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Introduction

What follows started as notes for the Freshman Honors Calculus course at the University
of Notre Dame. The word “calculus” is a misnomer since this course was intended to be
an introduction to real analysis or, if you like, “calculus with proofs”.

For most students this class is the first encounter with mathematical rigor and it can
be a bit disconcerting. In my view the best way to overcome this is to confront rigor head
on and adopt it as standard operating procedure early on. This makes for a bumpy early
going, but with a rewarding payoff.

A proof is an argument that uses the basic rules of Aristotelian logic and relies on facts
everyone agrees to be true. The course is based on these basic rules of the mathematical
discourse. It starts from a meagre collection of obvious facts (postulates) and ends up
constructing the main contours of the impressive edifice called real analysis.

No prior knowledge of calculus is assumed, but being comfortable performing algebraic
manipulations is something that will make this journey more rewarding.

In writing these notes I have benefitted immensely from the students who took the
Honors Calc Course during the academic years 2013-2016. Their questions and reactions
in class, and their expert editing have improved the original product. I asked a lot of
them and I got a lot in return. I want to thank them for their hard work, curiosity and
enthusiasm which made my job so much more enjoyable.

The first 9 chapters correspond to subjects covered in the Freshman course. I rarely
was able to complete the brief Chapter 10 on complex numbers. Chapters 11 and above
deal with several variables calculus topics, corresponding to the sophomore Honors Cal-
culus offered at the University of Notre Dame.

This is probably not the final form of the notes, but close to final. I will probably
adjust them here and there, taking into account the feedback from future students.
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The Greek Alphabet iii

The Greek Alphabet

A α Alpha
B β Beta
Γ γ Gamma
∆ δ Delta
E ε Epsilon
Z ζ Zeta
H η Eta
Θ θ Theta
I ι Iota
K κ Kappa
Λ λ Lambda
M µ Mu

N ν Nu
Ξ ξ Xi
O o Omicron
Π π Pi
P ρ Rho
Σ σ Sigma
T τ Tau
Υ υ Upsilon
Φ φ Phi
X χ Chi
Ψ ψ Psi
Ω ω Omega
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Chapter 1

The basics of
mathematical
reasoning

1.1. Statements and predicates

Mathematics deals in statements. These are sentences that have a definite truth value.
What does this mean? The classical text [21] does a marvelous job explaining this point
of view. I will not even attempt a rigorous or exhaustive explanation. Instead, I will try
to suggest it to you through examples.

Example 1.1.1. (a) Consider the following sentence: “if you walk in the rain without an
umbrella, you will get wet”. This is a true sentence and we say that its truth value is
TRUE or T . This is an example of a statement.

(b) Consider the sentence: “the number x is bigger than the number y” or, in math-
ematical notation, x ą y. This sentence could be TRUE or FALSE (F ), depending on
the choice of x and y. This is not a statement because it does not have a definitive truth
value. It is a type of sentence called predicate that is encountered often in mathematics.

A predicate or formula is a sentence that depends on some parameters (or variables).
In the above example the parameters were x and y. For some choices of parameters (or
variables) it becomes a TRUE statement, while for other values it could be FALSE.

When expressed in everyday language, statements and predicates must contain a verb.

Often a predicate comes in the guise of a property. For example the property “the
integer n is even” stands for the predicate “the integer n is twice an integer m”.

(c) Consider the following sentence: “ This sentence is false.” Is this sentence true?
Clearly it cannot be true because if it were, then we would conclude that the sentence is

1



2 1. The basics of mathematical reasoning

false. Thus the sentence is false so the opposite must be true, i.e., the sentence is true.
Something is obviously amiss. This type of sentence is not a statement because it does
not have a truth value, and it is also not a predicate. It is a paradox. Paradoxes are to be
avoided in mathematics. [\

✍ Notation. It is time to explain the usage of the notation :“. For example an expression
such as

x :“ bla-bla-bla

reads “x is defined to be bla-bla-bla”, or “x is short-hand for bla-bla-bla”.

The manipulations of statements and predicates are governed by the rules of Aris-
totelian logic. This and the following section will provide you with a very sparse introduc-
tion to logic. For more details and examples I refer to [31].

All the predicates used in mathematics are obtained from simpler ones called atomic
predicates using the following logical operators.

‚ NEGATION ␣ (read as not).

‚ CONJUNCTION ^ (read as and).

‚ DISJUNCTION _ (read as or).

‚ IMPLICATION ñ (read as implies).

To describe the effect of these operations we need to look Table 1.1 describing the
truth tables of these operations.

p T F

␣p F T

p q p^ q

T T T

T F F

F T F

F F F

p q p_ q

T T T

T F T

F T T

F F F

p q pñ q

T T T

T F F

F T T

F F T
Table 1.1. The truth tables of ␣,^,_,ñ

Here is how one reads Table 1.1. When p is true (T ), then ␣p must be false (F ), and
when p is false, then ␣p is true. To put it in simpler terms

␣T “ F, ␣F “ T.

The truth table for ^ can be presented in the simplified form

T ^ T “ T, T ^ F “ F ^ T “ F ^ F “ F.

Observe that the predicate p_q is true when at least one of the predicates p and q is true.
It is NOT an exclusive OR. Another way of saying this is

T _ T “ T _ F “ F _ T “ T, F _ F “ F.
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The equivalence ô is the operation

pô q :“ ppñ qq ^ pq ñ pq.

Its truth table is described in Table 1.2

p q pô q

T T T

T F F

F T F

F F T
Table 1.2. The truth table of ô

Remark 1.1.2. (a) In everyday language, when we say that p implies q we mean that
the statement pñ q is true. This signifies that either both p and q are true, or that p is
false. Often we express this in the conditional form if p, then q.

If the implication pñ q is true, then we say that q is a necessary condition for p and
that p is a sufficient condition for q. In everyday language the implications are the if
bla-bla, then bla-bla statements.

The truth table forñ hides certain subtleties best illustrated by the following example.
Consider the statement

s :“ if an elephant can fly, then it can also drive a car.

This statement is composed of two simpler statements

p :“ an elephant can fly, q :“ an elephant can drive a car.

We note that the statement s coincides with the implication p ñ q. Obviously, both
statements p and q are false, but according to the truth table for ñ, the implication
p ñ q is true, and thus s is true as well. This conclusion is rather unsettling. It may be
easier to accept it if we rephrase s as follows:

if you can show me a flying elephant, then I can show you that it can
also drive a car .

(b) In everyday language when we say that p is equivalent to q we mean that the statement
p ô q is true. This signifies that either both p and q are true, or both are false. If p is
equivalent to q, we say that q is a necessary and sufficient condition for p and that p is a
necessary and sufficient condition for q.

We often express this in one of the following forms: p if and only if q. The mathe-
maticians’ abbreviation for the oft encountered construct “if and only if ” is iff. [\

Example 1.1.3. Consider the following predicate.

s :“ if you do not clean your room, then you will not go to the movies.
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Figure 1.1. The elusive flying elephant.

This is composed of two simpler predicates

‚ p :“ you do not clean the room.

‚ q :“ you do not go to the movies.

Observe that s is the compound predicate p ñ q. For s to be true, one of the following
two mutually exclusive situations must happen:

‚ either you do not clean your room AND you do not go to the movies A

‚ or you clean the room.

Note that there is no implied guarantee that if you clean your room, then you go to
the movies. [\

Example 1.1.4. Consider the following true statement: mathematicians like to be precise.

First, let us phrase this in a less ambiguous way. The above statement can be equiva-
lently rephrased as: if you are a mathematician, then you are precise. To put it in symbolic
terms

you are a mathematician
looooooooooooooomooooooooooooooon

p

ñ you are precise
loooooooomoooooooon

q

.

Thus, to be a mathematician it is necessary to be precise and to be precise it suffices to
be a mathematician. However, to be precise it is not necessary to be a mathematician. [\

A tautology is a compound predicate which is true no matter what the truth values of
its atoms are.

Example 1.1.5. The predicate p_␣p is a tautology. In other words, in mathematics, a
statement is either true, or false. There is no in-between. [\

Two compound predicates P and Q are called equivalent, and we indicate this with
the notation PÐÑQ, if they have identical truth tables. In other words, P and Q are
equivalent if the compound predicate PðñQ is a tautology.
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Example 1.1.6. Let us observe that the compound predicate pñ q is equivalent to the
compound statement p␣pq _ q, i.e.

pñ q ÐÑ p␣pq _ q. (1.1.1)

Indeed if p is false then pñ q and ␣p are true, no matter what q. In particular p␣pq _ q
is also true, no matter what q. If p is true, then ␣p is false, and we deduce that p ñ q
and p␣pq _ q are either simultaneously true, or simultaneously false. [\

1.2. Quantifiers

Example 1.2.1. Consider the following property of a person x

x is at least 6ft tall.

This does not have a definite truth value because the truth value depends on the person
x. However the claims

C1 :“ there exists a person x that is at least 6ft tall,

and

C2 :“ any person x is at least 6ft tall

have definite truth values. The claim C1 is true, while the claim C2 is false. [\

Example 1.2.2. Consider the following property involving the numbers x, y

x ą y.

This does not have a definite truth value. However, we can modify it to obtain statements
that have definite truth values. Here are several possible modifications. (Below and in the
sequel the abbreviation s.t. stands for such that)

S1 :“ For any x, for any y, x ą y.

S2 :“ For any x, there exists y s.t. x ą y.

S3 :“ There exists y s.t. for any x, x ą y.

Observe that the statements S1 and S3 are false, while S2 is a true statement. Notice
a very important fact. The statement S3 is obtained from S2 by a seemingly innocuous
transformation: we changed the order of some words. However, in doing so, we have
dramatically altered the meaning of the statement. Let this be a warning! [\

The expressions for any, for all, there exists, for some appear very frequently in
mathematical communications and for this reason they were given a name, and special
abbreviations. These expressions are called quantifiers and they are abbreviated as follows.

@ :“ for any, for all,

D :“ there exists, there exist, for some.
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The symbol @ is also called the universal quantifier, while the symbol D is called the
existential quantifier. There is another quantifier encountered quite frequently namely

D! :“ there exists a unique.

The above examples illustrate the roles of the quantifiers: they are used to convert pred-
icates, which have no definite truth value, to statements which have definite truth value.
To achieve this, we need to attach a quantifier to each variable in the predicate. In Ex-
ample 1.2.2 we used a quantifier for the variable x and a quantifier for the variable y. We
cannot overemphasize the following fact.

☞ The meaning of a statement is sensitive to the order of the quantifiers
in that statement!

Example 1.2.3. Let us put to work the above simple principles in a concrete situation.
Consider the statement:

S :“ there is a person in this class such that, if he or she gets an A in the final, then
everyone will get an A in the final.

Is this a true statement or a false statement? There are two ways to decide this. The
fastest way is to think of the persons who get the lowest grade in the final. If those persons
get A’s, then, obviously, everybody else will get A’s.

We can use a more formal way of deciding the truth value of the above statement.
Consider the predicate P pxq :“the person x gets an A in the final. The quantified form
of S is then

Dx :
`

P pxq ñ @yP pyq
˘

.

As we know, an implication pñ q is equivalent to the disjunction ␣p_ q; see (1.1.1). We
can rewrite the above statement as

Dx :
`

␣P pxq _ @yP pyq
˘

.

In everyday language the above statement says that either there is a person who did not
get an A or everybody gets an A. This is a Duh! statement or, as mathematicians like to
call it, a tautology. [\

Let us discuss how to concretely describe the negation of a statement involving quan-
tifiers. Take for example the statements S1, S2, S3 in Example 1.2.2. Their opposites
are

␣S1 :“ There exists x, there exists y s.t. x ď y,

␣S2 :“ There exists x s.t. for any y: x ď y

,

␣S3 :“ For any y, there exists x s.t. x ď y.

Observe that all the opposites were obtained by using the following simple operations.

‚ Globally replacing the existential quantifier D with its opposite @.
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‚ Globally replace the universal quantifier @ with its opposite, D.

‚ Replace the predicate x ą y with its opposite, x ď y.

When dealing with more complex statements it is very useful to remember the above rules.
We summarize them below.

☞ The opposite of a statement that contains quantifiers is obtained by
replacing each quantifier with its opposite, and each predicate with its opposite.

Example 1.2.4. Consider the following portion of a famous Abraham Lincoln quote: you
can fool all of the people some of the time. There are two conceivable ways of phrasing
this rigorously.

1. For any person y there exists a moment of time t when y can be fooled by you at time
t.

2. There exists a moment of time t such that any person y there can be fooled by you at
time t.

We can now easily transform these into quantified statements.

1. S1 :“ @ person y, D moment t, s.t., y can be fooled by you at time t.

2. S2 :“ D moment t, s.t., @ person y, y can be fooled by you at time t.

Note that the two statements carry different meanings. Which do you think was meant
by Lincoln? Observe also

␣S1 :“ D person y s.t. @ moment t: y cannot be fooled by you at time t.

In plain English this reads: some people cannot be fooled at any time. [\

1.3. Sets

Now that we have learned a bit about the language of mathematics, let us mention a few
fundamental concepts that appear in all the mathematical discourses. The most important
concept is that of set.

Any attempt at a rigorous definition of the concept of set unavoidably leads to treach-
erous logical and philosophical marshes.1 A more productive approach is not to define
what a set is, but agree on a list of “uncontroversial” properties (or axioms) our intuition
tells us the sets ought to satisfy.2 Once these axioms are adopted, then the entire edifice
of mathematics should be built on them. I refer to [22] for a detailed description of this
point of view.

The axiomatic approach mentioned above is very labor intensive, and would send us
far astray. Our goal for now is a bit more modest. We will adopt a more elementary

1For more details on the possible traps; see Wikipedia’s article on set theory.
2See the above footnote.

http://en.wikipedia.org/wiki/Set_theory
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(or naive) approach relying on the intuition of a set X as a collection of objects, usually
referred to as the elements of X. In mathematics, a set is described by the “list” of its
elements enclosed by brackets. In this list, no two objects are identical. For example, the
set

twinter, spring, summer, fallu

is the set of seasons in a temperate region such as Indiana. However, the list

twinter, winter, springu

is not a set.

We will use the notation x P X (or X Q x) to indicate that the object x belongs to the
set X, i.e., the object x is an element of X. The notation x R X indicates that x is not
an element of X. Two sets A and B are considered identical if they consist of the same
elements, i.e., the following (quantified) statement is true

@x
`

x P Aðñx P B
˘

.

In words, an object belongs to A iff it also belongs to B. For example, we have the equality
of sets

twinter, spring, summer, fallu “ tspring, summer, fall, winteru.

There exists a distinguished set, called the empty set and denoted by H. Intuitively,
H is the set with no elements.

Remark 1.3.1. The nature of the elements of a set is not important in set theory. In
fact, the elements of a set can have varied natures. For example, we have the set

␣

1, H, apple
(

which consists of three elements: of the number 1, the empty set, and the word apple.
Another more subtle example is the set tHu which consists of the single element, the
empty set H. Let us observe that H ‰ tHu. [\

We say that a set A is a subset of B, and we write this A Ă B, if any element of A
is also an element of B. In other words, A Ă B signifies that the following statement is
true:

@x
`

x P Añ x P B
˘

.

A proper subset of B is a subset A Ă B such that A ‰ B. We will use the notation A Ĺ B
to indicate that A is a proper subset of B.

The union of two sets A,B is a new set denoted by AYB. More precisely,

x P AYB ðñ px P Aq _ px P Bq.

The intersection of two sets A,B is a new set denoted by AXB. More precisely,

x P AXB ðñ px P Aq ^ px P Bq.

The sets A and B are said to be disjoint if AXB “ H.
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More generally, if pAiqiPI is a collection of sets, then we can define their union
ď

iPI

Ai :“
␣

x; Di P I : x P Ai
(

,

and their intersection
č

iPI

Ai :“
␣

x; @i P I; x P Ai
(

.

The difference between a set A and a set B is a new set AzB defined by

x P AzB ðñ px P Aq ^ px R Bq.

If A is a subset of X, then we will use the alternative notation CXA when referring to the
difference XzA. The set CXA is called the complement of A in X. Observe that

CX
`

CXA
˘

“ A.

It is sometimes convenient to visualize sets using Venn diagrams. A Venn diagram iden-
tifies a set with a region in the plane.

A

A

B

X\A

B\AA\B

A   B

U

X

Figure 1.2. Venn diagrams.

Proposition 1.3.2 (De Morgan Laws). If A,B are subsets of a set X then

CXpAYBq “ pCXAq X pCXBq, CXpAXBq “ pCXAq Y pCXBq. [\

Given two sets A and B we can form a new set A ˆ B which consists of all ordered
pairs of objects pa, bq where a P A and b P B. The set A ˆ B is called the Cartesian
product of A and B.

Remark 1.3.3. As a curiosity, and to give you a sense of the intricacies of the axiomatic
set theory, let us point out that above the concept of ordered pair, while intuitively clear,
it is not rigorous. One rigorous definition of an ordered pair is due to Norbert Wiener who
defined the ordered pair pa, bq to be the set consisting of two elements that are themselves
sets: one element is the set ta,Hu and the other element is the set t tbu u, i.e.,

pa, bq :“
␣

ta,Hu, t tbu u
(

. [\
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Most of the time sets are defined by properties. For example, the interval r0, 1s consists
of the real numbers x satisfying the property

P pxq :“ px ě 0q ^ px ď 1q.

As we discussed in the previous section, a synonym for the term property is the term
predicate. Proving that an object satisfying a property P also satisfies a property Q is
tantamount to showing that the set of objects satisfying property P is contained in the
set of objects satisfying property Q.

Remark 1.3.4. To prove that two sets A and B are equal one has to prove two inclusions:
A Ă B and B Ă A. In other words one has to prove two facts:

‚ If x is in A, then x is also in B.

‚ If x is in B, then x is also in A.

[\

1.4. Functions

Suppose that we are given two sets X, Y . Intuitively, a function f from X to Y is a
“device” that feeds on elements of X. Once we feed this machine an element x P X it
spits out an element of Y denoted by fpxq. The elements of X are called inputs, and those
of Y , outputs. In Figure 1.3 we have depicted such a device. Each arrow starts at some
input and its head indicates the resulting output when we feed that input to the function
f .

X Y

Figure 1.3. A Venn diagram depiction of a function from X to Y .

The above definition may not sound too academic, but at least it gives an idea of what
a function is supposed to do. Mathematically, a function is described by listing its effect
on each and every one of the inputs x P X. The result is a list G which consists of pairs
px, yq P X ˆ Y , where the appearance of a pair px, yq in the list indicates the fact that
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when the device is fed the input x, the output will be y. Note that the list G is a subset
of X ˆ Y and has two properties.

‚ For any x P X there exists y P Y such that px, yq P G. Symbolically

@x P X Dy P Y : px, yq P G. (F1)

‚ For any x P X and any y1, y2 P Y , if px, y1q, px, y2q P G, then y1 “ y2. Symboli-
cally

@x P X, @y1, y2 P Y,
´

px, y1q P G^ px, y2q P G
¯

ñ py1 “ y2q. (F2)

Property F1 states that to any input there corresponds at least one output, while
property F2 states that each input has at most one output.

Definition 1.4.1. A function from X to Y is a subset of X ˆ Y satisfying the
conditions (F1) and (F2) above. [\

We can use any symbol to name functions. The notation f : X Ñ Y indicates that f

is a function from X to Y . Often we will use the alternate notation X
f
Ñ Y to indicate

that f is a function from X to Y . In mathematics there are many synonyms for the term
function. They are also called maps, mappings, operators, or transformations.

Given a function f : X Ñ Y we will refer to the set of inputs X as the domain of the
function. The set Y is called the codomain of f . The result of feeding f the input x P X
is denoted by fpxq. By definition fpxq P Y . We say that x is mapped to fpxq by f . The
set

Gf :“
␣

px, fpxqq; x P X
(

Ă X ˆ Y

lists the effect of f on each possible input x P X, and it is usually referred to as the graph
of f .

The range or image of a function f : X Ñ Y is the set of all outputs of f . More
precisely, it is the subset fpXq of F defined by

fpXq :“
␣

y P Y ; Dx P X : y “ fpxq
(

.

The range of f is also denoted by Rpfq. More generally, for any subset A Ă X we define

fpAq “
␣

y P Y ; Da P A; fpaq “ y
(

Ă Y. (1.4.1)

The set fpAq is called the image of A via f .

For a subset S Ă Y , we define the preimage of S via f to be the set of all inputs that
are mapped by f to an element in S. More precisely the preimage of S is the set

f´1pSq :“
␣

x P X; fpxq P S
(

Ă X. (1.4.2)

When S consists of a single point, S “ ty0u we use the simpler notation f´1py0q to denote
the preimage of ty0u via f . The set f

´1py0q is a subset of X called the fiber of f over y0.
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A function f : X Ñ Y is called surjective, or onto, if fpXq “ Y . Using the visual
description of a function given in Figure 1.3 we see that a function is onto if any element
in Y is hit by an arrow originating at some element x P X. Symbolically

f : X Ñ Y is surjectiveðñ @y P Y, Dx P X : y “ fpxq.

A function f : X Ñ Y is called injective, or one-to-one, if different inputs have different
outputs under f . More precisely

f : X Ñ Y is injectiveðñ @x1, x2 P X : x1 ‰ x2 ñ fpx1q ‰ fpx2q

ðñ @x1, x2 P X : fpx1q “ fpx2q ñ x1 “ x2.

A function f : X Ñ Y is called bijective if it is both injective and surjective. We see that

f : X Ñ Y is bijectiveðñ @y P Y D! x P X : y “ fpxq.

Example 1.4.2. (a) For any set X we denote by 1X or by eX the function X Ñ X which
maps any x P X to itself. The function 1X is called the identity map. The identity map
is clearly injective.

(b) Suppose that X,Y are two sets. We denote πX the mapping X ˆ Y Ñ X which
sends a pair px, yq to x. We say that πX is the natural projection of X ˆ Y onto X.

(c) Given a function f : X Ñ Y and a subset A Ă X we can construct a new function
f |A : AÑ Y called the restriction of f to A and defined in the obvious way

f |Apaq “ fpaq, @a P A.

(d) If X is a set and A Ă X, then we denote by iA the function AÑ X defined as the
restriction of 1X to A. More precisely

iApaq “ a, @a P A.

The function iA is called the natural inclusion map associated to the subset A Ă X. [\

Given two functions

X
f
Ñ Y, Y

g
Ñ Z

we can form their composition which is a function g ˝ f : X Ñ Z defined by

g ˝ fpxq :“ g
`

fpxq q.

Intuitively, the action of g ˝ f on an input x can be described by the diagram

x
f
ÞÑ fpxq

g
ÞÑ g

`

fpxq
˘

.

In words, this means the following: take an input x P X and drop it in the device
f : X Ñ Y ; out comes fpxq, which is an element of Y . Use the output fpxq as an input
for the device g : Y Ñ Z. This yields the output g

`

fpxq
˘

.

Proposition 1.4.3. Let f : X Ñ Y be a function. The following statements are equiva-
lent.
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(i) The function f is bijective.

(ii) There exists a function g : Y Ñ X such that

f ˝ g “ 1Y , g ˝ f “ 1X . (1.4.3)

(iii) There exists a unique function g : Y Ñ X satisfying (1.4.3).

Proof. (i) ñ (ii) Assume (i), so that f is bijective. Hence, for any y P Y there exists a
unique x P X such that fpxq “ y. This unique x depends on y and we will denote it by
gpyq; see Figure 1.4.

x

y=f(x)
x=g(y)

f

g

X Y

Figure 1.4. Constructing the inverse of a bijective function X Ñ Y .

The correspondence y ÞÑ gpyq defines a function g : Y Ñ X. By construction, if
x “ gpyq, then

y “ fpxq “ f
`

gpyq q “ f ˝ gpyq @y P Y

so that f ˝ g “ 1Y . Also, if y “ fpxq, then

x “ gpyq “ g
`

fpxq
˘

“ g ˝ fpxq, @x P X.

Hence g ˝ f “ 1X . This proves the implication (i) ñ (ii)

(ii) ñ (iii) Assume (i). We need to show that if g1, g2 : Y Ñ X are two functions
satisfying (1.4.3), then g1 “ g2, i.e., g1pyq “ g2pyq, @y P Y .

Let y P Y . Set x1 “ g1pyq. Then

fpx1q “ f
`

g1pyq
˘

“ f ˝ g1pyq
p1.4.3q
“ y.

On the other hand,

g2pyq “ g2
`

fpx1q
˘

“ g2 ˝ fpx1q
p1.4.3q
“ x1 “ g1pyq.

This proves the implication (ii) ñ (iii).

(iii) ñ (i). We assume that there exists a function g : Y Ñ X satisfying (1.4.3) and
we will show that f is bijective. We first prove that f is injective, i.e.,

@x1, x2 P X : fpx1q “ fpx2q ñ x1 “ x2.
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Indeed, if fpx1q “ fpx2q, then

x1
p1.4.3q
“ g ˝ fpx1q “ g

`

fpx1q
˘

“ g
`

fpx2q
˘

“ g ˝ fpx2q
p1.4.3q
“ x2.

To prove surjectivity we need to show that for any y P Y , there exists x P X such that
fpxq “ y. Let y P Y . Set x “ gpyq. Then

y
p1.4.3q
“ f ˝ gpyq “ f

`

gpyq
˘

“ fpxq.

This proves the surjectivity of f and completes the proof of Proposition 1.4.3. [\

Definition 1.4.4. Let f : X Ñ Y be a bijective function. The inverse of f is the unique
function g : Y Ñ X satisfying (1.4.3). The inverse of a bijective function f is denoted by
f´1. [\
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1.5. Exercises

Exercise 1.1. Show that

␣pp_ qqÐÑp␣p^␣qq, ␣pp^ qqÐÑ␣p_␣q. [\

Exercise 1.2. (a) Show that

ppñ qqÐÑp␣q ñ ␣pq, ␣ppñ qqÐÑpp^␣qq.

(b) Consider the predicates

p :“ the elephant x can fly, q :“ the elephant x can drive.

Let us stipulate that p is false. Show that the predicate pñ q is true by showing that its
negation ␣ppñ qq is false. [\

Exercise 1.3. Consider the exclusive-OR operation _˚ with truth table

p q p_˚ q

T T F

T F T

F T T

F F F
Table 1.3. The truth table of “_˚”

Show that

pp_˚ qq ÐÑ pp^␣qq _ p␣p^ qqÐÑ ppðñ␣qqÐÑppñ ␣qq ^ p␣pñ qq. [\

Exercise 1.4 (Modus ponens). Show that the compound predicate
`

ppñ qq ^ p
˘

ñ q

is a tautology. [\

Exercise 1.5 (Modus tollens). Show that the compound predicate
`

ppñ qq ^ ␣q
˘

ñ ␣p

is a tautology. [\

Exercise 1.6. Translate each of the following propositions into a quantified statement in
standard form, write its symbolic negation, and then state its negation in words. (Use
Example 1.2.4 as guide.)

(i) You can fool some of the people all of the time.

(ii) Everybody loves somebody sometime.

(iii) You cannot teach an old dog new tricks.

(iv) When it rains, it pours.
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[\

Exercise 1.7. Consider the following predicates.

P :“ I will attend your party.

Q :“ I go to a movie.

Rephrase the predicate

I will attend your party unless I go to a movie

using the predicates P,Q and the logical operators ␣,_,^,ñ. [\

Exercise 1.8. Give an example of three sets A,B,C satisfying the following properties

AXB ‰ H, B X C ‰ H, C XA ‰ H, AXB X C “ H. [\

Exercise 1.9. Suppose that A,B,C are three arbitrary sets. Show that

A X
`

B Y C
˘

“
`

AXB
˘

Y
`

AX C
˘

,

A Y
`

B X C
˘

“
`

AYB
˘

X
`

AY C
˘

,

and
Az

`

B Y C
˘

“
`

AzB
˘

X
`

AzC
˘

.

(In the above equalities it should be understood that the operations enclosed by paren-
theses are to be performed first.)

Hint. Use Remark 1.3.4. [\

Exercise 1.10. Suppose that f : X Ñ Y is a function and A,B Ă Y are subsets of the
codomain. Prove that

f´1pAYBq “ f´1pAq Y f´1pBq, f´1pAXBq “ f´1pAq X f´1pBq.

Hint. Take into account (1.4.2) and Remark 1.3.4. [\

Exercise 1.11. Let f : X Ñ Y be a map between the sets X,Y . Prove that f is
one-to-one if and only if for any subsets A,B Ă X we have

fpAXBq “ fpAq X fpBq. [\

Exercise 1.12. Suppose A,B are sets and f : AÑ B is a map.3 Define the maps

φ : AÑ AˆB, ρ : AˆB Ñ B

by setting
φpaq :“

`

a, fpaq
˘

, @a P A, ρpa, bq :“ b, @pa, bq P AˆB.

Prove that the following hold.

(i) The map φ is injective.

3Recall that a map is a function.
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(ii) The map ρ is surjective.

(iii) f “ ρ ˝ φ.

[\

Exercise 1.13. Suppose that f : X Ñ Y and g : Y Ñ Z are two bijective maps. Prove
that the composition g ˝ f is also bijective and

pg ˝ fq´1 “ f´1 ˝ g´1. [\

Exercise 1.14. Suppose that f : X Ñ Y is a function. Prove that the following state-
ments are equivalent.

(i) The function f is injective.

(ii) There exists a function g : Y Ñ X such that g ˝ f “ 1X .

Exercise 1.15. Suppose that f : X Ñ Y is a function. Prove that the following state-
ments are equivalent.

(i) The function f is surjective.

(ii) There exists a function g : Y Ñ X such that f ˝ g “ 1Y .

[\

1.6. Exercises for extra credit

Exercise* 1.1. Two old ladies left from A to B and from B to A at dawn heading towards
one another along the same road. They met at noon, but did not stop, each carried on
walking with the same speed as before they met. The first lady arrives at B at 4 pm, and
the second lady arrives at A at 9 pm. What time was the dawn that day? [\

Exercise* 1.2. A farmer must take a wolf, a goat and a cabbage across a river in a boat.
However the boat is so small that he is able to take only one of the three on board with
him. How should he transport all three across the river? (The wolf cannot be left alone
with the goat, and the goat cannot be left alone with the cabbage.) [\





Chapter 2

The Real Number
System

Any attempt to define the concept of number is fraught with perils of a logical kind: we
will eventually end up chasing our tails. Instead of trying to explain what numbers are it
is more productive to explain what numbers do, and how they interact with each other.

In this section we gather in a coherent way some of the basic properties our intuition
tells us that real numbers1 ought to satisfy. We will formulate them precisely and we will
declare, by fiat, that these are true statements. We will refer to these as the axioms of the
real number system. (Things are a bit more subtle, but that’s the gist of our approach.)
All the other properties of the real numbers follow from these axioms. Such deductible
properties are known in mathematics as Propositions or Theorems. The term Theorem is
used sparingly and it is reserved to the more remarkable properties.

The process of deducing new properties from the already established ones is called a
mathematical proof. Intuitively, a proof is a complete, precise and coherent explanation
of a fact. In this course we will prove all of the calculus facts you are familiar with, and
much more.

The first thing that we observe is that the real numbers, whatever their nature, form
a set. We will encounter this set so often in our mathematical discourse that it deserves a
short name and symbol. We will denote the set of real numbers by R. More importantly
this set of mysterious objects called numbers satisfies certain properties that we use every
day. We take them for granted, and do not bother to prove them. These are the axioms
of the real numbers and they are of three types.

‚ Algebraic axioms.

1You may know them as decimal numbers or decimals.

19
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‚ Order axioms.

‚ The completeness axiom.

In this chapter we discuss these axioms in some details and then we show some of their
immediate consequences.

Remark 2.0.1. There is one rather delicate issue that we do not address in these notes. We introduce a set of

objects whose nature we do not explain and then we take for granted that they satisfy certain properties.

Naturally, one should ask if such things exist, because, for all we know, we might be investigating the set of

flying elephants. This is a rather subtle question, and answering it would force us to dig deep at the foundations of

mathematics. Historically, this question was settled relatively recently during the twentieth century but, mercifully,
science progressed for two millennia before people thought of formulating and addressing this issue. To cut to the

chase, no, we are not investigating flying elephants. [\

2.1. The algebraic axioms of the real numbers

Another thing we know from experience is that we can operate with numbers. More
precisely we can add, subtract, multiply and divide real numbers. Of these four operations,
the addition and the multiplication are the fundamental ones. These are special instances
of a more general mathematical concept, that of binary operation.

A binary operation on a set S is, by definition, a function SˆS Ñ S. Loosely, a binary
operation is a gizmo that feeds on ordered pairs of elements of S, processes such a pair in
some fashion, and produces a single element of S. We list the first axioms describing the
set of real numbers.

Axiom 1. The set R of real numbers R is equipped with two binary operations,

‚ addition

` : Rˆ RÑ R, px, yq ÞÑ x` y,

‚ and multiplication

¨ : Rˆ RÑ R, px, yq ÞÑ x ¨ y.

[\

The operation of multiplication is sometimes denoted by the symbol ˆ.

Axiom 2. The addition is associative, i.e.,

@x, y, z P R; px` yq ` z “ x` py ` zq. [\

The usage of parentheses p ´ q indicates that we first perform the operation enclosed by
them.

Axiom 3. The addition is commutative, i.e.,

@x, y P R : x` y “ y ` x. [\
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Axiom 4. An additive identity element exists. This means that there exists at least one
real number u such that

x` u “ u` x “ x, @x P R. (2.1.1)

[\

Before we proceed to our next axiom, let us observe that there exists precisely one
additive identity element.

Proposition 2.1.1. If u0, û0 P R are additive identity elements, then u0 “ û0.

Proof. Since u0 is an identity element, if we choose x “ û0 in (2.1.1) we deduce that

û0 ` u0 “ u0 ` û0 “ û0.

On the other hand, û0 is also an identity element and if we let x “ u0 in (2.1.1) we
conclude that

u0 ` û0 “ û0 ` u0 “ u0.

Thus u0 “ û0. [\

Definition 2.1.2. The unique additive identity element of R is denoted by 0. [\

Axiom 5. Additive inverses exist. More precisely, this means that for any x P R there
exists at least one real number y P R such that

x` y “ y ` x “ 0. [\

We have the following result whose proof is left to you as an exercise.

Proposition 2.1.3. Additive inverses are unique. This means that if x, y, y1 are real
numbers such that

x` y “ y ` x “ 0 “ x` y1 “ y1 ` x,

then y “ y1. [\

Definition 2.1.4. The unique additive inverse of a real number x is denoted by ´x. Thus

x` p´xq “ p´xq ` x “ 0, @x P R. [\

Axiom 6. The multiplication is associative, i.e.,

@x, y, z P R; px ¨ yq ¨ z “ x ¨ py ¨ zq. [\

Axiom 7. The multiplication is commutative, i.e.,

@x, y P R : x ¨ y “ y ¨ x. [\

Axiom 8. A multiplicative identity element exists. This means that there exists at least
one nonzero real number u such that

x ¨ u “ u ¨ x “ x, @x P R. (2.1.2)
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[\

Arguing as in the proof of Proposition 2.1.1 we deduce that there exists precisely one
multiplicative identity element. We denote it by 1. We define

2 :“ 1` 1, x2 :“ x ¨ x, @x P R. (✎)

Axiom 9. Multiplicative inverses exist. More precisely, this means that for any x P R,
x ‰ 0, there exists at least one real number y P R such that

x ¨ y “ y ¨ x “ 1. [\

Proposition 2.1.3 has a multiplicative counterpart that states that multiplicative inverses
are unique. The multiplicative inverse of the nonzero real number x is denoted by x´1,
or 1{x, or 1

x . Also, we will frequently use the notation

x

y
:“ x ¨ y´1, y ‰ 0.

☞ The real number zero does not have an inverse. For this reason division
by zero is an illegal and very dangerous operation. NEVER DIVIDE BY
ZERO!

Axiom 10. Distributivity.

@x, y, z P R : x ¨ py ` zq “ x ¨ y ` x ¨ z. [\

✍ To save energy and time we agree to replace the notation x ¨ y with the simpler one,
xy, whenever no confusion is possible.

Definition 2.1.5. A set satisfying Axioms 1 through 10 is called a field. [\

The above axioms have a number of “obvious” consequences.

Proposition 2.1.6. (i) @x P R, x ¨ 0 “ 0.

(ii) @x, y P R, pxy “ 0q ñ px “ 0q _ py “ 0q.

(iii) @x P R, ´x “ p´1q ¨ x.
(iv) @x P R, p´1q ¨ p´xq “ x.

(v) @x, y P R, p´xq ¨ p´yq “ xy.

Proof. We will prove only part (i). The rest are left as exercises. Since 0 is the additive
identity element we have 0` 0 “ 0 and

x ¨ 0 “ x ¨ p0` 0q “ x ¨ 0` x ¨ 0.

If we add ´px ¨ 0q to both sides of the equality x ¨ 0 “ x ¨ 0` x ¨ 0 we deduce 0 “ x ¨ 0. [\
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2.2. The order axiom of the real numbers

Experience tells us that we can compare two real numbers, i.e., given two real numbers
we can decide which is smaller than the other. In particular, we can decide whether a
number is positive or not. In more technical terms we say that we can order the set of
real numbers. The next axiom formalizes this intuition.

Axiom 11. There exists a subset P Ă R called the subset of positive real numbers
satisfying the following two conditions.

(i) If x and y are in P , then so are their sum and product, x` y P P and xy P P .

(ii) If x P R, then exactly one of the following statements is true:

x P P , or x “ 0, or ´x P P . [\

Definition 2.2.1. Let x, y P R.

(i) We say that x is negative if ´x P P .

(ii) We say that x is greater than y, and we write this x ą y, if x´ y is positive. We
say that x is less than y, written x ă y, if y is greater than x.

(iii) We say that x is greater than or equal to y, and we write this x ě y, if x ą y
or x “ y. We say that x is less than or equal to y, and we write this x ď y, if
y ě x.

(iv) A real number x is called nonnegative if x ě 0.

[\

Observe that x ą 0 signifies that x P P .

Proposition 2.2.2. (i) 1 ą 0, i.e. 1 P P .

(ii) If x ą y and y ą z, then x ą z, x, y, z P R.
(iii) If x ą y, then for any z P R, x` z ą y ` z.

(iv) If x ą y and z ą 0, then xz ą yz.

(v) If x ą y and z ă 0, then xz ă yz.

Proof. We will prove only (i) and (ii). The proofs of the other statements are left to you
as exercises. To prove (i) we argue by contradiction. Thus we assume that 1 R P . By
Axiom 8, 1 ‰ 0, so Axiom 11 implies that ´1 P P and p´1q ¨ p´1q P P . Using Proposition
2.1.6(v) we deduce that

1 “ p´1q ¨ p´1q P P .

We have reached a contradiction which proves (i).

To prove (ii) observe that

x ą y ñ x´ y P P , y ą z ñ y ´ z P P
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so that

x´ z “ px´ yq ` py ´ zq P P ñ x ą z.

[\

Definition 2.2.3 (Intervals). Let a, b P R. We define the following sets.

(i) pa, bq “sa, br:“
␣

x P R; a ă x ă b
(

.

(ii) pa, bs “sa, bs :“
␣

x P R; a ă x ď b
(

.

(iii) ra, bq “ ra, br:“
␣

x P R; a ď x ă b
(

.

(iv) ra, bs :“
␣

x P R; a ď x ď b
(

.

(v) ra,8q “ ra,8r:“
␣

x P R; a ď x
(

.

(vi) pa,8q “sa,8r:“
␣

x P R; a ă x
(

.

(vii) p´8, aq “s ´8, ar:“
␣

x P R; x ă a
(

.

(viii) p´8, as “s ´8, as :“
␣

x P R; x ď a
(

.

A subset I of R is called an interval if I “ R or if it is of one of the types (i)-(viii). .
The intervals of the form ra, bs, ra,8q, or p´8, as are called closed, while the intervals of
the form pa, bq, pa,8q, or p´8, aq are called open. [\

I would like to emphasize that in the above definition we made no claim that any or
some of the intervals are nonempty. This is indeed the case, but this fact requires a proof.

Definition 2.2.4. For any x P R we define the absolute value of x to be the quantity

|x| :“

#

x if x ě 0,

´x if x ă 0.
[\

Proposition 2.2.5. (i) Let ε ą 0. Then |x| ă ε if and only if ´ε ă x ă ε, i.e.,

p´ε, εq “
␣

x P R; |x| ă ε
(

.

(ii) x ď |x|, @x P R.
(iii) |xy| “ |x| ¨ |y|, @x, y P R. In particular, | ´ x| “ |x|

(iv) |x` y| ď |x| ` |y|, @x, y P R.

Proof. We prove only (i) leaving the other parts as an exercise. We have to prove two
things,

|x| ă εñ ´ε ă x ă ε, (2.2.1)

and

´ε ă x ă εñ |x| ă ε. (2.2.2)

To prove (2.2.1) let us assume that |x| ă ε. We distinguish two cases. If x ě 0, then
|x| “ x and we conclude that ´ε ă 0 ď x ă ε. If x ă 0, then |x| “ ´x and thus
0 ă ´x “ |x| ă ε. This implies ´ε ă ´p´xq “ x ă 0 ă ε.
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Conversely, let us assume that ´ε ă x ă ε. Multiplying this inequality by ´1 we
deduce that ´ε ă ´x ă ε. If 0 ď x, then |x| “ x ă ε. If x ă 0 then |x| “ ´x ă ε. [\

Definition 2.2.6. The distance between two real numbers x, y is the nonnegative number
distpx, yq defined by

distpx, yq :“ |x´ y|. [\

Very often in calculus we need to solve inequalities. The following examples describe
some simple ways of doing this.

Example 2.2.7. (a) Suppose that we want to find all the real numbers x such that

px´ 1qpx´ 2q ą 0.

To solve this inequality we rely on the following simple principle: the product of two real
numbers is positive if and only if both numbers are positive or both numbers are negative;
see Exercise 2.8. In this case the answer is simple: the numbers px ´ 1q and px ´ 2q are
both positive iff x ą 2 and they are both negative iff x ă 1. Hence

px´ 1qpx´ 2q ą 0 ðñ x P p´8, 1q Y p2,8q.

(b) Consider the more complicated problem: find all the real numbers x such that

px´ 1qpx´ 2qpx´ 3q ą 0.

The answer to this question is also decided by the multiplicative rule of signs, but it is
convenient to organize or work in a table. In each of row we read the sign of the quantity

x ´8 1 2 3 8

px´ 1q ´8 ´´´´ 0 ``` ` ``` ` ``` 8

px´ 2q ´8 ´´´´ ´ ´´´ 0 ``` ` ``` 8

px´ 3q ´8 ´´´´ ´ ´´´ ´ ´´´ 0 ``` 8

px´ 1qpx´ 2qpx´ 3q ´8 ´´´´ 0 ``` 0 ´´´ 0 ``` 8

listed at the beginning of the row. The signs in the bottom row are obtained by multiplying
the signs in the column above them. We read

px´ 1qpx´ 2qpx´ 3q ą 0 ðñ x P p1, 2q Y p3,8q.

(c) Consider the related problem: find all the real numbers x such that

px´ 1q

px´ 2qpx´ 3q
ě 0.

Before we proceed we need to eliminate the numbers x “ 2 and x “ 3 from our consid-
erations because the denominator of the above fraction vanishes for these values of x and
the division by 0 is an illegal operation . We obtain a similar table
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x ´8 1 2 3 8

px´ 1q ´8 ´´´´ 0 ``` ` ``` ` ``` 8

px´ 2q ´8 ´´´´ ´ ´´´ 0 ``` ` ``` 8

px´ 3q ´8 ´´´´ ´ ´´´ ´ ´´´ 0 ``` 8

px´1q
px´2qpx´3q ´8 ´´´´ 0 ``` ! ´´´ ! ``` 8

The exclamation signs at the bottom row are warning us that for the corresponding
values of x the fraction has no meaning. We read

px´ 1q

px´ 2qpx´ 3q
ě 0 ðñ x P r1, 2q Y p3,8q. [\

Example 2.2.8. We want to discuss a question involving inequalities frequently encoun-
tered in real analysis. Consider the statement

P pMq : @x P R, x ąM ñ

ˇ

ˇ

ˇ

ˇ

x2

x2 ` x´ 2
´ 1

ˇ

ˇ

ˇ

ˇ

ă
1

10
.

We want to show that there exists at least one positive number M such that P pMq is
true, i.e., we want to prove that the statement

DM ą 0 such that, @x P R, x ąM ñ

ˇ

ˇ

ˇ

ˇ

x2

x2 ` x´ 2
´ 1

ˇ

ˇ

ˇ

ˇ

ă
1

10
.

Let us observe that if P pMq is true and M 1 ěM , then P pM 1q is also true. Thus, once we
find one M such that P pMq is true, then P pM 1q is true for all M 1 P rM,8q.

We are content with finding only one M such that P pMq is true and the above obser-
vation shows that in our search we can assume that M is very large. This is a bit vague,
so let us see how this works in our special case.

First, we need to make sure that our algebraic expression is well defined so we need
to require that the denominator x2 ` x´ 2 “ px´ 1qpx` 2q is not zero. Thus we need to
assume that x ‰ 1,´2. In particular, we will restrict our search for M to numbers larger
than 1. We have

ˇ

ˇ

ˇ

ˇ

x2

x2 ` x´ 2
´ 1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

x2 ´ px2 ` x´ 2q

x2 ` x´ 2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´x` 2

x2 ` x´ 2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

x´ 2

x2 ` x´ 2

ˇ

ˇ

ˇ

ˇ

.

Since we are investigating the properties of the last expression for x ą M ą 1 we deduce
that for x ą 2 both quantities x´ 2 and px´ 1qpx` 2q are positive and thus

ˇ

ˇ

ˇ

ˇ

x´ 2

x2 ` x´ 2

ˇ

ˇ

ˇ

ˇ

“
x´ 2

x2 ` x´ 2
.

We want this fraction to be small, smaller than 1
10 . Note that for x ą 2 we have

x´ 2

x2 ` x´ 2
ď

x´ 1

x2 ` x´ 2
“

x´ 1

px´ 1qpx` 2q
“

1

x` 2
,



2.3. The completeness axiom 27

and

x ą 2 ^
1

x` 2
ă

1

10
ðñ x` 2 ą 10ðñx ą 8 .

We deduce that if x ą 8, then

1

10
ą

1

x` 2
ą

ˇ

ˇ

ˇ

ˇ

x2

x2 ` x´ 2
´ 1

ˇ

ˇ

ˇ

ˇ

.

Hence P p8q is true. [\

2.3. The completeness axiom

Definition 2.3.1. Let X Ă R be a nonempty set of real numbers.

(i) A real number M is called an upper bound for X if

@x P X : x ďM. (2.3.1)

(ii) The set X is said to be bounded above if it admits an upper bound.

(iii) A real number m is called a lower bound for X if

@x P X : x ě m. (2.3.2)

(iv) The set X is said to be bounded below if it admits a lower bound.

(v) The set X is said to be bounded if it is bounded both above and below.

[\

Example 2.3.2. (a) The interval p´8, 0q is bounded above, but not below. The interval
p0,8q is bounded below, but not above, while the interval p0, 1q is bounded. [\

(b) Consider the set R consisting of positive real numbers x such that x2 ă 2. This set is
not empty because 12 “ 1 ă 2 so that 1 P R. Let us show that this set is bounded above.
More precisely, we will prove that

x2 ă 2ñ x ď 2.

We argue by contradiction. Suppose that x P R yet x ą 2. Then

x2 ´ 22 “ px´ 2qpx` 2q ą 0.

Hence x2 ą 22 ą 2 which shows that x R R. This contradiction proves that 2 is an upper
bound for R. [\

Definition 2.3.3. Let X Ă R be a nonempty set of real numbers.

(i) A least upper bound for X is an upper bound M with the following additional
property: if M 1 is another upper bound of X, then M ďM 1.

(ii) A greatest lower bound for X is a lower bound m with the following additional
property: if m1 is another lower bound of X, then m ě m1.
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[\

Thus, M is a least upper bound for X if

‚ @x P X, x ďM , and

‚ if M 1 P R is such that @x P X, x ďM 1, then M ďM 1.

Proposition 2.3.4. Any nonempty set X Ă R admits at most one least upper bound, and
at most one greatest lower bound.

Proof. We prove only the statement concerning upper bounds. Suppose that M1,M2 are
two least upper bounds. Since M1 is a least upper bound, and M2 is an upper bound we
have M1 ď M2. Similarly, since M2 is a least upper bound we deduce M2 ď M1. Hence
M1 ďM2 and M2 ďM1 so that M1 “M2. [\

Definition 2.3.5. Let X Ă R be a nonempty set of real numbers.

(i) The least upper bound of X, when it exists, is called the supremum of X and it
is denoted by supX.

(ii) The greatest lower bound of X, when it exists, is called the infimum of X and
it is denoted by infX.

[\

Example 2.3.6. Suppose that X “ r0, 1q. Then supX “ 1 and infX “ 0. Note that
supX is not an element of X. [\

Proposition 2.3.7. Let X Ă R be a nonempty set of real numbers and M P R. The
following statements are equivalent.

(i) M “ supX.

(ii) The number M is an upper bound for X and for any ε ą 0 there exists x P X
such that x ąM ´ ε.

Proof. (i) ñ (ii) Assume that M is the least upper bound of X. Then clearly M is an
upper bound and we have to show that for any ε ą 0 we can find a number x P X such
that x ąM ´ ε.

Because M is the least upper bound and M ´ ε ăM , we deduce that M ´ ε is not an
upper bound for X. In other words, the opposite of (2.3.1) must be true, i.e., there must
exist x P X such that x is not less or equal to M ´ ε.

(ii)ñ (i) We have to show that ifM 1 is another upper bound thenM ďM 1. We argue
by contradiction. Suppose that M 1 ăM . Then M 1 “M ´ ε for some positive number ε.
The assumption (ii) implies that x ąM ´ ε for some number x P X so that M 1 “M ´ ε
is not an upper bound. We reached a contradiction which completes the proof. [\
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The Completeness Axiom. Any nonempty set of real numbers that is bounded above
admits a least upper bound. [\

From the completeness axiom we deduce the following result whose proof is left to you
as Exercise 2.22.

Proposition 2.3.8. If the nonempty set X Ă R is bounded below, then it admits a greatest
lower bound. [\

Definition 2.3.9. Let X Ă R be a nonempty subset.

(i) We say that X admits a maximal element if X is bounded above and supX P X.
In this case we say that supX is the maximum of X and it is denoted by maxX.

(ii) We say that X admits a minimal element if X is bounded below and infX P X.
In this case we say that infX is called the minimum of X and it is denoted by
minX.

[\

Note that the interval I “ r0, 1q has no maximal element, but it has a minimal element

min I “ 0.

2.4. Visualizing the real numbers

The approach we have adopted in introducing the real numbers differs from the historical
course of things. For centuries scientists did not bother to ask what are the real numbers,
often relying on intuition to prove things. This lead to various contradictory conclusions
which prompted mathematicians to think more carefully about the concept of number and
to treat the intuition more carefully.

This does not mean that the intuition stopped playing an important part in the modern
mathematical thinking. On the contrary, intuition is still the first guide, but it always
needs to be checked and backed by rigorous arguments.

For example, you learned to visualize the numbers as points on a line called the real
line. We will not even attempt to explain what a line is. Instead we will rely on our
physical intuition of this geometric concept. The real line is more than just a line, it is a
line enriched with several attributes.

‚ It has a distinguished point called the origin which should be thought of as the
real number 0.

‚ It is equipped with an orientation, i.e., a direction of running along the line
visually indicated by an arrowhead at one end of the line; see Figure 2.1. Equiv-
alently, the origin splits the line into two sides, and choosing an orientation is
equivalent to declaring one side to be the positive side and the other side to be
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the negative side. Traditionally the above arrowhead points towards the positive
side; see Figure 2.1

‚ There is a way of measuring the distance between two points on the line.

0

the positive sidethe negative side

-2 1

Figure 2.1. The real line.

For example, the number ´2 can be visualized as the point on the negative side
situated at distance 2 from the origin; see Figure 2.1.

Now that we have identified the set R of real numbers with the set of points on a line,
we can visualize the Cartesian product R2 :“ R ˆ R with the set of points in a plane,
called the Cartesian plane; see the top of Figure 2.2.

-1 3 x

x

y

y

O

O

P

Figure 2.2. The real line.

Just like the real line, the Cartesian plane is more than a plane: it is a plane enriched
by several attributes.

‚ It contains a distinguished point, called the origin and denoted by O.
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‚ It contains two distinguished perpendicular lines intersecting at O. These lines
are called the axes of the Cartesian plane. One of the axes is declared to be
horizontal and the other is declared to be vertical.

‚ Each of these two axes is a real line, i.e., it has the additional attributes of a
real line: each has a distinguished point, O, each has an orientation, and each
is equipped with a way of measuring distances along that respective line. The
horizontal axis is also known as the x-axis, while the vertical one is also known
as the y-axis.

The position of a point P in that plane is determined by a pair of real numbers called
the Cartesian coordinates of that point. These two numbers are obtained by intersecting
the two axes with the lines through P which are perpendicular to the axes.

An interval of the real line can be visualized as a segment on the real line, possibly
with one or both endpoints removed. If I is an interval of the real line and f : I Ñ R is a
function, then its graph looks typically like a curve in the Cartesian plane. For example,
the bottom of Figure 2.2 depicts the graph of a function f : r´1, 3s Ñ R.
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2.5. Exercises

Exercise 2.1. (a) Prove Proposition 2.1.3.

(b) State and prove the multiplicative counterpart of Proposition 2.1.1. [\

Exercise 2.2. Prove parts (ii)-(v) of Proposition 2.1.6. [\

Exercise 2.3. (a) Prove that

px` yq ` pz ` tq “
`

px` yq ` z
˘

` t, @x, y, z, t P R.

(b) Prove that for any x, y, z, t, P R the sum x` y` z` t is independent of the manner in
which parentheses are inserted. [\

Exercise 2.4. Prove parts (iii)-(v) of Proposition 2.2.2. [\

Exercise 2.5. Show that for any real numbers x, y, z such that y, z ‰ 0, we have
xz

yz
“
x

y
. [\

Exercise 2.6. (a) Show that for any real numbers x, y, z, t such that y, t ‰ 0 we have the
equality

x

y
`
z

t
“
xt` yz

yt
.

(b) Prove that for any real numbers x, y we have

x2 ´ y2 “ px´ yqpx` yq.

(c) Prove that the function f : p0,8q Ñ R, fpxq “ x2, is injective but not surjective. [\

Exercise 2.7. Prove that if x ď y and y ď x, then x “ y. [\

Exercise 2.8. (a) Prove that if xy ą 0, then either x ą 0 and y ą 0, or x ă 0 and
y ă 0. [\

(b) Prove that if x ą 0, then 1{x ą 0.

(c) Let x ą 0. Show that x ą 1 if and only if 1{x ă 1.

(d) Prove that if y ą x ě 1, then

x`
1

x
ă y `

1

y
. [\

Exercise 2.9. (a) Prove that x2 ą 0 for any x P R, x ‰ 0.

(b) Consider the functions

f, g : RÑ R, fpxq “ x2 ` 1, gpxq “ 2x` 1.
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Decide if any of these two functions is injective or surjective.

(c) With f and g as above, describe the functions f ˝ g and g ˝ f . [\

Exercise 2.10. Using the technique described in Example 2.2.7 find all the real numbers
x such that

x2

px´ 1qpx` 2q
ď 1. [\

Exercise 2.11. (a) Find a positive number M with the following property:

@x : x ąM ñ
x2

x` 1
ą 105.

(b) Find a positive number M with the following property:

@x : x ąM ñ
x2

x´ 1
ą 106.

(c) Find a real number M with the following property:

@x : x ąM ñ

ˇ

ˇ

ˇ

ˇ

x2

px´ 1qpx´ 2q
´ 1

ˇ

ˇ

ˇ

ˇ

ă
1

100
. [\

Exercise 2.12. Let a ă b. Show that

a ă
1

2
pa` bq ă b,

where 2 is the real number 2 :“ 1` 1. Conclude that the interval pa, bq is nonempty. [\

Exercise 2.13. Prove that x2 ` y2 ě 2xy, for any x, y P R. Use this inequality to prove
that

x2 ` y2 ` z2 ě xy ` yz ` zx, @x, y, z P R. [\

Exercise 2.14. Prove that if 0 ď x ď ε, @ε ą 0, then x “ 0. (The Greek letter ε (read
epsilon) is ubiquitous in analysis and it is almost exclusively used to denote quantities
that are extremely small.) [\

Exercise 2.15. (a) Consider the function f : r0, 2s Ñ R given by

fpxq “

#

0, x P r0, 1s,

1, x P p1, 2s.

Decide which of the following statements is true.

(i) DL ą 0 such that @x1, x2 P r0, 2s we have |fpx1q ´ fpx2q| ď L|x1 ´ x2|.

(ii) @x1, x2 P r0, 2s , DL ą 0 such that |fpx1q ´ fpx2q| ď L|x1 ´ x2|.

(b) Same question, when we change the definition of f to fpxq “ x2, for all x P r0, 2s. [\
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Exercise 2.16. Show that for any δ ą 0 and any a P R we have

pa´ δ, a` δq “
␣

x P R; |x´ a| ă δ
(

. [\

Exercise 2.17. Prove the statements (ii)-(iv) of Proposition 2.2.5. [\

Exercise 2.18. Prove that for any real numbers a, b, c we have

distpa, cq ď distpa, bq ` distpb, cq. [\

Exercise 2.19. Prove that a set X Ă R is bounded if and only if there exists C ą 0 such
that |x| ď C, @x P X. [\

Exercise 2.20. Fix two real numbers a, b such that a ă b. Prove that for any x, y P ra, bs
we have

|x´ y| ď b´ a. [\

Exercise 2.21. State and prove the version of Proposition 2.3.7 involving the infimum of
a bounded below set X Ă R. [\

Exercise 2.22. Let X Ă R be a nonempty set of real numbers. For c P R define

cX :“
␣

cx; x P X
(

Ă R.

(i) Show that if c ą 0 and X is bounded above, then cX is bounded above and

sup cX “ c supX.

(ii) Show that if c ă 0 and X is bounded above, then cX is bounded below and

inf cX “ c supX.

[\

Exercise 2.23. (a) Let

A :“
! a

a` 1
; a ą 0

)

.

Compute inf A and supA.

(b) Let

B :“
! b

b` 1
; b P Rzt´1u

)

.

Prove that the set B is not bounded below or above. [\



Chapter 3

Special classes of real
numbers

3.1. The natural numbers and the induction
principle

The numbers of the form

1, 1` 1, p1` 1q ` 1

and so forth are denoted respectively by 1, 2, 3, . . . and are called natural numbers. The
term and so forth is rather ambiguous and its rigorous justification is provided by the
principle of mathematical induction.

Definition 3.1.1. A set X Ă R is called inductive if

@x : px P X ñ x` 1 P Xq.

[\

Example 3.1.2. The set R is inductive and so is any interval pa,8q If pXaqaPA is a
collection of inductive sets, then so is their intersection

č

aPA

Xa. [\

Definition 3.1.3. The set of natural numbers is the smallest inductive set containing 1,
i.e., the intersection of all inductive sets that contain 1. The set of natural numbers is
denoted by N. [\

To unravel the above definition, the set N is the subset of R uniquely characterized by
the following requirements.

35
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‚ The set N is inductive and 1 P N.
‚ If S Ă R is an inductive set that contains 1, then N Ă S.

The set N consists of the numbers

1, 2 :“ 1` 1, 3 :“ 2` 1, 4 :“ 3` 1, . . . .

Note that 0 R N. Indeed, the interval r1,8q is an inductive set, containing 1 and thus
must contain N. On the other hand, this interval does not contain 0. The above argument
proves that N Ă r1,8q, i.e.,

n ě 1, @n P N. (3.1.1)

We set

N0 :“ t0u Y N “
␣

0, 1, 2, , 3, . . . ,
(

.

✰ The Principle of Mathematical Induction. If E is an inductive subset of the
set of natural numbers such that 1 P E, then E “ N.

‘

In applications the set E consists of the natural numbers n satisfying a property P pnq.
To prove that any natural number n satisfies the property P pnq it suffices to prove two
things.

‚ Prove P p1q. This is called the initial step.

‚ Prove that if P pnq is true, then so is P pn` 1q. This is called the inductive step.

Sometimes we need an alternate version of the induction principle.

✰ The Principle of Mathematical Induction: alternate version. Suppose that
for any natural number n we are given a statement P pnq and we know the following.

‚ The statement P p1q is true.

‚ For any n P N, if P pkq is true for any k ă n, then P pnq is true as well.

Then P pnq is true for any n P N. [\

‘

We will spend the rest of this section presenting various instances of the induction
principle at work.

Proposition 3.1.4. The sum and the product of two natural numbers are also natural
numbers.

Proof. 1 Fix a natural number m. For each n P N consider the statement

P pnq :“ m` n is a natural number.

1The proof can be omitted.
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We have to prove that P pnq is true for any n P N. We will achieve this using the principle of induction. We first

need to check that P p1q is true, i.e., that m` 1 is a natural number. This follows from the fact that m P N and N
is an inductive set.

To complete the inductive step assume that P pnq is true, i.e., m` n P N. Thus pm` nq ` 1 P N and

m` pn` 1q “ pm` nq ` 1 P N.

This shows that P pn` 1q is also true. [\

Lemma 3.1.5. @n P N, pn ‰ 1q ñ pn´ 1q P N.

Proof. For n P N consider the statement

P pnq :“ n ‰ 1ñ pn´ 1q P N.

We want to prove that this statement is true for any n P N. The initial step is obvious since for n “ 1 the statement

n ‰ 1 is false and thus the implication is true.

For the inductive step assume that the statement P pnq is true and we prove that P pn`1q is also true. Observe

that n` 1 ‰ 1 because n P N and thus n ‰ 0. Clearly pn` 1q ´ 1 “ n P N. [\

Lemma 3.1.6. The set

I1 “
␣

x P N; x ą 1
(

admits a minimal element and min I1 “ 2.

Proof. Consider the set

E :“
␣

x P N; x “ 1_ x ě 2
(

Ă N.

We will prove by induction that

E “ N. (3.1.2)

Thus we need to show that 1 P E and x P E ñ x` 1 P E. Clearly 1 P E.

If x P E, then

‚ either x “ 1 so that x` 1 “ 2 ě 2 so that x` 1 P E,

‚ or x ě 2 which implies x` 1 ě 2 and thus x` 1 P E.

The equality E “ N implies that a natural number n is either equal to 1, or it is ě 2. Thus

x P N^ x ą 1ñ x ě 2.

This shows that

x ě 2, @x P I1.

Clearly 2 P I1 so that 2 “ min I. [\

Corollary 3.1.7. For any n ě 1 the set

Hn “
␣

x P N; x ą n
(

admits a minimal element and

minHn “ n` 1.
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Proof. We will prove that for any n P N the statement

P pnq : minHn “ n` 1

is true. Lemma 3.1.6 shows that P p1q is true.

Let us show that P pnq ñ P pn ` 1q. Since n ` 2 P Hn`1 it suffices to show that x ě n ` 2, @x P Hn`1. Let
x P Hn`1. Lemma 3.1.5 implies that x ´ 1 P N and x ´ 1 ą n so that x ´ 1 P Hn. Since P pnq is true, we deduce

x´ 1 ě n` 1, i.e., x ě n` 2.

[\

Corollary 3.1.8. Suppose that n is a natural number. Any natural number x such that
x ą n satisfies x ě n` 1. [\

Corollary 3.1.9. For any natural number n, the open interval pn, n ` 1q contains no
natural number.

Proof. From Corollary 3.1.8 we deduce that if x is a natural number such that x ą n,
then x ě n` 1. Thus there cannot exist any natural number x such that n ă x ă n` 1.[\

The above results imply the following important theorem.

Theorem 3.1.10 (Well Ordering Principle). Any set of natural numbers S Ă N has a
minimal element. [\

For a proof of this theorem we refer to [38, §2.2.1].

Definition 3.1.11. For any n P N we denote by In the set

In :“
␣

x P N; 1 ď x ď n
(

“ r1, ns X N. [\

Definition 3.1.12. We say two sets X and Y are said to have the same cardinality, and
we write this X „ Y , if and only if there exists a bijection f : X Ñ Y . A set X is called
finite if there exists a natural number n such that X „ In. [\

Let us observe that if X,Y, Z are three sets such that X „ Y and Y „ Z, then X „ Z;
see Exercise 3.1. This implies that any set X equivalent to a finite set Y is also finite.
Indeed, if X „ Y and Y „ In, then X „ In.

At this point we want to invoke (without proof) the following result.

Proposition 3.1.13. For any m,n P N we have

In „ Imðñm “ n. [\

The above result implies that if X is a finite set, then there exists a unique natural
number n such that X „ In. This unique natural number is called the cardinality of X
and it is denoted by |X| or #X. You should think of the cardinality of a finite set as the
number of elements in that set.
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An infinite set is a set that is not finite. We have the following highly nontrivial result.
Its proof is too complex to present here.

Theorem 3.1.14. A set X is infinite if and only if it is equivalent to one of its proper2

subsets. [\

Theorem 3.1.15. The set of natural numbers N is infinite.

Proof. Consider the proper subset

H :“
␣

n P N; n ą 1
(

Ă N.

Lemma 3.1.5 implies that if n P H, then pn´ 1q P N. Consider the map

f : H Ñ N, fpnq “ n´ 1.

Observe that this map is injective. Indeed, if fpn1q “ fpn2q, then n1 ´ 1 “ n2 ´ 1
so that n1 “ n2. This map is also surjective. Indeed, if m P N. Then, according to
(3.1.1) the natural number n :“ m ` 1 is greater than 1 so it belongs to H. Clearly
fpnq “ pm` 1q ´ 1 “ m which proves that f is also surjective. [\

Definition 3.1.16. A set X is called countable if it is equivalent with the set of natural
numbers. [\

Example 3.1.17. The set NˆN is countable. To see this arrange the elements of NˆN
in a sequence as follows:

p1, 1q, p2, 1q, p2, 2q
looooomooooon

S2

, p3, 1q, p3, 2q, p3, 3q
loooooooooomoooooooooon

S3

, p4, 1q, p4, 2q, p4, 3q, p4, 4q
loooooooooooooomoooooooooooooon

S4

,

Now denote by ϕpm,nq the location of the pair pm,nq in the above string. For example,
ϕp1, 1q “ 1 since p1, 1q is the first term in the above sequence. Note that

ϕp4, 2q “ 1` 2` 3` 2 “ 8,

i.e., p4, 2q occupies the 8-th position in the above string. More precisely ϕ is the function

ϕ : Nˆ NÑ N, ϕpm,nq “ #S1 ` ¨ ¨ ¨#Sm´1 ` n.

It should be clear that ϕ is bijective proving that Nˆ N has the same cardinality as N.[\

2We recall that a subset S Ă X is called proper if S ‰ X.
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3.2. Applications of the induction principle

In this section we discuss some traditional applications of the induction principle. This
serves two purposes: first, it familiarizes you with the usage of this principle, and second,
some of the results we will discuss here will be needed later on in this class.

First let us introduce some notations. If n is a natural number, n ą 1, and we are
given n real numbers a1, . . . , an, then define inductively

a1 ` ¨ ¨ ¨ ` an :“ pa1 ` ¨ ¨ ¨ ` an´1q ` an,

a1 ¨ ¨ ¨ an “ pa1 ¨ ¨ ¨ an´1qan.

We will use the following notations for the sum and products of a string of real numbers.
Thus

n
ÿ

k“1

ak :“ a1 ` ¨ ¨ ¨ ` an,
n
ź

k“1

ak :“ a1 ¨ ¨ ¨ an.

Similarly, given real numbers a0, a1, . . . , an we define

n
ÿ

k“0

ak “ a0 ` a1 ` ¨ ¨ ¨ ` an,
n
ź

k“0

ak :“ a0 ¨ ¨ ¨ an.

For any natural number n and any real number x we define inductively

xn :“

#

x if n “ 1

pxn´1q ¨ x if n ą 1.

Intuitively

xn “ x ¨ x ¨ ¨ ¨x
loooomoooon

n

.

If x is a nonzero real number we set

x0 :“ 1.

Let us observe that for any natural numbers m,n and any real number x we have the
equality

xm`n “ pxmq ¨ pxnq.

Exercise 3.2 asks you to prove this fact.

Example 3.2.1. Let us prove that

n
ÿ

k“1

k “
npn` 1q

2
, @n P N. (3.2.1)

The expanded form of the last equality is

1` 2` ¨ ¨ ¨ ` n “
npn` 1q

2
, @n P N.
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Let us denote by Sn the sum 1 ` 2 ` ¨ ¨ ¨ ` n. We argue by induction. The initial case
n “ 1 is trivial since

1 ¨ p1` 1q

2
“ 1 “ S1.

For the inductive case we assume that

Sn “
npn` 1q

2
,

and we have to prove that

Sn`1 “
pn` 1qp pn` 1q ` 1q

2
“
pn` 1qpn` 2q

2
.

Indeed we have

Sn`1 “ Sn ` pn` 1q “
npn` 1q

2
` n` 1 “

npn` 1q

2
`

2pn` 1q

2
“
npn` 1q ` 2pn` 1q

2

(factor out pn` 1q)

“
pn` 1qpn` 2q

2
. [\

Example 3.2.2 (Bernoulli’s inequality). We want to prove a simple but very versatile
inequality that goes by the name of Bernoulli’s inequality. More precisely it states that
inequality

@x ě ´1, @n P N : p1` xqn ě 1` nx. (3.2.2)

We argue by induction. Clearly, the inequality is obviously true when n “ 1 and the initial
case is true. For the inductive case, we assume that

p1` xqn ě 1` nx, @x ě ´1 (3.2.3)

and we have to prove that

p1` xqn`1 ě 1` pn` 1qx, @x ě ´1.

Since x ě ´1 we deduce 1`x ě 0. Multiplying both sides of (3.2.3) with the nonnegative
number 1` x we deduce

p1` xqn`1 ě p1` xqp1` nxq “ 1` nx` x` nx2 ě 1` nx` x “ 1` pn` 1qx. [\

Example 3.2.3 (Newton’s Binomial Formula). Before we state this very impor-
tant formula we need to introduce several notations widely used in mathematics. For
n P NY t0u we define n! (read n factorial) as follows

0! :“ 1, 1! :“ 1, 2! “ 1 ¨ 2, 3! “ 1 ¨ 2 ¨ 3, ¨ ¨ ¨n! “ 1 ¨ 2 ¨ ¨ ¨n.

Given k, n P NY t0u, k ď n we define the binomial coefficient
`

n
k

˘

(read n choose k)
ˆ

n

k

˙

:“
n!

k! ¨ pn´ kq!
.

We record below the values of these binomial coefficients for small values of n
ˆ

0

0

˙

“ 1,

ˆ

1

0

˙

“

ˆ

1

1

˙

“ 1,
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ˆ

2

0

˙

“
2!

p0!qp2!q
“ 1,

ˆ

2

1

˙

“
2!

p1!qp1!q
“ 2,

ˆ

2

2

˙

“
2!

p2!qp0!q
“ 1,

ˆ

3

0

˙

“
3!

p0!qp3!q
“

ˆ

3

3

˙

“ 1,

ˆ

3

1

˙

“
p3!q

p1!qp2!q
“

3!

p2!qp1!q
“

ˆ

3

2

˙

“ 3.

Here is a more involved example
ˆ

7

3

˙

“
7!

p3!qp4!q
“

7 ¨ 6 ¨ 5 ¨ 4 ¨ 3 ¨ 2 ¨ 1

p3!q1 ¨ 2 ¨ 3 ¨ 4
“

7 ¨ 6 ¨ 5

3!
“

7 ¨ 6 ¨ 5

6
“ 35.

The binomial coefficients can be conveniently arranged in the so called Pascal triangle
`

0
k

˘

: 1

`

1
k

˘

: 1 1

`

2
k

˘

: 1 2 1

`

3
k

˘

: 1 3 3 1

`

4
k

˘

: 1 4 6 4 1
...

...
...

...
...

...
...

...
...

...

Observe that each entry in the Pascal triangle is the sum of the closest neighbors above
it.

The binomial coefficients play an important role in mathematics. One reason behind
their usefulness is Newton’s binomial formula which states that, for any natural number
n, and any real numbers x, y, we have the equality below

px` yqn “

ˆ

n

0

˙

xn `

ˆ

n

1

˙

xn´1y `

ˆ

n

2

˙

xn´2y2 ` ¨ ¨ ¨ `

ˆ

n

n´ 1

˙

xyn´1 `

ˆ

n

n

˙

yn

“

n
ÿ

k“0

ˆ

n

k

˙

xn´kyk.

(3.2.4)

We will prove this equality by induction on n. For n “ 1 we have

px` yq1 “ x` y “

ˆ

1

0

˙

x`

ˆ

1

1

˙

y,

which shows that the case n “ 1 of (3.2.4) is true.

As for the inductive steps, we assume that (3.2.4) is true for n and we prove that it is
true for n` 1. We have

px` yqn`1 “ px` yqpx` yqn

(use the inductive assumption)

“ px` yq

ˆˆ

n

0

˙

xn `

ˆ

n

1

˙

xn´1y `

ˆ

n

2

˙

xn´2y2 ` ¨ ¨ ¨ `

ˆ

n

n´ 1

˙

xyn´1 `

ˆ

n

n

˙

yn
˙
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“ x

ˆˆ

n

0

˙

xn `

ˆ

n

1

˙

xn´1y `

ˆ

n

2

˙

xn´2y2 ` ¨ ¨ ¨ `

ˆ

n

n´ 1

˙

xyn´1 `

ˆ

n

n

˙

yn
˙

`y

ˆˆ

n

0

˙

xn `

ˆ

n

1

˙

xn´1y `

ˆ

n

2

˙

xn´2y2 ` ¨ ¨ ¨ `

ˆ

n

n´ 1

˙

xyn´1 `

ˆ

n

n

˙

yn
˙

“

ˆ

n

0

˙

xn`1 `

ˆ

n

1

˙

xny `

ˆ

n

2

˙

xn´1y2 ` ¨ ¨ ¨ `

ˆ

n

n´ 1

˙

x2yn´1 `

ˆ

n

n

˙

xyn

`

ˆ

n

0

˙

xny `

ˆ

n

1

˙

xn´1y2 `

ˆ

n

2

˙

xn´2y3 ` ¨ ¨ ¨ `

ˆ

n

n´ 1

˙

xyn `

ˆ

n

n

˙

yn`1

“

ˆ

n

0

˙

xn`1 `

ˆˆ

n

1

˙

`

ˆ

n

0

˙˙

xny `

ˆˆ

n

2

˙

`

ˆ

n

1

˙˙

xn´1y2 ` ¨ ¨ ¨

`

ˆˆ

n

k

˙

`

ˆ

n

k ´ 1

˙˙

xn`1´kyk ` ¨ ¨ ¨ `

ˆˆ

n

n

˙

`

ˆ

n

n´ 1

˙˙

xyn `

ˆ

n

n

˙

yn`1.

Clearly
ˆ

n

0

˙

“ 1 “

ˆ

n` 1

0

˙

,

ˆ

n

n

˙

“ 1 “

ˆ

n` 1

n` 1

˙

.

We want to show 1 ď k ď n we have the Pascal’s formula
ˆ

n` 1

k

˙

“

ˆ

n

k

˙

`

ˆ

n

k ´ 1

˙

. (3.2.5)

Indeed, we have
ˆ

n

k

˙

`

ˆ

n

k ´ 1

˙

“
n!

k!pn´ kq!
`

n!

pk ´ 1q!pn´ k ` 1q!

“
n!

kpk ´ 1q!pn´ kq!
`

n!

pk ´ 1q!pn´ kq!pn´ k ` 1q

“
n!

pk ´ 1q!pn´ kq!

ˆ

1

k
`

1

n´ k ` 1

˙

“
n!

pk ´ 1q!pn´ kq!
¨

ˆ

pn´ k ` 1q

kpn´ k ` 1q
`

k

kpn´ k ` 1q

˙

“
n!

pk ´ 1q!pn´ kq!
¨

n` 1

kpn´ k ` 1q

“
pn` 1qn!

p kpk ´ 1q! q ¨ p pn´ k ` 1qpn´ kq! q
“

pn` 1q!

k!pn` 1´ kq!
“

ˆ

n` 1

k

˙

.

This completes the inductive step. [\
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3.3. Archimedes’ Principle

We begin with a simple but fundamental observation.

Proposition 3.3.1. Suppose that the nonempty subset E Ă N is bounded above. Then E
has a maximal element n0, i.e., n0 P E and n ď n0, @n P E.

Proof. From the completeness axiom we deduce that E has a least upper boundM “ supE P R.
We want to prove that M P E. We argue by contradiction. Suppose that M R E. In
particular, this means that any number in E is strictly smaller than M .

From the definition of the least upper bound we deduce that there must exist n0 P E
such that

M ´ 1 ă n0 ďM.

On the other hand, any natural number n greater than n0 must be greater than or equal
to n0 ` 1, n ě n0 ` 1. Observing that n0 ` 1 ą M , we deduce that any natural number
ą n0 is also ą M . Since M R E, then n0 ă M , and the above discussion show that the
interval pn0,Mq contains no natural numbers, thus no elements of E. Hence, any real
number in pn0,Mq will be an upper bound for E, contradicting that M is the least upper
bound. [\

Theorem 3.3.2 (Archimedes’ Principle). Let ε be a positive real number. Then for any
x ą 0 there exists n P N such that nε ą x. 3

Proof. Consider the set

E :“
␣

n P N; nε ď x
(

.

If E “ H, then this means that nε ą x for any n P N and the conclusion of the theorem
is guaranteed. Suppose that E ‰ H. Observe that

n ď
x

ε
, @n P E.

Hence, the set E is bounded above, and the previous proposition shows that it has a
maximal element n0. Then n0 ` 1 R E, so that pn0 ` 1qε ą x. [\

Definition 3.3.3. The set of integers is the subset Z Ă R consisting of the natural
numbers, the negatives of natural numbers and 0. [\

The proof of the following results are left to you as an exercise.

Proposition 3.3.4. If m,n P Z, then m` n,mn P Z. [\

Proposition 3.3.5. For any real number x the interval px ´ 1, xs contains exactly one
integer. [\

3A popular formulation of Archimedes’ principle reads: one can fill an ocean with grains of sand.
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Corollary 3.3.6. For any real number x there exists a unique integer n such that

n ď x ă n` 1.

This integer is called the integer part of x and it is denoted by txu.

Proof. Observe that the inequalities n ď x ă n` 1 are equivalent to the inequalities

x´ 1 ă n ď x.

By Proposition 3.3.5, the interval px´ 1, xs contains exactly one integer. This proves the
existence and uniqueness of the integer with the postulated properties. [\

Observe for example that
Z

1

2

^

“ 0,

Z

´
1

2

^

“ ´1,

Theorem 3.3.7 (Division with remainder). Let m,n P Z, n ą 0. There exists a unique
pair of integers pq, rq P Zˆ Z satisfying the following properties.

(i) m “ qn` r.

(ii) 0 ď r ă n.

The number r is called the remainder of the division of m by n.

Proof. Uniqueness. Suppose that there exist two pairs of integers pq1, r1q and pq2, r2q satisfying (i) and (ii). Then

nq1 ` r1 “ m “ nq2 ` r2,

so that,

nq1 ´ nq2 “ r2 ´ r1 ñ npq1 ´ q2q “ r2 ´ r1 ñ n ¨ |q1 ´ q2| “ |r2 ´ r1|.

The natural numbers r1, r2 satisfy 0 ď r1, r2 ă |n| so that r1, r2 P r0, n ´ 1s. Using Exercise 2.20 we deduce

|r2 ´ r1| ď n´ 1. Hence n ¨ |q1 ´ q2| ď n´ 1 which implies

|q1 ´ q2| ď
n´ 1

n
ă 1.

The quantity |q1 ´ q2| is a nonnegative integer ă 1 so that it must equal 0. This implies q1 “ 2 and

r2 ´ r1 “ npq1 ´ q2q “ 0.

This proves the uniqueness.

Existence. Let

q :“
Ym

n

]

P Z.

Then

q ď
m

n
ă q ` 1ñ nq ď m ă npq ` 1q “ nq ` nñ 0 ď m´ nq ă n.

We set r :“ m´ nq and we observe that the pair pq, rq satisfies all the required properties. [\
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Definition 3.3.8. (a) Let m,n P Z, m ‰ 0. We say that m divides n, and we write this
m|n if there exists an integer k such that n “ km. When m divides n we also say that m
is a divisor of n, or that n is a multiple of m, or that n is divisible by m.

(b) A prime number is a natural number p ą 1 whose only divisors are ˘1 and ˘p. [\

Observe that if d is a divisor of m, then ´d is also a divisor of m. An even integer is
an integer divisible by 2. An odd integer is an integer not divisible by 2.

Given two integers m,n consider the set of common positive divisors of m and n, i.e.,
the set

Dm,n :“
␣

d P N; d|m^ d|n
(

.

This set is not empty because 1 is a common positive divisor. This is bounded above
because any divisor of m is ď |m|. Thus the set Dm,n has a maximal element called the
greatest common divisor of m and n and denoted by gcdpm,nq. Two integers are called
coprime if gcdpm,nq “ 1, i.e., 1 is their only positive common divisor.

The next result describes on the most important property of the set Z of integers. We
will not include its rather elaborate and tricky proof. The curious reader can find the
proof in any of the books [6, 8, 28].

Theorem 3.3.9 (Fundamental Theorem of Arithmetic). (a) If p is a prime number that
divides a product of integers mn, then p|m or p|n.

(b) Any natural number n can be written in a unique fashion as a product

n “ pα1
1 ¨ ¨ ¨ pαk

k ,

where p1 ă p2 ă ¨ ¨ ¨ ă pk are prime numbers and α1, . . . , αk are natural numbers. [\

3.4. Rational and irrational numbers

We want to isolate another important subclasses of real numbers.

Definition 3.4.1. The set of rationals (or rational numbers) is the subset Q Ă R con-
sisting of real numbers of the form m{n where m,n P Z, n ‰ 0. [\

If q is a rational number, then it can be written as a fraction of the form q “ m
n , n ‰ 0.

We denote by d the gcdpm,nq. Thus there exist integers m1 and n1 such that

m “ dm1, n “ dn1.

Clearly the numbers m1, n1 are coprime, and we have

q “
dm1

dn1
“
m1

n1
.

We have thus proved the following result.

Proposition 3.4.2. Every rational number is the ratio of two coprime integers. [\
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The proof of the following result is left to you as an exercise.

Proposition 3.4.3. If q, r P Q, then q ` r, qr P Q. [\

We have a sequence of inclusions

N Ă Z Ă Q Ă R.

Clearly N ‰ Z because ´1 P Z, but ´1 R N. Note however that, although Z contains N,
the set of integers Z is countable, i.e., it has the same cardinality as N.

Next observe that Z ‰ Q. Indeed, the rational number 1{2 is not an integer, because
it is positive and smaller than any natural number.

Similarly, although Q strictly contains Z, these two sets have the same cardinality:
they are both countable. However, the following very important result shows that,
loosely speaking, there are “many more rational numbers”.

Proposition 3.4.4 (Density of rationals). Any open interval pa, bq Ă R, no matter how
small, contains at least one rational number.

Proof. From Archimedes’ principle we deduce that there exists at least one natural num-
ber n such that n ą 1

b´a . Observe that pb ´ aq is the length of the interval pa, bq. This
inequality is obviously equivalent to the inequality

1

n
ă b´ aðñnpb´ aq ą 1

(This last equality codifies a rather intuitive fact: one can divide a stick of length one into
many equal parts so that the subparts are as small as we please.)

We will show that we can find an integer m such that m
n P pa, bq. Observe that

a ă
m

n
ă bðñ na ă m ă nbðñ m P pna, nbq.

This shows that the interval pa, bq contains a rational number if the interval pna, nbq
contains an integer.

Since npb´ aq ą 1, we deduce nb ą na` 1. In particular, this shows that the interval
pna, na ` 1s is contained in the interval pna, nbq. From Proposition 3.3.5 we deduce that
the interval pna, na` 1s contains an integer m. [\

This abundance of rational numbers lead people to believe for quite a long while that
all real numbers must be rational. Then the ancient Greeks showed that there must
exist real numbers that cannot be rational. These numbers were called irrational. In the
remainder of this section we will describe how one can produce a large supply of irrational
numbers. We start with a baby case.

Proposition 3.4.5. There exists a unique positive number r such that r2 “ 2. This

number is called the square root of 2 and it is denoted by
?
2
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Proof. We begin by observing the following useful fact :

@x, y ą 0 : x ă yðñx2 ă y2. (3.4.1)

Indeed
y2 ´ x2 ą 0ðñpy ´ xqpy ` xq ą 0ðñy ą x.

This useful fact takes care of the uniqueness because, if r1, r2 are two positive real numbers
such that r21 “ r22 “ 2, then r1 “ r2ðñr

2
1 “ r22.

To establish the existence of a positive r such that r2 “ 2 consider as in Example
2.3.2(b) the set

R “
␣

x ą 0; x2 ă 2
(

.

We have seen that this set is bounded above and thus it admits a least upper bound

r :“ supR.

We want to prove that r2 “ 2. We argue by contradiction and we assume that r2 ‰ 2.
Thus, either r2 ă 2 or r2 ą 2.

Case 1. r2 ă 2. We will show that there exists ε0 such that pr ` ε0q
2 ă 2. This would

imply that r`ε0 P R and would contradict the fact that r is an upper bound for R because
r would be smaller than the element r ` ε0 of R.

Set δ :“ 2´ r2. For any ε P p0, 1q we have

pr ` εq2 ´ r2 “
`

pr ` εq ´ r
˘`

pr ` εq ` r
˘

“ εp2r ` εq ă εp2r ` 1q.

Now choose a number ε0 P p0, 1q such that

ε0 ă
δ

2r ` 1
.

Then
pr ` ε0q

2 ´ r2 ă ε0p2r ` 1q ă δ

ñ pr ` ε0q
2 ă r2 ` δ “ r2 ` 2´ r2 “ 2ñ r ` ε0 P R.

Case 2. r2 ą 2. We will prove that under this assumption

Dε0 P p0, 1q such that r ´ ε0 ą 0 and pr ´ ε0q
2 ą 2. (3.4.2)

Let us observe that (3.4.2) leads to a contradiction. Indeed, observe that pr ´ ε0q is an
upper bound for R. Indeed, if x P R, then

x2 ă 2 ă pr ´ ε0q
2 p3.4.1qñ x ă r0 ´ ε.

Thus, r ´ ε0 is an upper bound of R and this upper bound is obviously strictly smaller
than r, the least upper bound of R. This is a contradiction which shows that the situation
r2 ą 2 is also not possible. Let us now prove (3.4.2).

Denote by δ the difference δ “ r2 ´ 2 ą 0. For any ε P p0, rq we have

r2 ´ pr ´ εq2 “
´

r ´ pr ´ εq
¯´

r ` pr ´ εq
¯

“ εp2r ´ εq ă 2rε.
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We have thus shown that for any ε P p0, rq we have pr ´ εq ą 0 and

r2 ´ pr ´ εq2 ď 2rεðñpr ´ εq2 ě r2 ´ 2rε.

Now choose ε0 P p0, rq small enough so that ε0 ă
δ
2r . Hence 2rε0 ă δ so that ´2rε0 ą ´δ

and

pr ´ ε0q
2 ą r2 ´ 2rε0 ą r2 ´ δ “ r2 ´ pr2 ´ 2q “ 2.

We deduce again that the situation r2 ą 2 is not possible so that r2 “ 2.

[\

The result we have just proved can be considerably generalized.

Theorem 3.4.6. Fix a natural number n ě 2. Then for any positive real number a there
exists a unique, positive real number r such that rn “ a.

Proof. Existence. Consider the set

S :“
␣

s P R; s ě 0^ sn ď a
(

.

Observe that this is a nonempty set since 0 P S. We want to prove that S is also bounded.
To achieve this we need a few auxiliary results.

Lemma 3.4.7 (A very handy identity). For any real numbers x, y and any natural
number n we have the equality

xn ´ yn “
`

x´ y
˘

¨
`

xn´1 ` xn´2y ` ¨ ¨ ¨ ` xyn´2 ` yn´1
˘

(3.4.3)

Proof. We have
`

x´ y
˘

¨
`

xn´1 ` xn´2y ` ¨ ¨ ¨ ` xyn´2 ` yn´1
˘

“ x
`

xn´1 ` xn´2y ` ¨ ¨ ¨ ` xyn´2 ` yn´1
˘

´ y
`

xn´1 ` xn´2y ` ¨ ¨ ¨ ` xyn´2 ` yn´1
˘

“ xn ` xn´1y ` xn´2y2 ` ¨ ¨ ¨ ` x2yn´2 ` xyn´1

´ xn´1y ´ xn´2y2 ´ ¨ ¨ ¨ ´ x2yn´2 ´ xyn´1 ´ yn

“ xn ´ yn.

[\

Here is an immediate useful consequence of this identity.

@n P N, @x, y ą 0 : x ă yðñxn ă yn. (3.4.4)

Indeed

yn ´ xn ą 0ðñpy ´ xq
`

yn´1 ` yn´2x` ¨ ¨ ¨ ` xn´1
˘

ą 0ðñy ´ x ą 0.

Lemma 3.4.8. Any positive real number x such that xn ě a is an upper bound for S. In
particular, any natural number k ą a is an upper bound for S so that S is a bounded set.
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Proof. Let x be a positive real number such that xn ě a. We want to prove that x ě s
for any s P S. Indeed

s P S ñ sn ď a ď xn
p3.4.4q
ñ s ď x.

This proves the first part of the lemma.

Suppose now that k is a natural number such that k ą a. Observe first that

kn ą kn´1 ą ¨ ¨ ¨ ą k ą a.

From the first part of the lemma we deduce that k is an upper bound for S. [\

The nonempty set S is bounded above. The Completeness Axiom implies that it
admits a least upper bound

r :“ supS.

We will show that rn “ a. We argue by contradiction and we assume that rn ‰ a. Thus,
either rn ă a, or rn ą a.

Case 1. rn ă a. We will show that we can find ε0 P p0, 1q such that pr ` ε0q
n ă a. This

would imply that r` ε0 P S and it would contradict the fact that r is an upper bound for
S because r is less than the number r ` ε0 P S.

Denote by δ the difference δ :“ a´ rn ą 0. For any ε P p0, 1q we have

pr ` εqn ´ rn “
´

pr ` εq ´ r
¯´

pr ` εqn´1 ` pr ` εqn´2r2 ` ¨ ¨ ¨ ` rn´1
¯

(r ` ε ă r ` 1)

ď ε
´

pr ` 1qn´1 ` pr ` 1qn´2r ` ¨ ¨ ¨ ` rn´1
¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“:q

We have thus proved that

pr ` εqn ď rn ` εq, @ε P p0, 1q.

Choose ε0 P p0, 1q small enough so that

ε0 ă
δ

q
ðñε0q ă δ.

Then

pr ` ε0q
n ď rn ` ε0q ă rn ` δ “ añ r ` ε0 P S.

This contradicts the fact that r is an upper bound for S and shows that the inequality rn ă a is impossible.

Case 2. rn ą a. We will prove that under this assumption

Dε0 P p0, 1q such that r ´ ε0 ą 0 and pr ´ ε0q
n ą a. (3.4.5)

Let us observe that (3.4.5) leads to a contradiction. Indeed, Lemma 3.4.8 implies that
r ´ ε0 is an upper bound of S and this upper bound is obviously strictly smaller than r,
the least upper bound of S. This is a contradiction which shows that the situation bn ą a
is also not possible. Let us now prove (3.4.5).
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Denote by δ the difference δ “ rn ´ a ą 0. For any ε P p0, rq we have

rn ´ pr ´ εqn “
´

r ´ pr ´ εq
¯´

rn´1 ` rn´2pr ´ εq ` ¨ ¨ ¨ ` ¨ ¨ ¨ ` pr ´ εqn´1
¯

(pr ´ εq ă b)

ď ε prn´1 ` rn´2r ` ¨ ¨ ¨ ` rn´1q
looooooooooooooooooomooooooooooooooooooon

“:q

.

We have thus shown that for any ε P p0, rq we have pr ´ εq ą 0 and

rn ´ pr ´ εqn ď εqðñpr ´ εqn ě rn ´ εq.

Now choose ε0 P p0, cq small enough so that ε0 ă
δ
q
. Hence ε0q ă δ so that ´ε0q ą ´δ and

pr ´ ε0q
n ą rn ´ ε0q ą rn ´ δ “ rn ´ prn ´ aq “ a.

We deduce again that the situation rn ą a is not possible so that rn “ a. This completes the existence part of the

proof.

Uniqueness. Suppose that r1, r2 are two positive numbers such that rn1 “ rn2 “ a. Using
(]3.4.4) we deduce that r1 “ r2. This completes the proof of Theorem 3.4.6. [\

The above result leads to the following important concept.

Definition 3.4.9. Let a be a positive real number and n P N. The n-th root of a, denoted

by a
1
n or n

?
a is the unique positive real number r such that rn “ a. [\

Theorem 3.4.10. The positive number
?
2 is not rational.

Proof. We argue by contradiction and we assume that
?
2 is rational. It can therefore be

represented as a fraction,
?
2 “

m

n
, m, n P N, gcdpm,nq “ 1.

Thus 2 “ m2

n2 and we deduce

2n2 “ m2. (3.4.6)

Since 2 is a prime number and 2|m2 we deduce that 2|m, i.e., m “ 2m1 for some natural
number m1. Using this last equality in (3.4.6) we deduce

2n2 “ p2m1q
2 “ 4m2

1 ñ n2 “ 2m2
1.

Thus 2|n2, and arguing as above we deduce that 2|n. Hence 2 is a common divisor of both
m and n. This contradicts the starting assumption that gcdpm,nq “ 1 and proves that?
2 cannot be rational. [\

Now that we know that there exist irrational numbers, we can ask, how many there
are. It turns out that most real numbers are irrational, but we will not prove this fact
now.
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3.5. Exercises

Exercise 3.1. (a) Suppose that X,Y are two sets such that X „ Y . Prove that Y „ X.

(b) Prove that if X,Y, Z are sets such that X „ Y and Y „ Z, then X „ Z. [\

Exercise 3.2. Prove by induction that for any natural numbersm,n and any real number
x we have the equality

xm`n “ pxmq ¨ pxnq. [\

Exercise 3.3. (a) Prove that for any natural number n and any real numbers

a1, a2, . . . , an, b1, . . . , bn, c

we have the equalities

n
ÿ

k“1

pak ` bkq “
n
ÿ

i“1

ai `
n
ÿ

j“1

bj ,
n
ÿ

k“1

pcakq “ c

˜

n
ÿ

k“1

ak

¸

. [\

(b) Using (a) and (3.2.1) prove that for any natural number n and any real numbers a, r
we have the equality

n
ÿ

k“0

pa` krq “ a` pa` rq ` pa` 2rq ¨ ¨ ¨ ` pa` nrq “ pn` 1qa`
rnpn` 1q

2
.

(c) Use (b) to compute

3` 7` 11` 15` 19` ¨ ¨ ¨ ` 999, 999.

Express the above using the symbol
ř

.

(d) Prove that for any natural number n we have the equality

1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q “ n2. [\

Exercise 3.4. Prove that for any natural number n and any positive real numbers x, y
such that x ă 1 ă y we have

xn ď x, y ď yn. [\

Exercise 3.5. Prove that if 0 ă a ă b, and n ě 2, then

n
?
a ă

n
?
b, a ă

?
ab ă

a` b

2
ă b. [\

Exercise 3.6. Find a natural number N0 with the following property: for any n ą N0

we have

0 ă
n

n2 ` 1
ă

1

106
“

1

1, 000, 000
. [\
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Exercise 3.7. Prove that for any natural number n and any real number x ‰ 1 we have
the equality.

1´ xn

1´ x
“ 1` x` x2 ` ¨ ¨ ¨ ` xn´1. [\

Exercise 3.8. (a) Compute
ˆ

11

2

˙

,

ˆ

11

3

˙

,

ˆ

11

8

˙

,

ˆ

15

4

˙

,

ˆ

15

11

˙

.

(b) Show that for any n, k P NY t0u, k ď n we have
ˆ

n

k

˙

“

ˆ

n

n´ k

˙

.

(c) Use Newton’s binomial formula to show that for any natural number n we have the
equalities

ˆ

n

0

˙

`

ˆ

n

1

˙

`

ˆ

n

2

˙

` ¨ ¨ ¨ `

ˆ

n

n

˙

“ 2n,

ˆ

n

0

˙

´

ˆ

n

1

˙

`

ˆ

n

2

˙

` ¨ ¨ ¨ ` p´1qn
ˆ

n

n

˙

“ 0.

Deduce that
ˆ

n

0

˙

`

ˆ

n

2

˙

`

ˆ

n

4

˙

` ¨ ¨ ¨ “ 2n´1. [\

Exercise 3.9. Show that for any real number x, the interval px ´ 1, xs contains exactly
one integer.

Hint: For uniqueness use the Corollaries 3.1.8 and 3.1.9. To prove existence consider
separately the cases

‚ x P Z.
‚ px P RzZq ^ px ą 0q.

‚ px P RzZq ^ px ă 0q.

[\

Exercise 3.10. Let a, b, c be real numbers, a ‰ 0.

(a) Show that

ax2 ` bx` c “ a

ˆ

x`
b

2a

˙2

´

ˆ

b2 ´ 4ac

4a

˙

, @x P R.

(b) Prove that the following statements are equivalent.

(i) There exist r1, r2 P R such that

ax2 ` bx` c “ apx´ r1qpx´ r2q.
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(ii) There exists r P R such that ar2 ` br ` c “ 0.

(iii) b2 ´ 4ac ě 0.

[\

Exercise 3.11. Find the ranges of the functions

f : p´8, 5q Ñ R, fpxq “
x` 1

x´ 5
,

and

g : RÑ R, gpxq “
x

x2 ` 1
. [\

Exercise 3.12. (a) Show that the equation x2 ´ x ´ 1 “ 0 has two solutions r1, r2 P R
and then prove that r1, r2 satisfy the equalities

r1 ` r2 “ 1, r1r2 “ ´1.

(b) For any nonnegative integer n we set

Fn “
rn`11 ´ rn`12

r1 ´ r2
,

where r1, r2 are as in (a). Compute F0, F1, F2.

(c) Prove by induction that for any nonnegative integer n we have

rn`21 “ rn`11 ` rn1 , rn`22 “ rn`12 ` rn2 ,

and

Fn`2 “ Fn`1 ` Fn.

(d) Use the above equality to compute F3, . . . , F9. [\

Exercise 3.13. Prove Propositions 3.3.4 and 3.4.3 . [\

Exercise 3.14. (a) Verify that for any a, b ą 0 and any m,n P N we have the equalities

pabq
1
n “ a

1
n ¨ b

1
n ,

`

a
1
n

˘
1
m “ a

1
mn ,

pamq
1
n “

`

a
1
n

˘m
“: a

m
n ,

a
km
kn “ a

m
n , @k P N.

pa
m
n q´1 “

`

a´1
˘

m
n “: a´

m
n .

a´
km
kn “ a´

m
n , @k P N.

☞ Recall that an expression of the form “bla-bla-bla “: x” signifies that the quantity x is
defined to be whatever bla-bla-bla means. In particular the notation

`

a
1
n

˘m
“: a

m
n

indicates that the quantity a
m
n is defined to be the m-th power of the n-th root of a.
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(b) Prove that if a ą 0, then for any m,m1 P Z and n, n1 P N such that

m

n
“
m1

n1
,

then

a
m
n “ a

m1

n1

Any rational number r admits a nonunique representation as a fraction

r “
m

n
, m P Z, n P N.

Part (b) allows us to give a well defined meaning to ar, ą 0, r P Q.

(c) Show that for all r1, r2 P Q and any a ą 0 we have

ar1 ¨ ar2 “ ar1`r2 .

(d) Suppose that a ą b ą 0. Prove that for any rational number r ą 0 we have

ar ą br.

(e) Suppose that a ą 1. Prove that for any rational numbers r1, r2 such that r1 ă r2 we
have

ar1 ă ar2 .

(f) Suppose that a P p0, 1q. Prove that for any rational numbers r1, r2 such that r1 ă r2
we have

ar1 ą ar2 . [\

3.6. Exercises for extra credit

Exercise* 3.1. There are 5 heads and 14 legs in a family. How many people and how
many dogs are in the family? . [\

Exercise* 3.2. You have two vessels of volumes 5 liters and 3 litters respectively. Measure
one liter, producing it in one of the vessels. [\

Exercise* 3.3. Each number from from 1 to 1010 is written out in formal English (e.g.,
“two hundred eleven”, “one thousand forty-two”) and then listed in alphabetical order (as
in a dictionary, where spaces and hyphens are ignored). What is the first odd number in
the list? [\

Exercise* 3.4. Consider the map f : NÑ Z defined by

fpnq “ p´1qn`1
Yn

2

]

.

(i) Compute fp1q, fp2q, fp3q, fp4q, fp5q, fp6q, fp7q.

(ii) Given a natural number k, compute fp2kq and fp2k ´ 1q.

(iii) Prove that f is a bijection.
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[\

Exercise* 3.5. (a) Let p be a prime number and n a natural number ą 1. Prove that
n
?
p is irrational.

(b) Let m,n be natural numbers and p, q prime numbers. Prove that

p1{m “ q1{n ðñ pp “ qq ^ pm “ nq. [\

Exercise* 3.6. Start with the natural numbers 1, 2, . . . , 999 and change it as follows:
select any two numbers, and then replace them by a single number, their difference. After
998 such changes you are left with a single number. Show that this number must be
even. [\

Exercise* 3.7. Let S Ă r0, 1s be a set satisfying the following two properties.

(i) 0, 1 P S.

(ii) For any n P N and any pairwise distinct numbers s1, . . . , sn P S we have

s1 ` ¨ ¨ ¨ ` sn
n

P S.

Show that S “ QX r0, 1s. [\

Exercise* 3.8. Given 25 positive real numbers, prove that you can choose two of them
x, y so none of the remaining numbers is equal to the sum x` y or the differences x´ y,
y ´ x. [\

Exercise* 3.9. At a stockholders’ meeting, the board presents the month-by-month profit
(or losses) since the last meeting. “Note” says the CEO, “that we made a profit over every
consecutive eight-month period.”

“Maybe so”, a shareholder complains, “but I also see that we lost over every consec-
utive five-month period!”

What is the maximum number of months that could have passed since the last meeting?
[\

Exercise* 3.10 (Erdös-Szekeres). Suppose we are given an injection f : t1, . . . , 10001u Ñ R.
Prove that there exists a subset I Ă t1, . . . , 10001u of cardinality 101 such that, either

fpi1q ă fpi2q, @i1, i2 P I, i1 ă i2,

or

fpi1q ą fpi2q, @i1, i2 P I, i1 ă i2. [\

Exercise* 3.11 (Chebyshev). Suppose that p1, . . . , pn are positive numbers such that

p1 ` ¨ ¨ ¨ ` pn “ 1.
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Prove that if x1, . . . , xn and y1, . . . , yn are real numbers such that

x1 ď x2 ď ¨ ¨ ¨ ď xn and y1 ď y2 ď ¨ ¨ ¨ ď yn,

then
n
ÿ

k“1

xkykpk ě

˜

n
ÿ

i“1

xipi

¸˜

n
ÿ

j“1

yjpj

¸

. [\

Exercise* 3.12. Let k P N. We are given k pairwise disjoint intervals I1, . . . , Ik Ă r0, 1s.
Denote by S their union. We know that for any d P r0, 1s there exist two points p, q P S
such that distpp, qq “ d. Prove that

length pI1q ` ¨ ¨ ¨ ` length pIkq ě
1

k
. [\





Chapter 4

Limits of sequences

The concept of limit is the central concept of this course. This chapter deals with the
simplest incarnation of this concept namely, the notion of limit of a sequence of real
numbers.

4.1. Sequences

Formally, a sequence of real numbers is a function x : N Ñ R. We typically describe
a sequence x : N Ñ R as a list pxnqnPN consisting of one real number for each natural
number n,

x1, x2, x3, . . . , xn, . . . .

Often we will allow lists that start at time 0, pxnqně0,

x0, x1, x2, . . . .

If we use our intuition of a real number as corresponding to a point on a line, we can
think of a sequence pxnqně1 as describing the motion of an object along the line, where
xn describes the position of that object at time n.

Example 4.1.1. (a) The natural numbers form a sequence pnqnPN,

1, 2, 3, . . . .

(b) The arithmetic progression with initial term a P R and ratio r P R is the sequence

a, a` r, a` 2r, a` 3r, . . . .

For example, the sequence

3, 7, 11, 15, 19, ¨ ¨ ¨

is an arithmetic progression with initial term 3 and ratio 4. The constant sequence

a, a, a, . . . ,

59
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is an arithmetic progression with initial term a and ratio 0.

(c) The geometric progression with initial term a P R and ratio r P R is the sequence

a, ar, ar2, ar3, . . . .

For example, the sequence

1,´1, 1,´1,

is the geometric progression with initial term 1 and ratio ´1.

(d) The Fibonacci sequence is the sequence F0, F1, F2, . . . given by the initial condition

F0 “ F1 “ 1,

and the recurrence relation

Fn`2 “ Fn`1 ` Fn, @n ě 0.

For example

F2 “ 1` 1 “ 2, F3 “ 2` 1 “ 3, F4 “ 3` 2 “ 5, F5 “ 5` 3 “ 8, . . . .

In Exercise 3.12 we gave an alternate description to the Fibonacci sequence. [\

Definition 4.1.2. Let pxnqnPN be a sequence of real numbers.

(i) The sequence pxnqnPN is called increasing if

xn ă xn`1, @n P N.

(ii) The sequence pxnqnPN is called decreasing if

xn ą xn`1, @n P N.

(iii) The sequence pxnqnPN is called nonincreasing if

xn ě xn`1, @n P N.

(iv) The sequence pxnqnPN is called nondecreasing if

xn ď xn`1, @n P N.

(v) A sequence pxnqnPN is called monotone if it is either nondecreasing, or nonin-
creasing. It is called strictly monotone if it is either increasing, or decreasing.

(vi) The sequence pxnqnPN is called bounded if there exist real numbers m,M such
that

m ď xn ďM, @n P N. [\

Note that an arithmetic progression is increasing if and only if its ratio is positive,
while a geometric progression with positive initial term and positive ratio is monotone: it
is increasing if the ratio is ą 1, decreasing if the ratio ă 1 and constant if the ratio is “ 1.
A geometric progression is bounded if and only if its ratio r satisfies |r| ď 1.
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A subsequence of a sequence x : NÑ R is a restriction of x to an infinite subset S Ă N.
An infinite subset S Ă N can itself be viewed as an increasing sequence of natural numbers

n1 ă n2 ă n3 ă . . . ,

where

n1 :“ minS, n2 :“ minSztn1u, . . . , nk`1 :“ minSztn1, . . . , nku, . . . .

Thus a subsequence of a sequence pxnqnPN can be described as a sequence pxnk
qkPN, where

pnkqkPN is an increasing sequence of natural numbers.

4.2. Convergent sequences

Definition 4.2.1. We say that the sequence of real numbers pxnq converges to the
number x P R if

@ε ą 0 : DN “ Npεq P N such that @n ą Npεq we have |xn ´ x| ă ε. (4.2.1)

A sequence pxnq is called convergent if it converges to some number x. More precisely,
this means

Dx P R, @ε ą 0 : DN “ Npεq P N such that @n ą Npεq we have |xn ´ x| ă ε.
(4.2.2)

The number x is called a limit of the sequence panq. A sequence is called divergent if
it is not convergent. [\

Observe that condition (4.2.1) can be rephrased as follows

@ε ą 0 : DN “ Npεq P N such that @n ą Npεq we have distpxn, xq ă ε. (4.2.3)

Before we proceed further, let us observe the following simple fact.

Proposition 4.2.2. Given a sequence pxnq there exists at most one real number x satis-
fying the convergence property (4.2.1).

Proof. Suppose that x, x1 are two real numbers satisfying (4.2.1). Thus,

@ε ą 0 : DN “ Npεq P N such that @n ą N we have |xn ´ x| ă ε,

and

@ε ą 0 : DN 1 “ N 1pεq P N such that @n ą N 1, we have |xn ´ x
1| ă ε.

Thus, if n ą N0pεq :“ maxpNpεq, N 1pεq q then

|xn ´ x|, |xn ´ x
1| ă ε.

We observe that if n ą N0pεq, then

|x´ x1| “ |px´ xnq ` pxn ´ x
1q| ď |x´ xn| ` |xn ´ x

1| ă 2ε.

In other words

@ε ą 0 : |x´ x1| ă 2ε, @n ą N0pεq.
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In the above statement the variable n really plays no role: if |x´x1| ă 2ε for some n, then
clearly |x´ x1| ă 2ε for any n. We conclude that

@ε ą 0 : |x´ x1| ă 2ε.

In other words, the distance distpx, x1q “ |x ´ x1| between x and x1 is smaller than any
positive real number, so that this distance must be zero (Exercise 2.14) and hence x “ x1.

[\

Definition 4.2.3. Given a convergent sequence pxnq, the unique real number x satisfying
the convergence condition (4.2.1) is called the limit of the sequence pxnq and we will
indicate this using the notations

x “ lim
nÑ8

xn or x “ lim
n
xn.

We will also say that pxnq tends (or converges) to x as n goes to 8. [\

Observe that

lim
nÑ8

xn “ xðñ lim
nÑ8

|xn ´ x| “ 0. (4.2.4)

The next example shows that convergent sequences do exist.

Example 4.2.4. (a) If pxnq is the constant sequence, xn “ x, for all n, then pxnq is
convergent and its limit is x.

(b) We want to show that

lim
nÑ8

C

n
“ 0, @C ą 0 . (4.2.5)

Let ε ą 0 and set Npεq :“
X

C
ε

\

` 1 P N. We deduce

Npεq ą
C

ε
, i.e.,

Npεq

C
ą

1

ε
.

For any n ą Npεq we have
n

C
ą
Npεq

C
ą

1

ε
ñ

C

n
ă ε.

Hence for any n ą Npεq we have

|xn| “
C

n
ă ε. [\

Definition 4.2.5. (a) A neighborhood of a real number x is defined to be an open interval pα, βq that contains x,

i.e., x P pα, βq.

(b) A neighborhood of 8 is an interval of the form pM,8q, while a neighborhood of ´8 is an interval of the form

p´8,Mq. [\

We have the following equivalent description of convergence. Its proof is left to you as an exercise.
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Proposition 4.2.6. Let pxnq be a sequence of real numbers. Prove that the following statements are equivalent.

(i) The sequence pxnq converges to x P R as nÑ8.

(ii) For any neighborhood U of x there exists a natural number N such that

@n
`

n ą N ñ xn P U
˘

. [\

The proof of the following result is left to you as an exercise.

Proposition 4.2.7. Suppose that pxnqnPN is a convergent sequence and x “ limnÑ8 xn.

(i) If pxnk
qkě1 is a subsequence of pxnq, then

lim
kÑ8

xnk
“ x.

(ii) Suppose that px1nqnPN is another sequence with the following property

DN0 P N : @n ą N0 x1n “ xn.

Then

lim
nÑ8

x1n “ x. [\

Part (ii) of the above proposition shows that the convergence or divergence of a se-
quence is not affected if we modify only finitely many of its terms. The next result is very
intuitive.

Proposition 4.2.8 (Squeezing Principle). Let panq pxnq, pynq be sequences such that

DN0 P N : @n ą N0, xn ď an ď yn.

If

lim
nÑ8

xn “ lim
nÑ8

yn “ a,

then

lim
nÑ8

an “ a.

Proof. We have

distpan, aq ď distpan, xnq ` distpxn, aq.

Since an lies in the interval rxn, yns for n ą N0 we deduce that

distpan, xnq ď distpyn, xnq, @n ą N0,

so that

distpan, aq ď distpyn, xnq ` distpxn, aq, @n ą N0.

Now observe that

distpyn, xnq ď distpyn, aq ` distpa, xnq.
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Hence,

distpan, aq ď distpyn, aq ` distpa, xnq ` distpxn, aq

“ distpyn, aq ` 2 distpxn, aq, @n ą N0.
(4.2.6)

Let ε ą 0. Since xn Ñ a there exists Nxpεq P N such that

@n ą Nxpεq : distpxn, aq ă
ε

3
.

Since yn Ñ a there exists Nypεq P N such that

@n ą Nypεq : distpyn, aq ă
ε

3
.

Set Npεq :“ maxtN0, Nxpεq, Nypεqu. For n ą Npεq we have

distpxn, aq ă
ε

3
, distpyn, aq ă

ε

3
and thus

distpyn, aq ` 2 distpxn, aq ă ε.

Using this in (4.2.6) we conclude that

@n ą Npεq distpan, aq ă ε.

This proves that an Ñ a as nÑ8. [\

Corollary 4.2.9. Suppose that a P R and panq, pxnq are sequences of real numbers such
that

|an ´ a| ď xn @n, lim
nÑ8

xn “ 0.

Then

lim
nÑ8

an “ a.

Proof. We have squeezed the sequence |an ´ a| between the sequences pxnq and the
constant sequence 0, both converging to 0. Hence |an ´ a| Ñ 0 and, in view of (4.2.4), we
deduce that also an Ñ a. [\

Example 4.2.10. We want to show that

@M ą 0, @r P p´1, 1q lim
nÑ8

Mrn “ 0 . (4.2.7)

Clearly, it suffices to show that M |r|n Ñ 0. This is clearly the case if r “ 0. Assume
r ‰ 0. Set

R :“
1

|r|
.

Then R ą 1 so that R “ 1 ` δ, δ ą 0. Bernoulli’s inequality (3.2.2) implies that @n P N
we have Rn ě 1` nδ so that

M |r|n “
M

Rn
ď

M

1` nδ
ď
M

nδ
“
C

n
, C :“

M

δ
.
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From Example 4.2.4 (b) we deduce that

lim
n

C

n
“ 0.

The desired conclusion now follows from the Squeezing Principle. [\

Example 4.2.11. We want to prove that

lim
n

rn

n!
“ 0, @r P R . (4.2.8)

We will rely again on the Squeezing Principle. Fix N0 P N such that N0 ą 2|r|. Then for
any n ą N0 we have

ˇ

ˇ

ˇ

ˇ

rn

n!

ˇ

ˇ

ˇ

ˇ

“
|r|n

n!
“

|r|N0rn´N0

1 ¨ 2 ¨ ¨ ¨N0 ¨ pN0 ` 1qpN0 ` 2q ¨ ¨ ¨n

“
|r|N0

N0!
loomoon

“:C0

¨
|r|

N0 ` 1
¨

|r|

N0 ` 2
¨ ¨ ¨
|r|

n
looooooooooooomooooooooooooon

pn´N0q terms

.

Now observe that
|r|

N0 ` 1
,
|r|

N0 ` 2
, . . . ,

|r|

n
ă
|r|

N0
ă

1

2
,

and we deduce
ˇ

ˇ

ˇ

ˇ

rn

n!

ˇ

ˇ

ˇ

ˇ

ă C0

ˆ

1

2

˙n´N0

“ C0

ˆ

1

2

˙´N0
ˆ

1

2

˙n

“ 2N0C02
´n.

If we denote by M the constant 2N0C0 and we set xn :“M2´n, n P N, we deduce that

@n ą N0 :

ˇ

ˇ

ˇ

ˇ

rn

n!

ˇ

ˇ

ˇ

ˇ

ă xn.

Example 4.2.10 shows that xn Ñ 0 and the conclusion (4.2.8) now follows from the Squeez-
ing Principle. [\

Proposition 4.2.12. Any convergent sequence of real numbers is bounded.

Proof. Suppose that panqně1 is a convergent sequence

a “ lim
nÑ8

an.

There exists N P N such that, for any n ą N we have

|an ´ a| ă 1.

Thus, for any n ą N we have an P pa´ 1, a` 1q. Now set

m :“ min
␣

a1, a2, . . . , aN , a´ 1
(

, M :“ max
␣

a1, a2, . . . , aN , a` 1
(

.
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Then for any n ě 1 we have

m ď an ďM,

i.e., the sequence panq is bounded.

[\

4.3. The arithmetic of limits

This section describes a few simple yet basic techniques that reduce the study of the
convergence of a sequence to a similar study of potentially simpler sequences. Thus, we
will prove that the sum of two convergent sequences is a convergent sequence etc.

Proposition 4.3.1 (Passage to the limit). Suppose that panqně1 and pbnqně1 are two
convergent sequences,

a :“ lim
nÑ8

an, b “ lim
nÑ8

bn.

The following hold.

(i) The sequence pan ` bnqně1 is convergent and

lim
nÑ8

pan ` bnq “ lim
nÑ8

an ` lim
nÑ8

bn “ a` b.

(ii) If λ P R then

lim
nÑ8

pλanq “ λ lim
nÑ8

an “ λa.

(iii)

lim
nÑ8

pan ¨ bnq “
`

lim
nÑ8

an
˘

¨
`

lim
nÑ8

bn
˘

“ ab.

(iv) Suppose that b ‰ 0. Then there exists N0 ą 0 such that bn ‰ 0, @N ą N0 and

lim
nÑ8

an
bn
“
a

b
.

(v) Suppose that m,M are real numbers such that m ď an ďM , @n. Then

m ď lim
nÑ8

an “ a ďM.

Proof. (i) Because panq and pbnq are convergent, for any ε ą 0 there existNapεq, Nbpεq P N
such that

|an ´ a| ă
ε

2
, @n ą Napεq, (4.3.1a)

|bn ´ b| ă
ε

2
, @n ą Nbpεq. (4.3.1b)

Let

Npεq :“ max
␣

Napεq, Nbpεq
(

.

Then for any n ą Npεq we have n ą Napεq and n ą Nbpεq and
ˇ

ˇ pan ` bnq ´ pa` bq
ˇ

ˇ “
ˇ

ˇ pan ´ aq ` pbn ´ bq
ˇ

ˇ ď |an ´ a| ` |bn ´ b|

p4.3.1aq,p4.3.1bq
ă

ε

2
`
ε

2
“ ε.
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This proves that limnÑ8pan ` bnq “ a` b.

(ii) If λ “ 0, then the sequence pλanq is the constant sequence 0, 0, 0, . . . and the
conclusion is obvious. Assume that λ ‰ 0. The sequence panq is convergent so for any
ε ą 0 there exists N “ Npεq P N such that

|an ´ a| ă
ε

|λ|
, @n ą Npεq.

Hence for any n ą Npεq we have

|λan ´ λa| “ |λ| ¨ |an ´ a| ă |λ| ¨
ε

|λ|
“ ε.

(iii) The sequences panq, pbnq are convergent and thus, according to Proposition 4.2.12
they are bounded so that

DM ą 0 : |an|, |bn| ďM, @n.

We have

|anbn ´ ab| “ |panbn ´ abnq ` pabn ´ abq| ď |anbn ´ abn| ` |abn ´ ab|

“ |bn| ¨ |an ´ a| ` |a| ¨ |bn ´ b| ďM |an ´ a| ` |a| ¨ |bn ´ b|.

Part (ii) coupled with the convergence of panq and pbnq show that

lim
nÑ8

M |an ´ a| “ lim
nÑ8

|a| ¨ |bn ´ b| “ 0.

Using (i) we deduce

lim
nÑ8

`

M |an ´ a| ` |a| ¨ |bn ´ b|
˘

“ 0.

The squeezing principle shows that |anbn ´ ab| Ñ 0.

(iv) Let us first show that if b ‰ 0, then bn ‰ 0 for n sufficiently large. Since bn Ñ b there
exists N0 P N such that

@n ą N0 |bn ´ b| ă
|b|

2
.

Thus, for any n ą N0, we have

distpbn, bq “ |bn ´ b| ă
1

2
|b| “

1

2
distpb, 0q.

This shows that for n ą N0 we cannot have bn “ 0. In fact

|bn| ą
|b|

2
, @n ą N0. (4.3.2)

Thus, the ratio bn
bn

is well defined at least for n ą N0. We have
ˇ

ˇ

ˇ

ˇ

1

bn
´

1

b

ˇ

ˇ

ˇ

ˇ

“
|bn ´ b|

|bn| ¨ |b|
.

The inequality (4.3.2) implies

1

|bn|
ă

2

|b|
, @n ą N0.
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Hence, for n ą N0 we have
ˇ

ˇ

ˇ

ˇ

1

bn
´

1

b

ˇ

ˇ

ˇ

ˇ

ă
2

|b|2
|bn ´ b| Ñ 0.

This implies

lim
nÑ8

1

bn
“

1

b
.

Thus

lim
nÑ8

an
bn
“ lim

nÑ8
an ¨ lim

nÑ8

1

bn
“
a

b
.

(v) We argue by contradiction. Suppose that a ąM or a ă m. We discuss what happens
if a ą M , the other situation being entirely similar. Then δ “ a ´M “ distpa,Mq ą 0.
Since an Ñ a, there exists N P N such that if n ą N , then

distpan, aq “ |an ´ a| ă
δ

2
.

Thus, for n ą N0 we have

a´
δ

2
ă an ă a`

δ

2
.

Clearly M “ a´ δ ă a´ δ
2 and thus, a fortiori, an ąM for n ą N0. Contradiction! [\

Corollary 4.3.2. Suppose that panq and pbnq are convergent sequences such that an ě bn,
@n. Then

lim
nÑ8

an ě lim
nÑ8

bn.

Proof. Let cn “ an ´ bn. Then cn ě 0 @n and thus

lim
nÑ8

an ´ lim
nÑ8

bn “ lim
nÑ8

cn ě 0.

[\

Let us see how the above simple principles work in practice.

Example 4.3.3. We already know that

lim
nÑ8

1

n
“ 0.

We deduce that for any k P N we have

lim
nÑ8

1

nk
“ 0.

Consider the sequence

an :“
5n2 ` 3n` 2

3n2 ´ 2n` 1
We have

an “
n2p5` 3

n `
2
n2 q

n2p3´ 2
n `

1
n2 q

“
p5` 3

n `
2
n2 q

p3´ 2
n `

1
n2 q

.
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Now observe that as nÑ8

5`
3

n
`

2

n2
Ñ 5, 3´

2

n
`

1

n2
Ñ 3,

so that

lim
nÑ8

an “
5

3
.

More generally, given k P N and real numbers a0, b0, . . . , ak, bk such that bk ‰ 0 then

lim
nÑ8

akn
k ` ¨ ¨ ¨ ` a1n` a0

bknk ` ¨ ¨ ¨ ` b1n` b0
“
ak
bk

. (4.3.3)

The proof is left to you as an exercise. [\

Example 4.3.4. We want to show that

@r ą 1 lim
n

n

rn
“ 0 . (4.3.4)

We plan to use the Squeezing Principle and construct a sequence pxnqně1 of positive
numbers such that

n

rn
ď xn @n ě 2,

and

lim
n
xn “ 0.

Observe that since r ą 1, we have r´ 1 ą 0. Set a :“ r´ 1 so that r “ 1` a. Then, using
Newton’s binomial formula we deduce that if n ě 2 then

rn “ p1` aqn “ 1`

ˆ

n

1

˙

a`

ˆ

n

2

˙

a2 ` ¨ ¨ ¨ ě 1`

ˆ

n

1

˙

a`

ˆ

n

2

˙

a2

“ 1` na`
npn´ 1q

2
a2 “ 1` na`

a2

2
pn2 ´ nq.

Hence for n ě 2 we have
1

rn
ď

1
1
2pn

2 ´ nqa2 ` na` 1

so that
n

rn
ď

n
a2

2 pn
2 ´ nq ` na` 1

“: xn.

Now observe that

xn “
n

n2
`

a2

2 p1´
1
nq `

a
n `

1
n2

˘ “

1
n

a2

2 p1´
1
nq `

a
n `

1
n2

nÑ8
ÝÑ 0. [\



70 4. Limits of sequences

Example 4.3.5. We want to show that

lim
n

n
?
n “ 1 . (4.3.5)

Let ε ą 0. The number rε “ 1 ` ε is ą 1. Since n
rnε
Ñ 0 we deduce that there exists

N “ Npεq P N such that
n

rnε
ă 1, @n ą Npεq.

This translates into the inequality

n ă rnε “ p1` εq
n, @n ą Npεq.

In particular

1 ď n
?
n ă n

a

p1` εqn “ 1` ε.

We have thus proved that for any ε ą 0 we can find N “ Npεq P N so that, as soon as
n ą Npεq we have

1 ď n
?
n ă 1` ε.

Clearly this proves the equality (4.3.5). [\

Definition 4.3.6 (Infinite limits). Let panqnPN be a sequence of real numbers.

(i) We say that an tends to 8 as nÑ8, and we write this

lim
nÑ8

an “ 8

if

@C ą 0 DN “ NpCq P N : @npn ą N ñ an ą Cq.

(ii) We say that an tends to ´8 as nÑ8, and we write this

lim
nÑ8

an “ ´8

if

@C ą 0 DN “ NpCq P N : @npn ą N ñ an ă ´Cq. [\

Proposition 4.3.1 continues to hold if one or both of limits a, b are ˘8 provided we
use the following conventions

8`8 “ 8 ¨ 8 “ 8,
C

8
“ 0, @C P R ,

C ¨ 8 “

$

’

&

’

%

8, C ą 0

´8, C ă 0

undefined, C “ 0,

8´8 “ undefined, 0 ¨ 8 “ undefined,
8

8
“ undefined.
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Example 4.3.7. (a) If we let an “ n and bn “
1
n , then Archimedes’ Principle shows that

an Ñ8 and bn Ñ 0. We observe that anbn “ 1Ñ 1. In this case 8 ¨ 0 “ 1. On the other
hand, if we let

an “ n, bn “
1

2n

then an Ñ8, bn Ñ 0 and (4.3.4) shows that anbn Ñ 0. In this case 8 ¨ 0 “ 0.

(b) Consider the sequences an “ n, bn “ 2n, cn “ 3n, @n P N. Observe that

lim
nÑ8

an “ lim
nÑ8

bn “ lim
nÑ8

cn “ 8.

However

lim
nÑ8

an
bn
“
8

8
“

1

2
, lim
nÑ8

an
cn
“
8

8
“

1

3
. [\

☛ Important Warning! When investigating limits of sequences you should keep in
mind that the following arithmetic operations are treacherous and should be dealt with
using extreme care.

anything

0
, 0 ¨ 8, 8´8,

8

8
.

[\

4.4. Convergence of monotone sequences

The definition of convergence has one drawback: to verify that a sequence is convergent
using the definition we need to a priori know its limit. In most cases this is a nearly
impossible job. In this section and the next we will discuss techniques for proving the
convergence of a sequence without knowing the precise value of its limit.

Theorem 4.4.1 (Weierstrass). aAny bounded and monotone sequence is convergent.

aKarl Weierstrass (1815-1897) was a German mathematician often cited as the “father of modern analysis”;

see Wikipedia.

Proof. Suppose that panq is a bounded and monotone sequence, i.e., it is either non-
decreasing, or non-increasing. We investigate only the case when panq is nondecreasing,
i.e.,

a1 ď a2 ď a3 ď ¨ ¨ ¨ .

The situation when panq is nonincreasing is completely similar.

The set of real numbers

A :“
␣

an; n ě 1
(

is bounded because the sequence panq is bounded. The Completeness Axiom implies it
has a least upper bound

a :“ supA.

https://en.wikipedia.org/wiki/Karl_Weierstrass 
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We will prove that

lim
nÑ8

an “ a. (4.4.1)

Since a is an upper bound for the sequence we have

an ď a, @n. (4.4.2)

Since a is the least upper bound of A we deduce that for any ε ą 0 the number a ´ ε
cannot be an upper bound of A. Hence, for any ε ą 0 there exists Npεq P N such that

a´ ε ă aNpεq.

Since panq is nondecreasing we deduce that

a´ ε ă aNpεq ď an, @n ą Npεq (4.4.3)

Putting together (4.4.2) and (4.4.3) we deduce that

@ε ą 0 DN “ Npεq P N : @n pn ą Npεq ñ a´ ε ă an ď aq.

This implies the claimed convergence (4.4.1) because a´ ε ă an ď añ |an ´ a| ă ε. [\

We will spend the rest of this section presenting applications of the above very impor-
tant theorem.

Example 4.4.2 (L. Euler). Consider the sequence of positive numbers

xn “

ˆ

1`
1

n

˙n

, n P N.

We will prove that this sequence is convergent. Its limit is called the Euler1 number e.

We plan to use Weierstrass’ theorem applied to a new sequence of positive numbers

yn “

ˆ

1`
1

n

˙n`1

, n P N.

Note that

yn “

ˆ

n` 1

n

˙n`1

and for n ě 2 we have

yn´1
yn

“

´

n
n´1

¯n

`

n`1
n

˘n`1 “

ˆ

n

n´ 1

˙n

¨

ˆ

n

n` 1

˙n`1

“
n2n`1

pn´ 1qnpn` 1qn ¨ pn` 1q
“

n2n

pn2 ´ 1qn
¨

n

n` 1

1Leonhard Euler (1707-1783) was a Swiss mathematician, physicist, astronomer, logician and engineer who

made important and influential discoveries in many branches of mathematics, He is also widely considered to be the
most prolific mathematician of all time; see Wikipedia.

https://en.wikipedia.org/wiki/Leonhard_Euler
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“

ˆ

n2

n2 ´ 1

˙n

¨
n

n` 1
“

ˆ

1`
1

n2 ´ 1

˙n

loooooooomoooooooon

“:qn

¨
n

n` 1
.

Bernoulli’s inequality implies that

qn :“

ˆ

1`
1

n2 ´ 1

˙n

ě 1`
n

n2 ´ 1
ą 1`

n

n2
“ 1`

1

n
“
n` 1

n
.

Hence
yn´1
yn

“ qn ¨
n

n` 1
ą
n` 1

n
¨

n

n` 1
“ 1.

Hence yn´1 ą yn @n ě 2, i.e., the sequence pynq is decreasing. Since it is bounded below
by 1 we deduce that the sequence pynq is convergent.

Now observe that yn “ xn ¨
`

1` 1
n

˘

“ xn ¨
n`1
n so that

xn “ yn ¨
n

n` 1
.

Since

lim
n

n

n` 1
“ 1

we deduce that pxnq is convergent and has the same limit as the sequence pynq. [\

Definition 4.4.3. The Euler number, denoted e is defined to be

e :“ lim
nÑ8

ˆ

1`
1

n

˙n

. [\

The arguments in Example 4.4.2 show that

4 “ y1 ě e ě 2.

Using more sophisticated methods one can show that

e “ 2.71828182845905 . . . .

Example 4.4.4 (Babylonians and I. Newton). Consider the sequence pxnqnPN defined
recursively by the requirements

x1 “ 1, xn`1 “
1

2

ˆ

xn `
2

xn

˙

, @n P N.

Thus

x2 “
1

2

ˆ

1`
2

1

˙

“
3

2
,

x3 “
1

2

˜

3

2
`

2
3
2

¸

“
1

2

ˆ

3

2
`

4

3

˙

“
17

12
etc.

We want to prove that this sequence converges to
?
2. We proceed gradually.
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Lemma 4.4.5.
xn ě

?
2, @n ě 2. (4.4.4)

Proof. Multiplying with 2xn both sides of the equality

xn`1 “
1

2

ˆ

xn `
2

xn

˙

we deduce 2xnxn`1 “ x2n ` 2, or equivalently

x2n ´ 2xn`1xn ` 2 “ 0. (4.4.5)

This shows that the quadratic equation

t2 ´ 2xn`1t` 2 “ 0

has at least one real solution, t “ xn`1 so that (see Exercise 3.10)

∆ “ 4x2n`1 ´ 8 ě 0,

i.e., x2n`1 ě 2, or xn`1 ě
?
2, @n P N. [\

Lemma 4.4.6. For any n ě 2 we have

xn`1 ď xn.

Proof. Let n ě 2. We have

xn ´ xn`1 “ xn ´
1

2

ˆ

xn `
2

xn

˙

“
1

2

x2n ´ 2

xn

p4.4.4q
ě 0.

[\

Thus the sequence pxnqně2 is decreasing and bounded below and thus it is convergent.
Denote by x the limit. The inequality (4.4.4) implies that x ě

?
2. Letting n Ñ 8 in

(4.4.5) we deduce

x2 ´ 2x2 ` 2 “ 0ñ 2 “ x2 ñ x“
?
2.

For example

x2 “ 1.5, x3 “ 1.4166..., x4 :“ 1.4142..., x5 :“ 1.4142....

Note that
p1.4142q2 “ 1.99996164. [\

Theorem 4.4.7 (Nested Intervals Theorem). Consider a nested sequence of closed
intervals ran, bns, n P N, i.e.,

ra1, b1s Ą ra2, b2s Ą ra3, b3s Ą ¨ ¨ ¨ .
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Then there exists x P R that belongs to all the intervals, i.e.,
č

nPN
ran, bns ‰ H.

Proof. The nesting condition implies that for any n P N we have

an ď an`1 ď bn`1 ď bn.

This shows that the sequence panq is nondecreasing and bounded while the sequence pbnq
is non-increasing. Therefore, these sequences are convergent and we set

a :“ lim
n
an, b :“ lim

n
bn

the condition an ď bn, @n implies that

an ď a ď b ď bn, @n.

Hence ra, bs Ă ran, bns, @n. [\

Theorem 4.4.8 (Bolzano-Weierstrass). Any bounded sequence has a convergent sub-
sequence.

Proof. Let pxnq be a bounded sequence of real numbers. Thus, there exist real numbers
a1, b1 such that xn P ra1, b1s, for all n. We set

n1 :“ 1.

Divide the interval ra1, b1s into two intervals of equal length. At least one of these intervals
will contain infinitely many terms of the sequence pxnq. Pick such an interval and denote
it by ra2, b2s. Thus

ra1, b1s Ą ra2, b2s, b2 ´ a2 “
1

2
pb1 ´ a1q.

Choose n2 ą 1 such that xn2 P ra2, b2s. We now proceed inductively.

Suppose that we have produced the intervals

ra1, b1s Ą ra2, b2s Ą ¨ ¨ ¨ Ą rak, bks

and the natural numbers n1 ă n2 ă ¨ ¨ ¨ ă nk such that

b2 ´ a2 “
1

2
pb1 ´ a1q, b3 ´ a3 “

1

2
pb2 ´ a2q, bk ´ ak “

1

2
pbk´1 ´ ak´1q,

xn1 P ra1, b1s, xn2 P ra2, b2s, ¨ ¨ ¨xnk
P rak, bks,

and the interval rak, bks contains infinitely many terms of the sequence pxnq. We then
divide rak, bks into two intervals of equal lengths. One of them will contain infinitely many
terms of pxnq. Denote that interval by rak`1, bk`1s. We can then find a natural number
nk`1 ą nk such that xnk`1

P rak`1, bk`1s. By construction

bk`1 ´ ak`1 “
1

2
pbk ´ akq “ ¨ ¨ ¨ “

1

2k
pa1 ´ b1q.
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We have thus produced sequences pakq, pbkq pxnk
q with the properties

a1 ď a2 ď ¨ ¨ ¨ ď ak ď xnk
ď bk ď ¨ ¨ ¨ ď b2 ď b1, (4.4.6a)

bk ´ ak “
1

2k´1
pb1 ´ a1q. (4.4.6b)

The inequalities (4.4.6a) show that the sequences pakq and pbkq are monotone and bounded,
and thus have limits which we denote by a and b respectively. By letting k Ñ8 in (4.4.6b)
we deduce that a “ b.

The subsequence pxnk
q is squeezed between two sequences converging to the same limit

so the squeezing theorem implies that it is convergent. [\

Definition 4.4.9. A limit point of a sequence of real numbers pxnq is a real number which
is the limit of some subsequence of the original sequence pxnq. [\

Example 4.4.10. Consider the sequence

xn “ p´1q
n `

1

n
, n P N.

Thus

x2n “ 1`
1

2n
, x2n`1 “ ´1`

1

2n` 1
.

Then the numbers 1 and ´1 are limit points of this sequence because

lim
nÑ8

x2n “ lim
nÑ8

ˆ

1`
1

2n

˙

“ 1,

lim
nÑ8

x2n`1 “ lim
nÑ8

ˆ

´1`
1

2n` 1

˙

“ ´1. [\

4.5. Fundamental sequences and Cauchy’s
characterization of convergence

We know that any convergent sequence is bounded. In other words, so boundedness is a
necessary condition for a sequence to be convergent. However, it is not also a sufficient
condition. For example, the sequence

1,´1, 1,´1, . . .

is bounded, but it is not convergent.

Weierstrass’s theorem on bounded monotone sequences shows that monotonicity is a
sufficient condition for a bounded sequence to be convergent. However, monotonicity is
not a necessary condition for convergence. Indeed, the sequence

xn “
p´1qn

n
, n P N

converges to zero, yet it is not monotone because the even order terms are positive while the
odd order terms are negative. In this subsection we will present a fundamental necessary
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and sufficient condition for a sequence to be convergent that makes no reference to the
precise value of the limit. We begin by defining a very important concept.

Definition 4.5.1. A sequence of real numbers panqnPN is called Cauchy2 or fundamental
if the following holds:

@ε ą 0 DN “ Npεq P N such that @m,n ą Npεq : |am ´ an| ă ε. (4.5.1)

[\

Theorem 4.5.2 (Cauchy). Let panqnPN be a sequence of real numbers. Then the following
statements are equivalent.

(i) The sequence panq is convergent.

(ii) The sequence panq is Cauchy.

Proof. (i) ñ (ii). We know that there exists a P R such that

@ε ą 0 DN “ Npεq P N : @n ą Npεq |an ´ a| ă ε.

Observe that for any m,n ą Npε{2q we have

|am ´ an| ď |am ´ a| ` |a´ an| ă
ε

2
`
ε

2
“ ε.

This proves that panq is fundamental.

(ii)ñ (i) This is the “meatier” part of the theorem. We will reach the conclusion in three
conceptually distinct steps.

1. Using the fact that the sequence panq is fundamental we will prove that it is
bounded.

2. Since panq is bounded, the Bolzano-Weierstrass theorem implies that it has a
subsequence that converges to a real number a.

3. Using the fact that the sequence panq is fundamental we will prove that it con-
verges to the real number a found above.

Here are the details. Since panq is fundamental, there exists n1 ą 0 such that, for any
m,n ě n1 we have |am ´ an| ă 1. Hence if we let m “ n1 we deduce that for any n ě n1
we have

|an1 ´ an| ă 1ñ an1 ´ 1 ă an ă an1 ` 1, @n ě n1.

Now let

m :“ minta1, a2, . . . , an1´1, an1 ´ 1u, M :“ maxta1, a2, . . . , an1´1, an1 ` 1u.

Clearly
m ď an ďM, @n P N

2Named after August-Louis Cauchy (1789-1857), French mathematician, reputed as a pioneer of analysis. He

was one of the first to state and prove theorems of calculus rigorously, rejecting the heuristic principle of the
generality of algebra of earlier authors; see Wikipedia.

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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so that the sequence panq is bounded.

Invoking the Bolzano-Weierstrass theorem we deduce that there exists a subsequence
pank

qkě1 and a real number a such that

lim
kÑ8

ank
“ a.

Let ε ą 0. Since ank
Ñ a as k Ñ8 we deduce that

DK “ Kpεq P N such that @k ą Kpεq : |ank
´ a| ă

ε

2
.

On the other hand, the sequence panqnPN is fundamental so that

DN 1 “ N 1pεq P N such that @m,n ą N 1pεq : |am ´ an| ă
ε

2
.

Now choose a natural number k0pεq ą Kpεq such that nk0pεq ą N 1pεq. Define

Npεq “ nk0pεq.

If n ą Npεq then n, nk0 ą N 1pεq and thus

|an ´ ank0
| ă

ε

2
.

On the other hand, since k0pεq ą Kpεq we deduce that

|ank0
´ a| ă

ε

2
.

Hence, for any n ą Npεq we have

|an ´ a| ď |an ´ ank0
| ` |ank0

´ a| ă
ε

2
`
ε

2
ă ε.

Since ε was arbitrary we conclude that panq converges to a. [\

4.6. Series

Often one has to deal with sums of infinitely many terms. Such a sum is called a series.
Here is the precise definition.

Definition 4.6.1. The series associated to a sequence panqně0 of real numbers is the new
sequence psnqně0 defined by the partial sums

s0 “ a0, s1 “ a0 ` a1, s2 “ a0 ` a1 ` a2, . . . , sn “ a0 ` a1 ` ¨ ¨ ¨ ` an “
n
ÿ

i“0

ai, . . . .

The series associated to the sequence panqně0 is denoted by the symbol

8
ÿ

n“0

an or
ÿ

ně0

an.
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The series is called convergent if the sequence of partial sums psnqně0 is convergent. The
limit limnÑ8 sn is called the sum series. We will use the notation

ÿ

ně0

an “ S

to indicate that the series is convergent and its sum is the real number S. [\

Example 4.6.2 (Geometric series. Part 1). Let r P p´1, 1q. The geometric series

8
ÿ

n“0

rn “ 1` r ` r2 ` ¨ ¨ ¨

is convergent and we have the following very useful equality

8
ÿ

n“0

rn “
1

1´ r
. (4.6.1)

Indeed, the n-th partial sum of this series is

sn “ 1` r ` ¨ ¨ ¨ ` rn “
1´ rn`1

1´ r
.

Example 4.2.10 shows that when |r| ă 1 we have limn r
n`1 “ 0 so that

8
ÿ

n“0

rn “ lim
n
sn “

1

1´ r
.

Observe that if we set r “ 1
2 in (4.6.1) we deduce

8
ÿ

n“0

1

2n
“ 2. [\

The proof of the following result is left to you as an exercise.

Proposition 4.6.3. Consider two series
ÿ

ně0

an and
ÿ

ně0

a1n

such that there exists N0 ą 0 with the property

an “ a1n @n ą N0.

Then
ÿ

ně0

an is convergentðñ
ÿ

ně0

a1n is convergent. [\

Proposition 4.6.4. If the series
ř8
n“0 an is convergent, then

lim
nÑ8

an “ 0.
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Proof. Observe that for n ě 1

sn “ a0 ` a1 ` ¨ ¨ ¨ ` an´1 ` an “ sn´1 ` an.

Hence

an “ sn ´ sn´1.

The sequences psnqně1 and psn´1qně1 converge to the same finite limit so that

lim
n
an “ lim

n
sn ´ lim

n
sn´1 “ 0.

[\

Example 4.6.5 (Geometric series. Part 2). Let |r| ě 1. Then the geometric series

1` r ` r2 ` ¨ ¨ ¨ ` rn ` ¨ ¨ ¨ “
8
ÿ

n“0

rn

is divergent. Indeed, if it were convergent, then the above proposition would imply that
rn Ñ 0 as nÑ8. This is not the case when |r| ě 1. [\

Proposition 4.6.6. A series of positive numbers
ÿ

ně0

an, an ą 0 @n

is convergent if and only if the sequence of partial sums

sn “ a0 ` ¨ ¨ ¨ ` an

is bounded.

Proof. Observe that the sequence of partial sums is increasing since

sn`1 ´ sn “ an`1 ą 0, @n.

If the sequence psnq is also bounded, then Weierstrass’ Theorem on monotone sequences
implies that it must be convergent.

Conversely, if the sequence psnq is convergent, then Proposition 4.2.12 shows that it
must also be bounded. [\

Example 4.6.7. (a) The harmonic series

8
ÿ

n“1

1

n
“ 1`

1

2
`

1

3
` ¨ ¨ ¨ .

is divergent. Here is why.

This is a series with positive terms. Observe that

s1 “ 1 ě 1, s2 “ 1`
1

2
ě 1`

1

2
,

s22 “ s4 “ s2 `
1

3
`

1

4
ą s2 `

1

4
`

1

4
“ s2 `

1

2
“ 1`

2

2
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s23 “ s8 “ s4 `
1

5
`

1

6
`

1

7
`

1

8
loooooooomoooooooon

4 terms

ą 1`
2

2
`

1

5
`

1

6
`

1

7
`

1

8
loooooooomoooooooon

4 terms

ą 1`
2

2
`

1

8
`

1

8
`

1

8
`

1

8
loooooooomoooooooon

4 terms

“ 1`
3

2
.

Thus

s23 ą 1`
3

2
.

We want to prove that

s2n ą 1`
n

2
, @n ě 2. (4.6.2)

We have shown this for n “ 2 and n “ 3. The general case follows inductively. Observe
that 2n`1 “ 2 ¨ 2n “ 2n ` 2n and thus

s2n`1 “ s2n `
1

2n ` 1
` ¨ ¨ ¨ `

1

2n`1
loooooooooooomoooooooooooon

2n-terms

ą s2n `
1

2n`1
` ¨ ¨ ¨ `

1

2n`1
loooooooooomoooooooooon

2n-terms

“ s2n `
2n

2n`1
“ s2n `

1

2

(use the inductive assumption)

ą 1`
n

2
`

1

2
.

This proves that (4.6.2) which shows that the sequence s2n is not bounded. Invoking
Proposition 4.6.6 we conclude that the harmonic series is not convergent.

(b) Let r ą 1 be a rational number and consider the series

8
ÿ

n“1

1

nr
.

We want to show that this series is convergent.

We have

s2 “ 1`
1

2r
,

s4 “ s2 `
1

3r
`

1

4r
ă s2 `

1

2r
`

1

2r
ă s2 `

2

2r
“

1

2r
` 1`

1

2pr´1q
,

s23 “ s8 “ s4 `
1

5r
`

1

6r
`

1

7r
`

1

8r
ă s4 `

4

4r
“

1

2r
` 1`

1

2pr´1q
`

1

22pr´1q
.

We claim that for any n ě 1 we have

s2n`1 ă
1

2r
` 1`

1

2pr´1q
`

1

22pr´1q
` ¨ ¨ ¨ `

1

2npr´1q
. (4.6.3)
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We argue inductively. The result is clearly true for n “ 1, 2. We assume it is true for n
and we prove it is true for n` 1. We have

s2n`1 “ s2n `
1

p2n ` 1qr
`

1

p2n ` 2qr
` ¨ ¨ ¨ `

1

p2n`1qr
looooooooooooooooooooooooomooooooooooooooooooooooooon

2n terms

ă s2n `
1

p2nqr
`

1

p2nqr
` ¨ ¨ ¨ `

1

p2nqr
looooooooooooooooomooooooooooooooooon

2n terms

“ s2n `
1

2npr´1q

(use the induction assumption)

ă
1

2r
` 1`

1

2pr´1q
`

1

22pr´1q
` ¨ ¨ ¨ `

1

2pn´1qpr´1q
`

1

2npr´1q
.

If we set

q :“
1

2r´1
“

ˆ

1

2

˙r´1

,

then we observe that the condition r ą 1 implies q P p0, 1q and we can rewrite (4.6.3) as

s2n`1 ă
1

2r
` 1` q ` ¨ ¨ ¨ ` qn ă

1

2r
`

1

1´ q
, @n P N.

This implies that the sequence ps2nq is bounded and thus the series
8
ÿ

n“1

1

nr

is convergent for any r ą 1. Its sum is denoted by ζprq and it is called Riemann zeta
function For most r’s, the actual value ζprq is not known. However, L. Euler has computed
the values ζprq when r is an even natural number. For example

ζp2q “
8
ÿ

n“1

1

n2
“
π2

6
.

All the known proofs of the above equality are very ingenious. [\

Theorem 4.6.8 (Comparison principle). Suppose that
ÿ

ně0

an and
ÿ

ně0

bn

are two series of positive real numbers such that

DN0 P N such that @n ą N0 : an ă bn.

Then the following hold.

(a)
ř

ně0 an divergent ñ
ř

ně0 bn divergent.

(b)
ř

ně0 bn convergent ñ
ř

ně0 an convergent.
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Proof. We set

snpaq “
n
ÿ

k“0

an, snpbq “
n
ÿ

k“1

bn.

In view of Proposition 4.6.3 the convergence or divergence of a series is not affected if we
modify finitely many of its terms. Thus, we may assume that

an ď bn, @n ě 0.

In particular, we have
snpaq ď snpbq, @n ě 0. (4.6.4)

Note that since the terms an are positive
ÿ

ně0

an divergentñ snpaq Ñ 8 ñ snpbq Ñ 8 ñ
ÿ

ně0

bn divergent

and
ÿ

ně0

bn convergentñ snpbq boundedñ snpaq boundedñ
ÿ

ně0

an convergent.

[\

The above result has an immediate and very useful consequence whose proof is left to
you as an exercise.

Corollary 4.6.9. Suppose that
ÿ

ně0

an and
ÿ

ně0

bn

are two series with positive terms.

(a) If the sequence panbn qně0 is convergent and the series
ř

ně0 bn is convergent, then the

series
ř

ně0 an is also convergent.

(b) If the sequence panbn qně0 has a limit r which is either positive, r ą 0, or r “ 8 and the

series
ř

ně0 bn is divergent, then the series
ř

ně0 an is also divergent. [\

Example 4.6.10 (L. Euler). Consider the series
8
ÿ

n“0

1

n!
“ 1`

1

1!
`

1

2!
`

1

3!
` ¨ ¨ ¨ . (4.6.5)

Observe that if n ě 2, then

1

n!
“

1

2
¨
1

3
¨ ¨ ¨

1

n
ď

1

2
¨ ¨ ¨

1

2
loomoon

pn´1q´times

“
1

2n´1
“

2

2n
.

Since the series
ÿ

ně0

2

2n
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is convergent we deduce from the Comparison Principle that the series (4.6.5) is also
convergent. Its sum is the Euler number

8
ÿ

n“0

1

n!
“ e “ lim

n

ˆ

1`
1

n

˙n

. (4.6.6)

This is a nontrivial result. We will describe a more conceptual proof in Corollary 8.1.8.
However, that proof relies on the full strength of differential calculus.

Here is an elementary proof. We set

en :“

ˆ

1`
1

n

˙n

, sn “ 1`
1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
, @n P N,

We will prove two things.

en ă sn, @n ě 1 (4.6.7a)

sk ď e, @k ě 1. (4.6.7b)

Assuming the validity of the above inequalities, we observe that by letting nÑ8 in (4.6.7a) we deduce that

e ď lim
n
sn.

On the other hand, if we let k Ñ8 in (4.6.7b), then we conclude that

lim
k
sk ď e.

Hence (4.6.7a, 4.6.7b) imply that

e “ lim
n
sn “

8
ÿ

n“0

1

n!
.

Proof of (4.6.7a). Using Newton’s binomial formula we deduce

en “

ˆ

1`
1

n

˙n

“ 1`
´n

1

¯ 1

n
`

´n

2

¯ 1

n2
` ¨ ¨ ¨ `

´n

n

¯ 1

nn

“ 1`
n

1!

1

n
`
npn´ 1q

2!

1

n2
`
npn´ 1qpn´ 2q

3!

1

n3
` ¨ ¨ ¨ `

npn´ 1q ¨ ¨ ¨ 1

n!

1

nn

“ 1`
n

n

1

1!
`
npn´ 1q

n2
loooomoooon

ă1

¨
1

2!
`
npn´ 1qpn´ 2q

n3
loooooooooomoooooooooon

ă1

¨
1

3!
` ¨ ¨ ¨ `

npn´ 1q ¨ ¨ ¨ 1

nn
loooooooomoooooooon

ă1

¨
1

n!

ă 1`
1

1!
`

1

2!
`

1

3!
` ¨ ¨ ¨ `

1

n!
“ sn.

Proof of (4.6.7b). Fix k P N. Then from the same formula above we deduce that if k ď n, then

en “ 1`
n

1!

1

n
`
npn´ 1q

2!

1

n2
`
npn´ 1qpn´ 2q

3!

1

n3
` ¨ ¨ ¨ `

npn´ 1q ¨ ¨ ¨ 1

n!

1

nn

(neglect the terms containing the powers 1
nj , j ą k)

ą 1`
n

1!

1

n
`
npn´ 1q

2!

1

n2
`
npn´ 1qpn´ 2q

3!

1

n3
` ¨ ¨ ¨ `

npn´ 1q ¨ ¨ ¨ pn´ k ` 1q

k!

1

nk

“ 1`
1

1!
`
n´ 1

n

1

2!
`
n´ 1

n

n´ 2

n
¨
1

3!
` ¨ ¨ ¨ `

n´ 1

n
¨ ¨ ¨

n´ k ` 1

n
¨
1

k!

“ 1`
1

1!
`

ˆ

1´
1

n

˙

1

2!
`

ˆ

1´
1

n

˙ˆ

1´
2

n

˙

1

3!
` ¨ ¨ ¨ `

ˆ

1´
1

n

˙ˆ

1´
2

n

˙

¨ ¨ ¨

ˆ

1´
k ´ 1

n

˙

1

k!
.

If we let nÑ8, while keeping k fixed we deduce

e “ lim
nÑ8

en

ě 1`
1

1!
` lim

nÑ8

ˆ

1´
1

n

˙

1

2!
` lim

nÑ8

ˆ

1´
1

n

˙ˆ

1´
2

n

˙

1

3!
` ¨ ¨ ¨
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¨ ¨ ¨ ` lim
nÑ8

ˆ

1´
1

n

˙ˆ

1´
2

n

˙

¨ ¨ ¨

ˆ

1´
k ´ 1

n

˙

1

k!
“ sk.

Let us now estimate the error

εn “ e´ sn “

ˆ

1`
1

1!
`

1

2!
` ¨ ¨ ¨

˙

´

ˆ

1`
1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!

˙

“
1

pn` 1q!
`

1

pn` 2q!
` ¨ ¨ ¨ .

Clearly εn ą 0 and

εn “
1

pn` 1q!

ˆ

1`
1

n` 2
`

1

pn` 2qpn` 3q
` ¨ ¨ ¨

˙

ă
1

pn` 1q!

ˆ

1`
1

n` 2
`

1

pn` 2q2
`

1

pn` 2q3
` ¨ ¨ ¨

˙

“
1

pn` 1q!
¨

1

1´ 1
n`2

“
1

pn` 1q!
¨
n` 2

n` 1
.

For example, if we let n “ 6, then we deduce that

0 ă ε6 ă
8

7 ¨ 6!
“

8

7 ¨ 720
« 0.0002 . . . .

This shows that s5 computes e with a 2-decimal precision. We have

s5 “ 1` 1`
1

2
`

1

6
`

1

24
`

1

120
“ 2.71 . . . ,

so that

e “ 2.71 . . . [\

Given a series
ř8
n“0 an and natural numbers m ă n we have

sn ´ sm “ pam`1 ` am`1 ` ¨ ¨ ¨ ` anq “
n
ÿ

k“m`1

ak.

Cauchy’s Theorem 4.5.2 implies the following useful result.

Theorem 4.6.11 (Cauchy). Let
ř8
n“0 an be a series of real numbers. Then the following

statements are equivalent.

(i) The series
ř8
n“0 an is convergent.

(ii)

@ε ą 0 DN “ Npεq P N such that @n ą m ą Npεq |am`1 ` ¨ ¨ ¨ ` an| ă ε.

[\

Definition 4.6.12. The series of real numbers
ÿ

ně0

an

is called absolutely convergent if the series of absolute values
ÿ

ně0

|an|

is convergent. [\
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Theorem 4.6.13 (Absolute Convergence Theorem). If the series
ÿ

ně0

an

is absolutely convergent, then it is also convergent.

Proof. Since
ÿ

ně0

|an|

is convergent, then Theorem 4.6.11 implies that

@ε ą 0 DN “ Npεq P N : @n ą m ą Npεq : |am`1| ` ¨ ¨ ¨ ` |an| ă ε.

On the other hand, we observe that

|am`1 ` ¨ ¨ ¨ ` an| ď |am`1| ` ¨ ¨ ¨ ` |an|

so that

@ε ą 0 DN “ Npεq P N : @n ą m ą Npεq : |am`1 ` ¨ ¨ ¨ ` an| ă ε.

Invoking Theorem 4.6.11 again we deduce that the series
ř

ně0 an is convergent as well.
[\

The Comparison Principle has the following immediate consequence.

Corollary 4.6.14 (Weierstrass M -test). Consider two series
ÿ

ně0

an,
ÿ

ně0

bn

such that bn ą 0 for any n and there exists N0 P N such that

|an| ă bn, @n ą N0.

If the series
ř

ně0 bn is convergent, then the series
ř

ně0 an converges absolutely. [\

The Weierstrass M -test leads to a simple but very useful convergence test, called the
d’Alembert test or the ratio test.

Corollary 4.6.15 (Ratio Test). Let
ÿ

ně0

an

be a series such that an ‰ 0 @n and the limit

L “ lim
nÑ8

|an`1|

|an|
ě 0

exists, but it could also be infinite. Then the following hold.

(i) If L ă 1, then the series
ř

ně0 an is absolutely convergent.

(ii) If L ą 1 then the series
ř

ně0 an is not convergent.
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Proof. (i) We know that L ă 1. Choose r such that L ă r ă 1. Since

|an`1|

|an|
Ñ L

there exists N0 P N such that

|an`1|

|an|
ď r, @n ą N0 ðñ |an`1| ď |an|r, @n ą N0.

We deduce that

|aN0`1| ď |aN0 |r, |aN0`2| ď |aN0`1|r ď |aN0 |r
2,

and, inductively

|aN0`k| ď rk|aN0 |, @k P N.
If we set n “ N0`k so that k “ n´N0, then we conclude from above that for any, n ą N0

we have

|an| ď |aN0 | r
n´N0 “

|aN0 |

rN0
loomoon

“:C

rn.

In other words

|an| ď Crn, @n ě N0.

The geometric series
ř

ně0 bn, bn “ Crn, is convergent for r P p0, 1q and we deduce from
Weierstrass’ Test that the series

ř

ně0 |an| is also convergent.

(ii) We argue by contradiction and assume that the series
ř

ně0 |an| is convergent. Since
L ą 1 we deduce that there exists a N0 P N such that

|an`1|

|an|
ą 1, @n ą N0 ðñ |an`1| ą |an|, @n ą N0.

Since the series
ř

ně0 we deduce that limn an “ 0. On the other hand, |an| ą |aN0 | for
n ą N0 so that

0 “ lim
n
|an| ě |aN0 | ą 0.

This contradiction shows that the series
ř

ně0 |an| cannot be convergent. [\

Example 4.6.16. (a) Consider the series

ÿ

ně1

p´1qn
n2

2n
.

Then

|an`1|

|an|
“

pn`1q2

2n`1

n2

2n

“
1

2

ˆ

n` 1

n

˙2

Ñ
1

2
Ñ

1

2
as nÑ8.

The Ratio Test implies that the series is absolutely convergent.

(b) Consider the series
ÿ

ně1

1
a

npn` 1q
.
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We observe that
1?

npn`1q

1
n

“
n

a

npn` 1q
“

n
b

n2p1` 1
nq

“
1

b

1` 1
n

.

Hence

lim
nÑ8

1?
npn`1q

1
n

“ 1

so that there exists N0 ą 0 such that
1?

npn`1q

1
n

ą
1

2
@n ą N0,

i.e.,
1

a

npn` 1q
ą

1

2n
, @n ą N0.

In Example 4.6.7(a) we have shown that the series
ř

ně1
1
2n is divergent. Invoking the

comparison principle we deduce that the series
ř

ně1
1?

npn`1q
is also divergent. [\

Definition 4.6.17. A series is called conditionally convergent if it is convergent, but not
absolutely convergent. [\

Example 4.6.18. Consider the series
ÿ

ně0

p´1qn

n` 1
“ 1´

1

2
`

1

3
´

1

4
` ¨ ¨ ¨ .

Example 4.6.7(a) shows that this series is not absolutely convergent. However, it is a
convergent series. To see this observe first that

s0 “ 1, s2 “ s0 ´
1

2
`

1

3
“ s0 ´

ˆ

1

2
´

1

3

˙

ă s0,

s2n`2 “ s2n ´
1

p2n` 2q
`

1

2n` 3
“ s2n ´

ˆ

1

2n` 2
´

1

2n` 3

˙

ă s2n.

Thus the subsequence s0, s2, s4, . . . , is decreasing.

Next observe that

s1 “ 1´
1

2
ą 0, s3 “ s1 `

1

3
´

1

4
ą s1,

s2n`3 “ s2n`1 `
1

2n` 3
´

1

2n` 4
ą s2n`1.

Thus, the subsequence s1, s3, s5, . . . , is increasing. Now observe that

s2n`2 ´ s2n`1 “
1

2n` 3
ą 0.
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Hence

s0 ą s2n`2 ą s2n`1 ě s1.

This proves that the increasing subsequence ps2n`1q is also bounded above and the de-
creasing sequence ps2n`2q is bounded below. Hence these two subsequences are convergent
and since

lim
n
ps2n`2 ´ s2n`1q “ lim

n

1

2n` 3
“ 0

we deduce that they converge to the same real number. This implies that the full sequence
psnqně0 converges to the same number; see Exercise 4.23.

The sum of this alternating series is ln 2, but the proof of this fact is more involved an
requires the full strength of the calculus techniques; see Example 9.6.10. [\

4.7. Power series

Definition 4.7.1. A power series in the variable x and real coefficients a0, a1, a2, . . . is a
series of the form

spxq “ a0 ` a1x` a2x
2 ` ¨ ¨ ¨ .

The domain of convergence of the power series is the set of real numbers x such that the
corresponding series spxq is convergent. [\

Example 4.7.2. (a) The geometric series

1` x` x2 ` ¨ ¨ ¨

is a power series. It converges for |x| ă 1 and diverges for |x| ě 1.

(b) Consider the power series

ÿ

ně1

xn

n
“ x`

x2

2
`
x3

3
` ¨ ¨ ¨ .

Note that
ˇ

ˇ

ˇ

ˇ

ˇ

xn`1

n`1
xn

n

ˇ

ˇ

ˇ

ˇ

ˇ

“ |x|
n

n` 1
Ñ |x| as nÑ8.

The Ratio Test shows that this series converges absolutely for |x| ă 1 and diverges for
|x| ą 1.

When x “ 1 the series becomes the harmonic series

1`
1

2
`

1

3
` ¨ ¨ ¨

which is divergent. When x “ ´1 the series becomes the alternating series

´1`
1

2
´

1

3
` ¨ ¨ ¨ “ ´

ÿ

ně1

p´1qn

n
.

As explained in Example 4.6.18, this series is convergent.
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(c) Consider the power series

ÿ

ně0

xn

n!
“ 1`

x

1!
`
x2

2!
` ¨ ¨ ¨ .

Note that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xn`1

pn`1q!
xn

n!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
|x|

n` 1
Ñ 0 as nÑ8.

The Ratio Test implies that this series converges absolutely for any x P R. [\

Proposition 4.7.3. Consider a power series in the variable x with real coefficients

spxq “ a0 ` a1x` a2x
2 ` ¨ ¨ ¨ .

Suppose that the nonzero real number x0 is in the domain of convergence of the series.
Then for any real number x such that |x| ă |x0| the series spxq is absolutely convergent.

Proof. Since the series

a0 ` a1x0 ` a2x
2
0 ` ¨ ¨ ¨

is convergent, the sequence panx
n
0 q converges to zero. In particular, this sequence is

bounded and thus there exists a positive constant C such that

|anx
n
0 | ă C, @n “ 0, 1, 2, . . . .

We set

r :“
|x|

|x0|

and we observe that 0 ď r ă 1. Next we notice that

|anx
n| “ |anx

n
0 |
|x|n

|x0|n
“ |anx

n
0 |r

n ă Crn, @n.

Since 0 ď r ă 1 we deduce that the positive geometric series

C ` Cr ` Cr2 ` ¨ ¨ ¨

is convergent. The comparison principle then implies that the series

|a0| ` |a1x| ` |a2x
2| ` ¨ ¨ ¨

is also convergent. [\

The above result has a very important consequence whose proof is left to you as an
exercise.

Corollary 4.7.4. Consider a power series in the variable x and real coefficients

spxq “ a0 ` a1x` a2x
2 ` ¨ ¨ ¨ .
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We denote by D the domain of convergence of the series. We set

R :“

#

supD, if D is bounded above,

8, if D is not bounded above.
(4.7.1)

Then the following hold.

(i) R ě 0.

(ii) If x is a real number such that |x| ă R, then the series spxq is absolutely con-
vergent.

(iii) If x is a real number such that |x| ą R, then the series spxq is divergent.

[\

Definition 4.7.5. The quantity R defined in (4.7.1) is called the radius of convergence
of the power series spxq. [\

Example 4.7.6. The power series in Example 4.7.2(a),(b) have radii of convergence 1,
while the power series in Example 4.7.2(c) has radius of convergence 8. [\

4.8. Some fundamental sequences and series

lim
nÑ8

C

n
“ 0, @C ą 0.

lim
nÑ8

Cn “ 8, @C ą 0.

lim
nÑ8

rn “ lim
nÑ8

1

an
“ 0, @r P p0, 1q, @a ą 1.

lim
nÑ8

n

rn
“ 0, @r ą 1.

lim
nÑ8

r
1
n “ 1, @r ą 0.

lim
nÑ8

n
1
n “ 1.

lim
nÑ8

rn

n!
“ 0, @r P R.

lim
nÑ8

ˆ

1`
1

n

˙n

“ e.

1` r ` r2 ` ¨ ¨ ¨ ` rn ` ¨ ¨ ¨ “
1

1´ r
, @|r| ă 1.

1`
1

1!
`

1

2!
`

1

3!
` ¨ ¨ ¨ “ e.

ÿ

ně1

1

ns
“

#

convergent, s ą 1

divergent, s ď 1.



92 4. Limits of sequences

4.9. Exercises

Exercise 4.1. Prove, using the definition, the following equalities.

lim
nÑ8

n

n2 ` 1
“ 0, (a)

lim
nÑ8

3n` 1

2n` 5
“

3

2
, (b)

lim
nÑ8

1
?
n
“ 0. (c)

Exercise 4.2. Prove Proposition 4.2.6. [\

Exercise 4.3. Prove Proposition 4.2.7. [\

Exercise 4.4. Let pxnqně0 be a sequence of real numbers and x P R. Consider the
following statements.

(i) @ε ą 0, DN P N such that, n ą N ñ |xn ´ x| ă ε.

(ii) DN P N such that, @ε ą 0, n ą N ñ |xn ´ x| ă ε.

Prove that (ii) ñ (i) and construct an example of sequence pxnqně1 and real number
x satisfying (i) but not (ii). [\

Exercise 4.5. (a) Prove that for any real numbers a, b we have
ˇ

ˇ |a| ´ |b|
ˇ

ˇ ď |a´ b|.

(b) Let pxnqně0 be a sequence of real numbers that converges to x P R. Prove that

lim
nÑ8

|xn| “ |x|. [\

Exercise 4.6. Compute

lim
nÑ8

ˆ

1

2
`

1

22
` ¨ ¨ ¨ `

1

2n

˙

.

Hint. Observe that
1

2
`

1

22
` ¨ ¨ ¨ `

1

2n
“

1

2

ˆ

1`
1

2
` ¨ ¨ ¨ `

1

2n´1

˙

.

At this point you might want to use Exercise 3.7. [\

Exercise 4.7. Compute

lim
nÑ8

21 ` 23 ` 25 ` ¨ ¨ ¨ ` 22n`1

22n`3
.

Hint. Use Exercise 3.7. [\

Exercise 4.8. Let X Ă R be a bounded above set of real numbers. Denote by x˚

the supremum of X. (The existence of the least upper bound of X is guaranteed by
the Completeness Axiom.) Prove that there exists a sequence of real numbers pxnqnPN
satisfying the following properties.
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(i) xn P X, @n P N.
(ii) limnÑ8 xn “ x˚.

Hint. Use Proposition 2.3.7 and Corollary 4.2.9. [\

Exercise 4.9. Prove the equality (4.3.3). [\

Exercise 4.10. Let 0 ă a ă b. Compute

lim
nÑ8

an`1 ` bn`1

an ` bn
. [\

Exercise 4.11. (a) Let panq be a sequence of positive real numbers such that limn an “ 1.
Prove that

lim
n

?
an “ 1.

(b) Compute

lim
nÑ8

?
n
`?

n` 1´
?
n
˘

.

Hint. Prove first that
?
x` 1´

?
x “

1
?
x` 1`

?
x
, @x ą 0.

[\

Exercise 4.12. Prove that if a ą 0, then

lim
nÑ8

a
1
n “ 1.

Hint. Consider first the case a ą 1. Write a
1
n “ 1 ` εn and then use Bernoulli’s inequality. Show that the case

a ă 1 follows from the case a ą 1. [\

Exercise 4.13. Prove that for any real number x there exists an increasing sequence of
rational numbers that converges to x and also a decreasing sequence of rational numbers
that converges to x.

Hint. Use Proposition 3.4.4. [\

Exercise 4.14. Let panqnPN be a sequence of positive numbers that converges to a positive
number a. Prove that

Dc ą 0 such that @n P N an ą c.

Hint. Argue by contradiction. [\

Exercise 4.15. Let k P N and suppose that panqnPN is a sequence of positive numbers
that converges to a positive number a.

(a) Using Exercise 4.14 prove that there exists r ą 0 such that an ą r, @n, so that a
1
k
n ą r

1
k ,

@n.
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(b) Prove that there exists a constant M ą 0 such that
ˇ

ˇ

ˇ

ˇ

a
1
k
n ´ a

1
k

ˇ

ˇ

ˇ

ˇ

ďM |an ´ a|, @n P N.

Hint. Set bn :“ a
1
k
n , b :“ a

1
k and use the equality (3.4.3) to deduce.

an ´ a “ bkn ´ b
k “ pbn ´ bqpb

k´1
n ` bk´2

n b` ¨ ¨ ¨ ` bnb
k´2 ` bk´1q

which implies

|bn ´ b| “
|an ´ a|

bk´1
n ` bk´2

n b` ¨ ¨ ¨ ` bnbk´2 ` bk´1
.

Now use part (a).

(c) Show that

lim
n
a

1
k
n “ a

1
k .

(d) Show that if r P Q, then

lim
n
arn “ ar. [\

Exercise 4.16. Let r ą 1 and k P N. Prove that

lim
nÑ8

rn “ 8.

and

lim
nÑ8

nk

rn
“ 0.

Hint. Let a “ r
1
k . Then

nk

rn
“

´ n

an

¯k
.

[\

Exercise 4.17. Compute

lim
nÑ8

ˆ

1`
1

2n

˙n

. [\

Exercise 4.18. (a) Using Example 4.4.2 as inspiration prove that the sequence

xn “

ˆ

1`
1

n

˙n

is increasing.

(b) Prove that the Euler number e satisfies the inequalities
ˆ

1`
1

n

˙n

ă e ă

ˆ

1`
1

n

˙n`1

, @n P N.

Deduce from the above inequalities that 2 ă e ă 3. [\
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Exercise 4.19. Consider the sequence pxnq defined by the recurrence

x1 “
?
2, xn`1 “

?
2` xn, @n P N.

Thus

x2 “

b

2`
?
2, x3 “

c

2`

b

2`
?
2, x4 “

d

2`

c

2`

b

2`
?
2, . . . .

(a) Prove by induction that the sequence pxnq is increasing.

(b) Prove by induction that xn ă
?
2` 1, @n P N.

(c) Find limnÑ8 xn.

Hint. Consider the function f : p0,8q Ñ p0,8q, fpxq “
?
2` x and prove that

0 ă x ă y ñ fpxq ă fpyq and x ą 0^ x “ fpxqðñx “ 2.

[\

Exercise 4.20. Fix a ą 0, a ‰ 1 and define f : p0,8q Ñ p0,8q by

fpxq “
1

2

´

x`
a

x

¯

“
x2 ` a

2x
.

Consider the sequence of positive real numbers pxnqně1 defined by the recurrence

x1 “ 1, xn`1 “ fpxnq, @n P N.

Use the strategy employed in Example 4.4.4 to show that

lim
nÑ8

xn “
?
a. [\

Exercise 4.21 (Gauss). Let a0, b0 be two real numbers such that

0 ă a0 ă b0.

Define inductively

a1 :“
a

a0b0, b1 “
a0 ` b0

2
,

an`1 “
a

anbn, bn`1 “
an ` bn

2
.

(a) Prove by induction that

a1 ď a2 ď ¨ ¨ ¨ ď an ď bn ď ¨ ¨ ¨ ď b2 ď b1.

(b) Prove that the sequences panq and pbnq are convergent and

lim
nÑ8

an “ lim
nÑ8

bn.

Hint: For part (a) use Exercise 3.5. For part (b) use Weierstrass’ Theorem on the convergence of bounded

monotone sequences, Theorem 4.4.1. [\
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Exercise 4.22. Establish the convergence or divergence of the sequence

an “
1

n` 1
`

1

n` 2
` ¨ ¨ ¨ `

1

2n
, n P N. [\

Exercise 4.23. Let panq be a sequence of real numbers. For each n P N we set

bn :“ a2n´1, cn :“ a2n.

Prove that the following statements are equivalent.

(i) The sequence panq is convergent and its limit is a P R.
(ii) The subsequences pbnqnPN and pcnqnPN converge to the same limit a.

[\

Exercise 4.24. Suppose panqnPN is a contractive sequence of real numbers, i.e., there
exists r P p0, 1q such that

|an ´ an`1| ă r|an ´ an´1|, @n P N, n ě 2.

Prove that the sequence panqnPN is convergent.

Hint. Set x1 :“ a1, x2 :“ a2 ´ a1, x3 :“ a3 ´ a2, . . . . Observe that x1 ` x2 ` ¨ ¨ ¨ ` xn “ an, @n P N so that the

sequence panqnPN is the sequence of partial sums of the series

x1 ` x2 ` x3 ` ¨ ¨ ¨

Use the Comparison Principle to show that this series is absolutely convergent. [\

Exercise 4.25. Consider the sequence of positive real numbers pxnqně1 defined by the
recurrence

x1 “ 1, xn`1 “ 1`
1

xn
, @n P N.

Thus

x2 “ 1` 1, x3 “ 1`
1

1` 1
“

3

2
, x4 “ 1`

1

1` 1
1`1

“ 1`
2

3
“

5

3
,

x5 “ 1`
1

1`
1

1` 1
1`1

, x6 “ 1`
1

1`
1

1`
1

1` 1
1`1

. . .

(a) Prove that

x1 ă x3 ă ¨ ¨ ¨ ă x2n`1 ă x2n`2 ă x2n ă ¨ ¨ ¨ ă x2, @n ě 1.

(b) Prove that for n ě 3 we have

|xn`1 ´ xn| “
|xn ´ xn´1|

xnxn´1
ď

4

9
|xn ´ xn´1|.

(c) Conclude that the sequence pxnq is convergent and find its limit. Hint. Use Exercise 4.24.[\
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Exercise 4.26. If a1 ă a2

an`2 “
1

2

`

an`1 ` an
˘

, @n P N

show that the sequence panqnPN is convergent.

Hint. Use Exercise 4.24. [\

Exercise 4.27. Consider a sequence of positive numbers pxnqně1 satisfying the recurrence
relation

xn`1 “
1

2` xn
, @n P N.

Show that pxnqnPN is a contractive sequence (Exercise 4.24) and then compute its limit.[\

Exercise 4.28. Find all the limit points (see Definition 4.4.9) of the sequence

an “ p´1q
nn´ 1

n
. [\

Exercise 4.29. Let panqnPN be a bounded sequence of real numbers, i.e.,

DC P R : |an| ď C, @n.

For any k P N we set

bk :“ suptan; n ě k u.

(a) Show that the sequence pbkqkPN is nonincreasing and conclude that it is convergent.
Denote by b its limit.

(b) Show that b is a limit point of the sequence panqnPN, i.e., there exists a subsequence
pank

qkě1 of panqně1 such that

lim
kÑ8

ank
“ b.

(c) Show that if α is a limit point of the sequence panq, then α ď b.

The number b is called the superior limit of the sequence panq and it is denoted by
lim supn an. The above exercise shows that the superior limit is the largest limit point of
a bounded sequence. [\

Exercise 4.30. Prove Proposition 4.6.3. [\

Exercise 4.31. Prove that if
ř

ně0 an and
ř

ně0 bn are convergent series of real numbers
and α, β P R, then the series

ř

ně0pαan ` βbnq is convergent and
ÿ

ně0

pαan ` βbnq “ α
ÿ

ně0

an ` β
ÿ

ně0

bn. [\

Exercise 4.32. Can you give an example of convergent series
ř

ně0 an and a divergent
series

ř

ně0 bn such that
ř

ně0pan ` bnq is convergent? Explain. [\

Exercise 4.33. Prove Corollary 4.6.9. [\
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Exercise 4.34. Consider the sequence

an “
n3 ` 2n2 ` 2n` 4

n5 ` n4 ` 7n2 ` 1
, n ě 0.

Prove that the series
ÿ

ně0

an

is absolutely convergent.

Hint. Example 4.6.7(b) and Corollary 4.6.9. [\

Exercise 4.35 (Leibniz). Suppose that panq is a decreasing sequence of positive real
numbers such that

lim
nÑ8

an “ 0.

Prove that the series
ÿ

ně0

p´1qnan

is convergent.

Hint. Imitate the strategy in Example 4.6.18. [\

Exercise 4.36 (Cauchy). Suppose that panqně0 is a decreasing sequence of positive num-
bers that converges to 0. Prove that the series

ÿ

ně0

an

converges if and only if the series

8
ÿ

k“0

2ka2k “ a1 ` 2a2 ` 4a4 ` 8a8 ` 16a16 ` ¨ ¨ ¨

converges.

Hint. Imitate the strategy employed in Example 4.6.7. [\

Exercise 4.37. We consider the power series
ÿ

ně0

anx
n “ a0 ` a1x` a2x

2 ` ¨ ¨ ¨ .

Suppose that there exists C ą 0 such that |an| ď C, @n. Show that the radius of
convergence of the series

ÿ

ně0

anx
n

is ě 1. [\
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Exercise 4.38. Suppose that panqnPN is a sequence of integers such that 0 ď an ď 9 for
any n P N, i.e.,

an P t0, 1, 2, . . . , 9u, @n P N.
Show that the series

ÿ

ně1

an10
´n “

a1
10
`

a2
102

` ¨ ¨ ¨

is convergent.

(b) Compute the sum of the above series in the two special special cases

an “ 7, @n P N,

and

an “

#

1, n is odd

2, n, is even.

In each case, express the sum in decimal form.

(c) Prove that for any x P r0, 1s there exists a sequence of real numbers panqnPN such that

an P t0, 1, 2, . . . , 9u, @n P N,

and

x “
ÿ

ně1

an10
´n. [\

Exercise 4.39. Prove Corollary 4.7.4. [\

4.10. Exercises for extra credit

Exercise* 4.1. Fix rational numbers a, b such that 1 ă a ă b.

(a) Prove that

lim
nÑ8

p2nqb

p2n` 1qa
“ 8.

(b) Prove that the series
1

1a
`

1

2b
`

1

3a
`

1

4b
` ¨ ¨ ¨

is convergent. [\

Exercise* 4.2. Consider two series of real numbers
ř

ně0 an and
ř

ně0 bn. For each
nonnegative integer n define

cn :“ a0bn ` a1bn´1 ` ¨ ¨ ¨ ` anb0 “
n
ÿ

k“0

akbn´k

Prove that the if the series
ř

ně0 an and
ř

ně0 bn are absolutely convergent, then the series
ÿ

ně0

cn
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is absolutely convergent and its sum is the product of the sums of the series
ř

ně0 an and
ř

ně0 bn, i.e.,

lim
nÑ8

n
ÿ

k“0

cn “

˜

lim
nÑ8

n
ÿ

j“0

aj

¸

¨

˜

lim
nÑ8

n
ÿ

k“0

bk

¸

.

The series
ř

ně0 cn constructed above is called the Cauchy product of the series
ř

ně0 an
and

ř

ně0 bn.

Hint: Consider first the special case an, bn ě 0, @n. Set

An :“
n
ÿ

j“0

aj , Bn :“
n
ÿ

k“0

bk, Cn “

n
ÿ

ℓ“0

cℓ.

Prove that

lim
nÑ8

pCn ´AnBnq “ 0.

[\

Exercise* 4.3. Let panqně0 and pbnqně0 be two sequences of real numbers. For any
nonnegative integer n we set

Bn :“ b0 ` b1 ` ¨ ¨ ¨ ` bn, Cn “ a0b0 ` a1b1 ` ¨ ¨ ¨ ` anbn.

(a)(Abel’s trick) Show that, for any n P N, we have

Cn “ anBn ´
n´1
ÿ

k“1

pak`1 ´ akqBk. (4.10.1)

(b) Show that if the series
ÿ

ně0

bn

is convergent and the sequence panqně0 is monotone and bounded, then the series
ÿ

ně0

anbn

is convergent. [\

Exercise* 4.4. Let panq be a convergent sequence of real numbers. Form the new sequence
pcnq defined by the rule

cn :“
a1 ` ¨ ¨ ¨ ` an

n
Show that pcnq is convergent and

lim
nÑ8

cn “ lim
nÑ8

an. [\

Exercise* 4.5. Let the two given sequences

a0, a1, a2, . . . ,

b0, b1, b2, . . .
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satisfy the conditions

bn ą 0, @n ě 0, (4.10.2a)

b0 ` b1 ` b2 ` ¨ ¨ ¨ ` bn ` ¨ ¨ ¨ “ 8, (4.10.2b)

lim
nÑ8

an
bn
“ s. (4.10.2c)

Prove that

lim
nÑ8

a0 ` a1 ` ¨ ¨ ¨ ` an
b0 ` b1 ` ¨ ¨ ¨ ` bn

“ s. [\

Exercise* 4.6. Suppose that ppnqně1 is a sequence of positive real numbers, and pxnqně1
is a sequence of real numbers. For n P N we set

bn :“ p1 ` ¨ ¨ ¨ ` pn, sn :“ x1 ` ¨ ¨ ¨ ` xn.

Suppose that

lim
nÑ8

bn “ 8.

Prove that if the series
ÿ

ně1

xn
bn

is convergent, then

lim
nÑ8

sn
bn
“ 0. [\

Exercise* 4.7 (Doob). Let pxnqnPN be a sequence of real numbers. To any real numbers
a, b such that a ă b we associate the sequences pSkpa, bqqkPN and pTkpa, bqqkPN in NY t8u
defined inductively as follows

S1pa, bq :“ inf
␣

n ě 1; xn ď a
(

, T1pa, bq :“ inf
␣

n ě S1pa, bq; xn ě b
(

,

Sk`1pa, bq :“ inf
␣

n ě Tkpa, bq; xn ď a
(

, Tk`1pa, bq :“ inf
␣

n ě Skpa, bq; xn ě b
(

,

where we set infH “ 8. We set

Unpa, bq :“ #
␣

k ď n; Tkpa, bq ď n
(

.

(a) Prove that for any a, b P R, a ă b, the sequence pUnpa, bqqnPbN is nondecreasing. Set

U8pa, bq :“ lim
nÑ8

Unpa, bq.

(b) Prove that the following statements are equivalent.

(i) The sequence pxnq has a limit as nÑ8.

(ii) For any a, b P Q such that a, b we have U8pa, bq ă 8.

[\
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Exercise* 4.8 (Fekete). Suppose that the sequence of real numbers panqnPN satisfies the
subadditivity condition

am`n ď am ` an, @m,n P N.
Prove that

lim
nÑ8

an
n
“ inf

nPN

an
n
. [\

Exercise* 4.9. Let pxnqně0 be a sequence of nonzero real numbers such that

x2n ´ xn`1xn´1 “ 1, @n P N.
Prove that there exists a P R such that

xn`1 “ axn ´ xn´1, @n P N. [\

Exercise* 4.10. Suppose that a sequence of real numbers panqnPN satisfies

0 ă an ă a2n ` a2n`1, @n P N.
Prove that the series

ř

ně1 an is divergent. [\

Exercise* 4.11. Suppose that pxnqnPN is a sequence of positive real numbers such that
the series

ÿ

nPN
xn

is convergent and its sum is S. Prove that for any bijection φ : NÑ N the series
ÿ

nPN
xφpnq

is also convergent and its sum is also S. [\

Exercise* 4.12. Suppose that the series of real numbers
ÿ

nPN
xn

is convergent, but not absolutely convergent. Prove that for any real number S there exists
a bijection φ : NÑ N such that the series

ÿ

nPN
xφpnq

is convergent and its sum is S. [\

Exercise* 4.13. Suppose that panqně1 is a decreasing sequence of positive real numbers
that converges to 0 and satisfies the inequalities

an ď an`1 ` an2 , @n ě 1.

Prove that the series
ÿ

ně1

an

is divergent. [\



Chapter 5

Limits of functions

5.1. Definition and basic properties

Let X be a nonempty subset of R. A real number c is called a cluster point of X if there
exists a sequence pxnq of real numbers with the following properties.

(i) xn P X, @n P N.
(ii) xn ‰ c, @n P N.
(iii) limn xn “ c.

Example 5.1.1. (a) If A “ p0, 1q, then 0 and 1 are cluster points of A, although they are
not in A. Indeed, the sequence an “

1
n`1 , n P N consists of elements of p0, 1q and an Ñ 0.

Similarly, the sequence bn “ 1´ 1
n`1 consists of points in p0, 1q and bn Ñ 1. Observe that

every point in p0, 1q is also a cluster point of p0, 1q.

(b) Any real number is a cluster point of the set Q of rational numbers. [\

Definition 5.1.2. Let X Ă R. Suppose that c is a cluster point of X and f : X Ñ R
is a real valued function defined on X. We say that the limit of f at c is the real
number A, and we write this

lim
xÑc

fpxq “ A,

if the following holds:

@ε ą 0 Dδ “ δpεq ą 0 : @x P X : 0 ă |x´ c| ă δ ñ |fpxq ´A| ă ε. (5.1.1)

[\

An alternate viewpoint. Recall that a neighborhood of a point a is an open interval that contains a inside.
For example, the open interval p0, 3q is a neighborhood of 1. We denote by Na the collection of all neighborhoods

of a. Thus, a statement of the form U P Na signifies that U is an open interval that contains a. A symmetric

103
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neighborhood of a is a neighborhood of the form pa´ δ, a` δq, where δ is some positive number. Observe that

x P pa´ δ, a` δqðñ distpa, xq ă δðñ|x´ a| ă δ.

Thus, to describe a symmetric neighborhood of a, it suffices to indicate a positive real number δ, and then the
symmetric neighborhood is described by the condition distpx, aq ă δ. We denote by SNa the collection of symmetric

neighborhoods of a. Clearly, any symmetric neighborhood of a is also a neighborhood of a so that

SNa Ă Na.

A deleted neighborhood of a is a set obtained from a neighborhood of a by removing the point a. For example

p0, 2qzt1u “ p0, 1q Y p1, 2q

is a deleted neighborhood of 1. We denote by N˚
a the collection of all deleted neighborhoods of a. A symmetric

deleted neighborhood of a is a deleted neighborhood of the form

pa´ r, a` rqztau “ pa´ r, aq Y pa, a` rq.

We denote by SN˚
a the collection of deleted symmetric neighborhoods of a. Clearly

SN˚
a Ă S˚

a .

Observe that the definition (5.1.1) is equivalent with the following statement

@U P SNa DV P SN˚
c @x P X : x P V ñ fpxq P U. (5.1.2)

Indeed, we can rephrase (5.1.1) in the following equivalent way: for any symmetric neighborhood U of A of the form
pA´ ε,A` εq, there exists a deleted symmetric neighborhood V of c of the form pc´ δ, c` δqztcu such that for any

x P V we have fpxq P U . That is precisely the content of (5.1.2).

The proof of the next result is left to you as an exercise.

Proposition 5.1.3. Let f : X Ñ R be a function defined on a set X Ă R and c a cluster point of X. Then the

following statements are equivalent.

(i) limxÑc fpxq “ A, i.e., f satisfies (5.1.1) or (5.1.2).

(ii)

@U P NA, DV P N˚
c such that @x P X : x P V ñ fpxq P U. (5.1.3)

[\

The following very useful result reduces the study of limits of functions to the study
of a concept we are already familiar with, namely the concept of limits of sequences.

Theorem 5.1.4. Let c be a cluster point of the set X Ă R and f : X Ñ R a real
valued function on X. The following statements are equivalent.

(i) limxÑc fpxq “ A P R.
(ii) For any sequence pxnqnPN in Xztcu such that xn Ñ c, we have limn fpxnq “ A.

Proof. (i) ñ (ii). We know that limxÑc fpxq “ A and we have to show that if pxnq is
a sequence in Xztcu that converges to c then the sequence p fpxnq q converges to A. In
other words, given the above sequence pxnq we have to show that

@ε ą 0 DN “ Npεq @n P N : n ą Npεq ñ |fpxnq ´A| ă ε.

Let ε ą 0. We deduce from (5.1.1) that there exists δpεq ą 0 such that

@x P X : 0 ă |x´ c| ă δ ñ |fpxq ´A| ă ε. (5.1.4)
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Since xn Ñ c, there exists N “ Npδpεqq such that

0 ă |xn ´ c| ă δ, @n ą N.

Using (5.1.4) we deduce that for any n ą Npδpεqq we have |fpxnq ´ A| ă ε. This proves
the implication (i) ñ (ii).

(ii) ñ (i) We know that for any sequence pxnq in Xztcu that converges to c, the sequence
p fpxnq q converges to A and we have to prove (5.1.1), i.e.,

@ε ą 0 Dδ “ δpεq ą 0 : @x P X : 0 ă |x´ c| ă δ ñ |fpxq ´A| ă ε. (5.1.5)

We argue by contradiction and we assume that (5.1.5) is false, so that its opposite is true,
i.e.,

Dε0 ą 0 : @δ ą 0, Dx “ xpδq P X, 0 ă |xpδq ´ c| ă δ and |fpxpδq q ´A| ě ε0. (5.1.6)

From (5.1.6) we deduce that for any δ of the form δ “ 1
n , n P N, there exists xn “ xp1{nq P X

such that

0 ă |xn ´ c| ă
1

n
^ |fpxn q ´A| ě ε0.

We have thus produced a sequence pxnq in X such that

0 ă distpxn, cq ă
1

n
^ distpfpxnq, Aq ě ε0.

Thus, pxnq is a sequence in Xztcu that converges to c, but the sequence p fpxnq q does not
converge to A. [\

Using Proposition 4.3.1 we obtain the following immediate consequence.

Corollary 5.1.5. Let f, g : X Ñ R be two functions defined on the same subset X Ă R
and c a cluster point of X. Suppose additionally that

lim
xÑc

fpxq “ A and lim
xÑc

gpxq “ B.

Then the following hold.

(i)

lim
xÑc

`

fpxq ` gpxq
˘

“ A`B, lim
xÑc

λfpxq “ λA, @λ P R.

(ii)

lim
xÑc

fpxqgpxq “ AB.

(iii) If B ‰ 0 and gpxq ‰ 0, @x P X, then

lim
xÑc

fpxq

gpxq
“
A

B
.

[\
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Example 5.1.6. (a) Let f : RÑ R, fpxq “ x. Then for any c P R we have

lim
xÑc

fpxq “ lim
xÑc

x “ c.

(b) Let m P N and define f : RÑ R, fpxq “ xm. Corollary 5.1.5 implies that

lim
xÑc

fpxq “ lim
xÑc

xm “ cm.

Thus,

lim
xÑ3

x2 “ 32 “ 9.

(c) Let m P N and define f : p0,8q Ñ R, fpxq “ x´m “ 1
xm . Corollary 5.1.5 implies that

for any c ą 0 we have

lim
xÑc

x´m “ lim
xÑc

1

xm
“ c´m.

(d) Let m, k P N and define f : p0,8q Ñ R, fpxq “ x
m
k . We want to show that for any

c ą 0 we have

lim
xÑc

x
m
k “ c

m
k . (5.1.7)

We rely on Theorem 5.1.4. Suppose that pxnq is a sequence of positive numbers such that
xn Ñ c and xn ‰ c, @n. We have to show that

lim
n
x

m
k
n “ c

m
k .

Using Exercise 4.15, we deduce that

lim
n
x

1
k
n “ c

1
k .

Thus,

lim
n
x

m
k
n “ lim

n

`

x
1
k
n

˘m
“
`

c
1
k

˘m
“ c

m
k .

Thus,

lim
xÑc

xr “ cr, @r P Q, r ą 0.

The above equality obviously holds if r “ 0. If r ă 0, then x´r “ 1
xr and we deduce

lim
xÑc

xr “ cr, @c ą 0, r P Q. (5.1.8)

[\

Proposition 5.1.7. Let f, g : X Ñ R be two functions defined on the same subset X Ă R.
Suppose that c is a cluster point of X and

lim
xÑc

fpxq “ A, lim
xÑc

gpxq “ B and A ă B.

Then there exists a δ0 ą 0 such that fpxq ă gpxq, @x P X, 0 ă |x´ c| ă δ0.
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Proof. Fix a positive number ε such that 3ε ă B ´ A. In other words, ε is smaller than
one third of the distance from A to B. In particular, A` ε ă B ´ ε because

B ´ ε´ pA` εq “ B ´A´ 2ε ą 3ε´ 2ε ą 0.

Since limxÑc fpxq “ A, there exists δ “ δf pεq ą 0 such that

@x P X : 0 ă |x´ c| ă δf ñ A´ ε ă fpxq ă A` ε.

Since limxÑc gpxq “ B, there exists δ “ δgpεq ą 0 such that

@x P X : 0 ă |x´ c| ă δg ñ B ´ ε ă fpxq ă B ` ε.

Let δ0 ă mintδf , δgu and define

U :“ pc´ δ0, c` δ0q.

If x P U XX, x ‰ c, then

0 ă |x´ c| ă δ0 ă mintδf , δgu ñ fpxq ă A` ε ă B ´ ε ă gpxq.

[\

5.2. Exponentials and logarithms

In this section we want to give a meaning to the exponential ax where a is a positive real
number and x is an arbitrary real number. The case a “ 1 is trivial: we define 1x “ 1,
@x P R.

We consider next the case a ą 1. In Exercise 3.14 we defined ar for any r P Q and we
showed that

ar1`r2 “ ar1 ¨ ar2 , ar1´r2 “
ar1

ar2
, par1

˘r2
“ ar1r2 , @r1, r2 P Q. (5.2.1)

We will use these facts to define ax for any x P R. This will require several auxiliary
results.

Lemma 5.2.1. If a ą 1, then for any rational numbers r1, r2 we have

r1 ă r2 ñ ar1 ă ar2 .

Proof. We will use the fact that if x, y ą 0 and n P N, then

x ă yðñxn ă yn.

Since a ą 1 we deduce that a
1
n ą 1 because

`

a
1
n
˘n
“ a ą 1 “ 1n.

Thus,

a
m
n ą 1, @m,n P N

that is,

ar ą 1, @r P Q, r ą 0.
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Suppose that r1 ă r2. Then the above inequality implies that

ar2

ar1

p5.2.1q
“ ar2´r1 ą 1

because r “ r2 ´ r1 is a positive rational number. [\

Lemma 5.2.2. Let a ą 1 and r0 P Q. Then

lim
QQrÑr0

ar “ ar0 .

Proof. We first consider the case r0 “ 0, i.e., we first prove that

lim
QQrÑ0

ar “ 1. (5.2.2)

We have to prove that, given ε ą 0, we can find δ “ δpεq ą 0 such that

0 ă |r| ă δ and r P Qñ |ar ´ 1| ă ε.

Observe first that Exercise 4.12 implies that

lim
nÑ8

a
1
n “ lim

nÑ8
a´ 1

n “ 1.

In particular, this implies that there exists n0 “ n0pεq ą 0 such that, for all n ě n0, we have

1´ ε ă a´ 1
n ă a

1
n ă 1` ε.

We set δpεq “ 1
n0pεq

. If 0 ă |r| ă δpεq and r P Q, then ´ 1
n0pεq

ă r ă 1
n0pεq

and we deduce from Lemma 5.2.1 that

1´ ε ă a
´ 1

n0pεq ă ar ă a
1

n0pεq ă 1` εñ 1´ ε ă ar ă 1` εñ |ar ´ 1| ă ε.

This proves (5.2.2). To deal with the general case, let r0 P Q. If rn is a sequence of rational numbers rn Ñ r0, then

arn “ ar0arn´r0 .

Since rn ´ r0 Ñ 0, we deduce from (5.2.2) that arn´r0 Ñ 1 and thus, arn “ ar0arn´r0 Ñ ar0 . The conclusion
now follows from Theorem 5.1.4. [\

Proposition 5.2.3. Let a ą 1 and x P R. We set

Qăx :“
␣

r P Q, r ă x
(

, Qąx :“
␣

r P Q, r ą x
(

sx “ sup
rPQăx

ar, ix “ inf
rPQąx

ar.

Then sx “ ix. Moreover, if x is rational, then sx “ ix “ ax.
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Proof. Observe first that the set tar; r P Qăxu is bounded above. Indeed, if we choose a rational number R ą x,

then Lemma 5.2.1 implies that ar ă aR for any rational number r ă x. A similar argument shows that the set

tar; r P Qąxu is bounded below and we have

sx ď ix.

Observe that for any rational numbers r1, r2 such that r1 ă x ă r2, we have

ar1 ď sx ď ix ď ar2 .

Hence,

1 ď
ix

sx
ď
ar2

sx
ď
ar2

ar1
“ ar2´r1 .

Now choose two sequences pr1
nq Ă Qăx and pr2

nq Ă Qąx such that r1
n Ñ x and r2

n Ñ x.1 Then

1 ď
sx

ix
ď ar

2
n´r1

n .

If we let nÑ8 and observe that r2
n ´ r

1
n Ñ 0, we deduce from Lemma 5.2.2 that

1 ď
sx

ix
ď lim

nÑ8
ar

2
n´r1

n “ 1ñ sx “ ix.

If x P Q, then the sequences r1
n and r2

nabove converge to x. Invoking Lemma 5.2.2 we deduce

sx “ lim
n
ar

1
n “ ax “ lim

n
ar

2
n “ ix.

[\

Definition 5.2.4. For any a ą 1 and x P R we set

ax :“ sup
␣

ar; r P Q, r ă x
(

“ inf
␣

ar; r P Q, r ą x
(

.

If b P p0, 1q, then 1
b ą 1 and we set

bx :“

ˆ

1

b

˙´x

. [\

Lemma 5.2.5. Let a ą 1. If x ă y, then ax ă ay.

Proof. We can find rational numbers r1, r2 such that

x ă r1 ă r2 ă y.

Then r1 P Qąx and r2 P Qăy so that

ax ď ar1 ă ar2 ď ay .

[\

Lemma 5.2.6. Let a ą 1 and x P R. If the sequence prnq Ă Qăx converges to x, then

lim
nÑ8

arn Ñ ax.

1The existence of such sequences was left to you as Exercise 4.13.
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Proof. We have

ax “ sup
rPQăx

ar.

Thus, for any ε ą 0, there exists rε P Qăx such that

ax ´ ε ă arε ď ax.

Since rn Ñ x and rn P Qăx, we deduce that there exists N “ Npεq such that, @n ą Npεq we have rε ă rn ă x. We
deduce that for all n ą Npεq, we have

ax ´ ε ă arε ă arn ă ax.

[\

Lemma 5.2.7. Let a ą 0 and x, y ą 0. Then

ax ¨ ay “ ax`y .

Proof. Choose sequences pr1
nq Ă Qăx and pr2

nq Ă Qăy such that r1
n Ñ x and r2

n Ñ y. Lemma 5.2.6 implies that

ar
1
n Ñ ax ^ ar

2
n Ñ ay .

Hence,

lim
n
ar

1
n`r2

n “ lim
n

`

ar
1
n ¨ ar

2
n
˘

“
`

lim
n
ar

1
n
˘

¨
`

lim
n
ar

2
n
˘

“ ax ¨ ay .

Now observe that r1
n ` r

2
n P Qăx`y and r1

n ` r
2
n Ñ x` y. Lemma 5.2.6 implies

lim
n
ar

1
n`r2

n “ ax`y .

[\

The proofs of our next two results are left to you as an exercise.

Lemma 5.2.8. Let a ą 0 and x P R. Then for any sequence of real numbers pxnq such that xn Ñ x we have

lim
nÑ8

axn “ ax. [\

Lemma 5.2.9. Suppose that a, b ą 0. Then for any x P R we have

ax ¨ bx “ pabqx. (5.2.3)

[\

Definition 5.2.10. Let X Ă R and f : X Ñ R be a real valued function defined on X.

(i) The function f is called increasing if

@x1, x2 P X px1 ă x2q ñ
`

fpx1q ă fpx2q
˘

.

(ii) The function f is called decreasing if

@x1, x2 P X px1 ă x2q ñ
`

fpx1q ą fpx2q
˘

.

(iii) The function f is called nondecreasing if

@x1, x2 P X px1 ă x2q ñ
`

fpx1q ď fpx2q
˘

.
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(iv) The function f is called nonincreasing if

@x1, x2 P X px1 ă x2q ñ
`

fpx1q ě fpx2q
˘

.

(v) The function is called strictly monotone if it is either increasing or decreasing.
It is called monotone if it is either nondecreasing or nonincreasing.

[\

Theorem 5.2.11. Let a ą 0, a ‰ 1. Consider the function fa : R Ñ p0,8q given by
fpxq “ ax. Then the following hold.

(i) ax`y “ ax ¨ ay, @x, y P R.
(ii) paxqy “ axy, @x, y P R.
(iii) The function fa is increasing if a ą 1, and decreasing if a ă 1.

(iv) The function f is bijective.

(v) For any sequence of real numbers pxnq such that xn Ñ x we have

lim
nÑ8

axn “ ax.

Proof. Part (v) above is Lemma 5.2.8. We thus have to prove (i)-(iv). We consider first the case a ą 1. The

equality (i) is Lemma 5.2.7. The statement (iii) follows from Lemma 5.2.5.

We first prove (ii) in the special case y P Q. Choose a sequence rn P Q such that rn Ñ x, rn ‰ x. Then (5.2.1)

implies

parn qy “ arny .

Clearly rny Ñ xy and Lemma 5.2.8 implies that

lim
n
arny “ axy .

On the other hand, y is rational and arn Ñ ax and using (5.1.8) we deduce that

lim
n

`

arn
˘y
“

`

ax
˘y
.

Thus,
`

ax
˘y
“ lim

n

`

arn
˘y
“ lim

n
arny “ axy , @x P R, y P Q. (5.2.4)

Now fix x, y P R and choose a sequence of rational numbers yn Ñ y, yn ‰ y. Then

`

ax
˘yn p5.2.4q

“ axyn , @n.

Using Lemma 5.2.8, we deduce
`

ax
˘y
“ lim

n

`

ax
˘yn “ lim

n
axyn “ axy , @x, y P R.

This proves (ii).

To prove (iv) observe that fa is injective because it is increasing. (We recall that we are working under the
assumption a ą 1.) To prove surjectivity, fix y P p0,8q. We have to show that there exists x P R such that ax “ y.
Define

S :“
␣

s P R; as ď y
(

.

Observe first that S ‰ H. Indeed

lim
n
a´n “ lim

n

1

an
“ 0
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so that there exists n0 P N such that a´n0 ă y, i.e., ´n0 P S. Observe that S is also bounded above. Indeed

lim
n
an “ 8.

Hence there exists n1 P N such that an1 ą y. If x ě n1, then ax ě an1 ą y so that S X rn1,8q “ H and thus

S Ă p´8, n1q and therefore n1 is an upper bound for S. Set

x :“ supS.

Note that if x1 ą x, then ax
1
ě y. Indeed, if ax

1
ă y then for any s ă x1 we have as ă ax

1
ă y and thus

p´8, x1s Ă S. This contradicts the fact that x is an upper bound for S.

Consider now two sequences s1
n Ñ x and s2

n Ñ x where s1
n ă x and s2

n ą x then

as
1
n ď y ď as

2
n , @n.

Letting nÑ8 in the above inequalities we obtain, from Lemma 5.2.8, that

ax ď y ď axðñax “ y.

The case a ă 1 follows from the case a ą 1 by observing that

ax “

ˆ

1

a

˙´x

.

[\

Definition 5.2.12. Let a P p0,8q, a ‰ 1. The bijective function

R Q x ÞÑ ax P p0,8q

is called the exponential function with base a. Its inverse is called the logarithm to base a
and it is a function

loga : p0,8q Ñ R.
When a “ e “ the Euler number, we will refer to loge as the natural logarithm and we
will use the simpler notation log or ln. Also, we will use the notation lg for log10. [\

We have depicted below the graphs of the functions ax and loga x for a “ 2 and a “ 1
2 .

The meaning of the logarithm function answers the following question: given a, y ą 0,
a ‰ 1, to what power do we need to raise a in order to obtain y? The answer: we need to
raise a to the power loga y in order to get y. Equivalently, loga is uniquely determined by
the following two fundamental identities

loga a
x “ x and aloga y “ y, @x P R, y ą 0.

For example, log2 8 “ 3 because 23 “ 8. Similarly lg 10, 000 “ 4 since 104 “ 10, 000.

Theorem 5.2.13. Let a ą 0, a ‰ 1. Then the following hold.

(i) For any y1, y2 ą 0 we have

logapy1y2q “ loga y1 ` loga y2, loga
y1
y2
“ loga y1 ´ loga y2.

(ii) loga y
α “ α loga y, @y ą 0, α P R.
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Figure 5.1. The graph of 2x.

Figure 5.2. The graph of
`

1
2

˘x
.

(iii) If b ą 0 and b ‰ 1, then

logb y “
loga y

loga b
, @y ą 0.

(iv) If a ą 1, then the function y ÞÑ loga y is increasing, while if a P p0, 1q, then the
function y ÞÑ loga y is decreasing.

(v) If y ą 0, then for any sequence of positive numbers pynq that converges to y we
have

lim
nÑ8

loga yn “ loga y.
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Figure 5.3. The graph of log2 x.

Figure 5.4. The graph of log1{2 x.

Proof. (i) Let y1, y2 ą 0. Set x1 “ loga y1, x2 “ loga y2, i.e., a
x1 “ y1 and y2 “ ax2 . We have to show that

logapy1y2q “ x1 ` x2, loga
y1

y2
“ x1 ´ x2.

We have

y1y2 “ ax1ax2 “ ax1`x2 ñ logapy1y2q “ loga a
x1`x2 “ x1 ` x2,

y1

y2
“
ax1

ax2
“ ax1´x2 ñ loga

y1

y2
“ loga a

x1´x2 “ x1 ´ x2.

(ii) Let x P R such that ax “ y, i.e., loga y “ x. We have to prove that

loga y
α “ αx.
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We have

yα “ paxqα “ aαx ñ loga y
α “ loga a

αx “ αx.

(iii) Let β, x, t P R such that aβ “ b, y “ ax “ bt. Then

y “ bt “ paβqt “ atβ “ ax.

Hence,

loga y “ x “ tβ “ plogb yqploga bq ñ logb y “
loga y

loga b
.

(iv) Assume first that a ą 1. Consider the numbers y2 ą y1 ą 0, and set

x1 :“ loga y1, x2 “ loga y2.

We have to show that x2 ą x1. We argue by contradiction. If x1 ě x2, then

y1 “ ax1 ě ax2 “ y2 ñ y1 ě y2.

This contradiction proves the statement (iv) in the case a ą 1. The case a P p0, 1q is dealt with in a similar fashion.

(v) Assume first that a ą 1 so that the function y ÞÑ loga y is increasing. Since yn Ñ y, we deduce that

yn

y
Ñ 1.

Hence, for any ε ą 0 there exists N “ Npεq ą 0 such that

@n ą Npεq :
yn

y0
P pa´ε, aεq.

Hence, @n ą Npεq

´ε “ loga a
´ε ă loga

ˆ

yn

y0

˙

loooooomoooooon

“loga yn´loga y0

ă loga a
ε “ εðñ| loga yn ´ loga y0| ă ε.

[\

Theorem 5.2.14. Fix a real number s and consider f : p0,8q Ñ p0,8q given by
fpxq “ xs. Then for any c ą 0 any sequence of positive numbers pxnq, and any sequence
of real numbers psnq such that xn Ñ c, and sn Ñ s, we have

lim
nÑ8

xsnn “ cs.

Proof. Set
yn :“ log xsnn “ sn log xn.

Theorem 5.2.13(v) implies that

lim
n
yn “ plim

n
snqplim

n
log xnq “ s log c.

Using Theorem 5.2.11(v), we deduce that

lim
n
eyn “ es log c “ pelog cqs “ cs.

Now observe that
eyn “ elog x

sn
n “ xsnn .

This proves Theorem 5.2.14. [\
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5.3. Limits involving infinities

Suppose that we are given a subset X Ă R and a function f : X Ñ R.

Definition 5.3.1. Let c be a cluster point of X.

(a) We say that the limit of f as xÑ c is 8, and we write this

lim
xÑc

fpxq “ 8

if for any M ą 0, Dδ “ δpMq ą 0 such that

@x P X
`

0 ă |x´ c| ă δ ñ fpxq ąM
˘

.

(b) We say that the limit of f as xÑ c is ´8, and we write this

lim
xÑc

fpxq “ ´8

if for any M ą 0, Dδ “ δpMq ą 0 such that

@x P X
`

0 ă |x´ c| ă δ ñ fpxq ă ´M
˘

. [\

We have the following version of Proposition 5.1.3. The proof is left to you.

Proposition 5.3.2. Let f : X Ñ R be a function defined on a set X Ă R and c a cluster point of X. Then the

following statements are equivalent.

(i) limxÑc fpxq “ 8, i.e., f satisfies (5.1.1) or (5.1.2).

(ii)

@M ą 0, DV P N˚
c such that @x P X : x P V ñ fpxq P pM,8q. (5.3.1)

[\

Arguing as in the proof of Theorem 5.1.4 we obtain the following result. The details
are left to you.

Theorem 5.3.3. Let c be a cluster point of the set X Ă R and f : X Ñ R a real valued
function on X. The following statements are equivalent.

(i) limxÑc fpxq “ 8 P R.
(ii) For any sequence pxnqnPN in Xztcu such that xn Ñ c, we have limn fpxnq “ 8.

[\

Observe that if X Ă R is not bounded above, then for any M ą 0 the intersection
X X pM,8q is nonempty, i.e., for any number M ą 0 there exists at least one number
x P X such that x ąM . Equivalently, this means that there exists a sequence pxnqnPN of
numbers in X such that

lim
nÑ8

xn “ 8.
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Definition 5.3.4. Suppose X Ă R is a subset not bounded above and f : X Ñ R is a
real function defined on X.

(a) We say that the limit of f as x Ñ 8 is the real number A, and we write this
limxÑ8 fpxq “ A, if

@ε ą 0 DM “Mpεq ą 0 @x P X px ąM ñ |fpxq ´A| ă εq.

(b) We say that the limit of f as xÑ8 is 8, and we write this limxÑ8 fpxq “ 8, if

@C ą 0 DM “MpCq ą 0 @x P X px ąM ñ fpxq ą Cq.

(c) We say that the limit of f as xÑ8 is ´8, and we write this limxÑ8 fpxq “ ´8, if

@C ą 0 DM “MpCq ą 0 @x P X px ąM ñ fpxq ă ´Cq. [\

Observe that if X Ă R is not bounded below, then for any M ą 0 the intersection
X X p´8,´Mq is nonempty, i.e., for any number M ą 0 there exists at least one number
x P X such that x ă ´M . Equivalently, this means that there exists a sequence pxnqnPN
of numbers in X such that

lim
nÑ8

xn “ ´8.

Definition 5.3.5. Suppose X Ă R is a subset not bounded below and f : X Ñ R is a
real function defined on X.

(a) We say that the limit of f as x Ñ ´8 is the real number A, and we write this
limxÑ´8 fpxq “ A, if

@ε ą 0 DM “Mpεq ą 0 @x P X px ă ´M ñ |fpxq ´A| ă εq.

(b) We say that the limit of f as xÑ ´8 is 8, and we write this limxÑ´8 fpxq “ 8, if

@C ą 0 DM “MpCq ą 0 @x P X px ă ´M ñ fpxq ą Cq.

(c) We say that the limit of f as xÑ ´8 is ´8, and we write this limxÑ´8 fpxq “ ´8,
if

@C ą 0 DM “MpCq ą 0 @x P X px ă ´M ñ fpxq ă ´Cq. [\

The limits involving infinities have an alternate description involving sequences. Thus,
if X Ă R is not bounded above and f : X Ñ R is a real function defined on X, then the
equality

lim
xÑ8

fpxq “ A

can be given a characterization as in Theorem 5.1.4. More precisely, it means that for any
sequence of real numbers xn P X such that xn Ñ8, the sequence fpxnq converges to A.

Example 5.3.6. (a) We want to prove that

lim
xÑ8

ˆ

1`
1

x

˙x

“ e. (5.3.2)
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We will use the fundamental result in Example 4.4.2 which states that the sequence

xn :“

ˆ

1`
1

n

˙n

, n P N,

converges to the Euler number e. In particular, we deduce that

lim
nÑ8

ˆ

1`
1

n` 1

˙n

“ lim
nÑ8

ˆ

1`
1

n

˙n`1

“ e. (5.3.3)

Recall that for any real number x we denote by txu the integer part of the real number
x, i.e., the largest integer which is ď x. Thus txu is an integer and

txu ď x ă txu` 1.

For x ě 1 we have

1 ď txtď x ď txu` 1

and we deduce

1`
1

txu` 1
ď 1`

1

x
ď 1`

1

txu
.

In particular, we deduce that
ˆ

1`
1

txu` 1

˙txu

ď

ˆ

1`
1

x

˙txu

ď

ˆ

1`
1

x

˙x

ď

ˆ

1`
1

txu

˙x

ď

ˆ

1`
1

txu

˙txu`1

. (5.3.4)

From (5.3.3) we deduce that for any ε ą 0 there exists N “ Npεq ą 0 such that
ˆ

1`
1

n` 1

˙n

,

ˆ

1`
1

n

˙n`1

P pe´ ε, e` εq, @n ą Npεq.

If x ą Npεq ` 1, then txu ą Npεq and we deduce from the above that

e´ ε ă

ˆ

1`
1

txu` 1

˙txu

ă e` ε and e´ ε ă

ˆ

1`
1

txu

˙txu`1

ă e` ε.

The inequalities (5.3.4) now imply that for x ą Npεq ` 1 we have

e´ ε ă

ˆ

1`
1

txu` 1

˙txu

ď

ˆ

1`
1

x

˙x

ď

ˆ

1`
1

txu

˙txu`1

ă e` ε.

This proves (5.3.2).

(b) We want to prove that

lim
xÑ´8

ˆ

1`
1

x

˙x

“ e. (5.3.5)

We will prove that for any sequence of nonzero real numbers pxnq such that xn Ñ ´8,
we have

lim
n

ˆ

1`
1

xn

˙xn

“ e.
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Consider the new sequence yn :“ ´xn. Clearly yn Ñ8. We have
ˆ

1`
1

xn

˙xn

“

ˆ

1´
1

yn

˙´yn

“

ˆ

yn ´ 1

yn

˙´yn

“

ˆ

yn
yn ´ 1

˙yn

.

Now set zn :“ yn ´ 1 so that yn “ zn ` 1 and
ˆ

yn
yn ´ 1

˙yn

“

ˆ

zn ` 1

zn

˙zn`1

“

ˆ

1`
1

zn

˙zn`1

“

ˆ

1`
1

zn

˙zn

ˆ

ˆ

1`
1

zn

˙

.

Clearly zn Ñ8 so that

lim
n

ˆ

1`
1

zn

˙

“ 1.

Invoking (5.3.2) we deduce

lim
nÑ8

ˆ

1`
1

zn

˙zn

“ e.

Hence,

lim
n

ˆ

1`
1

xn

˙xn

“ lim
n

ˆ

1`
1

zn

˙zn

ˆ lim
n

ˆ

1`
1

zn

˙

“ e.

This proves (5.3.5). [\

5.4. One-sided limits

Suppose X Ă R is a set of real numbers. For any c P R we define

Xăc :“
␣

x P X; x ă c
(

“ X X p´8, cq, Xąc :“
␣

x P X; x ą c
(

“ X X pc,8q.

Definition 5.4.1. Let f : X Ñ R and c P R. We say that L is the left limit of f at c,
and we write this

L “ lim
xÕc

fpxq “ lim
xÑc´

fpxq,

if

‚ c is a cluster point of Xăc and

‚ for any ε ą 0 there exists δ “ δpεq ą 0 such that

@x P X : x P pc´ δ, cq ñ |fpxq ´ L| ă ε.

We say that R is the right limit of f at c, and we write this

R “ lim
xŒc

fpxq “ lim
xÑc`

fpxq,

if

‚ c is a cluster point of Xąc and

‚ for any ε ą 0 there exists δ “ δpεq ą 0 such that

@x P X : x P pc, c` δq ñ |fpxq ´R| ă ε.

[\
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The next result follows immediately from Theorem 5.1.4. The details are left to you.

Theorem 5.4.2. Let f : X Ñ R be a real valued function defined on the set X Ă R. Fix
c P R.
(a) Suppose that c is a cluster point of Xăc and L P R. Then the following statements are
equivalent.

(i)

lim
xÕc

fpxq “ L.

(ii) For any sequence of real numbers pxnq in X such that xn Ñ c and xn ă c @n we
have

lim
n
fpxnq “ L.

(iii) For any nondecreasing sequence of real numbers pxnq in X such that xn Ñ c and
xn ă c @n we have

lim
n
fpxnq “ L.

(b) Suppose that c is a cluster point of Xąc and L P R. Then the following statements are
equivalent.

(i)

lim
xŒc

fpxq “ L.

(ii) For any sequence of real numbers pxnq in X such that xn Ñ c and xn ą c @n we
have

lim
n
fpxnq “ L.

(iii) For any nonincreasing sequence of real numbers pxnq in X such that xn Ñ c and
xn ą c @n we have

lim
n
fpxnq “ L.

[\

The next result describes one of the reasons why the one-sided limits are useful. Its
proof is left to you as an exercise.

Theorem 5.4.3. Consider three real numbers a ă c ă b, a real valued function

f : pa, bqztcu Ñ R.

and suppose that A P r´8,8s. Then the following statements are equivalent.

(i)

lim
xÑc

fpxq “ A.

(ii)

lim
xÕc

fpxq “ lim
xŒc

fpxq.
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[\

5.5. Some fundamental limits

In this section we present a collection of examples that play a fundamental role in the
development of real analysis.

Example 5.5.1. We want to prove that

lim
xÑ0

`

1` x
˘

1
x “ e. (5.5.1)

We invoke Theorem 5.4.3, so we will prove that

lim
xŒ0

`

1` x
˘

1
x “ lim

xÕ0

`

1` x
˘

1
x “ e.

We prove first the equality

lim
xŒ0

`

1` x
˘

1
x “ e.

We have to prove that if pxnq is a sequence of positive numbers such that xn Ñ 0, then

lim
n

`

1` xn
˘

1
xn “ e.

Set

yn :“
1

xn
.

Then yn Ñ8 and
`

1` xn
˘

1
xn “

ˆ

1`
1

yn

˙yn

,

and, according to (5.3.3), we have
ˆ

1`
1

yn

˙yn

“ e.

The equality

lim
xÕ0

`

1` x
˘

1
x “ e.

is proved in a similar fashion invoking (5.3.5) instead of (5.3.3). [\

Example 5.5.2. We have (log “ loge)

lim
xÑ0

log
`

1` x
˘

x
“ 1. (5.5.2)

Indeed, consider a sequence of nonzero numbers pxnq such that xn Ñ 0. Set

yn “ p1` xnq
1
xn .
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From (5.5.2) we deduce that yn Ñ e. Using Theorem 5.2.13(v), we deduce that log yn Ñ log e “ 1.
[\

Example 5.5.3. We have

lim
xÑ0

ex ´ 1

x
“ 1. (5.5.3)

Let xn Ñ 0. Set yn :“ exn so that xn “ log yn and yn Ñ e0 “ 1. Next, set hn :“ yn ´ 1
so that hn Ñ 0. Then

exn ´ 1

xn
“
yn ´ 1

log yn
“

hn
logp1` hnq

“
1

logp1`hnq
hn

p5.5.2q
ÝÑ 1. [\

Example 5.5.4. Suppose that α P R, α ‰ 0. We have

lim
xÑ0

p1` xqα ´ 1

x
“ α. (5.5.4)

Let xn Ñ 0. Then

p1` xnq
α “ eα logp1`xnq.

Set yn :“ α logp1` xnq so that yn Ñ 0. Then

p1` xnq
α ´ 1

xn
“
eyn ´ 1

yn
¨
yn
xn
“
eyn ´ 1

yn
¨
α logp1` xnq

xn
.

Using (5.5.3) we deduce
eyn ´ 1

yn
Ñ 1,

and using (5.5.2) we deduce
α logp1` xnq

xn
Ñ α.

This shows that
p1` xnq

α ´ 1

xn
Ñ α. [\

Here is a typical application of the equality (5.5.1).

Example 5.5.5. Let us compute

lim
xÑ8

ˆ

1`
x

x2 ` 1

˙2x

.

For any sequence xn Ñ8 we have to compute

lim
nÑ8

ˆ

1`
xn

x2n ` 1

˙2xn

.

Set

yn :“
xn

x2n ` 1
.
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Note that yn Ñ 0 as nÑ8 so that

e “ lim
yÑ0

p1` yq
1
y “ lim

nÑ8
p1` ynq

1
yn .

We first seek to express 2xn in the form

2xn “
sn
yn
ðñ sn “ 2xnyn “

2x2n
x2n ` 1

.

Note that sn Ñ 2 as nÑ8. We deduce
ˆ

1`
xn

x2n ` 1

˙2xn

“ p1` ynq
sn
yn “

´

p1` ynq
1
yn

¯sn
,

so that

lim
nÑ8

ˆ

1`
xn

x2n ` 1

˙2xn

“ lim
nÑ8

´

p1` ynq
1
yn

¯sn

(use Theorem 5.2.14)

“

´

lim
n
p1` ynq

1
yn

¯limn sn
“ e2. [\

5.6. Trigonometric functions: a less than
completely rigorous definition

Recall that the Cartesian product R2 :“ R ˆ R is called the Cartesian plane and can be
visualized as an Euclidean plane equipped with two perpendicular coordinate axes, the
x-axis and the y-axis; see Figure 5.5. We can locate a point P in this plane if we can locate
its projections Px and Py respectively, on the x- and the y-axis respectively; see Figure
5.5. The locations of these projections are indicated by two numbers, the x-coordinate
and the y-coordinate respectively, of P . The point with coordinates p0, 0q is called the
origin and it is denoted by O.

The trigonometric circle is the circle of radius 1 centered at the origin; see Figure 5.5.
More precisely, a point with coordinates px, yq lies on this circle if and only if

x2 ` y2 “ 1. (5.6.1)

Additionally, we agree that this circle is given an orientation, i.e., a prescribed way of
traveling around it. In mathematics, the agreed upon orientation is counterclockwise
orientation indicated by the arrow along the circle in Figure 5.5.

The starting point of the trigonometric circle is the point S with coordinates p1, 0q.
It can alternatively be described as the intersection of the circle with the positive side of
the x-axis. The length2 of the upper semi-circle is a positive number know by its famous
name, π. In particular, the total length of the circle is 2π.

Suppose that we start at the point S and we travel along the circle, in the counter-
clockwise direction a distance θ ě 0. We denote by P the final point of this journey. The
coordinates of this point depend only on the distance θ traveled. The x-coordinate of P

2We have surreptitiously avoided explaining what length means.
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is denoted by cos θ, and the y-coordinate of P is denoted by sin θ. The equality (5.6.1)
implies that

cos2 θ ` sin2 θ “ 1, @θ ě 0. (5.6.2)

O S

P

P

P

xx

y

y

= cos

sin  =

θ

θ

Figure 5.5. The trigonometric circle. The distance of the journey from S to P in the
counterclockwise direction is θ.

Observe that if we continue our journey from P in the counterclockwise direction for
a distance 2π then we are back at P . This shows that

cospθ ` 2πq “ cos θ, sinpθ ` 2πq “ sin θ, @θ ě 0. (5.6.3)

We can define cos θ and sin θ for negative θ’s as well. Suppose that θ “ ´ϕ, ϕ ě 0. If
we start at S and travel along the circle in the clockwise direction a distance ϕ, then we
reach a point Q. By definition, its coordinates are cosp´ϕq and sinp´ϕq; see Figure 5.6.

From the description it is easily seen that

cosp´ϕq “ cosϕ, sinp´ϕq “ ´ sinϕ, @ϕ ě 0. (5.6.4)

We have thus constructed two functions

cos, sin : RÑ R,

called trigonometric functions. Their graphs are depicted in Figure 5.7 and 5.8.

Let us record a few important values of these functions.

We list below some of the more elementary, but very important, properties of the
trigonometric functions sin and cos.

cos2 x` sin2 x “ 1, @x P R. (5.6.5a)

cospx` 2πq “ cosx, sinpx` 2πq “ sinx, @x P R. (5.6.5b)
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O S x

y

Q

(−φ)

(−φ)sin

cos

Figure 5.6. The trigonometric circle. The distance of the journey from S to Q in the
clockwise direction is ϕ.

Figure 5.7. The graph of cosx.

Table 5.1. Some important values of trig functions

θ 0 π
6

π
4

π
3

π
2 π 2π

cos θ 1
?
3
2

?
2
2

1
2 0 ´1 1

sin θ 0 1
2

?
2
2

?
3
2 1 0 0

cosp´xq “ cosx, sinp´xq “ ´ sinpxq, @x P R. (5.6.5c)

cospx` πq “ ´ cospxq, sinpx` πq “ ´ sinpxq, @x P R, (5.6.5d)

sin
´

x`
π

2

¯

“ cosx, @x P R. (5.6.5e)

| cosx| ď 1, | sinx| ď 1, @x P R. (5.6.5f)
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Figure 5.8. The graph of sinx.

cosx ą 0, @x P p´
π

2
,
π

2
q and sinx ą 0, @x P p0, πq. (5.6.5g)

cosx “ 0ðñx is an odd multiple of π2 , sinx “ 0ðñx is a multiple of π. (5.6.5h)

Definition 5.6.1. Let f : RÑ R be a real valued function defined on the real axis R.

(i) The function f is called even if

fp´xq “ fpxq, @x P R.

(ii) The function f is called odd if

fp´xq “ ´fpxq, @x P R.

(iii) Suppose P is a positive real number. We say that f is P -periodic if

fpx` P q “ fpxq, @x P R.

(iv) The function f is called periodic if there exists P ą 0 such that f is P -periodic.
Such a number P is called a period of f .

[\

We see that the functions cosx and sinx are 2π-periodic, cosx is even, and sinx is
odd.

In applications, we often rely on other trigonometric functions derived from sin and
cos. We define

tanx “
sinx

cosx
, whenever cosx ‰ 0,

cotx “
cosx

sinx
, whenever sinx ‰ 0.

The graphs of tanx and cotx are depicted in Figure 5.9 and 5.10.

Example 5.6.2. We want to outline a geometric explanation for an important limit.

lim
xÑ0

sinx

x
“ 1. (5.6.6)
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Figure 5.9. The graph of tanx for x P p´π{2, π{2q.

Figure 5.10. The graph of cotx for x P p0, πq.

We will prove that

lim
xÕ0

sinx

x
“ lim

xŒ0

sinx

x
“ 1.

Since
sinx

x
“

sinp´xq

´x
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it suffices to prove only that

lim
xŒ0

sinx

x
“ 1. (5.6.7)

This will follow immediately from the following fundamental inequalities

θ cos2 θ ď sin θ ď θ, @0 ă θ ă
π

2
. (5.6.8)

Let us temporarily take for granted these inequalities and show how they imply (5.6.7).

Observe that (5.6.8) implies that

0 ď sin θ ď θ, @0 ă θ ă
π

2
.

The Squeezing Principle shows that

lim
θŒ0

sin θ “ 0. (5.6.9)

This shows that the limit

lim
θŒ0

sin θ

θ

is a bad limit of the type 0
0 . We can rewrite (5.6.8) as

1´ sin2 θ “ cos2 θ ď
sin θ

θ
ď 1. (5.6.10)

The equality (5.6.9) shows that

lim
θŒ0
p1´ sin2 θq “ 1.

The equality (5.6.8) now follows by applying the Squeezing Principle to the inequalities
(5.6.10).

“Proof” of (5.6.8). Fix θ, 0 ă θ ă π
2
. We denote by P the point on the trigonometric circle reached from S by

traveling a distance θ in the counterclockwise direction; see Figure 5.11. Denote by Q the projection of P onto the

x-axis. We have

|OQ| “ cos θ, |PQ| “ sin θ.

Denote by M the intersection of the line OP with the circle centered at O and radius |OP | “ cos θ. We distinguish

three regions in Figure 5.12: the circular sector pOQMq, the triangle △OSP , and the circular sector pOSP q. Clearly

pOQMq Ă △OSP Ă pOSP q

so that we obtain inequalities between their areas3

area pOQMq ď area△OSP ď area pOSP q

The area of a circular sector is4

1

2
ˆ square of the radius of the sectorˆ the size of the angle of the sector. (5.6.11)

We have

area pOQMq “
1

2
|OQ|2θ “

θ cos2 θ

2
, area pOSP q “

1

2
|OS|2θ “

θ

2
,

area△OSP “
1

2
|PQ| ˆ |OS| “

1

2
sin θ.

3At this point we do not have a rigorous definition of the area of a planar region.
4The equality (5.6.11) needs a justification
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O S

P

x

y

Q

M θ

Figure 5.11. The trigonometric circle. The distance of the journey from S to P in the
counterclockwise direction is θ.

Hence,

θ cos2 θ

2
ď

1

2
sin θ ď

θ

2
. [\

5.7. Useful trig identities.

We list here a few important trigonometric identities that we will use in the future.

sinpx˘ yq “ sinx cos y ˘ sin y cosx, cospx˘ yq “ cosx cos y ¯ sinx sin yq. (5.7.1a)

sin 2x “ 2 sinx cosx, cos 2x “ cos2 x´ sin2 x. (5.7.1b)

1` cosx

2
“ cos2px{2q,

1´ cosx

2
“ sin2px{2q. (5.7.1c)

cosx cos y “
1

2

`

cospx´yq`cospx`yq
˘

, sinx sin y “
1

2

`

cospx´yq´cospx`yq
˘

. (5.7.1d)

sinx cos y “
1

2

`

sinpx` yq ` sinpx´ yq
˘

(5.7.1e)

tanpx˘ yq “
tanx` tan y

1¯ tanx tan y
. (5.7.1f)
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5.8. Landau’s notation

Let c P r´8,8s and consider two real valued functions f, g defined on the same set X Ă R
which admits c as a cluster point. We say that

fpxq “ O
`

gpxq
˘

as xÑ c (5.8.1)

if there exists a positive constant C and a neighborhood U of c such that

@x P X, x P pX X Uqztcu ñ |fpxq| ď C|gpxq|.

For example,
x

x2 ` 1
“ O

ˆ

1

x

˙

as xÑ8.

We say that
fpxq “ o

`

gpxq
˘

as xÑ c, (5.8.2)

if, for any ε ą 0, there exists a neighborhood Uε of c such that

@x P X, x P Uεztcu ñ |fpxq| ď ε|gpxq|.

If gpxq ‰ 0 for any x in a neighborhood U of c, then

fpxq “ o
`

gpxq
˘

as xÑ cðñ lim
xÑc

fpxq

gpxq
“ 0.

Loosely speaking, this means that fpxq is much, much smaller than gpxq as x approaches
c. For example,

e´x “ opx´25q as xÑ8,

and
x3 “ opx2q as xÑ 0.

However
x2 “ opx3q as xÑ8.

Finally, we say that f is similar to gpxq as xÑ c, and we write this

fpxq „ gpxq as xÑ c

if

lim
xÑc

fpxq

gpxq
“ 1.

For example
x3 ´ 39x2 ` 17 „ x3 ` 3x2 ` 2x` 1 as xÑ8,

and
ex ´ 1 „ x as xÑ 0.
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5.9. Exercises

Exercise 5.1. Prove that any real number is a cluster point of the set of rational numbers.
[\

Exercise 5.2. Prove Proposition 5.1.3. [\

Exercise 5.3 (Squeezing principle). Let f, g, h : X Ñ R be three functions defined on the
same subset X Ă R and c a cluster point of X. Suppose that U is a deleted neighborhood
of c such that

fpxq ď hpxq ď gpxq, @x P U XX.

Show that if
lim
xÑc

fpxq “ A “ lim
xÑc

gpxq,

then
lim
xÑc

hpxq “ A. [\

Exercise 5.4. Consider a subset X Ă R, a function f : X Ñ R, and a cluster point c of
the set X. Prove that the following statements are equivalent.

(i) The limit limxÑc fpxq exists and it is finite.

(ii) For any sequence pxnqnPN Ă X such that xn Ñ c and xn ‰ c, @n P N the
sequence

`

fpxnq
˘

nPN is convergent.

[\

Exercise 5.5. Let I Ă R be an interval and f : I Ñ R a function. Suppose that f is a
Lipschitz function, i.e., there exists a constant L such that

|fpxq ´ fpyq| ď L|x´ y|, @x, y P I.

Show that for any y P Y we have

lim
xÑy

fpxq “ fpyq. [\

Exercise 5.6. We already know that the series
ÿ

ně1

1

ns

converges for any rational number s ą 1. Prove that it converges for any real number
s ą 1. [\

Exercise 5.7. (a) Prove that for any n P N we have

lim
xÑ8

1

xn
“ 0.

(b) Let k P N and consider the function f : Rzt0u Ñ R, fpxq “ 1
x2k

. Show that

lim
xÑ0

fpxq “ 8. [\
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Exercise 5.8. Fix a natural number n. Consider the polynomial

P pxq “ xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a1x` a0.

Show that

lim
xÑ8

P pxq “ 8, lim
xÑ´8

P pxq “

#

8, n is even

´8, n is odd.
[\

Exercise 5.9. Consider two convergent sequences of real numbers pxnqně0, pynqně0. We
set

x :“ lim
nÑ8

xn, y :“ lim
nÑ8

yn.

Show that if xn ą 0, @n ě 0 and x ą 0 then

lim
nÑ8

xynn “ xy.

Hint. Use the same strategy as in the proof of Theorem 5.2.14. [\

Exercise 5.10. Prove that

lim
nÑ8

´

1`
x

n

¯n
“ ex, @x P R.

Hint: Use the result in Example 5.3.6 and Theorem 5.2.14. [\

Exercise 5.11. Fix an arbitrary number a ą 1.

(a) Prove that for any x ą 1 we have

ax ě atxu ě 1` pa´ 1qtxu`

ˆ

txu

2

˙

pa´ 1q2.

(b) Prove that

lim
xÑ8

x

ax
“ 0, lim

xÑ8

ax

x
“ 8.

Hint. Use (a) and Example 4.3.4.

(c) Let r ą 0. Prove that

lim
xÑ8

xr

ax
“ 0.

Hint. Reduce to (b).

(d) Prove that

lim
xÑ8

loga x

x
“ 0.

Hint. Reduce to (c). [\

Exercise 5.12. Fix a positive real number s and consider the function f : p0,8q Ñ R,
fpxq “ xs.

(a) Show that f is an increasing function.
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(b) Show that

lim
xŒ0

xs “ 0.

Exercise 5.13. Let a, b P R, a ă b. Prove that if f : pa, bq Ñ R is a nondecreasing
function and x0 P pa, bq, then the one sided limits

lim
xÕx0

fpxq and lim
xŒx0

fpxq

exist and

lim
xÕx0

fpxq “ sup
xăx0

fpxq, lim
xŒx0

fpxq “ inf
xąx0

fpxq. [\

Exercise 5.14. Consider the function

f : Rzt0u Ñ R, fpxq “ x sin

ˆ

1

x

˙

.

Prove that

lim
xÑ0

fpxq “ 0. [\

Figure 5.12. The graph of x sinp1{xq for |x| ă π{10.

Exercise 5.15. Consider f : r0,8q Ñ R,

fpxq “
2x3 ` x2

x3 ` x2 ` 1
.

Show that

fpxq “ Op1q as xÑ8.

Above, we used Landau’s notation introduced in section 5.8. [\

Exercise 5.16. (a) Prove Lemma 5.2.8.
Hint. The case a “ 1 is trivial. In the case a ą 1 show that there exists a sequence of positive rational numbers
prnq such that

´rn ď xn ´ x ď rn, @n.

Now use Lemma 5.2.2, Lemma 5.2.5, and the Squeezing Principle to conclude. The case a ă 1 follows from the case

a ą 1.

(b) Prove the equality (5.2.3).

Hint. First prove that (5.2.3) holds for any x P Q. Then conclude using Lemma 5.2.8. [\
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Exercise 5.17. Prove Proposition 5.3.2. [\

Exercise 5.18. Prove Theorem 5.3.3. [\

Exercise 5.19. Prove Theorem 5.4.2. [\

Exercise 5.20. Prove Theorem 5.4.3. [\

5.10. Exercises for extra credit

Exercise* 5.1 (Viète). Consider the sequence pxnqně0 defined by

x0 “ 0, xn`1 “

c

1` xn
2

, @n ě 0.

(a) Prove that

xn “ cos
π

2n`1
, @n ě 0.

(b) Prove that

lim
nÑ8

px1 ¨ x2 ¨ ¨ ¨xnq “
2

π
. [\

Exercise* 5.2. Suppose that
ÿ

ně0

an

is a convergent series of real numbers. We denote by a its sum.

(i) Show that for any x P p´1, 1q the series
ÿ

ně0

anx
n

is convergent. For x P p´1, 1q we denote by Apxq the sum of the above series.

(ii) Prove that
lim
xÕ1

Apxq “ a.

Hint: At some point you will need to use Abel’s trick (4.10.1).

[\

Exercise* 5.3. Suppose that U : p0,8q Ñ p0,8q is an increasing function such that the
limit

lim
tÑ8

Uptxq

Upxq

exists and it is positive for any x ą 0. We denote by ψpxq the above limit.

(a) Prove that ψpxq ď ψpyq, @x, y P p0,8q, x ă y.

(b) Prove that ψpxyq “ ψpxqψpyq, @x, y ą 0.

(c) Prove that there exists p ě 0 such that ψpxq “ xp, @x ą 0. [\



Chapter 6

Continuity

6.1. Definition and examples

The concept of continuity is a fundamental mathematical concept with a wide range of
applications.

Definition 6.1.1. Suppose that X Ă R and f : X Ñ R is a real valued function
defined on X. We say that the function f is continuous at a point x0 P X if

@ε ą 0 Dδ “ δpεq ą 0 such that @x P X |x´ x0| ă δ ñ |fpxq ´ fpx0q| ă ε.

We say that the function f is continuous (on X) if it is continuous at every point
x0 P X. [\

Arguing as in the proof of Theorem 5.1.4 we obtain the following very useful alternate
characterization of continuity. The details are left to you as an exercise.

Theorem 6.1.2. Let X Ă R, x0 P X, and f : X Ñ R a real valued function on X. The
following statements are equivalent.

(i) The function f is continuous at x0.

(ii) For any sequence pxnqnPN in X such that xn Ñ x0, we have limn fpxnq “ fpx0q.

[\

We have the following useful consequence which relates the concept of continuity to
the concept of limit. Its proof is left to you as an exercise.

Corollary 6.1.3. Let X Ă R and f : X Ñ R. Suppose that x0 P X is a cluster point of
X. Then the following statements are equivalent.

135
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(i) The function f is continuous at x0.

(ii) limxÑx0 fpxq “ fpx0q.

[\

We have already encountered many examples of continuous functions.

Example 6.1.4. (a) Let k P N. Then the function

f : RÑ R, fpxq “ xk, @x P R,

is continuous on its domain R. Indeed, if x0 P R and pxnqnPR is a sequence of real numbers
such that xn Ñ x0, then Proposition 4.3.1 implies that

xkn Ñ xk0,

thus proving the continuity of f at an arbitrary point x0 P R.
(b) A similar argument shows that if k P N, then the function

f : Rzt0u Ñ R, fpxq “
1

xk
, @x P Rzt0u,

is continuous.

(c) Fix s P R. Then the function

f : p0,8q Ñ R, fpxq “ xs, @x ą 0,

is continuous. Indeed, this follows by invoking Theorems 5.2.14 and 6.1.2.

(d) Let a ą 0. Then the functions

f : RÑ p0,8q, fpxq “ ax,

and

g : p0,8q Ñ R, gpxq “ loga x,

are continuous on their domains. Indeed, the continuity of f follows from Lemma 5.2.8,
while the continuity of g follows from Theorem 5.2.13.

(e) The trigonometric functions

sin, cos : RÑ R

are continuous.

Let us first prove that these functions are continuous at x0 “ 0. The continuity of sin at x0 “ 0 follows

immediately from (5.6.9) and Corollary 6.1.3. To prove the continuity of cos at x0 “ 0 we have to show that if pxnq
is a sequence of real numbers such that xn Ñ 0, then cosxn Ñ cos 0 “ 1.

Let pxnq be a sequence of real numbers converging to zero. Then

cos2 xn “ 1´ sin2 xn

and we deduce that

lim
n

cos2 xn “ 1´ sin2 xn “ lim
n
p1´ sin2 xnq “ 1.
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Since xn Ñ 0, we deduce that there exists N0 ą 0 such that |xn| ă
π
2
, @n ą N0. The inequalities (5.6.5g) imply

that

cosxn ą 0, @n ą0,

so that,

cosxn “
a

1´ sin2 xn, @n ą N0.

Exercise 4.15 now implies that

lim
n

cosxn “
b

lim
n
p1´ sin2 xnq “

?
1 “ cos 0.

We can now prove the continuity of sin and cos at an arbitrary point x0. Suppose that xn is a sequence of real
numbers such that xn Ñ x0. We have to show that

lim
n

sinxn “ sinx0 and lim
n

cosxn “ cosx0.

We set hn “ xn ´ x0, so that, xn “ x0 ` h. Then

sinxn “ sinpx0 ` hnq
p5.7.1aq
“ sinx0 coshn ` sinhn cosx0

and

cosxn “ cospx0 ` hnq
p5.7.1aq
“ cosx0 coshn ´ sinx0 sinhn.

Observe that hn Ñ 0 and, since sin and cos are continuous at 0, we have sinhn Ñ 0 and coshn Ñ 1. We deduce

lim
n

sinxn “ lim
n

sinpx0 ` hnq “ sinx0 lim
n

coshn ` cosx0 lim
n

sinhn “ sinx0

and

lim
n

cosxn “ lim
n

cospx0 ` hnq “ cosx0 lim
n

coshn ´ sinx0 lim
n

sinhn “ cosx0.

(f) Recall that a function f : X Ñ R, X Ă R is called Lipschitz if

DL ą 0 : @x1, x2 P X |fpx1q ´ fpx2q| ď L|x1 ´ x2|.

Observe that a Lipschitz function is necessarily continuous. Indeed, if x0 P X and pxnq is
a sequence in X such that xn Ñ x0 then

|fpxnq ´ fpx0q| ď L|xn ´ x0| Ñ 0,

and the squeezing principle implies that fpxnq Ñ fpx0q.

Observe that the absolute value function f : R Ñ r0,8q, fpxq “ |x| is Lipschitz
because of the following elementary inequality (see Exercise 4.5)

|fpxq ´ fpyq| “
ˇ

ˇ |x| ´ |y|
ˇ

ˇ ď |x´ y|, @x, y P R. (6.1.1)

Thus the absolute value function f : RÑ R, fpxq “ |x| is a continuous function. [\

Proposition 6.1.5. Let X Ă R, c P R, and suppose that f, g : X Ñ R are two continuous
functions. Then the functions

f ` g, cf, f ¨ g : X Ñ R,

are continuous. Additionally, if @x P X gpxq ‰ 0, then the function

f

g
: X Ñ R

is also continuous.
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Proof. This is an immediate consequence of Proposition 4.3.1 and Theorem 6.1.2. [\

Example 6.1.6. Polynomial function p : RÑ R defined by

ppxq “ cnx
n ` ¨ ¨ ¨ ` c1x` c0,

n P Z, n ě 0, c0, . . . , cn P R are continuous. For example, the function ppxq “ x3´ 2x` 5,
x P R, is continuous on R.

