Bluetooth for Programmers

Albert Huang

albert@csail.mit.edu

Larry Rudolph

rudolph@csail.mit.edu

Bluetooth for Programmers
by Albert Huang and Larry Rudolph

Copyright © 2005 Albert Huang, Larry Rudolph

TODO

Table of Contents

L (=] = (o =SSP Vi
1. ADOUL ThiS DOOKceeiiieiiiresi et vi
B2 0 [0 1= o OSSOSO STP Vi
3. Organization Of THiS BOQK........cccouireriinnreeires e Vi
4. ACKNOWIEAGMENLS.......coiiiiiieiereeinete ettt n et Vi

4.1. Albert’'s aCKNOWIEAGMENTS.......c.cvv it Vi
4.2. Larry’s aCKNOWIEAGMENLS. ..ot Vi

R 11 o To 11 ox 1T o TSRS 1
1.1. Understanding Bluetooth as a software developer...........cooverneineineneere e 1
1.2. Bluetooth Programming CONCEPLS.........cceririeririeierieeriee ettt 1

1.2.1. Choosing @ cCoMmMUNICAtION PAINEL.......cccoeirieireee ettt e 2
1.2.2. Choosing a transSport ProtOCOL.........cco et 4
1.2.3. Port numbers and the Service Discovery ProtQcal...........cccccveeineienninnennenennee 6
1.2.4. Communicating USING SOCKELS.........cccoirueiirieirieirieie sttt 9
1.3. Useful things to know about BIUELOOIN...........ccirieiiiiiiierere e 11
1.3.1. COMMUNICALIONS FANGE.civeuireeiereete st sttt sr et se et sb et b et r et re e e b e s 12
1.3.2. COMMUNICAtIONS SPEEM.....ceeieiriirieiie ettt 12
1.3.3. Radio Frequencies and Channel HOPPING........ccoouvereirniie e 13
1.3.4. Bluetooth networks - piconets, scatternets, masters, and.slaves...........c.c........ 13
1.3.5. Bluetooth Profiles + RFCS......c.cciiiiiiieee e e 14

2. Bluetooth programming with Python - PYBIUEZ.............ccoiiiiii e 16
2.1. Choosing a comMMUNICAtION PANMEE.........cceecuereiieteeteereeseeee e e e e e e e s e e sresreetesreennennes 16
2.2. Communicating With RFCOMM........cccoiiiiie ettt nas 17
2.3. Communicating With L2CAPR.........ooeee ettt st nas 19

2.3.1. Maximum TranSmMISSION UNIL........ccoecureireereenenesenreeneeseee s sesresennes 20
2.3.2. Best-effort tranSMISSIQN........cvcvrvereiirrs s 21
2.4. Service DIiSCOVErY ProtOCAL.......ccceveirecisise e et 21
2.4.1. Dynamically allocating port NUMDELS........cccviivevereeeeeee st 23
2.4.2. AQVEITISING @ SEIVICE...cueiteieeeereetisestesteeseeeere e s e saeseeseeses e ssestesesseeesessesteseeseeennens 23
2.4.3. Searching for and browsing SEIVICES.....ccccovrvrierierereeerere s e ee e se e seeeenens 25
WS N0 1V 7= L (o= To [U TV L= 26
2.5.1. Asynchronous socket programming VEHECt c.cccoeeereerniennieneenseneseees 26
2.5.2. ASynchronous devViCe diISCOVALY.........couiirrirriririerenieesiee et sre e 27
2.5.3. The bluetooth MOAUIE.......ccccieiie e e s 28

3. C programming With lIBbIUBtOOth .o e 31

3.1. Choosing @ CoOMMUNICALION PAITMEL.........cciriirierereete ettt b e 31
3.1.1. Compiling the @XAMPLE ..o e 32
3.1.2. Representing BlUetOOth addreSSES........ccoeirrieririenirieeree et 32
3.1.3. Choosing a local Bluetooth adapLer...........cooveirrererieieieereereeee e 33
3.1.4. Scanning for NEArDY AEVICES........ccveiriiieereeereee e 33
3.1.5. Determining the user-friendly name of a nearby device..........ccccceorniniiinnene 34
3.1.6. ErTOr NANAING. ...t ettt b e e e 35

3.2. RFCOMM SOCKELS ...ttt sttt sttt et e et ae b e b e e e e et eaeeaesbesbebeneenene 35
3.2.1. AAAreSSING SLIUCIUIES. ...c.ei ittt ettt st sttt e e sbesbe e seeeeneas 38
3.2.2. Establishing @ CONNECHION.........cociiiiiieeeeeee et e 38

3.2.3. Using a connected SOCKEL.........ociriiiiireereees e 39

3.3. L2CAP SOCKELS.....ecueieeiiieetereete sttt sttt b bbb b et nas 40
R B0 I =Y (X o] 0 [=T o oo TR TSROSO ST PTSTPPRPRPRPRORTN 42
3.3.2. Maximum TranSmMISSION UNIL.........cccciriiireireennienesieeniee st 43

3.4. Service DiSCOVETY ProtOCAL........ccciriiiiirieirieie ettt 43
3.4.1. Dynamically assigned port NUMDETS..........ccoeiiinneeneeree et 44
3.4.2. SDP data SLIUCLULES.......e ittt st e e sbesbe e seeeeneas 44
3.4.3. AQVEITISING 8 SEIVICE...c.ui ittt ettt be sttt e e b sbe e see e eneas 46
3.4.4. Searching and browsing for @ SEIVICE........cccciiii e 50

3.5. Advanced BlIUEZ ProgramimiiQ.........cccceererereereeerereseesiesieseeessessesieseeseesesessessessessessesesnenns 55
3.5.1. Best-effort tranSmMISSIQN........ccciiiiiiieeeee e e 55

3.6, CAPLEN SUMMIAEY ...ttt sttt h e s a et be e et st eb e besbese e e e nesaeeaesbesbesbe e e e ens 57

4. Bluetooth developmMENT tOOIS......c..ooi e s s a e e ee e 59

I g Vo oo o T RS 59

3 1o (o To | PRSPPI 62

=Y o1 o o R 63

g Vo o ' o S 65

N 2 o {3V SR 66

S g ode] 1 o TSP U USSP PO PR 67

AT o =Y o S 68

4.8. Obtaining BIUeZ and PYBIUEZ..........c.ccocvveiereecese e 68

5. Other platforms and programming laNQUAGES.........cceerrerireiireienee e 69

5.1, MICIOSOft WINUOWSc.ceviiiteiiteesiee ettt sttt st st 69

ST © S 1 OSSOSO PSSRSO 69

5.3. Symbian OS / Nokia Series 60 SMartphOneS........cccccveirrereienneree e 69

S T -\ = TP OP PP 69

List of Tables

1-1. A comparison of the requirements that would lead us to choose certain protocols. Best-effort streams
communication is not shown because it reduces to best-effort datagram communication...5

1-2. Port numbers and their terminology for various protoCals...........ccccceeievieveneiciniecce e 6
1-3. The three Bluetooth POWET CIASSES......cc.ccveiiiieie e st 12
Al Y= (= =Y o £ TP O RS TUPPRPPPRTIN 27
4-1. Inquiry SCan and Page SCaN.......cccccvcirieierieieiresestesesaeeee e ste e sseaesessesessessesseseesessesseseeseensesens 61

Preface

1. About this book

There are loads and loads of material already out there about Bluetooth. The problem with all of them is
that they just have too much information. Specifically, they try toakhbout Bluetootthwhen most of
the time, we're only interested in a tiny fraction.

This book purposefully and happily leaves out a great deal of information about Bluetooth. A lot of
concepts are simplified and described in ways that make sense, not necessarily the ways they’re laid out
in the Bluetooth specification. The key is that they're described in the simplest way possible so that you
as a programmer can start working with those concepts.

This book is not meant to be a be-all-end-all guide to Bluetooth programming. Instead, it's meant to
serve as a stepping stone, the first foothold on which programmers interested in working with Bluetooth
can start from. Once you've read through and understood the concepts and techniques in this book, you'll
have enough knowledge to start creating your own functional Bluetooth applications that can
interoperate with many other Bluetooth devices. If you find yourself wanting to know more about the
inner-workings and nitty-gritty details of Bluetooth, you'll also be well prepared to tackle the more
complex and technical documents like the Bluetooth specification itself, which gives you enough
information to build your own Bluetooth chip from scratch.

2. Audience

This book targets the computer programmer looking for an introduction to Bluetooth and how to
program with it in Linux. It assumes no previous knowledge of Bluetooth (you may have never even
heard of it before picking up this book), but does assume that you have experience with either C or
Python, and have access to and can use a Linux development environment.

Because Bluetooth programming shares much in common with network programming, there will be
frequent references and comparisons to concepts in network programming such as sockets and the
TCP/IP transport protocols. It helps to have a basic understanding of these concepts as the comparisons
will help solidify your understanding of Bluetooth programming.

3. Organization of This Book

TODO

Vi

Preface

4. Acknowledgments

TODO

4.1. Albert’s acknowledgments

TODO

4.2. Larry's acknowledgments

TODO

Vii

Chapter 1. Introduction

In a single phrase, Bluetoothdsway for devices to communicate with each other wirelessly over short
distancesA comprehensive set of documents, called the Bluetooth Specifications, describes in gory
detail exactly how they accomplish this, but the basic idea is about wireless, short-range communication.

TODO

1.1. Understanding Bluetooth as a software developer

Developing applications that make use of Bluetooth communication is straightforward and easy although
it may seem difficult due to its unusually wide scope. Technologies names or specifications, often refer to
something very specific and with a narrow scope. Ethernet, for example, describes how to connect a
bunch of machines together to form a simple network, but that's about it. TCP/IP describe two specific
communication protocols that form the basis of the Internet, but they’re just two protocols. Similarly,
HTTP is the basis behind the World-Wide-Web, but also boils down to a simple protocol. But if someone
asked you to describe the Internet, where would you start? What would you explain? You might describe
Ethernet, TCP/IP, email, or the World-Wide-Web, or all of them at once. The hard part is knowing where
to start because there is so much to describe at so many different levels. On the other hand, if a software
developer approached you and wanted to know about Internet programming - how to connect one
computer on the Internet to the other and send data back and forth, you probably wouldn’t bother
describing the details of Ethernet or email, precisely because they are both technologies aren’t central to
answering that question. Sure, you might mention email as an example of what Internet programming
can accomplish, or describe Ethernet to give context on how the connections are implemented, but what
you'd really want to describe is TCP/IP programming.

In many ways, the word Bluetooth is like the word Internet because it encompasses a wide range of
subjects. Similar to Ethernet or USB, Bluetooth defines a lot of physical on-the-wire stuff like on which
radio frequencies to transmit and how to modulate and demodulate signals. Similar to Voice-over-IP
protocols used in many Internet applications, Bluetooth also describes how to transmit audio between
devices. But Bluetooth also specifies everything in between! It's no wonder that the Bluetooth
specifications are thousands upon thousands of pages.

Despite all that Bluetooth encompasses, a programmer only needs to know a small fraction of what'’s laid
out in the specifications. When a software developer approaches to ask about how to get started with
Bluetooth programming, you really only need to describe how to connect one Bluetooth device to
another, and how to transfer data between the two. Sure, it helps to know a bit about the rest of
Bluetooth, but there’s no need to go into the specifics of the algorithms that Bluetooth devices use to
choose on their radio frequencies. The bad news is that Bluetooth is more than just a replacement for a
USB or ethernet cable. Most network application do not need to if their machine is connected tothe
network via a physical ethernet cable or a wireless 802.11 connection, they do need to know if the
connection is Bluetooth. The good news, is that they do not need to know very much.

Chapter 1. Introduction

1.2. Bluetooth Programming Concepts

The previous section gave a general overview of Bluetooth as a communications technology, and
information that's useful to know about Bluetooth but isn’'t absolutely necessary to create functional
programs. This section focuses specifically on explaining the parts of Bluetooth that concern a software
developer. Throughout the rest of this chapter, we’'ll often present Bluetooth concepts side by side with
concepts from Internet programming. This is in part because the vast majority of network programmers
are already familiar with TCP/IP to some degreer. It is also because Bluetooth programming shares so
much in common with Internet programming, and it makes sense to explain a new idea in terms of an old
idea when they're not all that different.

Although Bluetooth was designed from the ground up, independently of the Ethernet and TCP/IP
protocols, it is quite reasonable to think of Bluetooth programming in the same way as Internet
programming. Fundamentally, they have the same principles of one device communicating and
exchanging data with another device.

The different parts of network programming can be separated into several components

« Choosing a device with which to communicate
- Figuring out how to communicate with it

« Making an outgoing connection

« Accepting an incoming connection

- Sending and receiving data

Some of these components do not apply to all models of network programming. In a connectionless
model, for example, there is no notion of establishing a connection. Some parts can be trivial in certain
scenarios and quite complex in another. If the numerical IP address of a server is hard-coded into a client
program, for example, then choosing a device is no choice at all. In other cases, the program may need to
consult numerous lookup tables and perform several queries before it knows its final communication
endpoint.

1.2.1. Choosing a communication partner

Every Bluetooth chip ever manufactured is imprinted with a globally unique 48-bit address, which we

will refer to as theBluetooth addreser device addressThis is identical in nature to the MAC addresses

of Ethernet,, and both address spaces are actually managed by the same organization - the IEEE
Registration Authority. These addresses are assigned at manufacture time and are intended to be unique
and remain static for the lifetime of the chip. It conveniently serves as the basic addressing unit in all of
Bluetooth programming.

For one Bluetooth device to communicate with another, it must have some way of determining the other
device’s Bluetooth address. This address is used at all layers of the Bluetooth communication process,

Chapter 1. Introduction

from the low-level radio protocols to the higher-level application protocols. In contrast, TCP/IP network
devices that use Ethernet as their data link layer discard the 48-bit MAC address at higher layers of the
communication process and switch to using IP addresses. The principle remains the same, however, in
that the unique identifying address of the target device must be known to communicate with it.

In both cases, the client program will often not have advance knowledge of these target addresses. In
Internet programming, the user will typically supply a host name, suelwaskernel.org , which the

client must translate to a physical IP address using the Domain Name System (DNS). In Bluetooth, the
user will typically supply some user-friendly name, such as “My Phone", and the client translates this to
a numerical address by searching nearby Bluetooth devices and checking the name of each device.

1.2.1.1. Device Name

Since humans do not deal well with 48-bit numbers like0O0EED3D1829 (in much the same way we

do not deal well with numerical IP addresses like 64.233.161.104), Bluetooth devices will almost always
have a user-friendly name. This name is usually shown to the user in lieu of the Bluetooth address to
identify a device, but ultimately it is the Bluetooth address that is used in actual communication. For

many machines, such as cell phones and desktop computers, this name is configurable and the user can
choose an arbitrary word or phrase. There is no requirement for the user to choose a unique name, which
can sometimes cause confusion when many nearby devices have the same name. When sending a file to
someone’s phone, for example, the user may be faced with the task of choosing from 5 different phones,
each of which is named "My Phone".

Although names in Bluetooth differ from Internet names in that there is no central naming authority and
names can sometimes be the same, the client program still has to translate from the user-friendly names
presented by the user to the underlying numerical addresses. In TCP/IP, this involves contacting a local
nameserver, issuing a query, and waiting for a result. In Bluetooth, where there are no nameservers, a
client will instead broadcast inquiries to see what other devices are nearby and query each detected
device for its user-friendly name. The client then chooses whichever device has a name that matches the
one supplied by the user.

1.2.1.2. Searching for nearby devices
THIS SHOULD REALLY BE A SIDE NOTE

Device discovery, the process of searching for and detecting nearby Bluetooth devices is often a
confusing and irritating subject for Bluetooth developers and users. Why's that, you might ask? Well, the
source of this aggravation stems from the fact that it can take a long time to detect nearby Bluetooth
devices. To be specific, if you have a Bluetooth cell phone and a Bluetooth laptop sitting next to each
other on your desk and you want your phone to make a connection to your laptop, it will usually take an
average of 5 seconds before it detects your laptop, and sometimes as long as 10-15 seconds. This might
not seem like that much time, but if you put it in context and realize that while it's performing its search,
the phone is changing frequencies more than a thousand times a second and there are only 79 possible
frequencies that it can transmit on, then you’d start to wonder why they don't find each other in the

Chapter 1. Introduction

blink of an eye. The technical reasons for this aren’t very interesting, but it's mostly due to the result of a
strangely designed search algorithm. Suffice to say, device discovery may often take much longer than
you'd like it to.

1.2.2. Choosing a transport protocol

Once our client application has determined the address of the host machine it wants to connect to, it must
determine which transport protocol to use. This section describes the Bluetooth transport protocols
closest in nature to the most commonly used Internet protocols. Consideration is also given to how the
programmer might choose which protocol to use based on the application requirements.

Both Bluetooth and Internet programming involve using numerous different transport protocols, some of
which are stacked on top of others. In TCP/IP, many applications use either TCP or UDP, both of which
rely on IP as an underlying transport. TCP provides a connection-oriented method of reliably sending
data in streams, and UDP provides a thin wrapper around IP that unreliably sends individual datagrams
of fixed maximum length. There are also protocols like RTP for applications such as voice and video
communications that have strict timing and latency requirements.

While Bluetooth does not have exactly equivalent protocols, it does provide protocols which can often be
used in the same contexts as some of the Internet protocols.

