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Chapter 1

Introduction

Mathematical control theory is the area of application-oriented mathematics
that treats the basic mathematical principles, theory, and problems underly-
ing the analysis and design of control systems, principally those encountered
in engineering. To control an object means to influence its behavior so as to
achieve a desired goal.

One major branch of control theory is optimization. One assumes that
a good model of the control system is available and seeks to optimize its
behavior in some sense.

Another major branch treats control systems for which there is uncertain-
ity about the model or its environment. The central tool is the use of feedback
in order to correct deviations from and stabilize the desired behavior.

Control theory has its roots in the classical calculus of variations, but
came into its own with the advent of efforts to control and regulate machinery
and to develop steering systems for ships and much later for planes, rockets,
and satellites. During the 1930s, researchers at Bell Telephone Laboratories
developed feedback amplifiers, motiviated by the goal of assuring stability
and appropriate response for electrical circuits. During the Second World
War various military implementations and applications of control theory were
developed. The rise of computers led to the implementation of controllers in
the chemical and petroleum industries. In the 1950s control theory blossomed
into a major field of study in both engineering and mathematics, and powerful
techniques were developed for treating general multivariable, time-varying
systems. Control theory has continued to advance with advancing technology,
and has emerged in modern times as a highly developed discipline.

Lie theory, the theory of Lie groups, Lie algebras, and their applications
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is a fundamental part of mathematics that touches on a broad spectrum of
mathematics, including geometry (classical, differential, and algebraic), or-
dinary and partial differential equations, group, ring, and algebra theory,
complex and harmonic analysis, number theory, and physics (classical, quan-
tum, and relativistic). It typically relies upon an array of substantial tools
such as topology, differentiable manifolds and differential geometry, covering
spaces, advanced linear algebra, measure theory, and group theory to name
a few. However, we will considerably simplify the approach to Lie theory
by restricting our attention to the most important class of examples, namely
those Lie groups that can be concretely realized as (multiplicative) groups of
matrices.

Lie theory began in the late nineteenth century, primarily through the
work of the Norwegian mathematician Sophus Lie, who called them “contin-
uous groups,” in contrast to the usually finite permutation groups that had
been principally studied up to that point. An early major success of the the-
ory was to provide a viewpoint for a systematic understanding of the newer
geometries such as hyperbolic, elliptic, and projective, that had arisen earlier
in the century. This led Felix Klein in his Erlanger Programm to propose
that geometry should be understood as the study of quantities or properties
left invariant under an appropriate group of geometric transformations. In
the early twentieth century Lie theory was widely incorporated into modern
physics, beginning with Einstein’s introduction of the Lorentz transforma-
tions as a basic feature of special relativity. Since these early beginnings
research in Lie theory has burgeoned and now spans a vast and enormous
literature.

The essential feature of Lie theory is that one may associate with any Lie
group G a Lie algebra g. The Lie algebra g is a vector space equipped with
a bilinear nonasssociative anticommutative product, called the Lie bracket
or commutator and usually denoted [·, ·]. The crucial and rather surprising
fact is that a Lie group is almost completely determined by its Lie algebra
g. There is also a basic bridge between the two structures given by the
exponential map exp : g → G. For many purposes structure questions or
problems concerning the highly complicated nonlinear structure G can be
translated and reformulated via the exponential map in the Lie algebra g,
where they often lend themselves to study via the tools of linear algebra (in
short, nonlinear problems can often be linearized). This procedure is a major
source of the power of Lie theory.

The two disciplines, control theory and Lie theory, come together in cer-
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tain interesting classes of control problems that can be interpreted as prob-
lems on Lie groups or their coset spaces. In this case the states of the system
are modeled by members of the Lie group and the controls by members of
the Lie algebra, interpreted as invariant vector fields on the Lie group. There
are significant advantages to interpreting problems in this framework when-
ever possible; these advantages include the availability of a rich arsenal of
highly developed theoretical tools from Lie group and Lie algebra theory. In
addition, Lie groups typically appear as matrix groups and one has available
the concrete computational methods and tools of linear algebra and matrix
theory.
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Chapter 2

Matrix and Lie Groups

2.1 The General Linear Group

Let V be a finite dimensional vector space equipped with a complete norm ‖·‖
over the field F, where F = R or F = C. (Actually since the space V is finite
dimensional, the norm must be equivalent to the usual euclidean norm, and
hence complete.) Let End(V ) denote the algebra of linear self-maps on V , and
let GL(V ) denote the general linear group, the group (under composition) of
invertible self-maps. If V = Rn, then End(V ) may be identified with Mn(R),
the n × n matrices, and GL(V ) = GLn(R), the matrices of nonvanishing
determinant.

We endow End(V ) with the usual operator norm, a complete norm defined
by

‖A‖ = sup{‖Av‖ : ‖v‖ = 1} = sup{
‖Av‖

‖v‖
: v 6= 0},

which gives rise to the metric d(A,B) = ‖B−A‖ on End(V ) and, by restric-
tion, on GL(V ).

Exercise 2.1.1. ‖AB‖ ≤ ‖A‖ ‖B‖, ‖tA‖ = |t| ‖A‖, and ‖An‖ ≤ ‖A‖n.

Exercise 2.1.2. Show that GL(V ) is a dense open subset of End(V ). (Hint:
The determinant function is polynomial, hence continuous, and A − (1/n)I
converges to A and is singular for at most finitely many values, since the
spectrum of A is finite.)

Exercise 2.1.3. The multiplication and inversion on GL(V ) are analytic,
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i.e., expressible locally by power series. (Hint: the multiplication is actually
polynomial, and the cofactor expansion shows that inversion is rational.)

A group G endowed with a Hausdorff topology is called a topological group
if the multiplication map m : G × G → G and the inversion map on G are
continuous. By the preceding exercise GL(V ) is a topological group.

2.2 The Exponential Map

We define the exponential map on EndV by

exp(A) :=

∞∑

n=0

An

n!
.

Lemma 1. The exponential map is absolutely convergent, hence convergent
on all of End(V ). Hence it defines an analytic self-map on End(V ).

Proof. ‖
∞∑

n=0

An

n!
‖ ≤

∞∑

n=0

‖A‖n

n!
= exp(‖A‖).

Absolute convergence allows us to rearrange terms and to carry out var-
ious algebraic operations and the process of differentation termwise. We
henceforth allow ourselves the freedom to carry out such manipulations with-
out the tedium of a rather standard detailed verification.

Exercise 2.2.1. (i) Show that the exponential image of a block diagonal ma-
trix with diagonal blocks A1, . . . , Am is a block diagonal matrix with diagonal
blocks exp(A1), . . . , exp(An). In particular, to compute the exponential im-
age of a diagonal matrix, simply apply the usual exponential map to the
diagonal elements.
(ii) Suppose that A is similar to a diagonal matrix, A = PDP−1. Show that
exp(A) = P exp(D)P−1.

Proposition 2. If A,B ∈ End V and AB = BA, then exp(A + B) =
expA expB = expB expA.
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Proof. Computing termwise and rearranging we have

expA expB =

( ∞∑

n=0

An

n!

)( ∞∑

m=0

Bm

m!

)
=

∞∑

n,m=0

AnBm

n!m!

=
∞∑

k=0

1

k!

( ∑

n+m=k

k!

n!m!
AnBm

)

=
∞∑

k=0

1

k!

( k∑

j=0

(
k

j

)
AjBk−j

)
.

Since A and B commute, the familiar binomial theorem yields

(A+B)k =

k∑

j=1

(
k

j

)
AjBk−j,

and substituting into the previous expression yields the proposition.

Let V,W be finite dimensional normed vector spaces and let f : U →W ,
where U is a nonempty open subset of V . A linear map L : V →W is called
the (Frechét) derivative of f at x ∈ U if in some neighborhood of x

f(x+ h) − f(x) = L(h) + r(h), where lim
h→0

r(h)

‖h‖
= 0.

If it exists, the derivative is unique and denoted by df(x) or f ′(x).

Lemma 3. The identity map on End(V ) is the derivative at 0 of exp :
End(V ) → End(V ), i.e., d exp(0) = Id.

Proof. For h ∈ End(V ), we have

exp(h) − exp(0) =

∞∑

n=0

hn

n!
− 1V =

∞∑

n=1

hn

n!
= Id(h) + h2

∞∑

n=2

hn−2

n!
, where

lim
h→0

∥∥∥∥
h2

∑∞

n=0
hn

(n+2)!

‖h‖

∥∥∥∥ ≤ lim
h→0

‖h‖2

‖h‖

( ∞∑

n=2

1

n!

)
= 0.
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Applying the Inverse Function Theorem, we have immediately from the
preceding lemma

Proposition 4. There exist neighborhoods U of 0 and V of I in End V such
that exp |U is a diffeomorphism onto V .

For A ∈ EndV and r > 0, let Br(A) = {C ∈ EndV : ‖C − A‖ < r}.

Exercise 2.2.2. Show that exp(Br(0)) ⊆ Bs(1V ) where s = er − 1. In
particular for r = ln 2, exp(Br(0)) ⊆ B1(1V ).

2.3 One-Parameter Groups

A one-parameter subgroup of a topological group G is a continuous homo-
morphism α : R → G from the additive group of real numbers into G.

Proposition 5. For V a finite dimensional normed vector space and A ∈
EndV , the map t 7→ exp(tA) is a one-parameter subgroup of GL(V ). In
particular, (exp(A))−1 = exp(−A).

Proof. Since sA and tA commute for any s, t ∈ R, we have from Proposition
2 that t 7→ exp(tA) is a homomorphism from the additive reals to the EndV
under multiplication. It is continuous, indeed analytic, since scalar multi-
plication and exp are. The last assertion follows from the homomorphism
property and assures the the image lies in GL(V ).

Proposition 6. Choose an r < ln 2. Let A ∈ Br(0) and let Q = expA.
Then P = exp(A/2) is the unique square root of Q contained in B1(1V ).

Proof. Since exp(tA) defines a one-parameter subgroup,

P 2 = (exp(A/2))2 = exp(A/2) exp(A/2) = exp(A/2 + A/2) = exp(A) = Q.

Also A ∈ Br(0) implies A/2 ∈ Br(0), which implies exp(A/2) ∈ B1(1V )
(Exercise 2.2.2).

Suppose two elements in B1(1V ), say 1+B and 1+C where ‖B‖, ‖C‖ < 1
satisfy (1 +B)2 = (1 +C)2. Then expanding the squares, cancelling the 1’s,
and rearranging gives

2(B − C) = C2 −B2 = C(C − B)) + (C − B)B.
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Taking norms yields

2‖B − C‖ ≤ ‖C‖ ‖C − B‖ + ‖C −B‖ ‖B‖ = (‖C‖ + ‖B‖)‖C − B‖.

This implies either ‖C‖ + ‖B‖ ≥ 2, which is also false since each summand
is less than 1, or ‖B − C‖ = 0, i.e., B = C. We conclude there at most one
square root in B1(1V ).

Lemma 7. Consider the additive group (R,+) of real numbers.

(i) If a subgroup contains a sequence of nonzero numbers {an} converging
to 0, then the subgroup is dense.

(ii) For one-parameter subgroups α, β : R → G, the set {t ∈ R : α(t) =
β(t)} is a closed subgroup.

Proof. (i) Let t ∈ R and let ε > 0. Pick an such that |an| < ε. Pick an
integer k such that |t/an − k| < 1 (for example, pick k to be the floor of
t/an). Then multiplying by |an| yields |t− kan| < |an| < ε. Since kan must
be in the subgroup, its density follows.

(ii) Exercise.

Exercise 2.3.1. Show that any nonzero subgroup of (R,+) is either dense
or cyclic. (Hint: Let H be a subgroup and let r = inf{t ∈ H : t > 0}.
Consider the two cases r = 0 and r > 0.)

The next theorem is a converse of Proposition 5.

Theorem 8. Every one parameter subgroup α : R → End(V ) is of the form
α(t) = exp(tA) form some A ∈ End V .

Proof. Pick r < ln 2 such that exp restricted to Br(0) is a diffeomorphism
onto an open subset containing 1 = 1V . This is possible by Proposition 4.
Note that exp(Br(0)) ⊆ B1(1). By continuity of α, pick 0 < ε such that
α(t) ∈ exp(Br(0)) for all −ε < t < ε. Then α(1/2k) ∈ exp(Br(0)) ⊆ B1(1)
for all 1/2k < ε.

Pick 1/2n < ε. Then Q := α(1/2n) ∈ exp(Br(0)) implies Q = α(1/2n) =
exp(B) for some B ∈ Br(0). Set A = 2nB. Then Q = exp((1/2n)A).

Then α(1/2n+1) and exp(B/2) are both square roots of Q contained in
B1(1), and hence by Proposition 6 are equal. Thus α(1/2n+1) = exp((1/2n+1)A).
By induction α(1/2n+k) = exp((1/2n+k)A) for all positive integers k. By
Lemma 7(ii) the two one-parameter subgroups agree on a closed subgroup,
and by Lemma 7 this subgroup is also dense. Hence α(t) and exp(tA) agree
everywhere.
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The preceding theorem establishes that a merely continuous one-parameter
subgroup must be analytic. This is a very special case of Hilbert’s fifth prob-
lem, which asked whether a locally euclidean topological group was actu-
ally an analytic manifold with an analytic multiplication. This problem was
solved positively some fifty years later in the 1950’s by Gleason, Montgomery,
and Zippin.

Exercise 2.3.2. Show that if exp(tA) = exp(tB) for all t ∈ R, then A = B.
(Hint: Use Proposition 4)

Remark 9. The element A ∈ EndV is called the infinitesimal generator
of the one-parameter group t 7→ exp(tA). We conclude from the preceding
theorem and remark that there is a one-to-one correspondence between one-
parameter subgroups and their infinitesimal generators.

