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Abstract This is a lecture course for beginners on representation theory of
semisimple finite dimensional Lie algebras. It is shown how to use infinite dimen-
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also provide a proof for Harish—Chandra’s theorem on the center of the universal
enveloping algebra and for Kostant’s multiplicity formula.

Keywords Lie algebra ¢ Verma module ¢ Weyl character formula ¢ Kostant
multiplicity formula ¢ Harish—Chandra center

1991 Mathematics Subject Classification. 17A70 (Primary) 17B35 (Secondary)

Introduction

These notes originally were a draft of the transcript of my lectures in the Summer
school in Budapest in 1971. For the lectures addressed to the advanced part of the
audience, see [Ge]. The beginners’ part was released a bit later see [Ki]. It contains a
review by Feigin and Zelevinsky, which expands my lectures. Therefore, the demand
in a short and informal guide for the beginners still remains, I was repeatedly told.
So here it is.

We will consider finite dimensional representations of semisimple finite di-
mensional complex Lie algebras. The facts presented here are well known ([Bu],
[Di], [Se]) and in a more rigorous setting. But our presentation of these facts is
comparatively new (at least, it was so in 1971) and is based on the systematic usage
of the Verma modules M, .
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The reader is supposed to be acquainted with the main notions of Linear Algebra
([Pr] will be just fine). The knowledge of the first facts and notions from the theory
of Lie algebra will not hurt but is not required.

The presentation is arranged as follows:

In Sect. 1, we discuss general facts regarding Lie algebras, their universal
enveloping algebras, and their representations.

In Sect. 2, we discuss in detail the case of the simplest simple Lie algebra g =
s[(2). The results of this section provide essential tools for treating the general case.

In Sect.3, we provide without proofs a list of results on the structure of
semisimple Lie algebras and their root systems.

In Sect.4, we introduce some special category of g-modules, so-called cate-
gory O. We construct basic objects of this category — Verma modules M, — and
describe some of their properties.

In Sect.5, we construct, for every semisimple Lie algebra g, a family of
irreducible finite dimensional representations A .

In Sect. 6, we formulate one of the central results — Harish—Chandra’s description
of the algebra 3(g) — center of the enveloping algebra of g. For the proof see Sect. 9.

In Sect. 7, we describe various properties of the category O that follow from the
Harish—Chandra theorem.

In Sect. 8, we prove Weyl’s character formula for irreducible g-modules A4, and
derive Kostant’s formula for the multiplicities of weights for these representations.
We also prove that every finite dimensional g-module is decomposable into a direct
sum of irreducible modules isomorphic to A4;.

In Sect. 9, we present a proof of the Harish—Chandra theorem.

1 General Facts About Lie Algebras

All vector spaces considered in what follows are defined over a ground field K. We
assume that K is algebraically closed of characteristic 0. The reader can assume
K =C.

1.1 Lie Algebras

Definition. A Lie algebra is a K-vector space g equipped with a bilinear multipli-
cation [, | : g ® g — g (it is called bracket) that satisfies the following identities:

[X,Y]+[Y,X]=0 forany X,Y € g (S-95)

(X, IY,Z]|+ [Y,[Z,X]] + [Z,[X,Y]] =0forany X,Y,Z € g. J.I)
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The identity (S-S) signifies skew-symmetry of the bracket, (J.1.) is called the Jacobi
identity.

Example. Let A be an associative algebra. By means of the subscript L we will
denote the Lie algebra g = A; whose underlying vector space is a copy of A and
the bracket is given by the formula [X, Y] = XY — YX. Clearly, A is a Lie algebra:
(S-S) and (J.1.) are subject to a direct verification.

If V is a vector space, we denote gl(V') its general linear Lie algebra that is
defined as gl(V) = (Endg(V)) 1.

We abbreviate gl(K"”) to gl(n). Note that this is just the algebra Mat(n) of n x n-
matrices with the operation [X, Y] = XY — YX.

1.2 Representations of Lie Algebra

A representation y of a Lie algebra g in a vector space V' is a morphism of Lie
algebras y : g — gl(V'). We will denote by the same symbol y the corresponding
morphism of vector spaces g® V — V.

We will also use the following equivalent terms for representations: “y is an
action of Lie algebra g on V”’; “V is g-module”.

Morphisms of g-modules are defined as usual. The category of g-modules will
be denoted by M(g).

An important example of a representation is the adjoint representation ad of a
Lie algebra g on the vector space V' = g. It is defined by formula ad(X)(Y) :=
[X, Y]. The fact that this is a representation follows from Jacobi identity.

1.3 Tensor Product Representation

Given representations y, 6 of a Lie algebra g in spaces V and E we construct the
tensor product representation 7 = y ® § in the space V' ® E via Leibnitz rule
NX)=yX)®I1d + 1d ® §(X).

Lemma. Lety : g® V — V be any representation of a Lie algebra g. Consider
on the space g ® V the structure of g-module given by representation Ad ® y. Then
y:9Q®V — Visamorphism of g-modules.

The verification is left to the reader.

1.4 Some Examples of Lie Algebras

Example 1. Let n~, n_, and b be the subspaces of g = gl(n) consisting of all
strictly upper triangular, strictly lower triangular and diagonal matrices, respectively.
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Clearly, n4, n_, and b are Lie subalgebras of gl(7). Important role in representa-
tion theory plays a triangular decomposition gl(rn) = n_ & b & n4 (this is a direct
sum decomposition of vector spaces, but not of Lie algebras).

Example 2. The space of n X n matrices with trace zero is a Lie algebra; it is called
the special linear algebra and denoted by sl(7).

Example 3. Let B be a bilinear form on a vector space V. Consider the space
Der(B) of all operators X € gl(V') that preserve B, i.e., B(Xu,v) + B(u,Xv) =
0 for any u,v € V.

It is easy to see that this subspace is closed under the bracket and so is a Lie
subalgebra of gl(V).

If B is nondegenerate, we distinguish two important subcases:

* B is symmetric, then Der(B) is called the orthogonal Lie algebra and denoted
by o(V, B).

* B is skew-symmetric, then Der(B) is called the symplectic Lie algebra and
denoted by sp(V, B).

It is well known that over C all nondegenerate symmetric forms on V' are
equivalent to each other and the same applies to skew-symmetric forms. So Lie
algebras o(V, B) and sp(V/, B) actually depend only on the dimension of V', and we
will sometimes denote them by o(72) and sp(2m).

The Lie algebras gl(n), o(n), and sp(2m) are called classical Lie algebras.
For the proof of the statements of this section, see ([Bu], [Di], [OV], [Se]).

1.5 Universal Enveloping Algebra

Let g be a Lie algebra over K. To g we assign an associative K-algebra with unit,
U(g), called the universal enveloping algebra of the Lie algebra g. Namely, consider
the tensor algebra 7' (g) of the space g, i.e.,

T (g) =n6>90T”(g),

where T%(g) = K, T"(g) = g ® --- ® g (n factors). Consider also the two-sided
ideal I C T (g) generated by the elements X @Y —Y ® X —[X, Y] forany X, Y € g.
Set U(g) = T(g)/1.

We will identify the elements of g with their images in U(g). Under this
identification, any g-module may be considered as a (left, unital) U(g)-module
and, conversely, any U(g)-module may be considered as a g-module. We will not
distinguish the g-modules from the corresponding U(g)-modules.

The algebra U(g) has a natural increasing filtration U(g), = Y., T'(g). We
denote by grU(g) the associated graded algebra grlU(g) = P,s0gr, U(g), where
gr,U(g) := U(g)»/U(g)u—1. This algebra is clearly commutative and hence the
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natural morphism i : g — gr;U(g) extends to a morphism of graded commutative
algebras i : S°(g) — grU(g), where S"(g) is the symmetric algebra of the linear
space g. The following result will be used repeatedly in the lectures.

Theorem (Poincaré-Birkhoff—-Witt). The morphism i : S*(g) — grU(g) is an
isomorphism of graded commutative algebras.

Corollary. (1) U(g) is a Noetherian ring without zero divisors.
(2) Let symm’ : S°(g) —> T°(g) be the map determined by the formula

1
X8 ® X D Xoy ® - ® Xow.

‘T oeGy

Denote by symm: S*(g) —> T"(g) —> U(g) the composition of symm’ and the
projection onto U(g). The map symm is an isomorphism of linear spaces (not
algebras).

(3) If X, ..., Xk is a basis of g, then the set of monomials X{'X* ... X.*, where
the n; run over the set Z>¢ of nonnegative integers, is a basis of U(g).

