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Lecture 1

Descriptive Statistics for DNA Sequences

1.1 DNA sequence data

Not until the 1980s did population geneticists begin the study of DNA sequence data. Until then, our
measures of genetic variation were incomplete. We worked only with a small fraction of the genetic variation
in our samples. With DNA sequence data we were finally able to study it all.

But this opportunity posed an immediate challenge. How should we measure that variation? Popula-
tion geneticists were used to summarizing variation with statistics such as the sample heterozygosity: the
probability that two random gene copies are copies of different alleles. But if the DNA sequences are long
enough, it is unlikely that any two of them will be identical. The heterozygosity, in other words, is always 1.
Clearly, new measures of variation are needed.

Table 1.1: Ten DNA sequences, each consisting of 40 sites. The sites are numbered across the
top. The dots represent sites that are identical to the reference sequence at the top.

0000000001 1111111112 2222222223 3333333334

1234567890 1234567890 1234567890 1234567890
Sequencel1 AATATGGCAC CTCCCAACCC TCTAGCATAT ACCACTTACA
Sequencel02  ....... T.. .C...... TG C...... Cuov iiiiiie..
Sequence03 R e
Sequencel04  ....... T C...... TG C. o v v v vt (G
Sequencell L e e e e et e e e
Sequencel6  ..... Ao oo, T. Coovvvvne G....C....
SequenceQ7 .Cooo.To. JCaal... TG C.ovvven e n Gevevennn
Sequence08  ..... A.T TC...... TG C.vvvvv et (G
Sequence09 .. ... . 0 Lo, Cen it i e
Sequencel0 T T. C...... C

Segregating:



6 LECTURE 1. DESCRIPTIVE STATISTICS FOR DNA SEQUENCES

Table 1.1 presents 10 DNA sequences from some hypothetical species. Take a minute to study them.
How many ways can you think of to summarize the variation in these data? This is precisely the problem
that confronted population geneticists during the 1980s. The lecture that follows will summarize some of
the ideas they came up with.

1.2 Statistics

Gene diversity (a.k.a. heterozygosity) is the probability that two random sequences are different. To cal-
culate it, the straightforward approach is to examine all pairs and count the fraction of the pairs in
which the two sequences are different from each other. It is often faster, however, to start by counting
the number of copies of each type in the data. Let k; denote the number of copies of type ¢, and
K =3 k; the number of gene copies in the sample. The the heterozygosity is estimated by

i=1-3 () (=)

In the past, we have expressed heterozygosity as 2p(1 — p) (for bi-allelic loci) or as 1 — 3, p? (for
loci with multiple alleles). These formulas are correct when p is the population allele frequency of
the parents but contain a subtle bias when p is the allele frequency within a sample. The new formula
corrects this bias.!

Number of segregating sites A “segregating site” is a site that is polymorphic in the data. The number of
such sites is usually denoted by S.

Mean pairwise difference The average number, II, of nucleotide site differences between pairs of se-
quences.

Mean pairwise difference per nucleotide If the sequences are L bases long, it is often useful to standard-
adize II by dividing it by L. The resulting statistic is

m=1II/L

Mismatch distribution A histogram whose 7th entry is the number of pairs of sequences that differ by
sites. Here, ¢ ranges from O through the maximal difference between pairs in the sample.

Site frequency spectrum A histogram whose ith entry is the number of polymorphic sites at which the
mutant allele is present in ¢ copies within the sample. Here, ¢ ranges from 1 to K — 1.

Folded site frequency spectrum It is often impossible to tell which allele is the mutant and which is an-
cestral. In that case, we combine the entries for ¢ and K — ¢, so the new ¢ ranges from 1 through
K/2.

"Imagine drawing two gene copies without replacement from a sample of size K. The first is a copy of allele A; with probability
ki/K. Given this, the second is a copy of A; with probability (k; — 1)/(K — 1). Thus, the sum of these quantities is the
homozygosity and 1 minus this sum is the heterozygosity.
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1.3 Data analysis

1.3.1 The number (S) of segregating sites

On the last line of Table 1.1, segregating (i.e. polymorphic) sites are indicated with a caret (*). There are 15
such sites. Thus, the number of segregating sites is .S = 15.

1.3.2 The mean pairwise difference (1)

We want the average number of differences between pairs of individuals. There are two ways to do this
calculation, the direct way and the easy way.

The direct way

Count the number of differences between each pair of sequences. For example, sequences 1 and 2 differ
at 6 sites. Compare every pair of sequences, and write down the number of differences between each pair.
If you do this (and I don’t recommend it), you should end up with 45 numbers that sum to 248. The average
is IT = 248/45 = 5.511111.

The easy way

The direct calculation involved two steps. Step 1 calculated the number (248) of pairwise differences, and
then step 2 divided by the number (45) of pairs. The first of these numbers can be thought of as a sum over
sites: the number of pairwise differences at site 1 plus that at site 2 and so on. The monomorphic sites make
no contribution to this sum, so we need consider only the 15 polymorphic sites. And each site makes a
contribution that is easy to calculate.

Suppose that at some site the sample contains only two nucleotides: z As and y Gs. Among pairs of
sequences there will be some AA pairs, some AG pairs, and some GG pairs, but only the AG pairs will
contribute a difference. The number of such pairs is x X y, so this is the value that this particular site makes
to the sum of pairwise differences.

For example, consider site 6 in the data above. There are 3 As and 7 Gs, so there are 3 x 7 = 21 AG
pairs, and site 6 contributes 21 to the sum of pairwise differences. At site 2, on the other hand, there are 1 G
and 9 As, so the site contributes 1 x 9 = 9 to the sum. Summing across the 15 polymorphic sites gives 248
as before.

There is also an easy way to find the number of pairs. In a sample of K sequences, there are K (K —1)/2
pairs. There are 10 sequences in the data above, so the formula gives (10 x 9)/2 = 45 pairs.

1.3.3 Computer output

Here is the output of my seqstat program, which calculates descriptive statistics for DNA sequences:

o\

segstat
(descriptive statistics from sequence data)
by Alan R. Rogers
Version 5-1

o°

o° o
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30 Jan 2000
Type ‘segstat —-— '’ for help

o° oo

o\°

Cmd line: segstat afl0.seq

o)

% Population 0
meanPairwiseDiff = 5.511111 ;

nsequences = 10 ;
nsites = 40 ;
mismatch = 1 5 3 2 2 6 8 85 2 2 1 ;

segregating = 15 ;
spectrum = 6 2 2 5 0 ;

% Count of minor allele at each polymorphic site:
%$psite site count | psite site count

1 2 1 | 9 21 3
2 3 2 | 10 28 2
3 6 3 11 31 4
4 8 4 | 12 32 1
5 11 1 | 13 36 1
6 12 4 | 14 37 1
7 19 4 | 15 40 1
8 20 4 |
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* EXERCISE 1-1 Here is a set of 10 made-up DNA sequences, each with 10 nucleotide sites.
S01 AAACT GTCAT

soz ... A....
S03 ..G.. AL,
sS04 ..G.. AL,
so05 Lo A....
s0e L. AC. ..
so7 Lo A....
sos L. A....
so9 L. A...C
si0 L. A....

Calculate the mean pairwise difference, the number of segregating sites, the mismatch distribution and the
site frequency spectrum.
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LECTURE 1. DESCRIPTIVE STATISTICS FOR DNA SEQUENCES



Lecture 2

The Method of Maximum Likelihood

Before doing this exercise, please read Using Likelihood, which you can find at http://www.anthro.
utah.edu/~rogers/pubs/index.html.

2.1 Maximum likelihood exercises with genetics problems

* EXERCISE 2-1 Suppose that we have data from a genetic system with two alleles, and that we observe
N individuals of genotype A; A, Ny of genotype AjAs, and N3 of genotype AsAs. If the (unknown)
genotype frequencies are P;, P, and P, then the likelihood function is

Lo PP (1 — P — Py)s

I have used the symbol “ox” (which stands for “is proportional to”) rather than the equals sign because this
expression ignores a proportional constant that will not affect the answer. The log likelihood is

InL = const.+ NyInP; + Noln Py
+ N3 h’l(l — P1 — PQ)

Find the values of P;, P, and P3 that maximize the likelihood.

* EXERCISE 2-2 If we assume that the population is in Hardy-Weinberg equilibrium then the likelihood and
log likelihood functions are

L o« [pPIM2p(1 —p)]™[(1—p)*)
InL = const.+ (2N1 + Na)Inp
+ (N2 +2N3) In(1 — p)

Find the value of p that maximizes the likelihood.

11
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Lecture 3

Genetic Drift

3.1 The four causes of evolutionary change

1. mutation
2. selection
3. migration (a.k.a. gene flow)

4. genetic drift

3.2 What is genetic drift?

* Itis everything that is left over after you account for the effects of mutation, selection, and migration.

* It consists of all the stochastic (random) effects on allele frequencies. These include everything from
Mendelian segregation to the risk of accidentally walking in front of a bus.

How can one possibly model such an ill-defined hodgepodge?

3.3 The Wright-Fisher model

The population does not vary in size. In each generation, it consists of IV individuals, each produced by the
union of two randomly chosen gametes.

Generating gametes Each gamete is constructed by the following algorithm: (1) choose a parent at ran-
dom from among the N individuals of the previous generation. (2) Choose a random half of that parent’s
DNA. (Don’t worry about genetic linkage; we will be dealing here with one locus at a time.) If there are two
alleles A; and A;, segregating at some locus, what is the probability that the gamete that we construct car-
ries a copy of A;? If the parent was an A; A; homozygote, then we are bound to get A; in the gamete. If the
parent was an A A heterozygote, then the gamete has a 50% chance of carrying A;. Thus, the algorithm

13



14 LECTURE 3. GENETIC DRIFT

generates an Aj-bearing gamete with probability py = Py; + Pi2/2, where Py and Pjo are the frequen-
cies of genotypes A1 A1 and A; As within the parental generation. Note that the formula for p; is exactly
the same as the formula for the frequency of A; among the parents. Conclusion: The Wright-Fisher algo-
rithm for generating gametes is equivalent to drawing genes at random with replacement from the parental
population. To clarify this idea, many authors have made use of the urn metaphor.