2.4 Curves in EndV

In this section we consider basic properties of differentiable curves in EndV .
Let I be an open interval and let A(·) : I → EndV be a curve. We say that
A is Cr if each of the coordinate functions Aij(t) is Cr on R. We define the
derivative Ȧ(t) = limh→0(1/h)(A(t+ h)−A(t)). The derivative exists iff the
derivative Ȧij(t) of each coordinate function exists, and in this case Ȧ(t) is
the linear operator with coordinate functions d

dt
(Aij(t)).

Items (1) and (2) in the following list of basic properties for operator-
valued functions are immediate consequences of the preceding characteriza-
tion, and item (5) is a special case of the general chain rule.

(1) Dt(A(t) ±B(t)) = Ȧ(t) ± Ḃ(t)

(2) Dt(rA(t)) = rȦ(t).

(3) Dt(A(t) ·B(t) = Ȧ(t) ·B(t) + A(t) · Ḃ(t).

(Note: Order is important since multiplication is noncommutative.)

(4) Dt(A
−1(t)) = −A−1(t) · Ȧ(t) · A−1(t).

(5) If Ḃ(t) = A(t), the Dt(B(f(t)) = f ′(t)A(f(t)).
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Exercise 2.4.1. Establish properties (3) and (4). (Hints: (3) Mimic the
proof of the product rule in the real case. (4) Note A−1(t) is differentiable
if A(t) is, since it is the composition with the inversion function, which is
analytic, hence Cr for all r. Differentiate the equation A(t) ·A−1(t) = I and
solve for Dt(A

−1(t)).)

We can also define the integral
∫ b

a
A(t) dt by taking the coordinate in-

tegrals
∫ b

a
Aij(t) dt. The following are basic properties of the integral that

follow from the real case by working coordinatewise.

(6) If B(t) =
∫ t

t0
A(s) da, then Ḃ(t) = A(t).

(7) If Ḃ(t) = A(t), the
∫ s

r
A(t) dt = B(s) − B(r).

We consider curves given by power series: A(t) =
∑∞

n=0 t
nAn. Define the

nth-partial sum to be Sn(t) =
∑n

k=0 t
kAk. The power series converges for

some value of t if the partial sums Sn(t) converge in each coordinate to some
S(t). This happens iff the coordinatewise real power series all converge to
the coordinates of S(t).

Since for an operator A, |aij| ≤ ‖A‖ for each entry aij (exercise), we
have that absolute convergence, the convergence of

∑∞

n=1 |t|
n‖An‖, imples

the absolute convergence of each of the coordinate series, and their uniform
convergence over any closed interval in the open interval of convergence of
the real power series

∑∞

n=1 t
n‖An‖ . These observations justify termwise

differentiation and integration in the interval of convergence of
∑∞

n=1 t
n‖An‖

.

Exercise 2.4.2. (i) Show that the power series

exp(tA) =
∞∑

n=0

tn

n!
An

is absolutely convergent for all t (note that An = (1/n!)An in this series).
(ii) Use termwise differentiation to show Dt(exp(tA)) = A exp(tA).
(iii) Show that X(t) = exp(tA)X0 satisfies the differential equation on EndV
given by

Ẋ(t) = AX(t), X(0) = X0.

(iv) Show that the equation ẋ(t) = Ax(t), x(0) = x0 on V has solution
x(t) = exp(tA)x0.
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2.5 The Baker-Campbell-Hausdorff Formal-

ism

It is a useful fact that the derivative of the multiplication map at the identity
I of End V is the addition map.

Proposition 10. Let m : End(V )×End(V ) → End(V ) be the multiplication
map, m(A,B) = AB. Then the derivative at (I, I), d(I,I)m : End(V ) ×
End(V ) → EndV is given by dm(I,I)(U, V ) = U + V .

Proof. Since the multiplication map is polynomial, continuous partials of all
orders exist, and in particular the multiplication map is differentiable. By
definition the value of the derivative at (I, I) evaluated at some (U, 0) ∈′

End(V ) × End(V ) is given by

dm(I,I)(U, 0) = lim
t→0

m(I + tU, I) −m(I, I)

t
= lim

t→0

tU

t
= U.

We have seen previously that the exponential function is a diffeomorphism
from some open neighborhood B of 0 to some open neighborhood U of I.
Thus there exists an analytic inverse to the exponential map, which we denote
by log : U → B. Indeed if one defines

log(I − A) = −

∞∑

n=1

An

n
,

then just as for real numbers this series converges absolutely for ‖A‖ < 1.
Further since exp(logA) = A holds in the case of real numbers, it holds
in the algebra of formal power series, and hence in the linear operator or
matrix case. Indeed one can conclude that exp is 1− 1 on Bln 2(0), carries it
into B1(I), and has inverse given by the preceding logarithmic series, all this
without appeal to the Inverse Function Theorm.

The local diffeomorphic property of the exponential function allows one
to pull back the multiplication in GL(V ) locally to a neighborhood of 0 in
EndV . One chooses two points A,B in a sufficiently small neighborhood of
0, forms the product exp(A) · exp(B) and takes the log of this product:

A ∗B := log(expA · expB).
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This Baker-Campbell-Hausdorff multiplication is defined on any Br(0) small
enough so that exp(Br(0)) · exp(Br(0)) is contained in the domain of the
log function; such exist by the local diffeomorphism property and the conti-
nuity of multiplication. Now there is a beautiful formula called the Baker-
Campbell-Hausdorff formula that gives A ∗ B as a power series in A and B
with the higher powers being given by higher order Lie brackets or com-
mutators, where the (first-order) commutator or Lie bracket is given by
[A,B] := AB−BA. The Baker-Campbell-Hausdorff power series is obtained
by manipulating the power series for log(exp(x) · exp(y)) in two noncommut-
ing variables x, y in such a way that it is rewritten so that all powers are
commutators of some order. To develop this whole formula would take us
too far afield from our goals, but we do derive the first and second order
terms, which suffice for many purposes.

Definition 11. An open ball Br(0) is called a Baker-Campbell-Hausdorff
neighborhood, or BCH-neighborhood for short, if r < 1/2 and exp(Br(0) ·
exp(Br(0) ⊆ Bs(0) for some s, r such that exp restricted to Bs(0) is a diffeo-
morphism onto some open neighborhood of I. By the local diffeomorphism
property of the exponential map and the continuity of multiplication at I,
BCH-neighborhoods always exist. We define the Baker-Campbell-Hausdorff
multiplication on any BCH-neighborhood Br(0) by

A ∗B = log(expA · expB).

Note that A∗B exists for all A,B ∈ Br(0), but we can only say that A∗B ∈
EndV , not necessarily in Br(0).

Proposition 12. Let Br(0) be a BCH-neighborhood. Define µ : Br(0) ×
Br(0) → End V by µ(A,B) = A ∗B. Then

(i) A ∗B = A +B +R(A,B) where lim
A,B→0

‖R(A,B)‖

‖A‖ + ‖B‖
= 0.

(ii) There exists 0 < s ≤ r such that ‖A ∗ B‖ ≤ 2(‖A‖ + ‖B‖) for A,B ∈
Bs(0).

Proof. (i) We have that µ = log ◦m ◦ (exp× exp), so by the chain rule, the
fact that the derivatives of exp at 0 and log at I are both the identity map
Id : EndV → End V (Lemma 3 and the Inverse Function Theorem) and
Proposition 10, we conclude that

dµ(0,0)(U, V ) = Id ◦ dm(I,I) ◦ (Id× Id)(U, V ) = U + V.
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By definition of the derivative, we have

U ∗ V = U ∗ V − 0 ∗ 0 = dm(0,0)(U, V ) +R(U, V ) (2.1)

= U + V +R(U, V ) where lim
(U,V )→(0,0)

‖R(U, V )‖

‖U‖ + ‖V ‖
= 0.

(Note that the second equality is just the definition of the derivative, where
the norm on EndV × EndV is the sum norm.) This gives (i).

(ii) Using (i), we obtain the following string:

‖A ∗B‖ ≤ ‖A ∗B − A− B‖ + ‖A+B‖ ≤ ‖R(A,B)‖ + ‖A‖ + ‖B‖.

Now ‖R(A,B)‖ → 0 as A,B → 0, so the right-hand sum is less than or equal
2(‖A‖ + ‖B‖) on some Bs(0) ⊆ Br(0).

Exercise 2.5.1. Use the fact that 0 ∗ 0 = 0 and imitate the proof of Propo-
sition 10 to show directly that dm(0,0)(U, V ) = U + V .

We now derive the linear and second order terms of the Baker-Campbell-
Hausdorff series.

Theorem 13. Let Br(0) be a BCH-neighborhood. Then

A ∗B = A+B +
1

2
[A,B] + S(A,B) where lim

A,B→0

‖S(A,B)‖

(‖A‖ + ‖B‖)2
= 0.

Proof. Pick Bs(0) ⊆ Br(0) so that condition (ii) of Proposition 12 is satisfied.
Setting C = A ∗ B, we have directly from the definition of A ∗ B that
expC = expA · expB. By definition

expC = I + C +
C2

2
+R(C), where R(C) =

∞∑

n=3

Cn

n!
. (2.2)

For A,B ∈ Bs(0), we have from Proposition 12 that ‖C‖ = ‖A ∗ B‖ ≤
2(‖A‖ + ‖B‖) < 1 since r < 1/2. Thus we have the estimate

‖R(C)‖ ≤
∞∑

n=3

‖C‖n

n!
≤ ‖C‖3

∞∑

n=3

‖C‖n−3

n!
≤

1

2
‖C‖3. (2.3)

Recalling the calculations in the proof of Proposition 2, we have

expA · expB = I + A +B +
1

2
(A2 + 2AB +B2) +R2(A,B), (2.4)
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where R2(A,B) =
∞∑

n=3

1

n!

( n∑

k=0

(
n

k

)
AkBn−k

)
.

We have the estimate

‖R2(A,B)‖ ≤

∞∑

n=3

1

n!
(‖A‖ + ‖B‖)n ≤

1

2
(‖A‖ + ‖B‖)3. (2.5)

If in the equation expC = expA · expB, we replace expC by the right
side of equation (2.2), expA·expB by the right side equation (2.4), and solve
for C, we obtain

C = A+B +
1

2
(A2 + 2AB +B2 − C2) +R2(A,B) − R(C). (2.6)

Since

A2 + 2AB +B2 − C2 = [A,B] + (A+B)2 − C2

= [A,B] + (A+B)(A+B − C) + (A+B − C)C,

we obtain alternatively

C = A+B +
1

2
[A,B] + S(A,B), (2.7)

where S(A,B) =
1

2
((A+B)(A+B−C)+(A+B−C)C)+R2(A,B)−R(C).

To complete the proof, it suffices to show that the limit as A,B → 0 of
each of the terms of S(A,B) divided by (‖A‖+ ‖B‖)2 is 0. First we have in
Bs(0)

1

2
‖(A +B)(A+B − C) + (A+B − C)C‖ ≤

1

2
(‖A‖ + ‖B‖ + ‖C‖)‖A+B − C‖

≤
1

2
(‖A‖ + ‖B‖ + 2((‖A‖ + ‖B))‖R(A,B)‖

=
3

2
(‖A‖ + ‖B)‖R(A,B)‖,

where the second inequality and last equality follow by applying appropriate
parts of Proposition 12. Proposition 12 also insures that

lim
A,B→0

3(‖A‖ + ‖B‖)‖R(A,B)‖

2(‖A‖ + ‖B‖)2
= 0.
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That limA,B→0 ‖R2(A,B)‖/(‖A‖+ ‖B‖)2 = 0 follows directly from equa-
tion( 2.5). Finally by equation (2.3) and Proposition 12(ii)

‖R(C)‖

(‖A‖ + ‖B‖)2
≤

1

2

‖C‖3

(‖A‖ + ‖B‖)2
≤

4(‖A‖ + ‖B‖)3

(‖A‖ + ‖B‖)2

which goes to 0 as A,B → 0.

2.6 The Trotter and Commutator Formulas

In the following sections we show that one can associate with each closed
subgroup of GL(V ) a Lie subalgebra of EndV , that is, a subspace closed
under Lie bracket. The exponential map carries this Lie algebra into the
matrix group and using properties of the exponential map, one can frequently
transfer structural questions about the Lie group to the Lie algebra, where
they often can be treated using methods of linear algebra. In this section we
look at some of the basic properties of the exponential map that give rise to
these strong connections between a matrix group and its Lie algebra.

Theorem 14. (Trotter Product Formula) Let A,B ∈ End V and let limn nAn =
A, limn nBn = B. Then

(i) A+B = limn n(An ∗Bn);

(ii) exp(A+B) = limn(expAn expBn))n = limn(exp((A/n) exp(B/n)))n.

Proof. (i) Let ε > 0 For large n, n‖An‖ ≤ ‖A‖ + ‖nAn − A‖ < ‖A‖ + ε,
and thus ‖An‖ ≤ (1/n)(‖A‖ + ε). It follows that limnAn = 0 and similarly
limnBn = 0. By Proposition 12(i) we have

lim
n
n(An ∗Bn) = lim

n
nAn + lim

n
nBn + lim

n
nR(An, Bn) = A+B,

provided that limn nR(An, Bn) = 0. But we have

‖nR(An, Bn)‖ =
n(‖An‖ + ‖Bn‖)‖R(An, Bn)‖

‖An‖ + ‖Bn‖
→ (‖A‖+‖B‖) ·0 as n→ ∞.

(ii) The first equality follows directly by applying the exponential function
to (i):

exp(A+B) = exp(lim
n
n(An ∗Bn)) = lim

n
exp(n(An ∗Bn))

= lim
n

(exp(An ∗Bn))n = lim
n

(exp(An) exp(Bn))n

15



where the last equality follows from the fact that exp is a local isomorphism
from the BCH-multiplication to operator multiplication, and penultimate
equality from the fact that exp(nA) = exp(A)n, since exp restricted to RA
is a one-parameter group. The second equality in part (i) of the theorem
follows from the first by setting An = A/n, Bn = B/n.

The exponential image of the Lie bracket of the commutator can be cal-
culated from products of group commutators.

