thus rk(U(n)) = n. Indeed, if B € U(n) commutes with a matrix A € T,
then B preserves the eigenspaces of A. Choosing the diagonal entries of A
distinct, we see that B must be diagonal as well. If B normalizes elements
of T', by the same argument it can at most permute the diagonal elements
of A € T. Thus the Weyl group is a subgroup of the permutation group .S,,.

s((5 ) e)=(60)

it follows that every permutation is contained in the Weyl group, i.e W = S,,.

The adjoint orbits are given by Ad(G)H, H € t and contain a unique H’
with hy < hg < --- < h,. They are homogeneous with G acting transitively
with isotropy those matrices which commute with H. The isotropy depends

Since

on how many components in H are equal to each other and is thus given
by U(ni)U(ng)---U(ng) with > n; = n, if hy = --- = hy, ect. Thus the
adjoint orbits are U(n)/ U(n1)U(ng) ---U(ng). Another interpretation is as
a flag manifold

I

F(ny,...,np)={VicVa---CV, cC"|dimV,—dimV;_1 = n;, i =1,...,n}

where V5 = 0.
For G = SU(n), we add the restriction z; - - - z, = 1 but the Weyl group is
the same. Thus rk(SU(n)) =n — 1.

(b) G = Sp(n)

Recall that U(n) C Sp(n) and we claim that 7" C U(n) C Sp(n) is also a
maximal torus in Sp(n). Indeed, if B 4 jC € sp(n) commutes with A € t”,
we have AB = BA and AC = CA which is only possible when C' = 0.
The Weyl group contains all permutations as before. But now we can also
change the sign of each individual diagonal entry since jzj~! = z. Thus
W =S, x (Z2)™ with S,, acting on (Z2)"™ via permutations.
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(¢) G =S0(2n)
With an argument similar to the above, one sees that the maximal torus
is
T — diag(R(01), .., R(6,)) with R(9)— ( ¢ —sinf
- as oo U)W ~ \ sinf cosf

Let E;; be the matrix whose only non-zero entries are a 1 in row ¢ and column
j. The Weyl group contains all permutations of 6; since conjugation with
A = Egit1) k1) TE@ir2) 2k 2) T E@kr1)2i41) T B2k 12)(2i42) interchanges 0;
with 6y, and A € SO(2n). In addition, conjugation with B = E(3;41)(2i12) +
E(9i42)(2i+1) changes the sign of 6;. But det B = —1. On the other hand, con-
jugating with C' = E(9;11)(2i+2) T E(2i+2)2i+1) T E(2k+1)2k+2) T E2k+2)(2k+1)
changes the sign of both 6; and 6, and det C' = 1. Thus all even sign changes
are contained in the Weyl group. Hence W = S, x (Zy)" 1.

(d) G=S0(2n+1)

In this case one easily sees that T C SO(2n) C SO(2n+1) is the maximal
torus. The Weyl group contains all permutations as before, but also all sign
changes since conjugation with E(9; 1)2iy2) + Eit2)@ir1) — Eent)@nt1)
has determinant 1 and changes the sign of 6; only. Thus W = S,, x (Z2)"

Exercises 3.37

(1) Show that diag(£1,...,4£1) N SO(n) C SO(n) is maximal abelian,
but not contained in any torus.
(2) Determine the adjoint orbits of Sp(n) and SO(n).

(3)



4

Complex Semisimple Lie algebras

In this Chapter we will discuss the classification of complex semisimple Lie
algebras and their relationships to real compact Lie algebras. Throughout
this Chapter g will be a complex semisimple Lie algebra. We sometimes
write it as the complexification of a compact real Lie algebra, which we will
denote by ¢, i.e. tc ~ g.

/4.1 Cartan subalgebra and roots

Let g be a complex semisimple Lie algebra. Recall that A € End(V) is
called semisimple if it can be diagonalized.

Definition 4.1 § C g is a Cartan subalgebra of g if the following hold:

(a) b is a mazimal abelian subalgebra.

(b) If X € b, adx is semisimple.

Unlike in the compact case, the existence is non-trivial.

Cartanex || Theorem 4.2 Every complex semisimple Lie algebra has a Cartan sub-
algebra h C g. Moreover, b is unique up to inner automorphisms and

Ng(h) = Zg(h) = b.

Proof We will add a proof later on..... O

Thus we again define rk(g) = dim b.

As we will see later on, every complex semisimple Lie algebra has a com-
pact real form. It may thus be comforting to the reader that in this case the
existence of a Cartan subalgebra easily follows from Proposition [3.31.

53
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Theorem 4.3 Let € be a compact semisimple Lie algebra with ¥c ~ g and
t C ¥ a maximal abelian subalgebra. Then t® C is a Cartan subalgebra of

g with Ng(h) = Zg(h) =b.

Proof Since a basis of t is a (complex) basis of b, and t is abelian, b is
abelian. With respect to an Ad(K)-invariant inner product on ¢, ady is
skew-symmetric for all X € ¢ and can hence be diagonalized over C. Since
adx,ady commute: [adx,ady]| = ad[x,y] = 0, they can be diagonalized
simultaneously. Hence ady ;v = adx +¢ady, X + Y € tc can be diag-
onalized as well. Let h/ be an abelian subalgebra of g strictly containing
h. Then for X +iY € b’ we have [t, X +iY] = [t, X] 4+ i[t,Y] = 0 and
hence [t, X] = [t,Y] = 0 which implies X,Y € t by maximality of t. Thus
bh is a Cartan subalgebra of g. In the proof of Proposition [3.35/ we saw that
Ng(t) = t, and hence the same follows for b.

O

Let b be a Cartan subalgebra of g. Since adyx, X € g are diagonalizable
and [adx,ady] = adjxy) = 0 for X, Y € g, they can be diagonalized si-
multaneously. Thus there exists a common basis of eigenvectors {ej,...,e,}
with adx (e;) = \i(X)e; for all X € h. One easily sees that \; is linear in X.
This motivates the following definition:

Definition 4.4 Let g be a complex semisimple Lie algebra with Cartan subal-
gebra by. Given a linear map « € h* = Hom(h, C), define the root space of
aas gy ={X €g|[H,X]|=a(H)X foral Heb}. Ifgo #0, o is called
a root of g with respect to by, or simply a root. Let A C h* be the set of all
non-zero roots of g.

As we will see later on, the root spaces are one dimensional. The roots
characterize the Lie algebra up to isomorphism, and we will encode a com-
plete description in a diagram called the Dynkin diagram.

From now on g will always be a complex semisimple Lie algebra with a
fixed Cartan subalgebra . We will also use, without always saying explicitly,
the following convenient convention. Vectors in ) will be denoted by H and
vectors in g, by X,. Although 0 is not considered a root, we will sometimes
denote h = o since Zy4(h) = b implies that these are the only vectors with
weight 0.

We start with some simple properties of the root system.
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rootsbasic| Theorem 4.5 Let A be the set of roots with respect to a Cartan subal-
gebra hh C g. Then one has the following properties.

(a) g:h@zgw

aEA
(b) If a, B € A, then [gq, 98] C ga+s-

(c) {a| a € A} spans h*.

(d) If o, € A, and a+ 3 # 0, then B(ga,93) = 0.
(e) If « € A, then —a € A.

(f) By is non-degenerate.

Proof (a) This follows from the fact that g is the sum of all common
eigenspaces of adx, X € h.

(b) follows from the Jacobi identity:

[H, [Xa, Xp]] = [[H, Xal], X5] + [Xa, [H, X5]] = ((H) + S(H))[Xa, Xg]

(c) If the roots do not span h*, there exists a vector H with a(H) = 0 for
all &« € A. This implies that H € 3(g) which is 0 since g is semisimple.

(d) f @+ B # 0 and v € A, then adx, adx, : 8y — g,1a+g IS a map
between disjoint root spaces. Thus ady, ady, is nilpotent which implies
that its trace is 0.

(e) Part (d) implies that only g_, can have non-zero inner products with
go- Since B is non-degenerate, the claim follows.

(f) This also follows from non-degeneracy of B since B(h,g,) = 0 for
a # 0.
U

Since Bj, is non-degenerate, we can identify h* with h and denote the
image of o by H,, i.e. B(Hy, H) = a(H). For simplicity, we denote from
now on the inner product B on b, as well as the inner product induced on
b*, by (-,-). Thus (a, 5) = (Ha,Hp) = a(Hg) = B(H,). Later on it will be
convenient to re-normalize the Killing form. The reader may confirm that
in all of the proofs in this section, all that is needed is that adx is skew
symmetric with respect to a non-degenerate bilinear form.

We now derive some less elementary properties of the root system.
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rootsadvanced | Theorem 4.6 Let A be the set of roots with respect to a Cartan subal-

gebra h C g and a € A. Then one has the following properties.

(a) [XomX—a] = <X047X—oz> - H, and [goug—a] =C- H,.

(b) (a) #0.
(c) dimg, = 1.

Proof (a) By skew-symmetry of adx, we have

((Xas X-o|, H) = —([H,X_0], Xa) = a(H)(X_a, Xa) =
<H7 Ha><XOé7 X—a> == < <X0£7 X—a>Ha7 H>
for all H € b, which implies the first claim. By non-degeneracy of B, there
exists an X_,, for each X, with (X, X_,) # 0, and the second claim follows
as well.

(b) By non-degeneracy of By, there exists a § € A such that («, 3) # 0.
Consider the subspace V C g defined by

V = Z gﬁJrna-

neZ

Observe that V' is preserved by ady, since it preserves root spaces, and also
by adx, and adx_, since they ‘move up and down’ the summands. Now
choose X, X_4 such that [X,, X_o] = Hs. Then

tr(adHa)‘V = tr(ad[XmX_a])W = tr(adxa adxia — adxfa aan)“/ =0.

We can also compute the trace differently since (adp)|q, = v(H) - 1d

tr(adp, )y = »_ tr(adp, ) g, = (B +10)(Ha) dgina

n

where we have set dim(g,) = d,. Hence
—fA(Ha) Z dg4na = a(Ha) Z n - dgina

which implies that (o, a) = a(H,) # 0 since dg > 0.
(c) Using the same method, we define

V=CX_o+CHo+ > gna-

n>1

One checks that it is again preserved by adp,,adx, and ady , and taking
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the trace of ady, we get

(o, —ax) + Zdna<a,na> = (o, a)(—1+di + anna) =0

n>1 n>1

Thus, since « is a root, d, = 1, which proves our claim. Notice that it also
implies that d,o = 0 for n > 2, i.e, if na, n € Z, is a root, then n = 0, 1.
We will be able to use this fact later on. O

As we already saw in the previous proof, the next concept is useful.

Definition 4.7 Let a, 3 € A be roots. The o string containing 3 is the
set of roots of the form

{B+na|neZ}.
Here is its main property and some applications.

strings | Theorem 4.8 Let A be the set of roots. Then

(a) There exists integers p, ¢ > 0, such that the a string containing (3
consists of consecutive roots, i.e., —p < n < q and

2(6, ) |
o) =P (4.9)

(b) If = ca with o, € A and ¢ € C, then ¢ =0 or ¢ = 1.
(c) If o, B,oc + B € A, then [X,, Xg| # 0 for any Xo € go, Xg € g3 -

Proof Let [r,s] be a component of the set of integers n € Z such that
B+na €A Setting V =377 _ 854na, we compute tr(adg, )y as before:

tr(ady, )y = Y (8 +na)(Ha) = (s — 7+ 1)3(Ha) + a(Ha) Y n
(s+r)(s—r+1)
2

=(s—r+1)8(Hy) + a(Hy) =0

and thus 2<<5’£> = —(r+s). If [, s'] is another disjoint interval of consecutive
roots in the7 « string containing 3, it follows that s +r = s’ + r/, which is
clearly impossible. Thus the string is connected, and since n = 0 belongs to
it, our claim follows.

(b) If 8 = ca, we can apply (4.9) to the « string containing 3 and the [

string containing o and obtain 2¢ € Z and % € Z. Thus if ¢ # 0, +£1, it follows
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that ¢ = i% or £2. But we already saw in the proof of Proposition 4.5 (c),
that 8 = 2a and a = 273 is not possible.

(c) Assume that [X,, X] = 0. The «a string containing (3 satisfies —p <
n < g. This implies that V = Zgz_p 93+na is invariant under ady,,adx,
and adx_, and taking the trace of ady, we get

0

tr(adm, )y = > (8+na)(Ha) = (p+ 1)B(Ha) —

n=—p

p(p;r 1)a(Ha) _0

Thus él f; = p. On the other hand, (4.9) implies that <( ﬂ)) — p—qand

hence ¢ = 0. But ¢ > 1 since a + 3 is a root, a contradiction. O

We next consider a real subspace of the Cartan subalgebra:

br=> R-H,Ch.

Its importance is given by:
Proposition 4.10

(a) B is positive definite on bg.
(b) br is a real form of b, i.e. h = hg + ibR.

Proof (a) First notice that, given H, H' € b,

(H,H) = B(H,H') = tr(ady adg) = > a(H)a(H').
aeA

If we let % = Nq,g € Z, we obtain

1
<Oé,Oé> = Z 'Y(Ha)g = Z<a¢ a>2 Z n?x,’y

YEA YEA
and since (a, a) # 0,

2 Ng 3
Zv ay 2oy My
Thus 7|p,,7 € A and hence By, are real valued. Moreover, for each 0 #
H € bg there exists a root 3 such that 3(H) # 0, and hence

=Y ~(H)? > B(H)* >0,
vEA
(b) Clearly hg ® C = b and thus b is spanned by hr and ihr. If X €

€Q, and (o) = €Q.

(o, ) =
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br N ihg, ie. X =iY with Y € bg, then (X, X) > 0 by (a) and (X, X) =
(iY,iY) = —(Y,Y) < 0, which implies X =Y = 0. O

If ¢ is a compact semisimple Lie algebra with t a maximal abelian sub-
algebra, then t ® C = h is a Cartan subalgebra of g := €¢. The roots of
ady, X € t are purely imaginary since it is real and skew-symmetric. It has
the following normal form: On t ir is 0, and t- C £ is the direct sum of
orthogonal 2 dimensional ‘root spaces’ in which adx has the form

(oo ")

in an orthonormal basis {v,w} and for some a € t*. In the basis {v +
iw,v — iw} it becomes diag(ia(X), —i(X)) and hence gio, = C - (v + iw)
and g_j, = C- (v —iw) = go. If on the other hand 3 is a root of g with
respect to b, it takes on real values on hg and thus hr = it.

Conversely, if we start with a complex semisimple Lie algebra g and ¢ is
a compact real form with Cartan subalgebra h = t ® C, then g_, = gao
and g® := (go ® g_o) Nt is a real 2 dimensional subspace of € on which
adx, X € ibhgr takes on the above form.

We now discuss the root systems of the classical Lie groups.

Classical Lie groups

Although convenient in the the proofs, it is in practice better to normalize
the Killing form. We will do so for each classical Lie group separately, in order
to make the standard basis of the Cartan subalgebra into an orthonormal
basis. Notice that all statements in the above propositions are unaffected.

g= 5[(TL, (C)

A Cartan subalgebra is given by
b={H =diag(h1,...,hn) | hi €C, > _h; =0} cC""!

Let E;; be the matrix whose only non-zero entry is a 1 in row ¢ and column
j. Then [H, E;;] = (hi — h;)E;j. If we let e; be the standard basis of C"*!
with H = Y hje; and w; the dual basis of (C"*1)*. Then we have the roots

A = {£(w; —wj) | i < j} with root spaces g, w; = CE;; fori# j
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The Killing form is given by
B(H,H) =Y o(H)a(H)=2Y (h;—hj)>=2n) h?
aEA i<j

since 0 = (D hi)? =Y h? +2 >_i<j hihj. We normalize the inner product
(-, ) = 5B so that e; is an orthonormal basis of C"! and thus Hy—w; =
e; — €. Clearly

hr = {diag(hl, ceey hn) | h; € R}

A word of caution: Notice that w; is not orthonormal basis of h*.Hence the
inner product should only be applied when > h; = 0 or > w; = 0. All roots
have length /2.

g =50(2n,C)

Although there are other choices for a maximal torus, which are sometimes
more convenient, we prefer, due to geometric applications later on, the com-
plexification of the maximal torus of SO(2n) discussed in. Let F}; = E;;—Ej;.
A simple way to remember the Lie brackets [Fjj, Fi;] in so(n) is as follows.
If all 4 indices are distinct, the Lie bracket is 0. Otherwise

[Fij, Fji] = Fi, where 4, j, k are all distinct

Since Fj; = —Fjj, this determines all Lie brackets.
The Cartan subalgebra is given by

b= {H = h1Fia + haFyi + - + hyFan_100 | hi € C}.
In order to describe the root vectors, define
Xkt = For—1021-1 + For o + i(—Fop 211 + Fop—1,21)
Yi = Fop—1,21-1 — Fopr + i(Fop21—1 + For—1,21)
A straightforward computation shows that
[H, Xig) = —i(he — hi) Xga , [H, Y] = i(hy + Ta) Y.

The remaining eigenvalues and eigenvectors are obtained by conjugating the
above ones. We set e; = iFb_192; € hr and let w; be the basis dual to e;.
We therefore have the root system

A = {t(w; +wj), £(w; —wj) i<}

One easily shows that the Killing form is B = 4(n — 1) Y w? and we use
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the normalized inner product (-, -) = mB. Then e; and w; become an

orthonormal basis of h and h*, and Hyiw+w;, = te;+ej. Notice that all roots
again have length v/2.

g=s50(2n+1,C)

We choose the same maximal torus as in s0(2n,C) C so(2n + 1,C). The
roots and root vectors in s0(2n,C) remain roots in so(2n + 1,C). But we
have additional root vectors:

[H, For—12n+1 + iFok 2n+1] = thi(Fag—1.2n+1 + 1Fok 2n+1)

and their conjugates. Thus the root system is

A= {:twi, i(wl —l—wj), j:(wl — wj) | 1< j}

with Killing form B = 2(2n—1) }_ w?. In the inner product (-, -) = MB

e; and w; are orthonormal basis and the root vectors are Le;, &ze;+e;. Notice
there are short roots of length 1 and long roots of length /2.

g =sp(n,C)

Recall that

ap(n, C) = {(Si;'%) | BeginC), S € Symn(C)}

For a Cartan subalgebra we choose
h= {H = diag(hl,...,hn,—hl,...,hn) | h; € (C}

If we let

X1 =Eniki+Envip » Xkg = Exntt + Epngrs k<1

Yii = Exg — Entintk, k<l

then

[H, Xpy) = —(hie + ) Xiy 5 [H, Xig] = (hi 4+ hi) Xy

[H, Yi1] = (hi — hi) Yy

Notice that this includes [H, Xy x] = —2hp Xy k, [H, Xpx] = 2hp Xy We

I



62 Chapter 4 Complex Semisimple Lie algebras

—_—

normalize the Killing form so that e; = F; ; — Ep4jnti € br, and its dual w;
are orthonormal basis. The roots are

A = {+2w;, +(w; —l—wj), +(w; — wj) i< j}

The Killing form is B = 4(n + 1) Y w? and we use the normalized inner
product (-, ) = mB in which e; and w; become an orthonormal basis
of h and h*. The root vectors are thus +e; + e;. Here there are roots of
length 2 and of length v/2. Notice the difference between the root system
for so(2n 4+ 1,C) and sp(n,C). Both Lie algebras have the same dimension
and rank, but the difference in root systems will enable us to prove they are

not isomorphic.

Exercises 4.11

(1) Find a basis for the root spaces of sl(n,C) and sp(n,C) in their com-
pact real form SU(n) and Sp(n) with respect to the maximal torus
from previous sections.

(2) For each classical Lie algebra, start with a fixed root and find all other
roots by using only the string property in Theorem 4.8

(3) Show that the only complex semisimple Lie algebra of rank 1 is iso-
morphic sl(2, C).

/4.2 Dynkin diagram and classification

Recall that the a-string containing 3 is of the form {5 + na | —p < n < ¢}
and
2(a, B) _

(@, )

Naps =

We will call nog the Cartan integers. Note that (o, ) < 0 implies a+f €

A, and (a, f) > 0 implies o — 5 € A. If, on the other hand («, 5) = 0, then

all we can say is that one can add o as many times as one can subtract it.
But notice that we always have the following important property:

It o, 3 € A then § — 2<<a’6>>oz e (1.12)
o,

Moreover

= 4dcos*(£(Ha, Hp)) € {0,1,2,3,4}
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since the product above is an integer, and is < 4. Note that 4 cos?(£(Hq, Hg)) =
4 iff @ = £ and otherwise n,3 = 0, £1,+2, £3. Also, if a and 3 are neither
parallel nor orthogonal, one of n,g,n3, is £1, and the other is £1, £2,43.
We summarize the possible options in the following table. Notice though
that the a string containing 3 could have more roots in it if 3 + « (in the
case nqgg > 0) is a root as well.

Nag Nga 4£(Ha,Hg) Relative Size o String Containing g

0 0 g N/A N/A
m
1o 3 81 = lal? 8.8-a
2m
R S i B.6+a
m
2 1 T BP=2P  BB-af-20
2 a2 gr=seP  ABtapta
31 S BP=3shP BA-apf-205-3
om 9 9
3 -1 2 AP =3aP  AB+af+20,84 30

Table 4.13. Relationship between o, (3 if |B| > |a].

As we will see, the last possibility |a|?> = 3|3|? is only possible for one
simple Lie group, namely for the exceptional Lie group Gs.

These relationships are clearly very restrictive. As an example, we use
them to classify semisimple Lie algebras of rank 2. For simplicity, we nor-
malize the Killing form so that short root vectors have length 1. One has
the following 4 possibilities.

1) There are 2 orthogonal roots +a, £ and no others, i.e. all roots are
orthogonal. This is the Lie algebra s((2,C) & sl(2, C).

2) There are 2 roots «,/3 with angle %, and thus |a]* = [8]*> = 1 and

(a,8) = 3. Hence 8 — a is a root with |3 — > = 1. The 6 roots are
arranged at the vertices of a regular hexagon. There is clearly no room for
any further roots satisfying the angle conditions in Table 4.13. This is the
Lie algebra sl(3,C).

3) There are 2 roots «, with angle 7, and thus a2 = 1, |p?
2, {a,3) = 1 and B — a, 8 — 2a are roots as well. This implies |3 — a|? =
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1, |8 —2al?> =2 and (o, 3 — a) = (3,8 — 2a) = 0. Thus there are 8 roots,
arranged on the corners and midpoints of a square of side length 1. There
is no room for any further roots satisfying the angle conditions. This is the
Lie algebra so(5,C).

4) There are 2 roots «, 8 with angle &, and thus la)? =1, |8]> =3, (o, 3) =
% and 3, f—a, f—2a, f—3a are roots as well. Since 2(3, 5—3a)/(53, 5) = —1,
(8 —3a) 4+ = 26 — 3a must be a root as well. The 6 roots ta, +(5 —
a),£(f — 2a) have length 1 and form a regular hexagon. The 6 roots
45, +(8 — 3a), (208 — 3«) have length squared 3 and form another reg-
ular hexagon. Two adjacent root vectors have angle ¢. There is no room
for further root vectors. The Lie algebra has dimension 14. At this point it
is not clear that such a Lie algebra exists, but we will see later on that it is
one of the exceptional Lie algebras gs.

To study root systems of higher rank, we need to organize the roots more
systematically. For this we introduce a partial ordering.

Definition 4.14

(a) We call Hy € b regular if a(X) # 0 for all « € A and singular
otherwise.
(b) We say that a« < 3 for o, p € A if a(Hy) < B(Hy) and set

AT ={a € A|a(Hy) >0}
(c) A root a € AT is called simple or fundamental if o # 3 + v for

any B,y € A},
(d) We call F = {a,...,an} the set of fundamental roots.

From now on we fix a regular element Hy and hence A* and F.

Proposition 4.15

(a) If o, j € F, then (o, o) <0 fori # j.

(b) The elements of F are linearly independent.

(c) If « € AT, then o = > m;; with m; > 0. In particular, F is a basis
of by

Proof (a) If (o, j) > 0, then oy — oj € A, so either o — a; € AT or
aj —a; € AT. Hence either oy = aj + (o — o) or aj = o + (aj — ) s
not in F, a contradiction.
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(b) Let F' = {ai,...,axr}. Assume Y n;o; = 0. Moving negative coeffi-
cients to the right hand side, we have > p;a; = > gy with p;,¢; > 0 and
each «; appears in at most one summand. Then

O pici, > piog) = O pici, Y gias) =Y piglai, a;) <0,

as each product of distinct fundamental roots is non-positive and p;, g; are

positive. Therefore Y p;a; = > ¢y = 0, and hence all n; are zero.
(c) If v is not simple, it is the sum of 2 positive roots and continuing in this
fashion, we can write a as a sum of simple roots, possibly with repetitions.
O

We encode the roots as follows, where we have set n;; = na,a;:

Definition 4.16 Let A be the root system with fundamental roots F =
{ai,...,an}. We define its Dynkin diagram as follows:

(a) Draw one circle for each a; € F.
(b) Connect a;, 5 € F' by nijnj; many lines.
(¢) If nijnj; > 1, make the circle corresponding to the shorter root solid.

Another convention in (c) is to draw an arrow from the longer root to the
shorter root. We often denote the Dynkin diagram of g by D(g).

One can also encode the root system via its Cartan Matrix A = (n;;).
This matrix in fact plays a significant role in many areas of mathematics.

Classical Lie groups

We now exhibit the Dynkin diagrams of the classical Lie groups. It is
conventional to use the following abbreviations for the Dynkin diagrams and
their corresponding Lie algebras, where the index denotes their rank. A, for
sl(n+1,C), B, for so(2n + 1,C), C, for sp(n,C), and D,, for so(2n,C).
We choose the Cartan algebras as in the previous section and retain the
notation.

A, =5l(n+1,C)

The roots are A = {£(w; —wj) | 1 <i < j <n+1}. We choose a regular
element Hy = diag(hi,..., hyt1) with Ay > hg > -+ > hyyq and > h; = 0.
Thus AT = {w; —wj | i < j}. One easily sees that the simple roots are
F ={w; —wo, wa — w3, ...,wp, —wp+1} and all Cartan integers are 1. Thus
the Dynkin diagram is:

I
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w1 — w2 w2 —ws Wn — Wn+1

B, =s0(2n+1,C)

The roots are A = {£w;, £(w; +wj), £(w; —wj) | ¢ < j} and we choose
a regular element Hy = diag(hy,...,h,) with Ay > hy > -+ > h,. Then
At ={w;, wi+wj, wi —wj |1 <j}and F={wi —wa,..., Wp—1 — Wn, Wn}
Thus the Dynkin diagram is:

w1 — w2 w2 — W3 Wn—1 — Wn Wn

OO0+ + s O—O——@

Ch =5p(n,C)

The roots are A = {+2w;, £(w; +wj), £(w; —wj) | i < j} and we choose
a regular element Hy = diag(hy,...,h,) with hy > hy > -+ > h,. Then
AY = {2w;, witwj, wi—wj | i <j}and F = {w) —wa,...,wn—1 —Wp, 2wn }.
Thus the Dynkin diagram is:

w1 — Wy Wy — w3 Wh—1 — Wp, 2wy,

o ©@-:--06 06—

D, = s0(2n,C)

The roots are A = {£(w; + w;), £(w; —wj) | ¢ < j} and we choose
a regular element Hy = diag(hy,...,h,) with hy > hy > --- > h,. Then
AT ={witwj, wi—w; | i < jland F = {wi—ws, ..., Wp_1—Wn, Wn_1+wn}.
Thus the Dynkin diagram is:
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O Wn—-1—Wn
W1 — w2 W2 — w3

Oio e o o Oio Wn—2 — Wnp—1
O Wn-1 + wn
We will now show that one can recover the root system from the Dynkin

diagram. Let F' = {aq,...,a,} be the fundamental roots of A. If o € AT,
write & = ) njo; with n; € Z, n; > 0 and define the level of a to be )", n;.

1ovel || Lemma 4.17 Given o € AT of level n, there exists an o* of level n — 1
and a simple root «; € F such that o = o + «;.

Proof Let 0 # a = ) n;ay, with > n; =n. Then (o, ) =) ni{a,a;) > 0.
Since n; > 0, there exists at least one simple root, say ay, with (o, ag) > 0
and ng > 1. Thus a — oy, is a root, and is positive since n; > 1. But a — ay,
has level n — 1 and a = (o — ) + g, which proves our claim. O

From the Dynkin diagram we recover the integers n;; nj;. Since the values
of n;; are only £1,42,£3, and since the diagram tells us which root the
shorter one is, Table 4.13 determines the values of n;;. We thus recover the
lengths and inner products between all simple roots. Next, we reconstruct
all positive roots one level at a time. To go from one level to the next, we
need to decide if a simple root can be added. But this is determined by the
string property of roots since we already know how many times it can be
subtracted.

Example 4.18 The exceptional Lie group Go has Dynkin diagram

a B
O=———e

According to Table 4.13, we have <<o‘ ﬁ>> —1and <<O‘ Bﬁ>> —3. Thus we have

only one root of level one, namely o + 3. According to the string property,

we cannot add «, but we can add 3 to obtain « 4+ 23, the only root of level
2. To this we cannot add « since twice a root cannot be a root, but we can
add 3 again to obtain a4+ 33, the only root of level 4. We are not allowed to
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add @ anymore, but we can add « since W =2+ 6<<5’5>> = —1. To the
root 2a 4+ 343 of level 5 we clearly cannot add « or beta, and hence we are
done. There are 6 positive roots, 6 negative ones, and hence the Lie algebra

has dimension 14.

Next we will show that one can reduce the classification to connected
Dynkin diagrams.

Proposition 4.19 The Lie algebra g is simple iff the Dynkin diagram
D(g) is connected.

Proof Assume that g ~ g1 @ go and h; C g; Cartan subalgebras with root
systems A;. Then h = by @ hy clearly is a Cartan subalgebra of g. If
a; € A; with root spaces gq,, then go, 0 and 0 @ g,, are root spaces with
roots 3;(Hy, Hz2) = a;(H;). The ideals g1 and go are clearly orthogonal with
respect to the Killing form and hence (Hg,, Hg,) = 0 . If H; are regular
elements of b;, then (Hy, Hs) is a regular element for h. Now one easily sees
that the Dynkin diagram D(g) breaks up into two components, namely the
Dynkin diagrams D(g;) and D(g2) with no arrows connecting them.
Conversely, given two connected components D; of a Dynkin diagram, all
simple roots in one are orthogonal to all simple roots in the other. Let h; be
the subspace generated by the simple root vectors of each. Then fh = h; B bho
with (h1,h2) = 0. Constructing all positive roots from the simple ones as
above, one level at a time, we see that the set of roots brake up into two
sets, AT = AT U AJ with the root vectors of Aj lying in b;. Furthermore,

if o € A;r, a1 + g is never a root. Of course A~ = —AT. We can thus let
g; be the span of h; and the root spaces corresponding to roots in A;. This
implies that g; are ideals and g = g1 & go. O

In particular

Corollary 4.20 The classical Lie algebras sl(n,C), sp(n,C), as well as
so(n,C) with n # 2,4, are all simple.

