Antimicrobial drugs I.

Principles of the antibacterial chemotherapy Modes of action and interactions

Dora Szabo
Institute of Medical Microbiology

Paul Ehrlich

"Magic Bullet"

- Chemicals with selective toxicity
- together with Sahachiro Hata have arsenic and aniline dyes derivatives sought 606 derivative, Salvarsan was effective against syphilis

– ORIGIN: Selective Stains

DRUG: Arsphenamine (1910)

"606" Salvarsan

Gerhard Domagk

✓ Drugs are changed in the body

ORIGIN: Prontosil

(Only active in vivo)

DRUG: Sulfanilamide (1935)

NOBEL: 1939

Alexander Fleming

Microbes make antibiotics

ORIGIN: moldy culture plate

DRUG: Penicillin (1928)

NOBEL: 1945

Penicillin

• 1945 Nobel-price:

Fleming

Florey

Chain

Selman Abraham Waksman

- Soil Streptomyces make antibiotics
- comes up with definition of antibiotic
- Streptomycin the first antituberculoticum

ORIGIN: Penicillin development

DRUG: Streptomycin (1943)

NOBEL: 1952

Antimicrobial effect

- Extracorporal
 - Desinfection
 - -Sterilization

- Intracorporal
 - Chemotherapeutic agents
 - Antibiotica

Antimicrobial drugs:

Chemotherapeutic agent- drug synthesised chemically

Antibiotic – natural agent synthesised by a bacterial or fungal strain

Selective Toxicity

- Cause greater harm to microorganisms than to host
- Chemotherapeutic index= lowest dose toxic to patient divided by dose typically used for therapy

Chemotherapeutic index=:

The higher the index, the more effective chemotherapeutic agent (DTM/DCM)

Antibiotics can be either

- Broad Spectrum
 - Kill a wide range of bacteria e.g.
 Penicillin

- Narrow Spectrum
 - Kill a specific type or group of bacteria e.g. Isoniazid

- Bacteriostatic, i.e. those that act primarily by arresting bacterial multiplication,
- Bactericidal, i.e. those which act primarily by killing bacteria

• MIC (minimal inhibitory concentration)

⇒ the lowest concentration (highest dilution)

of the drug that has an inhibitory

(bacteriostatic) effect.

- Tube dilution
- Microdilution
- Agardilution
- E-test

• MBC (minimal bactericidal concentration)

⇒ the lowest concentration (highest dilution)
that has a killing (bactericidal) effect

The Ideal Drug*

- 1. Selective toxicity: against target pathogen but not against host
 - LD₅₀ (high) vs. MIC and/or MBC (low)
- 2. Bactericidal vs. bacteriostatic
- 3. Favorable pharmacokinetics: reach target site in body with effective concentration
- 4. Spectrum of activity: broad vs. narrow
- 5. Lack of "side effects"
 - Therapeutic index: effective to toxic dose ratio
- 6. Little resistance development
 - * There is no perfect drug.

Side effects of chemotherapy

- Allergic response
- Toxic effects
- Disbacteriosis
- Inhibition of immune system
- Embryotoxic action
- Formation of the drug resistance

Types of combined actions of antimicrobial

Antibiotic Mechanisms of Action

Beta-lactam antibiotics

BETA-LACTAM ANTIBIOTICS

(inhibitors of cell wall synthesis)

Their structure contains a beta-lactam ring. The major subdivisions are:

- (a) **penicillins** whose official names usually include or end in "cillin"
- (b) **cephalosporins** which are recognized by the inclusion of "cef" or "ceph" in their official names.
- (c) **carbapenems** (e.g. meropenem, imipenem)
- (d) monobactams (e.g. aztreonam)
- (e) **beta-lactamase inhibitors** (e.g. clavulanic acid, sulbactam).