Theorem 15. (Commutator Formula) Let A,B ∈ EndV and let limn nAn =
A, limn nBn = B. Then

(i) [A,B] = limn n
2(An∗Bn−Bn∗An) = limn n

2(An∗Bn∗(−An)∗(−Bn));

(ii) exp[A,B] = limn(exp(An) exp(Bn)(expAn)−1(expBn)−1)n2

= limn(exp(A/n) exp(B/n)(exp(A/n))−1(exp(B/n))−1)n2

.

Proof. (i) From Theorem 13 we have for A,B in a BCH-neighborhood:

A ∗B − B ∗ A =
1

2
([A,B] − [B,A]) + S(A,B) − S(B,A)

= [A,B] + S(A,B) − S(B,A)

since [A,B] = −[B,A]. Therefore

lim
n
n2(An ∗Bn − Bn ∗ An) = lim

n
n2([An, Bn] + S(An, Bn) − S(Bn, An))

= lim
n

[nAn, nBn] + lim
n

(n2S(An, Bn) − n2S(Bn, An)),

= [A,B],

provided limn n
2S(An, Bn) = limn n

2S(Bn, An)) = 0. To see this, we note

lim
n
n2‖S(An, Bn)‖ = lim

n
n2(‖An‖+‖Bn)

2 ‖S(An, Bn)‖

(‖An‖ + ‖Bn‖)2
= (‖A‖+‖B‖)2·0 = 0

and similarly limn n
2‖S(Bn, An)‖ = 0.

To see second equality in item (i), observe first that on a BCH-neighborhood
where the exponential map is injective,

exp((−A) ∗ (−B)) = exp(−A) exp(−B) = (expA)−1(expB)−1

= ((expB)(expA))−1 = (exp(B ∗ A))−1 = exp(−B ∗ A),

16



which implies (−A) ∗ (−B) = −(B ∗A). Hence we have by Theorem 13 that

A ∗B ∗ (−A) ∗ (−B) − (A ∗B − B ∗ A) = (A ∗B) ∗ (−(B ∗ A)) − (A ∗B + (−B ∗ A))

=
1

2
[A ∗B,−B ∗ A] + S(A ∗B,−B ∗ A).

Applying this equality to the given sequences, we obtain

n2‖An ∗Bn ∗ (−An) ∗ (−Bn) − (An ∗Bn − Bn ∗ An‖

≤
n2

2
‖[An ∗Bn,−Bn ∗ An]‖ + n2‖S(An ∗Bn,−Bn ∗ An)‖.

Now if we show that the two terms in the second expression approach 0 as
n → ∞, then the first expression approaches 0, and thus the two limits in
(i) will be equal. We observe first that by the Trotter Product Formula

lim
n
n2[An∗Bn,−Bn∗An] = lim

n
[nAn∗Bn,−nBn∗An] = [A+B,−(B+A] = 0

since [C,−C] = −[C,C] = 0 for any C. Thus the first right-hand term
approaches 0. For the second

n2‖S(An ∗Bn,−Bn ∗ An)‖

= n2(‖An ∗Bn‖ + ‖ − Bn ∗ An‖)
2 ‖S(An ∗Bn,−Bn ∗ An)‖

(‖An ∗Bn‖ + ‖ − Bn ∗ An‖)2

→ (‖A+B‖ + ‖ − (B + A)‖)2 · 0 = 0

as n→ ∞.
(ii) The proof follows from an application of the exponential function to

part (i), along the lines of the Trotter Product Formula.

Exercise 2.6.1. Give the proof of part (ii) in the preceding theorem.

2.7 The Lie Algebra of a Matrix Group

In this section we set up the fundamental machinery of Lie theory, namely
we show how to assign to each matrix group a (uniquely determined) Lie
algebra and an exponential map from the Lie algebra to the matrix group
that connects the two together. We begin be defining the notions and giving
some examples.

By a matrix group we mean a closed subgroup of GL(V ), where V is a
finite dimensional vector space.

17



Examples 2.7.1. The following are standard and basic examples.

(1) The general linear group GL(V ). If V = Rn, then we write the group
of n× n invertible matrices as GLn(R).

(2) The special linear group {g ∈ GL(V ) : det(g) = 1}.

(3) Let V be a real (resp. complex) Hilbert space equipped with an inner
product 〈·, ·〉. The orthogonal group (resp. unitary group) consists of
all transformations preserving the inner product, i.e.,

O(V )( resp. U(V )) = {g ∈ GL(V ) : ∀x, y ∈ V, 〈gx, gy〉 = 〈x, y〉}.

If V = Rn (resp. Cn) equipped with the usual inner product, then the
orthogonal group On (resp. unitary group Un) consists of all g ∈ GL(V )
such that gt = g−1 (resp. g∗ = g−1).

(4) Let V = Rn ⊕ Rn equipped with the sympletic form

Q
([

x1

y1

]
,

[
x2

y2

])
:= 〈x1, y2〉 − 〈y1, x2〉.

The real sympletic group is the subgroup of GL(V ) preserving Q:

Sp(V ) = SP2n(R) := {M ∈ GL(V ) : ∀x, y ∈ V, Q(Mx,My) = Q(x, y)}.

(5) Let 0 < m, n and consider the group of block upper triangular real
matrices

Um,n =

{[
A B
0 D

]
∈ GLm+n(R) : A ∈ GLm(R), B ∈Mm,n(R), D ∈ GLn(R)

}
.

This is the subgroup of GLm+n(R) that carries the subspace Rm ⊕ {0}
of Rm ⊕ Rn into itself.

Exercise 2.7.1. (i) Verify that the subgroups in (2)-(5) are closed.
(ii) Verify the alternative characterizations of elements of the subgroup in
items (3) and (5).

Exercise 2.7.2. Establish the following equivalence:

• M ∈ SP2n(R);
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• M∗JM = J, where J =

[
0 I
−I 0

]
∈ End(R2n);

• IfM has block matrix form

[
A B
C D

]
(where all submatrices are n×n),

then
A∗C, B∗D are symmetric, and A∗D − C∗B = I.

Definition 16. A real Lie algebra g is a real vector space equipped with a
binary operation

[·, ·] : g × g → g

satisfying the identities

(i) (Bilinearity) For all λ, µ ∈ R and X, Y, Z ∈ g,

[λX + µY, Z] = λ[X,Z] + µ[Y, Z]

[X, λY + µZ] = λ[X, Y ] + µ[X,Z].

(ii) (Skew symmetry) For all X, Y ∈ g

[X, Y ] = −[Y,X];

(iii) (Jacobi identity) For all X, Y, Z ∈ g,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Exercise 2.7.3. Verify that EndV equipped with the Lie bracket or com-
mutator operation [A,B] = AB − BA is a Lie algebra.

It follows directly from the preceding exercise that any subspace of EndV
that is closed with respect to the Lie bracket operation is a Lie subalgebra.

We define a matrix semigroup S to be a closed multiplicative subsemi-
group of GL(V ) that contains the identity element. We define the tangent
set of S by

L(S) = {A ∈ EndV : exp(tA) ∈ S for all t ≥ 0}.

We define a wedge in EndV to be a closed subset containing {0} that is
closed under addition and scalar multiplication by nonnegative scalars.
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Proposition 17. If S is a matrix semigroup, then L(S) is a wedge.

Proof. Since I = exp(t.0) for all t ≥ 0 and I ∈ S, we conclude that 0 ∈ L(S).
If A ∈ L(S), then exp(tA) ∈ S for all t ≥ 0, and thus exp(rtA) ∈ S for all
r, t ≥ 0 It follows that rA ∈ L(S) for r ≥ 0. Finally by the Trotter Product
Formula if A,B ∈ L(S), then

exp(t(A +B)) = lim
n

(exp(tA/n) exp(tB/n))n ∈ S for t ≥ 0

since S is a closed subsemigroup of GL(V ). Thus A +B ∈ L(S).

Theorem 18. For a matrix group G ⊆ GL(V ), the set

g = {A ∈ EndV : exp(tA) ∈ G for all t ∈ R}.

is a Lie algebra, called the Lie algebra of G.

Proof. As in the proof of Proposition 17, g is closed under addition and scalar
multiplication, i.e., a subspace of End V . By the Commutator Formula for
A,B ∈ g,

exp([A,B]) = lim
n

((expA/n)(expB/n)(exp(−A/n)(exp(−B/n)n2

∈ G

since G is a closed subgroup of GL(V ). Replacing A by tA, which again is in
g, we have exp(t[A,B]) = exp([tA,B]) ∈ G for all t ∈ R. Thus [A,B] ∈ g.

Exercise 2.7.4. Show for a matrix group G (which is a matrix semigroup,
in particular) that g = L(G).

Lemma 19. Suppose that G is a matrix group, {An} is a sequence in EndV
such that An → 0 and exp(An) ∈ G for all n. If snAn has a cluster point for
some sequence of real numbers sn, then the cluster point belongs to g.

Proof. Let B be a cluster point of snAn. By passing to an appropriate
subsequence, we may assume without loss of generality that snAn converges
to B. Let t ∈ R and for each n pick an integer mn such that |mn − tsn| < 1.
Then

‖mnAn − tB‖ = ‖(mn − tsn)An + t(snA−B)‖

≤ |mn − tsn| ‖An‖ + |t| ‖snAn − B‖

≤ ‖An‖ + |t| ‖snAn − B‖ → 0,

which implies mnAn → tB. Since exp(mnAn) = (expAn)mn ∈ G for each n
and G is closed, we conclude that the limit of this sequence exp(tB) is in G.
Since t was arbitrary, we see that B ∈ g.
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We come now to a crucial and central result.

Theorem 20. Let G ⊆ GL(V ) be a matrix group. Then all sufficiently small
open neighborhoods of 0 in g map homeomorphically onto open neighborhoods
of I in G.

Proof. Let Br(0) be a BCH-neighborhood around 0 in End V , which maps
homeomorphically under exp to an open neighborhood exp(Br(0)) of I in
GL(V ) with inverse log. Assume that exp(Br(0) ∩ g) does not contain a
neighborhood of I in G. Then there exists a sequence gn contained in G
but missing exp(Br(0) ∩ g) that converges to I. Since exp(Br(0)) is an
open neighborhood of I, we may assume without loss of generality that the
sequence is contained in this open set. Hence An = log gn is defined for
each n, and An → 0. Note that An ∈ Br(0), but An /∈ g, for each n, since
otherwise exp(An) = gn ∈ exp(g ∩Br(0)).

Let W be a complementary subspace to g in End V and consider the
restriction of the BCH-multiplication µ(A,B) = A ∗B to (g∩Br(0))× (W ∩
Br(0)). By the proof of Proposition 12, the derivative dµ(0,0) of µ at (0, 0)
is addition, and so the derivative of the restriction of µ to (g ∩ Br(0)) ×
(W ∩ Br(0)) is the addition map + : g ×W → End V . Since g and W are
complementary subspaces, this map is an isomorphism of vector spaces. Thus
by the Inverse Function Theorem there exists an open ball Bs(0), 0 < s ≤ r,
such that µ restricted to (g∩Bs(0))× (W ∩Bs(0)) is a diffeomorphism onto
an open neighborhood Q of 0 in End V . Since An ∈ Q for large n, we have
An = Bn∗Cn (uniquely) for Bn ∈ (g∩Bs(0)) and Cn ∈ (W ∩Bs(0). Since the
restriction of µ is a homeomorphism and 0∗0 = 0, we have (Bn, Cn) → (0, 0),
i.e., Bn → 0 and Cn → 0.

By compactness of the unit sphere in End V , we have that Cn/‖Cn‖
clusters to some C ∈ W with ‖C‖ = 1. Furthermore,

gn = exp(An) = exp(Bn ∗ Cn) = exp(Bn) exp(Cn)

so that exp(Cn) = (expBn)−1gn ∈ G. It follows from Lemma 19 that C ∈ g.
But this is impossible since g ∩ W = {0} and C 6= 0. We conclude that
exp(Br(0) ∩ g) does contain some neighborhood N of I in G.

Pick any open neighborhood U ⊂ (Br(0)∩g) of 0 in g such that exp(U) ⊆
N . Then expU is open in exp(Br(0) ∩ g) (since exp restricted to Br(0) is a
homeomorphism), hence is open in N , and thus is open in G, being an open
subset of an open set.
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Although we treat matrix groups from the viewpoint of elementary dif-
ferential geometry in Chapter 5, we sketch here how that theory of matrix
groups develops from what we have already done in that direction. Recall
that a manifold is a topological space M , which we will assume to be metriz-
able, that has a covering of open sets each of which is homeomorphic to
an open subsets of euclidean space. Any family of such homeomorphisms
from any open cover of M is called an atlas, and the members of the atlas
are called charts. The preceding theorem allows us to introduce charts on a
matrix group G in a very natural way. Let U be an open set around 0 in g

contained in a BCH-neighborhood such that W = expU is an open neighbor-
hood of I in G. Let λg : G→ G be the left translation map, i.e., λg(h) = gh.
We define an atlas of charts on G by taking all open sets g−1N , where N
is an open subset of G such that I ∈ N ⊆ W and defining the chart to be
log ◦λg : g−1N → g (to view these as euclidean charts, we identify g with
some Rn via identifying some basis of g with the standard basis of Rn). One
can check directly using the fact that multiplication of matrices is polynomial
that for two such charts φ and ψ, the composition φ ◦ ψ−1, where defined, is
smooth, indeed analytic. This gives rise to a differentiable structure on G,
making it a smooth (analytic) manifold. The multiplication and inversion
on G, when appropriately composed with charts are analytic functions, and
thus one obtains an analytic group, a group on an analytic manifold with
analytic group operations. This is the unique analytic structure on the group
making it a smooth manifold so that the exponential map is also smooth.

2.8 The Lie Algebra Functor

We consider the category of matrix groups to be the category with objects
matrix groups and morphisms continuous (group) homomorphisms and the
category of Lie algebras with objects subalgebras of some End V and mor-
phisms linear maps that preserve the Lie bracket., The next result shows that
the assignment to a matrix group of its Lie algebra is functorial.

