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Part 1. Vector Bundles and Bott Periodicity
Lecture 1.

Families of Vector Spaces and Vector Bundles: 8/27/15

“Is that clear enough? I didn’t hear a ding this time.”
Let’s suppose X is a topological space. Usually, when we do cohomology theory, we send in probes, n-simplices,
into the space, and then build a chain complex with a boundary map. This chain complex can be built in
many ways; for general spaces we use continuous maps, but if X has the structure of a CW complex we can
use a smaller complex. If we have a singular simplicial complex, a triangulation, we get other models, but
they really compute the same thing.

Given a chain complex C•, we get a cochain complex by computing Hom(–,Z), giving us a cochain complex
C0 d→ C1 d→ · · ·, giving us the cohomology groups Hi = Hi(X,Z).

If M is a smooth manifold, we have a cochain complex Ω0
M

d→ Ω1
M

d→ · · ·, and therefore get the de Rham
cohomology H•dR(M). de Rham’s theorem states this is isomorphic to H•(M ;R), obtained by tensoring with
R.

In K-theory, we extract topological information in a very different way, using linear algebra. This in some
sense gives us more powerful invariants. Consider Cn = {(ξ1, . . . , ξn) : ξi ∈ C}. This has the canonical basis
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), and so on. This is a rigid structure, in that the automorphism group of this space
with this basis is rigid (no maps save the identity preserve the linear structure and the basis).

In general, we can consider an abstract complex vector space (E,+, ·, 0), and assume it’s finite-dimensional.
Then, AutE is an interesting group: every basis gives us an automorphism b : Cn

∼=→ E, and therefore gives
us an isomorphism b : GLn C

∼=→ AutE.
We can also consider automorphisms that have some more structure; for example, E may have a Hermitian

inner product 〈–, –〉 : E× E→ C. Then, Aut(E, 〈–, –〉) = U(E), which by a basis is isomorphic to Un, the set
of n × n matrices A such that A∗A = id (where A∗ is the conjugate transpose). Un is a Lie group, and a
subgroup of GLnC.

For example, when n = 1, U1 ↪→ GL1 C. U1 is the set of λ ∈ C such that λλ = 1, so U1 is just the unit
circle. Then, GL1 C is the set of invertible complex numbers, i.e. C \ 0. In fact, this means the inclusion
U1 ↪→ GL1 C is a homotopy equivalence, and we can take the quotient to get U1 ↪→ GL1 C� R>0.

In some sense, the quotient determines the inner product structure on C, since in this case an inner product
only depends on scale. But the same behavior happens in the general case: Un ↪→ GLn C� GLn C/Un, and
the quotient classifies Hermitian inner products on Cn.

Exercise 1.1. Identify the homogeneous space GLn /Un, and show that it’s contractible. (Hint: show that
it’s convex.)

Now, we return to the manifold. Embedding things into the manifold is covariant: composing with
f : X → Y of manifolds with something embedded into X produces something embedded into Y . K-theory
will be contravariant, like cohomology: functions and differential forms on a manifold pull back contravariantly.
What we’ll look at is families of vector spaces parameterized by a manifold X.

Definition 1.2. A family of vector spaces π : E → X parameterized by X is a surjective, continuous map
together with a continuously varying vector space structure on the fiber.

This sounds nice, but is a little vague. Any definition has data and conditions, so what are they? We have
two topological spaces E and X; X is called the base and E is called the total space, as well as a continuous,
surjective map π : E → X. The condition is that the fiber Ex = π−1(x) is a vector space for each x ∈ X.
Specifically, sending x to the zero element of Ex is a zero z : X → E, which is a section or right inverse to π.
We also have scalar multiplication m : C × E → E, which has to stay in the same fiber; thus, m commutes
with π. Vector addition + : E×X E → E is only defined for vectors in the same fiber, so we take the fiberwise
product E ×X E. Again, + and π commute. Finally, what does continuously varying mean? This means that
z, m, and + are continuous.

Intuitively, if we let V be the collection of vector spaces, we might think of such a family as a function
X → V. To each point of X, we associate a vector space, instead of, say, a number.
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Example 1.3.

(1) The constant function: let E be a vector space. Then, E = X × E→ X is given by π = pr1, sending
(x, e) 7→ x. This is called the constant vector bundle or trivial vector bundle with fiber E.

(2) A nonconstant bundle is the tangent bundle TS2 → S2. For now, let’s think of this as a family of real
vector spaces; then, at each point x ∈ S2, we have a 2-dimensional space TxS2, and different tangent
spaces aren’t canonically identified. Embedding S2 ↪→ R3 as the unit sphere, each tangent space
embeds as a subspace of R3, and we have something called the Grassmanian. However, TS2 6∼= R2,
which we proved in algebraic topology as the hairy ball theorem.

Implicit in the second example was the definition of a map; the idea should be reasonably intuitive, but
let’s spell it out: if we have π : E → X and π′ : E′ → X, a morphism is the data of a continuous f : E → E′

such that the following diagram commutes.

E
f //

π
��

E′

π′��
X

Then, you can make all of the usual linear-algebraic constructions you like: duals, direct sums and products,
and so on.

Example 1.4. Here’s an example of a rather different sort. Let E be a finite-dimensional complex vector
space, and suppose T : E → E is linear. Define for any z ∈ C the map Kz = ker(z · id−T ) ⊂ E, and let
K =

⋃
z∈CKz.

For a generic z, z · id−T is invertible, and so Kz = 0. But for eigenvalues, we get something more
interesting, the eigenspace. But sending Kz 7→ z, we get a map π : K → C. This is interesting because the
vector space is 0-dimensional except at a finite number of points, and in fact if we take

ϕ :
⊕

z:Kz 6=0
Kz → E,

induced by the inclusion maps Kz → E, then ϕ is an isomorphism. This is the geometric statement of the
Jordan block decomposition (or generalized eigenspace decomposition) of a vector space.

Definition 1.5. Given a family of vector spaces π : E → X, the rank x 7→ dimEx = π−1(X) is a function
rank : X → Z≥0.

Example 1.4 seems less nice than the others, and the property that makes this explicit, developed by
Norman Steenrod in the 1950s, is called local triviality.

Definition 1.6. A family of vector spaces π : E → X is a vector bundle if it has local triviality, i.e. for every
x ∈ X, there exists an open neighborhood U ⊂ X and isomorphism E|U ∼= E for some vector space E.

This property is sometimes also called being locally constant. So the fibers aren’t literally equal to E
(they’re different sets), but they’re isomorphic as vector spaces.

One good question is, what happens if I have two local trivializations? Suppose Ex lies above x, and
we have ϕx : E → Ex and ϕ′x : E′ → Ex, each defined on open neighborhoods of x in X. The function
ϕ−1
x ◦ ϕ′x : E′ → E is called a transition function, and we can see that it must be linear, and furthermore, an

isomorphism.

The Clutching Construction. This leads to a way to construct vector bundles known as the clutching
construction. First, consider X = S2, decomposed into B2

+ = S2 \ {−} and B2
− = S2 \ {+} (i.e. minus the

south and north poles, respectively). Each of these is diffeomorphic to the real plane, and in particular is
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contractible. Taking the trivial bundle C over each of these, we have something like this.

C

��

C

��
B2

+ ^^

��

B2
−@@

��
B2

+ ∩B2
−

The intersection B2
+ ∩B2

− is diffeomorphic to A2 \ {0}. Thus, the two structures of C on this intersection
are related by a map C → C, which induces a map τ : B2

+ ∩ B2
− → Aut(C) = GL1 C = C×. This τ has

an invariant called its winding number, so we can construct a line bundle L π→ S2 by gluing: let L be the
quotient of (B2

+ ×C)q (B2
− ×C) with the identification {x} ×C ∼ {τ(x)} ×C (the former from B2

+ and the
latter from B2

−).
More generally, if {Uα}α∈A is an open cover of X, then we get a map∐

α∈A
Uα

p−→ X,

and so we can construct a gluing: whenever two points in the disjoint union map to the same point, we want
to glue them together. The arrows linking two points to be identified have identities and compositions.

The clutching construction gives us a vector bundle over this space: given a vector bundle Eα over each
Uα, we glue basepoints using those arrows, and get an associated isomorphism of vector spaces. Then, you
can prove that you get a vector bundle.

Maps f : X → Y of manifolds can be pulled back, and in this regard a vector bundle is a contravariant
construction.

Topology and Vector Bundles. We were going to add some topology to this discussion, yes?

Theorem 1.7. If E → [0, 1]×X is a vector bundle, then E|{0}×X ∼= E|{1}×X .

We’ll prove this next lecture. The idea is that the isomorphism classes are homotopy-invariant, and
therefore rigid or in some sense discrete. This will allow us to do topology with vector bundles.

Now, we can extract Vect∼=(X), the set of vector bundles on X up to isomorphism. This has a 0 (the
trivial bundle) and a +, given by direct sum of vector bundles. This gives a commutative monoid structure
from X which is homotopy invariant.

Commutative monoids are a little tricky to work with; we’d rather have abelian groups. So we can complete
the monoid, taking the Grothendieck group, obtaining an abelian group K(X).

Using real or complex vector bundles gives KR(X) and KC(X), respectively (the latter is usually called
K(X)). On Sn, one can compute that K(Sn) = πn−1 GLN for some large N . These groups were computed to
be periodic in both the real and complex cases, a result which is known as Bott periodicity.1 This periodicity
was proven in the mid-1950s.2 This was worked into a topological theory by players such as Grothendieck
and Atiyah, among others.

One of the first things we’ll do in this class is provide a few different proofs of Bott periodicity.
Another interesting fact is that K-theory satisfies all of the axioms of a cohomology theory except for the

values on Sn, making it a generalized (or extraordinary) cohomology theory. This is nice, since it means most
of the computational tools of cohomology are available to help us. And since it’s geometric, we can use it to
attack problems in geometry, e.g. when is a manifold parallelizable?

For example, for spheres, S0, S1, and S3 are parallelizable (the first two are trivial, and S3 has a Lie group
structure as the unit quaternions). It turns out there’s only one more parallelizable sphere, S7, and the rest
are not; this proof by Adams in 1967 used K-theory, and is related to the question of how many division
algebras there are.

1The sequence of groups you get almost sounds musical. Maybe sing the Bott song!
2The professor says, “I wasn’t around then, just so you know.”
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Relatedly, and finer than just parallelizability, how many linearly independent vector fields are there on
Sn? Even if Sn isn’t parallelizable, we may have nontrivial linearly independent vector fields. There are
other related ideas, e.g. the Atiyah-Singer index theorem.
K-theory can proceed in different directions: we can extract modules of the ring of functions on X, and

therefore using Spec, start with any ring and do algebraic K-theory. One can also intertwine K-theory and
operator algebras, which is also useful in geometry. We’ll focus on topological K-theory, however. There are
also twistings in K-theory, which relate to representations of loop groups.
K-theory has also come into physics, both in high-energy theory and condensed matter, but we probably

won’t say much about it.
Nuts and bolts: this is a lecture course, so take notes. There might be notes posted on the course webpage3,

but don’t count on it. There will also be plenty of readings; four are posted already: [4, 27, 41, 42].

Lecture 2.

Homotopies of Vector Bundles: 9/1/15

“You need a bit of Bourbaki imagination to determine the vector bundles over the empty
set.”

Recall that all topological spaces in this class will be taken to be Hausdorff and paracompact.
We stated the following as Theorem 1.7 last time; now, we’re going to prove it.

Theorem 2.1. Let X be a space and E → [0, 1] × X be a vector bundle. Let jt : X ↪→ [0, 1] × X send
x 7→ (t, x). Then, there exists a natural isomorphism j∗0E

∼=→ j∗1E of vector bundles over X.

To define the pullback more precisely, we can characterize it as fitting into the following diagram.

j∗E //

��

E

��
Y

j // Z

Then, j∗E is the subset of Y × E for which the diagram commutes.
We’ll want to make an isomorphism of fibers and check that it is locally trivial; in the smooth case, one

can use an ordinary differential equation, but in the more general continuous case, we’ll do something which
is in the end more elementary.

To pass between the local properties of vector bundles and a global isomorphism, we’ll use partitions of
unity.

Definition 2.2. Let X be a space and U = {Ui}i∈I be an open cover (which can be finite, countable,
or uncountable). Then, a partition of unity {ρα}α∈A indexed by a set A is a set of continuous functions
X → [0, 1] with locally finite supports such that

∑
ρα = 1. This partition of unity is said to be subordinate

to the cover U if there exists i : A→ I such that supp ρα ⊂ Ui(α).

Theorem 2.3. Let X be a Hausdorff paracompact space and U = {Ui}i∈I be an open cover.
(1) There exists a partition of unity {ρi}i∈I subordinate to U such that at most countably many ρi are

not identically zero.
(2) There exists a partition of unity {ρα}α∈A subordinate to U such that each ρα is compactly supported.
(3) If X is a smooth manifold, we can choose these ρα to be smooth.

We’ll only use part (1) of this theorem.
A nontrivial example is X = R and Ux = (x− 1, x+ 1) for x ∈ R (so an uncountable cover). In this case,

we don’t need every function to be nonzero; we only need a countable number.
Returning to the setup of Theorem 2.1, if X is a smooth manifold, we will set up a covariant derivative,

which will allow us to define a notion of parallel. Then, parallel transport will produce the desired isomorphism.
In this case, we’ll call X = M .

3https://www.ma.utexas.edu/users/dafr/M392C/index.html.

https://www.ma.utexas.edu/users/dafr/M392C/index.html
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Suppose first that E is a vector space, either real or complex. Ω0
M (E) denotes the set of smooth functions

M → E (written as 0-forms), and we have a basic derivative operator d : Ω0
M (E) → Ω1

M (E) satisfying the
Leibniz rule

d(f · e) = df · e+ f de,
where f ∈ Ω0

M and e ∈ Ω0
M (E) (that is, e is vector-valued and f is scalar-valued). Moreover, any other

first-order differential operator4 has the form d + A, where A ∈ Ω1
M (EndE). This means that if E = Cr,

then e is a column vector of e1, . . . , er with ei ∈ Ω0(E), and A = (Aij) is a matrix of one-forms: Aij ∈ Ω1
M (C).

Ultimately, this is because the difference between any two differential operators can be shown to be a tensor.
Now, let’s suppose E →M is a vector bundle.

Definition 2.4. A covariant derivative is a linear map ∇ : Ω0
M (E)→ Ω1

M (E) satisfying
∇(f · e) = df · e+ f · ∇e

when f ∈ Ω0
M and e ∈ Ω0

M (E).
Here, Ω0

M (E) is the space of sections of E. In some sense, this is a choice for functions with values in a
varying vector space.
Theorem 2.5. In this case, covariant derivatives exist, and the space of covariant derivatives is affine over
Ω1
M (EndE).

Proof. Choose an open cover {Ui}i∈I of M and local trivializations Ei
∼=→ E|Ui on Ui. We have a canonical

differentiation d of Ei-valued functions on Ui to define ∇i on the bundle E|Ui → Ui.
To stitch them together, choose a partition of unity {ρi}i∈I and define

∇e =
∑
i

ρi∇(j∗i e),

where ji : Ui ↪→M is inclusion. �

All right, so what’s parallel transport? Let E → [0, 1] be a vector bundle with a covariant derivative ∇.
Parallel transport will be an isomorphism E0

∼→ E1.
Definition 2.6. A section e is parallel if ∇e = 0.
Lemma 2.7. The set P ⊂ Ω0

[0,1](E) of parallel sections is a subspace. Then, for any t ∈ [0, 1], the evaluation
map evt : P → Et sending e 7→ e(t) is an isomorphism.

The first statement is just because ∇e = 0 is a linear condition. The second has the interesting implication
that for any (x, t) ∈ E , there’s a unique parallel section that extends it.

Proof. Suppose E → [0, 1] is trivializable, and choose a basis e1, . . . , er of sections. Then, we can write
∇ej = Aijei,

where we’re summing over repeated indices and Aij ∈ Ω1
[0,1](C). Then, any section has the form e = f jej and

the parallel transport equation is
0 = ∇e = ∇

(
f jej

)
= df jej + f j∇ej
= (df i +Aijf

j)ej .

If we write Aij = αij dt for αij ∈ Ω0
[0,1](C), then the parallel transport equation is

df i

dτ + αijf
j = 0. (2.8)

This is a linear ODE on [0, 1], so by the fundamental theorem of ODEs, there’s a unique solution to (2.8)
given an initial condition.

More generally, if E isn’t trivializable, partition it into [0, t1], [t1, t2], and so on, so that E → [ti, ti+1] is
trivialiable, and compose the parallel transports on each interval. �

4In this context, a first-order differerntial operator is an operator Ω0
M (E)→ Ω1

M (E) that is linear and satisfies the Leibniz
rule.



2 Homotopies of Vector Bundles: 9/1/15 7

Now, we can prove Theorem 2.1 in the smooth manifolds case.

Proof of Theorem 2.1, smooth case. Choose a covariant derivative ∇, and use parallel transport along [0, 1]×
{x} to construct an isomorphism E(0,x) → E(1,x). The fundamental theorem on ODEs also states that the
solution smoothly depends on the initial data, so these isomorphisms vary smoothly in x. �

Though this fundamental theorem only gives local solutions, (2.8) is linear, so a global solution exists.
In the continuous case, we can’t do quite the same thing, but the same idea of parallel transport is in

effect.

Proof of Theorem 2.1, continuous case. By local triviality, we can cover [0, 1]×X by open sets of the form
(t0, t)× U on which E → [0, 1]×X restricts to be trivializable.

Since [0, 1] is compact, then there’s an open cover U = {Ui}i∈I of X such that E|[0,1]×Ui is trivializable:
we can get trivializations on a finite number of patches. Thus, at the finite number of boundaries, we can
patch the trivialization, choosing a continuous isomorphism of vector spaces.

Choose a partition of unity {ρi}i∈I subordinate to U and pare down I to the countable subset of i ∈ I
such that ρi isn’t identically zero. Let ϕn = ρ1 + · · ·+ ρn for n = 1, 2, . . . , and let Γn be the graph of ϕn,
which is a subset of [0, 1]×X.

So now we have a countable cover, and Γn is only supported on U1 ∪ · · · ∪ Un and only changes from Γn−1
on Un. But since the sum of the ρi is 1, then the graph Γn must go across the whole of [0, 1]×X as n→∞.
But over each open set, since we’ve pared down I, there are only finitely many steps.5

Going from Γ0 (identically 0) to Γ1 makes a trivialization on U1, and from Γ1 to Γ2 extends the trivialization
further, and so on. �

Corollary 2.9. If f : [0, 1]×X → Y is continuous and E → Y is a vector bundle, then f∗0E ∼= f∗1E.

This is because ft(x) = f(t, x) is a homotopy.

Corollary 2.10. A continuous map f : X → Y induces a pullback map f∗ : Vect(Y )∼= → Vect(X)∼=, and
this map depends only on the homotopy type of f .

This is a hint that we can make algebraic topology out of the sets of vector bundles of spaces. There are
many homotopy-invariant sets that we attach to topological spaces, e.g. π0, π1, π2, H1, H2, and so on; these
tend to be groups and even abelian groups, and thus tend to be easier to work with.

Vect∼=(X) is a commutative monoid, so there’s an associative, commutative + and an identity. The
identity is the isomorphism class of the bundle 0, the zero vector space. Then, we define addition by
[E] + [E′] = [E ⊕E′]. Moreover, Vect∼=(X) is a semiring, i.e. there’s a × and a multiplicative identity 1 given
by the isomorphism class of C. Multiplication is given by (the isomorphism class of) the tensor product.

Commutative monoids are pretty nice; a typical example is the nonnegative integers.

Example 2.11.
(1) The simplest possible space is ∅. There’s a unique vector bundle over it, the zero bundle, so

Vect∼=(∅) = 0, the trivial monoid.
(2) Over a point, vector bundles are just finite-dimensional vector spaces, which are determined up to

isomorphism by dimension, so Vect∼=(pt) ∼→ Z≥0.

Definition 2.12. If X is a compact space, K(X) is the abelian group completion of the commutative monoid
Vect∼=C (X); the completion of Vect∼=R (X) is denoted KO(X).

This definition makes sense when X is noncompact, but doesn’t give a sensible answer. We’ll see other
definitions in the noncompact case eventually.

We’ll talk more about the abelian group completion next lecture; the idea is that for any abelian group A
and homomorphism α : Vect∼=(X)→ A of commutative monoids, there should be a unique α̃ such that the

5This argument is likely confusing; it was mostly given as a picture in lecture, and can be found more clearly in Hatcher’s
notes [27] on vector bundles and K-theory.
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following diagram commutes.
Vect∼=(X) //

α
  

K(X)

α̃��
A

Another corollary of Theorem 2.1:

Corollary 2.13. If X is contractible and π : E → X is a vector bundle, then π is trivializable.

Corollary 2.14. Let X = U0 ∪ U1 for open sets U0 and U1 and Ei → Ui be two vector bundles, and let
α : [0, 1] × U0 ∩ U1 → Iso(E0|U0∩U1 , E1|U0∩U1): that is, α is a homotopy of isomorphisms E0 → E1 on the
intersection. Then, clutching with αt gives a vector bundle Et → X, and E0 ∼= E1.

In the last five minutes, we’ll discuss a few more partition of unity arguments.
(1) Let X be a topological space, and

0 // E′
i // E

j // E′′ // 0
be a short exact sequence of vector bundles over X. Recall that a splitting of this sequence is an
s : E′′ → E such that j ◦ s = idE′′ . Then, splittings form a bundle of affine spaces over Hom(E′′, E),
which happens because linear maps act simply transitively on splittings (adding a linear map to a
splitting is still a splitting, and any two splittings differ by a linear map).

Theorem 2.15. Global splittings exist, i.e. the affine bundle of splittings has a global section.

Proof. At each point, there’s a section, which is a linear algebra statement, and locally on X, there’s
a splitting, which follows from local trivializations. Then, patch them together with a partition of
unity, which works because we’re in an affine space, so our partition of unity in each affine space
is a weighted average (because the ρi are nonnegative) and therefore lies in the convex hull of the
splittings. �

(2) We also have Hermitian inner products. The same argument goes through, as inner products are
convex (the weighted average of two inner products is convex), so one can honestly use a partition of
unity in the same way as above.

Lecture 3.

Abelian Group Completions and K(X): 9/3/15

“First I want to remind you about fiber bundles. . . (pause) . . . Consider yourself reminded.”
Last time, we said that if E is a (real or complex) vector space, the space of its inner products is contractible.
This is because we have a vector space of sesquilinear (or bilinear in the real case) maps E× E→ C (or R),
and the inner products form a convex cone in this space.

Inner products relate to symmetry groups: the symmetry group of Cn is GLnC, the set of n× n complex
invertible matrices, but the symmetry group of Cn with an inner product 〈–, –〉 is the unitary group
Un ⊂ GLnC, the set of matrices A such that A∗A = I. In the real case, the symmetries of Rn are GLn R,
and the group of symmetries of Rn with an inner product is On ⊂ GLnR.

As a consequence, we have the following result.

Proposition 3.1. There are deformation retractions GLn C→ Un and GLnR→ On.

For example, when n = 1, GL1 C = C×, which deformation retracts onto the unit circle, which is U1.
Then, GL1 R = R× and O1 = {±1}, so there’s a deformation retraction in the same way.

Proof. We’ll give the proof in the complex case; the real case is pretty much identical.
Since the columns of an invertible matrix determine a basis of Cn and vice versa, identify GLn C with the

space of bases of Cn; then, Un is the space of orthonormal bases of Cn.
A general basis e1, . . . , en may be turned into an orthonormal basis by the Gram-Schmidt process, which is

a composition of homotopies. First, we scale e1 to have norm 1, given by the homotopy e1 7→ ((1−t)+t/|e1|)e1.
Then, we make e2 ⊥ e1, which is given by the homotopy e2 7→ e2 − t〈e2, e1〉e1. The rest of the steps are
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given by scaling basis vectors and making them perpendicular to the ones we have so far, so they’re also
homotopies. �

Group Completion. Recall that a commutative monoid is the data (M,+, 0), such that + is associative
and commutative, and 0 is the identity for +.

Definition 3.2. (A, i) is a group completion of M if A is an abelian group, i : M → A is a homomorphism
of commutative monoids, and for every abelian group B and homomorphism f : M → B of commutative
monoids, there exists a unique abelian group homomorphism f̃ : A→ B of abelian groups such that f̃ ◦ i = f .

That is, we require that there exists a unique f̃ such that the following diagram commutes.

M
i //

f ��

A

f̃��
B

(i was never specified to be injective, and in fact it often isn’t.)

Example 3.3.
• If M = (Z≥0,+), the group completion is A = Z.
• If M = (Z>0,×), we get A = Q>0.
• However, if M = (Z≥0,×), we get A = 0. This is because if i : Z≥0 → A, then there must be an
a ∈ A such that i(0) · a = 1; thus, for any n ≥ 0,

i(n) = i(n)i(1) = i(n)i(0)a = i(n · 0)a = i(0)a = 0.

Since the group completion was defined by a universal property, we can argue for its existence and
uniqueness; universal properties tend to have very strong uniqueness conditions.

We saw that the vector bundles up to isomorphism are a commutative monoid (even semiring under tensor
product), and so taking the group completion can cause a loss of information, as in the last part of the above
example. Though abelian groups are nicer to compute with, there are examples where information about
vector bundles is lost by passing to abelian groups.

The uniqueness of the group completion is quite nice: given two group completions (A, i) and (A′, i′) of a
commutative monoid M , there exists a unique isomorphism φ that commutes with the universal property.
That is, in the following diagram, φ ◦ f̃ ′ = f̃ .

A′

f̃ ′   

M
i′oo i //

f

��

A

f̃~~

φ

xx

B

To prove this, we’ll apply the universal property four times. To see why φ is an isomorphism, putting A′
in place of B and i′ in place of f , we get a φ, and switching (A, i) with (A′, i′) gives us ψ : A′ → A. Then,
in the following diagram, i′ = φi = (φψ)i′, which satisfies a universal property (which one?) and therefore
proves φ and ψ are inverses.

M
i //

i′   

A

φ

��
A′

ψ

OO

For existence, define A = (M ×M)/ ∼, where (m1,m2) ∼ (m1 + n,m2 + n) for all m1,m2, n ∈ M . Then,
0A = (0M , 0M ) and −[m1,m2] = [m2,m1]. This makes sense: it’s how we get Z from N, and Q from Z
multiplicatively.

Often, the abelian group completion is called the Grothendieck group of M , and denoted K(M).
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Back to K-Theory. If X is compact Hausdorff, then Vect∼=(X), the set of isomorphism classes of vector
bundles over X, is a commutative monoid, with addition given by [E′] + [E′′] = [E′ ⊕ E′′], and a semiring
given by [E′]× [E′′] = [E′ ⊗ E′′]. There’s some stuff to check here.

The group completion of Vect∼=C (X) is denoted K(X) (sometimes KU (X), with the U standing for
“unitary”), and the group completion of Vect∼=R (X) is denoted KO(X), with the O for “orthogonal.”

The map X 7→ K(X) (or KO(X)) is a homotopy-invariant functor; that is, if f : X → Y is continuous,
then f∗ : K(Y )→ K(X) is a homomorphism of abelian groups. The homotopy invariance says that if f0 ' f1,
then f∗0 = f∗1 . We could write K : CptSpaceop → AbGrp, and mod out the homotopy.

There are plenty of other functors that look like this; for example, the nth cohomology group is a
contravariant functor from topological spaces (more generally than compact Hausdorff spaces) to abelian
groups, and is homotopy-invariant. But this gives us a sequence of groups, indexed by Z (where the negative
cohomology groups are zero by definition). Similarly, we’ll promote the K-theory of a space to a sequence of
abelian groups indexed by the integers, with K(X) becoming K0(X); we’ll also see that in the typical case,
Kn(X) is nonzero for infinitely many n.

For example, if E and E′ are vector bundles, Hom(E,E′) ∼= E′ ⊗ E∗, by the map sending e′ ⊗ θ 7→ (e 7→
θ(e)e′). There’s some stuff to check; in particular, once you know it for vector spaces, it’s true fiber-by-fiber.
Moreover, E and E∗ are isomorphic as vector bundles, because any metric E⊗E → R induces an isomorphism
E → E∗; thus, in KO(X), [E] = [E′], so [Hom(E,E′)] = [E]× [E′].

In the complex case, the metric is a map E ⊗ E → C: the conjugate bundle is defined fiber-by-fiber by
the conjugate vector space E, identical to E except that scalar multiplication is composed with conjugation.
Thus, there’s a map E ∼→ E∗. This is sometimes, but not always, an isomorphism: if X is a point, then it’s
always an isomorphism, but the bundle CP 1 → S2 isn’t fixed: complex conjugation flips the winding number,
and therefore produces a nonisomorphic bundle.

We said that we might lose information taking the group completion, so we want to know what kind of
information we’ve lost. The key is the following proposition.

Proposition 3.4. Let X be a compact Hausdorff space and π : E → X be a vector bundle. Then, there
exists a vector bundle π′ : E′ → X such that E ⊕ E′ → X is trivializable.

If X 6= ∅, then there’s a map p : X → pt, and its pullback p∗ : K(pt) → K(X) is injective. That is,
we have an injective map Z ↪→ K(X), consisting of the trivial bundles (i.e. those pulled back by a point).
Proposition 3.4 implies that given a k ∈ K(X), there’s a k′ such that k + k′ = n for n ∈ Z. Thus, the inverse
is −k = k′ −N .

Proof of Proposition 3.4. Since X is compact, we can cover it with a finite collection of opens U1, . . . , UN
such that E|Ui is trivializable for each i.

Choose a basis of sections e(i)
1 , . . . , e

(i)
n on Ui, and let ρ1, . . . , ρN be a partition of unity subordinate to the

cover {Ui}. Then, let
S =

{
ρ1e

(1)
1
∗, . . . , ρ1e

(1)
n
∗, ρ2e

(2)
1
∗, . . .

}
⊂ C0(X;E∗),

where e(i)
1
∗, . . . , e

(i)
r
∗ is the dual basis of sections of E∗|Ui → Ui.

Then, set V = CS∗, the set of functions S → C. Then, evaluation defines an injection E ↪→ V : evaluating
at Ex determines a value on each basis element on each ρi that doesn’t vanish there, so we get values on
basis elements. Moreover, since at least one such ρi exists for each point, this map is injective.

Let E′ = V /E, so we have a short exact sequence

0 // E // V // E′ // 0.

Last time, we proved in Theorem 2.15 that all short exact sequences of vector bundles split, so there’s an
isomorphism E′ ⊕ E ∼→ V . �

Now, we can do some stuff that will look familiar from cohomology.

Definition 3.5. The reduced K-theory of X is the quotient K̃(X) = K(X)/p∗K(pt), where p : X → pt.

Example 3.6. If X = ptq pt, then K(X) ∼→ Z⊕Z sending bundles to their ranks. Then, p∗ : K(pt) = Z→
Z⊕ Z is the diagonal map ∆, so K̃(X) = Z⊕ Z/∆ ∼→ Z.
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Corollary 3.7. Let E,E′ → X be vector bundles. Then, [E] = [E′] in K̃(X) iff there exist r, r′ ∈ Z≥0 such
that E ⊕ Cr ∼= E′ ⊕ Cr

′
.

In this case, we say that E and E′ are stably equivalent. In other words, K-theory remembers the stable
equivalences of vector bundles. This is the first inkling we have of what K-theory is about, and what the
geometric meaning of group completion is.

Example 3.8. Let’s look at K̃O(S2). We have a nontrivial bundle of rank 2 over S2, TS2 → S2. However,
TS2 ⊕ R→ S2 is trivializable!

To see this, embed S2 ↪→ A3; such an embedding always gives us a short exact sequence of vector bundles

0 // TS2 // TA3|S2 // ν // 0.

The quotient ν, by definition, is the normal bundle of the submanifold (in this case, S2). We know that
TA3 = R3 everywhere, which is almost by definition, and therefore ν ∼= R. This means that in K̃O(S2),
[TS2] = 0.

So right now, we can calculate the K-theory of a point, and therefore of any contractible space. We want
to be able to do more; a nice first step is to compute the K-theory of Sn. Just as in cohomology, this will
allow us to bootstrap our calculations on CW complexes.

Definition 3.9. Recall that a fiber bundle is the data π : E → X over a topological space X such that π is
surjective and local trivializations exist. E is called the total space.

Thus, a vector bundle is a fiber bundle where the fibers are vector spaces, and we require the local
trivializations to respect this structure. We can do this more generally, e.g. with affine spaces and affine maps.

Example 3.10. If V → X is a vector bundle, we get some associated fiber bundles over X. For example,
PV → X, with fiber of lines in the vector space that’s the fiber of V . We can generalize to the Grassmanian
Grk V , which uses k-dimensional subspaces instead of lines. There are plenty more constructions.

Definition 3.11. A topological space F is k-connected if Y → F is null-homotopic for every CW complex
Y of dimension at most k.

It actually suffices to take only the spheres for Y .

Lemma 3.12. Let n be a positive integer and π : E → X be a fiber bundle, where X is a CW complex with
finitely many cells and of dimension at most n, and the fibers of π are (n− 1)-connected. Then, π admits a
continuous section.

Proof. We’ll do cell-by-cell induction on the skeleton X0 ⊂ X1 ⊂ · · · ⊂ Xn = X. On points, π trivially has a
continuous section.

Suppose we have constructed s on Xk−1. Then, all the k-cells are attached via maps

Dk Φ // X

Sk−1
?�

OO

∂Φ // Xk−1.
?�

OO

Since Dk ' pt, then Φ∗E → Dk is trivializable, so we have a map θ : Φ∗E → F . The section on Xk−1 pulls
back and composes with θ to create a map Sk−1 = ∂Dk → F , but by hypothesis, this is null-homotopic, and
therefore extends to Dk. �

A different kind of induction is required when X has infinitely many cells; however, what we’ve proven is
sufficient for the K-theory of the spheres.

Theorem 3.13. Let n ∈ Z≥0 and N ≥ n/2. Then, there is an isomorphism πn−1 UN → K̃(Sn).

Corollary 3.14. The inclusion UN ↪→ UN+1 induces an isomorphism πn−1 UN → πn−1 UN+1 if N ≥ n/2.
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The theorem statement doesn’t give enough information to say which map induces the isomorphism, but
the proof will show that the usual inclusion does it. Specifically, thinking of UN as a matrix group, UN

embeds in Un+1 on the upper left, i.e.

A 7−→
(
A 0
0 1

)
.

We can take the union (direct limit) of the inclusions U1 ⊂ U2 ⊂ U3 ⊂ . . . , and call it U∞ (sometimes U).
These sequences of homotopy groups must stabilize.

Theorem 3.15 (Bott).

πn−1 U∞ ∼= K̃(Sn) =
{

Z, n even
0, n odd.

We have a real analogue to this theorem as well: the analogous inclusions O1 ↪→ O2 ↪→ · · · define a limit
O∞.

Theorem 3.16.

πn−1 O∞ ∼= K̃O(Sn) =

 Z, n ≡ 0, 4 mod 8
Z/2Z, n ≡ 1, 2 mod 8
0, n ≡ 3, 5, 6, 7 mod 8.

These results, known as the Bott periodicity theorems, are the foundations of Bott periodicity. We’ll give
three proofs: Bott’s original proof using Morse theory, a more elementary one, and one that uses functional
analysis and Fredholm operators.

Lecture 4.

Bott’s Theorem: 9/8/15

“Any questions?”
“How was your weekend?”
“I was afraid of that.”

We know that vector bundles always have sections (e.g. the zero section), but fiber bundles don’t. For
example, the following fiber bundles don’t have sections.

• The orientation cover of a nonorientable manifold (e.g. the Möbius strip) is a double cover that
doesn’t have a section.

• The Hopf fibration S1 → S3 → S2.
• Any nontrival covering map S1 → S1.

However, sometimes sections do exist.

Theorem 4.1. If X is a CW complex of dimension n and π : E → X is a fiber bundle, then if the fibers of
π are (n− 1)-connected, then π admits a section.

Definition 4.2. A fibration is a map π : E → B satisfying the homotopy lifting property: that is, if
h : [0, 1]× S → X is a homotopy and f : {0} × S → E , then f can be lifted across the whole homotopy, i.e.
there exists an f̃ : [0, 1]× S → E that makes the following diagram commute.

{0} × S� _

��

f // E

π

��
[0, 1]× S h //

f̃

;;

X

Theorem 4.3. A fiber bundle is a fibration.

We won’t prove this, but we also won’t use it extremely extensively.

Theorem 4.4. Let N,n ∈ Z≥0 and N ≥ n/2. Then, there is an isomorphism ϕ : πn−1 UN → K̃(Sn) defined
by clutching.
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This is part of Theorem 3.15 from last time. Recall that in the reduced K-theory, two bundles are
equivalent iff they are stably isomorphic: for example, over S2, the tangent bundle is stably isomorphic to
any trivial bundle, so it’s equal to zero.

Proof of Theorem 4.4. We’ll show that ϕ is a composition of three isomorphisms

πn−1 UN
i // [Sn−1,UN ] j // Vect∼=N (Sn) k // K̃(Sn).

To define i, we’ll pick a basepoint ∗ ∈ Sn−1; then, πn−1 UN is equal to {f : Sn−1 → UN : f(∗) = e} up to
based homotopy (UN is naturally a pointed space, using its identity element). We want this to be isomorphic
to [Sn−1,UN ], the set of maps without basepoint condition up to homotopy, so let φ : [Sn−1,UN ]→ πn−1 UN

be defined by φ(f) = f(∗)−1 · f , where f : Sn−1 → UN . Then, one can check that φ is well-defined on
homotopy classes and inverts i, so i is an isomorphism.6
j is defined by the clutching construction. We can write Sn = Dn

+ ∪Sn−1 Dn
−, and then glue CN → Dn

+
and CN → Dn

− using f : Sn−1 → UN , because UN is the group of isometries of CN . So this defines a map j,
but why is it an isomorphism? We have to show that j is surjective.

Last time, we showed in Proposition 3.1 that the group of isomorphisms deformation retracts onto the
group of isometries, so that’s fine. To show that j is surjective, we could use that every vector bundle admits a
Hermitian metric, or that every vector bundle over Dn is trivializable by orthogonal bases, both of which are
true. That j is well-defined follows from an argument that homotopic clutching functions lead to isomorphic
vector bundles. Finally, to show that j is injective, all trivializations over Dn are homotopic, since Dn is
contractible and UN is connected.

Then, k just sends a vector bundle to its stable equivalence class. For its surjectivity, we need to show that
if E → Sn has rank N ≥ n/2 + 1, then there exists an E′ of rank N − 1 and an isomorphism C⊕E′ ∼= E. In
words, for large enough N , we can split off a trivial bundle from E. Equivalently, we can show that E → Sn

admits a nonzero section, whose span is a line bundle L→ X which is trivialized; then, we can let E′ = E/L.
A nonzero section, normalized, is a section of the fiber bundle S(E)→ Sn−1 with fiber S2N−1 (the unit

sphere sitting in CN ).7 This sphere is (2n− 2)-connected, so by Theorem 4.1, such a section exists.
Why is k injective? We need to show that if a rank-N bundle is stably trivial in K̃(Sn), then it is actually

trivial. But since it’s not clear that Vect∼=N (Sn) is an abelian group (yet), then we’ll show injectivity of sets.
Let E0, E1 → Sn be rank-N vector bundles with an isometry E0 ⊕ Cr → E1 ⊕ Cr; we’ll want to produce a
homotopic isometry which preserves the last vector (0, . . . , 0, 1) ∈ Cr at each point in X. The evaluation map
ev(0,...,0,1) at the last basis vector is a map of fiber bundles over X; that is, the following diagram commutes.

Isom(E0 ⊕ Cr, E1 ⊕ Cr)
ev(0,...,0,1) //

((

S(E1 ⊕ Cr)

yy
Sn

An isometry is a section ϕ : Sn → Isom(E0 ⊕ Cr, E1 ⊕ Cr), so applying the evaluation map, we get a
section pϕ : Sn → S(E1 ⊕ Cr). We get an additional section ξ = (0, 0, . . . , 0, 1). Thus, all that’s left is to
construct a homotopy from pϕ to ξ, which by the homotopy lifting property defines a section of the pullback
[0, 1]× S(E1 ⊕ Cr)→ [0, 1]× Sn over {0, 1} × Sn. �

While the K-theory is a ring given by tensor product, the reduced K-theory isn’t a ring in most cases.
These arguments are important to demonstrate that when N is high enough, in the stable range, we have

this stability.
Corollary 4.5. If N is in the stable range, i.e. N ≥ n/2, then the inclusion UN ↪→ UN+1 induces an
isomorphism πn−1 UN → πn−1 UN+1.

This means that eventually πn−1 UN is identical for large enough N ; this group is written πn−1(U) (and
there is a group U that makes this work, the limit of these UN with the appropriate topology). Then, Bott’s
theorem, Theorem 3.15, calculates these groups: πn−1 U is Z when n is even and 0 when n is odd.

6[Sn−1,UN ] inherits another group structure from that of UN (i.e. pointwise multiplication of loops); one can reason about
it using something called the Eckmann-Hilton argument.

