Wireless Application Protocol

Sridhar Iyer
KR School of Information Technology
IIT Bombay

http://www.it.11tb.ernet.in/~sr1

Jan 2001

Outline

Mobile applications

How are mobile/wireless environments different?
What 1s WAP?

WAP Architecture

WAE (WML/WMLScript)

WTA Framework

WAP Push Services

WAP Protocol Stack

Hype v/s Reality

References and Resources

Mobile Applications - 1

" Vehicles

— transmission of news, road condition etc

— ad-hoc network with near vehicles to prevent accidents

" Emergencies
— early transmission of patient data to the hospital
— ad-hoc network in case of earthquakes, cyclones

— military ...

" Traveling salesmen
— direct access to central customer files
— consistent databases for all agents

— mobile office

Mobile Applications - 2

Web access
— outdoor Internet access

— 1intelligent travel guide with up-to-date location dependent
information

Information services
— push: stock quotes; pull: nearest cash ATM

Disconnected operations
— file-system caching for off-line work
— mobile agents, e.g., shopping

Entertainment
— games, etc

Variability of the Mobile Environment

Mobile Device Capability

* form factor

* GUI

* multimedia

* real-time multimedia

Mobility
* stationary
» * nomadic (pedestrian speed)
* mobile (vehicular speed)
* roaming (mobile across networks)

Connectivity

* connected

* semi-connected
(asymmetric)

* weakly connected

* disconnected

v

World Wide Web and Mobility

HTTP/HTML have not been designed for mobile applications/devices

" HTTP 1.0 characteristics
— designed for large bandwidth, low delay

— stateless, client/server, request/response communication
— connection oriented, one connection per request

— TCP 3-way handshake, DNS lookup overheads

— big protocol headers, uncompressed content transfer

— primitive caching (often disabled, dynamic objects)

— security problems (using SSL/TLS with proxies)

" HTML characteristics

— designed for computers with “high” performance, color high-
resolution display, mouse, hard disk

— typically, web pages optimized for design, not for communication;
ignore end-system characteristics

System Support for Mobile WWW

Enhanced browsers
— client-aware support for mobility

Proxies
— Client proxy: pre-fetching, caching, off-line use
— Network proxy: adaptive content transformation for connections
— Client and network proxy

Enhanced servers
— server-aware support for mobility
— serve the content in multiple ways, depending on client capabilities

New protocols/languages
- WAP/WML

Wireless Application Protocol (WAP)

Empowers mobile users with wireless devices to easily access and
interact with information and services.

A “standard” created by wireless and Internet companies to enable
Internet access from a cellular phone

wapforum.org:
— co-founded by Ericsson, Motorola, Nokia, Phone.com

— 450 members in 2000, comprise of Handset manufacturers, Wireless
service providers, ISPs, Software companies in the wireless industry

— Qoals
* deliver Internet services to mobile devices

* enable applications to scale across a variety of transport options and
device types

* independence from wireless network standards
* GSM, CDMA IS-95, TDMA IS-136, 3G systems (UMTS, W-CDMA)

WAP: Main Features

Browser
— “Micro browser”, similar to existing web browsers

Markup language

— Similar to HTML, adapted to mobile devices
Script language

— Similar to Javascript, adapted to mobile devices

Gateway
— Transition from wireless to wired world

Server
— “Wap/Origin server”’, similar to existing web servers

Protocol layers
— Transport layer, security layer, session layer etc.

Telephony application interface
— Access to telephony functions

Internet Model

WAP Architecture

Client

Web Server

WAP Gateway

WML

WML Encoder

WML-
Script WMLScript

Compiler

WTAI

WML Decks
with WML-Script

Protocol Adapters

Etc.

Source: WAP Forum

Client

WML

WML-
Script

WTAI

Etc.

WAP Application Server

WML Encoder

WMLScript
Compiler

Protocol Adapters

WML Decks
with WML-Script

Source: WAP Forum

WAP Architecture

" Another look

Web
Server

HTML

Source: WAP Forum

WAP: Network Elements

fixed network wireless network
Internet HTML WML | WAP Binary WML
* filter proxy
HTML
filter/ Binary WML
WAP |«
web Proxy
server
wrA | Binary WML g
server

Binary WML.: binary file format for clients

Source: Schiller

WAP Specifies

" Wireless Application Environment

— WML Microbrowser

— WMLScript Virtual Machine

— WMLScript Standard Library

— Wireless Telephony Application Interface (WTAI)
— WAP content types

" Wireless Protocol Stack

— Wireless Session Protocol (WSP)

— Wireless Transport Layer Security (WTLS)
— Wireless Transaction Protocol (WTP)

— Wireless Datagram Protocol (WDP)

— Wireless network interface definitions

WAP Stack

Wireles_ \Application Protocol

' l’ cs]‘ t’ 1‘ r‘ l’ _ | l

Source: WAP Forum

WAP Stack

" WAE (Wireless Application Environment):
— Architecture: application model, browser, gateway, server
— WML: XML-Syntax, based on card stacks, variables, ...
— WTA: telephone services, such as call control, phone book etc.
" WSP (Wireless Session Protocol):
— Provides HTTP 1.1 functionality
— Supports session management, security, etc.
" WTP (Wireless Transaction Protocol):
— Provides reliable message transfer mechanisms
— Based on ideas from TCP/RPC
" WTLS (Wireless Transport Layer Security):
— Provides data integrity, privacy, authentication functions
— Based on ideas from TLS/SSL
" WDP (Wireless Datagram Protocol):
— Provides transport layer functions
— Based on ideas from UDP

Content encoding, optimized for low-bandwidth channels, simple devices

WHY WAP?

" Wireless networks and phones
— have specific needs and requirements
— not addressed by existing Internet technologies

" WAP

— Enables any data transport
* TCP/TP, UDP/IP, GUTS (IS-135/6), SMS, or USSD.

— Optimizes the content and air-link protocols

— Utilizes plain Web HTTP 1.1 servers
* leverages existing development methodologies
* utilizes standard Internet markup language technology (XML)
* all WML content is accessed via HT'TP 1.1 requests

— WML UI components map well onto existing mobile phone user interfaces
* no re-education of the end-users
* leveraging market penetration of mobile devices

— Several modular entities together form a fully compliant Internet entity

Why 1s HTTP/HTML not enough?