We can easily get more complicated examples. Thus, the function px3 ´ 2x` 5q sinx,
x P R, is continuous, the function ex ` e´x, x P R, is continuous and nowhere zero, so the
quotient

px3 ´ 2x` 5q sinx

ex ` e´x
, x P R

is also continuous on R. [\

Proposition 6.1.7. Suppose that X,Y Ă R and that f : X Ñ R and g : Y Ñ R are
continuous functions such that

fpXq Ă Y.

Then the composition g ˝ f : X Ñ R, g ˝ fpxq “ gpfpxqq, @x P X is also a continuous
function.

Proof. Theorem 6.1.2 implies that we have to prove that for any x0 P X and any sequence
pxnq in X such that xn Ñ x0 we have

gpfpxnq q Ñ gp fpx0q q.

Set y0 :“ fpx0q, yn :“ fpxnq. Since f is continuous at x0, Theorem 6.1.2 shows that
fpxnq Ñ fpx0q, i.e., yn Ñ y0. Since g is continuous at y0, Theorem 6.1.2 implies that
gpynq Ñ gpy0q, i.e.,

gpfpxnq q Ñ gp fpx0q q.

[\

Example 6.1.8. Consider the continuous functions

f, g, h : RÑ R, fpxq “ sinx, gpxq “ ex, hpxq “ |x|.

Then g˝fpxq “ esinx is continuous on R, and so is the function f ˝gpxq “ sin ex. Similarly
f ˝ hpxq “ sin |x| is a continuous function on R. [\

Definition 6.1.9. Let X Ă R be a set of real numbers and f : X Ñ R a real valued
function on X.

(a) The sequence of functions fn : X Ñ R, n P N is said to converge pointwisely to the
function f : X Ñ R if

lim
nÑ8

fnpxq “ fpxq, @x P X,
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i.e.,

@ε ą 0, @x P X DN “ Npε, xq : @n ą Npε, xq |fnpxq ´ fpxq| ă ε. (6.1.2)

(b) The sequence of functions fn : X Ñ R, n P N is said to converge uniformly to the
function f : X Ñ R if

@ε ą 0 DN “ Npεq ą 0 such that @n ą Npεq, @x P X : |fnpxq ´ fpxq| ă ε. (6.1.3)

[\

Theorem 6.1.10 (Continuity of uniform limits). Let X Ă R be a set of real numbers.
If the sequence of continuous functions fn : X Ñ R, n P N, converges uniformly to the
function f : X Ñ R, then the limit function f is also continuous on X.

Proof. We have to prove that given x0 P X the function f is continuous at x0, i.e., we
have to show that

@ε ą 0 Dδ “ δpεq ą 0 @x P X |x´ x0| ă δ ñ |fpxq ´ fpx0q| ă ε. (6.1.4)

Let ε ą 0. The uniform convergence implies that

DNpεq ą 0 : @x P X, @n ą Npεq |fnpxq ´ fpxq| ă
ε

3
. (6.1.5)

Fix n0 ą Npεq. The function fn0 is continuous at x0 and thus

Dδpεq ą 0 @x P X : |x´ x0| ă δpεq ñ |fn0pxq ´ fn0px0q| ă
ε

3
. (6.1.6)

We deduce that if |x´ x0| ă δpεq, then

|fpxq ´ fpx0q| ď |fpxq ´ fn0pxq| ` |fn0pxq ´ fn0px0q| ` |fn0px0q ´ fpx0q|. (6.1.7)

From (6.1.5) we deduce that since n0 ą Npεq we have

|fpxq ´ fn0pxq|, |fn0px0q ´ fpx0q| ă
ε

3
, @x P X.

From (6.1.6) we deduce that if |x´ x0| ă δpεq, then

|fn0pxq ´ fn0px0q| ă
ε

3
.

Using these facts in (6.1.7) we deduce that if |x´ x0| ă δpεq, then

|fpxq ´ fpx0q| ă ε.

[\
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6.2. Fundamental properties of continuous
functions

In this section we will discuss several fundamental properties of continuous functions,
which hopefully will explain the usefulness of the concept of continuity.

Theorem 6.2.1. Suppose that c is an arbitrary real number, X Ă R and f : X Ñ R is a
function continuous at x0 P X.

(a) If x0 P X satisfies fpx0q ă c, then there exists δ ą 0 such that

@x P X, |x´ x0| ă δ ñ fpxq ă c.

In other words, if fpx0q ă c, then for any x P X sufficiently close to x0 we also have
fpxq ă c.

(b) If x0 P X satisfies fpx0q ą c, then there exists δ ą 0 such that

@x P X, |x´ x0| ă δ ñ fpxq ą c.

In other words, if fpx0q ą c, then for any x P X sufficiently close to x0 we also have
fpxq ą c.

Proof. Fix ε0 ą 0, such that fpx0q`ε0 ă c. (For example, we can choose ε0 “
1
2pc´fpx0q q.)

The continuity of f at x0 (Definition 6.1.1) implies that there exists δ0 ą 0 such that
for any x P X satisfying |x´ x0| ă δ0 we have

|fpxq ´ fpx0q| ă ε0,

so that

fpx0q ´ ε0 ă fpxq ă fpx0q ` ε0 ă c.

[\

Corollary 6.2.2. Suppose that X Ă R, x0 P X and f : X Ñ R is a continuous function
such that fpx0q ‰ 0. Then there exists δ ą 0 such that

@x P X p |x´ x0| ă δ ñ fpxq ‰ 0 q.

In other words, if fpx0q ‰ 0, then for any x P X sufficiently close to x0 we also have
fpxq ‰ 0.

Proof. Consider the function g : X Ñ R, gpxq “ |fpxq|. The function g is continuous
because it is the composition of the absolute-value-function with the continuous function
f . Additionally, |gpx0q| ą 0. The desired conclusion now follows from Theorem 6.2.1
(b). [\

To state and prove our next result we need to make a small digression. Recall that
the Completeness Axiom states that if the set X Ă R is bounded above, then it admits a
least upper bound which is a real number denoted by supX. If the set X is not bounded
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above, then we define supX :“ 8. Thus, we have given a meaning to supX for any
subset X Ă R. Moreover,

supX ă 8 ðñ the set X is bounded above.

Similarly, we define infX “ ´8 for any set X that is not bounded below. Thus we have
given a meaning to infX for any subset X Ă R. Moreover,

infX ą ´8ðñthe set X is bounded below.

Lemma 6.2.3. (a) If Y is a set of real numbers and M “ supY P p´8,8s, then there
exists an increasing sequence of real numbers pMnqně1 and a sequence pynq in Y such that

Mn ď yn ďM, @n, lim
n
Mn “M.

(b) If Y is a set of real numbers and m “ inf Y P r´8,8q, then there exists a decreasing
sequence of real numbers pmnqně1 and a sequence pynq in Y such that

m ď yn ď mn, @n, lim
n
mn “ m.

Proof. We prove only (a). The proof of (b) is very similar and it is left to you as an
exercise. We distinguish two cases.

A. M ă 8. Since M is the least upper bound of Y , for any n ą 0 there exists yn P X
such that

M ´
1

n
ď yn ďM.

The sequences pynq and Mn “M ´ 1
n have the desired properties.

B. M “ 8. Hence, the set Y is not bounded above. Thus, for any n P N there exists
yn P Y such that yn ě n. The sequences pynq and Mn “ n have the desired properties. [\

Theorem 6.2.4 (Weierstrass). Consider a continuous real valued function f defined
on a closed and bounded interval ra, bs, i.e., f : ra, bs Ñ R. Then the following
hold.

(i)
M :“ sup

␣

fpxq; x P ra, bs
(

ă 8.

(ii) Dx˚ P ra, bs such that fpx˚q “M .

(iii)
m :“ inf

␣

fpxq; x P ra, bs
(

ą ´8.

(iv) Dx˚ P ra, bs such that fpx˚q “ m.

Proof. We prove only (i) and (ii). The proofs of statements (iii) and (iv) are similar.
Denote by Y the range of the function f ,

Y “
␣

fpxq; x P ra, bs
(

.
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Hence M “ supY . From Lemma 6.2.3 we deduce that there exists a sequence pynq in Y
and an increasing sequence pMnq such that

Mn ď yn ďM, lim
n
Mn “M.

The Squeezing Principle implies that

lim
n
yn “M. (6.2.1)

Since yn is in the range of f there exists xn P ra, bs such that fpxnq “ yn. The sequence
pxnq is obviously bounded because it is contained in the bounded interval ra, bs. The
Bolzano-Weierstrass Theorem (Theorem 4.4.8) implies that pxnq admits a subsequence
pxnk

q which converges to some number x˚

lim
k
xnk

“ x˚.

Since a ď xnk
ď b, @k, we deduce that x˚ P ra, bs. The continuity of f implies that

lim
k
ynk

“ lim
k
fpxnk

q “ fpx˚q.

On the other hand,

lim
k
ynk

“ lim
n
yn

p6.2.1q
“ M.

Hence

M “ fpx˚q ă 8.

[\

Definition 6.2.5. Let f : X Ñ R be a function defined on a nonempty set X Ă R.
(a) A point x˚ P X is called a global minimum of f if

fpx˚q ď fpxq, @x P X.

(b) A point x˚ P X is called a global maximum of f if

fpxq ď fpx˚q, @x P X. [\

We can rephrase Theorem 6.2.4 as follows.

Corollary 6.2.6. A continuous function f : ra, bs Ñ R admits a global minimum and a
global maximum. [\

Remark 6.2.7. The conclusions of Theorem 6.2.4 do not necessarily hold for continuous
functions defined on non-closed intervals. Consider for example the continuous function

f : p0, 1s Ñ R, fpxq “
1

x
.

Note that fp1{nq “ n, @n P N so that

sup
␣

fpxq; x P p0, 1s
(

“ 8. [\
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c

d

r x

y

Figure 6.1. If the graph of a continuous functions has points both below and above the
x-axis, then the graph must intersect the x-axis.

Theorem 6.2.8 (The intermediate value theorem). Suppose that f : ra, bs Ñ R is a
continuous function and c, d P ra, bs are real numbers such that

c ă d and fpcq ¨ fpdq ă 0.

Then there exists a real number r P pc, dq such that fprq “ 0.

Proof. We distinguish two cases: fpcq ă 0 or fpcq ą 0. We discuss only the case fpcq ă 0
depicted in Figure 6.1. The second case follows from the first case applied to the continuous
function ´f . Observe that the assumption fpcqfpdq ă 0 implies that if fpcq ă 0, then
fpdq ą 0.

Consider the set

X :“
␣

x P rc, ds; fpxq ă 0
(

.

Clearly X is nonempty because c P X. By construction, the set X is bounded above by
d. Define

r :“ supX.

We will prove that fprq “ 0. Since r “ supX, we deduce from Lemma 6.2.3 that there
exists a sequence pxnq in X such that xn Ñ r as nÑ8. The function f is continuous at
r so that

fprq “ lim
xÑr

fpxq “ lim
nÑ8

fpxnq.

On the other hand fpxnq ă 0, for any n because xn P X. Hence fprq ď 0. In particular
r ‰ d because fpdq ą 0.

c dr r+δ

Figure 6.2. The function f would be negative on rr, r ` δs if fprq were negative.



144 6. Continuity

To prove that fprq “ 0 it suffices to show that fprq ě 0. We argue by contradiction
and we assume that fprq ă 0. Theorem 6.2.1 implies that there exists δ ą 0 such that if
x P ra, bs and |x ´ r| ă δ, then fpxq ă 0. Thus fpxq ă 0 for any x P ra, bs X rr, r ` δs;
Figure 6.2.

Choose h ą 0 such that
h ă min

␣

δ, distpr, dq
(

.

Then r ` h P rr, ds and r ` h P rr, r ` δs. Hence r ` h P rc, ds and fpr ` hq ă 0 so that
r ` h P X. This contradicts the fact that r “ supX. [\

The Intermediate Value Theorem has many useful consequences. We present a few of
them.

Corollary 6.2.9. Suppose that f : ra, bs Ñ R is a continuous function, y0 P R and c ď d
are real numbers in the interval ra, bs such that

‚ either fpcq ď y0 ď fpdq , or

‚ fpcq ě y0 ě fpdq.

Then there exists x0 P rc, ds such that fpx0q “ y0.

Proof. If fpcq “ y0 or fpdq “ y0, then there is nothing to prove so we assume that
fpcq, fpdq ‰ y0. Consider the function g : ra, bs Ñ R, gpxq “ fpxq´y0. Then gpcqgpdq ă 0,
and the Intermediate Value Theorem implies that there exists x0 P pc, dq such that
gpx0q “ 0, i.e., fpx0q “ y0. [\

Corollary 6.2.10. Suppose that f : ra, bs Ñ R is a continuous function and c ă d are
real numbers in the interval ra, bs such that

fpxq ‰ 0, @x P pc, dq.

Then the function f does not change sign in the interval pc, dq, i.e., either

fpxq ą 0, @x P pc, dq,

or
fpxq ă 0, @x P pc, dq.

Proof. If f did change sign in the interval pc, dq, then we could find two numbers c1, d1 P pc, dq
such that fpc1q ă 0 and fpd1q ą 0. The Intermediate Value Theorem will then imply that
f must equal zero at some point r situated between c1 and d1. This would contradict the
assumptions on f . [\

Corollary 6.2.11. Suppose that f : ra, bs Ñ R is a continuous function,

M “ sup
␣

fpxq; x P ra, bs
(

, m “ inf
␣

fpxq; x P ra, bs
(

.

Then the range of the function f is the interval rm,M s.
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Proof. Observe first that

m ď fpxq ďM, @x P ra, bs.

This shows that the range of f is contained in the interval rm,M s. Let us now prove the
opposite inclusion, i.e., rm,M s is contained in the range of f . More precisely, we need to
show that for any y0 P rm,M s there exists x0 P ra, bs such that fpx0q “ y0.

Observe first that Weierstrass’ Theorem 6.2.4 implies thatm,M belong to the range of
f . In particular, there exist c, d P ra, bs such that fpcq “ m and fpdq “M . In particular,

fpcq ď y0 ď fpdq.

Corollary 6.2.9 implies that there exists a number x0 situated between c and d such that
fpx0q “ y0. [\

Corollary 6.2.12. Suppose that f : RÑ R is a continuous function such that

lim
xÑ8

fpxq P p0,8s lim
xÑ´8

fpxq P r´8, 0q.

Then there exists r P R such that fprq “ 0. [\

The proof of this corollary is left to you as an exercise.

Corollary 6.2.13. Suppose that a ă b and f : ra, bs Ñ R is a continuous function. Then
the following statements are equivalent,

(i) The function f is injective.

(ii) The function f is strictly monotone; see Definition 5.2.10(v).

Proof. The implication (ii) ñ (i) is immediate. Indeed, suppose x1, x2 P ra, bs and
x1 ‰ x2. One of the numbers x1, x2 is smaller than the other and we can assume x1 ă x2. If
f is strictly increasing, then fpx1q ă fpx2q, thus fpx1q ‰ fpx2q. If f is strictly decreasing,
then fpx1q ą fpx2q and again we conclude that fpx1q ‰ fpx2q.

Let us now prove (i) ñ (ii). Since a ă b and f is injective we deduce that either
fpaq ă fpbq, or fpaq ą fpbq. We discuss only the first situation, fpaq ă fpbq. The second
case follows from the first case applied to the continuous injective function g “ ´f . We
will prove in several steps that f is strictly increasing.

Step 1. Suppose that d P ra, bq is such that fpdq ă fpbq. Then

fpdq ă fpcq, @c P pd, bq. (6.2.2)

We argue by contradiction. Assume that there exists c P pd, bq such that fpcq ď fpdq.
Since f is injective and d ‰ c we deduce fpdq ‰ fpcq so that fpcq ă fpdq; see Figure 6.3.

We observe that on the interval rc, bs the function f has values both ă fpdq and ą fpdq
because

fpcq ă fpdq ă fpbq.
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bc r

f(b)

f(c)

x

y

d

f(d)

Figure 6.3. A continuous injective function has to be monotone.

The Intermediate Value Theorem implies that there must exist a point r in the interval
pc, bq such that fprq “ fpdq; see Figure 6.3. This contradicts the injectivity of f and
completes the proof of Step 1.

f(a)

f(b)

f(c)

ra bc

Figure 6.4. A continuous injective function has to be monotone.
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Step 2. We will show that

fpcq ă fpbq, @c P pa, bq. (6.2.3)

Again we argue by contradiction. Assume that there exists c P pa, bq such that fpcq ě fpbq.
Since f is injective, fpcq ą fpbq; Figure 6.4.

We observe that on the interval ra, cs the function f has values both ă fpbq and ą fpbq
because

fpcq ą fpbq ą fpaq.

The Intermediate Value Theorem implies that there must exist a point r in the interval
pa, cq such that fprq “ fpbq; see Figure 6.4. This contradicts the injectivity of f and
completes the proof of Step 2.

Step 3. Suppose that d ă d1 are points in the interval pa, bq. We want to show
that fpdq ă fpd1q. Note that since d P pa, bq we deduce from (6.2.2) and (6.2.3) that
fpaq ă fpdq ă fpbq. Since d1 P pd, bq and fpdq ă fpbq we deduce from Step 1 that
fpdq ă fpd1q. [\

Example 6.2.14. Consider the function

sin :
“

´π{2, π{2
‰

Ñ R.

Using the trigonometric-circle definition of sin we deduce that the above function is strictly
increasing. Note that

sinp´π{2q “ ´1 “ min
xPR

sinx, sinpπ{2q “ 1 “ max
xPR

sinx.

Using Corollary 6.2.11 we deduce that the range of this function is r´1, 1s so that the
resulting function

sinr´π{2, π{2s Ñ r´1, 1s

is bijective. Its inverse is the function

arcsin : r´1, 1s Ñ r´π{2, π{2s.

We want to emphasize that, by construction, the range of arcsin is r´π{2, π{2s.

Similarly, the function

cos : r0, πs Ñ R
is strictly decreasing and its range is r´1, 1s. Its inverse is the function

arccos : r´1, 1s Ñ r0, πs. [\

Finally, consider the function

tan : p´π{2, π{2q Ñ R.

Exercise 6.15 asks you to prove that the above function is bijective. Its inverse is the
function

arctan : RÑ p´π{2, π{2q. [\
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6.3. Uniform continuity

We want to discuss a more subtle concept of continuity that will play an important role
in our investigation of integrability.

Definition 6.3.1. Suppose that X is a nonempty subset of the real axis and f : X Ñ R
is a real valued function defined on X. The oscillation of the function f on the set S Ă X
is the quantity

oscpf, Sq :“ sup
sPS

fpsq ´ inf
sPS

fpsq P r0,8s. [\

Let us observe that

oscpf, Sq “ sup
s1,s2PS

|fps1q ´ fps2q|. (6.3.1)

Exercise 6.14 asks you to prove this equality.

Definition 6.3.2. Let J Ă R be an interval and f : J Ñ R a function. We say that f is
uniformly continuous on J if, for any ε ą 0, there exists δ “ δpεq ą 0 such that, for any
closed interval I Ă J of length ℓpIq ď δ, we have

oscpf, Iq ď ε. [\

Remark 6.3.3. The uniform continuity of f : J Ñ R can be alternatively characterized
by the following quantized statement

@ε ą 0 Dδ “ δpεq ą 0 such that @x, y P J |x´ y| ă δ ñ |fpxq ´ fpyq| ă ε. [\

Proposition 6.3.4. Let J Ă R be an interval and f : J Ñ R a function. If f is uniformly
continuous, then f is continuous at any point x0 P J .

Proof. Let x0 P J . We have to prove that @ε ą 0 there exists δ ą 0 such that

@x |x´ x0| ď δ ñ |fpxq ´ fpx0q| ă ε.

Since f is uniformly continuous, there exists δ0 “ δ0pεq ą 0 such that, for any interval
I Ă J of length ď δ0pεq we have oscpf, Iq ă ε. Consider now the interval

Ix0 :“
!

x P J ; |x´ x0| ă
δ0
2

)

.

Clearly Ix0 has length ă δ0 so that oscpf, Ix0q ă ε. In particular (6.3.1) implies that for
any x P Ix0 we have

|fpxq ´ fpx0q| ă ε.

Hence

|x´ x0| ă δpεq :“
δ0pεq

2
ñ x P Ix0 ñ |fpxq ´ fpx0q| ă ε

[\



6.3. Uniform continuity 149

Theorem 6.3.5 (Uniform Continuity). Suppose that a ă b are two real numbers and
f : ra, bs Ñ R is a continuous function. Then f is uniformly continuous, i.e., for any
ε ą 0 there exists δ “ δpεq ą 0 such that for any interval I Ă ra, bs of length ℓpIq ď δ we
have

oscpf, Iq ď ε.

Proof. We have to prove that

@ε ą 0 Dδ ą 0 @I Ă ra, bs interval, ℓpIq ď δ ñ oscpf, Iq ď ε.

We argue by contradiction and we assume that the opposite is true

Dε0 ą 0 @δ ą 0 DI “ Iδ Ă ra, bs interval, ℓpIδq ď δ ^ oscpf, Iδq ą ε0.

We deduce that for any n P N there exists a closed interval In “ ran, bns Ă ra, bs of
length ď 1

n such that

oscpf, ran, bnsq ą ε0. (6.3.2)

Since the length of ran, bns is ď
1
n we deduce

an ă bn ď an `
1

n
.

The Bolzano-Weierstrass Theorem 4.4.8 implies that the sequence panq admits a convergent
subsequence pank

q. We set

a˚ :“ lim
kÑ8

ank
.

Since a ď an ď b, we deduce a˚ P ra, bs. Since

ank
ă bnk

ď ank
`

1

nk

we deduce from the Squeezing Principle that

lim
kÑ8

bnk
“ lim

kÑ8
ank

“ a˚.

On the other hand, since a˚ P ra, bs, the function f is continuous at a˚. Thus there exists
δ ą 0 such that

|x´ a˚| ă δ ñ |fpxq ´ fpa˚q| ă
ε0
4
.

In other words,

distpx, a˚q ă δ ñ fpa˚q ´
ε0
4
ă fpxq ă fpa˚q `

ε0
4
.

Since ank
, bnk

Ñ a˚ there exists k0 such that

rank0
, bnk0

s Ă pa˚ ´ δ, a˚ ` δq ñ fpa˚q ´
ε0
4
ă fpxq ă fpa˚q `

ε0
4
, @x P rank0

, bnk0
s.

Thus

fpa˚q ´
ε0
4
ď inf

xPrank0
,bnk0

s
fpxq ď sup

xPrank0
,bnk0

s

fpxq ď fpa˚q `
ε0
4
.
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This shows that

osc
`

f, rank0
, bnk0

s
˘

ď

´

fpa˚q `
ε0
4

¯

´

´

fpa˚q ´
ε0
4

¯

“
ε0
2
.

This contradicts (6.3.2) and completes the proof of the theorem. [\

Remark 6.3.6. The above result is no longer valid for continuous functions defined
on non-closed or unbounded intervals. Consider for example the continuous function
f : p0, 1q Ñ R, fpxq “ 1

x . For each n P N, n ą 1 we define

In “
” 1

n` 1
,
1

n

ı

.

Since f is decreasing we deduce that

sup
xPIn

fpxq “ f
´ 1

n` 1

¯

“ n` 1, inf
xPIn

fpxq “ f
´ 1

n

¯

“ n

so that oscpf, Inq “ 1. On the other hand, ℓpInq “
1

npn`1q Ñ 0 as n Ñ 8. We have thus

produced arbitrarily short intervals over which the oscillation is 1.

Exercise 6.13 describes an example of continuous function over an unbounded interval
that is not uniformly continuous on that interval. [\
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6.4. Exercises

Exercise 6.1. Prove Theorem 6.1.2. [\

Exercise 6.2. Suppose that f, g : R Ñ R are two continuous functions such that
fpqq “ gpqq, @q P Q. Prove that fpxq “ gpxq, @x P R.
Hint. You may want to invoke Proposition 3.4.4. [\

Exercise 6.3. Prove Corollary 6.1.3. [\

Exercise 6.4. Prove the inequality (6.1.1). [\

Exercise 6.5. Suppose that f, g : ra, bs Ñ R are continuous functions.

(a) Prove that the function |f | continuous.

(b) Prove that for any x P ra, bs we have

max
␣

fpxq, gpxq
(

“
1

2

`

fpxq ` gpxq ` |fpxq ´ gpxq|
˘

.

(c) Prove that the function h : ra, bs Ñ R, hpxq “ maxtfpxq, gpxqu is continuous. [\

Exercise 6.6 (Weierstrass). Suppose thatX is a nonempty set of real numbers, fn : X Ñ R,
n P N, is a sequence of functions, and f : X Ñ R a function on X. Suppose that for any
n P N we have

Mn :“ sup
xPX

|fnpxq ´ fpxq| ă 8.

Prove that the following statements are equivalent.

(i) The sequence pfnq converges uniformly to f on X.

(ii) limnÑ8Mn “ 0.

[\

Exercise 6.7 (Weierstrass). Consider a sequence of functions fn : ra, bs Ñ R, n ě 0,
where a, b are real numbers a ă b. Suppose that there exists a sequence of positive real
numbers pcnqně0 with the following properties.

(i) |fnpxq| ď cn, @n ě 0, @x P ra, bs.

(ii) The series
ř

ně0 cn is convergent.

(a) Prove that for any x P ra, bs, the series of real numbers
ř

ně0 fnpxq is absolutely
convergent. Denote by spxq its sum.

(b) Denote by snpxq the n-th partial sum

snpxq “ f0pxq ` f1pxq ` ¨ ¨ ¨ ` fnpxq
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Prove that the sequence of functions sn : ra, bs Ñ R converges uniformly on ra, bs to the
function s : ra, bs Ñ R defined in (a).

Hint. Use Exercise 6.6. [\

Exercise 6.8. Consider the power series
ÿ

ně0

anx
n, an P R. (6.4.1)

Suppose that for some R ą 0 the series
ÿ

ně0

anR
n

is absolutely convergent.

(a) Prove that the series (6.4.1) converges absolutely for any x P r´R,Rs. Denote by spxq
its sum.

(b) Denote by snpxq the n-th partial sum

snpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n.

Prove that the resulting sequence of functions sn : r´R,Rs Ñ R converges uniformly to
spxq. Conclude that the function spxq is continuous on r´R,Rs.

Hint. Use the results in Exercise 6.7. [\

Exercise 6.9. Consider the sequence of functions

fn : r0, 1s Ñ R, fnpxq “ xn, n P N.

(a) Prove that for any x P r0, 1s the sequence pfnpxqqnPN is convergent. Compute its limit
fpxq.

(b) Given n P N compute

sup
xPr0,1s

|fnpxq ´ fpxq|.

(c) Prove that the sequence of functions fnpxq does not converge uniformly to the function
fpxq defined in (a). [\

Exercise 6.10 (Cauchy). SupposeX Ă R is a nonempty set of real number and fn : X Ñ R
is a sequence of real valued functions defined on X. Prove that the following statements
are equivalent.

(i) There exists a function f : X Ñ R such that the sequence fn : X Ñ R converges
uniformly on X to f : X Ñ R.

(ii) @ε ą 0, DN “ Npεq P N such that

@n,m ą Npεq, @x P X : |fnpxq ´ fmpxq| ă ε.

[\
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Exercise 6.11. (a) Prove Corollary 6.2.12.

(b) Let fpxq be a polynomial of odd degree. Prove that there exists r P R such that
fprq “ 0. [\

Exercise 6.12. Suppose that f : r0, 1s Ñ r0, 1s is a continuous function. Prove that
there exists c P r0, 1s such that fpcq “ c. Can you give a geometric interpretation of this
result? [\

Exercise 6.13. (a) Find the oscillation of the function f : r0,8q Ñ R, fpxq “ x2, over
an interval ra, bs Ă p0,8q.

(b) Prove that for any n P N one can find an interval ra, bs Ă r0,8q of length ď 1
n over

which the oscillation of f is ě 1. [\

Exercise 6.14. (a) Suppose that f : X Ñ R is a function defined on a set X, and Y Ă X.
Prove that

oscpf,Xq “ sup
x1,x2PX

|fpx1q ´ fpx2q| and oscpf, Y q ď oscpf,Xq.

(b) Consider a function f : pa, bq Ñ R. Prove that f is continuous at a point x0 P pa, bq if
and only if

lim
δŒ0

osc
`

f, rx0 ´ δ, x0 ` δs
˘

“ 0.

(c) Suppose that f : ra, bs Ñ R is a continuous function. Prove that

oscpf, pa, bq q “ oscpf, ra, bs q.

Exercise 6.15. Consider the function

f : p´π{2, π{2q Ñ R, fpxq “ tanx “
sinx

cosx
.

Prove that f is strictly increasing and

lim
xÑ˘π{2

fpxq “ ˘8.

Conclude that f is bijective. [\

6.5. Exercises for extra credit

Exercise* 6.1. Suppose that f : ra, bs Ñ R is a continuous function. For any x P ra, bs
we define

mpxq “ inf
tPra,xs

fpxq, Mpxq “ sup
tPra,xs

fpxq.

Prove that the functions x ÞÑ mpxq and x ÞÑMpxq are continuous. [\
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Exercise* 6.2. Suppose that f : RÑ R is a continuous function satisfying

fp0q “ 0, fp1q “ 1

and

fpx` yq “ fpxq ` fpyq, @x P R.
Prove that fpxq “ x, @x P R. [\

Exercise* 6.3. Suppose that f : RÑ R is a continuous function satisfying the following
properties.

(i) fpxq ą 0, @x P R.
(ii) fpx` yq “ fpxqfpyq, @x, y P R.

Set a :“ fp1q. Prove that fpxq “ ax, @x P R. [\

Exercise* 6.4. Suppose that f : RÑ R is a function satisfying the following conditions

fpx` yq “ fpxq ` fpyq, @x, y P R. (6.5.1a)

fpxyq “ fpxqfpyq, @x, y P R. (6.5.1b)

fp1q ‰ 0. (6.5.1c)

Prove that the following hold.

(i) fp0q “ 0, fp1q “ 1.

(ii) fpnq “ n, @n P N.
(iii) fpmq “ m, @m P Z.
(iv) fpqq “ q, @q P Q.

(v) If x, y P R and x ă y, then fpxq ă fpyq.

(vi) fpxq “ x, @x P R.

Exercise* 6.5 (Dini). Suppose that fn : r0, 1s Ñ R, n P N is a sequence of continuous
functions with the following properties.

(i) For any t P r0, 1s we have

f1ptq ď f2ptq ď f3ptq ď ¨ ¨ ¨ .

(ii) There exists a continuous function f : r0, 1s Ñ R such that

lim
nÑ8

fnptq “ fptq.

Prove that the sequence of functions pfnq converges uniformly to f on r0, 1s. [\

Exercise* 6.6. Suppose that f : r0, 1s Ñ R is a continuous function. For n P R define

fn : r0, 1s Ñ R
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by setting

fnpxq :“

#

fp0q, if x “ 0

min
␣

fpxq; k´1n ď x ď k
n

(

, if k´1
n ă x ď k

n , k “ 1, . . . , n.

Prove that the sequence of functions pfnq converges uniformly to the function f on r0, 1s.[\





Chapter 7

Differential calculus

7.1. Linear approximation and derivative

The differential calculus is one of the most consequential scientific discoveries in the history
of mankind. Surprisingly, this revolutionary theory is based on a very simple principle:
often one can learn nontrivial things about complicated objects by approximating them
with simpler ones.

In the case at hand, the complicated object is a function f : pa, bq Ñ R and one
would like to understand its behavior near a point x0 P pa, bq. To achieve this, we try to
approximate f with a simpler function, and the linear functions are the simplest nontrivial
candidates.

Definition 7.1.1. Suppose that I is an intervala on the real axis, f : I Ñ R is a
function and x0 P I. A linear approximation or linearization of f at x0 is a linear
function

L : RÑ R, Lpxq “ b`mpx´ x0q

such that
Lpx0q “ fpx0q (7.1.1a)

fpxq ´ Lpxq “ opx´ x0q as xÑ x0. (7.1.1b)

Above, we used Landau’s symbol o defined in (5.8.2) signifying that

lim
xPI, xÑx0

fpxq ´ Lpxq

x´ x0
“ 0.

The function is said to be linearizable at x0 if it admits a linearization at x0. [\

aThe interval I could be closed, could be open, could be neither, could be bounded or not.

157
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Suppose that L is a linearization of the function f : I Ñ R at x0. By (7.1.1a), the
value of L at x0 is equal to the value of f at x0, Lpx0q “ fpx0q. On the other hand

Lpx0q “ b`mpx0 ´ x0q “ b

and we deduce that Lpxq has the form

Lpxq “ fpx0q `mpx´ x0q.

The linear function Lpxq is meant to approximate the function fpxq for x not too far for
x0. The error of this linear approximation of fpxq is the difference rpxq “ fpxq ´ Lpxq
which by definition is opx´ x0q as x Ñ x0. In less rigorous terms, rpxq is a tiny fraction
of px´ x0q when x is close to x0. Note that

fpxq ´ Lpxq “ fpxq ´
`

mpx´ x0q ` fpx0q
˘

“ fpxq ´ fpx0q ´mpx´ x0q,

fpxq ´ Lpxq

x´ x0
“
fpxq ´ fpx0q

x´ x0
´m.

Since

0 “ lim
xÑx0

fpxq ´ Lpxq

x´ x0
“ lim

xÑx0

fpxq ´ fpx0q

x´ x0
´m

we deduce that

m “ lim
xÑx0

fpxq ´ fpx0q

x´ x0
. (7.1.2)

Thus if f is linearizable at x0, then there exists a unique linearization Lpxq described by

Lpxq “ fpx0q `mpx´ x0q,

where the slope m is given by (7.1.2).

Definition 7.1.2. Suppose that I is an interval of the real axis, f : I Ñ R is a
function and x0 P I.

(i) We say that f is differentiable at x0 if the limit (7.1.2)

lim
xÑx0
xPI

fpxq ´ fpx0q

x´ x0
(7.1.3)

exists and it is finite. If this is the case, we denote the limit by f 1px0q or
df
dx |x“x0 and we will refer to it as the derivative of f at x0.

(ii) We say that f is differentiable on I if it is differentiable at any point x P I.
The function f 1 : I Ñ R that assigns to x P I the derivative f 1pxq of f at x
is called the derivative of the function f on the interval I. [\

Remark 7.1.3. In concrete computations it is often convenient to describe the derivative
of f at x0 as the limit

f 1px0q “ lim
hÑ0

fpx0 ` hq ´ fpx0q

h
.
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This is obtained from (7.1.3) if we denote by h the “displacement” x ´ x0. With this
notation we have x “ x0 ` h and

fpxq ´ fpx0q

x´ x0
“
fpx0 ` hq ´ fpx0q

h
. [\

The next result summarizes the observations we have made so far.

Proposition 7.1.4. Suppose that I is an interval of the real axis, f : I Ñ R is a function
and x0 P I. Then the following statements are equivalent.

(i) The function f is differentiable at x0.

(ii) The function f is linearizable at x0.

(iii) The function f is differentiable at x0 and the function Lpxq “ fpx0q`f
1px0qpx´x0q

is the linearization of f at x0, i.e.,

fpxq “ fpx0q ` f
1px0qpx´ x0q ` rpxq, lim

xÑx0

rpxq

|x´ x0|
“ 0. (7.1.4)

[\

We should perhaps give a geometric interpretation to the linear approximation of f
at x0. The graph of f is the curve

Gf :“
!

`

x, fpxq
˘

P R2; x P pa, bq
)

.

The point x0 P I determines a point P0 “ px0, fpx0q q on the curve Gf ; see Figure 7.1.

P

P

x x +h

f(x )

f(x +h)

0

0

0

00

h

Figure 7.1. A tangent line to the graph of a function is a limit of secant lines.
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The graph of a linear function Lpxq is a line in the plane and since we are interested
in approximating the behavior of f near x0 it makes sense to look only at lines ℓP0,P

determined by two points P0, P on the graph Gf . Since we are interested only in the
behavior of f near x0, we may assume that the point P is not too far from P0. Thus we
assume that the coordinates of P are px0 ` h, fpx0 ` hq q, where h is very small.

In more concrete terms, we look at the lines ℓP0,Ph
determined by the two points

P0 :“ px0, fpx0q q, Ph :“ px0 ` h, fpx0 ` hq q,

where h very small. The slope of the line ℓP0,Ph
is

mphq :“
fpx0 ` hq ´ fpx0q

px0 ` hq ´ x0
“
fpx0 ` hq ´ fpx0q

h
,

so its equation is
y ´ fpx0q “ mphqpx´ x0q.

This is the graph of the linear function

Lx0,hpxq “ fpx0q `mphqpx´ x0q.

Suppose that as hÑ 0 the line ℓP0,Ph
stabilizes to some limiting position. This limit line

goes through the point P0 and therefore its position is determined by its slope

lim
hÑ0

mphq “ lim
hÑ0

fpx0 ` hq ´ fpx0q

h
“ lim

xÑx0

fpxq ´ fpx0q

x´ x0
.

We see that this limit exists and it is finite if and only if f is differentiable at x0. In this
case, the limit line is the graph of the linear approximation of f at x0.

Definition 7.1.5. Suppose I Ă R is an interval of the real axis and f : I Ñ R is a
function differentiable at x0. The tangent line to the graph of f at x0 is the graph of the
linearization of f at x0. [\

Remark 7.1.6. (a) The quantities

fpxq ´ fpx0q

x´ x0
,
fpx0 ` hq ´ fpx0q

h

are called difference quotients of f at x0. You should think of such a difference quotient
as measuring the average rate of change of the quantity f over the interval rx0, xs.

In physics, the numerator fpxq ´ fpx0q is denoted by ∆f while the denominator is
denoted ∆x. The symbol ∆ is shorthand for “variation of ”. Thus

df

dx
“ lim

∆xÑ0

∆f

∆x
.

From the equality

f 1pxq “
df

dx
we deduce formally

df “ f 1pxqdx. (7.1.5)
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The expression f 1pxqdx is called the differential of f and as the above equality suggests,
it is denoted by df .

(b) Often a function f : ra, bs Ñ R has a physical meaning. For example, the interval
ra, bs can signify a stretch of highway between mile a and mile b and fpxq could be the
temperature at mile x and thus it is measured in ˝F . The difference quotient

fpxq ´ fpx0q

x´ x0

has a different meaning. The numerator fpxq´fpx0q describes the change in temperature
from mile x0 to mile x and it is again measured in ˝F , while the numerator x ´ x0 is
the “distance” (could be negative) from mile x0 to mile x and thus it is measured in
miles. We deduce that the quotient is measured in different units, degrees-per-mile, and
should be viewed as the average rate of change in temperature per mile. When x Ñ x0
we are measuring the rate of change in temperature over shorter and shorter stretches of
highway. For this reason, the limit f 1px0q is sometimes referred to as the infinitesimal rate
of change. [\

The differentiability of a function at a point x0 imposes restrictions on the behavior
of the function near that point. Our next elementary result describes one such restriction.
Its proof is left to you as an exercise.

Proposition 7.1.7. Suppose I is an interval of the real axis R and f : I Ñ R is a function
that is differentiable at a point x0 P I. Then f is continuous at x0, i.e.,

lim
IQxÑx0

fpxq “ fpx0q. [\

Remark 7.1.8. The converse of the above result is not true. There exist continuous
functions f : r0, 1s Ñ R which are nowhere differentiable. For example, the function

f : r0, 1s Ñ R, fptq “
8
ÿ

n“0

cosp5ntq

2n
,

is continuous and nowhere differentiable. Its graph, depicted in Figure 7.2, may convince
you of the validity of this claim. The rigorous proof of this fact is rather ingenious and
for details and generalizations we refer to [18]. [\

Suppose that I Ă R is an interval and f : I Ñ R is a differentiable function. We say
that f is twice differentiable if its derivative f 1, viewed as a function f 1 : I Ñ R, is also

differentiable. The second derivative of f denoted by f2 or d2f
dx2

is the derivative of f 1

f2 :“
d

dx
pf 1q.

Recursively, for any natural number n ą 1, we say that f is n-times differentiable if
its derivative is pn ´ 1q-times differentiable. The n-th derivative of f is the function
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Figure 7.2. Weierstrass’s example of continuous, nowhere differentiable function.

f pnq : I Ñ R defined recursively as

f pnq :“
d

dx

`

f pn´1q
˘

.

Often we will use the alternate notation dnf
dxn to denote the n-th derivative of f .

Definition 7.1.9. Let I Ă R be an interval.

(i) We denote by C0pIq the set consisting of all the continuous functions f : I Ñ R.
(ii) If n is a natural number, then we denote by CnpIq the space of functions

f : I Ñ R which are
‚ n-times differentiable and
‚ the n-th derivative f pnq is a continuous function.

We will refer to the functions in CnpIq as Cn-functions.

(iii) We denote by C8pIq the space of functions I Ñ R which are infinitely many
times differentiable. We will refer to such functions as smooth.

[\

7.2. Fundamental examples

In this section we describe a very important collection of differentiable functions.

Example 7.2.1 (Constant functions). Suppose that f : R Ñ R is the function which is
identically equal to a fixed real number c,

fpxq “ c, @x P R.



7.2. Fundamental examples 163

Then f is differentiable and f 1pxq “ 0, @x P R. Indeed, for any x0 P R
fpx0 ` hq ´ fpx0q

h
“ 0, @h ‰ 0. [\

Example 7.2.2 (Monomials). Suppose that n P N and consider the monomial function
µn : RÑ R, µnpxq “ xn. Then µn is differentiable on R and its derivative is

µ1npxq “ nxn´1, @x P Rðñ
d

dx
pxnq “ nxn´1. (7.2.1)

To prove this claim we investigate the difference quotients of µn at x0 P R. We have

µnpx0 ` hq ´ µnpx0q “ px0 ` hq
n ´ xn0

(use Newton’s binomial formula (3.2.4))

“ xn0 `

ˆ

n

1

˙

xn´10 h`

ˆ

n

2

˙

xn´20 h2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

hn ´ xn0

“ h

ˆˆ

n

1

˙

xn´10 `

ˆ

n

2

˙

xn´20 h` ¨ ¨ ¨ `

ˆ

n

n

˙

hn´1
˙

,

so that
µnpx0 ` hq ´ µnpx0q

h
“

ˆ

n

1

˙

xn´10 `

ˆ

n

2

˙

xn´20 h` ¨ ¨ ¨ `

ˆ

n

n

˙

hn´1.

Now observe that

µ1npx0q “ lim
hÑ0

µnpx0 ` hq ´ µnpx0q

h

“ lim
hÑ0

ˆˆ

n

1

˙

xn´10 `

ˆ

n

2

˙

xn´20 h` ¨ ¨ ¨ `

ˆ

n

n

˙

hn´1
˙

“

ˆ

n

1

˙

xn´10 “ nxn´10 .

For example

px2q1 “ 2x, dpx2q “ 2xdx. [\

Example 7.2.3 (Power functions). Fix a real number α and consider the power function

f : p0,8q Ñ R, fpxq “ xα.

Then f is differentiable and its derivative is

f 1pxq “ αxα´1, @x ą 0ðñ
d

dx
pxαq “ αxα´1 . (7.2.2)

To prove this claim we investigate the difference quotients of fpxq at x0 P p0,8q. We have

px0 ` hq
α ´ xα0 “

ˆ

x0

´

1`
h

x0

¯

˙α

´ xα0 “ xα0

ˆ

´

1`
h

x0

¯α
´ 1

˙

,

fpx0 ` hq ´ fpx0q

h
“ xα0

´

1` h
x0

¯α
´ 1

h
“ xα0

´

1` h
x0

¯α
´ 1

x0
h
x0
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“ xα´10

´

1` h
x0

¯α
´ 1

h
x0

.

We set t :“ h
x0

and we observe that tÑ 0 as hÑ 0 and

fpx0 ` hq ´ fpx0q

h
“ xα´10

p1` tqα ´ 1

t
.

Invoking the fundamental limit (5.5.4) we deduce

lim
tÑ0

p1` tqα ´ 1

t
“ α

so that

f 1px0q “ lim
hÑ0

fpx0 ` hq ´ fpx0q

h
“ αxα´10 .

Note that if α “ 1
2 , then fpxq “

?
x and we deduce

d

dx
p
?
xq “

1

2
?
x
, dp

?
xq “

dx

2
?
x
. (7.2.3)

[\

Example 7.2.4 (The exponential function). Consider the exponential function

f : RÑ R, fpxq “ ex.

This function is differentiable and its derivative is

f 1pxq “ ex, @x P Rðñ
d

dx
pexq “ ex. (7.2.4)

To prove this claim we investigate the difference quotients of f at x0 P R. We have

fpx0 ` hq ´ fpx0q “ ex0`h ´ ex0 “ ex0peh ´ 1q,

fpx0 ` hq ´ fpx0q

h
“ ex0

eh ´ 1

h
.

On the other hand, the fundamental limit (5.5.3) implies that

lim
hÑ0

eh ´ 1

h
“ 1.

Hence

f 1px0q “ lim
hÑ0

fpx0 ` hq ´ fpx0q

h
“ ex0 .

These computations show that the exponential function is smooth, i.e., infinitely many
times differentiable and

dn

dxn
ex “ ex, dpexq “ exdx . (7.2.5)

[\
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Example 7.2.5 (The natural logarithm). Consider the natural logarithm

f : p0,8q Ñ R, fpxq “ lnx “ log x.

Then f is differentiable and its derivative is

f 1pxq “
1

x
, @x ą 0ðñ

d

dx
plnxq “

1

x
, dplnxq “

dx

x
. (7.2.6)

To prove this claim we investigate the difference quotients of f at x0 ą 0. We have

fpx0 ` hq ´ fpx0q “ lnpx0 ` hq ´ lnx0 “ ln

ˆ

x0

´

1`
h

x0

¯

˙

´ lnx0

“ lnx0 ` ln
´

1`
h

x0

¯

´ lnx0 “ ln
´

1`
h

x0

¯

,

fpx0 ` hq ´ fpx0q

h
“

ln
´

1` h
x0

¯

h
“

ln
´

1` h
x0

¯

x0
h
x0

“
1

x0

ln
´

1` h
x0

¯

h
x0

.

We set t “ h
x0

and we conclude from above that

fpx0 ` hq ´ fpx0q

h
“

1

x0

lnp1` tq

t
.

Note that t goes to zero when hÑ 0. We can now invoke (5.5.2) to conclude that

lim
tÑ0

lnp1` tq

t
“ 1.

This proves

lim
hÑ0

fpx0 ` hq ´ fpx0q

h
“

1

x0
. [\

Example 7.2.6 (Trigonometric functions). The trigonometric functions

sin, cos : RÑ R

are differentiable and

d

dx
psinxq “ cosx,

d

dx
pcosxq “ ´ sinx . (7.2.7)

Fix x0 P R. We have

sinpx0 ` hq ´ sinx0
p5.7.1aq
“ sinx0 cosh` cosx0 sinh´ sinx0

“ sinx0
`

cosh´ 1
˘

` cosx0 sinh “ ´2 sin
2ph{2q sinx0 ` cosx0 sinh.

Hence
sinpx0 ` hq ´ sinx0

h
“ ´2 sinx0

sin2ph{2q

h
` cosx0

sinh

h
.

“ ´ sinx0
sin2ph{2q

h
2

` cosx0
sinh

h
“ ´

h

2
sinx0

˜

sinph2 q
h
2

¸2

` cosx0
sinh

h
.
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From the fundamental identity (5.6.6) we deduce that

lim
tÑ0

sin t

t
“ 1.

Hence

lim
hÑ0

h

2
sinx0

˜

sinph2 q
h
2

¸2

“ 0, lim
hÑ0

cosx0
sinh

h
“ cosx0,

and thus

lim
hÑ0

sinpx0 ` hq ´ sinx0
h

“ cosx0.

The equality

lim
hÑ0

cospx0 ` hq ´ cosx0
h

“ ´ sinx0

is proved in a similar fashion and the details are left to you as an exercise. [\

7.3. The basic rules of differential calculus

In the previous section we have computed the derivatives of a few important functions.
In this section we describe a few basic rules which will allow us to easily compute the
derivatives of almost any function.

Theorem 7.3.1 (Arithmetic rules of differentiation). Suppose that I Ă R is an interval,
and f, g : I Ñ R are two functions differentiable at x0. Then the following hold.

Addition. The sum f ` g is differentiable at x0 and

pf ` gq1px0q “ f 1px0q ` g
1px0q.

Scalar multiplication. If c is a real number, then the function cf is differentiable at x0
and

pcfq1px0q “ cf 1px0q.

Product. The product f ¨g is differentiable at x0 and its derivative is given by the product
rule or Leibniz rule

pf ¨ gq1px0q “ f 1px0qgpx0q ` fpx0qg
1px0q.

Quotient. If gpx0q ‰ 0, then there exists δ ą 0 such that

@x P I |x´ x0| ă δ ñ gpxq ‰ 0.

Set
Ix0,δ :“

␣

x P I; |x´ x0| ă δ u.

The quotient f
g is a well defined function on Ix0,δ which is differentiable at x0 and its

derivative at x0 is determined by the quotient rule
ˆ

f

g

˙1

px0q “
f 1px0qgpx0q ´ fpx0qg

1px0q

gpx0q2
.
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Proof. Addition. We have

pf ` gqpx0 ` hq ´ pf ` gqpx0q

h
“
fpx0 ` hq ´ fpx0q ` gpx0 ` hq ´ gpx0q

h

“
fpx0 ` hq ´ fpx0q

h
`
gpx0 ` hq ´ gpx0q

h
.

Hence

lim
hÑ0

pf ` gqpx0 ` hq ´ pf ` gqpx0q

h
“ lim

hÑ0

fpx0 ` hq ´ fpx0q

h
` lim
hÑ0

gpx0 ` hq ´ gpx0q

h

“ f 1px0q ` g
1px0q.

Scalar multiplication. We have

pcfqpx0 ` hq ´ pcfqpx0q

h
“ c

fpx0 ` hq ´ fpx0q

h

so that

lim
hÑ0

pcfqpx0 ` hq ´ pcfqpx0q

h
“ c lim

hÑ0

fpx0 ` hq ´ fpx0q

h
“ cf 1px0q.

Product. We have

pf ¨ gqpx0 ` hq ´ pf ¨ gqpx0q “ fpx0 ` hqgpx0 ` hq ´ fpx0qgpx0q

“ fpx0 ` hqgpx0 ` hq ´ fpx0qgpx0 ` hq ` fpx0qgpx0 ` hq ´ fpx0qgpx0q

“
`

fpx0 ` hq ´ fpx0q
˘

gpx0 ` hq ` fpx0q
`

gpx0 ` hq ´ gpx0q
˘

,

so that

pf ¨ gqpx0 ` hq ´ pf ¨ gqpx0q

h
“

`

fpx0 ` hq ´ fpx0q
˘

h
gpx0`hq`fpx0q

`

gpx0 ` hq ´ gpx0q
˘

h
.

Since g is differentiable at x0 it is also continuous at x0 by Proposition 7.1.7. Hence

lim
hÑ0

gpx0 ` hq “ gpx0q, lim
hÑ0

fpx0q

`

gpx0 ` hq ´ gpx0q
˘

h
“ fpx0qg

1px0q.

Since f is differentiable at x0 we deduce

lim
hÑ0

`

fpx0 ` hq ´ fpx0q
˘

h
gpx0 ` hq

“ lim
hÑ0

`

fpx0 ` hq ´ fpx0q
˘

h
¨ lim
hÑ0

gpx0 ` hq “ f 1px0qgpx0q.

Hence

lim
hÑ0

pf ¨ gqpx0 ` hq ´ pf ¨ gqpx0q

h
“ f 1px0qgpx0q ` fpx0qg

1px0q.

Quotient. The function g is differentiable at x0, thus continuous at this point. From
Theorem 6.2.1 we deduce that there exists δ ą 0 such that

@x P I, |x´ x0| ă δ ñ gpxq ‰ 0.
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For |h| ă δ such that x0 ` h P I we have
ˆ

1

g

˙

px0 ` hq ´

ˆ

1

g

˙

px0q “
1

gpx0 ` hq
´

1

gpx0q
“
gpx0q ´ gpx0 ` hq

gpx0qgpx0 ` hq

so that
´

1
g

¯

px0 ` hq ´
´

1
g

¯

px0q

h
“
gpx0q ´ gpx0 ` hq

h

1

gpx0qgpx0 ` hq

Hence
ˆ

1

g

˙1

px0q “ lim
hÑ0

´

1
g

¯

px0 ` hq ´
´

1
g

¯

px0q

h

“ lim
hÑ0

gpx0q ´ gpx0 ` hq

h
¨ lim
hÑ0

1

gpx0qgpx0 ` hq
“ ´

g1px0q

gpx0q2
.

To compute the derivative of fg at x0 we use the product rule. We have

f

g
“ f ¨

1

g
ñ

ˆ

f

g

˙1

px0q “

ˆ

f ¨
1

g

˙1

px0q

“ f 1px0q
1

gpx0q
` fpx0q

ˆ

1

g

˙1

px0q

“ f 1px0q
1

gpx0q
´ fpx0q

g1px0q

gpx0q2
“
f 1px0qgpx0q ´ fpx0qg

1px0q

gpx0q2
.

[\

Example 7.3.2. Let us see how the above rules work on some simple examples.

(a) Consider the polynomial function

ppxq “ 5´ 3x2 ` 7x5, x P R.

From the scalar multiplication rule and the Examples 7.2.1, 7.2.2 we deduce that each of
the functions 5, ´3x2 and 7x5 is differentiable and the addition rule implies that their
sum is differentiable as well. We deduce

p1pxq “ p5q1 ` p´3x2q1 ` p7x5q1 “ ´6x` 35x4.

(b) From the equalities

d

dx
psinxq “ cosx,

d

dx
pcosxq “ ´ sinx

and the scalar multiplication rule we deduce that the trigonometric functions are smooth
and we have

d2

dx2
sinx “ ´ sinx,

d2

dx2
cosx “ ´ cosx,

d4

dx4
sinx “ sinx,

d4

dx4
cosx “ cosx.
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(c) If a is a positive real number, then

loga x “
lnx

ln a

and we deduce

ploga xq
1 “

1

x ln a
. (7.3.1)

(d) If n is a natural number, then the function

f : Rzt0u Ñ R, fpxq “
1

xn
“ x´n

is differentiable by the quotient rule and we have

px´nq1 “

ˆ

1

xn

˙1

“ ´
nxn´1

x2n
“ ´

n

xn`1
“ ´nx´n´1.

(e) From the quotient rule we deduce

d

dx
tanx “

d

dx

ˆ

sinx

cosx

˙

“
cos2 x` sin2 x

cosx2
“

1

cos2 x
“ 1` tan2 x.

Thus

ptanxq1 “ 1` tan2 x “
1

cos2 x
. (7.3.2)

(f) Using the product rule we deduce

d

dx
pex sinxq “ ex sinx` ex cosx.

The above simple rules are unfortunately not powerful enough to allow us to compute
the derivative of simple functions such as e

?
x, x ą 0 or

?
2` sinx. For this we need a

more powerful technology. [\

Theorem 7.3.3 (Chain Rule). Let I, J be two nontrivial intervals of the real axis. Suppose
that we are given two functions u : I Ñ R and f : J Ñ R and a point x0 P I with the
following properties.

(i) The range of the function u is contained in the interval J , i.e., upIq Ă J .

(ii) The function u is differentiable at x0.

(iii) The function f is differentiable at u0 :“ upx0q.

Then the composition

f ˝ u : I Ñ R, f ˝ upxq “ f
`

upxq q

is differentiable at x0 and

pf ˝ uq1px0q “ f 1pu0qu
1px0q.
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Proof. Let us begin by giving a flawed proof. We have

fpupxqq ´ fpupx0qq

x´ x0
“
fpupxqq ´ fpupx0qq

upxq ´ upx0q
¨
upxq ´ upx0q

x´ x0
.

Since u is differentiable at x0 we have

lim
xÑx0

upxq “ upx0q.

Thus

lim
xÑx0

fpupxqq ´ fpupx0qq

upxq ´ upx0q
¨
upxq ´ upx0q

x´ x0

“

ˆ

lim
upxqÑupx0q

fpupxqq ´ fpupx0qq

upxq ´ upx0q

˙

¨

ˆ

lim
xÑx0

upxq ´ upx0q

x´ x0

˙

“ f 1pupx0qqu
1px0q

et voilà, we’re done!

Unfortunately the above argument has one serious flaw. More precisely it is possible
that upxq “ upx0q for infinitely many values of x close to x0. The quotient

fpupxqq ´ fpupx0q

upxq ´ upx0q

is ill-defined and thus the above argument is meaningless. Although problematic, the above
argument displays the strategy of the proof. We need a bit of technical contortionism to
avoid the problem of vanishing denominators. The details follow below.

Since f is differentiable at u0 we deduce that it is linearly approximable at x0. From
(7.1.4) we deduce that

fpuq “ fpu0q ` f
1pu0qpu´ u0q ` rpuq, rpuq “ opu´ u0q as uÑ u0.

Recall that the equality

rpuq “ opu´ u0q as uÑ u0

signifies that

lim
uÑu0

rpuq

u´ u0
“ 0. (7.3.3)

In particular, we deduce that

f
`

upxq
˘

´ f
`

upx0q
˘

“ f
`

upxq
˘

´ fpu0 q “ f 1pu0q
`

upxq ´ upx0q
˘

` rpupxq q

f
`

upxq
˘

´ f
`

upx0q
˘

x´ x0
“ f 1pu0q

`

upxq ´ upx0q
˘

x´ x0
`
rpupxqq

x´ x0
.

Observe that if we prove that

lim
xÑx0

rpupxq q

x´ x0
“ 0, (7.3.4)

then we deduce

lim
xÑx0

f
`

upxq
˘

´ f
`

upx0q
˘

x´ x0
“ f 1pu0q lim

xÑx0

`

upxq ´ upx0q
˘

x´ x0
“ f 1pu0qu

1px0q
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which is the claim of the theorem.

Why do we expect (7.3.4) to be true? We have rpupxqq “ opupxq ´ u0q, i.e., rpupxqq is
a tiny fraction of upxq ´ u0 if upxq is close to x. When x is close to x0, then upxq is close
to u0 so rpupxqq is a tiny fraction of upxq ´ u0 when x is close to x0.

On the other hand, when x is close to x0 we have

upxq ´ u0 “ u1px0qpx´ x0q ` opx´ x0q “ u1px0qpx´ x0q ` tiny fraction of x´ x0

“ px´ x0qpu
1px0q ` tiny numberq.

Thus when x is close to x0 the remainder rpupxqq is a tiny fraction of px´x0qpu
1px0q`tiny numberq

which in turn is obviously a tiny fraction of px´x0q. The precise proof is presented below.

To prove (7.3.4) it suffices to show that

@ℏ ą 0 Dd “ dpℏq ą 0 : |x´ x0| ă dpℏq ñ
|rpupxqq|

|x´ x0|
ď ℏ. (7.3.5)

The function u is differentiable at x0 and it is linearizable at this point. Hence

upxq ´ u0 “ u1px0qpx´ x0q ` ρpxq, ρpxq “ opx´ x0q as xÑ x0.

Since ρpxq “ opx´ x0q as xÑ x0 we deduce that there exists a small γ ą 0 such that

|x´ x0| ă γ ñ |ρpxq| ď |x´ x0|.

Hence, for |x´ x0| ă γ we have

|upxq ´ u0| “ |u
1px0qpx´ x0q ` ρpxq|

ď |u1px0q||x´ x0| ` |ρpxq| ď p|u
1px0q| ` 1q|x´ x0|.

If we set C :“ |u1px0q| ` 1 ą 0, then we deduce

|x´ x0| ă γ ñ |upxq ´ u0| ď C|x´ x0|. (7.3.6)

Note that (7.3.3) implies that

@ℏ ą 0 Dεpℏq ą 0 : |u´ u0| ă εpℏq ñ |rpuq| ď ℏ|u´ u0|. (7.3.7)

Observe that (7.3.6) implies

|x´ x0| ă δpℏq :“ min
!

γ,
εpℏq
c

)

ñ |upxq ´ u0| ď C|x´ x0| ă εpℏq.

Using this in (7.3.7) we deduce that

|x´ x0| ă δpℏq ñ |upxq ´ u0| ă εpℏq
p7.3.7q
ñ |rpupxq q| ď ℏ|upxq ´ u0|

p7.3.6q

ď Cℏ|x´ x0|.

We have thus proved that

@ℏ ą 0 Dδpℏq ą 0 : |x´ x0| ă δpℏq ñ
|rpupxq q|

|x´ x0|
ď Cℏ.

If we set

dpℏq :“ δpℏ{Cq

we obtain (7.3.5).

[\
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Remark 7.3.4. Since the chain rule is without a doubt the key rule in differential calculus
it is perhaps appropriate to pause and provide a bit of intuition behind it. The classical
point of view on this formula is in our view the most intuitive.

Before the modern concept of function (late 19th century) functions were regarded as
quantities that depend on other quantities. In the chain rule we deal with three quantities
denoted by x, u, f . The quantity u depends on the quantity x thus giving us the function
u “ upxq. The quantity f depends on the quantity u thus giving us the function f “ fpuq.
Since u also depends on x, we deduce that through u as intermediary the function f also
depends on x, thus giving us the composition f ˝ u.

The derivative of f ˝ u with respect to x measures the rate of change in the quantity
f per unit of change in x. The classics would denote this rate of change by df

dx instead

of the more complete, but more cumbersome1 df˝u
dx . The quantity df

du denotes the rate of

change in f per unit of change in u, The quantity du
dx is defined in a similar fashion and

the chain rule takes the simpler form

df

dx
“
df

du
¨
du

dx
. (7.3.8)

A less rigorous but more intuitive way of phrasing the above equality is

change in f

change in x
“

change in f

change in u
¨
change in u

change in x
.

[\

Let us see the chain rule at work in some simple examples.

Example 7.3.5. (a) Consider the function

sin
?
x, x ą 0.

It is the composition of the two functions

fpuq “ sinu, upxq “
?
x.

Then
d

dx
sin
?
x “

df

du
¨
du

dx
“ pcosuq ¨

1

2
?
x
“

cos
?
x

2
?
x
.

(b) Consider the function 2x. We have

2x “ peln 2qx “ epln 2qx.

It is the composition of two functions

fpuq “ eu, upxq “ pln 2qx.

Then
d

dx
2x “

df

du
¨
du

dx
“ eupln 2q “ epln 2qx ln 2 “ 2x ln 2.

1The concept of composition of function was not clearly defined given that the concept of function was nebulous.
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More generally, if a is a positive real number then

d

dx
ax “ ax ln a. (7.3.9)

Observe that for any λ P R we have

d

dx
eλx “ λeλx,

and we conclude inductively that

dn

dxn
eλx “ λneλx, @n P N. (7.3.10)

(c) Consider now a trickier situation. Let f : p0,8q Ñ R be given by fpxq “ xx. We want
to prove that f is differentiable and then compute its derivative. We set

gpxq “ ln fpxq “ x lnx.

Clearly g is differentiable since it is the product of differentiable functions. From the
equality

fpxq “ egpxq

we deduce that f is also differentiable because it is the composition of differentiable func-
tions. Using the chain rule we deduce

f 1pxq “ egpxqg1pxq “ pxxqg1pxq “ xxplnx` 1q.

[\

Theorem 7.3.6 (Inverse function rule). Suppose that I, J are two intervals of the real
axis and u : I Ñ J is a bijective function satisfying the following properties.

(i) The function u is differentiable at the point x0 P I.

(ii) u1px0q ‰ 0.

(iii) The inverse function u´1 is continuous at y0 “ upx0q.

Then the inverse function u´1 is differentiable at y0 “ upx0q and

pu´1q1py0q “
1

u1px0q
.

Proof. Since u is bijective we deduce that for any y P J , there exists a unique x “ xpyq
in I such that upxq “ y. More precisely xpyq “ u´1pyq. Since u´1 is continuous at y0 we
have

lim
yÑy0

xpyq “ xpy0q “ x0.

Then
u´1pyq ´ u´1py0q

y ´ y0
“

x´ x0
upxq ´ upx0q

“
1

upxq´upx0q
x´x0

.
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so that

lim
yÑy0

u´1pyq ´ u´1py0q

y ´ y0
“ lim

xÑx0

1
upxq´upx0q

x´x0

“
1

u1px0q
.

[\

Example 7.3.7. The inverse function rule is a bit tricky to use. We discuss a few classical
examples.

(a) Consider the function

u : p´π{2, π{2q Ñ p´1, 1q, upxq “ sinx.

This function is bijective, differentiable, and the derivative u1pxq “ cosx is nowhere zero.
Its inverse is the continuous function

arcsin : p´1, 1q Ñ p´π{2, π{2q.

We have
d

du
arcsinu “

1

u1pxq
“

1

cosx
, u “ sinx.

Observe that on the interval p´π{2, π{2q the function cosx is positive so that

cosx “
a

1´ sin2 x “
a

1´ u2.

Hence

d

du
arcsinu “

1
?
1´ u2

, @u P p´1, 1q . (7.3.11)

A similar argument shows that

d

du
arccosu “ ´

1
?
1´ u2

, @u P p´1, 1q. (7.3.12)

(b) Consider the bijective differentiable function

u : p´π{2, π{2q Ñ R, upxq “ tanx.

Its inverse is the function arctan : RÑ p´π{2, π{2q. It is continuous and

d

du
arctanu “

1

u1pxq
“

1

ptanxq1
, u “ tanx.

Using the equality ptanxq1 “ 1` tan2 x we deduce

d

du
arctanu “

1

1` tan2 x
“

1

1` u2
. (7.3.13)

[\
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7.4. Fundamental properties of differentiable
functions

The first fundamental result concerning differentiable functions is Fermat’s Principle. Be-
fore we formulate it we need to introduce a new concept.

Definition 7.4.1. Suppose that f : I Ñ R is a function defined on an interval I Ă R.

(i) A point x0 P I is said to be a local minimum of f if there exists δ ą 0 with the
following property

@x P I, |x´ x0| ă δ ñ fpxq ě fpx0q.

The point x0 is called a strict local minimum if there exists δ ą 0 with the
following property

@x P I, 0 ă |x´ x0| ă δ ñ fpxq ą fpx0q.

(ii) A point x0 P I is said to be a local maximum of f if there exists δ ą 0 with the
following property

@x P I, |x´ x0| ă δ ñ fpxq ď fpx0q.

The point x0 is called a strict local maximum if there exists δ ą 0 with the
following property

@x P I, 0 ă |x´ x0| ă δ ñ fpxq ă fpx0q.

(iii) A point x0 P I is said to be a (strict) local extremum of f if it is either a (strict)
local minimum, or a (strict) local maximum.

[\

Theorem 7.4.2 (Fermat’s Principle). Consider a function f : ra, bs Ñ R which
is differentiable on the open interval pa, bq. Suppose that x0 is a local extremum of
f situated in the interior, x0 P pa, bq. Then f 1px0q “ 0. In geometric terms, at
an interior local extremum, the tangent line to the graph has zero slope, i.e., it is
horizontal.

Proof. Assume for simplicity that x0 is a local minimum; see Figure 7.4. Since x0 is in
the interior of the interval ra, bs we can find δ ą 0 such that

px0 ´ δ, x0 ` δq Ă pa, bq and fpx0q ď fpxq, @x P px0 ´ δ, x0 ` δq.

We have

lim
xŒx0

fpxq ´ fpx0q

x´ x0
“ f 1px0q “ lim

xÕx0

fpxq ´ fpx0q

x´ x0
.

Note that

x P px0, x0 ` δq ñ fpxq ´ fpx0q ě 0^ x´ x0 ą 0ñ
fpxq ´ fpx0q

x´ x0
ě 0ñ
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x x x
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Figure 7.3. The points x1 and x3 are local minima, while the point x2 is a local maximum.
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y=f(x)
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Figure 7.4. The point x0 is an interior local minimum.

ñ lim
xŒx0

fpxq ´ fpx0q

x´ x0
ě 0ñ f 1px0q ě 0.

Similarly

x P px0 ´ δ, x0q ñ fpxq ´ fpx0q ě 0^ x´ x0 ă 0ñ
fpxq ´ fpx0q

x´ x0
ď 0ñ

ñ lim
xÕx0

fpxq ´ fpx0q

x´ x0
ď 0ñ f 1px0q ď 0.

This proves that f 1px0q “ 0. [\
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Remark 7.4.3. The importance of Fermat’s Principle is difficult to overestimate. Lo-
cating the local extrema of a function is a problem with a huge number of applications
beyond theoretical mathematics. Fermat’s Principle states that the local extrema of a
differentiable function f : ra, bs Ñ R are very special points: they are either endpoints of
the interval, or points where the derivative of f vanishes.

This principle reduces the search of extrema to a set much much smaller than the
interval ra, bs. Instead of looking for the needle in a haystack, we’re looking for a needle
hidden in a small matchbox. There is a caveat: the matchbox could be locked and it may
take some ingenuity to unlock it. [\

Definition 7.4.4. Suppose that f : I Ñ R is a differentiable function defined on an
interval I Ă R. A point x0 P I is called a critical or stationary point of f if f 1px0q “ 0.

[\

We can thus rephrase Fermat’s Principle as saying that interior local extrema must
be critical points. We want to point out that not all critical points are necessarily local
extrema. For example the point x0 “ 0 of fpxq “ x3, x P R, is a critical point of f .
However it is not a local extremum because

fpxq ą fp0q @x ą 0 ^ fpxq ă fp0q @x ă 0.

Fermat’s Principle has several fundamental consequences. We describe a few of them.

Theorem 7.4.5 (Rolle). Suppose that f : ra, bs Ñ R is a continuous function that is also
differentiable on the open interval pa, bq. If fpaq “ fpbq, then there exists ξ P pa, bq such
that f 1pξq “ 0.

Proof. According to Weierstrass’ Theorem 6.2.4 there exist x˚, x
˚ P ra, bs such that

fpx˚q “ inf
xPra,bs

fpxq, fpx˚q “ sup
xPra,bs

fpxq. (7.4.1)

We distinguish two cases.

1. fpx˚q “ fpx˚q. We deduce from (7.4.1) that f is the constant function fpxq “ fpx˚q,
@x P ra, bs. In particular f 1pxq “ 0, @x P pa, bq, proving the claim in the theorem.

2. fpx˚q ă fpx˚q. Thus x˚ and x˚ cannot simultaneously be endpoints of the interval
ra, bs because fpaq “ fpbq. Hence at least one of the points x˚ or x˚ is located in the
interior of the interval. Suppose for x˚ is that point. Then x˚ is a local minimum of f
located in the interior of pa, bq. Fermat’s Principle implies that f 1px˚q “ 0. [\

Theorem 7.4.6 (Lagrange’s Mean Value Theorem). Suppose that f : ra, bs Ñ R is a
continuous function that is also differentiable on the open interval pa, bq. Then there
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exists a point ξ P pa, bq such that

f 1pξq “
fpbq ´ fpaq

b´ a
.

Geometrically this signifies that somewhere on the graph of f there exists a point
so that the tangent to the graph at that point is parallel to the line connecting the
endpoints of the graph of f ; see Figure 7.5.

a b

y

x

y=f(x)A

B

ξ

Figure 7.5. The geometric interpretation of Theorem 7.4.6.

Proof. We set

m :“
fpbq ´ fpaq

b´ a
.

The line passing through the points A “ pa, fpaqq and B “ pb, fpbqq has slope m and is
the graph of the linear function

Lpxq “ mpx´ aq ` fpaq.

Observe that

Lpaq “ fpaq, Lpbq “ fpbq, L1pxq “ m, @x.

Define

g : ra, bs Ñ R, gpxq “ fpxq ´ Lpxq.

Note that g is continuous on ra, bs and differentiable on pa, bq. Moreover

gpaq “ fpaq ´ Lpaq “ 0 “ fpbq ´ Lpbq “ gpbq.

Rolle’s theorem implies that there exists ξ P pa, bq such that

0 “ g1pξq “ f 1pξq ´ L1pξq “ f 1pξq ´mñ f 1pξq “ m.

[\
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Remark 7.4.7. In the Mean Value Theorem the requirement that f be continuous on
the closed interval ra, bs is essential and does not follow from the requirement that f be
differentiable on the open interval pa, bq.

In the theorem we have tacitly assumed that a ă b. The result continues to be true
even when a ą b because

fpbq ´ fpaq

b´ a
“
fpaq ´ fpbq

a´ b
.

In this case ξ is a point in the open interval with endpoints a and b. [\

Corollary 7.4.8. Suppose that f : ra, bs Ñ R is a continuous function that is also differ-
entiable on the open interval pa, bq. Then the following statements are equivalent.

(i) The function f is constant.

(ii) f 1pxq “ 0, @x P pa, bq.

Proof. The implication (i)ñ (ii) is immediate since the derivative of a constant function
is 0.

To prove the implication (ii)ñ (i) we argue by contradiction. Suppose that there exist
x0, x1 P ra, bs, such that x0 ă x1 and fpx0q ‰ fpx1q. The Mean Value Theorem implies
that there exists ξ P px0, x1q such that

f 1pξq “
fpx1q ´ fpx0q

x1 ´ x0
‰ 0.

[\

Corollary 7.4.9. Suppose that f : ra, bs Ñ R is a continuous function that is differentiable
on pa, bq. If f 1pxq ‰ 0 for any pa, bq, then f is injective.

Proof. If x0, x1 P ra, bs and x0 ‰ x1, say x0 ă x1, then the Mean Value Theorem implies
that there exists ξ P px0, x1q such that

fpx1q ´ fpx0q “ f 1pξqpx1 ´ x0q ‰ 0.

This proves the injectivity of f . [\

Corollary 7.4.10. Suppose that f : ra, bs Ñ R is a continuous function that is differen-
tiable on pa, bq. Then the following statements are equivalent.

(i) The function f is nondecreasing.

(ii) f 1pxq ě 0, @x P pa, bq.

Also, the following statements are equivalent.

(iii) The function f is nonincreasing.

(iv) f 1pxq ď 0, @x P pa, bq.
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Proof. (i) ñ (ii). Let x0 P pa, bq. Then for h ą 0 we have fpx0 ` hq ´ fpx0q ě 0 so that

fpx0 ` hq ´ fpx0q

h
ě 0ñ f 1px0q “ lim

hŒ0

fpx0 ` hq ´ fpx0q

h
ě 0.

(ii) ñ (i). Suppose that x0, x1 P ra, bs are such that x0 ă x1. The Mean Value Theorem
implies that there exists ξ P px0, x1q such that

f 1pξq “
fpx1q ´ fpx0q

x1 ´ x0
ñ fpx1q ´ fpx0q “ f 1pξqpx1 ´ x0q ě 0.

[\

Remark 7.4.11. If in the above result we replace (ii) with the stronger condition

f 1pxq ą 0, @x P pa, bq,

then we obtain a stronger conclusion namely that f is (strictly) increasing. This follows
by coupling Corollary 7.4.10 with Corollary 7.4.9. [\

Example 7.4.12. (a) We want to prove that

ex ě x` 1, @x P R. (7.4.2)

To this aim consider the function f : R Ñ R, fpxq “ ex ´ px ` 1q. This function is
differentiable and f 1pxq “ ex ´ 1.

We see that the derivative is positive on p0,8q and negative on p´8, 0q. Hence f is
increasing on p0,8q and thus fpxq ą fp0q “ 0, @x ą 0 and fpxq ą 0, @x P p´8, 0q. In
other words,

ex ´ px` 1q ě 0, @x P R,
which is (7.4.2).

(b) We want to prove that

x ě sinx, @x ě 0. (7.4.3)

Consider the function f : r0,8q Ñ R, fpxq “ x´ sinx. This function is differentiable and

f 1pxq “ 1´ cosx ě 0, @x ě 0.

Hence f is nondecreasing and thus

x´ sinx “ fpxq ě fp0q “ 0, @x ě 0.

(c) We want to prove that

cosx ě 1´
x2

2
, @x P R. (7.4.4)

Consider the function

f : RÑ R, fpxq “ cosx´
´

1´
x2

2

¯

, @x P R.
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We have to prove that fpxq ě 0, @x P R. We observe that f is an even function, i.e.,
fp´xq “ fpxq, @x P R so it suffices to show that fpxq ě 0, @x ě 0. Note that f is
differentiable and

f 1pxq “ ´ sinx` x
p7.4.3q
ě 0 @x ě 0.

Thus f is nondecreasing on the interval r0,8q and we conclude that fpxq ě fp0q “ 0,
@x ě 0. [\

Example 7.4.13 (Young’s inequality). Suppose that p P p1,8q. Define q P p1,8q by 1
p
` 1

q
“ 1, i.e., q “ p

p´1
.

Consider f : p0,8q Ñ R

fpxq “ xα ´ αx` α´ 1, α :“
1

p
.

We want to prove that fpxq ď 0, @x ą 0. We have

f 1pxq “ αxα´1 ´ α “ αpxα´1 ´ 1q “ α

ˆ

1

x1´α
´ 1

˙

.

Observe that f 1pxq “ 0 if and only if x “ 1. Moreover f 1pxq ă 0 for x ą 1 and f 1pxq ą 0 for x ă 1 because

1´ α “ 1´ 1
p
ą 0. Thus the function f increases on p0, 1q and decreases on p1,8q so that

0 “ fp1q ě fpxq @x ą 0.

Thus

xα ´ αx ď 1´ α “ 1´
1

p
ą 0 “

1

q
.

If we choose a, b ą 0 and we set x “ a
b
we deduce

´a

b

¯ 1
p
´

1

p

´a

b

¯ 1
p

` 1
q
ď

1

q
ñ

´a

b

¯ 1
p
ď

1

p

´a

b

¯ 1
p

` 1
q
`

1

q
.

Multiplying both sides by b “ b
1
p

` 1
q we deduce

a
1
p b

1
q ď

a

p
`
b

q
, @a, b ą 0. (7.4.5)

If we set u :“ a
1
p , v :“ b

1
q then we can rewrite the above inequality in the commonly encountered form

uv ď
up

p
`
vq

q
, @u, v ą 0, p, q ą 1,

1

p
`

1

q
“ 1. (7.4.6)

The last inequality is known as Young’s inequality. [\

Corollary 7.4.14. Suppose that f : ra, bs Ñ R is a continuous function that is twice
differentiable on pa, bq. Let x0 P pa, bq be a critical point of f , i.e., f 1px0q “ 0. Then the
following hold.

(i) If f2px0q ą 0, then x0 is a strict local minimum of f .

(ii) If f2px0q ă 0, then x0 is a strict local maximum of f .
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Proof. We prove only (i). Part (ii) follows by applying (i) to the new function ´f .
Suppose that

f 1px0q “ 0, f2px0q ą 0.

We have to prove that there exists δ ą 0 such that

0 ă |x´ x0| ă δ ñ fpxq ą fpx0q.

We have

lim
xŒx0

f 1pxq

x´ x0
“ lim

xŒx0

f 1pxq ´ f 1px0q

x´ x0
“ f2px0q ą 0.

Thus there exists δ1 ą 0 such that,

x P px0, x0 ` δ1q ñ
f 1pxq

x´ x0
ą 0ñ f 1pxq ą 0.

The Mean Value Theorem implies that for any x P px0, x0 ` δ1q there exists ξ P px0, xq
such that

fpxq ´ fpx0q “ f 1pξqpx´ x0q.

Since ξ P px0, x0 ` δ1q we have f 1pξq ą 0 and thus f 1pξqpx´ x0q ą 0.

Similarly

lim
xÕx0

f 1pxq

x´ x0
“ lim

xÕx0

f 1pxq ´ f 1px0q

x´ x0
“ f2px0q ą 0.

Thus there exists δ2 ą 0 such that,

x P px0 ´ δ2, x0q ñ
f 1pxq

x´ x0
ą 0Ñ f 1pxq ă 0.

Hence if x P px0 ´ δ2, x0q, then the Mean Value Theorem implies that there exists
η P px, x0q Ă px0 ´ δ2, x0q such that

fpxq ´ fpx0q “ f 1pηqpx´ x0q ą 0.

If we let δ :“ minpδ1, δ2q, then we deduce

0 ă |x´ x0| ă δ ñ fpxq ą fpx0q.

[\

Example 7.4.15. Here is a simple application of the above corollary. Fix a positive
number a. Consider the function

f : r0, as Ñ R, fpxq “ xpa´ xq2.

We want to find the maximum possible value of this function. It is achieved either at
one of the end points 0, a or at some interior point x0. Note that fp0q “ fpaq “ 0 and
fpxq ě 0, @x P r0, as, so there must exist an interior maximum which must be a critical
point. To find the critical points of f we need to solve the equation f 1pxq “ 0. We have

f 1pxq “ pa´ xq2 ´ 2xpa´ xq “ x2 ´ 2ax` a2 ´ 2ax` 2x2 “ 3x2 ´ 4ax` a2.
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The discriminant of the quadratic equation 3x2 ´ 4ax` a2 “ 0 is

∆ “ 16a2 ´ 12a2 “ 4a2 ą 0

Thus this quadratic equation has two roots

x˘ “
4a˘ 2a

6
“ a,

a

3
.

Only one of these roots is in the interval p0, aq, namely a
3 . Note that

f2pxq “ 6x´ 4a, f2pa{3q “ 2a´ 4a ă 0.

Thus a{3 is the unique maximum point of f , and thus it is absolute maximum point. We
have

fpxq ď fpa{3q “
4a3

27
, @x P r0, as. [\

Theorem 7.4.16 (Cauchy’s finite increment theorem). Suppose that f, g : ra, bs Ñ R are
two continuous functions that are differentiable on pa, bq. Then there exists ξ P pa, bq such
that

f 1pξq
`

gpbq ´ gpaq
˘

“ g1pξq
`

fpbq ´ fpaq
˘

. (7.4.7)

In particular, if g1ptq ‰ 0 for any t P pa, bq, then gpbq ‰ gpaq and

fpbq ´ fpaq

gpbq ´ gpaq
“
f 1pξq

g1pξq
. (7.4.8)

Proof. Consider the function F : ra, bs Ñ R defined by

F pxq “ fpxq
`

gpbq ´ gpaq
˘

looooooomooooooon

“:∆g

´gpxq
`

fpbq ´ fpaq
˘

looooooomooooooon

“:∆f

, @x P ra, bs.

This function is continuous on ra, bs and differentiable on pa, bq. Moreover

F pbq ´ F paq “
`

fpbq∆g ´ gpbq∆f

˘

´
`

fpaq∆g ´ gpaq∆f

˘

“
`

fpbq ´ fpaq
˘

∆g `
`

gpaq ´ gpbq
˘

∆f “ 0.

Rolle’s theorem implies that there exists ξ P pa, bq such that F 1pξq “ 0. This proves (7.4.7).
To obtain (7.4.8) we observe that the assumption g1ptq ‰ 0 for any t P pa, bq implies that g
is injective and thus gpbq ‰ gpaq. Dividing both sides of (7.4.7) by gpbq ´ gpaq we deduce
(7.4.8). [\

Remark 7.4.17. In the above theorem we have tacitly assumed that a ă b. The result
continues to be true even when a ą b because

fpbq ´ fpaq

gpbq ´ gpaq
“
fpaq ´ fpbq

gpaq ´ gpbq
.

In this case ξ is a point in the open interval with endpoints a and b. [\
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If f : I Ñ R is a function differentiable on the interval I, then its derivative f 1 : I Ñ R
need not be continuous. However, the derivative is very close to being continuous in the
sense that it satisfies the intermediate value property, just like continuous functions do.

Theorem 7.4.18 (Darboux). Suppose that I is an interval of the real axis and f : I Ñ R
is a differentiable function. Then the derivative f 1 satisfies the intermediate value property:
given a, b P I, a ă b, and a number γ strictly between f 1paq and f 1pbq, there exists a number
ξ P pa, bq such that f 1pξq “ γ. [\

Exercise 7.1 will guide you toward a proof of this theorem which is also a consequence
of Fermat’s principle.
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7.5. Table of derivatives

Table 7.1 summarizes the derivatives of the most frequently encountered functions.

fpxq f 1pxq

xn, (x P R, n P N) nxn´1

x´n (x ‰ 0, n P N) ´nx´n´1

xα, (α P R, x ą 0) αxα´1
?
x, (x ą 0) 1

2
?
x

lnx 1{x

ex, (x P R) ex

ax, (a ą 0, x P R) ax ln a

sinx, (x P R) cosx

cosx, (x P R) ´ sinx

tanx, (cosx ‰ 0) 1` tan2 x “ 1
cos2 x

arcsinx, x P p´1, 1q 1?
1´x2

arccosx, x P p´1, 1q ´ 1?
1´x2

arctanx, (x P R) 1
1`x2

sinhx, (x P R) coshx

coshx, (x P R) sinhx

Table 7.1. Table of derivatives.

The hyperbolic functions sinhx and coshx are defined by the equalities

coshx :“
ex ` e´x

2
, sinhx “

ex ´ e´x

2
.

The function sinh is called the hyperbolic sine while the function cosh is called the hyper-
bolic cosine.
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7.6. Exercises

Exercise 7.1. Consider the function f : RÑ R, fpxq “ |x|.

(i) Sketch the graph of f .

(ii) Show that f is not differentiable at 0.

(iii) Show that f is differentiable at any point x0 ‰ 0 and then compute the derivative
of f at x0.

[\

Exercise 7.2. Prove Proposition 7.1.7. [\

Exercise 7.3. Imitate the strategy in Example 7.2.6 to prove

lim
hÑ0

cospx0 ` hq ´ cosx0
h

“ ´ sinx0.

Hint. You need to use the trigonometric identities (5.7.1a) and (5.7.1c). [\

Exercise 7.4. Consider the function f : p´π{2, π{2q Ñ R, fpxq “ tanx. Write the
equation of the tangent line to the graph of f at the point pπ{4, fpπ{4q q. [\

Exercise 7.5. Suppose that the functions f, g : I Ñ R are n-times differentiable. Prove
that their product f ¨ g is also n-times differentiable and satisfies the generalized product
rule

dn

dxn
pfgq “

n
ÿ

k“0

ˆ

n

k

˙

f pn´kqgpkq “
n
ÿ

k“0

ˆ

n

k

˙

f pkqgpn´kq, (7.6.1)

where we defined f p0q :“ f , gp0q “ g.

Hint. Argue by induction on n. At some point you need to use the Pascal formula (3.2.5),

ˆ

n` 1

k

˙

“

ˆ

n

k

˙

`

ˆ

n

k ´ 1

˙

,

also used in the proof of Newton’s binomial formula (3.2.4). [\

Exercise 7.6. Let n be a natural number. A real number r is said to be a root of order
n of a polynomial P pxq if there exists a polynomial Qpxq with the following properties:

‚ P pxq “ px´ rqnQpxq, @x P R.
‚ Qprq ‰ 0.

(a) Prove that if n ą 1 and r is a root of P pxq of order n, then r is also a root of order
pn´ 1q of P 1pxq.
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(b) Prove that for any natural numbers k ă n the real numbers ˘1 are roots of order
pn´ kq of the polynomial

dk

dxk
px2 ´ 1qn.

(c) For any natural number n we define the n-th Legendre polynomial to be

Pnpxq :“
1

2nn!

dn

dxn
`

x2 ´ 1
˘n
.

Use (7.6.1) to compute Pnp˘1q. [\

Exercise 7.7. Consider the continuous function f : r0,8q Ñ R, fpxq “
?
x. Show that

f is not differentiable at 0. [\

Exercise 7.8. Consider the function f : RÑ R given by

fpxq “

#

0, |x| ě 1

e´T pxq, |x| ă 1,
where T pxq “

1

1´ x2
, @|x| ă 1.

(a) Set

Fnpxq :“
dn

dxn
`

e´T pxq
˘

, @|x| ă 1.

Prove by induction that for any n P N there exists a polynomial Pnpxq and a natural
number kn such that

Fnpxq “ PnpxqT pxq
kne´T pxq, @|x| ă 1.

Hint. Observe that

T 1pxq “ 2xT pxq2.

(b) Prove that f is a smooth function, i.e., infinitely many times differentiable.
Hint. Prove by induction that

f pnqpxq “

#

0, |x| ě 1,

Fnpxq, |x| ă 1.

For the inductive step observe that for |x| ă 1 we have

1

x´ 1
“ ´px` 1qT pxq,

f pnqpxq ´ f pnqp1q

x´ 1
“
Fnpxq

x´ 1
“ ´px` 1qT pxqFnpxq “ px` 1qPnpxqT pxq

kn`1e´T pxq,

Fnpxq

x` 1
“ px´ 1qT pxqFnpxq “ ´px´ 1qPnpxqT pxq

kn`1e´T pxq.

Then

lim
xÕ1

f pnqpxq ´ f pnqp1q

x´ 1
“ ´ lim

xÕ1

Fnpxq

x´ 1
“

´

lim
xÕ1

px` 1qPnpxq
¯

¨

´

lim
xÕ1

T pxqkn`1e´T pxq
¯

“ ´2Pnp1q
´

lim
xÕ1

T pxqkn`1e´T pxq
¯

.

Now observe that

lim
xÕ1

T pxq “ 8.
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Use the result in Exercise 5.11 (b) to deduce

lim
xÕ1

T pxqkn`1e´T pxq “ 0.

[\

Exercise 7.9. 2 Fix a natural number n and real numbers p, q.

(a) Prove that for any t P R we have

npptp` qqn´1 “
n
ÿ

k“1

k

ˆ

n

k

˙

tk´1pkqn´k,

npn´ 1qp2ptp` qqn´2 “
n
ÿ

k“2

kpk ´ 1q

ˆ

n

k

˙

tk´2pkqn´k.

Hint. Consider the function

fn : RÑ R, fnptq “
`

tp` q
˘n
.

Compute the derivatives f 1
nptq, f

2
nptq. Then describe fnptq using Newton’s binomial formula and compute the same

derivatives using the new description of fnptq.

(b) For any integer k, 0 ď k ď n, and any x P R set wkpxq :“
`

n
k

˘

xkp1´ xqn´k. Use part
(a) to prove that for any x P R

1 “
n
ÿ

k“0

wkpxq (7.6.2a)

nx “
n
ÿ

k“0

kwkpxq, (7.6.2b)

npn´ 1qx2 “
n
ÿ

k“0

kpk ´ 1qwkpxq “
n
ÿ

k“0

k2wkpxq ´ nx, (7.6.2c)

nxp1´ xq “
n
ÿ

k“0

pk ´ nxq2wkpxq. (7.6.2d)

Hint. Use the results in (a) in the special case p “ x, q “ 1´ x, t “ 1. [\

Exercise 7.10. Find the extrema and the intervals on which the following functions are
increasing.

(i) fpxq “
?
x´ 2

?
x` 2, x ą 0.

(ii) gpxq “ x
x2`1

, x P R.

[\

2The results in this exercise are very useful in probability theory.
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Exercise 7.11. Suppose that f : ra, bs Ñ R is continuous and differentiable on pa, bq.
Show that if

lim
xÑa

f 1pxq “ A,

then f is differentiable at a and f 1paq “ A. [\

Exercise 7.12. Prove that if f : I Ñ R is a differentiable function defined on an interval
I, and the derivative f 1 is bounded on I, then f is a Lipschitz function, i.e.,

DL ą 0, @x, y P I |fpxq ´ fpyq| ď L|x´ y|. [\

Exercise 7.13. Use the Mean Value Theorem to prove that

| sinpxq ´ sinpyq| ď |x´ y|, @x, y P R. [\

Exercise 7.14. Fix a real number λ and suppose that u : R Ñ R is a differentiable
function satisfying the differential equation

u1ptq “ λuptq, @t P R.

Prove that there exists a constant c P R such that uptq “ ceλt, @t P R.

Hint. Show that the function fptq “ e´λtuptq, t P R is constant. [\

Exercise 7.15. Suppose that b, c are real numbers and u, v : R Ñ R are twice differen-
tiable functions satisfying the differential equation

u2ptq ` bu1ptq ` cuptq “ 0 “ v2ptq ` bv1ptq ` cvptq, @t P R.

Define the Wronskian to be the function

W ptq “ uptqv1ptq ´ u1ptqvptq, t P R.

Prove that

W 1ptq ` bW ptq “ 0

and deduce that

W ptq “W p0qe´bt.

Hint. You may want to use Exercise 7.14. [\

Exercise 7.16. (a) Suppose that u : R Ñ R is a twice differentiable function satisfying
the differential equation

u2ptq ` uptq “ 0, @t P R. (7.6.3)

Prove that

u1ptq2 ` uptq2 “ u1p0q2 ` up0q2, @t P R.
(b) Suppose that u, v : RÑ R are twice differentiable functions satisfying the differential
equation (7.6.3), i.e.,

u2ptq ` uptq “ 0 “ v2ptq ` vptq, @t P R.
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Show that the difference wptq “ uptq ´ vptq also satisfies the differential equation (7.6.3).
Use part (a) to prove that if up0q “ vp0q and u1p0q “ v1p0q, then uptq “ vptq, @t P R.

(c) Can you think of a function u : RÑ R satisfying (7.6.3) and the initial conditions

up0q “ 0, u1p0q “ 1? [\

Exercise 7.17. (a) Prove that for any real number α ě 1 and any x ą ´1 we have

p1` xqα ě 1` αx.

(b) Prove by induction that for any natural number n and any x ě 0 we have

1` x`
x2

2!
` ¨ ¨ ¨ `

xn

n!
ď ex.

Hint. Have a look at Example 7.4.12. [\

Exercise 7.18. Prove that

sinx ě x´
x3

6
, @x ě 0.

Hint. Have a look at Example 7.4.12. [\

Exercise 7.19. Prove that the function

f : p0,8q Ñ R, fpxq “

ˆ

1`
1

x

˙x

is increasing. [\

Exercise 7.20. Use Lagrange’s mean value theorem to show that for any x ą 0 we have

1

x` 1
ă lnpx` 1q ´ lnx ă

1

x
.

Conclude that

1`
1

2
` ¨ ¨ ¨ `

1

n
ą lnpn` 1q, @n P N. [\

Exercise 7.21. Fix a real number s P p0, 1q. Prove that for any x ą 0 we have

p1` xq1´s ´ x1´s ă
1´ s

xs
.

Conclude that

1`
1

2s
` ¨ ¨ ¨ `

1

ns
ą

1

1´ s

`

pn` 1q1´s ´ 1
˘

. [\

Exercise 7.22. Find the maximum possible volume of an open rectangular box that can
be obtained from a square sheet of cardboard with a 6 ft side by cutting squares at each
of the corners and bending up the ends of the resulting cross-like figure; see Figure 7.6.[\

Exercise 7.23. Prove that among all the rectangles with given perimeter P the square
has the largest area. [\
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Figure 7.6. Cutting out a box.

Exercise 7.24. Suppose that f : r´1, 1s Ñ R is a differentiable function.

(a) Prove that if f is even, i.e., fpxq “ fp´xq, @x P r´1, 1s, then f 1pxq is odd, f 1p´xq “ ´f 1pxq,
@x P r´1, 1s. In particular, f 1p0q “ 0.

(b) Prove that if f is odd, then f 1 is even. [\

Exercise 7.25. Fix a natural number n and suppose that f : pa, bq Ñ R is a 2n-times
differentiable function. Prove the following statements.

(a) If x0 P pa, bq satisfies

f 1px0q “ ¨ ¨ ¨ “ f p2n´1qpx0q “ 0, f p2nqpx0q ą 0,

then x0 is a strict local minimum of f .

(b) If x0 P pa, bq satisfies

f 1px0q “ ¨ ¨ ¨ “ f p2n´1qpx0q “ 0, f p2nqpx0q ă 0,

then x0 is a strict local maximum of f .

Hint. Use proof of Corollary 7.4.14 as inspiration and prove (in case (a)) that there exists δ ą 0 such that

for x P px0, x0 ` δq we have f pkqpxq ą 0,@k “ 1, . . . , 2n ´ 1 and for x P px0 ´ δ, x0q we have f pkqpxq ă 0,

@k “ 1, . . . , 2n´ 1. [\

7.7. Exercises for extra credit

Exercise* 7.1 (Intermediate value property of derivatives). Suppose that f : ra, bs Ñ R
is a differentiable function.

(a) Prove that if f 1paq ă 0 ă f 1pbq, then there exists ξ P pa, bq such that f 1pξq “ 0.

Hint. Think Fermat.

(b) More generally, prove that if f 1paq ă f 1pbq and m P pf 1paq, f 1pbqq, then there exists
ξ P pa, bq such that f 1pξq “ m. [\
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Exercise* 7.2. Suppose fn : ra, bs Ñ R, n P N, is a sequence of differentiable functions
functions with the following properties.

(i) The sequence of derivatives f 1n : ra, bs Ñ R converge that converges uniformly
to a function g : ra, bs Ñ R.

(ii) The sequence fn : ra, bs Ñ R converges pointwisely to a function f : ra, bs Ñ R.

Prove that the following hold.

(a) The sequence fn : ra, bs Ñ R converges uniformly to f : ra, bs Ñ R.
(b) The function f is differentiable and f 1 “ g, i.e., the sequence f 1n : ra, bs Ñ R converges
uniformly to f 1.

Hint. Use Exercise 6.10 and the Mean Value Theorem. [\

Exercise* 7.3. Suppose that f : RÑ R is a continuous function such that

lim
hŒ0

fpx` 2hq ´ fpx` hq

h
“ 0, @x P R.

Prove that f is a constant function.

Hint. Argue by contradiction and assume there exist a, b such that fpaq ‰ fpbq, say fpaq ă fpbq. Consider the

function gpxq “ fpxq ´mx, m :“ fpbq´fpaq

b´a
. Note that gpaq “ gpbq and

lim
hŒ0

gpx` 2hq ´ gpx` hq

h
“ ´m ă 0,

and prove that g admits a local maximum in ra, bq. [\

Exercise* 7.4. Suppose f : R Ñ R is a C2-function, i.e., twice differentiable and the
second derivative is continuous. Show that if the functions f and f p2q are bounded on R,
then so is the function f 1. [\

Exercise* 7.5 (Bernstein). Let f : r0, 1s Ñ R be a continuous function. For any n P N
we denote by Bf

npxq the n-th Bernstein polynomial determined by f ,

Bnpxq “
n
ÿ

k“0

fpk{nq

ˆ

n

k

˙

xkp1´ xqn´k.

(a) Show that for any x P r0, 1s we have

fpxq ´Bf
npxq “

n
ÿ

k“0

`

fpxq ´ fpk{nq
˘

ˆ

n

k

˙

xkp1´ xqk.

(b) Show that for any δ P p0, 1q and x P r0, 1s we have

ÿ

|k{n´x|ěδ

ˆ

n

k

˙

xkp1´ xqk ď
ÿ

k“0

pk ´ nxq2

n2δ2
ď
xp1´ xq

nδ2
.

(c) Use (a) and (b) to prove that as n Ñ 8 the sequence pBf
npxqq converges to fpxq

uniformly in x P r0, 1s.
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Hint. Use the equalities in Exercise 7.9. [\





Chapter 8

Applications of
differential calculus

8.1. Taylor approximations

The concept of derivative is based on the idea of approximation. Thus, if f : I Ñ R is a
differentiable function and x0 P I, then the linearization of f at x0,

Lpxq “ fpx0q ` f
1px0qpx´ x0q,

is a good approximation for fpxq when x is not too far from x0. More precisely, the error

rpxq “ fpxq ´ Lpxq

is opx´ x0q, much much smaller than |x´ x0|, which itself is small when x is close to x0.
In this section we want to refine and improve this observation.

Definition 8.1.1. Suppose that f : I Ñ R is an n-times differentiable function defined
on an interval I. For x0 P I we define the degree n Taylor polynomial of f at x0 to be

Tnpxq “ fpx0q `
f 1px0q

1!
px´ x0q ` ¨ ¨ ¨ `

f pnqpx0q

n!
px´ x0q

n “

n
ÿ

k“0

f pkqpx0q

k!
px´ x0q

k.

Often the Taylor polynomial of f at x0 “ 0 is referred to as the Maclaurin polynomial.

If f : I Ñ R is a smooth function, then the series

8
ÿ

k“0

f pkqpx0q

k!
px´ x0q

k

is called the Taylor series or Taylor expansion of the smooth function f at the point x0.
Note that if f is a polynomial, then the Taylor series is a finite sum coinciding with the
Taylor polynomial of the same degree of f . [\

195
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Example 8.1.2. (a) Consider a differentiable function f : I Ñ R. Then the degree 1
Taylor polynomial of f at x0 is

T1pxq “ fpx0q ` f
1px0qpx´ x0q.

Thus, T1pxq is the linearization of f at x0.

(b) Consider the function f : R Ñ R, fpxq “ ex. We know that f pnqpxq “ ex, @n P N,
x P R and we deduce that

f pkqp0q “ 1, @k P N.
In particular, the degree n Taylor polynomial of ex at x0 “ 0 is

Tnpxq “ 1`
x

1!
` ¨ ¨ ¨ `

xn

n!
.

The Taylor series of ex at x0 “ 0 is
8
ÿ

k“0

xk

k!
.

(c) Consider the function f : RÑ R, fpxq “ sinx. We have

f p4kqpxq “ sinx, f p4k`1qpxq “ cosx, f p4k`2qpxq “ ´ sinx, f p4k`3qpxq “ ´ cosx, @k ě 0,

f p4kqp0q “ 0, f p4k`1qp0q “ 1, f p4k`2qp0q “ 0, f p4k`3qp0q “ ´1.

We deduce that the Taylor polynomials of sinx at x0 “ 0 are

T1pxq “ fp0q `
f 1p0q

1!
x “ x,

T2pxq “ fp0q `
f 1p0q

1!
x`

f2p0q

2!
x2 “ x,

T3pxq “ fp0q `
f 1p0q

1!
x`

f2p0q

2!
x2 `

f p3qp0q

3!
x3 “ x´

x3

6
,

Tnpxq “ x´
x3

3!
`
x5

5!
´
x7

7!
` ¨ ¨ ¨ .

The Taylor series of sinx at x0 “ 0 is
8
ÿ

k“0

p´1qk
x2k`1

p2k ` 1q!

(d) Consider the function f : RÑ R, fpxq “ cosx. We have

f p4kqpxq “ cosx, f p4k`1qpxq “ ´ sinx, f p4k`2qpxq “ ´ cosx, f p4k`3qpxq “ sinx, @k ě 0

f p4kqp0q “ 1, f p4k`1qp0q “ 0, f p4k`2qp0q “ ´1, f p4k`3qp0q “ 0.

We deduce that the Taylor polynomials of cosx at x0 “ 0 are

T1pxq “ fp0q `
f 1p0q

1!
x “ 1,

T2pxq “ fp0q `
f 1p0q

1!
x`

f2p0q

2!
x2 “ 1´

x2

2!
,
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T3pxq “ fp0q `
f 1p0q

1!
x`

f2p0q

2!
x2 `

f p3qp0q

3!
x3 “ 1´

x2

2!
,

Tnpxq “ 1´
x2

2!
`
x4

4!
´
x6

6!
` ¨ ¨ ¨ .

The Taylor series of cosx at x0 “ 0 is

8
ÿ

k“0

p´1qk
x2k

p2kq!

(e) Fix a real number α and define f : p0,8q Ñ R, fpxq “ xα. We have

f 1pxq “ αxα´1, f p2qpxq “ αpα´ 1qxα´2, f pkqpxq “ αpα´ 1q ¨ ¨ ¨ pα´ pk ´ 1q qxα´k.

We deduce that

f pkqp1q “ αpα´ 1q ¨ ¨ ¨ pα´ pk ´ 1q q

and thus the degree n Taylor polynomial of xα at x0 “ 1 is

Tnpxq “ 1`
α

1!
px´ 1q `

αpα´ 1q

2!
px´ 1q2 ` ¨ ¨ ¨ `

αpα´ 1q ¨ ¨ ¨ pα´ pn´ 1q q

n!
px´ 1qn.

The coefficients of the above polynomial coincide with the binomial coefficients if α is a
natural number. For this reason, for any α P R we introduce the notation

ˆ

α

0

˙

“ 1,

ˆ

α

n

˙

“
αpα´ 1q ¨ ¨ ¨ pα´ pn´ 1q q

n!
, n P N.

The degree n Taylor polynomial of xα at x0 “ 1 can then be described in the more compact
form

Tnpxq “
n
ÿ

k“0

ˆ

α

k

˙

px´ 1qα´k. [\

Remark 8.1.3. The degree n Taylor polynomial of a function f at a point x0 is the
unique polynomial of degree ď n such that

Tnpx0q “ fpx0q, T 1npx0q “ f 1px0q, T pkqn px0q “ f pkqpx0q, @k “ 1, . . . , n.

Exercise 8.1 asks you to prove this fact. [\

Example 8.1.2 shows that the degree 1 Taylor polynomial of a differentiable function
at a point x0 is the linear approximation of f at x0, and we know that it provides a very
good approximation for fpxq if x is near x0. The next result states that the same is true
for the higher degree Taylor polynomials.

Theorem 8.1.4 (Taylor approximation). Suppose that f : ra, bs Ñ R is pn ` 1q-times
differentiable, n P N. Fix x0 P ra, bs. We form the degree n Taylor polynomial of f at x0

Tnpxq “ fpx0q `
f 1px0q

1!
px´ x0q ` ¨ ¨ ¨ `

f pnqpx0q

n!
px´ x0q

n
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and we consider the remainder (or error)

Rnpx0, xq “ fpxq ´ Tnpxq, x P ra, bs.

Fix x P ra, bs, x ‰ x0, and a continuous function φ : rx0, xs Ñ R which is differentiable on
px0, xq and φ

1ptq ‰ 0, @t P px0, xq. (Here we are deliberately a bit negligent and we think
of rx0, xs as the closed interval with endpoints x0, x, even in the case x0 ą x.)

Then there exists ξ in the open interval with endpoints x0 and x such that

Rnpx0, xq “
φpxq ´ φpx0q

n!φ1pξq
f pn`1qpξqpx´ ξqn. (8.1.1)

Proof. Consider the function F : rx0, xs Ñ R given by

F ptq “ fpxq ´

˜

fptq `
f 1ptq

1!
px´ tq ` ¨ ¨ ¨ `

f pnqptq

n!
px´ tqn

¸

, @t P rx0, xs.

Note that F pxq “ 0, F px0q “ Rnpx0, xq. From Cauchy’s finite increment theorem, Theo-
rem 7.4.16, we deduce that there exists ξ in the interval px0, xq such that

F pxq ´ F px0q

φpxq ´ φpx0q
“
F 1pξq

φ1pξq
.

Now observe that

´F 1ptq “ f 1ptq `

ˆ

f2ptq

1!
px´ tq ´

f 1ptq

1!

˙

`

˜

f p3qptq

2!
px´ tq2 ´

f p2qptq

1!
px´ tq

¸

` ¨ ¨ ¨ `

˜

f pn`1qptq

n!
px´ tqn ´

f pnqptq

pn´ 1q!
px´ tqn´1

¸

“
f pn`1qptq

n!
px´ tqn.

Thus

´
Rnpx0, xq

φpxq ´ φpx0q
“
F pxq ´ F px0q

φpxq ´ φpx0q
“
F 1pξq

φ1pξq
“ ´

f pn`1qptqpx´ ξqn

n!φ1pξq

The last equality clearly implies (8.1.1). [\

If we let φptq “ px ´ tqn`1 in the above theorem, we obtain the following important
consequence.

Corollary 8.1.5 (Lagrange remainder formula). There exists ξ P px0, xq such that

fpxq ´ Tnpxq “ Rnpx0, xq “
1

pn` 1q!
f pn`1qpξqpx´ x0q

n`1. (8.1.2)

Proof. We have φpxq “ 0 and φpxq ´ φpx0q “ ´px´ x0q
n`1, φ1pξq “ ´pn` 1qpx´ ξqn.[\
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Remark 8.1.6. Let us explain how this works in applications. Suppose that f : ra, bs Ñ R
is pn` 1q-times differentiable and x0 P ra, bs. The degree n Taylor polynomial of f at x0
is

Tnpxq “ fpx0q `
f 1px0q

1!
px´ x0q ` ¨ ¨ ¨ `

f pnqpx0q

n!
px´ x0q

n

It is convenient to introduce the notation h “ x´ x0 so that x “ x0 ` h and we deduce

Tnpx0 ` hq “ fpx0q `
f 1px0q

1!
h` ¨ ¨ ¨ `

f pnqpx0q

n!
hn.

If h is sufficiently small, then Tnpx0 ` hq is an approximation for fpx0 ` hq. The error of
this approximation is given by the remainder Rnpx0, xq “ fpx0 ` hq ´ Tnpx0 ` hq. This
remainder really depends only on the difference h “ x ´ x0 and, to emphasize this fact,
we will write Rnpx0, hq instead of Rnpx0, xq in the argument below. Also, for simplicity,
we will denote by px0, x0` hq the open interval with endpoints x0 and x0` h. (Note that
x0 ` h ă x0 when h ă 0.)

The Lagrange remainder formula tells us that there exists ξ P px0, x0 ` hq

Rnpx0, hq “
1

pn` 1q!
f pn`1qpξqhn`1,

If we define

Mn`1px0, hq :“ sup
ξPrx0,x0`hs

|f pn`1qpξq|,

then we deduce

|Rnpx0, hq | ď
Mn`1px0, hq|h|

n`1

pn` 1q!
. (8.1.3)

If the right-hand side of the above inequality is small, then the error has to be small. The
above result implies that

ˇ

ˇ fpxq ´ Tnpxq
ˇ

ˇ “ O
`

|x´ x0|
n`1

˘

as xÑ x0, , (8.1.4)

where O is Landau’s symbol defined in (5.8.1). [\

Example 8.1.7. Let us show how the above remark works in a rather concrete case.
Suppose fpxq “ sinx. We use Taylor approximations of sinx at x0 “ 0. For example, the
degree 4 Taylor polynomial of sinx at x0 “ 0 is

T4phq “ sinp0q `
cosp0q

1!
h´

sinp0q

2!
h2 ´

cosp0q

3!
h3 `

sinp0q

4!
h4 “ h´

h3

3!
“ h´

h3

6
.

We have

sinh « h´
h3

6
.

To estimate the error of this approximation we use (8.1.2). The 5th derivative of sinx is
cosx so that | cos ξ| ď 1, @x P R. We deduce from (8.1.2) that for some ξ between 0 and
x we have

ˇ

ˇ

ˇ
sinh´

´

h´
h3

6

¯ˇ

ˇ

ˇ
“
| cos ξ|

5!
h5 ď

|h|5

5!
“
|h|5

120
.
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If for example |h| ď 1
2 , then

|h|5

120
ď

1

32 ¨ 120
“

1

3840
ă

1

103
.

Thus for |h| ď 1
2 the expression h´ h3

6 approximates sinh up to two decimals. For example

0.5´ p0.5q3{6 “ 0.47916...ñ sin 0.5 “ 0.47...

If h “ 1
4 , then

|h|5

120
“

1

45 ¨ 120
“

1

1024 ¨ 120
“

1

122880
ď

1

105
,

and 0.25´ p0.25q3{6 computes sinp0.25q up to four decimals. Thus

0.25´ p0.25q3{6 “ 0.248666...ñ sinp0.25q “ 0.2486....

In Figure 8.1 we have depicted side-by-side the graph of sinpxq for |x| ď 10 and the graph
of T7pxq, its degree 7 Taylor approximation at x0 “ 0. While T7pxq takes large values for
|x| large, it matches very well the graph of sinx on the interval r´3, 3s. [\

Figure 8.1. The graphs of sinx and its degree 7 Taylor approximation at the origin.

Here is a nice consequence of Corollary 8.1.5.

Corollary 8.1.8. For any x P R we have

ex “
8
ÿ

n“0

xn

n!
. (8.1.5)

Note that for x “ 1 the above equality specializes to (4.6.6).
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Proof. Observe that for any natural number n the partial sum

snpxq “ 1`
x

1!
` ¨ ¨ ¨ `

xn

n!

is the n-th Taylor polynomial of ex at x0 “ 0. Corollary 8.1.5 implies that there exists a
real number ξn between 0 and x such that

ex ´ snpxq “ eξn
xn`1

pn` 1q!
.

Observe that since ´|x| ď ξn ď |x| we have eξn ď e|x| so that

ˇ

ˇ ex ´ snpxq
ˇ

ˇ ď e|x|
|x|n`1

pn` 1q!
. (8.1.6)

From (4.2.8) we deduce that

lim
nÑ8

|x|n`1

pn` 1q!
“ 0.

The Squeezing Principle then implies that

lim
nÑ8

ˇ

ˇ ex ´ snpxq
ˇ

ˇ “ 0.

[\

Remark 8.1.9. The above proof shows a bit more namely that for any R ą 0, the partial
sums snpxq converge to ex uniformly on r´R,Rs. Indeed, if x P r´R,Rs so that |x| ď R,
then (18.4.50) implies that

ˇ

ˇ ex ´ snpxq
ˇ

ˇ ď eR
Rn`1

pn` 1q!
, @|x| ď R.

Note that the right-hand side of the above inequality is independent of x and converges to
0 as nÑ8 according to (4.2.8). Weierstrass criterion in Exercise 6.6 implies the claimed
uniform convergence. [\

8.2. L’Hôpital’s rule

Differential calculus is also very useful in dealing with singular limits such as 0
0 ,

8
8
.

Proposition 8.2.1 (L’Hôpital’s Rule). Let a, b P r´8,8s, a ă b. Suppose that the
differentiable functions f, g : pa, bq Ñ R satisfy the following conditions.

(i) g1pxq ‰ 0, @x P pa, bq.

(ii)

lim
xÕb

f 1pxq

g1pxq
“ A P r´8,8s.



202 8. Applications of differential calculus

(iii) Either

lim
xÕb

fpxq “ lim
xÕb

gpxq “ 0, (iii0)

or

lim
xÕb

gpxq “ ˘8. (iii8)

Then

lim
xÕb

fpxq

gpxq
“ A.

Proof. Let us first observe that (i) and Rolle’s Theorem imply that g is injective. Hence,
there exists a1 P ra, bq such that gpxq ‰ 0, @x P pa1, bq. Without any loss of generality we
can assume that a “ a1 since we are interested in the behavior of f, g near b. We have to
prove that for any sequence xn P pa, bq such that limxn “ b we have

lim
nÑ8

fpxnq

gpxnq
“ A.

Fix one such sequence pxnqnPN. At this point we want to invoke the following auxiliary
fact whose proof we postpone.

Lemma 8.2.2. There exists a sequence pynq in pa, bq such that xn ‰ yn, @n, limnÑ8 yn “ b
and

lim

ˆ

|fpynq| ` |gpynq|

|gpxnq|

˙

“ 0. [\

Choose a sequence pynq as in the above lemma so that

lim
nÑ8

fpynq

gpxnq
“ lim

nÑ8

gpynq

gpxnq
“ 0.

From Cauchy’s Finite Increment Theorem 7.4.16 we deduce that there exists ξn P pxn, ynq
such that

rn “
fpxnq ´ fpynq

gpxnq ´ gpynq
“
f 1pξnq

g1pξnq
.

Since xn Ñ b we deduce ξn Ñ b so that

lim
nÑ8

rn “ lim
nÑ8

f 1pξnq

g1pξnq
“ A. (8.2.1)

On the other hand, for any n we have

rn “
fpxnq ´ fpynq

gpxnq ´ gpynq
“

fpxnq ´ fpynq

gpxnq
`

1´ gpynq
gpxnq

˘

“

fpxnq
gpxnq

´
fpynq
gpxnq

1´ gpynq
gpxnq

.

We deduce

fpxnq

gpxnq
´
fpynq

gpxnq
“ rn

ˆ

1´
gpynq

gpxnq

˙

ñ
fpxnq

gpxnq
“
fpynq

gpxnq
` rn

ˆ

1´
gpynq

gpxnq

˙

.
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Hence

lim
nÑ8

fpxnq

gpxnq
“ lim

nÑ8

fpynq

gpxnq
looooomooooon

“0

`
`

lim
nÑ8

rn
˘

¨ lim
nÑ8

ˆ

1´
gpynq

gpxnq

˙

loooooooooomoooooooooon

“1

“ lim
nÑ8

rn
p8.2.1q
“ A.

All there is left to do is prove Lemma 8.2.2.

Proof of Lemma 8.2.2 We consider two cases.

1. Suppose that (iii0) holds, i.e.,

lim
xÕb

fpxq “ lim
Õb

gpxq “ 0.

Then for any n we can find yn P pxn, bq such that

|fpynq| ` |gpynq| ă
1

n
|gpxnq|.

so that
|fpynq| ` |gpynq|

|gpxnq|
ă

1

n
, @n,

and thus

lim
nÑ8

|fpynq| ` |gpynq|

|gpxnq|
“ 0.

2. Suppose that (iii8) holds, i.e.,

lim
nÑ8

gpxnq “ ˘8.

For t P pa, bq we set hptq :“ |fptq| ` |gptq|. We construct inductively an increasing sequence of natural numbers pnkq

as follows.

A. Since |gpxnq| Ñ 8 there exists n0 P N such that

|gpxnq| ą hpx1q, @n ě n0.

B. Since |gpxnq| Ñ 8, for any k P N, k ą 1, we can find nk P N such that nk ą nk´1 and

|gpxnq| ą 2khpxnk´1 q @n ě nk. (8.2.2)

Now define yn by setting

yn :“

#

x1, 1 ď n ă n1

xnk´1 , nk ď n ă nk`1, k P N.

Observe that for n P rnk, nk`1q we have

hpynq

|gpxnq|
“
|hpxnk´1 q|

gpxnq

p8.2.2q
ă

1

2k
.

This proves that

lim
nÑ8

hpynq

|gpxnq|
“ 0. [\

[\
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Remark 8.2.3. Proposition 8.2.1 has a counterpart involving the left limit limxŒa. Its
statement is obtained from the statement of Proposition 8.2.1 by globally replacing the
limit at b with the limit at a. The proof is entirely similar. [\

Example 8.2.4. (a) We want to compute

lim
xÑ0

1´ cosx

x2
.

According to L’Hôpital’s theorem we have

lim
xÑ0

1´ cosx

x2
“ lim

xÑ0

p1´ cosxq1

px2q1
“ lim

xÑ0

sinx

2x
“

1

2
.

(b) Consider the function f : p0,8q Ñ R, fpxq “ xx. We want to investigate the limit

lim
xÑ0

xx.

Formally the limit ought to be 00, but we do not know what 00 means. Consider a new
function

gpxq “ lnxx “ x lnx, x ą 0.

In this case we have

lim
xÑ0`

gpxq “ 0 ¨ p´8q

which is a degenerate limit. We rewrite

gpxq “
lnx
1
x

and we observe that in this case

lim
xÑ0`

gpxq “ ´
8

8

which suggests trying L’Hôpital’s rule. We have

plnxq1 “
1

x
, p1{xq1 “ ´

1

x2

and
1{x

´1{x2
“ ´xÑ 0 as xÑ 0`.

Hence

lim
xÑ0`

gpxq “ 0ñ lim
xÑ0`

fpxq “ e0 “ 1. [\

8.3. Convexity

In this section we discuss in some detail a concept that has found many useful applications.
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8.3.1. Basic facts about convex functions. We begin with a simple geometric obser-
vation.

Proposition 8.3.1. Let x, x1, x2 P R, x1 ă x2. The following statements are equivalent.

(i) x P rx1, x2s.

(ii) There exist t1, t2 ě 0 such that t1 ` t2 “ 1 and x “ t1x1 ` t2x2.

Proof. (i) ñ (ii) Suppose x P rx1, x2s. We set

t1 :“
x2 ´ x

x2 ´ x1
, t2 :“

x´ x1
x2 ´ x1

. (8.3.1)

Since x1 ď x ď x2 we deduce that t1, t2 ě 0. We observe that

t1 ` t2 “
x2 ´ x

x2 ´ x1
`

x´ x1
x2 ´ x1

“
x2 ´ x1
x2 ´ x1

“ 1,

and

t1x1 ` t2x2 “
x1px2 ´ xq ` x2px´ x1q

x2 ´ x1
“
x2x´ x1x

x2 ´ x1
“ x. (8.3.2)

(ii) ñ (i) Suppose that there exist t1, t2 ě 0 such that t1 ` t2 “ 1 and x “ t1x1 ` t2x2.
We have

x´ x1 “ pt1 ´ 1qx1 ` t2x2 “ ´t2x1 ` t2x2 “ t2px2 ´ x1q ě 0,

x2 ´ x “ p1´ t2qx2 ´ t1x1 “ t1x2 ´ t1x1 “ t1px2 ´ x1q ě 0.

Hence x1 ď x ď x2. [\

Remark 8.3.2. The point t1x1 ` t2x2 is interpreted as the center of mass of a system of
two particles, one located at x1 and of mass t1 and the other located at x2 and of mass t2.

In general, given n particles of masses m1, . . . ,mn respectively located at x1, . . . , xn,
then the center of mass of this system is the point

x“
m1x1 ` ¨ ¨ ¨ `mnxn
m1 ` ¨ ¨ ¨ `mn

.

Note that if we define

tk :“
mk

m1 `m2 ` ¨ ¨ ¨ `mn
, k “ 1, 2, . . . , n,

then

t1 ` t2 ` ¨ ¨ ¨ ` tn “ 1 and x“ t1x1 ` ¨ ¨ ¨ ` tnxn.

Thus, a point x lies between x1 and x2 if and only if it is the center of mass of a system
of particles located at x1 and x2. [\

Given a function f : pa, bq Ñ R and x1, x2 P pa, bq, x1 ă x2, we denote by Lfx1,x2 the
linear function whose graph contains the points px1, fpx1qq and px2, fpx2qq on the graph
of f . The slope of this line is

m “
fpx2q ´ fpx1q

x2 ´ x1
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and thus the equation of this line is

Lfx1,x2pxq “ fpx1q `mpx´ x1q “ fpx1q `
fpx2q ´ fpx1q

x2 ´ x1
px´ x1q

“ fpx1q

ˆ

1´
x´ x1
x2 ´ x1

˙

` fpx2q
x´ x1
x2 ´ x1

“
x2 ´ x

x2 ´ x1
fpx1q ` fpx2q

x´ x1
x2 ´ x1

.

Hence

Lfx1,x2pxq “
x2 ´ x

x2 ´ x1
fpx1q `

x´ x1
x2 ´ x1

fpx2q. (8.3.3)

Above we recognize the numbers t1, t2 defined in (8.3.1).

Proposition 8.3.3. Consider a function f : pa, bq Ñ R and x1, x2 P pa, bq, x1 ă x2.

Denote by Lfx1,x2 the linear function whose graph contains the points px1, fpx1qq and
px2, fpx2qq on the graph of f . The following statements are equivalent.

fpxq ď Lfx1,x2pxq, @x P rx1, x2s. (8.3.4a)

fpxq ď
x2 ´ x

x2 ´ x1
fpx1q `

x´ x1
x2 ´ x1

fpx2q, @x P rx1, x2s. (8.3.4b)

@t1, t2 ě 0 such that t1 ` t2 “ 1 fpt1x1 ` t2x2q ď t1fpx1q ` t2fpx2q, (8.3.4c)

Proof. The equivalence (8.3.4a) ðñ (8.3.4b) follows from (8.3.3). The equivalence
(8.3.4b) ðñ (8.3.4c) follows from (8.3.1) and (8.3.2).

[\

y=f(x)

xx

y

1 2

Figure 8.2. The graph lies below the chord.
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Remark 8.3.4. The part of the graph of Lfx1,x2 over the interval rx1, x2s is called the
chord of the graph of f determined by the interval rx1, x2s. The condition (8.3.4a) is
equivalent to saying that the part of the graph of f corresponding to the interval rx1, x2s
lies below the chord of the graph determined by this interval; see Figure 8.2. [\

Definition 8.3.5. Let f : I Ñ R be a real valued function defined on an interval I.

(i) The function f is called convex if, for any x1, x2 P I, and any t1, t2 ě 0 such
that t1 ` t2 “ 1, we have

fpt1x1 ` t2x2q ď t1fpx1q ` t2fpx2q.

(ii) The function f is called concave if, for any x1, x2 P I, and any t1, t2 ě 0 such
that t1 ` t2 “ 1, we have

fpt1x1 ` t2x2q ě t1fpx1q ` t2fpx2q.

[\

Remark 8.3.6. (a) From Propositions 8.3.1 and 8.3.3 we deduce that a function f : I Ñ R
is convex if and only if, for any interval rx1, x2s Ă I, the part of the graph of f determined
by the interval rx1, x2s is below the chord of the graph determined by this interval. It is
concave if the graph is above the chords.

(b) Observe that if t1 “ 1 and t2 “ 0 we have t1x1`t2x2 “ x1 and t1fpx1q`t2fpx2q “ fpx1q
and thus

fpt1x1 ` t2x2q ď t1fpx1q ` t2fpx2q.

is automatically satisfied. A similar thing happens when t1 “ 0 and t2 “ 1. Thus the
definition of convexity is equivalent to the weaker requirement that for any x1, x2 P I, and
any positive t1, t2 such that t1 ` t2 “ 1, we have

fpt1x1 ` t2x2q ď t1fpx1q ` t2fpx2q.

(c) Observe that a function f is concave if and only if ´f is convex.

(d) In many calculus texts, convex functions are called concave-up and concave functions
are called concave-down. [\

Before we can give examples of convex functions we need to produce simple criteria
for recognizing when a function is convex.

Proposition 8.3.1 implies that a function f : I Ñ R is convex if and only if for any
x1, x2 P I and any x P px1, x2q we have

fpxq ď
x2 ´ x

x2 ´ x1
fpx1q `

x´ x1
x2 ´ x1

fpx2q

Since

1 “
x2 ´ x

x2 ´ x1
`

x´ x1
x2 ´ x1

,
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we deduce that f is convex if and only if

fpxq

ˆ

x2 ´ x

x2 ´ x1
`

x´ x1
x2 ´ x1

˙

ď
x2 ´ x

x2 ´ x1
fpx1q `

x´ x1
x2 ´ x1

fpx2q

ðñ
x2 ´ x

x2 ´ x1

`

fpxq ´ fpx1q
˘

ď
x´ x1
x2 ´ x1

`

fpx2q ´ fpxq
˘

ðñpx2 ´ xq
`

fpxq ´ fpx1q
˘

ď px´ x1q
`

fpx2q ´ fpxq
˘

ðñ
fpxq ´ fpx1q

x´ x1
ď
fpx2q ´ fpxq

x2 ´ x
.

We have thus proved the following result.

Corollary 8.3.7. Let f : I Ñ R be a function defined on the interval I Ă R. The
following statements are equivalent.

(i) The function f is convex.

(ii) For any x1, x, x2 P I such that x1 ă x ă x2 we have

fpxq ´ fpx1q

x´ x1
ď
fpx2q ´ fpxq

x2 ´ x
.

[\

xxx
1 2

Figure 8.3. Chords of the graph of a convex function become less inclined as they move
to the right.

Let us observe that fpxq´fpx1q
x´x1

is the slope of the chord determined by rx1, xs while
fpx2q´fpxq

x2´x
is the slope of the chord determined by rx, x2s. The above result states that f

is convex if and only if for any x1 ă x ă x2 the chord determined by rx1, xs has a smaller
inclination than the chord determined by rx, x2s; see Figure 8.3.
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Corollary 8.3.8. Suppose that f : I Ñ R is a convex function. Then

fpx2q ´ fpx1q

x2 ´ x1
ď
fpx4q ´ fpx3q

x4 ´ x3
, @x1, x2, x3, x4 P I, x1 ă x2 ă x3 ă x4.

Proof. From Corollary 8.3.7 we deduce that the slope of the chord determined by rx1, x2s
is smaller than the slope of the chord determined by rx2, x3s which in turn is smaller than
the slope of the chord determined by rx3, x4s; see Figure 8.4. In other words,

fpx2q ´ fpx1q

x2 ´ x1
ď
fpx3q ´ fpx2q

x3 ´ x2
ď
fpx4q ´ fpx3q

x4 ´ x3
.

[\

xxxx
1 2 3 4

Figure 8.4. Chords of the graph of a convex function become more inclined as they
move to the right.

Corollary 8.3.9. Suppose that f : I Ñ R is a differentiable function. Then the following
statements are equivalent.

(i) The function f is convex.

(ii) The derivative f 1 is a nondecreasing function.

Proof. (ii)ñ (i) In view of Corollary 8.3.7 we have to prove that for any x1 ă x2 ă x3 P I
we have

fpx2q ´ fpx1q

x2 ´ x1
ď
fpx3q ´ fpx2q

x3 ´ x2
.

From Lagrange’s Mean Value theorem we deduce that there exist ξ1 P px1, x2q and
ξ2 P px2, x3q such that

f 1pξ1q “
fpx2q ´ fpx1q

x2 ´ x1
, f 1pξ2q “

fpx3q ´ fpx2q

x3 ´ x2
.
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Since f 1 is nondecreasing and ξ1 ă x2 ă ξ2, we deduce f 1pξ1q ď f 1pξ2q.

(i) ñ (ii) We know that f is convex and we have to prove that f 1 is nondecreasing,
i.e.,

x1 ă x2 ñ f 1px1q ď f 1px2q.

For h ą 0 sufficiently small, h ă 1
2px2 ´ x1q, we have

x1 ă x1 ` h ă x2 ´ h ă x2.

From Corollary 8.3.8 we deduce that slope of the chord determined by rx1, x1 ` hs is
smaller than the slope of the chord determined by rx2 ´ h, x2s, that is,

fpx1 ` hq ´ fpx1q

h
ď
fpx2q ´ fpx2 ´ hq

h
“
fpx2 ´ hq ´ fpx2q

´h
.

Hence

f 1px1q “ lim
hÑ0`

fpx1 ` hq ´ fpx1q

h
ď lim

hÑ0`

fpx2 ´ hq ´ fpx2q

´h
“ f 1px2q.

[\

Since a differentiable function is nondecreasing iff its derivative is nonnegative, we deduce
the following useful result.

Corollary 8.3.10. Suppose that f : I Ñ R is a twice differentiable function. Then the
following statements are equivalent.

(i) The function f is convex.

(ii) The second derivative f2 is nonnegative, f2pxq ě 0, @x P I.

[\

Since a function is concave if and only if ´f is convex we deduce the following result.

Corollary 8.3.11. Suppose that f : I Ñ R is a twice differentiable function. Then the
following statements are equivalent.

(i) The function f is concave.

(ii) The second derivative f2 is nonpositive, f2pxq ď 0, @x P I.

[\

Example 8.3.12. The function f : RÑ R, fpxq “ ex is convex since f2pxq “ ex ą 0 for
any x P R. The function f : p0,8q Ñ R, fpxq “ lnx is concave since

f 1pxq “
1

x
, f2pxq “ ´

1

x2
ă 0, @x ą 0.

Fix α P R and consider the power function

p : p0,8q Ñ R, ppxq “ xα.
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Then

p2pxq “ αpα´ 1qxα´2.

Note that if αpα´ 1q ą 0 this function is convex, if αpα´ 1q ă 0 this function is concave,
and if α “ 0 or α “ 1 this function is both convex and concave. Thus, the function

?
x is

concave, while the function 1?
x
“ x´

1
2 is convex. [\

8.3.2. Some classical applications of convexity. We start with a simple geometric
consequence of convexity.

Proposition 8.3.13. Suppose that f : I Ñ R is a differentiable convex function. Then
the graph of f lies above any tangent to the graph; see Figure 8.5. If additionally f 1 is
strictly increasing, then any tangent to the graph intersects the graph at a unique point.

y=f(x)

x
0

y=L(x)

Figure 8.5. The graph of a convex function lies above any of its tangents.

Proof. Let x0 P I. The tangent to the graph of f at the point px0, fpx0q q is the graph of
the linearization of f at x0 which is the function

Lpxq “ fpx0q ` f
1px0qpx´ x0q.

We have to prove that

fpxq ´ Lpxq ě 0, @x P I.

We have

fpxq ´ Lpxq “ fpxq ´ fpx0q ´ f
1px0qpx´ x0q.

Suppose x ‰ x0. Lagrange’s Mean Value Theorem implies that there exists ξ between x0
and x such that fpxq ´ fpx0q “ f 1pξqpx´ x0q. Hence

fpxq ´ Lpxq “ f 1pξqpx´ x0q ´ f
1px0qpx´ x0q “ p f

1pξq ´ f 1px0q qpx´ x0q.
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We distinguish two cases.

1. x ą x0. Then ξ ą x0 and px ´ x0q ą 0. Since f is convex, f 1 is increasing and thus
f 1pξq ě f 1px0q so that

p f 1pξq ´ f 1px0q qpx´ x0q ě 0.

Clearly if f 1 is strictly increasing, then f 1pξq ą f 1px0q and p f
1pξq ´ f 1px0q qpx´ x0q ą 0.

2. x ă x0. Then ξ ă x0 and px ´ x0q ă 0. Since f is convex, f 1 is increasing and thus
f 1pξq ď f 1px0q so that

p f 1pξq ´ f 1px0q qpx´ x0q ě 0.

Clearly if f 1 is strictly increasing, then f 1pξq ă f 1px0q and p f
1pξq ´ f 1px0q qpx´ x0q ą 0 [\

Example 8.3.14 (Newton’s Method). We want to describe an ingenious method devised
by Isaac Newton1 for approximating the solutions of an equation fpxq “ 0.

Suppose that f : pa, bq Ñ R is a C2-function such that

f 1pxq, f2pxq ą 0, @x P pa, bq. (8.3.5)

Suppose z0 P pa, bq satisfies

fpz0q “ 0.

The condition (8.3.5) implies that f is strictly increasing and thus z0 is the unique solution
of the equation fpxq “ 0. Newton’s method described one way of constructing very
accurate approximations for z0.

Here is roughly the principle behind the method. Pick an arbitrary point x0 P pz0, bq.
The linearization Lpxq of f at x0 is an approximation for fpxq so, intuitively, the solution
of the equation Lpxq “ 0 ought to approximate the solution of the equation fpxq “ 0.
Denote by Zpx0q the solution of the equation Lpxq “ 0, i.e., the point where the tangent
to the graph of f at px0, fpx0qq intersects the horizontal axis; see Figure 8.6.

More precisely, we have Lpxq “ fpx0q ` f
1px0qpx´ x0q and thus,

Lpxq “ 0ðñf 1px0qpx´ x0q “ ´fpx0qðñx´ x0 “ ´
fpx0q

f 1px0q

ðñx “ Zpx0q “ x0 ´
fpx0q

f 1px0q
.

Key Remark. The point Zpx0q lies between z0 and x0, z0 ă Zpx0q ă x0. In particular,
Zpx0q is closer to z0 than x0.

Clearly Zpx0q ă x0 because Lpx0q “ fpx0q ą 0 “ LpZpx0qq and the linear function
Lpxq is increasing. The assumption (8.3.5) implies that f is convex and f 1 is strictly
increasing. Proposition 8.3.13 implies that the tangent lies below the graph, i.e.,

f
`

Zpx0q
˘

ą L
`

Zpx0q
˘

“ 0 “ fpz0q.

1Isaac Newton (1642-1726) was an English mathematician and physicist who is widely recognized as one of the
most influential scientists of all time and a key figure in the scientific revolution; see Wikipedia.

https://en.wikipedia.org/wiki/Isaac_Newton
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z xZ(x )0 00

Figure 8.6. The geometry behind Newton’s method.

Since f is strictly increasing we deduce Zpx0q ą z0.

The correspondence x0 ÞÑ Zpx0q is thus a map pz0, bq Ñ pz0, bq with the property that
z0 ă Zpx0q ă x0, @x0 P pz0, bq.

We iterate this procedure. We set x1 “ Zpx0q so that z0 ă x1 ă x0. Define next
x2 “ Zpx1q so that z0 ă x2 ă x1 and inductively

xn`1 :“ Zpxnq “ xn ´
fpxnq

f 1pxnq
, n ě 0. (8.3.6)

The above discussion shows that the sequence pxnq is strictly decreasing and bounded
below by z0. It is therefore convergent and we set x “ limxn. Observe that x ě z0.
Letting nÑ8 in (8.3.6) and taking into account the continuity of f and f 1 we deduce

x“ x´
fpxq

f 1pxq
ñ

fpxq

f 1pxq
“ 0ñ fpxq “ 0.

Since z0 is the unique solution of the equation fpxq “ 0 we deduce x “ z0. Thus the
sequence generated by Newton’s iteration (8.3.6) converges to the unique zero of f .

Remarkably, the above sequence pxnq converges to z0 extremely quickly. Taylor’s formula with Lagrange
remainder implies that for any n there exists ξn P pz0, xnq such that

0 “ fpz0q “ fpxnq ` f
1pxnqpz0 ´ xnq `

1

2
f2pξnqpz0 ´ xnq

2.

Hence

0 “
fpxnq

f 1pxnq
` z0 ´ xn `

f2pξnq

2f 1pxnq
pz0 ´ xnq

2 ñ
fpxnq

f 1pxnq
` z0 ´ xn

looooooooooomooooooooooon

“z0´xn`1

“ ´
f2pξnq

2f 1pxnq
pz0 ´ xnq

2
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Hence

pz0 ´ xn`1q “ ´
f2pξnq

2f 1pxnq
pz0 ´ xnq

2.

If we denote by εn the error, εn :“ xn ´ z0 we deduce

εn`1 “
f2pξnq

2f 1pxnq
ε2n. (8.3.7)

Thus, the error at the pn ` 1q -th step is roughly the square of the error at the n-th step. If e.g. the error εn is

ă 0.01, then we expect εn`1 ă p0.1q2 “ 0.0001.

Let us see how this works in a simple case. Let k be a natural number ě 2. Consider
the function

f : p0,8q Ñ R, fpxq “ xk ´ 2.

Then

f 1pxq “ kxk´1, f2pxq “ kpk ´ 1qxk´2

so the assumption (8.3.5) is satisfied. The unique solution of the equation fpxq “ 0 is the
number k

?
2 and Newton’s method will produce approximations for this number.

We first need to choose a number x0 ą
k
?
2. How do we do this when we do not know

what the number k
?
2 is?

Observe we have to choose a number x0 such that fpx0q ą fp k
?
2q “ 0, or equivalently,

xk0 ą 2.

Let’s pick x0 “
3
2 . Then

ˆ

3

2

˙k

ě

ˆ

3

2

˙2

“
9

4
ą 2.

Note also that fp1q “ 1k ´ 2 “ ´1 ă 0 so that

1 ă
k
?
2 ă

3

2

and thus the error

ε0 “ x0 “
k
?
2 ă

1

2
.

In this case we have

Zpxq “ x´
fpxq

f 1pxq
“ x´

xk ´ 2

kxk´1
“
k ´ 1

k
x`

2

kxk´1
.

Observe that for k “ 2 we have

Zpxq “
x

2
`

1

x
.

and the recurrence xn`1 “ Zpxnq takes the form

xn`1 “
xn
2
`

1

xn

Above, we recognize the recurrence that we have investigated earlier in Example 4.4.4.
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For k “ 3 the recurrence xn`1 “ Zpxnq takes the form

xn`1 “
2xn
3
`

2

3x2n
, x0 “ 1.5.

We have
x1 “ 1.296296..., x2 “ 1.260932..., x3 “ 1.25992186...,

x4 “ 1.25992104..., x5 “ 1.25992104...

Note that, as predicted theoretically, this sequence displays a very rapid stabilization.
Thus

3
?
2 « 1.25992.....

We can independently confirm the above claim by observing that

p1.25992q3 “ 1.999995. [\

Theorem 8.3.15 (Jensen’s inequality). Suppose that f : I Ñ R is a convex function
defined on an interval I. Then for any n P N, any x1, . . . , xn P I and any t1, . . . , tn ě 0
such that

t1 ` ¨ ¨ ¨ ` tn “ 1

we have t1x1 ` ¨ ¨ ¨ ` tnxn P I and

f
`

t1x1 ` ¨ ¨ ¨ ` tnxn
˘

ď t1fpx1q ` ¨ ¨ ¨ ` tnfpxnq. (8.3.8)

Proof. We argue by induction on n. For n “ 1 the inequality is trivially true, while for n “ 2 it is the definition

of convexity. We assume that the inequality is true for n and we prove it for n` 1.

Let x0, . . . , xn P I and t0, . . . , tn ě 0 such that

t0 ` ¨ ¨ ¨ ` tn “ 1.

We have to prove that

fpt0x0 ` t1x1 ` t2x2 ` ¨ ¨ ¨ ` tnxnq ď t0fpx0q ` t1fpx1q ` t2fpy2q ` ¨ ¨ ¨ ` tnfpynq. (8.3.9)

If one of the numbers t0, t1, . . . , tn is zero, then the above inequality reduces to the case n. We can therefore assume

that t0, t1, . . . , tn ą 0. Consider now the real numbers

s1 :“ t0 ` t1, s2 :“ t2, . . . , sn :“ tn,

y1 :“
t0

t0 ` t1
x0 `

t1

t0 ` t1
x1, y2 :“ x2, . . . , yn :“ xn.

Note that

s1, s2, . . . , sn ě 0 and s1 ` ¨ ¨ ¨ ` sn “ 1

and since
t0

t0 ` t1
`

t1

t0 ` t1
“ 1

the point y1 lies between x0 and x1 and thus in the interval I. From the induction assumption we deduce

s1y1 ` ¨ ¨ ¨ ` snyn P I,

and

fps1y1 ` ¨ ¨ ¨ ` snynq ď s1fpy1q ` s2fpy2q ` ¨ ¨ ¨ ` snfpynq
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“ pt0 ` t1qf

ˆ

t0

t0 ` t1
x0 `

t1

t0 ` t1
x1

˙

` s2fpy2q ` ¨ ¨ ¨ ` snfpynq.

Now observe that

s1y1 ` ¨ ¨ ¨ ` snyn “ pt0 ` t1q

ˆ

t0

t0 ` t1
x0 `

t1

t0 ` t1
x1

˙

` t2y2 ` ¨ ¨ ¨ ` tnyn

“ t0x0 ` t1x1 ` t2x2 ` ¨ ¨ ¨ ` tnxn

and since f is convex

f

ˆ

t0

t0 ` t1
x0 `

t1

t0 ` t1
x1

˙

ď
t0

t0 ` t1
fpx0q `

t1

t0 ` t1
fpx1q

so that

pt0 ` t1q

ˆ

t0

t0 ` t1
x0 `

t1

t0 ` t1
x1

˙

ď t0fpx0q ` t1fpx1q.

Putting together all of the above we deduce (8.3.9). [\

Corollary 8.3.16. If f : I Ñ R is a convex function defined on an interval I, then for
any n P N and any x1, . . . , xn P I we have

f

ˆ

x1 ` ¨ ¨ ¨ ` xn
n

˙

ď
fpx1q ` ¨ ¨ ¨ ` fpxnq

n
. (8.3.10)

Proof. Use (8.3.8) in which t1 “ t2 “ ¨ ¨ ¨ “ tn “
1
n . [\

Corollary 8.3.17. Suppose that g : I Ñ R is a concave function defined on an interval
I. Then for any n P N, any x1, . . . , xn P I and any t1, . . . , tn ě 0 such that

t1 ` ¨ ¨ ¨ ` tn “ 1

we have t1x1 ` ¨ ¨ ¨ ` tnxn P I and

g
`

t1x1 ` ¨ ¨ ¨ ` tnxn
˘

ě t1gpx1q ` ¨ ¨ ¨ ` tngpxnq. (8.3.11)

In particular,

g

ˆ

x1 ` ¨ ¨ ¨ ` xn
n

˙

ě
gpx1q ` ¨ ¨ ¨ ` gpxnq

n
. (8.3.12)

Proof. Apply Theorem 8.3.15 to the convex function f “ ´g. [\

Corollary 8.3.18 (AM-GM inequality). For any natural number n and any positive real
numbers x1, . . . , xn we have

`

x1 ¨ ¨ ¨xn
˘

1
n ď

x1 ` ¨ ¨ ¨ ` xn
n

. (8.3.13)

The left-hand side of the above inequality is called the geometric mean (GM) of the numbers
x1, . . . , xn, while the right-hand side is called the arithmetic mean (AM) of the same
numbers.
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Proof. Consider the function

f : p0,8q Ñ R, fpxq “ lnx.

This function is concave and (8.3.12) implies that

ln

ˆ

x1 ` ¨ ¨ ¨ ` xn
n

˙

ě
lnx1 ` ¨ ¨ ¨ ` lnxn

n
.

Exponentiating this inequality we deduce

x1 ` ¨ ¨ ¨ ` xn
n

“ elnp
x1`¨¨¨`xn

n
q

ě e
ln x1`¨¨¨`ln xn

n “ e
lnpx1¨¨¨xnq

n “ px1 ¨ ¨ ¨xnq
1
n .

[\

Corollary 8.3.19 (Hölder’s inequality). Fix a real number p ą 1 and define q ą 1 by the
equality

1

q
“ 1´

1

p
“
p´ 1

p
.

Then for any natural number n and any nonnegative real numbers a1, . . . , an, b1, . . . , bn
we have

a1b1 ` ¨ ¨ ¨ ` anbn ď
`

ap1 ` ¨ ¨ ¨ ` a
p
n

˘
1
p
`

bq1 ` ¨ ¨ ¨ ` b
q
n

˘
1
q , (8.3.14)

or, using the summation notation,

n
ÿ

k“1

akbk ď

˜

n
ÿ

i“1

api

¸
1
p
˜

n
ÿ

j“1

bqj

¸
1
q

. (8.3.15)

Proof. Since p ą 1, the function f : r0,8q Ñ R, fpxq “ xp, is convex. We define

B :“ bq1 ` ¨ ¨ ¨ ` b
q
n,

tk :“
bqk
B
, k “ 1, . . . , n,

xk :“ akb
´ 1

p´1

k B, k “ 1, . . . , n.

Observe that tk ě 0, @k and

t1 ` ¨ ¨ ¨ ` tk “ 1.

Using Jensen’s inequality (8.3.10) we deduce that
`

t1x1 ` ¨ ¨ ¨ ` tnxn
˘p
ď t1x

p
1 ` ¨ ¨ ¨ ` tnx

p
n.

Observe that

`

t1x1 ` ¨ ¨ ¨ ` tnxn
˘p
“

ˆ

a1b
q´ 1

p´1

1 ` ¨ ¨ ¨ ` anb
q´ 1

p´1
n

˙p
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(q ´ 1
p´1 “ 1)

“ p a1b1 ` ¨ ¨ ¨ ` anbn q
p .

Similarly

t1x
p
1 ` ¨ ¨ ¨ ` tnx

p
n “

bq1
B
ap1b

´
p

p´1

1 Bp ` ¨ ¨ ¨ `
bqn
B
apnb

´
p

p´1
n Bp

(q ´ p
p´1 “ 0)

“ Bp´1
`

ap1 ` ¨ ¨ ¨ ` a
p
n

˘

.

Hence
p a1b1 ` ¨ ¨ ¨ ` anbn q

p
ď Bp´1 p ap1 ` ¨ ¨ ¨ ` a

p
n q

so that

a1b1 ` ¨ ¨ ¨ ` anbn ď B
p´1
p p ap1 ` ¨ ¨ ¨ ` a

p
n q

1
p

“
`

ap1 ` ¨ ¨ ¨ ` a
p
n

˘
1
p
`

bq1 ` ¨ ¨ ¨ ` b
q
n

˘
1
q .

[\

If in Hölder’s inequality we let p “ 2, then q “ 2, and we obtain the following important
result.

Corollary 8.3.20 (Cauchy-Schwarz inequality). For any natural number n and any real
numbers x1, . . . , xn, y1, . . . , yn we have

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

xkyk

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

n
ÿ

i“1

x2i

¸
1
2
˜

n
ÿ

j“1

y2j

¸
1
2

. (8.3.16)

Proof. We define
ak “ |xk|, bk “ |yk|, k “ 1, . . . , n.

Note that a2k “ x2k, b
2
k “ y2k. Using Hölder’s inequality with p “ q “ 2 we deduce

n
ÿ

k“1

|xkyk| ď

˜

n
ÿ

i“1

x2i

¸
1
2
˜

n
ÿ

j“1

y2j

¸
1
2

.

Now observe that
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

xkyk

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

k“1

|xkyk|.

[\

Corollary 8.3.21 (Minkowski’s inequality). For any real number p P r1,8q, any natural
number n, and any real numbers x1, . . . , xn, y1, . . . , yn we have

˜

n
ÿ

k“1

|xk ` yk|
p

¸
1
p

ď

˜

n
ÿ

k“1

|xk|
p

¸
1
p

`

˜

n
ÿ

k“1

|yk|
p

¸
1
p

. (8.3.17)
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Proof. We set

X :“

˜

n
ÿ

k“1

|xk|
p

¸
1
p

, Y :“

˜

n
ÿ

k“1

|yk|
p

¸
1
p

, Z :“

˜

n
ÿ

k“1

|xk ` yk|
p

¸
1
p

.

Clearly X,Y, Z ě 0. We have to prove that Z ď X ` Y . This inequality is obviously true
if Z “ 0 so we assume that Z ą 0. Note that we have

Zp “
n
ÿ

k“1

|xk ` yk|
p “

n
ÿ

k“1

|xk ` yk|
looomooon

ď|xk|`|yk|

|xk ` yk|
p´1

ď

n
ÿ

k“1

|xk| |xk ` yk|
p´1 `

n
ÿ

k“1

|yk| |xk ` yk|
p´1.

(8.3.18)

This proves (8.3.17) in the special case p “ 1 so in the sequel we assume that p ą 1. Let
q “ p

p´1 so that

1

p
`

1

q
“ 1.

Using Hölder’s inequality we deduce that for any k “ 1, . . . , n we deduce

n
ÿ

k“1

|xk| |xk ` yk|
p´1ď

˜

p
ÿ

k“1

|xk|
p

¸
1
p

looooooooomooooooooon

X

˜

n
ÿ

k“1

|xk ` yk|
p

¸

p´1
p

loooooooooooomoooooooooooon

Zp´1

,

n
ÿ

k“1

|yk| |xk ` yk|
p´1ď

˜

p
ÿ

k“1

|yk|
p

¸
1
p

loooooooomoooooooon

Y

˜

n
ÿ

k“1

|xk ` yk|
p

¸

p´1
p

loooooooooooomoooooooooooon

Zp´1

.

Using the last two inequalities in (8.3.18) we deduce

Zp ď pX ` Y qZp´1
Zą0
ñ Z ď X ` Y.

[\

Remark 8.3.22. Minkowski’s inequality has a very useful interpretation. For a natural
number n we denote by Rn the n-dimensional Euclidean space whose points are called
(n-dimensional) vectors and are defined to be n-tuples

x “ px1, . . . , xnq, xi P R, 1 ď i ď n.

The space Rn has a rich algebraic structure. We mention here two operations. One is the
addition of vectors. Given

x “ px1, . . . , xnq, y “ py1, . . . , ynq P Rn

we define their sum x` y to be the vector

x` y :“ px1 ` y1, . . . , xn ` ynq.
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Another is the multiplication by a scalar. Given

x “ px1, . . . , xnq P Rn, t P R,

we define

tx :“ ptx1, . . . , txnq.

For p P r1,8q and x P Rn we set

}x}p :“

˜

n
ÿ

k“1

|xk|
p

¸
1
p

.

Note that
}tx}p “ |t| }x}p, @t P R, x P Rn,
}x}p ě 0, @x P Rn,
}x}p “ 0ðñx “ p0, 0, . . . , 0q.

(8.3.19)

Minkowski’s inequality is then equivalent to the triangle inequality

}x` y}p ď }x}p ` }y}p, @x,y P Rn. (8.3.20)

A function Rn Ñ R that associates to a vector R a real number }x} satisfying (8.3.19)
and (8.3.20) is called a norm on Rn. Minkowski’s inequality can be interpreted as saying
that for any p P r1,8q the correspondence

Rn Q x ÞÑ }x}p P r0,8q,

defines a norm on Rn.
Note that (8.3.20) implies that for any u,v,w P Rn we have

}u´w}p ď }u´ v}p ` }v ´w}p, (8.3.21)

since

pu´ vq
looomooon

x

`pv ´wq
looomooon

y

“ pu´wq
looomooon

x`y

. [\

8.4. How to sketch the graph of a function

Differential calculus can be quite useful in producing sketches of the graphs of functions.
Instead of giving a detailed description of the steps that need to be taken to produce a
sketch of a graph, we will outline a few general principles and illustrate them on a few
examples.

In sketching the graph of a function fpxq, one needs to look at certain distinguishing
features.

‚ Locate the intersections of f with the coordinate axes, if possible.

‚ Locate, if possible, the critical points of f , i.e., the points x such that f 1pxq “ 0.

‚ Locate the intervals where f is increasing and the intervals where f is decreasing,
if possible.
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‚ Locate the intervals where f is convex, and the intervals where f is concave, if
possible. The endpoints of such intervals are found among the solutions of the
equation.

f2pxq “ 0.

Sometimes solving this equation explicitly may not be possible.

‚ Locate the asymptotes, if any.

Example 8.4.1 (Cubic polynomials). Consider an arbitrary cubic polynomial

p : RÑ R, ppxq “ x3 ` a2x
2 ` a1x` a0,

where a0, a1, a2 are given real numbers. We would like to describe the general appearance
of the graph of p and analyze how it depends on the coefficients a0, a1, a2. Observe first
that

lim
xÑ˘8

ppxq “ ˘8.

The graph intersects the y-axis at y “ a0. The intersection with the x-axis is difficult to
find because the equation ppxq “ 0 is difficult to solve. Instead, we will try to find the
critical points of ppxq i.e., the solutions of the equation p1pxq “ 0.

3x2 ` 2a2x` a1 “ 0. (8.4.1)

The function p1pxq has a global minimum achieved at the point µ defined by the equation

p2pµq “ 0ðñ 6µ` 2a2 “ 0ðñ µ “ ´
a2
3
.

The function p1pxq is decreasing on the interval p´8, µs and increasing on rµ,8q. Thus
ppxq is concave on p´8, µs and convex on rµ,8q. The point µ is an inflection point of p.

The general theory of quadratic equations tells us that (8.4.1) can have zero, one or
two solutions depending on whether ∆ “ 4a22 ´ 12a1 is negative, zero or positive. These
situations are depicted in Figure 8.7.

m

y=p (x)

m

y=p (x)

Figure 8.7. ∆ “ 4a2
2 ´ 12a1 ď 0 .

If p has no critical points, as in the left-hand side of Figure 8.7, then p1pxq ą 0 for any
x P R. This shows that p is increasing. Similarly, if p has a single critical point, then again
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ppxq is increasing. In both cases, the graph of p looks like the left-hand side of Figure 8.9.

m

cc1 2

y=p (x)

Figure 8.8. ∆ “ 4a2
2 ´ 12a1 ą 0 .

m

y=p(x)

m

y=p(x)

Figure 8.9. The graph of y “ x3
` a2x

2
` a1x` a0.

If ppxq has two critical points c1 ă c2, then p1pxq ă 0 on pc1, c2q and positive on
p´8, c1qY pc2,8q; see Figure 8.8. The point c1 is a local max of p and c2 is a local min of
p. The inflection point µ is the midpoint of the interval rc1, c2s. The graph of p is depicted
on the right-hand side of Figure 8.9. [\

Example 8.4.2. Consider the function

fpxq “
x2 ` 1

x2 ´ 3x` 2
.

We have not specified its domain so it is understood to consist of all the x for which the
fraction

x2 ` 1

x2 ´ 3x` 2

is well defined. The only problems are the points where the denominator vanishes,

x2 ´ 3x` 2 “ 0ðñ x “ 1 _ x “ 2.
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Thus the domain is

p´8, 1q Y p1, 2q Y p2,8q.

The points 1 and 2 are also points where the vertical asymptotes could be located. We
will investigate this issue later.

We have

f 1pxq “
p2xqpx2 ´ 3x` 2q ´ px2 ` 1qp2x´ 3q

px2 ´ 3x` 2q2
“

2x3 ´ 6x2 ` 4x´ p2x3 ´ 3x2 ` 2x´ 3q

px2 ´ 3x` 2q2

“
´3x2 ` 2x` 3

px2 ´ 3x` 2q2
.

The derivative vanishes when 3x2 ´ 2x ´ 3 “ 0. The roots of this quadratic polynomial
are

2˘
?
4` 36

6
“

2˘
?
40

6
“

2˘ 2
?
10

6
“

1˘
?
10

3
.

One root is obviously negative. Since 3 ă
?
10 ă 4 we deduce

1 ă
1`

?
10

3
ă

5

3
ă 2.

The intersection with the y-axis is obtained by computing fp0q “ 1
2 . There is no inter-

section with the x axis since the numerator does not vanish. We have already detected
several remarkable points

´8, c1 “
1´

?
10

3
, 1, c2 “

1`
?
10

3
, 2, 8.

Observe that

lim
xÑ˘8

x2 ` 1

x2 ´ 3x` 2
,

so the horizontal line y “ 1 is a horizontal asymptote for fpxq at˘8. We do not investigate
the second derivative because it requires a substantial amount of work, with little payoff.

Table 8.1 organizes the information we have collected. The exclamation signs indicate

x ´8 c1 1 c2 2 8

px2 ´ 3x` 2q 8 `` ` `` 0 ´´´ ´ ´´ 0 `` 8

´3x2 ` 2x` 3 ´8 ´´ 0 `` ` `` 0 ´´ ´ ´´ ´8

f 1pxq ´ ´´ 0 `` ! `` 0 ´´ ! ´´ ´

fpxq 1 Œ min Õ ! Õ max Œ ! Œ 1
Table 8.1. Organizing all the relevant data.

that the corresponding functions are not defined at those points. As x approaches 1 from
the left, the function fpxq is increasing and

lim
xÑ1´

fpxq “ 8.
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Similarly, the table shows

lim
xÑ1`

fpxq “ ´8, lim
xÑ2´

fpxq “ ´8, lim
xÑ2`

fpxq “ 8.

This shows that the vertical lines x “ 1 and x “ 2 are asymptotes of fpxq. Figure 8.10
contains a sketch of the graph of the function fpxq.

x=1 x=2

y=1

c

c

1

2

Figure 8.10. The graph of x2`1
x2´3x`2

.

[\

Some functions admit inclined asymptotes.

Definition 8.4.3. (a) The line y “ mx` b is the asymptote of fpxq at 8 if

lim
xÑ8

fpxq

x
“ m and lim

xÑ8
pfpxq ´mxq “ b.

(b) The line y “ mx` b is the asymptote of fpxq at ´8 if

lim
xÑ´8

fpxq

x
“ m and lim

xÑ´8
pfpxq ´mxq “ b. [\

Example 8.4.4. The function

fpxq “
x5 ` 2x4 ` 3x3 ` 4x` 5

x4 ` 1

admits an inclined asymptote y “ mx` b as xÑ8. The slope m can be found from the
equality

m “ lim
xÑ8

fpxq

x
“ 1,
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and b can be found from the equality

b “ lim
xÑ8

`

fpxq ´ x
˘

“ lim
xÑ8

x5 ` 2x4 ` 3x3 ` 4x` 5´ xpx4 ` 1q

x4 ` 1

“ lim
xÑ8

2x4 ` 3x3 ` 3x` 5

x4 ` 1
“ 2. [\

8.5. Antiderivatives

Definition 8.5.1. Suppose that f : I Ñ R is a function defined on an interval I Ă R. A
function F : I Ñ R is called an antiderivative or primitive of f on I if F is differentiable,
and

F 1pxq “ fpxq, @x P I. [\

Example 8.5.2. (a) The function x2 is an antiderivative of 2x on R. Similarly, the
function sinx is an antiderivative of cosx on R. [\

Observe that if F pxq is an antiderivative of a function fpxq on an interval I, then for
any constant C P R the function F pxq ` C is also an antiderivative of fpxq on I. The
converse is also true.

Proposition 8.5.3. If F1, F2 are antiderivatives of the function f : I Ñ R, then F1 ´ F2

is constant.

Proof. Observe that pF1 ´ F2q
1 “ F 11 ´ F 12 “ f ´ f “ 0 and Corollary 7.4.8 implies that

F1 ´ F2 is constant on I. [\

Definition 8.5.4. Given a function f : I Ñ R we denote by
ş

fpxqdx the collection of all
the antiderivatives of f on I. Usually

ş

fpxqdx is referred to as the indefinite integral of
f . [\

For example,
ż

cosx dx “ sinx` C,

ż

2x dx “ x2 ` C.

Table 8.2 describes the antiderivatives of some basic functions.

Note that if f :Ñ R is a differentiable function, then f is an antiderivative of f 1 so
that

ż

f 1pxqdx “ fpxq ` c. (8.5.1)

Observing that f 1pxqdx “ df we rewrite the above equality as
ż

df “ f ` C. (8.5.2)

In general, the computation of an antiderivative is a more challenging task that cannot
always be completed. There are a few tricks and a few classes of functions for which this
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fpxq
ş

fpxqdx

xn, (x P R, n P Z, n ě 0) xn`1

pn`1q ` C

1
xn (x ‰ 0, n P N, n ą 1) ´ 1

pn´1qxn´1 ` C

xα, (α P R, α ‰ ´1, x ą 0) xα`1

α`1 ` C

1{x, x ‰ 0 ln |x| ` C

ex, (x P R) ex ` C

sinx, (x P R) ´ cosx` C

cosx, (x P R) sinx` C

1{ cos2 x tanx` C

1?
1´x2

, x P p´1, 1q arcsinx` C

1
1`x2

, x P R arctanx` C

ş

1?
x2˘1

dx, x2 ˘ 1 ą 0 ln
ˇ

ˇx`
?
x2 ˘ 1

ˇ

ˇ` C

Table 8.2. Table of integrals.

task is feasible. We will spend the remainder of this section discussing a few frequently
encountered techniques for computing antiderivatives.

Proposition 8.5.5 (Linearity). Suppose f, g : I Ñ R and a, b P R. If F,G : I Ñ R are
antiderivatives of f and respectively g on I, then aF ` bG is an antiderivative of af ` bg
on I. We write this in condensed form

ż

paf ` bgqdx “ a

ż

fdx` b

ż

gdx.

Proof.

paF ` bGq1 “ aF 1 ` bG1 “ af ` bg.

[\
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Example 8.5.6.
ż

p3` 5x` 7x2qdx “ 3

ż

dx` 5

ż

xdx` 7

ż

x2dx “ 3x`
5

2
x2 `

7

3
x3 ` C. [\

Proposition 8.5.7 (Integration by parts). Suppose that f, g : I Ñ R are two differentiable
functions. If the function fpxqg1pxq admits antiderivatives on I, then so does the function
f 1pxqgpxq and moreover

ż

fpxqg1pxqdx “ fpxqgpxq ´

ż

gpxqf 1pxqdx . (8.5.3)

Proof. The function pfgq1 “ f 1g ` fg1 admits antiderivatives and thus the difference

pfgq1 ´ fg1 “ f 1g

admits antiderivatives. Moreover,

fg “

ż

pfgq1dx “

ż

pf 1g ` fg1qdx “

ż

f 1gdx`

ż

fg1dxñ

ż

fg1dx “ fg ´

ż

gf 1dx.

[\

Let us observe that we can rewrite (8.5.3) in the simpler form
ż

fdg “ fg ´

ż

gdf . (8.5.4)

Example 8.5.8. (a) We can use integration by parts to find the antiderivatives of lnx,
x ą 0. We have

ż

lnxdx “ plnxqx´

ż

xdplnxq “ x lnx´

ż

x
dx

x

“ x lnx´

ż

dx “ x lnx´ x` C.

(b) For a P R consider the indefinite integrals

Ia “

ż

eax cosx dx, Ja “

ż

eax sinx dx .

We have

Ia “

ż

eaxdpsinxq “ eax sinx´

ż

sinxdpeaxq “ eax sinx´

ż

aeax sinxdx

“ eax sinx´ aJa.

Similarly we have

Ja “

ż

eaxdp´ cosxq “ ´eax cosx`

ż

cosxdpeaxq “ ´eax cosx` a

ż

eax cosxdx

“ ´eax cosx` aIa.
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We deduce

Ia “ eax sinx´ ap´eax cosx` aIaq “ eax sinx` aeax cosx´ a2Ia,

so that

pa2 ` 1qIa “ eax sinx` aeax cosx,

which shows that

Ia “
1

a2 ` 1

`

eax sinx` aeax cosx
˘

` C . (8.5.5)

From this we deduce

Ja “ aIa ´ e
ax cosx “

a

a2 ` 1

`

eax sinx` aeax cosx
˘

´ eax cosx` C,

so that

Ja “
1

a2 ` 1

`

aeax sinx´ eax cosx
˘

` C . (8.5.6)

(c) For any nonnegative integer n we consider the indefinite integral

In “

ż

xnexdx .

Note that

I0 “

ż

exdx “ ex ` c.

In general, we have

In`1 “

ż

xn`1dpexq “ xn`1ex ´

ż

exdpxn`1q “ xn`1ex ´ pn` 1q

ż

xnexdx

so that

In`1 “ xn`1ex ´ pn` 1qIn, @n “ 0, 1, 2, . . . . (8.5.7)

If we let n “ 0 in the above equality we deduce

I1 “ xex ´ I0 “ xex ´ ex ` C, (8.5.8)

Using n “ 1 in (8.5.7) we obtain

I2 “ x2ex ´ 2I1 “ x2ex ´ 2xex ` 2ex ` C.

This suggests that in general In “ Pnpxqe
x `C, where Pnpxq is a polynomial of degree n.

For example,

P0pxq “ 1, P1pxq “ px´ 1q, P2pxq “ x2 ´ 2x` 2.

The equality (8.5.7) shows that

Pn`1pxq “ xn`1 ´ pn` 1qPnpxq, @n “ 0, 1, 2, . . . . (8.5.9)

(d) Let us now explain how to compute the integrals

An “

ż

dx

px2 ` 1qn
.
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Note that

A1 “

ż

dx

x2 ` 1
“ arctanx` C.

In general

An “

ż

px2 ` 1q´ndx “ xpx2 ` 1q´n ´

ż

xd
´

px2 ` 1q´n
¯

“
x

px2 ` 1qn
´

ż

x
´2nx

px2 ` 1qn`1
dx “

x

px2 ` 1qn
` 2n

ż

x2

px2 ` 1qn`1
dx

“
x

px2 ` 1qn
` 2n

ż

x2 ` 1´ 1

px2 ` 1qn`1
dx

“
x

px2 ` 1qn
` 2n

ż

1

px2 ` 1qn
dx´ 2n

ż

1

px2 ` 1qn`1
dx

“
x

px2 ` 1qn
` 2nAn ´ 2nAn`1.

Hence
An “

x

px2 ` 1qn
` 2nAn ´ 2nAn`1,

so that
2nAn`1 “

x

px2 ` 1qn
` p2n´ 1qAn,

and thus

An`1 “
1

2n

x

px2 ` 1qn
`
p2n´ 1q

2n
An . (8.5.10)

For example,
ż

1

px2 ` 1q2
dx “

1

2

x

x2 ` 1
`

1

2
arctanx` C. [\

Proposition 8.5.9 (Integration by substitution). Suppose that u : I Ñ J and f : J Ñ R
are differentiable functions. Then the function f 1pupxqqu1pxq admits antiderivatives on I
and

ż

f 1pupxqqu1pxqdx “

ż

f 1puqdu “

ż

df “ fpuq ` C, u “ upxq. (8.5.11)

Proof. The chain formula shows that f 1pupxqqu1pxq is the derivative of fpupxqq so that
fpupxqq is an antiderivative of f 1pupxqqu1pxq. [\

Example 8.5.10. (a) To find an antiderivative of xex
2
we use the change in variables

u “ x2. Then

du “ 2xdxñ xdx “
du

2
so that

ż

ex
2
xdx “

ż

eu
du

2
“

1

2
eu ` C “

1

2
ex

2
` C.

(b) Let us compute an antiderivative of tanx “ sinx
cosx on an interval I where cosx ‰ 0. We

distinguish two cases.
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1. cosx ą 0 on I. We make the change in variables u “ cosx so that u ą 0, and
du “ ´ sinxdx. We have

ż

sinx

cosx
dx “ ´

ż

du

u
“ ´ lnu` C “ ´ ln cosx` C “ ´ ln | cosx| ` C.

2. cosx ă 0 on I. We make the change in variables v “ ´ cosx so that v ą 0 and
dv “ sinxdx. We have

ż

sinx

cosx
dx “

ż

dv

´v
“ ´ ln v ` C “ ´ lnp´ cosxq ` C “ ´ ln | cosx| ` C.

Thus, in either case we have
ż

tanxdx “ ´ ln | cosx| ` C. (8.5.12)

(c) To compute the integral
ż

pax` bqndx, n P N, a ą 0,

we make the change in variables u “ ax ` b. Then du “ adx so that dx “ 1
adu and we

have
ż

pax` bqndx “
1

a

ż

undu “
1

apn` 1q
un`1 ` C “

1

apn` 1q
pax` bqn`1 ` C.

(d) To compute the integral
ż

1

pax` bqn
dx, a ‰ 0, n P N

we again make the change in variables u “ pax` bq and we deduce

ż

1

pax` bqn
dx “

1

a

ż

1

un
du “ C `

$

’

&

’

%

1
a ln |u|, n “ 1

1
ap1´nqun´1 , n ą 1.

, u “ ax` b.

(e) To compute the integral

Bn :“

ż

x

px2 ` 1qn
dx .

We make the change in variables u “ x2 ` 1. Then du “ 2xdx so that xdx “ 1
2du and

thus

ż

x

px2 ` 1qn
dx “

1

2

ż

1

un
du “ C `

1

2
ˆ

$

’

&

’

%

lnu, n “ 1

1
p1´nqun´1 , n ą 1.

, u “ x2 ` 1.

(f) The integrals of the form
ż

psinxqmpcosxq2k`1dx, k,m P Zě0 ,
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are found using the change in variables u “ sinx. Then

du “ cosxdx, pcosxq2k`1dx “ pcos2 xqk cosxdx “ p1´ sin2 xqkdpsinxq “ p1´ u2qkdu

and
ż

psinxqmpcosxq2k`1dx “

ż

ump1´ u2qkdu.

Similarly, the integrals of the form
ż

pcosxqmpsinxq2k`1dx, m, k P Zě0,

are found using the change in variables v “ cosx. Then
ż

pcosxqmpsinxq2k`1dx “ ´

ż

vmp1´ v2qkdv.

(g) The integrals of the form
ż

psinxq2mpcosxq2kdx, k,m P Zě0

are a bit trickier to compute. There are two possible strategies.

One strategy is based on the trigonometric identities

sin2 x “
1´ cos 2x

2
, cos2 x “

1` cos 2x

2
.

Using the change in variables u “ 2x, so that

du “ 2dxñ dx “
1

2
du

we deduce
ż

psinxq2mpcosxq2kdx “
1

2m`k`1

ż

p1´ cosuqmp1` cosuqkdu.

The last integral involves smaller powers in cosu. For example
ż

cos4 xdx “

ż
ˆ

1` cosu

2

˙2 du

2
, u “ 2x,

“
1

8

ż

p1` 2 cosu` cos2 uqdu “
1

8
u`

1

4
sinu`

1

8

ż

cos2 udu

pv “ 2u “ 4xq

“
1

8
u`

1

4
sinu`

1

8

ż
ˆ

1` cos v

2

˙

dv

2
“

1

8
u`

1

4
sinu`

1

32

ż

p1` cos vqdv

“
1

4
x`

1

4
sinp2xq `

v

32
`

1

32
sin v ` C

“
x

4
`

1

4
sinp2xq `

x

8
`

1

32
sinp4xq ` C “

3

8
x`

1

4
sinp2xq `

1

32
sinp4xq ` C.
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One other possible strategy is to use the change in variables u “ tanx. Then

cos2 x “
1

1` tan2 x
“

1

1` u2
, sin2 x “ cos2 x tan2 x “

tan2 x

1` tan2 x
“

u2

1` u2

du “ dptanxq “ p1` tan2 xqdx “ p1` u2qdxñ dx “
du

1` u2
.

We deduce
ż

psinxq2mpcosxq2kdx “

ż
ˆ

u2

1` u2

˙mˆ

1

1` u2

˙k du

1` u2

“

ż

u2m

p1` u2qm`k`1
du.

Thus we need to know how to compute integrals of the form

Jpm,nq “

ż

u2m

p1` u2qn
du, 0 ď m ă n, m, n P Z .

Observe first that when m “ 0 the integrals Jp0, nq coincide with the integrals An of
(8.5.10). The general case can be gradually reduced to the case Jp0, nq by observing that

Jpm,nq “

ż

u2m ` u2m´2 ´ u2m´2

p1` u2qn
du “

ż

u2m´2p1` u2q

p1` u2qn
´

ż

u2m´2

p1` u2qn

“

ż

u2m´2

p1` u2qn´1
´ Jpm´ 1, nq

so that
Jpm,nq “ Jpm´ 1, n´ 1q ´ Jpm´ 1, nq . [\

The examples discussed above will allow us to describe a procedure for computing the
antiderivatives of any rational function, i.e., a function fpxq of the form

fpxq “
P pxq

Qpxq

where P pxq and Qpxq are polynomials. Theoretically, the procedure works for any ratio-
nal function, but the practical implementation can lead to complex computations. Such
computation is possible because any rational function can be written as a sum of rational
functions of the following simpler types.

Type I.
axn, a P R, n “ 0, 1, 2, . . . .

Type II.
a

px´ rqn
, c, r P R, n P N.

Type III.
bx` c

`

px´ rq2 ` a2
˘n , a, b, c, r P R, n P N.
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If the degree of the numerator P pxq is smaller than the degree of the denominator Qpxq,

then only the Type II and Type III functions appear in the decomposition of P pxq
Qpxq . The

functions of Type II and III are also known as partial fractions or simple fractions.

Actually finding the decomposition of a rational function as a sum of simple fractions
requires a substantial amount of work and it is not very practical for more complicated
rational functions. For this reason we will not discuss this technique in great detail.

The primitives of a function of Type I are known. More precisely
ż

axndx “
a

n` 1
xn`1 ` C.

The primitives of the functions of Type II where computed in Example 8.5.10(e). To deal
with the Type III functions we make a change in variables

x´ r “ atðñx “ at` r.

Then

dx “ adt, bx` c “ bpat` rq ` β “ abt` rb` c,

px´ rq2 ` a2 “ a2t2 ` a2 “ a2pt2 ` 1q,

so that
ż

bx` c
`

px´ rq2 ` a2
˘ndx “

ż

abt` rb` c

a2npt2 ` 1qn
adt

“
b

a2n´2

ż

t

pt2 ` 1qn
dt`

rb` c

a2n´1

ż

1

pt2 ` 1qn
dt.

The computation of integral
ż

1

pt2 ` 1qn
dt

is described in (8.5.10), while the computation of the integral
ż

t

pt2 ` 1qn
dt

as described in Example 8.5.10(e).

Let us illustrate this strategy on a simple example.

Example 8.5.11. Consider the rational function

fpxq “
1

px´ 1q2px2 ` 2x` 2q
.

Let us observe that

x2 ` 2x` 2 “ px` 1q2 ` 12.

The function admits a decomposition of the form

1

px´ 1q2px2 ` 2x` 2q
“ fpxq “

A1

x´ 1
`

A2

px´ 1q2
`

B1x` C1

x2 ` 2x` 2
.
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Multiplying both sides by px´ 1q2px2 ` 2x` 2q we deduce that for any x P R we have

1 “ A1px´ 1qpx2 ` 2x` 2q `A2px
2 ` 2x` 2q ` pB1x` C1qpx´ 1q2.

“ A1px
3 ` 2x2 ` 2x´ x2 ´ 2x´ 2q `A2px

2 ` 2x` 2q ` pB1x` C1qpx
2 ´ 2x` 1q

“ A1px
3 ` x2 ´ 2q `A2px

2 ` 2x` 2q ` pB1x
3 ´ 2B1x

2 `B1x` C1x
2 ´ 2C1x` C1q

“ pA1 `B1qx
3 ` pA1 `A2 ´ 2B1 ` C1qx

2 ` p2A2 `B1 ´ 2C1qx´ 2A1 ` 2A2 ` C1.

This implies
$

’

’

&

’

’

%

A1 `B1 “ 0
A1 `A2 ´ 2B1 ` C1 “ 0

2A2 `B1 ´ 2C1 “ 0
´2A1 ` 2A2 ` C1 “ 1.

From the first equality we deduce A1 “ ´B1 and using this in the last three equalities
above we deduce

$

&

%

A2 ´ 3B1 ` C1 “ 0
2A2 `B1 ´ 2C1 “ 0
2A2 ` 2B1 ` C1 “ 1.

From the first equality we deduce A2 “ 3B1´C1. Using this in the last two equalities we
deduce

"

7B1 ´ 4C1 “ 0
8B1 ´ C1 “ 1.

Hence,

7

4
B1 “ C1 “ 8B1 ´ 1ñ

25

4
B1 “ 1ñ B1 “

4

25
, C1 “

7

25
ñ A1 “ ´

4

25
,

A2 “ 3B1 ´ C1 “
12

25
´

7

25
“

1

5
.

Hence
1

px´ 1q2px2 ` 2x` 2q
“ ´

4

25px´ 1q
`

1

5px´ 1q2
`

4x` 7

25
`

px` 1q2 ` 12
˘ . [\

Example 8.5.12 (First order linear differential equations). A quantity u that depends
on time can be viewed as a function

u : I Ñ R, t ÞÑ uptq,

where I Ă R is a time interval. We say that u satisfies a linear first order differential
equation if u is differentiable and it satisfies an equality of the form

u1ptq ` rptquptq “ fptq, @t P I, (8.5.13)

where r, f : I Ñ R are some given functions. Solving a differential equation such as (8.5.13)
means finding all the differentiable functions u : I Ñ R satisfying the above equality. Let
us look at some special examples.

(a) If rptq “ 0 for any t P I, then (8.5.13) has the simpler form u1ptq “ fptq, so that uptq
must be an antiderivative of fptq.
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(b) The general case. Suppose that rptq admits antiderivatives on I. The differential
equation (8.5.13) is solved as follows.

Step 1. Choose one antiderivative Rptq of rptq, i.e., a function Rptq such that R1ptq “ rptq.

Step 2. Multiply both sides of (8.5.13) by eRptq. We obtain the equality

eRptqu1ptq ` eRptqrptquptq “ fptqeRptq.

Now observe that the left-hand side of the above equality is the derivative of eRptquptq,
`

eRptquptq
˘1
“ eRptqu1ptq ` eRptqR1ptquptq “ eRptqu1ptq ` eRptqrptquptq “ fptqeRptq.

This shows that eRptquptq is an antiderivative of fptqeRptq.

Step 3. Find one antiderivative Gptq of fptqeRptq. We deduce that there exists a constant
C P R such that

eRptquptq “ Gptq ` C ñ uptq “ e´RptqGptq ` Ce´Rptq.

Take for example the equation

u1ptq ` 2tuptq “ t.

In this case
rptq “ 2t, fptq “ t.

We can choose Rptq “ t2 and we have

d

dt

`

et
2
uptq

˘

“ et
2
u1ptq ` 2tet

2
uptq “ et

2
t,

so that

et
2
uptq “

ż

et
2
tdt “

1

2

ż

et
2
dpt2q “

1

2
et

2
` C

ñ uptq “ e´t
2
´

C `
1

2
et

2
¯

“ Ce´t
2
`

1

2
. [\
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8.6. Exercises

Exercise 8.1. Let n P N, x0, c0, c1, . . . , cn P R and

P pxq “ c0 `
c1
1!
px´ x0q `

c2
2!
px´ x0q

2 ` ¨ ¨ ¨ `
cn
n!
px´ x0q

n “

n
ÿ

k“0

ck
k!
px´ x0q

k.

(a) Prove that for any k “ 0, 1, 2, . . . , n we have

P pkqpx0q “ ck.

(b) Prove that if Qpxq “ q0 ` q1x` ¨ ¨ ¨ qnx
n is a polynomial of degree ď n such that

Qpkqpx0q “ ck, @k “ 0, 1, 2, . . . , n,

then Qpxq “ P pxq, @x P R.
Hint. Consider the difference Dpxq “ P pxq ´Qpxq, observe that

Dpkqpx0q “ 0, @k “ 0, 1, 2, . . . , n,

and conclude from the above that Dpxq “ 0, @x P R. To reach this conclusion write

Dpxq “ d0 ` d1x` ¨ ¨ ¨ ` dnx
n,

and observe first that Dpnqpxq “ n!dn, @x P R. [\

Exercise 8.2. Suppose that a, b P R, b ě 0 and consider f : RÑ R

fpxq “
1` ax2

1` bx2
.

Find the degree 4 Taylor polynomial of f at x0 “ 0. For which values of a, b does this
polynomial coincide with the degree 4 Taylor polynomial of cosx at x0 “ 0?

Hint. To simplify the computations of the derivatives of f at 0 use the following trick. Let Npxq “ 1` ax2 be the
numerator of the fraction, Dpxq “ 1` bx2 be the denominator. Then

Np0q “ Dp0q “ 1, N 1p0q “ D1p0q “ 0, N2p0q “ 2a, D2p0q “ 2b, (8.6.1)

Npkqpxq “ Dpkqpxq “ 0, @k ě 3, x P R. (8.6.2)

We have

Npxq “ Dpxqfpxq, N 1pxq “ D1pxqfpxq `Dpxqf 1pxq,

N2pxq “ D2pxqfpxq ` 2D1pxqf 1pxq `Dpxqf2pxq,

Npnqpxq
p7.6.1q
“

n
ÿ

k“0

´n

k

¯

Dpkqpxqf pn´kqpxq
p8.6.2q
“

2
ÿ

k“0

´n

k

¯

Dpkqpxqf pn´kqpxq

“ Dpxqf pnqpxq ` nD1pxqf pn´1qpxq `
npn´ 1q

2
D2pxqf pn´2qpxq, @n ą 2.

We deduce

fp0q “ Dp0qfp0q “ Np0q “ 1, f 1p0q “ Dp0qf 1p0q “ N 1p0q ´D1p0qfp0q
p8.6.1q
“ 0,

f2p0q “ Dp0qf2p0q “ N2p0q ´ 2D1p0qf 1p0q ´D2p0qfp0q
p8.6.1q
“ N2p0q ´D2p0qfp0q “ 2a´ 2b,

f pnqp0q “ Dp0qf pnqp0q “ Npnqp0q ´ nD1p0qf pn´1qp0q ´
npn´ 1q

2
D2p0qf pn´2qp0q

p8.6.1q
“ ´bnpn´ 1qf pn´2qp0q, n ą 2. [\
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Exercise 8.3. Use the inequality 2 ă e ă 3 and the strategy outlined in Remark 8.1.6 to
show that

ˇ

ˇ

ˇ
eh´

´

1`
h

1!
` ¨ ¨ ¨ `

hn

n!

¯ˇ

ˇ

ˇ
ď

3|h|n`1

pn` 1q!
, @|h| ď 1. [\

Exercise 8.4. Using Example 8.1.7 as a guide, compute cos 1 up to two decimals. [\

Exercise 8.5. Approximate 3
?
8.1 using the degree 3 Taylor polynomial of fpxq “ 3

?
x at

x0 “ 8. Estimate the error of this approximation using the Lagrange estimate (8.1.3). [\

Exercise 8.6. Find the Taylor series of the function

fpxq “
1

1´ x
, x ‰ 1

at x0 “ 0. For which values of x is this series convergent? [\

Exercise 8.7. Prove that the Taylor series of lnp1´ xq at x0 “ 0 is

´

8
ÿ

n“1

xn

n
.

and then show that this series converges to lnp1´ xq for any x P p´1, 12q.

Hint. Use Corollary 8.1.5.
2 [\

Exercise 8.8. (a) Prove that the Taylor series of sinx at x0 “ 0,

ÿ

kě0

p´1qk
x2k`1

p2k ` 1q!
,

is absolutely convergent for any x P R and its sum is sinx. Show that the convergence is
uniform on any interval r´R,Rs.

(b) Prove that the Taylor series of cosx at x0 “ 0,

ÿ

kě0

p´1qk
x2k

p2kq!

is absolutely convergent and for any x P R and its sum is cosx. Show that the convergence
is uniform on any interval r´R,Rs.

Hint. Use Corollary 8.1.5. [\

Exercise 8.9. Find

lim
xÑ8

x

„

1

e
´

ˆ

x

x` 1

˙xȷ

. [\

2The Taylor series of lnp1´xq at x0 “ 0 converges to lnp1´xq for all |x| ă 1. However, the Lagrange remainder

formula is not strong enough to prove this. We need a different remainder formula (9.6.18) to prove this stronger
statement. For details see Example 9.6.10.
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Exercise 8.10. Using the fact that the function ln : p0,8q Ñ R is concave prove Young’s
inequality : if p, q P p1,8q are such that

1

p
`

1

q
“ 1,

then

xy ď
xp

p
`
yq

q
, @x, y ą 0. (8.6.3)

[\

Exercise 8.11. Use the AM-GM inequality to prove that if x P R, n,m P N and
´x ă n ă m, then

´

1`
x

n

¯n
ď

´

1`
x

m

¯m
. [\

Exercise 8.12. Let x1, . . . , xn ą 0.

(i) Prove that

x21 ` ¨ ¨ ¨ ` x
2
n `

1

px1 ¨ ¨ ¨xnq2
ě n` 1.

(ii) Prove that
ÿ

1ďiăjďn

xixj `
n
ÿ

k“1

1

xn´1k

ě
npn` 1q

2
.

[\

Exercise 8.13. Suppose that a ă b are two real numbers and f : pa, bq Ñ R is a convex
function.

(a) Prove that for any x1 ă x2 ă x3 P pa, bq we have

fpx2q ´ fpx1q

x2 ´ x1
ď
fpx3q ´ fpx1q

x3 ´ x1
ď
fpx3q ´ fpx2q

x3 ´ x2
.

Hint. Give a geometric interpretation to this statement and then think geometrically.

(b) Suppose that x0 P pa, bq. Prove that the one-sided limits

m˘px0q “ lim
hÑ0˘

fpx0 ` hq ´ fpx0q

h

exist, are finite and m´px0q ď m`px0q.

(c) Suppose x0 P pa, bq and m˘px0q are as above. Fix m P rm´px0q,m`px0qs. Show that

fpxq ě fpx0q `mpx´ x0q, @x P pa, bq.

Can you give a geometric interpretation of this fact?

(d) Prove that f : R Ñ R, fpxq “ |x| is convex. For x0 :“ 0, compute the numbers
m˘px0q defined as in (b). [\
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Exercise 8.14. 3 Suppose that f : r0, 1s Ñ r0,8q is a C2-function satisfying the following
additional properties.

(i) f 1pxq ě 0, @x P r0, 1s.

(ii) f2pxq ą 0, @x P p0, 1q.

(iii) fp1q “ 1, f 1p1q ą 1 and fp0q ą 0.

Prove that the following hold.

(a) fpxq P r0, 1s, @x P r0, 1s.

(b) If x0 P p0, 1q is a fixed point of f , i.e., fpx0q “ x0, then f
1px0q ă 1.

Hint. Argue by contradiction. Use the Mean Value Theorem with the quotient

fp1q ´ fpx0q

1´ x0
.

(c) The function f has a unique fixed point x˚ located in the open interval p0, 1q.
Hint. Argue by contradiction. Suppose that f has two fixed points x˚ ă y˚. in p0, 1q. Use the Mean Value

Theorem for the quotient
fpy˚q ´ fpx˚q

y˚ ´ x˚

and reach a contradiction using (b).

(d) Fix s P p0, 1q and consider the sequence pxnq defined by the recurrence

x0 “ s, xn`1 “ fpxnq, @n ě 0.

Prove that
lim
n
xn “ x˚,

where x˚ is the unique fixed point of f located in the interval p0, 1q.

Hint. The sequence is bounded since it lies in r0, 1s. Show that the sequence is monotone and the limit lies in

p0, 1q. [\

Exercise 8.15. Prove that for any n P N and any numbers x1, x2, . . . , xn ě 0 we have
ˆ

x1 ` ¨ ¨ ¨ ` xn
n

˙2

ď
x21 ` ¨ ¨ ¨ ` x

2
n

n
.

Hint. Use the Cauchy-Schwarz inequality. [\

Exercise 8.16. Consider the Gauss bell, i.e., the function

γ : RÑ R, γpxq “ e´
x2

2 .

(a) Prove that for any n P N there exists a polynomial Hnpxq of degree n such that

γpnqpxq “ p´1qnHnpxqγpxq.

(The polynomial Hnpxq is called the degree n Hermite polynomial.)

3The results in this exercise are particularly useful in probability theory in the investigation of the so called
branching processes.
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(b) Prove that

Hn`1pxq “ xHnpxq ´H
1
npxq, @n P N.

(c) Compute H1pxq, H2pxq, H3pxq.

(d) Find the intervals of convexity and concavity of γpxq.

(e) Sketch the graph of the function γpxq. [\

Exercise 8.17. Consider the hyperbolic functions

cosh, sinh : RÑ R, coshx “
ex ` e´x

2
, sinhpxq “

ex ´ e´x

2
, @x P R.

(cosh=hyperbolic cosine, sinh= hyperbolic sine)

(a) Prove that

cosh1 x “ sinhx, sinh1 x “ coshx,

cosh2 x´ sinh2 x “ 1, cosh2 x` sinh2 x “ coshp2xq, @x P R.
(b) Find the Taylor series of coshx and sinhx at x0 “ 0.

(c) Prove that the function sinh is bijective and then find its inverse.

(d) Sketch the graphs of cosh and sinh. [\

Exercise 8.18. Compute
ż

xe2xdx,

ż

xe2x cosxdx,

ż

xe2x sinxdx,

ż

sin3 x cos2 xdx. [\

Exercise 8.19. Compute
ż

1

p4` x2q5
dx

by reducing it to the computation in Example 8.5.8(d). [\

Exercise 8.20. Compute
ż

pcosxq11dx. [\

Exercise 8.21. Using the strategy outlined in Example 8.5.12 find the function uptq, vptq, fptq
satisfying the differential equations

u1ptq ` 2uptq “ t, v1ptq ´ vptq “ cos t,

f 1ptq ´ ptan tqfptq “ t, ´
π

2
ă t ă

π

2
. [\

Exercise 8.22. Suppose that we are given a huge container containing 200 liters of pure
water. In this container, starting at t “ 0, we continuously add 10 liters of salted water
per minute containing 1.5 grams of salt per liter and, at the same time, the container is
leaking salt-water mixture at a constant rate of 10 liters per minute. Denote by mptq the
amount of salt (in grams) contained in the mixture after t minutes from the start.
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(a) Prove that mptq satisfies the differential equation

dm

dt
“ 15´

mptq

20
.

(b) Recalling that initially there was no salt in the water, i.e., mp0q “ 0, find mptq for any
t ą 0. [\

8.7. Exercises for extra credit

Exercise* 8.1. Suppose that f : p0,8q Ñ R is a differentiable function such that

lim
xÑ8

`

fpxq ` f 1pxq
˘

“ 0.

Show that

lim
xÑ8

fpxq “ lim
xÑ8

f 1pxq “ 0. [\

Exercise* 8.2. (a) Prove that for any n P N and any real numbers a, r ą 0 we have

a
n

n`1 ď
1

r

ˆ

rn`1

n` 1
`

na

n` 1

˙

.

Hint: Use Young’s inequality (8.6.3).

(b) Prove that if
ř

ně0 an is a convergent series of positive numbers, then so is
ř

ně0 a
n

n`1
n .[\

Exercise* 8.3. Suppose that f : R Ñ R is a C3-function. Prove that there exists a P R
such that

fpaq ¨ f 1paq ¨ f2paq ¨ f3paq ě 0. [\

Exercise* 8.4. Suppose that f : R Ñ R is a convex C1 function. For c P R we denote
by Ecpxq the function

Ec : RÑ R, Ecpxq “
x2

2
´ cx` fpxq.

(a) Prove that Ec has a unique critical point.

(b) Prove that the function g : RÑ R, gpxq “ x` f 1pxq is bijective. [\

Exercise* 8.5. Suppose that f : ra, bs Ñ R is a continuous function satisfying

f

ˆ

x` y

2

˙

ď
fpxq ` fpyq

2
, @x, y P ra, bs.

Prove that f is convex. [\

Exercise* 8.6. Suppose that f : pa, bq Ñ R is a convex function. Prove that f is
continuous.

Hint. You need to use the facts proven in Exercise 8.13. [\
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Exercise* 8.7. Show that for any positive real numbers a, b, c we have

a` b` c ď
a3

bc
`
b3

ac
`
c3

ab
. [\

Exercise* 8.8. Fix a natural number n and positive real numbers x1, . . . , xn. For any
α ą 0 we set

Mαpx1, . . . , xnq :“

ˆ

xα1 ` ¨ ¨ ¨ ` x
α
n

n

˙
1
α

.

(a) Show that
Mαpx1, . . . , xnq ďMβpx1, . . . , xnq, @0 ă α ă β.

Hint. Use Hölder’s inequality (8.3.14).

(b) Compute
lim
αÑ0`

Mαpx1, . . . , xnq. [\

Exercise* 8.9. (a) Prove that for any n P N the equation xn`x “ 1 has a unique positive
solution xn.

(b) Prove that
lim
nÑ8

xn “ 1. [\



Chapter 9

Integral calculus

9.1. The integral as area: a first look

The Riemann integral is a very complicated infinite summation process that is often
required when we want to compute areas or volumes of more irregular regions.

By way of motivation, let us consider a famous problem first solved by Archimedes by
other means. Consider the arc of parabola in Figure 9.1 given by the equation

y “ x2, 0 ď x ď 1.

We would like to compute the area of the region R between the x-axis, the parabola and
the vertical line x “ 1.

Let us observe that we do not have a precise definition of the concept of area. We only
have an intuitive belief that

(i) the area of a rectangle is width ˆ length, and

(ii) the area of a union of rectangles that intersect only along edges should be the
sum of the area of the rectangles. We will refer to such regions as simple type
regions.

We proceed by approximating R by a region of simple type. We subdivide the interval
r0, 1s into N equal parts, where N is a very large natural number. We obtain the points

x0 “ 0, x1 “
1

N
, x2 “

2

N
, . . . , xN “

N

N
.

For each k “ 1, 2, . . . , N we denote by Rk the very thin slice of R of width 1
N delimited

by the vertical lines x “ xk´1 and x “ xk. We have thus decomposed R into N thin slices

243



244 9. Integral calculus

R1, . . . , RN and

areapRq “
n
ÿ

k“1

areapRkq “ areapR1q ` ¨ ¨ ¨ ` areapRN q.

Now observe that the slice Rk contains a thin rectangle Rk of height fpxk´1q and is
contained in a thin rectangle Rk of height fpxkq; see Figure 9.1.

xx

f(x )

f(x   )

k

k

k

k

k-1

k-1

R

R

_
y=x2

10

_

Figure 9.1. Computing the area underneath an arc of parabola.

Thus

fpxk´1q ˆ pxk ´ xk´1q “ areapRkq ď areapRkq ď areapRkq “ fpxkq ˆ pxk ´ xk´1q.

Since fpxkq “
k2

N2 and xk ´ xk´1 “
1
N we deduce

pk ´ 1q2

N3
ď areapRkq ď

k2

N3
,

and thus
N
ÿ

k“1

pk ´ 1q2

N3

loooooomoooooon

“:LN

ď

N
ÿ

k“1

areapRkq

loooooomoooooon

“areapRq

ď

N
ÿ

k“1

k2

N3

loomoon

“:UN

. (9.1.1)

Thus
LN ď areapRq ď UN . (9.1.2)

Observe that

LN “
02

N3
`

12

N3
` ¨ ¨ ¨ `

pN ´ 1q2

N3
“

12 ` 22 ` ¨ ¨ ¨ ` pN ´ 1q2

N3
,
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UN “
12

N3
` ¨ ¨ ¨ `

pN ´ 1q2

N3
`
N2

N3
“

12 ` 22 ` ¨ ¨ ¨ `N2

N3
,

so that

UN ´ LN “
N2

N3
“

1

N
.

For N very large, the difference UN ´ LN is very small and thus the sequence pLN q
converges if and only if the sequence pUN q converges. Moreover, the inequality (9.1.2)
shows that the common limit of these sequences, if it exists, must be equal to the area of
R. To compute the limit of UN we use the following famous identity whose proof is left
to you as an exercise.

12 ` 22 ` ¨ ¨ ¨ `N2 “
NpN ` 1qp2N ` 1q

6
. (9.1.3)

We deduce that

UN “
NpN ` 1qp2N ` 1q

6N3
“

1

6

N

N

N ` 1

N

2N ` 1

N
Ñ

2

6
as N Ñ8.

Thus

areapRq “
1

3
.

This example describes the bare bones of the process called integration. As this simple
example suggests, the integration it involves a sophisticated infinite summation and a bit
of good fortune, in the guise of (9.1.3), that allowed us to actually compute the result of
this infinite summation.

We will spend the rest of this chapter describing rigorously and in great generality
this process and we will show that in a large number of cases we can cleverly create our
good fortune and succeed in carrying out explicit computations of the limits of infinite
summations involved.

9.2. The Riemann integral

The process sketched in the previous section can be carried out in greater generality. We
present the quite involved details in this section.

Definition 9.2.1 (Partitions). Fix an interval ra, bs, a ă b.

(a) A partition P of ra, bs is a finite collection of points x0, x1, . . . , xn of the interval such
that

a “ x0 ă x1 ă ¨ ¨ ¨ ă xn “ b.

The natural number n is called the order of the partition, while the points x0, . . . , xn are
called the nodes of the partition. The intervals

rx0, x1s, rx1, x2s, . . . , rxn´1, xns
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are called the intervals of the partition. The interval rxk´1, xks is called the k-th interval
of the partition and it is denoted by IkpP q. Its length is denoted by ∆kpP q or ∆xk. The
largest of these lengths is called the mesh size of the partition and it is denoted by }P },

}P } :“ max
1ďkďn

pxk ´ xk´1q “ max
1ďkďn

∆kpP q .

We denote by Pra,bs the collection of all partitions of the interval ra, bs.

(b) A sample of a partition P of order n is a collection ξ consisting of n points ξ1, . . . , ξn
such that

ξk P IkpP q, @k “ 1, . . . , n.

The point ξk is called the sample point of the interval IkpP q. We denote by SpP q the
collection of all possible samples of the partition P .

(c) A sampled partition of the interval ra, bs is a pair pP , ξq, where P is a partition of ra, bs
and ξ P SpP q is a sample of P . [\

a b

xxxxxx

ξξξξξ

0

1

1 2

2 3

3 4

4

5

5

Figure 9.2. A sampled partition of order 5 of an interval ra, bs. Its longest interval is
rx1.x2s so its mesh size is px2 ´ x1q.

Example 9.2.2. Any compact interval ra, bs has a natural partition Un of order n cor-
responding to a subdivision of ra, bs into n subintervals of order n. More precisely, Un is
defined by the points

x0 “ a, x1 “ a`
1

n
pb´ aq, xk “ a`

k

n
pb´ aq, k “ 0, 1, . . . , n.

The partition Un is called the uniform partition of order n of ra, bs. Note that

}Un} “
b´ a

n
. [\

Definition 9.2.3. Let f : ra, bs Ñ R be a function defined on the closed and bounded
interval ra, bs. Given a partition P “ px0 ă ¨ ¨ ¨ ă xnq of ra, bs, and a sample ξ of P , we

define the Riemann1 sum of f associated to the sampled partition pP, ξq to be the number

Spf,P , ξq “
n
ÿ

k“1

fpξkq∆kpP q “
n
ÿ

k“1

fpξkq∆xk “
n
ÿ

k“1

fpξkqpxk ´ xk´1q. [\

As depicted in Figure 9.3, each term fpξkqpxk ´ xk´1q in a Riemann sum is equal
to the area of a “thin” rectangle of width ∆xk “ pxk ´ xk´1q, and height given by the

1Named after Bernhardt Riemann (1826-1866) German mathematician who made lasting and revolutionary
contributions to analysis, number theory, and differential geometry; see Wikipedia.

https://en.wikipedia.org/wiki/Bernhard_Riemann
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xx

f(   )ξ

ξ k

k

k
k-1

Figure 9.3. The term fpξkq∆xk is the area of a rectangle.

altitude of the point on the graph of f determined by the sample point ξk P rxk´1, xks.
The Riemann sum is therefore the area of the region formed by putting side by side each
of these thin rectangles. The hope is that the area of this rather jagged looking region
is an approximation for the area of the region under the graph of f . The next definition
makes this intuition precise.

Definition 9.2.4. Suppose that f : ra, bs Ñ R is a function defined on the closed and
bounded interval ra, bs. We say that f is Riemann integrable on ra, bs if there exists a real
number I with the following property: for any ε ą 0 there exists δ “ δpεq ą 0 such that,
for any partition P of ra, bs with mesh size }P } ă δ, and any sample ξ of P we have

ˇ

ˇ I ´ Spf,P , ξq
ˇ

ˇ ă ε.

Equivalently, as a quantified statement, the above reads

DI P R, @ε ą 0, Dδ “ δpεq ą 0, @P P Pra,bs, @ξ P SpP q :

}P } ă δ ñ
ˇ

ˇ I ´ Spf,P , ξq
ˇ

ˇ ă ε.
(9.2.1)

We will denote by Rra, bs the collection of all Riemann integrable functions f : ra, bs Ñ R.
[\

Suppose that f : ra, bs Ñ R is Riemann integrable. For any n P N we fix a sample ξpnq

of Un, the uniform partition of order n of ra, bs. If I is any real number satisfying (9.2.1),
then from the equality

lim
nÑ8

}Un} “ 0
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we deduce that
I “ lim

nÑ8
S
`

f,Un, ξ
pnq

˘

.

Since a convergent sequence has a unique limit, we deduce that there exists precisely one
real number I satisfying (9.2.1). This real number is called the Riemann integral of f on
ra, bs and it is denoted by

ż b

a
fpxqdx.

It bears repeating the definition of
şb
a fpxqdx.

The Riemann integral of f over ra, bs, when it exists, is the unique real number
şb
a fpxqdx

with the following property: for any ε ą 0 there exists “ δ “ δpεq ą 0 such that for any
partition P of ra, bs with mesh }P } ă δ, and for any sample ξ of P , the Riemann sum

Spf,P , ξq is within ε of
şb
a fpxqdx, i.e.,

ˇ

ˇ

ˇ

ˇ

ż b

a
fpxqdx´ Spf,P , ξq

ˇ

ˇ

ˇ

ˇ

ă ε.

We can loosely rephrase this as follows
ż b

a
fpxqdx “ lim

}P }Ñ0,
ξPSpP q

Spf,P , ξq. (9.2.2)

Example 9.2.5. Consider the constant function f : ra, bs Ñ R, fpxq “ C, for all x P ra, bs
where C is a fixed real number. Note that for any sampled partition of order n pP , ξq of
ra, bs we have

Spf,P , ξq “ fpξ1qpx1 ´ x0q ` fpξ2qpx2 ´ x1q ` ¨ ¨ ¨ ` fpξnqpxn ´ xn´1q

“ Cpx1 ´ x0q ` Cpx2 ´ x1q ` ¨ ¨ ¨ ` Cpxn ´ xn´1q

“ C
´

px1 ´ x0q ` px2 ´ x1q ` ¨ ¨ ¨ ` pxn ´ xn´1q
¯

“ Cpxn ´ x0q “ Cpb´ aq.

This shows that the constant function is integrable and
ż b

a
Cdx “ Cpb´ aq. [\

It is natural to ask if there exist Riemann integrable functions more complicated than
the constant functions. The next section will address precisely this issue. We will see that
indeed, the world of integrable functions is very large. Until then, let us observe that not
any function is Riemann integrable.

Proposition 9.2.6. Suppose that f : ra, bs Ñ R is a Riemann integrable function. Then
f is bounded, i.e.,

´8 ă inf
xPra,bs

fpxq ă sup
xPra,bs

fpxq ă 8.
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Proof. We argue by contradiction. Suppose that f : ra, bs Ñ R is Riemann integrable
and unbounded above, i.e.,

sup
xPra,bs

fpxq “ 8.

For any n P N consider the uniform partition Un of ra, bs. Then there exists k “ kpnq such
that f is unbounded the interval Ik “ Ikpnq of this partition. For j ‰ k fix an arbitrary
sample point ξj P Ij . Since f is not bounded above on Ik, there exists ξk P Ik such that

fpξkq ą
n

∆xk
´

ÿ

j‰k

fpξjq
∆xj
∆xk

ðñfpξkq∆xk `
ÿ

j‰k

fpξjq∆xj ą n.

We obtain a sample ξpnq of Un and for this sample we have

S
`

f,Un, ξ
pnq

˘

“ fpxkq∆xk `
ÿ

j‰k

fpξjq∆xj ą n, @n P N.

The Riemann integrability of f implies that the sequence of Riemann sums S
`

f,Un, ξ
pnq

˘

is convergent. This contradicts the last inequality which states that this sequence is
unbounded. [\

The above result shows that the function

f : r0, 1s Ñ R, fpxq “

#

0, x “ 0,
1?
x
, x P p0, 1s,

is not Riemann integrable because it is not bounded.

9.3. Darboux sums and Riemann integrability

To be able to construct examples of integrable functions we need a criterion for recognizing
such functions, more flexible than the definition. Fortunately there is one such criterion
due to Gaston Darboux. To formulate it we need to introduce several new concepts.

Definition 9.3.1. Suppose that f : ra, bs Ñ R is a bounded function defined on the closed
and bounded interval ra, bs. For any partition P of ra, bs of order n we set

S˚pf,P q :“
n
ÿ

k“1

sup
xPIkpP q

fpxq∆xk,

S˚pf,P q :“
n
ÿ

k“1

inf
xPIkpP q

fpxq∆xk,

ωpf,P q :“
ÿ

k“1

oscpf, Ikq∆xk,

where

‚ Ik “ IkpP q is the k-th interval of the partition P ,

‚ ∆xk is the length of Ik,
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‚ oscpf, Ikq denotes the oscillation of f on Ik.

The quantity S˚pf,P q is called the upper Darboux2 sum of the function f determined
by the partition P , while S˚pf,P q is called the lower Darboux sum of the function f
determined by the partition P . We will refer to ωpf,P q as the mean oscillation of f along
P . [\

Proposition 9.3.2. If f : ra, bs Ñ R is a bounded function, then for any partition P of
ra, bs and any sample ξ of P we have

S˚pf,P q ď Spf,P , ξq ď S
˚pf,P q, (9.3.1a)

ωpf,P q “ S˚pf,P q ´ S˚pf,P q. (9.3.1b)

Proof. Suppose that P is a partition of order n of ra, bs and ξ is a sample of P . For
k “ 1, . . . , n we denote by Ik the k-the interval of P and we set

Mk :“ sup
xPIk

fpxq, mk :“ inf
xPIk

fpxq.

Then Mk ´mk “ oscpf, Ikq and

S˚pf,P q ´ S˚pf,P q “
`

M1∆x1 ` ¨ ¨ ¨ `Mn∆xn
˘

´
`

m1∆x1 ` ¨ ¨ ¨ `mn∆xn
˘

“ pM1 ´m1q∆x1 ` ¨ ¨ ¨ ` pMn ´mnq∆xn

“ oscpf, I1q∆x1 ` ¨ ¨ ¨ ` oscpf, Inq∆xn “ ωpf,P q.

This proves (9.3.1b). If ξ is a sample of P , then

mk∆xk ď fpξkq∆xk ďMk∆xk, @k “ 1, . . . , n,

so that
n
ÿ

k“1

mk∆xk ď
n
ÿ

k“1

fpξkq∆xk ď
n
ÿ

k“1

Mk∆xk.

This proves (9.3.1a). [\

Corollary 9.3.3. If f : ra, bs Ñ R is a bounded function then for any partition P of ra, bs
and for any samples ξ, ξ1 of P we have

ˇ

ˇSpf,P , ξq ´ Spf,P , ξ1q
ˇ

ˇ ď ωpf,P q.

Proof. According to (9.3.1a) the Riemann sums Spf,P , ξq, Spf,P , ξ1q are both contained
in the interval rS˚pf,P q,S

˚pf,P qs so the distance between them must be smaller than
the length of this interval which is equal to ωpf,P q according to (9.3.1b). [\

2Named after Gaston Darboux (1842-1917) French mathematician who made several important contributions
to geometry and mathematical analysis; see Wikipedia.

https://en.wikipedia.org/wiki/Jean_Gaston_Darboux
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Proposition 9.3.4. Suppose that f : ra, bs Ñ R is a bounded function and P is a partition
of ra, bs. If P 1 is a partition of ra, bs obtained from P by adding one extra node x1 in the
interior of some interval of P , then

S˚pf,P q ď S˚pf,P
1q ď S˚pf,P 1q ď S˚pf,P q.

Thus, by adding a node the upper Darboux sums decrease, while the lower Darboux sums
increase.

Proof. The inequality (9.3.1a) shows that S˚pf,P
1q ď S˚pf,P 1q. Suppose that the extra

node x1 is contained in pxk´1, xkq. We set

Mk :“ sup
xPIk

fpxq, mk :“ inf
xPIk

fpxq.

Then

S˚pf,P
1q “

ÿ

jăk

mj∆xj ` inf
xPrxk´1,x1s

fpxq
looooooomooooooon

ěmk

px1 ´ xk´1q ` inf
rx1,xks

fpxq
loooomoooon

ěmk

pxk ´ x
1q `

ÿ

ℓąk

mℓ∆xℓ

ě
ÿ

jăk

mj∆xj `mkpx
1 ´ xk´1q `mkpxk ´ x

1q
loooooooooooooooooomoooooooooooooooooon

“mkpxk´xk´1q

`
ÿ

ℓąk

mℓ∆xℓ

“
ÿ

jăk

mj∆xj `mk∆xk `
ÿ

ℓąk

mℓ∆xℓ “
n
ÿ

i“1

mi∆xi “ S˚pf,P q.

The inequality

S˚pf,P 1q ď S˚pf,P q

is proved in a similar fashion.

[\

Definition 9.3.5. Given two partitions P ,P 1 of ra, bs, we say that P 1 is a refinement of
P , and we write this P 1 ą P , if P 1 is obtained from P by adding a few more nodes. [\

Since the addition of nodes increases lower Darboux sums and decreases upper Dar-
boux sums we deduce the following result.

Proposition 9.3.6. Suppose that f : ra, bs Ñ R is a bounded function and P ,P 1 are
partitions of ra, bs. If P 1 ą P , then

S˚pf,P q ď S˚pf,P
1q ď S˚pf,P 1q ď S˚pf,P q. [\

Corollary 9.3.7. Suppose that f : ra, bs Ñ R is a bounded function and P ,P 1 are parti-
tions of ra, bs. If P 1 ą P ,

ωpf,P 1q ď ωpf,P q. (9.3.2)
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Proof. From (9.3.3) we deduce

S˚pf,P q ď S˚pf,P
1q ď S˚pf,P 1q ď S˚pf,P q,

so that,

ωpf,P 1q “ S˚pf,P 1q ´ S˚pf,P
1q ď S˚pf,P q ´ S˚pf,P q “ ωpf,P q.

[\

Given two partitions P ,P 1 of ra, bs we denote by P _ P 1 the partition whose set of
nodes is the union of the sets of nodes of the partitions P and P 1. Clearly P _ P 1 is a
refinement of both P and P 1. From Proposition 9.3.6 we deduce the following important
consequence.

Corollary 9.3.8. Suppose that f : ra, bs Ñ R is a bounded function and P 0,P 1 are
partitions of ra, bs. Then

S˚pf,P 1q ď S˚pf,P 0 _ P 1q ď S
˚pf,P 0 _ P 1q ď S

˚pf,P 0q. (9.3.3)

[\

The above corollary shows that if f : ra, bs Ñ R is a bounded function, then the set
␣

S˚pf,P q; P P Pra,bs
(

is bounded below. Indeed, if we denote by U1 the uniform partition of order 1 of ra, bs,
then (9.3.3) shows that

S˚pf,U1q ď S
˚pf,P q, @P P Pra,bs.

We set

S˚pfq :“ inf
␣

S˚pf,P q; P P Pra,bs
(

.

Similarly, the set
␣

S˚pf,P q; P P Pra,bs
(

is bounded above and we define

S˚pfq :“ sup
␣

S˚pf,P q; P P Pra,bs
(

.

Proposition 9.3.9. If f : ra, bs Ñ R is a bounded function, then

S˚pfq ď S
˚pfq. (9.3.4)

Proof. From (9.3.3) we deduce that @P 0,P 1 P Pra,bs we have

S˚pf,P 1q ď S
˚pf,P 0q ñ S˚pf,P 1q ď inf

P 0

S˚pf,P 0q “ S
˚pfq

ñ S˚pfq “ sup
P 1

S˚pf,P 1q ď S
˚pfq.

[\
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Definition 9.3.10. Let f : ra, bs Ñ R be a bounded function.

(a) The numbers S˚pfq and respectively S˚pfq are called the lower and respectively upper
Darboux integrals of f .

(b) The function f is called Darboux integrable if S˚pfq “ S
˚pfq. [\

Theorem 9.3.11 (Riemann-Darboux). Suppose that f : ra, bs Ñ R is a bounded function.
Then the following statements are equivalent.

(i) The function f is Riemann integrable.

(ii) The function f is Darboux integrable, i.e., S˚pfq “ S
˚pfq.

(iii) infP ωpf,P q “ 0, i.e.,

@ε ą 0, DP ε P Pra,bs : ωpf,P εq ă ε. (ω0)

(iv) lim}P }Ñ0 ωpf,P q “ 0, i.e.,

@ε ą 0 Dδ “ δpεq ą 0 @P P Pra,bs : }P } ă δ ñ ωpf,P q ă ε. (ω)

Proof. We will prove these equivalences using the following logical successions

piiiq ðñ piiq, pivq ñ piiiq, pivq ðñpiq, piiiq ñ pivq.

(iii) ñ (ii). For any ε ą 0 we can find a partition P ε such that ωpf,P εq ă ε. Now observe
that

S˚pf,P εq ď S˚pfq ď S
˚pfq ď S˚pf,P εq,

and

S˚pf,P εq ´ S˚pf,P εq “ ωpf,P εq ă ε.

Hence

0 ď S˚pfq ´ S˚pfq ď S
˚pf,P εq ´ S˚pf,P εq ă ε, @ε ą 0,

so that

S˚pfq “ S
˚pfq.

(ii) ñ (iii). We know that S˚pfq “ S
˚pfq. Denote by Spfq this common value. Since

Spfq “ S˚pfq “ sup
P
S˚pf,P q,

we deduce that for any ε ą 0 there exists a partition P´ε such that

Spfq ´
ε

2
ă S˚pf,P

´
ε q ď Spfq.

Since

Spfq “ S˚pfq “ inf
P
S˚pf,P q,

we deduce that for any ε ą 0 there exists a partition P`ε such that

Spfq ď S˚pf,P`ε q ă Spfq `
ε

2
.
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Hence

Spfq ´
ε

2
ă S˚pf,P

´
ε q ď S

˚pf,P`ε q ă Spfq `
ε

2
.

Now set P ε :“ P
´
ε _ P

`
ε . We deduce from (9.3.3) that

Spfq ´
ε

2
ă S˚pf,P

´
ε q ďS˚pf,P εq ď S

˚pf,P εqď S
˚pf,P`ε q ă Spfq `

ε

2
.

This proves that

ωpf,P εq “ S
˚pf,P εq ´ S˚pf,P εq ă ε.

(iv) ñ (iii). This is obvious.

(iv) ñ (i). From the above we deduce that (iv) ñ (ii) ^ (iii) so S˚pfq “ S
˚pfq. We set

Spfq :“ S˚pfq “ S
˚pfq.

We will show that f is integrable and its Riemann integral is Spfq.

Fix ε ą 0. According to (ω), there exists δ “ δpεq ą 0 such that for any partition P
of ra, bs satisfying }P } ă δ we have

ωpf,P q ă ε.

Given a partition P such that }P } ă δ and ξ a sample of P we have

S˚pf,P q ď Spfq ď S
˚pf,P q,

S˚pf,P q ď Spf,P , ξq ď S
˚pf,P q.

Thus both numbers Spfq and Spf,P , ξq lie in the interval rS˚pf,P q,S
˚pf,P qs of length

ωpf,P q ă ε. Hence
ˇ

ˇSpf,P , ξq ´ Spfq
ˇ

ˇ ă ε, @}P } ă δpεq, @ξ P SpP q.

This proves that f is Riemann integrable.

(i) ñ (iv). We have to prove that if f is Riemann integrable, then f satisfies (ω). We
first need an auxiliary result.

Lemma 9.3.12. Suppose that f : ra, bs Ñ R is a bounded function. Then, for any
partition P of ra, bs we have

S˚pf,P q “ inf
ξPSpP q

Spf,P , ξq,

S˚pf,P q “ sup
ξPSpP q

Spf,P , ξq.

In other words, for any ε ą 0, and any partition P of ra, bs, there exist samples ξ1 and ξ2

of P such that

S˚pf, P q ď Spf,P , ξ
1q ă S˚pf, P q ` ε,

S˚pf,P q ´ ε ă Spf,P , ξ2q ď S˚pf,P q.
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In particular

ωpf,P q “ S˚pf,P q ´ S˚pf,P q “ sup
ξPSpP q

Spf,P , ξq ´ inf
ξPSpP q

Spf,P , ξq. (9.3.5)

Proof. We prove only the statement involving lower sums. The proof of the statement involving upper sums is
similar. Denote by n the order of P and by Ik the k-th interval of P and, as usual, we set

mk “ inf
xPIk

fpxq.

In particular, there exists ξ1
k P Ik such that

mk ď fpξ1
kq ă mk `

ε

b´ a
.

The collection ξ1 “ pξ1
kq1ďkďn is a sample of P satisfying

mkpxk ´ xk´1q ď fpξ1
kqpxk ´ xk´1q ă mkpxk ´ xk´1q `

ε

b´ a
pxk ´ xk´1q.

Hence

S˚pf,P q “
n
ÿ

k“1

mkpxk ´ xk´1q ď

n
ÿ

k“1

fpξ1
kqpxk ´ xk´1q

loooooooooooooomoooooooooooooon

“Spf,P ,ξ1q

ă

n
ÿ

k“1

mkpxk ´ xk´1q

loooooooooooomoooooooooooon

“S˚pf,P q

`
ε

b´ a

n
ÿ

k“1

pxk ´ xk´1q

looooooooomooooooooon

“pb´aq

“ S˚pf, P q ` ε.

[\

We can now complete the proof of (ω). Since f is Riemann integrable, there exists
Sf P R such that, for any ε ą 0 we can find δ “ δpεq ą 0 with the property that for any
partition P with mesh size }P } ă δ and any sample ξ of P we have

ˇ

ˇSf ´ Spf,P , ξq
ˇ

ˇ ă
ε

4
. (9.3.6)

According to Lemma 9.3.12 we can find samples ξ1 and ξ2 such that

ˇ

ˇS˚pf,P q ´ Spf,P , ξ
1q
ˇ

ˇ,
ˇ

ˇS˚pf,P q ´ Spf,P , ξ2q
ˇ

ˇ ă
ε

4
. (9.3.7)

If }P } ă δ, then

ωpf,P q “
ˇ

ˇS˚pf,P q ´ S˚pf,P q
ˇ

ˇ

ď
ˇ

ˇS˚pf,P q ´ Spf,P , ξ
1q
ˇ

ˇ`
ˇ

ˇSpf,P , ξ1q ´ Spf,P , ξ2q
ˇ

ˇ`
ˇ

ˇSpf,P , ξ2q ´ S˚pf,P q
ˇ

ˇ

p9.3.7q
ă

ε

4
`
ˇ

ˇSpf,P , ξ1q ´ Spf,P , ξ2q
ˇ

ˇ`
ε

4

ď
ε

2
`
ˇ

ˇSpf,P , ξ1q ´ Sf
ˇ

ˇ`
ˇ

ˇSf ´ Spf,P , ξ
2q
ˇ

ˇ

p9.3.6q
ă

ε

2
`
ε

4
`
ε

4
“ ε.
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(iii) ñ (iv). We have to show that if f satisfies (ω0), then it also satisfies (ω). We need
the following auxiliary result.

Lemma 9.3.13. Suppose that P 0 “ ta “ z0 ă z1 ă ¨ ¨ ¨ ă zn0 “ bu is a partition of ra, bs
of order n0. Denote by λ0 the length of the shortest intervals of the partition P 0, i.e.,

λ0 :“ min
1ďjďn0

pzj ´ zj´1q.

For any partition P such that }P } ă λ0 we have

ωpf,P q ď pn0 ´ 1q}P } oscpf, ra, bsq ` ωpf,P 0q. (9.3.8)

Proof. Denote by I1, . . . , In0 the intervals of P 0. Denote by n the order of P , and by J1, . . . , Jn the intervals of
P . We will denote by ℓpJkq the length of Jk and by ℓpIjq the length of Ij

Since ℓpJkq ď ℓpIjq, @j “ 1, . . . , n0, k “ 1, . . . , n we deduce that the intervals Jk of P are of only the following

two types.

Type 1. The interval Jk is contained in an interval Ij of P 0.

Type 2. The interval Jk contains in the interior a node zjpkq of P 0.

We denote by J1 the collection of Type 1 intervals of P , and by J2 the collection of Type 2 intervals of P . We
remark that J2 could be empty. Moreover, for any node zj of P 0 there exists at most one Type 2 interval of P that

contains zj in the interior. Thus J2 consist of at most n0 ´ 1 intervals, i.e., its cardinality |J2| satisfies

|J2| ď n0 ´ 1.

We have

ωpf,P q “
n
ÿ

k“1

oscpf, JkqℓpJkq “
ÿ

jkPJ1

oscpf, JkqℓpJkq

looooooooooooomooooooooooooon

“:S1

`
ÿ

JkPJ2

oscpf, JkqℓpJkq

looooooooooooomooooooooooooon

“:S2

.

We now estimate S1 from above

S1 “

n0
ÿ

j“1

¨

˝

ÿ

JkĂIj

oscpf, JkqℓpJkq

˛

‚

(oscpf, Jkq ď oscpf, Ijq whenever Jk Ă Ij)

ď

n0
ÿ

j“1

¨

˝

ÿ

JkĂIj

oscpf, IjqℓpJkq

˛

‚“

n0
ÿ

j“1

oscpf, Ijq

¨

˝

ÿ

JkĂIj

ℓpJkq

˛

‚

loooooooomoooooooon

ďℓpIjq

ď

n0
ÿ

j“1

oscpf, IjqℓpIjq “ ωpf,P 0q.

Now observe that if Jk is a Type 2 interval of P , then ℓpJkq ď }P } and oscpf, Jkq ď oscpf, ra, bsq. Hence

S2 ď
ÿ

JkPJ2

oscpf, ra, bsq}P } ď |J2| oscpf, ra, bsq}P } ď pn0 ´ 1q oscpf, ra, bsq}P }.

Hence

ωpf,P q “ S1 ` S2 ď pn0 ´ 1q oscpf, ra, bsq}P } ` ωpf,P 0q.

[\
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Returning to our implication (ω0) ñ (ω), we observe that (ω0) implies that for any
ε ą 0 there exists a partition P ε such that

ωpf,P εq ă
ε

2
.

Denote by nε the order of P ε and by x0 ă x1 ă ¨ ¨ ¨ ă xnε the nodes of P ε. We set

λε :“ min
1ďjďnε

pxj ´ xj´1q.

Now choose δ “ δpεq ą 0 such that

δ ă λε and pnε ´ 1q oscpf, ra, bsqδ ă
ε

2
ðñ δ ă min

ˆ

λε,
ε

2pnε ´ 1q oscpf, ra, bsq

˙

.

If P is an arbitrary partition of ra, bs such that }P } ă δpεq, then Lemma 9.3.13 implies
that

ωpf,P q ď pnε ´ 1q oscpf, ra, bsqδ ` ωpf,P εq ă ε.

This proves that f satisfies (ω) and completes the proof of the Riemann-Darboux Theorem.
[\

We record here for later use a direct consequence of the above proof.

Corollary 9.3.14. Suppose that f : ra, bs Ñ R is a Riemann integrable function. Then
ż b

a
fpxqdx “ S˚pfq “ S

˚pfq. (9.3.9)

In particular,

S˚pf,P q ď

ż b

a
fpxqdx ď S˚pf,P 1q, @P ,P 1 P Pra,bs. (9.3.10)

[\

9.4. Examples of Riemann integrable functions

We are now going to collect the reward for the effort we spent proving the Riemann-
Darboux theorem.

Proposition 9.4.1. Any continuous function f : ra, bs Ñ R is Riemann integrable.

Proof. We will use the Riemann-Darboux theorem to prove the claim. Note first that
the Weierstrass Theorem 6.2.4 shows that f is bounded.

To prove that f satisfies (ω) we rely on the Uniform Continuity Theorem 6.3.5. Ac-
cording to this theorem, for any ε ą 0 there exists δ “ δpεq ą 0 such that for any interval
I Ă ra, bs of length ă δ we have

oscpf, Iq ă
ε

b´ a
.
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If P is any partition of ra, bs of order n and mesh size }P } ă δpεq, then for any interval
Ik of P we have

oscpf, Ikq ă
ε

b´ a
.

Hence

ωpf,P q “
n
ÿ

k“1

oscpf, Ikq∆xk ă
ε

b´ a

n
ÿ

k“1

∆xk
looomooon

“pb´aq

“ ε.

This shows that f satisfies (ω) and thus it is Riemann integrable. [\

Example 9.4.2. The function f : r0, 1s Ñ R, fpxq “ x2 is continuous and thus integrable.
Thus

ż 1

0
x2dx “ lim

NÑ8
S˚pf,UN q,

where UN denote the uniform partition of order N of r0, 1s. Since f is nondecreasing we
deduce that S˚pf,UN q coincides with the sum LN defined in (9.1.1). As explained in
Section 9.1 the sum LN converges to 1

3 as N Ñ8. [\

Proposition 9.4.3. Any nondecreasing function f : ra, bs Ñ R is Riemann integrable.

Proof. Clearly f is bounded since fpaq ď fpxq ď fpbq, @x P ra, bs. If P is any partition
of ra, bs of order n, then for an interval Ik “ rxk´1, xks of this partition we have

oscpf, Ikq “ fpxkq ´ fpxk´1q,

oscpf, Ikq∆xk ď oscpf, Ikq}P } “ }P }
`

fpxkq ´ fpxk´1q
˘

so that

ωpf,P q “
n
ÿ

k“1

oscpf, Ikq∆xk ď }P }
n
ÿ

k“1

`

fpxkq ´ fpxk´1q
˘

“ }P }
`

fpbq ´ fpaq
˘

.

This shows that f satisfies (ω) since

lim
}P }Ñ0

}P }
`

fpbq ´ fpaq
˘

“ 0.

[\

Proposition 9.4.4. Suppose that f : ra, bs Ñ R is a bounded function which is continuous
on pa, bq. Then f is Riemann integrable.

Proof. We will prove that f satisfies (ω0). Fix ε ą 0 and choose a positive real number
dpεq such that

oscpf, ra, bsqdpεq ă
ε

4
. (9.4.1)

Denote by Jε the compact interval Jε :“ ra` dpεq, b´ dpεqs; see Figure 9.4.
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The restriction of f to Jε is continuous. The Uniform Continuity Theorem 6.3.5 implies
that there exists δ “ δpεq ă dpεq with the property that for any interval I Ă Jε of length
ℓpIq ă δpεq we have

oscpf, Iq ă
ε

2pb´ aq
. (9.4.2)

Consider a partition P ε of order n of Jε satisfying }P } ă δpεq. We denote by Ik,
k “ 1 . . . , n, the intervals of P ε; see Figure 9.4. We set

I˚ :“ ra, a` dpεqs, I˚ “ rb´ dpεq, bs.

a a+ bb- d( )d( ) εε

I I II

I

1 2 n

*

*

Figure 9.4. Isolating the possible points of discontinuity of f .

The collection of intervals

I˚, I1, . . . , In, I
˚

defines a partition pP ε of ra, bs; see Figure 9.4. We have

ωpf, pP εq “ oscpf, I˚qℓpI˚q
looooooomooooooon

“:T˚

`

n
ÿ

k“1

oscpf, IkqℓpIkq

loooooooooomoooooooooon

“:T

` oscpf, I˚qℓpI˚q
loooooooomoooooooon

“:T˚

.

Note that

ℓpI˚q “ ℓpI˚q “ dpεq.

so that

T˚ “ oscpf, I˚qdpεq ď oscpf, ra, bsqdpεq
p9.4.1q
ă

ε

4
,

T ˚ “ oscpf, I˚qdpεq ď oscpf, ra, bsqdpεq
p9.4.1q
ă

ε

4
.

Moreover,

T “
n
ÿ

k“1

oscpf, IkqℓpIkq
p9.4.2q
ă

ε

2pb´ aq

n
ÿ

k“1

ℓpIkq “
ε

2pb´ aq
pb´ aq “

ε

2
.

Hence,

ωpf, pP εq “ T˚ ` T ` T
˚ ă

ε

4
`
ε

2
`
ε

4
“ ε.

This proves that f satisfies (ω0) and thus it is Riemann integrable. [\
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Figure 9.5. A wildly oscillating, yet Riemann integrable function.

Remark 9.4.5. Proposition 9.4.4 has some surprising nontrivial consequences. For ex-
ample, it shows that the wildly oscillating function (see Figure 9.5)

f : r0, 1s Ñ R, fpxq “

#

sin
´

1
x

¯

, x P p0, 1s,

0, x “ 0,

is Riemann integrable. [\

Proposition 9.4.6. Suppose that f : ra, bs Ñ R is a bounded function and c P pa, bq. The
following statements are equivalent.

(i) The function f is Riemann integrable on ra, bs.

(ii) The restrictions of f |ra,cs and f |rc,bs of f to ra, cs and rc, bs are Riemann integrable
functions.

Moreover, if f satisfies either one of the two equivalent conditions above, then
ż b

a
fpxqdx “

ż c

a
fpxqdx`

ż b

c
fpxqdx. (9.4.3)

Proof. (i) ñ (ii). Suppose that f is Riemann integrable on ra, bs. Given a partition P 1

of ra, cs and a partition P 2 of rc, bs we obtain a partition P 1 ˚ P 2 of ra, bs whose set of
nodes is the union of the sets of nodes of P 1 and P 2. Note that

}P 1 ˚ P 2} ď max
␣

}P 1}, }P 2}
(

,

and

ωp f,P 1 ˚ P 2 q “ ωp f |ra,cs,P
1 q ` ω

`

f |rc,bs,P
1 q.

Since f is Riemann integrable on ra, bs, it satisfies the property (ω) so, for any ε ą 0, there
exists δ “ δpεq ą 0 such that, for any partition P of ra, bs with mesh size }P } ă δpεq, we
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have

ωpf,P q ă ε.

If the partitions P 1 and P 2 satisfy

max
␣

}P 1}, }P 2}
(

ă δpεq,

then }P 1 ˚ P 2} ă δpεq so that

ωpf |ra,cs,P
1q ` ωpf |rc,bs,P

2q “ ωpf,P 1 ˚ P 2q ă ε.

This shows that both restrictions f |ra,cs and f |rc,bs satisfy (ω) and thus are Riemann
integrable.

(ii) ñ (i). We will prove that if f |ra,cs and f |rc,bs are Riemann integrable, then f is
integrable on ra, bs. We invoke Theorem 9.3.11. It suffices to show that f satisfies (ω0).
Fix ε ą 0. We have to prove that there exists a partition P ε of ra, bs such that ωpf,P εq ă ε.

Since f |ra,cs and f |rc,bs are Riemann integrable, they satisfy (ω0), and we deduce that

there exist partitions P 1ε of ra, cs, and P
2
ε of rc, bs such that

ωpf,P 1εq, ωpf,P 2εq ă
ε

2
.

Then P ε “ P
1
ε ˚ P

2
ε is a partition of ra, bs, and

ωpf,P εq “ ωpf,P 1εq ` ωpf,P
2
εq ă ε.

To prove (9.4.3) assume that f satisfies both (i) and (ii). Denote by U 1n the uniform
partition of order n of ra, cs and by U2n the uniform partition of order n of rc, bs. Set

P n :“ U 1n ˚U
2
n.

Note that

}P n} “ max
`

}U 1n}, }U
2
n}

˘

Ñ 0 as nÑ8. (9.4.4)

Denote by ξ1
n
the midpoint sample of U 1n, and by ξ2

n
the midpoint sample of U2n. Then

ξ
n
:“ ξ

n
Y ξ2

n
is the midpoint sample of P n. We have

Spf,P n, ξnq “ Spf,U
1
n, ξ

1

n
q ` Spf,U2n, ξ

2

n
q. (9.4.5)

From (i), (9.4.4), and (9.2.2) we deduce that

lim
nÑ8

Spf,P n, ξnq “

ż b

a
fpxqdx.

From (ii), (9.4.4), and (9.2.2) we deduce that

lim
nÑ8

Spf,U 1n, ξ
1

n
q “

ż c

a
fpxqdx,

lim
nÑ8

Spf,U2n, ξ
2

n
q “

ż b

c
fpxqdx.

The equality (9.4.3) now follows from the above three equalities after letting n Ñ 8 in
(9.4.5). [\
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Applying Proposition 9.4.6 iteratively we deduce the following consequence.

Corollary 9.4.7. Suppose that f : ra, bs Ñ R is a bounded function and

P “ pa “ x0 ă x1 ă ¨ ¨ ¨ ă xn “ bq

is a partition of ra, bs. Then the following statements are equivalent.

(i) The function f is Riemann integrable on ra, bs.

(ii) For any k “ 1, . . . , n the restriction of f to rxk´1, xks is Riemann integrable.

Moreover, if any of the above two equivalent conditions is satisfied, then
ż b

a
fpxqdx “

ż x1

a
fpxqdx`

ż x2

x1

fpxqdx` ¨ ¨ ¨ `

ż b

xn´1

fpxqdx. (9.4.6)

[\

Corollary 9.4.8. If f : ra, bs Ñ R is a bounded function and D Ă ra, bs is a finite set
such that f is continuous at any point in ra, bszD, then f is Riemann integrable.

Proof. We add to D the endpoints a, b if they are not contained in D and we obtain a
partition P of ra, bs such that f is continuous in the interior of any interval rxk´1, xks
of P . Proposition 9.4.4 implies that f is Riemann integrable on each of the intervals
rxk´1, xks and Corollary 9.4.7 implies that f is integrable on ra, bs. [\

Proposition 9.4.9. If f, g : ra, bs Ñ R are Riemann integrable, then for any constants
α, β P R the sum αf ` βg : ra, bs Ñ R is also Riemann integrable and

ż b

a

`

αfpxq ` βgpxq
˘

dx “ α

ż b

a
fpxqdx` β

ż b

a
gpxqdx. (9.4.7)

Proof. We will show that αf ` βg satisfies the definition of Riemann integrability, Defi-
nition 9.2.4. Observe first that if pP , ξq is a sampled partition of ra, bs, then

S
`

αf ` βg,P , ξq “ αSpf,P , ξq ` βSpg,P , ξq. (9.4.8)

Indeed, if the partition P is

P “ ta “ x0 ă x1 ă ¨ ¨ ¨ ă xn´1 ă xn “ bu,

and the sample ξ is ξ “ pξkq1ďkďn, then

S
`

αf ` βg,P , ξq “
ÿ

k

`

αfpξkq ` βgpξkq
˘

∆xk “
ÿ

k

αfpξkq∆xk `
ÿ

k

βgpξkq∆xk

“ α
ÿ

k

fpξkq∆xk ` β
ÿ

k

gpξkq∆xk “ αSpf,P , ξq ` βSpg,P , ξq.

Set

K :“ p|α| ` |β| ` 1q.
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Fix ε ą 0. Since f is Riemann integrable, there exists δ1 “ δ1pεq ą 0 such that, @P P Pra,bs,
@ξ P SpP q we have

}P } ă δ1 ñ

ˇ

ˇ

ˇ

ˇ

Spf,P , ξq ´

ż b

a
fpxqdx

ˇ

ˇ

ˇ

ˇ

ă
ε

K
. (9.4.9)

Since g is Riemann integrable, there exists δ2 “ δ2pεq ą 0 such that, @P P Pra,bs, @ξ P SpP q
we have

}P } ă δ2 ñ

ˇ

ˇ

ˇ

ˇ

Spg,P , ξq ´

ż b

a
gpxqdx

ˇ

ˇ

ˇ

ˇ

ă
ε

K
. (9.4.10)

Set

δ “ δpεq :“ min
`

δ1pεq, δ2pεq
˘

, S :“ α

ż b

a
fpxqdx` β

ż b

a
gpxqdx.

Let P P Pra,bs be an arbitrary partition such that }P } ă δ. Then for any sample ξ P SpP q
we have

|Spαf ` βg,P , ξq ´ S|
p9.4.8q
“

ˇ

ˇ

ˇ

ˇ

α
´

Spf,P , ξq ´

ż b

a
fpxqdx

¯

` β
´

Spg,P , ξq ´

ż b

a
gpxqdx

¯

ˇ

ˇ

ˇ

ˇ

ď |α| ¨

ˇ

ˇ

ˇ

ˇ

Spf,P , ξq ´

ż b

a
fpxqdx

ˇ

ˇ

ˇ

ˇ

` |β| ¨

ˇ

ˇ

ˇ

ˇ

Spg,P , ξq ´

ż b

a
gpxqdx

ˇ

ˇ

ˇ

ˇ

(use (9.4.9) and (9.4.10) )

ď |α|
ε

K
` |β|

ε

K
“

|α| ` |β|

|α| ` |β| ` 1
ε ă ε.

This proves that αf ` βg is Riemann integrable and
ż b

a
fpxqdx “ S “ α

ż b

a
fpxqdx` β

ż b

a
gpxqdx.

[\

Corollary 9.4.10. Suppose that f, g : ra, bs Ñ R are two functions such that

fpxq “ gpxq, @x P pa, bq.

If f is Riemann integrable, then so is g and, moreover,
ż b

a
fpxqdx “

ż b

a
gpxqdx. (9.4.11)

Proof. Consider the difference h : ra, bs Ñ R, hpxq “ gpxq ´ fpxq, @x P ra, bs. Note
that h is bounded on ra, bs and continuous on pa, bq because hpxq “ 0, @x P pa, bq. Using
Proposition 9.4.4 we deduce that h is Riemann integrable on ra, bs. Since g “ f ` h, we
deduce from Proposition 9.4.9 that g is Riemann integrable on ra, bs and

ż b

a
gpxqdx “

ż b

a
fpxqdx`

ż b

a
hpxqdx.
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Thus, to prove (9.4.11) we have to show that
ż b

a
hpxqdx “ 0.

To do this, denote by Un the uniform partition of order n of ra, bs, and denote by ξpnq the
sample of Un consisting of the midpoints of the intervals of Un. Then

Sph,Un, ξ
pnqq “ 0.

Since h is Riemann integrable, we have
ż b

a
hpxqdx “ lim

nÑ8
Sph,Un, ξ

pnqq “ 0.

[\

Example 9.4.11. We say that a function f : ra, bs Ñ R is piecewise constant if there
exists a partition

P “ pa “ x0 ă x1 ă ¨ ¨ ¨ ă xn “ bq

and constants c1, . . . , cn such that for any k “ 1, . . . , n the restriction of f to the open
interval pxk´1, xkq is the constant function ck. From the above corollary we deduce that
f is Riemann integrable on each of the intervals rxk´1, xks. Moreover, the computation in
Example 9.2.5 implies that

ż xk

xk´1

fptqdt “ ckpxk ´ xk´1q.

Corollary 9.4.7 implies that f is Riemann integrable on ra, bs and
ż b

a
fpxqdx “ c1px1 ´ x0q ` ¨ ¨ ¨ ` cnpxn ´ xn´1q. [\

Proposition 9.4.12. Suppose that f : ra, bs Ñ R is a Riemann integrable function, J
is an interval containing the range of f and G : J Ñ R is a Lipschitz function. Then
G ˝ f : ra, bs Ñ R is Riemann integrable.

Proof. Fix a positive constant L such that

|Gpy1q ´Gpy2q| ď L|y1 ´ y2|, @y1, y2 P J.

Observe that for any X Ă ra, bs and any x1, x2 P X we have
ˇ

ˇG ˝ fpx1q ´G ˝ fpx2q
ˇ

ˇ ď L|fpx1q ´ fpx2q|.

Hence

oscpG ˝ f,Xq “ sup
x1,x2PX

ˇ

ˇG ˝ fpx1q ´G ˝ fpx2q
ˇ

ˇ ď L sup
x1,x2PX

|fpx1q ´ fpx2q| “ L oscpf,Xq.

We deduce as in the proof of Proposition 9.4.9 that for any partition P of ra, bs we have

ωpG ˝ f,P q ď Lωpf,P q.
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Since f is Riemann integrable we deduce that

lim
}P }Ñ0

ωpf,P q “ 0

so that

lim
}P }Ñ0

ωpG ˝ f,P q “ 0.

[\

Corollary 9.4.13. Suppose that f : ra, bs Ñ R is Riemann integrable. Then f2 is also
Riemann integrable on ra, bs.

Proof. Since f is Riemann integrable it is bounded so its range is contained in some
interval r´M,M s, M ą 0. The function G : r´M,M s Ñ R, Gpxq “ x2 is Lipschitz on
this interval because for any x, y P r´M,M s we have

|Gpxq ´Gpyq| “ |x2 ´ y2| “ |x` y| ¨ |x´ y| ď p|x| ` |y|q|x´ y| ď 2M |x´ y|.

Proposition 9.4.12 implies that G ˝ f “ f2 is Riemann integrable. [\

Corollary 9.4.14. If f, g : ra, bs Ñ R are Riemann integrable, then so is their product
fg.

Proof. The function f`g is integrable according to Proposition 9.4.9. Invoking Corollary
9.4.13 we deduce that the functions pf ` gq2, f2, g2 are Riemann integrable. Proposition
9.4.9 now implies that the function

1

2

´

pf ` gq2 ´ f2 ´ g2
¯

“
1

2

`

f2 ` g2 ` 2fg ´ f2 ´ g2
˘

“ fg

is Riemann integrable. [\

Corollary 9.4.15. Suppose that f : ra, bs Ñ R is Riemann integrable. Then the function
|f | is also Riemann integrable.

Proof. The function G : R Ñ R, Gpyq “ |y| is Lipschitz so the function G ˝ f “ |f | is
Riemann integrable. [\

☞ A very useful convention. We denoted the Riemann integral of a function f : ra, bs Ñ R
with the symbol

ż b

a
fpxqdx,

where the lower endpoint a is at the bottom of the integral sign
ş

and the upper endpoint
b is at the top of the integral sign. We define

ż a

b
fpxqdx :“ ´

ż b

a
fpxqdx,

ż a

a
fpxqdx “ 0.
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There are several arguments in favor of this convention. For example, we can rewrite
(9.5.3) as

fpξq “
1

b´ a

ż b

a
fpxqdx “

1

a´ b

ż a

b
fpxqdx. (9.4.12)

This formulation will be especially useful when we do not know whether a ă b or b ă a.
The above equality says that it does not matter.

Another advantage comes from the following additivity identity.

ż c

a
fpxqdx “

ż b

a
fpxqdx`

ż c

b
fpxqdx, @a, b, c P R. (9.4.13)

If a ă b ă c, then (9.4.13) is an immediate consequence of Corollary 9.4.7. When the
numbers a, b, c are situated in a different order, the identity (9.4.13) is still a consequence
of Corollary 9.4.7, but in a more roundabout way. For example, if a “ 0, b “ 2 and c “ 1,
then

ż 1

0
fpxqdx “

ż 2

0
fpxqdx´

ż 2

1
fpxqdx “

ż 2

0
fpxqdx`

ż 1

2
fpxqdx. [\

9.5. Basic properties of the Riemann integral

Now that we have seen how the concept of integrability interacts with the basic arithmetic
operations on functions we want to discuss a few simple techniques for estimating Riemann
integrals. All these techniques are based on the following simple result.

Proposition 9.5.1 (Positivity). Suppose that f : ra, bs Ñ R is Riemann integrable and
fpxq ě 0 for any x P ra, bs. Then

ż b

a
fpxqdx ě 0.