Notice that for so(4,C) the roots are (w1 + wa), £(w; — we). Hence
the 2 positive roots are orthogonal and its Dynkin diagram is the discon-
nected union of 2 circles, corresponding to the fact that so(4,C) ~ s0(3,C)®
s0(3,C).

For the classification of the Dynkin diagrams, it is sufficient to make the
following assumptions on the roots.
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Definition 4.21 An abstract root system is the data (V,(-,-),A), where
V' is a real vector space, (-,-) a positive definite inner product, and D a set
of (root) vectors in 'V that span V', and such that:

a) Ifa, B €A then2<a’ﬁ>EZ'
(a) If o, B € A, ;

(a,)

b) Ifa,6€ A, and B=c-«, then c=0,+1;
(b) If
¢) If a, B €A, then B — 2904 ¢ A,
(

a,a)

Notice that (c) is weaker than the string property. Given this definition of
a root system, however, it is possible to re-obtain many of the results we
proved. The Dynkin diagram is defined similarly: A vector Hy € V is called
regular if (Hp,v) # 0 for all v € A. This determines the positive root vectors
At ={v e A | (Hy,v) > 0} and one defines the Dynkin diagrams as before.
A root system is called simple if A cannot be decomposed into two mutually
orthogonal sets of root vectors. As above, one shows that the root system is
simple iff its Dynkin diagram is connected. This gives rise to a classification
of Dynkin diagrams.

diagramclass| Theorem 4.22 Given a simple root system (V. (-,-),A), its Dynkin dia-

gram is one of the following:

(a) The Dynkin diagram associated to one of the classical semisimple Lie
algebras A, n>1; B,,n>3;Cp, n>2; Dy, n>4.
(b) One of the exceptional Dynkin diagrams Ga, Fy, Eg, E7, E3.

The exceptional diagrams are given by:

Gy, O———eo

Fy O————(O—/——e—— 0

O——=oO

Es O O O O
Er O O O O O O
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O——=O

Es O O

O O O O

The proof of this classification is purely combinatorial and pretty straight
forward but tedious. We will thus omit the proof.

Notice that s((3,C), s0(3,C), sp(1,C) all have the same Dynkin diagram
and hence, by the above, are isomorphic. Furthermore, By = C5 and A3 =
D3, corresponding to the fact that so(5) and sp(2), resp. su(4) and so(6) are
isomorphic as real Lie algebras, and hence via complexification as complex
ones as well, see Proposition 2.21l This explains the restriction on the indices
in Theorem [4.22. Notice though that the equality of Dynkin diagrams does
not (yet) imply that the corresponding compact Lie algebras are isomorphic
since a complex Lie algebra can have many real forms.

To finish the classification of semisimple complex Lie algebras we still need
to prove the following.

diagramclass2| Theorem 4.23 Let g be a complex simple Lie algebra.

(a) The Dynkin diagram of g is independent of the choice of a Cartan
subalgebra and a choice of ordering.

(b) Two simple Lie algebras are isomorphic iff their Dynkin diagrams are
the same.

(c) Each Dynkin diagram arises from a complex simple Lie algebra.

In the next two sections we will be able to prove part (a) and (b). For
part (c) one can either exhibit for each Dynkin diagram a simple Lie group,
as we have done for the classical ones, or give an abstract proof that such
Lie algebras exist, see... We prefer the first approach and will construct the
exceptional Lie algebras in a later chapter.

Exercises 4.24

(1) Show that a string has length at most 4.

(2) For some of the classical Lie algebras of low rank, start with the
Dynkin diagram and find all roots by the process performed in Ex-
ample 4.18

(3) Given a root system as defined in Definition 4.21, prove the string
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property of roots and convince yourself that we recover all the prop-
erties we proved for the roots and Dynkin diagram of a semisimple
Lie algebra in the case of a root system.

/4.3 Weyl Chevally Normal Form

There exists a basis of a simple Lie algebra which is almost canonical
and has important consequences. Before we describe the basis, we introduce
another useful concept. Recall that associated to a root a € A, we have
the root vectors H, defined by (H,, H) = a(H). We call the renormalized
vector

2

= Taa)

[0

the co-root or inverse root. Notice in particular that a(7,) = 2 and that,
unlike the root vectors H,, the coroots 7, are independent of the scaling of
the inner product. Another reason why they are important, although we will
see further ones later on, is that

2(a, )

(o, a)

[7a, X = Xp = B(1a) X = n0,sX3
and thus the coefficients are integers. From now on we will also choose
Xa € ga, X_q € g—q such that

[(Xa, X_0] = Ta-

Much less trivial is that we can choose the whole basis of g such that all Lie
brackets have integer coefficients. This is the content of the Weyl Chevally
normal form:

I@ Theorem 4.25 Let g be a complex simple Lie algebra with root system
A, positive roots A" ordered by some Hy, and fundamental roots F' =
{a1,...,a,}. Then there exists a basis for g consisting of the coroots
To; €0,1 <i<nand X, € ga, X—a € g—a, for all « € AT, such that:

(a) [Tai’Xﬁ] = nq,,3X3,

(b) [XaaXfa] = Ta,

(c) If o, B, + B € A, then [X,, Xg] = =(t + 1)Xo43, where t is the
largest integer such that 8 —ta € A,

for an appropriate choice of signs.
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Some comments are in order. We already saw that (a) holds, and (b) is
clearly possible for appropriate choice of X,,. So the main content is part (c).
If o, B,0 4+ B € A, we already saw that [X,, Xg| = Ny gXqyg for some non-
zero No g € C. One first shows that Ny gN_o g = —(t + 1)2 for any choice
of X, satisfying (b). Then one shows that one can choose X, inductively
so that N, 3 = —N_, s by induction on the level of the roots (after fixing
an ordering). Along the way one is forced to make certain sign changes. To
explain the issue, say that v has level k and v = a+ 3 where the level of «, 8
is less than k. If one chooses a sign for N, g, then the signs for Ny« g« with
v = o + §* are determined. It turns out that one can make an arbitrary
choice for one of these at each level.

The vectors X, can of course be changed by ¢, as long as co,c_o = 1. Up
to these choices of ¢,, and the above choice of signs at each level, the basis
is unique.

We now derive several consequences.

integralbasis

Corollary 4.26 There exists a basis such that all structure constants are

integers.

In particular, the classical and exceptional Lie algebras exist over any field.
More importantly

Proposition 4.27 Let g; be two semisimple Lie algebras with Cartan
subalgebras b; and root systems A;. If f: Ay — As is a bijection such
that f(—a) = —f(o) and f(a+ B) = f(a) + f(B) whenever o, 3,0 + 3 €
A1, then there exists an isomorphism ¢: g1 — go with ¢(h1) = ho which
induces f on the respective set of roots.

Proof Since f preserves addition of roots, the chain properties of roots imply
that f also preserves the length and inner products of all roots (after scaling
both inner products appropriately). Hence we can define f*: h; — ho first by
sending n linearly independent root vectors in h; to the corresponding ones
in ho. This defines an isometry, after appropriate scaling, since length and
inner products are determined by the string property. By the same reasoning
f* carries all root vectors to corresponding root vectors. Next we define an
order with respect to an arbitrary choice of a regular vector Hy € h; and
f(Hp) € b2, which one easily sees is regular as well. We then choose the
basis 7,,, Xo for both inductively as in the proof of Theorem 4.25, making
the same sign changes along the way. By setting f*(X,) = X, we get the
desired isomorphism. O
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As we saw earlier, one can recover the whole root system from its Dynkin
diagram. Thus

Dynkiniso | Corollary 4.28 Two semisimple Lie algebras with the same Dynkin
diagram are isomorphic.

Exercises 4.29

(1) Prove the existence of the covers in Proposition 2.20/ and Proposi-
tion 2.21! just from the Dynkin diagrams.

(2) If A is a root system as defined in Definition 4.21) let A* = {7, | @ €
A} be the set of coroots. Show that A* is a root system as well. For
the simple Lie algebras with root system A, identify the Lie algebra
with root system A*.

To obtain more information we will study the Weyl group of a complex
semisimple Lie algebra. In the next section we will see that it is equal to the
Weyl group of its compact real form.

Let g be a complex semisimple Lie algebra with Cartan subalgebra h and
root system A. For a € A we define the reflections in the hyperplane
{X € br | a(X) = 0} which are given by
2(H, o)

(a,q)
This is indeed the desired reflection since a(H) = 0 implies so(H) = H and

Sa(Ha) = Hy — 2H, = —H,. It also induces a reflection in h*, which we
again denote by s, which acts on roots:

2(p,0)

(o, )

Sa:h—1b : sa(H)=H —

H,=H - (H,a)7,.

sa(B) =B —

= /8 - B(Ta)a‘

Notice that the string property implies that s,(3) € A if a, 8 € A, i.e. s4
permutes roots (resp. root vectors). Thus s, preserves hr. It also follows
from Proposition [4.27| that s, is the restriction of an automorphism of g to
b, although we will later see that it is even an inner automorphism. Notice
that property (c) of a root system has the geometric interpretation that the
root system is invariant under the Weyl group.
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Definition 4.30

(a) The Weyl group W (g) is the group generated by the reflections
Sa, a0 € AL

(b) The Weyl chambers are the components of the complement of

Uqen ker a.

Notice that the union of the Weyl chambers are precisely the regular elements
of g. We will denote a generic Weyl Chamber by WC.

Weyl-ordering Proposition 4.31

(a) If two regular elements Hy, Hs lie in the same Weyl chamber, then
they define the same ordering. Thus Weyl chambers are in one-to-one
correspondence with orderings of the root system.

(b) W(g) takes Weyl chambers to Weyl chambers and acts transitively
on the Weyl chambers.

Proof (a) The ordering is determined by the set of positive roots. But a
Weyl chamber is convex and hence connected, so if a root is positive on one
vector it must be positive on all.

(b) To see that Weyl chambers are taken to Weyl chambers we need to show
that singular vectors are taken to singular ones. But by duality s, (8)(H) =
B(sa(H)) or s4(8)(sa(H)) = B(H). Since so(8) € A if o, € A, this
implies that if H is singular, so is sq(H).

If W' is another Weyl chamber, we can choose a sequence of Weyl cham-
bers WC = WCq,...,WC), = WC" such that WC; shares a "wall" ker o
with WC;41. The reflection in this wall clearly takes WC; to W41 and
hence the composition of such reflections takes WC to WC’. Thus w also
takes Cartan integers to Cartan integers and these determine the Dynkin
diagram. O

If we specify an ordering, we sometimes denote the Weyl chamber corre-
sponding to this ordering as WC'™.

We are now ready to show that the Dynkin diagram is independent of any
choices.
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G-Dynkin Proposition 4.32 Let g1, go be two semisimple Lie algebras with Cartan
algebras b; and roots A;.

(a) If A: g1 — g2 is an isomorphism with A(h1) = b2, then a0 A € Ay if
a € As.

(b) The Dynkin diagram of g does not depend on the choice of Cartan
subalgebra and ordering.

(c) Isomorphic Lie algebras have the same Dynkin diagram.

Proof (a) Since a € Ag, we have [H, X,] = a(H )X, and applying the iso-
morphism A~ we get [A™1(H), A=Y X,)] = a(H)A Y (X,) or [H', A7 (X,)] =
a(A(H"))A71(X,) which proves our claim.

(b) Let b; be two different Cartan subalgebras of g and WC; C b; two
Weyl chambers defining an ordering and hence fundamental roots F;. Then
by Theorem 4.2! there exists A € Aut(g) such that A(h;) = b2 and by part
(a) A takes roots to roots. This implies that A takes Weyl chambers to
Weyl chambers and hence by Proposition 4.31] (b) there exists w € W(g2)
with w(A(WCi)) = WC5. w is also a restriction of an automorphism B
and replacing A by BA we can assume that A(WC;) = W(C5. Hence A
takes positive roots to positive ones and simple ones to simple ones. Since an
automorphism is an isometry with respect to the Killing form, inner products
are also the same, which implies the Dynkin diagrams are the same.

(c) Let A: g1 — g2 be the isomorphism and h; a Cartan subalgebra of g;
and Hy a regular element. Clearly A(h;) is a Cartan subalgebra in go and A
takes roots with respect to h; to roots with respect to A(h1). Hence A(Hy)
is regular in A(h;). Now we proceed as in (b). O

We have now established the desired one-to-one correspondence between
semisimple Lie algebras and Dynkin diagrams, and between simple Lie alge-
bras and connected Dynkin diagrams.

Exercises 4.33

(1) Show that if « is a root, then there exists a w € W such that wa is
a simple root.

(2) Show that there are at most two possible values for the length of
roots. We can thus talk about long roots and short roots. Show that
the set of long roots form a subalgebra and identify it for each of the
classical simple Lie algebras.
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In this section we relate our classification results to compact Lie algebras
and show the two definitions of a Weyl group are the same.

compactrealform| Proposition 4.34 Every complex semisimple Lie algebra g has a compact

real form.

Proof Choose a Cartan subalgebra h C g and an ordering A*. Next, choose a
basis 7o, Xa, X—q as in Theorem [4.25 and let € be the real span of i1y, i(Xq+
X_0), Xa—X_q4, a € AT. We claim that this is indeed a compact real form.
First, we check that it is a subalgebra:

X0+ Xa)] = [ X3l = 1 Xs] = =22 0 = X
(70, (X — Xp)] = 2<Si’a>>i(Xﬁ +X-p)

For the remaining brackets, recall that in the proof of Theorem 4.25 one
shows that N, g = —N_, g where [ X, Xg] = Ny 3Xa43. Thus for example

[Xa - X_., i(Xg —i—X,ﬁ] = Na7ﬁ2‘(Xa+IB + X,a,[g) + Na,fﬁi(Xafﬂ —i—Xﬂ,a).

and similarly for the others.

It is also clear that € is a real form. To see that it is compact, we will show
that B < 0. Since the Killing form restricted to a real form is again the
Killing form, i.e. BgIE = By, Proposition 3.25/ finishes our proof. Recall that
(Xa,Xg) =0 unless & + 3 = 0 and hence the above root space vectors are
orthogonal to each other, and to ¢ as well. Furthermore, from [X,, X_,] =
(X, X_a)H, it follows that (X, X_a) = 2/(a, a). Thus (Xo — X_o, Xo —
X_o) = —2/{a,a) <0 and (i(Xo + X_0),i(Xa + X_q)) = —2/(, ) < 0.

Since Bjy, > 0, we have Bj;p, < 0, and the claim follows. O

As a special case, we observe the following. Since
[TaaXa] = 2Xa7 [TaaX*a] = _2X7a7 [Xavaa] = Ta

we obtain a subalgebra

sly = spanc{7a, Xo, X o} C @ (4.35)
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which isomorphic to s[(2,C), the isomorphism given by

10 0 1 0 0
el ) (i) e (V)

Furthermore,
b, = spang{ita, i(Xo + X o), Xoa — X o} Ct (4.36)

is a compact subalgebra isomorphic to su(2), the isomorphism given by

) i 0 ) 0 2 0 1
lTa—><0 —i>7 Z(Xa+X_a)—><Z, 0>’ XQ—X_Q—>(_1 O>'

Notice that ¢, ® C C £ ® C ~ g agrees with sl,. Furthermore, ¢, generates
a subgroup of K which is isomorphic to SU(2) or SO(3) depending on the
choice of a.

These 3-dimensional subalgebras sl,, and €., generated by each root € A,
are crucial in understanding the structure of g.

The uniqueness of the compact real form is closely connected to the clas-
sification of all real forms.

realform|| Theorem 4.37 Let g be a complex semisimple lie Algebra, and £ a com-
pact real form. Given A € Aut(£) with A?> = Id, we can decompose ¢
as

t=modn, Anw=Id, A,=-1d.
Then

(a) g =m @ in is a subalgebra of g and is a real form of g.
(b) Every real form of g arises in this fashion, unique up to inner auto-
morphisms of g.

The proof is non-trivial and we will omit it here. But we make the following
observations.

Since A[X,Y] = [AX, AY], we have:
[m,m] Cm, [m,p] Cp, [p,p] Cm,

This implies in particular that g is a subalgebra of g. And ¢ ® C = g clearly
implies that g ® C = g, i.e. q is a real form. Since £ is compact, its Killing
form is negative definite. This implies that it is negative definite on m and
positive definite on in. Thus q is a non-compact real form, unless n = 0. In
particular:
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|uniquecompactform I\ Corollary 4.38 Any two compact real forms of g are conjugate in g.

This implies a classification for compact semisimple Lie algebras:

compactclass | Corollary 4.39 There is a one-to-one correspondence between complex
semisimple Lie algebras and compact real forms. Hence there is a one-to-
one correspondence between (connected) Dynkin diagrams and compact

simple Lie algebras.

As we saw, for the classical simple Lie algebras we have:

(8,8) = (sl(n, C), 5u(n)), , (so(n,C),s0(n)), , (sp(n,C),sp(n)).

Hence SU(n), SO(n), Sp(n) are, up to covers, the classical simple compact
Lie groups, and the exceptional simply connected ones are, using the name
name as the one for the complex Lie algebra, Go, Fy, Fg, F7, Es. Any other
compact Lie group is up to covers, a product of these simple ones, possibly
with a torus as well.

Theorem |4.37 enables one to classify all non-compact real simple Lie al-
gebras as well.

Example 4.40 The real forms of sl(n, C) are sl(n,R), su(p, ¢) and sl(n, H).
Include proof....

We now show that the two definitions of a Weyl group agree, which enables
us to prove a further property of the Weyl group.

weylKG| Proposition 4.41 Let K be a compact semisimple Lie group and g = ¥c
with t C € maximal abelian and h = t® C C g a Cartan subalgebra.

(a) the action of the Weyl group N(T')/T of K on t agrees with the
restriction of the action of W(g) to ibg.

(b) The Weyl group acts simply transitively on the set of Weyl chambers,
ie. ifw e W(g) takes a Weyl chamber to itself, w = Id.

Proof For one direction we need to show that for all w € W(g), there exists
an n € N(T) such that w = i Ad(n)};. It is clearly sufficient to do this for
the reflections s,, a € A.

Recall that the 3 vectors

Aq=i7a, Ba=Xa+X_0, Co=1i(Xa—X_0a)
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form a subalgebra of ¢ isomorphic to su(2) with
[Acw Ba] = 20047 [BOH Ca] = 2Aa7 [AOM Ca] = _2Ba

We now consider the one parameter group g(s) = exp(sB,) and claim
that n = g(%) is the desired reflection s,. For this we need to show
that Ad(n)H = H if a(H) = 0 and Ad(n)H, = —H,. In the first case
Ad(g(s))H = Ad(exp(sBy))(H) = e*¥sBa H = H since [By, H] = (X4 —
X o, H =a(H)(Xq+X_o)=0.

For the second case observe that

adsp, (Aq) = —25C4, adzBa(Aa) = —45%A,, anga (Ay) = 8s3C,,
and hence
adiB(, (Aa)
7!

Ad(g(s5))(Aa) = Ad(exp(sBa))(4a) = €+Pa (Aq) = Z

25 21 -1 iAa 25 2i+1 -1 iCa
:Zi:( )((Zi)!) 72( )" (=D

(20 +1)!
= cos(2s) A, — sin(2s)Cy,

s

2

This finishes the proof of one direction. For the other direction we need
to show that if n € N(T), then Ad(n)|; = wy;; for some w € W(g).

Recall that if A € Aut(g) with A(h) C b, then A permutes roots. Thus
Ad(n) permutes roots and hence takes Weyl chambers to Weyl chambers. Fix
an ordering and hence a positive Weyl chamber WC. Then Ad(n)WC™ is
another Weyl chamber and hence there exists w € W (g) with w Ad(n)(WC™)
WC*. We already saw that w = Ad(n’) for some n’ € N(T') and hence
Ad(n/n)(WCT) = WCT. We will now show that this implies n'n € T and
hence Ad(n); = Ad(n'){* =w™! = w.

So let g € N(T) with Ad(g)(WC™) = WC™ and choose Hy € WCT.
Since N(T))/T is finite, there exists a k such that Ad(g*);; = Id and we can
define H} = %Zle Ad(g)(Hy). Since WC™ is convex, H} € WC™ is non-
zero and clearly Ad(g)H§ = H;. Let S be the closure of the one parameter
group exp(isHg) C T. Notice that gexp(isHg)g™! = exp(is Ad(g)(HY)) =
exp(isHy), i.e. g € Zk(S) the centralizer of S in K. From Lemma [3.34! it
follows that Zk(S) is the union of all maximal tori that contain S and is
hence connected. Its Lie algebra Zg(s) clearly contains t but is also contained
in Zg(Hy). But Hy is regular and hence Zy(Hg) = ker(ady; ) = t since ad

I
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does not vanish on any of the root spaces. Thus Zg4(s) = t as well and hence
Zk(S) =T. But this implies that g € Zx(S) = T, which finishes the proof
of (a). Notice that we have proved part (b) at the sam time. O

Combining both we obtain:

WeyllInt || Corollary 4.42 If g is a complex semisimple Lie algebra, then W (g) C
Int(g).

Proof Recall that Int(g) is the Lie subgroup of GL(g) with Lie algebra
{adx | X € g}. In particular, it is generated be linear maps of the form
e?dx X € g. If £ is a compact and semisimple (real) Lie algebra, then
Int(¥) is compact as well since its Lie algebra Jnt(t) ~ €/3(¢) ~ ¢ is compact
and semisimple. Since the exponential map of a compact Lie group is onto,
we can actually say Int(£) = {e*dx | X ¢ €}. In particulat there is a
natural embedding Int(¢) — Int(€c) via complex extension of adx. In the
proof of Proposition [4.34, starting with a complex Lie algebra g with Cartan
subalgebra b, we constructed a compact real form ¢ with maximal abelian
subalgebra t C € such that h = t ® C. In the proof of Proposition 4.41 we
showed that each w € W(g) is of the form Ad(n)® C for some n € N(T) C
K. By the above, since Ad(n) € Int(#), we have that w € Int(g). O

Our final application is:

DynkinSym|| Proposition 4.43 Let K be a compact semisimple simply connected Lie
group and g = t¢ with Dynkin diagram D(g). Then

Aut(K)/Int(K) ~ Aut(t)/Int(¢) ~ Aut(g)/Int(g) ~ Sym(D(g))

where Sym(D(g)) is the group of symmetries of the Dynkin diagram.

Proof The first equality is clear. For the second one we have a homomor-
phism ¢: Aut(¢) — Aut(g) via complex extension and as we saw in the
proof of the previous Corollary, it also induces ¢: Int(¢) — Int(g) via com-
plex extension of ady. Thus we get a homomorphism ¢: Aut(€)/Int(€) —
Aut(g)/Int(g). To see that ¢ is onto, let A € Aut(g). Then A(E) is an-
other real form of g and by Corollary 4.38, there exists an L € Int(g) with
L(A(€)) = & Thus LA € Aut(€). To see that ¢ is one-to-one, we use that
fact that Int(g) N Aut(€) = Int(g).

For the last isomorphism, we start with A € Aut(g). As we saw before,
we can assume, modulo Int(g), that A(h) = b, A(AT) = AT and hence
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A(F) = F. A thus permutes the simple roots, but since it is also an isometry
in the Killing form, inner products are preserved and hence the induced
permutation of vertices of the Dynkin diagram also preserves the connections,
i.e. it induces a symmetry of the Dynkin diagram.

Conversely, if we start with a symmetry of the Dynkin diagram, we can
apply Corollary 14.28| to get an automorphism that induces this symmetry.
We are left with showing that if A induces a trivial symmetry of the Dynkin
diagram, then A € Int(g). But this condition is equivalent to saying that
Ajp = 1d. Thus to finish the proof we need the following Lemma which is of
independent interest.

trivial || Lemma 4.44 If h C g is a Cartan subalgebra and A € Aut(g) with
Ajp = 1d, then there exists an X € b such that A = edx

Proof An automorphism permutes roots and takes root spaces to corre-
sponding root spaces. Since A fixes all roots by assumption, A(gs) C ga
and since dim g, = 1, we have A;, = ¢, Id for some c,. If o; are the simple
roots, then there exists a unique X € b with cq = ). Now let B = e?dx
and we want to show A = B. We can do this level by level, using the fact
that both A and B are automorphisms and that the claim is true by choice
at level one. O

O

Example 4.45 The Dynkin diagrams B,, C,, Gs, Fy, F7, Eg have no sym-
metries and hence for these Lie algebras and corresponding compact groups,
every automorphism is inner. For A4,, = sl(n, C) there is one outer automor-
phism, up to inner ones, given by ¢(A4) = A, and the same for SU(n). For
s0(2n,C) or SO(2n,R) we can choose conjugation with diag(—1,1,...,1)
to represent the outer automorphism. Most interesting is the diagram for

50(8,C):

OO/ )
\o

which has the permutation group S5 as its symmetry group. Rotation by 180
degrees gives rise to so called triality automorphisms, which we will discuss
in a later section.
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Exercises 4.46

(1) Show that the real forms of o(n,C) are .... and those of sp(n,C) are

@)W

A useful concept is that of a maximal root and the extended Dynkin dia-
gram. Let g be a complex semisimple Lie algebra, h C g a Cartan subalgebra,

AT a system of positive roots and F = {aq,...,ay} the set of fundamental
roots.

Definition 4.47 «,, € A" is ¢ maximal root if a + 3 ¢ AT for all
BeAT.

Its basic properties are given by

maxroot || Proposition 4.48 Let g be a complex simple Lie algebra.

(a) There exists a unique maximal root auy,.

(b) If ayy, = > njay, then n; > 0.

(c) If ayy = Y. mic; and B = Y. mya; € AT, then m; < n; for each
i=1,...,n. In particular 3 < oy, if B # apy,.

(d) oy, is the unique maximal element in the ordering and the unique
root of maximal level.

Proof (a) We first show by induction on the level of roots that if a,, + «; ¢
AT for all o; € F, then «,, is maximal. Indeed, let 3 € AT such that
am + B € AT, If 3 has level one, we are done. If not, 3 = 3 + «; for some
i and (' has smaller level. Then

0 # [Xaww [XomXﬁ’H = [[Xavaai]’Xﬁ’H + [[Xom [Xava/J”H

since oy, + '+ @; is a root. Since ayy, +«; is not a root, we have [X,,,, Xq,] =
0, and hence a;, + 3 must be a root.
Thus if oy, has maximal level, it must be a maximal root. This implies
the existence of a maximal root. We will prove uniqueness after proving (b).
(b) First observe that (,, a;) > 0 since otherwise «,,, + «; is a root. Also
recall that (o, o) <0 for all i # j.
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Let oy, = > nja; with n; > 0 and assume there exists a k with ng = 0.
Then (am,ar) = > ni{ai, o) < 0 which implies that (o, ag) = 0. This
in turn implies that (a;, o) = 0 whenever n; # 0. We can thus divide the
simple roots F' = AU B with A = {a; | n; =0} and B = {«; | n; #0}. We
then have that (v,d) = 0 for all v € A and 6 € B. By induction on level,
this implies that A and B generate 2 ideals, contradicting the assumption
that g is simple.

To prove uniqueness, let ., 8, be two roots at maximal level. Then
(Qmy Bm) > 0 since otherwise ayy, + By, is a root. If (auy,, Brn) = 0, then 0 =
(s Bm) = d_ni{as, Bm). Since also {(ay, Bp) > 0 and n; > 0, this implies
(i, Bm) = 0 for all i. But «; form a basis of hg, and hence (ay,, Gn) > 0.
Thus @, — B is a root and either oy, = By + (m — Bm) or B = ap +
(Bm — i) contradicts maximality.

(c) Notice that if 5 # au, has level i, then there exists an «a; such that
B+ «; is a root of level 7+ 1 since otherwise 3 is a maximal root by our first
claim. This proves both (c) and (d). O

We can now define the extended Dynkin diagram as follows. To the
simple roots a1, ... «a, add the root —a,, where «,, is maximal. Then draw
circles and connect by lines according to the same rules as for the Dynkin
diagram. Finally, put the integer n; over the dot corresponding to «;.

One easily sees that for the classical groups we have:

Ap 0 AT ={w; —w;,i < j} Ay = W1 — Wntl
B, : A+:{wi,wij:wj,i<j} O, = w1 + wo
Cp + AT = {2w;,w; Lwj,i < j} Q= 2w1
D, : AT ={w; fwj,i < j} Um = W1 + wp

and hence the extended Dynkin diagrams are

I
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O _a,,
1 2 2 2
Chn o O Qe 0O
—ay,
1

|extendedDynkin| Extended Dynkin diagrams

(include exceptional ones as well)

2 2
O o
2 1
O o
1
O
&
\é
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We can use these extended Dynkin diagrams to give a classification of
certain subalgebras of g.

Let g be a complex semisimple Lie algebra. We say that h C g is an equal
rank subalgebra if rk ) = rk g and that b is maximal if for every subalgebra
twithhCtCgwehavet=hort=g.

Notice that if we have a Dynkin diagram or an extended Dynkin diagram
D and if we remove one of the circles, we obtain a Dynkin diagram D’ C D
for a possibly non-simple Lie algebra. If we reconstruct the positive roots
from the simple ones level by level, the diagram D’ generates a subalgebra
of g.

equalrank|| Theorem 4.49 (Borel-Siebenthal) Let g be a complex simple Lie al-
gebra with maximal root o, = Y. n;a; and extended Dynkin diagram
D.

(a) If D" is obtained from D by removing «; with n; > 1, then D" gener-
ates a maximal equal rank semisimple subalgebra .

(b) If D' is obtained from D by removing —a,, and «; with n; = 1, then
D’ generates a subalgebra ¢ and h = ¢ ® R is a maximal equal rank
semisimple subalgebra.

The proof is non-trivial and we will omit it here. Since complex simple
Lie algebras are in one-to-one correspondence with compact simple ones via
their real form, this also gives a classification of the equal rank subalgebras
for compact Lie groups.

Example 4.50 In the case of D, we can delete a simple root with n; = 2
to obtain the subalgebras Dy & D,,_j or a simple root with n; = 1 to obtain
D, 1®Ror A,_1 & R. In terms of compact groups, this gives the block
embeddings

SO(2k) x SO(2n — 2k) € SO(2n) U(n) C SO(2n)

Exercises 4.51

(1) Show that the maximal root has maximal length among all roots.

(2) Show that if h C g; @ g2 is an equal rank subalgebra, then b = h; ® ho
with h; C g; equal rank subalgebras.

(3) Show that the equal rank subgroups (not necessarily just maximal
ones) of the classical compact Lie groups are given by

S(U(n1) x -+ x U(ng)) C SU(n) with an =n
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Up x -+ x Uy C Sp(n), where U; = Sp(n;) or U(n;) and an =n

Uy x---xU, C SO(2n) where U; = SO(2n;) or U(n;) and 227%‘ =n
Uy x -+ x U € SO(2n + 1) where Uy = SO(2k + 1) and

U; = SO(2n;) or U(n;) ,i > 1, and ani =n—k

We end this chapter by describing several lattices of hg and hp . Recall
that a lattice in a vector space V is a discrete subgroup which spans V. It
follows that there exists a basis v1,...,v, such that all lattice points are
integral linear combinations of v;. Conversely, given a basis v;, the integral
linear combinations of v; form a lattice.

