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Topological K -theory is a key tool in topology, differential geometry, and index theory,

yet this is the first contemporary introduction for graduate students new to the subject.

No background in algebraic topology is assumed; the reader need only have taken the

standard first courses in real analysis, abstract algebra, and point-set topology.

The book begins with a detailed discussion of vector bundles and related algebraic

notions, followed by the definition of K -theory and proofs of the most important

theorems in the subject, such as the Bott periodicity theorem and the Thom

isomorphism theorem. The multiplicative structure of K -theory and the Adams

operations are also discussed and the final chapter details the construction and

computation of characteristic classes.

With every important aspect of the topic covered, and exercises at the end of each

chapter, this is the definitive book for a first course in topological K -theory.
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Preface

Topological K-theory first appeared in a 1961 paper by Atiyah and

Hirzebruch; their paper adapted the work of Grothendieck on algebraic

varieties to a topological setting. Since that time, topological K-theory

(which we will henceforth simply call K-theory) has become a power-

ful and indespensible tool in topology, differential geometry, and index

theory. The goal of this book is to provide a self-contained introduction

to the subject.

This book is primarily aimed at beginning graduate students, but

also for working mathematicians who know little or nothing about the

subject and would like to learn something about it. The material in this

book is suitable for a one semester course on K-theory; for this reason,

I have included exercises at the end of each chapter. I have tried to keep

the prerequisites for reading this book to a minimum; I will assume that

the reader knows the following:

• Linear Algebra: Vector spaces, bases, linear transformations, simi-

larity, trace, determinant.

• Abstract Algebra: Groups, rings, homomorphisms and isomorph-

isms, quotients, products.

• Topology: Metric spaces, completeness, compactness and connect-

edness, local compactness, continuous functions, quotient topology, sub-

space topology, partitions of unity.

To appreciate many of the motivating ideas and examples in K-theory,

it is helpful, but not essential, for the reader to know the rudiments of

differential topology, such as smooth manifolds, tangent bundles, differ-

ential forms, and de Rham cohomology. In Chapter 4, the theory of

characteristic classes is developed in terms of differential forms and de
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Rham cohomology; for readers not familiar with these topics, I give a

quick introduction at the beginning of that chapter. I do not assume that

the reader has any familiarity with homological algebra; the necessary

ideas from this subject are developed at the end of Chapter 1.

To keep this book short and as easy to read as possible (especially for

readers early in their mathematical careers), I have kept the scope of

this book very limited. Only complex K-theory is discussed, and I do

not say anything about equivariant K-theory. I hope the reader of this

book will be inspired to learn about other versions of K-theory; see the

bibliography for suggestions for further reading.

It is perhaps helpful to say a little bit about the philosophy of this

book, and how this book differs from other books on K-theory. The

fundamental objects of study in K-theory are vector bundles over topo-

logical spaces (in the case of K0) and automorphisms of vector bundles

(in the case of K1). These concepts are discussed at great length in

this book, but most of the proofs are formulated in terms of the equiva-

lent notions of idempotents and invertible matrices over Banach algebras

of continuous complex-valued functions. This more algebraic approach

to K-theory makes the presentation “cleaner”(in my opinion), and also

allows readers to see how K-theory can be extended to matrices over gen-

eral Banach algebras. Because commutativity of the Banach algebras is

not necessary to develop K-theory, this generalization falls into an area

of mathematics that is often referred to as noncommutative topology.

On the other hand, there are important aspects of K-theory, such as the

existence of operations and multiplicative structures, that do not carry

over to the noncommutative setting, and so we will restrict our attention

to the K-theory of topological spaces.

I thank my colleagues, friends, and family for their encouragement

while I was writing this book, and I especially thank Scott Nollet and

Greg Friedman for reading portions of the manuscript and giving me

many helpful and constructive suggestions.
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