The urn metaphor In an urn full of balls, a fraction p of the balls are red and a fraction 1 — p are black.
Each ball represents a gene. The red balls represent copies of one allele; the black ones copies of another.
The fraction p represents the frequency of the red allele in the population. The urn will be used to produce a
new generation in which there are /V diploid individuals, or 2N genes. To produce the new generation, we
perform the following operation 2N times: draw a random ball from the urn, write down its color, and then
return the ball to the urn. The number of red balls drawn represents the number of copies of the red allele in
the new generation, and similarly for the black balls. Both numbers are random variables. Their probability
distribution was taken by Wright and Fisher as a model of the process of genetic drift.

The Wright-Fisher model is undoubtedly simpler than reality, but it has been remarkably successful at
dealing with the stochastic variation in real populations. Let us be content with it, at least for the moment,
and ask about its properties. In the urn, the frequency of red balls is p. Let p’ denote the frequency of red
balls among those drawn. The difference between p’ and p represents the effect of genetic drift. How large
is this difference likely to be?

If we repeated the urn experiment over and over, the average value of p’ would get closer and closer to
p. Another way to say this is to say that the expected value of p' equals p. In notation,

Ep]=p

where the symbol F represents the “expectation,” or average.
But unless N is extremely large, there will be some difference between p’ and p, so we can write

p=p+e

Here, € (the greek letter “epsilon”) represents the effect of genetic drift. Its expected value is O, but its

variance is!

B _p(1—p)
Vie] = E[e2] =N

Genetic drift is important when this variance is large; unimportant when it is small. The formula captures
two influences:

1. Drift is unimportant when p(1 — p) is near 0. This happens when p ~ 0 and also when p ~ 1.
2. Drift is unimportant when N is very large.
3. Drift is most important when p ~ 1/2 and N is small.

Show a plot of p against ¢.

'To see where this formula comes from, look up the binomial distribution in any text on probability and statistics.
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Table 3.1: Average heterozygosity

Pop. B grp.® Protein® Classical® RFLP? RSP STR-47 STR-29 STR-3"
Africa 0.164 0.179 0.163 0.297 0.322 0.769 0.807 0.850
Asia 0.145 0.164 0.189 0.327 0.377 0.681 0.685 0.820
Europe  0.179 0.186 0.202 0.379 0.432 0.724 0.730 0.807

Note: Largest entry in each column is in boldface. Columns are in order of increasing European heterozygosity.

%32 blood groups [16].

®80 protein polymorphisms [16].

€110 classical polymorphisms [1].

479 restriction fragment length polymorphisms [1].

“30 RFLPs consisting solely of restriction site polymorphisms [11].

£30 tetranucleotide STRs [11].

930 dinucleotide short tandem repeat polymorphisms (STRs). Difference between Africa and Europe is significant [1].
"5 trinucleotide STRs [25].

3.4 Classical theory of homozygosity and heterozygosity

Let J; represent the probability that two genes chosen at random from some population are copies of the
same allele. If the population mates at random, then J will also be the homozygosity. The gene diversity (or
heterozygosity) is H = 1 — J. Several gene diversity estimates are shown in table 3.1. These statistics are
affected by several evolutionary forces:

1. Mutations reduce .J because they are more likely to make identical genes less similar than to make
different genes identical.

2. Genetic drift tends to move allele frequencies toward 0 and 1. Consequently 2pq gets smaller, het-
erozygosity declines, and homozygosity increases.

To measure the effects of these forces, we need a model. Let us begin with a model dealing only with the
first force.

3.4.1 Drift only

Let J; denote the probability that two genes drawn at random from the population of generation ¢ are copies
of the same allele. There is a simple model that relates J in one generation to its value in the generation

before:
1 1
Jen=gn + <1_2N>Jt

The first term on the right accounts for the possibility that the two genes in generation ¢ + 1 may be copies
of the same gene in generation ¢. Since there are 2/V genes in the population, the two genes are copies of
the same gene with probability 1/(2V) and are copies of distinct genes with probability 1 — 1/(2N). In the
latter case, they are by definition copies of the same allele with probability J;.

This model says that each generation’s value of J is a weighted average of 1 and the previous value of
J. Consequently, J converges toward 1. We are eventually left with no heterozygotes at all.
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3.4.2 Drift plus mutation

To make the model interesting, we need to add in some other evolutionary force. Let us add in mutation. The
easiest way to do this employs the model of “infinite alleles,” which assumes that every mutation produces
an allele that has never existed before. Thus, two genes can be identical only if there has been no mutation
along the evolutionary path that connects them. In particular, there can have been no mutation during the
past generation in the path leading to either of our two genes. If u is the mutation rate per generation, then
1 — wu is the probability that no mutation occurs along a single evolutionary path during a generation, and
(1 — u)? is the probability that neither of our two genes has mutated in the past generation. Thus,

=t (s (1 1))

Population geneticists are not very accurate people and tend to ignore whatever they can. Consider the
following:

u (1—u)? 1—2u
0.00100 0.9980010000 0.99800
0.00010  0.9998000100 0.99980
0.00001  0.9999800001 0.99998

The smaller the value of u, the less the difference between (1 — u)? and 1 — 2u. Since mutation rates are
very small numbers, population geneticists never trouble themselves about the difference between (1 — u)?
and 1 — 2u. In the present case, 1 — 2u makes the algebra simpler. Similarly, if v is small and N is large,
(1 — 2u)/(2N) is hardly different from 1/(2N). Applying both simplifications gives

1 1
N — 1—-2u——
Jt-‘,—l ON + ( u 9 N> Jt
This equation doesn’t look very different from the one with drift only, but it leads to a very different conclu-
sion. Rather than converging toward unity, this one levels out at a different equilibrium value, as shown in
figure 3.1.
To find the equilibrium algebraically, set J;11 = J; and solve the resulting equation. The result is

1
e — 3.1
J ANu +1 @D
The gene diversity (or heterozygosity) is
4Nu
H=1-J=—— 2
J ANu+1 32)

3.4.3 A simpler way: coalescent theory

Take a random pair of genes and peer backwards down their ancestries. So long as the two evolutionary
paths remain distinct, two types of event may happen in any given generation:
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0.04

0.03

H 0.02

0.01 —

0.00 — T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

Time in generations
Figure 3.1: How heterozygosity changes over time. Assumes: v = 0.005, N = 2500, H(0)=0

A mutation A mutation may occur in either path with probability u. The combined probability in both
paths is 2u.?

A coalescent event The two paths will coalesce when we reach the most recent generation in which they
share a common ancestor. This is an event with probability 1/(2N).

The hazard of an event of either type is
2u+1/(2N)

When an event does occur, it is a mutation with probability

2u _ 4Nu
2u+1/(2N)  4Nu+1

In this case, the two genes are copies of different alleles. The formula gives the probability that two random
genes will be copies of different alleles—the gene diversity. Notice that it is identical to equation 3.2.

The simplicity of this approach is remarkable. It has led to profound changes in population genetics
during the past decade or two. We will return to it in the section on gene genealogies.

* EXERCISE 3-1 For classical polymorphisms, human gene diversity is roughly 0.16. What does this imply
about the quantity 4 Nu? (In the literature, 4N is often denoted by 6, the greek letter “theta”).

* EXERCISE 3-2 If the mutation rate were 105, what value of N would be needed to account for this level
of heterozygosity?

“This is only an approximation. If I really wanted to be accurate, I would say that (1 — u)? was the probability of no mutation
along either of the two paths and 1 — (1 — u)? the probability of at least one mutation. But when w is small this latter probability
is indistinguishable from 2.



18 LECTURE 3. GENETIC DRIFT

* EXERCISE 3-3 Using these same values for NV and u, suppose that H were equal to 0.01 in generation 0.
What would its value be in generation 20?

* EXERCISE 3—4 Using the same value for IV, plot the variance of ¢ for values of p ranging from 0 through 1.

* EXERCISE 3-5 The square root of the variance is called the standard deviation and (in this case) provides
an estimate of the magnitude of a typical value of ¢. For what value of p is this standard deviation largest?
How large is it at this value of p?

* EXERCISE 3-6 Figure 3.1 assumed that v = 0.005 and N = 2, 500. Under these assumptions, what is the
equilibrium value of H? Is it consistent with the figure?



Lecture 4

Gene Genealogies

The coalescent process [9, 13] describes the ancestry of a sample of genes. As we trace the ancestry of each
modern gene backwards from ancestor to ancestor, we occasionally encounter common ancestors—genes
whose descendants include more than one gene in the modern sample. Each time this happens, the number
of ancestors shrinks in size. Eventually, we reach the gene that is ancestral to the entire modern sample, and
the process ends.

Since the mid-1980s, this model has revolutionized our understanding of the effects of genetic drift and
mutation. Many of the results obtained this way have been entirely new. Others have merely confirmed
results that were obtained long before. Either way, the coalescent model provides a method of studying
drift and migration that is far easier than the methods that geneticists used to use. We begin with a few
mathematical tricks, which will be useful later.

4.1 Preliminaries
Trick 1 If the hazard of death is h per day, then the expected life-span is 1/h days.

For concreteness, suppose that we are talking about the life-span of a piece of kitchen glassware. Eventually,
someone will drop it and it will break. Suppose that the hazard of breakage is h per day and its expected
lifespan is 7" days. Trick 1 tells us that 7" = 1/h.