Remark. The version of PBW as stated above is in [Di] 2.3.6. A direct proof can be
found in [BG]. For point one of the corollary, see 2.3.8 and 2.3.9 of loc. cit. For the
second point, see 2.4 in [Di] and for the last point see 2.1.8 in [Di].

1.6 Some Finiteness Results

In order to analyze finite dimensional representations of a Lie algebra, we will often
use infinite dimensional representations that satisfy some finiteness assumptions.

1.6.1 Locally Finite Representations

Definition. Let A be an associative algebra. An A-module V' is called locally finite
if it is a union of finite dimensional A-submodules.

Notice that the subcategory M(A4)" < M(A) of locally finite A-modules is
closed with respect to subquotients. It is easy to check that if algebra A is finitely
generated then M (A4)" is also closed under extensions.

If V is an arbitrary A-module, then the sum of all locally finite submodules is the
maximal locally finite submodule of V. We denote it I/ A-finite,

We use the same definitions for a module V' over a Lie algebra a. In particular,
we denote by V" the maximal locally finite a-submodule of V.

Lemma. (i) Let a be a Lie algebra. Then the tensor product of locally finite
representations is locally finite.
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(ii) Let g be a finite-dimensional Lie algebra and a C g its Lie subalgebra. Given a
g-module V consider its maximal a-locally finite submodule L = V /" _Then
L is a g-submodule of V.

Proof. The proof of (i) is straightforward. Then (i) implies that the morphism of
y:g®V — Vmapsg® L into L, i.e., L is a g-submodule. O

Exercise. Show that the same result is true under weaker assumptions. Namely, it
is enough to assume that the adjoint action of the Lie algebra a on the space g/a is
locally finite.

1.6.2 Locally Nilpotent Representations

Definition. Let a be a Lie algebra. An a-module V' is called nilpotent if for some
natural number k we have a* (V) = 0. An a-module V is called locally nilpotent if
it is a sum of nilpotent submodules.

As before we denote by VP the maximal locally nilpotent submodule of V.

Lemma. (i) Tensor product of locally nilpotent representations is locally
nilpotent.

(ii) Let g be a Lie algebra and a C g its Lie subalgebra such that the adjoint
action of a on g is locally nilpotent. Given a g-module V' consider its maximal
a-locally nilpotent submodule L = V" _Then L is a g-submodule of V.

The proof is the same as in Lemma 1.6.1.

1.7 Representations of Abelian Lie Algebras

Let a be an abelian Lie algebra (i.e., the bracket on a is identically 0). Let V' be a
locally finite a-module.

For every character y € a*, we denote by V(y) the space of generalized
eigenvectors of a with eigencharacter y.

Proposition. V is a direct sum of the subspaces V().
This is a standard result of linear algebra, see Proposition A.1 in the appendix.

Definition. A module V' over an abelian Lie algebra a is called semisimple if it is
spanned by eigenvectors of a.

For any a-module V', we denote by V%% the maximal semisimple a-submodule
of V.

Lemma. (i) Tensor product of semisimple representations is semisimple.

(ii) Let g be a Lie algebra and a C g its abelian Lie subalgebra such that the
adjoint action of a on g is semisimple. Given a g-module V' consider its maximal
a-semisimple submodule L. = V *°. Then L is a g-submodule of V.

Again, the proof is the same as in Lemma 1.6.1.
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2 The Representations of s[(2)

In this section, we will describe representations of the simplest simple Lie algebra
g =sl(2).

2.1 The Lie Algebra s1(2)

The Lie algebra s[(2) consists of matrices x = (a 2) over field K such that
c

trx =a + d = 0. In s[(2), select the following basis

0 1 10 0 0
Ey = H = E_= .

The commutation relations between the elements of the basis are:
[H,E4]| =2E4;[H,E_]| =-2E_;[E4+,E_] = H.

Remark. We will see that in any semisimple Lie algebra g we can find many triples
of elements (E, H, E_) of g that satisfy above relation. We call such a triple an
sl(2)-triple. In this way, the study of the representations of the Lie algebra s[(2)
provides us with lots of information on the representations of any semisimple Lie
algebra g.

The above relations between E_, H, and E4 and a simple inductive argument
yield the following relations in U(s[(2)):

[H,EX] = 2kE*, [H,E*] = —2kE*, [Ey, E*] = kEF"Y(H — (k — 1)).

Besides, it is easy to verify that the element

C =4E_E. + H>+2H

belongs to the center of U(s[(2)). The element C is called the Casimir operator.
Let V be an sl(2)-module. A vector v € V is called a weight vector if it is an
eigenvector of the operator H,i.e. Hv = yv; the number y € K is called the weight
of v.
We denote by V**(x) the subspace of all such vectors. Similarly, we define V()
to be the space of generalized weight vectors for H (see appendix for definitions).

Lemma.

EL(VZ(0)) CVP(x+2), Ex(V() CV(x+2)
E_-(VZ(0) CV?(x=2), E-(V() CV(x—2).
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Proof. Letv € V(y). Then (H — y —2)E;v = EL(H — y)v = 0,1i.e. E4v €
VS$(x 4+ 2). Similarly if v e V(y) then (H — y —2)"E v = E+(H — x)"v = 0 for
large n,ie. Exv e V(y + 2).

The proof for E_ is similar. O

A nonzero vector v is called a highest weight vector if it is a weight vector with
some weight y and E4v = 0.

2.2 A Key Lemma

Lemma 1. Let V be a representation of sI(2) and v € V' a highest weight vector of
weight y. Consider the sequence of vectors vi = E*v, k =0, 1.... Then

1) Hvip = (x = 2k)vi, Exvierr = (k+ D (x — k)wk

2) The subspace L. C V spanned by vectors vy is an s\(2)-submodule and all
non-zero vectors vy are linearly independent.

3) Suppose that vi = 0 for large k. Then x =1 € Z>o, vk 7 0 for0 <k <1
and vi = 0 fork > [.

Proof. (1) is proved by induction in k.

(2) follows from 1) since v are eigenvectors of H with distinct eigenvalues.

(3) Let!/ be the firstindex such that v, = 0. Then0 = Eqyv;+1 = ((+1)(x—=0)w
and hence y = [. O

2.3 Construction of Representations A,

Let us now describe a family of irreducible finite dimensional representations of
s[(2). For every [ € Zx, we construct a representation A; of dimension / + 1. This
representation is generated by a highest weight vector v; of weight [.

First we describe this representations geometrically. Consider the natural action
of the group G = SL(2,K) on the plane K? with coordinates (x, y). It induces the
action of G on the space V of polynomial functions on K2.

The action of the group G on V induces a representation of its Lie algebra g =
s[(2). It can be described via explicit formulas using differential operators

Ey =x0y,H =x0, —yd,, E_ = y0,.

The representation V' is a direct sum of invariant subspaces A;,!/ € Zx>¢, where
A; is the space of homogeneous polynomials of degree /.
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In particular, the representations A; extend to representations of the group G =
SL(Q2,K).

Let us describe these representations explicitly. The space A; has a basis
consisting of monomials {a_;,a_;+2,...,a1—2,a;}, where a; = xU+)/2y0=D/2,
The action of the algebra s[(2) is as follows:

[ +1 [ —i

Ha; =ia;, E_a; = ai—, Eva; =

ai+2.

Exercise. (i) Show that the module Ay is irreducible.

(ii) Consider the s[(2)-module M generated by a vector m subject to the relations
H(m) = {m (i.e. m has weight £), E. (m) = 0 and ET'(m) = 0. Prove that
M is isomorphic to the module A, described above.

2.4 Classification of Irreducible Finite Dimensional Modules
of the Lie Algebra sl(2)

Proposition. (1) In any finite dimensional nonzero sl(2)-module V, there is a
submodule isomorphic to one of A;.

(2) The Casimir operator C acts on A; as the scalar [ (I + 2).

(3) The modules A; are irreducible, distinct, and exhaust all (isomorphism classes
of) finite dimensional irreducible s((2)-modules.

Proof. (1) Consider all eigenvalues of H in V and choose an eigenvalue y such
that y + 2 is not an eigenvalue. Let vy be a corresponding eigenvector. Then
Hvy = yvy, Exvo = 0. Since V is finite dimensional, Key Lemma implies
that y = £ € Zso, Ettly, = 0 and the space spanned by E” vy, where r =
0,1,...,¢, forms an s[(2)-submodule L. C V. The Exercise above implies that
L is isomorphic to Ag.