1.2.2.1. RFCOMM

The RFCOMM protocol provides roughly the same service and reliability guarantees as TCP. Although
the specification explicitly states that it was designed to emulate RS-232 serial ports (to make it easier for
manufacturers to add Bluetooth capabilities to their existing serial port devices), it is quite simple to use
it in many of the same scenarios as TCP.

In general, applications that use TCP are concerned with having a point-to-point connection over which
they can reliably exchange streams of data. If a portion of that data cannot be delivered within a fixed
time limit, then the connection is terminated and an error is delivered. Along with its various serial port
emulation properties that, for the most part, do not concern network programmers, RFCOMM provides
the same major attributes of TCP.

The biggest difference between TCP and RFCOMM from a network programmer’s perspective is the
choice of port number. Whereas TCP supports up to 65535 open ports on a single machine, RFCOMM
only allows for 30. This has a significant impact on how to choose port numbers for server applications,
and is discussed shortly.

Chapter 1. Introduction

1.2.2.2. L2CAP

UDP is often used in situations where reliable delivery of every packet is not crucial, and sometimes to
avoid the additional overhead incurred by TCP. Specifically, UDP is chosen for its best-effort, simple
datagram semantics. These are the same criteria that L2ZCAP satisfies as a communications protocol.

L2CAP, by default, provides a connection-orientguotocol that sends individual datagrams of fixed
maximum length. The default maximum packet size is 672 bytes, but this can be negotiated up to 65535
bytes. Being fairly customizable, L2ZCAP can be configured for varying levels of reliability. To provide
this service, the transport protocol that L2CAP is built@mploys an transmit/acknowledgement

scheme, where unacknowledged packets are retransmitted. There are three policies an application can
use:

« never retransmit
« retransmit until success or total connection failure (the default)

- drop a packet and move on to queued data if a packet hasn't been acknowledged after a specified time
limit (0-1279 milliseconds). This is useful when data must be transmitted in a timely manner.

Never retransmitting and dropping packets after a timeout are often referreti¢stasffort

communications. Trying to deliver a packet until it has been acknowledged or the entire connection fails
is known ageliable communications. Although Bluetooth does allow the application to use best-effort
instead of reliable communication, several caveats are in order. The reason for this is that adjusting the
delivery semantics for a single L2ZCAP connection to another device affdct2 CAP connections to

that device. If a program adjusts the delivery semantics for an L2ZCAP connection to another device, it
should take care to ensure that there are no other L2ZCAP connections to that device. Additionally, since
RFCOMM uses L2CAP as a transport, all RFCOMM connections to that device are also affected. While
this is not a problem if only one Bluetooth connection to that device is expected, it is possible to
adversely affect other Bluetooth applications that also have open connections.

The limitations on relaxing the delivery semantics for L2ZCAP aside, it serves as a suitable transport
protocol when the application doesn’t need the overhead and streams-based nature of RFCOMM, and
can be used in many of the same situations that UDP is used in.

Given this suite of protocols and different ways of having one device communicate with another, an
application developer is faced with the choice of choosing which one to use. In doing so, we will
typically consider the delivery reliability required and the manner in which the data is to be sent. As
shown above and illustrated frable 1-1 we will usually choose RFCOMM in situations where we
would choose TCP, and L2CAP when we would choose UDP.

Table 1-1. A comparison of the requirements that would lead us to choose certain protocols.
Best-effort streams communication is not shown because it reduces to best-effort datagram
communication.

Requirement Internet Bluetooth
Reliable, streams-based TCP RFCOMM

Chapter 1. Introduction

Requirement Internet Bluetooth

Reliable, datagram TCP RFCOMM or L2CAP with
infinite retransmit

Best-effort, datagram UDP L2CAP (0-1279 ms retransmit)

1.2.3. Port numbers and the Service Discovery Protocol

The second part of figuring out how to communicate with a remote machine, once a numerical address
and transport protocol are known, is to choose the port number. Almost all Internet transport protocols in
common usage are designed with the notion of port numbers, so that multiple applications on the same
host may simultaneously utilize a transport protocol. Bluetooth is no exception, but uses slightly
different terminology. In L2CAP, ports are call&dlotocol Service Multiplexerand can take on
odd-numbered values between 1 and 32767. Don’t ask why they have to be odd-numbered values,
because you won't get a convincing answer. In RFCOMNaNnnelsl-30 are available for use. These
differences aside, both protocol service multiplexers and channels serve the exact same purpose that
ports do in TCP/IP. L2CAP, unlike RFCOMM, has a range of reserved port numbers (1-1023) that are
not to be used for custom applications and protocols. This information is summarizabl@l-2

Throughout the rest of this book, we’ll often use the wpat instead of protocol service multiplexer

and channel, mostly for clarity.

Table 1-2. Port numbers and their terminology for various protocols

protocol terminology reserved/well-known | dynamically
ports assigned ports
TCP port 1-1024 1025-65535
UDP port 1-1024 1025-65535
RFCOMM channel none 1-30
L2CAP PSM odd numbered 1-4095 | odd numbered 4097 -
32765

In Internet programming, server applications traditionally make use of well known port numbers that are
chosen and agreed upon at design time. Client applications will use the same well known port number to
connect to a server. The main disadvantage to this approach is that it is not possible to run two server
applications which both use the same port number. Due to the relative youth of TCP/IP and the large
number of available port numbers to choose from, this has not yet become a serious issue.

The Bluetooth transport protocols, however, were designed with many fewer available port numbers,
which means we cannot choose an arbitrary port number at design time. Although this problem is not as
significant for L2ZCAP, which has around 15,000 unreserved port numbers, RFCOMM has only 30
different port numbers. A consequence of this is that there is a greater than 50% chance of port number
collision with just 7 server applications. In this case, the application designer clearly should not
arbitrarily choose port numbers. The Bluetooth answer to this problem is the Service Discovery Protocol
(SDP).

Chapter 1. Introduction

Instead of agreeing upon a port to use at application design time, the Bluetooth approach is to assign
ports at runtime and follow a publish-subscribe model. The host machine operates a server application,
called the SDP server, that uses one of the few L2CAP reserved port numbers. Other server applications
are dynamically assigned port numbers at runtime and register a description of themselves and the
services they provide (along with the port numbers they are assigned) with the SDP server. Client
applications will then query the SDP server (using the well defined port number) on a particular machine
to obtain the information they need.

1.2.3.1. Service ID

This raises the question of how do clients know which service description is the one they are looking for.
The easy answer would be to just assign every single service a unique identifier and be done with it. This
approach has been done before, and the Internet Engineering Task Force has a standard method for
developers to independently come up with their own 128-bit Universally Unique Identifiers (UUID).

This is the basic idea around which SDP revolves, and this identifier is called the seBacate ID
Specifically, a developer chooses this UUID at design time and when the program is run, it registers its
Service ID with the SDP server for that device. A client application trying to find a specific service would
guery the SDP server on each device it finds to see if the device offers any services with that same UUID.

UUIDs are typically referred to as a hyphen-separated series of digits of the form

XXXXAKAKKK - XXKK XXX K -XXXK-XXXXXXXXXXXX", where each X' is a hexadecimal digit.

The first segment of 8 digits corresponds to bits 1-32 of the UUID, the next segment of 4 digits is bits
33-36, and so on.

1.2.3.2. Service Class ID list

Although a Service ID by itself can take us a pretty long way in terms of identifying services and finding
the one we want, it's really meant for custom applications built by a single development team. The
Bluetooth designers wanted to distinguish between these custom applications and classes of applications
that all do the same thing. For example, two different companies might both release Bluetooth software
that provides audio services over Bluetooth. Even though they’re completely different programs written

by different people, they both do the same thing. To handle this, Bluetooth introduces a second UUID,
called theService Class IDNow, the two different programs can just advertise the same Service Class

ID, and all will be well in Bluetooth Land. Of course, this is only useful if the two companies agree on
which Service Class ID to use.

Another thought to consider is this: what if | have a single application that can provide multiple services?
For example, many Bluetooth headsets can function as a simple headphone and speaker, and advertise
that service class; but they also are capable of controlling a phone call - ansewring an incoming call,
muting the microphone, hanging up, and so on. Although it's possible to just register two separate
services in this case, each with a specific service class, the Bluetooth designers chose to allow every
service to have a list of service classes that the service provides. So while a single service can only have
oneService ID, it can have marfyervice Class IDs

Chapter 1. Introduction

NOTE: Technically, the Bluetooth specification demands that every SDP service record have an Service
Class ID list with at least one entry. | think that’s stupid. The Linux Bluetooth implementation does not
enforce this. Should we mention this?

Bluetooth Reserved UUIDs

Similar to the way L2CAP and TCP have reserved port numbers for special purposes
Bluetooth also has reserved UUIDs. These are mostly used for identifying predefined
service classes, but also for transport protocols and profiles (Bluetooth profiles are

described irSection 1.3.k Usually, you'll see them referred to as 16-bit or 32-bit valuegq,
but they do correspond to full 128-bit UUIDs.

To get the full 128-bit UUID from a 16-bit or 32-bit number, take Bleetooth Base UUID|
(00000000-0000-1000-8000-00805F9B34FB) and replace the leftmost segment with
the 16-bit or 32-bit value. Mathematically, this is the same as:

128 bit_UUID=16_or_32_bit_numbet 2% + * Bluetooth_Base_UUID

1.2.3.3. SDP attributes

So far, we've described SDP as a way to figure out what port and protocol a particular application service
is running on, using a Service ID or a Service Class ID as a lookup key. A more general way to think of
SDP is as an information database. Every record advertised by SDP is actually atisbotes where

each attribute is in turn griD, value] pair. The attributéD is a 16-bit unsigned integer that specifies

the type of attribute, and the actual attribute data is described wailhefield. A client application

looking for a service can search on any of these attributes, although most will usually search on the two
already mentioned.

The data in thealuefield is not restricted to only UUIDs, and can also be an integer, a boolean value, a
text string, a list of any of those types, or even a list of lists. Attributes values can be of variable length -
up to 4 GB long, although you'd have to be a little crazy to actually try that. All of this makes SDP a
powerful way of describing services, but also makes it a bit complicated and sometimes tedious to work
with.

Bluetooth defines several reserved attribute IDs which always have a special meaning, and the rest can be
used any way an application designer wishes to. Some of the more common reserved attributes are:

Service class ID list
A list of service class UUIDs that the service provides.

Service ID

A single UUID identifying the specific service.

Chapter 1. Introduction

Service Name

A text string containing the name of the service.

Service Description

A text string describing the service provided.

Protocol descriptor list

A list of protocols and port numbers used by the service.

Profile descriptor list

A list of Bluetooth profile descriptor that the service complies with. Bluetooth Profiles are described
in Section 1.3.5Each descriptor consists of a UUID and a version number.

DIAGRAM!!!

1.2.3.4. I1s SDP even necessary?

In this section, we've seen how to avoid the pitfalls of fixed port numbers and how a client program can
use SDP to find the specific Bluetooth service it's looking for. Knowing this, we should also keep in

mind that SDP is not even required to create a Bluetooth application. It is perfectly possible to revert to
the TCP/IP way of assigning port numbers at design time and hope to avoid port conflicts, and this might
often be done to save some time. In controlled settings such as the computer laboratory or an in-house
project, this is quite reasonable. Ultimately, however, to create a portable application that will run in the
greatest number of scenarios, the application should use dynamically assigned ports and SDP.

1.2.4. Communicating using sockets

It turns out that choosing which machine to connect to and how to connect are the most difficult parts of
Bluetooth programming. Once the transport protocol and port number to cmomunicate on are chosen, the
rest of Bluetooth communications is essentially the same type of programming most network
programmers are already accustomed to: sockets! A server application waiting for an incoming
Bluetooth connection is conceptually the same as a server application waiting for an incoming Internet
connection, and a client application attempting to establish an outbound connection behaves the same
whether it is using RFCOMM, L2CAP, TCP, or UDP. For this reason, extending the socket programming
framework to encompass Bluetooth is a natural approach. In this section, we'll give a brief introduction
to the concepts behind socket programming. Like the rest of this chapter, we won't distract you with any
code yet, just give an overview of what's involved. If you're already a seasoned veteran with socket
programming, then you can skip this section, but if you're new to sockets, then read on!

Chapter 1. Introduction

1.2.4.1. Introducing the Socket

DIAGRAM!!II A socketin network programming represents the endpoint of a communication link. The

idea is that from a software application’s point of view, all data being passing through the link must go

into or come out of the socket. First used in the 4.2BSD operating system, sockets have since become the
de-facto standard for network programming.

To establish a Bluetooth connection, a program mustdiesite a socket that will serve as the endpoint

of the connection. Sockets are used for all types of network programming, so the first thing to do is
specify what kind of socket it's going to be. In Bluetooth programming, we’ll almost always be creating
either L2ZCAP or RFCOMM sockets, so that all data sent over the sockets will be sent using the correct
protocol.

When first created, the socket is not yet connected and can’t be used yet for communication. To connect
it, however, the application must decide if the socket will be used as a server socket to listen for
incoming connections, or as a client socket to establish an outgoing connection. The process of
connecting the socket depends on this choice, so we’ll look at each case separately.

1.2.4.2. Client sockets

Client sockets are easy to understand and straightforward to use. Once the socket has been created, the
client program only needs to issue fmnect command, specifying which device to connect to, and

on which port. The operating system then takes care of all the lower level details, reserving resources on
the local Bluetooth adapter, searching for the remote device, forming a piconet, and establishing a
connection. Once the socket is connected, it can be used for data transfer.

1.2.4.3. Server / Listening sockets

To get a useful data connection out of a server socket (also called listening sockets), there are three steps
an application must take. First, it mushd the socket to local Bluetooth resources, specifying which
Bluetooth adapter and which port number to®u§&cond, the socket must be placed iistening

mode. This indicates to the operating system that it should listen for connection requests on the adapter
and port number chosen during the bind step. Finally, the application uses the bound and listening socket
to accept incoming connections.

One of the major differences between a server socket and a client socket is that the server socket first
created by the application can never be used for actual communication. Instead, what happens is each
time the server socket accepts a new incoming connection, it spawns a brand-new socket that represents
the newly established connection. The server socket then goes back to listening for more connection
requests, and the application should use the newly created socket to communicate with the client.
DIAGRAM!!!

10

Chapter 1. Introduction

1.2.4.4. Communicating using a connected socket

Once a Bluetooth application has a connected socket, using it to communicate it simpend tend

receive commands are used to... well, send and receive data. When the application is finished, it simply
invokes theclose command to disconnect the socket. Closing a listening server socket unbinds the port
and stops accepting incoming connections.

1.2.4.5. Nonblocking sockets with select

TODO

1.2.4.6. Socket summary

To briefly summarize, socket programming is a multi-step process that involves 8 main operations.
Create
Allocates an unconnected socket.

Connect (client)

Establishes an outgoing connection. Implicitly forms a piconet if necessary.

Bind (server)

Reserves a port number on a local Bluetooth adapter.

Listen (server)

Instructs the operating system to begin accepting incoming connections.

Accept (server)

Waits for incoming connections.

Receive

Receive incoming data on a Bluetooth connection.

Send

Send data to the remote device of a Bluetooth connection.

Close

Disconnects a connected socket, or shuts down a listening socket.

11

Chapter 1. Introduction

1.3. Useful things to know about Bluetooth

One does not need to know very much about section

1.3.1. Communications range

Bluetooth devices are divided into three power classes, the only difference between them is the
transmission power levels uséekhble 1-3summarizes their differences. Almost all Bluetooth-enabled

cell phones, headsets, laptops, and other consumer-level Bluetooth devices are class 2 devices. There are
many class 1 USB devices for sale to consumers. It is the higher class that determines the properties. If a
class 1 USB device communicates with a class 2 Bluetooth cell phone, the range of the Bluetooth radio is
limitted by the cell phone. Class 3 Bluetooth device are rare, as their limited range heavily restricts their
usefulness.

Table 1-3. The three Bluetooth power classes

Power class Transmission power level /Advertised range
1 100 mW 100 meters

2 2.5 mW 10 meters

3 <1lmw <1 meter

The ranges listed here are only rough estimates used for advertising purposes. In practice, one can see a
much larger range when there aren’t many obstructions between two devices, and a smaller range when
there’s a lot of radio interference or objects in between. People are actually quite good at blocking
Bluetooth signals, mostly because water (which constitues around 60% of the human body) does a great
job absorbing radio waves at the frequencies used by Bluetooth. Distance is only related to the
transmission power. Further distances may have higher error rates and a device might be seen outside its
low-error operating range.

1.3.2. Communications Speed

It is also difficult to give a reliable number on the bandwidth of a Bluetooth communications channel, but
ballpark figures do help. Theoretically, two Bluetooth devices have a maximum assymetric data rate of
723.2 kilobits per second (kb/s) and a maximum symmetric data rate of 433.9 kb/s. Here, asymmetric
means that only one Bluetooth device is transmitting, and symmetric means that both are transmitting to
each other. In practice, the transfer rates you're likely to see will be a bit less since there’s always going
to be a bit of noise on wireless communications channels as well as some transport protocol overhead on
each packet transmitted.

Like all wireless communications methods, the strength of a Bluetooth signal deteriorates quadratically
with the distance from the source. Since weaker signals are much more likely to be corrupted by noise,
the maximum communication speed between two Bluetooth devices is strongly limited by how far apart

12

Chapter 1. Introduction

they are. Unless you can closely control the distance and obstructions between two Bluetooth devices,
it's a good idea to design a protocol that can tolerate lower communication speeds or dropped packets.