Let K be a compact Lie group with maximal torus T'. If g = ¢, then, as
we saw, t ® C is a Cartan subalgebra of g and hg = it. Denote by A the
roots of g with respect to b.

Definition 4.52 Let K be a compact real group, with ¢c = g. Then we
have the following lattices in hg.

(a) The central lattice Tz ={v € bhr | a(v) €Z for all o € A}.

(b) The integral lattice I'; = {X € bg | expy (27 X) = e}.

(c¢) The coroot lattice TI'c = spany{r,, = % | a; € F}.
These lattices can of course also be considered as lattices in t. Notice that the
integral lattice depends on a particular choice of the Lie group K, while the
root lattice and the central lattice only depend on the Lie algebra g. Also,
I'; is indeed a lattice since exp: t — T' is a homomorphism and d(exp)p an

isomorphism. The basic properties of these lattices are:

lattices | Proposition 4.53 Let K be a connected compact Lie group with universal
cover K. Then we have

(a) I'ceCI'y C Fz,
(b) Tz ={X € br | expg(2miX) € Z(K)} and hence I'z /T = Z(K).
(¢c) T1/T¢ =m(K), and hence T'z/T¢ = Z(K).
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Proof We start with the proof of (b). Recall that Z(K) C T and that
exp: t — T is onto. Thus, if g € Z(K), we can write g = exp(X) for some
X € t. Since Z(K) is the kernel of Ad, it follows that Ad(exp(X)) = e?dx =
Id, and since ady is skew symmetric, the eigenvalues of adx lie in 2miZ .
On the other hand, the eigenvalues of adx are 0 and i (X), a € A. This
implies that a(X) € 2mi I'z. The converse direction works similarly.

(a) By (4.9), 8(7) € Z which implies that ' C I'z. To prove the stronger
claim that I'c C I'7, let @ € A and recall that i7,, i(Xq + X_0), Xo — X_a
form a subalgebra of £ isomorphic to su(2). It is the image of a homomor-
phism d¢: su(2) — € which integrates to a homomorphism ¢: SU(2) — K.
Furthermore, i, = do(X) with X = < é —Oz ) Since expgy(g) (27X) = e,
this implies that expy (2mi7a) = expg (dp(2m X)) = d(expgy(2) (27 X)) = e.

It remains to prove that I';/I'c = m(K). For this we construct a ho-
momorphism f: 'y — 7(K) as follows. If X € T';, then by definition
t — exp(2mitX), 0 <t < lisaloopin K and hence represents an element of
71 (K). Recall that pointwise multiplication of loops in K is homotopic to the
composition of loops. Since we also have exp(t(X +Y)) = exp(tX) exp(tY)
for X,Y € t, it follows that f is a homomorphism. As is well known, each
element of 7 (M) of a Riemannian manifold M can be represented by a
geodesic loop (the shortest one in its homotopy class). We can apply this to
K equipped with a biinvariant metric. The geodesics through e are of the
form ¢t — exp(tX), X € ¢. By the maximal torus theorem there exists a
g € K such that gexp(tX)g~! = exp(t Ad(X)) with Ad(X) € t. This new
loop is homotopic to the original one since K is connected. Thus each element
71 (K) can be represented by a geodesic loop t — exp(tX), 0<t <1, X €t
and hence ¢X € I';. Thus f is onto.

If X € I'c, we can write the loop as the image of the corresponding loop in
SU(2) under the above homomorphism ¢. Since SU(2) is simply connected,
I'c lies in the kernel of f. To see that ker f = I'c is more difficult and will
be proved later on. O

Example 4.54 We now use Proposition 4.53 to compute the center of
Spin(n), the universal cover of SO(n).

We start with Spin(2n 4+ 1). We use the basis e; of t as before, and
hence the roots are +w;, *w; +wj;, ¢« < j. Thus I'1 = I'z is spanned
by e; and I'c by the coroots *£2e;, *e; £e;, i < j. This implies that
I'z/Tr=2Z(SO(2n+1)) =eand I';/T'c = m1(SO(2n+ 1)) = Z spanned by
e1. Hence also I'z /T = Z(Spin(2n + 1)) = Zs.

More interesting is the case of SO(2n). Here the roots are fw;+wj,,i < j.

I



88 Chapter 4 Complex Semisimple Lie algebras

—_—

Hence I'c is spanned by the coroots e; e, ¢ < j and I'; by e;. Further-
more, 'y = {3 a;e; | a; + a; € Z} and hence spanned by 3 > +e;, the sum
being over an even number of indices. This implies that

m1(SO0(2n)) =T1/Tc = Zs generated by e;
1
Z(SO(2n)) =Tz/T1 = Z generated by 5 Z €;

{ZQ@ZQ n = 2k

Z(Spin(2n)) =Tz/Tc = 7, n— 2%k +1

Here the generators of I'; /¢ are e; + %25:2 e; and —ej + %Z§:2 e; if n
even, and £ > e; if n odd.

Remark 4.55 It is worth pointing out that besides the Lie group SO(4n)
there exists another Lie group, which we will denote by SO’(4n), which has
center and fundamental group equal to Zs. For this, recall that for n > 4,
there exists only one outer automorphism A of Spin(n), and it descends to
an outer automorphism of SO(4n) as well. This automorphism acts on the
center Zy @ Zg non-trivially. Hence there exists a basis (1,0),(0,1) with
A(1,0) = (0,1). Since A descends, SO(4n) is obtained by dividing by Zo
generated by (1,1). Since there exists no automorphism taking (1,0) to
(1,1), the Lie group obtained by dividing by Zy generated by (1,0) is not
isomorphic to SO(4n). Notice though that SO(8) ~ SO’(8) due to the triality
automorphism. Furthermore, SO’(4) ~ SU(2) x SO(3).

We also have the following dual lattices, which will be important in the
next chapter.

Definition 4.56 Let g be a semisimple Lie algebra. Then we have the
following lattices in by.

(a) The weight lattice T'ywy = {A € by | A(7o) € Z for all @ € A}.
(b) The root lattice I'p =spang{«a; | o; € F}.

\ Proposition 4.57 T'y C Iy and Ty /Tr ~ Z(K).

Proof The inclusion is a basic property of roots. For the second claim, we
first the following general comments. A lattice I' C V defines a dual lattice in
Vivial* ={A e V* | A(v) € Z for all v € T'}. If two lattices I; C V satisfy
I'y C Ty, then I'5 C I'f and I'y/I'y >~ I'7 /T, Now it is clear that 'y is dual
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to I'c and I'g is dual to I'z. The claim now follows from Proposition [4.53.
O

Exercises 4.58

(1) Compute the various lattices for K = SU(n) and K = Sp(n) and use
them to determine center and fundamental group of K.

(2) Show that 7 (Ad(K) = T'z/T¢ if K is a compact semisimple Lie
group.

(3) Show that all 6 lattices are invariant under the Weyl group.



5
Representation Theory

Our goal in this chapter is to study the representation theory of Lie algebras.
We will see that every representation of a complex semisimple Lie algebra
splits into a sum of irreducible representations, and that the irreducible rep-
resentations can be described explicitly in terms of simple data.

5.1 General Definitions

Let G be a real or complex Lie group, with corresponding Lie algebra g.
A real (resp. complex ) representation of G on a real (resp. complex)
vector space V is a Lie group homomorphism

m:G— GL(V);

A real (resp. complex) representation of g on a real (resp. complex)
vector space V is is a Lie algebra homomorphism

m:g—gl(V);

Of course if g is complex, V must be complex as well. When a representation
is fixed, we often denote 7(X)(v) by X -v or just Xv and 7(g)(v) by g-v or
gu.

A representation 7 of either a Lie group or a Lie algebra is faithful if 7
is injective. A representation 7 of a Lie group is almost faithful if ker(r)
is discrete. Notice that since ker() is also a normal subgroup, it lies in the
center of G. We can thus compute the kernel by just checking it on central
elements.

If G is simply connected, there is a bijection between representations w of G
and representations drm of g. Notice that 7 is almost faithful iff drr is faithful.

90
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Because of this bijection, we will first study Lie algebras representations, and
come back to Lie group representations at the end.

Let m and 7’ be two (real or complex) representations on a vector space V
resp. V' by a Lie group G or Lie algebra g, distinguished by 7(g) and 7(X)
for short.

We define the direct sum 7 @ 7’ acting on V & V' as

(ro7')(g) (v,0") = (n(g) v,7(g) )
(ron) (X)) (v,0) = (7(X) v,7(X) )

The tensor product 7 ® 7’ acting on V ® V' as

/

(m@m)(g) - (ved) = n(g)-ver(g)- v
(rRT(X) - (ver) = (*(X) v)@v +ve (7(X) V)

The k-th exterior power A*7r acting on AFV as

(A*T)(g) (1 Ava A---Awvp) = gui Agua A--- A gu,
(Akﬂ)(X)(m/\UQ/\”'/\"Uk) = ZUI/\"‘/\XUi/\"‘/\Un

and similarly the k-th symmetric power S*r acting on S*V.

If 7 is a representation of G resp. g and 7’ one of G’ resp. ¢, we define
the exterior tensor product m®x’, which is a representation of G x G’
resp. g @ g actingon V@V’ as

/

(r@n) (9.9 ) v @) = m(g) ver(g) v
(RN X, X)-(ved) = 7(X)-vev +tver(X)

Notice that the tensor product is a representation of the same Lie algebra,
whereas the exterior tensor product is a representation of the sum of two Lie
algebras.

Now assume that V' has a real inner product in case of a real representa-
tion or an hermitian inner product in case of a complex representation. We
can then associate to m the contragredient representation 7*. If we denote
the adjoint of a linear map L by L*, then on the group level it is defined by
7*(g)v = (m(g~!))*v and on the Lie algebra level as 7*(X)v = —(7(X))*v.
We often think of a representation as acting on R™ endowed with its canon-
ical inner product. In that case 7*(g)v = 7(¢g~ )T and 7*(X)v = —7(X)Tv.
If G is a Lie group or g is a real Lie algebra we call a real representation 7
orthogonal if 7(G) C O(V) resp. w(g) C o(V) and a complex representa-
tion unitary if 7(G) C U(V) resp. 7(g) C u(V'). Notice that this definition
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does not make sense if g is a complex Lie algebra since u(n) is not a complex
vector space.

Given a complex representation, we define the complex conjugate rep-
resentation 7 by 7(g) = 7(g) resp. @(X) = 7(X). Notice that if 7 is unitary,
7 =7*, and if 7 is orthogonal, m = 7*.

Let b be a real Lie algebra, and 7 : h — gl(V') a complex representation.
We define

T:hRC—-gl(V) : (X4iY) - v=(X-v)+iY -v)

Given a complex Lie algebra g, a complex representation m, and a real form
h C g, we obtain a complex representations of h via restriction. One thus
has a one-to-one correspondence between complex representations of h and
heC.

If g be a real Lie algebra, and 7 : g — gl(V') a real representation. We
define

Tc=1mRC:g—gl(VaC) : X-(v+iw)= (X v)+i(X w)

as a complex representation of g. Unlike in the previous construction, the
correspondence between m and 7¢ is not so clear since in general a com-
plex representation is not the complexification of a real representation. We
postpone a discussion of this relationship to a later section.

Finally, if 7 is a complex representation on V' we denote by 7r the under-
lying real representation on Vg where we forget about the complex multipli-
cation on V.

Let m, 7" two representations of G resp. g. We say that m and 7’ are
equivalent, denoted by 7 ~ 7/, if there is an isomorphism L : V — V' such
that 7' (X)(Lv) = L(w(X)v) for every X € g, v € V. Such an L is also
called an intertwining map.

A (real or complex) representation 7 is called irreducible if there are no
non-trivial subspaces W C V' with #(W) C W.

A useful observation is the following.
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schur | Lemma 5.1 (Schur’s Lemma)

(a) If m is an irreducible complex representation on V and L an inter-
twining map, then L = ald for some a € C.

(b) If 7 is an irreducible real representation on V', then the set of inter-
twining maps is an associative division algebra and hence isomorphic
to R, C or H.

(c) If 7 is an irreducible real (resp. complex) representation of G on V
and (-,-)1, (-,-)2 two inner products (resp. hermitian inner products)
on V such that m(g) is an isometry with respect to both, then (-,-); =
a(-, )2 for some a € R (resp. a € C).

Proof (a) Since we are over the complex numbers, there exists an eigenvalue a
and corresponding eigenspace W C V of L. The representation m preserves
W since L(m(g)w) = m(g9)(Lw) = an(g)w for w € W. By irreducibility,
W=V, ie, L=ald.

(b) First notice that if L is an intertwining map, the kernel and image are
invariant subspaces, and hence L is an isomorphism. Sums and composi-
tions of intertwining maps are clearly again intertwining maps, and so is the
inverse. This shows it is a division algebra. A theorem of Frobenius states
that an associative division algebra is isomorphic to R, C or H.

(c) Define L: V. — V by (v,w)1 = (v, Lw)y for all v,w. Since (-,); is
symmetric, L is self adjoint with respect to (-, ). Since 7 acts by isometries,

(gv, gLw)e = (v, Lw)z = (v,w)1 = (gv, gw)1 = (gv, Lgw)>

and thus 7(¢9)L = Ln(g). Hence 7m(g) preserves eigenspaces of L and by
irreducibility, and since L is self adjoint, L = aId, i.e. (-,-)1 = a(-,-)a. O

The same holds in (c) if 7 is a representation of a Lie algebra g and 7(X)
is skew symmetric (resp. skew hermitian).

Remark 5.2 According to (b), real irreducible representations fall into 3
categories according to wether the set of intertwining maps is isomorphic
to R,C or H. We say that the representation if of real, complex, resp.
quaternionic type.

Real representations of complex type correspond to those whose image lies
in GL(n,C) C GL(2n,R). In this case the intertwining maps are of the form
ald+bl, a,b € R, where I is the complex structure on R?".

Representations of quaternionic type correspond to those whose image lies
in GL(n,H) C GL(4n,R). In this case the intertwining maps are of the form
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ald+bl 4+ c¢J + dK, a,b,c,d € R, where I, J, K are the complex structure
on R4 ~ H" given by multiplication with 4, j, k € H componentwise.

We will study this division of real representations into representation of
real, complex, resp. quaternionic type in more detail later on.

We say that a representation 7 is completely decomposable if there
exists a decomposition V. = Wy @ --- & Wy and representations m; on Wy,
such that m ~ 7 @ --- @ m, with 7 irreducible. It is easy to see that a
representation is completely decomposable iff every invariant subspace has
a complementary invariant subspace.

What makes representations of semisimple Lie algebras special is:

compred Proposition 5.3 Let K be a compact Lie group and g a real or complex
semisimple Lie algebra.

(a) Every real (complex) representation of K is orthogonal (unitary) and
completely decomposable.

(b) Every real or complex representation of g is completely decomposable.

(b) If g is real, every real (complex) representation is orthogonal (unitary)

Proof (a) Let m be a complex rep of K. Starting with an arbitrary hermitian
inner product (-,-) on V we can average as usual over K:

(X,Y) = /K (k) X, ()Y )k

such that 7(k) acts as an isometry in (-,-)".

Thus 7 is unitary. Similarly
for a real representation. In either case, if W is an invariant subspace, the
orthogonal complement is also invariant. This proves complete decompos-
ability.

(b) Let g be a complex semisimple Lie algebra with a real or complex
representation. Let € C g be the compact real form and let K be the unique
simply connected Lie group with Lie algebra £. Since £ is semisimple, K
is compact. Restricting we obtain a representation mp: £ — gl(V) which
integrates to a representation ¢: K — GL(V) with d¢p = w. Thus ¢ is
orthogonal (unitary) and hence also di = m; and by complexification also
.

(c) If g is real semisimple, and 7 a rep of g, then 7¢ is a rep of g¢, and
arguing as before is completely decomposable. Restricting, this implies that
7 is completely decomposable O



General Definitions Section 5.1 95

I

Notice that a complex rep of a complex Lie algebra can not be unitary since
su(n) C gl(n,C) is not a complex subspace.

We end this section with the following general claim.

tensorprod | Proposition 5.4 Let g be a complex semisimple Lie algebra and 7 a
complex irreducible representation.

(a) If g = g1 @ g2, then there exist irreducible representations 71 of g,
mo of go, such that m = T1®my;

(b) Conversely, if m; are irreducible representations of g;, then m R, Is
an irreducible representation of g1 ® go.

(c) Every representation of an abelian Lie algebra is one dimensional. If

= g1 ® t where g is semisimple and t abelian, then m = mQmy for

some representation w1 of g1 and ma(x) = f(x),x € t for some f € t*.
mo is effective iff dimt = 1 and f injective.

Proof (a) Let w be an irrep of g1 ®gs on R. We will consider g; as embedded
in the i-th coordinate. Let o be the restriction of 7 to g;. Then we can
decompose R into o irreducible subspaces: X = Vi @ Vo @ --- ® V. Let
pri: V. — V; be the projection onto the i-th coordinate. This is clearly a g;
equivariant map. Fixing y € g2, we have a linear map L;;(y): V; — Vj, 1 v —
prj(y - v). Since the action of g; and go commute, L;;(y) is g1 equivariant.
Thus by Schur’s Lemma it is either 0 or an isomorphism. We claim that
Vi ~ Vj for all 4,7. If not, fix i and let W be the direct sum of all irreps
V; not isomorphic to V;. If W is not all of V, there exists a k with Then
the above observation would imply that L;;(y) = 0 for all g; @ go invariant.
Thus V; must be isomorphic to Vj for all ¢, j. Fix g1 equivariant isomorphisms
V=V, V ~V,; and define m1: v — x - v to be the rep of g; on V. Hence
R=Va&V®- --®V with g; acting as z-(v1, ..., v) = (x-v1,...,xvE). If ¢ is
the embedding into the ith coordinate, we have linear maps M;;(y): V — V
given by M;;(y)(v) = prj(y - ¢i(v)). This is again g; equivariant and by
Schur’s Lemma, for each y € go, M;;(y) = b;;(y)Id for some constant b;;,
or equivalently y - ¢;(v) = >7;bij(y)$;(v). This can be interpreted as a
representation of go. To be explicit, let W be a k-dimensional vector space
and fix a basis wi,...,w,. Then y-w; := 37, bij(y)w; for y € g defines
a representation my of go on W. We now claim that m ~ T ®@m. To see
this, define an isomorphism F: V@ W — R by F(v® w;) = ¢;(v). F is g1
equivariant since F(z - (v @ w;)) = F((z -v) @ w;) = ¢i(x -v) = x - ¢;(v) =
x - F(v®w;) for z € g1. Furthermore, F(y- (v Q@ w;)) = Fv ® (y - w;)) =
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2 bij(y)v@w; =3 bij(y)¢;(v) and y- Fv@w;) = y-di(v) = >_; bij(y)¢5(v)
for all y € go implies that it is go equivariant as well, and hence F' is a g
equivariant isomorphism.

(b) Let v; € V; be maximal weight vectors of 7; and F; the fundamental
roots of g;. Starting with v1 ®ve we can apply X_-(v1®@v2) = (X_o-v1)Qug,
a € F1, and separately X_g - (v1 ® v2) = v1 ® (X_p)ve, o € Fy. Applying
these repeatedly, we can generate all of V] ® V5 starting with v ® vs.

(c) The first part follows immediately from Schur’s Lemma since all en-
domorphisms commute and can be diagonalized simultaneously. The rep is
then clearly given by some f € t*. The second claim follows as in part (a)
and the last claim is obvious. O

Thus understanding complex representations of complex semisimple Lie
algebras reduces to classifying irreducible complex representations of simple
Lie algebras. This will be the topic of the next section.

We added the case of an abelian Lie algebra as well since in a later sec-
tion we will study representations of compact Lie algebras and compact Lie
groups.

Exercises 5.5

(1) If g is real and 7 a complex representation with 7 is extension to
g ® C, show that 7 is irreducible iff 7 is irreducible.

(2) Let 7 be the (irreducible) representation of G = SO(2) acting on R?
via rotations. Show explicitly how m ® C decomposes.

(3) If w is a complex representation and 7g the underlying real one, show
that 7 is irreducible iff 7k is irreducible.

(5) If w is a rep of the Lie group G, show that = is irreducible iff dr is
irreducible.

(6) If m is a complex representation of g (real or complex), show that
(mr)c is isomorphic to m @& 7.

(6) Show that 7 is completely decomposable iff every invariant subspace
has a complementary subspace. Give an example that a representa-
tion of a nilpotent or solvable Lie group is not completely decompos-
able.
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5.2 Representations of s1(2,C)

From now on, g is a complex semisimple Lie algebra, with a fixed Cartan
subalgebra h C g and corresponding roots A. We choose an ordering defined
by a regular vector Hy € hr and thus positive roots A' and fundamental
roots F' = {aq,...,a,},n = rkg. We will use the abbreviations X,, = X;
and X_,, = X_; whenever convenient. We often write Xv or X - v instead
of m(X)v and will use the short form “rep” for representation and “irrep" for
irreducible representation.

A functional u € h* is called a weight of 7 if
Vi={veV|H -v=pu(H)v foral Heh}
is nonempty. In that case, V, is the weight space, and m, = dim V), the

multiplicity of . We denote by W the set of weights of .

Note that, in particular, if 7 is the adjoint representation of g, then the
weights of m are precisely the roots of g, as previously defined, with the
weight spaces V,, being the root spaces g,. Moreover, m, = 1 for every root
. On the other hand, 0 is also a weight and has multiplicity dim b.

rootweight | Lemma 5.6 For all « € A, X, € go and weights i we have
Xao- VM C VM_A,_Q

Proof Let v € V), i.e. H-v = p(H)v. Since m preserves Lie brackets,
([ X, Y] =n(X)n(Y) — n(Y)m(X) or in our short form XY -v =YX v+
[X,Y] v for all X,Y €g. Thus
H- (Xq-v)=HX, v=X,H -v+[H, X, v
=pu(H)Xq - v+a(H) Xy -v=(pu+a)(H) Xy v

which means that X, -v € V4. O

The basis for understanding irreps of g is the classification of irreps of
s[(2,C) since, as we saw in (4.35), every root « spans a unique subalgebra
sl generated by 74, Xo, X_q which is isomorphic to s[(2,C).

Recall that we can represent s((2,C) as span{H, X1, X_}, where

H=<(1)_01> X=<(1’8> X+:<8(1)> (5.7) [12mat]
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and
[Hv X-‘r] = 2X+7 [H7 X—] = _2X—7 [X+7X_] = H. (58)

A Cartan subalgebra is given by C - H with respect to which the roots are
+a with a(H) = 2. Furthermore, X € g,, X_ € g_, are an appropriate
choice for X, and X_,, and 7, = H since a(1,) = 2.

Example 5.9 We fist give an explicit example of a representation of SL(2, C)
and, via its derivative, of s[(2,C). Define Vj be the space of homogeneous

polynomials of degree k in two complex variables z,w. Thus

Vi = span(c{zk, 2w, 2P0 2w w”} dimV,=k+1

The Lie group SL(2,C) acts on Vj via g-p = pog~!. If we let g = exp(tH) =
diag(et,e~t) then g - 2wk = (e7t2)" (etw)F~—" = eth=27) z7pk—7 By differ-
entiating, we obtain a representation of s[(2, C) with

H.-Z"wb " = (k—2r)z"wh"

Thus the weights are k — 2r, » = 0,...,k with weight space C - z"w*™".

Furthermore,

X, - erk—r _ i etX+ _erk’—r d ( Lt ) . erk—r

dt =0 T dtp—o\ 0 1
d
= — 2 —tw) (W) = —p kL
0 o' )" (w)
Similarly X_ - 2"w*™" = —(k — 7)2" 1wk~ which easily implies that

the representation is irreducible since X_ increases the degree of z and X
decreases it.

We will now show that these are in fact all of the irreducible representations
of 5[(2,C).
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slorep|| Proposition 5.10 For every integer k > 1, there exists an irrep my :

sl(2,C) — Vi, with dim V, = k+ 1 and conversely every irrep of s{(2,C) is
isomorphic to m, for some k. Moreover, there exists a basis vg, V1, .. ., Uk
of V such that X, -vg =0, X_ -vp =0 and

H-v;=(k—2i)v;, X_-v;=wvi41, X4 0;="0i-1.
with v; = i(k — i+ 1). In particular, the weights are given by
Wi, = {p € b | w(H) = kb — 2,k —4,...,—k}
or equivalently
We, ={p,p—a,p—2a,...,p—ka| p(ry) =k}
= {ga, (g —Day..., —ga}

and all weights have multiplicity one.

Proof Let 7 be an irrep of s[(2,|C). Since we work over C, there exists an
eigenvector v for m(H), i.e. H-v = av, a € C. The sequence of vectors
v, Xy -0, X_% v =X, - Xy -v,... terminates, since the vectors, having
eigenvalue (weights) a,a + 2,... by Lemma (5.6, are linearly independent.
Thus we set vg = (X4)® - v with X4 - vg = 0. We rename the weight of vy
tobe b e C,ie. H-vyg=bvyg. We now inductively define the new sequence
of vectors v;11 = X_ -v; = X% . wy. They have eigenvalues b,b — 2, ...,
ie. H-v; = (b— 2i)v; and there exists a largest k such that vy # 0 but
Vg1 = X— - v = 0. Next we claim that

X4 v =01, with v = Z(b —1+ 1).

The proof is by induction. It clearly holds for ¢ = 0 since X ivg = 0.
Furthermore,

Xyvip1 =Xy X v; = [X_HX_]Ui + X _Xiv; = (b - 2i)v,~ + Yiv;,

i.e., vit1 = v + b — 2¢ which easily implies the claim.

It is now clear that W = spanc{vo, v1,. .., vs} is invariant under the action
of s1(2,C) since X_ moves down the chain and X; moves up the chain of
vectors. Hence by irreducibility W = V. Furthermore, 0 = X v =
Hr+1Vk implies that pxq = 0, i.e., b = k. Putting all of these together, we
see that the irrep must have the form as claimed in the Proposition.

Conversely, such a representation exists as we saw in Example [5.42. O

We can thus reperesent the representation also in matrix form:

I
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k 0
k—2
e (H) = )
0 —k
0 0
1 0
m(X-) = . :
0 1 0
0 Y1 0
0
m(X4) =
Yk
0 0

Notice that w(H) is semisimple and (X1 ) are nilpotent. This illustrates
one of the differences with a complex rep of a compact Lie algebra since in
that case every rep is unitary and hence all matrices w(X) can be diagonal-
ized.

Example 5.11 (a) The rep 7 of s[(2,C) integrates to a rep of SL(2,C)
since the group is simply connected. But this representation does not have
to be faithful. If it has a kernel, it must lie in the center and hence we only
have to test the rep on central elements. In Example5.42/ we gave an explicit
description of the rep of SL(2,C) which must be the integrated version of 7y
by uniqueness. Thus the central element — Id acts trivially for k even and
non-trivially for £ odd which means that 741 is a faithful irrep of SL(2, C)
and moy, a faithful irrep of PSL(2,C).

The rep of SL(2,C) also induces a rep of the compact subgroup SU(2) C
SL(2,C). Since su(2) ® C ~ sl(2,C), this rep is irreducible, and conversely
every complex irrep of SU(2) is of this form. Again it follows that mog4q is
a faithful irrep of SU(2) and my a faithful irrep of SO(3). Thus SO(3) has
complex irreps only in odd dimension, in fact one in each up to isomorphism.

(b) There also exists a natural real irrep for SO(3). Let V}, be the vector
space of homogeneous polynomials in the real variables z,y, z. The Laplace
operator is a linear map A: Vi, — Vi_s and one easily sees that it is onto.
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The kernel Hy = {p € Vi | Ap = 0} is the set of harmonic polynomials.
SO(3) acts on Vj, as before, and since A is invariant under SO(3), it acts on
Hj. as well. One can show that this rep is irreducible, has dimension 2k + 1,
and its complexification is irreducible as well and hence isomorphic to o in
Example (a). Thus all real irreps of SO(3) are odd dimensional and unique.
The story for real irreps of SU(2) is more complicated. As we will see, there
exists one in every odd dimension (only almost faithful) and a faithful one
in every dimension 4k, given by (mox_1)r-

We will use this information about the representations of s((2,C) now to
study general complex representations of complex semisimple Lie algebras.
A key property of the reps of sl(2,C) is that the eigenvalues of 7(7,) are
integers, and are symmetric about 0. Furthermore, if p is the weight of
mr with pu(74) = k, then the other weights are of the form u,pu — o, —
200, ..oy o — koo = s ().

-ions of semisimple Lie algebras

Recall that we have an ordering, after choosing a fixed regular element
Hy € bg, defined on by by w1 < po if pi(Ho) < pe(Ho) and py < po if
pi1(Ho) < po(Hop). Furthermore, T'yy = {p € by | p(7o) € Z for all & € A}
is the weight lattice.

irrep1 || Proposition 5.12 Let g be a complex semisimple Lie algebra and 7 a
complex irreducible representation with weights W .

(a) V is the direct sum of its weight spaces.

(b) If w € Wy, then u(ry) = (4, Ta) = % € Z for all a« € A, ie.,
w e 'y.

(c) There exists a unique (strictly) maximal weight A\, i.e. p < X for all
w € Wr, u# \. Furthermore, (\,74) > 0 and my = 1.

(d) Each weight is of the form A\ — mja; — -+ — myay, with o; € F and
m; € Z, m; > 0.

(e) \ uniquely determines the representation , ie. if m, 7' are two
representations with equal highest weight X\, then m ~ .
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Proof By definition 7(H) = p(H)Id on V, for all H € h. Recall that for
each oo € A, we have the subalgebras sl, = spanc{7a, Xa, X_q} isomorphic
to s((2,C) with 7, = H, Xo = Hy, X_, = H_ the basis in (5.7). By
Proposition [5.10/ the eigenvalues of m(7,) (on each irreducible summand of
T|s1,) are integers, which implies (b) since 7(7,) = (7o) Id on V,,. Further-
more, m(7,) can be diagonalized for all 7, and since 7,, is a basis of b, and
h is abelian, the commuting endomorphisms 7(H), H € b, have a common
basis of eigenvectors. This implies (a). Notice that it can happen that Tsly
is trivial, since pu(7,) = 0 for all p € W, is possible.

(c) It is clear that (weakly) maximal weights (in the ordering on hy) exist.
Let A be a maximal weight, and let v € V). Then by definition X, -v =0
for any o € AT. Now consider

Vo =span{X_g, --- X_g_ - v}, B1,...0s € F.

where [3; are not necessarily distinct. We claim that Vj is invariant under g.
It is clearly invariant under X _,, € A", and under h. Thus we just need
to prove that Vj is invariant under the action of X,, a € F', which we prove
by induction on s. If s = 0, we know that X, -v = 0.