(2) Itis quite straightforward that Ca; = [(I + 2)a;. If a € A;, thena = Xa; for
a certain X € U(sl(2)). Hence, Ca = CXa; = XCa; = I(l 4+ 2)a.

(3) If A; contains a nontrivial submodule V', then it contains Ay, where k < [,
contradicting the fact that C = I(I +2) on A; and C = k(k + 2) on Ay.

Heading (1) implies that A;, where [ € Zso, exhaust all irreducible s[(2)-

modules. O

2.5 Complete Reducibility of s1(2)-Modules

Proposition. Any finite dimensional s\(2)-module V is isomorphic to a direct sum
of modules of type A;. In other words, finite dimensional representations of s[(2)
are completely reducible.
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Proof. We will use the following general lemma that we prove below.

Lemma. Let C be an abelian category. Suppose that any object V- € C of length
2 is completely reducible. Then any object V. € C of finite length is completely
reducible.

This implies that it is enough to prove the proposition for a module V' of length
two. Let S >~ Ay be an irreducible submodule of V' and Q = V/S ~ A; a quotient
module.

If k # [, then the Casimir operator has two distinct eigenvalues on V' and hence
V splits as a direct sum of generalized eigenvectors of C and this decomposition is
s[(2)-invariant. Thus, we can assume that k = /.

Consider now the decomposition of V' = @ V(i) with respect to generalized
eigenspaces of the operator H. Since V is glued from two copies of representation
Ay, it is clear that dim V(i) = 2 if i = —[,—] + 2, ...,/ and there are no other

summands. Also, it is clear that E. : V(I) — V(=I) is an isomorphism.

Let us show that the action of H on the space V'(I) is given by a scalar operator.
Indeed consider the identity E4 E'T! — E'FYE, = E' (H —1I). The left-hand side
is 0 on the space V(I) so the right-hand side is 0. Since the operator E~ does not
have kernel on V(/), we conclude that H = [ on V(I).

Now let us choose a vector v € V() that does not lie in the submodule S. Then it
is a highest weight vector and by the Key Lemma it generates a submodule Q" C V
isomorphic to A;. It is clear that this submodule isomorphically maps to the quotient
module Q = V/S,ie. V>S5S & Q. O

Proof of lemma. We proceed by induction on the length of the object V. Find a
simple submodule S C V and consider the quotient module Q@ = V/S. By the
induction assumption, we can write the quotient module Q = V/S§ as a direct
sum of simple objects Q = @W;. It is enough to show that the natural projection
p:V — Q hasasectionv : Q — V. We construct this section v separately
on every summand W;. Namely, consider the module V; = p~'(W;). This module
has length two and by assumption is completely reducible. Hence, the projection
pi . Vi > W;hasasectionv; : W; - V; C V.

Corollary. Let V be a finite dimensional s\(2)-module. Then

(1) H is diagonalizable and each of the operators E' and E fi_ gives an isomor-
phism between V(i) and V(—i).

(2) The action of sI(2) uniquely extends to the action p of the group SL(2,K) on
V' that satisfies the following condition: Let X equal E4 or E_, t € K and
g = exp(tX) € SL(2,K). Then the operator p(g) in V equals exp(t X ).

Remark. The same conclusion holds under the weaker assumption that the module
V is sl(2)-finite. This is left as an exercise to the reader.
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3 A Crash Course on Semi-Simple Lie Algebras

3.1 Killing Form

Any Lie algebra g admits a unique maximal solvable ideal called the radical
Rad(g). The Lie algebra g is called semisimple iff its radical is zero.

For finite dimensional Lie algebras over a field K of characteristic 0, there is an
equivalent definition, often more convenient. It is given in terms of the Killing form,
which is the symmetric bilinear form on g defined by

(X,Y)=tr(ad X -ad Y).

Theorem (Cartan-Killing). g is semisimple iff its Killing form is nondegenerate.

3.2 Cartan Subalgebra

There exists a maximal commutative subalgebra h C g such that the adjoint action
of h on g is semisimple.

Such subalgebra is called a Cartan subalgebra of g. In what follows we will fix a
Cartan subalgebra h. One can show that any two Cartan subalgebras are conjugate,
so we do not lose information fixing one of them. The number r = dimb is called
the rank of g.

3.3 Root System

Consider the adjoint action of the Cartan subalgebra h on g. We obtain a decompo-
sition g = @g,, where for y € h* we have

gy, =X eg:[H,X]=y(H)X}.

This is called the weight decomposition of g. Since Killing form is h-invariant, we
see that (g,,g,) = O unless y + v = 0. Since this form is nondegenerate, it gives
a nondegenerate pairing between g, and g_,. In particular, the restriction of the
Killing form to g, is nondegenerate.

Proposition. (/) go=b
(2) For y # 0, we have dimg(g,) < 1.

Let
R={yebh*—{0}:9, #{0}}
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Then R C b* is a finite subset of nonzero elements of the dual space h*.

Elements of R are called roots.

For every y € R, we fix a nonzero element E, € g. It is called a root vector.
We will see later thatif y € R, then —y € Rand Ay & R for A # =£1.

3.4 sl(2)-Triples

Proposition. We can choose root vectors E, for all roots y € R in such a way
that for every root y the triple of elements E, € g,, H, := [E,,E_,] € b and
E_, € g_, form an sl(2)-triple.

Essentially, this means that we can find an element H, € [g,, g—,] C b such that

y(H,) = 2.
The vector H, € | is called a coroot corresponding to the root y € h*.

Corollary. Let y,6 be roots. If § + vy ¢ R, then [E,, Es] = 0. If§ + y € R, then
[E,, Es] = CE, 5 where C # 0.

3.5 [Integral Structure: Weight Lattice and Root Lattice

From properties of s[(2)-representations, we see that all eigenvalues of the operator
H, are integers. In particular for any root § we have §(H, ) € Z.

Let Q denote the subgroup of b generated by all coroots H, (it is called a coroot
lattice).

For elements H € O, we have (H, H) = Y 8(H)? > 0, i.e. the Killing form is
positive on Q In fact, it is strictly positive since for any vector H in its kernel we
have §(H) = O forall § € R and hence H acts trivially in the adjoint representation.
The same reason shows that Q is a lattice in K-vector space 0.

Let us denote by P the lattice in h* dual to the lattice Q (it is usually called the
weight lattice; the elements of P are called integral weights). It contains a sublattice
Q generated by all roots (it is called root lattice).

Since the restriction of the Killing form to h is nondegenerate, it induces a
bilinear form (-, -) on h*.

One can describe the coroot H, € h, with y € R by the property

2(x,v)

for any y € h*.
(r.7)

X(Hy) =
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3.6 The Weyl Group of the Lie Algebra g

We will consider the R vector space a = R ® Q equipped with Euclidean structure
defined by positive definite Killing form on it. It is convenient to use convex
geometry of this space to state and prove many results about roots and weights.

For any root y € R, consider the linear transformation in the space h* defined
by the formula

o,(x) = x— x(H,)y.

The transformation o, is the reflection in the hyperplane defined by the equation
(x,y) = 0. In particular Uf = Id and det(o,) = —1. The corresponding reflection
on the space h is given by the formula o, (H) = H — y(H)H,.

The group of linear transformations of h* generated by operators o, , where y €
R, is called the Weyl group of g and will be denoted by W.

The group W is a group of orthogonal transformations of the space h*.
It naturally acts on the space h. The action of W preserves the Killing form, the
set of roots R, the set of coroots, lattices P, O, and Q Since the Killing form on
the lattice P is positive definite, the Weyl group W is finite.

If x1, x2 € b*, then we write y; ~ x> whenever y; and y, belong to the same
orbit of the Weyl group, i.e., when y; = wy, for acertainw € W.

We also consider the induced actions of W on the Euclidean space a and on its
dual. In this realization, the Weyl group is a finite group generated by reflections
and we can use many geometric facts about actions of such groups.

3.7 Weyl Chamber

For every root y € R consider the hyperplane IT, in the space a* orthogonal to ¥,
i.e. the set of weights that vanish on H,,. Consider in a* an open subset a*\ |, ¢ I,
obtained by removing all root hyperplanes and fix a connected component C of this
set. We denote by C the closure of C in a. The set C is called the Weyl chamber.
The choice of this set plays central role in the theory. We will see that all Weyl
chambers are conjugate under the action of W.
We have the following

Proposition. C is a fundamental domain for the W -action on a. More precisely:

(1) If x € a, thenwy € C for a certainw € W.
(2) If x,wy € C, then x = wy. If, moreover, y € C, thenw = e.
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3.8 Positive Roots and Simple Roots

In what follows we fix a Weyl chamber C. A root y is called positive if the coroot
H, is positive on C, i.e. if (y,y) > Oforall y € C.