Bluetooth devices that conform to the Bluetooth 2.0 specification, which was released in late 2004, have
a theoretical limit triple that of older devices (2178.1 kb/s asymmetric, 1306.9 kb/s symmetric), but at the
time of this writing (October, 2005) there aren’t very many Bluetooth 2.0 devices available on the
market, and the vast majority of existing devices are limited by the older data rates.

1.3.3. Radio Frequencies and Channel Hopping

Bluetooth devices all operate in the 2.4 GHz frequency band. This means that it uses the same radio
frequencies as microwaves, 802.11, and some cordless phones (the kind that attach to land lines, not cell
phones). What makes Bluetooth different from the other technologies is that it divides the 2.4 GHz band
into 79 channels and employs channel hopping techniques so that Bluetooth devices are always changing
which frequencies they're transmitting and receiving on.

DIAGRAM!! For comparison, take a look at the way 802.11b and 802.11g work. Both of these wireless
networking technologies divide the 2.4 GHz band into 14 channels that are 5 MHz wide. When a
wireless network is setup, the network administrator chooses one of these channels and all 802.11
devices on that wireless network will always transmit on the radio frequency for that channel (sometimes
this is done automatically by the wireless access point). If there are many wireless networks in the same
area, like in an apartment building where every apartment has its own wireless router, then chances are
that some of these networks will collide with each other and their overall performance will suffer.

Bluetooth, like 802.11, divides the 2.4 GHz band into channels, but that’s where the similarity ends. For
starters, Bluetooth has 79 channels instead of 14, and the channels are narrower (1 MHz wide instead of
5 MHz). The big difference, though, is that Bluetooth devices never stay on the same channel. An
actively communicating Bluetooth device changes channels every 625 microseconds (1600 times per
second). It tries to do this in a fairly random order so that no one channel is used much more than any
other channel. Of course, two Bluetooth devices that are communicating with each other must hop
channels together so that they’re always transmitting and receiving on the same frequencies.

Supposedly, all this hopping around makes Bluetooth more robust to interference from nearby sources of
evil radio waves, and allows for many Bluetooth networks to co-exist in the same place. Newer versions
of Bluetooth (1.2 and greater) go even further andadagptive frequency hoppinghere devices will
specifically avoid channels that are noisy and have high interference, (e.g. a channel that coincides with a
nearby 802.11 network). How much it actually helps is debatable, but it certainly makes Bluetooth a lot
more complicated than the other wireless networking technologies.

1.3.4. Bluetooth networks - piconets, scatternets, masters,

13

Chapter 1. Introduction

and slaves

To support the intricacies of a pseudorandom channel hopping scheme, the Bluetooth designers came up
with some even more confusing terminology that you might hear a lot, but doesn’t matter all that much
when developing Bluetooth software. Since it's mentioned in a lot of Bluetooth literature, we’ll describe

it here, but don’t put too much effort into remembering it.

DIAGRAM!! Two or more Bluetooth devices that are communicating with each other and using the

same channel hopping configuration (so that they’re always using the same frequencies) form a
Bluetoothpiconet A piconet can have up to 8 devices total. That's pretty straightforward. But how do

they all agree on which frequencies to use and when to use them? That's wherasteecomes in. One
device on every piconet is designated the master, and has two roles. The first is to tell the other devices
(theslaved which frequencies to use - the slaves all agree on the frequencies dictated by the master. The
second is to make sure that the devices communicate in an orderly fashion by taking turns.

DIAGRAM!! To better understand the master device’s second role, we’ll compare it again with how
802.11 works. In 802.11, there is no such thing as an orderly way of transmitting. If a device has a data
packet to send to another, it waits until no other device is transmitting, then waits a little more, and then
transmits. If the recipient got the message, then it replies with an acknowledgment. If the sender doesn’t
get the acknowledgment, then it tries again. You can see how this can get messy when a lot of 802.11
devices are trying to transmit at the same time. Bluetooth, on the other hand, uses a turn-based
transmission scheme, where the master of a piconet essentially informs every device when to transmit,
and when to keep quiet. The big advantage here is that the data transfer rates on a Bluetooth piconet will
be somewhat predictable, since every device will always have its turn to transmit. It’s like the difference
between a raucous town meeting where everyone is shouting to get their voice heard, and a moderated
discussion where the moderator gives everyone who raises their hands a chance to speak.

The last bit of Bluetooth networking terminology here is fvatternetit's theoretically possible for a

single Bluetooth device to participate in more than one piconet. In practice, a lot of devices don't support
this ability, but it is possible. When this happens, the two different piconets are collectively called a
scatternet. Despite the impressive name, don'’t get too excited because scatternets don't really do a whole
lot. In fact, they don’t do anything at all. In order for two devices to communicate, they must be a part of
the same piconet. Being part of the same scatternet doesn't help, and the device that joins the two
piconets (by participating in both of them) doesn't have any special routing capabilities. Scatternet is just
a name, and nothing more.

To be clear, the reason all this talk about piconets, scatternets, masters, and slaves doesn’t matter is that
for the most part, all of this network formation and master-slave role selection is handled automatically
by Bluetooth hardware and low-level device drivers. As software developers, all we need to care about is
setting up a connection between two Bluetooth devices, and the piconet issue is taken care of for us. But
it does help to know what the terms mean.

14

Chapter 1. Introduction

1.3.5. Bluetooth Profiles + RFCs

Along with the simple TCP, IP, and UDP transport protocols used in Internet programming, there are a
host of other protocols to specify, in great detail, methods to route data packets, exchange electronic
mail, transfer files, load web pages, and more. Once standardized by the Internet Engineering Task Force
in the form of Request For Comments (RF€dhese protocols are generally adopted by the wider

Internet community. Similarly, Bluetooth also has a method for proposing, ratifying, and standardizing
protocols and specifications that are eventually adopted by the Bluetooth community. The Bluetooth
equivalent of an RFC is a Bluetooth Profile.

Due to the short-range nature of Bluetooth, the Bluetooth Profiles tend to be complementary to the
Internet RFCs, with emphasis on tasks that can assume physical proximity. For example, there is a profile
for exchanging physical location informatiéna profile for printing to nearby printefsand a profile for

using nearby modenido make phone calls. There is even a specification for encapsulating TCP/IP

traffic in a Bluetooth connection, which really does reduce Bluetooth programming to Internet
programming.

If you find yourself needing to implement one of the Bluetooth Profiles, you can find the specification
and all the details for that particular profile on the Bluetooth website http://www.bluetooth.org/spec,
where they are freely distributed.

Notes
1. http://www.ietf.org/rfc/rfc0826.txt
2. The device discovery process actually only uses 24 of the 79 channels, which makes it even sillier

3. The L2CAP specification actually allows for both connectionless and connection-based channels, but
connectionless channels are rarely used in practice. Since sending “connectionless” data to a device
requires joining its piconet, a time consuming process that is merely establishing a connection at a
lower level, connectionless L2CAP channels afford no advantages over connection-oriented
channels.

4. Asynchronous Connection-Less logical transport

o

Most computers only have one Bluetooth adapter, so choosing a Bluetooth adapter isn't much of a
choice at all

http://www.ietf.org/rfc.html
Local Positioning Profile

Basic Printing Profile

© © N o

Dial Up Networking Profile

15

Chapter 2. Bluetooth programming with Python
- PyBluez

Now that we have an understanding of the concepts needed for Bluetooth programming, it's time to get
our hands dirty and learn how to implement each of those different parts. To do this, we're going to use
Python as a learning tool. Why Python, you might ask? Why not Java, or C, or (insert your favorite
language here)? There are two answers to that question. The short answer is that it’s just plain easy, as
we’'ll soon find out. The long answer is that Python is a versatile and powerful dynamically typed object
oriented language, providing syntactic clarity along with built-in memory management so that the
programmer can focus on the algorithm at hand without worrying about memory leaks or matching
braces. Additionally, there’s no need to worry about compiling object files or linking against libraries or
setting the correct classpaths because, for our purposes, Python "Just Works".

The only tricky part we have to deal with before getting started is making sure that we add Bluetooth
support to Python. Although Python has a large and comprehensive standard library, Bluetooth is not yet
part of the standard distribution. Enter PyBluez, a Python extension that provides Python programmers
with access to system Bluetooth resources on GNU/Linux computers. Once we have this installed, as
described inTODQO, we're ready to get up and running.

Note: If you're not very comfortable with Python, don’t worry! The examples used in this chapter use
only the simplest parts of Python possible, and you should think of reading through the examples as
if you're reading pseudocode.

2.1. Choosing a communication partner

Following the steps outlined i@hapter 1the first action a Bluetooth program should take is to choose a
communication partneExample 2-1shows a Python program that looks for a nearby device with the
user-friendly name “My Phone". An explanation of the program follows.

Example 2-1. findmyphone.py
from bluetooth import *

target_ name = "My Phone"
target_address = None

nearby_devices = discover_devices()

for address in nearby_devices:

if target_name == lookup_name(address):
target_address = address
break

16

Chapter 2. Bluetooth programming with Python - PyBluez

if target_address is not None:

print “found target bluetooth device with address ", target _address
else:

print "could not find target bluetooth device nearby"

A Bluetooth device is uniquely identified by its address, so choosing a communication partner amounts
to picking a Bluetooth address. If only the user-friendly name of the target device is known, then two
steps must be taken to find the correct address. First, the program must scan for nearby Bluetooth
devices. The functiodiscover_devices does this and returns a list of addresses of detected devices.
Next, the program usdsokup_name to connect to each detected device, request its user-friendly name,
and compare the result to the desired name. In this example, we just assumed that the user is always
looking for the Bluetooth device named "My Phone", but we could also display the names of all the
Bluetooth devices and prompt the user to choose one. Pretty easy, right?

PyBluez represents a Bluetooth address as a string of the form "xx:xx:xx:xx:xx", where each x is a
hexadecimal character representing one byte of the 48-bit address, with the most significant byte listed
first. Bluetooth devices in PyBluez will always be identified using an address string of this form. In the
previous example, if the target device had address "01:23:45:67:89:AB", we might see the following
output:

python findmyphone.py
found target bluetooth device with address 01:23:45:67:89:AB

discover_devices is used in this example without any arguments, which should be sufficient for most
situations, but there are a couple ways we can tweak it. When a Bluetooth device is detected during a
scan, its address is cached for up to a few minutes. By detisdtver_devices will return

addresses from this cache in addition to devices that were actually detected in the current scan. To avoid
these cached results, set thesh_cache parameter t@rue . We can also control the amount of time
thatdiscover_devices spends scanning with thieration parameter, which is specified in integer

units of 1.28 seconds. This somewhat strange number is a consequence of the Bluetooth specification -
device scans always last a multipleedfactly1.28 seconds. It's usually not a good idea to decrease this
below the default value of 8 (10.24 seconds).

lookup_name also takes a parameter that controls how long it spends searchiogkuf_name is not
able to determine the user-friendly name of the specified Bluetooth device within a default value of 10
seconds, then it gives up and retuNwhe. Setting theimeout parameter, a floating point number
specified in seconds, adjusts this timeout.

An important property of Bluetooth to keep in mind is that wireless communication is never perfect, so
discover_devices() will sometimes fail to detect devices that are in range, laoklip_name()

will sometimes returmMone when it shouldn’t. Unfortunately, it's impossible for the program to know
whether these failures were a result of a bad signal or if the remote devices really aren’t there any more.
In these cases, it may be a good idea to try a few times, or to adjust the search durations.

17

Chapter 2. Bluetooth programming with Python - PyBluez

2.2. Communicating with RFCOMM

Example 2-ZandExample 2-Fhow the basics of how to establish a connection using an RFCOMM

socket, transfer some data, and disconnect. In the first example, a server application waits for and accepts
a single connection on RFCOMM port 1, receives a bit of data and prints it on the screen. The second
example, the client program, connects to the server, sends a short message, and then disconnects.

Example 2-2. rfcomm-server.py

from bluetooth import *

port = 1

server_sock=BluetoothSocket(RFCOMM)
server_sock.bind(("",port))

server_sock.listen(1)

client_sock, client_info = server_sock.accept()
print "Accepted connection from ", client_info

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()
Example 2-3. rfcomm-client.py

from bluetooth import *

server_address = "01:23:45:67:89:AB"
port = 1

sock=BluetoothSocket(RFCOMM)
sock.connect((server_address, port))

sock.send("hello!!")

sock.close()

In the socket programming model, a socket represents an endpoint of a communication channel. Sockets
are not connected when they are first created, and are useless until a call togitieet (client

application) oraccept (server application) completes successfully. Once a socket is connected, it can be
used to send and receive data until the connection fails due to link error or user termination.

A Bluetooth socket in PyBluez is represented as an instance &lib®othSocket class, and almost
all communications will use methods of this class. The constructor takes in only one parameter
specifying the type of socket. This can be eitRECOMMas used in these examplesLACAP, which is

18

Chapter 2. Bluetooth programming with Python - PyBluez

described in the next section. The construction of the socket is the same for both client and server
sockets.

An RFCOMM BluetoothSocket ~ used to accept incoming connections must be attached to operating
system resources with thénd method.bind takes in a single parameter - a tuple specifying the

address of the local Bluetooth adapter to use and a port number to listen on. Usually, there is only one
local Bluetooth adapter or it doesn’t matter which one to use, so the empty string indicates that any local
Bluetooth adapter is acceptable. Once a socket is bound, a @sitto puts the socket into listening

mode and it is then ready to accept incoming connections withdtept method.

accept returns two values - a brand né®iuetoothSocket ~ object connected to the client, and the
connection information asaldress , port pair -address corresponds to the Bluetooth address of the
connected client angort is the port number on the client’s side of the connection.

Client programs do not need to chihd or the other two server-specific functions, but instead use the
connect method to establish an outgoing connection. Likel , connect also takes a tuple specifying

an address and port number, but in this case the address can’'t be empty and must be a valid Bluetooth
address. Iiexample 2-3 the client tries to connect to the Bluetooth device with address
“01:23:45:67:89:AB" on port 1. This example, aBdample 2-2 assumes that all communication

happens on RFCOMM port Bection 2.4hows how to dynamically choose ports and use SDP to search
for which port a server is operating on.

Once a socket is connected, #end andrecv methods can be used to, well... send and receive data.

recv takes a parameter specifying the maximum amount of data to receive, specified in bytes, and
returns the next data packet on the connection. To send a packet of data over a connection, simply pass it
to send , which queues it up for delivery.

Once an application is finished with its Bluetooth communications, it can disconnect by calling the
close method on a connected socket. So how does one side detect when the other has disconnected?
Therecv method will return an empty string. This is the only case whete does that, which makes

it a reliable way of knowing when the connection has been terminated.

We've left out error handling code in these examples for clarity, but the process is fairly straightforward.
If any of the Bluetooth operations fail for some reason (e.g. connection timeout, no local bluetooth
resources are available, etc.) theBl@etoothError is raised with an error message indicating the
reason for failure.

2.3. Communicating with L2ZCAP

Example 2-4andExample 2-5demonstrate the basics of using L2CAP as a transport protocol. You'll
notice that using L2CAP sockets is almost identical to using RFCOMM sockets.

19

Chapter 2. Bluetooth programming with Python - PyBluez
Example 2-4. 12cap-server.py
from bluetooth import *
port = 0x1001
server_sock=BluetoothSocket(L2CAP)
server_sock.bind(("",port))

server_sock.listen(1)

client_sock,address = server_sock.accept()
print "Accepted connection from ",address

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-5. 12cap-client.py
from bluetooth import *
sock=BluetoothSocket(L2CAP)

bd_addr = "01:23:45:67:89:AB"
port = 0x1001

sock.connect((bd_addr, port))

sock.send("hello!!")

sock.close()

Aside from passing ih2CAP as a parameter to thuetoothSocket ~ constructor instead G#FCOMM

the only major difference between these examples and the RFCOMM examples from the previous
section is the choice of port number. Remember that in L2ZCAP, we're strictly limited to odd-valued port

numbers between 4097 and 32765. Usually, we’'ll use hexadecimal notation when referring to L2CAP
port numbers, just because they tend to look a little cleaner.

2.3.1. Maximum Transmission Unit

As a datagram-based protocol, packets sent on L2CAP connections have an upper size limit. Although
this has a small default value of 672 bytes, it can be adjusted. Each device at the endpoint of a connection
maintains anncoming maximum transmission unit (MT,Which specifies the maximum size packet it

can receive. If both devices adjust their incoming MTU settings, then it is possible to change the MTU of

20

Chapter 2. Bluetooth programming with Python - PyBluez

the entire connection beyond the 672 byte default up to 65535 bytes and as low as 48 bytes. In PyBluez,
theset_I2cap_mtu function is used to adjust this value.

set_I2cap_mtu([2cap_sock, new_mtu)

This method is fairly straightforward, and takes two parametzeap_sock should be a connected
L2CAP BluetoothSocket , andnew_mtu is an integer specifying the incoming MTU for the local
computer. Calling this function affects only the specified socket, and does not change the MTU for any
other socket. Here's an example of how we might use it to raise the MTU:

I2cap_sock = BluetoothSocket(L2CAP)
. # connect the socket. This must be done before setting the MTU!
set_I2cap_mtu(12cap_sock, 65535)

If you do find yourself using this function, don’t forget that both devices involved in a connection should
raise their MTU settings. It is possible for each side to have a different MTU, but that just gets confusing.

