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Abstract

Relentless technological advancements over the years have brought simulation and data
processing to the core of science. The shift towards increasingly computationally inten-
sive research matches the on-demand paradigm of cloud computing, but despite clouds
offering virtually infinite pools of resources and abstractions ideal for running large-scale
experiments, many scientists lack the time or expertise required to utilize them efficiently.
Existing tools mediating the access to cloud environments are too specific to certain com-
munities and require extensive configuration on behalf of the user.

In this project, we expand OpenMOLE, a scientific framework for remote execution of
user-defined workflows, to support cloud environments under a generic design. We pro-
vide an fully operational implementation for Amazon EC2 and basic support for Google
Compute Engine. The main novelty of the extension is the full automation of the resource
provisioning, deployment and lifecycle management for the cluster of virtual instances run-
ning user tasks. Additionally, we introduce automatic bidding for low-price cluster nodes
and translations from cumulative resource specifications to sets of virtual machines.

During evaluation, we benchmark response times to job events in the cluster, estimate
costs of distributing data pipelines to the cloud and suggest ideas for optimising resource
consumption. From a qualitative point of view, we demonstrate how execution environ-
ments are interchangeable and how cloud environments can be employed with zero user
configuration.
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Chapter 1

Introduction

Scientists have spent decades building intricate mathematical models for systems and

phenomena observed in all areas of life sciences. Such models have greatly expanded our

understanding of the complex systems they describe, but the dramatic developments in

technology and the increase in widely available computational power in recent years have

exposed another direction in which current research methodologies can progress.

Simulation in high performance computing environments is today the main approach used

to validate scientific models in application domains ranging from astronomy to biomedical

or earthquake science. Analytical solutions are often impossible to obtain, given the non-

linear nature of these systems, so empirical observations drawn from running them in

virtual settings is the only sensible option for further tuning and optimisation.

The prevalence of hypotheses developed by centralising and mining vast arrays of data

sources has led to an era of data-centric research [1], where powerful cluster, grid and

cloud computing platforms are open for scientific usage. However, the expertise required

to operate this infrastructure is beyond the skill set of most researchers, so the efficiency

of experimentation and the quality of insights drawn from it are heavily influenced by the

performance of tools available to manage and process the available data.

Workflow management systems provide support for creating data processing pipelines and

automating historically tedious tasks such as tuning program parameters by running them

repeatedly against many different datasets, defining work units and their interdependen-

cies, or collecting and persisting results of analyses [1, 3]. This is all achieved in the

context of delegating the work efficiently over resources offered by distributed computing

environments.
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Chapter 1. Introduction

Figure 1: Workflow example [2].

1.1 Motivation

Although multiple workflow management systems such as Taverna [4], Kepler [5], Pegasus

[6] or Galaxy [7] are already established, many of them focus on specific scientific areas.

Since the bioinformatics community is particularly active in adopting the usage of scientific

workflows, tools like Galaxy and Kepler have been historically tailored for the needs of

researchers in this field.

OpenMOLE [8] is a scientific workflow engine that leverages the natural parallelism of sim-

ulation algorithms and targets distributed computing environments to run them. Com-

pared to other existing platforms, OpenMOLE exposes some key features that make it

unique:

• It is not intended for use within a single scientific community, allowing for formalisms

that make it generic.

• It focuses on hiding the complexity and heterogeneity of hardware and software

infrastructure that grids and clusters provide, separating the workflow definition

from the underlying execution environment [9].

• By following a zero-deployment approach, it does not need any guarantees regarding

the configuration of its runtime environment. It integrates a standalone packaging

system, CARE [10], and it ensures reliable execution on remote hosts automatically

by copying necessary resources on demand [11].

• It treats input models as black-boxes, allowing for interchangeable definitions in

diverse languages or even packaged binaries [8]. This means that already existing

applications are not limited by a pre-configured toolbox and run as expected by

default.

10



Chapter 1. Introduction

• The focus on flexible design and scalability generates control flow structures inexis-

tent in most rival platforms. Some of these include loops, conditional branching, or

the ability to include whole workflows as subtasks [8]. This makes workflows them-

selves reusable components that can be published and distributed on the OpenMOLE

marketplace [12].

• The DSL1 it uses to create workflows is an extension of the Scala [13] programming

language. This allows for type-safe job definitions and enables OpenMOLE to catch

configuration errors earlier than other systems that rely on plain text descriptions.

Options that OpenMOLE currently offers to run workflows include:

• Multithreading on a local machine.

• SSH connections to remote servers.

• Grids, such as EGI2 [14].

• Clusters managed by a wide range of software, including PBS3 [15], Torque [16],

SGE4 [17], Slurm [18], HTCondor [19], or OAR [20].

However, at the moment OpenMOLE does not support distributing the workload to cloud

computing environments. This is a significant disadvantage compared to other similar

applications, since cloud providers are ubiquitous and cheap resources. Providing cloud

support will enable a large user base to accelerate their research using OpenMOLE.

1.2 Contributions

The initial aim of this project was to enhance OpenMOLE by adding the ability to target

computing clouds to the arsenal of available execution environments. More specifically,

the main goal was to support running jobs on Amazon EC25 [21], while remaining generic

enough to potentially integrate with other cloud providers and infrastructures (Google

Cloud [22], OpenStack [23] etc.), including Imperial College’s Department of Computing

private cloud that runs on a CloudStack [24] deployment.

The key contributions of the project include:

1Domain Specific Language
2European Grid Infrastructure
3Portable Batch System
4Sun Grid Engine
5Amazon Elastic Compute Cloud
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Chapter 1. Introduction

• A survey on the APIs6 and frameworks suitable to instantiate and coordinate com-

putations on cloud infrastructures, including researching the cloud distribution ar-

chitecture of similar open-source scientific workflow engines, as well as industrial

software.

• A fully operational module for distributed computation on Amazon EC2 as part of

GridScale [25], the engine powering OpenMOLE’s distributed computation service.

We also provide a basic Google Compute Engine module, which is still under active

development.

• The integration of the GridScale EC2 module in OpenMOLE, where we create a

new remote execution environment allowing the delegation of entire workflows to

the cloud.