We denote by R™ the subset of positive roots. It is clear that R is a disjoint
union of sets RT™ and R~ = —R™. Also R™ is closed under addition, i.e. if y, § are
positive roots and their sum is a root then this root is positive.

A positive root « is called a simple root if it cannot be written as a sum of two
positive roots. We denote by B C R™ the subset of simple roots .

Proposition. (/) B is a base of the root lattice Q. Every positive root y is a sum
of simple roots with nonnegative integer coefficients.

(2) Simple roots correspond to hyperplanes in a* that are walls of the Weyl
chamber C.

(3) The Weyl group W is generated by reflections o, corresponding to simple roots
(they are called simple reflections).

(4) Let a be a simple root. Then for any positive root y different from a the root
o4 (y) is positive. In particular, if B is a simple root different from «, then
(a,B) <0.

(5) Let p € b* be half of the sum of all positive roots. Then for any simple root o
we have p(Hy) = 1 and 0,(p) = p — «. In particular, p lies in the lattice P.

Let us denote by O * the subsemigroup of the root lattice Q' generated by positive
roots. In other words, QT is a free semigroup generated by the set B.

Using this semigroup, we introduce a partial order < on the space h* by y < ¢
ify = y+qwithge Q7.

Note that a weight y lies in P iff y(H,) € 7Z for every simple root «. A weight
x is called dominant if y(H,) € Zs, for every simple root . Equivalent condition:
o (X) < X

We denote the semigroup of dominant weights by PT. Note that the cone
generated by P in a* is usually much smaller than the cone generated by Q.

3.9 The Triangular Decomposition of a Lie Algebra g

From this description of the root system R, we derive the following decomposition :
g=n- D h Dy,

where n_ and ny are subspaces generated by E, for y € R™ and y € RT,
respectively. This is a decomposition of linear spaces (not of Lie algebras). We have

Lemma. (i) ny (resp. n_) is the Lie subalgebra of g generated by E, (resp. by
E_,), wherea € B.

(ii) [h’ 1‘1+] = ny and [h’ 1‘1_] =n_.
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(iii) The Lie algebras ny and n_ are nilpotent. Moreover, if X € nq or n—, then
adX is a nilpotent operator on g.
(iv) U(g) > Um-) @ U(h) ® Un4) =~ U(n-) ® Uny) ® U(h).

4 Category O and Verma Modules M,

The aim of these lectures is the description of finite dimensional g-modules. In the
sixties, it was noted that it is more natural to describe the finite dimensional modules
in the framework of a wider class of g-modules. First, let us give several preparatory
definitions.

4.1 Weight Spaces

Let V be a g-module. For any y € bh* denote by V*°(y) the space of vectors
v € V such that Hv = y(H)v for any H € b and call it the weight space of
weight y. If V*(y) # 0, then y is called a weight of the g-module V' and any
v € V3 (y) is called a weight vector. A module V is called h-diagonalizable if
V=23 VZ(D-

Similarly, we introduce a generalized weight space V() as the space of vectors
v € V such that for any H € h one has (H — y(H))" = 0 for large n. If V is
h-finite, it has decomposition V = ®V(y) (see appendix A). We denote by P (1)
the set of weights y € h* such that V() # 0 (the weight support of V).

Lemma. Let V be a g-module. For any y € R, y € b* we have E,V**(x) C
VE(x +v)and E, V() C V(Y +v)

The proof is the same as in s[(2) case.

4.2 The Category O

Let us now introduce a class of g-modules that we will consider. The objects of
category O are g-modules M satisfying the following conditions.

(1) M is a finitely generated U(g)-module.
(2) M is h-diagonalizable.
(3) M is ny-finite.

Clearly, if a g-module M belongs to O, then so does any submodule of M and any
quotient module of M, and if M}, M, € O, then M| & M, € O.

Lemma. Let g be a semisimple Lie algebra. Then any finite dimensional g-module
V lies in O.
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Proof. It suffices to verify that IV is hh-diagonalizable. Since the operators H,, where

Y € R, generate h and commute, it suffices to verify that V' is H,-diagonalizable.
Now V is a finite dimensional s, -module, with 5, C g generated by E,, H, and

E_,. Since s, is isomorphic to s[(2), the result follows from Corollary 2.5. O

4.3 Highest Weight

A nonzero weight vector m € M is called a highest weight vector if nym = 0.
Since n is generated by E, for @ € B, we have

Lemma. A weight vector m is a highest weight vector if and only if E,m = 0 for
everya € B.

Proposition. Let M € O be nonzero. Then M contains a nonzero highest weight
vector.

Proof. The proof is the same as in the case of s[(2). We choose an h-invariant finite
dimensional vector subspace V' C M that generates M. Replacing it by U(ny)V
we can assume that it is also n-invariant. Consider all weights y of h in V. Since
this is a finite set, there exists a weight y in V' such that for every positive root y the
weight y + y is not a weight in V. Any nonzero vector v € V() is a highest weight
vector. O

4.4 Verma Modules

We now introduce a family of central objects in the category O. These are the Verma
modules M.

Lemma. Let y € b*. There exists a pair (M,,m,) of a g-module and a highest
weight vector m, € M, (y — p) that satisfies the following universality condition.

For any g-module M and highest weight vector v.€ M of weight y — p, there
exists a unique morphism of g-modules i, : M, — M withi(m,) = v.

Remark. By abstract nonsense, if such a module exists it is unique up to a canonical
isomorphism.

Proof. Let y € bh*. In U(g), consider the left ideal /, generated by E,, where
y € RY, and by H + p(H) — x(H), where H € h. Define the g-module M,
setting M, = U(g)/1,. Let m, stand for the natural generator of M, (over g), i.e.,
the image of 1 € U(g) under the mapping U(g) —> M. The module M, and the
vector m,, clearly satisfy the universal property. O

Since Verma module is generated by a highest weight vector, the results of
Sect. 1.6 imply that it lies in category O.
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Lemma. Let y € h*. Then M, is a free U(n_) — module with one generator m,.

Proof. The statement follows from the decomposition U(g) = Un-) ® U(h) ®
Ung). O

Corollary. (1) The set of weights P(M,) of the module M, equalsto (x—p)—Q'™,
i.e. weights of M, are of the form y — p—q forq € Q.

(2) Let M be an arbitrary g-module, m € M a highest weight vector of weight
x—pandi, : M, — M be the corresponding unique morphism. Then i, is
an embedding if and only if Xm # 0 for any nonzero X € U(n_).

4.5 The Irreducible Objects L,

The next lemma provides a precise parametrization of isomorphism classes of
irreducible objects in the category O in terms of characters of b.

Lemma. (/) Let y € bH*. Then Verma module M, has a unique irreducible
quotient L, and Hom(M,, L,) ~ K.

(2) Any irreducible module L € O is isomorphic to a module L, for a unique
weight y € h*.

In other words, up to isomorphism L, is the unique irreducible g-module that
has highest weight vector of weight y — p. Modules L, for different y are not
isomorphic and every irreducible object L in category O is isomorphic to one of the
modules L,.

Proof. (1) Consider the weight decomposition M = M'°P & M’ where M P is the
one-dimensional space M (y —p) and M’ = §M(u) with sum over u = y — p.
Any g-submodule N C M, splits with respect to this decomposition, i.e N =
N (\M™ & N (M’. Since any non-zero vector of the space M'P generates
the module M, we see that any proper g-submodule of M, is contained in M’.
Thus, the sum of all proper submodules is contained in M’. This shows that
M, has a unique maximal proper submodule and hence it has unique simple
quotient.

(2) Lemma 4.3. implies that every simple module L in O has a highest weight
vector. Using 4.4 we construct a non-zero morphism M, — L and this implies
that L is isomorphic to the module L.

Note that the set of weights P(L, )+ p has y as the unique maximal element.
This shows how to reconstruct the weight y from the simple module L. O

Remark. An alternative argument that yields the uniqueness of an irreducible
module with highest weight y — p is as follows. Let M, M, be two irreducible
modules of highest weight y — p and m, m; be their highest weight vectors. Then
N =Um_)(m; & my) C M| & M, is a U(g)-submodule. Since both projections
N — M; and N — M, are non zero we see that M| ~ M.
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4.6 Characters

In the study of modules from the category O we will use the notion of the character
of a g-module M.