Big pipe - small pipe syndrome
Internet Wireless network

<HTML> HTTP/HTML <> WAP
<HEAD> <CARD>

<TITLE>NNN Interactive</TITLE> <D0 TYPE="ACCEPT">

<META HTTP-EQUIV="Refresh" CONTENT="1800, <GO URL="/submit?Name=$N"/>
URL=/index.html"> </D0>

</HEAD> Enter name:

<BODY BGCOLOR="#FFFFFF" <INPUT TYPE="TEXT" KEY="N"/>
BACKGROUND="/images/9607/bgbar5.gif" LINK="#0A3990" </CARD>

ALINK="#FF0000" VLINK="#FFQ000" TEXT="000000" </WML>
ONLOAD="if(parent.frames.length!

=0)top.location="http://nnn.com';">

<TABLE WIDTH=599 BORDER="0">

R ALIGN=LEFT> Content enCOd|n

TH=117 VALIGN=TOP ALIGN=LEFT>

<Tl

<HTML> 0160011
<HEAD> 010011
<TITLE 110110
>NNN 010011
Intera 011011
ctive< 011101
JTITLE 010010
> 011010
<META
HTTP-
EQUIV=
"Refre
sh"
CONTEN
T="180
0,
URL=/1
ndex.h
tml">

Source: WAP Forum

WAP: “Killer” Applications

Location-based services

— Real-time traffic reporting, Event/restaurant recommendation
Enterprise solutions

— Email access, Database access, “global” intranet access

— Information updates “pushed” to WAP devices
Financial services

— Banking, Bill-paying, Stock trading, Funds transfers
Travel services

— Schedules and rescheduling, Reservations
Gaming and Entertainment

— Online, real-time, multi-player games

— Downloadable horoscopes, cartoons, quotes, advice
M-Commerce

— Shopping on the go

— Instant comparison shopping

— Location-based special offers and sales

Wireless Application Environment (WAE)

" @Qoals

device and network independent application environment
for low-bandwidth, wireless devices

considerations of slow links, limited memory, low computing power,
small display, simple user interface (compared to desktops)

integrated Internet/ WWW programming model
high interoperability

WAE Components

Architecture

— Application model, Microbrowser, Gateway, Server

User Agents
— WML/WTA/Others
— content formats: vCard, vCalendar, Wireless Bitmap, WML, ...

WML
— XML-Syntax, based on card stacks, variables, ...

WMLScript

— procedural, loops, conditions, ... (similar to JavaScript)

WTA

— telephone services, such as call control, text messages, phone
book, ... (accessible from WML/WMLScript)

Proxy (Method/Push)

Origin Servers

server

WAE: Logical Model

L IN

7
response

with
content

L IN

—
push

content

1]

\,7
request

Gateway

Method proxy

Push proxy

encoders
&
decoders

L IN

encoded
response
with
content
L IN

encoded
push
content

1]

encoded

Client

WTA
user agent

WML
user agent

other
WAE
user agents

request

WAP Microbrowser

Optimized for wireless devices

Minimal RAM, ROM, Display, CPU and keys
Provides consistent service Ul across devices
Provides Internet compatibility

Enables wide array of available content and
applications

WML: Wireless Markup Language

Tag-based browsing language:

Screen management (text, images)

Data input (text, selection lists, etc.) Content (XML)
Hyperlinks & navigation support

Takes into account limited display, 1

navigation capabilities of devices
XML-based language XSL Processor

describes only intent of interaction in
an abstract manner WML Stylesheet HTML StyleSheet

presentation depends upon device 1 1
Titi
capabilities WML Browsers HTTP Browser

Cards and Decks

document consists of many cards
User interactions are split into cards
Explicit navigation between cards

cards are grouped to decks

deck is similar to HTML page, unit
of content transmission

Events. variables and state memt

WML

= The basic unit is a card. Cards are grouped together into Decks Document ~ Deck (unit of
transfer)

= All decks must contain
— Document prologue
o« XML & document type declaration
— <WML> element

a NMiot ~rAantain Ana Ar manra ~rardeo

WML File Structure

<?xml version="1.0"7>
<!DOCTYPE WML PUBLIC "-//WAPFORUM//DTD WML 1.0//EN"
"http://www.wapforum.org/DTD/wml.xml">

<WML>

</WML>

WML Example

<WML> "\
<CARD>

<D0 TYPE="ACCEPT">

Nawgatlon{ </;go URL="#eCard” /> . Card
Welcome!

</CARD>

<CARD NAME=“eCard”>

<D0 TYPE=“ACCEPT”>
Variables{ <GO URL="/submit?N=${{ij&s=$(S)"/ eck

</D0>

Choose speed:
Input <SELECT KEY="S">
Elements <OPTION VALUE="“0">Fast</OPTION>
______ <OPTION VALUE="1">Slow</OPTION>
<SELECT>

</CARD> ‘}
</WML>

A Deck of Cards

<WML>
<CARD>
<D0 TYPE="ACCEPT" LABEL="Next">
<GO URL="#card2"/>
</D0>
Acme Inc.
Directory
</CARD>

<CARD NAME="card2">
<D0 TYPE="ACCEPT">
<GO URL="7?send=$type"/>
</D0>
Services
<SELECT KEY="type">
<OPTION VALUE="em">Email</OPTION>
<OPTION VALUE="ph">Phone</0OPTION>
<OPTION VALUE="fx">Fax</0OPTION>
</SELECT>
</CARD>
</WML>

/
Acme Inc.
Directory

Next

(&

b

/ -
Services

1>Email
2 Phone

OK
A

Source: WAP Forum

The DO Element

Binds a task to a user action

— Action type: ACCEPT, OPTIONS, HELP

— Label: Text string or image (optional)
— Task: GO

— Destination: URL

— Post data: if METHOD=POST

<D0 TYPE="ACCEPT" LABEL="Next">

<G0 URL="http://www.mysite.com/myapp.wml"/>
</D0>

Source: WAP Forum

Anchored Links

" Bind a task to the ACCEPT action,

when cursor points to a link
— TITLE= sets the label string (default = “Link™)