• Complete automation of the process of provisioning and bootstrapping clusters of

virtual instances in the cloud. These steps are invisible to the end user, who only

needs to provide his access credentials, but can set extra preferences such as choosing

the instance types or size of the cluster. Additional features include a bidding

strategy for renting auctioned instances or the translation of traditional requirements

such as processing power or memory into a set of machines covering the needs of the

user.

• An evaluation of the Amazon EC2 remote execution environment. This is done by

benchmarking its underlying GridScale library against different types of cloud in-

stances and analysing response times. Additionally, we investigate the performance

of workflows run on EC2 under various configurations and discuss possible bottle-

necks and improvements.

6Application Programming Interface
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Chapter 2

Background

This chapter starts with a brief comparison between grids and cloud computing. Next,

it gives an overview of the current state of the workflow engine ecosystem by looking at

some of the existing platforms with a focus on the execution environments they support,

and cloud deployments in particular. This leads to the last section, where we investigate

tools and frameworks that could allow deploying a cluster in the cloud and scheduling jobs

on the respective instances.

2.1 Grids and Cloud Computing

Ever since the early days of high performance computing, researchers have been running

resource-intensive experiments and simulations on supercomputers, machines with hun-

dreds of thousands of cores and high parallelisation capabilities [26]. However, in the

last two decades the extensive costs and restricted access to such systems have shifted

computation towards local clusters and grids.

Grids are distributed networks of remote computers crowdsourced in general from aca-

demic communities. They harness unused resources in the infrastructure and are man-

aged through middleware software (e.g. EMI1 [27]) that coordinates incoming computation

across the machines they interconnect [28]. Access to grids is usually free and restricted

to research projects.

Although clouds evolve from grids and both aim to achieve similar goals in the area of

distributed computing, there are some substantial differences in terms of features and how

they operate [28–30]:

1European Middleware Initiative
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Chapter 2. Background

• Clouds offer on-demand provisioning of resources. This enables users to easily scale

infrastructures hosted in the cloud by simply requesting more instances as resource

requirements grow. They create an illusion that resources can be provisioned in-

finitely by functioning at such a large scale that they can fulfil practically any de-

mands.

• As opposed to grid operators, cloud providers are generally commercial and charge

users on a pay as you go basis. Usage is usually measured in hours per instance

and the business model creates no upfront planning or costs for users. Since they

are paid services, cloud providers also offer better reliability and uptime guarantees.

Private clouds can also be set up for users that want to abstract away their pool of

resources but are concerned about security of their data.

• Clouds are particularly suitable for hosting long-running jobs, such as web servers. In

this case, users can easily take advantage of features such as automatic scaling, where

more servers are automatically provisioned to match abrupt increases or decreases

in the number of incoming requests.

• Virtualisation is used extensively in clouds and it permits running legacy software

that has very strict environment requirements. Although they might be sharing a

physical machine with other consumers, users can fully customise the virtual runtime

in isolation by choosing the operating system and libraries they need. Consolidating

a homogeneous fleet of machines is also straightforward, since snapshots of a runtime

environment can easily be ported to other instances.

Considering the advantages listed above and growing support for cloud services, they are

a good fit for the deployment of workflow management systems. However, as discussed in

the next section, current workflow platforms do not take full advantage of advanced cloud

features such as automatic scaling.

2.1.1 Amazon Web Services

Since the project primarily aims at supporting Amazon EC2 as a target environment for

running experiments via OpenMOLE, this subsection briefly describes some of the basic

terminology related to Amazon’s cloud services:

• AWS 2 [31] is the whole suite of services provided by Amazon as part of its cloud

platform.

2Amazon Web Services
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Chapter 2. Background

• EC2 3 [21] is the cloud service that provides on-demand computational resources.

• EC2 Spot Instances are normal EC2 instances that are temporarily free and are

auctioned by Amazon. The highest bidder retains the right to use the resources.

• S3 4 [32] is a general-purpose persistent file storage service.

• EBS 5 [33] concerns storage volumes that are attached to machines provisioned

through EC2.

• An AMI 6 is a snapshot of the environment on an EC2 machine. New EC2 instances

can easily be created from a given AMI.

2.2 Workflow Platform Ecosystem

Chronologically, scientific workflow systems have emerged from the bioinformatics com-

munity along with the recent trend towards data-driven research. Their large number and

segregation despite achieving similar purposes could be explained by many research groups

independently trying to formalise, consolidate and generalise their workflows. There-

fore, most systems achieve comparable goals, with slight variations. Common features

include [1]:

• Creation and definition of reusable tasks or work units. A task can represent any-

thing from processing an image to running an expensive computation or invoking a

service over the web.

• A graphical user interface that simplifies the flow of tasks by allowing definitions via

a simple visual representation. See Figure 2 for an example of this.

• An execution platform that runs the workflow, hiding the complexity of calling

service applications, managing and storing data, setting up and consuming remote

computational resources, dealing with failures and logging results and unexpected

behaviours. This is the engine of the application.

• A collaboration platform, where users can interact and share workflows.

From the multitude of existing workflow systems, we have selected some of the most often

referenced ones for closer inspection. Since our focus only spans the targeting of different

3Elastic Compute Cloud
4Simple Storage Service
5Elastic Block Store
6Amazon Machine Image
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Figure 2: OpenMOLE graphical workflow [34].

remote execution platforms, we will generally omit the details of workflow definition and

the underlying implementation, as well as the graphical design and collaboration factors.

We are particularly interested in engines that support cloud environments and insights we

can draw from their design and infrastructure.

2.2.1 Taverna

Taverna [35] is one of the most popular workflow systems. It was initially created as a

framework for bioinformatics research and has remained used primarily in this field despite

efforts from contributors towards expansion to other research areas.

The system has three main functional components:

• Taverna Workbench is the standard suite including the user interface and execution

platform. However, this package alone is quite restricted since it only supports

running the workflow locally and not distributing it remotely.