7The sphere bundle S(E) of a vector bundle E is the fiber bundle whose fiber over each point x is the unit sphere in Ex.
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For example, a generator of π1 U3 is given by stabilizing a loop eiθ; that is, it’s given by the map

eiθ 7−→

eiθ 0 0
0 1 0
0 0 1

 ,

with θ ∈ S1.

Outlining a Proof of Bott’s Theorem. We’ll move to providing different proofs of Theorem 3.15; these
are explained in our readings, and so the professor won’t post lecture notes for a little while.

Let’s re-examine S2 ∼= CP1 = P(C2) (that is, the space of lines in C2). More generally, if V is a vector
space, PV will denote its projectivization, the space of lines in V . Then, there is a tautological line bundle
H∗ → PV , whose fiber at a line K ⊂ V (which is a point of PV ) is the line K.

The dual of H∗ is called the hyperplane bundle, and denoted H → PV ; a nonzero element of H can be
identified with a hyperplane in V , and there is a canonical map V ∗ → Γ(PV,H):8 a linear functional on
V becomes a linear functional on a line by restriction. Interestingly, if V is a complex vector bundle, then
this is an isomorphism onto the holomorphic sections. In particular, the space of holomorphic sections is
finite-dimensional.

In fact, if you take Symk V ∗, the kth symmetric power of V ∗, then there’s a canonical map Symk V ∗ →
Γ(PV,H⊗k), which is again an isomorphism in the complex case.

If V = C2, then write V = L⊕ C; then, L and C are distinguished points in our projective space. This
will enable us to make a clutching-like construction in a projective space.

Let P∞ = PC2 \ {C} and P0 = PC2 \ {L}; then, P0 ∩ P∞ ∼= PC2 \ {C, L} = L∗ \ {0}. Our clutching
construction will start with a vector bundle L→ P0, a vector bundle C→ P∞, and an isomorphism α : L→ C
over the intersection P0 ∩ P∞ = L∗ \ {0}. Thus, we’ll need to specify an isomorphism P0 ∩ P∞ → L∗ \ {0} to
determine how to glue L and C together.

It’s natural to call the identity map z−1, thinking of z ∈ L, and the bundle we get is H → PC2. Here
again we have a punctured plane and so the winding number classifies things.

Lemma 4.6. H ⊕H ∼= H⊗2 ⊕ C as vector bundles over CP1 ∼= S2.

Proof. The two clutching maps are, respectively,
(
z−1

z−1

)
and

(
z−2

1
)
. Each has determinant 1, so they’re

both in SL2 C, which deformation-retracts onto S2, which is simply connected. Thus, the clutching maps are
homotopic. �

Corollary 4.7. If t = [H]− 1 in K(S2), then t2 = 0.

This is the first insight we have into the ring structure of a K-theory.

Corollary 4.8. The map Z[t]/(t2)→ K(S2) sending t 7→ [H]− 1 is an isomorphism of rings.

Definition 4.9. Let X1 and X2 be topological spaces; then, there are projection maps

X1 ×X2
p1 //

p2

��

X1

X2.

Then, the external product is a map K(X1)⊗K(X2)→ K(X1 ×X2) defined as follows: if u ∈ K(X1) and
v ∈ K(X2), then u⊗ v 7→ p∗1u · p∗2v.

Theorem 4.10. If X is compact Hausdorff, then the external product K(S2)⊗K(X)→ K(S2 ×X) is an
isomorphism of rings.

We’ll talk about this more next lecture; the idea is that in general distinguished basepoints of X and S2

lift to subspaces of S2 ×X.
The reason it doesn’t work for S1 is that if X = S1, we get a torus S1 × S1. Then, basepoints in S1 give

us S1 ∨ S1 (the wedge product), and the quotient is S1 ∧ S1 ' S2 (the smash product).

8Γ(X,E) denotes the space of sections of E → X.
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In fact, we’ll bootstrap Theorem 4.10, using the smash product and reduced K-theory; then, results about
smash products of spheres do a bunch of the work of periodicity for us. The proof will be elementary, in a
sense, but with a lot of details about clutching functions, which is pretty explicit.

The version you’ll read about in the Atiyah-Bott paper [5], or in Atiyah’s book [4], is slightly more general.
We want a family of S2 parameterized by X, instead of just one, which is a fiber bundle; but we want two
distinguished points, which will allow the clutching construction, and a linear structure.

Thus, more generally, if L→ X is a complex line bundle, then P(L⊕ C)→ X is a fiber bundle with fiber
S2. We can once again form the hyperplane bundle H → P(L⊗ C).
Theorem 4.11 ([5]). The map K(X)[t]/(t[L]− 1)(t− 1)→ K(P(L⊕ C)) defined by sending t 7→ [H] is an
isomorphism of rings.

Then, if X = pt, we recover Theorem 4.10, which we’ll prove next time.
Lecture 5.

The K-theory of X × S2: 9/10/15

Our immediate goal is to prove the following theorem.
Theorem 5.1. Let X be compact Hausdorff. Then, the map µ : K(X)[t]/(1 − t)2 → K(X) ⊗ K(S2) →
K(X×S2), defined by sending [E] · t 7→ [E]⊗ [H] followed by [E1]⊗ [E2] 7→ [π∗1E1⊗π∗2E2], is an isomorphism.

Next time, we’ll introduce basepoints and use this to prove Bott periodicity, calculating the K-theory of
the spheres in arbitrary dimension; we saw last time that this computes the stable homotopy groups of the
unitary group.

The proof we give is due to Atiyah and Bott in [5], and actually proves a stronger result, Theorem 4.11.
Hatcher’s notes [27] provide a proof of the less general theorem.

The heuristic idea is that a bundle on S2 is given by clutching data: two closed discs D∞ and D0 along
with a circle S1 = T (i.e. we identify it with the circle group T = {λ ∈ C | |λ| = 1}, which is a Lie group under
multiplication). Then, the final piece of clutching data is given by a group homomorphism f : T→ GLr C.

Suppose f is given by a Laurent series

f(λ) =
N∑

k=−N
ak · λk,

with ak ∈ EndCr (i.e. they might not be invertible, but their sum is). Then, f = λ−Np for a p ∈ C[λ]⊗EndCr.
Then, the K-theory class of this bundle is determined by the rank r and the winding number of λ−Np,
which we’ll denote ω(λ−Np) = −Nr + ω(p). That is, it’s basically determined by the winding number of a
polynomial.

What is the winding number of a polynomial? For simplicity, take r = 1; then, ω(p) is the number of roots
of p interior to T ⊂ C.

In some sense, we’re taking the winding number as information about S2, but we’re not getting a lot of
information about X. We categorify: we want to find a vector space whose dimension is ω(p). Set R = C[λ],
which is a commutative ring, and M = C[λ] as an R-module. (If r > 1, we need to tensor with EndCr again).
Then, p : M →M given by multiplication by p has a cokernel coker p = V , a deg(p)-dimensional vector space.
Thus, we can canonically decompose V = V+ ⊕ V−, where V+ corresponds to the set of roots inside the unit
disc. Then, we can soup this up further when r > 1 and X comes back into the story.

This is essentially the way that we’ll prove the theorem: the proof will construct an inverse map ν to µ.
The main steps are:

• approximate an arbitrary clutching by a Laurent series, leading to a polynomial clutching;
• convert a polynomial clutching to a linear clutching; and
• convert a linear clutching to a vector bundle V over X.

Proof of Theorem 5.1. The first step, approximating by Laurent series, requires some undergraduate analysis.
Suppose f : X × T → C is continuous. The Fourier coefficients of a function on T become functions
parameterized by X: set

an(x) =
∫ 2π

0

dθ
2π f(x, eiθ)e−inθ, n ∈ Z,
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and let u : X × [0, 1)× T→ C be
u(x, r, λ) =

∑
n∈Z

an(x)r|n|λn.

Then, u is continuous, because

‖an‖C0(X) ≤
∫ 2π

0

dθ
2π ‖f‖C0(X×T)|e

−in| = ‖f‖C0(X×T).

Proposition 5.2. u(x, r, λ)→ f(x, λ) as r → 1 uniformly in x and λ.

Proof. Introduce the Poisson kernel P : [0, 1)× T→ C, given by

P (r, eis) =
∑
n∈Z

r|n|eins = 1− r2

1− 2r cos s+ r2 , (5.3)

which can be proven by treating the positive and negative parts as two geometric series. Then, since it
converges absolutely, we can integrate term-by-term to show that∫

T

ds
2πP (r, e−is) = 1.

Additionally, if λ 6= 1, (5.3) tells us that limr→1 P (r, λ) = 0. Thus, limr→1 = δ1 in C0(T)∗ (i.e. δ1(f) = f(1)
for f ∈ C0(T), as a distribution). Now, we can write u as a convolution on T:

u(x, r, eiθ) =
∫ 2π

0

dφ
2πP (r, ei(θ−φ))f(x, eiφ)

= Pθ(r, –) ∗T f(x, –)

= 〈P̃θ(r, –), f(x, –)〉,

where our pairing is a map C0(T)∗ × C0(T)→ C. �

This will allow us to approximate a clutching function with a finite step in the Fourier series, producing a
Laurent series as intended.

Corollary 5.4. The space of Laurent functions∑
|k|≤N

ak(x)λk

is dense in C0(X × T).

Proof. If f ∈ C0(X×T), define ak and u as before. Given an ε > 0, there’s an r0 such that ‖f−u(r)‖C0(×T) <

ε/2 if r > r0, and an N such that ∑
|n|>N

rN0 <
ε

2‖f‖C0(X×T)
.

Then, one can show that the norm of the difference is less than ε. �

Thus, we have our approximations of clutching bundles. Hatcher’s proof in [27] involves a little less
“undergraduate” analysis.

Thinking about S2 as P(C0 ⊕ C∞) = CP1, we can look at the tautological bundle. If λ ∈ C, then
the line y = λx in C0 × C∞ projects down, e.g. (1, λ) to 1 and λ. In particular, the tautological bundle
H∗ → CP1 = S2 has clutching function λ, and therefore the hyperplane bundle H → CP1 = S2 has clutching
function λ−1.

For a more general E → X × S2, we want to clutch X ×D0 and X ×D∞ at X ×T. Define E → X as the
restriction of E → X×S2 toX×{1}; then, E pulls back to bundles π∗0E → X×D0 and π∗∞E → X×D∞. Since
D0 and D∞ are contractible, we can choose isomorphisms θ0 : π∗0E

∼=→ E|X×D0 and θ∞ : π∗∞E → E|X×D∞ .
Then, f = θ−1

∞ ◦ θ0 is a section of the bundle Aut(π∗TE) → X × T. In other words, X × T embeds into
X ×D0 and X ×D∞, and f is the clutching data from π∗0E → π∗∞E.

Also, we can and will choose θ0, θ∞ to be the identity on X × {1}, so that f is the identity there too.
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Notationally, we’ll write [E ] = [E, f ] ∈ K(X × S2); we can start with an E → X and such an f ,
an automorphism of E × T → X × T, to get a vector bundle on X × S2. For example, [C, λ] = [H∗],
[C, λn] = [H⊗(−n)], and [E, f · λn] = [E, f ] · [H⊗(−n)] in K(X × S2) (which one can check).

What this argument shows is the following.

Proposition 5.5. Any vector bundle on X×S2 is isomorphic to one of the form (E, f), and any two choices
of f are homotopic through normalized clutching functions.

Here, a normalized clutching function is one homotopic through the basepoint.
Now we have our clutching function, which is continuous, and replace it with a Laurent function.

Proposition 5.6.
(1) In K(X,S2), [E, f ] = [E, λ−Np] for some polynomial clutching function

p(x, λ) =
2n∑
k=0

ak(x)λk,

with ak(x) ∈ EndEx.
(2) Any two such choices are homotopic via a Laurent clutching function.

Proof. The proof will use the Laurent endomorphisms of E × T → X × T. If E = C, the proof is the
same proof with Poisson kernels at the start of the class; more generally, we’ll use a partition of unity {ρi}
subordinate to a cover {Ui} such that E|Ui is trivial. Then, f |Ui can be approximated by a Laurent `i, and
one can check that

∑
ρi`i is Laurent.

For (1), since the invertible matrices are an open set, then choose an ε > 0 such that Bε(f) contains
only invertible functions, and choose an ` Laurent such that ‖f − `‖C0(X×T) < ε, so that ` is invertible and
f ' ` by a straight-line homotopy. And we know clutching with homotopic functions doesn’t change the
isomorphism class of the vector bundle, hence also doesn’t change the K-theory class. �

Thus, we’ve gone from continuous to Laurent; now, we will go from Laurent to linear. Observe that
[E, f ] = [E,−λNp] = [H⊗N ]− [E, p].

Let p be a polynomial clutching function of degree at most n. Then, write

p(x, λ) =
n∑
k=0

pk(x)λk,

and set

Lmp =


1 −λ

1 −λ
. . . . . .

1 −λ
pn pn−1 . . . p1 p0

 .

This matrix of polynomials acts linearly on E⊕(n+1) × T→ X × T.

Proposition 5.7. [E⊕(n+1),Lnp ] = [E, p] + [E⊕n, 1].

Proof. The clutching function for the right-hand side is
1

. . .
1

p

 ,

and this is exactly the matrix you get if you diagonalize Lnp by elementary row and column operations. Thus,
they’re homotopic, and so have the same class in K-theory. �
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We’ll then make a basic spectral construction. Suppose T ∈ EndE has no eigenvalues on the unit circle
T ⊂ C. Then, take the contour integral

Q = 1
2πi

∫
|ω|=1

(ω − T )−1 dω,

which is in EndE. One can check that Q2 = Q, so it’s a projection, and QT = TQ. Thus, we can decompose
E = QE⊕ (1−Q)E, which we’ll denote E+ and E−, respectively. Since T commutes with Q, T = (T+, T−),
with T+ acting on E+, and similarly for T− on E−. This is analogous to the spectral theorem’s decomposition
of an operator into its generalized eigenspaces.

Proposition 5.8. Let [E, q] be a K-theory class with q(x, λ) = a(x)λ + b(x). Then, there is a splitting
E = E+ ⊕ E− such that [E, q] = [E+, λ] + [E−, 1].

Proof. Define

Q = 1
2πi

∫
|λ|=1

q−1 dq = 1
2πi

∫
|λ|=1

q−1 ∂q

∂λ
dλ.

Choose an α ∈ R>1 such that q(x, α) is an isomorphism for all x, which works because isomorphism is an
open condition. Then, compose with q(x, α)−1, so we can assume q(x, α) = id. Then, w = (1− αλ)/(λ− α)
preserves T and D0 as α→∞. Define q(λ) = (w− T )/(w+α) with T ∈ C0(X; EndE), and qT = Tq. Then,

Q = 1
2πi

∫
|w|=1

(w − T )−1 dw − (w + α)−1 dw,

but the last term goes away. Thus, this is the desired projection: q fails to be invertible exactly where T has
an eigenvalue. Denote q±(λ) = a±λ+ b±, and q+(λ) is invertible if λ ∈ D∞ and q−(λ) is if λ ∈ D0.

Thus, qt+ = a+λ+ tb+ and qt− = taλ− + b− are homotopies of clutching functions, so

[E, q] = [E+, q+] + [E−, q−]
= [E+, a+λ] + [E−, b−] = [E+, λ] + [E−, 1]. �

So if we have [E, p] with deg(p) ≤ n, then

[E, p] = [E⊕(n+1)],Lnp ]− [E⊕n, q],
and we just proved that a linear clutching function splits as

= [Vn(E, p), λ] + [E⊕(n+1), 1]− [Vn(E, p), 1]− [E⊕n, 1]
= [Vn(E, p)]⊗ ([H∗]− 1) + [E]⊗ 1,

where Vn(E, p) is the + part of the decomposition of E⊕(n+1) by q = Lnp . So we’ve gone from polynomial to
linear and then split it; this will allow us to define the inverse, check it’s well-defined and in fact the inverse,
and so on. But this is enough of a proof sketch to follow the references and work out the details. �

Even though the proof is confusing, all of the ideas are relatively elementary.

Lecture 6.

The K-theory of the Spheres: 9/15/15

Recall that last time, we mostly proved Theorem 5.1, but didn’t pin down our inverse. The details are
mostly in [5], as well as in the expositions in [4, 27]. We’ll then use it to prove Bott periodicity.9

Recall that the idea was to take a bundle E → X × S2 and decompose. Here’s the proof at the executive
summary level.

(1) Write it as (E, f) for E → X and f a clutching function, an automorphism of (E × T→ X × T).

9There are many proofs of Bott periodicity; there’s one in the coda of [37], which is probably well exposited.
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(2) Homotope f to a Laurent clutching function, which is canonical: for n ∈ Z, we get

an(x) =
∫
T

dθ
2πf(x, eiθ)e−inθ.

Notice f(x, eiθ) is in AutEx, but we’re not averaging in this group, just in EndEx, and therefore
there’s no guarantee that an is invertible. We can form

uN (x, λ) =
∑
|x|≤N

an(x)λn,

with N ∈ Z>0. This isn’t a priori invertible, but there’s some N0 (depending on f) such that if
N ≥ N0, then uN is invertible and homotopic to f through invertible clutching functions.

(3) If p is a polynomial clutching function of degree at most d on E, then we constructed a polynomial
clutching function Ldp on E⊕(d+1), and from this linear clutching function we extracted a bundle
Vd(E,P )→ X such that

[E, p] = Vd(E, p)⊗ ([H∗]− 1) + [E, 1]. (6.1)
in K(X × S2); here, [E, 1] = [E]⊗ 1.

This is all great, if we have a polynomial clutching function magically at the beginning. But from the
construction we also know the following.
(i) If p0 ' p1 through polynomial clutching functions, then Vd(E, p0) ' Vd(E, p1). This is our basic

homotopy invariance.
(ii) Vd+1(E, p) ∼= Vd(E, p); this depends more explicitly on the construction we gave last time. Notice how

this is consistent with (6.1).
(iii) Vd+1(E, λp) ∼= Vd(E, p)⊕ E.
That was all from last time; now, we’ll construct an inverse, check that it’s well-defined, and show that it’s
the inverse. The details of the proof from last time need some filling in, but this is something we’ll be able to
do.

Construction of the inverse. We’re going to cook up a ν : K(X × S2) → K(X)[t]/(1 − t)2. Given an
E → X × S2, choose an f such that E ∼= (E, f), where E = E|X×{1} → X. For N sufficiently large (greater
than an N0 depending on f), we have f ' uN = λ−NpN , where pN is a polynomial of degree at most 2N .
Then, define

νN (E, f) = [V2N (E, pN )](t−1 − 1)tN + [E]tN .
First, we must check that

(1) it’s independent of N given f , and then
(2) that it’s independent of f ,

so that we get a function in E .
For (1), we’ll use that pN+1 ' λpN via polynomial clutching functions of degree at most 2(N + 1) if N

is sufficiently large: multiplying by λ shifts all of the coefficients, so all that changes is the top-order term
λ2N+2 and the constant term a−1. Since these are invertible when N is sufficiently large, then we can go
from one to the other with a straight-line homotopy, which is polynomial. Then,

νN+1(E, f)[V2N+2(E, pN+1)](1− t)tN + [E]tN+1

= [V2N+2(E, λpN )](1− t)tN + [E]tN+1,

so using property (ii),
= [V2N+1(E, λpN )](1− t)tN + [E]tN+1.

Then, using property (iii),
= [V2N (E, p)](1− t)ttN−1 + [E]tN

= [V2N (E, p)](1− t)tN−1 + [E]tN

= νN (E, f).

Here, we used the fact that (1− t)t = 1− t in this ring, and so ν is independent of N for sufficiently large N .
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To show the independence of ν from f , we’ll make a truncation argument: if f0 and f1 are sufficiently
C0-close, then their truncations at N are also homotopy equivalent, because they’ll both be invertible at the
same time. Thus, this is locally constant on homotopy classes, and therefore constant on homotopy classes:
ν(E, f0) = ν(E, f1). In particular, ν factors through the homotopy class of f and therefore depends only on
E .

Now, we need to show that µ ◦ ν = idK(X×S2). Well, it was rigged to be the identity: look at (6.1)
and the definition of ν; you get back what you started with. In the opposite direction, to check that
ν ◦µ = idK(X)[t]/(1−t)2 , use the fact that ν is a K(X)-module homomorphism, and therefore some information
about tensor products factors through. But then we just have to check on the generators ν ◦ µ(tN ) for N ≥ 0.
This requires one more fact, that VN (C, 1) = 0, which also follows from what we did last time. �

Once again, this is a little more of a summary; it would be hard to give all of the details in lecture, and
you can work them out using these ideas and techniques.

Computing K(Sn). The rest of the lecture will deal with some elementary homotopy theory, useful not just
in K-theory but also in plenty of other parts of topology. We’ll use it to inductively calculate K(Sn) using
Theorem 5.1; note that Sn × S2 6= Sn+2, but we’ll be able to use smash products to do our bidding instead.

More specifically, S1 × S1 isn’t a sphere; it’s a torus. But if you collapse the fundamental rectangle of the
torus by two boundaries, you take (S1 × S1)/(S1 ∨ S1), which gives us S2, in a sense we’ll clarify. We’ll want
to generalize this to inductively construct n-spheres.
Definition 6.2.

(1) A pointed space (X,x) is a topological space X along with some point x ∈ X.
(2) A map of pointed spaces f : (X,x)→ (Y, y) is a continuous map f : X → Y such that f(x) = y. We

also require homotopies f : [0, 1]×X → Y to preserve the basepoint: f(x, t) = y for all t ∈ [0, 1].
Pointed spaces and their maps form a category, as well as those with additional properties, such as pointed

Hausdorff spaces, pointed CW complexes, and so on.
Recall that we have defined the reduced K-theory for any space X, given by K̃(X) = K(X)/ Im(K(pt)→

K(X)), where K(pt)→ K(X) is induced by the unique map π : X → pt. But if (X,x) is a pointed space, then
we have a splitting pt 7→ x (in particular, X is nonempty). So we have two pullbacks: x∗ : K(X)→ K(pt),
and π∗ : K(pt)→ K(X). Thus, we can split off a summand: K(X) ∼= k(X)⊕ π∗K(pt), where k(X) = kerx∗,
and the projection K(X)→ K̃(X) restricts to an isomorphism k(X)

∼=→ K̃(X).
In summary, for pointed spaces, we can take the reduced K-theory to be a subspace rather than a quotient

space, and specifically, the subspace that reduces to 0 at the basepoint.
This is a pretty important idea: when we’re making topology out of contravariant objects, we can more

generally consider the subgroup that restricts to zero at the basepoint. In K-theory specifically, vector
bundles can’t exactly restrict to 0, but we have that if E0, E1 → X, then [E0]− [E1] ∈ K(X) restricts to 0
at an x iff rankxE0 = rankxE1.

We can generalize this to subspaces A ⊂ X rather than basepoints.10 Then, we can look at things that
restrict to zero on A, and use these to define a more general reduced K-theory. This is powerful: for example,
if X is a CW complex, we get a filtration from its skeleton, X0 ⊂ X1 ⊂ · · · ⊂ X, and this induces a filtration
on K-theory.

Given two pointed spaces (X,x) and (Y, y), we can make a few useful constructions in the category of
pointed spaces out of them.
Definition 6.3.

(1) The wedge X ∨ Y = X q Y/(x ∼ y), which is a pointed space with the identified x and y as its
basepoint.

(2) The smash11 is X ∧ Y = (X × Y )/(X ∨ Y ); once again, there is a unique image of (x, b) and (a, y),
and this becomes our basepoint.

(3) The suspension ΣX = S1 ∧X. You can think of this as two cones on X collapsed by the unit interval.
The unique image of the old basepoint becomes the new basepoint. Sometimes, this is called the
reduced suspension of X.

10Well, the basepoint actually sits inside A, but that won’t matter so much.
11This can be confusing: in LATEX, ∧ is called “wedge,” and ∨ is called “vee.”
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(4) The cone CX = [0, 1] ∧ X, turned into a pointed space by taking 0 to be the basepoint of [0, 1].
Basically, we collapse to a point at 1; if X = S2, this is the familiar cone in R3.

A map extending over the cone is a null homotopy; the large number of ideas that can be stated in similar
terms illustrate that these can be very useful constructions.

Proposition 6.4. Let (X, a) be a compact Hausdorff pointed space and A ⊂ X be a subspace containing A.
Then, the sequence

A
� � i // X

q // // X/A, (6.5)
with i given by inclusion and q given by quotient, induces an exact sequence of abelian groups

K̃(X/A) q∗ // K̃(X) i∗ // K̃(A).

The images of a respectively in A, X, and X/A are the basepoints.

Proof. We’ll prove it in the case of CW complexes; for a more general proof, see [27].
The composition q ◦ i sends A to a point, so (q ◦ i)∗ = i∗ ◦ q∗ has image constant vector bundles, which

vanish in K̃(A). Thus, i∗ ◦ q∗ = 0.
If E → X restricts to be stably trivial on A, then after adding a constant bundle, we can assume E|A → A

is trivial. So choose a trivialization; then, clutching with it produces a bundle on X/A whose image under q∗
is isomorphic to E. In some sense, pt is attached to every point of A, and so we get the same fiber over every
point in A, and then can clutch in that way. Certainly, we get a family of vector spaces, but we actually get
a vector bundle E → X/A; local triviality is only nontrivial at the basepoint (which is in a sense all of A),
which follows because it’s true in a deformation retract neighborhood, and such a neighborhood exists for
CW complexes. �

Now, we can employ a standard construction called the Puppe sequence: we’ll extend (6.5) to the sequence

A
i // X

q // X/A // ΣA.

This is because X/A ' X ∪A CA (since replacing A with CA makes A within X null-homotopic, so we’re
taking the quotient by it), and ΣA ' X ∪A CA/X by definition, and we can do this by attaching a cone on
X (this may be confusing; it helps to draw a picture). Thus, we can extend further to

A
i // X

q // X/A // ΣA Σi // ΣX Σq // Σ(X/A) // Σ2A // · · ·

This sequence can be made from any contravariant functor of geometric objects.

Corollary 6.6. There exists a long exact sequence

· · · // K̃(Σ(X/A)) // K̃(ΣX) // K̃(ΣA) // K̃(X/A) // K̃(X) // K̃(A). (6.7)

This can be quite computationally useful, as in the following example.

Lemma 6.8. Restriction induces an isomorphism K̃(X ∨ Y )→ K̃(X)⊕ K̃(Y ) for pointed spaces X and Y .

Proof. We’ll apply (6.7) to x = y ∈ X ∨ Y ⊂ X × Y . We have projections π1, π2 : X ∨ Y ⇒ X,Y , and then
π∗1 ⊕ π∗2 is a section for the map K̃(X × Y )→ K̃(X ∨ Y ) (and similarly, there’s a section Σns at every level
in the long exact sequence). Thus, the long exact sequence breaks into a list of short exact sequences, giving
us the desired isomorphisms. �

Corollary 6.9. K̃(X × Y ) ∼= K̃(X)⊕ K̃(Y )⊕ K̃(X ∧ Y ).

We’ll be able to use this to construct a product map K̃(X)⊗K̃(Y )→ K̃(X ∧Y ): if u ∈ X and v ∈ Y , then
π∗1u · π∗2v vanishes on X ∨ Y ⊂ X ∧ Y , and so π∗1u · π∗2v ∈ K̃(X ∧ Y ) in the decomposition in Corollary 6.9.

There’s a pointed version of the µ we constructed when proving Theorem 5.1.

Theorem 6.10. The map β : K̃(X)→ K̃(Σ2X) = K̃(S2 ∧X) sending u 7→ ([H]− 1) · u is an isomorphism.

All of this is written up more carefully in [27]; next time, we’ll turn K-theory into a cohomology theory
and use it to prove a result about division algebras.
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Lecture 7.

Division Algebras Over R: 9/17/15

“I’ve been posting problems. . . they’re not just for my health.”
First, we’ll discuss some points that were rushed through last time. If (X,x) is a pointed space, then
K(X) ∼= K̃(X)⊕K({x}), and the latter summand is infinite cyclic. We will want to think of vector bundles
that vanish at the basepoint, so we associate to a class [E] the class ([E]− [Ex])⊕ [Ex] (i.e. subtract the
constant bundle formed from the fiber at x).

Then, Proposition 6.5 tells us that if A ↪→ X � X/A and X is compact, then we get an exact sequence
K̃(A) ← K̃(X) ← K̃(X/A), assuming there exists a deformation retraction of a neighborhood of A in X
back to A, for example when X is a CW complex and A is a subcomplex. Then, we converted this into a
longer sequence called the Puppe sequence, using suspensions of A, X, and A/X.

Proposition 7.1. If X and Y are compact Hausdorff, the sequence X ∨Y → X×Y → X ∧Y , which induces
a split exact sequence

0 // K̃(X ∧ Y ) // K̃(X × Y ) // K̃(X ∨ Y ) // 0.

Since K̃(X ∨ Y ) ∼= K̃(X)⊕ K̃(Y ), this gives us an isomorphism K̃(X × Y ) ∼= K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ).

Let π1 : X × Y → X and π2 : X × Y → Y be the canonical projections; then, we get an external product
π∗1u·π∗2v for u ∈ K̃(X) and v ∈ K̃(Y ). This product restricts to 0 in X∨Y , and hence by the above proposition
is pulled back from a unique u ∗ v ∈ K̃(X ∧ Y ); thus, we have a product ∗ : K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ).

By FOILing, the following diagram commutes.

K(X)⊗K(Y )
∼= //

∗
��

(K̃(X)⊗ K̃(Y ))⊕ K̃(X)⊕ K̃(Y )⊕ Z

(∗,id,id,id)
��

K(X × Y )
∼= // K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z

And we proved that if X is compact Hausdorff, then × : K(S2)⊗K(X)→ K(S2 ×X) is an isomorphism,
and therefore β : K̃(X)→ K̃(Σ2X) sending u 7→ ([H]− 1) ∗ u is an isomorphism. Then, by induction, we get
our nice result.

Corollary 7.2.
K̃(Sn) =

{
0, n odd
Z, n even.

There are many things called Bott periodicity; this one is equivalent to Bott’s original one, which used
Morse theory and calculated πn−1 U. Things are slightly different in the real case, which we will be able to
prove as well.

We’ll spend the rest of this lecture and part of next lecture proving the following statements.

Proposition 7.3. For an n ∈ Z>0, (1) =⇒ (2) =⇒ (3) =⇒ (4) in the following.
(1) Rn admits the structure of a division algebra.
(2) Sn−1 is parallelizable.
(3) Sn−1 is an H-space.
(4) There exists an f : S2n−1 → Sn of Hopf invariant 1.

We’ll define H-spaces, division algebras, and the Hopf invariant shortly. Then, we can use this to get a
nice result.

Theorem 7.4. If there exists an f : S2n−1 → Sn of Hopf invariant 1, then n = 1, 2, 4, or 8.

Corollary 7.5 (Milnor [34], Kervaire [30]). Rn admits a divison algebra structure iff n = 1, 2, 4, or 8.

Now, what do all of these words mean?

Definition 7.6. A unital division algebra is a vector space A, a linear map m : A×A→ A, and an e ∈ A
such that



7 Division Algebras Over R: 9/17/15 23

(1) m(e, –) = m(–, e) = idA.
(2) m(x, –) and m(–, y) are bijective maps A→ A when x, y 6= 0.

This is required to be neither associative nor commutative.
It’s quite striking that, yet again, we’re proving a theorem from pure algebra using topology! But for

existence, we will have to do a little algebra.
When n = 1, we have R, and when n = 2, we have C, both familiar fields. When n = 4, we have the

quaternions H = R{1, i, j, k} with multiplication relations i2 = j2 = k2 = 1, ij = k, and ji = −k. This
multiplication is associative, but not commutative, so H isn’t a field. Finally, when n = 8, we have the
octonions or Cayley numbers O, an eight-dimensional vector space over R with basis {1, e1, e2, . . . , e7}, with a
kind of complicated multiplication table given in Figure 1. This is in some sense projective geometry over F2:
there’s a lot of interesting math to be said about this structure, and a good article to begin reading is [9].

Figure 1. The Fano plane, a way to remember the rules of octonion multiplication. The
rule is, e2

i = −1, and to determine ei · ej , choose the third point on the line containing
them, and add a minus sign if you went against the direction of the arrows. For example,
e5 · e2 = e3 and e7 · e3 = −e1. Source: [9].

Definition 7.7. An H-space is a pointed topological space (X, e) together with an unpointed map g :
X ×X → X such that g(e, –) = g(–, e) = idX .

This is sort of a very lax version of a topological group, with no associativity.
Finally, we’ll get to the Hopf invariant later.

Partial proof of Proposition 7.3. Let e1, . . . , en be the standard basis of Rn. Then, for any x ∈ Sn−1,
(x · e1)e1, . . . , (x · en)en is a basis of Rn, so use the Gram-Schmidt process to convert this into an orthonormal
basis ξ1(x), . . . , ξn(x) of Rn. (For example, ξ1(x) = x · e1/‖x · e1‖.) Then, observe that Sn−1 → Sn−1 sending
x 7→ ξi(x) is a diffeomorphism, so (1) =⇒ (2).

For (2) =⇒ (3), suppose η2(x), . . . , ηn(x) is a basis of TxSn−1; then, use Gram-Schmidt again to get an
orthonormal basis ξ2(x), . . . , ξn(x) of TxSn−1, and therefore x, ξ2(x), . . . , ξn(x) is an orthonormal basis of R.

Then, compose with a fixed orthogonal transformation so that (e1, ξ2(e1), . . . , ξn(e1)) = (e1, e2, . . . , en).
Define α : Sn−1 → SO(n) by αx(e1, . . . , en) = (x, ξ2(x), . . . , ξn(x)), and g : Sn−1 × Sn−1 → Sn−1 by
x, y 7→ αx(y). Since (e1, y) 7→ y and (x, e1) 7→ x, then this gives us an H-space structure. �

The following theorem from the 1940s was originally proven with cohomology, but our K-theoretic proof
of Theorem 7.4 will be a little cleaner.

Theorem 7.8 (Hopf). If Rn is a division algebra, then n is a power of 2.

Proof. Multiplication m : Rn × Rn → Rn induces a map g : Sn−1 × Sn−1 → Sn−1 given by sending x, y 7→
(x·y)/‖x·y‖. This sends antipodal points to antipodal points, so we get a quotient g : RPn−1×RPn−1 → RPn−1.
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We’ll use H•(RPn−1;F2); specifically, we’ll use the cup product. This is a very powerful tool, but it’s
considerably more obscure than the K-theoretic product. Specifically, we have that H•(RPn−1;F2) ∼=
F2[x]/(xn), with deg x = 1.

For our map g, let x, y, and z be the respective generators of our three copies of RPn−1 (x and y for the
domain, and z for the range). Cohomology gives us a pullback g∗, and in fact g∗(z) = x+ y: z must be sent
to another 1-dimensional class, which is therefore generated by some projective lines. Looking at exactly
what g is doing, we can conjugate the second to the identity, and so we get x+ y in cohomology.12 Thus, by
the binomial theorem,

0 = g∗(zn) = (x+ y)n

= xn +
n−1∑
k=1

(
n

k

)
xn−kyk + yn

=
n−1∑
k=1

(
n

k

)
xn−kyk,

which lies in H•(RPn−1 × RPn−1;F2). By the Künneth formula, this is isomorphic to F2[x, y]/(xn, yn). In
particular, the monomials xk and yk are all independent, and since their sum is zero mod 2,

(
n
k

)
= 0 (mod 2)

for each k, and Pascal’s triangle tells us that this only happens when n is a power of 2. �

Let’s talk about the Hopf invariant now.

Definition 7.9. Given a map f : S2n−1 → Sn, we can take the cone of f , Cf = Sn ∪f D2n.13 For this map
between spheres, Cf has the structure of a CW complex with cells e0, en, and e2n, and only depends on the
homotopy type of f .

Using the Puppe sequence (collapsing Y gives us ΣX, which in this case is S2n), we get a sequence

S2n−1 // Sn // Cf // S2n. (7.10)

Focusing on the latter three terms, if n > 1, we can deduce that H•(Cf ;Z) ∼= Z · bm ⊕ Z · a2n (i.e. the
generators have degrees n and 2n, respectively). The ring structure means that b2 = ha for some h ∈ Z. This
h is called the Hopf invariant, and is determined up to sign.

By fixing orientations, we can pin down a sign for h, but we won’t need to.
We can give an alternative definition of the Hopf invariant using K-theory. Applying K̃ to (7.10) when

n = 2m is even produces a split short exact sequence (because K̃(S2m+1) = 0):

0 // K̃(S4m) // K̃(Cf ) // K̃(S2m) // 0,

where the first map sends ([H]−1)2m 7→ α and the second map sends β to a generator of K̃(S2m), ([H]−1)m.
By exactness, this means β2 = hα for some h ∈ Z. However, h isn’t well-defined; if β 7→ β + kα, then
β2 7→ β2 + 2kαβ = (h+ 2k`)α, where αβ = `α. We can see that h mod 2 is well-defined, though, and that’s
all we needed.

If n is odd, then by degree considerations, b2 = 0 in H•(Cf ;Z), and so the Hopf invariant is necessarily
zero.

The story behind these proofs is kind of tangled; Milnor and Kervaire. in [34] and [30], respectively, figured
out the proof of Theorem 7.4 and therefore the corollary about division algebras. Milnor wrote to Bott about
it in [14], and Bott was nicely surprised, so these letters were published. Then, some of the later results
were published by Adams and Atiyah in [2]; one of the proofs nicely fit on a postcard. Some of these proofs
depended on operations on mod 2 cohomology called Steenrod squares.

For (3) =⇒ (4) in Proposition 7.3, suppose g : S2m−1 × S2m−1 → S2m−1 gives S2m−1 an H-space
structure. Then, we can view

S4m−1 = ∂(D4m) = ∂(D2m ×D2m) = (∂D2m ×D2m) ∪∂D2m×∂D2m (D2m × ∂D2m).

12In homology, the induced map sends generators to generators; this is just the dual statement.
13More generally, if f : X → Y is a continuous map, Cf = Y ∪f CX; this is defined without basepoints.
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Thus, we can define an f : S4m−1 → S2m by extending from S2m−1 on each cone, and we’ll determine its
Hopf invariant next time.

Of course, this can all be found in [27].

Lecture 8.

The Splitting Principle: 9/22/15

“If this were a teaching class, I would tell you to not do what I just did.”
Recall that we were in the middle of proving Proposition 7.3, which is instrumental in the K-theoretic proof
that the only division algebras over R are R, C, H, and O; the key is linking in Theorem 7.4.

Soon, we’ll start talking about Fredholm operators, which lead to another proof of Bott periodicity, and
then move into equivariant topics, including Lie groups.

Definition 8.1. If (X,A) is a pair with A ⊂ X, the relative K-theory K̃(X,A) = K̃(X/A), assuming A is
nonempty.

Proof of (3) =⇒ (4) in Proposition 7.3. Let n = 2m and g : S2n−1 × S2n−1 → S2m−1; it’s easy to see that
if n is odd, the Hopf invariant has to be 0, so we’re assuming n is even.

This argument is straight out of [27]; read the details there (or check out the giant diagram).
We want to construct a map f : S4m → S2m by writing S4m = ∂(D4m) = ∂(D2m ×D2m), and since ∂

obeys the Leibniz rule, this is homeomorphic to D2m × ∂D2m ∪∂D2m×∂D2m ∂D2m ×D2m.
We can write S2m as the suspension of S2m−1; thus, we can draw this as a cone with cone parameter t; to

construct f , take a point on ΣS2m−1 with parameter t, figure out where its projection down to S2m−1 goes,
and then send to the point above that in S2m = ΣS2m−1, but with the same parameter. Thus, we can use
the decomposition from the previous paragraph to realize this as a map f : S4m−1 → S2m.

Let Cf denote the cone of f , which entails attaching a 4m-cell. Thus, we get S2m → Cf → S4m, which
as we proved gives us a short exact sequence K̃(S2m) ← K̃(Cf ) ← K̃(S4m); since the even-dimensional
K-theory of spheres is infinite cyclic, then we’ve shown that K̃(Cf ) is also infinite cyclic, by looking at the
diagram, so if β generates it, then β2 7→ hα, where α generates K̃(S2m). It turns out (though we didn’t prove
it), this is independent of the lift we chose, and in this specific case, h = 1, courtesy of the following diagram.

K̃(Cf )⊗ K̃(Cf ) ∗ // K̃(Cf )

K̃(Cf , D2m
− )⊗ K̃(Cf , D2m

+ ) ∗ //

∼=

OO

Φ∗⊗Φ∗
��

K̃(Cf , S2m)

OO

∼= Φ∗
��

K̃(D2m ×D2m, ∂D2m ×D2m)⊗ K̃(D2m ×D2m, D2m × ∂D2m) ∗ //

∼=
��

K̃(D2m ×D2m, ∂(D2m ×D2m))

K̃(D2m × {e}, ∂D2m × {e})⊗ K̃({e} ×D2m, {e} × ∂D2m)

∼=
∗

22

Here, the blue arrow is given by excision; in each argument, we’ve excised out a contractible set, so nothing
changes.