— Links are not allowed in select list options

/ |
<C’I§Ii\225e visit our Please visit
<A TITLE="Visit"s a°grfoh—:’me
<GO0 URL="home.wml"/>home page page
for details. —
</CARD> \VISIt |)

Source: WAP Forum

The TEMPLATE Element

" Defines actions & events for all cards in a deck

<WML>
<TEMPLATE> C N\
<D0 TYPE="OPTIONS" LABEL="Main"> First story
<GO URL="main_menu.wml"/> -
</D0>
</TEMPLATE>
<CARD NAME="msgl"> \Next IWahy/
<D0 TYPE="ACCEPT" LABEL="Next"> "
<GO URL="#msg2"/>
/10> g /Second stor h
First story y
</CARD>
<CARD NAME="msg2">
Second story .
</CARD> OK Main
</WML>

Source: WAP Forum

Handling User Input

" Select lists
— Choose from a list of options

" Input fields

— Enter a string of text or numbers

" KEY variables
— Set by SELECT and INPUT elements
— How user input is passed to other cards and the application server

Source: WAP Forum

The SELECT Element

" Display a list of options

— Each option may set the KEY variable and/or bind a task to the
ACCEPT key

— TITLE= dynamically sets the label string
— MULTIPLE=“TRUE”: Allows user to pick multiple items

<CARD> Ve ™\
<D0 TYPE="ACCEPT" LABEL="View"> Forecast
<GO URL="getcity.cgi?location=$city"/> 1 Berlin
</D0> 2 Rome
Forecast 3>New City
<SELECT KEY="city">
<OPTION VALUE="ber">Berlin</OPTION> Find
<OPTION VALUE="rom">Rome</OPTION> \ /
<OPTION TITLE="Find" ONCLICK="find.cgi">New City</OPTION>
</SELECT>
</CARD>

Source: WAP Forum

The INPUT Element

Prompts user to enter a string of text

— DEFAULT=key_value; Default KEY variable (displayed to user)

— FORMAT=format_specifier; If omitted, free-form entry is allowed
— EMPTYOK="TRUE"; Browser will accept null input
— TYPE="PASSWORD*; Special entry mode handled by the browser

— MAXLENGTH=number; Maximum number of allowed characters

-

<CARD>

<D0 TYPE="ACCEPT">

<GO

</D0>

URL="7?get=person”
METHOD="POST" POSTDATA="userid=$ssn"/>

Soc Security:
<INPUT KEY="ssn" FORMAT="NNN\-NN\-NNNN"/>

</CARD>

-

~
Soc. Security:

287-33- _

NUM/

-

N

~
Soc. Security:

287-33-

OK)

Source: WAP Forum

WML Content Formats

Common interchange formats, for interoperability

Formats:
— Business cards: IMC vCard standard
— Calendar: IMC vCalendar standard
— Images: WBMP (Wireless BitMaP)
— Compiled WML, WMLScript
Newly defined formats:
— WML text and tokenized format
— WDMLScript text and bytecode format
— WBMP image format
Binary format for size reduction
— Bytecodes/tokens for common values and operators
— Compressed headers
— Data compression (e.g. images)

General-purpose transport compression can still be applied

Displaying Images

Insert app images or local icons within display text

— 1-bit BMP format

Images are ignored by non-bitmapped devices

— Check HTTP_ACCEPT for “image/bmp”

<CARD>
<D0 TYPE="ACCEPT">
<GO URL="#c2"/>
</D0>
Continue <IMG LOCALSRC="righthand"
ALT="forward..."/>
</CARD>

<CARD NAME="c2">
<IMG SRC="../images/logo.wbmp"
ALT="Unwired Planet"/>

Welcome!
</CARD>

Source: WAP Forum

WML (other features)

Setting card styles to create forms

Using variables to cache user data

Using card intrinsic events to trigger transparent tasks
Using timers

Securing WML decks

Bookmarking decks

WMLScript

Complement to WML
— Derived from JavaScript™
Provides general scripting capabilities
— Procedural logic, loops, conditionals, etc.
— Optimized for small-memory, small-cpu devices

Features
— local user interaction, validity check of user input
— access to device facilities (phone call, address book etc.)
— extensions to the device software
* configure device, download new functionality after deployment

Bytecode-based virtual machine
— Stack-oriented design, ROM-able
— Designed for simple, low-impact implementation

WMLScript compiler resides in the network

WMLScript Libraries

Lang - VM constants, general-purpose math functionality,
etc.

String - string processing functions
URL - URL processing

Browser - WML browser interface
Dialog - simple user interface

Float - floating point functions

WMLScript Example

Function{
Variables]
(var myDay;
P . if (sunShines) {
rogrammlng< nyDay = “Good”:
Constructs } else {
myDay = “Not so good”;
};
\ retur_n. mybay ;
—

Source: WAP Forum

Wireless Telephony Application (WTA)

" Collection of telephony specific extensions
— designed primarily for network operators

" Example

— calling a number (WML)
wtai://wp/mc;07216086415

— calling a number (WMLScript)
WTAPublic.makeCall("07216086415");

" Implementation
— Extension of basic WAE application model
— Extensions added to standard WML/WMLScript browser
— Exposes additional API (WTAI)

WTA Features

" Extension of basic WAE application model

— network model for interaction
* client requests to server
* event signaling: server can push content to the client

— event handling
* table indicating how to react on certain events from the network
* client may now be able to handle unknown events

— telephony functions
* some application on the client may access telephony functions

" WTAI includes:
— (Call control
— Network text messaging
— Phone book interface
— Event processing
" Security model: segregation
— Separate WTA browser
— Separate WTA port

WTA Example (WML)

Placing an outgoing call with WTAI:

<WML>
<CARD>
WTAI Call { <GO URL="wtai:cc/mc;$(N)"/>
</P0>
Enter phone number:
<INPUT TYPE=“TEXT” KEY=“N"/>
</CARD>
</WML>

Input Element{

Source: WAP Forum

WTA Example (WMLScript)

Placing an outgoing call with WTAI:

function checkNumber(N) {
if (Lang.isInt(N))
WTAI Call { WTAI.makeCall(N):;

else
Dialog.alert(“Bad phone number”);

Source: WAP Forum

WTA Logical Architecture

other telephone networks

WTA Origin Server I
Client
v
mobile WTA
net\ft/ork . user agent
v WAE
WAP Gateway services
services encoders
&
network operator decoders

trusted domain

A

other WTA
servers

A 4

r

firewall

third party
origin servers

A

Source: Schiller

WTA Framework Components

Mobile device
core features

Man-machine interface

Digplay, keyboard,
logical indicators, etc.