2.3.2. Best-effort transmission

Although we expressed reservations about using best-effort LZCAP chan®astion 1.2.2.2there are

some cases where we might prefer best-effort semantics over reliable semantics. For example, if we're
sending time-critical data such as audio or video data, it may be more important to forget about a few bad
packets and keep sending at a constant data rate so that the connection doesn’t "skip". Adjusting the
reliability semantics of a connection in PyBluez is also a simple task, and can be done with the
set_packet_timeout function.

set_packet_timeout(address, timeout)

set_packet_timeout takes a Bluetooth address and a timeout, specified in milliseconds, as input and
tries to adjust the packet timeout for all L2ZCAP and RFCOMM connections to that device. The process
must have superuser privileges, and there must be an active connection to the specified address. The
effects of adjusting this parameter will last as long as any active connections are open, including those
which outlive the Python program. If all connections to the specified Bluetooth device are closed and
new ones are re-established, then the connection reverts to the default of never timing out.

2.4. Service Discovery Protocol

So far we've seen how to detect nearby Bluetooth device and establish the two main types of data
transport connections, all using fixed Bluetooth address and port numbers that were determined at design
time. To build a truly robust Bluetooth application service, we should use dynamically allocated port
numbers. In doing so, we also need to give client applications a way to determine which port the service
is running on. After all, what’s the point of having a server running on a random port if the clients can't

21

Chapter 2. Bluetooth programming with Python - PyBluez

find it? Here, we'll see how to use the Service Discovery Protocol (SDP) for this purpose. To get started,
Example 2-6andExample 2-%&how the RFCOMM client and server frogection 2.2nodified to use
dynamic port numbers and SDP. An explanation follows the examples.

Example 2-6. rfcomm-server-sdp.py
from bluetooth import *
port = get_available_port(RFCOMM)

server_sock=BluetoothSocket(RFCOMM)
server_sock.bind(("",port))
server_sock.listen(1)

advertise_service(server_sock, "Bluetooth Serial Port",
service_classes = [SERIAL_PORT_CLASS],
profiles = [SERIAL_PORT_PROFILE])

client_sock, client_info = server_sock.accept()
print "Accepted connection from ", client_info

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-7. rfcomme-client-sdp.py

import sys
from bluetooth import *

service_matches = find_service(name = "Bluetooth Serial Port",
uuid = SERIAL_PORT_CLASS)

if len(service_matches) ==
print "couldn’t find the service!"
sys.exit(0)

first_match = service_matches[0]
port = first_match["port"]

name = first_match["'name"]
host = first_match["host"]

print "connecting to ", host
sock=BluetoothSocket(RFCOMM)
sock.connect((host, port))

sock.send("hello!!")
sock.close()

22

Chapter 2. Bluetooth programming with Python - PyBluez

You'll notice right away that these examples aren’t much different from the ones we Seciion 2.2

Instead of hard-coding a port number, the server dynamically allocates a port number. After creating a
bound and listening socket, the server then advertises an SDP service and continues on in the same
manner as the previous examples. The client, instead of hardcoding a Bluetooth address and port number,
searches for a service record and uses that information to establish a connection. In the next few pages,
we’ll see some more details on how all this happens.

2.4.1. Dynamically allocating port numbers

Instead of using a predetermined port number, a Bluetooth server application can use the
get_available_port function to find an unused port number.

free_port = get_available_port(protocol)

This function takes a single parametantocol , which can be either2CAP or RFCOMMNd specifies
which protocol the application will use. It checks each port starting from the lowest number and returns
the first one that isn't being used. The server application can theiregsport in a call tobind . If no

ports are available at all, then it retunisne.

get_available_port only identifies free ports, and doesn’t reserve them, so your application should
make a call tcoind immediately afterwards. It is possible that, in the few milliseconds of time between
identifying the free port and binding it, another application could sneak by and "steal" the port number. If
this happensyind will raise aBluetoothError ~ , SO you can just repeat the process. This should almost
never happen, but if you want to have a completely bug-free program that guards against this problem,
you could do the following:

from bluetooth import *
socket = BluetoothSocket(RFCOMM)
while True:
free_port = get_available_port(RFCOMM)
try:
socket.bind((", free_port))
break
except BluetoothError:
print "couldn’t bind to ", free_port

listen, accept, and the rest of the program...

23

Chapter 2. Bluetooth programming with Python - PyBluez

2.4.2. Advertising a service

Once an application has a bound and listening socket, it can advertise a service with the local SDP server.
This is done with thedvertise_service function.

advertise_service(sock, name, service_id="", service_classes=][],
profiles=[], provider="", descrption=""")

Only the first two parameters to this functialock andname are required, and the rest have empty
defaults.

sock

A BluetoothSocket object that must already be bound and listening.

name

A short text string describing the name of the service.

service_id
Optional. The service ID of the service, specified as a string of the form
XXX XAKKKK-XXKK-X XXX -XXKXK-XXXXXXXXXXXX", where each "X’ is a hexadecimal
digit.

service_classes

Optional. A list of service class IDs, each of which can be specified as a full 128-bit UUID in the
form " XXXXXXXX - XXX K- XXX XK -XXXX-XXXXXXXXXXXX", or as a reserved 16-bit UUID
in the form "XXXX". A number of predefined UUIDs can be used here, such as
SERIAL_PORT_CLASSO0r BASIC_PRINTING_CLASS See the PyBluez documentation for a full list
of predefined service class IDs.

profiles

Optional. A list of profiles. Each item of the list should bewau(d , version) tuple. A number of
predefined profiles can be used here, suchERIAL_PORT_PROFILE or LAN_ACCESS_PROFILE
See the PyBluez documentation for a full list of predefined profiles.

provider

Optional. A short text string describing the provider of the service.

description
Optional. A short text string describing the actual service.

Calling advertise_service will register a service record with the local SDP server. To unregister the
service, use the functicstop_advertising

stop_advertising(sock)

24

Chapter 2. Bluetooth programming with Python - PyBluez

This function takes a single parametarck , which is the socket originally used to advertise the service.
Another way to unregister a service is to simply close the socket, which will automatically can
stop_advertising

2.4.3. Searching for and browsing services

To find a single service, or get a listing of services on one or multiple nearby Bluetooth devices, we use
the functionfind_service

results = find_service(name = None, uuid = None, address = None)

Without any arguments at aflnd_service returns a listing of all services offered by all nearby
Bluetooth devices. If there are a lot of Bluetooth devices in range, this could take a long time! Three
optional parameters to this function can be used to filter the search results:

name
Optional. Restricts search results to services with this name. In the special case that this is
"localhost , then the local SDP server is searched.

uuid
Optional. Restricts search results to services with any attribute value matchigithisNote that
the matching UUID could be either the service ID, or an entry in the service class ID list, or an
entry in the profiles list.

address
Optional. Only searches the Bluetooth device with thidress .

The results of this search is a list of dictionary objects. Each dictionary has eight keys, which describe
the corresponding service. The value for a key majtee, which indicates that it wasn't specified in
the service record. The keys and their values are:

"host”
The bluetooth address of the device advertising the service

"name"

The name of the service being advertised.

"description"

A description of the service.

"provider"

The provider of the service.

25

Chapter 2. Bluetooth programming with Python - PyBluez

"protocol"

A text string indicating which transport protocol the service is using. This can take on one of three
values:"RFCOMM; "L2CAP" , or "UNKNOWN"

"port"

If "protocol" is either'RFCOMM"or "L2CAP" , then this is an integer indicating which port
number the service is running on.

"service-classses"

A list of service class IDs, in the same format as usedfioertise_service

"profiles”

A list of profiles, in the same format as used faolvertise_service

2.5. Advanced usage

Although the techniques described in this chapter so far should be sufficient for most Bluetooth
applications with simple and straightforward requirements, some applications may require more
advanced functionality or finer control over the Bluetooth system resources. This section describes
asynchronous Bluetooth communications and thieetooth ~ module.

2.5.1. Asynchronous socket programming with select

In the communications routines described so far, there is usually some sort of waiting involved. During
this time, the controlling thread blocks and can’t do anything else, such as respond to user input or
display progress information. To avoid these pitfallspfiichronougrogramming, it is possible to use
multiple threads of control, with one thread dedicated to each task that requires some waiting. That can
get quite hairy and complicated, though, so instead we’'ll turn to ussygchronousechniques as a

solution.

The first step in asynchronous programming is to switch the socketsntdlockingmode, so that all the
operations that would block (wait) beforehand return immediately instead. The idea is "Don’t wait for
something to happen. Just get it started and we'll figure it out later". To switch a socket into
non-blocking mode, use theetblocking method and passtalse . Conversely, to switch back into
blocking mode, pass itrue . For example:

from bluetooth import *

sock = BluetoothSocket(RFCOMM)
sock.setblocking(False)

s.bind(("", get_available_port(RFCOMM)))
...

26

Chapter 2. Bluetooth programming with Python - PyBluez

Thesetblocking method must be called on every socket that you want to switch to nonblocking mode.
This includes sockets that are returned bydbeept method.

The next step in asynchronous programming is the "Figure it out” step, where the program determines if
anything happened. The idea here is to consolidate all of the things a program can wait on into one place.
Then, when anything happens, some data is received or the user types something or a timer fires, the
program can deal with it immediately. To do this, we can usaéfect module, which comes as part

of the standard Python distribution. Within teelect module is theselect function, which is what

we'll be using extensively.

from select import *

can_rd, can_wr, has_exc = select(to_read, to_write, to_exc, [timeout])

select can wait for three different types of events - read events, write events, and exceptions. The first
three parameters are lists of objects - which list an object is in determines which type ofewent

will detect for that object. An object can be in multiple lists. As soosedsct detects an event, it

returns three more lists, each of which contains objects from the original lists where event activity was
detected. The fourth parameterstdect is optional and specifies a timeout as a floating point number

in seconds. If no events are detected before the timeout elapseseldgn returns three empty lists.

So what exactly are the different types of events? Some of these should be pretty obvious, but others have
been shoehorned iffable 2-1summarizes which list to put a socket in for detecting specific events.

Table 2-1.select events

event list

outgoing connection established (client) write
data received on socket read
incoming connection accepted (server) read
can send data (i.e. send buffer not full) write
disconnected read

You'll notice a couple things here. First, the third list for exceptions isn’t used ateddct is meant to

be used for all different types of objects, and the third list is used elsewhere, just not in Bluetooth.
Second, we didn’t mention searching for nearby devices or SDP. We'll talk about the device discovery
process next, but unfortunately there aren’t yet any asynchronous techniques for SDP. In this case, you'll
have to rely on threads for non-blocking operations, but hopefully that will change in the future.

2.5.2. Asynchronous device discovery

Asynchrously searching for nearby devices and determining their user-friendly names can also be done
with select , but is a bit more complicated and involves the use of a new class, the

27

Chapter 2. Bluetooth programming with Python - PyBluez

DeviceDiscoverer . Example 2-8hows an example of how to uselect andDeviceDiscoverer
for this purpose.

Example 2-8. asynchronous-inquiry.py

from bluetooth import *
from select import *

class MyDiscoverer(DeviceDiscoverer):
def pre_inquiry(self):
self.done = False

def device_discovered(self, address, device_class, name):
print "%s - %s" % (address, name)

def inquiry_complete(self):
self.done = True

d = MyDiscoverer()
d.find_devices(lookup_names = True)

while True:
can_read, can_write, has_exc = select([d], [I, [])

if d in can_read:
d.process_event()

if d.done: break

To asynchronously detect nearby bluetooth devices, create a subcizssceDiscoverer and
override thepre_inquiry , device_discovered , andinquiry_complete methods. To start the
discovery process, invoKimd_devices , which returns immediatelyre_inquiry is called
immediately before the actual inquiry process begins.

Call process_event to have theDeviceDiscoverer process pending events, which can be either a
discovered device or the inquiry completion. When a nearby device is detdet@d, discovered is
invoked, with the address and device class of the detected devieekup_names was set in the call to
find_devices , thenname will also be set to the user-friendly name of the device. For more information
about device classes, see https://www.bluetooth.org/foundry/assignnumb/document/baseband. The
DeviceDiscoverer class can be used directly with teelect module.

2.5.3. The _bluetooth module

Thebluetooth module provides classes and utility functions useful for the most common Bluetooth
programming tasks. More advanced functionality can be found indfvetooth extension module,

which is little more than a thin wrapper around the BlueZ C API described in the next chapter. Lower
level Bluetooth operations, such as establishing a connection with the actual Bluetooth microcontroller

28

Chapter 2. Bluetooth programming with Python - PyBluez

on the local machine and reading signal strength information, can be performed witiiutteoth
module in almost cases without having to resort to the C API.

2.5.3.1. HCI sockets

An HCI socket, created by calling tivei_open_dev function, represents a direct connection to the
microcontroller on a local Bluetooth adapter. This allows complete control over almost all Bluetooth
functionality that the adapter has to offer, and is often useful for low-level tweaking.

hci_sock = hci_open_dev([adapter_number])

The function takes a single optional parameter specifying which local Bluetooth adapter to use. The first
Bluetooth adapter is 0, the second is 1, and so on. If you don’t care which one to use (or if you only have
a single Bluetooth adapter), then you can leave this out.

Communicating with the microcontroller consists of sending commands and receiving events. A
command is composed of three parts -Gpcode Group FielfOGF), anOpcode Command Field

(OCF), and the command parameters, which are different for each command. The OGF specifies the
general category of command, such as device control, or link control. The OCF specifies the exact
command within the OGF category. There are dozens of combinations that can be used here, all of which
are neatly laid out in the Bluetooth specification.

Most operations will have eequest-replfformat, where an event is generated by the microcontroller
immediately after the command. This event contains the result of the command (the microcontroller's
reply to the user’s request), and typically indicates whether the command succeeded or not along with
relevant information. Operations that follow this format can be performed usingthsend_req

function.

reply = hci_send_req(hci_sock, ogf, ocf, event, reply_len,
[params], [timeout])

The first three parameters to this function are the HCI socket to use, and the OGF and OCF of the
commandevent specifies the type of event to wait for, areghly len specifies the size of the reply
packet, in bytes, to expect from the microcontrolfarams is optional because some commands don'’t
take any parameters, and if specified should be a packed binary sitriegut , also optional, specifies

in millseconds how long to wait for the request to complete. The function returns an unprocessed binary
string containing the microcontroller’s reply.

As with the OGF and OCF fields, the exact details on how to pack the parameters, which event to wait
for, and how to interpret the reply are all defined in the Bluetooth specification, and it would be too
boring to list them here. Needless to say, examples do help, so TODO

Example 2-9. Reading the user-friendly name of a local Bluetooth adapter

TODO

29

Chapter 2. Bluetooth programming with Python - PyBluez

30

Chapter 3. C programming with libbluetooth

There are reasons to prefer developing Bluetooth applications in C instead of in a high level language
such as Python. The Python environment might not be available or might not fit on the target device;
strict application requirements on program size, speed, and memory usage may preclude the use of an
interpreted language like Python; the programmer may desire finer control over the local Bluetooth
adapter than PyBluez provides; or the project may be to create a shared library for other applications to
link against instead of a standalone application. As of this writing, BlueZ is a powerful Bluetooth
communications stack with extensive APIs that allows a user to fully exploit all local Bluetooth
resources, but it has no official documentation. Furthermore, there is very little unofficial documentation
as well. Novice developers requesting documentation on the official mailing &iststypically rebuffed

and told to figure out the API by reading through the BlueZ source code. This is a time consuming
process that can only reveal small pieces of information at a time, and is quite often enough of an
obstacle to deter many potential developers.

This chapter presents a short introduction to developing Bluetooth applications in C with BlueZ. The
tasks covered in chapter 2 are now explained in greater detail here for C programmers.

3.1. Choosing a communication partner

A simple program that detects nearby Bluetooth devices is sho&rample 3-1The program reserves
system Bluetooth resources, scans for nearby Bluetooth devices, and then looks up the user friendly name
for each detected device. A more detailed explanation of the data structures and functions used follows.

Example 3-1. simplescan.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>

int main(int argc, char **argv)

{
inquiry_info *ii = NULL;
int max_rsp, num_rsp;
int dev_id, sock, len, flags;
int i;
char addr[19] = { O
char name[248] = {

}
0}k

dev_id = hci_get_route(NULL);
sock = hci_open_dev(dev_id);

31

Chapter 3. C programming witlibbluetooth

if (dev_id < 0 || sock < 0) {
perror("opening socket");
exit(1);

}

len = 8;

max_rsp = 255;

flags = IREQ_CACHE_FLUSH,;

ii = (inquiry_info*)malloc(max_rsp * sizeof(inquiry_info));

num_rsp = hci_inquiry(dev_id, len, max_rsp, NULL, &ii, flags);
if(num_rsp < 0) perror("hci_inquiry");

for (i = 0; i < num_rsp; i++) {
ba2str(&(ii+i)->bdaddr, addr);
memset(name, 0, sizeof(name));
if (hci_read_remote_name(sock, &(ii+i)->bdaddr, sizeof(name),
name, 0) < 0)
strcpy(name, "[unknown]");
printf("%s %s\n", addr, name);

}

free(ii);
close(sock);
return O;

3.1.1. Compiling the example
To compile our program, invokgcc and link againslibbluetooth

gcc -0 simplescan simplescan.c -lbluetooth

3.1.2. Representing Bluetooth addresses

typedef struct {
uint8_t b[6];
} __ attribute__((packed)) bdaddr_t;

The basic data structure used to specify a Bluetooth device addresdimthie t , which is simply a
packed array of six bytes. All Bluetooth addresses in BlueZ will be stored and manipulaieates t
structures. Two convenience functiongs?2ba andba2str can be used to convert between strings and
bdaddr_t structures.

int str2ba(const char *str, bdaddr_t *ba);
int ba2str(const bdaddr_t *ba, char *str);

32

Chapter 3. C programming witlibbluetooth

str2ba takes a string of the form “XX:XX:XX:XX:XX:XX", where each XX is a hexadecimal number
specifying one byte of the 6-byte address, and packs it ibttaedr_t . ba2str does exactly the
opposite.