Proposition 21. Let α : G → H be a continuous homomorphism between
matrix groups. Then there exists a unique Lie algebra homomorphism
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dα : g → h such that the following diagram commutes:

G
α

−−−→ H

exp

x
xexp

g
dα

−−−→ h.

Proof. Let A ∈ g. Then the map β(t) := α(exp(tA)) is a one-parameter
subgroup of H. Hence it has a unique infinitesimal generator Ã ∈ h. Define
dα(A) = Ã. We show that dα is a Lie algebra homomorphism. For r ∈ R,

α(exp(trA)) = exp(trÃ),

so the infinitesimal generator for the left-hand side is rÃ. This shows that
dα(rA) = rÃ = rdα(A), so dα is homogeneous.

Let A,B ∈ G. Then

(α ◦ exp)(t(A+B)) = (α ◦ exp)(tA+ tB) = α(lim
n

(exp(tA/n) exp(tB/n))n)

= lim
n

(α(exp(tA/n))α(exp(tB/n)))n

= lim
n

(exp(tÃ/n) exp(tB̃/n))n

= exp(tÃ+ tB̃) = exp(t(Ã+ B̃)).

This shows that dα(A+B) = Ã+ B̃ = dα(A)+dα(B), and thus dα is linear.
In an analogous way using the commutator, one shows that dα preserves the
commutator.

If dα(A) = Ã, then by definition for all t, α(exp(tA)) = exp(tÃ). For
t = 1, α(expA) = exp(Ã) = exp(dα(A)). Thus α◦exp = dα◦exp. This shows
the square commutes. If γ : g → h is another Lie algebra homomorphism
that also makes the square commute, then for A ∈ g and all t ∈ R,

exp(tdα(A)) = exp(dα(tA)) = α(exp(tA)) = exp(γ(tA)) = exp(tγ(A)).

The uniqueness of the infinitesimal generator implies dα(A) = γ(A), and
hence dα = γ.

Exercise 2.8.1. Show that dα preserves the commutator.

Exercise 2.8.2. Let α : G → H be a continuous homomorphism of matrix
groups. Then the kernel K of α is a matrix group with Lie algebra the kernel
of dα.
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2.9 Computing Lie Algebras

In this section we consider some tools for computing the Lie algebra of a
matrix group, or more generally a closed subsemigroup of a matrix group.
We begin with a general technique.

Proposition 22. Let β(·, ·) be a continuous bilinear form on V and set

G = {g ∈ GL(V ) : ∀x, y ∈ V, β(gx, gy) = β(x, y)}.

Then
g = {A ∈ End V : ∀x, y ∈ V, β(Ax, y) + β(x,Ay) = 0}.

Proof. If A ∈ g, then β(exp(tA)x, exp(tA)y) = β(x, y) for all x, y ∈ V .
Differentiating the equation with respect to t by the product rule (which
always holds for continuous bilinear forms), we obtain

β(A exp(tA)x, exp(tA)y) + β(exp(tA)x,A exp(tA)y) = 0.

Evaluating at t = 0 yields β(Ax, y) + β(x,Ay) = 0.
Conversely suppose for all x, y ∈ V , β(Ax, y) + β(x,Ay) = 0. Then from

the computation of the preceding paragraph the derivative of

f(t) := β(exp(tA)x, exp(tA)y)

is f ′(t) = 0. Thus f is a constant function with the value β(x, y) at 0. It
follows that exp(tA) ∈ G for all t, i.e., A ∈ g.

Exercise 2.9.1. Apply the preceding proposition to show that the Lie alge-
bra of the orthogonal group On(R) (resp. the unitary group Un(C)) is the
Lie algebra of n× n real (resp. complex) skew symmetric matrices .

Exercise 2.9.2. (i) Use the Jordan decomposition to show for any A ∈
Mn(C), exp(trA) = det(expA).
(ii) Use (i) and Exercise 2.8.2 to show that the Lie algebra of the group
SLn(C) of complex matrices of determinant one is the Lie algebra of matrices
of trace 0. (Hint: the determinant mapping is a continuous homomorphism
from GLn(C) to the multiplicative group of non-zero complex numbers.)
(iii) Observe that L(G ∩ H) = L(G) ∩ L(H). What is the Lie algebra of
SUn(C), the group of unitary matrices of determinant one?
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Exercise 2.9.3. Let V = Rn ⊕ Rn equipped with the canonical sympletic
form

Q
([

x1

y1

]
,

[
x2

y2

])
:= 〈x1, y2〉 − 〈y1, x2〉.

The Lie algebra of Sp(V ) is given by

sp(V ) =

{ [
A B
C D

]
: D = −A∗, B = B∗, C = C∗

}
.

(Hint: If (exp tA)∗J(exp tA) = J for all t, differentiate and evaluate at t = 0
to obtain A∗J + JA = 0. Multiply this out to get the preceding conditions.
Conversely any block matrix satisfying the conditions can be written as

[
A B
C D

]
=

[
A 0
0 −A∗

]
+

[
0 B
0 0

]
+

[
0 0
C 0

]
.

Show directly that each of the summands is in sp(V ) and use the fact that
sp(V ) is a subspace.)

We introduce another general technique, this time one that applies to
semigroups and groups.

Proposition 23. Let W be a closed convex cone in the vector space EndV
that is also closed under multiplication. Then S := (I + W ) ∩ GL(V ) is a
closed subsemigroup of GL(V ) and L(S) = W .

Proof. Let X, Y ∈ W . Then (I +X)(I + Y ) = I + X + Y + XY ∈ I + W
since W is closed under multiplication and addition. Thus I +W is a closed
subsemigroup, and thus its intersection with GL(V ) is a subsemigroup closed
in GL(V ).

Let A ∈ W . Then for t ≥ 0, exp(tA) = I +
∑∞

n=1 t
nAn/n! has all finite

partial sums in I +W since W is closed under multiplication, addition, and
scalar multiplication. Since the whole sum is the limit, it follows that exp(tA)
is in the closed set I +W , and since the exponential image is invertible, it is
in S. Thus A ∈ L(S).

Conversely assume that exp(tA) ∈ S for all t ≥ 0. Then

A =
d

dt
|t=0 exp(tA) = lim

t→0+

exp(tA) − I

t
∈ W,

where the last assertion follows from the fact that exp(tA) ∈ I+W for t > 0,
and hence exp(tA) − I and therefore (1/t)(exp(tA) − I) are in W . Since W
is closed the limit is also in W .
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Exercise 2.9.4. Use Proposition 23 to show the following in GLn(R) or
GLn(C).

(i) The group of unipotent (diagonal entries all 1) upper triangular matri-
ces has Lie algebra the set of strictly upper triangular matrices.

(ii) The group of invertible upper triangular matrices has Lie algebra the
set of all upper triangular matrices.

(iii) The group of stochastic matrices (invertible matrices with all row sums
1) has Lie algebra the set of matrices with all row sums 0.

(iv) The semigroup S of all invertible matrices with all entries nonnegative
has as its Lie wedge the set of matrices whose nondiagonal entries are
nonnegative.
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Chapter 3

Dynamics and Control on

Matrix Groups

3.1 Time-Varying Systems

A time-varying linear dynamical system on Rn is one determined by a differ-
ential equation on Rn of the form

ẋ(t) = A(t)x(t), x(t0) = x0, (3.1)

where A(t) is a measurable function (i.e., all coordinate functions are measur-
able) in Mn(R) and ‖A(t)‖ is bounded (essentially bounded suffices) on any
finite subinterval of its domain. (One can also consider analogous systems
on C

n with A(t) ∈ Mn(C).) A solution of (3.1) is an absolutely continuous
function x(·) from the domain of A(·) into Rn that satisfies the differential
equation a.e. and the initial condition x(t0) = x0.

Remark 24. It is a standard result that follows readily from the basic results
on existence and uniqueness of differential equations that the differential
equation (3.1) has a unique global solution on any interval I (finite or infinite)
containing t0 on which it is defined. (See, for example, Appendix C.4 of
Mathematical Control Theory by E. Sontag.) Actually, if A(t) is not defined
on all of R, then one can extend it to all of R by defining it to be 0 outside
its given domain of definition and obtain a global solution, so we typically
consider equations defined for all t.
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Exercise 3.1.1. (i) Consider the vector space of absolutely continuous func-
tions from R into Rn with the pointwise operations of addition and scalar
multiplication. Show for fixed t0 that the assignment to x ∈ Rn the solution
of (3.1) for initial condition x(t0) = x is an injective linear map from Rn to
the vector space of absolutely continuous functions.
(ii) Show that the space of absolutely continuous functions that satisfy (3.1)
with no initial condition specified is n-dimensional. (Hint: Any solution is
global and hence must assume some value at time t0.)

A convenient way to study all solutions of a time-varying linear system for
all initial values simultaneously is to introduce the fundamental differential
equation

Ẋ(t) = A(t)X(t), X(s) = I, (3.2)

where X(t) ∈ Mn(R) for each t ∈ R. Note the fundamental differential
equation arises from the given time-varying linear one.

Remark 25. (i) Note that X(·) satisfies (3.2) if and only if each kth-column
of X(·) satisfies (3.1) with initial condition x(s) equal to the kth-unit vector.
It follows that (3.2) has a global solution (consisting of the matrix of column
solutions). (ii) It follows from Exercise 3.1.1 that the columns of X(·) form
a basis for the set of solutions of (3.1).

We denote the solution X(t) of (3.2) with initial condition X(s) = I by
Φ(t, s), which is defined for all t, s ∈ R. For a given system of the form (3.1),
Φ(·, ·) (or just Φ) is called the fundamental solution or the transition matrix.
By definition it satisfies the defining partial differential equation

∂Φ(t, s)

∂t
= A(t)Φ(t, s) Φ(s, s) = I. (3.3)

Exercise 3.1.2. Establish the following basic properties of the fundamental
solution.

(i) Φ(t, t) = I.

(ii) Φ(t, s) = Φ(t, r)Φ(r, s). (Hint: Use uniqueness of solutions.)

(iii) Φ(τ, σ)−1 = Φ(σ, τ). (Hint: Use (ii) and (i).)

(iv) ∂Φ(t,s)
∂s

= −Φ(t, s)A(s).
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Exercise 3.1.3. (i) Show that x(t) := Φ(t, t0)x0 is the (unique) solution
of equation (3.1) and X(t) = Φ(t, t0)X0, where X0 ∈ Mn(R), is the unique
solution of

Ẋ(t) = A(t)X(t), X(t0) = X0. (3.4)

(ii) Show that the equation (3.4) is right invariant in the sense that if X(t) is
a solution for initial condition X(t0) = X0, then Y (t) = X(t)C is a solution
for (3.4) with initial condition Y (t0) = X0C, where C ∈ Mn(R).

A special case of the preceding is the case that A(t) = A is a constant
map. By the chain rule

d

dt
exp((t− s)A) = A exp((t− s)A),

so X(t) = exp((t− s)A) is the (unique) solution of

Ẋ(t) = AX(t), X(s) = I.

Thus we have the following

Proposition 26. The linear differential equation Ẋ(t) = AX(t), X(s) = I
has unique solution

Φ(t, s) = exp((t− s)A)

Exercise 3.1.4. (i) Let a < b < c and let A : [a, c] → Mn(R) be defined by
A(t) = A1 for a ≤ t ≤ b and A(t) = A2 for b < t ≤ c. Show that Φ(t, a) =
exp((t− a)A1) for a ≤ t ≤ b and Φ(t, a) = exp((t− b)A2) exp((b− a)A1) for
b < t ≤ c.
(ii) Let 0 = t0 < t1 . . . < tn = T . Suppose that A(t) = Ai on (ti−1, ti] for
i = 1, . . . , n. Generalize part (i) to determine Φ(t, 0) on [0, T ].

More generally, one can consider nonhomogeneous equations on on Rn.
These have a solution given in terms of the fundamental solution by the
variation of parameters formula.

Proposition 27. The nonhomogeneous equation

ẋ(t) = A(t)x(t) + f(t), x(t0) = x0, (3.5)

on some interval J , where f : J → R
n is measurable and locally bounded,

has solution

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)f(s)ds, (3.6)
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Proof. Set z(t) =
∫ t

t0
Φ(t0, τ)f(τ)dτ + x0. Differentiating with respect to t

yields ż(t) = Φ(t0, t)f(t). Define x(t) = Φ(t, t0)z(t). Then

ẋ(t) = A(t)Φ(t, t0)z(t) + Φ(t, t0)Φ(t0, t)f(t) = A(t)x(t) + f(t),

where the second equality follows from the basic properties of Φ.

3.2 Control Systems on GLn(R)

In this section we introduce some basic ideas of control theory in the spe-
cific context of control systems on the group GLn(R). The material carries
through with minor modification for GLn(C) or even GL(V ), but for conve-
nience and brevity we restrict to the real case.

Let Ω be some nonempty subset of Mn(R), called the controls. For any
interval J of real numbers we consider the set U(J,Ω) of locally bounded
measurable functions, called control functions, from J into Ω. Each mem-
ber U ∈ U(J,Ω) determines a corresponding time varying linear differential
equation, called the fundamental control equation,

Ẋ(t) = U(t)X(t)

of the type that we studied in the previous section. The function U is called
a control or steering function and the resulting solutions trajectories. By the
results of the previous section we have that the solution of

Ẋ(t) = U(t)X(t), X(t0) = X0

is given by X(t) = ΦU(t, t0)X0, where ΦU is the the fundamental solution
for the fundamental equation associated to the coefficient function U . The
control set Ω and the differential equation Ẋ = UX determine a control
system.