Pt

WTA user
agent
Context dq—b
user E :
ven
agent
g handler
Public Network TA
events
Network
WTA interface events

T

Mobile device functionality

]

phonebook, etc.

Call control, network text,

Repository

(persistent
storage)

Source: Heijden

WTA User Agent

WTA User Agent

WML User agent with extended functionality
can access mobile device’s telephony functions through WTAI
can store WTA service content persistently in a repository

handles events originating in the mobile network

WTA User Agent Context

Abstraction of execution space
Holds current parameters, navigation history, state of user agent

Similar to activation record in a process address space

Uses connection-mode and connectionless services offered by WSP

Specific, secure WDP ports on the WAP gateway

WTA Events and Repository

" WTA Events

— Network notifies device of event (such as incoming call)
— WTA events map to device’s native events
— WTA services are aware of and able to act on these events

— example: incoming call indication, call cleared, call connected

" WTA Repository

— local store for content related to WTA services (minimize network traffic)
— Channels: define the service
* content format defining a WTA service stored in repository

* XML document specifying eventid, title, abstract, and resources that
implement a service

— Resources: execution scripts for a service
* could be WML decks, WML Scripts, WBMP images..

* downloaded from WTA server and stored in repository before service is
referenced

— Server can also initiate download of a channel

WTA Channels and Resources

Repository

Channel # ...

Channel # ...

Channel #1

Eventld:"“watev-cc/ic”
Title: Call handler
Abstract: This service is ...
Resource #1: WML Deck A
Resource #2: WML script
Resource #3: WBMP image

Channel # ...

Channel # ...

Channel #2

Eventld:"setup call”

Title: Call setup

Abstract: This service is ...
Resource #1: WML Deck B
Resource #2: WML script

WML Deck A
- WML script
WBMP image
WML Deck B
—

lastmod,
etag, md5

Source: Heijden

WTA Interface (public)

" WTA Interface

generic, high-level interface to mobile’s telephony functions

setting up phone calls, reading and writing entries in phonebook..

" Public WTAI

for third party WML content providers
restricted set of telephony functions available to any WAE User Agent
library functions
* make call: allows application to setup call to a valid tel number
* send DTMF tones: send DTMF tones through the setup call
user notified to grant permission for service execution
cannot be triggered by network events
example: Yellow pages service with “make call” feature

WTA Interface (network)

Network Common WTAI
— WTA service provider is in operator’s domain
— all WTALI features are accessible, including the interface to WTA events
— library functions
* Voice-call control: setup call, accept, release, send DTMF tones
* Network text: send text, read text, remove text (SMS)

Phonebook: write, read, remove phonebook entry

Call logs: last dialed numbers, missed calls, received calls

Miscellaneous: terminate WTA user agent, protect context
— user can give blanket permission to invoke a function

— example: Voice mail service

Network Specific WTAI

— specific to type of bearer network
— example:

* GSM: call reject, call hold, call transfer, join multiparty, send USSD

WTA Event Handling

" Event occurrence
— WTA user agent could be executing and expecting the event
— WTA user agent could be executing and a different event occurs

— No service is executing

" Event handling

— channel for each event defines the content to be processed upon reception
of that event

" Event binding

— association of an event with the corresponding handler (channel)

— Global binding:
* channel corresponding to the event is stored in the repository
* event causes execution of resources defined by the channel
* example: voice mail service

— Temporary binding:
* resources to be executed are defined by the already executing service

* example: yellow pages lookup and call establishment

Event Handling (no service in execution)

WTA user agent

Context

No WTA service

Event handler

Gleokal binding

=

A

cc/ic
WTA event

Burpuiq [eqob oy

©yv

Lstorage)

Repository

(Persistent

Mobile device functionality

Source: Heijden

Event Handling (service already execution)

WTA user agent

Context

WA service Context not protected>
‘<onevent type="cc/ic">

<go href="#action™ > | & Q OZ
© | |g |i
= @ =]
o fa o
= |3 |E
= S o
Event handler = o =)
£ L1} =
2 [t}

L2 X vO

Mobile device functionality

1: Temporary binding exists
2. No temporary binding and context is protected

3: No temporary binding and context is not protected

Source: Heijden

WTA: Voice mail Example

WTA client WTA server mobile network voice mail server
incoming voice
indicate new|voice message _message
generate
) push deck new deck
display deck;
user §elects request
, >
wait for call translate _
play requested voice message
setup call
_____________ callindication | setpcal |
accept call
— acceptcall | o acceptcall
voice connection
e et e L L P L E P R L PP >
v v v v

Source: Schiller

WTA Application: Example (using WML)

<WML>
<CARD>
<D0 TYPE="ACCEPT" TASK="GO0" URL="#voteChamp"/>
Please vote for your champion!
</CARD>

<CARD NAME="voteChamp">
<D0 TYPE="ACCEPT" TASK="GO" URL="wtai://cc/sc;$voteNo;1"/>
Please choose:
<SELECT KEY="voteNo">
<OPTION VALUE="6086415">Mickey</0OPTION>
<OPTION VALUE="6086416">Donald</0OPTION>
<OPTION VALUE="6086417">Pluto</0OPTION>
</SELECT>
</CARD>
</WML>

Source: Schiller

WTA: Example with WML and WMLScript

function voteCall(Nr) {
var j = WTACallControl.setup(Nr,1);
if (3>=0) {
WMLBrowser.setVar("Message", "Called");
WMLBrowser.setVar("No", Nr);

}

else {
WMLBrowser.setVar("Message", "Error!");
WMLBrowser.setVar("No", 7j);

}

WMLBrowser.go("showResult");

Source: Schiller

WTA: Example with WML and WMLScript
<WML>
<CARD>
<D0 TYPE="ACCEPT" TASK="GO" URL="#voteChamp"/>
Please vote for your champion!
</CARD>
<CARD NAME="voteChamp">