Substituted 6-aminopenicillanic acid

Substituted 7-aminocephalosporanic acid

Substituted 3-amino-4-methylmonobactamic acid (aztreonam)

(imipenem)

Beta-lactams effect on bacterial cell wall

Subunits for cell wall construction

Transpeptidase (PBP) forms a 5-glycine bridge between peptid

Transpeptidase, or PBP (orange sunburst) is bound by beta-lactam antibiotic (light blue) and its activity is inhibited (turns gray)

5-glycine crosslinking bridges cannot form in the presence of a beta-lactam, and the cell wall is deformed and weakened

Mechanisms of beta-lactam resistance

- Drug-modifying enzymes (beta-lactamases)
 - Gram-positives(e.g., S. aureus) excrete the enzyme
 - Gram-negative (e.g., E. coli) retain the enzyme in the periplasm
- Overexpression of cell wall synthetic enzymes
 - e.g., vancomycin-intermediate S. aureus (VISA)
- Alteration of the PBPs so antibiotic cannot bind
 - e.g., MRSA, S. pneumoniae, gonococcus
- Exclusion from the site of cell wall synthesis
 - Porin mutations in the outer membrane of Gramnegative bacteria only (e.g., Ps. aeruginosa)

Beta-lactamases

Beta-lactamases (dark orange) bind to the antibiotics (light blue) and cleave the beta-lactam ring.

The antibiotic is no longer able to inhibit the function of PBP (orange sunburst)

Beta-lactamase activity

Beta-lactamase inhibitors

- Bind the beta-lactam ring irreversible
- Clavulanic acid
 - Augmentin (amoxycillin/clavulanic acid)
- Sulbactam
 - Unasyn (ampicillin/sulbactam)
- Tazobactam
 - Tazocin (piperacillin/tazobactam)

Resistance to β-Lactams – Gram negative

Beta-lactamases

- Extended-spectrum beta-lactamase ESBL
 - Hydrolyze: penicillins, cephalosporins
 - NOT hydrolyze: carbapenems, monobactams
 - Beta-lactamase inhibitors: clavulanic acid, sulbactam, tazobactam will inhibit!
 - Gram-negatíve bacteria
- Metallo beta-lactamase (MBL)
 - Hydrolyze: CARBAPENEMS
 - Gram-negatíve bacteria

Resistance to β-Lactams – Gram positive

Methicillin resistant Staphylococcus aureus MRSA

- Penicillin-binding proteins (PBPk) structure modification
- Resistance to ALL BETA-LACTAM ANTIBIOTICS:
 - Penicillins
 - Cephalosporins
 - Carbapenems
 - Even to Beta-lactamase inhibitors

Glycopeptides: Vancomycin, Teicoplanin

Komplex Effect - Glikopeptides

- Vancomycin, Teicoplanin
 - interfere with Peptidoglicansynthese
 - destroy the cytoplasmic membrane
 - prevent RNA synthesis
- can not go through Gramnegative cell wall
- Only for Gram-positive bacteria

Inhibition of peptidoglycan cross-linking by Beta-Lactams and Vancomycin and mechanisms of resistance.

- Transpeptidase enzyme binds to D-Ala-D-Ala for cross-linking.
- Beta-lactam antibiotic binds to transpeptidase inhibiting cross-linking.
- Vancomycin binds to D-Ala-D-Ala preventing binding of enzyme.
- Beta-lactamase cleaves beta-lactam antibiotic.
- Changing terminal D-Ala to D-Lactate prevents vancomycin binding.

Mechanism of vancomycin action

Mechanism of vancomycin resistance

Vancomycin resistant Enterococcus (VRE)

ANTIBIOTICS AFFECTING CELL MEMBRANES

- Polypeptides
 - Surface active amphipathic agents.
 - Interact strongly with phospholipids and disrupt the structure of cell membranes.

- Daptomycin
 - Depolarizes the cell membrane

Polypeptids

- Disintegration of the outer membrane
- Narrow spectrum only against G negative (except Proteus, Neisseria)
- Bactericidal Antibiotics
- kidney toxicity
- Intestinal decontamination-per os are not absorbed
- Eye, ear drops, wound infections
- for example:. polymyxin B, colistin (im, iv..)

Mechanism of Action ALTERATION OF CELL MEMBRANES

- binds to lipopolysaccharide on outer cell wall of GNR;
- permeability change in cell envelope;
- leakage of cell content.

Colistin

- Spectrum: aerobic gram-negative rods, including Acinetobacter, Ps. aeruginosa, Stenotrophomonas.
- NOT active against: Burkholderia, Proteus, Serratia, Brucella, gram-negative anaerobes, gram-positive cocci
- Adverse effects: Neurotoxicity dizziness, weakness, vertigo, visual changes, confusion, ataxia.