Suppose now that X, - X_g, --- X_g -v € Vp for any r < s. Then

XoX g X g v=[Xe, X p5]X g, X g, v+ X p -Xo-X_p, v

By induction, the second term on the right hand side belongs to V. Fur-
thermore, [Xo, X_g,] is either a multiple of 7, if £; = «, or 0 otherwise since
« — 1 cannot be a root be the definition of F. In either case, the first term
belongs to Vj as well, and hence 1 is invariant under g. By irreducibility of
m, Vo = V. In particular, all weights are of the form

b=A—miay — - — Mmpy, m; > 0.

which implies that if p € W is a weight different from A, its order is strictly
less than A. Furthermore, V) is spanned by v, and hence my = 1. If (7o) <
0, the fact that the eigenvalues of w(7,) are centered around 0 implies that
A + « is an eigenvalue of 7(7,) and hence a weight of 7 as well. But this
contradicts maximality of A and hence A(7,) > 0.

(d) To prove that A uniquely determines the representation, suppose we
have two representations m, 7’ acting on V, V/ with the same maximal weight
A. Choose v € Vi, v' € V}. Then (v,v") € V@ V' is a weight vector of 7 &7’
with weight . By the same argument as above, the space W c V @ V'
generated by X_,, - (v,v’), o € A", induces an irreducible representation

oc=r®7|w:g— gl(W)
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If welet p1: VeV — Vand po: Va V' — V' be the projections onto
the first and second factor, then p = p1|y is an intertwining map between
o and 7 and similarly p = poy is an intertwining map between o and
7/. By irreducibility, these intertwining maps are isomorphisms, and hence
7~ o ~ 7', which proves (d). O

The uniquely determined weight A in the above Proposition will be called
the highest weight of w. Notice that it can also be characterized by the
property that A + «; ¢ Wy for all o; € F.

In general, an element 1 € 'y (not necessarily associated to any repre-
sentation) is called a dominant weight if u(7,) > 0 for all « € A™. Notice
that in this terminology we do not specify a representation. In fact in an
irreducible representation there can be other dominant weights besides the
highest weight.

We denote by I’%fv C I'yy the set of all dominant weights. If 7 is a rep with
highest weight A, then Proposition 5.12 (b) implies that A € F%V' We also
have the following existence theorem:

@ Theorem 5.13 If \ € F{'fV is a dominant weight, then there exists an

irreducible representation m with highest weight .

Thus there is a one-to-one relationship between dominant weights and
irreducible representations. We therefore denote by 7y the unique irrep with
highest weight A € Ffl,v.

There are abstract constructions of the representations 7y, see e.g., [Hal,
200-230. We will content ourselves with giving an explicit construction of
the irreducible reps of the classical Lie groups.

Before doing so, we prove some further properties of weights. Recall that
we denote by W the Weyl group of g, which is generated by the reflections
sa(B) = B — (B, Ta)c acting on hg and b, for any o € A. Furthermore,
WCt ={v € br | alv) = (v,a) > 0 for all @ € AT} is the positive Weyl
chamber with respect to our chosen ordering. Dually, the positive Weyl
chamber in b} is defined by WC* = {p € b | p(v) > 0 for all v € WCT}.
The closure of these Weyl chambers is denoted by WC* and WC*. Finally,
recall that for any v € hg, there exists a unique w € W such that wv €
WC+and similarly for br-
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irrep2|| Proposition 5.14 Let m =\ be an irreducible representation of g.

(a) If p € Wy and w € W, then wyu € Wy and my,, = my,.

(b) A has maximal length and W acts transitively on weights of length
|A| with \ being the only element among them in WC*.

(c) Let p € W and o € A" with pu(r,) = r > 0. Then in the string
of weights p, p — a, pp — 20, ..., — rav = So () the multiplicities are
are weakly increasing on the first half, and weakly decreasing on the
second half. The same holds if p(7,) < 0 for the string p, u + o, +

20, ..., So ().

Proof (a) It is sufficient to prove the claim for w = s, and any pu € W;.
Set 7 := p(7y) and hence wp = p — ra. We can assume that r > 0 since
the claim is obvious when r = 0 and we can replace o by —a otherwise.
Every v € V,, generates an irreducible representation o of sl, by repeatedly
applying X, and X_, to v. o is clearly one of the irreducible summands
in g, and hence the weights of o are restrictions of the weights of . The
weight of X? - v is p — sa. According to Proposition [5.10, the eigenvalues
of 0(7,) are symmetric around 0. Since (u— sa)(7) = 7 —2s, it follows that
p — sa, is a weight of o (and hence 7) and X°,-v#0for s =1,...7. In
particular, p — ra = wp is a weight and X" : V,, — V,,_,, is injective, i.e.
my, < My_rq. Since w is an involution, m, > m,_,, as well and hence they
are equal. The same argument implies (c) since (u — sa)(7,) is positive on
the first half of the string, and the second half are the Weyl group images of
the first half.

(b) Let u be a weight of maximal length and w € W such that wu € WC*,
Thus (wu, «) > 0 for all @ € AT, Since w acts by isometries, |wu| = |u| and
hence wp has maximal length as well. Thus |wp 4+ «| > |wu| which implies
that wu 4+ « cannot be a weight. This means that wy is a highest weight
and by uniqueness wu = . O

A useful consequence is

irrepweyl || Corollary 5.15 If m is a representation in which the Weyl group acts
transitively on all weights, and one, and hence all weights have multiplicity

one, then 7 is irreducible.

Proof Let A be some highest weight. Then vy € V) generates an irreducible
subrep 7y acting on W C V. By applying Proposition [5.14/ (a) to ), it
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follows that all weights of 7 are already weights of m). Since the weight
spaces are all one dimensional, they are contained in W as well, which implies
that V =W. O

We can determine all weights of a representation from the highest one in
the following fashion. According to Proposition/5.12! (e), all weights € Wy,
are of the form y = A—mja; —- - - —mpa, with a; € F and m; € Z, m; > 0.
We call Y m; the level of the weight. Thus A is the only weight of level 0.
We can now apply Proposition 5.14! (¢) to inductively determine all weights,
level by level. It is convenient to apply Proposition [5.14/ (¢) immediately for
all r although this goes down several levels. Notice that every weight of level
k is indeed reached from level k — 1 since otherwise it would be a highest
weight. This process is similar to our construction of all positive roots from
the simple ones. But notice that the level of the roots are defined in the
opposite way to the level of the weights. In general, one problem though is
that it is difficult to determine the multiplicity of the weights. The reason is
that we can land in V,,, where i has level r, possibly in several ways starting
with weight vectors at level » — 1 by applying some X_;. It is not clear
when these vectors are linearly independent or not. Thus multiplicities, and
hence the dimension of 7y, are not so easy to determine just by knowing .
We come back to this problem later on. We illustrate this process in two
examples.

Example 5.16 (a) Recall from Example [4.18 that go has two simple roots
a, 8 with a(r3) = —3 and §(1,) = —1.

Let us consider the representation my with A(7,) = 0 and A(73) = 1. We
now apply Proposition 5.12/ and the chain property in the Excercise below.
It is convenient to record the pair (1(74), 11(73)) next to every weight. Notice
that (a(74), @(73)) = (2, =3) and (B(74), B(78)) = (—1,2) and these numbers
must be subtracted from the pair, whenever subtracting « resp. 3 from a
weight. The weight of level 0 is A (0,1) and hence A — 3 (1, —1) is the only
weight at level 1. We can only subtract « to obtain A—a— 3 (—1,2) at level
2, and similarly A — a — 24 (0,0) at level 3, A — a — 35 (1, —2) at level 4,
A—2a—30 (—1,1) at level 5 and A — 2ac — 43 (0, —1) at level 6. No further
simple roots can be subtracted. Since there is only one weight at each level,
all weights have multiplicity one, and the dimension of the representation is
7. We will later see that this corresponds to the fact that the compact group
G2 C SO(7) as the automorphism group of the octonians.

(b) Recall that for s[(4,C) we have 3 simple roots «, 3,7 and all Cartan

| I



106 Chapter 5 Representation Theory

—_—T

integers are —1. We study the rep with the following highest weight A\ where
we also record the values that need to be subtracted when subtracting a
simple root.

(A7a); A(75), A7) (0,1,0)
((7a), o ) = (2,—1 0)
(6(7a), B ) = (=1

)Y ) (

(v(7a

= o

-1

A/-\
@
\_/:—/\—/\/
=2 @ R >

0,—1 2)

One then obtains weights A — 5 (1,—1,1) at level 1, A = § — a (=1,0,1)
and A — 0 —v (1,0,—1) at level 2, A\ = —a —~v (—1,1,—1) at level 3, and
A—28—a—v(0,—1,—1) at level 4. Notice that since there were two ways
to go from level 2 to level 3, it is not clear if A — 3 — a — 4 has multiplicity
one or two. But Proposition 5.14/ (¢) implies that if it has multiplicity two,
so does A — 23 — o — . Thus the dimension is either 6 or 8. Using the
isomorphism sl(4,C) ~ s0(6,C), we will shortly see that this is the rep pg
that defines s0(6,C). Thus all multiplicities are actually 1. But this example
shows that this process, although it illustrates the geometry of the weights,
is not efficient in general.

To get a better understanding of the geometry of the weights of an irrep,
the following facts a are instructive (will include a proof later).

convexityweights || Proposition 5.17 Let m = m\ be an irreducible representation of g.

(a) All weights of my occur in the convex hull of the Weyl orbit of \.
(b) An element of the weight lattice in the convex hull of W -\ is a weight
of my iff u=X—miaq — -+ — mpay, with m; € Z and m; > 0..

Notice that by Proposition 5.14] (c) the full weight diagram exhibits a
certain Weyl symmetry since strings are Weyl group symmetric as well. In
fact this easily implies Proposition 5.17/ (a).

We also add the action of the Weyl group has a few more properties we
have not discussed yet:

Weyl geom| Proposition 5.18 Let W be the Weyl group of g and WCT the positive
Weyl chamber.

(a) If x,y € WCT with w-x =y for some w € W, then w = Id.
(b) If x € WCT, then w-x < x for all w € W.
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We will also include a proof later on. [Now include more pictures of weight
diagrams].

Since A\ uniquely characterizes the representation my, we can describe the
representation by the n integers
2(/\ ai>
m; = N7n,) = ——b o; € F.
= Ma) (i, ;) '
We thus obtain the diagram of a representation by placing these integers
above the corresponding simple root. For simplicity, a 0 integer is not dis-
played. Every diagram with integers over its dots

mi ma9 ms

O O O o o o

thus corresponds to an irrep of the corresponding Lie algebra. For example,
the irrep 7, of s[(2,C) of dimension k + 1 is denoted by

k
Tk : O
We will always use the following notation for the defining representation
of the classical Lie groups, which we also call tautological representations.

pn: su(n) on C*, pp: so(n,C)on C", wv,: sp(n,C) on C* (5.19)

We often use the same letter for the action of SU(n)or su(n) on C", the action
of SO(n) or so(n) on R™, and Sp(n) or sp(n) on C?". We now determine
their weights and diagrams, using the previously established notation for the
roots and weights.

For p,, the weights are wy, . . . w, with weight vectors e;. The highest weight
is clearly wy.

For p, (both n even and odd), the weights are +wy, ..., tw, with weight
vectors eg;y1 & t€9;42. w1 is again the highest weight.

For v, the weights are wq,...w, with weight vectors ej,es,...,e, and
—wq, - - - — wy, With weight vectors e, 41, ..., e2,. The highest weight is again
w1.

Thus in all 3 cases m; = 1 and my = m3 =, - - - = 0 and hence the diagram
has only one integer over it, a 1 over the first dot.

It is also easy to determine the diagram of the adjoint representation of
the classical Lie groups. The highest weight is the maximal root «,, which
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we determined earlier: w; — wp41 for A,, wy + wo for B, and D, and 2w,
for C,,. Thus their diagrams (where we need to assume n > 6 for so(n)) are

given by:
1 2
adso(n): O O O adgp(n): O O -
1 1
adsu(n): ©) O O - O @)

It is natural to define as a basis the fundamental weights
Aiyi=1,...,n, where \i(7a,) = dj;

We call the corresponding representations 7, the fundamental repre-
sentations. Thus their diagram is

1
7T/\7;: Oio e o o O e o o

Q;

Clearly the dominant weights A; form a basis of the weight lattice I'yy,
and every highest weight A of an irrep is of the form A = Y m;\; with
m; = N(Ta,;) > 0.

If we want to write A as a linear combination of roots, we have:

— .. J— 2<O‘i7aj> . .
inverse Lemma 5.20 Let C = (Clj)v Cij = Taja) — OéZ(Taj) be the Cartan matrix
of a simple Lie algebra g with inverse C~! = (b;;), an \; the fundamental

dominant weights.

(a) a; = Y cijAj and N\j = Y bijo; with by; positive rational numbers
with denominators dividing det C'.

(b) det C = |Z(K)| where K is the compact simply connected Lie group
with ¥ a compact real form of g.

Proof If a; =Y ajp Ay, then ¢;; = <ai,7'aj) => aik</\k,raj> = p Qiklk; =
a;j. This explains the first half of (a) and that b;; are rational numbers with
denominators dividing det C'.

Next we claim that b;; > 0, which follows from the following easy geometric
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fact about a dual basis: 7y, is a basis of hr with (74,,74;) < 0ifi # j, i.e. all
angles are obtuse. This implies that the dual basis A; has only obese angles,
ie. (A, Aj) > 0 for i # j. But we also have (\;, A\j) = (N, D1 bjrak) =
Yo bie(Ni, o) =D, bjk%@i, Tay) = bji |a2”2 and hence bj; > 0.

To see that they are positive, assume that b;; = 0 for some 4,j. Then
(Nisaj) = >z binlak, aj) < 0 since {ag,a;) < 0if k # j and by, > 0.
Since also (A;, ;) > 0, this implies that each term must vanish. Thus if

(g, a) <0, i.e. ap and o are connected in the Dynkin graph, then b;;, = 0.
But g is simple and hence the Dynkin diagram is connected. Connecting the
simple root «; to all other simple roots step by step, it follows that b;, = 0
for all k. This cannot be since C' is invertible.

(b) In Proposition 4.57 we proved that Z(K) = Iy /Tr where I'y is the
root lattice. Since the matrix that expresse a basis of ' in terms of a basis

of Iy is given by the Cartan matrix C', the claim follows. O

If we apply Proposition [5.12 and Proposition |5.14] and Lemma 5.20 to the
adjoint representation m,q we obtain another proof of Proposition 4.48 since
the highest weight of m,q is the maximal root a,,.

From our previous study of the root system for the classical Lie groups and
their connections to the compact group K, we obtain the following values

for det Cy:
det Cs[(n,(C) =n, det Cso(QTH_L(C) = det Csp(n,(C) =2, det Cso(Qn,C) =4

Example 5.21 We illustrate the concepts with two simple examples.

(a) The root system for so(5,C) is given by A1t = {w; + wo,wr,ws}
and the Weyl group acts by permutations and arbitrary sign changes on w;.
The roots are the vertices and the midpoints of the sides in a unit square
and a = w1 — w9, B = w; the fundamental roots. The Cartan integers are
a(1g) = —2 and (1) = —1. Thus

B 2 =2 4 1 [2 2
¢= ( -1 2 ) ¢ =3 ( 2 2 )
and hence the fundamental weights are

1
M=atf, l=ga+l

The root lattice is generated by «, 6 and the weight lattice by A1, Ag. Clearly
one has index two in the other.

| I
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For the fundamental representation ), it is clear from the picture that
is has dimension 4: The Weyl group image of Ay are weights of multiplicity
one and are the 4 points in the weight lattice closest to the origin. Further-
more, since Ay is not a sum of roots, 0 cannot be a weight. By using the
isomorphism s0(5, C) ~ sp(2) we see that this rep is just vs.

We already saw that Ay = ps. So besides the 4 weights which are Weyl
group images of Ao, 0 is a weight as well. [Need a picture here|

(b) The root system for s[(3,C) is AT = {w; —wj, © < j} with simple
roots @ = wi; — wsa, B = wa — ws. The roots lie at the vertices of a regular
hexagon. They have the same length and hence

(2 -1 4121
C_<—1 2) ¢ _3<1 2)

_ 2a+p N _a+2f3
- 3 ) 2 — 3 .

[Need a picture here and the weight diagram of a more complicated rep|.

and hence

A1

We will shortly give simple descriptions of the fundamental reps of all
classical groups. But we first make some general remarks.

If 7), 7y are two irreps of g acting on V resp. V', then we can construct
from them several new representations whose weights we now discuss. Let
Wz = {\i} and W = {\}} be the weights of 7 resp. 7' and vg resp. vy a
highest weight vector.

We can take the tensor product 7y ® 7y acting on V@ V'. If v; resp.
/

Yj

weight vector for my ® my with weight \; 4+ )\;». Hence all weights are of the

are weight vectors with weights \; resp. )\;, then clearly v; ® v} is a

form A\ + N — miaq — -+ — myo, with m; > 0 which implies that A + \
is a highest weight with my,y = 1. This says that my, ) is an irreducible
subrepresentation of m\ ® my, which we simply write as my;x C T\ @ Ty.
Furthermore, 71y has multiplicity one in m)\®my/, i,e, it can occur only once
as a subrep. In general there will be other highest weights generating further
irreducible summands in 7\ ® 7). The problem of decomposing 7y ® 7wy into
its irreducible summands can be quite difficult. As an example we derive the
Clebsch-Gordon formula for the irreps m of sl(2,C):

0, k+/¢ ;
7rk®7re—7rk+e+7fk+£2+-"+{ kiéz\(;?in (5.22)

71,

To see this, let v;, v} be the basis of weight vectors for the reps 7, and my
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constructed in Proposition5.10. Then vy®v; is a maximal weight vector with
weight k 4 ¢ giving rise to the irreducible summand in 7, . Furthermore,

X _vg@up = v1@0)+v0@0], X4 (bv1@vj—kvg@v)) = klvo@uvy—Llkvo@uvh = 0

which means that my4¢—o = 2 and fv; ® v}, — kvg ® v} is a maximal weight
vector. Thus 7409 is also an irreducible summand in 7, ,. Continuing in
this fashion, we obtain (5.22)).

Given a rep my acting on V, we can define a new rep A¥7r acting on A*V.
If vy, ..., v are linearly independent weight vectors with weights Ay, ..., Ag
then clearly v Ava A- -+ Avyg is a weight vector with weight A\ + Ao+ - -+ Ag.
But the decomposition of A*r into irreducible subreps can be quite difficult.

Let us the discuss the simplest case £ = 2 a little further. For each
simple root a € F with (1) > 0, we obtain irreducible subrep moy_, of
A%y with multiplicity one. To see this, let vy be a highest weight vector.
Then vg A X_q, - vg is a weight vector with weight 2\ — «. Furthermore,
Xa(woANX_qv0) = voAXaX_aqvo = 09N [ Xa, X_a]vo = vo AXN(Ta)vo = 0, and
if 8 is a simple root distinct from o, then Xg(vgAX_qv9) = voAXgX_qv9 =
VoA [Xg, X_o]vg = 0 since f—a is not a root. Thus vgAX_4-vg is a maximal
weight vector and 2\ — « is a maximal weight. Clearly, vg A X_4 - vg is the
only weight vector with weight 2\ — « and hence 7o) _, has multiplicity one
in A%my.

Similarly, if A(7,) > 0, then mo) C S?m, with multiplicity one. The proof
clearly shows more generally:

productweight Proposition 5.23 If 7y,,...,my, resp my are irreducible representations

of g, then my, ..1p, C Ty ® -+ @ Ta,, Tea C SF(my,) and moy_q C A%y
whenever (\, ) > 0, all with multiplicity one.

Exercises 5.24

(1) Show that a simple Lie algebra has at most two different lengths
among its roots and that the Weyl group acts transitively on roots of
equal length.

(2) For each of the classical Lie algebras, and for each root «, determine
the 3-dimensional subalgebras sl, ~ s[(2,C) up to inner automor-
phisms. For each of the compact Lie groups K = SU(n), SO(n) Sp(n),
and for each root «, the subalgebra £, gives rise to a compact sub-
group K, C K. Classify K, up to conjugacy, and in each case deter-
mine wether it is isomorphic to SU(2) or SO(3). Show that for the
maximal root we always obtain an SU(2).
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(3) Let my be an irrep with A(7,) = k > 0. Show that for all 1 < ¢ <k,
Tor—rta C S?my if £ even and moy_gq C A?my if £ odd, both with
multiplicity one. You should be able to prove this easily for k = 1,2, 3.

(4) A somewhat more difficult exercise is the following. We say that
ai, ...y is a chain of simple roots if (o, ;1) # 0 and (o, o) =0
whenever j > i 4+ 2. Given such a chain of roots, let m) be an irrep
with (A, ;) > 0 for ¢ = 1,k and (A, ;) =0 for 2 < i <k — 1. Show
that mox—q;—...—a, is an irreducible subrep of both 527y and A%my.

(5) Show that 7 ® 1 = A% @& S%7 and hence rule (4) and (5) apply to
the tensor product as well.

_ms of classical Lie algebras

We will now discuss weight lattices, dominant weights and fundamental
representations of the classical Lie algebras.

It follows from Proposition 5.23| that, starting with the fundamental rep-
resentations 7y, one can recover all other irreps as sub representations of
tensor products and symmetric powers of 7y,. In order to prove Theorem5.13
for the classical Lie groups, we thus only need to construct their fundamen-
tal representations. This will be done mostly with exterior powers of the
tautological representations.

A, =s5l(n+1,C)

Recall that AT = {w; —w; | i < j}and
F={og=w) —ws, g =wy — w3, ...,0n =Wp — Wnt1}-
The Weyl group W ~ S,, acts as permutation on w; and the inner product

makes w; into an orthonormal basis (of C"*1).

If we define \; = w1 +wa + -+ + w; one clearly has (\;, 7o,) = d;5. Thus
my, is the ith fundamental representation.
The weight lattice is

T'w = {ZciAi|ci€Z}: {Zk‘lw@ | k‘iGZ}

Furthermore

Tl = {3 mhil ni = 0 = {3 kil ki = ko kg = 0}



Representations of classical Lie algebras Section 5.4 113

| I

Let 11, be the tautological representation of sl(n + 1), C) on C"*!. It has
weights w1, ...w, and thus p, = my,. We now claim that m,, ~ Akun.
Indeed, we have a basis of A*C"*! given by the weight vectors

ei, N+ Nej, with weight w;, +--- +w;, forall i <.+ <.

The weight vectors are linearly independent and all have distinct weights.
Furthermore the Weyl group permutes all weights and thus Corollary [5.15
implies that A¥pu, is irreducible. Clearly, wi 4+ wo + - - - + wy, is the highest
weight vector, which implies our claim.

Summarizing, we have

e Fundamental representations my, = /\k,un with A\, = w1 + ... + wg and

dimm\k = (Z)

° FW = {ZCZAZ ’ Cc; € Z} = {Zkzwl | kl S Z},
o T, = {3 niXi| ni >0} = {S kiwi| kv > ko .. kn—y > 0}

B, =s0(2n+1,C)

Recall that AT = {w;tw;, w;, | 1 <1i < j < n} with coroots {w; +wj, 2w;}
and simple roots

F={og=wi—wa ..., y_1 =Wp_1—Wn, Qn=wnp}.

The Weyl group W =~ §,, x Z5 acts as permutations and arbitrary sign
changes on w;. The inner product makes w; into an orthonormal basis of §*.
One easily sees that the fundamental weights are
{)\i:wl—k...—i—wz- 1<n
Ap = %(wl +...wp)

The 1/2 is due to the fact that the coroot of ay, is 2a,.
This implies that the weight lattice is

1
'y = {2 g kiw; | ki € Z, k; all even or all odd}
and
1
F%:{QE kiwiGFW|k12k22”‘2anO}

The tautological representation po,41 has weights twq, ..., +w,,0 and
highest weight w;. Thus my, = pap+1. One easily sees that Akp2n+1 has
weights +w;, £ £ w;, for all 4y < --- < iy and any £ < k, and we call £ the
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length of the weight (if we include an e; A e,,4; term, the length of the weight
decreases by two and decreases by one if eg,41 is included). We now claim
AkanH is irreducible for all 1 < k£ < n with highest weight w1 +. ..+ wg. (It
is in fact irreducible for n < k < 2n as well, but A2"H1=%py 1~ Akpy g ~
for 1 < k < n). First observe that A := wj + ... + wy is certainly a highest
weight (has largest value on our standard choice of regular vector defining
the order) and thus defines an irreducible summand in m C A¥pg, 1. By
applying the Weyl group to A, we obtain all weights of length ¢ = k. Since
(Mwr) >0, A —wp, = wy + ... +wi_1 is a weight as well. Repeating and
applying the Weyl group, we see that all weights belong to 7. Furthermore,
since the weights for the usual wedge product basis are all distinct, each
weight has multiplicity one. Thus Proposition [5.15 implies that A¥po, 1 is
irreducible.

Comparing the highest weights, we see that m, ~ AFpon1 for k =
1,...,n — 1 whereas A"pgpy1 =~ may,. Indeed, 7y, is a new representa-
tion called the spin representation, and denoted by A,, that cannot be
described in an elementary fashion. A construction of this representation will
be done in a later section. But for now we can say that 3(fwy £ - £ wy)
are all weights of 7y, with multiplicity one since they are the Weyl orbit
of A,. By going through the inductive procedure of constructing weights
from the highest one, one easily sees that there are no further weights. Thus
dimmy, = 2"

Notice that in the case of n = 1, where there is only one positive root
w, we can interpret A; as what we called 71 in Proposition 5.10 since the
highest weight is %w. A more interesting case is n = 2. Here we can use
the isomorphism s0(5,C) ~ sp(2,C) to see that Ay = po. For n = 3 we
will see that this representation gives rise to interesting subgroups of SO(8)
isomorphic to Spin(7). Notice that the two half spin reps of so(8,C) have
dimension 8.

Summarizing, we have

e Fundamental representations my, = /\kp2n+1 with A\, = w1 + ... + w

for k =1,...,n —1 and dimm,, = (2";1), and the spin representation

Ty, = A, with dim A, = 2",
o 'y = {%Zkzwl | k; € Z, k; all even or all odd},
° F%:{%Zk’iwiEFW“{312]{322”'2143”20}.

D, =s0(2n,C)
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Recall that AT = {w; £ w; | 1 <i < j < n} with simple roots
F={ai=wi —wa, ..., Qn1 =Wn_1—Wpn, Qpn =wnp_1+wy}.

Since all roots have the same length, roots and coroots agree. The Weyl
group W ~ S, x Zg_l acts as permutations and an even number of sign
changes on w;. The inner product makes w; into an orthonormal basis of h*.

One easily sees that the fundamental weights are

N=wi+...+tw; 1<n—2
An—1 = %(W1+"'+wn71—wn)
)\n:%(w1+...+wn_1 + wp)

The weight lattice is the same as in the previous case, but the condition
for %Zklwl being dominant is now k; > kg > .-+ > |ky|. The first string
of inequalities is due to the requirement that w; — w;,7 < j must be non-
negative, and the last since w,_1 + w, must be non-negative.

The tautological representation ps, has weights +wy, ..., w, and highest
weight wy. Thus 7y, = pap. One difference with the previous case is that
AF py,, has weights tw;, £---Fw;, only for all iy < --- < iy with £ even (there
is no 0 weight in this case). We claim that A¥ps, is irreducible with highest
weight wy + ... +wg for all k =1,...,n— 1. The argument is similar to the
previous case. But since w; are not roots, we can lower the degree only by
an even number: Since (A, wi_1+wg) > 0, A — (wp_1+wg) = w1 +...+wk—2
is a weight. The other difference is that the Weyl group allows only an even
number of sign changes. But this is no problem for k < n and the proof is
finished as before.

Comparing highest weights, we see that 7, = Nepoy, for k=1,...,n—2.
For the remaining ones we claim:

N =T re A=, @, (5:29)

For the first one we showed the rep is irreducible, and we just take inner
products with coroots. For the second one we claim that both w; 4+ --- +
wn—1+ wp and wy + -+ - + wp_1 — wy, are highest weights since adding any of
the simple roots does not give a weight. Applying the Weyl group action one
gets two irreps and since there are no other weights, the claim follows. This
is particularly important for n = 2 (the discussion still works even though
s0(4) is not simple) where it gives rise to self duality.

The representations 7, , and 7y, are again new representations, called
half spin representations and denoted by A, and A). Applying the
Weyl group, we see that the weights of these reps are %(:l:wl + -t wy)
where the number of —1 is even for A}, and odd for A,,. One again easily
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shows that they have multiplicity 1 and exhaust all weights of A*. Thus
dim AF =271,

It is interesting to interpret the above discussion and spin reps for n = 2,3
using low dimensional isomorphism (see the exercises below). In the case of
n = 4 we get 3 fundamental irreps of SO(8) in dimension 8: AT, A~ and
ps. Our theory implies that they are inequivalent, but we will see that they
are outer equivalent.

Summarizing, we have

e Fundamental representations 7, = /\kPQnH with A\ = w1 + ...+ wy and
dimmy, = (Q”I:Fl) for k = 1,...,n — 2, and the half spin representation
T, , = 4, with \,_1 = %(wl + -+ wp—1 —wy) and Ty, = A} with
Ap = %(wl + ... 4wy 1 +wy) and dim A = 271

o 'y = {% S kiw; | ki € Z, k; all even or all odd},

° FdW = {%Ek‘,wz elw ’ k1 > ko> > ‘kn|}

Cn = 5p(n7 C)

Here we have the roots A" = {w; £wj, 2w;, | 1 <i < j < n} with coroots
{wi £ wj, w;} and simple roots

F={ai=w —wyy ..., Qn_1 =Wp_1 — Wy, 0n =2wn}.
The Weyl group W =~ §,, x Z5 acts as permutations and arbitrary sign

changes on w;. The inner product makes w; into an orthonormal basis of §*.

One easily checks that the fundamental weights are A\; = w1 +---+w;. The
weights of y,, acting on C?" are +wy, ..., +w, with highest weight w;. Thus
T, = Mn. The rep A, has weights tw;, £ Fw, forall i < - <y
with £ even. But now A¥pu, is not irreducible anymore. To understand why,
recall that the rep u, respects a symplectic form 3 on C?” by definition. We
can regard 3 € (A2C?")*, which enables one to define a contraction

o : AFC?" — AF2C?: o — Bua
where G_a is defined by
p(Bw) = (P AB)(v), Ve (AF2C*M)*, ve AFC™,

This can also be expressed as

~

cpk(vl/\--'/\vk):Zﬁ(vi,vj)vl/\---/\15,'/\---/\1)]'/\-'-/\Uk.
1<J
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Now we claim that ¢ is equivariant with respect to the action induced by
the action of sp(n,C) on C?". This is clear for the action of the Lie group
Sp(n,C) since it respects (3, and hence, via differentiating, for the action
of sp(n,C) as well. Hence ker [ is an invariant subspace. We claim that
this subspace is irreducible and is precisely the irrep my,. To see this, recall
that in the standard basis of C?" we have ((e;, ensi) = —B(enyi,e) = 1
and all others are 0. Furthermore, e; has weight w; and ,e,i; as weight
—w;. Thus all weight vectors with weight +w;, £ --- £ w;, lie in ker I. Since
the Weyl group acts transitively on these weights, ker I is an irrep. Notice
that the difference with so(2n + 1,C) is that here (A, 7,,) = 1 and hence
A—2wr = w1 +...+wp_1 —wg is a weight, i.e. the length cannot be reduced.