3.1.3. Choosing a local Bluetooth adapter

Local Bluetooth adapters are assigned identifying numbers starting with 0, and a program must specify
which adapter to use when allocating system resources. Usually, there is only one adapter or it doesn’t
matter which one is used, so passitigLLto hci_get_route will retrieve the resource number of the

first available Bluetooth adapter.

int hci_get_route(bdaddr_t *addr);

This function actually returns the resource number of any adapter whose Bluetooth address does not
match the one passed in as a parameter, so by passwg.inthe program essentially asks for any

available adapter. If there are multiple Bluetooth adapters present, and we know which one we want, then
we can uséci_devid

int hci_devid(const char *addr);

Unlike its counterpartyci_devid returns the resource number of the Bluetooth adapter whose address
matches the one passed in as a parameter. This is one of the few places where a BlueZ function uses a
string representation to work with a Bluetooth address insteadddddr_t structure.

Once the program has chosen which adapter to use in scanning for nearby devices, it must allocate
resources to use that adapter. This can be done withcthepen_dev function.

int hci_open_dev(int dev_id);

To be more specific, this function opens a socket connection to the microcontroller on the specified local
Bluetooth adapter. Keep in mind that thisigta connection to a remote Bluetooth device, and is used
specifically for controlling the local adapter. Later onSection 3.5we’ll see how to use this type of

socket for more advanced Bluetooth operations, but for now we'll just be using it for the device inquiry
process. The result returned hgi_open_dev is a handle to the socket. On error, it returns -1 and sets
errno .

Note: Although tempting, it is not a good idea to hard-code the device number 0, because that is not
always the id of the first adapter. For example, if there were two adapters on the system and the first
adapter (id 0) is disabled, then the first available adapter is the one with id 1.

33

Chapter 3. C programming witlibbluetooth

3.1.4. Scanning for nearby devices

After choosing the local Bluetooth adapter to use and allocating system resources, the program is ready
to scan for nearby Bluetooth devices. In the examde,inquiry performs a Bluetooth device
discovery and returns a list of detected devices and some basic information about them in theivariable

int hci_inquiry(int dev_id, int len, int max_rsp, const uint8_t *lap,
inquiry_info **ii, long flags);

Here, the function doesn’t actually use the socket opened in the previous step. Ihsitéagljiry

takes the resource number returnechbiy get_route (or hci_devid) as its first parameter. Most
other functions we’ll see will use the socket openedbiyopen_dev , but this one creates its own
internal socket. The inquiry lasts for at most 1.281f seconds, and at mostax_rsp devices will be
returned in the output parameter, which must be large enough to accommodeadg_rsp results. We
suggest using max_rsp of 255 for a standard 10.24 second inquiry.

If flags is set toOREQ_CACHE_FLUSHthen the cache of previously detected devices is flushed before
performing the current inquiry. Otherwiseflidigs is set to 0, then the results of previous inquiries may
be returned, even if the devices aren’t in range anymore.

Theinquiry_info structure is defined as

typedef struct {
bdaddr_t bdaddr;

uint8 _t pscan_rep_mode;
uint8_t pscan_period_mode;
uint8_t pscan_mode;

uint8_t dev_class[3];

uintl6_t clock_offset;
} __ attribute__ ((packed)) inquiry_info;

For the most part, only the first entry - théaddr field, which gives the address of the detected device -
is of any use. Occasionally, there may be a use fod#veclass field, which gives information about
the type of device detected (i.e. if it's a printer, phone, desktop computer, etc.) and is described in the
Bluetooth Assigned NumbefsThe rest of the fields are used for low level communication, and are not
useful for most purposes. If you're interested, the Bluetooth specification has all the gory details.

3.1.5. Determining the user-friendly name of a nearby device

Once a list of nearby Bluetooth devices and their addresses has been found, the program determines the
user-friendly names associated with those addresses and presents them to the user. The
hci_read_remote_name function is used for this purpose.

34

Chapter 3. C programming witlibbluetooth

int hci_read_remote_name(int hci_sock, const bdaddr_t *addr, int len,
char *name, int timeout)

hci_read_remote_name tries for at mostimeout milliseconds to use the sockedi_sock to query
the user-friendly name of the device with Bluetooth addeessls . On success,

hci_read_remote_name returns O and copies at most the fiest bytes of the device’s user-friendly
name intoname.

hci_read_remote_name only tries to resolve a single name, so a program will typically invoke it many
times to get a list of all the use-rfriendly names of nearby Bluetooth devices.

3.1.6. Error handling

So far, all the functions introduced return an integer on completion. If the function succeeds in doing
whatever it was the program requested, then the return value is always greater than or equal to 0. If the
function fails, then the return value is -1 and thheno global variable is set to indicate the type of error.
This is true of all thenci_ functions, as well as for all of the socket functions described in the next few
sections.

In the examples, we've left out error checking for clarity, but a robust program should examine the return
value of each function call to check for potential failures. A simple way to incorporate error handling is
to use thestrerror ~ function to print out what went wrong, and then exit. For example, consider the
following snippet of code:

int dev_id = hci_get_route(NULL);

if(dev_id < 0) {
fprintf(stderr, "error code %d: %s\n", errno, strerror(errno));
exit(1);

}

If we ran this bit of code on a machine that does not have a Bluetooth adapter, we might see the
following output:

error code 19: No such device

This might not be the best error message to show an actual user, but it should give you an idea of how to
add error handling to your Bluetooth programs. For more information about esing , consult a book
on Linux programming.

35

Chapter 3. C programming witlibbluetooth

3.2. RFCOMM sockets

As with Python, establishing and using RFCOMM connections boils down to the same socket
programming techniques introducedSection 1.2.4which are also widely used in Internet
programming. To get us startefixample 3-2andExample 3-3how how to establish a connection using
an RFCOMM socket, transfer some data, and disconnect. For simplicity, the client is hard-coded to
connect ta1:23:45:67:89:AB

Example 3-2. fcomm-server.c

#include <stdio.h>

#include <unistd.h>

#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>

int main(int argc, char **argv)

{

struct sockaddr_rc loc_addr = { O }, rem_addr = { 0 };
char buf[1024] = { 0 };

int s, client, bytes read;

int opt = sizeof(rem_addr);

/I allocate socket
s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

/I bind socket to port 1 of the first available

/I local bluetooth adapter

loc_addr.rc_family = AF_BLUETOOTH;
loc_addr.rc_bdaddr = *BDADDR_ANY;
loc_addr.rc_channel = (uint8_t) 1;

bind(s, (struct sockaddr *)&loc_addr, sizeof(loc_addr));

/I put socket into listening mode
listen(s, 1);

/I accept one connection
client = accept(s, (struct sockaddr *)&rem_addr, &opt);

ba2str(&rem_addr.rc_bdaddr, buf);
fprintf(stderr, "accepted connection from %s\n", buf);
memset(buf, 0, sizeof(buf));

/I read data from the client
bytes_read = read(client, buf, sizeof(buf));
if(bytes_read > 0) {
printf(“received [%s]\n", buf);
}

/I close connection
close(client);

36

Chapter 3. C programming witlibbluetooth

close(s);
return O;

Example 3-3. rfcomm-client.c

#include <stdio.h>

#include <unistd.h>

#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>

int main(int argc, char **argv)

{

struct sockaddr_rc addr = { O };
int s, status;
char dest[18] = "01:23:45:67:89:AB";

/I allocate a socket
s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

/I set the connection parameters (who to connect to)
addr.rc_family = AF_BLUETOOTH;

addr.rc_channel = (uint8_t) 1;

str2ba(dest, &addr.rc_bdaddr);

/I connect to server
status = connect(s, (struct sockaddr *)&addr, sizeof(addr));

/I send a message
if(status == 0) {
status = write(s, "hello!", 6);

}
if(status < 0) perror("'uh oh");

close(s);
return O;

Those who read through the previous chapter will notice that the examples have the same flow and
structure used by the corresponding Python exampl8gdation 2.2 Additionally, the seasoned Internet
programmer will notice that these two examples are almost exactly the same as corresponding examples
used in TCP programming. The primary differences are in the way the sockets are created, and the
addressing structures used. First,¢heket function is used to allocate a socket.

int socket(int domain, int type, int protocol);

37

Chapter 3. C programming witlibbluetooth

For RFCOMM sockets, the three parameters tostiuket function call should always be:
AF_BLUETOOTHSOCK_STREAMINABTPROTO_RFCOMWhe first, AF_BLUETOOTHpecifies that it

should be a Bluetooth socket. The secaBdCK_STREAMequests a socket with streams-based delivery
semantics. The thir®dTPROTO_RFCOMspecifically requests an RFCOMM socket. Hoeket

function creates the RFCOMM socket and returns an integer which is used as a handle to that socket.

3.2.1. Addressing structures

To establish an RFCOMM connection with another Bluetooth device, incoming or outgoing, create and
fill out a struct sockaddr_rc addressing structure. Like theuct sockaddr_in that is used in

TCP/IP, the addressing structure specifies details for client sockets (which device and port to connect to)
as well as for listening sockets (which adapter to use and which port to listen on).

struct sockaddr_rc {
sa_family_t rc_family;
bdaddr_t rc_bdaddr;
uint8 t rc_channel;

Therc_family field specifies the addressing family of the socket, and will alwaysFo@&LUETOOTH

For an outgoing connection;_bdaddr andrc_channel specify the Bluetooth address and port
number to connect to, respectively. For a listening sockebdaddr specifies the address of the local
Bluetooth adapter to use and channel specifies the port number to listen on. If you don't care which
local Bluetooth adapter to use for the listening socket, then you caBsSBDR_ANY0 indicate that any
local Bluetooth adapter is acceptable.

3.2.2. Establishing a connection

Once created, a socket must be connected in order to be of any use. The procedure for doing this is
depends on whether the application is accepting incoming connections (server sockets), or whether it's
creating outbound connections (client sockets). Client sockets are simpler, and the process only requires
making a single call to theonnect function.

int connect(int sock, const struct sockaddr *server_info,
socklen_t infolen);

The first parametegockfd , should be a socket handle created byseket function. The second
parameter should point tostruct sockaddr_rc addressing structure filled in with the details of the
server's address and port number. Remember that you'll have to cast itdimtetasockaddr * to
avoid compiler errors. Finally, the last parameter should alwayszbef(struct sockaddr_rc)

for RFCOMM sockets. Theonnect function uses this information to establish a connection to the
specified server and returns once the connection has been established, or an error occured.

38

Chapter 3. C programming witlibbluetooth

Server sockets are a bit more complicated and involve three steps instead of just one. After the server
socket is created, it must be bound to a local Bluetooth adapter and port number vitidthiinction.

int bind(int sock, const struct sockaddr *info, socklen_t infolen);

sock should be the server socket createctbynect . info should point to atruct sockaddr_rc
addressing structure filled in with the local Bluetooth adapter to use, and which port number to use.
addrlen should always bseizeof(struct sockaddr_rc)

Next, the application takes the bound socket and puts it into listening mode witkt¢he function.

int listen(int sock, int backlog);

In between the time an incoming Bluetooth connection is accepted by the operating system and the time
that the server application actually takes control, the new connection is put into a backlog queue. The
backlog parameter specifies how big this queue should be. Usually, a value of 1 or 2 is fine.

Once these steps have completed, the server application is ready to accept incoming connections using
theaccept function.

int accept(int server_sock, struct sockaddr *client_info,
socklen_t *infolen);

Theaccept function waits for an incoming connection and returns a brand new socket. The returned
socket represents the newly established connection with a client, and is what the server application
should use to communicate with the clientcliént_info points to a validstruct sockaddr_rc

structure, then it is filled in with the client’s information. Additionaliyfolen will be set tosizeof(

struct sockaddr_rc) . The server application can then make another calttept and accept more
connections, or it can close the server socket when finished.

3.2.3. Using a connected socket

Once a socket is connected, using it to send and receive data is straightforwasdnd Hfanction
transmits data, theecv function waits for and receives incoming data, anddbee function
disconnects a socket.

ssize_t send(int sock, const void *buf, size t len, int flags);
ssize_t recv(int sock, void *buf, size t len, int flags);
int close(int sock);

Both functions take four parameter, the first being a connected Bluetooth socks¢nBothe next two
parameters should be a pointer to a buffer containing the data to send, and the amount of the buffer to
send, in bytes. Faecv , the second two parameters should be a pointer to a buffer into which incoming

39

Chapter 3. C programming witlibbluetooth

data will be copied, and an upper limit on the amount of data to receive. The last pardiagter,
should be set to 0 for normal operation in betmd andrecv .

send returns the number of bytes actually transmitted, which may be less than the amount requested. In
that case, the program should just try again starting from were left off. Similarly, recv returns the
number of bytes actually received, which may be less than the maximum amount requested. The special
case whereecv returns 0 indicates that the connection is broken and no more data can be transmitted or
received.

Once a program is finished with a connected socket, callssg on the socket disconnects and frees
the system resources used by that connection.

3.3. L2ZCAP sockets

Using L2CAP sockets is quite similar to using RFCOMM sockets, with the major differences in the
addressing structure and the availability of a few more options to coftxample 3-4andExample 3-5
demonstrate how to establish an L2ZCAP channel and transmit a short string of data. For simplicity, the
client is hard-coded to connect to “01:23:45:67:89:AB".

Example 3-4. |12cap-server.c

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/I2cap.h>

int main(int argc, char **argv)
{
struct sockaddr_I2 loc_addr = { O }, rem_addr = { O };
char buf[1024] = { 0 };
int s, client, bytes read;
int opt = sizeof(rem_addr);

/I allocate socket
s = socket(AF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP);

/I bind socket to port 0x1001 of the first available
/I bluetooth adapter

loc_addr.I2_family = AF_BLUETOOTH,;
loc_addr.l2_bdaddr = *BDADDR_ANY;
loc_addr.l2_psm = htobs(0x1001);

bind(s, (struct sockaddr *)&loc_addr, sizeof(loc_addr));

/I put socket into listening mode

40

Chapter 3. C programming witlibbluetooth
listen(s, 1);

/I accept one connection
client = accept(s, (struct sockaddr *)&rem_addr, &opt);

ba2str(&rem_addr.12_bdaddr, buf);
fprintf(stderr, "accepted connection from %s\n", buf);

memset(buf, 0, sizeof(buf));

/I read data from the client
bytes_read = read(client, buf, sizeof(buf));
if(bytes_read > 0) {
printf("received [%s]\n", buf);
}

/I close connection
close(client);
close(s);

Example 3-5. |2cap-client.c

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/I2cap.h>

int main(int argc, char **argv)
{
struct sockaddr_I2 addr = { O };
int s, status;
char *message = "hello!";
char dest[18] = "01:23:45:67:89:AB";

ifargc < 2)

{
fprintf(stderr, "usage: %s <bt_addr>\n", argv[0]);
exit(2);

}

strncpy(dest, argv[l], 18);

/| allocate a socket
s = socket(AF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP);

/I set the connection parameters (who to connect to)
addr.12_family = AF_BLUETOOTH;
addr.l2_psm = htobs(0x1001);

Chapter 3. C programming witlibbluetooth
str2ba(dest, &addr.I2_bdaddr);

/I connect to server
status = connect(s, (struct sockaddr *)&addr, sizeof(addr));

/I send a message
if(status == 0) {
status = write(s, "hello!", 6);

}

if(status < 0) perror("'uh oh");

close(s);

For simple usage scenarios, the primary differences betweeen using RFCOMM sockets and L2CAP
sockets are the parameters to thenect function, and the addressing structure used.ceonect , the
first parameter should still beF_BLUETOOTHbut the next two parameters should3@CK_SEQPACKET
andBTPROTO_L2CAPrespectivelySOCK_SEQPACKHS used to indicate a socket with reliable
datagram-oriented semantics where packets are delivered in the ord&@T$8QTO_L2CARIMply
specifies the L2CAP protocol.

Forconnect , bind , andaccept , L2ZCAP sockets use thsruct sockaddr_I2 addressing structure.
It differs only slightly from thestruct sockaddr_rc used in RFCOMM sockets.

struct sockaddr_I2 {

sa_family_t 12_family;
unsigned short 12_psm;
bdaddr_t 12_bdaddr;

The first field,|2_family ~ should always b&F_BLUETOOTHThel2_psm field specifies an L2CAP
port number, ant?_bdaddr denotes the address of either a server to connect to, a local adapter and
port number to listen on, or the information of a newly connected client, depending on context.