• Taverna Server is a suite that works on the principles of simple client-server interac-

tion. A server instance stores workflow blueprints created by the community and the

client is only allowed to trigger runs of the experiments via a web interface. In this

model, only server administrators have permission to add workflow content, while

regular users are not allowed to freely create and upload their own custom workflows

to the server. Additionally, the need for a full installation and configuration of the

server software in order to execute work remotely limits ease of deployment and

creates an important entry barrier.

• Taverna Player is the web interface used by the client to send requests to Taverna

Server.

16



Chapter 2. Background

Despite its maturity, Taverna does not, on its own, have built-in support for automatic

server installations on grids or clouds. Instead, users need to develop custom orchestra-

tion infrastructure for these environments to allow deploying clusters coordinated by the

instance where Taverna Server is installed. Both caGrid [36] and BioVeL [37] have im-

plemented such solutions [38, 39] to take advantage of grid resources. On Amazon EC2,

Taverna is only available as an Amazon Machine Image (AMI) runnable on a single in-

stance, without support for distributed execution.

2.2.2 Galaxy

Galaxy [40] is another community specific web-based platform for managing workflows,

focussing on genomic research. Conceptually, it is driven by the motivation to ensure

accessibility of computational resources by providing researchers with simple web interfaces

to interact with distributed environments, reproducibility of experiments by tagging and

recording order and intent of each action users take, as well as transparency of findings

by consolidating a robust collaboration framework.

CloudMan [41] is the cloud resource management tool used by Galaxy to instantiate pre-

packaged clusters on Amazon EC2 machines. To achieve this, the user needs to use the

AWS Management Console to request an instance that will be used as the master node

of a new SGE cluster. Next, the number of slave instances in the cluster can be adjusted

using the CloudMan Console, as shown in Figure 3.

Figure 3: CloudMan cluster management console [41].
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Since EC2 instances do not save data on disk by default, persistence on Amazon Elastic

Block Storage can be explicitly turned on from the CloudMan Console. CloudMan also

deals with cases when the initial capacity of an EBS volume attached to the master instance

is exceeded by safely pausing activity in the cluster before reattaching a new expanded

capacity volume and resuming work. However, the job submission system still does not

achieve full automation, since it requires a human to manually turn on the master node

in the cluster, as opposed to the system being brought up on the fly and turned off on

workflow termination. This is a problem in the context of EC2 or other commercial clouds,

since it means that the user might continue to be charged for resources that are no longer

being used.

One major advantage of CloudMan is its modular architecture, under which instances

only use a lightweight AMI and reference the tools they need from external storage such

as EBS, as shown in Figure 4. This grants further flexibility in terms of updating the

system, because the AMI does not need to be repackaged frequently and the state of

machines can be modified by simply writing on persistent storage.

Figure 4: CloudMan modular architecture [41].
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2.2.3 Tavaxy

Tavaxy [42] was created from the desire to ease the sharing of scientific workflows between

the increasingly large user bases of Taverna and Galaxy within the bioinformatics com-

munity. The limited interoperability between the two systems was caused by differences

in workflow description languages, as well as execution engines and overall design. Tavaxy

consolidates Taverna and Galaxy workflows to run and be edited in a single environment,

encouraging the community to create composite routines with building blocks from both

worlds.

Tavaxy focuses on efficiently and transparently delegating workload to grid and cloud

platforms. It can run a cluster when it is provided with a distributed file system similar to

NFS and a standard job scheduler like SGE. The preferred cloud platform is Amazon EC2

and provisioning extra resources is done via a simple web interface, operated similarly as

for Taverna and Galaxy.

Figure 5: Tavaxy interaction between a local machine and Amazon EC2 [42].

Three different modes are available for delegating computation to EC2:

• Whole system instantiation, where the user has no local version of Tavaxy installed

and can bootstrap a new instance from a provided AMI. This will automatically

create and configure a cluster that the user can control through a web console.

Amazon S3 [32] is used for persistent storage of shared data in the cluster.

• Sub-workflow execution, which presumes a local installation and Tavaxy used for

19



Chapter 2. Background

workflow design and allows the user to create a cluster in the cloud from a more

lightweight AMI wrapping the runtime environment. The local machine sends the

workflows remotely for execution and waits for results of the run. The user has two

options for transmitting the input data and persisting the results. The first option

is to send Inputs along with the workflow definition to master node machine and

save outputs manually to local storage. The alternative is to upload input data to

S3 and configure the cluster to direct reads and writes to S3 directly. The general

architecture for this mode of operation can be observed in Figure 5.

• Single task instantiation, which is similar to sub-workflow execution, except that

only a task in the workflow is delegated to the cloud.

2.2.4 Kepler

Kepler [5] is one of the first general-purpose scientific workflow systems, recognising the

need for transparent and simplified access to high performance computing platforms more

than a decade ago. It also underlined concepts such as reusable and reproducible workflow

runs, scalability of models, as well as fault tolerance and reliability in the context of remote

execution [43].

The novelty of Kepler’s design resides in the actor-oriented model. Actors are basic inde-

pendent components representing either data sources or operations in the workflow. They

are interconnected via channels and own receivers that handle their external communica-

tion, as well as input and output ports.

However, the execution model differs from standard systems in that its flow is not directed

by the topology of the network. Instead, a special component named director establishes

the order of execution for actors, selects the operations they perform and orchestrates

their communication by controlling their respective receivers [2]. This means that actors

are not necessarily executed sequentially but are triggered by data received on incoming

ports. Such as design reveals possibilities for concurrency semantics and renders the model

fit for embedded systems simulations.

Although Kepler does not support execution on clusters in cloud environments out of the

box, research groups using it have developed custom solutions to partially support this

functionality. Wang and Altintas [44] propose EC2 actors capable of managing Amazon

virtual machines and suggest using StarCluster [45] to build virtual clusters from the

Kepler AMI they provide. This approach is sensible and can be used in conjunction with
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Chapter 2. Background

any other workflow systems, but is not readily available for Kepler at the moment.

2.2.5 Pegasus

Pegasus [6] is a system that initially gained popularity for mapping complex workflows to

resources in distributed environments without requiring input from the user [46]. Since

its inception, many other similar applications have incorporated this feature, but Pega-

sus employs several optimisations that improve runtime performance and resource alloca-

tion.