What we have to prove is that β2 is a generator, so that β2 = α. This diagram commutes, which is a fun
exercise, and follows because the product of vector bundles is natural; then, this commutativity, and the
isomorphisms in the diagram, allow us to show that in the uppermost map, β ⊗ β 7→ α. �

The splitting principle. Now, we’ll switch topics. The question we want to answer is: given a complex
vector bundle E → X, can we write E as a direct sum of line bundles? Sometimes, the answer is yes, e.g.
when X = S2. However, when X = S4, isomorphism classes of rank-2 vector bundles over S4 is isomorphic
to [S3,U2], but the isomorphism classes of line bundles L→ S4 form [S3,U1] = 0.
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Returning to rank-2 bundles, SU2 ↪→ U2 creates a map f : [S3,SU2] ↪→ [S3,U2], and SU2 ∼= Sp1
∼= S3,

as unit quaternions of length 1, and we know there are homotopically nontrivial maps S3 → S3. That f is
injective comes from the fact that U2 → SU2 is a 2 : 1 covering space.

We can actually produce a specific example: there’s a Hopf fibration S3 → S7 → S4 by choosing the
vectors with unit norm {(q1, q2) : |q1|2 + |q2|2 = 1}. Thus, we get S7 ⊂ H2, with fibers S3, and projecting
down to S4 = HP1 produces the desired fibration.14 This fiber bundle satisfies Steenrod local triviality; and
when you pull it back by a continuous map, it can only untwist; it can’t twist more. Writing as a sum of line
bundles would be a kind of untwisting.

So we want to construct a map p : F(E)→ X (where F(E) is the flag manifold) such that
(1) the vector bundle p∗E → F(E) is isomorphic to a direct sum of line bundles in the diagram

p∗E //

��

E

��
F(E) p // X,

(2) and that the map p∗ : K(X) → K(F(E)) is injective. This injectivity will allow us to push our
isomorphism into the vector bundle.

This is known as the splitting principle; it’s a very important argument in the theory of characteristic classes,
and we’re going to be doing something quite similar, though using K-theory in place of cohomology as the
residence of the classes. This is a very common manuever in mathematics.

First, let’s simplify the problem. We first want a map q : P(E)→ X such that q∗E ⊃ L is a line bundle.
This helps us because then E ∼= L⊕ E/L, as the sequence splits; then, we have reduced the problem.

To do this, we need to make a choice of a line in each Ex. The mathematician’s maneuver is to make all
choices. Let q : P(E)→ X be defined by sending q−1(x) to the space of lines in Ex, which works because
P(Ex) = P(E)x.

When we do this for all x, we describe q as a fiber bundle. Then, the pullback gives the data of a line and
a point in the bundle, and working with this, we get the desired line bundle L. Thus, the pullback splits as
0→ L→ q∗E → P(E)→ 0.

We’d like to make it a complement, rather than just a quotient; if we have a Hermitian metric, this is easy,
as we just take the orthogonal complement. We might not have this given, in which case we need to make a
choice. Or, again, all choices.

Given a one-dimensional subspace L of a vector space E, what can we say about the space of possible
complements to L? If W is one complement, we can think about graphs: we can identify W with E/L,
and so given a map in Hom(E/L,L), it’s also a map W → L, and this has a graph, which is a complement
to L. Moreover, all such complements can be realized in this way. These complements are splittings of
0 → L → E → E/L → 0, so they form an affine space, and one can work this way. Of course, it’s usually
simpler to choose a metric on E so that everything works.

Now we can take complements, so we can split off bundles until we run out: first, we get

L1 ⊕ E1

��

// E

��
P(E) // X

and then repeating, we get another line bundle L2, and so on until we run out, and so E has been written as
a direct sum of line bundles.

K-theory as a cohomology theory. To get the second criterion, that p∗ is injective, we need to discuss
K-theory as a cohomology theory. We’ll work in the category of pairs of pointed compact Hausdorff spaces
(X,A) with A ⊂ X.

Definition 8.2. For n ∈ Z≥0, define K̃−n(X,A) = K̃(Σn(X/A)).

14If you replace H2 with C2, you get the more familiar Hopf fibration S1 → S3 → S2.
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If n = 0, K̃0(X,A) = K̃(X,A). We can also take A = ∅; X/∅ = X+, defined to be X q pt, and we can
write K−n(X) = K̃−n(X+) = K̃(Σn(X+)), and K−n(X,A) = K̃(X,A) if A 6= ∅.

Thus, our short exact sequence

K̃−n(X,A) // K̃−n(X) // K̃−n(A)

becomes by the Puppe sequence a long exact sequence

· · · // K̃−n(X,A) // K̃−n // K̃−n(A) // K̃−n+1(X,A) // K̃−n+1(X) // · · · (8.3)

Since we haven’t defined K̃n(X) for n > 0, this sequence terminates at K̃0(A). However, Bott periodicity
creates a map β : K̃−n(X,A)→ K̃−n+2(X,A) = K̃−n(S2∧X/A) by [E] 7→ ([H]−1)∗E. Thus (8.3) becomes
a hexagon.

K̃−n(X,A) // K̃−n // K̃−n(A)

��

K̃−n+2(X,A)
β
OO

K̃−n+1(A)

OO

K̃−n+1(X)oo K̃−n+1(X,A)oo

Now, we can define K̃n(X,A) = K̃n−2(X,A) for any n ∈ Z. For general cohomological reasons, it makes
sense to think of this as graded in Z, rather than Z/2. Then, K•(pt) is a Z-graded ring, and in some
sense is the “ground ring” of this cohomology theory. In fact, K•(pt) = Z[u, u−1], with deg(u) = 2, as
u−1 = [H] ∈ K−2(pt) ∼= K̃(S2).

A useful fact is that every map in the long exact sequence is compatible with the K(X)-module structures
on K(A) and K(X,A).

The second part of the splitting principle (whose proof can be found in [27]), is to prove that for
q : P(E)→ X, the pullback q∗ : K(X)→ K(P(E)) is injective. We’ll give part of the proof next time; it’s a
more sophisticated example of familiar arguments from algebraic topology. Ultimately, by the Leray-Hirsch
theorem, K(P(E)) is a free K(X)-module.

The Adams operations. Analogous to the Steenrod operations in cohomology, we have Adams operations
in K-theory.

Theorem 8.4. For k ∈ Z≥0 and X a compact Hausdorff space, there exists a unique a ring homomorphism
ψk : K0(X) → K0(X) natural in X and satisfying ψk([L]) = [L⊗k] = [L]k for all line bundles L → X.
Moreover, ψk satisfies the following properties.

(1) ψkψ` = ψk+`.
(2) If p is prime, ψp(x) ≡ xp mod p for x ∈ K(X).
(3) ψk is multiplication by km on K̃(S2m).

Proof. By the splitting principle, we can reduce to direct sums of line bundles, by passing back to the flag
manifold F(E). If E =

⊕r
i=1 Lk, then ψk([E]) = [L1]k + · · ·+ [Lr]k ∈ K(F(E)), which certainly exists and is

unique, and one can check that it descends to X.
Now we need to check all these properties. (1) is trivial: taking the sum of a bunch of kth powers followed

by `th powers gives (k + `)th powers. For (2), set xi = [Li], so that

ψp(x1 + · · ·+ xr) = xp1 + · · ·+ xpr

≡ (x1 + · · ·+ xp)p (mod p).

For (3), when m = 1,

ψk([H]− 1) = [H]k − 1
= (1 + x)k − 1 = (1 + kx)− 1 = kx,

since in K(S2), the basic relation is x = [H]− 1, so x2 = ([H]− 1)2 = 0. �
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The proof that this map descends from F(E) to E will be given next time; we’ll also talk more about the
splitting principle and characteristic classes.

But now, we can give the postcard proof of Theorem 7.4 by Adams and Atiyah in [2].

Proof of Theorem 7.4. Suppose f : S4m−1 → S2m has Hopf invariant one, and take Cf = S2m∪f D4m. Then,
we have K̃(S4m)→ K̃(Cf )→ K̃(S2m), given respectively by maps ([H]− 1)2m 7→ α and β 7→ ([H]− 1)m.

We know that ψk(α) = k2mα and ψk(β) = kmβ + µkα, with µk ∈ Z, so ψ2(β) = 2mβ + µ2α ≡ µ2α
(mod 2), but this is also β2 (mod 2), and this is hα. Thus, µ2 is the Hopf invariant.

Since ψ2ψ3(α) = ψ3ψ2(α), then 2m(2m−1)µ3 = 3m(3m − 1)µ2; the right-hand side is odd because we
wanted the Hopf invariant to be odd, and 2m has to divide it, so 2m | 3m − 1, which (one can check) implies
m is one of 1, 2, 4, or 8. �

Lecture 9.

Flag Manifolds and Fredholm Operators: 9/24/15

“I see confused faces. . . speak now.”
Next week, the professor will be gone, and Tim Perutz will deliver two lectures about Morse theory and its
use in a proof of Bott periodicity. But today, we’ll finish talking about flag manifolds and then introduce
Fredholm operators, which we’ll talk about for a few weeks.

Last time, we promoted K-theory to a cohomology theory; the following result illustrates how one might
use that.

Proposition 9.1. If n ∈ Z>0, then K(CPn) = K0(CPn) is a free abelian group of rank n + 1, and as a
ring K(CPn) ∼= Z[x]/(xn+1) under the identification x 7→ [L] − 1, where [L] is the K-theory class of the
tautological bundle L→ CPn.

Proof. We’ll provide a proof for the group structure; then, check out [27] for the ring structure. The proof
will proceed on induction on n, and also show that Kodd(CPn) = 0.

We have CPn−1 ↪→ CPn by attaching a single 2n-cell (realizing it as a subcomplex), so we have a sequence
CPn−1 ↪→ CPn � S2n, and therefore the following long exact sequence.

K̃−1(CPn−1) // K̃0(S2n) // K̃0(CPn) // K̃0(CPn−1) // K̃1(S2n) // · · ·

But K̃−1(CPn−1) = 0 by hypothesis, and K̃1(S2n) = 0 by our previous computations, so this is a short exact
sequence. We also know that K̃0(S2n) = Z, and by the inductive hypothesis, K̃0(CPn−1) is free of rank n− 1,
so this sequence simplifies to a short exact sequence of abelian groups.

0 // Z // K̃0(CPn) // Zn−1 // 0.

Thus, K̃0(CPn) is free of rank n.
For the second half of our inductive assumption, take the following part of the long exact sequence.

K̃1(S2n) // K̃1(CPn) // K̃1(CPn−1),

but we already know that K̃1(S2n) = 0 and K̃1(CPn−1) = 0, so K̃1(CPn) = 0. �

The result for rings involves figuring out where generators go, and isn’t too much more involved.

Theorem 9.2 (Leray-Hirsch). Let p : E → X be a fiber bundle with fiber F , where E is compact Hausdorff
and X is a finite CW complex. Suppose K•(F ) is a free abelian group with basis f1, . . . , fN and we have
c1, . . . , cN ∈ K•(E) with ci|Ex = fi for all x ∈ X. Then, K•(E) ∼= K•(X)[c1, . . . , cn] as a K•(X)-module.

Proof. Let X ′ ⊂ X be a subcomplex, and let [C•]q denote the qth degree of the complex C•. Then, we have
the following commutative diagram, where E ′ = p−1(X ′).

· · · // [K(X,X ′)⊗K(F )]q

Ψ
��

// [K(X)⊗K(F )]q //

Ψ
��

[K(X ′)⊗K(F )]q //

Ψ
��

· · ·

· · · // Kq(E , E ′) // Kq(E) // Kq(E ′) // · · ·

(9.3)
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Here,
Ψ
(∑

xi ⊗ fi
)

=
∑

p∗(xi)ci
for xi ∈ K•(X).

The rows in (9.3) are exact: the top sequence is obtained from the long exact sequence for X ′ ⊂ X by
tensoring with a free abelian group, and the bottom sequence is the long exact sequence for E ′ ⊂ E . Moreover,
the diagram commutes, which you can check from the description of Φ, and the proof written out more
explicitly in [27].

We’ll use a typical proof technique: since there are only finitely many cells, we can induct on dimX plus
the number of cells in each dimension in order to show that Ψ is an isomorphism.

The inductive step is X = X ′ ∪f Dn, where f : Sn−1 → X ′. We’ll want to apply the five lemma to (9.3);
on the right, we have Ψ acting on degree q − 1, so we get a bijection by the inductive assumption, and on the
left, the attaching map f gives us K(X,X ′) = K(Dn, Sn−1), and therefore a description

[K(X,X ′)⊗K(F )]q
∼= //

Ψ
��

[K(Dn, Sn−1)]q

Ψ
��

Kq(E , E ′)
∼= // K(Dn × F, Sn−1 × F ).

(9.4)

In other words, we’ve reduced to the following box:

· · · // [K(Dn, Sn−1)⊗K(F )]q

Ψ
��

// [K(Dn)⊗K(F )]q //

Ψ
��

[K(Sn−1)⊗K(F )]q //

Ψ
��

· · ·

· · · // Kq(Dn × F, Sn−1 × F ) // Kq(Dn × F ) // Kq(Sn−1 × F ) // · · ·

Once again, the rows are exact and the diagram commutes by (9.3), but this time, Dn is contractible, so the
blue arrow is an isomoprhism; then, the inductive assumptions give us the other isomorphisms we need for
the five lemma, and therefore we get that the right-hand arrow in (9.4) is an isomorphism. Thus, we can
apply the five lemma to (9.3), proving the theorem. �

Remark 9.5. The same proof works for H∗(–, R) for coefficients in any ring R, and its use in the following
discussion on splitting sequences generalizes. We can also remove the assumption that X is a CW complex,
though this requires more highbrow techniques such as spectral sequences.

We’ll use this to understand how complex subbundles decompose into line bundles. Let E → X be a
complex bundle, and split off a line bundle L1, so E ∼= L1 ⊕ E1 → P(E). The fibers of P(E)→ X are CPn,
which has free K-theory as we saw above, so we can apply the Leray-Hirsch theorem to the splitting principle.

We also talked about the Adams operations last time. Suppose we have a vector bundle E → X and
p : F(E)→ X, where p∗E ∼= L1 ⊕ · · · ⊕ Ln, and we have the diagram

F(E)

p

��

p∗Eoo

��
X E.oo

We want to show that for all k ∈ Z>0, L⊗k1 ⊕ · · · ⊕L⊕kn = Lk1 + · · ·+Lkn has a K-theory class which descends
to X.

When n = k = 1, this is silly, so let’s consider n = k = 2. Here,
[L2

1 + L2
2] = [(L1 + L2)2]︸ ︷︷ ︸

[E]2=[E⊗E]

− 2[L1 ⊗ L2].︸ ︷︷ ︸
2[Λ2E]

Both of these factors descend to E, so we’re good. This relies on a useful fact from linear algebra: there’s a
canonical isomorphism Λ2(L1 ⊕ L2) ∼= L1 ⊗ L2.

To see how beautiful K-theory is as opposed to singular cohomology, consider replacing Li by its Chern
class c1Li ∈ H2(F(E);Z). This involves a nontrivial descent argument, but the exterior powers in K-theory
make the argument more smooth (heh) and more geometric.
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For the general argument, recall that Z[x1, . . . , xn]Symn ∼= Z[σ1, . . . , σn], where σi is the ith symmetric
polynomial:

σj =
∑

i1<···<ij

xi1 · · ·xij .

For example, when n = 3,
σ1 = x1 + x2 + x3

σ2 = x1x2 + x1x3 + x2x3

σ3 = x1x2x3.

Crucially, σj(L1, . . . , Ln) = p∗(ΛjE), for which the descent argument goes as in the n = k = 2 case. But
we wanted it for sk = xk1 + · · ·+ xkn. Thankfully, this is a classical problem, and the solution is the Newton
polynomials: s1 = σ1, s2 = σ2

1 − 2σ2, and in general,
sk − σ1sk−1 + σ2sk−2 − · · ·+ (−1)k−1σk−1s1 + (−1)kkσk = 0.

These ideas are very similar to the theory of characteristic classes for integral cohomology, and similar descent
arguments happen.

Another Approach. So far, we’ve represented an x ∈ K(X) as the difference between two classes corre-
sponding to complex vector bundles (or real vector bundles for KO(X)). But we’d like a more flexible way to
use this in geometry, since not everything is a difference of two vector bundles. This is a very important
principle for applying algebraic topology to geometry: the greater number of ways you have to realize your
objects geometrically, the more powerful your theory is: for example, cohomology shows up whenever you
have a CW structure on a topological space, but if you know that de Rham cohomology agrees, then you can
use the same ideas in different places to simplify your proofs. Similarly, we want to make K-theory more
flexible.

Let H0 and H1 be complex vector spaces. Then, a T : H0 → H1 can be extended to the exact sequence

0 // KerT // H0 T // H1 // cokerT // 0.
The cokernel is cokerT = H1/T (H0).

If H0 and H1 are finite-dimensional, we want to take an alternating sum, and have it equal to zero for an
exact sequence. More generally, for an exact sequence

0 // E0 // E1 // E2 // · · · // EN // 0,

we have two alternating-like results:
N∑
i=0

(−1)i dimEi = 0

N⊗
i=0

(detEi)⊗(−1)i ∼= C.

The latter is canonical.
If the Ei are vector bundles over a compact Hausdorff space X, this implies that

∑N
i=0(−1)i[Ei] = 0. For

example, if X = R and H0 = H1 = C, we can set x ∈ X, Tx : C→ C as multiplication by x. Then, the exact
sequence degenerates except when x = 0, where it jumps. There, the K-theory isn’t given by a difference of
vector bundles. . . because R isn’t compact.

This is a good motivation to generalize: we can allow H0 and H1 to be infinite-dimensional and approach
this from the perspective we’ve outline above. However, we’ll still require that the kernel and cokernel are
finite-dimensional. A T with that stipulation is called a Fredholm operator, and we’ll hope to build a K-theory
from these operators.

There are a couple wrinkles we’ll have to address, though.
• First, for infinite-dimensional vector spaces, we have topology and not just algebra: we want to talk

about continuous functionals, not just linear ones.
• We need to show that the Fredholms define K-theory classes when X is compact and Hausdorff.
• Then, we’ll extend K(X) using Fredholm operators to noncompact X.
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• Finally, we’ll show these make sense, by using them to prove Bott periodicity. This will bring Clifford
algebras into the story, which are quite important.

We’ll spend the next four lectures (not counting the two next week, where the professor is absent) on these
topics. Two useful references for this section are [4, 36].

So what kind of infinite-dimensional spaces are we going to consider? Norms give us topology, and inner
products give us angles (and therefore geometry). So we’ll use infinite-dimensional inner product spaces;
specifically Hilbert spaces: a vector space equipped with a bilinear (or sesquilinear in the complex case),
nondegenerate pairing and that is complete.
Definition 9.6. If H0 and H1 are Hilbert spaces, a linear map T : H0 → H1 is bounded if there exists a
C > 0 such that for all ξ ∈ H0, |Tξ|H1 ≤ C|ξ|H0 .

The following fact and the previous definition are considerably more general than just Hilbert spaces.
Fact. Let H0 and H1 be Hilbert spaces. Then, a linear T : H0 → H1 is bounded iff it is continuous.

In this case, we may define the operator norm ‖T‖ to be the infimum of the C that bound T . This makes
Hom(H0, H1), the set of continuous linear maps, into a Banach space (a complete normed space); in general
we don’t have an inner product, and we can show that if T1, T2 ∈ Hom(H0, H1), then ‖T2 ◦ T1‖ ≤ ‖T1‖‖T2‖.
This makes Hom(H0, H1) into a structure called a Banach algebra.

We’ll define Hom(H0, H1)× ⊂ Hom(H0, H1) to be the subspace of invertible elements, which it turns out
are also homeomorphisms.
Theorem 9.7 (Open mapping theorem).

(1) If T : H0 → H1 is bounded and bijective, then T−1 is bounded.
(2) Hom(H0, H1)× ⊂ Hom(H0, H1) is open (i.e. invertibility is an open condition).
The first part is a standard theorem in functional analysis, and (2) is a fairly easy standard argument.

We’ll also use the following theorem.
Definition 9.8. A vector space is separable if there exists a countable set of vectors such that every x ∈ X
is an infinite linear combination of those vectors.
Theorem 9.9 (Kuiper). If H0 and H1 are separable, infinite-dimensional vector spaces, then Hom(H0, H1)×
is contractible.

This isn’t true in the finite-dimensional case.
Remark 9.10. Let H be a Hilbert space.

• If V ⊂ H is finite-dimensional, then V is closed.
• If V ⊂ H is closed, then since we’re in a Hilbert space, we can form V ⊥, and therefore get a sequence
V ⊥ ↪→ H � H/V , which gives us a Hilbert space structure on V ⊥.

Now, we can state the main definition.
Definition 9.11. Let H0 and H1 be Hilbert spaces and T : H0 → H1 be a continuous linear map. Then, T
is Fredholm if

(1) T (H0) ⊂ H1 is closed,
(2) kerT ⊂ H0 is finite-dimensional, and
(3) cokerT is finite-dimensional.
It turns out that the first requirement is superfluous.
The idea is that Hom(H0, H1) is a vector space, and therefore contractible; its topology isn’t very

interesting. But the space of Fredholm operators Fred(H0, H1) has a more interesting topology, and ends up
being open. The space of invertible operators sits inside (since then the kernel and cokernel are trivial), and
is contractible. But the space of Fredholm operators is not connected, and the components are indexed by
the difference in dimensions of the kernel and cokernel (called the index) of the operators in the component.
And each component is interesting, having π2n = Z for all n.

We’ll study this with open sets: if W ⊂ H1 is finite-dimensional, then T is nearly surjective on operators,
and we can therefore find a W such that T is transverse to it. Then, we’ll reverse it, and choose a W ⊂ H1

and consider the set of Fredholm operators that are transverse toW . This will eventually lead to constructions
of K-theory classes.
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Lecture 10.

Bott Periodicity and Morse-Bott Theory: 9/29/15

Today’s lecture was given by Tim Perutz.
We’ll talk about Bott periodicity as proved by Bott, as distinct from how it was proven by later authors.
U will denote the infinite unitary group U = U(∞) =

⋃
n U(n). These are infinite matrices which have

block form [
A 0
0 I∞

]
,

where A ∈ U(n) for some n and I∞ denotes the infinite identity matrix. Be careful; this is not the group of
unitary transformations of an infinite-dimensional Hilbert space.

Bott periodicity, in a nutshell, is a homotopy equivalence Ω2 U ' U, and therefore isomorphisms πk+2(U) ∼=
πk(U). In particular, since U is path-connected, then π2k(U) = π0(U) = 0. The odd homotopy groups are
π2k+1(U) = π1(U) = Z (because π1(U(n)) = Z for each n).

Bott talked about this in [13]. This is distinct from stable homotopy theory! This is a very geometric,
very down-to-Earth proof, a vindication for actual geometric methods in homotopy theory.

In the 1920s, Morse theory was developed, originally involving geodesics on Riemannian manifolds via
calculus of variations. Bott used Morse theory to make detailed calculations of geodesics on Lie groups to
prove Bott periodicity. He also obtained similar results for other groups: if O = O(∞) (infinite matrices of
the same block form, but with an orthogonal matrix instead of a unitary one) and Sp = Sp(∞) (analogous),
then Ω4 O = Sp and Ω4 Sp = O, and therefore Ω8 O = O. In particular, for all k, πk(O) = πk+8(O). For
example, π0(O) = Z/2 and π1(O) = Z/2. π2(O) = 0 (since π2 of a Lie group is always zero, and we can use
O(n) for our calculations). π3(O) = Z (this is true for any simple Lie group). Then, π4(O) = π0(Sp) = 0,
π5(O) = π1(Sp) = 0, π6(O) = π2(Sp) = 0 (same deal, it’s a Lie group), and π7(O) = π3(Sp) = Z, as Sp(n) is
simple. Then, we’re back to where we started.

This periodicity was absolutely surprising, and very serendipitous.
This week, these two lectures will cover the unitary case. We’ll more or less follow Milnor in [33], but we’ll

treat loop spaces as actual, infinite-dimensional manifolds.

Definition 10.1. A map f : X → Y of path-connected spaces is called n-connected if the induced maps
πkX → πkY are isomorphisms for k < n and surjective for k = n.

Equivalently, for the algebraic topologists in the audience, the homotopy fiber of f is an n-connected space.

Lemma 10.2. The inclusion U(m) ↪→ U(m+ n) sending

A 7−→
[
A 0
0 In

]
is 2m-connected.

Proof sketch. First, we may without loss of generality assume n = 1; then, iterating that result proves it for
larger n. In this case, we have a fibration sequence in which U(m+ 1) acts on S2m+1 inside Cm+1, so we get
a sequence U(m) → U(m + 1) → S2m+1. Then, since πk(S2m+1) = 0 for k ≤ 2m, we can invoke the long
exact sequence of homotopy groups of this fibration. �

In particular, πk U(m) ∼= πk U when k < 2m (which is called the stable range).
Our next step is to construct maps jm : Grm(C2m)→ Ω SU(2m). let Pm = ΩI,−I SU(2m), i.e. the space

of paths γ : [0, 1] → SU(2m) where γ(0) = I and γ(1) = −I. That is, Pm is the space of paths from I
to −I. Then, we’ll think of the Grassmanian as follows. There is a canonical homeomorphism between
Grm(C2m) and the space of Hermitian matrices A ∈ MatC(2m, 2m) whose eigenvalues are 1 and −1, each
with multiplicity m.

In the reverse direction, send A 7→ ker(A − I), and in the forward direction, we want to write an m-
dimensional subspace as a matrix that acts as I on that subspace and −I on its orthogonal complement,
which will be Hermitian.

Now, we’ll define a map im : Grm(C2m)→ Pm sending A 7→ (t 7→ exp(iπtA)): iπtA defines a one-parameter
subgroup of A, and the conditions on the eigenvalues of A mean that this path starts at I and goes to −I.
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Then, we can take some reference path β in SU(2m) from −I to I, so am : Pm → Ω SU(2m) sending γ 7→ β ◦γ
is a homotopy equivalence. Finally, we’ll let jm = am ◦ im.

Theorem 10.3. jm is (2m+ 1)-connected.

That is, the low-degree homotopy groups of the Grassmanian agree with those of the special unitary
groups.

Before proving the theorem, we’ll digress to talk about how this proves Bott periodicity. Theorem 10.3
provides a relationship between homotopy groups of the Grassmanian and those of unitary groups, but
more classical homotopy theory provides other relationships between these groups. We can construct a map
ηm : Ω Grm(C2m)→ U(m) as follows: take the tautological vector bundle Cm → V → Grm(C2m) (the fiber
over a subspace L in the Grassmanian is just that subspace). Then, choose a Hermitian metric in V and
therefore a Hermitian connection ∇.

If we’re given a γ ∈ Ω Grm(C2m), so that γ : S1 → Grm(C2m) is a based map, then we have a pullback
vector bundle γ∗V → S1 and a pullback connection γ∗∇. Then, we’ll write that ηm(γ) is the holonomy of
γ∗∇, and this is in U(m). Specifically, we’ll try to trivialize this vector bundle over [0, 1); the holonomy is
the discrepancy at the basepoint (i.e. at 0 and 1), which is a unitary matrix.

Proposition 10.4. ηm induces isomorphisms on πk for k ≤ 2m+ 1.

The proof will be omitted, but isn’t too difficult: you’ll write down a homotopy long exact sequence again.
It’s an instance of the following general fact.

Fact. Let G be a Lie group and BG be its classifying space. Then, ΩBG ∼→ G (the classifying space has
a canonical principal G-bundle, and the identification is obtained by pulling back to the circle and taking
holonomy).

Finally, we use this to obtain Bott periodicity:

Theorem 10.5 (Bott periodicity). There exists a map U(m)→ Ω2 U(2m) inducing isomorphisms on πk for
k < 2m+ 2, and hence πk U ∼= πk+2 U.

Proof sketch. We have ηm : Ω Grm(C2m) → U(m). The first thing we’ll do is choose a map κm : U(m) →
Ω Grm(C2m) which is approximately a homotopy inverse to ηm: specifically, that κm and ηm are inverses on
πk for k < 2m+ 2. This is possible thanks to a version of the Whitehead theorem. Moreover, we have a map
Ωjm : Ω Grm(C2m)→ Ω2 SU(2m), and an inclusion ι : SU(2m) ↪→ U(2m), which is an isomorphism on πk for
all k > 1, thanks to the fibration

SU(2m) �
� // U(2m) det // U(1).

Thus, we have the following system of maps.

U(m)
κm

55
Ω Grm(C2m)

ηm
uu Ωjm // Ω2 SU(2m) Ω2ι // Ω2 U(2m)

Theorem 10.3 and Proposition 10.4 then prove that the composition of these maps induces the identity on
the homotopy groups we need. �

One unfortunate consequence of this proof is that we don’t know how to use this to get generators of
the maps. It would be an interesting exercise, but this is one of the advantages of the other proofs of Bott
periodicity.

Today, we won’t prove Theorem 10.3, but we’ll talk about the mechanism of the proof of this theorem,
which involves Morse-Bott theory. Though we want to talk about Pm = ΩI,−I SU(2m), which is an infinite-
dimensional manifold, let’s start with the finite-dimensional case.

Let M be an n-dimensional manifold and f ∈ C∞(M). Let crit(f) = {c ∈M : Dcf = 0}, the set of critical
points. For all c ∈ crit(f), we have a Hessian D2

cf : TcM × TcM → R, which is a symmetric bilinear form
defined as the second derivative in any coordinate chart centered at c (which is sort of a cheap definition, but
suffices, and is indeed independent of the chart).
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Definition 10.6. The index of a critical point c ∈ crit(f), denoted ind(f ; c), is the index (or signature) of
D2
cf , the dimension of the maximal negative-definite subspace of TcM with respect to Dcf (i.e. its induced

inner product).

If crit(f) is a submanifold of M , then f is locally constant on it, and hence the Hessian descends to the
normal spaces Nc = TcM/Tc(crit f), so we have a pairing D2

cf : Nc×Nc → R. This doesn’t change the index
(we just quotiented out by a space where the form was zero).

If C is a connected component of crit(f), we’ll write ind(f ;C) = ind(f, c) for any c ∈ C (since it’s locally
constant on crit(f)), particularly in the Morse-Bott case below.

Definition 10.7. f is said to be Morse-Bott if
(1) crit(f) is a submanifold of M , and
(2) for all c ∈ crit(f), the Hessian D2

cf : Nc ×Nc → R is a non-degenerate bilinear form.

For a function to be Morse, the Hessian must not be degenerate on the tangent space, and being Morse-Bott
means that we can have some degeneracy, but it must vanish outside of the critical points.

Theorem 10.8 (Morse-Bott). Let M be an n-dimensional manifold, and assume the following.
• We have an f ∈ C∞(M) that is not only Morse-Bott, but also proper15 and bounded below.
• If Cmin denotes the manifold of local minima of f , which is part of crit(f); we’ll want to assume
Cmin is connected.

• There’s an ` such that for all connected components C of crit(f) other than Cmin, ind(f ;C) > `.
Then, the inclusion Cmin ↪→M is `-connected.

The idea is that all of the π` of M should come from that of Cmin. Examples won’t be terribly useful right
now.

We’d love to apply this to the case M = Pm, f is the Riemannian energy functional, and Cmin is a path
space that will be identified with the Grassmanian, but of course Pm isn’t finite-dimensional. The statement
is still true, of course, but just requires more work.

First, let’s set up the proof. Choose a Riemannian metric g on M , so that we have a gradient vector field
grad f . Then, g(grad f, v) = df(v), so if γ : [0, 1]→M , we get a nice ODE

dγ
dt = −(grad f) ◦ γ. (10.9)

The intuition is that if M is embedded in RN so that f is a height function,16 then the gradient indicates the
direction of greatest increase of the function.

Then, grad f defines a flow φt : M →M , and t 7→ φt(x) is a solution to (10.9), and exists at least locally,
by general nonsense about differential equations. But since f is proper and bounded below, then φt exists
for all t ≥ 0! This is because the negative gradient flow points into f−1(−∞, c], which is compact, so by
standard long-time existence theorems on ODEs, the flow exists for all positive times.17

Moreover, for all starting points x ∈ M , the limit x∞ = limt→∞ φt(x) exists, again basically due to
compactness (though it does use the Morse-Bott hypothesis).

Definition 10.10. For a connected component C ⊂ crit(f), define the stable manifold SC = {x ∈M : x∞ ∈ C}.

The stable manifold is the set of points that flows into C eventually (e.g. rolling downhill in the height
function).

Lemma 10.11. SC is a submanifold of M , and has codimension ind(f ;C).

This is hard to prove.
So we want to prove that in the conditions assumed in Theorem 10.8, the manifold of minima contains all

of the information about the low-dimensional homotopy groups.

15A smooth function f is proper if f−1(−∞, c] is compact for all c.
16Though this picture is primarily for intuition, the Whitney embedding theorem means that for sufficiently large N , this is

possible.
17There’s no guarantee that it’ll exist for all negative time, though.
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Proof of Theorem 10.8. Recall that if C 6= Cmin is a connected component of crit(f), then ind(f ;C) > `.
Then, take a based map f : Sk →M where k ≤ ` and the basepoint of M is taken to be in Cmin; we want to
show this is homotopic to a map into Cmin.

Transversality theory tells us that h is based homotopic to a map transverse to SC for all connected
components of crit(f). But Im(h) ∩ SC = ∅ for C 6= Cmin, as Im(h) has dimension at most ` and SC has
dimension at least `, so their intersection in the general case has to be empty (i.e. we can adjust h a little bit
to get an empty intersection).

Now, let ht : Sk →M be a based map defined by ht = φt ◦ h: we take our sphere, and flow it downwards.
For all x ∈ Sk, h(x)∞ ∈ Cmin, and so for t � 0, Im(ht) lies in a tubular neighborhood of Cmin, which
deformation retracts to Cmin. Hence, h is homotopic to some map Sk → Cmin.

The next step is to show that Cmin ↪→M induces injections on πk for k < `; take an h : Sk → Cmin that
extends to an H : Bk+1 →M , so we need to find a homotopy relative to the boundary that maps it to Cmin.
As before, we may assume that h is transverse to SC (thanks to the relative transversality theorem), and then
run the same argument; we’ve chosen the dimensions so that once again, it can’t hit the stable manifolds
except for SCmin , and so flowing once again gives us a homotopy. �

Our task for next time is to run a version of this argument in the infinite-dimensional loop space.

Lecture 11.

Bott Periodicity and Morse-Bott Theory II: 10/1/15

Recall that last time, we deduced periodicity of πk U from Theorem 10.3, which defined a map jm :
Grm(C2m)→ ΩI,−I SU(2m) and showed that it is (2m+ 1)-connected (and therefore an isomorphism on πk
for k < 2m+ 1, and surjective for k = 2m+ 1). But we still haven’t proven Theorem 10.3.

We also talked about Morse-Bott theory: we assumed M is a connected manifold, f : M → R is a
Morse-Bott function (a condition relating to the nondegeneracy of the critical manifolds) that is bounded
below, and the indices of the critical manifolds are 0 for Cmin and otherwise greater than some `. Then,
Theorem 10.8 proved that the inclusion Cmin ↪→M is `-connected.18

We also assumed that M was finite-dimensional and f was proper. These are the tricky assumptions:
we want to apply this theorem to the Riemannian energy functional E on ΩI,−I SU(2m), with the goal of
identifying Cmin with the Grassmanian and jm with inclusion. Specifically, Cmin for the energy functional is
the space of minimal geodesics, the critical points are more general geodesics, and the nonzero indices will
turn out to be at least 2m+ 2. If we can do that, then we get the main theorem, Theorem 10.3.

However, this isn’t a finite-dimensional manifold, and the energy functional isn’t proper, so applying these
assumptions would be a little preposterous.

Definition 11.1. A Hilbert manifold M is a structure akin to a smooth manifold, but in which every point
has a neighborhood diffeomorphic to some separable Hilbert space H, which may be infinite-dimensional.
One hears that M is modeled on H.

Similarly, one defines Banach manifolds as modeled on a Banach space and Fréchet manifolds as modeled
on Fréchet spaces.

Theorem 11.2. The conclusion of Theorem 10.8 still holds under the following, more general conditions:
• M is a Hilbert manifold,
• the indices of the critical points of f are finite,
• there is a Riemannian metric on M for which the downward gradient flow φt (satisfying (10.9)) exists
for all t ≥ 0, and

• x∞ = limt→∞ φt(x) always exists.

With this theorem, we diverge slightly from Milnor’s treatment in [33]. The theorem is probably also true
for Banach manifolds.

Proof. The proof is roughly as before; we’ll homotope maps Sk →M into Cmin using φt, as long as k ≤ `.
Formally speaking, the proof is identical, but what assumptions did we lean on?

18Though we assumed in Theorem 10.8 that Cmin was connected, this hypothesis isn’t really necessary; showing that the
map is 1-connected implies an isomorphism on π0, and therefore Cmin is connected because M is.
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First, we needed that the stable manifolds SC of the connected components C of crit(f) were submanifolds
of M , with codimention ind(f ;C). This remains true: Jost proves in [29] that SC is injectively immersed in
M and the result on indices is locally true, from which the global result follows.

The second thing we need is that h : SK → M is transverse to SC , and for H : Bk1 → M , we want
H t SC . For H, though, we want to leave it untouched on the boundary if it’s already transverse there. This
is proven in [20, Ch. 4].

The rest of the proof is exactly the same, thanks to the assumptions we made. �

Path Spaces. Now, we need to show that our energy functional satisfies these requirements, so let’s talk
about path spaces.

Definition 11.3. Let (M, g) be an n-dimensional Riemannian manifold and p, q ∈M . Then the path space
is defined as

Ωp,q = Ωp,q(M) = {γ : [0, 1]→M | γ(0) = p, γ(1) = q}.

We can take γ to be C0, giving Ωp,q the compact-open topology, but we’ll want more regularity. One
could take γ to be C∞ (or piecewise C∞, which [33] does), or to be Ck for some k (which is nice because
these functions form a Banach space, whereas the space of C∞ paths is merely a Fréchet space).

Often, one chooses paths in the Sobolev space L2
k, for k ≥ 1. This is defined to be the space of paths which

have k derivatives in L2. This is a common approach in modern analysis, and will create Hilbert spaces.
All of these spaces have a natural topology, and since continuous functions can approximate Ck or smooth

functions, all of these topologies have the same homotopy type, so in some sense, it doesn’t matter; it’s just
where you want to do the work. In each case, we get some kind of infinite-dimensional manifold.

Let’s take the C∞ case; we’ll start by defining our tangent spaces.

Definition 11.4. For a γ ∈ Ωp,q, define the future tangent space to Ωp,q at γ to be the set Tγ of vector fields
along γ that vanish at the endpoints.

That is, these are sections ξ of γ∗TM → [0, 1], where ξ(0) = ξ(1) = 0.
Next, we’ll define charts. Let U ⊂ TM be any open neighborhood of the zero-section M ⊂ TM

such that the exponential map expg : TM → M is an embedding on U ∩ TxM for all x ∈ M , and let
Uγ = {ξ ∈ Tγ | ξ(t) ∈ U for all t ∈ [0, 1]}. Then, we have a chart Uγ → Ωp,q sending ξ 7→ expg ◦ξ.

Fact. These are charts for a C∞ Fréchet manifold structure.

We’re not going to get bogged down into transition maps.
In the Sobolev case, we take γ ∈ C∞ and define Tγ = {ξ ∈ L2

1(γ∗TM ) | γ(0) = γ(1) = 0} (L2
1 is a subset of

the continuous sections of γ∗TM ). Then, Tγ is the completion of the space of C∞ vector fields with respect
to the Sobolev norm

‖ξ‖2L2
1

=
∫ 1

0
(g(ξ, ξ) + g(∇tξ,∇tξ)) dt,

where ∇t is the covariant derivative for g.
This gives us a Hilbert space (relating to the Sobolev embedding L2

1 ⊂ C0).

Remark 11.5. The analytic tools that we use here can be worked around for Bott periodicity, but they’re
often very useful in topology and geometry, especially when dealing with infinite-dimensional spaces, and are
unavoidable in other important proofs. For example, there’s a theorem that if the fundamental group of a
manifold has an unsolvable word problem, then there are powerful results on the number of certain kinds of
geodesics on that manifold.

Then, the Sobolev path space ΩL
2
1

p,q is contained in the C0 path space ΩC0

p,q, and so we can think of these
as somewhat smooth paths, with the Hilbert space structure around when we need it. Thus, we get a C∞
Hilbert manifold modeled on L2

1(Rn).
Next, we need to address the energy functional. We can put a Riemannian metric on Ωp,q by defining on

each tangent space Tγ the inner product

〈δ1, δ2〉 =
∫ 1

0
g(δ1(t), δ2(t)) dt,
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and then ‖δ‖2 = 〈δ, δ〉. This is not the same as the norm induced from the Sobolev structure. Then, the
energy function is E(γ) = (1/2)‖γ̇‖2 (akin to kinetic energy), producing a function E : Ωp,q → R+.19

Morse Theory of the Energy Functional. The next step is to address the Morse theory of E, which is
basically calculus of variations from another perspective. There are a lot of calculations which we don’t have
time for, so we’ll state their results.

From the metric we get a gradient, which should increase the energy functional as much as possible.
Specifically, we’ll define grad(E) = −∇t(γ̇): first differentiate γ, and then take its covariant derivative
(specifically, with respect to the pullback by γ of the Levi-Civita connection on M).