ANTIBIOTICS INHIBITING PROTEIN SYNTHESIS

- Macrolides
- Clindamycin
- Linezolid
- Streptogramins
- Chloramphenicol
- Tetracyclines
- Aminoglycosides

a) Initiation

Proteinsyntesis

b) Elongation

www.scq.ubc.ca/.../2006/08/proteinsynthesis.gif

Antibiotics binding to the 50S ribosomal subunit and inhibiting protein synthesis

Erythromycin and other macrolides

Chloramphenicol

Linezolid

Streptogramins

Macrolides:

Erythromycin, Clarithromycin, Azithromycin

– Use:

- Broad spectrum against gram positives including Staph aureus (MSSA)
- Good for atypical oganism such as Mycoplasma, Chlamydia, Legionella
- Covers N. gonorrhea, H. influenzae, Legionella

- Caution:

- can interact with statin to cause myopathy
- Can cause Qt prolongation

– Side effects:

GI upset

Makrolides and lyncosamides

- Prevent the movement of mRNA to the 50S ribosoma unit
- Bacteriostatic
- little toxicity
- Effective against intracellular living bacteria, anaerobic streptococci, against Campylobacter
 - .: eg erythromycin, azithromycin, Clyndamycin
- Resistance to macrolides
 - Encoded on the Kromosomen: Change in ribosoma unit
 - Encoded on plasmids: efflux

Mechanism of action of Chloramphenicol

Chloramphenicol

- Interfere with the attachment of tRNA on the 50S ribosome unit
- Bacteriostatic
- broad-spectrum
- Systemic we only use against *H. influenzae* meningitis, and in intraocular infections
- Very toxic
 - Destroys the blood cell is being made (Panzytopenia)
 - Gray Syndroma in neonates with liver damage
 - Dysbacteriosis, necrotising ulcerative colitis

Linezolid

- Inhibits the formation of 70S Initiationkomplex
- August 2005 "Molekule of the Month"
- For Gram-positive cocci

Quinupristin-Dalfopristin

- Semisynthetic Streptogramine Derivate
- Inhibition of Peptidyltransferase on the 50 S
- Q. cause conformation changes
- D. better binding
- Stronger effect= Baktericid
- Gram-positive cocci MRSA

Antibiotics binding to the 30S ribosomal subunit and inhibiting protein synthesis

Aminoglycosides

Tetracyclines

Aminoglycosides

- Inhibit the transcription of the 30S ribosome unit
- The active transport of antibiotics need
 O2 The anaerobic bacteria are
 genetically resistant to aminoglycosides
- The first antibiotic was only the streptomycin against Mycobacterium
 - Netilmicin, tobramycin, amikacin gentamicin we can locally and systematically use also
 - Neomycin we only use in eye drops

Aminoglycoside resistance

- Encoded on the chromosome
- The structure of 30S ribosome unit is changed
 - high level resistance in enterococci
- Permeations inhibition by anaerobic metabolism
 - Low level resistance in enterococci
- Combination with cell wall synthesis inhibitors in endocarditis
 - Encoded on plasmids
 - Antibiotics destroy the enzymes inactivation / structural modification by
 - Acetylation
 - Adenylation
 - phosphorylation

Tetracycline

- Prevents the attachment of tRNA on the 30S ribosome unit
- Bacteriostatic
- Broad-spectrum activity
 - Includes aerobic G+ and G-, atypicals [Rickettsia spp, treponema spp, chlamydia spp, and others]
 - Little to no effect on fungi or viruses
- Tigecycline
 - 70% of Hungarian bacteria are resistant
 - efflux pumps
 - Stabilization of ribosome-tRNA
- Tetracycline, Doxycycline, Minocycline
- New derivatives: tigecycline

PASSIVE DIFFUSION

Mechanism of Action

• Our and the state of

www.solvo.com

- Once inside the cell...
 - Bind 30S ribosomal subunit
 - Blocks binding of aminoacyl-tRNA to acceptor site on mRNA-ribosome complex
 - Protein synthesis is inhibited = bacteriostatic effect

Mupirocin

- Prevents the attachment of Izoleucin –tRNS
- produced by Pseudomonas fluorescens
- Active against only staphylococci and streptococci
- Lokale effect against MRSA (Baktroban)
- Topical treatment of impetigo

Antibiotic Mechanisms of Action

ANTIBIOTICS ACTING AS ANTIMETABOLITES

Sulfonamides

Trimethoprim plus sulfamethoxazole

Mechanism of Action ANTIMETABOLITE ACTION

Trimethoprime/Sulphamethoxazole

- Good activity against Gr (+) and Gr (-)
 organisms: MRSA, very active against PCP.
 Covers Stenotrophomonas maltophila, Nocardia,
 and enteric gram-negative rods.
- Exceptions: Pseudomonas aeruginosa, Group A strep, enterococcus, Gr (-) anaerobes.
- Toxicity: GI upset, rash can progress to SJS and TEN, thrombocytopenia, leucopenia, hepatitis; hyperkalemia
- SMX:TMP is a 5:1 ratio, in oral and IV dosage forms.