By taking inner products with coroots, we see that ker I ~ A¥pu,,. Induc-
tively one shows:

vy kodd

k
A/Ln:ﬂ-)\k@ﬂ-)‘k—2@‘”@{l k even

where 1 is the trivial one-dimensional representation.

Notice for example that A%u, = 7y, © 1. The existence of the trivial rep
in A%, is clear, since it represents the symplectic form g € A2C?",

Notice also that S?pu, has weights +w; +w; (which include 2w; with multi-
plicity 1, and 0 with multiplicity n. These are precisely the roots of sp(n, C)
and hence S2un = T4, a fact we saw earlier.

Summarizing, we have

e Fundamental representations my, with A\, = w1 +...+wy and 7y, C AF .
o I'yy = {Zkzwz ‘ k; € Z},
o I, ={> kiw;, €Tw | k1 > ko >+ >k, > 0}

Exercises 5.26

(1) Check that the above discussion still holds for so(4,C) and identify
p4 and the spin reps as exterior tensor products. Discuss (5.25) in
this context and relate it to self duality in dimension 4 as discussed
in Chapter 2.

(2) Classify the irreps of s0(4,C) and determine their weights, multiplic-
ities and dimensions.

(3) The spin rep of s0(6,C) becomes a irrep of su(4) under the isomor-
phism s0(6,C) ~ su(4). Relate the spin reps to reps of su(4) and
explain (5.25)) in this case.

| I
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(4) Use the explicit description of the cover Sp(2) — SO(5) to determine
the induced homomorphism of maximal tori and hence the induced
map on weight lattice, root lattice and integral lattice. Discuss how
the weights of their fundamental representations match.

(5) Repeat the discussion in exercise (4) for the two fold cover SU(4) —
SO(6).

(6) Determine the dimension of 7y, for sp(n,C).

entations of Real Lie Groups

orthsympdef

In the previous section we classified complex irreducible representations of
complex semisimple Lie algebras. In this section we want to study how to
derive from this knowledge real representations of real Lie algebras, and apply
this e.g. to classify all subgroups of classical Lie groups up to conjugacy.

We start with the following definitions. Recall that a complex bilinear
form b is called invariant under = if b(X - v, w) 4+ b(v, X - w) = 0.

Definition 5.27 Let  be a complex representation of the complex Lie algebra
g.
(a) 7 is called orthogonal if there exists a non-degenerate symmetric
bilinear form invariant under 7.
(b)  is called symplectic if there exists a non-degenerate skew-symmetric
bilinear form invariant under .

(c) 7 is called of complex if it neither orthogonal nor quaternionic.
(d) 7 is called of self dual if T ~ 7*.

In other words, 7 is orthogonal (resp. symplectic) if there exists a basis of
V such that 7(g) C o(n,C) C gl(n,C) (resp. m(g) C sp(n,C) C gl(2n,C)).

If m acts on V, recall that we have the dual representation 7* acting on
V* via 7*(X)(f)(v) = —f(7(X)(v)). If we choose a basis of V', and the dual
basis of V*, we have 7*(X) = —7(X)T on the level of matrices. The choice of
sign is necessitated due to the fact that on the group level we need to define
m™(g) = (g~ )"
lar, if we have diagonalized 7(h) with respect to some basis of eigenvectors in
V,ie X-(e;) = pi(X)e;s, then the dual basis f; are eigenvectors of 7*(h) with

in order for 7* to be a Lie group representation. In particu-
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Weights — g since (X . fl)(e]) = —fl(X . e]-) = —uj(X)fi(ej) = _Mj(X)(;ija
ie. X-fi = —pi(X)fi. Thus Wr« = —W;. Notice also that u; and —p; have
the same multiplicity.

orthsympi || Proposition 5.28 Let m be a complex representation of g.

(a) m is orthogonal or symplectic iff 7 is self dual.
w is irreducible, then the property of being orthogonal, symplectic
b) If w is irreducible, then the property of being orthogonal, symplecti
or complex are mutually exclusive.
c) m@n* is both orthogonal and symplectic. In particular, w & is bo
* is both orth I and lectic. I ticul is both
orthogonal and symplectic if 7 is either orthogonal or symplectic.
(d) m is orthogonal iff Tt ~ & - @7, & (01D 0])®-- & (0D 0}) where
m; are orthogonal irreducible representations and o; are complex or
symplectic irreducible representations.
e) mwissymplecticiim >=m Q- - P D(o1D0o;)D---D(oeDo,) where
is symplectic iff 1 ¢) wh
m; are symplectic irreducible representations and o; are complex or
orthogonal irreducible representations.

Proof (a) An invariant non-degenerate bilinear form b can equivalently be
regarded as an equivariant isomorphism V ~ V* via v — f, € V* with
fo(w) = b(v,w)}. Indeed, X -v — fx.,(w) =b(X -v,w) = =b(v, X -w) =
—fo(X - w).

Part (b) follows since by Schur’s Lemma there can be only one equivariant
linear map V' — V* up to complex multiples.

(c) Define the bilinear form b on V& V* by b((v, f), (w,g9)) = f(w)+eg(v)
for some € = +1. Then b is clearly bilinear. Since b((w, g), (v, f)) = g(v) +
ef(w), b is symmetric if € = 1 and skew-symmetric if e = —1. b is non-
degenerate since B((v, f), (w,g)) = 0 for all (w,g) implies that v = 0 by
first setting w = 0 and f = 0 by setting ¢ = 0. Finally, b is invariant since
b((X v, X f), (w, 9)) = (X f(w) +eg(X -v) = —f(X-w) —e(X - g)(v) =
=b((v, f), (X - w, X - g)).

(d) and (e) Let b be the non-degenerate symmetric (skew-symmetric) bi-
linear form on V and V = V] & --- ® V,. a decomposition into irreducible
sub-representations m; acting on V;. Then b: V; x V; — C induces an equiv-
ariant linear map V; — V}* for all 4,j. By irreducibility, this is either an
isomorphism or 0. If byy; v, # 0, then 7; is orthogonal (resp. symplectic). If
it is 0, there exists a j 7# ¢ with by, v, # 0 and hence 7] ~ 7;, which proves
our claim.

U]
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The following are also elementary but important properties.

orthsymp2 | Proposition 5.29 Let orth stand for an orthogonal representation and
symp for a symplectic one. Then

(a) orth ® orth = orth, symp ® symp = orth and orth ® symp = symp.

(b) AF(orth) = orth and S*orth = orth.

(c) Sksymp and A¥symp are orthogonal if k even and symplectic if k
odd.

(d) If 7 is complex, then m @ * is orthogonal.

Proof (a) If b; are non-degenerate bilinear forms on V; then b(v; ® wi, vy ®
wy) = by (v, wy)be(vy, we) is a bilinear form on V; ® V5 which one easily sees
is non-degenerate.

(b) and (c) If b is a non-degenerate bilinear form on V, then

b(vi A Avg,wi A+ Awy) = det(b(vi, w))1<i j<k)

is a non-degenerate bilinear form on A*V.
Similarly,

b1 @+ @ vp w1 @ -+ Dwg) = [ [ b(vr, we(1))b(v2, Wo2) - - b(vk, Wor))
€Sk

is a non-degenerate bilinear form on S*V.
(d) On V ® V* we have the symmetric bilinear form b(v; ® f1,v2 ® f2) =
f1(v2) fo(v1) which one easily shows is non-degenerate. O

For the classical Lie groups we now want to determine which represen-
tations belong to which category. For this we need to first decide which
representations are self dual. For this we define the opposition element
op € W to be the unique Weyl group element which sends the positive Weyl
chamber WC™ to its negative, see Proposition 4.41/ (b). Clearly if —Id € W,
then op = —1Id.

selfduall ]| Proposition 5.30 Let w) be an irreducible representation.

(a) my is self dual iff —W, = W.

(b) The highest weight of w\« is op(—\) and hence 7 is self dual
iff op(A) = —A.

(C) op = — 1d lfg ~ Bn, Cn, D2n; GQ, F4, E7, Eg.
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Proof (b) Since the weights of 7* are the negatives of the weights of m, —A
is the minimal weight in 7*. Thus it is maximal in the reverse ordering. The
element op € W reverses the order, and hence op(—\) is the highest weight
of m* in our given ordering.

(a) If =X € W), then Proposition 5.14/ (b) implies that there exists an
element w in the Weyl group with w(—\) = A. But since the Weyl group
acts simply transitively on the Weyl chambers, w = op and thus (b) applies.

(c) It follows from Proposition 4.27 that there exists an automorphism
A € Aut(g) such that Ay = —1Id since it simply takes all roots to their
negative. For the Lie algebras listed, except for Dy, every automorphism is
inner since the Dynkin diagram has no automorphisms, see Proposition 4.43.
Thus there exists an element k in the compact real form of g such that

Ad(k)|¢ = — Id which means that k¥ € N(T') and hence —1Id € W.

For Ds, recall that the Weyl group contains an even number of sign
changes in wq,...,ws, and thus —Id € W. O

selfdual?2 || Corollary 5.31 Every representation of B,,Cy, Do,, Go, Fy, E7, Eg is
self dual. A representation of Ay, Do, 11 or Eg is self dual iff its diagram

is invariant under the (unique) non-trivial diagram automorphism.

Proof The first part follows from Proposition [5.30 (b) and (c), except in the
case of. For the Lie algebras A;,, Day,+1 the element op can be described as

follows.
For A,, the Weyl group consists of all permutations in wy,...,wp+1 and
Q] =w) — w2, ..., = Wy — wpy1 are the simple roots. Hence the permu-

tation w; — wpyo; takes o — —ay, 41— and hence takes WC™T to —WC*.
This also implies that if A = > a;\;, then the dominant weight of 73 is

D Ant1—iNi-

For D,, with n odd, op is the Weyl group element that sends w; — —w; for
1=1,...,n— 1 and fixes w,. Indeed, it sends the first n — 2 roots to their
negative and sends a1 = W1 —Wy — Wp_1+wn = —a, and a — —Qp_1.

Thus if A =) a;\;, the dominant weight of 7} interchanges a,—1 and a,.

A similar discussion for Eg will be carried out in a later section. O

The last piece of information we need is the following.
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sumtype | Proposition 5.32 Let my and my be irreducible representations.

(a) If m\ and 7y are self dual, then my,y C T\ ® my, as well as ) C
Skry are of the same type as my ® my resp. S*ry, as determined by
Proposition 5.29 (a)-(c).

(b) If my is complex, then 7y, p—x) C Tx @ 7y is orthogonal.

Proof (a) Recall that myy C m\®my and that it has multiplicity one. Since
7y is self dual, op(A) = —X and similarly for X" and thus op(A+X) = —A— X,
ie. mypy is self dual. Let V. =U @ W) & --- & Wy, be the decomposition
of my ® mys into irreducible subspaces with U corresponding to my, . If b is
the non-degenerate bilinear form on V', then either bygy # 0, and U has the
same type as V, or there exists an ¢ with bygw, # 0. But then U ~ W} and
since U is self dual, W; ~ U, contradicting the fact that U has multiplicity
one in V. A similar argument for for S*r.

(b) Since op(A + op(—=A)) = —(A + op(=A)), the representation 7y ,p(—»)
is self dual. Furthermore, (my)* = Top(—x)» and hence the proof proceeds as
in (a). O

Remark 5.33 The proof more generally shows that if 7 is a self dual rep
and o C 7 occurs with multiplicity one and is self dual also, then ¢ has the
same type as 7.

We can now use all these rules to decide when an irrep of a classical Lie
group is complex, orthogonal or symplectic.

slntype | Proposition 5.34 For the representations of sl(n + 1,C) with dominant
weight A = 3" a;\; we have:

(a) my is self dual iff a; = apy1—;.
(b) If n = 2k or n = 4k — 1, all self dual representations are orthogonal.
(c) If n =4k + 1, then a self dual representation is orthogonal if asyy1 s

even and symplectic if asg1 is odd.

Proof Part (a) follows from Corollary 5.31. Since 7} = 7y Proposi-
tion 5.32 (b) implies that mx,1x,.,_,

tion [5.32 (a), this implies (b) for n = 2k since there is no “middle” root.

n+1—17

is orthogonal. Together with Proposi-

Ifn+1= 2k, m, is self dual and we need to decide its type. But in
this case we have the bilinear form A*C?* x A¥C?* — A2*C?!¥ ~ C given by
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(v,w) — v A w which is symmetric if k is even and skew symmetric when &
is odd. Now Proposition [5.32 again finishes the proof. O

For the remaining classical Lie algebras we only determine the type of the
fundamental representation m,, since the type of all other irreps is deter-
mined by it.

ontype Proposition 5.35

(a) The representations wy,, k = 1,...,n — 1 for so(2n + 1,C) and
T, k=1,...,n—2 for so(2n,C) are orthogonal.

(b) The representations my,, k=1,...,n for sp(n,C) are symplectic if k
is odd and orthogonal if k even.

Proof Part (a) follows since p,, is orthogonal and 7y, = A¥p,,. For part (b)
recall that A¥pu, is not irreducible and that its irreducible summand with
highest weight wy+- - -4wy, is 7y, . This irreducible summand is self dual since
all irreps of sp(n, C) are self dual. As in the proof of Proposition 5.32, one sees
that 7, has the same type as A* i, which together with Proposition 5.29
finishes the proof. O

It remains to determine the type of the spin representations. We will
supply the proof of the following claims in a later section.

spintype || Proposition 5.36

(a) The spin representation A, of so(2n + 1,C) is orthogonal if n = 4k
or 4k + 3 and symplectic otherwise.

(b) For the spin representation A of so(2n,C) we have:
+ +

akyo Symplectic, and Ay,

Afk is orthogonal, A

(A1) = Bi1-

| 1s complex with

We now relate these results to studying representations of real Lie algebras.
Let g be a complex semisimple Lie algebra and gg C g a real form. As we saw,
complex representations of gy are in one-to-one correspondence to complex
representations of g via restriction, i.e. if w: g — gl(V) is a rep on the
complex vector space V', then my := 7y, is a complex rep of go. Conversely,
via extension, 7y determines 7 since m(X + 1Y) - v = mo(X) - v + imp(Y) - v.
Thus R C V is an invariant subspace under 7 iff it is invariant under 7y and
hence irreps 7 are in one-to-one correspondence to irreps mg. On the other
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hand, if o: go — gl(W) is a real irrep, then o¢c = 0 ® C is a complex rep on
We = W ® C, but does not need to be irreducible.

For simplicity we will restrict ourselves to compact real forms. Thus let
t be a compact semisimple Lie algebra with ¢ ® C ~ g. For clarity, in the
following we will usually denote complex reps of £ by 7 and real reps by o.

For complex reps of £ we can interpret our division of reps into 3 types
in a different way, which is sometimes easier to use. Recall that 7: V — V
is called conjugate linear if 7(Av) = Ar(v) and is an intertwining map if
X - 7(v) = 7(X - v). Notice that conjugate linear intertwining map only
makes sense for a real Lie algebra.

realconj || Proposition 5.37 Let m be a complex irreducible representation of a
compact semisimple Lie € on V. Then there exists a symmetric (skew-
symmetric) bilinear form on V' invariant under 7 iff there exists a conjugate

linear intertwining map 7 with 72 = Id (resp. 72 = —1d).

Proof |Proof still incomplete.....] Recall that there exists a hermitian inner
product (-, ), on V such £ acts by skew-hermitian linear maps (e.g., average
an arbitrary inner product over a compact Lie group K with Lie algebra £).

Given an intertwining map 7 with 72 = Id, we can define the eigenspaces
Vi = {v | 7(v) = v} and since 7 is conjugate linear iV, = V_. Clearly
V =V, @ V_ as well and 7 preserves each eigenspace since it commutes with
7. Thus o = my, is a real representation with 0 ® C = 7. There exists an
inner product on V. preserved by ¢ and the complex bilinear extension is
an invariant symmetric bilinear form.

Conversely, given a bilinear form b we define L by b(v,w) = (L(v), w).
Then L is conjugate linear since

(L(Av),w)p = b(Av,w) = Xb(v,w) = ML(v),w)p, = (AL(v),w)p
Furthermore, L commutes with 7 since
(L(X-v),w)p, =b(X -v,w) ==bv,X w) =—(L(v), X -w)p, = (X -L(v),w)p.

Although L is not hermitian, it is self adjoint with respect to the real inner
product Re(-,-); and hence has only real eigenvalues. Since L(iv) = —iL(v)
there are as many positive ones as negative ones. Let Wy, resp. Wy be
the real span of the eigenvectors with positive eigenvalues resp. negative
eigenvalues. m preserves W; since it commutes with L. Thus if we define 7
by 7w, = Id and 7y, = — Id it also commutes with 7.
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we claim that there exists an orthonormal basis vy, .. . , v, such that L(v;) =
Av; by mimiking the usual argument: Since V is a complex vector space,
there exists an eigenvector vy with L(v1) = Movi. If (w,v1), = 0, then
(L(w),v1)p = b(w,v1) = b(vy,w) = (L(vy),w)p = A\ {v1,w), = 0 and hence
vi is preserved and we can repeat the argument. Since L is conjugate lin-
ear, this implies L()_ x;jv;) = > \iZ;v;. By collecting equal eigenvalues, we
write V = Vi®,--- @ Vi and since m commutes with L, m preserves these
eigenspaces. Hence we can replace \; by 1, i.e. define (> z;v;) = > vy,
and 7 still commutes with 7. This is thus our desired conjugate linear invo-
lution.

The second case does not seem to work so easily.... Also, in the above,
where do we use that the eigenvalues are real? Why does the proof not work
in the second case the same? Still confused.... O

Next a simple Lemma. Recall that for a complex representation 7 acting
on V we denote by mg the real representation on Vg where we forget the
complex structure. Furthermore, 7 denotes the rep on V which is V' endowed
with the complex structure —J, if J is the original complex structure on V.

complexify|| Lemma 5.38

(a) If is a complex representation of a real Lie algebra g then (mg)®C ~
T T.

(b) if 7 is a complex representation of a compact Lie algebra ¢, then
Tt

Proof (a) On the level of vector spaces the claim is that there exists a natural
isomorphism of complex vector spaces (Vi) @ C~V @ V. Let J: Vg — W&
be the complex structure that defines the complex vector space V. J extends
complex linearly to (Vg)®C via J(v®z) = J(v)®z. Let Vi 1= {v@1FJv®i |
v € V'} be the +i eigenspaces of J. Clearly V =V, @ V_. Furthermore, if we
define Fiy: V — Vi, Fi(v) =v®1F Ju®i, then F is complex linear since
Fi(Jv)=Jvel+v®i=i(-Jv®i+v®1) =1iF(v) and F_ is conjugate
linear since F_(Jv) = Ju@1l—v®i = —i(Jv®i+ov®1) = —iF_(v).
Thus V. ~ V and V_ ~ V as complex vector spaces. The representation
m commutes with J by definition and hence preserves the +i eigenspaces.
Since g acts via X - (v® z) = (X - v) ® z the linear maps Fy are equivariant.

(b) If ¢ is a compact Lie algebra, there exists a hermitian inner product
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(-,-)n, on V such that 7 acts via skew-hermitian endomorphisms. Clearly
G:V — V* defined by G(v)(w) = (v, w),, is conjugate linear: G(A\v)(w) =
(Av,w), = AMv,w), = AG(v)(w) and thus defines a complex isomorphism

V ~ V*. Furthermore, G commutes with 7 since G(X -v)(w) = (X -v,w), =
—(0, X - w)p = (X - G(v))(w). O

realcomp Proposition 5.39 Let o be a real irreducible representation of €. Then
one and only one of the following holds:

(a) 0 ® C ~ 7 with m an orthogonal irreducible representation.
(b) 0 @ C ~ 7@ n* with m an irreducible complex representation.
(c) 0 ® C ~ 7@ m with m an irreducible symplectic representation.

In case (b) and (c) o ~ TR.

Proof Let c actonVand V C V®C as v — v® 1. Furthermore, 0 ® C acts
as X - (v®z) = (X -v)®z. There exists a real inner product on V' such that
o acts by skew-symmetric endomorphisms. Extending the inner product to
a complex symmetric bilinear form, shows that ¢ ® C is orthogonal in the
sense of Definition [5.27. If 0 ® C is irreducible, we are in case (a). If not, let
W C V ® C be a (non-trivial) irreducible invariant subspace. Then o ® C
also preserves W := {w ® z | w® z € W}. Since it thus also preserves
W N W, either W =W or WNW = 0 by irreducibility of W. In the first
case, X = W NV is areal ¢ invariant subspace of dimension smaller than V|
contradicting irreducibility of . Thus WNW = 0 and hence V@C = WaW
since otherwise (W @ W) NV is a o invariant subspace of dimension smaller
than V. If we denote by m the representation induced on W, this implies
that c@Cxmd 7w ~wdn*. If # & n*, the representation 7 is complex and
we are in case (b). Finally, we need to show if m ~ 7*, then 7 is symplectic.
If not, it must be orthogonal and hence there exists a conjugate linear map
7: W — W with 72 = Id. But then {w € W | 7(w) = w} is a real form of
W and invariant under 7, and the same for W, contradicting irreducibility
of o.

To see the last claim, observe that any w € W we can write uniquely as
v1 ® 1+ v ®17 and that both v; # 0 since WNW = 0. Thus the map w — vy
gives an isomorphism of real representations. O

We say that the real representation o is of real type in case (a), of
complex type in case (b) and quaternionic type in case (c). To justify
this terminology we show:
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realcomp | Proposition 5.40 Let o be a real irreducible representation of . Then
with respect to some basis we have

]

(a) If o is of real type, o(t) C o(n) C o(n,C) C gl(n,C).
(b) If o is of quaternionic type, o(t) C sp(n) C sp(n,C) C gl(2n,C).
(c) If o is of complex type, o() C u(n) C u(n) ® C ~ sl(n,C).

Proof To be filled in.... O

We now come to our last interpretation. Recall that for the set of inter-
twining operators of a real irrep the only possibilities are R, C or H, whereas
for a complex irrep it is always C.

realcomp | Proposition 5.41 Let o be a real irreducible representation of ¢ and I,
the algebra of intertwining operators.

(a) If o is of real type, then I, ~ R.
(b) If o is of complex type, then I, ~ C.
(c) If o is of quaternionic type, then I, ~ H.

Proof To be filled in.... O

Notice that this gives us now a recipe for finding all real irreps. Start with
complex irreps m which are either complex or symplectic and take o = mg.
Notice that dimgo = 2dimcw. If 7 is complex, ¢ commutes with the
complex structure on V. If 7 is symplectic, o commutes with the 3 complex
structure on Vg given by right multiplication with 4, j, k on H" ~ R%". For
an orthogonal complex rep m there exists a conjugate linear intertwining
operator 7 with 72 = Id and V := {v | 7(v) = v} is an invariant subspace
which defines the real rep o = - In this case dimgp o = dimcnw. It is
customary to use the notation o = [r|r in all 3 cases.

Example 5.42 Let us try to find all real irreps of SU(2) and SO(3). We
know that SU(2) has one complex irrep in every dimensions of the form S¥ 5

where p5 is the tautological rep on C2. They are all self dual, symplectic
for odd k and orthogonal for even k. Hence SU(2) has one irrep in every
odd dimension and one in every dimension 4k. Only the ones in odd dimen-
sion descend to SO(3) and these are the irreps on the set of homogeneous
harmonic polynomials in 3 real variables. The effective reps of SU(2) have
dimension 4k.
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We will still fill in how to compute the effective representation of a compact
Lie group. For this we need to solve the following problem. Given an irrep o
of £, let ¥ be the unique representation of the compact simply connected Lie
group K with Lie algebra £ such that dyp = 0. We then need to determine
the (finite) group ker ) and would like to do this in terms of the dominant
weight A with o ~ (m))r resp. 0 ® C ~ 7). To be added....

Exercises 5.43

(1) Verify that the bilinear forms in Proposition 5.29 are non-degenerate.

(2) Determine the real irreps of SO(4).

(3) For the orthogonal representation mo, of SU(2), find the conjugate
linear map 7 with 72 = Id and determine an orthonormal basis of the
real subspace invariant under mox. Do this in terms of homogeneous
polynomials of degree 2k.
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Symmetric Spaces

Our goal in this chapter is to give a geometric introduction to the theory
of symmetric spaces. In many books, see e.g. |[He|, this is done, or quickly
reduced to, an algebraic level. We will always try to relate to the geometry
of the underlying Riemannian manifold and often use it in proofs. Some
familiarity with Riemannian geometry (Levi-Cevita connection, geodesics,
exponential maps, Jacobi fields, isometries and curvature) are assumed. We
will denote by B,.(p) = {¢g € M | d(p,q) < r} a ball of radius r. It is called a
normal ball if it is the diffeomorphic image of a ball in the tangent space. We
denote by I(M) the isometry group and by Ig(M) the identity component.
The following is a non-trivial fact, see e.g. |[KN]| for a proof.

isometrygroup

Theorem 6.1 Assume that M is complete. Then

compact for all p € M.
(b) If M is compact, then I(M) is compact.

Recall that if G acts on M, then G, = {g € G | gp = p} is the stabalizer,
or the isotropy group, of p € M. If G acts transitively on M with H = G,,,
then G/H — M, gH — gp, is a diffeomorphism. On G/H we have the
left translations Ly: G/H — G/H, where Ly(aH) = g(aH) = (9a)H which
under the above identification become L,(aH) = gap = gp, i.e. simply the
action of G on M.

We also have the isotropy representation of H on T,M given by h —
d(Lp)p. If G acts by isometries, the isotropy action is effective, i.e. d(Lp), =
Id implies L;, = Id since isometries are determined by their derivative at one
point. This is not true for a general homogeneous space.

129

(a) The isometry group I(M) is a Lie group and the stabalizer I(M), i
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6.1 Basic geometric properties

We start with a local and global definition

symmetricspace| Definition 6.2 Let (M, (-,-) ) be a Riemannian manifold.

(a) M is called (global) symmetric if for all p € M there exists an isom-
etry sp: M — M with s,(p) = p and d(sp), = —1d.

(b) M is called locally symmetric if for all p € M there exists a radius r
and an isometry sp: By(p) — By(p) with s,(p) = p and d(sp), = —1d.

In case (a) we will usually not include the word “global”. We will often call
sp the symmetry around p.

Some simple consequences:

symnsimple | Proposition 6.3 Let (M, (-,-) ) be a symmetric space.

(a) If v is a geodesic with v(0) = p, then op(y(t)) = v(—t).

(b) M is complete.

(c) M is homogeneous.

(d) If M is homogeneous and there exists a symmetry at one point, M is
symmetric.

Proof (a) Since an isometry takes geodesics to geodesics, and since the
geodesic ¢(t) = sp(y(t)) satisfies ¢/(0) = d(sp)p(7'(0)) = —7/(0) the unique-
ness property of geodesics implies that c(t) = v(—t).

(b) By definition, this means that geodesics are defined for all t. If M is
not complete, let : [0,t9) — M be the maximal domain of definition of the
geodesic 7. Then applying s,(;,—¢) to 7, and using part (a), enables one to
extend the domain of definition to [0,2ty — 2¢) and 2ty — 2¢ > to when € is
small.

(c) Let p,q € M be two points. We need to show that there exists an
isometry f with f(p) = ¢. By completes, Hopf-Rinow implies that there
exists a geodesic v: [0,1] — M with v(0) = p and (1) = ¢. Thus by part
(8) 5,03, (2(0) = 7(1).

(d) If s, is the given symmetry, then one easily checks that Lj o s, 0 L,
is a symmetry at gp. O

A geometric way of interpreting the Definition is thus that s, “flips”
geodesics starting at p. This of course also holds in the case of locally sym-
metric spaces on a normal ball. Notice that for any Riemannian manifold



Basic geometric properties Section 6.1 | 131

| I

the candidate s, is hence always defined on a normal ball as sy (exp(tv)) =
exp(—tv) and it is then a strong condition that s, is an isometry. To be
globally symmetric it is also a strong condition that if two geodesics go from
p to ¢ the ones in opposite direction need to end at the same point, clearly
very unlikely in general.

Before continuing the general theory, a few examples.

Example 6.4 (a) Manifolds of constant curvature are locally symmetric, and

simply connected ones are globally symmetric. For R with a flat metric the
reflection around p given by s,(p+v) = p—wv is clearly the desired symmetry.
For a sphere of radius 1, the reflection in the line R-p : s,(v) = —v +
2(v, p)p, where ||p|| = [|v]| = 1 is an isometry. Ir fixes p, and on the tangent
space {v € R™ | (v,p) = 0} the derivative, which is ds, = s, by linearity, is
equal to —Id.
For hyperbolic space we use the Lorentz space model

k=n
{v e R"™ | (v,v) = =1, 2,41 > 0} with inner product (z,y) = Z TrYk—Tnt1Ynt1-
n=1

Then the reflection s,(v) = —v — 2(v, p)p does the job as well.

(b) A compact Lie group G with a bi-invariant inner product is a sym-
metric space. For this we first claim that s.(g) = ¢! is the symmetry at
e € G. Clearly sc(e) = e and since sp(exp(tX) = exp(—tX) for all X € g,
we also have d(s.). = —Id. Here we have used the fact that the exponential
map of a biinvariant metric is the same as the exponential map of the Lie
group, see .

We now show that it is an isometry. This is clearly true for d(s¢)e. Since
we have sco Ly = Ry-1 03, it follows that d(sc)god(Lg)e = d(Ry-1)e0d(se)e-
Since left and right translations are isometries, d(s¢), is an isometry as well.
Using Proposition 6.40, we see that G is symmetric.

(c) The Grassmannians of k-planes: Gi(R"), G(C"), G(H") have a nat-
ural metric in which they are symmetric spaces. We carry out the argument
for the real one G (R™), the others being similar.

For this we use an embedding into the Euclidean vector space

V ={P¢c M(n,n,R)| P=PT} with (P,Q) = tr(PQ).

It sends E € Gi(R™) to the orthogonal projection P = Pr € V onto E, i.e.
P? = P with Im(P) = E. Note that conversely, any P € V with P? = P,
is an orthogonal projection onto Im(P) since R™ is the orthogonal sum of
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its 0 and 1 eigenspaces. In order for E to be k-dimensional, we require in
addition that tr P = k. Thus we can alternatively define

Gr(R")={PcV|P*=P, tr P = k}.

A€ O(n) actson V via P — APAT = APA~" and hence takes the k—plane
Im P to A(Im P). It thus acts transitively on Gi(R™) with isotropy at Ey =
span{ei, ..., ex} equal to O(k) O(n — k). Thus Gx(R™) = O(n)/ O(k) O(n —
k) = SO(n)/S(O(k) O(n—k)) is a manifold. Here O(k) O(n—k) = {diag(A, B) |
A € O(k), B € O(n — k)} is the block embedding, and S(O(k) O(n — k))
satisfies det(AB) = 1. In particular, dim G;(R") = n(n — k). Notice that
Gr(R™) is also an embedded submanifold of V since it is an orbit of the
action of O(n).