We are envisioning time here as a continuous variable and assuming that the glass may break at any
instant. It makes no sense to talk about the probability of breakage at a particular instant, because that has
to be zero. Instead, h is a probability density. (See Just Enough Probability.) Specifically, it is the density
that the glass will break at a particular instant given that it has not broken already. This sort of density is
often called a hazard, and we are assuming that the hazard does not change. This implies that the lifespan
(t) is a random variable whose probability distribution is exponential. The mean of this distribution is 1 /A,
as shown in appendix 4.B. In the exercise below, you will derive this formula for the case in which time is
discrete.

* EXERCISE 4-1 Trick 1 refers to the case in which time is continuous, but the result also holds when time
is discrete. For example, suppose you are tossing a glass into the air and then catching it. On each toss,
there is a probability A that you will drop the glass and break it. How many times, on average, can you toss

19



20 LECTURE 4. GENE GENEALOGIES

Figure 4.1: Coalescence of a sample of two genes

the glass before dropping it? The answer is 1/h, just as in Trick 1. In this exercise, you will derive this
formula. To do so, consider what happens on the first toss. Either you drop it or you catch it. If you drop it
(probability h), it breaks, and its lifespan is 1 toss. The first component of 7" is therefore h x 1. If you catch
it (probability 1 — h), the expected lifespan is 1 +7". Why? Because h doesn’t change. Our 1-toss-old glass
can expect to survive 7" additional tosses, so its expected lifespan is 1 + 7". The second component of 7" is
therefore (1 — h)(1 + 7"). Write down an equation saying that 7" is the sum of these two components, and
then solve that equation for 7'.

Trick 2 There are k(k — 1)/2 ways to choose 2 items out of k.

There are k ways to choose the first item. Having chosen the first, there are £ — 1 ways to choose the second,
so there are k(k — 1) pairs. But this counts pair AB separately from BA. We are interested in unordered
pairs, so the number is k(k — 1) /2.

4.2 Coalescence time in a sample of two genes

The genealogy of two genes, X and Y, is shown in figure 4.1. Genes X and Y live in the present generation,
and their common ancestor A lived ¢ generations ago. Consequently, as we look backward from the present
into the past, the two lines of descent remain distinct for ¢ generations, at which time they coalesce into a
single line of descent. In a given generation, the lines coalesce if the two genes in that generation are copies
of a single parental gene in the generation before. Otherwise, the two lines remain distinct.

What can we say about the length of time, ¢, that they remain distinct? The problem is a lot like the one
above involving kitchen glassware. If we knew the hazard, h, that the lines of descent will coalesce during
a generation, then trick 1 would tell us immediately the mean number of generations until the two lineages
coalesce.

Consider the tiny population shown in figure 4.2. Each row illustrates the population in a single gen-
eration, and within each row each character represents a gene. The generations are numbered backwards,
so that generation O is the present and generation 1 contains the parents of generation 0. The vertical line
indicates that gene Z is the parent of gene X. What is the probability that it is also the parent of gene Y? If
each gene in generation 1 is equally likely to be Y’s parent, then this probability is

h=1/10

since there are 10 genes in generation 1. This answer would be the same no matter which gene in genera-
tion 1 had been X’s parent.
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Population
Generation 0: 0 Z O O O O O O O O

\
Generation 1: 0 X 0 Y O O O O 0 O

Figure 4.2: A sample of two genes (X and Y) in a population of size 10. Gene Z is the parent of
gene X.

Trick 1 immediately tells us that the mean coalescence time is 10 generations. Of course, 10 is really
the number of genes in the population. If there are 2N genes in the population, then

h=1/2N 4.1

Now the answer becomes somewhat more interesting. The average pair of genes last shared a common
ancestor 2N generations ago. This provides a connection between population size and the genealogy of
genes. As we shall see in lecture 5, this connection lets us use genetics to study the history of population
size.

In equation 4.1, the symbol N is a little confusing. If we are talking about an autosomal locus, then
there are two genes for every person and N is the number of people in the population. The meaning of NV is
different, however, if we are talking about a mitochondrial locus. In that case, the gene is transmitted only
through women, and locus is effectively haploid. Consequently, the number (2/V) of genes is the number of

females in the population, and the symbol N represents half the number of females.

© EXAMPLE 4-1

Suppose that we somehow knew that the average pair of mitochondrial genes last shared a common an-
cestor 100,000 years ago. What would this imply about population size? (Ignore the issue of statistical
error.)

o ANSWER

100,000 years is about 4000 generations, so the assumption implies that

2N = 4000

Since we are talking about a mitochondrial gene, this is really the number of women. If there are as many
men as women, then the population would contain 8000 individuals. This is about the size of a large village
or a very small town.

4.3 Coalescence times in a sample of K genes

Now consider a sample of K genes. (Figure 4.3 shows the case in which K = 4.) As we move backwards
in time from the present, the first coalescent event that we encounter reduces our sample from K to K — 1,
the second from K — 1 to K — 2, and so on. After K — 1 coalescent events, only a single lineage is left
and no further coalescent events can occur. There are thus K — 1 intervals to consider. The first (i.e. the
most recent) interval is the one in which there are K lines of descent. This interval is {x generations. The
next interval has K — 1 lines of descent and is tx_; generations long. The last interval is the one with two
lines of descent and is to generations long. Since the length of each interval is independent of all the other
lengths, we can consider them one at a time.
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Figure 4.3: Coalescence of a sample of four genes

Consider a generation during which the sample has ¢ genes. By trick 2 there are i(i — 1)/2 pairs of
genes. For any given pair, the probability that the two genes are copies of the same parental gene is equal to
1/2N. Consequently, we might expect the probability of a coalescent event to be close to

iti—1)
hi =
AN

(4.2)

per generation. Although this argument is loose, it turns out that the result is correct. (To find out why, see
section 4.A.) The expected length of this interval is given by trick 1 and equals

AN
i(i— 1)

For example, in a sample of size 5, the four coalescent intervals have hazards and expected lengths as
follows:

1/h; =

4.3)

Coalescent Expected
Interval hazard length
5 hs= 54?\[4 —10/2N  2N/10
4 x
4 =1 N3 — 62N 2N/6
3 hy= 34}(\[2 —3/2N  2N/3
2x1
2 ha = N 1/2N 2N

4.4 The depth of a gene tree

The depth of a gene tree is the time (usually in generations) since the Last Common Ancestor (LCA) of all
the genes in the sample. The tree’s depth is simply the sum of its coalescent intervals, and we already have
a formula for the expected length of each interval. For example, in a sample 2 genes, the expected depth of
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The coalescent interval containing ¢ lineages has expected depth 1/h; = 4N/i(i — 1), so the total expected
depth in a sample of K gene copies is

K
AN 1/i(i—1)
i=2
This sum is easy to simplify once you notice that

1 1 1

i(i—1) i—1 i

With this substitution, the series becomes

1 1 1 1 1 1
AN (2 -2 4 2 ... =
(1 2 T3 K_1'K_1 K)

Adjacent terms cancel, and we are left with equation 4.4 [21, p. 132].

Box 1: The expected depth of a gene genealogy

the gene tree is 2N generations. In a sample of 3 genes it is 2N + 2/N/3 = 8N/3 generations. Here are a
few more examples:

Sample Mean depth
size of tree
2 1/he = 2N
3 1/h3—|—1/h2=8N/3
5 1/h5+1/h4+1/h3—|—1/h2:16N/5

Notice that in each case, the mean tree depth is equal to
AN(1-1/K) 4.4

where K is the number of gene copies in the sample. This formula turns out to be true in general, as shown
in Box 1 [21, p. 132]. In a large sample, the 1/K term is unimportant and the answer is even simpler: the
average depth of a gene tree is approximately 4V generations.

* EXERCISE 4-2 Box 1 uses the fact that
1 1 1

i(i—1) i—1 4

Verify that this is true by deriving the left side from the right.

* EXERCISE 4-3 Suppose that we draw a sample of size K = 10 from a population with 2N = 5000 genes.
What are the expected lengths (in generations) of all the coalescent intervals?

* EXERCISE 4—4 In a sample of 10,000 genes, what is the expected age of the LCA? What fraction of this
age is accounted for by the interval during which the tree contained only two lineages?
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Figure 4.4: Coalescence of a sample of twenty genes
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When the sample is large, K (K — 1) /2 is a large number. Consequently, initial coalescent intervals tend
to be short. In a sample of size 20, the most recent coalescent interval is (on average) 0.5 percent as long as
the interval that ends with the root. Figure 4.4 shows an example. Note the short terminal branches and the
deep basal branch.

4.A A more detailed treatment (optional)

4.A.1 Preliminaries

Before explaining the formula for the general case—that of a coalescent interval during which the sample
has K genes—we need one additional mathematical trick.

Trick 3 The sum of the numbers from 1 through k is k(k + 1) /2.

This trick was supposedly discovered by the mathematician Carl Friedrich Gauss when he was just six years
old. According to the story, Gauss’s teacher gave the class an assignment to keep it busy while he graded
papers: Sum the numbers from 1 through 100. Two minutes later, Gauss walked to the front of the room
with his answer. The answer was correct, but Gauss was punished for failing to do the work the hard way.
Here is how he did it.

First he wrote down

142+ 499+ 100

Then, being bored and discouraged, he wrote it out backwards just below:

1+ 2 + -+ 4+ 99 + 100
100 + 99 + -+ + 2 + 1

Then the insight struck—he noticed that each of the columns added to 101:

r + 2 + - 4+ 99 + 100
100 + 99 + -~ + 2 + 1
01 + 100 + --- + 101 + 101

Since there are 100 columns, the sum of all the numbers here is 100 x 101. And this is twice the sum that
he was looking for. Thus,

100 x 101
1+2+---+99+100:%
In the general case,
k(k+1
1+2+...+k:(2+>

Trick 4 e” is approximately 1 + x when x is small.