Proof. Denote by U1 the partition of ra, bs consisting of a single interval. Then

0 ď
`

inf
xPra,bs

fpxq
˘

pb´ aq “ S˚pf,U1q
p9.3.10q
ď

ż b

a
fpxqdx.

[\

Corollary 9.5.2 (Monotonicity). If f, g : ra, bs Ñ R are Riemann integrable functions
and fpxq ď gpxq, @x P ra, bs, then

ż b

a
fpxqdx ď

ż b

a
gpxqdx.



9.5. Basic properties of the Riemann integral 267

Proof. The function pg ´ fq is integrable and nonnegative so
ż b

a
gpxqdx´

ż b

a
fpxqdx “

ż b

a
pgpxq ´ fpxqqdx ě 0.

[\

Corollary 9.5.3. If f : ra, bs Ñ R is Riemann integrable, then

ˇ

ˇ

ˇ

ˇ

ż b

a
fpxqdx

ˇ

ˇ

ˇ

ˇ

ď

ż b

a
|fpxq| dx. (9.5.1)

Proof. We know that

fpxq ď |fpxq| and ´ fpxq ď |fpxq|, @x P ra, bs.

Hence
ż b

a
fpxqdx ď

ż b

a
|fpxq|dx and ´

ż b

a
fpxqdx ď

ż b

a
|fpxq|dx.

The last two inequalities imply (9.5.1).

[\

Corollary 9.5.4. Suppose that f : ra, bs Ñ R is a Riemann integrable function. We set

m :“ inf
xPra,bs

fpxq, M “ sup
xPra,bs

fpxq.

Then

mpb´ aq ď

ż b

a
fpxqdx ďMpb´ aq.

Proof. We have

m ď fpxq ďM, @x P ra, bs,

so that

mpb´ aq “

ż b

a
mdx ď

ż b

a
fpxqdx ď

ż b

a
Mdx “Mpb´ aq.

[\

Definition 9.5.5. If f : ra, bs Ñ R is a Riemann integrable function, then the quantity

1

b´ a

ż b

a
fpxqdx

is called the average value of f , or the mean of f , or the expectation of f and we denote
it by Meanpfq. [\
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We see that we can rephrase the inequality in Corollary 9.5.4 as

inf
xPra,bs

fpxq ď Meanpfq ď sup
xPra,bs

fpxq. (9.5.2)

Theorem 9.5.6 (Integral Mean Value Theorem). Suppose that f : ra, bs Ñ R is a con-
tinuous function. Then there exists ξ P ra, bs such that

fpξq “ Meanpfq,

i.e.,

fpξq “
1

b´ a

ż b

a
fpxqdx. (9.5.3)

Proof. Let

m :“ inf
xPra,bs

fpxq, M “ sup
xPra,bs

fpxq.

Then (9.5.2) implies that Meanpfq P rm,M s.

On the other hand, since f is continuous we deduce from Weierstrass’ Theorem 6.2.4
that there exist x˚, x

˚ P ra, bs such that

fpx˚q “ m, fpx˚q “M.

Since Meanpfq P rfpx˚q, fpx
˚qs we deduce from the Intermediate Value Theorem that

there exists ξ in the interval rx˚, x
˚s such that fpξq “ Meanpfq. [\

Theorem 9.5.7. Suppose that f : ra, bs Ñ R is a Riemann integrable function. We define

F : ra, bs Ñ R, F pxq :“

ż x

a
fptqdt.

Then the following hold.

(i) The function F is Lipschitz. In particular, F is continuous.

(ii) If the function f is continuous, then the function F pxq is differentiable on ra, bs
and

F 1pxq “ fpxq, @x P ra, bs.

In other words, F pxq is an antiderivative of f , more precisely the unique anti-
derivative on ra, bs such that F paq “ 0.

Proof. (i) We set

M :“ sup
xPra,bs

|fpxq|.

If x, y P ra, bs, x ă y, then

|F pxq ´ F pyq| “ |F pyq ´ F pxq| “

ˇ

ˇ

ˇ

ˇ

ż y

a
fptqdt´

ż x

a
fptqdt

ˇ

ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

ˇ

ż y

x
fptqdt

ˇ

ˇ

ˇ

ˇ

ď

ż y

x
|fptq|dt ď

ż y

x
Mdt “Mpy ´ xq “M |x´ y|.

This proves that F is Lipschitz.

(ii) We have to prove that if x0 P ra, bs, then

lim
xÑx0

F pxq ´ F px0q

x´ x0
“ fpx0q.

Using (9.4.13) we deduce

F pxq ´ F px0q “

ż x

a
fptqdt´

ż x0

a
fptqdt “

ż x

x0

fptqdt

so that we have to show that

lim
xÑx0

1

x´ x0

ż x

x0

fptqdt “ fpx0q.

In other words, we have to prove that for any ε ą 0 there exists δ “ δpεq ą 0 such that

@x P ra, bs, 0 ă |x´ x0| ă δ ñ

ˇ

ˇ

ˇ

ˇ

1

x´ x0

ż x

x0

fptqdt´ fpx0q

ˇ

ˇ

ˇ

ˇ

ă ε. (9.5.4)

Since f is continuous at x0, given ε ą 0 we can find δ “ δpεq ą 0 such that

@x P ra, bs, |x´ x0| ă δ ñ |fpxq ´ fpx0q| ă ε.

On the other hand, invoking the continuity of f again, we deduce from the Integral Mean
Value Theorem that, for any x ‰ x0, there exists ξx between x0 and x such that

fpξxq “
1

x´ x0

ż x

x0

fptqdt.

In particular, if |x´ x0| ă δ, then |ξx ´ x0| ă δ, and thus
ˇ

ˇ

ˇ

ˇ

1

x´ x0

ż x

x0

fptqdt´ fpx0q

ˇ

ˇ

ˇ

ˇ

“ |fpξxq ´ fpx0q| ă ε.

[\

9.6. How to compute a Riemann integral

To this day, the best method of computing by hand Riemann integrals is the fundamental
theorem of calculus.

Theorem 9.6.1 (The Fundamental Theorem of Calculus: Part 1). Suppose that f : ra, bs Ñ R
is a function satisfying the following two conditions.

(i) The function f is Riemann integrable.

(ii) The function f admits antiderivatives on ra, bs.
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If F : ra, bs Ñ R is an antiderivative of f , then

ż x

a
fptqdt “ F pxq ´ F paq, @x P pa, bs. (9.6.1)

In particular,
ż b

a
fptqdt “ F ptq

ˇ

ˇ

ˇ

t“b

t“a
:“ F pbq ´ F paq. (9.6.2)

Proof. Fix x P pa, bs. Denote by Un the uniform partition of ra, xs of order n. Since f is

Riemann integrable we deduce that for any choices of samples ξpnq of Un we have
ż x

a
fptqdt “ lim

nÑ8
S
`

f,Un, ξ
pnq

˘

.

The miracle is that for any n we can cleverly choose a sample

ξpnq “ pξn1 , . . . , ξ
n
nq

of Un such that the Riemann sum S
`

f,Un, ξ
pnq

˘

has an extremely simple form. Here are
the details.

The k-th node of Un is xnk “ a` k
npx´aq and the k-th interval is Ik “ rx

n
k´1, x

n
k s. The

function F is differentiable on the closed interval ra, bs and, in particular, it is continuous
on ra, bs. We can invoke Lagrange’s Mean Value Theorem to conclude that, for any
k “ 1, . . . , n, there exists ξnk P px

n
k´1, x

n
kq such that

fpξnk q “ F 1pξnk q “
F pxnkq ´ F px

n
k´1q

xnk ´ x
n
k´1

,

i.e.,

fpξnk qpx
n
k ´ x

n
k´1q “ F pxnkq ´ F px

n
k´1q.

The collection pξn1 , . . . , ξ
n
nq is a sample ξpnq of the partition Un. The associated Riemann

sum satisfies

S
`

f,Un, ξ
pnq

˘

“ fpξn1 qpx
n
1 ´ x

n
0 q ` fpξ

n
2 qpx

n
2 ´ x

n
1 q ` ¨ ¨ ¨ ` fpξ

n
nqpx

n
n ´ x

n
n´1q

“ F pxn1 q ´ F px
n
0 q ` F px

n
2 q ´ F px

n
1 q ` ¨ ¨ ¨ ` F px

n
nq ´ F px

n
n´1q

(the above is a telescopic sum!!!)

“ F pxnnq ´ F px
n
0 q “ F pxq ´ F paq.

Thus the sequence of Riemann sums Spf,Un, ξ
pnqq is constant, equal to F pxq ´ F paq.

Hence
ż x

a
fptqdt “ lim

nÑ8
S
`

f,Un, ξ
pnq

˘

“ F pxq ´ F paq.

The equality (9.6.2) follows from (9.6.1) by letting x “ b. [\
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Corollary 9.6.2 (The Fundamental Theorem of Calculus: Part 2). Suppose that

f : ra, bs Ñ R

is a continuous function. Then f admits antiderivatives on ra, bs and, if F pxq is any
antiderivative of f on ra, bs, then

ż b

a
fpxqdx “ F

ˇ

ˇ

ˇ

b

a
:“ F pbq ´ F paq, F pxq “ F paq `

ż x

a
fptqdt, @x P ra, bs. (9.6.3)

Proof. The fact that f admits antiderivatives follows from Theorem 9.5.7(b). The rest
follows from Theorem 9.6.1. [\

Remark 9.6.3. (a) Theorem 9.6.1 shows that the computation of Riemann integral of a
function can be reduced to the computation of the antiderivatives of that function, if they
exist. As we have seen in the previous chapter, for many classes of continuous function
this computation can be carried out successfully in a finite number of purely algebraic
steps.

If we ponder for a little bit, the equality (9.6.2) is a truly remarkable result. The
left-hand side of (9.6.2) is a Riemann integral defined by a very laborious limiting process
which involves infinitely many and computationally very punishing steps. The right-hand
side of (9.6.2) involves computing the values of an antiderivative at two points. Often this
can be achieved in finitely many arithmetic steps!

The attribute fundamental attached to Theorem 9.6.1 is fully justified: it describes a
finite-time shortcut to an infinite-time process.

(b) Both assumptions (i) and (ii) are needed in Theorem 9.6.1! Indeed, there exist
functions that satisfy (i) but not (ii), and there exist functions satisfying (ii), but not (i).
Their constructions are rather ingenious and we refer to [16] for more details. Note that
the continuous functions automatically satisfy both (i) and (ii). [\

Example 9.6.4. For k P N consider the continuous function f : r0, 1s Ñ R, fpxq “ xk.
The function F pxq “ 1

k`1x
k`1 is an antiderivative of f and (9.6.3) implies
ż 1

0
xkdx “

´ 1

k ` 1
xk`1

¯
ˇ

ˇ

ˇ

1

0
“

1

k ` 1
.

In particular, for k “ 2 we deduce
ż 1

0
x2dx “

1

3
.

This agrees with the elementary computations in Section 9.1. [\

The techniques for computing antiderivatives can now be used for computing Riemann
integrals. As we have seen, there are basically two methods for computing antiderivatives:
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integration by parts, and change of variables. These lead to two basic techniques for
computing Riemann integrals. In applications most often one needs to use a blend of
these techniques to compute a Riemann integral.

9.6.1. Integration by parts. We state a special case that covers most of the concrete
situations.

Proposition 9.6.5. Suppose that u, v : ra, bs Ñ R are two C1 functions, i.e., they are
differentiable and have continuous derivatives. Then uv1 and u1v are Riemann integrable
and

ż b

a
upxqv1pxqdx “ upxqvpxq

ˇ

ˇ

ˇ

b

a
´

ż b

a
vpxqu1pxqdx . (9.6.4)

Proof. The functions u1v and uv1 are continuous since they are products of continuous
functions. In particular these functions are integrable, and we have

ż b

a
u1pxqvpxqdx`

ż b

a
upxqv1pxqdx “

ż b

a

`

u1pxqvpxq ` upxqv1pxq
˘

dx

“

ż b

a
puvq1pxqdx

p9.6.2q
“ upxqvpxq

ˇ

ˇ

ˇ

b

a
.

The equality (9.6.4) is now obvious. [\

Remark 9.6.6. The integration-by-parts formula (9.6.4) is often written in the shorter
form

ż b

a
udv “ uv

ˇ

ˇ

ˇ

b

a
´

ż b

a
vdu. (9.6.5)

Observing that

uv
ˇ

ˇ

ˇ

a

b
“ upaqvpaq ´ upbqvpbq “ ´

`

upbqvpbq ´ upaqvpaq
˘

“ ´uv
ˇ

ˇ

ˇ

b

a
,

we deduce that
ż a

b
udv “ uv

ˇ

ˇ

ˇ

a

b
´

ż a

b
vdu,

even though the upper limit of integration a is smaller than the lower limit of integration
b. [\

Example 9.6.7. For any nonnegative integers m,n we set

Im,n “

ż 1

´1
px´ 1qmpx` 1qndx. (9.6.6)

This integral is theoretically computable because px ´ 1qmpx ` 1qn is a polynomial. Its
precise form is obtained via Newton’s binomial formula and the final result is rather
complicated. For example

px´ 1q2px` 1q3 “ px2 ´ 2x` 1qpx3 ` 3x2 ` 3x` 1q “ x5 ` x4 ´ 2x3 ´ 2x2 ` x` 1.
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In general, we need to multiply the two polynomials in the right-hand side of (9.6.6) to
obtain the explicit form of px´ 1qmpx` 1qn. This is an elaborate process which becomes
increasingly more complex as the powers m and n increase. However, an ingenious usage
of the integration-by-parts trick leads to a much simpler way of computing Im,n.

Let us first observe that

px` 1qn “
1

n` 1

d

dx
px` 1qn`1,

from which we deduce

I0,n “

ż 1

´1
px` 1qndx “

1

n` 1
px` 1qn`1

ˇ

ˇ

ˇ

1

´1
“

2n`1

n` 1
. (9.6.7)

Observe now that if m ą 0, then

Im,n “

ż 1

´1
px´ 1qmpx` 1qndx “

1

n` 1

ż 1

´1
px´ 1qm

d

dx
px` 1qn`1dx

“
1

n` 1
px´ 1qmpx` 1qn`1

ˇ

ˇ

ˇ

1

´1
looooooooooooooooomooooooooooooooooon

“0

´
m

n` 1

ż 1

´1
px´ 1qm´1px` 1qn`1dx.

We obtain in this fashion the recurrence relation

Im,n “ ´
m

n` 1
Im´1,n`1, @m ą 0, n ě 0. (9.6.8)

If m´ 1 ą 0, then we can continue this process and we deduce

Im´1,n`1 “ ´
m´ 1

n` 2
Im´2,n`2 ñ Im,n “

mpm´ 1q

pn` 1qpn` 2q
Im´2,n`2.

Iterating this procedure we conclude that

Im,n “ p´1q
m mpm´ 1q ¨ ¨ ¨ 2 ¨ 1

pn` 1qpn` 2q ¨ ¨ ¨ pn`m´ 1qpn`mq
I0,n`m

“ p´1qm
m!

pn` 1q ¨ ¨ ¨ pn`mq
I0,n`m “ p´1q

m 1
`

n`m
m

˘I0,n`m.

Invoking (9.6.7) we deduce

Im,n “ p´1q
m 1
`

n`m
m

˘ ¨
2n`m`1

pn`m` 1q
. (9.6.9)

When m “ n we have

In,n “

ż 1

´1
px´ 1qnpx` 1qndx “

ż 1

´1
px2 ´ 1qndx

and we conclude that
ż 1

´1
px2 ´ 1qndx “ In,n “

p´1qn
`

2n
n

˘ ¨
22n`1

p2n` 1q
. (9.6.10)
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[\

Example 9.6.8 (Wallis’ formula). For nonnegative integer n we set

In :“

ż π
2

0
psinxqn dx.

Note that

I0 “
π

2
, I1 “

ż π
2

0
sinx dx “ p´ cosxq

ˇ

ˇ

ˇ

ˇ

ˇ

x“π
2

x“0

“ 1.

In general, for n ą 0, we have

In`1 “

ż π
2

0
psinxqndp´ cosxq “ psinxqnp´ cosxq

ˇ

ˇ

ˇ

ˇ

ˇ

x“π
2

x“0
loooooooooooomoooooooooooon

“0

`

ż π
2

0
cosx dpsinxqn

“ n

ż π
2

0
psinxqn´1 cos2 x dx “ n

ż π
2

0
psinxqn´1p1´ sin2 xq dx “ nIn´1 ´ nIn`1.

Hence

In`1 “ nIn´1 ´ nIn`1

so that

pn` 1qIn`1 “ nIn´1, In`1 “
n

n` 1
In´1. (9.6.11)

We deduce

I2 “
1

2
I0 “

1

2

π

2
, I4 “

3

4
I2 “

3

4

1

2

π

2
,

and, in general,

I2n “

ż π
2

0
psinxq2ndx “

2n´ 1

2n
¨ ¨ ¨

3

4

1

2

π

2
. (9.6.12)

Similarly,

I3 “
2

3
I1 “

2

3
, I5 “

4

5
I3 “

4

5

2

3
,

and, in general,

I2n`1 “

ż π
2

0
psinxq2n`1dx “

2n

2n` 1
¨ ¨ ¨

4

5

2

3
. (9.6.13)

If we introduce the notation

p2kq!! :“ 2 ¨ 4 ¨ 6 ¨ ¨ ¨ p2kq, p2k ´ 1q!! :“ 1 ¨ 3 ¨ 5 ¨ ¨ ¨ p2k ´ 1q, (9.6.14)

then we can rewrite the equalities (9.6.12) and (9.6.13) in a more compact form

I2j “
π

2

p2j ´ 1q!!

p2jq!!
, I2j´1 “

p2j ´ 2q!!

p2j ´ 1q!!
. (9.6.15)
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Since sinx P r0, 1s, @x P r0, π{2s, we deduce

psinxqn`1 ď psinxqn, @x P r0, π{2s,

and thus,

In`1 ď In, @n P N.
We deduce

2n

2n` 1

p9.6.11q
“

I2n`1
I2n´1

ď
I2n`1
I2n

ď 1.

From the above equalities we deduce

lim
nÑ8

I2n`1
I2n

“ 1.

Using (9.6.12) and (9.6.13) we deduce

I2n`1
I2n

“
2

π
¨

1

2n` 1
¨

2242 ¨ ¨ ¨ p2nq2

1232 ¨ ¨ ¨ p2n´ 1q2
.

This implies the celebrated Wallis’ formula

π

2
“
π

2
lim
nÑ8

I2n`1
I2n

“ lim
nÑ8

2242 ¨ ¨ ¨ p2nq2

1232 ¨ ¨ ¨ p2n´ 1q2
¨

1

2n` 1
. (9.6.16)

Later on, we will need an equivalent version of the above equality, namely

π

2
“
π

2
lim
nÑ8

2n` 1

2n

I2n`1
I2n

“ lim
nÑ8

2242 ¨ ¨ ¨ p2nq2

1232 ¨ ¨ ¨ p2n´ 1q2
¨
1

2n
. (9.6.17)

[\

Let us discuss another simple but useful application of the integration-by-parts trick.

Proposition 9.6.9 (Integral remainder formula). Let n P N and suppose that f : ra, bs Ñ R
is a Cn`1-function, i.e., pn` 1q-times differentiable and the pn` 1q-th derivative is con-
tinuous. If x0 P ra, bs and Tnpxq is the degree-n Taylor polynomial of f at x0,

Tnpxq “ fpx0q `
f 1px0q

1!
px´ x0q ` ¨ ¨ ¨ `

f pnqpx0q

n!
px´ x0q

n,

then the remainder Rnpxq :“ fpxq ´ Tnpxq admits the integral representation

Rnpxq “
1

n!

ż x

x0

f pn`1qptqpx´ tqndt, @x P ra, bs . (9.6.18)

Proof. Fix x ‰ x0. We have

fpxq ´ fpx0q “

ż x

x0

f 1ptqdt “ ´

ż x

x0

f 1ptq
d

dt
px´ tq dt

“ ´

´

f 1ptqpx´ tq
¯ˇ

ˇ

ˇ

t“x

t“x0
`

ż x

x0

f2ptqpx´ tqdt
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“ f 1px0qpx´ x0q ´

ż x

x0

f2ptq
d

dt

ˆ

1

2
px´ tq2

˙

dt

“ f 1px0qpx´ x0q ´
´ 1

2
f2ptqpx´ tq2

¯ˇ

ˇ

ˇ

t“x

t“x0
`

1

2

ż x

x0

f p3qptqpx´ tq2dt

“ f 1px0qpx´ x0q `
f2px0q

2
px´ x0q

2 ´
1

3!

ż x

x0

f p3qptq
d

dt
px´ tq3dt

“ f 1px0qpx´ x0q `
f2px0q

2
px´ x0q

2 ´
1

3!

`

f p3qptqpx´ tq3
˘

ˇ

ˇ

ˇ

t“x

t“x0
`

1

3!

ż x

x0

f p4qptqpx´ tq3dt

“ f 1px0qpx´ x0q `
f2px0q

2
px´ x0q

2 `
f p3qpx0q

3!
px´ x0q

3 `
1

3!

ż x

x0

f p4qptqpx´ tq3dt

“ f 1px0qpx´ x0q `
f2px0q

2
px´ x0q

2 `
f p3qpx0q

3!
px´ x0q

3 ´
1

4!

ż x

x0

f p4qptq
d

dt
px´ tq4dt

“ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ “

“ f 1px0qpx´ x0q `
f2px0q

2
px´ x0q

2 ` ¨ ¨ ¨ `
f pnqpx0q

n!
px´ x0q

n `
1

n!

ż x

x0

f pn`1qptqpx´ tqndt.

Thus

fpxq “ fpx0q ` f
1px0qpx´ x0q `

f2px0q

2
px´ x0q

2 ` ¨ ¨ ¨ `
f pnqpx0q

n!
px´ x0q

n

`
1

n!

ż x

x0

f pn`1qptqpx´ tqndt

“ Tnpxq `
1

n!

ż x

x0

f pn`1qptqpx´ tqndt.

This proves (9.6.18). [\

Example 9.6.10. Let us show how we can use the integral remainder formula to strengthen
the result in Exercise 8.7. Consider the function f : p´1, 1q Ñ R, fpxq “ lnp1´ xq. Since

f 1pxq “ ´
1

1´ x
“ px´ 1q´1, f2pxq “

d

dx
px´ 1q´1 “ ´px´ 1q´2,

f p3qpxq “ ´
d

dx
px´ 1q´2 “ 2px´ 1q´3, . . .

f pnqpxq “ p´1qn´1pn´ 1q!px´ 1q´n, @n P N
we deduce that

fp0q “ 0, f pnqp0q “ p´1qnpn´ 1q!p´1q´n “ ´pn´ 1q!, @n P N,

and thus, the Taylor series of f at x0 “ 0 is

´

8
ÿ

k“1

xk

k
.
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We denote by Tnpxq the degree n Taylor polynomial of fpxq at x0 “ 0,

Tnpxq “ ´
n
ÿ

k“1

xk

k
“ ´x´

x2

2
´ ¨ ¨ ¨ ´

xn

n!
.

We want to prove that this series converges to lnp1 ´ xq for any x P r´1, 1q. To do this
we have to show that

lim
nÑ8

|fpxq ´ Tnpxq| “ 0, @x P r´1, 1q.

We need to estimate the remainder Rnpxq “ fpxq ´ Tnpxq. We distinguish two cases.

1. x P r0, 1q. Using the integral remainder formula (9.6.18) we deduce

Rnpxq “
1

n!

ż x

0
f pn`1qptqpx´ tqndt “ p´1qn

ż x

0
pt´ 1q´n´1px´ tqndt.

Hence

|Rnpxq| “

ż x

0

px´ tqn

p1´ tqn`1
dt.

Observe that for t P r0, xs we have 1´ t ě 1´ x ą 0 so that, for any t P r0, xs we have

p1´ tqn`1 ě p1´ tqnp1´ xq ą 0,ðñ0 ă
1

p1´ tqn`1
ď

1

1´ x
¨

1

p1´ tqn
.

Hence

|Rnpxq| ď
1

1´ x

ż x

0

ˆ

x´ t

1´ t

˙n

dt.

Now consider the function

g : r0, xs Ñ R, gptq “
x´ t

1´ t
.

We have

g1ptq “
´p1´ tq ` px´ tq

p1´ tq2
“

x´ 1

p1´ tq2
ă 0.

Hence

0 “ gpxq ď gptq ď gp0q “ x, @t P r0, xs,

and thus

|Rnpxq| ď
1

1´ x

ż x

0
gptqndt ď

1

1´ x

ż x

0
xndt “

xn`1

1´ x
.

We deduce

|Rnpxq| ď
xn`1

1´ x
, @x P r0, 1q,

so that

lim
nÑ8

Rnpxq “ lim
nÑ8

xn`1

1´ x
“ 0, @x P r0, 1q.
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2. x P r´1, 0q. We estimate Rnpxq using the Lagrange remainder formula. Hence, there
exists ξ P px, 0q such that

Rnpxq “
f pn`1qpξq

pn` 1q!
xn`1 “ p´1qn

n!pξ ´ 1q´pn`1q

pn` 1q!
xn`1 “ p´1qn

1

pn` 1qpξ ´ 1qn`1
xn`1.

Hence, since ξ P px, 0q, we have |ξ ´ 1| “ |ξ| ` 1 and

|Rnpxq| “
|x|n`1

pn` 1qp1` |ξ|qn`1
ď
|x|n`1

n` 1
.

Since |x| ď 1 we deduce

lim
nÑ8

|Rnpxq| “ 0, @x P r´1, 0q.

We have thus proved that

lnp1´ xq “ ´
8
ÿ

n“1

xn

n
, @x P r´1, 1q.

Note in particular that

fp´1q “ ln 2 “ ´
8
ÿ

n“1

p´1qn

n
“ 1´

1

2
`

1

3
´

1

4
` ¨ ¨ ¨ . (9.6.19)

[\

9.6.2. Change of variables. The change of variables in the Riemann integral is very
similar to the integration-by-substitution trick used in the computation of antiderivatives,
but it has a few peculiarities. There are two versions of the change in variables formula.

Proposition 9.6.11 (Change in variables formula: version 1, t “ ϕpxq). Suppose that
f : ra, bs Ñ R is a continuous function and ϕ : rα, βs Ñ ra, bs is a C1-function. Then the
function f

`

ϕpxq
˘

ϕ1pxq is integrable on rα, βs and

ż β

α
f
`

ϕpxq
˘

ϕ1pxqdx “

ż ϕpβq

ϕpαq
fptqdt. (9.6.20)

Proof. Since f is continuous it admits antiderivatives. Fix an antiderivative F of f . The
chain rule shows that F

`

ϕpxq
˘

is an antiderivative of the continuous function f
`

ϕpxq
˘

ϕ1pxq.
The Fundamental Theorem of Calculus then shows

ż β

α
f
`

ϕpxq
˘

ϕ1pxqdt “ F
`

ϕpxq
˘

ˇ

ˇ

ˇ

x“β

x“α
“ F

`

ϕpβq
˘

´ F
`

ϕpαq
˘

“

ż ϕpβq

ϕpαq
fptqdt.

[\

We can relax the continuity assumption of f , but to do so we need to make an addi-
tional assumption of the nature of the change in variables, t “ ϕpxq.
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Proposition 9.6.12 (Change in variables formula: version 2, x “ φptq). Suppose that
f : ra, bs Ñ R is a Riemann integrable function and φ : rα, βs Ñ ra, bs is a C1-function
such that

φ1ptq ‰ 0, @t P pα, βq.

Then f
`

φptq
˘

φ1ptq is Riemann integrable on rα, βs and

ż φpβq

φpαq
fpxqdx “

ż β

α
f
`

φptq
˘

φ1ptqdt. (9.6.21)

Proof. Set

M :“ sup
tPrα,βs

|φ1ptq|.

Note that M ą 0. Since |φ1ptq| is continuous, Weierstrass’ theorem implies that M ă 8. Since φ1ptq ‰ 0 for any
t P pα, βq we deduce from the Intermediate Value Theorem that

either φ1ptq ą 0, @t P pα, βq or; φ1ptq ă 0, @t P pα, βq.

Thus, either φ is strictly increasing and its range is rφpαq, φpβqs, or φ is strictly decreasing and its range is

rφpβq, φpαqs. We need to discuss each case separately, but we will present the details only for the first case and
leave the details for the second case for you as an exercise. In the sequel we will assume that φ is increasing and

thus

0 ă φ1ptq ďM, @t P pα, βq.

For simplicity we set

gptq :“ f
`

φptq
˘

φ1ptq, t P rα, βs.

We will show that g is Riemann integrable on rα, βs and its Riemann integral is given by the left-hand side of
(9.6.21). We will need the following technical result.

Lemma 9.6.13. For any partition P of rα, βs, there exists a partition Pφ of rφpαq, φpβqs and samples ξ of P and
η of Pφ such that

}Pφ} ďM}P }, (9.6.22a)

SpP , g, ξq “ SpPφ, f, ξφq. (9.6.22b)

Let us first show that Lemma 9.6.13 implies that g is Riemann integrable and satisfies (9.6.21). Fix ε ą 0. The
function f is Riemann integrable on rφpαq, φpβqs and thus there exists δ0 “ δ0pεq ą 0 such that for any partition Q
of rφpαq, φpβqs and any sample η of Q we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż φpβq

φpαq

fpxqdx´ Spf,Q, ηq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε. (9.6.23)

Set

δ “ δpεq :“
1

M
δ0pεq.

For any partition P of rα, βs of mesh }P } ă δpεq, and any sample ξ of P , the sampled partition pPφ, ξφq of

rφpαq, φpβqs associated to pP , ξq by Lemma 9.6.13 satisfies

Pφ} ăMδpεq “ δ0pεq and Spg,P , ξq “ Spf,Pφ, ξφq.

We deduce that
ˇ

ˇ

ˇ

ˇ

ˇ

ż φpβq

φpαq

fpxqdx´ Spg,P , ξq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż φpβq

φpαq

fpxqdx´ Spf,Pφ, ξφq

ˇ

ˇ

ˇ

ˇ

ˇ

p9.6.23q
ă ε.

This proves that gptq is integrable on rα, βs and its integral is equal to
şφpβq

φpαq
fpxqdx.
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Proof of Lemma 9.6.13. Consider a partition P “ pα “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ βq of rα, βs. For k “ 0, 1, . . . , xn
we set

xk :“ φptkq.

Since φ is increasing we have

xk´1 ă xk, @k “ 1, . . . , n.

Thus

φpαq “ x0 ă x1 ă ¨ ¨ ¨ ă xn “ φpβq

is a partition of rφpαq, φpβqs that we denote by Pφ. Note that

xk ´ xk´1 “ φptkq ´ φptk´1q.

Lagrange’s Mean Value theorem implies that there exists ξk P ptk´1, tkq such that

xk ´ xk´1 “ φptkq ´ φptk´1q “ φ1pξkqptk ´ tk´1q.

In particular, this shows that

|xk´1 ´ xk| “ |φ
1pξkq| ¨ |tk ´ tk´1| ďM |tk ´ tk´1|, @k “ 1, . . . , k.

Hence

}Pφ} ďM}P }.

This proves (9.6.22a).

Set ηk :“ φpξkq. Note that since φ is increasing we have ηk P pxk´1, xkq. The collection ξ “ pξ1, . . . , ξkq is a

sample of P , and the collection η “ pη1, . . . , ηnq is a sample of Pφ. Observe that

fpηkqpxk ´ xk´1q “ f
`

φpξkq qφ
1pξkqptk ´ tk´1q “ gpξkqptk ´ tk´1q.

Thus

Spf,Pφ, ηq “
n
ÿ

k“1

fpηkqpxk ´ xk´1q “

n
ÿ

k“1

gpξkqptk ´ tk´1q “ Spg,P , ξq.

This proves (9.6.22b) and completes the proof of Proposition 9.6.12. [\

Remark 9.6.14. In concrete examples, the right-hand sides of the equalities (9.6.20)
and (9.6.21) are quantities that we know how to compute. The left-hand sides are the
unknown quantities whose computations are sought. For this reason these two equalities
play different roles in applications. [\

Example 9.6.15. (a) Suppose that we want to compute
ż 2

´1
cospx2qxdx “

1

2

ż 2

´1
cospx2qdpx2q.

We make the change of variables t “ x2. Note that x “ ´1 ñ t “ 1, x “ 2 ñ t “ 4 and
we deduce

ż 2

´1
cospx2qxdx

p9.6.20q
“

1

2

ż 4

1
cos t dt “

sin 4´ sin 1

2
.

Note that in this case (9.6.21) is not applicable.

(b) Suppose that we want to compute
ż π

2

0
esinx cosx dx “

ż π
2

0
esinxdpsinxq.
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We make the change in variables t “ sinx. Note that x “ 0ñ t “ 0, x “ π
2 ñ t “ 1 and

we deduce
ż π

2

0
esinx cosxdx

p9.6.20q
“

ż 1

0
etdt “ et

ˇ

ˇ

ˇ

t“1

t“0
“ e´ 1.

(c) Suppose we want to compute
ż 1

´1

a

1´ x2dx

We make a change of variables x “ sin t so that dx “ dpsin tq “ cos tdt. Note that

x “ ´1ñ t “ ´
π

2
, x “ 1ñ t “

π

2
,

and cos t ą 0 when t P p´π
2 ,

π
2 q. Hence

a

1´ x2 “
a

1´ sin2 t “
?
cos2 t “ cos t, ´

π

2
ď t ď

π

2
.

We deduce
ż 1

´1

a

1´ x2dx
p9.6.21q
“

ż π
2

´π
2

cos2 tdt “

ż π
2

´π
2

1` cos 2t

2
dt

“
1

2

´π

2
`
π

2

¯

`
1

2

ż π
2

´π
2

cos 2tdt “
π

2
`

1

2

ż π
2

´π
2

cos 2tdt.

To compute the last integral we use the change in variables u “ 2t so that dt “ 1
2du,

t “ ´
π

2
ñ u “ ´π, t “

π

2
ñ u “ π.

Hence
ż π

2

´π
2

cos 2t dt “
1

2

ż π

´π
cosu du “

1

2

`

sinπ ´ sinp´πq
˘

“ 0.

We conclude that
ż 1

´1

a

1´ x2dx “
π

2
. (9.6.24)

Let us observe that this equality provides a way of approximating π
2 by using Riemann

sums to approximate the integral in the left-hand side. If we use the uniform partition
U200 of order 200 of r´1, 1s and as sample ξ the right endpoints of the intervals of the
partition, then we deduce

π « 2S
`

a

1´ x2,U200, ξ
˘

« 3.14041.....

If we use the uniform partition of order 2, 000 and a similar sample, then we deduce

π « 2S
`

a

1´ x2,U2,000, ξ
˘

« 3.14157.....

(d) Suppose that we want to compute the integral.
ż e

1

lnx

x
dx.
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We make the change in variables x “ et and we observe that dx “ etdt,

x “ 1ñ t “ 0, x “ eñ t “ 1.

The derivative dx
dt “ et is everywhere positive and we deduce

ż e

1

lnx

x
dx

p9.6.21q
“

ż 1

0

ln et

et
etdt “

ż 1

0
tdt “

t2

2

ˇ

ˇ

ˇ

t“1

t“0
“

1

2
. [\

Example 9.6.16 (Stirling’s formula). In many applications we need to have a simpler
way of understanding the size of n! for n very large. This is what Stirling’s formula
accomplishes.

More precisely we want to prove the refined inequalities

1 ă
n!

nne´n
?
2πn

ă 1`
1

4n
, @n P N . (9.6.25)

The inequalities (9.6.25) imply the classical Stirling formula

n! „
?
2πn

´n

e

¯n
as nÑ8 , (9.6.26)

where we recall that the notation xn „ yn as n Ñ 8 (read xn is asymptotic to yn as
nÑ8) signifies

lim
nÑ8

xn
yn
“ 1.

To prove the inequalities (9.6.25) we follow the very nice approach in [12, §2.6].
We set

Fn :“ lnn! “ lnp1q ` lnp2q ` ¨ ¨ ¨ ` lnpnq “ lnp2q ` ¨ ¨ ¨ ` lnpnq

and we aim to find accurate approximations for Fn. We will find these by providing rather
sharp approximations for the integral

In :“

ż n

1
lnxdx “

`

x lnx´ x
˘

ˇ

ˇ

ˇ

x“n

x“1
“ n lnn´ n` 1.

To see why such an integral might be relevant observe that

ln
´n

e

¯n
“ n lnn´ n.
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x

y

1 2 n3

RR R2 3 n

Figure 9.6. Computing the area underneath lnx, x P r1, ns.

Observe that In is the area below the graph of lnx and above the interval r1, ns on
the x axis. For k “, 2, 3, . . . , n we denote by Rk the region below the graph of lnx and
above the interval rk ´ 1, ks on the x-axis; see Figure 9.6. Then

In “ Area pR2q ` ¨ ¨ ¨ `Area pRnq.

We will provide lower and upper estimates for In by producing lower and upper estimates
for the areas of the regions Rk. To produce these bounds for the area of Rk we will take
adavantage of the fact that lnx is concave so its graph lies above any chord and below
any tangent.

Denote by pk the point on the graph of lnx corresponding to x “ k, i.e., pk “ pk, ln kq.
Due to the concavity of lnx the region Rk contains the trapezoid Ak determined by the
chord connecting the points pk´1 and pk; see Figure 9.7.

Denote by qk the point on the graph of lnx above the midpoint of the interval rk´1, ks,
i.e., qk “ pk ´ 1{2, lnpk ´ 1{2q q. The tangent to the graph of lnx at qk determines a
trapezoid Bk that contains the region Rk Hence

Area pRkq ´Area pAkq
looooooooooooomooooooooooooon

“:sk

ă Area pBkq ´Area pAkq.

Hence

In “
n
ÿ

k“2

Area pRkq “
n
ÿ

k“2

Area pAkq `
n
ÿ

k“2

sk
loomoon

“:Sn

. (9.6.27)

Observe that

Area pAkq “
1

2

`

lnpk ´ 1q ` ln k
˘

,
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k-1 kk-1/2

A

Bk

k k

k

p

p

q

k-1

Figure 9.7. Approximating the region Rk by trapezoids.

so

Area pA2q ` ¨ ¨ ¨ `Area pAnq “
1

2
log 2`

1

2

`

ln 2` ln 3
˘

` ¨ ¨ ¨ `
1

2

`

lnpn´ 1q ` lnn
˘

“ ln 2` ln 3` ¨ ¨ ¨ ` lnn´
1

2
lnn “ lnn!´

1

2
lnn.

Using this in (9.6.27) we deduce

In `
1

2
lnn “ lnn!` Sn,

Recalling that In “ n lnn´ n` 1 we deduce

n lnn´ n`
1

2
lnn` 1´ Sn “ lnn!,

or, equivalently

n! “ Cn
?
n
´n

e

¯n
, Cn “ e1´Sn . (9.6.28)

To progress further we need to gain some information about Sn. Observing that

Area pBkq “ ln

ˆ

k ´
1

2

˙

we deduce

sk ă Area pBkq ´Area pAkq “ ln

ˆ

k ´
1

2

˙

´
1

2

`

lnpk ´ 1q ` ln k
˘

“
1

2
ln

˜

k ´ 1
2

k ´ 1

¸

´
1

2
ln

˜

k

k ´ 1
2

¸

“
1

2
ln

ˆ

1`
1

2k ´ 2

˙

´
1

2
ln

ˆ

1`
1

2k ´ 1

˙
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ă
1

2
ln

ˆ

1`
1

2k ´ 2

˙

´
1

2
ln

ˆ

1`
1

2k

˙

We deduce

Sn “
n
ÿ

k“2

sk ă
1

2

n
ÿ

k“2

ˆ

ln

ˆ

1`
1

2k ´ 2

˙

´
1

2
ln

ˆ

1`
1

2k

˙˙

(the last sum is a telescoping sum)

“
1

2
ln

ˆ

1`
1

2

˙

´
1

2
ln

ˆ

1`
1

2n

˙

ă
1

2
ln

3

2
.

This shows that the sequence Sn is bounded above. Since this sequence is obviously
increasing, we deduce that pSnq is convergent. We denote by S its limit. Since the sequence
Sn is increasing, the sequence Cn “ e1´Sn is decreasing and converges to C “ e1´S . Using
this in(9.6.28) we deduce

n! “ Cn
?
n
´n

e

¯n
ą C

?
n
´n

e

¯n
. (9.6.29)

Observe next that
Cn
C
“ eS´Sn

and

S ´ Sn “
ÿ

kąn

sk ă
1

2

ÿ

kąn

ˆ

ln

ˆ

1`
1

2k ´ 2

˙

´
1

2
ln

ˆ

1`
1

2k

˙˙

“
1

2
ln

ˆ

1`
1

2n

˙

“ ln

ˆ

1`
1

2n

˙
1
2

Hence

Cn
C
ă

ˆ

1`
1

2k

˙
1
2

ă 1`
1

4n
ñ Cn ă C

ˆ

1`
1

4n

˙

.

We deduce

C
?
n
´n

e

¯n
ă n! “ Cn

?
n
´n

e

¯n
ă C

ˆ

1`
1

4n

˙

?
n
´n

e

¯n
. (9.6.30)

It remains to determine the constant C. We set

Pn :“
?
n
´n

e

¯n
.

From (9.6.30) we deduce

n! „ CPn as nÑ8. (9.6.31)

To obtain C from the above equality we rely on Wallis’ formula (9.6.17) which states that

π

2
“ lim

nÑ8

2242 ¨ ¨ ¨ p2nq2

1232 ¨ ¨ ¨ p2n´ 1q2
¨
1

2n
.

Now observe that

2242 ¨ ¨ ¨ p2nq2

1232 ¨ ¨ ¨ p2n´ 1q2
¨
1

2n
“

pn!q222n

1232 ¨ ¨ ¨ p2n´ 1q2
¨
1

2n
“

pn!q424n

p p2nq! q2p2nq
.
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Hence
c

π

2
“ lim

nÑ8

pn!q222n

p2nq!
?
2n
,

i.e.,

?
π “ lim

nÑ8

pn!q222n

p2nq!
?
n
“ lim

nÑ8

C2P 2
n2

2n

CP2n
?
n
¨

`

n!
CPn

˘2
22n

p2nq!
CP2n

p9.6.31q
“ lim

nÑ8

C2P 2
n2

2n

CP2n
?
n
“ C lim

nÑ8

P 2
n2

2n

P2n
?
n
.

Now observe that

Pn “
?
n
´n

e

¯n
ñ P 2

n “
n2n`1

e2n
, P2n “

?
2n
p2nq2n

e2n
“ 22n

?
2n
n2n

e2n
,

and thus

P 2
n2

2n

P2n
?
n
“

22n n
2n`1

e2n

22n
?
2n ¨ n

2n

e2n
¨
?
n
“

1
?
2
.

Hence
?
π “ C lim

nÑ8

P2n
?
n

22nP 2
n

“
C
?
2
ñ C “

?
2π.

The inequalities (9.6.30) with C “
?
2π are precisely the inequalities (9.6.25) that we

wanted to prove. [\

9.7. Improper integrals

The Riemann integral is an operation defined for certain bounded functions defined on
bounded intervals. Sometimes, even when one or both of these boundedness requirements
are violated we can still give a meaning to an integral. Before we proceed with rigorous
definitions it is helpful to look at some guiding examples.

Example 9.7.1. (a) Let α P p0, 1q and consider the function

f : p0, 1s Ñ R, fpxq “
1

xα
.

This function is continuous on p0, 1s, but it is not bounded on this interval because

lim
xÑ0`

1

xα
“ 8.

It is however continuous on any compact interval rε, 1s and so it is Riemann integrable on
such an interval. Note that

ż 1

ε
x´αdx “

x1´α

1´ α

ˇ

ˇ

ˇ

1

ε
“

1

1´ α
p1´ ε1´αq.

Since 1´ α ą 0 we deduce that ε1´α Ñ 0 as εŒ 0 and thus

lim
εŒ0

ż 1

ε
x´αdx “

1

1´ α
.
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We can define the improper Riemann integral of x´α over r0, 1s to be
ż 1

0
x´αdx :“ lim

εŒ0

ż 1

ε
x´αdx “

1

1´ α
.

(b) Let p ą 1 and consider the function g : r1,8q Ñ R, gpxq “ 1
xp . The function g is

bounded

0 ă gpxq ď 1, @x ě 1

but it is defined on the unbounded interval r1,8q. It is integrable on any interval r1, Ls
and we have

ż L

1
x´pdx “

x1´p

1´ p

ˇ

ˇ

ˇ

L

1
“

1

1´ p
pL1´p ´ 1q.

Since 1´ p ă 0 we deduce that L1´p Ñ 0 as LÑ8 and thus

lim
LÑ8

ż L

1
x´pdx “ ´

1

1´ p
“

1

p´ 1
.

We define the improper Riemann integral of x´p over r1,8q to be
ż 8

1
x´pdx :“ lim

LÑ8

ż L

1
x´pdx “

1

p´ 1
. [\

The above examples gave meaning to integrals of functions that are not defined on
compact intervals. Such integrals are called improper.

Definition 9.7.2 (Improper integrals). (a) Let ´8 ă a ă ω ď 8. Given a function
f : ra, ωq Ñ R we say that the improper integral

ż ω

a
fpxq dx

is convergent if

‚ the restriction of f to any interval ra, xs Ă ra, ωq is Riemann integrable and,

‚ the limit

lim
xÕω

ż x

a
fptq dt

exists and it is finite.

When these happen we set
ż ω

a
fpxqdx :“ lim

xÕω

ż x

a
fptq dt.

(b) Let ´8 ď ω ă b ă 8 . Given a function f : pω, bs Ñ R we say that the improper
integral

ż b

ω
fpxqdx

is convergent if
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‚ the restriction of f to any interval rx, bs Ă pω, bs is Riemann integrable and

‚ the limit

lim
xŒω

ż b

x
fptq dt

exists and it is finite.

When these happen we set
ż b

ω
fpxqdx :“ lim

xŒω

ż b

x
fptq dt. [\

Remark 9.7.3. (a) We can rephrase the conclusion of Example 9.7.1(a) by saying that
the integral

ż 1

0

1

xα
dx

is convergent if α P p0, 1q. Example 9.7.1(b) shows that the integral
ż 8

1

1

xp
dx

is convergent if p ą 1.

(b) In the sequel, in order to keep the presentation within bearable limits, we will state
and prove results only for the improper integrals of type (a) in Definition 9.7.2. These
involve functions that have a “problem” at the upper endpoint ω of their domain: either
that endpoint is infinite, or the function “explodes” as x approaches ω.

These results have obvious counterparts for the integrals of type (b) in Definition 9.7.2
that involve functions that have a “problem” at the lower endpoint of their domain. Their
statements and proofs closely mimic the corresponding ones for type (a) integrals. [\

Example 9.7.4. For any a, b P R, a ă b, the improper integrals
ż b

a

1

px´ aqα
dx,

ż b

a

1

pb´ xqα
dx

are convergent for α ă 1 and divergent if α ě 1. Indeed, if α ‰ 1 we have
ż b

a`ε

1

px´ aqα
dx “

1

1´ α
px´ aq1´α

ˇ

ˇ

ˇ

a“b

x“a`ε
“

1

1´ α

`

pb´ aq1´α ´ ε1´α
˘

,

If α “ 1 we have
ż b

a`ε

1

px´ aq
dx “ lnpx´ aq

ˇ

ˇ

ˇ

x“b

x“a`ε
“ lnpb´ aq ´ ln ε.

These computations show that

lim
εŒ0

ż b

a`ε

1

px´ aqα
dx “

#

1
1´αpb´ aq

1´α, α ă 1,

8, α ě 1.
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The convergence of the integral
ż b

a

1

pb´ xqα
dx

is analyzed in a similar fashion.

(b) The integral
ż 8

1

1

xp
dx, p P R.

is convergent for p ą 1 and divergent if p ď 1.

Indeed, if p ‰ 1, then
ż L

1
x´pdx “

1

1´ p
x1´p

ˇ

ˇ

ˇ

x“L

x“1
“

1

1´ p

`

L1´p ´ 1
˘

.

Now observe that

lim
LÑ8

L1´p “

#

0, p ą 1,

8, p ă 1.

When p “ 1, we have
ż L

1

1

x
dx “ lnLÑ8 as LÑ8.

Similarly, the integral
ż ´1

´8

1

|x|p
dx

converges for p ą 1 and diverges for p ď 1. [\

We have the following immediate result whose proof is left to you as an exercise.

Proposition 9.7.5. Let ´8 ă a ă ω ď 8 and f1, f2 : ra, ωq Ñ R be functions that are
Riemann integrable on each of the intervals ra, xs, x P pa, ωq.

(a) If t1, t2 P R, and the improper integrals
ż ω

a
fipxqdx, i “ 1, 2

are convergent, then the integral
ż ω

a

`

t1f1pxq ` t2f2pxq
˘

dx

is convergent, and
ż ω

a

`

t1f1pxq ` t2f2pxq
˘

dx “ t1

ż ω

a
f1pxqdx` t2

ż ω

a
f2pxqdx.

(b) Let b P pa, ωq. The improper integral
ż ω

a
f1pxqdx
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is convergent if and only if the improper integral
ż ω

b
f1pxqdx

is convergent. Moreover, when these integrals are convergent we have
ż ω

a
f1pxqdx “

ż b

a
f1pxqdx`

ż ω

b
f1pxqdx. (9.7.1)

[\

Theorem 9.7.6 (Cauchy). Let ´8 ă a ă ω ď 8 and suppose that f : ra, ωq Ñ R is a
function which is Riemann integrable on each of the intervals ra, xs Ă ra, ωq. Then the
following statements are equivalent.

(i) The integral
şω
a fptqdt is convergent.

(ii) For any ε ą 0 there exists c “ cpεq P pa, ωq such that

@x, y : x, y P pcpεq, ωq ñ

ˇ

ˇ

ˇ

ˇ

ż y

x
fptqdt

ˇ

ˇ

ˇ

ˇ

ă ε.

Proof. We set

Ipxq :“

ż x

a
fptqdt, @x P ra, ωq.

(i) ñ (ii). We know that the limit

Iω :“ lim
xÑω

Ipxq

exists and it is finite. Let ε ą 0. There exists c “ cpεq P ra, ωq such that

@x, y : x, y P pc, ωq ñ |Ipxq ´ Iω| ă
ε

2
and |Ipyq ´ Iω| ă

ε

2
.

Observe that for any x, y P pc, ωq we have
ˇ

ˇ

ˇ

ˇ

ż y

x
fptqdt

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ Ipyq ´ Ipxq
ˇ

ˇ ď
ˇ

ˇ Ipyq ´ Iω
ˇ

ˇ`
ˇ

ˇ Iω ´ Ipxq
ˇ

ˇ ă ε.

This proves (ii).

(ii) ñ (i). We know that for any ε ą 0 there exists c “ cpεq P ra, ωq such that

@x ă y : x, y P p cpεq, ω q ñ

ˇ

ˇ

ˇ

ˇ

ż y

x
fptqdt

ˇ

ˇ

ˇ

ˇ

ă
ε

2
. (9.7.2)

Choose a sequence pxnq in ra, ωq such that

lim
n
xn “ ω.

We deduce that for any ε ą 0 there exists N “ Npεq such that

@n : n ą Npεq ñ xn P p cpεq, ωq.
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Hence, for any m,n ą Npεq we have

|Ipxmq ´ Ipxnq| ă
ε

2
ă ε, @m,n ą Npεq (9.7.3)

proving that the sequence pIpxnqq is Cauchy, thus convergent. Set

J :“ lim
n
Ipxnq.

We will show that

lim
xÑω

Ipxq “ J.

Letting mÑ8 in (9.7.3) we deduce that for any ε ą 0 and any n ą Npεq we have

xn P p cpεq, ωq and |J ´ Ipxnq| ď
ε

2
. (9.7.4)

Let x P p cpεq, ωq and n ą Npε{2q. Then x, xn P p cpεq, ωq and (9.7.2) implies that

|Ipxnq ´ Ipxq| ă
ε

2
(9.7.5)

We deduce

|Ipxq ´ J | ď | Ipxq ´ Ipxnq | ` | Ipxnq ´ J |
p9.7.4q,p9.7.5q

ă ε, @x P pcpεq, ωq.

This proves (i). [\

Corollary 9.7.7 (Comparison Principle). Let ´8 ă a ă ω ď 8 and suppose that
f, g : ra, ωq Ñ R are two real functions satisfying the following properties.

(i) For any x P ra, ωq the restrictions of f, g to ra, xs are Riemann integrable.

(ii) Db P ra, ωq, such that 0 ď fpxq ď gpxq, @x P rb, ωq.

Then
ż ω

a
gpxqdx is convergent ñ

ż ω

a
fpxqdx is convergent.

Proof. Since the improper integral
ż ω

a
gpxqdx

is convergent we deduce from Proposition 9.7.5(b) that the integral
ż ω

b
gpxqdx

is also convergent. Theorem 9.7.6 shows that for any ε ą 0 there exists cpεq P rb, ωq such
that

@x ă y : x, y P pcpεq, ωq ñ

ż y

x
gptqdt “

ˇ

ˇ

ˇ

ˇ

ż y

x
gptqdt

ˇ

ˇ

ˇ

ˇ

ă ε.
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Using the assumption (i) we deduce that

@x ă y : x, y P pcpεq, ωq ñ

ˇ

ˇ

ˇ

ˇ

ż y

x
fptqdt

ˇ

ˇ

ˇ

ˇ

“

ż y

x
fptqdt ď

ż y

x
gptqdt.

We can invoke Theorem 9.7.6 to conclude that the integral
ż ω

b
fpxqdx

is convergent. Proposition 9.7.5(b) now implies that
ż ω

a
fpxqdx

is convergent. [\

Remark 9.7.8. Using the logical tautology

pñ q ÐÑ ␣q ñ ␣p,

we see that if f and g are as in Corollary 9.7.7, then
ż ω

a
fpxqdx is divergent ñ

ż ω

a
gpxqdx is divergent. [\

Corollary 9.7.9. Let ´8 ă a ă ω ď 8 and suppose that f, g : ra, ωq Ñ R are two real
functions satisfying the following properties.

(i) Db P ra, ωq, such that fpxq ě 0 and gpxq ą 0, @x P rb, ωq.

(ii) There exists C ě 0 such that

lim
xÑω

fpxq

gpxq
“ C.

(iii) For any x P ra, ωq the restrictions of f and g to ra, xs are Riemann integrable.

Then
ż ω

a
gpxqdx is convergent ñ

ż ω

a
fpxqdx is convergent.

Proof. The integral
ż ω

a
pC ` 1qgpxqdx

is convergent.

The assumption (ii) implies that there exists b0 P pb, ωq such that

fpxq ă pC ` 1qgpxq, @x P pb0, ωq.

We can now invoke Corollary 9.7.7 to reach the desired conclusion. [\



9.7. Improper integrals 293

Example 9.7.10. (a) Consider the continuous function

f : r1,8q Ñ R, fpxq “
x` 2

4x3 ` 3x2 ` 2x` 1

Note that fpxq ě 0 for any x P r1,8q. To decide the convergence of the integral
ż 8

1
fpxqdx

we compare fpxq with the function g : r1,8q Ñ R, gpxq “ 1
x2
. Observe that

fpxq

gpxq
“

x3 ` 2x2

4x3 ` 3x2 ` 2x` 1
Ñ

1

4
as xÑ8

Since
ż 8

1

1

x2
dx

is convergent we deduce from Corollary 9.7.9 that the integral
ż 8

1
fpxqdx

is also convergent.

(b) Consider the function

f : p0, 1s Ñ R, fpxq “
sin
?
x

x
.

Note that

lim
xŒ0

fpxq “ lim
xŒ0

sin
?
x

?
x

1
?
x
“ 8.

In particular, fpxq ą 0 for x ą 0 small. Since

fpxq
1?
x

“
sin
?
x

?
x

Ñ 1 as xŒ 0

and the improper integral
ż 1

0

1
?
x
dx

is convergent, we deduce from Corollary 9.7.9 that the improper integral
ş1
0 fpxqdx is also

convergent.

(c) Consider the function f : r0,8q Ñ R, fpxq “ xe´x
2
. Note that fpxq ě 0, @x and

fpxq
1
x2

“ x3e´x
2
“

x2

ex2
Ñ 0 as xÑ8.

Thus the integral
ż 8

0
xe´x

2
dx
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is convergent. To evaluate this integral we begin by evaluating the integrals
ż L

0
xe´x

2
dx

where LÑ8. We use the change in variables u “ x2 so that du “ 2xdx

x “ 0ñ u “ 0, x “ Lñ u “ L2

and we deduce
ż L

0
xe´x

2
dx “

1

2

ż L

0
e´x

2
p2xdxq “

1

2

ż L2

0
e´udu “

1

2

´

´e´u
¯ˇ

ˇ

ˇ

u“L2

u“0
“

1

2
p1´ e´L

2
q.

Now observe that

lim
LÑ8

1

2
p1´ e´L

2
q “

1

2
,

so that
ż 8

0
xe´x

2
dx “

1

2
.

So far we have investigated improper integrals of function that had a problem at ω, one
of the endpoints of its domain: either ω “ 8, or the function “explodes” as it approaches
ω. Sometime we need to deal with functions that have problems at both endpoints of its
domain. The next example explains how to proceed in this case.

(d) Consider the function

f : p´1, 1q Ñ R, fpxq “
1

a

p1´ x2q
.

To decide the convergence of the integral
ż 1

´1
fpxqdx,

we must first locate the sources of the possible problems. We note that fpxq “explodes”
as xÑ ˘1, i.e.,

lim
xÑ˘1

fpxq “ 8.

We split the integral into two parts,

I´1 “

ż 0

´1
fpxqdx, I1 “

ż 1

0
fpxqdx.

Each of the above integrals has only one problem point and, if both integrals are conver-
gent, then the original integral will be convergent if and only if both integrals above are
convergent and, when this happens, we have

ż 1

´1
fpxqdx “

ż 0

´1
fpxqdx`

ż 1

0
fpxqdx.

Now observe that

fpxq “
1

a

p1´ xqp1` xq
.
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The term p1´ xq is responsible for the bad behavior near x “ 1, while the term p1` xq is
responsible for the bad behavior near x “ ´1.

From Example 9.7.4 we deduce that both integrals
ż 0

´1

1
?
1` x

dx,

ż 1

0

1
?
1´ x

are convergent. Observe next that

lim
xÑ´1

fpxq
1?
1`x

“ lim
xÑ´1

1?
p1´xqp1`xq

1?
1`x

“ lim
xÑ´1

1
?
1´ x

“
1
?
2
,

lim
xÑ1

fpxq
1?
1´x

“ lim
xÑ1

1?
p1´xqp1`xq

1?
1´x

“ lim
xÑ1

1
?
1` x

“
1
?
2
.

Using Corollary 9.7.9 we now deduce that both integrals I˘1 are convergent. In particular,
we deduce that the improper integral

ż 1

´1
fpxqdx

is convergent. We can actually compute it. Let ´1 ă a ă 0 ă b ă 1. We have
ż b

a

1
?
1´ x2

dx “ arcsinx
ˇ

ˇ

ˇ

x“b

x“a
“ arcsin b´ arcsin a.

Note that

lim
bÕ1

arcsin b “ arcsin 1 “
π

2
, lim
aŒ´1

arcsin a “ arcsinp´1q “ ´
π

2

so that
ż 1

´1

1
?
1´ x2

dx “
π

2
´

´

´
π

2

¯

“ π. (9.7.6)

Definition 9.7.11. Let ´8 ă a ă ω ď 8 and f : ra, ωq Ñ R a function that is Riemann
integrable on any interval ra, xs, x P pa, ωq. We say that the improper integral

ż ω

a
fpxqdx

is absolutely convergent if the improper integral
ż ω

a
|fpxq|dx

is convergent. [\

The next result is very similar to Theorem 4.6.13.
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Proposition 9.7.12. Let ´8 ă a ă ω ď 8 and f : ra, ωq Ñ R a function that is
Riemann integrable on any interval ra, xs, x P pa, ωq. Then

ż ω

a
fpxqdx absolutely convergent ñ

ż ω

a
fpxqdx convergent.

Proof. We rely on Cauchy’s Theorem 9.7.6. Since the integral
ż ω

a
|fpxq|dx

is convergent we deduce from Cauchy’s theorem that for any ε ą 0 there exists cpεq P pa, ωq
such that

@x, y; x, y P pcpεq, ωq ñ

ˇ

ˇ

ˇ

ˇ

ż y

x
|fptqq|dt

ˇ

ˇ

ˇ

ˇ

ă ε.

On the other hand, (9.5.1) shows that
ˇ

ˇ

ˇ

ˇ

ż y

x
fptqdt

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż y

x
|fptq|dt

ˇ

ˇ

ˇ

ˇ

and we deduce that

@x, y, x, y P pcpεq, ωq ñ

ˇ

ˇ

ˇ

ˇ

ż y

x
fptqqdt

ˇ

ˇ

ˇ

ˇ

ă ε.

Cauchy’s theorem now implies that
ż ω

a
fpxqdx

is convergent. [\

The comparison principle Corollary 9.7.7 yields a comparison principle involving ab-
solute convergence.

Corollary 9.7.13 (Comparison Principle). Let ´8 ă a ă ω ď 8 and suppose that
f, g : ra, ωq Ñ R are two real functions satisfying the following properties.

(i) Db P ra, ωq, such that |fpxq| ď |gpxq|, @x P rb, ωq.

(ii) For any x P ra, ωq the restrictions of f, g to ra, xs are Riemann integrable.

Then
ż ω

a
gpxqdx is absolutely convergent ñ

ż ω

a
fpxqdx is absolutely convergent. [\

Example 9.7.14. Consider the function

f : r1,8q Ñ R, fpxq “
sinx

x2
.
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Note that

|fpxq| ď
1

x2
, @x ě 1

and since
ş8

1
1
x2
dx is convergent we deduce that

ş8

a fpxqdx is absolutely convergent. [\

9.7.1. Euler’s Gamma function. For every x ą 0 we set

Γpxq :“

ż 8

0
tx´1e´tdt . (9.7.7)

For each fixed x ą 0 this improper integral is convergent. To see this we split the above
integral into two parts

I0 “

ż 1

0
tx´1e´tdt, I8 “

ż 8

1
tx´1e´tdt.

To prove the convergence of I0 we observe that

0 ă tx´1e´t ď tx´1 @t P p0, 1s.

Since x´ 1 ą ´1 the improper integral
ż 1

0
tx´1dt

is convergent. The Comparison Principle then implies that I0 is also convergent.

To prove the convergence of I8 we observe that and as t Ñ 8 the function tx´1e´t

decays to zero faster, than any power t´n, n P N. In particular

lim
tÑ8

tx´1e´t

t´2
dt “ 0.

Since the integral
ż 8

1
t´2dt

is convergent we deduce from the Comparison Principle that I8 is convergent as well.

The resulting function
p0,8q Q x ÞÑ Γpxq P p0,8q

is called Euler’s Gamma function

Observe that

Γp1q “

ż 8

0
e´tdt “

`

´e´t
˘

ˇ

ˇ

ˇ

t“8

t“0
“ 1, (9.7.8)

and, for x ą 0,

Γpx` 1q “

ż 8

0
txe´tdt “ ´

ż 8

0
txdpe´tq “ ´

`

txe´t
˘

ˇ

ˇ

ˇ

8

t“0
looooomooooon

“0

`x

ż 8

0
tx´1e´tdt

looooooomooooooon

“Γpxq

“ xΓpxq.

so that
Γpx` 1q “ xΓpxq, @x ą 0. (9.7.9)
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From (9.7.8) and (9.7.9) we deduce inductively

Γp2q “ 1Γp1q “ 1, Γp3q “ 2Γp2q “ 2, Γp4q “ 3Γp3q “ 3 ¨ 2 “ 3!, . . . ,

Γpnq “ pn´ 1q!, @n P N. (9.7.10)

Fix λ ą 0. In the definition

Γpxq “

ż 8

0
tx´1e´tdt

we make the change of variables t “ λs we deduce

Γpxq “

ż 8

0
λx´1sx´1e´λsλds “ λx

ż 8

0
sx´1e´λsds,

so that
Γpxq

λx
“

ż 8

0
sx´1e´λsds, @x, λ ą 0. (9.7.11)

9.8. Length, area and volume

The concept of integral is involved in the definition of important geometric quantities such
length, area and volume. Their definition in the most general context is quite involved
and we restrict ourselves to special cases that still have a wide range of applications.

9.8.1. Length. We will define the length of special curves in the plane, namely the curves
defined by the graphs of differentiable functions.

Definition 9.8.1. Suppose that ´8 ď a ă b ď 8 and f : pa, bq Ñ R is a C1-function.
We say that its graph has finite length if the integral

ż b

a

a

1` f 1pxq2dx

is convergent. The value of this integral is then declared to be the length of the graph Γf
of f . We write this

lengthpΓf q

ż b

a

a

1` f 1pxq2dx. (9.8.1)

[\

Here is the intuition behind the definition. If we are located at the point px0, y0q “ px0, fpx0qq
on the graph of f and we move a tiny bit, from x0 to x0 ` dx, then the rise, that is the
change in altitude is

dy “
dy

dx
¨ dx “ f 1px0qdx.

The Pythagorean theorem then shows that the distance covered along the graph is ap-
proximately

a

dx2 ` dy2 “
a

dx2 ` f 1px0q2dx2 “
a

1` f 1px0q2 dx.
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The total distance traveled along the graph, i.e., the length of the trip is obtained by
summing all these infinitesimal distances

ż b

a

a

1` f 1pxq2 dx.

The next examples support the validity of the proposed formula for the length.

Example 9.8.2. Consider two points in the plane, P1 with coordinates px1, y1q and P2

with coordinates px2, y2q. Assume moreover that x1 ă x2; see Figure 9.8. We want to
compute the length |P1P2| of the line segment connecting P1 to P2.

P

P

x x x

y

y

y

1
1

1

22

2

Q

Figure 9.8. Computing the length of a line segment.

Pythagoras’ theorem shows that

|P1P2|
2 “ |P1Q|

2 ` |QP2|
2 “ px2 ´ x1q

2 ` py2 ´ y1q
2. (9.8.2)

Let us show that the formula proposed in Definition 9.8.1 yields the same result.

The line determined by the points P1, P2 has slope

m :“
y2 ´ y1
x2 ´ x1

,

and thus it is described by the equation

y “ mpx´ x1q ` y1.

In other words, the line segment is the graph of the linear function

f : rx1, x2s Ñ R, fpxq “ mpx´ x1q ` y1.
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Note that f 1pxq “ m, @x P rx1, x2s, and according to Definition 9.8.1, we have

|P1P2| “

ż x2

x1

a

1` f 1pxq2dx “

ż x2

x1

a

1`m2dx “
a

1`m2px2 ´ x1q.

Hence

|P1P2|
2 “ p1`m2qpx2 ´ x1q

2 “

ˆ

1`
py2 ´ y1q

2

px2 ´ x1q2

˙

px2 ´ x1q
2 “ px2 ´ x1q

2 ` py2 ´ y1q
2.

This agrees with the Pythagorean prediction (9.8.2). [\

Example 9.8.3. Consider the function

f : p´1, 1q Ñ R, fpxq “
a

1´ x2.

The graph of this function is the upper half-circle of radius 1 centered at the origin; see
Figure 9.9. Indeed, a point px, yq on this circle satisfies

x2 ` y2 “ 1, y ě 0ðñ y “
a

1´ x2.

(x,y)

Figure 9.9. Computing the length of a half-circle.

The function fpxq is differentiable on p´1, 1q and we have

f 1pxq “ ´
x

?
1´ x2

, 1` f 1pxq2 “ 1`
x2

1´ x2
“

1

1´ x2
, @x P p´1, 1q. (9.8.3)

Hence the length of this semi-circle is
ż 1

´1

1
?
1´ x2

dx
p9.7.6q
“ π. [\

We can define the length of more complicated curves.
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Definition 9.8.4. Let ´8 ă a ă b ď 8. A continuous function pa, bq Ñ R is called
piecewise C1 if there exist points x1, . . . , xn P pa, bq such that

a ă x1 ă x2 ă ¨ ¨ ¨ ă xn ă b

and the function f is C1 on each of the subintervals

pa, x1q, px1, x2q, . . . , pxn, bq.

The length of its graph is then given by
ż x1

a

a

1` f 1pxq2 dx`

ż x2

x1

a

1` f 1pxq2 dx` ¨ ¨ ¨ `

ż b

xn

a

1` f 1pxq2 dx.

Above, some of the integrals could be improper and for the length to be finite these
integrals have to be convergent. [\

9.8.2. Area. A region D of the Cartesian plane R2 is said to be of simple type with
respect to the x-axis if there exists an interval I and functions

F,C : I Ñ R

such that

F pxq ď Cpxq, @x P I,

and

px, yq P D ðñ x P I ^ F pxq ď y ď Cpxq.

The function F is called the floor of the region D, while the function C is called the ceiling
of the region; see Figure 9.10

C

F

D

Figure 9.10. A planar region of simple type with respect to the x-axis.
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The area of the region D is given by the improper integral

Area pDq :“

ż

I

`

Cpxq ´ F pxq
˘

dx,

whenever this integral is well defined3 and convergent.

A region D of the cartesian plane R2 is said to be of simple type with respect to the
y-axis if there exists an interval J and functions

L,R : J Ñ R

such that

Lpyq ď Rpyq, @y P J

and

px, yq P Rðñ y P J ^ Lpyq ď x ď Rpyq.

The function L is called the left wall of the region D, while the function R is called the
right wall of the region; see Figure 9.11.

Figure 9.11. A planar region of simple type with respect to the y-axis, sin y ď x ď y, 0 ď y ď 3.

The area of the region D is given by the improper integral

Area pDq :“

ż

J

`

Rpyq ´ Lpyq
˘

dy,

whenever this integral is well defined

3The integral is well defined if the function Cpxq ´ F pxq is Riemann integrable on any compact interval

rα, βs Ă pa, bq.
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Remark 9.8.5. (a) We swept under the rug a rather subtle fact. A region in the plane
can be simultaneously simple type with respect to the x-axis, and simple type with respect
to the y-axis. In such situations there are two possible ways of computing the area and
they’d better produce the same result. This is indeed the case, but the proof in general is
quite complicated, and the best approach relies on the concept of multiple integrals.

To see that this is not merely a theoretical possibility, consider the region (see Figure
9.12)

R “
␣

px, yq P R2; x P r0, 1s, x2 ď y ď x
(

.

The above description shows that R is a region of simple type with respect to the x-axis.
However, R can be given the alternate description as a region of simple type with respect
to the y-axis,

R “
␣

px, tq P R2; y P r0, 1s, y ď x ď
?
y
(

.

Figure 9.12. A planar region that simple type with respect to both axes: x2
ď y ď x, 0 ď x ď 1.

If we use the first description we deduce

Area pRq “

ż 1

0
px´ x2qdx “

´x2

2
´
x3

3

¯ˇ

ˇ

ˇ

x“1

x“0
“

1

2
´

1

3
“

1

6
.

If we use the second description we deduce

Area pRq “

ż 1

0
p
?
y ´ yqdy “

´2x3{2

3
´
x2

2

¯
ˇ

ˇ

ˇ

x“1

x“0
“

2

3
´

1

2
“

1

6
.

Many regions in the plane decompose into finitely many simple type regions that have
overlaps only along boundary curves. For such a region, the area is defined as the sum of
the areas of the simple-type sub-regions it decomposes into. This raises an even trickier
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question: why is the answer independent of the procedure we use to decompose the region
into simple-type sub-regions? To answer this question one needs the full apparatus of
multiple integrals.

(b) Let us observe that a simple-type region can have finite area, even if it is un-
bounded. Consider for example the region between the x-axis and the graph of the func-
tion

g : r0,8q Ñ R, gpxq “ e´x.

The area of this region is
ż 8

0
e´xdx “

`

´e´x
˘

ˇ

ˇ

ˇ

8

0
“ ´e´8 ´ p´1q “ 0` 1 “ 1. [\

9.8.3. Solids of revolution. Suppose that we are given an open interval pa, bq and a
function

g : pa, bq Ñ R
called a generatrix such that gpxq ě 0, @x P pa, bq. If we rotate the graph of g about the
x-axis we get a surface of revolution Σg that surrounds a solid of revolution Sg; see Figure
9.13.

g(x)

x

y

a b

Figure 9.13. A surface of revolution.

The area of the surface of revolution Σg is given by the improper integral

areapΣgq :“ 2π

ż b

a
gpxq

a

1` g1pxq2dx , (9.8.4)
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whenever the integral is well defined. The volume of the solid of revolution Sg is given by
the improper integral

volpSgq :“ π

ż b

a
gpxq2dx , (9.8.5)

whenever the integral is well defined.

Example 9.8.6. (a) Suppose that the generatrix is the function g : p´1, 1q Ñ R,
gpxq “

?
1´ x2. Its graph is the upper half-circle of radius 1 depicted in Figure 9.9.

When we rotate this half-circle about the x-axis, the surface of revolution obtained is a
sphere Σg of radius 1 that surrounds a solid ball Sg of radius 1.

The computations in (9.8.3) show that
a

1` g1pxq2 “
1

?
1´ x2

so that
gpxq

a

1` g1pxq2 “ 1.

We deduce that the area of the unit sphere is

2π

ż 1

´1
gpxq

a

1` g1pxq2dx “ 2π P1´1 dx “ 4π.

The volume of the unit ball is

π

ż 1

´1
gpxq2dx “ π

ż 1

´1
p1´ x2qdx “ π

ˆ

x
ˇ

ˇ

ˇ

1

´1
´
x3

3

ˇ

ˇ

ˇ

1

´1

˙

“ π
´

2´
2

3

¯

“
4π

3
.

These equalities confirm the classical formulæ taught in elementary solid geometry.

(b)

h

r

Figure 9.14. A cone.

Consider the cone depicted in Figure 9.14. It is obtained by rotating a line segment
about the x-axis, more precisely, the line segment connecting the point p0, rq on the y-axis
with the point ph, 0q on the x-axis. Here h, r ą 0.
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This line segment lies on the line with slope m “ ´r{h and y-intercept r. In other
words, this line is given by the equation

gpxq “ ´
r

h
x` r.

Observe that

g1pxq “ ´
r

h
,
a

1` g1pxq2 “

?
h2 ` r2

h
,

gpxq
a

1` g1pxq2 “
h2 ` r2

h

´

´
r

h
x` r

¯

.

We deduce that the area of this cone (excluding its base) is

2π

ż h

0

?
h2 ` r2

h

´

´
r

h
x` r

¯

dx “ 2π

?
h2 ` r2

h

ż h

0

´

´
r

h
x` r

¯

dx

“ 2πr

?
h2 ` r2

h

ż h

0
dx´ 2πr

?
h2 ` r2

h2

ż h

0
xdx

“ 2πr
a

h2 ` r2 ´ πr
a

h2 ` r2 “ πr
a

h2 ` r2.

This agrees with the known formulæ in solid geometry.

The volume of the cone is

π

ż h

0

´

´
r

h
x` r

¯2
dx “

πr2

h2

ż h

0
ph´ xq2dx “

πr2

h2
ˆ
h3

3
“
πr2h

3
.

(c) Let α P p12 , 1q and consider the function

g : r1,8q Ñ R, gpxq “
1

xα
.

The surface of revolution obtained by rotating the graph of g about the x-axis has the
bugle shape in Figure 9.15

Figure 9.15. An infinite bugle.
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The volume of this bugle is

π

ż 8

1
gpxq2dx “ π

ż 8

1

1

x2α
dx.

Since 2α ą 1, the above integral is convergent and in fact

π

ż 8

1

1

x2α
dx “

π

2α´ 1
.

On the other hand, the area of the bugle is

2π lim
LÑ8

ż L

1
gpxq

a

1` g1pxq2dx ě 2π lim
LÑ8

ż L

1
gpxqdx

“ 2π lim
LÑ8

ż L

1

1

xα
dx “ 2π lim

LÑ8

´ x1´α

1´ α

¯ˇ

ˇ

ˇ

L

1
“ 8,

because α ă 1. This is surprising: you need a finite amount of water to fill the bugle, but
an infinite amount of paint if you want to paint it!!! [\
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9.9. Exercises

Exercise 9.1. Prove by induction the equality (9.1.3). [\

Exercise 9.2. Consider the function f : r0, 4s Ñ R, fpxq “ x2, and the partition

P “ p0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4q

of the interval r0, 4s.

(a) Find the mesh size }P } of P .

(b) Compute the Riemann sum Spf,P , ξq when the sample ξ consists of the right endpoints
of the subintervals of P . [\

Exercise 9.3. (a) Suppose that f, g : ra, bs Ñ R are two functions. Prove that for any
sampled partition pP , ξq of ra, bs and for any real numbers α, β we have

S
`

αf ` βg,P , ξ
˘

“ αS
`

f,P , ξ
˘

` βS
`

g,P , ξ
˘

. [\

(b) Let f : ra, bs Ñ R. Prove that the following statements are equivalent.

(i) The function f is not Riemann integrable.

(ii) There exists ε0 such that, for any n P N there exist sampled partitions pP n, ξ
nq

and pQn, ζ
nq satisfying

}P n}, }Qn} ă
1

n
and

ˇ

ˇSpf,P n, ξ
nq ´ Spf,Qn, ζ

nq
ˇ

ˇ ą ε0.

Hint. For the implication piq ñ piiq choose partitions Pn, Qn such that }Pn}, }Qn} ă
1
n

and S˚pf,Pnq Ñ S˚pfq

and Spf,Qnq Ñ S˚pfq. For the implication (ii)ñ (i) use the Riemann-Darboux theorem and the equality (9.3.5).[\

Exercise 9.4. Consider the function f : r´2, 2s Ñ R, fpxq “ x2 and the partition

P “ p´2, ´1.5, ´1 ,´0.5, 0, 0.5, 1, 1.5, 2q

of r´2, 2s.

(a) Compute the upper and lower Darboux sums S˚pf,P q, S˚pf,P q.

(b) Compute ωpf,P q. [\

Exercise 9.5. Suppose that f : r0, 1s Ñ R is a C1-function, i.e., it is differentiable on
r0, 1s and the derivative is continuous. We set

M :“ sup
xPr0,1s

|f 1pxq|.

(a) Suppose that I Ă r0, 1s is an interval of length δ. Show that

oscpf, Iq ďMδ.

(b) For n P N we denote by Un the uniform partition of order n of r0, 1s. Show that

ωpf,Unq ď
M

n
, @n P N.
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(c) Fix n P N and a sample ξ of Un. Show that
ˇ

ˇ

ˇ

ˇ

ż 1

0
fpxqdx´ Spf,Un, ξq

ˇ

ˇ

ˇ

ˇ

ď
M

n
. [\

Exercise 9.6. Let a ą 0 and assume that f : r´a, as Ñ R is a Riemann integrable
function.

(a) Prove that if f is an odd function, i.e., fp´xq “ ´fpxq, @x P r´a, as, then
ż a

´a
fpxqdx “ 0.

(b) Prove that if f is an even function, i.e., fp´xq “ fpxq, @x P r´a, as, then
ż a

´a
fpxqdx “ 2

ż a

0
fpxqdx. [\

Exercise 9.7. (a) Suppose that f, g : RÑ R are two Lipschitz functions. Show that the
composition f ˝ g is also Lipschitz.

(b) Suppose that the function g : ra, bs Ñ R is Riemann integrable and the function
f : RÑ R is Lipschitz. Prove that f ˝ g is Riemann integrable.

(c) Suppose that the function g : ra, bs Ñ R is Riemann integrable and the function
f : R Ñ R is C1, i.e., differentiable with continuous derivative. Prove that f ˝ g is
Riemann integrable. [\

Exercise 9.8. Suppose that the functions f, g : ra, bs Ñ R are Riemann integrable. Let
p, q ą 1 such that

1

p
`

1

q
“ 1.

(a) Prove that the functions |f |p and |g|q are Riemann integrable.

(b) Prove that

ż b

a
|fpxqgpxq|dx ď

ˆ
ż b

a
|fpxq|pdx

˙

1
p
ˆ
ż b

a
|gpxq|qdx

˙

1
q

.

(c) Prove that

ˆ
ż b

a
|fpxq ` gpxq|pdx

˙

1
p

ď

ˆ
ż b

a
|fpxq|pdx

˙

1
p

`

ˆ
ż b

a
|gpxq|pdx

˙

1
p

.

Hint. Approximate the integrals by Riemann sums and then use the inequalities (8.3.14) and (8.3.17). [\

Exercise 9.9. (a) Suppose that f : ra, bs Ñ R is a continuous function such that fpxq ě 0,
@x P ra, bs. Prove that

ż b

a
fpxqdx “ 0ðñfpxq “ 0, @x P ra, bs. [\
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(b) Show that for any a ă b there exists a continuous function u : R Ñ R such that
upxq ą 0, @x P pa, bq, and upxq “ 0 @x P Rzpa, bq.
Hint. Think of a function u whose graph looks like a roof.

(c) Suppose that f : r0, 1s Ñ R is a continuous function such that
ż 1

0
fpxqupxqdx “ 0,

for any continuous function u : r0, 1s Ñ R. Prove that fpxq “ 0, @x P r0, 1s.

Hint. Argue by contradiction. Suppose that there exists x0 P r0, 1s such that fpx0q ‰ 0, say fpx0q ą 0. Reach a

contradiction using Theorem 6.2.1, and the facts (a), (b) above. [\

Exercise 9.10. Suppose that fn : ra, bs Ñ R, n P N, is a sequence of Riemann integrable
functions that converges uniformly on ra, bs to the function f : ra, bs Ñ R. We set

dn :“ sup
xPra,bs

|fpxq ´ fnpxq|.

(a) (Compare with Exercise 6.6.) Prove that

lim
nÑ8

dn “ 0.

(b) Let X Ă ra, bs be a nonempty subset of ra, bs. Prove that, for any n P N, we have

oscpf,Xq ď oscpfn, Xq ` 2dn.

(c) Prove that, for any partition P of ra, bs, and any n P N, we have

ωpf,P q ď ωpfn,P q ` 2dnpb´ aq.

(d) Prove that f is Riemann integrable and

lim
nÑ8

ż b

a
fnpxqdx “

ż b

a
fpxqdx. [\

Exercise 9.11. (a) Suppose that f : ra, bs Ñ R is a continuous and convex function.
Prove that

1

b´ a

ż b

a
fpxqdx ď

fpaq ` fpbq

2
.

(b) Use (a) to show that for any x ą y ą 0 we have

1

2y
ln
x` y

x´ y
ď

x

x2 ´ y2
. [\

Exercise 9.12. Consider the function f : r0, 1s Ñ R, fpxq “ 1
x`1 .

(a) Compute
ş1
0 fpxqdx.

(b) For n P N we denote by Un the uniform partition of order n of r0, 1s and by ξpnq the
sample of Un given by

ξpnq
k
“
k

n
, k “ 1, . . . , n.
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Describe explicitly the Riemann sum Spf,Un, ξ
pnqq.

(c) Use parts (a) and (b) to compute the limit in Exercise 4.22. [\

Exercise 9.13. Use Riemann sums for an appropriate Riemann integrable function to
compute the limit

lim
nÑ8

1
?
n

ˆ

1
?
n` 1

`
1

?
n` 2

` ¨ ¨ ¨ `
1
?
2n

˙

[\

Exercise 9.14. Fix a natural number k.

(a) Prove that for any n P N we have

1k ` 2k ` ¨ ¨ ¨ ` pn´ 1qk ď

ż n

0
xkdx ď 1k ` 2k ` ¨ ¨ ¨ ` nk.

(b) Use (a) to prove that

lim
nÑ8

1k ` 2k ` ¨ ¨ ¨ ` nk

nk`1
“

1

k ` 1
. [\

Exercise 9.15. Consider the function

F : r0,8q Ñ R, F pxq “

ż

?
x

0
e

t2

2 dt.

Show that F pxq is differentiable on p0,8q and then compute F 1pxq, x ą 0. [\

Exercise 9.16. Suppose fn : ra, bs Ñ R, n P N, is a sequence of C1-functions with the
following properties.

(i) The sequence of derivatives f 1n : ra, bs Ñ R converges uniformly to a function
g : ra, bs Ñ R.

(ii) The sequence fn : ra, bs Ñ R converges pointwisely to a function f : ra, bs Ñ R.

Prove that the following hold.

(a) The sequence fn : ra, bs Ñ R converges uniformly to f : ra, bs Ñ R.
Hint. Define G : ra, bs Ñ R, Gpxq “ fpaq `

şx
a gptqdt. (The function g is continuous since it is a uniform limit of

continuous functions.) Since f 1
n is continuous, the Fundamental Theorem of Calculus shows that

fnpxq “ fnpaq `

ż x

a
f 1
nptqdt.

Then

fnpxq ´Gpxq “ fnpaq ´ fpaq `

ż x

a

`

f 1
nptq ´ gptq

˘

dt.

Use the above equality to show that the sequence fn converges uniformly on ra, bs to G. Argue next that G “ f .

(b) The function f is C1 and f 1 “ g, i.e., the sequence f 1n : ra, bs Ñ R converges uniformly
to f 1. [\

Exercise 9.17. Let L ą 0. Suppose that the power series with real coefficients

a0 ` a1x` a2x
2 ` ¨ ¨ ¨
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converges absolutely for any |x| ă L. For every x P p´L,Lq we denote by spxq the sum of
the above series.

(a) Show that the function x ÞÑ spxq is continuous on p´L,Lq and, for any R P p0, Lq, we
have

ż R

0
spxqdx “ a0R`

a1
2
R2 `

a2
3
R3 ` ¨ ¨ ¨ .

Hint. Use the Exercises 6.8 and 9.10.

(b) Prove that the power series

a1 ` 2a2x` 3a3x
2 ` ¨ ¨ ¨

also converges absolutely for any |x| ă L.

(c) Prove that spxq is differentiable on p´L,Lq and that

s1pxq “ a1 ` 2a2x` 3a3x
2 ` ¨ ¨ ¨ , @|x| ă L.

Hint. Use the Exercises 6.8, 9.16. [\

Exercise 9.18. Consider the power series

x´
x3

3!
`
x5

5!
´
x7

7!
` ¨ ¨ ¨ ,

and respectively,

1´
x2

2!
`
x4

4!
´
x6

6!
` ¨ ¨ ¨ .

(a) Prove that the above series converge absolutely for any x P R. Denote their sums by
apxq and respectively bpxq.

(b) Show that the functions a, b : RÑ R are differentiable and satisfy the equalities

a1pxq “ bpxq, b1pxq “ ´apxq.

Hint. Use Exercise 9.17.

(c) Show that apxq is the unique solution of the differential equation

a2pxq ` apxq “ 0, @x P R

satisfying the condition ap0q “ 0, a1p0q “ 1. (Compare with Exercise 7.16.) [\

Exercise 9.19. Consider the function

f : RÑ R, fpxq “
1

1` x2
.

(a) Prove that

fpxq “
8
ÿ

n“0

p´1qnx2n, @|x| ă 1.

(b) Conclude from (a) that the Taylor series of fpxq at x0 “ 0 is

1´ x2 ` x4 ´ x6 ` ¨ ¨ ¨ .
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Hint. Use Exercise 9.17.

(c) Deduce from (a) that

arctanx “
8
ÿ

k“0

p´1qk
x2k`1

2k ` 1
“ x´

x3

3
`
x5

5
´
x7

7
` ¨ ¨ ¨ , @|x| ă 1. [\

Exercise 9.20. (a) Suppose that f, w : ra, bs Ñ R are two continuous functions satisfying
the following properties.

(i) The function f is continuous.

(ii) The function w is Riemann integrable and nonnegative, i.e., wpxq ě 0, @x P ra, bs.

(iii) The integral

W :“

ż b

a
wpxqdx

is strictly positive.

We set

m :“ inf
xPra,bs

fpxq, M :“ sup
xPra,bs

fpxq.

Show that

m ď
1

W

ż b

a
fpxqwpxqdx ďM,

and then conclude that there exists a point ξ in the open interval pa, bq such that

fpξq “
1

W

ż b

a
fpxqwpxqdx. [\

(b) Use the result in (a) to show that the Integral Remainder Formula (9.6.18) implies the
Lagrange Remainder Formula (8.1.2). [\

Exercise 9.21. Consider the function f : r0, 2s Ñ R, fpxq “ 1´ |x´ 1|, @x P r0, 2s.

(a) Sketch the graph of f .

(b) Compute
ş2
0 fpxqdx. [\

Exercise 9.22. For any natural number n we define the n-th Legendre polynomial to be

Pnpxq :“
1

2nn!

dn

dxn
`

x2 ´ 1
˘n
.

We set P0pxq “ 1, @x.

(a) Compute P1pxq, P2pxq, P3pxq.

(b) Compute
ż 1

´1
P1pxq

2dx,

ż 1

´1
P2pxq

2dx,

ż 1

´1
P3pxq

2dx,

ż 1

´1
P1pxqP2pxqdx,
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(c) Use integration-by-parts to compute
ż 1

´1
PmpxqPnpxqdx,

ż 1

´1
Pnpxq

2dx, m, n P N, m ‰ n.

Hint. You may want to use the results in Exercise 7.6 and Example 9.6.7. [\

Exercise 9.23. Fix an integer k. Use Stirling’s formula (9.6.26) to compute

lim
nÑ8

?
2n

22n

ˆ

2n

n` k

˙

, lim
nÑ8

?
2n` 1

22n`1

ˆ

2n` 1

n` k

˙

. [\

Exercise 9.24. (a) For any integer n ě 0 compute the numbers
ż 1

0
sin2p2πntqdt

ż 1

0
cos2p2πntqdt.

(b) Consider the function

f : r0, 1s Ñ R, fpxq “
1

2
´

ˇ

ˇ

ˇ

ˇ

x´
1

2

ˇ

ˇ

ˇ

ˇ

.

Sketch its graph and then compute
ż 1

0
f2pxqdx.

(c) Let f be as above. For any integer n ě 0 compute the numbers

an “

ż 1

0
fpxq cosp2πnxqdx, bn “

ż 1

0
fpxq sinp2πnxqdx.

(d) With an, bn as in (c) prove that the series
ÿ

ně1

pa2n ` b
2
nq

is convergent.4

Hint. When computing the above integrals it is convenient to use the change in variables u “ x´ 1
2
, some of the

trig identities in Section 5.6 and Exercise 9.6. [\

Exercise 9.25. Compute the area of the region depicted in Figure 9.11. [\

Exercise 9.26. Prove Proposition 9.7.5. [\

4A nontrivial result in the theory of Fourier series shows that

ż 1

0
f2pxqdx “ a20 ` 2

ÿ

ně1

pa2n ` b
2
nq.
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Exercise 9.27. Consider the function

f : r0, 2s Ñ R, fpxq “ maxt2´ x, x2u.

(a) Sketch the graph of the function.

(b) Compute the area of the region between the x-axis and the graph of f .

(c) Show that the function f is piecewise C1 and then compute the length of its graph.[\

Exercise 9.28. Prove that for any a P p´1, 0q and any b ą 0 the integrals
ż 1

0
ta| ln t|bdt,

ż 8

1
ta´1| ln t|bdt

are convergent. [\

Exercise 9.29. Prove that the Gamma function Γ : p0,8q Ñ p0,8q

Γpxq “

ż 8

0
tx´1e´tdt

is continuous.

Hint. Fix t ą 0 and then use Lagrange’s mean value theorem for the function f : p0,8q Ñ R, fpxq “ tx. Then use

Exercise 9.28 to conclude. [\

Exercise 9.30. Suppose that f : r0,8q Ñ p0,8q is a decreasing function. Prove that the
following statements are equivalent.

(i) The improper integral
ż 8

0
fpxqdx

is convergent.

(ii) The series

fp0q ` fp1q ` fp2q ` ¨ ¨ ¨

is convergent.

[\

9.10. Exercises for extra credit

Exercise* 9.1. Suppose that f : ra, bs Ñ R is a continuous function and Φ : RÑ R is a
convex continuous5 function. Prove Jensen’s inequality

Φ

ˆ

1

b´ a

ż b

a
fpxqdx

˙

ď
1

b´ a

ż b

a
Φ
`

fpxq
˘

dx. (9.10.1)

[\

5The continuity assumption is redundant since any convex function RÑ R is automatically continuous.
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Exercise* 9.2. Show that the improper integrals
ż 8

0

sinx

x
dx,

ż 8

0
sinpx2qdx

are convergent. [\

Exercise* 9.3. Construct a continuous function f : r0,8q Ñ R satisfying the following
properties.

(i) fpxq ě 0, @x ě 0.

(ii) supxě0 fpxq “ 8.

(iii) The integral
ş8

0 fpxqdx is convergent.

[\

Exercise* 9.4. Suppose that f : r0,8q Ñ R is a C2-function satisfying the following
conditions

(i) f 1p0q “ 0.

(ii)

lim
xÑ8

1

lnx

`

fpxq ` f 1pxq
˘

“ 0.

Prove that for any α P p0, 1q the integral
ş8

0
f 1pxq
xα dx is convergent. [\

Exercise* 9.5. Suppose that f : r1,8q Ñ R is differentiable, the derivative f 1 : r0,8q Ñ R
is increasing and

lim
xÑ8

f 1pxq “ 0.

(For example fpxq “ 1
x or fpxq “ lnx.) Prove that the sequence

Sn :“
1

2
fp1q ` fp2q ` ¨ ¨ ¨ ` fpn´ 1q `

1

2
fpnq ´

ż n

1
fpxqdx

is convergent and, if S is its limit, then for any n P N we have

f 1pnq

n
ă

1

2
fp1q ` fp2q ` ¨ ¨ ¨ ` fpn´ 1q `

1

2
fpnq ´

ż n

1
fpxqdx´ S ă 0. [\

Exercise* 9.6. Suppose that f : r1,8q Ñ R is differentiable, the derivative f 1 : r0,8q Ñ R
is increasing and

lim
xÑ8

f 1pxq “ 8.

(For example, fpxq “ xα, α ą 1.) Prove that there resists a constant C ą 0 such for any
n P N we have

ˇ

ˇ

ˇ

ˇ

1

2
fp1q ` fp2q ` ¨ ¨ ¨ ` fpn´ 1q `

1

2
fpnq ´

ż n

1
fpxqdx

ˇ

ˇ

ˇ

ˇ

ď C|f 1pnq|. [\
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Exercise* 9.7. (a) Suppose that f : ra, bs Ñ r0,8q is a Riemann integrable function.
For any natural numbers k ď n we set

δn :“
b´ a

n
, fn,k “ f

`

a` kδnq.

Prove that

lim
nÑ8

1

n

n
ÿ

k“1

fn,k “
1

b´ a

ż b

a
fpxqdx,

lim
nÑ8

˜

n
ź

k“1

fn,k

¸
1
n

“ exp

ˆ

1

b´ a

ż b

a
fpxqdx

˙

, exppxq :“ ex.

(b) Fix real numbers c, r ą 0. Denote by An, and respectively Gn, the arithmetic, and
respectively geometric, mean of the numbers

c` r, c` 2r, . . . , c` nr.

Prove that

lim
nÑ8

Gn
An

“
2

e
. [\

Exercise* 9.8. Prove that the sequence

xn “
1n ` 2n ` ¨ ¨ ¨ ` nn

nn`1

is convergent and then compute its limit. [\





Chapter 10

Complex numbers and
some of their
applications

10.1. The field of complex numbers

It is well known that there exists no real number x such that x2 “ ´1 because x2 ě 0 ą ´1,
@x P R. Following L. Euler, we introduce an imaginary number i with the property that

i2 “ ´1. (10.1.1)

Sometimes we write i “
?
´1. The number i is called the imaginary unit. This bold and

somewhat arbitrary move raises some troubling questions.

Can we really do this? Yes, we just did, by fiat. Where does the “number” i come
from? As its name suggests, it comes from our imagination. Can’t we get into some
sort of trouble? This vaguely formulated question is the more serious one, but let’s just
admit that we won’t get in any trouble. This can be argued rigorously, but requires more
advanced mathematics that did not even exist during Euler’s time. It took more than
a century to settle this issue. During that time mathematicians found convincing semi-
rigorous arguments that this construction leads to no contradictions. As Euler and his
followers, we will take it on faith that this construction won’t lead us to shaky grounds.

What can we do with i? Following Gauss, we define the complex numbers. These are
quantities of the form

z :“ x` yi, x, y P R.

The real part of the complex number z is

Re z :“ x,

319
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while its imaginary part is

Im z :“ y.

The set of all the complex numbers is denoted by C. .
The reason we are referring to the quantities a`bi as numbers is because we can operate

with them, much like we do with real numbers. First, we can add complex numbers. If

z1 :“ x1 ` y1i, z2 “ x2 ` y2i,

then we define

z1 ` z2 “ px1 ` x2q ` py1 ` y2qi.

This operation satisfies the same properties as the addition of real numbers, namely the
Axioms 1-4 in Section 2.1. Note that the real numbers are special examples of complex
numbers: they are the complex numbers whose imaginary part is zero.

We can also multiply complex numbers in a natural way, taking (10.1.1) into account.
Thus

px1 ` y1iqpx2 ` y2iq “ x1x2 ` x1y2i` y1x2i` y1y2i
2

“ px1x2 ´ y1y2q ` px1y2 ` y1x2qi.

One can check that this multiplication is commutative, associative, and distributive with
respect to the above addition operation. Moreover, the real number 1 acts as a multiplica-
tive unit for this operation as well, and every nonzero real number z has an inverse. The
construction of the inverse requires a bit of ingenuity.

To a complex number z “ x` yi we associate its conjugate

z“ x´ yi.

Observe that

zz“ px` yiqpx´ yiq “ x2 ´ pyiq2 “ x2 ` y2.

The quantity
a

x2 ` y2 is called the norm of the complex number z and it is denoted by
|z|,

|z| :“
a

x2 ` y2.

Thus

zz “ zz“ |z|2.

In particular, if z ‰ 0, then |z| ‰ 0 and we have

1

|z|2
z ¨ z “ z ¨

1

|z|2
z“ 1.

Thus

z´1 “
1

z
“

z

|z|2
. (10.1.2)

The operation of conjugation interacts well with the operations of addition and multipli-
cation introduced above. More precisely,

z1 ` z2 “ z1 `z2, z1z2 “ z1z2, @z1, z2 P C. (10.1.3)
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Moreover

|z1z2| “ |z1| ¨ |z2|, @z1, z2 P C. (10.1.4)

The simple proofs of these equalities are left to you as an exercise.

10.1.1. The geometric interpretation of complex numbers. The complex numbers
have a very useful geometric interpretation. More precisely, we identify the complex
number z “ x ` yi with the point Z “ px, yq in the Cartesian plane R2. In turn we can

identify the point Z with its position vector
ÝÑ
OZ. For this reason we will often refer to C

as the complex plane.

Given two complex numbers z1 “ x1 ` y1i, z2 “ x2 ` y2i represented in the plane by
the position vectors

ÝÝÑ
OZ1 and

ÝÝÑ
OZ2, then their sum z3 “ px1`x2q`py1`y2qi is represented

in the plane by the point Z3 with position vector
ÝÝÑ
OZ3 “

ÝÝÑ
OZ1 `

ÝÝÑ
OZ2,

where the addition of vectors is performed via the parallelogram rule; see Figure 10.1.

x

y

Z

Z

Z

1

2

3

O

Figure 10.1. The geometric interpretation of the sum of complex numbers.

If the complex number z “ x` yi is described by the point Z “ px, yq in R2, then its
conjugate z “ x ´ yi is represented by the point Z´ “ px,´yq, the reflection of Z in the

x-axis; see Figure 10.2. Note that the norm |z| “
a

x2 ` y2 is equal to the length of the

vector
ÝÑ
OZ,

|z| “
ˇ

ˇ

ÝÑ
OZ

ˇ

ˇ.

The vector
ÝÑ
OZ makes an angle θ with the x-axis measured in a counterclockwise fashion,

starting on the x-axis. Measured in radians, it can be any number in r0, 2πq. This angle
is called the argument of the complex number z and it is denoted by arg z.
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Z

Z
_

x

y

θ

O

r

Figure 10.2. The geometric interpretation of the conjugation of complex numbers.

Denote by r the norm of z

r “ |z| “
a

x2 ` y2.

From Figure 10.2 we deduce that the coordinates px, yq of Z can be expressed in terms of
r and θ via the equalities

x “ r cos θ, y “ r sin θ,

so that

z “ r cos θ ` r sin θi “ rpcos θ ` i sin θq, r “ |z|, θ “ arg z. (10.1.5)

The equality (10.1.5) is usually referred to as the trigonometric representation of the
complex number z “ x` yi.

Suppose that we have two complex numbers z1, z2 with trigonometric representations

zk “ rkpcos θk ` i sin θkq, rk ě 0, k “ 1, 2.

Then

Re zk “ rk cos θk, Im zk “ rk sin θk.

Moreover

z1z2 “ pr1r2qpcos θ1 ` i sin θ1qpcos θ2 ` i sin θ2q

“ r1r2

!

`

cos θ1 cos θ2 ´ sin θ1 sin θ2
˘

looooooooooooooooomooooooooooooooooon

“cospθ1`θ2q

`i
`

sin θ1 cos θ2 ` cos θ1 sin θ2
˘

looooooooooooooooomooooooooooooooooon

“sinpθ1`θ2q

)

.

We have thus proved that

r1pcos θ1 ` i sin θ1q ˆ r2pcos θ2 ` i sin θ2q “ r1r2
`

cospθ1 ` θ2q ` i sinpθ1 ` θ2q
˘

. (10.1.6)

Applying the above equality iteratively we obtain the celebrated Moivre’s formula
`

cos θ ` i sin θ
˘n
“ cospnθq ` i sinpnθq, @n P N, θ P R. (10.1.7)
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If we combine Moivre’s formula with Newton’s binomial formula we can obtain many
interesting consequences. We have

cosnθ ` i sinnθ “
n
ÿ

k“0

ˆ

n

k

˙

ikpcos θqkpsin θqn´k.

Separating the real and imaginary parts in the right-hand side of the above equality taking
into account that

i2 “ ´1, i3 “ ´i, i4 “ 1,

we deduce

cosnθ “ pcos θqn ´

ˆ

n

2

˙

pcos θqn´2psin θq2 `

ˆ

n

4

˙

pcos θqnpsin θq4 ´ ¨ ¨ ¨ (10.1.8a)

sinnθ “

ˆ

n

1

˙

pcos θqn´1 sin θ ´

ˆ

n

3

˙

pcos θqn´3psin θq3 ` ¨ ¨ ¨ . (10.1.8b)

For example,

cos 2θ “ cos2 θ ´ sin2 θ, sin 2θ “ 2 sin θ cos θ,

cos 3θ “ cos3 θ ´ 3 cos θ sin2 θ, sin 3θ “ 3 cos2 θ sin θ ´ sin3 θ,

cos 4θ “ cos4 θ ´

ˆ

4

2

˙

cos2 θ sin2 θ ` sin4 θ “ cos4 θ ´ 6 cos2 θ sin2 θ ` cos4 θ,

sin 4θ “ 4 cos3 θ sin θ ´ 4 cos θ sin3 θ.

Example 10.1.1. Consider the complex number

z “ cos
π

4
` i sin

π

4
“

1
?
2
p1` iq.

For any n P N we have

z8n “ cos 2nπ ` i sin 2nπ “ 1.

On the other hand we have

z8n “
1

24n
p1` iq8n

so that

24n “ p1` iq4n “
8n
ÿ

k“0

ˆ

8n

k

˙

ik.

Isolating the real and imaginary parts in the right-hand side and equating them with the
real and imaginary parts in the left-hand side we deduce

24n “

ˆ

8n

0

˙

´

ˆ

8n

2

˙

`

ˆ

8n

4

˙

´ ¨ ¨ ¨ ,

0 “

ˆ

8n

1

˙

´

ˆ

8n

3

˙

`

ˆ

8n

5

˙

´ ¨ ¨ ¨ . [\
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Example 10.1.2. Fix a natural number n ě 2. Observe that the numbers

ζk “ cos
´2π

k
n
¯

` i sin
´2π

n

¯

, k “ 0, 1, . . . , n´ 1

satisfy the equation
ζnk “ 1, @k.

Conversely, if z is a complex number such that zn “ 1, then we deduce

|z|n “ 1ñ |z| “ 1,

and thus there exists θ P r0, 2πq such that

z “ cos θ ` i sin θ.

Using Moivre’s formula we deduce cosnθ “ 1 and sinnθ “ 0 which is possible if and only
if nθ is a multiple of 2π. Thus θ can only be one of the numbers

2πk

n
, k “ 0, 1, . . . , n´ 1.

In other words zn “ 1 if and only if z is equal to one of the numbers ζk. For this reason
the numbers ζk are called the n-th roots of unity. [\

10.2. Analytic properties of complex numbers

Most of the analysis we developed for real numbers carries over to complex numbers. The
next result is crucial in this endeavor.

Proposition 10.2.1. (a) For any complex numbers z1, z2 we have

|z1 ` z2| ď |z1| ` |z2|. (10.2.1)

(b) if z “ x` yi P C then

1

2
p|x| ` |y|q ď |z| “

a

x2 ` y2 ď |x| ` |y|. (10.2.2)

Proof. (a) Let
z1 “ x1 ` y1i, z2 “ x2 ` y2i.

Then

|z1| “
b

x21 ` y
2
1, |z2| “

b

x22 ` y
2
2.

The Cauchy-Schwarz inequality, Corollary 8.3.20, implies that

x1x2 ` y1y2 ď

ˆ

b

x21 ` y
2
1

˙

¨

ˆ

b

x22 ` y
2
2

˙

“ |z1| ¨ |z2|.

We have
z1 ` z2 “ px1 ` x2q ` py1 ` y2qi,

|z1 ` z2|
2 “ px1 ` y1q

2 ` px2 ` y2q
2

“ x21 ` y
2
1 ` 2x1y1 ` x

2
2 ` y

2
2 ` 2x2y2 “ |z1|

2 ` |z2|
2 ` 2px1y1 ` 2x2y2q
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ď |z1|
2 ` |z2|

2 ` 2|z1| ¨ |z2| “ p|z1| ` |z2|q
2.

This proves (10.2.1).

(b) Observe that

p|x| ` |y|q2 “ |x|2 ` |y|2 ` 2|x| ¨ |y| ě |x|2 ` |y|2 “ x2 ` y2.

This shows that

|x| ` |y| ě
a

x2 ` y2.

On the other hand,

0 ď p|x| ´ |y|q2 “ |x|2 ` |y|2 ´ 2|xy| ñ 2|xy| ď x2 ` y2

ñ p|x| ` |y|q2 “ |x|2 ` |y|2 ` 2|x| ¨ |y| ď 2px2 ` y2q ñ
1
?
2
p|x| ` |y|q ď

a

x2 ` y2.

This proves (10.2.2). [\

Definition 10.2.2. We define the distance between two complex numbers z1, z2 to be the
nonnegative real number

distpz1, z2q :“ |z1 ´ z2|. [\

Corollary 10.2.3 (The triangle inequality). For any z1, z2, z3 P C we have

distpz1, z3q ď distpz1, z2q ` distpz2, z3q.

Proof. We have

distpz1, z3q “ |z1 ´ z3| “ |pz1 ´ z2q ` pz2 ´ z3q|

p10.2.1q
ď |z1 ´ z2| ` |z2 ´ z3| “ distpz1, z2q ` distpz2, z3q.

[\

Definition 10.2.4. (a) Let z0 P C and r ą 0. The open disk of center z0 and radius r is
the set

Drpz0q :“
␣

z P C; distpz, z0q ă r
(

.

(b) A subset O Ă C is called open if for any z0 P O there exists ε ą 0 such that

Dεpz0q Ă O. [\

(c) A set X Ă C is called closed if the complement CzX is open.

(d) A set X Ă C is called bounded if there exists R ą 0 such that

X Ă DRp0q ðñ |z| ă R, @z P X. [\



326 10. Complex numbers and some of their applications

Definition 10.2.5. (a) We say that a sequence of complex numbers pznqně1 is bounded
if the sequence of norms p|zn|qně1 is bounded as a sequence of real numbers.

(b) We say that a sequence of complex numbers pznqně1 converges to the complex number
z˚, and we denote this

lim
n
zn “ z˚,

if the sequence of nonnegative real numbers distpzn, z˚q converges to 0, i.e.,

@ε ą 0 DN “ Npεq ą 0 such that @n pn ą Npεq ñ |zn ´ z˚| ă εq. [\

Proposition 10.2.6. Suppose that pznqně1 is a sequence of complex numbers. We set
xn “ Re zn, yn “ Im zn. The following statements are equivalent.

(i) The sequence pznq converges to the complex number z˚ “ x˚ ` y˚i.

(ii) The sequences of real numbers pxnqně1 and pynqně1 converge to x˚ and respec-
tively y˚.

Proof. (i) ñ (ii). From the first part of (10.2.2) we deduce that

1

2
p|xn ´ x˚| ` |yn ´ y˚|q ď |zn ´ z˚|.

Since limn zn “ z˚ we deduce limn |zn ´ z˚| “ 0 and the Squeezing Principle implies

lim
n
p|xn ´ x˚| ` |yn ´ y˚|q “ 0.

The last equality implies (ii).

(ii) ñ (i). From the second part of (10.2.2) we deduce that

|zn ´ z˚| ď |xn ´ x˚| ` |yn ´ y˚|.

The assumption (ii) implies that

lim
n

`

|xn ´ x˚| ` |yn ´ y˚|
˘

“ 0.

From this we conclude that limn |zn ´ z˚| “ 0, which is the statement (i). [\

Corollary 10.2.7. If the sequence of complex numbers pznqně1 converges to z, then

lim
n
|zn| “ |z|.

Proof. Let xn :“ Re zn and yn :“ Im zn, x “ Re z, y :“ Im z. Then

lim
n
zn “ z ñ lim

n
xn “ x ^ lim

n
yn “ y

ñ lim
n
px2n ` y

2
nq “ x2 ` y2 ñ lim

n

a

x2n ` y
2
n “

a

x2 ` y2 ðñ lim
n
|zn| “ |z|.

[\
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Corollary 10.2.8. Any convergent sequence of complex numbers is bounded.

Proof. Given a convergent sequence of complex numbers, the associated sequence of
norms is convergent according to Corollary 10.2.7. The sequence of norms is thus a
convergent sequence of real numbers, hence bounded according to Proposition 4.2.12. [\

Example 10.2.9. Suppose z is a complex number such that |z| ă 1. Then

lim
n
zn “ 0.

We have to show that the sequence of nonnegative numbers |zn| goes to zero as n Ñ 8.
We set r : |z| and we observe that

|zn|
p10.1.4q
“ |z|n “ rn.

As shown in Example 4.2.10

|r| ă 1ñ lim
n
rn “ 0ñ lim

n
zn “ 0. [\

The convergent sequences of complex numbers satisfy many of the same properties of
convergent sequences of real numbers. We summarize these facts in our next result whose
proof is left to you as an exercise.

Proposition 10.2.10 (Passage to the limit). Suppose that panqně1 and pbnqně1 are two
convergent sequences of complex numbers,

a :“ lim
nÑ8

an, b “ lim
nÑ8

bn.

The following hold.

(i) The sequence pan ` bnqně1 is convergent and

lim
nÑ8

pan ` bnq “ lim
nÑ8

an ` lim
nÑ8

bn “ a` b.

(ii) If λ P C then

lim
nÑ8

pλanq “ λ lim
nÑ8

an “ λa.

(iii)

lim
nÑ8

pan ¨ bnq “
`

lim
nÑ8

an
˘

¨
`

lim
nÑ8

bn
˘

“ ab.

(iv) Suppose that b ‰ 0. Then there exists N0 ą 0 such that bn ‰ 0, @N ą N0, and

lim
nÑ8

an
bn
“
a

b
. [\

Definition 10.2.11. A sequence of complex numbers pznqně1 is called Cauchy if

@ε ą 0 DN “ Npεq ą 0 such that @m,n pm,n ą Npεq ñ |zm ´ zn| ă εq. [\
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The concept of Cauchy sequence of complex numbers is closely related to the notion
of Cauchy sequence of real numbers. We state this in a precise form in our next result.
Its proof is very similar to the proof of Proposition 10.2.6 and we leave the details to you
as an exercise.

Proposition 10.2.12. Suppose that pznqně1 is a sequence of complex numbers. We set
xn :“ Re zn, yn :“ Im zn. The following statements are equivalent.

(i) The sequence pznqně1 is Cauchy.

(ii) The sequences of real numbers pxnqně1 and pynqně1 are Cauchy.

[\

Definition 10.2.13. The series associated to a sequence pznqně0 of complex numbers is
the new sequence psnqně0 defined by the partial sums

s0 “ z0, s1 “ z0 ` z1, s2 “ z0 ` z1 ` z2, . . . , sn “
n
ÿ

j“0

aj . . . .

The series associated to the sequence pznqně0 is denoted by the symbol
8
ÿ

ně0

zn or
ÿ

ně0

zn

The series is called convergent if the sequence of partial sums psnqně0 is convergent. The
limit limnÑ8 sn is called the sum of the series. We will use the notation

ÿ

ně0

an “ S

to indicate that the series is convergent and its sum is the real number S. [\

Example 10.2.14. The geometric series
8
ÿ

n“0

zn “ 1` z ` z2 ` ¨ ¨ ¨

is convergent for any complex number z of norm |z| ă 1. Indeed, its n-th partial sum is

sn “ 1` z ` ¨ ¨ ¨ ` zn “
1´ zn`1

1´ z
.

If |z| ă 1, then we deduce from Example 10.2.9 and Proposition 10.2.10 that

lim
n
sn “ lim

n

1´ zn`1

1´ z
“

1

1´ z
.

This shows that the series is convergent and its sum is

1` z ` z2 ` ¨ ¨ ¨ ` zn ` ¨ ¨ ¨ “
1

1´ z
, @|z| ă 1. (10.2.3)

[\
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Proposition 10.2.15. If the series of complex numbers
ÿ

ně0

zn

is convergent, then its terms converge to zero, limn zn “ 0.

Proof. Denote by s the sum of the series and by sn its n-th partial sum,

sn “ z0 ` z1 ` ¨ ¨ ¨ ` zn.

Then zn “ sn ´ sn´1 and

lim
n
zn “ lim

n
psn ´ sn´1q “ lim

n
sn ´ lim

n
sn´1 “ s´ s “ 0.

[\

Example 10.2.16. The geometric series

1` z ` z2 ` ¨ ¨ ¨

is divergent if |z| ě 1. Indeed, we have

|zn| “ |z|n

and

lim
n
|z|n “

#

1, |z| “ 1,

8, |z| ą 1.

This shows that when |z| ě 1 the sequence pznq does not converge to zero and thus,
according to Proposition 10.2.15, the geometric series cannot be convergent. [\

Definition 10.2.17. A series of complex numbers
ÿ

ně0

zn

is called absolutely convergent if the series of nonnegative real numbers
ÿ

ně0

|zn|

is convergent. [\

Proposition 10.2.18. If the series of complex numbers
ř

ně0 zn is absolutely convergent,
then it is also convergent.

Proof. We mimic the proof of Theorem 4.6.13. Denote by sn the n-th partial sum of the
series

ř

ně0 zn and by ŝn the n-th partial sum of the series
ř

ně0 |zn|,

sn “ z0 ` ¨ ¨ ¨ ` zn, ŝn “ |z0| ` ¨ ¨ ¨ ` |zn|.

For n ą m we have

sn ´ sm “ zm`1 ` ¨ ¨ ¨ ` zn, ŝn ´ ŝm “ |zm`1| ` ¨ ¨ ¨ ` |zn|
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Using (10.2.1) we deduce

|sn ´ sm| “ |zm`1 ` ¨ ¨ ¨ ` zn| ď |zm`1| ` ¨ ¨ ¨ ` |zn| “ ŝn ´ ŝm “ |ŝn ´ ŝm|. (10.2.4)

Since the series
ř

ně0 |zn| is convergent we deduce that the sequence of partial sums
pŝnqně0 is Cauchy. Hence, for any ε ą 0 there exists N “ Npεq ą 0 such that for any
n ą m ą Npεq we have

|ŝn ´ ŝm| ă ε.

Using (10.2.4) we deduce that for any n ą m ą Npεq we have

|sn ´ sm| ă ε.

This shows that the sequence psnq is Cauchy and thus convergent according to Proposition
10.2.12. [\

The above result reduces the problem of deciding the absolute convergence of a series of
complex numbers to deciding whether a series of nonnegative real numbers is convergent.
We have investigated this issue in Section 4.6. We mention here one useful convergence
test.

Corollary 10.2.19 (Ratio test). Suppose that

z0 ` z1 ` z2 ` ¨ ¨ ¨

is a series of complex numbers such that

L “ lim
n

|zn`1|

|zn|

exists, L P r0,8s. Then the following hold.

(i) If L ă 1, then the series
ř

ně0 zn is absolutely convergent.

(ii) If L ą 1, then the series is divergent.

Proof. (i) The ratio test Corollary 4.6.15 implies that the series of positive real numbers
ÿ

ně0

|zn|

is convergent.

(ii) If

lim
n

|zn`1|

|zn|
ą 1,

then |zn`1| ą |zn| for n sufficiently large. In particular, the sequence pznq does not converge
to 0 and thus the series

ř

ně0 zn is divergent. [\
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10.3. Complex power series

A complex power series is a series of the form

spzq “ a0 ` a1z ` a2z
2 ` a3z

3 ` ¨ ¨ ¨ “
ÿ

ně0

anz
n,

where z and the numbers a0, a1, . . . are complex. The number z should be viewed as a
quantity that is allowed to vary, while the numbers a0, a1, . . . should be viewed as fixed
quantities. As such they are called the coefficients of the power series. Note that for
different choices of z we obtain different series.

Example 10.3.1. Consider for example the power series

spzq “ 1´ 2z ` 22z2 ´ 23z3 ` ¨ ¨ ¨ .

The coefficients of this power series are

a0 “ 1, a1 “ ´2, a2 “ 22, . . . , an “ p´2q
n, . . .

Note that we can rewrite the above series as

spzq “ 1` p´2zq ` p´2zq2 ` p´2zq3 ` ¨ ¨ ¨ “
ÿ

ně0

p´2zqn.

If we make the substitution ζ :“ ´2z we can further rewrite

spzq “ 1` ζ ` ζ2 ` ¨ ¨ ¨ .

We know that this series is absolutely convergent for |ζ| ą 1 and divergent for |ζ| ą 1. In
other words, the power series spzq converges absolutely if |z| ă 1

2 and diverges if |z| ą 1
2 .

Note that the set of complex numbers z such that |z| ă 1
2 is the open disk of center 0 and

radius 1
2 . [\

Proposition 10.3.2. Consider a complex power series

spzq “
ÿ

ně0

anz
n.

(a) If for some z0 ‰ 0 the series spz0q convergesabsolutely, then for any z P C such that
|z| ď |z0| the series spzq converges absolutely.

(b) If for some z0 ‰ 0 the series spz0q is convergent, not necessarily absolutely, then
for any z P C such that |z| ă |z0|, the series spzq converges absolutely.

Proof. (a) Since |z| ď |z0| we deduce that

|anz
n| ď |anz

n
0 |, @n ě 0.

The desired conclusion now follows from the comparison principle.

(b) Since spz0q converges we deduce that

lim
n
anz

n
0 “ 0.
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In particular, we deduce that the sequence panz
n
0 q is bounded, i.e., there exists C ą 0 such

that

|anz
n
0 | ď C, @n ě 0.

We set

r :“

ˇ

ˇ

ˇ

ˇ

z

z0

ˇ

ˇ

ˇ

ˇ

“
|z|

|z0|
ă 1.

We observe that

|anz
n| “ |anz

n
0 |
|z|n

|z0|n
ď Crn.

Since r ă 1 we deduce that the geometric series
ÿ

ně0

Crn

is convergent and the comparison principle implies that the series
ÿ

ně0

|anz
n|

is also convergent. [\

Consider a complex power series

spzq “
ÿ

ně0

anz
n

We consider the set

R “
␣

r ě 0; Dz P C such that |z| “ r, spzq is convergent
(

Ă R.

Note that the set R is not empty because 0 P R. Next observe that Proposition 10.3.2(b)
implies that if r0 P R, then r0, r0q Ă R. We set

R :“ supR P r0,8s.

Proposition 10.3.2 shows that spzq converges absolutely for any |z| ă R, and diverges for
|z| ą R. The number R P r0,8s is called the radius of convergence of the power series
spzq.

Example 10.3.3 (Complex exponential). Consider the power series

Epzq “ 1`
z

1!
`
z2

2!
` ¨ ¨ ¨ “

ÿ

ně0

1

n!
zn.

This series is absolutely convergent for any z P C because the series of positive numbers

ÿ

ně0

|z|n

n!

is convergent for any z. Thus the radius of convergence of this power series is 8. For
simplicity we will denote by Epzq the sum of the series Epzq.



10.3. Complex power series 333

Observe that for a real number x the sum of the series Epxq is ex; see Exercise 8.7.
We write this

Epxq “ ex, @x P R. (10.3.1)

The properties of the exponential show that

Epx` yq “ ex`y “ exey “ EpxqEpyq, @x, y P R. (10.3.2)

A more general result is true, namely,

Epz ` ζq “ EpzqEpζq, @z, ζ P C. (10.3.3)

To prove the above equality we denote by Enpzq the n-th partial sum of the series Epzq,

Enpzq “ 1`
z

1!
` ¨ ¨ ¨ `

zn

n!
.

The equality (10.3.3) is equivalent to the equality

lim
n

`

E2npz ` ζq ´ E2npzqE2npζq
˘

“ 0. (10.3.4)

Fix a real number M ą 1 such that

|z|, |ζ| ăM.

We have

E2npz ` ζq “
2n
ÿ

m“0

1

m!
pz ` ζqm “

2n
ÿ

m“0

1

m!

m
ÿ

j“0

´m

j

¯

zm´jζj

“

2n
ÿ

m“0

1

m!

m
ÿ

j“0

m!zm´jζj

pm´ jq!j!
“

2n
ÿ

m“0

m
ÿ

j“0

zm´jζj

pm´ jq!j!

pk :“ m´ jq

“

2n
ÿ

m“0

ÿ

j`k“m
j,kě0

zkζj

k!j!
“

ÿ

j`kď2n
j,kě0

zkζj

k!j!
.

Similarly we have

E2npzqE2npζq “

˜

2n
ÿ

k“0

zk

k!

¸

¨

˝

2n
ÿ

j“0

ζj

j!

˛

‚“
ÿ

0ďj,kď2n

zkζj

k!j!
.

We deduce

|E2npz ` ζq ´ E2npzqE2npζq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j`ką2n
0ďj,kď2n

zkζj

k!j!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

j`ką2n
0ďj,kď2n

|z|k|ζ|j

k!j!
ďM4n

ÿ

j`ką2n
0ďj,kď2n

1

k!j!
ď
M4n

n!

ÿ

j`ką2n
0ďj,kď2n

1 ď
4n2M4n

n!
.

From (4.2.8) we deduce that

lim
n

4n2M4n

n!
Ñ 0.

Because of the equalities (10.3.1) and (10.3.3), for any z P C we set

ez :“ Epzq “ 1`
z

1!
`
z2

2!
`
z3

3!
¨ ¨ ¨ . (10.3.5)



334 10. Complex numbers and some of their applications

Suppose that in (10.3.5) the number z is purely imaginary, z “ it, t P R. We deduce the
celebrated Euler’s formula

eit “ 1`
it

1!
`
i2t2

2!
`
i3t3

3!
` ¨ ¨ ¨

“

ˆ

1´
t2

2!
`
t4

4!
` ¨ ¨ ¨

˙

` i

ˆ

t´
t3

3!
`
t5

5!
` ¨ ¨ ¨

˙

“ cos t` i sin t.

(10.3.6)

If we let t “ π in the above equality we deduce

eiπ “ cosπ ` i sinπ “ ´1

i.e.,
eiπ ` 1 “ 0. (10.3.7)

The last very compact equality describes a deep connection between the five most impor-
tant numbers in science: 0, 1, e, π, i. [\
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10.4. Exercises

Exercise 10.1. Prove the equalities (10.1.3) and (10.1.4). [\

Exercise 10.2. (a) Consider the complex numbers

z1 “ 4` 5i, z2 “ 5` 12i.

Compute

z1z2, |z2|,
z1
z2
.

(b) Show that if

z “
1

2
p1`

?
3iq,

then
z2 ` z ` 1 “ z2 `z` 1 “ 0, z3 “ z3 “ 1. [\

Exercise 10.3. (a) Prove that if z P C, then

z5 “ 1^ z ‰ 1 ðñ z4 ` z3 ` z2 ` z ` 1 “ 0 ðñ z2 ` z ` 1`
1

z
`

1

z2
“ 0.

(b) Suppose that z satisfies the above equation, z4 ` z3 ` z2 ` z ` 1 “ 0. We set

ζ :“ z `
1

z
.

Prove that

z2 `
1

z2
“ ζ2 ´ 2,

and
ζ2 ` ζ ´ 1 “ 0. (10.4.1)

(c) Find the two roots ζ1, ζ2 of the quadratic equation (10.4.1).

(d) If ζ1, ζ2 are as above, find all the complex numbers z such that

z `
1

z
“ ζ1 _ z `

1

z
“ ζ2.

(e) Use (d) to compute cosp2π{5q, sinp2π{5q. [\

Exercise 10.4. (a) Let z0 P C and r ą 0. Prove that the open disc Drpz0q is an open set
in the sense of Definition 10.2.4(b).

(b) Prove that if O1,O2 Ă C are open sets, then so are the sets O1 X O2, O1 Y O2.

(c) Consider the set
S :“

␣

z P C; Im z “ 0, Re z P r0, 1s
(

.

Draw a picture of S and then prove that it is a closed set in the sense of Definition
10.2.4(c). [\

Exercise 10.5. Let S be a subset of the complex plane, S Ă C. Prove that the following
statements are equivalent.
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(i) The set S is closed.

(ii) For any sequence pznqně1 of points in S, zn P S, @n, if the sequence converges
to z˚, then z˚ P S.

[\

Exercise 10.6. Use the ideas in the proof of Proposition 10.2.6 to prove Proposition
10.2.12. [\

Exercise 10.7. Prove Proposition 10.2.10 by imitating the proof of Proposition 4.3.1. [\



Chapter 11

The geometry and
topology of Euclidean
spaces

The calculus of one-real-variable functions has a several-variable counterpart. To state
and prove these results we need an appropriate language. The goal of this chapter is
to introduce the terminology and the concepts required to make the jump into higher
dimensions.

11.1. Basic affine geometry

Figure 11.1. The point x P R2 with (Cartesian) coordinates p4, 3q is identified with the
vector that starts at the origin and ends at x.

337
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Let n P N. The canonical n-dimensional real Euclidean space is the Cartesian product

Rn :“ Rˆ ¨ ¨ ¨ ˆ R
looooomooooon

n times

.

The elements of Rn are called (n-dimensional) vectors or points and they are n-tuples of
real numbers

x :“

»

—

–

x1

...
xn

fi

ffi

fl

. (11.1.1)

Above, the real numbers x1, . . . , xn are called the Cartesian coordinates of the vector x;
see Figure 11.1.

☞ Several comments are in order. First, note that we represent the vector as a (verti-
cal) column. To remind us of this, we use the superscript notation xi rather than the
subscript notation xi. There are several other good reasons for this choice of notation,
but explaining them is difficult at this time. This choice is part of a larger collection of
conventions sometimes referred to as the Einstein’s conventions. For now, accept and use
this convention as a very good idea with a nebulous payoff that will reveal itself once your
mathematical background is a bit more sophisticated.

For typographical reasons it is inconvenient to work with tall columns of numbers of

the type appearing in (11.1.1) so we will use the notation rx1, . . . , xnsJ or px1, . . . , xnq to
denote the column in the right-hand side of (11.1.1).

Also, when we refer to a point x P Rn as a vector we secretly think of x as the tip of
an arrow that starts at the origin and ends at x; see Figure 11.1.

The attribute Euclidean space attached to the set Rn refers to the additional structure
this set is equipped with. First of all, Rn has a structure of vector space1. More precisely,
it is equipped with two operations, addition and multiplication by scalars satisfying certain
properties.

The addition is a function RnˆRn Ñ Rn that associates to a pair of vectors px,yq P RnˆRn
a third vector, its sum x` y P Rn, defined as follows: if

x “
`

x1, . . . , xn
˘

, y “
`

y1, . . . , yn
˘

,

then

x` y :“
`

x1 ` y1, . . . , xn ` yn
˘

P Rn.
The multiplication-by-scalars operation associates to a pair pλ,xq consisting of a real
number (or scalar) λ and a vector x P Rn, a new vector denoted by λx (or λ ¨ x) and

1As we progress in this course I will assume increased knowledge of linear algebra. I recommend [34] as a
linear algebra source very appropriate for the goals of this course.
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defined as follows: if x “
`

x1, x2, . . . , xn
˘

, then

λx :“
`

λx1, . . . , λxn
˘

P Rn.

These operations satisfy the following properties.2

(i) (Associativity) For any x,y, z P Rn

px` yq ` z “ x` py ` zq.

(ii) (Commutativity) For any x,y P Rn,

x` y “ y ` x.

(iii) (Neutral or identity element) The vector 0 :“ p0, . . . , 0q P Rn has the property:
@x P Rn we have

0` x “ x` 0 “ x.

(iv) (Inverse or opposite element) For any x “
`

x1, . . . , xn
˘

P Rn, the vector

´x :“
`

´ x1, . . . ,´xn
˘

has the property:

x` p´xq “ p´xq ` x “ 0.

(v) (Distributivity with respect to vector addition) For any λ P R, x,y P Rn,

λpx` yq “ λx` λy.

(vi) (Distributivity with respect to the scalar addition) For any λ, µ P R, x P Rn

pλ` µqx “ λx` µx, pλµqx “ λpµxq.

(vii) For any x P Rn,
1 ¨ x “ x.

Note that 0 ¨ x “ 0, @x P Rn.

Definition 11.1.1. The canonical or natural basis of Rn is the set of vectors te1, . . . , enu,
where

e1 :“

»

—

—

—

—

—

—

—

–

1
0
0
...
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, e2 :“

»

—

—

—

—

—

—

—

–

0
1
0
...
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, . . . , en :“

»

—

—

—

—

—

—

—

–

0
0
0
...
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (11.1.2)

[\

2Compare them with the algebraic axioms of R.
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Note that if x “
`

x1, . . . , xn
˘

, then

x “

»

—

–

x1

...
xn

fi

ffi

fl

“ x1e1 ` ¨ ¨ ¨ ` x
nen “

n
ÿ

i“1

xiei .

For example, we have the following equality in R3,
»

–

3
´4
5

fi

fl “ 3

»

–

1
0
0

fi

fl´4

»

–

0
1
0

fi

fl` 5

»

–

0
0
1

fi

fl “ 3e1´4e2 ` 5e3. (11.1.3)

At this point it is convenient to introduce the Kronecker symbol δij ,

δij :“

#

1, i “ j,

0, i ‰ j.
(11.1.4)

Using the Kronecker symbol we observe that

ek “

»

—

—

—

–

δ1k
δ2k
...
δnk

fi

ffi

ffi

ffi

fl

, @k “ 1, . . . , n.

Remark 11.1.2. When n “ 2, the coordinates x1, x2 are usually denoted by x and
respectively y, and the vectors e1, e2 are usually denoted by i and respectively j; see
Figure 11.2.

x

y

i

j

Figure 11.2. A Cartesian coordinate system in R2.

When n “ 3, the coordinates x1, x2, x3 are usually denoted by x, y and respectively z,
and the vectors e1, e2, e3 are usually denoted by i, j and respectively k; see Figure 11.3.
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Thus, in R3, the equality (11.1.3) could be rewritten as
»

–

3
´4
5

fi

fl “ 3i´4j ` 5k. [\

x

y

z

i

j

k

Figure 11.3. A Cartesian coordinate system in R3.

Definition 11.1.3. Two nonzero vectors u,v P Rn are called collinear if one is a multiple
of the other, i.e., there exists t P R, t ‰ 0, such that v “ tu (and thus u “ t´1v). [\

Definition 11.1.4. Let p,v P Rn, v ‰ 0. The line in Rn through p and in the direction
v is the set

ℓp,v :“
!

p` tv; t P R
)

Ă Rn . (11.1.5)

The vector v is called a direction vector of the line. [\

Let us point out that, if the two nonzero vectors u,v P Rn are collinear, then, for any
point p P Rn, the line through p in the direction u coincides with the line through p in
the direction v, i.e.,

ℓp,u “ ℓp,v.

Exercise 11.1 asks you to prove this fact.

Observe that the line through p and in the direction v is the image of the function

f : RÑ Rn, fptq “ p` tv.
You can think of the map f as describing the motion of a point in Rn so that its location
at time t P R is p` tv. The line ℓp,v is then the trajectory described by this point during
its motion. If

p “

»

—

–

p1

...
pn

fi

ffi

fl

, v “

»

—

–

v1

...
vn

fi

ffi

fl

,
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Figure 11.4. The line through the point p “ r1, 2, 3sJ and in the direction v “ r3, 4, 2sJ.

then

p` tv “

»

—

–

p1 ` tv1

...
pn ` tvn

fi

ffi

fl

and we can describe the line through p in the direction v using the parametric equation
or parametrization

$

’

&

’

%

x1 “ p1 ` tv1

...
...

...
xn “ pn ` tvn,

t P R. (11.1.6)

Above, the variable t is called the parameter (of the parametric equations). As t varies,
the right-hand side of (11.1.6) describes the coordinates of a moving point along the line.
The parametric equations (11.1.6) should be interpreted as saying that

x P ℓp,v ðñ Dt P R : xi “ pi ` tvi, @i “ 1, . . . , n.

Definition 11.1.5. The lines ℓ0,e1 , . . . , ℓ0,en are called the coordinate axes of Rn. [\

Example 11.1.6. Figures 11.2 and 11.3 depict the coordinate axes in R2 and respectively
R3. [\

Suppose that we are given two distinct points p, q P Rn. These two points determine
two collinear vectors, v “ q ´ p and ´v “ p´ q; see Figure 11.5.3

3The old-fashioned notation for the vector q ´ p is ÝÑpq
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p

q

0

v=q-p

Figure 11.5. You should think of v “ q ´ p as the vector described by the arrow that
starts at p and ends at q.

The distinct points p, q belong to both lines ℓp,v and ℓq,´v. Since these two lines
intersect in two distinct points they must coincide; see Exercise 11.2. Thus

ℓp,v “ ℓq,´v.

This line is called the line determined by the (distinct) points p and q, and we will denote
it by pq. In other words, pq is the line through p in the direction q ´ p,

pq “ ℓp,q´p.

By construction, either of the vectors q ´ p or p ´ q is a direction vector of the line pq.
Observe that this line consists of all the points in Rn of the form

p` tv “ p` tpq ´ pq “ p1´ tqp` tq, t P R.
We thus have the important equality

pq “
!

p1´ tqp` tq P Rn, t P R
)

“ qp . (11.1.7)

Example 11.1.7. Consider the points p “ p1, 2, 3q and q “ p4, 5, 6q in R3. Then the line
through p and q is the subset of R3 described by

pq “
␣

p1´ tq ¨ p1, 2, 3q ` t ¨ p4, 5, 6q; t P R
(

“
␣

p1` 3t, 2` 3t, 3` 3tq; t P R u.
Equivalently, we say that the line pq is described by the equations

x “ 1` 3t,
y “ 2` 3t,
z “ 3` 3t,

t P R. [\

Given p, q P Rn, p ‰ q, the line pq is the image of the function

fp,q : RÑ Rn, fp,qptq “ p1´ tqp` tq.

Moreover,
fp,qp0q “ p, fp,qp1q “ q.

Intuitively, the function fp,q describes the motion of a particle in the space Rn that is
located at fp,qptq at the moment of time t. The line pq is then the trajectory described by
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this moving particle. Note that at t “ 0 the particle is located at p while, a second later,
at t “ 1, the particle is located at q. The line segment connecting p to q is defined to be
the portion of the trajectory described by this particle during the time interval r0, 1s. We
denote this line segment by rp, qs and we observe that it has the algebraic description

rp, qs :“
!

p1´ tqp` tq; t P r0, 1s
)

. (11.1.8)

Definition 11.1.8 (Convex sets). Let n P N. A subset C Ă Rn is called convex if for any
two points in C, the segment connecting them is entirely contained in C. More formally,
C is convex iff

@p, q P C, rp, qs Ă C,

or, equivalently,

@p, q P C, @t P r0, 1s, p1´ tqp` tq P C . [\

Convex Not convex

p

p

q

q

Figure 11.6. Examples of convex and non-convex planar sets.

Definition 11.1.9 (Linear forms). A linear form or linear functional on Rn is a map
ξ : Rn Ñ R satisfying the following two properties.

(i) (Additivity.) For any x,y P Rn we have ξpx` yq “ ξpxq ` ξpyq.

(ii) (Homogeneity.) For any t P R and any x P Rn we have ξptxq “ tξpxq.

We denote by pRnq˚ the set of linear forms on Rn and we will refer to it as the dual
of Rn. [\

☞ We want to emphasize that the linear forms are “beasts that eat vectors and spit out
numbers”.
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Example 11.1.10. (a) The set pRnq˚ is not empty. The trivial map Rn Ñ R that sends
every x to 0 is a linear functional. We will denote it by 0.

(b) Consider addition function α : R2 Ñ R, αpxq “ x1 ` x2. Concretely, the function α
“eats” a two-dimensional vector x “ px1, x2q and returns the sum of its coordinates. Let
us verify that α is a linear form.

Indeed, we have

αpx` yq “ α
`

px1 ` y1, x2 ` y2q
˘

“ px1 ` y1q ` px2 ` y2q

“ px1 ` x2q ` py1 ` y2q “ αpxq ` αpyq, @x,y P R2,

αptxq “ α
`

ptx1, tx2q
˘

“ tx1 ` tx2 “ tpx1 ` x2q “ tαpxq, @t P R, x P R2.

(c) For any k “ 1, . . . , n, we define ek : Rn Ñ R by

ekpxq “ xk, @x “ px1, . . . , xnq P Rn. (11.1.9)

From the definition of the addition and multiplication by scalars we deduce immediately
that the maps ek are linear functionals. The linear forms e1, . . . , en are called the basic
linear forms on Rn. [\

The proof of the next result is left to you as an exercise.

Proposition 11.1.11. If ξ,ω are linear forms on Rn and t is a real number, then the
sum ξ ` ω and the multiple tξ are linear functionals on Rn.4 [\

The linear forms on Rn have a very simple structure described in our next result.

Proposition 11.1.12. Let ξ : Rn Ñ R be a linear form. For i “ 1, . . . , n we set5

ξi :“ ξpeiq,

where e1, . . . , en is the canonical basis (11.1.2) of Rn. Then,

ξpxq “ ξ1x
1 ` ξ2x

2 ` ¨ ¨ ¨ ` ξnx
n “

n
ÿ

i“1

ξix
i, @x “ px1, . . . , xnq P Rn. (11.1.10)

Conversely, given any real numbers ξ1, . . . , ξn, the linear form

ξ “ ξ1e
1 ` ¨ ¨ ¨ ` ξne

n,

where ek are defined by (11.1.9), satisfies (11.1.10).

4In modern language this signifies that the space pRnq˚ of linear forms on Rn is a vector subspace of the vector

space of functions on Rn Ñ R.
5Note that here we use the subscript notation, ξi instead of the superscript notation ξi. This is part of

Einstein’s conventions I referred to at the beginning of this chapter.
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Proof. To prove (11.1.10) let x “ px1, . . . , xnq P Rn. Then

x “ x1e1 ` ¨ ¨ ¨ ` x
nen.

From the additivity of ξ we deduce

ξpxq “ ξpx1e1 ` ¨ ¨ ¨ ` x
nenq “ ξpx

1e1q ` ¨ ¨ ¨ ` ξpx
nenq

(use the homogeneity of ξ)

“ x1ξpe1q ` ¨ ¨ ¨ ` x
nξpenq “ ξ1x

1 ` ξ2x
2 ` ¨ ¨ ¨ ` ξnx

n.

This proves (11.1.10).

Conversely, if ξ “ ξ1e
1 ` ¨ ¨ ¨ ` ξne

n, then

ξpxq “ ξ1e
1pxq ` ¨ ¨ ¨ ` ξne

npxq
p11.1.9q
“ ξ1x

1 ` ξ2x
2 ` ¨ ¨ ¨ ` ξnx

n.

[\

The above proposition shows that a linear form ξ on Rn is completely and uniquely
determined by its values on the basic vectors e1, . . . , en. We will identify ξ with the row

rξ1, . . . , ξns, ξi “ ξpeiq,

and we will think of any length-n row of real numbers as defining a linear form on Rn. In
the physics literature the linear forms are often referred to as covectors.

The basic linear forms e1, . . . , en defined in (11.1.9) are uniquely determined by the
equalities

eipejq “ δij , @i, j “ 1, . . . , n , (11.1.11)

where we recall that δij is the Kronecker symbol (11.1.4).

Example 11.1.13. Suppose that n “ 4. Then the linear form ξ : R4 Ñ R defined by the
row vector r3, 5, 7, 9s is given by

ξpx1, x2, x3, x4q “ 3x1 ` 5x2 ` 7x3 ` 9x4, @px1, x2, x3, x4q P R4. [\

Definition 11.1.14. A subset H of Rn is called a hyperplane if there exists a nonzero
linear form ξ : Rn Ñ R and a real constant c such that H consists of all the points x P Rn
satisfying ξpxq “ c. [\

Example 11.1.15. (a) A hyperplane in R2 is a line in R2. Indeed, any linear form on R2

has the form

ξpx, yq “ ax` by

where a, b are fixed real numbers and x, y denote the Cartesian coordinates on R2. An
equation of the form

ax` by “ c

describes a line in R2. For example, the equation ´2x`y “ 3 describes the line y “ 2x`3,
with slope 2 and y-intercept 3; see Figure 11.7.
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Figure 11.7. The planar line with slope 2 and y-intercept 3.

(b) A hyperplane in R3 is a plane. For example, Figure 11.8 depicts the plane x`2y`3z “ 4.

(c) A row vector rξ1, . . . , ξns and a constant c define the hyperplane in Rn consisting of all
the points x “ px1, . . . , xnq P Rn satisfying the linear equation

ξ1x
1 ` ¨ ¨ ¨ ` ξnx

n “ c.

All the hyperplanes in Rn are of this form. [\

Figure 11.8. The plane x` 2y ` 3z “ 4.

Definition 11.1.16 (Affine subspaces). (a) A nonempty subset S Ă Rn is called an affine
subspace if it has the following property: for any points p, q P S, p ‰ q, the line pq is
contained in S. In algebraic terms this means that S is an affine subspace if and only if,
for any p, q P S, p ‰ q, and any t P R we have p1´ tqp` tq P S.

(b) The subset S is called a linear subspace or vector subspace if it is an affine subspace
and contains the origin. [\
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Example 11.1.17. (a) Any point in Rn is an affine subspace. The space Rn is obviously
an affine subspace of itself.

(b) The lines and the hyperplanes in Rn are special examples of affine subspaces; see
Exercise 11.8. When n ą 3, there are examples of affine subspaces of Rn that are neither
lines, nor hyperplanes.

(c) If nonempty, the intersection of two affine subspaces is an affine subspace. In particular,
if two hyperplanes are not disjoint, then their intersection is an affine subspace. One can
prove that if S is an affine subspace of Rn and S ‰ Rn, then S is the intersection of finitely
many hyperplanes. [\

Proposition 11.1.18. Let S be a nonempty subset of Rn. Then the following statements
are equivalent.

(i) The set S is a linear subspace, i.e., it is an affine subspace of Rn containing the
origin.

(ii) For any u,v P S and any t P R we have

tu P S and u` v P S.

In other words, either of the conditions (i) or (ii) above can be used as definition of a
linear subspace.

Proof. (i)ñ (ii) We know that S is an affine subspace and 0 P S. Clearly t0 “ 0, @t P R.
For any v P S, v ‰ 0 and any t P R we have

tv “ p1´ tq0` tv P S.

Thus, any multiple of any vector in S is also a vector in S. Thus, if u “ v P S we have
u ` v “ 2u P S. On the other hand, since S is an affine subspace, if u,v P S, u ‰ v,
the vector w “ 1

2u`
1
2v belongs to S. Hence the multiple 2w belongs to S and therefore

u` v “ 2w P S.

(ii) ñ (i) Let u P S. Hence 0 “ 0 ¨u P S. Next observe that if u,v P S, u ‰ v, and t P R,
then

p1´ tqu, tv P S ñ p1´ tqu` tv P S.

This proves that S is an affine subspace. [\

Definition 11.1.19 (Linear operators). Fix m,n P N. A map A : Rn Ñ Rm is called
linear or a linear operator if it satisfies the following two properties.

(i) (Additivity.) For any x,y P Rn we have Apx` yq “ Apxq `Apyq.

(ii) (Homogeneity.) For any t P R and any x P Rn we have Aptxq “ tApxq.

We denote by HompRn,Rmq the set of linear operators Rn Ñ Rm. [\
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Note that HompRn,Rq is none other than the dual of Rn, i.e., the space pRnq˚ of linear
functionals on Rn. Let us mention a simplifying convention that has been universally
adopted. If A : Rn Ñ Rm is a linear operator and x P Rn, then we will often use the
simpler notation Ax when referring to Apxq.

The linear operators Rn Ñ Rm have a rather simple structure. Let A : Rn Ñ Rm be
a linear operator. Denote by e1, . . . , en the canonical basis of Rn and by x1, . . . , xn the
canonical Cartesian coordinates. Similarly, we denote by f1, . . . ,fm the canonical basis
of Rm and by y1, . . . , ym the canonical Cartesian coordinates.

For any

x “ px1, . . . , xnq “ x1e1 ` ¨ ¨ ¨ ` x
nen P Rn

we have

Ax “ Apx1e1`¨ ¨ ¨`x
nenq “ Apx1e1q` ¨ ¨ ¨`Apx

nenq “ x1Ae1`¨ ¨ ¨`x
nAen. (11.1.12)

This shows that the operator A is completely determined by the m-dimensional vectors

Ae1, . . . , Aen P Rm.

These m-dimensional vectors are described by columns of height m.

Ae1 “

»

—

—

—

—

—

–

A1
1

A2
1
...
Am1

fi

ffi

ffi

ffi

ffi

ffi

fl

, . . . , Aej “

»

—

—

—

—

—

–

A1
j

A2
j
...
Amj

fi

ffi

ffi

ffi

ffi

ffi

fl

, . . . , Aen “

»

—

—

—

—

—

–

A1
n

A2
n
...
Amn

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Arranging these columns one next to the other we obtain the rectangular array

MA “

»

—

—

—

—

—

—

—

—

–

A1
1 ¨ ¨ ¨ A1

j ¨ ¨ ¨ A1
n

A2
1 ¨ ¨ ¨ A2

j ¨ ¨ ¨ A2
n

...
. . .

...
. . .

...
...

. . .
...

. . .
...

Am1 ¨ ¨ ¨ Amj ¨ ¨ ¨ Amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

✍ We need to introduce some terminology and conventions.

‚ A rectangular array of numbers as above is called a matrix.

‚ The horizontal strings of numbers are called rows, and the vertical ones are called
columns.

‚ We will denote by MatmˆnpRq the space of matrices with real entries, with m
rows and n columns. The matrix MA above is an mˆ n matrix.

‚ A square matrix is a matrix with an equal number of rows and columns. We
will denote by MatnpRq the space of square matrices with n rows and columns.
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‚ The superscripts label the rows and the subscripts label the columns. Thus, A3
7

is the entry located at the intersection of the 3rd row with the 7th column of a
matrix A.

‚ We denote by Aj the j-th column and by Ai the i-th row of a matrix A.

Note that a 1ˆ k matrix is a length-k row

R “ rr1 r2 . . . rks,

while a k ˆ 1 matrix is a height-k column

C “

»

—

–

c1

...
ck

fi

ffi

fl

The pairing between a row R and a column C of the same size k is defined to be the
number

R ‚ C :“ r1c
1 ` r2c

2 ` ¨ ¨ ¨ ` rkc
k . (11.1.13)

If we identify rows with linear functionals, then R‚C is the real number that we get when
we feed the vector C to the linear functional defined by R.

The above discussion shows that to any linear operator A : Rn Ñ Rm we can canoni-
cally associate an m ˆ n matrix called the matrix associated to the linear operator. This
matrix has n columnsA1, . . . , An that describe the coordinates of the vectorsAe1, . . . , Aen.

Using (11.1.12) we deduce

Ax “ x1Ae1 ` ¨ ¨ ¨ ` x
nAen

“ x1

»

—

—

—

—

—

–

A1
1

A2
1
...
Am1

fi

ffi

ffi

ffi

ffi

ffi

fl

` x2

»

—

—

—

—

—

–

A1
2

A2
2
...
Am2

fi

ffi

ffi

ffi

ffi

ffi

fl

` ¨ ¨ ¨ ` xn

»

—

—

—

—

—

–

A1
n

A2
n
...
Amn

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

x1A1
1 ` x

2A1
2 ` ¨ ¨ ¨ ` x

nA1
n

x1A2
1 ` x

2A2
2 ` ¨ ¨ ¨ ` x

nA2
n

...

x1Am1 ` x
2Am2 ` ¨ ¨ ¨ ` x

nAmn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

A1
1x

1 `A1
2x

2 ` ¨ ¨ ¨ `A1
nx

n

A2
1x

1 `A2
2x

2 ` ¨ ¨ ¨ ` xnA2
nx

n

...

Am1 x
1 `Am2 x

2 ` ¨ ¨ ¨ `Amn x
n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Let us analyze a bit the above sum equality. Note that the i-th coordinate of Ax is the
quantity

n
ÿ

j“1

Aijx
j “ Ai1x

1 `Ai2x
2 ` ¨ ¨ ¨ `Ainx

n,
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Note also that the above expression is obtained by pairing the i-th row Ai “ rAi1, . . . , A
i
ns

of the matrix MA with the column vector x “ rx1, . . . , xnsJ . Thus, the vector Ax in Rm
is described by the column of height m

Ax “

»

—

—

—

—

—

–

řn
j“1A

1
jx
j

řn
j“1A

2
jx
j

...
řn
j“1A

m
j x

j

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

A1 ‚ x

A2 ‚ x
...

Am ‚ x

fi

ffi

ffi

ffi

ffi

ffi

fl

. (11.1.14)

The above equality shows that each component of Ax is a linear functional in x.

Conversely, given an mˆn matrix A, its columns A1, . . . , An define vectors in Rm and
we can use these vectors to define a linear operator L “ LA : Rn Ñ Rm via the formula

LApxq “ x1A1 ` ¨ ¨ ¨ ` x
nAn, x “ px

1, x2, . . . , xnq.

In particular,

LAej “ Aj ,

so that the matrix associated to the operator LA is the matrix A we started with. This
proves the following very useful fact.

Theorem 11.1.20. The correspondence that associates to a linear operator Rn Ñ Rm its
m ˆ n matrix is a bijection between the set of linear operators HompRn,Rmq and the set
MatmˆnpRq of mˆ n matrices with real entries. [\

Because of the above bijective correspondence we will denote a linear operator and its
associated matrix by the same symbol.

Proposition 11.1.21. Let ℓ,m, n P N. If A : Rn Ñ Rm and B : Rm Ñ Rℓ are linear
operators, then so is their composition BA :“ B ˝A : Rn Ñ Rℓ.

Proof. To prove the additivity of BA we choose x,y P Rn. Then

BApx` yq “ B
`

Apx` yq
˘

(use the additivity of A)

“ B
`

Ax`Ay
˘

(use the additivity of B)

“ BpAxq `BpAyq “ BApxq `BApyq.

The homogeneity of BA is proved in a similar fashion. [\
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In Proposition 11.1.21 the operator A is represented by an mˆ n matrix MA and the
operator B by an ℓˆm matrix MB

MA “

»

—

—

—

—

—

–

A1
1 A1

2 ¨ ¨ ¨ A1
n

A2
1 A2

2 ¨ ¨ ¨ A2
n

...
...

. . .
...

Am1 Am2 ¨ ¨ ¨ Amn

fi

ffi

ffi

ffi

ffi

ffi

fl

, MB “

»

—

—

—

—

—

–

B1
1 B1

2 ¨ ¨ ¨ B1
m

B2
1 B2

2 ¨ ¨ ¨ B2
m

...
...

. . .
...

Bℓ
1 Bℓ

2 ¨ ¨ ¨ Bℓ
m

fi

ffi

ffi

ffi

ffi

ffi

fl

.

The operator BA : Rn Ñ Rℓ is represented by an ℓ ˆ n matrix MBA with entries pBAqij
that we want to describe explicitly. Note that the columns of this matrix describe the
coordinates of the vectors

BpAe1q, . . . , BpAenq P Rℓ.
Thus, for i “ 1, . . . , ℓ, the entry pBAqij denotes the i-th coordinate of the vector BpAejq.
The vector Aej is described by the column

Aej “ Aj “

»

—

–

A1
j
...
Amj

fi

ffi

fl

.

Since pBAqij is the i-th coordinate of BpAejq, we deduce from (11.1.14) with x “ Aej “ Aj
that

pBAqij “ Bi ‚Aj . (11.1.15)

More explicitly, given that Bi “ rBi
1, . . . , B

i
ms, we deduce from (11.1.13) with U “ Bi and

V “ Aj that

pBAqij “ Bi
1A

1
j `B

i
2A

2
j ` ¨ ¨ ¨ `B

i
mA

m
j .

Definition 11.1.22 (Matrix multiplication). 6 Given two matrices

A P MatmˆnpRq and B P MatℓˆmpRq

(so that the number of columns of B is equal to the number of rows of A) their product is
the ℓˆ n matrix B ¨A whose pi, jq entry is the pairing of the i-th row of B with the j-th
column of A,

pB ¨Aqij “ Bi ‚Aj “ Bi
1A

1
j `B

i
2A

2
j ` ¨ ¨ ¨ `B

i
mA

m
j . [\

The next result summarizes the above discussion.

Proposition 11.1.23. The matrix associated to the composition of two linear operators

A : Rn Ñ Rm, B : Rm Ñ Rℓ

is the product of the matrices associated to these operators,

MB˝A “MB ¨MA. [\

6Check the site http://matrixmultiplication.xyz/ that interactively shows you how to multiply matrices.

http://matrixmultiplication.xyz/
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Remark 11.1.24. According to Theorem 11.1.20, any matrix A P MatmˆnpRq defines a
linear operator LA : Rn Ñ Rm. A vector x P Rn is represented by a column, i.e., by an
nˆ 1 matrix. The product of the matrices A and x is well defined and produces an mˆ 1
matrix A ¨ x which can also be viewed as a vector in Rm.

When we feed the vector x to the linear operator LA defined by A we also obtain a
vector in Rm given by (11.1.14)

LAx “

»

—

—

—

—

—

–

A1 ‚ x

A2 ‚ x
...

Am ‚ x

fi

ffi

ffi

ffi

ffi

ffi

fl

The column on the right-hand side of the above equality is none other than the matrix
multiplication A ¨ x, i.e.,

LAx “ A ¨ x.

Thus, when viewed as a linear operator, the action of a matrix on a vector coincides with
the product of that matrix with the vector viewed as a matrix consisting of a single column.

This remarkable coincidence is one of the main reasons we prefer to think of the vectors
in Rn as column vectors. [\

☞ Important Convention In the sequel, to ease the notational burden, we will denote
with the same symbol a linear operator and its associated matrix. With this convention,
the equality LAx “ A ¨ x above takes the simper form

Ax “ A ¨ x. (11.1.16)

Also, due to Proposition 11.1.23 we will use the simpler notation BA instead of B ¨ A
when referring to matrix multiplication.

Example 11.1.25. (a) A linear operator RÑ R corresponds to a 1ˆ 1-matrix which in
turn can be identified with a number. If A is a real number, then the associated linear
operator sends a real number x to the real number Ax. Thus, the real number A is
the slope of the linear function fpxq “ Ax. This simple example shows that the matrix
associated to a linear operator is a sort of “generalized slope” of the linear operator.

(b) The identity operator 1 : Rn Ñ Rn is represented by the nˆ n diagonal matrix

1 “ 1n “

»

—

—

—

–

1 0 0 ¨ ¨ ¨ 0 0
0 1 0 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
0 0 0 ¨ ¨ ¨ 0 1

fi

ffi

ffi

ffi

fl

.
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E.g.

12 “

„

1 0
0 1

ȷ

, 13 “

»

–

1 0 0
0 1 0
0 0 1

fi

fl .

Note that the pi, jq entry of 1n is δij , where δ
i
j is the Kronecker symbol defined in (11.1.4).

The identity operator (matrix) 1n has the property that

1nA “ A1n “ A, @A P MatnˆnpRq.

We will denote by 0 a matrix whose entries are all equal to 0.

(c) The diagonal of a square n ˆ n matrix A consists of the entries A1
1, A

2
2, . . . , A

n
n. For

example the diagonal of the 2ˆ 2 matrix

A “

„

1 2

3 4

ȷ

consists of the boxed entries. An nˆ n diagonal matrix is a matrix of the form
»

—

—

—

–

c1 0 0 ¨ ¨ ¨ 0 0
0 c2 0 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
0 0 0 ¨ ¨ ¨ 0 cn

fi

ffi

ffi

ffi

fl

.

We will denote the above matrix by Diagpc1, . . . , cnq.

(d) An nˆ n matrix A is called symmetric if Aij “ Aji , @i, j “ 1, . . . , n. For example, the
matrix below is symmetric.

»

–

1 2 3
2 4 5
3 5 6

fi

fl .

(e) We can add two matrices of the same dimensions. Thus

pA`Bqij “ Aij `B
i
j ,

i.e., the pi, jq-entry of A ` B is the sum of the pi, jq-entry of A with the pi, jq-entry of
B. We can also multiply a matrix A by a scalar c P R. The new matrix is obtained by
multiplying all entries of A by the constant c. [\

Example 11.1.26. The multiplication of matrices resembles in some respects the multi-
plication of real numbers. For example, the multiplication of matrices is associative

pA ¨Bq ¨ C “ A ¨ pB ¨ Cq

for any matrices A P MatkˆℓpRq, B P MatℓˆmpRq, C P MatmˆnpRq. It is also distributive
with respect to the addition of matrices

A ¨ pB ` Cq “ AB `AC, @A P MatℓˆmpRq, B, C P MatmˆnpRq.
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However, there are some important differences. Consider for example the 2ˆ 2 matrices

A “

„

1 2
0 0

ȷ

, B “

„

0 3
0 4

ȷ

.

Observe that

A ¨B “

„

0 3` 8
0 0

ȷ

“

„

0 11
0 0

ȷ

, B ¨A “

„

0 0
0 0

ȷ

.

[\

This example shows two things.

‚ The multiplication of matrices is not commutative since obviously AB ‰ BA in
the above example.

‚ The product of two matrices can be zero, although none of them is zero as in
example BA “ 0 above.

Definition 11.1.27. Suppose that A : Rn Ñ Rm is a linear operator. The kernel of A,
denoted by kerA is the set

kerA :“
␣

x P Rn; Ax “ 0
(

Ă Rn. [\

We have the following useful result whose proof is left to you as an exercise.

Proposition 11.1.28. Suppose that A : Rn Ñ Rm is a linear operator and S Ă Rn is a
vector subspace. Then its kernel kerA is a linear subspace of Rn and the image ApSq of S
is a vector subspace of Rm. In particular, the range RpAq :“ ApRnq is a linear subspace
of Rm. [\

Example 11.1.29. Consider the 2ˆ 3 matrix

A “

„

1 2 3
4 5 6

ȷ

.

As such, it defines a linear operator A : R3 Ñ R2 described by

R3 Q x “

»

–

x1

x2

x3

fi

fl ÞÑ

„

1 2 3
4 5 6

ȷ

¨

»

–

x1

x2

x3

fi

fl “

„

x1 ` 2x2 ` 3x3

4x1 ` 5x2 ` 6x3

ȷ

P R2.

If e1, e2, e3 is the natural basis, then Ae1, Ae2, Ae3 are described respectively by the
columns A1, A2, A3 of A. E.g.,

Ae1 “

„

1
4

ȷ

P R2.

The kernel of this operator consists of vectors x “ px1, x2, x3q P R3 satisfying Ax “ 0,
i.e., the system of linear equations

"

x1 ` 2x2 ` 3x3 “ 0
4x1 ` 5x2 ` 6x3 “ 0.
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If we multiply the first line above by 4 and then subtract it from the second line we deduce
"

x1 ` 2x2 ` 3x3 “ 0
´3x2 ´ 6x3 “ 0

ðñ

"

x1 ` 2x2 ` 3x3 “ 0
x2 ` 2x3 “ 0.

We deduce that

x2 “ ´2x3, x1 “ ´2x2 ´ 3x3 “ x3.

If we set t :“ x3 we deduce that px1, x2, x3q P kerA if and only if it has the form

x1 “ t, x2 “ ´2t, x3 “ t, t P R.

Thus the kernel of A is the line through the origin with direction vector v “ p1,´2, 1q,

kerA “ ℓ0,v. [\

11.2. Basic Euclidean geometry

The space Rn has a considerably richer structure than the ones we have discussed in the
previous section. The goal of the present section is to describe this additional structure
and some of its consequences.

Definition 11.2.1 (Inner product). The canonical inner product in Rn is the map RnˆRn Ñ R
that associates to a pair of vectors px,yq P Rn ˆ Rn the real number xx,yy defined by

xx,yy :“
n
ÿ

j“1

xjyj “ x1y1 ` ¨ ¨ ¨ ` xnyn. [\

Proposition 11.2.2. The inner product x´,´y : Rn ˆ Rn Ñ R satisfies the following
properties.

(i) For any x,y, z P Rn we have

xx` y, zy “ xx, zy ` xy, zy.

(ii) For any x,y P Rn and any t P R we have

xtx,yy “ xx, tyy “ txx,yy.

(iii) For any x,y P Rn we have

xx,yy “ xy,xy.

(iv) For any x P Rn we have xx,xy ě 0 with equality if and only if x “ 0.

Proof. (i) We have

xx` y, zy “ px1 ` y1qz1 ` ¨ ¨ ¨ ` pxn ` ynqzn “ px1z1 ` ¨ ¨ ¨ ` xnznq ` py1z1 ` ¨ ¨ ¨ ` ynznq

“ xx, zy ` xy, zy.

The properties (ii) and (iii) are obvious. As for (iv), note that

xx,xy “ px1q2 ` ¨ ¨ ¨ ` pxnq2 ě 0.
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Clearly, we have equality if and only if x1 “ ¨ ¨ ¨ “ xn “ 0.

[\

Definition 11.2.3. The Euclidean norm or length of a vector x “ rx1, . . . , xnsJ P Rn is
the nonnegative real number }x} defined by

}x} :“
a

xx,xy “
a

px1q2 ` ¨ ¨ ¨ ` pxnq2. [\

Observe that

}x}2 “ xx,xy, @x P Rn.

The Cauchy-Schwarz inequality (8.3.16) implies that for any

x “ rx1, . . . , xnsJ, y “ ry1, . . . , ynsJ

we have
ˇ

ˇ

ˇ
x1y1 ` ¨ ¨ ¨ ` xnyn

ˇ

ˇ

ˇ
ď
a

px1q2 ` ¨ ¨ ¨ pxnq2 ¨
a

py1q2 ` ¨ ¨ ¨ ` pynq2.

This can be rewritten in the more compact form

ˇ

ˇ xx,yy
ˇ

ˇ ď }x} ¨ }y}, @x,y P Rn. (11.2.1)

We will refer to (11.2.1) as the Cauchy-Schwarz inequality. Given the importance of this
inequality we present below an alternate proof

Alternate proof of the inequality (11.2.1). The inequality (11.2.1) obviously holds
if x “ 0 or y “ 0 so it suffices to prove it in the case x,y ‰ 0. Consider the function

f : RÑ R, fptq “ xtx` y, tx` yy “ }tx` y}2.

Clearly, fptq ě 0 and fpt0q “ 0 for some t0 P R if and only if x,y are collinear, y “ ´t0x.
Using Proposition 11.2.2 we deduce

fptq “ xtx` y, txy ` xtx` y,yy “ txtx` y,xy ` xtx` y,yy

“ t
`

xtx,xy ` xy,xy
˘

`txx,yy ` xy,yy

“ t2xx,xy ` txy,xy ` txx,yy ` xy,yy “ xx,xy
loomoon

a

t2 ` 2xx,yy
loomoon

b

t` xy,yy
loomoon

c

“ at2 ` bt` c, a ą 0.

This shows that the quadratic polynomial at2` bt` c with a ą 0 is nonnegative for every
t P R. From Exercise 3.10(a) we conclude that this is possible if and only if b2 ´ 4ac ď 0,
i.e.,

4
ˇ

ˇ xx,yy
ˇ

ˇ

2
´ 4}x}2}y}2 ď 0.

This implies
ˇ

ˇ xx,yy
ˇ

ˇ ď }x} ¨ }y}. [\
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Remark 11.2.4. In the above argument observe that if

|xx,yy| “ }x} ¨ }y}

then b2´ 4ac “ 0. In particular, this implies that there exists t P R such that tx` y “ 0,
i.e., the vectors are collinear. Conversely, if the vectors x,y are collinear, then clearly
|xx,yy| “ }x} ¨ }y}.

The above argument proves a bit more namely

|xx,yy| ď }x} ¨ }y}, @x,y P Rn,

with equality if and only if one of the vectors is a multiple of the other. [\

The Cauchy-Schwarz inequality implies that for any nonzero vectors x,y P Rn we have

xx,yy

}x} ¨ }y}
P r´1, 1s.

Thus, there exists a unique θ P r0, πs such that

cos θ “
xx,yy

}x} ¨ }y}
.

Definition 11.2.5. The angle between the nonzero vectors x,y P Rn, denoted by >px,yq,
is defined to be the unique number θ P r0, πs such that

cos θ “
xx,yy

}x} ¨ }y}
. [\

Thus, for any x,y P Rn, x,y ‰ 0, we have

cos>px,yq “
xx,yy

}x} ¨ }y}
and xx,yy “ }x} ¨ }y} cos>px,yq . (11.2.2)

Classically, two nonzero vectors x,y are orthogonal if >px,yq “ π
2 , i.e., cos>px,yq “ 0

. The equality (11.2.2) shows that this happens iff xx,yy “ 0. This justifies our next
definition.

Definition 11.2.6. We say that two vectors x,y P Rn are orthogonal, and we write this
x K y, if xx,yy “ 0. [\

Example 11.2.7. If e1, . . . , en is the canonical basis of Rn (see (11.1.2)), then

}e1} “ ¨ ¨ ¨ “ }en} “ 1,

and

ei K ej , @i ‰ j.

We can rewrite these facts in the more succinct form

xei, ejy “ δij :“

#

1, i “ j,

0, i ‰ j.
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The collection pδijq above is also called Kronecker symbol. Note that for any vector

x “

»

—

–

x1

...
xn

fi

ffi

fl

P Rn

we have

xi “ xx, eiy, @i “ 1, 2, . . . , n,

and thus

x “ xx, e1ye1 ` ¨ ¨ ¨ ` xx, enyen. [\

Theorem 11.2.8 (Pythagoras). If x,y P Rn and x K y, then

}x` y}2 “ }x}2 ` }y}2.

Proof. We have

}x` y}2 “ xx` y,x` yy “ xx,x` yy ` xy,x` yy

“ xx,xy ` xx,yy ` xy,xy
loooooooomoooooooon

“0

`xy,yy “ xx,xy ` xy,yy “ }x}2 ` }y}2.

[\

Observe that any vector x P Rn defines a linear functional

xÓ : Rn Ñ R, xÓpyq :“ xx,yy.

We will refer to the functional xÓ as the dual of x. It is not hard to see that all the linear
functionals on Rn are duals of vectors in Rn.

Proposition 11.2.9. Let n P N. Any linear functional ξ : Rn Ñ R is the dual of a unique
vector in Rn. This means that there exists a unique vector z P Rn such that ξ “ zÓ, i.e.,

ξpxq “ xz,xy, @x P Rn. (11.2.3)

This unique vector z is called the dual of ξ and it is denoted by ξÒ.

Proof. Let e1, . . . , en be the canonical basis of Rn. Set

ξi :“ ξpeiq, i “ 1, 2, . . . , n,

The vector z “ rz1, . . . , znsJ satisfies (11.2.3) if and only if

zi “ xz, eiy “ ξpeiq “ ξi, i “ 1, 2, . . . , n.

[\
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The above proof shows that, if the linear form ξ is described by the row

ξ “ rξ1, . . . , ξns,

then ξÒ is the vector described by the column

ξÒ “

»

—

–

ξ1
...
ξn

fi

ffi

fl

ðñ ξiÒ “ ξi, (11.2.4a)

ξpxq “ ξ ‚ x “ xξÒ,xy, @x P Rn. (11.2.4b)

Note that

peiq
Ó “ ei, pejqÒ “ ej , @i, j “ 1, . . . , n. (11.2.5)

The duality operation defined above has a very simple intuitive description: it takes a
row ξ and transforms into a column ξÒ with the same entries, and vice-versa, it takes a

column x and transforms it into a row xÓ with the same entries. E.g.,

r1,´2, 3sÒ “

»

–

1
´2
3

fi

fl ,

»

–

4
5
6

fi

fl

Ó

“ r4, 5, 6s.

Proposition 11.2.10. Let n P N and H Ă Rn. The following statements are equivalent.

(i) The subset H is a hyperplane.

(ii) There exists a nonzero vector N P Rn and a constant c P R such that p P H if
and only if xN ,py “ c.

Proof. (i)ñ (ii) SinceH is a hyperplane there exists a nonzero linear functional ξ : Rn Ñ R
and a real number c such that

x P H ðñ ξpxq “ c.

Let N :“ ξÒ, i.e., xN ,xy “ ξpxq, @x P Rn. Then, for any p, q P H, we have

xN ,py “ ξppq “ c “ ξpqq “ xN , qy.

(ii) ñ (i) Let ξ :“NÓ. Then

p P HðñxN ,py “ cðñ ξppq “ c.

This shows that H is a hyperplane. [\

Suppose that H Ă Rn is a hyperplane. Hence, there exist N P Rnzt0u and c P R such
that

x P HðñxN ,xy “ c.

If p, q P H and p ‰ q, then the direction of the line pq is given by the vector q´ p. Now
observe that

xN , q ´ py “ xN , qy ´ xN ,py “ 0ñN K pq ´ pq.
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Thus, the defining vector N is perpendicular to all the lines contained in H. We say that
N is orthogonal to H, we write this N K H and we will to refer to N as a normal vector
of H.

Example 11.2.11. (a) As we have mentioned earlier, any line in R2 is also an affine
hyperplane. For example, the line given by the equation 2x ` 3y “ 5 admits the vector
N “ p2, 3q as normal vector.

(b) If n P N, then for any p P Rn and any N P Rn, N ‰ 0, we denote by Hp,N the
hyperplane through p and normal N , i.e., the hyperplane

Hp,N “
␣

x P Rn; xN ,xy “ xN ,py
(

.

Clearly p P H. For example if n “ 3, p “ p1, 1, 1q and N “ p1, 2, 3q, then

xN ,py “ 1` 2` 3 “ 6,

and

Hp,N “
␣

px, y, zq P R3; x` 2y ` 3z “ 6
(

. [\

Example 11.2.12 (The cross product in R3). The 3-dimensional Euclidean space R3 is
equipped with another operation that is not available in any other dimensions. The cross
product is the map

ˆ : R3 ˆ R3 Ñ R3, pu,vq ÞÑ uˆ v

uniquely characterized by the following conditions

(i) @u,v,w P R3

pu` vq ˆw “ puˆwq ` pv ˆwq,

w ˆ pu` vq “ pw ˆ uq ` pw ˆ vq.

(ii)

ptuq ˆ v “ uˆ ptvq “ tpuˆ vq, @t P R, u,v P R3.

(iii)

uˆ v “ ´pv ˆ uq, @u,v P R3.

(iv)

e1 ˆ e2 “ e3, e2 ˆ e3 “ e1, e3 ˆ e1 “ e2.

Note that (iii) implies that

uˆ u “ 0, @u P R3.

Indeed

uˆ u “ ´puˆ uq ñ 2puˆ uq “ 0ñ uˆ u “ 0.

For example, if

u “ r1, 2, 3sJ, v “ r4, 5, 6sJ,

then

uˆ v “ pe1 ` 2e2 ` 3e3q ˆ p4e1 ` 5e2 ` 6e3q
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“ e1 ˆ p4e1 ` 5e2 ` 6e3q
loooooooooooooomoooooooooooooon

I

` 2e2 ˆ p4e1 ` 5e2 ` 6e3q
loooooooooooooomoooooooooooooon

II

` 3e3 ˆ p4e1 ` 5e2 ` 6e3q
loooooooooooooomoooooooooooooon

III

“ 5e1 ˆ e2 ` 6e1 ˆ e3
looooooooooomooooooooooon

I

` 8e2 ˆ e1 ` 12e2 ˆ e3
loooooooooooomoooooooooooon

II

` 12e3 ˆ e1 ` 15e3 ˆ e2
looooooooooooomooooooooooooon

III

“ p5e3 ´ 6e2q
looooomooooon

I

`p´8e3 ` 12e1q
looooooomooooooon

II

`p12e2 ´ 15e1q
looooooomooooooon

III

“ ´3e1 ` 6e2 ´ 3e3 “ r´3, 6,´3|
J.

If we set w “ uˆ v “ r´3, 6,´3sJ, then we observe that

xw,uy “ xw,vy “ 0.

We have

}u} “
a

12 ` 22 ` 32 “
?
14, }v} “

a

42 ` 52 ` 62 “
?
77,

}u} ¨ }v} “
?
14 ¨ 77 “

?
1078,

xu,vy “ 4` 10` 18 “ 32.

If we denote by θ the angle between u and v, then we deduce

cos θ “
32

?
1078

.

Hence

sin2 θ “ 1´ cos2 θ “
54

1078
.

Note that

}uˆ v} “
a

32 ` 62 ` 32 “
?
54,

This proves that

u,v K puˆ vq, }uˆ v} “
?
54 “

?
1078 ¨

c

54

1078
“ }u} ¨ }v} sin θ.

Let us observe that the quantity }u} ¨ }v} sin θ is the area of the parallelogram spanned by
the vectors u,v.

The above observations are manifestations of a more general phenomenon. Given any
two vectors

u “ ru1, u2, u3sJ, v “ rv1, v2, v3sJ P R3,

then the properties(i)-(iv) show that7

uˆ v “ pu2v3 ´ u3v2qe1 ` pu
3v1 ´ u1v3qe2 ` pu

1v2 ´ u2v1qe3 . (11.2.6)

Using this equality one can show that u ˆ v is a vector perpendicular to both u and v
and its length is equal to the area of the parallelogram spanned by the vectors u,v. These
facts alone almost completely determine the vector u ˆ v. There are two vectors with
these properties, and to determine which is the cross product we need to indicate the
direction or orientation of this vector. This is achieved using the right-hand rule.

7Do not try to memorize (11.2.6). Use (i)-(iv) whenever you want to compute a cross product.
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☛ Align your right hand thumb with the vector u and your right hand index with the
vector v. If you then move the right hand middle-finger so it is perpendicular to your
right-hand palm, then it will be aligned with uˆ v. [\

Definition 11.2.13. Suppose that V Ă Rn is a vector subspace. Its orthogonal comple-
ment is the subset

V K :“
␣

u P Rn; xu,vy “ 0, @v P V
(

. [\

11.3. Basic Euclidean topology

The notions of convergence and continuity on the real axis have a multidimensional coun-
terpart. The main reason why this happens is because the Euclidean norm } ´ } behaves
like the absolute value on R. Observe first that

}tx} “ |t| ¨ }x}, @x P Rn, t P R (11.3.1a)

}x} ě 0, }x} “ 0ðñx “ 0, (11.3.1b)

Additionally, and less trivially, we have the following key result.

Theorem 11.3.1 (Triangle inequality). Let n P N. For any x,y P Rn we have

}x` y} ď }x} ` }y}. (11.3.2a)
ˇ

ˇ

ˇ
}x} ´ }y}

ˇ

ˇ

ˇ
ď }x´ y}. (11.3.2b)

Proof. Observe that

}x` y}2 “ xx` y,x` yy “ xx,xy ` xx,yy ` xy,xy ` xy,yy “ }x}2 ` 2xx,yy ` }y}2

(use the Cauchy-Schwarz inequality)

ď }x}2 ` 2}x} ¨ }y} ` }y}2 “
`

}x} ` }y}
˘2
.

Hence

}x` y}2 ď
`

}x} ` }y}
˘2
.

This proves (11.3.2a).

Next, observe that (11.3.2a) implies

}x} “ }y ` px´ yq} ď }y} ` }x´ y} ñ }x} ´ }y} ď }x´ y}.

Similarly

}y} “ }x` py ´ xq} ď }x} ` }py ´ xq} “ }x} ` }x´ y}

ñ }y} ´ }x} ď }x´ y}.

Hence

˘
`

}x} ´ }y}
˘

ď }x´ y}.

This is clearly equivalent to (11.3.2b). [\
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Definition 11.3.2 (Euclidean distance). Let n P N and x,y P Rn. The Euclidean distance
between the points x,y is the nonnegative real number

distpx,yq :“ }x´ y}. [\

Example 11.3.3. (a) If n “ 1, then for any x, y P R we have distpx, yq “ |x´ y|.

(b) For any n P N and any x P Rn we have }x} “ distpx,0q. [\

Proposition 11.3.4. Let n P N. For any x,y, z P Rn the following hold.

(i) distpx,yq ě 0 with equality if and only if x “ y.

(ii) distpx,yq “ distpy,xq.

(iii) (Triangle inequality) distpx, zq ď distpx,yq ` distpy, zq.

Proof. We have

distpx,yq “ }x´ y} “
›

›´px´ yq
›

› “ }y ´ x} “ distpy,xq ě 0.

Clearly

distpx,yq “ 0ðñ}x´ y} “ 0ðñx “ y.

To prove (iii) note that

distpx, zq “ }x´ z} “ }px´ yq ` py ´ zq}

p11.3.2aq
ď }x´ y} ` }y ´ z} “ distpx,yq ` distpy, zq.

[\

Definition 11.3.5 (Open sets). Let n P N.

(i) For r ą 0 and p P Rn we define the open (Euclidean) ball of radius r and center
p to be the set

Brppq :“
␣

x P Rn; distpx,pq ă r
(

“
␣

x P Rn; }x´ p} ă r
(

. (11.3.3)

Sometimes, when we want to emphasize the ambient space Rn we will use the
more precise notation Bn

r ppq when referring to the open ball in Rn of radius r
and center p.

(ii) A set U Ă Rn is called open (in Rn) if, for any p P U , there exists r ą 0 such
that Brppq Ă U .

(iii) An open neighborhood of x0 in Rn is defined to be an open subset of Rn that
contains x0.

[\

Example 11.3.6. For any real numbers a ă b, the intervals pa, bq, p´8, aq and pa,8q
are open subsets of R. [\
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Proposition 11.3.7. Let n P N. Then, for any p P Rn and any r ą 0, the open ball
Brppq is an open subset of Rn.

Proof. Let r ą 0 and p P Rn. Given q P Brppq let ρ :“ distpp, qq. Note that ρ ă r. We
claim that Br´ρpqq Ă Brppq. Indeed, if x P Br´ρpqq, then distpq,xq ă r ´ ρ. Using the
triangle inequality we deduce

distpp,xq ď distpp, qq ` distpq,xq ă ρ` pr ´ ρq “ r.

This proves that x P Brppq. [\

Proposition 11.3.8. Let n P N. Then the following hold.

(i) The empty set and the whole space Rn are open subsets of Rn.
(ii) The intersection of two open subsets of Rn is also an open subset of Rn.
(iii) The union of a (possibly infinite) collection of open subsets of Rn is also an open

subset of Rn.

Proof. The statement (i) is obvious. To prove (ii) consider two open subsets U1, U2 Ă Rn.
We have to show that U1 X U2 is open, i.e., for any p P U1 X U2 there exists r ą 0 such
that Brppq Ă U1 X U2.

Since U1 is open, there exists r1 ą 0 such that Br1ppq Ă U1. Similarly, there exists
r2 ą 0 such that Br2ppq Ă U2. If r “ minpr1, r2q, then

Brppq “ Br1ppq XBr2ppq Ă U1 X U2.

(iii) Suppose that pUiqiPI is a collection of open subsets of Rn. Denote by U their union.
If p P U , then there exists a set Ui0 of this collection that contains p. Since Ui0 is open,
there exists r0 ą 0 such that

Br0ppq Ă Ui0 Ă U.

This proves that U is open. [\

Definition 11.3.9. Let n P N. For any x “ rx1, . . . , xnsJ P Rn we set

}x}8 :“ max
␣

|x1|, . . . , |xn|
(

.

We will refer to }x}8 as the sup-norm of x. [\

Example 11.3.10. If x “ r3, 1,´7, 5sJ P R4, then

}x}8 “ 7 and }x} “
?
9` 1` 49` 25 “

?
84. [\

The proof of the following result is left to you as an exercise.

Proposition 11.3.11. Let n P N. Then

}x` y}8 ď }x}8 ` }y}8, @x,y P Rn, (11.3.4a)
ˇ

ˇ

ˇ
}x}8 ´ }y}8

ˇ

ˇ

ˇ
ď }x´ y}8, @x,y P Rn, (11.3.4b)
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and

}x}8 ď }x} ď
?
n}x}8, @x P Rn. (11.3.5)

[\

Definition 11.3.12. Let n P N. For any p P Rn and r ą 0 we define the open cube of
center p and radius r to be the set

Crppq :“
␣

x P Rn; }x´ p}8 ă r
(

. [\

Figure 11.9. The open cube C2p0q of radius 2 and center 0 P R2.

Observe that if p “ rp1, . . . , pnsJ P Rn and r ą 0 then

x P Crppqðñ|x
i ´ pi| ă r, @i “ 1, 2, . . . , n

ðñxi P ppi ´ r, pi ` rq, @i “ 1, 2, . . . , n

ðñx P pp1 ´ r, p1 ` rq ˆ pp2 ´ r, p2 ` rq ˆ ¨ ¨ ¨ ˆ ppn ´ r, pn ` rq.

Note that the inequality (11.3.5) implies that

@p P Rn, @r ą 0 : Cr{
?
nppq Ă Brppq Ă Crppq. (11.3.6)

Proposition 11.3.13. For any n P N, p P Rn and r ą 0 the open cube Crppq is an open
subset of Rn. [\

The proof is left to you as an exercise.

Proposition 11.3.14. Let n P N and U Ă Rn. The following statements are equivalent.

(i) The set U is open.

(ii) For all p P U , Dr ą 0 such that Crppq Ă U .
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[\

Definition 11.3.15 (Closed sets). Let n P N. A subset C Ă Rn is called closed (in Rn)
if its complement RnzC is open in Rn. More explicitly, this means that

@p P RnzC Dr ą 0 : Brppq Ă RnzC. [\

Example 11.3.16. (a) For any real numbers a ă b, the intervals ra, bs, p´8, bs, rb,8q
are closed subsets of R.
(b) For p P Rn and r ą 0 we set

Brppq :“
␣

x P Rn; }x´ p} ď r
(

.

Then Brppq is a closed subset of Rn, i.e., RnzBrppq is open.
Indeed, let q P RnzBrppq. Thus }q ´ p} ą r. Set R “ }q ´ p}. We claim that

BR´rpqq Ă RnzBrppq.

Let y P BR´rpqq. We have

R “ }p´ q} ď }p´ y} ` }y ´ q}ă}p´ y} `R´ r ñ r ă }p´ y}

ñ y P RnzBrppq.
(c) For p P Rn and r ą 0 we set

Crppq :“
␣

x P Rn; }x´ p}8 ď r
(

.

Then Crppq is a closed subset of Rn. To prove this fact, imitate the argument in (b) with
the Euclidean norm } ´ } replaced by the sup-norm } ´ }8 and then invoke Proposition
11.3.14. [\

Definition 11.3.17. The sets Brppq and Crppq are called the closed ball and respectively
closed cube of center p and radius r. [\

According to the De Morgan law (Proposition 1.3.2) the complement of a union of sets
is the intersection of the complements of the sets, and the complement of an intersection
of sets is the union of the complements of the sets. Invoking Proposition 11.3.8 we deduce
the following result.

Proposition 11.3.18. Let n P N. The following hold.

(i) The empty set and the whole space Rn are closed subsets of Rn.
(ii) The union of two closed subsets of Rn is also a closed subset of Rn.
(iii) The intersection of a (possibly infinite) collection of closed subsets of Rn is also

a closed subset of Rn.

[\
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11.4. Convergence

The concept of convergence of sequences of real numbers has a multidimensional counter-
part. In fact, the concept of convergence of a sequence of points in a Euclidean space Rn
can be expressed in terms of the concept of convergence of sequences of real numbers.

Definition 11.4.1 (Convergent sequences). Let n P N. A sequence ppνqνě1 of points
in Rn is said to be convergent if there exists p8 such that the sequence of real numbers
`

distppν ,p8q
˘

νě1
converges to 0,

lim
νÑ8

distppν ,p8q “ 0.

More precisely, this means that @ε ą 0, DN “ Npεq ą 0 such that @ν ą Npεq we have
}pν ´ p8} ă ε. The point p8 is called the limit of the sequence ppνq and we write this

p8 “ lim
νÑ8

pν .

[\

Note that

p8 “ lim
νÑ8

pνðñ lim
νÑ8

}pν ´ p8} “ 0ðñ lim
νÑ8

distppν ,p8q “ 0. (11.4.1)

The notion of convergence can be expressed in terms of open balls because the state-
ment “distpx,pq ă ε” is equivalent to the statement: “the point x belongs to the open
ball of center p and radius ε”. More precisely, we have the following result.

Proposition 11.4.2. Let n P N and ppνq a sequence of points in Rn. The following
statements are equivalent.

(i)
p8 “ lim

νÑ8
pν .

(ii) For any ε ą 0 there exists N “ Npεq ą 0 such that, @ν ą Npεq we have
pν P Bεpp8q.

[\

The proof of the next result is left to you as an exercise.

Proposition 11.4.3. Let n P N. Consider a sequence of points in Rn

pν “

»

—

–

p1ν
...
pnν

fi

ffi

fl

, ν “ 1, 2, . . . ,

and

p8 “

»

—

–

p18
...
pn8

fi

ffi

fl

P Rn.
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The following statements are equivalent.

(i)

lim
νÑ8

pν “ p8

(ii)

lim
νÑ8

}pν ´ p8}8 “ 0.

(iii) For any i “ 1, 2, . . . , n, the i-th coordinate of pν converges to the i-th coordinate
of p8, i.e.,

lim
νÑ8

piν “ pi8, @i “ 1, 2, . . . , n.

[\

Example 11.4.4. The sequence of points

pν “

»

—

—

—

—

–

1
ν

ν`1
ν2

ν
ν`1

fi

ffi

ffi

ffi

ffi

fl

P R3, ν P N,

converges as ν Ñ8 to the point

p8 “

»

–

0
0
1

fi

fl

since

lim
νÑ8

1

ν
“ lim

νÑ8

ν ` 1

ν2
“ 0, lim

νÑ8

ν

ν ` 1
“ 1. [\

The following property of convergent sequences is an immediate generalization of its
one-dimensional cousin Proposition 4.2.7.

Proposition 11.4.5. If the sequence ppνq of points in Rn converges to a point p, then
any subsequence of ppνq converges to the same point p. [\

Definition 11.4.6. A sequence ppνqνě1 in Rn is called bounded if there exists R ą 0 such
that

}pν} ă R, @ν ě 1. [\

Proposition 11.4.7. A convergent sequence of points on Rn is also bounded.

Proof. Suppose that the sequence

pν “

»

—

–

p1ν
...
pnν

fi

ffi

fl

, ν “ 1, 2, . . .
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is convergent. According to Proposition 11.4.3, for each i “ 1, 2, . . . , n the sequence of co-
ordinates ppiνq is a convergent sequence of real numbers and thus, according to Proposition
4.2.12, it is bounded. Hence, there exists Ci ą 0 such that

|piν | ă Ci, @ν “ 1, 2, . . . .

Set

C :“ maxpC1, . . . , Cnq.

Hence

}pν}8 “ max
`

|piν |, . . . , |p
i
ν |
˘

ă C, @ν ě 1.

Using (11.3.5) we deduce

}pν} ď
?
n}pν}8 ă C

?
n, @ν ě 1.

This proves that the sequence ppνq is bounded. [\

Proposition 11.4.8. Let n P N. Suppose that ppνqνě1 and pqνqνě1 are convergent se-
quences of points in Rn. Denote by p8 and respectively q8 their limits. Then the following
hold.

(i)

lim
νÑ8

ppν ` qνq “ p8 ` q8.

(ii) If ptνqνě1 is a convergent sequence of real numbers with limit t8, then

lim
νÑ8

tνpν “ t8p8.

(iii)

lim
νÑ8

xpν , qνy “ xp8, q8y.

Proof. (i) We have

dist
`

pν ` qν ,p8 ` q8
˘

“ } ppν ` qνq ´ pp8 ` q8q } “ }ppν ´ p8q ` pqν ´ q8q}

ď }pν ´ p8} ` }qν ´ q8} “ distppν ,p8q ` distpqν , q8q Ñ 0 as ν Ñ8.

The claim now follows from the Squeezing Principle.

(ii) Since the sequences ptνq and ppνq are convergent, they are also bounded and thus there
exists C ą 0 such that

|tν |, }pν} ă C, @ν ě 1.

We have

distptνpν , t8p8q “ }tνpν ´ t8p8} “ }tνpν ´ t8pν ` t8pν ´ t8p8}

ď }tνpν ´ t8pν} ` }t8pν ´ t8p8} “ }ptν ´ t8qpν} ` }t8ppν ´ p8q}

“ |tν ´ t8| ¨ }pν} ` |t8| ¨ }pν ´ p8}

ď C|tν ´ t8| ` |t8| distppν ,p8q Ñ 0 as ν Ñ8.
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(iii) Since the sequences ppνq and pqνq are convergent, they are also bounded and thus
there exists C ą 0 such that

}pν}, }qν} ă C, @ν ě 1.

We have
ˇ

ˇ xpν , qνy ´ xp8, q8y
ˇ

ˇ “
ˇ

ˇ xpν , qνy ´ xp8, qνy ` xp8, qνy ´ xp8, q8y
ˇ

ˇ

ď
ˇ

ˇ xpν , qνy ´ xp8, qνy
ˇ

ˇ`
ˇ

ˇ xp8, qνy ´ xp8, q8y
ˇ

ˇ

“
ˇ

ˇ xpν ´ p8, qνy
ˇ

ˇ`
ˇ

ˇ xp8, qν ´ q8y
ˇ

ˇ

(use the Cauchy-Schwarz inequality)

ď }pν ´ p8} ¨ }qν} ` }p8} ¨ }qν ´ q8}

ď C distppν ,p8q ` }p8}distpqν , q8q Ñ 0 as ν Ñ8.

[\

Definition 11.4.9. Let n P N. A sequence ppνqνě1 of points in Rn is called Cauchy or
fundamental if @ε ą 0, DN “ Npεq ą 0 such that

@ν, µ ą Npεq : distppµ,pνq “ }pµ ´ pν} ă ε. [\

Theorem 11.4.10 (Cauchy sequences). Let n P N and consider a sequence ppνqνě1 of
points in Rn. The following statements are equivalent.

(i) The sequence ppνqνě1 is Cauchy.

(ii) The sequence ppνqνě1 converges to a point p8 P Rn.

Proof. (i) ñ (ii) Assume

pν “

»

—

–

p1ν
...
pnν

fi

ffi

fl

.

For each i “ 1, . . . , n and any µ, ν P N we have

ˇ

ˇ piµ ´ p
i
ν

ˇ

ˇ “

b

`

piµ ´ p
i
ν

˘2
ď

b

`

p1µ ´ p
1
ν

˘2
` ¨ ¨ ¨ `

`

pnµ ´ p
n
ν

˘2
ď }pµ ´ pν}.

The above inequality shows that, for each i “ 1, . . . , n, the sequence of real numbers
ppiνqνě1 is Cauchy. Invoking Cauchy’s Theorem 4.5.2 we deduce that, for each i “ 1, . . . , n,
the sequence ppiνqνě1 is convergent. Hence, for every i “ 1, . . . , n, there exists pi8 P R such
that

lim
νÑ8

piν “ pi8.

From Proposition 11.4.3 we now deduce that

lim
νÑ8

»

—

–

p1ν
...
pnν

fi

ffi

fl

“

»

—

–

p18
...
pn8

fi

ffi

fl

“: p8.
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(ii) ñ (i) Suppose that

p8 “ lim
νÑ8

pν .

Then, @ε ą 0, DN “ Npεq ą 0 such that @ν ą Npεq we have

distppν ,p8q ă
ε

2
.

Then, for any µ, ν ą Npεq we have

distppµ,pνq ď distppµ,p8q ` distpp8,pνq ă ε.

[\

Proposition 11.4.11. Let n P N and C Ă Rn. Then the following statements are equiv-
alent.

(i) The set C Ă Rn is closed in Rn.
(ii) For any convergent sequence of points in C, its limit is also a point in C.

Proof. (i) ñ (ii). We know that RnzC is open and we have to show that if ppνqνě1
is a convergent sequence of points in C, then its limit p8 belongs to C. We argue by
contradiction. Suppose that p8 P RnzC. Since RnzC is open, there exists r ą 0 such that
Brpp8q Ă RnzC, i.e.,

Brpp8q X C “ H.

This proves that, @ν ě 1, pν R Brpp8q, i.e.,

distppν ,p8q ě r, @ν ě 1.

This contradicts the fact that limνÑ8 distppν ,p8q “ 0.

(ii) ñ (i) We have to show that RnzC is open. We argue by contradiction. Assume that
there exists p˚ P RnzC such that, @r ą 0, the ball Brpp˚q is not contained in RnzC. Thus,
for any r ą 0 there exists pprq P Brpp˚q X C, i.e., pprq P C, distppprq,p˚q ă r. Thus, for
any ν P N , there exists pν P C such that

distppν ,p˚q ă
1

ν
, @ν P N.

This shows that the sequence of points ppνq in C converges to the point p˚ that is not in
C. This contradicts (ii).

[\

Example 11.4.12. Any affine line in Rn is a closed subset. We will prove this in two
different ways. Consider the line ℓp,v Ă Rn passing through the point p in the direction
v ‰ 0.

1st Method. Suppose that pqνq is a convergent sequence of points on this line. We
denote by q8 its limit. We want to prove that q8 also lies on the line ℓp,v.
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To see this note first that since qν P ℓp,v, there exists tν P R such that

qν “ p` tνv.

We deduce that for any µ, ν ě 1 we have

distpqµ, qνq “ }qµ ´ qν} “ |tµ ´ tν | ¨ }v}.ñ |tµ ´ tν | “
1

}v}
distpqµ, qνq.

Since the sequence pqνq is convergent, it is also Cauchy, and the above equality shows that
the sequence ptνq is Cauchy as well. Hence the sequence ptνq is convergent in R. If t8 is
its limit, then Proposition 11.4.8 implies that

q8 “ lim
νÑ8

pp` tνvq “ p` t8v P ℓp,v.

0

p

q

q

x

v

Figure 11.10. distpq, q0q ď distpq,xq, @x P ℓp,v.

2nd Method. We will prove that the complement of the line is open, i.e., if q is a point outside the line ℓp,v , then

there exists an open ball centered at q that does not intersect the line; see Figure 11.10.

To do so, we will find the point q0 on the line closest to q. Usual Euclidean geometry suggests that if q0 is

such a point, then the line qq0 should be perpendicular to ℓp,v ; see Figure 11.10. So, instead of looking for a point

on the line closest to q, we will look for a point q0 such that pq ´ q0q K v. As we will see, such a q0 will indeed be
the point on the line closest to q. Observe that

pq ´ q0q K vðñxq ´ q0,vyðñxq,vy “ xq0,vy.

Since q0 is on the line ℓp,v it has the form q “ p ` t0v for some real number t0. Using this in the above equality
we deduce

xq,vy “ xp` t0v,vy “ xp,vy ` t0xv,vy “ xp,vy ` t0}v}
2

ñ t0}v}
2 “ xq ´ p,vy ñ t0 “

xq ´ p,vy

}v}2
.

Note that if x P ℓp,q , then x ´ q0 is a multiple of v so px ´ q0q K pq ´ q0q; see Exercise 11.2(b). Pythagoras’

theorem then implies that (Figure 11.10)

distpq,xq2 “ distpq, q0q
2 ` distpq0,xq

2 ě distpq, q0q
2.

Hence, if we set r :“ distpq, q0q, then we deduce that r ą 0 and r ě distpq,xq, @x P ℓp,v . In particular this shows

that the ball Br{2pqq of radius r{2 and centered at q does not intersect the line ℓp,v .

[\
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Definition 11.4.13. Let n P N and X Ă Rn.

(i) A point p P Rn is a cluster point of X if, for any ε ą 0, the ball Bεppq contains
a point in X not equal to p.

(ii) A subset S Ă X is called dense in X if, for any x P X and any ε ą 0, the ball
Bεpxq contains a point in S.

[\

Example 11.4.14. Proposition 3.4.4 shows that the set Q of rational numbers is dense
in R. More generally, the set Qn is dense in Rn. [\

Proposition 11.4.15. Let n P N, X Ă Rn and p P Rn. The following statements are
equivalent.

(i) The point p is a cluster point of X.

(ii) There exists a sequence of points ppνq in Xztpu that converges to p.

Proof. (i) ñ (ii) Since p is a cluster point of X we deduce that, for any ν P N, the ball
B1{νppq contains a point pν P Xztpu. Observing that distppν ,pq ă

1
ν we deduce that

lim
νÑ8

distppν ,pq “ 0,

i.e., ppνq is a sequence in Xztpu that converges to p.

(ii) ñ (i) We know that there exists a sequence ppνq in Xztpu that converges to p. Let
ε ą 0. There exists N “ Npεq ą 0 such that distppν ,pq ă ε, @ν ą Npεq. Thus the ball
Bεppq contains all the points pν , ν ą Npεq and none of these points is equal to p.

[\
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11.5. Exercises

Exercise 11.1. Let u,v P Rnzt0u. Show that the following statements are equivalent.

(i) The vectors u,v are collinear.

(ii) For any p P Rn the lines ℓp,u, ℓp,v coincide, i.e., ℓp,u “ ℓp,v, @p P Rn.
(iii) The lines ℓ0,u, ℓ0,v coincide, i.e., ℓ0,u “ ℓ0,v.

[\

Exercise 11.2. (a) Let p,v P Rn, v ‰ 0. Prove that if q P ℓp,v, then ℓp,v “ ℓq,v.

(b) Let p,v P Rn, v ‰ 0. Prove that if p1,p2 P ℓp,v and p1 ‰ p2, then the vectors v and
u :“ p2 ´ p1 are collinear and ℓp,v “ ℓp,u “ ℓp1,u “ ℓp2,u.

(c) Let p, q,u,v P Rn, u,v ‰ 0. Show that if the lines ℓp,u and ℓq,v have two distinct
points in common, then they coincide. [\

Exercise 11.3. Consider the points in R2

p0 “
`

0, 0
˘

, q0 “
`

1, 1
˘

, p1 “
`

1, 0
˘

, q1 “
`

0, 1
˘

.

(a) Depict these points and the lines ℓ0 “ p0q0, ℓ1 “ p1q1 on the same planar coordinate
system of the type depicted in Figure 11.2.

(b) Find the coordinates of the point where the lines ℓ0, ℓ1 intersect. [\

Exercise 11.4. Prove Proposition 11.1.11. [\

Exercise 11.5. Let n P N and p, q P Rn. Prove that the following statements are
equivalent.

(i) p ‰ q.

(ii) There exists a linear form ξ : Rn Ñ R such that ξppq ‰ ξpqq.

[\

Exercise 11.6. Find a parametric equation (see (11.1.6) ) for the line in R2 described by
the equation

x1 ` 2x2 “ 3.

Hint: Use the equality x1 “ 3´ 2x2 to find two distinct points on this line. [\

Exercise 11.7. Let p “ p1, 2, 3q P R3 and v “ p1, 1, 1q P R3. Find the coordinates of the
point of intersection of the line ℓp,v with the hyperplane

3x1 ` 4x2 ` 5x3 “ 6. [\

Exercise 11.8. Prove that the lines and the hyperplanes in Rn are affine subspaces. [\
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Exercise 11.9. Let S be a subset of the Euclidean space Rn, n P N. Prove that the
following statements are equivalent.

(i) The set S is an affine subspace.

(ii) For any k P N, any points p0,p1, . . . ,pk P S and any real numbers t0, t1, . . . , tk
such that t0 ` t1 ` ¨ ¨ ¨ ` tk “ 1 we have

t0p0 ` t1p1 ` ¨ ¨ ¨ ` tkpk P S.

Hint: The implication (ii) ñ (i) is immediate. To prove the opposite implication (i) ñ (ii) argue by induction on

k. Observe that least one of the numbers t0, t1, . . . , tk is not equal to 1, say tk ‰ 1. Then 1´ tk ‰ 0 and

t0p0 ` t1p1 ` ¨ ¨ ¨ ` tkpk “ p1´ tkq

ˆ

t0

1´ tk
p1 ` ¨ ¨ ¨ `

tk´1

1´ tk
pk´1

˙

loooooooooooooooooooooomoooooooooooooooooooooon

q

`tkpk.

Use the induction assumption to argue that q P S. Conclude using (i). [\

Exercise 11.10. Prove Proposition 11.1.28. [\

Exercise 11.11. Consider the linear operator A : R3 Ñ R3 characterized by the equalities

Ae1 “ e1 ` 2e2 ` 3e3, Ae2 “ 4e1 ` 5e2 ` 5e3, Ae3 “ 7e1 ` 8e2 ` 9e3,

where e1, e2, e3 is the canonical basis of R3.

(i) Find the 3ˆ 3 matrix associated to this linear operator.

(ii) Find the vector

A

»

–

1
1
1

fi

fl .

[\

Exercise 11.12. Consider the linear operator A : R3 Ñ R2 given by the matrix

A “

„

1 ´2 3
0 1 ´4

ȷ

.

Show that there exists a nonzero vector v P R3 such that kerA is equal to the line ℓ0,v.[\

Exercise 11.13. Suppose that A : Rn Ñ Rm is a linear operator. Prove that the following
statements are equivalent.

(i) A is injective.

(ii) kerA “ t0u.

[\

Exercise 11.14. (a) An automorphism of Rk is a bijective linear operator T : Rk Ñ Rk.
Prove that if T is an automorphism of Rk then its inverse is also an automorphism of Rk.
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(b) A kˆ k matrix A is called invertible if and only if there exists a kˆ k matrix A1 such
that AA1 “ A1A “ 1k. Prove that if A is invertible, then there exists a unique matrix A1

with these properties. This unique matrix is called the inverse of A and it is denoted by
A´1.

(c) Show that T is an automorphism of Rk if and only if the k ˆ k matrix representing T
is invertible. [\

Exercise 11.15. Let m,n P N, B P MatmpRq, C P MatnpRq, D P MatmˆnpRq and
E P MatnˆmpRq. Consider the square matrices S, T P Matm`npRq with block decomposi-
tions

S “

„

B D
0nˆm C

ȷ

, T “

„

B 0mˆn
E C

ȷ

,

and 0kˆℓ denotes the k ˆ ℓ matrix with all entries 0.

Show that if B,C are invertible, then so are S and T and, moreover,

S´1 “

„

B´1 ´B´1DC´1

0nˆm C´1

ȷ

, T´1 “

„

B´1 0mˆn
´C´1EB´1 C´1

ȷ

. [\

Exercise 11.16. We say that a matrix R P MatkˆkpRq is nilpotent if there exists n P N
such that Rn “ 0. Show that if R is a k ˆ k nilpotent matrix, then the matrix 1k ´R is
invertible.

Hint: Prove first that if X P MatkˆkpRq, then

1k ´X
n “ p1k ´Xqp1k `X ` ¨ ¨ ¨ `X

n´1q, @n P N. [\

Exercise 11.17. Show that the space HompRn,Rmq of linear operators Rn Ñ Rm is a
real vector space. [\

Exercise 11.18. Consider the matrices

A “

„

1 ´2 3
0 1 ´4

ȷ

, B “

»

–

1 0
´2 1
3 ´4

fi

fl .

(i) Compute the products AB and BA.

(ii) Show that for any vectors x P R2, y P R3 we have

xx, Ayy “ xBx,yy.

[\
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Exercise 11.19. Let m P N, m ě 2 and consider the mˆm matrix

N “

»

—

—

—

—

—

—

—

–

0 1 0 0 ¨ ¨ ¨ 0 0
0 0 1 0 ¨ ¨ ¨ 0 0
0 0 0 1 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
...

0 0 0 0 ¨ ¨ ¨ 0 1
0 0 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Compute the powers Nk, k P N.
Hint: Regard N as a linear operator Rm Ñ Rm and observe that

Ne1 “ 0, Ne2 “ e1, Ne3 “ e2, . . . , Nem “ em´1,

where e1, . . . , em is the natural basis of Rm. Then use the fact that the composition of two linear operators

corresponds to the multiplication of the corresponding matrices. [\

Exercise 11.20. For every α P r0, 2πs we denote by Rα : R2 Ñ R2 the counterclockwise
rotation of angle α about the origin 0.

(i) Express the coordinates y1, y2 of y “ Rαx in terms of the coordinates of
x “ rx1, x2sJ.

(ii) Show that Rα is a linear operator and compute its associated matrix. Continue
to denote by Rα the associated matrix.

(iii) Given α, β P r0, 2πs compute the product Rα ¨Rβ.

Hint: (i) Set r :“ }x}, and denote by θ the angle the vector x makes with the x1-axis, measured conterclockwisely

starting at the positive x1-axis. Then x1 “ r cos θ, x2 “ r sin θ. Next, set y :“ Rαx and show that, y1 “ r cospθ`αq,

y2 “ r sinpθ ` αq. Conclude using the trig formulæ (5.7.1a). [\

Exercise 11.21. The trace of an nˆn matrix A is the scalar denoted by trA and defined
as the sum of the diagonal entries of A,

trA :“ A1
1 ` ¨ ¨ ¨ `A

n
n.

(i) Show that if A,B P MatnˆnpRq, c P R, then

trpA`Bq “ trA` trB, trpcAq “ c trA.

(ii) Show that if A P MatmˆnpRq and B P MatnˆmpRq, then

trpABq “ trpBAq.

Hint: Use (11.1.15).

(iii) Show that there do not exist matricesA,B P MatnˆnpRq such thatAB´BA “ 1n.

[\

Exercise 11.22. Prove (11.2.5). [\
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Exercise 11.23. Suppose that A P MatmˆnpRq. Denote by pejq1ďjďn the canonical basis
of Rn and by pf iq1ďiďm the canonical basis of Rm. Prove that

Aij “ xf i, Aejy, @i “ 1, . . . ,m, j “ 1, . . . , n. [\

Exercise 11.24. Suppose that A P MatmˆnpRq. The transpose of A is the nˆm matrix
AJ defined by the requirement

pAJqji “ Aij , @i “ 1, . . . ,m, j “ 1, . . . , n.

In other words, the rows of AJ coincide with the columns of A. (For example, the transpose
of the matrix A in Exercise 11.18 is the matrix B in the same exercise.)

(i) Suppose that B P MatpˆmpRq. Prove that

pB ¨AqJ “ pAJq ¨ pBJq.

Hint: Check this first in the special case when p “ m “ 1, i.e., B is a matrix consisting one row of

size m, and A is a matrix consisting of one column of size m. Use this special case and the equality

(11.1.15) to deduce the general case.

(ii) Prove that, for any x P Rm and y P Rn, we have (identifying 1ˆ1 matrices with
numbers)

xx, Ayy “ xJ ¨A ¨ y “ xAJx,yy.

(iii) Prove that for any y P Rn we have

xAJAy,yy ě 0.

(iv) Prove that an nˆ n matrix A is symmetric if and only if

xAx,yy “ xx, Ayy, @x,y P Rn.

Hint: Use Exercise 11.23 and part (i) of this exercise. [\

Exercise 11.25. Let n P N and suppose that A : Rn Ñ Rn is a linear operator. As
usual we will continue to denote by A the associated matrix. Prove that the following
statements are equivalent.

(i) xAx, Ayy “ xx,yy, @x,y P Rn.
(ii) }Ax} “ }x}, @x P Rn.
(iii) AJ ¨A “ 1n.

An operator or matrix with any of the above three equivalent properties is called orthog-
onal. [\

Exercise 11.26. Suppose that ξ : Rn Ñ R is a linear functional. Show that the graph of
ξ, defined as

Gξ “
␣

px, yq P Rn ˆ R; y “ ξpxq
(

,

is a hyperplane in Rn ˆ R “ Rn`1 and then find a normal vector to this hyperplane. [\
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Exercise 11.27. Prove Proposition 11.3.11. [\

Exercise 11.28. Prove (11.3.6). [\

Exercise 11.29. Prove Proposition 11.3.13.

Hint: Use (11.3.6). [\

Exercise 11.30. Prove Proposition 11.3.14. [\

Exercise 11.31. Prove that if U Ă Rm is open in Rm and V Ă Rn is open in Rn, then
U ˆ V is open in Rm ˆ Rn “ Rm`n.

Hint: Use Proposition 11.3.14 and observe several things. First, if p P Rm and q P Rn then the pair pp, qq P RmˆRn

and the Cartesian product can be identified with Rm`n. Next observe that the Cartesian product CrppqˆCrpqq Ă RmˆRn

can be identified with Cr

`

pp, qq
˘

, the cube of radius r with center pp, qq P Rm`n. [\

Exercise 11.32. Complete the proof of the claim in Example 11.3.16(c). [\

Exercise 11.33. Prove Proposition 11.4.3.

Hint: Use (11.3.5). [\

Exercise 11.34. (a) Prove that any finite subset of Rn is closed.

(b) Prove that any affine hyperplane in Rn is a closed subset. [\

Exercise 11.35. Prove that any open subset U Ă Rn is the union of a (possibly infinite)
family of open cubes. [\

Exercise 11.36. Let n P N. Prove that for any p P Rn and any r ą 0 the open Euclidean
ball Brppq and the closed Euclidean ball Brppq are convex sets. [\

Exercise 11.37. Let n P N.

(a) Suppose that ppνq is a sequence in Rn that converges to p P Rn. Prove that

lim
νÑ8

}pν} “ }p} and lim
νÑ8

}pν}8 “ }p}8.

(b) Let r ą 0. Prove that any point x P Rn such that }x} “ r is a cluster point of the
open ball Brp0q.

Hint: (a) Use (11.3.2b) and (11.3.4b). [\

Exercise 11.38. Let n P N and X Ă Rn. Prove that the following statements are
equivalent.

(i) The set X is closed.

(ii) The set X contains all its cluster points.
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[\

Exercise 11.39. Prove that the set Qn is dense in Rn.

Hint: Use Proposition 3.4.4 and Proposition 11.4.3 . [\

Exercise 11.40. Let n P N. Consider a sequence of vectors pxνqνPN in Rn. The series
ÿ

νPN
xν

associated to this sequence is the new sequence pSN qNPN of vectors in Rn described by the
partial sums

SN “ x1 ` ¨ ¨ ¨ ` xN , N P N.
The series

ř

νPN xν is called convergent if the sequence of partial sums SN is convergent.

Prove that if the series of real numbers
ř

νPN }xν} is convergent, then the series of
vectors

ř

νPN xν is also convergent.

Hint. It suffices to show that the sequence pSN q is Cauchy. Define

S˚
N :“ }x1} ` ¨ ¨ ¨ ` }xN }, N P N.

The series of real numbers
ř

νPN }xν} is convergent and thus sequence pS˚
N q is convergent, hence Cauchy. Prove

that this implies that the sequence SN is Cauchy by imitating the proof of Absolute Convergence Theorem 4.6.13.[\

Exercise 11.41 (Banach’s fixed point theorem). Suppose that X Ă Rn is a closed subset
and F : X Ñ Rn is a map satisfying the following conditions:

F pxq P X, @x P X. (C1)

Dr P p0, 1q such that @x1,x2 P X : }F px1q ´ F px2q} ď r}x1 ´ x2}. (C2)

Fix x0 P X and define inductively the sequence of points in X,

x1 “ F px0q, x2 “ F px1q, . . . ,xν “ F pxν´1q, @ν P N.

Prove that the following hold.

(i) For any ν P N,
}xν`1 ´ xν} ď rν}x1 ´ x0}.

(ii) For any µ, ν P N, µ ă ν

}xν ´ xµ} ď
rµp1´ rν´µq

1´ r
}x1 ´ x0} ď

rµ

1´ r
}x1 ´ x0}.

(iii) The sequence pxνqνě0 is Cauchy.

(iv) If x˚ is the limit of the sequence pxνqνě0, then F px˚q “ x˚.

(v) Show that if p P X is a fixed point of F , i.e., it satisfies F ppq “ p, then p must
be equal to the point x˚ defined above.

[\
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Exercise 11.42. Suppose that S Ă R17 consists of 1, 234, 567, 890 points and T : S Ñ S
is a map such that

}Ts1 ´ Ts2} ă }s1 ´ s2}, @s1, s2 P S, s1 ‰ s2.

Prove that there exists s˚ P S such that T ps˚q “ s˚.

Hint: Use the result in the previous exercise. [\

11.6. Exercises for extra credit

Exercise* 11.1. (a) Prove that if S is an affine subspace of R2, then S is either a point,
or a line, or the whole R2.

(b) Prove that if S is an affine subspace of R3, then S is either a point, or a line, or a
plane, or the whole R3. [\

Exercise* 11.2. Suppose that n P N and A P MatnˆnpRq. Prove that the following
statements are equivalent.

(i) The matrix A is invertible in the sense defined in Exercise 11.14.

(ii) There exists B P MatnˆnpRq such that BA “ 1n.

(iii) There exists C P MatnˆnpRq such that AC “ 1n.

(iv) The linear operator Rn Ñ Rn defined by A is bijective.

(v) The linear operator Rn Ñ Rn defined by A is injective.

(vi) The linear operator Rn Ñ Rn defined by A is surjective.

Hint: You need to use the fact that Rn is a finite dimensional vector space. [\



Chapter 12

Continuity

A function F : Rn Ñ Rm can be viewed as transporting in some fashion the Euclidean
space Rn into the Euclidean space Rm. The space Rm is often called the target space. For
example, a map F : RÑ R2 “transports” the real axis R into a region of R2 that typically
looks like a curve; see Figure 12.1. For this reason functions F : Rn Ñ Rm are often called
transformations, operators, or maps.

F

Figure 12.1. A map F : RÑ R2.

Suppose that F : Rn Ñ Rm is a map. For any x P Rn, its image y “ F pxq is a point
in Rm and thus it is determined by a column vector

y “

»

—

–

y1

...
ym

fi

ffi

fl

.

383
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The coordinates y1, . . . , ym depend on the point x and thus they are described by functions

F i : Rn Ñ R, yi “ F ipx1, . . . , xnq, i “ 1, . . . ,m.

We can turn this argument on its head, and think of a collection of functions

F 1, . . . , Fm : Rn Ñ R

as defining a map F : Rn Ñ Rm. Often, when working with a map Rn Ñ Rm and no
confusion is possible, we will dispense of the extra symbol F and describe the map in a
simpler way as a collection of functions

y1 “ y1px1, . . . , xnq, . . . , ym “ ympx1, . . . , xnq.

Example 12.0.1. When predicting the weather (on the surface of the Earth) we need to
describe several quantities: temperature (T ), pressure (P ) and wind velocity V “ pV 1, V 2q.
These quantities depend on the location (determined by two coordinates x1, x2), and the
time t. We thus have a collection of 4 functions P, T, V 1, V 2 depending on 3 variables
x1, x2, t,

P “ P px1, x2, tq, V 1 “ V 1px1, x2, tq etc,

and thus we are dealing with a map R3 Ñ R4. [\

Definition 12.0.2. Let m,n P N and X Ă Rn. The graph of a map F : X Ñ Rm is the
set

GF :“
␣`

x,y
˘

P X ˆ Rm; y “ F pxq
(

Ă X ˆ Rm. [\

As we know, the graph of a function f : R Ñ R can be visualized as a curve in R2.
Similarly, the graph of a function f : R2 Ñ R can be visualized as surface in R3. If we
denote by x, y, z the Euclidean coordinates in R3, then the graph of a function of two
variables fpx, yq is described by the equation z “ fpx, yq. You can think of the graph as
describing a form of relief on Earth, where the altitude z at the point with coordinates
px, yq is fpx, yq; see e.g. Figure 12.2.
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Figure 12.2. The graph of the function f : r´6, 6s ˆ r´6, 6s Ñ R, fpx, yq “ 1´ sin

?
x2`y2

3
.

12.1. Limits and continuity

Definition 12.1.1. Let m,n P N, X Ă Rn. Suppose we are given a map F : X Ñ Rm
and a cluster point x0 of X. (The point x0 need not belong to X.)

We say that the limit of F pxq when x approaches x0 is the point y0 (in the target
space Rm) if

@ε ą 0 Dδ “ δpεq ą 0 such that @x P Xztx0u : }x´ x0} ă δ ñ }F pxq ´ y0} ă ε .

(12.1.1)
We will indicate this using the notation

y0 “ lim
xÑx0

F pxq. [\

We have the following multidimensional counterpart of Theorem 5.1.4.

Proposition 12.1.2. Let m,n P N, X Ă Rn. Suppose we are given a map F : X Ñ Rm
and a cluster point x0 of X. The following statements are equivalent.

(i)

lim
xÑx0

F pxq “ y0 P Rm.

(ii) For any sequence pxνq in Xztx0u that converges to x0 we have

lim
νÑ8

F pxνq “ y0.

Proof. (i) ñ (ii) Suppose that pxνq is a sequence in Xztx0u that converges to x0. We
have to show that, given the condition (12.1.1), the sequence F pxνq converges to y0.
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Let ε ą 0. Choose δpεq ą 0 determined by (12.1.1). Since xν Ñ x0, there exists
N “ Npεq such that, for all ν ą Npεq we have }xν ´ x0} ă δpεq. Invoking (12.1.1) we
deduce that for all ν ą Npεq we have }F pxνq ´ y0} ă ε. This proves that

lim
νÑ8

F pxνq “ y0.

(ii) ñ (i) We argue by contradiction. Assume that (12.1.1) is false so that

Dε0 ą 0 : @δ ą 0, Dxδ P Xztx0u : }xδ ´ x0} ă δ and }F pxδq ´ y0} ě ε0.

Thus, if we choose δ of the form δ “ 1
ν , ν P N, we deduce that for any ν P N there exists

xν P Xztx0u such that

}xν ´ x0} ă
1

ν
and }F pxνq ´ y0} ě ε0.

This shows that the sequence pxνq in Xztx0u converges to x0, but the sequence F pxνq
does not converge to y0. This contradicts (ii). [\

Definition 12.1.3 (Continuity). Let m,n P N, X Ă Rn.

(i) A map F : X Ñ Rm is said to be continuous at x0 P X if

@ε ą 0 Dδ “ δpεq ą 0 such that @x P X : }x´ x0} ă δ ñ }F pxq ´ F px0q} ă ε .

(12.1.2)

(ii) A map F : X Ñ Rm is said to be continuous on X if it is continuous at every
point x0 P X.

[\

Proposition 12.1.4. Let m,n P N, X Ă Rn. Consider a map

F : X Ñ Rm, F pxq “

»

—

–

F 1pxq
...

Fmpxq

fi

ffi

fl

.

The following statements are equivalent.

(i) The map F is continuous at x0.

(ii) For any sequence pxνq in X that converges to x0 we have

lim
νÑ8

F pxνq “ F px0q.

(iii) The components F 1, . . . , Fm : X Ñ R are continuous at x0.

Proof. The proof of the equivalence (i) ðñ (ii) is identical to the proof of Proposition
12.1.2 and the details are left to the reader. The proof of the equivalence (ii) ðñ (iii)
relies on the equivalence (i) ðñ (ii).
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(ii) ðñ (iii) According to the equivalence (i) ðñ (ii) applied to each component F i

individually, the functions F 1, . . . , Fm are continuous at x0 if and only if, for any sequence
pxνq in X that converges to x0 we have

lim
νÑ8

F ipxνq “ F ipx0q, i “ 1, 2, . . . ,m.

Proposition 11.4.3 shows that these conditions are equivalent to

lim
νÑ8

F pxνq “ F px0q.

In turn, this is equivalent to the continuity of F at x0. [\

Example 12.1.5. The multiplication function µ : R2 Ñ R given by µpx, yq “ xy is con-
tinuous. We will prove this using Proposition 12.1.4. Consider a point p0 “ px0, y0q P R2.

If pν “ pxν , yνq P R2 is a sequence of points converging to p0, then xν Ñ x0 and
yν Ñ y0 as ν Ñ8. Hence

lim
νÑ8

µppνq “ lim
νÑ8

pxνyνq “ x0y0 “ µpp0q. [\

Definition 12.1.6 (Paths). Let n P N. A continuous path in Rn is a continuous map

γ : I Ñ Rn,

where I Ă R is an interval. [\

A path γ : I Ñ Rn is completely determined by its components

γ1, . . . , γn : I Ñ R

which are continuous functions. It is convenient to think of the interval I as a time interval
so the components γi are functions of time, γi “ γiptq. As time goes by, the point

γptq “

»

—

–

γ1ptq
...

γnptq

fi

ffi

fl

P Rn

moves in space. Thus we can think of a path as describing the motion of a point in space
during a given interval of time I. The image of a path F : I Ñ Rn is the trajectory of this
motion and it typically looks like a curve. Traditionally, a path is indicated by a system
of equations

xi “ γiptq, i “ 1, . . . , n,

meaning that the coordinates x1, . . . , xn of the moving point at time t are given by the
functions γ1ptq, . . . , γnptq.

Example 12.1.7. For example, the trajectory of the path

γ : r0, 4πs Ñ R2, γptq “

„

pt` 1q cosp2tq
pt` 1q sinp2tq

ȷ

P R2

is the spiral depicted in Figure 12.3. [\
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Figure 12.3. A linear spiral x “ p1` tq cos 2t, y “ p1` tq sin 2t, t P r0, 4πs.

Definition 12.1.8. Let m,n P N and X Ă Rn. A map F : X Ñ Rm is called Lipschitz if
it admits a Lipschitz constant, i.e., a constant L ą 0 such that

}F pxq ´ F pyq} ď L}x´ y}, @x,y P X. (12.1.3)

[\

Proposition 12.1.9. Let m,n P N and X Ă Rn. Then a Lipschitz map F : X Ñ Rm is
continuous.

Proof. Fix a Lipschitz constant L ą 0 as in the Lipschitz condition (12.1.3). Let x0 P X
be an arbitrary point in X. To prove that F is continuous at x0 we use Proposition
12.1.4(ii). Suppose that pxνq is a sequence of points in X such that

lim
νÑ8

xν “ x0.

From the Lipschitz condition we deduce

}F pxνq ´ F px0q} ď L}xν ´ x0}.

Invoking the Squeezing Principle Proposition 4.2.8 we conclude that

lim
νÑ8

}F pxνq ´ F px0q} “ 0ñ lim
νÑ8

F pxνq “ F px0q.

This proves that F is continuous at x0. [\

Proposition 12.1.10. Let m,n P N. The following hold.

(i) The norm functions

Rn Q x ÞÑ }x} P R, Rn Q x ÞÑ }x}8

are Lipschitz.
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(ii) Any linear form ξ : Rn Ñ R is Lipschitz.

(iii) Any linear operator A : Rn Ñ Rm is Lipschitz.

In particular, all the maps above are continuous.

Proof. (i) Using (11.3.2b) and (11.3.4b) we deduce
ˇ

ˇ }x} ´ }y}
ˇ

ˇ ď }x´ y},
ˇ

ˇ }x}8 ´ }y}8
ˇ

ˇ ď }x´ y}8

which shows that the constant 1 is a Lipschitz constant of both functions fpxq “ }x} and
gpxq “ }x}8.

(ii) Let ξÒ be the dual of ξ defined in Proposition 11.2.9 . We recall that this means that
ξÒ is the unique vector in Rn such that

ξpxq “ xξÒ,xy.

If x,y P Rn, then
ˇ

ˇ ξpxq ´ ξpyq
ˇ

ˇ “
ˇ

ˇ ξpx´ yq
ˇ

ˇ “
ˇ

ˇ xξÒ,x´ yy
ˇ

ˇ

(use the Cauchy-Schwarz inequality)

ď }ξÒ} ¨ }x´ y}.

This proves that ξ is Lipschitz, and the norm of }ξÒ} is a Lipschitz constant of ξ. In
particular,

ˇ

ˇ ξpzq
ˇ

ˇ “
ˇ

ˇ ξ ‚ z
ˇ

ˇ ď }ξÒ} ¨ }z}, @z P Rn. (12.1.4)

(iii) As we have seen earlier, the components of Ax are linear functionals in x

Ax “

»

—

–

A1 ‚ x
...

Am ‚ x

fi

ffi

fl

,

where A1, . . . , Am are the rows of the m ˆ n matrix associated to the operator A. From
(12.1.4) we deduce

ˇ

ˇAi ‚ z
ˇ

ˇ ď
›

›pAiqÒ
›

› ¨ }z}, @z P Rn, i “ 1, . . . ,m.

Given x,y P Rn, we set z :“ x´ y and we have

Apx´ yq “ Az “

»

—

–

A1 ‚ z
...

Am ‚ z

fi

ffi

fl

so that
}Apx´ yq}2 “ |A1 ‚ z|2 ` ¨ ¨ ¨ ` |Am ‚ z|2

ď }pA1qÒ}
2 ¨ }z}2 ` ¨ ¨ ¨ ` }pAmqÒ}

2 ¨ }z}2

“
`

}pA1qÒ}
2 ` ¨ ¨ ¨ ` }pAmqÒ}

2
˘

}z}2

“
`

}pA1qÒ}
2 ` ¨ ¨ ¨ ` }pAmqÒ}

2
˘

}x´ y}2.

[\
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Remark 12.1.11. (a) If ξ is a linear functional on Rn described by the row vector

rξ1, . . . , ξns,

then ξÒ is the column vector

ξÒ “

»

—

–

ξ1
...
ξn

fi

ffi

fl

and

}ξÒ} “
b

ξ21 ` ¨ ¨ ¨ ` ξ
2
n “

g

f

f

e

n
ÿ

j“1

ξ2j .

(b) Suppose that A is an m ˆ n matrix with real entries. As usual, we denote by Ai the
i-th row of A and by Aj the j-th column of A. The quantity

g

f

f

e

m
ÿ

i“1

}pAiqÒ}2 “
b

}pA1qÒ}
2 ` ¨ ¨ ¨ ` }pAmqÒ}2

that appears in the proof of Proposition 12.1.10(iii) is denoted by }A}HS and it is called
the Frobenius norm or Hilbert-Schmidt norm of A. It can be given an alternate and more
suggestive description.

Observe first that for any i “ 1, . . . ,m, the quantity }pAiqÒ}
2 is the sum of the squares

of all the entries of A located on the i-th row. We deduce

}A}2HS “ }pA
1qÒ}

2 ` ¨ ¨ ¨ ` }pAmqÒ}
2 “ the sum of the squares of all the entries of A.

An mˆn matrix A is a collection of mn real numbers and, as such, it can be viewed as an
element of the Euclidean vector space Rmn. We see that the Hilbert-Schmidt norm of A
is none other than the Euclidean norm of A viewed as an element of Rmn. In particular,
if A,B P MatmˆnpRq then

}A`B}HS ď }A}HS ` }B}HS . (12.1.5)

We can also speak of convergent sequences of matrices.

Definition 12.1.12. A sequence pAνq of mˆn matrices is said to converge to the mˆn
matrix A if

lim
νÑ8

}Aν ´A}HS “ 0.

The proof of Proposition 12.1.10(iii) shows that we have the following important in-
equality

}A ¨ x} ď }A}HS ¨ }x}, @A P MatmˆnpRq, x P Rn. (12.1.6)

[\

Corollary 12.1.13. The addition function α : R2 Ñ R, αpx, yq “ px` yq is continuous.
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Proof. As shown in Example 11.1.10(b), the function α is linear and thus continuous
according to Proposition 12.1.10(ii). [\

Proposition 12.1.14. Let ℓ,m, n P N, X Ă Rℓ and Y Ă Rm. If F : X Ñ Rm and
G : Y Ñ Rn are continuous maps such that

F pXq Ă Y,

then the composition G ˝ F : X Ñ Rn is also a continuous map.

Proof. Let x0 P X and set y0 :“ F px0q P Y . We have to prove that if pxνq is a sequence
in X such that xν Ñ x0 as ν Ñ8, then

lim
νÑ8

GpF pxνqq “ GpF px0qq “ Gpy0q.

We set yν :“ F pxνq. Then yν P Y and

lim
νÑ8

yν “ lim
νÑ8

F pxνq “ F px0q “ y0,

since F is continuous at x0. On the other hand, since G is continuous at y0 we have

lim
νÑ8

GpF pxνqq “ lim
νÑ8

Gpyνq “ Gpy0q.

[\

Corollary 12.1.15. Suppose that I Ă R is an interval, γ : I Ñ Rm is a continuous path
and F : Rm Ñ Rn is a continuous map. Then the composition F ˝ γ : I Ñ Rn is also a
continuous path. [\

Definition 12.1.16. Let n P N. For any X Ă Rn we denote by CpXq the space of
continuous functions f : X Ñ R. [\

Corollary 12.1.17. Let n P N and X Ă Rn. Then, for any f, g P CpXq and any t P R
the functions f ` g, t ¨ f and fg are continuous.

Proof. Consider the maps

P : X Ñ R2, P pxq “

„

fpxq
gpxq

ȷ

µt : R Ñ R, µtpuq “ tu, and α, µ : R2 Ñ R, αpu, vq “ u ` v, µpu, vq “ uv. Each of these
maps is continuous and we have

α ˝ P pxq “ fpxq ` gpxq, µ ˝ P pxq “ fpxqgpxq, µt ˝ fpxq “ tfpxq.

The desired conclusion follows by invoking Proposition 12.1.14. [\
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Remark 12.1.18. The set CpXq is nonempty since obviously the constant functions
belong to CpXq. However, if X consists of more than one point, then X also contains
nonconstant functions. For example, given x0 P X, the function

dx0 : X Ñ R, dx0pxq “ }x´ x0},

is continuous and nonconstant since dx0px0q “ 0 and dx0pxq ą 0, @x P X. [\

Definition 12.1.19. Let m,n P N and suppose that X Ă Rn.

(i) The sequence of maps F ν : X Ñ Rm, ν P N is said to converge pointwisely to
the map F : X Ñ Rm if

@x P X lim
νÑ8

F νpxq “ F pxq,

i.e.,

@x P X, @ε ą 0, DN “ Npε,xq ą 0 : @ν ą N }F νpxq ´ F pxq} ă ε.

(ii) The sequence of maps F ν : X Ñ Rm, ν P N is said to converge uniformly to the
map F : X Ñ Rm if

@ε ą 0, DN “ Npεq ą 0 such that @x P X, @ν ą N : }F νpxq ´ F pxq} ă ε.

[\

Theorem 12.1.20. Let m,n P N and X Ă Rn. Suppose that the sequence of continuous
maps F ν : X Ñ Rm converges uniformly to the map F : X Ñ Rm. Then the following
hold.

(i) The sequence pF νq converges pointwisely to F .

(ii) The map F is continuous.

[\

The proof of this theorem is very similar to the proof of Theorem 6.1.10 and is left to
you as an exercise.

12.2. Connectedness and compactness

In this section we discuss two very important concepts that have many applications.

12.2.1. Connectedness.

Definition 12.2.1. Let n P N. A subset X Ă Rn is called path connected if any two
points in X can be connected by a continuous path contained in X. More precisely, this
means that for any x0,x1 P X, there exists a continuous path γ : rt0, t1s Ñ Rn satisfying
the following properties.

(i) γptq P X, @t P rt0, t1s.
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(ii) γpt0q “ x0, γpt1q “ x1.

[\

Remark 12.2.2. The above definition has some built-in flexibility. Note that if, for
some t0 ă t1, there exists a continuous path γ : rt0, t1s Ñ X such that γpt0q “ x0 and
γpt1q “ x1, then, for any s0 ă s1, there exists a continuous path γ̃ : rs0, s1s Ñ X such
that γ̃ps0q “ x0 and γ̃ps1q “ x1. To see this consider the linear function

ℓ : rs0, s1s Ñ R, ℓpsq “ t0 `
t1 ´ t0
s1 ´ s0

ps´ s0q.

This function is increasing,

ℓps0q “ t0, ℓps1q “ t0 `
t1 ´ t0
s1 ´ s0

ps1 ´ s0q “ t0 ` t1 ´ t0 “ t1.

Now define γ̃ : rs0, s1s Ñ X by setting γ̃psq “ γ
`

ℓpsq
˘

. Clearly

γ̃ps0q “ γ
`

ℓps0q
˘

“ γpt0q “ x0

and, similarly, γ̃ps1q “ x1. [\

Proposition 12.2.3. Let n P N. If X Ă Rn is convex, then X is path connected.

Proof. This should be intuitively very clear because in a convex set X, any two points
x0,x1 are connected by the line segment rx0,x1s which, by definition is contained in X.
Formally, the argument goes as follows. Consider the continuous path

γ : r0, 1s Ñ Rn, γptq “ p1´ tqx0 ` tx1, @t P r0, 1s.

The image (or trajectory) of this continuous path is the line segment rx0,x1s which is
contained in X since X is assumed convex. [\

Proposition 12.2.4. Let X Ă R. The following statements are equivalent.

(i) X is path connected.

(ii) X is an interval.

Proof. The implication (ii)ñ (i) is immediate. If X is an interval, then X is convex and
thus path connected according to the previous proposition.

Assume now that X is path connected. To prove that it is an interval we have to show
(see Exercise 12.12) that for any x0, x1 P X, x0 ă x1, the interval rx0, x1s is contained in
X.

Let x0, x1 P X, x0 ă x1. We have to show that if x0 ď u ď x1, then u P X. Since X is
path connected there exists a continuous path γ : rt0, t1s Ñ X Ă R such that γpt0q “ x0,
γpt1q “ x1. Since x0 ď u ď x1 we deduce from the intermediate value property that there
exists τ P rt0, t1s such that u “ γpτq. Since γpτq P X we deduce u P X. [\
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12.2.2. Compactness.

Definition 12.2.5. Let n P N. A subset K Ă Rn satisfies the Bolzano-Weierstrass
property or BW for brevity, if any sequence ppνqνPN of points in K contains a subsequence
that converges to a point p, also in K. [\

Example 12.2.6. The Bolzano-Weierstrass Theorem 4.4.8 shows that intervals in R of
the form ra, bs satisfy BW . [\

Proposition 12.2.7. Let m,n P N. Suppose that K Ă Rm and L Ă Rn satisfy BW .
Then the Cartesian product K ˆ L Ă Rm`n also satisfies BW .

Proof. Let ppν , qνq P K ˆ L, ν P N , be a sequence of points in K ˆ L. Since K satisfies
BW , the sequence ppνq of points in K contains a subsequence

ppνiq “ pν1 , pν2 , . . .

that converges to a point p P K. Since L satisfies BW , the subsequence pqνiq of points in
L contains a sub-subsequence pqµj q that converges to a point q P L.

The sub-subsequence ppµj q of the subsequence ppνiq converges to the same limit p.

Thus, the subsequence ppµj , qµj q of ppν , qνq converges to pp, qq P K ˆ L. [\

Definition 12.2.8. Let n P N. An n-dimensional closed box (or closed rectangle) is a
subset of Rn of the form

ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns, a1 ď b1, . . . , an ď bn.

An open box in Rn is a set of the form pa1, b1q ˆ ¨ ¨ ¨ ˆ pan, bnq.

Note that the closed cubes are special examples of closed boxes.

Corollary 12.2.9. The closed boxes in Rn satisfy BW .

Proof. We argue by induction on n. For n “ 1 this follows from the Bolzano-Weierstrass
Theorem 4.4.8. For the inductive step suppose that B Ă Rn`1 is a box,

B “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns
looooooooooooomooooooooooooon

“B1

ˆran`1, bn`1s

From the induction assumption we deduce that B1 Ă Rn satisfies BW . Proposition 12.2.7
now implies that B “ B1 ˆ ran`1, bn`1s satisfies BW . [\

Definition 12.2.10. Let n P N. A set X Ă Rn is called bounded if it is contained in some
box B Ă Rn. [\

Proposition 12.2.11. Let n P N and X Ă Rn. The following statements are equivalent.

(i) The set X is bounded.



12.2. Connectedness and compactness 395

(ii) There exists R ą 0 such that

}x} ď R, @x P X. (12.2.1)

Proof. (i) ñ (ii) Suppose that X is contained in the box

B “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns

Observe that there exists M ą 0 large enough so that

ra1, b1s, . . . , ran, bns Ă r´M,M s.

Thus, for any x “ px1, . . . , xnq P B, we have

|xi| ďM, @i “ 1, . . . , n

so that
}x}2 “ |x1|2 ` ¨ ¨ ¨ ` |xn|2 ď nM2.

Hence
}x} ďM

?
n, @x P B.

In particular, this shows that X satisfies (12.2.1).

(ii) ñ (i). Suppose that X satisfies (12.2.1). Thus there exists R ą 0 such that X is

contained in the closed Euclidean ball BRp0q which in turn is contained in the closed cube

CRp0q. [\

Theorem 12.2.12 (Bolzano-Weierstrass). Let n P N and X Ă Rn. The following state-
ments are equivalent.

(i) The set X satisfies BW .

(ii) The set X is closed and bounded.

Proof. (i) ñ (ii) Assume that X satisfies BW . We have to prove that X is bounded and
closed. To prove that X is closed we have to show that if ppνq is a sequence of points in
X that converges to some point p P Rn, then p P X.

Since X satisfies BW , the sequence ppνq contains a subsequence that converges to
a point p˚ P X. Since the limit of any subsequence is equal to the limit of the whole
sequence, we deduce p “ p˚ P X.

To prove that X is bounded we argue by contradiction. Thus, the condition (12.2.1)
is violated. Hence, for any ν P N there exists xν P X such that }xν} ą ν. Since X satisfies
BW , the sequence pxνq contains a subsequence pxνiqiPN converging to x˚ P X. We deduce

lim
iÑ8

}xνi} “ }x˚} ă 8.

This is impossible since
}xνi} ą νi, lim

iÑ8
νi “ 8

and thus
lim
iÑ8

}xνi} “ 8.
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(ii) ñ (i) Suppose that X is closed and bounded. Since X is bounded, it is contained in a
closed box B. Suppose now that ppνq is a sequence of points in X. According to Corollary
12.2.9 the box B satisfies BW, so the sequence ppνq contains a subsequence ppνiq that
converges to a point p P B. On the other hand the limit of any convergent sequence of
points in X is a point in X. Thus the limit of the sequence ppνiqiPN must belong to X.
This shows that X satisfies BW . [\

Corollary 12.2.13. Let n P N. For any R ą 0 and any p P Rn the closed ball BRppq and

the closed cube CRppq satisfy BW . [\

Proof. Indeed, the closed ball BRppq and the closed cube CRppq are closed and bounded.[\

Corollary 12.2.14 (Bolzano-Weierstrass). Let n P N. If pxνq is a bounded sequence of
points in Rn, i.e.,

DR ą 0 such that }xν} ď R, @ν P N,
then pxνq contains a convergent subsequence.

Proof. The sequence pxνq is contained in a closed ball which satisfies BW . [\

Definition 12.2.15. Let n P N and X Ă Rn.

(i) A (possibly infinite) collection of subsets of Rn is said to cover X if their union
contains X.

(ii) The set X is said to satisfy the weak Heine-Borel1 property (or wHB for brevity)
if any collection of open boxes that covers X contains a finite subcollection that
covers X.

(iii) The set X is said to satisfy the Heine-Borel property (or HB for brevity) if any
collection of open sets that covers X contains a finite subcollection that covers
X.

[\

Often we use the expression “U is an open cover of X” to indicate that U is a collection
of open sets that covers X. Given an open cover U of X, we define subcover of U is a
subfamily of U that still covers X.

Example 12.2.16. The interval p0, 1s does not satisfy the HB property. Indeed, the
family of open sets

Un :“ p1{n, 2q, n ě 2,

covers p0, 1s, but no finite subfamily covers p0, 1s. Indeed if Un1 , . . . , Unk
is a finite sub-

family, n1 ă ¨ ¨ ¨ ă nk, then

Un1 Ă ¨ ¨ ¨ Ă Unk
, Un1 Y ¨ ¨ ¨ Y Unk

“ Unk

1Émile Borel (1871-1956) was a French mathematician and politician. As a mathematician, he was known for

his founding work in the areas of measure theory and probability.
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and the interval Unk
does not contain p0, 1s. [\

Lemma 12.2.17. A set satisfies wHB if and only if it satisfies HB.

Proof. Clearly HB ñ wHB so it suffices to show only that wHB ñ HB. Suppose
that the collection U of open sets covers X. Each open set U in the family U is the union
of a collection CU open cubes; see Exercise 11.35.

The family C of all the cubes in all the collections CU , U P U covers X. Since X
satisfies wHB, there exists a finite subfamily F Ă C that covers X. Each cube C P F is
contained in some open set U “ UC of the family U. It follows that the finite subfamily

␣

UC ; C P F
(

Ă U

covers X.

[\

Theorem 12.2.18 (Heine-Borel). For any a, b P R, the closed interval ra, bs satisfies HB.

Proof. It suffices to verify only the wHB property. Let’s observe that the open boxes
in R are the open intervals. Suppose that I :“ pIαqαPA is a collection of open intervals
that covers ra, bs. We have to prove that there exists a finite subcollection of I that covers
ra, bs. We define

X :“
␣

x P ra, bs; ra, xs is covered by some finite subcollection of I
(

.

Note first that a P X because a is contained in some interval of the family I. Thus X is
nonempty and bounded above, and therefore it admits a supremum x˚ :“ supX. Note
that x˚ P ra, bs. It suffices to prove that

x˚ P X, (12.2.2a)

x˚ “ b. (12.2.2b)

Proof of (12.2.2a). Observe that there exists an increasing sequence pxnq of points in
X such that

x˚ “ lim
nÑ8

xn.

Since x˚ P ra, bs there exists an open interval I˚ in the family I that contains x˚. Since the
sequence pxnq converges to x

˚ there exists k P N such that xk P I
˚. The interval ra, xks is

covered by finitely many intervals I1, . . . , IN P I. Clearly rxk, x
˚s Ă I˚. Hence the finite

collection I˚, I1, . . . , IN P I covers ra, x˚s, i.e., x˚ P X. [\

Proof of (12.2.2b). We argue by contradiction. Suppose that x˚ ‰ b. Hence x˚ ă b.
Since x˚ P X, the interval ra, x˚s is covered by finitely many open intervals I˚, I1, . . . , IN P I,
where I˚ Q x˚. Since I˚ is open, there exists ε ą 0, such that ε ă b ´ x˚ and
rx˚, x˚ ` εs Ă I˚. This shows that the interval ra, x˚ ` εs is covered by the finite family
I˚, I1, . . . , IN and x˚`ε P ra, bs. Hence x˚`ε P X. The inequality x˚`ε ą x˚ contradicts
the fact that x˚ “ supX. [\
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The proof of Theorem 12.2.18 is now complete. [\

Proposition 12.2.19. Let m,n P N. Suppose that K Ă Rm and L Ă Rn satisfy HB.
Then the Cartesian product K ˆ L Ă Rm`n also satisfies HB.

Proof. Again it suffices to verify only the wHB property. Suppose that B is a collection of open boxes in Rmˆn

that covers K ˆ L. Each box B P B is a product B “ B1 ˆ B2 where B1 is an open box in Rm and B2 is an open
box in Rn. To see this note that each open box B P B is a product of m` n intervals

B “ I1 ˆ ¨ ¨ ¨ ˆ Im ˆ Im`1 ˆ ¨ ¨ ¨ ˆ Im`n.