<DO TYPE="ACCEPT" TASK="GO"
URL="/script#voteCall($voteNo)"/>

Please choose:
<SELECT KEY="voteNo">
<OPTION VALUE="6086415">Mickey</0PTION>
<OPTION VALUE="6086416">Donald</0OPTION>
<OPTION VALUE="6086417">Pluto</OPTION>
</SELECT>
</CARD>
<CARD NAME="showResult">
Status of your call: $Message $No
</CARD>

</WMI >

Source: Schiller

WAP Push Services

" Web push

— Scheduled pull by client (browser)
e example: Active Channels

— no real-time alerting/response
* example: stock quotes

" Wireless push
— accomplished by using the network itself
* example: SMS
— limited to simple text, cannot be used as starting point for service
* example: if SMS contains news, user cannot request specific news
1tem
" WAP push
— Network supported push of WML content
* example: Alerts or service indications
— Pre-caching of data (channels/resources)

WAP Push Framework

Push Proxy Push initiator
gateway m (Web server)

The Internet

Push access protocol

Wireless
network

Push OTA protocol
DRy
Mobile {—
Client | Bon
Push initiator
(WAP server)

Source: Heijden

Push Access Protocol

Based on request/response model

Push 1nitiator 1is the client

Push proxy is the server

Initiator uses HTTP POST to send push message to proxy

Initiator sends control information as an XML document,
and content for mobile (as WML)

Proxy sends XML entity in response indicating submission
status

Initiator can
— cancel previous push

— query status of push
— query status/capabilities of device

Push Proxy Gateway

" WAP stack (communication with mobile device)
" TCP/IP stack (communication with Internet push initiator)

" Proxy layer does
— control information parsing
— content transformation
— session management
— client capabilities
— store and forward
— prioritization
— address resolution

— management function

Over the Air (OTA) Protocol

Extends WSP with push-specific functionality

Application ID uniquely i1dentifies a particular application
in the client (referenced as a URI)

Connection-oriented mode

— client informs proxy of application IDs in a session

Connectionless mode

— well known ports, one for secure and other for non-secure push

Session Initiation Application (STA)
— unconfirmed push from proxy to client

— request to create a session for a specific user agent and bearer

WAE Summary

" WML

— analogous to HTML (optimized for wireless)
— event based, microbrowser user agent

" WMLScript
— analogous to JavaScript
— features of compiler in the network

" WTA

— WTALI different access rights for different applications/agents

— WTA User Agent (analogy with operating systems)
* Context — Activation Record
* Channel — Interrupt Handler
* Resource — Shared routines invoked by interrupt handlers
* Repository — Library of interrupt handlers

— feature of dynamically pushing the interrupt handler before the event

" Push

— no analogy in Internet

WAP Gateway Summary

Encoders
— translate between binary (WML) and text (HTML/WML)

Filters
— transcoding between WML (wireless) and HTML (wired)

Method Proxy

— similar to standard proxy services

— WAP stack on wireless interface and TCP/IP stack on Internet interface
Push Proxy

— Push Access Protocol with Internet Push Initiator (Web Server)

— Opver the Air Protocol with mobile device (and WAP Push Initiator)

— Performs necessary filtering, translation etc.

WAP Servers Summary

" Origin Server
— Web server with HTML/WML contents

Runs TCP/IP stack, needs PAP protocol for push, no end-to-end
security

" WAP Server

Serves WML content

Runs WAP stack, uses OTA protocol for push, end-to-end security
possible

" WTA Server

Specialized for telephony applications (runs WAP stack, uses push
extensively)

Client initiated (make call “hyperlink” from a Yellow pages
service)

Server intiated (incoming call from a Voice mail service)

WAP: Protocol Stack

Internet A-SAp) WAP
HTML, Java Application Layer (WAE) additional services
(S-SAP) and applications
Session Layer (WSP)
HTTP (TR-SAP)
Transaction Layer (WTP)
SEC-SAP
SSL/TLS Security Layer (WTLS)
(T-SAP)
TCP/IP, Transport Layer (WDP) WCMP
UDP/IP,
media Bearers (GSM, CDPD, ...)

WAE comprises WML (Wireless Markup Language), WML Script, WTAI etc.

Source: Schiller

WDP: Wireless Datagram Protocol

" QGoals

— create a worldwide interoperable transport system by adapting WDP to
the different underlying technologies

— transmission services, such as SMS in GSM might change, new services
can replace the old ones

" WDP
— Transport layer protocol within the WAP architecture
— uses the Service Primitive
* T-UnitData.req .ind
— uses transport mechanisms of different bearer technologies
— offers a common interface for higher layer protocols
— allows for transparent communication despite different technologies

— addressing uses port numbers
— WDP over IP is UDP/IP

WDP: Service Primitives

T-SAP T-SAP
T-DUnitdata.req
(DAs DPs SA, SP! UD) R T-DUnitdata.ind
T (SA, SP, UD)

[
>

T-DUnitdata.req
(DA, DP, SA, SP, UD)

T-DError.ind
(EC)
< DA: Destination Address

SAP: Service Access Point

v DP: Destination Port
SA: Source Address
SP: Source Port

UD: User Data

EC: Error Code

Source: Schiller

Service, Protocol, and Bearer Example

WAP Over GSM Circuit-Switched

Mobile WAP
Proxy/Server
WAE WAE Apps on
Other Servers
WSP
WSP IWF ISP/RAS
WTP WTP
ubP UDP
IP IP P
PPP PPP
CSD-RF CSD- | PSTN PSTN |Subnetwork Subnetwork
RF Circuit Circuit

RAS - Remote Access Server

IWF - InterWorking Function

Source: WAP Forum

Service, Protocol, and Bearer Example

WAP Over GSM Short Message Service

Mobile

WAE

WSP

WTP

WDP

SMSC

SMS

SMS

WDP Tunnel
Protocol

under development

Subnetwork

WAP
Proxy/Server

WAE_ " Apps on
other servers

WSP

WTP

WDP

WDP Tunnel
Protocol

Subnetwork

Source: WAP Forum

WTLS:Wireless Transport Layer Security

" Goals

— Provide mechanisms for secure transfer of content, for applications needing
privacy, identification, message integrity and non-repudiation