This means that critE = {γ | ∇tγ̇ = 0}, and by definition these are geodesics. We get a downward gradient
flow Γ : I → Ωp,q (where I is an interval) defined by Γ : I × [0, 1]→M : Γ(s, 0) = p and Γ(s, 1) = q. Thus,
the equation

∂sΓ +∇t(∂tΓ) = 0
is a PDE on I × [0, 1]. In fact, it’s parabolic: it looks like the heat equation, so solutions exist for positive
time (though perhaps not negative time). Thus, the flow φt exists for all t ≥ 0 and limt→∞ φt(x) exists (both
are proven in [29]); this relates to a property called the Palais-Smale condition. So the point is: the gradient
flow is great, so long as you don’t try to run it backwards.

The next thing we need is the Hessian. We can apply the Hessian D2
γE to a pair of tangent vectors, but

it’s convenient to recast that in terms of a self-adjoint linear operator Hγ : Tγ → Tγ , i.e.
〈Hγ(δ1), δ2〉 = (D2

γE)(δ1, δ2).
This ends up meaning that

Hγ(δ) = −(∇t∇tδ +R(γ̇, δ)γ̇), (11.6)
where R(X,Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z is the Riemann curvature tensor. (11.6) is called the second
variational equation, and is a second-order linear ODE.

Elements of the kernel of Hγ , which are zeros of (11.6), are called Jacobi fields (vanishing at the endpoints);
these are standard in Riemannian geometry. But (11.6) is also the equation that linearizes the geodesic
equation! So formally, kerHγ = Tγ(critE), and this actually makes geometric sense if critE is a submanifold
of Ωp,q: the only degeneracies are tangent to the critical submanifold.

That is, if critE is a submanifold, then E is Morse-Bott.
I know this is a long story, but we have yet one more ingredient.

Definition 11.7. For γ ∈ critE and t ∈ [0, 1], define the multiplicity mult(γ; t) to be the dimension of the
space of solutions to (11.6) on [0, t] that vanish at the endpoints.

That is, we just restrict to [0, t] instead of [0, 1].
Theorem 11.8 (Morse index theorem). ind(E; γ) is finite, and moreover

ind(E; γ) =
∑
t∈(0,1)

mult(γ; t).

Thus, the multiplicity is 0 for all but finitely many γ. When it’s nonzero, the γ(t) are called conjugate
points for γ. This is proven in the piecewise-smooth case in [33], and there are many other proofs in the
literature, some more analytic than others.

In the case of a compact Lie group G, let g denote the left-invariant metric, and p = e be the identity, so
that TpG = g is the Lie algebra. In this case, all of this analysis reduces to linear algebra on g.

In fact, it turns out that the geodesics γ : R → G with γ(0) = e are the one-parameter subgroups! In
other words, the geodesic requirement means that γ must be a homomorphism. Then, these one-parameter
subgroups are in bijection with g. Then, E is Morse-Bott, and it’s fairly easy to check that critE is a
submanifold.

One can get a reasonable concrete understanding of the Jacobi field equation in this case: if X, Y , and Z
are left-invariant vector fields (so elements of g), then the curvature tensor simplifies to

R(X,Y )Z = 1
4[[X,Y ], Z],

19Here, γ̇ = dγ
dt , just the ordinary derivative, giving us a vector field along γ, though it probably doesn’t vanish at the

endpoints.
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and so the Jacobi field equation boils down to something happening in the Lie algebra. Specifically, define
Kξ ∈ End g for a ξ ∈ g as follows: if η ∈ g, then Kξ(η) = R(ξ, η)ξ = (1/4)[ξ, η], η]. Then, the conjugate
points along γ(t) = exp(tξ) are the points exp(tξ) where t− πk/

√
λ, where k is a nonzero integer and λ is a

positive eigenvalue of Kξ; then, the multiplicity of γ at t is the multiplicity of λ! Thus, these computations
are just linear algebra in the end.

Now, let’s specialize a little further, to ΩI,−I SU(2m). Finally. What are our geodesics? They take
the form t 7→ exp(tξ) for some ξ ∈ g = su(2m), and when t = 1, we need to have exp(ξ) = −I. Thus,
critE ∼= {ξ ∈ g | (1/iπ)ξ has odd integer eigenvalues}.

Let’s say that ξ/iπ is conjugate to a diagonal matrix with entries k1, . . . , k2m that are odd integers. Then,
using Theorem 11.8,

ind(E; ξ) =
∑
ki>kj

ki − kj − 2,

and therefore the index is only zero if ξ/iπ is conjugate to something where if ki > kj , their difference must
be equal to 2, which is only true if m of them are 1 and the rest are −1 (these are the only options, since
su(2m) is the set of trace-free Hermitian matrices). In particular, this (m,m) block structure means that
Cmin ∼= Grm(C2m), and if the index is positive, then after playing around with it for a few minutes, then it
has to be at least 2m+ 2.

At this point, we can apply Theorem 11.2 to get Theorem 10.3.

Part 2. K-theory Represented by Fredholm Operators
Lecture 12.

Fredholm Operators and K-theory: 10/6/15

“That’s one of the things Jean-Pierre Serre mocks.”
Professor Freed is back, and we’re going to talk about Fredholm operators again.

We’ll talk about separable, complex Hilbert spaces H0 and H1 in this class, but everything should also
work in the real case. Recall that a T : H0 → H1 is Fredholm if

(1) T has closed range, and
(2) ker(T ) and coker(T ) are finite-dimensional.

It turns out that the first property follows from the second, but that’s okay. If T is Fredholm, we define its
index to be indT = dim ker(T )− dim coker(T ). Where does the minus sign go? It can be confusing. If V
and W are finite-dimensional, Hom(V,W ) ∼= W ⊗ V ∗, so maybe remember that V ∗ is where the cokernel
lives, and the star is a reminder to take the minus sign.

Example 12.1. We talked earlier about how K-theory is about making algebraic topology out of linear
algebra; one can step back from vector spaces to modules over a ring, and one can do K-theory there, too.

(1) Let H have an orthonormal basis e1, e2, . . . , and for k ∈ Z, define

Tk(ei) =
{
ei−k, i− k ≥ 1
0, i− k ≤ 0.

This operator, called the shift operator, shifts every basis element to the left k places, and zeroes out
the ones that go past e0. Then, indTk = k, since it is surjective, and its kernel has rank k. Recall
that every ξ ∈ H has the form ξ =

∑∞
i=1 a

iei, where the sum of the |ai|2 is finite.
(2) If H1 = L2(S1, dx), then let T = i d

dx . (The i makes it formally self-adjoint.) This is an unbounded
(so not continuous) differential operator. However, we can take the Sobolev space H0 = L2

1(S1,dx),
which is the space of L2 functions whose first derivatives are also in L2. Then, T : H0 → H1 is
bounded, and also Fredholm, with index 0. This is true more generally: an elliptic differential operator
on a manifold is Fredholm on some Sobolev space.

(3) We can also define families of Fredholms by maps X → Fred(H0, H1), which occur naturally in
geometry. Let Σ be a compact Riemann surface and Y be a complex manifold, and we’ll consider
the space C∞(Σ, Y ) of smooth maps f : Σ → Y . Such an f determines a Fredholm operator
∂f : Ω0,0

Σ (f∗TY )→ Ω0,1
Σ (f∗TY ) (i.e. from functions on Σ of the pullback of the tangent bundle to

1-forms). Again, we need to take the Sobolev completions L2
1, but then each of these is Fredholm, so
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we have a family of Fredholm operators. Interestingly, the Hilbert space itself depends on f here: the
Hilbert spaces are also moving in a locally trivial way.

(4) There is a nonlinear Fredholm operator, as outlined in [40], related to the previous example: given a
vector bundle E over C∞(Σ, Y ), we get a section ∂f for an f ∈ C∞(Σ, Y ). One defines this to be
Fredholm if all of its differentials are, which does hold in this case. We’ll see another example akin to
this later, with loop groups.

Since all (infinite-dimensional) separable complex Hilbert spaces are isomorphic, we can talk generally
about the index function ind : Fred(H0, H1)→ Z; in fact, ind : π0 Fred(H0, H1)→ Z is an isomorphism.

Recall that T tW for a W ⊂ H1 if T (H0) +W = H1 (said T is transverse to W ). Then, we can define
OW =

{
T ∈ Fred(H0, H1) : T tW

}
.

Lemma 12.2.
(1) OW is open.
(2)

{
OW : W ⊂ H1 is finite dimensional

}
is an open cover of Fred(H0, H1).

(3) If T : X → Fred(X0, X1) for a compact Hausdorff X, then T (X) ⊂ OW for some W .

In other words, our set of possible OW is a canonical (albeit uncountable) open cover of Fred(H0, H1).
The last part of the lemma provides some nice conditions on families of Fredholm operators coming from
compact spaces.

Proof sketch. For (1), OW is open iff the composition H0 T→ H1 → H1/W is surjective. Suppose T0 ∈ OW ;
then, if T is Fredholm, then

(T−1
0 (W ))⊥ �

� // H0 T // H1 // H1/W

is an isomorphism, because Im(T ) necessarily contains T (T−1
0 (W )), and OW has the transverseness condition

we need.20 Since Fred(H0, H1)→ Hom(T−1
0 (W )⊥, H1/W ) is continuous, and the preimage of an open set is

open.
For (2), this isn’t saying much: any Fredholm operator comes with finite-dimensional subspaces attached

to it. Then, (3) follows by taking a finite subcover (see the course notes for a full proof). �

Corollary 12.3. If T ∈ OW , then the following sequence is exact.

0 // ker(T ) // T−1(W ) T // W // coker(T ) // 0 (12.4)

Thus, ker(T )⊕W ∼= coker(T )⊕ T−1(W ).

The last conclusion follows because the alternating sum of a bounded exact sequence is trivial (followed by
a diagram chase). That is, in an intuitive sense, ker(T )− coker(T ) is the same as T−1W −W . So the index
can be given in terms of W , which is constant on an open neighborhood OW . We want to think of this as a
difference of vector bundles.

Lemma 12.5. The vector bundle KW → OW defined by (KW )T = T−1(W ) is locally trivial.

Proof. Fix a T0 ∈ OW and let p : H0 → T−1
0 W be orthogonal projection. Then, there’s an open neighborhood

on which (12.4) is an isomorphism, so p restricts to an isomorphism T−1W → T−1
0 W . Thus, KW → OW is

locally constant. �

Corollary 12.6. ind : Fred(H0, H1)→ Z is locally constant.

The idea is that a Fredholm operator adds some finiteness: on an open set, we have a finite model
for a Fredholm operator. The infinite-dimensional pieces are isomorphic, and therefore we care about the
finite-dimensional parts. Kuiper’s theorem also gives us a nice handle on the topology. We can’t consider
only a single Fredholm operator, since the dimensions of the kernels and cokernels may grow, but we at least
have that it’s locally constant.

Lemma 12.7. If H is a Hilbert space and T1, T2 ∈ Fred(H,H), then T2 ◦ T1 ∈ Fred(H,H) and indT2 ◦ T1 =
indT2 + indT1.

20This is not an if and only if; the converse is not true.
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Proof. If T2 ◦ T1 tW , then T2 tW and T1 t T
−1
2 W , so

indT2 ◦ T1 = (dim((T2 ◦ T1)−1)− dim(T−1
2 W )) + (dim(T−1

2 W )− dimW )
= indT1 + indT2. �

Since the identity is obviously Fredholm, then this turns Fred(H,H) into a noncommutative monoid.
Now, we can return to K-theory, with the following important result: Fredholm operators give us K-theory

on compact, Hausdorff spaces.

Theorem 12.8 (Atiyah-Jänich). Let X be a compact, Hausdorff space; then, the map ind : [X,Fred(H,H)]→
K(X) sending T 7→ [T ∗KW ]− [W ] is a well-defined isomorphism of abelian groups, where H is an infinite-
dimensional separable complex Hilbert space and W ⊂ H is finite-dimensional and chosen such that Tx tW
for all x ∈ X. In particular, [X,Fred(H)] is an abelian group under composition.

The picture for Fredholm operators is that the kernels jump discontinuously (though, since invertibility is
an open condition, it can only jump in one direction, and is lower semicontinuous), as do the cokernels, but
their difference is locally constant!

Proof sketch. We have a bunch of things to show; let’s unpack them.
(1) First, ind is well-defined, meaning it’s independent of W and invariant under homotopy.
(2) Then, that ind is a homomorphism of monoids, preserving composition.
(3) Then, that ind is surjective.
(4) Finally, that ind is injective. This means it’s a bijective monoid homomorphism, and since one is an

abelian group, the other has to be, since the multiplicative structure is the same.
To see why ind is independent of W , first see that the finite-dimensional subspaces W are partially ordered
under inclusion, so it suffices to show that if W ⊂W ′, then if it holds for W , then it holds for W ′. This is
some linear algebra with exact sequences.

Recall our differential operator i d
dx . We want to talk about its eigenvalues and eigenvectors; it’s an

unbounded operator on L2, but we can compute that its spectrum is discrete, and in fact is Z. Then, one of
these subspaces W is a finite piece, and W ′ is a larger piece, and so when we take the quotient, things are
well-behaved. A general Fredholm operator’s spectrum may have continuous or discrete parts; the Fredholm
condition only implies that 0 is an isolated point.

A homotopy gives us a cylinder [0, 1]×X → Fred(H,H), but this is compact, so we can find a single W
that works.

The monoid homomorphism is tricky, relying crucially on compactness. For surjectivity, you just have to
cook up a Fredholm, by mapping between two different, but isomorphic (by Kuiper’s theorem) spaces with
the right kernel, and this isn’t too hard. Injectivity comes from producing a homotopy from the difference of
two things mapping to zero into the invertible component, which is contractible. �

The full details of the proof are in the lecture notes. It can get complicated, so try it out with some
examples. For example, the shift operator isn’t invertible, and if we’re mapping to K(S1) = Z, then the
inverse of 1 is −1, so the inverse was formally added to the K-theory, but maybe it’s less apparent what
the inverse should be in [X,Fred(H,H)]. It turns out your inverse is the adjoint! It probably helps to think
about this for a while.

So now we have two ways to think about K-theory: isomorphism classes of vector bundles if X is compact
Hausdorff, or mapping into the space of Fredholm operators. But the latter is still defined for more general
X, which leads us to make the following definition.

Definition 12.9. If X is a paracompact, Hausdorff space, then define K(X) = [X,Fred(H,H)].

Theorem 12.8 shows us that this is an abelian group, and extends our previous definition.
Now, we can play the same game again, defining K̃(X) and therefore K̃−n(X) for X pointed and n ≥ 0,

by mapping suspensions of X into Fred(H,H) (or, equivalently, into loopspaces of Fred(H)). We can do this
more generally, e.g. H0(X;Z) = [X,Z], and with suspensions this gives us negative cohomology groups, too
(which are, unsurprisingly, zero). But it’s less clear how to do this with positive indices: we need to de-loop,
or we’re stuck with half a cohomology theory.

Last time, we defined the whole thing with Bott periodicity, proven using a very geometric construction;
for Fredholm operators, we will prove a version of Bott periodicity in this context.
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Theorem 12.10.
(1) Ω2 Fred(HC) ' Fred(HC), where HC is a separable complex Hilbert space.
(2) Ω8 Fred(HR) ' Fred(HR), where HR is a separable real Hilbert space.
This is our last statement of Bott periodicity. We’ll prove it by providing spaces of operators that explicitly

de-loop; it requires an important new ingredient, the notion of Clifford algebras. Then, we’ll be able to
move from vector spaces to modules over these Clifford algebras. This all takes place in the worlds of
Z/2-graded vector spaces and Z/2-graded algebras (sometimes, thanks to physics, called super-vector spaces
and superalgebras). We’ll make this work over the next few lectures.

Lecture 13.

Clifford Algebras: 10/8/15

Recall that we showed that the path components of Fred(H) are parameterized by the index: if Fredn(H)
denotes the space of Fredholm operators with index n, then

Fred(H) =
∐
n∈Z

Fredn(H).

Moreover, Fred0(H) ' BU , the classifying space of U = U∞, the colimit of the unitary groups Un.
Today, we’re going to talk about Clifford algebras, and so also about the orthogonal group. Recall that

the orthogonal group On, a Lie group, sits inside the associative algebra Mn(R) of n× n matrices. This is
often very useful, e.g. for computing things or realizing the tangent space to On, a Lie algebra.

The situation with Clifford algebras will be analogous. A Clifford algebra Cliff±n(R) doesn’t exactly
contain the orthogonal group, but contains a group called Pin±n, which is a double cover of On.

Recall that π0 On
∼= {±1}, and that SOn is the identity component. SO1 is trivial and SO2 ∼= T (sending

a rotation by θ to eiθ, and vice versa), but for n ≥ 3, πi SOn
∼= Z/2Z, which we argued earlier in this class.

Suppose G is a Lie group and G̃→ G is a connected covering space. Then, we can give G̃ a unique group
structure: the identity is one of the preimages of the identity, and, since multiplication can be uniquely
determined if it exists in a neighborhood of the identity, we can pick a neighborhood of e ∈ G that is covered
by a disjoint union of copies of itself, and define multiplication in a neighborhood of the new identity in the
same way. Choosing different preimages of e gives us an automorphism.

If G̃ is not connected, we may not get a unique group structure: for example, there’s a double cover of
Z/2 that consists of four points, and depending on what the preimages of 1 do, we may get either Z/2× Z/2
or Z/4 as our covering groups.

Since SOn is connected and, for n ≥ 3, π1 SOn = Z/2, then its connected double cover has a unique Lie
group structure. This is called the Spin group Spinn, and is a nice way to construct it abstractly. But this
same strategy doesn’t work for On, which isn’t connected.
Definition 13.1. Let ξ ∈ Rn be such that |ξ| = 1. Then, we define the hyperplane reflection ρξ(η) =
η − 2〈ξ, η〉ξ.

This is reflection across ξ in the usual geometric sense, particularly when n = 2.
Theorem 13.2 (Sylvester). Any element of On is the product of at most n hyperplane reflections.

In its simplest form, this theorem was known circa 200 B.C.!

Proof. We’ll induct on n. If g ∈ On fixes a ξ ∈ S(Rn), then g ∈ O(R · ξ⊥), and therefore g is a product of at
most n− 1 reflections. Then, for a general g, we can find some ζ ∈ Rn such that g(ζ) ⊥ ζ; in this case, set
ξ = (g(ζ)− ζ)/|g(ζ)− ζ|, and ρξ ◦ g(ζ) = ζ, so we get at most one more reflection. �

Let’s try to build an algebra out of this theorem. As a heuristic, if ξ ∈ S(Rn), we’ll let “ξ” stand in for ρξ,
so that ξ2 = ±1. Since ρξ = ρ−ξ, then there is an ambiguity of ±1.

Suppose 〈ξ, η〉 = 0. Then, |(ξ + η)/
√

2| = 1, so

±1 =
(
ξ + η√

2

)2
= 1

2
(
ξ2 + η2 + ξη + ηξ

)
= 1

2(±2 + ξη + ηξ),
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so in particular ξη + ηξ = 0. Geometrically, we already knew that reflections across perpendicular lines
commute.

More generally, for any unit vectors ξ, η, ρξ(η) = −ξηξ−1 (since ξ defines a reflection, its inverse exists).
Thus, we can define an algebra, the Clifford algebra, using the two relations ξ2 = ±|ξ|2 and ξ1ξ2 + ξ2ξ1 = 0 if
〈ξ1, ξ2〉 = 0. Since Rn comes with the standard basis e1, . . . , en, we can rewrite these relations as{

e2
i = ±1
eiej + ejei = 0, i 6= j,

or, equivalently, eiej + ejei = ±2δij .

Example 13.3.
• Cliff1 is generated by {1, e1} with e2

1 = 1. Thus, Pin1 = {±1,±e1} ∼= Z/2 × Z/2, the Klein-four
group. And as an algebra, Cliff1 ∼= R× R.

• Cliff−1 is the same, but with e2
1 = −1. This, as an algebra, Cliff−1 ∼= C, and in this case, Pin−1 =

{±1,±e1} ∼= Z/4.
• Cliff2 ↪→M2C: we have the relations e1e2 + e2e1 = 0 and e2

1 = e2
2 = 1, so we can choose

e1 =
(

0 1
1 0

)
and e2 =

(
0 −i
i 0

)
.

• Similarly, Cliff−2 ↪→M2C. This time, e2
1 = e2

2 = −1, so we choose

e1 =
(

0 −1
1 0

)
and e2 =

(
0 i
i 0

)
.

That these generators for Cliff±2 are off-diagonal is not a coincidence.

Remark 13.4. Dirac considered whether there was a “square root” of the Laplace operator, a differential
operator D (called the Dirac operator) on En such that

D2 = ∆ = −
n∑
i=1

∂2

(∂xi)2 .

(We’ll use the implicit summation convention in this remark.)
If D = γi ∂

∂xi operates on a function ψ : En → RN (so that γi ∈MNRN ), then

D2 =
(
γiγj + γjγi

) ∂2

∂xi∂xj
.

Therefore γiγj +γjγi = −2δij , so we have the same generators and relations! This is an important motivation
of Clifford algebras, and some useful intuition.

In general, the generators of the Clifford algebra within the matrix algebra are off-diagonal or off-block-
diagonal. This means that the product of any two is diagonal, which is a nice way of realizing a Z/2-grading
on the Clifford algebra.

Definition 13.5.
(1) A super vector space is a space S = S0 ⊕ S1. Equivalently, it is a pair (S, ε) where S is a vector space

and ε ∈ End(S) is such that ε2 = idS.
(2) If (S′, ε′) and (S′′, ε′′) are super vector spaces, then their tensor product is (S′ ⊗ S′′, ε′ ⊗ ε′′).
(3) The Koszul sign rule is the symmetry S′⊗S′′ → S′′⊗S′: the sign convention s′⊗s′′ 7→ (−1)|s′||s′′|s′′⊗s,

where s′ ∈ S′|s′| and similarly for s′′ (this tells us which part of S′ or S′′ it’s in). A general element
of a super vector space isn’t homogenous, but it’s a sum of homogeneous elements, so this map is
well-defined.

(4) A superalgebra A = A0 ⊕A1 is an algebra for which the multiplication map A⊗A→ A is an even
map, i.e. it respects the grading.

(5) z ∈ A is central if za = (−1)|a||z|az for all homogeneous a ∈ A (so that z is necessarily homogeneous).
The set of central elements, denoted Z(A), is called the center.
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There are also notions of opposite algebras Aop where multiplication is more or less turned around, ideals
(which must be the sum of its even part and its odd part), and simple algebras. The idea is that these familiar
constructions from algebra still hold, as long as you’re careful with the sign convention and the grading.

Example 13.6. If S = S0 ⊕ S1, then End(S) = End(S0) ⊕ End(S1) is a superalgebra. Specifically, block
diagonal (with respect to S0 and S1) matrices are in End(S0), and block off-diagonal matrices are in End(S1).

Definition 13.7. Let k be a field of characteristic not equal to 2,21 and V be a vector space over k.
(1) Q : V × V → k is quadratic if ξ1, ξ2 7→ Q(ξ1 + ξ2)−Q(ξ1)−Q(ξ2) is bilinear and Q(nξ) = n2Q(ξ)

for n ∈ k.
(2) A pair (C, i) of a unital, associative algebra C and a linear map i : V → C is a Clifford algebra of

(V,Q) if i(ξ)2 = −Q(ξ)1C and for every unital, associative algebra A and linear ψ : V → A such that
ψ(ξ)2 = Q(ξ) · 1A for all ξ ∈ V , then there exists a unique k-algebra homomorphism ψ̃ : C → A such
that the following diagram commutes.

V
i //

ψ
��

C

ψ̃��
A

In this case, (C, i) is denoted Cliff(V,Q) or C`(V,Q).

The universal property quickly implies a few things.
(1) First, that such a Clifford algebra exists and is unique given k, V , and Q.
(2) Then, there is a canonical, surjective map ⊗V → Cliff(V,Q).22

(3) If (C, i) is a Clifford algebra, then i must be injective.
(4) Since ⊗V has an increasing filtration ⊗0V ⊂ ⊗≤1V ⊂ ⊗≤2V ⊂ · · · , then there is an induced filtration

on Cliff(V,Q), and the associated graded is Λ•V .23

(5) This means that Cliff(V,Q) is Z/2Z-graded (following ultimately from how the quadratic form acts
on the filtration).

The Clifford algebra is not commutative, even though its associated graded is commutative. It’s in some
sense a deformation of the exterior algebra (e.g. when Q is degenerate). These abstract properties will be
shored up by concrete things we have to prove in the homework.

Both of these are algebraic pictures of a process called quantization in physics, deforming a commutative
operator into a noncommutative one.

By applying the universal property, one can show that for any pair (V ′, Q′) and (V ′′, Q′′) of k-vector
spaces and quadratic forms on them, there is a canonical isomorphism

Cliff(V ′ ⊕ V ′′, Q′ ⊕Q′′)
∼= //Cliff(V ′, Q′)⊗ Cliff(V ′′, Q′′). (13.8)

Here, (x′ ⊗ x′′)(y′ ⊗ y′′) = (−1)|x′||y′|x′y′ ⊗ x′′y′′ is how multiplication works in the tensor product of
superalgebras.

Definition 13.9. If L is a k-vector space, ξ ∈ L, and θ ∈ L∗, then interior multiplication by ξ is the map
iξ ∈ End(Λ•L∗) defined by iξ(φ) = φ(ξ) for φ ∈ Λ1L∗ and extended as a derivation:

iξ(ω1 ∧ ω2) = iξω1 ∧ ω2 + (−1)|ωi|ω1 ∧ iξω2.

Then, exterior multiplication by θ is εθ(ω) = θ ∧ ω.

Proposition 13.10. Let L be a k-vector space and V = L⊕ L∗ with Q(ξ, θ) = θ(ξ) for ξ ∈ L and θ ∈ L∗.
Then, i : L⊕ L∗ → End(Λ•L∗) sending ξ 7→ iξ and θ 7→ εθ is a Clifford algebra of (V,Q).

The idea is to prove by induction: the base case is essentially the same as Example 13.3, and in general we
can reduce to a lower dimension using (13.8).

Example 13.11.

21We’ll only use k = R or C in this class, though.
22Here, ⊗V denotes the tensor algebra of V .
23The associated graded is the graded algebra of quotients of this filtration.
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(1) If k = C, then any nondegenerate Q on V with dimV = 2Z can be written as the form δij in a suitable
basis (akin to diagonalizing a symmetric matrix), and by rearranging we can make it off-diagonal:
there’s a basis e1, . . . , en, f1, . . . , fn of V such that B(ei, ej) = B(fi, fj) = 0, and B(ei, fj) = δij , and
so any nondegnerate Q gives us a Clifford algebra.

(2) If k = R, when we diagonalize, we can’t get rid of the signature: there are some 1s and some −1s,
and their difference, the signature, is an invariant. If we have a split form, we can take the standard
basis e1, . . . , en and the dual basis e1, . . . , en; then, Q(ei, ej) = Q(ei, ej) = 0 and B(ei, ej) = δji , so
we get a Clifford algebra (the matrices are block off-diagonal, with the off-diagonal components equal
to the identity). However, other signatures don’t work here.

Incredibly, Bott periodicity comes up again in this guise. Let C`±n = Cliff(Rn,±Q), where Q is the
standard quadratic form, and let C`Cn = C`n⊗C ∼= C`−n⊗C.

Theorem 13.12.
(1) C`C−2

∼= End(C1|1).
(2) C`−8 ∼= End(R8|8).

In particular, C`1, . . . ,C`7 aren’t Z/2-graded matrix algebras, and similarly for C`C1 .

Proof. For (1), we can write C2 = L⊕ L∗ with the canonical quadratic form; then, the previous example did
the work for us.

For (2), C`−2 acts on W = C1|1 via

e1 7−→
(

0 −1
1 0

)
and e2 7−→

(
0 i
i 0

)
.

One can check that this action graded-commutes with the odd antilinear J : W →W defined by J(z0, z1) =
(z1, z0) (so that J2 = − idW ).

We have an odd map that squares to −id, but we wanted an even map squaring to the identity. So taking
–⊗4, we get that C`−8 = C`⊗4

−2 acts on W⊗4 and commutes with J⊗4, which is even antilinear and squares to
idW⊗4. In particular, J⊗4 is a real structure (our space is R8|8). �

Lecture 14.

Kupier’s Theorem and Principal G-Bundles: 10/13/15

“It’s nice to make statements, but this isn’t politics. It’s mathematics, so we have to carry it
out.”

Last time, we talked about Clifford algebras, and the time before about Fredholm operators; today, we’ll
combine the two, and state a theorem whose proof will occupy us for the next few lectures.

Theorem 14.1 (Kuiper). Let H be an infinite-dimensional real or complex Hilbert space. Then, the group
Aut(H) of invertible bounded maps H → H is contractible in the norm topology.

Aut(H) is a subset of the space of bounded maps (endomorphisms) H → H, and thus inherits the topology
from its norm. This is one of several topologies you could put on Aut(H), and it’s contractible in some other
important ones, which we’ll see later on in the course.

Recall that if P : H → H is a bounded operator and P ∗ denotes its adjoint, then P ∗P is a nonnegative,
self-adjoint operator, and so has a square root, denoted |P | =

√
P ∗P , which is also self-adjoint and nonnegative.

Forming that square root uses the spectral theorem: in finite dimensions, a self-adjoint operator is represented
by a symmetric matrix, which can be made diagonal with real eigenvalues. Then, one can take the nonnegative
square root of each eigenvalue. In infinite dimensions, the von Neumann spectral theorem allows us to do the
same thing.

We’ll apply this to invertible operators to get a deformation from Aut(H) to the subgroup of unitary
automorphisms U(H) (or O(H) in the real case):

Pt = P
(

(1− t) idH +t|P |−1
)
.

Since all eigenvalues are nonzero, |P | is invertible, so we can do this.
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Corollary 14.2. U(H) (or O(H) in the real case) is contractible in the norm topology.

This is definitely not true in finite dimensions: for example, GL1(C) = C×, and U(1) = S1, neither of
which is contractible. But the deformation retraction still exists. Contractibility is strange: if you embed
Sn ↪→ Sn+1 as the equator, Sn+1 is “more contractible” than Sn, since another homotopy group vanishes.
But the analytic version of that statement is that the infinite-dimensional unit sphere, the limit of this process,
is contractible! That’s a little counterintuitive.

Rather than proving directly that Aut(H) is contractible, we’ll establish a weak homotopy equivalence
with a point, and by a theorem of Whitehead, this is sufficient.

Definition 14.3. A continuous map f : X → Y of topological spaces is a weak homotopy equivalence if
(1) f∗ : π0X → π0Y is an isomorphism, and
(2) for all x ∈ X and n > 0, the induced map f∗ : πn(X, e)→ πn(Y, f(e)) is an isomorphism.

By a theorem of Whitehead, if X and Y have the homotopy type of CW complexes, then this implies f is
a homotopy equivalence.

Proof of Theorem 14.1. We’ll sketch the proof that πn(Aut(H), idH) vanishes for all n, which as noted above
is sufficient. The full details are in the lecture notes.

The first step will be to reduce to thinking about finite-dimensional operators.

Lemma 14.4. Let X be a compact simplicial complex and f0 : X → Aut(H) be continuous. Then, there
exists a homotopy f0 ' f1 and a finite-dimensional V ⊂ End(H) such that f1(x) ∈ V for all x ∈ H.

Proof. Cover Aut(H) with balls in Aut(H). Then, the inverse images under f0 cover X, and we can choose
a finite subcover. Subdivide these open sets so that for each simplex ∆ of X, f0(∆) is contained in some
open sets. Since X is compact, there are finitely many such simplicies. The n vertices of f0(∆) are operators,
and we can take an affine combination of them. In the end, we get finitely many such affine operators, and
passing to each one is a homotopy through the ball (and therefore through invertible operators). Since there
are finitely many of them, the space they span is finite-dimensional. �

The second step deals with V but not f1. We will construct an orthogonal decomposition H = H1⊕H2⊕H3
such that

(1) α(H1) ⊥ H3 for all α ∈ V ,
(2) dimH1 is infinite,
(3) there exists an isomorphism T : H1 → H3.

Let’s do this. Let P1 be a line in H, so we can choose a finite-dimensional P2 ⊥ P1 such that α(P1) ⊂ P1⊕P2
for all α ∈ V . Then, we may choose P3 to be a line perpendicular to P1 ⊕ P2 and fix an isomorphism
T : P1 → P3.

Let Q1 be a line perpendicular to P1 ⊕ P2 ⊕ P3, so that we can choose a finite-dimensional Q2 such
that α(P1 ⊕ Q1) ⊂ P1 ⊕ Q1 ⊕ P2 ⊕ Q2 for all α ∈ V , and P2 ⊥ Q2. Then (surprise) we choose a line
Q3 perpendicular to P1 ⊕ Q1 ⊕ P2 ⊕ Q2 and fix an isomorphism T : Q1 → Q3. We set H(1)

1 = P1 ⊕ Q1,
H

(1)
2 = P2 ⊕Q2, and H(1)

3 = P3 ⊕Q3.
At this point, we say “induction” and get H(n)

1 , H(n)
2 , and H(n)

3 , all finite-dimensional, such that α(H(n)
1 ) ⊂

H
(n)
1 ⊕H(n)

2 and T : H(n)
1 → H

(n)
3 is an isomorphism, and all three are orthogonal. Since H(n)

i ⊂ H
(n+1)
i ,

then we can define

Hi =
∞⋃
n=1

H
(n)
i , i = 1, 3,

and then define H2 = (H1 ⊕H3)⊥. Clearly, dim(H(n)
1 ) = dim(H(n)

3 ) = n (since each time, we add a line), so
H1 is infinite-dimensional, and the actions of V and T extend to have the right properties.

On to the third step. We want to construct homotopies f1 ' f2 ' f3 such that f3(x)|H1 = idH1 for all
x ∈ X. (We have f1(x)(H1) ⊥ H3 for all x). This is a trick with rotations, and can be done in two steps.

First, letHx = (f1(x)H1⊕H3)⊥, so there’s a mapH1⊕Hx⊕H1 → H1⊕Hx⊕H1 sending ξ⊕η⊕ζ 7→ −ζ⊕η⊕ξ.
This is a rotation by 90◦, and therefore is homotopic to the identity. Conjugating by f1(x) ⊕ idHx ⊕T :
H1 ⊕Hx ⊕H1 → H1 ⊕Hx ⊕H3, we get a path from idH to ϕx : f1(x)H1 ⊕Hx ⊕H3 = H → H sending
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f1(x)ξ ⊕ η + Tζ 7→ −f1(x)ζ ⊕ η ⊕ Tξ; further rotation takes us to f3 (which is easier to read about then
listen to).

The fourth step, called the Eilenberg swindle, proceeds as follows. If H = H⊥1 ⊕H1, each component is
infinite-dimensional, and f3(x) is the identity on H1, so in block form looks like

f3(x) =
(
u(x) 0
∗ 1

)
,

where u(x) is some invertible piece. By replacing ∗ with t∗, we get a homotopy through invertibles to

f4(x) =
(
u(x) 0

0 1

)
.

Next, we want to get rid of u(x). We can write H⊥1 = K1⊕K2⊕K2⊕· · · , where each Ki is infinite-dimensional
and the sum is of closed, orthogonal subspaces — and therefore we fix isomorphisms Ki

∼= H⊥1 ! Then, take
the path (

cos t − sin t
sin t cos t

)(
u

1

)(
cos t sin t
− sin t cos t

)(
u−1

1

)
on H⊥1 ⊕ H⊥1 . When t = 0, this is the identity, and when t = 1, it is the matrix with diagonal (u−1, u).
Therefore (and this is the swindle part),

f4 '



u (
1

1

)
(

1
1

)
. . .


'



(
u

u−1

)
(
u

u−1

)
(
u

u−1

)
. . .


'


1

1
1

1
. . .

 .

�

Remark 14.5. The last step in the Eilenberg swindle looks a lot like the “proof”
0 = (1 +−1) + (1 +−1) + (1 +−1) + · · ·

= 1 + (−1 + 1) + (−1 + 1) + · · ·
= 1.

Principal G-bundles.
Definition 14.6. Let G be a topological group (often a Lie group); then, a fiber bundle π : P → X is a
principal G-bundle if G acts freely on P on the right and π is a quotient map for the G-action.

In other words, a fiber bundle is a collection of spaces, but a principal G-bundle is a collection of (right)
G-torsors, spaces on which G acts simply transitively. Importantly, if y ∈ p−1(x) and g ∈ G, then gy ∈ p−1(x).

Local sections give us local trivializations, and vice versa: s : U → P |U is equivalent to a map U×G→ P |U
sending x, g 7→ s(x) · g. This has the useful corollary that a principal G-bundle has global sections iff it’s
trivial.
Example 14.7. Let E → X be a rank-r complex vector bundle, and let P be its bundle of frames:
Px = Iso(Cr, Ex), and G = Iso(Cr,Cr) = GLr C. In other words, every point of Px is a basis for Ex. G acts
on the right by precomposition, and so if we go from a p ∈ Px to a pg ∈ Px, then we can think of it as an
invertible linear map Cr → Cr, given by g−1.

This example was an instance of the associated fiber bundle: if F is any space with a left G-action, then
the associated fiber bundle is P × F/G→ X with fiber F . This is Steenrod’s picture of principal G-bundles
(which you can read more about in the lecture notes); there are lots of G-bundles, and in some sense their
behavior is controlled by the principal ones.
Proposition 14.8. Let π : E →M be a fiber bundle with fiber F such that F is a contractible, metrizable,
topological manifold (albeit perhaps infinite-dimensional)24 and M is metrizable. Then, π admits a section,
and if E, M , and F have the homotopy type of CW complexes, then π is a homotopy equivalence.

24To be precise, we want F to be a topological manifold modeled on a locally convex topological vector space.
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In general, topological spaces can get — well, not bad; there’s nothing morally wrong about them. But
they can be pretty vile. That’s why we want metrizable ones, though we don’t commit to a particular metric.

We won’t prove this; the proof is a bunch of point-set topology we don’t need to get into, but it’s important
that such theorems are provable. In any case, the slogan to take away is that in these nice cases and with
contractible fibers, sections are homotopy equivalences.

Theorem 14.9. Let G be a Lie group, and suppose πuniv : P univ → B is a principal G-bundle and P univ

is a contractible, metrizable, topological manifold. Then, for any principal G-bundle π : P → M with M
metrizable, there exists a G-equivariant pullback ϕ fitting into the following diagram.

P
ϕ //

π

��

P univ

��
M

ϕ // B.

The proof is pretty simple: form the associated bundle over M with fiber P univ, and check that it satisfies
the right properties.

Example 14.10. Fix a k ∈ Z>0 and let H be a separable, complex Hilbert space. Then, define the Stiefel25

manifold Stk(H) to be the set of “partial isometries” Ck ↪→ H, i.e. injections that preserve the norm.
Since Uk is the group of isometries of Ck, then it freely acts on Stk(H) on the right, so we get a bundle
π : Stk(H)→ Grk(H): the quotient is the Grassmanian.

It turns out that Stk(H) is contractible: U(H) acts transitively, and the stabilizer of e1, . . . , ek is
U(C{e1, . . . , ek}⊥). In other words, when we pick a basepoint, Stk(H) ∼= U(H)/U(H0) (the latter be-
ing basepoint-preserving unitary maps), and by Theorem 9.9, the unitary groups are contractible, and
U(H)→ Stk(H) is a principal U(H0)-bundle, and by Proposition 14.8 is a homotopy equivalence.

St1(H) is just S(H), the unit sphere.

The Peter-Weyl theorem tells us that any compact Lie group can be embedded in a unitary group, and so
allows us to obtain nice manifold models for more general classifying spaces.

Putting Things Together. Let H = H0 ⊕H1 be a super-Hilbert space. An odd skew-adjoint operator A
has block form

A =
(

0 −T ∗
T 0

)
.

This is not technically skew-adjoint, since there are a few factors of i unaccounted for, but that’s OK for the
purposes of this discussion.

Definition 14.11.
(1) Fred0(H) is the space of odd skew-adjoint Fredholm operators on H, which is also Fred(H0, H1)

(since skew-adjointness forces the whole operator once you know T ).
(2) For n > −1, define Fred−n(H) ⊂ Fred0(C`C−n⊗H). This has a left action of C`C−n induced by the

left multiplication of C`C−n on itself.

In (2), Aei = −eiA for i = 1, . . . , n.
If S = C1|1, which is a complex super-vector space (i.e. S = S0 ⊕ S1, where each Si ∼= C), then

C`C−2
∼= End(S), so we can talk about algebraic periodicity: there is a map

Fred0(S∗ ⊗H) −→ Fred−2 ⊂ Fred3(S⊗ S∗ ⊗H)
given by A 7→ idS⊗A, and it’s a homeomorphism. In other words, Fred0 ∼= Fred−2 ∼= Fred−4 ∼= · · · , and
similarly Fred−1 ∼= Fred−3 ∼= · · · . So we have two homeomorphism types, and therefore two homotopy types.