Pegasus makes a clear distinction between high-level workflows defined by users from their

actual executed form. Abstract workflows allow portability to many runtime platforms

and free the user from explicitly indicating specific resources that should perform the work,

while concrete workflows precisely bind execution stages to specific storage, computation,

and network resources. This setup allows for multiple optimisations that would otherwise

be impossible, particularly considering the fast dynamics of cloud and grid platforms. The

latest release of Pegasus relies on four essential components [47,48]:

• The mapper receives an abstract workflow as an input and produces a concrete

workflow, defining the software and hardware requirements of the computation. Ad-

ditionally, it performs metadata processing to enable data provenance tracking and

modifies the structure of the workflow by grouping suitable tasks.

• The workflow engine ensures the execution in topological order. This responsibility

is delegated to DAGMan [49], a meta-scheduler that runs on top of HTCondor [19]

and allows ready jobs to be run.

• The HTCondor job scheduler manages the queue of individual jobs. It supervises

the execution and restarts task runs in the case of failures.

• The workflow monitor is a daemon that parses output logs and notifies the end-user

on the status of the submission.

Pegasus performs most of its important optimisations at the mapping stage, since this is

the point where the workflow is broken down into single tasks. The improvements with

significant impact on performance concern the following aspects [48]

• Data movement. This refers to ensuring that data required by a job is collocated

with resources where it is executed. For example, copying input data from a user’s

local server to EBS is highly preferred when running jobs on EC2 because Amazon
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guarantees low latency when accessing its own storage systems.

• Data reuse. Pegasus is able to reuse intermediate results of the workflow that have

already been computed during previous runs of the workflow if the definitions of

the tasks and input data have not changed. The process requires careful coordina-

tion with the data cleanup phase in order to simultaneously leverage already known

results and avoid wasting storage capacity.

• Job clustering. For many short-lived jobs, orchestrating the transfer of task results

across machines in a cluster and long queueing times can incur high latency costs.

Grouping related tasks into larger entities helps alleviate this problem by reduc-

ing the load on the machine that hosts the job submission system. This strategy

also improves the overall performance of workflows with a large number of tasks by

over 90%, as previous studies have shown [50, 51]. Level-based horizontal clustering

(Figure 6) and label-based clustering (Figure 7) are some of the most effective strate-

gies, although the latter requires users to explicitly label tasks when defining the

workflow [47].

Figure 6: Level-based horizontal clustering targeting parallelisable tasks [47].

Although all the optimisations and design ideas discussed above apply to all distributed

execution platforms, earlier deployments of Pegasus have confirmed several advantages of

cloud environments. These include on-demand provisioning of resources and ability to

easily ensure consistency of software installed on all the machines in a fleet [48].

However, further development of workflow management systems is needed in order to fully

exploit cloud features such as automatic scaling of available resources. The main problem
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Figure 7: Label-based clustering [47].

is that the load of instances occurs in the case of long-running jobs. Indeed, upscaling

usually leaves unused extra resources, while downscaling is even more challenging because

long individual tasks cannot be split up any further. Basic solutions involve only allowing

automatic scaling on idle instances or when having many short-lived jobs, but this is

definitely an area open to future work.

Despite the trend towards cloud-based systems, the process of running Pegasus workflows

in the cloud has still not been fully automated. Users are required to manually configure

the job submission host and worker nodes to run the required software [52]. At the

moment, the technical barrier for harnessing the cloud from Pegasus is higher than grid-

based options, that are usually specifically designed for running experiments and provide

a preconfigured software stack.

2.3 Cluster Deployment on Clouds

In this section, we analyse some of the tools that can be used for creating a cluster

from a set of instances provided in a cloud environment. The main motivation behind the

investigation is that deploying a cluster running one of the environments already supported

in OpenMOLE allows leveraging the existing infrastructure by simply delegating the work

to a cluster running in the cloud. We believe that this is a sane approach for developing

a functional prototype, which can later be improved by using native cloud APIs in case

this is required due to slowdowns caused by the additional clustering layer.
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Throughout the investigation, we focus on the features relevant to managing cloud infras-

tructures. We are interested in a tool that:

• Supports most of the important cloud infrastructures (EC2, Google Cloud, Open-

Stack, CloudStack). We initially only target EC2, but we also intend to integrate

with other platforms in the future.

• Is lightweight enough not to cause significant overhead on the performance of the

instances in the cluster.

• Is open-source, since we plan to use it as part of GridScale. However, we also examine

some commercial and proprietary systems to better educate our decision.

• Allows for effective automation in a concise manner by providing a clear and robust

command line interface or API.

2.3.1 StarCluster

StarCluster [45] is an open-source cluster management tool that has been successfully

used in both open-source and commercial products. It comes as a command line tool that

specifically targets cluster deployment on Amazon EC2 and provides flexible high-level

configuration options.

By default, StarCluster provides a set of public AMIs that include a lightweight software

stack for job scheduling, intra-cluster communication and common scientific data manip-

ulation tasks. From a system administration perspective, the out-of-the-box StarCluster

configuration includes:

• NFS7 [53] for sharing data between the instances in the cluster.

• The SGE job queuing and scheduling system.

• Security group setup for controlling the inbound and outbound traffic from the clus-

ter.

• Password-less SSH between the nodes in the default security group.

• The possibility of attaching and mounting EBS drives to be used as NFS-shared

storage by all the nodes in the cluster.

On top of this, the StarCluster AMI also contains tools like OpenMPI [54] and IPython [55]

for writing natively parallel applications. Other features revolve around various preconfig-

7Network FIle System
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ured software packages associated with high-performance computing development stacks,

but they go beyond our use cases.

StarCluster relies heavily on the assumption that users prefer sensible defaults rather than

extensive configuration. The standard installation requires a single start command to set

up a cluster with a given number of nodes on EC2 and new clusters are automatically con-

figured with NFS and SGE support. Listed below are some of the most useful commands

exposed by StarCluster:

• start launches a cluster as per the specification provided in the configuration file.