3.3.1. Byte ordering

Since Bluetooth deals with the transfer of data from one machine to another, the use of a consistent byte
ordering for multi-byte data types is crucial. Unlike network byte ordering, which uses a big-endian
format, Bluetooth byte ordering is little-endian, where the least significant bytes are transmitted first.
BlueZ provides four convenience functions to convert between host and Bluetooth byte orderings.

unsigned short int htobs(unsigned short int num);
unsigned short int btohs(unsigned short int num);
unsigned int htobl(unsigned int num);
unsigned int btohl(unsigned int num);

42

Chapter 3. C programming witlibbluetooth

These functions convert 16 and 32 bit unsigned integers between the local computer’s intenal byte
ordering (host order) and Bluetooth byte ordering. The function names describe the conversion. For
examplehtobs stands for Host to Bluetooth Short, indicating that it converts a short 16-bit unsigned
integer from host order to Bluetooth order. The first place we’'ll find a use for it is in specifying the port
number in thestruct sockaddr_I2 structure. We didn’t need it for the RFCOMM addressing

structure because RFCOMM port numbers can be represented using a single byte, but representing an
L2CAP port number requires two bytes. Other places the byte-order conversion functions may be used
are in communicating with the Bluetooth microcontroller, performing low level operations on transport
protocol sockets, and implementing higher level Bluetooth profiles such as the OBEX file transfer
protocol.

3.3.2. Maximum Transmission Unit

Occasionally, an application may need to adjust the maximum transmission unit (MTU) for an L2CAP
connection and set it to something other than the default of 672 bytes. This is done veittut¢he
[2cap_options structure, and thgetsockopt andsetsockopt functions.

struct 12cap_options {

uintl6_t omtu;
uintl6_t imtu;
uintl6 t flush_to;
uint8_t mode;

k

int getsockopt(int sock, int level, int optname, void *optval,
socklen_t *optlen);

int setsockopt(int sock, int level, int optname, void *optval,
socklen_t optlen);

Theomtu andimtu fields of thestruct 12cap_options are used to specify theutgoing MTUand
incoming MTU respectively. The other two fields are currently unused and reserved for future use. To
adjust the MTU for a connection, a program should firstgeteockopt to retrieve the existing L2ZCAP
options for a connected socket. After modifying the optiaessockopt should be used to apply the
changes. For example, a function to do all of this might look like this:

int set_[2cap_mtu(int sock, uintl6_t mtu) {
struct 12cap_options opts;
int optlen = sizeof(opts);
int status = getsockopt(s, SOL_L2CAP, L2CAP_OPTIONS, &opts, &optlen);
if(status == 0) {
opts.omtu = opts.imtu = mtu;
status = setsockopt(s, SOL_L2CAP, L2CAP_OPTIONS, &opts, optlen);
}

return status;

43

Chapter 3. C programming witlibbluetooth

3.4. Service Discovery Protocol

The last step to building a robust Bluetooth application is making use of the Service Discovery Profile
(SDP). The examples in this chapter so far have relied on hard-coded port numbers - not a good long
term solution. Additionally, client applications wishing to connect to a server have no way of
programitcally finding out which nearby Bluetooth devices can provide the services they need. This
section describes how to dynamically assign port numbers to server applications at runtime, and how to
advertise and search for Bluetooth services using SDP.

3.4.1. Dynamically assigned port numbers

The best way to get a dynamically assigned port number is actually to try bindevgigpossible port

and stopping whehind doesn't fail. Aside from seeming a bit ugly, there’s nothing wrong with this
approach, and it will always work as long as a free port number is available. The following code snippet
illustrates how to do this for RFCOMM sockets.

int sock, port, status;
struct sockaddr_rc to_bind;
sock = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);
to_bind.rc_family = AF_BLUETOOTH;
to_bind.rc_bdaddr = *BDADDR_ANY;
for(port = 1; port <= 30; port++) {
to_bind.rc_channel = port;
status = bind(sock, (struct sockaddr *)&to_bind, sizeof(to_bind));
if(status == 0) break;

The process for LZCAP sockets is almost identical, but tries odd-numbered ports 4097-32767 (0x1001 -
OX7FFF) instead of ports 1-30.

For Linux kernel versions 2.6.7 and greater, it's possible to simply set the port number to 0 when filling
out a socket addressing structure that gets passed to bétddia sockaddr_rc for RFCOMM, or a
struct sockaddr_I2 for L2CAP). During the call thind , the kernel automatically chooses an
available port number. To find out what port the kernel chose, usgetheckname function. This is
probably a bit cleaner than exhaustively checking each port, but it's not guaranteed to be portable,
especially on embedded and handheld devices that tend to use older kernels.

3.4.2. SDP data structures

Working with SDP in C can be a bit laborious because it requires using a few more data structures to
represent the data being passed back and forth between the application and an SDP server. Before getting
into the details of how to register and search for services, here’s a quick overview of the major data

44

Chapter 3. C programming witlibbluetooth

structures needed. If you're the type that likes to dive straight into examples, you may want to skip ahead
to the next section and come back to this part for reference.

sdp_record_t

This represents a single service record advertised by an SDP server. It is a container data type used
to consolidate all of the information in a service record. There are a number of functions used to
manipulate thedp_record_t , as we’ll see later on.

sdp_session_t

This represents a connection to an SDP server, and is like a socket with SDP-specific functionality.
Like thesdp_record_t , we won't have to deal directly with the data fields of this type, and will
instead use helper functions introduced later on.

uuid_t

All UUIDs are represented and manipulatediagl_t data types. We'll often have to write code to
fill them in, and there are three functions that we can use.

uuid_t* sdp_uuid128_ create(uuid_t *uuid, const void *data);

uuid_t* sdp_uuid32_create(uuid_t *uuid, uint32_t data);

uuid_t* sdp_uuid16_create(uuid_t *uuid, uintl6_t data);

Despite their names, all three functions create a 128-bit UUID. The difference is in whether the
UUID is a reserved number or not. For unreserved UUIDs that a developer creates, use the
sdp_uuid128_create function, which converts the 128-bits of memory startingaaé into a
uuid_t . For 32-bit and 16-bit reserved UUIDs, use tp_uuid32_create and
sdp_uuid16_create functions, respectively.

sdp_list_t

Since SDP has very few fixed-length fields, pretty much everything is represented as a linked list of
items, where each item can be of many different types, even other linkeddistdist_t is a
straightforward implementation of a linked list, with a number utility functions.

typedef struct _sdp_list sdp_list _t;
struct _sdp_list {

sdp_list_t *next;

void *data;

h
sdp_list_t *sdp_list_append(sdp_list_t *list, void *data);
void sdp_list_free(sdp_list_t *list, sdp_free_func_t f);

Thesdp_list_t data type is used as both a pointer to an entire list, and a pointer to an individual
node in the list. It has two fieldsext points to the next node in the list, addta points to the
data stored at a single nodde.

Thesdp_list_append function is used both for adding nodes to a list, and for allocating new
lists. To create a new linked list, d&tt to NULL, and the function allocates and returns a new list.

45

Chapter 3. C programming witlibbluetooth

To allocate and append a new node to the list, pass in the original list and the data element for the
new node.

Once you're finished with a list, free the memory used by the list wittstipelist_free

function. When freeing a list, you can pass it a pointer to another function, which will be called on
every data element in the list. The idea is that you can create a custom function to free the data
elements, or use an existing function likee . If you don't pass in a function, and leafeset to

NULL, thensdp_list_free does not modify or deallocate the data elements.

sdp_profile_desc _t

Thesdp_profile_desc_t is used only when describing the Bluetooth profile that a service
record adheres to.

typedef struct {
uuid_t uuid;
uintl6_t version;

} sdp_profile_desc _t;

If a service advertises compliance with a Bluetooth profile, then it should advertise the UUID of that
profile, and the version number of the profile that it complies with.

sdp_data_t

An SDP service record consists of a list of entries, where each entry consists of an attribute / value
pair. Thesdp_data_t data type representsvalueof that pair. Since the value can be of many
different types (8-bit integer, 16-bit integer, text string, UUID, etc.) and can even be another
sdp_data_t , this data type can be fairly complicated to deal with. It also has a few helper
functions that will come in handy.

sdp_data_t * sdp_data_alloc(uint8_t dtd, const void *value);
sdp_attr_add(sdp_record_t *rec, uintl6_t attr, sdp_data_t *data);
sdp_data_free(sdp_data_t *data);

Thesdp_data_alloc function is used to allocate a nesdp_data_t . Thedtd parameter
specifies the type of data being allocated, and can take on one 32 different values. We'll only be
using a few of them in our examples, but you can also civeekooth/sdp.h for the full list.

3.4.3. Advertising a service

Advertising a service can be broken up into two steps. The first step consists of building the service
record that will be advertised, and the second step involves connecting to the local SDP server and
actually registering the service. Building the service record can take up a fair amount of code, mostly
because of the awkward way that data structures are handled in C, but everything after that is pretty
simple.Example 3-6shows a helper function that builds the service record and registers it with the local
SDP server. It advertises a service called "Roto-Rooter Data Router" running on RFCOMM port 11. The
service claims to be in the Serial Port class of services, and also adheres to the Serial Port Profile.

46

Chapter 3. C programming witlibbluetooth

Additionally, it has a service ID of "00000000-0000-0000-00000000ABCD", which is poorly chosen,
but easy to read.

Example 3-6. Advertising a service

#include <bluetooth/bluetooth.h>
#include <bluetooth/sdp.h>
#include <bluetooth/sdp_lib.h>

sdp_session_t *register_service()

{
uint32_t svc_uuid_int[] = { 0, 0, 0, OXABCD };
uint8_t rfcomm_port = 11;
const char *service_name = "Roto-Rooter Data Router";
const char *service_dsc = "An experimental plumbing router";
const char *service_prov = "Roto-Rooter";

uuid_t root_uuid, 12cap_uuid, rfcomm_uuid, svc_uuid, svc_class_uuid;
sdp_list_t *I2cap_list = 0,
*rfcomm_list = 0,
*root_list = 0,
*proto_list = 0O,
*access_proto_list = 0,
*svc_class_list = 0,
*profile_list = 0;
sdp_data_t *channel = 0;
sdp_profile_desc_t profile;
sdp_record_t record = { 0 };
sdp_session_t *session = 0;

/I PART ONE

/I set the general service ID
sdp_uuid128_create(&svc_uuid, &svc_uuid_int);
sdp_set_service_id(&record, svc_uuid);

/I set the service class

sdp_uuid16_create(&svc_class_uuid, SERIAL_PORT_SVCLASS_ID);
svc_class_list = sdp_list_append(0, &svc_class_uuid);
sdp_set_service_classes(&record, svc_class_list);

/I set the Bluetooth profile information
sdp_uuid16_create(&profile.uuid, SERIAL_PORT_PROFILE_ID);
profile.version = 0x0100;

profile_list = sdp_list_append(0, &profile);
sdp_set_profile_descs(&record, profile_list);

/I make the service record publicly browsable
sdp_uuid16_create(&root_uuid, PUBLIC_BROWSE_GROUP);
root_list = sdp_list_append(0, &root_uuid);
sdp_set_browse_groups(&record, root_list);

/I set |12cap information

47

Chapter 3. C programming witlibbluetooth

sdp_uuid16_create(&l2cap_uuid, L2CAP_UUID);
12cap_list = sdp_list_append(0, &l2cap_uuid);
proto_list = sdp_list_append(0, |2cap_list);

/I register the RFCOMM channel for RFCOMM sockets
sdp_uuid16_create(&rfcomm_uuid, RFCOMM_UUID);
channel = sdp_data_alloc(SDP_UINT8, &rfcomm_channel);
rfcomm_list = sdp_list_append(0, &rfcomm_uuid);
sdp_list_append(rfcomm_list, channel);

sdp_list_append(proto_list, rfcomm_list);

access_proto_list = sdp_list_append(0, proto_list);
sdp_set_access_protos(&record, access_proto_list);

/I set the name, provider, and description
sdp_set_info_attr(&record, service_name, service_prov, service_dsc);

/I PART TWO

/I connect to the local SDP server, register the service record, and
/I disconnect

session = sdp_connect(BDADDR_ANY, BDADDR_LOCAL, 0);
sdp_record_register(session, &record, 0);

/I cleanup

sdp_data_free(channel);
sdp_list_free(12cap_list, 0);
sdp_list_free(rfcomm_list, 0);
sdp_list_free(root_list, 0);
sdp_list_free(access_proto_list, 0);

return session;

}
int main()
{
sdp_session_t* session = register_service();
/I The rest of the program here
sdp_close(session);
return O;
}

After declaring a whole mess of local variables that will be used to store the different data elements of
the service record, we start off by setting the Service ID usitpguuid128_create and
sdp_set_service_id

uuid_t* sdp_uuid128_create(uuid_t *uuid, const void *data);
void sdp_set_service_id(sdp_record_t *rec, uuid_t uuid);

48

Chapter 3. C programming witlibbluetooth

There are no reserved Service IDs in Bluetooth, so we always specify it as a full 128-bit number.
Conveniently, a program can store the Service ID as an array of four 32-bit integers before converting it
to theuuid_t data type, since that array takes up exactly 128-bits of memory. Then, pass the newly
createcluid_t tosdp_set_service_id , which fills in the appropriate field of the service recesd ,

also passed in as a parameter.

Once the Service ID is done, move on to create the Service Class List. For this example, the service
advertises the reserv&ttRIAL_PORT_CLASSN its list of Service Classes. Since it's a reserved class,
usesdp_uuid16_create to allocate the UUID. This is also the first place we encounter the

sdp_list t , which is used to store the list of UUIDsdp_set_service_classes can then be used

to apply the changes to the service record.

uuid_t* sdp_uuid16_create(uuid_t *uuid, uintl6_t data);
sdp_list_t* sdp_list_append(sdp_list_t* list, void* data);
void sdp_set_service_classes(sdp_record_t* rec, sdp_list_t* class_list);

The flow of data here is also straightforwasdp_uuid16_create creates a Service Class ID, which is
then passed tedp_list_append to create a new linked list (as mentioned earlier, appending a data
element taNULL creates a new list). This list is then passeddp_set_service_classes , Which
actually sets the Service Class List for the service record.

Creating and setting the Profile Descriptor List is similar, but instead of creating a list of UUIDs, we
create a list obdp_profile_desc_t data structures, which are described earlier.
sdp_set_profile_descs can then be used to set this list in the service record.

void sdp_set_profile_descs(sdp_record_t* rec, sdp_list_t* profile_list);

By now, you should have gotten the general idea of how to fill in a service record data structure. First,
create an intermediate data structure that contains the information to set. Then, use one of the service
record helper functions to apply the changes to the madperecord_t data structure. Lather, rinse,
repeat. There are a few more of these helper functions in the example, and we’ll quickly go over them
here.

void sdp_set_browse_groups(sdp_record_t* rec, sdp_list_t* browse_list);
void sdp_set_access_protos(sdp_record_t* rec, sdp_list t* proto_list);
void sdp_set_info_attr(sdp_record_t* rec, const char* name,

const char* provider, const char* description);

The first of these is used to make the service record publicly browseable. By passing it a list that has a
single UUID with valuePUBLIC_BROWSE_GROUhe application flags the service record for public
browsing. Remote Bluetooth devices requesting a list of all available services (which we’ll see how to do
in the next section), will get this service record in the reply as a result of setting the public browse group.

sdp_set_access_protos is used to set which transport protocols are advertised in the service record,
and is also where the port number being used by the server application gets defined. This one is a bit
tricky because it actually takes a list of lists of lists (3 deep). The first inner list is supposed to represent a

49

Chapter 3. C programming witlibbluetooth

protocol stack, but you'll alImost never have more than one of these. Within each protocol stack list,
you'll have one list for each transport protocol used by the service. Since RFCOMM is built on top of
L2CAP, all RFCOMM applications always have at least an L2CAP list, and an RFCOMM list. The third
inner lists contain the details for the protocol list, and usually has one or two items. The first item should
be a UUID identifying the protocol. If the second item is present, it shouldduip adata_t specifying

the port number used by the service. T field of thesdp_data_t should beSDP_UINTS for

RFCOMM ports, andsDP_UINT16 for L2ZCAP ports. Confusing, isn't it? The example code should
actually work in most cases with minor modifications, so don’t get too hung up on figuring it all out.

Thesdp_set_info_attr function can be used to set three fields all at once, all of them text fields.
name should be the name of the service providedyider is supposed to be the provider of the
service, andlescription describes the service. All three of these fields are meant to be
human-readable and not interpreted or specially parsed by Bluetooth programs, so they can really be
whatever you want them to be. Setting any of the three parametiitditocauses it to not be included in
the service record.

Finally, we're done constructing the service record! Congratulate yourself, and breathe a sigh of relief.
The rest of advertising a service is easy, and we only need three more functions.

sdp_session_t *sdp_connect(const bdaddr_t *src, const bdaddr_t *dst,
uint32_t flags);
int sdp_record_register(sdp_session_t *session, sdp_record_t *rec,
uint8_t flags);
int sdp_close(sdp_session_t *session);

First, use thedp_connect function to connect to the SDP server running on the local machine. The
first parametersrc , should always b8DADDR_ANMhe second parameter should always be
BDADDR_LOCALland the third parameter should alwayshé&ater on, we'll use different values for
these parameters, but they should always be the same when advertising a service.

sdp_connect returns a pointer to a newly allocatedp_session_t , which represents a connection to

the local SDP server. This pointer then gets passedgorecord_register along with the service

record that we so carefully constructed. This function finishes the registration process, and the program
is now free to go on with the rest of its tasks. The service record will stay registered and advertised until
the program exits or closes the connection to the local SDP server by aalfingose

3.4.4. Searching and browsing for a service

The process of searching for services involves two steps - detecting all nearby devices with a device
inquiry, and connecting to each of those devices in turn to search for the desired service. You might say,
"well why isn’t there way to broadcast service searches?" and to that, | would say, "Good question!".
Despite Bluetooth’s piconet abilities, there is no way for a device to (metaphorically) shout out, "Does
anyone have a printer!? Anyone?? A/S/L??" Instead, a client application has to do the equivalent of
walking up to each nearby device and saying, "Excuse me, can | have a minute? Yes, do you have a
printer available? No? Okay, sorry to bother."