SULFONAMIDE-RESISTANCE

- Results from multiple mechanisms.
- Altered dihydropteroate synthetase.

 Cross-resistance among all sulfonamides.

ANTIBIOTICS AFFECTING NUCLEIC ACID SYNTHESIS.

- Fluoroquinolones
- Metronidazole

Rifampin

Rifampin

binds to RNA polymerase

- ✓ active against gram positive cocci
- ✓ bactericidal for Mycobacterium
- ✓ used for treatment and prevention of meningococcus

Mechanism of action of metronidazole on an anaerobic organism

Metronidazole

- Mechanism of action:
 - Enters bacteria via cell diffusion
 - Activated via single reduction step by bacteria → forms radicals → reacts with nucleic acid → cell death
- Spectrum of activity:
 - Anaerobic bacteria
 - Microaerophilic bacteria
 - Protozoa
- Resistance:
 - Rare
 - Mechanism: decreased activation (\pm redox reaction) of drug

Quinolones

Quinolones

Parent drug: nalidixic acid

Classification

- Quinolones (1st generation)
 - Highly protein bound
 - Mostly used in UTIs
- Fluoroquinolones (2nd, 3rd and 4th generation)
 - Modified 1st generation quinolones
 - Not highly protein bound
 - Wide distribution to urine and other tissues; limited CSF penetration.

Mechanism of Action

- Dual MOA:
 - 1. Inhibition of bacterial DNA Gyrase (Topoisomerase II)
 - 1. Formation of quinolone-DNA-Gyrase complex
 - 2. Induced cleavage of DNA
 - 2. Inhibition of bacterial Topoisomerase IV
 - 1. Mechanism poorly understood

Mechanism of DNA Gyrase

Quinolones

- Drugs: norfloxacin, ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin
- Mechanism of action:
 - Inhibit bacterial DNA synthesis by inhibiting DNA gyrase and topoisomerase IV → rapid cell death
 - Post antibiotic effect: lasts 1 to 2 hours, increases with increasing concentration
- Mechanism of resistance:
 - Chromosomal:
 - Alter target enzymes: DNA gyrase and topoisomerase IV
 - Decreased drug penetration: Pseudomonas, E. coli
 - Plasmid: seen in some K. pneumoniae and E. coli
 - Mutations in both target enzymes are needed to produce significant resistance

Antibiotic Resistance Cycle

Increased Antibiotic Use

Limited treatment alternatives

- More antibiotics
- Increased mortality

Increased healthcare resource use

Increased hospitalization

More antibiotics

Increase in resistant strains

Ineffective empiric therapy

- Increased morbidity
- → More antibiotics

Resistance to antimicrobial drugs

- Natural
 - Chromosomal

- Acquired (mutation and genetic recombination)
 - Plasmid
 - Integron
 - Transposone

Transferring Resistance Genes

Bacterium Receiving Resistance Genes
Bacterium Infected by Virus

Gene Transfer Facilitates the Spread of Drug Resistance

Resistant and non-resistant bacteria exist

Bacterium multiply by the billions

Bacteria that have drug resistant DNA may transfer a copy of these genes to other bacteria.

Non-resistant bacteria receive new DNA.

Drug resistant bacteria multiply and thrive.

Non-resistant bacteria become resistant. In the presence of drugs, only drug-resistant bacteria survive.

Gene Transfer

A bunch of bacteria, including a resistant variety...

...get bathed in antibiotics. Most of the normal bacteria die. The resistant bacteria multiply and become more common. Eventually, the entire infection evolves into a resistant strain.

normal bacterium

dead bacterium

Resistance mechanisms

- Enzymatic degradation (beta-lactamases)
- Permeability changes (outer memrane protein)
- Target modification (Penicillin binding protein)
- Efflux pumps

Thank you for your attention!