So far, this is just the periodicity of the Clifford algebras; there’s nothing analytic about it. We can extend
to positive n by using more Clifford algebras, though. Analytically, what’s going on is the Atiyah-Singer
loop map α : Fred−n(H)→ Ω Fred−(n−1)(C`C−1⊗H) sending A 7→ (t 7→ en cosπt+A sin πt), where 0 ≤ t ≤ 1.
Our goal is to prove the following theorem.

Theorem 14.12 (Atiyah-Singer). The Atiyah-Singer loop map α is a homotopy equivalence.
25Pronounced “shteefel.”
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Corollary 14.13. Ω2 Fred0(H) ∼= Fred0(H).
There may have been a shift in our separable Hilbert space, but by Kuiper’s theorem, that doesn’t actually

matter.
This is our final version of Bott periodicity: it will allow us to define K-theory on noncompact spaces.
Lecture 15.

Compact Operators: 10/15/15

Though we’ll soon move into studying groupoids, equivariant vector bundles, and loop groups, this and
the next lecture will address the proof of Theorem 14.12. David Ben-Zvi will give next Thursday’s lecture.

Suppose X and Y are pointed spaces; then, a map f : ΣX → Y is equivalent to a map g : X → ΩY .
In other words, for any point x ∈ X, we get a based loop, because the ends of the suspension coordinate
(t = 0, 1) map to the basepoint, so tracing over t for a given x is a loop in g that starts and ends at the
basepoint. Conversely, given a map X → ΩY , write it as x 7→ f(t, x), and then (t, x)→ f(t, x) is our map
ΣX → Y . That is, these maps are adjoints.
Definition 15.1.

(1) A prespectrum is a sequence {Tn}n∈Z is a sequence of pointed spaces and maps sn : ΣTn → Tn+1.
(2) A prespectrum is an Ω-prespectrum if the adjoint maps tn : Tn → ΩTn−1 are weak homotopy

equivalences.
(3) An Ω-prespectrum is a spectrum if the tn are homeomorphisms.

It’s enough to specify Tn for n ≥ n0, given some n0 ∈ Z (a lower bound) by defining Tn = Ωn0−nTn0 when
n < n0.

So in a spectrum, we have some sequence where decreasing the degree means taking loops Ω(–), and
increasing the degree is delooping (which is in general harder): it’s not just taking suspensions. For example,
ΣS1 ' S2, but ΩS2 is an infinite-dimensional manifold, not homeomorphic to S1.
Example 15.2. If X is any pointed space, set Tn = ΣnX and sn : ΣΣnX → Σn+1X to be the identity. This
is called the suspension spectrum of X.

These spectra are the domain of stable homotopy theory, where one studies the stable properties of
topological spaces under these sequences.

So why do we care as K-theorists? If {Tn} is a spectrum, then it defines a (reduced) cohomology theory
on a category of reasonable topological spaces defined by kn(X) = [X,Tn]. This means it satisfies a few
properties. For example, if we have a map f : X → Y , we can extend to the mapping cone: X f→Y → Cf .
This is required to induce an exact sequence

kn(X) kn(Y )oo kn(Cf )oo

This is the most crucial one. We used the Puppe sequence to extend this to a long exact sequence, and since
we’re taking suspensions again, we can do the same thing. This is useful, because we’re defining a sequence
of Fredholm operators that is an Ω-prespectrum. There’s a way to obtain a spectrum from a prespectrum,
which is intuitively a kind of completion, though we might lose the niceness of the properties in the sequence.

Once we pass from spaces to spectra, we may want to do algebraic topology with them, defining homotopy
or homology theory. This is done in more detail in the lecture notes.

So we were mired in Fredholm operators, and defined K0(X) = [X,Fred0(H)], where if H = H0 ⊕H1 is a
Z/2-graded Hilbert space,

Fred0(H) =
{(

−T ∗
T

)
: T : H0 → H1 Fredholm

}
,

which is the same as Fred(H0, H1). Geometrically, x ∈ K0(X) is represented by a family of Fredholm
operators parameterized by x.
Remark 15.3. If E = E0 ⊕ E1 → X is a super-vector bundle and H = H0 ⊕H1 is a fixed Hilbert space,
then Ei ⊕Hi, for each i = 1, 2, is a trivializable vector bundle over X. Thus, we can construct a family of
Fredholms Tx = 0Ex ⊕ idH . If X is compact Hausdorff, the K-theory class of T is the same as the K-theory
class of E, independent of the choices we made.
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What about other degrees? We use Clifford algebras to make loops, and define Fredn(H) ⊂ Fred0(C`Cn⊗H)
to be {T : eiT = −Tei, i = 1, . . . , n}.

Remark 15.4. Suppose E = E0 ⊕ E1 → X is a finite-rank bundle of C`C1 -modules (i.e. we have a left action
of the Clifford algebra). We’d think of this as giving us a class in K1. This is true, but the class is always
zero: if e1 is the Clifford generator and ε is the grading, then let e2 = ie1ε, which is odd (since i and ε are
even, but e1 is odd).

Then, e2e1 + e1e2 = 0 and e2
2 = e2

1, so E is the restriction of a C`C2 -module, so 0E is homotopic to an
invertible through the homotopy t 7→ te2 of odd endomorphisms of C`C1 -modules. And by Kuiper’s theorem,
invertibles are trivial in K-theory.

So in the end, we’ll define Kn(X) = [X,Fredn(H)]; the invertibles in Fredn(H) are contractible by Kuiper’s
theorem, so if your family ends up in the invertibles, it’s homotopic to the trivial class in K-theory. Sadly,
this means we don’t have nice finite-dimensional vector bundle representatives of these classes, as we did in
the case of compact X.

Compact Operators. We’re going back to functional analysis now, so as usual let H0 and H1 be complex,
separable, ungraded, infinite-dimensional Hilbert spaces.

Definition 15.5. If T : H0 → H1 is bounded, then
(1) T has finite rank if T (H0) ⊂ H1 is finite-dimensional, and
(2) T is compact (sometimes completely continuous) if T of the unit ball is precompact (i.e. has compact

closure).
The space of compact operators is denoted cpt(H0, H1).

There are many equivalent characterizations of compactness: for example, defining this with the unit ball
is equivalent to defining it for any bounded neighborhood of the origin.

Fact. cpt(H0, H1) is a closed, two-sided ideal in Hom(H0, H1) (i.e. a compact operator composed with
a bounded operator, on either side, is compact). The closure of the finite-rank operators is the compact
operators. And finally, the identity is compact iff H is finite-dimensional.

Thinking back to the definition of Fredholm operators, we said that one of our axioms in the definition
was redundant. Let’s prove this.

Lemma 15.6. Let T : H0 → H1 be such that kerT and cokerT are finite-dimensional. Then, T (H0) ⊂ H1

is closed.

Proof. kerT is closed, since it’s finite-dimensional, and T : (kerT )⊥ → H1 is clearly injective with image
T (H0) and a finite-dimensional cokernel, so it suffices to prove it when T is injective.

Choose V ⊂ H1 to be a finite-dimensional space such that H1 = T (H0) ⊕ V , which means also that
H1 = V ⊥ ⊕ V . V ⊥ is closed, because V is (the condition of being an orthogonal complement is a closed
condition), so π · T : H1 → V ⊥ given by orthogonal projection is a continuous bijection, which means it has a
continuous inverse F .

If {ξn} ⊂ H0 and Tξn = ηn converges to an η∞ ∈ H1, set ξ∞ = Fπη∞ ∈ H0, and then it’s easy to check
that Tξ∞ = η∞. �

This lemma is useful for proving the following criterion.

Proposition 15.7. A continuous operator T : H0 → H1 is Fredholm iff there exist S, S′ : H1 → H0 such
that idH0 −ST and idH1 −TS′ are compact; moreover, we can take S = S′ and such that id−ST and id−TS
are finite rank.

S and S′ are called parametrices, which can be thought of as “almost-inverses.” We’ll end up modding out
by the “almost.” The idea is that Fredholms are invertible up to small operators, so almost invertible.

Corollary 15.8. If k ∈ cpt(H0), then the operator idH0 +k is Fredholm of index 0.

In Proposition 15.7, we can just take S and S′ to be the identity. This is what Erik Fredholm, a Swedish
mathematician, was concerned with; it’s not clear whether he studied Fredholm operators more generally.
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Proof of Proposition 15.7. If T is Fredholm, decompose it as the map (kerT )⊕ (kerT )⊥ → T (H0)⊥⊕T (H0).
If π is orthogonal projection onto T (H0), then π · T : (kerT )⊥ → T (H0) is bijective (again, this is invertible
up to a small space). Then, define S = S′ to be its inverse (which is bounded by the open mapping theorem)
on T (H0) and 0 on T (H0)⊥.

Conversely, if idH0 −ST is compact, then it’s compact restricted to kerT , and therefore kerT must be
finite-dimensional, and the same argument holds for idH1 −TS′ and the cokernel. �

From now on, we’ll call Aut(H) = GL(H): the invertible linear, bounded operators. Then, analogous to
the Lie algebra is the space of all bounded operators, denoted gl or gl(H), and we’ll write cpt for cpt(H).
These all act on the ungraded vector space H0.

Definition 15.9. GLcpt = {P ∈ GL : P − id ∈ cpt(H)}, things that are compact minus the identity.

Then, GLcpt is a Banach Lie group (i.e. an infinite-dimensional Banach manifold with a group structure),
and its Lie algebra is cpt. So GL←→ gl and GLcpt ←→ cpt. GL is also a Banach Lie group, which is less of
a surprise.

We can also consider the Banach Lie group U of unitary operators on H, and its Lie algebra u, the space of
skew-adjoint operators. In the same way we can take Ucpt (also a Banach Lie group) and its algebra u ∩ cpt.

Now, we can take a filtration 0 ⊂ H − 1 ⊂ H2 ⊂ · · · ⊂ H such that dimHn = N and
∞⋃
n=1

Hn = H.

This induces maps GL(H1) ⊂ GL(H2) ⊂ · · · .

Theorem 15.10 (Palais [36]). The induced map
∞⋃
n=1

GL(Hn) ↪→ GLcpt

is a homotopy equivalence.

But we know the homotopy type to be GL∞ ' U∞, and by Bott periodicity, we know

πq(GL∞) ∼=
{Z, q odd

0, q even.
So we’ll actually prove that the space of operators we get from K-theory sometimes has this homotopy type,
which is an ingredient we need for Bott periodicity.

Definition 15.11. The Calkin algebra is the quotient gl/cpt.

This has lots of structure; it’s a Banach space in the usual way,26 and so it’s a Banach algebra and even a
C∗ algebra.

It’s also a Lie algebra, whose Banach Lie group is GL /GLcpt, and there is a principal bundle

GLcpt // GL

��
GL /GLcpt .

This is, again, a theorem of Palais. Since Kuiper’s theorem implies that GL ' ∗, then GL /GLcpt '
BGLcpt ' BGL∞.

So now we have the two homotopy types GLcpt ' GL∞ and its classifying space. In this context, the Bott
periodicity theorem is that the loop spaces repeat: each is the other’s loop space, and we’ll prove this by
using the fact that

Fredn '
{U∞, n odd,
Z×BU∞, n even.

26If X is a Banach space and Y ⊆ X, then X/Y has a norm ‖[x]‖X/Y = infy∈[x]‖y‖X .
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So we have the following diagram, where G will denote U /Ucpt.

U �
� d.r. //

��

GL �
� //

��

gl

π

��
G �
� d.r. // GL /GLcpt � � // gl/ cpt .

Here, “d.r.” means a deformation retraction, and the vertical arrows are the quotient maps. We can take the
invertible elements (gl/cpt)× within the Calkin algebra, which is a group.

Proposition 15.12 (Freed27).
(1) GL /GLcpt is the identity component of (gl/cpt)×.
(2) π−1((gl/cpt)×) = Fred ⊂ gl.

Moreover, π : Fred→ (gl/cpt)× is a fibration with contractible fibers, and therefore a homotopy equivalence!

Corollary 15.13. Fred(0) ' BGL∞ and Fred ' Z×BGL∞.

Let F denote Fred, and F̂ denote the space of skew-adjoint Fredholm operators, which is an ungraded
space. Then, we’ll prove the following.

Theorem 15.14. F̂ is the disjoint union of three components F̂+ q F̂− q F̂∗, where F̂± are contractible and
α : F̂∗ → ΩF sending T 7→ cosπt+ T sin πt for 0 ≤ t ≤ 1 is a homotopy equivalence.

We haven’t explained how this is related to Clifford algebras in the graded situation, but it’ll be easy to go
from this to F̂∗ = Fred1. This is the crucial theorem that allows us to get Bott periodicity once we get the
layout of the structure groups.

Lecture 16.

Quasifibrations and Fredholm Operators: 10/20/15

Today is the last lecture about Fredholm operators and the theorem of Atiyah and Singer connecting
K-theory to the space of skew-adjoint operators. Today will be about making deformations, in a way that can
be considerably more general than the setting we use today. If p : E → B is a fiber bundle with contractible
fibers, we want p to be a homotopy equivalence; of course, this isn’t true in general, so we need some sort of
structure.

For example, p : Rdiscrete → R (the latter with the usual topology) given by the identity set map is a fiber
bundle with contractible fibers (since each fiber is a point), but cannot be a homotopy equivalence: R is
connected, and Rdiscrete has uncountably many components. As such, we will assume that B is path-connected,
and E and B are metrizable.

We’ll talk about three classes of maps: fiber bundles, fibrations, and quasifibrations. These all have the
important property that the preimages of each point are, respectively, homeomorphic, homotopy equivalent,
and weakly homotopy equivalent. Thus, to establish a weak equivalence any of these will suffice.

We’ve talked about fiber bundles before: they locally look like products. Specifically, if B is path-connected,
for any b ∈ B, there’s a neighborhood U ⊂ B of b such that the following diagram commutes, where F is the
fiber.

p−1(U)
∼= //

p
��

U × F

π1
��

U

27Yes, this was part of the professor’s thesis!
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The crucial property of fibrations is that they have the homotopy lifting property: if p : E → B is a fibration
and f : [0, 1]×X → B is a homotopy, then we can lift f to f̃ in the following diagram.

{0} ×X f̃0 //
� _

��

E

p

��
[0, 1]×X f //

f̃

;;

B

Sometimes these are taken in the category of pointed topological spaces, so that the basepoints are preserved
by these commutative diagrams.
Theorem 16.1. Suppose p : E → B is a fibration.

(1) For n ≥ 0, p∗ : πn(E, p−1(b);B)→ πn(B, b) is an isomorphism.
(2) There is a long exact sequence of homotopy groups as follows.

· · · // πn(F, e) // πn(E, e) // πn(B, e) // πn−1(F, e) // · · ·

For part (1), the idea is that we can lift a map Sn → B into the fiber, and this plays well with basepoints,
but you have to consider relative homotopy. Then, the long exact sequence is ultimately the long exact
sequence of the pair (E,F ). These are standard in homotopy theory; see Hatcher’s book [26] for some of the
proofs.
Proposition 16.2. Let p : (E, e)→ (B, b) be a fibration and b′ ∈ B. Then, if

Pe(E, p−1(b′)) =
{
γ : [0, 1]→ E | γ(0) = e, γ(1) ∈ π−1(b′)

}
,

then p induces a fibration Pe(E, p−1(b′))→ Pb(B, b′) with contractible fibers.
If you specify an initial point and take the space of paths that can have any final point, this path space is

contractible (just reel in the paths). This proposition is a fibered generalization of that.
Now, what’s a quasifibration? We’re going to encounter these a few times in this lecture.

Definition 16.3. If p : E → B, the homotopy fiber over a b′ ∈ B is the space of pairs (x, γ), where x ∈ E
and γ is a path in B from b′ to p(x).

If Hb′ is the homotopy fiber over b′, then there’s a map ψ : p−1(b′)→ Hb′ sending x 7→ (x, γconstant).
Definition 16.4. With p and ψ as above, p is a quasifibration if ψ is a homotopy equivalence for all b′ ∈ B.

Our map Rdiscrete → R is not a quasifibration: the homotopy fiber over a point is Rdiscrete times the path
space, and this is not contractible. See Figure 2 for an example of a quasifibration that isn’t a fibration.

Figure 2. A map which is a quasifibration, but not a fibration. The preimage of a point is
usually a point, but over one point it’s an interval. Nonetheless, the homotopy fiber over
every point is contractible, and this is induced by ψ.

Proposition 16.5. p is a quasifibration iff p∗ : πn(E, p−1(b); e)→ πn(B, b) is an isomorphism for all b ∈ B,
e ∈ p−1(B), and n ≥ 0.

Returning to the Fredholm story, we fixed a Hilbert space H and considered the following diagram of Lie
algebras and/or groups.

U

Ucpt

��

� � d.r.
'

// GL

GLcpt

��

� � // gl

π

��

Fred

π

��

? _oo Fred0

π

��

? _oo

U /Ucpt � � d.r.
'
// GL /GLcpt � � // gl/cpt (gl/cpt)×? _oo GL /GLcpt? _oo
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Oh boy. So what do we know here? By Kuiper’s theorem, GL is contractible, and since the deformation
retraction onto U is a homotopy equivalence, U is contractible as well. Then, GLcpt ' GL∞ and GL /GLcpt '
BGL∞, so U /Ucpt ' GL∞ too. We also know that Fred ' Z × BGL∞, as does (gl/cpt)×, and Fred0 '
BGL∞.

As in the last lecture, F̂ will denote the skew-adjoint Fredholm operators. A skew-adjoint Fredholm
operator must have index 0 (the kernel and cokernel must be isomorphic), so F̂ sits inside Fred0, and therefore
π maps it into GL /GLcpt. Let Ĝ denote the group of unitary, self-adjoint operators, i.e. if x ∈ Ĝ, then
xx∗ = 1 and x = −x∗, so x2 = −1. There is a deformation retraction of the inclusion Ĝ ↪→ GL /GLcpt,
inducing a homotopy equivalence.

In particular, Spec(x) ⊂ {±i}.28 This gives us three possibilities.
(1) Ĝ+, the set where the spectrum is {i}. The only operator that satisfies this is i, and a single point is

contractible.
(2) Ĝ−, the set where the spectrum is {−i}. Again, only −i satisfies this, so this is contractible.
(3) Ĝ∗ is everything else, the operators that have both i and −i in the spectrum.

We have a decomposition Ĝ = Ĝ+ q Ĝ− q Ĝ∗, and we can lift this to a decomposition of F ; thus, what we
need to prove is that the map α : F̂∗ → ΩF sending T 7→ cosπt+ T sin πt, with 0 ≤ t ≤ 1, is a homotopy
equivalence.29 This map specifically will allow us to build a spectrum of Fredholm operators, once we put
Clifford algebras back into the story.

To do this, we need to prove the following theorem.

Theorem 16.6. The exponential map ε : Ĝ∗ → ΩG sending x 7→ expπtx, for 0 ≤ t ≤ 1, is a homotopy
equivalence.

Then, we can lift ε up to α. We need to define one more space of operators; though, let

F̂∗ =
{
T ∈ π−1(Ĝ∗) | ‖T‖ = 1

}
.

That is, if T ∈ F̂∗, then T is Fredholm, T ∗ = −T , and ‖T‖ = 1. Thus, the essential spectrum of T is {±i}.

Lemma 16.7. F̂∗ is a deformation retraction of F̂∗.

(If things are getting confusing at this point, consider checking out the lecture notes, or better yet, the
original paper!)

Proof of Lemma 16.7. First, we have a deformation retraction ((1− t) + t‖π(T )−1‖)T onto the subspace of
S ∈ F̂∗ with ‖π(S)−1‖ = 1. We know that the essential spectrum of S is contained in the imaginary axis and
has magnitude at least 1 (since the norm of the inverse is 1, so the largest part of the spectrum of the inverse
is at most 1).

Now, we want to deformation retract onto F̂∗, which has only ±i in its spectrum. This is perfectly possible,
since iR deformation retracts onto [−i, i]. That this induces one upstairs in operator-land follows from the
spectral theorem (analogously to allowing us to diagonalize matrices in linear algebra, after which everything
is pretty nice). �

In particular, π : F̂∗ → Ĝ∗ is a homotopy equivalence. So we’re getting closer. . .
Let δ : x 7→ exp(πtx), for 0 ≤ t ≤ 1. Then, we have the following diagram; we know the red arrow is a

homotopy equivalence, and we want to prove that ε is one (which will imply Theorem 16.6).

F̂∗
δ //

π̂ '
��

P1(U,−Ucpt)

ρ

��
Ĝ∗

ε // P1(G,−1)

(16.8)

We’ll prove this by showing δ and ρ are homotopy equivalences; this is where the discussion from the beginning
of lecture comes in.

28Here, we’re thinking of spectrum in a somewhat abstract set, the λ ∈ C such that x− λ · id has a nontrivial kernel.
29These aren’t loops per se; ΩF consists of paths of Fredholm operators from id to − id.
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Proposition 16.9. Evaluation at the endpoint is a homotopy equivalence P1(U,−Ucpt).

Recall that P1(U,−Ucpt) is the space of paths in U that end in the subspace −Ucpt.

Proof. This is a fibration (even a principal bundle) with fiber Ω U, which is contractible by Kuiper’s theorem.
Thus, we get a weak homotopy equivalence, but since these spaces can be modeled on CW complexes,
Whitehead’s theorem means this is also a homotopy equivalence. �

Thus, in (16.8), ρ is a homotopy equivalence, because U→ G is a principal fiber bundle, with fiber the
unitary operators that are 1 plus a compact operator. Thus, as we talked about earlier, the relevant map
between path spaces is a homotopy equivalence.

That ε is a homotopy equivalence comes from the following theorem.

Theorem 16.10. q : F̂∗ → −Ucpt sending T 7→ expπT is a homotopy equivalence.

It would suffice to prove that it’s a fibration, or even a quasifibration. . . but it’s neither. It’s almost a
quasifibration, though, which will be useful. For example, if P ∈ −Ucpt, it can be written as P = − idH +`,
where ` ∈ cpt.

(1) If ` has finite rank and K = ker(`). Then, H = K ⊕K⊥, and K⊥ is finite-dimensional. Suppose
T ∈ q−1(P ), i.e. expπT = P . Then, T |K⊥ is determined by P , because exp(π, –) : [−i, i]→ T sends
the two endpoints to −1 and wraps around; in particular, it’s one-to-one except at −1.

Asking about the fibers of the map is equivalent to asking for a logarithm, and the logarithm exists
except at −1. Thus, we’re okay except on a finite-dimensional subspace. In particular, there is a
decomposition K = K+⊕K−, where each of K± is infinite-dimensional, and T |K+ = I and TK− = −i.
Thus, q−1(P ) is the Grassmanian of such splittings of K, which is a homogeneous space (U acts
transitively on it), so q−1(P ) ∼= U(K)/(U(K+)×U(K−)). By Kuiper’s theorem, this is contractible.

Thus, over the subspace where ` has fixed rank n, q is a fiber bundle with contractible fibers.
(2) But it’s not a quasi-fibration over the whole space. Let e1, e2, . . . be an orthonormal basis of H and

define P1, P2 ∈ −Ucpt by

P1(en) = exp
(
πi

(
1− 1

n

))
en

P2(en) = exp
(
πi

(
1 + (−1)n

n

))
en.

That is, P1 has eigenvalues clustering near −1 from one side, and P2 is similar, but alternating around
both sides (on the circle). But neither has −1 as an eigenvalue, so we can take the logarithm. The
inverse image of P1 has eigenvalues converging to i, so we get a skew-adjoint Fredholm operator with
essential spectrum i, and therefore it’s in F̂+: so q−1(P1) is empty!

However, P2 pulls back to something approaching both i and −i, so we do get a preimage of P2,
which is a point. This is not homotopy equivalent to q−1(P1), so q isn’t a quasi-fibration. Generically,
−1 won’t be in the spectrum, so inverse images will be unique; if −1 is in the spectrum, then we
have extra stuff in the preimage. Ultimately, since a dense subspace of this has nice behavior, we can
deformation retract both the domain and the codomain to make the fibers actually contractible, and
get a quasifibration.

The point of this part is that you can chase around abstract things all day, but at some point you have to
actually delve into the space of operators and work with that.

Unfortunately, we don’t have time to put Clifford algebras back in, but this is the key: the bottom line is,
we have a model for K-theory involving spectra and Fredholm operators. We’ll use this in the second half
of the class applied to geometry. In the next few weeks, we’ll start with groupoids and the representation
theory of compact Lie groups, and moving on to loop groups.
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Part 3. Representations of Compact Lie Groups
Lecture 17.

Groupoids: 10/22/15

“I’m not going to tell you about index theorems, because I have no idea what they are.”
Today’s lecture was given by David Ben-Zvi.

To talk about groupoids, let’s first think about equivalence relations. Specifically, an equivalence relation
on a set X is a relation E ⊂ X ×X (where one says that x ∼ y if x, y ∈ E), subject to some conditions.
It’s reflexive, so that x ∼ x, meaning E contains the diagonal ∆ ⊂ X ×X; it’s symmetric, meaning that
x ∼ y iff y ∼ x (so that it’s invariant under the transposition σ : X ×X → X ×X). Finally, we need ∼ to be
transitive, so if x ∼ y and y ∼ z, then x ∼ z. This can be thought of in terms of fiber products! Specifically,
if we take the product across the two projections p1, p2 : E → X, transitivity means that E ×X E = E.

Equivalence relations are really ways of thinking about quotients: if E ⊂ X × X, we have a quotient
Z = X/E. This allows one to define an isomorphism of equivalence relations: if E is an equivalence relation
on X and F is one on Y , a map f : X → Y is an isomorphism of E and F if the following diagram commutes.

E
f //

��

F

��
X ×X

f×f // Y × Y

This is much more useful than two equivalence relations being the same; an isomorphism of equivalence
relations induces an isomorphism X/E

∼→ Y/F . Really, all that we care about is the quotient; you can test
everything on the quotient. We’ll generalize this into the notion of groupoids.

Suppose a group G acts on a set X, so we say x, y ∈ X are (orbit) equivalent if there’s a g ∈ G such that
gx = y, and we can form the quotient X/G. There is a map A : G×X → X ×X sending (g, x) 7→ (x, g · x),
and its image is exactly the equivalence relation. We’ll change our way of thinking from E to G × X in
order to approach groupoids. This is nicer in one part because E completely forgets about stabilizers.30 For
example, when G and X are topological, Im(A) might not behave well, e.g. it may not be closed, so the
quotient isn’t Hausdorff. The image isn’t a great way to think about this.

So let’s say G = G×X, and axiomatize what properties it has, which is what the theory of groupoids does.

Definition 17.1. A groupoid G acting on a set X is a set G along with maps s, t : G ⇒ X,31 i : X → G, and
c : G ×X G → G (akin to composition) which satisfy the following three properties.

(1) The action is reflexive, i.e. the following diagram commutes.

X
i //

∆ ��

G

(s,t)��
X ×X

(2) The action is transitive, meaning the following diagram commutes.

G ×X G
c //

(s,t) ""

G

(s,t)��
X ×X

Moreover, c must be associative.

30The stabilizer StabG x ⊂ G of an x ∈ X is the set of g ∈ G for which gx = x.
31This is equivalent to specifying a map G → X ×X.
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(3) There must be inverses, so with σ as above, the following diagram commutes.

G //

��

G

��
X ×X σ // X ×X

Rather than think about all of the axioms, keep a good example in your head, for which you can write
down all the axioms you want. Specifically, a group G acting on a point is a groupoid acting on X = •, and
the axioms mean that G has a unit, is associative, and has inverses. In fact, a groupoid acting on a single
point is the same notion as a group. Another example: if G ↪→ X ×X, then what we have is exactly the
notion of an equivalence relation. So you might think of groupoids as noninjective equivalence relations.

Alternatively, a groupoid acting on X is a bunch of arrows on points of X, but we require that every
identity arrow exists and all compositions and inverses exist. (The inverses have been omitted from the
following diagram to reduce clutter.)

•
��

�� �� ��

%%

��

•




��
•11 • mm

Another way to think of this is as a “partially defined group,” so we may not be able to compose all arrows,
but we can invert them all.

Example 17.2. If X is a topological space, the fundamental groupoid or Poincaré groupoid G = π≤1(X) is
defined as follows: for any x, y ∈ X, Gx,y is the set of paths x→ y up to homotopy. Thus, Gx,x = π1(X,x),
and Im(G) ⊂ X ×X is the equivalence relation of path components of X, i.e. π0(X).

There’s yet another characterization of groupoids, which depends on categorical notions. It’s almost better
to have not seen it before: first examples of categories tend to be the category of all sets, of all groups, etc.
These aren’t necessarily how people actually use categories on a day-to-day basis.

Definition 17.3. A category C is a collection Ob(C) of objects and sets Mor C = G of morphisms (one writes
Hom(X,Y ) = Gx,y) such that:

• there is an identity morphism 1X ∈ Hom(X,X) for all X ∈ Ob(C), and
• there is an associative composition map Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z) for all X,Y, Z ∈

Ob(C).

You can think of a category as a bunch of arrows on Ob(C), such that the identity arrow and compositions
all exist. This is suspiciously similar to the axioms for a groupoid!

Lemma 17.4. Indeed, a groupoid is a category in which all morphisms are invertible.

A category with one object satisfies precisely the same axioms as a monoid (intuitively, a group without
inverses), so a category can be thought of as a partially defined monoid, which is actually a useful way to
think about it. In other words,

monoids : categories :: groups : groupoids .

Would that we see that on the SAT!
Another mistake people make when thinking of categories is having the wrong picture for when two

categories are equivalent. One can formulate and write down a notion of isomorphism of categories, but this
is considerably less useful than the more flexible notion of equivalence of categories. This is akin to the idea
of a homotopy equivalence, rather than a homeomorphism.

Definition 17.5. A functor between groupoids (essentially just a map of groupoids) G → X × X and
H → Y × Y is the data f0 : X → Y along with a map of arrows f1 : G → H (specifically, Gx,y → Hf0(x),f0(y))
which commutes with associativity.
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This can be summarized in the diagram

G
f1 //

��

H

��
X ×X

(f0,f0) // Y × Y.
If you use Hom(X,Y ) instead of GX,Y , then we get the familiar categorical notion of a functor. And if your
groupoids are actually groups, you just get a homomorphism of groups.

A map of groupoids can be recast in the notion of equivalence relations: it provides a map f : X/G → Y/H
on the quotients. We want to define the notion of isomorphism of groupoids to be isomorphism on quotients,
not on the sets G and H per se.
Definition 17.6. Let G ⇒ X and H⇒ Y be two groupoids and f, g : G → H be two functors of groupoids.
Then, a natural transformation η : f → g is a way of connecting f to g by defining maps η : f(x) → g(x).
For all x, x′ ∈ X and γ : x→ x′, we have maps f(γ) : f(x)→ f(x′) and similarly for g; for η to be a natural
transformation we require that the following diagram commutes for all x, x′ ∈ X and γ : x→ x′.

f(x)
f(γ) //

η

��

f(x′)

η

��
g(x)

g(γ) // g(x′)

The same definition works for categories.
Hence, specifying a natural transformation G → H is equivalent to specifying an isomorphism on the

quotients X/G → Y/H. This allows us to define our analogue of homotopy.
Definition 17.7. An equivalence of groupoids G ∼ H is a pair of functors f : G → H and g : H → G such
that there are natural transformation fg ⇐⇒ id and gf ⇐⇒ id.

Again, this is exactly the same as specifying an isomorphism on the quotients.
Example 17.8. To make things a little more concrete, let X and Y be topological spaces and f : X → Y
be continuous; thus, it induces a map π≤1(X)→ π≤1(Y ) given by composing paths with f .

If X is contractible, a map • → X induces an equivalence of groupoids π≤1(•) → π≤1(X)! Though X
and consequently π≤1(X) may be huge, the idea is that these things are “the same.” Our map f induces
f : π≤1(•) → π≤1(X), and there is a unique map g : π≤1(X) → π≤1(•). gf must be the identity, because
there’s no other map π≤1(•)→ π≤1(•), but fg might not be; it sends a point x to a specific point x0. Since
X is contractible, there’s a unique path x0 → x up to homotopy, giving us a unique map fg → idX .

So equivalence of groupoids is coarse, but remembers something “essential.” π≤1(X) knows π0(X) and
π1(X,x) for each x ∈ X (so really for each connected component), and it turns out that equivalence of
groupoids tracks these groups (i.e. an equivalence of groupoids induces an isomorphism on them) and nothing
else.

To be precise, there is an equivalence of groupoids between π≤1(X) and the groupoid

π≤1

( ∏
α∈π0(X)

K(π1(Xα, xα), 1)
)
.

This space is sometimes called the 1-truncation of X, which has the same π0 and π1 as X, but no other
homotopy.

It turns out this is a rather general example: if G ⇒ X, then we can actually build a topological space
on which G is π≤1; for example, we take π0(G) = X/ Im(G). Then, equivalence of groupoids is the same
as homotopies of 1-truncated spaces, so you can relate homotopy theory and groupoids! And, again, this
equivalence is also the same as specifying isomorphisms on the quotients.32

32Think about what this means on groups: we have an equivalence of groups G acting on X and H acting on Y when
X/G ' Y/H, though we have to be careful about stabilizers. For example, R and R24 acting on R25 are equivalent as groupoids,
even though they’re quite different!
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The point is, this equivalence relation is pretty floppy; if someone hands you a groupoid, you shouldn’t get
too attached to it (only up to equivalence).

There are yet more way to think about groupoids: a stack is a groupoid, and equivalence of groupoids is
an isomorphism of the quotient stacks X/G ' Y/H.33

When we talked about groupoids at first, we used the language of sets. But you can throw any adjective
in front of it: for example, a topolgical groupoid is the same as a groupoid where G and X are spaces and the
specified maps are continuous; a differentiable groupoid requires G and X to be manifolds and the maps to be
smooth; an algebraic groupoid uses varieties and algebraic morphisms, and so on, in your favorite category.
There’s another sense in which a topological groupoid is a functor from topological spaces to groupoids of
sets (with some extra conditions; we’re relating groupoids up to equivalence, so be careful). This relates to a
common presentation of stacks: a sheaf is a functor from spaces (or varieties) to sets, and a stack is a functor
to groupoids instead: replacing sets with groupoids is precisely what the generalization does.

Lecture 18.

Compact Lie Groups: 10/27/15

“I felt like I didn’t have enough problems in my life.”
“I’ll fix that.”

Professor Freed is back today. He may not post notes for these topics, so take notes.
The next two or three lectures will be a lightning review (or not review, in some cases) of compact Lie

groups, their structure, and their representation theory; then, K-theory will come back into the picture
(specifically equivariant K-theory) relating to vector bundles over groupoids. Then, we’ll eventually talk
about loop groups.

Let G be a compact Lie group.34 A Lie group is the marriage of a manifold and a group: a group that is
a manifold and such that multiplication and inversion are continuous. To require G to be compact means
requiring its underlying manifold to be compact.

There are three basic examples of Lie groups.
(1) Finite groups (as 0-dimensional manifolds).
(2) Tori are particularly useful in structure theorems.
(3) Connected and simply-connected Lie groups are products of simple Lie groups, which can be classified:

the classical groups SUn, Spinn, and Spn (which are roughly matrix groups); and the exceptional
groups G2, F4, E6, E7, and E8.

You might have noticed Un and On aren’t in this list; Un is a combination of SUn and a torus, and SOn is
covered by Spinn, and so we can build On and SOn out of them.

A general Lie group G is off from these by a sort of twisting: it fits into a diagram

1 // G1 // G // π0(G) // 1,

where π0(G) is finite and G1 is connected (so, technically speaking, it’s an extension of a connected Lie group
by a finite group). Then, G1 fits into the following diagram.

1 // F // G̃ // G1 // 1

Here, F is finite and G̃ is a product of tori and connected, simply-connected groups (whose components we
understand, as stated above). So up to twisting, Lie groups have a reasonable product decomposition.

Example 18.1. Here’s what this classification looks like for On.

1 // SOn
// On

det // {±1} // 1

1 // {±1} // Spinn // SOn
// 1

33“If you don’t yet live in the world of stacks you should join.”
34A compact manifold is necessarily finite-dimensional, so all of our compact Lie groups are finite-dimensional. One can

think about infinite-dimensional Lie groups, but the results depending on compactness don’t necessarily hold.
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Since Un is connected, we only need the second part of the decomposition: let µn denote the nth roots of
unity and T denote the circle group. Then,

1 // µn // SUn × T // Un
// 1.

Any Lie group G has a Lie algebra g ⊂ X (G) (where X (G) denotes the set of vector fields on G), the
set of left-invariant vector fields. This inherits the Lie bracket [–, –] from X (G), and thus has a Lie algebra
structure.

To be precise, “left-invariant” means that the left-multiplication map by a g ∈ G, Lx : G → G sending
x 7→ gx, must commute with the vector field (which can be thought of as a function).

We also have the exponential map exp : g→ G: given a ξ ∈ g, there’s a flow Φξt (x); we define exp(ξ) = Φξ1(e).
Since G is compact, this flow exists for all t ∈ R, and gives us a one-parameter subgroup of G. From this
definition, we deduce that d expe : T0g ∼= g→ TeG = g (since exp(0) = e) is just the identity, implying that
the exponential map is a local diffeomorphism near 0 ∈ g. If your Lie group is a matrix group, exponentiation
is in fact the matrix exponential, which in general is not a homomorphism (there’s a Taylor series formula).

Be careful: for G = SO3, exp maps a sphere of radius π to e: it stops being locally one-to-one. This is just
like the Riemannian exponential map, and that’s no coincidence.

In addition to left multiplication, there’s also right multiplication Rg : x 7→ xg, and we can talk about
things invariant under both left and right multiplication.

Definition 18.2. If V is an n-dimensional real vector space, a density on V is a functional assigning a
volume to every parallelepiped in V . That is, if B(F ) denotes the space of bases on V , then it is a function
µ : B(V )→ R such that µ(b · g) = |det g|µ(b) when g ∈ GLn(R).

These densities form an oriented line Dens(V ) (there’s a notion of a positive density: does it assign a
positive density to your favorite basis?); this is awfully like a top-degree differential form, but with an absolute
value for the determinant, so that we get an oriented space.

In other words, this behaves in the way it should under change of basis.

Theorem 18.3.
(1) There exists a bi-invariant35 smooth density on G.
(2) There exists a bi-invariant Riemannian metric on G.

An argument from Riemannian geometry can show that these two are equivalent.

Proof. For (1), a left-invariant density is equivalent to an element of Dens(TeG). For any g ∈ G, pullback
by x 7→ gxg−1 is an automorphism of Dens(TeG). But automorphisms of an oriented line are only given by
positive scalars (a group under multiplication).

So we have a map G→ R>0, but G is compact, so its image is a compact subgroup of R>0, and is therefore
trivial. Thus, any left-invariant density is already right-invariant.

For the second part, average an arbitrary metric across this density (or, equivalently, the Haar measure)
to get a bi-invariant one. �

The existence of a smooth density comes from a measure, called the Haar measure; we can use it in various
different ways to average things in a way that makes them invariant.

Corollary 18.4. Let E be a finite-dimensional C-vector space and ρ : G→ Aut(E) be a representation. Then,
there exists an invariant inner product on E.

In other words, we can choose a basis such that ρ(g) is a unitary matrix for all g ∈ G, which is quite nice.

Proof. Choose an arbitrary inner product h on E and integrate
∫
G
ρ(g)∗h dν, where dν is the Haar measure,

normalized so that
∫
G

dν = 1. The resulting inner product is G-invariant, because α∗h(ξ, η) = h(α(ξ), α(η)).
And we need to prove that it’s an inner product, but an integral over a space with total measure 1 is the
continuous version of a convex combination, which means it remains an inner product (the space of inner
products is convex).36 �

35That is, it’s both left- and right-invariant.
36This is a continuous version of the trick of constructing inner products on tangent spaces of Riemannian manifolds by

stitching local ones together using a partition of unity.
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Next, let’s talk about tori. The standard, one-dimensional torus is T ⊂ C, the set of complex numbers
with magnitude 1. In higher dimensions, we have Tn = T× · · · × T. These are fundamental for classifying
abelian groups.
Theorem 18.5. If G is a compact, connected, n-dimensional abelian Lie group, then G ∼= Tn.
Proof. First, in the abelian case, exp : g→ G is a homomorphism: if ξ1, ξ2 ∈ g, then

(exp ξ1)(exp ξ2) =
(

exp ξ1
N

)N(
exp ξ2

N

)N
=
(

exp ξ1
N

exp ξ2
N

)N
.

Using the Taylor series formula,

=
(

exp
(
ξ1
N

+ ξ2
N

+ o
( 1
N

)))N
= exp(ξ1 + ξ2 + o(1))

Thus, taking N →∞, we approach exp(ξ1 + ξ2).
If Π = exp−1(e) ⊂ g, then Π is a discrete subgroup of a vector space, and therefore Π = Zr for some r ≤ n;

it has a basis of r linearly independent vectors, so g/Π ∼= Tr ×Rn−r, and exp : g/Π→ G is a diffeomorphism.
Since exp is open, it has open image, but if G is a compact, connected Lie group, then it’s generated by a

neighborhood of e, but since G is compact, this forces r = n. �

These are the Lie groups we call tori.
If G is a connected abelian Lie group that might not be compact, the general form is V × Tn, where V is

a vector space. An easy example is R or Rn.
Theorem 18.6. If T is a torus Lie group, E is a complex vector space, and ρ : T → Aut(E) is irreducible,
then dimE = 1.