Here ¢ is the exponential function, and is also written exp(z). You can verify the trick with a calculator.
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Figure 4.5: Coalescence of a sample of three genes

4.A.2 Coalescence times in an interval with three genes

Figure 4.5 shows the genealogy of a sample of three genes. It has two coalescent events, one at node A (the
root) and another at node B. The time between the present and the root can be broken into two intervals of
length t5 and t3, where ¢ is the number of generations during which the genealogy has two lines of descent
and t3 is the number of generations during which it had three. What can we say about the lengths of these
intervals?

The first point to notice is that the intervals are independent. As we ponder the length of one interval,
we need not worry about the length of the other. And we already know the mean of #2: the preceding section
showed that the mean coalescence time for a sample of two genes is 2N generations.

This leaves us with only one question to answer: What is the mean time until the first coalescent event in
a sample of three genes? We could answer this question using trick 1 if we knew the hazard of a coalescent
event in a sample of that size. Let us therefore consider the probability that a coalescent event occurs during
some given generation.

It is easier to calculate first the probability of the event that all three lines of descent remain distinct.
This requires that

1. X and Y are copies of different parental genes. We already know that this event has probability
1—1/2N.

2. Z is neither a copy of X’s parent nor a copy of Y’s parent. This event has probability (2N — 2)/2N.
(Of the 2N genes that we can choose between, 2 produce a coalescent event and 2N — 2 do not.) This
probability can also be written as 1 — 2/2N.

Thus, the probability that no coalescent event occurs in some particular generation is equal to

1—h=(1-1/2N)(1-2/2N)

Now it is time to invoke trick 4. If the population is large, then 2N will be a large number and 1/2N and
2/2N will both be small. Trick 4 thus allows the probability above to be re-expressed as

1 — o~ e l/2N,=2/2N _ ,=3/2N
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Now invoke trick 4 once again to simplify the exponential:

1-h 1-3/2N
h =~ 3/2N

Q

Having found the hazard of a coalescent event in a sample of three genes, trick 1 now gives us the mean
length of the part of the genealogy during which there were three lines of descent:

mean of t3 =2N/3

In a sample of three genes, the hazard of a coalescent event is three times as large as the hazard in a
sample of two. Consequently, the mean waiting time until the first coalescent event is only 1/3 as large. The
expected depth of the tree is the expected sum of ¢9 and t3. It equals 2NV 4+ 2N/3, or 8N /3. Three quarters
of this total is taken up by the portion of the genealogy during which there are only two lines of descent.
® EXAMPLE 4-2
In a population of 107, what is the mean time in years until a sample of three mitochondrial genes coalesce
to a single line of descent.

o ANSWER

If there are 107 people, there will be about half that many females, so 2N = 5 x 10°. The coalescence
time is 8N/3 = 6.67 x 10° generations. If generations are 25 years long, this is 167 x 10° years. So the
Last Common Ancestor (LCA) should have lived during the Jurassic period. Incidentally, this example is
far-fetched for humans, because it implies far more mitochondrial variation than really exists.

4.A.3 Coalescence times in an interval with ; genes

As in the case of three lines of descent, it is easiest to calculate 1 — h, the probability that no coalescent
event occurs during some particular generation. When there are ¢ genes in the sample, this requires

Event Probability
Gene 2 and gene 1 have different parents 1-1/2N
Gene 3’s parent differs from the preceding 2 parents 1-2/2N
Gene 4’s parent differs from the preceding 3 parents 1-3/2N

The probability that a coalescent event does not occur is

1—h = (1—1/2N)(1—2/2N)---(1— (i —1)/2N)

~ e 1/2Ng=2/2N  —(i-1)/2N (trick 4)
= exp —ﬁ(1+2+"'+(i_1>)}
— exp |11 (trick 3)
~ 1-— % (trick 4)
Thus,
B 1) (4.5)
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4.B The mean of an exponential random variable (optional)
If ¢ is an exponential random variable, then its density function is he"*. The mean of this distribution is:
o0
E[t] = / hteMdt
0

Substituting © = ht turns this into
[e.9]
E[t] = hil/ xe “dx
0

On integrating by parts, the integral on the right becomes

/ ze “dr = —ze *|g° 7/ (—e ")dz
0 0

The first term on the right is 0 and the second is —e~*|3° = 1. Thus, E[t] = 1/h.



Lecture 5

Relating Gene Genealogies to Genetics

This course began with a section on probability theory. Then came material on genetic variation and genetic
drift. In the last lecture, we discussed gene genealogies. These may have seemed like disconnected threads.
This lecture will tie them all together.

We will make extensive use of the theory introduced last time about genealogical relationships among
genes. Although that theory is elegant, it is also limited, for gene genealogies cannot be observed. They
describe obscure events that happened many thousands of years ago. We can never know the genealogy
of a sample of genes. We can estimate it from genetic data, but that requires a theory that relates gene
genealogies to observable genetic data.

This lecture begins by adding mutations to gene genealogies, and then relates these to two genetic statis-
tics: the number S of segregating sites, and the mean pairwise difference 7 between nucleotide sequences.
Finally, it will consider two ways to estimate the parameter 6.

5.1 The number of mutations on a gene genealogy

Consider the gene genealogy below:

——m———————

Each “x” represents a different mutation, and I’ll assume that each mutation is at a different nucleotide site.
Although there are 9 mutations, the variation within the sample results only from the 8 that are “downstream”

29
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of the genealogy’s root. The 9th mutation would produce an identical effect on all members of the sample
and is therefore of no interest to us. For our purposes, this is a genealogy with 8 mutations.

How many mutations would we expect to see in a sample of 3 genes? The answer will depend in part
on the number of nucleotide sites being examined. We expect more mutations per generation on an entire
chromosome than at a single nucleotide site. Although this effect is large, we can avoid dealing with it
directly by using a flexible definition of the mutation rate, u. If we are studying a single nucleotide site,
then u will represent the expected number of mutations per generation per site. If we are studying a larger
region—say an entire gene or chromosome—then u will represent the expected number of mutations per
generation in this entire region.

Unless we are studying a large genomic region, v will be very small and can be interpreted not only as
the expected number of mutations per generation, but also as the probability of a single mutation. This is
because we don’t lose much, when mutations are very rare, by ignoring the remote possibility that several
of them happen at once.

The expected number of mutations depends not only on the mutation rate, u, but also on the total length
of the gene genealogy. In a sample of 3 genes, this length is

L = 3t5 + 2ty 6.1

where t3 is the length of the coalescent interval during which the genealogy had 3 lines of descent, and ¢
is the length of the other interval. If there are « mutations per generation, then we would expect this tree to
have uL mutations—if we knew the value of L.

But since the value of L is ordinarily unknown,

E[# of mutations]| = E[uL] = uFE[L]

To calculate this expected value, we need the expectation of L. The direct approach would involve inspecting
thousands of gene genealogies, each generated by the coalescent process described in the last lecture. You
cannot, of course, look at even one real gene genealogy, let alone thousands of them. You could write a
computer program to simulate the process, but we can do the same job more easily using the theory from
the previous lecture.

The E stands for “expectation,” and in the present context it refers to an average over genealogies. For
example, F[to] is the expectation (that is, average) of t5 over a very large number of genealogies. We learned
in the last lecture that E[ty] = 2N and E[t3] = 2N/3. Thus, equation 5.1 implies that the expectation of L
is

E[L] = 3E|t3] + 2E[ts] = 2N + 4N

In general, the expected length of the coalescent interval during which there are 7 lines of descent is (see

equation 4.3)

Elt;] = Z(:U_Vl)

and the contribution of this interval to the expected length (including all branches) of the tree is

AN

iElt] = —
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The total expected length of the tree is

K ' K-1 1
E[L] =) iE[t]=4N ) _ - (5.2)
=2 =1

where K is the number of genes in the sample. The expected number of mutations on the gene genealogy is
thus

E[# of mutations] = wuE[L]

K-1
5.3)
=1

.

where w is the mutation rate per generation, and § = 4Nwu, a quantity that appears often in the formulas of
population genetics. It equals twice the number of mutations that occur each generation in the population
as a whole. Like u its magnitude depends on the size of the genomic region under study (see p. 30). Below,
we will consider the problem of estimating 6 from genetic data.

5.2 The model of infinite sites

We can now calculate the expected number of mutations in a gene genealogy of any size. The next chal-
lenge is to connect this result to data—to genetic differences between individuals. The easiest approach
involves what is known as the “model of infinite sites.” This model assumes mutation never strikes the same
nucleotide site twice. This model is never really correct, but it is often a good approximation, especially in
intra-specific data sets where the genetic differences between individuals are small. It makes sense to use it
when the mutation rate per nucleotide site is low enough that only a small fraction of nucleotide sites will
mutate twice in any given gene genealogy.

This model, of course, is only an approximation. In the real world, nucleotide sites may mutate more
than once. Appendix section 5.B (p. 35) shows that these violations occur, on average, at a fraction (ut)?/2
of sites, where u is the mutation rate per site per generation and ¢ is the number of generations.

For example, suppose that some branch of the gene genealogy is ¢t = 10* generations long and that
u = 1078, Along this branch, the expected number of mutations at a single nucleotide site is ut = 10™%. In
an entire human genome, the number of sites is about 3 x 10°. The expected number of sites that violate the
infinite sites model is therefore

3x10°x1078/2=15

The model of infinite sites is expected to fail only at 15 sites out of 3 billion. This analysis should not
be taken too literally, because the mutation rate is not really constant across the genome, and we may be
interested in much longer time intervals. Nonetheless, it does show that the model of infinite sites works
well when the product ut is small.
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5.3 The number of segregating sites

If mutation never strikes the same site twice, then the number .S of segregating (i.e. polymorphic) sites in a
data set is the same as the number of mutations in its gene genealogy, as given in equation 5.3. The expected
number of segregating sites is [26]

E[S]=0{1+1/24+1/34---+1/(K —-1)} (5.4

Finally, we have arrived at a statistic that can be calculated from data. The expected number of segregating
sites is equal to § times some number that increases with sample size. Thus, we expect more segregating
sites in a large sample. But the effect of sample size is not pronounced, because the sum in the expression
above doesn’t increase very fast. Here are a few example values:

K YK M1y

2 1.00

3 1.50

5 2.08

10 2.82
100 5.17
1000 7.48

In a sample of 100, we expect only about 5 times as many segregating sites as in a sample of 2.