More generally, let M be a g-module such that it is h-finite and in the weight
decomposition all the weight spaces M(y) are finite-dimensional. In this case, we
define the character mys to be the function on h* defined by the equation

ey (x) = dim M(y).
On b*, define the Kostant function K by the equality

K(x) = the number of presentations of the weight y in the form

X =— Z n,y, where n, € Zxo.
yERT

For any function u on h* set supp u = {y € h* | u(x) # 0}. Denote by £ the space
of Z-valued functions u on h* such that supp u is contained in the union of a finite
number of sets of the form y — O, where ¥ € h*. For example, supp K = —Q ™,
hence, K € £.

Lemma. (i) 7y, (V) = K(Y — x + p).
(ii) If M € O, then myy is defined and wy € E.

Proof. (1) Letus enumerate the elements of Rt e. g.,Y1,.-.,Ys. Then the elements
ET),I ...Eﬁsysmx, where ny,...,ny € Zxo, form a basis in M,. Hence,
o, (Y) = K(Y — x + p).

(2) Choose a finite-dimensional h-invariant subspace V' C M that generates M.
Replacing V by U(ny)V we can assume that V' is also ny-invariant. This
implies that M = U(n-)V. Thus we can write M = > U(n_)(v;), where
v; 1s a basis of V' consisting of weight vectors.

As in heading (i) we have dim M(y) < > K(¥ — x; + p) implying lemma. O
1<i<k

Exercise. Prove the converse statement: Let M is a finitely generated U(g)-module

such that it is h-diagonalizable, its character mys is defined and lies in £. Then

M € O.

5 The Weyl Modules 4,,A € P+

In this section we construct for every A € PV a finite dimensional g-module A4,
of highest weight A. Later we will show that Ay = L,y , and that these modules
exhaust all irreducible finite dimensional g-modules.
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5.1 Injections Between Verma Modules

We begin with the following key Proposition:

Proposition. Let M be a g-module and m € M a highest weight vector of weight
x — p. Suppose that k = y(H,) € Zs. Then the vector m' = E*_m is either zero
or a highest weight vector of weight o, () — p.

Proof. Clearly, the weight of the vector m’ = E* m yisequalto y — p— ko =

Oy (X) - p.
By Lemma 4.3. it suffices to show that Egm’ = 0 for 8 € B.If f # «, then

Egm' = EgE* ,m, = E* [Egm, = 0,
because [Eg, E_,] = 0. Further,
E,m' = E,E* m, = E* E,m, +kE*,'(H, — (k — 1))m, =0,
since Hym, = (x — p)(Hy)m, = (k — 1)m,. O

Remark. This last point is just a repetition of s[(2) computation in 2.2.

Corollary. Suppose y € b* and o« € B are such that o,(y) < y.
Then there is a canonical embedding M,y —> M, that maps my,,) to
E* m,, where k = y(H,)

5.2 gy is ou-Invariant

Lemma. Let ¢ € B be a simple root and let s, C ¢ be the corresponding
s1(2)-subalgebra. Let M € O be a s,-finite module. Then the character myy is
Oy Invariant.

Proof. Consider the decomposition M = @M (k) with respect to the action of
H, € g,. By sl(2) theory, we have EX  : M(k) — M(—k) is an isomorphism for
any k > 0. Decomposing M(k) = ®&M{(y), where y € b* with y(H,) = k it is
clear that EX  induces an isomorphism between M () and M (0, (x)). O

5.3 Construction of the Weyl Modules

Forany A € PT = P NC wehave o, (A + p) Z A+ p and hence by Corollary 5.1.
we have the containment My, (540 & Mi1,



116 J. Bernstein

We now set

Ay = Mo/ ) Mo,otp)-

a€EB

Theorem. (1) w4, (1) = 1.

(2) P(A)) CA— Q1" C Pandma, (wv) = 74, (v) foranyw € W andv € P.

(3) If v is a weight of A, then either v ~ A or |v| < |A|, where |v| is the length of
the weight v.

(4) dim A, < oc.

Proof. (1) The modules M, +,) do not contain vectors of weight A; hence,
these modules are contained in Zweb*\{ 2 Mot (¥). Therefore, dim 4, (1) =
dim M)H-,D(A') =1.

(2) Since W is generated by o,, where « € B, it is enough to verify heading (2) for
these elements. Fix o« € B. Since A, is generated by s,-finite vector, Lemma
1.6.1. implies that A, is s,-finite. The result now follows from Sect. 5.2.

(3) Itis clear that

supp 74, C Supp 7ag,, = A — ot.

Let 74, (v) # 0. By replacing v with a W-equivalent element we can assume
that v € C. Hence, A = v + ¢, where ¢ € Q. Further on

AP = I + gl +2(v.q) = v + gl

Hence, either |A| > |v|org = 0 and then A = v.
(4) supp 74, is contained in the intersection of the lattice P with the ball |v| < |A],
and, therefore, is finite. Hence, dim A < oo. ad

We can now deduce a few results concerning the modules L, that are finite
dimensional.

Corollary. Anirreducible module L, is finite dimensional if and only if y—p€ P T

What is missing is the irreducibility of the modules A, as this identifies them
with L, 4 ,. This will be proven in Sect. 8.

6 Statement of Harish—-Chandra’s Theorem on 3(g)

The center of the associative algebra U(g) plays an important role in the study of
representations of g. It is common to denote this commutative algebra by 3(g).
In this section I formulate the Harish—Chandra theorem that describes the algebra
3(g). The description of the Harish—-Chandra homomorphism is very simple when
we consider the action of 3(g) on Verma modules. Indeed, it is easy to see that any
element z € 3(g) acts by a scalar on each of the modules M,. Thus we obtain,
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for each z € 3(g) a complex valued function on h*. We show below that this is
a polynomial function on h* that is invariant with respect to the Weyl group. The
complete proof of Harish—Chandra’s theorem is carried out in Sect. 9.

6.1 The Harish—Chandra Projection

In what follows we will identify the algebra U(h) = S(h) with the algebra Pol(h*)
of polynomial functions on the space h*.

For any element X € U(g) we will construct a function j(X) on the space h* as
follows. Given a weight y € h* consider the Verma module M, , its highest weight
vector m = m, of weight y —p and a functional /' = f, on M, such that f(m) = 1
and f vanishes on the complementary subspace M" = @y, , M, ().

It is clear that such functional f exists and is uniquely defined. Now we define

J(XOG0) = fr(Xmy).
Lemma. Forany X € U(g) the function j(X) is a polynomial function in y.

Proof. Using triangular decomposition we can write X = Xo + X4+ + X_, where
Xo € U(h), X+ € U(g)ny and X_ € n_U(g). This implies that j(X)(y) =
Jj(Xo)(x) = Xo(x — p) and this is a polynomial function in y. O

This proof shows that up to a p shift the function j(X) coincides with the
“central” part X, of the element X € U(g); this part is often called the Harish—
Chandra projection.

6.2 The Harish—-Chandra’s Homomorphism

Lemma. (I) Forany z € 3(g) the operator z on the Verma module M, is a scalar
operator j(z)(x) - Idy,.

(2) j : 3(g) = Pol(h*) is a morphism of algebras (it is called Harish—Chandra
homomorphism).

(3) For any z € 3(g) the function j(z) € Pol(h*) is W -invariant.

Proof. (1) Since z commutes with action of h we see that zm, € M,(y — p) and
hence zm, = c¢m. Since vector m, generates M, we see that z = ¢ - Id. It is
clear that ¢ = j(z)(y).

(2) immediately follows from 1.

(3) We would like to show that for any w € W we have j(z)(wy) = j(z)(x). It
suffices to consider the case when w = o, for ¢ € B.
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Since j(z)(x) and j(z)(0,(x)) are polynomial functions in y, it suffices to prove
the equality for y € PT. But in this case My, ;) C M,, and that implies that the
action of z on the Verma modules M, and M, (,) is given by the same scalar. ad

6.3 The Harish—Chandra Theorem

By the previous lemmas, the correspondence z — j, defines a ring homomorphism
j :3(g) — Pol(h*)". We can now state the following important result of Harish—
Chandra.

Theorem. The Harish—Chandra morphism j : 3(g)—> Pol(6*)V is an isomor-
phism of algebras.

Remark. In [Di], the map j is described as a composition of the so-called Harish—
Chandra projection with a shift. It is easy to trace both in our construction.

Remark. Our construction of the Harish—-Chandra map appears to depend on a
choice of ordering on the root system.

A different choice of ordering yields the same map, although this statement
requires a proof.