It allows for many different variations of cluster creation, where instances can also

be simply started but not provisioned with the default software. The user can

also simply perform a dry run and simply simulate starting the cluster to prevent

unexpected issues in production.

• terminate completely purges the given cluster, shutting down all nodes and remov-

ing its previously created security group. If the cluster is backed up by EBS volumes,

the root volumes of each node can also be deleted.

• sshmaster and sshnode allow for easy SSH access to all nodes in the cluster relying

on the AWS keypair provided in the configuration file for authentication. Slave nodes

are automatically numbered in a human-readable format - node001, node002, etc.

• put and get enable transferring files between the user’s local machine and a running

cluster, where they are instantly shared via NFS.

• createkey is a useful for creating a new SSH keypair and simultaneously both saving

it locally and importing it to the user’s AWS account.

• addnode and removenode allow for manual upscaling or downscaling by launching

new nodes and attaching them as slaves to the cluster or tearing them down.

• loadbalance provides an automatic alternative for growing and shrinking the num-

ber of nodes in the cluster based on the load of jobs queued in SGE.

Elastic Load Balancing is an important feature based on data extracted periodically from

the monitoring component of SGE. Depending on the load of the queuing system, Star-

Cluster automatically scales the size of the cluster by adding or removing instance nodes.

This ensures that the number of idle jobs in the system is never excessively high, although

it is unclear how the heuristic will perform when handling numerous short-lived or few

long-lived tasks.

The load balancing component allows choosing the minimum and maximum number of
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nodes that the size of the cluster can vary between, as well as its growth rate. The user

can align this with domain knowledge about the job submission patterns, meaning that

a cluster used to run a highly volatile number of short-lived jobs should adapt faster to

the increase in requests and provision more instances at each monitoring iteration than a

cluster used to run long-lived jobs. Other useful options include plotting the number of

instances used by the cluster over time, the ability to allow the cluster a stabilisation time

period during which the load balancer does not run, or automatically killing the cluster

after a specific duration or when the job queue is empty.

StarCluster also provides a bidding strategy for provisioning EC2 spot instances that

allowed the StarCluster team to reduce instance renting costs by approximately 60% over

longer periods of usage. Spot instances allow users to rent currently unexploited resources

from idle machines for a significantly lower price than the standard flat rate, with the

drawback that access may be suddenly terminated when the original owner needs the

computing power back. The framework deals with the caveat of losing access to the

machine due to the current spot price becoming higher than the maximum bid. However,

the solution of simply rerunning the failed job on an on-demand instance might not be

ideal in the context of long-running services or tasks.

Despite that tight coupling with specific components of the AWS ecosystem is undesirable,

the close integration does bring quite a few advantages in terms of storage flexibility.

StarCluster can use S3 and EBS interchangeably, with data from mounted EBS volumes

being instantly accessible throughout the cluster.

2.3.2 Elasticluster

Elasticluster [56] is another open-source project aiming at simplifying managing clusters

on cloud platforms. Although not as popular as StarCluster, it has similar goals and a

focus on simplicity and is more generic by supporting all of Amazon EC2, Google Cloud

and OpenStack. Since we do not intend to call Elasticluster’s Python API from our code,

we will focus on the functionality provided by the command-line tool.

Given the more generic approach, Elasticluster makes fewer assumptions about the inten-

tions of the user and requires more details to be set via the configuration file. It supports all

of SGE, Slurm, Torque and PBS as scheduling systems. It uses Ganglia [57] for monitoring

and allows transparent configuration of its toolkit via Ansible [58]. Along with the division

of nodes in a cluster in frontend nodes and compute nodes, the use of Ansible playbooks
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allows combining different setups for master and slave nodes. Modularity is achieved by

creating the specification of the different blocks of the cluster independently (login, cloud,

setup, cluster, storage) and simply assembling them to deploy the instances.

Although not as feature-rich as StarCluster, Elasticluster offers the basic cluster manage-

ment commands and some extra customisation options:

• start launches the cluster and automatically runs Ansible to configure it unless the

user specifically requests not to.

• stop kills the cluster without checking whether it is currently in use, which makes

the tool require extra precautions on behalf of the user when managing the lifecycle

of the client application.

• list-nodes offers information about all nodes in a specific cluster.

• setup allows the user to efficiently reconfigure the cluster from scratch without

having to restart it and wait for instances to be recreated. It simply runs Ansible

with respect to playbooks that have been added or updated by the user.

• ssh and sftp are used to obtain control of specific machines, upload and download

files to and from the cluster.

• export is used to save the local data about a cluster started from the current machine

in a zip file. A sensible but useful option is the ability to also store the local private

and public SSH keys to the file.

• import unzips and stores an exported cluster locally.

Although SGE is supported as in StarCluster, the main Ansible playbook we are interested

is the one setting up Slurm, since it is the more popular, modern and actively maintained

scheduling system. The Slurm playbook exports the /home filesystem from the mas-

ter node to all the slaves, ensuring shared storage. However, extra performance can be

achieved by combining the Slurm playbook with the OrangeFS parallel virtual filesystem

and mounting OrangeFS nodes as shared storage in the main cluster.

A disadvantage of Elasticluster is that it does not support the native storage systems for

its supported cloud platform providers, since Amazon and Google cloud instances usually

report much better performance when coupled with storage on the same platform. Instead,

Elasticluster has default support for GlusterFS [59], Ceph [60] and the OrangeFS [61]

filesystem. Although these options are performant, they suffer from not being as widely

popular as the previously mentioned ones.
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Elasticluster facilitates adding and removing nodes from the cluster, but does not provide

the flexibility of StarCluster to dynamically control the load by provisioning instances

on demand. This is a major disadvantage, since the responsibility for implementing the

behaviour is transferred to the user, despite the fact that failure strategies would be more

robust if incorporated within the tool itself.

2.3.3 CfnCluster

CfnCluster is a cluster management tool built by Amazon specifically to support running

high performance computing clusters using the entire stack of cloud services provided by

AWS. This command line tool is free and open-source on its own, but it delegates most of

the logic for administering the cluster to paid AWS services such as Amazon SNS8 [62],

SQS9 [63], CloudWatch [64] and Auto Scaling [65].