The effect of the population size, on the other hand, is pronounced since E[S] is proportional to , and 6
is proportional to the population’s size. In a population twice as large, we expect twice as many segregating
sites.

5.4 The mean pairwise difference

Given any pair of DNA sequences, it is a simple matter to count the number of nucleotide positions at which
they differ. Given a sample of size K, there are K (K — 1)/2 pairwise comparisons that can be made and we
can count the number of nucleotide differences between each pair. Averaging these numbers gives a statistic
that is called the “mean pairwise nucleotide difference” and is generally denoted by the symbol 7.!

What is the expected value of 7? The number of nucleotide site differences between a pair of sequences
is the same as the number of segregating sites in a sample of size 2. Thus, equation 5.4 tells us that the
average pair of sequences differs at 6 sites. Averaging over all the pairs in a sample doesn’t change this
expectation, so

E[r] =6 (5.5)

This gives us the expected value of a second statistic that can be estimated from genetic data, and this
time the formula is especially simple. As in the case of S, we can expect the value of 7 to be large if the
population is large, small if the population is small.

!Some authors [14] use the capital letter (TT) to denote the mean pairwise differences per sequence and the lower-case letter (7)
to refer to the mean pairwise difference per site. I use the lower-case letter for both purposes.
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* EXERCISE 5-1 Just above, I said that if the expected difference between each pair of sequences is 6, then
the expectation of 7 is also 6. Prove that this is so.

* EXERCISE 5-2 For the following questions, assume that the population mates at random, has constant size
2N = 1000, that there is no selection, and that the mutation rate is u = 1/2000 per sequence per generation.
Assume that you are working with a sample of K = 5 DNA sequences, and that mutations obey the model
of infinite sites.

1. What is the expected depth of the gene tree? (In other words, the expected number of generations
since the last common ancestor.)

2. What is the expected length of the tree? (In other words, the expected sum of the lengths of all
branches in the tree.)

3. What is the expected number of mutations on the tree?

4. What is the expected number of mutational differences between each pair of sequences?

5.5 Theta and Two Ways to Estimate It

In this lecture, we have twice run into the parameter 6, which is proportional to the product of mutation rate
and population size. This parameter appears often in population genetics, and it is useful to have a way to
estimate it. The results above suggest two ways. Equation 5.4 suggests

- S
g “o
and equation 5.5 suggests. )

Here 6 is read “theta hat.” The “hat” indicates that these formulas are intended to estimate the parameter 6.

To make sure that these formulas estimate the same parameter, it is important to be consistent. S usually
refers to the number of segregating sites within some larger DNA sequence. To make 7 comparable, we
interpret it here as the mean pairwise difference per sequence rather than that per site. We also need to
interpret v as the mutation rate per sequence when we define § = 4 Nw.

With these consistent definitions, 05 and 6, estimate the same parameter. It seems natural to suppose that
their values would be similar in real data. Let’s have a look at some human mitochondrial DNA sequence
data.

5.6 Example

Jorde et al (ref) published sequence data from the control region of human mitochondrial DNA. The ex-
ample described here uses 430 nucleotide positions from HVSI1 (the first hypervariable region). Jorde et
al sequenced DNAs from all three major human racial groups, but this example will deal only with the 77
Asian and 72 African sequences. In these data:
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Asian  African
S 82 63
SEt 4915  4.847
és (per sequence) 16.685 12.998
7 (per sequence) 6.231 9.208

The theory above says that m and ég are both estimates of the parameter 6, so we have every reason to
expect their values to be similar. Yet O is half again as large as 7 in the African data and nearly three times
as large in the Asian. Why are these numbers so different?

There are at least four possibilities worth considering:

Sampling error To figure out whether these discrepancies are large enough to worry about, we need a
theory of errors.

Natural selection The theory we have used assumes neutral evolution. If selection has been at work, then
we have no reason to think that 7 and ég will be equal. In fact, the difference between 7 and és
is often used to test the hypothesis of selective neutrality. (Look up Tajima’s D in any textbook on
population genetics.)

Variation in population size Our theory also assumes that the population has been constant in size. We
need to investigate how 7 and fg respond to changes in population size.

Failure of the infinite sites model Our theory assumes that mutation never strikes the same site twice.

5.A The probability that a nucleotide site is polymorphic within a sample

In comparisons between pairs of haploid human genomes, about one nucleotide site in a thousand is poly-
morphic. In larger samples, of course, the polymorphic fraction is larger. What is the fraction (Q ) that
is expected to be polymorphic in a sample of size K? It is easier to work with the monomorphic fraction,
1 — Qk. The gene genealogy is monomorphic only if no mutation occur in any coalescent interval. Let
us consider first the coalescent interval during which there were k ancestors. As we trace time backwards
across this interval, we might encounter either of two types of event: a mutation or a coalescent event. We
encounter a coalescent event first if (and only if) the interval is free of mutations.

During this interval, coalescent events happen with hazard A\ = k(k — 1)/4N per generation, and
mutations happen with hazard A\; = ku, where u is the mutation rate per site per generation. Once an event
does occur, it is a coalescent event with probability

A2 6

R e |

where 0 = 4N u [see reference 23, pp. 48—49]. This is the probability that the kth coalescent interval is free
of mutations. When 6 is small, 2, is approximately

A Y1y
k—1 ¢

Zk"rlﬁlf



5.B. WHEN YOU ASSUME THE MODEL OF INFINITE SITES, HOW WRONG ARE YOU LIKELY TO BE? (OPTIONA

Because the mutations that occur in different coalescent intervals are independent, these probabilities mul-
tiply. The entire gene genealogy is free of mutations with probability

1-Qrg = 22324 2K
exp[=0{1+1/241/3+ ...+ 1/(K — 1)}] (5.8)

Q

The expected fraction of polymorphic sites is Q) . For example, if § = 1/1000, the fraction of polymorphic
sites should be 0.001 in a sample of size 2, 0.003 in a sample of 10, and 0.005 in a sample of 100. The
polymorphic fraction increases with K, but not very fast.

5.B  When you assume the model of infinite sites, how wrong are you likely
to be? (optional)

The model of infinite sites assumes that mutation never strikes the same site twice. Clearly, this is only an
approximation, and when we use this model we are bound to introduce errors. The question is, how large are
these errors likely to be? What fraction of the sites in our data can be expected to mutate more than once?

To find out, let us consider the mutations that occur at some nucleotide site along a single branch of a
gene genealogy. If the branch is ¢ generations long, then the number, X, of mutations is a Poisson-distributed
random variable with mean A\ = ut, where w is the mutation rate per generation.

Consider the probability, P, that X < 2. This is the probability that our site conforms to the model of
infinite sites. Because X is Poisson,

P=e¢4 X

If \is small, e™* &~ 1 — X\ + A2/2, ignoring terms of order A%. (This is from the series expansion of the
exponential function.) To this standard of approximation,
P ~ 1-X+)%)2
+A= A2+ N3)2
~ 1-)\2/2

The fraction of sites that violate the infinite sites model is approximately 1 — P = \2/2—a very small
number.
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Lecture 6

The Site Frequency Spectrum

6.1 The empirical site frequency spectrum

In a sample of K genes, a polymorphic site can divide the sample into 1 mutant and K — 1 non-mutants,
into 2 mutants and K — 2 non-mutants, and so on. There may be at most &X' — 1 copies of the mutant if the
site is to be polymorphic. In many cases we can’t tell which allele is the mutant, so category 7 gets conflated
with category K — i. Such spectra are called “folded.” I will call a site a “singleton” if the mutant is present
in a single copy, a “doubleton” if it is present in two copies, and so on.

6.1.1 An unfolded spectrum

Consider the set of DNA sequence data below:

123456
HumanSequencel AATAGC
HumanSequence2 ..AC..
HumanSequence3 .TACT.
HumanSequence4 ..ACT.

ChimpSequencel AAAATC

There are 4 human sequences and a chimpanzee sequence. There are 6 sites of which 4 are polymorphic
(segregating) within the human sample. We calculate the empirical spectrum by considering the sites one at
a time.

Site 1 is fixed and therefore does not contribute to the spectrum.

Site 2 has both an A and a T within the human sample but has only an A within the chimpanzee sample.
The odds are that the ancestor of humans and chimps had an A at this site, so we can infer that T is
the mutant allele. Since there is only one copy of T in the human sample, site 2 is a singleton. So far,
our spectrum looks like this:

Singletons : 1
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Doubletons
Tripletons

Site 3 is like site 2. The human sample has a T and 3 As, and the chimp sample has only As. We infer that
T is the mutant allele and count this site as another singleton. The spectrum now looks like this:

Singletons : 2
Doubletons
Tripletons

Site 4 has an A and 3 Cs, but it appears that A was the ancestral allele. We count this site as a tripleton, so
the spectrum becomes

Singletons : 2
Doubletons
Tripletons : 1

Site 5 has 2 Gs and 2 Ts. It does not matter which of these is ancestral. Either way, the site is a doubleton.
The spectrum becomes

Singletons : 2
Doubletons : 1
Tripletons : 1

Site 6 does not contribute to the spectrum.

We are done. The empirical spectrum has 2 singletons, 1 doubleton, and 1 tripleton.