Then

B1 “ I1 ˆ ¨ ¨ ¨ ˆ Im, B2 “ Im`1 ˆ ¨ ¨ ¨ ˆ Im`n.

If you think of B as a rectangle in the xy-plane, then B1 would be its “shadow” on the x axis and B2 would be

its “shadow” on the y-axis. For each x P K we denote by Bx the subfamily of B consisting of boxes that intersect

txu ˆ L; see Figure 12.4.

K

L

K L

x

x{  }  L

Figure 12.4. From the collection B of open boxes covering K ˆ L we concentrate on
the subcollection Bx consisting of boxes that intersect the slice txu ˆ L.

Lemma 12.2.20. Fix x P K Ă Rm. There exists an open box B̃x in Rm containing x and a finite subcollection

Fx Ă Bx that covers B̃x ˆ L.

Proof of Lemma 12.2.20. The collection Bx covers txuˆL and thus the collection of open n-dimensional boxes
!

B2; B1 ˆB2 P Bx

)

covers L. Since L satisfies HB, there exists a finite subfamily Fx Ă Bx such that the collection of n-dimensional

boxes
␣

B2; B P Fxu



12.2. Connectedness and compactness 399

covers L. For each B P Fx, the m-dimensional box B1 contains x. The intersection of the family tB1; B1ˆB P Fxu

is therefore a nonempty m-dimensional box B̃x that contains x. Since

B̃x ˆB
2 Ă B1 ˆB2 “ B, @B P Fx,

we deduce that

B̃x ˆ L Ă
ď

BPFx

B1
x ˆB

2 Ă
ď

BPFx

B

[\

For any x P K choose an open box B̃x Ă Rm as in Lemma 12.2.20. The collection of boxes
!

B̃x

)

xPK

clearly covers K. Since K satisfies HB there exist finitely many points x1, . . . ,xν P K such that the finite

subcollection
!

B̃xj

)

1ďjďν

covers K. Note that each finite subfamily Fxj Ă B covers B̃xj ˆ L so the finite family

F “ Fx1 Y ¨ ¨ ¨ Y Fxν Ă B

covers K ˆ L.

[\

Corollary 12.2.21. Any closed box in Rn satisfies HB. [\

We can now state and prove the following very important result.

Theorem 12.2.22. Let n P N and X Ă Rn. Then the following statements are
equivalent.

(i) The set X is closed and bounded.

(ii) The set X satisfies BW .

(iii) The set X satisfies HB.

Proof. We already know that (i) ðñ (ii). Let us prove that (i) ñ (iii). Thus we want
to prove that if X is closed and bounded then X satisfies HB.

Observe first that since X is bounded X is contained in some closed cube C. Moreover,
since X is closed, the set U0 “ RnzX is open. Suppose that U is a family of open sets that
covers X. The family U˚ of open sets obtained from U by adding U0 to the mix covers
C. Indeed, U covers X and U0 covers the rest, CzX. The closed cube C satisfies HB so
there exists a finite subfamily F˚ of U˚ that covers C. If F˚ does not contain the set U0

then clearly it is a finite subfamily of U that covers C and, a fortiori, X. If U0 belongs to
F˚, then the family F obtained from F˚ by removing U0 will cover X because U0 does not
cover any point on X.

(iii) ñ (i) To prove that X is bounded choose a family C of open cubes that covers X.
Since X satisfies HB, there exists a finite subfamily F Ă C that covers X. The union of
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the cubes in the finite family F is contained in some large cube, hence X is contained in
a large cube and it is therefore bounded.

To prove that X is closed we argue by contradiction. Suppose that pxνq is a sequence
of points in X that converges to a point x˚ not in X. We set rν :“ distpx˚,xνq. Consider
the family of open sets

Uν “ RnzBrν px˚q, ν P N.
Since rν Ñ 0 we have

ď

νě1

Uν “ Rnztx˚u Ą X.

However, no finite subfamily of this family covers X. Indeed the union of the open sets
in such a finite family is the complement of a closed ball centered at x˚ and such a ball
contains infinitely many points in the sequence pxνq. [\

Definition 12.2.23 (Compactness). Let n P N. A subset X Ă Rn is called compact
if it satisfies either one of the equivalent conditions (i), (ii) or (iii) in Theorem 12.2.22.

[\

Corollary 12.2.24. Suppose that S Ă R is a nonempty compact subset of the real axis.
Then there exist s˚, s

˚ P S such that s˚ ď s ď s˚, @s P S. In other words,

inf S P S, supS P S .

Proof. We set

s˚ :“ inf S, s˚ :“ supS.

Since S is compact, it is bounded so that ´8 ă s˚ ď s˚ ă 8. We want to prove that
s˚, s

˚ P S.

Now choose a sequence of points psνq in S such that sν Ñ s˚. (The existence of such
a sequence is guaranteed by Lemma 6.2.3.)

Since S is compact, it is closed, so the limit of any convergent sequence of points in S
is also a point in S. Thus s˚ P S. A similar argument shows that s˚ P S. [\

12.3. Topological properties of continuous maps

The continuous maps enjoy many useful properties not satisfied by many other types of
maps. The first property we want to discuss generalizes the intermediate value property
of continuous functions of one variable.

Theorem 12.3.1. Letm,n P N and suppose that X Ă Rn is path connected. If F : X Ñ Rm
is a continuous map, then its image F pXq is path connected.
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Proof. We have to show that for any y0,y1 P F pXq there exists a continuous path in
F pXq connecting y0 to y1.

Since y0,y1 P F pXq there exist x0,x1 P X such that F px0q “ y0 and F px1q “ y1.
Since X is path connected, there exists a continuous path γ : rt0, t1s Ñ X such that
γpt0q “ x0 and γpt1q “ y1. We obtain a continuous path

F ˝ γ : rt0, t1s Ñ Rn

whose image is contained in the image F pXq of F and satisfying

F ˝ γptiq “ F pγptiqq “ F pxiq “ yi, i “ 0, 1.

Thus the continuous path F ˝ γ in F pXq connects y0 to y1. [\

Corollary 12.3.2. Let m,n P N and suppose that X Ă Rn. If F : X Ñ Rm is a
continuous map, and the image F pXq is not path connected, then X is not path connected.

[\

Corollary 12.3.3 (Multi-dimensional intermediate value theorem). Let n P N and sup-
pose that X Ă Rn is a path connected subset. If f : X Ñ R is a continuous function, then
its image fpXq Ă R is an interval. In particular, if x0,x1 P X and c P R are such that
fpx0q ă c ă fpx1q, then there exists x P X such that fpxq “ c.

Proof. Theorem 12.3.1 shows that fpXq Ă R is path connected while Proposition 12.2.4
shows that fpXq must be an interval. In particular, for any points x0,x1 P X such that
fpx0q ă fpx1q, the interval rfpx0q, fpx1qs Ă R is contained in the range fpXq of f . [\

Theorem 12.3.4. Let m,n P N and X Ă Rn. If F : X Ñ Rm is continuous and K Ă X
is compact, then F pKq is compact.

Proof. It suffices to prove that the set F pKq satisfies BW . Suppose that pyνqνPN is a
sequence in F pKq. We have to show that it admits a subsequence that converges to a
point in F pKq.

Since yν P F pKq, there exists xν P K such that yν “ F pxνq. On the other hand, K
satisfies BW so the sequence pxνq admits a subsequence pxνiq that converges to a point
x˚ P X. Since F is continuous we deduce

lim
iÑ8

yνi “ lim
iÑ8

F pxνiq “ F px˚q P F pKq.

[\

Corollary 12.3.5 (Weierstrass). Let n P N and suppose that K Ă Rn is a nonempty
compact set. If f : K Ñ R is continuous, then there exist x˚ and x˚ in K such that

fpx˚q ď fpxq ď fpx˚q, @x P K.
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Proof. According to Theorem 12.3.4 the set fpKq Ă R is compact. Corollary 12.2.24
implies that there exist s˚, s

˚ P fpKq such that s˚ “ inf fpKq, s˚ “ sup fpKq. In
particular,

s˚ ď fpxq ď s˚, @x P K.

Since s˚, s
˚ P fpKq, there exists x˚,x

˚ P K such that s˚ “ fpx˚q, s
˚ “ fpx˚q. [\

Definition 12.3.6. Let m,n P N and X Ă Rn. A map F : X Ñ Rm is called bounded if
its range F pXq is a bounded subset of Rm. [\

Corollary 12.3.7. Let m,n P N. Suppose that K Ă Rn is a compact set and F : K Ñ Rm
is a continuous map. Then F is a bounded map.

Proof. The range F pKq is compact, hence bounded. [\

Definition 12.3.8. Let n P N. The diameter of a nonempty subset S Ă Rn is the quantity

diampSq “ sup
x,yPS

}x´ y} P r0,8s. [\

We list below a few simple properties of the diameter. Their proofs are left to the
reader as an exercise.

Proposition 12.3.9. Let n P N. Then the following hold.

(i) The set S Ă Rn is bounded if and only if diampSq ă 8.

(ii) If S1 Ă S2 Ă Rn, then diampS1q ď diampS2q.

(iii) For any r ą 0

diampBrq “ 2r, diampCrq “ 2r
?
n,

where Br, Cr Ă Rn are the open ball and respectively the open cube of radius r
centered at 0 P Rn.

[\

Definition 12.3.10. Let n,m P N, andX Ă Rn. The oscillation of a function F : X Ñ Rm
on a subset S is the quantity

oscpF , Sq “ sup
x,yPS

}F pxq ´ F pyq}. [\

The next result describes alternate characterizations of the oscillation of a scalar valued
function. Its proof is left to you as an exercise.

Proposition 12.3.11. Let n P N, X Ă Rn. For any function f : X Ñ R and any subset
S Ă X we have the equalities

oscpf, Sq “ sup
xPS

fpxq ´ inf
yPS

fpyq “ sup
x,yPS

`

fpxq ´ fpyq
˘

“ diam fpSq. [\
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Definition 12.3.12. Let n P N, X Ă Rn. A function f : X Ñ R is said to be uniformly
continuous on the subset Y Ă X if

@ε ą 0 Dδ “ δpεq ą 0 such that @S Ă Y : diampSq ď δ ñ oscpf, Sq ă ε. [\

Observe that the above uniform continuity condition can be rephrased in the following
equivalent way.

@ε ą 0 Dδ “ δpεq ą 0 such that @y1,y2 P Y : }y1 ´ y2} ď δ ñ |fpy1q ´ fpy2q| ă ε.

Theorem 12.3.13 (Weierstrass). Let n P N, X Ă Rn. Suppose that f : X Ñ R is
continuous. Then f is uniformly continuous on any compact set K Ă X.

Proof. Let K be a compact subset of X. We argue by contradiction so we assume that
f is not uniformly continuous on K. Hence, there exists ε0 ą 0 such that for any ν P N
there exist a subset Sν Ă K such that

diampSνq ď
1

ν
and oscpf, Sνq ě ε0.

Thus, for any ν P N, there exist xν ,yν P Sν such that
ˇ

ˇ fpxνq ´ fpyνq
ˇ

ˇ ě
ε0
2
. (12.3.1)

Note that because xν ,yν P Sν and diampSνq ă
1
ν we have

distpxν ,yνq ă
1

ν
Ñ 0 as ν Ñ8.

Since K is compact, the sequence of points pxνq in K has a convergent subsequence pxνj q

lim
jÑ8

xνj “ x P K.

Observe that

distpyνj ,xq ď distpyνj ,xνj q
looooooomooooooon

ă 1
νj

`distpxνj ,xq Ñ 0 as j Ñ8.

Thus the subsequence pyνj q also converges to x. Since f is continuous at x we have

lim
jÑ8

fpxνj q “ lim
jÑ8

fpyνj q “ fpxq

so that

lim
jÑ8

`

fpxνj q ´ fpyνj q
˘

“ 0.

This contradicts (12.3.1). [\

Definition 12.3.14. Let m,n P N and suppose that X Ă Rm, Y Ă Rn.

(i) A map F : X Ñ Y is called a homeomorphism if it is continuous, bijective and
the inverse F´1 : Y Ñ X is also continuous.
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(ii) The setsX,Y are called homeomorphic if there exists a homeomorphism F : X Ñ Y .

[\

Corollary 12.3.15. Let m,n P N. Suppose that X Ă Rm and Y Ă Rn are homeomorphic
sets. Then the following hold.

(i) The set X is compact if and only if Y is.

(ii) The set X is path connected if and only if Y is.

Proof. Fix a homeomorphism F : X Ñ Y . Then both F and F´1 are continuous and

Y “ F pXq, X “ F´1pY q.

The desired conclusions now follow from Theorem 12.3.1 and 12.3.4. [\

12.4. Continuous partitions of unity

We conclude this chapter by discussing a technical but very versatile result that will come
in handy later. First, we need to discuss a few more topological concepts.

Definition 12.4.1. Let n P N and suppose that X Ă Rn.

(i) The closure of X, denoted by clpXq, is the intersection of all the closed subsets
of Rn that contain X.

(ii) The interior of X, denoted by intpXq, is the union of all the open sets contained
in X.

(iii) The boundary of X, denoted BX, is the difference clpXqz intpXq.

[\

In other words, the closure of a set X is the smallest closed subset containing X and
its interior is the largest open set contained in X. The proof of the following result is left
as an exercise.

Proposition 12.4.2. Let n P N and suppose X Ă Rn. Then the following hold.

(i) A point x P Rn belongs to the closure of X if and only if there exists a sequence
of points in X that converges to x.

(ii) A point x P Rn belongs to the interior of X if and only if Dr ą 0 such that
Brpxq Ă X.

(iii) BX “ clpXq X clpRnzXq.

[\
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Example 12.4.3. Using the above proposition it is not hard to see that for any r ą 0,
the closure of the open ball Brp0q Ă Rn is the closed ball Brp0q. Moreover

BBrp0q “ BBrp0q :“ Σrp0q “
␣

x P Rn; }x} “ r
(

. [\

Definition 12.4.4. Let n P N. The support of a function f : Rn Ñ R is the subset
supppfq Ă Rn defined as the closure of the set of points where f is not zero,

supppfq :“ cl
´

␣

x P Rn; fpxq ‰ 0
(

¯

.

We denote by CcptpRnq the set of continuous functions on Rn with compact support. [\

Clearly, the function identically equal to zero has compact support: its support is
empty. The function which is equal to 1 at the origin and zero elsewhere has compact
support, but it is not continuous. It turns out that there are plenty of continuous functions
with compact support. The next result describes a simple recipe for producing many
examples of continuous functions Rn Ñ R.

Proposition 12.4.5. Let n P N.

(i) Suppose that C,C 1 Ă Rn are two closed subsets such that C X C 1 “ H. Then
there exists a continuous function f : Rn Ñ r0, 1s such that

C “ f´1p1q, C 1 “ f´1p0q.

(ii) For any positive real numbers r ă R and any x0 P Rn there exists a continuous
function f : Rn Ñ r0, 1s such that

fpyq “

$

’

&

’

%

1, y P Brpx0q,

0, y P RnzBRpx0q.

Proof. (i) We have (see Exercise 12.22)

x P Cðñ distpx, Cq “ 0, x P C 1ðñ distpx, C 1q “ 0.

Since C and C 1 are disjoint we deduce

distpx, Cq ` distpx, C 1q ą 0, @x P Rn.

Now define

f : Rn Ñ R, fpxq “
distpx, C 1q

distpx, Cq ` distpx, C 1q
.

The function f is continuous (see Exercise 12.22) and fpxq P r0, 1s, @x P r0, 1s. Note that

fpxq “ 0ðñ distpx, C 1q “ 0ðñx P C 1,

fpxq “ 1ðñ distpx, Cq “ 0ðñx P C.

(ii) This is a special case of (i) corresponding to C “ Brpx0q and C
1 “ RnzBRpx0q. [\
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Definition 12.4.6. Let n P N, X Ă Rn and suppose that U is an open cover of X. A
continuous partition of unity on X, subordinated to the open cover U is a finite collection
of continuous functions χ1, . . . , χℓ : Rn Ñ r0, 1s with the following properties.

(i) For any i “ 1, . . . , ℓ, there exists an open subset Ui in the collection U such that
suppχi Ă Ui.

(ii) χ1pxq ` ¨ ¨ ¨ ` χℓpxq “ 1, @x P X.

The partition of unity χ1, . . . , χℓ is called compactly supported if, additionally,

χ1, . . . , χℓ P CcptpRnq. [\

Theorem 12.4.7 (Continuous partitions of unity). Let n P N and suppose that K Ă Rn
is a compact subset. Then, for any open cover U of K, there exists a compactly supported
partition of unity on K subordinated to U.

Proof. Since the collection U covers K we deduce that for any x P K there exists an open
set Ux in the collection U such that x P Ux. For any x P K choose rpxq, Rpxq ą 0 such
that Rpxq ą rpxq and BRpxqpxq Ă Ux.

The family of open balls
`

Brpxqpxq
˘

xPK
obviously covers K and, since K is compact,

we can find finitely many points x1, . . . ,xℓ such that the collection of open balls

Brpx1qpx1q, . . . , Brpxℓq
pxℓq

covers K. Using Proposition 12.4.5(ii) we deduce that, for any i “ 1, . . . , ℓ there exists a
continuous function fi : Rn Ñ r0, 1s such that

fipyq “

$

’

&

’

%

1, y P Brpxiq
pxiq,

0, y P RnzBRpxiq
pxiq.

Now define

χ1 :“ f1, χ2 :“ p1´ f1qf2, χ3 :“ p1´ f1qp1´ f2qf3,

χj :“ p1´ f1q ¨ ¨ ¨ p1´ fj´1qfj , @j “ 2, . . . , ℓ.

Note that

fipyq “ 0, @y P RnzBRpxiq
pxiq ñ χipyq “ 0, @y P RnzBRpxiq

pxiq.

In particular, the function χj has compact support contained in BRpxjq
pxjq. Since χj is

the product of functions with values in r0, 1s, the function χj is also valued in r0, 1s.

Now observe that

χ1 ` χ2 “ 1´ p1´ f1q ` p1´ f1qf2 “ 1´ p1´ f1qp1´ f2q,

χ1 ` χ2 ` χ3 “ 1´ p1´ f1qp1´ f2q ` p1´ f1qp1´ f2qf3

“ 1´
´

p1´ f1qp1´ f2q ´ p1´ f1qp1´ f2qf3

¯

“ 1´ p1´ f1qp1´ f2qp1´ f3q.
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We obtain inductively that

χ1 ` χ2 ` ¨ ¨ ¨ ` χℓ “ 1´ p1´ f1qp1´ f2q ¨ ¨ ¨ p1´ fℓq.

Finally note that

x P
ℓ
ď

j“1

Brpxjq
pxjq ñ Di : x P Brpxiq

pxiq

ñ Di : fipxq “ 1ñ
ℓ
ź

j“1

`

1´ fjpxq
˘

“ 0ñ
ℓ
ÿ

j“1

χjpxq “ 1.

[\
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12.5. Exercises

Exercise 12.1. Consider the function

f : R2zt0u Ñ R, fpx, yq “
xy

x2 ` y2
.

Decide whether the limit

lim
pÑ0

fppq

exists. Justify your answer.

Hint: Analyze the behavior of f along the sequences

pν “ p1{ν, 1{νq and qν “ p1{ν, 2{νq.

[\

Exercise 12.2. Let n P N. Prove that the function f : Rn Ñ R, fpxq “ }x}2 is not
Lipschitz. [\

Exercise 12.3. Let n P N and suppose that

α : ra, bs Ñ Rn, β : rb, cs Ñ Rn

are two continuous paths such that αpbq “ βpbq, i.e., α ends where β begins. Define

α ˚ β : ra, cs Ñ Rn, α ˚ βptq “

#

αptq, t P ra, bs,

βptq, t P pb, cs.

Prove that α ˚ β is a continuous path. [\

Exercise 12.4. (a) Consider a map F : Rn Ñ Rm. Show that the following statements
are equivalent.

(i) The map F is continuous.

(ii) For any open set U Ă Rm, the preimage F´1pUq is open.

(iii) For any closed set C Ă Rm, the preimage F´1pCq is closed.

(b) Suppose that D is an open subset of Rn and F : D Ñ Rm is a map. Show that the
following statements are equivalent.

(i) The map F is continuous.

(ii) For any open set U Ă Rm, the preimage F´1pUq is open.

Hint. (a) You need to understand very well the definition of preimage (1.4.2). [\

Exercise 12.5. Suppose that f : Rn Ñ R is continuous and c P R.

(i) Prove that the set E1 “
␣

x P Rn; fpxq ă c
(

is open.

(ii) Prove that the set E2 “
␣

x P Rn; fpxq ď c
(

is closed.

(iii) Prove that the set E3 “
␣

x P Rn; fpxq “ c
(

is closed.



12.5. Exercises 409

(iv) Find an example of a function f : R Ñ R that is not continuous yet, for any
c P R, the set

␣

x P R; fpxq ď c
(

is closed.

Hint. (i)-(iii) Use the previous exercise and Example 11.3.6. [\

Exercise 12.6. (a) Suppose that A P MatmˆnpRq and B P MatnˆppRq. Prove that

}A}2HS “ trpAJAq “ trpAAJq,

and
}A ¨B}HS ď }A}HS ¨ }B}HS , (12.5.1)

where } ´ }HS denotes the Hilbert-Schmidt norm defined in Remark 12.1.11 and “tr”
denotes the trace of a square matrix defined in Exercise 11.21.

(b) Compute }A}HS , where A is the 2ˆ 2 matrix

A “

„

1 2
3 4

ȷ

.

(c) Show that if pAνq, pBνq are two sequences in MatnpRq that converge (see Definition
12.1.12) to the matrices A and respectively B, then AνBν converges to AB.

Hint. (a) Denote by pA ¨Bqij the pi, jq-entry of the product matrix A ¨B. Use (11.1.15) to prove that

ˇ

ˇ pA ¨Bqij
ˇ

ˇ ď
›

› pAiqÒ
›

› ¨ }Bj}.

(c) Use the same strategy as in the proof of Proposition 11.4.8 . [\

Exercise 12.7. Suppose that pAνqνě1 is a sequence of nˆ n matrices and A P MatnpRq.
Prove that the following statements are equivalent.

(i)
lim
νÑ8

}Aν ´A}HS “ 0.

(ii) For any x P Rn
lim
νÑ8

Aνx “ Ax.

(iii) For any x,y P Rn
lim
νÑ8

xAνx,yy “ xAx,yy.

(iv) If the entries of Aν are Aijpνq, 1 ď i, j ď n, and the entries of A are Aij , then

lim
νÑ8

Aijpνq “ Aij , @1 ď i, j ď n.

Hint. (i) ñ (ii) Use (12.5.1). (ii) ñ (iii) Use Cauchy-Schwarz. (iii) ñ (iv) Use Exercise 11.23. (iv) ñ (i) Use the

definition of the Frobenius norm. [\

Exercise 12.8. To a matrix R P MatnˆnpRq we associate the series of matrices

1`R`R2 ` ¨ ¨ ¨

with partial sums
S0 “ 1, S1 “ 1`R, S2 “ 1`R`R2, ¨ ¨ ¨ .
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(i) Show that if }R}HS ă 1, then the sequence pSN q is convergent to a matrix S
satisfying Sp1´Rq “ p1´RqS “ 1, i.e., 1´R is invertible and its inverse is S.

(ii) Prove that the matrix S above satisfies

}S ´ 1}HS ď
}R}HS

1´ }R}HS
.

Hint: (i) +(ii) Use the results in Exercises 11.40 and 12.6. [\

Exercise 12.9. Suppose that A is an invertible n ˆ n matrix. Prove that there exists
ε ą 0 such that if B is an nˆn matrix satisfying }A´B}HS ă ε, then B is also invertible.

Hint. Write C “ A´B so that B “ A´C “ Ap1´A´1Cq. Thus, to prove that B is invertible it suffices to show

that 1´ A´1C is invertible. Prove that if }C}HS ă
1

}A´1}HS
, then }A´1C}HS ă 1 . To conclude invoke Exercise

12.8. [\

Exercise 12.10. Let n P N and suppose that pAνq is a sequence of invertible n ˆ n
matrices that converges with respect to the Hilbert-Schmidt norm to an invertible matrix
A. Prove that

lim
νÑ8

}A´1ν ´A´1}HS “ 0.

Hint: Write Cν :“ A´Aν , Rν :“ A´1Cν . Observe that Cν , Rν Ñ 0, Aν “ Ap1´Rνq and for ν large

A´1
ν ´A´1 “ p1´Rνq

´1A´1 ´A´1 “

´

1`Rν `R
2
ν ` ¨ ¨ ¨

¯

A´1 ´A´1

“

´

Rν `R
2
ν ` ¨ ¨ ¨

¯

A´1.

[\

Exercise 12.11. Prove Theorem 12.1.20.

Hint. Mimic the proof of Theorem 6.1.10. [\

Exercise 12.12. Suppose that X is a nonempty subset of the real axis R. Prove that the
following statements are equivalent.

(i) The set X is an interval, i.e., it has the form

pa, bq, ra, bq, pa, bs, ra, bs, pa,8q, ra,8q, p´8, bq, or p´8, bs, or p´8,8q.

(ii) If x0, x1 P X and x0 ă x1, then rx0, x1s Ă X.

(iii) The set X is convex.

Hint. Clearly (i) ñ (ii) and (ii) ðñ (iii). The tricky implication is (ii) ñ (i). Set m :“ infX, M :“ supX. Show

that (ii) ñ pm,Mq Ă X Ă rm,Ms. [\

Exercise 12.13. (i) Prove that the set Rzt0u Ă R is not path connected.

(ii) Prove that if L is a line in Rn and p P L, then the set Lztpu is not path
connected.
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(iii) Suppose that ξ : Rn Ñ R is a nonzero linear functional. Prove that the set
␣

x P Rn; ξpxq ‰ 0
(

is not path connected.

Hint. For (ii) consider a point q P Lztpu so that L “ pq. Define f : R Ñ L, fptq “ p1 ´ tqp ` tq. Show that f

is bijective, Lipschitz and f´1 : L Ñ R is also Lipschitz. Conclude using Corollary 12.3.15. For (iii) use (i) and

Corollary 12.3.3. [\

Exercise 12.14. Let n P N, n ą 1.

(i) Show that the punctured space Rnzt0u is path connected.

(ii) Show that the unit Euclidean sphere

Σ1p0q :“
␣

x P Rn; }x} “ 1
(

is path connected.

(iii) Show that for any r ą 0 and any p P Rn the Euclidean sphere of center p and
radius r, i.e., the set

Σrppq :“
␣

x P Rn; }x´ p} “ r
(

,

is path connected.

(iv) Prove that for any positive numbers r ă R the annulus

Ar,R :“
␣

x P Rn; r ă }x} ă R
(

is path connected but not convex.

Hint. (i) Let p, q P Rnzt0u. If the line pq does not contain 0 we’re done since the segment rp, qs will do the trick.

If 0 P pq, then choose a point r P Rnzt0u that does not belong to this line. (You need to use the assumption n ą 1

to prove that such a point exists.) Then 0 R pr. Travel from p to r on rp, rs and then from r to q on rr, qs. (Need

to invoke Remark 12.2.2 and Exercise 12.3.) To prove (ii) use (i). To prove (iii) use (ii). To prove (iv) it helps to

first visualize the region Ar,R in the special case n “ 2, r “ 1, R “ 2. Use (iii) to prove that this annulus is path

connected. [\

Exercise 12.15. Let n P N and suppose that S1, S2 Ă Rn are two path connected subsets
such that S1 X S2 ‰ H. Prove that S1 Y S2 is also path connected. [\

Exercise 12.16. Prove Proposition 12.3.9. [\

Exercise 12.17. Let n P N. Suppose that pKνqνPN is a sequence of nonempty compact
subsets of Rn such that

K1 Ą K2 Ą ¨ ¨ ¨ Ą Kν Ą ¨ ¨ ¨ .

Prove that
č

νPN
Kν ‰ H,
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i.e.,

Dp P Rn such that p P Kν , @ν P N.
Hint. For any ν P N choose a point pν P Kν . Show that a subsequence of ppνq is convergent and then prove that

its limit belongs to Kν for any ν. [\

Exercise 12.18. Let n P N and suppose that A,B Ă Rn are nonempty. We regard AˆB
as a subset of Rn ˆ Rn “ R2n and we consider the function

f : AˆB Ñ R, fpa, bq “ }a´ b}.

Prove that f is continuous.

Hint. Use Proposition 12.1.4(ii). [\

Exercise 12.19. Let n P N and suppose that K Ă Rn is a nonempty compact subset.
Recall (see Definition 12.3.8) that

diampKq :“ sup
x,yPK

}x´ y}.

Prove that there exist x˚,y˚ P K such that

diampKq “ }x˚ ´ y˚}.

Hint. Use Exercise 12.18, Proposition 12.2.19, and Corollary 12.3.5. [\

Exercise 12.20. Prove Proposition 12.3.11. [\

Exercise 12.21. Let X Ă Rn, and f : X Ñ R a Lipschitz function. Prove that f is
uniformly continuous on X. [\

Exercise 12.22. Let n P N. Suppose that C Ă Rn is a nonempty closed subset. For
x P Rn we set

distpx, Cq :“ inf
pPC

distpx,pq.

(i) Prove that for any x P Rn there exists y P C such that

}x´ y} “ distpx, Cq.

(ii) Prove that the function f : Rn Ñ R, fpxq “ distpx, Cq is Lipschitz. More
precisely

ˇ

ˇ fpxq ´ fpyq
ˇ

ˇ ď
›

›x´ y
›

›, @x,y P Rn.
(iii) Prove that

C “ f´1p0q “
␣

x P Rn; distpx, Cq “ 0
(

.

Hint. (i) Show that there exists a sequence pyνq in C such that }x ´ yν} Ñ distpx, Cq. Next prove that this

sequence is bounded and thus it has a convergent subsequence. (ii) Use the triangle inequality, part (i) and the

definition of distpx, Cq to prove that L “ 1 is a Lipschitz constant for fpxq. (iii) Use (i). [\
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Exercise 12.23. Let n P N and suppose that C Ă Rn is a closed, convex subset and
x0 P RnzC. Set

r :“ distpx0, Cq.

Prove that the sphere

Σrpx0q “
␣

x P Rn; }x´ x0} “ r
(

intersects the set C in exactly one point. This unique point of intersection is called the
projection of x0 on C and it is denoted by ProjC x0.

Hint. You need to use Exercise 12.22. [\

Exercise 12.24. Let U Ă Rn be an open set. Prove that the following statements are
equivalent.

(i) The set U is path connected.

(ii) Any p, q P U can be joined by a broken line contained in U . More precisely,
this means that for any p, q P U there exist points p0,p1, . . . ,pN P U such that
p “ p0, q “ pN and all the line segments

rp0,p1s, rp1,p2s, . . . , rpN´1,pN s

are contained in U .

Hint. (i) ñ (ii) Set C “ RnzU and define ρ : Rn Ñ r0,8q, ρpxq “ distpx, Cq. Observe that ρ is Lipschitz and thus

continuous. Consider a continuous path γ : r0, 1s Ñ U such that γp0q “ p and γp1q “ q. Set r0 “ inftPr0,1s ρpγptqq.

Show that r0 ą 0 and Br0 pγptqq Ă U , @t P r0, 1s. Use the uniform continuity of γ : r0, 1s Ñ U to show that, for N
sufficiently large, we have

}γp0q ´ γp1{Nq } ă
r0

2
, . . . ,

›

›γ
`

pN ´ 1q{N
˘

´ γp1q
›

› ă
r0

2
,

and conclude that the broken line determined by the points

p0 “ γp0q, p1 “ γp1{Nq, pi “ γpi{Nq, i “ 1, . . . , N,

is contained in U . [\

Exercise 12.25. Suppose that f : Rn Ñ R is a continuous function with the following
property: there exist A,B ą 0 such that

fpxq ě A}x} ´B, @x P Rn.

(i) Prove that for any R ą 0 the set

tf ď Ru :“
␣

x P Rn; fpxq ď R
(

is compact.

(ii) Prove that there exists x˚ P Rn such that fpx˚q ď fpxq, @x P Rn.
Hint. (i) Show that the set tf ď Ru is bounded. (ii) Prove that there exists a sequence pxνq in Rn such that

lim
νÑ8

fpxνq “ inf
xPRn

fpxq.

Deduce that the sequence fpxνq is bounded above and then, using (i), prove that the sequence pxνq is bounded

and thus it has a convergent subsequence. [\
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Exercise 12.26. Let n P N, d P R. We say that a function f : Rn Ñ R is positively
homogeneous of degree d if

fptxq “ tdfpxq, @t ą 0, x P Rnzt0u.

(i) Suppose that f : Rn Ñ R is a nonconstant, continuous and positively homoge-
neous function of degree d. Prove that d ą 0.

(ii) Given d P R construct a nonconstant function f : Rn Ñ R that is positively
homogeneous of degree d and it is continuous at every point x P Rnzt0u.

Hint. (i). Fix x P Rnzt0u and consider the sequence fpν´1xq, ν P N. [\

Exercise 12.27. Let n P N and suppose that d ą 0 and f : Rn Ñ p0,8q is continuous,
positively homogeneous of degree d ą 0 and satisfies

fpxq ą 0, @x P Rnzt0u.

(i) Prove that there exists c ą 0 such that

fpxq ě c}x}d, @x P Rn.
(ii) Prove that for any r ą 0 the sublevel set

tf ď ru :“
␣

x P Rn; fpxq ď r
(

is compact.

Hint. (i) Consider the unit sphere

Σ1 :“
␣

x P Rn; }x} “ 1
(

.

Use Corollary 12.3.5 to show that the infimum of f on Σ1 is strictly positive. (ii) Use (i). [\

Exercise 12.28. For any linear operator A : Rn Ñ Rm we set

}A} :“ sup
}x}“1

}Ax}.

(i) Show that if A : Rn Ñ Rm is a linear operator, then }A} ă 8 and

}Ax} ď }A} ¨ }x}, @x P Rn.
(ii) Show that if A : Rn Ñ Rm and B : Rm Ñ Rℓ are linear operators, then

}B ˝A} ď }B} ¨ }A}.

(iii) Show that the linear operator A : Rn Ñ Rm is injective if and only if there exists
C ą 0 such that

}Ax} ě C}x}, @x P Rnzt0u.
(iv) Prove that if A,B : Rn Ñ Rm are linear operators and t P R then

}A`B} ď }A} ` }B}, }tA} “ |t| ¨ }A}.

Hint. (iii) Use Exercise 11.13 and Exercise 12.27(i) applied to the function fpxq “ }Ax}. [\

Exercise 12.29. Prove Proposition 12.4.2. [\
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Exercise 12.30. Let n P N and X Ă Rn.

(i) Prove that the boundary BX is a closed subset of Rn.
(ii) Show that if X is bounded, then BX is compact.

[\

Exercise 12.31. Let n P N and X Ă Rn. Prove that the following statements are
equivalent.

(i) clpXq “ Rn.
(ii) The set X is dense in Rn.

[\

Exercise 12.32. Find the closures, the interiors and the boundaries of the following sets.

(i) p0, 1q Ă R.
(ii) r0, 1s Ă R
(iii) p0, 1q ˆ t0u Ă R2.

(iv)
␣

px, yq P R2; 0 ď x, y ď 1
(

Ă R2.

[\

Exercise 12.33. Suppose that O Ă Rn is an open subset and

K Ă Rˆ O

is a compact subset. For any t P R we set

Kt :“
␣

x P Rn : pt,xq P K
(

, T :“
␣

t P R; Kt ‰ H
(

.

(i) Show that T is compact.

(ii) Prove that there exists a compact set K Ă O such that

Kt Ă K, @t P R.

[\

12.6. Exercises for extra credit

Exercise* 12.1. Let n P N and suppose that K Ă Rn is a nonempty subset. Prove that
the following statements are equivalent.

(i) The set K is compact

(ii) Any continuous function f : K Ñ R is bounded.

[\
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Exercise* 12.2. Suppose that U Ă Rn is an open set and p, q P U are points such that
the line segment rp, qs is contained in U . Prove that there exists an open convex set V
such that

rp, qs Ă V Ă U. [\

Exercise* 12.3. Show that the set

S :“

#

k

2m
; k P Z, m P Z, m ě 0

+

is dense in R. [\

Exercise* 12.4. Let n P N and suppose that C Ă Rn is a closed, convex subset and
x0 P RnzC. Prove that there exists a linear functional ξ : Rn Ñ R and a real number c
such that

ξpx0q ą c ą ξpxq, @x P C.

Hint. You may want to use the result in Exercise 12.23. [\

Exercise* 12.5. Let n P N and suppose that f : Rn Ñ p0,8q is continuous and positively
homogeneous of degree d ą 0. Prove that the following statements are equivalent.

(i) The function f is uniformly continuous on Rn.
(ii) d ď 1.

[\

Exercise* 12.6. Let n P N and suppose that } ´ }˚ is a norm on the vector space Rn.

(i) Prove that there exists a constant C ą 0 such that

}x}˚ ď C}x}, @x P Rn,
where }x} denotes the Euclidean norm of x.

(ii) Prove that the function f : Rn Ñ R, fpxq “ }x}˚ is continuous, i.e.,

lim
νÑ8

}xν ´ x} “ 0ñ lim
νÑ8

}xν}˚ “ }x}˚.

(iii) Prove that
inf

␣

}x}˚; }x} “ 1
(

‰ 0.

(iv) Prove that there exists c ą 0 such that

}x}˚ ě c}x}, @x P Rn.

[\

Exercise* 12.7. Suppose that E Ă Rn is an affine subspace.

(i) Prove that there exists m P N, a linear operator A : Rn Ñ Rm and a vector
v P Rm such that

E “
␣

x P Rn; Ax “ v,
(

.
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(ii) Prove that E is a closed subset of Rn.

[\

Exercise* 12.8. Suppose that T : R2 Ñ R2 is a map satisfying the following conditions.

(i) T is continuous.

(ii) T is injective.

(iii) T p0q “ 0, T piq “ i, T pjq “ j.

(iv) For any line ℓ Ă R2, the image T pℓq is also a line in R2 .

Prove that T pvq “ v, @v P R2. [\

Exercise* 12.9. Prove that R is not homeomorphic to R2. [\

Exercise* 12.10. Let n P N and suppose that C1, . . . , Cν , . . . is a sequence of closed
subsets of Rn such that

Rn “
8
ď

ν“1

Cν .

Prove that there exists ν P N such that intCν ‰ H. [\





Chapter 13

Multi-variable
differential calculus

The concept of differential of a one-variable function extends to functions of several vari-
ables. The several-variable situation adds new complexity and subtleties, and the goal of
the present chapter is to investigate them.

Recall that a function f : R Ñ R is differentiable at a point x0 P R if and only if it
admits a “best” linear approximation near x0. More geometrically, the graph of f , which
is a curve in R2, can be well approximated in a vicinity of the point p0 “ px0, y0q P R2,
y0 “ fpx0q, by a straight line, the tangent line to the curve at the point p0. This tangent
line is graph of a function of the form Lpxq “ Apx´ x0q ` y0. The slope A of this line is
the derivative of f at x0.

Figure 13.1. A best linear approximation of the function fpx, yq “ x2
` y2 near the point p2, 1q.

419
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We want to extend this approach to maps F : Rn Ñ Rm. The graph of such map is
an m-dimensional “curved” surface in Rn ˆ Rm. We seek to find a “best” approximation
of this graph near p0 “ px0,y0q, y0 “ F px0q, by a “straight” or “flat” m-dimensional
surface; see Figure 13.1 where n “ 2, m “ 1. The “straight” surfaces in an Euclidean
space are precisely the affine subspaces and we seek to approximate the graph of F near
p0 by an affine subspace described as the graph of a map L : Rn Ñ Rm of the form
Lpxq “ Apx´ x0q ` y0, where A : Rn Ñ Rm is a linear operator. The concept of Fréchet
derivative formalizes the above heuristics.

13.1. The differential of a map at a point

Suppose that m,n P N and U Ă Rn is an open subset. Since U is open, we deduce that for
any point x0 P U there exists r “ rpx0q ą 0 such that the open ball Brpx0q is contained
in U . This means that (see Figure 13.2)

x0 ` h P U, @}h} ă r.

x

h

x + h
0

0

U

Figure 13.2. An open set.

Definition 13.1.1. Suppose that F : U Ñ Rm is a map and x0 P U . We say that F is
Fréchet1 differentiable at x0 if there exists a linear operator L : Rn Ñ Rm such that

lim
hÑ0

1

}h}

´

F px0 ` hq ´ F px0q ´ Lh
¯

“ 0 . (13.1.1)

[\

1Named after Maurice René Fréchet (1878-1973), a French mathematician. He made major contributions to
point-set topology and introduced the concept of compactness; see Wikipedia.
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Remark 13.1.2. Observe that if F is differentiable at x0, then there exists exactly one
linear operator L : Rn Ñ Rm satisfying the condition (13.1.1). More precisely, for any
h P Rnz0 we have

Lh “ lim
tÑ0

1

t

´

F px0 ` thq ´ F px0q

¯

. (13.1.2)

Indeed, consider a sequence of real numbers tν Ñ 0, tν ‰ 0. Set hν “ tνh. Note that

lim
νÑ8

hν “ 0

so that x0 ` hν P U , for large ν. We have Lhν “ tνLh and

lim
νÑ8

›

›

›

›

1

tν

´

F px0 ` tνhq ´ F px0q

¯

´ Lh

›

›

›

›

“ }h} lim
νÑ8

›

›

›

›

1

tν}h}

´

F px0 ` tνhq ´ F px0q ´ tνLh
¯

›

›

›

›

“ }h} lim
νÑ8

1

|tν | ¨ }h}

›

›

›

´

F px0 ` tνhq ´ F px0q ´ tνLh
¯
›

›

›

(|tν | ¨ }h} “ }tνh} “ }hν})

“ }h} lim
νÑ8

1

}hν}

›

›

›

´

F px0 ` hνq ´ F px0q ´ Lhν

¯ ›

›

›

p13.1.1q
“ 0. [\

Definition 13.1.3. The unique linear operator L : Rn Ñ Rm such that the differentia-
bility condition (13.1.1) is satisfied is called the (Fréchet) differential of F at x0 and it is
denoted by dF px0q. [\

The equality (13.1.2) shows that the Fréchet differential dF px0q is determined uniquely
by the equality

dF px0qh “ lim
tÑ0

1

t

´

F px0 ` thq ´ F px0q

¯

, @h P Rn . (13.1.3)

Remark 13.1.4. (a) Suppose that F : U Ñ Rm is differentiable at x0 and L :“ dF px0q.
The main point of Definition 13.1.1 is that, for small h, the variation

∆hF px0q “ F px0 ` hq ´ F px0q

is very well approximated by the linear quantity Lh. For h P Rn the error of this approx-
imation is

Rphq :“ F px0 ` hq ´ F px0q ´ Lh.

The differentiability condition is equivalent to the fact that the error Rphq is ophq, where
ophq stands for “a lot smaller” than h as hÑ 0. More precisely

Rphq “ ophq as hÑ 0ðñ lim
hÑ0

1

}h}
Rphq “ 0 . (13.1.4)
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One can prove(see Exercise 13.1) that the condition (13.1.4) is equivalent to the existence
of a function

φ : r0, rq Ñ r0,8q

such that

lim
tŒ0

φptq “ 0 and }Rphq} ď φ
`

}h}
˘

}h}, @}h} ă r. (13.1.5)

The equality (13.1.4) can be rewritten as

F px0 ` hq ´ F px0q “ Lphq ` ophq as hÑ 0,

or, if we set x :“ x0 ` h

F pxq ´ F px0q “ Lpx´ x0q ` opx´ x0q as xÑ x0. (13.1.6)

This last equality can be taken as a definition of the Fréchet differential: the linear operator
L : Rn Ñ Rm is the Fréchet differential of F at x0 iff it satisfies (13.1.6).

(b) By definition, the differential dF px0q is a linear operator Rn Ñ Rm and, as such, it is
represented by an mˆn matrix sometimes called the Jacobian matrix of F at x0 denoted
by

JF px0q or
BF

Bx
px0q .

The n columns of the matrix JF px0q consist of the vectors

dF px0qe1, . . . , dF px0qen P Rm,

where te1, . . . , enu is the natural basis of Rn and

dF px0qej “ lim
tÑ0

1

t

`

F px0 ` tejq ´ F px0q
˘

, @j “ 1, . . . , n. (13.1.7)

[\

Definition 13.1.5. Let m,n P N, assume that U Ă Rn is an open set. If F : U Ñ Rm is
Fréchet differentiable at x0 and L : Rn Ñ Rm is its Fréchet derivative, then the function
L “ LF ,x0 : Rn Ñ Rm defined by

Lpxq “ F px0q ` Lpx´ x0q (13.1.8)

is called the linearization or the linear approximation of F at x0. [\

Note that the equality (13.1.4) where h “ x´ x0 (equivalently, x “ x0 ` h), implies
that

F pxq ´ Lpxq “ o
`

x´ x0q as xÑ x0

i.e.,

lim
xÑx0

}F pxq ´ Lpxq}

}x´ x0}
“ 0.

This shows that, when xÑ x0, the difference F pxq ´Lpxq is a lot smaller than the very
small quantity }x´ x0}.
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The equality (13.1.4) implies the following result.

Proposition 13.1.6. If U Ă Rn is open, x0 P U and the map F : U Ñ Rm is Fréchet
differentiable at x0, then it is continuous at x0.

Proof. Using the notation from Remark 13.1.2 we can write

F px0 ` hq “ F px0q ` Lh`Rphq.

Since L is a linear operator, it is a continuous map and thus

lim
hÑ0

Lh “ 0.

On the other hand, (13.1.4) shows that

lim
hÑ0

Rphq “ 0.

Hence

lim
hÑ0

F px0 ` hq “ lim
hÑ0

`

F px0q ` Lh`Rphq
˘

“ F px0q.

[\

Example 13.1.7. Before we proceed with the general theory let us look at a few special
cases

(a) Suppose that m “ n “ 1 and U Ă R is an interval. In this case F : U Ñ R is a
function of one real variable, F “ F pxq. If F is differentiable at x0, then the differential
dF px0q is a linear operator R1 Ñ R1 and, as such, it is described by a 1 ˆ 1 matrix, i.e.,
a real number.

We see that F is differentiable at x0 if and only if there exists a real number m such
that

lim
hÑ0

1

|h|

´

F px0 ` hq ´ F px0q ´mh
¯

“ 0.

This happens if and only if F is differentiable at x0 in the sense of Definition 7.1.2 and m
is the derivative of F at x0, m “ F 1px0q.

(b) Suppose that m ą 1, n “ 1 and U is an interval so that F : U Ñ Rm is a vector valued
function depending on a single real variable x P U Ă R

F pxq “

»

—

–

F 1pxq
...

Fmpxq

fi

ffi

fl

.

If F is differentiable at x0 P U , then the differential of dF px0q is described by an m ˆ 1
matrix, i.e., a matrix consists of one column of height m. We have

F px` hq ´ F pxq “

»

—

–

F 1px0 ` hq ´ F
1px0q

...
Fmpx0 ` hq ´ F

mpx0q

fi

ffi

fl
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We deduce that F is differentiable at x0 if and only if the functions F 1, . . . , Fm are
differentiable at x0 and

dF px0q “

»

—

–

dF 1

dx px0q
...

dFm

dx px0q

fi

ffi

fl

.

(c) If L : Rn Ñ Rm is a linear map, then L is Fréchet differentiable at any x0 P Rn.
Moreover, the differential at x0 is the operator L itself. [\

Deciding when a function or a map is Fréchet differentiable at a point x0 takes a bit of
work. We will describe in the following sections some simple ways of recognizing Fréchet
differentiable maps.

13.2. Partial derivatives and Fréchet differentials

Suppose that U Ă Rn is an open set and F : U Ñ Rm. The limits in the right-hand side
of (13.1.3) play a very important role in differential calculus and for this reason they were
given a special name.

Definition 13.2.1. Let x0 P U and v P Rnzt0u. We say that F is differentiable along the
vector v at x0 if the limit

BvF px0q “
BF px0q

Bv
:“ lim

tÑ0

1

t

´

F px0 ` tvq ´ F px0q

¯

(13.2.1)

exists. This limit is called the derivative of F along the vector v at the point x0.

If e1, . . . , en is the natural basis of Rn, then the derivatives of F along e1, . . . , en
(when they exist) are called the first-order partial derivatives of F at x0 and are denoted
by

Bx1F px0q “
BF px0q

Bx1
:“
BF px0q

Be1
, . . . , BxnF px0q “

BF px0q

Bxn
:“
BF px0q

Ben
.

We will refer to BxiF as the partial derivative of the map F with respect to the variable
xi. Often we will use the alternate notation

F 1xi :“
BF

Bxi
. [\

Remark 13.2.2. Suppose that F : U Ñ R is a real valued map depending on n real
variables, F “ F px1, . . . , xnq. You should think of F as measuring some physical quantity
at the point x such as temperature or pressure.

In this case the partial derivatives of F at x0 are real numbers. They can be computed
as follows. Assume that x0 “ rx

1
0, . . . , x

n
0 s
J. Then, for any t P R sufficiently small we have

x0 ` tek “
“

x10, . . . , x
k´1
0 , xk0 ` t, x

k`1
0 , . . . , xn0

‰J
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and

F px0 ` tekq ´ F px0q

t
“
F px10, . . . , x

k´1
0 , xk0 ` t, x

k`1
0 , . . . , . . . xn0 q ´ F px

1
0, . . . , x

k
0, . . . , x

n
0 q

t
.

Thus, when computing the partial derivative BF
Bxk

we treat the variables xi, i ‰ k, as

constants, we regard F as a function of a single variable xk and we derivate as such.

Equivalently, consider the function gkptq “ F px0 ` tekq, |t| sufficiently small. Then

F 1xkpx0q “ g1kp0q.

In other words, if we think of F as measuring say the temperature at a point x, then
F 1
xk
px0q is the rate of change in the temperature as we travel through the point x0, at

unit speed, in the direction of the k-th axis of Rn.
More generally, for any vector v ‰ 0, the image of the path γ : RÑ Rn, γptq “ x0`tv,

is the line ℓx0,v through x0 in the direction v. Think of γ as describing the motion of
a particle in Rn traveling with constant velocity v. Next, think of a map F : U Ñ Rm
as associating m different physical quantities (e.g., pressure, temperature, external forces,
etc.) to each point in U . These quantities can be measured by various sensors attached
to the moving particle.

The derivative BvF px0q measures the “infinitesimal rate of change” in the quantities
aggregated in F as the moving particle travels through x0. As an object BvF px0q is an
m-dimensional vector. [\

Proposition 13.2.3. If F : U Ñ Rm is Fréchet differentiable at x0, then F is differen-
tiable along any direction v and

BvF px0q “ dF px0qv . (13.2.2)

In particular,

F 1xj px0q “
BF

Bxj
px0q “ BejF px0q “ dF px0qej , @j “ 1, . . . , n,

and, if v “ rv1, . . . , vnsJ, then

BvF px0q “ v1
BF px0q

Bx1
` ¨ ¨ ¨ ` vn

BF px0q

Bxn
. (13.2.3)

Proof. The equality (13.2.2) is in fact the equality (13.1.3) in disguise. To prove (13.2.3)
observe first that the equality v “ rv1, . . . , vnsJ signifies that

v “ v1e1 ` ¨ ¨ ¨ ` v
nen.

From (13.2.2) and the linearity of dF px0q we deduce

BvF px0q “ dF px0qpv
1e1 ` ¨ ¨ ¨ ` v

nenq “ v1dF px0qe1 ` ¨ ¨ ¨ ` v
ndF px0qen

“ v1
BF px0q

Bx1
` ¨ ¨ ¨ ` vn

BF px0q

Bxn
.

[\
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Remark 13.2.4. If F : U Ñ R is differentiable, then its differential is represented by a
1ˆ n matrix, i.e., a matrix consisting of a single row of length n. Its entries are the real
numbers

dF px0qe1 “
BF

Bx1
px0q, . . . , dF px0qen “

BF

Bxn
px0q.

In other words, the differential dF px0q is described by the row vector

dF px0q “

„

BF

Bx1
px0q, . . . ,

BF

Bxn
px0q

ȷ

. (13.2.4)

Viewed as a linear form Rn Ñ R, the differential dF px0q admits the alternate description

dF px0q “
BF

Bx1
px0qe

1 ` ¨ ¨ ¨ `
BF

Bxn
px0qe

n “

n
ÿ

j“1

BF

Bxj
px0qe

j , (13.2.5)

where we recall that ej denotes the linear functional Rn Ñ R given by

ejpxq “ xj .

In terms of row vectors we have

e1 “ r1, 0, 0, . . . 0s, e2 “ r0, 1, 0, . . . , 0s, . . . . [\

Example 13.2.5. For example, if n “ 3,

x :“ x1, y :“ x2, z :“ x3, x0 “ px0, y0, z0q

and

F : R3 Ñ R, F px, y, zq “ e3x`4y`5z,

then

BF

Bx
px0q “ 3e3x0`4y0`5z0 ,

BF

By
px0q “ 4e3x0`4y0`5z0 ,

BF

Bz
px0q “ 5e3x0`4y0`5z0 .

If x0 “ 0 “ p0, 0, 0q, then the differential dF p0q, if it exists,2 must be the single row
matrix

dF p0q “ r3, 4, 5s “ 3e1 ` 4e2 ` 5e3.

In particular, for any vector v “ pv1, v2, v3q P R3zt0u, we have

BvF p0q
p13.2.3q
“ 3v1 ` 4v2 ` 5v3. [\

We saw that the differentiability of a map at a point x0 guarantees the existence of
derivatives at x0 in any direction. We want to investigate the extent to which a converse
is true. To do this we first need to clarify a bit the concept of differentiability.

2We will see a bit later in Example 13.2.11 that the differential does indeed exist.
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Proposition 13.2.6. Let m,n P N and suppose that U Ă Rn is an open set. Consider a
map

F : U Ñ Rm, F pxq “

»

—

–

F 1pxq
...

Fmpxq

fi

ffi

fl

, x P U.

Then the following statements are equivalent.

(i) The map F is Fréchet differentiable at x0 P U .

(ii) Each of the scalar valued functions F 1, . . . , Fm : U Ñ R is Fréchet differentiable
at x0.

Proof. (i) ñ (ii) Suppose that F is differentiable at x0. We denote by L its differential.
We identify L with an mˆ n matrix. For i “ 1, . . . ,m we denote by Li the i-th row of L
and we view Li as a linear map Li : Rn Ñ R. We will show that Li is the differential of
F i at x0. For h P Rn sufficiently small we have

1

}h}

´

F px0 ` hq ´ F px0q ´ Lh
¯

“
1

}h}

»

—

–

F 1px0 ` hq ´ F
1px0q ´ L

1h
...

Fmpx0 ` hq ´ F
mpx0q ´ L

mh

fi

ffi

fl

. (13.2.6)

We deduce

lim
hÑ0

1

}h}

´

F px0 ` hq ´ F px0q ´ Lh
¯

“ 0

ðñ lim
hÑ0

1

}h}

´

F ipx0 ` hq ´ F
ipx0q ´ L

ih
¯

“ 0, @i “ 1, . . . ,m.

(13.2.7)

The top line of this equivalence states the differentiability of F at x0 and the bottom
line of this equivalence amounts to the differentiability at x0 of each of the components
F 1, . . . , Fm.

(ii) ñ (i) Suppose that each of the functions F i is differentiable at x0. We denote by
Li the differential of F i at x0. This is a linear map Rn Ñ R which we identify with a row
of length n. Denote by L the mˆ n matrix with i-th row is Li, @i “ 1, . . . ,m.

The matrix L satisfies the equality (13.2.6) and the equivalence (13.2.7) holds as well.
This proves (i).

[\

Example 13.2.7. Suppose that m,n P N and U Ă Rn is an open set. If the map is
differentiable at x0 P U , then the differential dF px0q is represented by the mˆn Jacobian
matrix JF px0q with columns

dF px0qe1 “
BF px0q

Bx1
, . . . , dF px0qen “

BF px0q

Bxn
.
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Let F 1, . . . , Fm be the components of F , so that

F pxq “

»

—

–

F 1pxq
...

Fmpxq

fi

ffi

fl

,

Each component F j , viewed as a function F j : U Ñ R is differentiable at x0. For any
j “ 1, . . . , n we have

BF px0q

Bxj
“ lim

tÑ0

1

t

`

F px0 ` tejq ´ F px0q
˘

“ lim
tÑ0

1

t

»

—

–

F 1px0 ` tejq ´ F
1px0q

...
Fmpx0 ` tejq ´ F

mpx0q

fi

ffi

fl

“

»

—

—

—

—

—

—

–

BF 1px0q

Bxj

...

BFmpx0q

Bxj

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Hence, the Jacobian matrix of F at x0 is

BF

Bx
px0q “ JF px0q “

»

—

—

—

—

—

—

–

BF 1px0q

Bx1
¨ ¨ ¨

BF 1px0q

Bxn

...
...

...

BFmpx0q

Bx1
¨ ¨ ¨

BFmpx0q

Bxn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Using the equality (13.2.4) we see that the first row of JF px0q is the differential of F 1 at
x0, the second row of JF px0q is the differential of F 2 at x0 etc. Thus we can describe the
Jacobian JF in the simplified form

JF “

»

—

—

—

–

dF 1

dF 2

...
dFm

fi

ffi

ffi

ffi

fl

. [\

Proposition 13.2.3 shows that the maps F : U Ñ Rm that are differentiable at a point
x0 have a special property: they admit partial derivatives at x0. However, the existence
of partial derivatives at x0 is not enough to guarantee the Fréchet differentiability at
x0. The next result describes one very simple and useful condition guaranteeing Fréchet
differentiability.

Theorem 13.2.8. Let m,n P N and U Ă Rn open set. Suppose F : U Ñ Rm is a map
and x0 is a point in U satisfying the following conditions.

(i) There exists r ą 0 such that Brpx0q Ă U and the map F admits partial deriva-
tives at any point x P Brpx0q.
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(ii) For any j “ 1, . . . , n

BF px0q

Bxj
“ lim

xÑx0

BF pxq

Bxj
.

Then the map F is Fréchet differentiable at x0.

Proof. According to Proposition 13.2.6 it suffices to consider only the case m “ 1, i.e., F is a real valued function,
F : U Ñ R. Denote by L the linear map

L : Rn Ñ R, Lh “
n
ÿ

j“1

BF px0q

Bxj
hj .

We want to prove that L is the Fréchet differential of F at x0, i.e.,

lim
hÑ0

1

}h}

ˇ

ˇ

ˇ
F px0 ` hq ´ F px0q ´ Lh

ˇ

ˇ “ 0. (13.2.8)

Given h “ h1e1 ` ¨ ¨ ¨ ` hnen, }h} ă
r
2
, we set (see Figure 13.3)

h1 :“ h1e1, h2 “ h1e1 ` h
2e2, hj :“ h1e1 ` ¨ ¨ ¨ ` h

jej , . . . , j “ 1, . . . , n,

xj “ x0 ` hj , j “ 1, . . . , n.

h

h
h

x

x

xx0 1

1 1

2

2

2

2

2

3

3

3

3

e

e

e

h

h

h

y

=

Figure 13.3. Zig-zagging from x0 to xn “ x` h, n “ 3.

We have

F px0 ` hq ´ F px0q “ F pxnq ´ F pxn´1q ` F pxn´1q ´ F pxn´2q ` ¨ ¨ ¨ ` F px1q ´ F px0q.

For each j “ 1, . . . , n define3

gj : p´r{2, r{2q Ñ R, gjptq “ F pxj´1 ` tejq.

Note that,

xj “ xj´1 ` h
jej , F pxj´1q “ gjp0q, F pxjq “ gjph

jq

Since F admits partial derivatives at every x P Brpx0q we deduce that the function gj is differentiable and

g1
jptq “

BF pxj´1 ` tejq

Bxj
. (13.2.9)

The Lagrange mean value theorem implies that there exists τj in the interval r0, hjs such that

F pxjq ´ F pxj´1q “ gjph
jq ´ gjp0q “ g1

jpτjqh
j .

3Observe that xj´1 ` tej P U , @|t| ă r{2.
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We set yj “ yjphq “ xj´1 ` τjek. Note that yj is situated on the line segment connecting xj´1 to xj . From

(13.2.9) we deduce

F pxjq ´ F pxj´1q “
BF pyjq

Bxk
hj .

Let us observe that

}hj} ď }h}, @j “ 1, . . . , n

proving that

distpxj ,x0q ď }h}, @j “ 1, . . . , n.

Thus all the points x0,x1, . . . ,xn “ x0 ` h lie in B}h}px0q, the closed Euclidean ball of center x0 and radius }h}.

This is a convex subset, and since yj is situated on the line segment rxj´1,xjs, it is also contained B}h}px0q. Hence

lim
hÑ0

yjphq “ x0, @j “ 1, . . . , n. (13.2.10)

We can now put together all the facts above. We have

F px0 ` hq ´ F px0q “

n
ÿ

j“1

BF pyjq

Bxk
hj

F px0 ` hq ´ F px0q ´ Lh “
n
ÿ

j“1

ˆ

BF pyjq

Bxk
´
BF px0q

Bxj

˙

hj ,

so that
ˇ

ˇ

ˇ
F px0 ` hq ´ F px0q ´ Lh

ˇ

ˇ

ˇ
ď

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

BF pyjq

Bxk
´
BF px0q

Bxj

ˇ

ˇ

ˇ

ˇ

¨ |hj |

(use the Cauchy-Schwarz inequality)

ď

d

ˇ

ˇ

ˇ

ˇ

BF pyjq

Bxk
´
BF px0q

Bxj

ˇ

ˇ

ˇ

ˇ

2

¨ }h}.

Hence

1

}h}

ˇ

ˇ

ˇ
F px0 ` hq ´ F px0q ´ Lh

ˇ

ˇ

ˇ
ď

d

ˇ

ˇ

ˇ

ˇ

BF pyjq

Bxk
´
BF px0q

Bxj

ˇ

ˇ

ˇ

ˇ

2

.

If we let hÑ 0, and take (13.2.10) into account, we obtain the desired conclusion, (13.2.6). [\

Definition 13.2.9. Let m,n P N, U Ă Rn an open set, and F : U Ñ Rm a map.

(i) We say that the map F : U Ñ Rm is Fréchet differentiable on U if it is Fréchet
differentiable at every point x P U .

(ii) We say that F is continuously differentiable, or C1, on U , if it admits first order
partial derivatives at any x P U and, for any j “ 1, . . . , n, the function

U Q x ÞÑ
BF pxq

Bxj
P Rm

is continuous.

[\

✍ We will denote by C1pU,Rmq the set of C1-maps F : U Ñ Rm. For simplicity we will
write C1pUq instead of C1pU,Rq.

From Theorem 13.2.8 we obtain the following very useful result.
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Corollary 13.2.10. Let m,n P N and U Ă Rn. If the map F : U Ñ Rm is C1 on U , then
it is Fréchet differentiable on U . Moreover, if e1, . . . , en is the canonical basis of Rn, then

dF pxqej “
BF pxq

Bxj
, @x P U, @j “ 1, . . . , n. [\

Example 13.2.11. (a) Consider a linear functional

ξ : Rn Ñ R, ξpxq “
n
ÿ

j“1

ξjx
j .

We deduce that, for any x P Rn, and any j “ 1, . . . , n,

Bξpxq

Bxj
“ ξj .

Thus the functions

Rn Q x ÞÑ
Bξpxq

Bxj
P R

are constant and, in particular, continuous. Corollary 13.2.10 implies that the linear
function ξ is differentiable on Rn, and its differential at a point x is represented by the
row vector

rξ1, . . . , ξns.

This is the same row vector that represents ξ. Thus we have the equality of linear functions

dξpxq “ ξ, @x P Rn. (13.2.11)

At this point it is worth mentioning a classical convention that we will use frequently in
the sequel.

Note that for any j “ 1, . . . , n, the linear functional ej associates to the vector x
its j-th coordinate xj . We can rephrase this by saying that ej is the function xj , i.e.,
ejpxq “ xj . We write this in the less precise fashion ej “ xj . The equality (13.2.11)
applied to the linear functional ej yields the classical convention

dxj “ dej “ ej . (13.2.12)

If now f : Rn Ñ R is a C1-function, then it is differentiable everywhere and, according to
(13.2.5), its differential at x P Rn is the linear functional

dfpxq “
n
ÿ

j“1

Bfpxq

Bxj
ej “

Bfpxq

Bx1
e1 ` ¨ ¨ ¨ `

Bfpxq

Bxn
en.

Using the convention (13.2.12) we obtain another frequently used convention/notation

df “
n
ÿ

j“1

Bf

Bxj
dxj “

Bf

Bx1
dx1 ` ¨ ¨ ¨ `

Bf

Bxn
dxn. (13.2.13)

The right-hand side of the above equality is classically referred to as the total differential
of the function f . Moreover, in the above equality we interpret both sides as functions on
Rn with values in the space HompRn,Rq of linear functionals on Rn.
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For example, if n “ 1, so f is a function of a single real variable, then the above
equality takes the known form (7.1.5)

df “
df

dx
dx “ f 1pxqdx.

(b) Consider the function r : R2zt0u Ñ R, rpx, yq “
a

x2 ` y2. For fixed y the function

x ÞÑ
a

x2 ` y2 is differentiable as long as x2 ` y2 ‰ 0. Its derivative is

Br

Bx
“

x
a

x2 ` y2
“
x

r
.

A similar argument shows that Br
By exists as long as x2 ` y2 ‰ 0 and we have

Br

By
“

y
a

x2 ` y2
“
y

r
.

Thus the function r is differentiable at every point in R2zt0u and

dr “
x

a

x2 ` y2
dx`

y
a

x2 ` y2
dy.

The associated Jacobian matrix is the single row matrix

Jr “

«

x
a

x2 ` y2
y

a

x2 ` y2

ff

.

The differential of r at the pointpx0, y0q “ p3, 4q is therefore represented by the row vector
”3

5
,
4

5

ı

.

(c) Consider again the function

F : R3 Ñ R, F px, y, zq “ e3x`4y`5z

we discussed in Remark 13.2.4(b). The function F admits partial derivatives

BF

Bx
“ 3e3x`4y`5z,

BF

By
“ 4e3x`4y`5z,

BF

Bz
“ 5e3x`4y`5z

which are continuous functions. Thus F P C1pR3q and, in particular, it is Fréchet differ-
entiable on R3. Moreover

dF “ 3e3x`4y`5z dx` 4e3x`4y`5z dy ` 5e3x`4y`5z dz.

Again, we interpret both sides of the above equality as functions R3 Ñ HompR3,Rq.

(d) Consider the map F : R2 Ñ R2 defined by

R2 Q

„

r
θ

ȷ

F
ÞÑ

„

x
y

ȷ

“

„

r cos θ
r sin θ

ȷ

P R2.

You should read the above as follows: the components of the map F are two functions
called x and y depending on two variables pr, θq and

xpr, θq “ r cos θ, ypr, θq “ r sin θ.
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Clearly the functions x, y are C1 on their domains and the Jacobian matrix of F is

JF “

»

–

Bx
Br

Bx
Bθ

By
Br

By
Bθ

fi

fl “

„

cos θ ´r sin θ
sin θ r cos θ

ȷ

.

In particular for pr, θq “ p1, π{2q we have

JF p1, π{2q “

„

0 ´1
1 0

ȷ

.

If v “ r3, 4sJ, then

BvF p1, π{2q “

„

0 ´1
1 0

ȷ

¨

„

3
4

ȷ

“

„

´4
3

ȷ

. [\

Example 13.2.12 (Linearizations). Suppose that n P N, U Ă Rn is an open set and
f : U Ñ R is a C1-function. Then, according to Definition 13.1.5, the linearization (or
linear approximation) of f at x0 is the affine function

L : Rn Ñ R, Lpxq “ fpx0q ` dfpx0qpx´ x0q.

To see how this looks concretely, consider the function f : R2 Ñ R, fpx, yq “ x2` y2. We
have

Bxf “ 2x, Byf “ 2y.

Let us find the linear approximation of this function at the point px0, y0q “ p2, 1q. We
have

fpx0, y0q “ 22 ` 12 “ 5, Bxfpx0, y0q “ 4, Byfpx0, y0q “ 2.

The differential dfpx0, y0q is thus described by the row vector r4, 2s. The linearization of
f at p2, 1q is the affine function

Lpx, yq “ fpx0, y0q ` Bxfpx0, y0qpx´ x0q ` Byfpx0, y0qpy ´ y0q

“ 5` 4px´ 2q ` 2py ´ 1q “ 4x` 2y ´ 5.

The surface in Figure 13.1 is the graph of f , while the plane in the same figure is the
graph of L. [\

Definition 13.2.13 (Gradient). Let n P N. Suppose that U Ă Rn is an open set and
f : U Ñ R is a function differentiable at x0. The gradient of f at x0 is the vector dfpx0qÒ

dual to the differential of f at x0. We denote by ∇fpx0q the gradient of f at x0. The
symbol ∇ is pronounced nabla.4 [\

The above definition is rather dense. Let us unpack it. The differential dfpx0q of f at
x0 is a linear form Rn Ñ R (or covector) represented by the single row matrix

„

Bfpx0q

Bx1
, . . . ,

Bfpx0q

Bxn

ȷ

.

4The name nabla originates from an ancient stringed musical instrument shaped as a harp.
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As explained in (11.2.4a) the dual of this covector is the column vector
»

—

–

Bfpx0q

Bx1
...

Bfpx0q

Bxn

fi

ffi

fl

“: ∇fpx0q.

Using (13.2.3) we deduce that, for any v P Rnzt0u we have

Bvfpx0q “ Bx1fpx0qv
1 ` ¨ ¨ ¨ ` Bxnfpx0qv

n,

i.e.,

Bvfpx0q “ dfpx0qv “ x∇fpx0q,vy, @v P Rnzt0u . (13.2.14)

The construction of the gradient might appear to the uninitiated as “much ado about
nothing” because all we have done was take a row and then transform it into a column.
Temporarily it is difficult to justify this algebraic contortion. For now, please take it as
an article of faith that there is a method to this “madness.”

Example 13.2.14. Consider the function f : R2 Ñ R, fpx, yq “ x2 ` y2. Then

dfpx, yq “ 2xdx` 2ydy, ∇fpx, yq “
„

2x
2y

ȷ

.

The correspondence R2 Q px, yq ÞÑ ∇fpx, yq P R2 is often viewed as a vector field on R2 in
that it assigns an “arrow” (or vector) to each point of R2. [\

Example 13.2.15. We define a direction in Rn to be a unit length vector n, }n} “ 1.
Observe that any nonzero vector v P Rn determines a direction

n “ npvq “
1

}v}
v.

A point x0 P Rn and a direction n canonically determine a path

γx0,n : RÑ Rn, γx0,nptq “ x0 ` tn

whose image is the line through x0 in the direction n.

Given an open set U Ă Rn, a C1-function f : U Ñ R, a point x0 and a direction n,
we define the derivative of f in the direction n at x0 to be the derivative of f along the
vector n. From (13.2.14) we deduce that

Bnfpx0q “ x∇fpx0q,ny.

Suppose that ∇fpx0q ‰ 0 and let θ P r0, πs be the angle between the vectors ∇fpx0q and
n. We have

Bnfpx0q “ x∇fpx0q,ny “ }∇fpx0q} cos θ ď }∇fpx0q}.

Above, we have equality if and only if θ “ 0. Thus Bnfpx0q takes its highest possible value
if and only if n points in the same direction as ∇fpx0q or, equivalently, n is the direction
determined by the gradient vector ∇fpx0q. This shows that the direction determined by
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the gradient of a function at a point is the direction of fastest growth of the function at
that given point. [\

13.3. The chain rule

We can now state and prove a key result in several variable calculus.

Theorem 13.3.1 (Chain rule). Let ℓ,m, n P N. Suppose that we are given open sets
U Ă Rn and V Ă Rm, maps F : U Ñ Rm, G : V Ñ Rℓ, and a point u0 P U satisfying the
following conditions.

(i) F pUq Ă V .

(ii) F is differentiable at u0 and G is differentiable at v0 :“ F pu0q.

Then the composition G ˝ F : U Ñ Rℓ is differentiable at u0 and

dpG ˝ F qpu0q “ dGpv0q ˝ dF pu0q. (13.3.1)

Idea of proof. SetA :“ dF pu0q, B :“ dGpv0q so thatA P HompRn,Rmq, B P HompRm,Rℓq.
From the definition of Fréchet differential we deduce

G
`

F puq
˘

´G
`

F pu0q
˘

« B
`

F puq ´ F pu0q
˘

,

F puq ´ F pu0q « Apu´ u0q.

Hence

G
`

F puq
˘

´G
`

F pu0q
˘

« B ˝A
`

u´ u0

˘

.

This shows that B ˝A is the Fréchet differential of G ˝ F at u0.

[\

The above argument is an almost complete proof capturing the essence of the main
idea. We present the missing details below.

Proof. We set A :“ dF pu0q and B :“ dGpv0q. We have to prove that

lim
hÑ0

1

}h}

›

›GpF pu0 ` hq q ´Gpv0q ´BpAhq
›

› “ 0. (13.3.2)

We set

Th :“ F pu0 ` hq ´ F pu0q “ F pu0 ` hq ´ v0

and we deduce

GpF pu0 ` hq q ´Gpv0q ´BpAhq “ Gpv0 ` Thq ´Gpv0q ´BpAhq

“ Gpv0 ` Thq ´Gpv0q ´BpThq `BpTh´Ahq.

Set

RF phq :“ F pu0 ` hq ´ F pu0q ´Ah, RGpkq :“ Gpv0 ` kq ´Gpv0q ´Bk.

Since F is differentiable at u0 and G is differentiable at v0 we deduce from (13.1.5) that there exist r ą 0 and

functions φF , φG : r0, rq Ñ R such that

0 “ φF p0q “ lim
tŒ0

φF ptq, 0 “ φGp0q “ lim
tŒ0

φGptq, (13.3.3a)
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}RF phq} ď φF p}h}q}h}, }RGpkq} ď φGp}k}q}k}, @}h}, }k} ă r. (13.3.3b)

Note that

Th´Ah “ F pu0 ` hq ´ F pu0q ´Ah “ RF phq,

Gpv0 ` Thq ´Gpv0q ´BpThq “ RGpThq,

and

GpF pu0 ` hq q ´Gpv0q ´BpAhq “ RGpThq `BpRF phq q

“ RGpAh`RF phq q `BpRF phq q.

Hence
›

›GpF pu0 ` hq q ´Gpv0q ´BpAhq
›

› ď
›

›RGpAh`RF phq q
›

›` }BpRF phq q}

ď
›

›RGpAh`RF phq q
›

›`
›

›B
›

›

HS
¨
›

›RF phq q
›

›

p13.3.3bq

ď φGpAh`RF phq q}Ah`RF phq} ` φF p}h}q}B}HS ¨ }h}

p13.3.3bq

ď φGpAh`RF phq q
´

}A}HS ` φF p}h}q
¯

}h} ` φF p}h}q}B}HS ¨ }h},

and thus
1

}h}

›

›GpF pu0 ` hqq ´Gpv0q ´BpAhq
›

› ď φG

`

Ah`RF phq
˘

´

}A}HS ` φF p}h}q
¯

`φF p}h}q}B}HS .

The conclusion (13.3.2) is obtained by letting hÑ 0 in the above inequality and invoking (13.3.3a). [\

Let us rewrite the chain rule (13.3.1) in a less precise, but more intuitive manner.

We denote by puiq1ďiďn the Euclidean coordinates on Rn, by pvjq1ďjďm the Euclidean

coordinates on Rm and by pxkq1ďkďℓ the Euclidean coordinates in Rℓ. The map F is
described by m functions depending on the variables puiq

vj “ F jpu1, . . . , unq, j “ 1, . . . ,m,

while the map G is described by ℓ functions depending on the variables pvjq

xk “ Gkpv1, . . . , vmq, k “ 1, . . . , ℓ.

The differential of F at u0 is described by the mˆ n Jacobian matrix JF with entries

pJF q
j
i “

BF j

Bui
“
Bvj

Bui
.

The differential of G at v0 “ F pu0q is described by the ℓ ˆm Jacobian matrix JG with
entries

pJGq
k
j “

BGk

Bvj
“
Bxk

Bvj
.

The composition G ˝ F is described by ℓ functions depending on the variables puiq

xk “ Gk
`

F 1pu1, . . . , unq, . . . , Fmpu1, . . . , unq
˘

, k “ 1, . . . , ℓ.

The differential of G ˝ F at u0 is described by the ℓˆ n matrix JG˝F with entries

pJG˝F q
k
i “

Bxk

Bui
.
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The chain rule (13.3.1) states that

JG˝F pu0q “ JGpv0qJF pu0q “ JG
`

F pu0q
˘

JF pu0q, (13.3.4)

or, equivalently,

Bxk

Bui
“

m
ÿ

j“1

Bxk

Bvj
¨
Bvj

Bui
“
Bxk

Bv1
¨
Bv1

Bui
` ¨ ¨ ¨ `

Bxk

Bvm
¨
Bvm

Bui
. (13.3.5)

Example 13.3.2. Consider the function

f : R2 Ñ R, fpx, yq “ px2 ` y2 ` 1qsinpxyq.

This is the composition of two C1-maps

px, yq ÞÑ pu, vq “
`

1` x2 ` y2, sinpxyq
˘

, pu, vq ÞÑ f “ uv.

Then
Bf

Bx
“
Bf

Bu
¨
Bu

Bx
`
Bf

Bv
¨
Bv

Bx

“ vuv´1 ¨ p2xq ` uv lnu ¨ y cospxyq “ uv ¨
´v

u
¨ p2xq ` plnuq ¨ y cospxyq

¯

“ px2 ` y2 ` 1qsinpxyq
ˆ

2x sinpxyq

x2 ` y2 ` 1
` y cospxyq lnpx2 ` y2 ` 1q

˙

. [\

Example 13.3.3. Suppose that f : R2 Ñ R is a differentiable function depending on
two variables f “ fpx, yq. Suppose additionally that x, y are themselves functions of two
variables

x “ xpr, θq “ r cos θ, y “ ypr, θq “ r sin θ. (13.3.6)

We want to compute the partial derivatives Bf
Br and Bf

Bθ . First, let us give a geometric
interpretation to the functions (13.3.6).

If we fix r, say r “ 4, then we get a path

θ ÞÑ
`

4 cos θ, 4 sin θ
˘

P R2.

This describes the motion of a point in the plane with constant angular velocity along the
circle of radius 4 centered at the origin; see the thick orange circle in Figure 13.4. If we
keep θ fixed, θ “ θ0, then the resulting path

r ÞÑ
`

r cos θ0, r sin θ0
˘

describes the motion with speed 1 along a ray emanating at the origin that makes angle
θ0 with the x-axis.

We get two families of curves in the plane: the family of curves obtained by fixing r
(circles centered at the origin) and the family of curves obtained by fixing θ (rays). These
two families form a curvilinear grid in the plane (see Figure 13.4) known as the polar grid.

The function f depends on the variables x, y, which themselves depend on the quan-
tities r, θ. Bf

Br measures how fast is f changing when we travel at unit speed along a ray,
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Figure 13.4. Polar grid.

while Bf
Bθ measures how fast is f changing when we travel along a circle at constant angular

velocity 1rad{sec. The chain rule shows that

Bf

Br
“
Bf

Bx

Bx

Br
`
Bf

By

By

Br
“
Bf

Bx
cos θ `

Bf

By
sin θ (13.3.7a)

Bf

Bθ
“ ´

Bf

Bx
r sin θ `

Bf

By
r cos θ. (13.3.7b)

Suppose for example that fpx, yq “ x2`y2. Note that if x, y depend on r, θ as in (13.3.6),
then x2 ` y2 “ r2 and thus

Bf

Br
“ 2r.

On the other hand (13.3.7a) implies that

Bf

Br
“ 2x cos θ ` 2y sin θ

p13.3.6q
“ 2r cos2 θ ` 2r sin2 θ “ 2r. [\

Remark 13.3.4 (The naturality of the differential). We want to describe a remarkable
“accident” which is extremely important in differential geometry and theoretical physics.

Suppose that f is a differentiable function depending on the n variables x1, . . . , xn.
Using the convention (13.2.13) we have

df “
Bf

Bx1
dx1 ` ¨ ¨ ¨ `

Bf

Bxn
dxn . (13.3.8)

Suppose that the quantities x1, . . . , xn themselves depend differentiably on a number of
variables

xi “ xipu1, . . . , umq, i “ 1, . . . , n. (13.3.9)
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Through this new dependence we can view the quantity f as a function of the variables
u1, . . . , um and, as such, we have

df “
Bf

Bu1
du1 ` ¨ ¨ ¨ `

Bf

Bum
dum. (13.3.10)

? How do we reconcile (13.3.8) with (13.3.10)?

The chain rule comes to the rescue. To see that (13.3.8) and (13.3.10) are compatible
(noncontradictory) regard the quantities dx1, . . . , dxn as the differentials of the functions
in (13.3.9), i.e.,

dxi “
Bxi

Bu1
du1 ` ¨ ¨ ¨ `

Bxi

Bum
dum, i “ 1, . . . , n.

The equality (13.3.8) becomes

df “
Bf

Bx1

ˆ

Bx1

Bu1
du1 ` ¨ ¨ ¨ `

Bx1

Bum
dum

˙

` ¨ ¨ ¨ `
Bf

Bxn

ˆ

Bxn

Bu1
du1 ` ¨ ¨ ¨ `

Bxn

Bum
dum

˙

“

ˆ

Bf

Bx1
Bx1

Bu1
` ¨ ¨ ¨ `

Bf

Bxn
Bxn

Bu1

˙

looooooooooooooooomooooooooooooooooon

“:q1

du1 ` ¨ ¨ ¨ `

ˆ

Bf

Bx1
Bx1

Bum
` ¨ ¨ ¨ `

Bf

Bxn
Bxn

Bum

˙

loooooooooooooooooomoooooooooooooooooon

“:qm

dum.

Hence

df “ q1du
1 ` ¨ ¨ ¨ ` qmdu

m. (13.3.11)

The chain rule (13.3.5) shows that

q1 “
Bf

Bu1
, . . . , qm “

Bf

Bum

so the equality (13.3.11) is none other than (13.3.10) in disguise. [\

Let us discuss a few simple but useful applications of the chain rule.

Definition 13.3.5 (Differentiable paths). Let n P N. A differentiable path in Rn is a
differentiable map γ : I Ñ Rn, where I Ă R is an interval. [\

A differentiable path γ : pa, bq Ñ Rn is described by n differentiable functions

xi : pa, bq Ñ R, i “ 1, . . . , n,

such that

γptq “

»

—

—

—

–

x1ptq
x2ptq
...

xnptq

fi

ffi

ffi

ffi

fl

.
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The differential of the map γ is an nˆ1 matrix, i.e., a matrix consisting of a single column
of height n. This matrix is

d

dt
γptq “

»

—

—

—

—

—

—

–

dx1ptq
dt

dx2ptq
dt
...

dxnptq
dt

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We will adopt a convention frequently used by physicists and will denote by an upper dot
“ 9” the time derivatives. With this convention we can rewrite the above equality as

9γptq “

»

—

—

—

—

—

—

—

–

9x1ptq

9x2ptq
...

9xnptq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

If we think of γ as describing the motion of a point in Rn, then the vector 9γptq is the
velocity of that moving point at the moment of time t.

Proposition 13.3.6 (Derivatives along paths). Let n P N. Assume that U Ă Rn is an
open set, f : U Ñ R is a Fréchet differentiable function and γ : pa, bq Ñ U a differentiable
path. Then

d

dt
f
`

γptq
˘

“
@

∇f
`

γptq
˘

, 9γptq
D

, @t P pa, bq , (13.3.12)

where we recall that ∇fpxq denotes the gradient of f at x. The quantity x∇fpγq, 9γy is
called the derivative of f along the path γ.

Proof. As explained above, the path γ is described by n differentiable functions

γptq “
`

x1ptq, . . . , xnptq
˘

.

We have

f
`

γptq
˘

“ f
`

x1ptq, . . . , xnptq
˘

.

Using the chain rule (13.3.5) we deduce

d

dt
f
`

γptq
˘

“
Bfpγptqq

Bx1
dx1ptq

dt
` ¨ ¨ ¨ `

Bfpγptqq

Bxn
dxnptq

dt

“
Bfpγq

Bx1
9x1 ` ¨ ¨ ¨ `

Bfpγq

Bxn
9xn “ x∇fpγq, 9γy.

[\
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If we think of the function f : U Ñ R as a physical quantity associated to each point
in U (say temperature) and of the path γ as describing the motion of a point in U , then
the derivative of f along the path is the rate of change of f (per unit of time) during the
motion.

Example 13.3.7 (Euler’s identity). Suppose that f : Rn Ñ R is positively homogeneous
of degree k, i.e.,

fptxq “ tkfpxq, @t ą 0, @x P Rnzt0u.
If f is differentiable on Rnzt0u, then f satisfies Euler’s identity

@

x,∇fpxq
D

“ kfpxq, @x P Rnzt0u. (13.3.13)

To prove the above identity, fix x P Rnzt0u and consider the path

γx : p0,8q Ñ Rn, γxptq “ tx, @t ą 0.

Observe that

f
`

γxptq
˘

“ fptxq “ tkfpxq, 9γxptq “ x, @t ą 0.

Thus
d

dt
f
`

γxptq
˘

“ ktk´1fpxq, @t ą 0.

On the other hand, the derivative of f along γxptq is given by (13.3.12)

d

dt
f
`

γxptq
˘

“
@

9γxptq,∇fpγxptq q
D

“
@

x,∇fptxq
D

.

We deduce
@

x,∇fptxq
D

“ ktk´1fpxq, @t ą 0.

If we set t “ 1 in the above equality we obtain Euler’s identity (13.3.13). [\

Theorem 13.3.8 (Lagrange mean value theorem). Suppose that U Ă Rn is an open
set and f : U Ñ R is a differentiable function. Then, for any x0,x1 P U such that
rx0,x1s Ă U , there exists a point p on the line segment rx0,x1s such that

fpx1q ´ fpx0q “ x∇fppq,x1 ´ x0y.

Proof. Consider the restriction of f to the line segment rx0,x1s, i.e., the function g : r0, 1s Ñ R

gptq “ f
`

x0 ` tpx1 ´ x0q
˘

.

According to the 1-dimensional Lagrange mean value theorem there exists τ P p0, 1q such
that

fpx1q ´ fpx0q “ gp1q ´ gp0q “ g1pτq.

On the other hand, the derivative of f along the path t ÞÑ x0 ` tpx1 ´ x0q is

g1ptq “
@

∇fpx0 ` tpx1 ´ x0q q,x1 ´ x0

D

.

This yields the desired conclusion with p “ x0 ` τpx1 ´ x0q. [\
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Corollary 13.3.9. Suppose that U Ă Rn is an open convex set and f : U Ñ R is a
differentiable function. If there exists C ą 0 such that }∇fpxq} ď C, @x P U , then

|fpxq ´ fpyq| ď C}x´ y}, @x,y P U. (13.3.14)

Proof. Let x,y P U . The mean value theorem shows that there exists a point p on the
line segment rx,ys such that

|fpxq ´ fpyq| “
ˇ

ˇx∇fppq,x´ yy
ˇ

ˇ.

The desired conclusion now follows by invoking the Cauchy-Schwarz inequality
ˇ

ˇx∇fppq,x´ yy
ˇ

ˇ ď }∇fppq} ¨ }x´ y} ď C}x´ y}.

[\

Corollary 13.3.10. Suppose that U Ă Rn is an open and path connected set and f : U Ñ R
is a differentiable function such that ∇fpxq “ 0, @x P U . Then the function f is constant.

Proof. Fix p0 P U . Let q be an arbitrary point in U . Since U is path connected, Exercise
12.24 shows that there exist points p1, . . . ,pN such that q “ pN and the line segments
rpi´1,pis, i “ 1, . . . , N , are contained in U . Corollary 13.3.9 then implies

fpp0q “ fpp1q “ fpp2q “ ¨ ¨ ¨ “ fppN´1q “ fppN q “ fpqq.

We have thus proved that fpqq “ fpp0q, @q P U , i.e., f is constant. [\

Corollary 13.3.11. Suppose that U Ă Rn is an open convex set and F : U Ñ Rm is a
C1-map. Suppose that there exists a constant C ą 0 such that }JF pxq}HS ď C, @x P U ,
where }´ }HS denotes the Hilbert-Schmidt norm of an mˆn matrix; see Remark 12.1.11.
Then

}F pxq ´ F pyq} ď C
?
m}x´ y}, @x,y P U. (13.3.15)

Proof. Denote by F 1, . . . , Fm the components of F . Note that

}JF pxq}
2
HS “

m
ÿ

i“1

}∇F ipxq}2, @x P Rn.

Hence

}∇F ipxq} ď }JF pxq}HS , @x P U, i “ 1, . . . ,m.

Then, for any x,y P U we have

}F pxq ´ F pyq}2 “
m
ÿ

i“1

}F ipxq ´ F ipyq}2
p13.3.14q
ď

m
ÿ

i“1

C2}x´ y}2 “ C2m}x´ y}2.

[\

Definition 13.3.12 (Vector fields). Let n P N.



13.3. The chain rule 443

Figure 13.5. The vector field V px, yq “ p2x,´2yq on the square
S “ r´2, 2s ˆ r´2, 2s Ă R2 and two integral curves of this vector field.

(i) A vector field on a set S Ă Rn is a map

V : S Ñ Rn, S Q x ÞÑ V pxq.

(ii) An integral curve or flow line of a vector field V on a set S Ă Rn is a differentiable
path γ : pa, bq Ñ Rn such that

γptq P S, 9γptq “ V
`

γptq
˘

, @t P pa, bq. (13.3.16)

[\

Let us emphasize a one aspect in the definition of a vector field that you may overlook.
The domain of the vector field, i.e., set S, lives inside the space Rn and V takes values in
the same vector space Rn. Intuitively, a vector field V on a set S Ă Rn associates to each
point x P S a vector V pxq P Rn that should be visualized as an arrow V pxq originating
at x. The result is a “hairy” region S, with one “hair” V pxq at each location x P S; see
Figure 13.5.

An integral curve of the vector field V is then a path γptq in S whose velocity 9γptq at
each point γptq is equal to V

`

γptq
˘

: this is precisely the arrow the vector field associates
to γptq. In particular, this arrow is tangent to the path at this point; see the blue curves
in Figure 13.5.
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A vector field V on S is determined by n functions on S

V pxq “

»

—

–

V 1pxq
...

V npxq

fi

ffi

fl

,@x P S, V i : S Ñ R, i “ 1, . . . , n.

An integral curve γ : pa, bq Ñ S Ă Rn of V is then given by n functions x1ptq, . . . , xnptq,
t P pa, bq satisfying the system of differential equations

$

’

&

’

%

9x1ptq “ V 1
`

x1ptq, . . . , xnptq
˘

...
...

...
9xnptq “ V n

`

x1ptq, . . . , xnptq
˘

. (13.3.17)

Example 13.3.13 (Gradient vector fields). Suppose that U Ă Rn is an open set and
f : U Ñ R is a smooth function. The gradient of f defines a vector field on U ,

U Q x ÞÑ ∇fpxq P Rn.
This vector field is called the gradient vector field of (or associated to) the function f .
Such a function f is called a potential of the gradient vector field.

The vector field depicted in Figure 13.5 is the gradient vector field of the function
fpx, yq “ x2 ´ y2,

∇fpx, yq “ r2x,´2ysJ,
The integral curves of this vector field are differentiable maps

R Q t ÞÑ
„

xptq
yptq

ȷ

P R2

satisfying the system of differential equations
"

9x “ 2x
9y “ ´2y

.

Arguing as in Example 8.5.12 we deduce that the solutions of the first equations have the
form xptq “ ae2t, a constant, while the solutions of the second equation are yptq “ be´2t,
b constant.

The vector field

R2 Q rx, ysJ ÞÑ V px, yq “

„

´y
x

ȷ

P R2 (13.3.18)

depicted in Figure 13.6 is not the gradient of any function. Exercise 13.19 asks you to
prove this. [\

Definition 13.3.14. Suppose that V is a vector field on the set S Ă Rn. A prime integral
or conservation law of V is a continuous function f : S Ñ R that is constant along the
flow lines of V , i.e., for any integral curve γ : pa, bq Ñ S of V , the function

pa, bq Q t ÞÑ fpγptqq P R

is constant. [\
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Figure 13.6. A non-gradient vector field on the square S “ r´2, 2s ˆ r´2, 2s Ă R2.

Proposition 13.3.15. Suppose that V is a vector field on the open set U Ă Rn and
f : U Ñ R is a differentiable function such that

@

∇fpxq,V pxq
D

“ 0, @x P U.

Then f is a prime integral of V .

Proof. Let γ : pa, bq Ñ U be an integral curve of V . Then

9γptq “ V pγptq q,

and
d

dt
fpγptq q “ x∇fpγptq q, 9γptq y “

@

∇f
`

γptq
˘

,V
`

γptq
˘ D

“ 0.

[\

13.4. Higher order partial derivatives

Let U Ă Rn be an open set and f : U Ñ R be a function such that the partial derivatives
Bx1fpxq, . . . , Bxnfpxq exist at every point x P U . We obtain n new functions

Bx1f, . . . , Bxnf : U Ñ R. (13.4.1)

We say that f admits second order partial derivatives on U if each of the functions (13.4.1)
admit partial derivatives on U . We say that f admits third order partial derivatives on U
if each of the functions (13.4.1) admit second order partial derivatives on U . Inductively,
if k P N, we say that f admits partial derivatives of order k on U if each of the functions
(13.4.1) admit partial derivatives of order k ´ 1 on U .
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Recall that f is said to be C1 on U if the functions (13.4.1) are continuous on U . We
say that f is C2 on U if the functions (13.4.1) are C1 on U . We say that f is C3 on U if
the functions (13.4.1) are C2 on U . Inductively, if k P N, we say that f is Ck on U if the
functions (13.4.1) are Ck´1 on U . We will write f P CkpUq to indicate that f is Ck on U .
We say that the function f is smooth or C8 on U , and we denote this f P C8pUq if

f P CkpUq, @k P N.

Note that CkpUq stands for the collection of all functions f : U Ñ R that are Ck on
U . This collection is a vector space.

Suppose that f : U Ñ R is a function that admits second order derivatives on U .
Thus, each of the first order derivatives Bxjf , j “ 1, . . . , n, admits in its turn first order
derivatives. We denote

B2xkxjf or
B2f

BxkBxj

the partial derivative of the function Bxjf with respect to the variable xk, i.e.,

B2xkxjf :“ Bxk
`

Bxjf
˘

.

More generally, if f is a Ck-function, then for any i1, . . . , ik P t1, . . . , nu we define induc-
tively

Bk
xik ¨¨¨xi1

f :“ Bxik
`

B
k´1

xik´1 ¨¨¨xi1
f “ Bxik

˘

.

We have the following important result.

Theorem 13.4.1 (Partial derivatives commute). Let n P N and suppose that U Ă Rn is
an open set. Then for any function f P C2pUq we have

B2xkxjfpxq “ B
2
xjxkfpxq, @x P U, @j, k “ 1, . . . , n.

Proof. The result is obviously true when j “ k so it suffices to consider the case j ‰ k,
say j ă k. Fix a point a P U . We have to prove that

B2xkxjfpaq “ B
2
xjxkfpaq. (13.4.2)

We have

Bxjfpxq “ lim
sÑ0

fpx` sejq ´ fpxq

s
, @x P U (13.4.3a)

Bxkfpxq “ lim
tÑ0

fpx` tekq ´ fpxq

t
, @x P U (13.4.3b)

B2xkxjfpaq “ lim
tÑ0

Bxjfpa` tekq ´ Bxjfpaq

t
p13.4.3aq
“ lim

tÑ0

ˆ

lim
sÑ0

1

t
¨
fpa` tek ` sejq ´ fpa` tekq ´ fpa` sejq ` fpaq

s

˙

.

Similarly

B2xjxkfpaq “ lim
sÑ0

Bxkfpa` sejq ´ Bxkfpaq

s
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p13.4.3aq
“ lim

sÑ0

ˆ

lim
tÑ0

1

s
¨
fpa` tek ` sejq ´ fpa` sejq ´ fpa` tekq ` fpaq

t

˙

.

If we denote by Qps, tq, s, t ‰ 0, the quantity

Qps, tq :“ fpa` tek ` sejq ´ fpa` tekq ´ fpa` sejq ` fpaq

then we see that (13.4.2) is equivalent with the equality

lim
sÑ0

ˆ

lim
tÑ0

Qps, tq

st

˙

“ lim
tÑ0

ˆ

lim
sÑ0

Qps, tq

st

˙

. (13.4.4)

The two sides above are examples of iterated limits, and they differ only in the order
we take the limits. It suggests that Theorem 13.4.1 is at least plausible. However, the
complete proof of (13.4.4) is not trivial and requires a bit of sweat.

a a

a a
s,t

s,0

0,t

Figure 13.7. The rectangle Rs,t at a spanned by the vectors sej and tek.

For simplicity, for s, t P R we set (see Figure 13.7)

as,t :“ a` sej ` tek.

Denote by Rs,t the rectangle with vertices a,as,0,a0,t,as,t. Note also that

Qps, tq “ fpas,tq ´ fpa0,tq ´ fpas,0q ` fpaq,

and that st is the area of this rectangle.

Applying the Lagrange Mean Value Theorem to the function λ ÞÑ gtpλq “ fpaλ,tq ´ fpaλ,0q we deduce that,

for any s, t small, there exists λ“ λs,t P p0, sq such that

Qps, tq

s
“
gtpsq ´ gtp0q

s

“ g1
tpλq “ Bxj fpa` λej ` tekq ´ Bxj fpa` λejq “ Bxj fpaλ,tq ´ Bxj fpaλ,0q.

Applying the Lagrange Mean Value Theorem to the function

hpµq “ Bxj fpa` µek ` λs,tejq

we deduce that there exists µ“ µs,t in the interval p0, tq such that

Qps, tq

st
“
Bxj fpa` tek ` λs,tejq ´ Bxj fpa` λs,tejq

t
“
hptq ´ hp0q

t

“ h1pµs,tq “ B
2
xkxj fpa` µs,tek ` λs,tejq “ B

2
xkxj fpaλ,µ

q.
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We denote by ps,t the point a` µs,tek ` λs,tej . Thus

Qps, tq

st
“ B2

xkxj fpps,tq. (13.4.5)

Applying the Lagrange Mean Value Theorem to the function β ÞÑ uspβq “ Qps, βq we deduce that for every s, t

sufficiently small there exists β“ βs,t in p0, tq such that

Qps, tq

t
“
usptq ´ usp0q

t
“ u1

spβq “ Bxkfpa` sej `βekq ´ Bxkfpa`βekq.

Applying the Lagrange Mean Value Theorem to the function

α ÞÑ vpαq “ Bxkfpa` αej `βekq

we deduce that there exists α“ αs,t in the interval p0, sq such that

Qps, tq

st
“
usptq ´ usp0q

st
“
Bxkfpa` sej `βekq ´ Bxkfpa`βekq

s

“
vpsq ´ vp0q

s
“ v1pαq “ B2

xjxkfpa`αej `βekq.

We denote by qs,t the point a` αs,tej ` βs,tek. Thus

Qps, tq

st
“ B2

xjxkfpqs,tq. (13.4.6)

In particular, we deduce

B2
xkxj fpps,tq “

Qps, tq

st
“ B2

xjxkfpqs,tq. (13.4.7)

Note that since α, λ P p0, sq, β, µ P p0, tq we have

distpa,ps,tq “

b

λ
2
`µ2 ď

a

s2 ` t2, (13.4.8a)

distpa, qs,tq “

b

α2 `β
2
ď

a

s2 ` t2. (13.4.8b)

Fix r ą 0 sufficiently small such that the closed ball Brpaq is contained in U . Since the functions

B2
xkxj f, B2

xjxkf : U Ñ R

are continuous, they are continuous at a. Hence, for any ε ą 0, there exists δ “ δpεq ą 0 such that

@x P U, distpa,xq ă δpεq ñ
ˇ

ˇ B2
xkxj fpaq ´ B

2
xkxj pxq

ˇ

ˇ ă
ε

2
,

ˇ

ˇ B2
xjxkfpaq ´ B

2
xjxk pxq

ˇ

ˇ ă
ε

2
.

(13.4.9)

Fix ε ą 0. Choose s, t ą 0 small enough such that
?
s2 ` t2 ă δpεq and Rs,t Ă Brpaq. The points ps,t and qs,t

belong to the rectangle Rs,t and thus, also to U . We deduce
ˇ

ˇ B2
xkxj fpaq ´ B

2fxjxk paq
ˇ

ˇ

ď
ˇ

ˇ B2
xkxj fpaq ´ B

2
xkxj fpps,tq | `

ˇ

ˇ B2
xkxj fpps,tq ´ B

2
xjxkfpqstq

ˇ

ˇ `
ˇ

ˇ B2
xjxkfpqstq ´ B

2fxjxk paq
ˇ

ˇ

p13.4.7q
“

ˇ

ˇ B2
xkxj fpaq ´ B

2
xkxj fpps,tq | `

ˇ

ˇ B2
xjxkfpqstq ´ B

2fxjxk paq
ˇ

ˇ

( use (13.4.8a, 13.4.8b,13.4.9))

ă
ε

2
`
ε

2
“ ε.

This shows that
ˇ

ˇ B2
xkxj fpaq ´ B

2fxjxk paq
ˇ

ˇ ă ε, @ε ą 0.

This proves (13.4.2). [\
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Example 13.4.2 (Gradient vector fields again). Suppose that U Ă Rn is an open set and
V : U Ñ Rn is a C1-vector field

V px1, . . . , xnq “

»

—

–

V 1px1, . . . , xnq
...

V npx1, . . . , xnq

fi

ffi

fl

.

Let us show that

V is a gradient vector field ñ BxjV
i “ BxiV

j , @x P U, i ‰ j . (13.4.10)

Indeed, if V is the gradient of some function f : U Ñ R, then
V i “ Bxif, @i.

In particular this shows that the function f is C2 since its partial derivatives are C1. We
deduce

BxjV
i “ Bxj pBxifq “ BxipBxjfq “ BxiV

j .

For example, if V px, yq is a gradient vector field on R2

V px, yq “

„

P px, yq
Qpx, yq

ȷ

“ P px, yqi`Qpx, yqj,

then
BP

By
“
BQ

Bx
.

Similarly, if V px, y, zq is a gradient vector field on R3

V px, y, zq “

»

–

P px, y, zq
Qpx, y, zq
Rpx, y, zq

fi

fl “ P px, y, zqi`Qpx, y, zqj `Rpx, y, zqk,

then
BP

By
“
BQ

Bx
,
BR

By
“
BQ

Bz
,
BP

Bz
“
BR

Bx
.

The converse of (13.4.10) is not true. More precisely, there exist open sets U Ă Rn and
C1 vector fields V : U Ñ Rn satisfying (13.4.10) yet they are not gradient vector fields.

A famous example is the vector field

Θ : R2zt0u Ñ R2, Θpx, yq “

„

P px, yq
Qpx, yq

ȷ

:“

»

–

´
y

x2`y2

x
x2`y2

fi

fl

Indeed

ByP “ ´
1

x2 ` y2
`

2y2

px2 ` y2q2
“
´px2 ` y2q ` 2y2

px2 ` y2q2
“

y2 ´ x2

px2 ` y2q2
.

BxQ “
1

x2 ` y2
´

2x2

px2 ` y2q2
“
px2 ` y2q ´ 2x2

px2 ` y2q2
“

y2 ´ x2

px2 ` y2q2
.

The reason why Θ is not a gradient vector field is rather subtle and can be properly ex-
plained once we introduce the concept of integration along paths. What is more surprising,
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H. Poincaré proved that if U Ă Rn is an open convex set and V Ñ Rn is a C1 vector field
satisfying (13.4.10), then V is a gradient vector field. Thus, for any open convex subset
C Ă R2zt0u there exists a C2 function fC : C Ñ R such that

Θpxq “ ∇fCpxq, @x P C.
We cannot however find a function f : R2zt0u Ñ R such that Θ “ ∇f ! [\

Example 13.4.3. Suppose that f : R2 Ñ R is a C3 function of two variables x, y. Then
Byf is a C2 function and we have

B3xyyf “ B2xy

`

Byf
˘

“ B2yx

`

Byf
˘

“ B3yxyf “ By
`

B2xyf
˘

“ By
`

B2yxf
˘

“ B3yyxf .

If additionally f is C4, then a similar argument shows

B4xxyyf “ B
4
xyxyf “ B

4
yxxyf “ B

4
yxyxf “ B

4
yyxxf “ B

4
xyyxf.

It is now time to introduce a more convenient notation. Fix n P N. A multi-index of
dimension n is an n-tuple

α “ pα1, . . . , αnq, α1, . . . , αn P Zě0.
The size of the multi-index α is the nonnegative integer

|α| :“ α1 ` ¨ ¨ ¨ ` αn.

Suppose now that m P N, U Ă Rn is an open set and f : U Ñ R is a Cm-function. Given
k ď m we define

Bkx1f :“ Bkx1¨¨¨x1f, . . . , B
k
xnf :“ Bkxn¨¨¨xnf.

Thus, instead of B2x1x1 we will write B2x1f . We define B0x1f :“ f .

For any multi-index α of dimension n and size |α| ď m we set

Bαxf :“ Bα1

x1
B
α2

x2
¨ ¨ ¨ B

αn
xn f.
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13.5. Exercises

Exercise 13.1. Let m,n P N, U Ă Rn , x0 P U and F : U Ñ Rm a map. Assume U is
open. Prove that the following statements are equivalent.

(i) The map F is Fréchet differentiable at x0.

(ii) There exists a linear operator L : Rn Ñ Rm with the following property:

@ε ą 0, Dδ “ δpεq ą 0 : @h P Rn, }h} ă δ ñ
›

›F px0 ` hq ´ F px0q ´ Lh
›

› ď ε}h}.

(iii) There exists a linear operator L : Rn Ñ Rm, a number r ą 0 such that
Brpx0q Ă U and a function φ : r0, rq Ñ r0,8q with the following properties

›

›F px0 ` hq ´ F px0q ´ Lh
›

› ď φ
`

}h}
˘

}h}.

lim
tŒ0

φptq “ 0 “ φp0q.

Hint. For (ii) ñ (iii) use

φptq :“ sup
}h}“t

1

}h}

›

›F px0 ` hq ´ F px0q ´ Lh
›

›, t ą 0.

[\

Exercise 13.2. Consider the map F : R3 Ñ R2 given by

F px, y, zq “

„

x3 ` y3 ` z3

xyz

ȷ

.

(i) Show that F is differentiable at any point px0, y0, z0q P R3.

(ii) Find the Jacobian matrix of F at the point px0, y0, z0q “ p1, 1, 1q.

[\

Exercise 13.3. Compute the Jacobian matrices of the maps F : R2 Ñ R2,G,H : R3 Ñ R3

defined by
„

r
θ

ȷ

F
ÞÑ

„

x
y

ȷ

“

„

r cos θ
r sin θ

ȷ

,

»

–

ρ
θ
φ

fi

fl

G
ÞÑ

»

–

x
y
z

fi

fl “

»

–

ρ sinφ cos θ
ρ sinφ sin θ
ρ cosφ

fi

fl ,

»

–

r
θ
z

fi

fl

H
ÞÑ

»

–

x
y
z

fi

fl “

»

–

r cos θ
r sin θ
z

fi

fl . [\

Exercise 13.4. Show that the function f : R2 Ñ R, fpx, yq “ 2xy is C1 and then find its
linear approximation at the point px0, y0q “ p1, 1q.

Hint. Use Example 13.2.12 as inspiration. [\

Exercise 13.5. Let n P N and suppose that A is a symmetric nˆ n matrix. Define

qA : Rn Ñ R, qApxq “
1

2
xAx,xy, @x P Rn.
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Prove that

∇qApxq “ Ax, @x P Rn.
Hint. You need to use the results in Exercise 11.24. [\

Exercise 13.6. A function f : Rn Ñ R is called homogeneous of degree 1, if

fptxq “ tfpxq, @t P R, x P Rn.

(i) Prove that if f : Rn Ñ R is homogeneous of degree 1, then for any v P Rnzt0u,
the function f is differentiable along v at 0.

(ii) Show that the function

f : R2 Ñ R, fpx, yq “

#

x3´y3

x2`y2
, px, yq ‰ p0, 0q,

0, px, yq “ p0, 0q.

is homogeneous of degree 1, it is continuous at 0, but it is not Fréchet differen-
tiable at 0.

(iii) Prove that if f : Rn Ñ R is homogeneous of degree 1 and Fréchet differentiable
at 0, then f is linear.

[\

Exercise 13.7. Let m,n P N. Suppose that U is an open subset of Rn, I Ă R is an open
interval,γ : I Ñ U is a C1-path and F : U Ñ Rm is a C1-map. Let ω : I Ñ Rm denote
the C1-path ωptq “ F

`

γptq q. Prove that

9ωptq “ dF
`

γptq
˘

9γptq, @t P I. [\

Exercise 13.8. Let a, b P R, a ă b and suppose that α,β : pa, bq Ñ R3 are two C1-paths.
Prove that

d

dt

´

αptq ˆ βptq
¯

“ 9αptq ˆ βptq `αptq ˆ 9βptq.

Hint. Use (11.2.6). [\

Exercise 13.9. Let f : Rn Ñ R, fpxq “ }x}2 and suppose that α,β : p´1, 1q Ñ Rn are
two differentiable paths.

(i) Show that

d

dt

@

αptq,βptq
D

“
@

9αptq,βptq
D

`
@

αptq, 9βptq
D

, @t P p´1, 1q.

(ii) Compute the gradient ∇f . Hint. Compare with Exercise 13.5.

(iii) Compute d
dt}αptq}

2.

(iv) Show that the function t ÞÑ }αptq} is constant if and only if αptq K 9αptq,
@t P p´1, 1q.

(v) What can you say about the motion described by the pathαptq whenαptq K 9αptq,
@t?
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[\

Exercise 13.10. Let f : Rnzt0u Ñ R be a function that is positively homogeneous of
degree k, i.e.,

fptxq “ tkfpxq, @t ą 0, x P Rnzt0u.
Show that if f is differentiable, then the partial derivatives Bf

Bxi
, i “ 1, . . . , n, are positively

homogeneous of degree k ´ 1. [\

Exercise 13.11. Suppose that the path

γ : RÑ R2, γptq “

„

xptq
yptq

ȷ

P R2

is an integral curve of the vector field V defined in (13.3.18).

(i) Prove that }γptq} “ }γp0q}, @t.

(ii) Deduce from the above that 9xptq2 ` xptq2 “ 9xp0q2 ` xp0q2, @t.

(iii) Prove that :x “ ´x, where :f denotes the second order time derivative of a
function f .

(iv) Given that γp0q “ p1, 0q determine γptq.

Hint. For (i)-(iii) use the differential equations (13.3.17). (iv) Compare with Exercise 7.16. [\

Exercise 13.12. Prove that the function r : Rnzt0u Ñ R, rpxq “ }x}, is C1 and then
describe its differential. [\

Exercise 13.13. Let n P N. Fix a C1-function U : Rnzt0u Ñ R. Suppose that I is an
open interval of the real axis and

γ : I Ñ Rnzt0u, t ÞÑ γptq “ rx1ptq, . . . , xnptqsJ,

is a C2-path satisfying Newton’s (2nd Law of Dynamics) differential equations

:γptq “ ´∇U
`

γptq
˘

, @t P I.

(i) (Conservation of energy) Prove that the function E : I Ñ R

Eptq “
1

2
} 9γptq}2 ` U

`

γptq
˘

,

is constant.

(ii) (Conservation of momenta) Suppose that there exists a C1-function f : p0,8q Ñ R
such that

Upxq “ fp}x}q, @x P Rnzt0u.
Prove that for, any 1 ď k ă ℓ ď n, the function P kℓ : I Ñ R

P kℓptq “ 9xkptqxℓptq ´ 9xℓptqxkptq

is constant.
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[\

Exercise 13.14. Let k, n P N.

(i) Prove that if f : Rn Ñ R and u : R Ñ R are Ck-functions, then so is their
composition u ˝ f : Rn Ñ R.

(ii) Let n P N and r ą 0. Prove that for any 0 ă r ă R there exists a nonzero
function f P C8pRnq such that fpxq “ 1 if }x} ď r and fpxq “ 0, if }x} ě R.

(iii) Let n P N. Suppose that K Ă Rn is a compact set and U is an open cover of K.
Prove that there exist compactly supported smooth functions

χ1, . . . , χℓ : Rn Ñ r0,8q

with the following properties.
‚ For any i “ 1, . . . , ℓ there exists an open set U “ Ui in the family U such
that suppχi Ă Ui.

‚ χ1pxq ` ¨ ¨ ¨ ` χℓpxq “ 1, @x P K.

Hint. (i) Argue by induction on k. (ii) Use the result proved in Exercise 7.8 to construct a smooth function

u : RÑ r0,8q such that upsq “ 1 if s ď 0 and upsq “ 0 if s ě 1. Then, for a ă b, define

ua,b : RÑ r0,8q, ua,bptq “ u

ˆ

t´ a

b´ a

˙

and show that ua,b is smooth and satisfies ua,bptq “ 1 if t ď a and ua,bptq “ 0 if t ą b. Finally, set fpxq “ ua,bp}x}
2q

with a “ r2, b “ R2 and then show that f will do the trick. (iii) Use (ii) and imitate the proof of Theorem 12.4.7.

[\

Exercise 13.15. Let n P N. For any open set O Ă Rn we define the Laplacian to be the
map

∆ : C2pOq Ñ CpOq, p∆fqpxq “
n
ÿ

k“1

B2xkfpxq. (13.5.1)

(i) Show that, @f, g P C2pOq, we have

∆pf ` gq “ ∆f `∆g,

∆pfgq “ f∆g ` 2x∇f,∇gy ` g∆f
(ii) Show

∆}x}p “ ppp` n´ 2q}x}p´2, @x P Rnzt0u, p P R.

[\

Exercise 13.16. Let n P N, n ě 2. Consider the function U : Rnzt0u Ñ R

Upxq “

#

log }x}, n “ 2,
1

}x}n´2 , n ą 2.

Compute ∆Upxq, where ∆ is the Laplacian defined as in (13.5.1). [\
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Exercise 13.17. Let n P N and consider the function K : p0,8q ˆ Rn Ñ R given by

Kpt,xq “ t´n{2e´
}x}2

4t .

Compute

BtK ´∆xK “ BtK ´

´

B2x1K ` ¨ ¨ ¨ ` B2xnK
¯

.

[\

Exercise 13.18. Suppose that f, g : RÑ R are C2 functions. Define

w : R2 Ñ R, wpt, xq “ fpx` tq ` gpx´ tq.

Compute

B2tw ´ B
2
xw. [\

Exercise 13.19. Show that the vector field

V : R2 Ñ R2, V px, yq “

„

´y
x

ȷ

is not a gradient vector field.

Hint. Have a look at Example 13.4.2. [\

13.6. Exercises for extra credit

Exercise* 13.1. Let n P N and denote by Mat˚npRq the set of invertible nˆ n matrices.

(i) Prove that Mat˚npRq is open (in MatnpRq).
(ii) Prove that the map F : Mat˚npRq Ñ MatnpRq given by

F pAq “ A´1,

is differentiable and then compute its differential at A0 P Mat˚npRq.

[\

Exercise* 13.2. Let k, n P N and U Ă Rn be an open subset. Prove that the collection
CkpUq of functions that are Ck on U is a real vector space. Moreover, show that this
vector is infinite dimensional. [\

Exercise* 13.3. Let n P N and suppose that A is an nˆ n matrix.

(i) Prove that for any x P Rn the series

8
ÿ

k“0

1

k!
Akx “ x`Ax`

1

2!
A2x`

1

3!
A3x` ¨ ¨ ¨

is absolutely convergent.



456 13. Multi-variable differential calculus

(ii) Prove that for any x P Rn the path

γ : RÑ Rn, γptq “
8
ÿ

k“0

1

k!
ptAqkx

is differentiable and

9γptq “ Aγptq, @t P R.
(iii) Compute γptq when n “ 2,

x “

„

x1

x2

ȷ

and A “

„

λ1 0
0 λ2

ȷ

.



Chapter 14

Applications of
multi-variable
differential calculus

We present below a few of the most frequently encountered applications of multi-dimensional
differential calculus.

14.1. Taylor formula

Just like functions of one real variable, the differentiable functions of several variables can
be well approximated by certain explicit polynomials. We present in this section two such
approximation formulæ that are used frequently in applications. We refer to [10, §2.8] for
more general results.

Fix n P N, an open set U Ă Rn and a point x0 P U . Then there exists r0 ą 0 such
that Br0px0q Ă U . Suppose that f : U Ñ R is a differentiable function.

Theorem 14.1.1 (Multidimensional Taylor formula). (a) If the function f is C2, then
for any h “ ph1, . . . , hnq P Rn such that }h} ă r0 we have

fpx0 ` hq “ fpx0q `

n
ÿ

i“1

Bxifpx0qh
i `R1px0,hq, (14.1.1)

where the remainder R1px0,hq is described by the integral formula

R1px0,hq “

ż 1

0
p1´ tqρ2px0,h, tqdt, ρ2px0,h, tq “

n
ÿ

i,j“1

B2xixjfpx0 ` thqh
ihj . (14.1.2)

457
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Moreover, there exists a constant C ą 0, independent of h , such that
ˇ

ˇR1px0,hq
ˇ

ˇ ď C}h}2, @}h} ă r0. (14.1.3)

(b) If the function f is C3, then for any h “ ph1, . . . , hnq P Rn such that }h} ă r0 we have

fpx0 ` hq “ fpx0q `

n
ÿ

i“1

Bxifpx0qh
i `

1

2

n
ÿ

i,j“1

B2xixjfpx0qh
ihj `R2px0,hq, (14.1.4)

where the remainder R2px0,hq is described by the integral formula

R2px0,hq “
1

2!

ż 1

0
p1´ tq2ρ3px0,h, tqdt,

ρ3px0,h, tq “
n
ÿ

i,j,k“1

B3xixjxkfpx0 ` thqh
ihjhk.

(14.1.5)

Moreover, there exists a constant C ą 0, independent of h , such that
ˇ

ˇR2px0,hq
ˇ

ˇ ď C}h}3, @}h} ă r0. (14.1.6)

Proof. We prove only (b). The case (a) is similar and involves simpler computations. Fix
h P Rn such that }h} ă r0. Consider the C

3-function

g : r´1, 1s Ñ R, gptq “ fpx0 ` thq.

Using the one dimensional Taylor formula with integral remainder, Proposition 9.6.9, we
deduce

gp1q “ gp0q ` g1p0q `
1

2
g2p0q `R2, R2 “

1

2!

ż 1

0
gp3qptqp1´ tq2dt. (14.1.7)

Using the chain rule (13.3.12) repeatedly we deduce

g1ptq “
n
ÿ

i“1

Bxifpx0 ` thqh
i, g2ptq “

n
ÿ

i,j“1

B2xixjfpx0 ` thqh
ihj ,

gp3qptq “
n
ÿ

i,j,k“1

B3xixjxkfpx0 ` thqh
ihjhk.

Using these equalities in (14.1.7) we obtain (14.1.4) and (14.1.5). It remains to prove
(14.1.6).

Observe that |hi| ď }h} for any i “ 1, . . . , n. Hence

|ρ3px0,h, tq| ď
n
ÿ

i,j,k“1

ˇ

ˇ B3xixjxkfpx0 ` thqh
ihjhk

ˇ

ˇ ď }h}3
n
ÿ

i,j,k“1

ˇ

ˇ B3xixjxkfpx0 ` thq
ˇ

ˇ.

For each i, j, k “ 1, . . . , n we set

Mi,j,k “ sup
xPBr0 px0q

ˇ

ˇ B3xixjxkfpxq
ˇ

ˇ.
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The quantity Mi,j,k is finite since the function B3
xixjxk

fpxq is continuous on the compact

set Br0px0q. We set

M :“ max
i,j,k

Mi,j,k.

Clearly, the number M is independent of h. We deduce that for any }h} ă r0 we have

|ρ3px0,h, tq| ď }h}
3

n
ÿ

i,jk“1

Mi,j,k ď }h}
3

n
ÿ

i,j,k“1

M “Mn3}h}3.

Hence

|R2px0,hq| ď
1

2

ż 1

0
p1´ tq2 |ρ3px0,h, tq|dt ď

Mn3

2
}h}3.

[\

Definition 14.1.2. The nˆ n matrix Hpf,x0q with entries

Hpf,x0qij “ B
2
xixjfpx0q, 1 ď i, j ď n,

is called the Hessian of f at x0.
1 [\

Since partial derivatives commute, we see that the Hessian is a symmetric matrix, i.e.,

B2xixjfpx0q “ B
2
xjxifpx0q.

The matrix Hpf,x0q defines a linear operator Rn Ñ Rn given by

Hpf,x0qh “
´

n
ÿ

j“1

Hpf,x0q1jh
j
¯

e1 ` ¨ ¨ ¨ `
´

n
ÿ

j“1

Hpf,x0qnjh
j
¯

en

“

n
ÿ

i“1

´

n
ÿ

j“1

Hpf,x0qijh
j
¯

ei, @h P Rn.

We deduce that
n
ÿ

i,j“1

B2xixjfpx0qh
ihj “

@

h,Hpf,x0qh
D

. (14.1.8)

We can rewrite the equality (14.1.4) in the more compact form

fpx0 ` hq “ fpx0q `
@

∇fpx0q,h
D

`
1

2

@

h,Hpf,x0qh
D

`R2px0,hq . (14.1.9)

1Note that when describing the Hessian matrix both indices are subscripts. This differs from the way we

described the matrix associated to an operator where one index is a superscript, the other is a subscript. This
discrepancy is a reflection of the fact that the Hessian of a function is intrinsically a different beast than a linear
operator.
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Example 14.1.3. Consider the function

f : R2 Ñ R, fpx, yq “ 3x2 ` 4xy ` 5y2.

Then

B2xf “ 6, B2xyf “ 4, B2yf “ 10.

The Hessian of f at 0 is the symmetric 2ˆ 2-matrix

Hpf,0q “

„

6 4
4 10

ȷ

. [\

14.2. Extrema of functions of several variables

Fix a natural number n.

Definition 14.2.1. Let X Ă Rn and x0 P X. Fix a function f : X Ñ R.

(i) The point x0 is said to be a local minimum of the function if there exists r ą 0
with the following property:

@x P X, distpx,x0q ă r ñ fpx0q ď fpxq,

(ii) The point x0 is said to be a local maximum of the function f if there exists r ą 0
with the following property,

@x P X distpx,x0q ă r ñ fpx0q ě fpxq.

(iii) The point x0 is said to be a local extremum of the function f if it is either a
local minimum or a local maximum of f .

[\

The one-dimensional Fermat Principle2 (Theorem 7.4.2) has the following multi-dimensional
counterpart.

Theorem 14.2.2 (Multidimensional Fermat Principle). Suppose that U Ă Rn is an open

set and f : U Ñ R is a C1-function. If x0 P U is a local extremum of f , then dfpx0q “ 0,
i.e.,

Bx1fpx0q “ ¨ ¨ ¨ “ Bxnfpx0q “ 0.

Proof. Assume for simplicity that x0 is a local minimum of f . (When x0 is a local
maximum of f , then it is a local minimum of ´f .) Fix r ą 0 sufficiently small with the
following properties.

‚ Brpx0q Ă U .

‚ fpx0q ď fpxq, @x P Brpx0q.

2See this beautiful lecture by Richard Feynman http://www.feynmanlectures.caltech.edu/II_19.html

http://www.feynmanlectures.caltech.edu/II_19.html
http://www.feynmanlectures.caltech.edu/II_19.html
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Fix a vector h P Rn. For ε ą 0 sufficiently small, the line segment rx0 ´ εh,x0 ` εhs
is contained in the ball Brpx0q. Consider now the function

g : r´ε, εs Ñ R, gptq “ fpx0 ` thq.

We can identify g with the restriction of f to the line segment rx0 ´ εh,x0 ` εhs. Note
that gp0q “ fpx0q ď fpx0 ` thq “ gptq, @t P r´ε, εs. Thus 0 is a minimum point of g and
the one-dimensional Fermat principle implies that g1p0q “ 0. The chain rule (13.3.12) now
implies

@

∇fpx0q,h
D

“ g1p0q “ 0.

We have thus shown that
@

∇fpx0q,h
D

“ 0, for any vector h P Rn. If we choose
h “ ∇fpx0q, then we deduce

}∇fpx0q}
2 “

@

∇fpx0q,∇fpx0q
D

“ 0.

[\

Definition 14.2.3. Let U Ă Rn be an open set. A critical point of a differentiable
function f : U Ñ R is a point x0 P U such that dfpx0q “ 0. [\

We can rephrase Theorem 14.2.2 as follows.

If U Ă Rn is an open set, and x0 P U is a local extremum of a C1-function f : U Ñ R,
then x0 must be a critical point of f .

We know now that the local extrema of a C1-function f : U Ñ R, if any, are located
among the critical points of f . We want to address a sort of converse. Suppose that
x0 P U is a critical point. Is there any way of deciding whether x0 is a local min, max or
neither?

To answer this question we need to introduce some more terminology.

Definition 14.2.4. Suppose that A is a symmetric n ˆ n matrix A. We denote by aij
the entry located on the i-th row and j-th column.

(i) The quadratic function associated to A is the function QA : Rn Ñ R given by

QAphq “ xh, Ahy “
n
ÿ

i,j“1

aijh
ihj .

(ii) The matrix A is called positive definite if

QAphq ą 0, @h P Rnzt0u.

(iii) The matrix A is called negative definite if

QAphq ă 0, @h P Rnzt0u.

(iv) The matrix A is called indefinite if there exist h0,h1 P Rnzt0u such that

QAph0q ă 0 ă QAph1q.
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[\

Let us observe that the quadratic function associated to a symmetric nˆ n matrix A
is homogeneous of degree 2, i.e.,

QApthq “ t2QAphq, @t P R, h P Rn. (14.2.1)

Example 14.2.5. Suppose that n “ 2,

A “

„

a b
b c

ȷ

, h “

„

x
y

ȷ

.

Then

Ah “

„

ax` by
bx` cy

ȷ

, QAphq “ xh, Ahy “ xpax` byq ` ypbx` cyq “ ax2 ` 2bxy` cy2. [\

Theorem 14.2.6. Let U Ă R be an open set and f : U Ñ R a C3-function. Suppose that
x0 is a critical point of f . Denote by A the Hessian of f at x0, A :“Hpf,x0q. Then the
following hold.

(i) If A is positive definite, then x0 is a local minimum of f .

(ii) If A is negative definite, then x0 is a local maximum of f .

(iii) If A is indefinite, then x0 is not a local extremum of f .

Proof. The above claims are immediate consequences of Taylor’s formula (14.1.4). Fix

r ą 0 sufficiently small such that Brpx0q Ă U . According to (14.1.4) for any h such that
}h} ă r we have

fpx0 ` hq “ fpx0q `
1

2
QAphq `R2px0,hq. (14.2.2)

Moreover, there exists C ą 0 such that

|R2px0,hq| ď C}h}3, @}h} ă r. (14.2.3)

To prove (i) we need to use the following very useful technical fact whose proof is
outlined in Exercise 14.5.

Lemma 14.2.7. Suppose that A is a symmetric, positive definite matrix. Then there
exists m ą 0 such that

QAphq ě m}h}2, @h P Rn. [\

Suppose now that A “ Hpf,x0q is positive definite. Choose a number m ą 0 as in
Lemma 14.2.7. From (14.2.2) and (14.2.3) we deduce

fpx0 ` hq ě fpx0q `
m

2
}h}2 ´ C}h}3 “ fpx0q ` }h}

2
´ m

2
´ C}h}

¯

.

Choose ε ą 0 smaller than both r and m
2C . Then, for any h such that }h} ă ε we have

x0 ` h P Bεpx0q,
m

2
´ C}h} ą 0.
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Thus for any h such that }h} ă ε we have fpx0 ` hq ą fpx0q. This proves that x0 is a
local minimum of f .

The statement (ii) reduces to (i) by observing that the Hessian of ´f at x0 is ´A and
it is positive definite. Thus x0 is a local minimum of ´f , therefore a local maximum of f .

To prove (iii) choose vectors h0,h1 such that

QAph0q ă 0 ă QAph1q.

For t ą 0 sufficiently small we have x0 ` th0,x0 ` th1 P Brpx0q and

fpx0 ` th0q “ fpx0q `
1

2
QApth0q `R2px0, th0q

p14.2.1q
“ fpx0q `

t2

2
QAph0q `R2px0, th0q

ď fpx0q `
t2

2
QAph0q ` Ct

3}h0}
3 “ fpx0q `

t2

2

´

QAph0q ` 2tC}h0}

¯

loooooooooooooomoooooooooooooon

“:uptq

.

Observe that

lim
tÑ0

uptq “ QAph0q ă 0

so uptq is negative for t sufficiently small. Thus, for all t sufficiently small we have

fpx0 ` th0q ă fpx0q,

so x0 cannot be a local minimum. Similarly

fpx0 ` th1q “ fpx0q `
1

2
QApth1q `R2px0, th1q “ fpx0q `

t2

2
QAph1q `R2px0, th1q

ě fpx0q `
t2

2
QAph1q ´ Ct

3}h1}
p14.2.1q
“ fpx0q `

t2

2

´

QAph1q ´ 2Ct}h1}

¯

loooooooooooooomoooooooooooooon

“:vptq

.

Observe that

lim
tÑ0

vptq “ QAph1q ą 0

so vptq ą 0 for all t sufficiently small. Hence, for all t sufficiently small we have

fpx0 ` th1q ą fpx0q

so x0 cannot be a local maximum either.

[\

Remark 14.2.8. Deciding when a symmetric matrix A is positive/negative definite or
indefinite is a nontrivial task. All the known techniques rely on more linear algebra than
we are prepared to assume at this point. It is known that all the eigenvalues of a real
symmetric matrix are real. The matrix A is positive/negative definite if all its eigenvalues
are positive/negative. The matrix A is indefinite if it admits both positive and negative
eigenvalues.

If the dimension of the matrix A is small one can conceive faster ad-hoc methods of
deciding if S is positive/negative definite. In Exercise 14.6 we describe a simple method
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of deciding when a 2ˆ 2 symmetric matrix is positive/negative definite. This is a special
case of a theorem of J.J. Sylvester3 [34, Chap. 7]. [\

Example 14.2.9. Consider the function

f : p0,8q ˆ p0,8q Ñ R, fpx, yq “ x3y2p6´ x´ yq.

The critical points of f are found solving the system of equations Bxf “ Byf “ 0, i.e.,
"

3x2y2p6´ x´ yq ´ x3y2 “ 0
2x3yp6´ x´ yq ´ x3y2 “ 0.

(14.2.4)

The first equality in (14.2.4) can be rewritten as

x2y2
´

3p6´ x´ yq ´ x
¯

“ 0.

Since x, y ą 0 we deduce

18´ 3x´ 3y ´ x “ 0ñ 4x` 3y “ 18.

The second equality in (14.2.4) can be rewritten as

x3y
´

2p6´ x´ yq ´ y
¯

“ 0

and we conclude as above that

2x` 3y “ 12.

Hence

2x “ p4x` 3yq ´ p2x` 3yq “ 18´ 12 “ 6ñ x “ 3.

Using this information in the equality 2x` 3y “ 12 we deduce 3y “ 6 so y “ 2. Thus, the
only critical point of f is p3, 2q. Let us find the Hessian at this point. We have

Bxf “ x2y2
`

3p6´ x´ yq ´ x
˘

“ x2y2
`

18´ 4x´ 3y
˘

,

Byf “ x3y
´

2p6´ x´ yq ´ y
¯

“ x3y
`

12´ 2x´ 3y
˘

,

B2xxf “ 2xy2p18´ 4x´ 3yq ´ 4x2y2, B2xyf “ 2x2yp18´ 4x´ 3yq ´ 3x2y2,

B2yyf “ 3x2p12´ 2x´ 3yq ´ 3x3y.

Hence

B2xxfp3, 2q “ ´4 ¨ 3
2 ¨ 22 “ ´144, B2yyp3, 2q “ ´3 ¨ 3

3 ¨ 2 “ ´162,

B2xyfp3, 2q “ ´3 ¨ 3
2 ¨ 22 “ ´108.

Hence, the Hessian of f at p3, 2q is

A :“

„

´144 ´108
´108 ´162

ȷ

.

3J.J. Sylvester was an English mathematician. He made fundamental contributions to matrix theory, invariant

theory, number theory, partition theory, and combinatorics. He played a leadership role in American mathematics
in the later half of the 19th century as a professor at Johns Hopkins University and as founder of the American
Journal of Mathematics. https://en.wikipedia.org/wiki/James_Joseph_Sylvester

https://en.wikipedia.org/wiki/James_Joseph_Sylvester
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To decide whether the matrixA is positive/negative definite we use the criterion in Exercise
14.6. Note that ´144 ă 0 and

detA “ p´144qp´162q ´ p´108q2 “ 144 ¨ 162´ p108q2 “ 11644 ą 0.

Hence A is negative definite and thus the stationary point p3, 2q is a local maximum. [\

14.3. Diffeomorphisms and the inverse function
theorem

We can now discuss a classical theorem that plays a key role in modern differential ge-
ometry/topology. The remainder of this chapter assumes familiarity with basic linear
algebra concepts such as linear combinations, linear independence, rank and determinant
of a matrix.

We begin by introducing a key concept.

Definition 14.3.1 (Diffeomorphisms). Let n P N, k P NYt8u and suppose that U Ă Rn
is an open set. A map F : U Ñ Rn is called a Ck-diffeomorphism if the following hold.

‚ The map F is injective and its range F pUq is also an open subset of Rn.
‚ The inverse map F´1 : F pUq Ñ U is also Ck.

[\

Example 14.3.2. (a) Any invertible linear map L : Rn Ñ Rn is a diffeomorphism.

(b) The bijective C1-map f : R Ñ R, fpxq “ x3 is not a diffeomorphism because its
inverse is not differentiable at 0. [\

Example 14.3.3. The map

F : p0,8q ˆ p0, 2πq Ñ R2, F pr, θq “

„

x
y

ȷ

“

„

r cos θ
r sin θ

ȷ

is a C1-diffeomorphism. Indeed, it is a C1 map. To see that it is injective observe that if

x “ r cos θ, y “ r sin θ

then

x2 ` y2 “ r2 ñ r “
a

x2 ` y2.

Thus, r ą 0 is uniquely determined by px, yq. Note that px{r, y{rq is a point on the unit
circle, it is not equal to p1, 0q and uniquely determines the angle θ; recall the trigonometric
circle in Section 5.6.

This proves that F is injective and the range is the plane R2 with the nonnegative
x-semiaxis removed. Hence the range is open. One can show directly that F´1 is C1, but
this is a rather tedious job. Fortunately there is a faster alternate approach that relies on
the main theorem of this section, namely, the inverse function theorem. We will present
this approach after we discuss this very important theorem. [\
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We have the following useful consequence of the chain rule. Its proof is left to the
reader as an exercise.

Proposition 14.3.4. Let n P N. Suppose that U Ă Rn is an open set and F : U Ñ Rn is
a C1-diffeomorphism. If x0 P U and y0 “ F px0q, then the differential dF px0q of F at x0

is invertible and

dF´1py0q “ dF px0q
´1. [\

The above result gives a necessary condition for a map to be a diffeomorphism, namely
its differential has to be invertible. The next result is a very versatile criterion for recog-
nizing diffeomorphisms. Roughly speaking, it states that maps with invertible differentials
are very close to being diffeomorphisms.

Theorem 14.3.5 (Inverse function theorem). Let n P N, k P N Y t8u. Suppose that
U Ă Rn is an open set and F : U Ñ Rn is a Ck-map. If x0 P U is such that the
differential dF px0q : Rn Ñ Rn is invertible, then there exists an open neighborhood V of
x0 with the following properties.

(i) V Ă U .

(ii) The restriction of F to V defines a Ck-diffeomorphism F : V Ñ Rn.

Proof. For simplicity we consider only the case k “ 1. The case k ą 1 follows inductively from this special case,
[10, Prop. 3.2.9]. We follow closely the approach in the proof of [29, Thm. 2-11]. Denote by L the differential of

F at x0 and set y0 :“ F px0q. We begin with an apparently very special case.

A. The differential L is the identity operator Rn Ñ Rn. We complete the proof in several steps.

Step 1. We prove that there exists r ą 0 such that the closed ball Brpx0q is contained in U and the restriction of

F to this closed ball is injective.

Using the definition of the differential we can write

F px0 ` hq “ F px0q ` h`Rphq “ y0 ` h`Rphq, (14.3.1)

where

lim
}h}Ñ0

1

}h}
Rphq “ 0. (14.3.2)

Observe that

F px0 ` h1q “ F px0 ` h2q
p14.3.1q
ðñ Rph1q ´Rph2q “ ´

`

h1 ´ h2q.

We will show that the last equality above cannot happen if h1,h2 are sufficiently small and h1 ‰ h2.

The correspondence x ÞÑ JF pxq is continuous and the Jacobian matrix JF px0q is invertible. Thus, for x close

to x0 the Jacobian JF pxq is also invertible; see Exercise 12.9. Fix a radius r0 ą 0 such that B2r0 px0q Ă U and

JF pxq is invertible @x P B2r0 px0q. (14.3.3)

Observe that for }h} ď 2r0 we have Rphq “ F px0 ` hq ´ h ´ y0. This proves that the map R : B2r0 p0q Ñ Rn is
differentiable and

JRphq “ JF px0 ` hq ´ 1 “ JF px0 ` hq ´ JF px0q.

Since the map F is C1 we have

lim
hÑ0

}JF px0 ` hq ´ JF px0q}HS “ 0,
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where } ´ }HS denotes the Frobenius norm of a matrix described in Remark 12.1.11. Fix a very small positive

constant ℏ,

ℏ ă
1

10n
. (14.3.4)

There exists r ă r0 sufficiently small such that

}JRphq}HS “ }JF px0 ` hq ´ JF px0q}HS ă ℏ, @}h} ă 2r. (14.3.5)

Corollary 13.3.11 implies that

}F px0 ` h1q ´ F px0 ` h2q ´ ph1 ´ h2q} “ }Rph1q ´Rph2q}

p14.3.5q

ď ℏ
?
n}h1 ´ h2}

p14.3.4q
ă }h1 ´ h2}, @h1,h2 P B2rp0q, h1 ‰ h2.

(14.3.6)

This proves that if }h1}, }h2} ă 2r and h1 ‰ h2, then

F px0 ` h1q ´ F px0 ` h2q ´ ph1 ´ h2q “ Rph1q ´Rph2q ‰ ´
`

h1 ´ h2q.

Hence

F px0 ` h1q ´ F px0 ` h2q ‰ 0.

In particular, this shows that the restriction of F on Brpx0q Ă B2rpx0q Ă U is injective.

B B

B

r r

r

U

F

F

F

x

x
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0(  )

(  ) (  )

(  )Σ

δ

(        )

Figure 14.1. The map F is injective on Brpx0q, and the image of this ball contains a
small ball Bδpy0q.

The sphere

Σrpx0q “
␣

x P Rn; }x´ x0} “ r
(

is compact, and thus its image F
`

Σrpx0q
˘

is also compact; see Figure 14.1. Because of the injectivity of F on

Brpx0q, the point y0 “ F px0q does not belong to the image F
`

Σrpx0q
˘

of this sphere. Hence,

dist
´

y0,F
`

Σrpx0q
˘

¯

ą 0,

so there exists δ ą 0 such that

}y0 ´ F pxq} ą 2δ, @x P Σrpx0q. (14.3.7)
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Step 2. We will prove that Bδpy0q Ă F
`

Brpx0q
˘

, i.e.,

@y P Bδpy0q, Dh P Rn such that }h} ă r and y “ F px0 ` hq. (14.3.8)

To do this, let y P Bδpy0q and consider the function

gy : Brpx0q Ñ R, gypxq “ }y ´ F pxq}2.

The function gy is continuous and the closed ball Brpx0q is compact and thus gy admits a global minimum

z P Brpx0q, gypzq ď gypxq, @x P Brpx0q.

Let us first observe that z P Brpx0q. We argue by contradiction. If z P Σrpx0q, then

}y ´ F pzq} ě }y0 ´ F pzq} ´ }y0 ´ y}
p14.3.7q
ą 2δ ´ }y0 ´ y}

loooomoooon

ăδ

ą δ ą }y ´ F px0q}.

Hence

gypzq ą gypx0q, @z P Σrpx0q,

proving that the absolute minimum z of gy is achieved somewhere inside the open ball Brpx0q. The multidimensional

Fermat principle then implies

∇gypzq “ 0ðñ JF pzq
`

y ´ F pzq
˘

“ 0.

On the other hand, according to (14.3.3), the differential dF pzq is invertible. We deduce from the above equality
that y “ F pzq for some z P Brpx0q.

Since F : U Ñ Rn is continuous the preimage F´1
`

Bδpy0q
˘

is open (see Exercise 12.4(b)) and so is the set

V :“ F´1
`

Bδpy0q
˘

XBrpx0q.

The above discussion shows that the resulting map F : V Ñ Bδpy0q is bijective.

Step 3. We prove that the inverse G :“ F´1 : Bδpy0q Ñ V is Lipschitz continuous.

Let y˚,y P Bδpy0q We set x :“ Gpyq, x˚ “ Gpy˚q. Then x “ x0 ` h, x˚ “ x0 ` h˚. From (14.3.6) we
deduce

}x´ x˚} ´ }y ´ y˚} ď }y ´ y˚ ´ px´ x˚q} “ }Rphq ´Rph˚q}
p14.3.6q

ď ℏ
?
n}h´ h˚}

p14.3.4q

ď
1

10
?
n
}h´ h˚} “

1

10
?
n
}x´ x˚} ď

1

10
}x´ x˚}.

We deduce that

}Gpyq ´Gpy˚q} “ }x´ x˚} ď
10

9
}y ´ y˚}.

Step 4. We prove that the inverse G :“ F´1 : Bδpy0q Ñ V is differentiable.

Fix y˚ P Bδpy0q. There exists x˚ P V such that F px˚q “ y˚. Proposition 14.3.4 suggests that the differential

of G at y˚ should be the inverse of the differential of F at x0. For y P Bδpy0q we set

Rpy,y˚q :“
´

Gpyq ´Gpy˚q ´ dF px˚q
´1py ´ y˚q

¯

.

We have to prove that

lim
yÑy˚

}Rpy,y˚q}

}y ´ y˚}
“ 0.

Observe first that

dF px˚qRpy,y˚q “ dF px˚q

´

Gpyq ´Gpy˚q

¯

´ py ´ y˚q

“ dF px˚q

´

Gpyq ´Gpy˚q

¯

´

´

F pGpyq q ´ F pGpy˚q q

¯

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

“:Qpy,y˚q

.

Since F is differentiable at x˚ we have

lim
yÑy˚

}Qpy,y˚q}

}Gpyq ´Gpy˚q}
“ 0. (14.3.9)
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On the other hand,

}Gpyq ´Gpy˚q} ď
10

9
}y ´ y˚}

so that
10

9

}Qpy,y˚q}

}Gpyq ´Gpy˚q}
ě
}Qpy,y˚q}

}y ´ y˚}

We deduce that
}dF px˚qRpy,y˚q}

}y ´ y˚}
ď

10

9

}Qpy,y˚q}

}Gpyq ´Gpy˚q}
.

On the other hand, since dF px˚q is invertible, we deduce from Exercise 12.28(iii) that there exists a constant C ą 0

such that

C}h} ď }dF px˚qh}, @h P Rn.

We conclude that

C
}Rpy,y˚q}

}y ´ y˚}
ď

10

9

}Qpy,y˚q}

}Gpyq ´Gpy˚q}
.

Invoking the Squeezing Principle and (14.3.9) we deduce from the above

lim
yÑy˚

}Rpy,y˚q}

}y ´ y˚}
“ 0.

This proves the differentiability of G at y˚.

Step 5. We finally prove that map G is C1. We have to show that the map y ÞÑ JGpyq is continuous, i.e., the map

y ÞÑ JF
`

Gpyq
˘´1

is continuous. This follows from Exercise 12.10.

B. We now discuss the general case when we do not assume that dF px0q “ 1. Set L “ dF px0q. Define

Φ : U Ñ Rn, Φ “ L´1 ˝ F .

The chain rule implies that

dΦ “ dL´1 ˝ dF “ L´1 ˝ dF “ 1.

From Case A we deduce that there exists an open neighborhood V of x0 contained in U such that the restriction
of Φ to V is a diffeomorphism. From the equality F “ L ˝ Φ we deduce that the restriction of F to V is also a

diffeomorphism.

[\

Remark 14.3.6. (a) The assumption that dF px0q is invertible is equivalent with the
condition

det JF px0q ‰ 0.

This is easier to verify especially when n is not too large.

(b) If V Ă Rn is an open neighborhood of x0 satisfying the conditions (i) and (ii) in The-
orem 14.3.5, then any smaller open neighborhood W Ă V of x0 satisfies these conditions.

[\

We have the following useful consequence of the inverse function theorem. Its proof is
left to you as an exercise.

Corollary 14.3.7. Let n P N. Suppose that U is an open subset of Rn and F : U Ñ Rn
is a C1-map satisfying the following conditions.
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(i) The map F is injective.

(ii) For any x P U , the differential dF pxq : Rn Ñ Rn is bijective.

Then the map F is a C1-diffeomorphism. [\

Remark 14.3.8. The condition (ii) in the above corollary is equivalent with the condition

det JF pxq ‰ 0, @x P U.

This is easier to verify especially when n is not too large. [\

Example 14.3.9. Consider again the map

F : p0,8q ˆ p0, 2πq Ñ R2, F pr, θq “

„

x
y

ȷ

“

„

r cos θ
r sin θ

ȷ

in Example 14.3.3. We have seen there that it is injective. According to Corollary 14.3.7,
to prove that it is a diffeomorphism it suffices to show that for any pr, θq P p0,8qˆp0, 2πq
the Jacobian matrix JF pr, θq is invertible. We have

JF pr, θq “

»

–

Bx
Br

Bx
Bθ

By
Br

By
Bθ

fi

fl “

„

cos θ ´r sin θ
sin θ r cos θ

ȷ

.

The determinant of the above matrix is

det JF “ pcos θq ¨ pr cos θq ´ p´r sin θq ¨ psin θq “ r cos2 θ ` r sin2 θ “ r ą 0.

Thus the matrix JF pr, θq is invertible for any pr, θq P p0,8q ˆ p0, 2πq. [\

Example 14.3.10. The transformation F in Example 14.3.9 is often referred to as the
change to polar coordinates. A function u depending on the Cartesian coordinates px, yq
can be transformed to a function depending on the coordinates pr, θq,

upx, yq “ upr cos θ, r sin θq.

Often in physics and geometry one is faced with the problem of transforming various quan-
tities expressed in the px, yq-coordinates to quantities expressed in the polar coordinates
pr, θq. We discuss below one such important example.

Suppose u “ upx, yq is a C2-function. We are deliberately vague about the domain of
definition of u since this details is irrelevant to the computations we are about to perform.
Its Laplacian is the function

∆u “
B2u

Bx2
`
B2u

By2
.

We want to express the Laplacian in polar coordinates. The chain rule, cleverly deployed,
will do the trick.
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Note first that for any function (or quantity) q depending on the variables px, yq,
q “ qpx, yq, we have

Bq

Bx
“
Bq

Br

Br

Bx
`
Bq

Bθ

Bθ

Bx
, (14.3.10a)

Bq

By
“
Bq

Br

Br

By
`
Bq

Bθ

Bθ

By
. (14.3.10b)

Let us concentrate first on the x-derivative. We rewrite (14.3.10a) in the form,

Bq

Bx
“
Br

Bx

Bq

Br
`
Bθ

Bx

Bq

Bθ
.

Since the exact nature of the quantity q is not important in the sequel, we will drop the
letter q from our notations. Hence, the above equality becomes

B

Bx
“
Br

Bx

B

Br
`
Bθ

Bx

B

Bθ
. (14.3.11)

From the equalities r2 “ x2 ` y2, x “ r cos θ and y “ r sin θ we deduce

Bxr “
x

r
“ cos θ, Byr “

y

r
“ sin θ. (14.3.12)

Derivating the equality y “ r sin θ with respect to x we deduce

0 “ Bxrpsin θq ` rpcos θqBxθ “ cos θ sin θ ` pr cos θqBxθ “ cos θ
`

sin θ ` rBxθ
˘

ñ Bxθ “ ´
sin θ

r
.

Hence (14.3.11) becomes

B

Bx
“ cos θ

B

Br
´

sin θ

r

B

Bθ
. (14.3.13)

Then
B2u

Bx2
“
B

Bx

Bu

Bx
“

´

cos θ
B

Br
´

sin θ

r

B

Bθ

¯´

cos θ
Bu

Br
´

sin θ

r

Bu

Bθ

¯

“ cos θ
B

Br

´

cos θ
Bu

Br
´

sin θ

r

Bu

Bθ

¯

´
sin θ

r

B

Bθ

´

cos θ
Bu

Br
´

sin θ

r

Bu

Bθ

¯

“ cos θ
´

cos θ
B2u

Br2
`

sin θ

r2
Bu

Bθ
´

sin θ

r

B2u

BrBθ

¯

´
sin θ

r

´

´ sin θ
Bu

Br
` cos θ

B2u

BθBr
´

sin θ

r

B2u

Bθ2

¯

“ cos2 θB2ru`
sin θ cos θ

r2
Bθu´ 2

sin θ cos θ

r
B2rθu`

sin2 θ

r
Bru`

sin2 θ

r2
B2θu.

Arguing in a similar fashion we have

B

By
“
Br

By

B

Br
`
Bθ

By

B

Bθ
.

Derivating with respect to y the equality x “ r cos θ we deduce in similar fashion that
Byθ “

cos θ
r so that

B

By
“ sin θ

B

Br
`

cos θ

r

B

Bθ
,
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B2u

By2
“

´

sin θ
B

Br
`

cos θ

r

B

Bθ

¯´

sin θ
Bu

Br
`

cos θ

r

Bu

Bθ

¯

“ sin θ
B

Br

´

sin θ
Bu

Br
`

cos θ

r

Bu

Bθ

¯

`
cos θ

r

B

Bθ

´

sin θ
Bu

Br
`

cos θ

r

Bu

Bθ

¯

“ sin θ
´

sin θ
B2u

Br2
´
cos θ

r2
Bu

Bθ
`
cos θ

r

B2u

BrBθ

¯

`
cos θ

r

´

cos θ
Bu

Br
`sin θ

B2u

BθBr
´
sin θ

r

Bu

Bθ
`
cos θ

r

B2u

Bθ2

¯

“ sin2 θB2ru´
sin θ cos θ

r2
Bθu`

2 sin θ cos θ

r
B2rθu`

cos2 θ

r
Bru`

cos2 θ

r2
B2θu.

Putting together all of the above we deduce

∆u “ B2ru`
1

r
Bru`

1

r2
B2θu “

1

r

B

Br

´

r
Bu

Br

¯

`
1

r2
Bu

Bθ2
. (14.3.14)

To see how this works in practice, consider the special case u “ px2 ` y2q
p
2 . Since

x2 ` y2 “ r2 we deduce u “ rp and

∆u “ B2r
`

rp
˘

`
1

r
Br
`

rp
˘

“ ppp´ 1qrp´2 ` prp´2 “ p2rp´2. [\

14.4. The implicit function theorem

To understand the meaning of the implicit function theorem it is useful to start with a
simple example.

Example 14.4.1. Consider the function f : R2 Ñ R, fpx, yq “ x2 ` y2 ´ 1. The level set

f´1p0q “
␣

px, yq P R2; fpx, yq “ 1
(

is the circle C1 of radius 1 centered at the origin of R2. This curve cannot be the graph of
any function, but portions of it are graphs. For example, the part of C1 above the x-axis

␣

px, yq P C1; y ą 0
(

,

is the graph of a function. To see this, we solve for y the equality x2 ` y2 “ 1, and since
y ą 0, we obtain the unique solution

y “
a

1´ x2.

We say that the function
?
1´ x2 is a function defined implicitly by the equality fpx, yq.

This is not an isolated phenomenon. The implicit function theorem states that for
many equations of the type fpx, yq “ const the solution set is locally the graph of a
function g, although we cannot describe g as explicitly as in the above simple example.[\

Theorem 14.4.2 (Implicit function theorem. Version 1). Let m,n P N. Suppose that

O Ă Rn ˆ Rm

is an open set, F “ F pu,vq : OÑ Rm is a C1 map and pu0,v0q P O is a point satisfying
the following properties.

(i) F pu0,v0q “ 0.
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(ii) The restriction of the differential dF pu0,v0q to the subspace

0ˆ Rm Ă Rn ˆ Rm

induces an invertible linear map 0ˆ Rm Ñ Rm.

Then there exists an open neighborhood U of u0 P Rn, an open neighborhood V of
v0 P Rm and a C1-map G : U Ñ V with the following properties

‚ U ˆ V Ă O.

‚ If pu,vq P U ˆ V , then F pu,vq “ 0 if and only if v “ Gpuq.

In other words, for any u P U , the equation F pu,vq “ 0 has a unique solution v P V .
This unique solution is denoted by Gpuq. We say that G is the function implicitly defined
by the equation F pu,vq “ 0.

Proof. If we represent L :“ dF pu0,v0q as an m ˆ pn `mq matrix, then it has a block
decomposition

L “

«

BF

Bu
,
BF

Bv

ff

“ rA Bs,

where A is an mˆ n matrix and B is a mˆm matrix. The matrix B “ BF
Bv describes the

restriction of L to the subspace 0ˆ Rm and assumption (ii) implies that B is invertible.

Consider the new map H : OÑ Rn ˆ Rm,

Hpu,vq “
`

u,F pu,vq
˘

.

The differential of H at pv0,u0q is a linear map T : RmˆRn Ñ RmˆRn described by an
pm` nq ˆ pm` nq-matrix with block decomposition

T “

»

–

1n 0

BF
Bu

BF
Bv

fi

fl “

„

1n 0
A B

ȷ

.

Since B is invertible, we deduce that T is also invertible since detT “ detB ‰ 0. Note
that Hpu0,v0q “ pu0,0q.

From the inverse function theorem we deduce that there exists an open neighborhood
W of pu0,v0q contained in O such that the restriction ofH to W is a diffeomorphism. By
making W smaller as in Remark 14.3.6, we can assume that W has the form W “ U ˆV ,
where U Ă Rn is an open neighborhood of u0 in Rn and V Ă Rm is an open neighborhood
of v0 in Rm.

We denote by W the image of U ˆ V via H, W :“ HpU ˆ V q. Let Φ : W Ñ U ˆ V
denote the inverse of H : U ˆ V ÑW. The diffeomorphism Φ has the form

Φpx,yq “ pu,vq “
`

Ψpx,yq,Ξpx,yq
˘

P U ˆ V Ă Rn ˆ Rm,

where

Ψ : WÑ Rn, Ξ : WÑ Rm
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are C1-maps. Note that if px,yq PW and,

pu,vq “ Φpx,yq “
`

Ψpx,yq,Ξpx,yq
˘

,

then
px,yq “Hpu,vq “

`

u,F pu,vq
˘

.

“

´

Ψpx,yq,F
`

Φpx,yq,Ξpx,yq
˘

¯

.

We deduce that u “ x, i.e., Ξpx,yq “ v. Hence the inverse Φ has the form

Φpx,yq “ pu,vq “
`

x,Ξpx,yq
˘

,

where
u “ x, y “ F pu,vq,

Note that
F pu,vq “ 0ðñpx,yq “Hpu,vq “ pu,0q

ðñpu,vq “ Φpu,0q “
`

u,Ξpu,0q
˘

.

The sought out map G is then
Gpuq “ Ξpu,0q.

[\

Remark 14.4.3. (a) The above proof shows that there exist

‚ an open set W Ă Rn ˆ Rm containing pu0,0q,

‚ an open neighborhood V of v0 in Rm,
‚ an open neighborhood U of u0 in Rn, and
‚ a diffeomorphism Φ : WÑ Rn ˆ Rm,

with the following properties.

(i) Φpu0,0q “ pu0,v0q, ΦpWq “ U ˆ V .

(ii) The diffeomorphism Φ maps the part of the plane Rn ˆ 0 contained in W bijec-
tively to the part of the set F “ 0 contained in U ˆ V .

(b) The assumption (ii) in the statement of the Implicit Function Theorem can be rephrased
in a more convenient way. In the proof assumption (ii) was used to conclude that the
pn `mq ˆm matrix JF representing dF px0,y0q has the property that the matrix B de-
termined by the columns and the last m rows is invertible. The condition (ii) is then
equivalent with the condition

detB ‰ 0.

Note that if F 1, . . . , Fm are the components of F and v1, . . . , vm are the components of
v, then B is the mˆm matrix with entries

Bi
j “

BF i

Bvj
, 1 ď i, j ď m.

The condition implies that dF pu0,v0q is surjective.
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y
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H

Figure 14.2. The map Φ sends a portion of the subspace 0ˆRn bijectively to a portion
of the zero set tF “ 0u.

If we assume only that the differential dF pu0,v0q : Rn`m Ñ Rm is surjective, then
the mˆ pn`mq-matrix representing this linear operator has maximal rank m and thus,
there exist m columns so that the matrix determined by these columns and all the m rows
is invertible; see e.g. [34, Thm. 6.1]. If we reorder the components of a vector in Rn`m
we can then assume that these m columns are the last m columns.

(c) Note that the surjectivity of the linear operator dF pu0,v0q : Rn`m Ñ Rm is equivalent
with the linear independence of the m rows of JF pu0,v0q. If F 1, . . . , Fm are the compo-
nents of F , then the rows of JF describe the differentials dF 1, . . . , dFm and we see that
the rows are linearly independent if and only if the gradients ∇F 1, . . . ,∇Fm are linearly
independent. [\

In view of the last remark, we can give an equivalent but more flexible formulation of
Theorem 14.4.2. First, let us introduce some convenient terminology. A codimension m
coordinate subspace of an Euclidean space Rn is a linear subspace of Rn described by the
vanishing of a given group of m coordinates.
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For example, the subspace of R5 of the form

S “
␣ `

x1, 0, x3, x4, 0
˘

; x1, x3, x4 P R
(

is a codimension 2 coordinate subspace described by the vanishing of the coordinates
x2, x5. It is naturally isomorphic to R3 “ R5´2. The codimension 3 subspace

␣

p0, x2, 0, 0, x5q; x2, x5 P R
(

described by the vanishing of the coordinates x1, x3, x4 is none other than SK, the orthog-
onal complement of S. It is naturally isomorphic to R2. Note that we have a natural
decomposition

px1, x2, x3, x4, x5q “ px1, 0, x3, x4, 0q
loooooooomoooooooon

PS

`p0, x2, 0, 0, x5q
looooooomooooooon

PSK

.

In general, a codimension m coordinate subspace of RN is naturally isomorphic to RN´m
and thus has dimension N ´ m. The orthogonal complement SK is another coordinate
subspace of codimension N ´m. Moreover any z P RN admits a unique decomposition of
the form

z “ u` v, u P S, v P SK.

The vectors u,v are called the projections of z on S and respectively SK.

Theorem 14.4.4 (Implicit function theorem. Version 2). Letm,n P N and set N :“ n`m.
Suppose that O Ă RN is an open set, F “ F pxq : O Ñ Rm is a C1 map and p0 P O is a
point satisfying the following properties.

(i) F pp0q “ 0.

(ii) The differential L “ dF pp0q : RN Ñ Rm is surjective.

Label the coordinates pxiq1ďiďN of x P RN so that

det

«

BF i

Bxn`j
pp0q

ff

1ďi,jďm

‰ 0.

Denote by S the codimension m coordinate plane defined by the equations

xn`1 “ ¨ ¨ ¨ “ xn`m “ 0.

Then there exist

‚ an open ball U Ă S centered at u0, the projection of p0 on S,

‚ an open ball V Ă SK centered at v0, the projection of p0 on SK and a C1-map
G : U Ñ V

with the following properties:

‚ V ˆ U Ă O;

‚ If pv,uq P U ˆ V , then F pu,V q “ 0 if and only if v “ Gpuq.

[\
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Remark 14.4.5. Under the assumptions of the above theorem, we say that we can solve
for xn`1, . . . , xn`m in terms of the remaining variables x1, . . . , xn. The map G is then
described by m functions g1, . . . , gm, depending on the “free” variables x1, . . . , xn, such
that

xm`1 “ g1
`

x1, . . . , xn
˘

, . . . , xm “ gm
`

x1, . . . , xn
˘

,

if and only if

F 1
`

x1, . . . , xm, xm`1, . . . , xm`n
˘

“ ¨ ¨ ¨ “ Fm
`

x1, . . . , xm, xm`1, . . . , xm`n
˘

“ 0,

where F 1pxq, . . . , Fmpxq are the components of F pxq P R. In the notation of the above
theorem we have

v “ pxn`1, . . . , xn`mq, u “
`

x1, . . . , xn
˘

. [\

Example 14.4.6. Consider a function f : Rn`1 Ñ R. We denote by px0, x1, . . . , xnq the
Cartesian coordinates Rn`1. Consider the zero set of f ,

Zf :“
␣

px0, x1, . . . , xnq P Rn`1; fpx0, x1, . . . , xnq “ 0
(

.

Assume for some x0 “ px
0
0, x

1
0, . . . , x

n
0 q we have x0 P Zf and the differential of f at x0 is

surjective as a linear map Rn`1 Ñ R.
The differential of f at x0 is the 1ˆ pn` 1q matrix

“

Bx0fpx0q, Bx1fpx0q, . . . , Bxnfpx0q
‰

.

The differential dfpx0q is surjective if and only if it is nonzero, i.e., one of the partial
derivatives

Bx0fpx0q, Bx1fpx0q, . . . , Bxnfpx0q

is nonzero. Without loss of generality we can assume that Bx0fpx0q ‰ 0.

Consider the coordinate subspace S described by x0 “ 0. Explicitly,

S “
␣

p0, x1, . . . , xnq; x1, . . . , xn P R
(

.

Loosely speaking, the implicit function theorem says that, in a neighborhood of x0, we
can solve the equation

fpx0, x1, . . . , xnq “ 0

uniquely for x0 in terms of x1, . . . , xn.

More precisely, the implicit function theorem states that there exists an open (n-
dimensional) ball Bn in S – Rn centered at u0 “ px

1
0, . . . ,x

n
0 q, an open interval I Ă R

containing v0 “ x00, and a C1-function g : B Ñ I such that

px0, x1, . . . , xnq P I ˆBn and fpx0, x1, . . . , xnq “ 0ðñx0 “ gpx1, . . . , xnq.

The function g is only locally defined, and it is called the implicit function determined by
the equation

fpx0, x1, . . . , xnq “ 0,
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i.e.,

fpx0, x1, . . . , xnq “ 0ðñx0 “ gpx1, . . . , xnqðñf
`

gpx1, . . . , xnq, x1, . . . , xn
˘

“ 0.
(14.4.1)

We often express this by saying that, in an open neighborhood of x0, along the zero set
Zf the coordinate x0 is a function of the remaining coordinates

x0 “ x0px1, . . . , xnq

and thus, locally, Zf is the graph of a C1-function depending on the n variables px1, . . . , xnq.

From the equality fpx0, x1, . . . , xnq “ 0 we can determine the partial derivatives of x0

at u0, when x
0 is viewed as a function of px1, . . . , xnq . Derivating the equality

fpx0, x1, . . . , xnq “ 0

with respect to xi, i “ 1, . . . , n, while keeping in mind that x0 is really a function of the
variables x1, . . . , xn, we deduce from the chain rule that

f 1x0
Bx0

Bxi
` f 1xi “ 0ñ

Bx0

Bxi
“ ´

f 1
xi

f 1
x0
.

Hence

Bx0

Bxi
pu0q “ g1xipu0q “ ´

f 1
xi

`

x00,u0

˘

f 1
x0

`

x00,u0

˘ . (14.4.2)

[\

Example 14.4.7. Consider the subset

Z “
␣

px, y, zq P R3; 2xyz “ 2
(

.

A portion of this set is depicted in Figure 14.3.

Figure 14.3. The surface in R3 described by the equation 2xyz “ 2.

Note that Z ‰ H since p1, 1, 1q P Z. Equivalently, Z is the zero set of the function
f : R3 Ñ R, fpx, y, zq “ 2xyz ´ 2. Note that

Bf

Bz
“ xy2xyz ln 2,

Bf

Bz
p1, 1, 1q “ 2 ln 2.
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The implicit function theorem shows that there exists a small open ball B in R2 centered
at p1, 1q, an open interval I Ă R centered at 1 and a C1-function g : B Ñ I such that

px, y, zq P Z X
´

B ˆ I
¯

ðñz “ gpx, yq.

In other words, in an open neighborhood of p1, 1, 1q, the set Z is the graph of a C1-function
z “ zpx, yq. Let us compute the partial derivatives of zpx, yq at p1, 1q.

Derivating with respect to x the equality 2xyz “ 2 in which we treat z as a function
of the variables px, yq we deduce

pyz ` xyBxzq2
xyz ln 2 “ 0ñ x

Bz

Bx
` zy “ 0ñ

Bz

Bx
“ ´

zy

x
.

When px, yq “ p1, 1q, we have z “ 1 and we deduce

Bz

Bx
p1, 1q “ ´1.

We can give an alternate verification of this equality. Namely, observe that we can solve
for z explicitly the equality 2xyz “ 2. More precisely, we have

log2

´

2xyz
¯

“ log2p2q ñ xyz “ 1ñ z “
1

xy
ñ
Bz

Bx
“ ´

1

x2y
ñ
Bz

Bx
p1, 1q “ ´1. [\

Example 14.4.8. Consider the map

F : R3 Ñ R2, F px, y, zq “

„

u
v

ȷ

“

„

xyz ´ 2
x` y ` z ´ 4

ȷ

.

The zero set Z of F consists of the points px, y, zq P R3 satisfying the equations

xyz “ 2, x` y ` z “ 4. (14.4.3)

Note that p1, 1, 2q P Z. The Jacobian of the map F at a point px, y, zq P R3 is the
2ˆ 3-matrix

J “ Jpx, y, zq “

»

—

–

Bu
Bx

Bu
By

Bu
Bz

Bv
Bx

Bv
By

Bv
Bz

fi

ffi

fl

“

„

yz xz xy
1 1 1

ȷ

.

Consider the minor of the above matrix determined by the y and z columns,

det

»

–

xz xy

1 1

fi

fl “ xz ´ xy “ xpy ´ zq.

Note that this minor is nonzero at the point px, y, zq “ p1, 1, 2q. The implicit function
theorem then implies that, near p1, 1, 2q we can solve (14.4.3) for y, z in terms of x. In other
words, there exists a tiny (open) box B centered at p1, 1, 2q, such that the intersection of
Z with B coincides with the graph of a C1-map

I Q x ÞÑ
`

ypxq, zpxq
˘

P R2,
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where I is some open interval on the x-axis centered at x “ 1. To find the derivatives of
ypxq and zpxq at x “ 1 we derivate (14.4.3) with respect to x keeping in mind that y and
z depend on x. We deduce

yz ` xzy1 ` xyz1 “ 0, 1` y1 ` z1 “ 0.

At the point px, y, zq “ p1, 1, 2q we have yz “ xz “ 2, xy “ 1, and the above equations
become

"

2y1 ` z1 “ ´2
y1 ` z1 “ ´1.

Note that the matrix of this linear system is the sub-matrix of Jp1, 1, 2q corresponding to
the y, z columns. This matrix is nondegenerate so we can solve uniquely the above system.
In fact, if we subtract the second equation from the first we deduce y1 “ ´1. Using this
information in the 2nd equation we deduce z1 “ 0. Hence

y1pxq
ˇ

ˇ

x“1
“ ´1, z1pxq

ˇ

ˇ

x“1
“ 0. [\

14.5. Submanifolds of Rn

The implicit function theorem discussed in the previous section leads to a very important
concept that clarifies and generalizes our intuitive concepts of curves and surfaces.

14.5.1. Definition and basic examples. A submanifold of dimension m in the n-
dimensional Euclidean space Rn is a set that locally “feels” like an m-dimensional vector
subspace of Rn. This is not very precise and we will address this lack of precision in
Definition 14.5.1. Before we do this we want to build some intuition. Let us consider a
controversy that plagued the humanity for centuries.

We now know that the surface of the Earth is spherical, but this was not what people
initially believed. Anybody that walked in a wide open field could see clearly that the
Earth is “obviously flat” as far as the eyes can see. The problem is that “as far as the
eyes can see” is not far enough when compared to the size of the Earth. Our eyesight can
only reach as far as the horizon: this is where the Earth’s surface begins “to bend”.

This phenomenon is not restricted to spheres. Take a surface in R3, say the surface in
Figure 14.4. Any tiny region on this surface is nearly flat, and it can appear to be so to
an inhabitant on this surface.

Another way to express it is to say that any tiny region on this surface together with
a tiny region around it but outside the surface can be straightened so it now looks like a
tiny region of the vector subspace R2 sitting in R3.

For example, the origin p0, 0, 0q lives on the surface depicted in Figure 14.4. In Figure
14.5 we depicted the image of the tiny region |x|, |y| ă 0.2 of this surface containing the
origin magnified by a factor of 10. In fact, if we push the magnification factor to 8, then
this tiny region will approach a two-dimensional vector subspace of R3 that is intimately
related to the surface namely, the plane tangent to the surface at the origin.
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Figure 14.4. The surface z “ ´x3
` x2

´ 2y2
` 3x´ 4y, |x|, |y| ă 2.

Figure 14.5. The tiny region of the surface z “ ´x3
`x2

´2y2
`3x´4y corresponding

to |x|, |y| ă 0.2 could seem flat under magnification.

The local straightening property is indeed the defining feature of a surface in R3. The
next definition is a mouthful but it describes in precise terms the essential features of
a surface and its higher dimensional cousins, the submanifolds of Euclidean spaces. Let
n P N, m P N0, m ď n and k P NY t8u.

Definition 14.5.1 (Submanifolds). An m-dimensional Ck-submanifold of Rn is a subset
X Ă Rn such that, for any p0 P X, there exists a pair pU,Ψq with the following properties.

(i) U is an open neighborhood of p0 in Rn,
(ii) Ψ : UÑ Rn is a Ck-diffeomorphism. We set q0 :“ Ψpp0q, U :“ Ψ

`

U
˘

.

(iii) If Rm ˆ 0 denotes the coordinate subspace

Rm ˆ 0 “
!

`

x1, . . . , xm, xm`1, . . . , xn
˘

P Rn; xm`1 “ ¨ ¨ ¨ “ xn “ 0
)

,

then q0 P Rm ˆ 0 and Ψ
`

X X U
˘

“
`

Rm ˆ 0
˘

X U .



482 14. Applications of multi-variable differential calculus

An open set U as above is called a coordinate neighborhood of p0 adapted to X. The pair
pU,Ψq is called a straightening diffeomorphism near p0. The induced map Ψ : XXUÑ Rm
is called a local coordinate chart of X at p0. The inverse map Ψ´1 :

`

Rmˆ0
˘

XU Ñ XXU

is called a local parametrization of X near p0; see Figure 14.6. [\

X

U
U

Ψ

p
0

Figure 14.6. The map Ψ straightens the “curved” portion of X located in U.

Remark 14.5.2. (a) A local chart maps a piece of the m-dimensional submanifold X bi-
jectively onto an open subset of the “flat” m-dimensional space Rm. A local parametriza-
tion of X “deforms” an open subset of the “flat” m-dimenisonal space Rm bijectively onto
a piece of the m-dimensional submanifold.

Intuitively, a 1-dimensional submanifold of R3 is a curve, while a 2-dimensional sub-
manifold of R3 is a surface.

(b) If X Ă Rn is an m-dimensional submanifold, p0 P X and U is a coordinate neighbor-
hood of p0 adapted to X, then any open neighborhood V of p0 in Rn such that V Ă U is
also a coordinate neighborhood of p0 adapted to X. [\

Example 14.5.3. (a) A point in Rn is a 0-dimensional submanifold of Rn. An open
subset of Rn is an n-dimensional submanifold of Rn.4 [\

Our next result is a direct consequence of the inverse function theorem and describes
an alternate characterization of submanifolds.

Proposition 14.5.4 (Parametric description of a submanifold). Let m,n P N, m ă n.
Suppose that U Ă Rm is an open set and

Φ : U Ñ Rn, Φpuq “

»

—

–

Φ1puq
...

Φnpuq

fi

ffi

fl

is a Ck-parametrization, i.e., a Ck-map satisfying the following properties.

(i) The map Φ is injective.

4Can you verify this claim?
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(ii) The map Φ is an immersion, i.e., for any u P U the nˆm Jacobian matrix

JΦ :“
´

BujΦ
ipuq

¯

1ďiďn
1ďjďm

has maximal rankm, i.e., it is injective when viewed as a linear operator Rm Ñ Rn.
(iii) The inverse Φ´1 : ΦpUq Ñ U is continuous.

Then the following hold.

(A) The set X “ ΦpUq is an m-dimensional Ck-submanifold of Rn. (The map Φ is
referred to as a parametrization of X.)

(B) If ℓ P N, V Ă Rℓ is an open set and G : V Ñ Rn is a Ck-map such that
GpV q Ă X, then the map Φ´1 ˝G : V Ñ U is Ck.

Proof. Fix u0 P U and set x0 :“ Φpu0q. The Jacobian matrix JΦpu0q is an nˆm matrix with (maximal) rank m.

Thus (see [34, Thm.6.1]) there exist m rows such that the matrix determined by these rows and all the m columns

of JΦpx0q is invertible. Without loss of generality we can assume that these m rows are the first m rows. We denote
by Jm

Φ pu0q this mˆm matrix. Define

F : U ˆ Rn´m Ñ Rn, F pu,vq “

»

—

—

—

—

—

—

—

—

—

–

Φ1puq
...

Φmpuq
Φm`1puq ` v1

...

Φnpuq ` vn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that F pu0,0q “ Φpu0q “ p0. The Jacobian matrix of F and pu0,0q is the n ˆ n matrix with the block

decomposition

JF pu0,0q “

»

–

Jm
Φ pu0q 0mˆpn´mq

Apn´mqˆm 1n´m

fi

fl ,

where 0mˆpn´mq denotes the m ˆ pn ´mq matrix with all entries equal to 0 and Apn´mqˆm is an pn ´mq ˆm
matrix whose explicit description is irrelevant for our argument.

Since det Jm
Φ pu0q is invertible, we deduce that det JF pu0,0q ‰ 0, so JF pu0,0q is invertible. We can then apply

the Inverse Function Theorem to conclude that there exists ρ ą 0 sufficiently small such that the restriction of F
to the open set Bm

ρ pu0q ˆ Bn´m
ρ p0q Ă Rm ˆ Rn´m is a diffeomorphism. Since F´1 is continuous, there an open

neighborhood O of p0 in Rn such that

OX ΦpUq “ Φ
`

Bm
ρ pu0q

˘

Now choose r ă ρ sufficiently small so that, if Wr “ Bm
r pu0q ˆB

n´m
r p0q, then Wr :“ F pWrq Ă O.

The inverse Ψ : Wr Ñ Wr Ă Rm ˆ Rn´m “ Rn is a local straightening of X “ ΦpUq around Φpu0q. It sends
Wr XX to the m-dimensional ball Bm

r pu0q ˆ 0n´m Ă Rm ˆ Rn´m.

Suppose G is as in the statement of the proposition. Fix v0 P V. Then there exists u0 P U such that
Φpu0q “ Gpv0q. Choose a local straightening Ψ of X around Φpu0q. Now observe that the restriction Φ´1 ˝G to

the open neighborhood G´1pWq of v0 is equal to Ψ ˝G. [\

Remark 14.5.5. A C1-map Φ : I Ñ Rn, I Ă R interval, is an immersion if and only if
the derivative Φ1ptq is nonzero for any t P I. [\
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Example 14.5.6. (a) Let p P Rn, v P Rnzt0u. The line ℓp,v is a 1-dimensional submani-
fold. To see this consider the map

γ : RÑ Rn, γptq “ p` tv.

This is an immersion since 9γptq “ v ‰ 0, @t P R. It is also an injection since v ‰ 0.
According to (11.1.5), the image of γ is the line ℓp,v. The inverse

γ´1 : ℓp,v Ñ R

is given by

γ´1pqq “
1

}v}
xq ´ p,vy.

The above map is clearly continuous.

(b) Consider the map Φ : p0, πq Ñ R2,

Φpθq “ pcos θ, sin θq.

This map is injective (why?) and it is an immersion since

Φ1pθq “ p´ sin θ, cos θq, }Φ1pθq}2 “ 1 ‰ 0.

Its image is the half circle centered at the origin and contained in the upper half space
ty ą 0u. Its inverse associates to a point px, yq on this circle the angle θ “ arccosx P p0, πq.
The map px, yq ÞÑ arccosx is obviously continuous.

(c) A helix H in R3 is a curve described by the parametrization (see Figure 14.7)

α : p0, 1q Ñ R3, αptq “
`

r cospatq, r sinpatq, bt
˘

,

where r, a, b are fixed nonzero real numbers r ą 0. Note that the above map is an
immersion since

} 9αptq}2 “ a2r2 sin2 t` a2r2 cos2 t` b2 “ a2r2 ` b2 ‰ 0.

The map α is clearly injective since its third component bt is such. Its inverse associates
to a point px, y, zq on the helix, the real number t “ z{b. The map px, y, zq ÞÑ z{b is
obviously continuous. In Figure 14.7 we have depicted an example of helix with r “ 1,
a “ 4π, b “ 1.

(d) Consider the map Φ : p´π, πq ˆ p´π, πq Ñ R3 given by

Φpθ, φq “

»

–

p3` cosφq cos θ
p3` cosφq sin θ

sinφ

fi

fl .

This is an injective immersion; see Exercise 14.13. Its image is the torus in Figure
14.8. [\
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Figure 14.7. The helix described by the parametrization
`

cosp4πtq, sinp4πtq, 2t
˘

is
winding up a cylinder of radius r “ 1. During one second, it winds twice around the
axis of the cylinder while climbing up 2 units of distance.

Figure 14.8. A two-dimensional torus in R3.

Corollary 14.5.7 (Graphical description of a submanifold). Let m, k P N. Suppose that
U Ă Rm is an open set and F : Rm Ñ Rk is a C1-map. Then the graph of F ,

ΓF :“
!

px,F pxq
˘

P Rm ˆ Rk; x P U
)

Ă Rm ˆ Rk – Rm`k,

is an m-dimensional C1-submanifold of Rm ˆ Rk.
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Figure 14.9. The graph of the map f : p´2, 2q ˆ p´2, 2q Ñ R,
fpx, yq “ 3x2

` sinp3x2
` 3y2

q is a 2-dimensional submanifold of R3.

Proof. 5 Observe that the map Φ : Rm Ñ Rm`k , Φpxq “
`

x,F pxq
˘

is a parametrization.
The conclusion now follows from Proposition 14.5.4. [\

Remark 14.5.8. The condition (iii) in Proposition 14.5.4 is difficult to verify in concrete
situations. However, the parametrizations play an important role in integration problems
and it would be desirable to have a simple way of recognizing them. We mention below,
without proof, one such method.

Suppose that X Ă Rn is an m-dimensional submanifold, U Ă Rm is an open set and
Φ : U Ñ Rn is an injective immersion such that ΦpUq Ă X. Then Φ is a parametrization,
i.e., it satisfies assumption (iii) in Proposition 14.5.4. [\

The implicit function theorem coupled with the above corollary imply immediately
the following result. We let the reader supply the proof.

Proposition 14.5.9 (Implicit description of a submanifold). Let k,m, n P N, m ă n.
Suppose that U is an open subset of Rn and F : U Ñ Rm is a Ck-map satisfying

@x P U : F pxq “ 0ñ the differential dF pxq : Rn Ñ Rm is surjective. (14.5.1)

Then the set

tF “ 0u :“
␣

x P U Ă Rn;F pxq “ 0
(

is an pn´mq-dimensional Ck-submanifold of Rn. [\

Remark 14.5.10. Let us rephrase the above result in, hopefully, more intuitive terms.

5Remember the simple trick used in this proof. It will come in handy later.
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Recall that an m ˆ n matrix m ă n has maximal rank if and only if its rows are
linearly independent. The differential dF pxq : Rn Ñ Rm is surjective if and only if it has
maximal rank m. Denote by F 1, . . . , Fm the components map F : U Ñ Rm. Then the
rows of JF pxq correspond to the gradients of the components F j .

The zero set tF “ 0u is a subset U Ă Rn described by m equations in n unknowns

F 1px1, . . . , xnq “ 0, ¨ ¨ ¨ , Fmpx1, . . . , xnq “ 0.

The condition (14.5.1) is equivalent with the following transversality property.

If x P U and F 1pxq “ ¨ ¨ ¨ “ Fmpxq “ 0, then the gradients ∇F 1pxq, . . . ,∇Fmpxq are
linearly independent.

The above result shows that if the transversality condition is satisfied, then the com-
mon zero locus

ZpF 1, . . . , Fmq :“
␣

x P U ; F 1pxq “ ¨ ¨ ¨ “ Fmpxq “ 0
(

is a Ck-submanifold of Rn of dimension n´m. In this case we say that the submanifold
ZpF 1, . . . , Fmq Z is cut out transversally by the equations F jpxq “ 0, j “ 1, . . . ,m.

Note that the transversality is automatically satisfied if F pxq is a submersion, i.e., for
any x P U , the differential dF : Rn Ñ Rm is surjective.

As an illustration, consider the situation in Example 14.4.8. There we proved that the
equations

xyz “ 2, x` y ` z “ 4

satisfy the transversality conditions in a small open neighborhood U of the point p1, 1, 2q.
Thus in this neighborhood these equations describe a submanifold of dimension 3´2 “ 1,
i.e., a curve. [\

From Propositions 14.5.4 and 14.5.9 we deduce the following useful characterization
of submanifolds.

Theorem 14.5.11. Let m,n P N, m ă n, and X Ă Rn. The following statements are
equivalent.

(i) The set X is an m-dimensional submanifold of Rn.
(ii) For any x0 P X there exists an open neighborhood V of x0 and a submersion

F : V Ñ Rn´m such that

V XX “
␣

x P V ; F pxq “ 0
(

.

(iii) For any x0 P X there exists an open neighborhood V of x0, an open neighborhood
U of 0 in Rm and a parametrization Φ : U Ñ Rn such that

V XX “ Φ
`

U
˘

.

[\
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Outline of the proof. Proposition 14.5.4 shows that (iii)ñ (i) while Proposition 14.5.9
shows that (ii) ñ (i). The opposite implications (i) ñ (ii) and (i) ñ (iii) follow from the
definition of a submanifold. [\

Example 14.5.12 (The unit circle). The unit circle is the closed subset of R2 defined by

S1 :“
␣

px, yq P R2; x2 ` y2 “ 1
(

.

Then S1 is a curve in R2, i.e., a 1-dimensional submanifold of R2. To see this consider the
smooth function

f : R2 Ñ R, fpx, yq “ x2 ` y2 ´ 1.

Then S1 can be identified with the level set tf “ 0u. Note that df “ 2xdx` 2ydy. Hence
if px0, y0q P S1, then at least one of the coordinates x0, y0 is nonzero so that dfpx0, y0q ‰ 0
proving that the differential dfpx0, y0q : R2 Ñ R is surjective. The implicit function
theorem then implies that S1 is a 1-dimensional submanifold of R2. There are several
ways of constructing useful local coordinates.

For example, in the region y ą 0 the correspondence

S1 X ty ą 0u Ñ R, px, yq ÞÑ x

is a local coordinate chart. The corresponding parametrization is the map

p´1, 1q Ñ S1 X ty ą 0u, x ÞÑ
`

x,
a

1´ x2
˘

.

This follows from the fact that the portion S1 X ty ą 0u is the graph of the smooth map

F : p´1, 1q Ñ R, F pxq “
a

1´ x2.

Another very convenient choice is that of polar coordinates.

The location of a point p “ px, yq in the Cartesian plane R2, other than the origin 0, is

uniquely determined by two parameters: the distance to the origin r “ }p} “
a

x2 ` y2,
and the angle θ the vector p makes with the x-axis, measured counterclockwisely ; see
Figure 14.10.
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A

r

θ

p=(x,y)

Figure 14.10. Constructing the polar coordinates.

The Cartesian coordinates x, y are related to the parameters r, θ via the equalities
"

x “ r cos θ
y “ r sin θ.

(14.5.2)

Exercise 14.11 shows that the map

Ψ : p0,8q ˆ p0, 2πq Ñ R2, pr, θq ÞÑ pr cos θ, r sin θq

is a diffeomorphism whose image is the region R2
˚, the plane R2 with the nonnegative

x-semiaxis removed. The parameters pr, θq are called polar coordinates. Denote by S1˚
the circle S1 with the point A “ p1, 0q removed; see Figure 14.10. The inverse of the
diffeomorphism Ψ maps S1 to a portion line r “ 1 in the pr, θq plane. The correspondence
that associates to a point p P S1˚ the angle θ is a local coordinate chart. [\

Example 14.5.13 (The unit sphere). The unit sphere is the closed subset S2 of R3 defined
by

S2 :“
␣

px, y, zq P R3; x2 ` y2 ` z2 “ 1
(

.

Arguing exactly as in the case of the unit circle, we can invoke the implicit function
theorem to deduce that S2 is a surface in R3, i.e., 2-dimensional submanifold of R3.

Besides the Cartesian coordinates in R3 there are two other particularly useful choices
of coordinates. To describe them pick a point p “ px, y, zq P R3 not situated on the z-axis.
Note that the location of p is completely known if we know the altitude z of p and the
location of the projection of p on the px, yq-plane. We denote by q this projection so that
q “ px, yq P R2; see Figure 14.11.

The location of q is completely determined by its polar coordinates pr, θq so that the
location of p is completely determined if we know the parameters r, θ, z. These parameters



490 14. Applications of multi-variable differential calculus

are called the cylindrical coordinates in R3. The Cartesian coordinates are related to the
cylindrical coordinates via the equalities

$

&

%

x “ r cos θ
y “ r sin θ
z “ z.

(14.5.3)

x

y

z

p

q

ρ

θ

ϕ

r

Figure 14.11. Constructing the cylindrical and spherical coordinates.

Observe that if we know the distance ρ of p to the origin, ρ “ }p} “
a

x2 ` y2 ` z2,
and the angle φ P p0, πq the vector p makes with the z-axis, then we can determine the
altitude z via the equality z “ ρ cosφ and the parameter r via the equality r “ ρ sinφ;
see Figure 14.11. This shows that the parameters r, θ, φ uniquely determine the location
of p. These parameters are called the spherical coordinates in R3.

The Cartesian coordinates are related to the spherical coordinates via the equalities
$

&

%

x “ ρ sinφ cos θ
y “ ρ sinφ sin θ
z “ ρ cosφ.

(14.5.4)

Exercise 14.11 shows that the equalities (14.5.3) and (14.5.4) describe diffeomorphisms
defined on certain open subsets of R3. Note that in spherical coordinates the unit sphere
S2 is described by the very simple equation ρ “ 1. The position of a point on S2 not
situated at the poles is completely determined by the two angles φ and θ. Intuitively, φ
gives the Latitude of the point, while θ determines the Longitude. [\
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14.5.2. Tangent spaces.

Definition 14.5.14. Let m,n P N, m ď n, suppose that X Ă Rn is an m-dimensional
submanifold of Rn and x0 P X.

(i) A path in X through x0 is a C1-path γ : I Ñ Rn, I Ă R open interval, such that
0 P I, γp0q “ x0 and γpIq Ă X; see Figure 14.12.

(ii) A vector v P Rn is said to be tangent to X at x0 if there exists a path γ : I Ñ Rn
in X through x0 such that 9γp0q “ v. We denote by Tx0X the set of vectors
tangent to X at x0. We will refer to Tx0X as the tangent space to X at x0.

[\

X

x
0

g

Figure 14.12. A path γ in the surface X Ă R3 through a point x0 P X. The velocity
of γ at x0 is, by definition, a vector tangent to X at x0.

Example 14.5.15. Let m,n P N, m ă n. Denote by Rm ˆ 0 the subspace of Rn defined
by the equations xm`1 “ ¨ ¨ ¨ “ xn “ 0. Fix an open set U Ă Rn and denote by Y the
intersection Y :“ U X pRm ˆ 0q. Then Y is an m-dimensional submanifold of Rn. We
want to prove that

Ty0
Y “ Rm ˆ 0, @y0 P Y. (14.5.5)

In particular Ty0
Y is a vector subspace of Rn.

Clearly Ty0
Y Ă Rmˆ0. To see this observe that if γ : I Ñ Rn is a path in Y through

y0, then it has the form

γptq “

»

—

—

—

—

—

—

—

—

–

γ1ptq
...

γmptq
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rn.

In particular, 9γp0q P Rm ˆ 0.
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To prove that Rm ˆ 0 Ă Ty0
Y consider a vector

v “

»

—

—

—

—

—

—

—

—

—

—

–

v1

...
vm

0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rm ˆ 0.

Then, there exists ε ą 0 sufficiently small such that x0 ` tv P U , @t P p´ε, εq. The path

γ : p´ε, εq Ñ Rn, γptq “ x0 ` tv

is in Y through y0 and 9γp0q “ v, i.e., v P Ty0
Y . [\

The above example is a manifestation of a more general phenomenon.

Proposition 14.5.16. Let m,n P N and suppose that X Ă Rn is an m-dimensional C1-
submanifold. Then for any x0 P X the tangent space Tx0X is an m-dimensional vector
subspace of Rn.

Proof. Let x0 P X. Fix a straightening diffeomorphism Ψ : U Ñ Rn of X at x0 and set
U :“ ΨpUq. Denote by Φ the inverse Ψ´1 : U Ñ Rn and by L the differential of Φ at
pu0,0q. Then Ψpx0q “ pu0,0q P Rm ˆ 0 Ă Rn. Note that ω is a path in X through x0 if
and only if γ :“ Ψ ˝ ω is a path in Rm ˆ 0 through pu0,0q. Moreover ω “ Φ ˝ γ. Thus
any path ω in X through x0 has the form ω “ Φ ˝ γ for some path γ in Rm ˆ 0 through
pu0,0q and (see Exercise 13.7)

9ωp0q “ L 9γp0q.

This proves that

Tx0X “ L
`

Tx0,0Rm ˆ 0
˘ p14.5.5q

“ L
`

Rm ˆ 0
˘

.

Thus Tx0X is the image of the m-dimensional vector subspace Rmˆ 0 via the linear map
L. Since L is injective, the image also has dimension m. [\

The above proof leads to the following useful consequence.

Corollary 14.5.17. Let m,n P N, m ă n. Suppose that U Ă Rm is open and Φ : U Ñ Rn
is a parametrization (see Proposition 14.5.4) with image X “ ΦpUq. If u0 P U and
x0 “ Φpu0q, then the tangent space Tx0X is equal to the range of the differential dΦpu0q,
i.e.,

Tx0X “ dΦpu0qRm.
In particular, the vectors

Bu1Φpu0q, Bu2Φpu0q, . . . , BumΦpu0q

form a basis of Tx0X. [\
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Proposition 14.5.18. Let m,n P N, m ă n. Suppose that V Ă Rn is open and
F : V Ñ Rm is a C1-map such that, for any x P X “ F´1p0q, the differential dF pxq : Rn Ñ Rm
is onto, so the Jacobian matrix JF pxq has rank m. Then X is a smooth submanifold of
Rn of dimension n´m and

@x0 P X, Tx0X “ ker dF px0q “
␣

v P Rn; dF px0qv “ 0
(

.

Proof. The fact that X is a smooth submanifold of dimension n ´ m follows from the
implicit function theorem; see Proposition 14.5.9. Let x0 P X. The range R

`

dF px0q
˘

of the linear operator dF px0q : Rn Ñ Rm has dimension m since this linear operator is
surjective. We deduce

dimker dF px0q “ n´ dimR
`

dF px0q
˘

“ n´m “ dimTx0X.

Hence it suffices to show that Tx0X Ă ker dF px0q.

Let v P Tx0X. Thus, there exists a C1-path γ : p´ε, εq Ñ Rn such that γptq P X,
@t P p´ε, εq, γp0q “ x0, 9γp0q “ v and consequently

F
`

γptq
˘

“ 0, @t P p´ε, εq.

Derivating the last equality at t “ 0 using the chain rule we deduce

0 “
d

dt

ˇ

ˇ

ˇ

t“0
F
`

γptq
˘

“ dF
`

γp0q
˘

9γp0q “ dF px0qv ñ v P ker dF px0q.

[\

Remark 14.5.19. The last result has a more geometric equivalent reformulation. The
map F in Proposition 14.5.18 has m components,

F pxq “

»

—

–

F 1pxq
...

Fmpxq

fi

ffi

fl

.

The differential of F is represented by the mˆ n matrix

dF pxq “

»

—

–

dF 1pxq
...

dFmpxq

fi

ffi

fl

,

where the i-th row describes the differential of F i. Note that

v P ker dF pxqðñ dF ipxqpvq “ 0, @i “ 1, . . . ,m

ðñx∇F ipxq,vy “ 0, @i “ 1, . . . ,mðñv K ∇F ipxq, @i “ 1, . . . ,m

ðñ v1Bx1F
ipx0q ` v

2Bx2F
ipx0q ` ¨ ¨ ¨ ` v

nBxnF
ipx0q “ 0, @i “ 1, . . . ,m [\
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To put the above remark in its proper geometric perspective we need to survey a few
linear algebra facts. For a given vector subspace V Ă Rn we denote by V K the set of
vectors x P Rn such that x K v, @v P V . The set V K is called the orthogonal complement
of V in Rn. Often we will use the notation x K V to indicate x P V K. The orthogonal
complement enjoys several useful properties.

Proposition 14.5.20. Let n P N and suppose that V is a vector subspace of Rn. Then
the following hold.

(i) The orthogonal complement V K is also a vector subspace of Rn. Moreover, if
the vectors v1, . . . ,vm span V , then

x P V Kðñx K vi, @i “ 1, . . . ,m.

(ii) For any x P Rn there exists a unique v “ vpxq P V such that x´ v P V K. This
vector is called the orthogonal projection of x on V .

(iii) dimV ` dimV K “ n “ dimRn.
(iv) pV KqK “ V .

[\

For a proof of the above proposition and additional information we refer to [34, Sec.
5.3].

Corollary 14.5.21. Let k, n P N, k ă n. Suppose that U Ă Rn is an open set and

F 1, . . . , F k : U Ñ R

are C1-functions. Set

X :“
␣

x P Rn; F 1pxq “ ¨ ¨ ¨ “ F kpxq “ 0
(

.

Assume that

for any x P X, the vectors ∇F 1pxq, . . . ,∇F kpxq are linearly independent . (14.5.6)

Then the following hold.

(i) The subset X is a C1-submanifold of dimension m “ n´ k.

(ii) For any x P X we have

TxX “ span
␣

∇F 1pxq, . . . ,∇F kpxq
(K
.

(iii) For any x P X, v P Rn we have

v K TxXðñv P spant∇F 1pxq, . . . ,∇F kpxq
(

. (14.5.7)
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Proof. Consider the map F : U Ñ Rk,

F pxq “

»

—

–

F 1pxq
...

F kpxq

fi

ffi

fl

.

The Jacobian matrix JF pxq that represents dF pxq is a k ˆ n matrix and its rows are
described by the differentials dF 1pxq, . . . , dF kpxq; see Example 13.2.7. The assumption
(14.5.6) shows that for x P X the (row) rank of the matrix JF pxq is k. This implies that,
for any x P X, the operator JF pxq is onto; see [34, Sec. 2.7]. Proposition 14.5.18 now
implies that X is a C1-submanifold of dimension m “ n´ k.

From Remark 14.5.19 and Proposition 14.5.20(i) we deduce

TxX “
`

span
␣

∇F 1pxq, . . . ,∇F kpxq
( ˘K

.

The equivalence (14.5.7) is now a consequence of Proposition 14.5.20(iv). [\

Example 14.5.22 (Hypersurfaces). A hypersurface in Rn is a C1-submanifold of dimen-
sion n´ 1. We can use Corollary 14.5.21 to produce hypersurfaces as follows.

Suppose that U Ă Rn is an open subset and f : U Ñ R is a C1-function such that

@x P U, fpxq “ 0ñ ∇fpxq ‰ 0 .

Then the zero set of f ,

X :“
␣

u P U ; fpuq “ 0
(

is a hypersurface in Rn. Moreover, for all x0 P X, the tangent space of X at x0 is a
hyperplane (through 0) and ∇fpx0q is a normal vector of this hyperplane. In particular,
it is described by the equation

Tx0X “
␣

v P Rn; x∇fpx0q,vy “ 0
(

.

As an example, consider a C1-function h : R2 Ñ R. As we know, its graph

Γh :“
␣

px, y, zq P R3; z “ hpx, yq
(

is a hypersurface in R3. If we define f : R3 Ñ R, fpx, y, zq “ hpx, yq ´ z, we see that we
can alternatively characterize Γh as the zero set of f .

Note that for any px0, y0, z0q P R3 we have

∇fpx0, y0, z0q “

»

–

Bxhpx0, y0q
Byhpx0, y0q

´1

fi

fl ‰ 0.

Thus the tangent space to Γh at p0 “ px0, y0, z0q, z0 “ hpx0, y0q consists of the vectors

9r “

»

–

9x
9y
9z

fi

fl P R3
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such that x∇fpp0q, 9ry “ 0, i.e.,

Bxhpx0, y0q 9x` Byhpx0, y0q 9y ´ 9zðñ 9z “ Bxhpx0, y0q 9x` Byhpx0, y0q 9y.

We see that Tp0
Γh is the graph of the differential

dhpx0, y0q : R2 Ñ R, dhpx0, y0qp 9x, 9yq “ Bxhpx0, y0q 9x` Byhpx0, y0q 9y.

As an even more concrete example consider the sphere

Σ :“
␣

px, y, zq P R3; x2 ` y2 ` z2 “ 3
(

.

It is the zero set of the function fpx, y, zq “ x2 ` y2 ` z2 ´ 3. Note that

∇fpx, y, zq “

»

–

2x
2y
2z

fi

fl ‰ 0, @px, y, zq ‰ 0.

This shows that Σ is a hypersurface in R3. The point p0 “ p1, 1, 1q lives on this sphere
and

Tp0
Σ “ t 9r “ p 9x, 9y, 9zq P R3; 9x` 9y ` 9z “ 0

(

.

We treat the equality 9x ` 9y ` 9z “ 0 as a homogeneous linear system consisting of one
equation in the three unknowns 9x, 9y, 9z. We see that the solutions of this system satisfy
9x “ ´ 9y ´ 9z so that

»

–

9x
9y
9z

fi

fl “

»

–

´ 9y ´ 9z
9y
9z

fi

fl “ 9y

»

–

´1
1
0

fi

fl` 9z

»

–

´1
0
1

fi

fl

where 9y, 9z are arbitrary. This shows that the vectors
»

–

´1
1
0

fi

fl ,

»

–

´1
0
1

fi

fl

form a basis of Tp0
Σ. [\

Example 14.5.23. Consider the map

F : R4 Ñ R2, F pxq “

„

F 1pxq
F 2pxq

ȷ

“

»

–

}x}2 ´ 1

x1 ` x2 ` x3 ` x4 ´ 1

fi

fl

and the set

S :“
␣

x P R4; F pxq “ 0
(

.

In more concrete terms, S is the locus of points x P R4 satisfying the equations
"

}x}2 “ 1
x1 ` x2 ` x3 ` x4 “ 1.

Let us observe first that S ‰ H since the basic vectors e1, . . . , e4 P R4 belong to S. We
will prove that S is a 2-dimensional submanifold. In view of Corollary 14.5.21 it suffices
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to verify that for any x P S the gradients ∇F 1pxq and ∇F 2pxq are linearly independent,
i.e., they are not collinear.

Observe that

∇F 1pxq “ 2x, ∇F 2pxq “

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

.

Note that if ∇F 1pxq and ∇F 2pxq were collinear, then

x1 “ x2 “ x3 “ x4 “ c.

Since x P S we deduce 4c2 “ 1 and 4c “ 1. This is obviously impossible. Hence S is a
2-dimensional submanifold. To find the tangent space of S at e1 “ p1, 0, 0, 0q observe first
that

∇F 1pe1q “ 2e1 “ p2, 0, 0, 0q, ∇F 2pe1q “ p1, 1, 1, 1q,

and we deduce that Te1S consists of vectors p 9x1, 9x2, 9x3, 9x4q satisfying the homogeneous
linear system

9x1 “ 0
9x1 ` 9x2 ` 9x3 ` 9x4 “ 0.

This system is equivalent with the system in upper echelon form

2 9x1 “ 0
9x2 ` 9x3 ` 9x4 “ 0.

The general solution of the last system is
»

—

—

–

9x1

9x2

9x3

9x4

fi

ffi

ffi

fl

“ 9x3

»

—

—

–

0
´1
1
0

fi

ffi

ffi

fl

` 9x4

»

—

—

–

0
´1
0
1

fi

ffi

ffi

fl

.

This shows that the vectors
»

—

—

–

0
´1
1
0

fi

ffi

ffi

fl

,

»

—

—

–

0
´1
0
1

fi

ffi

ffi

fl

form a basis of the tangent space Te1S. [\

14.5.3. Lagrange multipliers. To understand the significance of the Lagrange multi-
plier theorem we consider simple question that can be addressed by it.

Example 14.5.24. Find the minimum of the cost function

h : R3 Ñ R, hpx, y, zq “ x` y ` z,

subject to the constraint

x2 ` y2 ` z2 “ 3.
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Note that the above constraint equation defines a submanifold S in R3, more precisely,
the sphere of radius

?
3 centered at the origin. The question can now be rephrased as

asking to find the minimum value of the restriction of h to S.

If you think of h as describing say the temperature in R3 at a given moment, then the
question asks to find the coldest point on the sphere S. The Lagrange multiplier theorem
describes a simple criterion for recognizing (local) minima or maxima of functions defined
on a submanifold of Rn. [\

Theorem 14.5.25. Let n P N. Suppose that S is a submanifold of Rn, O Ă Rn is an
open subset containing S and h : O Ñ R is a C1 function. If x0 is a local minimum (or
maximum) of the restriction of h to S, then

∇hpx0q K Tx0S, i.e.,
@

∇hpx0q,v
D

“ 0, @v P Tx0S.

Proof. Suppose that x0 is a local minimum of the restriction of h to S. (The local
maximum follows from this case applied to the function ´h.) Let v P Tx0S. We deduce
that there exists an open interval I Ă R containing 0 and a C1 path γ : I Ñ Rn such that
γptq P S, @t P I and 9γp0q “ v.

Since x0 is a local minimum of h on S, there exists r ą 0 such that

hpx0q ď hpxq, @x P Brpx0q X S.

On the other hand, since γ is continuous and γp0q “ x0, there exists ε ą 0 sufficiently
small such that p´ε, εq Ă I and γptq P Brpx0q, @t P p´ε, εq. Hence

hpγp0qq “ hpx0q ď hpγptqq, @t P p´ε, εq.

In other words, 0 P I is a local minimum of the function h ˝ γ : I Ñ R. Fermat’s theorem
then implies

0 “
d

dt

ˇ

ˇ

t“0
hpγptqq

p13.3.12q
“

@

∇hpγp0q q, 9γp0q
D

“ x∇hpx0q,vy.

[\

Corollary 14.5.26 (Lagrange Multipliers Theorem). Let k, n P N, k ă n. Suppose that
O Ă Rn is an open set, and we are given C1-functions h, F 1, . . . , F k : O Ñ R with the
property

F 1pxq “ ¨ ¨ ¨ “ F kpxq “ 0ñ the vectors ∇F 1pxq, . . . ,∇F kpxq are linearly independent .

(14.5.8)
If x0 P O minimizes h subject to the constraints

F 1pxq “ ¨ ¨ ¨ “ F kpxq “ 0,

then there exist real numbers λ1, . . . , λk such that

∇hpx0q “ λ1∇F 1px0q ` ¨ ¨ ¨ ` λk∇F kpx0q.
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The real numbers λ1, . . . , λk are called Lagrange multipliers.6

Proof. In view of Corollary 14.5.21, the assumption (14.5.8) implies that the constrained
set

S :“
␣

x P Rn; F 1pxq “ ¨ ¨ ¨ “ F kpxq “ 0
(

is a submanifold of Rn of dimension n´ k.

If x0 is a minimum of the restriction of h on S, then Theorem 14.5.25 shows that

∇hpx0q P pTx0Sq
K.

Corollary 14.5.21 implies that

∇hpx0q P span
␣

∇F 1px0q, . . . ,∇F kpx0q
(

“ pTx0Sq
K.

This implies the existence of numbers λ1, . . . , λk P R such that

∇hpx0q “ λ1∇F 1px0q ` ¨ ¨ ¨ ` λk∇F kpx0q.

[\

Example 14.5.27. We want to find the minimum of the function

h : R3 Ñ R, hpx, y, zq “ x` y ` z,

subject to the constraint

x2 ` y2 ` z2 “ 1.

The set S consisting of the points satisfying this constraint is the unit sphere in R3

centered at the origin. This is compact and, since h is continuous, its restriction to S has
an absolute minimum attained at some point p0 “ px0, y0, z0q .

Set fpx, y, zq :“ x2 ` y2 ` z2 ´ 1 so the constraint is described by the equation
fpx, y, zq “ 0. Since

∇fpx, y, zq “ 2

»

–

x
y
z

fi

fl ,

we deduce that if x2 ` y2 ` z2 “ 1, then ∇fpx, y, zq ‰ 0 so (14.5.8) is satisfied.

Corollary 14.5.26 implies that there exists a Lagrange multiplier λ P R such that

∇hpp0q “ λ∇fpp0qðñp1, 1, 1q “ λp2x0, 2y0, 2z0q.

We obtain the system of 4 equations
$

’

’

&

’

’

%

x20 ` y
2
0 ` z

2
0 “ 1
1 “ 2λx0
1 “ 2λy0
1 “ 2λz0,

6Observe that the number of Lagrange multipliers is equal to the number of constraints
F 1pxq “ 0, . . . , Fkpxq “ 0.
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in 4 unknowns, x0, y0, z0, λ. From the last 3 equations we deduce

x0 “ y0 “ z0 “
1

2λ
and

3 “ p2λq2px20 ` y
2
0 ` z

2
0q ñ 3 “ 4λ2 ñ λ2 “

3

4
ñ λ “ ˘

?
3

2
.

Thus p0 can only be one of the two points

p˘0 “ ˘
1
?
3

»

–

1
1
1

fi

fl .

Since hpp´0 q ă 0 ă hpp`0 q we deduce that the minimum of h subject to the constraint

x2 ` y2 ` z2 “ 1 is ´
?
3 and it is attained at the point p´0 . [\
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Exercise 14.1. Let n P N, r ą 0 and suppose that f : Rn Ñ R is a C1-function such that
fpxq “ 0, @x P Rn, }x} “ r. Show that there exists x0 P Rn such that

}x0} ă r and ∇fpx0q “ 0.

Hint. Use the proof of Rolle’s Theorem 7.4.5 as inspiration. [\

Exercise 14.2. Consider the symmetric 3ˆ 3-matrix

A “

»

–

1 2 3
2 4 5
3 5 6

fi

fl .

Show that the associated quadratic function QA : R3 Ñ R satisfies

QApx, y, zq “ x2 ` 4y2 ` 6z2 ` 4xy ` 6xz ` 10yz, @x, y, z P R. [\

Exercise 14.3. Suppose that A is a symmetric n ˆ n matrix with associated quadratic
function QA. Prove that

∇QApxq “ 2Ax, HpQA,xq “ 2A, @x P Rn. [\

Exercise 14.4. Suppose that f : Rn Ñ R is a C2-function and p0 P Rn. Show that the
Hessian of f at p0 is equal to the Jacobian of the map ∇f : Rn Ñ Rn at the same point.

[\

Exercise 14.5. Suppose that A is a symmetric, positive definite n ˆ n matrix. Prove
that there exists m ą 0 such that

QAphq ě m}h}2, @h P Rn.
Hint. Set

Σ1 :“
␣

h P Rn; }h} “ 1
(

, m :“ inf
hPΣ1

QAphq.

Show that Σ1 is compact and deduce that m ą 0. Next, use (14.2.1) to prove that QAphq ě m}h}2, @h. [\

Exercise 14.6. Consider the symmetric 2ˆ 2-matrix

A “

„

a b
b c

ȷ

.

(i) Prove that A is positive definite if and only if a ą 0 and ac´ b2 ą 0.

(ii) Prove that A is negative definite if and only if a ă 0 and ac´ b2 ą 0.

(iii) Prove that A is indefinite if and only if ac´ b2 ă 0.

Hint: (i) Investigate when QApx, 1q ą 0 for any x P R. (ii) Investigate when QApx, 1q ă 0 for any x P R. [\

Exercise 14.7. Let n P N and suppose that U Ă Rn is an open and convex set. A
function f : U Ñ R is called convex if

fptp` p1´ tqqq ď tfppq ` p1´ tqfpqq, @t P r0, 1s, p, q P U.
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(i) Prove that if the C1 function f : U Ñ R is convex, then

fpqq ě fppq ` x∇fppq, q ´ py, @p, q P U.
(ii) Prove that a C1 function f : U Ñ R is convex if and only if

x∇fppq ´∇fpqq,p´ qy ě 0, @p, q P U.

(iii) Prove that a C2 function f : U Ñ R is convex if and only if

xHpf,pqv,vy ě 0, @p P U, v P Rn.

Hint: Have a look at Section 8.3. and observe that f is convex if and only if for any p, q P Rn the function

gp,q : RÑ R, gp,qptq “ fp1´ tqp` tqq is convex. [\

Exercise 14.8. Consider the smooth function

f : p0,8q ˆ p0,8q Ñ R, fpx, yq “ xy `
1

x
`

1

y
.

(i) Show that the point p0 “ p1, 1q is the only critical point of f .

(ii) Show that the point p0 “ p1, 1q is a local minimum of f .

(iii) Prove that

fpx, yq ě 2
?
x` y, @x, y ą 0.

Hint: Use the inequality a2 ` b2 ě 2ab, @a, b P R.

(iv) Prove that the point p0 in (i) is the global minimum point of f , i.e.,

fpp0q ă fppq, @p P p0,8q ˆ p0,8q, p ‰ p0.

Hint: Set µ :“ infx,yą0 fpx, yq ě 0. Choose a sequence pxn, ynq such that

xn, yn ą 0, µ ď fpxn, ynq ă µ`
1

n
, @n ě 1.

Prove that pxn, ynq is bounded. Conclude using Bolzano-Weierstrass.

[\

Exercise 14.9. Let n P N and suppose that U, V Ă Rn are open sets.

(i) Prove that if G : V Ñ Rn is a C1 diffeomorphism and W Ă V is an open set,
then GpW q is also an open set.

(ii) Prove that if F : U Ñ Rn and G : V Ñ Rn are C1-diffeomorphisms and
F pUq Ă V , then the composition G ˝ F : U Ñ Rn is also a C1-diffeomorphism.

[\

Exercise 14.10. Prove Corollary 14.3.7. [\

Exercise 14.11. Prove that the following maps are C1 diffeomorphisms,7 and then find
their ranges and inverses.

7Exercise 13.3 asks you to compute the Jacobian matrices of these maps.
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F : p0,8q ˆ p0, 2πq Ñ R2, F pr, θq “ rr cos θ, r sin θsJ,

G : p0,8q ˆ p0, 2πq ˆ RÑ R3, Gpr, θ, zq “ rr cos θ, r sin θ, zsJ,

H : p0,8q ˆ p0, 2πq ˆ p0, πq Ñ R3, Hpρ, θ, φq “ rρ cosφ cos θ, ρ cosφ sin θ, ρ cosφsJ.

Hint. Prove that each of the above maps and then show that Corollary 14.3.7 applies in each of these cases. [\

Exercise 14.12. Let m,n P N, m ă n. Prove that if S1, S2 are two codimension m
coordinate subspaces of Rn, then there exists a bijective linear map T : Rn Ñ Rn such
that T pS1q “ S2. [\

Exercise 14.13. Consider the map Φ : p´π, πq ˆ p´π, πq Ñ R3 given by

Φpθ, φq “

»

–

p2` cosφq cos θ
p2` cosφq sin θ

sinφ

fi

fl .

Prove that Φ is an injective immersion. [\

Exercise 14.14. Prove Proposition 14.3.4. [\

Exercise 14.15. Consider the function f : R2 Ñ R, fpx, yq “ esinpxyq ´ 1.

(i) Show that fp1, 0q “ 0.

(ii) Show that there exist open intervals I centered at 1 and J centered at 0 and a
C1-function g : I Ñ R such that the intersection of the level set tf “ 0u with
the rectangle I ˆ J Ă R2 coincides with the graph of g.

(iii) Compute g1p1q.

[\

Exercise 14.16. Show that the equation

xy ´ z log y ` exz “ 1

be solved uniquely in the form y “ gpx, zq in an open neighborhood of p0, 1, 1q. [\

Exercise 14.17. Show that the system of equations
"

u2 ` v2 ´ x2 ´ y “ 0
u` v ´ x2 ` y “ 0,

can be solved uniquely for pu, vq in terms of px, yq in an open neighborhood of

pu0, v0, x0, y0q “ p1, 2, 2, 1q. [\
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Exercise 14.18. Consider the map

F : p0, 2πq ˆ p0, π{2q Ñ R3, F pθ, φq “

»

–

sinφ cos θ
sinφ sin θ
cosφ

fi

fl .

Show F is an injective immersion and then find its image. [\

Exercise 14.19. (a) Suppose that f : RÑ p0,8q is a C1-function. Its graph is the curve

Γf :“
␣

px, yq P R2; y “ fpxq
(

.

Denote by Sf the region in the space R3 swept when rotating Γf about the x axis; see
Figure 14.13. Show that Sf is 2-dimensional submanifold of R3.

Figure 14.13. The surface of revolution Sf , fpxq “ x2
` 1.

(b) Suppose that 0 ă a ă b and h : pa, bq Ñ R is a C1-function. Denote by Σh the region
in the space R3 swept when rotating Γh about the y-axis; see Figure 14.14 in the special
case hpxq “ px´ 1qpx´ 2q. Show that Σh is a 2-dimensional submanifold of R3.

Hint. (a) Show that Sf is described by the equation fpxq2 “ y2 ` z2 and then show that this equation satisfies

the assumptions of Proposition 14.5.9. (b) Show that Σh is the graph of a function depending on x, z i.e., it can be

described by an equation of the form y “ F px, zq for some C1-function F . [\

Exercise 14.20. Prove that the map F : p0,8q ˆ RÑ R3 given by

F pr, tq “

»

–

r cos t
r sin t
t

fi

fl

satisfies all the conditions (i)-(iii) in Proposition 14.5.4. (Its image is a helicoid and it is
depicted Figure 14.15.) [\

Exercise 14.21. Consider the function f : R3 Ñ R, fpx, y, zq “ xy ´ z log y ` exz ´ 1.
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Figure 14.14. The surface of revolution Σh, hpxq “ px´ 1qpx´ 2q, x P p1, 1.75q.

Figure 14.15. A helicoid.

(i) Show that there exists an open neighborhood U of p0 :“ p0, 1, 1q such that
∇fppq ‰ 0 @p P U .

(ii) Let U be as above. Show that the set

Z “
␣

p P U ; fppq “ 0
(

is a 2-dimensional submanifold of R3 containing p0.

(iii) Find a basis of the tangent space Tp0
Z.

[\

Exercise 14.22. Consider the map F : R4 Ñ R2 given by

F pu, v, x, yq “

„

u2 ` v2 ´ x2 ´ y
u` v ´ x2 ` y

ȷ

.
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Set p0 :“ p1, 2, 2, 1q P R4.

(i) Show that there exists an open neighborhood U of p0 in R4 such that, @p P U ,
the differential dF ppq is surjective as a linear map R4 Ñ R2, i.e., the Jacobian
JF ppq has rank 2 for any p P U .

(ii) Let U be as above. Show that the set

Z “
␣

p P U ; F ppq “ 0
(

is a 2-dimensional submanifold of R4 containing p0.

(iii) Find a basis of the tangent space Tp0
Z.

Hint. (i) Use the main theorem in Sec.6, Chapter 3 of [34]. [\

Exercise 14.23. Show that the set

S :“
␣

px, y, zq P R3; x2 ` y2 ´ z2 “ 1
(

is a 2-dimensional submanifold of R3 and then describe a basis of the tangent space to S
at the point p0 “ p1, 1, 1q. [\

Exercise 14.24. Let n P N, U Ă Rn an open set and S Ă U a C1-submanifold of
dimension k. Prove that if F : U Ñ Rn is a C1-diffeomorphism, then F pSq is also
C1-submanifold of Rn of dimension k.

Hint. Observe that F´1 : F pUq Ñ Rn is a diffeomorphism. Use Exercise 14.9 to show that if pV,Ψq is a

straightening diffeomorphism of S at p0, then pF pV q,Ψ ˝ F´1q is a straightening diffeomorphism of F pSq at

F pp0q. [\

Exercise 14.25. Let n P N.

(i) Prove that any vector subspace U Ă Rn is a submanifold of dimension dimU .

(ii) Suppose that X Ă Rn is a nonempty affine subspace and p0 P X. Define
T : Rn Ñ Rn, T pxq “ x´ p0. Show that U “ T pXq is a vector subspace of Rn.

(iii) Prove that the above map T is a diffeomorphism with image Rn.
(iv) Deduce that X is a submanifold of Rn of dimension dimU .

Hint. (i) requires linear algebra, namely that a basis of U can be extended to a basis of Rn. (ii),(iii) are easy. For

(iv) use (i)-(iii) and Exercise 14.24. [\

Exercise 14.26. Let n P N, n ě 2.

(i) Show that a hyperplane H of Rn is a submanifold of dimension n´ 1.

(ii) Let f : Rn Ñ R is a C1-function and set

Zf :“
␣

p P Rn; fppq “ 0
(

.

Suppose that ∇fppq ‰ 0, @p P Zf . According to Example 14.5.22 the zero set
Zf is a hypersurface of Rn, i.e., a submanifold of dimension n ´ 1. Fix a point
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p0 P Zf and set v0 :“ ∇fpp0q. Describe explicitly in terms of p0 and v0 the
hyperplane of Rn satisfying

p0 P H and Tp0
H “ Tp0

Zf .

This hyperplane is called the affine tangent space of Zf at p0.

[\

Exercise 14.27. Let n P N and suppose that U Ă Rn is an open set containing the origin
0. Consider a C1-function f : U Ñ R. We set

c0 “ fp0q, ci :“ Bxifp0q, i “ 1, . . . , n.

The graph of f ,

Γf :“
␣

px, yq P U ˆ R; y “ fpxq
(

Ă Rn`1,
is an n-dimensional submanifold of Rn`1. Note that the point p0 :“ p0, fp0q q belongs to
the graph.

(i) Describe explicitly in terms of the constants c1, . . . , cn a basis of the tangent
space Tp0

Γf .

(ii) Describe explicitly in terms of the constants c0, c1, . . . , cn a hyperplaneH Ă Rn`1
such that

p0 P H and Tp0
H “ Tp0

Γf .

Hint. Observe that Γf can be described as the hypersurface of Rn`1 described in the coordinates px1, . . . , xn, yq

by the equation fpx1, . . . , xnq ´ y “ 0. [\

Exercise 14.28. Find the minimum of hpx, y, z, tq “ t subject to the constraints

x2 ` y2 ` z2 ` t2 “ x` y ` z ` t “ 1.

Hint. Apply Corollary 14.5.26. You also need to use the results in Example 14.5.23. [\

Exercise 14.29. From among all rectangular parallelepipeds of given volume V ą 0 find
the ones that have the least surface area. [\

Exercise 14.30. Determine the outer dimensions of a plastic box, with no lid, with walls
of a given thickness δ and a given internal volume V that requires the least amount of
plastic to produce. [\

14.7. Exercises for extra credit

Exercise* 14.1. Let n P N and suppose that f : Rn Ñ R is a convex C1-function. Show
that the map

Φ : Rn Ñ Rn, Φpxq “ x`∇fpxq
is surjective.
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Hint. Use Exercise 12.25 to prove that for any y P R the function fy : Rn Ñ R, fypxq “ 1
2
}x}2 ` fpxq ´ xy,xy,

has at least one critical point. [\

Exercise* 14.2. Prove Proposition 14.5.9.

Hint. Use Version 2 of the implicit function theorem. [\

Exercise* 14.3 (Raleigh-Ritz). Let n P N and suppose that A is a symmetric n ˆ n
matrix. Define

qA : Rn Ñ R, qApxq “ xAx,xy, @x P Rn.
Set

µ :“ inf
}x}“1

qApxq.

(i) Show that there exists u P Rn such that }u} “ 1 and qApuq “ µ.

(ii) Use Lagrange multipliers to show that any vector u as above is an eigenvector
of A corresponding to the eigenvalue µ, i.e., Au “ µu.

Hint. You may want to have a look at Exercise 13.5. [\



Chapter 15

Multidimensional
Riemann integration

In this chapter we want to extend the concept of Riemann integral to functions of several
variables. While there are many similarities, the higher dimensional situation displays
new phenomena and difficulties that do not have a 1-dimensional counterpart.

15.1. Riemann integrable functions of several
variables

15.1.1. The Riemann integral over a box. In this chapter, for simplicity, we define
a box in Rn to be a closed box in the sense of Definition 12.2.8, i.e., a closed set B of the
form

B “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns, (15.1.1)

where a’s and b’s are real numbers satisfying a1 ď b1, . . . , an ď bn. Note that we allow the
possibility that ai “ bi for some i’s. In particular, a set consisting of a single point is a
very special case of box.

A vertex of the box in (15.1.1) is a point x “ px1, . . . , xnq such that

xi “ ai or xi “ bi, @i “ 1, . . . , n.

A facet of B is the set obtained by intersecting B with a coordinate hyperplane of the
form xi “ ai or x

i “ bi.
1

The n-dimensional volume of the box B in (15.1.1) is the nonnegative real number

volpBq “ volnpBq :“ pb1 ´ a1qpb2 ´ a2q ¨ ¨ ¨ pbn ´ anq. (15.1.2)

1In dimension 2 a box is a rectangle and the facets are the boundary edges of that rectangle.

509
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The box B is called nondegenerate if volnpBq ą 0, i.e., ai ă bi, @i “ 1, . . . , n. Note that
when n “ 1, a box B in R is a compact interval and vol1pBq is precisely the length of the
interval B. In this case the facets of B are the endpoints of the interval B

Recall that the diameter of a set S Ă Rn is (see Definition 12.3.8 )

diampSq “ sup
x,yPS

distpx,yq.

It is not hard to see that if B is the box in (15.1.1), then

diampBq “
a

pb1 ´ a1q2 ` ¨ ¨ ¨ ` pbn ´ anq2.

Note that the intersection of two boxes B,B1 is either empty, or another box. For example
if

B “ I1 ˆ ¨ ¨ ¨ ˆ In, B1 “ I 11 ˆ ¨ ¨ ¨ ˆ I
1
n,

the Ij , I
1
k Ă R are compact intervals, then B XB1 is the (possibly empty) box

pI1 X I
1
1q ˆ ¨ ¨ ¨ ˆ pIn X I

1
nq.

chamber

Figure 15.1. A partition of a 2-dimensional box. The sum of the areas of the chambers
is equal to the area of the big box that contains them.

Definition 15.1.1. Let n P N and suppose that

B “ ra1, b1s ˆ ra2, b2s ˆ ¨ ¨ ¨ ˆ ran, bns Ă Rn

is a nondegenerate box.

(a) A partition of B is an n-tuple P “ pP 1, . . . ,P nq, where, for each j “ 1, . . . , n, P j , is
a partition of the interval raj , bjs; see Definition 9.2.1.

(b) A chamber of P is a box of the form I1 ˆ ¨ ¨ ¨ ˆ In, where Ij Ă raj , bjs is an interval of
the partition P j . We denote by C pP q the set of chambers of a partition P and by PpBq
the set of partitions of B.

(c) The mesh size or mesh of a partition P is the positive number

}P } :“ max
CPC pP q

diampCq.

(d) A partition P 1 of B is said to be finer than another partition P , and we denote this
by P 1 ą P , if any chamber of P 1 is contained in some chamber of P . [\
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The next result is immediate in dimension 1 and, although it is very intuitive, it takes
a bit more work in higher dimensions. We leave its proof to you as an exercise.

Lemma 15.1.2. Let n P N. Suppose that B Ă Rn is a nondegenerate box and P is a
partition of B. Then (see Figure 15.1)

volnpBq “
ÿ

CPC pP q

volnpCq. (15.1.3)

[\

✍ In the sequel, for the sake of readability, we introduce the following notation:

mSpfq :“ inf
xPS

fpxq, MSpfq :“ sup
xPS

fpxq,

for any function f : X Ñ R, and any S Ă X.

Definition 15.1.3. Let n P N. Suppose that B Ă Rn is a nondegenerate box and
f : B Ñ R is a bounded function.

(a) For any partition P of B we define the lower Darboux sum of f over P to be

S˚pf,P q :“
ÿ

CPC pP q

mCpfq volnpCq.

The upper Darboux sum of f over P is

S˚pf,P q :“
ÿ

CPC pP q

MCpfq volnpCq.

(b) The mean oscillation of f over a partition P of B is the real number

ωpf,P q :“
ÿ

CPC pP q

oscpf, Cq volnpCq. [\

Arguing as in the one-dimensional case (see Proposition 9.3.2) one can show that for
any nondegenerate box B Ă Rn, any bounded function f : B Ñ R and any partition P of
B we have

mBpfq volnpBq ď S˚pf,P q ď S
˚pf,P q ďMBpfq volnpBq, (15.1.4a)

ωpf,P q “ S˚pf,P q ´ S˚pf,P q. (15.1.4b)

Indeed

mBpfq volnpBq
p15.1.3q
“

ÿ

CPC pP q

mBpfq volnpCq

(mBpfq ď mCpfq, @C P C pP q)

ď
ÿ

CPC pP q

mCpfq volnpCq ď
ÿ

CPC pP q

MCpfq volnpCq
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(MCpfq ďMBpfq, @C P C pP q)

ď
ÿ

CPC pP q

MBpfq volnpCq
p15.1.3q
“ MBpfq volnpBq.

The next result is the higher dimensional counterpart of Proposition 9.3.6.

Lemma 15.1.4. Let n P N. Assume that B Ă Rn is a nondegenerate box and P ,P 1 are
partitions of B such that P 1 is finer than P , P 1 ą P . Then, for any bounded function
f : B Ñ R we have

S˚pf,P q ď S˚pf,P
1q ď S˚pf,P 1q ď S˚pf,P q, (15.1.5a)

ωpf,P 1q ď ωpf,P q. (15.1.5b)

Proof. We already know that S˚pf,P
1q ď S˚pf,P 1q so it suffices to prove

S˚pf,P q ď S˚pf,P
1q and S˚pf,P 1q ď S˚pf,P q.

We will prove only the first one. The proof of the second inequality above is entirely similar, and it follows from

the first inequality applied to the function ´f . Suppose that P “ pBαqαPA.

For every chamber C P C pP q we denote by P 1
C the collection of chambers of the partition P 1 that are contained

in C. Note that the collection P 1
C is the collection of chambers of some partition of C. We have

S˚pf,P 1q “
ÿ

C1PCpP 1q

MC1 pfq volnpC
1q “

ÿ

CPCpP q

¨

˝

ÿ

C1PP 1
C

MC1 pfq volnpC
1q

˛

‚

(MC1 pfq ďMCpfq when C1 Ă C)

ď
ÿ

CPCpP q

¨

˝

ÿ

C1PP 1
C

MCpfq volnpC
1q

˛

‚“
ÿ

CPCpP q

MCpfq

¨

˝

ÿ

C1PP 1
C

volnpC
1q

˛

‚

p15.1.3q
“

ÿ

CPCpP q

MCpfq volnpCq “ S˚pf,P q.

This proves (15.1.5a). To prove (15.1.5b) note that

ωpf,P 1q “ S˚pf,P 1q ´ S˚pf,P
1q

p15.1.5aq

ď S˚pf,P q ´ S˚pf,P q ď ωpf,P q.

[\

Consider a nondegenerate box

B “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns Ă Rn

and two partitions P 1,P 2 of it. The intersection of a chamber C 1 P C pP 1q with a chamber
C2 P C pP 2q is either empty, a degenerate box or a nondegenerate box. The collection of
all the possible nondegenerate boxes formed by such overlaps coincides with the collection
of chambers of a new partition of B that we denote by P 1 _ P 2. Equivalently if P 1 and
P 2 are described by n-tuples of partitions of the intervals raj , bjs,

P 1 “ pP 11, . . . ,P
1
nq, P

2 “ pP 21, . . . ,P
2
nq,



15.1. Riemann integrable functions of several variables 513

then
P 1 _ P 2 “ pP 11 _ P

2
1, . . . ,P

1
n _ P

2
nq,

where P 1j _ P
2
j is defined at page 252.

By construction, any chamber of P 1 _ P 2 is contained both in a chamber of the
partition P 1 and in a chamber of P 2. In other words,

P 1 _ P 2 ą P 1, P 2.

Lemma 15.1.4 implies that, for any bounded function f : B Ñ R we have

S˚pf,P
1q ď S˚pf,P

1 _ P 2q ď S˚pf,P 1 _ P 2q ď S˚pf,P 2q.

We have thus shown that

S˚pf,P
1q ď S˚pf,P 2q, @P 1,P 2 P PpBq.

Hence, the collection of lower Darboux sums of f is bounded above by any upper Darboux
sum, and the collection of upper Darboux sums of f is bounded below by any lower
Darboux sum. We set

ż

B

fpxq|dx| :“ sup
P PPpBq

S˚pf,P q,

ż

B
fpxq|dx| :“ inf

P PPpBq
S˚pf,P q

The number
ş

B
fpxq|dx| is called the lower Darboux integral of f over B, and the number

ş

Bfpxq|dx| is called the upper Darboux integral of f over B. Note that
ż

B

fpxq|dx| ď

ż

B
fpxq|dx|.

Definition 15.1.5. Let n P N. Suppose that B Ă Rn is a nondegenerate box and
f : B Ñ R is a bounded function. The function f is called Riemann integrable over B if

ż

B

fpxq|dx| “

ż

B
fpxq|dx|.

The common value of these numbers is called the Riemann integral of f over B and it is
denoted by

ż

B
fpxq|dx| or

ż

B
fpx1, . . . , xnq|dx1 ¨ ¨ ¨ dxn|.

We denote by RpBq the set of Riemann integrable functions f : B Ñ R. [\

Remark 15.1.6. When n “ 1, and B “ ra, bs, a ă b, then
ż

ra,bs
fpxq|dx| “

ż b

a
fpxqdx “ ´

ż a

b
fpxqdx,

where
şb
a fpxqdx is the usual 1-dimensional Riemann integral. For this reason we will set

ż b

a
fpxq|dx| “

ż a

b
fpxq|dx| :“

ż

ra,bs
fpxq|dx|. [\
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Example 15.1.7. Suppose f : B Ñ R is a constant function, fpxq “ c0, @x P B. Then,
for any partition P of B, we have

S˚pf,P q “
ÿ

CPC pP q

c0 volnpCq “ c0
ÿ

CPC pP q

volnpCq
p15.1.3q
“ c0 volnpBq

and, similarly,

S˚pf,P q “ c0 volnpBq.

This proves that f is integrable and
ż

B
c0|dx| “ c0 volnpBq. [\

Definition 15.1.8. Let n P N and suppose that B Ă Rn is a nondegenerate box and
f : B Ñ R is a bounded function. We define a sample of a partition P to be an assignment
ξ that associates to each chamber C of P a point ξC located in the chamber C. The
Riemann sum of f determined by the partition P and the sample ξ is the real number

Spf,P , ξq :“
ÿ

CPC pP q

fpξCq volnpCq. [\

From the definition of Riemann and Darboux sums we deduce immediately that, for
any partition P of B and any sample ξ of P we have

S˚pf,P q ď Spf,P , ξq ď S
˚pf,P q.

Note also, that if f, g : B Ñ R are two bounded functions, a, b P R, P is a partition of B
and ξ is a sample of P , then

S
`

af ` bg,P , ξ
˘

“ aSpf,P , ξq ` bSpg,P , ξq. (15.1.6)

Our next result suggests a method of approximation of Riemann integrals.

Proposition 15.1.9. Let n P N. Suppose that B Ă Rn is a nondegenerate box and
f : B Ñ R is a Riemann integrable function. Then, for any partition P of B and any
sample ξ of P , we have

ˇ

ˇ

ˇ

ˇ

Spf,P , ξq ´

ż

B
fpxq|dx|

ˇ

ˇ

ˇ

ˇ

ď ωpf,P q, (15.1.7a)

ˇ

ˇ

ˇ

ˇ

S˚pf,P q ´

ż

B
fpxq |dx|

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

S˚pf,P q ´

ż

B
fpxq |dx|

ˇ

ˇ

ˇ

ˇ

ď ωpf,P q. (15.1.7b)

Proof. We have

S˚pf,P q ď

ż

B
fpxq |dx| ď S˚pf,P q

and

S˚pf,P q ď Spf,P , ξq ď S
˚pf,P q.
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The conclusion follows by observing that the two numbers

Spf,P , ξq,

ż

B
fpxq|dx|

are both situated in the interval
“

S˚pf,P q,S
˚pf,P q

‰

of length ωpf,P q. [\

Our next result is a higher dimensional version of the Riemann-Darboux Theorem
9.3.11.

Theorem 15.1.10 (Riemann-Darboux). Let n P N. Suppose that B Ă Rn is a nonde-
generate box and f : B Ñ R is a bounded function. Then the following statements are
equivalent.

(i) The function f is Riemann-integrable over B.

(ii) For any ε ą 0 there exists a partition P of B such that the mean oscillation of
f over P is ă ε, i.e.,

ωpf,P q ă ε.

Proof. (i) ñ (ii). We know that f is Riemann integrable. We set

I :“

ż

B
fpxq|dx|.

We have
ż

B

fpxq|dx| “ sup
P PPpBq

S˚pf,P q “

ż

B
fpxq|dx| “ inf

P PPpBq
S˚pf,P q “ I

Thus, for any ε ą 0 there exists partitions P 1,P 2 of B such that

I ´
ε

2
ă S˚pf,P

1q ď I ď S˚pf,P 2q ă I `
ε

2
.

If we set P :“ P 1 _ P 2, then we deduce

I ´
ε

2
ăS˚pf,P

1qď S˚pf,P q ď S
˚pf,P q ďS˚pf,P 2qă I `

ε

2
.

Hence

ωpf,P q “ S˚pf,P q ´ S˚pf,P q ă I `
ε

2
´

´

I ´
ε

2

¯

“ ε.

(ii) ñ (i) Let ε ą 0. There exists a partition P of B such that

ωpf,P q “ S˚pf,P q ´ S˚pf,P q ă ε.

On the other hand,

S˚pf,P q ď

ż

B

fpxq|dx| ď

ż

B
fpxq|dx| ď S˚pf,P q

so that
ż

B
fpxq|dx| ´

ż

B

fpxq|dx| ď S˚pf,P q ´ S˚pf,P q ă ε.
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In other words

0 ď

ż

B
fpxq|dx| ´

ż

B

fpxq|dx| ď ε, @ε ą 0,

i.e.,
ż

B
fpxq|dx| ´

ż

B

fpxq|dx| “ 0

and thus the function f is Riemann integrable. [\

Corollary 15.1.11. Suppose that B Ă Rn is a nondegenerate box and f : B Ñ R is a
continuous function. Then f is Riemann integrable over B.

Proof. The box B is compact and thus f is uniformly continuous. Thus, for any ε ą 0
there exists δpεq ą 0 such that, for any set S Ă B satisfying diampSq ă δpεq we have

oscpf, Sq ă
ε

volnpBq
.

Choose a partition P of B such that }P } ă δpεq. In particular, we deduce that

oscpf, Cq ă
ε

volnpBq
, @C P C pP q.

We have

ωpf,P q “
ÿ

CPC pP q

oscpf, Cq volnpCq ă
ε

volnpBq

ÿ

CPC pP q

volnpCq “ ε.

[\

Theorem 15.1.12. Suppose that B Ă Rn is a nondegenerate box and f1, . . . , fN : B Ñ R
are Riemann integrable functions. Fix a positive constant R such that

|fipxq| ď R, @i “ 1, . . . , N, @x P B.

If

H : r´R,Rs ˆ ¨ ¨ ¨ ˆ r´R,Rs
looooooooooooooomooooooooooooooon

N

Ñ R

is a Lipschitz function, then the function

f : B Ñ R, fpxq “ H
`

f1pxq, . . . , fN pxq
˘

is also Riemann integrable.

Proof. Fix a Lipschitz constant L ą 0 of H, i.e.,

|Hpy1q ´Hpy2q| ď L}y1 ´ y2}, @y P r´R,Rs ˆ ¨ ¨ ¨ r´R,Rs
looooooooooooomooooooooooooon

N

“ CRp0q Ă RN .



15.1. Riemann integrable functions of several variables 517

Define F : Rn Ñ CRp0q

F pxq “

»

—

–

f1pxq
...

fN pxq

fi

ffi

fl

.

We first prove that, for any subset S Ă B, we have

oscpf, Sq ď L
?
N

N
ÿ

i“1

oscpfi, Sq. (15.1.8)

Indeed, for any x1,x2 P S, we have
ˇ

ˇ fpx1q ´ fpx2q
ˇ

ˇ “
ˇ

ˇHpF px1q q ´HpF px2q q
ˇ

ˇ

ď L
›

›F px1q ´ F px2q
›

› ď L
?
N
›

›F px1q ´ F px2q
›

›

8

“ L
?
N max

1ďiďN

ˇ

ˇ fipx1q ´ fipx2q
ˇ

ˇ ď L
?
N

N
ÿ

i“1

oscpfi, Sq.

Since the functions fi are Riemann integrable, we deduce that, for any i “ 1, . . . , N , and
for any ε ą 0, we can find a partition P i of B such that

ωpfi,P iq ă
ε

LN
?
N
. (15.1.9)

Choose a partition P that is finer than all the partitions P 1, . . . ,PN . E.g., we can choose

P “ P 1 _ P 2 _ ¨ ¨ ¨ _ PN .

We deduce from (15.1.5b) that

ωpfi,P q ă
ε

LN
?
N
, @i “ 1, . . . , N.

We have

ωpf,P q “
ÿ

CPC pP q

oscpf, Cq volnpCq
p15.1.8q
ď L

?
N

ÿ

CPC pP q

N
ÿ

i“1

oscpfi, Cq volnpCq

“ L
?
N

N
ÿ

i“1

¨

˝

ÿ

CPC pP q

oscpfi, Cq volnpCq

˛

‚“ L
?
N

N
ÿ

i“1

ωpfi,P q

p15.1.9q
ă L

?
N

N
ÿ

i“1

ε

LN
?
N
“ ε.

This proves that fpxq is Riemann integrable. [\

Theorem 15.1.13. Let n P N and suppose that B Ă Rn is a nondegenerate box. Then
the following hold.
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(i) If f, g P RpBq and s, t P R, then sf ` tg P RpBq and
ż

B

`

sfpxq ` tgpxq
˘

|dx| “ s

ż

B
fpxq|dx| ` t

ż

B
gpxq |dx|. (15.1.10)

(ii) If f, g P RpBq, then fg P RpBq.

(iii) If f, g P RpBq and fpxq ď gpxq, @x P B, then
ż

B
fpxq|dx| ď

ż

B
gpxq|dx|.

(iv) If f P RpBq, then |f | P RpBq and
ˇ

ˇ

ˇ

ˇ

ż

B
fpxq|dx|

ˇ

ˇ

ˇ

ˇ

ď

ż

B
|fpxq| |dx|.

Proof. (i) Let H : R2 Ñ R be the linear function Hpx, yq “ sx` ty. Then H is Lipschitz
and

sfpxq ` tgpxq “ H
`

fpxq, gpxq
˘

, @x P B.

Theorem 15.1.12 now implies that sfpxq ` tgpxq is Riemann integrable.

Arguing as in the proof of Theorem 15.1.12, we can find a sequence of partitions P ν ,
ν P N of B such that

ωpsf ` tg,P νq, ωpf,P νq, ωpg,P νq ă
1

ν
, @ν P N.

Next, choose a sample ξ
ν
of P ν for any ν P N. Proposition 15.1.9 now implies that

lim
νÑ8

Spf,P ν , ξνq “

ż

B
fpxq|dx|,

lim
νÑ8

Spg,P ν , ξνq “

ż

B
gpxq|dx|,

lim
νÑ8

Sp sf ` tg,P ν , ξν q “

ż

B

`

sfpxq ` tgpxq
˘

|dx|

On the other hand

Sp sf ` tg,P ν , ξν q “ sSpf,P ν , ξνq ` tSpg,P ν , ξνq.

If we let ν Ñ8 in the last equality we obtain (15.1.10).

(ii) We begin by proving that for any u P RpBq, its square u2 is also Riemann integrable.
To see this, fix R ą 0 such that |upxq| ď R, @x P B. The function H : r´R,Rs Ñ R,
Hptq “ t2 is Lipschitz because, for any s, t P r´R,Rs, we have

|Hpsq ´Hptq| “ |s2 ´ t2| “ |s` t| ¨ |s´ t| ď p|s| ` |t|q ¨ |t´ s| ď 2R|s´ t|.

Then upxq2 “ Hpupxq q is Riemann integrable.

To deal with the general case, note that, according to (i) f ` g, f ´ g P RpBq. We
deduce that pf ` gq2, pf ´ gq2 P RpBq and thus

fg “
1

4

´

pf ` gq2 ´ pf ´ gq2
¯

P RpBq.
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(iii) The function gpxq ´ fpxq is Riemann integrable and nonnegative. In particular, we
deduce that, for any partition P of B we have

0 ď S˚pg ´ f,P q ď

ż

B

`

gpxq ´ fpxq
˘

|dx| “

ż

B
gpxq|dx| ´

ż

B
fpxq|dx|.

(iv) The function H : R Ñ R, Hpxq “ |x| is Lipschitz and Theorem 15.1.12 implies that
|f | P RpBq for any f P RpBq. Observe next that

´|fpxq| ď fpxq ď |fpxq|, @x P B.

Using (i) and (iii) we deduce

´

ż

B
|fpxq||dx| ď

ż

B
fpxq|dx| ď

ż

B
|fpxq||dx|ðñ

ˇ

ˇ

ˇ

ˇ

ż

B
fpxq|dx|

ˇ

ˇ

ˇ

ˇ

ď

ż

B
|fpxq||dx|.

[\

Proposition 15.1.14. Fix n P N and a nondegenerate box B Ă Rn. If fν : B Ñ R,
ν P N, is a sequence of Riemann integrable functions that converges uniformly to the
function f : B Ñ R, then f is also Riemann integrable and

lim
νÑ8

ż

B
fνpxq|dx| “

ż

B
fpxq|dx|. (15.1.11)

Proof. Let ℏ ą 0. Since fν converges uniformly to f , there exists N “ Npℏq such that

@ν ě Npℏq, @x P B : fνpxq ´ ℏ ă fpxq ă fνpxq ` ℏ. (15.1.12)

We deduce from the above inequality that for any box C Ă B and ν ě Npℏq we have

mCpfνq ´ ℏ ď mCpfq ďMCpfq ďMCpfνq ` ℏ.