Given a control system arising from Ω and A,B ∈ GL(V ), we say that
B is reachable or attainable from A if there exists an interval [a, b] such that
a solution of the fundamental control equation X satisfies X(a) = A and
X(b) = B for some control function U . The set of all points reachable from
A (including A itself) Is called the reachable set fo A, and denoted RA. If we
put the focus on B instead of A, then instead of saying that B is reachable
from A, we say that A is controllable to B or can be steered to B. The
controllability set of B consists of all A that can be steered to B.
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Exercise 3.2.1. Show that if B is reachable from A, then there exists a
control function Ũ : [0, T ] → Ω for some T > 0 such that the corresponding
solution X̃ satisfies X(0) = A and X(T ) = B. (Hint: Consider Ũ(t) =
U(t + a). )

Remark 28. In light of the previous exercise, we can without loss of gen-
erality define the reachable set RA to be all B that arise as values X(t) for
t > 0 in solutions to the fundamental control equation for initial condtion
X(0) = A. We henceforth adopt this approach.

Let Ui : [0, Ti] → Ω be control functions for i = 1, 2. Define the concate-
nation U2 ∗ U1 : [0, T1 + T2] → Ω by

U2 ∗ U1(t) =

{
U1(t), if 0 ≤ t ≤ T1;

U2(t− T1), if T1 < t ≤ T1 + T2.
(3.7)

We consider some elementary properties of reachable sets.

Proposition 29. Let Ω determine a control system on GLn(R).

(i) If B is reachable from A, then BC is reachable from AC.

(ii) RAC = RA · C.

(iii) If B is reachable from A and C is reachable from B, then C is reachable
from A.

(iv) The reachable set from I is a subsemigroup SΩ of GLn(R).

(v) For any A ∈ GLn(R), RA = SΩ · A.

(vi) Ω ⊆ L(SΩ).

Proof. (i) Let U : [0, T ] → Ω be a control function such that XU(0) = A
and XU(T ) = B. By the right-invariance of the system (Exercise 3.1.3(ii)),
X̃(t) = XU(t) · C is a solution of the fundamental control equation, which
clearly starts at AC and ends at BC.

(ii) It is immediate from part (i) that RAC ⊇ RA · C. But then we have

RAC = RACC
−1C ⊆ RACC−1 · C = RA · C.
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(iii) Let Ui : [0, Ti] → Ω be the control functions for Xi for i = 1, 2, where
X1(0) = A, X1(T1) = B, X2(0) = B, and X2(T2) = C. Then X2X1 defined
by X2 ∗X1(t) = X1(t) for 0 ≤ t ≤ T1 and X2 ∗X1(t) = X2(t − T!) for T1 ≤
t ≤ T2 is an absolutely continuous function that satisfies the fundamental
control equation on [0, T1 + T2] for the control function U2 ∗ U1 and also
satisfies X2 ∗X1(0) = A, X2 ∗X1(T1 + T2) = C.

(iv) See the following exercise.
(v) This follows immediately from (iv) and (ii).
(vi) Since X(t) = exp(tA) is a solution of the fundamental control equa-

tion with X(0) = I, we conclude that exp(tA) ∈ L(SΩ) for all t ≥ 0.

Exercise 3.2.2. Consider the set S of all control functions U : [0, TU ] → Ω
equipped with the operation of concatenation.

(i) Show that S is a semigroup (sometimes called the Myhill semigroup).

(ii) Argue that U2 ∗U1 with initial condition X(0) = I has solution X(t) =
X1(t) for 0 ≤ t ≤ T! and X(t) = X2(t−T1)·X1(T1) for T1 ≤ t ≤ T1+T2.

(iii) Define a map ω : S → GLn(R) by ω(U) = X(TU), where X is the
solution of the fundamental control equation for U : [0, TU ] → Ω with
initial condition X(0) = I. (Equivalently, ω(U) = ΦU(TU , 0).) Show
that ω is a homomorphism from the Myhill semigroup into GLn(R),
and hence that the image RI is a subsemigroup.

We consider the Hilbert space H(T ) of coordinatewise square integrable
functions from [0, T ] in Mn(R), where the inner product is the sum of the
usual L2[0, T ] inner products in each coordinate. We endow this Hilbert
space with its weak topology. Let Ω be a bounded set in Mn(R), and let
U(Ω, T ) be all measurable functions from [0, T ] into Ω. Since Ω is bounded,
these control functions are all in H(T ). Define π(A, t, U) for A ∈ GLn(R),
0 ≤ t ≤ T , and U ∈ U(Ω, T ) to be X(T ), where X is the solution of the
fundamental control equation with initial condition X(0) = A. The following
is a basic and standard fact about continuous dependence of solutions on
controls and initial conditions.

Proposition 30. The mapping (A, t, U) 7→ π(A, t, U) from GLn(R)×[0, T ]×
U(Ω, T ) into GLn(R) is continuous for each T > 0, where U(Ω, T ) is given
the topology of weak convergence.
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In the preceding, recall that a sequence Un converges weakly to U , written
Un

w
−→ U , if 〈Un, V 〉 → 〈U, V 〉 for all V ∈ H(T ), where 〈·, ·〉 is the inner

product on the HIlbert space H(T ).
A control U : [0, T ] → Ω is said to be piecewise constant if there exists

a partition of [0, T ], 0 = t0 < t1 < . . . < tn = T , such that U is constant
on (ti−1, ti) for 1 ≤ i ≤ n. The following is another useful basic fact from
measure theory.

Proposition 31. The piecewise constant functions with values in Ω are
weakly dense in the set of all control functions U(Ω, T ).

Exercise 3.2.3. For square integrable functions f, g : [0, T ] → Mn(R), the
inner product in H(T ) is given by

〈f, g〉 =
∑

1≤i,j≤n

∫ T

0

fij(t)gij(t)dt.

Show that this can be written alternatively as

〈f, g〉 =

∫ T

0

tr(f(t)g(t)∗)dt,

where the integrand is the trace of the matrix product f(t)g(t)∗.

3.3 Control Systems on Matrix Groups

In this section we continue to consider control systems like those in the
previous section given by the fundamental control equation and a set Ω ⊆
Mn(R).

We associate with any control set Ω a matrix group G(Ω) and a closed
subsemigroup S(Ω).

Definition 32. Let Ω be a control set, a nonempty subset of Mn(R). We de-
fine G(Ω) to be the smallest closed subgroup of GLn(R) containing {exp(tA) :
t ∈ R, A ∈ Ω}, that is,

G(Ω) := 〈{exp(tA : t ∈ R, A ∈ Ω}〉gp = 〈exp(RΩ)〉gp ,

where 〈Q〉gp denotes the subgroup generated by Q, which consists of all finite
products of members of Q∪Q−1. Similarly we define S(Ω) to be the smallest
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closed subsemigroup of GLn(R) containing all {exp(tA) : t ≥ 0, A ∈ Ω},
that is,

S(Ω) := 〈{exp(tA) : t ≥ 0, A ∈ Ω}〉sgp = 〈exp(R+Ω)〉sgp ,

where the semigroup generated by a set consists of all finite products of mem-
bers of the set. We call G(Ω) the matrix semigroup infinitesimally generated
by Ω and S(Ω) the closed semigroup infinitesimally generated by Ω.

Lemma 33. For a control set Ω, let Spc(Ω) denote all points reachable from
the identity with piecewise constant controls. Then

Spc(Ω) = {ΦU(T, 0) : U is piecewise constant} = 〈exp(R+Ω)〉sgp.

Proof. Let B be reachable from I by a piecewise constant control. Then
there exists an interval [0, T ] and a piecewise constant control U : [0, T ] → Ω
such that the solution to

Ẋ(t) = U(t)X(t), X(0) = I

on [0, T ] satisfies X(T ) = B. But this is equivalent to saying that ΦU(0, T ) =
B. Thus we see that the first equality holds. Let 0 = t0, t1 < . . . < tn = T be
a partition of [0, T ] such that U has constant value Ai on each (ti−1, ti) for
1 ≤ i ≤ n. Since the solution of the preceding fundamental control equation
for the constant control Ai is given by exp(tAi), we have by Exercise 3.2.2(ii)
and induction that

ΦU(t, 0) = exp(tAi) exp((ti−1 − ti−2)Ai−1) · · · exp(t1A1) for ti−1 ≤ t ≤ ti.

Since this is a finite product of members of exp(R+Ω), we conclude that
Spc(Ω) ⊆ 〈exp(R+Ω)〉sgp.

Conversely given a member
∏n

i=1 exp(tiAi) where each ti ≥ 0 and each
Ai ∈ Ω, define a control U : [0, T ] → Ω, where T =

∑n
i=1 ti by U(t) = Ai for∑i−1

j=1 < t ≤
∑i

j=1 ti and U(0) = A1. Using the techniques of thepreceding
paragraph, one sees that the solution of the fundamental control equation
with initial condtion I has Φ(T, 0) equal to the given product.

We call Spc(Ω) the semigroup infinitesimally generated by Ω.

Proposition 34. For a control set Ω, S(Ω) is the closure of the reachable
set from the identity.
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Proof. Let B ∈ RI , the reachable set from the identity. Then B = X(T ) for
the solution of

Ẋ(t) = U(t)X(t), X(0) = I

for some bounded control U : [0, T ] → Ω. Let Ω1 be a bounded subset of Ω
containing the image of U . By Proposition 31 Un

w
−→ U for some sequence of

piecewise constant functions in U(Ω1, T ). By Proposition 30, ΦUn
(0, T ) →

ΦU(0, T ) = B and by the preceding lemma ΦUn
(0, T ) ∈ 〈exp(R+Ω)〉sgp for

each n. Hence B ∈ 〈exp(R+Ω)〉sgp = S(Ω). Therefore the reachable set from
I and hence its closure is contained in S(Ω). Conversely, again using the
preceding lemma,

S(Ω) = 〈exp(R+Ω)〉sgp = Spc(Ω) ⊆ RI .

Corollary 35. Let Ω be a control set in Mn(R) and S be a closed subsemi-
group of GLn(R). Then Ω ⊆ L(S) if and only if RI ⊆ S(Ω) ⊆ S. In partic-
ular, S(Ω) is the smallest closed subsemigroup containing the reachable set

from the identity, and L(S(Ω)) is the largest set Ω̃ satisfying S(Ω̃) = S(Ω).

Proof. Suppose that Ω ⊆ L(S). Then exp(R+Ω) ⊆ S. Since S is closed
semigroup, 〈exp(R+Ω)〉sgp ⊆ S. The desired conclusion now follows from
Lemma 33 and Proposition 34.

Conversely suppose that RI ⊆ S. Then exp(tA) ∈ RI ⊆ S for all A ∈ Ω
and t ≥ 0., so Ω ⊆ L(S).

By the preceding, Ω ⊆ L(S(Ω)) (let S = S(Ω)). Thus, again from the
preceding, the reachable set from I is contained in S(Ω). Any other closed
semigroup S containing RI must contain exp(R+Ω) and hence the closure of
the semigroup it generates, which is 〈exp(R+Ω)〉sgp = S(Ω). On the other

hand if S(Ω̃) = S(Ω), then we have just seen that Ω̃ ⊆ L(S(Ω̃)) = L(S(Ω)).

The next corollary involves only a mild modification of the preceding
proof and is left as an exercise.

Corollary 36. Let Ω be a control set in Mn(R) and G a matrix group in
GLn(R). The Ω ⊆ g if and only if RI ⊆ S(Ω) ⊆ G. In particular, G(Ω) is
the smallest matrix group containing the reachable set from the identity, and
Ω ⊆ L(G(Ω).
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Exercise 3.3.1. Prove the preceding corollary.

Corollary 37. If Spc(Ω) is closed for a control set Ω, then Spc(Ω) = S(Ω) =
RI . In particular, every elment in the reachable set from I is reachable by a
piecewise constant control.

Proof. This follows from the last two lines of the proof of Proposition 34.

3.4 The Sympletic Group: A Case Study

Recall that the sympletic group is given by

Sp2n(R) =

{ [
A B
C D

]
∈ GL2n(R) : A∗C,B∗D are symmetric,A∗D − C∗B = I

}

and its Lie algebra is given by

sp2n(R) =

{[
A B
C D

]
∈M2n(R) : D = −A∗, B,D are symmetric

}
,

where in both cases A,B,C,D ∈Mn(R). Members of sp2n(R) are sometimes
referred to as Hamiltonian matrices.

Recall that a symmetric matrix A ∈Mn(R) is positive semidefinite, writ-
ten A ≥ 0, if it satisfies 〈x,Ax〉 ≥ 0 for all x ∈ Rn. A positive semidefinite
matrix A is positive definite, written A > 0 if 〈x,Ax〉 > 0 for all x 6= 0, or
equivalently if it is invertible.

Exercise 3.4.1. (i) Characterize those diagonal matricesD satisfyingD ≥
0 and D > 0.

(ii) For A symmetric and P ∈ Mn(R), show that A ≥ 0 implies PAP ∗ ≥ 0.
Show that the two are equivalent if P is invertible.

(iii) Use that fact that any symmetric matrix can be factorized in form
A = PDP ∗, where P ∗ = P−1 is orthogonal and D is diagonal, to
show that A is positive semidefinite (resp. definite) if and only if all its
eigenvalues are non-negative (resp. positive).

(iv) Use the preceding factorization to show that any positive semidefinite
matrix has a positive semidefinite square root.
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(v) Show that the set of positive semidefinite matrices is closed in Mn(R).

We consider the fundamental control system on Sp2n(R) determined by

Ω :=

{[
A B
C D

]
∈ sp2n(R) : B,C ≥ 0

}
.

We refer to members of Ω as non-negative Hamiltonian matrices. We also
consider the set

S =

{[
A B
C D

]
∈ Sp2n(R) : D is invertible, B∗D,CD∗ ≥ 0

}
.

Our goals in this section are to show that S is an infinitesimally generated
semigroup with L(S) = Ω. Then by Corollary 37, S will be the reachable
set from the identity for the control system Ω.

Lemma 38. If P,Q ≥ 0 then I + PQ is invertible. If P > 0 and Q ≥ 0,
then P +Q > 0.