6.1.2 A folded spectrum

In the preceding section, the chimpanzee sequences were used at each site to infer which nucleotide was
ancestral and which was the mutant. Let us now pretend that we have no chimpanzee sequences and therefore
cannot tell the the ancestral allele from the mutant. Instead of counting mutants, we will count the rarest
(sometimes called the minor) allele at each site. This time, however, I will omit the invariant sites (1 and 6),
which do not contribute to the spectrum.

Site 2 The rare allele, T, is present in a single copy, so this site contributes to the singleton category just as
it did for the unfolded spectrum.

Site 3 Ditto: another singleton

Site 4 The rare allele, A, is present in a single copy, so this site is a singleton. Recall that it was a tripleton
in the unfolded spectrum.

Site 5 A doubleton
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The folded spectrum looks like this:

Singletons : 3
Doubletons : 1

The only difference is that site 4, which was a tripleton in the unfolded spectrum, becomes a singleton in the
folded spectrum.

In general, the ith category of the folded spectrum contains not only category ¢ of the unfolded spectrum,
but also category K — 7, where K is the number of DNA sequences in the sample.

6.2 The expected spectrum under neutrality and constant population size

This section deals with the special case of selective neutrality and constant population size. I will assume
initially that we can tell mutants from ancestral alleles so that our spectrum will be unfolded.

6.2.1 A site’s position in the spectrum depends on its position in the gene tree

Consider the following gene tree:

Mutations A and C are singletons, whereas B is a doubleton. A mutation in the most recent coalescent
interval can only be a singleton. One in the next most recent interval can be either a singleton or a doubleton.
One in the interval before that can be a singleton, a doubleton, or a tripleton. And so on.

6.2.2 A tree with two leaves has nothing but singletons

To get a sense of how the process works, it helps to start with a tree with just two leaves:

|- 2N generations ——|
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Since the hazard is 1/2N, the mean depth of this tree is 2/V generations and the total length is 4N. We
expect 4 Nu = ¢ mutations, all of which will be singletons.

6.2.3 A tree with three leaves has (on average) the same number of singletons and half that
number of doubletons

Now consider a tree with three leaves:

Generations

If we could look at the spectrum just before the most recent coalescent event, it would look just like that of
the tree with two leaves: 6 singletons and no doubletons. At the time of the coalescent event, half of these
mutations (the ones on the upper branch) become doubletons. There is no further change in the number of
doubletons, so the expected number of doubletons in a 3-leaf gene tree is /2. (We don’t need to worry
that mutation will turn any of our doubletons back into singletons because, under the infinite sites model,
mutation never strikes the same site twice.)

This argument cheats a bit, because it assumes that the upper branch is the one that bifurcated. In reality,
the branch that bifurcates is equally likely to be the upper or the lower. In either case, however, the expected
number of doubletons is §/2. A more rigorous calculation would average across these two cases but reach

the same answer:
Lo 0yt
2\2 2/ 2

The coalescent interval with 3 lines of descent begins with 6/2 singletons, but then more singletons
are added because of new mutations. How many new mutations should we expect to see? The interval’s
expected length is 2N /3 generations (see section 4.3), and it contains 3 lines of descent, so the sum of the
branch lengths within this interval is (on average) 2N generations. We therefore expect 2Nu = /2 new
singleton mutations.

The number of singletons that is added is precisely equal to the number that was lost. Thus, the new
spectrum has 6 singletons and /2 doubletons.
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6.2.4 Number of tripletons in a tree with four leaves

Suppose now that we add another interval, containing 4 branches, to the tree shown above. The 4th branch
arises because one of the 3 existing branches bifurcates, and that branch is chosen at random. If the top
branch bifurcates, each doubleton becomes a tripleton, so we end up with 6/2 tripletons. If the middle
branch bifurcates, we get the same result. But if the bottom branch bifurcates, we get no tripletons at all.

The expected number of tripletons is
(et -t
3\2 2 B

6.2.5 The theoretical spectrum for an arbitrary number of leaves

To extend this argument to larger samples, one must make it algebraic [10, 20]. I will skip those details here.
The result (shown below) was first derived by Fu [4].

Sample Expected spectrum
size (singletons, doubletons, . . .)

2 0

3 0, 6/2

4 0, 6/2, 0/3

5 0, 6/2, 0/3, 6/4
Etcetera

It is remarkable that as we increase sample size, the number of mutants in each category doesn’t change.
We merely add a new category at the right side of the spectrum.

To use the theoretical formula with data, we need to substitute some estimate of #. We might use the
mean pairwise difference, 7, or the estimator

p S
S = w7
Zi[ill 1/i

where K is the number of DNA sequences in the sample. Either of these estimators might work, since both
of them estimate 6 under the stationary neutral model (see the discussion of equation 5.6 on page 33). To
choose between these estimators, we need some additional criterion.

The sum of the observed spectrum is equal to the number S of segregating sites. It would be useful if
the theoretical spectrum summed to the same value. This turns out to be so only if O is used to estimate 6.

6.2.6 Folded theoretical spectra

When the spectrum is folded, we cannot distinguish category ¢ from category K — i. Consequently, the
expected number in category ¢ in the folded spectrum is the sum 6 /i and /(K — i), the expected numbers
in the two corresponding categories in the unfolded spectrum. This works so long as i < K /2, for then ¢ and
K — i are different numbers. If K is even, there is an additional entry at which i = K/2 and the expected
folded spectrum is simply /3.
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6.3 Human site frequency spectra

Figure 6.1 shows all of the human site frequency spectra that I was able to cull from the literature in the year
2000. In each plot, the empirical spectrum is shown as a histogram, and the expected values under neutral
evolution with constant population size are shown as bold dots. The top row shows three systems in which
there is an excess of singletons, compared with the stationary neutral model. The middle row shows three
systems that seem to fit the neutral model, and the bottom row shows three systems in which there is a deficit
of singletons and an excess of sites at intermediate frequency.

6.4 Exercises

* EXERCISE 6-1 For this exercise, use the toy data set in section 1.1, on p. 5. (1) Use S to estimate 6,
(2) from this value, calculate the number of sites expected in each frequency category, (3) fold the resulting
theoretical spectrum by summing values for ¢ and K —i. (4) Compare the result with the empirical spectrum
that we calculated earlier, in section 1.3.3.
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Figure 6.1: Site frequency spectra. The open rectangles in each panel show observed spectra;
the bold dots show the spectra expected under the infinite sites model with no selection and con-
stant population size. K is the number of chromosomes sampled, s is the number of segregating
sites, and p is the frequency of the mutant allele (where ancestral state could be determined) or
the rarest allele (where ancestral state is unknown). Sources: ¢[11], *[7], ¢[22], 9[12], ¢[6], /[15],
9[5], 3], ‘28], /[8]
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Lecture 7

The Mismatch Distribution

7.1 The observed mismatch distribution

Count the number of site differences between each pair of sequences in a sample, and use the resulting
counts to build a histogram. You end up with a “mismatch distribution.” The ¢th entry of the mismatch
distribution is the number of pairs of sequences that differ by 7 sites.

For example, consider this data set:

S01  AAACT GTCAT

S02 .....A.T..
S03 . .G..A.
S04 ..G..A.T
S05 AL

To calculate the mismatch distribution, we need to count the differences between every pair of sequences.
Here are my counts:

Pairwise
Pair  differences
1x2 2
1x3 2
1 x4 3
1x5 1
2x3 2
2 x4 1
2x5 1
3x4 1
3x5 1
4 x5 2

There are five 1s, four 2s, and one 3. Thus, the mismatch distribution is

45



46 LECTURE 7. THE MISMATCH DISTRIBUTION

Number
Pairwise of
differences pairs
0 0
1 5
2 4
3 1

Here, the right column gives the number of pairs that exhibit each level of difference. We often re-express
these as fractions of the number of pairs of sequences. Since there are 10 pairs in our data set, this gives:

Fraction
Pairwise of
differences pairs
0 0.0
1 0.5
2 0.4
3 0.1

Now the numbers in the right column sum to 1—they are relative frequencies. This is the observed or
empirical mismatch distribution.

7.2 The expected mismatch distribution under neutral evolution with con-
stant population size

The previous section concerned the observed mismatch distribution, which we calculate from genetic data.
Each entry in this distribution is a random variable, so it is natural to wonder about its expected value. This
is easy to calculate, under a model of constant size and selective neutrality: a random pair of sequences
differs by ¢ sites with probability [26]

1 0\ ,

where § = 4Nwu, u is the mutation rate per generation, and 2N is the number of genes in the population.
This formula is graphed in figure 7.1 along with an empirical mismatch distribution from human mtDNA.
(The empirical distribution, shown as open circles, is analogous to the one calculated in section 7.1.)

The poor fit between the observed and expected curves is striking. As usual, there are several hypotheses
to consider:

Sampling error Perhaps the poor fit is an artifact attributable to sampling error. This possibility is espe-
cially important here because the pairs of sequences in this analysis are not independent: They are
correlated both because each sequence participates in several pairs and also because of the genealog-
ical relationships among sequences.

Selection More on this later
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Figure 7.1: The poor fit of the equilibrium distribution
The open circles show the empirical pairwise difference distribution of Cann, Stoneking, and Wilson [2], based on
their figure 1. The solid line is an equilibrium distribution with the same mean.

Failure of infinite sites hypothesis
Non-random mating
Variation in population size

Work has been done on all of these possibilities, but we will consider only the last.

7.3 Coalescent theory in a population of varying size

The principles of coalescent theory still hold in a population of varying size. At any given time, ¢, the hazard
of a coalescent event is 1)
1 —
hi(t) =

where 7 is the number of distinct lines of descent in the gene genealogy at time ¢ and 2N (¢) is the number
of genes in the population size at time ¢.

It is no longer true, however, that the mean waiting time until a coalescent event is 1/h;. That only
works in populations of constant size. Some theoretical results are still possible, but the more complex the
model the more we are forced to base inferences on computer simulations.