Hence, for any partition P of B we have

S˚pfν ,P q ´ ℏ volnpBq ď S˚pf,P q ď S˚pf,P q ď S˚pfν ,P q ` ℏ volnpBq. (15.1.13)

In particular, for any partition P of B, we have

ωpf,P q ď ωpfν ,P q ` 2ℏ volnpBq, @ν ě Npℏq. (15.1.14)

Now let ε ą 0. Choose ℏ “ ℏpεq such that

2ℏ volnpBq ă
ε

2
.

Now fix a natural number ν ą Npℏpεqq, where Npℏq is as in (15.1.12). Since fν is Riemann
integrable we can find a partition P ε of B such that

ωpfν ,P εq ă
ε

2
.

We deduce from (15.1.14) that

ωpf,P εq ă ε
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proving that f is Riemann integrable. From the inequalities (15.1.13) we can now conclude
that

ż

B
fνpxq|dx| ´ ℏ volnpBq ď

ż

B
fpxq|dx| ď

ż

B
fνpxq|dx| ` ℏ volnpBq, @ν ě Npℏq

i.e.,
ˇ

ˇ

ˇ

ˇ

ż

B
fνpxq|dx| ´

ż

B
fpxq|dx|

ˇ

ˇ

ˇ

ˇ

ď ℏ volnpBq, @ν ě Npℏq.

This last inequality proves (15.1.11). [\

Let us interrupt the flow of arguments to take stock of what we have achieved so far.

‚ We have defined concepts of Riemann integrability/integral associated to func-
tions of several variables defined on a box B.

‚ We showed that the set RpBq of functions that are Riemann integrable on B is
quite large: it contains all the continuous functions, and it is closed with respect
to the algebraic operations of addition and multiplication of functions.

‚ The uniform limits of Riemann integrable functions are Riemann integrable.

If we compare the current state of affairs with the one-dimensional situation we realize
that we have several glaring gaps in our developing story. First, our supply of Riemann
integrable functions is still “meagre” since, unlike the one-dimensional case, we have not
yet produced any example of a Riemann integrable function that is not continuous. Second,
we have not yet indicated any concrete and practical way of computing Riemann integrals
of functions of several variables.

The first issue is resolved by a remarkable result of Henri Lebesgue.2 To state it we
need to define the concept of negligible subset of Rn.

Definition 15.1.15. A subset S Ă Rn is called negligible if, for any ε ą 0, there exists a
countable family pBνqνPN of closed boxes in Rn that covers S and such that

ÿ

νPN
volnpBνq ă ε. [\

Example 15.1.16. Suppose that f : ra, bs Ñ R is a Riemann integrable function. Then
its graph

Γf :“
␣

px, fpxq q P R2; x P ra, bs
(

is a negligible subset of R2.

To see this fix ε ą 0 and choose a partition P of ra, bs such that ωpf,P q ă ε. Suppose that

P “ a “ x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn´1 ă xn “ b.

2Henri Lebesgue (1875-1941) was a French mathematician famous for his theory of integration; see Wikipedia
for more details on his life and work.

https://en.wikipedia.org/wiki/Henri_Lebesgue


15.1. Riemann integrable functions of several variables 521

set

mi :“ inf
xPrxi´1,xis

fpxq, Mi :“ sup
xPrxi´1,xis

fpxq, i “ 1, . . . , n.

For i “ 1, . . . , n we denote by Bi the box rxi´1, xis ˆ rmi,Mis. From the definition of mi and Mi we deduce that

Γf Ă

n
ď

i“1

Bi,

n
ÿ

i“1

vol2pBiq “

n
ÿ

i“1

`

Mi ´mi

˘`

xi ´ xi´1

˘

“ ωpf,P q ă ε.

This shows that, for any ε ą 0 we can find a fine collection of rectangles that covers the graph and such that the

sum of their areas is ă ε.

[\

In Exercise 15.7 we describe several examples of negligible sets, and some elementary
properties of such sets. We have the following result that vastly generalizes Corollary
15.1.11.

Theorem 15.1.17 (Lebesgue). Let n P N and suppose that f : Rn Ñ R is a bounded
function that is identically zero outside some box B Ă Rn. Then the following statements
are equivalent.

(i) The function f is Riemann integrable.

(ii) The set of points of discontinuity of f is negligible.

[\

For a proof we refer to [39, §11.1.2].

15.1.2. A conditional Fubini theorem. In this subsection we take a stab at the second
problem and we describe a very versatile result showing that, under certain conditions, one
can reduce the computation of an integral of a function of n-variables to the computation
of Riemann integrals of functions with fewer than n variables.

Theorem 15.1.18 (Fubini). Let m,n P N. Suppose that

Bm “ ra1, b1s ˆ ¨ ¨ ¨ ˆ ram, bms

is a nondegenerate box in Rm and

Bn “ ram`1, bm`1s ˆ ¨ ¨ ¨ ˆ ram`n, bm`ns

is a nondegenerate box in Rn. Suppose that

‚ the function f : Bm ˆBn Ñ R is Riemann integrable on the box

B “ Bm ˆBn Ă Rm`n

and,
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‚ for any x P Bm, the function

Bn Q y ÞÑ fxpyq :“ fpx,yq P R
is Riemann integrable.

Then, the marginal (function)

Bm Q x ÞÑM1
f pxq :“

ż

Bn

fpx,yq|dy| P R

is Riemann integrable and

ż

BmˆBn

fpx,yq|dxdy| “

ż

Bm

M1
f pxq|dx| “

ż

Bm

ˆ
ż

Bn

fpx,yq|dy|

˙

|dx|. (15.1.15)

The last term in the above equality is called a repeated or iterated integral. Often, for
mnemonic purposes, we use the alternate notation

ż

Bm

|dx|

ˆ
ż

Bn

fpx,yq|dy|

˙

:“

ż

Bm

ˆ
ż

Bn

fpx,yq|dy|

˙

|dx|.

Main idea behind Fubini Before we embark in the proof we want to explain the simple
principle behind this result. Suppose that we want to add all the numbers situated at the
nodes of a grid such as the one in Figure 15.2.

Figure 15.2. Adding numbers on a grid.

Fubini says that one could proceed as follows: for each number k “ 1, . . . , 10 on the
horizontal (or the first) margin there is a tower of grid nodes above it. Add the numbers
above it to obtain the value M1

k (the 1st marginal at k). Next add all these marginal
values M1

1 ` . . .`M
1
10 to recover the sum of all the numbers situated at nodes. One can

proceed in a similar fashion using the vertical margin, obtaining first a marginal M2.
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Proof. We follow the approach in [29, Thm.3-10]. Consider a partition

P ε “ pP 1, . . . ,Pm,Pm`1, . . . , . . . ,Pm`nq

of B. We denote by Pm the partition

pP 1, . . . ,Pmq

of Bm, and by P n the partition

pPm`1, . . . , . . . ,Pm`nq

of Bn. Every chamber C of P is the Cartesian product of a chamber Cm of Pm and a
chamber Cn of P n. Moreover

volm`npCq “ volmpC
mq volnpC

nq.

For simplicity we set Cm :“ C pPmq and C n :“ C pP nq. To simplify the exposition we
will continue to use the notation

mU pgq :“ inf
uPU

gpuq, MU pgq :“ sup
uPU

gpuq,

for any set U and for any bounded real valued function g defined on a set containing U .

We have
S˚pf,P q “

ÿ

CmPCm,
CnPCn

mCmˆCnpfq ¨ volmpC
mq volnpC

nq

“
ÿ

CmPCm

˜

ÿ

CnPCn

mCmˆCnpfq ¨ volnpC
nq

¸

volmpC
mq.

Now observe that for any Cm P Cm, any Cn P C n, and any x P Cm we have

mCmˆCnpfq ď mCnpfxq.

Hence, for any x P Cm we have
ÿ

CnPCn

mCmˆCnpfq ¨ volnpC
nq ď

ÿ

CnPCn

mCnpfxq ¨ volnpC
nq “ S˚pfx,P

nq

ď

ż

Bn

fxpyq|dy| “M1
f pxq.

Thus
ÿ

CnPCn

mCmˆCnpfq ¨ volnpC
nq ď inf

xPCm
M1
f pxq

so that

S˚pf,P q “
ÿ

CmPCm

˜

ÿ

CnPCn

mCmˆCnpfq ¨ volnpC
nq

¸

volmpC
mq

ď
ÿ

CmPCm

inf
xPCm

M1
f pxq ¨ volmpC

mq “ S˚
`

M1
f ,P

m
˘

.

A similar argument shows that

S˚
`

M1
f ,P

m
˘

ď S˚pf,P q.
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Hence, for any partition P of Bm ˆBn we have

S˚pf,P q ď S˚
`

M1
f ,P

m
˘

ď S˚
`

M1
f ,P

m
˘

ď S˚pf,P q.

We deduce from the above that
ż

BmˆBn

fpx,yq|dx||dy| ď

ż

Bm

M1
f pxq|dx| ď

ż

Bm

M1
f pxq|dx| ď

ż

BmˆBn

fpx,yq|dx||dy|.

Since f is Riemann integrable,
ż

BmˆBn

fpx,yq|dx||dy| “

ż

BmˆBn

fpx,yq|dx||dy|

so all the above inequalities are in fact equalities. [\

Remark 15.1.19. (a) Note that when f : BmˆBn Ñ R is continuous, all the assumptions
in Theorem 15.1.18 are automatically satisfied. In particular, if f : ra1, b1sˆ¨ ¨ ¨ˆran, bns Ñ R
is continuous, then

ż

ra1,b1sˆ¨¨¨ˆran,bns
fpx1, . . . , xnq|dx1 ¨ ¨ ¨ dxn|

“

ż

ra1,b1s
|dx1|

ż

ra2,b2sˆ¨¨¨ˆran,bns
fpx1, x2, . . . , xnq|dx2 ¨ ¨ ¨ dxn|

“

ż

ra1,b1s
|dx1|

ż

ra2,b2s
|dx2|

ż

ra3,b3sˆ¨¨¨ˆran,bns
fpx1, x2, x3, . . . , xnq|dx2 ¨ ¨ ¨ dxn|

“

ż

ra1,b1s
|dx1|

ż

ra2,b2s
|dx2| ¨ ¨ ¨

ż

ran,bns
fpx1, x2, . . . , xnq|dxn|

“

ż b1

a1

dx1
ż b2

a2

dx2 ¨ ¨ ¨

ż bn

an

fpx1, x2, . . . , xnqdxn.

For example
ż

r0,π{2sˆr0,πs
sinpx` yq|dxdy| “

ż π
2

0
dx

ż π

0
sinpx` yq dy

“

ż π
2

0

´

´ cospx` yq
ˇ

ˇ

y“π

y“0

¯

dx “

ż π
2

0

´

cosx´ cospπ ` xq
¯

dx

“

ż π
2

0
cosx dx´

ż π
2

0
cospx` πqdx

“ sinx
ˇ

ˇ

ˇ

x“π
2

x“0
´ sinpx` πq

ˇ

ˇ

ˇ

x“π
2

x“0
“ sin

π

2
´ sin

3π

2
` sinπ “ 2.

(b) A completely similar argument shows that when f : Bm ˆ Bn Ñ R is Riemann
integrable and, for any y P Bn, the function

fy : Bm Ñ R, fypxq “ fpx,yq,
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is Riemann integrable, then the second marginal function

M2
f : Bn Ñ R, M2

f pyq “

ż

Bn

fypxq|dx|,

is Riemann integrable and we have

ż

BmˆBn

fpx,yq|dx| |dy| “

ż

Bn

M2
f pyq|dy| “

ż

Bn

ˆ
ż

Bm

fpx,yq|dx|

˙

|dy|. (15.1.16)

[\

Remark 15.1.20 (Changing the order of integration). Suppose B “ ra, bs ˆ rc, ds ĂP R2

is a nondegenerate box and f : B Ñ R is a Riemann integrable function such that for any
x P ra, bs the function

rc, ds Q y ÞÑ fpx, yq

is Riemann integrable and, for any y P rc, ds, the function

ra, bs Q x ÞÑ fpx, yq

is Riemann integrable. We obtain in this fashion two marginals

M1
f : ra, bs Ñ R, M1

f pxq “

ż d

c
fpx, yqdy

and,

M2
f : rc, ds Ñ R, M2

f pyq “

ż b

a
fpx, yqdx.

Fubini’s theorem then implies that
ż b

a
M1
f pxqdx “

ż

ra,bsˆrc,ds
fpx, yq|dxdy| “

ż d

c
M2
f pyqdy.

Using the concrete definitions of the marginals we obtain the equality

ż b

a
dx

ż d

c
fpx, yqdy “

ż d

c
dy

ż b

a
fpx, yqdx . (15.1.17)

This equality often leads to surprising conclusions and it is commonly known as the
changing-the-order-of-integration trick. [\

15.1.3. Functions Riemann integrable over Rn. Let n P N and suppose thatX Ă Rn
is an arbitrary set. For any function f : X Ñ R we denote by f0 its extension by zero
outside X, i.e., f0 is defined on the entire space Rn, and

f0pxq “

#

fpxq, x P X,

0, x P RnzX.
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Proposition 15.1.21. Suppose that B Ă Rn is a nondegenerate box and f : B Ñ R is a
Riemann integrable function. Then, for any box B1 that contains B, the restriction f0B1 of
f0 to B1 is Riemann integrable and

ż

B1

f0B1pxq |dx| “

ż

B
fpxq|dx|.

Proof. It is important to have a heuristic explanation why the above result is plausible.
We know that the Riemann integral can be very well approximated by appropriate Rie-
mann sums. Start with a partition P of the inside box B. Extend it in some way to a
partition P 1 of the surrounding box B1. Observe that a “typical” Riemann sum of f0B1

associated to P 1 is equal to a Riemann sum of f associated to P since the value of f0

outside B is 0. Thus the Riemann integral of f over B ought to be arbitrarily close to the
Riemann integral of f0 over B1.

The set Df of points of discontinuity of f is negligible since f is Riemann integrable. The set of points of

discontinuity of f0
B1 is contained in the union Df Y BB. Since each of the faces of B is contained in a coordinate

hyperplane, we deduce from Exercise 15.7 that each facet is negligible. The boundary BB is the union of facets and

thus it is negligible; see Exercise 15.7. Hence f0
B1 is Riemann integrable.

Fix ε ą 0. Now choose a partition P of B such that

ωpf,P q ă
ε

2
.

Now, extend P to a partition P 1 of B1. Since f0
B1 is Riemann integrable we can find a partition Q1 ą P 1 of B1 such

that

ω
`

f0B1 Q
1
˘

ă
ε

2
. (15.1.18)

The partition Q1 induces a partition Q of B that is finer than P . Thus

ωpf,Qq ď ωpf,P q ă
ε

2
. (15.1.19)

Now choose a sample ξ of Q1 such that, for each chamber C of Q1 not contained in B, the corresponding sample

ξpCq is contained in the interior of C. In particular, this shows that f0
`

ξpCq
˘

“ 0 for such a chamber and sample

point. We deduce

Spf0B1 ,Q
1, ξq “

ÿ

CPCpQ1q

f0
`

ξpCq
˘

volnpCq “
ÿ

CPCpQ1q
CĂB

f
`

ξpCq
˘

volnpCq

“
ÿ

CPCpQq

f
`

ξpCq
˘

volnpCq “ Spf,Q, ξq.

On the other hand, Proposition 15.1.9 coupled with (15.1.18) and (15.1.19) imply that
ˇ

ˇ

ˇ

ˇ

ż

B1
f0B1 pxq|dx| ´ Spf0B1 ,Q

1, ξq

ˇ

ˇ

ˇ

ˇ

ă ω
`

f0B1 Q
1
˘

ă
ε

2
,

ˇ

ˇ

ˇ

ˇ

ż

B
fpxq|dx| ´ Spf,Q, ξq

ˇ

ˇ

ˇ

ˇ

ă ω
`

f0B1 Q
1
˘

ă
ε

2
.

Hence
ˇ

ˇ

ˇ

ˇ

ż

B1
f0B1 pxq|dx| ´

ż

B
fpxq|dx|

ˇ

ˇ

ˇ

ˇ

ă ε, @ε ą 0,

and thus,
ż

B1
f0B1 pxq|dx| “

ż

B
fpxq|dx|.

[\
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Let us introduce an important concept.

Definition 15.1.22. Let n P N. The indicator function of a subset S Ă Rn is the function

IS : Rn Ñ R, ISpxq “

#

1, x P S,

0, x P RnzS.
In other words, IS is the extension by 0 of the function on S equal to the constant 1. [\

If B,B1 are nondegenerate boxes such that B Ă B1, then Proposition 15.1.21 shows
that the restriction of IB to B1 is Riemann integrable and it is discontinuous if B ‰ B1.
Moreover

ż

B1

IB|B1pxq|dx| “

ż

B
|dx| “ volnpBq.

Definition 15.1.23. We say that a function f : Rn Ñ R is Riemann integrable (over Rn)
if it satisfies the following conditions.

(i) There exists a nondegenerate box B Ă Rn such that fpxq “ 0, @x P RnzB.

(ii) The restriction of f |B of f to B is Riemann integrable.

We set
ż

Rn

fpxq|dx| :“

ż

B
f |Bpxq|dx|,

where B is a box satisfying the conditions (i) and (ii) above. We denote by Rn the set of
Riemann integrable functions f : Rn Ñ R. [\

Remark 15.1.24. (a) From the definition we deduce that if f : Rn Ñ R is Riemann
integrable, then it must have compact support.

(b) We need to verify the consistency of the above definition of the integral. More precisely,
we need to verify that, if f : Rn Ñ R is Riemann integrable and B1, B2 are two boxes
satisfying the conditions (i)`(ii) in the Definition 15.1.23, then

ż

B1

f |B1pxq|dx| “

ż

B2

f |B2pxq|dx|.

To prove this choose a box B such that B Ą B1 Y B2. Observe that the function f can
be identified with the extension by 0 of either functions f |B1 and f |B2 . From Proposition
15.1.21 we now deduce that f |B is Riemann integrable (on B) and

ż

B1

f |B1pxq|dx| “

ż

B
f |Bpxq|dx| “

ż

B2

f |B2pxq|dx|.

We see that the indicator function of a nondegenerate (closed) box B Ă Rn is Riemann
integrable and

ż

Rn

IBpxq|dx| “ volnpBq.
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(c) Theorem 15.1.13 shows that if f, g P Rn and s, t P R, then

sf ` tg, fg P Rn

and
ż

Rn

`

sfpxq ` tgpxq
˘

ds “ s

ż

Rn

fpxq|dx| ` t

ż

Rn

gpxq|dx|.

If additionally fpxq ď gpxq, @x P Rn, then
ż

Rn

fpxq|dx| ď

ż

Rn

gpxq|dx|. [\

Recall that CcptpRnq denotes the set of continuous functions Rn Ñ R with compact
support.

Corollary 15.1.25. Let n P N. Then CcptpRnq Ă Rn, i.e., any compactly supported
function f : Rn Ñ R is Riemann integrable.

Proof. Since the support of f is compact, there exists a (closed) box B Ą supppfq.
Thus B contains all the points where f is nonzero so that f is identically zero outside B.
Moreover since f is continuous, it is integrable on B.

[\

The compactly supported continuous functions play an important role in the theory
of Riemann integration due to the following approximation result.

Theorem 15.1.26. Let n P N and suppose that f : Rn Ñ R is a bounded function and U
is an open set containing the support of f . Then the following statements are equivalent.

(i) The function f is Riemann integrable (on Rn).
(ii) For any ε ą 0 there exist functions g,G P CcptpRnq such that

supppgq, supppGq Ă U,

gpxq ď fpxq ď Gpxq, @x P Rn and 0 ď

ż

Rn

`

Gpxq ´ gpxq
˘

|dx| ă ε.

[\

The proof of this theorem is not extremely demanding but it would distract us from
the main “story”. The curious reader can find the details in [11, §6.9].

15.1.4. Volume and Jordan measurability. The concept of Riemann integral can be
used to define the notion of n-dimensional volume. Intuitively, the n-dimensional volume
of subset S Ă Rn ought to be a nonnegative number volnpSq that satisfies the Inclusion-
Exclusion Principle

volnpS1 Y S2q “ volnpS1q ` volnpS2q ´ volnpS1 X S2q,
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it “depends continuously” on S and, when S is a box, this notion of volume should coincide
with our original definition (15.1.2). Additionally, we would like this volume to stay
unchanged when we rigidly move S around Rn. (Typical examples of rigid transformations
are translations and rotations about an “axis”.)

The famous Banach-Tarski “paradox”3 shows that we cannot associate a notion of
n-dimensional volume with the above properties to all subsets of Rn. We can however
associate a notion of volume with these properties to many subsets of Rn.

Definition 15.1.27. (a) A bounded set S Ă Rn is called Jordan4 measurable if the in-
dicator function IS is Riemann integrable. We denote by JpRnq the collection of Jordan
measurable subsets of Rn.

(b) The n-dimensional volume of a Jordan measurable set S Ă Rn is the nonnegative
number

volnpSq :“

ż

Rn

ISpxq|dx|. [\

Remark 15.1.28. If B is a (closed) box, then the volume of B as defined in the above
definition, coincides with the volume of B as defined in (15.1.2). This follows from Example
15.1.7 and Proposition 15.1.21. [\

We mention several useful consequences of the above result.

Corollary 15.1.29. A bounded subset S Ă Rn is Jordan measurable if and only if its
boundary BS is negligible.

Proof. Note that S is Jordan measurable if and only if its indicator function

IS : Rn Ñ R, ISpxq “

#

1, x P S,

0, x P RnzS,

is Riemann integrable. According to Lebesgue’s theorem this happens if and only if the
set of points of discontinuity of IS is negligible. Now observe that the boundary of S is
precisely the set of discontinuities of IS . [\

Proposition 15.1.30. Let n P N.

(i) (Inclusion-Exclusion Principle) If S1, S2 P JpRnq, then

S1 Y S2, S1 X S2 P JpRnq

and
volnpS1 Y S2q “ volnpS1q ` volnpS2q ´ volnpS1 X S2q. (15.1.20)

(ii) (Monotonicity) If S1, S2 P JpRnq and S1 Ă S2, then

volnpS1q ď volnpS2q.

3Search Wikipedia for more details about this famous result.
4Named after the French mathematician Camille Jordan (1838-1922). See Wikipedia for more on Jordan.

https://en.wikipedia.org/wiki/Camille_Jordan
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Proof. (i) Since S1, S2 are bounded, there exists a box B that contains both S1 and S2.
We deduce that the restrictions to B of both functions IS1 and IS2 are Riemann integrable.
Thus the restrictions to B of the functions IS1 ` IS2 and IS1IS2 are Riemann integrable.
Observing that

IS1XS2 “ IS1IS2 and IS1YS2 “ IS1 ` IS2 ´ IS1XS2

we deduce that S1 X S2 and S1 Y S2 are Jordan measurable and

volnpS1 Y S2q “

ż

Rn

`

IS1pxq ` IS2pxq ´ IS1XS2pxq
˘

|dx|

“ volnpS1q ` volnpS2q ´ volnpS1 X S2q.

(i) Note that

S1 Ă S2 ñ IS1pxq ď IS2pxq, @x P Rn ñ
ż

Rn

IS1pxq|dx| ď

ż

Rn

IS2pxq|dx|.

[\

Example 15.1.31 (Cavalieri’s Principle). Let n P N. Consider a Jordan measurable set
S Ă Rˆ Rn “ R1`n. We denote by x0, . . . , xn the coordinates in R1`n. For any t P R we
denote by St the intersection of S with the hyperplane tx0 “ tu. We will refer to St as
the slice of S over t; see Figure 15.3.

SS
tt

t

B

*

Figure 15.3. Slicing a 2-dimensional region by vertical lines.

Denote by S˚t the projection of St on the coordinate subspace t0u ˆ Rn (pictured as
the vertical axis in Figure 15.3). More precisely

S˚t :“
␣

px1, . . . , xnq P Rn; pt, x1, . . . , xnq P St
(

.



15.1. Riemann integrable functions of several variables 531

Cavalieri’s principle states that if the all the (projected) slices S˚t Ă Rn are Jordan mea-
surable then

voln`1pSq “

ż

R
volnpS

˚
t q|dt|. (15.1.21)

This is an immediate consequence of the Fubini Theorem 15.1.18. Since S is bounded,
there exists a box

B “ ra0, b0s ˆ ra1, b1s ˆ ¨ ¨ ¨ ˆ ran, bns
looooooooooooomooooooooooooon

B1

.

Let f : R1`n Ñ R be the indicator function of S, f “ IS . Note that f is zero outside the
box B. Since S is Jordan measurable, the restriction of f to B is Riemann integrable. For
any t P R the function

R Q px1, . . . , xnq ÞÑ ftpx
1, . . . , xnq P R

is the indicator function of S˚t ,

ftpx
1, . . . , xnq “ IS˚

t
px1, . . . , xnq,

and thus it is Riemann integrable. Note that ft “ 0 if t R ra0, b0s. The marginal function
is

Mf ptq “

ż

B1

ftpx
1, . . . , xnqdx1 ¨ ¨ ¨ dxn “ volnpS

˚
t q.

Fubini’s Theorem now implies

voln`1pSq “

ż

B
fpx0, x1, . . . , xnq|dx0dx1 ¨ ¨ ¨ dxn| “

ż b0

a0

volnpS
˚
t q|dt|. [\

15.1.5. The Riemann integral over arbitrary regions.

Definition 15.1.32. Let S Ă Rn. A bounded function f : S Ñ R is called Riemann
integrable over S if f0, its extension by 0 to Rn, is Riemann integrable over Rn. In this
case we define the Riemann integral of f over the set S to be

ż

S
fpxq|dx| :“

ż

Rn

f0pxq|dx|.

We denote by RnpSq the set of Riemann integrable functions on S.

A function f : Rn Ñ R is said to be Riemann integrable over S if fIS is integrable
over Rn. [\

Remark 15.1.33. (a) Note that we can rephrase the above definition in a more concise
way,

f P RnpSqðñ f0IS P Rn .

(b) Proposition 15.1.21 shows that, if B is a box, then the set RpBq of functions f : B Ñ R
Riemann integrable in the sense of Definition 15.1.5 coincides with the set RnpBq in the
above definition.
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c) If f P RpSq, then
ż

S
fpxq |dx| “

ż

B
f0pxqISpxq |dx|,

where B is any box in Rn that contains S. [\

Proposition 15.1.34. Let n P N.

(i) (Additivity of integrals with respect to domains) Suppose that S1, S2 Ă Rn are
Jordan measurable sets and f : S1 Y S2 Ñ R is Riemann integrable. Then the
restrictions of f to S1 and S2 are Riemann integrable and

ż

S1YS2

fpxq|dx| “

ż

S1

fpxq|dx| `

ż

S2

fpxq|dx| ´

ż

S1XS2

fpxq|dx|. (15.1.22)

(ii) (Monotonicity) If S is Jordan measurable and f, g : S Ñ R are Riemann inte-
grable functions such that fpxq ď gpxq, @x P S, then

ż

S
fpxq|dx| ď

ż

S
gpxq|dx|. (15.1.23)

In particular
ˇ

ˇ

ˇ

ˇ

ż

S
fpxq|dx|

ˇ

ˇ

ˇ

ˇ

ď

´

sup
xPS

|fpxq|
¯

volnpSq. (15.1.24)

Proof. (i) Observe that f0, IS1 , IS2 P Rn so that

IS1f
0, IS2f

0 P Rn,

f0 “ IS1YS2f
0 “ IS1f

0 ` IS2f
0 ´ IS1XS2f

0.

The equality (15.1.22) follows by integrating over Rn the above equality.

(ii) The equality (15.1.23) follows from Remark 15.1.24(b) by observing that f0pxq ď g0pxq,
@x P Rn. The inequality (15.1.24) follows by integrating over S the inequality

´

´

sup
xPS

|fpxq|
¯

ď fpxq ď
´

sup
xPS

|fpxq|
¯

, @x P S.

[\

Corollary 15.1.35. Let n P N. Suppose that S1, S2 Ă Rn are Jordan measurable sets and
f : S1 Y S2 Ñ R is Riemann integrable. If volnpS1 X S2q “ 0, then

ż

S1YS2

fpxq|dx| “

ż

S1

fpxq|dx| `

ż

S2

fpxq|dx|. (15.1.25)

Proof. From (15.1.24) we deduce that
ż

S1XS2

fpxq|dx| “ 0.

We now see that (15.1.25) is a special case of (15.1.22). [\
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Proposition 15.1.36. Suppose that K Ă Rn is a compact Jordan measurable set and
f : K Ñ R is a continuous function. Then f is integrable over K.

Proof. Fix a box B that contains K. As usual, denote by f0 the extension by 0 of f .
Observe that the set of points of discontinuity of f0 is contained in the boundary BK
which is negligible since K is Jordan measurable. Lebesgue’s Theorem 15.1.17 then shows
that f0 is integrable. [\

The next result is also a consequence of Lebesgue’s Theorem.

Corollary 15.1.37. Suppose that K Ă Rn is a compact Jordan measurable set, Z Ă Rn
is a negligible closed subset and f : K Ñ R is a bounded function. Then the following are
equivalent.

(i) The function f is Riemann integrable over K.

(ii) The function f is Riemann integrable over KzZ.

If either (i) or (ii) holds, then
ż

KzZ
fpxq |dx| “

ż

K
fpxq |dx|. [\

15.2. Fubini theorem and iterated integrals

We now have at our disposal all the information we need to prove a version of the Fubini
Theorem 15.1.18 that involves easily verifiable assumptions.

15.2.1. An unconditional Fubini theorem. Before we can state the version of the
Fubini theorem most frequently used in applications we need to introduce a very versatile
concept.

Definition 15.2.1. Let n P N. A compact set D Ă Rn`1 is called a domain of simple
type if there exist a compact Jordan measurable set K Ă Rn and continuous functions

β, τ : K Ñ R
with the following properties

‚ βpx1, . . . , xnq ď τpx1, . . . , xnq, @px1, . . . , xnq P K.

‚ The point px1, . . . , xn, yq P Rn`1 belongs to D if and only if

px1, . . . , xnq P K and βpx1, . . . , xnq ď y ď τpx1, . . . , xnq.

We will denote this domain by DpK,β, τq. The region K is called the cross section of D,
the function β is called the bottom of D and the function τ is called the top of D; see
Figure 15.4. [\

Thus DpK,β, τq is the region between the graphs of β and τ , where β sits at the
bottom and τ at the top.
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Figure 15.4. A simple type region in R3 with cross section K “ r0, πs ˆ r0, πs, a flat
bottom βpx, yq “ ´2´ x´ y and curved top τpx, yq “ sinpx` yq.

Proposition 15.2.2. Let n P N. Suppose that D “ DpK,β, τq Ă Rn`1 is a simple type
domain with cross section K Ă Rn and top/bottom functions τ, β : K Ñ R. Then D is
compact and Jordan measurable.

Proof. As usual we denote by mSpfq and MSpfq the infimum and respectively the supremum of a function

f : S Ñ R. Note that

DpK,β, τq Ă K ˆ rmβ ,Mτ s

so DpK,β, τq is bounded. Since K is compact, we deduce that K is closed. The continuity of β, τ shows that
DpK,β, τq is closed and thus compact.

Fix a box B Ă Rn that contains K. Set

pB “ B ˆ I, I :“ rmβ ,Mτ s, L “Mτ ´mβ .

Fix a partition P “ pP 1, . . . ,Pnq of B. The set of chambers C pP q decomposes as

C pP q “ CepP q Y CbpP q Y CipP q,

where CepP q consists of chambers that do not intersect K, CipP q consists of chambers located in the interior of K

and CbpP q consists of chambers that intersect both K and its complement. For ν P N we denote by Uν the uniform
partition of I into ν sub-intervals of equal length L{ν. We denote by I1, . . . , Iν sub-intervals of the partition Uν .

We obtain a partition pP ν “ pP 1, . . . ,Pn,Uν of pB “ B ˆ I. The chambers of pP ν have the form C ˆ Ik,
C P C pP q, k “ 1, . . . , ν. Note that

oscpID, C ˆ Ikq “ 0, @C P CepP q, k “ 1, . . . , ν,

and

oscpID, C ˆ Ikq ď 1, @C P CbpP q, k “ 1, . . . , ν
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In particular, we deduce that,

@C P CbpP q,
ν
ÿ

k“1

oscpID, C ˆ Ikq voln`1pC ˆ Ikq ď
ν
ÿ

k“1

volnpCq
L

ν
“ L volnpCq.

If C P CipP q, and Ik Ă
`

MCpβq,mCpτq
˘

, then oscpID, C ˆ Ik
˘

“ 0. We deduce that if oscpID, C ˆ Ik
˘

“ 1, then

Ik Ă IνpCq :“

«

mCpβq ´
L

ν
,MCpβq `

L

ν

ff

Y

«

mCpτq ´
L

ν
,MCpτq `

ν

ν

ff

.

Hence, @C P CipP q we have

ν
ÿ

k“1

oscpID, C ˆ Ikq voln`1pC ˆ Ikq ď volnpCq
ÿ

kPIνpCq

vol1pIkq

ď volnpCq vol1
`

IνpCq
˘

“

˜

oscpβ,Cq ` oscpτ, Cq `
4L

ν

¸

volnpCq.

Putting together all of the above we deduce

ωpID, pP νq “
ÿ

CPCbpP q

ν
ÿ

k“1

oscpID, C ˆ Ikq voln`1pC ˆ Ikq

`
ÿ

CPCipP q

ν
ÿ

k“1

oscpID, C ˆ Ikq voln`1pC ˆ Ikq

ď L
ÿ

CPCbpP q

volnpCq `
4L

ν

ÿ

CPCipP q

volnpCq

loooooooooomoooooooooon

ďvolnpBq

`
ÿ

CPCipP q

`

oscpβ,Cq ` oscpτ, Cq
˘

volnpCq.

Hence

ωpID, pP νq ď L
ÿ

CPCbpP q

volnpCq `
4L volnpBq

ν

`
ÿ

CPCipP q

`

oscpβ,Cq ` oscpτ, Cq
˘

volnpCq.
(15.2.1)

Fix ε ą 0. Since K is Jordan measurable, we can find a partition Qε of B such that

ÿ

CPCbpQεq

volnpCq “ ωpIK ,Qεq ă
ε

3
.

Choose ν “ νpεq ą 0 sufficiently large so that

4L

ν
volnpBq ă

ε

3
.

Since β, τ : K Ñ R are uniformly continuous, we can find δ “ δpεq ą 0 such that, for any set S Ă K with
diampSq ă δ we have

oscpβ, Sq ` oscpτ, Cq ă
ε

3 volnpBq
.

Now choose a partition P ε of P such that P ε ą Qε and }P ε} ă δpεq. We deduce from (15.2.1) that for ν ą νpεq

we have

ω
`

ID,yP
ε
ν

˘

ă ε.

[\
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Theorem 15.2.3 (Fubini). Let n P N and suppose D “ DpK,β, τq is a simple type
domain with cross section K and bottom/top functions β, τ : K Ñ R. We denote by px, yq
the coordinates in Rn`1 “ Rn ˆ R. If f : D Ñ R is continuous, then f is integrable over
D, the marginal function

Mf : K Ñ R, Mf pxq “

ż τpxq

βpxq
fpx, yq|dy|

is Riemann integrable and

ż

D
fpx, yq|dxdy| “

ż

K
Mf pxq|dx| “

ż

K

˜

ż τpxq

βpxq
fpx, yq |dy|

¸

|dx|. (15.2.2)

Proof. According to Proposition 15.2.2 the region D Ă Rn`1 is compact and Jordan
measurable. Proposition 15.1.36 now implies that f is Riemann integrable on D.

Fix a box in B Ă Rn and a compact interval I “ rm,M s Ă R such that

βpxq, τpxq P I, @x P K.

Then the box B1 “ B ˆ rm,M s Ă Rn`1 contains D and the extension f0 is Riemann
integrable on B1. Next observe that for any x P B the function

f0x : I Ñ R, f0xpyq “ fpx, yq

is Riemann integrable. Indeed, if x P BzK, then f0x is identically 0. On the other hand,
if x P K, then

f0xpyq “

#

fpx, yq, y P rβpxq, τpxqs,

0, y P rm,βpxqq Y pτpxq,M s.

The continuity of f coupled with Corollary 9.4.7 imply the Riemann integrability of f0x.
We can now apply the conditional Fubini Theorem 15.1.18 to the function f0 : B1 Ñ R.
Note that the marginal function M1

f0 is Riemann integrable on B and coincides with the

extension by 0 of the marginal function Mf : K Ñ R, i.e., M1
f0 “ pMf q

0. Thus Mf is

Riemann integrable on K. We deduce
ż

B1

fpx, yq|dxdy| “

ż

BˆI
f0px, yq|dxdy|

“

ż

B
M1
f0pxq|dx| “

ż

B
pM1

f q
0pxq|dx| “

ż

K
M1
f pxq|dx|.

[\

Remark 15.2.4. (a) The last integral in (15.2.2) is an example of iterated or repeated
integral.

(b) In the definition of simple type domains in Rn`1 the last coordinate xn`1 plays a
distinguished role. We did this only to simplify the notation in the various proofs. The
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results we proved above hold for regions D Ă Rn`1 of the type

D “
␣

px1, . . . , xn`1q P Rn`1; x P K, βpxq ď xj ď τpxq
(

where
x :“ px1, . . . , xj´1, xj`1, . . . , xn`1q P Rn.

We will refer to domains of this type as domains of simple type with respect to the xj-axis.
We want to point out that a given domain could be of simple type with respect to many
axes.

Theorem 15.2.3 has an obvious extension to domains that are simple type with respect
to an arbitrary axis xj : replace y by xj everywhere in the statement and the proof of this
theorem. [\

15.2.2. Some applications. Theorem 15.2.3 is best understood by witnessing it at work.

Example 15.2.5. Consider the triangle T in Figure 15.5. Its vertices have coordinates
p0, 0q, p1, 1q, p0, 2q. It is limited by the y-axis and the lines y “ x, y “ 2´ x. This triangle
is a domain of simple type with respect to both x and y-axis.

Viewed as a simple type domain with respect to the y-axis it has description

T “
␣

px, yq P R2; x P r0, 1s, βpxq ď y ď τpxq
(

,

where βpxq “ x and τpxq “ 2´ x.

Figure 15.5. An isosceles triangle in the plane.

Viewed as a simple type domain with respect to the x-axis it has description

T “
␣

px, yq P R2; y P r0, 2s, βpyq ď x ď τpyq
(

,

where βpyq “ 0 and

τpyq “

#

y, y P r0, 1s,

2´ y, y P p1, 2s.
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Consider a continuous function f : T Ñ R. Using Fubini’s theorem we deduce
ż 1

0

ˆ
ż 2´x

x
fpx, yq|dy|

˙

|dx| “

ż

T
fpx, yq|dxdy|

“

ż 1

0

ˆ
ż y

0
fpx, yq|dx|

˙

|dy| `

ż 2

1

ˆ
ż 2´y

0
fpx, yq |dx|

˙

|dy|. [\

Our next application is another version of Cavalieri’s Principle.

Proposition 15.2.6. Let n P N. Suppose that K Ă Rn is a compact Jordan measurable
set and β, τ : K Ñ R continuous functions such that

βpxq ď τpxq, @x P K.

Then the pn` 1q-dimensional volume of the region DpK,β, τq Ă Rn`1 between the graphs
of β and τ is

voln`1
`

DpK,β, τq
˘

“

ż

K

`

τpxq ´ βpxq
˘

|dx|. (15.2.3)

In particular, for any continuous function h : K Ñ R, the pn` 1q-dimensional volume of
the graph Γh of h is 0

voln`1pΓhq “ 0. (15.2.4)

Proof. The equality (15.2.3) is the special case of (15.2.2) corresponding to f “ 1. The
equality (15.2.4) follows from (15.2.3) by choosing β “ τ “ h. [\

Example 15.2.7. For every n P N we denote by T n the n-dimensional simplex 5 defined
by the conditions

T n :“
␣

x P Rn; xi ě 0, @i “ 1, . . . , n, x1 ` ¨ ¨ ¨ ` xn ď 1
(

.

The region T n can be alternatively described as the region

T n :“
␣

px˚, x
nq P Rn; x˚ P T n´1, 0 ď xn ď 1´ px1 ` ¨ ¨ ¨ ` xn´1q

(

,

where x˚ :“ px
1, . . . , xn´1q.

Observe that T 1 “ r0, 1s, that T 2 is a domain of simple type in R2 with respect to
the x2 axis, with bottom 0 and top 1 ´ x1 and cross section T 1 and thus T 2 is compact
and Jordan measurable. We deduce inductively that T n is simple type with respect to
the xn-axis, with bottom 0, top 1´ px1` ¨ ¨ ¨ ` xn´1q and cross section T n´1 and thus T n
is compact and Jordan measurable. We want to compute its volume.

To keep the insanity at bay we introduce the simplifying notation

sk “ skpx
1, . . . , xkq :“ x1 ` ¨ ¨ ¨ ` xk.

Note that sk “ sk´1 ` x
k and

T k “
␣

px1, . . . , xkq P Rk; px1, . . . , xk´1q P T k´1, 0 ď xk ď 1´ sk´1
(

.

5The concept of simplex is the higher dimensional generalization of the more familiar concepts of triangles and
tetrahedra.
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Figure 15.6. The tetrahedron T 3.

For any k P N and s P R we set

Ikpsq :“

ż 1´s

0
p1´ s´ xqkdx.

Making the change in variables u :“ 1´ s´ x we deduce

Ikpsq “ ´

ż 0

1´s
ukdu “

1

k
p1´ sqk. (15.2.5)

Using Fubini’s Theorem (15.2.2) and the equality (15.2.5) we deduce

volnpT nq
p15.2.2q
“

ż

Tn´1

`

1´ sn´1
˘

|dx1 ¨ ¨ ¨ dxn´1|

p15.2.2q
“

ż

Tn´2

ˆ
ż 1´sn´2

0

`

1´ p sn´2 ` x
n´1 q

˘

dxn´1
˙

|dx1 ¨ ¨ ¨ dxn´2|

“

ż

Tn´2

ˆ
ż 1´sn´2

0

`

p1´ sn´2q ´ x
n´1

˘

dxn´1
˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

I1psn´2q

|dx1 ¨ ¨ ¨ dxn´2|

p15.2.5q
“

1

2

ż

Tn´2

p1´ sn´2q
2|dx1 ¨ ¨ ¨ dxn´2|

p15.2.2q
“

1

2

ż

Tn´3

ˆ
ż 1´sn´3

0

´

p1´ sn´3q ´ xn´2

¯2
dxn´2

˙

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

I2psn´3q

|dx1 ¨ ¨ ¨ dxn´3|

p15.2.5q
“

1

2 ¨ 3

ż

Tn´3

`

1´ sn´3
˘3
|dx1 ¨ ¨ ¨ dxn´3|.
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Continuing in this fashion we deduce

volnpT nq “
1

k!

ż

Tn´k

`

1´ sn´k
˘k
|dx1 ¨ ¨ ¨ dxn´k|, @k “ 1, . . . , n.

In particular, if we let k “ n´ 1, we deduce

volnpT nq “
1

pn´ 1q!

ż

T 1

`

1´ s1
˘n´1

|dx1| “
1

pn´ 1q!

ż 1

0

`

1´ x1
˘n´1

dx1 “
1

n!
. [\

15.3. Change in variables formula

In the last section of this chapter we discuss a fundamental result in the theory of inte-
gration of functions of several variables. The importance of change-in-variables formula
goes beyond its applications to the computation of many concrete integrals. It will serve
as a guiding principle when defining the integral over “curved” spaces, i.e., submanifolds.

15.3.1. Formulation and some classical examples. Let n P N and suppose that
U Ă Rn is open and Φ : U Ñ Rn is a C1-diffeomorphism

U Q x ÞÑ y “ py1, . . . , ynq “
`

Φ1pxq, . . . ,Φnpxq
˘

We denote by JΦpxq the Jacobian matrix of Φ at the point x P U . We set V :“ ΦpUq so
V is an open subset of the target space Rn.

U

V

Φ

Φ (  )
-1

K

K

Figure 15.7. A diffeomorphism Φ : U Ñ V .

Theorem 15.3.1. Suppose that f : V Ñ R is a bounded function that vanishes
outside a compact subset K Ă V . Then the following hold.



15.3. Change in variables formula 541

(i) The function f is integrable if and only if the function

U Q x ÞÑ f
`

Φpxq
˘

| det JΦpxq| P R
is Riemann integrable.

(ii) We have the change in variables formula (see 15.7)
ż

V
fpyq|dy| “

ż

U
f
`

Φpxq
˘
ˇ

ˇdet JΦpxq
ˇ

ˇ |dx| . (15.3.1)

[\

Remark 15.3.2. (a) We say that Φ changes the “old” variables (or coordinates) y1, . . . , yn

on V to the “new” variables (or coordinates) x1, . . . , xn on U . The change is described by
the equations

yk “ Φkpx1, . . . , xnq, k “ 1, . . . , n.

Thus the “old” variables y are expressed as functions of the “new” variables x. We often
use the slightly ambiguous but more suggestive notation

y “ ypxq
`

“ Φpxq
˘

,

to express the dependence of the “old” coordinates y on the “new” coordinates x. The
inverse transformation Φ´1pyq is often replaced by the simpler and more intuitive notation

x “ xpyq
`

“ Φ´1pyq
˘

,

indicating that x depends on y via the unspecified transformation Φ´1.

Frequently we will use the more intuitive notation
ˇ

ˇ

ˇ

ˇ

By

Bx

ˇ

ˇ

ˇ

ˇ

:“ |det JΦ|.

In concrete applications we are given a compact Jordan measurable subset K Ă V and a
Riemann integrable function f : K Ñ R. The change of variables formula applied to the
function IKpyqfpyq can then be rewritten in the more intuitive form (Figure 15.3.1)

ż

K
fpyq|dy| “

ż

Φ´1pKq
f
`

ypxq
˘

ˇ

ˇ

ˇ

ˇ

By

Bx

ˇ

ˇ

ˇ

ˇ

|dx| . (15.3.2)

Implicit in the above equality is the conclusion that the compact Φ´1pKq is also Jordan
measurable.

(b) Let us observe that if in (15.3.1) we set gpxq :“ f
`

Φpxq
˘

, then we can rewrite this
equality in the form

ż

V
g
`

xpyq
˘

|dy| “

ż

U
gpxq

ˇ

ˇ

ˇ

ˇ

By

Bx

ˇ

ˇ

ˇ

ˇ

|dx| . (15.3.3)

Clearly (15.3.3) is equivalent to (15.3.1). [\
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We will present an outline of the proof in the next subsection. The best way of
understanding how it works is through concrete examples.

Example 15.3.3 (The volume of a parallelepiped). Let n P N. Suppose that we are given
n linearly independent vectors v1, . . . ,vn P Rn.

The parallelepiped spanned by v1, . . . ,vn is the set P pv1, . . . ,vnq Ă Rn consisting of
all the vectors y of the form

y “ x1v1 ` ¨ ¨ ¨ ` x
nvn, x1, . . . , xn P r0, 1s. (15.3.4)

We want to prove that P pv1, . . . ,vnq is Jordan measurable and then compute its volume.
To this end consider the linear map V : Rn Ñ Rn uniquely determined by the requirements

V ej “ vj , @j “ 1, . . . , n.

In other words, the columns of the matrix representing V are given by the (column)
vectors v1, . . . ,vn. Since the vectors v1, . . . ,vn are linearly independent the operator V
is invertible and thus defines a diffeomorphism Rn Ñ Rn. Being linear, the operator V
coincides with its differential at every x P Rn so

JV “ V det JV “ detV.

We denote by C the cube C “ r0, 1sn Ă Rn. The equation (15.3.4) can be written in the
form

y P P pv1, . . . ,vnqðñy “ x1V e1 ` ¨ ¨ ¨ ` x
nV en, x “ px

1, . . . , xnq P r0, 1sn “ C.

In other words, P “ V pCq. In particular, this shows that P is compact. The equality
P “ V pCq translates into an equality of indicator functions

IP pV xq “ ICpxq.

Theorem 15.3.1 implies that P is Jordan measurable and

voln
`

P pv1, . . . ,vnq
˘

“

ż

Rn

IP pyq|dy| “

ż

Rn

ICpxq|detV ||dx| “ | detV | . (15.3.5)

When n “ 2, and v1,v2 P Rn are not collinear, then P pv1,v2q is the parallelogram spanned
by v1 and v2. For example, if

v1 “

„

1
2

ȷ

, v2 “

„

3
4

ȷ

,

then

V “

„

1 3
2 4

ȷ

, detV “ 1 ¨ 4´ 2 ¨ 3 “ ´2, area
`

P pv1,v2q q “ | detV | “ 2. [\

Example 15.3.4 (Polar coordinates). Consider the map

Φ : R2 Ñ R2, pr, θq ÞÑ px, yq “ pr cos θ, r sin θq.

The geometric significance of this map was explained in Example 14.5.12 and can be seen
in Figure 15.8.
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The location of a point p P R2zt0u can be indicated using the “old” Cartesian co-
ordinates, or the “new” polar coordinates pr, θq, where r “ distpp,0q and θ is the angle
between the line segment r0,ps and the x-axis, measured counterclockwisely.

A

r

θ

p=(x,y)

Figure 15.8. Constructing the polar coordinates.

The Jacobian of this map is

JΦ “

»

–

Bx
Br

Bx
Bθ

By
Br

By
Bθ

fi

fl “

„

cos θ ´r sin θ
sin θ r cos θ

ȷ

so

det JΦ “ r. (15.3.6)

Let us observe that, for any T P R, the restriction of Φ to the region p0,8qˆ pT, T ` 2πq
produces a bijection onto R2

˚ :“ the plane R2 with the nonnegative x-semiaxis removed.
We will work exclusively with the restriction

Φpolar :“ Φ
ˇ

ˇ

r0,8qˆr0,2πs
.

Note two “problems” with Φpolar.

‚ The domain r0,8q ˆ r0, 2πs is not an open subset of R2.

‚ The map Φpolar is not injective, but its restriction to the open subset p0,8qˆp0, 2πq
is injective.

For every Jordan measurable compact set K Ă R2 we set

Kpolar :“ Φ´1polarpKq “
␣

pr, θq P r0,8q ˆ r0, 2πs; pr cos θ, r sin θq P K
(

. (15.3.7)
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Observe that Kpolar is compact. If K does not intersect the nonnegative x-semiaxis, then
Theorem 15.3.1 applies directly to this situation and shows that if f “ fpx, yq : K Ñ R is
Riemann integrable, then so is the function

f ˝ Φpolar : Kpolar Ñ R, f ˝ Φpolarpr, θq “ fpr cos θ, r sin θq,

and we have
ż

Kpolar

fpr cos θ, r sin θqr|drdθ| “

ż

K
fpx, yq|dxdy| . (15.3.8)

When K does intersect this semi-axis Theorem 15.3.1 does not apply directly because of
the above two “problems”. However the equality (15.3.8) continues to hold even in this
case. This requires a separate argument.

Since we will be frequently confronted with such problems, we state below a general
result that deals with these situations. We refer the curious reader to [25, Thm. XX.4.7]
or [39, Sec. 11.5.7, Thm.2 ] for a proof of this result.

Theorem 15.3.5. Let n P N. We are given a compact Jordan measurable set K Ă Rn,
an open set U Ą K and a C1 map Φ : U Ñ Rn. Suppose that the restriction of Φ to
the interior of K is a diffeomorphism. If f : ΦpKq Ñ R, is Riemann integrable, then
the function

K Q x ÞÑ f
`

Φpxq
˘

| det JΦpxq| P R
is Riemann integrable and

ż

ΦpKq
fpyq|dy| “

ż

K
f
`

Φpxq
˘ˇ

ˇ det JΦpxq
ˇ

ˇ|dx| . (15.3.9)

[\

Here is an immediate application of the above result. Suppose that K “ KR is the
rectangle (see Figure 15.9)

K “ KR :“
␣

pr, θq P R2; r P r0, Rs, θ P r0, 2πs
(

We have a differentiable map Φ : R2 Ñ R2,

Φpr, θq “ pr cos θ, r sin θq.

and ΦpKq “ D “ DR is the closed disk (in R2) of radius R centered at the origin,

DR “
␣

px, yq P R2; x2 ` y2 ď R2
(

.

Using the terminology in (15.3.7) we have K “ Dpolar. The boundary S of K is depicted
in red on Figure 15.9. The interior of K is KzS. The induced map Φ : KzS Ñ R2 is a
diffeomorphism with image the complement of the set Z also depicted in red on Figure
15.9. Theorem 15.3.5 implies that for any Riemann integrable function f : D Ñ R , the
function

K Q pr, θq ÞÑ fpr cos θ, r sin θq P R
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K D

Φ

S
Z

Figure 15.9. The polar coordinate change transformation sends a rectangle U to a disk V .

is Riemann integrable and we have
ż

D
fpx, yq|dxdy| “

ż

K
fpr cos θ, sin θqr|drdθ|. (15.3.10)

More generally, suppose that S is a compact, Jordan measurable subset of the px, yq-plane.
Since S is bounded, it is contained in some closed disk DR of radius R, centered at the
origin. Form the associated closed rectangle KR in the pr, θq-plane

KR “
␣

pr, θq; r P r0, Rs, θ P r0, 2πs
(

.

Suppose that f : S Ñ R is a Riemann integrable function. As usual, we denote by f0 the
extension by 0 of f and by IDR

the indicator function of DR. Note that f0 “ f0IDR
. By

definition
ż

S
f |dxdy| “

ż

R2

IDR
f0|dxdy| “

ż

DR

f0|dxdy|.

Applying (15.3.10) to the function f0 : DR Ñ R we deduce
ż

Spolar

fpr cos θ, r sin θqr|drdθ| “

ż

S
fpx, yq|dxdy| , (15.3.11)

where Spolar is defined as in (15.3.7).

To see how (15.3.11) works in practice, consider the continuous function

f : R2zt0u Ñ R, fpx, yq “ logpx2 ` y2q,

where log denotes the natural logarithm. We want to compute the integral of this function
over the annulus

A :“
␣

p P R2; 1 ď distpp,0q ď 2
(

.

Then

Apolar “
␣

pr, θq; r P r1, 2s, θ P r0, 2πs
(

and

logpx2 ` y2q “ logpr2q “ 2 log r.

We deduce
ż

A
logpx2 ` y2q|dxdy| “

ż

1ďrď2,
0ďθď2π

2plog rqr|drdθ|
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(use Fubini)

“ 2

ż 2

1

ˆ
ż 2π

0
|dθ|

˙

r log r|dr| “ 2π

ż 2

1
2r log rdr.

We have
ż 2

1
2r log rdr “

ż 2

1
log rdpr2q “ pr2 log rq

ˇ

ˇ

ˇ

r“2

r“1
´

ż 2

1
r2dplog rq

“ 4 log 2´

ż 2

1
rdr “ 4 log 2´

1

2

´

r2
ˇ

ˇ

ˇ

r“2

r“1

¯

“ 4 log 2´
3

2
.

Thus
ż

A
logpx2 ` y2qdxdy “ π

`

8 log 2´ 3
˘

. [\

Example 15.3.6 (Cylindrical and spherical coordinates). Denote by O the open subset
of R3 obtained by removing the half-plane H contained in the xz-plane defined by

H :“
␣

px, y, zq P R3; y “ 0, x ě 0
(

. (15.3.12)

The location of a point p P O is determined either by its Cartesian coordinates px, y, zq, or
by its altitude and the location of its projection q on the xy-plane. In turn, this projection
is determined by its polar coordinates pr, θq; see Figure 15.10.

x

y

z

p

q

ρ

θ

ϕ

r

Figure 15.10. Constructing the cylindrical and spherical coordinates.

The cylindrical coordinates pr, θ, zq are related to the Cartesian coordinates via the
equalities

$

&

%

x “ r cos θ
y “ r sin θ
z “ z,

r ą 0, θ P p0, 2πq, z P R.
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The above equalities define a transformation

ΦCartÐcyl : r0,8q ˆ r0, 2πs ˆ RÑ R3, pr, θ, zq ÞÑ

»

–

x
y
z

fi

fl “

»

–

r cos θ
r sin θ
z

fi

fl ,

whose restriction to the open set p0,8q ˆ p0, 2πq ˆ R is a diffeomorphism with image
O “ R3zH, where H is the half-plane in (15.3.12). The Jacobian matrix of the transfor-
mation ΦCartÐcyl is

JCartÐcyl :“

»

–

cos θ ´r sin θ 0
sin θ r cos θ 0
0 0 1

fi

fl .

We have

det JCartÐcyl “ det

„

cos θ ´r sin θ
sin θ r cos θ

ȷ

“ r . (15.3.13)

Alternatively, the location of a point p P O is determined if we know the distance
ρ to the origin ρ “ }p}, the angle φ P p0, πq the line 0p makes with the z-axis, and
the polar coordinate θ of the projection of p on the xy-plane; see Figure 15.10. The
parameters ρ, φ, θ are called the spherical coordinates of p. The spherical coordinates
pρ, φ, θq determine the cylindrical coordinates pr, θ, zq via the equalities

r “ ρ sinφ, θ “ θ, z “ ρ cosφ.

The Jacobian matrix of the transformation ΦcylÐsphpρ, φ, θq “ pr, θ, zq is

JcylÐsph “

»

—

—

—

—

—

–

Br
Bρ

Br
Bφ

Br
Bθ

Bθ
Bρ

Bθ
Bφ

Bθ
Bθ

Bz
Bρ

Bz
Bφ

Bz
Bθ

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

–

sinφ ρ cosφ 0
0 0 1

cosφ ´ρ sinφ 0

fi

fl .

Expanding along the second row we deduce

det JcylÐsph “ ´det

„

sinφ ρ cosφ
cosφ ´ρ sinφ

ȷ

“ ρ. (15.3.14)

We deduce that the Cartesian coordinates px, y, zq are related to the spherical coordinates
pρ, φ, θq via the equalities

$

&

%

x “ ρ sinφ cos θ
y “ ρ sinφ sin θ
z “ ρ cosφ,

, ρ ą 0, θ P p0, 2πq, φ P p0, πq.

The above equations define a transformation

ΦCartÐcyl : r0,8q ˆ r0, 2πq ˆ RÑ R3, pρ, φ, θq ÞÑ

»

–

x
y
x

fi

fl “

»

–

ρ sinφ cos θ
ρ sinφ sin θ
ρ cosφ

fi

fl .
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The restriction of ΦCartÐsph to the open set p0,8q ˆ p0, πq ˆ p0, 2πq is a diffeomorphism
with image O. The Jacobian matrix of the above transformation is

JCartÐsph “

»

—

—

—

—

—

–

Bx
Bρ

Bx
Bφ

Bx
Bθ

By
Bρ

By
Bφ

By
Bθ

Bz
Bρ

Bz
Bφ

Bz
Bθ

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

sinφ cos θ ρ cosφ cos θ ´ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ ´ρ sinφ 0

fi

ffi

ffi

ffi

ffi

fl

.

Since ΦCartÐsph “ ΦCartÐcyl ˝ ΦcylÐsph we deduce from the chain rule that

JCartÐsph “ JCartÐcyl ¨ JcylÐsph.

Hence det JCartÐsph “ det JCartÐcyl det JcylÐsph. Using (15.3.13) and (15.3.14) we deduce

det JCartÐsph “ rρ “ ρ2 sinφ . (15.3.15)

Let us see how we can use these facts in concrete situations. Suppose that K Ă R3 is a
compact measurable set contained in some large ball BRp0q Ă R3. We set

Kcyl :“
␣

pr, θ, zq P r0,8q ˆ r0, 2πs ˆ R; ΦCartÐcylpr, θ, zq P K
(

,

Ksph :“
␣

pr, φ, zq P r0, πs ˆ r0, 2πs ˆ R; ΦCartÐsphpr, φ, θq P K
(

.

Suppose that f : K Ñ R is a Riemann integrable function. If K does not intersect the
“forbidden” half-plane H, then Theorem 15.3.1 applies and yields

ż

K
fpx, y, zqdxdydz “

ż

Kcyl

fpr cos θ, r sin θ, zqrdrdθdz . (15.3.16a)

ż

K
fpx, y, zq |dxdydz| “

ż

Ksph

fpρ sinφ cos θ, ρ sinφ sin θ, ρ cosφqρ2 sinφ |dρdφdθ| .

(15.3.16b)
If K does intersect the “forbidden” half-plane H, then using Theorem 15.3.5 we deduce
as in Example 15.3.4 that (15.3.16a) and (15.3.16b) continue to hold in this case as well.
Let us see how the above formulæ work in concrete situations.

Fix a number φ0 P p0, π{2q. The locus of points in R3 such that φ “ φ0 describes a
circular cone; Fig 15.11. The z-axis is a symmetry axis of this cone.

If we set m0 :“ tanφ0, then we observe that, along the surface of this cone the
cylindrical coordinates coordinates r, z satisfy

m0 “ tanφ0 “
r

z
r “ m0z.

The “inside part” of this cone is described by the inequality
r

z
ď m0ðñ r ď m0z.

Consider two positive numbers z0 ă z1 and denote by R “ Rpm0, z0, z1q the region inside
this cone contained between the horizontal planes z “ z0 and z “ z1; see Figure 15.12.
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Figure 15.11. A cone.

Figure 15.12. A truncated cone.

We want to compute the volume of this truncated cone. In cylindrical coordinates it
corresponds to the region Rcyl described by the inequalities

0 ď r ď m0z, z0 ď z ď z1, 0 ď θ ď 2π.

Using the change in variables formula (15.3.16a)

vol3pRq “

ż

R
|dxdydz| “

ż

pθ,zqPr0,2πsˆrz0,z1s
0ďrďm0z

r |drdθdz|

“

ż 2π

0

˜

ż z1

z0

˜

ż m0z

0
rdr

¸

dz

¸

dθ

“

ż 2π

0

˜

ż z1

z0

1

2
pm0zq

2dz

¸

dθ “
m2

0

2

ż 2π

0

˜

z31 ´ z
3
0

3
dθ

¸

“
πm2

0

3

`

z31 ´ z
3
0

˘

.

To see the spherical coordinates at work, it is useful to relate them to more familiar notions.
Note that the surface ρ “ const is a sphere. The surface φ “ const is a cone while the
surface θ “ const is a half-plane with edge z-axis. Since z “ ρ cosφ we deduce that in
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spherical coordinates the truncated cone R corresponds to the region Rsph described by
the inequalities

0 ď φ ď φ0, θ P r0, 2πs, z0 ď ρ cosφ ď z1.

We deduce

vol3pRq “

ż

Rsph

ρ2 sinφ|dρdφdθ|

“

ż 2π

0

˜

ż φ0

0

˜

ż

z1
cosφ

z0
cosφ

ρ2dρ

¸

sinφdφ

¸

dθ “
z31 ´ z

3
0

3

ż 2π

0

ˆ
ż φ0

0

sinφ

cos3 φ
dφ

˙

dθ

(make the change in variables u “ cosφ)

“
z31 ´ z

3
0

3

ż 2π

0

ˆ
ż 1

cosφ0

1

u3
du

˙

dθ “
z31 ´ z

3
0

6

ż 2π

0

ˆ

1

cos2 φ0
´ 1

˙

loooooooomoooooooon

“tan2 φ0“m2
0

dθ

“
πm2

0pz
3
1 ´ z

3
0q

3
.

This is in perfect agreement with the computation using cylindrical coordinates.

To verify the validity of these computations, we present an alternate computation
based on Cavalieri’s principle. The intersection of the region R with the horizontal plane
z “ t is a disk Rt of radius rt “ m0t. We have

vol2pRtq “ πpm0tq
2.

Then

vol3pRq “

ż z1

z0

vol2pRtqdt “ πm2
0

ż z1

z0

t2dt “
πm2

0

3

`

z31 ´ z
3
0

˘

.

Let us rewrite this volume formula in a more familiar form. The bottom of the truncated
cone R is a disk of radius r0 “ m0z0 and the top is a disk of radius r1 “ m0z1. We denote
by h the height of this truncated cone h :“ z1 ´ z0. Then

vol3pRq “
π

3
pz1 ´ z0q

`

pm0z1q
2 ` pm0z1qpm0z0q ` pm0z0q

2
˘

“
πh

3

`

r21 ` r1r0 ` r
2
0

˘

.

[\

Example 15.3.7 (Spherical coordinates in arbitrary dimensions). Let n P N, n ě 2. We
will construct inductively spherical coordinates on Rn.

For n “ 2, these are versions of the polar coordinates pr, θq. Define pρ2, θ2q via the
well known equalities

x1 “ ρ2 cos θ2, x2 “ ρ2 sin θ2, ρ2 “ }x}, θ2 P r0, 2πs. (15.3.17)

Observe that the numbers ρ2 and θ2 completely determine the location of the point x in
R2.
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Suppose now that we have constructed the spherical coordinates θ2, . . . , θn, ρn on Rn.
In particular, the coordinates x1, . . . , xn are functions depending on these coordinates,

x1 “ f1pθ2, . . . , θn, ρnq, . . . , x
n “ fnpθ2, . . . , θn, ρnq, (15.3.18a)

ρnpxq “ }x}, @x P Rn. (15.3.18b)

We will construct spherical coordinates θ2, . . . , θn, θn`1, ρn`1 on Rn.
For x “ px1, . . . , xn`1q P Rn`1 we denote by x is projection onto the coordinate

hyperplane Rn ˆ t0u “ txn`1 “ 0u and we think of x as a point in Rn; see Figure 15.13.
In other words, we have

x “
`

x1, . . . , xn
loooomoooon

x

, xn`1
˘

“
`

x, xn`1
˘

.

We denote by ρn`1 the distance from x to the origin, i.e.,

ρn`1 “ }x} “
a

px1q2 ` px2q2 ` ¨ ¨ ¨ ` pxn`1q2.

Observe that the location of x is completely determined once we know xn`1 and the
location ofx in Rn; see Figure 15.13. According to the induction assumption the location of
x is completely determined by the previously defined spherical coordinates pθ2, . . . , θn, ρnq,
ρn “ }x}.

x

x

x

x

ρ

ρθ

θ

1
2

2

2

33

3

Figure 15.13. Constructing spherical coordinates in n dimensions.

For x P Rn`1zt0u denote by θn`1 “ θn`1pxq P r0, πs the angle the vector x makes
with the xn`1-axis. More precisely, we have (see Figure 15.13)

xn`1 “ xx, en`1y “ }x} ¨ }en`1} cos θn`1 “ ρn`1 cos θn`1,

and

ρn “ ρn`1 sin θn`1.



552 15. Multidimensional Riemann integration

This shows that the quantities pρn`1, θn`1q determine the coordinate xn`1 and the spher-
ical coordinate ρn of x. Thus, the quantities

θ2, . . . , θn, θn`1, ρn`1

completely determine the location of x in Rn`1. More precisely, using (15.3.18a) we obtain
equalities

x1 “ f1pθ2, . . . , θn, ρn`1 sin θn`1q
...

...
...

xn “ fnpθ2, . . . , θn, ρn`1 sin θn`1q
xn`1 “ ρn`1 cos θn`1,

(15.3.19)

where

ρn`1 ą 0, θ2 P r0, 2πs, θ3, . . . , θn`1 P r0, πs .

Let us see more explicitly the manner in which the spherical coordinates θ2, . . . , θn`1, ρn`1
determined the Cartesian coordinates x1, . . . , xn`1. Using (15.3.17) we deduce that, for
n` 1 “ 3 we have

x1 “ ρ3 sin θ3 cos θ2, x2 “ ρ3 sin θ3 sin θ2, x3 “ ρ3 cos θ3.

We recognize here an old “friend”, the spherical coordinates in R3, ρ “ ρ3, θ “ θ2,
φ “ θ3; see Figure 15.13. Using these freshly obtained equalities and the inductive scheme
(15.3.19) we deduce that for n` 1 “ 4 we have

x1 “ ρ4 sin θ4 sin θ3 cos θ2,

x2 “ ρ4 sin θ4 sin θ3 sin θ2,

x3 “ ρ4 sin θ4 cos θ3,

x4 “ ρ4 cos θ4.

The general pattern should be clear

x1 “ ρn sin θn ¨ ¨ ¨ sin θ4 sin θ3 cos θ2,
x2 “ ρn sin θn ¨ ¨ ¨ sin θ4 sin θ3 sin θ2,
x3 “ ρn sin θn ¨ ¨ ¨ sin θ4 ¨ cos θ3,
...

...
...

xn´1 “ ρn sin θn cos θn´1,
xn “ ρn cos θn.

(15.3.20)

We interpret the above equalities as defining a map Φn “ Φnpθ2, ¨ ¨ ¨ θn, ρnq from an open
subset of a vector space with coordinates pθ2, . . . , θn, ρnq to another vector space with
coordinates px1, . . . , xnq. We want to compute δn :“ det JΦn .
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We will achieve this inductively by observing that we can write Φn`1 as a composition

»

—

—

—

–

θ2
...

θn`1

ρn`1

fi

ffi

ffi

ffi

fl

Ψn`1
ÞÑ

»

—

—

—

—

—

—

–

θ2
...
θn
ρn
xn`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

θ2
...
θn

ρn`1 sin θn`1

ρn`1 cos θn`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

θ2
...

θn
ρn
xn`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Φ̂n
ÞÑ

„

x
xn`1

ȷ

“

„

Φnpθ2, . . . , θn, ρnq
xn`1

ȷ

From the equality

Φn`1 “ Φ̂n ˝Ψn`1

and the chain rule we deduce

det JΦn`1
“ det JΦ̂n

¨ det JΨn`1
.

A simple computation6 shows that

det JΦ̂n
“ det JΦn , det JΨn`1

“ ρn`1. (15.3.21)

Hence
δn`1 “ ρn`1δn “ ρn`1ρnδn´1 “ ¨ ¨ ¨ ρn`1ρn ¨ ¨ ¨ ρ3δ2

“ ρn`1ρn ¨ ¨ ¨ ρ3ρ2.

From the equalities
ρn “ ρn`1 sin θn`1, ρ2 “ ρ3 sin θ3

we deduce
δ2 “ ρ2, δ3 “ ρ23 sin θ3, δ4 “ ρ4ρ

2
3 sin θ3 “ ρ34psin θ4q

2 sin θ3,

and, in general,

det JΦn`1 “ δn`1 “ ρnn`1psin θn`1q
n´1psin θnq

n´2 ¨ ¨ ¨ sin θ3 . (15.3.22)

Note that since θ3, . . . , θn P p0, πq we deduce that det JΦn`1 ą 0 so det JΦn`1 “ |det JΦn`1 |.
[\

Example 15.3.8 (The volume of the unit n-dimensional ball). Denote by ωn the volume
of the closed unit n-dimensional ball

Bn
1 p0q :“

␣

x P Rn; }x} ď 1
(

.

Consider the box

Bn :“
␣

pθ2, . . . , θn, ρnq P Rn, θ2 P r0, 2πs, θ3, . . . , θn P r0, πs, ρn P r0, 1s
(

.

The transformation Φn sends this box to the closed unit n-dimensional ball Bn
1 p0q.

The equality (15.3.22) shows that the determinant of the Jacobian of Φn is bounded
on Bn. Applying Theorem 15.3.5 we deduce that

ωn “ voln
`

Bn
1 p0q

˘

“

ż

Bn

ρn´1n psin θnq
n´2psin θn´1q

n´3 ¨ ¨ ¨ sin θ3|dθ2dθ3 ¨ ¨ ¨ dθndρn|

6You need to perform this simple computation.
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(set ρ :“ ρn and use Fubini)

“

ˆ
ż 1

0
ρn´1dρ

˙ˆ
ż 2π

0
dθ2

˙ˆ
ż π

0
sin θ3dθ3

˙

¨ ¨ ¨

ˆ
ż π

0
psin θnq

n´2dθn

˙

“
2π

n

ˆ
ż π

0
sin θdθ

˙

¨ ¨ ¨

ˆ
ż π

0
psin θqn´2dθ

˙

.

If we set

Jk :“

ż π

0
psin θqkdθ,

then we deduce

ωn “
2π

n
J1J2 ¨ ¨ ¨ Jn´2.

Using the equality

sinpπ ´ θq “ sin θ, @θ P R
we deduce

ż π

0
psin θqkdθ “

ż π
2

0
psin θqkdθ `

ż π

π
2

psin θqkdθ “ 2

ż π
2

0
psin θqkdθ

loooooomoooooon

“:Ik

.

Hence

ωn “
2n´1π

n
I1I2 ¨ ¨ ¨ In´2 (15.3.23)

We have compute the integrals Ik earlier in (9.6.15).

I2j “
π

2

p2j ´ 1q!!

p2jq!!
, I2j´1 “

p2j ´ 2q!!

p2j ´ 1q!!
,

where the bi-factorial n!! is defined in (9.6.14).

Thus, if n “ 2k, then

I1 ¨ ¨ ¨ In´2 “ pI1I2q ¨ ¨ ¨ pI2k´3I2k´2q “

k´1
ź

j“1

I2j´1I2j “
´π

2

¯k´1 k´1
ź

j“1

p2j ´ 2q!!

p2jq!!
“

“

´π

2

¯k´1 1

p2k ´ 2q!!
“

πk´1

22k´2pk ´ 1q!
.

For n “ 2k ` 1 we have

I1 ¨ ¨ ¨ In´2 “ pI1I2q ¨ ¨ ¨ pI2k´3I2k´2qI2k´1 “

´π

2

¯k´1 1

pp2k ´ 2q!!
¨
p2k ´ 2q!!

p2k ´ 1q!!

“

´π

2

¯k´1 1

p2k ´ 1q!!
.

Using (15.3.23) we deduce

ω2k “
πk

k!
, ω2k`1 “

2k`1πk

p2k ` 1q!!
. (15.3.24)
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We list below the values of ωn for small n.

n 0 1 2 3 4 5

ωn 1 2 π 4π
3

π2

2
8π2

15

.

Let us mention one simple consequence of the above computations that will come in handy
later.

nωn “

ˆ
ż 2π

0
dθ2

˙ˆ
ż π

0
sin θ3 dθ3

˙

¨ ¨ ¨

ˆ
ż π

0
psin θnq

n´2 dθn

˙

. (15.3.25)

[\

Example 15.3.9 (Integrals of radially symmetric functions). Here is another useful ap-
plication of the n-dimensional spherical coordinates. For 0 ď r ă R define

Apr,Rq “ Anpr,Rq “
␣

x P Rn; r ď }x} ď R
(

.

Suppose that f : Apr,Rq Ñ R is a continuous radially symmetric function. This means
that there exists u : rr,Rs Ñ R is a continuous function such that

fpxq “ u
`

}x}
˘

, @x P Rn.

We want to show that

ż

Anpr,Rq
up}x}q|dx| “

ż

rď}x}ďR
up}x}q |dx| “ nωn

ż R

r
upρqρn´1dρ . (15.3.26)

When n “ 2 this formula reads
ż

rď
?
x2`y2ďR

u
`

a

x2 ` y2
˘

|dxdy| “ 2π

ż R

r
tuptqdt,

and when n “ 3 it reads
ż

rď
?
x2`y2`z2ďR

u
`

a

x2 ` y2 ` z2
˘

|dxdydz| “ 4π

ż R

r
t2uptqdt.

To prove (15.3.26) we use the n-dimensional spherical coordinates pθ2, . . . , θn, ρ “ ρnq. We
deduce
ż

Anpr,Rq
up}x}q|dx| “

ż

rďρďR
θ2Pr0,2πs θ3,...,θnPr0,πs

upρqρn´1

˜

n
ź

j“2

psin θjq
j´2

¸

|dθ2dθ3 ¨ ¨ ¨ dθndρ|

“

ˆ
ż R

r
upρqρn´1dρ

˙ˆ
ż 2π

0
dθ2

˙ˆ
ż π

0
sin θ3dθ3

˙

¨ ¨ ¨

ˆ
ż π

0
psin θnq

n´2dθn

˙

p15.3.25q
“ nωn

ż R

r
upρqρn´1dρ. [\
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15.3.2. Proof of the change of variables formula. We will carry the proof of the
change in variables formula (15.3.1) or, equivalently, (15.3.3), in several steps that we
describe loosely below.

Step 1. (De)composition. If the change in variables formula is valid for the diffeomor-
phisms Φ0,Φ1, then it is valid for their composition Φ1 ˝ Φ0, whenever this composition
makes sense.

Step 2. Localization. Suppose that the diffeomorphism Φ : U Ñ Rn has the property
that, for any p P U , there exists an open neighborhood Op of p such that Op Ă U and the
restriction of Φ to Op is a diffeomorphism satisfying Theorem 15.3.1. We will show that
the entire diffeomorphism Φ satisfies this theorem. This step uses the partition of unity
trick.

Step 3. Elementary diffeomorphism. We describe a class of so called elementary diffeo-
morphisms for which the change in variables holds. In conjunction with Step 1 we deduce
that the change in variable formula holds for quasi-elementary diffeomorphisms, i.e., dif-
feomorphisms that are compositions of several elementary ones. This step uses Fubini’s
theorem coupled with the one-dimensional change in variables formula.

Step 4. Everything is (quasi)elementary. We show that for any diffeomorphism Φ : U Ñ Rn,
(U open subset in Rn) and for any x P U , there exists a tiny open neighborhood O of x
such that O Ă U and the restriction of Φ to O is a quasi-elementary diffeomorphism. This
step relies on the inverse function theorem.

Clearly Steps 1-4 imply the validity of Theorem 15.3.1. We present the details below.
For simplicity we consider only the case when the integrand f in (15.3.1) is a continuous
function that vanishes outside a compact set K Ă V . The general case follows from this
special case by using Theorem 15.1.26.

Step 1. Let Φ : U0 Ñ Rn, Ψ : U1 Ñ Rn be two diffeomorphisms satisfying Theorem
15.3.1 such that ΦpU0q Ă U1. We want to prove that Ψ ˝Φ also satisfies this theorem. Set

V1 :“ ΦpU0q, V2 :“ ΨpV1q.

Suppose that f : V2 Ñ R is continuous and vanishes outside a compact set K2 Ă V2. The
function

g : V1 Ñ R, gpyq “ f
`

Ψpyq
˘ˇ

ˇ det JΨpyq
ˇ

ˇ

is continuous and vanishes outside the compact set K1 :“ Ψ´1pK2q Ă V1. Since Ψ satisfies
Theorem 15.3.1 we deduce that

ż

V2

fpzq|dz| “

ż

V1

gpyq|dy|. (15.3.27)

Similarly, the function

h : U0 Ñ R, hpxq “ g
`

Φpxq
˘ˇ

ˇ det JΦpxq
ˇ

ˇ
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is continuous and vanishes outside the compact set K0 “ Φ´1pK1q Ă U0. Since Φ satisfies
Theorem 15.3.1 we conclude that

ż

V1

gpyq|dy| “

ż

U0

hpxq|dx|. (15.3.28)

Now observe that

hpxq “ f
`

Ψ ˝ Φpxq
˘

¨
ˇ

ˇ det JΨpΦpxqq
ˇ

ˇ ¨
ˇ

ˇ det JΦpxq
ˇ

ˇ

The chain rule (13.3.4) implies that

JΨ˝Φpxq “ JΨpΦpxqqJΦpxq

so
ˇ

ˇ det JΨ˝Φpxq
ˇ

ˇ “
ˇ

ˇ det JΨpΦpxqq
ˇ

ˇ ¨
ˇ

ˇdet JΦpxq
ˇ

ˇ

and

hpxq “ f
`

Ψ ˝ Φpxq
˘

¨
ˇ

ˇ det JΨ˝Φpxq
ˇ

ˇ.

We deduce from (15.3.27) and (15.3.28) that
ż

V2

fpzq|dz| “

ż

U0

f
`

Ψ ˝ Φpxq
˘

¨
ˇ

ˇ det JΨ˝Φpxq
ˇ

ˇ|dx|.

This shows that Ψ ˝ Φ satisfies Theorem 15.3.1

Step 2. Suppose that Φ : U Ñ Rn is a diffeomorphism such that, for any point p P U
there exists an open neighborhood Op of p with the following properties.

(i) Op Ă U . Set Ôp :“ ΦpOpq.

(ii) Any continuous function g : V Ñ R that vanishes outside a compact set Cp Ă Ôp

satisfies the change in variables formula (15.3.3).

We will show that this condition implies that any continuous function g : V Ñ R that
vanishes outside a compact set C Ă V satisfies the change in variables formula (15.3.3).

The collection of open sets
␣

Ôp

(

pPΦ´1pCq
is an open cover of C. Fix a compactly

supported partition of unity on K subordinated to this open cover. This consists of
finitely many compactly supported continuous functions

χ1, . . . , χℓ : Rn Ñ r0, 1s

satisfying the following properties.

‚ For any j “ 1, . . . , ℓ there exists pj P C such that suppχj Ă Ôpj
.

‚ χ1pyq ` ¨ ¨ ¨ ` χℓpyq “ 1, @y P C.

Set gj :“ χjg. Observe that since gpyq “ 0, @y P V zC, we have

g1pyq ` ¨ ¨ ¨ ` gℓpyq “
`

χ1pyq ` ¨ ¨ ¨ ` χℓpyq
˘

gpyq “ gpyq, @y P V.
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Clearly gj is continuous and supported on a compact set contained in Opj
. It satisfies the

change-in-variables formula (15.3.3)

ż

V
gjpxq

ˇ

ˇ det JΦpxq
ˇ

ˇ|dx| “

ż

ΦpOpj q

gjpyq|dx|

“

ż

Opj

gj
`

Φpxq
˘ ˇ

ˇ det JΦpxq
ˇ

ˇ|dy| “

ż

U
gj
`

Φpxq
˘ ˇ

ˇ det JΦpxq
ˇ

ˇ |dx|.

Summing these equalities we deduce

ż

U
g
`

Φpxq
˘ˇ

ˇ det JΦpxq
ˇ

ˇ|dx| “
ℓ
ÿ

j“1

ż

U
gj
`

Φpxq
˘ˇ

ˇ det JΦpxq
ˇ

ˇ|dx|

“

ℓ
ÿ

j“1

ż

V
gjpy q|dy| “

ż

V
gpy q|dy|.

This proves that the diffeomorphism Φ satisfies the change-in-variables formula (15.3.3).

Step 3. Let j P t1, . . . nu. We say that a diffeomorphism

Φ : U Ñ Rn, U Q x ÞÑ y “ Φpxq “

»

—

—

—

–

Φ1pxq
Φ2pxq

...
Φnpxq

fi

ffi

ffi

ffi

fl

is j-elementary if, for any i ‰ j, we have

Φipx1, . . . , xnq “ xi.

Note that the inverse of a j-elementary diffeomorphism is also a j-elementary diffeomor-
phism. We say that Φ is elementary if it is j-elementary for some index j “ 1, . . . , n. We
will show that if Φ : U Ñ Rn is elementary, then it satisfies Theorem 15.3.1. To complete
this we rely on the localization trick discussed in Step 2. Assume for simplicity that Φ is
1-elementary, i.e.,

Φpxq “

»

—

—

—

–

φpx1, . . . , xnq
x2

...
xn

fi

ffi

ffi

ffi

fl
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where φ : U Ñ R is a C1 function. The Jacobian matrix of Φ is

JΦpxq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

φ1x1pxq φ1x2pxq φ1x3pxq φ1x4pxq ¨ ¨ ¨ φ1xnpxq

0 1 0 0 ¨ ¨ ¨ 0

0 0 1 0 ¨ ¨ ¨ 0
...

...
...

. . .
. . .

...
...

...
...

...
. . .

...

0 0 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Observe that

det JΦpxq “ φ1x1pxq. (15.3.29)

Since Φ is a diffeomorphism, we deduce detJΦpxq ‰ 0, @x P U , i.e.,

φ1x1pxq ‰ 0, @x P U.

Let p P U . We want to show that there exists an open neighborhood Op of p in U such
that the restriction of Φ to that neighborhood satisfies Theorem 15.3.1.

Fix r ą 0 small enough such that the open cube C2rppq (see Definition 11.3.12) is
contained in U . We will prove that the restriction of Φ to Crppq satisfies the change-in-
variables formula.

The cube C2rppq is connected and the continuous function φ1x1 does not vanish in this

cube. Hence it must have constant sign. Assume for simplicity that7

φ1x1pxq ą 0, @x P C2rppq.

Note that

Crppq “
␣

x P Rn; |xi ´ pi| ă r, @i “ 1, . . . , n
(

.

For any x “ px1, . . . , xnq we set x :“ px2, . . . , xnq and denote by C 1rppq Ă Rn´1 the open
pn´ 1q-dimensional cube of radius r centered at p. Using this notation we have

Crppq “
␣

px1,xq P Rˆ Rn´1; x1 P pp1 ´ r, p1 ` rq, x P C 1rppq
(

.

For each x P C 1rppq the function x1 ÞÑ φpx1,xq sends the interval pp1 ´ r, p1 ` rq to the
interval

Ix :“
␣

y1 P R; φpp1 ´ r,xq ă y1 ă φpp1 ` r,xq
(

.

We deduce that the image of Crppq via Φ is the simple-type domain

C pr,pq “
␣

py1,yq P Rˆ Rn´1; φpp1 ´ r,yq ă y1 ă φpp1 ` r,yq, y P C 1rppq
(

.

7The case φ1
x1 ă 0 is dealt with in a similar fashion.
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Suppose that f : C pr,pq Ñ R is a continuous function that vanishes outside a compact
set K Ă C pr,pq. Using Fubini’s theorem we deduce

ż

C pr,pq
fpyqdy “

ż

C1
rppq

˜

ż φpp1`r,xq

φpp1´r,xq
fpy1,yqdy1

¸

dy.

Fix x and thus y “ x. Using the one-dimensional change-in-variables formula (9.6.20) we
deduce

ż φpp1`r,xq

φpp1´r,xq
fpy1,yqdy1 “

ż p1`r

p1´r
f
`

φpx1,xq,yqφ1x1px
1,yqdx1.

Hence
ż

C pr,pq
fpyqdy “

ż

C1
rppqq

˜

ż p1`r

p1´r
f
`

φpx1,xq,yqφ1x1px
1,yqdx1

¸

dy.

(rename by x the variables y)

“

ż

C1
rppqq

˜

ż p1`r

p1´r
f
`

φpx1,xq,x
˘

φ1x1px
1,xqdx1

¸

dx

(use Fubini again)

“

ż

Crppq
f
`

φpx1q,x
˘

φ1x1px
1,xq|dx|

p15.3.29q
“

ż

Crppq
f
`

Φpxq
˘

¨
ˇ

ˇ det JΦpxq
ˇ

ˇ|dx|.

Step 4. To give you a taste of the main idea we consider first the special case n “ 2.
Then, Φpxq has the form

x “

„

x1

x2

ȷ

ÞÑ Φpxq “

„

y1

y2

ȷ

“

„

ϕ1px1, x2q
ϕ2px1, x2q

ȷ

.

The Jacobian matrix of Φ is

JΦ “

»

—

–

Bϕ1

Bx1
Bϕ1

Bx2

Bϕ2

Bx1
Bϕ2

Bx2

fi

ffi

fl

.

Since Φ is a diffeomorphism, detJΦppq ‰ 0 so at least one of the entries Bϕi

Bxj
must be

nonzero at p. After a possible relabeling of the variables y and/or x we can assume that
Bϕ1

Bx1
‰ 0. The implicit function theorem shows that in the equation

y1 ´ ϕ1px1, x2q “ 0

we can locally solve for x1 in terms of y1 and x2, i.e., we can regard x1 as an implicitly
defined C1-function depending on the variables y1, x2,

x1 “ ψ1py1, x2qðñ y1 “ ϕ1
`

ψ1py1, x2q, x2
˘

. (15.3.30)

This shows that the map

x “

„

x1

x2

ȷ

ÞÑ Φ1pxq “

„

y1

x2

ȷ

“

„

ϕ1px1, x2q
x2

ȷ
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is a 1-elementary diffeomorphism defined on an open neighborhood U1 and its inverse,
denoted by Υ1, is the 1-elementary diffeomorphism described explicitly by

„

y1

x2

ȷ

Υ1
ÞÑ

„

x1

x2

ȷ

“

„

ψ1py1, x2q
x2

ȷ

.

Now consider the composition Ψ2 “ Φ ˝Υ1. More precisely,
„

y1

x2

ȷ

Υ1
ÞÑ

„

x1

x2

ȷ

Φ
ÞÑ

„

y1

y2

ȷ

p15.3.30q
“

„

y1

ϕ2
`

ψ1py1, x2q, x2
˘

ȷ

.

This shows that Ψ2 is 2-elementary. The equality Ψ2 “ Φ ˝Υ1 “ Φ ˝ Φ´11 implies that

Φ “ Ψ2 ˝ Φ1,

i.e., locally, Φ is the composition of elementary diffeomorphisms.

We outline now how the above approach extends to arbitrary n, referring for details to [38, Sec. 8.6.4]. Given a

diffeomorphism Φ : U Ñ Rn and a point p P U one shows, using the implicit function theorem, that there exist
elementary diffeomorphisms Ψn, . . . ,Ψ1 such that Ψ1 is defined on an open neighborhood O of p and

Φpxq “ Ψn ˝Ψn´1 ˝ ¨ ¨ ¨ ˝Ψ1pxq, @x P O

This process proceeds gradually. First, using the inverse function theorem one constructs an open neighborhood

Un´1 of p in U and a diffeomorphism Φn´1 : Un´1 Ñ Rn with the following two properties.

(A) The n-th component of Φn´1 has the special form Φn
n´1pxq “ xn, @x P Un´1.

(B) The diffeomorphism Ψn :“ Φ ˝ Φ´1
n´1 is n-elementary.

Note that Φ “ Ψn˝Φn´1. Proceeding inductively, again relying on the implicit function theorem, one constructs

open sets

Un Ą Un´1 Ą Un´2 Ą ¨ ¨ ¨ Ą U1 Q p

and, for any k “ 2, . . . , n, diffeomorphisms Φk : Uk Ñ Rn, with the following properties.

‚ Φn “ Φ.

‚ If Φj
k is the j-th component of Ψk, then

Φj
kpxq “ xj , @j ą k, x P Uk. (15.3.31)

‚ The diffeomorphism Ψk :“ Φk ˝ Φ
´1
k´1 is k-elementary.

We deduce

Φpxq “ Φn “
`

Φn ˝ Φ
´1
n´1

˘

˝
`

Φn´1 ˝ Φ
´1
n´2

˘

˝ ¨ ¨ ¨ ˝
`

Φ2 ˝ Φ
´1
1

˘

˝ Φ1

“ Ψn ˝ ¨ ¨ ¨ ˝Ψ2 ˝ Φ1pxq, @x P U1.

By construction, the diffeomorphism Ψk is k-elementary, @k ě 2, while (15.3.31) with k “ 1, shows that Φ1 is

1-elementary.

This completes our outline of the proof of the change-in-variables formula (15.3.1).
For a different, more intuitive but more laborious approach we refer to [25, §XX.4]
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15.4. Improper integrals

Concrete problems arising in mathematics and natural science force us to integrate func-
tions that are not covered by the theory developed so far. For example, we might want
to integrate an unbounded function, or we might want to integrate a function over an
unbounded region. The goal of this section is to explain how to handle such issues. Let
use first introduce a notation.

✍ For any set A Ă Rn we denote by JpAq the collection of Jordan measurable subsets
of A and by JcpAq the collection of compact Jordan measurable subsets of A.

15.4.1. Locally integrable functions. Let n P N and suppose that U Ă Rn is an open
set.

Definition 15.4.1. A function f : U Ñ R is called locally integrable if, for any x P U ,
there exists a closed box B “ Bx such that Bx Ă U , x P intpBxq and the restriction of f
to Bx is Riemann integrable. [\

Example 15.4.2. (a) Any continuous function f : U Ñ R is locally integrable.

(b) If the open set U Ă Rn is Jordan measurable, then any Riemann integrable function
f : U Ñ R is also locally integrable. [\

Proposition 15.4.3. For any function f : U Ñ R the following statements are equivalent.

(i) The function f is locally integrable.

(ii) For any compact Jordan measurable set K Ă U , the restriction of f to K is
Riemann integrable on K.

Proof. Clearly (ii) ñ (i) since any closed box is compact and Jordan measurable. Let us
prove (i) ñ (ii). Suppose that K Ă U is compact and Jordan measurable. For any x P K
choose a closed box Bx satisfying the conditions in Definition 15.4.1. Consider a partition
of unity on K subordinated to the open cover

!

intpBxq; x P K
)

xPK
.

Recall (see Definition 12.4.6) that this consists of a finite collection of compactly supported
continuous functions

χ1, . . . , χℓ : Rn Ñ R

with the following properties;

χ1pxq ` ¨ ¨ ¨ ` χℓpxq “ 1, @x P K, (15.4.1a)

@i “ 1, . . . , ℓ Dxi P K suppχi Ă intpBxiq. (15.4.1b)
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Denote by f0 the extension of f by 0. The functions IBxi
f0 are Riemann integrable and

so are the functions

χiIBxi
f0

p15.4.1aq
“ χif

0.

Hence χ1f
0` ¨ ¨ ¨`χℓf

0 is Riemann integrable. Since K is Jordan measurable, we deduce
that the function

IK
`

χ1 ` ¨ ¨ ¨ ` χℓ
˘

f0
p15.4.1bq
“ IKf

0

is also Riemann integrable. [\

Definition 15.4.4. A compact exhaustion of U is a sequence of compact sets pKνqνPN
with the following properties.

(i) Kν Ă intpKν`1q, @ν P N.
(ii)

U “
ď

νPN
Kν .

The compact exhaustion pKνqνPN is called Jordan measurable if all the compact sets
Kν are Jordan measurable. [\

Observe that if pKνqνPN is a compact exhaustion of the open set U , then the collection
of interiors pintKνqνPN is increasing and covers U , i.e.,

intK1 Ă intK2 Ă ¨ ¨ ¨ Ă intKν Ă intKν`1 Ă ¨ ¨ ¨ ,
ď

νě1

intKν “ U.

Example 15.4.5. The collection

Kν “
␣

x P Rn; }x} ď ν
(

, ν P N,

is a Jordan measurable compact exhaustion of Rn. The collection

Kν “

!

x P Rn;
1

ν
ď }x} ď 1´

1

ν

)

, ν P N,

is a Jordan measurable compact exhaustion of B1p0qzt0u. [\

Proposition 15.4.6. Any open U Ă Rn set admits Jordan measurable compact exhaus-
tions.

Proof. Denote by C the complement of U in Rn, C :“ RnzU . By definition, C is a closed set. For ν P N we set

Kν :“ Bνp0q X
!

x P Rn; distpx, Cq ě
1

ν

)

.

Clearly Kν is closed as the intersection of two closed sets. It is bounded since it is contained in the closed ball of
radius ν. Hence Kν is compact. Note that Kν is contained in U since x P U “ RnzC if and only if distpx, Cq ą 0.

Obviously

U “
ď

νPN
Kν .
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Note that

Kν Ă Bν`1p0q X
!

x P Rn; distpx, Cq ą
1

ν ` 1

)

Ă intpKν`1q

Hence the collection pKνqνPN is a compact exhaustion of U . However, it may not be Jordan measurable. We can

modify it to a Jordan measurable one as follows.

Since Kν is compact there exist finitely many closed boxes contained in intpKν`1q such that their interiors

cover Kν . Denote by K̃ν the union of these finitely many closed boxes. Clearly K̃ν is compact and Jordan
measurable, and

Kν Ă K̃ν Ă Kν`1 Ă K̃ν`1.

The collection pK̃νqνPN is a Jordan measurable compact exhaustion of U . [\

Proposition 15.4.7. Suppose that U Ă Rn is a Jordan measurable open set and f : U Ñ R
is a Riemann integrable function. Then, for any Jordan measurable compact exhaustion
pKνqνPN of U we have

ż

U
fpxq|dx| “ lim

νÑ8

ż

Kν

fpxq|dx|. (15.4.2)

Proof. Fix a Jordan measurable compact exhaustion pKνqνPN and set

M :“ sup
xPU

|fpxq|.

Since f is Riemann integrable, hence bounded, and therefore M ă 8. Fix ε ą 0.

Since U is Jordan measurable, its boundary is negligible. We can thus cover BU with finitely many open boxes
such that their union ∆ε has volume ă ε

M
. The set Sε :“ Uz∆ε. Observe that Sε Ă U is closed8 and bounded so

it is compact. The increasing collection of open sets intpKνq, ν P N, is an open cover of the compact set Sε and

thus there exists N “ Npεq such that Sε Ă Kν for all ν ě Npεq. Note that this implies

UzKν Ă UzSε Ă ∆pεq

so that

volnpUzKνq ď volnp∆εq ă
ε

M
, @ν ě Npεq.

For ν ě Npεq we have

ˇ

ˇ

ˇ

ˇ

ż

U
fpxq|dx| ´

ż

Kν

fpxq|dx|

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

UzKν

fpxq|dx|

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

UzKν

|fpxq||dx|

ď

ż

UzKν

M |dx| “M volnpUzKνq ă ε.

This proves (15.4.2). [\

8Why?
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15.4.2. Absolutely integrable functions. Let U Ă Rn be an open set. Recall that for
any A Ă Rn we denoted by JcpAq the collection of compact, Jordan measurable subsets
of A.

Definition 15.4.8. A locally integrable function f : U Ñ R is called absolutely integrable
if

sup
KPJcpUq

ż

K
|fpxq| |dx| ă 8.

We will denote by RapUq the collection of absolutely integrable functions f : U Ñ R. [\

Proposition 15.4.9. Let f : U Ñ R be a locally integrable function. Then the following
statements are equivalent.

(i) The function f is absolutely integrable.

(ii) For any Jordan measurable compact exhaustion pKνqνPN of U the sequence
ż

Kν

|fpxq| |dx|

is bounded

(iii) There exists a Jordan measurable compact exhaustion pKνqνPN of U such that
the sequence

ż

Kν

|fpxq| |dx|

is bounded.

Moreover, if any of the above conditions is satisfied, then

lim
νÑ8

ż

Kν

|fpxq| |dx| “ sup
KPJcpUq

ż

K
|fpxq| |dx|.

Proof. Clearly (i)ñ (ii)ñ (iii). We only have to prove (iii)ñ (i). Suppose that pKνqνPN
is a Jordan measurable compact exhaustion of U such that the sequence

ż

Kν

|fpxq| |dx|

is bounded. We denote by L its supremum. We have to prove that,

sup
KPJcpUq

ż

K
|fpxq| |dx| “ L.

Since for every ν we have
ż

Kν

|fpxq| |dx| ď sup
KPJcpUq

ż

K
|fpxq| |dx

we deduce

L “ sup
ν

ż

Kν

|fpxq| |dx| ď sup
KPJcpUq

ż

K
|fpxq| |dx| “: L˚.
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To prove that L˚ ď L it suffices to show that, for any K P JcpUq we can find ν P N such
that K Ă intpKνq. Indeed, if this were the case we would have

ż

K
|fpxq| |dx| ď

ż

Kν

|fpxq| |dx| ď L.

To prove the claim note that the increasing collection of open sets intpKνq, ν P N, is an
open cover of U and thus also of the compact set K. Thus there exist natural numbers
ν1 ă ¨ ¨ ¨ ă νℓ such that the finite collection intpKν1q, . . . , intpKνℓq covers K. Since

intpKν1q Ă ¨ ¨ ¨ Ă intpKνℓq

we deduce K Ă intpKνℓq.

The last conclusion of the proposition follows by observing that the sequence
ż

Kν

|fpxq| |dx|, ν P N,

is nondecreasing so

lim
νÑ8

ż

Kν

|fpxq| |dx| “ sup
νPN

ż

Kν

|fpxq| |dx| “ L “ L˚.

[\

Definition 15.4.10. Suppose that f : U Ñ r0,8q is a nonnegative locally integrable
function. We set

ż ˚

U
fpxq |dx| :“ sup

KPJcpUq

ż

K
fpxq |dx|. [\

Remark 15.4.11. Note that if U is Jordan measurable and f : U Ñ r0,8q is integrable,
then it is absolutely integrable. Moreover, Propositions 15.4.7 and 15.4.9 show that

ż ˚

U
fpxq|dx| “

ż

U
fpxqdx. [\

To proceed we need to introduce a useful trick. For any x P R we set

x` :“ maxpx, 0q, x´ :“ maxp´x, 0q “ p´xq`.

We will refer to x˘ as the positive/negative part of x. For example,

p2q` “ 2, p2q´ “ 0, p´3q` “ 0, p´3q´ “ 3.

Note that

x “ x` ´ x´, |x| “ x` ` x´, @x P R.
The functions x ÞÑ x˘ can be given the alternate descriptions

x` “
|x| ` x

2
, x´ “

|x| ´ x

2
, @x P R .

This shows that the functions x ÞÑ x˘ are Lipschitz since they are linear combinations of
the Lipschitz functions x ÞÑ x and x ÞÑ |x|.
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Suppose now that U is an open set and f : U Ñ R is absolutely integrable. Theorem
15.1.12 implies that the functions f˘ : U Ñ R, f˘pxq “ fpxq˘, are locally integrable.
From the equality

|fpxq| “ f`pxq ` f´pxq, @x P U,

we deduce that the functions f˘ are also absolutely integrable. The equality f “ f`´ f´
suggests the following concept.

Definition 15.4.12. Suppose that the function f : U Ñ R is absolutely integrable. We
set

ż ˚˚

U
fpxq |dx| :“

ż ˚

U
f`pxq |dx| ´

ż ˚

U
f´pxq |dx|.

We say that
ş˚˚

U fpxq|dx| is the improper integral over U of the absolutely integrable
function f : U Ñ R. [\

Remark 15.4.13. (a) If f : U Ñ R is absolutely integrable, then, for any Jordan mea-
surable compact exhaustion pKνqνPN of U we have
ż ˚˚

U
fpxq|dx| “ lim

νÑ8

ż

Kν

f`pxq |dx| ´ lim
νÑ8

ż

Kν

f´pxq |dx| “ lim
νÑ8

ż

Kν

fpxq|dx|. (15.4.3)

(b) If f : U Ñ r0,8q is absolutely integrable, then we deduce from the equality f “ f`
that

ż ˚˚

U
fpxq |dx| :“

ż ˚

U
f`pxq |dx| “

ż ˚

U
fpxq |dx|.

(c) If U is Jordan measurable, and f : U Ñ R is Riemann integrable, then we deduce from
Remark 15.4.11 that

ż ˚˚

U
fpxq |dx| “

ż

U
fpxq |dx|. [\

✍ In view of the above remarks, and in order to control the proliferation of notations for
closely related concepts, we will continue to use the notation

ş

U fpxq |dx| when referring
to the improper integral of f over U . Moreover, we will say that the integral

ş

U fpxq |dx|
is absolutely convergent to indicate that the function f : U Ñ R is absolutely integrable
and the integral is defined by the procedure described above.

Theorem 15.4.14 (Comparison principle). Suppose that f, F : U Ñ R are locally inte-
grable functions such that

|fpxq| ď |F pxq|, @x P U,

(i) If F is absolutely integrable, then f is also absolutely integrable.

(ii) If f is not absolutely integrable, then neither is F .
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Proof. Clearly (i) ðñ (ii) so it suffices to prove (i). We have
ż

K

ˇ

ˇ fpxq
ˇ

ˇ |dx| ď

ż

K

ˇ

ˇF pxq
ˇ

ˇ |dx|, @K P JcpUq

so

sup
KPJcpUq

ż

K

ˇ

ˇ fpxq
ˇ

ˇ |dx| ď sup
KPJcpUq

ż

K

ˇ

ˇF pxq
ˇ

ˇ |dx| ă 8.

[\

15.4.3. Examples. We want to discuss a few simple but important examples.

Example 15.4.15. Fix n P N. For α ą 0 define

pα : Rnzt0u Ñ R, pαpxq “ }x}
´α.

Suppose that U is the punctured unit ball in Rn,

U “
␣

x P Rn; 0 ă }x} ă 1
(

.

The collection of annuli

Kν :“

"

x P Rn;
1

ν
ď }x} ď 1´

1

ν

*

, ν P N

is a Jordan measurable compact exhaustion of U . Using (15.3.26) we deduce that

ż

Kν

pαpxq|dx| “ nωn

ż 1´ 1
ν

1
ν

ρn´1´αdρ “ nωn ˆ

$

’

’

’

’

&

’

’

’

’

%

1
n´αρ

n´α
ˇ

ˇ

ˇ

1´1{ν

1{ν
, α ‰ n,

log ρ
ˇ

ˇ

ˇ

1´1{ν

1{ν
, α “ n.

The last quantity has a finite limit as ν Ñ 8 if and only if α ă n. We deduce that the
function pαpxq is absolutely convergent on U if and only if α ă n.

Fix β ą 0. Consider now the complement in Rn of the closed unit ball,

V :“
␣

x P Rn; }x} ą 1
(

.

The collection of annuli

Cν :“

"

x P Rn; 1`
1

ν
ď }x} ď ν

*

, ν P N

is a Jordan measurable compact exhaustion of V . We deduce as above that

ż

Cν

pβpxq|dx| “ nωn ˆ

$

’

’

’

&

’

’

’

%

1
n´βρ

n´β
ˇ

ˇ

ˇ

ν

1`1{ν
, β ‰ n,

log ρ
ˇ

ˇ

ˇ

ν

1`1{ν
, β “ n.

The last quantity has a finite limit as ν Ñ 8 if and only if β ą n, so the function pβpxq
is absolutely convergent on V if and only if β ą n. [\
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Figure 15.14. The graph of p1pxq “ }x}
´1, x P R2

zt0u.

Example 15.4.16 (Gaussian integrals). Consider the function

f : R2 Ñ R, fpx, yq “ e´x
2´y2 .

It is locally integrable since it is continuous. To investigate if it is absolutely integrable
consider the disks

Dν :“
␣

px, yq P R2;
a

x2 ` y2 ď ν
(

, ν P N.

Using polar coordinates x “ r cos θ, y “ r sin θ we deduce
ż

Dν

fpx, yq|dxdy| “

ż 2π

0

ˆ
ż ν

0
e´r

2
rdr

˙

dθ

“ 2π

ż ν

0
e´r

2
rdr “ π

ż ν

0
e´r

2
dpr2q

u“r2
“ π

ż ν2

0
e´udu

“ π
`

1´ e´ν
2 ˘

.

Since pDνqνPN is a Jordan measurable compact exhaustion of R2 we deduce that
ż

R2

e´x
2´y2dxdy “ lim

νÑ8

ż

Dν

e´x
2´y2dxdy “ π.

On the other hand, if we set Sν “ r´ν, νs ˆ r´ν, νs we deduce

π “

ż

R2

e´x
2´y2 |dxdy| “ lim

νÑ8

ż

Sν

e´x
2´y2 |dxdy|

“ lim
νÑ8

ż ν

´ν

ˆ
ż ν

´ν
e´x

2
e´y

2
dx

˙

dy “ lim
νÑ8

ˆ
ż ν

´ν
e´x

2
dx

˙ˆ
ż ν

´ν
e´y

2
dy

˙

“ lim
νÑ8

ˆ
ż ν

´ν
e´x

2
dx

˙2

“

ˆ
ż

R
e´x

2
dx

˙2

.
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We have thus obtained the following famous result
ż

R
e´x

2
dx “

?
π (15.4.4)

In particular
ż

R
e´

x2

2r dx
x“
?
2ry
“ “

?
2r

ż

R
e´y

2
dy “

?
2πr.

Hence
1

?
2πr

ż

R
e´

x2

2r dx “ 1, @r ą 0 . (15.4.5)

The last equality plays an important role in probability. [\

Example 15.4.17 (The volume of the unit n-dimensional ball). We want to have another
look at ωn, the volume of the unit ball in Rn. We will obtain a new description for ωn
using an elegant trick of H. Weyl that is based on computing the integral

In :“

ż

Rn

e´}x}
2
|dx|

in two different ways. Note first that

In “

ż

Rn

e´x
2
1´¨¨¨´x

2
n |dx1 ¨ ¨ ¨ dxn| “

ż

Rn

e´x
2
1 ¨ ¨ ¨ e´x

2
n |dx1 ¨ ¨ ¨ dxn|

(use Fubini)

“

ˆ
ż

R
e´x

2
1dx1

˙

¨ ¨ ¨

ˆ
ż

R
e´x

2
ndxn

˙

“

ˆ
ż

R
e´x

2
dx

˙n
p15.4.4q
“ π

n
2 .

On the other hand, the function e´}x}
2
is radially symmetric and we deduce from (15.3.26)

that

In “ nωn

ż 8

0
e´ρ

2
ρn´1dρ

ρ“
?
t

“
nωn
2

ż 8

0
e´tt

n
2
´1dt.

At this point we want to recall the definition of the Gamma function (9.7.7)

Γpxq :“

ż 8

0
e´ttx´1dt, x ą 0.

Thus
π

n
2 “ In “

nωn
2

Γ
´n

2

¯

We deduce

ωn “
π

n
2

n
2Γ

`

n
2

˘ .

This can be simplified a bit by using the identity (9.7.9)

Γpx` 1q “ xΓpxq, @x ą 0.

We deduce
n

2
Γ
`n

2

˘

“ Γ
`n

2
` 1

˘

,
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and thus

ωn “
π

n
2

Γ
`

n
2 ` 1

˘ . (15.4.6)

To see how this relates to (15.3.24) we use again the identity (9.7.9) and we deduce

Γpmq “ m! @m P N

Γ
´2n` 1

2

¯

“
2n´ 1

2
Γ
´2n´ 1

2

¯

“ ¨ ¨ ¨ “
p2n´ 1q!!

2n´1
Γp1{2q.

On the other hand

Γp1{2q “

ż 8

0
e´tt´1{2dt

t“x2
“ 2

ż 8

0
e´x

2
dx

p15.4.4q
“

?
π.

[\

Example 15.4.18 (Euler’s Beta function). For x, y ą 0 we set

Bpx, yq :“

ż 1

0
tx´1p1´ tqy´1dt. (15.4.7)

This integral is convergent since x´ 1, y ´ 1 ą ´1. The resulting function

p0,8q ˆ p0,8q Q px, yq ÞÑ Bpx, yq P p0,8q,

is known as Euler’s Beta function.

If we make the change in variables in the integral (15.4.7)

u “
t

1´ t
,

then we observe that u “ 0 when t “ 0 and uÑ8 as tÕ 1. Moreover, we have

p1´ tqu “ tñ u “ tp1` uq ñ t “
u

1` u
“ 1´

1

1` u

ñ 1´ t “
1

1` u
, dt “

1

p1` uq2
du,

tx´1p1´ tqy´1dt “

ˆ

u

1` u

˙x´1ˆ 1

1` u

˙y´1 1

p1` uq2
du “

ux´1

p1` uqx`y
du,

so that

Bpx, yq “

ż 8

0

ux´1

p1` uqx`y
du, @x, y ą 0. (15.4.8)

Using (9.7.11) we deduce

1

p1` uqx`y
“

1

Γpx` yq

ż 8

0
sx`y´1e´p1`uqsds.
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Using this in (15.4.8) we deduce

Bpx, yq “
1

Γpx` yq

ż 8

0
ux´1

ˆ
ż 8

0
sx`y´1e´p1`uqsds

˙

du

“
1

Γpx` yq

ż 8

0

ˆ
ż 8

0
ux´1sx`y´1e´p1`uqsds

˙

looooooooooooooooooooomooooooooooooooooooooon

“:I

du.
(15.4.9)

At this point we want to invoke Fubini’s theorem which allows us to conclude that we can
interchange the order of integration so that

I :“

ż 8

0

ˆ
ż 8

0
ux´1sx`y´1e´p1`uqsds

˙

du “

ż 8

0

ˆ
ż 8

0
sx`y´1ux´1e´p1`uqsdu

˙

ds

“

ż 8

0
sx`y´1

ˆ
ż 8

0
ux´1e´p1`uqsdu

˙

ds “

ż 8

0
sx`y´1

ˆ
ż 8

0
ux´1e´se´sudu

˙

ds

“

ż 8

0
e´ssx`y´1

ˆ
ż 8

0
ux´1e´sudu

˙

looooooooooomooooooooooon

p9.7.11q
“

Γpxq

sx

ds

“

ż 8

0
e´ssx`y´1

Γpxq

sx
ds “ Γpxq

ż 8

0
sy´1e´sds “ ΓpxqΓpyq.

Thus
I “ ΓpxqΓpyq,

and

Bpx, yq “
ΓpxqΓpyq

Γpx` yq
. [\

Remark 15.4.19. The Gamma and Beta functions are ubiquitous in mathematics. They
belong to the category of so called special functions. The facts we have presented barely
scratch the surface of the beautiful theory of these functions. There are many sources
from which to learn about the Gamma function but, as entry point in this theory no
source comes close to the little gem [1] by Emil Artin.9 First published 1931 in German,
it remains to the day an example of beautiful mathematical writing. [\

9Emil Artin (1898-1962) was one of the most influential mathematicians of the 20th century. He was Professor

at the University of Hamburg Germany until 1937 when he was forced to emigrate to US due to the political tensions
in Germany at that time. His first US position was at the University of Notre Dame where, coincidently, the present
book was also born.
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15.5. Exercises

Exercise 15.1. Prove Lemma 15.1.2.

Hint. The proof is not hard, but it takes some thinking to write down a short and precise exposition. Start with

the case n “ 2 and then argue by induction on n. [\

Exercise 15.2. Consider the triangle

T :“
␣

px, yq P R2; x, y ě 0, x` y ď 1
(

and the function

f : r0, 1s ˆ r0, 1s Ñ R, fpx, yq “

#

1, px, yq P T,

0, px, yq R T.

For each n P N denote by P n the partition of r0, 1s ˆ r0, 1s,

P n “
`

Ux
n,U

y
nq,

where Ux
n is the uniform partition of order n of the interval r0, 1s on the x-axis (see

Example 9.2.2) and Uy
n is the uniform partition of order n of the interval r0, 1s on the

y-axis.

Compute ωpf,P nq and then show that

lim
nÑ8

ωpf,P nq “ 0.

Hint. To understand what is going on investigate first the partition P 4 depicted in Figure 15.15. [\

Figure 15.15. The partition P 4 of the square r0, 1sˆr0, 1s. The triangle T is described
by the shaded area.

Exercise 15.3. Let n P N and suppose that B :“ ra1, b1s ˆ ¨ ¨ ¨ ¨ ¨ ¨ ˆ ran, bns Ă Rn is a
closed nondegenerate box. For any Riemann integrable function f : B Ñ R we define its
mean on B to be the real number

Meanpfq :“
1

volnpBq

ż

B
fpxq|dx|.
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(i) Prove that for any Riemann integrable function f : B Ñ R we have

inf
xPB

fpxq ď Meanpfq ď sup
xPB

fpxq.

(ii) Prove that for any continuous function f : B Ñ R there exists x P B such that

fpxq “ Meanpfq.

Hint. (ii) Use (i) and Corollary 12.3.3. [\

Exercise 15.4. Denote by Cnr the closed cube in Rn of radius r centered at 0,

Cnr “
␣

x P Rn; |xi| ď r, @i “ 1, . . . , n
(

.

Suppose that f : Cn1 Ñ R is a continuous function. Prove that

lim
rŒ0

1

voln
`

Cnr
˘

ż

Cn
r

fpxq|dx| “ fp0q.

Hint. Use Exercise 15.3(ii). [\

Exercise 15.5. Suppose that B Ă Rn is a nondegenerate closed box and f, g : B Ñ R
are Riemann integrable functions. Fix p, q P p1,8q such that

1

p
`

1

q
“ 1.

(i) Prove that there exists C ą 0 such that, for any partition P of B, we have

ωp|f |p,P q ă Cωpf,P q, ωp|g|q,P q ă Cωpg,P q

(ii) Prove that there exists a sequence of partitions pPνqνPN of B such that

lim
νÑ8

ωpf,Pνq “ lim
νÑ8

ωpg,Pνq “ 0.

(iii) Prove that

ˇ

ˇ

ˇ

ˇ

ż

B
fpxqgpxq|dx|

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

B
|fpxq|p|dx|

˙
1
p
ˆ
ż

B
|gpxq|q|dx|

˙
1
q

. (15.5.1)

Hint. (i) Have a look at the proof of (15.1.8). (iii) Use Proposition 15.1.9 coupled with (i) and (ii) to reduce

(15.5.1) to (8.3.15). [\

Exercise 15.6. Fix n P N.

(i) Show that a subset S Ă Rn is negligible (see Definition 15.1.15) if and only if,
for any ε ą 0, there exists a sequence pBνqνě1 of closed boxes such that

S Ă
ď

νě1

intpBνq and
ÿ

νě1

volnpBνq ă ε.
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(ii) Show that if the compact subset S Ă Rn is negligible, then for any ε ą 0 there
exists finitely many closed boxes B1, . . . , BN such that

S Ă
N
ď

ν“1

intpBνq and
N
ÿ

ν“1

volnpBνq ă ε.

Hint. (i) Observe that for any closed box B and any ℏ ą 0 there exists a closed box B1 such that B Ă intpB1q and

volnpB1q ´ volnpBq ă ℏ. [\

Exercise 15.7. Prove that the following sets are negligible.

(i) A subset of a negligible subset.

(ii) The union of a sequence pNνqνě1 of negligible subsets of Rn.
(iii) The coordinate hyperplane

H i
t :“

␣

px1, x2, . . . , xnq P Rn xi “ t
(

Ă Rn,

where i P t1, . . . , nu and t is a fixed real number.

Hint. (ii) For ν “ 1, 2, . . . cover Nν by a countable family of boxes Bν,1, Bν,2, . . . , such that

8
ÿ

k“1

volnpBν,kq ă
ε

2ν
.

Then use the fact that the set Nˆ N is countable; see Example 3.1.17. (iii) Use (ii). [\

Exercise 15.8. Suppose that f : ra, bs Ñ r0,8q and g : rc, ds Ñ r0,8q are two nonnega-
tive Riemann integrable functions. Define

h : ra, bs ˆ rc, ds Ñ R, hpx, yq “ fpxqgpyq.

Prove that h is Riemann integrable and
ż

ra,bsˆrc,ds
hpx, yq|dxdy| “

ˆ
ż b

a
fpxqdx

˙ˆ
ż d

c
gpyqdy

˙

.

Hint. Choose a partition P “ pP x,P yq of the box ra, bs ˆ rc, ds and express the Darboux sum S˚ph,P q in terms

of S˚pf,P xq and S˚pg,P yq. Do the same for the upper Darboux sums. [\

Exercise 15.9. Let B “ r0, 1s ˆ r1, 2s Ă R2. Using Theorem 15.1.18 compute
ż

B

1

px1 ` x2q2
|dx1dx2|. [\

Exercise 15.10. Consider a nondegenerate box B Ă Rn, a continuous function f : B Ñ R
and a continuous convex function Φ : RÑ R. Prove that

Φ

ˆ

1

volnpBq

ż

B
fpxq |dx|

˙

ď
1

volnpBq

ż

B
Φ
`

fpxq
˘

|dx|.

Hint. Use Riemann sums and Jensen’s inequality (8.3.8). [\

Exercise 15.11. (a) Let a, b P R, a ă b. For any ε ą 0 construct explicitly a continuous
function gε : ra, bs Ñ R satisfying the following properties.
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(i) gεpaq “ gεpbq “ 0.

(ii) 0 ď gεpxq ď 1, @x P ra, bs.

(iii)
ż b

a
dx´ ε ď

ż b

a
gεpxqdx ď

ż b

a
dx.

(b) Let n P N and suppose that B “ ra1, b1sˆ¨ ¨ ¨ˆran, bns Ă Rn is a closed nondegenerate
box. Prove that, for any ε ą 0 there exists a continuous function hε : B Ñ R satisfying
the following conditions.

(i) hεpxq “ 0 for any point x the boundary of B, i.e., a point x “ px1, . . . , xnq such
that xi “ ai or x

i “ bi for some i “ 1, . . . , n.

(ii) 0 ď hεpxq ď 1, @x P B.

(iii)
ż

B
|dx| ´ ε ď

ż

B
hεpxq|dx| ď

ż

B
|dx|.

Hint. (a) Think of a function whose graph looks like a trapezoid. (b) Seek hε of the form

hεpx
1, . . . , xnq “ g1εpx

1q ¨ ¨ ¨ gnε px
nq,

where gε : rai, bis Ñ R are chosen as in (a). Use Fubini to reach the desired conclusion. [\

Exercise 15.12. Let n P N and suppose that B “ ra1, b1sˆ ¨ ¨ ¨ˆ ran, bns Ă Rn is a closed
nondegenerate box. Suppose that f : B Ñ r0,8q is a nonnegative Riemann integrable
function. Prove that, for any ε ą 0 there exists a continuous function hε : B Ñ R
satisfying the following conditions.

(i) hεpxq “ 0 for any point x on the boundary of B, i.e., a point x “ px1, . . . , xnq
such that xi “ ai or xi “ bi for some i “ 1, . . . , n.

(ii) 0 ď hεpxq ď fpxq, @x P B.

(iii)
ż

B
fpxq|dx| ´ ε ď

ż

B
hεpxq|dx| ď

ż

B
fpxq|dx|.

Hint. Choose a partition P of B such that the mean oscillation ωpf,P q is very small. Next use Exercise 15.11 (b)

on each chamber of the partition P . [\

Exercise 15.13. Let n,N P N and suppose that S1, . . . , SN Ă Rn are Jordan measurable
sets. Prove that their union is also Jordan measurable and

voln

˜

N
ď

k“1

Sk

¸

ď

N
ÿ

k“1

volnpSkq.

Hint. Argue by induction using Proposition 15.1.30. [\

Exercise 15.14. (a) Suppose that K Ă Rn is compact. Prove that K negligible if and
only if it is Jordan measurable and volnpKq “ 0.
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(b) Suppose that B Ă Rn is a closed nondegenerate box. Prove that intpBq is Jordan
measurable and

voln
`

intpBq
˘

“ volnpBq.

Hint. (a) If K is negligible use Corollary 15.1.29 to prove that it is Jordan measurable. To show that volnpKq “ 0

use Exercises 15.6 and 15.13. Conversely, suppose that K is Jordan measurable and volnpKq “ 0. Choose a box B

containingK. Then
ş

B IKpxq|dx| “ 0. Thus for ε ą 0 one can choose a partition P ε of B such that S˚pIK ,P εq ă ε.

Use this partition to show that you can cover K by finitely many boxes whose volumes add up to less than ε. (b)

Invoke Proposition 15.1.21 and Lebesgue’s Theorem to conclude that BB is negligible and then use (a). [\

Exercise 15.15. Suppose that f : ra, bs ˆ ra, bs Ñ R is a continuous function. Prove that
ż b

a
dy

ż y

a
fpx, yq dx “

ż b

a
dx

ż b

x
fpx, yq dy.

Hint. Compute the double integral
ş

C fpx, yqdxdy in two different ways for a suitable Jordan measurable set

C Ă ra, bs ˆ ra, bs. [\

Exercise 15.16. Denote by T the triangle in the plane determined by the lines

y “ 2x, y “
x

2
, x` y “ 6.

(i) Find the coordinates of the vertices of this triangle.

(ii) Draw a picture of this triangle.

(iii) Compute the integral
ż

T
xy |dxdy|.

[\

Exercise 15.17. Find the area of the region R Ă R2 defined as the intersection of the
disks of radius 1 centered at the vertices of the square r0, 1s ˆ r0, 1s; see Figure 15.16.

Exercise 15.18. Consider the box B “ ra1, b1sˆra2, b2s Ă R2 and suppose that f : B Ñ R
is continuous function. Define

F : B Ñ R, F
`

x, y
˘

“

ż

ra1,xsˆra2,ys
fps, tq|dsdt|.

Show that the restriction of F to the interior of B is C1 and then compute the partial
derivatives BF

Bx ,
BF
By . [\

Exercise 15.19. Suppose that B Ă Rn is a closed nondegenerate box and f : B Ñ R is
a continuous function such that fpxq ě 0, @x P B. Prove that the following statements
are equivalent.

(i) fpxq “ 0, @x P B.
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Figure 15.16. The overlap of 4 disks centered at the vertices of a square.

(ii)
ż

B
fpxq |dx| “ 0.

[\

Exercise 15.20. Let n P N and r ą 0.

(i) Prove that the n-dimensional closed ball

Bn
r p0q :“

␣

x P Rn; }x} ď r
(

,

is Jordan measurable.

(ii) Prove that the sphere

Σrp0q :“
␣

x P Rn; }x} “ r
(

,

is Jordan measurable and volnpΣrp0qq “ 0.

(iii) Prove that the n-dimensional open ball

Bn
r p0q :“

␣

x P Rn; }x} ă r
(

,

is Jordan measurable and

voln
`

Bn
r p0q

˘

“ voln
`

Bn
r p0q

˘

Hint. (i) Use induction on n and Proposition 15.2.2. (ii) Use Corollary 15.1.29. Conclude using Exercise 15.14
and Proposition 15.1.30(i). (iii) Follows from (i) and (ii). [\

Exercise 15.21. For any n P N and r ą 0 denote by ωnprq the n-dimensional volume of
the n-dimensional ball Bn

r p0q Ă Rn. For simplicity, set ωn :“ ωnp1q, so that ωn is the
volume of the unit ball in Rn.

(i) Show that ωnprq “ ωnr
n.
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(ii) Use Cavalieri’s Principle to show that

ωn :“ 2ωn´1

ż 1

0

`

1´ x2
˘

n´1
2 dx.

(iii) Prove that ωn satisfies the equalities (15.3.24).

Hint. (i) Use the change-in-variables formula for the diffeomorphism Φ : Rn Ñ Rn, Φpxq “ rx that sends B1p0q

onto Brp0q. (iii) Relate the integral in (ii) to the integrals (9.6.12) and (9.6.13). Then proceed by induction on n.[\

Exercise 15.22. Prove that Lebesgue’s Theorem 15.1.17 implies Corollary 15.1.37. [\

Exercise 15.23. Fix a continuous function f : RÑ R and define recursively the sequence
of functions Fn : RÑ R, n “ 0, 1, 2 . . . ,

F0pxq “ fpxq, Fnpxq “
1

pn´ 1q!

ż x

0
px´ yqn´1fpyqdy, n ě 1.

(i) Show that, for all n P N, Fn P C1pRq, Fnp0q “ 0 and F 1npxq “ Fn´1pxq, @x P R.
(ii) Show that if pGnqně1 is a sequence of C1-functions on R such that

Gnp0q “ 0, @n ě 1, G11pxq “ fpxq,

G1n`1pxq “ Gnpxq, @n ě 1, x P R,
then Gnpxq “ Fnpxq, @n ě 1, x P R.

(iii) Show that

Fnpxq “

ż x

0
dx1

ż x1

0
dx2 ¨ ¨ ¨

ż xn´1

0
fpxnqdxn.

[\

Exercise 15.24. Suppose that K Ă R2 is a compact Jordan measurable set that is
symmetric with respect to the y-axis, i.e.,

px, yq P K ðñp´x, yq P K.

Let f : R2 Ñ R be a continuous function that is odd in the x-variable, i.e.,

fp´x, yq “ ´fpx, yq, @px, yq P K.

(i) Prove that
ż

K
fpx, yq|dxdy| “ 0.

(ii) Let

D :“
␣

px, yq P R2; x2 ` y2 ď 1
(

.

Compute
ż

D
x23y24|dxdy| and

ż

D
pxyq24|dxdy|.

Hint. (i) Use the change-in-variables formula. For (ii) you need to use the equalities (9.6.15) in Example 9.6.8. [\
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Exercise 15.25. Let n P N and suppose that K Ă Rn is a compact, Jordan measurable
set.

(i) Suppose that L : Rn Ñ Rn is a linear isomorphism. Prove that

voln
`

LpKq
˘

“ |detL| volnpKq.

(ii) Suppose that A : Rn Ñ Rn is a linear isometry, i.e., A is a linear operator and

xAx, Ayy “ xx,yy, @x,y P Rn.

Show that

voln
`

ApKq
˘

“ volnpKq.

(iii) Let v P Rn and define Tv : Rn Ñ Rn, Tvpxq “ v ` x. Show that

voln
`

TvpKq
˘

“ volnpKq.

Hint. (ii) Use Exercise 11.25 and (i). [\

Exercise 15.26. Let n P N and suppose that a1, a2, . . . , , an ą 0. Consider the ellipsoid

Σpa1, . . . , anq :“
!

x P Rn;
n
ÿ

j“1

pxjq2

a2j
ď 1

)

(i) Prove that

voln
`

Σpa1, . . . , anq
˘

“ ωna1 ¨ ¨ ¨ an,

where ωn is the volume of the unit ball in Rn.
(ii) Show that

ż

Σpa1,...,anq
x1x2 ¨ ¨ ¨xn |dx1 ¨ ¨ ¨ dxn| “ 0.

Hint. (i) Make the change in variables xi “ aiy
i. (ii) Make the change in variables x1 “ ´y1, x2 “ y2, . . . , xn “ yn.

[\

Exercise 15.27. Letm,n P R and suppose that ρ : RmˆRn Ñ R is a continuous function.
We denote by t “ pt1, . . . , tmq the Euclidean coordinates in Rm and by x “ px1, . . . , xnq
the Euclidean coordinates on Rn. Fix a Riemann integrable function f : Rn Ñ R. (Note
in particular that f must have compact support.) Define

f̂ : Rm Ñ R, f̂ptq “

ż

Rn

ρpt,xqfpxq|dx|.

(i) Show that f̂ is continuous.

(ii) Suppose additionally that ρ is C1. Show that f̂ is also C1 and

Bf̂

Btk
ptq “

ż

Rn

Bρ

Btk
pt,xqfpxq|dx|.
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Hint. Fix (closed) box B such that supp f Ă B. (i) Prove that if tν Ñ t as ν Ñ 8, then the functions

x ÞÑ ρptν ,xqfpxq converge uniformly on B to the function x ÞÑ ρpt,xqfpxq. Conclude using Proposition 15.1.14.

(ii) Use Lagrange’s Mean Value Theorem 13.3.8 and the fact that the partial derivatives of ρ are bounded on the

compact subsets of Rm ˆ Rn. [\

Exercise 15.28. Suppose that ρ : Rn Ñ R is a nonnegative, compactly supported contin-
uous function such that

ż

Rn

ρpxq |dx| “ 1. (15.5.2)

Given a Riemann integrable function f and ε ą 0 we define fε : Rn Ñ R,

fεpxq “ ε´n
ż

Rn

ρ
`

ε´1px´ yq
˘

fpyq |dy|.

(i) Prove that

fεpxq “ ε´n
ż

Rn

ρ
`

ε´1z
˘

fpx´ zq |dz| “

ż

Rn

ρpzqfpx´ εzq |dz|.

(ii) Prove that the function fε is continuous and compactly supported.

(iii) Show that
ż

Rn

fεpxq |dx| “

ż

Rn

fpxq |dx|.

(iv) Show that if, additionally, f is continuous, then

lim
εÑ0

fεpxq “ fpxq, @x P R.

Hint. (i) Use the change in variables formula. (ii) Use Exercise 15.27(i). (iii) Use (i), (15.5.2) and Fubini. (iv) Use

(15.5.2) and Proposition 15.1.14. [\

Exercise 15.29. Show that the improper integral
ż

0ăxăy
py2 ´ x2qe´ydxdy

is absolutely convergent and then compute its value.
Hint. First draw the region R :“ t0 ă x ă yu. Note that in the region R the function fpx, yq “ py2 ´ x2qe´y is
positive. Consider the compact exhaustion

Kν :“
␣

px, yq P R2; 1{ν ď x, y ´ x ě 1{ν, y ď ν
(

, ν P N,

compute the integrals

Iν “

ż

Kν

py2 ´ x2qe´y |dxdy|,

and study the limit of Iν as ν Ñ8. [\

Exercise 15.30. Fix n P N and a continuous function f : R Ñ R. For c ą 0 we denote
by T cn the simplex

T cn :“
␣

x P Rn; x1, . . . , xn ě 0, x1 ` ¨ ¨ ¨ ` xn ď c
(
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(i) Prove that

volnpT
c
nq “

cn

n!
(ii) Show that

ż

T c
n

fpx1 ` ¨ ¨ ¨ ` xnq |dx| “
1

pn´ 1q!

ż c

0
fptqtn´1dt.

(iii) Show that the integral
ż

x1,...,xně0
sin

`

πpx1 ` ¨ ¨ ¨ ` xnq
˘

|dx|

is not absolutely convergent.

Hint. (i) Reduce to Example 15.2.7 via the change in variables xi “ cyi, i “ 1, . . . , n. (ii) Make the change in

variables u1 “ x1, . . . , un´1 “ xn´1, un “ x1 ` ¨ ¨ ¨ ` xn and then use Fubini coupled with (i). For (iii) use (ii). [\

Exercise 15.31. Let n P N, n ą 1. Show that, for any R ą 0 the n-dimensional improper
integral

ż

0ă}x}ďR
ln }x} |dx|

is absolutely convergent and then compute its value. [\

Exercise 15.32. Prove the equalities (15.3.21). [\

15.6. Exercises for extra credit

Exercise* 15.1. (a) Consider a degree pn´ 1q polynomial

P pxq “ an´1x
n´1 ` an´2x

n´2 ` ¨ ¨ ¨ ` a1x` a0, an´1 ‰ 0.

Compute the determinant of the following matrix.

V “

»

—

—

—

—

—

–

1 1 ¨ ¨ ¨ 1
x1 x2 ¨ ¨ ¨ xn
...

...
...

...

xn´21 xn´22 ¨ ¨ ¨ xn´2n

P px1q P px2q ¨ ¨ ¨ P pxnq

fi

ffi

ffi

ffi

ffi

ffi

fl

.

(b) Compute the determinants of the following nˆ n matrices

A “

»

—

—

—

—

—

–

1 1 ¨ ¨ ¨ 1
x1 x2 ¨ ¨ ¨ xn
...

...
...

...

xn´21 xn´22 ¨ ¨ ¨ xn´2n

x2x3 ¨ ¨ ¨xn x1x3x4 ¨ ¨ ¨xn ¨ ¨ ¨ x1x2 ¨ ¨ ¨xn´1

fi

ffi

ffi

ffi

ffi

ffi

fl

,
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and

B “

»

—

—

—

—

—

–

1 1 ¨ ¨ ¨ 1
x1 x2 ¨ ¨ ¨ xn
...

...
...

...

xn´21 xn´22 ¨ ¨ ¨ xn´2n

px2 ` x3 ` ¨ ¨ ¨ ` xnq
n´1 px1 ` x3 ` x4 ` ¨ ¨ ¨ ` xnq

n´1 ¨ ¨ ¨ px1 ` x2 ` ¨ ¨ ¨ ` xn´1q
n´1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

[\

Exercise* 15.2. Suppose that A “ paijq1ďi,jďn is an nˆ n matrix with complex entries.

(a) Fix complex numbers x1, . . . , xn, y1, . . . , yn and consider the n ˆ n matrix B with
entries

bij “ xiyjaij .

Show that

detB “ px1y1 ¨ ¨ ¨xnynqdetA.

(b) Suppose that C is the nˆ n matrix with entries

cij “ p´1q
i`jaij .

Show that detC “ detA. [\

Exercise* 15.3. (a) Suppose we are given three sequences of numbers a “ pakqkě1,
b “ pbkqkě1 and c “ pckqkě1. To these sequences we associate a sequence of tridiagonal
matrices known as Jacobi matrices

Jn “

»

—

—

—

—

—

–

a1 b1 0 0 ¨ ¨ ¨ 0 0
c1 a2 b2 0 ¨ ¨ ¨ 0 0
0 c2 a3 b3 ¨ ¨ ¨ 0 0
...

...
...

...
...

...
...

0 0 0 0 ¨ ¨ ¨ cn´1 an

fi

ffi

ffi

ffi

ffi

ffi

fl

. (J)

Show that

det Jn “ an det Jn´1 ´ bn´1cn´1 det Jn´2. (15.6.1)

(b) Suppose that above we have

ck “ 1, bk “ 2, ak “ 3, @k ě 1.

Compute J1, J2. Using (15.6.1) determine J3, J4, J5, J6, J7. Can you detect a pattern? [\

Exercise* 15.4. Suppose we are given a sequence of polynomials with complex coefficients
pPnpxqqně0, degPn “ n, for all n ě 0,

Pnpxq “ anx
n ` ¨ ¨ ¨ , an ‰ 0.

Denote by V n the space of polynomials with complex coefficients and degree ď n.

(a) Show that the collection tP0pxq, . . . , Pnpxqu is a basis of V n.
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(b) Show that for any x1, . . . , xn P C we have

det

»

—

—

—

–

P0px1q P0px1q ¨ ¨ ¨ P0pxnq
P1px1q P1px2q ¨ ¨ ¨ P1pxnq

...
...

...
...

Pn´1px1q Pn´1px2q ¨ ¨ ¨ Pn´1pxnq

fi

ffi

ffi

ffi

fl

“ a0a1 ¨ ¨ ¨ an´1
ź

iăj

pxj ´ xiq. [\

Exercise* 15.5. To any polynomial P pxq “ c0 ` c1x` . . .` cn´1x
n´1 of degree ď n´ 1

with complex coefficients we associate the nˆ n circulant matrix

CP “

»

—

—

—

—

–

c0 c1 c2 ¨ ¨ ¨ cn´2 cn´1
cn´1 c0 c1 ¨ ¨ ¨ cn´3 cn´2
cn´2 cn´1 c0 ¨ ¨ ¨ cn´4 cn´3
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

c1 c2 c3 ¨ ¨ ¨ cn´1 c0

fi

ffi

ffi

ffi

ffi

fl

,

Set
ρ :“ e

2πi
n , i :“

?
´1,

so that ρn “ 1. Consider the nˆ n Vandermonde matrix Vρ “ V p1, ρ, . . . , ρn´1q, where

V px1, . . . , xnq “

»

—

—

—

–

1 1 ¨ ¨ ¨ 1
x1 x2 ¨ ¨ ¨ xn
...

...
...

...

xn´11 xn´12 ¨ ¨ ¨ xn´1n

fi

ffi

ffi

ffi

fl

. (15.6.2)

(a) Show that for any j “ 1, . . . , n´ 1 we have

1` ρj ` ρ2j ` ¨ ¨ ¨ ` ρpn´1qj “ 0.

(b) Show that
CP ¨ Vρ “ Vρ ¨Diag

`

P p1q, P pρq, . . . , P pρn´1q
˘

,

where Diagpa1, . . . , anq denotes the diagonal nˆn-matrix with diagonal entries a1, . . . , an.

(c) Show that
detCP “ P p1qP pρq ¨ ¨ ¨P pρn´1q. [\

(d)˚ Suppose that P pxq “ 1`2x`3x2`4x3 so that CP is a 4ˆ4-matrix with integer entries
and thus detCP is an integer. Find this integer. Can you generalize this computation?

Exercise* 15.6. Let B1p0q denote the unit ball in Rn centered at the origin. Compute
ż

B1p0q
px1 ¨ ¨ ¨xnq2|dx1 ¨ ¨ ¨ dxn|.

[\



Chapter 16

Integration over
submanifolds

We begin here the study of integration over “curved” regions of Rn. This is a rather elab-
orate theory belonging properly to the area of mathematics called differential geometry.
Time constraints prevent us from covering it in all its details and generality. Think of this
as a first and low dimensional encounter with the subject.

16.1. Integration along curves

16.1.1. Integration of functions along curves. We start with a simpler situation.
Fix n P N and suppose that we are given a convenient C1-curve C Ă Rn, i.e., a curve
(1-dimensional submanifold) that is the image of an injective, immersion α : pa, bq Ñ Rn.
Recall that α is an immersion if α1ptq ‰ 0, @t P pa, bq. We think of αptq as describing the
position at time t of a moving particle. The fact that α is an immersion signifies that the
particle does not double back. We will refer to a map α with the above properties as a
parametrization of the convenient curve.

During a tiny time interval rt0, t0 ` dts the particle travels from αpt0q to αpt0 ` dtq.
The arc of the curve C from αpt0q to αpt0 ` dtq “does not bend too much” during the
infinitesimal period of time dt so the distance dspt0q covered by the particle along C can
be approximated by the length of the line segment joining αpt0q to αpt0 ` dtq i.e.,

dspt0q « }αpt0 ` dtq ´αpt0q} « }α
1pt0q} |dt|.

Thus, the length of C, viewed as the total distance covered by the particle ought to be

lengthpCq
?
“

ż b

a
}α1ptq} |dt|.

585
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Why the question mark? Intuition tells us that the length of a curve should be independent
of the way a particle travels along it without backtracking. The right-hand side seems to
depend on such travel as expressed by the parametrization α.

To deal with this issue we need to answer the following concrete question. Suppose
that β : pc, dq Ñ Rn is another parametrization of the curve C; see Figure 16.1. Can we
conclude that

ż b

a
}α1ptq} |dt| “

ż d

c
}β1pτq} |dτ |? (16.1.1)

a b c d

C

a b(  )(  )

t

t t

t

p

Figure 16.1. Different parametrizations of the same convenient curve C.

A point p P C corresponds uniquely via α to a point t P pa, bq. Via β the point p
corresponds uniquely to a point τ P pc, dq. More precisely we have

αptq “ p “ βpτq.

The correspondence
t ÞÑ p ÞÑ τ “ τptq,

produces a bijection pa, bq Ñ pc, dq that can be described formally by the equality τ “ β´1
`

αptq
˘

.

Proposition 14.5.4(B) implies that the function pa, bq Q t ÞÑ τptq P pc, dq is C1.

The change in variables formula for the Riemann integral implies
ż d

c
}β1pτq}dτ “

ż b

a
}β1p τptq q} ¨

ˇ

ˇ

ˇ

ˇ

dτ

dt

ˇ

ˇ

ˇ

ˇ

dt.

Derivating with respect to t the equality β
`

τptq
˘

“ αptq we deduce

β1p τptq q
dτ

dt
“ α1ptq. (16.1.2)

Using the equalities

dspτq “ }β1pτq}|dτ |, dsptq “ }α1ptq}|dt|, |dτ | “

ˇ

ˇ

ˇ

ˇ

dτ

dt

ˇ

ˇ

ˇ

ˇ

|dt| ,
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we deduce from (16.1.2) that dspτq “ dsptq. For this reason we will rewrite the equality

lengthpCq “

ż b

a
}α1ptq} |dt| “

ż d

c
}β1pτq} |dτ | (16.1.3)

in the simpler form

lengthpCq “

ż

C
ds .

More generally, the same argument as above shows that, if f : C Ñ R is a continuous
function, then we have the equality

f
`

αptq
˘

}α1ptq}dt “ f
`

βpτq
˘

}β1pτq}dτ

and we set
ż

C
fppqds :“

ż b

a
f
`

αptq
˘

}α1ptq} |dt| “

ż d

c
f
`

βpτq
˘

}β1pτq} |dτ | . (16.1.4)

The integral in the left-hand side of (16.1.4) is called the integral of f along the curve C.
This type of integral is traditionally known as line integral of the first kind.

☞ The integrals in the right-hand side of (16.1.4) could be improper integrals and, as
such, they may or may not be convergent. We say that the integral over the convenient
curve C is well defined if the integrals in the right-hand side of (16.1.4) are convergent.

Example 16.1.1. Consider the arc of helix H in R3 described by the parametrization
(see Figure 16.2)

α : p0, 1q Ñ R3, αptq “
`

cosp4πtq, sinp4πtq, 2t
˘

.

Figure 16.2. The helix described by the parametrization
`

cosp4πtq, sinp4πtq, 2t
˘

is
winding up a cylinder of radius 1.

It is not hard to see that α is an injective immersion. Moreover

9αptq “
`

´ 4π sinp4πtq, 4π sinp4πtq, 2
˘

,
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} 9αptq} “
a

p4π sin 4πtq2 ` p4π cos 4πtq2 ` 22 “
a

16π2 ` 4 “ 2
a

4π2 ` 1.

We deduce that

lengthpHq “

ż

H
ds “

ż 1

0
} 9αptq}dt “ 2

a

4π2 ` 1. [\

Example 16.1.2. Suppose that f : ra, bs Ñ R is a C1 function. Its graph with endpoints
removed is the set

Γf “
␣

px, yq P R2; x P pa, bq, y “ fpxq
(

.

This is a curve that admits the parametrization

α : pa, bq Ñ R2, αpxq “
`

x, fpxq
˘

, x P pa, bq.

Then

α1pxq “
`

1, f 1pxq
˘

, }α1pxq} “
a

1` f 1pxq2.

We deduce that the length of Γf is given by

lengthpΓf q “

ż b

a

a

1` f 1pxq2dx.

This is in perfect agreement with our earlier definition (9.8.1). [\

If the curve C is the union of pairwise disjoint convenient curves C1, . . . , Cℓ, then, for
any continuous function f : C Ñ R we set

ż

C
fppqds “

ż

Ťℓ
j“1 Cj

fppqds “
ℓ
ÿ

j“1

ż

Cj

fppqds .

Remark 16.1.3 (A few points don’t matter). Suppose that C Ă Rn is a convenient curve
and p0 is a point on C. If we remove the point p0 we obtain a new curve C 1 consisting of
two arcs C0, C1 of the original curve; see Figure 16.3.

p

C

C
0

0

1

Figure 16.3. Cutting a convenient curve C in two parts by removing a point p0.

We want to show that the removal of one point does not affect the computation of an
integral, i.e., if f : C Ñ R is a continuous function, then

ż

C
fppqds “

ż

C1

fppqds :“

ż

C0

fppqds`

ż

C1

fppqds.
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Indeed, fix a parametrization α : pa, bq Ñ Rn of C. Then, there exists t0 P pa, bq such that
αpt0q “ p0. Assume that C0 is the curve swept by the moving point αptq as t runs from
a to t0 and C1 is swept when t runs from t0 to b. Then

ż

C
fppqds “

ż b

a
f
`

αptq
˘

} 9αptq}dt

“

ż t0

a
f
`

αptq
˘

} 9αptq}dt`

ż b

t0

f
`

αptq
˘

} 9αptq}dt

“

ż

C0

fppqds`

ż

C1

fppqds “:

ż

C1

fppqds. [\

Definition 16.1.4. A curve C is called quasi-convenient if it admits a convenient cut,
i.e., a finite subset Z “ tp1, . . . ,pℓu Ă C whose complement Cztp1, . . . ,pℓu is a union of
finitely many pairwise disjoint convenient curves. [\

Example 16.1.5. The unit circle in R2,

C :“
␣

px, yq P R2; x2 ` y2 “ 1
(

is quasi-convenient. Indeed, the set consisting of the point p1, 0q is a convenient cut because
its complement admits the parametrization

α : p0, 2πq Ñ R2, αptq “
`

cos t, sin t
˘

. [\

Suppose now that C is a quasi-convenient curve and f : C Ñ R is a continuous
function. The integral of f along C, denoted by

ż

C
fppqds

is defined as follows. Choose a convenient cut Z. Then the complement CZ “ CzZ is a
union of finitely many pairwise disjoint convenient curves and then we set

ż

C
fppqds :“

ż

CZ

fppqds .

To show that this definition is independent of the convenient cut Z, suppose that Z0, Z1

are two convenient cuts. Then Z :“ Z0 Y Z1 is also a convenient cut and Z0, Z1 Ă Z.
Note that CZ is obtained from either CZ0 or CZ1 by removing a few points. From Remark
16.1.3 we deduce

ż

CZ0

fppqds “

ż

CZ

fppqds “

ż

CZ1

fppqds.

Example 16.1.6. Suppose that C is the unit circle in R2

C :“
␣

px, yq P R2; x2 ` y2 “ 1
(

.

Denote by Z the convenient cut Z “ tp1, 0qu. Then

lengthpCq “ lengthpCZq.
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The complement CZ admits the parametrization

α : p0, 2πq Ñ R2, αptq “
`

cos t, sin t
˘

.

We deduce

9αptq “
`

´ sin t, cos t
˘

,

lengthpCZq “

ż 2π

0
} 9αptq}dt “

ż 2π

0

a

sin2 t` cos2 tdt “ 2π. [\

Definition 16.1.7 (Curves with boundary). Let k, n P N. A Ck-curve with boundary in
Rn is a compact subset C Ă Rn such that, for any point p0 P C, there exists an open

neighborhood U of p0 in Rn and a Ck-diffeomorphism Ψ : U Ñ Rn “ Rˆ Rn´1 with the
following property: either the image of UXC is an interval pa, bq on the x1-axis, a ă 0 ă b,

Ψ
`

UX C
˘

“ pa, bq ˆ 0n´1 P Rˆ Rn´1, Ψpp0q “ p0,0n´1q P Rˆ Rn´1, (I)

or, the image of UX C is an interval pa, 0s on the x1-axis, a ă 0,

Ψ
`

UX C
˘

“ pa, 0s ˆ 0n´1 P Rˆ Rn´1, Ψpp0q “ p0,0n´1q P Rˆ Rn´1. (B)

The pair pU,Ψq is called a (local) straightening diffeomorphism (or s.d. for brevity) at
p0.

If the alternative (B) occurs for some choice of straightening diffeomorphism, then
we say that p0 P C is a boundary point. The boundary of a Ck-curve with boundary C,
denoted by BC, is the (possibly empty) subset of C consisting of the boundary points.
The curve C is called closed if BC “ H.

A point p0 P C is called an interior point if it is not a boundary point, i.e., the
alternative (I) holds for any choice of straightening diffeomorphism. The interior of C,
denoted by C˝, is the collection of interior points,

C0 “ CzBC. [\

Example 16.1.8. (a) Suppose that f : ra, bs Ñ R is a C1 function. Then its graph

Γf :“
␣

px, yq P R2; x P ra, bs, y “ fpxq
(

is a curve with boundary. Its boundary consists of the endpoints of the graph

BΓf “
␣

pa, fpaq q, p b, fpbq q
(

.

(b) More generally, suppose that

α : ra, bs Ñ Rn, αptq “

»

—

—

—

–

α1ptq
α2ptq

...
αnptq

fi

ffi

ffi

ffi

fl

is an injective map such that each of the components αi is a C1-function and, @t P ra, bs

9αptq ‰ 0.
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Then the image of α is a curve C with boundary consisting of two points

BC “
␣

αpaq, αpbq
(

.

The proof of this fact is a variation of the proof of Proposition 14.5.4 and we will skip it.
A curve with boundary obtained in this fashion is called convenient. A map α as above
is called a parametrization of the convenient curve (with boundary).

(c) The unit circle in R2 is a closed curve. [\

We have the following result whose proof we omit.

Theorem 16.1.9 (Classification of curves with boundary). (a) Any curve with boundary
C Ă Rn is the union of finitely many pairwise disjoint path connected curves with boundary
called the connected components of C

(b) If C Ă Rn is a path connected Ck-curve with boundary, then it is either a convenient
curve with boundary if BC ‰ H, or, if C is closed, there exist T ą 0 and a Ck-immersion
α : RÑ Rn with the following properties

‚ αpRq “ C,

‚ αptq “ αpt` T q, @t P R.
‚ The restriction to r0, T q is injective.

A map with the above properties is called a T -periodic parametrization of the closed
connected curve C. [\

Example 16.1.10. The closed curve winding around the gold torus in Figure 16.4 admits
the 2π-periodic parametrization

α : RÑ R3, αptq “
`

p3` cosp3tq q cosp2tq, p3` cosp3tq q sinp2tq, sinp3tq
˘

. [\

Figure 16.4. A torus knot
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Remark 16.1.11. Suppose that C Ă Rn is a closed C1-curve and α : R Ñ Rn is a
T -periodic parametrization of C. Set p0 :“ αp0q. Then C 1 :“ Cztp0u. Then C 1 is a
convenient curve and the restriction of α to the open interval p0, T q is a parametrization
of C 1. [\

From the above classification theorem we deduce that if C is a curve with boundary,
then its interior C˝ is a quasi-convenient curve. If f : C Ñ R is a continuous function,
then we define

ż

C
fppqds :“

ż

C˝

fppqds .

Remark 16.1.12. We can think of a connected curve with boundary in Rn as a “bent
wire”. A function f : C Ñ p0,8q can be thought of as a linear density: the quantity fppqds
would be the mass of an infinitesimal arc C of length ds starting at p. The integral

ż

C
fppqds

would then represent the mass of that “bent wire”. [\

Example 16.1.13. Consider the curve C Ă R3 obtained by intersecting the unit sphere
tx2 ` y2 ` z2 “ 1u with the cone spanned by the rays at the origin that make an angle of
π
4 with the positive z-semiaxis: see Figure 16.5. We want to compute the integral

I “

ż

C
xyds. (16.1.5)

Figure 16.5. A cone intersecting a sphere.
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The resulting curve is a circle. To find a periodic parametrization for this circle we
use spherical coordinates, pρ, θ, φq,

x “ ρ sinφ cos θ, y “ ρ sinφ sin θ, z “ ρ cosφ, ρ ą 0, θ P r0, 2πs, φ P r0, πs (16.1.6)

In these coordinates the unit sphere is described by the equation ρ “ 1 and the cone is
described by the equation φ “ π

4 . Taking into account that

cos
π

4
“ sin

π

4
“

?
2

2
,

we deduce from (16.1.6) that a parametrization for C is described by

x “

?
2

2
sin θ, y “

?
2

2
cos θ, z “

?
2

2
, θ P r0, 2πs. (16.1.7)

The arclength element ds on C is then

ds “
a

x1pθq2 ` y1pθq2 ` z1pθq2 dθ “

?
2

2
dθ.

To compute the integral (16.1.5) we use the parametrization (16.1.7) and we deduce

ż

C
xyds “

ż 2π

0

ˆ

?
2

2

˙3

cos θ sin θdθ “

ˆ

?
2

2

˙3 ż 2π

0

1

2
sin 2θ dθ “ 0.

[\

The next result shows that integral along a curve with boundary has several features
in common with the Riemann integrals.

Proposition 16.1.14. Suppose that Γ Ă Rn is a curve with boundary. (We recall that,
by our definition, the curves with boundary are compact.) We denote by C0pΓq the vector
space of continuous functions Γ Ñ R. Then the first kind integral along C defines a
linear map

C0pΓq Q f ÞÑ

ż

Γ
fds P R

satisfying the monotonicity property:

ż

Γ
fds ď

ż

Γ
gds

if fppq ď gppq, @p P Γ. [\

We omit the simple proof of the above result.
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16.1.2. Integration of differential 1-forms over paths. Let n P N and suppose that
U Ă Rn is an open set. A differential form of degree 1 or a differential 1-form on U is an
expression ω of the form

ω “ ω1dx
1 ` ¨ ¨ ¨ ` ωndx

n,

where ω1, . . . , ωn : U Ñ R are continuous functions. The precise meaning of a 1-form is
a bit more complicated to explain at this point but, for the goals we have in mind, it is
irrelevant. We will denote by Ω1pUq the collection of 1-forms on U .

Example 16.1.15. (a) If f P C1pUq, then its total differential as described in (13.2.13)
is a 1-form

df “ Bx1fdx
1 ` ¨ ¨ ¨ ` Bxnfdx

n.

A 1-form of this type is called exact.

(b) Suppose F : U Ñ Rn is a continuous vector field on U ,

F ppq “

»

—

—

—

–

F 1ppq
F 2ppq

...
Fnppq

fi

ffi

ffi

ffi

fl

,

then the infinitesimal work is the 1-form

WF :“ F 1dx1 ` ¨ ¨ ¨ ` Fndxn.

Traditionally, in classical mechanics the infinitesimal work is denoted by F ¨dp or xF , dpy,
where “¨” is short-hand for inner product and dp denotes the “infinitesimal displacement”

dp “

»

—

—

—

–

dx1

dx2

...
dxn

fi

ffi

ffi

ffi

fl

.

Note that if f P C1pUq, then df “W∇f .

(c) The angular form on R2zt0u is the infinitesimal work associated to the angular vector
field (see Figure 16.6)

Θ : R2zt0u Ñ R2, Θpx, yq :“

»

–

´
y

x2`y2

x
x2`y2

fi

fl .

More explicitly

WΘ “ ´
y

x2 ` y2
dx`

x

x2 ` y2
dy. [\

Definition 16.1.16. Let n P N and suppose that U Ă Rn is an open set. For any
differential 1-form

ω “ ω1dx
1 ` ¨ ¨ ¨ ` ωndx

n P Ω1pUq,
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Figure 16.6. The angular vector field in the punctured plane.

and any C1-path

γ : ra, bs Ñ U, γptq “
`

γ1ptq, . . . , γnptq
˘

, @a ď t ď b,

we define the integral of ω along the path γ to be the real number
ż

γ
ω :“

ż b

a

´

ω1

`

γptq
˘

9γ1ptq ` ¨ ¨ ¨ ` ωn
`

γptq
˘

9γnptq
¯

dt.

The integral
ş

γ ω is traditionally known as the line integral of the second kind [\

When ω is the infinitesimal work of a vector field F , ω “ WF , then following the
physicists’ tradition, one uses the notation

ż

γ
F ¨ dp :“

ż

γ
WF .

Example 16.1.17. Fix a natural number N , a real number R ą 0 and consider the path

γN : r0, 2πN s Ñ R2zt0u, γN ptq “
`

xptq, yptq
˘

:“
`

R cos t, R sin t
˘

.

Let WΘ P Ω
1pR2zt0u

˘

be the angular form defined in Example 16.1.15(c), i.e.,

WΘ “
´y

x2 ` y2
dx`

x

x2 ` y2
dy.

Then
ż

γN

WΘ “

ż

γN

˜

´y

x2 ` y2
dx`

x

x2 ` y2
dy

¸

pdx “ 9xdt, dy “ 9ydt)

“

ż 2πN

0

´y

x2 ` y2
9xdt`

ż 2πN

0

x

x2 ` y2
9ydt
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Observing that along γN we have x2 ` y2 “ R2, 9x “ ´R sin t, 9y “ R cos t, we deduce

ż

γN

WΘ “

ż 2πN

0

˜

´R sin t

R2
p´R sin tq `

R cos t

R2
R cos t

¸

dt

“

ż 2πN

0

`

sin2 t` cos2 t
˘

dt “ 2πN. [\

Theorem 16.1.18 (1-dimensional Stokes’ formula). Let n P N and suppose that O Ă Rn
is an open subset. Then, for any f P C1pOq, and any C1-path γ : ra, bs Ñ O we have

ż

γ
df “ f

`

γpbq
˘

´ f
`

γpaq
˘

. (16.1.8)

Proof. Denote by px1ptq, . . . , xnptq q the coordinates of the point γptq. Then
ż

γ
df “

ż

γ

´

Bx1fdx
1 ` ¨ ¨ ¨ ` Bxnfdx

n
¯

“

ż b

a

´

Bx1f
`

x1ptq, . . . , xnptq
˘

9x1 ` ¨ ¨ ¨ ` Bxnf
`

x1ptq, . . . , xnptq
˘

9xn
¯

dt

(use the chain rule)

“

ż b

a

d

dt
f
`

γptq
˘

dt “ f
`

γpbq
˘

´ f
`

γpaq
˘

.

[\

Remark 16.1.19. (i) Although very simple, the above result has very important conse-
quences. First, let us observe that df is the infinitesimal work of the vector field ∇f

df “W∇f .

In classical mechanics the function U “ ´f is often called the potential of the gradient
vector field F “ ∇f .

Think of γptq as describing the motion of a particle interacting with the force field
∇f . For example, ∇f can be the gravitational field and the particle is a “heavy” particle,
i.e., a particle with positive mass. The integral

ż

γ
df “

ż

γ
W∇f

is interpreted in classical mechanics as the total energy required to generate the travel of
the particle described by the path γ. Stokes’ formula (16.1.8) shows that, when the force
field is a gradient vector field, then this total energy depends only on the endpoints of
the travel and not on what happened in between. In particular, if the path γ is closed,
γpbq “ γpaq, so the particle ends at the same point where it started, this total energy is
trivial!
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(ii) Let U Ă Rn be an open set. As we have mentioned earlier a 1-form ω P Ω1pUq is exact
if there exists f P C1pUq such that ω “ df . A function f such that df “ ω is called an
antiderivative of ω.

If

ω “
n
ÿ

i“1

ωdx
i,

then ω is exact if there exists f P C1pUq such that

ωi “
Bf

Bxi
, @i “ 1, . . . , n.

Since BxiBxjf “ BxjBxif , @i, j, we deduce that, if ω is exact then

Bωi
Bxj

“
Bωj
Bxi

, @i, j. (16.1.9)

A 1-form satisfying (16.1.9) is called closed. In other words,

ω exact ñ ω closed.

A famous result, known by the name of Poincaré Lemma [29, Thm. 4-11], states that the
converse is true if U is convex,

U convex, ω closed ñ ω exact.

The result is not true without the convexity assumption. Consider for example the 1-form

WΘ “
´y

x2 ` y2
looomooon

dx`
x

x2 ` y2
looomooon

dy P Ω1
`

R2zt0u
˘

.

As we will see soon in Example 16.1.35 we have

P 1y “ Q1y,

so the form WΘ is closed.

On the other hand, it is not exact because, as shown in Example 16.1.17, its integral
over the counterclockwise oriented unit circle centered at the origin is 2π.

This curious phenomenon is the beginning of a rather deep story called cohomology.
[\

Definition 16.1.20. Let n P N. A piecewise C1-path in Rn is a continuous map γ : ra, bs Ñ Rn
such that, there exists a partition

a “ t0 ă t1 ă ¨ ¨ ¨ ă tℓ “ b

of ra, bs with the property that, for any i “ 1, . . . , ℓ, the restriction of γ to the subinterval
rti´1, tis is C

1. A partition of ra, bs with the above properties is said to be adapted to γ.

[\
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Example 16.1.21. Consider the continuous path γ : r0, 4s Ñ R2 defined by

γptq “

$

’

’

’

’

&

’

’

’

’

%

`

t, 0
˘

, t P r0, 1s,
`

1, t´ 1
˘

, t P p1, 2s,
`

3´ t, 1
˘

, t P p2, 3s,
`

0, 4´ t
˘

, t P p3, 4s.

The image of this path is the boundary of the unit square r0, 1s ˆ r0, 1s Ă R2; see Figure
16.7. [\

Figure 16.7. The unit square r0, 1s2 and its boundary.

One can integrate differential forms over piecewise C1-paths. Suppose that U Ă Rn is
an open set,

ω “ ω1dx
1 ` ¨ ¨ ¨ ` ωndx

n P Ω1pUq

and γ : ra, bs Ñ U is a C1-path. If a “ t0 ă t1 ă ¨ ¨ ¨ ă tℓ “ b is any partition of ra, bs
adapted to γ then we set

ż

γ
ω “

ℓ
ÿ

i“1

ż ti

ti´1

´

ω1

`

γptq
˘

9γ1 ` ¨ ¨ ¨ ` ωn
`

γptq
˘

9γn
¯

dt .

One can show that the right-hand side is independent of the choice of the partition adapted
to γ.

Example 16.1.22. Let γ denote the piecewise path described in Example 16.1.21. Sup-
pose that

ω “ ´ydx` xdy.

If we denote by pxptq, yptqq the moving point γptq then we deduce
ż

γ
p´ydx` xdyq “

ż 1

0

`

´ y 9x` x 9y
˘

dt`

ż 2

1

`

´ y 9x` x 9y
˘

dt
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`

ż 3

2

`

´ y 9x` x 9y
˘

dt`

ż 4

3

`

´ y 9x` x 9y
˘

dt.

Observing that on the intervals r0, 1s and r2, 3s we have 9y “ 0 while on the others we have
9x “ 0 we deduce

ż

γ
p´ydx` xdyq “ ´

ż 1

0
y 9xdt

looomooon

y“0,

`

ż 2

1
x 9ydt

looomooon

x“1, 9y“1

´

ż 3

2
y 9xdt

looomooon

y“1, 9x“´1

`

ż 4

3
x 9ydt

looomooon

x“0

“

ż 2

1
dt`

ż 3

2
dt “ 2. [\

16.1.3. Integration of 1-forms over oriented curves. There is a simple way of pro-
ducing a path given a connected curve, namely to assign an orientation to that curve.
Loosely speaking, an orientation describes a direction of motion along the curve without
specifying the speed of that motion; see Figure 16.8

C C

Figure 16.8. Two orientations on the same planar curve C.

The direction of motion at a point on the curve C would be given by a unit vector
tangent to the curve at that point. At each point p P C there are exactly two unit vectors
tangent to C and an orientation would correspond to a choosing one such vector at each
point, and the choices would vary continuously from one point to another. Here is a precise
definition.

Definition 16.1.23. Let n P N.

(i) An orientation on a C1-curve C Ă Rn is a continuous map T : C Ñ Rn such
that, @p P C, the vector T ppq has length 1 and it is tangent to C at p P C.

(ii) An oriented curve is a pair pC,T q, where C is a curve and T is an orientation
on C.

(iii) An orientation on a (compact) C1-curve with boundary C is an orientation on
its interior C˝.

(iv) Suppose that C is a convenient curve and T is an orientation of C. A parametriza-
tion γ : pa, bq Ñ Rn is said to be compatible with the orientation if, @t P pa, bq,
the tangent vectors

9γptq, T
`

γptq
˘

P TγptqC
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point in the same direction, i.e.,
@

9γptq,T
`

γptq
˘ D

ą 0.

[\

Let us observe that if C Ă Rn is a convenient curve, then any parametrization
γpa, bq Ñ Rn of C defines an orientation on T : C Ñ Rn on C according to the rule

T
`

γptq
˘

“
1

} 9γptq}
9γptq. @t P pa, bq.

This is called the orientation induced by the parametrization. Clearly the parametrization
is compatible with the orientation it induces since

@

9γptq,T
`

γptq
˘ D

“ } 9γptq} ą 0.

It turns out that any orientation on a convenient curve is induced by a parametrization.

Lemma 16.1.24. Suppose that C is a convenient curve in Rn. For any parametrization
γ : pa, bq Ñ Rn of C we denote by γ´ the parametrization

γ´ : p´b,´aq Ñ Rn, γ´ptq :“ γp´tq.

If T is an orientation on C, then exactly one of the parametrizations γ and γ´ is com-
patible with the orientation.

Proof. Observe that for any t P pa, bq, the nonzero vectors T
`

γptq
˘

and 9γptq belong to
the 1-dimensional space TγptqC. They are therefore collinear and thus

@

T
`

γptq
˘

, 9γptq
D

‰ 0, @t P pa, bq

Since the function
pa, bq Q t ÞÑ

@

T
`

γptq
˘

, 9γptq
D

P R
and is nowhere zero, we deduce that either

@

T
`

γptq
˘

, 9γptq
D

ą 0, @t P pa, bq,

or,
@

T
`

γptq
˘

, 9γptq
D

ă 0, @t P pa, bq.

In the first case we deduce that γ is compatible with T , while in the second case we deduce
that γ´ is compatible with T [\

Suppose now that U Ă Rn is an open set,

ω “ ω1dx
1 ` ¨ ¨ ¨ ` ωndx

n P Ω1pUq,

C Ă Rn is a convenient curve and T is an orientation on C.

To define the integral of ω on the oriented convenient curve pC,T q we need to first
choose a parametrization α : pa, bq Ñ Rn of C compatible with the orientation. We then
set

ż

C
ω “

ż

pC,T q
ω :“

ż

α
ω “

ż b

a

´

ω1

`

αptq
˘

9α1
ptq ` ¨ ¨ ¨ ` ωn

`

αptq
˘

9αnptq
¯

dt.
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For the above definition to be consistent, the right-hand side has to be independent
of parametrization compatible with the given orientation.

Lemma 16.1.25. The above definition is independent of the choice of the parametrization
of C compatible with the orientation.

Proof. Indeed, if β : pc, dq Ñ Rn is another such parametrization, then, as argued in Subsection 16.1.1 (see Figure

16.1) there exists a continuous C1-bijection pa, bq Q t ÞÑ τptq P pc, dq, such that

β
`

τptq
˘

“ α
`

t
˘

,
dβ

dτ

`

τptq
˘dτ

dt
“ 9αptq, @t P pa, bq.

Since the tangent vectors
dβ

dτ

`

τptq
˘

,
dα

dt
ptq

point in the same directions we deduce
dτ

dt
ą 0, @t P pa, bq.

The 1-dimensional change-in-variables formula implies that

ż d

c
ωi

`

βpτq q
dβi

dτ
dτ “

ż b

a
ωi

`

βpτptqq q
dβi

dτ

dτ

dt
dt “

ż b

a
ωi

`

αptq q
dαi

dt
dt, @i “ 1, . . . , n.

Hence
ż

α
ω “

n
ÿ

i“1

ż b

a
ωi

`

αptq q
dαi

dt
dt “

n
ÿ

i“1

ż d

c
ωi

`

βpτq q
dβi

dτ
dτ “

ż

β
ω.

[\

Proposition 16.1.26. Let U Ă Rn be an open set, and pC,T q an oriented convenient
curve inside U . Then, for any 1-form ω P Ω1pUq we have

ż

pC,´T q
ω “ ´

ż

pC,T q
ω.

Proof. Let

ω “ ω1dx
1 ` ¨ ¨ ¨ ` ωndx

n

Fix a parametrization

γ : pa, bq Ñ Rn, γptq “

»

—

—

—

–

x1ptq
x2ptq
...

xnptq

fi

ffi

ffi

ffi

fl

,

compatible with the orientation T . Then γ´ : p´b,´aq Ñ Rn is a parametrization
compatible with ´T . We have

ż

pC,´T q
ω “

ż

γ´

ω “

ż ´a

´b

´

´ ω1

`

γp´tq
˘

9x1p´tq ´ ¨ ¨ ¨ ´ ωn
`

γp´tq
˘

9xnp´tq
¯

dt
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(t :“ ´τ)

“

ż a

b

´

ω1

`

γpτq
˘

9x1pτq ` ¨ ¨ ¨ ` ωn
`

γpτq
˘

9x1pτq
¯

dτ

“ ´

ż b

a

´

ω1

`

γpτq
˘

9x1pτq ` ¨ ¨ ¨ ` ωn
`

γpτq
˘

9x1pτq
¯

dτ

“ ´

ż

γ
ω “ ´

ż

pC,T q
ω.

[\

If C is an oriented quasi-convenient curve, choose a convenient cut tp1, . . . ,pℓu so that
C becomes a disjoint union of convenient curves C1, . . . , CN equipped with orientations.
Then define

ż

C
ω :“

N
ÿ

i“1

ż

Ci

ω .

One can show that the right-hand side of the above equality is independent of the choice
of the convenient cut.

Let us finally observe that the interior of an oriented (compact) curve with boundary
C is oriented and quasi-convenient and we define

ż

C
ω :“

ż

C˝

ω .

Example 16.1.27. Suppose that C is the quarter of the unit circle contained in the first
quadrant and equipped with the counter-clockwise orientation; see Figure 16.9.

C

Figure 16.9. An arc of the unit circle equipped with the counterclockwise orientation.

Its interior is a convenient curve and the map

p0, π{2q Q t ÞÑ pcos t, sin tq P R2
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is a parametrization compatible with the counterclockwise orientation. We have
ż

C
WΘ “

ż

C

˜

´y

x2 ` y2
dx`

x

x2 ` y2
dy

¸

(along C we have dx “ ´ sin tdt, dy “ cos tdt, x2 ` y2 “ 1)

“

ż π
2

0

´

p´ sin tqp´ sin tqdt` pcos tqpcos tqdt
¯

“

ż π
2

0
dt “

π

2
. [\

Definition 16.1.28. A 1-dimensional chain in Rn is a collection

C :“
␣

pC1,m1q, . . . , pCν ,mνq
(

where C1, . . . , Cn are compact, oriented, curves (with or without boundary) andm1, . . . ,mν

are integers called the local multiplicities of the chain.

The integral of a 1-form ω over the above chain C is the real number
ż

C
ω :“

ν
ÿ

k“1

mk

ż

Ck

ω. [\

16.1.4. The 2-dimensional Stokes’ formula: a baby case. The integrals of 1-forms
over closed curves can often be computed as certain double integrals over appropriate
regions. This is roughly speaking the content of Stokes’ formula.

Definition 16.1.29. Let k, n P N. A domain of Rn is an open, path connected subset
of Rn. A domain D Ă Rn is called Ck if its boundary is an pn ´ 1q-dimensional Ck-
submanifold of Rn. [\

Example 16.1.30. In Figure 16.10 we have depicted two Ck-domains in R2. The domain
D1 is a closed disk and its boundary is a circle. The boundary of D2 consists of three
closed curves. [\

D

D

1

2

Figure 16.10. Two domains in R2.

Suppose that D Ă R2 is a bounded Ck domain. As one can see from Figure 16.10,
its boundary is a disjoint union of compact Ck curves in R2. Each of these components
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is equipped with a natural orientation called the induced orientation. It is determined by
the right hand rule; see Figure 16.11 and 16.12.

Figure 16.11. Right-hand rule.

Figure 16.12. Right-hand rule.

Here is the explanation for the above figures: place your right hand on the boundary
component, palm-up, so that the thumb points to the exterior of your domain. The index
finger will then point in the direction given by the orientation of that boundary component.
Another way of visualizing is as follows: if we walk along BD in the direction prescribed
by the induced orientation, then the domain D will be to our left; see Figure 16.13.

Here is a more rigorous explanation. Given a point p P BD, there are exactly two
unit vectors that are perpendicular to the tangent line TpBD. These vectors are called the
normal vectors to BC at p. Denote by ν or νppq the outer normal vector at p P BD: this
vector is perpendicular to TpBD and, when placed at p, it points towards the exterior of
D. The induced orientation at p is obtained from νppq after a 90 degree counterclockwise
rotation.

Thus, the boundary of a bounded C1-domain D Ă R2 is a disjoint union of closed
curves carrying orientations. It is therefore a 1-dimensional chain in the sense of Definition
16.1.28. Thus, we can integrate 1-forms on such boundaries.
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Figure 16.13. Walking around the boundary.

Theorem 16.1.31 (Planar Stokes’ theorem). Let U Ă R2 be a bounded C1-domain.
Suppose that F is a C1-vector field defined on an open set O that contains clpUq,

F : OÑ R2, F px, yq “
`

P px, yq, Qpx, yq
˘

Let ν : BU Ñ R2 be the outer normal vector field. We denoted by B`U the boundary of U
equipped with the induced orientation. Then the following hold

ż

B`U
pPdx`Qdyq “

ż

U

ˆ

BQ

Bx
´
BP

By

˙

|dxdy|. (16.1.10a)

ż

B`U
xF ,νyds “

ż

U

ˆ

BP

Bx
`
BQ

By

˙

|dxdy| (16.1.10b)

[\

Remark 16.1.32. It turns out that the equality (16.1.10b) follows rather easily from
(16.1.10a). The hard part is proving (16.1.10a). [\

Definition 16.1.33. Let U Ă Rn be an open set and

F : U Ñ Rn, F ppq “

»

—

—

—

–

F 1ppq
F 2ppq

...
Fnppq

fi

ffi

ffi

ffi

fl

.

a C1 vector field. The divergence of F is the function

div : U Ñ R, divF ppq “
BF 1

Bx1
ppq ` ¨ ¨ ¨ `

BFn

Bxn
ppq. [\
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Using the concept of divergence we can rephrase (16.1.10b) in the traditional form

ż

BD
xF ,νyds “

ż

D
divF |dxdy| . (16.1.11)

The integral in the left-hand side is usually called the outer flux of F through BD. The
last equality is a special case of the flux-divergence formula

Figure 16.14. The radial vector field in the plane.

Example 16.1.34. The radial vector field R : R2 Ñ R2 is given by

Rpx, yq “

„

x
y

ȷ

.

Thus the vector field R associates to the point p P px, yq, the point p itself but viewed
as a vector in R2; see Figure 16.14. In other words R, is the identity map under another
guise. Note that

divR “ Bxx` Byy “ 2.

If D is a bounded domain with C1-boundary, then the flux-divergence formula shows that
the outer flux of R through the boundary BD is equal to twice the area of D. Thus we can
compute the area of D by performing computations involving only boundary data and no
interior data. [\

Example 16.1.35. Suppose that U Ă R2 is a bounded C1-domain whose boundary
C “ BU is a closed connected curve. We assume that the origin 0 is not on the boundary
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of U . The induced orientation on BU is the counterclockwise orientation; see Figure 16.15.
We denote by B`U the boundary BU equipped with this orientation. We want to compute

ż

B`U
WΘ “

ż

B`U

˜

´
y

x2 ` y2
loooomoooon

P

dx `
x

x2 ` y2
looomooon

Q

dy

¸

. (16.1.12)

0
U

C

B ( )0

G

e

e

Figure 16.15. Integrating the angular form.

We distinguish two cases.

1. 0 R U . To compute (16.1.12) we use (16.1.10a). To find Q1x´P
1
y we set r :“

a

x2 ` y2,
so

P “ ´
y

r2
, Q “

x

r2
.

We have

r1x “
x

r
, r1y “

y

r
, Q1x “

1

r2
´

2x

r3
¨
x

r
“

1

r2
´

2x2

r4
,

P 1y “ ´
1

r2
`

2y

r3
¨
y

r
“ ´

1

r2
`

2y2

r4

Thus

Q1x ´ P
1
y “

2

r2
´

2px2 ` y2q

r4
“ 0, @px, yq ‰ p0, 0q.

Using (16.1.10a) we deduce
ż

B`U
WΘ “

ż

U

`

Q1x ´ P
1
y

˘

|dxdy| “ 0.

2. 0 P U . The above approach does not work. Theorem 16.1.31 requires that the vector
field Θ be defined on an open set containing U . This is not the case. The vector field Θ
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is not defined at the origin 0, and in fact the components P and Q do not have a limit
as px, yq Ñ p0, 0q so they cannot be the restrictions of some continuous functions on U .
Although this issue may seem trivial, it has enormous consequences.

To deal with this issue we will tread lightly around the singular point 0. Observe first
that there exists ε ą 0 such that the closed ball Bεp0q is contained in U . Denote by Uε
the domain obtained by removing this ball from U ,

Uε :“ UzBεp0q.

The boundary of the domain Uε has two components: the boundary BU and the boundary
Γε of Bεp0q. Each of these components is equipped with an induced orientation: on
BU this is the counterclockwise orientation, while on Γε this is the clockwise orientation;
see Figure 16.15. Observe that the clockwise orientation on Γε is the opposite of the
orientation induced as boundary of Bεp0q. We denote by B`Bεp0q the curve Γε equipped
with the counterclockwise orientation. We have

ż

B`Uε

Wθ “

ż

B`U
WΘ ´

ż

B`Bεp0q
WΘ.

Now observe that Θ is defined and C1 on the open set R2z0 that contains Uε. We can
now safely invoke Theorem 16.1.31 to conclude that

0 “

ż

Uε

`

Q1x ´ P
1
y

˘

“

ż

B`Uε

WΘ “

ż

B`U
WΘ ´

ż

B`Bεp0q
WΘ.

Hence
ż

B`U
WΘ “

ż

B`Bεp0q
WΘ.

To compute the right-hand side of the above equality observe that a parametrization of
Γε compatible with the counterclockwise orientation is

γptq “
`

ε cos t, ε sin t
˘

, t P r0, 2πs.

Arguing exactly as in Example 16.1.27 we deduce
ż

B`Bεp0q
WΘ “

ż

γ

˜

´y

x2 ` y2
dx`

x

x2 ` y2
dy

¸

“

“

ż 2π

0

´

p´ sin tqp´ sin tqdt` pcos tqpcos tqdt
¯

“

ż 2π

0
dt “ 2π.

This proves that
ż

B`U
WΘ “ 2π.

To put things in perspective let us mention that a famous result of Jordan1 states that if
C is a connected compact C1-curve, then it is the boundary of a bounded C1-domain U .

1I recommend T. Hales’ very lively discussion of this result in [17].
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We equip it with the orientation as boundary of U . If 0 R BU , then
ş

C is well defined and
the above computation shows

1

2π

ż

B`U
WΘ “ IU p0q “

ż

C
WΘ “

#

1, 0 P U,

0, 0 R U.

This “quantization” result has profound consequences in mathematics. [\

The Planar Stokes’ Theorem 16.1.31 extends to more general domains.

Definition 16.1.36. A domain D Ă R2 is called piecewise Ck if there exists a finite subset
F of the boundary BD such that each component of BDzF is the interior of a Ck-curve
with boundary. [\

Example 16.1.37. Suppose that β, τ : ra, bs are C1-functions such that

βpxq ă τpxq, @x P pa, bq.

Then the simple type domain

Dpβ, τq “
␣

px, yq P R2; x P pa, bq, βpxq ă y ă τpxq
(

(16.1.13)

is a piecewise C1-domain. In particular an open rectangle pa, bq ˆ pc, dq is a piecewise Ck

domain. [\

Suppose that D Ă R2 is a bounded piecewise C1 domain. Remove a finite subset F of
the boundary to obtain a union of convenient C1-curves. In fact, each of these components
is the interior of a (compact) curve with boundary. We denote by B˚U the complement
of this finite set. Using the right-hand rule we obtain orientations on each component
of B˚U . We denote by B˚`U the chain obtained this way, where the multiplicity of each
oriented component of B˚U is equal to 1. We have the following generalization of Theorem
16.1.31.

Theorem 16.1.38 (Planar Stokes’ theorem). Let U Ă R2 be a bounded piecewise C1-
domain. Suppose that F is a C1-vector field defined on an open set O that contains clpUq,

F : OÑ R2, F px, yq “
`

P px, yq, Qpx, yq
˘

Then
ż

B˚
`U
pPdx`Qdyq “

ż

U

ˆ

BQ

Bx
´
BP

By

˙

|dxdy|. (16.1.14)

[\
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16.2. Integration over surfaces

The various concepts of integrals over curves have higher dimensional counterparts, called
integrals overs submanifolds of a Euclidean space. In this section we will explain this
concept only in the special case of 2-dimensional submanifolds. The proper presentation
of the more general case requires a more complicated formalism that might bury the
geometry of the construction. The restriction to the 2-dimensional situation will afford
us more geometric transparency and a lighter algebraic burden. The extension to higher
dimensions involves few new geometric ideas, but requires more algebraic travails.

The most basic example of an integral over a surface is the concept of area. To define
it we consider first the simplest of situations, when the surface in question is contained in
a 2-dimensional vector subspace.

16.2.1. The area of a parallelogram. Suppose that we are given two linearly inde-
pendent, i.e., non-collinear, vectors

v1,v2 P R2, v1 “

»

–

v11

v21

fi

fl , v1 “

»

–

v12

v22

fi

fl .

We denote by V the 2ˆ 2 matrix with columns v1,v2, i.e.,

V “

»

–

v11 v12

v21 v22

fi

fl .

The parallelogram spanned by v1,v2 coincides with the parallelepiped spanned by these
vectors defined in (15.3.4). More precisely, it is the set

P pv1,v2q “
␣

x1v1 ` x
2v2; x1, x2 P r0, 1s

(

Ă R2. (16.2.1)

According to (15.3.5), the area of this parallelogram is equal to the absolute value of the
determinant of V ,

area
`

P pv1,v2q
˘

“ vol2
`

P pv1,v2q
˘

“
ˇ

ˇ detV
ˇ

ˇ.

This equality has one “flaw”: we need to know the coordinates of the vectors v1,v2. For
the applications we have in mind we would like a formula that does involve this knowledge.
To achieve this we consider the product of matrices

G “ Gpv1,v2q :“ V T ¨ V “

„

xv1,v1y xv1,v2y
xv2,v1y xv2,v2y

ȷ

. (16.2.2)

Note two things.

(i) The matrix Gpv1,v2q called the Gramian of v1,v2 , is symmetric, and it is
determined only by the scalar products xvi,vjy.

(ii) We have

detG “ detV J detV “
`

detV
˘2
.
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We deduce the following very important formula

area
`

P pv1,v2q
˘

“
a

detGpv1,v2q. (16.2.3)

Now suppose that n P N, n ě 2, and u1,u2 P Rn are two linearly independent vectors.
They define an nˆ 2 matrix

U “ ru1 u2s

whose columns are the vectors u1,u2 We define their Gramian Gpu1,u2q according to
formula (16.2.2)

Gpu1,u2q :“ UJU “

„

xu1,u1y xu1,u2y

xu2,u1y xu2,u2y

ȷ

.

The parallelogram spanned by u1,u2 is defined as in (16.2.1),

P pu1,u2q :“
␣

x1u1 ` x
2u2; x1, x2 P r0, 1s

(

Ă Rn.

We define the area of P pu1,u2q by the formula

area
`

P pu1,u2q
˘

:“
a

detGpu1,u2q . (16.2.4)

For example, if

u1 “ p1, 1, 1q P R3, u2 “ p1, 0,´1q P R3,

Then xu1,u1y “ 3, xu1,u2y “ 0, xu2,u2y “ 2,

Gpu1,u2q “

„

3 0
0 2

ȷ

, detGpu1,u2q “ 6, area
`

P pu1,u2q
˘

“
?
6.

Remark 16.2.1. Let us point one other feature of (16.2.4) that adds extra plausibility
to our definition by diktat of the area of a parallelogram in a higher dimensional space.

Recall (see Exercise 11.25) that an orthogonal operator S : Rn Ñ Rn is a linear map
S such that

xSu, Svy “ xu,vy, @u,v P Rn.
Orthogonal operators preserve distances between points. In particular, an orthogonal
operator is bijective and it is natural to expect that it will map a parallelogram to another
parallelogram with the same area. The area as defined in (16.2.1) displays this orthogonal
invariance.

To see this, note that the definition of an orthogonal operator implies that, for any
orthogonal operator S, we have

Gpu1,u2q “ GpSu1, Su2q,

Note that the image via S of the parallelogram spanned by u1,u2 is the parallelogram
spanned by Su1, Su2, i.e.,

S
`

P pu1,u2q
˘

“ P pSu1, Su2q.

In particular, we deduce that

area
`

SP pu1,u2q
˘

“ area
`

P pSu1, Su2q
˘

“ area
`

P pu1,u2q
˘

.
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Let us also observe that if u1,u2 P Rn are two linearly independent vectors then there
exists an orthogonal operator S : Rn Ñ Rn such that the vectors v1 :“ Su1 and v2 :“ Su2

belong to the subspace R2 ˆ 0 Ă Rn.2 As we have explained at the beginning of this
subsection the area of the parallelogram spanned by the vector v1,v2 Ă R2, defined in
terms of Riemann integrals must be given by (16.2.4). Hence, due to the orthogonal
invariance of the Gramian, the area of the parallelogram spanned by u1,u2 must also be
given by (16.2.4). [\

16.2.2. Compact surfaces (with boundary). The concept of curve with boundary
has a 2-dimensional counterpart.

Definition 16.2.2. Let k, n P N, n ě 2. A Ck-surface with boundary in Rn is a compact
subset Σ Ă Rn such that, for any point p0 P Σ, there exists an open neighborhood U of p0
in Rn and a Ck-diffeomorphism Ψ : UÑ Rn such that image U :“ ΨpUX Σq is contained
in the subspace R2 ˆ 0 Ă Rn and it is either

(I) an open disk in R2 centered at Ψpp0q or

(B) the point Ψpp0q lies on the y-axis and U is the intersection of a disk as above
with the half-plane

H´ :“
␣

px, yq P R2; x ď 0
(

.

The pair pU,Ψq is called a straightening diffeomorphism at p0. The pair
`

UXΣ,Ψ
ˇ

ˇ

UXΣ

˘

is called a local coordinate chart of X at p0.

In the case (B), the point p0 P X is called a boundary point of X. Otherwise p0 is
called an interior point.

The set of boundary points of X is called the boundary of X and it is denoted by BX.
The set of interior points of X is called the interior of X and it is denoted by X˝. The
surface with boundary is called closed if its boundary is empty, BX “ H. [\

Remark 16.2.3. Before we present several examples of surfaces with boundary we want
to mention without proofs a few technical facts.

‚ If X Ă Rn is a surface with boundary and p0 is a boundary point, then, for any
straightening diffeomorphism pU,Ψq at p0, the image ΨpU X Xq is a half-disk
B´r .

‚ The boundary of a surface with boundary is a closed curve.

[\

Example 16.2.4 (Bounded Ck-domains in the plane). Suppose that D Ă R2 is a bounded
Ck domain. For n ě 2 we regard R2 as a subspace of Rn. One can show that

2This follows from a simple application of the Gram-Schmidt procedure.
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‚ the closure clpDq of a bounded Ck domain in R2 is a Ck-surface with boundary
in Rn

‚ as a subset of R2, the closure clpDq is Jordan measurable.

We will not present the proofs of the above claims. [\

Example 16.2.5 (Graphs). Suppose that D Ă R2 is a bounded Ck domain and f is a
Ck function defined on some open set U containing the closure of D, f : U Ñ R. Then
the graph of f over D

Γf pDq :“
␣

px, y, zq P R3; px, yq P D, z “ fpx, yq
(

is a surface with boundary. Figure 16.16 depicts such a graph.

Figure 16.16. The graph of fpx, yq “ 2xy2 over the annular domain

0.5 ď
a

x2 ` y2 ď 1.5 in R2.

Figure 16.17. The surface of revolution generated by the graph of the function
f : r´2, 1s Ñ p0,8q, fpxq “ x2

` 1.

Example 16.2.6 (Surfaces of revolution). Given a C1-function f : ra, bs Ñ p0,8q, then by
rotating its graph about the x-axis we obtain a surface with boundary Sf whose boundary
consists of two circles; see Figure 16.17. [\
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Example 16.2.7 (Cutting surfaces transversally by a hypersurface). Suppose that S Ă Rn
is a closed Ck-surface and f : Rn Ñ R is a Ck-function. Suppose that

@x P Rn fpxq “ 0ñ ∇fpxq ‰ 0.

The zero set
Z “

␣

x P Rn; fpzq “ 0
(

is a hypersurface of Rn. One expects that the intersection of the surface S with the
hypersurface Z is a curve; think e.g. of a plane Z in R3 intersecting a surface S in R3.

Figure 16.18. A half-torus in R3.

Figure 16.19. A half-sphere in R3.

This intuition is indeed true if this intersection is transversal. This means that, for
any p P S X Z, the gradient vector ∇fppq is not perpendicular to the tangent plane TpS.
This claim follows from the implicit function theorem, but we will omit the details.

If this transversality condition is satisfied then

S` :“
␣

p P S; fppq ě 0
(

is a surface with boundary BS` “ S X Z. To get a better hold of this fact, think that
S is the surface of a floating iceberg and fppq denotes the altitude of a point. Then, S`
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consists of the points on the iceberg with altitude ě 0, i.e., the points on the surface above
the water level.

For example we cut the torus in Figure 14.8 with the vertical plane y “ 0 we obtain
the half-torus depicted in Figure 16.18

Also, if we cut the sphere S “ tx2 ` y2 ` z2 “ 1u with the plane z “ 1
2 , then the part

above the level z “ 1
2 is the polar cap depicted in Figure 16.19. [\

16.2.3. Integrals over surfaces. Let n P N, n ě 2, and suppose that Σ Ă Rn is a C1-
surface. Fix a point p0 and a straightening diffeomorphism pU,Ψq near p0; see Definition
14.5.1.

The image of Ψ is an open subset U Ă Rn and the restriction of Ψ to U X Σ is a
continuous bijection onto an open subset

U Ă R2 “ U X R2 ˆ 0 Ă Rn.

Its inverse Ψ´1 : U Ñ U is a C1-map and it induces a C1-map Φ : U Ñ Rn such that
ΦpUq “ UXΣ. The map Φ is called the local parametrization of the surface Σ associated
to the straightening diffeomorphism pU,Ψq.

Figure 16.20. A local parametrization deforms a (flat) planar region to a patch of
(curved) surface.

The local parametrization Φ deforms the flat planar region U to a patch ΦpUq of the
curved surface Σ; see Figure 16.20. The region U lies in the two-dimensional vector space
R2, and we denote by ps, tq the coordinates in this space. Moreover, it may help to think
of the plane R2 as made of horizontal and vertical lines woven together. These lines form
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a grid dividing the plane into infinitesimally small rectangular patches of size dsˆ dt; see
Figure 16.21.

Figure 16.21. A planar infinitesimal grid.

The parametrization Φ takes the rectangular ps, tq-grid to a curvilinear grid on the
surface Σ; see Figure 16.20. For any point p in the patch ΦpUq Ă Σ there exists a unique
point ps, tq PU such that p “ Φps, tq. We will write this in a simplified form as

p “ pps, tq.

If we keep t fixed and vary s we get a (red) horizontal line in the ps, tq-plane; see Figure
16.20 and 16.21. This (red) line is mapped by Φ to a (red) curve on Σ. Similarly, if we
keep s fixed and vary t we get a vertical line in the ps, tq-plane mapped to a curve on Σ.

Now take a tiny rectangular patch of size dsˆ dt with lower left-hand corner situated
at some point ps, tq. The map Φ sends it to a tiny (infinitesimal) patch of the surface.
Because this is so small we can assume it is almost flat and we can approximate it with
the parallelogram spanned by the vectors (see Figure 16.20).

p1sds “ Φ1sds and p1tdt “ Φ1tdt.

The area of this infinitesimal tangent parallelogram is usually referred to as the area
element. It is denoted by |dA| and we have

|dA| “
b

detGpp1sds,p
1
tdtq “

b

detGpp1s,p
1
tq |dsdt|.

More intuitively, the parametrization Φ identifies a point p P UXΣ with a point ps, tq PU Ă R2.
We write this p “ pps, tq and we rewrite the above equality

|dA| “
b

detGpp1s,p
1
tq |dsdt|.
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The quantity
a

detGpp1s,p
1
tq |dsdt| describes the area element in the s, t coordinates. We

provisorily define the area of UX Σ to be

areapUX Σq “

ż

UXΣ
|dA| :“

ż

U

b

detGpp1s,p
1
tq |dsdt| . (16.2.5)

Suppose that pV, Ψ̂q is another straightening diffeomorphism of Σ near p0 such that
UX Σ “ VX Σ. We set

S :“ UX Σ “ VX Σ.

The restriction of Ψ̂ to VX Σ is a continuous bijection onto an open subset

V Ă R2 “ R2 ˆ 0 Ă Rn.

Its inverse is given by a C1-map Φ̂ : V Ñ Rn such that Φ̂pV q “ UXΣ. We denote by pu, vq
the Euclidean coordinates in the plane R2 that contains V . A point p P S can now be
identified either with a point ps, tq PU or with a point pu, vq P V . We write this p “ pps, tq
and respectively p “ ppu, vq.

We obtain in this fashion a map U ÞÑ V that associates to the point ps, tq P U the
unique point pu, vq P V such that pps, tq “ ppu, vq. Formally, this is the compostion of

C1-maps Ψ̂ ˝ Φ. In particular, this is a C1-map.

We will indicate this correspondence ps, tq ÞÑ pu, vq by writing u “ ups, tq and v “ vps, tq.
To recap

u “ ups, tq, v “ vps, tqðñpps, tq “ ppu, vq.

We now have two possible definitions of areapSq

areapSq “

ż

U

b

Gpp1s,p
1
tq |dsdt| or areapSq “

ż

V

a

detGpp1u,p
1
vq |dudv|.

We want to show that they both yield the same result.

Lemma 16.2.8.
ż

U

b

detGpp1s,p
1
tq |dsdt| “

ż

V

a

detGpp1u,p
1
vq |dudv|.

Proof. We argue as in the proof of the equality (16.1.1). The key fact is the equality

pps, tq “ ppu, vq.

Differentiating with respect to s, t we deduce

p1
s “ p1

uu
1
s ` p1

vv
1
s, p1

t “ p1
uu

1
t ` p1

vv
1
t (16.2.6)

Let us introduce the nˆ 2 matrices

Ps,t :“ rp
1
s p1

ts, Pu,v :“ rp1
u p1

vs.

Thus the columns of Ps,t consist of the vectors p1
s,p

1
t P Rn, and the columns of Pu,v consist of the vectors p1

u,p
1
v P Rn

We can rewrite (16.2.6)

Ps,t “ Pu,v ¨

„

u1
s u1

t

v1
s v1

t

ȷ

looooooomooooooon

J

.
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We note that J is the Jacobian matrix of the transformation ps, tq ÞÑ pu, vq

J “
Bpu, vq

Bps, tq
.

Then

Gpp1
s,p

1
tq “ PT

s,tPs,t “ JTPT
u,vPu,vJ “ JTGpp1

u,p
1
vqJ

so

detGpp1
s,p

1
tq “ pdet J

T q detGpp1
u,p

1
vqpdet Jq “ detGpp1

u,p
1
vqpdet Jq

2,

and thus
b

detGpp1
s,p

1
tq “

b

detGpp1
u,p

1
vq ¨ | det J |.

The change in variables formula then implies
ż

V

b

detGpp1
u,p

1
vq |dudv| “

ż

U

b

detGpp1
u,p

1
vq

ˇ

ˇ

ˇ

ˇ

det
Bpu, vq

Bps, tq

ˇ

ˇ

ˇ

ˇ

|dsdt|

“

ż

U

b

detGpp1
u,p

1
vq ¨ | det J | |dsdt| “

ż

U

b

detGpp1
s,p

1
tq |dsdt|.

[\

Definition 16.2.9 (Convenient surfaces with boundary). A parametrized surface with
boundary is a triplet pΣ, D,Φq with the following properties.

‚ D Ă R2 is a bounded domain in R2 with C1-boundary;

‚ Φ is an injective immersion Φ : U Ñ Rn, where U is an open subset of R2

containing the closure clpDq of D.

‚ Σ “ Φ
`

clpDq
˘

.

The induced map Φ : clpDq Ñ Σ is called a parametrization of Σ. A surface with
boundary is called convenient if it can be parametrized as above. [\

For example, the surfaces depicted in Figure 16.16, 16.18, 16.19 and 16.17 are conve-
nient.

Suppose now that Σ Ă Rn is a convenient surface with boundary with a parametriza-
tion Φ : clpDq Ñ Σ. Here D Ă R2 is a bounded domain with C1-boundary. If we denote
by s, t the Euclidean coordinates in the plane R2 containing D, then we can describe the
parametrization Φ as describing point p on Σ depending on the coordinates,

p “ pps, tq.

If f : ΣÑ R is a function on Σ, then we say that it is integrable over Σ if the function

D Q ps, tq ÞÑ f
`

pps, tq
˘

b

detGpp1s,p
1
tq

is Riemann integrable. If this is the case, then we define the integral of f over Σ to be the
number

ż

Σ
fppq|dAppq| :“

ż

D
f
`

pps, tq
˘

b

detGpp1s,p
1
tq |dsdt| .
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The left-hand side of the above equality makes no reference of any parametrization while
the right-hand side is obviously described in terms of a concrete parametrization. We
want to show, that if we change the parametrization, then the resulting right-hand side
does not change its value, although it might look dramatically different.

If Φ :DÑ Σ is another parametrization of Σ,

D P pu, vq ÞÑ ppu, vq “Φpu, vq,

then Lemma 16.2.8 shows that
ż

D
f
`

pps, tq
˘

b

detGpp1s,p
1
tq |dsdt| “

ż

D
f
`

ppu, vq
˘

a

detGpp1u,p
1
vq |dudv|.

Example 16.2.10 (Integration along graphs). Suppose that D Ă R2 is a bounded domain
with C1-boundary, and h : clpDq Ñ R is a C1-function. Its graph

Γf :“
␣

px, y, zq; px, yq P clpDq, z “ hpx, yq
(

is a convenient surface with boundary. The map

px, yq ÞÑ ppx, yq :“
`

x, y, hpx, yq
˘

P R3

is a parametrization of Γh. We have

p1x “
`

1, 0, h1xpx, yq
˘

, p1y “
`

0, 1, h1ypx, yq
˘

,

xp1x,p
1
xy “ 1`

ˇ

ˇh1x
ˇ

ˇ

2
, xp1y,p

1
yy “ 1`

ˇ

ˇh1y
ˇ

ˇ

2
, xp1x,p

1
yy “ h1xh

1
y,

detGpp1x,p
1
yq “ xp

1
x,p

1
xy ¨ xp

1
y,p

1
yy ´ xp

1
x,p

1
yy

2 “
`

1`
ˇ

ˇh1x
ˇ

ˇ

2 ˘`
1`

ˇ

ˇh1y
ˇ

ˇ

2 ˘
´
`

h1xh
1
y

˘2

“ 1`
ˇ

ˇh1x
ˇ

ˇ

2
`
ˇ

ˇh1y
ˇ

ˇ

2
“ 1`

›

›∇h
›

›

2
.

Hence, the area element on the graph of h is

|dA| “

b

1`
›

›∇h
›

›

2
|dxdy| .

In particular, the area of Γh is

areapΓhq “

ż

D

b

1`
›

›∇h
›

›

2
|dxdy|. [\

Example 16.2.11 (Revolving graphs about the z-axis). Suppose that 0 ă a ă b and
f : ra, bs Ñ R is a C1-function. We denote by Sf the surface in R3 obtained by revolving
the graph of f in the px, zq plane,

Γf “
␣

px, zq; x P ra, bs, z “ fpxq
(

about the z-axis. Denote by D the annulus in the px, yq-plane described by the condition

a ď r ď b, r “
a

x2 ` y2.

Then Sf is the graph of the function

f̂ : D Ñ R, f̂px, yq “ fprq “ f
`

a

x2 ` y2
˘

.
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Note that

f̂ 1x “ f 1prq
x

r
, f̂ 1y “ f 1prq

y

r
, 1` }∇f̂}2 “ 1` |f 1prq|2.

Thus

|dA| “
a

1` |f 1prq|2 |dxdy|.

[\

Suppose in general that Σ is a compact surface with, or without boundary, and

f : ΣÑ R

is a continuous function. We want to define the integral of f over Σ. We distinguish two
cases.

Case 1. Let p0 P Σ and suppose that pU,Ψq is a straightening diffeomorphism at p0 (see
Definition 16.2.2). This induces a homeomorphism

Ψ : U X ΣÑ D “ ΨpU X Σq Ă R2.

where D is either an open disk or an open half-disk. We denote by ps, tq the Euclidean
coordinates on R2. If

supp f Ă U , (16.2.7)

then we define
ż

Σ
f |dA| “

ż

D
f
`

pps, tq
˘

b

detGpp1s,p
1
tq |dsdt|.

Case 2. Let us explain how to deal with the general case, when the support of f is not
necessarily contained in the domain of a straightening diffeomorphism as in (16.2.7).

Fix an atlas of Σ, i.e., a collection
!

pUα,Ψαq

)

αPA

where each pUα,Ψαq is a straightening diffeomorphism of Σ at a point pα P Σ and

Σ Ă
ď

αPA

Uα.

Now choose a continuous partition of unity χ1, . . . , χN subordinated to the open cover
pUαqαPA of Σ. Thus, each χi is a compactly supported continuous function Rn Ñ R and
there exists αpiq P A such that

suppχi Ă Uαpiq. (16.2.8)

Moreover

χ1ppq ` ¨ ¨ ¨ ` χN ppq “ 1, @p P Σ.

In particular

fppq “ χ1ppqfppq ` ¨ ¨ ¨ ` χN ppqfppq, @p P Σ.
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Due to the inclusions (16.2.8), each of the functions χif satisfies the support condition
(16.2.7). We define

ż

Σ
f |dA| :“

N
ÿ

i“1

ż

Σ
χif |dA| ,

where each of the integrals in the right-hand side are defined as in Case 1.

Clearly, the definition used in Case 2 depends on several choices.

‚ A choice of atlas, i.e., a collection
␣

pUα,Ψαq; α P A
(

of local charts covering
Σ.

‚ A choice of a partition of unity subordinated to the open cover pUαqαPA of Σ.

One can show that the end result is independent of these choices. We omit the proof
of this fact. This type of integral over a surface is traditionally known as surface integral
of the first kind.

The above definition of the integral of a continuous function over a compact surface
is not very useful for concrete computations. In concrete situations surfaces are quasi-
parametrized.

Definition 16.2.12. Suppose that Σ Ă Rn is a compact C1-surface with or without
boundary. A quasi-parametrization of Σ is an injective C1-immersion Φ : D Ñ Rn, where
D Ă R2 is a bounded domain, such that ΦpDq almost covers Σ, i.e., ΦpDq Ă Σ and
ΣzΦpDq is a finite union of compact C1-curves with or without boundary. [\

The next result extends Theorem 15.3.5 to “curved” situations.

Theorem 16.2.13. Let n P N and suppose that Σ Ă Rn is a compact surface, with or
without boundary. Suppose that

Φ : D Ñ Rn, ps, tq ÞÑ pps, tq :“ Φps, tq P Rn

is quasi-parametrization of Σ. Then, for any continuous function f : ΣÑ R we have
ż

Σ
fppq |dAppq| “

ż

D
f
`

pps, tq
˘

b

detGpp1s,p
1
tq |dsdt|. [\

Example 16.2.14. Consider the unit sphere

S :“
␣

px, y, zq P R3; x2 ` y2 ` z2 “ 1
(

.

In spherical coordinates pρ, φ, θq this sphere is described by the equation ρ “ 1.

The spherical coordinates define an injective immersion

p0, πq ˆ p0, 2πq Q pφ, θq ÞÑ ppφ, θq “ psinφ cos θ, sinφ sin θ, cosφq
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that almost covers S: its image is the complement in the sphere of the “meridian” obtained
by intersecting the sphere with the half-plane

y “ 0, x ě 0.

Thus this map almost covers S. Note that

p1φ “ pcosφ cos θ, cosφ sin θ,´ sinφq, p1θ “ p´ sinφ sin θ, sinφ cos θ, 0q.

Then

xp1φ,p
1
φy “ pcosφ cos θq2 ` pcosφ sin θq2 ` sin2 φ “ 1,

xp1φ,p
1
θy “ 0, xp1θ,p

1
θy “ psinφ sin θq2 ` psinφ cos θq2 “ sin2 φ,

so that
b

detGpp1φ,p
1
θq “ sinφ.

This shows that, in spherical coordinates, the area element of the sphere is

|dAppq| “ sinφ|dφdθ| .

If f : S Ñ R is a continuous function, then
ż

S
fppq |dAppq| “

ż

0ďθď,2π,
0ďφďπ

fpφ, θq sinφ |dφdθ|.

In particular

areapSq “

ż

0ďθď2π,
0ďφďπ

sinφ |dφdθ| “

ˆ
ż 2π

0
dθ

˙

loooomoooon

“2π

ˆ
ż π

0
sinφdφ

˙

looooooomooooooon

“2

“ 4π. [\

Example 16.2.15. Consider again the unit sphere

S :“
␣

px, y, zq P R3; x2 ` y2 ` z2 “ 1
(

.

Fix a real number c P p0, 1q and consider the polar cap

Sc :“
␣

px, y, zq P S; z ě c
(

.

We want to compute the area of this surface with boundary. This time we will use
cylindrical coordinates pr, θ, zq. In cylindrical coordinates the sphere is described by the
equation

r2 ` z2 “ 1.

In the northern hemisphere z ą 0 we have

z “
a

1´ r2 “
a

1´ x2 ´ y2.

Along the polar cap we have z ě c so
a

1´ r2 ě cñ 1´ r2 ě c2 ñ r2 ď 1´ c2 ñ s ď
a

1´ c2.



16.2. Integration over surfaces 623

Thus the polar cap admits the quasi-parametrization

p “

»

–

x
y
z

fi

fl “

»

–

r cos θ
r sin θ
?
1´ r2

fi

fl , 0 ď r ď
a

1´ c2, θ P r0, 2πs.

Then

p1r “

»

–

cos θ
sin θ
´ r?

1´r2

fi

fl , p1θ “

»

–

´r sin θ
r cos θ

0

fi

fl ,

xp1r,p
1
ry “ 1`

r2

1´ r2
“

1

1´ r2
, xp1θ,p

1
θy “ r2, xp1r,p

1
θy “ 0

detGpp1r,p
1
θy “ xp

1
r,p

1
ry ¨ xp

1
θ,p

1
θy “

r2

1´ r2
,

Then, in polar coordinates pr, θq the area on the unit sphere is given by

|dA| “
r

?
1´ r2

|drdθ|,

and we deduce

areapScq “

ż

0ďrď
?
1´c2

θPr0,2πs

r
?
1´ r2

drdθ

“ 2π

ż

?
1´c2

0

r
?
1´ r2

dr “ ´2π

ż

?
1´c2

0

dp1´ r2q

2
?
1´ r2

“ ´2π

ˆ

a

1´ r2
ˇ

ˇ

ˇ

r“
?
1´c2

r“0

˙

“ 2πp1´ cq. [\

Example 16.2.16. Suppose that g : ra, bs Ñ p0,8q is a C1-function. We denote by
Sg Ă R3 the surface obtained by rotating the graph of g about the x-axis. Using polar
coordinates in the py, zq-plane

y “ r cos θ, z “ r sin θ

we can describe Sg via the equation r “ gpxq. The injective immersion

p0, 2πq ˆ pa, bq Q pθ, xq ÞÑ ppθ, xq “
`

x, gpxq cos θ, gpxq sin θ
˘

P R3

almost covers Sg. We have

p1θ “
`

0,´gpxq sin θ, gpxq cos θ
˘

, p1x “
`

1, g1pxq cos θ, g1pxq sin θ
˘

xp1θ,p
1
θy “ gpxq2, xp1θ,p

1
xy “ 0,

xp1x,p
1
xy “ 1` |g1pxq|2,

detGpp1θ,p
1
xq “ gpxq2

`

1` |g1pxq|2
˘

so

|dAppq| “ gpxq
a

1` |g1pxq|2 |dxdθ|.
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In particular

areapSgq “

ż

0ďθď2π,
aďxďb

gpxq
a

1` |g1pxq|2 |dxdθ “

ż 2π

0
dθ

ż b

a
gpxq

a

1` |g1pxq|2dx

“ 2π

ż b

a
gpxq

a

1` |g1pxq|2dx.

This is in perfect agreement with the equality (9.8.4) obtained by alternate means.

For example, if gpxq “ R ą 0, @x P ra, bs, then Sg is the cylinder

CR :“
␣

px, y, zq P R3; y2 ` z2 “ R2, x P ra, bs
(

.

Thus
ż

CR

fpx, y, zq|dA|q “

ż

aďxďb
0ďθď2π

f
`

x,R cos θ,R sin θ
˘

|dxdθ|. [\

Example 16.2.17. Consider the hypersurface in R3 given by the equation

x2 ` y2 “ 2x.

Note that we can rewrite this as

x2 ´ 2x` 1` y2 “ 1ðñpx´ 1q2 ` y2 “ 1

showing that this is a cylinder with radius 1 and vertical axis passing through the point
p1, 0, 0q. We want to compute the area of the portion Σ of this cylinder that lies inside
the sphere

x2 ` y2 ` z2 “ 4.

We observe first that Σ is symmetric with respect to the plane px, yq. We set

Σ` “
␣

px, y, zq P Σ; z ě 0
(

Σ´ “
␣

px, y, zq P Σ; z ď 0
(

.

Due to the above symmetry of Σ we have

areapΣ`q “ areapΣ´q “
1

2
areapΣq.

Using polar coordinates about p1, 0q we obtain the quasiparametrization of Σ`

x “ 1` cos θ, y “ sin θ, z “ z,

where

θ P p0, 2πq, 0 ă z ă
a

4´ x2 ´ y2 “
?
4´ 2x “

?
2´ 2 cos θ “ 2| sin θ|.

We have
p1θ “ p´ sin θ, cos θ, 0q, p1z “ p0, 0, 1q,

,

detGpp1θ,p
1
zq “ 0, areapΣ`q “

ż 2π

0
| sin θ| dθ “ 4.

Hence areapΣq “ 8. [\
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Figure 16.22. Intersecting a cylinder with a sphere.

16.2.4. Orientable surfaces in R3. Suppose that Σ Ă R3 is a surface in R3. Roughly
speaking a surface is orientable if it has two sides. For example, the xy-plane in R3 is
orientable: it has one side facing the positive part of the z-axis, and one side facing the
negative part of the z-axis. Not all surfaces are two-sided. The most famous and arguably
the most important example is the Möbius strip (or band) depicted in Figure 16.23. It
can be described by the parametrization

x “
`

3` r cos pt{2q
˘

cos ptq ,
y “

`

3` r cos pt{2q
˘

sin ptq ,
z “ r sin pt{2q ,

´ 1 ă r ă 1, 0 ď t ď 2π.

Definition 16.2.18. Let Σ Ă R3 be a surface in R3, with or without boundary. An
orientation on Σ is a choice of a continuous, unit-normal vector field along Σ, i.e., a
continuous map ν : ΣÑ R3 satisfying the following conditions

(i) }νppq} “ 1, @p P Σ.

(ii) νppq K TpΣ, @p P Σ
˝.3

The surface Σ is called orientable if it admits an orientation. An oriented surface is
a pair pΣ,νq consisting of a surface Σ Ă R3 and an orientation ν on Σ. [\

Intuitively, the unit-normal vector field defining an orientation points towards one side
of the surface.

3We recall that Σ0 denotes the interior of Σ.
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Figure 16.23. The Möbius strip (band) is the prototypical example of non-orientable surface.

Example 16.2.19. Suppose that f : R3 Ñ R is a C1-function. We denote by Z its zero
set,

Z “
␣

p P R3; fppq “ 0
(

.

Suppose that

∇fppq ‰ 0, @p P Z.

The implicit function theorem shows that Z is a surface in R3. It is orientable because
the vector field

ν : Z Ñ R3, νppq “
1

}∇fppq}
∇fppq,

is an orientation on Z. [\

Example 16.2.20. Suppose that U Ă R3 is a bounded domain with C1-boundary. Then
its boundary is orientable. The induced orientation of the boundary is that defined by the
unit normal vector field that points towards the exterior of U . We will use the notation
B`U when referring to the boundary of U equipped with this induced orientation. [\

Important orientation convention. Suppose that Σ Ă R3 is a compact C1-surface with
nonempty boundary BΣ. Fix an orientation on Σ described by the normal unit vector field
ν : Σ Ñ R3. Then we can equip the boundary with an orientation as follows: a person
traveling on BΣ according to this orientation while the toe-to-head direction is given by ν
will notice the surface Σ to her left-hand side; see Figure 16.24. This orientation of BΣ is
called the orientation induced by the orientation of Σ.
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S

Figure 16.24. An orientation on a surface induces in a natural way an orientation on its boundary.

Remark 16.2.21. Observe that if D Ă R2 is a bounded C1-domain, then it is also a
surface with boundary. The constant unit vector field k along D defines an orientation on
D which in turn induces an orientation on the boundary BD. This orientation coincides
with the induced orientation as described at page 604. [\

16.2.5. The flux of a vector field through an oriented surface in R3.

Definition 16.2.22 (Flux a vector field). Suppose that Σ Ă R3 is compact surface (with
or without boundary) and ν is an orientation on Σ. Suppose that F : Σ Ñ R3 is a
continuous vector field along Σ. The flux of F in the direction defined by the orientation
is the scalar

FluxpF ,Σ,νq :“

ż

Σ
xF ppq,νppq y |dAppq|. [\

Remark 16.2.23 (How one computes the flux of a vector field trough an oriented surface).
Suppose Σ Ă R3 is a compact surface (with or without boundary), ν is an orientation on
Σ and F is a continuous vector field along Σ.

Σ Q p “ px, y, zq ÞÑ F ppq “ P px, y, zqi`Qpx, y, zqj `Rpx, y, zqk “

»

–

P px, y, zq
Qpx, y, zq
Rpx, y, zq

fi

fl .

(16.2.9)
To compute the flux FluxpF ,Σ,νq one typically proceeds as follows.

Step 1. Parametrizing. Fix a quasi-parametrization of Σ, Φ : D Ñ R3, D bounded
open domain of R2,

D Q ps, tq ÞÑ Φps, tq “ pps, tq “

»

–

xps, tq
yps, tq
zps, tq

fi

fl . (16.2.10)
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Step 2. Understanding the orientation. The vectors p1s, p
1
t are linearly independent

and tangent to Σ. Thus p1s ˆ p
1
t is perpendicular to the tangent space of Σ at pps, tq. In

particular, exactly one of the vectors p1s ˆ p
1
t or p

1
t ˆ p

1
s “ ´p

1
s ˆ p

1
t points in the same

direction as the normal ν
`

pps, tq
˘

defining the orientation. Find ϵps, tq P t˘1u such that
ϵps, tqpp1s ˆ p

1
tq and ν point in the same direction, i.e.,

ϵps, tq “

#

1,
@

p1s ˆ p
1
t,ν

D

ą 0,

´1,
@

p1s ˆ p
1
t,ν

D

ă 0.

Note that

ϵps, tq “ ´ϵpt, sq .

Step 3. Integrating. We have

ν “
ϵps, tq

}p1s ˆ p
1
t}
p1s ˆ p

1
t.

On the other hand (see Exercise 16.8)

|dA| “
›

›p1s ˆ p
1
t

›

› |dsdt|,

xF ,νy |dA| “ ϵps, tqxF ,p1s ˆ p
1
ty |dsdt| .

Observe that

xF ,p1s ˆ p
1
ty “ det

»

–

P x1s x1t
Q y1s y1t
R z1s z1t

fi

fl .

Then

FluxpF ,Σ,νq “

ż

D
ϵps, tqdet

»

–

P x1s x1t
Q y1s y1t
R z1s z1t

fi

fl |dsdt| (16.2.11)

or, equivalently

FluxpF ,Σ,νq “

ż

D
ϵpt, sqdet

»

–

P x1t x1s
Q y1t y1s
R z1t z1s

fi

fl |dsdt| . (16.2.12)

Expanding along the first column of the determinant in (16.2.11) we deduce

det

»

–

P x1s x1t
Q y1s y1t
R z1s z1t

fi

fl “ P det

„

y1s y1t
z1s z1t

ȷ

`Qdet

„

z1s z1t
x1s x1t

ȷ

`R det

„

x1s x1t
y1s y1t

ȷ

. (16.2.13)

The above steps are best remembered using the language of differential forms of degree 2
or 2-forms.

To the vector field F “ P i`Qj `Rk we associate the degree 2 differential form

ΦF :“ Pdy ^ dz `Qdz ^ dx`Rdx^ dy . (16.2.14)



16.2. Integration over surfaces 629

Above, the symbol “^” is called the exterior product or the wedge. Don’t worry about its
meaning yet. For now you only need to know that it differs from a usual product in that
it is anti-commutative, i.e., for any differential 1-forms ω and η,

ω ^ η “ ´η ^ ω, ω ^ ω “ 0

The product ω ^ η is a differential form of degree 2.

In (16.2.13) we think of x, y, z as functions depending on the variables s, t as in
(16.2.10). Then dx, dy, dz are the (total) differentials of these functions as defined in
(13.2.13). We have

dy ^ dz “ py1sds` y
1
tdtq ^ pz

1
sds` z

1
tdtq

“ y1sz
1
sds^ ds

looooomooooon

“0

`y1sz
1
t ds^ dt` y

1
tz
1
s dt^ dsloomoon

“´ds^dt

` y1tz
1
tdt^ dt

looooomooooon

“0

“
`

y1sz
1
t ´ z

1
sy
1
t

˘

ds^ dt “ det

„

y1s y1t
z1s z1t

ȷ

ds^ dt.

We can write this

det

„

y1s y1t
z1s z1t

ȷ

“
dy ^ dz

ds^ dt
. (16.2.15)

Arguing in a similar fashion we deduce from (16.2.13)

det

»

–

P x1s x1t
Q y1s y1t
R z1s z1t

fi

fl “ P
dy ^ dz

ds^ dt
`Q

dz ^ dx

ds^ dt
`R

dx^ dy

ds^ dt

so

Pdy ^ dz `Qdz ^ dz `Rdz ^ dy “ det

»

–

P x1s x1t
Q y1s y1t
R z1s z1t

fi

fl ds^ dt.

Now observe that

@

F ,ν
D

|dA| “ ϵps, tq
@

F ,p1s,p
1
t

D

|dsdt| “ det

»

–

P x1s x1t
Q y1s y1t
R z1s z1t

fi

fl ϵps, tq |dsdt|.

It is now time to give an idea of what ds^ dt is. We “define”

ds^ dt :“ ϵps, tq |dsdt| . (16.2.16)

This is not an entirely satisfying definition because it is not clear what is the nature of
|dsdt|. Intuitively, it is the area of an “infinitesimal curvilinear parallelogram” on Σ, but
the concept of “infinitesimal parallelogram” is a rather nebulous one. This will have to
do for a while. Note that (16.2.15) implies

dy ^ dz “ det

„

y1s y1t
z1s z1t

ȷ

ds^ dt “ ϵps, tqdet

„

y1s y1t
z1s z1t

ȷ

|dsdt|.

The issue of the nature of ^ aside, we deduce that
@

F ,ν
D

|dA| “ Pdy ^ dz `Qdz ^ dx`Rdx^ dy,
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For this reason we set
ż

Σ,ν
ΦF :“ FluxpF ,Σ,νq ,

where we recall that

ΦF “ Pdy ^ dz `Qdz ^ dx`Rdx^ dy.

The integral
ż

Σ,ν
Pdy ^ dz `Qdz ^ dx`Rdx^ dy

is traditionally called a surface integral of the second kind. It depends on a choice of orien-
tation specified by the unit normal vector field ν. The differential form ΦF is sometimes
referred to as the infinitesimal flux of F . [\

Example 16.2.24. Let us see how the above strategy works in a special case. Suppose
that Σ is unit sphere

Σ “
␣

px, y, zq P R3; x2 ` y2 ` z2 “ 1
(

.

We fix on Σ the orientation defined by the unit normal vector field pointing towards the
exterior of the unit ball bounded by this sphere. Let F be the vector field F “ i` j.

The spherical coordinates provide a quasi-parametrization of this sphere

pθ, φq ÞÑ ppθ, φq “

»

–

x “ sinφ cos θ
y “ sinφ sin θ
z “ cosφ,

fi

fl , θ P p0, 2πq, φ P p0, πq.

If we keep φ fixed and we let θ vary increasingly, the moving point θ ÞÑ ppθ, φq runs
West-to East along a parallel; see Figure 16.25. The vector p1θ is tangent to this parallel
and points East. If we keep θ fixed and we let φ vary increasingly, the moving point
θ ÞÑ ppθ, φq runs North-to-South along a meridian; see Figure 16.25. The vector p1φ is
tangent to this meridian and points South.

The right-hand-rule for computing cross products (see page 362) shows that p1φ ˆ p
1
θ

points towards the exterior of the sphere, i.e., in the same direction as the normal ν
defining the chosen orientation on the sphere. Thus, in this case

ϵpφ, θq “ 1 “ ´ϵpθ, φq.

We have

@

F ,p1φ ˆ p
1
θ

D

“ det

»

–

P x1φ x1θ
Q y1φ y1θ
R z1φ z1θ

fi

fl “ det

»

–

1 cosφ cos θ ´ sinφ sin θ
1 cosφ sin θ sinφ cos θ
0 ´ sinφ 0

fi

fl

“ det

„

cosφ sin θ sinφ cos θ
´ sinφ 0

ȷ

´ det

„

cosφ cos θ ´ sinφ sin θ
´ sinφ 0

ȷ

“ sin2 φ
`

cos θ ` sin θ
˘

.
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x

y

z

p

q

ρ

θ

ϕ

r

Figure 16.25. If we vary θ keeping φ fixed the point p runs along a parallel, while if
we vary φ keeping theta fixed the point p runs along a meridian.

We have
ż

Σ

@

F ,ν
D

|dA| “

ż

0ďθď2π,
0ďφďπ

sin2 φ
`

cos θ ` sin θ
˘

|dφdθ|

“

ˆ
ż π

0
sinφdφ

˙

¨

ˆ
ż 2π

0
p cos θ ` sin θ q dθ

˙

looooooooooooooomooooooooooooooon

“0

“ 0.

16.2.6. Stokes’ Formulæ. To state these formulæ we need to introduce new concepts.
Suppose that U Ă R3 is an open set and F : U Ñ R3 is a C1 vector field

F “ P i`Qj `Rk.

The curl of F is the continuous vector field curlF : U Ñ R3

curlF :“
`

ByR´ BzQ
˘

i`
`

BzP ´ BxR
˘

j `
`

BxQ´ ByP
˘

k . (16.2.17)

The right-hand side of the above equality looks intimidating, but there are cleverer ways
of describing it.

Consider the formal4 vector field

∇ :“ Bxi` Byj ` Bzk.

We then have
curlF “ ∇ˆ F , (16.2.18)

4In mathematics the term formal usually refers to objects that exist on paper and whose natures are not
important for a particular argument. In this particular case ∇ can be given a precise rigorous meaning.
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where “ˆ” denotes the cross product of two vectors in R3. Recall that it is uniquely
determined by the anti-commutativity equalities

iˆ j “ ´j ˆ i “ k, j ˆ k “ ´k ˆ j “ i, k ˆ i “ ´iˆ k “ j,

iˆ i “ j ˆ j “ k ˆ k “ 0.

Let us point out that if we use the classical interpretation of the inner product on R3 as
a “dot product”

x ¨ y :“ xx,yy, x,y P R3,

then the divergence of F can be given the more compact description

divF “ ∇ ¨ F “ x∇,F y . (16.2.19)

Theorem 16.2.25 (2D Stokes). Suppose that Σ Ă R3 is a compact C1-surface with
boundary oriented by a unit normal vector field ν : ΣÑ R3. Denote by B`Σ the boundary
of Σ equipped with the orientation induced by the orientation of Σ as described at page
626. If

F :“ P i`Qj `Rk

is a C1 vector field defined on an open set O containing Σ, then
ż

B`Σ
WF “

ż

Σ
pcurlF q ¨ ν dA “ Fluxp∇ˆ F ,Σ,νq “

ż

Σ
ΦcurlF . (16.2.20)

[\

The equality (16.2.20) is often referred to as Green’s formula

Theorem 16.2.26 (3D Stokes). Suppose that U Ă R3 is a bounded C1-domain. Let
ν : BU Ñ R3 denote the outer unit normal vector field along BU ; see Example 16.2.20. If

F :“ P i`Qj `Rk

is a C1 vector field defined on an open set O containing clU , then
ż

B`U
ΦF “ FluxpF , BU,νq “

ż

U
divF |dxdydz|. (16.2.21)

[\

Often (16.2.21) is referred to as divergence formula.

Example 16.2.27. Suppose thatD Ă R3 with a bounded C1-domain andR “ xi`yj`zk.
Denote by νout the outer unit normal vector field. Note that

divR “ 3.

The divergence formula then implies

FluxpR, BD,νoutq “

ż

D
3 |dxdydz| “ 3 volpDq. [\
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Example 16.2.28. Consider the vector field V : R3z0Ñ R3

V px, y, zq “
x

ρ3
i`

y

ρ3
j `

z

ρ3
k, ρ “

a

x2 ` y2 ` z2.

Let Brp0q the open ball of radius r centered at 0 P R3. Its boundary is the sphere Σrp0q
of radius r centered at 0. The outer unit vector field along BBrp0q is

νoutpx, y, zq “
x

r
i`

y

r
j `

z

r
k.

Thus, along BBrp0q we have ρ “ r and

@

V px, y, zq,νoutpx, y, zq
D

“
x2 ` y2 ` z2

r4
“
r2

r4
“

1

r2
.

Thus

FluxpV , BBrp0q,νouty “

ż

Σr

1

r2
dA “

1

2
areapΣrq “ 4π.

Let us compute the divergence of V . From the equality ρ2 “ x2 ` y2 ` z2 we deduce

ρ1x “
x

ρ
, ρ1y “

y

ρ
, ρ1z “

z

ρ

Bx

ˆ

x

ρ3

˙

“
1

ρ3
´ 3

x2

ρ5
, By

ˆ

y

ρ3

˙

“
1

ρ3
´ 3

y2

ρ5
, Bz

ˆ

z

ρ3

˙

“
1

ρ3
´ 3

z2

ρ5

Thus

divV “
3

ρ3
´ 3

x2 ` y2 ` z2

ρ5
“ 0

so that
ż

Brp0q
divV |dxdydz| “ 0.

This seems to contradicts the divergence theorem. The problem with this is that the
vector field V has a singularity at the origin and it is not defined there. The divergence
formula requires that the vector field be defined everywhere in the domain.

Suppose now that D is a bounded C1 domain such that 0 P D. We want to compute
FluxpV , BD,νoutq.

There exists r0 ą 0 such that Br0p0q Ă D. For any 0 ă ε ă r0 we set

Dε :“ Dz cl
`

Bεp0q
˘

.

The vector field is well defined everywhere on Dε and the divergence formula implies

FluxpV , BDε,νoutq “

ż

Dε

divV |dxdydz| “ 0.

Now observe that

BDε “ BD Y BBεp0q.

The normal vector field along BBεp0q that points towards the exterior of Dε is the normal
vector field that points towards the interior of Bεp0q. We denote it with νinpBεq. Thus

0 “ FluxpV , BDε,νoutq “ FluxpV , BD,νoutq ` FluxpV , BBε,νinpBεqq
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“ FluxpV , BD,νoutq ´ FluxpV , BBε,νoutpBεqq “ FluxpV , BD,νoutq ´ 4π

so that

FluxpV , BD,νoutq “ 4π. [\

Remark 16.2.29. Suppose that D Ă R2 is a bounded C1-domain, and

F : U Ñ R2, F “ P px, yqi`Qpx, yqj

is a C1-vector field defined on an open set U Ă R2 that contains clpDq. Then D can be
viewed as a surface with boundary in R3. If we write

F “ P px, yqi`Qpx, yqj ` 0k

we see that we can view F as a 3-dimensional C1-vector field defined on the open set
O “ U ˆ R Ă R3. The constant vector field k defines an orientation on D, and the
induced orientation on BD defined by this unit normal vector field coincides with the
orientation of BD as boundary of a planar domain. Note that

curlF “
`

Q1x ´ P
1
y

˘

k

so we deduce from (16.2.20)
ż

B`D
F ¨ p “ FluxpcurlF , D,kq “

ż

D

`

Q1x ´ P
1
y

˘

|dxdy|.

This shows that (16.1.10a) is a special case of (16.2.20). [\

16.3. Differential forms and their calculus

16.3.1. Differential forms on Euclidean spaces. So far we have encountered differ-
ential forms of degree 1

Pdx`Qdy `Rdz,

differential forms of degree 2,

Pdy ^ dz `Qdz ^ dx`Rdx^ dy,

where we recall that the operation “^” satisfies the unusual anti-commutativity conditions

dx^ dy “ ´dy ^ dx, dy ^ dz “ ´dz ^ dy, dz ^ dx “ ´dx^ dz,

dx^ dx “ dy ^ dy “ dz ^ dz “ 0.

A differential form of degree 3 or 3-form on an open set O P R3 is an expression of the
form

ρ dx^ dy ^ dz,

where ρ : OÑ R is a continuous function. Again, we avoid explaining the meaning of the
quantity dx^ dy ^ dz, but we want to point out a few oddities.

dx^ dy ^ dz “ dx^
`

dy ^ dz
˘

“ dx^
`

´ dz ^ dy
˘

“ ´
`

dx^ dz
˘

^ dy “
`

dz ^ dx
˘

^ dy “ dz ^ dx^ dy
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This is a bit surprising! The anti-commutative operation “^” becomes commutative when
2-forms are involved,

dx^ dy ^ dz “ dz ^ dx^ dy.

We still have not explained the meaning of the quantities dx^ dy, dx^ dy ^ dz etc. and
we will not do so for a while.

Definition 16.3.1. Given an open set O Ă Rn and k “ 1, . . . , n we denote by ΩkpOq the
space of differential forms of degree k on O, i.e., expressions of the form

ω “
ÿ

1ďi1ă¨¨¨ăikďn

ωi1,...,ikdx
i1 ^ ¨ ¨ ¨ ^ dxik ,

where the coefficients ωi1,...,ik are continuous functions on O. We set

Ω0pOq :“ C0pOq.

A differential form is called Cm if its coefficients are Cm-functions. We denote by ΩkpOqCm

the space of Cm-forms of degree k. [\

To simplify the exposition we introduce the following conventions.

‚ We set

rms :“ t1, . . . ,mu.

‚ We denote by rnsrms the set of maps rms Ñ rns and by Injpm,nq the set of
injections rms Ñ rns, k ÞÑ ik. We describe such an injection I using the notation
I “ pi1, . . . , imq. We denote by tIu the range of I, tIu :“ ti1, . . . , imu. We will
refer to such injections as multi-indices.

‚ We denote by Sn the group of permutations of n objects, Sn “ Injpn, nq.

‚ We denote by Inj`pm,nq the subset of increasing multi-indices I : rms Ñ rns.

‚ if σ P Sm i and I “ pi1, . . . , imq P Injpm,nq we set

Iσ “ piσp1q, . . . , iσpmqq P Injpm,nq

‚ For I P Injpm,nq we set

dx^I :“ dxi1 ^ ¨ ¨ ¨ ^ dxim .

The terms dx^I , I P Injpm,nq are called exterior monomials

Thus, any ω P ΩkpOq has the form

ω “
ÿ

IPInj`pk,nq

ωIdx
^I , ωI P C

0pOq. (16.3.1)

The space ΩkpOq is a vector space. The addition is defined by
˜

ÿ

I

αIdx
^I

¸

`

˜

ÿ

I

βIdx
^I

¸

“
ÿ

I

pαI ` βIqdx
^I ,
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and the scalar multiplication is defined in a similar fashion. The elementary monomials
dxi satisfy the anti-commutativity rules

dxi ^ dxj “

#

´dxj ^ dxi, i ‰ j,

0, i “ j.
(16.3.2)

This implies that if I P Injpm,nq and σ P Sm, then

dx^Iσ “ ϵpσqdx^I , (16.3.3)

where ϵpσq P t´1, 1u is the signature or parity of the permutation σ.

We can define dx^I in the obvious way for any I P rnsrms with the understanding that
dx^I “ 0 if I is not an injection. For example if I “ p2, 3, 2q then

dx^I “ dx2 ^ dx3 ^ dx2 “ ´dx2 ^ dx2 ^ dx3 “ 0.

For I P rnsrks and J P rnsrℓs we define

I ˚ J :“ pi1, . . . , ik, j1, . . . , jℓq. P rns
rk`ℓs.

Then
dx^I ^ dx^J “ dx^I˚J .

This allows us to define a product

^ : ΩkpOq ˆ ΩℓpOq Ñ Ωk`ℓpOq, k ` ℓ ď n,
¨

˝

ÿ

IPInj`pk,nq

αIdx
^I

˛

‚^

¨

˝

ÿ

JPInj`pℓ,nq

βJdx
^J

˛

‚

:“
ÿ

IPInj`pk,nq,
JPInj`pℓ,nq

αIβJdx
^I ^ dx^J “

ÿ

IPInj`pk,nq,
JPInj`pℓ,nq

αIβJdx
^I˚J .

As we know, the 1-forms can be integrated over oriented curves, and the 2-forms can
be integrated over oriented surfaces. A 3-form ρdx^dy^dz P ΩpOq can also be integrated
and we set

ż

O

ρ dx^ dy ^ dz :“

ż

O

ρ |dxdydz|,

whenever the integral on the right-hand side is absolutely convergent.

Let us point out a curious but important fact: since dx ^ dy ^ dz “ ´dx ^ dz ^ dy,
we have

ż

O

ρ dx^ dz ^ dy “ ´

ż

O

ρ dx^ dy ^ dz.

There is also a notion of derivative of a differential form called exterior derivative.

Definition 16.3.2 (Exterior derivative). Let O Ă Rn be an open subset. The exterior
derivative is the linear operator

d : ΩkpOqC1 Ñ Ωk`1pOq, k “ 0, 1, . . . , n´ 1,

defined as follows.
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‚ If k “ 0 so that Ω0pOqC1 “ C1pOq, then

df “
n
ÿ

i“1

Bxifdx
i P Ω1pOq, @f P C1pOq.

‚ If k ą 0, then for any α P ΩkpOqC1 we set

dα :“ d

¨

˝

ÿ

IPInj`pk,nq

αIdx
^I

˛

‚“
ÿ

IPInj`pk,nq

dαI ^ dx
^I .

[\

Example 16.3.3. The exterior derivative of a 0-form is a 1-form, the exterior derivative of
a 1-form is 2-form, the exterior derivative of a 2-form is a 3-form, and the exterior derivative
of a 3-form is identically zero. Here is how one computes these exterior derivatives.

The differential of a C1 form of degree zero, i.e., a C1-function f : O Ñ R is its total
differential

df “ f 1xdx` f
1
ydy ` f

1
zdz “W∇f .

If ω is a C1 differential form of degree 1 on O,

ω “ Pdx`Qdy `Rdz “WF , F “ P i`Qj `Rk,

then

dω “ dWF “ dP ^ dx` dQ^ dy ` dR^ dz

“ pP 1xdz ` P
1
ydy ` P

1
zdzq ^ dx

`pQ1xdx`Q
1
ydy `Q

1
zdzq ^ dy

`pR1xdx`R
1
ydy `R

1
zdzq ^ dz

“ P 1y dy ^ dx` P
1
z dz ^ dx`Q

1
x dx^ dy `Q

1
z dz ^ dy `R

1
x dx^ dz `R

1
y dy ^ dz

“
`

R1y ´Q
1
z

˘

dy ^ dz `
`

P 1z ´R
1
z

˘

dz ^ dx`
`

Q1x ´ P
1
y

˘

dx^ dy

(use (16.2.14) and (16.2.17) )

“ ΦcurlF .

Thus

dWF “ ΦcurlF . (16.3.4)

Suppose finally that η is a C1 form of degree 2 on O

η “ ΦF “ Pdy ^ dz `Qdz ^ dx`Rdx^ dy.

Then

dη “ dP ^ dy ^ dz ` dQ^ dz ^ dx` dR^ dx^ dy

“
`

P 1xdx` P
1
ydy ` P

1
zdz

˘

dy ^ dz

`
`

Q1xdx`Q
1
ydy `Q

1
zdz

˘

dz ^ dz

`
`

R1xdx`R
1
ydy `R

1
zdz

˘

dx^ dy

“ P 1x dx^ dy ^ dz `Q
1
y dy ^ dz ^ dx`R

1
z dz ^ dx^ dy
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“
`

P 1x `Q
1
y `R

1
z

˘

dx^ dy ^ dz “
`

divF
˘

dx^ dy ^ dz.

Thus

dΦF “
`

divF
˘

dx^ dy ^ dz . (16.3.5)

[\

In view of the computations in Example 16.3.3 we can give the following equivalent
reformulations of Theorem 16.2.25 and Theorem 16.2.26.

Theorem 16.3.4. Suppose that F is a C1-vector field defined on the open set O Ă R3.

(i) If Σ Ă O is an oriented compact surface with boundary, then
ż

B`Σ
WF “

ż

Σ
dWF .

(ii) If U Ă R3 is a bounded C1 domain such that clU Ă O, then
ż

B`U
ΦF “

ż

U
dΦF .

[\

The above result is not a low dimensional accident. In the remainder of this subsection
we hint on how this works in higher dimensions. The key to this process is a more subtle
operation on differential forms.

Suppose that O0 Ă Rn0 and O1 Ă Rn1 are open sets. We denote by x “ pxiq the
Cartesian coordinates in Rn0 and by y “ pyjq the Cartesian coordinates in Rn1 . Let

Φ : O0 Ñ O1

be a C1, map described in the above coordinates by the functions

yj “ Φj
`

x1, . . . , xn0
˘

, j “ 1, . . . , n1.

For each k ď minpn0, n1q, the pullback via Φ of a k-form on O1 (to a k-form on O0) is the
linear operator

Φ˚ : ΩkpO1q Ñ ΩkpO0q,

Φ˚η “ Φ˚

¨

˝

ÿ

IPInj`pk,n1q

ηIdy
^I

˛

‚.

:“
ÿ

IPInj`pk,n1q

ηI
`

Φpxq
˘

dΦi1pxq ^ ¨ ¨ ¨ ^ dΦikpxq, @η P ΩkpO1q.

Example 16.3.5. Consider the map Φ : R2 Ñ R2, pr, θq ÞÑ px, yq “ pr cos θ, r sin θq. Then

Φ˚pdx^ dyq “ dpr cos θq ^ dpr sin θq

“ pcos θdr ´ r sin θdθq ^ psin θdr ` r cos θdθq
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“ r cos2 θdr ^ dθ ´ r sin2 θ dθ ^ dr
loomoon

“´dr^dθ

“ pr cos2 θ ` r sin2 θqdr ^ dθ

“ rdr ^ dθ “ det JΦdr ^ dθ.

More generally, given open sets U, V Ă Rn and Φ : U Ñ V a C1-map, we have

Φ˚
`

dv1 ^ ¨ ¨ ¨ ^ dvn
˘

“ pdet JΦqdu
1 ^ . . .^ dun, (16.3.6)

where pviq are the Cartesian coordinates on V and pujq are the Cartesian coordinates on
U .

(b) Consider the map

Φ : p0,8q ˆ RÑ R2zt0u, pr, θq ÞÑ px, yq “ pr cos θ, r sin θq.

Let

ω “ ´
y

x2 ` y2
dx`

x

x2 ` y2
dy.

Then

Φ˚ω “
´r sin θ dpr cos θq ` r cos θ dpr sin θq

r2
“ dθ.

[\

Example 16.3.6. Suppose that U Ă Rn is an open set that intersects nontrivially the
subspace

Rm ˆ 0 “
␣

pu1, . . . , unq P Rn : ui “ 0, @i ą m
(

.

We set U “ U X Rm ˆ 0 and we denote by i the inclusion map

U Qu ÞÑ pu,0q P U.

For any k ď m and any α P ΩkpUq we set

α
ˇ

ˇ

U
:“ i˚α. (16.3.7)

For example if k “ m and

α “
ÿ

IPInjpm,nq

αIpuqdu
^I ,

then

α
ˇ

ˇ

U
“ α1,2,...,mpu,0qdu

1 ^ ¨ ¨ ¨ ^ um P Ω1pUq. [\

The top degree forms on Rn can be integrated. Let U Ă Rn be an open set. Denote
by ΩkcptpUq the space of degree k-forms on U with compact support, i.e., forms η such that
there exists a compact set K Ă U such that all the coefficients ηI are zero outside K.

Observe first that a degree n form ω defined on open set U in Rn has the form

ω “ ρωdVn :“ ρωdu
1 ^ ¨ ¨ ¨ ^ dun

where ρω is a continuous function on U called the density of ω, and u1, . . . , un are the
canonical Cartesian coordinates on Rn. The top degree form dVn is called the canonical
volume form on Rn.



640 16. Integration over submanifolds

Example 16.3.7. Suppose that U, V are open subset of Rn and Φ : U Ñ V is a C1. Then
the density of the top degree form ω “ Φ˚dVn P Ω

npUq is

ρωpuq “ det JΦpuq. [\

Definition 16.3.8. Let U Ă Rn be an open set. An orientation on U is a choice of
a nowhere vanishing form η of maximum degree n. Two orientations defined by the top
degree forms η0 or η1 are two be considered equivalent if there exists a continuous function
ρ : U Ñ p0,8q such that η1 “ ρη0. [\

Remark 16.3.9. Observe that if U is an open subset if Rn, then any nowhere vanishing
degree n form ω can be described explicitly as a product

ω “ ρωdVn,

where density ρω is a nowhere vanishing continuous function on U . We have a well defined
continuous function

ϵ “ ϵω : U Ñ t´1, 1u, ϵωpuq “ sign ρωpuq “
ρωpuq

|ρωpuq|
.

The orientation defined by ϵ is therefore equivalent with the orientation defined by ϵωdVn.
If U is a path connected open subset of Rn then there are precisely two nonequivalent
orientations, one defined by the form

dVn :“ dx1 ^ ¨ ¨ ¨ ^ dxn,

called the canonical orientation, and one defined by ´dVn.

If U has k connected components, then there 2k nonequivalent choices of orientation,
each determined by a continuous function5

ϵ : U Ñ t´1, 1u.

For this reason we will identify the set of possible orientations on U with the set OpUq of
continuous functions ϵ : U Ñ t´1, 1u. The orientation defined my ϵ is, by definition, the
orientation defined by the nowhere vanishing top degree form ϵpuqdVn. [\

Definition 16.3.10. An oriented open subset of Rn is a pair pU, ϵq, where U is an open
set and ϵ P OpUq is an orientation on U . [\

Any oriented open set pU, ϵq in Rn defines a linear map

ż

U,ϵ
: ΩncptpUq Ñ R,

ż

U,ϵ
ω “

ż

U,ϵ
ρωdu

1 ^ ¨ ¨ ¨ ^ dun :“

ż

U
ϵpuqρωpuq |du

1 ¨ ¨ ¨ dun|. (16.3.8)

When ϵ is identically equal to 1 we omit it from the notion.