The inner product on V induces a Riemannian metric on Gi(R"™). Now
let rg: R™ — R™ be the reflection in F, i.e. (rg)p=1dand (rg)p. = —1d.
We claim that sg(Q) = rgQrg is the symmetry at E. Before proving this,
note that since r% =rgp= rEl, we can regard sg either as conjugation with
the isometry rg, or as a basis change given by rg. The latter implies that
Im(sg(Q)) = re(Im(Q)), i.e. sg reflects k-planes.

To see that sg is the desired symmetry, first observe that sp take V' to
V and d(sg) = sg preserves the inner product: (d(sg)(P),d(sg)(Q)) =
tr(rg PrergQre) = tr(PQ) = (P,Q). Furthermore, one easily checks that
sg takes projections to projections and preserves the trace, and hence induces
an isometry on Gy(R"™). Clearly sg(Pgr) = Pg since it takes E to E and is
0 on E+. By differentiating a curve Py +tQ + - -- € G(R"), i.e. (Prp+tQ+
)2 =Pg+tQ+---, wesee that Tp(Gr(R")) ={Q € V | PpQ + QP =
Q, and tr@Q = 0}. If @ is a tangent vector and v € FE, then PrQ(v) +
QPg(v) = Q(v) implies that PpQ(v) = 0, or equivalently Q(v) € E+ and
thus rQre(v) = rpQ(v) = —v. Similarly, if v € E+, then PpQ(v) +
QPg(v) = Q(v) implies that PgQ(v) = Q(v), i.e. Q(v) € E and thus
reQre(v) = rgQ(—v) = —v. Thus d(sg)p = —1d.

Finally, notice that since (P, P) = tr(P?) = tr P = k, the image lies
in a sphere of radius vk. Furthermore, since tr(P) = k, it lies in an affine
subspace of codimension 1, and hence in a round sphere of dimension w —
2. This embedding is also called the Veronese embedding, and turns out to
be a minimal submanifold.

We can add one more condition, namely prescribing the orientation on E.
This gives rise to the oriented Grassmannian G (R") = SO(n)/ SO(k) SO(n—
k), and is clearly a symmetric space as well with the same symmetry spg.
There is a 2-fold cover G%(R™) — Gy (R") which forgets the orientation. No-
tice that this is not possible for the Grassmanians G (C™) = U(n)/ U(k) U(n—
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k) = SU(n)/S(U(k) U(n — k)) and Gi(H") = Sp(n)/Sp(k) Sp(n — k) since
a complex or quaternionic subspace has a natural orientation given by the
complex structure (which preserves E by definition).

Especially important is the case k = 1. These are the symmetric spaces
of rank 1, i.e., RP", resp. S", with their constant curvature metric, and
CP", HP" with their Fubuni-Study metric. Notice that the lowest dimen-
sional Veronese surface is a (minimal) embedding of RP? in S*. We will
study these spaces in more detail later on and will see that they all have

positive sectional curvature. There is one more rank one symmetric space,
the Caley plane CaP? which can be described as Fy/ Spin(9).

Now now discuss the important concept of transvections
T = 8,(t) © 54(0)
defined for every geodesic v in M. Its main properties are:

tranvections || Proposition 6.5 Let M be a symmetric space and v a geodesic.

(a) T; translates the geodesics, i.e., Ty(v(s)) = y(t + s)

(b) d(T}).(s) is given by parallel translation from ~(s) to v(t +s) along .
) . . S = S

(c) T; is a one-parameter group of isometries, i.e. Tiy+s =Ty o T,

Proof (a) Notice that s, takes v(t) to v(2r —t). Thus
Ti(v(s)) = s

(b) Since symmetries are isometries, they takes parallel vector fields to

) © sy(0)(V(5)) = 57(%)(7(—5)) =(t+s)

t
2

parallel vector fields. Let X be a parallel vector field along the geodesic
7. Then (sy(g))«(X) is parallel and since d(s.(p))(0)(X) = —X we have
(84(0))«(X) = =X for all . Applying a symmetry twice changes the sign
again and hence d(T3)(s)(X (v(s)) = X(v(t +s)). This implies in particular
that d(T}),(s) is given by parallel translation.

(c) A basic property of isometries is that they are determined by their value
and derivative at one point. Clearly T;14(7(0)) = y(t+s) = T10Ts(v(0)) and
by part (b) d(Ti+s)+(0) is given by parallel translation from ~(0) to y(t + s).
On the other hand, d(T; o Ts)0) = d(Tt)~(s) © d(Ts)(0) is given by first
parallel translating from (0) to v(s) and then from ~(s) to y(t +s). These
are clearly the same, and hence Tiys and T; o T agree. O

We thus have:
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geodesics || Corollary 6.6 Let M be a symmetric space.

(a) Geodesics in M are images of one parameter groups of isometries.
(b) Io(M) acts transitively on M.

Part (b) follows since T; € Ip(M) and since any two points in M can be
connected by a geodesic. It is also more generally true that if a Lie group G
acts transitively, so does G. Part (a) on the other hand is very special, and
is not satisfied, even for most homogeneous spaces.

Recall that for a Riemannian manifold and a fixed point p one defines the
holonomy group Hol, = {P, | v(0) = v(1) = p} given by parallel translation
along piecewise smooth curves, and we let Holg be its identity component.
Notice that if ¢ is another base point, and v a path from p to ¢, then
Hol, = P,(Hol,) P! and thus they are isomorphic (though not naturally).
We thus often denote it by Hol.

Its basic properties are:

holonomyLieGroup

Theorem 6.7 Assume that M is complete. Then

(a) Hol is a Lie group and its identity component Hol" is compact.
(b) Hol® is given by parallel translation along null homotopic curves.
(c) If M is simply connected, Hol, is connected

)

There exists a natural surjective homomorphism (M) — Hol, / Holg
given by [y] — Py which, by part (b), is well defined. This clearly implies
part (c), and that Hol, has at most countably many components since this
is true for the fundamental group of a manifold. To prove that Hol is a Lie
group, it is thus sufficient to prove that Hol® is a Lie group. This follows
from the (non-trivial) theorem that an arcwise connected subgroup of a Lie
group is a Lie group. It was a long standing conjecture that Hol, C O(T,M)
is closed and hence compact. This turned out to be false, see [?].

Since G = I(M) acts transitively on M, we can write M = G/K where
K = G is the isotropy group at p. Notice that Hol,, is a subgroup of O(7,M)
by definition, as is K via the isotropy representation.

holonomy | Corollary 6.8 If M = G/K is a symmetric space with G = I(M), then

Hol, C K.
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Proof Every closed curve v can be written as a limit of geodesic polygons
~;. For example, cover v with finitely many totally normal balls, and con-
nect nearby points by minimal geodesics. By refining the subdivision, we
can make the sequence converge in C'. This implies that also P, — P,
since parallel vector fields locally satisfy a differential equation, and its solu-
tions depend continuously on the coefficients and initial conditions. Along a
geodesic polygon parallel translation is given by a composition of isometries,
namely tranvections along each side. This composition fixes the point p and
hence lies in K. Since K is compact, P, € K as well. O

Notice that the proof even works for a locally symmetric space.

This is an important property of symmetric spaces since it gives rise to
many examples with small holonomy group. Generically one would expect
that Hol, = O(n). As we will see, for a symmetric space Holg = Ko in most
cases. On the other hand, if M = R" with its Euclidean inner product, we
have {e} = Hol, C Ky = SO(n). As it turns out, this is essentially the only
exception.

We can now combine this information with one of the most important ap-
plications of holonomy groups, the DeRham decomposition theorem. Recall
that M is called decomposable if M is a product M = Nj X Ny and the
Riemannian metric is a product metric. If this is not possible, M is called
indecomposable.

,m Theorem 6.9 Let M be a simply connected Riemannian manifold, p €
M and Hol, the holonomy group. Let T,M = Vo ® Vi @& ---®V; be a
decomposition into Hol,, irreducible subspaces with Vo = {v € T,M | hv =
v for all h € Hol,}. Then M is a Riemannian product M = My x - - - X M,
where My is isometric to flat R"™. If p = (po, p1,...,pk), then T, M; ~ V;
and M; is indecomposable if i > 1. Furthermore, the decomposition is
unique up to order and Hol, ~ Hol,, x ---xHol,, with Hol,, the holonomy
of M; at p;. Finally, I()(M) = IO(MO) X oo X Io(Mk).

Since for a symmetric space Hol, C K, this implies

Corollary 6.10 If M = G/K is a simply connected symmetric space,
and M is indecomposable, then K acts irreducible on the tangent space.

Kirred

This motivates the definition:

Definition 6.11 A symmetric space G/K, where G = I(M) and K = G,
is called irreducible if Ko acts irreducibly on T, M, and reducible otherwise.
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Notice that we do not assume that K acts irreducibly. One of the reason is
that otherwise S?(1) x S?(1) would be an irreducible symmetric space, since
switching the two factors is an isometry that generates another component.
Notice also that the definition does not change if we replace G by G = Iy(M)
since G/K = Gy/(K N Gp) and K N Gy, although it may not be connected,
at least has the same Lie algebra as K.

By the above, if a simply connected symmetric space is indecomposable
as a Riemannian manifold, it is irreducible as a symmetric space. On the
other hand, irreducible does not imply indecomposable, even in the simply
connected case, since for flat R” we have K = O(n) which acts irreducibly.
On the other hand, this is essentially the only exception, as we will see later
on: If M = G/K is irreducible, then M = R™ x M’ with a product metric of
a flat metric on R™ and a symmetric metric on M’ which is indecomposable.

The DeRham decomposition theorem implies:

symmdecomp || Corollary 6.12 If M = G /K is a simply connected symmetric space,
then M is isometric to My X --- x My with M; irreducible symmetric
spaces.

Proof We can decompose T, M into irreducible subspaces V; under the
isotropy representation of Ky. Since Hol, = Holg C Kp, these can be further
decomposed into irreducible subspaces under Hol,. Applying Theorem 6.9,
M has a corresponding decomposition as a Riemannian product. Collecting
factors whose tangent spaces lie in V;, we get a decomposition My X - - - X My,
with M; ~ R" flat (if a flat factor exists) and T,,,M; ~ V;. If s, is the
symmetry at p = (p1,...,pk), then the uniqueness of the decomposition
also implies that s, = (sp,,..., Sp,) since, due to d(s,), = —Id, s, cannot
permute factors in the decomposition. Thus each factor M; is a symmetric
space which is irreducible by construction. O

Thus a symmetric space which is reducible is locally an isometric product of
symmetric spaces, which follows by going to the universal cover.

Another important consequence:

symmirredsimple

Corollary 6.13 A simply connected symmetric space M = G /K with

G simple is irreducible.

Indeed, if M = M1 X oo X Mk, then IO(M) = Io(Ml) X oo X Io(Mk)
which implies that G is not simple. We will see that with one exception, the
converse is true as well.

One easily sees:
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symmEinstein || Corollary 6.14 An irreducible symmetric space is Einstein, i.e. Ric =
A(- ,- ) for some constant \. Furthermore, the metric is uniquely deter-

mined up to a multiple.

Proof This follows from the following general useful Lemma:

SchurMetric | Lemma 6.15 Let By, By be two symmetric bilinear forms on a vector
space V such that By is positive definite. If a compact Lie group K acts
irreducibly on V' such that By and By are invariant under K, then By =
AB; for some constant \.

Proof Since Bj is non-degenerate, there exists an endomorphism L: V — V
such that Ba(u,v) = Bi(Lu,v). Since K acts by isometries, By(kLu,v) =
Bi(Lu,k~'v) = Ba(u, k~'v) = By(ku,v) = Bi(Lku, kv) and hence Lk = kL
for all £ € K. In addition, the symmetry of B; implies that Bi(Lu,v) =
Bsy(u,v) = Ba(v,u) = Bi(Lv,u) = Bj(u,Lv), i.e. L is symmetric with
respect to By and hence the eigenvalues of L are real. If E C V is an
eigenspace with eigenvalue A\, then kL = Lk implies that E is invariant
under K. Since K acts irreducibly, E = {0} or E = V. Thus L = A\1d for
some constant A and hence By = ABj. Notice thatA # 0 since otherwise
By =0. O
This clearly implies that the metric is unique up to a multiple. Since isome-
tries preserve the curvature, Ric is also a symmetric bilinear form invariant
under K, which implies the first claim. O

Another reason why holonomy groups are important, is the holonomy prin-
ciple. If S, is a tensor on T}, M invariant under Hol,, we can define a tensor
S on all of M by parallel translating along any path. This is independent of
the path since parallel translating along a closed path preserves S,. It is an
easy exercise to show that S is then smooth. Furthermore, .S is parallel, i.e.
VS =0, since VxS = %“:0 7 (S4(t)), where v is a path with 7/(0) = X.
For example, if the representation of Hol, is a complex representation, then
the complex structure on 7T,M extends to a parallel complex structure on
M, and such structures are integrable, and the metric is in fact Kéahler. We

will come back to applications of this principle to symmetric spaces later on.

We now discuss some properties of locally symmetric spaces. If R is the
curvature tensor, then VR is the tensor defined by

(VxR)(Y, Z)W = Vx(R(Y,Z)W) — R(VxY, Z)W — R(Y,VxZ)W
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— R(Y, Z)VxW.

This easily implies that VR = 0 iff for every parallel vector fields Y, Z, W
along a geodesic v, R(Y, Z)W is parallel along v as well.

parallelR || Proposition 6.16 Let M be a Riemannian manifold.

(a) M is locally symmetric iff VR = 0.

(b) If M is locally symmetric and simply connected, then M is globally
symmetric.

(c) Let My and My be two symmetric spaces with My simply connected
and p; € M; fixed. Given an isometry A: T, My — T,,M> with
A*(R2) = Ry, there exists an isometric covering f: My — My with
dfp, = A.

Proof (a) If M is locally symmetric with local symmetry s,, then VR = 0
since if we set L = d(sp), we have

—(VxR)(Y,Z)W = L((VxR)(Y, Z)WV)
= (VixR)(LY,LZ)LW = (VxR)(Y,Z)W

since an isometry respects curvature. Notice that the same argument implies
that any tensor of odd order invariant under s, must vanish.

For the converse, we need to show that s(exp,(tv)) = exp,(—tv) is an
isometry on a small normal ball. For this we compute the derivative of exp,
via Jacobi fields. Recall that a Jacobi field along a geodesic « is defined
as J(t) = %‘S:O%(t) where 7, are geodesics with 79 = 7. Equivalently,
Jacobi fields are solutions of the Jacobi equation J” + R(J,~")y = 0. Thus,
by differentiating vs(t) = exp,(t(v + sw)), we see that d(expy),(w) = J(1)
where J(t) is a Jacobi field along the geodesic y(t) = exp,,(tv) with J(0) = 0
and V,J = w. Since the curvature is invariant under parallel translation, the
Jacobi equation in an orthonormal parallel frame has the form J”+RoJ =0
where R is a constant matrix, namely the curvature endomorphism v —
R(v,~")y" at any point (). Since the coefficients of the second order linear
differential equation are constant, it follows that if J(¢) is a solutions, so is
J(t) = J(—t) along the geodesic exp,(—tv) with initial conditions J(0) =
0 and J'(0) = —V,J = —w. Thus |d(expy),(w)| = |J(1)| = |J(1)] =
|d(expp)—v(—w)| which means that s, is an isometry.

(c) Here we need the Cartan-Ambrose-Hicks Theorem, which we first re-
call. The setup is as follows. Let M; be two complete Riemannian manifolds
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with M; simply connected and p; € M;. Let A: T),, My — T),, M3 be an isom-
etry with the following property. If 7 is a geodesic in M; with «(0) = p1, we
denote by 7 the geodesic in My with 4(t) = exp,, (tA(7/(0)). If v is a piece-
wise geodesic starting at p; we also have a corresponding piecewise geodesic
% where the "break" vectors in 4 are obtained by parallel translation the
ones of v to p;, mapping them to My with A, and parallel translating in
My by the corresponding distance. If P, denotes parallel translation, we
require that Py ((R1),1)) = A*(P5((R2)5x1))). Then Cartan-Ambrose-Hicks
says that there exists a local isometry f: My — My with df,, = A. It is an
easy exercise that a local isometry is a covering. Notice that it is clear how f
should be defined since it needs to take a broken geodesic 7 to 7. See |CE],
Theorem 1.36 for details of the proof.

We can now apply this to the case where M; are symmetric spaces. In
that case PJ((R1)4(1)) = (R1)4(0) since (a) implies that VR; = 0 and hence
the curvature tensor is invariant under parallel translation. Similarly for Ro
and hence we only need A*(R2) = R; to obtain the existence of f. Since
both M; are assumed to be simply connected, the covering f is an isometry.

Part (b) is now an easy consequence. Since M is locally symmetric, and
since the local symmetry preserves curvature, it follows that s;(Rp) = R,.
We can now apply the Cartan-Ambrose-Hicks Theorem to A := d(sp), =
—1d to obtain a global isometry f with f(p) = p and df, = —1d. O

Part (c) says in particular that a globally symmetric space is determined, up
to coverings, by the curvature tensor at one point. This is an analogue of
the fact that a Lie algebra g determines the Lie group G up to coverings.

It is instructive to use the Cartan-Ambrose-Hicks Theorem to give a proof
of Theorem 77, an important property we use frequently. This is in fact also
the most important step in proving that the isometry group is a Lie group.

Kcompact || Proposition 6.17 Let M be a Riemannian manifold with K the set of
all isometries fixing a point p € M. Then K is compact.

Proof Recall that the topology in I(M), and hence K, is given by uni-
form convergence on compact subsets. Via the isotropy representation K C
O(T, M) and hence the claim is equivalent to K being closed in O(T,M). So
let f; € K and choose a subsequence, again denoted by f;, such that d(f;),
converges to an isometry A € O(T,M). We need to show that A is the
derivative of an isometry f and that f; — f uniformly on compact subsets.
Let «, be the geodesic starting at p with 4,(0) = v. Then v; = fi(y) is
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a geodesic with 7/(0) = exp(d(fi)p(v)) — Av. Thus 7;(t) — yau(t) uni-
formly on compact subsets and hence P,, — P,, and R, — R,, o
since parallel translation and curvature depends continuously on the pa-
rameter. The same holds for broken geodesics. Since f; are isometries,
they satisfy the requirements of the Cartan-Ambrose-Hicks Theorem, and
by taking limits, so does the isometry A. Thus there exists an isomet-
ric covering f: M — M with df, = A. f must be an isometry by ei-
ther going over to the universal cover or by observing that f preserves
the volume. Finally, we need to show that f; — f. First observe that
Jilw(t)) = v40(t) = exp(tAv) = exp(dfy(tv)) = f(exp(tv)) = f(7(t)) and
similarly for broken geodesics. Choose a point ¢, B,(g) a normal ball around
q, and fix a geodesic v from p to q. Now compose v with the unique geodesic
from ¢ to a point ¢ € B,.(¢). By applying Cartan-Ambrose-Hicks to this
broken geodesic, we see that (f)p,(q) — f|B,(g) uniformly.

U]

Remark 6.18 If G is a transitive isometric action on a Riemannian manifold
M with isotropy G, = K, it may not always be true that K is compact. For
example, recall that for R™ the the full isometry group is G = O(n) x R™,
a semidirect product of rotations and translations. Of course in this case
Go = O(n) is compact. But now we can take any subgroup L C O(n) and
write R” = L x R"™/L and the isotropy is compact iff L is compact. The
general issue can be formulated as follows. Let G C I(M) be a subgroup, and
K =1(M),. Then G, = GN K and G), is compact iff G is closed in I(M).
On the other hand, any metric invariant under G is also invariant under the
closure G, and conversely. Thus it is natural to assume that G is closed in
I(M) and hence G, is compact. We will always make this assumption from
now on.

Exercises 6.19

(1) Show that the only quotient of S™(1) which is symmetric is RP"™.

(i) Show that the Grassmannians G{(R"), Gx(C"), Gx(H") are simply
connected.

(2) If G acts by isometries, show that G), is compact iff G is closed in the
isometry group I(M), which holds iff the action of G on M is proper,
ie. G XM — M x M, (g,p) — (p,gp) is proper.

(3) Show that if G acts transitively on M, then so does Gy.

(4) Show that a symmetric space is irreducible iff the universal cover is
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irreducible. You first need to prove the following general claim. If a
connected Lie group G acts on M, and 7: M — M is a cover, then
there exists a cover o: G — G with an action of G on M such that
is equivariant, i.e. w(g-p) = o(g) - 7(p).

(5) Show that the fundamental group of a symmetric space is abelian.

(6) If (M,V) is a manifold with connection, then M is called locally
affine symmetric if the the local geodesic symmetry preserves V, and
affine symmetric if this holds for a globally defined geodesic symmetry.
Show that M is locally affine symmetric iff T = VR = 0, where
T is the torsion of V. Show that a simply connected locally affine
symmetric space is affine symmetric.

/6.2 Cartan involutions

Since Proposition [6.16! (¢) shows that a simply connected symmetric space
is determined by the curvature tensor at one point, it suggests that there
should be an equivalent algebraic definition of a symmetric space, which we
develop in this Section.

First some notation. If M = G/H, H = G), is a homogeneous space, we
obtain an action of G on G/H, which we write as p — gp when thinking
of M, or on the level of cosets kH — g(kH) = gkH which we also denote
by Lg. If h € H, Ly, takes pg to pg and hence d(Lp)py: TpoM — Tpo M.
This defines a representation H — GL(T},,M) called the isotropy repre-
sentation, which we sometimes denote by x = xg/u. This representation
may be highly ineffective. But if G acts effectively and by isometries on
M, then y is effective since isometries are determined by their derivative.
On the other hand, we will often write a homogeneous space in an ineffec-
tive presentation. Recall that if G acts on M then the ineffective kernel
N ={ge€ G|gp=npforall pe M} is a normal subgroup of G and G/N
induces an effective action on M. In the case of homogeneous spaces N C H
and hence N is a subgroup normal in G and H. Conversely, the ineffective
kernel is the largest normal subgroup that G and H have in common. In-
deed, if n lies in such a normal subgroup, L,(gH) = ngH = gn'H = gh
since n’ € H. Notice in particular that Z(G) N Z(H) C N. In the ex-
amples we usually let G act almost effectively on G/H. The only excep-
tion is in the case of U(n) where we allow Z(U(n)) to lie in the ineffective
kernel as well. This makes explicit computations often simpler. As an ex-
ample, consider CP" = U(n + 1)/ U(n)U(1) = SU(n +1)/S(U(n)U(1) =
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(SUn +1)/Zy+1)/(S(U(n) U(1))/Zn+1). The last presentation is effective,
the second one almost effective, but the first one is the most convenient one.

We will often use the following observation. The long homotopy sequence
K — G — G/K implies that K is connected if M is simply connected and
G is connected. Conversely, if G is simply connected and K connected, then
M is simply connected.

We use the following convention when possible. We will denote by G/H
a general homogeneous space and reserve the notation G/K for symmetric
spaces. Recall that a symmetric space M can be written as M = G/ K, where
G =1Ip(M) and K = G),. It is important that from now on we let G be the
identity component of I(M) and not the full isometry group. Notice that
this in particular means that s, does not necessarily lie in G. Nevertheless,
conjugation by s, preserves G.

I@ Proposi‘Fion 6.20 Let M = G/K with G = Ip(M) and K = G, be a
symmetric space.
(a) The symmetry s, gives rise to an involutive automorphism
oc=0p:G—=G |, g— 5,95p.
(b) If G ={g € G | o(g) = g} is the fixed point set of o, then
Gfg C K cCGe.

Proof (a) Since s, € (M) and s, ' = s, 0, 0 is a conjugation and hence an
automorphism that preserves Ip(M). Since s, is involutive, so is o.

(b) To see that K C G?, let h € K. Then o(h)-p = sphsy, -p =p =
h - p. Furthermore, do(h), = (dsp)pdhp(dsy)p, = dhyp. Since isometries are
determined by their derivatives, o(h) = h and hence K C G°.

To see that G C K let exptX C G§ be a 1-parameter subgroup. Since
o(exptX) = exptX, it follows that s, exptXs, = exptX and hence s,(exptX-
p) =exptX - p. But s, fixes only p in a normal ball about p since d(sp), =
—Id and hence exptX - p = p for all t. Thus exptX € K and since G§ is
generated by a neighborhood of e, the claim follows. O

The involution o is called the Cartan Involution of the symmetric space.

Before we prove a converse, we need to discuss some general facts about
Riemannian homogeneous spaces.
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If G acts by isometries on a manifold M, we can associate to each X € g
a vector field X* on M called an action field which is defined by

X*(p)= 5 (exp(tX) p)

These action fields are Killing vector fields since their flow acts by isometries.
A word of caution: [X*,Y*] = —([X,Y])* since the flow of X*is given by
left translation, but the flow of X € g is given by right translation.

We say that G/H, H = G, is a Riemannian homogeneous space if L, is
an isometry for all g € G. We say that the homogeneous space is reductive
if there exists a subspace p C g, such that g = h @ p and Adg(p) C p. We

can then identify
b= Ty M via X — X" (po). (621)

This is an isomorphism since X*(pg) = 0 iff X € b.

isorep || Llemma 6.22 Let G/H be a homogeneous space and g = h@p a reductive
decomposition.

(a) If o0 € Aut(G) with o(H) = H, then under the identification (6.21),
we have do = d&,,,, where 6: G/H — G/H is defined by 6(gH) =
o(9)H.

(b) Under the identification (6.21)), the isotropy representation of G/H is
given by d(Lp)p, = Ad(h)),.

(¢) A homogeneous metric on G/H, restricted to T, M, induces an inner
product on p invariant under Adp.

(d) An inner product on p, invariant under Adg, can be uniquely ex-
tended to a homogenous metric on G/H.

Proof (a) Let H = Gp,. Then

(o (X)) (o) = L (exp(tdo(X)) - po) = 2

&t =0 1o O (X)) - P0)

— TP H) = o (X" ()

Part (b) follows from (a) by letting o = C} be conjugation by h € H and
observing that 7(gH) = hgh™'H = hgH = Ly(gH). Clearly (b) implies (c).
For part (d), the inner product on p induces one on T, M which is preserved
by d(Lp)p,. We then define the metric at gpy by using (Lg)p,: TpoM —
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Typo M. This definition is independent of the choice of g since the metric at
po is Ly invariant. O

Remark 6.23 If G/H does not have a reductive decomposition, one can
still prove an analogue of (a) and (b) by replacing (6.21) with T;,,M ~ g/b.
But the isotropy representation is in general not effective, even if the action
of G on M is.

A Riemannian homogeneous space G/H is always reductive since y(H) is
compact (resp. has compact closure in O(T},,M)). We simply choose an inner
product on g invariant under Ady and let p be the orthogonal complement
of h. Reductive decompositions are not necessarily unique. Notice that
this is simply a representation theory problem since, given one reductive
decomposition, it can only be unique if the representation of Adg on h and
p do not have any equivalent sub-representations.

For a symmetric space we have a natural reductive decomposition, called
the Cartan decomposition.

symmred || Proposition 6.24 Let M = G/K with G§ C K C G for an involu-
tive automorphism o of G. Furthermore, let ¥ and p be the +1 and —1
eigenspaces of do. Then t is indeed the Lie algebra of K and

g=top, [LECE [ppCt

Furthermore, Adgi (p) C p, in particular [¢,p] C p.

Proof [¢,€] C € simply says that € is a subalgebra and G§ C K C G7 implies
that K and G? have the same Lie algebra, which is clearly the +1 eigenspace
of do. Since the automorphism o respects Lie brackets, [p, p] C € follows as
well. It also implies that [¢,p] C p, but Adg(p) C p is stronger if K is not
connected. To prove this, observe that for any automorphism a: G — G one
has da o Ad(g) = Ad(a(g)) oda. If h € K and X € p, ie., o(h) = h and
do(X) = —X, this implies that do(Ad(h)X) = Ad(h)do(X) = — Ad(h)X,
ie., Ad(h)X € p. O

We will use this reductive decomposition from now on. Notice that in this
language the symmetric space is irreducible iff the Lie algebra representation
of € on p given by Lie brackets is irreducible

We are now ready to prove a converse of Proposition 6.20.
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symmauto2 || Proposition 6.25 Let G be a connected Lie group and o: G — G an

involutive automorphism such that G is compact. Then for any compact
subgroup K with G§ C K C G°, the homogeneous space G /K , equipped
with any G-invariant metric, is a symmetric space, and such metrics exist.

Proof Let g = h @ p be the reductive decomposition in Proposition 6.24.
Homogeneous metrics on G/K correspond to Adg invariant inner products
on p. Such inner products exists since K is compact.

We now claim that any such metric is symmetric. Since it is homogeneous,
it is sufficient to find a symmetry at one point. Since o(K) = K, we get an
induced diffeomorphism ¢: G/K — G/K, d(9K) = o(g9)K, and we claim
that this is the symmetry at the base point coset (K). Clearly o fixes the base
point and since doj, = —Id, Lemma [6.22/ (a) implies that d(7)x) = —Id as
well. O

Remark 6.26 It may seem that we have proved that there is a one to one
correspondence between symmetric spaces and Cartan involutions. There is
one minor glitch: If we start with a Cartan involution as in Proposition [6.25]
it may not be true that G = I(M )y, as required in Proposition [6.20. This is
illustrated by the example R™ = L x R"™/L for any L C O(n). Notice that
in this case the Cartan involution is o(A,T,) = (A,T_,). Notice also that
this example shows that one symmetric space can have a presentation as in
Proposition [6.25 in several different ways, clearly not desirable. We will see
that R™ is essentially the only exception.

We can now reduce a symmetric space to an infinitesimal object.

symminfinitesimal

Proposition 6.27 Let g be a Lie algebra and g = €& be a decomposition

(as vector spaces) with
Eece [tplcp [pplct

If G is the simply connected Lie group with Lie algebra g and K C G the
connected subgroup with Lie algebra €, then

(a) There exists an involutive automorphism o: G — G such that K =
G§.

(b) If K is compact, then every G-invariant metric on G/K is symmetric.

(c) G/K is almost effective iff g and € have no ideal in common.

Proof (a) Let L: g — g be the linear map with Ly = Id, L, = —1Id.
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Then one easily checks that the Lie bracket condition is equivalent to L
being an automorphism of g. Since G is simply connected, there exists an
automorphism ¢ with do = L, and since do? = L? = Id, ¢ is involutive. The
Lie algebra of G is the fixed point set of do = L, i.e it is equal to €. This
proves that K = G§. (b) now clearly follows from Proposition ?77?.

(c) Recall that G/K is almost effective if the kernel of the left action has
finite ineffective kernel, and that this is equivalent to saying that the largest
subgroup of K normal in G (and hence of course in K as well), is discrete,
i.e. has trivial Lie algebra. Since normal subgroups correspond to ideals, the
claim follows. O

A decomposition of a Lie algebra g as above is again called a Cartan decom-
position of g. It is called orthogonal if it satisfies the condition in (b), and
effective, if it satisfies the condition in (c¢). Thus a symmetric space gives
rise to an effective orthogonal Cartan decomposition, and conversely such a
Cartan decomposition defines a symmetric space. Again, the correspondence
is not quite one to one.

We point out an elementary result that will be useful when discussing the
symmetric spaces involving classical Lie groups.

totgeod Proposition 6.28

(a) If M is a symmetric space and N C M is a submanifold such that for
allpe M, s,(N) = N, then N is totally geodesic and symmetric.