7.4 The coalescent as an algorithm for computer simulations

Fortunately, coalescent theory is just as useful in computer simulations as in theoretical work. The style of
reasoning is the same, except that coalescent intervals are generated from random numbers. As in the case
of constant population size, intervals tend to be long in those parts of the tree where there are only a few
lines of descent.

Now, however, there is an additional factor to consider: Coalescent intervals also tend to be long when
the population size is large. It is not hard to understand why this should be so. Two random genes drawn
from a large population are likely to be distantly related and thus separated by a long genealogical path. In
a small population, a pair of genes is likely to be separated by a shorter path.
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Table 7.1: Hypothetical two-epoch population history

2N, i t;
Epoch (genes) (generations)
0 10° 2000
1 104 s

Computer simulations are most useful if they deal with only a few parameters at a time. Thus, we need
some economical way to describe the history of a population that changes in size.

7.5 Stepwise models of population history

Population growth is ordinarily regulated by density-dependent mechanisms that allow small populations to
grow and cause large ones to shrink. Consequently, most biologists think that the sizes of most populations
are roughly constant most of the time. Now and then, something happens to disturb this equilibrium, and the
population either grows or shrinks until a new equilibrium is attained. Over a long time scale, the periods
of change would look like relatively sudden changes in the size of a population that was otherwise roughly
constant.

This is the conventional view of demographic history, and it motivates the stepwise model of popu-
lation history that is used here. I will assume that history can be divided into a series of epochs during
which the population does not change. Epochs are separated by episodes of rapid change, which I treat as
instantaneous. They are numbered backwards from the most recent (epoch 0) to the most ancient. !

Table 7.1 shows the parameters of a hypothetical population history with two epochs. The table describes
a population that was small (10,000 people) early in time, grew suddenly 2000 generations ago, and has been
large (1,000,000 people) ever since. The history of this hypothetical population is graphed in figure 7.2.

With genetic data is it not possible to estimate N; and ¢; directly. We can, however, estimate the related

'Rogers and Harpending [19] numbered them in the opposite direction.

N1 —

Population Size

Ny ~

[ T
0 t

Time before present, measured in generations

Figure 7.2: At ¢t generations before the present, the population expands from female size N7 to
female size Ny. The model's 3 parameters are 6y = 2ulNy, 61 = 2uN1, and 7 = 2ut, where u is the
aggregate mutation rate over all sites.
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Table 7.2: Alternate parameterization of the same population history

Epoch 0; T

0 2000 4
1 20 oo
parameters
T = 2ut; (7.3)

where u is the mutation rate. 6; measures the size of the population during epoch 7 in units of 1/(2u) genes;
7; measures the length of this epoch in units of 1/(2u) generations. The population history of table 7.1 can
be re-expressed in terms of # and 7 by multiplying each parameter by 2u. For example, if the mutation rate
is 0.001 (per sequence per generation), then we obtain table 7.2.

7.6 Simulations of stationary populations

Figures 7.3-7.6, on pages 50-53, each show a simulation of a population with constant size. In each figure,
the upper panel shows the time path of population size, which is simply a horizontal line in these first four
figures. Proceding down each page, you will find the gene genealogy, the mismatch distribution and the
spectrum. The expected mismatch distribution is shown as a solid line; the expected spectrum is shown as a
series of filled circles. In both cases, the expected values refer to a model of neutral evolution in a population
of constant size.

These figures make use of what I will call the “mutational time scale.” A unit of mutational time is the
amount of time it takes, on average, for one mutation to accumulate along the genealogical path separating
two sequences. Thus, if two sequences have been separate for 5 units of mutational time, we expect them to
differ at about 5 nucleotide sites. Each unit of mutational time is equal to 1/(2u) generations.
® EXAMPLE 7-1
In human mitochondrial D-loop sequence, it has been estimated that the mutation rate is 4.1 x 106 per
nucleotide per generation [24]. In the Jorde et al HVSI data there are 430 nucleotides, so u = 430 x 4.1 x
1075 = 0.0018 per generation. Each unit of mutational time is 1/(2u) = 278 generations, which would
correspond roughly to 6950 years.

Notice that neither the mismatch distributions nor the spectra of these equilibrium populations look much
like the theoretical formulas would predict. Far from showing the smooth decline seen in the theoretical
curves, the simulated mismatch distributions tend to be ragged, with multiple peaks. The site frequency
spectra also exhibit pronounced departures from their expected values. In order to get answers that look like
the theory, we would need to run the simulations many times and average the results. This is bad news, since
in real data analysis we cannot rewind the evolutionary process and look at it again and again. The situation
is not hopeless, but it is clear that merely inspecting graphs such as these is not going to give us dependable
answers. We are going to need more sophisticated statistical methods.



50 LECTURE 7. THE MISMATCH DISTRIBUTION

Population
size

w w
9 18 27
Mutational time before present

Gene
genealogy

Mutational time before present

Mismatch
distribution

&
18 27
Pairwise differences

Site
frequency
spectrum

FPﬁffFP'%ﬁv°'W“°°°°°]°°°°

\
172
Frequency of minor allele

Figure 7.3: An equilibrium population with § = 7
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Figure 7.4: An equilibrium population with § = 7
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Figure 7.5: An equilibrium population with § = 7
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Figure 7.6: An equilibrium population with § = 7
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7.7 Simulations of expanded populations

Figures 7.7-7.10, on pages 55-58, show simulations of populations that grew suddenly by 100-fold at 7
units of mutational time before the present. In these graphs, the solid lines drawn for mismatch distributions
refer to the expectation under the model of population history that was used in the simulations. On the
other hand, the filled circles shown with the site frequency spectra refer as before to a model of constant
population size.

The gene genealogies of these expanded populations look different. Coalescent events occur only rarely
during the period when the population was large, but occur rapidly in the earlier period when the population
was small. This gives the gene genealogies a comb-like shape, which seldom appears in the genealogies of
stationary populations. Many pairs of individuals differ by just over 7 units of mutational time.

The mismatch distributions in these simulations are all unimodal, with peaks just a little before 7. This
reflects the fact that many pairs of individuals differ by just over 7 units of mutational time.

The spectra in these simulations exhibit an excess of singletons. This is because the terminal branches in
the gene genealogies are long and attract a disproportionate number of the mutations. The mutations that
fall on these long terminal branches are all singletons. Methods for calculating the expected spectrum are
introduced by Harpending et al. [7] and by Wooding and Rogers [27].
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Figure 7.7: A coalescent simulation with growth: 6y = 1, 6; = 100, 7 = 7. *: expected; o: expected
if population size is constant.
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Figure 7.8: A coalescent simulation with growth: 6y = 1, 6; = 100, 7 = 7. *: expected; o: expected
if population size is constant.
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Figure 7.9: A coalescent simulation with growth: 6y = 1, 6; = 100, 7 = 7. *: expected; o: expected
if population size is constant.
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Figure 7.10: A coalescent simulation with growth: 6y = 1, 6; = 100, 7 = 7. . expected; e:
expected if population size is constant.
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7.A Point estimators for expanded populations (optional)

If the expansion has been dramatic, the mismatch distribution will be a smooth wave with a single mode. In
that case, the time of the expansion and the size of the pre-expansion population can be estimated using the
following statistics [17]:

b = Vo—n (74)
f'o = m—91 (75)

where 7 is the mean pairwise difference per sequence within the sample, m is the mean of pairwise differ-
ences, and v is the variance.

7.B Statistical properties of point estimates (optional)

To determine the statistical properties of 01 and 79, I used the coalescent algorithm [9] to generate 1,000
simulated data sets at each of a wide variety of parameter values. In order to allow for changes in population
size, | used a modified version of the coalescent algorithm, which is described elsewhere [18]. I estimated 6,
and 7 from each simulated data set, thus obtaining an estimate of the sampling distribution of the estimators
for each set of parameter values.

Figure 7.11 shows how the sampling distribution of 7y changes in response to variation in the underlying
parameter 7g. If 7y is in fact an estimator of 7y, we would expect the median of 7y (shown as a solid line
in the figure) to increase in response to increases in 7y. This is indeed the case. An ideal estimator should
also have a relatively narrow distribution at each value of 9. The dashed and dotted lines show that 7y
also satisfies this test. The dashed lines enclose the central 50% of the distribution, and the dotted lines the
central 95%. Both sets of lines enclose a relatively narrow interval about the median. In all of these respects,
7o behaves as an estimator of 7.

Figure 7.12 performs a similar analysis on 61, and shows it to perform well as an estimator when 0, > 1.
The distribution is tightly centered about the bold dots, showing that 6 is rich in information and nearly
unbiased when 6; > 1. But when 6; < 1, the upper quantiles of log, 6, are horizontal, while the median
and lower quantiles of 6, equal 0. Thus an estimate of 6, ~1is equally consistent with the hypotheses that
f1 = 1 and that #; = 0. Although 6, will always allow us to place an upper bound on 61, it can provide
no lower bound unless 6 is much greater than 1. This is no serious problem; it means only that when the
estimate is near unity, the confidence interval will reach all the way to 0.

(Need some prose to go with figure 7.13.)
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Quantiles
of 7 0

Figure 7.11: Quantiles of 75. 1000 data sets were simulated at each of several values of r,
and each was used to estimate the model’s parameters. The bold dots indicate points at which
70 = 71p. The solid line is the median, the dashed lines enclose the central 50% of the distribution,
and the dotted lines the central 95%. Each simulated data set was generated using the coalescent
algorithm with 8y = 500, 81 = 1, and N = 147.
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Figure 7.12: Quantiles of 4;. 1,000 data sets were simulated at each of several values of ¢;, and
each was used to estimate the model’s three parameters. In each run, 8, = 1000, 7 = 7, and
N = 147. The lines and bold dots are interpreted as in figure 7.11.
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Figure 7.13: Mitochondrial Mismatch Distributions
In each panel, the solid lines show mismatch distributions for within-population comparisons, and the dotted lines
show the analogous between-population comparisons. The data comprise 72 Africans, 77 Asians, and 89 Europeans

[11].
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Figure 7.14: An experiment designed to test the method for generating confidence regions.