50

Chapter 3. C programming witlibbluetooth

The first step, detecting all nearby devices, was cover&atation 3.1so we'll just skip that and move

right on to the second step. Once connected to the SDP server on a remote Bluetooth device, a client can
search on a specific UUID. The remote device should then return a list of all services that have that

UUID anywhere in the service record. The UUID could match the record’s Service ID, one of its Service
Classes, or even the transport protocol used by the seBseenple 3-/hows how to search a single

device to see if it has an RFCOMM service with UUBD000000-0000-0000-0000-00000000ABCD

An explanation follows.

Note: Browsing, or requesting a list of all services a device has to offer, is actually a special case of
searching. All publicly available services on a device will have the reserved UUID
PUBLIC_BROWSE_GROWR an attribute value, so searching for that UUID is equivalent to asking for all
services on a device.

Example 3-7. Step one of searching a device for a service with UUID OXABCD

#include <stdio.h>

#include <stdlib.h>

#include <bluetooth/bluetooth.h>
#include <bluetooth/sdp.h>
#include <bluetooth/sdp_lib.h>

int main(int argc, char **argv)

{
uint32_t svc_uuid_int[] = { 0, 0, 0, OXABCD };

int status;

bdaddr_t target;

uuid_t svc_uuid;

sdp_list_t *response_list, *search_list, *attrid_list;
sdp_session_t *session = 0;

uint32_t range = Ox00O0Offff;

uint8_t port = 0;

iflargc < 2)

{
fprintf(stderr, "usage: %s <bt_addr>\n", argv[0]);
exit(2);

}

str2ba(argv[l], &target);

/I connect to the SDP server running on the remote machine
session = sdp_connect(BDADDR_ANY, &target, 0);

sdp_uuid128_create(&svc_uuid, &svc_uuid_int);
search_list = sdp_list_append(0, &svc_uuid);
attrid_list = sdp_list_append(0, &range);

/I get a list of service records that have UUID Oxabcd
response_list = NULL;

51

Chapter 3. C programming witlibbluetooth

status = sdp_service_search_attr_req(session, search_list, \
SDP_ATTR_REQ_RANGE, attrid_list, &response_list);

if(status == 0) {
sdp_list_t *proto_list;
sdp_list_t *r = response_list;

/I go through each of the service records
for G r; r = r->next) {
sdp_record_t *rec = (sdp_record_t*) r->data;

/I get a list of the protocol sequences
if(sdp_get_access_protos(rec, &proto_list) == 0) {

/Il get the RFCOMM port number
port = sdp_get_proto_port(proto_list, RFCOMM_UUID);

sdp_list_free(proto_list, 0);
}
sdp_record_free(rec);
}
}
sdp_list_free(response_list, 0);
sdp_list_free(search_list, 0);
sdp_list_free(attrid_list, 0);
sdp_close(session);

if(port =0) {

printf("found service running on RFCOMM port %d\n", port);
}
return O;

The example starts off by connecting to a specific Bluetooth device (the one with address
01:23:45:67:89:AB using thesdp_connect function that we saw in the previous section.

sdp_session_t *sdp_connect(const bdaddr_t *src, const bdaddr_t *dst,
uint32_t flags);

This time around, thdst parameter tadp_connect is set to the address of the remote Bluetooth

device. If your application needs to use a specific local Bluetooth adapter to conduct the search, then pass
its address in as thec parameter, but otherwise just leave it seBmMADDR_ANYDon't worry about the

flags parameter, it doesn’t really do much so just leave it at 0. If the system isn’t able to connect to the
remote SDP server, thedp_connect returnsNULL instead of a valid pointer.

Once connected, the client program prepares to send its search query by creating two lists. The first list
contains the UUIDs that the client is searching for. In this example, the client uses
sdp_uuid128 create to make a single UUID. Often, your program will be searching for a standard

52

Chapter 3. C programming witlibbluetooth

reserved UUID. In those cases, you can usestipe uuid16_create or sdp_uuid32_create

functions described earlier in the chapter. If your program needs to search on more than one UUID at a
time, then just append more of them to the list, and only service records matching every UUID will be
returned.

You can use the second list to control exactly what attribute/value pairs of matching service records that
an SDP server returns during a search, but usually we just want the SDP server to send us everything it
has for matching service records. To do this, just populate it with a single 32-bit integer with value
OXFFFF.

Search terms in hand, the client progrram sends the search query using the
sdp_service_search_attr_req function.

int sdp_service_search_attr_req(sdp_session_t* session,
const sdp_list_t* uuid_list, sdp_attrreq_type_t reqtype,
const sdp_list_t* attrid_list, sdp_list_t **response_list);

The first parameter to this function should be a pointer testipesession_t created above.

uuid_list ~ should be the list of UUIDs just created, aattid_list should be the list containing the

single 32-bit integer also just created. Leasgtype set toSDP_ATTR_REQ_RANGE&Nd pass the

address of &lULL pointer in agesponse_list . This last one is an output parameter, which will point

to a newly allocateddp_list_t when the function completesdp_service_search_attr_req

returns 0 when the search completed successfully (which doesn’'t necessarily mean that it got any results,
just that it communicated with the SDP server successfully), and -1 on failure.

After a successful search, the client program will then have a linked list of service records to parse
through. If you read the previous section on advertising a service, these are thedgameord_t

data structures that were created by the server application. This time, however, the program is on the
receiving side and must slog through them to find what it needs.

Note: The last node of an sdp_list_t linked list has NULL as its next field. To iterate through a list,
a program can traverse the next links until it reaches NULL

Extracting information out of ardp_record_t involves a number of helper functions. Typically, you
won't access the data structure directly, but will instead use functions nsapedet_ATTRwvhere
ATTRwill be some attribute, such agp_get_service_classes

Since a client program is primarily interested in figuring out how to connect to the service being
advertised by the SDP server, it should focus its attention on the the list of transport protocols in the
service record. To get to this list, use the functieds get access_protos and

sdp_get_proto_port

int sdp_get_access_protos(const sdp_record_t *rec,
sdp_list_t **proto_list);

53

Chapter 3. C programming witlibbluetooth

int sdp_get_proto_port(const sdp_list_t *proto_list, int proto_uuid);

To determine which port a service is running on, pasdparecord_t from the search results into
sdp_get_access_protos along with the address ofMULL pointer.proto_list is an output
parameter, and will point to a newly allocatsdb_list_ t when the function completes successfully.
This list represents all protocols and ports advertised in the service redprdet_proto_port can
then be used to extract the port number. Pass it the protocol list andeiRee@MM_UUIffor RFCOMM
services), oL2CAP_UUID (for L2ZCAP services). The function returns the port number used by the
service, or 0 if it couldn’t find one.

Figuring out the port number that a service is running on is usually the most important part of searching
with SDP, so in that respect we're all done. Other attributes of an advertised service record can also be
useful, however, and the following helper functions can be used to access them.

Service ID

int sdp_get_service_id(const sdp_record_t *rec, uuid_t *uuid);
The service ID will be stored in output parameteid , which should point to a validuid_t
Service Class List
int sdp_get_service_classes(const sdp_record_t *rec,
sdp_list_t **service_class_list);

service_class_list should be the address ofNwLL pointer, which will be changed to point to
a newly allocateddp_list t . This will be a list ofuuid_t data structures, each of which is the
UUID of a service class of the service record.

Profile Descriptor List
int sdp_get_profile_descs(const sdp_record_t *rec,
sdp_list_t **profile_descriptor_list);

profile_descriptor_list should be the address ofN&LL pointer, which will be changed to
point to a newly allocateddp_list t . This will be a list ofsdp_profile_desc_t data
structures, each of which is describes a Bluetooth Profile that the service adheres to.

Service Name, Service Provider, and Service Description

int sdp_get_service_name(const sdp_record_t *rec, char *buf, int len);
int sdp_get_service_desc(const sdp_record_t *rec, char *buf, int len);
int sdp_get _provider_name(const sdp_record_t *rec, char *buf, int len);

54

Chapter 3. C programming witlibbluetooth

All three of these functions copy a text string into the output paranheter Thelen is a size limit,
but it's not quite what you might expect. If the actual attribute is longer tanbytes, then all

three functions will fail and return -1. Otherwise, the full attribute text is copied into the buffer. It's
probably best to just set this to a large, healthy number.

3.5. Advanced BlueZ programming

In addition to the L2CAP and RFCOMM sockets described in this chapter, BlueZ provides a number of
other socket types. The most useful of these is the Host Controller Interface (HCI) socket, which
provides a direct connection to the microcontroller on the local Bluetooth adapter. This socket type,
introduced in sectioSection 3.1can be used to issue arbitrary commands to the Bluetooth adapter.
Programmers requiring precise control over the Bluetooth controller to perform tasks such as
asynchronous device discovery or reading signal strength information should use HCI sockets.

The Bluetooth Core Specification describes communication with a Bluetooth microcontroller in great
detail, which we summarize here. The host computer can send commands to the microcontroller, and the
microcontroller generates events to indicate command responses and other status changes. A command
consists of a Opcode Group Field that specifies the general category the command falls into, an Opcode
Command Field that specifies the actual command, and a series of command parameters. In BlueZ,
hci_send_cmd is used to transmit a command to the microcontroller.

int hci_send_cmd(int sock, uintl6_t ogf, uintl6_t ocf, uint8_t plen,
void *param);

Here,sock is an open HCI socketgf is the Opcode Group Field¢ef is the Opcode Command Field,
andplen specifies the length of the command parameiersm .

Callingread on an open HCI socket waits for and receives the next event from the microcontroller. An
event consists of a header field specifying the event type, and the event parameters. A program that
requires asynchronous device detection would, for example, send a commandfwihOCF_INQUIRY

and wait for events of typEVT_INQUIRY_RESULTandEVT_INQUIRY_COMPLETEThe specific codes

to use for each command and event are defined in the specifications and in the BlueZ source code.

3.5.1. Best-effort transmission
TODO

It is slightly misleading to say that L2ZCAP sockets are reliable by default. Multiple L2CAP and
RFCOMM connections between two devices are actually logical connections multiplexed on a single,
lower level connection established between them. The only way to adjust delivery semantics is to adjust

55

Chapter 3. C programming witlibbluetooth

them for the lower level connection, which in turn affeatsL2CAP and RFCOMM connections
between the two devices.

As we delve deeper into the more complex aspects of Bluetooth programming, the interface becomes a
little harder to manage. Unfortunately, BlueZ does not provide an easy way to change the packet timeout
for a connection. A handle to the underlying connection is first needed to make this change, but the only
way to obtain a handle to the underlying connection is to query the microcontroller on the local

Bluetooth adapter. Once the connection handle has been determined, a command can be issued to the
microcontroller instructing it to make the appropriate adjustmdntample 3-8hows how to do this.

Example 3-8. set-flush-to.c

#include <unistd.h>

#include <errno.h>

#include <stdlib.h>

#include <sys/socket.h>
#include <sysl/ioctl.h>

#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>

int set_flush_timeout(bdaddr_t *ba, int timeout)
{

int status = 0, dd;

struct hci_conn_info_req *cr = 0;

struct hci_request rq = { 0 };

struct {
uintl6_t handle;
uintl6_t flush_timeout;
} cmd_param;

struct {
uint8_t status;
uintl6_t handle;
} cmd_response;

/I find the connection handle to the specified bluetooth device
cr = (struct hci_conn_info_req*) malloc(
sizeof(struct hci_conn_info_req) +
sizeof(struct hci_conn_info));
bacpy(&cr->bdaddr, ba);
cr->type = ACL_LINK;
dd = hci_open_dev(hci_get_route(&cr->bdaddr));
ift dd < 0) {
status = dd;
goto cleanup;
}
status = ioctl(dd, HCIGETCONNINFO, (unsigned long) cr);
if(status != 0) goto cleanup;

56

Chapter 3. C programming witlibbluetooth

/I build a command packet to send to the bluetooth microcontroller
cmd_param.handle = cr->conn_info->handle;
cmd_param.flush_timeout = htobs(timeout);

rq.ogf = OGF_HOST_CTL;

rq.ocf = 0x28;

rg.cparam = &cmd_param;

rg.clen = sizeof(cmd_param);

rg.rparam = &cmd_response;

rq.rlen = sizeof(cmd_response);

rq.event = EVT_CMD_COMPLETE;

/I send the command and wait for the response
status = hci_send_req(dd, &rq, 0);
if(status !'= 0) goto cleanup;

if(cmd_response.status) {
status = -1;
errno = bt_error(cmd_response.status);

}

cleanup:
free(cr);
if(dd >= 0) close(dd);
return status;

On success, the packet timeout for the low level connection to the specified device issedto *

0.625 milliseconds. A timeout of 0 is used to indicate infinity, and is how to revert back to a reliable
connection. The bulk of this function is comprised of code to construct the command packets and
response packets used in communicating with the Bluetooth controller. The Bluetooth Specification
defines the structure of these packets and the magic nuimbdgr In most cases, BlueZ provides
convenience functions to construct the packets, send them, and wait for the response. Setting the packet
timeout, however, seems to be so rarely used that no convenience function for it currently exists.

3.6. Chapter Summary

This chapter has provided an introduction to Bluetooth programming with BlueZ. The concepts covered
in chapter 2 were presented here in greater detail with examples on how to implement them in BlueZ.
Many other useful aspects of BlueZ were left out for brevity. Specifically, the command line tools and
utilities that are distributed with BlueZ, suchlasconfig , hcitool , sdptool , andhcidump , are not
described here. These utilities, which are invaluable to a serious Bluetooth developer, are already well
documented. Only the simplest aspects of using the Service Discovery Protocol were covered - just
enough to search for and advertise services. Additionally, other socket types SKPRBTO_SCand
BTPROTO_BNERere left out, as they are not crucial to forming a working knowledge of programming
with BlueZ. Unfortunately, as of now there is no official API reference to refer to, so more curious
readers are advised to download and examine the BlueZ sourcé.code

57

Notes

Chapter 3. C programming witlibbluetooth

http://www.bluez.org/lists.html (http://www.bluez.org/lists.html)
https://www.bluetooth.org/foundry/assignnumb/document/baseband
Bluetooth terminology refers to this as the ACL connection

available at http://www.bluez.org

58

Chapter 4. Bluetooth development tools

Note: need to re-word this introduction now that the chapter is after 2 and 3

There are three major parts of the Bluetooth subsystem in Linux - the kernel level routines, the
libbluetooth development library, and the user level tools and daemons. Roughly speaking, the kernel
part is responsible for managing the Bluetooth hardware resources that are attached to a machine,
wrestling with all the different types of bluetooth adapters that are out there, and presenting a unified
interface to the rest of the system that allows any Bluetooth application to work with any Bluetooth
hardware.

Thelibbluetooth development library takes the interface exposed by the Linux kernel and provides a
set of convenient data structures and functions that can be used by Bluetooth programmers. It abstracts
some of the most commonly performed operations (such as detecting nearby Bluetooth devices) and
provides simple functions that can be invoked to perform common tasks.

The user-level tools are the programs that a typical end-user or programmer might use to leverage the
computer’s Bluetooth capabilities, while the daemons are constantly running programs that use the
Bluetooth development library to manage the system’s Bluetooth resources in the ways configured by the
user. The BlueZ developers strive to make these tools and daemons as straightforward to use as possible,
while also providing enough flexibility to meet every user’s needs. As a software developer, you'll be
interacting with the user-level tools the most, so we’ll focus on introducing them in this chapter.

There are six command-line tools provided with BlueZ that are indispensable when configuring
Bluetooth on a machine and degugging applications. We'll give some short descriptions here on how
they’re useful, and show some examples on how to use them. For full information on how to use them,
you should consult thman pages that are distributed with the tools, or invoke each tool withrthitag.

This section serves mainly to give you an idea of what the tools are and which one to use for what
scenario.

4.1. hciconfig

hciconfig is used to configure the basic properties of Bluetooth adapters. When invoked without any
arguments, it will display the status of the adapters attached to the local machine. In all other cases, the
usage follows the form:

hciconfig <device> <command> <arguments...>

where <device> is usuallyci0 (hcil specificies the second Bluetooth adapter if you have hai@, is
the third, and so on). Most of the commands require superuser privileges. Some of the most useful ways
to use this tool are:

59

Chapter 4. Bluetooth development tools

Display the status of recognized Bluetooth adapters

hciconfig
hciO: Type: USB
BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
UP RUNNING PSCAN ISCAN
RX bytes:505075 acl:31 sco:0 events:5991 errors:0
TX bytes:25758 acl:24 sco:0 commands:1998 errors:0

Each Bluetooth adapter recognized by BlueZ is displayed here. In this case, there is only one
adapterhcio , and it has Bluetooth Addre$9:0F:3D:05:75:26 . The "UP RUNNING" part on

the second line indicates that the adapter is enabled. "PSCAN" and "ISCAN" refer to Inquiry Scan
and Page Scan, which are described a few paragraphs down. The rest of the output is mostly
statistics and a few device properties.