(b) Let 0: G — G be an involutive automorphism and G/K the corre-
sponding symmetric space. If L C G with (L) C L, then L/(LNK)
is a symmetric space such that L/(L NK) C G/K is totally geodesic.

Proof (a) Recall that N C M is totally geodesic if every geodesic in N is
also a geodesic in M, or equivalently the second fundamental form B: T, N x
T,N — (T,N)* vanishes. But the isometries s, preserves T, N and hence
(T,N)+, and thus B as well. Since the tensor B has odd order, it vanishes,

see the proof of Proposition 6.16 (a).
(b) This follows from (a) since the symmetry at eK is given by (9K ) =
o(9)K andif N = L/(LNK) C G/K, then o(L) C L implies that 5(N) C N.
U]

Exercises 6.29

(1) Show that when G acts on a manifold M (not necessarily transitive
or Riemannian) then (Ad(g)X)* = (Lg)«(X™).
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(2) Let GL(n,R) act on R™ — {0} via matrix multiplication. Compute
the isotropy at a point and the isotropy representation on g/h and
show that this homogeneous space has no reductive decomposition.

(3) Show that up to scaling, there exists a unique metric on S" invariant
under SO(n + 1), a one parameter family invariant under U(n) C
SO(2n) on §?**~! and a 7 parameter family invariant under Sp(n) C
SO(4n) on S*—1,

(4)

(5)

/6.3 A Potpourri of Examples

In this section we will describe all of the symmetric space which are quo-
tients of classical Lie groups in a geometric fashion. We also compute the
isotropy representation and fundamental group and discuss some low dimen-
sional isomorphisms.

Grassmann manifolds

We first revisit some examples we already studied in Section 6.1. We
denote by Gx(R™) the set of unoriented k-planes in R and by G%(R") the
set of oriented k-planes. The Lie group O(n), and also G = SO(n), clearly
acts transitively on k planes. If pg is the k-plane spanned by the first k-basis
vectors ey, - - - , e, then the isotropy is embedded diagonally:

Gp0:S(O(k)O(nk)):{<gl g,>|A€O(k), BGO(nk:),}

with det Adet B = 1. In the case of the oriented planes we clearly have
Gp, = SO(k) SO(n — k) embedded diagonally.

We denote from now on by I, , the (p+¢q) % (p+¢) diagonal matrix with p
entries of —1 on the diagonal and ¢ entries of +1. Then o(A) = I,k Al r—k
is an automorphism of G which is + Id on the upper k x k and lower (n—k) x
(n — k) block and —Id in the two off blocks. Thus G = S(O(k) O(n — k)).
It has two components, and according to Proposition [6.25, gives rise to two
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symmetric spaces, Gi(R") and GY(R™). The —1 eigenspace p of do and a
computation shows that the isotropy representation is given by:

p= {( _S(T )0( > | X € M(p, q,R)} and Ad((A4,B))X = AXBT,

where (A,B) € S(O(k)O(n — k)). Thus xg/u = pp®p, and this rep is
irreducible, as long as (p,q) # (2,2). Thus the Grassmannians, except for
G2(R*) and GY(R*), are irreducible. (Notice that an exterior tensor product
over R of real irreducible reps may not be irreducible, as it was over C).

In order to obtain a geometric interpretation of what the symmetry does
to a plane, let rg be the reflection in the plane E. We claim that the
symmetry sg is simply reflection in F, i.e. if we let vy, ..., v be basis of F,
then rg(vy),...,7g(vk) is a basis of sg(F'). To see this, we can assume that
E = span{ey,...,er} and F' = span{g(e1),...g(ex)} for some g € SO(n).
Then, as we saw in the proof of Proposition 6.25, the symmetry at E is given
by gH — o(g)H. Thus in the first k£ columns of g, i.e. g(ey),...g(e), the
first k& components are fixed, and the last n — k are changed by a sign. But
this is precisely what the reflection in E does.

Recall that 71(SO(m)) — m(SO(n)) is onto for all n > m > 2. This
easily implies that G9(R™) is simply connected, and thus 71 (G(R™)) = Zo.
The 2-fold cover GY(R™) — Gx(R™) of course simply forgets the orientation.

Similarly, for the complex and quaternionic Grassmannian Gj(C") =
U(n)/ U(k)U(n — k) and G (H™) = Sp(n)/ Sp(k) Sp(n — k) with Cartan in-
volution again given by conjugation with I}, ,_j. Both are simply connected
and no sub-covers are symmetric.

As mentioned before, the special cases with k& = 1, ie.,, G{(R"!) =
RP", G1(C"*!) = CP", G;(H""!) = HP" are especially important. They
are also called rank 1 symmetric spaces. There is one more rank 1 symmetric
space, the Cayley plane CaP? = Fy/ Spin(9).

Compact Lie groups

If K is a compact Lie group, we have an action of K x K on it given
by (a,b) - h = ahb~! with isotropy AK = {(a,a) | a € K}. Thus we can
also write K = K x K/AK. Notice that K x K acts by isometries in the
bi-invariant metric on K. We have the involutive automorphism o(a,b) =
(b,a) with G = AK which makes K x K/AK into a symmetric space.
Furthermore, p = {(X,—X) | X € g} with isotropy representation the
adjoint representation Ad(k)(X,—X) = (Ad(k)X,—Ad(k)X). Thus the
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symmetric space K is irreducible iff K is simple. Notice that the natural
isomorphism p ~ T, K ~ ¢ is given by (X,—X) — 2X. One should keep
in mind this multiplication by 2 when relating formulas for the symmetric
space to formulas for K.

SO(2n)/ U(n): Orthogonal Complex structures

If (V,(-,-)) is an inner product space, we will study the set of complex
structures which are isometries, i.e., M = {J € O(V) | J? = —1d}. V must
be even dimensional and we set dim V' = 2n. If J € M, we can find a normal
form as follows. Choose a unit vector v; € V arbitrarily and let v,11 = J(v1).
Then J(vy+1) = —v1 and hence span vy, v, is J invariant. Since J is also
orthogonal, it preserves its orthogonal complement, and repeating we obtain
an orthonormal basis vy, ..., vy, Unt1, ... U2y in which J is the matrix

0 —Id
/= ( Id 0 ) ’

This implies that the action of O(V) on M, given by A-J = AJA™! is
transitive on M. Indeed, A-J € M if J € M and if J and J’ are orthogonal
complex structures, then the isometry A which takes one orthonormal basis
of each normal form to the other, satisfies A -.J = J'. Let us fix one such
orthogonal complex structures Jy and let v; be a corresponding choice of
orthonormal basis. The isotropy at Jy is the set of A € O(V) with Ao
Jo = Jpo A, ie. the set of Jy complex linear maps w.r.t. Jy. Thus M =
O(V)/U(V). Notice that this has 2 components and we call the set of
complex structures J with det J = det Jy the oriented complex structures
(w.r.t. the orientation induced by Jy). Let us call this component again M.

We can use Jy to identify V with R® ®R" = C” with its canonical complex
structure Jo(u,v) = (—v,u) and then M = {J € SO(2n) | J? = —1d} =
SO(2n)/ U(n) where U(n) C SO(2n) is the canonical embedding A +iB —

(5 4)

We now take the involutive automorphism of SO(2n) given by o(A) =
JoAJy. Then clearly G° = U(n) and thus SO(2n)/U(n) is a symmetric
space, and since G? is connected, no subcover of M is symmetric. Using the
usual embedding U(n) C SO(2n), we get

B XY T T
b—{(_y X>|X,Y€g[(n,R),X— X,Y_Y}

| I
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and

B X Y B T _ T
p—{(y _X>\X,Y€g[(n,]R),X— X, Y= Y}

The isotropy representation is more difficult to compute, but one can show
that ¥ = A%u,, which is irreducible. Thus M is an irreducible symmetric
space. It is not hard to see that m1(U(n)) — m1(SO(2n)) is onto (choose
canonical representatives) and hence M is simply connected.

Notice that if J is a complex structure, then J is orthogonal iff J is skew
symmetric. Thus there is a natural embedding M C 0(2n). The metric
obtained by restricting the inner product (4, B) =  tr AB on o(2n) to M is
the above symmetric metric since it is invariant under the adjoint action of
SO(2n) on o(2n). It leaves M invariant, in fact M is an orbit of the action,
and since M is isotropy irreducible the metric is unique up to scaling, and
hence must be symmetric.

If we look at low dimensional cases, we have SO(4)/ U(2) ~ S?. Indeed,
SU(2) is a normal subgroup of SO(4) and SO(4)/SU(2) ~ SO(3) and thus
SO(4)/U(2) = SO(3)/S0O(2) = S2. If n = 3 one easily sees that that
SO(6)/U(3) ~ SU(4)/S(U(3) U(1)) = CP? and if n = 4 that SO(8)/U(4) ~
SO(8)/S0O(2) SO(6). Notice that the last claim seems at first sight somewhat
peculiar since m1(U(3)) = Z and 71 (SO(2) SO(6)) = Z & Zs.

U(n)/ O(n): Lagrangian subspaces of R?"

Let (V,w) be a symplectic vector space and set dim V' = 2n. A subspace
L CV with wy;, =0 and dim L = n is called Lagrangian. We will show that
M, the set of all Lagrangian subspaces of V', is a symmetric space. As we
saw in Chapter 3, there exists a symplectic basis with which we can identify
V ~R"@®R" and w with the canonical symplectic form wg((u,v), (v/,v")) =
u-v'—u v = (Jo(u,v), (u'v')), or equivalently wy = > dz; Ady;. Thus there
exists an inner product (-,-) and an orthogonal complex structure J on V/
such that w(u,v) = (Ju,v). Another way to say that L is Lagrangian is thus
that J(L) L L, i.e., M is also the set of all totally real subspaces w.r.t. J.

A third interpretation is that M is the set of conjugate linear intertwin-
ing maps 7 of the complex vector space (V,.J) with 72 = Id, which are
orthogonal. Indeed, as we saw in the proof of Proposition 5.37, if V. are the
eigenspaces of 7 with eigenvalues £1, then JV_ = V+ and (V,V_) =0, i.e.
J(V_) L V_ and hence V_ is Lagrangian. Conversely, if L is Lagrangian,
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we define 7 as above. 7 is sometimes also called a real structures since
V_ ® C =V and conversely, a subspace L C V with L ® C = V| defines a
conjugate linear intertwining maps 7.

For simplicity identify from now on (V,w,J) ~ (R?",Jy,wp). The sym-
plectic group Sp(n, R) clearly takes Lagrangian subspaces to Lagrangian sub-
spaces. Recall that U(n) C Sp(n,R) and we claim that U(n) acts transitively
on M. For this, let L be Lagrangian, choose an orthonormal basis v, ..., v,
of L and let v,4+; = Jo(v;). Since L is Lagrangian, and hence Jy(L) L L,
U1,...,V2, is an orthonormal basis and w(v;, vj) = w(Vp4i, Vntj) = 0. Fur-
thermore, w(vj, vn4;) = 0;; and hence w = ) dv; A dvp4;. Thus the lin-
ear map A that takes v; to the standard basis e1,...,ea, lies in Sp(n,R),
but also in O(2n) and hence in Sp(n,R) N O(2n) = U(n). It takes L
into the Lagrangian subspace Lo = {ej,...e,}. This shows that U(n) in-
deed acts transitively on M. The isotropy at Lo is O(n) C U(n) since
( _AB i ) € U(n) C SO(2n) fixes Ly iff B = 0. Hence M = U(n)/ O(n).
We also have M° = U(n)/SO(n) which can be interpreted as the set of
oriented Lagrangian subspaces. and is a 2-fold cover of M.

If we choose the automorphism of U(n) defined by o(A4) = A, then G7 =
O(n) and thus M, as well as M° is a symmetric space. By embedding
U(n) € O(2n) we clearly have

h:{(% )?>|X€g[(n,]R), X:—XT}

pz{(_;f) %)\YGg[(n,R), Y:YT}

Identifying a matrix in p with Y, the isotropy representation is given by
Ad(diag(A, A))(Y) = AY AT ie. x = S?p,,. Notice that this rep is not irre-
ducible since the inner product is an element of S?(R") which is fixed by p,,.
This corresponds to the fact that Y = Id € p lies in the center of u(n). Thus
M is not an irreducible symmetric space. Notice that we have a submanifold
SU(n)/SO(n) € U(n)/ O(n) and since o preserves SU(n), Proposition 6.28
implies that the embedding is totally geodesic. SU(n)/SO(n) is sometimes

and

called the set of special Lagrangian subspaces. The isotropy representation
of SU(n)/SO(n) is irreducible, i.e., it is an irreducible symmetric space.

There is a natural tautological embedding U(n)/ O(n) C G,(R?") and we
claim it is totally geodesic. For this we just observe that conjugation with

| I
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I, ,, takes < —AB ﬁ ) € U(n) C O(2n) to ( A _AB ) and thus A+iB —
A—iB = 0(A+iB), i.e. the Cartan involution for the Grassmannian restricts
to the Cartan involution for the set of Lagrangian subspaces.

Finally, we consider some low dimensional isomorphisms. Clearly, we have
that SU(2)/ SO(2) = S? = CP" is the set of Lagrangian subspaces of R%. The
5-dimensional manifold SU(3)/SO(3) is sometimes called the Wu manifold.
The long homotopy sequence of the homogeneous space implies that it is
simply connected with o = Zo, i.e. as close to a homology S° as one can
get. Finally, one easily sees that SU(4)/SO(4) = SO(6)/ SO(3) SO(3), which
seems natural since SU(4) is a 2-fold cover of SO(6) and SO(4) is a 2-fold
cover of SO(3) SO(3).

U(2n)/ Sp(n): Quaternionic structures on C2"

Recall that if (V,J, (- ,-)) is a hermitian vector space, a conjugate linear
intertwining maps 7 with 72 = —1Id is called a quaternionic structure of V.
Since 7 is conjugate linear JT = —7J and thus J, 7, JoT are 3 anti-commuting
complex structures which make V into a vector space over H. We can then
define the compact symplectic group as Sp(V) = {A € U(n) | A7 = 7A}.
We denote by M the set of quaternionic structures which are unitary. In
coordinates, C" & C" ~ H", with (u,v) — u + jv and 19(u,v) = (—0v,u) =
(u,v)J.

We claim that U(2n) acts transitively on M. Let Vi be the eigenspaces of
7 with eigenvalues 4. Then we have again that JV_ = V and (V_, V) = 0.
If we let ug, ..., u, be an orthonormal basis of V_, then uy, ..., upn, J(u1), ..., J(uy)
is an orthonormal basis of V. If we have two such structures 7, 7/ the unitary
map that takes the orthonormal basis for 7 into that for 7’ takes 7 to 7/ as
well. The isotropy at 79 is equal to Sp(n) and thus M = U(2n)/ Sp(n).

The automorphism o(A) = 1o A7y ! makes M into a symmetric space since
U(2n)? = Sp(n). It is not irreducible, but the totally geodesic submanifold
SU(2n)/Sp(n) € U(2n)/Sp(n) is an irreducible symmetric space.

T € M is a skew-hermitian matrix and thus M is embedded as an adjoint
orbit in {A € M(2n,2n,C) | A = —AT} under the action of U(2n) by
conjugation, with metric induced by the trace form.

In the first non-trivial dimension we have SU(4)/Sp(2) = SO(6)/SO(5) =
S5,
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Sp(n)/ U(n): Complex Lagrangian subspaces of C*"

As in the case of real Lagrangian subspaces, we let M be the set of sub-
spaces of C?" which are Lagrangian w.r.t. the complex skew symmetric bilin-
ear form w. One easily sees that Sp(n, C)NU(n) = Sp(n) acts transitively on
M with isotropy U(n). Thus M = Sp(n)/ U(n) and it is a symmetric space
with respect to the involution o(A + jB) = A — jB with Sp(n)? = U(n).
It is a totally geodesic submanifold of G,,(C?*). M is irreducible symmetric
and Sp(2)/U(2) = SO(5)/SO(2) SO(3) = G2(R?).

SL(n,R)/SO(n): Inner products on R"

The set of inner products on R" is a non-compact symmetric space. If
(-, )o is the standard inner product on R™, then any other inner product
can be written as (u,v ) = (Lu,v) for some self adjoint linear map L. Thus
the set of inner products can be identified with the set M = {A € GL(n,R) |
A= AT A > 0} of positive definite symmetric matrices. The inner product
(X,Y) = tr XY on the set of symmetric matrices translates via left transla-
tions to any other A € M, ie. (X,Y)q = tr(A71XA71Y). The Lie group
GL(n,R) acts on M via g-A = gAg” and one easily sees that it acts by isome-
tries. The action is transitive since the linear map that takes an orthonormal
basis of one inner product to an orthonormal basis of another clearly takes the
inner products into each other (the action is by basis change). The isotropy
at Id is clearly O(n) and hence M = GL(n,R)/O(n) = GL*(n,R)/SO(n).
The involutive automorphism o(A) = (A7)~! has fixed point set O(n) and
hence M is a symmetric space. In the Cartan decomposition,  is the set of
skew symmetric matrices, and p the set of symmetric matrices. The isotropy
representation is given by conjugation, i.e. x(4)X = AXA™! for A € O(n)
and X € p. In other words, x = S%p,. It has a fixed vector Id but is irre-
ducible on its orthogonal complement. SL(n,R)/SO(n) is a totally geodesic
submanifold of M and an irreducible symmetric space.

Finally, we claim that the symmetry siq is given by s1q(A) = A=L. On the
level of cosets it takes g O(n) to o(g) O(n) = (¢7)~1 O(n). Since A > 0 we
can find g with A = gg” and hence siq(A) = s14(gg9” -O(n)) = ((9¢7)") ! =
(99")t=A""

O(p,q)/S(O(p) O(q)): Positive p-planes in RP?

| I
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In order to discuss another non-compact symmetric space, let RP4 be RPT4
with an inner product (- ,- ) of signature (p,q). Let M = {L € G,(RP*?) |
(u,u) > 0 for all w € L}. The group of isometries of (- ,- ) is O(p, ¢) and it
clearly acts transitively on M with isotropy at L = {e1,...,e,} is O(p) O(q).
Thus M = O(p,q)/ O(p) O(q) = SO (p,q)/S(O(p) O(g)). The involutive
automorphism is conjugation by I, , which makes M into a symmetric space.
The set of oriented positive p-planes M° = SO(p, q)/ SO(p) SO(q) is a sym-
metric space as well. Particularly important is the hyperbolic space H*t! =
SO(p,1)/ O(p)-

Similarly, for SO(p,¢,C)/S(U(p) U(q)) and SO(p, ¢, H)/ Sp(p) Sp(q) with
the complex and quaternionic hyperbolic spaces CH"*' = SU(p, 1)/ U(p)
and HH"" = Sp(p,1)/Sp(p)Sp(1). These 3 hyperbolic spaces, together
with Fy 20/ Spin(9), are the non-compact rank 1 symmetric spaces with
sectional curvature between —4 and —1. Here Fy _o¢ is the Lie group corre-
sponding to a particular real form of {4 ® C.

There are several more non-compact symmetric space, but we will see
shortly that they are obtained by a duality from the compact ones.

Exercises 6.30

(1) Show that the Grassmannian G9(R?) is isometric to S?(1) x S?(1),
up to some scaling on each factor. Furthermore, Go(R%) = S2(1) x
S2(1)/{(a,b) ~ (—a,—b)}. Decompose pa®ps into irreducible sub-
representations and discuss the relationship.

(2) Compute the fundamental groups of U(n)/O(n), U(n)/SO(n) and
SU(n)/SO(n).

(3) Show that U(n)/SO(n) is diffeomorphic to S' x SU(n)/SO(n).

(4) Show that SO(6)/ U(3) = CP? and SU(4)/ SO(4) = SO(6)/SO(3) SO(3).

(5) What is the set of unitary complex structures on C?".

6.4 Geodesics and Curvature

Motivated by Proposition [6.20/ and Proposition [6.25, we define:

Definition 6.31 (G, K, o) is called a symmetric pair if K is compact, o
is an involution of G with G§ C K C G?, and G acts almost effectively on
G/K.
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Remark 6.32 As we saw, a symmetric space gives rise to a symmetric pair
with G = Ip(M), and a symmetric pair gives rise to a symmetric space,
although at this point the correspondence in not yet one-to-one, and a sym-
metric space can give rise to many symmetric pairs in infinitely many ways.
Notice that in terms of the Cartan decomposition g = £ & p, the condition
that G acts almost effectively is equivalent to saying that g and p do not
have any ideal in common.

A word of caution: If a Riemannian homogeneous space G/H is a sym-
metric space, it may not be true that (G, H) is a symmetric pair unless G =
Io(M). For example, S*(1) = SO(n+1)/SO(n) and (SO(n+1),S0(n)) is a
symmetric pair. But SU(n) C SO(2n) also acts transitively on S?*»~1(1) with
isotropy SU(n—1), i.e. $*»~1(1) = SU(n)/SU(n—1). But (SU(n),SU(n—1))
is not a symmetric pair since one easily shows that there exists no automor-
phism o of SU(n) with G = SU(n—1). On the other hand, if R" = LxR"/L
with L C O(n) as above, it is still true that (L x R™, L) is a symmetric pair
since 0(A,T,) = (A,T_,) preserves L x R™.

We start with a description of the geodesics of a symmetric space. Recall
that we identify p ~ T}, M via X — X*(po).

symmgeod || Proposition 6.33 Let (G, K) be a symmetric pair with Cartan decom-
position g =t @ p. If X € p, then y(t) = exp(tX) - po is the geodesic in M
with v(0) = pp and 7'(0) = X € p ~ T, M.

Proof : Recall that the automorphism o induces the symmetry s at the
point pg given by s(gH) = o(g)H. With respect to the symmetric metric on
G/H, let (G', K') be the symmetric pair with G’ = Ip(M) and with Cartan
involution ¢/(g) = sgs and corresponding Cartan decomposition g’ = ¢ @ p’.
We first prove the claim for the symmetric pair (G, K').

Let v be the geodesic in M with v(0) = pp and +/(0) € T,,,M. Then the

transvection T; = S4(%) © 51(0) is the flow of a Killing vector field X € g¢'.

Since y(t) = T} - po, it follows that 7/(0) = X*(po). Furthermore, o/(T}) =
55(0)55(5)51(0)52(0) = $50)53(5) = (83(8) © 53(0) ™ = (1) 7" =T Differen-
tiating we obtain do’(X) = —X and thus X € p’.

Next we look at the symmetric pair (G, H). We can assume that G/H
is effective, since we can otherwise divide by the finite ineffective kernel
without changing the Lie algebras. We first show that al’G = 0. Indeed, if
g € G then Lgys = Ly(g) since Lggs(hK) = Lsy(0(h)K) = Ls(go(h)K) =
0(9)hK = Ly(g)(hK). Thus effectiveness implies that o(g) = sgs = o’(g).
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Next we prove that p = p’ which finishes the claim. Since they have the
same dimension, it is sufficient to show that p C p’. But if u € p, ie.
do(u) = —u, then J|’G = o implies that do’(u) = —u, i.e. u € p’. O

There is a simple formula for the connection and curvature of a symmetric
space. Recall that we identify p ~ T, M via X — X*(po).

I@ Proposition 6.34 Let (G, K) be a symmetric pair with Cartan decom-
position g =€ P p.

(a) For any vector field Y on G/K and X € p, we have (Vx+Y)(po) =

[(X*, Y](po)-
(b) If X,Y,Z € p, then (R(X*,Y*)Z*)(po) = —[[X, Y], Z]*(po).

Proof: (a) For X € p, consider the geodesic (t) = exp tX -py in M. We have
the corresponding transvection 7} = S+(t)57(0) = Lexp¢x which is the flow of
X*. Also (dT}).(s) is parallel translation along «. Thus if Y is any vector field
on M, we have Vx-Y = £ (PIY () = £,y(dT )Y (3(8)) =
[X*,Y].

(b) We first compute (everything at pg)

Vx+Vy«Z* = [X* Vy-Z*] = V[X*,Y*]Z* + Vy«[X™, Z7]

since isometries preserve the connection and the flow of X* consists of isome-
tries. Since [p,p] C € we have [X,Y]*(po) = 0 and hence

Vx+Vy«Z* =Vy« [ X", 7" = =V« [ X, Z]" = = [Y*, [ X, Z]*]| = [V, [X, Z]]".
Thus

R(X*’Y*)Z* = VX*VY*Z* — VY*VX*Z* — V[X*,Y*]Z*
=Y, [ X, Z]]" - [X, [V, Z]]" = - [[X,Y], 2]

by the Jacobi identity. O
We usually simply state
VxY =[X,Y], R(X,Y)Z)=-[X,Y],Z7]

with the understanding that this only holds at pg.
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Remark 6.35 Part (a) gives rise to a geometric interpretation of the Cartan
decomposition in terms of Killing vector fields, assuming that G = Io(M):

tE={Xecg| X" (po) =0} p={Xe€g|V, X (p)=0forallveT, M}

The first equality is obvious and for the second one, we observe that (a)
implies that (Vx=Y™*)(po) = [X,Y]*(po) = 0 for X,Y € p since [p,p] C &
Equality then follows by dimension reason. One also easily sees that g =
t @ p is a Cartan decomposition. Elements of p are often called infinitesimal

transvections.

We finish with a simple characterization of totally geodesic submanifolds
of symmetric spaces:

totgeodclass | Proposition 6.36 Let G/H be a symmetric space corresponding to the
Cartan involution o, and g = ) @ p a Cartan decomposition. If a C p is a

linear subspace with [[a,a],a] C a, called a Lie triple system, then exp(a)
is a totally geodesic submanifold.

Proof First observe that §' = [a,a] C b, the subspace spanned by all

[u,v], u,v € a,is asubalgebra: Using the Jacobi identity, [, §'] = [[a, a], [a,a]] =
[[[a, a],a],a] = [a,a] since a is a Lie triple system. Furthermore, [§’,a] =
a,a],a] C a and clearly [a,a] C us g’ = [a,a] @ a is a subalgebra o

d clearl b" Th ! i balgeb f

g. Let G’ C G be the connected subgroup with Lie algebra g and H' ¢ H
the one with Lie algebra §’. Since do clearly preserves g’, it follows that o
preserves GG and the claim follows from Proposition [6.28]. O

It may seem that the Proposition would enable one to easily classify totally
geodesic submanifolds of symmetric spaces. Unfortunately, this is not the
case. Fven totally geodesic submanifolds of Grassmannians have not been
classified. On the other had, we will see that it is of theoretical use.

/6.5 Type and Duality

We now continue the general theory of symmetric spaces. We start with
an important definition.

Definition 6.37 Let (G, K) be a symmetric pair with B the Killing form
of g. The symmetric pair is called of compact type if B, < 0, of non-
compact type if B, > 0 and of euclidean type if B, = 0.

We first observe
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Cartandecomp2

Proposition 6.38 Let (G, K) be a symmetric pair.

(a) If (G, K) is irreducible, it is either of compact type, non-compact type
or euclidean type.

(b) If M = G/K is simply connected, then M is isometric to a Rieman-
nian product M = My x My x My with My of euclidean type, My of
compact type and My of non-compact type.

(c) If (G, K) is of compact type, then G is semisimple and G and M are
compact.

(d) If (G, K) is of non-compact type, then G is semisimple and G and M
are non-compact.

(e) (G,K) is of euclidean type iff [p,p] = 0. Furthermore, if G/K is
simply connected, it is isometric to R"™.

Proof : (a) If (G, K) is irreducible, then Schur’s Lemma implies that By, =
(-, ), where (-, -) is the metric on p. Thus M is of compact type if A < 0, of
non-compact type if A > 0 and of euclidean type if A = 0.

(b) From Corollary [6.12] it follows that M is isometric to My x -+ X My
with M; irreducible symmetric spaces. The claim thus follows from (a).

(c¢) and (d) If o is the automorphism of the pair, then do preserves B
and hence B(t,p) = 0 since dojy = Id and doj, = —Id. Next we claim that
Bje < 0. Indeed, since K is compact, there exists an inner product on g such
that adx: g — g is skew symmetric if X € ¢. Thus B(X,X) = trad% <0
and B(X,X)=0iff X € 3(g). But 3(g) N = 0 since g and ¢ have no ideals
in common. Hence, if B(X, X) =0, we have X =0, i.e. Bjy <0.

Thus G is semisimple if (G, K) is of compact or non-compact type. If it
is of compact type, then B < 0 and hence G, and thus also M, is compact.
Similarly, for the non-compact type.

(e) If By, = 0, then B(¢,p) = 0 and B}y < 0 implies that p = ker B.
But ker B is an ideal in g and, together with [p,p] C €, this implies that
[p,p] C pNt=0. Conversely, if [p,p] = 0, together with [, p] C p, one easily
sees that Bj, = 0.

If [p,p] = 0, Proposition [6.34/ implies that the sectional curvature is 0. If
M is simply connected, it follows that M is isometric to R™. O

The symmetric spaces of euclidean type are thus not so interesting, and we
will say that M = G/K has no (local) euclidean factor if in the splitting
of the universal cover, none of the irreducible factors are of euclidean type.
This clearly holds iff each point has a neighborhood which does not split
of a euclidean factor. For simplicity we often leavs out the word “local”.
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These spaces will from now be our main interest. We start with the special
curvature properties of each type
symmsec| Proposition 6.39 Let (G, K) be a symmetric pair with .

(a) If (G, K) is of compact type, then sec > 0.

(b) If (G, K) is of non-compact type, then sec < 0.

(c) In both cases, a 2-plane spanned by u,v € p has zero curvature iff

[u,v] = 0.
(d) If (G, K) is irreducible, and (-, -) = £Bj,, thensec(X,Y) = +[|[X, Y]|%.

Proof : 1t is clearly sufficient to prove this for an irreducible symmetric space.
In that case Bj, = A(,-) for some A # 0, where (-, -) is the metric on p. If
u,v € p ~ T, M is an orthonormal basis of a 2-plane, then

Asec(u,v) = MR(u, v)v,u) = —A([[u, v],v], u)
= —B([[u, v], v],u) = B([u, ], [u, v])

where we have used the fact that ad,, is skew symmetric for B. Since [u,v] € ¢
and since Bjy < 0 we have B([u,v], [u,v]) < 0 and thus sec is determined by
the sign of A. O

This implies in particular that if (G, K) has non-compact type, then G is
simple. We can reduce the classification of symmetric pairs easily to the case
where G is simple

symnsimple || Proposition 6.40 Let (G, K) be an irreducible symmetric pair which is
not of eucildean type. Then either G is simple, or (G,K) = (K x K,AK)
and G/K is isometric to a compact simple Lie group with bi-invariant

metric.