— Provide support for protection against denial-of-service attacks

" WTLS
— 1s based on the TLS/SSL (Transport Layer Security) protocol
— optimized for low-bandwidth communication channels
— provides
* privacy (encryption)
* data integrity (MACs)
* authentication (public-key and symmetric)
— Employs special adapted mechanisms for wireless usage
* Long lived secure sessions
* Optimised handshake procedures
* Provides simple data reliability for operation over datagram bearers

WTLS

WTLS Internal Architecture

Transaction Protocol (WTP)

/_

Handshake
Protocol

Alert
Protocol

Application
Protocol

Change Cipher
Spec Protocol

Record protocol

Datagram Protocol (WDP/UDP)

Bearer networks

Source: WAP Forum

WTLS: Secure session, Full handshake

originator peer
SEC-SAP SEC-SAP

SEC-Create.req
(SA, SP, DA, DP, KES, CS, CM)

________ SEC-Create.ind
~~~~~~~~~~~ J| (SA. SP, DA, DP, KES, CS, CN)

SEC-Create.res
LGS )

SEC-Create.cnf SEC-Exchange.reqg

<(SNM’ KR’ SID’ KES" CS" CM‘)A ——————————— N KES: Key Exchange Suite
SEC-Exchange.ind

CS: Cipher Suite
SEC-Exchange.res

CM: Compression Mode

(CQC) q
SEC-Commit.req o SEC-EXChangSel\.ICl:vr[l:f Sequence Number Mode
~~~~~~~~~~~ . (CC) .
SEC-Commit.ind R
SEC-Commit.cnf T KR: Key Refresh Cycle
v v SID: Session Identifier

CC: Client Certificate

Source: Schiller

WTLS: Transferring Datagrams

SEC-Unitdata.req
(SA, SP, DA, DP, UD)

sender receiver
SEC-SAP SEC-SAP

SEC-Unitdata.ind
(SA, SP, DA, DP, UD)

\4

Source: Schiller

WTP: Wireless Transaction Protocol

" QGoals

— different transaction services that enable applications to select reliability,
efficiency levels

— low memory requirements, suited to simple devices (< 10kbyte)
— efficiency for wireless transmission

" WTP
— supports peer-to-peer, client/server and multicast applications
— efficient for wireless transmission
— support for different communication scenarios
— class 0: unreliable message transfer
* unconfirmed Invoke message with no Result message
* adatagram that can be sent within the context of an existing Session
— class 1. reliable message transfer without result message
* confirmed Invoke message with no Result message
* used for data push, where no response from the destination is expected
— class 2: reliable message transfer with exactly one reliable result message
* confirmed Invoke message with one confirmed Result message
* asingle request produces a single reply

WTP Services and Protocols

WTP (Transaction)

— provides reliable data transfer based on request/reply paradigm
* no explicit connection setup or tear down
* optimized setup (data carried in first packet of protocol exchange)
* seeks to reduce 3-way handshake on initial request

— supports
* header compression
* segmentation /re-assembly
* retransmission of lost packets
* selective-retransmission
* port number addressing (UDP ports numbers)
* flow control

— message oriented (not stream)

— supports an Abort function for outstanding requests

— supports concatenation of PDUs

— supports User acknowledgement or Stack acknowledgement option
* acks may be forced from the WTP user (upper layer)
* default 1s stack ack

WTP Services and Protocols

" uses the service primitives

— T-TRInvoke.req .cnf. .ind .res
— T-TRResult.req .cnf .ind .res

— T-Abort.req .ind

T-TRInvoke.req
T —

T-TRInvoke.cnf

cnf

T-TRResult.ind

T-TRResult.res |

| Server |

\ 4

(PDUs)
Invoke »___ T-TRInvoke.ind
— 1T :
PR Ack o __ — T
) Result «—TRInvoke.res
T-TRResult.req
Ack

T-TRResult.cnf
T

WTP Class O Transaction

initiator responder
TR-SAP TR-SAP

TR-Invoke.req

(SA, SP, DA, DP, A, UD, C=0, H) TR-Invoke.ind

A 4

=X%ke PDy | (SA, SP, DA, DP, A, UD, C=0, H)

[
>

A: Acknowledgement Type
(WTP/User)

C: Class (0,1,2)
H: Handle (socket alias)

Source: Schiller

WTP Class 1 Transaction, no user ack & user ack

initiator responder
TR-SAP TR-SAP
TR-Invoke.req
(SA, SP, DA, DP, A, UD, C=1, H) TR-Invoke.ind
- Invoke p ' ‘
2Dy | (SA, SP, DA, DP, A, UD, C=1, H)
TR-Invoke.cnf ACK PDU_
(H) -
initiator responder
TR-SAP TR-SAP
TR-Invoke.req
(SA, SP, DA, DP, A, UD, C=1, H) TR-Invoke.ind
> ~-___IQVOke P y ‘
~"2PDU | (SA, SP, DA, DP, A, UD, C=1, H)
TR-Invoke.res]
TR-Invoke.cnf J)
H T

Source: Schiller

WTP Class 2 Transaction, no user ack, no hold on

TR-Invoke.req

initi
TR-

(SA, SP, DA, DP, A, UD, C=2, H)

ator responder
SAP TR-SAP

TR-Invoke.cnf

(H)

A 4

TR-Invoke.ind
(SA, SP, DA, DP, A, UD, C=2, HY)

>

TR-Result.req
(UD*, HY)

.
>

0
o
C

‘TR-Result.ind
(UD*, H)

I

‘TR-ResuIt.res
(H)

\ 4

TR-Result.cnf

\4

Source: Schiller

WTP Class 2 Transaction, user ack

(SA, SP, DA, DP, A, UD, C=2, H')

[
>

initiator responder
TR-SAP TR-SAP
TR-Invoke.req
(SA, SP, DA, DP, A, UD, C=2, H)| TR-Invoke.ind
ke Py
TR-Invoke.res
TR-Invoke.cnf U ‘(H‘)
' Ack PPV)

(H) At TR-Result.req
"TR-Result.ind Result PDQ___A(UD , HY)
(UD*, H) PSS
TR-Result.res

H
(H) ol _A__C_;_(_EDU (TIE)-Resun.cnf

‘‘‘‘‘‘‘ >

\4

Source: Schiller

WTP Class 2 Transaction, hold on, no user ack

TR-Invoke.req

(SA, SP, DA, DP, A, UD, C=2, H)