7 Corollaries of the Harish—Chandra Theorem

7.1 Description of Infinitesimal Characters

Denote by ® = Spec(3(g)) the set of all homomorphisms 6 : 3(g) — K -
such morphisms are usually called infinitesimal characters. The Harish—Chandra
morphism j : 3(g) — Pol(h*) defines a map of sets o : h* —> ©. We usually
denote the image o () by 6,.

One of the important corollaries of the Harish—Chandra theorem is the following.

Proposition. The map o gives a bijection o : h*/ W ~ ©.

We have seen that 6 (wy) = o () so o defines a map of sets o : h* /W — ©.
First let us show that this map is an imbedding.

Lemma. 0, =0, onlyif y1 ~ y2.

Proof. Let y1 +# x». Let us construct a polynomial T € Pol(h*)" such that
T(x1) = 0, while T(y2) # 0. For this, take a polynomial 7’ € Pol(h*) such that
T'(wy1) =0and T"(wyz) = 1 foranyw € Wandset T(y) =) e T'(wy).
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As follows from the Harish—Chandra theorem, there is an element z € 3(g) such
that j, = T'. But then

J:00) = 04, # 05,2 = j2(x2) O

The proof of the surjectivity of the map ¢ : h*/W — O requires some
knowledge of commutative algebra. In fact we will not need this statement so we
leave it as an exercise for the reader.

*)W

Exercise. Show that any homomorphism of algebras 6 : Pol(h —> Kis of the

form 6, for a certain y € h*.

Hint. First show that Pol(h*) is finitely generated Pol(h*)" -module. Then using
Nakayama lemma prove the following general fact from commutative algebra:

Let A be a commutative K-algebra and B C A is a K-subalgebra such that 4 is
finitely generated as B-module. Then any morphism of algebras 6 : B — K can be
extended to a morphism of algebras A — K (see e.g. lemma 1.4.2 in [Ke]).

7.2  Decomposition of the Category O

Lemma. Let M € O. Then there exist an ideal J C 3(g) of finite codimension
such that JM = 0.

Proof. We can find finite family of weights xi, ..., x» such that V' = &M (yx;)
generates M. The space V' is 3(g)-invariant. The ideal J = ker(3(g) — End(V))
has the desired property. O

Corollary. Any M € O is 3(g)-finite and hence has a direct sum decomposition
M = ®gM(0). Moreover, the set of characters 8 € © such that M(0) # 0 is finite.

This follows from the Lemma and Proposition A.2 of the Appendix.

Remark. In our case, the submodule M (6) C M can be described explicitly as
M(0) = Ker(1y)

for sufficiently large n, where Iy = Ker(6 : 3(g) — K).

Exercise. Show that the category O admits the following decomposition O =
@Oy, where the sum runs over 6 € ® = Spec(3(g)).
Deduce that if N is a subquotient of M then ®(N) C &®(M).
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7.3 Finite Length

Proposition. Any module M € O has a finite length.

Proof. We will prove a more precise statement. Fix S C ® and consider the full
subcategory Og of O consisting of all objects M such that ®(M) C S. Consider
the set 2 := E(S) C bh* consisting of weights y € h* such that 6, , € S. Consider
the exact functor Resz : O — Vect, defined by

Resg(M) = ©yes M ().

Lemma. Resz is faithful on the subcategory Og

The lemma follows from the fact that for any irreducible object L in Og we have
Resz (L) # {0}.

The lemma implies that for any M € Og we have that the length of M is bounded
by dimResgz (M). O

Exercise. Show that if L, is a subquotient of M, then ' ~ y. Furthermore, if
L lies in the kernel of M, — L,, then y’ < y

7.4 The Grothedieck Group of the Category O

We will use the standard construction that assigns to every (small) abelain category
C an abelian group K(C) that is called Grothendieck group of C.

Namely, denote by A the free abelian group generated by symbols [ M ], where
M runs through the isomorphism classes of objects of C. Let B be the subgroup of
A generated by expressions [M] + [M,] — [M] for all exact sequences

0 M, M M, 0.

By definition, the Grothendieck group K(C) of the category C is the quotient
A/B.

Exercise. Suppose we know that every object of an abelian category C is of finite
length. Show that

(i) The map Z[IrrC] — K(C) is an epimorphism. In other words, the classes of
simple objects of C generate K(C).

(ii) Prove that the map above is an isomorphism. In particular, K(C) is a free abelian
group. Hint: Jordan-Hoelder.

In what follows we will use the fact that the collection {[L ]} e+ forms a basis
for K(O).

Proposition. The collection {{M |} ey~ forms a basis of K(O).
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Proof. We can write K(O) = & K(Oy). We will show that for a given infinitesimal
character 6 the collection {[M,] : x €b* is such that §, = 0} forms a basis for
K(Oy). We note that the collection {[L,] : y € h* issuchthat §, = 0} forms a
basis K(Oy). Recall that for any i € h*

Myl =[Lyl+ > nylL,l,
P2V, o~

where n, € Z. Inverting this unipotent matrix yields the result. O

7.5 Realization of the Grothendieck group K(QO)

It will be convenient to have a realization of the group K(QO) by embedding it into
the group &, the group of Z-valued functions on h* (see Sect.4.6). Namely, we
introduce the convolution product on £ by setting

(uxv)(y) = Z u()v(y — @) for u,veé.

pCh*

Note that only a finite number of the summands are non-zero. Since u * v € &, the
convolution endows £ with a commutative algebra structure.
For any x € h* define §, € &£ by setting 6,(¢) = 0 for ¢ # yand §,(x) = 1.
Clearly, 8y is the unit of £.

Set
L= ] G—5y2=8 [] G-
yeRT yERT

Here IT is the convolution product in £.
We can now define a homomorphism 7 : K(O) — £ by the formula

T([M]) = L * 7,

where M € O,

Theorem. (/) ©(M,) =4,.
(2) The mapping Tt : K(O) —> & gives an isomorphism of K(O) with the subgroup
E. C & consisting of functions with compact support.

Proof. The second point is an immidiate consequence of the first in lieu of the fact
that the family {[M,]} generates K(O). The proof of the first point is based on
Lemma 4.6 and the following Lemma.

Lemma. Let K be the Kostant function, see Sect. 4.6. Then

K% §_,% L = §.
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Proof. Forany y € R seta, = 8o+ é6_, + ... + 6_ny + ... The definition of K

implies that
K = 1_[ ay.
yERT
Further, (6o —6—,)a, = §y. Since L can be represented as T1 (8o — 06—, )d,, we are

yeRT
done. O

Remark. The theorem implies that finding the exact transition matrix between the
basis {{M ]} and the basis {[L,]} is equivalent to the determination of (L ). This
is the subject of the Kazhdan—Lusztig conjecture.

8 Description of Finite Dimensional Representations

8.1 Complete Reducibility of Finite Dimensional Modules

In this section, we will describe all finite dimensional representations of a semisim-
ple Lie algebra g. As was shown in Sect.4.2, all such representations belong
to O. Recall that in Sect.5 we constructed a collection of finite dimensional g-
modules A, parameterized by weights A € P+. We will now show that any finite
dimensional module is isomorphic to a direct sum of such modules, and that these
are irreducible. This yields complete reducibility.

Theorem. (1) Let M be a finite dimensional g-module. Then M is isomorphic to
a direct sum of modules of the form Aj for A € P ™.
(2) All the modules Ay, where .. € P, are irreducible.

Proof. (1) We may assume that M = M(6), where 8 € ©. Let m be any highest
weight vector of M and A its weight. Then § = 0,4,. Besides, for any simple
root & we have EX_m = 0 for large k, and hence by Lemma 2.2 A(H,) € Zxo.
Therefore, L € P ™.

Since A € P7T the element A + p lies inside the interior of the Weyl
chamber and thus is uniquely recovered from the infinitesimal character of the

module A4;.
Let my,...,m; be a basis of M(A). Let us construct the morphism p :
® M(A+ p) — M so that each generator (my,); fori = 1,2,...,] goes
1<i<l

to m;. As follows from Lemma 2.2, for any simple root & we have E f‘)&m ;i =0,
where k, = (A + p)(Hy)

Hence p may be considered as the morphism p : @1<i<;(41)i — M.

Let L; and L, be the kernel and cokernel of the morphism p. Then &(L;) =
{6} and L;(A) = 0, where i = 1,2. As was shown above, L = L, = 0, i.e.,
M= & (Ax)i .