The default installation is based on a provided AMI that ships with standard tools used

for AWS administration. The configuration file allows extensive customisation and the

possibility to enable various features needed for a job submission cluster:

• A scheduler that can be any of SGE, Slurm, Torque and OpenLava [66].

• Shared filesystem by mounting an EBS volume on all nodes at a user specified

location. Read-write access to resourced owned by the user in S3 is also enabled.

• Amazon Virtual Private Cloud (VPC) provisioning in order to operate a cluster

whose networking layer is in complete control of the user and is in a logically isolated

section of AWS.

• Security groups for a cluster-level firewall.

• Custom bootstrap actions that allow the user to run pre and post-startup configu-

ration scripts on the master node.

Figure 8 illustrates the sandboxing feature that isolates the master and compute nodes

into subnets of the VPC.

8Simple Notification Service
9Simple Queue System
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Figure 8: Master and slave nodes isolated in two different Virtual Private Clouds [67].

Elasticity is achieved through the interplay of various Amazon cloud services. On cluster

creation, a CloudWatch alarm monitoring the number of pending jobs is created. When

the alarm is triggered due to many queued jobs, instances are added by the Amazon

Auto Scaling service up to a maximum defined by the max_queue_size configuration

parameter. On the other hand, idle machines are identified using a nodewatcher daemon

that monitors load and signals the possibility to reduce the compute fleet size to a minimum

of min_queue_size instances. Figure 9 demonstrates the processes described above.

CfnCluster is a production-ready and reliable tool. However, it is completely one-dimensional

since it focuses entirely on Amazon software and incurs extra costs by using many other

AWS services, which could have otherwise been implemented as features of the tool itself.

Although the costs of the individual cloud services supporting CfnCluster is not high, the

overall cost is higher. An estimate for the added cost introduced by ClowdWatch alarms

only is $3.50 per month per instance, compared to the $18.72 per month for renting a

t2.small instance [68]. This implies an added cost of 19% that can by avoided by instead

using StarCluster or Elasticluster.
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(a) Fleet size management. (b) Node activity daemon.

Figure 9: Auto Scaling monitoring diagrams [69].

2.3.4 Apache Jclouds

Apache Jclouds [70] is an open-source Java library that unifies the cloud services APIs for

most mainstream commercial and open-source cloud providers, providing a starting point

for an implementation that would be concerned with more fine-grained control of cloud

specific features.

Although it requires more extensive configuration, it supports most commercial and open-

source clouds (Amazon EC2, Google Cloud, Microsoft Azure, OpenStack, CloudStack),

while not compromising highly provider-specific features. This is achieved by having highly

flexible services for computation or advanced tasks like load balancing by using on-demand

provisioning features of the clouds. For EC2, our main point of interest, Jclouds supports

all type of storage provided by AWS, including EBS for low-latency services, S3 for low
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costs and Glacier for long-term storage.

Jclouds currently provides three main abstractions that facilitate writing code agnostic to

particular cloud vendor APIs:

• The ComputeService layer unifies services providing computational power offered by

different providers like Amazon EC2 or Google Compute Engine. The abstraction

builds on top of the native APIs provided by the vendors and offers various features:

– The location aware API ensures that accessing resources placed in different

geographic locations does not require maintaining multiple connections and

managing multiple access objects. This permits a more clear organisation of

code that oversees running virtual instances in multiple regions.

– Basic cluster management support is offered by allowing the creation of groups

of nodes instead of individual machines. Each group benefits from an auto-

matically bootstrapped firewall that can be configured to regulate the traffic

to the group as desired. Running scripts on all the machines in a group is also

simplified through the existence of execution primitives and sensible exception

types used to handle remote errors.

– SSH key management for nodes launched using the API - specified SSH keys

are copied to instances on startup.

– Focus on testability - the library provides a stub compute service that mimics

the behaviour of a remote execution environment for each provider, simplifying

the task of writing tests for the top-level application.

• The BlobStore abstraction provides a portable way of accessing key-value stores such

as Amazon S3, Google Cloud Storage or Microsoft Azure Blob Storage. Features

are also location-aware and focus on unifying methods of accessing different types of

storage:

– The filesystem provider can be used to write data to memory, local disk or

cloud blob storage using the same API.

– The in-memory provider allows testing without the need for real credentials by

stubbing in the memory of the local machine for the remote storage.

• The LoadBalancerService abstraction is a beta feature that aims to distribute the

workload among nodes created in groups.

Listing 1 shows an example of using the ComputeService abstraction. After the access

object is built from the provider preference and credentials, launching the instance from
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the template configuring options such as the operating system, memory requirements or

opening specific ports for external communication.

1 ComputeService compute = ContextBuilder.newBuilder("aws-ec2")

2 .credentials("identity", "credential")

3 .buildView(ComputeServiceContext.class)

4 .getComputeService();

5

6 Template template = compute.templateBuilder()

7 .osFamily(OsFamily.UBUNTU)

8 .minRam(2048)

9 .options(inboundPorts(22, 80))

10 .build();

11

12 compute.createNodesInGroup("jclouds", 1, template);

Listing 1: Instantiating an Amazon EC2 instance using ComputeService [70].

Obtaining the access object for a BlobStore is similar. Uploading data to the blob requires

first creating a container and is straightforward after input data is parsed.

1 blobStore = ContextBuilder.newBuilder("aws-s3")

2 .credentials("identity", "credential")

3 .buildView(BlobStoreContext.class)

4 .getBlobStore();

5

6 blobStore.createContainerInLocation(null, "test-container");

7

8 ByteSource payload = ByteSource.wrap("test-data".getBytes(UTF_8));

9 blob = blobStore.blobBuilder("test")

10 .payload(payload)

11 .contentLength(payload.size())

12 .build();

13

14 blobStore.putBlob("test-container", blob);

Listing 2: Uploading data to Amazon S3 using BlobStore [70].