TR-Invoke.cnf
(H)

‘TR-Result.ind
(UD*, H)

o

‘TR-ResuIt.res
(H)

initiator responder
TR-SAP TR-SAP
L Iny TR-Invoke.ind
e PDy | (SA, SP, DA, DP, A, UD, C=2, H
I—\C‘:\‘PD\J ————— TR-Result.req
“« (UD*, HY)
Result POV
o AQ’S_EQU ;l'l_?)-Result.cnf

Source: Schiller

WSP - Wireless Session Protocol

Goals
— HTTP 1.1 functionality
* Request/reply, content type negotiation, ...
— support of client/server transactions, push technology
— key management, authentication, Internet security services

WSP Services
— provides shared state between client and server, optimizes content transfer
— session management (establish, release, suspend, resume)
— efficient capability negotiation
— content encoding
— push

WSP/B (Browsing)
— HTTP/1.1 functionality - but binary encoded
— exchange of session headers
— push and pull data transfer
— asvnchronous requests

HTTP 1.1 and WSP

" HTTP 1.1
— extensible request/reply methods
— extensible request/reply headers
— content typing
— composite objects

— asynchronous requests

" WSP enhancements beyond HTTP
— binary header encoding
— session headers
— confirmed and non-confirmed data push
— capability negotiation
— suspend and resume
— fully asynchronous requests

— connectionless service

" Why Not HTTP?

— encoding not compact enough, inefficient capability negotiation

— no push facility

WSP Overview

" Header Encoding

— compact binary encoding of headers, content type identifiers and other
well-known textual or structured values

— reduces the data actually sent over the network

" (Capabilities (are defined for):
— message size, client and server

— protocol options: Confirmed Push Facility, Push Facility, Session Suspend
Facility, Acknowledgement headers

— maximum outstanding requests
— extended methods
— header code pages
" Suspend and Resume
— server knows when client can accept a push
— multi-bearer devices

— dynamic addressing
— allows the release of underlying bearer resources

WSP Sessions

" Session Context and Push
— push can take advantage of session headers

— server knows when client can accept a push

" (Connection-mode

— long-lived communication, benefits of the session state, reliability

" (Connectionless-mode

— stateless applications, no session creation overhead, no reliability
overhead

WSP/B session establishment

client server
S-SAP S-SAP
S-Connect.req
(SAs CA, CH, RC) COnn S-Connect.ind

A 4

_Lonng
_______ Ct PDy (SA, CA, CH, RC)

\4

S-Connect.res
(SH, NC)

P

>
>
v
®
o
\\(
o)
O
c
A

S-Connect.cnf
(SH, NC) GOt

o
<

CH: Client Header
WTP Class 2

transaction RC: Requested Capabilities

SH: Server Header
NC: Negotiated Capabilities

Source: Schiller

WSP/B session suspend/resume

o
<

client server
S-SAP S-SAP
S-Suspend.req . --_Sf’_spend PDU S-Suspend.ind
S-Suspend.ind | TTTeTT (R) ‘
(R) WTP Class 0
transaction
R: Reason for disconnection
S-Resume.req ~ ~
SA, CA i :
() -_If?fume PDU S-Resume.ind
_____________ (SA, CA)
oD S-Resume.res]
S-Resume.cnf Rep\y |
) WTP Class 2
v transaction v

Source: Schiller

WSP/B session termination

client server
S-SAP S-SAP
S-Disconnect.req
(R) i S-Disconnect.ind
> ~-__S__C_Onn .
S-Disconnectind | % eCtPDY| (R) X
(R) WTP Class 0
) | transaction |

Source: Schiller

S-MethodInvoke.req
(CTID, M, RU)

WSP/B method invoke

S-Methodlnvoke.cnf
(CTID)

o

client server
S-SAP S-SAP
Methog S-MethodInvoke.ind
N P
------------ DU | (sTiD, M, RU)
S-MethodInvoke.res]
(STID)

P

‘S-MethodResuIt.req

‘S-MethodResuIt.ind
(CTID, S, RH, RB)

o

(STID, S, RH, RB)

‘S-MethodResuIt.res
(CTID)