1<i<l
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(2) Let M be a nontrivial submodule of A;. Then @(M) = 0,4, hence, M(A) #
0, i.e., M contains a vector of weight A. But then M = A;. Thus, the module
A, is irreducible and the proof of the Theorem is complete. O

Corollary. A, = L;,, where A € P,

Remark. The module A, is an irreducible module of highest weight A. The strange
shift in its numbering as an irreducible module corresponds to the Harish—Chandra
shift.

8.2 Characters of Highest Weight Modules A

Consider the natural action of the group W on the space of functions on h*
defined by
(wu)(y) = u(wly) forw e W, y € h*.

Lemma. wlL =detw- L foranyw € W.

Proof. 1t suffices to verify that 0, = —L for « € B. Since o, permutes the
elements of the set R* \ {o} and transforms « into —c, then

ol = (bup=8u) ] y—b-y0) = —L. O
yERT\{a}

The next theorem provides a formula for the formal character of the finite
dimensional irreducible module L. This will give us Kostant multiplicity formulas,
Weyl character formula and Weyl dimension formula.

Theorem. Suppose L) is finite dimensional. Then

Lxmp, = Z detw - 8.
weWw

Proof. We have
[Ly] = ZaM[MM]

U~
witha, = 1.
Applying 7 to this equation, we obtain

T([L2]) = ) aud,.

p~A

Since 77, is W-invariant and L is W-skew invariant, we see that t([L;]) =
L x 7y, is W-skew-invariant as well.
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Thus,

Lxmp, = Z detw - 6, (*)
weWw

Theorem 8.2 is proved. O

Corollary. (1) forany A € P we have [A;] = Y  detw - [Myyo+p)]
wew
(2) the Kostant formula for the multiplicity of the weight w4, () = > detw -

wew
KW + p—w(A + p)) for any ¥ € b*,

Proof. Since 7 is an isomorphism, to verify the first item, we may apply t to both
sides. The second item is a reformulation of the first in view of the Lemma 4.6. O

8.3 Weyl Character Formula

Denote by F(h) the ring of formal power series in f, i.e. the completion of the
algebra of polynomial functions Pol(h) at the point zero. For any y € b* set eX =

izo 4
Clearly, eX € F(h) and eX™V = eXe¥ for y,v € h*. Let M be a finite
dimensional g-module. Define the character chy; € F(h) of M by the formula

chy = Z mu (y)er.

XEP

Theorem. Set

L = Z(detw)eWp.

weW
Then for A), where A € P, we have
L'chy, = Z(detw)ew(kﬂ’).
weW
Proof. The mapping j:& — F(b) defined by the formula j(u) = ) cp+

u(y)e* is a ring homomorphism. Inserting A = p in formula (*) of 8.2, we obtain

Zdetw-8wP=L*ﬂA0 =Lxdy=L.
wew

Hence, j(L) = L'. The result now follows by applying ;j to formula (*) of 8.2 with
Ay = L)H_p. O
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Remark. (1) When K = C, all the power series involved in Theorem 8.3 converge
and define analytic functions on . Theorem 8.3 claims the equality of two such
functions.

(2) Let G be a complex semisimple Lie group with Lie algebra g and H C §G
the Cartan subgroup corresponding to the Lie subalgebra h. Consider the finite
dimensional representation 7" of G corresponding to the g-module Ay. Let 1 €
‘H. Then h = exp(H ), where H € h. Itis easy to derive from Theorem 8.3 that

3 detw- ewd+p)) (H)

_ weWw
TI' T(h) - Z detW . e(W'D) (H)
weWw

This is the well-known H. Weyl’s formula for characters of irreducible repre-
sentations of complex semisimple Lie groups.

8.4 Weyl’s Dimension Formula
Theorem. LetA € PT. Then

dim4; = [] M

)/GR+ (IO’V)

Proof. Set

F, = Z detw - e"* for any y € h*.
wew

Clearly, F, = L' = [, cp+ (e"/?2 —e¥/?). For any y € h* and H € ), we may
consider F, (tH) as a formal power series in one variable ?.

Let p’ and A’ be elements of h corresponding to p and A, respectively, after the
identification of fh with h* by means of the Killing form. Then

Fitp(tp)

dim A; = chA4, (O) = F (Z,O’)
I

|i=o.

Observe that

Foip(tp)) = Z detw - el t+en™le) — F,(t(M + p)).
weWw
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Hence by the product formula we have

Fo(t(X 4 p)
Fp(tp/)

dimA4, =

et/2()/(?&/+/3/)) _ e—t/2(y()&/+/9/))
|t=0 = |t—0

26N — o—1/2G())

The quantity on the right hand side is evaluated easily to be

(v, A+ p)
rl (v, p)

yeRT

8.5 Summary of Results

We collect here the results we have proven for finite dimensional representations
of g.

1. For any weight A € PT we have constructed a finite dimensional irreducible
g-module A,. All such modules are nonisomorphic. Any finite dimensional
irreducible g-module is isomorphic to one of A3, where A € PT.

2. Complete reducibility

Any finite dimensional g-module M is isomorphic to a direct sum of 4;.

3. The module A4, is h-diagonalizable and has the unique (up to a factor) highest
weight vector a,. The weight of a, is equal to A. The module A, is called a
highest weight module of highest weight A.

4. Harish—Chandra theorem on ideal.

The module A} is generated by the vector a, as U(n_)-module (in particular,
all the weights of A, are less than or equal to A). The ideal of relations I =
{X € U(n_) | Xa; = 0} is generated by the elements E™2+! where & € B
and m, = A(H,).

5. The function w4, is W-invariant.

If ¥ is a weight of A, , then either A ~ ¢ or | ¥ |<| A |.

7. A, has infinitesimal character 04,. Explicitly, for any a € A4, and z € 3(g)
we have za = 054 ,(2)a.

If A1, A, € PT and A; # A,, then homomorphisms 05, +p and 0y, , are
distinct.

8. Weyl character formula

=

L -chy, = Z(detw)ew(ﬁp), where L = Z(detw)ew(p)
wew wew
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9. Kostant multiplicity formula.

a () = ) (detw)K(u + p—w(k + p)).
wew

10. Weyl dimension formula

dim 4, = 1_[ M

)/ER+ (V’IO)

11. For any finite dimensional g-module V', the module V is h-diagonalizable and
its character 7ty is W -invariant.

9 Proof of the Harish—-Chandra Theorem

The proof we describe here will be obtained by first reducing Harish—Chandra’s
theorem to Chevalley’s restriction theorem. The proof of Chevalley’s theorem is
obtained using characters of finite dimensional representations A4, of g.

The proof we present uses implicitly a group action without defining the group
that acts. The existence of the action should not be surprising in view of Corollary
2.5 that finite representations of the Lie algebra s[(2) admits an action of the group
SL(2). A similar idea applies in general. Instead of providing a formal statement let
us briefly explain how to obtain such a group.

Let G be the adjoint group of automorphisms of g. This is the group generated
by groups SL(2), corresponding to all the roots y. This group acts on g, on U(g),
S'(g) and preserves natural structures on all these spaces. On each of these spaces V
the actions of g and G are related as follows.

(*)Let X € g, and g = exp ad(X) € G. Then for any vector v € V we have

1
gv=exp(X)v:= Z Fka.
— k!

This expression makes sense since X*v = 0 for large k.
In particular the invariants with respect to G and g in each of these spaces are the
same.

9.1 Reduction to Chevalley’s Theorem

We constructed a morphism j : 3(g) — Pol(h*)"" = U(h)" and would like to
show that it is an isomorphism. By construction, j is the restriction to 3(g) of a
linear map j : U(g) — U(h) defined by Harish—Chandra projection (see 6.1).
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Morphism j is compatible with natural filtrations on 3(g) and U(h)" obtained
by restrictions of standard filtrations on U(g) and U(h). So in order to show that
j 1is an isomorphism it is enough to check that the associated graded morphism
o = grj : gr3(g) — grU(H)” is an isomorphism. Let us identify these two
spaces.

First of all notice that 3(g) = U(g)® where we consider the adjoint action of g on
U(g),ad(X)(u) = [X, u]. Let us also consider the adjoint action of g on the algebra
S(g) such that ad(X) is the derivation of the algebra S(g) satisfying ad(X)(Y) =
[X,Y] for Y € g C S(g). Using the morphism symm discussed in Corollary 1.5.
We see that the space gr 3(g) coincides with the space S(g)? (this follows from the
fact that symm is a morphism of g-modules). Similarly, gr((U(h)")) coincides with
the space S(h)".