Proof : Proposition 6.38 implies that g is semisimple, and thus g = g1 ®
--- @ g, with g; simple. This decomposition into simple ideals is unique
up to order, and hence the Cartan involution o permutes g;. We can thus
write g = b1 @ --- O hs as a sum of ideals such that b; is either gi for
some k with o(gx) = g, or h; = gp © g; for some k,l and o(gx) = g1. oy,
induces a further decomposition h; = €; ® p; into +1 eigenspaces and hence
t=t - ---dt;and p =p; &---Dps. Notice that p; # 0 for all ¢ since
otherwise oy, = Id which means that [; is an ideal that g and ¢ have in
common, contradicting effectiveness. Since [€;,p;] = 0 for ¢ # j, we have
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[¢,p;] C p; and irreducibility implies that s = 1. If G is not simple, this
implies that g = b @ h with o(a,b) = (b,a) and hence g7 = Abh. This is the
symmetric pair K x K/AK, where K is any compact simple Lie group with
Lie algebra ¢. O

We can now determine the isometry group.

symmisom | Proposition 6.41 Let (G,K) be a symmetric pair with no euclidean
factor and Cartan decomposition g =€ ® p. Then

(a) [p,p] =t
(b) Holg = Ky, where Hol, is the holonomy group.

(c) If G/K is effective, then G = Io(M).

Proof: (a) By Proposition 6.12/we can assume that G/K is irreducible. Thus
By, is non-degenerate. If a € € with B(a, [u,v]) = 0 for all u,v € p, then
0 = B(a, [u,v]) = —B(u, [a,v]) for all v and hence [a,v] = 0 for all v € p.
Since Ad(exp(ta)) = e'?da this implies that Ad(exp(ta)), = Id. But G/K is
almost effective and hence the isotropy representation has finite kernel. Thus
exp(ta) = e for all t and hence a = 0. This implies that ¢ = {[u,v] | u,v € p}.

(b) Recall that we already saw that Holg C Kp. One geometric interpre-
tation of the curvature is in terms of parallel translation: If z,y,2 € T, M,
consider small rectangles in M with one vertex at p, whose sides have length
s and at p are tangent to x,y. Parallel translating z around these rectangles
gives a curve z(t) € T,M and R(z,y)z = 2”(0). Since z(t) € Holg7 the skew
symmetric endomorphism R(z,y) lies in the Lie algebra of Holg. But Propo-
sition (6.34 implies that R(z,y) = —ady,,) restricted to p ~ T, M. Since
[p,p] = €, this implies that Hol, and K have the same Lie algebra.

(c) Recall that the involutive automorphism o induces the symmetry s at
the identity coset pg = (K) by s(¢K) = o(g)K. Let G' = Iy(M) be the full
isometry group and K’ its isotropy group at pg. Then K C K’ by effective-
ness and hence ¢ C ¥. The symmetry s at pg induces the automorphism o’
of G’ defined by o'(g) = sgs which makes (G’, K’) into a symmetric pair.
This symmetric pair is also irreducible since M is locally irreducible. Thus
we have another Cartan decomposition g’ = & @ p’ into the +1 eigenspaces
of do’. and part (a) implies that [p’, p’] = €. In the proof of Proposition 6.33
we showed that p = p’. Thus € = [p,p] = [p/,p'] = ¥ and hence g = ¢'. Effec-
tiveness now implies that G = Ip(M) since they have the same Lie algebra.

U]
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We next discuss the important concept of duality. Let (G, K) be a sym-
metric pair with m1(G/K) = 0. Since G is connected, K is connected as
well. Let g = €® p be the Cartan decomposition of g. We can consider g
as a real subalgebra of g ® C and define a new real Lie algebra g* C g® C
by g = €@ ip. This is indeed a subalgebra since [¢, €] C ¢, [¢,p] C p and
[p,p] C € and hence [¢,ip] C ip and [ip,ip] = —[p,p] C €& Now let G* be
the simply connected Lie group with Lie algebra g* and K* the connected
subgroup with Lie algebra ¢ C g*. Then G*/K* is simply connected and
almost effective since g and ¢, and hence also g* and &, have no ideals in
common. We call (G*, K*) the dual of (G, K). Notice that K and K* have
the same Lie algebra, but may not be isomorphic.

Thus, if (G, K) is a simply connected symmetric pair, we have a dual
(G*, K*) which is another simply connected symmetric pair. This relation-
ship has the following properties.

symnduality || Proposition 6.42 Let (G, K) be a symmetric pair with dual symmetric
pair (G*, K*) .

(a) If (G, K) is of compact type, then (G*, K*) is of non-compact type
and vice versa.

(b) If (G, K) is of Euclidean type, then (G*, K*) is of Euclidean type as
well.

(c) The pairs (G, K) and (G*, K*) have the same (infinitesimal) isotropy
representation and hence (G, K) is irreducible iff (G*, K*) is irre-
ducible.

(d) If (G,K) and (G*,K*) are effective and simply connected without
euclidean factors, then K = K*.

Proof : (a) Recall that if g is a real Lie algebra, then By = BQC|g . By
construction gc ~ g¢. If (G, K) is of compact type, i.e. Bg(u,u) < 0 for
u € p, then Bg(iu,iu) = —B(u,u) > 0, i.e. (G*, K*) is of non-compact
type and vice versa. Part (b) clearly follows from Proposition 6.38 (e). Part
(c) is clear as well since the action of € on p resp. ip is the same.

(d) Since (G, K) has no euclidean factors, Proposition 6.41 (c) implies
that G = Io(M). Also recall that K is connected. Now observe that if
R is the curvature tensor of G/K, then Proposition 6.16/ (c) implies that
K = Ky = {A € GL(T},,)M | A*(R) = R} since G/K is effective and
simply connected. Similarly, Kj = K* = {A € GL(T,,)M | A*(R*) = R*}
where R* is the curvature tensor of G*/K*. But Proposition6.34/implies that
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R (iX,1Y)iZ = —[[iX,iY],iZ] = [ X, Y], Z] = —R(X,Y)Z for X,Y,Z € p
and hence K = K*. |

We thus have a one-to-one correspondence between simply connected effec-
tive symmetric pairs of compact type and simply connected effective symmet-
ric pais of non-compact type, which also take irreducible ones to irreducible
ones.

Example 6.43 (a) We will give several examples of duality. The most basic
one is the duality between S™ and H"™. Multiplication by ¢ on the tangent
space in the definition of duality illustrates why sin(x), cos(x) in spherical
geometry is replaced by sinh(z) = sin(iz) and cosh(z) = icos(ixz). It is
just as easy to discuss the duality between G/K = SO(p + ¢q)/ SO(p) SO(q)
and G*/K = SO(p,q)/SO(p) SO(gq). Recall that in both cases the Cartan
involution is given by o(A) = Ad(I,,). We write the matrices in block form,
the upper left a p x p block, and the lower one a ¢ x ¢ block. Also recall that
o(p+q) ={A e Mp+q) | A+ A" =0} and o(p,q) = {A € M(p+q) |
Al + I, 4AT = 0}. Thus one easily sees that in the Cartan decomposition

p={<_g(T %()!XEM(p,q)}7 P*={<)?T g)\XGM(p,q)}-

Here it is of course not true that p* = ¢p but a computation shows that the
inner automorphism Ad(diag(i,...,7,—1,---—1)) (the first p entries are i) of
so(n,C) takes ip to p* and preserves h and thus conjugates g* into a new Lie
algebra g’ that satisfies the above setup of duality. The inner automorphism
gives rise to an isomorphism (G*, K) ~ (G’, K) of symmetric pairs.

The same relationship holds if we replace R by C or H. Thus CP" is dual
to CH"™ and HP" is dual to HH".

(b) Maybe the simplest example of duality is between SU(n)/SO(n) and
SL(n,R)/SO(n). Since the involutions are given by do(A) = A and do(A) =
—AT we have £ = {A € M(n,n,R) | A= —AT} in both cases, and p = {4 €
su(n) | A = —A} as well as p* = {A € M(n,n,R) | A = AT}. But p
can also be written us p = {i4d | A € M(n,n,R) and A = AT} and thus
p* =ip C sl(n,C).

(c) Somewhat more subtle is the dual of the symmetric pair (G, K) =
(L x L,AL) corresponding to a compact Lie group K ~ L. We claim that on
the Lie algebra level it is the pair ((I¢)g, [) with Cartan involution o(A) = A4,
i.e. g* is Ic regarded as a real Lie algebra.

To see this, recall that g = [ @ [ with Cartan involution o(X,Y) = (Y, X)
and thus ¢ = {(X,X) | X € [} and p = {(X,—X) | X € [}. We now want
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to describe g* = €+ ip C gc = Ic @ [¢ in a different fashion. For this let
p ={(iX,iX)| X €l} Clc®lc and g = €& p’. The linear isomorphism
of Ic @ I¢ defined by (X3 + iY7, X9 + 1Y2) — (X7 + Y7, Xo — iY3) is an
isomorphism of real Lie algebras and takes € to € and ip to p’. Thus the dual
pair (g*, €) is isomorphic to (g’, €). But notice that g’ = {(X +:Y, X +iY) |
X, Yel} =Alc Clec®Ic and € = Al C ¢ @ [c. Thus (¢, €) is isomorphic
to (Ig,[). The Cartan involution is then clearly given by conjugation.

-Spaces of non-compact type

Although the classification of symmetric spaces is easier for the one’s of
compact type, and by duality implies the classification of symmetric spaces
of non-compact type, the geometry of the one’s of non-compact type have
many special properties. We will study these in this Section.

We first remark the following. If (G, K) has compact type, we have a
natural positive definite inner product g given by —B. In the case of non-
compact type, we also have such a natural inner product.

innprodnoncomptype

Lemma 6.44 If (G, K) is a symmetric space of non-compact type, then the

inner product B*(X,Y) = —B(0(X),Y) on g has the following properties:

(a) B* is positive definite,
(b) If X € ¢, then adx: g — g is skew symmetric,
(c) If X € p, then adx: g — g is symmetric.

Proof Part (a) follows from By < 0, B, > 0, B(¢,p) = 0 and o}y = Id,
o = —1Id. For (b) and (c), notice that adx and o commute if X € € or
X € p. The claim now easily follows from the fact that adx is always skew
symmetric for B. O

We can now state the main properties,

symmnoncompact

Proposition 6.45 Let (G, K) be a symmetric pair of non-compact type

with Cartan involution o. Then

(a) G is non-compact and semisimple and G° and K are connected.

(b) K is a maximal compact subgroup of G.

(c) Z(G) C K, or equivalently, if G/ K is effective, then Z(G) = {e}.

(d) G is diffeomorphic to K x R™ and G/K is diffeomorphic to R" and
simply connected.

| I
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Proof : Recall that by Proposition [6.39 the symmetric metric on G/K has
non-positive curvature and by Proposition 6.33/ the exponential map of M =
G/K is given by exp,;: p — G/K : X — exp(X)K. By Hadamard, exp,,
is a local diffeomorphism and onto by Hopf-Rinow. We now show that it is
injective and hence a diffeomorphism. So assume that exp(X)h = exp(X')h/
for some h,h/ € K. Then Ad(exp(X))Ad(h) = Ad(exp(X’)) Ad(h') and
thus 24X Ad(h) = e*dx’ Ad(h’). But by [6.44 24X is symmetric and Ad(h)
orthogonal. By uniqueness of the polar decomposition, Ad(h) = Ad(h') and
adx = adys, and hence X — X’ € 3(g) = 0 since G is semisimple. Thus
X = X' (and h = 1/ as well). In particular, G/K is simply connected and
hence K connected.

Next, we show that f: px K — G : (X,h) — exp(X)h is a diffeo-
morphism. Indeed, f is clearly differential and by the same argument as
above, f is one-to-one. Given g € G, there exists a unique X € p such that
exp(X)K = gK and hence a unique h € K such that exp(X)h = g. X, and
hence h, clearly depends differentiably on g and hence f is a diffeomorphism.

The argument can be repeated for f': p x Z(G) - K — G : (X,h) —
exp(X)h and shows that f’ is a diffeomorphism as well, and hence Z(G) - K
is connected. Since G is semisimple, Z(G) is finite and hence Z(G) C K.

We finally show that K is maximal compact in G. Let L be a compact
group with K C L C G and hence £ C [ C g. Since L is compact, there
exists an inner product on g invariant under Ad(L) and hence Bj < 0, and
since 3(g) = 0, in fact Bjy < 0. But since By < 0 and B, > 0, it follows
that ¢ = [. Thus K = Ly and hence K is normal in L. Since L is compact,
L/K is a finite group. Thus there exists an g € L, which we can write as
g = exp(X)h with h € K and hence ¢" = exp(nX)h/ = h = exp(0)h € K
where h,h € K. But this contradicts the fact that f is a diffeomorphism.

O

The next important property of non-compact semisimple groups is the
following, whose proof we will supply later on.

Cartandecompnoncompact || Proposition 6.46 Let g be a non-compact semisimple Lie algebra. Then

there exists a Cartan involution o € Aut(g) with corresponding Cartan
decomposition g = € ® p into 1 eigenspaces and o is unique up to inner

automorphisms.

As a consequence we show
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@ Proposition 6.47 Let G be a non-compact semisimple Lie group with
finite center. Then there exists a maximal compact subgroup K, unique
up to conjugacy, such that G is diffeomorphic to K x R™. Furthermore,
if G/K is effectively G*/K*, then (G*, K*) is a symmetric pair of non-
compact type. If Z(G) = {e}, then (G, K) is a symmetric pair.

Proof Let g =t @® p be a Cartan decomposition and K C G the connected
subgroup with Lie algebra £. We have a finite cover 7: G — G/Z(G) and
define K* = 7(K). Since G* has no center, G* ~ Ad(G*) ~ Int(G*) ~
Int(g) C Aut(g). Aut(g) is closed in GL(g) since it is defined by equations,
and since g is semisimple, Aut(g)/Int(g) is finite, and thus Ad(G*) is closed
as well. If h € K*, then Ad(h) is an isometry of B*, i.e., Ad(K™*) C O(p, B¥)
and thus K* ~ Ad(K™) is compact. The Cartan decomposition induces
an involutive automorphism ¢ and in turn « of G* with da = o. Clearly
(G*)§ = K* and thus (G*, K*) is a symmetric pair of non-compact type. In
particular, G*/K* is simply connected and K* is maximal compact in G*.
Clearly G*/K* = G/m~}(K*) and hence G/K — G*/K* is a finite cover
and thus a diffeomorphism, i.e. G*/K™* is the effective version of G/K. Since
kerm C K, it easily implies that K is maximal compact as well.

Finally, to see that K is unique up to conjugacy, we use the fact that
M = G/K has non-positive curvature and is simply connected. This implies
that any compact group H acting on M by isometries has a fixed point on
M. Indeed, a standard second variation argument shows that d?(p,-) is a
strictly convex proper function on M, i.e., along every geodesic, d?(p,-) is
convex. Fix any p € M, then define a function f: M — M via

fl@) = /H &2(g, hp)dh.

This is again a convex, proper function (now in ¢). Hence f has a unique
minimum at some pg € M, and clearly Hpg = pg since f is invariant under
H.

Now let H C G be a second maximal compact subgroup. By the above,
H has a fixed point, say pg = ¢gK for some g, i.e. hgK = gK. Thus
g 'Hg=K,or H=gKg ! O

Remark 6.48 The assumption that G has finite center is essential. As an
example, let G* = SL(2,R) and G its universal cover. This is an infinite cover
since 7 (SL(2,R)) = Z. SO(2) is a maximal compact subgroup of SL(2,R),
but the maximal compact subgroup of G is {e} since 771(SO(2)) = R which
has no non-trivial compact subgroups. Hence (G, K) is not a symmetric
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pair. On the other hand, the universal cover of SL(2,R) is diffeomorphic to
R3.

Nevertheless, part of Proposition 6.49 remains true:

maxcompact || Proposition 6.49 Let G be a non-compact semisimple Lie group. Then

there exists a maximal compact subgroup L, unique up to conjugacy, such
that G is diffeomorphic to L x R™.

Proof We proceed as in the proof of Proposition 6.49. Let g = €@ p be a
Cartan decomposition and K C G the connected subgroup with Lie algebra
t. Notice that (G, K) may not be a symmetric pair since K is not neces-
sarily compact. Nevertheless, the effective version (G*, K*) is a symmetric
pair. Thus G/K = G*/K* is a Riemannian symmetric space such that left
translation by g € G acts by isometries on G/K. If L’ C G is a compact
subgroup, an argument as in Proposition 6.49 shows that there exists a fixed
point, and thus an element g € G with gL'g~' ¢ K. We now claim that
there exists a unique maximal compact subgroup L C K (not just unique
up to conjugacy) and hence gL’g~! C L, and if L’ is maximal compact in G,
then gL'g~! = L. To see this, recall that Bje < 0 and hence ¢ is a compact
Lie algebra. Recall that this implies that any Lie group with Lie algebra ¥,
in particular K, is isomorphic to R® x L with L compact. L is then clearly
maximal compact in K. By Proposition 6.45, G is diffeomorphic to K x R"
and hence diffeomorphic to L x R+, O

Combining this with the Levi decomposition theorem one can prove:

maxcompactgen | Theorem 6.50 Let G be a Lie group with finitely many components.

Then there exists a maximal compact subgroup K, unique up to conjugacy,
such that G is diffeomorphic to K x R"™.

We now show that in some sense the symmetric space SL(n,R)/SO(n) is
the universal symmetric space of non-compact type.

embnoncompact

Proposition 6.51 Let (G, K) be a effective symmetric pair of non-compact

type. Then there exists an isometric embedding ¢: G/K — SL(n,R)/SO(n)
with totally geodesic image, given by ¢(gK) = Ad(g) - SO(n).

Proof Since G/H is effective, Z(G) = {e} and hence Ad is an embedding.
To see that the image lies in SL(g), i.e. det Ad(g) = 1, it is sufficient to show
that tr(ad X) = 0 for all X € g. To see why this is so, we choose a compact
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real form ¢ C gc. By compactness, tr(ad X) = 0 holds for X € £, hence also
in gc and therefore in g as well.

We endow g with the inner product B* in which case Ad(K) C SO(g).
Furthermore, Ad(G) N SO(g) = Ad(K) since.... Recall that the involution
o for the symmetric pair (SL(n,R),SO(n)) is given by o(A) = (AT)~L Tt
is sufficient to show that o(Ad(G)) C Ad(G) since Proposition [6.28 then
implies that

G/H = Ad(G)/ Ad(H) = Ad(G)/(Ad(G) N SO(g)) < SL(g)/ SO(g)

has totally geodesic image.

Thus we need to show that ad(X)? € Ad(G) for all X € g. With respect
to B*, ad X is skew-symmetric for X € h and symmetric for X € p. If
Z € g, split Z = 71+ Zy with Z; € b, and Zo € p. Then (ad2)" =
(adZ)T + (ad Z2)T = —ad Z; + ad Zy = —ad(Z1 — Z5) € ad(g).

Finally, we show that ¢ is an isometric embedding. Since ¢ is clearly
equivariant, we only need to check this at the base point. But on G/H the
metric is given by B\*p = Bj, and on the complement p* = {A € Sym(g) |
A = AT} for SL(n,R)/SO(n) by tr AB. Since B(X,Y) = trady ady and
dp(X) = adx, the claim follows. O

/6.7 Hermitian Symmetric Spaces

There is an important subclass of symmetric spaces, namely those that
preserve a complex structure. They have many special properties.

First some general definitions. (M, J) is called an almost complex man-
ifold if J is a complex structure J,, on each tangent space T, M. Furthermore,
(M, J) is called an complex manifold if there are charts with image an
open set in C™ such that the coordinate interchanges are holomorphic. The
tautological complex structure on C" induces an almost complex structure
on M. An almost complex structure is called integrable, if it is induced in
this fashion from local charts. It is then simply called a complex structure.
There exists a tensor which measures integrability, the Nijenhuis tensor N:

%N(X,Y) = [JX,JY] - [X,Y] - J[JX,Y] - J[X,JY].
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Theorem 6.52 (Newlander-Nirenberg) If J is an almost complex
structure, J is integrable iff N = 0.

intcomplex

(M, (-,-),J) is called almost Hermitian if the metric g and the almost
complex structure J are compatible, i.e. (JX,JY) = (X,Y). Notice that
since J? = —1Id this is equivalent to J being skew adjoint, i.e. (JX,Y) =
—(X,JY). It is called Hermitian if J is integrable. To an almost Hermitian
manifold we can associate a 2-form w(X,Y) = (JX,Y). It is a 2-form since
w(X,Y)=(JX,Y) = —(X,JY) = —w(Y, X). Furthermore, w™ # 0 since
we can find an orthonormal basis w;,v;,¢ = 1,...,n with Ju; = v; and
Ju; = —u; and hence w = > du; A dv;. M is called almost Ké&hler if
(M, J) is almost Hermitian and dw = 0, and Kéahler if in addition J is
integrable. In particular an almost Kéhler manifold is symplectic and hence
H¥ . # 0 since [w'] # 0.

There are some simple relationships with VJ. Recall that VJ =0 iff JX
is parallel if X is parallel, i.e. parallel translation is complex linear.

kaehler || Proposition 6.53 LetJ be an almost complex structure and g a metric.

(a) If (M, g,J) is almost Hermitian and V.J = 0, then M is Kéhler.
(b) If (M, g,J) is Hermitian, then dw = 0 iff V.J = 0.

Proof : The main ingredient is the following identity
49((VxJ)Y,Z) = 6dw(X,JY,JZ) — 6dw(X,Y,Z) + g(N(Y, Z), JX),

which is easily verified. In addition it is a general fact for differential forms
that dw is the skew symmetrization of Vw. Furthermore, since the metric is
parallel, VJ = 0 iff Vw = 0. This easily implies the claims. O

It is a general fact for differential forms that the coboundary operator §
is a contraction of the covariant derivative: dw = — > (V¢,w)(e;, . ..) where
e; is an orthonormal basis. Thus for a Kéhler manifold, w is also co-closed
and hence harmonic, i.e. Aw = (d§ + dd)w = 0. Clearly if J is a complex
(resp. almost complex) structure, there exists a metric such that M is Her-
mitian (almost Hermitian). But being Ké&hler is a strong condition. E.g.
the Betti numbers are all even, and cupping with [w] is injective in DeRham
cohomology up to half the dimension (strong Lefschetz theorem).

We also remark that being Kahler is equivalent to saying that the holon-
omy group at a point is contained in U(n) C SO(2n) since by the holonomy
principle this is equivalent to having a parallel complex structure.
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As we will see, all of the above are equivalent for a symmetric space.
Maybe the most natural definition of a Hermitian symmetric space is:

Definition 6.54 A symmetric space M is called « Hermitian symmetric

space of it is a Hermitian manifold and the symmetries s, are holomorphic.

Here we could replace Hermitian by almost Hermitian since the Nijenhuis
tensor N vanishes if s, is complex linear. Indeed, this implies that (s,).(N) =
N, and since N has odd order, d(sp), = —Id implies N = 0. There is a local
characterization of being Hermitian symmetric:

hermsymmlocal || Proposition 6.55 Let (G, K) be a symmetric pair with Cartan decom-
position g =t @ p. If J: p — p satisfies

(a) J is orthogonal and J? = —1d,
(b) JoAd(h) =Ad(h)oJ for allh € K.

Then M is a Hermitian symmetric space, and in fact Kéhler.

Proof : Following our general principle, we define Jg, = (Lg)+«(J), i.e., Jgp =
d(Lg)p o Jod(Ly-1)g. This is well defined since Ad(h) preserves J, = J.
Thus we obtain an almost complex structure on G/K. Furthermore, L,
preserves this almost complex structure.

We now claim that the symmetries s, preserve J as well, i.e. (sp).(J) = J.
Recall that sg, 0 Ly = Lgos, which implies that (s,)«(.J) is another complex
structure which is G invariant: (Lg)« o (sp)«(J) = (Lg 0 5p)«(J)) = (sgp ©
Lg)«(J) = (sgp)s © (Lg)«(J) = (5gp)+(J). But J and (sp)«(J) agree at p,
and hence everywhere. As we saw above, this implies in particular that J is
integrable and hence M is Hermitian symmetric.

To see that M is Kéhler observe that VJ is a tensor of odd order and is
preserved by s, and hence vanishes. O

Thus, any symmetric space whose isotropy representation is complex linear
is a Hermitian symmetric space.

symnirredsimple || Corollary 6.56 Let (G, K) be a symmetric pair. Then

(a) (G, K) is Hermitian symmetric iff the dual is Hermitian symmetric.
(b) If (G, K) is irreducible and Hermitian symmetric, then it is Kéhler
FEinstein.

Here are two more characterizations of being Hermitian symmetric.
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hermsymmdeRham || Proposition 6.57 Let (G, K) be an irreducible symmetric pair.

(a) The complex structure J is unique up to sign.

(b) (G, K) is Hermitian symmetric iff K is not semisimple.

(c) If (G, K) is of compact type, it is Hermitian symmetric iff H3 (M) #
0.

Proof : We start with (c). One direction is clear. Hermitian symmetric
implies Kéhler and hence H%,(M) # 0. Now assume that Hzp(M) # 0
and let w be a closed form whose deRham class is non-zero. We first claim
that we can assume that w is G invariant. Indeed, since G is connected, it
acts trivially on cohomology and hence we can average over G: @, = |,  Wopdg
and @ lies in the same deRham class as w.

Now define J: p — p by wp(X,Y) = (JX,Y) for all X,Y € p. Then
(JX)Y) =w(X,Y) = —w(Y,X) = —=(JY, X), i.e. J is skew-adjoint. Since
w is G-invariant and well defined on M, w, is Ad(H)-invariant. Thus J
commutes with Ad(H). But Ad(H) acts irreducibly on p, and so since J?
is self-adjoint and commutes with Ad(H) as well, it follows that J? = A\ 1d
for some A < 0. Thus J? = —p21d, for some p > 0. Now we let J' = %J,
then (J')2 = —Id. Since J' is skew-adjoint and J'*> = —1Id, J’ is orthogonal.
Now Proposition [6.55/ implies that G/K is Hermitian symmetric.

(b) By duality, we can assume that (G, K) is of compact type. If G/K is
Hermitian symmetric, we just showed that H% (M) # 0. Recall that G is
connected, K has only finitely many components, and 71 (G) is finite since
G is semisimple. Thus 71 (M) is finite as well. If M is the (finite) universal
cover, it is well know that the DeRham cohomology of M is the DeRham
cohomology of M invariant under the deck group. Thus H]% R(M ) # 0 as
well. By applying Hurewicz, we conclude that Z C mo(M) = my(M). Now
we use the fact that m3(G) = 0 for every compact Lie groups G. Using the
long homotopy sequence again, we see that Z C 1 (K) which means that K
cannot be semisimple. This argument can clearly be reversed to prove the
other direction.

(a) If J; are two orthogonal invariant complex structures, then w;(X,Y) =
(J;X,Y) defines two non-degenerate symplectic forms and as in the case of
inner products, one easily shows that w; = Awsy for some 0 # A € R. But
then Ji2 = —Id implies that A = £1. O

We finally give a list of more detailed information similar to the ones we
obtained for symmetric spaces of non-compact type.
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hermsymmprops | Proposition 6.58 Let (G, K) be an effective irreducible Hermitian sym-

metric space not of Euclidean type. Then

(a) K is connected and 71 (G/K) =0,

(b) Z(G) ={e} and r/k K =1k G.

(c) Z(K) = S! and K is the centralizer of Z(K) in G.

(d) The complex structure J is given by J = Ad(i), for i € S'.
(e) Every isometry in Iy(M) is holomorphic.

Proof : We start with the claim that Z(K) = S'. Recall that K acts
irreducibly and effectively on p and that Z(K) acts as intertwining operators
of the isotropy representation. But the algebra of intertwining operators of
a real irreducible representation is either R, C or H. Since the action is also
orthogonal, and Z(K) is abelian and not finite, this leaves only Z(K) = S'.
This must act via complex multiplication on R?® ~ C" and hence J = Ad(i)
satisfies J2 = —Id and commutes with Ad(K). By uniqueness, this must be
the complex structure on G/K.

Next, we claim that K is the centralizer of Z(K). Let L be the the
centralizer of Z(K) = S'. Clearly K C L and hence £ C [. As we saw, the
centralizer of a circle is the union of all tori containing the circle and hence
connected. Notice that if g € L, then kgk~! € L for all k¥ € K and thus
Ad(K) preserves [ and hence [N p. But irreducibility implies that [Np =0
and hence [ = £. This shows that K must be connected and hence L = K.
Since S' is contained in a maximal torus 7 and clearly T C L, it also follows
that rk K = rk G. Since Z(G) is contained in every maximal torus of G, it
follows that Z(G) C K and hence effectiveness implies Z(G) = {e}.

To see that M is simply connected, let 7: G — G be the universal cover
and choose an element z € G such that n(z) = i € S' = Z(K). The
involution 6: G — G given by &(g) = zgz~' satisfies d6 = do under the
identification dr since o(g) = Ad(i). G is the centralizer C(z) := K and,
as before, C'(z) is connected. Since dr takes the Lie algebra of G to that of
G, it follows that m(G%) = G?. Also notice that Z(G) C C(z) and hence
71 (K) = K. Thus G/K = G/n *(K) = G/K which is simply connected
since G is, and K is connected.

(e) follows since Proposition [6.41) implies that Io(M) = G and since L,
are holomorphic (see the proof of Proposition 6.55 and use uniqueness).

U]

From the classification it follows that:
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hermsymmclass

Proposition 6.59 Let (G, K) be a simply connected irreducible Hermitian

symmetric space. If G is a classical Lie group, then G/K is one of U(n +
m)/U(n)U(m), SO(2n)/ U(n), Sp(n)/ U(n) or SO(n+2)/SO(n)SO(2).

6.8 Topology of Symmetric Spaces

We first discuss some general facts about the topology of homogeneous
spaces before we specialize to the case of a symmetric space.

Let a compact Lie group G act on a compact oriented manifold M and
denote by Q’g;(M ) the space of k-forms w on M invariant under the action
of G, i.e. ¢g"(w) = w for all ¢ € G. Since dg*(w) = ¢*(dw), d induces
a differential on QF (M) and we denote by (QF(M),d) the corresponding
complex.

DeRhamInv | Proposition 6.60 Let G be a compact Lie group acting on a manifold

M. Then the cohomology of the complex (2% (M),d) is isomorphic to
the G invariant DeRham cohomology H}p(M)C. If G is connected, then
Hpp(M)% ~ Hp)p(M).

Proof : We have an averaging operator

Aw) = /G 6" (w)dg,

and clearly 2A(w) is G-invariant. 2 induces a natural homomorphism of
complexes

A (Q(M),d) — (Q(M),d)

since d [, g*(w)dg = [, dg*(w)dg = [, g"(dw) and hence dA(w) = A(dw).

2A thus takes closed forms to closed forms and we get an induced map
A*: H*(QK(M),d)) — Hjp(M) in cohomology. We claim that * is injec-
tive with image H}5(M)Y. Indeed, if w € QF (M) with 2*([w]) = 0, then
w = dn for some n € QF1(M). But then w = dn/ for some 1’ € Qgﬁl(M)
since w = A(w) = A(dn) = dA(n).

If w € Q&(M), then clearly [w] is G-invariant, ie. [w] € Hpp(M)C.
Conversely, if « € Hjp(M)%, let w € QF(M) be a closed form with [w] = a.
Then o = g* () = [¢*(w)] and hence a = [2A*(w)] since the integration takes
place in the linear subspace of closed forms with cohomology class «. O
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