This is exactly like the analogous statement for finite groups: an irreducible complex representation of a
finite abelian group is one-dimensional.

Proof. If not, then there exists a t ∈ T such that ρ(t) isn’t a multiple of idE (if not, then it’s pretty clearly
one-dimensional, or reducible). Since E is a C-vector space, we can choose an eigenvalue λ for ρ(t), so
ker(ρ(t)−λ idE) ⊂ E is a proper (since λ is an eigenvalue and ρ(t) 6= 0) T -invariant subspace. This latter bit is
because every other ρ(t′) commutes with ρ(t), and you can write down that this forces it to be invariant. �

Next, we have an analogue to Maschke’s theorem.
Theorem 18.7. If G is a compact Lie group and ρ : G→ Aut(E) is a representation, then E decomposes as
a direct sum of irreducible subspaces.

There’s something to say here; for example, if ϕ = ( 1 1
0 1 ), then ϕ acts by shearing, and the x-axis is the

only invariant subspace. However, the group generated by ϕ within GL2(R) is isomorphic to Z, which is
noncompact. This is a useful example to keep in mind for when things go wrong.

Proof. By Weyl’s unitary trick, we have an invariant inner product, so if E1 ⊂ E is G-invariant, then so is
E⊥1 , and E = E1 ⊕ E⊥1 ; then, we repeat the process with E1 and E⊥1 . �

Corollary 18.8. Any finite-dimensional representation of a torus is a direct sum of one-dimensional
representations.

If T is a torus, we can define two lattices Π = Hom(T, T ) and Λ = Hom(T,T). Each element of Π defines
a one-parameter subgroup of T , so if t is the Lie algebra of T , then we have a map Π→ t sending γ → dγe(i),
where dγe : TeT → TeT = t, and TeT = iR. Its image is (possibly up to a term of 2π) the kernel of the
exponential map. So Π is the group of one-parameter subgroups.

Λ is the group of characters, and maps into the dual space: Λ→ t∗ by λ 7→ dλe.
Example 18.9. If T = R2/Z2, and R2 has basis {x1, x2}, then Π ∼= Z2, and (n1, n2) ∈ Π acts as eiθ 7→
(ein1θ, ein2θ). Λ ∼= Z2 as well, and (m1,m2) acts as (z1, z2) 7→ (z1)m1(z2)m2 .
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These characters are exactly the one-dimensional representations, because they’re scalar multiplication, and
a one-dimensional representation has to preserve the invariant metric, and thus must be scalar multiplication.

Thus, any representation E gives us a sum of one-dimensional representations, which are characters in
Λ ⊂ t∗. The isomorphism type is defined by how many times each lattice element appears in this sum, so we
get a function χE : Λ→ Z≥0 with finite support (indicating how many times a point appears).

Connected compact Lie groups. But we want to talk more generally about connected, compact Lie
groups that might not be abelian. In this case, conjugation gives us a map G→ Aut(G) which is trivial if G
is abelian. Thus, the conjugation action represents the failure of G to be abelian. Just as for discrete groups,
the orbit of a g ∈ G under this action is called its conjugacy class, and its stabilizer is the centralizer of g.

Example 18.10. Let’s look at this for SO3. Any rotation has a fixed axis, and composing rotations moves
these axes. But there’s a rotation flipping your favorite axis, so if we fix that axis, θ ∈ SO3 is conjugate to
−θ. Thus, we get conjugacy classes 0, π, and {±θ} for other θ. In other words, we take the unit circle and
mod out by reflection across the x-axis.

In general, the conjugacy class of 0 is itself, as usual, and for θ whose angle isn’t π, you can consider points
in different directions, and so we get a conjugacy class homeomorphic to S2. At π, we only have half as many,
and we get RP2.

The centralizer of 0 is SO3, of course; the centralizer of rotation through some axis (except by π) is other
rotations along that axis, i.e. SO2, and of a rotation by π is centralized by these rotations and by reflections
perpendicular to the axis, giving us O2 in total.

In this case, we have a stabilizer that’s not connected and a conjugacy class that’s not simply connected.
In a connected, simply-connected Lie group, this doesn’t happen.

Exercise 18.11. Play with some other examples where there might be less intuition, specifically SU2 and
SU3. You may want the theorem that every unitary transformation can be diagonalized.

Definition 18.12. A torus T ⊆ G is maximal if for any other torus T ′ ⊆ G with T ⊆ T ′ ⊆ G, then T = T ′.

In other words, these are just maximal under inclusion.

Fact. Maximal tori exist (since there exist tori). No Zorn’s lemma needed, since everything’s finite-dimensional.

Here’s the main theorem about maximal tori, which we won’t completely prove.

Theorem 18.13. Let G be a compact, connected Lie group and T ⊂ G be a maximal torus. If g ∈ G, then
there’s an x ∈ G such that x−1gx ∈ T .

That is, every element can be conjugated into a maximal torus. This will eventually imply that all maximal
tori are conjugate.

Example 18.14. If G = SO3, a maximal torus is T = SO2, rotations about a fixed axis (which is one-
dimensional). If we had a two-dimensional torus, it would include a rotation that commutes with all of these,
but we found already that this SO2 is a maximal centralizer for a point.

If G = Un, we can choose T (maximal tori need not be unique!) to be the diagonal matrices, and these
turn out to be maximal. Theorem 18.13 tells us that every unitary matrix can be diagonalized.

You should also know that for G = SOn, the maximal torus is

T =



Rθ1

Rθ2

Rθ3

. . .

 | Rθ =
(

cos θ − sin θ
sin θ cos θ

).
Here, if n is odd, the last block diagonal entry just has to be a 1.

We’ll also see that all maximal tori of a compact, connected Lie group have the same dimension, called the
rank of the group.

Definition 18.15. If G is a Lie group and g ∈ G, then g generates G if {gn}n∈Z is dense in G. A Lie group
generated by a single element is called monogenic.

Theorem 18.16. Tori are monogenic.
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For T, we have the generator e2πiθ, where θ ∈ R \ Q. This is because if we have a rational value, it’ll
eventually hit the identity and repeat, and is otherwise dense.

On T2, we now want to avoid the 2-dimensional lattice of integer-valued points, and powers of some element
are all going to lie on the same line (wrapping around, since we’re on a torus). This is equivalent to choosing
two transcendentally independent irrational points, which we can certainly do. This idea, generalizing to
n-dimensional tori, becomes a proof of Theorem 18.16.

Lecture 19.

Maximal Tori of Compact Lie Groups: 10/29/15

“We proved it is monogenic, which means it takes good pictures.”
Recall that if G is a compact, connected Lie group, we saw that it has a maximal torus T ⊂ G. Let’s give
some examples.

Example 19.1.
(1) If G = Un, then a maximal torus is the diagonal matrices,

T =


λ1

. . .
λn

 : λi ∈ C, |λi| = 1

.
This is maximal because if something commutes with all of these, it must be diagonal, and we already
have all the diagonal matrices. This torus is clearly a direct product of circles.

(2) If G = SOn, one maximal torus is the block diagonal rotations, matrices of the formRθ1

Rθ2

. . .

 , Rθ =
(

cos θ − sin θ
sin θ cos θ

)
,

for 0 ≤ θ ≤ 2π.
(3) For G = Spinn ⊂ C`±n , we have a maximal torus given by

T =
{bn/2c∏

i=1
(cos θi + sin θi)e2i−1e2i

}
.

It’s instructive to check that, under the double covering map Spinn → SOn, this torus is sent to the
maximal torus we wrote down for SOn (here n > 1).

One can also write down maximal tori for Spn and the exceptional groups.
We also have a theorem from the general theory of Lie groups.

Theorem 19.2. If G is a Lie group and H ⊂ G is a closed subgroup, then H is a Lie group.

As such, one can check that if T is a torus, then N(T ) = {n ∈ G : nTn−1 = T} is a closed subgroup (it
follows from the monogenicity of T ), and therefore N(T ) is a Lie group itself.

Proposition 19.3. If T is a maximal torus, the identity component of N(T ) is equal to T .

Proof. Conjugation is a map N(T )→ Aut(T ). So what’s Aut(T )? When T = S1, we just get Z/2 (generated
by reflection across the y-axis), and in general Aut(T ) ⊂ GLn(Z): we know Aut(T ) is discrete, because an
automorphism of T can be lifted to an automorphism of the Lie algebra that must preserve our lattice Π
from last time. Thus, Aut(T ) ⊂ Aut(Π) = GLn(Z).

In particular, the identity component N(T )e acts trivially, so it commutes with everything in T , and since
T is maximal, then N(T )e ⊂ T . �

Let’s see what that looks like, just to be sure.
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Example 19.4. Let G = SU2, so we have a torus

T =
{(

λ1
λ2

)
: |λi| = 1

}
.

N(T ) has two components, T and {(
µ

−µ−1

)
: |µ| = 1

}
.

Definition 19.5. The Weyl group of a maximal torus T is W = N(T )/T = π0N(T ).
This fits into a short exact sequence

1 // T // N(T ) // W // 1.

This normalizer N(T ) is an interesting compact Lie group in its own right, but it may not be connected.
It’s a theorem from the general theory of Lie groups that a quotient of a Lie group by a closed subgroup is

a manifold. This means we can make the following definition.
Definition 19.6. The quotient homogeneous manifold G/T is called the flag manifold.37

It’s homogeneous in the sense of the G-action, and has a lot of nice structure: one can put invariant
Riemannian or even Kähler metrics on it.
Example 19.7. If G = SU2 and T is as in Example 19.4, then G/T is diffeomorphic to S2, and G→ G/T
is a principal T -bundle. Notice (we’ll see this idea again) if λ : T → T is a character of T , then λ acts on by
left multiplication, so there is an associated Hermitian line bundle Lλ → G/T , which is homogeneous for the
left G-action.

Remember Theorem 18.13? It said that if T ⊂ G is a maximal torus, then every x ∈ G is conjugate to an
element of T . It has the following corollary.
Corollary 19.8. If T and T ′ are maximal tori of G, then there’s an x ∈ G such that x−1T ′x = T .
Proof. Apply Theorem 18.13 to a generator t′ of T ′. �

Another corollary is that every element is contained in a maximal torus.
Corollary 19.9. If G is a compact, connected Lie group, then the exponential map exp : g→ G is surjective.

So if T is the manifold of maximal tori, then G acts transitively on T . Thus, if we fix a maximal torus T ,
then there’s a map G → T sending x 7→ xTx−1, which identifies T = G/N(T ). For example, if G = SO3,
with the torus from before, one defines a torus as all rotations around a given axis, so T is our space of axes,
RP 2. This isn’t orientable, and in fact that’s usually the case.38

We’ll give a proof of Theorem 18.13 due to Cartan that uses Lefschetz duality. Let’s recall what that says.
Definition 19.10. Let M be a compact manifold and f : M →M be smooth. Then, the Lefschetz number
of f is

L(f) =
dimM∑
q=0

(−1)q tr(f∗ : Hq(M ;R)→ Hq(M ;R)),

which is in Z.
This is useful for its following properties.
• L(f) is a homotopy invariant (which is fairly easy to see from the definition).
• If f has isolated fixed points that form a set Fix(f), then

L(f) =
∑

x∈Fix(f)

Lx(f),

where Lx(f) = sign det(1− dfx) is the local Lefschetz number of f at x.

37More generally, one can do something very similar with a not necessarily maximal torus T and G/C(T ), quotienting by the
centralizer.

38Of course, if G itself is a torus, then it is its own unique maximal torus, and T is a point. But this is not the typical
example.
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In particular, if L(f) 6= 0, then f must have a fixed point. This beautiful result from topology was probably
in a class you had before this one, and we’ll use it in our proof.

Proof sketch of Theorem 18.13. The following proof is due to Adams [1].
Let g ∈ G and consider f : G/T → G/T sending xT → gxT . Then, xT is a fixed point iff x−1gx ∈ T . We

can homotope this to f̃(xT ) = t0xT , where t0 ∈ T is a generator. Then, Fix(f̃) = N(T )/N = W , using the
definition of N(T ).

Now we just have to calculate the local Lefschetz numbers and show that their sum is nonzero, so f̃ (and
thus also f) has a fixed point.

First, LnT (f̃) = LeT (f̃), so the local Lefschetz numbers are all the same: replace t0 wuth n−1t0n. This
means we only need to compute at the identity; the way we do that is to lift f̃ to a map F̃ : G→ G sending
x 7→ t0xt

−1
0 . Thus, dF̃e : TeG→ TeG, is just the adjoint Adt0 , so (we’ll explain this in a second)

TeG ∼= t⊕ V1 ⊕ V2 ⊕ · · · ,
where the action is trivial on t and dimVi = 2. This is because these are irreducible representations over R,
and therefore they are either trivial (which is only t) or two-dimensional.39 In particular, t0 acts on Vi by

Rθi =
(

cos θi − sin θi
sin θi cos θi

)
,

where 0 < θ < 2π. This means det(1−Rθ) = 2(1− cos θ) > 0, so

LeT (f̃) =
∏

sign(2(1− cos θi)) = 1,

so L(f̃) = |W | > 0. �

There is another proof of this due to Bott.

Corollary 19.11. The Euler number χ(G/T ) = |W |, and since G/T → G/N(T ) is an order-|W | covering
space, then χ(G/N(T )) = 1.

For example, RP 2 was G/N(T ) for some G, and we know its Euler characteristic is 1.
So we’ve seen that the orbit of a g ∈ G under the conjugation action, called Og, intersects the maximal

torus. By thinking about N(T ), we saw that a finite group, W , acts on T . But we’ll also be able to prove
that the intersection of Og and T is acted on by W , which will be useful for enumerating the conjugacy
classes of G.

Corollary 19.12. If t0, t1 ∈ T are conjugate in G, there is a w ∈W such that w · t0 = t1.

The converse is also true, though trivial, from the definition of W .

Proof. Suppose gt0g−1 = t1, and let H = Z(t1)e (the identity component of our centralizer). H is in general
nonabelian, but it is a closed subgroup, hence a Lie subgroup. Since G is compact, this makes H a compact
connected Lie group. Then, T and gTg−1 ⊂ H are maximal tori of H. This means there’s an h ∈ H such
that T = hgTg−1h−1, so T = (hg)t0(hg)−1 and hg ∈ N(T ). �

This is more or less how the arguments with maximal tori tend to go.

Going Back to Our Roots. Suppose T ⊂ G is a maximal torus, and recall that we have two lattices
Π = Hom(T, T ) ⊂ t and Λ = Hom(T,T) ⊂ t∗. We’ll be careful not to identify t and t∗; if the group is simple,
there’s a metric induced by a Killing form, allowing an identification, but often this is not the case. Λ tends
to be called the weight lattice or character lattice, and Π, which was the kernel of the exponential map, is
called the coweight lattice.

We want to construct some other lattices, which will be the roots. T acts on g by the adjoint action
(the derivative of conjugation), and we can decompose this action into irreducibles, just as in the proof of
Theorem 18.13:

g = t⊕
⊕
α

Vα,

39We didn’t prove this, but such an irreducible representation must factor into two irreducible complex representations; SO2
acting by rotation is an example of a two-dimensional irreduicble real representation.
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where dimVα = 2. This is, again, ultimately because irreducible real representations are one- or two-
dimensional. Thus, if we complexify, defining gC = g⊗R C, then the decomposition instead looks like

gC = tC ⊕
⊕
α

(gα ⊕ g−α),

for α ∈ Λ.

Definition 19.13. The set ∆ of these α, where α is identified with −α, is called the set of roots of G.

Example 19.14. Suppose G = U2, so that g = u2 is the space of skew-Hermitian matrices. If you complexify,
multiplying a skew-Hermitian matrix by i produces a Hermitian matrix, and every complex matrix is the
sum of is Hermitian part and its skew-Hermitian part, so gC = gl2C.

Our maximal torus is, as usual for Un, the group of 2× 2 diagonal unitary matrices. Its Lie algebra is t,
the space of all diagonal complex matrices, so if

e =
(

0 1
0 0

)
and e =

(
0 0
−1 0

)
, (19.15)

then we get a decomposition
gC = tC ⊕ C · e⊕ C · e.

The Cartan involution β : gC → gC sending an X ∈ gl2C to −X∗, has g as its fixed points and sends e 7→ e.
Thus, if α = λ1λ

−1
2 (for a diagonal unitary matrix with entries λ1 and λ2), then −α = λ−1

1 λ2.

λ1

λ2
λ−1

1 λ2

λ1λ
−1
2

Figure 3. The roots in t; the red elements are the lattice Λ, and the blue ones are the roots,
which generate a lattice R ⊂ Λ.

So if R is the lattice generated by these roots, it’s a rank 1 sublattice of Λ, which is a rank 2 lattice in t.

Since we have a root lattice, we should also talk about the coroot lattice. Given a root ±α, there are (up
to a phase in T) distinguished basis elements eα ∈ gα and eα = e−α ∈ gα. We’ll define Hα = −i[eα, e−α],
subject to the commutation relations of su2: if eα and e−α are as in (19.15) (with eα in place of e, and e−α
in place of e), then [Hα, eα] = 2ieα, [Hα, e−α] = −2ie−α, and [eα, e−α] = iHα.

This is the data of a homomorphism su2 → g, and therefore of SU2 → G. One can check that α(Hα) = 2
and λ(Hα) ∈ Z for all λ ∈ Λ; thus, Hα ∈ Π, so it spans a sublattice R∗ ⊂ Π, called the coroot lattice.

Example 19.16. If G = SO3, then our embedding of SU2 comes from

H =

0 −2
2 0

0

 , e+ =

 1
−i

−1 i

 , and e− =

 1
i

−1 i

 .

Then, R∗ ⊂ Π has index 2, but R = Λ. (Draw some pictures!)
For G = SU2, one can show that R∗ = Π, but R ⊂ Λ has index 2. Again, it’s definitely worth drawing

these pictures.
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Lecture 20.

Weyl Chambers, Roots, and Representations: 11/3/15

As usual, let G be a compact, connected Lie group and T ⊂ G be a maximal torus. Then, we saw that if
we complexify the action of G on its Lie algebra, it breaks into a sum of irreducible representations:

gC = tC ⊕
⊕

α∈∆/{±1}

gα ⊕ g−α.

The action on tC is trivial. These α : T → T are characters, and the g±α are called root spaces.
Last time, we saw that for each root α, there is a unique Hα ∈ i[gα, g−α] such that ad(Hα)|gα = 2i; then,

we can choose eα ∈ gα and e−α ∈ g−α such that Hα, eα, and e−α obey the relations of su2: [Hα, eα] = 2ieα,
[Hα, e−α] = −2ieα, and [eα, e−α] = iHα. From this we can see that H−α = −Hα; Hα is called the coroot of
α; the set of coroots is denoted ∆∗.

Example 20.1. For G = SU2, we have:

H =
(
i
−i

)
eα =

(
1
)

e−α =
(
−1

)
. (20.2)

We also have a bunch of lattices: in t we have Π = Hom(T, T ) (the closed one-parameter subgroups), but
this is also (1/2π) exp−1(e): in the above example, if you multiply by 1/2π and exponentiate, we get back to
the identity matrix. Π is called the coweight lattice or integral lattice.

Inside Π, the coroot lattice R∗ is the span of all the coroots Hα. Inside t∗, we have the weight lattice
Λ = Hom(T,T) and the root lattice R = Z∆ (the span of the roots).

Example 20.3. Returning to SU2 and SO3, the most basic nontrivial examples, they have the same real,
three-dimensional Lie algebra, so the adjoint map induces a two-to-one covering SU2 � SO3. One can
compute this action in a basis; start with (20.2), but this is a complex basis, so we need to take linear
combinations of these. In any case, the maximal torus maps like this:(

eiθ

e−iθ

)
7−→

(
R2θ

1

)
.

This is an excellent example to play with; in the end, you should find that for SU2, the root lattice has index
2 in Λ, but for SO3, they’re equal. Moreover, the adjoint representation of SU2 drops to a representation of
SO3. The coroot lattice is equal to the coweight lattice in SU2, but in SO3 it has index 2.

If you compute the Weyl group of SU2 or SO3, you get Z/2; in general, if one Lie group is a cover of the
other, then they have the same Weyl group.

For a simpler example, if G is a torus T , R = 0 ⊂ Λ, and R∗ = 0 ⊂ Π.

Calculating the indices of R in Λ and R∗ in Π can be generalized neatly.

Definition 20.4. If A is an abelian group, its Pontrjagin dual A∨ = Hom(A,T), the unitary characters of A.

Theorem 20.5. If G is a Lie group, there are isomorphisms Π/R∗
∼=→π1(G) and Λ/R

∼=→Z(G)∨.40

Proof. We can start with the maps Π = Hom(T, T )→ Hom(T, G)→ π1(G). A coroot Hα ∈ ∆∗ gives a map
su2 → g, and exponentiation of a map of Lie algebras produces a map of Lie groups, as long as we take the
domain to be the connected, simply connected Lie group with that Lie algebra. Thus, R∗ is mapped to zero.

For the second part, we want a map Λ→ Hom(Z(G),T). First, Z(G) ⊂ T for all maximal tori T , and so
a map T → T restricts to a map Z(G)→ T. Then, where do the roots go? The same idea shows they map to
zero. �

If ±α ∈ ∆, then by differentiation, α : t → R is a linear functional, and in particular kerα ⊂ t is a
hyperplane. Thus, ker ∆ ⊂ t is a union of hyperplanes.

40That Z(G)∨ is “dual” to the fundamental group can be thought of in the context of Langlands duality!
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Example 20.6.

(1) For G = U2, T is the group of diagonal unitary matrices, so if t =
(
λ1

λ2

)
, then a root sends

t 7→ λ1λ
−1
2 or t 7→ λ−1

1 λ2. Thus, t is the algebra of matrices of the form
(
ix1

ix2

)
, and the roots

map this to ±(x1 − x2). Thus, the kernel is the union of the lines x1 = x2 and x1 = −x2. Here, the
Weyl group is Z/2.

(2) When G = SU3, the torus is again the diagonal unitary matrices (so the sum of the diagonal entries
is 1), and

t =


ix1

ix2

ix3

 : x1 + x2 + x3 = 0

.
This is a two-dimensional Lie algebra, but SU3 is eight-dimensional, so we should expect six roots.
We can let θj : t→ R return the jth diagonal element, so our roots are ±(θi − θj) when i 6= j. In this
case, the kernels are three lines spaced 60◦ from each other, as in Figure 4. Here, the Weyl group is
S3.

Figure 4. A picture of t, with ker(∆) in blue and a chamber in gray, for G = SU3. This is
the chamber we’ll use in Example 20.12.

Definition 20.7. A Weyl chamber is an element of π0(t \ ker ∆).

Thus, for example, the Weyl chambers of U2 are the parts of t above (resp. below) the line x1 = x2.
The Weyl group W = N(T )/T permutes the Weyl chambers.

Theorem 20.8. The Weyl group acts simply transitively on the set of Weyl chambers.

We won’t prove this, but notice how it applies to Example 20.6. A lot of this is reminiscent of theorems in
linear algebra about diagonalizing various kinds of matrices.

Corollary 20.9. G acts transitively on pairs (T,C), where T ⊂ G is a maximal torus and C is a Weyl
chamber.

If P denotes the set of such pairs, this means the action of G induces a map G� P; the stabilizer of this
action is the torus itself (since N(T )/T is permuting these chambers, but simply, so there’s no stabilizer). In
other words, the flag manifold can be thought of as P , the space of pairs of maximal tori and Weyl chambers.

For the next definition, fix a Weyl chamber C.

Definition 20.10.
(1) A root α is positive if α(ξ) > 0 for all ξ ∈ C. The set of positive roots is denoted ∆+.
(2) If α is a positive root, Hα is said to be a positive coroot.
(3) The dual Weyl chamber C∗ ⊂ t∗ is C∗ = {θ ∈ t∗ : θ(Hα) > 0 for all α ∈ ∆+}.
(4) A weight λ is dominant if λ(Hα) ≥ 0 for all α ∈ ∆+, i.e. λ ∈ Λ ∩ C∗.
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(5) A weight λ is regular if λ(Hα) 6= 0 for all α ∈ ∆.

Either α is positive or −α is, because the Weyl chambers are split by the hyperplane where any roots
vanish. Also, dominant weights can live on the walls of the Weyl chambers, but regular ones cannot.

We’ll also let
ρ = 1

2
∑
α∈∆+

α,

which is in t, but not necessarily Λ. If G is simply connected, ρ is always a weight.

Remark 20.11. There is a complex structure on G/T . First, we get a G-invariant almost complex structure,
as

T[T ](G/T )C ∼=

(⊕
α>0

gα

)
⊕

(⊕
α>0

gα

)
.

Then, the Neulander-Nirenberg theorem means we just have to check integrability. But since [gα, gβ ] ⊂ gα+β
and α+ β > 0 if both α and β are positive, so this ends up working out.

Example 20.12.
(1) If G = SO3 with the torus we’ve used before, t is given by the infinitesimal rotation matrices:

t =
{
x

(
Rθ

0

)
: x ∈ R

}
.

Thus, t is one-dimensional, and the kernel of the roots is 0, so we have two chambers, C = {x > 0}
and −C; this is illustrated in Figure 5.

Figure 5. Depiction of t when G = SO3; the two chambers are the positive and the negative
numbers, respectively in red and in blue. The Weyl group is W = Z/2.

If we choose the positive (red) chamber, the positive root is the one that sends

α : x

0 −1 0
1 0 0
0 0 0

 7−→ x.

(2) When G = SU3, we’ve already seen some of this in previous examples. We can choose the chamber
C = {x1 > x2 > x3}. Then, the positive roots are ∆+ = {θ1 − θ2, θ2 − θ3, θ1 − θ3} and ρ = θ1 − θ3,
which is actually regular! Finally, the dual chamber is

C∗ =
{∑

αiθ
i : α1 + α2 > 0, α1 + α3 > 0, α2 + α3 > 0

}
.

Lemma 20.13. λ ∈ Λ is dominant iff λ+ ρ ∈ C∗.

As usual, one direction is quite easy, and the reverse direction is harder.

Representation Theory. Let E be a complex vector space and ρ : G→ Aut(E) be a representation.

Definition 20.14. The character χρ : G→ C is χρ(g) = Tr(ρ(g)).

In particular, the character is invariant within a conjugacy class of G.
This is very general, and even if we restrict to compact Lie groups, these include all finite groups, so we’ve

encompassed the representation theory of finite groups as well.

Example 20.15. SU2 acts naturally on C2, so if

g =
(

α β

−β α

)
,

with α, β ∈ C and |α|+ |β| = 1, then χ(g) = 2 Reα = α+ α.

Lemma 20.16. Let G be a compact group and E1 and E2 be representations of G.
(1) χE1⊕E2 = χE1 ⊕ χE2 .
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(2) χE1⊗E2 = χE1 · χE2 .
(3) χE∗1 = χE1 .
(4) χE1(e) = dimE1.
(5) χE1(g−1) = χE1(g).

If G is compact and connected, a character χE is determined by its restriction to a maximal torus T , since
everything is conjugate to something in T , and since T is abelian, the action of T on E splits into a direct
sum of one-dimensional representations. Thus, the characters we get (for G) are in Z[Λ].

Since characters are invariant under conjugacy, then they’re also invariant under the action of the Weyl
group, so if KG is the Grothendieck group of virtual characters,41 KG → (KT )W is an isomorphism.

But what about the irreducible representations of G? We also want to know their characters. The Weyl
chambers and roots allow us to make sense of this, which we’ll talk about next time.

Lecture 21.

Representation Theory: 11/5/15

“This isn’t a baseball game, this is a math lecture.”
Recall that, as in the last few lectures, we have a compact, connected Lie group G, a maximal torus T ⊂ G,

and our four lattices: the coweight lattice Π, the coroot lattice R∗ ⊂ Π, the weight lattice Λ, and the root
lattice R ⊂ Λ.

Proof of Theorem 20.5. Since G is connected, then it has a connected universal cover G̃. Let A denote the
lift of T in G̃, so we have the diagram

A �
� //

π1G

��

G̃

π1G

��
T �
� // G.

The first thing we can see is that π1T = Π, which is pretty much by definition; then, π1A ∼= R∗, because by
covering space theory, π1G = π1T/π1A ∼= Π/R∗. This can be seen by splitting into two cases: where G is
its maximal torus, or where it has other elements. In the former case, A is a vector space, and thus simply
connected, for example.

For the second part, we have the adjoint representation ρ : G → Aut(g) acting by conjugation, so
ker(ρ) = Z(G); denote Ad(G) = ρ(G). Thus, we can mod out by conjugation and get the following diagram.

T �
� //

��

G

��
ρ(T ) �

� // Ad(G)

Thus, we get an extension of abelian Lie groups:

0 // Z(G) // T // ρ(T ) // 0.

Then, apply Hom(–,T).
0 Z(G)∨oo Λoo Roo 0oo �

Hopefully this provides a more geometric way of thinking about the root and coroot lattices.
Now, let’s talk about representations. All representation will be complex unless otherwise specified, since

algebraic closure is so nice.

Definition 21.1. If (E, ρ) and (E′, ρ′) are representations of G, an intertwiner is a map T : E → E′ such
that T (ρ(g)ξ) = ρ′(g)Tξ for all g ∈ G and ξ ∈ E, i.e. T commutes with the action of every g ∈ G. The vector
space of intertwiners is denoted HomG(E,E′).

41We’re doing the same thing we did in K-theory: start with the monoid of characters under direct sum, and formally take
the completion of this monoid.
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Lemma 21.2 (Schur). Let E and E′ be irreducible finite-dimensional representations of G. Then,

dim HomG(E,E′) =
{

1, E ∼= E′

0, otherwise.

Proof. Let T : E→ E′ be an intertwiner; thus, ker(T ) ⊂ E is an invariant subspace, so since E is irreducible,
then it must be either 0 or E; a similar argument shows Im(T ) must be either all of E′ or 0. In particular,
either T = 0 or T is an isomorphism.

Now, we need to show the space of isomorphisms is one-dimensional if E ∼= E′. If T1, T2 : E → E′ are
isomorphisms, then S = T−1

2 ◦ T1 is an automorphism of E. Since E is a complex vector space, S has an
eigenvalue λ, so let Eλ be the associated eigenspace. In particular, Eλ 6= 0 and is G-invariant, so Eλ = E, so
S = λ idE. �

Recall that for a G-representation ρ : G → Aut(E), we defined its character χE : G → C sending
g 7→ Tr(ρ(g)). This is a central function, i.e. it is constant on conjugacy classes, because χE(hgh−1) = χE(g).
And since every conjugacy class of a compact connected Lie group hits a given maximal torus, χE is determined
by χE|T , which is invariant under the Weyl group.

On a Lie group G, let dg denote the Haar measure (with total measure 1). If C0(G) = C0(G;C) denotes
the space of continuous functions G→ C, then we can introduce an inner product on it:

〈f1, f2〉 =
∫
G

dg f1(g)f2(g).

This space isn’t complete under this inner product, but its completion is the Hilbert space L2(G). Inside of
L2(G) is the closed subspace L2(G)G.42

In general, one wants to use the Haar measure to average things, but this doesn’t make a whole lot of
sense if we don’t have scalar multiplication and addition in the integrand, so we usually average elements of a
vector space parameterized by the group G.

Lemma 21.3. Let ρ : G→ Aut(E) be a representation. Then,

π =
∫
G

dg ρ(g)

is in End(E) and is projection onto EG ⊂ E.

Proof. Let h ∈ G; then,

ρ(h)π = ρ(h)
∫
G

dg ρ(g) =
∫
G

dg ρ(h)ρ(g) =
∫
G

d(hg) ρ(hg) = π.

Conversely, if ξ ∈ EG, then

π(ξ) =
∫
G

dg ρ(g)ξ =
∫
G

dg ξ = ξ,

since the Haar measure has total measure 1. �

Corollary 21.4 (Schur orthogonality relations). If E and E′ are irreducible representations, then

〈χE, χE′〉 =
{

1, E ∼= E′

0, otherwise.
.

42This notation may seem a little weird, but the idea is that G acts on itself by conjugation, which pulls back to an action on
functions. So we’re really taking the fixed subspace under this action.
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Proof. The key is that, since E and E′ are finite-dimensional vector spaces, then E∗⊗E′ = Hom(E,E′). Thus,
using Lemma 20.16,

〈χE, χE′〉 =
∫
G

dg χE(g)χE′(g)

=
∫
G

dg χE∗⊗E′

=
∫
G

dg Tr(ρE∗⊗E′(g))

= Tr
∫
G

dg ρHom(E,E′)(g)

= dim HomG(E,E′). �

Example 21.5.
(1) First, take G = T. Let En = C with λ ∈ T acting as multiplication by λn. Thus, χn(λ) = λn, or

χn(eiθ) = einθ. In fact, {χn} is an orthonormal basis of L2(T): if f ∈ L2(T), we can write

f =
∑
n∈Z
〈χn, f〉χn,

which is just the Fourier series of f .
(2) How about G = SU2? Let V0 = C be the trivial representation and V1 ∼= C2 be the defining

representation: that is, we’re given SU2 as a group of 2 × 2 matrices, and we just take that. In
general, we’ll let Vn = Symn(V1), the nth symmetric power of V1; this space is obtained by forcing
commutativity relations amongst the elements of the tensor algebra. Specifically,

Symn V = V ⊗n/(v1 ⊗ v2 ⊗ · · · ⊗ vn − v2 ⊗ v1 ⊗ · · · ⊗ vn, etc.).

Thus, dimV2 = 3, and in general dimVn = n+ 1, which is a nice combinatorial exercise.43

Now, let’s look at their characters, so we’ll restrict to the torus{(
λ

λ−1

)
| λ ∈ T

}
.

The trivial representation acts just as the identity, so its character is ψ0(λ) = 1. The defining
representation acts by matrix multiplication, so ψ1(λ) = λ + λ−1 = χ1 + χ−1. This is explicitly
invariant under the Weyl group W = Z/2.

For ψ2, a basis of Sym2 V1 is {e1 ⊗ e1, e2 ⊗ e2, (1/2)(e1 ⊗ e2 + e2 ⊗ e1)}, and calculating what
e1 7→ λe1 and e2 7→ λ−1e2 does on each element, we get ψ2(λ) = λ2 + 1 + λ−2. In the same way,
ψ3(λ) = λ3 + λ+ λ−1 + λ−3.

In general,

ψn(λ) = λn + λn−2 + · · ·+ λ−(n−2) + λ−n = λn+1 − λ−(n+1)

λ− λ−1 .

(3) If we take the cyclic group of order n and think of it as µn ⊂ T, the group of nth roots of unity, any
representation of µn extends to a representation of T, and any representation of T restricts to one
on µn, but some representations restrict trivially. In fact, the distinct representations we get are
χ0, . . . , χn−1. So we get an analogue of Fourier series, but in a finite sense, and that can be applied to
any finite Lie group; here, L2(µn) is just functions on these n points, and the Haar measure assigns
1/n to each point, as on any finite group.

(4) Let’s look at S3, the symmetric group on 3 items. There are three conjugacy classes, (1), (1 2), and
(1 2 3); the first one has Haar measure 1/6, the second has measure 1/2, and the third has measure
1/3. This is interesting, relating to sizes of centralizers of an element in each class.

43Sometimes, it’s also useful to think of the symmetric power as a subspace of V ⊗n; specifically it can be realized as (V ⊗n)Sn ,
where Sn is the symmetric group on n items. This doesn’t work so well in finite characteristic, however.
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We have a trivial representation ρ0, with character χ0. There’s also the permutation representation
ρp, a three-dimensional representation where σ ∈ S3 permutes the basis vectors. However, (1, 1, 1)
generates an invariant subspace on which ρp is trivial, so there’s a short exact sequence

0 // ρ1 // ρp // ρ3 // 0,

for a two-dimensional ρ2, which you can check is irreducible (no other subspaces are fixed by
the permutation representation). Finally, there’s the sign representation ρ1, a one-dimensional
representation sending a permutation to its sign. See Table 1 for the character table; you can compute
the characters directly for ρ0 and ρ1, and ρ2((1)) = 2, since it’s two-dimensional. Then, you can use
orthogonality to fill in the rest or compute ρ2 directly and check orthogonality.

(1) (1 2) (1 2 3)
χ0 1 1 1
χ1 1 −1 1
χ2 2 0 −1

Table 1. The character table for the symmetric group of order 3.

The next theorem is one of the major theorems for the representations of compact Lie groups. It relies
on some other results we haven’t proven, such as the fact that irreducible representations of a compact Lie
group must be finite-dimensional.
Theorem 21.6 (Peter-Weyl).

(1) As representations of G×G,

L2(G) ∼=
⊕

E irreducible
(E⊗ E∗).

Here, we take the Hilbert direct sum, i.e. the closure of the algebraic direct sum, and we choose one
representative from each isomorphism class.

(2) {χE}E irreducible is a basis of L2(G)G.
Thus, there’s a countable, discrete set of isomorphism classes of irreducible representations.
In general, we would want to enumerate the irreducible representations, hopefully actually construct them,

and then compute their characters.
Isomorphism classes of finite-dimensional G-representations form a commutative monoid under direct sum,

and tensor product makes this into a semiring, just as with vector bundles. Thus, we can define KG to be
the Grothendieck abelian group completion of this monoid, which has a ring structure. Applying this to
Example 21.5, KT ∼= Z[λ, λ−1] and KSU2 = Z[µ] (where µ = χ1). There’s a map KSU2 → KT defined by
µ→ λ+ λ−1, which is an instance of Theorem 21.7.

In some sense, we have a discrete ring generated by the irreducible characters hiding inside L2(G)G.
We can also check that Kµn

∼= Z[µn]; in general for a finite abelian group we get the group ring of its
Pontryagin dual.

For KS3 , we start with Z[ε, ρ], where ε denotes the sign representation; then, you can look back at the
character table to determine what multiplication looks like. The end result is KS3

∼= Z[ε, ρ]/(ε2 − 1, ερ −
ρ, ρ2 − (1 + ε+ ρ)).

These rings can get strange, but they’re still interesting. We might want to think just about the monoid of
actual characters, though.
Theorem 21.7. Let G be a compact, connected Lie group and T ⊂ G be a maximal torus.

(1) Restriction induces an isomorphism KG → (KT )W .
(2) If G is simply connected, then KG is a polynomial ring.
This theorem is not immediate, and we won’t prove it.
Last time, we set up quite a lot of structure: the roots ∆ and coroots ∆∗, a Weyl chamber C and

the positive roots ∆+ relative to C. We can also define the dual Weyl chamber C∗ ⊂ t∗ by C∗ =
{θ ∈ t∗ | θ(Hα) > 0 for all α ∈ ∆+}. Thus, the ρ we defined yesterday is in C∗. This all comes together with
the representation theory from today in the following theorem.
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Theorem 21.8. There are bijections between
• the isomorphism classes of irreducible representations of G,
• W -orbits in Λ,
• Λ ∩ C∗,
• (Λ + ρ) ∩ C∗ (sending λ 7→ λ+ ρ),
• the set of integral coadjoint orbits, and
• the regular ρ-shifted integral coadjoint orbits.

We’ll talk about the last two sets in more detail next lecture.
Example 21.9. If G = SU2 and T is the subgroup of diagonal matrices, then the isomorphism classes of
irreducible representation of G are represented by Symn V1 for n ∈ N, as in Example 21.5.

Lecture 22.

The Geometry of Coadjoint Orbits: 11/10/15

We’ll have one more lecture about representation theory today; on Thursday, Andrew Blumberg will talk
about algebraic K-theory.

We have a bunch of structure: a compact, connected Lie group G, a maximal torus T ⊂ G, a Weyl chamber
C ⊂ t and its dual C∗ ⊂ t∗, and the weight lattice Λ ⊂ t∗. We also have ρ = (1/2)

∑
α∈∆+ α.

Theorem 21.8 establishes a bunch of sets that are in bijection to the set of isomorphism classes of irreducible
complex G-representations: the W -orbits in Λ, λ ∩ C∗, (Λ + ρ) ∩ C∗, the set of integral coadjoint orbits, and
the set of regular ρ-shifted coadjoint orbits.
Example 22.1. The canonical example is SU3, which might be a little more complicated than some of our
previous examples. We have SU3 ↪→ U3, whose maximal torus is T̃ , the group of 3 × 3 diagonal unitary
matrices. Its intersection with SU3, denoted T , is a maximal torus for SU3.

The weight lattice for U3, Λ̃ = Z[θ1, θ2, θ3], surjects onto the weight lattice Λ for SU3, and the kernel is
Z[θ1 + θ2 + θ3], where the weights are

θj

ix1

ix2

ix3

 = xj .

This looks more like a triangular lattice, as depicted in Figure 6.

ρ

0 θ1

θ2

θ3

Figure 6. A diagram of t∗ for G = SU3. Irreducible representations correspond to lattice
elements in the dual Weyl chamber (shaded in gray): 0 to the trivial representation, ρ = θ1−θ3

to the adjoint representation, and multiplication by 2 corresponds to the symmetric square.
The blue arrows denote the roots θi − θj for i 6= j.