Enable / Disable an adapter

Theup anddown commands can be used to enabled and disable a Bluetooth adapter. To check
whether or not a device is enabled, s&onfig without any arguments.

hciconfig hci0 down
hciconfig
hciO: Type: USB
BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
DOWN
RX bytes:505335 acl:31 sco:0 events:5993 errors:0
TX bytes:25764 acl:24 sco:0 commands:2000 errors:0
hciconfig hciO up
hciconfig
hciO: Type: USB
BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
UP RUNNING PSCAN ISCAN
RX bytes:505075 acl:31 sco:0 events:5991 errors:0
TX bytes:25758 acl:24 sco:0 commands:1998 errors:0

Display and change the user-friendly name of an adapter.

Thename command is fairly straightforward, and can be used to display and change the
user-friendly name of the Bluetooth adapter.

hciconfig hci0 name

hciO: Type: USB
BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
Name: 'Trogdor’

hciconfig hci0 name ’'StrongBad’

hciconfig hci0 name

hciO: Type: USB
BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
Name: ’'StrongBad’

60

Chapter 4. Bluetooth development tools

"Hide" an adapter, or show it to the world.

The Inquiry Scan and Page Scan settings for a Bluetooth adapter determine whether it is detectable
by nearby Bluetooth devices, and whether it will accept incoming connection requests, respectively.
Don't be confused by the names! These control whether the adapfgnddo inquiries and to

pages (connection requests), not whether it makes them.

Table 4-1. Inquiry Scan and Page Scan

Inquiry Scan Page Scan Interpretation command

On On This is the default. The| piscan
adapter is detectable by
other Bluetooth devices,
and will accept
incoming connection
requests

Off On Although not detectablepscan
by other Bluetooth
devices, the adapter st
accepts incoming
connection requests by
devices that already
know the Bluetooth
address of the adapter

On Off The adapter is detectabk&an
by other Bluetooth
devices, but it wil not
accept any incoming
connections. This is
mostly useless.

Off Off The adapter is not noscan
detectable by other
Bluetooth devices, and
will not accept any
incoming connections.

For example, the following invocation disables both Inquiry Scan and Page Scan for the first
Bluetooth adapter.

hciconfig hci0 noscan

There are many more ways to ussconfig , all of which are described in the help tekticonfig
-h) and the man pagemén hciconfig). The key thing to remember is thiadiconfig is the tool to

61

Chapter 4. Bluetooth development tools

use for any non-connection related settings for a Bluetooth adapter.

NOTE: Changes made bigiconfig are only temporary, and the effects are erased after a reboot or
when the device is disabled and enabled agaiid.conf ~ should be used To make a change permanent
(e.g. to permanently change the user-friendly name).

NOTE: The naméciconfig comes from the term Host Controller Interface (HCI). It refers to the
protocol that a computer uses to communicate with the Bluetooth microcontroller that resides on the
computer’s Bluetooth adapter. HCI is used to do all the dirty work of configuring the adapter and setting
up connections. The commaniatsiconfig ~ andhcitool — are so named to emphasize that they are used
for the low-level Bluetooth operations that, while important, can’t actually be used for communicating
with other Bluetooth devices.

4.2. hcitool

hcitool has two main uses. The first is to search for and detect nearby Bluetooth devices, and the
second is to test and show information about low-level Bluetooth connections. In alsgtesé, picks
up wherenciconfig ends - once the Bluetooth adapter starts communicating with other Bluetooth
devices.

Detecting Nearby Bluetooth devices

hcitool scan searches for nearby Bluetooth devices and displays their addresses and
user-friendly names.

hcitool scan

Scanning ...
00:11:22:33:44:55 Cell Phone
AA:BB:CC:DD:EE:FF Computer-0
01:23:45:67:89:AB Laptop
00:12:62:B0:7B:27 Nokia 6600

In this invocation, four Bluetooth devices were fuond. Detecting the addresses of nearby Bluetooth
devices and looking up their user-friendly names are actually two separate processes, and
conducting the name lookup can often take quite a long time. If you don't need the user-friendly
names, thenhcitool inq is useful for only performing the first part of the search - finding the
addresses of nearby devices.

Testing low-level Bluetooth connections

hcitool can be used to create piconets of Bluetooth devices and show information about locally
connected piconets. Remember that piconets are just an ugly consequence of Bluetooth’s fancy
frequency hopping technigues. When we're writing Bluetooth software, we won't have to worry

62

Chapter 4. Bluetooth development tools

about these low level details, just like we won't have to worry about instructing the Bluetooth
adapter on which radio frequencies to use. So for application programming, this peitbof is
strictly of educational use, because BlueZ automatically takes care of piconet formation and
configuration in the process of establishing higher-level RFCOMM and L2CAP connections.

If you're curious about usingcitool for basic piconet configuration, then thetool cc and
hcitool con commands are the first places to statitool cc forms a piconet with another
device, and is fairly straightforward to use. For example, to join a piconet with the device
00:11:22:33:44:55

hcitool cc 00:11:22:33:44:55:66

hcitool con can then be used to show information about existing piconets.

hcitool con
Connections:
< ACL 00:11:22:33:44:55 handle 47 state 1 Im MASTER

Here, the output oficitool con tells us that the local Bluetooth adapter is the master of one
piconet, and the device 00:11:22:33:44:55 is a part of that piconet. For details on the rest of the
output, see thacitool documentation.

NOTE: A fairly common mistake is to try to useitool to create data transport connections
between two Bluetooth devices. It's important to know that even if two devices are part of the same
piconet, a higher-level connection needs to be established before any application-level data can be
exchanged. Creating the piconet is only the first step in the communications process.

4.3. sdptool

sdptool has two uses. The first is for searching and browsing the Service Discovery Protocol (SDP)
services advertised by nearby devices. This is useful for seeing what Bluetooth profiles are implemented
by another Bluetooth device such as a cellular phone or a headset. The second is for basic configuration
of the SDP services offered by the local machine.

Browsing and searching for services

sdptool browse [addr] retrieves a list of services offered by the Bluetooth device with address
addr . Leavingaddr out causesdptool to check all nearby devices.Itfcal is used for the
address, then the local SDP server is checked instead. Each service record found is then briefly
described. A typical service record might look like this:

sdptool browse 00:11:22:33:44:55

63

Chapter 4. Bluetooth development tools

Browsing 00:11:22:33:44:55
Service Name: Bluetooth Serial Port
Service RecHandle: 0x10000
Service Class ID List:
"Serial Port" (0x1101)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 1
Language Base Attr List:
code_ISO639: 0x656e
encoding: Ox6a
base_offset: 0x100
Profile Descriptor List:
"Serial Port" (0x1101)
Version: 0x0100

Here, the devic€0:11:22:33:44:55 is advertising a single service called "Bluetooth Serial Port"
that's operating on RFCOMM channel 1. The service has the UUID 0x1101, and also adheres to the
Bluetooth Serial Port Profile, as indicated by the profile descriptor list at the bottom. In general, this
information should be sufficient for an application to determine whether or not this is the service
that it's looking for (has UUID 0x1101), and how to connect to it (use RFCOMM channel 1).

sdptool search can be used to search nearby devices for a specific service, but it can only look
for a handful of predefined services. It is not able to search for a service with an arbitrary UUID,
this must be done programmatically. Because of #uptool browse will generally be more

useful for testing and debugging applications that use SDP (e.g. to check that a service is being
advertised correctly).

Basic service configuration

sdptool add <name> can be used to advertise a set of predefined services, all of which are
standardized Bluetooth Profiles. It cannot be used to advertise an arbitrary service with a
user-defined UUID, this must be done programatically. This means it won't be very useful for
advertising a custom service.

sdptool del <handle> can be used to un-advertise a local service. The SDP server maintains a
handle for each service that identifies it to the server - essentially a pointer to the service record.
To find the handle, just look at the description of the service usilpgol browse and look for

the line that says "Service RecHandle: ". Using the example above, the Serial Port service has the
handle0x10000 , so if we were using that machine, we could issue the following command to stop
advertising the service:

sdptool del 0x10000

sdptool also provides commands for modifying service records (e.g. to change a UUID), that you
could actually use, but probably don’t want to. These, along wittathieanddel commands exist

64

Chapter 4. Bluetooth development tools

more so that programmers can look at the source codépofol for examples on how to do the
same in their own applications. Advertising and configuring services with C and Python are
described in later chapters of this book, but you can always download the BlueZ source code at
http://www.bluez.org and see how it's done witptool

4.4. hcidump

For low-level debugging of connection setup and data transfelump can be used to intercept and

display all Bluetooth packets sent and received by the local machine. This can be very useful for
determining how and why a connection fails, and lets us examine at exactly what stage in the connection
process did communications faikcidump requires superuser privileges.

When run without any arguments;idump displays summaries of Bluetooth packets exchanged

between the local computer and the Bluetooth adapter as they appear. This includes packets on device
configuration, device inquiries, connection establishment, and raw data. Incoming packets are preceded
with the ">" greater-than symbol, and outgoing packets are preceded witk'thess-than symobl. The

length of each packeplen) is also shown. For example, if we starteddump in one command shell

and issued the commaditool inq in another, the output dfcidump might look like this:

hcidump

HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hciO snap_len: 1028 filter: Oxffffffff

< HCI Command: Inquiry (0x01|0x0001) plen 5
> HCI Event: Command Status (0x0f) plen 4

> HCI Event: Inquiry Result (0x02) plen 15

> HCI Event: Inquiry Complete (0x01) plen 1

Here, we can see that one command (Inquiry) was sent out instructing the Bluetooth adapter to search for
nearby devices, and three packets of size 5, 4, and 15 bytes were received: information on the status of
the command, an inquiry result indicating that a nearby device was detected, and another status packet
once the inquiry completed. You'll notice that used this wajgump only provides basic summaries of

the packets, which is not always enough for debugging. One option is to use¢ flag), which causes

hcidump to display the raw contents of every packet in hexadecimal format along with their ASCII
decodings. Used in the above example, we might see the following:

hcidump -X
HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hci0 snap_len: 1028 filter: Oxffffffff
< HCI Command: Inquiry (0x01|0x0001) plen 5
0000: 33 8b 9e 08 00 3.
> HCI Event: Command Status (0x0f) plen 4
0000: 00 01 01 04

65

Chapter 4. Bluetooth development tools

> HCI Event: Inquiry Result (0x02) plen 15

0000: 01 26 75 05 3d Of 00 01 02 00 00 01 3e d6 1if &Lu.=..... >,
> HCI Event: Inquiry Complete (0x01) plen 1
0000: 00

Okay, so unless you've memorized the Bluetooth specification and can decode the raw binary packets in
your head, maybe that’s not as useful as we'd like. Winiildump -X is great for very low-level

debugging of raw packets, the option gives us a nice compromiseidump -V will display as much
information as it can gather from each packet, and summarize the ones it can't interpret. If used together
with -X, it will still provide all the information for packets that it can decode, but will also show the raw
hexadecimal data for all the other packets (these tend to be application-level data packets). Repeating our
example once again, we might see this:

hcidump -X -V

HCI sniffer - Bluetooth packet analyzer ver 1.23

device: hciO snap_len: 1028 filter: OXxffffffff

< HCI Command: Inquiry (0x01|0x0001) plen 5
lap 0x9e8b33 len 8 num O

> HCI Event: Command Status (0x0f) plen 4
Inquiry (0x01|0x0001) status 0x00 ncmd 1

> HCI Event: Inquiry Result (0x02) plen 15
bdaddr 00:0F:3D:05:75:26 mode 1 clkoffset 0x1fd5 class 0x3e0100

> HCI Event: Inquiry Complete (0x01) plen 1
status 0x00

Now, we see the packets decoded according to the Bluetooth specification, which are probably mostly
meaningless to you right now, but would make sense if you found the need to read the parts of the
Bluetooth specification on device inquiry. Since this is a simple exargliymp is able to fully

decode each packet, so we don't see any raw hexadecimal data.

As with the other utilities, there are many more ways toluséump for debugging and low-level
display of Bluetooth packet communication that you can find out by reading the help text included with
BlueZ.

4.5. 12ping

I2ping sends echo packets to another Bluetooth device and waits for a response. An echo packet is a
special type of L2ZCAP packet that contains no meaningful data - when a Bluetooth device receives an
echo packet, it should just send (echo) the packet back to the originator. This is useful for testing and
analyzing L2ZCAP communications with another Bluetooth device. If two devices are communicating,
but seem a little sluggish, thézping can provide timing information on how long it takes to send and
receive packets of a certain size. The only required parameter is the address of the Bluetooth device to
"ping". For example, to send echo packets to the dewices:45:67:89:AB

66

Chapter 4. Bluetooth development tools

12ping -¢c 5 01:23:45:67:89:AB

Ping: 01:23:45:67:89:AB from 00:DO0:F5:00:0E:B5 (data size 44) ...
44 bytes from 01:23:45:67:89:AB id 0 time 60.87ms

44 bytes from 01:23:45:67:89:AB id 1 time 55.97ms

44 bytes from 01:23:45:67:89:AB id 2 time 50.96ms

44 bytes from 01:23:45:67:89:AB id 3 time 51.94ms

44 bytes from 01:23:45:67:89:AB id 4 time 48.93ms

I2ping continues sending packets until stopped by pressirigc . Other command line arguments let
us control the size of the packets sent, the delay between packets, how many to send, and so on. For
details on how to use these capabilities, invi@ging -h

4.6. rfcomm

Therfcomm tool lets us establish arbitrary RFCOMM connections and treat them like serial ports.
Although the RFCOMM protocol was described in the previous chapter as a general purpose transport
protocol, one of its original purposes was to emulate a serial port connection between two devices. The
idea was that device manufacturers who had serial-port capable devices would only need to add a
Bluetooth chip to the end of the serial port controller, which requires much less maodification to the
original device than replacing the serial port controller. In fact, Bluetooth was even marketed as a
"wireless serial cable". To utilize the serial-port emulation capabilities of Bluetooth in Linux, we use the
rfcomm tool.

ricomm can be used to connect to another device or to listen for incoming connections. A special device
file is created for each connection, which user-level programs can read and write to like regular files.
Data written to the device file is transmitted over Bluetooth, and reading from the device file retrieves the
data received over the connection. When the device file is closed, the Bluetooth connection is terminated.

To listen for an incoming connection, we first choose which device file to bind it to. Typically, we’'ll use
/dev/rfcommX , whereX ranges from O - 9. Next, we choose an RFCOMM port number to listen on. To
listen on RFCOMM port 20 and connect itktev/ricomm0 , we'd use thefcomm listen ~ command

like this:

rfcomm listen /dev/rfcomm0 20
Similarly, to establish an outgoing connection and serial port, we'd usécti®m connect command,
but we would also specify the address of the Bluetooth device to connect to:

rfcomm connect /dev/rfcommO 01:23:45:67:89:AB 20

Keep in mind that in both these examples, the special devicklélérfcommO is not a valid file until
therfcomm commands successfully complete. The other way of ustioghm to establish outgoing

67

Chapter 4. Bluetooth development tools

connections is to use thticomm bind command to create the device file, and only establish the
Bluetooth connection when a separate program tries to access the device file. For example:

rfcomm bind /dev/rfcommO 01:23:45:67:89:AB 20

Usingrfcomm in this way is sort of saying "When a program opens /dev/rfcomm0, make a connection to
the Bluetooth device 01:23:45:67:89:AB and send all data through that file. But if no program ever
access that file, don’t bother making the connection”

4.7. uuidgen

TODO

4.8. Obtaining BlueZ and PyBluez

Note: this should be an appendix

Instructions for installing the BlueZ development libraries can be found at the BlueZ website:
htp://www.bluez.org (http://www.bluez.org). Most modern Linux distributions should have this packaged
somehow. For example, on Debian-based systems:

apt-get install libbluetoothl-dev bluez-utils

On Fedora:

yum install bluez-devel

Similarly, instructions for installing PyBluez can be found at the PyBluez website:
http://org.csail.mit.edu/pybluez. PyBluez is included with a few Linux distributions, but TODO

Notes

1. Theidea s that Inquiry Scan and Page Scan control whether the adegtafor inquiries and
pages, in the same way that you might use your eyes to scan around to see if anyone is talking to you.
Confusing!

68

Chapter 5. Other platforms and programming
languages

5.1. Microsoft Windows
TODO

introduce the Widcomm Bluetooth stack and development environment. Also mention the Bluetooth
stack that Microsoft built into Windows XP with Serice Pack 1.

5.2.0S X

TODO

5.3. Symbian OS / Nokia Series 60 Smartphones

TODO

5.4. Java

There are a number of Java bindings for Bluetooth programming currently available. The Java
community has the advantage of having standardized on an API for Bluetooth development, called
JSR-82. Almost all Java Bluetooth implementations adhere to this specification. This makes porting
Bluetooth applications from one device to another much simpler. Current implementations of JSR-82 for
the GNU/Linux operating system include Rocosoft Improptavetana?, and JavaBluetooth

A disadvantage of using Java is that JSR-82 is very limited, providing virtually no control over the device
discovery process or established data connections. For example, JSR-82 provides no method for
adjusting delivery semantics, flushing a cache of previously detected devices during a device discovery,
or obtaining signal strength informatiénwWhile JSR-82 is acceptable for creating simple Bluetooth
applications, it is not well suited for research and academic purposes. Furthermore, Java and many
JSR-82 implementations are not available on a number of platforms.

TODO

69

Chapter 5. Other platforms and programming languages

Notes

1. http://www.rocosoft.com (http://www.rococosoft.com)

2. http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xm
(http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xm)

3. http://www.javabluetooth.org

4. Cache flushing and signal strength were not covered in this chapter, but are described in the PyBluez
documentation and examples

70