5Such a function is constant on the connected components of U .
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Let us point out a simple but confusing fact. For any σ P Sn we have

ϵpσqρωdu
σp1q ^ ¨ ¨ ¨ ^ duσpnq “ ω,

ż

U
ρωdu

σp1q ^ ¨ ¨ ¨ ^ duσpnq “ ϵpσq

ż

U
ρωdu

1 ^ ¨ ¨ ¨ ^ dun.

Because of this it is important to keep in mind the following naive but important advice.

☛ When integrating differential forms, the order in which we
write the coordinates matters!

Definition 16.3.11. Let pUi, ϵiq, i “ 0, 1 be oriented open sets in Rn, i “ 0, 1 and
Φ : U0 Ñ U1 a C1-diffeomorphism. We say that Φ is orientation preserving if

ϵ0puqϵ1
`

Φpuq
˘

det JΦpuq ą 0, @u P U0. [\

The proof of the next result is left to you as a simple but very instructive Exercise
16.19.

Proposition 16.3.12. Suppose that pUi, ϵiq, i “ 0, 1 are oriented open sets in Rn, i “ 0, 1
and Φ : U0 Ñ U1 a C1-map.

(i) For any k “ 0, 1, . . . , n´ 1 and any α P ΩkpUqC1 we have

d
`

Φ˚α
˘

“ Φ˚
`

dα
˘

.

(ii) If Φ : pU0, ϵ0q Ñ pU1, ϵ1q is an orientation preserving diffeomorphism such that
U1 “ ΦpU0q, then for any η P ΩncptpV q we have

ż

U1,ϵ1

η “

ż

U0,ϵ0

Φ˚η. (16.3.9)

[\

We close this subsection with a technical result which will play a key role in extending
to higher dimensions the concept of integration of a differential form.

Proposition 16.3.13. Suppose that Vi Ă Rn, i “ 0, 1, are open sets such that

V i :“ Vi X Rm ˆ 0 ‰ H, i “ 0, 1.

Let Φ : V0 Ñ Rn be a C1-diffeomorphism such that (see Figure 16.26)

ΦpV0q “ V1, ΦpV 0q “ V 1.

Then the following hold.

(i) The induced map Φ : V 0 Ñ V 1 Ă Rm is a C1-diffeomorphism

(ii) If ω1 P Ω
mpV1q and ω0 :“ Φ˚ω1, then (see (16.3.7))

ω0

ˇ

ˇ

V 0
“Φ

˚
ω1

ˇ

ˇ

V 1
.
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0

0
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1

F

VV

V
V

Figure 16.26. A transition map.

Proof. Denote by y “ py1, . . . , ynq the Cartesian coordinates on V1 and by x “ px1, . . . , xnq the Cartesian
coordinates on V0. We set

x“ px1, . . . , xmq, y“ py1, . . . , ymq,

xK “ px
m`1, . . . , xnq, yK “ py

m`1, . . . , ynq.

For simplicity we set

ωi :“ ωi

ˇ

ˇ

V i
, i “ 0, 1.

The diffeomorphism Φ is described by a collection of functions

yi “ yipxq, i “ 1, . . . , n.

Since ΦpV0q “ V1 we deduce

yjpx,0q “ 0, @x P V0., j ą m.

We write this
ByK

Bx
px,0q “ 0 (16.3.10)

(i) The map Φ is described by the functions

yj “ yjpx,0q, j “ 1, . . . , k.

We write this succinctly

y“ypx,0q.

The map Φ : V0 Ñ V1 is a homeomorphism since Φ : V0 Ñ V1 is such. We have to show that if px,0q P V0, then

det J
Φ
px,0q ‰ 0

The Jacobian J
Φ
px,0q is given by the mˆm matrix

By

Bx
px,0q.

We know that det JΦpx, 0q ‰ 0 since Φ is a diffeomorphism. Now observe that JΦpx, 0q has the block decomposition

JΦpx, 0q “

»

–

By{Bx ByK{Bx

ByK{Bx ByK{BxK

fi

fl

px,0q

p16.3.10q
“

»

–

By{Bx 0

ByK{Bx ByK{BxK

fi

fl

px,0q

.

Hence

0 ‰ det JΦpx, 0q “ det
By

Bx
¨ det

ByK

BxK

ñ det J
Φ
px,0q “ det

By

Bx
‰ 0.
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(ii). Let

ω1 “
ÿ

IPInj`pm,nq

ωIpyqdy
^I .

Then

ω0 “
ÿ

IPInj`pm,nq

ωI

`

ypxq
˘

dyi1 pxq ^ ¨ ¨ ¨ ^ dyim pxq,

ω1 “ ω1,...,mpy,0qdy
1 ^ ¨ ¨ ¨ ^ dym,

ω0 “
ÿ

IPInj`pm,nq

ωI

`

ypx,0q
˘

dyi1 px,0q ^ ¨ ¨ ¨ ^ dyim px,0q.

From (16.3.10) we deduce that for j ą m we have

dyjpx,0q “
m
ÿ

i“1

Byj

Bxi
px,0qdxi “ 0.

Hence

ω0 “ ω1,2,...,m

`

ypx,0q
˘

dy1px,0q ^ ¨ ¨ ¨ ^ dympx,0q “Φ
˚
ω1.

[\

16.3.2. Orientable submanifolds. . Suppose thatX is anm-dimensional C1-submanifold
of Rn, 0 ă m ă n. Every point p P X admits (at least) a straightening diffeomorphism
pU,Ψq. For brevity we will use the acronym s.d. when referring to straightening diffeo-
morphisms. We recall what this entails (see Definition 14.5.1)

‚ U is an open neighborhood of p P Rn.
‚ Ψ : UÑ Rn is a C1-diffeomorphism with image U “ ΨpUq.

‚ Ψ
`

UXXq “U :“ U X Rm ˆ 0.

‚ We denote by Φ the induced map Ψ´1 :UÑ U

An orientation for the s.d. pU,Ψq is a choice of orientation ϵ P OpUq. An oriented s.d.
is a triplet pU,Ψ, ϵq, where pU,Ψq is a s.d. and ϵ is an orientation of that s.d..

If pU0,Ψ0q and pU1,Ψ1q are two straightening diffeomorphism near p P X, we set
V :“ U0 X U1, and we get open sets (see Figure 16.27)

Ui “ ΨipUiq Ă Rn, Vi “ ΨipVq Ă Ui, i “ 0, 1,

Ui :“ Ui X Rm ˆ 0 Ă Rm, V i “ Vi X Rm ĂUi, i “ 0, 1,

and C1-maps

Φi : V i Ñ V.

The composition

Φ10 : Ψ1 ˝Ψ
´1
0 : V0 Ñ V1

is a diffeomorphism. It induces a homeomorphism

Φ10 : V 0 Ñ V 1.

Note that

Φ10 “ Ψ1 ˝Φ0.
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Figure 16.27. The transition map determined by two overlapping straightening diffeomorphisms.

According to Proposition 16.3.13(i) the induced map Φ10 is a diffeomorphism with
image V 1. We will refer to Φ10 as the transition diffeomorphism associated to the pair of
overlapping s.d.-s pUi,Ψiq, i “ 0, 1.

Definition 16.3.14. Let X Ă Rn, 1 ď m ď n, be an m-dimensional C1-submanifold.

(i) An atlas of X is a collection of s.d.-s
␣

pUi,Ψiq
(

iPI
such that the collection

pUiqiPI is an open cover of X. For i, j P I we set Uij “ Ui X Uj .

(ii) An orientation of an atlas
␣

pUi,Ψiq
(

iPI
ofX is a choice of orientations ϵi P OpUiq,

Ui “ ΨipUi X Xq Ă Rm, i P I . The orientation is called coherent if, for any
i, j P I such that Uij ‰ H, the associated transition map

Φji : pV i, ϵiq Ñ pV j , ϵjq,

is orientation preserving. Above V i “ Ψi

`

Uij
˘

, V j “ Ψj

`

Uij
˘

.

(iii) The submanifold X is called orientable if it admits a coherently oriented atlas.

(iv) An orientation on X is a choice of a coherently oriented atlas.

(v) Two orientations on X given by the coherently oriented atlases

A :“
␣

pUi,Ψi, ϵiq
(

iPI
, B :“

␣

pVj ,Ψj , ϵjq
(

jPJ

are to be considered equivalent if their union is also a coherently oriented atlas.

[\
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Example 16.3.15. Suppose that X is described by n´m equations

X :“
␣

x P Rn : F 1pxq “ ¨ ¨ ¨ “ Fn´mpxq “ 0, F 1, . . . , Fn´m P C1pRnq

such that, for

@x P X, the vectors ∇F 1pxq, . . . ,∇Fn´mpxq are linearly independent.

Suppose that A :“ pUi,Ψiq is an atlas for X. Set as usual

Ui :“ ΨipUi XXq Ă Rm, Φi :“ Ψ´1i
ˇ

ˇ

Ui
.

For simplicity we set xpνq :“Φipuq. Denote by u1, . . . , um the canonical Cartesian coor-
dinates on Ui and we set

Tkpuq “
BΦi
Bui
puq, k “ 1, . . . ,m.

The collection tT1puq, . . . , Tmpuqu is a basis of the tangent space TxpuqX. The vectors

∇F jpxpuqq are perpendicular to this space. It follows that the n ˆ n matrix Bipuq with
columns

∇F 1pxpuqq, . . . ,∇Fn´mpxpuqq, T1puq, . . . , Tmpuq
is nonsingular. We obtain an orientation ϵi on Ui given by

ϵipuq “ sign detBipuq.

One can show that the collection
␣

pUi,Ψi, ϵiq
(

is a coherently oriented atlas and thus
defines an orientation on X.

The natural proof of this fact is based on a bit more differential geometry than I can
safely assume you, the reader, may know at this point in time. There exist proofs of this
claim that use essentially only linear algebra, but the geometric meaning will be lost in
the heap computations. For this reason I have decided not to include a proof of this claim.
Instead, I encourage you to supply a proof in the special case m “ 2, n “ 3 and compare
this with the arguments in Remark 16.2.23. [\

16.3.3. Integration along oriented submanifolds. Suppose that X Ă Rn is an ori-
entable m-dimensional C1-submanifold. We denote by ΩmcptpXq the subspace of ΩmcptpRnq
consisting of compactly supported degree m forms ω such that X X suppω is a compact
subset of X. We want to associate to any orientation orX on X an integration map

ż

X,orX

: ΩmcptpXq Ñ R.

We will build this integral in stages.

Fix an orientation ϵ⃗ on X defined by a coherently oriented atlas

A “
␣

pUi,Ψi, ϵiq
(

iPI

We denote by ΩmcptpX,Aq the subspace of ΩmcptpRnq consisting of compactly supported
degree m forms ω such that
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‚ The support of ω is contained in the union

UA :“
ď

iPI

Ui.

‚ X X suppω is a compact subset of X.

We will define a canonical linear map
ż

X
“

ż

X,A
: ΩmcptpX,Aq Ñ R,

ΩmcptpX,Aq Q ω ÞÑ

ż

X,A
ω.

We achieve this in several steps.

Step 1. The form ω has small support, i.e., Di P I such that suppω X X Ă Ui X X.
Consider the map

Ui Q u ÞÑ xpuq “Φipuq P U.

Set

ωi :“Φ
˚

i ω P Ω
mpUiq.

In this case we set
ż

X,A
ω :“

ż

Ui,ϵi

ωi,

where
ş

U,ϵ is defined in (16.3.8). Suppose suppω XX Ă Ui XX.

Suppose that we also have suppω XX Ă Uj XX for a different j P I . Then, we can
propose new definition of

ş

X ω
ż

X,A
ω :“

ż

Uj ,ϵj

ωj .

Set

V i “ ΨipUi X Uj XXq, V j “ ΨjpUi X Uj XXq.

Thus

suppωi Ă V i, suppωj Ă V j .

From Proposition 16.3.13 we deduce that

ωi “Φ
˚

jiωj .

Since

Φji : pV i, ϵiq Ñ pV j , ϵjq

is orientation preserving we have
ż

Ui,ϵi

ωi “

ż

V i,ϵi

ωi
p16.3.9q
“

ż

V j ,ϵj

ωj “

ż

Uj ,ϵj

ωj .

Set Xi :“ X X Ui. We have thus defined an integration map
ż

Xi

: ΩmcptpXiq Ñ R.
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This map is linear and it is independent of any other choice of local coordinates we could
choose on Xi.

Step 2. Extension to ΩmcptpX,Aq. Let ω P ΩmcptpX,Aq. Choose a continuous partition of
unity on suppω

ψ1, . . . , ψk : Rn Ñ R

subordinated to the open cover pUiqiPI . For each a “ 1, . . . , k choose ipaq P I such that
suppψa Ă Uipaq. We have

ω “
l
ÿ

a“1

ψaω.

Note that ωa “ ψaω P Ω
m
cpt

`

Xipaq

˘

. We define
ż

X,A
ω “

ÿ

a

ż

Xipaq

ψaω

A priori, this definition depends on the choice of the partition of unity. Let us show that
this is not the case.

Choose another partition of unity on suppω, ϕ1, . . . , ϕℓ, subordinated to the cover pUiqiPI . For each b “ 1, . . . , ℓ

choose jpbq P I such that suppϕb Ă Ujpbq. Note that

ωa “
ÿ

b

ϕbωa
loomoon

ωab

Since suppωab Ă Upipaq X Ujpbq we have

ż

Xipaq

ωa “
ÿ

b

ż

Xipaq

ωab “
ÿ

b

ż

Xjpbq

ωab,

so
ÿ

a

ż

Xipaq

ψaω “
ÿ

a

ż

Xipaq

ωa “
ÿ

b

ż

Xjpbq

ÿ

a

ωab

loomoon

“ϕbω

“
ÿ

b

ż

Xjpbq

ϕbω.

This proves that the definition of
ş

X,A is independent of the choices of partions of unity.

Let us observe that the above proof shows that if ω1, ω2 P ΩcptpX,Aq coincide in an
open neighborhood of X, then

ż

X,A
ω1 “

ż

X,A
ω2.

Step 3. The argument in the previous step shows that if A and B are two coherently
oriented atlases such that A Ă B, then

ΩmcptpX,Aq Ă ΩmcptpX,Bq,

and, for any ω P ΩmcptpX,Aq, we have
ż

X,A
ω “

ż

X,B
ω.
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In particular this shows that if the coherently oriented atlases A and B define equivalent
orientation, then for any ω P ΩmcptpX,Aq X ΩmcptpX,Bq we have

ż

X,A
ω “

ż

X,AYB
ω “

ż

X,B
ω.

Step 4. Using partitions of unity one can show (but we will skip the details) that for any
ω P Ωmcpt and for any coherently oriented atlas A defining an orientation orX on X there
exists a form ω̃ P ΩmcptpX,Aq such that ω “ ω̃ in an open neighborhood of X. We then set

ż

X,orX

ω :“

ż

X,A
ω̃.

Clearly the right-hand side does not depend on any particular choices of ω̃.

16.3.4. The general Stokes’ formula. We first need to introduce the concept of mani-
folds with boundary. This is a simple generalization of the concept of surface with bound-
ary introduced in Definition 16.2.2. We will skip many technical details.

Definition 16.3.16. Let k,m, n P N, n ě m ě 1. An m-dimensional Ck-submanifold
with boundary in Rn is a compact subset X Ă Rn such that, for any point p0, there exists
an open neighborhood U of p0 in Rn and a Ck-diffeomorphism Ψ : UÑ Rn such that the
image U “ ΨpUXXq is contained in the subspace Rm ˆ 0 Ă Rn and it is either

(I) an open ball in Rm centered at Ψpp0q or

(B) the point Ψpp0q lies in plane tx1 “ 0u Ă Rm and U it is the intersection of an
open ball Brpp0q with the half-plane

Hm
´ :“

␣

px1, x2, . . . , xmq P R2; x1 ď 0
(

.

The pair pU,Ψq is called a straightening diffeomorphism (abbreviated s.d.) at p0. The
pair

`

UXX,Ψ
ˇ

ˇ

UXX

˘

is called a local coordinate chart of X at p0.

In the case (B), the point p0 P X is called a boundary point of X. Otherwise p0 is
called an interior point.

The set of boundary points of X is called the boundary of X and it is denoted by BX.
The set of interior points of X is called the interior of X and it is denoted by X˝. The
submanifold with boundary is called closed if its boundary is empty, BX “ H. [\

An atlas of a manifold with boundary X is a collection of s.d.-s
␣

pUi,Ψiq
(

iPI
such

that

X Ă
ď

iPI

Ui.

An orientation of a s.d. pU,Ψq is an orientation on the interior of ΨpX X Uq. The
transition maps are defined in a similar fashion which leads as in the boundary-less case
to the concept of orientation of a manifold with boundary. Equivalently, an orientation
on a manifold with boundary is equivalent to a choice of orientation on its interior.
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There is a new phenomenon. Namely, an orientation on X induces in a natural fashion
an orientation on its boundary BX.

Suppose that A :“
␣

pUi,Ψi, ϵiq
(

iPI
is a coherently oriented atlas of X. The s.d.-s

pUi,Ψiq are of two types.

‚ interior, i.e., UX BX “ H and

‚ boundary, i.e., UX BX ‰ H.

Consider the subcollection AB :“
␣

pUa,Ψaq
(

aPAĂI
consisting of all the boundary type

s.d.-s in A. The collection AB is also an atlas for the manifold BX. For any a P A we set

Va :“ ΨapUA X BXq Ă BH
m
´ .

Note that for a P A we have

Ua :“ ΨapUa XXq “ Brpaqppaq XH
m
´ , pa P BH

m
´ .

Denote by u1, . . . , um the Cartesian coordinates on the space Rm where the half-space
Hm
´ lives. An orientation ϵa on the interior intUa is given by the top degree form

ωa :“ ϵadu
1 ^ du2 ^ ¨ ¨ ¨ ^ dum.

The boundary BHm
´ is the subspace Rm´1 with Cartesian coordinates u2, . . . , um. The

induced orientation on Va is, denoted by Bϵa is described by the top degree form

ωBa :“ ϵadu
2 ^ ¨ ¨ ¨ ^ dum.

There is a simple mnemonic device to help you remember this construction. It is called
the outer conormal first convention. Let us explain.

Note that traveling in Hm
´ in the direction of increasing u1 one eventually exits Hm

´ .
Equivalently, observe that along BHm

´ the vector field e1 “ p1, 0, . . . , 0q P Rm is an outer
pointing normal vector field. Note that

ωa “ du1 ^ ωBa,

or,

orientation interior “ outer conormal ^ orientation boundary,

whence the terminology outer conormal first.

One can show that if

A :“
␣

pUi,Ψi, ϵiq
(

iPI

is a coherently oriented atlas of the manifold with boundary X, then the collection

AB “
␣

pUa,Ψa, Bϵaq
(

aPA
, A “

␣

a P I; Ua X BX ‰ H
(

,

is a coherently oriented atlas of BX. While we will not present all the tedious details, we
want to explain the simple fact behind this. Its proof is left to you as an exercise.
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Lemma 16.3.17. Let pUi, ϵiq, i “ 0, 1, be two oriented open subsets of Rm such that
Ui X BH

m
´ ‰ H for all i “ 0, 1, If Φ : pU0, ϵ0q Ñ pU1, ϵ1q is an orientation preserving

diffeomorphism such that

Φ
`

U0 X BH
m
´

˘

Ă BHm
´ ,

then the induced map

ΦB : pU0 X BH
m
´ , Bϵ0q Ñ pU1 X BH

m
´ , Bϵ1q,

is also orientation preserving. [\

Just like in the case of submanifolds without boundary, an orientation ϵ on an m-
dimensional manifold with boundary defines an integration map

ż

X,ϵ
: ΩmpRnq Ñ R.

The submanifolds with boundary are, by our definition, compact so we no longer need to
work with compactly supported forms.

The construction follows the same four steps as in the bondary-less case so we can
safely omit de details.

At the same time, we have another oriented submanifold pBX, Bϵq. In particular, we
also have an integration map

ż

BX,Bϵ
: Ωm´1pBXq Ñ R.

Theorem 16.3.18 (General Stokes’ formula). Suppose that pX, ϵq is an m-dimensional
oriented C1-submanifold with boundary of Rn. Then for any ω P Ωm´1pRnqC1 we have

ż

BX,Bϵ
ω “

ż

X,ϵ
dω, (16.3.11)

where dω P ΩmpRnq is the exterior derivative of ω.

Proof. Fix a coherently oriented atlas

A :“
␣

pUi,Ψi, ϵiq
(

iPI

that defines the orientation ϵ. Set

UA :“
ď

iPI

Ui

Fix a compact set K such that6

X Ă intK, K Ă UA (16.3.12)

Using the results in Exercise 13.14 we can find a C1-partition of unity along K and
subordinated to the open cover pUiqiPI . Recall that this is a finite collection pχsqsPS of
compactly supported C1-functions χs : Rn Ñ R satisfying the following properties.

6Can you see why a compact set K satisfying (16.3.12) exists?
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‚ For all s P S there exists i “ ipsq P I such that suppχs Ă Uipsq.

‚
ÿ

sPS

χspxq “ 1, @x P K.

Let ω P Ωm´1pRnqC1 . For s P S set

ηs :“ χsω P Ω
m´1
cpt pR

nq,

and define

η :“
ÿ

s

ηs.

Note that on intK Ą X we have

ω “ η, dω “ dη “
ÿ

s

dηs.

so it suffices to prove (16.3.11) for η. On the other hand
ż

BX,Bϵ
η “

ÿ

s

ż

BX,Bϵ
ηs,

ż

X,ϵ
dη “

ÿ

s

ż

X,ϵ
dηs

so it suffices to prove (16.3.11) for each of the individual ηs. Thus we have to prove that
(16.3.11) holds form η P Ωm´1cpt pRnqC1 satisfying the additional propperty that there exists
an oriented s.d. pU,Ψ, ϵq such that supp η Ă U. We distingush two cases.

Interior case, i.e., U X BX “ H. In this case η is identically zero in a neighborhood of
BX so

ż

BX,Bϵ
η “ 0.

We have to prove that
ż

X,ϵ
dη “ 0.

We set U “ ΨpU XXq so that U is an open subset of Rm. Denote by Φ the inverse of Ψ
and by Φ the restriction of Φ to U. Then, according to Proposition 16.3.12(ii), we have

ż

X,ϵ
dη “

ż

U,ϵ
Φ
˚
dη.

We set

η :“Φ
˚
η.

From Proposition 16.3.12(i) we deduce that

Φ
˚
dη “ dΦ

˚
ηdη.

Thus we have to show that
ż

U,ϵ
dη“ 0,
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for any η P Ωm´1cpt pUqC1 .

Let η be such a degree pm´ 1q form. Fix a positive number R such that

U Ă CmR :“ r´R,Rsm Ă Rm.

We have

η“ η1du
2 ^ du3 ^ ¨ ¨ ¨ ^ dum ` η2du

1 ^ du3 ^ ¨ ¨ ¨ ^ dum

` ¨ ¨ ¨ ` ηmdu
1 ^ du2 ^ ¨ ¨ ¨ ^ dum´1.

This can be written in a more compact form as

η“
m
ÿ

k“1

ηkdu
1 ^ ¨ ¨ ¨ ^yduk ^ ¨ ¨ ¨ ^ dum, (16.3.13)

where a hat p indicates a missing entry. We deduce

dη“

ˆ

Bη1
Bu1

´
Bη2
Bu2

` ¨ ¨ ¨ ` p´1qm´1
Bηm
Bum

˙

du1 ^ du2 ^ ¨ ¨ ¨ ^ dum

“

˜

m
ÿ

k“1

p´1qk´1
Bηk
Buk

¸

du1 ^ du2 ^ ¨ ¨ ¨ ^ dum.

(16.3.14)

Then
ż

U,ϵ
dη“

m
ÿ

k“1

p´1qk´1ϵ

ż

U

Bηk
Buk

|du1 ¨ ¨ ¨ dum|.

We will prove that
ż

U

Bηk
Buk

|du1 ¨ ¨ ¨ dum| “ 0, @k “ 1, . . . ,m.

For simplicity we discuss only the case k “ 1. The other cases are completely similar. We
have

ż

U

Bη1
Bu1

|du1 ¨ ¨ ¨ dum| “

ż

Cm
R

Bη1
Bu1

|du1 ¨ ¨ ¨ dum|

(use Fubini)

“

ż

Cm´1
R

ˆ
ż R

´R

Bη1
Bx1

|dx1|

˙

|du2 ¨ ¨ ¨ dum|

“

ż

Cm´1
R

`

η1pR, u
2, . . . , umq

looooooooomooooooooon

“0

´ η1p´R, u
2, . . . , umq

looooooooooomooooooooooon

“0

˘

“ 0.

Boundary case, i.e., UX BX “ H. In this case U :“ ΨpUXXq is a half-ball (see Figure
16.28)

U “Hm
´ XBrpp0q, p0 P BH

m
´

We can find L ą 0 such that U is contained in the closed box

B´ “ r´L,Lsm XHm
´ Ă Rm.
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-
B

1
u

U

Figure 16.28. Integrating over a half-ball.

We define

B0 :“ r´L,Lsm X BHm
´ “ t0u ˆ r´L,Ls

m´1.

. Arguing as in the previous case we deduce that
ż

X,ϵ
dη “

ż

U,ϵ
dη“

ż

B´,ϵ
dη,

ż

BX,Bϵ
η “

ż

B0,Bϵ
η.

If

η“
m
ÿ

k“1

ηkdu
1 ^ ¨ ¨ ¨ ^yduk ^ ¨ ¨ ¨ ^ dum,

then
ż

B´,ϵ
dη“

m
ÿ

k“1

p´1qk´1ϵ

ż

B´

Bηk
Buk

|du1 ¨ ¨ ¨ dum|,

and
ż

B0,Bϵ
“ ϵ

ż

B0

η1p0, u
2, . . . , umq |du2 ¨ ¨ ¨ dum|.

We will show that
ż

B´

Bη1
Bu1

|du1 ¨ ¨ ¨ dum| “

ż

B0

η1p0, u
2, . . . , umq |du2 ¨ ¨ ¨ dum|, (16.3.15a)

ż

B´

Bηk
Buk

|du1 ¨ ¨ ¨ dum| “ 0, @k “ 2, . . . ,m. (16.3.15b)
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To prove (16.3.15a) we use Fubini’s theorem and we deduce
ż

B´

Bη1
Bu1

|du1 ¨ ¨ ¨ dum| “

ż

|uk|ďL, 2ďkďm

ˆ
ż 0

´L

Bη1
Bu1

du1
˙

|du2 ¨ ¨ ¨ dum|

(use the Fundamental Theorem of Calculus)

“

ż

|uk|ďL, 2ďkďm

¨

˝ η1p0, u
2, . . . , umq ´ η1p´L, u

2, . . . , umq
looooooooooomooooooooooon

“0

˛

‚ |du2 ¨ ¨ ¨ dum|

ż

B0

η1p0, u
2, . . . , umq |du2 ¨ ¨ ¨ dum|

The equality (16.3.15b) also follows from Fubini’s theorem. We prove only the case k “ m
which involves simpler notations.

ż

B´

Bηm
Bum

|du1 ¨ ¨ ¨ dum|

“

ż

r´L,0sˆr´L,Lsm´2

ˆ
ż L

´L

Bηm
Bum

`

u1, . . . , um´1, um
˘

dum
˙

|du1du2 ¨ ¨ ¨ dum´1|

(use the Fundamental Theorem of Calculus)

“

ż

r´L,0sˆr´L,Lsm´2

ˆ

ηmpu
1, . . . , um´1, umq

ˇ

ˇ

ˇ

um“L

um“´L

˙

loooooooooooooooooooomoooooooooooooooooooon

“0

|du1du2 ¨ ¨ ¨ dum´1| “ 0.

[\

16.3.5. What are these differential forms anyway. In lieu of epilogue to this chap-
ter, I will try to crack open the door to another world to which the considerations in this
last section properly belong.

We’ve developed a theory of integration of objects whose nature was left nebulous.
What are these differential forms?

Suppose that U is an open subset of Rn, n ě 2. The equality (13.2.12) of Example
13.2.11 explained that the terms dxi should be viewed as linear forms. A linear form, as
you know, is a “beast” that, when fed a vector it spits out a number. If you feed a vector
v to the “beast” dxi, it will return the number vi, the i-th coordinate of the vector v.

The exterior monomials dxi^dxj , dxi^dxj^dxk etc. are more sophisticated “beasts”:
they are multilinear maps with certain additional properties. To explain their nature we
consider a slightly more complicated situation.

Let m P N and consider m linear functionals

α1, . . . , αm Ñ R.
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Their exterior product is m-linear map

α1 ^ ¨ ¨ ¨ ^ αm : Rn ˆ ¨ ¨ ¨ ˆ Rn
looooooomooooooon

m

Ñ R,

α1 ^ ¨ ¨ ¨ ^ αmpv1, . . . ,vmq :“ det

»

—

—

—

—

—

—

—

—

—

–

α1pv1q α1pv2q ¨ ¨ ¨ α1pvmq

α2pv1q α2pv2q ¨ ¨ ¨ α2pvmq

...
...

. . .
...

αmpv1q αmpv2q ¨ ¨ ¨ αmpvmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (16.3.16)

Note that the m-linear form α1 ^ ¨ ¨ ¨ ^ αm satisfies the skew-symmetry conditions

ασp1q ^ ¨ ¨ ¨ ^ ασpmq “ ϵpσqα1 ^ ¨ ¨ ¨ ^ αm,

α1 ^ ¨ ¨ ¨ ^ αmpvσp1q, . . . ,vσpmqq “ ϵpσqα1 ^ ¨ ¨ ¨ ^ αmpv1, . . . ,vmq,

for any permutation σ P Sm. Let us observe that if m ą n, then any collection of m
vectors v1, . . . ,vm P Rn is linearly dependent and we deduce from (16.3.16) that

α1 ^ ¨ ¨ ¨ ^ αm “ 0,

for any linear forms α1, . . . , αm : Rn Ñ R.
When m “ n and αi “ 9xi, then

dx1 ^ ¨ ¨ ¨ ^ dxnpv1, . . . ,vnq “ det
“

vij
‰

1ďi,jďn

p15.3.5q
“ ˘ vol

`

P pv1, . . . ,vnq
˘

,

where we recall that P pv1, . . . ,vnq denotes the parallelepiped spanned by v1, . . . ,vn.

More generally, if m ă n, then for any vectors v1, . . . ,vm, the number

dx1 ^ ¨ ¨ ¨ ^ dxmpv1, . . . ,vmq

is equal, up to a sign, with the volume of the parallelepiped spanned by the orthogonal pro-
jections of the vectors v1, . . . ,vm onto the m-dimensional subspace of Rn with coordinates
x1, . . . , xm.

In general, and exterior form of degree m is an m-linear map

ω : Rn ˆ ¨ ¨ ¨ ˆ Rn
looooooomooooooon

m

Ñ R,

satisfying the skew-symmetry condition

ωpvσp1q, . . . ,vσpmqq “ ϵpσqωpv1, . . . ,vmq, @v1, . . . ,vm P Rn, σ P Sm. (16.3.17)

Such a form can be thought of as “gauging m-dimensional” parallelepipeds. This gauging
is of a special kind: its output depends on the order in which we “feed” the vectors
spanning the parallelepiped according to (16.3.17) .

Take for the example the case m “ 2. Think of a parallelogram as having two faces:
a white face and a black face. When a 2-form gauges a white-face-up parallelogram it
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outputs a number, but when it gauges the same parallelogram but with its black face up,
it outputs the opposite number.

We can use the canonical basis e1, . . . , en to express an m-form ω as a linear combi-
nation (compare with (16.3.1))

ω “
ÿ

IPInj`pm,nq

ωIdx
^I ,

where, for any I “ pi1, . . . , imq P Inj
`pm,nq, we have

dx^I “ dxi1 ^ ¨ ¨ ¨ ^ dxim , ωI :“ ωpei1 , . . . , eimq P R.
A differential form of degree m on an open set U Ă Rm is a continuous assignment of an
m-form ωx to each point x P U . More precisely this means that

ωx “
ÿ

IPInj`pm,nq

ωIpxqdx
^I ,

where ωIpxq depends continuously on x.

Intuitively we can think that we have a continuous family of “gauges” ωx, where ωx

is to be used to gauge parallelepipeds originating at x.

In the case m “ 2 such a differential form gauges parallelograms. In particular, given a
surface S P Rn, such a form gauges infinitesimal parallelograms on S, i.e., parallelograms
spanned by a pair of vectors tangent to the same point x P S. We use the form ωx to
gauge such a parallelogram. An orientation on S is essentially a rule we use to determine
the order in which we feed infinitesimal parallelograms to the differential form because we
know that the output is order sensitive.

The above intuitive interpretation of differential forms gives a pretty accurate idea
on the nature of differential forms. Unfortunately, it is essentially useless if we want to
perform meaningful mathematical computations with them.

At this point a deeper look at the concept of differential form is needed and this
requires substantial algebraic and analytic considerations. However at this point you
have all knowledge you need to digest the classic booklet [29] of M. Spivak on this topic.
Although it is more than half a century old as I write these lines, it remains very actual
and a gem of mathematical writing. However don’t let the tiny size of [29] fool you: it
has a high density of subtle ideas per square inch of page.

The good news is that you should be very familiar with the first half of [29]. The
second half, on integration of differential forms and various Stokes’ formulæ, is a rather
steep, but very rewarding intellectual climb.
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16.4. Exercises

Exercise 16.1. Denote by C the line segment in the plane R2 that connects the points
p0 :“ p3, 0q and p1 :“ p0, 4q.

(i) Compute the integrals
ż

C
ds,

ż

C
fppqds, fpx, yq “ x2 ` y2.

(ii) Compute the integral of the angular form

WΘ “
´y

x2 ` y2
dx`

x

x2 ` y2
dy

along the segment C equipped with the orientation corresponding to the travel
from p1 to p0.

[\

Exercise 16.2. Denote by S the open square p´1, 1q ˆ p´1, 1q in R2. Suppose that
P,Q : S Ñ R are continuous functions. We set

ω “ Pdx`Qdy.

Prove that the following statements are equivalent.

(i) There exists f P C1pSq such that df “ ω, i.e.,

P “
Bf

Bx
, Q “

Bf

By
.

(ii) For any piecewise C1 path γ : ra, bs Ñ S such that γpaq “ γpbq we have
ż

γ
ω “ 0.

(iii) For any piecewise C1 paths γi : rai, bis Ñ S, i “ 1, 2, such that

γ1pa1q “ γ2pa2q, γ1pb1q “ γ2pb2q

we have
ż

γ1

ω “

ż

γ2

ω.

Hint. (iii) ñ (i) Define

fpx, yq “

ż x

0
P ps, 0qds`

ż y

0
Qpx, tqdt

and use (iii) prove that

fpx` h, yq “ fpx, yq `

ż x`h

x
P ps, yqds, fpx, y ` kq “ fpx, yq `

ż y`k

y
Qpx, tqdt,

and Bxf “ P , Byf “ Q. [\
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Exercise 16.3. Let U Ă Rn be an open set and suppose that f, g : U Ñ R are C2-
functions. Prove that

∆g “ div∇g, divpf∇gq “ x∇f,∇gy ` f∆g,

where ∆g is the Laplacian of g,

∆g :“
n
ÿ

k“1

B2xkg. [\

Exercise 16.4. Let D Ă R2 be a bounded domain with C1-boundary, U an open set
containing clD and f, g : U Ñ R are C2 functions. Denote by ν the outer normal vector
field along BD. Prove that

ż

D
f∆g |dxdy| “

ż

BD
fppq

Bg

Bν
ppq|ds| ´

ż

D
x∇f,∇gy |dxdy|,

ż

BD

Bg

Bν
|ds| “

ż

D
∆g |dxdy|,

ż

D
f∆g|dxdy| “

ż

BD

ˆ

fppq
Bg

Bν
ppq ´ gppq

Bf

Bν
ppq

˙

|ds| `

ż

D
g∆f |dxdy|,

where we recall that, for p P BD, we have

Bg

Bν
ppq :“ x∇gppq,νppqy.

Hint. Use Exercise 16.3 and the flux-divergence formula (16.1.11). [\

Exercise 16.5. Consider the function K : R2 Ñ R,

Kpx, yq “

#

1
2π ln r, px, yq ‰ p0, 0q,

0, px, yq “ p0, 0q, r “
a

x2 ` y2.

Suppose that f : R2 Ñ R is a C2-function with compact support.

(i) Show that ∆K “ 0 on R2zt0u.

(ii) Show that the integral K∆f is absolutely integrable on R2zt0u

(iii) Show that
ż

R2zt0u
K∆f |dxdy| “ fp0q.

Hint. (ii) Have a look back at Exercise 15.31. (iii) Fix R ą 0 sufficiently large so that the support of f is contained

in the disk DR “ tr ă Ru. For ε ą 0 small we consider the disk Dε “ tr ă εu and the annulus Aε,R :“ tε ă r ă Ru.

Use Exercise 16.4 to show that
ż

Aε,R

K∆f |dxdy| “

ż

BDε

ˆ

f
BK

Bν
´K

Bf

Bν

˙

|ds|,

and then prove that

lim
εŒ0

ż

BDε

K
Bf

Bν
ds “ 0, lim

εŒ0

ż

BDε

f
BK

Bν
|ds| “ fp0q.

[\
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Exercise 16.6. Suppose that β, τ : ra, bs are C1-functions such that

βpxq ă τpxq, @x P pa, bq.

Consider the simple type domain

Dpβ, τq “
␣

px, yq P R2; x P pa, bq, βpxq ă y ă τpxq
(

(16.4.1)

Prove Stokes’ formula (16.1.14) when the piecewise C1 domain is U “ Dpβ, τq.
Hint. To compute

ş

D P 1
y |dxdy| use Fubini’s Theorem 15.2.3. To compute

ş

D Q1
x|dxdy| use the change of variables

x “ u, y “ βpuq ` pτpuq ´ βpuqqv, u P ra, bs, v P r0, 1s,

and the chain rule

B

Bx
“
Bu

Bx

B

Bu
`
Bv

Bx

B

Bv
“ Bu ´

β1puq `
`

τ 1puq ´ β1puq
˘

v

τpuq ´ βpuq
Bv .

(You have to justify the second equality above.) We set

fpu, vq :“ Q
`

xpu, vq, ypu, vq q.

Show that

ż

D

BQ

Bx
|dxdy| “

ż

aďuďb
0ďvď1

˜

Buf ´
β1puq `

`

τ 1puq ´ β1puq
˘

v

τpuq ´ βpuq
Bvf

¸

`

τpuq ´ βpuq
˘

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

“:gpu,vq

|dudv|.

On the other hand, if we write Qdy in pu, vq coordinates we get

Qdy “ fpu, vqy1
udu` fpu, vqy

1
vdv “ fpu, vq

`

β1puq ` vpτ 1puq ´ β1puqq
˘

looooooooooooooooooooooomooooooooooooooooooooooon

“:Apu,vq

du` fpu, vqτpuq
loooooomoooooon

“:Bpu,vq

dv.

Show that

gpu, vq “
BB

Bu
´
BA

Bv

and then compute
ż

aďuďb
0ďvď1

ˆ

BB

Bu
´
BA

Bv

˙

|dudv|

using Fubini. [\

Exercise 16.7. Suppose that D1, D2 Ă R2 are two bounded piecewise C1 domains that
intersect only along portions of their boundaries and BD1XBD2 is a piecewise C

1 connected
curve. Set D :“ D1 YD2.

(i) Show that D is also piecewise C1.

(ii) Assume that O Ă R2 is an open set containing the closure of D and F : OÑ R2

is a continuous vector field, F px, yq “
`

P px, yq, Qpx, yq
˘

. Show that
ż

B˚
`D

Pdx`Qdy “

ż

B˚
`D1

Pdx`Qdy `

ż

B˚
`D2

Pdx`Qdy.

(iii) Conclude that if Stokes’ formula (16.1.14) holds for D1 and D2, then it also
holds for D “ D1 YD2.

[\
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Exercise 16.8. Suppose that u,v P R3 are two linearly independent vectors. Prove that

}uˆ v} “ area
`

P pu,vq
˘

,

where the cross product “ˆ” is defined by (11.2.6) and area
`

P pu,vq
˘

is defined by
(16.2.4). [\

Exercise 16.9. Fix a, b, r, R P R, a,R ą r ą 0. Consider the map Φ : R2zt0u Ñ R3

Φpx, yq “

»

—

—

—

—

–

R
r x

R
r y

ar ` b

fi

ffi

ffi

ffi

ffi

fl

, where r “ rpx, yq “
a

x2 ` y2.

Denote by D the annulus

D “
␣

px, yq P R2; 1 ă
a

x2 ` y2 ă 2
(

.

(i) Show that Φ satisfies all the conditions (i)-(iii) in Proposition 14.5.4.

(ii) Show that the image S of Φ is a cylinder of radius R with the z-axis as symmetry
axis.

(iii) Describe the area element on S in terms of the coordinates x, y induced by Φ.

(iv) Set Σ :“ Φ
`

clpDq
˘

. Show that Σ is a convenient surface with boundary and Φ
defines a parametrization of Σ.

(v) Denote by f the restriction to Σ of the function fpx, y, zq “ z. Compute
ż

Σ
fppq |dAppq|.

[\

Exercise 16.10. Suppose that f, g : p0, 1q Ñ R are C1 functions such that fpxq ă gpxq,
@x P p0, 1q. Let U Ă R2 be the region p0, 1q ˆ r0, 1s. Construct a diffeomorphism

Φ : p0, 1q ˆ RÑ R2

such that ΦpUq is the region.

D “
␣

px, yq P R2; 0 ă x ă 1, fpxq ď y ď gpxq
(

.

Conclude that the region D is a surface with boundary in R2.

Hint. Think of vertically shearing U onto D. [\

Exercise 16.11. Suppose that S Ă Rn is a compact surface, with or without boundary.

(i) Show areapSq ă 8.

(ii) If f : S Ñ R is continuous and fppq ě 0, @p P S, then
ż

S
fppq |dAppq| ě 0.
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(iii) Prove that if L : Rn Ñ Rn is an orthogonal linear operator, i.e., LJL “ 1n, then

area
`

LpSq
˘

“ areapSq.

(iv) If f, g : S Ñ R are continuous and fppq ě gppq, @p P S, then
ż

S
fppq |dAppq| ě

ż

S
gppq |dAppq|.

(v) If f : S Ñ R is continuous, C ą 0 and |fppq| ď C, @p P S, then
ˇ

ˇ

ˇ

ˇ

ż

S
fppq |dAppq|

ˇ

ˇ

ˇ

ˇ

ď C areapSq.

[\

Exercise 16.12. For each r ą 0 we denote by Sr the sphere of radius r in R3 centered
at the origin. i.e.,

Sr :“
␣

px, y, zq P R3; x2 ` y2 ` z2 “ r2
(

.

(i) Show that areapSrq “ 4πr2.

(ii) Prove that if f : R3 Ñ R is a continuous function, then

lim
rÑ0

1

4πr2

ż

Sr

fppq |dAppq| “ fp0q.

[\

Exercise 16.13. Let S denote the unit sphere in R3

S “
␣

px, y, zq P R3; x2 ` y2 ` z2 “ 1
(

.

Denote by N the North Pole, i.e., the point on S with coordinates p0, 0, 1q. The stereo-
graphic projection is the map

F : SztNu Ñ R2 ˆ 0 “ tpx, y, zq P R3 : z “ 0
(

F ppq “ intersection of the line Np with the plane R2 ˆ 0.

(i) For p P SztNu compute the coordinates pu, vq of F ppq in terms of the coor-
dinates px, y, zq of p and conversely, compute the coordinates px, y, zq of p in
terms of the coordinates pu, vq of F ppq.

(ii) Prove that F is a homeomorphism and the inverse map Φ “ F´1 : R2 Ñ SztNu
is an immersion so Φ is a parametrization of SztNu.

(iii) Describe the area element dA on SztNu in terms of the coordinates pu, vq defined
by Φ.

[\

Exercise 16.14. Suppose that O Ă R3 is an open set, f : O Ñ R is a C2-function and
F : OÑ R3 is a C2-vector field. Compute

curl
`

∇f
˘

, div
`

∇f
˘

,



662 16. Integration over submanifolds

curl
`

curlF
˘

, div
`

curlF
˘

, ∇
`

divF
˘

. [\

Exercise 16.15. Let D Ă R3 be a bounded domain with C1-boundary, U an open set
containing clD and f, g : U Ñ R are C2 function. Denote by ν the outer normal vector
field along BD. Prove that

ż

D
f∆g |dxdydz| “

ż

BD
fppq

Bg

Bν
ppq|dA| ´

ż

D
x∇f,∇gy |dxdydz|,

ż

BD

Bg

Bν
|dA| “

ż

D
∆g |dxdydz|,

ż

D
f∆g|dxdydz| “

ż

BD

ˆ

fppq
Bg

Bν
ppq ´ gppq

Bf

Bν
ppq

˙

|dA| `

ż

D
g∆f |dxdydz|,

where we recall that, for p P BD, we have

Bg

Bν
ppq :“ x∇gppq,νppqy.

Hint. Use Exercise 16.3 and the flux-divergence formula (16.2.21). [\

Exercise 16.16. Consider the function K : R3 Ñ R,

Kpx, y, zq “

#

1
4πρ px, y, zq ‰ p0, 0, 0q,

0, px, y, zq “ p0, 0, 0q, ρ “
a

x2 ` y2 ` z2.

Suppose that f : R3 Ñ R is a C2-function with compact support.

(i) Show that ∆K “ 0 on R3zt0u.

(ii) Show that the integral K∆f is absolutely integrable on R3zt0u.

(iii) Show that
ż

R3zt0u
K∆f |dxdydz| “ ´fp0q.

Hint. (ii) Have a look back at Example 15.4.15. (iii) Fix R ą 0 sufficiently large so that the support of f is contained

in the ball BR “ tρ ă Ru. For ε ą 0 small we consider the ball Bε “ tρ ă εu and the annulus Aε,R :“ tε ă ρ ă Ru.
Use Exercise 16.15 to show that

ż

Aε,R

K∆f |dxdydz| “ ´

ż

BBε

ˆ

f
BK

Bν
´K

Bf

Bν

˙

|dA|,

and then prove that

lim
εŒ0

ż

BBε

K
Bf

Bν
|dA| “ 0, lim

εŒ0

ż

BBε

f
BK

Bν
|dA| “ fp0q.

[\

Exercise 16.17. Suppose that f : Rn Ñ R is a C1-function with compact support.
Denote by H´ the half-space

H´ :“
␣

px1, . . . , xnq P Rn; x1 ď 0
(

.

Prove that
ż

H´

Bf

Bx1
pxq|dx1 ¨ ¨ ¨ dxn| “

ż

Rn´1

fp0, x2, . . . xnq |dx2 ¨ ¨ ¨ dxn|,
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and
ż

H´

Bf

Bxk
pxq|dx1 ¨ ¨ ¨ dxn| “ 0, @k ě 2.

Hint. Use Fubini. [\

Exercise 16.18. Let m,n P N, m ď n. Consider

ω1, . . . , ωm P Ω
1pRnq,

ωi “
n
ÿ

j“1

ωijdx
j , i “ 1, . . . , n.

Prove that
ω1 ^ ¨ ¨ ¨ ^ ωm “

ÿ

JPInj`pm,nq

det (
¯
ωijk

˘

1ďj,kďm
dx^J .

In particular, if m “ n

ω1 ^ ¨ ¨ ¨ ^ ωn “
`

det
`

ωij
˘

1ďi,jďn

˘

dx1 ^ ¨ ¨ ¨ ^ dxn. [\

Exercise 16.19. Prove (16.3.6). [\

Exercise 16.20. Prove Proposition 16.3.12.

Hint. For part (i) consider first the case when α is a monomial α “ αIdv
^I , αI P C

1pV q, where I P Injpk, nq.

Start with the case I “ p1, 2, . . . , kq. [\

16.5. Exercises for extra credit

Exercise* 16.1. (a) Suppose that f : ra, bs Ñ R is a C1-function. Prove that the length
of its graph is not smaller than that of the length of the line segment that connects the
endpoints of the graph.

(b) Suppose that C Ă Rn is a compact, connected C1-curve with nonempty boundary.
Prove that its length is not smaller than that of the line segment that connects its end-
points. [\

Exercise* 16.2. Let n P N, n ě 2. Suppose that S Ă Rn is a closed C1-surface and
f : Rn Ñ R is a C1-function satisfying the following transversality condition: if p P S and
fppq “ 0, then ∇fppq M TpS. Prove that the set

␣

p P S; fppq “ 0
(

is a closed C1-curve.

Hint. Use the implicit function theorem. [\





Chapter 17

Analysis on metric
spaces

At the dawn of the twentieth century, as more and more examples appeared on the math-
ematical scene, mathematicians realized that many of the results of analysis on Rn extend
to more general situations with remarkable consequences. One important difference was
the apparently unavoidable need to deal with infinite dimensional vector spaces such as
the space of continuous functions on a nontrivial interval. When dealing with infinite
dimensions we need to pay attention to foundational issues more carefully than we have
done to date.

17.1. Metric spaces

A key concept that allowed the transition to infinite dimensions is the concept of metric
space introduced by Maurice Fréchet in 1906.

17.1.1. Definition and examples. Loosely speaking, a metric space is a set in which
there is a way of measuring how far apart are pairs of points.

Definition 17.1.1. A metric space is a pair pX, dq, where X is a set and d is a metric or
distance function on X, i.e., a function

d : X ˆX Ñ R

satisfying the following conditions.

(i) @x0, x1 P X, dpx0, x1q ě 0.

(ii) @x0, x1 P X, dpx0, x1q “ 0 if and only if x0 “ x1.

(iii) @x0, x1 P X, dpx0, x1q “ dpx1, x0q.

665
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(iv) @x0, x1, x2 P X

dpx0, x2q ď dpx0, x1q ` dpx1, x2q.

The last inequality above is commonly referred to as the triangle inequality. [\

Example 17.1.2. (a) Proposition 11.3.4 shows that the Euclidean distance

dist : Rn ˆ Rn, distpx,yq “ }x´ y} “
a

px1 ´ y1q2 ` ¨ ¨ ¨ ` pxn ´ ynq2

is a metric on Rn. In other words, pRn,distq is a metric space. It usually referred to as
the n-dimensional Euclidean metric space.

(b) Suppose that pX, dq is a metric space and S Ă X is a nonempty subset. Then dS , the
restriction of d to S ˆ S, is a metric and the metric space pS, dSq is said to be a metric
subspace of X.

(c) Suppose that pX, dXq and pY, dY q. Then the function

dXˆY : pX ˆ Y q ˆ pX ˆ Y q Ñ R,

dXˆY
`

px0, y0q, px1, y1q
˘

“ dXpx0, x1q ` dY py0, y1q

is a metric on the Cartesian product X ˆ Y . The resulting metric space pX ˆ Y, dXˆY q
is called the product of the metric spaces pX, dXq, pY, dY q. Sometimes we will denote by
dX ˆ dY this product metric. This construction extends in an obvious way to a Cartesian
product of finitely many metric spaces.

(d) Suppose that pX, dq is a metric space and c ą 0 is a positive constant. Define

d̄c : X ˆX Ñ R, d̄cpx0, x1q “ min
`

dpx0, x1q, c
˘

.

Then d̄c is also a metric on X.

(e) Suppose that X is an abstract set. Then the function

δ : X ˆX Ñ R, δpx0, x1q “

#

1, x0 ‰ x1,

0, x0 “ x1.

defines a metric on X called the discrete metric.

(f) Suppose that S is a set and n P N. Define

dH : Sn ˆ Sn Ñ r0,8q, dH
`

ps1, . . . , snq, pt1, . . . , tnq
˘

“ #
␣

k; sk ‰ tk
(

.

Thus, the distance between the n-tuples s “ ps1, . . . , snq and t “ pt1, . . . , tnq is equal to the
number of distinct entries in identical positions. Equivalently, if δS denotes the discrete
metric on S, then

dH “ δSn “ δS ˆ ¨ ¨ ¨ ˆ δS
loooooomoooooon

n

.

The metric dH is called the Hamming metric on Sn. [\
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Definition 17.1.3. A real normed space is a pair pX, }´}q where X is a real vector space
and } ´ } is a norm on X, i.e., a function

} ´ } : X Ñ R

satisfying the following conditions.

(i) @x P X, }x} ě 0.

(ii) @x P X, }x} “ 0 if and only if x “ 0.

(iii) @x P X, @t P R, }tx} “ |t| ¨ }x}.
(iv) @x, y P X, }x` y} ď }x} ` }y}.

The last inequality is usually referred to as the triangle inequality.

A complex normed space is a pair pX, } ´ }q where X is a complex vector space and
} ´ } is a norm on X, i.e., a function } ´ } : X Ñ R satisfying the conditions (i),(ii),(iv)
above and

(iii)c @x P X, @t P C, }tx} “ |t| ¨ }x}.

[\

The next result explains the close connection between normed spaces and metric
spaces. Its proof is identical to the proof of Proposition 11.3.4 so we omit it.

Proposition 17.1.4. Suppose that pX, } ´ }q is a real or complex normed space. Define

d “ d}´} : X ˆX Ñ R, dpx0, x1q “ }x0 ´ x1}.

Then d is a metric on X called the metric induced by norm } ´ }. [\

Example 17.1.5. (a) Suppose that S is a set. Denote by BpSq the vector space of
bounded functions f : S Ñ R, i.e., functions such that

DM ą 0, @s P S : |fpsq| ăM.

Define

} ´ }8 Ñ R, }f}8 “ sup
sPS

| fpsq |.

Then } ´ }8 is a norm on BpSq called the sup-norm.

(b) Suppose that K Ă Rn is a compact set. As usual, we denote by CpKq the vector
space of continuous functions K Ñ R. Any continuous function on K is bounded so
CpKq Ă BpKq. The sup-norm on BpKq induces a norm on CpKq also called sup-norm
and also denoted by } ´ }8.

(c) For p P r1,8q and n P N define

} ´ }p : Rn Ñ R, }x}p “
´

|x1|p ` ¨ ¨ ¨ ` |xn|p
¯1{p

.
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Clearly, } ´ }p satisfies the properties (i)-(iii) in the definition of norm. The triangle
inequality is Minkowski’s inequality (8.3.17).

(d) Denote by ℓ2 the space of sequences x : NÑ R, xn :“ xpnq such that
ÿ

nPN
x2n ă 8.

It becomes a normed space when equipped with the norm

} ´ } : ℓ2 Ñ R, }x} :“
´

ÿ

nPN
x2n

¯1{2
.

(e) Suppose that B is a nondegenerate closed box in Rn. For every p P r1,8q we define

} ´ }p : CpBq Ñ R, }f}p “
ˆ
ż

B
|fpxq|p |dx|

˙1{p

.

Also, we set

}f}8 “ sup
xPB

|fpxq|, @f P CpBq.

Clearly } ´ }8 is a norm. Note that

f P CpBq and }f}p “ 0ñ fpxq “ 0, @x P B.

Indeed, if fpx0q ‰ 0 for some x0 P B, then there exists a tiny closed cube C centered at
x0 such that

|fpxq| ą
1

2
|fpx0q|, @x P C XB.

Then

0 “

ż

B
|fpxq|p |dx| ě

ż

CXB
|fpxq|p |dx| ě

|fpx0q|
p

2p
volpC XBq ą 0.

Clearly } ´ }1 satisfies the triangle inequality. We want to prove that the same is true for
} ´ }p, p ą 1.

Fix p P p1,8q and set q :“ p
p´1 so that 1

p `
1
q “ 1. We recall Hölder’s inequality

(15.5.1) in Exercise 15.5 which states that for any u, v P RpBq we have
ż

B
|upxqvpxq| |dx| ď }u}p ¨ }v}q.

Let f, g P RpBq and set

X :“ }f}p, Y :“ }g}p, Z :“ }f ` g}p.

We want to show that

Z ď X ` Y.

Set h :“ |f ` g|p´1. We have

Zp “

ż

B
|fpxq ` gpxq|p |dx| “

ż

B
|fpxq ` gpxq| ¨ |fpxq ` gpxq|p´1

looooooooomooooooooon

hpxq

|dx|
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ď

ż

B
|fpxq| ¨ |hpxq| |dx| `

ż

B
|gpxq| ¨ |hpxq| |dx|

(use Hölder’s inequality (15.5.1))

ď }f}p}h}q ` }g}p ¨ }h}q.

Thus

Zp ď pX ` Y q}h}q.

Now observe that

}h}q “

ˆ
ż

B
|h|

p
p´1 |dx|

˙

p´1
p

“

ˆ
ż

B
|fpxq ` gpxq|p |dx|

˙

p´1
p

“ Zp´1

so that

Zp ď pX ` Y qZp´1.

Hence, @p P r1,8s, } ´ }p is a norm on RpBq. [\

Definition 17.1.6. Suppose that pX, dXq and pY, dY q are metric spaces.

(i) A map T : X Ñ Y is called an isometry if

dY pTx0, Tx1q “ dXpx0, x1q, @x0, x1 P X.

The metric spaces pX, dXq and pY, dY q are said to be isometric if there exists a
bijective isometry T : X Ñ Y .

[\

Note that if S is a subset of the metric space pX, dq, then the natural inclusion is an
isometry pS, dSq Ñ pX, dq.

17.1.2. Basic geometric and topological concepts. A large part of the topological
concepts for Euclidean spaces introduced in Sections 11.3 and 11.4 have a counterpart in
the more general context of metric spaces.

Definition 17.1.7. Let pX, dq be a metric space.

(i) For r ą 0 and x0 P X we define the open ball of center x0 and radius r to be the
set

Brpx0q “ BX
r px0q :“

␣

x P X; dpx, x0q ă r
(

.

(ii) A subset U Ă X is called open if, for any p P U , there exists r ą 0 such that
Brppq Ă U .

(iii) A neighborhood of x0 P X is a set V that contains an open ball centered at x0.

[\

Propositions 11.3.7 and 11.3.8 have a metric space counterpart. The proofs are iden-
tical and are left to the reader.
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Proposition 17.1.8. Let pX, dq be a metric space. Then the following hold.

(i) For any x0 P X and any r ą 0 the open ball Brpx0q is an open set.

(ii) The whole space X and the empty set are open.

(iii) The intersection of two open sets is an open set.

(iv) The union of any family of open sets is an open set.

[\

Definition 17.1.9. Let pX, dq be a metric space. A subset C Ă X is called closed if its
complement XzC is an open set. [\

As in the Euclidean case we have the following consequence of Proposition 17.1.8.

Proposition 17.1.10. Let pX, dq be a metric space. Then the following hold.

(i) The whole space X and the empty set are closed sets.

(ii) The union of two closed sets is a closed set.

(iii) The intersection of any family of closed sets is a closed set.

[\

Remark 17.1.11 (A word of caution). Suppose that pX, dq is metric space and S Ă X
is a subset that is not open. The metric d induces by restriction a metric dS on S,
Example 17.1.2(b). However, the set S is an open subset of the metric space pS, dSq.

For example, the compact interval r0, 1s is not an open subset of pR, | ´ |q but it
is an open set of the metric subspace r0, 1s Ă R. [\

The proof of the following result is left to the reader as an exercise.

Proposition 17.1.12. Suppose pX, dq is a metric space and Y Ă X. Let S Ă Y . The
following statements are equivalent.

(i) The set S is open (respectively closed) in the metric subspace pY, dY q; see Ex-
ample 17.1.2(b).

(ii) There exists an open (respectively closed) subset U Ă X such that S “ U X Y .

[\

Definition 17.1.13. Suppose that pX, dq is a metric space and S Ă X.

(i) The closure of S in X, denoted by clpSq or clXpSq, is the intersection of all the
closed subsets of X that contain S.

(ii) The interior of S in X, denoted by intpSq or intXpSq, is the union of all the
open subset of X contained in S.
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(iii) The boundary of S, denoted BS, is the difference clpSqz intpSq.

[\

The metric space setup affords a very useful notion of convergence.

Definition 17.1.14. Let pX, dq be a metric space. We say that a sequence pxnqnPN of
points in X is convergent if there exists a point x˚ P X such that

lim
nÑ8

dpxn, x˚q “ 0.

In this case we say that pxnqnPN converges to x˚. [\

As in the real case, if pxnq converges to x˚ and to x˚˚, then x˚ “ x˚˚. Thus any
convergent sequence converges to a single point called the limit of the convergent sequence
and denoted by

lim
nÑ8

xn or lim
n
xn.

Thus

lim
n
xn “ x˚ðñ@ε ą 0, DN “ Npεq ą 0 @n ě Npεq : dpxn, x˚q ă ε

ðñ@ε ą 0, DN “ Npεq ą 0 @n ě Npεq : xn P Bεpx˚q.

Example 17.1.15. Let S be a set and consider the normed space
`

BpSq, } ´ }8
˘

of
bounded functions S Ñ R. Note that

lim
nÑ8

}fn ´ f}8 “ 0

if and only if

@ε ą 0 DN “ Npεq ą 0 @n ą Npεq : sup
sPS

ˇ

ˇ fnpsq ´ fpsq
ˇ

ˇ ă ε

This means that the sequence of functions fn : S Ñ R converges uniformly to the function
f (Definition 6.1.9(b)) if and only if }fn ´ f}8 Ñ 0 as nÑ8. [\

The following result is an immediate generalization of Proposition 11.4.11, with iden-
tical proof.

Proposition 17.1.16. Let pX, dq be a metric space and C Ă X. Then the following are
equivalent.

(i) The set C is closed.

(ii) For any convergent sequence of points in C, its limit is also a point in C.

[\

The above result leads to a very useful characterization of the closure of a subset of a
metric space.
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Proposition 17.1.17. Let pX, dq be a metric space, S Ă X and x P X. Then the following
statements are equivalent.

(i) There exists a sequence psnqnPN of points in S such that

lim
nÑ8

sn “ x.

(ii) x P clpSq.

Proof. (i) ñ (ii) Since S Ă clpSq we deduce that psnq is also a sequence of points in the
closed set clpSq. Proposition 17.1.16 implies that the limit x is also a point in clpSq.

(ii) ñ (i) Given x P clpSq we have to construct a sequence psnq of points in S such that

lim
n
sn “ x.

If x P S, then the constant sequence sn “ x, @n, converges toX. Suppose that x P clpSqzS.
We claim that for any n P N the ball of radius 1{n centered at x intersects S. Indeed, if
that was not the case then, for some n, B1{npxq X S “ H so that

S Ă XzB1{npxq.

The set XzB1{npxq is closed since B1{npxq is open. We have reached a contradiction
because x belongs to any closed set containing S and, in particular x P XzB1{npxq.

The above claim implies that for any n P N there exists sn P S such that dpsn, xq ă
1
n

so that

lim
n
dpsn, xq “ 0.

[\

Definition 17.1.18. Let pX, dq be a metric space. A subset S Ă X is called dense (in
X) if clpSq “ X. [\

Corollary 17.1.19. Let pX, dq be a metric space and S Ă X. The following are equivalent.

(i) The set S is dense in X.

(ii) For any x P X there exists a sequence of points in S converging to x.

(iii) For any nonempty open set U Ă X the set S intersects U nontrivially, SXU ‰ H.

Proof. (i) ðñ (ii) follows from Proposition 17.1.17.

(i)ñ (iii) We argue by contradiction. Suppose U is a nonempty set that does not intersect
S. In other words, S is contained in the complement of U , S Ă U c. Since U c is closed we
deduce

X “ clpSq Ă U c ñ U “ H.

(iii) ñ (i) We argue again by contradiction. Suppose clpSq ‰ X. Thus the open set
U “ Xz clpSq is nonempty and disjoint from S. This contradicts (iii). [\
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Definition 17.1.20. A metric space is called separable if it admits a dense, countable
subset. [\

For example, the space R with the Euclidean metric is separable because the set of
rational numbers is dense in R.

Definition 17.1.21. A topology on a set X is a collection T of subsets of X satisfying
the following properties.

(i) H, X P T.

(ii) @U, V , U, V P T ùñ U X V P T.

(iii) The union of any family of subsets in T is also a subset in T.

The sets in T are called the open subsets of the given topology. A topological space is
a pair pX,Tq where X is a set and T is a topology on X. [\

We have seen that a metric d on a set defines a topology on X called the metric
topology. A topological space is called metrizable if its topology is defined by some metric.
Let us point out that different metrics can induce the same topology. For example if d

is a metric on X, then the new metric d̄ defined by d̄px0, x1q “ min
`

dpx0, x1q, 1
˘

induces
the same topology.

A norm on a vector space defines a metric and in turn, this metric determines a
topology called topology induced by the norm. The topology defined by the Euclidean
norm on Rn is called the Euclidean topology of Rn.

An object or a concept is called topological if it can described only in terms of the
open sets of a given topology. For example, the concept of closed set or closure of a set
are topological concepts. Indeed a closed set is a set whose complement is open. Exercise
17.6 asks you to prove that the concept of convergence of a sequence in a metric space is
in fact a topological concept.

Example 17.1.22. (a) For any set X the collection 2
X of all its subsets is a topology

on X. It is called the discrete topology. It coincides with the topology induced by the
induced metric.

(b) If pTiqiPI is a collection of topologies on a set X, then their intersection
č

iPI

Ti Ă 2
X

is another topology on X.

(c) Suppose that S “ pSiqiPI is a collection of subsets of set X. Note that the discrete
topology 2X contains the collection S. The intersection of all the topologies that contain
S is a topology on X denoted by TrSs and called the topology generated by the collection
S. [\
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We will not be using topological spaces in the sequel so we will not delve too long
into this topic. However, the curious reader can consult [24, Chap. X] for a very efficient
introduction to point set topology, as this subject came to be known.

17.1.3. Continuity. The notion of continuity of maps also has an obvious metric space
counterpart.

Definition 17.1.23. Suppose that pX, dXq and pY, dY q are metric spaces and F : X Ñ Y
is a map.

(i) The map F is said to be continuous at the point x0 P X if

@ε ą 0 Dδ “ δpεq ą 0 : @x P X dXpx, x0q ă δ ñ dY
`

F pxq, F px0q
˘

ă ε. (17.1.1)

(ii) The map F is said to be continuous if it is continuous at every point x P X.

(iii) We denote by CpX,Y q the space of continuous maps X Ñ Y . When Y is the
real axis R with the Euclidean metric distpx, yq “ |x ´ y| we use the simpler
notation CpXq :“ CpX,Rq.

[\

Set y0 “ F px0q. Note that F is continuous at x0 if

@ε ą 0 Dδ “ δpεq ą 0 : F
`

BX
δ px0q

˘

Ă BY
ε py0q. (17.1.2)

Proposition 17.1.24. Suppose that pX, dXq and pY, dY q are metric spaces and F : X Ñ Y
is a map. Let x0 P X. Then the following statements are equivalent.

(i) The map F is continuous at x0.

(ii) For any sequence pxnqnPN in X that converges to x0, the sequence
`

F pxnq
˘

nPN
converges to F px0q.

Proof. (i)ñ (ii) Suppose that pxnqnPN is a sequence in X that converges to x0. For ε ą 0
choose δpεq ą 0 as in (17.1.1). Then there exists N “ Npδpεqq “ Npεq ą 0 such that

@n ą Npεq, dXpxn, x0q ă δpεq.

From (17.1.1) we conclude that

@n ą Npεq, dY
`

F pxnq, F px0q
˘

ă ε

so the sequence F pxnq converges to F px0q.

(ii) ñ (i) We argue by contradiction. Thus

Dε0 ą 0, @δ ą 0 Dxpδq P X such that dXpxpδq, x0q ă δ and dY
`

F pxpδqq, F px0q
˘

ą ε0.

Set xn :“ xp1{nq. Then xn Ñ x0 and dY
`

F pxnq, F px0q
˘

ą ε0, @n. Thus the sequence
`

F px0q
˘

nPN does not converge to F px0q contradicting the assumption (ii). [\
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Definition 17.1.25. Suppose that pX, dXq and pY, dY q are metric spaces and F : X Ñ Y
a map. Given K ą 0 we say that F is K-Lipschitz if

@x0, x1 P X dY
`

F px0q, F px1q
˘

ď KdXpx0, x1q. (17.1.3)

The map is called Lipschitz if it is K-Lipschitz for some K ą 0. We denote by LippX,Y q
the space of Lipschitz continuous maps X Ñ Y . [\

Corollary 17.1.26. Suppose that pX, dXq and pY, dY q are metric spaces. Then any Lip-
schitz map X Ñ Y is continuous, i.e.,

LippX,Y q Ă CpX,Y q.

Proof. Let F be K-Lipschitz map, satisfying (17.1.3). If pxnq is a sequence in X con-
verging to x. From the inequality

dY
`

F pxnq, F pxq
˘

ď KdXpxn, xq, @n.

Hence
lim
nÑ8

dY
`

F pxnq, F pxq
˘

“ 0.

[\

Proposition 17.1.27. Suppose that pX, dq is a metric space and S is a nonempty subset
of X. For every x P X we set

distpx, Sq :“ inf
sPS

dpx, sq.

(i) The function f : X Ñ R, fpxq “ distpx, Sq is 1-Lipschitz, i.e., for any x, y P we
have

|fpxq ´ fpyq| ď dpx, yq.

(ii) f´1p0q “ clS. In particular, if S is closed, then f is a nonnegative continuous
function vanishing precisely on S.

Proof. (i) Using the triangle inequality we deduce

fpxq “ distpx, Sq ď dpx, sq ď dpx, yq ` dpx, sq.

Choosing a sequence psnqnPN in S such that

lim
nÑ8

dpx, snq “ distpx, Sq

we deduce

fpxq ď dpx, yq ` dpy, snq ñ fpxq ď dpx, yq ` lim
nÑ8

dpy, snq “ dpx, yq ` fpyq.

Hence, for any x, y P X we have

fpxq ´ fpyq ď dpx, yq.

Reversing the roles of x, y we deduce

´
`

fpxq ´ fpyq
˘

“ fpyq ´ fpxq ď dpy, xq “ dpx, yq.
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Hence
ˇ

ˇ fpxq ´ fpyq
ˇ

ˇ ď dpx, yq.

(ii) We have to show that f´1p0q Ă clS and clS Ă f´1p0q.

Suppose that x P f´1p0q, i.e., distpx, Sq “ 0. Thus, there exists a sequence psnq in S
such that

lim
nÑ8

dpx, snq “ distpx, Sq “ 0.

Hence

lim
nÑ8

sn “ x,

and we deduce from Proposition 17.1.17 that x P clS.

Conversely, suppose that x P clS. Proposition 17.1.17 implies that there exists a
sequence psnq in S such that sn Ñ x. Clearly fpsnq “ distpsn, Sq “ 0, @n. Using
Proposition 17.1.24 we deduce that

fpxq “ lim
nÑ8

fpsnq “ 0,

i.e., x P f´1p0q. [\

Corollary 17.1.28. Suppose that pX, dq is a metric space and x˚ P X, then the function

f : X Ñ R, fpxq “ dpx, x˚q

is 1-Lipschitz and thus, continuous. In particular, if pX, }´ }q is a normed space then the
norm function

} ´ } : X Ñ R, x ÞÑ }x} “ d}´}px, 0q

is 1-Lipschitz. [\

Corollary 17.1.29. Suppose that pX, dq is a metric space and S Ă X. Denote by dS the
induced metric on S. Then the natural inclusion

iS : S Ñ X, iSpsq “ s,

is continuous.

Proof. Note that

d
`

iSps1q, iSps2q
˘

“ dps1, s2q “ dSps1, s2q

so iS is Lipschitz. [\

Corollary 17.1.30. Suppose that pX, dq is a metric space. Denote by d̂ the product metric
on X ˆX,

d̂
`

px0, y0q, px1, y1q
˘

“ dpx0, x1q ` dpy0, y1q, @px0, y0q, px1, y1q P X ˆX.

Then the metric map X ˆ X Ñ R is 1-Lipschitz with respect to d̂. In particular, it is
continuous.
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Proof. Let px0, y0q, px1, y1q P X ˆX. Then

dpx0, y0q ď dpx0, x1q ` dpx1, y0q, dpx1, y1q ě dpx1, y0q ´ dpy0, y1q

so that

dpx0, y0q ´ dpx1, y1q ď dpx0, x1q ` dpx1, y0q ´ dpx1, y0q ` dpy0, y1q “ d̂
`

px0, y0q, px1, y1q
˘

.

Reversing the roles of px0, y0q and px1, y1q in the above argument we deduce

dpx1, y1q ´ dpx0, y0q ď d̂
`

px0, y0q, px1, y1q
˘

.

Hence,
ˇ

ˇ dpx0, y0q ´ dpx1, y1q
ˇ

ˇ ď d̂
`

px0, y0q, px1, y1q
˘

. (17.1.4)

[\

Proposition 17.1.31. If pX, dq is a metric space, then the space CpXq of continuous real
valued functions on X is an R-algebra of functions, i.e.,

(i) CpXq is a real vector space.

(ii) For any f, g P CpXq their product f ¨ g is also a continuous function.

Proof. Let f, g P CpXq and t P R. Suppose that pxnq is a sequence in X converging to x
Since f, g are continuous we have

lim
n
fpxnq “ fpxq, lim

n
gpxnq “ gpxq

so that
lim
n

`

fpxnq ` gpxnq
˘

“ fpxq ` gpxq, lim
n

`

tfpxnq
˘

“ tfpxq,

lim
n

`

fpxnqgpxnq
˘

“ fpxqgpxq.

This proves that the functions f ` g, tf and f ¨ g are also continuous. [\

Definition 17.1.32. Let X be a set. A family F of functions f : X Ñ R is said to be
ample or to separate points if, for any x0, x1 P X, x0 ‰ x1, there exists a function f in the
family F such that fpx0q ‰ fpx1q. [\

Corollary 17.1.33. Let pX, dq be a metric space. Then the collection CpXq of continuous
functions on X is an algebra that separates points.

Proof. Let x0, x1 P X such that x0 ‰ x1 Define

f : X Ñ R, fpxq “
1

dpx1, x0q
dpx, x0q.

Then f is continuous, fpx0q “ 0, fpx1q “ 1. [\

Proposition 17.1.34. Suppose that pX, dXq and pY, dY q are metric spaces and F : X Ñ Y
is a map. Then the following statements are equivalent.

(i) The map F is continuous.
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(ii) For any open set U Ă Y the preimage F´1pUq is open (in X).

(iii) For any closed set C Ă Y the preimage F´1pCq is closed (in X).

Proof. (i)ñ (iii) Let C Ă Y be closed. To prove that F´1pCq is closed we use Proposition
17.1.16 . Suppose that pxnq is a sequence of points in F´1pCq converging to x P X. We
will prove that x P F´1pCq.

Indeed, since F is continuous, the sequence F pxnq of points in C converges to F pxq.
Since C is closed, F pxq P C so that x P F´1pCq.

(iii) ñ (ii) Let U Ă Y be open. Then C “ Y zU is closed so F´1pCq is closed. Now
observe that

F´1pCq “ F´1pY zUq “ XzF´1pUq.

Hence F´1pUq “ XzF´1pCq is open.

(ii) ñ (i) Fix x0 P X and set y0 “ F px0q. We want to show that F is continuous at x0.
We will prove that F satisfies (17.1.2).

Let ε ą 0. The ball BY
ε py0q is open and thus its preimage F´1

`

BY
ε py0q

˘

is open in

X. Since x0 P F
´1
`

BY
ε py0q

˘

we deduce that there exists δ ą 0 such that

BX
δ px0q Ă F´1

`

BY
ε py0q

˘

,

i.e., F
`

BX
δ px0q

˘

Ă BY
ε py0q. [\

Corollary 17.1.35. Let pX, dq be a metric space and f, g : X Ñ R two continuous
functions. Then the set

E :“
␣

x P X; fpxq “ gpxq
(

is closed. In particular, if f and g coincide on a dense subset of X, then they are identical.

Proof. The difference h “ f ´ g is a continuous function. Observe that

E “ h´1
`

t0u
˘

,

and since t0u is a closed subset of R, its preimage via the continuous function h is also
closed.

Suppose now that Y Ă X is a dense subset of X and fpyq “ gpyq, @y P Y . Thus, the
set Y is contained in the closed E so the closure of Y is also contained. Since Y is dense
cl Y “ X so X Ă E Ă X. [\

Corollary 17.1.36. Suppose that pX, dXq, pY, dY q , pZ, dZq are metric spaces and

F : X Ñ Y and G : Y Ñ Z

are continuous maps. Then their composition G ˝ F : X Ñ Z is also continuous.

Proof. We will show that for any open set U Ă Z the preimage pG ˝ F q´1pUq is also
open. We have

pG ˝ F q´1pUq “ F´1
`

G´1pUq
˘

.
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Since G is continuous the preimage G´1pUq is open, and since F is open, the preimage
F´1

`

G´1pUq
˘

is also open. [\

The above result shows that the concept of continuity is a topological concept.

Definition 17.1.37. Suppose that pX0,T0q and pX1,T1q are topological spaces. A map
F : X0 Ñ X1 is called continuous (with respect to the above topologies) if for any open
set U1 P T1 the preimage F´1pU1q is an open subset F´1pU1q P T0. [\

If pX,Tq is a topological space, then a function f : X Ñ R is called continuous if
it is continuous as a map X Ñ R where R is equipped with the Euclidean topology.
Equivalently, this means that for any open interval I Ă R the preimage f´1pIq is an open
subset of X, i.e.,

f´1pIq P T.

We will denote by CpXq or CpX,Tq the space of continuous functions X Ñ R. As in the
case of metric spaces CpXq is an R-algebra. Any constant function is continuous. However
proving that there exist nonconstant functions on an arbitrary topological space is a more
challenging task!

Definition 17.1.38. Suppose that pX,TXq, pY,TY q are topological space spaces and
F : X Ñ Y is a map. We say that F is a homeomorphism if it satisfies the following
conditions.

(i) The map F is continuous.

(ii) The map F is bijective.

(iii) The inverse map F´1 : Y Ñ X is also continuous.

[\

17.1.4. Connectedness. The notion of connectedness discussed earlier has a (more sub-
tle) counterpart in the more general case of metric space. Let pX, dq be a metric space.
A clopen subset of X is a subset that is simultanuously open and closed. Clearly both X
and H are clopen. In some cases, the metric space pX, dq can contain nontrivial clopen
subsets.

Suppose Y “ r0, 1sY r2, 3s and we regard Y as a metric subspace of R. Let S0 “ r0, 1s
and S1 “ r2, 3s. Since

S0 “ p´1, 1.5q X Y and S1 “ p1.5, 4q X Y

we deduce from Proposition 17.1.12 that both S0 and S1 are open in Y . On the other
hand, S1 “ Y zS0 so that S1 is also closed as the complement of an open subset. Thus S1
is clopen.

Definition 17.1.39. Let pX, dq be a metric space.
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(i) The metric space pX, dq is said to be connected if X,H are the only clopen
subsets of X.

(ii) The metric space is called disconnected if it is not connected.

(iii) A subset Y Ă X is said to be connected if the metric subspace pY, dY q is con-
nected.

[\

From Proposition 17.1.12 we deduce that a subset Y of a metric space is disconnected
if and only if it admits a separation, i.e., a pair of open sets U0, U1 Ă X such that

U0 X Y, U1 X Y ‰ H and U0 X U1 X Y “ H, Y Ă U0 Y U1.

Indeed, the above condition shows that U0X Y and U1X Y are nontrivial open subsets of
Y that complement each other. Observe that the connectedness property is a topological
property.

Proposition 17.1.40. Suppose that pYiqiPI is a family of connected subsets of the metric
space pX, dq that have at least one point in common, i.e.,

č

iPI

Yi ‰ H.

Then their union

Y “
ď

iPI

Yi

is also connected.

Proof. We argue by contradiction. Assume that Y is disconnected. Then there exist
open sets U0, U1 Ă X such that

U0 X Y, U1 X Y ‰ H and U0 X U1 X Y “ H, Y Ă U0 Y U1. (17.1.5)

Fix

y P
č

iPI

Yi.

Then either y P U0, or y P U1. Note that y R U0 X U1 since Y X U0 X U1 “ H. Suppose
that y P U0. For i P I the set Yi is connected and

U0 Y U1 Ą Yi, U0 X U1 X Yi “ H, U0 X Yi ‰ H.

We deduce that U1 X Yi “ H @i P I so

U1 X Y “ U1 X

˜

ď

iPI

Yi

¸

“ H.

This contradicts (17.1.5). [\
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Suppose now that pX, dq is a metric space. We define a binary relation ” „ ” on X
by declaring x0 „ x1 if there exists a connected subset Y of X that contains both x0 and
x1. This relation is reflexive since the singletons txu, x P X are connected subsets. The
relation is by definition symmetric. Let us show that it is also transitive.

Suppose x0 „ x1 and x1 „ x2. Then there exist connected sets Y0, Y1 Ă X such that

x0, x1 P Y0, x1, x2 P Y1.

The overlap Y0 X Y1 is nonempty because it contains the point x1. Proposition 17.1.40
shows that the union Y “ Y0 Y Y1 is connected, and since x0, x2 P Y , we deduce x0 „ x2.

Hence, the binary relation „ is an equivalence relation on X. Its equivalence classes
are called the connected components of X. For example, if

X “ r0, 1s Y t2u Y p3,8q

then, the three sets that appear in the above union are the connected components of X.
The next result is fundamental, very believable, yet its proof is rather subtle.

Theorem 17.1.41. The interval r0, 1s is a connected subset of R.

Proof. Suppose that U0, U1 Ă R are two open sets such that

r0, 1s Ă U0 Y U1 and U0 X U1 X r0, 1s “ H.

We want to prove that r0, 1s is contained in one of the sets U0 or U1. Think of the points
in U0 X r0, 1s as being colored in white and the ones in U1 X r0, 1s as colored in black.
Then the above conditions mean that any point in r0, 1s is either white, or black but not
both and, if a point in r0, 1s has a one of these colors, then all the nearby points have the
same color.

Since 0 P U0 YU1 we can assume without loss of generality that 0 P U0. We will show
that r0, 1s Ă U0 by relying on an argument very similar to the one used in the proof of
Theorem 12.2.18. Define

S :“
␣

s P r0, 1s; r0, ss Ă U0,
(

.

Thus S consists of all the white points s such that all the points in r0, 1s behind s are also
white. Note that S ‰ H since 0 P S. We set

s˚ “ supS ď 1.

Step 1. s˚ ą 0, i.e., s˚ is a white point. Indeed, since 0 P U0 and U0 is an open subset of
R, there exists ε ą 0 such that r0, εq Ă U0 X r0, 1s.

1 Thus r0, εq Ă S so s˚ ě ε.

Step 2. s˚ P U0 X r0, 1s. We argue by contradiction. Suppose that s˚ R U0 X r0, 1s.
Then s˚ P U1 X r0, 1s. Since U1 is open and s˚ ą 0, there exists ε ą 0 such that
ps˚´ ε, s˚s Ă U1X r0, 1s. On the other hand, since s˚ is the least upper bound of S, there
exists sε P S X ps

˚ ´ ε, s˚s. Thus sε P U0 X U1 X r0, 1s “ H.

1The origin 0 is white and thus all the nearby points in r0, 1s are also white.
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Step 3. s˚ “ 1. Suppose s˚ ă 1. Since U0 is open, there exists ε ą 0 such that

rs˚, s˚ ` εq Ă U0 X r0, 1s.

On the other hand, there exists a sequence sn in S such that sn Õ s˚. Thus

r0, sns Ă U0 X r0, 1s, @n,

so that
r0, s˚q “

ď

n

r0, sns Ă U0 X r0, 1s.

This shows that r0, s˚ ` εq Ă U0 X r0, 1s so

r0, s˚ ` εq Ă S.

This contradicts the fact that s˚ “ supS. Hence 1 P S so r0, 1s Ă U0 X r0, 1s. [\

To produce many examples of connected spaces we need the following simple yet very
powerful result.

Theorem 17.1.42. Suppose that pX0, d0q and pX1, d1q are metric spaces and F : X0 Ñ X1

is a continuous map. If X0 is connected, then the image of F is a connected subset of X1.

Proof. We argue by contradiction. Suppose that Y “ F pX0q is disconnected. Then there
exist open sets U0, U1 P X1 such that

U0 X Y, U1 X Y ‰ H, Y Ă U0 Y U1, U0 X U1 X Y “ H

Set Vi “ F´1pUiq Ă X0, i “ 0, 1. Since F is continuous the sets Vi are open in X0. We
have F´1pY q “ X0 and we deduce

V0, V1 ‰ H, X0 “ V0 Y V1, V0 X V1 “ H.

This shows that V0, V1 are proper, nonempty clopen subsets of X0. This is impossible
since X0 is connected.

[\

Corollary 17.1.43. Suppose that F : pX0, d0q Ñ pX1, d1q is a homeomorphism between
metric spaces. Then X0 is connected if and only if X1 is connected.

Proof. Note that both F and its inverse F´1 are continuous and

X1 “ F pX0q, X0 “ F´1pX1q.

[\

Definition 17.1.44. Let pX, dq be a metric space.

(i) A continuous path in X is a continuous map γ : r0, 1s Ñ X.

(ii) The space X is called path connected if for any points x, x1 P X there exists a
continuous path in X connecting them, i.e., a continuous path γ : r0, 1s Ñ X
such that γp0q “ x and γp1q “ x1.
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[\

Corollary 17.1.45. A path connected metric space pX, dq is connected.

Proof. Fix x0 P X and, for any x P X fix a continuous path γx : r0, 1s Ñ X connecting
x0 to x and denote by Yx the image of γx, Yx “ γx

`

r0, 1s
˘

. The interval r0, 1s is connected
and, according to Theorem 17.1.42, the space Yx is also connected. Clearly x P Yx, @x P X
so

ď

xPX

Yx “ X.

On the other hand

x0 P
č

xPX

Yx

Proposition 17.1.40 now implies that X is connected. [\

Corollary 17.1.46. A subset S Ă R is connected if and only if it is an interval.

Proof. Clearly, if S is an interval it is connected because it is path connected. We will
show conversely, that if S is connected then S is path connected and thus, according to
Proposition 12.2.4 , it is an interval.

Let s0, s1 P S. We claim that rs0, s1s Ă S. Indeed, if there exists s˚ P ps0, s1q that is
not in S, then note that

p´8, s˚q X S “ p´8, s˚s X S

is a nonempty clopen set (it contains s0) and it is strictly contained in S, since it does not
contain s1. This proves that S is path connected. [\

Corollary 17.1.47 (Intermediate Value Theorem). Suppose that pX, dq is a connected
metric space and f : X Ñ R is a continuous function. If there exist x˘ P X such that

fpx´q ă 0 and fpx`q ą 0,

then there exists x0 P X such that fpx0q “ 0.

Proof. From Theorem 17.1.42 we deduce that S “ fpXq is a connected subset of R and
thus it is an interval. Note that fpx˘q P S so 0 P rfpx´q, fpx`qs Ă S. Thus 0 is in the
range of f . [\

17.1.5. Continuous linear maps. Suppose that pX, } ´ }Xq and pY, } ´ }Y q are two
normed spaces, either both real or both complex.

Theorem 17.1.48. Let T : X Ñ Y be a linear map. Then the following statements are
equivalent.

(i) The map T is continuous.

(ii) The map T is continuous at 0 P X.
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(iii) The map T is bounded, i.e., there exists C ą 0 such that

}Tx}Y ď C, @x P X such that }x}X ď 1.

(iv) There exists C ą 0 such that

@x P X, }Tx}Y ď C}x}X . (17.1.6)

(v) The map T is Lipschitz.

Proof. Clearly (v) ñ (i) ñ (ii). Note that (iv) ñ (v). Indeed if x0, x1 P X, then

}Tx0 ´ Tx1}Y “ }T px0 ´ x1q}Y
p17.1.6q
ď C}x0 ´ x1}X

so T is Lipschitz. Thus all we have left to prove is that (ii) ñ (iii) ñ (iv).

(ii) ñ (iii) Since T is continuous at 0 there exists δ ą 0 such that

}Tx}Y ď 1, @}x}X ă δ.

Let x P X, }x}X ď 1. Then }δx}X ď δ so

δ}Tx}Y ď 1

so that

}Tx}Y ď
1

δ
, @}x}X ď 1.

(iii) ñ (iv) Let x P Xzt0u and define

x̄ :“
1

}x}X
x.

Since }x̄} “ 1, we deduce that from (iii)

1

}x}X
}Tx}Y ď C,

i.e.,

}Tx}Y ď C}x}X , @x P Xzt0u.

Clearly the above inequality holds trivially for x “ 0. [\

We ought to justify the usage of the term “bounded” in property (iii) above. A set
in a normed space is called bounded if it is contained in some ball centered at the origin.
Property (iii) states that the image of the unit ball in X via T is a bounded subset of Y .
Equivalently, this means that T maps bounded subsets of X to bounded subsets of Y .

Definition 17.1.49. For any pair of normed spaces pX, }´}Xq, pY, }´}Y q we denote
by BpX,Y q the space of bounded or, equivalently, continuous linear maps X Ñ Y .
We set BpXq :“ BpX,Xq. [\

The space BpX,Y q is a vector space itself. For any operator T P BpX,Y q we set
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}T }op :“ sup
xPXzt0u

}Tx}Y
}x}X

“ inf
!

C ą 0; }Tx}Y ď C}x}X , @x P X
)

.

Note that

}Tx}Y ď }T }op}x}X , @x P X. (17.1.7)

Proposition 17.1.50. For any normed spaces pX, } ´ }Xq, pY, } ´ }Y q the function

} ´ }op : BpX,Y q Ñ R

is a norm. We will refer to it as the operator norm. Moreover if pZ, } ´ }Zq is another
normed space, S : X Ñ Y and T : Y Ñ Z are continuous linear maps, then

}T ˝ S}op ď }T }op ¨ }S}op. (17.1.8)

[\

The proof is left as an exercise.

Definition 17.1.51. For any real normed space pX, }´}q we denote by X˚ the space
of continuous linear maps X Ñ R. We denote by } ´ }˚ the operator norm on the
vector space X˚ “ BpX,Rq. The resulting normed space pX˚, } ´ }˚q is called the
topological dual of X. [\

Remark 17.1.52. Suppose that pX, } ´ }q is a real normed space. Note that a linear
functional α : X Ñ E is continuous if and only if

DC ą 0, @x P X : |αpxq| ď C}x}.

The norm of α is then

}α}˚ “ sup
x‰0

ˇ

ˇαpxq
ˇ

ˇ

}x}
“ inf

␣

C ą 0;
ˇ

ˇαpxq
ˇ

ˇ ď C}x}
(

. [\

Observe that on any normed space X there exists at least one continuous linear func-
tional α : X Ñ R namely, the trivial one, identically zero. The next result shows that in
fact there are plenty of continuous linear functionals.

Theorem 17.1.53. Let pX, } ´ }q be a real normed space and Y Ĺ X a closed subspace.
Then, for any x0 P XzY there exists a continuous linear functional α : X Ñ R such that
αpx0q “ 1 and αpyq “ 0, @y P Y .

Proof. The proof is nonconstructive since it based on Zorn’s lemma. Fix x0 P XzY and
set U0 :“ spantx0u`Y . Since Y is closed and x0 R Y we deduce from Proposition 17.1.27
that d0 :“ distpx0, Y q ą 0. Define

α0 : U0 Ñ R, α0ptx0 ` yq “ t.
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Note that for t ‰ 0

}tx0 ` y} “ |t|}x0 ` t
´1y} ě |t| inf

y1PY
}x0 ´ y

1} “ |t|distpx0, Y q “ d0|t|.

We deduce that
ˇ

ˇαpt0 ` yq
ˇ

ˇ “ |t| ď
1

d0
}tx0 ` y}, @t P R, y P Y,

so that α0 is continuous.

We denote by U the collection of pairs pU,αq, where

‚ U Ă X is a subspace containing U0,

‚ α : U Ñ R is a continuous linear functional such that α
ˇ

ˇ

U0
“ α0,

‚ }α}˚ ď }α0}˚.

Let observe that U is not empty since pU0, α0q P U.

We have a partial order on U,

pU,αq ă pV, βqðñU Ă V, β
ˇ

ˇ

U
“ α.

Let us observe that any chain
␣

pUi, αiqiPI
(

in U admits an upper bound. Indeed, set

U :“
ď

iPI

Ui

and define α : U Ñ R, αpuq “ αipuq if u P Ui. Note that if u P Ui X Uj , then either
Ui Ă Uj , or Uj Ă Ui. In the first case αjpuq “ αipuq since αj

ˇ

ˇ

Ui
“ αi. In the second case

αjpuq “ αipuq since αi
ˇ

ˇ

Uj
“ αj . Clearly the pair pU,αq belongs to the family U since for

any u P U , exists i such that u P Ui and

|αpuq| “ |αipuq| ď }αi}˚}u} ď }α0}˚}u}.

Zorn’s lemma (Theorem A.1.5) implies that U admits a maximal element pU˚, α˚q. We
will show that U˚ “ X. Then α˚ is a continuous linear functional with the postulated
properties.

To prove that U˚ “ X we argue by contradiction. Suppose that there exists x1 P XzU˚.
We set

U1 “ U˚ ` spanpx1q.

Any u P U1 admits a unique decomposition of the form u1 “ u˚` tx1, u˚ P U˚, t P R. For
c P R define

αc : U1 Ñ R, αcpu˚ ` tx1q “ α˚pu˚q ` ct.

We claim that there exists c P R such that pU1, αcq P U. Then

pU˚, α˚q ă pU1, αcq

contradicting the maximality of pU˚, α˚q.

Note that pU1, αcq P U iff

(i) αc
ˇ

ˇ

U0
“ α0, and
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(ii) D0 ă K ď }α0}˚ such that
ˇ

ˇαcpu1q
ˇ

ˇ ď K}u1}, @u1 P U1.

Condition (i) is satisfied for any c P R. We will prove that there exists c P R such that
αc satisfies (ii) as well.

Set K˚ denote the norm of α˚, K˚ :“ }α˚}˚ ď }α0}˚. We will show that there exists
c P R such that

α˚pu˚q ` c ď K˚}u˚ ` x1} and α˚pu˚q ´ c ď K˚}u˚ ´ x1}, @u˚ P U˚. (17.1.9)

Note that if c satisfies (17.1.9) then for any t ą 0 we have

αcpu˚ ` tx1q “ t
`

α˚
`

t´1u˚
˘

` c
˘

ď tK˚
›

› t´1u˚ ` x1
›

› “ K˚}u˚ ` tx1}

´αcpu˚ ` tx1q “ ´t
`

α˚
`

´t´1u˚
˘

´ c
˘

ě ´tK˚
›

› ´ t´1u˚ ´ x1
›

› “ ´K˚}x˚ ` tx1}

In other words
ˇ

ˇαcpu˚ ` tx1q
ˇ

ˇ ď K˚}x˚ ` tx1}, @t ą 0.

A similar argument shows that (17.1.9) implies that
ˇ

ˇαcpu˚ ` tx1q
ˇ

ˇ ď K˚}x˚ ` tx1}, @t ă 0.

Hence (17.1.9) implies that αc satisfies the condition (ii) above. In other words, the proof
is completed if we show that there exists c satisfying (17.1.9). Note that c satisfies (17.1.9)
iff

sup
u˚PU˚

`

α˚pu˚q ´K˚}u˚ ´ x1}
˘

looooooooooooooooooomooooooooooooooooooon

“:λ

ď c ď inf
v˚PU˚

`

K˚}v˚ ` x1} ´ α˚pv˚q
˘

looooooooooooooooooomooooooooooooooooooon

“:ρ

Since }α˚} “ K˚, for any u˚, v˚ P U˚ we have

αpu˚q ` αpv˚q “ αpu˚ ` v˚q ď K˚}u˚ ` v˚} ď K˚}u˚ ´ x1} `K˚}v˚ ` x1}

i.e.,

α˚pu˚q ´K˚}u˚ ´ x1} ď K˚}v˚ ` x1} ´ α˚pv˚q, @u˚, v˚ P U˚.

Hence ´8 ă λ ď ρ ă 8 so that if c P rλ, ρs the condition (17.1.9) is satisfied. [\

Remark 17.1.54. Theorem 17.1.53 is a very special case of a fundamental result in
functional analysis called the Hahn-Banach Theorem.

Let us observe that Theorem 17.1.53 implies that the collection of continuous linear
functions on a normed space is ample in the sense of Definition 17.1.32.

Recall that this means that for any x1, x2 P X, x1 ‰ x2 there exists a continuous linear
functional α P X˚ such that αpx1q ‰ αpx2q.

Indeed, if we set x0 “ x2 ´ x1 ‰ 0, then Theorem 17.1.53 with Y “ t0u implies that
there exists α P X˚ such that

αpx2q ´ αpx1q “ αpx2 ´ x1q “ 1 ‰ 0.

[\



688 17. Analysis on metric spaces

Corollary 17.1.55. Let pX, } ´ }q be a normed space and Z Ă X a subspace. Then the
following are equivalent.

(i) The subspace Z is not dense in X.

(ii) There exists a nontrivial continuous linear functional α : X Ñ R such that
αpzq “ 0, @z P Z.

Proof. Set Y “ clpZq. The implication (ii) ñ (i) is obvious. To prove (i) ñ (ii) note
that Y Ĺ X. The conclusion follows from Theorem 17.1.53.

[\

Remark 17.1.56. We should point out the rather paradoxical nature of the above result.
We set

ZK “
␣

α P X˚; αpzq “ 0, @z P Z
(

.

Observe that ZK is a vector subspace of X˚. Corollary 17.1.55 shows that if ZK “ 0, so
that ZK is as small as possible, then Z has to be very large. How large? Any puny open
ball in X must contain at least one point in Z. [\

Example 17.1.57. As we have seen, on a given vector space X there are many choices of
norms and a linear functional α : X Ñ R could be continuous with respect to one choice
of norm, but discontinuous with respect to another.

Consider for example the space X “ Cpr0, 1sq and the linear functional

δ : Cpr0, 1sq Ñ R, δpfq “ fp1q.

This linear functional is continuous with respect to the sup-norm since
ˇ

ˇ δpfq
ˇ

ˇ “
ˇ

ˇ fp1q
ˇ

ˇ ď sup
xPr0,1s

|fpxq “ }f}8.

On the other hand, it is discontinuous with respect to the norm }´}1. To see this consider
sequence of functions

fn : r0, 1s Ñ R, fnpxq “ xn, n P N.
Note that fn is continuous and nonnegative so

}fn}1 “

ż 1

0
xndx “

1

n` 1
.

Thus, the sequence fn converges to 0 with respect to the norm } ´ }1. On the other hand
δpfnq “ 1, @n, so δpfnq does not converge to δp0q “ 0. [\

Proposition 17.1.58. Consider two normed spaces pX, } ´ }Xq, pY, } ´ }Y q and a linear
isomorphism T : X Ñ Y . Then the following are equivalent.

(i) The map T is a homeomorphism.

(ii) There exist constants 0 ă c ă C such that

@x P X, c}x}X ď }Tx}Y ď C}x}X . (17.1.10)
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Proof. (i) ñ (ii) The map T is homeomorphism that if and only if both T and T´1 are
continuous, i.e., if and only if, there exist positive constants C1, C2 such that

}Tx}Y ď C1}x}X , }T
´1y}X ď C2}y}Y , @x P X, y P Y. (17.1.11)

If we let y “ Tx in the second inequality we deduce

}x}X ď C2}Tx}Y , @x P X,

so (17.1.10) holds with C “ C1 and c “ 1
C2

. The same argument shows that (17.1.10)

implies (17.1.11) with C2 “
1
c , i.e., (ii) ñ (i). [\

Proposition 17.1.59. Suppose that pX, } ´ }Xq is a real normed space and T : Rn Ñ X
is a linear injective map. We do not assume that T is continuous. Then there exist con-
stants 0 ă c ă C such that

c}v}2 ď }Tv}X ď C}v}2, @v P Rn, (17.1.12)

where } ´ }2 denotes the Euclidean norm. In particular, if T is bijective, then it also is a
homeomorphism.

Proof. Let te1, . . . , enu be the canonical basis of Rn. Set xk “ Tek P X, ck “ }xk}X .
For any v “ pv1, . . . , vnq P Rn we have

Tv “ T
`

v1e1 ` ¨ ¨ ¨ ` v
nen

˘

“ v1Te1 ` ¨ ¨ ¨ ` v
nTen “

n
ÿ

k“1

vkxk,

so that

}Tv}X “
›

›

›

n
ÿ

k“1

vkxk

›

›

›

X
ď

n
ÿ

k“1

|vk| ¨ }xk}X “
n
ÿ

k“1

|vk|ck

(use the Cauchy-Schwarz inequality)

ď
a

|v1|2 ` ¨ ¨ ¨ ` |vn|2 ¨
b

c21 ` ¨ ¨ ¨ ` c
2
n

loooooooomoooooooon

“:C

“ C}v}2.

This proves the second inequality in (17.1.12). In particular, it shows that T is continuous.

To prove the first inequality consider the unit sphere

Σ “
␣

v P Rn; }v}2 “ 1
(

,

and the function

f : ΣÑ R, fpvq “ }Tv}X .

This function is continuous as the composition of three continuous maps

Σ
iΣ
ÝÑ Rn T

ÝÑ X
}´}
ÝÑ R.

Since Σ is compact, there exists v0 P Σ such that

c :“ fpv0q ď fpvq, @v P Σ.
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On the other hand, Tv0 ‰ 0 since T is injective, and thus c ą 0. Hence

}Tv}X ě c ą 0, @}v}2 “ 1.

If v P Rnzt0u and v̄ “ 1
}v}2

v, then }v̄}2 “ 1 so that

}T v̄}X ě cñ }Tv}X ě c}v}2.

[\

Corollary 17.1.60. Let n P N. If pX, } ´ }q is an n-dimensional real normed space, then
any linear isomorphism Rn Ñ X is a homeomorphism pRn, } ´ }2q Ñ pX, } ´ }q. [\

Definition 17.1.61. Let X be a real vector space. Two norms } ´ }0 and } ´ }1 on X
are called equivalent if there exist positive constants C2 ą C1 ą 0 such that

C1}x}0 ď }x}1 ď C2}x}0, @x P X. [\

Remark 17.1.62. We see that two norms } ´ }i, i “ 0, 1, on X are equivalent if and
only if the identity map 1X induces a linear homeomorphism pX, }´}0q Ñ pX, }´}1q.
In other words, two norms are equivalent if and only if the topologies they define are
identical.

Note also that a sequence pxnqnPN converges with respect to one norm if and only
if it converges with respect to the other norm. Moreover a function f : X Ñ R is
continuous with respect to a norm iff it is continuous with respect to the other. [\

Corollary 17.1.63. On a finite dimensional vector space X any two norms are equiv-
alent.

Proof. Suppose n “ dimX and a linear isomorphism Rn. Given two norms }´}i, i “ 0, 1,
we obtain two homeomorphisms

T : pRn, } ´ }2q Ñ pX, } ´ }iq, i “ 0, 1.

Now observe that 1X is the composition of two homeomorphisms

pX, } ´ }0q
T´1

ÝÑ pRn, } ´ }2q
T
ÝÑ pX, } ´ }1q.

[\

Proposition 17.1.64. Suppose that pX, }´}q is a real normed space. Then the following
statements are equivalent.

(i) dimX ă 8.

(ii) Any linear functional X Ñ R is continuous.
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Proof. (i) ñ (ii). Let n “ dimX. Fix a linear isomorphism T : Rn Ñ X. According to
Proposition 17.1.59, this induces a homeomorphism

T : pRn, } ´ }2q Ñ pX, } ´ }q.

Suppose that α : X Ñ R is a linear map. We obtain a linear map β “ α ˝ T : Rn Ñ R
which, according to Proposition 12.1.10, is continuous with respect to the Euclidean norm.
We deduce that α “ β ˝ T´1 is also continuous.

(ii) ñ (i) We argue by contradiction. We will show that if dimX “ 8, then there exists
a discontinuous linear map α : X Ñ R. Assume that dimX “ 8. According to Theorem
A.1.6, the vector space X admits a basis peiqiPI . Since dimX “ 8 the set I is infinite so
there exists a surjection c : I Ñ N.

Consider the linear map α : X Ñ R uniquely determined by the conditions

αpeiq “ cpiq}ei}, @i P I.

Since the function c is not bounded we deduce that the map α is not bounded, thus not
continuous. [\

The above result shows that many things that we take for granted in finite dimensions
may not necessarily hold in infinite dimensions.

17.2. Completeness

We know that a sequence of real numbers converges if and only if it is Cauchy. Regarding
the set Q of rational numbers as a metric subspace of the real axis we notice that the
Cauchy sequences in Q do not necessarily converge to a point in Q, but we can assign to
this sequence a limit that lives in a bigger space R, in which Q its as a dense subset. This
is a reflection of a general paradigm detailed in this section.

17.2.1. Cauchy sequences. Let pX, dq be a metric space.

Definition 17.2.1. A sequence pxnqnPN of points in X is called Cauchy (with respect to
the metric d) if

@ε ą 0, DN “ Npεq ą 0, @m,n ą N : dpxm, xnq ă ε. (17.2.1)

[\

Proposition 17.2.2. If pxnqnPN is a convergent sequence in X, then it is also Cauchy.

Proof. Denote by x˚ the limit of the sequence pxnq. Then, for any ε ą 0 there exists
N “ Npεq ą 0 such that,

@n ą Npεq dpxn, x˚q ă
ε

2
Then, for any m,n ą N we have dpxm, xnq ď dpxm, x˚q ` dpx˚, xnq ă ε. [\
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Example 17.2.3. The converse is not true. Consider the normed space
`

Cpr0, 1sq, }´}1
˘

and the sequence of continuous functions (see Figure 17.1)

fn : r0, 1s Ñ R, fnpxq “

$

’

&

’

%

1, 0 ď x ď 1
2 ,

linear, 1
2 ă x ď 1

2 `
1
n ,

0, 1
2 `

1
n ă x ď 1.

Then, for any n ą m we have fmpxq ě fnpxq, @x P r0, 1s and

Figure 17.1. The graph of f5pxq.

}fn ´ fm}1 “

ż 1

0

`

fmpxq ´ fnpxq
˘

dx “ areapABCmq ´ areapABCnq “
1

2m
´

1

2n
,

proving that the sequence pfnq is Cauchy.

Intuitively, the sequence fn seems to converge in some sense to a function that is equal
to 1 on the open interval p0, 1{2q and equal to 0 on p1{2, 1q. Such function cannot be
continuous.

We will prove that indeed it does not converge in the norm } ´ }1 to any continuous
function. We argue by contradiction.

Suppose that fn converges in the norm }´}1 to some continuous function f : r0, 1s Ñ R.
Note that for any compact interval I Ă r0, 1s we have

0 ď

ż

I

ˇ

ˇ fnpxq ´ fpxq
ˇ

ˇ dx ď

ż 1

0

ˇ

ˇ fnpxq ´ fpxq
ˇ

ˇ dx “ }fn ´ f}1 Ñ 0

so that,

lim
nÑ8

ż b

a
|fnpxq ´ fpxq|dx “ 0, @0 ď a ă b ď 1. (17.2.2)

In particular

0 “ lim
nÑ8

ż 1{2

0
|fnpxq ´ fpxq|dx “

ż 1{2

0
|1´ fpxq| dx.
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Since fpxq is continuous we deduce (see Exercise 9.9) that fpxq “ 1, @x P r0, 1{2s.

Similarly, for any a P p1{2, 1q we deduce |fnpxq ´ fpxq| “ |fpxq|, @x P pa, 1s if n is
sufficiently large. Using (17.2.2) we conclude as before

ż 1

a
|fpxq| dx “ 0, @a P p1{2, 1s

so that fpxq “ 0, for x P p1{2, 1s. The function f is not continuous at 1{2 since

lim
xÕ1{2

fpxq “ 1 ‰ 0 “ lim
xŒ1{2

fpxq.

[\

Definition 17.2.4. A metric space pX, dq is said to be complete if any Cauchy se-
quence is convergent. A Banach space is a normed space such that the associated
metric space is complete. [\

Example 17.2.5. Theorem 11.4.10 shows that the Euclidean space pRn, }´}2q is complete.
[\

Proposition 17.2.6. Suppose that pX, dq is a complete metric space. Then the following
are equivalent.

(i) The subset C Ă X is closed.

(ii) The metric subspace pC, dq is complete.

Proof. (i) ñ (ii) Suppose that pxnqnPN is a Cauchy sequence in C. It converges in X
since pX, dq is complete. Its limit must be a point in C since C is closed.

(ii) ñ (i) Suppose that pxnqnPN is a convergent sequence in C. The sequence pxnq is
Cauchy since it is convergent. Because the metric subspace pC, dq is complete, the limit
of this convergent sequence is a point in C. [\

Example 17.2.7. Example 17.2.3 shows that the normed space pCpr0, 1sq, } ´ }1q is not
complete. On the other hand, the normed space pCpr0, 1sq, } ´ }8q is complete.

Indeed, suppose that fn : r0, 1s Ñ R, n P N is a sequence of continuous functions that
is Cauchy with respect to the sup-norm. Hence, for any ε ą 0 there exists N “ Npεq ą 0
such that,

@n,m ą Npεq : sup
xPr0,1s

ˇ

ˇ fnpxq ´ fmpxq
ˇ

ˇ ă ε.

Thus,
@x P r0, 1s, @n,m ą Npεq :

ˇ

ˇ fnpxq ´ fmpxq
ˇ

ˇ ă ε. (17.2.3)

Thus, for each x P r0, 1s, the sequence of real numbers
`

fnpxq
˘

nPN is Cauchy, hence
convergent. Denote by fpxq its limit. Letting mÑ8 in (17.2.3) we deduce

@ε ą 0,@x P r0, 1s, @n ą Npεq :
ˇ

ˇ fnpxq ´ fpxq
ˇ

ˇ ď ε,
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i.e.,

@ε ą 0, @n ą Npεq : sup
xPr0,1s

ˇ

ˇ fnpxq ´ fpxq
ˇ

ˇ ď ε. (17.2.4)

In other words, the sequence pfnpxqq converges uniformly to fpxq so, according to Theorem
6.1.10, the function fpxq is continuous. Finally observe that (17.2.4) can be rephrased as

lim
nÑ8

}fn ´ f}8 “ 0. [\

17.2.2. Completions. Let pX, dq be a metric space. We want to show that we can add
“virtual” elements to the set X with the property that each new element can be viewed,
in a suitable way, as the limit of a Cauchy sequence in X that need not converge in pX, dq.

Definition 17.2.8. Let pX, dq be a metric space. A completion of pX, dq is a triplet
`

X, d̄, I
˘

with the following properties.

(i)
`

X, d̄
˘

is a complete metric space.

(ii) I is an isometry I : pX, dq Ñ
`

X, d̄
˘

.

(iii) The image IpXq of I is a dense subset ofX.

[\

Note that R is a completion of Q. If pX, dq is complete, then pX, d,1Xq is a completion
of pX, dq.

Let us first observe that, if they exist, the completions are essentially unique. More
precisely, the completions have the following universality property.

Theorem 17.2.9 (The universality property of completions). Suppose that
`

X, d̄, I
˘

is
a completion of the metric space pX, dq. Then, for any complete metric space pY, δq and
any isometry T : pX, dq Ñ pY, δq, there exists a unique isometry T :

`

X, d̄
˘

Ñ pY, δq such
that the diagram below is commutative.

X X

Y

y w

I

d[
[
[]

T u
T,

i.e., T ˝ I “ T .

Proof. Since I is isometry, it is injective, and we can identify pX, dq with a metric sub-
space of pX, d̄q. Note that if F,G :

`

X, d̄
˘

Ñ pY, δq are two continuous maps such that

F pxq “ Gpxq for any x P X ĂX, then F px̄q “ Gpx̄q, for any x̄ PX.

Indeed, let x̄ P X. Since X is dense in X, there exists a sequence pxnq in X that
converges to x̄. From the continuity of F and G we deduce

F px̄q “ lim
nÑ8

F pxnq “ lim
nÑ8

Gpxnq “ Gpx̄q.
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This proves the uniqueness part of the theorem.

To prove the existence, consider x̄ PX. Since X is dense inX, there exists a sequence
pxnq in X that converges to x̄. The sequence pxnq is Cauchy and, since T is an isometry,
so is the sequence pTxnq in Y . On the other hand, the metric space pY, δq is complete so
the sequence Txn is convergent. We claim that its limit depends only on x̄ and not on
the sequence pxnq we used to approximate.

Indeed, if pxnq and px
1
nq are two sequences in X such that

lim
nÑ8

xn “ lim
nÑ8

x1n “ x̄,

Then

0 “ lim
nÑ8

dpxn, x
1
nq “ lim

nÑ8
δpTxn, Tx

1
nq.

From Corollary 17.1.30 we deduce that the metric map δ : Y ˆ Y Ñ R is continuous so

0 “ lim
nÑ8

δpTxn, Tx
1
nq “ δ

`

lim
n
Txn, lim

n
Tx1n

˘

.

Hence we set

Tx̄ :“ lim
n
Txn

wherever pxnq is a sequence in X converging to x̄. We obtain in this fashion a map
T :XÑ Y .

Note that if x̄, x̄1 PX, then for sequences pxnq and px
1
nq converging to x̄ and respectively

x̄1, we have

δ
`

T, x̄,Tx̄1
˘

“ lim
nÑ8

δpTxn, Tx
1
nq “ lim

nÑ8
d̄pxn, x

1
nq “ d̄px̄, x̄1q.

This proves that T is an isometry. [\

Corollary 17.2.10. Any two completions of a metric space pX, dq are isometric.

Proof. Suppose
`

X, d̄, I
˘

and
`

X
1
, d̄1, I1

˘

. From the universality property of completions
we deduce that there exist unique isometries

I
1
:XÑX

1
and I :X

1
ÑX

such that

I
1
˝ I “ I1, I˝ I1 “ I.

Now observe that

pI˝I
1
q ˝ I “ p̋I

1
˝ Iq “ I˝ I1 “ I.

Thus the isometry T “ I˝I
1
makes the diagram below commutative.

X X

X

w

I

[
[
[]

I u
T
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On the other hand, the isometry 1
X

also makes this diagram commutative. There exists

exactly one such isometry we deduce

1
X
“ T “ I˝I

1
.

Arguing in a similar fasion we deduce

1
X

1 “ T “ I
1
˝I

so that I
1
is the inverse of I. Hence, I

1
is a bijective isometryXÑX

1
. [\

Denote by CSpXq or CSpX, dq the set of Cauchy sequences in pX, dq. We will use
the notation x when referring to a sequence pxnqnPN in X.

☞ For each x P X we denote by xxy the constant sequence xn “ x, @n P N.

Proposition 17.2.11. For any Cauchy sequences x and y the sequence of real numbers
`

dpxn, ynq
˘

nPN is Cauchy. We will denote by d̄px, yq its limit.

Proof. Set dn :“ dpxn, ynq. Corollary 17.1.30 implies that, @m,n P N, we have

|dn ´ dm| ď dpxn, xmq ` dpyn, ymq.

Since the sequences x and y are Cauchy we deduce that ,

@ε ą 0 DN “ Npεq ą 0, @m,n ą Npεq dpxn, xmq ` dpyn, ymq ă ε.

This proves that the sequence of real numbers pdnq is Cauchy, hence convergent. [\

Remark 17.2.12. Let us observe a few simple things about the map d̄.

‚ If the sequences x and y converge in pX, dq to x˚ and respectively y˚, then

d̄px, yq “ dpx˚, y˚q.

In particular, for any x, y P X, dpx, yq “ d̄
`

xxy, xxy
˘

.

‚ For any x, y P CSpXq

d̄px, yq “ d̄py, xq.

‚ For any x, y, z P CSpXq, we have

d̄px, zq ď d̄px, yq ` d̄py, zq. (17.2.5)

Indeed, this follows by letting nÑ8 in the triangle inequality

dpxn, znq ď dpxn, ynq ` dpyn, znq.

These facts show that the function d̄ : CSpXqˆCSpXq Ñ R behaves almost like a metric.
We say “almost” because it violates the condition d̄px, yq “ 0ñ x “ y. [\
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We define a binary relation „ on CSpXq by declaring x „ y if and only of d̄px, yq “ 0.
Clearly this binary relation is reflexive and symmetric. The inequality (17.2.5) shows that
it is also transitive so that ‘„’ is an equivalence relation.

Denote byX the set of equivalence classes of ‘„’, i.e.

X “ CSpXq{ „ .

For any x P CSpXq we denote by Cx its equivalence class. Note that if x „ x1,

d̄px, yq ď d̄px, x1q ` d̄px1, yq “ d̄px1, yq

and
d̄px1, yq ď d̄px1, xq ` d̄px, yq “ d̄px, yq

so that
d̄px, yq “ d̄px1, yq.

Thus d̄ induces a well defined function

d̄ :XˆXÑ R d̄
`

Cx, Cy
˘

“ d̄
`

x, y
˘

.

The discussion above shows that d̄ is a metric. Note that a Cauchy sequence is convergent
if and only if it is equivalent to a constant sequence. In particular, a Cauchy sequence
equivalent to a convergent one is also convergent.

The map
I : X ÑX, x ÞÑ Cxxy

is an isometry. Its image can be identified with the collection of equivalence classes of
convergent sequences. We can now state and prove the main result of this subsection.

Theorem 17.2.13 (Existence of completion). The above triplet pX, d̄, Iq is a completion
of pX, dq.

Proof. Let us first prove that IpXq is dense inX. Let x P CSpXq, x “ pxnqnPN. For each
m P N we denote by xm “ pxmn qnPN the constant sequence xm “ xxmy, i.e.,

xmn “ xm @n P N.

We will show that
lim
mÑ8

d̄
`

xm, xq “ 0.

Indeed, let ε ą 0. Since x is a Cauchy sequence we deduce that there exists N “ Npεq ą 0
such that

@m,n ą Npεq : dpxmn , xnq “ dpxm, xnq ă ε.

Letting nÑ8 we deduce
d̄
`

xm, xq ď ε @m ą Npεq.

To prove that
`

X, d̄
˘

is complete we need to digress a bit.

We say that a sequence of points pynqnPN in a metric space pY, δq is convenient if

δpyn, yn`1q ă
1

2n`5
, @n P N.
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Note that if pynq is convenient, then for any N ą n we have

δpyn, yN q ď δpyn, yn`1q ` ¨ ¨ ¨ ` δ
`

yN´1, yN
˘

ď
ÿ

kěn

1

2k`5
“

1

2n`4
. (17.2.6)

This proves that any convenient sequence is Cauchy. Clearly, any Cauchy sequence admits
a convenient subsequence.

Lemma 17.2.14. A Cauchy sequence is equivalent with any of its subsequences. In par-
ticular, a Cauchy sequence is convergent if and only it has a convergent subsequence.

Proof. Suppose that x “ pxnqnPN is a Cauchy sequence and pxknq is a subsequence. Then
kn ě n and, since x is Cauchy, we deduce that @ε ą 0 there exists N “ Npεq ą 0 such
that

dpxkn , xnq ă ε, @n ě Npεq.

In other words,

lim
nÑ8

dpxkn , xnq “ 0

so x is equivalent to the subsequence pxknq. The final conclusion follows from the fact
that a Cauchy sequence equivalent to a convergent sequence is also convergent. [\

Consider a Cauchy sequence pCmqmPN in X. For each m, pick a convenient Cauchy
sequence xm “ pxmn qnPN inX representing Cm. To show that Cm is convergent we will show
that a subsequence of Cm is convergent. We will detect this subsequence of a sequence of
sequences using a variation of Cantor’s diagonal trick .2

By passing to subsequences we can assume that the Cauchy sequence pCmq in X is
also convenient. Since

d̄pCm, Cm`1q ă
1

2m`5
, @m P N

we can find an increasing sequence N1 ă N2 ă ¨ ¨ ¨ of natural numbers such that

d
`

xmn , x
m`1
n

˘

ă
1

2m`4
, @n ě Nm. (17.2.7)

Consider the sequence in X,

x˚ “ px˚mq, x˚m :“ xmNm
.

We will prove that

x˚ P CSpXq, (17.2.8a)

lim
mÑ8

d̄
`

Cm, Cx˚

˘

“ 0. (17.2.8b)

Observe that

d
`

x˚m, x
˚
m`1

˘

“ d
`

xmNm
, xm`1Nm`1

˘

ď d
`

xmNm
, xmNm`1

˘

` d
`

xmNm`1
, xm`1Nm`1

˘

2https://en.wikipedia.org/wiki/Cantor’s_diagonal_argument

https://en.wikipedia.org/wiki/Cantor's_diagonal_argument
https://en.wikipedia.org/wiki/Cantor's_diagonal_argument
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(use (17.2.6) and (17.2.7))

ď
1

2m`4
`

1

2m`4
“

1

2m`3
.

In particular for m ă n we deduce

dpx˚m, x
˚
nq ă

1

2m`2
.

This proves (17.2.8a).

To prove (17.2.8b) we observe that the subsequence pxmNk
qkPN of xm is equivalent to

xm so
d̄
`

Cm, Cx˚

˘

“ lim
kÑ8

d
`

xmNk
, x˚k

˘

“ lim
kÑ8

d
`

xmNk
, xkNk

˘

.

Suppose that m ă k. Then for m ď j ă k, since Nk ą Nj , we deduce from (17.2.7) that

d
`

xjNk
, xj`1Nk

˘

ď
1

2j`4
.

We deduce that for k ą m

d
`

xmNk
, xkNk

˘

ď

k´1
ÿ

j“m

d
`

xjNk
, xj`1Nk

˘

ď
1

2m`3
.

Hence

d̄
`

Cm, Cx˚

˘

“ lim
kÑ8

d
`

xmNk
, x˚k

˘

ď
1

2m`3
.

This proves (17.2.8b) and completes the proof of Theorem 17.2.13. [\

Proposition 17.2.15. Suppose that pX, }´}q is a K-normed vector space, K “ R,C, and
`

X, d̄, Iq is a completion of X with respect to the metric defined by the norm. We identify

as usual X with the subset IpXq of X so that Ipxq “ x, @x P X. Then X has a unique
vector space structure such that the map I : X ÑX is linear and the map

X Q x̄ ÞÑ }x̄}˚ :“ d̄
`

x̄, 0
˘

P r0,8q

is a norm on X.

Proof. Let x̄, ȳ PX. Then there exist sequences pxnqnPN and pynqnPN in X such that pxnqq
and ˚ynq converge in the metric d̄ to x̄ and respectively ȳ. Observing that

d̄
`

pxn ` ynq, pxm ` ymq
˘

“ }pxn ` ynq ´ pxm ` ymq} ď }xn ´ xm} ` }yn ´ ym}

we deduce that the sequence
`

xn ` yn
˘

nPN is Cauchy and thus it converges inX.

Note that if px1nqnPN and py1nqnPN are other sequences in X that converge in the metric
d̄ to x̄, then px1n ` y

1
nqnPN is also convergent and

lim
nÑ8

d̄
`

px` ynq, px
1
n ` y

1
nq

˘

“ lim
nÑ8

}px` ynq ´ px
1
n ` y

1
nq} “ 0.

We denote by x̄ ¯̀ ȳ the common limit of the sequences px` ynq and px
1
n ` y

1
nq.

Similarly, for t P K, we denote by tx̄ the common limit of the sequences Iptxnq and
ptx1nq.
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Note that if x̄, ȳ P X, then choosing pxnq and pynq to be constant sequences Xn “ x,
yn “ y, @n, we deduce that x̄ ¯̀ ȳ “ x`yq, where the second “`” denotes the usual addition
operation on X. This proves thatX can be equipped with a structure of vector space such
that the map I is linear.

Let us show that }x}˚ is a norm. The equality }tx̄}˚ “ |t|}x̄}˚ follows from the equality

dptxn, 0q “ }txn} “ |t|dpxn, 0q

by letting nÑ8. To verifythe triangle inequality observe have

}x̄` ȳ}˚ “ lim
nÑ8

d̄
`

pxn ` ynq, 0
˘

“ lim
nÑ8

}xn ` yn}

ď lim
nÑ8

`

}xn} ` }yn}
˘

“ d̄
`

x̄, 0
˘

` d̄
`

ȳ, 0
˘

“ }x̄}˚ ` }ȳ}˚.

If ˆ̀ is another addition operation on X such that I is continuous and } ´ }˚ is a norm
then

}x̄ ˆ̀ ȳ ´ px̄ ¯̀ ȳq}˚ “ lim
nÑ8

}x̄ ˆ̀ ȳ ´ pxn ` ynq}˚

“ lim
nÑ8

}x̄ ˆ̀ ȳ ´ pxn ˆ̀ynq}˚ ď lim
nÑ8

`

p}x̄´ xn}˚ ` }ȳ ´ yn}˚
˘

“ 0.

[\

Definition 17.2.16. The Banach space
`

X, } ´ }˚
˘

constructred in Proposition 17.2.15
is called the completion of the normed space pX, } ´ }q. [\

17.2.3. Applications. The completeness of a space is essentially an existence statement:
a sequence that looks like it ought to have a limit does indeed have a limit. The applications
we have in mind are more special existence statements.

Definition 17.2.17. Suppose that X is a set and T : X Ñ X is a self-map of X.

(i) A fixed point of T is a point x˚ P X such that Tx˚ “ x˚.

(ii) For any n P N we define Tn : X Ñ X

Tn :“ T ˝ ¨ ¨ ¨ ˝ T
looooomooooon

n

.

(iii) We say that T is a contraction with respect to a metric d on X if there exists
c P p0, 1q such that T is c-Lipschitz, i.e.,

d
`

Tx0, Tx1
˘

ď cdpx0, x1q, @x0, x1 P X. [\

Theorem 17.2.18 (Banach’s fixed point). Suppose that T : X Ñ X is a contraction
on the complete metric space pX, dq. Then the following hold.

(i) The map T has a unique fixed point x˚.

(ii) For any x P X,
lim
nÑ8

Tnx “ x˚.
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Proof. (i) Fix c P p0, 1q such that T is c-Lipschitz. If x˚, x
1
˚ are fixed points of T then

dpx˚, x
1
˚q “ dpTx˚, Tx

1
˚q ď cdpx˚, x

1
˚q.

Since c P p0, 1q we deduce dpx˚, x
1
˚q “ 0.

(ii) Observe first that Tn is cn-Lipschitz. Indeed, this is true for n “ 1 and the general
case follows inductively from

d
`

Tn`1x0, T
n`1x1

˘

ď cd
`

Tnx0, T
nx1

˘

, @x0, x1 P X.

Next, observe that for any x P X and any k P N we have

d
`

x, T kx
˘

ď dpx, Txq ` dpTx, T 2xq ` ¨ ¨ ¨ ` d
`

T k´1x, T kx
˘

ď dpx, Txq ` cdpx, Txq ` ¨ ¨ ¨ ` ck´1dpx, Txq ă dpx, Txq
8
ÿ

n“0

cn “
1

1´ c
dpx, Txq.

Now observe that for any m,n P N, m ă n, and any x P X we have

d
`

Tmx, Tnx
˘

ď cmd
`

x, Tn´mx
˘

ď
cm

1´ c
d
`

x, Tx
˘

.

This proves that the sequence xn :“ Tnx, n P N, is Cauchy and thus converges since pX, dq
is complete. We denote by x˚ its limit. Observe that

xn`1 “ Txn, @n P N. (17.2.9)

Letting n Ñ 8 in the above equality and taking into account that T is continuous we
deduce

x˚ “ Tx˚,

i.e., x˚ is a fixed point of T , the unique fixed point. [\

Theorem 17.2.19 (Baire). Suppose that pX, dq is a complete metric space and
pUnqnPN is a sequence of nonempty dense open sets. Then their intersection is also
dense. More precisely, for every x P X and r ą 0 we set

Brpxq :“
␣

x1 P X; dpx, x1q ď r
(

.

Then, @x0 P X and r0 ą 0

Br0px0q X

˜

č

nPN
Un

¸

‰ H.

Proof. We construct inductively a sequence pxnqnPN in X as follows. Choose

x1 P U1 XBr0px0q

and a radius r1 ă
1
2 such that

Br1px1q Ă U1 XBr0px0q.
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Since U2 is dense, the open set Br1px1q X U2 is nonempty. Choose x2 P Br1px1q X U2 and
r2 ă

1
4 such that

Br2px2q Ă Br1px1q X U2.

We proceed inductively and we construct a sequence of points pxnqnPN and radii rn ă
1
2n

such that

Brnpxnq Ă Brn´1pxn´1q X Un, @n ě 2.

Observe that

dpxn´1, xnq ă rn´1.

This proves that for any m ă n we have

dpxm, xnq ď rm ` ¨ ¨ ¨ ` rn´1 ă
1

2m
` ¨ ¨ ¨ `

1

2n´1
ă

1

2m´1
.

This proves that the sequence pxnq is Cauchy, and thus convergent. We denote by x˚ its
limit. Note that for any n ą m ě 0 we have xn P Brmpxmq. Since Brmpxmq is closed we
deduce x˚ PBrmpxmq Ă Um XBr0px0q, @m P N. [\

Definition 17.2.20 (Baire category). A metric space X is said to be of the first category
if it is the union of a countable collection of closed sets with empty interiors. Otherwise
it is called of the second category. [\

A set in a metric space is called nowhere dense if its closure has empty interior. A set
is called meagre if it is the union countably many nowhere dense sets. Thus the sets of
first category are meagre. Clearly, any subset of a meagre set is also meagre. Using the
above terminology we can rephrase Baire’s theorem as follows.

Corollary 17.2.21 (Baire). A complete metric space pX, dq is of second category, i.e.,
non-meagre.

Proof. We argue by contradiction. Suppose that X is the union of countably many
nowehere dense sets Xn. Then X is also the union of the closed sets Cn “ clpXnq with
empty interiors. The complements Un “ XzCn are open and dense. Indeed if a set Un
were not dense, then it will be disjoint form a small open ball and thus, that ball would
be contained Cn. This is impossible since Cn has empty interior.

Since the union of Cn’s is X we deduce that the sets Un have empty intersection. This
contradicts Theorem 17.2.19. [\

Intuitively, meagre sets are “very thin”. The next result clarifies this intuition: the com-
plement of a meagre set is dense so it has to be quite large.

Proposition 17.2.22. Suppose that pX, dq is a complete metric space and M Ă X
is a meagre subset. Then the complement XzM is dense in X.



17.2. Completeness 703

Proof. Let S be a meagre set. Thus

S “
ď

nPN
Sn,

where Cn :“ clpSnq has empty interior @n. LetM denote the union of closed sets pCnqnPN.
Then

XzS Ą XzM “
č

nPN
Un, Um “ XzCn.

Since Cn has empty interior its complement Un is open and dense, Theorem 17.2.19 shows
that

Ş

n Un intersects any open ball in X and thus it is dense. [\

Observe that U is an open and dense subset of a metric space if and only if its comple-
ment is closed and has empty interior. Baire’s theorem can be equivalently reformulated
as follows.

Corollary 17.2.23. If pX, dq is a complete metric space and pCnqnPN is a sequence
of closed sets such that

X “
ď

nPN
Cn,

then at least one of the closed sets Cn has nonempty interior. [\

We will present several fundamental applications of Baire’s theorem when we discuss
functional analysis. Until then we discuss several surprising applications to one-variable
calculus. The next example was first discussed in [2].

Example 17.2.24. Suppose that f : RÑ R is a smooth function such that

@x P R, Dn P N : f pnqpxq “ 0. (17.2.10)

Clearly polynomial functions have this property. We want to show that only the poly-
nomial functions have this property, i.e., if f satisfies (17.2.10)m then f is a polynomial,
i.e.,

Dn P N, @x P R : f pnqpxq “ 0. (17.2.11)

We should pause to compare the differences between (17.2.10) and (17.2.11): they differ
only in the order of quantifiers. However, proving that this switch in order leads to an
equivalent statement requires quite a bit of imagination.

Denote by I the collection of all the open intervals pa, bq such that, the restriction of
f to pa, bq is a polynomial. Observe that

@I, J P Y, I X J ‰ Hñ I Y J P I.

Indeed, if f |I is a polynomial PI and f |J is a polynomial PJ , then PI “ PJ “ f on I X J .
Since two polynomials coinciding on an open interval coincide everywhere we deduce that
PI “ PJ and f |IYJ is also a polynomial.
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Hence, the union of an increasing family of intervals in I is also on interval in I. Let
Ω Ă R be the union of all the intervals in I. Clearly Ω is open. The above discussion
shows that Ω is a union of pairwise disjoint intervals in I

Ω “
N
ď

n“1

In, In “ pan, bnq P I, 1 ď N ď 8. (17.2.12)

We want to show that Ω “ R. We begin by first proving that it is dense. More precisely,
we will show that ΩX ra, bs ‰ H, @a ă b.

Indeed, set

En :“
␣

x P ra, bs; f pnqpxq “ 0
(

.

Clearly En is closed and (17.2.10) shows that

ra, bs “
ď

n

En.

Baire’s theorem applied to the complete metric space ra, bs implies that at least one of
the sets En has nonempty interior. Thus, there exists an open interval I Ă En, meaning
f pnqpxq “ 0, @x P I, so that f |I is a polynomial of degree ă n. This proves that Ω is dense
in R. Set X :“ RzΩ. Thus X is closed, with empty interior. We want to show that X is
actually empty.

Let us first observe that X does not contain isolated points. Indeed, suppose that
x0 P X were an isolated point of X. Then there exists an open interval pa, bq such that
pa, bq XX “ tx0u. Then

pa, x0q, px0, bq Ă Ω,

so each of these intervals is contained in one of the intervals In of the decomposition
(17.2.12). Thus for some m,n P N

f pmqpxq “ 0, @x P pa, x0q, f pnqpxq, @x P px0, bq.

If p “ maxpm,nq, then

f ppqpxq “ 0, @x P pa, bqztx0u.

By continuity we conclude f ppqpxq “ 0, @x P pa, bq and therefore pa, bq Ă Ω so x0 R X.

We argue by contradiction. Suppose that X ‰ H. For m P N we set

Fm :“
␣

x P X; f pmqpxq “ 0
(

.

Clearly

X “
ď

mPN
Fm

Applying Baire’s theorem to X equipped with the induced metric we deduce that there
exists m P N and an interval pa, bq such that

H ‰ pa, bq XX Ă Fm. (17.2.13)
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Note that given x P pa, bq XX there exists a sequence pxkq P pa, bq XX such that xk ‰ x,
@k and

lim
k
xk “ x.

Thus

f pm`1qpxq “ lim
k

f pmqpxkq ´ f
pmqpxq

xk ´ x
“ 0

and we deduce inductively that

f pnqpxq “ 0, @x P pa, bq XX, @n ě m. (17.2.14)

This implies that pa, bqXX ‰ pa, bq because, if it did, the function f would be a polynomial
of degree ă m on pa, bq and thus pa, bq Ă Ω “ RzX.

We want to prove that

f pnqpxq “ 0, @x P pa, bq X Ω, @n ě m. (17.2.15)

We have

pa, bq X Ω “
ď

nPN
In X pa, bq.

Let n such that J “ In X pa, bq ‰ H. Note that pa, bq is not contained in In because
X X pa, bq ‰ H. Thus J is an interval of the form pc, dq and at least one of the endpoints
belongs to X X pa, bq. For simplicity, we assume c P X X pa, bq. On the interval pc, dq the
function f is a polynomial of degree k. Thus, on this interval the k-th derivative of f is
a nonzero constant. By continuity f pkqpcq ‰ 0. Since c P X, we deduce from (17.2.14)
that k ă m. Thus, on pc, dq the function f is a polynomial of degree m so that in satisfies
(17.2.15).

We conclude that f pmqpxq “ 0 on pa, bq so f is a polynomial on this interval. In other
words this interval is contained in Ω and thus is disjoint fromX. This contradicts (17.2.13)
so f is indeed a polynomial function on R. [\

We conclude this subsection with a famous application of Baire’s theorem. It gives a
rather surprising answer to a famous question: do that there exist continuous functions
that are nowhere differentiable? As mentioned in Remark 7.1.8, Weierstrass constructed
the first example of such function. Later on many more examples were constructed. In
1931 Banach and Mazurkiewicz independently offered a surprising answer to this question:
yes there are, a lot, so many so that any continuous function can approximated arbitrarily
well by such functions. More precisely they proved that the set of continuous nowhere
differentiable functions is dense in the Banach space

`

Cpr0, 1sq, }´}8
˘

. Surprisingly, their
proof does not produce any concrete examples of such pathological functions. They must
exist by virtue of deeper principles. Moreover, their approach requires working in infinite
dimensional spaces.

Theorem 17.2.25 (Banach-Mazurkiewicz). The collection W of continuous nowhere dif-
ferentiable functions f : r0, 1s Ñ R is dense in the Banach space

`

Cpr0, 1sq, } ´ }8
˘

.
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Proof. For simplicity, we set C :“ Cpr0, 1sq. Here is the strategy. We will construct a
meagre subset A Ă C such that

C zA ĂW. (17.2.16)

By Proposition 17.2.22 the set C zA is dense in C and, a fortiori, so is W. Set

D :“ C zW.

Thus, D consists of continuous functions r0, 1s Ñ R that are differentiable at some point
in r0, 1s. The condition (17.2.16) is equivalent to the existence of a meagre set A such that

D Ă A.

First some notation. For each f P C and t P r0, 1s we set

Dtf :“ sup
h‰0

ˇ

ˇ

ˇ

ˇ

fpt` hq ´ fptq

h

ˇ

ˇ

ˇ

ˇ

P r0,8s.

For each n P N we set

An :“
␣

f P C ; Dt P r0, 1s : Dtf ď n
(

.

Finally, define

A :“
ď

nPN
An.

The proof of the theorem will be completed in three steps.

Step 1. D Ă A.

Step 2. For each n P N the set An is closed in pC , } ´ }8q.

Step 3. For each n P N, the interior of the set An in pC , } ´ }8q is empty.

Baire’s theorem shows that A ‰ C and, moreover, C zA is dense. Any function in
C zA is nowhere differentiable.

Proof of Step 1. We have to show that for any f P D there exists n P N and t P r0, 1s
such that Dtf ď n. To see this, suppose that t P r0, 1s is a point where f is differentiable.
Consider the compact interval J “ r´t, 1´ ts and define q : J Ñ R

qphq “

#

fpt`hq´fptq
h , h ‰ 0,

f 1ptq, h “ 0.

The function q is clearly continuous so it is bounded. Hence

Dtf “ sup
hPJ

|qphq| ă 8.

Hence f P An, @n ą Dtf .

Proof of Step 2. Suppose that pfnqnPN is a sequence in AN that converges uniformly to
a function f P C . We want to prove that f P AN . For each n choose a point tn P r0, 1s
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such that Dtnfn ď N . A subsequence of ptnq is convergent so, after restricting to this
subsequence, we can assume that

lim
nÑ8

tn “ t˚ P r0, 1s.

For h ‰ 0 we have

|fpt˚ ` hq ´ fpt˚q| ď |fpt˚ ` hq ´ fnpt˚ ` hq| ` |fnpt˚ ` hq ´ fnptnq|

`|fnptnq ´ fnpt˚q| ` |fnpt˚q ´ fpt˚q|

ď }f ´ fn}8 `Dtnfn|t˚ ` h´ tn| `Dtnfn|tn ´ t˚| ` }fn ´ f}8

“ 2}f ´ fn}8 `Dtnfn
`

|t˚ ` h´ tn| ` |tn ´ t˚|
˘

Hence, for any h ‰ 0 and any n P N
|fpt˚ ` hq ´ fpt˚q|

|h|
ď

2}f ´ fn}8
|h|

`Dtnfn ¨
|t˚ ` h´ tn| ` |tn ´ t˚|

|h|

ď
2}f ´ fn}8

|h|
`N ¨

|t˚ ` h´ tn| ` |tn ´ t˚|

|h|
.

Note, that for fixed h ‰ 0 we have

lim
nÑ8

|t˚ ` h´ tn| ` |tn ´ t˚|

|h|
“ 1.

Hence, for any ε ą 0 and h ‰ 0 we can find n “ npε, hq sufficiently large such that

2}f ´ fn}8
|h|

ă
ε

2
,
|t˚ ` h´ tn| ` |tn ´ t˚|

|h|
ă 1`

ε

2N
.

Hence, for any h ‰ 0 and any ε ą 0 we have

|fpt˚ ` hq ´ fpt˚q|

|h|
ă N ` ε,

so that Dt˚f ď N , i.e., f P AN . This proves that AN is closed.

Step 3. intAN “ H. Let f P AN . We will show that for any N ą 0 and any ε ą 0 there
exists a continuous function fε : r0, 1s Ñ R such that

}f ´ fε}8 ă ε, fε R AN , @n. (17.2.17)

This follows from the following elementary lemma.

Lemma 17.2.26. Suppose that g : ra, bs Ñ R is a continuous function. Then for any
C ą 0 and any ε ą 0 there exists a continuous piecewise linear function

g“ gε,C : ra, bs Ñ R

satisfying the following properties.

gpaq “ gpaq, gpbq “ gpbq. (17.2.18a)

}g ´g}8 ă osc
`

f, ra, bs
˘

`
ε

2
. (17.2.18b)

Dtgě C, @t P ra, bs. (17.2.18c)
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Proof of Lemma 17.2.26. Set

m :“ inf
tPra,bs

fptq, M :“ sup
tPra,bs

fptq,

so that

oscpf, ra, bsq “M ´m.

Fix n sufficiently large so that
nε

pb´ aq
ą C.

Subdivide the interval ra, bs into 2n intervals of equal size and set

tk “ a`
kpb´ aq

2n
, k “ 0, 1, . . . , 2n.

y0 “ fpaq, y1 “M `
ε

4
, y2 “ m´

ε

2
, y2n´2 “ m´

ε

2
, y2n´1 “M `

ε

2
, y2n “ fpbq.

Observe that
|yk ´ yk´1|

tk ´ tk´1
ą

ε{2

pb´ aq{2n
“

nε

pb´ aq
ą C.

Denote by g the continuous piecewise linear function ra, bs Ñ R uniquely determined by
the following requirements; see Figure 17.2

‚ gptkq “ yk, @k “ 0, 1, 2, . . . , 2n.

‚ g is linear on each of the intervals rtk´1, tks, i.e.,

gpyq “ yk´1 `
yk ´ yk´1
tk ´ tk´1

pt´ tkq, @t P rtk´1, tks.

a b

m

M

g

Figure 17.2. The graph of gpxq is a highly oscillating zig-zag.
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By construction

m´
ε

2
ď gptq ďM `

ε

2
,

so that
ˇ

ˇ gptq ´gptq
ˇ

ˇ ď pM ´mq `
ε

2
“ osc

`

f, ra, bs
˘

`
ε

2
, @t P ra, bs.

Clearly

Dtgě
nε

pb´ aq
ą K, @t P ra, bs.

[\

We can now prove (17.2.17). Fix N P N and ε ą 0. Since f is uniformly continuous, there
exists n P N sufficiently large such that

osc
`

f, rpk ´ 1q{n, k{ns
˘

ă
ε

2
, @k “ 1, . . . , n.

For each k “ 1, . . . , n we denote by gk the restriction of f to the interval Ik “ rpk´1q{n, k{ns.

Denote by fk the function gε,Nk as in Lemma 17.2.26. Hence

sup
tPIk

ˇ

ˇfptq ´ fkptq
ˇ

ˇ ă
ε

2
` oscpf, Ikq ă ε, Dt fk ą N, @t P Ik.

Now define fε : r0, 1s Ñ R by setting

fεptq “ fkptq, @t P Ik.

[\

17.3. Compactness

The concept of compactness in Rn has a correspondent in the more general case of metric
spaces. In this general context compactness is a desired, but less frequent and harder to
detect occurrence.

17.3.1. Compact metric spaces. As in the case of Rn, an open cover of a set S Ă X
of a metric space is a collection C of open subsets of X whose union contains the subset
S. A subcover of an open cover C of S is a subcollection C 1 of C that is itself an open
cover of S.

Definition 17.3.1. Fix a metric space pX, dq.

(i) The space is called compact if it satisfies the Heine-Borel (or HB) property, i.e.,
any open cover of X admits a finite subcover.

(ii) The space is called totally bounded if, for any ε ą 0, the space X can be covered
by finitely many open balls of radius ε.

(iii) The space Xis called sequentially compact if it satisfies the Bolzano-Weierstrass
property, i.e., if any sequence in X admits a convergent subsequence.

[\
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Remark 17.3.2. Observe that the Heine-Borel property is equivalent to the following
dual condition

HB˚ . Any collection of closed subsets of X with empty intersection contains a finite
subcollection with empty intersection.

Indeed, suppose that X satisfies the HB property. If pCiqiPI is a collection of closed
sets such that

č

iPI

Ci “ H,

then the collection of open subsets
␣

Ui “ XzCi; i P I
(

is an open cover of X so there exists a finite subset J Ă I such that
ď

jPJ

Uj “ X.

Clearly the finite subfamily pCjqjPJ has trivial intersection. This proves HB ñ HB˚. To
prove the reverse implication run the above argument in reverse. [\

Definition 17.3.3. Let pX, dq be a metric space and ε ą 0. An ε-net in X is a subset S
such that

@x P X, Ds P S : dpz, sq ă ε. [\

We see that a metric space is totally bounded iff, for any ε ą 0, the space X contains
a finite ε-net.

Theorem 17.3.4 (Characterization of compactness). Let pX, dq be a metric space. The
following statements are equivalent.

(i) The space pX, dq is compact.

(ii) The space pX, dq is sequentialy compact.

(iii) The space pX, dq is complete and totally bounded.

Proof. We follow closely the approach in [9, Sec. 3.16].

(i) ñ (ii) Suppose that pxnq is a sequence in X. Denote by Cn the closure of the set
␣

xn, xn`1, xn`2, . . .
(

.

Observe that
č

nPN
Cn ‰ H.

Indeed, if that were not the case, then the Heine-Borel property would imply (see Remark
17.3.2) that C1 X C2 X ¨ ¨ ¨ X CN “ H for some N . This is impossible since

H ‰ CN “ C1 X ¨ ¨ ¨ X CN .
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Let
x˚ P

č

nPN
Cn.

Thus, x˚ P cltxn, xn`1, . . . u for any n ą 0. Thus, for any n ą 0 exists mn ą n such that
dpx˚, xmnq ă

1
n . Now define inductively

n1 “ m1, n2 “ mn1 , nk`1 “ mnk
.

The sequence pnkq is strictly increasing and

dpxnk`1
, x˚q ă

1

mnk

ă
1

nk

(ii) ñ (iii) Suppose that pxnq is a Cauchy sequence. The Bolzano-Weierstrass property
implies that it has a convergent subsequence and, according to Lemma 17.2.14, it must
be convergent. This proves that X is complete.

To prove that X is totally bounded we argue by contradiction. Suppose X is not
totally bounded. Thus, there exists r ą 0 such that X cannot be covered by finitely many
balls of radius r. We construct inductively a sequence pxnq in X as follows. Choose x1
arbitrarily. Then choose

x2 P XzBrpx1q, x3 P Xz
´

Brpx1q YBrpx2q
¯

, . . . , xn`1 P Xz
n
ď

k“1

Brpxkq.

The resulting sequence has the property that dpxm, xnq ě r, @m ‰ n. In particular, none
of its subsequences is Cauchy, hence none of its subsequences is convergent. This violates
the Bolzano-Weierstrass property.

(iii) ñ (i) We will need the following simple fact.

Lemma 17.3.5. A totally bounded metric space is bounded, i.e., DC ą 0 such that

dpx, x1q ă C, @x, x1 P X.

Proof of Lemma 17.3.5. Cover X by finitely many open balls of radius 1

X “ B1px1q YB1px2q Y ¨ ¨ ¨ YB1pxnq.

Set
δ :“ max

1ďi,jďn
dpxi, xjq

Let x, x1 P X. Then there exist i, j such that x P B1pxiq, x
1 P B1pxjq so that

dpx, x1q ď dpx, xiq ` dpxi, xjq ` dpxj , x
1q ă δ ` 2.

[\

We argue by contradiction. Suppose that X is complete and totally bounded, yet it
does not satisfy the Heine-Borel property. Thus, there exists an open cover pUiqiPI of X
that contains no finite subcover. Fix x0 P X. Since X is bounded, there exists r ą 0 and
x0 P X such that X “ Brpx0q. Set B0 :“ Brpx0q.
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Next, fix a finite cover by balls of radius r{2. One of these balls cannot be covered by
finitely many of the open sets Ui. We denote it by B1 “ Br{2px1q. The ball B1 can be
covered by finitely many balls of radius r{4 and one of these balls B2 “ Br{4px2q intersects
B1 and cannot be covered by finitely many of the Ui’s. Note that

dpx1, x2q ă
r

2
`
r

4
.

Inductively, we find a sequence of open balls Bk “ Br{2kpxkq such that, none of them
can be covered by finitely many of the Ui’s and Bk X Bk´1 ‰ H, @k ě 2. We deduce
inductively that

dpxk´1, xkq ă
r

2k´1
`

r

2k
“

3r

2k
.

Observe that the sequence pxkq is Cauchy because @n ą m we have

dpxn, xmq ď dpxm, xm`1q ` ¨ ¨ ¨ ` dpxn´1, xnq ă 3r
`

2´m´1 ` ¨ ¨ ¨ ` 2´n´1
˘

“ 3r2´m.

Hence, the sequence pxkq converges to a point x˚ P X. Thus there exists i0 P I such that
x˚ P Ui0 . In particular, there exists ε ą 0 such that Bεpx˚q Ă Ui0 now choose k sufficiently
large so that

r2´k ` dpxk, x˚q ă
ε

2
.

Then Bk “ Br{2kpxkq Ă Bεpx˚q Ă Ui0 contradicting the fact that Bk cannot be covered
by finitely many Ui’s. [\

Corollary 17.3.6. A compact metric space pX, dq is separable, i.e., it admits a dense
countable subset.

Proof. Since X is compact, it is totally bounded and thus, for any n P N, there exists a
finite 1

n -net Sn. The set

S “
ď

nPN
Sn

is at most countable. It is also dense because, for any x P X and any n P N there exists
xn P Sn such that x P B1{npxnq thus dpxn, xq ă 1{n, so the sequence pxnq in S converges
to x. [\

Corollary 17.3.7 (Lebesgue number). Suppose that pX, dq is a compact metric space.
Then, for any open cover pUiqiPI of X there exists a positive number r such that, for any
x P X the ball Brpxq is contained in one of the open sets Ui. Such a number is called a
Lebesgue number of the open cover.

Proof. Any x P X is contained in one of the open sets Ui so there exists rx ą 0 such that
the ball Brxpxq is contained in one of the open sets Ui. The collection of open balls

␣

Brx{2pxq
(

xPX
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is, tautologically, an open cover of X. Since X is compact, there exist finitely many points
x1, . . . , xn in X such that the balls Brx1{2px1q, . . . , Brxn{2pxnq cover X. We set

r :“ min
1ďkďn

rxk{2.

Note that any x P X belongs to one of the balls Brxk {2pxkq so

Brpxq Ă Brxk pxkq,

and, by construction, Brxk pxq is contained in one of the open sets Ui. [\

Corollary 17.3.8. Suppose pX, dq and pY, d̄q are metric spaces and X is compact. Then
any continuous map F : X Ñ Y is uniformly continuous, i.e.,

@ε ą 0, Dδ “ δpεq ą 0 such that

@x, x1 P X, dpx, x1q ă δ ñ d̄
`

F pxq, F px1q
˘

ă ε.
(17.3.1)

Proof. We argue by contradiction. Assume (17.3.1) is false. Thus, there exists ε0 ą 0
such that, for any n P N there exist xn, x

1
n satisfying

dpxn, x
1
nq ă

1

n
and d̄

`

F pxnq, F px
1
nq

˘

ě ε0.

Since X is compact, the sequence pxnq contains a convergent subsequence pxnk
qkě1

x˚ “ lim
kÑ8

xnk

Since

d
`

xnk
, x1nk

˘

ă
1

nk
Ñ 0 as k Ñ8,

we deduce

x˚ “ lim
kÑ8

x1nk
.

Hence, since F is continuous

ε0 ď lim
kÑ8

d̄
`

F pxnk
q, F px1nk

q
˘

“ d̄
`

F px˚q, F px˚q
˘

“ 0.

We have reached a contradiction. [\

17.3.2. Compact subsets. A subset of a metric space pX, dq is itself a metric space
with respect to the induced metric. We say that a subset K Ă X is compact if, viewed
as a metric space with the induced metric dK , it is a compact metric space. In view of
Proposition 17.1.12 a subset K is compact if any collection of open subsets of X that
covers K contains a finite subcollection that also covers K. Equivalently, K is a compact
subset if and only if it any sequence in K contains a subsequence that converges to a point
also in K.

Proposition 17.3.9. A compact subset K of a metric space pX, dq is a closed set.
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Proof. Let pxnq be a convergent sequence of points in K. We have to show that its
limit also belongs to K. Indeed, the sequence pxnq is Cauchy and, since the metric space
pK, dKq is complete, it converges to a point in K. [\

Corollary 17.3.10. Suppose that pX, dq is a compact metric space and S Ă X. Then the
following statements are equivalent.

(i) The set S is compact.

(ii) The set S is closed.

Proof. The implication (i) ñ (ii) follows from the previous proposition. To prove the
converse, we assume that S is closed and we will show that it satisfies the Bolzano-
Weierstrass property.

Consider a sequence pxnq of points in S. The ambient space X is compact and thus
this sequence contains a convergent subsequence. Since S is closed, the limit of this
subsequence is in S. [\

Arguing exactly as in the proof of Theorem 12.4.7 we obtain the following result.

Theorem 17.3.11 (Continuous partitions of unity). Suppose pX, dq is a metric space
and that K Ă X is a compact subset. Then, for any open cover U of K, there exists a
partition of unity on K subordinated to U, i.e., a finite collection of continuous functions
χ1, . . . , χℓ : X Ñ r0, 1s with the following properties.

(i) For any i “ 1, . . . , ℓ, there exists an open subset Ui in the collection U such that
suppχi Ă Ui.

(ii) χ1pxq ` ¨ ¨ ¨ ` χℓpxq “ 1, @x P K.

[\

Definition 17.3.12. Let pX, dq be a metric space. A subset S Ă X is called relatively
compact (or precompact) if its closure is compact. [\

We see that a subset S of a metric space pX, dq is relatively compact if and only if any
sequence of points in S contains a subsequence that converges to a point, not necessarily
in S.

Proposition 17.3.13. Suppose that S is a subset of the complete metric space pX, dq.
Then, the following are equivalent.

(i) The set S is relatively compact.

(ii) The set S is totally bounded, i.e., for any ε ą 0 there exist finitely many points
x1, . . . , xn P X such that

S Ă
n
ď

k“1

Bεpxkq



17.3. Compactness 715

Proof. (i) ñ (ii) Clearly, for any y P clS there exists x P S such that dpx, yq ă ε. In
other words the collection pBεpxqqxPS is an open cover of the compact set clS and thus it
admits a finite subcover.

(ii) ñ (i) The closure clS is a closed subset of the complete metric space X and
thus it is complete as a metric subspace. We need to show that it is totally bounded.
Cover S by finitely many open balls of radius ε{4 centered at x1, . . . , xm P X. For every
k “ 1, . . . ,m pick sk P S XBε{2pxkq. Then the collection ts1, . . . , smu is an ε-net of clpSq.
Indeed, every point in clS is within ε{2 of one the points xj and, each of the points xj is
within ε{2 of the point sj P S. Thus each point in clpSq is within ε from one of the points
s1, . . . , sm P S. [\

Remark 17.3.14. If S is relatively compact then for any ε ą 0, then the above proof
shows that the set S can be covered by finitely many balls of radius ε ą 0 centered at
points in S. [\

Theorem 17.3.15. Suppose that pX, dq and pY, d̄q are metric spaces, K Ă X is a compact
subset and F : X Ñ Y is a continuous map. Then F pKq is a compact subset of Y .

Proof. Let pUiqiPI be an open cover of F pKq. Since F is continuous, each of the sets
Vi “ F´1pUiq is an open subset of X and the collection pViqiPI is an open cover of K.
The set K is compact so it can be covered by finitely many of the sets Vi, say Vi1 , . . . , Vin .
Then the open sets Ui1 , . . . , Uin cover F pKq. [\

Corollary 17.3.16. Suppose that pX, dq and pY, d̄q are metric spaces, S Ă X is a relatively
compact subset and F : X Ñ Y is a continuous map. Then F pSq is a relatively compact
subset of Y .

Proof. The set clS is compact so F pclSq is compact and in particular closed. Thus
clF pSq Ă F pclSq so clF pSq is a closed subset of the compact set F pclSq and thus
compact. [\

Theorem 17.3.17 (Weierstrass). Suppose that pX, dq is a metric space, K Ă X is a
compact set, and f : K Ñ R is a continuous function. Then there exist x˚, x

˚ P K such
that

fpx˚q “ inf
xPK

fpxq, fpx˚q “ sup
xPK

fpxq.

In particular, the function f is bounded on K.

Proof. Choose a sequence of points pxnq in K such that

lim
nÑ8

fpxnq “ sup
xPK

fpxq P p´8,8s.
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Since K is compact, the sequence pxnq contains a convergent subsequence pxnk
q. We

denote by x˚ is limit. Since f is continuous we deduce

8 ą fpx˚q “ lim
kÑ8

fpxnk
q “ lim

nÑ8
fpxnq “ sup

xPK
fpxq.

The statement involving the infimum of f on K is proved in a similar fashion. [\

17.4. Continuous functions on compact sets

Let pX, dq be a metric space and K Ă X a compact subset.

Proposition 17.4.1. The space CpKq of continuous functions K Ñ R equipped with the
sup-norm is a Banach space.

Proof. Indeed if pfnq is a Cauchy sequence of CpKq, then for any x P X the sequence of
real numbers

`

fnpxq
˘

ně1
is Cauchy and thus convergent. We denote by fpxq its limit.

Then for any x P X and any m P N we have

|fpxq ´ fmpxq| “ lim
nÑ8

|fnpxq ´ fmpxq| ď sup
něm

}fn ´ fm}8.

Since pfnq is Cauchy, for any ε ą 0 there exists m “ mpεq such that

sup
něm

}fn ´ fm}8 ă
ε

3
.

Thus function fm is uniformly continuous so there exists δ “ δpm, εq ą 0 such that

dpx, x1q ă δ ñ |fmpxq ´ fmpx
1q| ă

ε

3
.

We deduce that if dpx, x1q ă δ then

|fpxq ´ fpx1q| ď |fpxq ´ fmpxq| ` fmpxq ´ fmpx
1q| ` |fmpx

1q ´ fpxq| ă ε.

This proves that f P CpKq. On the other hand,

}f ´ fm}8 ď sup
něm

}fn ´ fm}8

so that

lim
mÑ8

}f ´ fm} “ 0.

[\

In this section we investigate two properties of the space CpKq that are extremely
useful in practice: compactness and separability.
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17.4.1. Compactness in CpKq. The main question we want to address in this subsec-
tion is the following: when is a family of functions F Ă CpKq precompact? This boils
down to the even more concrete question.

What do we need to know about a sequence of continuous functions fn : K Ñ R
to be able to conclude that it contains a uniformly convergent subsequence.

Clearly if this sequence contained a Cauchy (in the sup-norm) subsequence we would
be able to reach this conclusion. This is however too stringent a condition. Let us first
look at simpler conditions necessary for such a subsequence to exist

Recall that a function f : K Ñ R is continuous at x P K if

@ε ą 0, Dδ “ δf px, εq ą 0, @x1 P K : dpx, x1q ă δ ñ |fpxq ´ fpx1q| ă ε. (17.4.1)

We will refer to a function ε ÞÑ δf px, εq satisfying (17.4.1) as a continuity rate of the func-
tion f at the point x. At different continuity points x, x1 it is possible that δpε, xq ‰ δpε, x1q.
However, if f : K Ñ R is continuous everywhere, then it is also uniformly continuous so

@ε ą 0, Dδ “ δf pεq ą 0, @x, x1 P K : dpx, x1q ă δ ñ |fpxq ´ fpx1q| ă ε.

In other words, for a uniformly continuous function we can choose a function ε ÞÑ δf pεq
so that (17.4.1) works for all x P K, not just a specific x. We will refer to such a function
as a rate of uniform continuity.

Suppose now that the sequence of continuous functions fn : K Ñ R converges uni-
formly to the continuous function f8 : K Ñ R. Then we can choose a rate of uniform
continuity that works for all the functions fn. More precisely

@ε ą 0, Dδ “ δpεq ą 0 :

@n P N, @x, x1 P K, dpx, x1q ă δ ñ |fnpxq ´ fnpx
1q| ă ε.

(17.4.2)

Indeed, suppose that (17.4.2) where false. Then there exists ε0 ą such that, for any δ ą 0,
there exist n “ npδq P N, xδ, x1δ P K so that

dpxδ, x
1
δq ă δ and |fnpδqpxδq ´ fnpδqpx

1
δq| ě ε0.

Now choose δ “ 1{m with mÑ8. We get sequences nm P N xm, x
1
m P K with the above

property. Since the set K is compact, there exists a subsequence mk such that of xmk
is

convergent to a point x˚ in K and

lim
kÑ8

mk “ m8 P NY t8u, dpxmk
, x1mk

q ă
1

mk
, @k.

Then, for any k P N
0 ă ε0 ď

ˇ

ˇfmk
pxmk

q ´ fmk
px1mk

q
ˇ

ˇ

ď
ˇ

ˇfmk
pxmk

q ´ fm8pxmk
q
ˇ

ˇ`
ˇ

ˇf8pxmk
q ´ f8px

1
kq
ˇ

ˇ`
ˇ

ˇf8px
1
mk
q ´ fmk

px1mk
q
ˇ

ˇ

ď
›

›fmk
´ fm8

›

›

8
`
ˇ

ˇfm8pxmk
q ´ fm8px

1
mk
q
ˇ

ˇ`
›

›fmk
´ fm8

›

›

8
.

Note that

lim
kÑ8

›

›fmk
´ fm8

›

›

8
“ 0
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since fmk
converges uniformly to fm8 . Since fm8 is uniformly continuous and

lim
kÑ8

dpxmk
, x1mk

q “ 0,

we deduce
lim
kÑ8

|fm8pxmk
q ´ fm8px

1
mk
q| “ 0.

Definition 17.4.2. Let pX, dq be a metric space, K a compact set and F Ă CpKq be a
family of continuous functions on K.

(i) We say that the family is bounded if DC ą 0 such that }f}8 ă C, @f P F.

(ii) We say that the family is equicontinuous if

@ε ą 0, Dδ “ δpεq ą 0 : @f P F, @x, x1 P K ,

dpx, x1q ă δ ñ |fpxq ´ fpx1q| ă ε.
(17.4.3)

[\

The statement (17.4.2) shows that if a sequence pfnqnPN is uniformly convergent, then
the family tfnunPN is equicontinuous. Clearly, a finite family is equicontinuous. We can
now state the main result of this subsection.

Theorem 17.4.3 (Arzelà-Ascoli). Let pX, dq be a metric space, K a compact sub-
set and F Ă CpKq be a family of continuous functions on K. Then the following
statements are equivalent.

(i) The family F is relatively compact, i.e., any sequence of functions in F

contains a uniformly convergent subsequence.

(ii) The family F is bounded and equicontinuous.

Proof. We follow closely the approach in [9, Sec. VII.5].

(i) ñ (ii) The function
CpKq Q f ÞÑ }f}8

is continuous and thus it is bounded on the compact subsets of CpKq and thus it is
bounded on F. This proves that F is bounded.

Since F is relatively compact we deduce from Proposition 17.3.13 and Remark 17.3.14
that for any ε ą 0 there exists a finite subfamily pgiqiPI of F such that @f P F, there exists
i “ ipfq P I satisfying

}f ´ gipfq}8 ă
ε

3
. (17.4.4)

Note that since the family pgiq is finite it is equicontinuous so, for any ε ą 0 there exists
δ “ δpεq ą 0 such that

@ε ą 0, Dδ “ δpεq ą 0 : @i P I, @x, x1 P K,

dpx, x1q ă δ ñ |gipxq ´ gipx
1q| ă

ε

3

(17.4.5)
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If dpx, x1q ă δpε{3q and f P F, then

|fpxq ´ fpx1q| ď |fpxq ´ gipfqpxq| ` |gipfqpxq ´ gipfqpx
1q| ` |gipfqpx

1q ´ fpx1q|

p17.4.5q
ď }f ´ gipfq}8 `

ε

3
` }f ´ gipfq}8

p17.4.4q
ď ε.

This proves that F is equicontinuous.

(ii) ñ (i). The normed space CpKq is complete and thus, in view of Proposition 17.3.13,
it suffices to prove that F is totally bounded.

Since F is equicontinous

@ε ą 0, Dδ “ δpεq ą 0 : @f P F, @x, x1 P K, dpx, x1q ă δ ñ |fpxq ´ fpx1q| ă
ε

4
. (17.4.6)

The space K is compact so there exist finitely many points x1, . . . , xm P K such that

K Ă

m
ď

i“1

Bδpεqpxiq.

Since the family F is bounded, there exists C ą 0 such that

|fpxiq| ă C, @f P F, i “ 1, . . . ,m.

Choose n P N sufficiently large so that 2C
n ă ε

4 and define ck, k “ 0, 1, . . . , n

ck “ ´C `
2kC

n
.

More precisely, ck are the points dividing the interval r´C,Cs into n equal parts. Note
that for any f P F and any i “ 1, . . . ,m, the value of f at xi belongs to one of the intervals
pck´1, cks

Denote by Φ the finite collection of functions t1, . . . ,mu Ñ t1, . . . , nu. For φ P Φ we
denote by Fφ the subfamily of F consisting of functions f such that

fpxiq P
`

cφpiq´1, cφpiq
‰

.

Clearly

F “
ď

φPΦ

Fφ.

We will show that for any φ P Φ the set Fφ has diameter ă ε, more precisely

}f ´ g}8 ă ε, @f, g P Fφ.

If this happens, then

Fφ Ă Bεpfq, @f P Fφ.

For each φ P Φ choose a function fφ P Fφ and we deduce

F “
ď

φPΦ

Fφ Ă
ď

φPΦ

Bεpfφq.

Let f, g P Fφ. Then, for any x P K there exists xi such that dpx, xiq ă δpεq and

|fpxq ´ gpxq| ď |fpxq ´ fpxiq| ` |fpxiq ´ gpxiq| ` |gpxiq ´ gpxq|.
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From (17.4.6) we deduce that

|fpxq ´ fpxiq|, |gpxiq ´ gpxq| ă
ε

4
.

Since f, g P Fφ we have

|fpxiq ´ gpxiq| ă cφpiq ´ cφpiq´1 ă
ε

4
.

Hence

|fpxq ´ gpxq| ă
3ε

4
, @x P K, f, g P Fφ

so that

}f ´ g}8 ă ε, @f, g P Fφ.

[\

Corollary 17.4.4. Let pK, dq be a compact metric space and F Ă CpKq a bounded family
of functions such that

DL ą 0, @f P F, @x, x1 P K :
ˇ

ˇ fpxq ´ fpx1q
ˇ

ˇ ď Ldpx, x1q.

Then F is precompact.

Proof. The family satisfies (17.4.3) with δpεq “ ε
L so it is equicontinuous. [\

17.4.2. Approximations of continuous functions. Suppose that pX, dq is a metric
space and K Ă X is a compact subset. The main goal of this subsection is to produce
examples of relatively small dense vector subspaces of CpKq. We begin with a rather
exotic result guaranteeing uniform convergence of a sequence of functions.

We say that a sequence of functions fn : K Ñ R converges pointwisely to a function
f : X Ñ R if

@x P K lim
nÑ8

fnpxq “ fpxq.

This means that

@x P K , @ε ą 0 DN “ Npε, xq ą 0 : @n ą N |fnpxq ´ fpxq| ă ε.

The convergence is uniform if

@ε ą 0, DN “ Npεq ą 0 : @x P K , @n ą N |fnpxq ´ fpxq| ă ε.

Clearly a sequence that converges uniformly also converges pointwisely, but the converse
is not necessarily true. We also know that if a sequence pfnq of continuous functions on
K converges uniformly to a function f , then the limit is continuous.

Suppose that pfnq is a sequence of continuous functions on K that converges point-
wisely to a continuous function f : K Ñ R. Can we conclude that the converges is actually
uniform? Exercise 17.38 describes an example of a sequence of continuous functions con-
verging pointwisely but not uniformly to a continuous function. The next result describes
one situation when the answer to the above question is positive.
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Theorem 17.4.5 (Dini). Suppose that pfnqnPN is a nondecreasing sequence in CpKq, i.e.,

@x P K, @n P N : fnpxq ď fn`1pxq.

Assume that for any x P K the limit fpxq of the nondecreasing sequence of real numbers
`

fnpxq
˘

nPN is finite and the resulting function

K Q x ÞÑ fpxq P R
is continuous. Then the sequence pfnq converges uniformly to f .

Proof. We argue by contradiction, Thus we assume that there exists ε0 ą 0 such that for
any N ą 0 there exists xN P K and ν “ νpNq ą N such that |fνpxN q ´ fpxN q| ą ε0, i.e.,

@N ą 0 DxN P K, fN pxN q ď fνpNqpxN q ď fpxN q ´ ε0. (17.4.7)

Since K is compact, upon extracting a subsequence we can assume that

lim
NÑ8

xN “ x˚ P K.

Choose n0 ą 0 such that

fpx˚q ´
ε0
2
ă fn0px˚q ď fpx˚q. (17.4.8)

Now observe that for N ą n0 we have

fn0pxN q ď fN pxN q
p17.4.7q
ď fpxN q ´ ε0.

Letting N Ñ8 we deduce

fn0px˚q “ lim
NÑ8

fn0pxN q ď lim
NÑ8

fpxN q ´ ε0 “ fpx˚q ´ ε0.

This contradicts (17.4.8). [\

We are now ready to state and prove the main result of this subsection.

Theorem 17.4.6 (Stone-Weierstrass). Suppose that K is a compact subset of a metric
space pX, dq and A Ă CpKq is an algebra of continuous functions that contains the
constant functions and is ample, i.e., separates points; see Definition 17.1.32a. Then
A is dense in CpKq with respect to the sup-norm.
aThis means that for any x0, x1 P X, x0 ‰ x1, there exists a function g P A such that gpx0q ‰ gpx1q.

Proof. We have to show that clA “ CpKq. We follow the elegant approach in [9, Sec.
VII.3].

Since A is an algebra, for any f P A we have fn P A. In particular, for any polynomial

P ptq “ pnt
n ` ¨ ¨ ¨ ` p1t` p0

we have
P pfq “ pnf

n ` ¨ ¨ ¨ ` p1f ` p0 P A.

Let us also observe that the closure of A is also an algebra of continuous functions; see
Exercise 17.37.
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Lemma 17.4.7. Consider the sequence of polynomials Pnptq defined recursively by

P1ptq “ 0, Pn`1ptq “ Pnptq `
1

2

`

t´ Pnptq
2
˘

, @n P N.

Then, for any t P r0, 1s the sequence
`

Pnptq
˘

is nondecreasing and converges to
?
t.

Proof. Observe that Pnp0q “ 0, @n so the claim is true for t “ 0. Fix t P p0, 1s and
consider

Ft : RÑ R, Ftpxq “ x`
1

2

`

t´ x2
˘

.

Note that
d

dx
Ftpxq “ 1´ x ě 0, @x P r0, 1s.

Hence Ft is increasing on r0, 1s. Now observe that for any t P r0, 1s we have

Ftp0q “
1

2
t ă

?
t, Ftp1q “

1` t

2
ď 1, Ftp

?
tq “

?
t.

Hence

Ft
`

r0, 1s
˘

Ă r0, 1s, @t P r0, 1s.

We have

P2ptq “ Ftp0q “
1

2
t ą P1ptq “ 0.

Hence

P1ptq ď P2ptq ă
?
t ď 1. (17.4.9)

Since

Pn`1ptq “ Ft
`

Pnptq
˘

, (17.4.10)

we deduce from (17.4.9) that

Ft
`

P1ptq
˘

ď Ft
`

P2ptq
˘

ď Ftp
?
tq “

?
t,

i.e.

0 ď P2ptq ď P3ptq ď
?
t.

Arguing inductively we deduce

0 ď Pnptq ď Pn`1ptq ď
?
t.

Hence the sequence Pnptq is nondecreasing and bounded above by
?
t and thus converges

to a limit 0 ď ℓt ď
?
t. Using (17.4.10) we deduce that Ftpℓtq “ ℓt so ℓt “

?
t. [\

Using Dini’s Theorem we deduce that the above sequence Pnptq converges to
?
t uni-

formly on r0, 1s.

Lemma 17.4.8. For any f P A, |f | P clA.
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Proof. Since f is bounded, we deduce that there exists c ą 0 such that

0 ď fpxq2{c2 ď 1, @x P K.

If Pnptq are the polynomials in Lemma 17.4.7 we deduce that Pn
`

f2{c2
˘

P A and

Pn
`

fpxq2{c2
˘

Õ
a

fpxq2{c2 “ |fpxq|{c, @x P K.

Since |f |{c is continuous we deduce from Dini’s Theorem that Pn
`

f2{c2
˘

converges uni-
formly on K to |f |{c. Hence |f |{c P clA so that |f | “ cp|f |{cq P clA since clA is a vector
subspace of CpXq. [\

Observe that if f, g P A, then |f ´ g|, |f ` g| P clA so that

maxpf, gq “
1

2

`

f ` g ` |f ´ g|
˘

P clA, minpf, gq “
1

2

`

f ` g ´ |f ´ g|
˘

P clA.

Lemma 17.4.9. For any real numbers a0, a1 and any x0 ‰ x1 P K there exists g P A

such that

gpx0q “ a0, gpx1q “ a1.

Proof. Since A separates points there exists f P A such that fpx0q ‰ fpx1q. Now consider
the function

g : K Ñ R, gpxq “ a0 `
a1 ´ a0

fpx1q ´ fpx0q

`

fpxq ´ fpx0q
˘

, @x P K.

Since A contains the constant functions we deduce that g P A. Clearly gpxiq “ ai, i “ 0, 1.
[\

Lemma 17.4.10. For any f P CpKq, any x0 P K and any ε ą 0 there exists a function
g P clA such that

gpx0q “ fpx0q, gpxq ď fpxq ` ε, @x P K.

Proof. For any y P K choose a function hy P A such that

hypx0q “ fpx0q, hypyq ď fpyq `
ε

2
.

For every y P K, there exists an open ball Brypyq such that

hypxq ď fpxq ` ε, @x P Brypyq XK.

The collection of open balls
`

Brypyq
˘

yPK
covers K and, since K is a compact set, we

deduce that there exist finitely many of points y1, . . . , ym P K such that

K Ă

m
ď

i“1

Bripyiq, ri :“ ryi .

Now set

g “ min
`

hy1 , . . . , hym
˘

P clA.



724 17. Analysis on metric spaces

Clearly hyipx0q “ fpx0q, @i so gpx0q “ fpx0q. Moreover, for x P Bripyiq XK

gpxq ď hyipxq ď fpxq ` ε.

[\

We can now complete the proof of Theorem 17.4.6. Since cl
`

clA
˘

“ clA (Exercise 17.3)
it suffices to show that for any f P CpKq and any ε ą 0, there exists g P clA such that
}f ´ g}8 ă ε.

For any x P K choose a function gx P clA such that

gxpxq “ fpxq, gxpyq ď fpyq ` ε, @y P K.

Note that for any x P K there exists rx ą 0 such that,

@y P Brxpxq XK, gxpyq ě fpyq ´ ε.

Since K is compact we can cover it with finitely many of the above balls

K Ă

m
ď

i“1

Bripxiq, ri :“ rxi .

Now define g P CpKq by

gpxq :“ max
␣

gx1pxq, . . . , gxmpxq
(

, @x P K.

Note that g P clA, and for y P Bripxiq we have

fpyq ´ ε ď gxj pyq ď fpyq ` ε, @j “ 1, . . . ,m.

Hence

fpyq ´ ε ď gpyq ď fpyq ` ε, @y P X.

[\

Corollary 17.4.11 (Weierstrass). For any continuous function f : ra, bs Ñ R there
exists a sequence of polynomials ppnqnPN that converges uniformly to f on ra, bs.

Proof. Let A Ă Cpra, bsq denote the algebra of polynomial functions. Clearly it contains
the constant functions and separates points because, for any distinct points x0, x1 P ra, bs,
the polynomial P1pxq “ x takes different values at x0 and x1. Thus A is dense in Cpra, bsq.

[\

Example 17.4.12. Denote by S1 the unit circle in R2

S1 :“
␣

px, yq P R2; x2 ` y2 “ 1
(

.

Clearly S1 is a compact subset of R2. The location of a point on S1 is given by the angular
coordinate θ P r0, 2πs where we agree that the point with coordinate θ “ 0 coincides with
the point with coordinate θ “ 2π. The space CpS1q of continuous functions S1 Ñ R can be
identified with the space of continuous functions f : r0, 2πs Ñ R such that fp0q “ fp2πq.
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A trigonometric polynomial of degree n P N0 is a function pn : S1 Ñ R of the form

pnpθq “ a0 `
`

a1 cos θ ` b1 sin θ
˘

` ¨ ¨ ¨ `
`

an cosnθ ` bn sinnθ
˘

.

We denote by T the space of trigonometric polynomials of arbitrary degrees. Clearly T is
a vector subspace of CpS1q and the elementary trigonometric polynomials

Enpθq “ cosnθ, Fnpθq “ sinnθ, n P N0,

form a basis of T. The functions En, Fn are well defined for any n P Z, but observe that

E´n “ En, F´n “ ´Fn.

Using the identities (5.7.1d) and (5.7.1e) we deduce that, for any m,n P Z we have

EnEm “
1

2

`

Em´n ` Em`n
˘

, FnFm “
1

2

`

Em´n ´ Em`n
˘

,

EnFm “
1

2

`

Fm`n ` Fn´m
˘

.

This proves that T is an algebra of continuous functions on S1.

Given two distinct points on S1 with angular coordinates θ0, θ1 we have
`

cos θ0, sin θ0
˘

‰
`

cos θ1, sin θ1
˘

P R2.

Hence, either E1pθ0q ‰ E1pθ1q, or F1pθ0q ‰ F1pθ1q. Thus, the algebra T separates points.
Hence T is dense in CpS1q, i.e., any 2π-periodic continuous function can be uniformly and
arbitrarily well approximated by trigonometric polynomials.

Proposition 17.4.13. Let pX, dq be a metric space and K Ă X a compact subset. Then
the Banach space

`

CpKq, } ´ }8
˘

is separable.

Proof. The compact set K is separable. Fix a dense, countable subset Y Ă K. For each
y P Y we define

µy : K Ñ R, µypxq “ dpx, yq, @x P K.

For any finite subset F “ ty1, . . . , ynu Ă Y and any function α : F Ñ N, αpyiq “ αi we
define

µF,α “ µα1
y1 ¨ ¨ ¨µ

αn
yn “

ź

yPF

µαpyqy P CpKq.

We set µH “ 1. The collection of monomials µF,α, F finite subset of Y , α : F Ñ N is
countable and we denote by A the real vector subspace of CpKq spanned by the monomials
µF,α. Clearly A is an algebra of continuous functions. It also separates points. Indeed, if
x0 ‰ x1, there exists a sequence pynq in Y such that

lim
nÑ8

yn “ x0.

Then

lim
nÑ8

µynpx0q “ 0, lim
nÑ8

µynpx1q “ dpx0, x1q ą 0.
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Thus, for n sufficiently large µynpx0q ‰ µynpx1q. Observe that the collections of linear
combinations of the form

n
ÿ

k“1

qkµFk,αk
, qk P Q

is countable and dense in A.3 In particular this countable collection is dense in CpKq.

[\

Definition 17.4.14. A Polish space is a complete, separable metric space. [\

Example 17.4.15. The Euclidean space Rn is a Polish space. A compact subset K of a
metric space is a Polish space. The Banach space CpKq is a Polish space. [\

3Can you see why?
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17.5. Exercises

Exercise 17.1. Let pX, dq be a metric space, S Ă X and x0 P S. Prove that the following
are equivalent.

(i) x0 P intpSq.

(ii) There exists r ą 0 such that Brpx0q Ă S.

Exercise 17.2. Prove Proposition 17.1.12. [\

Exercise 17.3. Let pX, dq be a metric space and S Ă X. Prove that cl
`

clS
˘

“ clS. [\

Exercise 17.4. Let pX, dq be a metric space and x˚ P X. Given a sequence pxnqnPN prove
that the following are equivalent.

(i) The sequence pxnqnPN converges to x˚.

(ii) Any subsequence of pxnqnPN has a sub-subsequence that converges to x˚.

[\

Exercise 17.5. Consider the space Cpr0, 1sq of continuous functions r0, 1s Ñ R and let

U :“
␣

f P Cpr0, 1sq; fp0q ą 0
(

.

(i) Prove that U is an open subset of the space Cpr0, 1sq equipped with the sup-
norm.

(ii) Prove that U is not an open subset of the space Cpr0, 1sq equipped with the
norm } ´ }1.

[\

Exercise 17.6. Let pX, dq be a metric space and pxnqnPN a sequence of points in X. Prove
that the following statements are equivalent.

(i) The sequence pxnq converges to x0 P X.

(ii) For any open subset U of X that contains x0 there exists N “ NU P N such
that, @n ě NU , the point xn lies in U .

In other words, the concept of convergence is a topological concept. [\

Exercise 17.7. Suppose that X is a set and S “ pSiqiPI is a collection of subsets of X.
Let U Ă X. Prove that the following are equivalent.

(i) U P TrSs; see Example 17.1.22(c).

(ii) For any x P U there exists a finite subset J “ Jx Ă I such that

x P
č

jPJx

Sj Ă U.
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[\

Exercise 17.8. Denote by D the set of dyadic numbers inside r0, 1s, i.e.,

D “
ď

nPN0

Dn, Dn “

! k

2n
; k P N0, k ď 2n

(

.

Denote by F the collection of continuous functions f : r0, 1s Ñ R with the following
properties:

‚ f
`

D
˘

Ă Q.

‚ There exists n “ npfq such that f is linear on each of the intervals
“

pk ´ 1q{2n, k{2n
‰

, k “ 1, . . . , 2n.

(i) Prove that each function f P F is uniquely determined by its restriction to Dnpfq.

(ii) Prove that F is countable.

(iii) Prove that F is dense in
`

Cpr0, 1sq, } ´ }8
˘

.

[\

Exercise 17.9. Suppose that pX, dq is a metric space and A0, A1 Ă X. We define the
distance between A0 and A1 to be the number

distpA0, A1q “ inf
pa0,a1qPA0ˆA1

dpa0, a1q.

(i) Prove that

distpA0, A1q “ inf
a0PA0

distpa0, A1q.

(ii) Prove that for any x P X we have

distpA0, A1q ď distpx,A0q ` distpx,A1q.

(iii) Suppose that X “ Rn and d is the Euclidean metric. If A0 and A1 are closed
and A0 is also bounded, then

distpA0, A1q “ 0ðñA0 XA1 ‰ H.

(iv) Suppose that X “ R2 and d is the Euclidean metric. Construct an example of
disjoint, closed, convex subsets A0, A1 Ă R2 such that

distpA0, A1q “ 0.

[\

Exercise 17.10. Prove that an open set U Ă Rn is connected if and only if it is path
connected. [\

Exercise 17.11. Prove that a set S Ă R is connected in the sense of Definition 17.1.39 if
and only if it is an interval. [\
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Exercise 17.12. Suppose that pX, dq is a metric space and S Ă X is a disconnected set.
Suppose that U0, U1 Ă X are open sets such that

U0 Y U1 Ą S, S X U0 X U1 “ H.

Show that

U0 X clpU1 X Sq “ H. [\

Exercise 17.13. Prove Proposition 17.1.50. [\

Exercise 17.14. Suppose that pX, }´ }Xq and pY, }´ }Y q are normed spaces. Prove that
if dimX ă 8, then any linear map T : X Ñ Y is continuous. [\

Exercise 17.15. Let X be a finite dimensional vector space and }´}i, i “ 0, 1, two norms
on X. Prove that the following statements are equivalent.

(i) The norms } ´ }0 and } ´ }1 are equivalent; see Definition 17.1.61.

(ii) A subset U Ă X is open with respect to } ´ }0 if and only if it is open with
respect to } ´ }1.

[\

Exercise 17.16. Suppose that pX, }´}Xq and pY, }´}Y q are normed spaces and T P BpX,Y q.
For every linear functional ξ : Y Ñ R (not necessarily continuous) we define

T ˚ξ : X Ñ R, T ˚ξpxq “ ξpTxq, @x P X.

(i) Show that if ξ is continuous, so is T ˚ξ.

(ii) Show that the induced linear operator

T ˚ : Y ˚ Ñ X˚, Y ˚ Q ξ ÞÑ T ˚ξ P X˚

is continuous.

[\

Exercise 17.17. Show that the linear operator

T :
`

Cpr0, 1sq, } ´ }8
˘

Ñ
`

Cpr0, 1sq, } ´ }8
˘

, f ÞÑ Tf

given by

pTfqpxq “

ż x

0
fpsq ds

is continuous and }T }op ď 1. [\

Exercise 17.18. Prove that any finite dimensional vector subspace of a normed space
is closed. Hint. Use Proposition 17.1.59 and the fact that in Rn any Cauchy sequence (with respect to the

Euclidean norm) is convergent. [\
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Exercise 17.19. Denote by C1
`

r0, 1s
˘

the space of differentiable functions f : r0, 1s Ñ R
with continuous derivative. For f P C1

`

r0, 1s
˘

we set

}f}C1 :“ sup
xPr0,1s

|fpxq| ` sup
xPr0,1s

|f 1pxq|.

Prove that
`

C1
`

r0, 1s
˘

, } ´ }C1

˘

is a Banach space. [\

Exercise 17.20. Denote by ℓ2 the space of sequences of real numbers

x “ pxnqnPN “ px1, x2, . . . q

such that
ÿ

nPN
x2n ă 8.

For x P ℓ2 we set

}x} :“

˜

ÿ

nPN
x2n

¸1{2

.

(i) Show that pℓ2, } ´ }q is a Banach space.

(ii) For n P N we set

en :“ p0, . . . , 0
loomoon

n´1

, 1, 0, . . . q “ pδn1, δn2, . . . q.

Suppose that α : ℓ2 Ñ R is a linear functional. Set αn :“ αpenq, @n P N. Prove
that α is continuous if and only if

ÿ

nPN
α2
n ă 8.

(iii) Show that for any continuous linear functional α : ℓ2 Ñ R we have

lim
nÑ8

αpenq “ 0.

[\

Exercise 17.21. Let pX, } ´ }q be a normed spaces. A series of elements in X
ÿ

ně1

xn

is said to be convergent if the sequence of partial sums

Sn “
n
ÿ

k“1

xn

is convergent. The series is called absolutely convergent if the series of positive numbers
ÿ

ně1

}xn}

is convergent. Prove that the following are equivalent.
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(i) pX, } ´ }q is a Banach space.

(ii) Any absolutely convergent series of elements in X is convergent.

Hint. For (i) ñ (ii) have a look at the proof of Theorem 4.6.13. For (ii) ñ piq use Lemma 17.2.14 and the

telescoping trick: a sequence in X is convergent if the series
ř

ně1pxn ´ xn´1q, x0 “ 0, is convergent. [\

Exercise 17.22. Suppose that pX, }´ }q is a normed space and Y Ă X is a finite dimen-
sional subspace.

(i) Prove that, for any x0 P X there exists y0 P Y such that

}x0 ´ y0} “ distpx0, Y q :“ inf
yPY

}x0 ´ y}.

Hint. Consider the function f : Y Ñ R, fpyq “ }y ´ x0}. Then argue as in Exercise 12.25 using

Corollary 17.1.60.

(ii) Prove that if Y ‰ X, then there exists x P X such that

1 “ }x} “ distpx, Y q.

Hint. Choose x0 P XzY . Pick y0 P Y such that }x0 ´ y0} “ distpx0, Y q. Show that

x “
1

}x0 ´ y0}
px0 ´ y0q,

will do the trick.

[\

Exercise 17.23. Suppose that pX, } ´ }q is an infinite dimensional normed space.

(i) Show that there exists a sequence of linearly independent vectors pxnqnPN in X
such that }xn} “ 1, @n P N. Set

X0 “ t0u, Xn :“ spantx1, . . . , xnu, n P N.
(ii) Show that there exists a sequence penqnPN such that

Xn “ spante1, . . . , enu, 1 “ }en} “ distpen, Xn´1q, @n P N.
Hint. Use Exercise 17.22.

(iii) Show that the sequence penq contains no convergent subsequence.

[\

Exercise 17.24. Suppose that pX, } ´ }q is a normed space, T P BpXq and pTnqnPN is a
sequence in BpXq. Prove that the following are equivalent.

(i) The sequence pTnq converges in the operator norm to T , i.e.,

lim
nÑ8

}Tn ´ T }op “ 0.

(ii) For any ε ą 0, there exists N “ Npεq ą 0 such that @x P X, }x} ď 1 and
@n ą Npεq we have }Tnx´ Tx} ă ε.

[\
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Exercise 17.25. Suppose that pX, } ´ }q is a Banach space. Prove that the space
pBpXq, } ´ }opq is also a Banach space. [\

Exercise 17.26. Suppose that pX, } ´ }q is a Banach space and A P BpXq.

(i) Prove that for any t P R the series
ÿ

ně0

tn

n!
An

is convergent in BpXq. We denote by EAptq its sum.4 Hint. Use Exercises 17.21 and

17.25.

(ii) Prove that EApt` sq “ EAptq ¨ EApsq, @s, t P R. Hint. Define

Smptq :“
m
ÿ

k“0

tk

k!
Ak.

Using Newton’s binomial formula (3.2.4) show that

}S2mpt` sq ´ SmptqSmpsq }op ď
ÿ

nąm

p|t| ` |s|qn

n!
}A}nop

and conclude that

lim
mÑ8

}S2mpt` sq ´ SmptqSmpsq }op “ 0.

(iii) Prove that for any x P X and any t P R

lim
hÑ0

1

h

´

EApt` hqx´ EAptqx
¯

“ AEAptqx.

Hint. Use (ii).

(iv) Suppose that }A}op ă 1. Prove that the series
ÿ

ně0

An

converges in BpXq and its sum is the inverse of the operator 1´A.

(v) Prove that the set of linear homeomorphisms X Ñ X is an open subset of
pBpXq, } ´ }opq.

[\

Exercise 17.27. Suppose that pX, } ´ }q is a Banach space.

(i) Prove that X is not the union of countably many proper5 finite dimensional
subspace. Hint. Use Theorem 17.1.59 to prove that a finite dimensional subspace is closed and has

empty interior if it is a proper subspace. Conclude using Theorem 17.2.19.

(ii) Prove that if X is infinite dimensional, then it does not admit a countable basis.
Hint. Use (i)

[\

4If A were a real number then EAptq “ etA.
5A subspace V of X is proper if V ‰ X.
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Exercise 17.28. Suppose that f : r0,8q Ñ R is a continuous function such that

@x ą 0, lim
nÑ8

fpnxq “ 8.

(i) Let 1 ď a ă b. Show that for any k P N the union
ď

něk

pna, nbq

contains an interval of the form pr,8q for some r ě 1.

(ii) For c ą 0 and m P N we set

Xc :“
␣

x ě 1; fpxq ě c
(

, Ac,m “
␣

x ě 1; nx P Xc, @n ě m
(

.

Prove that Ac,m is closed and,
ď

mPN
Ac,m “ r1,8q.

(iii) Prove that for any c ą 0, there exists m P N and 1 ď a ă b such that
pa, bq Ă Ac,m. Hint. Use Theorem 17.2.19.

(iv) Prove that

lim
xÑ8

fpxq “ 8. (17.5.1)

Hint. Express (17.5.1) using the sets Xc.

[\

Exercise 17.29. Let X denote the vector space of sequences of real numbers

x “ px1, x2, . . . , xn, . . . q

such that all but finitely many terms are 0. For x P X we set

}x} “ sup
n
|xn|.

(i) Show that pX, } ´ }q is a normed space, but it is not complete.

(ii) Construct a countable basis6 of X.

(iii) For n P N define Tn : X Ñ X

Tnx “ px1, 2x2, . . . , nxn, 0, . . . q.

Prove that Tn is continuous and }Tn}op “ n.

(iv) Prove that for any x P X the sequence Tnx converges in X. Denote by Tx its
limit. Show that the resulting operator T : X Ñ X is linear but not continuous.

[\

6Compare with Exercise 17.27(ii).
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Exercise 17.30 (Banach-Steinhaus). Suppose that pX, }´}Xq and pY, }´}Y q are Banach
spaces and pTnqnPN is a sequence of bounded linear operators Tn : X Ñ Y . Assume that
@x P X the sequence Tnx is convergent (in Y ). We denote by Tx its limit.

(i) Show that the map T : X Ñ Y , x ÞÑ Tx is linear.

(ii) For x P X we set

cpxq :“ sup
nPN

}Tnx}Y .

Show that cpxq ă 8.

(iii) For k P N we set

Xk :“
␣

x P X; cpxq ď k
(

.

Prove that, @k P N the set Xk is closed and nonempty and

X “
ď

kPN
Xk.

(iv) Prove that the limiting operator T is continuous. Hint. Show that Xk has nonempty

interior for some k. Prove first that the function x ÞÑ }Tx} is bounded on some ball in X. Show that

this implies that the function x ÞÑ }Tx} is also bounded on the unit ball centered at 0. Conclude that

T is continuous.

[\

Remark 17.5.1. The example in Exercise 17.29 shows that the conclusion (iv) of Exercise
17.30 may not hold if we do not assume that X is a Banach space. [\

Exercise 17.31 (Riesz). Suppose that pX, } ´ }q is a normed space. Prove that the
following are equivalent.

(i) The space X is finite dimensional.

(ii) The unit ball

B1p0q :“
␣

x P X; }x} ă 1
(

is relatively compact.

Hint. For (ii) ñ (i) use Exercise 17.23. [\

Exercise 17.32. Suppose that pX, } ´ }q is a separable Banach space and S Ă X. Prove
that the following are equivalent.

(i) The set S is relatively compact.

(ii) The set S is bounded and for any ε ą 0 there exists a finite dimensional subspace
Y Ă X such that

distps, Y q ă ε, @s P S.

[\



17.5. Exercises 735

Exercise 17.33. Suppose that pX, dXq, pY, dY q are metric spaces, pX, dq is compact.
Prove that a continuous bijection F : X Ñ Y is a homeomorphism. [\

Exercise 17.34. Let pX, dq be a metric space and K Ă X a compact subset. Suppose
that F Ă CpKq is a family of continuous functions with the property that there exist
C0, C1 ą 0 such that

|fpxq| ď C0, |fpxq ´ fpyq| ď C1dpx, yq, @f P F, @x, y P K.

Prove that the family F is relatively compact in CpKq. [\

Exercise 17.35. Suppose that U Ă Rm is a convex open set and fn : U Ñ R is a sequence
of C1-functions such that

| fnpxq | ď 1, @x P U, n P N.

Suppose additionally that K Ă U is a compact subset such that

sup
nPN

sup
xPK

}∇fnpxq} ă 8,

where } ´ } denotes the Euclidean norm in Rm. Prove that pfnq contains a subsequence
that converges uniformly on K. [\

Exercise 17.36. Suppose that f, g : r0, 1s Ñ R are two continuous functions such that
ż 1

0
fpxqxndx “

ż 1

0
gpxqxndx, @n P N0.

Show that fpxq “ gpxq, @x P r0, 1s. Hint. Use Corollary 17.4.11 and Exercise 9.9. [\

Exercise 17.37. Suppose that pX, dq is a compact metric space and A Ă CpXq is an
algebra of continuous functions. Prove that its closure in CpXq with respect to the sup-
norm is also an algebra of functions. [\

Exercise 17.38. For each n P N consider the continuous function fn : R Ñ R whose
graph is depicted in Figure 17.3. Prove that fn converges pointwisely to the 0 as nÑ 8

but the convergence is not uniform on r0, 1s. [\

Exercise 17.39. Suppose that pX, dq is a metric space and f : X Ñ R is a function with
the following properties.

‚ f is lower semicontinuous, i.e., for any c P R the set
␣

f ď c
(

:“
␣

x P X; fpxq ď c
(

is closed.

‚ f is coercive, i.e., for any c P R the set
␣

f ď c
(

is precompact.
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1

1/n 2/n

Figure 17.3. The graph of fn.

Prove that there exists x0 P X such that fpx0q ď fpxq, @x P X.7 Hint. Show that Dc P R

such that tf ď cu “ H and conclude that infxPX fpxq ą ´8. [\

Exercise 17.40. Suppose that K P C1
`

R2
˘

. For any f P Cpr0, 1sq denote by TKf the
function

TKf : r0, 1s Ñ R, TKfptq “

ż 1

0
Kpt, sqfpsqds.

(i) Show that TK defines a bounded linear operator TK : Cpr0, 1sq Ñ Cpr0, 1sq.

(ii) Suppose that pfnqně1 is a bounded sequence in Cpr0, 1sq, i.e., there exists C ą 0
such that

@n P N, sup
tPr0,1s

|fnptq| ď C.

Prove that the sequence gn “ TKfn admits a subsequence that converges uni-
formly on r0, 1s. Hint. Use Corollary 17.4.4.

(iii) Show that ker
`

1´ TK
˘

is finite dimensional. Hint. Use Exercise 17.31.

[\

Exercise 17.41. Suppose that pX, dq is a compact metric space. Let CpXq denote the
Banach space of continuous functions X Ñ R with norm

}f} “ sup
xPX

|fpxq|.

An ideal of CpXq, is a vector subspace I Ă CpXq such that

@f P CpXq, g P I; f ¨ g P I.

7The result in Exercise 17.39 is a version of the Fundamental Lemma of the Calculus of Variations.
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The ideal is called closed if it is closed as a subset of the Banach space CpXq. For any
ideal I we set

ZpIq :“
␣

x P X; fpxq “ 0, @f P I
(

.

(i) Let C Ă X be a closed subset and set

VpCq :“
␣

f P CpXq; fpxq “ 0, @x P C
(

.

Prove that IpCq is a closed ideal and Z
`

IpCq
˘

“ C.

(ii) Prove that for any ideal I, the set ZpIq Ă X is a closed subset of X and
V
`

ZpIq
˘

Ą cl
`

I
˘

.

(iii) Let I be an ideal. Prove that for any closed set S Ă X such that S X ZpIq “ H
there exists a nonnegative function gS P I such that gSpxq ą 0, @x P S. Hint. Use

the compactness ofX to show that there exist functions g1, . . . , gm P I such that g1pxq2`¨ ¨ ¨`gmpxq2 ą 0,

@x P S.

(iv) Let I be an ideal and V “ VpIq. Let f P IpVq. For ε ą 0 we set Sε :“ t|f | ě εu
and denote by gε the nonnegative function gSε P I found in (ii). Set hε,n :“ ngε

1`ngε
.

Prove that there exists N “ Npε, fq ą 0 such that

}f ´ fhε,n} ă ε, @n ă N.

(v) Show that for any ideal I of CpXq we have I
`

VpIq
˘

“ cl
`

I
˘

.

[\

Exercise 17.42 (Gelfand). Suppose that pX, dq is a compact metric space. Let CpXq
denote the Banach space of continuous functions X Ñ R with norm

}f} “ sup
xPX

|fpxq|.

An ideal I Ă CpXq is called maximal if I ‰ CpXq and there exists no ideal eJ such that
I Ĺ J Ĺ CpXq. Denote by M the set of maximal ideals.

(i) For x0 P X we denote by Ix0 the ideal consisting of continuous functions f such
fpx0q “ 0. Prove that Ix0 is a maximal ideal.

(ii) Prove that the map

X Q x0 ÞÑ Ix0 PM

is a bijection.

Hint. Use Exercise 17.41. [\

Remark 17.5.2. Exercise 17.41 is sometimes referred to as topological Nullstellensatz
since it closely resembles Hilbert’s famous algebraic result with the same name.

We denote by Ideal pXq the set of closed ideals of CpXq, and by CX the family of
closed subsets of X. The above result shows that we have a bijection

CX Q C ÞÑ IpCq P Ideal pXq
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with inverse

Ideal pXq Q I ÞÑ ZpIq P CX .

This is a Galois correspondence, i.e.,

C1 Ĺ C2ðñ IpC1q Ľ IpC2q, I1 Ĺ I2ðñZpI1q Ľ ZpI1q.

The concept of maximal ideal in Exercise 17.42 is purely algebraic because it can be defined
for any commutative ring. One of the conclusions of this exercise is that the maximality
in the ring CpXq carries topological information. Indeed, since any maximal ideal is of the
form Ix0 we deduce that any maximal ideal is a closed ideal. We can define the closure of
a set S Ă X to be

clpSq “ Z

˜

č

xPS

Ix

¸

.

[\

Exercise 17.43. Set B :“ t0, 1u, and denote by X the space of functions f : NÑ B. We
define a metric on X by setting

dpf, gq “
ÿ

nPN

1

2n
ˇ

ˇ fpnq ´ gpnq
ˇ

ˇ.

(i) For r P p0, 1q we denote by Σr the sphere of center 0 and radius r in X,

Σr “

#

f P X;
ÿ

nPN

fpnq

2n
“ r

+

.

Prove that Σ1{2 consists of two points, while Σ1{3 consists of a single point.

(ii) Let pfνqνPN be a sequence in X. Prove that dpfν , fq Ñ 0 as ν Ñ 8 if and only
if, for any k P N, there exists N “ Nk P N such that

@ν ě Nk, @i ď k fνpiq “ fpiq.

(iii) Given m P N and a subset S Ă Bm we set

CS :“
␣

f P X;
`

fp1q, . . . , fpmq
˘

P S u.

Prove that CS is both closed and open in X.
(iv) Prove that the metric space X is compact. Hint. Use (ii) to show that any sequence in

X contains a convergent subsequence. Use Cantor’s diagonal subsequence trick also employed in the

proof of Theorem 17.2.13.

[\

Exercise 17.44. Let T P Cpr0, 1sq denote the vector subspace spanned by the functions

en : r0, 1s Ñ R, enpxq “ cospπnxq, n “ 0, 1, 2, . . . .

Prove that T is an R-algebra of functions dense in the Banach space
`

Cpr0, 1sq, }´}8
˘

.[\



17.6. Exercises for extra credit 739

Exercise 17.45. Denote by Cpr0,8sq the vector space of continuous functions r0,8q Ñ R
that have finite limit at 8. For f P Cpr0,8sq we set

}f} :“ sup
tě0
|fptq|.

(i) Prove that pCpr0,8sq, } ´ }q is Banach space.

(ii) Prove that the family of functions eλ P Cpr0,8sq, λ ě 0, eλptq “ e´λt, @t ě 0,
spans a vector subspace dense is Cpr0,8sq with respect to the norm } ´ }.

[\

17.6. Exercises for extra credit

Exercise* 17.1. Consider the subset S of R2 defined by (see Figure 17.4)

S :“
␣ `

x, sinp1{xq
˘

;x ą 0
(

Y
␣

p0, 0q, p0, 1q, p0,´1q
(

.

Prove that S is connected yet it is not path connected. [\

Figure 17.4. The graph of sinp1{xq x ą 0 with three points added.

Exercise* 17.2. Suppose that pX, } ´ }q is a normed space and α : X Ñ R a linear
function. Set

Z :“ kerα “
␣

x P X; αpxq “ 0
(

.

Prove that the following are equivalent.

(i) The function α is continuous.

(ii) The subset Z is closed.

[\
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Exercise* 17.3. Suppose that pX, } ´ }q is a real normed space and α1, . . . , αn P X
˚ are

continuous linear functionals on X. Suppose that α P X˚ is another continuous linear
functional such that αpxq “ 0 for any x P X such that α1pxq “ ¨ ¨ ¨ “ αnpxq “ 0. Prove
that there exist constants c1, . . . , cn P R such that

α “
n
ÿ

k“1

ckαk.

[\

Exercise* 17.4. Let pX, }´}q be a normed space. Prove that the following are equivalent.

(i) dimX ă 8.

(ii) Any other norm on X is equivalent to the norm } ´ }.

[\

Exercise* 17.5. Let pX, } ´ }q be a Banach space and A P BpXq. Prove that for any
t P R we have

lim
nÑ8

›

›

›

´

1`
t

n
A
¯n
´ EAptq

›

›

›

op
“ 0,

where 1 denotes the identity operator X Ñ X and EAptq is the exponential defined in
Exercise 17.26. [\

Exercise* 17.6. Suppose that fn P Cpr0, 1sq is a sequence of continuous nondecreasing
functions that converges pointwisely to a continuous function. Show that pfnq converges
uniformly to f . [\



Chapter 18

An Introduction to
Ordinary Differential
Equations

Differential equations have been investigated since the dawn of calculus, as they have
appeared in many questions from physics. Their study contributed in a rather substan-
tial fashion to the development of modern analysis, and conversely, the developments in
analysis provided more and more powerful tools for investigating such equations. In the
meantime they found applications in other branches of mathematics, science and econom-
ics.

The field of differential equations is very broad and the many different classes of
equations or types of questions require very different techniques. The present chapter has
a rather modest goal, to introduce you to the rigorous foundations of this subject. We will
cover only a few topics: local existence and uniqueness, global existence and uniqueness,
continuous dependence of data, linear systems of differential equations. These topics are
absolutely necessary for any more in-depth investigation of this topic.

Our presentation follows closely the wonderfully efficient book of Viorel Barbu [3], but
we will cover only very few of the topics of that book.

18.1. Basic concepts and examples

18.1.1. The concept of differential equation. Loosely speaking, a differential equa-
tion is an equation whose unknown is a function depending on one or several variables and
describing a relationship between this function and its derivatives up to a certain order.
The highest order of the derivatives of the unknown function that are involved in this
equation is called the order of the differential equation. If the unknown function depends

741
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on several variables, then the equation is called a partial differential equation, or p.d.e..
If the unknown function depends on a single variable, the equation is called an ordinary
differential equation, or o.d.e..

A first order o.d.e. has the general form

F pt, x, x1q “ 0, (18.1.1)

where t is the argument of the unknown function x “ xptq, x1ptq “ dx
dt is its derivative,

and F is a real valued function defined on a domain of the space R3.

We define a solution of (18.1.1) on the interval I “ pa, bq of the real axis to be a
continuously differentiable function x : I Ñ R that verifies the equation (18.1.1) on I, i.e.,

F
`

t, xptq, x1ptq
˘

“ 0, @t P I.

When I is an interval of the form ra, bs, ra, bq or pa, bs, the concept of solution on I is
defined similarly.

In certain situations, the implicit function theorem allows us to reduce (18.1.1) to an
equation of the form

x1 “ fpt, xq, (18.1.2)

where f : ΩÑ R, with Ω an open subset of R2. In the sequel we will investigate exclusively
equations in the form (18.1.2), henceforth referred to as normal form.

From a geometric viewpoint, a solution of (18.1.1) is a curve in the pt, xq-plane, having
at each point a tangent line that varies continuously with the point. Such a curve is called
an integral curve of the equation (18.1.1). In general, the set of solutions of (18.1.1) is
infinite and we will (loosely) call this set the general solution.

We can specify a solution of (18.1.1) by imposing certain conditions. The most fre-
quently used is the initial condition or Cauchy condition

xpt0q “ x0, (18.1.3)

where t0 P I and x0 P R are a priori given and are called initial values.

The Cauchy problem associated to (18.1.1) asks to find a solution x “ xptq of (18.1.1)
satisfying the initial condition (18.1.3). Geometrically, the Cauchy problem amounts to
finding an integral curve of (18.1.1) that passes through a given point pt0, x0q P R2.

The above discussion extends naturally to first order differential systems of the form

x1i “ fipt, x1, . . . , xnq, i “ 1, . . . , n, t P I, (18.1.4)

where f1, . . . , fn are functions defined on an open subset of Rn`1. By solution of the system
(18.1.4) we understand a collection of continuously differentiable functions tx1ptq, . . . , xnptqu
on the interval I Ă R that satisfy (18.1.4) on this interval, i.e.,

x1iptq “ fi
`

t, x1ptq, . . . , xnptq
˘

, i “ 1, . . . , n, t P I, (18.1.5a)

xipt0q “ x0i , i “ 1, . . . , n, (18.1.5b)
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where t0 P I and px
0
1, . . . , x

0
nq is a given point in Rn. Just as in the scalar case, we will refer

to (18.1.5a)-(18.1.5b) as the Cauchy problem associated to (18.1.4). The above system can
be written more succinctly by considering the map

F : I ˆ Rn Ñ Rn, F pt,xq “

»

—

–

f1pt,xq
...

fnpt,xq

fi

ffi

fl

, x “

»

—

–

x1
...
xn

fi

ffi

fl

.

Then (18.1.5a)-(18.1.5b) can be rewritten as

x1ptq “ F
`

t,xptq
˘

, xpt0q “ x
0, x : I Ñ Rn. (18.1.6)

When the map F is independent of t, the system of equations is called autonomous. Any
non-autonomous system

x1ptq “ F
`

t,xptq
˘

can be converted to an autonomous one using the following simple trick. Introduce new
variables

y “ py0, y1, . . . , ynq

and the new map

pF pyq “

»

—

—

—

–

F̂0pyq

F̂1pyq
...

F̂npyq

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1
F0py0, y1, . . . , ynq

...
Fnpy0, y1, . . . , ynq

fi

ffi

ffi

ffi

fl

.

Then xptq is a solution of (18.1.6) if and only iff yptq “
`

t,xptq
˘

is a solution of

y1ptq “ pF pyq, y0pt0q “ t0, ykpt0q “ x0k, @k “ 1, . . . , k.

Let us mention a simple fact that we will use frequently in the sequel namley that the
Cauchy problem (18.1.6) is equivalent to the integral equation

xptq “ x0 `

ż t

t0

F
`

s,xpsq
˘

ds.

Indeed, this is a simple application of the Fundamental Theorem of Calculus.

From a geometric point of view, a solution of the system (18.1.4) is a path in the space
Rn. In many situations or phenomena modeled by differential systems of the type (18.1.4),
the collection

`

x1ptq, . . . , xnptq
˘

represents the coordinates of the state of a system at

time t, and thus the trajectory t ÞÑ
`

x1ptq, . . . , xnptq
˘

describes the evolutions of that
particular system. For this reasons, the solutions of a differential system are often called
the trajectories of the system.

Consider now ordinary differential equations of order n, that is, having the form

F
`

t, x, x1, . . . , xpnq
˘

“ 0, (18.1.7)
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where F is a given function. Assuming it is possible to solve for xpnq, we can reduce the
above equation to its normal form

xpnq “ f
`

t, x, . . . , xpn´1q
˘

. (18.1.8)

By solution of (18.1.8) on the interval I we understand a function of class Cn on I (that
is, a function n-times differentiable on I with continuous derivatives up to order n) that
verifies (18.1.8) at every t P I. The Cauchy problem associated to (18.1.8) asks to find a
solution of (18.1.8) that satisfies the conditions

xpt0q “ x00, x1pt0q “ x01, . . . , x
pn´1qpt0q “ x0n´1, (18.1.9)

where t0 P I and x00, x
0
1, . . . , x

0
n´1 are given.

Via a simple transformation we can reduce the equation (18.1.8) to a system of type
(18.1.4). To this aim, we introduce the new unknown functions x1, . . . , xn using the
unknown function x by setting

x1 :“ x, x2 :“ x1, . . . , xn :“ xpn´1q. (18.1.10)

With these notations, the equation (18.1.8) becomes the differential system

x11 “ x1
x12 “ x3
...

...
...

x1n “ fpt, x1, . . . , xnq.

(18.1.11)

Conversely, any solution of (18.1.11) defines via (18.1.10) a solution of (18.1.8). The
change in variables (18.1.10) transforms the initial conditions (18.1.9) into

xipt0q “ x0i´1, i “ 1, . . . , n.

The above procedure can also be used to transform differential systems of order n (that
is, differential systems containing derivatives up to order n) into differential systems of
order 1.

Most differential equations cannot be solved explicitly. There are though a few classical
classes of differential equations whose solutions can be determined “by hand”. We describe
below some of these situations.

18.1.2. Separable equations. These are equations of the form

dx

dt
“ fptqgpxq, x “ xptq, t P I “ pa, bq, (18.1.12)

where f is a continuous function on pa, bq and g is a continuous function on a, possibly
unbounded, interval px1, x2q.

Here is the classical approach to this type of equations. Multiplying both sides by dt
we can rewrite (18.1.12) as

dx

gpxq
“ fptqdt.
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Integrating from t0 to t, where t0 is an arbitrary point in I we deduce
ż xptq

x0

du

gpuq

u“xpsq
“

ż t

t0

x1psqds

gpxpsqq
“

ż t

t0

fpsqds. (18.1.13)

We set

Gpxq :“

ż x

x0

du

gpuq
. (18.1.14)

The function G is obviously continuous and monotone on the interval px1, x2q. It is thus
invertible and its inverse has the same properties. We can rewrite (18.1.13) as

xptq “ G´1
ˆ
ż t

t0

fpsqds

˙

, t P I. (18.1.15)

We have thus obtained a formula describing the solution of (18.1.12) satisfying the Cauchy
condition xpt0q “ x0.

If the above argument sounds fishy1, here is an alternate one. Note that (18.1.12) can
be rewritten as

d

dt
G
`

xptq
˘

“ G1
`

xptq
˘dx

dt
“ fptq.

Hence Gpxptqq is an antiderivative of fptq.

Conversely, a function x given by the equality (18.1.15) is continuously differentiable
on I and its derivative satisfies

x1ptq “
fptq

G1pxq
“ fptqgpxq.

In other words, x is a solution of (18.1.12). Of course, xptq is only defined for those values

of t such that
şt
t0
fpsqds lies in the range of G.

By way of illustration consider the o.d.e.

x1 “ p2´ xq tan t, t P
´

0,
π

2

¯

.

Arguing as in the general case, we rewrite this equation in the form

dx

2´ x
“ tan t dt.

We integrate the above equality
ż x

x0

dθ

2´ θ
“

ż t

t0

tan s ds, t0, t P
´

0,
π

2

¯

, xpt0q “ x0,

and we deduce

ln
|xptq ´ 2|

|x0 ´ 2|
“ ´ ln

| cos t|

| cos t0|
“ ln

cos t0
cos t

.

If we set C :“ |x0 ´ 2| cos t0 we deduce that the general solution is given by

xptq “
C

cos t
` 2, t P

´

0,
π

2

˘

,

1Why can one treat the derivative dx
dt

as if it were a genuine fraction?
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where C is an arbitrary constant.

Let us consider the initial value problem

x1ptq “ 1` x2, xp0q “ 0.

We have

d
`

arctanx
˘

“
dx

1` x2
“ dt

so

arctanxptq “ t` C.

Since xp0q “ 0 we deduce C “ arctanp0q “ 0 so xptq “ tan t. Note that

lim
tÑ˘π{2

xptq “ ˘8, (18.1.16)

so the solution xptq is well defined only on the interval p´π{2, π{2q. The blow-up phenom-
enon described by (18.1.16) is not an oddity. It occurs in many other situations and it is
rather something to be expected.

18.1.3. Homogeneous equations. Consider the differential equation

x1 “ hpx{tq, (18.1.17)

where h is a continuous function defined on an interval ph1, h2q. We will assume that
hprq ‰ r for any r P ph1, h2q. The equation (18.1.17) is called a homogeneous differential
equation. It can be solved by introducing a new unknown function u defined by the
equality x “ tu. The new function u satisfies the separable differential equation

tu1 “ hpuq ´ u

which can be solved by the method described in Subsection 18.1.2. We have to mention
that many first order o.d.e.-s can be reduced by simple substitutions to separated or
homogeneous differential equations.

Consider for example the differential equation

x1 “
at` bx` c

a1t` b1x` c1
,

where a, b, c and a1, b1, c1 are constants. This equation can be reduced to a homogeneous
equation of the form

dy

ds
“

as` by

a1s` b1y

by making the change in variables

s :“ t´ t0, y :“ x´ x0,

where pt0, x0q is a solution of the linear algebraic system

at0 ` bx0 ` c “ a1t0 ` b1x0 ` c1 “ 0.
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18.1.4. First order linear differential equations. Consider the differential equation

x1 “ aptqx` bptq, (18.1.18)

where a and b are continuous functions on the, possibly unbounded, interval pt1, t2q. To
solve (18.1.18) we multiply both sides of this equation by

exp

ˆ

´

ż t

t0

apsqds

˙

,

where t0 is some point in pt1, t2q. We obtain

d

dt

ˆ

exp

ˆ

´

ż t

t0

apsqds

˙

xptq

˙

“ bptq exp

ˆ

´

ż t

t0

apsqds

˙

.

Hence, the general solution of (18.1.18) is given by

xptq “ exp

ˆ
ż t

t0

apsqds

˙ˆ

x0 `

ż t

t0

bpsq exp

ˆ

´

ż s

t0

apτqdτ

˙

ds

˙

, (18.1.19)

where x0 is an arbitrary real number. Conversely, derivating (18.1.19) we deduce that
the function x defined by this equality is the solution of (18.1.18) satisfying the Cauchy
condition xpt0q “ x0.

Consider now the differential equation

x1 “ aptqx` bptqxα, (18.1.20)

where α is a real number not equal to 0 or 1. The equation (18.1.20) is called a Bernoulli
type equation and can be reduced to a linear equation using the substitution y “ x1´α.

Indeed, x “ y1{p1´αq so

x1 “
1

1´ α
y

α
1´α y1

ax` bxα “ ay
1

1´α ` by
α

1´α .

Hence
1

1´ α
y

α
1´α y1 “ ay

1
1´α ` by

α
1´α ,

and we conclude

y1 “ p1´ αqay ` p1´ αqb.

18.1.5. Riccati equations. Named after Jacopo Riccati (1676-1754), these equations
have the general form

x1 “ aptqx` bptqx2 ` cptq, t P I, (18.1.21)

where a, b, c are continuous functions on the interval I. In general, the equation (18.1.21)
is not solvable by quadratures but it enjoys several interesting properties which we will
dwell upon later. Here we only want to mention that if we know a particular solution φptq
of (18.1.21), then using the substitution y “ x ´ φ we can reduce the equation (18.1.21)
to a Bernoulli type equation (18.1.20) in y.
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Indeed, we have x “ y ` φ so

py ` φq1 “ apy ` φq ` bpy ` φq2 ` c “ aφ` by2 ` 2bφy ` bφ2 ` c.

Using the equality φ1 “ aφ` bφ2 ` c we deduce

y1 “ pa` 2bφq
loooomoooon

A

y ` bφ2 “ Ay ` bφ2.

We leave to the reader the task of verifying this fact.

18.1.6. Lagrange equations. These are equations of the form

x “ tφpx1q ` ψpx1q, (18.1.22)

where φ and ψ are two continuously differentiable functions defined on a certain interval
of the real axis such that φppq ‰ p, @p. Assuming that x is a solution of (18.1.22) on the
interval I Ă R, we deduce after differentiating that

x1 “ φpx1q ` tφ1px1qx2 ` ψ1px1qx2, (18.1.23)

where x2 “ d2x
dt2

. We denote by p the function x1 and we observe that (18.1.23) implies
that

p “ φppq ` tφ1ppq
dp

dt
` ψ1ppq

dp

dt
,

dp

dt

`

tφ1ppq ` ψ1ppq
˘

“ p´ φppq,

dt

dp
“

1
dp
dt

“
φ1ppq

p´ φppq
t`

ψ1ppq

p´ φppq
. (18.1.24)

We can interpret (18.1.24) as a linear o.d.e. with unknown t, viewed as a function of p.
Solving this equation using formula (18.1.19) we obtain for t an expression of the form

t “ App, Cq, (18.1.25)

where C is an arbitrary constant. Using this in (18.1.22) we deduce that

x “ App, Cqφppq ` ψppq. (18.1.26)

If we interpret p as a parameter, the equalities (18.1.25) and (18.1.26) define a parametriza-
tion of the curve in the pt, xq-plane described by the graph of the function x. In other
words, the above method leads to a parametric representation of the solution of (18.1.22).
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18.1.7. Clairaut equations. Named after Alexis C. Clairaut (1713-1765), these equa-
tions correspond to the degenerate case φppq ” p of (18.1.22) and they have the form

x “ tx1 ` ψpx1q. (18.1.27)

Derivating the above equality we deduce

x1 “ tx2 ` x1 ` ψ1px1qx2

and thus

x2
`

t` ψ1px1q
˘

“ 0. (18.1.28)

We distinguish two types of solutions. The first type is defined by the equation x2 “ 0.
Hence

x “ C1t` C2, (18.1.29)

where C1 and C2 are arbitrary constants. Using (18.1.29) in (18.1.27) we see that C1 and
C2 are not independent but are related by the equality

C2 “ ψpC1q.

Therefore

x “ C1t` ψpC1q, (18.1.30)

where C1 is an arbitrary constant. This is the general solution of the Clairaut equation. .

A second type of solutions is obtained from (18.1.28),

t` ψ1px1q “ 0. (18.1.31)

Proceeding as in the case of Lagrange equations, we set p :“ x1 and we obtain from
(18.1.31) and (18.1.27) the parametric equations

t “ ´ψ1ppq
x “ ´ψ1ppqp` ψppq

(18.1.32)

that describe a function called the singular solution of the Clairaut equation (18.1.27). It
is not difficult to see that the solution (18.1.32) does not belong to the family of solutions
(18.1.30). Geometrically, the curve defined by (18.1.32) is the envelope of the family of
lines described by (18.1.30).

18.1.8. Integral inequalities. This subsection is devoted to the investigation of the
following ubiquitous linear integral inequality

xptq ď bptq `

ż t

t0

apsqxpsqds, t P ra, bs. (18.1.33)

We assume that

‚ the functions x, bptq and aptq are continuous on rt0, t1s and

‚ aptq ě 0, @t P rt0, t1s.

The next result, usually referred to as Gronwall’s inequality is the main tool for ob-
taining a priori estimates of solutions of o.d.e.-s.
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Lemma 18.1.1 (Gronwall). If the above conditions are satisfied, then xptq satisfies the
inequality

xptq ď bptq `

ż t

t0

apsqbpsqepAptq´Apsq qds, (18.1.34)

where

Aptq “

ż t

t0

apτqdτ.

Proof. We set

yptq :“

ż t

t0

apsqxpsqds.

Then y1ptq “ aptqxptq and (18.1.33) can be restated as xptq ď bptq ` yptq. Since ψptq ě 0,
we have

aptqxptq ď aptq ` bptqyptq,

and we deduce that

y1ptq “ aptqxptq ď aptq ` bptqyptq.

We multiply both sides of the above inequality with e´Aptq to obtain

d

dt

´

yptqe´Aptq
¯

ď aptqbptqe´Aptq.

Integrating we obtain

yptq ď eAptq
ż t

t0

apsqbpsqe´Apsqds “

ż t

t0

apsqbpsqepAptq´Apsq qds. (18.1.35)

We reach the desired conclusion by recalling that xptq ď bptq ` yptq. [\

Corollary 18.1.2. Let x : rt0, t1s Ñ r0,8q be a continuous nonnegative function satisfying
the inequality

xptq ďM `

ż t

t0

apsqxpsqds, (18.1.36)

where M is a positive constant and ψ : rt0, t1s Ñ R is a continuous positive function.
Then

xptq ďMeAptq, Aptq “

ż t

t0

apsqds, @t P rt0, t1s. (18.1.37)

Remark 18.1.3. The above inequality is optimal in the following sense: if we have
equality in (18.1.36), then we have equality in (18.1.37) as well. Note also that we can
identify the right-hand-side of (18.1.37) as the unique solution of the linear Cauchy problem

u1ptq “ aptquptq, upt0q “M.

Thus we have equality in(18.1.37) if we have equality in (18.1.36). [\
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Proof. Observe first that

apsqepAptq´Apsq q “ ´
d

ds
epAp tq´Apsq

˘

.

When bptq “M , @t P ra, bs the right-hand side of (18.1.34) becomes

M `M

ż t

t0

apsqepAptq´Apsq qds “M ´MepAptq´Apsq q
ˇ

ˇ

ˇ

s“t

s“t0
“MeAptq.

[\

We will frequently use Gronwall’s inequality to produce a priori estimates of solutions
of o.d.e.-s and systems of o.d.e.-s. In the remainder of this section we will discuss two
slight generalizations of this inequality.

Proposition 18.1.4. Let x : ra, bs Ñ R be a continuous function that satisfies the in-
equality

1

2
xptq2 ď

1

2
x20 `

ż t

a
ψpsq|xpsq|ds, @t P ra, bs, (18.1.38)

where ψ : ra, bs Ñ p0,8q is a continuous positive function. Then xptq satisfies the inequal-
ity

|xptq| ď |x0| `

ż t

a
ψpsqds, @t P ra, bs. (18.1.39)

Proof. For ε ą 0 we define

yεptq :“
1

2
px20 ` ε

2q `

ż t

a
ψpsq|xpsq|ds, @t P ra, bs.

Using (18.1.38) we deduce

xptq2 ď 2yεptq, @t P ra, bs. (18.1.40)

Combining this with the equality

y1εptq “ ψptq|xptq|

and (18.1.38) we conclude that

y1εptq ď
a

2yεptqψptq, @t P ra, bs.

Integrating from a to t we deduce

a

2yεptq ď
a

2yεpaq `

ż t

a
ψpsqds, @t P ra, bs.

Using (18.1.40) we deduce

|xptq| ď
a

2yεpaq ` `

ż t

a
ψpsqds ď |x0| ` ε`

ż t

a
ψpsqds, @t P ra, bs.

Letting εÑ 0 in the above inequality we obtain (18.1.39). [\
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18.2. Existence and uniqueness for the Cauchy
problem

In this section we will use the sup-norm on Rn. Thus if x “ px1, . . . , xnq then

}x} :“ max
`

|xk|, k “ 1, . . . , n
˘

,

while }x}2 denotes the Euclidean norm

}x}2 “
b

x21 ` ¨ ¨ ¨ ` x
2
n.

18.2.1. Picard’s existence theorem. Let Ω Ă Rˆ Rn “ Rn`1 be an open set, I Ă R
and open interval. Consider a continuous map

F : ΩÑ Rn, Ω Q pt,xq ÞÑ F pt,xq P Rn.

Fix pt0,x
0q P Ω. We want to describe a simple and very useful condition that guarantees

local existence and unicity of the Cauchy problem

x1ptq “ F
`

t,xptq
˘

, xpt0q “ x
0. (18.2.1)

The actual precise statement is a bit of a mouthful.

Theorem 18.2.1 (E. Picard). For a, b ą 0 we denote by ∆a,b the pn`1q-dimensional box
␣

t P R; |t´ t0| ď a
(

ˆ
␣

x P Rn; }x´ x0} ď b
(

.

Fix a, b such that ∆a,b Ă Ω. Suppose that the following hold.

(i) The map F is continuous.

(ii) The map F is locally Lipschitz in the x-variable, i.e., for any compact subset
K Ă Ω there exists L “ LK ą 0 such that if pt,xq, pt,yq P K, then

}F pt,xq ´ F pt,yq} ď L}x´ y}. (18.2.2)

Set

L0 :“ L∆a,b
, M :“ sup

pt,xqP∆a,b

}F pt,xq},

δ :“ min

ˆ

a,
b

M

˙

, J :“ rt0 ´ δ, t0 ` δs.
(18.2.3)

Then there exists a unique solution of (18.2.1) defined on the interval J .

Proof. We present a modern proof based on Banach’s fixed point theorem.

We consider the set

X :“
␣

x P CpJ,Rnq; }xptq ´ x0} ď b, @t P J
(

. (18.2.4)

Note that for any x P X we have
`

t,xptq
˘

P ∆a,b Ă I ˆ Ω, @t P J.
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We equip X with the metric

d˚px,yq “ sup
tPJ
}xptq ´ yptq}e´2L0|t´t0|, (18.2.5)

where L0 is the Lipschitz constant in (18.2.2). The set X equipped with this metric is
complete as a closed subset of the Banach space CpJ,Rnq equipped with the norm

}x}˚ :“ sup
tPJ
}xptq}e´2L0|t´t0|.

We define the nonlinear operator

Γ : XÑ C
`

J,Rnq, Γrxsptq “ x0 `

ż t

t0

F
`

s,xpsq
˘

ds.

Note that if x P X, then for any t P J we have

}Γrxsptq ´ x0} “

›

›

›

›

ż t

t0

F
`

s,xpsq
˘

ds

›

›

›

›

ď

ˇ

ˇ

ˇ

ˇ

ż t

t0

}F
`

s,xpsq
˘

}ds

ˇ

ˇ

ˇ

ˇ

p18.2.3q
ď

ˇ

ˇ

ˇ

ˇ

ż t

t0

Mds

ˇ

ˇ

ˇ

ˇ

“M |t´ t0| ď δM
p18.2.3q
ď b

so that Γrxs P X, @x P X. Thus Γ is a map XÑ X. Let us prove that it is a contraction.

For x,y P X we have

›

›Γrxsptq ´ Γrysptq
›

› “

›

›

›

›

ż t

t0

`

F
`

s,xpsq
˘

´ F
`

s,ypsq
˘

ds

›

›

›

›

ď

ˇ

ˇ

ˇ

ˇ

ż t

t0

›

›F
`

s,xpsq
˘

´ F
`

s,ypsq
˘ ›

›ds

ˇ

ˇ

ˇ

ˇ

p18.2.2q
ď L0

ˇ

ˇ

ˇ

ˇ

ż t

t0

}xpsq ´ ypsq}ds

ˇ

ˇ

ˇ

ˇ

.

Hence

e´2L0|t´t0|
›

›Γrxsptq ´ Γrysptq
›

› ď L0e
´2L0|t´t0|

ˇ

ˇ

ˇ

ˇ

ż t

t0

e2L0|s´t0|
›

›xpsq ´ ypsq
›

›e´2L0|s´t0|ds

ˇ

ˇ

ˇ

ˇ

p18.2.5q
ď L0e

´2L0|t´t0|

ˇ

ˇ

ˇ

ˇ

ż t

t0

e2L0|s´t0|ds

ˇ

ˇ

ˇ

ˇ

d˚px,yq “ L0e
´2L0|t´t0|d˚px,yq

ˇ

ˇ

ˇ

ˇ

ż t´t0

0
e2L0|τ |dτ

ˇ

ˇ

ˇ

ˇ

“
1

2
e´2L0|t´t0|

`

e2L0|t´t0| ´ 1
˘

d˚px,yq ď
1

2
d˚px,yq.

Hence

d˚
`

Γrxs,Γrys
˘

“ sup
tPJ

e´2L0|t´t0|
›

›Γrxsptq ´ Γrysptq
›

› ď
1

2
d˚px,yq.

Hence Γ : XÑ X is a contraction.

Banach’s fixed point theorem implies that there exists a function x˚ P X such that
x˚ “ Γrx˚s, i.e.,

x˚ptq “ x
0 `

ż t

t0

F
`

s,x˚psq
˘

ds, @t P J.
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We deduce from the above equality that x˚pt0q “ x
0. Since F is continuous, we deduce

from the Fundamental Theorem of Calculus that the right-hand-side of the above equality
is C1 and thus x˚ is also C1 and satisfies

x1˚ptq “ F
`

t,x˚ptq
˘

, @t P J.

Thus x˚ is a solution of (18.2.1). This establishes the existence part of Picard’s theorem.

Suppose that x : J Ñ Ω is another solution of (18.2.1). Let us observe that, a priori,
the function x need not belong to X. Fix a compact subset K Ă I ˆ Ω that contains the
graphs of both x˚ and x. For example K could be the union of these two graphs. Let
L “ LK . Then

}xptq ´ x˚ptq}
looooooomooooooon

“:uptq

ď

ˇ

ˇ

ˇ

ˇ

ż t

t0

}F
`

s,x˚psq
˘

´ F
`

s,x˚psq
˘

}ds

ˇ

ˇ

ˇ

ˇ

ď L

ˇ

ˇ

ˇ

ˇ

ż t

t0

upsqds

ˇ

ˇ

ˇ

ˇ

.

Gronwall’s inequality (18.1.37) implies that uptq “ 0, @t P J , i.e., x “ x˚. This proves the
uniqueness part of Picard’s theorem. [\

Remark 18.2.2. (a) Let us observe that the locally Lipschitz condition is automatically
satisfied if Ω is convex and F is C1.

(b) Picard’s theorem establishes only local existence. This is not a limitation of the proof,
it is a feature of the theory of o.d.e.-s. Consider the Cauchy problem

x1 “ x2, xp0q “ 1.

Here n “ 1 and F pt, xq “ x2 is locally Lipschitz.

The above equation is separable and we deduce

x1

x2
“ 1ñ

1

xp0q
´

1

xptq
“

ż t

0

x1

x2
dt “ t

so that

xptq “
1

1´ t

Note that the solution xptq explodes in finite time and exists only on the interval p´8, 1q.

(c) The local Lipschitz condition guaranteed the uniqueness of the solution of the Cauchy
problem via Gronwall’s inequality. Without this condition the uniqueness in not guaran-
teed. Consider for example the Cauchy problem

x1 “ x1{3, xp0q “ 0.

This problem has a trivial solution xptq “ 0, @t and a nontrivial one xptq “ C|t|3{2, where
3C
2 “ C1{3. [\
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18.2.2. Peano’s existence theorem. The local Lipschitz condition is not necessary
for the existence of solutions of Cauchy problems. We will prove an existence result
for the Cauchy problem due to G. Peano (1858-1932). Roughly speaking, it states that
the continuity of F alone suffices to guarantee that the Cauchy problem (18.2.1) has a
solution in a neighborhood of the initial point. Beyond its theoretical significance, this
result will offer us the opportunity to discuss another important technique of investigating
and approximating the solutions of an o.d.e.. We are talking about the polygonal method,
due essentially to L. Euler.

We continue using the same notations as in Theorem 18.2.1.

Theorem 18.2.3. Let F : ∆a,b Ñ Rn be a continuous function defined on

∆ :“
␣

pt,xq P Rn`1; |t´ t0| ď a, }x´ x0} ď b
(

.

Then the Cauchy problem (18.2.1) admits at least one solution on the interval

J :“ rt0 ´ δ, t0 ` δs, δ :“ min

ˆ

a,
b

M

˙

, M :“ sup
pt,xqP∆a,b

}fpt,xq}.

Proof. We will prove the existence on the interval rt0, t0`δs. The existence on rt0´δ, t0s
follows from a similar argument. Set ∆ “ ∆a,b.

Fix ε ą 0. Since F is uniformly continuous on ∆, there exists ηpεq ą 0 such that

}F pt,xq ´ F ps,yq} ď ε,

for any pt,xq, ps,yq P ∆ such that

|t´ s| ď ηpεq, }x´ y} ď ηpεq.

Consider the uniform subdivision t0 ă t1 ă ¨ ¨ ¨ ă tNpεq “ t0 ` δ, where tj “ t0 ` jhε, for
j “ 0, . . . , Npεq, and Npεq is chosen large enough so that

hε :“
δ

Npεq
ď min

ˆ

ηpεq,
ηpεq

M

˙

. (18.2.6)

We consider the polygonal, i.e., the continuous piecewise linear function uε : rt0, t0`δs Ñ Rn
defined by

uεptq “ uεptjq ` pt´ tjqF
`

tj ,uεptjq
˘

, tj ă t ď tj`1

uεpt0q “ x0.
(18.2.7)

Note that the function uve is uniquely determined by its values at the nodes ti. This
values are determined using the recurrence relation

uε
`

tj`1
˘

“ uε
`

tj
˘

` hF
`

tj ,uεptjq
˘

, @j “ 0, 1, . . . , Npεq ´ 1. (18.2.8)

To understand the origin of the first equality in (18.2.7) note that it can be rewritten as

uεptq ´ uεptjq

t´ tj
“ F

`

tj ,uεptjq
˘

.
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The left-hand-side of the above equality is meant to be an approximation of u1εptjq. This
implies that

}uεptq ´ uεptjq} ďMpt´ tjq ďMhpεq ď ηpεq, @t P rtj , tj`1s. (18.2.9)

We deduce that if t P rt0, t0 ` δs, then

}uεptq ´ x0} ďMδ ď b.

Indeed, if t P rtj , tj`1s then

}uεptq ´ x0} “ }uεptq ´ uεpt0} ď }uεptq ´ uεptjq} `

j
ÿ

i“1

}uεptiq ´ uεpti´1q}

ďMpt´ tjq `M

j
ÿ

i“1

pti ´ ti´1q “Mpt´ t0q ďMδ.

Thus pt,uεptq q P ∆ , @t P rt0, t0 ` δs, so that the equalities (18.2.7) are consistent. The
equalities (18.2.7) also imply the estimates

}uεptq ´ uεpsq} ďM |t´ s|, @t, x P rt0, t0 ` δs. (18.2.10)

In particular, the inequality (18.2.10) shows that the family of functions puεqεą0 is uni-
formly bounded and equicontinuous on the interval rt0, t0 ` δs. Arzelà-Ascoli’s Theorem
17.4.3 shows that there exist a continuous function u : rt0, t0`δs Ñ Rn and a subsequence
puεν q, εν Œ 0, such that

lim
νÑ8

uεν ptq “ uptq uniformly on rt0, t0 ` δs. (18.2.11)

We will prove that uptq is a solution of the Cauchy problem (18.2.1).

With this goal in mind, we consider the family of functions

vεptq :“ x0 `

ż t

t0

F ps,uεpsqqds, t P rt0, t0 ` δs

Let t P rtj , tj`1s. We deduce from(18.2.9)

|t´ tj |, }uεptq ´ uptjq} ď ηpεq.

Hence,

}F ps,uεpsqq ´ F ptj ,uεptjqq} ď ε

so that
›

›

›

›

›

ż t

tj

`

F ps,uεpsqq ´ F ptj ,uεptjqq
˘

ds

›

›

›

›

›

ď

ż t

tj

›

›F ps,uεpsqq ´ F ptj ,uεptjqq
›

›ds ď εpt´ tjq.

Now observe that
ż t

tj

F ps,uεpsqqds “ vεptq ´ vεptjq
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and
ż t

tj

F ptj ,uεptjqqds “ pt´ tjqF ptj ,uεptjqq “ uεptq ´ uεptjq.

Hence @j, @t P rtj , tj`1s we have
›

›

›

`

vεptq ´ vεptjq
˘

´
`

uεptq ´ uεptjq
˘

›

›

›
ď εpt´ tjq. (18.2.12)

On the other hand, @t P rtj , tj`1s

vεptq ´ uεptq “
`

pvεptq ´ vεptjq
˘

´
`

uεptq ´ uεptjq
˘

`

j´1
ÿ

i“0

´

`

vεpti`1q ´ vεptiq
˘

´
`

uεpti`1q ´ uεptiq
˘

¯

.

We deduce

}vεptq ´ uεptq } ď
›

›

`

vεptq ´ vεptjq
˘

´
`

uεptq ´ uεptjq
˘ ›

›

`

j´1
ÿ

i“0

›

›

›

`

vεpti`1q ´ vεptiq
˘

´
`

uεpti`1q ´ uεptiq
˘

›

›

›
.

p18.2.12q
ď εpt´ tjq ` ε

j´1
ÿ

i“0

`

ti`1 ´ ti
˘

“ εpt´ t0q ď εδ.

Hence

sup
t0ďtďt0`δ

}uεptq ´ vεptq} ď εδ, @ε ą 0.

Thus vεν converges uniformly to u as ν Ñ8. Letting ν Ñ8 in the equality

vεν ptq “ x0 `

ż t

t0

F
`

s,uεν psq
˘

ds, t P rt0, t0 ` δs

we deduce

uptq “ x0 `

ż t

t0

F ps,upsqqds, t P rt0, t0 ` δs,

so that u is a solution of (18.2.1) on the interval rt0, t0 ` δs. This completes the proof of
Theorem 18.2.3. [\

Remark 18.2.4. If F is locally Lipschitz in the x variable then, using the result in
Exercise 17.4, we deduce that uε converges uniformly to the unique solution of (18.2.1).
The piecewise linear function uε is thus an approximation of the real solution. This
approximation is uniquely determined by finitely many data uεptjq that can be determined
explicitly using the recurrence (18.2.8).

This recurrence is easily implementable on a computer. This numerical scheme for
approximating the solution of an initial value problem is commonly referred to as the
Euler method. [\
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18.2.3. Global existence and uniqueness. We consider the system of differential
equations described in vector notation by

x1 “ F pt,xq, (18.2.13)

where the function F : ΩÑ Rn is continuous on the open subset Ω Ă Rn`1. Additionally,
we will assume that F is locally Lipschitz in x on Ω.

We recall that, if A,B are subsets of Rm, then the distance between them is defined
by

distpA,Bq “ inf
␣

}a´ b}; a P A, b P B
(

.

Above and in the sequel } ´ } denotes the sup-norm on Rm.

Remark 18.2.5. It is useful to observe that if K is a compact subset of Ω, then the
distance distpK, BΩq from K to the boundary BΩ of Ω is strictly positive. Indeed, suppose
that pxνq is a sequence in K and pyνq is a sequence in BΩ such that

lim
νÑ8

}xν ´ yν} “ distpK, BΩq. (18.2.14)

Since K is compact, the sequence pxνq is bounded. Using (18.2.14) we deduce that the
sequence pyνq is also bounded. The Bolzano-Weierstrass theorem now implies that there
exist subsequences pxνkq and pyνkq converging to x0 and respectively y0. Since both K
and BΩ are closed, we deduce that x0 P K, y0 P BΩ, and

}x0 ´ y0} “ lim
kÑ8

}xνk ´ yνk} “ distpK, BΩq.

Since K X BΩ “ H we conclude that distpK, BΩq ą 0. [\

Returning to the differential system (18.2.13), consider pt0,x0q P Ω and ∆ Ă Ω a
parallelepiped of the form

∆ “ ∆a,b :“
␣

pt,xq P Rn`1; |t´ t0| ď a, }x´ x0} ď b
(

.

(Since Ω is open, ∆a,b Ă Ω if a and b are sufficiently small.)

Fix a positive number M such that

M ě sup
pt,xqP∆

}F pt,xq}.

Applying Picard’s Theorem 18.2.1 to the system (18.2.13) restricted to ∆ we deduce
that the existence and uniqueness of a solution x “ uptq satisfying the initial condition
upt0q “ x0 and defined on an interval rt0 ´ δ, t0 ` δs, where

δ “ min

ˆ

a,
b

M

˙

.

In other words, we have the following local existence result.
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Theorem 18.2.6. Let Ω Ă Rn`1 be an open set and assume that the function

F “ F pt,xq : ΩÑ Rn

is continuous and locally Lipschitz as a function of x. Then for any pt0,x0q P Ωq there
exists a unique solution xptq “ xpt; t0,x0q of (18.2.13) defined on a neighborhood of t0
and satisfying the initial condition

xpt; t0,x0q
ˇ

ˇ

t“t0
“ x0.

[\

We must emphasize the local character of the above result. Both the existence and
the uniqueness of the Cauchy problem take place in a neighborhood of the initial moment
t0. However, we expect uniqueness to have a global nature, that is, if two solutions
x “ xptq and y “ yptq of (18.2.13) are equal at a point t0, then they should coincide on
the common interval of existence. (Their equality on a neighborhood of t0 follows from
the local uniqueness result.)

The next theorem, which is known in literature as the global uniqueness theorem, states
that, the global uniqueness holds under the assumptions of Theorem 18.2.6.

Theorem 18.2.7. Assume that F : ΩÑ Rn satisfies the assumptions in Theorem 18.2.6.
If x,y are two solutions of (18.2.13) defined on the open intervals I and respectively J .
If xpt0q “ ypt0q for some t0 P I X J , then xptq “ yptq, @t P I X J .

Proof. Let pt1, t2q “ I X J . We will prove that xptq “ yptq, @t P rt0, t2q. The equality to
the left of t0 is proved in a similar fashion. Let

T :“
␣

τ P rt0, t2q; xptq “ yptq; @t P rt0, τ s
(

.