Theorem 22.2 (Weyl). The character of the representation with the highest weight λ ∈ Λ ∩ C∗ is

χλ =
∑
w∈W (−1)wei(λ+ρ)w∑
w∈W (−1)weiρw .
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This is a nice, perhaps magical, formula.
We also mentioned the coadjoint action without really defining it, but it’s not so bad. For any Lie group,

the adjoint representation is how G acts on its Lie algebra g by conjugation, and we automatically get a
representation on its dual: the coadjoint representation is the dual representation to the adjoint, an action of
G on g∗. If O denotes an orbit of the coadjoint representation, then it’s a homogeneous space for G, and in
fact a nice manifold; for example, if G = SO3, the orbit spaces are the spheres of different radii, and in fact

g∗ =
∐
r≥0

S(r),

where S(r) is the sphere of radius r.
More generally, let µ ∈ O, so we get a diffeomorphism G/Hµ → O given by g 7→ g · µ = Ad∗g(µ). Thus,

the kernel is Hµ = {g ∈ G : g · µ = µ}, which is exactly the stabilizer of µ. Passing to Lie algebras, we
have a sequence of maps g → X (O) → TµO, first sending a left-invariant vector field to, well, itself, and
then evaluating at µ to get a tangent vector. In particular, this defines an isomorphism g/hµ

∼=→ TµO;
in our case, hµ = {ξ ∈ g : ad∗ξ µ = 0}. But if η, ξ ∈ g and µ ∈ O ⊂ g∗, then we can calculate that
〈ad∗ξ µ, η〉 = 〈µ, adξ η〉 = 〈µ, [ξ, η]〉, so hµ is also the set of ξ such that 〈µ, [ξ, η]〉 = 0 for all η ∈ g. This
motivates the following definition.

Definition 22.3. The Kostant-Kirilov-Soriau symplectic form is an ω ∈ Ω2(O) given by ωµ(ξ, η) = 〈µ, [ξ, η]〉.

To show that this is well-defined, we need it to vanish if ξ ∈ hµ or η ∈ hµ, but this is exactly what we just
showed hµ is. We also see that it’s nondegenerate for the same reason (the degeneracy has been quotiented
out, so to speak).

Next, we should check that ω is closed; suppose ξ1, ξ2, ξ3 ∈ g, so we have three vector fields ξ̂1, ξ̂2, ξ̂3 ∈ X (O).
Then, there’s a nice formula for the exterior differential of a 2-form:

dω(ξ̂1, ξ̂2, ξ̂3) =
∑

cyclic
permutations

ξ̂iω(ξ̂j , ξ̂k)± ω([ξ̂i, ξ̂j ], ξ̂k).

By applying the Jacobi identity twice, this vanishes (though you have to evaluate at µ and check what this
means).

So we have a G-invariant, closed, nondegenerate symmetric form. Why is it G-invariant? We haven’t
made a single choice in this construction, so it has to be; but you can verify it if you want.

(O, ω) is a symplectic manifold, and these are all of the homogeneous symplectic manifolds. If you study
group actions on symplectic manifolds from the perspective of symplectic geometry, you’ll soon run into this
kind of Lie theory.

Definition 22.4. An orbit O ⊂ g∗ is integral if [ω/2π] ∈ H2
dR(O) ∼= H2(O,R) lies in the image of

H2(O,Z)→ H2(O,R).

What’s going on here? The de Rham cohomology, which is isomorphic to the cohomology with real
coefficients, is a vector space, and has plenty of lattices in it. One particularly nice choice for a lattice is the
image of the integral-valued cohomology. In the de Rham world, this means that certain integrals of these
forms end up in Z.

The lattice H2(O,Z) has full rank inside H2(O,R), even if there’s torsion in the integral cohomology
groups, which ultimately follows because each degree in the cochain complex has C0 ↪→ C0 ⊗R as a full-rank
lattice (there’s still something to prove here).

Theorem 22.5. ω is an integral 2-form iff there exists a principal circle bundle T → O with connection
whose curvature is iω/2π.

This is a general theorem from differential geometry, and provides a nice geometric condition for integrality.
It’s often true in symplectic geometry that the geometry or connection of the circle bundle says a lot about
the form, e.g. if you lift it to this circle bundle, it becomes exact.

Definition 22.6. O is regular if the stabilizer Hµ ⊂ G is of minimal dimension for every µ ∈ O.

This is a more general definition about group actions. Also, since O is an orbit, then if one µ satisfies this
minimality, then all of them do.
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Proposition 22.7. If G is a compact, connected Lie group, then O is regular iff (Hµ)1 is a maximal torus.

That is, once we make this choice-free assumption that O is regular, we get a maximal torus Tµ for every
point in Hµ, and G/Tµ ∼= O — and we get the whole story of roots for each one. This means we’re looking
at the flag manifold again.

In particular, we can look at the decomposition of g and g∗ into t and t∗ and some two-dimensional real
invariant vector spaces.

Lemma 22.8. µ ∈ g∗ is a regular element of t∗.

Corollary 22.9. µ determines a choice of C∗ (and therefore everything else).

So, in summary, at each point, we have a maximal torus, a Weyl chamber, and so on, and therefore the
enumeration of representations.

Proof of Lemma 22.8. We have to show that µ vanishes on everything except t∗. A basis for the other vector
spaces is given by the roots eα. Then,

〈µ, eα〉 = 1
2i 〈µ, [Hα, eα]〉 = 1

2i 〈ad∗Hα µ, eα〉 = 0,

so µ ∈ t∗. To show that it’s regular, we need to show that 〈µ,Hα〉 6= 0 for all α ∈ ∆. The idea is to show
that if it vanishes for some α, then ad∗eα µ = 0, and therefore the stabilizer for µ is larger than Tµ, which we
know to not be true. �

This is our picture: a generic orbit is regular, and produces a flag manifold with a G-invariant symplectic
structure, where every point gives us a maximal torus and Weyl chamber. Thus, we also get a ρ, which we’ll
call ρµ ∈ g∗.

Definition 22.10. A regular orbit O is ρ-shifted integral if for all µ ∈ O, λ = µ− ρµ is integral (i.e. lies in
Λµ ⊂ t∗µ).

We’ve heard that the integral orbits correspond to representations, but ρ-shifting makes the geometry
nicer, and the bijection is still there. For example, for SO3, our integral orbits are the spheres with integral
radii, but ρ = 1/2, so when we ρ-shift, we get the spheres with half-integer orbits 1/2, 3/2, and so on.

If O is regular, then it also has a canonical complex structure, compatible with ω in the sense that the two
together are the data of a Kähler manifold. What is this complex structure? Well, we can write TµO ∼= g/tµ;
after complexifying, it’s isomorphic to the sum of the root spaces. Once we have a Weyl chamber, we can
split into positive and negative roots, giving an almost complex structure. But we saw that these can be
integrated, so we do have a complex structure. However, we’re out of time, so we’ll have to check that these
two combine to a Kähler structure on our own. In any case, the coadjoint orbits have a beautiful geometry.

If O is a regular, ρ-shifted integral orbit, then we can use the character eiµ : Tµ → T to make an
associated circle bundle to the principal Tµ-bundle G→ O. One must check, however, that this is canonically
independent of µ, that the action of G lifts to this bundle, and that if L → O is the associated Hermitian
line bundle, then it inherits a complex structure. These are quite nice exercises in differential geometry.

The construction is that if one takes the space of holomorphic sections in L, called H0(O,L), then that
space is an irreducible representation of G with highest weight λµ ∈ Λµ ∩ C∗; this is called the Borel-Weyl
construction.

Lecture 23.

Algebraic K-theory: 11/12/15

“This, however, is modern homotopy theory, the subject which you all really should be
studying.”

Today Andrew Blumberg gave the lecture.
The story is that we want to do an analogue of topological K-theory in the algebraic setting, where there’s

not really a natural notion of a vector bundle.44 This leads to a surprisingly productive question: what is a
vector bundle?

44Well, there is, but we’ll get there, and it’s certainly not as obvious.
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Rather than a space, we want a ring, or maybe a scheme, as input. This isn’t as obviously geometric,
especially in the ring case, so how do you define vector bundles? Once we define that, the rest of K-theory
follows in a similar way.

The key to the answer is following result, due in this form to Swan, and an analogue of a theorem of Serre.
Theorem 23.1 (Swan). Let X be a compact, Hausdorff space45 and C(X) denote the algebra of continuous
functions X → R.46 Then, there is an equivalence of categories between the category of finitely generated,
projective C(X)-modules and the category of vector bundles on X.

The point is, this suggests that we should replace vector bundles with finitely generated projective modules.
We probably won’t prove this today, but at minimum let’s construct a functor from vector bundles to

finitely generated projective modules. Let p : E → X be a vector bundle, and let Γ(p) be the space of sections,
{s : X → E | ps = idX}. This is a C(X)-module, which is evident fiberwise, and it’s also fairly easy to show
this is functorial: a map of vector bundles gives us a map of sections.

Harder to show is that Γ(p) is finitely generated, and that it’s projective. It’s finitely generated because X
is compact, so you can choose a partition of unity and use finiteness to pick your generators.

Recall that a finitely generated R-module P is projective if there exists another R-module Q such that
P ⊕Q ∼= Rn. There are other characterizations. But for vector bundles, remember that any vector bundle is
a summand of a trivial bundle, and trivial bundles are the analogue of free R-modules, so we’re set.

We’re probably at the level where proving that this functor is an equivalence could be an exercise, albeit a
hard one.

Now, we will throw aside our geometric intuition, and work with a ring R and the category ProjR of finitely
generated, projective R-modules.47 We’re going to define the 0th K-group to be K0(R) = K0(ProjR), the
Grothendieck group.

To be clear, we’ve taken the Grothendieck group of a monoid; today, we’re going to take the Grothendieck
group of a category.

Let C be a small category with a distinguished class of short exact sequences in C, taken as input data,
and that is closed under isomorphism. Often, as for ProjR, this class comes for free: we’ll take all short exact
sequences. But having the generality can be nice too.

We’ll also assume two auxiliary hypotheses.
• C is symmetric monoidal, and
• exact sequences are closed under sum.

Both of these are satisfied in ProjR, since we’re considering all exact sequences.
Definition 23.2. Under the above assumptions, K0(C) is the free abelian group on the isomorphism classes of
objects [X] for X ∈ ob(C), with relations [B] = [A]+ [C] for every short exact sequence 0→ A→ B → C → 0
in our distinguished class.

Why would you do this?
(1) This is a universal target for the Euler characteristics: if you have a function which behaves like the

Euler characteristic does under extension, then it factors through K0(C). The intuition should be the
land of CW complexes: the Euler characteristic behaves well under sums. In fact, algebraic K-theory
was originally motivated in this context, involving the Riemann-Roch theorem.

(2) This also “splits exact sequences,” in a sense. In ProjR, we always have the exact sequence

0 // A // A⊕B // B // 0, (23.3)

and so we’ve set [A] + [B] = [A⊕B]. So this is exactly what we did on a monoid. But through the
eyes of K0, the sequence (23.3) is exactly the same as the sequence

0 // A // C // B // 0,

so [C] = [A⊕B]. Thus, we’re thinking of all extensions of A by B as the same. In ProjR, where all
short exact sequences split, this isn’t such a big deal, but it’s definitely a useful property in general.

45It may be possible to do this in greater generality, but some sort of separation hypothesis is necessary.
46You can do this with, for example, complex vector bundles instead, and the story is similar.
47Some set-theoretic issues arise when we do this, especially when we pass to isomorphism classes. We won’t worry about it,

though if you care, the issue can be resolved with some cardinal counting.
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Now, let’s make some observations.
First, K0 is functorial with respect to functors that preserve the distinguished class of exact sequences. In

this case, though, it’s covariantly functorial: if F : C1 → C2 plays well with exactness, then we have a group
homomorphism K0(C1)→ K0(C2).

When R and S are rings, and f : R→ S is a ring map, then we have two adjoint functors: extension of
scalars –⊗RS : ModR → ModS , and restriction of scalars f∗ : ModS → ModR. However, restriction of scalars
doesn’t preserve projectiveness, in some situations, whereas extension always does. Thus, algebraic K-theory
is always covariant in rings, and sometimes contravariant.

One of the beautiful things about this is how easily it generalizes: we can just as easily do this with
schemes, and now also chain complexes of vector bundles or even many other things.

Now, suppose C is bipermutative, so there’s a second product ⊗ along with ⊕. There’s some coherence
conditions that you might worry about, but broadly speaking, if C is bipermutative, then K0(C) is a ring. So
in general, it captures a lot of structure about C.

There are two classes of particularly salient examples: ProjR, where R is the ring of integers of a number
field; and ProjR, where R = Z[π1(M)] is the group ring of the fundamental group of a compact manifold. In
the former case, this purely algebraic invariant recovers a lot of arithmetic structure; in the latter case, it’s
the natural home for a lot of constructions in (high-dimensional) geometric topology!
Example 23.4. Suppose F is a field and C is the category of finite-dimensional F -vector spaces, so all exact
sequences in C split. In this case, K0(F ) = Z; it captures the dimension. After all, there’s a map in where an
n ∈ Z is sent to the class [Fn], and there’s an obvious map out that’s the dimension, and it’s a nice exercise
(which maybe you should do, and isn’t very hard) is to check this is an isomorphism.

So what about Ki for i > 0? Or, for that matter, i < 0?
We built topological K-theory as a spectrum, or at the very least, as a sequence of groups. We’d like to do

something similar. A good starting point would be to describe K1(C); there are multiple equivalent answers,
one more algebraic and one in the style of K0.

If C = ProjR, then K1(R) = K1(C) = GL(R)/E(R). What this says is that K1 is about linear algebra and
limiting processes in linear algebra. Here,

GL(R) = colimn GLn(R),
where GLn(R) → GLn+1(R) is what you might guess: inclusion in the upper left corner (with the last
diagonal entry as 1). E(R) is the set of elementary matrices from Gaussian elimination: the matrices Eλij
that have a λ in the (i, j)th position, 1s on the diagonal, and 0s elsewhere.
Proposition 23.5. E(R) is normal in GL(R).

This involves some mucking around with matrices, which we won’t do, but it involves showing that
E(R) = [GL(R),GL(R)], which is another thing one could try as an exercise.

One takeaway is that this suggests a picture of K1 as related to determinants. One cosmic takeaway
is that basic constructions in linear algebra give rise to surprisingly sophisticated phenomena in algebraic
K-theory: in the last 20 years, one of the most successful developments has been the trace, which is a
significant generalization of the trace from linear algebra.

On the other hand, we can describe it as K0, more or less, of a category of automorphisms. Once again,
we’ll assume C is a category with a class of exact sequences, and has a symmetric monoidal product.48 Now, let
Aut(C) be the category whose objects are (M,α), whereM ∈ ob(C) and α : M →M is an automorphism, and
the morphisms are maps f : M → N that commute with the specified automorphisms: f : (M,α)→ (N, β)
is required to satisfy

M
f //

α

��

N

β

��
M

f // N.

We have a forgetful functor (M,α) 7→M , and we say a sequence in Aut(C) is exact if its image under the
forgetful functor is exact in C.

48In this context, the symmetric monoidal assumption is a pretty weak requirement; one generally considers categories that
have finite coproducts, and you could just take this to be the symmetric monoidal structure, as we do in ProjR.



78 M392C (K-theory) Lecture Notes

Definition 23.6. K1(C) is the free abelian group on [(M,α)] subject to the relations [(M ′, β)] = [(M,α)] +
[(M ′′, γ)] whenever we have a short exact sequence (M,α)→ (M ′, β)→ (M ′′, γ). We also have to specify
that [(M,αβ)] = [(M,α)] + [(M,β)], so this plays nicely with composition.
K1 is functorial, because C 7→ Aut(C) is functorial. You might wonder about the 2-functoriality of this, i.e.

how it behaves under natural transformations, which is an interesting story.

Though K0 was invented by Grothendieck, K1 was invented by Hyman Bass, who stared at topological K1
and cooked this up as an analogue of the suspension and clutching functions from topology.

This is justified in part by Mayer-Vietoris; we want algebraic K-theory to be a cohomology theory. It’s a
very different kind of cohomology than topological K-theory; for one, there’s no analogue to Bott periodicity.49

If we have a nice diagram of rings
R1 //

��

R2

��
R3 // R4,

such that the categories of modules pull back, then we get an induced sequence

K1(R1) // K1(R2)⊕K1(R3) // K1(R4) // K0(R1) // · · ·

which was Bass’ greatest insight: it’s a short, but tricky proof that the blue connecting morphism exists.
We also want to describe the relationship between K1(ProjR) and GL(R)/E(R). It’s what you would write

down: an invertible matrix is an automorphism of Rn: they reason this all works is because GLn(R) = Aut(Rn),
so we send an [M ] ∈ GL(R)/E(R) to (Rn,M), and this turns out to be an isomorphism. To go the other way,
suppose (P, α) ∈ Aut(ProjR), so if we complete P to a free module Rm (since it’s projective) and extend α to
the identity, then we get an automorphism of Rm. Working out why E(R) is the kernel is a good exercise as
well.

Here’s another reason this is a good thing. If M is a compact manifold, the Wall finiteness obstruction
lives in K0(Z[π1(M)]). This is an Euler characteristic which determines an obstruction to whether M is
isomorphic to a finite CW-complex. The Z[π1(M)] occurs because you pass to a covering space; in general, if
you see Z[π1(M)], you should expect that reasoning.

Now, K1(Z[π1(M)]) is home to Whitehead torsion, which is related to the S-cobordism theorem. Recall
that Smale got the Fields medal for proving the h-cobordism theorem.

Definition 23.7. An h-cobordism is a cobordism M ↪→W ←↩ N where both arrows are homotopy equiva-
lences.

Theorem 23.8 (h-cobordism (Smale)). If M is at least 5-dimensional and π1(M) = 0, then all h-cobordisms
are trival (homeomorphic to M × I).

This implies, after a little work, the smooth Poincaré conjecture in dimensions 5 and above. But it’s a
handlebody argument, so it’s really hard to reduce it to lower dimensions. So maybe we can attack the other
assumption, that M is simply connected.

Theorem 23.9 (S-cobordism (Barden, Stallings, Mazur)). If dim(M) ≥ 5, then isomorphism classes of
h-cobordisms are in bijection with K1(Z[π1(M)])/{±[M ]}.

Forty years later, we want to reframe this as follows: we see a set of isomorphism classes, and want to
think of this as π0 of a space. So we would like to find a space where h-cobordisms live.

As a historical note, after Bass invented K1, the subject stalled: it took a long time for Milnor to invent
K2, and it seemed ad hoc. But eventually, Quillen managed to define all of them at once, by saying that K0
and K1 are π0 and π1 of an algebraic K-theory spectrum K(ProjR), which is much easier to generalize.

The idea is to take the classifying space BGL(R), whose π1 is violently nonabelian, and abelianize it in
a certain way to obtain the spectrum. The story of how exactly this works is long and complicated, but
beautiful.

So we know K0(Z[π1(M)]) and K1(Z[π1(M)]) for M a compact manifold. But if R is a Dedekind domain,
we get different results: one can calculate that K0(R) is its class group, and K1(R) ∼= R×. It’s much harder

49You can force Bott periodicity, and you end up with étale K-theory, which is a different and interesting subject.
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to show that there’s a relationship between K2(R) and the Brauer group. So this natural invariant links
these two very different notions!

Back to h-cobordisms: this is very related to geometric topology, using coordinate or stable isotopy spaces,
and is in fact telling a story about the classifying space of the diffeomorphism group. This is interesting
because Kn(Z[π1(M)]) is obviously a homotopy invariant, and BDiff(M) clearly isn’t, so somewhere along
the way there was a stabilization process.

So someone might also think about applying K-theory to modern homotopy theory, where it allows for
constructions analogous to rings and modules involving spectra and loop spaces. This relates to, for example,
the fact that Z is the initial commutative ring, but the sphere spectrum is the initial commutative ring
spectrum! There are lots of constructions outside of homotopy theory within geometry and topology, though.
See Waldhausen’s theorem for the full story. It’s kind of a frustrating story: there were gaps in some proofs,
which got filled in wrong, and then some people were angry at each other. But the mathematics is great,
though hard.

Definition 23.10. Two rings R and S are said to be Morita equivalent if ProjR ∼= ProjS and there is an
(R,S)-bimodule P and an (S,R)-bimodule Q such that Q⊗R P ∼= S and P ⊗S Q ∼= R.

Famously, Mn(R) is equivalent to R.
Here’s another fun facet of this, though maybe of dubious value. K-theory is not unlike BGL(R) (which

isn’t obvious from what we saw today, but is at least plausible). You can resolve the Hochschild homology
HH (R) with a cyclic bar complex ; the takeaway is that you can map BGL(R)→ Bcyc GL(R), by adding a 1
at the end, and then embed this into the cyclic homology of Mn(R), which by Morita equivalence maps into
the cyclic bar complex of R, which is the Hochschild homology. This composition of maps turns out to be
nonzero.

Algebraic K-theory is very hard to compute, but Hochschild homology is much easier to compute, so
this is actually really nice. This is called the trace map, because the classical trace Mn(R)→ R realizes the
Morita equivalence.

Part 4. Equivariant K-theory
Lecture 24.

Equivariant Vector Bundles and the Thom Isomorphism: 11/17/15

“Someone’s supposed to have a comment at this point. . . I don’t know who.”

Recall that a topological groupoid is a pair X0 and X1 of topological spaces (X0 akin to the objects, and X1
to the morphisms) and continuous maps s, t : X1 → X0 (source and target, respectively), an identity map
i : X0 → X1, a composition map c : X1 t×sX1 → X1, and an inverse map ι : X1 → X1, which satisfy some
axioms, e.g. composition of an arrow x1 ∈ X1 with the identity just gives us x1 again, or the source of the
inverse is the target of the original, and so forth. The group of arrows x0 → x0 for an x0 ∈ X0 is sometimes
called the isotropy group at x0.

The stabilizer at a point in X0 can be thought of encoding a set of symmetries at that point.

Example 24.1.
(1) Any topological space X0 gives us a groupoid with X0 = X1, so the only arrows are the identities.
(2) The other extreme is a topological group X1, giving us X0 = pt.
(3) More generally, if a group G acts on a space S, then we let X0 = S, and the arrows are points of S

with group elements (that is, an arrow is the association (g, s) 7→ g · s), so X1 = S ×G. This action
groupoid can denoted X = S//G; this notation is controversial, however. A special case of this is a
principal G-bundle P → Y .

(4) Suppose Y is a space and {Uα}α∈A is an open cover of Y . Then, we get a groupoid out of it: let

X0 =
∐
α∈A

Uα.



80 M392C (K-theory) Lecture Notes

Thus, we have a surjection π : X0 � Y . Let X1 = X0 ×Y X0 across π. In other words, if I have a
y ∈ Y such that y ∈ Uα and y ∈ Uβ , then we add a unique arrow (y, Uα) → (y, Uβ); if α = β this
produces an identity arrow, and the uniqueness forces a unique composition law.50

Given a groupoid (X0, X1), one can build a simplicial space, where X0 is the set of 0-simplices and X1
is the set of 1-simplices. Then, s, t : X1 ⇒ X0 are the boundary maps. The identity map provides a map
X0 → X1. For X2, we take pairs of composable maps: x0 → x1 → x2, and we can take source, target,
or composition to get back to X1, or compose with the identity to go from X1 → X2. Then, triples of
composable maps define X3, and so on; these are also iterated fiber products.

The notion of a principal G-bundle is like that of an open cover: between any two points in the fiber,
there’s a unique map between them. The difference is that the fiber might not be discrete. So there’s a sense
in which these two can be equivalent; in the abstract sense of equivalence of categories, these are equivalent,
but we also have to remember the topological structure.

We can also talk about vector bundles over groupoids, or even fiber bundles, though we’ll only need the
former.

Definition 24.2. A vector bundle over a groupoid (X0, X1) is the data of a (classical) vector bundle E → X0
together with an isomorphism ψ : s∗E → t∗E for every arrow s → t, subject to the condition that if
(f0, f1) : x0 → x1 → x2 ∈ X2, then ψf2◦f1 = ψf2 ◦ ψf1 .

The idea is that ψ needs to be a fiberwise isomorphism on every arrow of X1, which is how we pull back
sources and targets. We have data on X0, data on X1, and a condition on X2. . . but then it stops.

Just for comparison, what’s a function on a groupoid? Instead of a vector space above each point, we have
a number, such that every arrow induces an isomorphism of numbers, which, well, has to be an equality. If
instead we have internal structure, non-identity isomorphisms may exist.

We should also be aware of the notion of a map of topological groupoids (X0, X1)→ (Y0, Y1); the idea is
to have continuous maps X0 → X1 and Y0 → Y1 that commute with composition, identity, etc. This means a
real-valued function on a groupoid is a homomorphism of groupoids to R with all arrows equal to the identity.
As such, we end up with a notion of maps of vector bundles, which is important: a map between vector
bundles over a groupoid X is a map which is a linear map of vector spaces on each fiber, and each arrow in X1
induces a commutative square with our map. So this is (data, condition) rather than (data, data, condition).

Let’s look back at Example 24.1.

• If we turn a topological space into a groupoid, with arrows only the identity, a vector bundle over
this groupoid is the same as a vector bundle over our original space.

• If we start with a topological group, which is a groupoid over a point, then the data we have is a
vector space E and a continuous group of automorphisms of E, so we get a continuous representation
of our topological group!

• A vector bundle over a group action is what’s called an equivariant vector bundle. We’ll have more
to say about this.

Definition 24.3. A map f : X → Y of topological groupoids is a local equivalence if

(1) f is an equivalence of underlying discrete groupoids,51 and

50If you don’t like fiber products, you can also think of this as

X1 =
∐

(α,β)∈A×A

Uα ∩ Uβ .

51This means an equivalence of categories, an inverse g which need not be continuous that induces natural transformations to
the identity on f ◦ g and g ◦ f . In the case of the groupoid of a principal G-bundle, this is weird, because we’re used to thinking
that they have no sections — but the key is that we don’t need the section to be continuous.
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(2) f has local sections: for all y ∈ Y0, there exists an open neighborhood U of y0 and a σ that satisfies
the following diagram, where the square is a pullback square, so X̃0 = Y1 ×Y0 X0.

X̃0 //

��

X0

f

��
Y1

s //

t

��

Y0

U �
� //

σ

GG

Y0

This second condition may be opaque, but it’s worth puzzling over; it ultimately comes from the familiar
topological notion of local sections.

Condition (1) is equivalent to requiring that:
• f is essentially surjective, i.e. for all y ∈ Y0 there’s an x ∈ X0 and β ∈ Y1 such that β : f(x)→ y; and
• f is fully faithful, i.e. for all x0, x1 ∈ X0, f : X(x0, x1)→ Y (f(x0), f(x1)) is a bijection.

A good example is that if P → Y is a principal G-bundle, P//G→ Y is a local equivalence.

Theorem 24.4. Suppose f : X → Y is a local equivalence of topological groupoids. Then, f∗ induces an
equivalence between the categories of vector bundles on X and vector bundles on Y .

Proof idea. The idea is to construct a descent f∗ : VectX0 → VectY0 . Given a vector bundle E → X0 and a
y ∈ Y0, we know f : X → Y is essentially surjective, so there’s an x ∈ X and β ∈ Y1 such that β : f(x)→ y,
and we can push Ex to y using this.

However, this choice of (x, β) is not unique. The way to resolve this is to make all choices at once:
we end up getting a groupoid of choices Gy defined by (Gy)0 = {(x, β) ∈ X0 × Y1 | β : f(x) → y} and
(Gy)1 = {α : (x, β)→ (x′, β′) | f(α) = (β′)−1 ◦ β}. Since f is fully faithful, this means that, given (x, β) and
(x′, β′), the choice of α is unique, meaning Gy is contractible, i.e. equivalent to a point (ultimately, this is true
of any groupoid where there’s a unique arrow between any two points). So now we can take the vector space
of parallel sections across α (or taking the limit of a diagram, which produces a canonically isomorphic vector
space).

This is the construction of descent; now you have to figure out how lifting works, not to mention figure
out how these fit together into vector bundles and continuous maps, which comes from the notion of local
sections.

This general argument of getting a specific vector space from a groupoid of them is definitely worth
investigating if you want to work with stacks or with groupoids.

Example 24.5. Let X = pt//(R,+), so that a vector bundle E→ X is a representation of (R,+). We can
form a vector bundle over R×X whose fiber is C over every point ξ, but each t ∈ R acts by eitξ. This does
not have homotopy invariance; the thing that goes wrong is that the stabilizer groups aren’t compact.

This is a good counterexample to have in mind for the following definition.

Definition 24.6. A groupoid X is a local quotient groupoid if over a neighborhood of each point, it’s locally
equivalent to S//G, where S is a paracompact, Hausdorff space and G is a compact Lie group.

Theorem 24.7. In this case, we have homotopy invariance: if X is a local quotient groupoid, jt : X →
[0, 1]×X sends x 7→ (t, x), and E → [0, 1]×X is a vector bundle, the j∗0E ∼= j∗1E.

We won’t prove this, but it has a very similar proof to Theorem 2.1 from the non-equivariant case. However,
one has to make the isomorphism compatible with the group action, which can be done by averaging over the
Haar measure.52

So now, if S is compact, we can make K-theory out of isomorphism classes of equivariant vector bundles,
in the same way: taking the monoid of equivalence classes of vector bundles, taking its group completion,
and getting an equivariant cohomology theory. In the same way, we could talk about families of Fredholm

52This means we can probably generalize to compact Hausdorff groups.
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operators parameterized over a groupoid, and generalize to the noncompact case; you can prove that you get
a cohomology theory.

The first of these was developed by Segal and Atiyah, and the second by the professor and a few others.
We won’t develop this in detail, but we will use some of it.

The Thom Isomorphism. First, let’s talk about the Thom class in de Rham theory. Suppose V is a real,
n-dimensional vector space with an inner product. Then, the Thom class is a cohomology class represented
by an η ∈ Ωnc (V) (i.e. η is compactly supported) such that

∫
V η = 1. Notice there are many of these, even an

infinite-dimensional space of them, but the cohomology class should be unique. That is, adding anything
exact (and compactly supported) to η should also produce a valid η, and the difference of any two choices
should be exact. Here, though, “exact” means it’s the derivative of something that was compactly supported.
Thus, we get a unique Y = [η]dR ∈ Hn

c (V).

Theorem 24.8. The map H0(pt)→ Hn
c (V) sending c 7→ c · U is an isomorphism.

Think of the point as the origin of V, so that we have not just an inclusion {0} → V, but a projection in
the other direction. Thus, the inverse map from Hn

c (V)→ H0(pt) is given by
∫
V – (since H0(pt) ∼= R). The

full details of the proof can be found in [15]. Keep in mind, however, that this is only well-defined up to
orientation, so we need to have an orientation of V to make this unique.

One interesting consequence of this is that such η can be thought of as approximating the δ distribution,
which is supported at the origin and is 0 elsewhere. We would think of this as a δ0 ∈ Ωnc (V)∗, i.e. a function:
δ0 : Ω0(V) → R sends f 7→ f(0). More generally, we would get distributions of the sort f 7→

∫
V fη. In

equivariant K-theory, we will actually get a reasonable notion of a delta distribution.
Now, if π : V → X is a rank-n vector bundle with an orientation, then the analogous construction produces

a Thom class in the compactly supported vertical cohomology, U ∈ Hn
cv(V ), and we have a theorem similar

to Theorem 24.8 (again proved in [15], using spectral sequences!).

Theorem 24.9. The map H•(X)→ H•+ncv (V ) sending [ω]→ [π∗ω] · U is an isomorphism.

In K-theory, we’ll need a little extra structure: a spin structure in the real case and something slightly
weaker in the complex case. But we get the δ-distribution for free.

We’ll start with a construction of Atiyah, Bott, and Shapiro. Let V be a real vector space and Q be
a negative definite quadratic form. Let A = Cliff(V, Q), so if ξ ∈ V ⊂ A, then ξ2 = −|ξ|2 (we have this
Z/2-grading structure). Thus, if E is a (real or complex) left A-module, compatible with the inner product
structure, then Riesz representation defines a map T from V to the odd-graded, skew-adjoint operators on E,
and if ξ ∈ V ⊂ A, then T (ξ) is invertible.

This defines an element of K0(V),V \ {0}) (since it’s invertible except at the origin), and by excision, this
group is the same as K0

c (V) (K-theory with compact supports).
Another way to look at this is to take the one-point compactification SV = V ∪ {∞}, so we get a class in

K̃0(SV). We do this by defining a decomposition of SV into upper and lower hemispheres, e.g. everything
inside and outside the unit sphere in V. Thus, we can clutch E0 and E1 by T (ξ). It turns out that both of
these viewpoints are isomorphic.

Example 24.10. Suppose V = R and A = R{1, e}, with r2 = −1. Let E = R1|1 = R⊕ R, sending

e 7−→
(

0 −1
1 0

)
.

Thus, we’ll get a bundle over the sphere, which acts by +1 when x > 0 and −1 when x < 0, so it actually
produces the Möbius bundle.

Lecture 25.

The Thom Isomorphism and K-theory: 11/19/15

Before we return to the discussion of Thom classes and their role in K-theory, we’ll talk a little bit about
orientation and spin structure.

Let V be an n-dimensional vector space with an inner product. Then, we can define B0(V) to be the set of
bases of V, i.e. the set of isometries b : Rn → V (here, Rn has its standard basis and inner product). Then,
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On acts on B0(V) freely and transitively on the right (i.e. there’s a unique h ∈ On for any x, y ∈ B0(V) such
that h · x = y) by precomposition: if h : Rn → Rn is in On, then we get another basis bh : Rn → V. That
this action is free and transitive means that B0(V) is a torsor for On.

On acts on Rn on the left, by the usual action of a function on a set, and in fact there’s a canonical
isomorphism B0(V) ×On Rn → V sending (b, ξ) 7→ b(ξ); the ×On means that we’re identifying (b, ξ) ∼
(bh, h−1ξ).

Definition 25.1. Let P be an H-torsor and ρ : H ′ → H. Then, a reduction or lift of P to H ′ is a pair
(Q, θ), where Q is an H ′-torsor and θ : P → ρ(Q) is an isomorphism, where ρ(Q) is the H-torsor Q×H′ H.

This is a linear version of a symmetry group in geometry, and as such is quite useful for keeping track of
symmetry data. In different language, this is the same philosophy as Felix Klein’s program.

Definition 25.2.
(1) An orientation of V is a reduction of B0(V) to SOn ↪→ On.
(2) A spin structure of V is a reduction of B0(V) to Spinn → On.
(3) A spinC structure is a reduction of B0(V) to SpinC

n → On.

Let’s unpack these.

Example 25.3.
• If V = R, then B0(V) is just two points, and O1 = {±1}, so to reduce to SO1 = {1}, we just pick one
of the two points, which is what orienting a line usually does.

• If V = R2, O2 is SO2 union reflections, so this reduction of the torsor of bases is saying that we need
to pick a subspace of bases that are a torsor for SO2. B0(R2) is two disjoint circles, so we just pick
one of them, which is exactly picking an orientation: it tells us what bases are positively oriented.
Moreover, any two bases of positive orientation are related by a unique element of determinant 1, as
usual.

Spin and spinC structures are analogous, but neither of these maps are inclusions. Spinn → On has image
SOn, so choosing a spin structure automatically chooses an orientation; in fact, it’s a further lift across
Spinn → SOn ↪→ On. The kernel is {±1}. For a complex spin structure, we do essentially the same thing,
but this time the kernel is U(1) ⊂ C.

The same story applies for vector bundles, thanks to local triviality. In fact, B0(X)→ X is a principal
On-bundle (i.e. a fiber bundle of torsors). Asking for a reduction of a structure group to SOn is the same
thing as a reduction of the torsor, and may be a more familiar definition of an orientation. The two spin
structures are analogous.

Now, though, we see that there’s an existence and uniqueness question. The space of orientations of a
vector space V is two points (so we have a Z/2-torsor of orientations), so there are two possible orientations
of every fiber of your vector bundle E → X. This gives a double cover of X, and since we want continuity,
we need a section, reframing this problem as an existence and uniqueness problem of sections over a vector
bundle.

What about spin structure? In the case n = 1, O1 and Spin1 are both cyclic of order 2, but the map must
factor through SO1, so we’re looking at the constant map Spin1 → O1. To think of these more generally, we
need to know what it means to have a map of reductions of a torsor.

Definition 25.4. Let P be an H-torsor, ρ : H ′ → H, and (Q, θ) and (Q′, θ′) be reductions of P to H ′. Then,
a map of these torsors is an H ′-equivariant map ϕ : Q→ Q′ such that the following diagram commutes.

ρ(Q) // ρ(Q′)

P

θ

``

θ′

>>

Now, specializing, we have a double cover Spinn → SOn, so for every orientation we have two choices of
the spin structure, and now we’re looking at a more general class of double covers. But the maps between
them are all invertible, so the category of spin structures is actually a groupoid!
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Remark 25.5. There are topological invariants that provide some answers to whether such a structure exists,
called Steifel-Whitney classes.

Now, suppose V has a spin structure; then, there is a canonical Clifford module S = Bspin(V)×Spinn C`−n.
Since the spin group sits inside the Clifford algebra (in the same way On ⊂ Mn(R)), we’re identifying
(b, a) ∼ (b · h̃, h̃−1a) for all h̃ ∈ Spinn. The picture is that we have a space of spin bases (spin structures
with basis), and there’s a constant copy of C`−n over each. However, we can act by Spinn to move between
different spin bases, and this construction takes vertical sections. In some sense, we’re integrating out the
choice of basis.53

S is a vector space, but not an algebra; on C`−n, we’re acting by right multiplication where we would
expect left multiplication, so we don’t get the induced algebra structure you might expect. Nonetheless, this
is a Cliff−(V) = Cliff(S,−Q)-module, and a right C`−n-module.54

One could take this to be the definition of a spin structure, though the definition we presented is considerably
more general for geometric constructions.

Now, we can refer to the Thom class: consider the constant bundle S→ V. If µ ∈ V and Tµ denotes left
Clifford multiplication by µ ∈ Cliff−(V) (which acts on S), then T maps V into the space of odd, skew-adjoint
endomorphisms of S and T 2

µ = −|µ|2.
In other words, we’ve defined a representative U = [S, T ] in some K-theory. It’s real K-theory, and the

right C`−n structure means we’ve shifted up to the nth K-theory. Since it’s 0 at the origin, this means
U ∈ KOn(V,V \ {0}). This is isomorphic to KOn

c (V), and under this isomorphism this U is sent to something
supported only at 0, so we have a vector-bundle analogue of a δ-function! This U is the Thom class.55

Theorem 25.6. The map KO0(pt)→ KOn
c (V) sending [E] 7→ [π∗E] · U is an isomorphism.

These are both isomorphic to Z, and so maybe this theorem isn’t so hard; here’s the real theorem.

Theorem 25.7. Let π : V → X be a real vector bundle of rank n with a spin structure. Then, the map
KO•(X)→ KO•+ncv (X) sending [E] 7→ [π∗E] · U is an isomorphism.

We’d like to generalize a little bit: let G be a compact Lie group acting on V, a real vector space, from the
left. Then, this induces an action of G on B0(V) which commutes with the action of On from the right. It’s
still an On-torsor, but now we have a group of symmetries, so we can talk once again about the orientation,
spin structure, or spinC structure associated to this object, which says that this is a G-equivariant structure.

Last time, we mentioned that this gives us a groupoid of these structures which is acted on by G. Then,
the definition would look like lifting a torsor again, but in a G-equivariant way.

Example 25.8. Consider V = R2 with an orientation, on which SO2 acts by rotations. Now, we get BSO(R2),
so we have an “internal” right action of SO2 and a “geometric” action of SO2 on the left. This BSO(R2) is a
circle, so to talk about spin structures, do we want to find a double cover of the circle whose covering map is
equivariant? Well, no; one full rotation of the circle on bottom isn’t the identity on the cover, so there’s no
SO2-equivariant spin structure.

This example might be simpler than the general case, because SO2 is abelian.
In any case, if we have an equivariant spin structure, we can run the Thom story over again, but with G-

equivariance in the background (and sometimes foreground). In the end, we get an analogue of Theorems 25.6
and 25.7 in equivariant K-theory: there will be an isomorphism KO•G(X)→ KO•+nG (V )cv.56

Let G be a compact Lie group and consider the coadjoint action of g∗ on itself. Kirillov described a
one-to-one map from regular ρ-shifted, integral coadjoint orbits to the irreducible complex representations of

53There’s a Z/2-grading floating around, as usual, and the fact that we’re using the spin group rather than the pin group
means that these maps respect this grading.

54In fact, it’s even an invertible module, in the sense of Morita, making it a Morita isomorphism between these two algebras.
55You may be wondering how this relates to the Thom class in cohomology. It turns out there are several ways to relate

K-theory and cohomology; the simplest one would be with cohomology in rational coefficients, using something called a Chern
character. It’s an interesting story involving characteristic classes, which we aren’t assuming in this class.

56Last time, we talked about vector bundles over a groupoid, and defined equivariant vector bundles over local quotient
groupoids. If we have a global quotient of a compact space by a compact Lie group, we define equivariant K-theory by taking
the classes of finite-rank equivariant vector bundles, as in the non-equivariant case. Alternatively, one can develop Fredholm
operators and Clifford algebras for all local quotient groupoids, again as in the non-equivariant case.
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G. Then, the Freed-Hopkins-Teleman paper [23] gives us a map in the other direction. We can reframe this
in light of things we’ve talked about today.