Rather than beginning with a real data set, this experiment began with a simulated data set that was generated under
the assumptions that N = 147, and (7, 60y,601) = (4,1,500). A confidence region was then generated as described

in the text. Open circles (o) represent points outside the 95% confidence region; closed circles (e) represent points

within. Note that the correct hypothesis {(7, 8, 01)

(4,1,500)} falls inside the confidence region.
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Figure 7.15: 95% confidence region for the Cann-Stoneking-Wilson data
Open circles (o) represent points outside the 95% confidence region; closed circles (e) represent points within. The
marginal confidence regions are 7 : [5,8], 6y : [0,4.6], and 6;/6y : (100, c0]. If the mutation rate is v = 0.001
per sequence per generation, and generations are 25 years, these intervals become ¢ : [62,100] thousand years, and
Ny : [0,2320] females.
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Appendix A

Mean, Variance and Covariance

This is not really a lab exercise. It is a summary and description of concepts of mean, variance, and covari-
ance. It is meant to familiarize you with notation and concepts that are used elsewhere.

A.1 The mean

Given a set of numbers such as
r1 =10, x0=12, x3=10, x4 =38
the mean is
z=(10+12+10+8)/4=10
which can also be written in several other ways, including

4

T=(x1+xo+a3+a4)/4= (Z%’)/‘l

i=1

In this example there are four elements in the sum. Often the number of elements is represented by a symbol
such as N. Then

N
F=NTY a
i=1
The limits of summation are sometimes omitted, as in

f:N712$i
7

which means that the sum is over all values of ¢, which here runs from 1 through 4.

It is often more convenient to express the mean in terms of the frequencies of elements with particular
values. For example, let n,, denote the number of elements with value z. In our example, n; = ng = - - =
ny=0,ng =1,n9g =0, n1g = 2, n11 = 0, and n1o = 1. With this notation,

:f:N_Ianx
x

65



66 APPENDIX A. MEAN, VARIANCE AND COVARIANCE

and
N = Z Ng
X
Yet another formulation defines the relative frequency of elements with value z by p, = n,/N. Then

ps =pi2=1/4, and pp=1/2

f:Zazpz
x

In this formulation, p, is the relative frequency of value x in the data.

The same formula also turns up in probability theory. Suppose that some variable, X, takes values that
cannot be predicted exactly, but which occur with specified probabilities, p1,ps2,.... Then X is called a
“random variable” and its expectation, E[z], is defined as

E[X] = pr:(:

and the mean can be written as

Note that this is the same as the preceding formulation of the mean.

Finally, suppose that X is a continuous variable, such as stature, that takes values over the range from a
to b. Then you cannot enumerate the possible values that it may take. Its expectation, or average value, is
written as

EX] = /ab:vf(a:)dx

where f(z)dx can be thought of as the probability that X takes a value within the (very small) interval from
x to x + dx, and is thus analagous to p, in the discrete formulation.

A.2 Variance

The variance of a series of numbers is the average squared difference from the mean. For example, the mean
of the numbers listed above is 10, so the variance is

V = ((10 — 10)* + (12 — 10)* + (10 — 10)? + (8 — 10)?*)/4 = 2

As with the mean, there is a variety of ways to represent the variance, including

V. o= N (- 2)? (A1)
= > (z—2)p.
= Zz: ’p, — 2 (A.2)
= g?z? — 72 (A.3)

The last line says that the variance is the mean square of = minus the squared mean.

Equation A.1 provides the most straightforward method of calculating the variance, but it requires two
passes through the data. The first pass calculates the mean, and the second sums the squared deviations from
the mean. Equation A.3 is often more convenient because it requires only one pass through the data.
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* EXERCISE A-1 Verify that these formulas are equivalent.
In probability theory, the (theoretical) variance is defined as
VIX] = B [(X - E[X))?| = E[X?] - (E[X])?

These expressions hold irrespective of whether the random variable is continuous or discrete, but they have
slightly different interpretations in the two cases. For discrete random variables,

E[X?] = Z *p,

but for continuous random variables

E[X?] = /{L‘Qf(l')dl'

A.3 Covariances

The covariance of two sets of numbers, x1,...,xy, and ¥y, ..., yn, 1S
N

Cov(z,y) =Y (w; — )(yi — 1)
i=1

where Z and § are the means of the two sets of numbers. Alternate expressions for the covariance include

Cov(z,y) = Z Z(JU —2)(Y — Y)Pry
z oy
= > (@ =)y~ §)pay

Ty
= > TYPoy — TY (A4)
Ty

Here p, , is the relative frequency of pairs of numbers with values (z,y) and the sum is taken over all
possible of pairs of numbers. The notation _,, means the same thing as 3°, >, .
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Appendix B

Answers to Exercises

* EXERCISE 1-1

Cmd line: segstat eulO.dat -c
1st line of input specifies 10 subjects and 10 sites
Results will include the reference sequence (line 1).

o° o° o

o\

Population 0
sequences : 10
sites : 10
mismatch = 11 25 9 ;
meanPairwiseDiff
per sequence: 0.955556
per site : 0.0955556
segregating sites: 4
theta estimated from segregating sites
per sequence: 1.41394
per site : 0.141394
spectrum = 3 1 ;
% Count of minor allele at each polymorphic site:
%psite site count

1 3 2
2 6 1
3 7 1
4 10 1

* EXERCISE 2-1 The parameter values that maximize this expression are

R N,
P = _ B.1
! N1+ Ny + N3 (B.1)
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po B2
g Ni + Nz + N3 B2

* EXERCISE 3-1 Expected heterozygosity equals 0.16 when 6 = (0.19.
*EXERCISE 3-2 If 6 = 0.19 then N = 47, 500.
* EXERCISE 3-3 In generations O through 20 the heterozygosity is:
Generation Heterozygosity
0
.00001052631579
.00002105249972
.00003157855180
.00004210447203
.00005263026041
.00006315591694
.00006315591694
.00007368144162
.00008420683445
.00009473209544
10 .0001052572246
11 .0001157822219
12 .0001263070874
13 .0001368318210
14 .0001473564228
15 .0001578808928
16 .0001684052309
17 .0001789294372
18 .0001894535117
19 .0001999774543
20 .0002105012651
* EXERCISE 3—4 A few representative values are:
p p(1—p)/(2N)
0 0
25 0.1973684211 x 1077
50 0.2631578948 x 107°
75 0.1973684211 x 1077
1.00 0
*EXERCISE 3-5 At p = 1/2, \/(p(1 — p)/(2N)) ~ 0.0016
* EXERCISE 3-6 In the figure, v = 0.005 and N = 2500, so § = 50, the equilibrium value of heterozygosity
is 0.98, and the equilibrium value of homozygosity is 0.02. This is just what the figure shows.
* EXERCISE 4-1 The equation is 7" = h + (1 — h)(1 4+ T'). Re-arranging this expression gives 7' = 1/h.
* EXERCISE 4-2 Beginning with the right side of the expression, we end up with the left side:

0N 9NNk~ W= O

e}

1 1 ? 1—1 1

i—1 @ di(i—1) i(i—1) d(i—1)
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* EXERCISE 4-3 The intervals are:
i AN/(i(i—1))
0 1111111111
138.8888889
178.5714286
238.0952381
333.3333333
500.0000000
833.3333333
1666.666667
2 5000.000000
* EXERCISE 4—4 Since the sample is large, the mean age of the LCA is close to 4N generations. Half of this
period is accounted for by the interval during which the tree contained only two lineages.
*EXERCISE 5-1 Let z;; denote the difference between the 7th and jth sequences, and let M denote the
number of pairs of sequences in the sample. Then m = 3 x;;/M, where the sum runs over all ¢ and j such
that ¢ < j. The expected value of 7 is

p—

W A~ QN 0O

Elx] = E[M™'Y ;| (definition of )

= M 'E {Z xi]} (JEPreqn. 7)

= M! > [Exgy) (JEPr eqn. 8)

= M 'M6O  (eqn. 5.4 with K = 2)

= 0
Here, JEPr eqn. 7 tells us that E{aX] = aE[X] for constant @ and variable X, and JEPr eqn. 8 tells us that
the expectation of a sum equals the corresponding sum of expectations. Eqn. 5.4 (with K = 2) tells us that
the expected number of segregating sites in a sample of size 2 is equal to #. For such samples, the number
of segregating sites is equal to the number of differences between the two sequences.

* EXERCISE 6-1 That example was of a sample of K = 10 DNA sequences, which had 15 segregating sites.

Thus, we can estimate 6 as
N 15

i=17
I'll use the symbols v,, and vy to represent the unfolded and folded spectra respectively. The unfolded
theoretical spectrum (assuming selective neutrality and constant population size) is

v =10,0/2,0/3,...,0/9]

The first entry in this vector is the expected number of singleton sites, the second is the expected number of
doubleton sites, and so on. Substituting the estimated value of # turns this into

vy, = [5.30,2.65,1.77,1.33,1.06, 0.88,0.76, 0.66, 0.59]
The folded spectrum is constructed as follows:

vy = [5.3040.59,2.65+ 0.66,1.77 + 0.76, 1.33 + 0.88, 1.06]
= [5.89,3.31,2.53,2.21, 1.06]
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Thus, we expect 5.89 sites at which the minor allele is present in 1 copy, 3.31 sites at which it is present in
2 copies, and so on. In the real data (see section 1.3, page 7), we had

vf =[6,2,2,5,0]

where the “hat” indicates that these values refer to data rather than from theory. The theoretical and observed
spectra are similar, but certainly not identical. No inference can be drawn from this difference, because our
sample is very small.