Jclouds is a useful toolkit for managing computing and storage resources rented from

different cloud providers without delving too deep into vendor libraries. However, it does

not provide full cluster functionality, such as installing and configuring a job scheduling

system or a shared filesystem. Implementing the whole cloud access layer using Jclouds
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would require duplicating a large part of the logic existing in tools already tested in

production settings like Elasticluster, Starcluster or CfnCluster.

2.3.5 Mesos

Mesos [71] is an open-source cluster management system that provides abstractions of

resources like processing power, memory or storage gathered from individual machines.

Its aim is to offer a platform for creating safe, scalable and fault-tolerant distributed

systems while programming against a simple API that allows treating an entire fleet of

cloud instances as a shared supply of resources.

Figure 10: Mesos architecture [72].

Mesos can be described as a kernel for distributed systems. Its architecture is similar

to the one of the Linux kernel, but revolves around working with distributed resources.

Applications that take advantage of the APIs exposed by Mesos are known as frame-

works and common examples include platforms for batch job scheduling, processing big
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data, managing data storage or hosting long-running jobs such as web servers. Figure 10

shows the how Mesos mediates the access of high-level frameworks to fragmented low-level

resources.

The key advertising points for Mesos are its scalability, tested in commercial applications to

up to 10.000 nodes, and its layered architecture that supersedes classic resource scheduling

and distribution systems that maintain the whole state of the underlying infrastructure.

Instead, Mesos completely handles resource unification and only requires blocks on top

of it to deal with primitives such as resource offers and describing tasks that need to be

executed on slave nodes in a cluster.

Chronos

Chronos [73] is a job scheduler that aims to be a modern redesign of the classic Unix utility

Cron [74]. Although Cron is mainly intended for performing single repetitive tasks and

is typically used for scheduling system administration and maintenance tasks at regular

time intervals, Chronos expands the feature space by also supporting job execution chains

where jobs are triggered by finalisation of their dependencies.

Chronos is built as a framework on top of Mesos and it benefits from the fault tolerance

and scalability provided by the underlying distributed kernel and resources.

Figure 11 shows how Chronos fits in a system where it communicates with the Mesos

master to allocate resources, which are then used to execute designated jobs. In the case

when a Mesos cluster is deployed on AWS, the tasks leverage highly segregated compute

power to perform big data processing using Elastic MapReduce [75] and storage backed

up by S3.

Chronos can aggregate statistics regarding the status of scheduled jobs batches, as well

as details on individual executions. It also provides a web dashboard that can be used

to manage jobs interactively, but our interest lies along the REST API for automation

purposes. The simplest way to deploy and configure Chronos along with Mesos is by using

Mesosphere DC/OS [76].
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Figure 11: Chronos architecture [73].

Mesosphere DC/OS

DC/OS is a distributed operating system using Mesos as its kernel and it facilitating the

installation and orchestration of frameworks consuming the Mesos API. Figure 12 shows

the analogy between this setup and operating systems running on the Linux kernel.

DC/OS comes with out-of-the-box support for configuring clusters relying on instances

provisioned from AWS and Microsoft Azure. By having DC/OS install Chronos, we can

start executing jobs remotely using AWS resources. The community edition of the prod-

uct is fully open-source and free to be used for non-enterprise purposes. However, for
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Figure 12: Mesosphere DC/OS architecture [76].

our use case this solution suffers from the same problem as CfnCluster, namely the ex-

tra cost induced by delegating all the elastic scaling work to services like Amazon Auto

Scaling.

Although DC/OS would not add extra costs directly, it does require more powerful boot-

strap, master and agent nodes than either of Elasticluster, Starcluster or CfnCluster.

Table 1 shows the hourly price of operating an Amazon EC2 cluster with the minimum

required specifications. In comparison, the cost of a t2.small— instance that can be

used as both a master and compute node in a Starcluster or Elasticluster installation with

EBS volumes mounted for shared storage is $0.026 per hour. This leads to a 10x cost

increase only for operating a single master node and ignoring the fact that DC/OS in fact

recommends running 3 simultaneous master nodes for optimal performance10.

Node role Required instance Price ($ per hour)

Bootstrap m3.2xlarge 0.532

Master m3.xlarge 0.266

Agent r3.large 0.166

0.964
Total

Table 1: Prices of EC2 nodes with DC/OS minimum performance requirements [68,77].

In conclusion, DC/OS is a highly reliable tool for operating clusters in the cloud, but

from cost-effectiveness perspective its features only shine when used at massive scale.

In our use case, where jobs are more numerous rather than particularly CPU-intensive,

Starcluster and Elasticluster are better candidates and can produce similar results for a

lower investment.

10Prices as of June 2016 for instances in US East
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OpenMOLE & GridScale

The first part of this chapter expands on the goals, features, architecture and components

of the open-source OpenMOLE project. We also explore use cases of the system by looking

at a simple workflow. The second part of the chapter describes the structure and design of

GridScale, the library OpenMOLE relies on to leverage distributed computing resources

from grids and clusters.

3.1 OpenMOLE

OpenMOLE [78] is a workflow execution engine that focuses both on allowing expressive

definitions of data processing pipelines and delegation of those tasks to remote execution

environments [79]. Compared to other existing workflow management systems like Kepler

[5], Taverna [4], Galaxy [7] or Pegasus [6], it does not target a specific scientific community

and instead aims at offering formalisms that can be used to create generic pipelines.

One of the main objectives of OpenMOLE is embedding workflow models and definitions

provided by users in many different forms [8]. Generally, other workflow engines have rigid,

text-based rules used to describe individual tasks and their connections, while providing

limited support for calling external programs.

However, OpenMOLE uses a DSL1 built on top of Scala [13] to embed a wide variety

of tasks defined in any programming language based on the Java Virtual Machine (Java,

Scala, Clojure, Groovy, Kotlin). Additionally, prepackaged binaries, C++ executables

and Python scripts that depend on shared libraries or pre-loaded packages are seamlessly

integrated into workflows. Benefits of relying on Scala’s type system include more mean-

1Domain Specific Language
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ingful task descriptions and early error detection since potential mistakes are caught at

compile-time, instead of only after submission to grids or clusters.