Let E be a finite-dimensional, complex representation of G (which is, say, n-dimensional); using the
Haar measure, we can fix a G-invariant inner product on E. Then, we can consider E as a constant vector
bundle over g∗; this is equivariant under the action of G on g∗. To take the Thom construction, we should
tensor with U ; the result is a family of odd, skew-adjoint operators commuting with the left C`+n-action
T : g∗ → End(E ⊗ S) sending µ 7→ idE⊗C(µ). Now, we want to know whether this is an equivariant spin
structure, i.e. whether the adjoint map lifts.

Spin(g∗)

����
G

?
;;

Ad // O(g∗)

If this doesn’t lift, then G is neither abelian nor simply connected. The simplest connected Lie group satisfying
those conditions is SO3. Thus, the adjoint map is the identity, and Spin3 is a double cover, so is there a
homomorphism SO3 → Spin3? In this case, no, so it’s not equivariantly spin.

In general, though, we can pull the double cover back and get a double cover Gσ of G on which the action
lifts to a spin structure. So we’re always OK if you’re willing to take a cover.

Let’s modify this to a family D (for “Dirac”) g∗ → End(E⊗ S) with Dµ = c(µ) +D0 for some fixed D0
independent of µ. This has the same topology, in that it’s got the same K-theory class in some equivariant
K-theory with compact supports. However, it’s a different geometric representative, which is nice.

Next time, we’ll prove that:
• D0 is invertible;
• if E is irreducible, Dµ is invertible except when µ ∈ OE (that is, the coadjoint orbit); and
• we have a vector bundle kerDµ → OE, which is naturally isomorphic to Sµ ⊗ LE, where LE is a line

bundle, and in fact, precisely the one given by the Borel-Weyl construction.
In the last week of class, we’ll apply this to loop groups, which requires stepping this up to the infinite-
dimensional case.

The D0 that we’ll consider is

D0 =
√
−1
(
γaRa + 1

12fabcγ
aγbγc

)
,

where {ea} is a basis for g and {ea} is a basis for g∗, mγa = c(ea), Ra the action of ea on E, and [ea, eb] = f cabec,
so 〈[ea, eb], ec〉 = fabc. This is a piece of a Dirac operator for a certain left-invariant connection, which appears
in more places than just this one.

Lecture 26.

Dirac Operators: 11/24/15

“What does your shirt say? ‘Seven days without a pun makes one week?’ That’s it, class is
cancelled, happy Thanksgiving.”

If M is an n-dimensional Riemannian manifold, we can consider its bundle of orthonormal frames
BO(M) → M , which is a principal On-bundle. Each point in B0(M) is a point of M along with an
orthonormal basis of its tangent space, and projection forgets the tangent space.

We’re going to talk about the Dirac operator; there are other Dirac operators, but this is “the” one. M
comes with a canonical connection called the Levi-Civita connection;57 we’ll start with this one, though when
we specialize to Lie groups we’ll use a different connection.

57In case you also didn’t realize, Tullio Levi-Civita was one person.



86 M392C (K-theory) Lecture Notes

A spin structure on M gives us maps of bundles

Bspin(M)

Spinn &&

2:1 // // BSO(M)

SOn
��

� � 1:2 // BO(M)

Onyy
M.

So we get a vector bundle S = Bspin(M)×Spinn C`+n over M . This is a bundle of right C`+n-modules, and
therefore is a left C`−n-module. At a point m ∈M , we have a Clifford multiplication T ∗M ⊗ S→ S, since
T ∗M ∼= Rn ⊂ C`+n, so we can send ξ ⊗ a 7→ ξa. If g ∈ Spinn, then g−1ξg ⊗ g−1a 7→ g−1ξa.

So on the manifold, we have geometry, but in the frame bundle, we have linear algebra, and invariants
pass to invariants. So far, we haven’t made any choices; everything is canonical.

Now, covariant differentiation gives us C∞ sections of our vector bundle: ∇ : C∞M (S)→ C∞M (T ∗M ⊗ S),
and Clifford multiplication is a map c : C∞M (T ∗M ⊗ S) → C∞M (S). Composing these gives us the Dirac
operator D = c ◦ ∇ : C∞M (S)→ C∞M (S).

Exercise 26.1. Compute the Dirac operator on En, flat Euclidean space.58 You should get the answer
D = γµ ∂

∂xµ .

Clifford multiplication is odd and self-adjoint, but ∇ is a skew-adjoint operator, since it’s a first derivative
(interchange the two using integration by parts; there are no boundary terms, since M is closed). Thus, D is
odd skew-adjoint, and commutes (in the graded sense) with the left C`−n action, since it ultimately comes
from a right C`+n-action.

Remember, our model forK-theory (well, in this case, KO-theory) was operators like this: odd, skew-adjoint
Fredholm operators commuting with the C`−n-action. So imagine a family of such operators parameterized
by a smooth manifold Y .

What is this exactly? Well, a family of manifolds parameterized by a smooth manifold is sometimes called
a “manifold bundle,” but more often we call it a fiber bundle of smooth manifolds.

Definition 26.2. A fiber bundle of smooth manifolds is a smooth map π : X → Y of smooth manifolds such
that the fiber over every point has a smooth manifold structure and π is locally trivial (which in particular
implies it’s a submersion).

If X and Y are Riemannian manifolds, we also get a map T (X/Y ) = kerπ∗ → X. One might define a
Riemannian metric to be a metric on the vector bundle T (X/Y )→ X, but this isn’t strong enough to recover
the Levi-Civita connection, so we also need a criterion called horizontal distribution.

Now we have to say what a spin structure is, but once we have a metric, we have a bundle of orthonormal
frames over X, and so we can specify that the induced spin structure restricts to a continuously varying spin
structure on each fiber. Thus, we get a family of Dirac operators parameterized by Y !

Then, the elliptic theory of PDEs tells us that if M is compact, or if π is proper, then this Dirac operator
is Fredholm.59 So our model of K-theory gives an analytic index indX/Y ∈ KO−n(Y ), and complexifying
gives a class in K−n(Y ).

Relevant to this notion of analytic index is the following celebrated theorem.

Theorem 26.3 (Atiyah-Singer index theorem (1963)). The analytic index indX/Y = π!(1),60 where π! :
KO0(X)→ KO−n(Y ) is the topological pushforward defined using the spin structure.

There are other forms of this theorem, but this is the strongest; the others follow from it. In fact,
Atiyah and Singer’s proof of this form is the only known proof (though there are different proofs of some
generalizations).

Let’s talk about π! a little more. For simplicity, assume X is compact; not much changes if you don’t
assume this. In particular, Y must be compact. Thus, we can embed i : X ↪→ SN for large N , thanks to the
Whitney embedding theorem, and we can choose i so that X misses the basepoint ∗ ∈ SN .61

58In general, for any construction in Riemannian geometry, you should try computing it in flat space first.
59This is in the sense of manifolds, not Hilbert spaces, but the idea is very similar.
60π! is pronounced “pi lower-shriek.”
61This is because the theorem actually gives us an embedding X ↪→ RN , and we add the point ∗ at infinity, which is not hit

by X, to get SN .
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Any smooth map can be factored into an inclusion and a projection, so we just have to define π! on
inclusions and projections, and check that it’s well-defined. That is, we have

X
� � π×i //

π
��

Y × SN

pr1||
Y.

If ν is the normal bundle of the inclusion i, then the Thom isomorphism theorem gives an isomorphism
KO0(X)→ KON−n(ν, ν \ i(X)). Then, excision means this is isomorphic to KON−n(Y ×SN , Y ×SN \ i(X)),
which maps to KON−n(Y ×SN , Y ×∗) = KO−n(Y ). The composition of all of these maps is our pushforward:
use the Thom isomorphism theorem and extend by zero; pushforward by projection is just desuspension.

This is the topologist’s version of integration; if we were doing de Rham theory, there’s a similar Thom
isomorphism theorem, and the pushforward is defined by integration. Thus, this pushforward is actually a
quite general concept.

Thus ends the half-hour discussion of Dirac operators, which can really be fleshed out into a semester
course.

Back to Lie Groups. Let’s suppose we have a compact Lie group G and a G-invariant inner product 〈–, –〉
on g, which gives us a bi-invariant Riemannian metric on G.

We’ll need a spin structure on G, which will give us S as a (Cliff(g∗),C`+n)-bimodule structure, as we
discussed previously.

Recall that the Peter-Weyl theorem states that the direct sum of E∗ ⊗ E over all isomorphism classes of
[E] of irreducible representations is dense in C∞G , and therefore we also have a dense inclusion

C∞G (S) ⊇
⊕
[E]

E∗ ⊗ E⊗ S.

These decompositions are (G × G)-equivariant (this action given by left, resp. right multiplication). In
particular, the Dirac operator is equivariant, so acts separately on each component.

Last time, we wrote down a family of operators, and looking at how the Dirac operator splits shows that it
really is a Dirac operator.

However, we aren’t using the Levi-Civita connection, so we need to write down which covariant derivative
we’re using. A covariant derivative is a way of defining parallel transport along paths; in Euclidean space, we
have global parallel transport: given a vector, we immediately get a vector field. We don’t generally have this
on a smooth manifold, but on a Lie group, we do have global parallelism: left translation produces a vector
field everywhere when you start with a vector at the identity. Right translation gives us another one.

There are lots of orthogonal62 covariant derivatives on G, and they form some infinite-dimensional affine
space over the space of G-invariant one-forms over the skew-adjoint TG-endomorphisms (to see this, what is
the difference between two connections)?

If G isn’t abelian, left and right translation induce two connections ∇L and ∇R, which determine an affine
line. It’s a fun exercise to show that the Levi-Civita connection lies at the midpoint of these two.

We’re not going to use any of these three; instead, we’ll use a fourth connection, which is 1/3 of the way
from ∇L to ∇R. As for why, that is a great question; it’s hard to describe even the Levi-Civita connection
synthetically (unless your manifold is Kähler).

Since G is finite-dimensional (well, for this week), then we can fix an irreducible complex representation
E, so if µ ∈ g∗, then the Dirac operator Dµ ∈ End(E ⊗ S). Let {eα} be a basis for g and {eα} be the
corresponding dual basis for g∗. Then, we write 〈ea, eb〉 = gab and 〈[ea, eb], ec〉 = fabc; similarly, 〈ea, eb〉 = gab

and [ea, eb] = f cabec.
Let γa ∈ End(S) be Clifford multiplication by ea and Ra ∈ End(E) be the action of ea (every representation

of a group gives an endomorphism representation of its Lie algebra, infinitesimally). Finally, let σ ∈ End(S)
be σa = (1/4)fabcγbγc, which is induced from the action of the Lie algebra spinn induced from the action of
the spin group.

62Here, “orthogonal” is with respect to the bi-invariant metric on G.
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Then, our Dirac operator D0 ∈ End(E⊗ S) has the formula

D0 = iγa
(
Ra + 1

3σa
)

= iγa
(
Ra + 1

12fabcγ
aγbγc

)
,

and this is where the 1/3 in the curious choice of connection ultimately comes from. If µ ∈ g∗ more generally,
then Dµ = c(µ) +D0, where if µaea = µ ∈ g∗, then c(µ) = µaγ

a.

Proposition 26.4.
D2

0 = (1/2)[D0, D0] = gab
(
RaRb + 1

3σaσb
)
.

The proof is a calculation, which we will skip; in particular, this means it’s a first-order operator. On
Euclidean space, the Dirac operator is the square root of the Laplace operator, but on a general Riemannian
manifold this is only approximately true. Here, however, there is no first-order term, since there is no term
gabσaRb. For a reference, see [24].

As a consequence, we also have the following.

Theorem 26.5. D2
µ = D2

0 − 2i(R(µ̂) + σ(µ̂))− |µ|2, where µ̂ = µag
abeb.

That is, µ̂ is given by raising an index: in the identification of g and g∗ determined by our G-bi-invariant
inner product, µ is sent to µ̂. In particular, R(µ̂) = gabµaRnb and σ(µ̂)− gabµaσb.

Example 26.6. If G = T, then it’s abelian, so lots of things nicely coincide. Our irreducible representations
are En = C, with λ ∈ T ⊂ C acting as λn. Then, g = iR and 〈ia, ia′〉 = aa′, S = C ⊕ C = C1|1. Hence,
γ = ( 0 i

i 0 ), so

Diα =
(

0 i(a− n)
i(a− n) 0

)
,

which is invertible everywhere except µ = iα. There, kerDµ = C1|1.

Working this example out in detail is helpful; other Lie groups are harder.

Definition 26.7. A µ ∈ g∗ is regular if its stabilizer Stabµ ⊂ G is some maximal torus Tµ.

Theorem 26.8. Let G be a compact, connected Lie group and E be an irreducible G-representation. Then,
Dµ is invertible unless µ is regular and µ = λµ + ρµ, where λµ is the highest weight of E. In this case,
kerDµ = Kλ ⊗ Sρ, where Kλ is the λ-weight space of E under Tµ, and Sρ is the same, but for ρ on S.

If µ is regular and G is compact and connected, then g splits as t and a sum of root spaces, and g∗

splits dually, as t∗ plus some coroot spaces. Part of the statement of Theorem 26.8 is that µ ⊂ t∗ inside
g∗. Moreover, regularity means that, in t∗, µ is contained in a Weyl chamber C∗, so we have splitting into
positive and negative roots and ρµ = (1/2)

∑
α∈∆+ α. This is the ρµ that we referred to earlier. Now, if we

define λ = µ− ρ, our condition is that λ is the highest weight.
Looking more closely at this, the action of T = Tµ decomposes E into one-dimensional subspaces

E =
⊕
λ∈Λ

Eλ ⊗ Cλ,

where T acts on Cλ with the character λ, and Eλ represents its multiplicity. That λ0 is the highest weight
means that Eλ = 0 for λ a sum of λ0 and any nontrivial sum of positive roots.

How should we interpret Theorem 26.8? We want to align everything up geometrically: topologically,
these things give us the same element of K-theory, but the magic here is that doing this allows everything to
work geometrically too.

We also have to account for a twisting or central extension from the spin structure, but don’t stress about
that the first time around.

The representation ring of G is K0
G(pt), and the Dirac family lives in Kn

G(g∗)c (thinking of these as classes
of Fredholm operators). But we also have ker(D(E)), which is a nice vector bundle over our orbit O; the
kernel is actually L ⊗ SνO , where ν is a normal bundle to O and L is a line bundle. This is also a class in a
K-group, specifically Kn−r

G (O), where r is the dimension of a maximal torus.
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These are all related by maps: let i be inclusion {0} ↪→ g∗ and j be the inclusion O ↪→ g∗. We also have
projections p : g∗ → {0} and q : O → {0}, so we have a diagram

KG
0 ({0})

i∗

%%

Kn−r
G (O)

j∗yy

q!oo

Kn
G(g∗)c

p!

ee

That i∗ and p∗ are inverses comes ultimately from the Thom isomorphism theorem, and so one can show
that this diagram commutes. What it means is that one can lift representations past projection, though in
general it will have to be virtual.

In the last two lectures, we will pass this story to loop groups, which are infinite-dimensional, but some of
the story still holds.

Lecture 27.

Twisted Loop Groups: 12/1/15

We don’t have much time left, but we’ll be able to finish this course with a discussion on loop groups and
how Dirac operators and K-theory work their way into the story.
Definition 27.1. If G is a compact Lie group, the set LG = Map(S1, G) is a group under pointwise
multiplication, and is called the loop group of G. To be precise, if γ1, γ2 : S1 → G, then (γ1 ·γ2)(s) = γ1(s)γ2(s).

What kinds of maps are these? We want them to be smooth maps, so that we get a smooth manifold,
but making a space of maps into a manifold (well, an infinite-dimensional manifold) is tricky; we want to
complete to a Hilbert space, and there’s a bunch of surprisingly analytic fussing about that needs to be done.
But we won’t worry too much about this.

There’s an alternative, more geometric interpretation: let P → S1 be a principal G-bundle, i.e. G acts
simply transitively on each fiber. Then, let LPG denote the group of automorphisms of P that cover idS1 .63

If P = S1 ×G, then there’s a very natural identification with “the” loop group: such an automorphism ϕ is a
loop through the action of G.

If G is disconnected, we may get different groups, but if G is connected, then every principal G-bundle is
trivializable, and so every one of the loop groups is, after an isomorphism, the loop group. So we can think of
these as twisted a little bit.

As an intuition if G is a finite group, let’s look at all LPG simultaneously: let G be the groupoid whose
objects are principal G-bundles P → S1 and whose morphisms are automorphisms ϕ : P → P ′ such that the
following diagram commutes.

P
ϕ //

��

P ′

��
S1

G contains all of the loop groups at once: the maps in it from a P to itself are the group LPG. So it is a
pretty huge groupoid; let’s make it smaller.
Proposition 27.2. G is equivalent to G//G, where G acts on itself by conjugation.
Proof sketch. We’ll construct a groupoid G∗ which is more evidently equivalent to both of these: fix a
basepoint s0 ∈ S1, and let the objects of a groupoid G̃∗ be based principal G-bundles: P → S1 such that
p0 ∈ Ps0 . Then, we require its morphisms to send basepoints to basepoints. However, all automorphisms of a
given object are the identity (since each bundle is a covering space of the circle, and therefore maps lift and
determine everything). That is, G̃∗ is rigid.

Regarding G as a groupoid, there’s an equivalence G̃∗ → G, sending (P, p0) to its holonomy h: with an
orientation of S1, the loop on S1 starting at s0 lifts to some perhaps nontrivial path in the fiber above

63An automorphism of a principal G-bundle is a map ϕ : P → P commuting with the right action of G: ϕ(p · g) = ϕ(p) · g
for p ∈ P and g ∈ G. Hence, ϕ preserves fibers, so it restricts to an automorphism of the base, and here we want this to be the
identity.
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s0. Since G acts simply transitively, the holonomy is defined to be the h ∈ G whose action sends the first
endpoint of this path to the second.

Now, g ∈ G acts on G̃∗ by p0 7→ p0 · g, so let G∗ = G̃∗//G (again, G acts by conjugation). Then, you can
prove that G∗ is equivalent. �

In our groupoid G, the maps of the trivial bundle are just the elements of G, and over an x ∈ G, the
self-maps are the things which conjugate x back to itself, i.e. the centralizer Zx ⊂ G.

We want to study representations of these twisted loop groups LPG, and relate this to the K-theory of
G//G ' KG(G). There will be a twist here, though it’s a little tautological when G is finite: here, LPG ∼= Zx
for an x ∈ G, so if E is a Zx-representation.

We might have other elements in our conjugacy class; if x′ is in the same conjugacy class as x, then we get
a noncanonical Zx′ -representation: stick a copy of E over x′, and then choose an arrow x→ x′ that will act
as the identity on E. Then, we know what any other arrow does: map back by the inverse of our special
arrow and you get an automorphism, and that tells us what the other arrow does.

This means that we get a vector bundle over this groupoid G//G, supported on the conjugacy class [x] of
x. Let me repeat: a representation of the centralizer is, almost visibly, a vector bundle, and therefore an
element of K-theory!

This is much clearer when G is finite, but we’ll develop it when G is infinite as well; we have to introduce a
notion of twisting the things we want to work with: Fredholm operators, representations, vector bundles, etc.

Let G act linearly on a vector space E. One way to twist this action is to take a central extension of a
projective representation, or a central extension of the action of G. This is a short exact sequence

1 // T // Gτ // G // 1
in which Im(T) ⊆ Z(Gτ ). Specifically, we will study representation of Gτ on E such that the action of T ⊂ Gτ
is scalar multiplication (which more or less just restricts our choice of central extension). If T acts trivially,
the representation factors through G, and we get the original representation again.

Since we’re going to be looking at unitary complex representations, we chose T as the kernel; if we were
looking at real representations, we would choose {±1}. For example, if G is the Klein group, this implies
there’s a nonabelian central extension Gτ that fits into the following sequence.

1 // {±1} // Gτ // Z/2× Z/2 // 1.

To be precise, if x and y are my generators of Z/2× Z/2, then if x and y are their preimages in Gτ , then
x2 = y2 = 1 and xyx−1y−1 = 1.

Let’s write down the representations of this group; since G is finite and therefore compact Lie, these repre-
sentations are unitary. We know that if {±1} acts trivially, then we have four 1-dimensional representations
given by choosing each of x and y to act trivially or as −1. Then, by the Peter-Weyl theorem, we need one
more two-dimensional representation, which will be the one where {±1} acts by, well, ±1.

This is the simplest example of a Heisenberg group, and is an interesting way to see how the representations
of Z/2× Z/2 got twisted.

There’s a geometric reason this is called a projective representation: we can think of E as a vector bundle
over G as a groupoid (with only one object, so only the one fiber), but this factors through the projective
space PE→ G.

So more generally, we want to replace each arrow in a groupoid G with a whole “tube” of arrows, permuted
simply transitively by the circle group, and with a group law. In other words, we’re making a central extension
of a groupoid by pt//T → G̃ → G. Looking only at the automorphism group over a point, this creates a
central extension in the sense from before, and therefore we’ve produced a whole bunch of central extensions
simultaneously. In this way, we have twisted a vector bundle over a groupoid!64

Example 27.3. Let X = S3. This only has identity arrows, but the key is that we can work with an
equivalent groupoid: let U+ = S3 \ {−} and U− = S3 \ {+} (so each misses one of the north or south poles).
So we get a groupoid G = U+ q U−/ ∼, which looks like the same objects, but now we have an arrow from
a point on U+ to its corresponding point on U−, and vice versa. Hence, a central extension is a principal
T-bundle over U+ ∩ U− ' S2. And we know that these are classified by Z.

64There are formal definitions to be found here, but for reasons of time we’re not going to be entirely precise, in order to get
down more of the story.
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A nice problem to work on is that it’s not possible to find twisted vector bundles in this case: a vector
bundle on U+ and one on U− with an isomorphism at every point of the intersection. You can work out why
this isn’t possible. There are nontrivial elements of K-theory, but you have to use an infinite-dimensional
model, e.g. the Fredholm model.

There are other kinds of twistings you can do, some of which are easier; for example, if E has a Z/2-grading,
then we usually require G to preserve this grading, but we can instead allow some elements to reverse the
grading.

Returning to our loop group LG, there are some uninteresting representations. For example, fix s1, . . . , sr ∈
S1 and above each one fix G-representations E1, . . . ,Er. Then, we can define a representation LG →
Aut(E1 ⊗ · · ·Er) by γ 7→ ρ1(γ(s1))⊗ · · · ⊗ ρr(γ(sr)). The picture looks like a cactus: there are finitely many
“spines” Ei over their points si, and for an action of a loop, we just look at what it does at each spine.

The representations we want to keep will have a bigger symmetry. The diffeomorphism group of S1 acts
on LG by automorphisms: if ϕ ∈ Diff(S1) and γ ∈ LG, then (ϕ · γ)(s) = γ(ϕ−1(s)). Furthermore, the map
Diff(S1) → Aut(LG) is a homomorphism, so we can form the semidirect product LG o Diff(S1). Inside
this is a group L̂G = LG o T, where T acts as rotation. Since Diff(S1) deformation retracts onto T (the
rotations), then topologically this is the same story. L̂G is the subgroup of automorphisms that cover a rigid
rotation of the base. They also fit into a short exact sequence

1 // LG // L̂G = LGo T // T // 1.
This is sometimes called a central coextension by T (since it’s in the cokernel, rather than the kernel). We
want central extensions, but having this symmetry will be nice as well. To be precise, we will study unitary
representations of L̂G. But since this is a semidirect product, T is a subgroup (though not a normal one),
and really sit inside L̂G. Thus, if E is an L̂G-representation, it restricts to a representation of T (acting as
rotations), which may not be irreducible. Nonetheless, we can split it up into irreducible representations,
which are labeled by the characters of T, which are the integers, so restricted to T,

E =
⊕
n∈Z

En,

and the algebraic direct sum maps back into E. In general, its image is dense, but may not be everything.
For example, if E = L2(S1), with S1 acting by rotation, then we get

E = L2(S1)←−
⊕
n∈Z

C · eins.

You can’t hit every element of L2(S1) by a finite sum, so the image isn’t everything, but you can with an
infinite sum (from Fourier series).

The space En is sometimes called the energy n subspace. We want to study representations with positive
energy.

Definition 27.4. A L̂G-representation E has positive energy if there’s an n0 ∈ Z such that En = 0 when
n < n0.

Really, it’s “bounded below,” rather than “positive,” but that’s okay.
There are different motivations for why you might want this definition: these arise in different places in

physics, such as quantum mechanics.
Example 27.5. For the rest of the lecture, we’ll study an example in detail: let G = T be a torus. In a
sense, we only need to understand finite groups, tori, and the simple groups, and we’ve looked at finite groups,
so on to the tori.

The first observation is that LT is abelian (since multiplication was defined pointwise), so any irreducible
complex representation is one-dimensional.

Proposition 27.6. Any irreducible representation of LT which extends to a representation of L̂T = LT oT
is trivial.
Proof. Let t denote the Lie algebra of T and z = eis. If ξ ∈ tC, then znξ is the loop (s 7→ einsξ) ∈ LtC. (If
this is strange, try it with T = S1). Then, the direct sum of all zntC is dense in LtC, no matter which loops
we pick: continuous, smooth, L2, some kind of Sobolev, etc.
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If d generates T, then we have a short exact sequence

0 // Lt // L̂t // iR //
ϕ
oo 0,

where R also acts as rotation and ϕ sends i 7→ d. L̂t isn’t abelian, unlike Lt, and its derivation is
[d, znξ] = inznξ. Thus, if e ∈ En and d · e = ike,

d · (znξ · e) = znξ(de) + [d, znξ]e
= znξ(ike) + inznξ · e
= i(k + n)(znξ + e),

so it takes loops of energy k to energy n+ k: znξ : Ek → En+k. Thus nothing really fixes the energy spaces,
so we don’t get anything terribly interesting (well, they would be one-dimensional anyways). �

Next idea: let’s try to construct a positive energy representation of LT . We’ll do this through the Lie
algebra LtC, and through the dense algebraic direct sum of the zntC for n ∈ Z.

Since we want the representation to be positive, suppose e0 ∈ E0 and E−n = 0 for n > 0. Thus, z−nξ ·e0 = 0
for all n > 0, but what about zξ · e0? We get

z−1η · (zξ · e0) = zξ · (z−1η · e0) + [z−1η, zξ] · e0 = 0, (27.7)
because Lt is an abelian Lie algebra and terms in negative energy vanish.

If E is unitary, then Lt maps by our representation into the skew-adjoint endomorphsims of E; the fixed
points of conjugation map to the skew-adjoint operators. In particular, if ξ ∈ tC, then if ∗ denotes adjoint,
then (znξ)∗ = −z−nξ (where we’re looking at the automorphism given by the representation).

This spells doom: 〈zξ · e0, zξ · e0〉 = −〈z−1ξ · zξ · e0, e0〉 = e0 by (27.7). So we started with a vacuum
vector e0 and even at the first energy level we’re at zero; you can show this for any energy. So we’ll need to
take a central extension of LT . But if we have a central extension

1 // T // LT τ // LT // 1
as Lie groups, then we also get a central extension of Lie algebras.

0 // iR // Ltτ // Lt // 0.
We can also complexify, and write down a section s : LtC → LtτC as vector spaces by defining [s(znξ), s(zmη)]LtτC ,
but this must pass to 0 in LtC (because LtC is an abelian Lie algebra), so it lives in the kernel iC. Thus, this
defines a cocycle, and it turns out there’s a unique one satisfying skew-symmetry and the Jacobi identity,
which is

[s(znξ), s(zmη)]LtτC = inδn+m=0〈ξ, η〉,
where the pairing on the right-hand side is symmetric.

In general, if A = LT , so that A is abelian, then an extension
1 // T // Aτ // A // 1

defines a map s : A×A→ T by lifting a1, a2 7→ ã1ã2ã
−1
1 ã−1

2 , their commutator lifted into Aτ ; but this passes
to 0 in A, so it comes from the kernel T. Thus, s is a map A 7→ Hom(A,T) = A∨, the Pontrjagin dual group;
if this map is an isomorphism, Aτ might be called a (generalized) Heisenberg group, or a Heisenberg extension.

We saw already what this does if A = Z/2 × Z/2; in general, we get a bihomomorphism (i.e. it’s a
homomorphism separately in each argument).

The lesson is: if you go to loop groups, you necessarily have to take central extensions to get anywhere
interesting.
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Lecture 28.

Representations of Loop Groups and Central Extensions: 12/3/15

“[The Heisenberg group] is named after the physicist Werner Heisenberg, not the Heisenberg
of Breaking Bad.”

Recall that we were talking about loop groups and central extensions: if G is a compact Lie group, we
consider its free loop group LG, the maps S1 → G. If G = T is a torus, then A = LT is abelian.

We mentioned last time that it’s nice to have projective representations, which led us to the question of
central extensions.

Definition 28.1. Let A be an abelian Lie group such that π0(A) and π1(A) are finitely generated. Then, a
central extension

1 // T // Aτ // A // 1 (28.2)
is called a generalized Heisenberg group.

For a generalized Heisenberg group, there is a commutation map s : A × A → T: for any a, b ∈ A, the
commutator of their preimages ãb̃ã−1b̃−1 passes to 0 in A, and therefore comes from some element s(a, b) ∈ T,
by exactness. s is a bihomomorphism which is alternating, and s(a, a) = 1, which is quickly verifiable.

Let Z = {a ∈ A : s(a, b) = 1 for all b ∈ A}, which is a kernel for s; then, the center Zτ ⊂ Aτ is an
extension

1 // T // Zτ // Z // 1. (28.3)
A generalized Heisenberg group is said to be nondegenerate if Z = 0, so that Zτ = T. In this case, s is a
self-Pontryagin duality on A; in general, a 7→ s(a, –) is a map A→ A∨, so to have nondegeneracy we need A
to be self-dual.

Remark 28.4. It turns out that s determines Aτ up to isomorphism, and any s can occur. The construction
is to choose any ψ : A×A→ T that’s bimultiplicative (i.e. bilinear), and set s(a, b) = ψ(a, b)/ψ(b, a); then,
set Aτ = A× T as a manifold, with multiplication

(a, λ)(b, µ) = (a+ b, λµψ(a, b)).

You can check that this defines a group, and that this group fits into (28.2).65

Example 28.5.
(1) Last time, we saw what this was for A = Z/2× Z/2; you could replace 2 with your favorite n if you

want.
In this case, s((a1, b1), (a2, b2)) = (−1)a1b2−a2b1 .66 In this case, ψ(a1, b1), (a2, b2)) = (−1)a1b2 .

This cocycle tells is how two elements commute (or don’t) in the central extension.
You should think of this as a kind of symplectic pairing, and even over Z/2× Z/2, it could be the

symplectic plane over F2.
(2) Making the symplecticity more explicit, let A = C and s(ξ, η) = e2πiω(ξ,η), where ω(ξ, η) = c(x1y2 −
−x2y1) is the symplectic form. Thus, ψ(ξ, η) = e2πicx1y2 , and we get the standard Heisenberg group.

When we look at representations, we’re going to require that T ⊂ Aτ acts by scalar multiplication, in
particular in the following theorem.

Theorem 28.6 (Stone-von Neumann-Shale, [38]).
(1) If A is finite-dimensional, then:

(a) if Aτ is nondegenerate, then there is a unique such irreducible unitary representation, and
(b) in general, the irreducible unitary representations are classified by splittings of (28.3).

(2) The same is true for an infinite-dimensional A if we restrict to positive-energy representations with
respect to a polarization.

65A good question to ask is when two different bimultiplicative functions give the same s (and therefore the same extension).
66In general for Z/n× Z/n, replace −1 with an nth root of unity.
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To actually construct such a representation, we wander into quantum mechanics. We have to choose a
polarization of A, so we need a maximal subgroup on which the commutator vanishes (in the symplectic
sense, a maximal isotropic subgroup).

Looking back at A = Z/2×Z/2, first, we let E be the functions Z/2× {0} → C; then, the first component
acts through the pullback by translation, and {0} × Z/2 acts by multiplication using s. In particular,

(1, 0) 7−→
(

0 1
1 0

)
and (0, 1) 7−→

(
1
−1

)
.

You can check that the commutator maps to −1.
The case for A = C = R2 (as groups) is similar, but different. Let E = L2(R), and consider C = Rx × Ry.

Then, an x0 ∈ Rx sends f(•) 7→ f(• − x0): translation is a nice, unitary operator.67 Then, a y0 ∈ Ry acts by
sending f to x 7→ e2πixy0f(x), and you can check that this satisfies the commutator identity.

This is the geometric picture; for an algebraic picture, choose a dense subset of algebraic functions in L2,
e.g. polynomials, and then complete. This is another common picture of this representation.

If we have loops on a connected Lie group, then we can look at its maximal torus, and therefore these
Heisenberg groups and their representations are an important way to understand loop groups.

The first thing to notice is that if T is a torus, there’s a quite natural decomposition LT ' T ×Π× U ,
where

• Π = Hom(T, T ) ⊂ t, so that T = t/Π. We also had Λ = Hom(T,T) ⊂ t∗, which we’ll use again.
• U = exp(V ), where

V =
{
β : S1 → t :

∫
S1
β(s)|ds| = 0

}
.

Let’s unwind this: if γ : S1 → T , then in the decomposition LT ' T ×Π× U , T represents the point loops
(that don’t move anywhere), and Π contains the one-parameter subgroups, since a vector π ∈ Π determines
a line segment from 0 to π, and exponentiating this gives us exp(π) = e, so we get a loop centered at the
identity. Hence, if we choose a bi-invariant metric on T (since it’s abelian, this is the same as a left-invariant
metric), T ×Π is the group of closed geodesics inside LT . These account for everything in π1(T ), meaning
that all loops in U are homotopically trivial. There’s some normalization involved in this, which was the
condition on the inverse.

The idea is that a loop γ has a homotopy class, which determines its class in Π, and after subtracting, it’s
in the image of the exponential. The preimage might not have integral zero, which determines the point loop
part in T , and then the remainder has integral zero.
V ⊂ Lt, and inside this is the dense subset of polynomial loops:

⊕
n∈Z z

ntC, where zn : s 7→ eins. Sitting
inside V and inside this is the dense subset of all of these except n = 0, so it splits into n > 0 (positive
energy) and n < 0 (negative energy). This is our polarization.

We want to look at a central extensions; in this case, they have the form (T ×Π)τ ×T U
τ (that is, we’re

taking the fiber product). For general G, it happens, a nice class of central extensions of LG comes from a
level in H4(BG;Z). This is the beginning of a beautiful story in low-dimensional geometry, though you have
to start with a representative element, rather than an equivalence class.

In our case, H4(BT ;Z) ∼= Sym2 Λ, where Λ is our character lattice and Sym2 Λ = Λ⊗Λ/(λ1⊗λ2−λ2⊗λ1).68

This is actually quite easy to prove with the Serre spectral sequence for T → ∗ → BT (the total space is
contractible): E0,0

2 = Z, and E0,1
2 = Λ, but since the total space is contractible, then there can’t be anything

in the E∞ page, so d2 must be an isomorphism, so E2,0
2 = Λ. To make life a little less confusing, let Λ1

denote the copy of Λ in position E0,1
2 , and Λ2 denote the copy in E2,0

2 . Then, E2,1
2 = Λ1 ⊗ Λ2, which will hit

something in degree (4, 0) by d2, and is hit by something in the (0, 2)-page, which is Λ2
1. Then, d2 acts by

d2(λ1 ^ λ2) = d2λ1 ^ λ2 − λ1 ^ d2λ2, so its image in E2,1
2 = Λ⊗ Λ is the ideal I = (λ2 ⊗ λ1 − λ1 ⊗ λ2),

and therefore, since it must die by the E∞-page, exactness of d2 forces the E4,0
2 term, which is H4(BG;Z),

to be (Λ⊗ Λ)/I = Sym2 Λ. See Figure 7 on the next page for a picture of this spectral sequence.

67Sometimes, quantum mechanics people prefer to write everything in terms of Lie algebras; the resulting operators aren’t
necessarily unitary, or even bounded! The formulas are nicer for the groups.

68The whole cohomology ring is H∗(BT ;Z) = Sym• Λ, the symmetric algebra.
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2 Λ2
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1 Λ1 Λ1 ⊗ Λ2

0 Z Λ2 H4(BG;Z)

0 1 2 3 4

d2

∼

d2

d2

Figure 7. Part of the E2-page for the Serre spectral sequence of the fibration T → ∗ → BT .
Since this is a first-quadrant spectral sequence, d2 : Λ1 → Λ2 is an isomorphism, and the
sequence 0→ Λ2

1 → Λ1 ⊗ Λ2 → H4(BG;Z)→ 0 is short exact. Thus (as discussed in more
detail in the text), we can show that H4(BG;Z) ∼= Sym2 Λ.

An element of Sym2 Λ gives a quadratic function q : Π → Z by evaluation: if π ∈ Π, q(π) is evaluation
on π ⊗ π. Equivalently, this can be defined by an even symmetric form k : Π×Π→ Z, and this gives us a
homomorphism κ : Π→ Λ, which we will assume is injective.

Returning to central extensions, this gives us a κR : t× t→ R which is nondegenerate. We can build a
symplectic form ω : V × V → R by defining ω(znξ, zmη) = δn+m=0mκR(ξ, η), or

ω(β1, β2) =
∫
S1
κR(β1(s), β′2(s)) ds,

the dual way of writing it. Thus, we have a symplectic form, albeit on this infinite-dimensional space.
This allows us to build Uτ , which is nondegenerate, so there is a unique positive-energy irreducible unitary
representation, so everything boils down to the geometric story of this representation.

Now, we construct (T ×Π)τ . We’ll use ψ : (T ×Π)× (T ×Π)→ T defined by (t1, π1), (t2, π2) 7→ κ(π1)t2,
which tells you how to build the central extension.

For example, if T = T and κ : Z→ Z is multiplication by 6, then T×Π = T× Z, a circle at each integer.
Unfortunately, figuring out which part is trivialized and what the commutator does is a little tricky, so maybe
this wasn’t the best picture.

Now, suppose E is an irreducible, unitary representation of (T ×Π)τ . Let’s restrict to

1 // T // T τ // T• // 1,
with T × Π ⊂ T•, and there’s a section, so we can regard this as a subgroup of T τ too. Then, we can
decompose E into the character spaces Eλ for each λ ∈ Λ, with a π ∈ Π acting by Eλ → Eλ+k(π). Thus, we
have a vector bundle over Λ; an irreducible representation will be generated be an Eλ over one λ ∈ Λ, and
shifted by all k(π), and also must have Eλ = C. (For example, if κ is multiplication by 6, then one irreducible
representation is C over 0 mod 6 and 0 elsewhere).

Thus, in general, the irreducible representations are classified by Λ/κ(Π). How does that fit with
what we’ve done before? We have κ : Π ↪→ Λ inducing an isomorphism κR : t → t∗, and therefore
κR/Z : t/Π = T → T ∗ = t∗/Λ. This is in fact a covering map (e.g. for multiplication by 6, we get the
six-fold cover S1 → S1), so κ−1

R/Z(1) = F is a finite subgroup of T , and in fact the center from (28.3) is
Z = F × {0} ⊂ T ×Π.

This restricts from a Pontryagin duality pairing T×Λ→ T to a Pontryagin duality pairing F×Λ/κ(Π)→ T,
so if C = t×Π Λ, then we have projections

C

p1

��

p2

��
T Λ/κ(Π)

σ

XX

and the section σ : λ 7→ (κ−1
R (λ), λ), and the image p1 ◦ σ is just F again, a finite group, and C turns out to

be a finite (same cardinality) collection of affine spaces. The points of F classify these representations of our
loop group.

This is beautiful, yes, but what does it have to do with K-theory? I’m glad you asked.
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Theorem 28.7. There is a Dirac family isomorphism Φ : Rτ−σ(LG) → Kτ+dimG
G (G), where Rτ−σ(LG)

is the free abelian group generated by irreducible unitary representations of positive energy of the central
extension LGτ−σ and τ is a twisting of the groupoid G//G.

We haven’t talked about what happens in the nonabelian case, but here we have a Weyl group, and it acts
on anything you can think of, which tells us more of this story, and where σ, the adjoint shift comes from.

Since T is abelian, then if G = T , T//T acts trivially on T , so in the groupoid, the only arrows are
automorphsims. A vector bundle over this is a vector space over each x ∈ T , but we need to twist this
action, giving a central extension T̂x for the fiber Tx for every x ∈ T . Thus, we get a family of extensions
parameterized by T ; each one is trivial (split), but there’s no continuous splitting. τ tells us the nontriviality
of this family of extensions.

This actually leads to some computations with K-theory of T : you can shift the story up to C, where
it’s the K-theory with compact supports on each of its affine planes. Thus, we get one generator for each
element of F by the Thom isomorphism.

If A is the space of connections on the trivial G-bundle P = S1 × G, then LG acts on A by gauge
transformations, and in fact there’s an equivalence of groupoids A//LG→ G//G, and this is a way to get the
infinite-dimensional Dirac operators, analogous to the matrix-based way it happens in the finite-dimensional
case.
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