Proof. We first show that I + PQ is injective. For if (I + PQ)(x) = 0, then

0 = 〈Q(x), (I + PQ)(x)〉 = 〈Q(x), x〉 + 〈Q(x), PQ(x)〉.

Since both latter terms are non-negative by hypothesis, we have that 0 =
〈Qx, x〉 = 〈Q1/2x,Q1/2x〉, and thus that Q1/2(x) = 0. It follows that 0 =
(I + PQ)(x) = x + PQ1/2(Q1/2x) = x, and thus I + PQ is injective, hence
invertible.

The last assertion now follows easily by observing that P + Q = P (I +
P−1Q). It follows that P + Q is invertible and positive semidefinite, hence
postive definite.

We define

ΓU =

{[
I B
0 I

]
: B ≥ 0

}
,

ΓL =

{[
I 0
C I

]
: C ≥ 0

}
,

We further define a group H of block diagonal matrices by

H =

{[
A∗ 0
0 A−1

]
: A ∈ GLn(R)

}
.

The following lemma is straightforward.
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Lemma 39. The sets ΓU and ΓL are closed semigroups under composition.
The semigroup ΓU resp. ΓL consists of all unipotent block upper (resp. lower)
triangular operators contained in S. The group H is closed in GL2n(R)
and consists of all block diagonal matrices in Sp2n(R). Furthermore, the
semigroups ΓU and ΓL, are invariant under conjugation by members of H.

Exercise 3.4.2. Prove Lemma 39.

Lemma 40. We have that S = ΓUHΓL, Furthermore this “triple decompo-
sition” is unique.

Proof. Each member of S admits a triple decomposition of the form

[
A B
C D

]
=

[
I BD−1

0 I

] [
(D−1)∗ 0

0 D

] [
I 0

D−1C I

]
.

The triple decomposition follows from direct multiplication (applying the
equations A∗D−C∗D = I and B∗D = D∗B to see that the (1,1)-entry is A).
Note further that if B∗D = D∗B ≥ 0, then BD−1 = (D−1)∗D∗BD−1 ≥ 0,
and hence the first factor in the triple decomposition is in ΓU , the block upper
triangular matrices belonging to S. Similar reasoning applies to showing the
third factor belongs to ΓL, the block lower triangular matrices belonging to
S, after noting D−1C = D−1CD∗(D−1)∗.

Conversely consider a product

[
D−1 +BD∗ BD∗

D∗C D∗

]
=

[
I B
0 I

] [
D−1 0
0 D∗

] [
I 0
C I

]
∈ ΓUHΓL.

Then the (2,2)-entry in the product is precisely D∗ and the middle block
diagonal matrix in the factorization is determined. Multiplying the (1, 2)-
entry of the product on the right by (D∗)−1 gives B and the (2, 1)-entry
on the left by (D∗)−1 gives C. Hence the triple factorization is uniquely
determined. Finally note that (BD∗)∗D∗ = DB∗D∗ is positive semidefinite
since B is (since the first block matrix is in ΓU). Also (D∗C)(D∗)∗ = D∗CD,
which is positive semidefinite since C is. Thus the product block matrix
satisfies the conditions to be in S.

We come now to an important theorem.

Theorem 41. The set S is a subsemigroup of Spn(R).
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Proof. Let s1 = u1h1l1 and s2 = u2h2l2 be the triple decompositions for
s1, s2 ∈ S. Suppose that l1u2 = u3h3l3 ∈ ΓUHΓL. That

s1s2 = u1h1l1u2h2l2 = u1h1u3h3l3h2l2 = [u1(h1u3h
−1
1 )](h1h3h2)[(h

−1
2 l3h2)l2]

is in ΓU
0 HΓL then follows from Lemma 39. We observe that indeed

l1u2 =

[
I 0
C1 I

] [
I B2

0 I

]
=

[
I B2

C1 I + C1B2

]
,

and that the (4, 4)-entry is invertible by Lemma 38. We further have that
B∗

2(I + C1B2) = B∗
2 + B∗

2C1B2 ∈ P0 is positive semidefinite and C1(I +
C1B2)

∗ = C1 + C1B2C
∗
1 is positive semidefinite since C1 and B2 are. Thus

l1u2 has the desired triple decomposition u3h3l3 and S is a semigroup by
Lemma 40.

The semigroup S of the preceding theorem is called the sympletic semi-
group.

Corollary 42. The sympletic semigroup can be alternatively characterized
as

S =

{[
A B
C D

]
∈ Sp2n(R) : A is invertible, C∗A ∈ P, BA∗ ∈ P

}
.

Proof. Let S ′ denote the set defined on the righthand side of the equation in
the statement of this corollary. We observe that

∆

[
A B
C D

]
∆ =

[
D C
B A

]
for ∆ =

[
0 I
I 0

]
.

The inner automorphism M 7→ ∆M∆ : GL(VE) → GL(VE) carries Sp2n(R)
onto itself (check that it preserves the defining conditions at the beginning
of this section), interchanges the semigroups ΓU and ΓL, carries the group
H to itself, and interchanges the semigroup S and the set S ′. Thus S ′ is a
semigroup and

S ′ = ΓLHΓU ⊆ SSS = S.

Dually S ⊆ S ′.

On the set of n × n-symmetric matrices Symn(R), we define the natural
partial order (also called the Loewner order), by A ≤ B if 0 ≤ B − A, that
is, if B − A is positive semidefinite.
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Lemma 43. Set S+ = {g ∈ Sp2n(R) : ∀s ∈ Sp2n(R), s∗21s22 ≤ (gs)∗21(gs)22}.
(Note that the matrices being compared are symmetric by the definition of
Sp2n(R).) Then

(i) S+ is a subsemigroup;

(ii) S ⊆ S+;

(iii) S+ is closed.

Proof. (i) This follows from the transitivity of the partial order.
(ii) To show the inclusion, we take any member of S, write it in its triple

composition, show that each factor is in S+, and then use part (i). For
example for P ≥ 0,

[
I 0
P I

] [
A B
C D

]
=

[
∗ B
∗ PB +D

]

and (B∗(PB+D))−B∗D = B∗PB ≥ 0, and thus the lower triangular matrix
determined by P is in S+. Similar arguments hold for members of H and
ΓU .

(iii) This follows from the continuity of the algebraic operations and the
closeness in the symmetric matrices of the set of positive semidefinite matri-
ces.

Exercise 3.4.3. Work out the other two cases of part (ii) of the proof.

Theorem 44. The sympletic semigroup S is closed.

Proof. Let s ∈ S. Then s = limn sn, where each sn ∈ S. Then (sn)∗21(sn)11 →
s∗21s11, so s∗21s11 ≥ 0 by the closeness of the set of positive semidefinite ma-
trices and Corollary 42. Similarly s12s

∗
11 ≥ 0.

By parts (ii) and (iii) of Lemma 43, we have that s ∈ S ⊆ S+. Thus for
P > 0, we have

sr :=

[
A B
C D

] [
I P
0 I

]
=

[
A AP +B
C CP +D

]
,

where it must be the case that 0 < P = P ∗I ≤ (AP + B)∗(CP + D). It
follows that (AP + B)∗(CP + D) is positive definite, hence invertible, and
thus CP+D is invertible. Since snr → sr and each snr ∈ S, we conclude that
(sr)∗21(sr)22 ≥ 0 and similarly (sr)12(sr)

∗
22 ≥ 0. We conclude that sr ∈ S,

and hence by Corollary 42, that A = (sr)11 is invertible. It now follows from
Corollary 42 that s ∈ S.
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We next establish that the tangent set of the symplectic semigroup S is
the set Ω introduced at the beginning of this section.

Proposition 45. The symplectic semigroup S has Lie wedge

L(S) = Ω =

{[
A B
C −A∗

]
: B,C ≥ 0

}
.

Proof. First note that any X ∈ Ω can be uniquely written as a sum

X =

[
A B
C −A∗

]
=

[
0 B
0 0

]
+

[
A 0
0 −A∗

]
+

[
0 0
C 0

]
= U +D + L

of a strictly upper block triangular, a block diagonal, and a strictly lower

block triangular matrix. Since exp(tU) =

[
I tB
0 I

]
∈ ΓU ⊆ S for all t ≥ 0,

we conclude that U ∈ L(S), and similarly L ∈ L(S). Clearly exp(tD) ∈
H ⊆ S for all t, so D ∈ L(S) also. Since L(S) is a cone, hence closed under
addition, we have that X ∈ L(S). Thus Ω ⊆ L(S).

Conversely suppose that exp(tX) ∈ S for all t ≥ 0. Using the triple
decompositions of Lemma 40, we can write

exp(tX) = U(t)D(t)L(t) for each t ≥ 0.

Differentiating both sides with respect to t and evaluating at 0 yields

X = U̇(0) + Ḋ(0) + L̇(0).

Then X12 = U̇(0)12 = limt→0+ U(t)12/t ≥ 0, since for the triple decomposi-
tion of any member of S the upper triangular factor U(t) has positive definite
(1, 2)-entry (see Lemma 40 and proof). In a similar fashion one argues that
X21 ≥ 0.

Corollary 46. The closed semigroup S(Ω) infinitesimally generated by Ω
is contained in the sympletic semigroup S. In particular, the reachable set
RI(Ω) ⊆ S.

Proof. Since Ω = L(S), exp(R+Ω) ⊆ S. Since S is a closed semigroup,
S(Ω) = 〈exp(R+Ω)〉sgp ⊆ S. By Proposition 34 the reachable set from the
identity is contained in S(Ω).

Exercise 3.4.4. Show that ΓU ,ΓL ⊆ exp(Ω) ⊆ RI(Ω).
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Chapter 4

Optimality and Riccati

Equations

4.1 Linear Control Systems

Basic to the “state-space” approach to control theory is the theory of (time-
varying) linear systems on Rn:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,

where x(t), x0 ∈ Rn, u(·) belongs to the class of measurable locally bounded
“control” or “steering” functions into Rm, A(t) is an n×n-matrix and B(t) is
an n×m matrix. The system is time-invariant or autonomous if the matrices
A and B are constant.

We may apply formula (3.5) of Proposition 3.6 to obtain the solution to
the linear control system as

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)B(s)u(s)ds, (4.1)

where Φ(t, t0) is the fundamental solution for

Ẋ(t) = A(t)X(t), X(t0) = I.

Linear systems may be regarded as special cases of the fundamental con-
trol systems on groups that we considered in the previous chapter. Indeed
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set y(t) =

[
x(t)
1

]
, a column vector in R

n+1, and consider the differential

equation

ẏ(t) = U(t)y(t), y(t0) =

[
x0

1

]
, where U(t) =

[
A(t) B(t)u(t)

0 0

]
.

One can see directly that y(t) is a fundamental control equation of the type
studied in the previous section, and that y(t) satisfies this differential equa-
tion if and only if ẋ(t) = A(t)x(t) +B(t)u(t) and x(t0) = x0.

Exercise 4.1.1. Verify the last assertion.

Since the fundamental control equation has global solutions, by the pre-
ceding considerations, the same holds for linear control equations.

Corollary 47. Linear control systems have global solutions for the class of
measurable locally bounded controls.

4.2 The Linear Regulator

The basic optimization problem for linear control is the “linear regulator” or
“linear-quadratic” problem with linear dynamics on Rn given by

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0, (LIN)

where A(t) is n × n, B(t) is n × m and u(t) ∈ Rm. Associated with each
control function u : [t0, t1] → R

m is a quadratic “cost”

∫ t1

t0

[x(s)′Q(s)x(s) + u(s)′R(s)u(s)]ds+ x(t1)
′Sx(t1),

where R(s) is positive definite and Q(s) is symmetric on [t0, t1] S is sym-
metric, and t0 < t1 are fixed. Note that in this section we use a prime to
denote the transpose, since we want to use stars to denote optimal choices.
The integral is called the “running cost” and the last term is the “end cost.”

An optimal control is a control function u∗ : [t0, t1] → Rm that minimizes
the cost over all possible controls u(·). Its corresponding solution, denoted
x∗(·), is the optimal trajectory.
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A crucial ingredient in the theory and solution of the linear regulator
problem is the associated quadratic matrix Riccati Differential Equation on
[t0, t1]:

Ṗ (t) = P (t)B(t)R−1(t)B′(t)P (t)− P (t)A(t)−A′(t)P (t)−Q(t), P (t1) = S.
(RDE)

Theorem 48. Suppose there exists a solution P (t) on [t0, t1] to (RDE). Then
the solution of

ẋ(t) =
(
A(t) − B(t)R(t)−1B(t)′P (t)

)
x(t), x(t0) = x0

yields the optimal trajectory x∗(t) and the unique optimal control is the “feed-
back” control given by

u∗(t) = −R(t)−1B(t)′P (t)x∗(t).

The minimal cost is given by V (t0, x0) = x′0P (t0)x0.

Proof. Pick any initial state x0 and any control u : [t0, t1] → Rm. Let x(t) be
the corresponding solution of (LIN). Taking the derivative with respect to t
of x(t)′P (t)x(t) (defined almost everywhere) , we obtain

d

dt
x′Px = (u′B′ + x′A′)Px+ x′(PBR−1B′P − PA− A′P −Q)x+ x′P (Ax+Bu)

= (u+R−1B′Px)′R(u+R−1B′Px) − u′Ru− x′Qx.

Integrating we conclude

x(t1)
′P (t1)x(t1) − x0P (t0)x0 =

∫ t−1

t0

(u+R−1B′Px)′R(u+R−1B′Px)(s) ds

−

∫ t1

t0

(u′Ru+ x′Qx)(s) ds,

and rearranging terms and noting P (t1) = Q, we obtain

cost = x(t1)
′Qx(t1) +

∫ t1

t0

(u′Ru+ x′Qx)(s) ds

= x′0P (t0)x0 +

∫ t−1

t0

(u+R−1B′Px)′R(u+R−1B′Px)(s) ds.