Consider the morphism S : S(g) = S(h—-) ® S(h) ® S(n—) — S(h) obtained
by mapping n— and n4+ to 0. Analyzing the explicit description of the morphism
a described above it is easy to see that it coincides with the restriction of § to g-
invariant elements.

Using Killing form we will identify g with g* and h with h*. In this way we
interpret S(g) as the algebra Pol(g) of polynomial functions on g and S(h) as the
algebra Pol(h) of polynomial functions on h. Morphism f after this identification
is just the restriction of polynomial functions on g to b.

This shows that Harish—Chandra theorem follow from the following result

Theorem (The Chevalley’s restriction theorem). Let Pol(g) and Pol(h) be alge-
bras of polynomial functions on g and b, respectively, and n : Pol(g) — Pol(h)
the restriction homomorphism. Then Pol(g)® —> Pol(h)" is an isomorphism.

9.2 Proof of Injectivity in Chevalley’s Theorem

Let us choose an ordering yi, ..., Y, of roots of the algebra g and consider the
algebraic variety ¥ = []g,, X b; in fact this is just an affine space isomorphic
to g. Let us define a morphism of algebraic varietiesa : ¥ — g by

a(X1,.... Xy, H) = expad(Xy)expad(X,)...expad(X,)(H).

Clearly, any function f € Pol(g)? in the kernel of the morphism 1 will also lie in
the kernel of morphism of algebras a* : Pol(g) — Pol(Y) corresponding to the
morphism a.

However, if we choose a regular element H € h (i.e., an element such that
y(H) # 0 for every root y) and consider the point y = (0,...,0, H) € Y, then
easy computation shows that the differential da at this point is an isomorphism of
linear spaces. This implies that the kernel of the homomorphism a* is 0.
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9.3 Proof of Surjectivity in Chevalley’s Theorem

Fix a non-negative integer k. To every finite dimensional representation (p, V') of
the Lie algebra g, we assign a polynomial function Py on the Lie algebra g as
follows Py y(X) = tr(p(X)¥). Clearly, this is a g-invariant polynomial function
on g. The surjectivity of the morphism 7 follows from

Proposition. The collection of functions Py.y on b spans Pol(h)" .

Proof. Let us denote by F(h) the completion of the algebra Pol(h) at maximal
ideal m corresponding to the point 0 € h. In other words, if (y;) is a coordinate
system on the linear space b, then F(h) = K][y, ..., y,]]. Since polynomials Py y
are homogeneous in order to prove the proposition, it is enough to prove that the
K-linear span of the collection of polynomials Py i is dense in the algebra F(h)" .

To see this we will consider a different model for the algebra F(h). Namely
consider the category R(h) of finite dimensional h-modules. We say that an object
V of R(bh) is integrable if the action of h is completely reducible and all coroots H,
have integral spectrum. We denote by R the full subcategory of R(h) of integrable
objects. The Grothendieck group K(R) of this category is naturally isomorphic to
the group algebra Z( P) of the lattice P. Namely, a weight A € P corresponds to a
one-dimensional representation 7, of the Lie algebra h of weight A.

Consider a homomorphism of algebras o : K(R) — F(h) defined by

o0 VW) = try(exp(p() = 3 17 (p(x)")
Bye

In particular, o (7)) = exp(A).

It is easy to see that the K-span of the image of morphism ¢ is dense in F'(h) (in
fact F(h) can be realized as the completion of the algebra K(P) := Z(P) ®z K at
the maximal ideal corresponding to the homomorphism K(P) = K(R) ® K — K
given by V - dim(V).

Now consider the category R(g) of finite dimensional g-modules and the
restriction functor r : R(g) — R(h). Based on the s[(2) theory we may view r as a
functor r : R(g) — R. Denote by 7 the corresponding morphism of Grothendieck
groups 7 : K(R(g)) = K(R).

For every V € R(g) the element 77(1') considered as a function on P is just the
character 7y of V, which was defined in Sect. 4.6.

Now, the image o ((V')) € F(h) equals ), Py y/k!. Thus, in order to show that
polynomials Py - span a dense subset of F(h)", it is enough to prove the following.

Lemma. The image of morphism w : K(R(g)) — K(R) equals to the subgroup
K(R)Y c K(R) of W -invariant elements.
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The lemma easily follows from Theorem 5.3. Namely, if an element u € K(R) =~
Z,(P) is W -invariant, then induction on the maximal length of weights in the support
of u implies that u can be written as a Z -linear combination of w(A,), where
AePT. O

A. Appendix: Eigenspaces Decomposition

In this section, we present the standard Eigen-space decomposition of linear algebra
with few variations that are needed in the text.

A.1 Standard Eigenspace Decomposition

Let K be an algebraically closed field. Let 7" be an operator on a finite dimensional
K-vector space V.

We denote by Spec(T, V) the set of A € K such that the operator 7 — A1 is
not invertible. Since V is finite dimensional, the operator 7" satisfies some equation
P(T) = 0 for some monic polynomial P that could be written as [ [(T — A;1) = 0.
This shows that if V' # {0} then the set Spec(T, V') is not empty.

For any A € K, we denote by V(A) the space of vectors v € V' annihilated by
some power of the operator T—A 1. Vectors of the these spaces are called generalized
eigenvectors. It is clear that V(1) # 0 iff A € Spec(T, V).

Denote by VV**(A) = Ker(T — A1) C V(A). Vectors of these spaces are called
eigenvectors. We say that T is semisimple if V' is spanned by eigenvectors of 7.

Note that if S is an operator commuting with 7" then S preserves all the spaces
V5 (A), V().

Proposition. V = @V (L) where the sum is taken over all A € K.

Proof. (a) We first prove linear independence. Otherwise, take the shortest depen-
dence of the form v; + ... + v¢ = 0, where each v; is a generalized eigenvector
with eigenvalues A;, and all eigenvalues are distinct. Clearly, & > 2. Applying
T — A11 several times to the above identity, we get a shorter dependency.

(b) For every A € K consider the quotient space 9, = V/V(A). We claim that
Spec(T, Q) does not contain A. Indeed, let V(1) C V be the preimage of the
space O, (A). Then some power of the operator 7 — A1 maps V/(4) to V(A)
and hence some larger power maps it to 0. This implies that VV'(1) = V(A1) and
hence Q,(A) = 0.

Consider now the space Q = V/ >, V(A). Since this space is a quotient of all

the spaces Q}, the set Spec(T, Q) C Ny Spec(T, Q,) is empty and hence Q = 0. O

Corollary. If T is semisimple then V.= @V*5(A).
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A.2 Eigenspace Decomposition for Commuting Families

Let now A be a commutative K-algebra acting on a K-vector space V. For each
character y : A — K we denote by m, = ker(y) the corresponding maximal
ideal of A. We denote by V() the subspace of vectors in V' that are annihilated by
some power of m. They are called generalized eigenvectors corresponding to the
character y. We denote by V**(y) the space of vectors annihilated by m. They are
called eigenvectors.

We say that the action is locally finite if V is a union of finite dimensional A-
submodules.

Proposition. Let A be a commutative algebra and V be a locally finite A-module.
We have:

(1) V = @®V(x) where the sum is taken over all characters y of A.
(2) If each a € A acts semisimply on V, then V.= ®V*5(y).

Proof. We first consider the case dim(}') < oo.

For (1) note that the linear independence of the spaces V() follows from the
previous proposition. To show that V' is a direct sum we argue by induction on
dimension of V. If each a € A has only one eigenvalue «(a), then « is a character
and we are done. Otherwise, we can split 1/, using the previous proposition, as a sum
of generalized eigenspaces for some a € A. Since each of these spaces is invariant
with respect to the algebra A, we can apply induction. The same proof gives the
decomposition in the semi-simple case.

Now the locally finite case is an obvious formal consequence of the finite
dimensional case. O

Corollary. Let A be a finite dimensional commutative algebra over K with

unit. Then
(1) In A, there is a finite number of maximal ideals m;, wherei = 1,... k.
(2) There are elements e; € A, wherei = 1,...,k, such that

eie; =0fori # j and e} = e;;
ert+e+...+e =1;
é; EmijVi 75],

e;m; =0 forn > dimA.

Proof. Let A act on itself by multiplication. By the previous proposition, we have a
projection P, : A — A(y) for each character y of A. Write the identity operator as
asum 1 =) P; whereall P, = P, are non zero.

If P is one of these projectors, then it is given by multiplication by an element
e = P(1) € A(Indeed, P(b) = P((b-1)) =b-P(1) =b-e).

These elements ¢; = P;(1) and the maximal ideals m; = ker(y;) satisfy the
statement of the corollary. O
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