Then T ‰ H and we set T :“ supT. We claim that T “ t2.

To prove the claim we argue by contradiction. Assume that T ă t2. Then

xpT q “ lim
tÕT

xptq “ lim
tÕT

yptq “ ypT q,

so xptq “ yptq, @t P rt0, T s. Since xptq and yptq are both solutions of (18.2.13) we deduce
from Theorem 18.2.6 that there exists ε ą 0 such that xptq “ yptq, @t P rT, T ` εs. This
contradicts the maximality of T and concludes the proof of the theorem. [\

A solution u “ uptq of (18.2.13) defined on the interval I “ pa, bq is called right-
extendible if there exists b1 ą b and a solution ψ of (18.2.13), defined on pa, b1q such
that ψ “ u on pa, bq. The notion of left-extendible solutions is defined analogously. A
solution is called extendible if it is right-extendible or left-extendible or both. A solution
that is not extendible is called saturated. In other words, a solution u defined on an
interval I is saturated if I is the maximal domain of existence. Similarly, a solution that
is not right-extendible (respectively left-extendible) is called right-saturated (respectively
left-saturated).
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Theorem 18.2.6 implies that maximal interval on which a saturated solution is defined
must be an open interval. If a solution u is right-saturated, then the interval on which it
is defined is open on the right. Similarly, if a solution u is left-saturated, then the interval
on which it is defined is open on the left.

Indeed, if u : ra, bq Ñ Rn is solution of (18.2.13) defined on an interval that is not open
on the left, then Theorem 18.2.6 implies that there exists a solution ruptq defined on an
interval ra´ δ, a` δs as satisfying the initial condition rupaq “ upaq. The local uniqueness
theorem implies that ru “ u on ra, a` δs and thus the function

pu0ptq “

#

uptq, t P ra, bq,

ruptq, t P ra´ δ, as,

is a solution of (18.2.13) on ra´ δ, bq that extends u, showing that u is not left-saturated.

As an illustration, consider the o.d.e.

x1 “ x2 ` 1,

with initial condition xpt0q “ x0. This is a separable o.d.e., and we find that

xptq “ tan
`

t´ t0 ` arctanx0
˘

.

It follows that, on the right, the maximal existence interval is rt0, t0`
π
2´arctanx0q, while

on the left, the maximal existence interval is pt0 ´
π
2 ´ arctanx0, t0s. Thus, the saturated

solution is defined on the interval pt0 ´
π
2 ´ arctanx0, t0 `

π
2 ´ arctanx0q.

Our next result characterizes the right-saturated solutions. In the remainder of this
section we will assume that Ω Ă Rn`1 is an open subset and F : Ω Ñ Rn is a continuous
map that is also locally Lipschitz in the variable x P Rn.

Theorem 18.2.8. Let u : rt0, t1q Ñ Rn be a solution of (18.2.13). Then the following
are equivalent.

(i) The solution u is right-extendible.

(ii) The graph of u,

Γ :“
␣

pt,uptq q; t P rt0, t1q
(

,

is contained in a compact subset of Ω.

Proof. (i) ñ (ii). Assume that u is right-extendible. Thus, there exists a solution ψptq
of (18.2.13) defined on an interval rt0, t1 ` δq, δ ą 0, and such that

ψptq “ uptq, @t P rt0, t1q.

In particular, it follows that Γ is contained in pΓ, the graph of the restriction of ψ to rt0, t1s.

Now observe that pΓ is a compact subset of Ω because it is image of the compact interval
rt0, t1s via the continuous map t ÞÑ pt,ψptqq.
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(ii) ñ (i) Assume that Γ Ă K, where K is a compact subset of Ω. We will prove that
uptq can be extended to a solution of (18.2.13) on an interval of the form rt0, t1 ` δs, for
some δ ą 0.

Since uptq is a solution, we have

uptq “ upt0q `

ż t

t0

F
`

s,upsq
˘

ds, @t P rt0, t1q.

We deduce

}uptq ´ upt1q} ď

ˇ

ˇ

ˇ

ˇ

ż t

t1

›

›F
`

s,upsq
˘ ›

›ds

ˇ

ˇ

ˇ

ˇ

ďMK |t´ t
1|, @t, t1 P rt0, t1q,

where

MK :“ sup
ps,xqPK

}F ps,xq}.

Cauchy’s characterization of convergence now shows that uptq has a (finite) limit as tÕ t1
and we set

upt1q :“ lim
tÕt1

uptq.

We have thus extended u to a continuous function on rt0, t1s that we continue to denote
by u. The continuity of F implies that

u1pt1 ´ 0q “ lim
tÕt1

u1ptq “ lim
tÕt1

F pt,uptq q “ F pt1,upt1q q. (18.2.15)

On the other hand, according to Theorem 18.2.6, there exists a solution ψptq of (18.2.13)
defined on an interval rt1 ´ δ, t1 ` δs and satisfying the initial condition ψpt1q “ upt1q.
Consider the function

ruptq “

#

uptq, t P rt0, t1s,

ψptq, t P pt1, t1 ` δs.

Obviously

ru1pt1 ` 0q “ ψ1pt1q “ F pt1,ψpt1qq “ F pt1,upt1qq
p18.2.15q
“ u1pt1 ´ 0q.

This proves that ru is C1, and satisfies the differential equation (18.2.13). Clearly ru extends
u to the right. [\

The next result shows that any solution can be extended to a saturated solution.

Theorem 18.2.9. Any solution u of (18.2.13) admits a unique extension to a saturated
solution.

Proof. The uniqueness is a consequence of Theorem 18.2.7 on global uniqueness. To prove
the extendibility to a saturated solution we will limit ourself to proving the extendibility
to a right-saturated solution.

We denote by A the set of all solutions ψ of (18.2.13) that extend u to the right.
The set A is totally ordered by the inclusion of the domains of definition of the solutions
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ψ and, as such, the set A has an upper bound, ru. This is a right-saturated solution of
(18.2.13). [\

We will next investigate the behavior of the saturated solutions of (18.2.13) in a neigh-
borhood of the boundary BΩ of the domain Ω where (18.2.13) is defined. For simplicity
we only discuss the case of right-saturated solutions. The case of left-saturated solutions
is identical.

Theorem 18.2.10. Let φptq be a right-saturated solution of (18.2.13) defined on the
interval rt0, T q. Then any limit point as tÕ T of the graph

Γ :“
␣

pt,φptqq; t0 ď t ă T
(

is either the point at infinity of Rn`1, or a point on BΩ.

Proof. The theorem states that, if pτνq is a sequence in rt0, T q such that the limit

lim
νÑ8

pτν ,φpτνqq

exists, then

(i) either T “ 8,

(ii) or limνÑ8 }φpτνq} “ 8,

(iii) or T ă 8, x˚ “ limνÑ8φpτνq P Rn and pT,x˚q P BΩ.

We argue by contradiction. Assume that all the three options are violated. Since (i),
(ii) do not hold we deduce that T ă 8 and that the limit limνÑ8φpτνq exists and it is a
point x˚ P Rn. The point pT,x˚q is in the closure of Ω and, since (iii) is also violated, we
deduce that pT,x˚q P Ω. Let η “ dist

`

pT,x˚q, BΩ
˘

. Since η ą 0, the closed box

S :“
␣

pt,xq P Rn`1; |t´ T | ď η{2, }x´ x˚} ď η{2
(

is contained in Ω; see Figure 18.1.

We deduce that, for any ps0,y0q P S, the parallelepiped

∆s0,y0
:“

!

pt,xq P Rn`1; |t´ s0| ď
η

4
, }x´ y0} ď

η

4

)

(18.2.16)

is contained in the compact subset of Ω,

K “

!

pt,xq P Rn`1; |t´ T | ď
3η

4
, }x´ x˚} ď

3η

4

)

.

(see Figure 18.1.) We set

δ :“ min
!η

4
,
η

4M

)

, M :“ sup
pt,xqPK

}F pt,xq}.

Appealing to Picard’s existence and uniqueness theorem (Theorem 18.2.1), where ∆ is
defined in (18.2.16), it follows that for any ps0,y0q P S, there exists a unique solution
ψs0,y0

ptq of (18.2.13) defined on the interval rs0 ´ δ, s0 ` δs and satisfying the initial

condition ψps0q “ y0. Moreover, its graph is contained in ∆s0,y0
.
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Tt t

(T,   )
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x

x  

x=  (t)

0

j
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∗

Figure 18.1. The behavior of a right-saturated solution.

Fix ν is sufficiently large so that

pτν ,φpτνqq P S and |τν ´ T | ď
δ

2
,

and define yν :“ φpτνq,

rφptq :“

$

’

&

’

%

φptq, t0 ď t ď τν ,

ψτν ,yν
ptq, τν ă t ď τν ` δ.

Then ruptq is a solution of (18.2.13) defined on the interval rt0, τν`δs. This interval strictly
contains the interval rt0, T s and rφ “ φ on rt0, T q. This contradicts our assumption that
φ is a right-saturated solution, and completes the proof of Theorem 18.2.10. [\

Theorem 18.2.11. Let Ω “ Rn`1 and uptq a right-saturated solution of (18.2.13) defined
on r0, T q. Then only the following two options are possible:

(i) either T “ 8,

(ii) or

lim
tÕT

}uptq} “ 8.

Proof. From Theorem 18.2.10 it follows that any limit point as tÕ T on the graph Γ of
u is the point at infinity. If T ă 8, then necessarily

lim
tÕT

}uptq} “ 8.

[\
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Theorem 18.2.10 takes a simpler form in the case of autonomous systems.

Corollary 18.2.12. Supppose that U Ă Rn is an open set, F : U Ñ Rn is a locally
Lipschitz map and x : r0, T q Ñ U a right saturated solution of the o.d.e.

x1ptq “ F
`

xptq
˘

.

Then

(i) either T “ 8,

(ii) or T ă 8 and any limit point of xptq as t Õ T is either the point at 8 of Rn
or a point of BU .

[\

Theorems 18.2.10 and 18.2.11 are useful in determining the maximal existence interval
of a solution. Loosely speaking, Theorem 18.2.11 states that a solution u is either defined
on the whole positive semiaxis, or it “blows up” in finite time. This phenomenon is
commonly referred to as the finite-time blowup phenomenon.

To illustrate Theorem 18.2.11 we depicted in Figure 18.2 the graph of the saturated
solution of the Cauchy problem

x1 “ x2 ´ 1, xp0q “ 2.

Its maximal existence interval on the right is r0, T q, T “ 1
2 log 3.

T

x

t

Figure 18.2. A finite-time blowup.

Example 18.2.13. Consider the system of o.d.e.-s

x1 “ F pxq, (18.2.17)

where F : Rn Ñ Rn is locally Lipschitz and satisfies
`

x,F pxq
˘

ď 0, @x P Rn. (18.2.18)
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Above, p´,´q is the natural inner product on Rn. Recall that }´}2 denotes the canonical
Euclidean norm on Rn.

According to the existence and uniqueness theorem, for any pt0,x0q P Rn`1 there
exists a unique solution φptq “ xpt; t0,x0q of (18.2.17) satisfying φpt0q “ x0 and defined
on a maximal interval rt0, T q. We want to prove that, under the above assumptions, we
have T “ 8.

To show this, take the inner product of both sides of (18.2.17) with φptq. Using
(18.2.18) we deduce

1

2

d

dt

`

φptq, φptq
˘

“
`

φptq, φ1ptq
˘

“
`

Fφptq , φptq
˘

ď 0, @t P rt0, T q,

and therefore

}φptq}22 ď }φpt0q}
2
2, @t P rt0, T q.

Thus, the solution φptq is bounded, there is no blowup, so T “ 8.
Suppose now that F satisfies only the constraint

`

x,F pxq
˘

ă 0, @}x}2 “ 1. (18.2.19)

The initial value problem

x1 “ F pxq, xp0q “ x0

admits a unique right saturated solution defined on a maximal interval r0, T q. We have to prove that T “ 8 if the
initial condition x0 is sufficiently small, }x0}2 ă 1.

From (18.2.19) we deduce that there exists a small η ą 0 such that
`

x,F pxq
˘

ă 0, @1´ η ď }x}2 ď 1` η.

Set ρptq :“ }xptq}22.

We argue by contradiction. Suppose that T ă 8. We deduce from Corollary 18.2.12 that

lim
tÕT

ρptq P
␣

1,8
(

.

In either case, since ρp0q ă 1, there exists T1 P p0, T s such that

lim
tÕT1

ρptq “ 1, ρptq ă 1, @t P r0, T1q

We deduce that there exists T2 P r0, T1q such that ρptq P r1´ η, 1s, @t P pT2, T1q.

From the Lagrange Mean Value Theorem we deduce that for any t ă T1 there exists ξt P pt, T1q such that

ρ1pξtq “
1´ ρptq

T1 ´ t
ą 0.

Note that ρ1ptq “ 2
`

xptq,F pxptqq
˘

ă 0 if xptq P r1´η, 1s. Hence ρ1pξtq ă 0, @t P pT2, T1q. This contradiction shows

that T “ 8. [\

Definition 18.2.14. Let U Ă Rn be an open set, F : U Ñ Rn a continuous map (vector
field) and α : U Ñ R a continuous function.

(i) The function α is said to be a Lyapunov function of the differential system
x1 “ F pxq if for any solution xptq of this system, the function t ÞÑ α

`

xptq
˘

is
nonincreasing.

(ii) The function α is said to be a prime integral of the differential system x1 “ F pxq
if for any solution xptq of this system, the function t ÞÑ α

`

xptq
˘

is constant.
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[\

Proposition 18.2.15. Let U Ă Rn be an open set, F : U Ñ Rn a locally Lipschitz map
(vector field) and α : U Ñ R a C1-function. Then the following are equivalent.

(i) The function α is a Lyapunov function of x1 “ F pxq.

(ii)
`

F pxq,∇αpxq
˘

ď 0, @x P U , where p´,´q denotes the canonical inner product
in Rn.

Proof. (i) ñ (ii) Suppose that α is a Lyapunov function. Fix an arbitrary x0 P U and
denote by xptq the saturated solution of the initial value problem

x1ptq “ f
`

pxptq
˘

, xp0q “ x0.

The function uptq “ α
`

xptq
˘

is nonincreasing and thus u1p0q ď 0. The chain rule implies

0 ě u1p0q “
`

∇αpxp0qq,x1p0q
˘

“
`

∇αpx0q,F px0q
˘

.

Conversely, if (ii) holds, then for any solution xptq of x1 “ F pxq we have

d

dt
α
`

xptq
˘

“
`

∇αpxptqq,x1ptq
˘

“
`

∇αpxptqq,F pxptqq
˘

ď 0

so α is a Lyapunov function. [\

Observe that a function α is a prime integral of x1 “ F pxq if and only if both α and
´α are Lyapunov functions of this differential system. If α and F are as in Proposition
18.2.15, then α is a prime integral of this system if and only if

`

F pxq,∇αpxq
˘

“ 0, @x P U. (18.2.20)

Proposition 18.2.16. Let U Ă Rn be an open set, F : U Ñ Rn locally Lipschitz and
α : U Ñ R a Lyapunov function of the differential system x1 “ F pxq. Suppose that α is
coercive, i.e., for any c P R the sublevel set

tα ď cu “
␣

x P U ; αpxq ď c
(

is compact. Then any right saturated solution x : r0, T q Ñ U of x1 “ F pxq is well defined
for any t ě 0, i.e., T “ 8.

Proof. Set c0 “ α
`

xp0q
˘

. Since α is a Lyapunov functions we deduce

α
`

xptq
˘

ď α
`

xp0q
˘

“ c0, @t P r0, T q

so that αptq P K0 :“ tα ď 0u.

We argue by contradiction. Suppose that T ă 8. Then the graph
␣

pt,xptqq; t P r0, T q
(

Ă Rˆ U

is contained in the compact subset r0, T sˆK0 proving that the solution is right-extendible
contradicting the fact that x is right-saturated. [\
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Let us observe that condition (18.2.18) in Example 18.2.13 shows that the function
αpxq “ 1

2}x}
2
2 is a coercive Lyapunov function of the differential system x1 “ F pxq thus

proving that the right saturated solution exist up to T “ 8.

18.3. Continuous dependence on initial
conditions and parameters

We now return to the differential system (18.2.13) defined on the open subset Ω Ă Rn`1.
We will assume as in the previous section that the function F : ΩÑ Rn is continuous in
the variables pt,xq, and locally Lipschitz in the variable x. Theorem 18.2.6 shows that for
any pt0,x0q P Ω there exists a unique solution x “ xpt; t0,x0q of the system (18.2.13) that
verifies the initial condition xpt0q “ x0. The solution xpt; t0,x0q, which we will assume
to be saturated, is defined on an interval typically dependent of the point pt0,x0q. For
simplicity we will assume the initial moment t0 to be fixed.

It is reasonable to expect that as v varies in a neighborhood of x0, the corresponding
solution xpt; t0,vq will not stray too far from the solution xpt; t0,x0q. The next theorem
confirms that this is the case, in a rather precise form. To state this result, let us denote
by Spx0, ηq the open box/ball of center x0 and radius η in Rn, i.e.,

Spx0, ηq :“
␣

v P Rn; }v ´ x0} ă η
(

.

Theorem 18.3.1 (Continuous dependence on initial data). Let rt0, T q be the maximal
interval of existence on the right of the solutions xpt; t0,x0q of (18.2.13). Then, for any
T 1 P rt0, T q, there exists ρ “ ρpT 1q ą 0 such that, for any v P Spx0, ρq, the solution
xpt; t0,vq is defined on the interval rt0, T

1s. Moreover, the correspondence

Spx0, ρq Q v ÞÑ xpt; t0,vq P C
`

rt0, T
1s;Rn

˘

is a continuous map from the box Spx0, ρq to the space Banach space C
`

rt0, T
1s;Rn

˘

of
continuous maps from rt0, T

1s to Rn equipped with the sup-norm. In other words, for any
sequence pvkq in Spx0, ηq that converges to v P Spx0, ρq, the functions xpt; t0,vkq are
defined on rt0, T

1s and converge uniformly on rt0, T
1s to xpt; t0,vq as k Ñ8.

Proof. Fix T 1 P rt0, T q. Denote by Γ the graph of the solution xpt; t0,x0q,

Γ :“
␣

pt,xpt; t0,x0q; t P rt0, T
1s
(

.

Since tÑ xpt; t0,x0q is continuous we deduce that Γ is a compact subset of Ω so that

η :“ distpΓ, BΩq ą 0.

For any r ą 0 we denote by Γprq the open set

Γprq :“
␣

ps,yq P Rˆ Rn; dist
`

ps,yq,Γ
˘

ă r
(

For r ă η, the closure of Γprq is compact and contained in Ω. We denote by K the closure
of Γpη{2q.
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For any pt0,vq P Ω1, there exists a maximal Tv ą 0 such that the solution xpt; t0,vq
exists for all t P rt0, Tvq and

␣

p t,xpt; t0,vq q; t0 ď t ă Tv
(

Ă Γpη{2q Ă K.

Set T 1v :“ minpTv, T
1q. On the interval

“

t0, T
1
vq we have the equality

xpt; t0,x0q ´ xpt; t0,vq “

ż t

t0

´

F
`

s,xps; t0,x0q
˘

´ F
`

s,xps; t0,vq
˘

¯

ds.

Because the graphs of xps; t0,x0q and xps; t0,vq over
“

t0, T
1
vq are contained in the compact

set K, the locally Lipschitz assumption implies that there exists a constant LK ą 0 such
that

›

›xpt; t0,x0q ´ xpt; t0,vq
›

› ď }x0 ´ v} ` LK

ż t

t0

›

›xps; t0,x0q ´ xps; t0,vq
›

›ds.

Gronwall’s inequality now implies
›

›xpt; t0,x0q ´ xpt; t0,vq
›

› ď eLKpt´t0q}x0 ´ v}, @t P rt0, T
1
vq. (18.3.1)

Set

ρ “ ρpT 1q :“
ηe´LKpT

1´t0q

4
If }x0 ´ v} ď ρ we deduce from (18.3.1) that

@t P
“

t0, T
1
v

˘

,
›

›xpt; t0,x0q ´ xpt; t0,vq
›

› ă
η

4
.

This proves that the graph of the restriction of xpt; t0,vq to rt0, T
1
vq is contained in a

compact subset of Γpη{2q so this solution is right-extendible, i.e., Tv ą T 1v “ minpTv, T
1q.

In other words Tv ą T 1 if }x0 ´ v} ď ρ.

More generally, if }v ´ x0}, }v
1 ´ x0} ă ρ, then arguing as in the proof of (18.3.1) we

deduce
›

›xpt; t0,v
1q ´ xpt; t0,vq

›

› ď eLKpt´t0q}v1 ´ v}, @t P r0, T 1s,

i.e.,

sup
tPrt0,T 1s

›

›xpt; t0,v
1q ´ xpt; t0,vq

›

› ď eLKpT
1´t0q}v1 ´ v}.

Thus the map

Spx0, ρq Q v ÞÑ xpt; t0,vq P C
`

rt0, T
1s;Rn

˘

is Lipschitz, hence continuous. This completes the proof of Theorem 18.3.1. [\

Let us now consider the special case when the system (18.2.13) is autonomous, i.e.,
the map F is independent of t. More precisely, we assume that F : Rn Ñ Rn is a locally
Lipschitz function. One should think of F as a vector field on Rn.

For any y P Rn we set

Sptqu :“ xpt; 0,uq,
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where xpt; 0, yq is the unique saturated solution of the system

x1 “ F pxq, (18.3.2)

satisfying the initial condition xp0q “ u. Theorem 18.3.1 shows that for any x0 P Rn there
exists a T ą 0 and a neighborhood U0 “ Spx0, ηq of x0 such that Sptqu is well defined for
any u P U0 and any |t| ď T . Moreover, the resulting maps

U0 Q u ÞÑ Sptqu P Rn,

are continuous for any |t| ď T . From the local existence and uniqueness theorem we
deduce that the family of maps Sptq : U0 Ñ Rn, ´T ď t ď T , has the following properties

Sp0qu “ u, @u P U0, (18.3.3a)

Spt` squ “ SptqSpsqu, @s, t P r´T, T s such that |t` s| ď T, Spsqu P U0, (18.3.3b)

lim
tÑ0

Sptqu “ u, @u P U0, (18.3.3c)

The family of applications tSptqu|t|ďT is called the local flow or the continuous local one-
parameter group generated by the vector field F : Rn Ñ Rn. From the definition of Sptq
we deduce that

F puq “ lim
tÑ0

1

t

`

Sptqu´ u
˘

, @u P U0. (18.3.4)

The solutions of (18.3.2) are often called the flow lines of the vector field F . Think of a
flow line uptq as describing the motion of a particle. Its velocity at time t is equal to the
vector F

`

uptq
˘

that the vector field F assigns to the location of the particle at the same
moment of time t.

If F : Ω Ñ Rn is such that, for any x0 P Ω, the saturated solution xpt;x0q of the
Cauchy problem

x1ptq “ F
`

xptq
˘

, xp0q “ x0

exists for all t P R, then we obtain a collection of maps

Φt : Rˆ ΩÑ Ω, t P R, Φtpx0q “ xpt;x0q

Proposition 18.3.2. The collection of maps pΦtqtPR satisfies the following conditions.

(i) Φt is a continuous map ΩÑ Ω for any t P R.
(ii) Φ0 “ IΩ.

(iii) Φt ˝ Φs “ Φt`spx0q, @s, t P R.

Proof. The continuity condition (i) follows from the continuous dependence of solutions
on initial data. Condition (ii) is equivalent with the tautological equality xp0;x0q “ x0,
@x0 P Ω. To prove (iii) fix x0 P Ω and set xptq :“ xpt;x0q. Then Φt`s “ xpt ` sq. Note
that the function yptq “ xpt` sq is the solution of the Cauchy problem

yp0q “ xpsq, y1ptq “
dx

dt
pt` sq “ F

`

xpt` sq
˘

“ F
`

yptq
˘
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and the global uniqueness implies

Φt`spx0q “ yptq “ xpt;xpsq “ Φt
`

xpsq
˘

“ Φt
`

Φspx0q
˘

.

[\

Definition 18.3.3. Let Ω Ă Rn. A continuous dynamical system on Ω is a collection of
maps Φt : ΩÑ Ω, t P R, satisfying the conditions (i)-(iii) in Proposition 18.3.2. [\

Consider now the differential system

x1 “ F pt,x, λq, λ P Λ Ă Rm, (18.3.5)

where F : ΩˆΛÑ Rn is a continuous function, Ω is an open subset of Rn`1, and Λ is an
open subset of Rm. Additionally, we will assume that F is locally Lipschitz in px, λq on
Ω ˆ Λ. In other words, for any compact sets K1 Ă Ω and K2 Ă Λ there exists a positive
constant L such that

}F pt,x, λq ´ F pt,y, µq} ď L
`

}x´ y} ` }λ´ µ}
˘

,

@pt,xq, pt,yq P K1, λ, µ P K2.
(18.3.6)

Above, we denoted by the same symbol the norms } ´ } in Rm and Rn.
For any pt0,x0q P Ω, and λ P Λ, the system (18.3.5) admits a unique solution

x “ xpt; t0,x0, λq satisfying the initial condition xpt0q “ x0. Loosely speaking, our
next result states that the correspondence λ ÞÑ xp´; t0,x0, λq is continuous.

Theorem 18.3.4 (Continuous dependence on parameters). Fix a point pt0,x0, λ0q P ΩˆΛ.
Let rt0, T q be the maximal interval of existence on the right of the solution xpt; t0,x0, λ0q.
Then, for any T 1 P rt0, T q there exists η “ ηpT 1q ą 0 such that for any λ P Spλ0, ηq the
solution xpt; t0,x0, λq is defined on rt0, T

1s. Moreover, the application

Spλ0, ηq Q λ ÞÑ xp´; t0,x0, λq P C
`

rt0, T
1s,Rnq

is continuous.

Proof. The above result is a special case of Theorem 18.3.1 about the continuous depen-
dence on initial data.

We denote by z the pn`mq-dimensional vector px, λq P Rn`m, and we define

rF : Ωˆ ΛÑ Rn`m, rF pt,x, λq “
`

fpt,x, λq, 0
˘

P Rn ˆ Rm.

The system (18.3.5) can be rewritten as

z1ptq “ rF
`

t, zptq
˘

, (18.3.7)

while the initial condition becomes

zpt0q “ z0 :“ px0, λ0q. (18.3.8)
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We have thus reduced the problem to investigating the dependence of the solutions zptq of

(18.3.7) on the initial data. Our assumptions on F show that rF satisfies the assumptions
of Theorem 18.3.1. [\

18.4. Systems of linear differential equations

The study of the linear systems of o.d.e.-s offers an example of a well-put-together theory,
based on methods and results from linear algebra. As we will see, there exist many
similarities between the theory of systems of linear algebraic equations and the theory
of systems of linear o.d.e.-s. In applications, linear systems appears most often as “first
approximations” of more complex processes.

18.4.1. Notation and some general results. A system of first order linear o.d.e.-s
has the form

x1iptq “
n
ÿ

j“1

aijptqxjptq ` biptq, i “ 1, . . . , n, t P I, (18.4.1)

where I is an interval of the real axis and aij , bi : I Ñ R are continuous functions.
The system (18.4.1) is called nonhomogeneous. If biptq ” 0, @i, then the system is called
homogeneous. In this case it has the form

x1iptq “
n
ÿ

j“1

aijptqxiptq, i “ 1, . . . , n, t P I. (18.4.2)

Using the vector notation we can rewrite (18.4.1) and (18.4.2) in the form

x1ptq “ Aptqxptq ` bptq, t P I (18.4.3a)

x1ptq “ Aptqxptq, t P I, (18.4.3b)

where

xptq :“

»

—

–

x1ptq
...

xnptq

fi

ffi

fl

, bptq :“

»

—

–

b1ptq
...

bnptq

fi

ffi

fl

,

and Aptq is the n ˆ n, time dependent matrix Aptq :“
`

aijptq
˘

1ďi,jďn
. We denote by

}Aptq} the norm of Aptq viewed as a continuous linear operator Rn Ñ Rn, where Rn is
equipped with the sup-norm } ´ } as in the previous sections.

Obviously, the local existence and uniqueness theorem (Theorem 18.2.1), as well as the
results concerning global existence and uniqueness apply to the system (18.4.3a). Thus for
any t0 P I, and any x0 P Rn, there exists a unique saturated solution of (18.4.1) satisfying
the initial condition

xpt0q “ x0. (18.4.4)

In this case, the domain of existence of the saturated solution coincides with the interval
I. In other words, we have the following result.
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Theorem 18.4.1. The saturated solution x “ uptq of the Cauchy problem (18.4.1),
(18.4.4) is defined on the entire interval I.

Proof. Let pα, βq Ă I “ pt1, t2q be the interval of definition of the solution x “ uptq.
According to Theorem 18.2.10 applied to the system (18.4.3a), with

Ω “ pt1, t2q ˆ Rn, F pt,xq “ Aptqx,

if β ă t2, or α ą t1, then the function uptq is unbounded in the neighborhood of β,
respectively α. Suppose that β ă t2. From the integral identity

uptq “ x0 `

ż t

t0

Apsqupsqds`

ż t

t0

bpsqds, t0 ď t ă β,

we obtain by passing to norms,

}uptq} ď }x0} `

ż t

t0

}Apsq} ¨ }upsq}ds`

ż t

t0

}bpsq}ds, t0 ď t ă β. (18.4.5)

The functions t ÞÑ }Aptq} and t ÞÑ }bptq} are continuous on rt0, t2q and thus are bounded
on rt0, βs. Hence, there exists M ą 0 such that

}Aptq} ` }bptq} ďM, @t P rt0, βs. (18.4.6)

Using this in the inequality (18.4.5), (18.4.6) we deduce

}uptq} ď }x0} `M

ż t

t0

}upsq}ds`Mpt´ t0q ď
`

}x0} `Mpβ ´ t0q
˘

`M

ż t

t0

}upsq}ds.

Gronwall’s inequality implies

}uptq} ď
`

}x0} ` pβ ´ t0qM
˘

epβ´t0qM , @t P rt0, βs.

We reached a contradiction which shows that, necessarily, β “ t2. The equality α “ t1
can be proven in a similar fashion. This completes the proof of Theorem 18.4.1. [\

18.4.2. Homogeneous systems of linear differential equations. In this section we
will investigate the system (18.4.2) (equivalently, (18.4.3b)). We begin with a theorem on
the structure of the set of solutions.

Theorem 18.4.2. The set of solutions of the system (18.4.2) is a real vector space of
dimension n.

Proof. The set of solutions is obviously a real vector space. Indeed, the sum of two
solutions of (18.4.2) and the multiplication by a scalar of a solution are also solutions of
this system.

We will show that there exists a linear isomorphism between the space E of solutions
of (18.4.2) and the space Rn. Fix a point t0 P I and denote by Γt0 the map E Ñ Rn that
associates to a solution x P E its value at t0 P E, i.e.,

Γt0pxq “ xpt0q P Rn, @x P E.
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The map Γt0 is obviously linear. The existence and uniqueness theorem concerning the
Cauchy problems associated to (18.4.2) implies that Γt0 is also surjective and injective.
This completes the proof of Theorem 18.4.2. [\

The above theorem shows that the space E of solutions of (18.4.2) admits a basis
consisting of n solutions. Let

␣

x1,x2, . . . ,xn
(

,

be one such basis. In particular, x1,x2, . . . ,xn are n linearly independent solutions of
(18.4.2), i.e., the only constants c1, c2, . . . , cn such that

c1x
1ptq ` c2x

2ptq ` ¨ ¨ ¨ ` cnx
nptq “ 0, @t P I,

are the null ones, c1 “ c2 “ ¨ ¨ ¨ “ cn “ 0. The matrix Xptq whose columns are given by
the function x1ptq,x2ptq, . . . ,xnptq,

Xptq :“
“

x1ptq,x2ptq, . . . ,xnptq
‰

, t P I,

is called a fundamental matrix It is easy to see that the matrix Xptq is a solution of the
differential equation

X 1ptq “ AptqXptq, t P I, (18.4.7)

where we denoted byX 1ptq the matrix whose entries are the derivatives of the correspond-
ing entries of Xptq.

A fundamental matrix Xptq is not unique, but it is uniquely determined by its value
at a point t0. The matrix Xpt0q is invertible since the map Γt0 maps linearly independent
solutions to linearly independent vectors in Rn. Note that XptqXpt0q

´1 is the (unique!)
fundamental solution determined by the solutions x1ptq, . . . ,xnptq satisfying

xipt0q “ ei, i “ 1, . . . , n,

where e1, . . . , en denotes the canonical basis of Rn. This shows that if Y ptq is another
fundamental solution, then

Y ptqY pt0q
´1 “XptqXpt0q

´1

Thus the matrix XptqXpt0q
´1 is independent of the choice of the fundamental solution

Xptq. We set

Spt, t0q “ SApt, t0q “XptqXpt0q
´1 .

We will refer to the family of operators SApt, t0q : Rn Ñ Rn, t0, t P R as the propagator
or the scattering matrix of the homogeneous system (18.4.2). The proof of the following
result is left to the reader as an exercise.

Proposition 18.4.3. For any t0, t1, t2 P R we have

Spt0, t0q “ 1Rn , Spt2, t0q “ Spt2, t1qSpt1, t0q,

Spt0, t1q “ Spt1, t0q
´1, Spt1, t0q “ Spt1, 0qSp0, t0q “ Spt1, 0qSpt0, 0q

´1

d

dt
Spt, t0q “ AptqSpt, t0q.
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[\

Corollary 18.4.4. The unique solution of the initial value problem

x1ptq “ Aptqxptq, bxpt0q “ c0

is xptq “ Spt, t0qc0. [\

Given a collection tx1, . . . ,xnu of solutions of (18.4.2), we define the Wronskian of
this collection to be the determinant

W ptq :“ detXptq, (18.4.8)

where Xptq denotes the matrix with columns x1pyq, . . . ,xnptq. The next result, due to
the Polish mathematician H. Wronski (1778-1853) explains the relevance of the quantity
W ptq.

Theorem 18.4.5. The collection of solutions tx1, . . . ,xnu of (18.4.2) is linearly indepen-
dent if and only if its Wronskian W ptq is nonzero at a point of the interval I (equivalently,
on the entire interval I).

Proof. As we know, for any t0 P R, the linear map Γt0 is a linear isomorphism from
the space of solutions of (18.4.2) to Rn, so the solutions x1ptq, . . . ,xnptq are linearly
independent iff the vectors x1pt0q, . . . , ,xnpt0q are linearly independent in Rn, i.e., iff the
matrix Xpt0q is nonsingular. [\

Theorem 18.4.6 (Liouville). Let W ptq be the Wronskian of a collection of n solutions of
the system (18.4.2). Then we have the equality

W ptq “W pt0q exp

ˆ
ż t

t0

trApsqds

˙

, @t0, t P I, (18.4.9)

where trAptq denotes the trace of the matrix Aptq,

trAptq “
n
ÿ

i“1

aiiptq.

Proof. Without loss of generality we can assume thatW ptq is the Wronskian of a linearly
independent collection of solutions tx1, . . . ,xnu. (Otherwise, the equality (18.4.9) would
follow trivially from Theorem 18.4.5.) Denote by Xptq the fundamental matrix with
columns x1ptq, . . . ,xnptq.

From the definition of the derivative we deduce that for any t P I we have

Xpt` εq “Xptq ` εX 1ptq ` opεq, as εÑ 0.

From (18.4.7) we deduce that

Xpt` εq “ Xptq ` εAptqXptq ` opεq “
`

1` εAptq ` opεq
˘

Xptq, @t P I. (18.4.10)
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In (18.4.10) we take the determinant of both sides and we deduce

W pt` εq “ det
`

1`Aptq ` opεq
˘

W ptq “
`

1` ε trAptq ` opεq
˘

W ptq.

Letting εÑ 0 in the above equality we obtain

W 1ptq “
`

trAptq
˘

W ptq.

Integrating the above linear differential equation we obtain (18.4.9).

[\

Remark 18.4.7. From Liouville’s theorem (1809-1882) we deduce in particular the fact
that if the Wronskian is nonzero at a point, then it is nonzero everywhere.

Taking into account that the determinant of a matrix is the oriented volume of the
parallelepiped determined by its columns, Liouville’s formula (18.4.9) describes the vari-
ation of the volume of the parallelepiped determined by tx1ptq, . . . ,xnptqu. In particular,
if trAptq “ 0, then this volume is conserved along the trajectories of the system (18.4.2).

This fact admits a generalization to nonlinear differential systems of the form

x1 “ fpt,xq, t P I, (18.4.11)

where f : I ˆ Rn Ñ Rn is a C1-map such that

divx fpt,xq ” 0. (18.4.12)

Assume that for any x0 P Rn there exists a solution Spt; t0x0q “ xpt; t0,x0q of the system
(18.4.11) satisfying the initial condition xpt0q “ x0 and defined on the interval I. Let D
be a domain in Rn and set

Dptq “ SptqD :“
␣

Spt; t0,x0q; x0 P D
(

.

Liouville’s theorem from statistical physics states that the volume of Dptq is constant. [\

18.4.3. Nonhomogeneous systems of linear differential equations. In this sec-
tion we will investigate the nonhomogeneous system (18.4.1) or, equivalently, the system
(18.4.3a). Our first result concerns the structure of the set of solutions.

Theorem 18.4.8. LetXptq be a fundamental solution of the homogeneous system (18.4.2)
and rxptq a given solution of the nonhomogeneous system (18.4.3a). Then the general
solution of the system (18.4.3a) has the form

xptq “Xptqc` rxptq, t P I, (18.4.13)

where c is an arbitrary vector in Rn.

Proof. Obviously, any function xptq of the form (18.4.13) is a solution of (18.4.3a). Con-
versely, let yptq be an arbitrary solution of the system (18.4.3a) determined by its initial
condition ypt0q “ y0, where t0 P I and y0 P Rn. Consider the linear algebraic system

Xpt0qc “ y0 ´ rxpt0q.
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Since detXpt0q ‰ 0, the above system has a unique solution c0. Then the function
Xpt0qc0 ` rxptq is a solution of (18.4.3a) and has the value y0 at t0. The existence and
uniqueness theorem then implies that

yptq “Xpt0qc0 ` rxptq. @t P I.

In other words, the arbitrary solution yptq has the form (18.4.13). [\

The next result, sometimes referred to as Duhamel’s formula, clarifies the statement of
Theorem 18.4.8 by offering an explicit representation for a particular solution of (18.4.3a).

Theorem 18.4.9 (Variation of constants formula). Let SApt, sq be the propagator of the
homogeneous system (18.4.2). Then the general solution of the nonhomogeneous system
(18.4.3a) admits the integral representation

xptq “ SApt, t0qc`

ż t

t0

SApt, sqbpsqds, t P I, (18.4.14)

where t0 P I, c P Rn.

Proof. Set Xptq :“ SApt, t0q. Then Xptq is a fundamental solution of the homogeneous
system. We seek a particular solution rxptq of (18.4.3a) of the form

rxptq “Xptqγptq, t P I, (18.4.15)

where γ : I Ñ Rn is a function to be determined. Since rxptq is supposed to be a solution
of (18.4.3a) we deduce

X 1ptqγptq `Xptqγ 1ptq “ AptqXptq ` bptq.

Using the equality (18.4.7), we have X 1ptq “ AptqXptq and we deduce that

γ 1ptq “Xptq´1bptq, @t P I,

and thus we can choose γptq of the form

γptq “

ż t

t0

Xpsq´1bpsqds, t P I, (18.4.16)

where t0 P I is some fixed point in I. Hence

x̃ptq “Xptq

ˆ
ż t

t0

Xpsq´1bpsqds

˙

“

ż t

t0

XptqXpsq´1
loooooomoooooon

SApt,sq

bpsqds

is a solution of (18.4.3a). The representation formula (18.4.14) now follows from Theorem
18.4.8. [\

Remark 18.4.10. The solution of the initial value problem

x1 “ Aptqxptq ` bptq, xpt0q “ x
0
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is

xptq “ SApt, t0qx
0 `

ż t

t0

SApt, sqbpsqds .

[\

18.4.4. Higher order linear differential equations. Consider the linear homogeneous
differential equation of order n

xpnq ` a1ptqx
pn´1qptq ` ¨ ¨ ¨ ` anptqxptq “ 0, t P I, (18.4.17)

and the associated nonhomogeneous one

xpnq ` a1ptqx
pn´1qptq ` ¨ ¨ ¨ ` anptqxptq “ fptq, t P I, (18.4.18)

where ai, i “ 1, . . . , n and f are continuous functions on an interval I.

Using the general procedure of reducing a higher order o.d.e. to a system of first order
o.d.e.-s we set

x1 :“ x, x2 :“ x1, . . . , xn :“ xpn´1q.

The homogeneous equation (18.4.17) is equivalent with the first order linear differential
system

x11 “ x2
x12 “ x3
...

...
...

x1n “ ´anx1 ´ an´1x2 ´ ¨ ¨ ¨ ´ a1xn.

(18.4.19)

In other words, the map Λ defined by

x ÞÑ Λx :“

»

—

—

—

–

x
x1

...

xpn´1q

fi

ffi

ffi

ffi

fl

,

defines a linear isomorphism between the set of solutions of (18.4.17) and the set of solu-
tions of the linear system (18.4.19). From Theorem 18.4.2 we deduce the following result.

Theorem 18.4.11. The set of solutions of (18.4.17) is a real vector space of dimension
n. [\

Let us fix a basis tx1, . . . , xnu of the space of solutions of (18.4.17).

Corollary 18.4.12. The general solution of (18.4.17) has the form

xptq “ c1x1ptq ` ¨ ¨ ¨ ` cnxnptq, (18.4.20)

where c1, . . . , cn are arbitrary constants. [\
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Just like in the case of linear differential systems, a collection of n linearly independent
solutions of (18.4.17) is called a fundamental system (or collection) of solutions.

Using the isomorphism Λ we can define the concept of Wronskian of a collection of
n solutions of (18.4.17). If tx1, . . . , xnu is such a collection, then its Wronskian is the
function W : I Ñ R defined by

W ptq :“ det

»

—

—

—

–

x1 ¨ ¨ ¨ ¨ ¨ ¨ xn
x11 ¨ ¨ ¨ ¨ ¨ ¨ x1n
...

...
...

...

x
pn´1q
1 ¨ ¨ ¨ ¨ ¨ ¨ x

pn´1q
n

fi

ffi

ffi

ffi

fl

. (18.4.21)

Theorem 18.4.5 has the following immediate consequence.

Theorem 18.4.13. The collection of solutions tx1, . . . , xnu of (18.4.17) is fundamental
if and only if its Wronskian is nonzero at a point or, equivalently, everywhere on I. [\

Taking into account the special form of the matrix Aptq corresponding to the system
(18.4.19) we have the following consequence of Liouville’s theorem

Theorem 18.4.14. For any t0, t P I we have

W ptq “W pt0q exp

ˆ

´

ż t

t0

a1psqds

˙

, (18.4.22)

where W ptq is the Wronskian of a collection of solutions. [\

Theorem 18.4.8 shows that the general solution of the nonhomogeneous equation
(18.4.18) has the form

xptq “ c1x1ptq ` ¨ ¨ ¨ ` cnxnptq ` rxptq, (18.4.23)

where tx1, . . . , xnu is a fundamental collection of solutions of the homogeneous equation
(18.4.17) , and rxptq is a particular solution of the nonhomogeneous equation (18.4.18).

We seek the particular solution using the method of variation of constants. In other
words, we seek rxptq of the form

rxptq “ c1ptqx1ptq ` ¨ ¨ ¨ ` cnptqxnptq, (18.4.24)

where tx1, . . . , xnu is a fundamental collection of solutions of the homogeneous equation
(18.4.17), and c1, . . . , cn are unknown functions determined from the system

c11x1 ` ¨ ¨ ¨ ` c
1
nxn “ 0

c11x
1
1 ` ¨ ¨ ¨ ` c

1
nx
1
n “ 0

...
...

...

c11x
pn´1q
1 ` ¨ ¨ ¨ ` c1nx

pn´1q
n “ fptq.

(18.4.25)

The determinant of the above system is the Wronskian of the collection tx1, . . . , xnu and
it is nonzero since this is a fundamental collection. Thus the above system has a unique
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solution tc11, . . . , c
1
nu. It is now easy to verify that the function rx given by (18.4.24) and

(18.4.25) is indeed a solution of (18.4.18).

18.4.5. Higher order linear differential equations with constant coefficients.
In this subsection we will deal with the problem of finding a fundamental collection of
solutions for the differential equation

xpnq ` a1x
pn´1q ` ¨ ¨ ¨ ` an´1x

1 ` anx “ 0, (18.4.26)

where a1, . . . , an are real constants. The characteristic polynomial of the differential equa-
tion (18.4.26) is the algebraic polynomial

Lpλq “ λn ` a1λ
n´1 ` ¨ ¨ ¨ ` an. (18.4.27)

To any polynomial of degree ď n

P pλq “
n
ÿ

k“0

pkλ
k

we associate the differential operator

P pDq “
n
ÿ

k“0

pkD
k, Dk :“

dk

dtk
. (18.4.28)

This acts on the space CnpRq of functions n-times differentiable on R with continuous
n-th order derivatives according to the rule

x ÞÑ P pDqx :“
n
ÿ

k“0

pkD
kx “

n
ÿ

k“0

pk
dkx

dtk
. (18.4.29)

Note that (18.4.26) can be rewritten in the compact form

LpDqx “ 0.

The key fact for the problem at hand is the following equality

LpDqeλt “ Lpλqeλt, @t P R, λ P C. (18.4.30)

Indeed, the equality (18.4.30) holds if Lpλq “ λk and thus, by linearity, it holds for any
polynomial L P Crλs.

From the equality (18.4.30) it follows that if λ is a root of the characteristic polynomial,
then eλt is a solution of (18.4.26). If λ is a root of multiplicity mpλq of Lpλq, then we
define

Sλ :“

$

’

&

’

%

␣

eλt, . . . tmpλq´1eλt
(

, if λ P R,

␣

Re eλt, Im eλt, . . . tmpλq´1Re eλt, tmpλq´1 Im eλt
(

, if λ P CzR,

where Re and respectively Im denote the real and respectively imaginary part of a com-
plex number. Note that since the coefficients a1, . . . , an are real we have

Sλ “ Sλ̄,
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for any root λ of L, where λ̄ denotes the complex conjugate of λ. Moreover, if λ “ a` ib,
b ‰ 0, is a root with multiplicity mpλq, then

Sλ “
␣

ea cos bt, ea sin bt, . . . , tmpλq´1ea cos bt, tmpλq´1ea sin bt
(

.

Theorem 18.4.15. Let RL be the set of roots of the characteristic polynomial Lpλq. For
each λ P RL we denote by mpλq its multiplicity. Then the collection

S :“
ď

λPRL

Sλ (18.4.31)

is a fundamental collection of solutions of the equation (18.4.26).

Proof. The proof relies on the following generalization of the product formula.

Lemma 18.4.16. For any x, y P CnpRq and any polynomial L P Crλs of degree at most
n we have

LpDqpxyq “
n
ÿ

ℓ“0

1

ℓ!

`

LpℓqpDqx
˘`

Dℓy
˘

, (18.4.32)

where LpℓqpDq is the differential operator associated to the polynomial Lpℓqpλq :“ dℓ

dλℓ
Lpλq.

Proof. We present two proofs.

1st Method. Denote by Crλsn the subspace of Crλs consisting of polynomials of degree
ď n and by L the subset of Crλsn consisting of polynomials L satisfying (18.4.32) for any
x, y P CnpRq. Observe first that L is a vector subspace of Crλsn containing the constant
one. For Lpλq “ λk, k “ 1, . . . , n we have LpDq “ Dk and we have

Lpℓqpλq “ kpk ´ 1q ¨ ¨ ¨ pk ´ ℓ` 1qλk´ℓ,

LpDqpxyq “ Dkpxyq
p7.6.1q
“

k
ÿ

ℓ“0

ˆ

k

ℓ

˙

`

Dk´ℓx
˘`

Dℓy
˘

“

k
ÿ

ℓ“0

kpk ´ 1q ¨ ¨ ¨ pk ´ ℓ` 1q

ℓ!

`

Dk´ℓx
˘`

Dℓy
˘

“

n
ÿ

ℓ“0

1

ℓ!

`

LpℓqpDqx
˘`

Dℓy
˘

.

Hence 1, λ, . . . , λn P L proving that L “ Crλsn.

2nd Method. Using the product formula we deduce that LpDqpxyq has the form

LpDqpxyq “
n
ÿ

ℓ“0

`

LℓpDqx
˘`

Dℓy
˘

, (18.4.33)

where Lℓpλq are certain polynomials of degree ď n´ ℓ. In (18.4.33) we let x “ eλt, y “ eµt

where λ, µ are arbitrary complex numbers. Then

LℓpDqx “ Lℓpλqe
λt, Dℓy “ µℓeµt,

`

LℓpDqx
˘`

Dℓy
˘

“ epλ`µqtLℓpλqµ
ℓ.
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From (18.4.30) and (18.4.33) we obtain the equality

Lpλ` µq “ e´pλ`µqtLpDqepλ`µqt “
n
ÿ

ℓ“0

Lℓpλqµ
ℓ. (18.4.34)

On the other hand, Taylor’s formula implies

Lpλ` µq “
n
ÿ

ℓ“0

1

ℓ!
Lpℓqpλqµℓ, @λ,mu P C.

Comparing the last equality with (18.4.34) we deduce Lℓpλq “
1
ℓ!L

pℓqpλq. [\

Let us now prove that any function in the collection (18.4.31) is indeed a solution of
(18.4.26). Let

xptq “ treλt, λ P RL, 0 ď r ă mpλq.

Lemma 18.4.16 implies that

LpDqx “
n
ÿ

ℓ“0

1

ℓ!
LpℓqpDqeλtDℓtr “

r
ÿ

ℓ“0

1

ℓ!
LpℓqpλqeλtDℓtr “ 0.

If λ is a complex number, then the above equality also implies LpDqRex “ LpDq Imx “ 0.

Since the complex roots of L come in conjugate pairs, we conclude that the set S in
(18.4.31) consists of exactly n real solutions of (18.4.26). To prove the theorem it suffices
to show that the functions in S are linearly independent. We argue by contradiction and
we assume that they are linearly dependent. Observing that for any λ P RL we have

Re treλ “
tr

2

`

eλt ` eλ̄t
˘

, Im treλ “
tr

2i

`

eλt ´ eλ̄t
˘

,

and that the roots of L come in conjugate pairs, we deduce from the assumed linear
dependence of the collection S that there exists a collection of complex polynomials Pλptq,
λ P RL, not all trivial, such that and

ÿ

λPRL

Pλptqe
λt “ 0.

The following elementary result shows that such polynomials do not exist.

Lemma 18.4.17. Suppose that µ1, . . . , µk are pairwise distinct complex numbers. If

P1ptq, . . . , Pkptq

are complex polynomials such that

P1ptqe
µ1t ` ¨ ¨ ¨Pkptqe

µkt “ 0, @t P R,

then P1ptq ” ¨ ¨ ¨ ” Pkptq ” 0.
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Proof. We argue by induction on k. The result is obviously true for k “ 1. Assume
that the result is true and we prove that it is true for k ` 1. Suppose that µ0, µ1, . . . , µk
are pairwise distinct complex numbers and P0ptq, P1ptq, . . . , Pkptq are complex polynomials
such that

P0ptqe
µ0t ` P1ptqe

µ1t ` ¨ ¨ ¨Pkptqe
µkt “ 0, @t P R. (18.4.35)

Set

m :“ max
␣

degP0, degP1, . . . ,degPk
(

. (18.4.36)

For simplicity we assume that degP0 “ m. Dividing both sides of (18.4.35) by eµ0t we
deduce

P0ptq `
k
ÿ

j“1

Pkptqe
zjt “ 0, @t P R, .

where zj “ µj ´ µ0 ‰ 0, @j “ 1, . . . ,m. We derivate the above equality pm ` 1q-times.

We have P
pm`1q
0 ptq “ 0 and, using Lemma 18.4.16 with LpDq “ Dm`1 we deduce that for

any t P R we have

0 “
k
ÿ

j“1

˜

m`1
ÿ

ℓ“0

ˆ

m` 1

ℓ

˙

zℓjD
m`1´ℓPjptq

¸

loooooooooooooooooooomoooooooooooooooooooon

“:Qjptq

ezjt.

The induction assumption implies that @j “ 1, . . . , k

Qjptq “ zm`1j Pjptq `

ˆ

m

1

˙

zmj DPjptq `

ˆ

m` 1

2

˙

zm´1j D2Pjptq ` ¨ ¨ ¨ “ 0. (18.4.37)

We claim that this implies that Pj “ 0.

To see this assume, that Pj ‰ 0 and set r “ degPj “ degQj . Then Dr`1Pj “ 0 and
DrPj ‰ 0. Using (18.4.37) we deduce

0 “ DrQjptq “ zm`1j DrPjptq `

ˆ

m

1

˙

zmj Dr`1Pjptq
loooomoooon

“0

`

ˆ

m` 1

2

˙

zm´1j Dr`2Pjptq
loooomoooon

“0

` ¨ ¨ ¨

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

“0

.

Since zj ‰ 0 we deduce DrPj “ 0. This contradiction proves the lemma. [\

This completes the proof of Theorem 18.4.15. [\

Let us briefly discuss the nonhomogeneous equation associated to (18.4.26), i.e., the
equation

xpnq ` a1x
pn´1q ` ¨ ¨ ¨ ` anx “ fptq, t P I. (18.4.38)

We have seen that the knowledge of a fundamental collection of solutions of the homoge-
neous equations allows us to determine a solution of the non homogeneous equation by
using the method of variation of constants. When the equation has constant coefficients
and fptq has the special form detailed below, this process simplifies somewhat.
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A complex valued function f : I Ñ C is called a quasipolynomial if it is a linear
combination with complex coefficients of functions of the form tkeµt, where k P Zě0,
µ P C. A real valued function f : I Ñ R is called a quasipolynomial if it is the real part
of a complex polynomial. For example, the functions tkeat cos bt and tkeat sin bt are real
quasipolynomials.

We want to explain how to find a complex valued solution xptq of the differential
equation

LpDqx “ fptq

where fptq is a complex quasipolynomial. Since LpDq has real coefficients, and xptq is a
solution of the above equation, then

LpDqRex “ Re fptq.

By linearity, we can reduce the problem to the special situation when

fptq “ P ptqeγt, (18.4.39)

where P ptq is a complex polynomial and γ P C.
Suppose that γ is a root of order ℓ of the characteristic polynomial Lpλq. (When ℓ “ 0

this means that Lpγq ‰ 0.) We seek a solution of the form

xptq “ tℓQptqeγt, (18.4.40)

where Q is a complex polynomial to be determined. Using Lemma 18.4.16 we deduce from
the equality LpDqx “ fptq that

P ptq “
n
ÿ

k“0

1

k!
LpkqpγqDk

`

tℓQptq
˘

“

n
ÿ

k“ℓ

1

k!
LpkqpγqDk

`

tℓQptq
˘

. (18.4.41)

The last equality leads to an upper triangular linear system in the coefficients of Qptq
which can then be determined in terms of the coefficients of P ptq.

We will illustrate the above general considerations on a physical model described by
a second order linear differential equation.

18.4.6. The harmonic oscillator. Consider the equation of the harmonic oscillator in
the presence of friction

mx2ptq ` βx1ptq ` kx “ fptq, t P R, (18.4.42)

where m,β, k are positive constants. Think of a bead of mass m allowed to slide along a
linear rod embedded in a fluid and attached to an elastic spring with elasticity constant
k. Its location along the rod at time t is xptq. The constant β measures the resistance
to motion due to the fluid. The function F ptq is an external force acting on the moving
bead. The Second Law of Dynamics then implies

mx2ptq “ ´βx1ptq ´ kx` F ptq
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which is precisely (18.4.42). Dividing (18.4.42) by m and setting b :“ β
m , ω2 :“ k

m , we
obtain the equation

x2ptq ` bx1ptq ` ω2xptq “ fptq :“
1

m
F ptq. (18.4.43)

The associated characteristic equation

λ2 ` bλ` ω2 “ 0,

has roots

λ1,2 “ ´
b

2
˘

d

ˆ

b

2

˙2

´ ω2.

We distinguish several cases.

1. b2´4ω2 ą 0. This corresponds to the case where the friction coefficient b is “large”,
λ1 and λ2 are negative real numbers, and the general solution of (18.4.42) has the form

xptq “ C1e
λ1t ` C2e

λ2t ` rxptq,

C1 and C2 are arbitrary constants, and rxptq is a particular solution of the nonhomogeneous
equation.

The function rxptq is called a “forced solution” of the equation. Since λ1 and λ2 are
negative, in the absence of the external force f , the motion dies down fast, converging
exponentially to 0.

2. b2 ´ 4ω2 “ 0. In this case

λ1 “ λ2 “ ´
b

2
,

and the general solution of the equation (18.4.42) has the form

xptq “ C1e
´ bt

2m ` C2te
´ bt

2m ` rxptq.

3. b2 ´ 4mω2 ă 0. This is the most interesting case from a physics viewpoint. In this
case

λ1 “ ´
b

2
` iu, λ2 “ ´

b

2
´ iu

where

u2 “ ´

ˆ

b

2

˙2

` ω2.

According to the general theory, the general solution of (18.4.42) has the form
`

C1 cosut` C2 sinut
˘

e´
bt
2m ` rxptq. (18.4.44)

Let us assume that the external force has a harmonic character as well, i.e.,

fptq “ a cos νt or fptq “ a sin νt,

where the frequency ν and the amplitude a are real, nonzero, constants.
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Suppose first that friction is present, i.e., b ‰ 0. We seek a particular solution of the
form

rxptq “ a1 cos νt` a2 sin νt.

Then

rx2ptq ` brx1ptq ` ω2
rxptq “

`

´a1ν
2 ` bνa2 ` ω

2a1
˘

cos νt

`
`

´ν2a2 ´ bνa1 ` ω
2a2

˘

sin νt

“
`

pω2 ´ ν2qa1 ` bνa2
˘

cos νt`
`

´bνa1 ` pω
2 ´ ν2qa2

˘

sin νt.

When f “ a cos νt we deduce

pω2 ´ ν2qa1 ` bνa2, ´bνa1 ` pω
2 ´ ν2qa2 “ 0.

Thus, if we write dpνq :“ pω2 ´ ν2q, we deduce

a2 “
bν

dpνq
a1, dpνqa1 `

b2ν2

dpνq
a1 “ a

so that

a1 “
adpνq

dpνq2 ` b2ν2dpνq
, a2 “

abν

dpνq2 ` b2ν2dpνq
,

the function

rxptq “
apω2 ´ ν2q

pω2 ´ ν2q2 ` b2ν2
cos νt`

abν

pω2 ´ ν2q2 ` b2ν2
sin νt (18.4.45)

is a solution of (18.4.43). Interestingly, as tÑ8, the general solution (18.4.44) is asymp-
totic to the particular solution (18.4.45), i.e.,

lim
tÑ8

`

xptq ´ rxptq
˘

“ 0,

so that for t sufficiently large, the general solution is practically indistinguishable from
the particular forced solution rx.

Consider now the case when b “ 0, i.e., the friction is nonexistent. Assume ν ‰ ω, i.e.,
we are in the nonresonant situation. Then

rxptq “ rxνptq “
a

ω2 ´ ν2
cos νt.

If the frequency ν of the external perturbation is very close to the characteristic frequency
of the oscillatory system, i.e.,

ν « ω. (18.4.46)

then the amplitude
ˇ

ˇ

ˇ

ˇ

a

ω2 ´ ν2

ˇ

ˇ

ˇ

ˇ

is huge. This is the resonance phenomenon encountered often in oscillatory mechanical
systems.

Practically, it manifests itself when the friction is negligible and the frequency of
the external force is very close to the characteristic frequency of the system. In such
cases oscillatory systems perform oscillations with large amplitudes. This can have both
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beneficial applications (think of tuning in a radio broadcast) and devastating consequences,
such as the Tacoma bridge disaster. Note that, @t P R, rxνptq has no limit as ν Ñ ω.

On the other hand

ryνptq “ rxνptq ´
a

ω2 ´ ν2
cosωt “

a

ω2 ´ ν2
`

cos νt´ cosωt
˘

,

is also a solution of

x2 ` ω2xptq “ fνptq :“ a cos νt, (Eν)

but l’Hôpital’s rule shows that

@t P R lim
νÑω

ryνptq “ lim
νÑω

a
cos νt´ cosωt

ω2 ´ ν2
“
at

2ω
sinωt “: ryωptq.

Let us observe that when b “ 0, ν “ ω, f “ a cosωt, then the general solution of

x2 ` ω2x “ fptq

has the form

a1 cosωt` a2 sinωt`B1t cosωt`B2t sinωt.

where the coefficients B1, B2 are uniquely determined from the equality

d2

dt2
`

B1t cosωt`B2t sinωt
˘

` ω2
`

B1t cosωt`B2t sinωt
˘

“ a cosωt.

We have

d

dt

`

B1t cosωt`B2t sinωt
˘

“ B1 cosωt´ ωB1t sinωt`B2 sinωt` ωB2t cosωt

“ pωB2t`B1q cosωt` p´ωB1t`B2q sinωt

d2

dt2
`

B1t cosωt`B2t sinωt
˘

“ B2ω cosωt´ ωpB2ωt`B1q sinωt

´B1ω sinωt` ωp´B1ωt`B2q cosωt

“ p´ω2B1 ` 2B2ωq cosωt` p´ω
2B2 ´ 2B1ωq sinωt.

We deduce that

a cosωt “
d2

dt2
`

B1t cosωt`B2t sinωt
˘

` ω2
`

B1t cosωt`B2t sinωt
˘

“ 2B2ω cosωt´ 2B1ω sinωt, @t.

Hence

B1 “ 0, B2 “
a

2ω
Thus, the general solution of x2 ` ω2x “ a cosωt is

xptq “ a1 cosωt` a2 sinωt`
at

2ω
sinωt.

In particular, this shows that ryωptq is a solution of (Eν) for ν “ ω.

The oscillations of xptq are increasingly bigger and bigger as t increases. In Figure
18.3 we have depicted xptq corresponding to a1 “ a2 “ ω “ 1, a “ 2.
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Figure 18.3. The graph of sinptq ` cosptq ` t sinptq.

18.4.7. Linear differential systems with constant coefficients. We will investigate
the first order differential system

x1 “ Ax, t P R, (18.4.47)

where A “ paijq1ďi,jďn is a constant, real, n ˆ n-matrix. We denote by SAptq the funda-
mental matrix of (18.4.47) uniquely determined by the initial condition

SAp0q “ 1,

where 1 denotes the identity matrix. More concretely, for every x0 P Rn the function
xptq “ SAptqx0 is the solution of the Cauchy problem

x1ptq “ Axptq, xp0q “ x0.

This property characterizes SAptq.

Proposition 18.4.18. The family tSAptq; t P R u satisfies the following properties.

(i) SApt` sq “ SAptqSApsq, @t, s P R.
(ii) SAp0q “ 1.

(iii)
lim
tÑt0

SAptqx “ SApt0qx, @x P Rn, t0 P R.

Proof. The group property was already established in Proposition 18.3.2. It follows from
the uniqueness of solutions of the Cauchy problems associated to (18.4.47): the functions
Zptq “ SAptqSApsq and Y ptq “ SApt` sq both satisfy (18.4.47) with initial condition

Y p0q “ Zp0q “ SApsq.

Property (ii) follows from the definition, while (iii) follows from the fact that the function
t ÞÑ SAptqx is a solution of (18.4.47) and in particular it is continuous. [\
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Proposition 18.4.18 expresses the fact that the family tSAptq; t P R u is a one-
parameter group of linear transformations of the space Rn. The equality (iii), which can
be easily seen to hold in the stronger sense of the norm of the spaces of n ˆ n-matrices,
expresses the continuity property of the group SAptq. The map t Ñ SAptq satisfies the
differential equation

d

dt
SAptqx “ ASAptqx, @t P R, @x P Rn,

and thus

Ax “
d

dt

ˇ

ˇ

ˇ

t“0
SAptqx “ lim

tÑ0

1

t

`

SAptqx´ x
˘

. (18.4.48)

The equality (18.4.48) expresses the fact that A is the generator of the one-parameter
group SAptq. Note that in this case the propagator SApt, sq is

SApt, sq “ SAptqSApsq
´1 “ ept´sqA.

Using (18.4.14) we deduce that for any continuous function f : R Ñ Rn, the solution of
the non-homogeneous initial value problem

x1ptq “ Axptq ` fptq, xpt0q “ x0

is given by the Duhamel’s formula

xptq “ ept´t0qAx0 `

ż t

t0

ept´sqAfpsqds. (18.4.49)

We next investigate the structure of the fundamental matrix SAptq and the ways we can
compute it. We rely on the results described in Exercise 17.26.

We consider a slightly more general case that makes the algebraic manipulations more
transparent. Suppose that A is a complex nˆn matrix and V denotes the complex vector
space V :“ Cn. We denote by V R its real part

V R :“
␣

z “ pz1, . . . , znq P Cn; Im zk “ 0, @k “ 1, . . . , n
(

.

Observe that the matrix A has real entries if and only if AV R Ă V R. (Can you prove
this?)

We equip V with the sup-norm

}z} :“ max
`

|z1|, . . . , |zn|
˘

, @z “ pz1, . . . , znq P Cn.

As such, V is a complex Banach space and A : V Ñ V is a bounded linear operator. For
every t P R, consider as in Exercise 17.26 the operator etA defined by the convergent series

etA “ 1`
t

1!
A`

t2

2!
A2 ` ¨ ¨ ¨ . (18.4.50)

As claimed in Exercise 17.26, for every z0 P V , the function zptq “ etAz0 is a solution of
the Cauchy problem

dz

dt
“ Azptq, zp0q “ z0.
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In other words, SAptq “ etA for any complex matrix. If A is real, then all the terms
of the series (18.4.50) are real matrices so etA is also a real matrix. Thus in this case,
the exponential of A as a real n ˆ n matrix coincides with the restriction to V R of the
exponential of A viewed as a complex nˆ n matrix. We will identify the bases of V with
linear isomorphisms (gauge)

G : Cn Ñ V .

More precisely, if e “ pe1, . . . , enq is the canonical basis of Cn, then g1 “ Ge1, . . . , gn “ Gen
is a basis of V . In the basis determined by G, the operator A is represented by the complex
nˆ n matrix AG such that the diagram below is commutative

Cn Cn

V V

w

AG

u
G

u
G

w

A

This means that AG “ GAG so that

A “ GAGG
´1.

If BpV q denotes the Banach space of bounded linear operators V Ñ V , then the map

BpCnq Q T ÞÑ GTG´1 P BpV q

is continuous and we deduce that

etA “ lim
nÑ8

n
ÿ

k“0

tk

k!
An “ lim

nÑ8

n
ÿ

k“0

tk

k!
GAnGG

´1 “ G

˜

lim
nÑ8

n
ÿ

k“0

tk

k!
AnG

¸

U´1 “ GetAGG´1.

Here is how one should interpret the above equality: if we can explicitly compute G, G´1

and etAG , then we can explicitly compute etA. We will show how to use this principle, but
first let us describe some simple examples of matrices A for which etA can be computed
explicitly in finite time.

Example 18.4.19. (a) Suppose that A is a diagonal mˆm matrix

A “ Diagpa1, . . . , amq.

Then

etA “ Diag
`

eta1 , . . . , etam
˘

.

(b) Suppose that N is a nilpotent mˆm matrix, i.e., Np`1 “ 0 for some p P N0. Then

etN “ 1`
t

1!
N `

t2

2!
N2 ` ¨ ¨ ¨ `

tp

p!
Np.

(c) Suppose that A,B are complex mˆm matrices and we know how to compute etA and
etB. If A and B commute, AB “ BA, then

etpA`Bq “ etAetB

so we also know how to compute etpA`Bq.
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(d) Consider the nilpotent mˆm matrix

N “ Nm “

»

—

—

—

—

—

–

0 1 0 0 ¨ ¨ ¨ 0
0 0 1 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
0 0 0 0 ¨ ¨ ¨ 1
0 0 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

fl

For each λ P C we obtain a Jordan cell Cλ “ λIm`N . Clearly λIm and N commute and
we deduce from (b) and (c) that

etCλ “ etλ
ˆ

1`
t

1!
N `

t2

2!
N2 ` ¨ ¨ ¨ `

tm

m!
Nm

˙

.

(e) Suppose thatA1 and A2 are square matrices of sizes m1 and respectively m2 and we
can compute the exponentials etAk , k “ 1, 2. Then we can also compute the exponential
of the matrix

A1 ‘A2 :“

„

A1 0
0 A2

ȷ

.

More precisely,

etpA1‘A2q “ etA1 ‘ etA2 .

(f) The theory of Jordan decomposition informs us that for any square matrix A there
exists a Jordan basis G such that

AG “ Cλ1 ‘ ¨ ¨ ¨ ‘ Cλc

where λ1, . . . , λk and the matrices Cλj are Jordan cells of various sizes. In other words,

for any matrix A we can find a basis G such that etAG is computable. Thus, theoretically,
etA is computable for any complex matrix. In practice this is a bridge too far. If the size
of A is very large (ě 5) finding the eigenvalues accurately is improbable. The best one can
hope in such cases is to find reasonable approximations of the eigenvalues. If the matrix
admits nontrivial Jordan cells, i.e., it is not diagonalizable, then it is possible to miss this
fact using approximations: with probability 1, a small perturbation of a matrix renders it
diagonalizable. [\

Example 18.4.20. Suppose that the matrix A is diagonalizable. This happens for ex-
ample when A is Hermitian or has distinct eigenvalues.

Thus V admits a basis/gauge G consisting of eigenvectors of A. More precisely, the
columns g1, . . . , gn of G are eigenvectors of A

Agk “ λkgk, k “ 1, . . . , n.

In this case

AG “ Diagpλ1, . . . , λ
nq, etAG “ Diag

`

etλ1 , . . . , etλn
˘

etA “ GDiag
`

etλ1 , . . . , etλn
˘

G´1.
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Consider for example the 2ˆ 2-matrix

A “

„

a ´b
b a

ȷ

, a, b P R.

When b “ 0 the matrix A is diagonal and the computation of etA is immediate. We assume
b ‰ 0. The characteristic polynomial of A is

P pλq “ λ2 ´ ptrAqλ` detA “ λ2 ´ 2aλ` a2 ` b2.

Its roots are λ “ a ` bi and λ̄ “ a ´ bi. Since b ‰ 0, we have λ ‰ λ̄ so the matrix is
diagonalizable.

The vector

g “

„

1
´i

ȷ

is a complex eigenvector of λ “ a` bi. Indeed,

Ag “

„

a` bi
b´ ai

ȷ

“ pa` biqg.

The conjugate eigenvector

ḡ “

„

1
i

ȷ

is an eigenvector of λ̄ “ a´ bi. In this case

G “

„

1 1
´i i

ȷ

, G´1 “
1

2i

„

i ´1
i 1

ȷ

so

etA “
1

2i

„

1 1
´i i

ȷ

¨

„

etλ 0

0 etλ̄

ȷ

¨

„

i ´1
i 1

ȷ

“
1

2i

«

etλ etλ̄

´ietλ ietλ̄

ff

¨

„

i ´1
i 1

ȷ

“

«

1
2

`

etλ ` etλ̄
˘

1
2i

`

etλ̄´e
tλ
˘

1
2i

`

etλ ´ etλ̄
˘

1
2

`

etλ ` etλ̄
˘

ff

“

„

Re etλ ´ Im etλ

Im etλ Re etλ

ȷ

“

„

eta cosptbq ´eta sinptbq
eta sinptbq eta cosptbq

ȷ

.

[\

Example 18.4.21. Suppose that

G “

»

–

1 0 0
1 1 0
0 0 1

fi

fl and AG “ C1 “ 13 `N3.

Then

G´1 “

»

–

1 0 0
´1 1 0
0 0 1

fi

fl , N2
3 “

»

–

0 0 1
0 0 0
0 0 0

fi

fl ,
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etN3 “ 1`

»

–

0 t 0
0 0 t
0 0 0

fi

fl`
1

2

»

–

0 0 t2

0 0 0
0 0 0

fi

fl “

»

–

1 t t2{2
0 1 t
0 0 1

fi

fl .

18.5. Differentiability of the solutions with
respect to initial data and parameters

In this section we have a new look at the problem investigated in Section 18.3. Consider
the Cauchy problem

x1 “ F pt,xq, pt,xq P Ω Ă Rn`1,
xpt0q “ x0,

(18.5.1)

where F : Ω Ñ Rn is continuous in pt,xq and locally Lipschitz in x. We denote by
xpt; t0,x0q the right-saturated solution of the Cauchy problem (18.5.1) defined on the
right-maximal existence interval rt0, T`q. We proved in Theorem 18.3.1 that for any
T P rt0, T`q there exists η ą 0 such that for any

ξ P Spx0, ηq “
␣

x P Rn; }x´ x0} ă η
(

the solution xpt, ξq “ xpt; t0, ξq the solution of the initial value problem

x1 “ F pt,xq, pt,xq P Ω Ă Rn`1,
xpt0q “ ξ,

is defined in rt0, T s and the resulting map

Spx0, ηq Q ξ ÞÑ xpt, ξq P C
`

rt0, T s;Rn
˘

is continuous. We now investigate the differentiability of the above map. We begin by
recalling some facts about Fréchet differentiability.

Suppose that X,Y are Banach spaces with norms } ´ }X and respectively } ´ }Y ,
U Ă X is an open subset and T : U Ñ Y a map. We say that T is Fréchet differentiable
at x0 P X if there exists a bounded linear operator L P B

`

X,Y
˘

such that

lim
xÑx0

}T pxq ´ T px0q ´ Lpx´ x0q}Y
}x´ x0}X

“ 0. (18.5.2)

Using Landau’s notation we can rewrite the last condition as

}T pxq ´ T px0q ´ Lpx´ x0q}Y “ o
`

}x´ x0}X
˘

as xÑ x0. (18.5.3)

Traditionally, one writes x “ x0 ` h and the above equality becomes

lim
hÑ0

}T px0 ` hq ´ T px0q ´ Lh}Y
}h}X

“ 0. (18.5.4)

The operator L is denoted by T 1px0q and it is called the Fréchet derivative of T at x0.
Observe that is T is differentiable at a point x0 and T 1px0q is its differential, then the
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action of the operator T 1px0q on a vector h P X is given by an ordinary derivative

T 1px0qh “
d

dτ

ˇ

ˇ

τ“0
T px0 ` τhq.

The map T is said to be differentiable on U if it is differentiable at any u P U , and it is
called C1 if it is differentiable on U and the resulting map

U Q u ÞÑ T 1puq P BpX,Y q

is continuous, where the vector space BpX,Y q is equipped with the operator norm }´}op.
When X “ Rn and Y “ Rm we recover our earlier definition of differentiability, Definition
13.1.1.

The function
X Q x ÞÑ T px0q ` T

1px0qpx´ x0q P Y

is called the linear approximation of T at x0. The error of this approximation is the
remainder

Rpx, x0q “ T pxq ´ T px0q ´ T
1px0qpx´ x0q

Theorem 18.5.1. Under the same assumptions as in Theorem 18.3.1 assume additionally
that the function F is differentiable with respect to x and the differential F x is continuous
with respect to pt,xq. Fix ξ0 P Spx0, ηq. For any t P rt0, T s we denote by Aptq the
x-derivative of F at the point pt,xpt,x0qq,

Aptq “ F x

`

t,xpt,x0q
˘

.

Then for any t P rt0, T s the function ξ ÞÑ xpt, ξq is differentiable with respect to ξ at ξ0
and its differential Xptq :“ xξpt, ξ0q, viewed as a function of t, is the fundamental matrix
of the linear system ( variation equation)

y1 “ Aptqy, t0 ď t ď T, (18.5.5)

satisfying the initial condition
Xpt0q “ 1. (18.5.6)

In other words
X 1ptq “ AptqXptq, Xpt0q “ 1.

Proof. The reason why (18.5.5) determines Xptq can be explained heuristically as follows.
We have the equality

xpt, ξ0 ` τhq “ ξ0 ` τh`

ż t

t0

F
`

s,xps, ξ0 ` τhq
˘

ds.

Differentiating (formally) the above equality with respect to τ at τ “ 0, using the chain
rule and recalling that

Xpsqh “
d

dτ

ˇ

ˇ

τ“0
xps, ξ0 ` τhq

we deduce

Xptqh “ h`

ż t

t0

F x

`

s,xps, ξ0q
˘

Xpsqh ds.
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This is equivalent with (18.5.5) ` (18.5.6). Let us supply the precise arguments.

Let ξ P Spξ0, ηq. (Think ξ “ ξ0 ` τh.) Fix t1 P r0, T s. We need to estimate the
remainder

ρpt1, ξ, ξ0q :“ xpt1, ξq ´ xpt1, ξ0q ´Xpt1q
`

ξ ´ ξ0
˘

.

Note that

ρpt1, ξ, ξ0q “

ż t1

t0

´

F
`

s,xps, ξq
˘

´ F
`

s,xps, ξ0q
˘

´ApsqXpsq
`

ξ ´ ξ0
˘

¯

ds, (18.5.7)

where Xptq is the fundamental matrix of the linear system (18.5.5) that verifies the initial
condition (18.5.6). On the other hand,

F ps,uq ´ F
`

s,u0q
˘

“

ż 1

0

d

dτ
F
`

s,u0 ` τpu´ uq
˘

dτ

“

ż 1

0
F x

`

s,u0 ` τpu´ u0q
˘`

u´ u0

˘

dτ.

Hence

F ps,uq ´ F
`

s,u0q
˘

´ F xps,u0q
`

u´ u0

˘

“

ż 1

0

´

F x

`

s,u` τpu´ u0q
˘`

u´ u0

˘

´ F xps,u0q
`

u´ u0

˘

¯

dτ
looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

“Dps,u,u0q

.

Note that

}Dps,u,u0q} ď

´

ż 1

0

›

›F x

`

s,u0 ` τpu´ u0q
˘

´ F xps,uqq
›

›dτ
¯

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“:ωspu,u0q

}u´ u0}. (18.5.8)

If we let u0 “ xps, ξq and u “ xps, ξq we deduce that

F
`

s,xps, ξq
˘

´ F
`

s,xps, ξ0q
˘

“ F x

`

s,xps, ξ0q
˘`

xps, ξq ´ xps, ξ0q
˘

`R
`

s, ξ, ξ0
˘

“ Apsq
`

xps, ξq ´ xps, ξ0q
˘

`R
`

s, ξ, ξ0
˘

,
(18.5.9)

where

R
`

s, ξ, ξ0
˘

“ D
`

s,xps, ξq,xps, ξ0q
˘

.

Hence

ρpt1q “

ż t1

t0

Apsqρpsqds`

ż t1

t0

R
`

s, ξ, ξ0
˘

ds. (18.5.10)

Since F is locally Lipschitz, there exists a constant L ą 0 such that @t P rt0, T s we have

}xpt, ξq ´ xpt, ξ0q} ď }ξ ´ ξ0} ` L

ż t

t0

}xps, ξq ´ xps, ξ0q}ds.

Invoking Gronwall’s inequality we deduce

}xpt, ξq ´ xpt, ξ0q} ď }ξ ´ ξ0}e
Lpt´t0q, @t P rt0, T s. (18.5.11)
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Hence, for any s P rt0, ts

}R
`

s, ξ, ξ0
˘

}
p18.5.8q
ď ωs

`

xps, ξq,xps, ξ0q
˘

}xps, ξq ´ xps, ξ0q}

p18.5.11q
ď eLps´t0qωs

`

xps, ξq,xps, ξ0q
˘

looooooooooooooooomooooooooooooooooon

“:Ωspξ,ξ0q

}ξ ´ ξ0}.

As we know, the map

Spx0, ηq Q ξ ÞÑ xp´, ξq P C
`

rt0, T s,Rnq

is continuous so

lim
ξÑξ0

xps, ξq “ xps, ξ0q

uniformly in s P rt0, T s. The inequality (18.5.11) and the uniform continuity of the
differential F x on the compacts of Ω imply that the remainder R in (18.5.9) satisfies the
estimate

}R
`

s, ξ, ξ0
˘

} ď Ωspξ, ξ0q}ξ ´ ξ0}, (18.5.12)

where

lim
ξÑξ0

Ωspξ, ξ0q “ 0,

uniformly in s. Set

zptq :“ }ρptq}, L1 “ sup
sPrt0,T s

}Apsq}op, δpξ, ξ0q “ sup
sPrt0,T s

Ωspξ, ξ0q.

Using (18.5.12) in (18.5.10) we obtain the estimate

zptq ď pT ´ t0qδpξ, ξ0q}ξ ´ ξ0} ` L1

ż t

t0

zpsqds, @t P rt0, T
1s. (18.5.13)

Invoking Gronwall’s inequality again we deduce that
›

›xpt, ξq ´ xpt, ξ0q ´Xptq
`

ξ ´ ξ0
˘ ›

›

ď pT ´ t0qδpξ, ξ0q}
rξ ´ ξ0}e

L1pT´t0q “ o
`

}ξ ´ ξ0}
˘

. (18.5.14)

The last inequality implies (see Remark 13.1.4 or (18.5.3) ) that

xξpt, ξ0q “ Xptq.

[\

Example 18.5.2. Consider a simple gravitational pendulum. A material point of mass
m is attached to a rigid light arm of length L whose other end is attached to a frictionless
pivot; see Figure 18.4. The angular displacement θ is a function of time satisfying the
differential equation

θ ` ω2 sin θ “ 0, ω2 “
g

L
.

Denote by θpt, sq the solution of the above equation satisfying the initial conditions

θp0q “ s, θ1p0q “ 0.
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Note that θpt, 0q “ 0, @t. Theorem 18.5.1 shows that, for every t, the function s ÞÑ θpt, sq

Figure 18.4. Simple gravitational pendulum.

is differentiable. We set

yptq :“ Bsθpt, sq
ˇ

ˇ

s“0
.

Derivating with respect to s the equality

B2t θpt, sq ` ω
2 sin θpt, sq “ 0

we deduce that yptq is the unique solution of the differential equation

y2ptq ` ω2yptq “ 0, yp0q “ 1, y1p0q “ 0.

Hence

yptq “ cospωtq.

The function y is periodic, with period T “ 2π
ω and thus

θpT, sq “ sypT q `Ops2q “ θp0, sq `Ops2q

Hence, if the initial angular displacement θp0q “ s is small, then, after T seconds the

pendulum is very close to the initial position. Hence we can take T “ 2π
b

L
g to be a

reasonably good approximation of the period of the oscillation of a simple pendulum. [\

We next investigate the differentiability with respect to a parameter λ of the solution
xpt, λq of the Cauchy problem

x1 “ F pt,x,λq, pt,xq P Ω Ă Rn`1, λ P U Ă Rm, (18.5.15a)

xpt0q “ x0. (18.5.15b)

The parameter λ “ pλ1, . . . , λmq varies in a bounded open subset U on Rm. Fix λ0 P U .
Assume that the right-saturated solution xpt,λ0q the solution of (18.5.15a)-(18.5.15b)
corresponding to λ “ λ0 is defined on the maximal-to-the-right interval rt0, T`q.
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Theorem 18.5.3. Let

F : Ωˆ U Ñ Rn

be a continuous function, differentiable in the x and λ variables, and with the differentials
F x, F λ continuous in pt,x,λq. Then, for any T P rt0, T`q, there exists δ ą 0 such that
the following hold.

(i) The solution xpt,λq is defined on rt0, T s for any

λ P Spλ0, δq :“
␣

λ P Rm; }λ´ λ0} ă δ
(

.

(ii) For any t P rt0, T s the map

Spλ0, δq Q λ ÞÑ xpt,λq P Rn

is differentiable and the differential yptq :“ xλpt, λ0q at λ0 is uniquely deter-
mined by the (matrix valued) linear nonhomogeneous Cauchy problem

y1ptq “ F x

`

t,xpt,λ0q,λ0

˘

yptq ` F λ

`

t,xpt,λ0q,λ0

˘

, @t P rt0, T s, (18.5.16)

ypt0q “ 0. (18.5.17)

Proof. As in the proof of Theorem 18.3.4 we form a new Cauchy problem,

x1 “ pF pt, zq,

zpt0q “ ζ :“ pξ,λq.
(18.5.18)

where

z “ px,λq, pF pt, zq “
`

F pt,x,λq, 0
˘

P Rn ˆ Rm.
According to Theorem 18.5.1, the map

ζ ÞÑ
`

xpt, ξ,λq,λ
˘

“: zpt, ζq

is differentiable and its differential

Zptq :“
Bz

Bζ
“

„

Bx
Bξ pt; t0, ξ,λq

Bx
Bλpt; t0, ξ,λq

0 1m

ȷ

(1m is the identity mˆm matrix) satisfies the differential equation

Z 1ptq “ pF zpt, zqZptq, Zpt0q “ 1n`m. (18.5.19)

Taking into account the description of Zptq and the equality

pF zpt, zq “

„

F xpt,x,λq F λpt,x,λq
0 0

ȷ

,

we conclude from (18.5.19) that yptq :“ xλpt; t0,x0,λq satisfies the Cauchy problem
(18.5.16)-(18.5.17).

[\
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Remark 18.5.4. The matrix xλpt,λ0q is sometimes called the sensitivity matrix and its
entries are known as sensitivity functions. Measuring the changes in the solution under
small variations of the parameter λ, this matrix is an indicator of the robustness of the
system. [\

Theorem 18.5.3 is especially useful in the approximation of the solutions of the differ-
ential systems via the so called small-parameter method.

Let us denote by xpt,λq the solution xpt; t0,x0,λq of the Cauchy problem (18.5.15a)-
(18.5.15b). We then have a first order approximation

xpt,λq “ xpt,λ0q ` xλpt,λ0qpλ´ λ0q ` op}λ´ λ0}q, (18.5.20)

where yptq “ xλpt,λ0q is the solution of the variation equation (18.5.16)-(18.5.17). Thus,
in a neighborhood of the parameter λ0 we have

xpt,λq « xpt,λ0q ` xλpt,λ0qpλ´ λ0q.

We have thus reduced the approximation problem to solving a linear differential system.

Example 18.5.5. Let us illustrate the technique on the following example

x1 “ x` λtx2 ` 1, xp0q “ 1, (18.5.21)

where λ is a sufficiently small parameter. The equation (18.5.21) is a Riccati type equation
and cannot be solved by quadratures. However, for λ “ 0 it reduces to a linear equation
and its solution is

xpt, 0q “ 2et ´ 1.

According to formula (18.5.20) the solution xpt, λq admits an approximation

xpt, λq “ 2et ´ 1` λyptq ` op|λ|q,

where yptq “ xλpt, 0q is the solution of the variation equation

y1 “ y ` tp2et ´ 1q2, yp0q “ 0.

Hence

yptq “

ż t

0
sp2es ´ 1q2et´sds.

Thus, for small values of the parameter λ the solution of the problem (18.5.21) is well
approximated by

2et ´ 1` λet
`

4tet ´ 2t2 ´ 4et ` e´t ` 3´ te´t
˘

.

[\



Chapter 19

Measure theory and
integration

The goal of this chapter is to present the modern technique of integration pioneered by
H. Lebesgue that considerably extends the reach of the classical Riemann integral. While
the Riemann integration could be performed only over subsets of some Euclidean space,
the new process can be performed over abstract sets as long as we can attach a concept
of “volume” to certain of its subsets. Measure theory clarifies this last vaguely phrased
requirement and the first half of this chapter is devoted to developing this theory. The
second half is devoted to the construction of the new integral and describing some of its
more salient features.

For any set Ω we denote by 2
Ω the collection of all the subsets of Ω. For S Ă Ω we

denote by IS its indicator function

IS : ΩÑ t0, 1u, ISpωq “

#

1, ω P S,

0, ω P ΩzS.

For any S Ă Ω we denote by Sc its complement, Sc :“ ΩzS.

If F : X Ñ Y is a map between two sets X,Y and A Ă Y then we set

tF P Au :“ F´1pAq Ă X.

Note that

ItFPAupxq “ IA ˝ F pxq “ IA
`

F pxq
˘

.

In particular, if F : X Ñ R and a, b P R, then

tF ď au “ tF P p´8, asu, ta ď F ď bu “ tF P ra, bsu Ă X etc.

799
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19.1. Measurable spaces and measures

The Lebesgue technique of integration requires a choice of a measure. Intuitively, a mea-
sure assigns to a subset of a given set a nonnegative real number; think length, area,
cardinality. This section is devoted to clarifying the concept of measure.

19.1.1. Sigma-algebras. Fix a nonempty set Ω.

Definition 19.1.1. (a) A collection R of subsets of Ω is called a ring of subsets of Ω
if it satisfies the following conditions

(i) @A,B P R, AXB,AYB P R.

(ii) @A,B P R, A Ă B ñ BzA P R.

(b) A collection A of subsets of Ω is called an algebra of subsets of Ω if it is a ring
and Ω P A.

(c) A collection S of subsets of Ω is called a σ-algebra (or sigma-algebra) of Ω if it is
an algebra of Ω and the union of any countable subfamily of S is a set in S, i.e.,

@pAnqnPN P S
N,

ď

ně1

An P S. (19.1.1)

(c) A measurable space is a pair pΩ, Sq where S is a sigma-algebra of subsets of Ω. A
set S P S is called S-measurable. [\

Remark 19.1.2. To prove that an algebra S is a σ-algebra is suffices to verify (19.1.1)
only for increasing sequence of subsets An P S. Indeed, if pAnqnPN is any sequence of
subsets in S, then for any n we have

An “ A1 Y ¨ ¨ ¨ YAn P S

since S is an algebra. The new sequence pAnqnPN is increasing and
ď

nPN
An “

ď

nPN
An.

[\

Example 19.1.3. Let us describe a few classical examples of sigma algebras.

(i) The collection 2
Ω of all subsets of Ω is obviously a σ-algebra.

(ii) Suppose that S is a (σ-)algebra of a set Ω and F : pΩ Ñ Ω is a map. Then the
preimage

F´1pSq “
␣

F´1pSq; S P S
(

is a (σ-)algebra of subsets of pΩ. The σ-algebra F´1pSq is denoted by σpF q and
it is called the σ-algebra generated by F or the pullback of S via F .

(iii) Given A Ă Ω we denote by SA the σ-algebra generated by A, i.e.,

SA “
␣

H, A,Ac,Ω
(

.
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We will refer to it as the Bernoulli algebra with success A. Note that SA is the
pullback of 2t0,1u via the indicator function IA : ΩÑ t0, 1u.

(iv) If pSiqiPI is a family of (σ-)algebras of Ω, then their intersection
č

iPI

Si Ă 2
Ω

is a (σ-)algebra of Ω.

(v) If C Ă 2
Ω is a family of subsets of Ω, then we denote by σpC q the σ-algebra gen-

erated by C , i.e., the intersection of all σ-algebras that contain C . In particular,
if S1, S2 are σ-algebras of Ω, then we set

S1 _ S2 :“ σpS1 Y S2q.

More generally, for any family pSiqiPI of σ-algebras we set

ł

iPI

Si :“ σ

˜

ď

iPI

Si

¸

.

(vi) Suppose that we are given a countable partition P “ tAnunPN of Ω,

Ω “
ğ

nPN
An.

Then the σ-algebra generated by this partition, denoted by σpP q, is the sigma
consisting of all the subsets of Ω that are unions of the sets An. This σ-algebra
can be viewed as the σ-algebra generated by the map

X : ΩÑ N, X “
ÿ

nPN
nIAn .

More precisely σpP q “ X´1
`

2
N ˘, so that An “ X´1

`

tnu
˘

.

(vii) If pΩ1, S1q and pΩ2, S2q are two measurable spaces, then we denote by S1 b S2
the sigma algebra of Ω1 ˆ Ω2 generated by the collection of rectangles

␣

S1 ˆ S2 : S1 P S1, S2 P S2
(

Ă 2
Ω1ˆΩ2 .

(viii) If X is a metric space and TX Ă 2
X denotes the family of open subsets, then

the Borel σ-algebra of X, denoted by BX , is the σ-algebra generated by TX .
The sets in BX are called the Borel subsets of X.

The real axis R is naturally a metric space. The associated Borel algebra
BR can equivalently described as the sigma-algebra generated by the collection
of semiaxes

p´8, as, a P R
Note that since any open set in Rn is a countable union of open cubes we have

BRn “ BbnR . (19.1.2)
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(ix) We set R̄ “ r´8,8s. The Borel algebra of R̄ is the sigma-algebra generated by
the intervals

r´8, as, a P r´8,8s.

For simplicity we will refer to the Borel subsets of R̄ simply as Borel sets.

(x) If pΩ, Sq is a measurable space and X Ă Ω, then the collection

S|X :“
␣

S XX : S P S
(

Ă 2
X

is a σ-algebra of X called the trace of S on X.
Equivalently, consider the natural inclusion iX : X Ñ Ω, iXpxq “ x, @x P X.

Then S|X coincides with the pullback of S via iX ; see (ii).

[\

Remark 19.1.4 (Human language conversion). Suppose that we are given a family of
subsets pSiqiPI of a set Ω. Let us observe that the statement

ω P
č

iPI

Si

translates into the formula @i P I, ω P Si or, in human language, ω belongs to all of the
sets in the family. The statement

ω P
ď

iPI

Si

translates into the formula Di P I, ω P Si or, in human language, ω belongs to at least one
of the sets Si.

For example, the statement

ω P
ď

nPN

č

kěn

Sk

translates into

Dn P N, @k ě n : ω P Sk.

Equivalently, this means that ω belongs to all but finitely many of the sets Sk.

Conversely, statements involving the quantifiers D,@ can be translated into set theoretic
statements using the conversion rules

D Ñ Y, @ Ñ X. [\

Definition 19.1.5. Let C be a collection of subsets of a set Ω. We say that C is a
π-system if it is closed under finite intersections, i.e.,

@A,B P C : AXB P C .

The collection C is called a λ-system if it satisfies the following conditions.

(i) H,Ω P C .

(ii) if A,B P C and A Ă B, then BzA P C .

(iii) If A1 Ă A2 Ă ¨ ¨ ¨ belong to C , then so does their union.
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[\

Lemma 19.1.6. Suppose that C is a collection of subsets of a set Ω. Then the following
are equivalent.

(i) C is a σ-algebra.

(ii) C is both a λ- and a π-system.

Proof. The implication (i) ñ (ii) is obvious. Let us prove the converse. It suffices to
prove that if C is both a λ- and π-system and pAnqnPN is a sequence in C , then

ď

nPN
An P C .

Indeed, set

Bn “ A1 Y ¨ ¨ ¨ YAn.

Note that Ack “ ΩzAk P C . Hence Ac1 X ¨ ¨ ¨ X Acn P C , since C is a π-system. We deduce
that

Bn “ A1 Y ¨ ¨ ¨ YAn “
`

Ac1 X ¨ ¨ ¨ XA
c
n

˘c
“ Ωz

`

Ac1 X ¨ ¨ ¨ XA
c
n

˘

P C .

Now observe that B1 Ă B2 Ă ¨ ¨ ¨ and, since C is a λ-system, we have
ď

nPN
An “

ď

nPN
Bn P C .

[\

Since the intersection of any family of λ-systems is a λ-system we deduce that for any
collection C Ă 2

Ω there exists a smallest λ-system containing C . We denote this system
by ΛpC q and we will refer to it as the λ-system generated by C .

Example 19.1.7. Suppose that H is the collection of half-infinite intervals

p´8, xs, x P R.

Then H is π-system of R. The λ-system generated by H contains all the open intervals.
Since any open subset of R is a countable union of open intervals we deduce that ΛpHq
coincides with the Borel σ-algebra BR. [\

Theorem 19.1.8 (Dynkin’s π ´ λ theorem). Suppose that P is a π-system. Then
ΛpPq “ σpPq. In other words, any λ-system that contains P, also contains the σ-
algebra generated by P.

Proof. Since any σ-algebra is a λ-system we deduce ΛpPq Ă σpPq. Thus it suffices to
show that

σpPq Ă ΛpPq. (19.1.3)
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Equivalently, it suffices to show that ΛpPq is a σ-algebra. This happens if and only if the
λ-system ΛpPq is also a π-system. Hence it suffices to show that ΛpPq is closed under
(finite) intersections.

Fix A P ΛpPq and set

LA :“
␣

B P 2Ω : B XA P ΛpPq
(

.

It suffices to show that

ΛpPq Ă LA, @A P ΛpPq. (19.1.4)

Observe first that LA is a λ-system. Indeed, Ω P LA since A P ΛpPq. Obviously H P LA
since

HXA “ H “ AzA P ΛpPq.

If B1 Ă B2 are in LA, then B1 X A Ă B2 X A are in ΛpPq . Since ΛpPq is a λ-system we
deduce

pB2zB1q XA “ pB2 XAqzpB1 XAq P ΛpPq.

This proves that LA satisfies property (ii) in the definition of a λ-system. The property
(iii) is proved in a similar fashion relying on the fact that ΛpPq is a λ-system. Thus, to
prove (19.1.4), it suffices to show that

P Ă LA, @A P ΛpPq. (19.1.5)

Note that since P is a π-system, if A P P, then B XA P P Ă ΛpPq, @B P P. Hence

A P Pñ P Ă LA.

In particular

A P Pñ ΛpPq Ă LA.

Thus, if A P P and B P ΛpPq, then B P LA, i.e., AXB P ΛpPq. Hence

P Ă LB, @B P ΛpPq.

This proves (19.1.5) and completes the proof of the π ´ λ theorem. [\

19.1.2. Measurable maps.

Definition 19.1.9. A map F : Ω1 Ñ Ω2 is called measurable with respect to the σ-
algebras Si on Ωi, i “ 1, 2 or pS1, S2q-measurable if F´1pS2q Ă S1, i.e.,

F´1pS2q P S1, @S2 P S2.

Two measurable spaces pΩi, Siq, i “ 1, 2, are called isomorphic if there exists a bijection
F : Ω1 Ñ Ω2 such that F´1pS2q “ S1 or, equivalently, both F and its inverse F´1 are
measurable. [\
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Definition 19.1.10. Suppose that pΩ, Sq is a measurable space. A function f : ΩÑ R̄
is called S-measurable if, for any Borel subset B Ă R̄ we have f´1pBq P S. [\

Example 19.1.11. (a) The composition of two measurable maps is a measurable map.

(b) A subset S Ă Ω is S-measurable if and only if the indicator function IS is a measurable
function.

(c) If A is the σ-algebra generated by a finite or countable partition

Ω “
ğ

iPI

Ai, I Ă N,

then a function f : Ω Ñ pR,BRq is A-measurable if and only if it is constant in the
chambers Ai of this partition. [\

Proposition 19.1.12. Consider a map F : pΩ1, S1q Ñ pΩ2, S2q between two measur-
able spaces. Suppose that C2 is a π-system of Ω2 such that σpC2q “ S2. Then the
following statements are equivalent.

(i) The map F is measurable.

(ii) F´1pCq P S1, @C P C2.

Proof. Clearly (i) ñ (ii). The opposite implication follows from the π´ λ theorem since
the set

␣

C P S2; F´1pCq P S1
(

is a λ-system containing the π-system C2. [\

Corollary 19.1.13. If F : X Ñ Y is a continuous map between metric spaces, then it is
pBX ,BY q measurable.

Proof. Denote by TY the collection of open subsets of Y . Then TY is a π-system and, by
definition, it generates BY . Since F is continuous, for any U P TY the set F´1pUq is open
in X and thus belongs to BX . [\

Corollary 19.1.14. Let pΩ, Sq be a measurable space. A function X : ΩÑ R is pS,BRq-
measurable if and only if the sets X´1p p´8, xs q are S-measurable for any x P R.

Proof. It follows from Proposition 19.1.12 by observing that the collection
␣

p´8, xs; x P R
(

Ă 2
R

is a π-system and the σ-algebra it generates is BR.

[\
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Corollary 19.1.15. Consider a pair of maps between measurable spaces

Fi : pΩ, Sq Ñ pΩi, Siq, i “ 1, 2.

Then the following statements are equivalent.

(i) The maps Fi are measurable.

(ii) The map

F1 ˆ F2 : ΩÑ Ω1 ˆ Ω2, ω ÞÑ
`

F1pωq, F2pωq
˘

is pS, S1 b S2q-measurable.

Proof. (i) ñ (ii) Observe that if the maps F1, F2 are measurable then

F´11 pS1q, F
´1
2 pS2q P S, @S1 P S1, S2 P S2

ñ pF1 ˆ F2q
´1pS1 ˆ S2q “ F´11 pS1q X F

´1
2 pS2q P S, @S1 P S1, S2 P S2.

Since the collection S1 ˆ S2, Si P Si, i “ 1, 2, is a π-system that, by definition, generates
S1 b S2 we see that the last statement is equivalent with the measurability of F1 ˆ F2.

(ii) ñ (i) For i “ 1, 2 we denote by πi the natural projection

Ω1 ˆ Ω2 Ñ Ωi, pω1, ω2q ÞÑ ωi.

The maps πi are pS1 b S2, Siq measurable and

Fi “ πi ˝ pF1 ˆ F2q.

[\

Definition 19.1.16. For any measurable space pΩ, Sq we denote by L0pSq “ L0pΩ, Sq the
space of measurable functions ΩÑR, and by L0pΩ, Sq˚ the space of measurable functions
pΩ, Sq Ñ R .

The subset of L0pΩ, Sq consisting of nonnegative functions is denoted by L0
`pΩ, Sq,

while the subspace of L0pΩ, Sq consisting of bounded measurable functions is denoted
L8pΩ, Sq. [\

Remark 19.1.17. The algebraic operations “`” and “¨” on R admit (partial) extensions
to R̄,

c˘8 “ ˘8,8`8 “ 8, c ¨ 8 “ 8, @c ą 0.

As we know, there are a few “illegal” operations

8´8, 0 ¨ 8,
0

0
etc. [\

Proposition 19.1.18. Fix a measurable space pΩ, Sq. Then the following hold.

(i) For any f, g P L0pΩ, Sq and any c P R we have

f ` g, fg, cf P L0pΩ, Sq,

whenever these functions are well defined.
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(ii) Let pfnqnPN be a sequence in L0pΩ, Sq. For any ω P Ω we set

mpωq “ inf
nPN

fnpωq P r´8,8s, Mpωq “ sup
nPN

fnpωq P p´8,8s.

Then m,M P L0pΩ, Sq.

(iii) Let pfnqnPN be a sequence in L0pΩ, Sq. Then

lim inf
n

fn :“ sup
m

inf
něm

fn and lim sup
n

fn “ inf
m

sup
něm

fn

are measurable.

(iv) If pfnqnPN is a sequence in L0pΩ, Sq such that, for any ω P Ω the limit

f8pωq “ lim
nÑ8

fnpωq

exists, then f8 : ΩÑ R̄ is also S-measurable.

Proof. (i) Denote by D the subset of R̄2 consisting of the pairs px, yq for which x` y is
well defined. Observe that f ` g is the composition of two measurable maps

ΩÑ D Ă R̄2, ω ÞÑ
`

fpωq, gpωq
˘

, DÑ R̄, px, yq ÞÑ x` y.

Above, the first map is measurable according to Corollary 19.1.15 and the second map is
Borel measurable since it is continuous. The measurability of fg and cf is established in
a similar fashion.

(ii) Let us prove first that M is measurable. It suffices to prove that for any x P R̄ the
set tMpωq ď xu is S-measurable. To achieve we will use the human language conversion
procedure discussed in Remark 19.1.4,

D Ñ Y and @ Ñ X.

Note that

Mpωq ď xðñ@n P N : fnpωq ď x

Equivalently
␣

M ď x
(

“
č

ninN
tfn ď xu P S.

Similarly, to prove that m is measurable it suffices to show that the sets tm ě xu are
measurbale for any x P R̄. The details are left to the reader.

(iii) We set

Am :“ inf
něm

fn, Bm :“ sup
něm

fn.

By (ii), these are measurable functions and so are

sup
m
Am, inf

m
Bm.

(iv) In this case

f8 “ lim inf
n

fn “ lim sup
n

fn

and (iii) implies that f8 is measurable [\
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Corollary 19.1.19. For any function f P L0pΩ, Sq, its positive and negative parts,

f` :“ maxpf, 0q, f´ :“ maxp´f, 0q

belong to L0
`pΩ, Sq as well. [\

Proof. The function f` is the composition of two measurable functions

Ω
f
ÝÑR, R Q x ÞÑ maxpx, 0q PR

so it is measurable. A similar argument shows that f´ is measurable. [\

A function f P L0pΩ, Sq is called elementary or step function if its range is a finite
subset of R. More concretely, this means there exist finitely many disjoint measurable sets

A1, . . . , AN P S

and real numbers c1, . . . , cN such that

fpωq “
N
ÿ

k“1

ckIAk
pωq, @ω P Ω. (19.1.6)

We denote by E pΩ, Sq the space of elementary functions and by E`pΩ, Sq the subspace
consisting of nonnegative ones.

Define Dn : r0,8s Ñ r0,8s,

Dnprq “
n2n
ÿ

k“1

k ´ 1

2n
Irpk´1q2´n,k2´nqprq ` nIrn,8qprq “ min

˜

t2nru

2n
, n

¸

, (19.1.7)

where txu denotes the largest integer ď x. Let us observe that if r P r0, 1q has binary
expansion

r “ 0.ϵ1ϵ2 ¨ ¨ ¨ ϵn ¨ ¨ ¨ , ϵi “ 0, 1,

then

Dnprq “ 0.ϵ1 ¨ ¨ ¨ ϵn “
n
ÿ

k“1

ϵn
2n
.

Here we assume that the binary expansion does not have an infinite tail of consecutive
1-s.

Lemma 19.1.20. The function Dn is right-continuous and nondecreasing. Moreover

Dnprq ď Dn`1prq, @n P N, r P r0,8s. (19.1.8)

and

lim
nÑ8

Dnprq “ r, @r P r0,8s.
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Proof. The first claim follows from the definition (19.1.7). Let us shows that the sequence
pDnprq q is nondecreasing. We distinguish several cases.

Case 1. If r P rpk ´ 1q2´n, k2´nq, then either

r P
“

pk ´ 1q2´n, pk ´ 1q2´n ` 2´pn`1q
˘

,

or

r P rpk ´ 1q2´n ` 2´pn`1q, k2´nq.

Hence

Dn`1prq “ Dnprq or Dn`1prq “ Dnprq ` 2´pn`1q.

Case 2. If r P rn, n` 1q, then Dnprq “ n ď Dn`1prq.

Case 3. If r ě n` 2, then Dnprq “ n ă n` 1 “ Dn`1prq. [\

Using the function Dn we obtain a sequence of transformations

Dn : L0
`pΩ, Sq Ñ E`pΩ, Sq, f ÞÑ Dnrf s, Dnrf spωq “ Dn

`

fpωq
˘

, @ω P Ω.

Lemma 19.1.21. The transformations Dn enjoy the following properties.

(i) For any n P N the transformation Dnr´s is monotone, i.e., for any f, g P L0
`pΩ, Sq

such that f ď g we have

Dnrf s ď Dnrgs.

(ii) For any f P L0
`pΩ, Sq the sequence of elementary functions pDnrf sq is nonde-

creasing and converges everywhere to f , i.e.,

lim
nÑ8

Dnrf spωq “ fpωq, @ω P Ω.

(iii) For any n P N the transformation Dnr´s is local, i.e., for any f P L0
`pΩ, Sq and

any S P S we have

DnrfISs “ Dnrf sIS .

Proof. The properties (i) and (ii) follow directly from Lemma 19.1.20. To prove (iii)
observe that if S P S, then for ω P S we have

DnrfISspωq “ Dn

`

fpωq
˘

“ ISpωqDnrf spωq,

and, for ω P Sc we have

DnrfISspωq “ Dnp0q “ 0 “ ISpωqDnrf spωq.

[\

Corollary 19.1.22. Any nonnegative measurable function f P L0
`pΩ, Sq is the limit of a

nondecreasing sequence of elementary functions. [\
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Definition 19.1.23. Let pΩ, Sq be a measurable space. A collection M of S-measurable
functions f : ΩÑ p´8,8s is called a monotone class of pΩ, Sq if it satisfies the following
conditions.

(i) IΩ PM.

(ii) If f, g PM are bounded and a, b P R, then af ` bg PM.

(iii) If pfnq is an increasing sequence of nonnegative random variables in M with
finite limit f8, then f8 PM.

[\

Theorem 19.1.24 (Monotone Class Theorem). Suppose that M is a monotone class
of the measurable space pΩ, Sq and C is a π-system that generates S and such that
IC P M, @C P C . Then M contains L8pΩ, Sq and all the nonnegative S-measurable
functions.

Proof. Observe that the collection

A :“
␣

A P S : IA PM
(

is a λ-system.

Indeed IΩ and IH “ IΩ ´ IΩ P M. If A Ă B are in A, then BzA P A since
IBzA “ IB ´ IA PM. Finally, if pAnqnPN is an increasing sequence in A and

A8 “
ď

nPN
An,

then pIAnq is an increasing sequence of nonnegative functions in M and thus

IA8
“ lim

nÑ8
IAn PM,

so that A8 P A.

Hence A is a λ-system containing C and the π ´ λ theorem implies that A contains
σpC q “ S.

Thus M contains all the elementary functions. Since any nonnegative measurable
function is an increasing pointwise limit of elementary functions we deduce thatM contains
all the nonnegative measurable functions. Finally, if f is a bounded measurable function,
then f`, f´ are nonnegative and bounded measurable functions so f`, f´ P M and thus
f “ f` ´ f´ PM.

[\

Remark 19.1.25. The Monotone Class Theorem is a very versatile tool for proving
general statements about measurable functions. Suppose that we want to prove that all
the finite measurable functions satisfy a certain property P. Then it suffices to show the
following.
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(i) The constant function satisfies P

(ii) If f, g are nonnegative and satisfy P then ´f and af ` bg satisfy P, @a, b ě 0.

(iii) The limit of an increasing sequence of functions satisfying P also satisfies P.

(iv) For any set A of a π-system C that generates S, the indicator IA satisfies P.

[\

Theorem 19.1.26 (Dynkin). Suppose that F : pΩ, Sq Ñ pΩ1, S1q is a measurable map. Let
X : ΩÑ R be an S-measurable function. Then the following are equivalent.

(i) The function X is
`

σpF q,BR
˘

-measurable.

(ii) There exists an pS1,BRq-measurable function X 1 : Ω1 Ñ R such that X “ X 1 ˝F .

Proof. Clearly, (ii) ñ (i). To prove that (i) ñ (ii) consider the family M of σpFq-measurable functions of the form

X 1 ˝ F , X 1 P L0pΩ1, S1q. We will prove that M “ L0
`

Ω, σpFq
˘

. We will achieve using the monotone class theorem.

Step 1. IΩ P M.

Step 2. M is a vector space. Indeed if X,Y P M and a, b P R, then there exist S1-measurable functions X 1, Y 1 such

that
X “ X 1 ˝ F, Y “ Y 1 ˝ F, aX ` bY “ paX 1 ` bY 1q ˝ F.

Hence aX ` bY P M.

Step 3. IA P M, @A P σpF q. Indeed, since A P σpF q there exists A1 P S1 such that

A “ F´1pA1q

so IA “ IA1 ˝ F . Hence M contains all the σpF q-measurable elementary functions.

Step 4. Suppose now that X P L0
`

Ω, σpF q
˘

is nonnegative. Then there exists an increasing sequence pXnqnPN of

σpF q-measurable nonnegative elementary functions that converges pointwise to X. For every n P N there exists an
S-measurable elementary function X 1

n : Ω1 Ñ R such that

Xnpωq “ X 1
n

`

F pωq
˘

, @ω P Ω

Define

Ω1
0 :“

␣

ω1 P Ω1; the limit limnÑ8 X 1
npω

1q exists and it is finite
(

Let us observe that Ω1
0 is S1-measurable because

ω1 P Ω1
0ðñ@ν ě 1, DN ě 1, @m,n ě N : |X 1

npω
1q ´X 1

mpω
1q| ă 1{ν,

i.e.,

Ω1
0 “

č

νPN

ď

Ně1

č

m,nąN

!

|X 1
npω

1q ´X 1
mpω

1q| ă 1{ν
)

.

Clearly, F pΩq Ă Ω1
0. For any ω1 P Ω1 we set

X 1
8pω

1q :“

$

’

&

’

%

limnÑ8 X 1
npω

1q, ω1 P Ω1
0,

0, ω1 P Ω1zΩ1
0.

Arguing as in the proof of Proposition 19.1.18(ii) we deduce that X 1
8 is S1-measurable. For any ω P Ω the sequence

X 1
n

`

F pωq
˘

“ Xnpωq is increasing and the limit

lim
nÑ8

X 1
n

`

F pωq
˘

exists and it is finite. Hence

X 1
8

`

F pωq
˘

“ Xpωq, @ω P Ω.

This proves that M is a monotone class in L0
`

Ω, σpF q
˘

that is also a vector space so it coincides with L0
`

Ω, σpF q
˘

.
[\
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Corollary 19.1.27. Suppose that X1, . . . , Xn : pΩ, Sq Ñ R are S-measurable functions.
Then the function X : Ω Ñ R is σpX1, . . . , Xnq-measurable if and only if there exists a
pBRn ,BRq-measurable function u : Rn Ñ R such that

X “ u
`

X1, . . . , Xn

˘

.

Proof. Apply the above theorem with pΩ1, S1q “ pRn,BRnq and

F pωq “ pX1pωq, . . . , Xnpωq
˘

.

[\

Remark 19.1.28. We see that, in its simplest form, Corollary 19.1.27 describes a measure
theoretic form of functional dependence. Thus, if in a given experiment we can measure
the quantities X1, . . . , Xn and we know that the information X ď c can be decided only
by measuring the quantities X1, . . . , Xn, then X is in fact a (measurable) function of
X1, . . . , Xn. In plain English this sounds tautological. In particular, this justifies the
choice of term “measurable”. [\

19.1.3. Measures. The next crucial ingredient needed to define the Lebesgue integral
is the concept of measure. This assigns a “size” to a measurable set: think of the area of
a region in the plane. This concept should satisfy two desirable properties.

‚ Additivity. The measure (area) of the union of two regions A,B is the sum of
the measures of the region from which we subtract the measure of the overlap.

‚ Continuity. If A is “close” to B, then the measure of A is close to that of B.

Here is the precise definition.

Definition 19.1.29. Suppose that pΩ, Sq is a measurable space.

(i) A measure on pΩ, Sq is a function

µ : SÑ r0,8s, S Q S ÞÑ µ
“

S
‰

P r0,8s

such that,
µ
“

H
‰

“ 0,

and it is countably additive or σ-additive, i.e., for any sequence of pairwise
disjoint S-measurable sets pAnqnPN we have

µ

«

ď

nPN
An

ff

“
ÿ

ně1

µ
“

An
‰

. (19.1.9)

We will denote by MeaspΩ, Sq the set of measures on pΩ, Sq.

(ii) The measure is called σ-finite if there exists an increasing sequence of S-
measurable sets

A1 Ă A2 Ă ¨ ¨ ¨
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such that
ď

nPN
An “ Ω and µ

“

An
‰

ă 8, @n P N.

(iii) The measure is called finite if µ
“

Ω
‰

ă 8. A probability measure is a measure

P such that P
“

Ω
‰

“ 1.

(iv) A measured space is a triplet pΩ, S, µq, where pΩ, Sq is a measurable space
and µ : SÑ r0,8s is a measure.

[\

Remark 19.1.30. The σ-additivity condition (19.1.9) is equivalent to a pair of conditions
that are more convenient to verify in concrete situations.

(i) µ is finitely additive, i.e., for any finite collection of disjoint S-measurable sets
A1, . . . , An we have

µ

«

n
ď

k“1

Ak

ff

“

n
ÿ

k“1

µ
“

Ak
‰

.

(ii) µ is increasingly continuous i.e., for any increasing sequence of S-measurable sets
A1 Ă A2 Ă ¨ ¨ ¨

µ

«

ď

nPN
An

ff

“ lim
nÑ8

µ
“

An
‰

. (19.1.10)

Indeed, if µ is countably additive, we set

S :“
ď

nPN
An, S1 “ A1, S2 “ A2zS1, . . . ,

and we observe that the sets pSnq are disjoint

µ
“

S
‰

“ lim
nÑ8

n
ÿ

k“1

µ
“

Sk
‰

.

On the other hand
n
ď

k“1

Sk “ An

so
n
ÿ

k“1

µ
“

Sk
‰

“ µ
“

An
‰

.

Conversely if (19.1.10) and pSnqně1 is a sequence of disjoint sets, then

An “
n
ď

k“1

Sk

is an increasing seqeunce of sets and the countable additivity follows by running
the above arguments in reverse.
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If µ
“

Ω
‰

ă 8 and µ is finitely additive, then the increasing continuity condition (ii)
is equivalent with the decreasing continuity condition, i.e., for any decreasing sequence of
S-measurable sets B1 Ą B2 Ą ¨ ¨ ¨

µ

«

č

nPN
Bn

ff

“ lim
nÑ8

µ
“

Bn
‰

. (19.1.11)

Indeed, the sequence Bc
n “ ΩzBn is increasing and µ

“

Bc
n

‰

“ µ
“

Ω
‰

´ µ
“

Bn
‰

.

[\

Example 19.1.31. Here are some simple examples of measures. In the next section we
will describe a very important technique of producing measures.

(i) If pΩ, Sq is a measurable space, then for any ω0 P Ω, the Dirac measure concen-
trated at ω0 is the probability measure

δω0 : SÑ r0,8q, δω0

“

S
‰

“

#

1, ω0 P S,

0, ω0 R S.

(ii) Suppose that S is a finite or countable set. To any function w : S Ñ r0,8s we
associate a measure µ “ µw on pS,2Sq uniquely determined by the condition

µ
“

tsu
‰

“ wpsq, @s P S.

We say that µ
“

tsu
‰

is the mass of s with respect to µ. Often, for simplicity we
will write

µ
“

s
‰

:“ µ
“

tsu
‰

.

Note that for any A Ă S we have

µw
“

A
‰

“
ÿ

aPA

wpaq.

The associated measure µw is a probability measure if
ÿ

sPS

wpsq “ 1.

When S is finite and

wpsq “
1

|S|
, @s P S,

then the associated probability measure µw is called the uniform probability
measure on the finite set S.

(iii) Suppose that Ω is a set equipped with a partition

Ω “
ğ

nPN
An
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Denote by S the sigma-algebra generated by this partition, i.e., S consists of
countable unions of the chambers Ak. Any function w : N Ñ r0,8q, n ÞÑ wn,
defines a measure µw on S uniquely deternined by the conditions

µw
“

An
‰

“ wn, @n P N.

(iv) Suppose that F : pΩ, Sq Ñ pΩ1, S1q is a measurable map between measurable
spaces. Then F induces a map

F# : MeaspΩ, Sq Ñ MeaspΩ1, S1q, µ ÞÑ F#µ. (19.1.12)

More precisely, for any measure µ on S we set

F#µ
“

S1
‰

:“ µ
“

F´1pS1q
‰

, @S1 P S1.

The measure F#µ P MeaspΩ1, S1q is called the pushforward of µ via F .
To appreciate the complexity of this operation let us consider a very simple

case. Suppose that A,B are finite sets and Φ : A Ñ B. We can view Φ as a
measurable map

Φ :
`

A,2A
˘

Ñ
`

B,2B
˘

.

Suppose that µ : 2A Ñ r0,8q is a measure such that the mass of a P A is
µa :“ µ

“

tau
‰

. Set ν :“ Φ#µ. Then the ν-mass of b P B is

ν
“

tbu
‰

“ µ
“

Φ´1pbq
‰

“
ÿ

Φpaq“b

µa.

In other words, the ν-mass of b is the sum of µ-masses of the points a P A that
are mapped to b by Φ.

[\

Proposition 19.1.32. Consider a measurable space pΩ, Sq and two finite measures

µ1, µ2 : SÑ r0,8q

such that µ1
“

Ω
‰

“ µ2
“

Ω
‰

. Then the collection

C :“
␣

C P S; µ1
“

C
‰

“ µ2
“

C
‰ (

is a λ-system. In particular, if µ1, µ2 coincide on a π-system P Ă S, then they
coincide on the sigma-algebra generated by P.

Proof. Clearly H,Ω P C . If A,B P C and A Ă B, then

µ1
“

A
‰

“ µ2
“

A
‰

ă 8, µ1
“

B
‰

“ µ2
“

B
‰

ă 8

so

µ1
“

BzA
‰

“ µ1
“

B
‰

´ µ1
“

A
‰

“ µ2
“

B
‰

´ µ2
“

A
‰

“ µ2
“

BzA
‰

,

so BzA P C . The condition (iii) in the Definition 19.1.5 of a λ-system follows from the
σ-additivity of the measures µ1, µ2. [\
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Definition 19.1.33. Suppose that µ is a measure on the measurable space pΩ, Sq.

(i) A set N Ă Ω is called µ-negligible if there exists a set S P S such that

N Ă S and µ
“

S
‰

“ 0.

We denote by Nµ the collection of µ-negligible sets.

(ii) The σ-algebra S is said to be complete with respect to µ (or µ-complete) if it
contains all the µ-negligible subsets. In this case we also say that the measured
space pΩ, S, µq is complete.

(iii) The µ-completion of S is the σ-algebra Sµ :“ σpS,Nµq.

[\

Clearly Sµ is the smallest µ-complete σ-algebra containing S. The proof of the following
result is left to the reader as an exercise.

Proposition 19.1.34. Suppose that µ is a σ-finite measure on the σ-algebra S Ă 2
Ω.

(i) The completion Sµ has the alternate description

Sµ “
␣

S YN ; S P S, N P Nµ

(

Ă 2
Ω.

(ii) The measure µ admits a unique extension to a measure µ̄ : Sµ Ñ r0,8q. More
precisely

@S P S, N P Nµ, µ̄
“

S YN
‰

“ µ
“

S
‰

.

[\

19.1.4. The “almost everywhere” terminology. Suppose that pΩ, S, µq is a mea-
sured space. We say that a property P of elements ω P Ω is satisfied µ-almost everywhere
(or µ-a.e. for brevity) if there exists a set N P S such that µ

“

N
‰

“ 0 and any ω P ΩzN
satisfies the property P . When the measure µ is clear from the context we will write
simply a.e..

For example, a sequence of functions fn : ΩÑ R is said to converge to f : ΩÑ R a.e.
if the property

lim
nÑ8

fnpωq “ fpωq

is satisfied a.e..

Let us observe that if f : Ω Ñ R is S-measurable and g “ f a.e., then g need not
be S-measurable. For example if N is negligible but not measurable, then the indicator
function IN is zero a.e., but not measurable. On the other hand we have the following
result.
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Proposition 19.1.35. Suppose that pΩ, S, µq is a complete measured space and

f, g : ΩÑ p´8,8s

are two functions that are equal a.e. Then f is S-measurable if and only if g is S-
measurable.

Proof. Suppose that f is measurable. Fix a µ-negligible set N P S such that fpωq “ gpωq,
@ω P ΩzN . Then

g “ gIΩzN ` gIN “ fIΩzN ` gIN .

Now observe that h :“ gIN is measurable. Indeed , for any c P p´8,8s

th ď cu “

#

tg ď cu XN, c ă 0,

pΩzNq Y ptg ď cu XNq, c ě 0.

The set tg ď cuXN is negligible since it is contained in the negligible set N . In particular,
it is measurable since S is complete. Since fIΩzN is measurable as a product of two
measurable sets we deduce that g is measurable as sum of measurable functions. [\

Corollary 19.1.36. Suppose that pΩ, S, µq is a complete measured space and

fn : ΩÑ p´8,8s, n P N,

is a sequence of measurable functions that converges a.e. to a function f : ΩÑ p´8,8s.
Then f is S-measurable.

Proof. Fix a µ-negligible set N P S such that

fpωq “ lim
nÑ8

fnpωq, @ω P ΩzN.

Then fnIΩzN is measurable and converges everywhere to fIΩzN . Thus fIΩzN is measur-
able and, since fIΩzN “ f a.e., we deduce that f is also measurable. [\

It turns out that the convergence a.e. is very close to uniform convergence.

Theorem 19.1.37 (Egorov). Suppose that µ is a finite measure on the measurable space
pΩ, Sq and f , pfnqnPN are measurable functions such that fn Ñ f µ-a.e.. Then, for any
ε ą 0 there exists a set E P S with the following properties.

(i) µ
“

E
‰

ă ε.

(ii) The functions fn converge uniformly to f on ΩzE.

Proof. Without loss of generality we can assume fnpωq Ñ fpωq for any ω P Ω. Hence,
for k P N and any ω P Ω

DN P N : @n ą N |fnpωq ´ fpωq| ă 1{k.



818 19. Measure theory and integration

In other words, @k P N
Ω “

ď

NPN

č

nąN

␣

|fn ´ f | ă 1{k
(

looooooooooooomooooooooooooon

SN,k

.

Note that SN,k Ă SN`1,k, @k,N P N. Thus, @k P N

µ
“

Ω
‰

“ lim
NÑ8

µ
“

SN,k
‰

.

Hence, @k ą 0, DNk ą 0 such that

µ
“

ΩzSNk,k
looomooon

“:Ek

‰

ă
ε

2k
.

Set

E :“
ď

kPN
Ek “ Ωz

č

kPN
SNk,k,

so that

µ
“

E
‰

ď
ÿ

kPN
µ
“

Ek
‰

ă ε.

Note that

µ
“

ΩzE
‰

“ µ
“

Ω
‰

´ µ
“

E
‰

ą µ
“

Ω
‰

´ ε.

Note that
ω P ΩzEðñω P

č

kě1

SNk,kðñ@k P N, ω P SNk,k

(Sn,k Ą SNk,k if n ě Nk)

ñ @k ě 1, |fnpωq ´ fpωq| ă 1{k, @n ě Nk,

so that fn converges uniformly to f on ΩzE.

[\

Consider a measure µ on the measurable space pΩ, Sq. The a.e. equality of measurable
functions is an equivalence relation on the space L0pΩ, Sq. We denote the quotient space
by L0pΩ, S, µq. The quotient depends on the choice of measure µ. In the sequel, for
simplicity we will refer to the elements of L0pΩ, S, µq as functions although they really are
equivalence classes of functions.

Note that if f, f 1 P L0pΩ, Sq and f “ f 1 µ-a.e., then |f | ă 8 µ-a.e. if and only if
|f 1| ă 8 µ-a.e.. We denote by L0pΩ, S, µq˚ the space of equivalence classes of measurable
functions that are finite µ-a.e..

Additionally, f, f 1, g, g1 P L0pΩ, S, µq˚, f “ f 1 and g “ g1 µ-a.e., then f ` g “ f 1 ` g1

and cf “ cf 1 µ-a.e., @c P R. This proves that L0pΩ, S, µq˚ has a structure of vector space
inherited from L0pΩ, Sq˚.

We denote by L0
`pΩ, S, µq the subset of equivalence classes of measurable functions

that are nonnegative µ-a.e..



19.1. Measurable spaces and measures 819

19.1.5. Premeasures. The measures in Example 19.1.31 are mostly confined to mea-
sured defined on the sigma-algebra determined by a partition. Constructing (nontrivial)
measures on more general classes of sigma-algebras, e.g., the Borel sigma-algebra of a
metric space, requires considerable more effort. The technology most frequently used to
construct measures was proposed by Constantin Carathéodory (1873-1950) and it starts
with a close relative of the concept of measure, namely the concept of premeasure.

Definition 19.1.38. Fix a set Ω a ring of subsets F Ă 2
Ω.

(i) A function µ : F Ñ r0,8s is called a premeasure if it satisfies the following
conditions.
(a) µ

“

H
‰

“ 0
(b) µ is finitely additive, i.e., for any finite collection of disjoint setsA1, . . . , An P F

we have

µ

«

n
ď

k“1

Ak

ff

“

n
ÿ

k“1

µ
“

Ak
‰

.

(c) µ is (conditionally)countably additive, i.e., if pAnqnPN is a sequence of disjoint
sets in F whose union is a set A also in F, then

µ
“

A
‰

“
ÿ

ně1

µ
“

An
‰

.

(ii) The premeasure µ is called σ-finite if there exists a sequence of sets pΩnqnPN in
F such that

Ω “
ď

nPN
Ωn, µ

“

Ωn
‰

ă 8, @n P N.

[\

Example 19.1.39. Suppose that µ : pΩ, Sq Ñ r0,8s is a measure and R is a ring generat-
ing the sigma-algebra S. Then the restriction of µ to R is a premeasure. Less obvious is the
fact that any premeasure on R is obtained in this fashion. This follows from Carathédory’s
work we will describe shortly. [\

In practice, the countable additivity condition (i.c) above is the most difficult to verify
and often is the consequence of some hidden compactness condition. The next fundamental
example will illustrate this point.

Theorem 19.1.40 (Alexandrov). Suppose that K is a compact topological space, F is an
algebra of subsets of K and µ : F Ñ r0, 1s is a finitely additive function satisfying the
following regularity property: for any F P F and any ε ą 0 there exists a set F´ P F such
that

clpF´q Ă F, µ
“

F zF´
‰

ă ε.

Then µ is a premeasure. [\
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Proof. Let us introduce a convenient terminology. For ε ą 0 we define an ε-squeeze of a
set F P F to be a set G P F such that clpGq Ă F and µ

“

F zG
‰

ă ε.

Lemma 19.1.41. Suppose that F1, F2 P F, F2 Ă F1, and for i “ 1, 2, Gi is an εi-squeeze
of Fi. Then G1 XG2 is an pε1 ` ε2q-squeeze of F2.

Proof of Lemma 19.1.41. Clearly

clpG1 XG2q Ă clpG2q Ă F2,

F2zpG1 XG2q “ F2 X pG1 XG2q
c “ F2 X pG

c
1 YG

c
2q “ pF2 XG

c
1q Y pF2 XG

c
2q,

and

µ
“

F2zpG1 XG2q
‰

“ µ
“

pF2zG1q Y pF2zG2q
‰

ď µ
“

F2zG1

‰

` µ
“

F2zG2

‰

ď µ
“

F1zG1

‰

` µ
“

F2zG2

‰

ď ε1 ` ε2.

[\

To prove that µ is a premeasure it suffices to show that if pFnqnPN is a decreasing sequence
in F with empty intersection, then

lim
nÑ8

µ
“

Fn
‰

“ 0.

Fix ε ą 0. For n P N, fix an ε
2n -squeeze Gn of Fn. Define

Hn :“
n
č

k“1

Gn, εn :“
n
ÿ

k“1

ε

2k
“ ε

`

1´ 2´n
˘

.

Applying Lemma 19.1.41 iteratively we deduce that Hn is an εn-squeeze of Fn. By con-
struction the sequence Hn is decreasing and thus the sequence of closures clpHnq is de-
creasing as well. Note that

č

n

clpHnq Ă
č

Fn “ H.

Since K is compact we deduce that there exists N “ Npεq P N such that clpHN q “ H.
Hence HN “ H and since HN is an εN -squeeze we deduce that, @n ě N

µ
“

Fn
‰

ď µ
“

FN
‰

“ µ
“

FNzHN

‰

ď εN ă ε.

[\

19.1.6. The Lebesgue premeasure. Denote by I the collection of intervals of R. By
interval we mean a connected subset of R. In other words, the intervals are the sets of
the form

‚ H, R,
‚ intervals of the form pa, bs, ´8 ď a ă b ă 8,

‚ intervals of the form pa,8q, a P R.
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Denote F the subsets of R that are disjoint unions of intervals in I, i.e., sets S of the
form

S “ I1 Y ¨ ¨ ¨ Y In, I1, . . . , In P I, Ij X Ik “ H, @j ‰ k. (19.1.13)

Let us observe that a set S P F admits many decompositions of the type (19.1.13). For
example,

ra, bs “ ra, cs Y pc, bs, @c P pa, bq.

Lemma 19.1.42. The collection F is an algebra of sets.

Proof. Observe that the disjoint union of two sets in F is a set in F. Observe next that
the intersection of two intervals I, J in I is an interval in I. More generally, if I P I and

F “
n
ğ

k“1

Jk P F, Jk P I,

then we have

I X F “
n
ğ

k“1

I X Jk P F.

Finally if

F 1 “
m
ğ

j“1

Ij , Ij P I,

then

F 1 X F “
m
ğ

j“1

Ij X F
loomoon

PF

P F.

Thus, F is closed under taking intersections.

Note that if I P I, then Ic “ RzI P F. Thus the complement of a set in F is the
intersection of sets in F and thus it is in F.

A union of sets in F is in F because its complement is an intersection of sets in F.
This proves that F is an algebra of sets. [\

Define λ : IÑ r0,8s, λpIq “ the length of the interval I. More precisely,

λ
“

H
‰

“ 0, λ
“

R
‰

“ λ
“

p´8, bs
‰

“ λ
“

p´8, bs
‰

“ λ
“

pa,8q
‰

“ λ
“

ra,8q
‰

“ 8,

λ
“

ra, bq
‰

“ λ
“

pa, bs
‰

“ λ
“

ra, bs
‰

“ b´ a, @ ´8 ă a ď b ă 8.

Observe that if an interval I P I is the disjoint union of n ą 1 intervals I1, . . . , In P I,

I “
n
ğ

j“1

Ij ,
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then

λ
“

I
‰

“

n
ÿ

j“1

λ
“

Ij
‰

. (19.1.14)

Suppose that S P F decomposes in two different ways as disjoint unions of intervals in I

S “
m
ğ

j“1

Ij “
n
ğ

k“1

Jk,

then
m
ÿ

j“1

λ
“

Ij
‰

“

n
ÿ

k“1

λ
“

Jk
‰

. (19.1.15)

Indeed, set

Ujk :“ Ij X Jk.

Note that the sets Ujk are pairwise disjoint, they belong to the collection I and

Ij “
n
ğ

k“1

Ujk, Jk “
m
ğ

j“1

Ujk.

We deduce from (19.1.14)

λ
“

Ij
‰

“

n
ÿ

k“1

λ
“

Ujk
‰

, λ
“

Jk
‰

“

m
ÿ

j“1

λ
“

Ujk
‰

, @j, k

so that
m
ÿ

j“1

λ
“

Ij
‰

“

m
ÿ

j“1

n
ÿ

k“1

λ
“

Ujk
‰

“

n
ÿ

k“1

m
ÿ

j“1

λ
“

Ujk
‰

“

n
ÿ

k“1

λ
“

Jk
‰

.

For every S P F represented as a disjoint union of intervals in I,

S “
m
ğ

j“1

Ij

we set

λ
“

S
‰

:“
m
ÿ

j“1

λ
“

Ij
‰

.

The equality (19.1.15) shows that the above definition is independent of the decomposition
of S as a disjoint union of intervals in I.

The map λ is obviously finitely additive. Indeed if S, S1 P F are disjoint

S “
m
ğ

k“1

Ik, S1 “
m`n
ğ

k“m`1

Ik, S Y S1 “
m`n
ğ

k“1

Ik

and

λ
“

S Y S1
‰

“

m`n
ÿ

k“1

λ
“

Ik
‰

“ λ
“

S
‰

` λ
“

S1
‰

.
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For each N P N we denote by FN the collection

FN “ F X r´N,N s “
␣

F X r´N,N s; F P F
(

We set KN :“ r´N,N s so FN is an algebra of subsets of the compact interval KN .
Moreover the restriction of λ to KN is finitely additive.

Theorem 19.1.43. The restriction of λ to KN is a finite premeasure.

Proof. It suffices to show that the restriction of λ to FN satisfies the regularity property
in Alexandrov’s Theorem 19.1.40.

Let F P FN and ε ą 0. Then F is a disjoint union of n intervals

F “
n
ğ

k“1

Ik.

For each interval Ik we can find a compact interval I´k Ă Ik such that

λ
“

IkzI
´
k

‰

ă
ε

n
.

We set

F´ :“
n
ğ

k“1

I´k .

Note that F´ is closed, F´ Ă F and λ
“

F zF´
‰

ă ε.

[\

Theorem 19.1.44. The above map λ : F Ñ r0,8s is a sigma-finite premeasure. We
will refer to it as the Lebesgue premeasure.

Proof. Suppose that pSnq is an increasing family of subsets in F such that

S “
ď

nPN
Sn P F.

We will show that

λ
“

S
‰

“ lim
nÑ8

λ
“

Sn
‰

. (19.1.16)

Clearly it suffices to prove only that

λ
“

S
‰

ď lim
nÑ8

λ
“

Sn
‰

.

We distinguish two cases.

Case 1. µ
“

S
‰

ă 8. We will prove that for any ε ą 0 we have

lim
nÑ8

λ
“

Sn
‰

ě λ
“

S
‰

´ ε.

Fix N sufficiently large such that

λ
“

S XKN

‰

ě λ
“

S
‰

´ ε,
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where we recall that KN “ r´N,N s. Set SN :“ S X KN , S
N
n “ Sn X KN . Then

SN , S
N
n P FN and

SNn Õ SN .

Theorem 19.1.43 implies

lim
nÑ8

λ
“

SNn
‰

“ λSN
‰

ě λ
“

S
‰

´ ε.

Obviosly

lim
nÑ8

λ
“

Sn
‰

ě lim
nÑ8

λ
“

SNn
‰

.

Case 2. λ
“

S
‰

“ 8. We will prove that for any C ą 0

lim
nÑ8

λ
“

Sn
‰

ě C.

Fix C ą 0 and choose N sufficiently large si that µ
“

SN
‰

ě C. Using Theorem 19.1.43
again we deduce

lim
nÑ8

λ
“

Sn
‰

ě lim
nÑ8

λ
“

SNn
‰

“ λ
“

SN
‰

ě C.

This completes the proof of Theorem 19.1.44. [\

Remark 19.1.45 (Lebesgue-Stieltjes premeasures). The above result extends with no
conceptual modifications to the following more general situation. Fix a gauge function,
i.e., a nondecreasing, right-continuous function F : R Ñ R. Recall that right-continuity
signifies that for any x0 P R.

F px0q “ lim
xŒx0

F pxq.

We set

F p˘8q “ lim
xÑ8

F pxq, F px0´q :“ lim
xÕx0

F pxq, @x0 P R.

For 8 ď a ď b ď 8 P I we set

λF
“

ra, bs
‰

“ F pbq ´ F pa´q, λ lnpa, bq
‰

“ F pb´q ´ F paq,

λF
“

pa, bs
‰

“ F pbq ´ F paq, λF
“

ra, bq
‰

“ F pb´q ´ F pa´q,

Note that λF
“

tau
‰

“ F paq ´ F pa´q.

Arguing exactly as above we deduce that λF extends to a sigma-finite premeasure

λF : F Ñ r0,8s

called the Lebesgue-Stieltjes premeasure associated to the gauge function F . The Lebesgue
premeasure corresponds to the gauge function F0pxq “ x, @x P R. Note that for any c P R,
λF “ λF`c

When F p8q “ 1 and F p´8q “ 0 the resulting measure λF is a probability measure
on BR and the function F is classically known as the cumulative distribution function of
this probability measure. In this case the function F pxq is uniquely determined by the
equality F pxq “ λF

“

p´8, xs
‰

. [\
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19.2. Construction of measures

In this section we describe a very general and very versatile method of producing mea-
sures. This technique, pioneered by Constantin Carathéodory (1873-1950) is based on two
conceptually distinct results, both due to Carathédory.

‚ The first result shows that to a rather vague notion of volume (or measure) called
outer measure we can associate a sigma-algebra and a measure on it. However,
a priori it is not clear what the resulting sigma-algebra is. What if we want to
produce measures on a given sigma-algebra?

‚ The second result shows that if the above process is applied to a premeasure on
an algebra A, then we obtain a measure of the sigma-algebra generated by A.

19.2.1. The Carathéodory construction. Let Ω be a nonempty set.

Definition 19.2.1. An outer measure on Ω is a function

µ : 2Ω Ñ r0,8s

satisfying the following conditions.

(i) µ
“

H
‰

“ 0.

(ii) The function µ is monotone, i.e., for any A Ă B Ă Ω we have µ
“

A
‰

ď µ
“

B
‰

.

(iii) The function µ is countably subadditive, i.e., for any a finite or countable family
pAiqiPI of subsets of Ω, then

µ
”

ď

iPI

Ai

ı

ď
ÿ

iPI

µ
“

Ai
‰

.

Given an outer measure µ on Ω we say that a set S Ă Ω is µ-measurable if

µ
“

A
‰

“ µ
“

AX S
‰

` µ
“

AX Sc
‰

, @A Ă Ω. (19.2.1)

We will denote by Sµ the collection of µ-measurable subsets of Ω. [\

Observe that for any A,S Ă Ω we have A “ pA X Scq Y pA X Sq. If µ is an outer
measure, we have

µ
“

A
‰

ď µ
“

AX Sc
‰

` µ
“

AX S
‰

.

Thus, a set S Ă Ω is µ-measurable if and only if

µ
“

A
‰

ě µ
“

AX S
‰

` µ
“

AX Sc
‰

, @A Ă Ω. (19.2.2)

Another way of stating the measurability of S is in terms of separation. The sets U, V
are said to be separated by S is U Ă S and V Ă ΩzS. The set S is µ-measurable if and
only if, for any sets U, V separated by S we have

µ
“

U Y V
‰

ě µ
“

U
‰

` µ
“

V
‰

. (19.2.3)

Indeed, (19.2.3) follows from (19.2.2) by letting A “ U X V so that U “ A X S and
V “ AX Sc.



826 19. Measure theory and integration

As the next result shows, outer measures are a dime a dozen. Before we state it we
need to introduce some terminology.

Definition 19.2.2. Let Ω be a nonempty set.

(i) A class of models or paving in Ω is a family M of subsets of Ω (called models)
such that H PM.

(ii) If M is a class of models in Ω, then an M-cover of a subset S Ă Ω is a countable
family of models pMnqnPN in M such that

S Ă
ď

nPN
Mn.

(iii) A gauge on a class of modelsM is a function ρ : MÑ r0,8s such that ρ
“

H
‰

“ 0.

[\

Proposition 19.2.3. Let Ω be a nonempty set, M a class of models in Ω and ρ a gauge
on M. For any S Ă Ω we define µ

“

S
‰

“ µρ
“

S
‰

to be the infimum of the sums
ÿ

nPN
ρ
“

Mn

‰

,

over all the M-covers pMnqnPN of S. If S admits no M-cover we set µ
“

S
‰

:“ 8. Then µ
is an outer measure on Ω called the outer measure determined by the gauge ρ.

Proof. Indeed, (i) follows from ρrH
‰

“ 0 . Let A Ă B. If B admits no M cover then

obvisouly µ
“

A
‰

ď 8 “ µ
“

B
‰

. Otherwise, any M-cover of B is also an M-cover of A, and

from the definition of µ as an infimum over M-covers we deduce that µ
“

A
‰

ď µ
“

B
‰

.

Suppose that pAnqnPN is a countable family of subsets of Ω. Set

A “
ď

nPN
An.

If µ
“

An
‰

“ 8 for some n, then the subadditivity is obvious. Suppose that µ
“

An
‰

ă 8,
@n. Then for any ε ą 0 there exists an M-cover pMn,kqkPN of An such that

µ
“

An
‰

`
ε

2n
ě

ÿ

kPN
ρ
“

Mnk

‰

.

Then pMn,kqn,kPN is an M cover of A and thus, @ε ą 0

µ
“

A
‰

ď
ÿ

k,nPN
ρ
“

Mn,k

‰

`
ÿ

nPN

ε

2n
ď

ÿ

nPN
µ
“

An
‰

` ε.

This proves the countable subadditivity of µ. [\

Theorem 19.2.4 (Carathéodory construction). If µ is an outer measure on the
nonempty set Ω, then the following hold.
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(i) The collection Sµ of µ-measurable sets is a sigma-algebra.

(ii) The restriction of µ to Sµ is a measure.

(iii) The sigma-algebra Sµ is µ-complete, i.e.,

@S Ă Ω, µ
“

S
‰

“ 0ñ S P Sµ.

Proof. 1. Clearly H P Sµ. Since pS
cqc “ S we deduce from the definition (19.2.1) that

@S, S P SµðñSc P Sµ.

In particular, Ω P Sµ.

2. Let us show that

S1, S2 P Sµ ñ S1 Y S2 P Sµ.

We have to prove that for any A Ă Ω we have

µ
“

AX pS1 Y S2q
‰

` µ
“

AX pS1 Y S2q
c
‰

ď µ
“

A
‰

.

We have

pS1 Y S2q “ S1 Y pS2 X S
c
1q

so

AX pS1 Y S2q “ pAX S1q Y pAX S
c
1 X S2q

so that

µ
“

AX pS1 Y S2q
‰

` µ
“

AX pS1 Y S2q
c
‰

“ µ
“

pAX S1qY pAX S
c
1 X S2q

‰

` µ
“

pAX Sc1q X S
c
2

‰

(µ is subadditive)

ď µ
“

AX S1
‰

`µ
“

pAX Sc1q X S2
‰

` µ
“

pAX Sc1q X S
c
2

‰

(S2 is µ-measurable)

“ µ
“

AX S1
‰

` µ
“

AX Sc1
‰

“ µ
“

A
‰

,

where at the last step we have used the µ-measurability of S1. Since

Ω P Sµ and S P SµðñSc P Sµ,

we deduce that Sµ is an algebra.

3. Observe that if S1, S2 P Sµ are disjoint, then using (19.2.1) with A “ S1YS2 we deduce

µ
“

S1 Y S2
‰

“ µ
“

S1
‰

` µ
“

S2
‰

.

This proves that µ is finitely additive on Sµ.

4. Let us show that Sµ is a sigma-algebra. Let pSnqnPN be an increasing sequence of sets
in Sµ. We denote by S8 their union and we set Tn :“ SnzSn´1, @n P N. The sets Tn are
pairwise disjoint and

Sn “
n
ď

k“1

Tk.
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The finite additivity implies

µ
“

Sn

ı

“

n
ÿ

k“1

µ
“

Tk
‰

.

We will show that S8 P Sµ. Since Tn P Sµ we deduce that for any set A Ă Ω we have

µ
“

AX Sn
‰

“ µ
“

AX Sn X Tn
‰

` µ
“

AX Sn X T
c
n

‰

“ µ
“

AX Sn
‰

` µ
“

AX Sn´1
‰

.

We conclude inductively that

µ
“

AX Sn
‰

“

n
ÿ

j“1

µ
“

AX Tj
‰

.

On the other hand, Sn P Sµ and we have

µ
“

A
‰

“ µ
“

AX Sn
‰

` µ
“

AX Scn
‰

“

n
ÿ

j“1

µ
“

AX Tj
‰

` µ
“

AX Scn
‰

ě

n
ÿ

j“1

µ
“

AX Tj
‰

` µ
“

AX Sc8
‰

.

Letting nÑ8 we deduce

µ
“

A
‰

ě

8
ÿ

n“1

µ
“

AX Tn
‰

` µ
“

AX Sc8
‰

,

ě µ
”

8
ď

n“1

`

AX Tj
˘

ı

` µ
“

AX Sc8
‰

“ µ
“

AX S8
‰

` µ
“

AX Sc8
‰

.

This proves that S8 is µ-measurable.

5. We will show that µ is countably additive on Sµ. Let pSnqnPN be an increasing sequence
of sets in Sµ. We denote by S8 their union and we set Tn :“ SnzSn´1. The monotonicity
of µ implies µ

“

S8
‰

ě µ
“

Sn
‰

, @n. As in 4 we have

µ
“

S8
‰

ě µ
“

Sn

ı

“

n
ÿ

k“1

µ
“

Tk
‰

.

Letting nÑ8 we deduce

µ
“

S8
‰

ě lim
nÑ8

µ
“

Sn
‰

“

8
ÿ

k“1

µ
“

Tk
‰

.

On the other hand, the countable subadditivity of the outer measure µ shows that the
opposite inequality is true, i.e.,

µ
“

S8
‰

ď

8
ÿ

k“1

µ
“

Tk
‰

,
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and thus

µ
“

S8

ı

“

8
ÿ

k“1

µ
“

Tk
‰

“ lim
nÑ8

µ
“

Sn
‰

.

6. Finally, let us show that Sµ is µ-complete. Suppose that S Ă N P Sµ and µ
“

N
‰

“ 0.

We want to show that S is also µ-measurable. Indeed, note first that µ
“

S
‰

“ 0. For any
A Ă Ω we have

µ
“

AX S
‰

loooomoooon

“0

`µ
“

AX Sc
‰

“ µ
“

AX Sc
‰

(N P Sµ, µ
“

N
‰

“ 0)

“ µ
“

AX Sc XN
‰

looooooooomooooooooon

“0

`µ
“

AX Sc XN c
‰

(AX Sc XN c Ă AXN c)

ď µ
“

AXN c
‰

“ µ
“

AXN
‰

looooomooooon

“0

`µ
“

AXN c
‰

“ µ
“

A
‰

.

This completes the proof of Theorem 19.2.4. [\

Without any additional knowledge about the outer measure µ we cannot say too much
about the sigma algebra of µ-measurable sets. We want to describe two instances when
we can provide additional information about Sµ.

Consider first the case when the outer measure is obtained from a gauge that is a
premeasure on an algebra of sets.

Theorem 19.2.5 (Carathéodory extension). Let Ω be a nonempty set and

µ : F Ñ r0,8s

is a premeasure on the ring of subsets F. Think of F as a class of models and of µ as a
gauge. Denote by pµ the associated outer measure. Then the following hold.

(i) µ
“

F
‰

“ pµ
“

F
‰

, @F P F.

(ii) σpFq Ă S
pµ.

In other words, the restriction of pµ to σpFq is a measure that extends µ.

Moreover, if µ is σ-finite, then any measure on σpFq that extends µ coincides with
pµ
ˇ

ˇ

σpFq
.

Proof. We will need a general fact about premeasures.

Lemma 19.2.6. For any F P F, and any sequence pFnqnPN in F such that

F Ă
ď

nPN
Fn,
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we have

µ
“

F
‰

ď
ÿ

nPN
µ
“

Fn
‰

.

Proof of Lemma 19.2.6. Set

Bn “
n
ď

k“1

Fn, B “
ď

nPN
Bn “

ď

nPN
Fn.

Then B Ą F ,

F XB1 Ă F XB2 Ă ¨ ¨ ¨ and F XB “ F.

We have F XBn P F and the finite additivity of µ implies that

µ
“

F XBn
‰

ď µ
“

Bn
‰

ď

n
ÿ

k“1

µ
“

Fk
‰

.

The conditional countable additivity of µ implies that

µ
“

F
‰

“ lim
nÑ8

µ
“

F XBn
‰

ď

8
ÿ

k“1

µ
“

Fk
‰

.

[\

(i) Let F P F. Observe that pµ
“

F
‰

ď µ
“

F
‰

since F covers itself.

On the other hand, Lemma 19.2.6 implies that for any F-cover pFnqnPN of F we have

µ
“

F
‰

ď
ÿ

nPN
µ
“

Fn
‰

so that µ
“

F
‰

ď pµ
“

F
‰

. This proves (i).

(ii) It suffices to show that F Ă S
pµ. Let F P F. We want to prove that for any A Ă Ω we

have

pµ
“

A
‰

ě pµ
“

AX F
‰

` pµ
“

AX F c
‰

. (19.2.4)

Fix A Ă Ω. The above equality is true if pµ
“

A
‰

“ 8 so we only need to consider the case

pµ
“

A
‰

ă 8. For any ε ą 0 there exists an F-cover pFnqnPN of A such that

pµ
“

A
‰

` ε ě
ÿ

nPN
µ
“

Fn
‰

ě pµ
“

A
‰

.

Since µ is additive and Fn “ Fn X F \ Fn X F
c we deduce

ÿ

nPN
µ
“

Fn
‰

“
ÿ

nPN
µ
“

Fn X F
‰

`
ÿ

nPN
µ
“

Fn X F
c
‰

ě pµ
“

AX F
‰

` pµ
“

AX F c
‰

,

where the last inequality follows from the fact that the families pFn X F q and pFn X F cq
are F-covers of AX F and respectively AX F c. Hence, for any ε ě 0

pµ
“

A
‰

` ε ě pµ
“

AX F
‰

` pµ
“

AX F c
‰

.

Letting εŒ 0 we obtain (19.2.4).
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If µ is finite, then Proposition 19.1.32 shows that it admits a unique extension to a
measure on σpFq.

Suppose now that µ is sigma-finite and µ̄ : σpFq Ñ r0,8q is a measure extending µ.
Fix an increasing sequence pFnqnPN of sets in F such that

µ
“

Fn
‰

ă 8, @n P N,
and

Ω “
ď

nPN
Fn.

For n P N we define
µ̄n, pµn : σpFq Ñ r0,8s,

µ̄n
“

S
‰

:“ µ̄
“

S X Fn
‰

, pµn
“

S
‰

:“ pµ
“

S X Fn
‰

, @S P σpFq

Note that µ̄n and pµn are finite measures that coincide on F, and µ̄n
“

Ωn
‰

“ µ
“

Fn
‰

“ pµn
“

Ω
‰

.
We deduce from Proposition 19.1.32 that µ̄n “ pµn, @n, so that

@S P σpFq : µ̄
“

S X Fn
‰

“ pµ
“

S X Fn
‰

.

Letting nÑ8 in the above equality we deduce that

µ̄
“

S
‰

“ pµ
“

S
‰

, @S P σpFq.

[\

In Exercise 19.21 we describe a generalization of Theorem 19.2.5.

Definition 19.2.7. Suppose that pX, dq is a metric space. An outer measure µ : 2X Ñ r0,8s
is said to be metric if for any S1, S2 Ă X,

distpS1, S2q ą 0ñ µ
“

S1 Y S2
‰

“ µ
“

S1
‰

` µ
“

S2
‰

, (19.2.5)

where
distpS1, S2q :“ inf

px1,x2qPS1ˆS2

dpx1, x2q.

[\

Theorem 19.2.8 (Carathéodory). Suppose that µ is a metric outer measure on the metric
space pX, dq. Then any Borel subset of X is µ-measurable, so µ defines a measure on the
Borel sigma-algebra BX . Moreover, Sµ contains the µ-completion of BX .

Proof. It suffices to show that any closed subset C Ă X is µ-measurable, i.e.,

µ
“

A
‰

ě µ
“

AX C
‰

` µ
“

AzC
‰

, @A Ă X. (19.2.6)

Let A Ă X. The equality (19.2.6) is obviously true if µ
“

A
‰

“ 8 so we assume that µ
“

A
‰

ă 8. Set

An :“
␣

a P A; distpa,Cq ě 1{n
(

.

Note that

A1 Ă A2 Ă ¨ ¨ ¨ and
ď

nN
An “

␣

a P A; distpa,Cq ą 0
(

“ AzC.

Since µ is a metric outer measure we deduce from (19.2.5) that

µ
“

AX C
‰

` µ
“

An

‰

“ µ
“

pAX Cq YAn

‰

ď µ
“

A
‰

.
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To prove (19.2.6) it suffices to show that

µ
“

An

‰

Ñ µ
“

AzC
‰

(19.2.7)

Set Cn :“ Am`1zAn, @n. The clincher is the simple observation that distpCm, Cnq ą 0 if |m´ n| ě 2. Using this
(19.2.5) we deduce

J
ÿ

j“1

µ
“

C2j

‰

“ µ
”

J
ď

j“1

C2j

ı

ď µ
“

A
‰

ă 8

J
ÿ

j“1

µ
“

C2j´1

‰

“ µ
”

J
ď

j“1

C2j´1

ı

ď µ
“

A
‰

ă 8.

Hence
ÿ

ně1

µ
“

Cn

‰

ă 8.

From the countable subadditivity of µ we deduce

µ
“

AzC
‰

ď µ
“

Am

‰

`
ÿ

něm

µ
“

Cn

‰

loooooomoooooon

“:tm

ď µ
“

A
‰

` tm

The equality (19.2.7) follows by letting mÑ8 and observing that tm Ñ 0. [\

19.2.2. The Lebesgue measure on the real line. In Subsection 19.1.6 we constructed
the Lebesque premeasure λ defined on the algebra of sets F generated by the set I of
intervals of the form

R, pa, bs, ´8 ď a ă b ă 8.

It is uniquely determined by the conditions

λ
“

pa, bs
‰

“ b´ a, @ ´8 ă a ă b ď 8.

The Carathéodory extension of λ is defined on a sigma-algebra Sλ containing σpFq and
the resulting measure

λ : Sλ Ñ r0,8s

is called the Lebesgue measure on the real axis. The subsets in Sλ are called Lebesgue
measurable. Observe that the sigma-algebra generated by F is the Borel sigma algebra
BR generated by the open subsets of R. The Carathéodory construction shows that the
λ-completion of BR is contained in Sλ,

Bλ
R Ă Sλ.

Remark 19.2.9. Let us recall main steps in the construction of the Lebesgue measure.
Using F as class of models and λ : F Ñ r0,8s as gauge we construct the outer measure

pλ : 2R Ñ r0,8s.

More explicitly, given S Ă R, then pλ
“

S
‰

“ c if and only if the following hold.

(i) For any countable cover pInqnPN of S by intervals In “ pan, bns we have

c ď
ÿ

nPN
λ
“

In
‰

“
ÿ

nPN
pbn ´ anq.
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(ii) For any ε ą 0 there exists a countable cover pInqnPN of S by intervals In “ pan, bns
such that

ÿ

nPN
pbn ´ anq ď c` ε.

The Lebesgue measure of a Borel subset B Ă R is then pλ
“

B
‰

. Moreover, if S happens to

be in F, then pλ
“

S
‰

“ λ
“

S
‰

. [\

Example 19.2.10 (The Cantor set). For each closed and bounded interval I “ ra, bs we
denote by CpIq the union of intervals obtained by removing from I the open middle third

CpIq :“ LpIq YRpIq, LpIq :“ ra, a` pb´ aq{3s, RpIq :“ rb´ pb´ aq{3, bs.

Thus LpIq is the left third of I while RpIq is the right third of I.

More generally, if S is a union of disjoint compact intervals,

S “ I1 Y ¨ ¨ ¨ Y In,

we set

CpSq “ CpI1q Y ¨ ¨ ¨ Y CpInq.

Note that CpSq is itself a union of disjoint compact intervals CpSq Ă S. We denote by X

the collection of subsets that are unions of finitely many disjoint compact intervals. We
have thus obtained a map

C : XÑ X, S ÞÑ CpSq.

Note that CpSq Ă S and

λ
“

CpSq
‰

“
2

3
λ
“

S
‰

.

Consider the sequence of subsets Sn P X defined recursively as

S0 :“ r0, 1s, Sn “ CpSn´1q, @n P N.

Observe that

S0 Ą S1 Ą ¨ ¨ ¨ Ą Sn ¨ ¨ ¨ , λ
“

Sn
‰

“

ˆ

2

3

˙n

.

The sets Sn are nonempty and compact so

S8 :“
č

ně0

Sn

is a nonempty compact subset called the Cantor set. It is a negligible set since

λ
“

S8
‰

“ lim
nÑ8

λ
“

Sn
‰

“ 0.

On the other hand S8 is very large. To see this we consider the following infinite binary
tree.

It has a root labelled S0. It has two successors, the components of CpS0q, LpS0q and
RpS0q. We obtain the first generation of vertices consiting of two vertices labelled LpS0q
and RpS0q. Inductively, the n-th generation consists of 2n vertices (the components of
Sn). Each vertex has two successors, a left and a right successor; see Figure 19.1.
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L L L

L

L

L

L

R

R

R

RR R R

0

1

2

3

Figure 19.1. Three generations of an infinite binary tree.

Observe that there is a bijection

tL,RuN Ñ S8, tL,Ru
N Q A ÞÑ xpAq P S8. (19.2.8)

More precisely, given a sequence A “ pA1, A2, A3, . . . , q P tL,Ru
N (An “ L,R) we obtain

a nested sequence of intervals In “ InpAq defined by

I1 “ A1pS0q, In`1 “ An`1pInq Ă In, n P N.

The n-th interval In has length 3´n. The intersection of this sequence of nested intervals
consists of a single point xpAq that obviously belongs to the Cantor set.

Note that if A ‰ B, then there exists n P N such that InpAq X InpBq “ H so that
xpAq ‰ xpBq. Thus the map (19.2.8) is injective.

By construction this map is surjective because any x in the Cantor set lives in the
intersection of such a sequence of intervals. Thus

cardS8 “ 2ℵ0 “ ℵc “ cardr0, 1s,

where at the last step we invoked Theorem A.3.7. [\

In the remainder of this subsection we will try to understand how large is the collection
of Lebesgue measurable subsets of the real axis. By construction, Sλ contains the Borel
sigma-algebra BR. Also by construction, the sigma-algebra Sλ is λ-complete and thus it
must also contain the λ-completion Bλ

R of BR, i.e., B
λ
R Ă Sλ.

Proposition 19.2.11. Bλ
R “ Sλ.

Proof. Let us introduce some classical terminology. A Gδ-subset of R is defined to be the intersection of countably

many open subsets. An Fσ-subset is the complement of a Gδ-set or, equivalently, the union of countably many

closed sets. Clearly the Gδ-sets and Fσ-sets are Borel measurable.

We will show that for any Lebesgue measurable set S there exist Borel sets A,B such that

A Ă S Ă B and λ
“

S
‰

“ λ
“

A
‰

“ λ
“

B
‰

.

We carry the proof in two steps.
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Step 1. We prove that the claim is true when S is bounded, i.e., there exists R ą 0 such that

S Ă p´R,Rq.

We first show that there exists a Gδ-set G containing S such that

λ
“

S
‰

“ λ
“

G
‰

.

For any ε ą 0 there exists a countable family of intervals pInqnPN in I such that

In Ă p´R´ 1, R` 1q, @n, S Ă
ď

nPN
In

and
ÿ

nPn

λ
“

In
‰

ď λ
“

S
‰

` ε.

The intervals In are not open, but each is contained in an open interval Jn “ Jε
n Ă p´R´ 1, R` 1q such that

λ
“

Jn
‰

ď λ
“

In
‰

`
ε

2n
.

Set

Jε :“
ď

nPN
Jn.

Then S Ă Jε and

λ
“

S
‰

ď λ
“

Jε
‰

ď
ÿ

nPn

λ
“

In
‰

` ε ď λ
“

S
‰

` 2ε.

Set

G :“
č

nPN
J1{n.

Then G is a Gδ-set containing S and λ
“

G
‰

“ λ
“

S
‰

.

Consider the set T “ r´R,ˆRszS. It is a bounded Lebesgue measurable and thus there exists a Gδ set G Ą T

such that λ
“

G
‰

“ λ
“

T
‰

. The set F “ r´R,RszG is an Fσ set contained in S that has the same Lebesgue measure
as S.

Step 2. The general case. For every n P N set

Sn “
`

p´n, n´ 1s Y rn´ 1, nq
˘

X S.

From Step 1 we deduce that for any n P N there exists a Gδ-set Gn Ą Sn and an Fσ-set Fn Ă Sn such that

λ
“

Fn

‰

“ λ
“

Sn

‰

“ λ
“

Gn

‰

.

Set

A “
ď

nPN
Fn, B “

ď

nPN
Gn

Clearly B is a Borel set and

A Ă S “
ď

nPN
Sn Ă B

Note that

λ
“

SzA
‰

“
ÿ

nPN
λ
“

SnzFn

‰

“ 0

and

λ
“

BzS
‰

ď
ÿ

nPN
λ
“

GnzSn

‰

“ 0.

This shows that any Lebesgue measurable set differs from a Borel set by a Lebesgue negligible subset.

[\
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Let us observe another property of Lebesgue measurable sets. For any S Ă R and
r P R we denote by S ` r the set

S ` r :“
␣

s` r; s P S
(

.

Equivalently

x P S ` rðñx´ r P S.

In other words S`r is the preimage of S via the homeomorphism hr : RÑ R, hrpxq “ x´r.
Since the preimage of a Borel set via a continuous map RÑ R is also Borel we deduce

S P BR ñ S ` r P BR, @r P R.

Proposition 19.2.12. For any S P Sλ and any r P R we have S ` r P Sλ and

λ
“

S ` r
‰

“ λ
“

S
‰

.

Proof. The proof is a simple application of Dynkin’s π ´ λ theorem. For simplicity we write

λr

“

S
‰

:“ λ
“

S ` r
‰

, @r P R.

Let

A :“
␣

S P Sλ; λr

“

A
‰

“ λ
“

A
‰

,
(

, A Ă r´n, ns
(

.

We have to show that A “ Sλ. For n P N we set

An :“
␣

A P A; A Ă r´n, ns
(

.

We will show that all the Borel subsets of r´n, ns are contained in An.

Observe first that An contains all the intervals of the form r´n, as, a P r´n, ns. The collection P of these
intervals is a π-system of subsets of r´n, ns, i.e., it is closed under intersections. Obviously H, r´n, ns P An.

Next, observe that if A,B P An, A Ă B, then BzA P An. Indeed

pBzAq ` r “ pB ` rqzpA` rq

so that

λr

“

BzA
‰

“ λ
“

pB ` rqzpA` rq
‰

“ λ
“

B ` r
‰

´ λ
“

A` r
“

“ λ
“

B
‰

´ λ
“

A
‰

“ λ
“

BzA
‰

.

Finally, observe that if pAkqkPN is an increasing sequence of sets in An, and

A “
ď

nPN
An,

then
ď

kPN
pAk ` rq “ A` r

and we have

λ
“

A` r
‰

“ lim
nÑ8

λ
“

An ` r
‰

“ lim
nÑ8

λ
“

An

‰

“ λ
“

A
‰

so that A P An. This proves that An is also λ-system of subsets of r´n, ns and the π ´ λ-theorem implies that is
contains the sigma-algebra generated by P. This is the Borel algebra Br´C,Cs. Thus for any Borel subset B Ă R
we have

λ
“

B X r´n, ns
‰

“ λr

“

B X r´n, ns
‰

.

Letting nÑ8 we deduce λ
“

B
‰

“ λr

“

B
‰

. Thus BR Ă A so that λr “ λ on BR.

If S Ă R is λ-negligible, then there exists N P BR such that λ
“

N
‰

“ 0 and S Ă N . Note that

λ
“

N ` r
‰

“ λr

“

N
‰

“ λ
“

N
‰

“ 0.

Hence S is also λr negligible. Thus Bλ “ Bλr and thus λ coincides with Bλ “ Sλ. [\
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As we have seen the Cantor set is negligible and has the same cardinality as R. Hence,
any subset of the Cantor set is negligible so that card Sλ ě 2

cardR “ 2
ℵc . Obviously

since Sλ Ă 2
R we deduce card Sλ ď 2

cardR. Hence card Sλ “ 2
cardR. Is it possible that

Sλ “ 2
R, i.e., any subset of R is Lebesgue measurable? Our next result shows that this is

not the case.

Proposition 19.2.13 (G. Vitali). There exist subsets of R that are not Lebesgue measur-
able.

Proof. Define a binary relation ”„” on R by declaring x „ y if y´x P Q. Clearly x „ x. The relation is symmetric

since

x „ yðñy ´ x P Qðñx´ y P Qðñy „ x.

Finally, the relation is transitive because if x „ y and y „ z then pz ´ yq, py ´ xq P Q so that

z ´ x “ pz ´ yq ` py ´ xq P Q

i.e., x „ z. Using the axiom of choice (see page 976) there exists a complete set of representatives of this equivalence

relation, i.e., a subset S Ă R such that any real number is equivalent with exactly one element of S. By replacing

each element s P S by its fractional part tsu “ s´ tsu we can assume that S Ă r0, 1q.

Consider the countable family of translates

pS ` qqqPQ.

Observe that any two sets in this collection are disjoint. Indeed, if x P pS` q1qXpS` q2q then there exist x1, x2 P S
such that x “ x1 ` q1 “ x2 ` q2. Thus x2 ´ x1 “ q1 ´ q2 P Q. Since no two distinct elements in S are equivalent

we conclude that x1 “ x2 so q1 “ q2.

Observe next that

R “
ď

qPQ
pS ` qq.

Indeed, for any x P R there exists s P S such that s „ x, i.e., x ´ s P Q. If we write q :“ x ´ s, then x “ s ` q so

that x P S ` q.

We claim that the set S is not Lebesgue measurable. We argue by contradiction.

Suppose that S is Lebesgue measurable. We deduce that S ` q is Lebesgue measurable @q P Q and thus

8 “ λ
“

R
‰

“
ÿ

qPQ
λ
“

S ` q
‰

.

Hence, there exists q0 P Q such that

λ
“

S ` q0
‰

ą 0.

Since λ
“

S
‰

“ λ
“

S ` q0
‰

we deduce

λ
“

S
‰

ą 0.

Now observe that
ď

qPr0,1sXQ
pS ` qq Ă r0, 2s,

so that
ÿ

qPr0,1sXQ
λ
“

S
‰

“
ÿ

qPr0,1sXQ
λ
“

pS ` qq
‰

ă 2.

This shows that λ
“

S
‰

“ 0. This contradiction shows that S is not Lebesgue measurable. [\

Remark 19.2.14. We have three important sigma-algebras of subsets of R: the sigma-
algebra BR of all Borel subsets, the sigma-algebra Bλ

R of Lebesgue measurable subsets,

and the sigma-algebra 2R of all the subsets of R. We have inclusions

BR Ă Bλ
R Ă 2

R.
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We have shown that the second inclusion is strict.

One can show that (see [22, Chap.10])

cardBR “ 2ℵ0 “ ℵc ă 2
ℵc “ cardBλ

R.

This shows that “most” Lebesgue measurable sets are not Borel measurable.

The Lebesgue measure λ was constructed in a rather special way. It is defined on a
sigma-algebra containing all the intervals pa, bs and satisfies

λ
“

pa, bs
‰

“ b´ a.

Is it possible that, by some other method, we could construct a measure µ on the sigma-
algebra of all the subsets of R such that µ

“

pa, bs
‰

“ b´ a, @a ă b?

The surprising answer is NO, this is not possible! This fact is a consequence of the
Axiom of Choice. For details we refer to [22, Sec. 8.2]. [\

19.2.3. Lebesgue-Stiltjes measures. Suppose that F : RÑ R is a gauge function, i.e.,
a nondecreasing, right-continuous function. As explained in Remark 19.1.45, the function
F defines a sigma-additive premeasure and thus extends to a measure

µF : pR,BRq Ñ r0,8s

called the Lebesgue-Stiltjes measure associated to the gauge function F . Observe that
this measure satisfies the finiteness condition

µF
“

pa, bs
‰

“ F pbq ´ F paq ă 8, @a ă b.

Clearly this is equivalent with the condition µF
“

K
‰

ă 8, for any compact subset of R.
Conversely, suppose that µ : pR,BRq Ñ r0,8q is a measure satisfying the above

finiteness condition. We want to show that there exists a gauge function F such that
µ “ µF .

We begin by defining G : p0,8q Ñ r0,8q, Gpxq “ µ
“

p0, xs
‰

. The function G is

nondecreasing and thus it has at most countably many points of discontinuity.1 Thus G
is continuous at some point x0 P p0,8q. Define F : RÑ r0,8q

F pxq “

$

’

&

’

%

µ
“

px0, xs
‰

, x ą x0,

0, x “ x0,

´µ
“

px, x0s
‰

, x ă x0.

Clearly F is nondecreasing and

µ
“

pa, bs
‰

“ F pbq ´ F paq, @a, b.

Let show that

F pxq “ lim
yŒx

F pyq, @x P R.

1Can you prove this?
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This is obviously true for x ą x0. Next observe that

0 ď F px0 ` εq ď F px0 ` εq ´ F px0 ´ εq

“ µ
“

px0 ´ ε, x0 ` εs
‰

“ Gpx0 ` εq ´Gpx0 ´ εq Ñ 0 as εŒ 0

since G is continuous at x0. Hence F is right continuous at x0.

Suppose now that x ă x0. For y P px, x0s we have

F pyq ´ F pxq “ µ
“

px, ys
‰

Ñ 0 as y Œ 0.

Clearly λF “ µ since

λF
“

pa, bs
‰

“ µ
“

pa, bs
‰

“ F pbq ´ F paq, @a, b.

Note that if µ
“

R
‰

ă 8, then as gauge function we can choose

F pxq “ µ
“

p8, xs
‰

.

It satisfies

F p´8q :“ lim
xÑ´8

F pxq “ 0, F p8q “ µ
“

R
‰

ă 8. (19.2.9)

Suppose that we have a gauge function F satisfying the conditions (19.2.9) above. We set
M :“ F p8q. The quantile function of F is the function

Q : r0,M s Ñ r´8,8s, Qpyq “ inf
␣

x P R; F pxq ě y
(

. (19.2.10)

Proposition 19.2.15. Suppose that F is a gauge function satisfying (19.2.9). Denote by
Q its quantile function Q.

(i) The function Q is nondecreasing, QpF pxqq ď x, @x P r´8,8s.

(ii) Q´1
`

p´8, xs
˘

“ r0, F pxqs.

(iii) The function Q is left continuous, i.e., for any y0 P r0,M s we have

lim
yÕy0

Qpyq “ Qpy0q.

(iv) Q#λr0,Ms “ λF where λr0,Ms is the Lebesgue measure on the interval r0,M s and
Q# denotes the pushforward by Q defined in Example 19.1.31(iv)

[\

The proof is left to you as an exercise.

19.3. The Lebesgue integral

In this section we describe a method of integration pioneered by H. Lebesgue. To contrast
it with the Riemann method of integration consider the following experiment. Suppose
you have a large pile of coins consisting of pennies, nickels, dimes and quarters and you
want to find out the total worth of that pile. There are two ways to do do this.

The Riemann way is to successively add the values the coins, one by one. Lebesgue’s
way is to separate the coins into piles according to their values, the penny pile, the nickel
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pile etc., find the value of each of these piles by counting the number of coins in it and
adding the results.

The counting part of Lebesgue’s approach is abstractly encoded by a measure, so each
choice of measure leads to a different process of integration. Our presentation is greatly
inspired from the presentation in [4, I.4].

19.3.1. Definition and fundamental properties. Fix a measurable space pΩ, Sq. Re-
call that L0pΩ, Sq denotes the space of measurable functions pΩ, Sq Ñ r´8,8s and
L0
`pΩ, Sq denotes the set of nonnegative ones.

Recall that a measurable function f P L0pΩ, Sq is called elementary or step function
if there exist finitely many disjoint measurable sets A1, . . . , AN P S and real numbers
c1, . . . , cN such that

fpωq “
N
ÿ

k“1

ckIAk
pωq, @ω P Ω. (19.3.1)

We denote by E pΩ, Sq the set of elementary functions and by E`pΩ, Sq the subspace of
nonnegative elementary functions.

Let us observe f P E pΩ, Sq if and only if there exists a finite measurable partition
partition A0, A1, . . . , An and real numbers c0, c1, . . . , cn such that

f “
n
ÿ

k“0

ckIAk
.

Indeed, suppose that f is elementary. Then there exist disjoint measurable sets A1, . . . , An
and real numbers c1, . . . , cn such that

f “
n
ÿ

k“1

ckIAk
.

We set A0 “ ΩzpA1 Y ¨ ¨ ¨ YAnq. Then A0, A1, . . . , An is a measurable partition of Ω and

f “ 0 ¨ IA0 `

n
ÿ

k“1

ckIAk
.

Lemma 19.3.1. The set E pΩ, Sq is a vector subspace of the space of all measurable func-
tions ΩÑ R.

Proof. Suppose f, g P E pΩ, Sq,

f “
m
ÿ

i“1

aiIAi , g “
n
ÿ

j“1

bjIBj

where the measurable sets pAiq1ďiďm and pBjq1ďjďn define partitions of Ω. We set

Cij “ Ai XBj , @1 ď i ď m, 1 ď j ď n.
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Then sets pCijq define a measurable partition of Ω and

f ` g “
ÿ

i,j

pai ` bjqICij P E pΩ, Sq.

Clearly, for every c P R, the function cf is also elementary. [\

Remark 19.3.2. Let us point out that E pΩ, Sq is also a subalgebra of the algebra of
measurable functions since for any A,B P S we have IA ¨ IB “ IAXB, AXB P S. [\

The construction of the integral with respect to the measure µ begins by constructing
an extension of µ from S to E`pΩ, Sq and preserving the additivity properties of µ. More
precisely, if

f “
m
ÿ

i“1

aiIAi P E`pΩ, Sq,

then we set

µ
“

f
‰

“

ż

Ω
fpωqµ

“

dω
‰

:“
m
ÿ

i“1

aiµ
“

Ai
‰

P r0,8s.

Lemma 19.3.3. Let f, g P E`pΩ, Sq and c P r0,8q. Then

f ` g, cf, minpf, gq, maxpf, gq P E`pΩ, Sq,

and

µ
“

f ` g
‰

“ µ
“

f
‰

` µ
“

g
‰

, µ
“

cf
‰

“ cµ
“

f
‰

.

Moreover, if f ď g, then µ
“

f
‰

ď µ
“

g
‰

.

Proof. As in the proof of Lemma 19.3.1 we write

f “
ÿ

i

aiIAi , g “
ÿ

j

bjIBj ,

where pAiq1ďiďm and pBjq1ďjďn are measurable partitions of Ω. Then

f “
ÿ

i,j

aiIAiXBj , g “
ÿ

i,j

bjIAiXBj

f ` g “
ÿ

i,j

pai ` bjqIAiXBj P E`pΩ, Sq,

minpf, gq “
ÿ

i,j

minpai, bjqIAiXBj P E`pΩ, Sq,

maxpf, gq “
ÿ

i,j

maxpai, bjqIAiXBj P E`pΩ, Sq.

We have

µ
“

f ` g
‰

“
ÿ

i,j

pai ` bjqµ
“

Ai XBj
‰
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“
ÿ

i

ÿ

j

aiµ
“

Ai XBj
‰

`
ÿ

j

ÿ

i

bjµ
“

Ai XBj
‰

“
ÿ

i

ai

˜

ÿ

j

µ
“

Ai XBj
‰

¸

`
ÿ

j

bj

˜

ÿ

i

µ
“

Ai XBj
‰

¸

“
ÿ

i

aiµ
”

ď

j

pAi XBjq

loooooomoooooon

Ai

ı

`
ÿ

j

bjµ
”

ď

i

pAi XBjq

loooooomoooooon

Bj

ı

“
ÿ

i

aiµ
“

Ai
‰

`
ÿ

j

bjµ
“

Bj
‰

“ µ
“

f
‰

` µ
“

g
‰

.

The equality µ
“

cf
‰

“ cµ
“

f
‰

is obvious.

If f ď g, then @i, j, fpωq ď gpωq, @ω P Ai XBj , Hence

aiµ
“

Ai XBj
‰

ď bjµ
“

Ai XBj
‰

,

so that µ
“

f
‰

ď µ
“

g
‰

. [\

For any f P L0
`pΩ, Sq we set

E f
` :“

␣

g P E`pΩ, Sq; gpωq ď fpωq, @ω P Ω
(

.

Note that E f
` ‰ H since 0 P E f

`. Observe that if f P E`pΩ, Sq, then f P E f
` and Lemma

19.3.3 implies µ
“

f
‰

ě µ
“

g
‰

, @g P E f
`. Hence

µ
“

f
‰

“ sup
gPE f

`

µ
“

g
‰

, @f P E`pΩ, Sq.

Motivated by this fact, for any f P L0
`pΩ, Sq we set

µ
“

f
‰

:“ sup
gPE f

`

µ
“

g
‰

P r0,8s.

We say that µ
“

f s is the Lebesgue integral of the nonnegative measurable function f with
respect to the measure µ and we will use the alternate notation

µ
“

f
‰

“

ż

Ω
fdµ “

ż

Ω
fpωqµ

“

dω
‰

.

Definition 19.3.4. A measurable function f P L0pΩ, Sq is called µ-integrable if
µ
“

f`
‰

, µ
“

f´
‰

ă 8. In this case we define its Lebesgue integral to be
ż

Ω
fdµ “

ż

Ω
fpωqµ

“

dω
‰

“ µ
“

f
‰

:“ µ
“

f`
‰

´ µ
“

f´
‰

.

We denote by L1pΩ, S, µq the set of µ-integrable functions and by L1
`pΩ, S, µq the set

of µ-integrable nonnegative functions. [\
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Proposition 19.3.5. If f, g P L0
`pΩ, Sq and f ď g, then for any µ P MeaspΩ, Sq we have

µ
“

f
‰

ď µ
“

g
‰

.

Proof. Indeed we have E f
` Ă E g

` so

µ
“

f
‰

“ sup
hPE f

`

µ
“

h
‰

ď sup
hPE g

`

µ
“

h
‰

“ µ
“

g
‰

.

[\

Corollary 19.3.6. Suppose that pΩ, S, µq is a finite measured space, i.e., µ
“

Ω
‰

ă 8. If

f P L0pΩ, Sq is bounded, then it is µ-integrable.

Proof. Let C ą 0 such that |fpωq| ă C, @ω P Ω. Then, f˘ ă C and for any g P E
f˘

` we
have g ď CIΩ. Hence

µ
“

f˘
‰

ă Cµ
“

Ω
‰

ă 8

[\

Corollary 19.3.7. Let a, b P R, a ă b, and f P L0
`

ra, bs, Sλ
˘

, where Sλ denotes the
sigma-algebra of Lebesgue measurable subsets. If f is bounded, then f is λ-integrable. In
particular, any continuous function of ra, bs is λ-integrable. [\

The Lebesgue integral enjoys many of the desirable properties of the Riemann integral
such as the linearity of the correspondence f ÞÑ µ

“

f
‰

. The next result is key to unlocking
these nice feature out of the rather opaque Definition 19.3.4.

Theorem 19.3.8 (Monotone Convergence). Suppose that pfnqnPN is a nondecreasing
sequence in L0

`pΩ, Sq. Set

fpωq “ lim
nÑ8

fnpωq, @ω P Ω.

Then f P L0
`pΩ, Sq and

lim
nÑ8

ż

Ω
fndµ “

ż

Ω
fdµ.

Proof. From Proposition 19.3.5 we deduce that the sequence µ
“

fn
‰

is nondecreasing and

is bounded above by µ
“

f
‰

. Hence it has a, possibly infinite, limit and

lim
nÑ8

µ
“

fn
‰

ď µ
“

f
‰

.

To complete the proof of the theorem we have to show that

lim
nÑ8

µ
“

fn
‰

ě µ
“

f
‰

,

i.e.,

lim
nÑ8

µ
“

fn
‰

ě µ
“

g
‰

, @g P E f
`. (19.3.2)
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We will achieve this using a clever trick. Fix g P E f
`, c P p0, 1q, and set

Sn :“
␣

ω P Ω; fnpωq ě cgpωq
(

.

Since f “ lim fn and pfnq is a nondecreasing sequence of functions we deduce that Sn is a
nondecreasing sequence of measurable sets whose union is Ω. For any elementary function
h the product ISnh is also elementary. For any n P N we have

fn ě fnISn ě cgISn

so that

µ
“

fn
‰

ě µ
“

ISnfn
‰

ě cµ
“

gISn

‰

.

If we write g as a finite linear combination

g “
ÿ

j

gjIAj

with Aj pairwise disjoint, then we deduce

µ
“

fn
‰

ě cµ
“

gISn

‰

“ c
ÿ

j

gjµ
“

Aj X Sn
‰

.

The sequence of sets pAj X SnqnPN is nondecreasing and its union is Aj so that

lim
nÑ8

µ
“

fn
‰

ě c
ÿ

j

gj lim
nÑ8

µ
“

Aj X Sn
‰

“ c
ÿ

j

gjµ
“

Aj
‰

“ cµ
“

g
‰

.

Hence

lim
nÑ8

µ
“

fn
‰

ě cµ
“

g
‰

, @g P E f
`, @c P p0, 1q.

Letting cÕ 1 we deduce (19.3.2). [\

Recall the function Dn : r0,8s Ñ r0,8s defined in (19.1.7)

Dnprq “
n2n
ÿ

k“1

k ´ 1

2n
Irpk´1q2´n,k2´nqprq ` nIrn,8qprq “ min

´

t2nru

2n
, n

¯

. (19.3.3)

and the resulting sequence of transformations

Dn : L0
`pΩ, Sq Ñ E`pΩ, Sq, f ÞÑ Dnrf s, Dnrf s “ Dn ˝ f.

More precisely,

Dnrf spωq “ Dn

`

fpωq
˘

, @ω P Ω.

Corollary 19.3.9. For any f P L0
`pΩ, Sq we have

µ
“

f
‰

“ lim
nÑ8

µ
“

Dnrf s
‰

.

Proof. The sequence Dnrf s is non-decreasing and converges to f . The desired conclusion
follows from the Monotone Convergence theorem. [\
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Remark 19.3.10. Note that for any f P L0
`pΩ, Sq we have

µ
“

Dnpfq
‰

“

n2n
ÿ

k“1

k ´ 1

2n
µ
” !k ´ 1

2n
ď f ă

k

2n

) ı

` nµ
“ ␣

f ě n
( ‰

.

The equality

µ
“

f
‰

“ lim
nÑ8

µ
“

Dnrf s
‰

justifies the similarity with the Lebesgue procedure of counting the value of a pile of coins.
The set Ω is the pile of coins. The value of a coin ω is fpωq. The “number” of coins with
values in the interval

“

pk ´ 1q2´n, k2´n
˘

is

µ
” !k ´ 1

2n
ď f ă

k

2n

) ı

.

The value of this pile is approximated from below by

k ´ 1

2n
loomoon

“value” of the coin

ˆ µ
” !k ´ 1

2n
ď f ă

k

2n

) ı

loooooooooooooomoooooooooooooon

the “number” of coins of a given “value”

. [\

Corollary 19.3.11. For any f, g P L1pΩ, S, µq and a, b P R such that af ` bg is well
defined we have

af ` bg P L1pΩ, S, µq

and
ż

Ω
paf ` bgqdµ “ a

ż

Ω
fdµ` b

ż

Ω
gdµ. (19.3.4)

Moreover, if f, g P L1pΩ, S, µq and fpωq ď gpωq, @ω P Ω then
ż

Ω
fdµ ď

ż

Ω
gdµ.

Proof. A. Assume first that f, g P L1
`pΩ, Sq and a, b P r0,8q.

The sequence aDnrf s ` bDnrgs is nondecreasing and converges everywhere to af ` bg
and the Monotone Convergence Theorem implies

lim
nÑ8

ż

Ω

`

aDnrf s ` bDnrgs
˘

dµ “

ż

Ω
paf ` bgqdµ.

On the other hand, Lemma 19.3.3 implies
ż

Ω

`

aDnrf s ` bDnrgs
˘

dµ “ a

ż

Ω
Dnrf sdµ` b

ż

Ω
Dnrgsdµ.

Letting nÑ8 we deduce that

µ
“

af ` bg
‰

“ aµ
“

f
‰

` bµ
“

g
‰

,

so af ` bg is integrable and (19.3.4) holds.
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B. Consider now the general case f, g P L1pΩ, S, µq. Note that for any h P L0pΩ, Sq we
have

|h| “ h` ` h´

and we deduce from A that µ
“

|h|
‰

“ µ
“

h`
‰

` µ
“

h´
‰

. Hence h is integrable if and only
if |h| is integrable.

Observe that

|f ` g| ď |f | ` |g|

Proposition 19.3.5 implies

µ
“

|f ` g|
‰

ď µ
“

|f | ` |g|
‰

and we deduce from A that

µ
“

|f | ` |g|
‰

“ µ
“

|f |
‰

` µ
“

|g|
‰

ă 8.

Hence µ
“

|f ` g|
‰

ă 8 so f ` g is integrable. From the equalities

p´fq` “ f´, p´fq´ “ f`

we deduce

µ
“

´f
‰

“ µ
“

f´
‰

´ µ
“

f`
‰

“ ´µ
“

f
‰

.

Observe that

pf ` gq` ´ pf ` gq´ “ f ` g “ f` ` f´ ´ pf´ ` g´q

so that

pf ` gq` ` f´ ` g´ “ f` ` g` ` pf ` gq´.

We deduce from part A that

µ
“

pf ` gq`
‰

` µ
“

f´
‰

` µ
“

g´
‰

“ µ
“

f`
‰

` µ
“

g`
‰

` µ
“

pf ` gq´
‰

ñ µ
“

pf ` gq`
‰

´ µ
“

pf ` gq´
‰

“ µ
“

f`
‰

` µ
“

g`
‰

´
`

µ
“

f´
‰

` µ
“

g´
‰ ˘

,

i.e.,

µ
“

f ` g
‰

“ µ
“

f
‰

` µ
“

g
‰

.

Clearly for a ě 0

pafq˘ “ apf˘q

so that

µ
“

af
‰

“ aµ
“

f
‰

, µ
“

´af
‰

“ ´µ
“

af
‰

“ ´aµ
“

f
‰

.

Finally if f ď g then 0 ď g ´ f so

0 ď

ż

Ω
pg ´ fqdµ “

ż

Ω
gdµ´

ż

Ω
fdµñ

ż

Ω
fdµ ď

ż

Ω
gdµ.

[\

Let us record a useful observation we used in the above proof.

Corollary 19.3.12. Let f P L0pΩ, Sq. Then

f P L1pΩ, S, µqðñ|f | P L1pΩ, S, µq. [\
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Corollary 19.3.13 (Markov’s Inequality). Suppose that f P L1
`pΩ, S, µq. Then, for any

C ą 0, we have

µ
“

tf ě Cu
‰

ď
1

C

ż

Ω
fdµ. (19.3.5)

In particular, f ă 8, µ-a.e..

Proof. Note that

CItfěCu ď f ñ Cµ
“

tf ě Cu
‰

“

ż

Ω
CItfěCu ď

ż

Ω
fdµ.

Observe that

tf ě 1u Ą tf ě 2u Ą ¨ ¨ ¨ and tf “ 8u “
č

ně1

tf ě nu.

Since µ
“

tf ě 1u
‰

ă 8 we deduce from Exercise 19.18 that

µ
“

tf “ 8u
‰

“ lim
nÑ8

µ
“

tf ě nu
‰

ď lim
nÑ8

1

n

ż

Ω
dµ “ 0.

[\

Corollary 19.3.14 (Inclusion-Exclusion Principle). Suppose that pΩ, S, µq is a finite mea-
sured space, i.e., µ

“

Ω
‰

ă 8. Then, for any measurable sets S1, . . . , Sn P S we have

µ
”

n
ď

k“1

Sk

ı

“

n
ÿ

k“1

µ
“

Sk
‰

´
ÿ

1ďiăjďn

µ
“

Si X Sj
‰

` ¨ ¨ ¨

`p´1qℓ´1
ÿ

1ďi1ă¨¨¨ăiℓďn

µ
“

Si1 X ¨ ¨ ¨ X Siℓ
‰

` ¨ ¨ ¨

(19.3.6)

Proof. Note that

ISc
1X¨¨¨XS

c
n
“ ISc

1
¨ ¨ ¨ ISc

n
“

n
ź

k“1

`

1´ ISk

˘

“ 1`
n
ÿ

ℓ“1

p´1qℓ
ÿ

1ďi1ă¨¨¨ăiℓďn

ISi1
X¨¨¨XSiℓ

.

We deduce that

IS1Y¨¨¨YSn “ 1´ ISc
1X¨¨¨XS

c
n
“

n
ÿ

ℓ“1

p´1qℓ´1
ÿ

1ďi1ă¨¨¨ăiℓďn

ISi1
X¨¨¨XSiℓ

Integrating with respect to µ all sides of the above equality we obtain (19.3.6). [\

Corollary 19.3.15. Suppose that f P L1pΩ, S, µq. Then
ˇ

ˇ

ˇ

ˇ

ż

Ω
fdµ

ˇ

ˇ

ˇ

ˇ

ď

ż

Ω
|f |dµ. (19.3.7)

Proof. We have ´|f | ď f ď |f | so that

´

ż

Ω
|f |dµ ď

ż

Ω
fdµ ď

ż

Ω
|f |dµ.
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The above inequalities are equivalent to (19.3.7). [\

Corollary 19.3.16. Let f P L0
`pΩ, Sq. Then the following are equivalent.

(i) f “ 0 µ-a. e..

(ii) µ
“

f
‰

“ 0.

Proof. (i)Ñ (ii) Let g P E f
`. Then g “ 0 a. e. so that µ

“

g
‰

“ 0. Hence

µ
“

f
‰

“ sup
gPE f

`

µ
“

g
‰

“ 0.

(ii) ñ (i) The Markov inequality shows that

µ
“

tf ą 1{nu
‰

ď nµ
“

f
‰

“ 0

so

µ
“

f ą 0
‰

“ lim
nÑ8

µ
“

tf ą 1{nu
‰

“ 0.

[\

Proposition 19.3.17. Suppose f, g P L0pΩ, Sq and f “ g, µ-a.e.. Then

f P L1pΩ, S, µqðñ g P L1pΩ, S, µq.

Moreover, if one of the above equivalent conditions hold, then µ
“

f
‰

“ µ
“

g
‰

.

Proof. It suffices to prove only the implication “ñ”. The other implication is obtained
by reversing the roles of f and g. Set

Z :“
␣

f ‰ g
(

“
␣

ω P Ω; fpωq ‰ gpωq
(

.

The set Z is µ-negligible. From Corollary 19.3.16 we deduce

µ
“

IZ |f |
‰

“ µ
“

IZ |g|
‰

“ 0.

In particular IZg P L
1pΩ, S, µq. Next observe that

`

1´ IZ
˘

“ IΩzZ and fpωq “ gpωq, @ω P ΩzZ.

Since f P L1 and

0 ď IΩzZ |f | ď |f |,

we deduce

IΩzZ |f | P L
1.

Thus,
`

1´ IZ
˘

g “
`

1´ IZ
˘

f P L1pΩ, S, µq.

We conclude that

g “
`

1´ IZ
˘

g ` IZg P L
1pΩ, S, µq.
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Suppose now that f, g are integrable and f “ g, a.e.. From (19.3.7) we deduce

0 ď
ˇ

ˇ

ˇ
µ
“

f
‰

´ µ
“

g
‰

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
µ
“

f ´ g
‰

ˇ

ˇ

ˇ
ď µ

“

|f ´ g|
‰

.

The function |f ´ g| is nonnegative and zero almost everywhere so µ
“

|f ´ g|
‰

“ 0 by
Corollary 19.3.16. [\

Remark 19.3.18. The presentation so far had to tread carefully around a nagging prob-
lem: given f, g P L1pΩ, S, µq, then fpωq ` gpωq may not be well defined for some ω. For
example, it could happen that fpωq “ 8, gpωq “ ´8. Fortunately, Corollary 19.3.13
shows that the set of such ω’s is negligible. Moreover, if we redefine f and g to be equal
to zero on the set where they had infinite values, then their integrals do not change. For
this reason we alter the definition of L1pΩ, S, µq as follows.

L1pΩ, S, µq :“

#

f : pΩ, Sq Ñ R; f measurable,

ż

Ω
|f |dµ ă 8

+

.

Thus, in the sequel the integrable functions will be assumed to be everywhere finite.

With this convention the space L1pΩ, S, µq is a vector space and the Lebesgue integral
is a linear functional

µ : L1pΩ, S, µq Ñ R, f ÞÑ µ
“

f
‰

. [\

For any S P S, and any f P L0
`pΩ, Sq, we set

ż

S
fdµ :“ µ

“

fIS
‰

“

ż

Ω
fISdµ. (19.3.8)

Since fIS ď f we deduce that
ż

S
fdµ ď

ż

Ω
fdµ.

Observe that if f P L1pΩ, S, µq, then

0 ď

ż

S
f˘dµ ď

ż

Ω
f˘dµ ă 8.

We set
ż

S
fdµ :“

ż

S
f`dµ´

ż

S
f´dµ P R.

Corollary 19.3.19. For any f P L0
`pΩq the function

µf : SÑ r0,8s, µf
“

S
‰

:“

ż

S
fdµ “ µ

“

fIS
‰

(19.3.9)

is a measure.

Proof. Clearly µf
“

H
‰

“ 0 since fIH “ 0. Observe next that µf is finitely additive.
Indeed, if S1, S2 P S and S1 X S2 “ H, then

IS1YS2 “ IS1 ` IS2
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and

µf
“

S1 Y S2
‰

“ µ
“

fIS1 ` fIS2

‰

“ µ
“

fIS1

‰

` µ
“

fIS2

‰

“ µf
“

S2
‰

` µf
“

S2
‰

.

Finally, let us check the increasing continuity. Let

S1 Ă S2 Ă ¨ ¨ ¨ , S8 “
ď

ně1

Sn

be a non-decreasing sequence of measurable sets. Then pfISnq is a nondecreasing sequence
of nonnegative measurable functions and

lim
nÑ8

fpωqISnpωq “ fpωqIS8
pωq, @ω P Ω.

Hence

lim
nÑ8

µf
“

Sn
‰

“ lim
nÑ8

µ
“

fISn

‰

“ µ
“

fIS8

‰

“ µf
“

S8
‰

,

where the second equality follows from the Monotone Convergence Theorem.

[\

For every sequence pxnqnPN in r´8,8s we set

x˚k :“ inf
něk

xn.

The sequence px˚nqnPN is nondecreasing and thus it has a limit. We set

lim inf
nÑ8

xn :“ lim
kÑ8

x˚k “ lim
kÑ8

`

inf
něk

xn
˘

.

Equivalently, lim infnÑ8 xn is the smallest cluster point of the sequence pxnqnPN. We
define similarly

lim sup
nÑ8

xn :“ lim
kÑ8

`

sup
něk

xn
˘

.

Equivalently, lim supnÑ8 xn is the largest cluster point of the sequence pxnqnPN. Clearly

lim inf
nÑ8

xn ď lim sup
nÑ8

xn

with equality if and only if the sequence pxnq has a limit. In this case

lim
n
xn “ lim inf

nÑ8
xn “ lim sup

nÑ8
xn.

Note that

lim inf
nÑ8

p´xnq “ ´ lim sup
nÑ8

xn, lim sup
nÑ8

p´xnq “ ´ lim inf
nÑ8

xn.

Theorem 19.3.20 (Fatou’s Lemma). Suppose that pfnqnPN is a sequence in L0
`pΩ, Sq.

Then
ż

Ω
lim inf
nÑ8

fnpωqµ
“

dω
‰

ď lim inf
nÑ8

ż

Ω
fndµ.
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Proof. Set

gk :“ inf
něk

fn.

Proposition 19.1.18(iii) implies that gk P L0
`pΩ, Sq. The sequence pgkq is nondecreasing

and

lim inf
nÑ8

fn “ lim
kÑ8

gk.

The Monotone Convergence Theorem implies that
ż

Ω
lim inf
nÑ8

fnpωqµ
“

dω
‰

“ lim
kÑ8

ż

Ω
gkdµ.

Note that

gk ď fn, @n ě k.

Hence
ż

Ω
gkdµ ď

ż

Ω
fndµ, @n ě k,

i.e.,
ż

Ω
gkdµ ď inf

něk

ż

Ω
fndµ.

Letting k Ñ8 we deduce

lim
kÑ8

ż

Ω
gkdµ ď lim

kÑ8
inf
něk

ż

Ω
fndµ “ lim inf

nÑ8

ż

Ω
fndµ.

[\

Theorem 19.3.21 (Dominated Convergence). Suppose that pfnqnPN is a sequence in
L1pΩ, S, µq satisfying the following conditions.

(i) The sequence pfnq converges everywhere to a function f : ΩÑ R, i.e.,
lim
nÑ8

fnpωq “ fpωq, @ω P Ω.

(ii) The sequence pfnq is dominated by an integrable function h P L1pΩ, S, µq,
i.e.,

|fnpωq| ď hpωq, @n P N, ω P Ω.

Then f P L1pΩ, S, µq and

lim
nÑ8

ż

Ω
fn dµ “

ż

Ω
fdµ.

Proof. Note that ´h ď fn ď h, @n. Consider the sequence of nonnegative integrable
functions gn “ |fn| ` h. Note that |gn| ď 2h and gn Ñ |f | ` h. We deduce from Fatou’s
Lemma that

ż

Ω
p|f | ` hqdµ ď lim inf

nÑ8

ż

p|fn| ` hqdµ ď 2

ż

Ω
hdµ ă 8

proving that f is integrable.
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Consider now the sequences of nonnegative integrable functions un “ fn ` h and
vn “ h´ fn. We deduce from Fatou’s Lemma that

ż

Ω
pf ` hqdµ “

ż

Ω
lim
n
undµ ď lim inf

n

ż

Ω
pfn ` hqdµ “ lim inf

n

ż

Ω
fndµ`

ż

Ω
hdµ.

Hence
ż

Ω
fdµ ď lim inf

n

ż

Ω
fndµ.

Invoking Fatou’s lemma one more time we deduce that
ż

Ω
ph´ fqdµ “

ż

Ω
lim
n
vndµ ď lim inf

n

ż

Ω
ph´ fnqdµ “

ż

Ω
hdµ` lim inf

n

ż

Ω
p´fnqdµ.

Hence

´

ż

Ω
fdµ ď lim inf

n

ż

Ω
p´fnqdµ “ ´ lim sup

n

ż

Ω
fndµ

so that

lim sup
n

ż

Ω
fndµ ď

ż

Ω
fdµ ď lim inf

n

ż

Ω
fndµ.

We conclude

lim
n

ż

Ω
fndµ “

ż

Ω
fdµ.

[\

Corollary 19.3.22. Suppose that the sequence pfnq in L1pΩ, S, µq satisfies the conditions
in the Dominated Convergence Theorem. Then

lim
nÑ8

ż

Ω
|fn ´ f |dµ “ 0.

Proof. Set gn :“ |fn ´ f |. Note that gn Ñ 0 and

|gn| “ |fn ´ f | ď |fn| ` |f | ď h` |f | P L1pΩ, S, µq.

Applying the Dominated Convergence Theorem to the sequence pgnq we deduce

lim
n

ż

Ω
|fn ´ f |dµ “ lim

n

ż

Ω
gndµ “ 0.

[\

The Dominated Convergence Theorem has an a.e. version.

Theorem 19.3.23 (Dominated Convergence: a.e. version). Suppose that pfnqnPN is
a sequence in L1pΩ, S, µq satisfying the following conditions.

(i) The sequence pfnq converges a.e. to a measurable function f P L0pΩ, S, µq.

lim
nÑ8

fnpωq “ fpωq, @ω P Ω.
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(ii) The sequence pfnq is a.e. dominated by an integrable function h P L1pΩ, S, µq,
@n, DZn P S such that µ

“

Zn
‰

“ 0 and |fnpωq| ď hpωq, @ω P ΩzZn.

Then f P L1pΩ, S, µq and

lim
nÑ8

ż

Ω
fn dµ “

ż

Ω
fdµ.

Proof. There exists a negligible set Z8 P S such that fnpωq Ñ fpωq, @ω P ΩzZ8. The set

Z :“ Z8 Y

˜

ď

nPN
Zn

¸

is negligible. Define f˚ “ fIΩzZ , h
˚ “ hIΩzZ and f˚n “ fnIΩzZ . These functions satisfy

the assumptions in Theorem 19.3.21. Since f “ f˚ and fn “ f˚n a.e. we deduce
ż

Ω
f dµ “

ż

Ω
f˚ dµ “ lim

nÑ8

ż

Ω
f˚n dµ “ lim

nÑ8

ż

Ω
fn dµ.

[\

Suppose that pΩ0, S0q and pΩ1, S1q are two measurable spaces and Φ : Ω0 Ñ Ω1 an
pS0, S1q-measurable map. To any measure µ : S0 Ñ r0,8q we can associate its pushforward
via Φ. This is the measure

Φ#µ : S1 Ñ r0,8q, Φ#µ
“

S1
‰

“ µ
“

Φ´1pS1q
‰

, @S1 P S1 (19.3.10)

The map Φ also induces a pullback map

Φ˚ : L0pΩ1, S1q Ñ L0pΩ0, S0q, Φ˚f “ f ˝ Φ.

The next result relates the integral with respect to F#µ to the integral with respect
to the measure µ. It can be viewed as a very general form of the change in variables
formula. In probability theory it is known under the acronym LOTUS: The Law Of The
Unconscious Statistician.

Theorem 19.3.24 (Change in variables). Let Φ : pΩ0, S0q Ñ pΩ1, S1q be a measurable
map and µ P MeaspΩ0, S0q.

(i) For any f P L0
`pΩ1, S1q we have

Φ#µ
“

f
‰

“ µ
“

Φ˚f
‰

. (19.3.11)

(ii) If f P L1pΩ1, S1,Φ#µq, then Φ˚f P L1pΩ0, S0, µq and (19.3.11) holds.

Proof. (i) Let us observe in the special case f “ IS0 the equality (19.3.11) is trivially
true since it becomes the definition (19.3.10) of the pushforward. By linearity we see that
(19.3.11) holds for elementary functions.

Suppose that f P L0
`pΩ0, S0q. Note that for any n P N we have

Φ˚Dnrf s “ Dnrf s ˝ Φ “ pDn ˝ fq ˝ Φ “ Dn ˝ pf ˝ Φq “ DnrΦ
˚f s,
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and, since Dnpfq is elementary, we have

Φ#µ
“

Dnrf s
‰

“ µ
“

Φ˚Dnrf s
‰

“ µ
“

DnrΦ
˚f s

‰

.

The equality (19.3.11) now follows from Corollary 19.3.9.

(ii) If f P L1pΩ1, S1,Φ#µq then we write f “ f` ´ f´, f˘ P L1pΩ1, S1,Φ#µq. The
conclusion now follows from (i) applied to f˘. [\

Remark 19.3.25 (Integration of complex valued functions). Suppose that pΩ, S, µq a
measured space. A function f : ΩÑ C is said to be measurable if its real part u “ Re f
and its imaginary part v “ Im f are measurable. We say that f “ u` iv is µ-integrable
if u and v are such. Note that u, v are simultaneously integrable iff |u| ` |v| is integrable.
From the elementary inequalities

|u| ` |v|
?
2

ď
a

u2 ` v2 ď p|u| ` |v|q

We deduce that f is integrable if and only if |f | “
?
u2 ` v2 is integrable. In this case we

set
ż

Ω
fdµ “

ż

Ω
pu` ivqdµ :“

ż

Ω
udµ` i

ż

Ω
vdµ.

The Dominated Convergence Theorem extends with no change to the complex case. [\

19.3.2. Product measures and Fubini theorem. Suppose pΩi, Siq, i “ 0, 1, are two
measurable spaces. Recall that S0bS1 is the sigma-algebra of subsets of Ω0ˆΩ1 generated
by the collection R of “rectangles” of the form S0 ˆ S1, Si P Si, i “ 0, 1.

The goal of this subsection is to show that two sigma-finite measures measures µi on
Si, i “ 0, 1 induce in a canonical way a measure µ0 b µ1 uniquely determined by the
condition

µ0 b µ1
“

S0 ˆ S1
‰

“ µ0
“

S0
‰

µ1
“

S1
‰

, @Si P Si, i “ 0, 1.

The collection A of subsets of Ω0 ˆ Ω1 that are finite disjoint unions of rectangles is
an algebra; see Exercise 19.47. This suggests using Carathéodory’s existence theorem to
prove this claim.

We choose a different route that bypasses Carathéodory’s existence theorem. This
alternate, more efficient approach, is driven by the Monotone Class Theorem and simul-
taneously proves a central result in integration theory, the Fubini-Tonelli Theorem. For
every measurable space pΩ, Sq we denote by L0pΩ, Sq˚ the space of S-measurable functions
f : ΩÑ R.

Lemma 19.3.26. Suppose that

f P L0pΩ0 ˆ Ω1, S0 b S1q˚ Y L0
`pΩ0 ˆ Ω1, S0 b S1q.

Then, for any ω1 P Ω1 the function f0ω1
: Ω0 Ñ R,

f0ω1
pω0q “ fpω0, ω1q
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is S0-measurable and, for any ω0 P Ω0, the function f1ω0
: pΩ1, S1q Ñ R,

f1ω0
pω1q “ fpω0, ω1q

is S1-measurable.

Proof. We prove only the statement concerning f0ω1
. For simplicity we will write fω1 instead

of f0ω1
. We will use the Monotone Class Theorem 19.1.24.

Denote by M the collection of functions f P L0pΩ0 ˆ Ω1, S0 ˆ S1q˚ such that fω1 is
S0-measurable, @ω1 P Ω1. If f, g PM are bounded, then af ` bg PM, @a, b P R.

The collection R of rectangles is a π-system. Note that for any rectangle R “ S0 ˆ S1
the function f “ IR belongs to M. Indeed, for any ω1 P Ω1 we have

fω1 “

#

IS0 , ω1 P S1,

0, ω1 P Ω1zS1.

If pfnq is an increasing sequence of functions in M so is the sequence of slices fn,ω1 so the
limit f is also in M. By the Monotone Class Theorem the collection M contains all the
nonnegative measurable functions. Clearly, if f PM, then ´f PM. If f P L0pΩ, Sq˚ then
f “ f` ` p´f´q, f`, p´f´q P eM . Hence L0pΩ0 ˆ Ω1, S0 b S1q˚ ĂM. [\

Let us emphasize that when f ě 0, the conclusions of the lemma allow for f to have
infinite values.

Theorem 19.3.27 (Fubini-Tonelli). Let pΩi, Si, µiq, i “ 0, 1 be two sigma-finite mea-
sured spaces.

(i) There exists a measure µ on S0 b S1 uniquely determined by the equalities

µ
“

S0 ˆ S1
‰

“ µ0
“

S0
‰

µ1
“

S1
‰

, @S0 P S0, S1 P S1.

We will denote this measure by µ0 b µ1.

(ii) For each nonnegative function f P L0
`pΩ0 ˆ Ω1, S0 b S1q the functions

ω0 ÞÑ I1
“

f
‰

pω0q :“

ż

Ω1

fpω0, ω1qµ1
“

dω1

‰

P r0,8s,

ω1 ÞÑ I0
“

f
‰

pω1q :“

ż

Ω0

fpω0, ω1qµ0
“

dω0

‰

P r0,8s

are measurable and
ż

Ω0

ˆ
ż

Ω1

fpω0, ω1qµ1
“

dω1

‰

˙

µ0
“

dω0

‰

“

ż

Ω0ˆΩ1

fpω0, ω1qµ0 b µ1
“

dω0dω1

‰

“

ż

Ω1

ˆ
ż

Ω0

fpω0, ω1qµ0
“

dω0

‰

˙

µ1
“

dω1

‰

.

(19.3.12)
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In particular, if only one of the three terms above is finite, then all three are
finite and equal.

(iii) Let f P L1pΩ0 ˆ Ω1, S0 b S1, µ0 b µ1q. Then all the terms in (19.3.12) is
well defined, finite and equal.

Proof. We will carry the proof in several steps.

Step 1. We will prove that for every positive function f P L0pΩ0 ˆ Ω1, S0 ˆ S1q the
nonnegative function

ω0 ÞÑ I1
“

f
‰

pω0q “

ż

Ω1

fpω0, ω1qµ1
“

dω1

‰

is measurable so the integral

I1,0
“

f
‰

:“

ż

Ω0

ˆ
ż

Ω1

fpω0, ω1qµ1
“

dω1

‰

˙

µ0
“

dω0

‰

P r0,8s

is well defined.

This follows from the Monotone Class Theorem arguing exactly as in the proof of
Lemma 19.3.26. For S P S0 b S1 we set

µ1,0
“

S
‰

“ I1,0
“

IS
‰

.

Note that

I1
“

IS0ˆS1

‰

“

ż

Ω1

IΩ0ˆΩ1pω0, ω1qµ1
“

dω1

‰

.

If ω0 P Ω0zS0 the integral is 0. If ω0 P S0 the integral is
ż

Ω1

IS1dµ1 “ µ1
“

S1
‰

.

Hence

I1
“

IS0ˆS1

‰

“ µ1
“

S1
‰

IS0 .

We deduce

I1,0
“

S0 ˆ S1
‰

“ µ1
“

S1
‰

ż

Ω0

IS0dµ0 “ µ0
“

S0
‰

¨ µ1
“

S1
‰

.

Clearly if A,A1 P S are disjoint, then

IAYA1 “ IA ` IA1

so

I1,0
“

IAYA1

‰

“ I1,0
“

IA
‰

` I1,0
“

I 1A
‰

and

µ1,0
“

AYA1
‰

“ µ1,0
“

A
‰

` µ1,0
“

A1
‰

.

If

A1 Ă A2 Ă ¨ ¨ ¨
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is an increasing sequence of sets in S and

A “
ď

ně1

An,

then invoking the Monotone Convergence Theorem we first deduce that I1,0
“

IAn

‰

is a

nondecreasing sequence of measurable functions converging to I1,0
“

IA
‰

and then we con-

clude that µ1,0
“

An
‰

converges to µ1,0
“

A
‰

. Hence µ1,0 is a measure on S “ S0 b S1.

Step 2. A similar argument shows that

µ0,1rSs “

ż

Ω1

ˆ
ż

Ω0

ISpω0, ω1qµ0
“

dω0

‰

˙

µ1
“

dω1

‰

is also a sigma-finite measure on S “ S0 b S1. Note that

µ1,0
“

S0 ˆ S1
‰

“ µ0,1
“

S0 ˆ S1s, @S0 P S0, S1 P S1.

Thus µ1,0
“

R
‰

“ µ0,1
“

R
‰

, @R P R.

We want to show that if ν is another measure on S such that ν
“

R
‰

“ µ1,0
“

R
‰

for any

R P R, then ν
“

A
‰

“ µ1,0
“

A
‰

, @A P S.

To see this assume first that µ0 and µ1 are finite measures. Then Ω0 ˆ Ω1 P R

µ1,0
“

Ω0 ˆ Ω1

‰

“ ν
“

Ω0 ˆ Ω1

‰

ă 8

and since R is a π-system we deduce from Proposition 19.1.32 that µ1,0 “ ν on S.

To deal with the general case choose two increasing sequences Ein P Si, i “ 0, 1 such
that

µi
“

Sin
‰

ă 8, @n and Ωi “
ď

ně1

Ein, i “ 0, 1.

Define
En :“ E0

n ˆ E
1
n, µni

“

Si
‰

:“ µi
“

Si X E
i
n

‰

, Si P Si, i “ 0, 1,

νn
“

A
‰

:“ ν
“

AX En
‰

, @A P S.

Using the measures µni we form as above the measures µn1,0 and we observe that

µn1,0
“

A
‰

“ µ0,1
“

AX En
‰

, @n, @A P S.

For any rectangle R, the intersection RX En is a rectangle and

µn1,0
“

R
‰

“ νn
“

R
‰

, @n.

Thus
µn1,0

“

A
‰

“ µn
“

A
‰

, @n P N, A P S.

If we let nÑ8 in the above equality we deduce that µ1,0 “ ν on S.

We deduce that µ0,1 “ µ1,0. Thus the measures µ0,1 and µ1,0 coincide on the algebra of
sets generated by the rectangles and thus they must coincide on the S0bS1. This common
measure is denoted by µ0 b µ1 and it clearly satisfies statement (i) in the theorem

Step 3. From Step 2 we deduce that (19.3.12) is true for f “ IS , @S P S0 b S1. From
this, using the Monotone Class Theorem exactly as in the proof of Lemma 19.3.26 we
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deduce (19.3.12) in its entire generality. The claim in (iii) follows from the fact that any
integrable function f is the difference of two nonnegative integrable functions f “ f`´f´

and the claim is true for f˘. [\

Remark 19.3.28. Let f P L0pΩ0 ˆ Ω1, S0 ˆ S1,mu0 b µ1
˘

. From (19.3.12)
ż

Ω0

ˆ
ż

Ω1

ˇ

ˇ fpω0, ω1q
ˇ

ˇ µ1
“

dω1

‰

˙

µ0
“

dω0

‰

“

ż

Ω0ˆΩ1

ˇ

ˇ fpω0, ω1q
ˇ

ˇ µ0 b µ1
“

dω0dω1

‰

“

ż

Ω1

ˆ
ż

Ω0

ˇ

ˇ fpω0, ω1q
ˇ

ˇ µ0
“

dω0

‰

˙

µ1
“

dω1

‰

.

(19.3.13)

Above each the terms is well defined and could be infinite. However the above equality
shows that if one of the three terms above is finite, then they all are finite and equal.
Thus, for f to be integrable it suffices that the first or the third term in (19.3.13) be finite.

[\

The above construction can be iterated. More precisely given sigma-finite measured
spaces pΩk, Sk, µkq, k “ 1, . . . , n, we have a measure µ “ µ1b¨ ¨ ¨bµn uniquely determined
by the condition

µ
“

S1 ˆ S2 ˆ ¨ ¨ ¨ ˆ Sn
‰

“ µ1
“

S1
‰

µ2
“

S2
‰

¨ ¨ ¨µn
“

Sn
‰

, @Sk P Sk, k “ 1, . . . , n.

The Borel sigma-algebra BRn generated by the open subsets of Rn satisfies

BRn “ BR b ¨ ¨ ¨ bBR
loooooooomoooooooon

n

and the Lebesgue measure λ on BR induces a measure on Rn

λn :“ λb ¨ ¨ ¨ b λ
looooomooooon

n

.

We will refer to λn as the n-dimensional Lebesgue measure. We denote by Bλ
Rn the

completion of the Borel algebra BRn with respect to the Lebesgue measure λ. We will
refer to the sets in Bλ

Rn as Lebesgue measurable subsets.

Remark 19.3.29. Note that we have at our disposal another sigma-algebra

Bλ
R b ¨ ¨ ¨ b Bλ

R
loooooooomoooooooon

n

Ą BRn

over which λn can be defined. What is the relationship between this sigma-algebra and the completion Bλ
Rn? For

simplicity we address this question only the case n “ 2.

Note that if S0, S1 P Bλ
R , then there exist λ-negligible Borel subsets R Ą rSi Ă Si, i “ 0, 1. Then

S0 ˆ S1 Ă rS0 ˆ rS1

Since rS0 ˆ rS1 is λ2-negligible we deduce that S0 ˆ S1 P Bλ
R2 . Since the collection of rectangles S0 ˆ S1, Si P Bλ

R is

a π-system we deduce from the π ´ λ theorem that Bλ
R b Bλ

R Ă Bλ
R2 . [\
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Any subset X Ă Rn is a metric space with the induced metric and, as such, it has a
Borel algebra of subsets. More precisely a subset S Ă X belongs to the Borel algebra BX

if and only if there exists B P BRn such that S “ B XX.

Suppose that X Ă Rn is itself Borel. Then any Borel subset S Ă X is also a Borel
subset of Rn. The Lebesgue measure λn on Rn induces a measure λn,X : BX Ñ r0,8s,

λn,X
“

S
‰

“ λn
“

S
‰

.

For simplicity, and when no confusion is possible, we will use the same notation λn, when
referring to λn,X . We will denote by LX the completion of BX with respect to the induced
Lebesgue measure, i.e., the sigma-algebra of Lebesgue measurable subsets of X.

Proposition 19.3.30. Suppose that B Ă Rn is a nondegenerate box and f : B Ñ R is a
Riemann integrable function. Then f P L1pB,LB,λnq and

ż

B
fpxqλn

“

dx
‰

“

ż

B
fpxq|dx|,

where the integral in the right-hand side is the Riemann integral.

Proof. Using the decomposition f “ f “ f`´f´ we se that it suffices to prove the result
only in the case f ě 0. We will use the terminology and notation in Subsection 15.1.1.
Since f is Riemann integrable there exists a sequence pP νqνPN of partitions of B such that

ων :“ S˚pf,P νq ´ S˚pf,P νq ă 2´ν

For each ν we define the elementary functions

fν “
ÿ

CPC pP νq

mCpfqIC˝ , Fν “
ÿ

CPC pP νq

MCpfqIC ,

where C˝ denotes the interior of the chamber C. Observe that

0 ď fνpxq ď fpxq ď Fνpxq, @x P B

and
ż

B
fνpxqλn

“

dx
‰

“ S˚pf,P νq,

ż

B
Fνpxqλn

“

dx
‰

“ S˚pf,P νq.

We set gν :“ Fν ´ fν so that
ż

B
gνdλn “ ων .

Observe that 0 ď f ´ fν ď gν . From Markov’s inequality we deduce that

λn
“

tgν ě ru
‰

ď
2´ν

r
. (19.3.14)

Given x P B, the sequence fνpxq does not converge to fpωq iff

Dk P N, @m P N, Dν ą m : fpxq ´ fνpxq ą 1{k.
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Hence, if fνpxq does not converge to fpxq, then

x P Z :“
ď

k

č

m

ď

νąm

␣

gν ą 1{k
(

looooooooooomooooooooooon

“:Zk

.

We have

λn

«

ď

νąm

␣

gν ą 1{k
(

ff

ď
ÿ

νąm

λn
“ ␣

gν ą 1{k
( ‰

p19.3.14q
ď

ÿ

νąm

k2´ν “ k2´m.

Hence

λn
“

Zk
‰

ď k2´m, @m P N.

This shows that λn
“

Zk
‰

“ 0, @k so λn
“

Z
‰

“ 0 and thus fν Ñ f a.e. Since the functions

fν are Bλ
B-measurable and Bλ

B is complete, we deduce from Corollary 19.1.36 that f is

also Bλ
B-measurable. Note that

0 ď fν ď f ďM :“ sup
B
f ă 8.

Since the constant function M is Lebesgue integrable over B we deduce from the Domi-
nated convergence theorem that

ż

B
fpxqλn

“

dx
‰

“ lim
ν

ż

B
fνpxqλn

“

dx
‰

“ lim
νÑ8

S˚pfν ,P νq “

ż

B
fpxq|dx|.

[\

Remark 19.3.31. The above proof implies among other things that any Riemann inte-
grable function is Lebesgue measurable. This is the best one can hope for since there exist
Riemann integrable functions that are not Borel measurable. Can you describe one? [\

Corollary 19.3.32. If f : Rn Ñ R is Riemann integrable, then f P L1pRn,Bλ
Rn ,λnq and

ż

Rn

fpxqλ
“

dx
‰

“

ż

Rn

fpxq |dx|. (19.3.15)

Proof. Since f is Riemann integrable there exists a box B such that supp f Ă B and f
ˇ

ˇ

B
is Riemann integrable. By definition

ż

Rn

fpxq|dx| “

ż

B
fpxq |dx|.

The equality (19.3.15) now follows from Proposition 19.3.30. [\

Corollary 19.3.33. Any Jordan measurable set S Ă Rn is Lebesgue measurable and

voln
“

S
‰

“ λn
“

S
‰

.
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Proof. Since S is Jordan measurable it is contained in a box B Ă Rn and the induced
function

IS : B Ñ R
is Riemann integrable. Proposition 19.3.30 implies

λn
“

S
‰

“

ż

B
ISpxqλn

“

dx
‰

“

ż

B
ISpxq |dx| “ volnpSq.

[\

Proposition 19.3.34. Suppose that U Ă Rn is an open set and Φ : U Ñ Rn is a C1-
diffeomorphism with V :“ ΦpUq. Denote u “ pu1, . . . , unq the coordinates of the points in
U and by v “ pv1, . . . , vnq the coordinates of the points in V .

Then for any Borel subset B Ă V we have

Φ#λV
“

B
‰

“

ż

B
| det JΦ´1pvq|λn

“

dv
‰

, (19.3.16)

where Φ#λU is the pushforward of the measure λU via the map Φ,

Φ#λU
“

B
‰

:“ λU
“

Φ´1pBq
‰

, @B P BV .

In particular, if T : Rn Ñ Rn is bijective linear map and B Ă Rn is a Borel subset then

λ
“

T pBq
‰

“ |detT | ¨ λ
“

B
‰

. (19.3.17)

Proof. Denote by BV the Borel sigma-algebra of V . We have to show that

λU
“

Φ´1pBq
‰

“

ż

B
|det JΦ´1pvq|λV

“

dv
‰

, @B P BV . (19.3.18)

Denote by F the family of Borel subset of V for which (19.3.18) holds. To prove that
F “ BV we will use the π´λ theorem and we will show that F is a λ-system that contains
a π-system that generates BV as a sigma-algebra.

For any Jordan measurable compact K Ă V the function

f : Rn Ñ R, ; fpvq “ | det JΦ´1pvq|IKpvq.

is Riemann integrable. Using the change in variables formula, Theorem 15.3.1, we deduce
that the function

f ˝ Φ : U Ñ R
is Riemann integrable and

ż

Φ´1pKq
f
`

Φpuq
˘

| det JΦpuq| |du|
p19.3.15q
“

ż

K
fpvq |dv| “

ż

B
| det JΦ´1pvq|λV

“

dv
‰

.

Now observe that

f
`

Φpuq
˘

| det JΦpuq| “
ˇ

ˇ det JΦ´1

`

Φpuq
˘

det JΦpuq
ˇ

ˇ

The Chain Rule shows that we have an equality of matrices

det JΦ´1

`

Φpuq
˘

JΦpuq “ JΦ´1˝Φpuq “ J1 “ 1,
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so

det JΦ´1

`

Φpuq
˘

det JΦpuq “ 1

Hence (19.3.18) is true for Jordan measurable compact subsets of V . The collection of
Jordan measurable compact subsets of V is a π-system that generates BV .

Fix a Jordan measurable compact exhaustion pKνq of V ; see Definition 15.4.4. From
the Monotone Convergence Theorem we deduce that (19.3.18) is true for

V “
ď

νě1

Kν .

Hence V P FV . Obviously S0, S1 P FV , S0 Ă S1, then S1zS0. The Monotone Convergence
Theorem shows that if pSνq is an increasing sequence in FV , then so is its union.

If T : Rn Ñ Rn is a bijective linear map, then using (19.3.16) with Φ “ T´1 we deduce

λ
“

T pBq
‰

“ T´1# λ
“

B
‰

“ |detT | ¨ λ
“

B
‰

.

[\

Corollary 19.3.35 (Change in variables). Suppose that U Ă Rn is an open set and
Φ : U Ñ Rn is a C1-diffeomorphism with V :“ ΦpUq. If

f P L1pV,BV ,λV q,

then pf ˝ Φq|det JΦ| P L
1pU,BU ,λq and

ż

U
f
`

Φpuq
˘

| det JΦpuq|λ
“

du
‰

“

ż

V
fpvqλ

“

dv
‰

Proof. According to Proposition 19.3.34 we have

Φ#λU “ |det JΦ´1 |λV .

Define

g : V Ñ p´8,8s, gpvq “ fpvq
ˇ

ˇ det JΦ
`

Φ´1pvq
˘
ˇ

ˇ.

Note that

gpvq
ˇ

ˇ det JΦ´1pvq
ˇ

ˇ “ fpvq
ˇ

ˇ det JΦ
`

Φ´1pvq
˘ˇ

ˇ ¨
ˇ

ˇ det JΦ´1pvq
ˇ

ˇ

looooooooooooooooooooomooooooooooooooooooooon

“|det JΦ˝Φ´1 pvq|

“ fpvq.

Hence g P L1pV,BV ,Φ#λU q since f P L
1pV,BV ,λV q. Using Theorem 19.3.24 we deduce

ż

V
fpvqλV

“

dv
‰

“

ż

V
gpvqΦ#λV

“

dv
‰

(v “ Φpuq, u “ Φ´1pvq)

“

ż

U
g
`

Φpuq
˘

λU
“

du
‰

“

ż

U
f
`

Φpuq
˘ˇ

ˇ det JΦpuq
ˇ

ˇλU
“

du
‰

.

[\
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19.4. The Lp-spaces

We have developed all the technology required to introduce and investigate a class of
Banach spaces that play a very important role in the modern analysis and its applications.
Fix a measured space pΩ, S, µq. Recall our convention that f P L1pΩ, S, µq implies that
|fpωq| ă 8 for any ω P Ω.

19.4.1. Definition and Hölder inequality. For any p P r1,8q and f P L0pΩ, Sq we
set

}f}Lp “ }f}Lppµq :“

ˆ
ż

Ω
|fpωq|p µ

“

dω
‰

˙
1
p

P r0,8s,

and we define
LppΩ, S, µq :“

␣

f P L0pΩ, Sq; }f}Lp ă 8
(

,

L
p
`pΩ, S, µq :“

␣

f P LppΩ, Sq; f ě 0 a. e.
(

.

Define
L8pΩ, S, µq :“

␣

f P L0pΩ, Sq; DC ą 0 : |fpωq| ď C µ´ a. e.
(

,

L8` pΩ, S, µq :“
␣

f P L8pΩ, S, µq; f ě 0 µ´ a. e.
(

.

For f P L8pΩ, Sµq we set

}f}L8 :“ inf
␣

C P Q; |f | ď C µ´ a. e.
(

.

Observe that for p P r1,8s we have

}f}Lp “ 0ðñf “ 0 µ´ a. e. .

Clearly L1 and L8 are vector spaces. For p ą 1 the function h : p0,8q Ñ R, hpxq “ xp is
convex and thus

h
`

px` yq{2
˘

ď
1

2

`

hpxq ` hpyq
˘

,

i.e.
|x` y|p ď 2p´1

`

xp ` yp
˘

, @x, y ą 0.

In particular, for any f, g P Lp
`

Ω, µ
˘

we have
ˇ

ˇ fpωq ` gpωq
ˇ

ˇ

p
ď
ˇ

ˇ |fpωq| ` |gpωq|
ˇ

ˇ

p
ď 2p´1

`

|fpωq|p ` |gpωq|p
˘

.

so that
ż

Ω

ˇ

ˇ fpωq ` gpωq
ˇ

ˇ

p
µ
“

dω
‰

ď 2p´1
ż

Ω

`

|fpωq|p ` |gpωq|p
˘

µ
“

dω
‰

ă 8

so that f ` g P LppΩ, S, µq. This proves that LppΩ, µq is also vector space for p P p1,8q.

For p P r1,8s we denote by p˚ its conjugate exponent defined by

1

p˚
`

1

p
“ 1ðñ p˚ “

p

p´ 1
.

Note that 1˚ “ 8 and pp˚q˚ “ p.
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Theorem 19.4.1 (Hölder’s inequality). For any f, g P L0
`pΩ, Sq and any p P r1,8s

we have
ż

Ω
fpωqgpωqµ

“

dω
‰

ď }f}Lppµq ¨ }g}Lp˚
pµq. (19.4.1)

In particular, if f P LppΩ, µq and g P Lp
˚

pΩ, µq, then fg P L1pΩ, µq.

Proof. Set q :“ p˚. Suppose first that f, g are elementary functions. We can then find a
common measurable partition pSiq1ěiďn of Ω such that

f “
n
ÿ

i“1

fiISi , g “
n
ÿ

i“1

giISi , fi, gi P r0,8q.

Set

xi “ fiµ
“

Si
‰1{p

, yi “ giµ
“

Si
‰1{q

.

Then
ż

Ω
fpωqgpωqµ

“

dω
‰

“

n
ÿ

i“1

xiyi,

}f}Lp “

˜

n
ÿ

i“1

xpi

¸1{p

, }g}Lq “

˜

n
ÿ

i“1

yqi

¸1{q

.

Thus, in this case the inequality (19.4.1) becomes

n
ÿ

i“1

xiyi ď

˜

n
ÿ

i“1

xpi

¸1{p˜ n
ÿ

i“1

yqi

¸1{q

which is the classical Hölder inequality (8.3.15). Thus (19.4.1) holds when f, g are ele-
mentary. In general, for any f, g P L0

`, we have
ż

Ω
Dnrf spωqDnrgspωqµ

“

dω
‰

ď
›

›Dnrf s
›

›

Lppµq
¨
›

›Dnrgs
›

›

Lp˚
pµq
, @n P N.

Letting n Ñ 8 and invoking the Monotone Convergence Theorem we obtain (19.4.1) in
general.

[\

When p “ 2, we have p˚ “ 2 and Hölder’s inequality specializes to the Cauchy-Schwarz
inequality.

Corollary 19.4.2 (Cauchy-Schwarz inequality). For any f, g P L2pΩ, µq we have
ˇ

ˇ

ˇ

ˇ

ż

Ω
fpωqgpωqµ

“

dω
‰

ˇ

ˇ

ˇ

ˇ

ď

ż

Ω

ˇ

ˇfpωq
ˇ

ˇ

ˇ

ˇgpωq
ˇ

ˇµ
“

dω
‰

ď }f}L2 ¨ }g}L2 . (19.4.2)

[\
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Theorem 19.4.3 (Minkowski’s inequality). Let p P r1,8s. Then, for any f, g P LppΩ, µq
we have

}f ` g}Lp ď }f}Lp ` }g}Lp . (19.4.3)

Proof. The inequality is obviously true for p “ 1 or p “ 8 so we will assume p P p1,8q.
Set q “ p˚ “ p

p´1 . We have

}f ` g}pLp “

ż

Ω
|f ` g|pdµ ď

ż

Ω
|f | ¨ |f ` g|p´1dµ`

ż

Ω
|g| ¨ |f ` g|p´1dµ

(p|f ` g|p´1qq “ |f ` g|p P L1)

p19.4.1q
ď }f}Lp ¨

›

› |f ` g|p´1
›

›

Lq ` }g}Lp ¨
›

› |f ` g|p´1
›

›

Lq

(
›

› |f ` g|p´1
›

›

Lq “ }f ` g}
p´1
Lp )

“
`

}f}Lp ` }g}Lp

˘

¨ }f ` g}p´1Lp .

[\

Minkowski’s inequality shows that the correspondence

LppΩ, µq Q f ÞÑ }f}Lp P r0,8q

behaves almost like a norm, but with one notable exception. From the equality }f}Lp “ 0
we cannot conclude that f “ 0. The best that we can conclude is that f “ 0 µ-a.e.. To
address this issue we introduce the relation „ on LppΩ, S, µq,

f „ gðñ f “ g µ´ a. e. .

Clearly „ is an equivalence relation and the equality }f}Lp “ 0 can be rewritten as f „ 0.
Note that

f „ f 1, g „ g1 ñ }f}Lp “ }f 1}Lp , f ` g „ f 1 ` g1, cf „ cf 1, @f, g P L0, c P R.

This proves that the quotient space

LppΩ, µq :“ LppΩ, µq{ „

is a vector space, and the function } ´ }Lp descends to a genuine norm on LppΩ, S, µq.

19.4.2. The Banach space LppΩ, µq. An important payoff of the elaborate integration
theory we have been building is that the collection of functions integrable via this tech-
nology is very large and it is closed under rather flexible convergence types. The next
fundamental result is a concrete consequence of these nice features.

Theorem 19.4.4 (Riesz). For any p P r1,8s the normed space
`

LppΩ, µq, } ´ }Lp

˘

is complete, i.e., it is a Banach space.
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Proof. The case p “ 8 is very similar to the situation described in Example 17.2.7 and
we leave its proof to the reader; see Exercise 19.65. Assume that p P r1,8q.

Suppose that pfnqnPN is a Cauchy sequence in Lp. To prove that it converges it suffices
to show that it has a convergent subsequence.

Observe that there exists a subsequence pfnk
qkě1 of fn such that

}fnk
´ fnk`1

}Lp ă 2´k.

For simplicity we set gk :“ fnk
. Consider the nondecreasing sequence of nonnegative

measurable functions

SN pωq “
N
ÿ

k“1

|gkpωq ´ gk`1pωq|, ω P Ω.

We set

S8 “ lim
NÑ8

SN “
8
ÿ

k“1

|gk ´ gk`1|

and we observe that
ż

Ω
|S8|

pdµ “ lim
NÑ8

ż

Ω
|SN |

pdµ “ lim
NÑ8

}SN}
p
Lp

(use Minkowski’s inequality)

ď lim
NÑ8

˜

N
ÿ

k“1

}gk ´ gk`1}Lp

¸p

ď

˜

8
ÿ

k“1

2´kp

¸p

ă 8.

Hence S8 ě 0 and
ż

Ω
|S8|

pdµ ă 8,

so that S8 ă 8 µ-a.e. Since
8
ÿ

k“1

|gk ´ gk`1| ď S8,

we deduce that the series
ř8
k“1 |gk ´ gk`1| converges µ-a.e.. This implies that the series

g1 `
8
ÿ

k“1

pgk`1 ´ gkq

converges µ-a.e. Note that

g1 `
m
ÿ

k“1

pgk`1 ´ gkq “ gm`1

so that the sequence pgkq converges µ-a.e.. to a function h : Ω Ñ R. By modifying all of
the gk-s on a negligible set N we can assume that this sequence converges everywhere to
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h so h is measurable. Observe that

}gm`1}Lp ď }g1}Lp `

m
ÿ

k“1

}gk`1 ´ gk}Lp
looooooomooooooon

ď2´k

ď }g1}Lp `

8
ÿ

k“1

2´k “ }g1}Lp ` 1.

Using Fatou’s Lemma we deduce
ż

Ω
|h|pdµ ď lim inf

mÑ8

ż

Ω
|gm`1|

pdµ ă 8,

so h P Lp. Finally observe that

|h´ gm`1| ď |g1| ` Sm ď |g1| ` S8

so

|h´ gm`1|
p ď 2p´1

`

|g1|
p ` Sp8

˘

P L1.

From the Dominated Convergence Theorem we deduce

lim
mÑ8

ż

Ω
|h´ gm`1|

pdµ “ 0

i.e., gm “ fnm converges to h in Lp.

[\

Let us record here a very useful byproduct of the above proof.

Corollary 19.4.5. Let p P r1,8s. Any convergent sequence in LppΩ, µq has a subsequence
that converges µ-a.e.. [\

Example 19.4.6. Suppose that Ω “ N, S “ 2
N and µ is the counting measure

µ
“

tnu
‰

“ 1.

The resulting Banach space LppN,2N, µq is usually denoted by ℓp. It consists of sequences
of real numbers pxnqnPN such that

ÿ

ně1

|xn|
p ă 8.

[\

☞ For any Borel subset B Ă Rn and any p P r1,8s we denote by LppBq the space
LppB,LB,λq, where LS is the sigma-algebra of Lebesgue measurable subsets of B.

The Dominated Convergence Theorem has an Lp-version.

Theorem 19.4.7 (Dominated Convergence theorem: Lp-version). Let p P r1,8q. Suppose
that pfnq is a sequence in LppΩ, S, µq satisfying the following conditions.
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(i) The sequence pfnq converges µ-a.e. to a function f P LppΩ, µq.

(ii) There exists a function h P LppΩ, µq such that |fn| ď h µ-a.e..

Then

lim
nÑ8

}fn ´ f}Lp “ 0.

Proof. Note that

|fn ´ f |
p ď p|h| ` |f |qp P L1

and |fn ´ f |
p Ñ 0 µ-a.e.. From the Dominated Convergence Theorem we deduce

lim
nÑ8

ż

Ω
|fn ´ f |

pdµ “ 0.

[\

19.4.3. Density results. Given a measured space pΩ, S, µq we want to describe dense
subsets in LppΩ, µq. Given a subfamily A Ă S we denote by R

“

A
‰

the vector subspace of

L0pΩ, Sq spanned by the functions IA, A P A. We set

R
“

A
‰

`
:“ R

“

A
‰

X L0
`pΩ, Sq.

Note that R
“

S
‰

“ E pΩ, Sq. We denote by Q
“

A
‰

the subset of R
“

A
‰

consisting of linear
combinations with rational coefficients of functions IA, A P A.

Proposition 19.4.8. Suppose µ
“

Ω
‰

ă 8 and A Ă S is a π-system of sets that generate

S as a sigma-algebra. Then for any p P r1,8q, the vector space R
“

A
‰

is dense in the

Banach space
`

LppΩ, µq, } ´ }Lp

˘

.

Proof. Fix p P r1,8q. Since µ
“

Ω
‰

ă 8 we deduce that IS P Lp, @S P S. Hence

R
“

A
‰

Ă Lp. We denote by X its closure in the Banach space Lp.

Lemma 19.4.9. The vector space R
“

S
‰

is dense in Lp.

Proof. Let f P LppΩ, µq. Then Dnrf˘s P R
“

S
‰

and we will show that
›

› f˘ ´Dnrf˘s
›

›

Lp Ñ 0.

Let g P L
p
`pΩ, µq. The sequence Dnrgs is nondecreasing and converges everywhere to g.

Hence
ż

Ω
Dnrgs

pdµ ď

ż

Ω
gpdµ ă 8

so Dnrgs P L
p. Since 0 ď Dnrgs ď g the desired conclusion follows from the Lp-version of

the Dominated Convergence Theorem. [\

To prove that X “ LppΩ, S, µq it suffices to show that

R
“

S
‰

Ă X,
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or, equivalently IS P X, @S P S. Denote by C the collection of subsets S P S such that
IS P X.

Clearly A Ă C . In particular, H,Ω P C . If A,B P C , A Ă B, then IA, IB P X and,
because X is a vector space,

IBzA “ IB ´ IA P X.

If A1 Ă A2 Ă ¨ ¨ ¨ is an increasing sequence of sets in C and

A “
ď

n

An,

then pIAnqnPN is an increasing sequence of nonnegative functions in X that converges
everywhere to IA. We deduce as in the proof of Lemma 19.4.9 that

lim
nÑ8

}IAn ´ IA}Lp “ 0.

This implies that IA P X since X is closed in LppΩ, S, µq.

This proves that C is a λ-system containing A. The π ´ λ theorem implies S Ă C . [\

Theorem 19.4.10. Let p P r1,8q. Suppose that µ is a finite measure on the measurable
space pΩ, Sq. If S is generated as a sigma-algebra by a countable π-system A, then the
Banach space LppΩ, S, µq is separable. More precisely, the collection Q

“

A
‰

is dense in
LppΩ, µq. [\

Corollary 19.4.11. Suppose that µ is a sigma-finite measure on the measurable space
pΩ, Sq. If S is generated as a sigma-algebra by a countable family C of sets, then for any
p P r1,8q the Banach space LppΩ, µq is separable.

Proof. Observe first that the π-system A generated by the C is also countable. Fix an
increasing family of measurable sets Ω1 Ă Ω2 Ă ¨ ¨ ¨ such that

Ω “
ď

nPN
Ωn, µ

“

Ωn
‰

ă 8, @n.

We claim that the countable set F of linear combinations with rational coefficients of
functions of the form

IΩnXA, A P A,

is dense in LppΩ, S, µq.

Fix f P Lp`pΩ, S, µq. Then 0 ď fIΩn Õ f pointwisely. We conclude as before that

lim
nÑ8

}fIΩn ´ f}Lp “ 0.

For any ε ą 0 there exists nε such that

}fIΩnε
´ f}Lp ă

ε

2
.
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Theorem 19.4.10 implies that there exists gε P Q
“

A
‰

such that
›

›

›
fIΩnε

´ IΩnε
gε

›

›

›

LppΩq
ă
ε

2
.

Hence for any f P Lp`pΩ, S, µq and any ε ą 0, there exists gε P Q
“

A
‰

such that

}f ´ gε}Lp ă ε.

Using the canonical decomposition f “ f`´ f´ we conclude that LppΩ, S, µq is separable.
[\

Corollary 19.4.12. Suppose pX, dq is a separable metric space and BX is its Borel al-
gebra. If µ : BX Ñ r0,8s is a sigma-finite measure, then the spaces LppX,BX , µq are
separable, @p P r1,8q.

Proof. Fix a countable dense subset Y Ă X. The Borel algebra BX is generated by the
countable collection of open balls

Brpyq, y P Y, r P Q.

The conclusion now follows from Corollary 19.4.11. [\

Example 19.4.13. (a) The Banach spaces ℓp, p P r1,8q discussed in Example 19.4.6 are
separable. Indeed, take X “ N in the above corollary.

(b) Let U Ă Rn be an open set. Then LppU,BU ,λnq is separable for any p P r1,8q. [\

Theorem 19.4.14. Suppose that pK, dq is a compact metric space and µ is a Borel mea-
sure on K such that µ

“

K
‰

ă 8, then CpKq is a dense subspace of LppK,µq, @p P r1,8q.
In particular, if µ0, µ1 are two finite Borel measures on K such that

ż

K
fpxqµ0

“

dx
‰

“

ż

K
fpxqµ1

“

dx
‰

, @f P CpKq (19.4.4)

then µ0 “ µ1.

Proof. Fix p P r1,8q Note that any continuous function f : K Ñ R is p-integrable
integrable because it is bounded and the bounded measurable functions on K are p-
integrable.