Reply POD-
) S-MethodResult.cnf
~~~~~~~~~~~~~~~~~~~ (STID) CTID: Client Transaction ID
WTP Class 2 M: Method Invoked ]
transaction RU: Request URI
v v STID: Server Transaction ID

S: Response Status
RH: Response Header
RB: Response Bod¥,ce: Schiller



WSP/B over WTP - method invocation

client
S-SAP

S-Methodlnvoke.req

TR-Invoke.req

S-MethodInvoke.cnf

initiator
TR-SAP

responder server
TR-SAP S-SAP

TR-Invoke.ind

S-Methodlnvoke.ind

TR-Invoke.cnf| ™" "

S-MethodResult.ind

|

P
|

TR-Result.ind

S-MethodResult.res

TR-Result.res

TR-Invoke.res

A

TR-Result.req

S-Methodlnvoke.res

S-MethodResult.req

A

TR-Result.cnf

S-MethodResult.cnf

4 N

4

Source: Schiller



WSP/B over WTP - asynchronous, unordered requests

S-MethodInvoke 1.req

client
S-SAP

A 4

S-MethodInvoke 2.req

S-MethodInvoke 3.req

A 4

______

S

server
S-SAP

S-MethodInvoke 2.ind

\4

.| S-MethodInvoke 1.ind

\4

| S-MethodResult_1.req

- S-MethodResult_1.ind

S-MethodInvoke_3.ind

\4

<

<S-MethodResuIt_3.ind

S-MethodResult_3.req

S-MethodInvoke 4.req

:S-MethodResuIt_4.ind

<S-Method Result 2.req

S-MethodInvoke 4.ind

\4

<S-MethodResuIt_2.ind

<S-Method Result_4.req

Source: Schiller



WSP/B - confirmed/non-confirmed push

client server
S-SAP S-SAP
S-Push.req
. PH, PB
S-Push.ind 1 POU__ | )
(PH, PB) P
) WTP Class 0 PH: Push Header
vy transaction PB: Push Body
SPID: Server Push ID
client server CPID: Client Push ID
S-SAP S-SAP
S-ConfirmedPush.req
S-ConfirmedPush.ind n PDU. SFPID, PH, PB)
confPust >
(CPID,PH,PB) | MY
‘S-ConfirmedPush.res
(CPID) 1 S-ConfirmedPush.cnf
e (SPID)
WTP Class 1 g
! transaction !

Source: Schiller



S-Unit-MethodInvoke.req
(SA, CA, TID, M, RU)

WSP/B over WDP

o
<

S-Unit-MethodResult.ind
(CA, SA, TID, S, RH, RB)

S-Unit-Push.ind
(CA, SA, PID, PH, PB)

o
<

client server
S-SAP S-SAP
| Methog ppy,, | S-Unit-Methodinvoke.ing
_______________ (SA, CA, TID, M, RU)
S-Unit-MethodResult.req ]
(CA, SA, TID, S, RH, RB)
Reply PR
""" S-Unit-Push.req
Y (CA, SA, PID, PH, PB)
push PO )
WDP Unitdata
service

Source: Schiller



WAP Stack Summary

WDP
— functionality similar to UDP in IP networks
WTLS
— functionality similar to SSL/TLS (optimized for wireless)
WTP
— Class 0: analogous to UDP
— Class 1: analogous to TCP (without connection setup overheads)
— Class 2: analogous to RPC (optimized for wireless)
— features of “user acknowledgement”, “hold on”
WSP

— WSP/B: analogous to http 1.1 (add features of suspend/resume)
— method: analogous to RPC/RMI

— features of asynchronous invocations, push (confirmed/unconfirmed)



WAP: Ongoing Work

WDP

— Tunnel to support WAP where no (end-to-end) IP bearer available

WTLS

— support for end-to-end security (extending WTLS endpoint beyond WAP
Gateway)

— interoperable between WAP and Internet (public key infrastructure)
— integrating Smart Cards for security functions

WTP
— efficient transport over wireless links (wireless TCP)
— bearer selection/switching
— quality of service definitions

WSP

— quality of service parameters
— multicast data, multimedia support

WAE
— User agent profiles: personalize for device characteristics, preferences etc
— Push architecture, asynchronous applications
— Billing



WAP: Hype vs Reality

Low-bandwidth wireless links

— tcp/ip over wireless can also address these problems

— encoding in http can also reduce data transfer on wireless links
Limited device capabilities

— Microbrowser is appropriate to address this problem

— WTALI features are not present in tcp/ip domain

Challenges in WAP
— adapting to applications rich in content and interaction
— service guarantees

— 1nterface design and usability

Other approaches for WWW access through mobiles
— 1-Mode (from NTT DoCoMo)
— WAP is a TRAP (http://www.freeprotocols.org/wapTrap)



References and Resources

Books
— Mobile communications: Jochen Schiller, Addison Wesley 2000
— Understanding WAP:

Official Website (specifications)

— www.wapforum.org
Technical/Developer Info and tools
— www.palopt.com.au/wap

— www.wap.net

Major players

— www.nokia.com/wap

— www.ericsson.se/wap

— phone.com

OpenSource effort
— www.wapgateway.org (Kannel WAP gateway project)



Thank You

This presentation is available online from

http://www .it.1itb.ernet.in/~sri/talks

Sridhar Iyer
KR School of Information Technology
IIT Bombay



	Wireless Application Protocol
	Outline
	Mobile Applications - 1
	Mobile Applications - 2
	Variability of the Mobile Environment
	World Wide Web and Mobility
	System Support for Mobile WWW
	Wireless Application Protocol (WAP)
	WAP: Main Features
	Internet Model
	WAP Architecture
	WAP Application Server
	Slide 13
	WAP: Network Elements
	WAP Specifies
	WAP Stack
	Slide 17
	WHY WAP?
	Why is HTTP/HTML not enough?
	WAP: “Killer” Applications 
	Wireless Application Environment (WAE)
	WAE Components
	WAE: Logical Model
	WAP Microbrowser
	WML: Wireless Markup Language
	WML
	WML Example
	A Deck of Cards
	The DO Element
	Anchored Links
	The TEMPLATE Element
	Handling User Input
	The SELECT Element
	The INPUT Element
	WML Content Formats
	Displaying Images
	WML (other features)
	WMLScript
	WMLScript Libraries
	WMLScript Example
	Wireless Telephony Application (WTA)
	WTA Features
	WTA Example (WML)
	WTA Example (WMLScript)
	WTA Logical Architecture
	WTA Framework Components
	WTA User Agent
	WTA Events and Repository
	WTA Channels and Resources
	WTA Interface (public)
	WTA Interface (network)
	WTA Event Handling
	Event Handling (no service in execution)
	Event Handling (service already execution)
	WTA: Voice mail Example
	WTA Application: Example (using WML)
	WTA: Example with WML and WMLScript
	Slide 58
	WAP Push Services
	WAP Push Framework
	Push Access Protocol
	Push Proxy Gateway
	Over the Air (OTA) Protocol
	WAE Summary
	WAP Gateway Summary
	WAP Servers Summary
	WAP: Protocol Stack 
	WDP: Wireless Datagram Protocol
	WDP: Service Primitives
	Service, Protocol, and Bearer Example
	Slide 71
	WTLS:Wireless Transport Layer Security
	WTLS Internal Architecture
	WTLS: Secure session, Full handshake
	WTLS: Transferring Datagrams
	WTP: Wireless Transaction Protocol
	WTP Services and Protocols
	Slide 78
	WTP Class 0 Transaction
	WTP Class 1 Transaction, no user ack & user ack
	WTP Class 2 Transaction, no user ack, no hold on
	WTP Class 2 Transaction, user ack
	WTP Class 2 Transaction, hold on, no user ack
	WSP - Wireless Session Protocol
	HTTP 1.1 and WSP
	WSP Overview
	WSP Sessions
	WSP/B session establishment
	WSP/B session suspend/resume
	WSP/B session termination
	WSP/B method invoke
	WSP/B over WTP - method invocation
	WSP/B over WTP - asynchronous, unordered requests
	WSP/B - confirmed/non-confirmed push
	WSP/B over WDP
	WAP Stack Summary
	WAP: Ongoing Work
	WAP: Hype vs Reality 
	References and Resources
	Thank You