Since R(s) > 0 for all s, we conclude that the unique minimum cost control is
the one making u(s)+R−1(s)B(s)′P (s)x(s) ≡ 0, and in this case the minimal
cost is x′0P (t0)x0.
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4.3 Riccati Equations

We turn now to Ricatti equations.

Definition 49. A matrix Riccati equation is a differential equation on the
vector space Symn(R) of symmetric n× n-matrices of the form

K̇(t) = R(t) +A(t)K(t) +K(t)A′(t)−K(t)S(t)K(t), K(t0) = K0, (RDE)

where R(t), S(t), K0 are all in Symn(R).

There is a close connection between the fundamental group control equa-
tion on the sympletic group and the Riccati equation.

Lemma 50. Suppose that g(·) is a solution of the following fundamental
control equation on Sp2n(R) on an interval I:

ġ(t) =

[
A(t) R(t)
S(t) −A′(t)

] [
g11(t) g12(t)
g21(t) g22(t)

]
, R(t), S(t) ∈ Symn(R).

If g22 is invertible for all t ∈ I, then K(t) := g12(t)(g22(t))
−1 satisfies

K̇(t) = R(t) + A(t)K(t) +K(t)A′(t) −K(t)S(t)K(t),

on I. Furthermore, if g(t0) =

[
I K0

0 I

]
for some t0 ∈ I, then K(t0) = K0.

Proof. Using the product rule and the power rule for inverses and the equality
of the second columns in the fundamental control equation, we obtain

K̇ = ġ12(g22)
−1 − g12g

−1
22 ġ22g

−1
22

= (Ag12 +Rg22)g
−1
22 −K(Sg12 − A′g22)g

−1
22

= AK +R−KSK +KA′.

The last assertion is immediate.

Corollary 51. Local solutions exist for the Riccati equation (RDE) around
any given intial condition.

Proof. Global solutions exist for the fundamental control equation with ini-

tial condition g(t0) =

[
I K0

0 I

]
and the g22(t)-entry will be invertible in some

neighborhood of t0 (by continuity of the determinant). Now apply the pre-
vious theorem.
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Our earlier results on the sympletic semigroup lead to a semigroup-
theoretic proof of the following global existence result concerning the Riccati
equation.

Theorem 52. The Riccati equation

K̇(t) = R(t) + A(t)K(t) +K(t)A′(t) −K(t)S(t)K(t), K(t0) = K0

has a solution consisting of positive semidefinite matrices for all t ≥ t0 if
R(t), S(t) ≥ 0 for all t ≥ t0 and K0 ≥ 0.

Proof. Let g(t) be a global solutions for the fundamental control equation

ġ(t) =

[
A(t) R(t)
S(t) −A′(t)

] [
g11(t) g12(t)
g21(t) g22(t)

]
, g(0) =

[
I 0
0 I

]
.

Since by Corollary 46 the reachable set RI(Ω) is contained in the sympletic
semigroup S, and since for all t, R(t), S(t) ≥ 0 implies the coefficient matrices
in the fundamental control equation are all in Ω, we conclude that g(t) ∈ S
for all t ≥ 0. Set

h(t) := g(t− t0)

[
I K0

0 I

]
:

since the fundamental control equation is right-invariant, h(t) is again a
solution, and h(t) ∈ S for all t ≥ 0, since we have multiplied through by a
member of the semigroup S. Hence by definition of S, h22(t) is invertible for
all t ≥ t0. Thus by Lemma 50 K(t) := h12(t)(h22(t))

−1 defines a solution of
the given Riccati equation for all t ≥ 0, , and K(t0) = K0I

−1 = K0.
Finally we verify that all K(t) are positive semidefinite for t ≥ t0. Since

h(t) ∈ S, we have (h12(t))
′h22(t) ≥ 0. Thus

0 ≤ (h−1
22 (t))′(h12(t)

′h22(t))h
−1
22 (t) = (h12(t)h

−1
22 (t))′ = h12(t)h

−1
22 (t) = K(t).

The next corollary gives the more common setting in which solutions of
the Riccati solution are considered.

Corollary 53. The Riccati equation

Ṗ (t) = P (t)S(t)P (t) − A(t)P (t) − P (t)A′(t) − R(t), P (t1) = P0

has a solution consisting of positive semidefinite matrices on the interval
[t0, t1] if S(t), R(t) ≥ 0 for all t0 ≤ t ≤ t1 and P0 ≥ 0.
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Proof. The equation

K̇(t) = −K(t)S(t1−t)K(t)−K(t)A(t1−t)−A
′(t1−t)K(t)−R(t1−t), P (0) = P0

has a solution for all 0 ≤ t ≤ t1 − t0 by the previous theorem, and P (t) :=
K(t1− t) is then the desired solution of the differential equation given in this
corollary.

The next corollary is immediate from the results of this section and The-
orem 48.

Corollary 54. The Riccati equation associated with the linear regulator prob-
lem of Section 4.2 has an optimal solution as given in Theorem 48 if R(t) > 0
and Q(t) ≥ 0 on [t0, t1] and S ≥ 0.

Exercise 4.3.1. Calculate the feedback control that minimizes
∫ T

0
(x2

1+u
2)dt

for the system
ẋ1 = x2, ẋ2 = u, x(0) = x0.

(Hint: Set up the Riccati equation that needs to be solved, consider the
corresponding fundamental control equation ġ = Γg on the group Sp4(R),
and find the fundamental solution exp(tΓ) by Fulmer’s method. Set K =
g12(g22)

−1 and reparametrize to satisfy the appropriate initial conditions.)

4.4 Lifting Control Problems: An Example

In this section we consider an example of how control problems may some-
times be “lifted” to fundamental control problems on groups, which allows
group machinery to be used in their study. The example also illustrates how
certain problems in geometry or mechanics can be reinterpreted as control
problems to allow application of the methods of control theory.

Let γ(t) be a smooth curve in the plane R2 parameterized by arc length.
The geometric study of the curve can be lifted to the group of rigid motions of
R2 (the group generated by the orthogonal linear maps and the translations).
We first assign a positively oriented frame v1, v2 to each point of the curve
γ as follows. We set v1(t) = dγ/dt, the tangent vector to the curve at γ(t).
Since γ is parameterized by arc length, we have that v1 is a unit vector.
Let v2 denote the unit vector perpendicular to v1 obtained by rotating v1

counterclockwise by 90◦. We say that v2 is positively oriented with respect
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to v1 and call (v1(t), v2(t)) the moving frame along γ. Because v1(t) is a unit
vector function, its derivative v̇1(t) is perpendicular to v1(t), and hence a
scalar multiple of v2(t). Hence there exists a scalar function k(t), called the
curvature of γ, such that

γ̇(t) = v1(t), v̇1(t) = k(t)v2(t), v̇2(t) = −k(t)v1(t)

One way of seeing the last equality is to rotate the curve γ by 90◦ coun-
terclockwise and apply these same computations to the rotated curve. The
preceding system of differential equations is called the Serret-Frenet differ-
ential system.

Exercise 4.4.1. (i) Show that if v(t) is a differentiable unit vector function,
then v(t) · v̇(t) = 0 for all t. (ii) Why does the minus sign appear in the last
of the three displayed equations?

The moving frame along γ can be expressed by a rotation matrix R(t)
that rotates the frame (v1(t), v2(t)) to the standard basis (e1, e2), that is,
R(t)vi = ei for i = 1, 2. The matrix R(t) has as its rows the representations
of v1(t), v2(t) in the standard basis. The curve γ(t) along with its moving
frame can now be represented as an element g(t) in the motion group G2 of
the plane, a group of 3 × 3 matrices of the block form

g =

[
R 0
γ 1

]
,

with γ a row vector in R2 and R =

[
cos θ − sin θ
sin θ cos θ

]
a rotation matrix in

SO2(R). The Serret-Frenet differential equations then convert to a funda-
mental equation on the group G2:

ġ(t) =




0 k(t) 0
−k(t) 0 0

1 0 0


 g(t).

Exercise 4.4.2. Verify that the rows of the preceding matrix differential
equation are indeed equivalent to the three Serret-Frenet equations.

Exercise 4.4.3. Calculate the exponential solution of the preceding equation
with initial condition I at time 0 if we assume the scalar function k(t) is a
constant function.
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Exercise 4.4.4. Calculate the Lie algebra of the motion group G2 on R2.
(Hint: Show that each member of the group factors into a rotation times a
translation, compute the Lie algebra of each subgroup, and sum.)

If the curvature function k(t) is now regarded as a control function, then
the preceding matrix differential equation converts to a fundamental control
system on the group G2, and many classical variational problems in geometry
become problems in optimal control. For example, the problem of finding a
curve γ(t) that will satisfy the given boundary conditions γ(0) = a, γ̇(0) = ȧ,
γ(T ) = b, γ̇(T ) = ḃ (where ȧ and ḃ denote given tangent vectors at a and

b resp.), and will minimize
∫ T

0
k2(t)dt goes back to Euler, and its solutions

are known as elastica. Solutions may be interpreted as configurations that
a thin, flexible plastic rods will take if the ends of the rods are to be placed
at two specified points and directions at those points. More recent is the
“problem of Dubins” of finding curves of minimal length that connect (a, ȧ)
and (b, ḃ) and satisfy the contraint |k(t)| ≤ 1. This may be viewed as a
“parking problem,” trying to maneuvern a vehicle from one point pointed in
one direction to another point pointed in another direction with the curvature
limit indicating how sharply you can turn the steering wheel.
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Chapter 5

Geometric Control

5.1 Submanifolds of R
n

In this chapter we introduce some basic ideas of that approach to control
theory that is typically referred to as geometric control. The principal idea
is to use the framework and tools of differential geometry to study problems
in control theory and related underlying theory.

A chart for R
n is a diffeormorphism φ : U → V between two nonempty

open subsets of Rn. For U a nonempty open subset of Rn and S ⊆ U , we
say that S is a k-slice of U if there exists a chart φ : U → Rn such that

φ(S) = {(x1, . . . , xk, xk+1, . . . , xn) ∈ φ(U) : xj = 0 for k + 1 ≤ j ≤ n}.

A subset S ⊆ Rn is called an embedded k-submanifold of Rn if for each
p ∈ S, there exists U open in Rn such that S ∩ U is a k-slice of U . Such
charts are called slice charts for S. We shall also refer to such an embedded
k-submanifold simply as a submanifold of Rn, with the k being understood.

The next exercise shows that without loss of generality one can use a
wider class of maps as slice charts, since tranlations and linear isomorphisms
are diffeomorphisms on R

n.

Exercise 5.1.1. Suppose that φ : U → Rn is a chart, S ⊆ U .

(i) If φ(S) = {(x1, . . . , xk, xk+1, . . . , xn) ∈ φ(U) : xj = aj for k + 1 ≤ j ≤
n} for given ak+1, . . . , an, show that φ followed by some translation on
Rn is a slice chart.
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(ii) Suppose φ : U → Rn is a slice chart for S and x ∈ S ∩ U . Show there
exists a slice chart ψ : U → Rn such that ψ(x) = 0. (Hint: Follow φ
by an appropriate translation.)

(iii) If φ(S) = {(x1, . . . , xn) ∈ φ(U) : (x1, . . . , xn) ∈ V } for some subspace
V of Rn, show that φ followed by some linear isomophism (which may
be chosen to be an orthogonal map) is a slice chart.

Proposition 55. A matrix group G of n × n matrices is a submanifold of
Mn(R) = Rn2

.

Proof. We employ some basic facts about matrix groups from Chapter 1.
First of all there exists an open ball B about 0 in Mn(R) such that exp |B is
a diffeomorphism onto V := exp(B). Let φ : V →Mn(R) be the inversemap,
(what we previously called the log map). Let g be the Lie algebra of G.
Then by Theorem 20, by choosing B smaller if necessary, we may assume
that exp |B∩g is a homeomorphism onto exp(B)∩G = V ∩G. It follows that
φ(G ∩ V ) = {A ∈ φ(V ) : A ∈ g}. By Exercise 5.1.1(ii), we may assume that
φ is a slice chart. Thus we have created a slice chart at 1. To create a slice
chart at any other g ∈ G, we take φ ◦ λg−1 , where λg−1 is left translation
under multiplication by g−1. Since this is a linear isomorphism on Mn(R), it
is a diffeomorphism.

Exercise 5.1.2. Use the preceding proposition and its proof to find a slice
chart at 1 = (1, 0) of the unit circle subgroup of C∗ = GL1(C).

For an arbitrary nonempty subset A ⊆ Rn, we say that f : A → Rm is
smooth if for each x ∈ A there exists a set U open in Rn and containing
x and a C∞-function g : U → Rm such that g(y) = f(y) for all y ∈ U ∩
A. In particular, we can speak of smooth functions f : M → N between
submanifolds.

Exercise 5.1.3. Show that f : M → N between two submanifolds is smooth
if and only if ψ ◦ f ◦ φ−1 is smooth on its domain of definition for all slice
charts φ of M and ψ of N .

The tangent bundle of R
n is the pair (TR

n, π) where TR
n = R

n ×R
n and

π : Rn×Rn → Rn is projection into the first coordinate. We endow the fibers
TpR

n := π−1(p) = {p} × Rn with the structure of a vector space by taking
the usual vector space operations in the second coordinate. Geometrically
we visualize members of TpR

n as directed line segments with initial point p.
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We recall certain facts from calculus about curves and tangent vectors.
Let α : (a, b) → Rn be a (parameterized) curve in Rn suchh that α is C1. Then
to each point α(t) on the curve, there exists a vector

(
α(t), α̇(t)

)
tangent to

the curve at α(t) (also called the velocity vector at α(t)), where α̇(t) is defined
by

α̇(t) = lim
h→0

α(t+ h) − α(t)

h
.

If α has components α1, . . . , αn, then

α̇(t) =
(
α̇1(t), . . . , α̇n(t)

)
.

If M is a submanifold of Rn, we define

TM = {(p, v) ∈ TR
n : p ∈M, v = α̇(0) for some smooth curve

α : (a, b) →M with α(0) = p}.