The collection C of closed subsets of K generate the Borel algebra BK of K and,
according to Proposition 19.4.8 the vector space R

“

C
‰

is dense in LppK,µq. Thus it
suffices to show that for any closed subset C Ă K there exists a sequence of continuous
functions fn : K Ñ R such that

lim
nÑ8

}fn ´ IC}Lp “ 0.

Fix a closed set C Ă K. For each ε ą 0 define

Oε :“
␣

x P K; distpx,Cq ă ε
(

, Eε :“ KzOε “
␣

x P K; distpx,Cq ě ε
(
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The set Eε is closed since, according to Proposition 17.1.27, the function x ÞÑ distpx,Cq
is continuous. Define

fε : K Ñ r0,8q, fεpxq “
distpx,Eεq

distpx,Cq ` distpx,Eεq
.

Proposition 17.1.27 also shows that this function is well defined since distpx,Cq and
distpx,Eεq cannot be simultaneously zero. Clearly 0 ď fεpxq ď 1 for any x P K and
fεpxq “ 0, @x P Eε. Hence

ICpxq ď fεpxq ď IOεpxq, @x P K.

We deduce

0 ď fε ´ IC ď IOε ´ IC “ IOεzC ,

ż

K

ˇ

ˇ fε ´ IC
ˇ

ˇ

p
dµ ď

ż

K
Ip
OεzC

dµ “ µ
“

OεzC
‰

.

Now observe that
č

nPN
pO1{nzCq “ H

so

lim
nÑ8

µ
“

O1{nzC
‰

“ 0.

We deduce

lim
nÑ8

ż

K

ˇ

ˇ f1{n ´ IC
ˇ

ˇ

p
dµ “ 0.

In particular

lim
nÑ8

ż

K
f1{npxqµ

“

dx
‰

“ µ
“

C
‰

.

The last equality shows that if µ0, µ1 are two finite Borel measures satisfying (19.4.4),
then µ0 “ µ1. [\

Corollary 19.4.15. Suppose that pK, dq is a compact metric space and µ is a Borel
measure on K such that µ

“

K
‰

ă 8. If S Ă CpKq is dense in CpKq with respect to the
sup-norm, then S is dense in LppK,µq, with respect to the Lp-norm, @p P r1,8q.

Proof. Let f P LppK,µq. There exists a sequence fn P CpKq such that

lim
nÑ8

}fn ´ f}Lp “ 0.

For any n P N there exists sn P S such that }sn ´ fn}8 ă
1
n . Hence

}sn ´ fn}Lp “

ˆ
ż

K
|snpxq ´ fnpxq|

pµ
“

dx
‰

˙1{p

ď

ˆ
ż

K

1

np
µ
“

dx
‰

˙1{p

“
µ
“

K
‰1{p

n
.

We conclude that

}sn ´ f}Lp ď }sn ´ fn}Lp ` }fn ´ f}Lp ď
µ
“

K
‰1{p

n
` }fn ´ f}Lp Ñ 0.

[\
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Corollary 19.4.16 (Lusin). Fix p P r1,8q and suppose that pK, dq is a compact metric
space and µ is a Borel measure on K such that µ

“

K
‰

ă 8. Then for any f P LppK,µq and

any ε ą 0 there exists a Borel subset B Ă K such that µ
“

KzB
‰

ă ε and the restriction

of f to B is continuous as a function B Ñ R.2

Proof. Fix a sequence of continuous functions fn : K Ñ R that converges in Lp to f .
We deduce from Corollary 19.4.5 that a subsequence pfnk

q of pfnq converges a.e. to f .
Egorov’s Theorem 19.1.37 shows that for any ε ą 0 there exists a Borel subset B Ă K such
that µ

“

KzB
‰

ă ε and the sequence pfnk
q converges uniformly to f on B. This proves

that f
ˇ

ˇ

B
is continuous as uniform limit of continuous functions. [\

Remark 19.4.17. We have seen in Example 17.2.3 that the space Cpr0, 1sq equipped with
the L1-norm is not complete. On the other hand the space Cpr0, 1sq is dense with respect
to the L1-norm in the space L1pr0, 1sq. Hence L1pr0, 1sq is the completion (in the sense of
Definition 17.2.16) of the space Cpr0, 1sq equipped with the L1-norm. [\

19.5. Signed measures

A signed measure on a measurable space pΩ, Sq is a countably additive map

µ : SÑ p´8,8s.

Note that this implies µ
“

H
‰

“ 0. As in the case of positive measures, the countable
additivity condition is equivalent with upwards continuity. More precisely, if pSnqnPN is a
nondecreasing family of subsets and

S8 :“
ď

n

Sn,

then

µ
“

S8
‰

“ lim
nÑ8

µ
“

Sn
‰

.

Observe that

µ
“

Ω
‰

ă 8 ñ µ
“

S
‰

ă 8, @S P S.

Indeed

µ
“

Ω
‰

“ µ
“

S
‰

` µ
“

ΩzS
‰

, µ
“

ΩzS
‰

ą ´8.

Example 19.5.1. (a) If µ is a (positive) measure on pΩ, Sq and f P L1pΩ, S, µq,

µf : SÑ R, µf
“

S
‰

:“

ż

S
fdµ “

ż

Ω
fISdµ

is a signed measure. Sometimes we will write

µf
“

dω
‰

“ fpωqµ
“

dω
‰

.

2This does not eliminate the possibility that f , as a function X Ñ R, is discontinuous at some points in B.
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(b) If µ0, µ1 are two (positive) measures on pΩ, Sq such that µ1 is finite, then their difference
µ0 ´ µ1 is a signed measure. It turns out that all signed measures are obtained in this
fashion. The next subsections will clarify this fact. [\

19.5.1. The Hahn and Jordan decompositions. Suppose that µ is a signed measure
on the measurable space pΩ, Sq. A set S P S is called (µ-)negative (resp. positive) if
µ
“

A
‰

ď 0 (resp. µ
“

A
‰

ě 0) for any measurable subset A Ă S.

The measurable set S P S is called a (µ-)null set if

µ
“

A
‰

“ 0, @A Ă S, A P S.

Recall that the symmetric difference of two sets A,B is the set A∆B defined by

A∆B “ pAYBqzpAXBq “ pAzBq Y pBzAq.

Observe that any subset of a positive/negative set is also positive. The union of two
positive/negative sets is postive/negative. Indeed if say A,B are negative and S Ă AYB,
then

µ
“

S
‰

“ µ
“

S XA
‰

` µ
“

S X pBzAq
‰

ď 0.

More generally, a countable union of negative sets pAnqně1 is also a negative set.

Indeed, let

S Ă
ď

n

An.

Note that

pAn :“
n
ď

k“1

Ak

is a negative set so Sn “ S X pAn is negative. Then

µ
“

S
‰

“ lim
nÑ8

µ
“

Sn
‰

ď 0.

Theorem 19.5.2 (Hahn decomposition). Suppose that µ is a signed measure on the
measurable space pΩ, Sq. Then the space Ω admits a Hahn decomposition, i.e., a pair
pP,Nq of disjoint measurable subsets of Ω, where P is a positive set, N is a negative set
and Ω “ PYN . Moreover, if P 1\N 1 is another Hahn decomposition, then P∆P 1 “ N∆N 1

is a null set.

Proof. We denote by m the infimum of µ
“

A
‰

, A negative set. This infimum could a
priori be ´8. Choose a sequence of negative sets pAnqně1 such that

m “ lim
nÑ8

µ
“

An
‰

.

Set

Nn :“
n
ď

k“1

Ak.
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Observe that since An Ă Nn and Nn is negative we have

m ď µ
“

Nn

‰

“ µ
“

NnzAn
‰

` µ
“

An
‰

ď µ
“

An
‰

.

If we set

N “
ď

n

Nn

we deduce

´8 ă µ
“

N
‰

“ m ď 0.

We claim that P :“ ΩzN is a positive set. We argue by contradiction.

Suppose that S0 Ă P is a measurable set such that µ
“

S0
‰

ă 0. The set S0 cannot be
negative because then N Y S0 would be negative and

µ
“

N Y S0
‰

ă µ
“

N
‰

“ m.

Hence S0 contains subsets A such that µ
“

A
‰

ą 0. Set

µ1 “ sup
␣

µ
“

A
‰

; A Ă S0, µ
“

A
‰

ą 0
(

“ sup
␣

µ
“

A
‰

; A Ă S0,
(

.

Let n1 be the natural number such that

1

n1
ă µ1 ď

1

n1 ´ 1
,

where we set 1
0 :“ 8. We deduce that there exists a measurable subset A1 Ă S0 with

1

n1
ă µ

“

A1

‰

ď µ1 ď
1

n1 ´ 1
.

Set S1 :“ S0zA1. Then

µ
“

S1
‰

“ µ
“

S0
‰

´ µ
“

A1

‰

ă µ
“

S0
‰

ă 0.

Again the subset S1 Ă S0 cannot be negative so that there exist measurable subsets A Ă S1
such that µ

“

A
‰

ą 0. Set

µ2 “ sup
␣

µ
“

A
‰

; A Ă S1
(

ď sup
␣

µ
“

A
‰

; A Ă S0
(

“ µ1.

We deduce that there exists a measurable subset A2 Ă S1 with

1

n2
ă µ

“

A2

‰

ď µ2 ď
1

n2 ´ 1
.

Iterating this procedure we obtain a decreasing sequence of measurable sets pSnqně0 and
a nondecreasing sequence pnkqkě1 of natural numbers such that

1

nk
ă µk :“ sup

␣

µ
“

A
‰

; A Ă Sk´1
(

ď
1

nk ´ 1

µ
“

Sn
‰

ă 0, @n ě 0,
1

nk
ă µ

“

Sk´1zSk
looomooon

“:Ak

‰

ď µk ď
1

nk ´ 1
, @k ě 1.
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The sets Ak are disjoint and, if A8 denotes their union, we deduce

µ
“

A8
‰

“
ÿ

kě1

µ
“

Ak
‰

ą
ÿ

kě1

1

nk
.

Observe that A Ă S0 so

µ
“

A8
‰

“ µ
“

S0
‰

´ µ
“

S0zA8
‰

ă 8

Thus the series
ř

k
1
nk

is convergent and therefore

lim
kÑ8

1

nk
“ 0.

Now observe that

S0zA8 “ S8 :“
č

ně0

Sn.

We have

µ
“

S8
‰

“ µ
“

S0
‰

´ µ
“

A8
‰

ă 0.

The set S8 cannot be negative because. then we would have

µ
“

N Y S8
‰

ă µ
“

N
‰

“ m.

Thus S8 must contain at least one measurable subset P such that µ
“

P
‰

ą 0. Set

µ8 :“ sup
␣

µ
“

P
‰

; P Ă S8
(

,

so that µ8 ą 0. On the other hand S8 Ă Sk, @k ě 1 so that

0 ă m8 ď sup
␣

µ
“

A
‰

; A Ă Sk´1
(

“ µk ď
1

nk ´ 1
, @k ě 1.

Letting k Ñ8 we deduce

0 ă µ8 ď lim
kÑ8

1

nk ´ 1
“ 0.

We have reached a contradiction. This proves the existence of a Hahn decompositions.

Suppose that pP 1, N 1q is another Hahn decomposition observe that obviously P zP 1 Ă P
so P zP 1 is a positive set. On the other hand,

P “ pP X P 1q Y pP XN 1q

and since P 1 N 1 are disjoint we have

P XN 1 “ P zpP X P 1q “ P zP 1

Hence P zP 1 Ă N 1 so that P zP 1 is also a negative. Hence P zP 1 is a null set. Arguing in a
similar fashion we deduce that P 1zP is also a null set. [\

The Hahn decomposition(s) of Ω induced by a signed measure µ leads to a canonical
description of µ as a difference of two measures.

Definition 19.5.3. Two (positive) measures µ0, µ1 on pΩ, Sq are mutually singular, and
we denote this µ0 K µ1, if there exist disjoint nonempty sets S0, S1 P S such that
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‚ Ω “ S0 Y S1 and

‚ µ0
“

S1
‰

“ 0, µ1
“

S0
‰

“ 0.

[\

Intuitively, the measure µ0 lives on S0 while the measure µ1 lives on S1. From the
“point of view” of µ1 the set S0 is negligible, but it is non-negligible from the “point of
view” of µ0.

Example 19.5.4. (a) Suppose that pΩ0,Ω1q is a nontrivial measurable partition of pΩ, Sq.
Denote by Sk the sigma-algebra inducted by S on Ωk, k “ 0, 1. Let µk be a measure on
pΩk, Skq, and denote by pµk its extension to pΩ, Sq,

pµk
“

S
‰

“ µk
“

S X Ωk
‰

.

Then pµ0 K pµ1.

(b) Let δ0 denote the Dirac measure on pR,BRq concentrated at 0. Then δ0 K λ. To see
this it suffices to take S0 “ t0u and S1 “ Rzt0u. [\

Theorem 19.5.5 (Jordan decomposition). Let µ be a signed measure on the measurable
space pΩ, Sq. Then µ admits a unique Jordan decomposition, i.e., there exists a unique
pair of (positive) measures µ˘ on pΩ, Sq satisfying the following conditions.

(i) µ` K µ´.

(ii) µ´
“

Ω
‰

ă 8.

(iii) µ “ µ` ´ µ´.

Proof. Fix a Hahn decomposition pP,Nq of Ω. For any S P S we define

µ`
“

S
‰

“ µ
“

S X P
‰

, µ´
“

S
‰

“ ´µ
“

S XN
‰

.

Clearly µ`, µ´ satisfy all these conditions (i)-(iii). Suppose that pν`, ν´q is another pair
of measures satisfying these conditions. Choose disjoint sets S˘ such that Ω “ S` Y S´
and ν˘

“

S¯
‰

“ 0. We define

P˘ :“ P X S˘, N˘ :“ N X S˘.

We have
ν`

“

N
‰

“ ν`
“

N`
‰

, 0 ď ν´
“

N`
‰

ď ν´
“

S`
‰

“ 0.

Hence
0 ě µ

“

N`
‰

“ ν`
“

N`
‰

´ ν´
“

N`
‰

ě 0.

Hence ν`
“

N
‰

“ ν`
“

N`
‰

“ 0. Arguing in a similar fashion we deduce ν´
“

P
‰

“ 0.

Suppose that A P S. We have

ν`
“

A
‰

“ ν`
“

AX P
‰

` ν`
“

AXN
‰

“ ν`
“

AX P
‰

, ν´
“

AX P
‰

“ 0

Hence
ν`

“

A
‰

“ ν`
“

AX P
‰

´ ν´
“

AX P
‰

“ µ
“

AX P
‰

“ µ`
“

A
‰

.
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The equality ν´
“

A
‰

“ µ´
“

A
‰

is proved similarly. [\

Definition 19.5.6. Let µ be a signed measure on the measurable space pΩ, Sq. If
µ “ µ` ´ µ´ is its Jordan decomposition, then the measure µ` ` µ´ is called the to-
tal variation of µ and it is denoted by |µ|. [\

19.5.2. The Radon-Nikodym theorem.

Definition 19.5.7. A signed measure ν : SÑ p´8,8s is said to be absolutely continuous
with respect to a positive measure µ : SÑ r0,8s, and we indicate this with the notation
ν ! µ, if

@S P S, µ
“

S
‰

“ 0ñ ν
“

S
‰

“ 0. (19.5.1)

[\

The proof of the next result is left to you as an exercise.

Proposition 19.5.8. Let pΩ, Sq be a measurable space, µ : S Ñ r0,8s a measure and
ν : SÑ p´8,8s a signed measure. If ν “ ν`´ ν´ is the Jordan decomposition of ν, then
the following statements are equivalent.

(i) ν ! µ.

(ii) ν˘ ! µ.

(iii) |ν| ! µ.

[\

The next result justifies the term “continuity” in “absolute continuity”.

Proposition 19.5.9. Suppose that pΩ, Sq is a measurable space, µ is a positive measure,
and ν is a finite signed measure on S. Then the following statements are equivalent.

(i) ν ! µ.

(ii) For any ε ą 0 there exists δ “ δpεq ą 0 such that

@S P S, µ
“

S
‰

ă δ ñ
ˇ

ˇ ν
“

S
‰ ˇ

ˇ ă ε.

Proof. The implication (ii) ñ (i) is obvious.

(i) ñ (ii) Proposition 19.5.8 shows that both ν˘ satisfy (i). If we show that they both
satisfy (ii) then so will ν. The upshot is that it suffices to prove this implication only in
the special case when ν is a finite (positive) measure. We assume this and we argue by
contradiction.

Suppose that there exists ε0 ą 0 such that, for any n P N there exists Sn P Sn with
the property

µ
“

Sn
‰

ă 2´n and ν
“

Sn
‰

ě ε0.
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For k P N we set

Bk :“
ď

něk

Sn.

Observe that B1 Ą B2 Ą ¨ ¨ ¨ and

µ
“

Bk
‰

ď
ÿ

něk

µ
“

Sn
‰

ă
ÿ

nąk

2´n “ 2´k`1.

Since Bk Ą Sk we deduce ν
“

Bk
‰

ě ν
“

Sk
‰

ě ε0. We set

B8 “
č

kě1

Bk.

Clearly

µ
“

B8
‰

ă µ
“

Bk
‰

ă 2´k`1, @k

so that µ
“

B8
‰

“ 0. On the other hand, ν is a finite measure and we deduce from (19.1.11)
that

ν
“

B8
‰

“ lim
kÑ8

ν
“

Bk
‰

ě ε0.

This contradicts (i). [\

Proposition 19.5.10. Suppose that f P L0pΩ, S, µq is a measurable function such that
f´ P L

1pΩ, S, µq. Then the function

µf : SÑ p´8,8s, S ÞÑ µf
“

S
‰

“ µ
“

fIS
‰

is a signed measure on S absolutely continuous with respect to µ, µf ! µ.

Proof. As usual we write f “ f` ´ f´ so that µf “ µf`
´ µf´

. We know from Corollary
19.3.19 that µf˘

are measures so that µf is a signed measure. Property (19.5.1) follows
from Corollary 19.3.16. [\

It turns out that the above example is the most general example of measure absolutely
continuous with respect to µ.

Theorem 19.5.11 (Radon-Nikodym). Suppose that pΩ, Sq is a measurable space and
µ is a sigma-finite measure on S and ν : SÑ r0,8s is a signed measure measure such
that |ν| is sigma-finite measure. If ν ! µ, then there exists f P L0pΩ, Sq such that
f´ P L

1pΩ, S, µq and ν˘ “ µf˘
. Moreover if g P L0pΩ, Sq is another function with the

above properties, then f “ g a.e.

Proof. We follow the approach in [14, Sec. 3.2]. In view of Proposition 19.5.9 it suffices
the prove the result only when ν is a measure. We carry the proof in two steps.

A. Assume first that both µ and ν are finite measures. Define

F :“

"

f P L0
`pΩ, Sq;

ż

S
f dµ ď ν

“

S
‰

, @S P S

*

.
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Note that 0 P F, so F ‰ H. Note also that

f, g P F ñ maxpf, gq P F.

To see this define A :“ tf ą gu P S. Then, for any S P S we have
ż

S
maxpf, gq dµ “

ż

SXA
f dµ`

ż

SzA
g dµ ď ν

“

S XA
‰

` ν
“

SzA
‰

“ ν
“

S
‰

.

Set

M :“ sup
fPF

ż

Ω
f dµ ď ν

“

Ω
‰

ă 8.

Now choose a sequence pfnq in F such that

lim
nÑ8

ż

Ω
fn dµ “M.

Set

gn :“ maxpf1, . . . , fnq.

Observe that

g1 ď g2 ď g2 ď ¨ ¨ ¨ , fn ď gn, @n P N.
Hence

ż

Ω
fn dµ ď

ż

Ω
gn dµ ďM.

Hence

lim
nÑ8

ż

Ω
gn dµ “M.

We set

g :“ lim
nÑ8

gn.

The above limit exists since the sequence pgnq is nondecreasing. The Monotone Conver-
gence Theorem implies

ż

Ω
g dµ “ lim

nÑ8

ż

Ω
gn dµ “M.

From Markov’s inequality we deduce that g ă 8 a.e., so after modifying g on the µ-
negligible set Z “ tg “ 8u we can assume that g ă 8 everywhere.

From the equalities
ż

S
gn dµ ď ν

“

S
‰

, @S P S, @n P N, (19.5.2)

and the Monotone Convergence Theorem we deduce
ż

S
g dµ ď ν

“

S
‰

, @S P S,

i.e., g P F. We claim that for any f P F we have f ď g a.e.. Indeed, if this were not the
case, then

M “

ż

Ω
g dµ ă

ż

Ω
maxpf, gqdµ ďM !
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The last inequality above holds because maxpf, gq P F. From (19.5.2) we deduce that the
a priori signed measure µ1 “ ν ´ gµ,

µ1
“

S
‰

“ ν
“

S
‰

´

ż

S
gdµ, @S P S

is positive measure. We will show that µ1 “ 0, i.e.,
ż

S
g dµ “ ν

“

S
‰

, @S P S. (19.5.3)

To achieve this we rely on the following trick.

Lemma 19.5.12. Suppose that µ, µ1 are two finite measures on pΩ, Sq. Then, either
µ K µ1 or there exists ε ą 0 and a measurable set E P S such that µ

“

E
‰

ą 0 and E is a
positive set for the signed measure µ1 ´ εµ.

Proof. Suppose that µ1 and µ are not mutually singular. For each k P N fix a Hahn
decomposition pPk, Nkq of the signed measure µk “ µ1 ´ 1

kµ. Define

P “
ď

kě1

Pk, N “ ΩzP “
č

kě1

Nk.

Observe that N is a negative set for µ1 ´ 1
kµ for any k so that

µ1
“

N
‰

ď
1

k
µ
“

N
‰

, @k.

Hence µ1
“

N
‰

“ 0. Since µ, µ1 are not mutually singular we deduce µ
“

P
‰

ą 0. Thus

µ
“

Pk
‰

ą 0 for some k and Pk is a positive set for µ1 ´ 1
kµ.

[\

Consider the (positive) measure µ1 “ ν ´ gµ. Note that µ1 and µ are not mutually
singular so Lemma 19.5.12 implies that there exists E P S and ε ą 0 such that

µ
“

E
‰

ą 0 µ1
“

S
‰

´ εµ
“

S
‰

ě 0, @S Ă E, S P S,

i.e.,

ν
“

S
‰

ě

ż

S
pg ` εqdµ @S Ă E, S P S.

This proves that g ` εIE P F and g ` εIE ą g on a set of positive µ-measure. This
contradicts the maximality of g. This establishes the existence part.

Suppose now that f P L0
`pΩ, Sq is another function such that
ż

S
fdµ “

ż

S
gdµ “ ν

“

S
‰

, @S P S.

Set h :“ f ´ g we will show that µ
“

th ą 0u
‰

“ µ
“

th ă 0u
‰

“ 0. We argue by contradic-

tion. Suppose that µ
“

th ą 0u
‰

ą 0. Since

µ
“

th ą 0u
‰

“ lim
nÑ8

µ
“

th ě 1{nu
‰
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we deduce that there exists n P N such that µ
“

th ě 1{nu
‰

ą 0. Then

0 “

ż

thě1{nu
hdµ ě

1

n

ż

thě1{nu
dµ ě

1

n
µ
“

th ě 1{nu
‰

ą 0.

B. Suppose that µ and ν are sigma-finite. Then there exist increasing sequences of measurable sets pAnqnPN,
pBnqnPN such that

Ω “
ď

nPN
An “

ď

nPN
Bn, µ

“

An

‰

, ν
“

Bn

‰

ă 8, @n.

If we set Cn :“ An XBn, then

Ω “
ď

nPN
Cn, µ

“

Cn

‰

, ν
“

Cn

‰

ă 8.

Define finite measures

µn
“

S
‰

“ µ
“

ICnS
‰

, νn
“

S
‰

“ ν
“

ICnS
‰

, @S P S, n P N.

Then νn ! µn and we deduce from part A so there exist fn P L0
`pΩ, Sq such that

νnS
“

“

ż

Ω
fICndµ.

From the uniqueness result in A we deduce that

fn “ ICnfn`1

so pfnq is a nondecreasing sequence of measurable functions. If we denote by f its limit, we deduce from the

increasing continuity of ν and the Monotone Convergence theorem that

ν
“

S
‰

“ lim
nÑ8

ν
“

Cn X S
‰

“ lim
nÑ8

ż

S
fndµ “

ż

S
fdµ, @S P S.

To prove uniqueness, suppose that g P L0
`pΩ, Sq is another function such that

ż

S
gdµ “

ż

S
fdµ, @S P S

then gISn “ ISnf so

g “ lim
nÑ8

ISng “ lim
nÑ8

ISnf “ f.

[\

Definition 19.5.13. If µ, ν are two sigma-finite measures on the measurable space pΩ, Sq
such that ν ! µ, then a function f P L0

`pΩ, S, µf q such that ν “ µf is called a density of

ν with respect to µ and it is denoted by dν
dµ . [\

Remark 19.5.14. We want to emphasize an obvious but very important point. The
Radon-Nikodym is an existence result! It postulates the existence of a function given the
absolute continuity condition. Heuristically, if ν ! µ, then,

dν

dµ
pωq “ lim

SŒtωu

ν
“

S
‰

µ
“

S
‰ for a.e. ω.

From this point of view, the Radon-Nikodym theorem is reminiscent of the Fundamental
Theorem of Calculus. When µ is the Lebesgue measure this heuristics can be given a
precise meaning. We will discuss this aspect in more detail in the next subsection.

[\
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Example 19.5.15. Suppose that U Ă Rn is an open set and Φ : U Ñ Rn is a diffeomor-
phism with V :“ ΦpUq. Denote u “ pu1, . . . , unq the points in U and by v “ pv1, . . . , vnq
the points in V .

Then the pushforward Φ#λU is a measure on the Borel sigma-algebra of V , absolutely
continuous with respect to λV . Moreover

dΦ#λU
dλV

“ |det JΦ´1 |, (19.5.4)

where JΦ´1 is the Jacobian of the map Φ´1 : V Ñ U . This follows from Proposition
19.3.34.

Here is how to remember this. Denote by |du| the Lebesgue measure λU
“

du
‰

and by

|dv| the Lebesgue measure λV
“

dv
‰

.

The map Φ is a map v “ vpuq and we denote its Jacobian by dv
du the Jacobian of the

inverse is du
dv . If we use the notation |A| for the absolute value of the determinant of a

matrix A, then we can rewrite (19.5.4) in the more suggestive form

Φ#|du| “

ˇ

ˇ

ˇ

ˇ

du

dv

ˇ

ˇ

ˇ

ˇ

¨ |dv|.

For example, consider the map

Φ : p0, 1q Ñ p0,8q. u ÞÑ vpuq “ ´ log u.

Then u “ Φ´1pvq “ e´v and

du

dv
“ ´e´v, Φ#|du| “ e´v|dv|. [\

19.5.3. Differentiation theorems. Suppose that µ is a finite signed Borel measure on
Rn that is absolutely continuous with respect to the Lebesgue measure λ, µ ! λ. Radon-
Nikodym’s theorem tells us that µ must have a special form. More precisely, there exists
f P L2pRm,λq such that, for any Borel subset B Ă Rn

µ
“

B
‰

“ λf
“

B
‰

:“

ż

B
fpxqλ

“

dx
‰

.

We write this informally µ
“

dx
‰

“ fpxqdλ
“

dx
‰

or, abusing notation,

fpxq “
µ
“

dx
‰

λ
“

dx
‰

We want to give a more precise meaning of the last equality.

For each r ą 0 and x P Rn we denote by Ar
“

f
‰

pxq the average value of f over the
ball Brpxq, of center x and radius r. More precisely

Ar
“

f
‰

pxq “
1

vprq

ż

Brpxq
fpyqλ

“

dy
‰

,



19.5. Signed measures 883

where vprq denote the volume3 of the n-dimensional Euclidean ball of radius r.

Lemma 19.5.16. For any f P L1pRmλq and any r ą 0 the function

Rn Q x ÞÑ Ar
“

f
‰

pxq P R

is continuous.

Proof. Denote by λ|f | the measure associated to |f |

λ|f |
“

B
‰

“

ż

B
|fpyq|λ

“

dy
‰

.

Observe that for any x0, x P Rn we have

ˇ

ˇAr
“

f
‰

px0q ´Ar
“

f
‰

pxq
ˇ

ˇ “
1

vprq

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Brpx0q
fpyqλ

“

dy
‰

´

ż

Brpxq
fpyqλ

“

dy
‰

ˇ

ˇ

ˇ

ˇ

ˇ

(∆rpx0, xq “ Brpx0q YBrpxqzBrpx0q XBrpxq)

ď
1

vprq

ż

∆rpx0,xq
|fpyq|λ

“

dy
‰

“ λ|f |
“

∆rpx0, xq
‰

.

Now observe that

lim
xÑx0

λ
“

∆rpx0, xq
‰

“ 0,

and since λ|f | ! λ we deduce from Proposition 19.5.9 that

lim
xÑx0

λ|f |
“

∆rpx0, xq
‰

“ 0.

[\

One of the main goals of this subsection is to show that there exists a Lebesgue
negligible subset N Ă Rn such that for any x P RnzN the averages Ar

“

f
‰

pxq converge to
fpxq as r Œ 0. In more compact form

lim
rŒ0

Ar
“

f
‰

pxq “ fpxq, λ a. e. . (19.5.5)

The proof of this result is rather ingenious and contains a few fundamental ideas that have
found many other applications in modern analysis. In fact we will prove a stronger result.

Theorem 19.5.17 (Lebesgue’s differentiation theorem). Let f P L1pRnq. For r ą 0 and
x P Rn we set

Dr

“

f
‰

pxq “
1

vprq

ż

Brpxq

ˇ

ˇ fpyq ´ fpxq
ˇ

ˇλ
“

dy
‰

.

Then there exists a Lebesgue negligible subset N Ă Rn such that

lim
rŒ0

Dr

“

f
‰

pxq “ 0, @x P RnzN.

3More precisely vprq “ ωnrn, where ωn is given by (15.3.24).
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Let us observe that Theorem 19.5.17 implies (19.5.5). Indeed, since

fpxq “
1

vprq

ż

Brpxq
fpxqλ

“

dy
‰

we have
ˇ

ˇAr
“

f
‰

pxq ´ fpxq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

1

vprq

ż

Brpxq

`

fpyq ´ fpxq
˘

λ
“

dy
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

vprq

ż

Brpxq

ˇ

ˇ fpyq ´ fpxq
ˇ

ˇλ
“

dy
‰

“ Dr

“

f
‰

pxq.

The proof of Theorem 19.5.17 relies on the Maximal Theorem of Hardy and Littlewood.
To state it we need to introduce an important concept.

Definition 19.5.18. Suppose that pΩ, S, µq is a measured space and f : Ω Ñ R is an
S-measurable function. We write

}f}1,w :“ sup
λą0

λµ
“

t |f | ą λ u
‰

.

We say that f is of weak L1-type if }f}1,w ă 8, i.e., there exists C ą 0 such that

µ
“

t |f | ą λ u
‰

ď
C

λ
, @λ ą 0.

We will denote by L1
wpΩ, S, µq the set of weak L1-type functions on pΩ, S, µq. [\

Let us emphasize that } ´ }1,w is not a norm. We will denote by } ´ }1 the L1-norms.

Proposition 19.5.19. Suppose that pΩ, S, µq is a measured space. Then the following
hold.

(i) The set L1
wpΩ, S, µq is a vector subspace of the set of measurable functions. More

precisely,

@f, g P L1
wpΩ, S, µq }f ` g}1,w ď 2

`

}f}1,w ` }g}1,w
˘

.

(ii) For any f P L1pΩ, S, µq, }f}1,w ď }f}1 so that L1pΩ, S, µq Ă L1
wpΩ, S, µq.

Proof. (i) Note that for any λ ą 0

µ
“

t |f ` g| ą λu
‰

ď µ
“

t |f | ` |g| ą λu
‰

ď µ
“

t |f | ą λ{2u
‰

` µ
“

t |g| ą λ{2u
‰

ď
2

λ

`

}f}1,w ` }g}1,w
˘

.

(ii) This is Markov’s inequality (19.3.5).. [\

To each function f P L1pRn,λq we associate its Hardy-Littlewood maximal function
define

M
“

f
‰

pxq “ sup
rą0

Arp|f |q “ sup
rą0

1

vprq

ż

Brpxq
|fpyq|λ

“

dy
‰

.

Here is the key technical result of this subsection.
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Theorem 19.5.20 (Hardy-Littlewood Maximal Theorem). There exists C ą 0 such that,
@f P L1pRn,λq,

}M
“

f
‰

}1,w ď C}f}1.

More explicitly, DC ą 0 such that, for any f P L1pRn,λq and any λ ą 0,

λ
“ ␣

M
“

f
‰

ą λ
( ‰

ď
C

λ
}f}1.

[\

We will temporarily take for granted the validity of the Maximal Theorem and show
how it can be used to prove Lebesgue’s differentiation theorem

Proof of Theorem 19.5.17. Let us first outline the strategy. Denote by X the set of
functions f P L2pRn,λq for which (19.5.5) holds. We first show that X contains a dense
subset and then we show that X is closed in L1.

Observe first that any continuous compactly supported function f : Rn Ñ R belongs
to X. The simple proof of this fact is left to the reader as Exercise 19.55. The set of
continuous compactly supported functions Rn Ñ R is dense in L1pRn,λq; see Exercise
19.54.

For any f P L1pRn,Rq and λ ą 0 we set

Sλpfq :“
!

x P Rn; lim sup
rŒ0

Dr

“

f
‰

pxq ą λ
)

Lemma 19.5.21. Let f P L1pRn,λq and g P X we have

Sλpfq “ Sλpf ´ gq, @λ ą 0.

Proof. For any f, g P L1pRn,λq we have

Dr

“

f ´ g
‰

pxq ď Dr

“

f
‰

pxq `Dr

“

g
‰

pxq,

Dr

“

f
‰

pxq ď Dr

“

f ´ g
‰

pxq `Dr

“

g
‰

pxq.

Hence

Dr

“

f ´ g
‰

pxq ď Dr

“

f
‰

pxq `Dr

“

g
‰

pxq ď Dr

“

f ´ g
‰

pxq ` 2Dr

“

g
‰

pxq.

Since g P X , we have

lim
rÑ0

Dr

“

g
‰

pxq “ 0, @x.

Hence,

lim sup
rŒ0

Dr

“

f ´ g
‰

pxq “ lim sup
rŒ0

Dr

“

f
‰

pxq.

[\
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Let f P L1pRn,λq. To prove that f P X it suffices to show that

µ
“

Sλpfq
‰

“ 0, @λ ą 0. (19.5.6)

For f P L1pRn,λq we set

xM
“

f
‰

pxq :“ sup
rą0

Dr

“

f
‰

pxq.

Note that

Dr

“

f
‰

ď
1

vprq

ż

Brpxq
|fpyq|λ

“

dy
‰

` |fpxq| “ Ar
“

|f |
‰

pxq ` fpxq,

and we conclude that
xM
“

f
‰

pxq ďM
“

f
‰

pxq ` |fpxq|.

Obviously,

Sλpfq Ă
!

x P Rn; xM
“

f
‰

pxq ą λ
)

Ă

!

x P Rn; M
“

f
‰

pxq ą
λ

2

)

Y

!

x P Rn; |fpxq| ą
λ

2

)

.

Hence

λ
“

Sλpfq
‰

ď λ
” !

x P Rn; M
“

f
‰

pxq ą
λ

2

) ı

` λ
” !

x P Rn; |fpxq| ą
λ

2

) ı

ď
2

λ
}Mpfq}1,w `

2

λ
}f}1.

Theorem 19.5.20 implies that C ą 0 such that @f P L1 we have }Mpfq}1,w ď C}f}1.
Hence

2

λ
}Mpfq}1,w `

2

λ
}f}1 ď

C1

λ
}f}1, C1 “ 2pC ` 1q.

In particular

λ
“

Sλpfq
‰

“ λ
“

Sλpf ´ gq
‰

ď
C1

λ
}f ´ g}1, @g P X,

so that

λ
“

Sλpfq
‰

ď
C1

λ
inf
gPX
}f ´ g}1 “ 0,

since X is dense in L1. [\

Proof of Theorem 19.5.20. Let

Eλpfq :“
␣

x P Rn; M
“

f
‰

pxq ą λ
(

“
␣

x P Rn; Dr ą 0 : Ar
“

|f |
‰

pxq ą λ
(

“
ď

rą0

␣

Ar
“

|f |
‰

ą λ
(

.

Lemma 19.5.16 shows that the function Ar
“

f
‰

is continuous. This proves that Eλpfq is
an open subset of Rn.

For any x P Eλpfq there exists rx ą 0 such that Arx
“

f
‰

pxq ą λ. The collection of
open balls

C “
`

Brxpxq
˘

xPEλpfq
.



19.5. Signed measures 887

Let v ă λ
“

Eλpfq
‰

“ λ
“ ␣

Mpfq ą λ
( ‰

. Wiener’s covering theorem (Exercise 19.50)
shows that there exist finitely many points x1, . . . , xn P Eλpfq and radii r1, . . . , rN such
that the balls Brj pxjq are pairwise disjoint and

N
ÿ

j“1

λ
“

Brj pxjq
‰

ě 3´nv.

Since Arxj
“

f
‰

pxjq ą λ we deduce

3´nv ď
N
ÿ

j“1

λ
“

Brj pxjq
‰

ď
1

λ

N
ÿ

j“1

ż

Brj pxjq
|fpyq|λ

“

dy
‰

ď
1

λ
}f}L1pRnq

Hence
3n

λ
}f}L1pRnq ě v, @v ď λ

“

Eλpfq
‰

so that

λ
“ ␣

Mpfq ą λ
( ‰

ď
3n}f}1
λ

.

[\

Definition 19.5.22. Suppose that f P L1pR,λq. A point x P Rn is called a Lebesgue point
of f if

lim
rŒ0

Dr

“

f
‰

pxq “ 0.

[\

Corollary 19.5.23 (Lebesgue’s Fundamental Theorem of Calculus). Let f P L1
`

ra, bs,λ
˘

q.
Define F : ra, bs Ñ R

F pxq “

ż x

a
fptqλ

“

dt
‰

.

Then F is differentiable a. e. and F 1pxq “ fpxq for every x where the derivative of F exists.

Proof. Extend f to an integrable function f : RÑ R

fpxq “

#

fpxq, x P r0, 1s,

0, x P Rzr0, 1s.

Theorem 19.5.17 shows that for almost every point x P R we have

lim
rŒ0

1

2r

ż x`r

x´r

“

fptq ´fpxq
ˇ

ˇλ
“

dt
‰

“ 0.

In particular, for almost every point x P p0, 1q we have

1

r

ż x

x´r

“

fptq ´ fpxq
ˇ

ˇλ
“

dt
‰

Ñ 0,
1

r

ż x`r

x

`

fptq ´ fpxq
ˇ

ˇλ
“

dt
‰

Ñ 0,
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as r Œ 0. Observe that for any r sufficiently small
ˇ

ˇ

ˇ

ˇ

F px´ rq ´ F pxq

´r
´ fpxq

ˇ

ˇ

ˇ

ˇ

“
1

r

ˇ

ˇ

ˇ

ˇ

ż x

x´r

`

fptq ´ fpxq
˘

λ
“

dt
‰

ˇ

ˇ

ˇ

ˇ

ď
1

r

ż x

x´r

ˇ

ˇ fptq ´ fpxq
ˇ

ˇλ
“

dt
‰

,

ˇ

ˇ

ˇ

ˇ

F px` rq ´ F pxq

r
´ fpxq

ˇ

ˇ

ˇ

ˇ

“
1

r

ˇ

ˇ

ˇ

ˇ

ż x`r

x

`

fptq ´ fpxq
˘

λ
“

dt
‰

ˇ

ˇ

ˇ

ˇ

ď
1

r

ż x`r

x

ˇ

ˇ fptq ´ fpxq
ˇ

ˇλ
“

dt
‰

.

[\

19.6. Duality

Let us recall (see Definition 17.1.51) that the dual of a normed space pX, } ´ }q is the
space X˚ :“ BpX,Rq of continuous linear functions α : X Ñ R. The space X˚ is itself
equipped with a norm } ´ }˚

}α}˚ :“ sup
xPXzt0u

|αpxq |

}x}
.

19.6.1. The dual of CpKq. Let pK, dq be a compact metric space. Let CpKq denote
the space of continuous functions K Ñ R. As usual, we regard it as Banach space with
norm

}f} :“ sup
xPK

|fpxq|.

For ease of notation we denote by F this Banach space and by F` the subset consisting
of nonnegative functions. The goal of this subsection is to give a concrete description of
the topological dual F ˚of X. The dual F ˚ contains a distinguished subset F ˚` consisting
of positive linear functionals, i.e., continuous linear functionals α : F Ñ R such that

α
“

f
‰

ě 0, @f P F`.

We denote by MpKq the space of signed finite Borel measures on K. Let M`pKq ĂMpKq
denote the space of finite Borel measures on K.

Let us observe that we have a natural map

MpKq Q µ ÞÑ Lµ P F
˚, Lµpfq “ µ

“

f
‰

:“

ż

K
fpxqµ

“

dx
‰

To see that the linear functional Lµ is continuous consider the Jordan decomposition of
the signed measure µ “ µ` ´ µ´

ˇ

ˇLµpfq
ˇ

ˇ “
ˇ

ˇLµ`
pfq ´ Lµ´

pfq
ˇ

ˇ ď
ˇ

ˇLµ`
pfq

ˇ

ˇ`
ˇ

ˇLµ´
pfq

ˇ

ˇ

ď
ˇ

ˇLµ`
p|f |q

ˇ

ˇ`
ˇ

ˇLµ´
p|f |q

ˇ

ˇ “ Lµp|f |q ď }f}|µ|
“

K
‰

.

In particular

}Lµ}˚ ď |µ|
“

K
‰

, @µ PMpKq. (19.6.1)

Note that if µ PM`pKq then Lµ P F
˚
`. We have the following fundamental result due to

Frygues (Frederic) Riesz (1880-1956).
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Theorem 19.6.1 (Riesz representation of measures). The map

MpKq` Q µ ÞÑ Lµ P F
˚
`

is bijective. More explicitly, for any positive linear functional α : CpKq Ñ R there exists
a unique finite Borel measure µ PMpKq` such that α “ Lµ. Moreover }α}˚ “ µ

“

K
‰

.

Proof. We will give a proof based on the concept of independent interest, namely the
Daniell integral. Let us first gather a few elementary facts.

Definition 19.6.2. Let X be a set and F a vector space of bounded functions X Ñ R.
We say that F is a vector lattice if the following hold.

(i) The constant function 1 belongs to F.

(ii) If f, g P F, then maxpf, gq,minpf, gq P F.

[\

Lemma 19.6.3. The vector space F “ CpKq is a vector lattice. Moreover, the sigma-
algebra σ

`

F
˘

of subsets of K generated by the functions in F is the Borel sigma-algebra

of K. Recall that σ
`

F
˘

q is the sigma-algebra generated by the subsets tf ď cu Ă K,
f P F , c P R.

Proof of Lemma 19.6.3. The properties (i) and (ii) are obvious. Note that any contin-
uous function on K is Borel measurable so σ

`

F
˘

Ă BK . To prove the reverse inclusion

it suffices to prove that any closed set is contained in σ
`

F
˘

. To see this, let C Ă K be a
closed subset. Then the function fCpxq “ distpx,Cq is continuous and

C “
␣

fC ď 0
(

P σ
`

F
˘

.

[\

Lemma 19.6.4. Suppose that L : F Ñ R is a continuous linear functional. If pfnqně1 is
a sequence of continuous functions such that fn ě fn`1, @n ě 1 and

lim
nÑ8

fn “ 0,

then limnÑP8 L
“

fn
‰

“ 0.

Proof of Lemma 19.6.4. Dini’s theorem (Theorem 17.4.5) implies that fn converges
uniformly to 0 and the desired conclusion follows from the continuity of L. [\

Lemma 19.6.3 and 19.6.4 show that Theorem 19.6.1 is now a consequence of the
following general results of P. J. Daniell, [7].

Theorem 19.6.5 (Daniell integral). Let Ω be an arbitrary set, F a vector lattice space of
functions on Ω, and L : F Ñ R a linear functional satisfying the following properties.

(i) L
“

1
‰

ą 0 and L
“

f
‰

ě 0 for any f P F such that f ě 0.
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(ii) If pfnqně1 is a sequence of functions in F such that fn ě fn`1, @n ě 1 and

lim
nÑ8

fn “ 0,

then limnÑ8 L
“

fn
‰

“ 0.

Denote by S the sigma-algebra σ
`

F
˘

generated by the functions in F, i.e., the sigma
algebra generated by the sets

␣

f ď c
(

, f P F, c P R.

. There exists a unique finite measure µ on S such that

F Ă L1
`

Ω, S, µ
˘

and L
“

f
‰

“

ż

Ω
fdµ, @f P F.

[\

Proof of Theorem 19.6.5. We follow the approach in [26, Chap.III] which is closer to
the original strategy employed by Daniell, [7]. For an alternate approach we refer to [5,
Se. 7.12].

Without loss of generality we can assume that L
“

1
‰

“ 1. To simplify the notation we
set

f _ g :“ maxpf, gq, f ^ g :“ minpf, gq.

Observe that (iii) implies that

f, g P F, f ď g ñ L
“

f
‰

ď L
“

g
‰

.

We denote by F˚ the set of functions f : Ω Ñ p´8,8s such that there exists a nonde-
creasing sequence pfnqně1 approximating f from below

@ω P Ω fnpωq Õ fpωq as nÑ8.

We will refer to such a sequence pfnq as a lower approximant of f .

Let f P F˚. If pfnq is a lower approximant of f , then the nondecreasing sequence of
real numbers L

“

fn
‰

has a limit in p´8,8s.

Lemma 19.6.6. Let f P F˚. If pfnqně0 and pgnqně0 are two lower approximants of f
then

lim
nÑ8

L
“

fn
‰

“ lim
n8

L
“

gn
‰

.

Proof. For each n ě 1, the sequence
`

fn^ gk
˘

kě1
is nondecreasing and converges point-

wisely to fn. Using property (iv) of L we deduce

L
“

fn
‰

“ lim
kÑ8

L
“

fn ^ gk
‰

ď lim
kÑ8

L
“

gk
‰

.

If we now let nÑ8 we deduce

lim
nÑ8

L
“

fn
‰

ď lim
k8

L
“

gk
‰

.
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Reversing the roles of the f ’s and the g’s in the above argument we obtain the desired
conclusion. [\

The above lemma shows that we can extend L to a function L : F˚ Ñ p´8,8s by
setting

L
“

f
‰

“ lim
nÑ8

L
“

fn
‰

where pfnqně1 is any lower approximant of f P F˚.

Lemma 19.6.7. Let f, g P F˚ and c ě 0. Then the following hold.

(i) f ď g ñ L
“

f
‰

ď L
“

g
‰

.

(ii) L
“

f ` g
‰

“ L
“

f
‰

` L
“

g
‰

, L
“

cf
‰

“ cL
“

f
‰

.

(iii) f _ g, f ^ g P F˚ and

L
“

f
‰

` L
“

g
‰

“ L
“

f _ g
‰

` L
“

f ^ g
‰

.

(iv) If pfnqně0 is a nondecreasing sequence in F˚ then

f8 :“ lim
nÑ8

fn P F
˚ and L

“

f8
‰

“ lim
nÑ8

L
“

fn
‰

.

Proof. (i) If pfnq and pgnq are lower approximants of f and respectively g, then because f ď g, the sequences
pfn ^ gnq and pfn _ gnq are lower approximants of f and respectively g and

L
“

fn ^ gn
‰

ď L
“

fn _ gn
‰

, @n.

(ii) If pfnq and pgnq are lower approximants of f and respectively g, then pfn ` gnq is a lower approximant of f ` g

and pcfnq is a lower approximant of cf .

(iii) If pfnq and pgnq are lower approximants of f and respectively g, then pfn ^ gnq and pfn _ gnq are lower

approximants of f ^ g and respectively f _ g. The rest follows from (ii) and the equality

f ` g “ f ^ g ` f _ g.

(iv) Suppose that pfn,kqkě1 is a lower approximant of fn, @n. Set

gk :“ max
1ďnďk

fn,k.

Then gk ď gk`1, @k. Indeed, for n ď k we have

fn,k ď fn,k`1,

and

gk “ max
1ďnďk

fn,k ď max
1ďnďk

fn,k`1. ď max
1ďnďk`1

fn,k`1 “ gk`1

We have gk P F

fn,k ď gk ď max
nďk

fn “ fk, @n ď k. (19.6.2)

This shows that the nondecreasing sequence pgkq in F is uniformly bounded. Hence it is a lower approximant for

g8 :“ lim
kÑ8

gk P F˚,

and

L
“

g8

‰

ď lim
kÑ8

L
“

fk
‰

.

Letting k Ñ8 in (19.6.2) we deduce

fn ď g8 ď lim
kÑ8

fk “ f8, @n.

Letting nÑ8 we deduce

f8 “ g8.
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Moreover

lim
nÑ8

L
“

fn
‰

ď L
“

g8

‰

ď lim
kÑ8

L
“

fk
‰

.

Hence

lim
nÑ8

L
“

fn
‰

“ L
“

g8

‰

“ L
“

f8

‰

.

[\

We set

F˚ :“
␣

g : ΩÑ r´8,8q; ´g P F˚
(

.

Define L : F˚ Ñ r´8,8q by

L
“

g
‰

:“ ´L
“

´g
‰

, @g P F˚

Note that if g˚ P F˚, g˚ P F˚ and g˚ ě g˚, then g
˚ ´ g˚ P F

˚ and

0 ď L
“

g˚ ´ g˚
‰

“ L
“

g˚
‰

´ L
“

g˚
‰

.

Observe also that

F Ă F˚ X F˚.

Denote by L1pFq the collection of functions f : ΩÑ r´8,8s with the following property:

for any ε ą 0 there exist f˚ “ f˚,ε P F˚ and f˚ “ f˚,ε P F˚ such that

f˚ ď f ď f˚ and L
“

f˚
‰

´ L
“

f˚
‰

ď ε.

The above condition tacitly assumes that both L
“

f˚
‰

and L
“

f˚
‰

are finite.

If we set

L˚
“

f
‰

:“ sup
f˚PF˚

f˚ďf

L
“

f˚
‰

, L˚
“

f
‰

:“ inf
f˚PF˚

fďf˚

L
“

f˚
‰

,

then we see that f P L1pFq if and only if

´8 ă L˚
“

f
‰

“ L˚
“

f
‰

ă 8.

Note that F Ă L1pFq. Moreover,

@f P F˚, L
“

f
‰

ă 8 ñ f P L1pFq.

To see this choose a lower approximant fn Õ f . Set

fn,˚ “ fn, f˚n :“ f.

Then

fn,˚ ď f ď f˚n and L
“

f˚n
‰

´ L
“

fn,˚
‰

Ñ 0.

Similarly, if f P F˚ and L
“

f
‰

ą ´8, then f P L1pFq.

We define

L : L1pFq Ñ R, L
“

f
‰

“ L˚
“

f
‰

“ L˚
“

f
‰

.

For f, g : ΩÑ r´8,8s we define f ` g : ΩÑ r´8,8s by setting

pf ` gqpωq :“

#

fpωq ` gpωq,
`

fpωq, gpωq
˘

‰ p8,´8q,

0,
`

fpωq, gpωq
˘

“ p˘8,¯8q.
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Note that if f1 ď f2, g1 ď g2, then f1 ` g1 ď f2 ` g2.

Lemma 19.6.8. The following hold.

(i) L1pFq is a vector subspace of the space of functions Ω Ñ r´8,8s with respect
to the addition defined as above. Moreover, L is linear.

(ii) If f, g P L1pFq, then f ^ g, f _ g P L1pFq.

(iii) @f, g P L1pFq, f ď g ñ L
“

f
‰

ď L
“

g
‰

.

(iv) If pfnq is a nondecreasing sequence in L1pFq,

f8pωq “ lim
nÑ8

fnpωq, @ω P Ω,

and

sup
n
L
“

fn
‰

ă 8,

then f8 P L
1pFq and

L
“

f8
‰

“ lim
nÑ8

L
“

fn
‰

.

Proof. (i) ` (ii) We have for any ε ą 0 there exist f`
ε , g

`
ε P F˚ and f´

ε , g
´
ε P F˚ such that

f´
ε ď f ď f`

ε , g´
ε ď g ď g`

ε ,

L
“

f`
ε

‰

´ L
“

f´
ε

‰

ď
ε

2
, L

“

g`ε
‰

´ L
“

g´
ε

‰

ď
ε

2
.

Then h`
ε “ f`

ε ` g
`
ε P F˚, h´

ε “ f´
ε ` g

´
ε P F˚. Moreover4

h´
ε ď f ` g ď h`

ε .

Clearly
`

L
“

f`
ε

‰

` L
“

g`
ε

‰ ˘

´
`

L
“

f´
ε

‰

` L
“

g´
ε

‰ ˘

ď ε.

Hence f ` g P L1pFq. The above argument also shows that L
“

f ` g
‰

“ L
“

f
‰

` L
“

g
‰

. Arguing in a similar fashion

one shows that for any f P L1pFq and any c P R we have cf P L1pFq and L
“

cf
‰

“ cL
“

f
‰

. Observe next that

f´
ε ^ g

´
ε ď f ^ g ď f`

ε ^ g
`
ε ,

and

f`
ε ^ g

`
ε ´ f

´
ε ^ g

´
ε ď pf

`
ε ´ f

´
ε q ` pg

`
ε ´ g

´
ε q.

Using Lemma 19.6.7 we deduce

L
“

f`
ε ^ g

`
ε

‰

´ L
“

f´
ε ^ g

´
ε

‰

ď L
“

pf`
ε ´ f

´
ε q

‰

` L
“

pg`
ε ´ g

´
ε q

‰

ď ε,

so f ^ g P L1pFq. Next observe that ´pf _ gq “ p´fq ^ p´gq P L1pFq.

(iii) If f P L1pFq and f ě 0. We have L
“

f
‰

ě L
“

f´
‰

, @f´ P F˚. Then

L
“

f
‰

ě L
“

f´ _ 0
‰

ě 0.

If f ě g, then f ´ g ě 0 and

L
“

f
‰

“ L
“

g
‰

` L
“

f ´ g
‰

ě L
“

g
‰

.

(iv) By replacing fn with fn ´ f1 we can assume fn ě 0, @n ě 1. Fix ε ą 0.

For each n ě 1 we can find hn P F˚, hn ě 0 such that

pfn ´ fn´1q ď hn. L
“

hn
‰

ď L
“

fn`1 ´ fn
‰

`
ε

2n
, @n ě 1,

4Pay careful attention to the situation when fpxq “ 8, gpxq “ ´8. In this case f`
ε pxq “ 8 g`

ε pxq P p´8,8s

so f`
ε pxq ` g

`
ε pxq ě 0 “ fpxq ` gpxq. On the other hand f´

ε pxq P r´8,8q, g
´
ε pxq “ ´8 so f´

ε pxq ` g
´
ε pxq ď 0.
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where f0 :“ 0. The sequence

Hn :“
n
ÿ

k“1

hk P F˚

is nondecreasing and

lim
nÑ8

L
“

Hn

‰

ď lim
nÑ8

L
“

fn
‰

` ε.

Hence its limit H8 belongs to F˚ X L1pFq. Clearly f8 ď H8. Choose m large so that

L
“

fm
‰

ě lim
nÑ8

L
“

fn
‰

´ ε

and then choose f´
m P F˚ such that f´

m ď fm ď f8

L
“

fm
‰

´ L
“

f´
m

‰

ă ε.

We deduce that f´
m ď f8 ď H8 and

L
“

H8

‰

´ L
“

f´
m

‰

ď lim
nÑ8

L
“

fn
‰

´ L
“

f´
m

‰

` ε ď 3ε.

This proves (iv). [\

Denote by G the collection of subsets G Ă Ω such that IG P L
1pFq. Note thatH,Ω P G.

For G P G we set
µ
“

G
‰

“ µL
“

G
‰

:“ L
“

IG
‰

.

Note that

IG0 ^ IG1 “ IG0XG1 , IG0 _ IG1 “ IG0YG1 , bsIGc “ 1´ IG,

so that G is an algebra of sets. Lemma 19.6.8 shows that G is a sigma-algebra and µ is a
measure on G. Observe that for any f P F and c ą 0 we have

n
`

f ´ f ^ c
˘

^ 1Õ Itfącu.

Thus
tf ą cu P G, @f P F, c ą 0.

In particular, this shows that

tf ď cu P G, tf ă ´cu P G,@f P F, c ą 0.

We deduce immediately that

tf ď cu P G, @f P F, c P R,
so that σpFq Ă G.

Observe that for any nonnegative σpFq-elementary function g we have g P L1pFq and
ż

Ω
gdµ “ L

“

g
‰

.

If f P F, f ě 0, then there exists a sequence of σpFq-elementary functions fn Õ f . The
Monotone Convergence Theorem and Lemma 19.6.8 imply that

L
“

f
‰

“

ż

Ω
fdµ.

Using the decomposition

f “ f` ´ f´ “ f ^ 0´ p´f ^ 0q



19.6. Duality 895

we deduce that

L
“

f
‰

“

ż

Ω
fdµ, @f P F.

Clearly µ is uniquely determined by L. Indeed if ν is another measure with property then
the above arguments show that ν “ µL. [\

Theorem 19.6.9 (The dual of CpKq). For any continuous linear functional α : CpKq Ñ R
there exists a unique finite signed Borel measure µ P MpKq such that α “ Lµ. Moreover
}Lµ}˚ “ |µ|

“

K
‰

.

Proof. Let α be a continuous linear functional on F “ CpKq. For f P F` we set

α`pfq “ sup
gPr0,f s

αpgq, r0, f s :“
␣

g P CpKq; 0 ď g ď f
(

.

Extend α` to F by setting

α`pfq :“ α`pfq ´ α`pf´q

Define α´ : CpKq Ñ R, α´ “ α` ´ α.

Lemma 19.6.10. Both α˘ are continuous positive linear functionals on F .

Proof. Observe first that α`pfq ě αp0q “ 0, @f P F . Clearly

0 ď f1 ď f2 ñ α`pf1q ď α`pf2q.

Moreover, for any c ą 0 and any f P F` we have

α`pcfq “ cα`pfq.

Set Aα :“ α`p1q. From the inequalities 0 ď f ď }f} we deduce

α`pfq ď Aα}f}, @f P F`.

Let f1, f2 P F`. If gi P r0, fi, i “ 1, 2, then g1 ` g2 P r0, f1 ` f2s so

α`pf1q ` α`pf2q “ sup
g1Pr0,f1s

αpg1q ` sup
g2Pr0,f2s

αpg2q ď sup
gPr0,f1`f2s

αpgq “ α`pf1 ` f2q.

Conversely, if g P r0, f1 ` f2s, we set gi “ minpg, fiq and we observe that gi P r0, fis,
g1 ` g2 “ g. This shows that

α`pf1 ` f2q ď α`pf1q ` α`pf2q,

so that
α`pf1 ` f2q “ α`pf1q ` α`pf2q, @f1, f2 P F`.

Observe next that if

@f, g, u, v P F`, f ´ g “ u´ v ñ α`pfq ´ α`pgq “ α`puq ´ α`pvq. (19.6.3)

Indeed

f ´ g “ u´ v ñ f ` v “ u` g ñ α`pfq ` α`pvq “ α`puq ` α`pgq

ñ α`pfq ´ α`pgq “ α`puq ´ α`pvq.
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Let us show that
α`pf ` gq “ α`pfq ` α`pgq, @f, g P F .

We have to show that

α`
`

pf ` gq`q
˘

´ α`
`

pf ` gq´
˘

“ α`pf` ` g`q ´ α`pf´ ` g´q.

This follows from (19.6.3) and the equality

pf ` gq` ´ pf ` gq“f ` g “ f` ` g` ´ pf´ ` g´q.

This proves that α : F Ñ R is additive. It is also homogeneous. Indeed, if c ą 0, then

cf “ pcfq ` ´pcfq´ “ pcfq ` ´pcfq´ “ cf` ´ cf´ “ cf` ´ cf´,

while if c ă 0, then
cf “ pcfq ` ´pcfq´ “ ´cf´ ` cf`.

In both cases, invoking (19.6.3) we deduce αpcfq “ cαpfq. Note that
ˇ

ˇα`pfq
ˇ

ˇ ď α`pf`q ` α`pf´q “ α`p|f |q ď Aα}f}.

By definition α`pfq ě αpfq, @f P F` so that

α´pfq “ α`pfq ´ αpfq ě 0, @f P F`

so that α´ “ α` ´ α is also a positive linear functional. [\

Suppose that α P F ˚. Theorem 19.6.1 implies that there exist µ˘ PMpKq` such that
Lµ˘

“ α˘ so that
Lµ`´µ´

“ α.

This completes the existence part of Theorem 19.6.9. To prove the uniqueness part,
suppose that µ, ν PMpKq satisfy Lµ “ Lν . We want to show that µ “ ν. We argue as in
the proof of (19.6.3). Using the Jordan decompositions of µ and ν we deduce

Lµ`
´ Lµ´

“ Lµ “ Lν “ Lν`
´ Lν´

so that
Lµ``ν´

“ Lµ´`ν`
.

Invoking the uniqueness part of Theorem 19.6.1 we deduce

µ` ` ν´ “ µ´ ` ν` ñ µ “ ν.

Clearly
}Lµ}` ď }µ} :“ |µ|

“

K
‰

.

To prove the equality consider a Hahn decomposition of K determined by µ, K “ B`YB´
where B˘ are disjoint Borel sets, B` is µ-positive and B´ is µ-negative. Then

µ˘
“

f
‰

“ ˘µ
“

IB˘
f
‰

.

Denote by C the family of closed subsets of K. We deduce from Exercise 19.19 that

µ˘
“

B˘
‰

“ sup
C˘ĂB˘

C˘PC

µ˘
“

C
‰

“ sup
C˘ĂB˘

C˘PC

µ
“

C
‰

.
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Now choose sequences g˘n P CpKq such that g˘n Ñ IB˘
in L1pK,µ˘q. Set

f˘n “ max
`

minpg˘n , 1q, 0
˘

.

Then f˘n P CpKq and Exercise 19.59 shows that f˘n converge in L1pK,µ˘q to

max
`

minpIB˘
, 1q, 0

˘

“ IB˘
.

A subsequence of f˘n converges a. e. to σB˘
. For simplicity assume f˘n Ñ IB˘

a. e.. On
the other hand 0 ď f˘n ď 1 and B` XB´ “ H so that

´1 ď f`n ´ f
´
n ď 1, }f`n ´ f

´
n }CpKq Ñ 1.

Observe that

}Lµ}˚ ¨ }f
`
n ´ f

´
n }CpKq ě µ

“

f`n ´ f
´
n

‰

“ µ`
“

f`n
‰

` µ´
“

f´n
‰

´
`

µ´
“

f`n
‰

` µ`
“

f´n
‰ ˘

.

Note that

µ`
“

f`n
‰

` µ´
“

f´n
‰

Ñ µ`
“

B`
‰

` µ´
“

B´
‰

“ |µ|
“

K
‰

.

From the Dominated Convergence theorem we deduce

µ˘
“

f¯n
‰

Ñ µ˘
“

IB¯

‰

“ 0.

If we write fn “ f`n ´ f
´
n we deduce

}Lµ}˚ “ }Lµ}˚ lim
nÑ8

}fn}CpKq ě lim
nÑ8

}Lµpfnq “ |µ|
“

K
‰

“ }µ}.

This proves }Lµ}˚ “ }µ} [\

Remark 19.6.11. The space MpKq is a normed vector space with norm }µ} “ |µ|
“

K
‰

.
The metric induced by this norm is usually referred to as the variation distance.

Theorem 19.6.9 can be rephrased more compactly by stating that the natural map

MpKq Q µ ÞÑ Lµ P CpKq
˚

is a bijective isometry of normed spaces. [\

Corollary 19.6.12. Let pK, dq be a compact metric space. A family F Ă CpKq spans a
subspace dense in CpKq if and only if the only finite signed measure µ satisfying

µ
“

f
‰

“ 0, @f P F

is the trivial measure.

Proof. Apply Corollary 17.1.55 to the normed space X “ CpKq and the subspace
Z “ spanpFq. [\
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19.6.2. The dual of Lp. Fix a measured space pΩ, S, µq and p P r1,8q. Set q :“ p˚ “ p
p´1 .

The goal of this subsection is to give an explicit description of the dual of the Banach space
X :“ LppΩ, µq. For simplicity we denote by } ´ }r the norm of LrpΩ, µq, r P r1,8s.

For any f P LppΩ, S, µq and any g P LqpΩ, S, µq, Hölder’s inequality shows that the
function fg is integrable and

ˇ

ˇ

ˇ

ˇ

ż

Ω
fgdµ

ˇ

ˇ

ˇ

ˇ

ď }g}q}f}p.

Equivalently, we have a linear map αg : L
ppΩ, S, µq Ñ R

αgpfq “

ż

Ω
fgdµ.

Note that if f “ f 1 µ-a.e., then αgpfq “ αgpf
1q so αg induces a linear map

αg : L
ppΩ, S, µq Ñ R.

Hölder’s inequality implies that
ˇ

ˇαgpfq
ˇ

ˇ ď }g}q ¨ }f}p, @f P L
ppΩ, µq, (19.6.4)

which shows that αg is a continuous linear functional. We have thus produced a map

LqpΩ, S, µq Q g ÞÑ αg P L
ppΩ, µq˚.

Observe that if g “ g1 µ-a.e., then αg “ αg1 so the above map induces a map

LqpΩ, S, µq Q g ÞÑ αg P L
ppΩ, µq˚.

Note that αg`g1 “ αg `αg1 and αcg “ cαg, @g, g
1 P L1pΩ, µq, c P R so the map

LqpΩ, S, µq Q g ÞÑ αg P L
ppΩ, µq˚

is linear. Set X :“ LppΩ, µq, denote by } ´ } the Lp norm on X and by } ´ }˚ the norm
on the dual.

The inequality (19.6.4) shows that

}αg}˚ ď }g}Lq ,

so the map g ÞÑ αg is continuous. We have another representation theorem also due to F.
Riesz.

Theorem 19.6.13 (Riesz representation). Suppose that pΩ, S, µq is a sigma-finite mea-
sured space. Let p P p1,8q, q “ p˚,

pX, } ´ }q “
`

LppΩ, µq, } ´ }Lp

˘

.

The map

Lp
˚

pΩ, µq Q g ÞÑ αg P X
˚

is continuous, bijective and an isometry, i.e.,

}αg}˚ “ }g}Lp˚ .
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Proof. We first prove that
}αg}˚ ě }g}q.

This will prove that the map is an isometry and, in particular, that it is injective.

Let g P LqpΩ, S, µq. Decompose as usual g “ g` ´ g´. Note that for any ω P Ω, we
have either gpωq “ g`pωq or gpωq “ ´g´pωq and

|gpωq|q “ g`pωq
q ` g´pωq

q.

Consider the functions f˘ “ g
1{pp´1q
˘ , f “ f` ´ f´ P L

p. Then

f, f˘ P L
p and f, f˘g¯ “ 0, |f | “ |g|

1
p´1

so that

}αg}˚ ¨ }f}Lp ě αgpfq “

ż

Ω

`

g
1{pp´1q
` ´ g

1{pp´1q
´

˘`

g` ´ g´
˘

dµ

“

ż

Ω

`

g
p{pp´1q
` ` g

p{pp´1q
´

˘

dµ

“

ż

Ω
|g|qdµ “ }g}qLq “ }g}g ¨ }g}

q´1
Lq “ }g}q

ˆ
ż

Ω

`

|g|1{pp´1q
˘p
dµ

˙

q´1
q

(pq ´ 1q{q “ 1{p, |g|1{pp´1q “ |f |)

“ }g}Lq ¨ }f}Lp .

Hence
}αg}˚ ě }g}Lq .

Let us record here a simple consequence of the above computations.

@r P p1,8q, @g P Lr`pΩ, S, µq, f “ g
1

r˚´1 ñ

ż

Ω
gfdµ “ }g}Lr ¨ }f}Lr˚ (19.6.5)

We have to prove that for any continuous linear function ξ P X˚, there exists g P LqpΩ, µq
such that ξ “ αg. We discuss two cases.

A. The measure µ is finite. In this case IS P L
q, @S P S. Since ξpfq “ 0 if f “ 0 µ-a.e.

we deduce
ξpISq “ 0 if µ

“

S
‰

“ 0

Define µξ : SÑ r0,8q,

µξ
“

S
‰

:“ ξpISq.

From the equality
IS0YS1 “ IS0 ` IS1 ,

if S0, S1 are disjoint, we deduce that µξ is finitely additive. If pSnqnPN is a nondecreasing
sequence in S with union S8 then

0 ď ISn Õ IS8

and we deduce that ISn Ñ IS8
in LppΩ, S, µq. Hence

µξ
“

Sn
‰

“ ξ
`

ISn

˘

Ñ ξ
`

IS8

˘

“ µξ
“

S8
‰

.
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This proves that µξ is a signed measure on S. Moreover, if µ
“

S
‰

“ 0

µξ
“

S
‰

“ ξ
`

IS
˘

“ 0

so that µξ ! µ.

The Radon-Nikodym theorem implies that there exists u P L1pΩ, S, µq such that
µξ
“

S
‰

“ µu
“

S
‰

, @S P S, i.e.,

ξ
`

IS
˘

“

ż

Ω
uISdµ “ µ

”

uIS

ı

, @S P S. (19.6.6)

Denote E`pS, µq the space of nonnegative elementary functions. Hence

ξ
`

v
˘

“ µ
“

uv
‰

, @v P E`pΩ, Sq.

By linearity, we deduce

ξ
`

v
˘

“ µ
“

uv
‰

, @v P E pΩ, Sq. (19.6.7)

We claim that

}u}Lq ă 8. (19.6.8)

Theorem 19.6.13 follows immediately from this fact. Indeed, the space of elementary
functions E pΩ, Sq is dense in LppΩ, µq and, since ξ is continuous we see that (19.6.7)
extends to all v P LppΩ, µq. This is precisely Theorem 19.6.13.

Proof of (19.6.8) Since ξ : LppΩ, S, µq Ñ R is continuous we deduce that there exists
Cξ ą 0 such that

ˇ

ˇµruvs
ˇ

ˇ “
ˇ

ˇ ξ
`

v
˘ ˇ

ˇ ď Cξ}v}Lp , @v P E`pΩ, Sq. (19.6.9)

Lemma 19.6.14. Let u P L1
`pΩ, S, µq. Then

}u}Lq “ Cu :“ sup
vPE`pS,µqz0

Qpu, vq, Qpu, vq :“
µ
“

uv
‰

}v}p
.

Proof. Suppose first that u P LqpΩ, µq. Hölder’s inequality shows that the map

LppΩ, µqzt0u Q v ÞÑ µ
“

uv
‰

P R

is continuous and Cu ď }u}Lq . Let v :“ u1{pq´1q P Lp`. Then, according to (19.6.5), we

have µ
“

uv
‰

“ }u}Lq}v}Lp so that

Qpu, vq “ }u}Lq ,

If v were an elementary function, then we could conclude Cu ě }u}Lq . Fortunately, the
elementary functions Dnrvs P E` approximate v well, Dnrvs Ñ v in Lp. We deduce that

Q
`

u,Dnrvs
˘

ď Cu,

and

}u}Lq “ Q
`

u, v
˘

“ lim
nÑ8

Q
`

u,Dnrvs
˘

ď Cu.
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Suppose now that }u}Lq “ 8. For k P N, we set uk “ maxpu, kq. Then uk ď u,

}uk}Lq “ sup
vPE`z0,
}v}Lp“1

µ
“

ukv
‰

“ sup
vPE`,
}v}Lp“1

µ
“

ukv
‰

ď sup
vPE`,
}v}Lp“1

µ
“

uv
‰

“ Cu.

Then,

8 “ }u}Lq “ lim
kÑ8

}uk}Lq ď Cu ď 8.

Hence, in this case we also have }u}Lq “ Cu. [\

Consider the function u defined by (19.6.6). It has a decomposition u “ u`´ u´. Set

Ω˘ :“
␣

u˘ ą 0
(

.

For any v P E` we have vIΩ˘
P E` and uvIΩ˘

“ u˘v. Using (19.6.9) we deduce that for
any v P E`

ˇ

ˇµ
“

u˘v
‰ ˇ

ˇ “

ˇ

ˇ

ˇ
µ
”

uIΩ˘
v
ı ˇ

ˇ

ˇ
ď Cξ

›

›IΩ˘
v
›

›

Lp ď Cξ}v}Lp .

Using Lemma 19.6.14 we deduce }u˘}Lp ď Cξ ă 8. This proves (19.6.8) and thus Theorem
19.6.13 when µ is a finite measure.

B. The measure µ is sigma-finite. Fix a nondecreasing sequence of measurable sets

Ω1 Ă Ω2 Ă ¨ ¨ ¨

such that µ
“

Ωn
‰

ă 8 and

Ω “
ď

nPN
Ωn.

Fix Cξ ą 0 such that
ˇ

ˇ ξ
`

v
˘ ˇ

ˇ ď Cξ}v}Lp , @c P LppΩ, µq.

We can view LppΩn, S X Ωn, µq as a subspace of LppΩ, S, µq: a function v on Ωn can be
viewed as a function pv on Ω vanishing outside Ωn Equivalently, one can view pv as the
extension by 0 of v to a function on Ω.

The continuous linear functional ξ : LppΩ, S, µq Ñ R induces continuous linear func-
tionals ξn : LppΩnq Ñ R,

ξn
`

v
˘

“ ξ
`

pv
˘

, @v P LppΩn, SX Ωn, µq.

Moreover, we deduce from A that there exists un P L
qpΩnq such that

}un}LqpΩnq ď Cξ

and

ξn
`

v
˘

“

ż

Ωn

unvdµ, @v P L
ppΩn, SX Ωn, µq,

Note that since LppΩn, SX Ωn, µq Ă LppΩn`1, SX Ωn`1, µq we deduce

un`1
ˇ

ˇ

Ωn
“ un µ´ a. e. .
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Modifiying the functions un on a negligible set we can assune that the above equality holds
everywhere for every n. Define

pu : ΩÑ R, pupωq “ unpωq if ω P Ωn

Clearly pupωq does not depend on the choice of n in its definition. Denote by pun the
extension by 0 of un to a function on Ωn. Equivalently, pun “ puIΩn . We have

lim
nÑ8

punpωq “ pupωq, @ω P Ω,

and
ˇ

ˇ

pun
ˇ

ˇ ď
ˇ

ˇ

pun`1
ˇ

ˇ.

The Monotone Convergence Theorem implies
ż

Ω

ˇ

ˇ

pu
ˇ

ˇ

q
dµ “ lim

nÑ8

ż

Ωn

ˇ

ˇ

pun
ˇ

ˇ

q
dµ ď Cξ.

Hence pu P LqpΩ, S, µq. Moreover, given v P LppΩ, S, µq, the sequence vn “ vIΩn converges
in Lp to v and we have

ξ
`

v
˘

“ lim
nÑ8

ξ
`

vn
˘

“ lim
nÑ8

ż

Ω
punvndµ “

ż

Ω
puvdµ,

where at the last step we used the Dominated Convergence Theorem. This completes the
proof of Theorem 19.6.13.

[\
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19.7. Exercises

Exercise 19.1. Let C denote the cube r0, 1sn Ă Rn, n P N. Denote by JC the collection
of Jordan measurable subsets of C; see Definition 15.1.27. Prove that JC is an algebra of
subsets of C, but it is not a sigma-algebra. [\

.

Exercise 19.2. Suppose that pΩ, Sq is a measurable space and pSnqnPN is a sequence of
sets in S. Let S be the subset of Ω consisting of the points ω that belong to infinitely
many of the sets Sn. Prove that S P S. Hint. Use Remark 19.1.4. [\

Exercise 19.3. Prove that the sigma-algebra BR of Borel subsets of R is generated by
the collection of intervals

” k

2n
,
k ` 1

2n

ı

, k P Z, n P N. [\

Exercise 19.4. Construct a bijection Φ : r0, 1q Ñ p0, 1q with the property that B Ă p0, 1q
is Borel if and only if Φ´1pBq is a Borel set. [\

Exercise 19.5. Let Ω be a set and S a collection of subsets of Ω. Prove that the following
statements are equivalent.

(i) The collection S is a sigma-algebra.

(ii) The collection S is both λ and a π-system.

[\

Exercise 19.6. Let Ω be a set. A collection S of subsets of Ω is called a semiring of
subsets if

‚ H P S,

‚ for all A,B P S, A X B P S, and AzB is a union of finitely many and disjoint
subsets S1, . . . , Sn P S.

A collection S is called a ring if for any A,B P S, AXB,AYB,AzB P S.

(i) Prove that the collection of subsets of R of the form pa, bs, ´8 ď a ď b ă 8, is
a semiring.

(ii) Let S be a semiring of subsets of Ω and let R denote the collection all finite
disjoint unions of set in S. Show that R is a ring. It is called the ring generated
by the semiring S.

(iii) Suppose that R is a ring of subsets of Ω. Prove that the collection

A “ RY
␣

ΩzR; R P R
(

.

is an algebra of subsets of Ω.

[\
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Exercise 19.7. Suppose that pX, dq is a metric space. For every continuous function
f : X Ñ R we set

Hf :“
␣

x P X; fpxq ď 0
(

.

Prove that the sigma-algebra generated by the sets Hf , f P CpXq, coincides with the
Borel sigma-algebra of X defined in Example 19.1.3(viii). Hint. Use Proposition 17.1.27. [\

Exercise 19.8. Let Ω be a set and pAnqnPN be a partition of Ω, i.e.,

Ω “
ď

nPN
An, An XAm “ H, @m ‰ n.

Denote by S the sigma-algebra generated by the sets pAnqnPN. Describe all the S-measurable
functions f : ΩÑ R. [\

Exercise 19.9. Suppose that Ω is a set and fi : Ω Ñ R, i P I, is a family of functions.
For each i P I we denote by Si the sigma-algebra generated by fi,

Si “ f´1i
`

BR
˘

.

We set

S :“
ł

iPI

Si.

(i) Prove that for any i P I the function fi is pS,BRq-measurable.

(ii) Suppose that S1 Ă 2
Ω is a sigma-algebra such that all the functions fi are

pS1,BRq-measurable. Prove that S1 Ą S.

[\

Exercise 19.10. Suppose that pX, dq is a compact metric space. We denote by F the
Banach space CpXq equipped with the sup-norm. We denote by BF the Borel sigma-
algebra of F . For each x P X we define Ex : F Ñ R, Expfq “ fpxq, for any continuous
function f : X Ñ R. We set (see Example 19.1.3)

Sx “ E´1x
`

BR
˘

, x P X, S “
ł

xPX

Sx.

(i) Prove that Ex : F Ñ R is a continuous, @x P R.
(ii) Prove that BF “ S. Hint. Show that if S Ă X is a dense subset in X, then

}f} “ sup
sPS

|fpsq| “ sup
sPS

ˇ

ˇEspfq
ˇ

ˇ.

Next use Corollary 17.3.6.

(iii) For n P N, r⃗ P Rn and x1, . . . , xn P X we set

Cx1,...,xn
`

r⃗
˘

:“
␣

f P CpXq; fpxiq ď ri, @i “ 1, . . . , n
(

Ă F.

Prove that the collection

C :“
␣

Cx1,...,xn
`

r⃗
˘

; n P N, r⃗ P Rn, x1, . . . xn P X
(
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is a π-system that generates BF . Hint. Observe that

Cx1,...,xn

`

r⃗
˘

“

n
č

i“1

␣

Exi ď ri
(

,

and then use (ii).

(iv) Suppose that pΩ,Aq is a measurable space and T : ΩÑ F is a map

Ω Q ω ÞÑ Tω P F.

Prove that T is pA,BF q-measurable if and only if for any x P X the function

T x : ΩÑ R, ω ÞÑ Tωpxq

is measurable. Hint. Use (iii) and Proposition 19.1.12.

[\

Exercise 19.11. Prove Proposition 19.1.18(iii). [\

Exercise 19.12. Prove that a monotone function f : RÑ R is Borel measurable, i.e., for
any Borel subset B Ă R the preimage f´1pBq is also Borel measurable. [\

Exercise 19.13. Let Ω be a set and S a semiring of subsets of Ω; see Exercise 19.6. Fix
an additive measure on S, i.e., a function µ : SÑ r0,8s such that, for any A,B P S such
that AYB P S, µ

“

AYB
‰

` µ
“

AXB
‰

“ µ
“

A
‰

` µ
“

B
‰

.

(i) Prove that there exists a unique additive measure µ̄ on the ring generated by S

such that µ̄
“

S
‰

“ µ
“

S
‰

. [\

(ii) Suppose that µ is sigma-additive meaning that if pSnqně1 is a sequence of disjoit
subsets of S whose union is a set S also in S then µ

“

S
‰

“
ř

ně1 µ
“

Sn
‰

. Prove
that the extension µ̄ of µ postulated in (i) is also sigma-additive.

[\

Exercise 19.14. Suppose that pΩ, S, µq is a measured space. Prove that for any sequence
pSnqnPN in S we have

µ
”

ď

nPN
Sn

ı

ď
ÿ

nPN
µ
“

Sn
‰

Hint. Try to understand why µ
“

S1 Y S2

‰

ď µ
“

S1

‰

` µ
“

S2

‰

. [\

Exercise 19.15. Prove Proposition 19.1.34. [\

Exercise 19.16. Consider the measure µ :
`

N,2N
˘

Ñ r0,8q determined by the condi-
tions

µ
“

tnu
‰

“
1

2n
, @n P N.

Consider the function f :
`

N,2N
˘

Ñ
`

R,BR
˘

, fpnq “ cosnπ, @n P N. Describe the

measure ν “ f#µ : BR Ñ r0,8q, ν
“

B
‰

“ µ
“

f´1pBq
‰

, @B P BR. [\
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Exercise 19.17. Suppose that pµnqnPN is a sequence of measures on the measurable space
pΩ, Sq and pwnqnPN is a sequence of nonnegative real numbers. Prove that the sum

µ “
ÿ

nPN
wnµn : SÑ r0,8s, µ

“

S
‰

“
ÿ

nPN
wnµn

“

S
‰

, @S

is also a measure on pΩ, Sq. Warning. The sigma-additivity of µ is not as obvious as it appears. [\

Exercise 19.18. Suppose that pΩ, S, µq is a measured space and pSnqně1 is a decreasing
sequence of measurable sets

S1 Ą S2 Ą S3 Ą ¨ ¨ ¨ .

Prove that if µ
“

S1
‰

ă 8, then

µ

«

č

ně1

Sn

ff

“ lim
nÑ8

µ
“

Sn
‰

.

Show using a concrete example that the above equality need not hold if µ
“

S1
‰

“ 8. [\

Exercise 19.19. Suppose that µ is a finite Borel measure on the metric space pX, dq.
Denote by C the collection of Borel subsets S of X satisfying the regularity property: for
any ε ą 0 there exists a closed subset Cε Ă S and an open subset Oε Ą S such that

µ
“

OεzCε
‰

ă ε.

(i) Show that S P C ñ Sc :“ XzS P C .

(ii) Show that any closed set belongs to C . Hint. Use Proposition 17.1.27.

(iii) Show that C is a π-system.

(iv) Show that C is a λ-system.

(v) Show that C coincides with the family of Borel subsets.

[\

Exercise 19.20. Suppose that µ :
`

Rn,BRn

˘

Ñ r0,8s is a finite measure defined on the
Borel sigma-algebra generated by the open subsets of Rn. Prove that for any Borel set
B Ă Rn and any ε ą 0 there exists an open set U Ą B and a compact set K Ă B such
that µ

“

UzK
‰

ă ε. Hint. Prove that any closed set in Rn is the union of countably many compact subsets.

Conclude using Exercise 19.19. [\

Exercise 19.21. Fix a set Ω and suppose that M Ă Ω is a class of models (see Defini-
tion 19.2.2) that is also a semiring and Ω P M., i.e., it satisfies the following additional
properties: @M1, M2 PM, M1 XM2 PM and M2zM1 is a disjoint union of finitely many
elements in M.5

Suppose that ρ : MÑ r0,8q is a gauge on M satisfying the conditions

5The collection of semiintervals pa, bs a, b P R is a semi-algebra.
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‚ If M1,M2 PM, and M1 YM2 PM, then

ρ
“

M1 YM2

‰

“ ρ
“

M1

‰

` ρ
“

M2

‰

´ ρ
“

M1 XM2

‰

.

‚ If Mn PM, @n P N and YnMn PM, then

ρ
”

ď

n

Mn

ı

ď
ÿ

n

ρ
“

Mn

‰

.

Denote by µρ the outer measure determined by ρ as in Proposition 19.2.3 and let Sρ be
the sigma algebra of µρ-measurable sets; see Definition 19.2.1 .

(i) Prove that M Ă Sρ.

(ii) Prove that µρ
“

M
‰

“ ρ
“

M
‰

, @M PM.

Hint. Use the same strategy as in the proof of Theorem 19.2.5. [\

Exercise 19.22. Suppose that pX, dq is a separable metric space. For any subset S Ă X
we set

diampSq :“ sup
x,yPS

dpx, yq.

Consider the collection of subsets

Mδ :“
␣

S Ă X; diampSq ă δ
(

.

For t ě 0 denote by χδt the outer measure obtained by using class of models Mδ and the
gauge function (see Proposition 19.2.3)

ρt : Mδ Ñ r0,8q, ρtpSq “ diampSqt.

Note that χδt ě χδ
1

t , @0 ă δ ď δ1. We set

χtpSq “ sup
δą0

χδt “ lim
δŒ0

χδt pSq, @S Ă X.

Prove that χt is a metric outer measure (Definition 19.2.7). This shows that the restriction
of χt to the Borel sigma-algebra of X is a measure. It is called the t-dimensional Hausdorff
measure. [\

Exercise 19.23. Suppose that µ : pR,BRq Ñ r0,8s is a measure on the sigma-algebra of
Borel subsets of R satisfying the following conditions.

(i) For any B P BR and any r P R, µ
“

B`r
‰

“ µ
“

B
‰

, where B`r :“ tb`r; b P Bu.

(ii) µ
“

p0, 1s
‰

“ 1.

Prove that µ coincides with the Lebesgue measure. Hint. Compute first µ
“

p0, 1{ns
‰

, n P N. [\

Exercise 19.24 (H. Steinhaus). Suppose that E Ă R is Lebesgue measurable and

0 ă λ
“

E
‰

ă 8.
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(i) Prove that for any ε ą 0 there exists an interval J such that

λ
“

EJ
‰

ą p1´ εqλ
“

J
‰

ą 0, EJ :“ E X J

Hint. Prove that there exists a sequence of intervals pJnqnPN that cover E such that
ÿ

nPN
λ
“

Jn
‰

ă λ
“

E
‰

{p1´ εq

.

(ii) Prove that there exists r ą 0 such that the set

E ´ E :“
␣

x´ y; x, y P E
(

contains the interval r´r, rs.
Hint. Note that λ

“

EX pE` tqq
‰

ą 0ñ t P E´E. Fix c P p1{2, 1q and choose an interval J such that

λ
“

EJ

‰

ą cλ
“

J
‰

. Prove that if |t| ă λ
“

J
‰

, then λ
“

EJ X pEJ ` tqq
‰

ě p2c´ 1qλ
“

J
‰

´ |t|.

[\

Exercise 19.25 (H. Steinhaus). Suppose that f : RÑ R is a Borel measurable function
such that

fp1q “ 1, fpx` yq “ fpxq ` fpyq, @x, y P R.

(i) Prove that f is bounded on a set of positive Lebesgue measure. Hint. Look at the

sets t|f | ď nu, n P N.

(ii) Prove that f is bounded on some open interval containing 0. Hint. Use Exercise

19.24.

(iii) Prove that fpxq “ x, @x P R. Hint. Prove first that fpxq “ x, @x P Q. Conclude using (ii).

[\

Exercise 19.26. Let F : r0, 1s Ñ r0, 1s, F pxq “ 2x´ t2xu, where tru denotes the integer
part of the real number r.

(i) Prove that F is Borel measurable.

(ii) Let I0 :“ r1{3, 2{3s, In :“ F´1pIn´1q, @n P N. Draw pictures of the sets I0, I1, I2
and then compute their Lebesgue measures.

(iii) Compute F#λ, where λ denotes the Lebesgue measure on r0, 1s.

[\

Exercise 19.27. Suppose that S Ă R is Lebesgue measurable and λ
“

S
‰

“ 0. Prove that
RzS is dense in R. [\

Exercise 19.28 (E. Borel). Set B :“ t0, 1u and denote by X the space of functions
f : NÑ B. We define a metric

d : Xˆ XÑ r0,8q, d
`

f, g
˘

“
ÿ

nPN

|fpnq ´ gpnq|

2n
.
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Given m P N and a subset S Ă Bm we set

CS :“
␣

f P X;
`

fp1q, . . . , fpmq
˘

P S u.

We will refer to a set of this form as m-cylinder and we denote by Cm the collection of
m-cylinders. Define

C :“
ď

mě1

Cm

and

µm : Cm Ñ r0, 1s, µm
“

CS
‰

“
|S|

2m
.

(i) Prove that Cm is an algebra of subsets of X and µm is finitely additive.

(ii) Prove that Cm Ă Cm`1 and

µm`1
ˇ

ˇ

Cm
“ µm.

(iii) Define µ : C Ñ r0, 1s, by setting µ
ˇ

ˇ

Cm
“ µm. Prove that µ is well defined and

it is a premeasure. We denote by µ̄ its extension as a measure to C̄ :“ σpC q.
Hint. Use Theorem 19.1.40. You can assume the conclusions of Exercise 17.43.

(iv) Define T : XÑ r0, 1s,

T pfq “
ÿ

nPN

fpnq

2n
, @f : NÑ B.

Prove that T is a Lipschitz map and T´1pBq Ă C̄ for any Borel subset B Ă r0, 1s.
Hint. Start by showing that T´1

`

r0, k{2ns
˘

P C̄ , @n P N, k “ 0, 1, 2, . . . , 2n.

(v) Prove that T#µ̄ “ λ - the Lebesgue measure on r0, 1s. Hint. Start by computing

µ̄
“

T´1
`

rpk ´ 1q{2n, k{2ns
˘ ‰

, k “ 1, . . . , 2n.

[\

Exercise 19.29 (Cantor-Vitali). Let

X :“
␣

f P C
`

r0, 1s
˘

; fp0q “ 0, fp1q “ 1
(

.

Note that X is a closed subset of the Banach space C
`

r0, 1s
˘

equipped with the sup-nom,
} ´ }. For any function f : r0, 1s Ñ R we define Tf : r0, 1s Ñ R

pTfqpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fp3xq
2 , 0 ď x ď 1

3 ,

1
2 ,

1
3 ă x ă 2

3 ,

1
2 `

fp3x´2q
2 , 2

3 ď x ď 1.

(i) Show that if f P X, then Tf P X and }Tf ´ Tg} ď 1
2}f ´ g}, @f, g P X.

(ii) Define inductively a sequence pfnq in X, f0pxq “ x, fn “ Tfn´1, @n P N. Sketch
the graphs of the functions f0, f1, f2.



910 19. Measure theory and integration

(iii) Show that the functions fn converge in the norm } ´ } to a function f8 P X
satisfying Tf8 “ f8.

(iv) Show that f8 is nondecreasing and constant on the connected components of
the complement of the Cantor set S8; see Example 19.2.10. (The function f8
is also known as “Devil’s staircase”.)

(v) Deduce that the continuous function f8 is differentiable almost everywhere with
derivative 0, yet it is not constant.

[\

Exercise 19.30. Prove Proposition 19.2.15. [\

Exercise 19.31. Fix an integer n ě 2 and define Fn : RÑ R

Fnpxq “

$

’

&

’

%

0, x ă 0,
k
n , x P

“

pk ´ 1q{n, k{n
˘

, 1 ď k ď n,

1, x ě 1.

(i) Prove that Fn is a gauge function satisfying the finiteness condition (19.2.9).
Denote by λn the associated Lebesgue-Stiltjes measure.

(ii) Show that

λn “
1

n

n
ÿ

k“1

δpk´1q{n,

where δk is the Dirac measure on pR,BRq concentrated at k.

(iii) Find the quantile Qn of Fn.

(iv) Graph the functions Fn and Qn for n “ 3.

Exercise 19.32. Suppose that F : RÑ R is continuous, strictly increasing and

F p´8q “ 0, F p8q “M.

(i) Prove that the induced map F : RÑ p0,Mq is bijective.

(ii) Denote by Q the quantile function of F . Prove that Qpyq “ F´1pyq, @y P p0,Mq.

[\

Exercise 19.33. Suppose that µ :
`

Rn,BRn

˘

Ñ r0,8s is a measure defined on the Borel
sigma-algebra generated by the open subsets of Rn. Prove that the following statements
are equivalent.

(i) µ
“

K
‰

ă 8 for any compact subset K Ă Rn.
(ii) For any x P Rn there exists r ą 0 such that µ

“

Brpxq
‰

ă 8, where Brpxq denotes
the open ball of radius r centered at x.

[\
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Exercise 19.34. Suppose that pΩ, S, µq is a measured space such that µ
“

Ω
‰

ă 8 and

fn : pΩ, S, µq ÑR is a sequence of measurable functions satisfying

@ε ą 0,
ÿ

nPN
µ
“

t|fn| ě εu
‰

ă 8. (19.7.1)

(i) Prove that, for any ε ą 0, the set of ω P Ω such that |fkpωq| ě ε, for infinitely
many k’s, is µ-negligible. Hint. Use Exercise 19.2.

(ii) Prove that fn Ñ 0, µ-a.e..

Exercise 19.35. Define rn : r0, 1s Ñ R, n “ 0, 1, 2, . . . ,

r0 “ Ip0,1s, rn “
2n
ÿ

k“1

p´1qk`1Ippk´1q2´n,k2´ns, @n P N.

(i) Draw the graphs of r0, r1, r2.

(ii) Draw the graphs of R0, R1, R2, where

Rkpxq “

ż x

0
rkptqdt, k “ 0, 1, 2, 3, . . . .

(iii) Show that for any n ą m ě 0 we have
ż

r0,1s
rmpxqrnpxqλ

“

dx
‰

“ 0.

[\

Exercise 19.36. Consider the measure µ :
`

N,2Nq Ñ r0,8s

µ
“

S
‰

“ #S, @S Ă N.
Let f : NÑ R. Prove that the following statements are equivalent.

(i) f P L1pN,2N, µq.
(ii) The series

fp1q ` fp2q ` ¨ ¨ ¨ ` fpnq ` ¨ ¨ ¨

is absolutely convergent; see Definition 4.6.12.

Deduce that if f P L1
`

N,2N, µ
˘

, then
ż

N
fdµ “

ÿ

nPN
fpnq :“ lim

nÑ8

`

fp1q ` ¨ ¨ ¨ ` fpnq
˘

. [\

Exercise 19.37. Consider the function

f : r0, 1s Ñ R, fpxq “

#

1, x P r0, 1szQ,
0, x P QX r0, 1s.

(i) Show that f is Borel measurable and
ż

r0,1s
fpxqλ

“

dx
‰

“ 1.
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(ii) Prove that f is not Riemann integrable.

[\

Exercise 19.38. Let L, T,Φ : r0, 1s Ñ R

Lpxq “ 4xp1´ xq, T pxq “

#

2x, x P r0, 1{2s,

2´ 2x, x P p1{2, 1s,
,

Φpxq “
1

2

`

1´ cospπxq
˘

.

(i) Prove that L, T are Borel measurable and

L
`

r0, 1s
˘

, T
`

r0, 1s
˘

,Ă r0, 1s.

(ii) Denote by λ the Lebesgue measure on r0, 1s. Show that for any Borel subset
B Ă r0, 1s we have

T#λ
“

B
‰

“ λ
“

B
‰

,

and describe explicitly L#λ
“

B
‰

.

(iii) Prove that Φ is a homeomorphism r0, 1s Ñ r0, 1s and

L “ Φ ˝ T ˝ Φ´1.

(iv) Set ν :“ Φ#λ. Prove that for any Borel subset B Ă r0, 1s we have

ν
“

B
‰

“
1

π

ż

B

1
a

xp1´ xq
dx

and show that L#ν “ ν.

[\

Exercise 19.39. Suppose that pΩ,F, µq is a measured space and pS, dq a metric space.
Consider a function

F : S ˆ ΩÑ R, ps, ωq ÞÑ Fspωq

satisfying the following properties.

(i) For any s P S the function Ω Q ω ÞÑ Fspωq P R is measurable.

(ii) For any ω P Ω the function S Q s ÞÑ Fspωq P R is continuous.

(iii) There exists h P L1pΩ, S, µq such that |Fspωq| ď hpωq, @ps, ωq P S ˆ Ω.

Prove that Fs P L
1pΩ, S, µq, @s P S, and the resulting function

S Q s ÞÑ

ż

Ω
Fspωqµ

“

dω
‰

P R

is continuous. Hint. Use the Dominated Convergence Theorem. [\
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Exercise 19.40. Suppose that pΩ,F, µq is a measured space and I Ă R is an open interval.
Consider a function

F : I ˆ ΩÑ R, pt, ωq ÞÑ F pt, ωq

satisfying the following properties.

(i) For any t P I the function F pt,´q : ΩÑ R is integrable,
ż

Ω
|F pt, ωq|µ

“

dωs ă 8.

(ii) For any ω P Ω the function I Q t ÞÑ F pt, ωq P R is differentiable at t0 P I. We
denote by F 1pt0, ωq its derivative.

(iii) There exists h P L1pΩ, S, µq such that

|F pt, ωq ´ F pt0, ωq| ď hpωq|t´ t0|, @pt, ωq P I ˆ Ω.

Prove that the function

I Q t ÞÑ

ż

Ω
F pt, ωqµ

“

dω
‰

P R

is differentiable at t0 and

d

dt

ˇ

ˇ

ˇ

t“t0

ˆ
ż

Ω
F pt, ωqµ

“

dω
‰

˙

“

ż

Ω
F 1pt0, ωqµ

“

dω
‰

. [\

Exercise 19.41. Suppose that f : R Ñ R is a continuous function. Prove that the
following are equivalent.

(i) f P L1
`

R,BR,λ
˘

.

(ii) The improper Riemann integral
ż 8

´8

fpxqdx

is absolutely convergent.

[\

Exercise 19.42. Consider the function

J : RÑ R, Jpaq “

ż 8

´8

e´x
2{2 cospaxq dx.

(i) Prove that J P C1pRq.
(ii) Show that

J 1paq “ ´aJpaq, @a P R.
(iii) Compute Jpaq.

Hint. For (i) and (ii) use Exercises 19.41 and 19.40. In (iii) you will need (15.4.4) at some point. [\
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Exercise 19.43. Consider the functions fn, f : RÑ R, n P N

fnpxq “

#

sinpπxq
x , |x| ď n,

0, |x| ą n,
, fpxq “

sinpπxq

x
.

At 0 we have

fnp0q “ fp0q “ lim
xÑ0

sinpπxq

x
“ π.

(i) Show that fnpxq Ñ fpxq, @x P R.
(ii) Show that fn P L

1pR,λq and

lim
nÑ8

ż

R
fnpxqλ

“

dx
‰

exists and it is finite.

(iii) Show that

lim
nÑ8

ż

R
|fnpxq|λ

“

dx
‰

“ 8.

(iv) Show that f is not Lebesgue integrable.

[\

Exercise 19.44. Suppose that Ω is a finite set and µ is a measure on 2
Ω such that

µ
“

Ω
‰

“ 1. Let Φ : RÑ R be a convex function. Prove that for any function f : ΩÑ R

Φ
´

ż

Ω
fdµ

¯

ď

ż

Ω
Φpfqdµ.

[\

Exercise 19.45. Suppose that pΩ, S, µq is a measured space such that µ
“

Ω
‰

“ 1 and

Φ : RÑ R is a C1 convex function. Let f P L1pΩ, S,Pq such that Φpfq P L1pΩ, S, µq.

(i) Prove that for any x0 P R there exists a linear function L “ Lx0,Φ : RÑ R such
that

Lpx0q “ Φpx0q, Lpxq ď Φpxq, @x P R.
(ii) Prove that

Φ
”

ż

Ω
fdµ

ı

ď

ż

Ω
Φpfqdµ.

Hint. Use (i) with x0 “
ş

Ω fdµ.

(iii) Prove that if 1 ď p0 ă p1 ă 8 then

Lp1pΩ, S, µq Ă Lp0pΩ, S, µq.

Hint. Use (ii) with Φpxq “ |x|p1{p0 .

[\
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Exercise 19.46. Construct a sequence of continuous functions fn : RÑ r0,8q with the
following properties.

(i)
ż

R
fnpxqλ

“

dx
‰

“ 1, @n P N.

(ii)

lim
nÑ8

fnpxq “ 0, @x P R.

[\

Exercise 19.47. Suppose that pΩi, Siq, i “ 0, 1, are two measurable spaces. Denote by
A the collection of subsets of Ω0ˆΩ1 that are finite disjoint unions of rectangles S0ˆS1,
Si P Si. Prove that A is an algebra of sets.

Hint. Suppose that A :“ S0 ˆ S1 Ă Ω0, B :“ T0 ˆ T1 are two rectangles. Prove that A X B is a rectangle and

Ac “ pΩ0 ˆ Ω1qzA P A. Conclude by observing that AYB “ pAXBcq Y pAXBq Y pAc XBq. [\

Exercise 19.48. Suppose that pΩ, S, µq is a measured space and f P L1
`pΩ, S, µq. Define

Rf :“
␣

pω, xq P Ωˆ R; 0 ď x ă fpωq
(

.

Intuitively, Rf is the region below the graph of f and above the “horizontal axis”.

(i) Prove that Rf P SbBR.

(ii) Show that

µb λ
“

Rf
‰

“

ż

ΩˆR
IRf

pω, xqµb λ
“

dωdx
‰

“

ż

Ω
fpωqµ

“

dω
‰

.

(iii) Show that
ż

Ω
fpωqµ

“

dω
‰

“

ż 8

0
µ
“

tf ą xu
‰

λ
“

dx
‰

.

(iv) Suppose that Φ : r0,8q Ñ r0,8q is a nondecreasing C1 function. Prove that
ż

Ω
Φ
`

fpωq
˘

µ
“

dω
‰

“

ż 8

0
Φ1pxqµ

“

tf ą xu
‰

λ
“

dx
‰

.

Hint.(ii)+(iii) use Fubini Theorem in two different ways. [\

Exercise 19.49. Suppose that S Ă R2 is Borel measurable and its intersection with any
vertical line txu ˆ R has 1-dimensional Lebesgue measure zero. In other, words the

Sx :“
␣

y P R; px, yq P S
(

Ă R

is negligible, @x P R. Prove that the 2-dimensional Lebesgue measure of S is also zero. [\

Exercise 19.50 (N. Wiener). Consider a family B :“
`

Bripxiq
˘

iPI
of open balls in Rn.

Let U be an open set contained in their union. Fix c ă λ
“

U
‰

.
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(i) Show that there exists a compact subset K Ă U such that λ
“

K
‰

ą c.

(ii) Prove that there exists a finite subfamily
`

Brj pxjq
˘

jPJ
of the family B such that

any two balls in this subfamily are disjoint and
ÿ

jPJ

λ
“

Bj
‰

ą 3´nc.

Hint. Prove that there exists a finite subfamily of pairwise disjoint balls
`

Brj pxjq
˘

jPJ
such that the

family
`

B3rj pxjq
˘

jPJ
covers the compact set K found in (i).

Exercise 19.51. Fix p P p0, 1q, set q “ 1 ´ p. Let Ω “ N, S “ 2
N and µ : S Ñ r0,8s

determined by

µ
“

tnu
‰

“ pqn´1.

Let f : NÑ r0,8q, fpnq “ n, @n P N.

(i) Prove that
ÿ

nPN
npqn´1 “

ż

N
fdµ

(ii) Use the equality in Exercise 19.48(iii) to compute
ş

N fdµ.

Hint. (ii) Show that µ
“

tf ą xu
‰

“ qtxu where txu denotes the integer part of x. [\

Exercise 19.52. Fix p P p0, 1q and set q “ 1 ´ p. Consider the set Ω “ t0, 1u and the
measure µ : 2Ω Ñ r0,8q defined by

µ
“

t0u
‰

“ q, µ
“

t1u
‰

“ p.

Fix n P N and consider the product Ωn. The elements of Ωn are strings ϵ⃗ “ pϵ1, . . . , ϵnq
consisting of 0’s and 1’s. We have coordinate functions

uk : Ω
n Ñ t0, 1u, uk p⃗ϵq “ ϵk.

(i) Prove that we have an equality of sigma-algebras

2
Ωn
“ 2

Ω b ¨ ¨ ¨ b 2
Ω

looooooomooooooon

n

.

(ii) Denote by µn the product measure

µn :“ µb ¨ ¨ ¨ b µ
looooomooooon

n

.

Compute
ż

Ωn

etukdµn, @k “ 1, . . . , n, t P R.

(iii) Show that for j ‰ k we have
ż

Ωn

etujetukdµn “

ˆ
ż

Ωn

etujdµn

˙ˆ
ż

Ωn

etukdµn

˙

, t P R.
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(iv) Set s “ u1 ` ¨ ¨ ¨ ` un. Compute
ż

Ωn

sdµn,

ż

Ωn

etsdµn.

(v) Observe that the range of s is Rn :“ t0, 1, . . . , nu. Denote by βn the pushforward
s#µn so that βn is a measure on Rn. Describe the measure βn : 2Rn Ñ r0,8s.

(vi) Let f : Rn Ñ R, fpkq “ k. Use Theorem 19.3.24 and (iv) above to show
n
ÿ

k“0

k

ˆ

n

k

˙

pkqn´k “

ż

Rn

fdβn “

ż

Ωn

sdµn

[\

Exercise 19.53. Suppose that f : Rn Ñ C is Lebesgue integrable. Denote by x´,´y the
standard inner product in Rn and by } ´ } the Euclidean norm.

(i) Prove that for any ξ P Rn the function x ÞÑ eixx,ξyfpxq is also Lebesgue integrable
and the resulting function

Rn Q ξ ÞÑ pfpξq :“

ż

Rn

eixx,ξyfpxqλ
“

dx
‰

P C

is bounded and continuous. Hint. Use Exercise 19.39.

(ii) Compute pfpξq when fpxq “ e´}x}
2
. Hint. Use Fubini and Exercise 19.42.

[\

Exercise 19.54. Let n P N. For p P Rn and r ą 0 denote by B̄r the closed ball in Rn of
radius r center at 0

B̄rppq “
␣

x P Rn; }x} ď r
(

.

(i) Construct a sequence fν of compactly supported continuous functions fν : Rn Ñ R
such that

lim
νÑ8

ż

Rn

ˇ

ˇ fν ´ IB̄1p0q

ˇ

ˇ dλn “ 0.

(ii) Prove that the space CcptpRnq of compactly supported continuous functions
Rn Ñ R is dense in L1pRnq. Hint. Use (i) and Proposition 19.4.8.

[\

Exercise 19.55. Let n P N. For x P Rn and r ą 0 denote by Brpxq the open ball in Rn
of radius r center at x. For f P L1pRn,λq and r ą 0 we define

Drf : Rn Ñ r0,8q, Drfpxq “
1

λ
“

Brpxq
‰

ż

Brpxq

ˇ

ˇ fpyq ´ fpxq
ˇ

ˇλ
“

dy
‰

.

Show that if f is a uniformly continuous function then

lim
rŒ0

sup
xPRn

Drfpxq “ 0.

[\
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Exercise 19.56. Suppose that f : Rn Ñ R is a continuous function. Prove that
f P L1pRn,λnq if and only if the improper integral

ż

Rn

fpxq |dx|

is absolutely integrable in the sense of Definition 15.4.8. [\

Exercise 19.57. Denote by Cn the cube r0, 1sn Ă Rn and define

an : Cn Ñ R, anpxq “
1

n

`

x1 ` ¨ ¨ ¨ ` xn
˘

(i) Prove that 0 ď anpxq ď 1, @x P Cn.

(ii) Show that
ż

Cn

anpxqλ
“

dx
‰

“
1

2
.

(iii) Set ānpxq “ anpxq ´
1
2 . Show that
ż

Cn

ānpxq
2λ

“

dx
‰

“
1

12n
.

(iv) Fix ε ą 0. Prove that6

lim
nÑ8

λn
“

t|ān| ě εu X Cn
‰

“ 0.

Hint. Use Markov’s inequality.

Exercise 19.58. Suppose that pΩ, S, µq is a measured space and p, q, r P p1,8q satisfy

1

r
“

1

p
`

1

q
.

Prove that for any f P LppΩ, S, µq and any g P LqpΩ, S, µq we have fg P LrpΩ, S, µq and

}fg}Lr ď }f}Lp}g}Lq .

Hint. Use Hölder’s inequality. [\

Exercise 19.59. Suppose that pΩ, S, µq is a measured space, p P r1,8q and pfnqnPN and
pgnqnPN are sequences that converge in LppΩ, S, µq to f P LppΩ, S, µq and respectively
g P LppΩ, S, µq.

(i) Prove that the sequences p|fn|q, maxpfn, gnq, minpfn, gnq converge in L
ppΩ, S, µq

to maxpf, gq and respectively minpf, gq

(ii) Suppose that p ą 2. Prove that pfngnqnPN converges in Lp{2pΩ, S, µq to fg.

[\

6The equality (iv) is a special case of the Law of Large Numbers and is a manifestation of high dimensional

concentration phenomenon: for n very large, most of the points in the cube Cn are concentrated near the median
hyperplane tānpxq “ 1{2u.
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Exercise 19.60. Suppose that pΩ, S, µq is a measured space such that µ
“

Ω
‰

ă 8 prove
that if p0, p1 P r1,8s and p0 ď p1, then

Lp0pΩ, S, µq Ą Lp1pΩ, S, µq.

and the induced linear map Lp1pΩ, S, µq Ñ Lp0pΩ, S, µq is continuous. Hint. Use Hölder’s

inequality. [\

Exercise 19.61. pΩ, S, µq is a measured space such that µ
“

Ω
‰

ă 8. Define

ρ : RÑ r0,8q, ρpxq “ minp|x|, 1q

and

d “ dµ : L0pΩ, Sq ˆ L0pΩ, Sq Ñ r0,8q, dpf, gq “

ż

Ω
ρpf ´ gqdµ.

(i) Prove that pL0pΩ, Sq, dq is a metric space. We denote by L0pΩ, S, µq this metric
space.

(ii) Prove that the natural map L1pΩ, S, µq Ñ L0pΩ, S, µq is continuous, i.e.,

lim
nÑ8

}fn ´ f}L1 “ 0 ñ lim
nÑ8

dµpfn, fq “ 0.

(iii) Prove that if fn Ñ f µ-a.e., then limnÑ8 dµpfn, fq “ 0.

(iv) Suppose that f, f1, f2, . . . P L
0pΩ, S, µq. Prove that the following are equivalent.

(a) limnÑ8 dµpfn, fq “ 0.
(b) The sequence pfnqnPN converges to f in measure, i.e.,

@ε ą 0, lim
nÑ8

µ
“

t|fn ´ f | ą ε
‰

“ 0.

[\

Exercise 19.62. Suppose that f, g P L1pRn,BRn ,λq.

(i) Show that the function h : Rn ˆ Rn Ñ R, hpx, yq “ fpx´ yqgpyq is measurable.

(ii) Prove that the function

y ÞÑ fpx´ yqgpyq

is integrable for almost every x P Rn. We write

f ˚ gpxq :“

ż

Rn

fpx´ yqgpyqλ
“

dy
‰

(iii) Show that f ˚ g P L1pRn,BRn ,λq, f ˚ g “ g ˚ f a.e., and

}f ˚ g}L1 ď }f}L1}g}L1 . (19.7.2)

[\

Exercise 19.63. Suppose that w : Rn Ñ r0,8q is a nonnegative continuous function such
that

wpxq “ 0, @}x} ą 1 and

ż

Rn

wpxqλn
“

dx
‰

“ 1.
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For ν P N we set

wν : Rn Ñ R, wνpxq “ νnwpνxq.

(i) Prove that
ż

Rn

wνpx´ yqdλ
“

dy
‰

“ 1, @ν P N, x P Rn.

(ii) Prove for any f P L1pRn,λq and any ν P N the function wν ˚ f : Rn Ñ R is
continuous. Hint. Use Exercise 19.39.

(iii) Prove that for any f P CcptpRnq and any ν P N the function wν ˚ f has compact
support and

lim
νÑ8

sup
xPRn

ˇ

ˇwν ˚ fpxq ´ fpxq
ˇ

ˇ “ 0.

Hint. Show that

fpxq “

ż

Rn
fpxqwδpx´ yqλ

“

dy
‰

,

ˇ

ˇwν ˚ fpxq ´ fpxq
ˇ

ˇ ď

ż

Rn

ˇ

ˇ fpyq ´ fpxq
ˇ

ˇwνpx´ yqλ
“

dy
‰

“

ż

B1{νpxq

ˇ

ˇ fpyq ´ fpxq
ˇ

ˇwνpx´ yqλ
“

dy
‰

.

Conclude using the uniform continuity of f .

(iv) Prove that for any f P CcptpRnq and any ν P N we have

lim
νÑ8

}wν ˚ f ´ f}L1 “ 0.

Hint. Use (iii) above.

(v) Prove that for any f P L1pRn,λq

lim
νÑ8

}wν ˚ f ´ f}L1 “ 0.

Hint. Use Exercise 19.54, (19.7.2), and (iv) above.

[\

Exercise 19.64 (The Moment Problem). For any finite Borel measure µ on r0, 1s we
associate its momenta

Mnpµq :“

ż

r0,1s
xn µ

“

dx
‰

, n “ 0, 1, 2, . . . .

(i) Prove that for any t P R the series

ÿ

ně0

Mnpµq
tn

n!

is absolutely convergent. Denote by Mµptq its sum.

(ii) Prove that

Mµptq “

ż

r0,1s
etxµ

“

dx
‰

.



19.7. Exercises 921

(iii) Suppose that µ, ν are two finite Borel measures. Prove that

µ “ νðñMµptq “Mνptq, @t P R.

Hint. Use Exercise 19.40 to show that Mµptq “ Mνptq implies Mnpµq “ Mnpνq, @n ě 0. Prove next

that µ
“

P
‰

“ ν
“

P
‰

for any polynomial P . Conclude using Corollary 17.4.11 and 19.4.15.

[\

Exercise 19.65. Suppose that pΩ, S, µq is a measured space. Prove that the normed space
L8pΩ, S, µq is complete. [\

Exercise 19.66. Suppose that µ P MeaspRn,BRnq is a measure such that

µ
“

Rn
‰

“ 1 and C :“

ż

Rn

}x}µ
“

x
‰

ă 8,

where }x} denotes the Euclidean norm of x P Rn. For any ε ą 0 define Sε : Rn Ñ Rn,
Sεpxq “ εx. Set µε :“ pSεq#µ.

(i) Express
ż

Rn

}x}µε
“

dx
‰

in term of C. Hint. Use Theorem 19.3.24.

(ii) For each r ą 0 we denote by Br the open ball of radius r centered at 0. Prove
that for any r ą 0,

lim
εŒ0

µε
“

RnzBr
‰

“ 0.

(iii) Suppose that µ is absolutely continuous with respect to the Lebesgue measure

λn and the corresponding density is ρ “ dµ
dλn

. Show that µε ! λn and compute

the density, ρε “
dµε
dλn

.

[\

Exercise 19.67. Prove Proposition 19.5.8. Hint. Use the Hahn decomposition of ν. [\

Exercise 19.68. Suppose that pΩ, Sq is a measurable spaces and µ0, µ1 are two probability
measures on S, µ0

“

Ω
‰

“ µ1Ω
‰

“ 1. Consider the new probability measure

ν :“
1

2

`

µ0 ` µ1
˘

.

(i) Prove that µ0, µ1 ! ν. For i “ 0, 1 we denote by dµi
dν P L

1
`pΩ, S, µq the density

of µi with respect to ν; see Definition 19.5.13.

(ii) Define

Hpµ0, µ1q “

ż

Ω

ˆ

dµ0
dν

˙
1
2
ˆ

dµ1
dν

˙
1
2

dν.

Prove that 0 ď Hpµ0, µ1q ď 1.
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(iii) Show that if Hpµ0, µ1q “ 0, then µ0 K µ1; see Definition 19.5.3

[\

Exercise 19.69. Suppose that pΩ, S, µq is a finite measured space and f P L1
`

Ω, S, µq.
Fix a sigma-subalgebra A Ă S.

(i) Prove that there exists a function g P L1pΩ,A, µq
ż

A
fpxqλ

“

dx
‰

“

ż

A
gpxqλ

“

dx
‰

, @A P A. (19.7.3)

(ii) Prove that if g1, g2 P L
1pΩ,A, µq satisfy (19.7.3), then g1 “ g2 µ-a. e..

[\

Exercise 19.70. Denote by λ the Lebesgue measure on r0, 1s. Fix a partition P of r0, 1s

P : 0 “ a0 ă a1 ă ¨ ¨ ¨ ă an´1 ă an “ 1.

Denote by SpP q the sigma-algebra generated by the intervals

Ai “ rai´1, aiq, i “ 1, . . . , n´ 1, An “ ran´1, 1s.

Fix a Borel measurable function f P L1
`

r0, 1s,λ
˘

.

(i) Prove that a Borel measurable function g : r0, 1s Ñ R is SpPq-measurable if and
only if there exist constants C1, . . . , Cn P R such that

g “
n
ÿ

k´1

CkIAk
.

(ii) Describe explicitly an SpPq-measurable function g : r0, 1s Ñ R such that
ż

S
fpxqλ

“

dx
‰

“

ż

S
gpxqλ

“

dx
‰

, @S P SpPq.

[\

Exercise 19.71 (Vitali-Hahn-Saks). Suppose that pΩ, S, µq is a finite measured space.
Define an equivalence relation on S by setting S „ S1 if µ

“

S∆S1
‰

“ 0, where ∆ denotes
the symmetric difference

S∆S1 “
`

SzS1
˘

Y
`

S1 Y S
˘

.

Define d : Sˆ SÑ r0,8q

d
`

S0, S1
˘

“ µ
“

S0∆S1
‰

.

(i) Prove that @S0, S1, S2 P S we have

d
`

S0, S1
˘

“ d
`

S1, S0q, d
`

S0, S2
˘

ď d
`

S0, S1
˘

` d
`

S1, S2
˘

and d
`

S0, S1
˘

“ 0 iff S0 „ S1.

(ii) Prove that d defines a complete metric d on S :“ S{ „.
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(iii) Suppose that λ : S Ñ R is a signed measure that is absolutely continuous with
respect to µ. Hence λ

“

S0
‰

“ λ
“

S1
‰

“ 0 if S0 „ S1. Prove that the induced
function

λ : SÑ R
is continuous with respect to the metric d.

(iv) Suppose that pλnq is a sequence of finite signed measures on S such that λn ! µ,@n
and, @S P S , the sequence λn

“

S
‰

has a finite limit λ. Prove that λ : S Ñ R is

finitely additive and λ
“

S
‰

“ 0 if µ
“

S
‰

“ 0.

(v) For any ε ą 0 and k P N we set

Sk,ε :“
␣

S P S; sup
mPN

ˇ

ˇλl
“

S
‰

´ λk`n
“

S
‰ ˇ

ˇ ď ε
(

.

Prove that the sets Sk,ε Ă S are closed with respect to the metric d and

S“
ď

kPN
Sk,ε, @ε ą 0.

(vi) Prove that the induced function λ̄ : S Ñ R is continuous with respect to the
metric d and deduce that λ is countably additive. Hint. It suffice to show that for any

decreasing sequence pSnq in S with empty intersection we have limλ
“

Sn

‰

“ 0. Deduce this from (v)

and Baire’s theorem.

[\

19.8. Exercises for extra credit

Exercise* 19.1. Construct an example of a set Ω and an increasing sequence of sigma-
algebras of Ω

S1 Ă S2 Ă ¨ ¨ ¨ Ă 2
Ω,

such that the union
ď

nPN
Sn

is not a sigma-algebra. [\

Exercise* 19.2. Let pΩ, S, µq be a finite measured spaces and pFnqnPN a sequence in
L1pΩ, S, µq that converges everywhere to a function f P L1pΩ, S, µq. Prove that

lim
nÑ8

ż

Ω

ˇ

ˇ fnpωq ´ fpωq
ˇ

ˇµ
“

dω
‰

“ 0 ðñ lim
nÑ8

ż

Ω

ˇ

ˇ fnpωq
ˇ

ˇµ
“

dω
‰

“

ż

Ω

ˇ

ˇ fpωq
ˇ

ˇµ
“

dω
‰

.

[\





Chapter 20

Elements of functional
analysis

20.1. Hilbert spaces

The Euclidean geometry and topology we have discussed Sections 11.2 and 11.3 have
infinite dimensional counterparts with wide ranging applications.

20.1.1. Inner products and their associated norms. Suppose that K “ R,C and
and X is a K-vector space, possibly infinite dimensional. For λ P C we denote by λ its
conjugate. Note that when λ P R we have λ“ λ.

Definition 20.1.1. A K-inner product on X is a map

x´,´y : X ˆX Ñ R.
satisfying the following conditions.

(i) For any x, y P X we have xy, xy “ xx, yy, where λ denotes the conjugate of
the complex number λ.

(ii) @x, y, z P X,

xx` y, zy “ xx, zy ` xy, zy and xz, x` yy “ xz, xy ` xz, yy.

@x, y P X and λ P K we have

xλx, yy “ λ xx, yy, xx, λyy “ λxx, yy.

(iii) For any x P X, xx, xy ě 0, with equality iff x “ 0.

A pre-Hilbert space over K is a pair pX, x´,´yq, where X is K-vector space and
x´,´y is a K-inner product. [\

925
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Example 20.1.2. (a) Let X “ Cn. For x “ px1, . . . , xnq and y “ py1, . . . , ynq in Cn we
set

xx, yy :“ x1y1 ` ¨ ¨ ¨ ` xnyn.

Then x´,´y defined as above is a complex inner product.

(b) Suppose that pΩ, S, µq is a measured space. Then the space L2pΩ, µq is a real inner
pre-Hilbert space with the inner product

xf, gy :“

ż

Ω
fgdµ.

Denote by L2pΩ, µ,Cq the space of measurable functions pΩ, Sq Ñ pC,BCq such that
|f | P L2pΩ, µq

ż

Ω
|fpωq|2µ

“

dω
‰

.

Note that if f, g P L2pΩ, µ,Cq, then
ˇ

ˇ fg
ˇ

ˇ “ |f | ¨ |fg| P L1pΩ, µq. We define L2pΩ, µ,Cq the
quotient of L2pΩ, µ,Cq by the µ-a.e. equality. The map

x´,´y : L2pΩ, µ,Cq ˆ L2pΩ, µ,Cq Ñ C, xf, gy “
ż

Ω
fpωqgpωqµ

“

dω
‰

is a complex inner product. [\

Let pX, x´,´yq be a pre-Hilbert space over K “ R,C. For x P X the inner product
xx, xy is a real nonnegative number. We set

}x} :“
a

xx, xy.

Observe that for any λ P K and x P R we have

}λx}2 “ xλx, λxy “ λλ̄xx, xy “ |λ|2}x}2

so that

}λx} “ |λ|}x}, @x P X, λ P K.

Theorem 20.1.3 (Cauchy-Schwarz inequality). Suppose that pX, x´,´yq is a pre-
Hilbert space over K “ R,C. Then, for any x, y P X we have

ˇ

ˇxx, yy
ˇ

ˇ ď }x} ¨ }y}. (20.1.1)

Moreover
ˇ

ˇxx, yy
ˇ

ˇ “ }x} ¨ }y}

if and only if there exists λ P K such that y “ λx.

Proof. We prove the inequality in the case K “ C. The proof in the case K “ R is
identical.
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The inequality is obviously true if x “ 0 so we assume x ‰ 0. For any complex number
λ we have

0 ď xλx´ y, λx´ yy “ xλx, λxy ´ λxx, yy ´ λ̄xy, xy ` xy, yy

“ |λ|2}x}2 ´ 2Reλxx, yy ` }y}2,

where Re z denotes the real part of a complex number z “ a` ib,

Re z “ a “
1

2

`

z ` z̄
˘

.

We write xx, yy P C in polar coordinates,

xx, yy “ reiθ, r :“
ˇ

ˇxx, yy
ˇ

ˇ.

Now choose λ “ te´iθ, t P R so that

λxx, yy “ tr P R ñ Reλxx, yy “ tr.

We deduce

}te´iθx´ y}2 “ t2 }x}2
loomoon

A

´ 2r
loomoon

B

t` }y}2
loomoon

C

.

The quadratic function

fptq “ At2 ´Bt` C

is nonnegative for any t P R and since A ą 0 this can happen if and only if

B2 ď 4ACðñ
ˇ

ˇxx, yy
ˇ

ˇ

2
ď }x}2}y}2.

This is precisely (20.1.1). Observe that we have equality iff p2Bq2 ´ 4A2C2 “ 0, i.e.,
fptq “ }te´iθx ´ y}2 has one real root t0, i.e., there exists λ “ t0e

´iθ P C such that
y “ λx. [\

Theorem 20.1.4. Suppose that pX, x´,´yq is a pre-Hilbert space over K “ R,C.
Then the function

X Q x ÞÑ }x} “
a

xx, xy P r0,8q

is a norm on X.

Proof. We already know that

}λx} “ |λ| ¨ }x}, @λ P K, @x P X,

so all that remains to show is

}x` y} ď }x} ` }y}, @x, y P X.

We observe as in the proof of (20.1.1) that

}x` y}2 “ }x}2 ` 2Re xx, yy ` }y}2
p20.1.1q
ď }x}2 ` 2}x} ¨ }y} ` }y}2

“
`

}x} ` }y}
˘2
.

[\
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Theorem 20.1.5 (Parallelogram Law). Suppose that pX, x´,´yq is a pre-Hilbert space
with associated norm } ´ }. Then

@x, y P X, }x` y}2 ` }x´ y}2 “ 2
`

}x}2 ` }y}2
˘

. (20.1.2)

Proof. The computation in the proof of the Cauchy-Schwarz inequality shows that

}x` y}2 “ }x}2 ` 2Re xx, yy ` }y}2,

}x´ y}2 “ }x}2 ´ 2Re xx, yy ` }y}2.

Adding up the two equalities we obtain the parallelogram law. [\

Remark 20.1.6. The parallelogram law characterizes pre-Hilbert spaces. More precisely
if the normed pX, } ´ }q satisfies (20.1.2), then the norm } ´ } is associated to an inner
product. For example, if X is a real vector space, then the inner product is

1

4

`

}x` y}2 ´ }x` y}2
˘

.

For a proof we refer to K. Yosida [37]. [\

Proposition 20.1.7. Suppose that pH, x´,´yq is a (real) pre-Hilbert space. Then the
inner product

x´,´y : H ˆH Ñ R
is continuous, i.e., if pxnqnPN and pynqnPN are sequences in H converging to x and respec-
tively y, then

lim
nÑ8

xxn, yny “ xx, yy

Proof. Observe first that since pxnq and pynq are convergent they are bounded so there
exists C ą 0 such that

}xn}, }yn} ă C, @n P N.
We have

ˇ

ˇxxn, yny ´ xx, yy
ˇ

ˇ “
ˇ

ˇxxn, yny ´ xx, yny ` xx, yny ´ xx, yy
ˇ

ˇ

“
ˇ

ˇxxn ´ x, yny ` xx, yn ´ yy
ˇ

ˇ ď
ˇ

ˇxxn ´ x, yny
ˇ

ˇ`
ˇ

ˇxx, yn ´ yy
ˇ

ˇ

p20.1.1q
ď }xn ´ x} ¨ }yn} ` }x} ¨ }yn ´ y} ď C}xn ´ x} ` }x} ¨ }yn ´ y} Ñ 8.

[\

Definition 20.1.8. A Hilbert space is a pre-Hilbert space pH, x´,´yq such that the
associated normed space pH, } ´ }q is complete. [\

Example 20.1.9. If pΩ, Sq is a measurable space and µ : S Ñ r0,8s is a sigma-additive
measure then L2pΩ, µq is a Hilbert space. In particular ℓ2 is a Hilbert space. [\
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Definition 20.1.10. Suppose that pHi, x´,´yiq, i “ 0, 1 be two Hilbert spaces over K.
A linear map T : H0 Ñ H1 is called an isomorphism of Hilbert spaces if it is bijective and

xTx, Tyy1 “ xx, yy0, @x, y P H0. (20.1.3)

[\

Proposition 20.1.11. Suppose that pHi, x´,´yiq, i “ 0, 1 be two Hilbert spaces over K
and T : H0 Ñ H1 is a linear bijection. Then the following conditions are equivalent.

(i) The map T is a Hilbert space isomorphism.

(ii) The map T is an isometry, i.e.,

}Tx}1 “ }x}0, @x P H0.

Proof. The implication (i) ñ (ii) follows by setting x “ y in (20.1.3).

Conversely, let us assume that T is an isometry. Then, @x, y P H0 we have

}Tx}21 ` 2Re xTx, Tyy1 ` }Ty}
2
1 “ }pT px` yq}

2
1 “ }x` y}

2
0

“ }x}20 ` 2Re xx, yy0 ` }y}
2
0 “ }Tx}

2
1 ` 2Re xx, yy0 ` }Ty}

2
1.

We deduce that

Re xTx, Tyy1 “ Re xx, yy0, @x, y P H0.

This proves the implication (ii) ñ (i) when K “ R. If K “ C and i “
?
´1, then we

observe that

Im xTx, Tyy1 “ Re xT p´ixq, T yy1 “ Re x´ix, yy0 “ Im xx, yy0.

[\

20.1.2. Orthogonal projections. Let H be a pre-Hilbert space. As in the finite di-
mensional case we observe that if x, y P Hzt0u, then

Re xx, yy

}x} ¨ }y}
P r´1, 1s

so there exists a unique θ P r0, πs such that

cos θ “
Re xx, yy

}x} ¨ }y}
.

We will refer to this θ as the angle between the vectors x, y and we will denote it by
cos>px, yq. Note that

cos>px, yq “
Re xx, yy

}x} ¨ }y}
and Re xx, yy “ }x} ¨ }y} cos>px, yq .

Two vectors x, y in a pre-Hilbert space H are called orthogonal and we denote this x K y
if xx, yy “ 0. Clearly

x K yðñy K x.
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Note that if x, y ‰ 0, then

x K yðñ>px, yq “
π

2

Theorem 20.1.12 (Pythagoras). If x, y are orthogonal vectors in a pre-Hilbert space
pH, x´,´yq, then

}x` y}2 “ }x}2 ` }y}2.

Proof. The proof is identical to the one of Theorem 11.2.8. We have

}x` y}2 “ xx` y, x` yy “ }x}2 ` 2Re xx, yy
loooooomoooooon

“0

`}y}2.

[\

In the remainder of this section, for simplicity of presentation, we will assume that
all Hilbert spaces are real. The complex case is only notationally more complicated.

Definition 20.1.13. For any nonempty subset X of a Hilbert space pH, x´,´yq we
define its orthogonal complement to be the set

XK :“
␣

y P H; y K x, @x P X
(

.

[\

Observe that

XK “
č

xPX

txuK. (20.1.4)

In particular this shows that

X1 Ă X2 ñ XK1 Ą XK2 . (20.1.5)

Proposition 20.1.14. For any nonempty subset X of a Hilbert space pH, x´,´yq its
orthogonal complement XK is a closed vector subspace of H. Moreover

XK “
`

clpXq
˘K
,

where clpXq denotes the closure of X in H.

Proof. To show that XK is a closed vector subspace it suffices to show that for any x P X
the set txuK is a closed vector subspace of H. Observe first that txuK is a vector subspace.
Indeed if y, z K x then

xy ` z, xy “ xy, xy ` xz, xy “ 0ñ py ` zq K x

Similarly, if y K x and t P R, then ptyq K x. Thus txuK is a vector subspace.

To prove that txuK is closed consider a sequence pynq in txu
K that converges to y. We

have to show that y K x. We have

xy, xy “ lim
nÑ8

xyn, xy
looomooon

“0

“ 0.
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Hence y K x.

Since X Ă clpXq we deduce that clpXqK Ă XK. Conversely let y P XK and
x˚ P clpXq. There exists a sequence pxnq in X such that xn Ñ x˚. Hence

xy, x˚y “ lim
nÑ8

xy, xny “ 0

proving that y P clpXqK. [\

Theorem 20.1.15 (Orthogonal projection). Suppose that U is a closed vector sub-
space of the Hilbert space pH, x´,´yq. Then for any x P H there exists a unique
x˚ P U such that

}x´ x˚} ď }x´ u}, @u P U.

Moreover x˚ is the unique point in U such that px´ x˚q P U
K, i.e.,

px´ x˚q K u, @u P U. (20.1.6)

The vector x˚ is called the orthogonal projection of x on U and it is denoted by PUx.

Proof. Step 1. Existence. Suppose that punq is a sequence in U such that

lim
nÑ8

}x´ un} “ d :“ inf
uPU

}x´ u}.

From the parallelogram law we deduce that for any m,n P N we have
›

›

›

›

1

2
px´ unq `

1

2
px´ umq

›

›

›

›

2

`

›

›

›

›

1

2
pun ´ umq

›

›

›

›

2

“
1

2

`

}x´ un}
2 ` }x´ um}

2
˘

.

Now observe that
1

2
pun ` umq P U,

1

2
px´ unq `

1

2
px´ umq “ x´

1

2
pun ` umq,

so

d2 ď

›

›

›

›

x´
1

2
pun ` umq

›

›

›

›

2

“

›

›

›

›

1

2
px´ unq `

1

2
px´ umq

›

›

›

›

2

.

Hence

d2 `

›

›

›

›

1

2
pun ´ nmq

›

›

›

›

2

ď
1

2

`

}x´ un}
2 ` }x´ um}

2
˘

.

By construction

lim
m,nÑ8

1

2

`

}x´ un}
2 ` }x´ um}

2
˘

“ d2

so

lim
m,nÑ8

}un ´ um} “ 0.

Hence the sequence punqnPN is Cauchy and, since H is complete, it converges to a point
x˚. Note that x˚ P U because U is closed.

Step 2. Suppose that

x˚ P U and }x´ x˚} “ inf
uPU

}x´ u}.
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We will show that x˚ satisfies (20.1.6). Let u P U . Set

f : RÑ R, fptq “ }x´ px˚ ` tuq}
2.

Note that fp0q “ }x ´ x˚}
2, ao fp0q “ d2 ď fptq, @t P R, so 0 is a minimum point of f

On the other hand

fptq “ }px´ x˚q ´ tu}
2 “ }x´ x˚}

2 ´ 2txx´ x˚, uy ` t
2}u}2

Hence, the function f is differentiable so that

0 “ f 1p0q “ ´2xx´ x˚, uy “ 0, @u P U.

Step 3. Uniqueness. Suppose there exist x˚, y˚ P U such that

}x´ x˚} “ }x´ y˚} “ inf
uPU

}x´ u}.

Then, according to Step 2 x˚, y˚ satisfy (20.1.6). Then y˚ ´ x˚ P U

xx´ x˚, y˚ ´ x˚y “ xx´ y˚, y˚ ´ x˚y “ 0.

Subtracting the two equalities we deduce

}y˚ ´ x˚}
2 “ xy˚ ´ x˚, y˚ ´ x˚y “ 0,

so x˚ “ y˚. [\

To any closed vector subspace U Ă H we have associated a map PU : H Ñ H such that

PUx P U, @x P X,

}x´ PUx} ď }x´ u}, @u P U,

and x´ PUx P U
K.

Proposition 20.1.16. Let H be a Hilbert space. For any closed subspace U Ă H the
following hold.

(i) The map PU : H Ñ H is linear and continuous. Moreover }PU}op ď 1.

(ii) U “ kerp1´ PU q, P
2
U “ PU .

(iii) pUKqK “ U .

(iv) PUK “ 1´ PU .

Proof. (i) Let x, y P H. Set x˚ “ PUx, y˚ “ PUy. We have to show that PU px`yq “ x˚`y˚,
i.e., px` yq ´ px˚ ` y˚q P U

K.

Let u P U . Then

xpx` yq ´ px˚ ` y˚q, u “ px´ x˚q ` py ´ y˚q, uy “ xx´ x˚, uy ` xy ´ y˚, uy “ 0

Hence PU px ` yq “ PUx ` PUy. A similar argument shows that PU ptxq “ tPUx, @t P R,
x P H.
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Observe that for any x P H we have

x “ px´ PUxq ` PUx, PUx K px´ PUxq

and from Pythagoras Theorem we deduce

}x}2 “ }x´ PUx}
2 ` }PUx}

2 ě }PUx}
2, @x P X.

Hence

}PUx} ď }x}, @x P X.

Theorem 17.1.48 imples that PU is continuous and }PU}op ď 1.

(ii) Clearly if x P U , then PUx “ x since x is the point is U closest to x. Hence
U Ă kerp1´ PU q. Conversely, if x P kerp1´ PU q then

x “ PUx P U.

Hence U “ kerp1´ PU q. We deduce that

P 2
Ux “ PU pPUx q “ PUx

since PUx P U , @x P X.

(iii) Note that

xuK, uy “ 0, @u P U, uK P UK.

This proves that u P pUKqK, @u P U , i.e., U Ă pUKqK.

To prove the opposite inclusion pUKqK Ă U , let v P pUKqK. Set v˚ “ PUv. Then
v˚ P U and pv ´ v˚q P U

K so that

0 “ xv, v ´ v˚y “ }v}
2 ´ xv, v˚y ě }v}

2 ´ }v} ¨ }v˚} “ }v}
`

}v} ´ }v˚}
˘

Hence }v} ď }v˚}. Pythagoras Theorem implies

}v˚}
2 ě }v}2 “ }v ´ v˚}

2 ` }v˚}
2.

Hence }v ´ v˚} “ 0, so v “ v˚ P U .

(iv) Let x P H. To prove that PUKx “ x´PUx it suffices to show that x´px´Puxq P pU
KqK.

Indeed,

x´ px´ PUxq “ PUx P U “ pU
KqK.

[\

Corollary 20.1.17. Suppose that U is a closed subspace. For any x P H there exists a
unique u P U and a unique v P UK such that

x “ u` v.

Proof. The existence follows from the equality 1 “ PU`PUK which yields x “ PUx`PUKx.
If

x “ u` v “ u1 ` v1, u, u1 P U, v, v1 P UK
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then u´ u1 “ v1 ´ v so that u´ u1 P U X UK. Hence pu´ u1q K pu´ u1q, i.e.,

}u´ u1}2 “ xu´ u1, u´ u1y “ 0.

[\

Corollary 20.1.18. Suppose that U Ă H is a vector subspace of H, not necessarily closed.
Then

clpUq “ pUKqK.

In particular, U is dense if and only if UK “ t0u.

Proof. We have

UK “ clpUqK

and Proposition 20.1.16 (iii) implies

clpUq “
`

clpUqK
˘K
“ pUKqK.

Note that U is dense iff clpUq “ H or, equivalently, UK “ clpUqK “ HK “ 0.

[\

Example 20.1.19. Suppose that U is a finite dimensional subspace of the Hilbert space
H. It is then a closed subspace of H; see Exercise 17.18. Fix a basis e1, e2, . . . , en of U
and set

Uk :“ spante1, . . . , eku

Then dimUk “ k. The classical Gram-Schmidt procedure can be described as follows.
Define

f1 :“
1

}e1}
e1

so that }f1} “ 1 and spantf1u “ U1. Next, define

u2 “ e2 ´ PU1e2, f2 “
1

}u2}
u2.

Then

}f2} “ 1, f2 K U1, spantf1, f2u “ U2.

Iterating this procedure we obtain a basis f1, . . . , fn of U such that

fk`1 “
1

}uk`1}
uk`1, uk`1 “ ek`1 ´ PUk

ek`1,

spantf1, . . . , fku “ Uk, @k “ 1, . . . , n,

}fk} “ 1, @k “ 1, . . . , n, fi K fj , @1 ď i, j ď n. (20.1.7)

We recall that a basis that satisfies (20.1.7) is called an orthonormal basis. Note that
(20.1.7) can be rewritten as

xfj , fky “ δjk “

#

1, j “ k,

0, j ‰ k.
(20.1.8)
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Thus, the Gram-Schmidt procedure

te1, . . . , enu Ñ tf1, . . . , fnu

converts a basis into an orthonormal basis.

If pekqkPN is an orthonormal basis of U , then

PUx “
n
ÿ

k“1

xx, ekyek. (20.1.9)

Indeed, note that
C

x´
n
ÿ

k“1

xx, ekyek, ej

G

“ xx, ejy ´
n
ÿ

k“1

xx, ekyxek, ejy

p20.1.8q
“ xx, ejy ´

n
ÿ

k“1

xx, ekyδkj “ 0.

This proves that
˜

x´
n
ÿ

k“1

xx, ekyek

¸

K ej , @j “ 1, . . . , nñ

˜

x´
n
ÿ

k“1

xx, ekyek

¸

K spante1, . . . , enu
looooooooomooooooooon

U

ñ PUx “
n
ÿ

k“1

xx, ekyek. [\

20.1.3. Duality. Recall that H˚ denotes the dual of the Hilbert space H and consists
of continuous linear functionals L : H Ñ R. The norm of such a functional is

}L}˚ :“ inf
␣

C ą 0; |Lphq| ď C}h}, @h P H
(

.

A vector x P H defines a linear functional

xÓ : H Ñ R, xÓphq “ xh, xy.

The Cauchy-Schwarz inequality shows that

|xÓphq| “
ˇ

ˇ xh, xy
ˇ

ˇ ď }x} ¨ }h}, @h P H.

Hence xÓ is a continuous linear functional. We have thus obtained a linear map

H Q x ÞÑ xÓ P H˚.

This is injective because

xÓ “ 0ñ 0 “ xÓpxq “ xx, xy “ }x}2 ñ x “ 0.

Theorem 20.1.20 (Riesz representation). Let H be a real Hilbert space. Then the map

H Q x ÞÑ xÓ P H˚

is a surjective isometry, i.e., for any continuous linear functional L P H˚ there exists a
unique x P H such that L “ xÓ. Moreover }L}˚ “ }x

Ó}˚ “ }x}. We will write x “ LÒ.
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Proof. Let L P H˚zt0u. Set U “ kerL so U is a closed subspace of H since L is
continuous. Moreover U ‰ H since L ‰ 0. Choose x0 P U

K, }x0} “ 1 and set c0 “ Lpx0q.
Set

x :“ c0x0.

Let us show that UK “ spantx0u. Note that L induces a linear map

L : UK Ñ R
This map is injective because Lphq “ 0 and h P UK implies h P U X UK “ t0u. Hence

1 “ dim spantx0u ď dimUK ď 1.

Thus x0 is a basis of UK.

We claim that L “ xÓ. Let h P H. We decompose it as a sum

h “ h0 ` h
K, h0 P U, hK P UK

Then
Lphq “ LphKq and xÓphq “ xh, xy “ xhK, xy “ xÓphKq

so it suffices to show that Lphq “ xÓphq, @h P UK. By construction

Lpx0q “ c0 “ xc0x0, x0y “ xx, x0y “ xÓpx0q

and since x0 is a basis of UK this proves our claim. We know that }L}˚ ď }x} “ |c0|. On
the other hand

}L}˚ “ }L}˚ ¨ }x0} ě |Lpx0q| “ c0.

[\

Remark 20.1.21 (Bra-ket notation). In his foundations of quantum mechanics P. A. M.
Dirac (1902-1984) introduced to types of vectors bra vectors, denoted xx|, and ket vectors,
denoted |xy. The bra vectors form a Hilbert space1 H and the ket vectors are vectors in
its topological dual H˚. Thus, if |αy is a linear functional H Ñ K, then its value on a bra
vector xx| is denoted xx|αy. In Dirac’s notation, the Riesz map

H Q x ÞÑ xÓ P H˚

takes the form xx| ÞÑ |xy. [\

Remark 20.1.22. If pΩ, S, µq is a measured space, then the Riesz representation theorem
in the caseH “ L2pΩ, µq yields Theorem 19.6.13 in the case p “ 2, without the assumption
of sigma-finiteness on µ. [\

Conventions. Let H be a real Hilbert space.

‚ We will denote the elements of the dual H˚ with small cap Greek letters
α, β, ξ etc.

1Physicists actually work with complex vector spaces
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‚ For α P H˚ we will denote by αÒ the unique vector x P H such that xÓ “ α.
More explicitly αÒ is uniquely determined by the condition

αphq “ xαÒ, hy, @h P H.

Suppose that pHi, x´,´yiq, i “ 0, 1 are two real Hilbert spaces and B : H0 Ñ H1

is a bounded linear operator; see Definition 17.1.49. Note that for any continuous linear
functional ξ : H1 Ñ R the composition ξ ˝ B : H0 Ñ R is a continuous linear functional.
We have thus obtained a linear map

B_ : H˚1 Ñ H˚0 , H˚1 Q ξ ÞÑ B_pξq :“ ξ ˝B.

We deduce that

}B_pξq}˚ “ }ξ ˝B}op
p17.1.8q
ď }ξ}op ¨ }B}op “ }B}op ¨ }ξ}˚, (20.1.10)

so B_ is a bounded linear operator. Using the Riesz representation theorem we can identify
H˚i with Hi and B

_ with a bounded linear operator B˚ : H1 Ñ H0. More precisely

@x P H1, B˚x “ pB_xÓqÒ. (20.1.11)

Let us unwrap the above equality. This means that

@y P H0, @x P H1 : xB˚x, yy “ pB_xÓqpyq “ xÓpByq “ xx,Byy. (20.1.12)

Definition 20.1.23 (The adjoint). Let B : H0 Ñ H1 be a bounded linear operator
between the Hilbert spaces H0 and H1. The linear operator B˚ : H1 Ñ H0 defined
the equality (20.1.12) is called the adjoint of B. When H0 “ H1 “ H and B˚ “ B
we say that the operator B is self-adjoint. [\

From the equality (20.1.11) and the Riesz Representation Theorem we deduce

}B˚x}0 “ }B
_xÓ}op

p20.1.10q
ď }B}op ¨ }x

Ó}˚ “ }B}op ¨ }x}1.

This shows that B˚ is a continuous linear operator and

}B˚}op ď }B}op.

From the equality (20.1.12) we deduce

@y P H0, @x P H1 : xBy, xy “ xy,B˚xy “ xpB˚q˚y, xy

Which shows that

B “ pB˚q˚.

Hence

}B}op “ }pB
˚q˚}op ď }B

˚}op.

This proves that

}B˚}op “ }B}op. (20.1.13)
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20.1.4. Abstract Fourier decompositions. The separable Hilbert spaces resemble
very much finite dimensional ones. The goal of this subsection is to present in detail
some of their features.

Definition 20.1.24. Suppose that H a Hilbert space and peiqiPI is a collection of vectors
in H. The collection is said to be an orthogonal set if it satisfies the following properties.
if

xei, ejy “ 0, @i, j P I, i ‰ j.

It is called an orthonormal set if it is orthogonal and

}ei} “ 1, @i P I.

An orthonormal set peiqiPI is called a Hilbert basis if span
␣

ei; i P I
(

is dense in H. [\

We want to emphasize that span
␣

ei; i P I
(

consists of linear combinations of finitely
many of the vectors ei.

Theorem 20.1.25. Any separable Hilbert space admits a Hilbert basis consisting of at
most countably many vectors.

Proof. Suppose thatH is a separable Hilbert space of infinite2 dimension. Fix a countable
dense subset of H, pxnqnPN. We set

Un “ spantx1, . . . , xnu, n P N.
Note that dimUn`1 ď dimUn ` 1 and

spantxn; n P Nu “
ď

nPN
Un.

There exists an increasing sequence of natural numbers pnkqkPN such that dimUnk
“ k.

We set H0 “ 0 Hk :“ Unk
, k ě 1. We construct a sequence of vectors pekqkPN as follows.

Choose vectors hk P HkzHk´1, k P N. Define

uk “ hk ´ PHk´1
hk, ek “

1

}uk}
uk.

Note that for any k P N we have

ek P HkzHk´1, }ek} “ 1, ek K Hk´1.

Thus the collection tekukPN is an orthonormal system such that

Hk “ spante1, . . . , eku, @k.

Note that
spantek; k P Nu “

ď

kPN
Hk “

ď

nPN
Un Ą txn; n P Nu

so spantek; k P Nu is dense in H. This shows that tekukPN is a Hilbert basis. [\

2The finite dimensional ones are dealt with similarly and this case is discussed in most linear algebra books
such as [34].
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Theorem 20.1.26. Suppose that H is a separable Hilbert space and penqnPN is a Hilbert
basis. For any x P H we have

x “
ÿ

nPN
xx, enyen, i.e., lim

nÑ8

›

›

›

›

›

x´
n
ÿ

k“1

xx, enyen

›

›

›

›

›

“ 0, (20.1.14a)

}x}2 “
ÿ

nPN

ˇ

ˇ xx, eny
ˇ

ˇ

2
(20.1.14b)

Proof. For n P N define

Un :“ span
␣

e1, . . . , en
(

.

Then

U1 Ă U2 Ă ¨ ¨ ¨

and their union

U “
ď

nPN
Un

is dense in U . Fix x P H. Since U is dense in H there exists an increasing sequence of
natural numbers

n1 ă n2 ă ¨ ¨ ¨

and vectors uk P Unk
such that

lim
kÑ8

unk
“ x.

Set n0 “ 0, u0 “ 0 and define a new sequence pxnqnPN by setting

xn “ uk´1, if nk´1 ă n ď nk, k ě 1.

More explicitly, pxnqnPN is the sequence

0, . . . , 0
loomoon

n1

, u1, . . . , u1
loooomoooon

n2´n1

, u2, . . . , u2
loooomoooon

n3´n2

, . . .

Note that for any n P N, Dk P N such that nk´1 ă n ď nk. Then

xn “ uk´1 P Unk´1 Ă Un.

Also,

lim
nÑ8

xn “ lim
kÑ8

uk “ x

i.e.,

lim
nÑ8

}x´ xn} “ 0.

Set x˚n :“ PUnx. Since xn P Un, @n, we deduce

}x´ x˚n} ď }x´ xn} Ñ 0.

Hence

lim
nÑ8

x˚n “ x.
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On the other hand (20.1.9) shows that

x˚n “
n
ÿ

k“1

xx, enyen.

This proves (20.1.14a).

Next, observe that from Pythagoras Theorem we deduce

}x}2 “ }x´ x˚n}
2 ` }x˚n}

2 “ }x´ x˚n}
2 `

n
ÿ

k“1

ˇ

ˇ xx, eny
ˇ

ˇ

2
.

The equality (20.1.14b) is obtained by letting nÑ8 in the above equalities. [\

The equality (20.1.14a) is called the abstract Fourier decomposition of x with respect
to the Hilbert basis penqnPN, and the numbers

xx, eny, n P N,

are called the Fourier coefficients of x with respect to the basis penqnPN. The identity
(20.1.14b) is known as Parseval identity.

Theorem 20.1.27. Let H be a separable Hilbert space. Then any Hilbert basis has at
most countably many vectors.

Proof. The case dimH ă 8 is a standard linear algebra fact. Assume dimH “ 8. Since H is separable it admits

a countable Hilbert basis penqnPN. Suppose that pfiqiPI is another Hilbert basis. For each n P N we set

In :“
␣

i P I; xfi, eny ‰ 0
(

.

Observe that since

fi ‰ 0 and fi “
ÿ

nPN
xfi, enyen, @i

we deduce that

@i P I, Dn P N xfi, eny ‰ 0.

Hence

I “
ď

nPN
In.

We will prove that each of the sets In is at most countable.

Observe that

In “
ď

kPN
Ikn, Ikn :“

!

i P I; |xfi, eny| ě
1

k

)

,

Note that

I1n Ă I2n Ă I3n Ă ¨ ¨ ¨

We will show that

|Ikn| ď k2, @n, k P N. (20.1.15)

More precisely, we will show that if J Ă Ikn is a finite subset, then |J | ď k2. Set

HJ :“ span
␣

fj ; j P J
(

.

Denote by eJn the orthogonal projection of en on HJ . Then

1 “ }en}
2 ě }eJn}

2 “

›

›

›

›

›

›

ÿ

jPJ

xen, fjyfj

›

›

›

›

›

›

2

“
ÿ

jPJ

|xen, fjy|
2

JĂIkn
ě

ÿ

jPJ

1

k2
“
|J |

k2
.
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This shows that In is at most countable for any n, so I is at most countable. Since dimH “ 8 we deduce that I is

countable. [\

Suppose that H is a separable real Hilbert space. Fix a Hilbert basis penqnPN of H. To
a vector x P H we associate the sequence of Fourier coefficients with respect to this basis

x ÞÑ x “ pxnqnPN, xn “ xx, eny.

From the Parseval identity we deduce
ÿ

nPN
x2n “ }x}

2 ă 8

and thus we have a map

H Q x ÞÑ x P ℓ2.

This map is an isometry

}x}H “ }x}ℓ2 .

We want to show that this map is surjective. Let y P ℓ2. We want to show that there
exists x P H such that x “ y. More precisely we will show that the series

ÿ

nPN
ynen

converges in H. Its sum is then a vector x such that x “ y.

Since y P ℓ2 we deduce
ÿ

nPN
y2n ă 8.

Set

Yn “
n
ÿ

k“1

ynen, sn “
n
ÿ

k“1

y2k.

Note that for any m ă n we have

}Yn ´ Ym}
2 “

›

›

›

›

›

n
ÿ

k“m`1

ykek

›

›

›

›

›

2

“

n
ÿ

k“m`1

y2k “ sn ´ sm.

Since the sequence sn is convergent, it is Cauchy, so

lim
m,nÑ8

|sn ´ sm| “ 0.

Hence

lim
m,nÑ8

}Yn ´ Ym} “ lim
m,nÑ8

a

|sn ´ sm| “ 0.

Thus, the sequence of partial sums pYnqnPN is Cauchy and, since H is complete, this
sequence is convergent. We have thus proved the following result.
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Theorem 20.1.28. Suppose that pH, x´,´yq is a separable real Hilbert space and penqnPN
is a Hilbert basis. Then the correspondence

H P x ÞÑ
`

xx, eny
˘

nPN P ℓ2

is an isomorphism of Hilbert spaces. [\

20.2. A taste of harmonic analysis

We want to take a brief side trip in our journey through functional analysis to discuss a
piece of classical analysis that is responsible for many of the developments in functional
analysis and partial differential equations. We barely scratch the surface of this branch of
mathematics. For a more in depth presentation of this subject we refer to [23, 40], two
classic sources in this area of mathematics.

20.2.1. Trigonometric series: L2-theory. Denote by T the unit circle in R2,

T :“
␣

px, yq P R2; x2 ` y2 “ 1
(

.

We think of it as a metric subspace of R2 equipped with the Euclidean metric. As such it
has a Borel sigma-algebra BT. Set

I :“ p´π, πs Ă R.
We have a continuous bijection

Φ : IÑ T, p´π, πs Q θ ÞÑ
`

cos θ, sin θ
˘

P T.
Since Φ is continuous it is also a measurable map pI,BIq Ñ pT,BTq. We denote by σ the
pushforward measure

σ :“ Φ#λ : BT Ñ r0,8q

More explicitly, we can view any measurable function f : TÑ R as a measurable function
f “ fpθq : IÑ R and then

ż

T
fdσ “

ż

I
fpθqλ

“

dθ
‰

“

ż π

´π
fpθqdθ.

Note that a continuous function f : T Ñ R can be identified with a continuous function
f : r´π, πs Ñ R such that fp´πq “ fpπq or, equivalently, with a 2π-periodic continuous
function

f : RÑ R, fpx` 2πq “ fpxq, @x P R.
For any n P N we define

un, vn : TÑ R, unpθq “ cosnθ, vnpθq “ sinnθ, θ P p´π, πs.

We set u0 : T Ñ R, u0pθq “ 1, @θ. We denote by T Ă CpTq the subspace spanned by
the functions um, vn, n ě 0, m ą 0. As mentioned in Example 17.4.12 functions in T are
called trigonometric polynomials, and have the form

ppθq “ a0 `
n
ÿ

k“1

`

an cos kθ ` bn sin kθ
˘

.
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As shown in Example 17.4.12, the Stone-Weierstrass theorem implies that the space T is
actually an algebra of functions dense in CpTq with respect to the sup-norm. Corollary
19.4.15 implies that the space T is dense in L2pT,σq.

Lemma 20.2.1. The collection of functions
␣

um, vn; m ě 0, n ą 0
(

is an orthogonal system of L2pTq. More precisely, we have

}u0}
2
L2 “ 2π, xu0, umy “ xu0, vny “ 0, @m,n ą 0 (20.2.1a)

}um}
2
L2 “ }vn}

2
L2 “ π, @m,n ą 0, (20.2.1b)

xum, uny “ xvm, vny “ 0, @m,n ą 0, m ‰ 0. (20.2.1c)

xum, vny “ 0, @m ě 0, n ą 0. (20.2.1d)

Proof. Note that

}u0}
2
L2 “

ż π

´π
dθ “ 2π, xu0, uny “

ż π

´π
cosnθdθ “ 0, @n ą 0.

The equality xu0, vny “ 0 is proved in a similar fashion.

Next observe that for n ą 0 we have

unpθq
2 ´ vnpθq

2 “ pcosnθq2 ´ psinnθq2 “ cosp2nθq

and thus

}un}
2
L2 ´ }vn}

2
L2 “

ż π

´π

`

u2n ´ v
2
n

˘

dθ “

ż π

´π
cosp2nθq dθ “ 0

Hence }un}
2
L2 “ }vn}

2
L2 . On the other hand,

}un}
2
L2 ` }vn}

2
L2 “

ż π

´π

`

u2n ` v
2
n

˘

looooomooooon

“1

dθ “ 2π.

Observe that

xum, uny ´ xvm, vny “

ż π

´π

`

cosmθ cosnθ ´ sinmθ sinnθ
˘

dθ “

ż π

´π
cospm` nqθ dθ “ 0,

xum, uny ` xvm, vny “

ż π

´π

`

cosmθ cosnθ ` sinmθ sinnθ
˘

dθ “

ż π

´π
cospm´ nqθ dθ “ 0.

This proves (20.2.1c). The equalities (20.2.1d) are proved in a similar fashion using the
trigonometric identities in Section 5.7. [\

We set

u0 :“
1
?
2π
, un “

1
?
π
un, vn “

1
?
π
vn

Lemma 20.2.1 shows that the collection
␣

un, vn, m ě 0, n ą 0
(
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is an orthonormal system that spans T. Since T is dense in L2pT,σq we deduce that the
above collection is a Hilbert basis of L2pT,σq. Thus, to any f P L2pT,σq there is an
associated Fourier series

xf,u0yu0 `
ÿ

nPN

`

xf,unyun ` xf,vnyvn
˘

that converges in L2 to f . Let us describe this series more explicitly. For m ě 0 and n ą 0
we set

am “ ampfq “ xf, umy “

ż π

´π
fpθq cosmθ dθ, bn “ bnpfq “

ż π

´π
fpθq sinnθ dθ.

Observe that

xf,u0yu0 “
1

2π
xf, u0yu0 “

1

2π
a0u0,

xf,unyun “
1

π
xf, unyun “

1

π
anun,

and, similarly

xf,vnyvn “
1

π
bnvn.

Thus the associated Fourier series is

a0
2π
`

1

π

ÿ

nPN

`

an cosnθ ` bn sinnθ
˘

.

Its partial sums,

Sn
“

f
‰

“
a0pfq

2π
`

1

π

n
ÿ

k“1

`

akpfq cos kθ ` bkpfq sin kθ
˘

, n P N,

converge in L2 to fpθq. Moreover, Parseval’s identity takes the form
ż π

´π
fpθq2dθ “ |xf,u0y|

2 `
ÿ

nPN

`

|xf,uny|
2 ` |xf,vny|

2
˘

“
a20
2π
`

1

π

ÿ

nPN

`

a2n ` b
2
n

˘

. (20.2.2)

This identity has surprising consequences.

Example 20.2.2 (A computation of Euler). Riemann’s zeta function is

ζ : p1,8q Ñ R, ζr “
ÿ

nPN

1

nr

As explained in Example 4.6.7(b), the above series is convergent for r ą 1. We want to
compute ζp2kq, k P N.

The function µ1 : p´π, πs Ñ R, µ1pxq “ x is bounded and thus defines a (discontinu-
ous) L2 function on T. Note that

}µ1}
2
L2 “

ż π

´π
x2dx “

2π3

3
.
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Observe that for any n P N the function x cosnx is odd so

anpµ1q “

ż π

´π
x cosnx dx “ 0, @n.

On the other hand, using the equality cosnπ “ p´1qn, we deduce

bnpµ1q “

ż π

´π
x sinnx dx “

1

n

`

´x cosnx
˘

ˇ

ˇ

ˇ

π

´π
`

1

n

ż π

´π
cosnx dx

loooooooomoooooooon

“0

“
2πp´1qn`1

n
(20.2.3)

Hence
1

π
b2n “

4π

n2
,

and
2π3

3
“ 4π

ÿ

nPN

1

n2
.

We have thus obtained the famous identity first discovered by L. Euler

π2

6
“ 1`

1

22
`

1

32
` ¨ ¨ ¨ “ ζp2q. (20.2.4)

The value ζp2q was determine by analyzing the Fourier series of µ1pxq. It turns out that
the value ζp2mq is obtained from Parseval’s identity applied to the Fourier series of a
polynomial of degree m, the Bernoulli polynomial Bmpxq. [\

Example 20.2.3 (Bernoulli polynomials and zeta functions). Denote by Rrxs the
space of polynomials in one real variable x with real coefficients. Define the (shifted)
Bernoulli operator

B : Rrxs Ñ Rrxs, Rrxs Q p ÞÑ Bp P Rrxs, Bppxq “
1

2π

ż x`2π

x
ppsqds.

Lemma 20.2.4. The Bernoulli operator B is bijective.

Proof. We set µnpxq “ xn and we denote by Rrxsn the space of polynomials of degree
ď n

Rrxsn “ spantµ0, . . . , µn u.

Note that

Bµnpxq “
1

2πpn` 1q

´

px` 2πqn`1 ´ xn`1
¯

“ xn ` lower order terms.

Hence

BRrxsn Ă Rrxsn, Bµn ´ µn P Rrxsn´1.
Thus, the difference J “ 1 ´ B is nilpotent when restricted to Rrxsn. More precisely
Jn`1 “ 0. Hence, on Rrxsn we have

1 “ 1´ Jn`1 “ p1´ Jqp1` J ` ¨ ¨ ¨ ` Jnq “ Bp1` J ` ¨ ¨ ¨ ` Jnq.

Hence the map B : Rrxsn Ñ Rrxsn is bijective @n. [\
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The degree n Bernoulli polynomial Bn is the polynomial uniquely determined by the
equality

BBnpxq “
1

2π

ż x`2π

x
Bnpsqds “ pnpxq :“

ˆ

x` π

2π

˙n

, @n ě 0, @x P R. (20.2.5)

For example

B0pxq “ 1, B1pxq “
x

2π
. (20.2.6)

Define

D,∆ : Rrxs Ñ Rrxs, Dppxq “
dp

dx
, ∆ppxq “

1

2π

`

ppx` 2πq ´ ppxq
˘

.

Note that ∆ “ BD. Derivating (20.2.5) we deduce

∆Bn “
n

2π
pn´1 ñ BDBn “

n

2π
pn´1 ñ BpDBnq “

n

2π
BpBn´1q.

Since B is injective we deduce

B1n “
n

2π
Bn´1, @n P N. (20.2.7)

Observe that if we set B´n pxq :“ Bnp´xq, then

BB´n pxq “
1

2π

ż x`2π

x
Bnp´sqds “

1

2π

ż ´x

´x´2π
Bnptqdt

“ ´pnp´x´ 2πq “ ´

ˆ

´x´ π

2π

˙n

“ p´1qnpnpxq “ p´1q
nBBnpxq

Hence
Bnp´xq “ p´1q

nBnpxq, @n ě 0, x P R.
Thus, the polynomials B2k are even functions, while the polynomials B2k´1 are odd func-
tions. Observe that B0pxq “ 1 and the polynomial B1 of degree one is odd so it must have
the form B1pxq “ cx. From the equality (20.2.7) we deduce

B0pxq “ 1, B1pxq “
1

2π
x.

This completes the digression.

Define

an,m “ anpBmq “

ż π

´π
Bmpxq cosnx dx, bn,m “ bnpBmq “

ż π

´π
Bmpxq sinnx dx,

zn,m “ an,m ` ibn,m “

ż π

´π
Bmpxqe

nix dx.

Observe that
|an,m|

2 ` |bn,m|
2 “ |zn,m|

2.

We compute zn,m by induction on n. We have

z0,m “

#

2π, m “ 0,

0, m ą 0.
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z1,0 “ 0,

z1,m “
1

2π

ż π

´π
xeimxdx “

i

2π

ż π

´π
πx sinmxdx

p20.2.3q
“

p´1qm`1i

m
.

For n ą 1 we have

zn,m “
1

mi

ż π

´π
Bnpxq

d

dx
peimxq dx

“
emπi

mi

`

Bnpπq ´Bnp´πq
˘

looooooooooomooooooooooon

“0

´
1

mi

ż π

´π
B1npxqe

imxdx

“
ni

2πm

ż π

´π
Bn´1e

imx dx “
ni

2πm
zn´1,m.

We deduce inductively that

zn,0 “

ż π

´π
Bnpxqdx “ 2πpnp´πq “ 0,

zn,m “

ˆ

i

2πm

˙n´1

npn´ 1q ¨ ¨ ¨ 2z1,m “ 2π
n!in

p2πmqn
“ 2πn!

ˆ

i

2πm

˙n

We deduce that for any n P N we have
ż π

´π
Bnpxq

2dx “
1

2π
|zn,0|

2 “
1

π

ÿ

mPN
|zn,m|

2 “ 4πpn!q2
ÿ

mPN

1

p2πmq2n
.

Hence

1`
1

22n
`

1

32n
` ¨ ¨ ¨ “

p2πq2n

4πpn!q2

ż π

´π
Bnpxq

2dx.

We can be even more precise. Set

βn :“ Bnp´πq @n ě 0.

From the equality ∆Bn “
n
2πpn´1 we deduce that

Bnpπq ´Bnp´πq “
n

2
pn´1p´πq “ 0, @n ą 1,

so Bnpπq “ Bnp´πq “ βn, @n ě 0. For n ě 1 we have
ż π

´π
BnpxqB0pxqdx “

ż π

´π
Bnpxqdx “ 2πpnp´πq “ 0.

More generally, for n ě m ą 1 we have

In,m :“

ż π

´π
BnpxqBmdx “

2π

n` 1

ż π

´π
B1n`1Bmdx

“
2π

n` 1

`

Bn`1pπqBmpπq ´Bn`1p´πqBmp´πq
˘

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“0

´
m

n` 1

ż π

´π
Bn`1pxqBm´1pxqdx

“ ´
m

n` 1
In`1,m´1.



948 20. Elements of functional analysis

Hence, for n ą 1 we have
ż π

´π
Bnpxq

2dx “ In,n “ ´
n

n` 1
In`1,m´1 “

npn´ 1q

pn` 1qpn` 2q
In`2,n´2 “ ¨ ¨ ¨

“ p´1qn´1
npn´ 1q ¨ ¨ ¨ 2

pn` 1qpn` 2q ¨ ¨ ¨ p2n´ 1q
I2n´1,1.

We have

I2n´1,1 “

ż π

´π
B2n´1pxqB1pxqdx “

2π

2n

ż π

´π
B12npxqB1pxqdx “

1

2n

ż π

´π
B12npxqxdx

“
π

2n

`

B2npπq `B2np´πq
˘

´
1

2n

ż π

´π
B2npxqdx

loooooomoooooon

“0

“
β2nπ

n
.

Hence
ż π

´π
Bnpxq

2 “ p´1qn´1
npn´ 1q ¨ ¨ ¨ 2πβ2n

pn` 1qpn` 2q ¨ ¨ ¨ p2n´ 1qn
“ p´1qn´1

2πβ2n
`

2n
n

˘ . (20.2.8)

We deduce

1`
1

22n
`

1

32n
` ¨ ¨ ¨ “ p´1qn´1

p2πq2nβ2n
2p2nq!

. (20.2.9)

Recall (see page 82) Riemann’s zeta function

ζ : p1,8q Ñ R, ζprq “
8
ÿ

n“1

1

nr
.

The last equality can be restated succinctly

ζp2nq “ p´1qn´1
p2πq2nβ2n
2p2nq!

, @n P N (20.2.10)

The numbers βn also known as the Bernoulli numbers and there is a very convenient
recurrence formula that can be used to compute them.

Observe that

DkBn “
pnqk
p2πqk

Bn´k, pnqk :“ npn´ 1q ¨ ¨ ¨ pn´ k ` 1q, @k, n P N, n ě k.

Using Taylor formula at x0 “ ´π we deduce

Bnpxq “
n
ÿ

k“0

1

k!
DkBnp´πqpx` πq

k “

n
ÿ

k“0

pnqk
k!

Bn´kp´πq

ˆ

x` π

2π

˙k

“

n
ÿ

k“1

ˆ

n

k

˙

βn´k

ˆ

x` π

2π

˙k

.

(20.2.11)
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Consider the formal power series

Btpxq “
ÿ

ně0

Bnpxq
tn

n!
, βptq “

ÿ

ně0

βnt
n

n!
.

Note that

Btp´πq “ βptq.

The equality (20.2.11) is equivalent to

et
px`πq

2π βptq “ Btpxq. (20.2.12)

From the equalities,

Bnpx` 2πq ´Bnpxq “ 2π∆Bn “ n

ˆ

x` π

2π

˙n´1

, @n ě 1,

we deduce
tn

n!

`

Bnpx` 2πq ´Bnpxq
˘

“
t

2π

tn´1px` πqn´1

p2πqn´1pn´ 1q!
. (20.2.13)

Summing over n we deduce

Btpx` 2πq ´Btpxq “ te
tpx`πq

2π .

On the other hand, the equality (20.2.12) implies

Btpx` 2πq ´Btpxq “ e
tpx`πq

2π

`

et ´ 1
˘

βptq.

Hence

te
tpx`πq

2π “ e
tpx`πq

2π

`

et ´ 1
˘

βptq,

i.e.,

t “ βptqpet ´ 1q.

In other words, βptq is the Taylor series of t
et´1 . From a computational point of view, it is

more convenient to interpret the equality t “ βptqpet´ 1q as defining a recurrence relation
on the Bernoulli numbers. More precisely, we have

β0 “ 1, β1 “ B1p´πq “ ´
1

2
,

n
ÿ

k“1

βn´k

ˆ

n

k

˙

“ 0,

or more explicitly
ˆ

n

1

˙

βn´1 `

ˆ

n

2

˙

βn´2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

β0 “ 0,

so that

βn´1 “ ´
1

n

˜

ˆ

n

2

˙

βn´2 ` ¨ ¨ ¨ `

ˆ

n

n

˙

β0

¸

.
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Here are the first few values of the Bernoulli numbers.

n 0 1 2 4 6 8 10

βn 1 ´1
2

1
6 ´ 1

30
1
42 ´ 1

30
5
66

.

All the Bernoulli numbers β2k`1, k ě 1 are zero. To see this note that

βptq ´ β1t “
t

et ´ 1
`
t

2
“ t

et ` 1

et ´ 1
“ t

et{2 ` e´t{2

et{2 ´ e´t{2
“
t cosh t

sinh t
.

The last function is even so all its Taylor coefficients of odd degree are zero. [\

Remark 20.2.5. The above definition of Bernoulli polynomials differs from the traditional
one. The traditional Bernoulli polynomialsBn are related to the polynomialsBn we defined
above via the change of variables x “ πp2y ´ 1q, or y “ x`π

2π , so that

Bnpyq “ Bn
`

πp2y ´ 1q
˘

.

Thus βn “ Bnp´πq “Bnp0q

xn “

ż x`1

x
Bnptqdt, B

1

npxq “ nBn´1pxq, Bnpx` 1q ´Bnpxq “ nxn´1 (20.2.14a)

ÿ

ně0

Bnpxq
tn

n!
“ etxβptq, βptq “

t

et ´ 1
. (20.2.14b)

Bnpyq “
n
ÿ

k“1

ˆ

n

k

˙

βn´ky
k. (20.2.14c)

In particular,

1

k ` 1

`

Bk`1pnq ´Bk`1p0q
˘

“ 1k ` 2k ` ¨ ¨ ¨ ` pn´ 1qk, @k, n P N, n ě 2.

Here are a few of these polynomials.

B1pxq “ x´
1

2
, B2pxq “ x2 ´ x`

1

6
, B3pxq “ x3 ´

3x2

2
`
x

2
,

B4pxq “ x4 ´ 2x3 ` x2 ´
1

30
, B5pxq “ x5 ´

5x4

2
`

5x3

3
´
x

6
.

(20.2.15)

[\

20.2.2. The Fourier series of an L1 function. For our further developments it is
convenient to allow complex valued functions in our considerations. Observe first that
T can be identified with set of complex numbers of norm 1 and, as such, it has a group
structure with respect to the multiplication of complex numbers. An element of T can be
identified with the complex number eix “ cosx` i sinx, x P p´π, πs.
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For every real valued function f P L2pTq we define its Fourier coefficients

anpfq “

ż π

´π
fpxq cosnx dx, bmpfq “

ż π

´π
fpxq sinmxdx, m, n P Z,

where

a´npfq “ anpfq, b´mpfq “ ´bmpfq.

Note that

a´npfq cosp´nxq “ anpfq cosnx, b´npfq sinp´nxq “ bmpfq sinnx, @n P Z.

The associated Fourier series is

1

2π
a0pfq `

1

π

ÿ

nPN

`

anpfq cosnx` bnpfq sinnx
˘

“
1

2π

ÿ

nPZ

`

anpfq cosnx` bnpfq sinnx
˘

.

The partial sums of this series are

Sn
“

f
‰

“
1

2π
a0pfq `

1

π

n
ÿ

k“1

`

akpfq cos kx` bkpfq sin kx
˘

“
1

2π

ÿ

|k|ďn

`

akpfq cos kx` bkpfq sin kx
˘

,

and they converge in L2 to f .

For complex valued functions f P L2pT,Cq we define the Fourier coefficients

pfpnq :“

ż π

´π
fpθqe´inθ dθ, n P Z.

The complex Fourier series of f “ u` iv P L2pT,Cq is
1

2π

ÿ

nPZ

pfpnqeinx, pfpnq “

ż π

´π
fpθqe´inθ dθ.

Its partial sums are

SC
n

“

f
‰

“
1

2π

ÿ

|k|ďn

pfpkqeikx “
1

2π

ÿ

|k|ďn

`

pupkq ` ipvpkq
˘

eikx

Now observe that pup0q “ a0puq while for k ą 0

pupkqeikx ` pup´kqe´ikx “ 2
`

akpuq cos kx` bkpuq sin kx
˘

,

so

SC
n pfq “ Sn

“

u
‰

` iSn
“

v
‰

proving that

lim
nÑ8

}SC
n pfq ´ f}L2 “ 0.



952 20. Elements of functional analysis

Let us observe that

pfpnq “ anpfq ´ ibnpfq “ anpuq ` bnpvq ´ i
`

anpvq ` bnpuq
˘

.

Hence
ˇ

ˇ pfpnq
ˇ

ˇ

2
`
ˇ

ˇ pfp´nq
ˇ

ˇ

2
“ 2

`

|anpuq|
2 ` |bnpuq|

2 ` |anpvq|
2 ` |bnpvq|

2
˘

,

and we deduce the complex Parseval formula
ż π

´π
|fpxq|2 dx “

1

2π

ÿ

nPZ

ˇ

ˇ pfpnq
ˇ

ˇ

2
. (20.2.16)

If f is real valued we have SC
n

“

f
‰

“ Sn
“

f
‰

. For this reason we will drop the more

complicated notation SC
n and we will stick with the simpler one Sn with the understanding

that Sn
“

f
‰

“ SC
n

“

f
‰

when f is complex valued.

We have produced a bijective continuous map

F : L2pT,Cq Ñ L2pZ,Cq, f ÞÑ pf

called the Fourier transform for the Abelian group T. Moreover the rescaled map 1?
2π
F

is an isometry.

Observe that the expression

pfpnq “

ż π

´π
fpxqe´inxdx,

make sense for any f P L1pT,Cq and
ˇ

ˇ pfpnq
ˇ

ˇ ď }f}L1

so the Fourier transform extends to a continuous linear map

F : L1pT,Cq Ñ L8pZ,Cq.

A few natural questions come to mind.

(i) Suppose that f P CpTq. In particular, f P L2 so

lim
nÑ8

}Sn
“

f
‰

´ f}L2 “ 0.

Given x P T, is it true that Sn
“

f
‰

pxq converges to fpxq as nÑ8?

(ii) We have seen that the complex Fourier coefficients pfpnq uniquely determine the
function f if f P L2. Is this true also for f P L1 Ľ L2?

20.2.3. Pointwise convergence of Fourier series. Let f P L1pT,Cq. Then for any
n P N we have

Sn
“

f
‰

“
1

2π

ÿ

|k|ďn

pfpkqeikx “
ÿ

|k|ďn

1

2π

ˆ
ż π

´π
fpyqe´ikydy

˙

eikx
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“

ż π

´π

1

2π

¨

˝

ÿ

|k|ďn

eikpx´yq

˛

‚

looooooooomooooooooon

“:Dnpx´yq

fpyqdy.

The function Dn : T Ñ C is called the Dirichlet kernel. Despite its appearance, it is real
valued. Indeed, observe

ÿ

|k|ďn

eikpx´yq “ 1` 2
n
ÿ

k“1

cos kpx´ yq.

The sum
n
ÿ

k“1

cos kt

can be expressed in more compact form. To see this, set z “ cos t so

n
ÿ

k“1

cos kt “ Re pz ` ¨ ¨ ¨ ` znq.

On the other hand, we have z̄ “ 1
z and

z ` ¨ ¨ ¨ ` zn “ z
zn ´ 1

z ´ 1
“
zn ´ 1

1´ z̄
“

cosnt` i sinnt´ 1

1´ cos t` i sin t

(1´ cos θ “ 2 sin2 θ{2, sin θ “ 2 sin θ{2 cos θ{2)

“
´2 sin2 nt{2` 2i sinnt{2 cosnt{2

2 sin2 t{2` 2i sin t{2 cos t{2
“
i sinnt{2

i sin t{2

pcosnt{2` i sinnt{2q

pcos t{2´ i sin t{2q

“
sinnt{2

sin t{2
pcosnt{2` i sinnt{2qpcos t{2` i sin t{2q

“
sinnt{2

sin t{2

`

cospn` 1qt{2` i sinpn` 1qt{2
˘

.

Now observe that

2 sinpnt{2q cospn` 1qt{2 “ sinp2n` 1qt{2´ sin t{2

2 sinpnt{2q sinpn` 1qt{2 “ cos t{2´ cosp2n` 1qt{2.

Hence, @n P N, we have,

cos t` ¨ ¨ ¨ ` cosnt “
1

2

sinp2n` 1qt{2´ sin t{2

sin t{2
(20.2.17a)

sin t` ¨ ¨ ¨ ` sinnt “
1

2

cos t{2´ cosp2n` 1qt{2

sin t{2
. (20.2.17b)
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In particular

Dnptq “ 1`
sinp2n` 1qt{2´ sin t{2

sin t{2
“

sinp2n` 1qt{2

sin t{2
.

Note that Dnptq is even, Dnp0q “ 2n` 1; see Figure 20.1.

Figure 20.1. The graph of D8ptq.

We deduce that for any f P L1pT,Cq we have

Sn
“

f
‰

p0q “
1

2π

ż π

´π
Dnptqfptq dy “

1

2π

ż π

´π

sinp2n` 1qt{2

sin t{2
fptqdt. (20.2.18)

The space of CpTq of continuous functions T Ñ R is a Banach space with respect to the
sup-norm } ´ }8.

Theorem 20.2.6. Denote by X0 the subset of CpTq consisting of functions such that
Sn

“

f
‰

p0q converges to fp0q. Then X0 is contained in a meagre set. In other words, the
collection of continuous functions for which one can expect pointwise convergence of the
associated Fourier series is extremely “skinny”.

Proof. We have linear functionals

λn : CpTq Ñ R, f ÞÑ Sn
“

f
‰

p0q “
1

2π

ż π

´π

sinp2n` 1qt{2

sin t{2
fptqdt

and
λ8 : CpTq Ñ R, λ8pfq “ fp0q.

Thus
X0 :“

␣

f P CpTq; lim
nÑ8

λnpfq “ λ8pfq
(

.
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Observe that the above functionals are continuous since

|λnpfq| ď
1

2π
}Dn}L1 ¨ }f}8.

Lemma 20.2.7. For each n, denote by }λn}˚ the norm of the linear functional λn. Then

lim
nÑ8

}λn}˚ “ 8.

Let us first show that the above Lemma implies the conclusion of Theorem 20.2.6. For
k P N we set

Xk :“
␣

f P CpTq; |λnpfq| ď k}f}8, @n P N
(

.

Observe that Xk is a closed set since it is an intersection of closed sets

Xk “
č

nPN

␣

f P CpTq; |λnpfq| ď k}f}8
(

.

On the other hand, Xk has empty interior, for any k. To see this we argue by contradiction.
Suppose that f0 P intXk. Then there exists r ą 0 such that Brpf0q Ă Xk. Thus,

@g P CpTq, }g}8 ă r ñ |λkpf0 ` gq| ď k}f0 ` g}8.

Now let f P CpTqzt0u. Define

f “
1

}f}8
.

Then
}f}8 “ 1, f0 ` rf{2 P Xk

ñ @n P N,
r

2
|λnpfq| “ |λnprfq| ď |λnpf0 ` rf{2q| ` |λnpf0qq|

ď k
`

}f0 ` rf{2q}8 ` }f0}8
˘

ď k
`

p2}f0}8 ` r{2q

Hence, @f P CpTqzt0u and @n P N we have

|λnpfq|

}f}8
“ |λnpfq| ď

2k
`

p2}f0}8 ` r{2q

r

In other words

}λn}˚ ď
2k
`

p2}f0}8 ` r{2q

r
, @n P N.

This contradicts Lemma 20.2.7. This proves that the union

X :“
ď

kPN
Xk

is a meagre set as a countable union of closed sets with empty interiors. On the other
hand, observe that X0 Ă X. Indeed, if f P X0zt0u, then

1

}f}8
λnpfq Ñ

1

}f}8
fp0q.

Hence, the sequence 1
}f}8

λnpfq is bounded so there exists k P N such that

1

}f}8
|λnpfq| ă k, @n,
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i.e., f P Xk. [\

Proof of Lemma 20.2.7. For n P N Consider the function

fm : r´π, πs Ñ R, fnptq “ sin
p2n` 1q|t|

2

this is continuous and fnpπq “ fnp´πq and this defines a continuous function on the unit
circle T. Moreover

λnpfnq “
1

2π

ż π

´π

sinp2n` 1qt{2

sin t{2
sin
p2n` 1q|t|

2
dt “

1

π

ż π

0

`

sin p2n`1qt2

˘2

sin t{2
dt

Set h :“ 2π
2n`1 . We have

ż π

0

`

sin p2n`1qt2

˘2

sin t{2
dt “

n
ÿ

k“1

ż kh

pk´1qh

`

sin p2n`1qt2

˘2

sin t{2
dt`

ż π

2nπ
2n`1

`

sin p2n`1qt2

˘2

sin t{2
dt

(use 1
sin t{2 ě

2
t ě

2
kh for t P rpk ´ 1qh, khs)

ě

n
ÿ

k“1

2

kh

ż kh

pk´1qh

´

sin
p2n` 1qt

2

¯2
dt

x :“ p2n`1qt
2

“

n
ÿ

k“1

4

khp2n` 1q
looooomooooon

“ 2
kπ

ż kπ

pk´1qπ
psinxq2dx

looooooooomooooooooon

“π
2

“

n
ÿ

k“1

1

k
.

Observe that }fn}8 “ 1 so

›

›λnpfnq
›

›

˚
ě λnpfnq ě

1

2π

n
ÿ

k“1

1

k
Ñ8 as nÑ8.

[\

According to Theorem 20.2.6, the continuous functions f : T Ñ R such that the
partial Fourier sums Sn

“

f
‰

converge uniformly (or even pointwisely) to f are a rare
species. However, they do exist. For example, if f is constant, fpzq “ 1, @z P T, then

anpfq “ bnpfq “ 0, @n P N,

so that

Sn
“

f
‰

“
1

2π
a0pfq “ 1, @n P N

so obviously Sn
“

1
‰

Ñ 1 uniformly. Let us observe that this implies that

Sn
“

1
‰

“
1

2π

ż π

´π
Dnpx´ yq dy “ 1, @x P r´π, πs. (20.2.19)

However, this convergence phenomenon is not limited to this trivial case.
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Let us first investigate when the Fourier series of a function f P L1pTq converges. In
the sequel we will think of functions T Ñ R as 2π-periodic functions. Observe that if
f P L1pTq, then

ż π

´π
fpyqdy “

ż x`2π

x
fpyqdy, @x P R.

Fix x P r´π, πs and f P L1pTq. We want to investigate when the partial sums Sn
“

f
‰

pxq
converge to a given real number s. We follow the excellent presentation in [33, Ch.13].
We have

Sn
“

f
‰

pxq “
1

2π

ż π

´π
Dnpx´ yqfpyqdy

y“x`t
“

1

2π

ż x`π

x´π
Dnp´tqfpx` tqdt

(use the 2π-periodicity of t ÞÑ Dnp´tq and t ÞÑ fpx` tq

“
1

2π

ż π

´π
Dnp´tqfpx` tqdt

(Dn is even)

“
1

2π

ż π

´π
Dnptqfpx` tqdt “

1

2π

ż π

´π
Dnptqfpx´ tqdt

On the other hand, using (20.2.19), we deduce

s “
1

2π

ż π

´π
Dnptqsdt.

We deduce

lim
nÑ8

Sn
“

f
‰

pxq “ sðñ lim
nÑ8

ż π

´π
Dnptq

`

fpx` tq ´ s
˘

dt “ 0. (20.2.20)

Thus

lim
nÑ8

Sn
“

f
‰

pxq “ fpxqðñ lim
nÑ8

ż π

´π
Dnptq

`

fpx` tq ´ fpxq
˘

dt “ 0. (20.2.21)

The next result will play a fundamental role in our investigation.

Theorem 20.2.8 (Riemann-Lebesgue Lemma). Let a, b P R, a ă b and f P L1pra, bs,λq.
Then

lim
λÑ8

ż b

a
fpxq cosλx dx “ lim

λÑ8

ż b

a
fpxq sinλx dx “ 0.

Proof. Suppose first that f is a polynomial. Integrating by parts we deduce
ż b

a
fpxq cosλxdx “

fpxq sinλx

λ

ˇ

ˇ

ˇ

x“b

x“a
´

1

λ

ż b

a
f 1pxq sinλxdx

Both terms above go to zero as λÑ8 so

lim
λÑ8

ż b

a
fpxq cosλx “ 0
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The other equality is proved in a similar fashion. This proves the Riemann-Lebesgue
Lemma when f is a polynomial.

Suppose that f P L1pra, bsq. Let ε ą 0. From the Weierstrass approximation theorem
(Corollary 17.4.11) and Corollary 19.4.15 we deduce that exists a polynomial p such that

ż b

a
|fpxq ´ ppxq|dx ă

ε

2
.

From the Riemann-Lebesgue Lemma for polynomials we deduce that there exists Λpεq ą 0
such that

@λ ą Λpεq,

ˇ

ˇ

ˇ

ˇ

ż b

a
ppxq cosλxdx

ˇ

ˇ

ˇ

ˇ

ă
ε

2
.

Hence, for all λ ą Λpεq we have
ˇ

ˇ

ˇ

ˇ

ż b

a
fpxq cosλxdx

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż b

a

`

fpxq ´ ppxq
˘

cosλxdx

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż b

a
ppxq cosλxdx

ˇ

ˇ

ˇ

ˇ

ă

ż b

a

ˇ

ˇ

`

fpxq ´ ppxq
˘

cosλx
ˇ

ˇdx`
ε

2
ď

ż b

a

ˇ

ˇ fpxq ´ ppxq
ˇ

ˇ dx`
ε

2
ă ε.

Hence @f P L1pra, bsq we have

lim
λÑ8

ż b

a
fpxq cosλx “ 0

The other equality is proved in a similar fashion. [\

Corollary 20.2.9. For any f P L1pTq we have

lim
nÑ8

anpfq “ lim
nÑ8

bnpfq “ 0. [\

Remark 20.2.10. The Riemann-Lebesgue Lemma is a rather miraculous result because
the function fpxq cosλx does not converge to 0 as λ Ñ 8. The only reason why the
integral of this function is small for λ large has to be a mysterious balancing act: the area
of the graph below the x-axis is close to the area above this axis. The proof we gave hides
this miraculous cancellation.

Intuitively, the main reason behind this cancellation is the highly oscillatory behavior
of cosλx with no particular bias for positive or negative values. In Figure 20.2 we have
depicted the graph of fpxq cosp50xq where fpxq “ px´2q2´1 where this “unbiased” highly
oscillatory behavior is very visible. [\

Definition 20.2.11. Let f P T Ñ R be a Lebesgue integrable function. We say that f
satisfies the Dini condition at x P r´π, πs if there exists δ ą 0 such that

ż δ

´δ

|fpx` tq ´ fpxq|

|t|
dt ă 8. [\
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Figure 20.2. The graph of px2
´ 4x` 3q cosp50xq on the interval r0, 4s.

Remark 20.2.12. Let f P L1pTq Observe first that
ż δ

´δ

|fpx` tq ´ fpxq|

|t|
dt “

ż δ

´δ

|fpx´ tq ´ fpxq|

|t|
dt

so f satisfies the Dini condition at x if and only if
ż δ

´δ

|fpx` tq ´ fpxq|

|t|
dt`

ż δ

´δ

|fpx´ tq ´ fpxq|

|t|
dt ă 8.

Observe next that the Dini condition is really a constraint on the behavior of the function

f near x. For the function t ÞÑ fpx`tq´fpxq
t to be integrable the numerator of the fraction

should be a counterweight to the explosive behavior of 1{t as tÑ 0. For example, if f is

Lipschitz, then the function t ÞÑ fpx`tq´fpxq
t is bounded hence integrable. Similarly, if f

is differentiable at x, then it satisfies the Dini condition at x. [\

Theorem 20.2.13. Suppose that f P L1pTq satisfies the Dini condition at x P r´π, πs.
Then

lim
nÑ8

Sn
“

f
‰

pxq “ fpxq.

Proof. Let δ ą 0 be as in the Dini condition. We have

Sn
“

f
‰

´ fpxq “
1

2π

ż π

´π
Dnptq

`

fpx` tq ´ fpxq
˘

qdt
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“
1

2π

ż

|t|ďδ
Dnptq

`

fpx` tq ´ fpxq
˘

qdt
looooooooooooooooooooooomooooooooooooooooooooooon

Xn

`
1

2π

ż

δă|t|ăπ
Dnptq

`

fpx` tq ´ fpxq
˘

qdt
looooooooooooooooooooooooomooooooooooooooooooooooooon

Yn

.

We write

Dnptq
`

fpx` tq ´ fpxq
˘

q “
fpx` tq ´ fpxq

sin t{2
looooooooomooooooooon

“gptq

sin
2n` 1

2
t.

The function gptq is integrable on tδ ă |t| ď πu “ r´π,´δq Y pδ, πs since the function
1

| sin t{2| is bounded above by sin δ{2 in this region. The Riemann-Lebesgue Lemma implies

that

lim
nÑ8

Xn “ lim
nÑ8

ż

δă|tďπ
gptq sin

2n` 1

2
t “ 0.

In the region |t| ď δ we write

Dnptq
`

fpx` t´ fpxq
˘

q “
fpx` tq ´ fpxq

t

t

sin t{2
looooooooooooomooooooooooooon

“:hqtq

sin
2n` 1

2
t.

The Dini condition implies that the function t ÞÑ fpx`tq´fpxq
t is integrable on r´δ, δs while

the function t ÞÑ t
sin t{2 is bounded over this interval. Hence the function hptq is integrable

over r´δ, δs and Riemann-Lebesgue Lemma implies that

lim
nÑ8

Yn “ lim
nÑ8

ż

|t|ďδ
hptq sin

2n` 1

2
t “ 0.

[\

Example 20.2.14. Consider the function f : r´π, πs Ñ R, fpxq “ |x|. Since

fp´πq “ fpπq “ π

this function extends to a periodic Lipschitz function RÑ R. Thus, for every x P r´π, πs
the series

1

2π
a0pfq `

1

π

ÿ

nPN

`

anpfq cosnx` bnpfq sinnx
˘

converges to fpxq. In particular,

0 “ fp0q “
1

2π
a0pfq `

1

π

ÿ

nPN
anpfq.

We have

a0pfq “

ż π

´π
|x| dx “ 2

ż π

0
x dx “ π2.

If n ą 0,

anpfq “

ż π

´π
|x| cosnx dx “ 2

ż π

0
x cosnx dx “

2

n

ż π

0
xdpsinnxq
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“

´ 2x

n
sinnx

¯ˇ

ˇ

ˇ

x“π

x“0
looooooooomooooooooon

“0

´
2

n

ż π

0
sinnxdx “

2

n2
cosnx

ˇ

ˇ

ˇ

x“π

x“0
“

#

0, n even,

´ 4
n2 , n odd.

Hence
π

2
“

4

π

8
ÿ

k“0

1

p2k ` 1q2
,

i.e.,
8
ÿ

k“0

1

p2k ` 1q2
“
π2

8
.

If we write

S :“ 1`
1

22
`

1

32
` ¨ ¨ ¨ ,

then we deduce

S “
8
ÿ

k“1

1

p2kq2
`

8
ÿ

k“0

1

p2k ` 1q2
“
S

4
`
π2

8
,

so that
3

4
S “

π2

8
,

i.e.,

π2

6
“

8
ÿ

k“1

1

k2
.

This is Euler’s identity (20.2.4). [\

Example 20.2.15. Consider the function f P L2pTq, fpxq “ x, x P p´π, πs. According
to the computations in Example 4.6.7 the Fourier series of f is

ÿ

nPN

2p´1qn`1

n
sinnx “ 2

´

sinx´
sin 2x

2
`

sin 3x

3
´ ¨ ¨ ¨

¯

.

The function f satisfies the Dini condition at any x P p´π, πq so its Fourier series converges
for any x P p´π, πq.

For example for x “ π
2 we deduce

π

2
“ 2

´

1´
1

3
`

1

5
´

1

7
´ ¨ ¨ ¨

¯

.

This is a formula first obtained by Leibniz by using the Taylor series of arctanx.

In Figure 20.3 we have depicted in the same coordinate system the function f and the
partial Fourier sum S10

“

f
‰

pxq. [\

The two results we proved so far shows that the pointwise convergence of a Fourier
series is a rather subtle issue and we have barely scratched the surface. For more details
we refer to [23, 33, 40].
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Figure 20.3. The function fpxq “ x and its Fourier approximation S10

“

f s
‰

pxq.

20.2.4. Uniqueness. We want to address the second of the questions we formulated
above: do the Fourier coefficients of a function f P L1pTq uniquely determine the function?

More concretely, given that f, g P L1pTq such that anpfq “ anpgq and bnpfq “ bnpgq,
@n P Z can we conclude that f “ g in L1? Equivalently, if Sn

“

f
‰

“ Sn
“

g
‰

, @n P N, can
we deduce that fpxq “ gpxq a.e.?

We can phrase this in a more conceptual way. Observe that for any f P L1pT,Cq and
any n P Z we have

| pfpnq| “

ˇ

ˇ

ˇ

ˇ

ż π

´π
fpxqe´inxdx

ˇ

ˇ

ˇ

ˇ

ď

ż π

´π

ˇ

ˇ fpxqe´inx
ˇ

ˇ dx “ }f}L1

The Fourier transform is then the map

L1pT,Cq Q f ÞÑ pf “
`

pfpnq
˘

nPZ P L
8pZ,Cq “ bounded functions ZÑ C.

Note that

} pf}L8 ď }f}L1

Thus the Fourier transform is a bounded linear map L1pT,Cq Ñ L8pCq and we want to
investigate its injectivity or, equivalently, its kernel.

We will do this in a rather roundabout way that will afford us a side trip in some
beautiful parts of classical analysis. First some terminology.
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Definition 20.2.16. Consider a Banach space pX, } ´ }q. The sequence pxnqnPN in X is
said to Cesàro converge or C-converge to x P X if the sequence of running averages

xn “
1

n

n
ÿ

k“1

xk

converges to x. We indicate this using the notation

C ´ lim
nÑ8

xn “ x. [\

.

Lemma 20.2.17 (Cesàro). Let pxnqnPN be a sequence a Banach space. X. Then

lim
nÑ8

xn “ x ñ C ´ lim
nÑ8

xn “ x.

Proof. Set

yn “ xn “ x, yn “
1

n

n
ÿ

k“1

yn “
1

n

n
ÿ

k“1

xn ´ x.

Thus it suffices to prove that yn Ñ 0 given that yn Ñ 0. Set

C :“ sup
n
}yn}.

Fix ε ą 0. There exists n0 “ n0pεq such that }yn} ă ε{2, @n ą n0. Next, choose
n1 “ n1pεq ą n0 such that

n0C

n
ă
ε

2
, @n ą n1.

Let n ą n1. We have

}yn} ď
}y1} ` ¨ ¨ ¨ ` }yn}

n

“
}y1} ` ¨ ¨ ¨ ` }yn0}

n
loooooooooomoooooooooon

ă
n0C
n

`
}yn0`1 ` ¨ ¨ ¨ ` }yn}

n
´

loooooooooooomoooooooooooon

ă
n´n0

n
ε
2

ă
ε

2
`
ε

2
.

[\

Remark 20.2.18. The converse is not true. There are Cesàro convergent sequences that
are not convergent. For example, the sequence

1,´1, 1,´1, . . .

Cesàro converges to 0 but it is obviously not convergent. [\

We want to investigate the Cesàro convergence of the partial sums Sn
“

f
‰

of an inte-
grable function f : TÑ R. We have

Sn
“

f
‰

pxq “
1

n

`

S1
“

f
‰

pxq ` ¨ ¨ ¨ ` Sn
“

f
‰

pxq
˘

“
1

2π

ż π

´π
Fnpx´ yqfpyq dy,
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where Fnptq is the Fejér kernel

Fnptq “
1

n

`

D1ptq ` ¨ ¨ ¨ `Dnptq
˘

“
1

n sin t{2

ÿ

k“1

sinp2k ` 1qt{2.

The above sum can be simplified substantially. We write ζ “ cos t{2 ` i sin t{2, z “ ζ2.
Then

Anptq :“
n
ÿ

k“1

sinp2k ` 1qt{2 “ Im
`

ζ ` ζ3 ` ¨ ¨ ¨ ` ζ2n`1
˘

“ Im ζ
`

1` z ` ¨ ¨ ¨ ` zn
˘

.

We have

ζp1` z ` ¨ ¨ ¨ ` znq “ ζ
1´ cospn` 1qt´ i sinpn` 1qt

1´ cos t´ i sin t

“ ζ
2 sin2pn` 1qt{2´ 2 sinpn` 1qt{2 cospn` 1qt{2

2 sin2 t{2´ 2i sin t{2 cos t{2

“ pcos t{2` i sin t{2q
2 sinpn` 1qt{2

`

sinpn` 1qt{2´ cospn` 1qt{2
˘

´2i sin t{2pcos t{2` i sin t{2q

“
cospn` 1qt{2 sinpn` 1qt{2` i sin2pn` 1qt{2

sin t{2
.

Thus

Anptq “
sin2pn` 1qt{2

sin t{2
, Fnptq “

1

n

ˆ

sinpn` 1qt{2

sin t{2

˙2

.

Note that Fnptq is nonnegative, even and 2π-periodic. The graph of F9 is depicted in
Figure 20.4. As in the previous subsection we deduce that for any f P L1pTq we have

Sn
“

f
‰

pxq “
1

2π

ż π

´π
Fnptqfpx` tq dt.

We deduce

1 “Sn
“

1
‰

p0q “
1

2π

ż π

´π
Fnptqdt. (20.2.22)

As Figure 20.4 suggests, most of the area under the graph of Fn seems to be concen-
trated near the origin. More precisely,

@δ P p0, πq, lim
nÑ8

ż

δă|t|ďπ
Fnptq dt “ 0. (20.2.23)

Indeed

0 ď Fnptq “
sin2pn` 1qt{2

n sin2 t{2
ď

1

n sin2 δ{2
, @δ ă |t| ď π.

Proposition 20.2.19. Let p P r1,8q. Then for any f P LppTq and any n P N we have
Sn

“

f
‰

P LppTq and
›

›Sn
“

f
‰ ›

›

Lp ď }f}Lp . (20.2.24)
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Figure 20.4. The graph of F9ptq.

Proof. By Theorem 19.4.14, the space CpTq is dense in LppTq so it suffices to prove
(20.2.24) for f P CpTq.

Fix n P N and consider the Borel measure µn on r´π, πs defined by

µn
“

dt
‰

:“
Fnptq

2π
dt

We deduce from (20.2.22) that µn is a probability measure, i.e.,

µn
“

r´π, πs
‰

“ 1.

Let f P CpTq. We view f as a continuous 2π-periodic function on R. We have

ˇ

ˇSn
“

f
‰

pxq
ˇ

ˇ

p
“

ˇ

ˇ

ˇ

ˇ

ż π

´π
fpx` tq

Fnptq

2π
dt

ˇ

ˇ

ˇ

ˇ

p

ď

ˇ

ˇ

ˇ

ˇ

ż π

´π
|fpx` tq|µn

“

dt
‰

ˇ

ˇ

ˇ

ˇ

p

.

Hólder’s inequality implies

ż π

´π
|fpx` tq|µn

“

dt
‰

ď

ˆ
ż π

´π
|fpx` tq|p µn

“

dt
‰

˙1{p

¨

ˆ
ż π

´π
1q µn

“

dt
‰

˙1{q

“

ˆ
ż π

´π
|fpx` tq|p µn

“

dt
‰

˙1{p

.
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Hence
ˇ

ˇSn
“

f
‰

pxq
ˇ

ˇ

p
ď

ż π

´π
|fpx` tq|p µn

“

dt
‰

.

We deduce
›

›Sn
“

f
‰ ›

›

p

Lp “

ż π

´π

ˇ

ˇSn
“

f
‰

pxq
ˇ

ˇ

p
dx ď

ż π

´π

ˆ
ż π

´π
|fpx` tq|p µn

“

dt
‰

˙

dx

(use Fubini)

“

ż π

´π

ˆ
ż π

´π
|fpx` tq|p dx

˙

µn
“

dt
‰

“

ż π

´π

¨

˝

ż π

´π
|fpxq|p dx

˛

‚

looooooooooomooooooooooon

}f}p
Lp

µn
“

dt
‰

“

ż π

´π
}f}pLpµn

“

dt
‰

“ }f}pLp .

This proves (20.2.24) [\

Theorem 20.2.20 (Fejér). Let f P L1pTq and set

Sn
“

f
‰

“
1

n

`

S1
“

f
‰

` ¨ ¨ ¨ ` Sn
“

f
‰ ˘

, n P N.

(i) If f is continuous then Sn
“

f
‰

converges uniformly to f on T.
(ii) If f P LppTq, p P r1,8q, then

lim
nÑ8

›

›Sn
“

f
‰

´ f
›

›

Lp “ 0.

Proof. (i) Suppose f is continuous. Since T is compact, the function f is uniformly
continuous. As usual, we identify it with a 2π-periodic continuous function f : R Ñ R.
Set

ωpδq :“ sup
|x´y|ďδ

ˇ

ˇ fpxq ´ fpyq
ˇ

ˇ

The uniform continuity implies that

lim
δŒ0

ωpδq “ 0.

Denote by } ´ }8 the sup-norm on CpTq. For any x P r´π, πs we have

ˇ

ˇSn
“

f
‰

pxq ´ fpxq
ˇ

ˇ “
1

2π

ˇ

ˇ

ˇ

ˇ

ż π

´π
Fnptq

`

fpx` tq ´ fpxq
˘

dt

ˇ

ˇ

ˇ

ˇ

ď
1

2π

ż π

´π
Fnptq

ˇ

ˇ fpx` tq ´ fpxq
ˇ

ˇdt

“
1

2π

ż

|t|ďδ
Fnptq

ˇ

ˇ fpx` tq ´ fpxq
ˇ

ˇdt`
1

2π

ż

|t|ąδ
Fnptq

ˇ

ˇ fpx` tq ´ fpxq
ˇ

ˇdt

ď ωpδq

ż

|t|ďδ
Fnptqωpδqdt`

}f}8
π

ż

|t|ąδ
Fnptq dt

p20.2.22q
ď ωpδq `

}f}8
π

ż

|t|ąδ
Fnptq dt
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Let ε ą 0. There exists δ0 “ δ0pεq such that ωpδ0q ă
ε
2 . From (20.2.23) we deduce that

there exists N “ Npεq such that

}f}8
π

ż

|t|ąδ0

Fnptq dt ă
ε

2
, @n ą Nε.

Hence @ε ą 0, DN “ Npεq ą 0 such that @n ą Npεq and @x P r´π, πs,
ˇ

ˇSn
“

f
‰

pxq ´ fpxq
ˇ

ˇ ă ε.

(ii) Observe first that for any h P CpTq we have

}h}Lp “

ˆ
ż π

´π
|hpxq|p dx

˙1{p

ď

ˆ
ż π

´π
}h}p8 dx

˙1{p

p1πq1{p}h}8.

Let f P LppTq. Fix ε ą 0. According to Theorem 19.4.14, the space CpTq is dense in
LppTq so there exists g P CpTq such that

}f ´ g}Lp ă
ε

3
.

From (ii) we deduce

lim
nÑ8

›

›Sn
“

g
‰

´ g
›

›

8
“ 0.

Hence there exists N “ Npεq ą 0 such that

p2πq1{p
›

›Sn
“

g
‰

´ g
›

›

8
ă
ε

3
, @n ą Npεq.

Thus for all n ą Npεq we have
›

›Sn
“

f
‰

´ f
›

›

Lp ď
›

›Sn
“

f
‰

´Sn
“

g
‰ ›

›

Lp `
›

›Sn
“

g
‰

´ g
›

›

Lp ` }g ´ f}Lp

p20.2.24q
ď 2

›

›g ´ f}Lp ` p2πq1{p
›

›Sn
“

g
‰

´ g
›

›

8
ă ε.

[\

Corollary 20.2.21. Suppose f, g P L1pTq satisfy

anpfq “ anpgq, bmpfq “ bmpgq, @m,n P Z.

Then f “ g a.e..

Proof. Set h “ f ´ g. Then anphq “ bnphq “ 0, @n P Z so Sn
“

h
‰

“ 0, @n P N and we

deduce Sn
“

h
‰

“ 0, @n P N. We deduce

}h |L1 “ lim
nÑ8

›

›Sn
›

›

L1 “ 0.

[\
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Remark 20.2.22. Let f P CpTq. Observe that for any n P N and any x P r´π, πs we
have

Sn
“

f
‰

“
1

2π
a0pfq `

n
ÿ

k“1

n` 1´ k

n

`

akpfq cos kx` bkpfq sin kx
˘

.

This sequence of trigonometric polynomials, determined explicitly from f , converges uni-
formly to f on r´π, πs. [\

20.3. Elements of point set topology

20.4. Fundamental results about Banach spaces
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20.5. Exercises

Exercise 20.1. Suppose that H is a real Hilbert space with inner product x´,´y, and
x, y P Hzt0u. Prove that the following are equivalent.

(i) }x` y} “ }x} ` }y}.

(ii) Dt P R such that y “ tx.

[\

Exercise 20.2. Suppose that H is a real Hilbert space with inner product x´,´y and
X Ă H. Prove that the following are equivalent.

(i) spanpXq is not dense in H.

(ii) There exists h P Hzt0u such that xh, xy “ 0, @x P X.

Hint. Use Theorem 20.1.15. [\

Exercise 20.3. Consider the sequence of functions Hn : r0, 1s Ñ R defined by

H´1pxq “ 1, H0,0 “ Ir0,1{2q ´ Ir1{2,1q

and, generally,

Hn,kpxq “ 2n{2H0,0

`

2nx´ k
˘

, 0 ď k ă 2n.

(i) Draw the graphs of H0, H0,0, H1,0, H1,1.

(ii) Prove that
ż 1

0
H´1pxqHn,kpxqdx “ 0,

ż 1

0
Hm,jpxqHn,kpxqdx “

#

1, pm, jq “ pn, kq,

0, pm, jq ‰ pn, kq.

(iii) For n ě 0 we set

Hn “ span
␣

H´1, Hm,k, 0 ď m ď n, 0 ď k ă 2m
(

Ă L2
`

r0, 1s,λ
˘

.

Prove that for any n ě 1 and any 0 ď k ă 2n we have Dh P Hn´1 such that
h “ Irk{2n,pk`1q{2ns a. e..

(iv) Set

H8 “
ď

ně0

Hn.

Prove that H8 is dense in L2pr0, 1sq.

[\

Exercise 20.4. For n “ 0, 1, . . . denote by Pnpxq the degree n Legendre polynomial
defined in Exercise 9.22,

Pnpxq “
1

2nn!

dn

dxn
`

1´ x2
˘n
.
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(i) Compute

cn :“ }Pn}L2pr´1,1sq.

(ii) Prove that span
␣

Pnpxq; n “ 0, 1, 2, . . .
(

is dense in L2pr´1, 1sq. Hint. Prove that

span
␣

Pnpxq; n “ 0, 1, 2, . . .
(

“ span
␣

xn; n “ 0, 1, 2, . . .
(

.

(iii) Prove that the collection
␣

c´1n Pn; n “ 0, 1, . . .
(

is a Hilbert basis of L2
`

r´1, 1s
˘

.

(iv) Compute

an “

ż 1

´1
cospπxqPnpxqdx, n “ 0, 1, . . . ,

and then show
ÿ

ně0

a2n
c2n
“ 1.

Hint. Use integration by parts to compute an.

[\

Exercise 20.5. Let pΩ, S, µq be a finite measured space and f P H :“ L2pΩ, S, µq. Fix a
sigma-subalgebra A Ă S.

(i) Show that U :“ L2pΩ,A, µq is a closed subspace of H.

(ii) Denote by f̄ the orthogonal projection of f on U . Prove that (compare with
Exercise 19.69)

ż

A
fpxqµ

“

dx
‰

“

ż

A
f̄pxqµ

“

dx
‰

, @A P A.

[\

Exercise 20.6. Let H be a real Hilbert space with inner product x´,´y. Given n P N
and u1, . . . , un P H we define the Gram determinant of u1, . . . , un to be the determinant
of the Gramian matrix

Gpu1, . . . , unq “
“

xui, ujy
‰

1ďi,jďn

(i) Let u1, . . . , un. Fix any orthonormal basis te1, . . . , emu of spantu1, . . . , unu.
Denote by A the mˆn matrix with entries aij “ xei,ujy, 1 ď i ď m, 1 ď j ď n.
Show that

Gpu1, . . . , unq “ AJA,

where AJ is the transpose of A.

(ii) Prove that detGpu1, . . . , unq ě 0 with equality if and only if the vectors u1, . . . , un
are linearly dependent. Hint Prove that kerA “ kerG.
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(iii) Suppose that u1, . . . , un are linearly independent and set U :“ spantu1, . . . , unu.
The subspace U is closed since it is finite dimensional. Let y P H and denote by
y0 the orthogonal projection of y on U . Prove that

}y ´ y0}
2 “

detGpy ´ y0, u1, . . . , unq

detGpu1, . . . , unq
“

detGpy, u1, . . . , unq

detGpu1, . . . , unq
.

(iv) Fix a finite Borel measure µ on r0, 1s. Assume that µ is diffuse that is µ
“

I
‰

ą 0
for any interval I Ă r0, 1s. For n P N0 “ t0, 1, . . . u we set

sn “

ż

r0,1s
xnµ

“

dx
‰

, Dn “ det

»

—

—

—

—

—

–

s0 s1 s2 s3 ¨ ¨ ¨ sn
s1 s2 s3 s4 ¨ ¨ ¨ sn`1
s2 s3 s4 s5 ¨ ¨ ¨ sn`2
...

...
...

...
...

...
sn sn`1 sn`2 sn`3 ¨ ¨ ¨ s2n

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Prove that Dn ą 0.

[\

Exercise 20.7. Fix a finite measured space pΩ, S, µq and f P L0
`pΩ, Sq. Prove that the

following are equivalent.

(i) f P L2pΩ, S, µq.

(ii) There exists C ą 0 such that for any g P L2
`pΩ, S, µq we have

ż

Ω
fgdµ ď C

ˆ
ż

Ω
g2dµ

˙1{2

.

Hint. (ii) ñ (i) Use Theorem 19.6.13. [\

Exercise 20.8. Fix finite measured spaces pΩi, Si, µiq, i “ 0, 1 and

K P L2pΩ1 ˆ Ω0, S1 b S0, µ1 b µ0q.

(i) Prove that if fi P L
2pΩi, Si, µiq, i “ 0, 1, then the function

f1 b f0 : Ω1 ˆ Ω0 Ñ R, f1 b f0pω1, ω0q “ f0pω0qf1pω1q

belongs to L2pΩ1 ˆ Ω0, S1 b S0, µ1 b µ0q and

}f1 b f0}L2 “ }f0}L2}f1}L2

(ii) Prove that for any fi P L
2pΩ0, Si, µiq, i “ 0, 1 the function

pω0, ω1q ÞÑ Kpω1, ω0qf0pω0qf1pω1q

is integrable with respect to the measure µb µ and
ż

ΩˆΩ

ˇ

ˇKpω1, ω0qf0pω0qf1pω1q
ˇ

ˇ µ1 b µ0
“

dω1dω0

‰

ď }K}L2}f0}L2}f1}L2 .
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(iii) Deduce that for any f P L2pΩ0, S0, µ0q the function

Krf spω1q “

ż

Ω0

Kpω1, ω0qfpω0qµ0
“

dω0

‰

is well defined and finite for ω1 outside a µ1-negligible set and

}Krf s}L2pΩ1q
ď }K}L2pΩ1ˆΩ0q

}f}L2pΩ0q
.

Hint. (i) Use Fubini. (ii) Use (i) and the Cauchy inequality (19.4.2). (iii) Use Fubini, (ii) and Exercise 20.7. [\

Exercise 20.9. LetH be the Hilbert space L2pr´1, 1s,λq. For n ě 0 we define µn : r´1, 1s Ñ R,
µnpxq “ xn.

(i) Show that span
␣

µ0, µ1, . . .
(

is dense in H.

(ii) Denote by Lnpxq the n-th Legendre polynomial

Lnpxq :“
1

2nn!

dn

dxn
`

x2 ´ 1
˘n
.

Set L̄npxq “
a

n` 1{2Lnpxq. Prove that
␣

L̄0, L̄1, . . .
(

is the Hilbert basis of H obtained from tµ0, µ1, . . . u via the Gram-Schmidt pro-
cedure (see Example 20.1.19).

Hint. (ii) Have a look at Exercise 9.22. [\

Exercise 20.10. The unit circle T can be identified with the set of complex numbers
of length 1 and as such, it becomes an Abelian group with respect to multiplication
of complex numbers. Suppose that χ : T Ñ T is a continuous group morphism, i.e.,
χpz0z1q “ χpz0qχpz1q, @z0, z1 P T. Prove that there exists n P Z such that χpzq “ zn,
@z P T. [\



Appendix A

A bit more set theory

We survey a few more advanced facts of set theory that are needed in the second part of
the text. For proofs and more details we refer to most texts on set theory, e.g., [22, 35].

A.1. Order relations

Suppose that X is a set. A binary relation on X is a subset R Ă X ˆX.

Given a binary relation R on X, we say two elements x0, x1 P X are R-related, and
we write this x0Rx1, if px0, x1q P R.

Example A.1.1. (a) Let X “ R. The set
␣

px, yq P Rˆ R; y ´ x ě 0
(

describes the usual order relation on the set of real numbers.

(b) Let X “ Z. Consider the binary relation

C :“
␣

px, yq P Zˆ Z; y ´ x P 2Z
(

.

Two integers are C -related iff they have the same remainders when divided by 2; see
Theorem 3.3.7. [\

Definition A.1.2. Let R be a binary relation on a set X.

(i) The relation R is called reflexive if

@x P X, xRx.

(ii) The relation R is called symmetric if

@x0, x1 P X x0Rx1ðñx1Rx0.

973
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(iii) The relation R is called antisymmetric if

@x0, x1 P X, x0Rx1 and x1Rx0 ñ x0 “ x1.

(iv) The relation R is called transitive if

@x0, x1, x2 P X, x0Rx1 and x1Rx2 ñ x0Rx2.

(v) A partial order on X is a binary relation that is reflexive, antisymmetric and
transitive. A partially ordered set or poset is a set together with a choice of
partial order on it.

(vi) An equivalence relation on X is a binary relation that is reflexive, symmetric
and transitive.

[\

The relation in Example A.1.1(a) is an order relation. If S is a set and X “ 2
S is the

collection of all subsets of S, then X is partially ordered by the inclusion relation Ă.

Definition A.1.3. Suppose that pX,ĺq is a poset.

(i) We say that two elements x0, x1 P X are comparable if either x0 ĺ x1 or x1 ĺ x0.

(ii) The partial order ”ĺ” is called a total or linear order if any two elements of X
are comparable.

(iii) A chain in a poset pX,ĺq is a subset C Ă X such that any two elements in C
are comparable

(iv) A maximal element of a partial order ĺ on X is an element x˚ P X such that
for any x P X either x and x˚ are not comparable, or x ĺ x˚.

(v) Suppose that S is a subset of a poset pX,ĺq. An upper bound for S is an element
x̄ P X such that

@s P S s ă x̄.

In particular x̄ is comparable with all the elements in S.

[\

Example A.1.4. Suppose that Y is a set with at least two elements and X is the collection
of proper subsets of Y , i.e., subsets S ‰ Y . The set X is naturally ordered by the inclusion
of subset. Then for any y P Y the subset Sy “ Y ztyu is maximal with respect to the
inclusion relation. The poset pX,Ăq has no upper bound.

On the other hand, observe that the set of real numbers with the usual order relation
ď has no upper bound or maximal elements. [\

The next famous result is one of the most powerful tools we have at our disposal when
dealing with infinite sets and, in particular, with infinite dimensions. For a proof and
more details on its important role in set theory we refer to [22, Chap. 8, Thm. 1.13].
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Theorem A.1.5 (Zorn’s Lemma). Suppose that pX,ĺq is a poset such that every
chain has an upper bound. Then X itself has a maximal element. [\

Let us emphasize that Zorn’s Lemma is an existence result. It is non-constructive in
the sense that it gives no generally applicable method of finding the claimed maximal.
The next result is a typical application of Zorn’s Lemma.

Theorem A.1.6. Suppose that V is a, possibly infinite dimensional, real vector space and
S Ă V is a linearly independent collection of vectors. Then S is contained in some basis
B of V , i.e., a linearly independent collection spanning V .

Proof. . Denote by XS the family of linearly independent collections X Ă V such that
S Ă X.

Let us first show that any chain C Ă XS has an upper bound. Denote by C˚ the union
of all the sets in the chain C . Clearly C˚ is an upper bound of C . We will show that C˚

is also a linearly independent collection containing S. Suppose that a linear combination
of vectors on C˚ is trivial

n
ÿ

k“1

λkvk

where λk P R, vk P Ck P C , @k “ 1, . . . , n. We have to show that

λ1 “ ¨ ¨ ¨ “ λn “ 0.

Since C is a chain of subsets, one of the collections C1, . . . , Cn contains all the others, say

Ck Ă Cn, @k ď n.

Thus
vk P Cn, @k “ 1, . . . , n.

Since the collection Cn is linearly independent we deduce λ1 “ ¨ ¨ ¨ “ λn “ 0 so that
C˚ P XS . From Zorn’s Lemma we deduce that XS contains a maximal element B. We
claim that B is a basis of V .

Note first that since B P XS the collection B is linearly independent and contains S.
To prove that it spans V we argue by contradiction. Suppose that there exists an element

v P V z spanpBq and therefore the collection pB “ B Y tvu is linearly independent and
contains S. This contradicts the maximality of B. [\

Zorn’s Lemma is equivalent to an innocent looking yet very debated axiom of set
theory. Loosely speaking this axiom postulates that given any collection of sets there
exists a procedure of extracting an element from each set of the collection. Here is the
precise statement.
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The Axiom of Choice. For any collection nonempty sets pSiqiPI there exists a
choice function, i.e., a function

f : I Ñ
ď

iPI

Si,

such that
fpiq P Si, @i P I.

For more information about the special role this axiom plays in modern set theory we
refer [22, Chap. 8].

The axiom of choice is a nonconstructive statement since it postulates the existence of
an object without any indication on how one could effective find it. The proofs that are
based on statements equivalent to the axiom of choice are called nonconstructive.

A.2. Equivalence relations

Let X be a set. An equivalence relation on X is a binary relation on X that is reflexive,
symmetric and transitive.

Example A.2.1. Fix an integer d ą 1. We define a binary relation on Z by declaring
x, y P Z related if their difference x´ y is a multiple of d. We use the notation

x ” y mod d

to indicated this. This relation is reflexive since x ´ x “ 0 is clearly a multiple of d. It
is symmetric because x ´ y is a multiple of d iff y ´ x “ ´px ´ yq is a multiple of d.
Finally, it is transitive because if x ´ y and y ´ z are multiples of d then so is their sum
x´ z “ px´ yq ` py ´ zq. [\

Proposition A.2.2. Let X be a set and „ and equivalence relation on X. For each x P X
we set

Cx :“
␣

y P X; x „ y
(

. (A.2.1)

The set Cx is called the equivalence class of x.

(i) For any x0, x1 P X, Cx0 “ Cx1ðñx0 „ x1.

(ii) For any x0, x1 P X, Cx0 X Cx1 ‰ HðñCx0 “ Cx1.

Proof. (i) Note that x0 „ x1, then y „ x0 if and only if y „ x0 „ x1, i.e., y P Cx0 if and
only y P Cx0 . Thus Cx0 “ Cx1 . Conversely, if Cx0 “ Cx1 then x1 P Cx0 so x0 „ x1.

(ii)

[\

Thus, an equivalence relation “„” classes partitions the set X into equivalence classes.
The equivalence classes are sometime referred to as the chambers or cells of equivalence
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class. We denote by X{ „ the collection of equivalence classes. Note that we have a
natural surjection

π : X Ñ X{ „, x ÞÑ Cx.

The set X{ „ is called the quotient of X with respect to the equivalence relation „.

A.3. Cardinals

We survey, mostly without proofs a few classical facts about cardinality theory. For more
details we refer to [22, 35].

Two sets A,B are said to be equipotent or have the same cardinality when there is a
bijection between the two sets. We will indicate this using the notation A „ B.

One can prove1 that there exists a set Card called set of cardinals and a “correspon-
dence”2 that associates to each set A its cardinality cardA P Card so that

cardA “ cardBðñA „ B.

Given two sets A,B we write cardA ď cardB if there exists an injection A ãÑ B. We
write cardA ă cardB if cardA ď cardB yet cardA ‰ cardB.

The set Card of cardinals is partially ordered by ď. One can show that this is a total
order. More precisely we have the following result.

Theorem A.3.1. Given two sets we have either cardA ď cardB or cardB ď cardA. [\

Example A.3.2. (a) For any natural number n we denote by In the “interval” NX r1, ns
and we write n :“ card In. A set A is called finite if cardA “ n for some n P N. Otherwise
the set is called infinite.

(b) We write cardA “ ℵ0 if cardA “ cardN. If this is the case we say that A is countable.3

(c) We set ℵc :“ cardR and we say that ℵc is the cardinality of the continuum.

(d) Given two cardinals κ0, κ1 we define their sum κ0`κ1 to be the cardinality of the union
of two disjoint sets Ai, cardAi “ κi, i “ 0, 1. Their product κ0 ˆ κ1 is the cardinality of
A0 ˆA1.

(e) For any set A we denote by 2A the set of all the subsets of S. For any cardinal κ we
denote by 2κ the cardinality of 2A, where cardA “ κ. [\

Theorem A.3.3. Let A be a set. Then the following statements are equivalent.

(i) The set is infinite.

(ii) cardA ě n, @n P N.

1This is highly nontrivial!
2Take the word correspondence with a grain of salt. There is no set of all sets.
3The symbol ℵ is the first letter of the Hebrew alphabet and it is pronounced aleph.
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(iii) cardA ě ℵ0.

(iv) There exists a proper subset S Ĺ A such that cardS “ cardA.

[\

Theorem A.3.4 (Cantor-Bernstein). Let A,B be two sets. Then

cardA “ cardBðñ cardA ď cardB and cardB ď cardA.

[\

Theorem A.3.5 (Cantor). For any cardinal κ we have κ ă 2κ.

Proof. We present the clever short proof. Fix a set A such that cardA “ κ Clearly
cardA ď card2A since the map

A Q a ÞÑ tau P 2A

is an injection. We argue by contradiction and we assume that there exists a bijection
F : AÑ 2

A. Define

X :“
␣

a P A; a R F paq
(

.

Since F is surjective, we deduce that there exists a0 P A such that X “ F pa0q.

There are two options: either a0 P X or a0 R X. We will show that each of them leads
to contradictions.

Indeed, if a0 P X, then this means a0 R X “ F pa0qmeaning a0 P X! If a0 R X “ F pa0q,
this means a0 P X! [\

The next result takes much more effort to prove and requires a precise definition of
Card . For a proof we refer to [35, Sec. 4.6]

Theorem A.3.6. For any infinite cardinal κ P Card we have

κ` κ “ κ, κˆ κ “ κ.

[\

Theorem A.3.7. ℵc “ 2ℵ0.

Proof. Observe first that cardp0, 1q “ cardR. Indeed we have a bijection

arctan : p´π{2, π{2q Ñ R

and a bijection

p0, 1q Ñ p´π{2, π{2q, t ÞÑ ´π{2` πt.

We identify 2N with the set of maps N Ñ t0, 1u by associating to a subset S Ă N its
indicator function IS : NÑ t0, 1u.
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To every x P p0, 1q we associate its binary description

x “ 0.ϵ1ϵ2 . . . ϵk . . . :“
ÿ

kě1

ϵk
2k
, ϵk “ 0, 1

where infinitely many of the ϵk’s are equal to 0. In other words we do not allow all ϵ’s to
be 1 after a while. For example

0.01111 . . . “
ÿ

kě2

1

2k
“

1

2
“ 0.10000 . . . .

Such a binary sequence can be identified with the indicator function of a set S Ă N such
that its complement is infinite. This proves

ℵc ď 2ℵ0 .

Thus we have identified p0, 1q with the family of subsets of N with infinite complement.
This identification misses the subsets with finite complements. There are ℵ0 of them.
Hence

2ℵ0 “ ℵc ` ℵ0 ď ℵc ` ℵc “ ℵc.
[\
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Riccati, 747

equicontinuous family, 718

equivalence relation, 976

quotient of, 977

Euclidean

metric space, 666

space, 338

Euler

Beta function, 571

formula, 334

Gamma function, 297

identity, 441

number, 72, 73

Euler method, 757

exact form, 597

exterior

derivative, 636

monomial, 635

extremum

local, 175

facet, 509

factorial, 41

Fatou’s lemma, 850

Fermat principle, 460

Fermat’s Principle, 175

first category, 702

fixed point, 700

flow

line, 769
local, 769

flow line, 443

flux, 606, 627
infinitesimal, 630

formula, 1

change in variables, 278, 541
Duhamel, 776, 788

Euler, 334

flux-divergence, 606
Green, 632

Leibniz, 961

Moivre’s, 322
Newton’s binomial, 42, 163, 186, 323

Pascal, 186
Pascal’s, 43

Stirling, 282

Stokes’, 603
Taylor, 781

variation of constants, 776

Wallis, 275, 285
Fourier

abstract decomposition, 940

coefficients, 940
Fréchet differential, 421, 793

function, 10

Cn, 162
n-times differentiable, 162

absolutely integrable, 565
average value of a, 267

bijective, 12, 111

codomain, 11
concave, 207

continuous, 135

continuous at a point, 135
convex, 207, 501

critical point of a, 177

Darboux integrable, 253
decreasing, 111

derivative of a, 158

differentiable, 158
domain of, 11

elementary, 808, 840
even, 126, 181, 309
fiber of, 11

graph of, 11, 31, 220, 222, 224, 384
homogeneous, 414

hyperbolic, 240

image, 11
implicit, 477

increasing, 111

indefinite integral of a, 225
indicator, 527

injective, 12

integrable, 513, 527
inverse of, 14
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linearizable, 157

Lipschitz, 131, 137, 189

locally integrable, 562

locally Lipschitz, 770, 792

mean of a, 267

monotone, 111

nondecreasing, 110, 111

nonincreasing, 111

odd, 126, 309

one-to-one, 12

onto, 12

oscillation of a, 148

periodic, 126

piecewise C1, 301

piecewise constant, 264

range, 11

restriction of, 12

Riemann integrable, 247, 513, 527

smooth, 162, 446

stationary point of a, 177

strictly monotone, 111, 145

support of, 405

surjective, 12

trigonometric, 124

uniformly continuous, 148, 403

Gamma function, 297

gauge, 826

gauge function, 824, 838

Gauss bell, 239

general solution, 742, 745, 747, 749

geometric progression, 60

initial term, 60

ratio, 60

gradient, 433

Gram determinant, 970

Gramian, 610, 970

graph, 11, 31, 112, 124, 222, 224, 384

Hölder’s inequality, 217

Hahn decomposition, 873

harmonic oscillator, 783

Hausdorff measure, 907

Heine-Borel property, 396, 709

weak, 396

Hermite polynomial, 239

Hessian, 459

Hilbert basis, 938

Hilbert space, 928

isomorphism, 929

homeomorphic sets, 404

homeomorphism, 404, 679

hyperbolic

cosine, 185

functions, 185

sine, 185

hyperplane, 346

normal vector, 361

hypersurface, 506

ideal, 736

maximal, 737

iff, 3

imaginary part, 320

immersion, 483

increasing

function, 111

inequality

AM-GM, 216

Bernoulli, 41

Cauchy-Schwarz, 218, 926

Gronwall, 749, 751, 754, 768, 772, 794, 795

Hölder, 864, 898

Hölder’s, 217

Jensen’s, 215

Markov, 847, 884

Minkowski, 218, 865

triangle, 363, 666

Young’s, 181, 238

infimum, 28

infinitesimal work, 594

initial

condition, 742

values, 742

inner product, 925

canonical, 356

integer, 44

integer part, 45

integrable, 842

integrable function, 513

integral

improper, 567

along a curve, 587

along a path, 595

improper, 287

absolutely convergent, 295

convergent, 287

indefinite, 225

iterated, 522

repeated, 522

Riemann, 248

integral curve, 443, 742

integration

by parts, 227

by substitution, 229

interior, see also set, see also set

interval, 24

closed, 24

open, 24

isometry, 669

Jacobi matrix, 583

Jacobian

matrix, 422
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Jordan decomposition, 876, 888

Jordan measurable, 529, 903

Kronecker symbol, 340, 359

L’Hôpital’s rule, see also rule

Lagrange remainder, see also Taylor approximation

Landau’s notation, 130

Laplacian, 470

polar coordinates, 470

Lebesgue

integral, 842

measurable, 832, 858

measure, 832, 858

number, 712

point, 887

premeasure, 820, 832

Legenadre

polynomial, 969

Legendre polynomial, 187, 313, 970

Leibniz rule, see also rule

lemma

Gronwall, 750

Zorn, 686, 974, 975

length, 298, 585

limit, 385

limit point, 76, 97

line, 341

parametric equations of a, 342

segment, 344

line direction vector of, 341

line integral

first kind, 587

second kind, 595

linear

form, 344

basic, 345

functional, 344

map, 348

operator, 348

ker, 355, 493

kernel of, 355

linear approximation, 157, 422

linear map

bounded, 684

linearization, 157, 422

Lipschitz

constant, 388

function, 131, 137, 189

map, 388, 675

local

extremum, 175, 460

strict, 175

maximum, 175, 460

strict, 175

minimum, 175, 460

strict, 175

local chart, 482

local coordinate chart, 612, 648

logarithm, 112

natural, 112

lower bound, 27

lower semicontinuous, 736

Lyapunov function, 765

Möbius strip, 625

Maclaurin

polynomial, 195

map

K-Lipschitz, 675

continuous, 386, 674, 679

differentiable, 420

Lipschitz, 388, 675

measurable, 804

mapping, see also function

marginal, 522, 525

matrix, 349

associated to linear operator, 350

column, 349

diagonal, 354

fundamental, 773

invertible, 377

multiplication, 352

nilpotent, 377

orthogonal, 379

product, 352

row, 349

square, 349

symmetric, 354

indefinite, 461

negative definite, 461

positive definite, 461

trace, 378

transpose of a, 379

maximal element, 974

maximal function

Hardy-Littlwood, 884

maximum

global, 142

local, 175

strict local, 175

meagre, 702

mean oscillation, 250, 511

measurable

map, 804

set, 800

space, 800

isomorphism, 804

measure, 812

σ-finite, 812

absolutely continuous, 877

Dirac, 814

finite, 813

Lebesgue, 858
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outer

metric, 831

probability, 813

pushforward of a, 815

signed, 872

uniform, 814

signed

negative set of, 873

null set of, 873

positive set of, 873

measured space, 813

complete, 816

metric, 665

discrete, 666

Hamming, 666

induced, 667

space, 665

Euclidean, 666

product, 666

subspace, 666

metric space

complete, 693

completion of a, 694

connected, 680

disconnected, 680

separable, 673

metrizable, 673

minimum

global, 142

local, 175

strict local, 175

Minkowski’s inequality, 218

momenta, 920

monotone class, 810

multi-index, 450

size, 450

mutually singular, 875

natural basis, 339

negligible, 520, 816

neighborhood, 62, 103, 669

deleted, 104

open, 364

symmetric, 104

net, 710

Newton’s method, 212

norm, 220, 667

-sup, 667

Euclidean, 357

Frobenius, 390

Hilbert-Schmidt, 390

sup-, 365

normal form, 742, 744

normed space

topological dual of a, 685

complex, 667

real, 667

number

Euler, 72, 84

natural, 35

o.d.e., 742

autonomous, 743

Bernoulli, 747

Clairaut, 749

singular solution, 749

general solution, 742

higher order, 743, 777

homogeneous, 746

Lagrange, 748

linear, 747, 777

constant coefficients, 779

normal form, 742

order of an, 743

Riccati, 747, 798

separable, 744

solution, 742

system of linear, 771

constant coefficients, 787

fundamental matrix, 773

homogeneous, 771, 772

nonhomogeneous, 775

one-parameter group, 788

generator, 788

local, 769

open

ball, 364, 669

cube, 366

disk, 325

set, 325, 364, 669

open cover, 396, 709

subcover of, 709

open neighborhood, 364

operator

bounded, 684, 937

adjoint of, 937

self-adjoint, 937

linear, 348

orthogonal, 379, 611

operator norm, 685

order

linear, 974

partial, 974

total, 974

orientable surface, 625

orientation, 625, 640, 648

induced, 604, 626

oriented open set, 640

oriented surface, 625

orthogonal complement, 930

orthogonal operator, 379, 611

orthogonal projection, 931

orthogonal set, 938

orthonormal set, 938
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oscillation, 402

outer measure, 825

metric, 831

p.d.e., 742

pairing, 350

parallelepiped, 542

parallelogram law, 928, 931

parametrization, 342, 482, 487

local, 482, 615

Parseval identity, 940

partial derivatives, 424

partial sum, 78, 328

partition, 245, 510

interval of a, 246

mesh size, 246, 510

node of a, 245

order of a, 245

refinement of a, 251

sample, 246

uniform, 246, 573

partition of unity, 406, 557, 714

subordinated to, 406, 714

continuous, 406, 714

path

differentiable, 439

continuous, 387, 682

piecewise C1, 597

path connected, 393

paving, 826

permutation

signature of a, 636

Poincaré Lemma, 597

Polish space, 726

poset, 974

chain in a, 974

potential, 444

power series, 89, 331

domain of convergence, 89

radius of convergence, 91, 98, 332

pre-Hilbert space, 925

precompact, 714

predicate, 1

preimage, 11

premeasure, 819

σ-finite, 819

Lebesgue, 823

Lebesgue-Stiltjes, 824

Lebesgue, 820

prime integral, 445, 765

primitive, 225

principle

Archimedes’, 44

Cavalieri, 530, 538

inclusion-exclusion, 529, 847

induction, 36

squeezing, 63, 388

well ordering, 38

product rule, see also rule

propagator, 773

pullback, 638

pushforward, 815

quantifier, 5

existential, 6

universal, 6

quantile, 839

quasi-parametrization, 621

quasipolynomial, 783

quotient, 977

quotient rule, see also rule

radially symmetric, 555

radius of convergence, 91, 98, 332

ratio test, 86

rational

function, 232

number, 46

real

line, 29

real number, 19

negative, 23

nonnegative, 23

positive, 23

real part, 319

relation

antisymmetric, 974

binary, 973

equivalence, 976

reflexive, 974

symmetric, 974

transitive, 974

relatively compact, 714

resonance, 785

Riemann

integrable, 247

integral, 248, 513

sum, 246, 514

zeta function, 82

Riemann-Lebesgue Lemma, 957

right-hand rule, 362

ring, 800

ring of subsets, 800, 829, 903

roots of unity, 324

rule

chain, 169, 435

inverse function, 173

L’Hôpital’s, 201

Leibniz, 166

product, 166

quotient, 166

s.d., 643

orientation of a, 643
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oriented, 643

s.t., 5

scattering matrix, 773
second category, 702

segment, 344

semiring of subsets, 903
sensitivity

functions, 798
matrix, 798

sensitivity matrix, 798

separable space, 673, 869, 870
separate points, 677, 687, 721

separation, 680

sequence, 59
bounded, 60, 326, 369, 396

Cauchy, 77, 371, 691

convergent, 61, 326, 368, 671
decreasing, 60

divergent, 61

Fibonacci, 60
fundamental, 77, 371

increasing, 60

limit point of, 76
monotone, 60

nondecreasing, 60
nonincreasing, 60

sequentially compact, 709

series, 78, 381
absolutely convergent, 85, 329, 730

Cauchy product, 100

conditionally convergent, 88
convergent, 79, 328, 730

geometric, 79

ratio test, 86
sum of the, 79, 328

set

boundary of a, 404, 671
bounded, 27, 394

bounded above, 27
bounded below, 27

closed, 325, 670

closure of a, 404, 670, 671
countable, 39

dense, 374, 672
finite, 38, 39

cardinality, 38

inductive, 35

interior of a, 404, 670, 671
open, 325, 669

partially ordered, 974
set of cardinals, 977
sigma-algebr, 800

signed measure, 872
Hahn decomposition, 873

total variation, 877

Jordan decomposition, 876
simple type, 301, 302, 533, 537

simplex, 538
small parameter, 798

space
Euclidean, 338

Hilbert, 928

measurable, 800
measured, 813

pre-Hilbert, 925

sphere
Euclidean, 411

stationary point, 177

stereorgraphic projection, 661
Stokes’ formula

1-dimensional, 596

straightening diffeomorphism, 482
sublevel set, 414

submanifold, 481

boundary of a, 648
boundary point, 648

closed, 648
explicit description, 485

implicit description, 486

interior of a, 648
local chart, 482

local parametrization, 482

orientable, 644
orientation of a, 644

parametric description, 482

parametrization, 482
with boundary, 648

submersion, 486, 487

subsequence, 61
subset, 8

proper, 8
subspace

affine, 347

coordinate, 475
linear, 347

vector, 347

support, 405
supremum, 28

surface, 482, 489
boundary of a, 612
boundary point, 612
closed, 612

convenient, 618
parametrization, 618

interior of a, 612
local parametrization, 615

orientable, 625
orientation of a, 625
oriented, 625

with boundary, 612

parametrized, 618
surface integral

first kind, 621
second kind, 630
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system of linear o.d.e., see also o.d.e.

tangent

space, 491

vector, 491

tangent line, 160

tautology, 4, 6

Taylor

approximation, 198, 457

integral remainder, 275

Lagrange remainder, 198

remainder, 198

expansion, 195

polynomial, 195

series, 195

test

ratio, 86

Weierstrass, 86

theorem

Banach-Mazurkiewicz, 705

Carathéodory construction, 826

fundamental theorem of calculus, 887

absolute convergence, 86

Alexandrov, 819, 823

Arzelà-Ascoli, 718, 756

Baire, 702

Baire’s category, 701

Banach’s fixed point, 381, 700, 752, 753

Bolzano-Weierstrass, 75, 395, 396, 758

Cantor-Bernstein, 978

Carathéodory extension, 829

Cauchy, 77, 85, 290

Cauchy’s finite increment, 183

chain rule, 169, 435

classification of curves with boundary, 591

comparison principle, 82

continuity of uniform limits, 139

continuous dependence

on initial data, 767

on parameters, 770

D’Alembert test, 86

Daniell, 889

Darboux, 184

Dini, 721–723, 889

Dominated Convergence, 851, 852, 867, 897

Dynkin’s π ´ λ, 803

Egorov, 817, 872

existence and uniqueness, 765

existence of completions, 697

Feér, 966

Fermat’s Principle, 175

Fubini, 521

Fubini-Tonelli, 855

fundamental theorem of calculus, 269, 271

fundamental theorem of arithmetic, 46

global uniqueness, 759

Hahn-Banach, 687

Hardy-Littlewood maximal, 885

Heine-Borel, 397
implicit function, 472, 476

integral mean value, 268

intermediate value, 143, 401, 683
inverse function, 466

Jensen’s inequality, 215, 575

Jordan decomposition, 876
Lagrange mean value, 177, 270, 441, 765

Lagrange multipliers, 498

Lebesgue differentiation, 883
Lebesgue on Riemann integrability, 521

Liouville, 774, 775, 778

local existence an uniqueness, 771
local existence and uniqueness, 759, 769

Lusin, 872
mean value, 177, 441

Monotone Class, 810, 855, 856

monotone class, 855
Monotone Convergence, 843, 850, 851, 857, 862,

864, 902

nested intervals, 74
Peano, 755

Picard, 758, 762

planar Stokes’, 605, 609
Pythagoras, 299, 359

Radon-Nikodym, 878, 900

Ratio Test, 86, 89
Riemann-Darboux, 253, 515

Riesz representation, 889, 895, 898, 935

Rolle, 177
Stokes, 632

Stone-Weierstrass, 721, 943
Taylor approximation, 197

universality property of completions, 694

Weierstrass, 71, 141, 401, 403, 715
Weierstrass M -test, 86

Weierstrass approximation, 958

Well Ordering Principle, 38
topological space, 679

metrizable, 673

topology, 673
Euclidean, 673

generated by, 673

induced by, 673
metric, 673

open set, 673
total differential, 431, 629

totally bounded, 709

trace, 378
trajectory, 743

transformation, see also function

transition diffeomorphism, 644
transversal intersection, 614

transversality, 487

trigonometric
circle, 123
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function, 124

trigonometric polynomial, 725

trigonometric polynomials, 942

uniform continuity, 148, 257, 403, 516, 713

uniform convergence, see also convergence
upper bound, 27

variation distance, 897

vector

length, 357
vector field, 443, 768

vector space, 338

dual, 344
vectors, 338

addition of, 338

angle, 358
Cartesian coordinates, 338

collinear, 341, 375

orthogonal, 358
velocity, 440

vertex, 509
volume, 509

weak L1-type, 884
Wronskian, 189, 774, 778

zeta function, 82, 948
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