A member (p, v) ∈ TM is called a tangent vector at p. The set of all tangent
vectos at p is denoted TpM . The restriction of π : TRn → Rn to TM is
denoted πM and (TM, πM) is called the tangent bundle of M .

Exercise 5.1.4. Consider the unit circle as a submanifold of R
2. Find a

description of its tangent bundle.

Lemma 56. Let M be a k-dimensional submanifold of Rn, p ∈ M . If φ :
U → R

n is a slice chart and p ∈ U , then TpM = (dφ−1)φ(p)(R
k), where R

k

is identified with the subspace of Rn with the coordinates after the first k all
being 0.

Proof. Let α be a smooth curve in M with alpha(0) = p. Set γ := φ ◦ alpha.
Then the image of γ is contained in Rk, so γ̇(0) ∈ Rk. It follows from the
chain rule that α̇(0) = (dφ−1

φ(p)(γ̇(0)). Conversely for any v ∈ Rk, the curve

β(φ(p) + tv) satisfies (dφ−1)φ(p)(v) = β̇(0).

Exercise 5.1.5. (i) Show that the restriction of π : TRn → Rn to M ,
namely πM : TM →M , is a smooth map..

(ii) If α : (a, b) →M is a smooth curve show that (α(t), α̇(t)) ∈ Tα(t)M :=
π−1

M (α(t)) for t ∈ (a, b).

(iii) Show that the tangent space TpM is closed under scalar multiplication
(the operation taking place in the second coordinate).
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(iv) Show that TpM is closed under addition. (Hint: Use the preceding
lemma.)

Corollary 57. Let G be a matrix group in GLn(R). Then TeG = g and
TgG = gg.

Proof. By Proposition 55 and its proof, a chart on small neighborhoods U of
I is given by φ(g) = log g, and thus φ−1 = exp on some open ball B around
0. Since d exp0 = idMn(R) by Lemma 3, we conclude from Lemma 56 that
TeG = g. Since there are charts at g ∈ G of the form log ◦ρg−1 with inverse
ρg ◦exp (where ρg is right translation under multiplication by g), we conclude
from Lemma 56 that

TgG = d(ρg ◦ exp)0(g) = d(ρg)e ◦ d exp0(g) = ρg(g) = gg,

where we use the fact that d(ρg)e = ρg since the map ρg is linear by the
distributive law.

5.2 Vector Fields and Flows

In this section we review certain basic facts about vector fields and flows on
submanifolds.

Definition 58. A Cr-real flow for the additive group of real numbers on a
submanifold M is a Cr-function Φ : R ×M →M satisfying

(i) the identity property Φ(0, x) = 0.x = x,

(ii) and the semigroup property

Φ
(
s,Φ(t, x)

)
= Φ(s+ t, x), or s.(t.x) = (s+ t).x. (SP)

A real flow is also called a dynamical system, or simply a flow.
For a C1-dynamical system on M and x ∈M , the set R.x = Φ(R×{x}) =

φx(R) is called the trajectory or orbit through x. The sets R+.x and R−.x
are called the positive and negative semitrajectories resp.

Suppose that x lies on the trajectory of y (and hence the trajectories
of x and y agree). Then x = φy(t) := Φ(t, y) for some t, the motion φy

parametrizes the trajectory, and with respect to this parametrization, there
is a tangent vector or velocity vector at x. There is also a tangent vector at
x for the parametrization by the motion φx at t = 0. The next proposition
asserts that the same vector is obtained in both cases.
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Proposition 59. For y = Φ(−t, x), we have that

φ̇x(0) = φ̇y(t) =
∂Φ

∂t
(t, y),

provided both exist. Hence for a C1-flow, the tangent vector at x is the same
for the parametrization of the trajectory of x by any motion φy, where y
belongs to the trajectory of x.

Proof. We have x = φt ◦ φ−t(x) = φt(y), so

φx(s) = Φ(s, x) = Φ
(
s,Φ(t, y)

)
= Φ(s + t, y) = φy(s+ t).

The assertion of the proposition now follows from an easy application of the
chain rule at s = 0.

Definition 60. A vector field X on a submanifold M of Rn is a function
from M to TM which assigns to each x ∈ M a tangent vector at x, i.e., a
tangent vector in TxM . Thus it must be the case that for each x ∈M , there
exists an unique f(x) ∈ Rn such that

X(x) =
(
x, f(x)

)
.

The function f is called the principal part of the vector field. Conversely
any f : M → Rn, X(x) :=

(
x, f(x)

)
such that (x, f(x)) ∈ TxM for each x

defines a vector field with principal part f . Thus it is typical in this context
to give a vector field simply by giving its principal part. The vector field is
said to be Cr if it is a Cr function from M to TM ; this occurs if and only if
f is Cr into Rn

Again we recall the standard geometric visualization of vector fields by
sketching tangent vectors at a variety of typical points.

A Cr-flow for r ≥ 1 gives rise in a natural way to a vector field. One
considers for each x ∈ M the trajectory through x parameterized by φx,
and takes the velocity vector at time t = 0. The resulting vector field has
principal part given by

f(x) :=
∂Φ

∂t
(0, x) =

dφx

dt
|t=0 = lim

h→0

φx(h) − x

h
. (DS1)

Definition 61. The vector field with principal part f given by equation
(DS1) is called the tangent vector field or velocity vector field or infinitesimal
generator of the flow Φ.
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Remark 62. In light of Proposition 3, the vector at x can be chosen by
choosing the tangent vector to x, where the trajectory of x is parametrized
by any motion φy for y in the trajectory.

Proposition 63. Let f be the principal part of the tangent vector field to a
locally Lipschitz dynamical system Φ. For x ∈ M , x is a fixed point of Φ if
and only if f(x) = 0.

Proof. Exercise.

Conversely one wishes to start with a vector field on a k-dimensional
submanifold and obtain a dynamical system. For this direction one needs to
utilize basic existence and uniqueness theorems from the theory of differential
equations. Thus for a vector field X : M → TM , with principal part f , we
consider the autonomous ordinary differential

dx

dt
= ẋ = f(x), (DS2)

called the differential equation of the vector field. Associating with a vector
field the corresponding differential equation given by (DS2) establishes a
straightforward one-to-one correspondence between vector fields on M and
differential equations of the form (DS2) on M .

There are two ways in which we may use standard existence and unique-
ness theorems to establish that unique solutions of (DS2) exist, at least lo-
cally. First of all, we may be able to extend (DS2) to a system on some open
subset of Rn containing M and apply standard existence and uniqueness
theorems to the extended system. Secondly we may “transfer” the system,
at least locally, via a slice chart to a differential equation of Rk, solve the
equation there and then “pull back” the solution. This approach has the
advantage that it guarantees that the system evolves on the submanifold,
and if the vector field is locally lipschitz, so that solutions are unique, we
conclude that the solutions from either approach must agree.

If M = Rn and we set fi to be the composition of f with projection into
the i-th coordinate, then equation (DS2) may be alternatively written as a
system of equations

ẋ1 = f1(x1, . . . , xn)

ẋ2 = f2(x1, . . . , xn)

...

ẋn = fn(x1, . . . , xn). (DS3)
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Suppose that for each x ∈M , there exists a unique solution x(t) = Φ(t, x)
of (DS2) which is defined on all of R and satisfies x(0) = Φ(0, x) = x. Then
it is well-known that the uniqueness of solutions implies

Φ
(
s,Φ(t, x)

)
= Φ(s + t, x) for all s, t ∈ R,

and that Φ: R×M →M is continuous. Thus Φ defines a dynamical system
onM , called the real flow defined by f (more precisely, the real flow generated
by the vector field with principal part f), and from the way that it is defined,
it is clear that the corresponding velocity vector field is the original one with
principal part f . If M = Rn, then a sufficient condition for such global
solutions to exist is that f satisfies a global Lipschitz condition, i.e., that
there exists k > 0 such that

‖f(x) − f(y)‖ ≤ k‖x− y‖ for all x, y ∈ R
n.

If f is C1, then it is locally Lipschitz, and this is enough to guarantee the
existence and uniqueness of an appropriately defined local flow. In particular,
if there is a global flow associated with the vector field, then it is unique.
This yields the following:

Theorem 64. Suppose that a real flow Φ: R×M →M has a locally Lipschitz
(in particular C1) infinitesimal generator. Then the flow determines and is
determined by the unique solution t 7→ Φ(t, x) : R →M of (DS2) with initial
value x at t = 0.

In general, we assume that the local flows associated with the vector
fields we encounter are actually global, and concern ourselves with problems
of globality only on a case-by-case basis. Restricting to global flows is not a
great loss in generality (see Stability Theory of Dynamical Systems by N. P.
Bhatia and G. P. Szegö, Springer, 1970, p. 7).

Exercise 5.2.1. Find a formula for the real flow Φ defined by the following
differential equations on the real line R:

(i) ẋ = 1.

(ii) ẋ = x.
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Exercise 5.2.2. (i) For a flow Φ : R × X → X, the function φt : X → X
defined by φt(x) = Φ(t, x) is called a transition function. Show that the set
of all transition functions φt that arise in (i) the preceding exercise is the
group of translation functions on R.
(ii) Show that the union of the two sets of transition functions φt arising in
(i) and (ii) of the preceding exercise generates (under composition) the group
of all proper affine transformations on R:

Aff0(R) := {x 7→ ax+ b : R → R : a > 0, b ∈ R}.

Exercise 5.2.3. (i) Solve the differential equation ẋ = x2 on R. Show that
the flow defined by this differential equation is only a local flow, not a global
one.
(ii) Find a flow on R∞ := R ∪ {∞} that has ẋ = x2 as its infinitesimal
generator.

Exercise 5.2.4. Define the notion of a constant vector field on R
n, and find

the real flow defined by such a vector field.

Exercise 5.2.5. Verify that the Φ defined after equation (DS3) does in-
deed satisfy the semigroup property under the assumption of uniqueness of
solutions.

Exercise 5.2.6. Suppose that the principal part of a vector field on (an open
subset of) E is given by f(x) = −∇F (x), where F is Cr for r ≥ 1 and ∇F
is the gradient vector field. The corresponding real flow is called a gradient
flow and F is called a potential function for the flow. Find the corresponding
gradient flow Φ: R × R2 → R2 for

(i) F (x, y) = x2 + y2;

(ii) F (x, y) = y2 − x2.

What can be said about the trajectories of the flow and the level curves of
F in each case?

Exercise 5.2.7. Consider the dynamical system on R3 given in cylindrical
coordinates by Φ

(
t, (r, θ, z)

)
= (r, θ + ωt, z).

(i) Give in words a description of this flow.

(ii) Find in Cartesian coordinates the tangent vector field of this flow.
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(iii) Review from calculus the notion of the curl of a vector field and find
the curl of this vector field. How does it relate to the original flow?

Exercise 5.2.8. Suppose that a vector field is the tangent vector field for a
C1-flow Φ on (an open subset of) E and that the principal part of the vector
field is given by f . Show that x is a fixed point for the flow if and only if
f(x) = 0.

5.3 Geometric Control

In geometric control one models the states of a system by the points of a
smooth manifold and the controls by vector fields. The vector fields may be
interpreted as force fields, for example an electrically charged surface or a
gravitational field, or a velocity field such as represented along the surface of
a moving body of water or along a moving air stream. To influence the system
by controls then means that one varies the force field or velocity field of the
manifold (for example, as the rudders of a wing change the configuration of
air flow over the wing).

More precisely, the dynamics of a geometric control system are given by
a function

F : M × Ω → TM,

where M is a submanifold of R
n with tangent space TM , Ω has a least the

structure of a metric space, and F is function satisfying F (·, u) is a smooth
vector field for each u ∈ Ω and F : M × Ω → TM is continuous.

A control function is a locally bounded measurable (meaning the inverse
of open sets are measurable) function u(·) from some subinterval of R to Ω.
The control determines a differential equation on the manifold M :

ẋ(t) = F (x(t), u(t)).

A solution of the differential equation is an absolutely continuous func-
tion x(·) defined on the domain of the control function satisfying ẋ(t) =
F (x(t), u(t)) almost everywhere.

Exercise 5.3.1. For a geometric control system and x0 ∈M , define the set
controllable to x0 and the set reachable from x0.

We consider the fundamental control systems on matrix groups that we
have been studying from the perspective of geometric control. Let G be a
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matrix subgroup of GLn(R). For each A ∈ g, we define a smooth vector field
on G by XA(g) = Ag. By Corollary 57 we have that Ag ∈ TgG, so that
XA is indeed a vector field. The map f(B) = AB is a linear map on all
of Mn(R) that extends XA, so XA is smooth. If we define a flow on G by
Φ(t, g) = exp(tA)g, then Φ is a smooth flow on G with infinitesimal generator
XA.

Exercise 5.3.2. Verify that Φ is indeed a flow and that φ̇g(0) = Ag for all
g ∈ G.

We let g ⊆Mn(R) be the Lie algebra of G, and equip g with the relative
euclidean metric. We let Ω be a nonempty subset of g and define the dynamics
of a geometric control system by

F : G× Ω → TG, F (g, A) = Ag.

Note that F (·, A) = XA, a smooth vector field, and that F is continuous,
even smooth, since matrix multiplication is polynomial. Note also that for a
control function U : R → Ω the corresponding control differential equation

ġ(t) = F (g(t), U(t)) = U(t)g(t)

reduces to the time varying linear equation on G with coefficients from Ω ⊆ g,
what we called previously the fundamental control equation on G. Thus our
earlier control system on a matrix group may be viewed as an important
special case of a geometric control system on a smooth manifold.

One advantage of geometric control approach is that all Lie groups, not
just matrix groups, admit the structure of a smooth manifold and hence the
constructions of this chapter leadeing to geometric control systems can be
carried out for them as well. Thus the control theory developed for matrix
groups in these notes can be extended to general Lie groups via the machinery
of smooth manifolds, tangent bundles, and vector fields. This approach also
allows the introduction of the tools of differential geometry in the study of
control systems.
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