Possible execution environments include the user’s local machine, SSH servers, grids or self-

hosted clusters operated by one of the many supported schedulers: SGE [17], Slurm, [18]

PBS [15], HTCondor [19], OAR [20] or Torque [16]. These are all enabled by GridScale [25],

the self-contained library that is shipped by default with OpenMOLE and handles job

management on distributed computing environments.

The OpenMOLE platform is now mature and has engaged a loyal user base. It is regularly

used for large scale experiments and its robustness in combination with GridScale was

proven by experiments where it has been used to run half a billion tasks on EGI2 [80].

3.1.1 Architecture

The design of the application has been guided by the total decoupling between the cre-

ation of the pipelines describing the scientific algorithms and their execution on remote

environments [79]. As shown in Figure 13, this led to a layered structure, where the actual

experiments are independent from how the tasks they incorporate are run and managed

or how the resource requirements are serviced.

Figure 13: OpenMOLE layered architecture [9].

In this context, the user is not concerned with how the execution environment is provi-

2European Grid Initiative
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sioned and can change it easily without altering the workflow description. Additionally,

this allows for a fine granularity of task distribution since individual tasks can be sent

to environments tailored specifically for their requirements. A clear use case for this are

jobs that need to be accelerated using GPUs, with other parts of the workflow running on

CPUs as usual.

The structural layers fulfil completely different roles and are modular blocks with clearly

defined roles:

• The scientific layer relies on the DSL. It is where the user defines the workflow and

specifies data sources and execution environments.

• The software layer is concerned with the translation of the workflow specification

to an internal representation consisting of runnable jobs and their dependencies. It

uses the Scala actor model [81] to coordinate the whole process of installing the

OpenMOLE runtime on each remote execution site, continuously monitoring the

status of outstanding jobs, or feeding results of completed tasks to the subsequent

ones using them as input. New remote environments are simply added as plugins

and they are essentially adapters to the resources exposed by the service layer.

• The GridScale library is the service layer, presented in Section 3.2.

3.1.2 Domain Specific Language

Tasks are the basic construct of workflows in OpenMOLE. They essentially consist of a

computation that is run against a set of inputs to produce a set of outputs. Together with

transitions, which transfer outputs of individual tasks to inputs of subsequent ones, they

establish the simplest form of data pipeline.

Listing 3 shows a very basic workflow that computes the square of each number from 1 to

100. It begins by declaring variables i and res, which represent the dataflow and are used

to carry results between tasks that are connected via transitions. Since the DSL is build as

a set of extensions on top of the Scala programming language, the variables are statically

typed, which enables formal verification of the workflow at compile time [8]. This ensures

that runtime type mismatches of data transmitted between tasks cannot occur.

Lines 6-10 define the actual model that we want to compute. In this case, the specification

is a ScalaTask, where for each input of type i the output is a tuple (i, res). Concretely,

for input 5, the output will be (5, 25). Apart from Scala code, a ScalaTask can embed
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1 val i = Val[Int]

2 val res = Val[Int]

3

4 val exploration = ExplorationTask(i in (1 to 100 by 1))

5

6 val model =

7 ScalaTask("val res = i * i") set (

8 inputs += i,

9 outputs += (i, res)

10 )

11

12 val env = LocalEnvironment(8)

13

14 exploration -< (model on env hook ToStringHook())

Listing 3: Simple OpenMOLE workflow.

code from any programming language running on the JVM (Java, Clojure, Groovy). Other

types of tasks include MoleTask, used to embed entire predefined workflows, or CARETask,

used to run any type of prepackaged binary and discussed in section 3.1.5.

One of the central objectives of OpenMOLE is to allow parameter optimisation for the

models it executes. The sampling of parameters is achieved through the use of explorations

in the language. Every parameter sampled from a set is combined with all the other

parameters to generate the workflow input. In our case, the exploration at line 4 only

samples parameter i, so the model will be replicated 100 times and executed with an

integer between 1 and 100 as input.

Line 12 instantiates the environment where the workflow will be run. Here we select a

LocalEnvironment and allow the computation to create and use 8 threads on the local

machine. Line 14 ties all the building blocks together. The exploration generates all

possible values of i and the model is executed on the given environment for each one of

them. The -< symbol represents a divergent transition between the exploration and the

task, each output of the sampling being fed to the model.

In OpenMOLE, hooks are used to extract the results of running an experiment. They are

executed every time the task that they are assigned to terminates and can perform actions

like simply displaying the data or saving it to CSV3 files. Here the ToStringHook simply

prints the output of each task.

3Comma-separated values
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Figure 14 shows a graphical representation of the combination of primitives described

above. This is how a workflow is designed using the graphical user interface instead of the

specification language.

Figure 14: OpenMOLE workflow [78].

Going beyond the simple example, Listing 4 shows a sampling that explores all com-

binations of a discrete parameter i, a continuous parameter j, a file f from the given

workDirectory and a random seed s sampled from a uniform distribution. This is achieved

using the x combinator, which unrolls the domain for each parameter before combining all

the possibilities, essentially taking a cartesian product of the parameter sets [82].

1 val i = Val[Int]

2 val j = Val[Double]

3 val f = Val[File]

4 val s = Val[Long]

5

6 val exploration =

7 ExplorationTask(

8 (i in (0 to 10)) x

9 (j in (0.0 to 100.0 by 10.0)) x

10 (f in (workDirectory / "inputs")) x

11 (s in (UniformDistribution[Long]() take 10))

12 )

Listing 4: Advanced exploration [79].

Listing 5 shows different transitions that can be used to combined task. Note that, for

brevity, we did not include any hooks that would collect the results at any stage.
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The execution on line 13 explores the parameter space and feeds each possible value

sequentially through each of the 3 tasks. On line 14, t2 and t3 are run in parallel on

the inputs received from t1. Line 15 demonstrates a convergent transition, where the

>- operator is used to allow an aggregation task to collect and process the results of the

run.

1 val i = Val[Int]

2

3 val t1 = ScalaTask("i = i * 2") set ( inputs += i, outputs += i )

4 val t2 = ScalaTask("i = i * 3") set ( inputs += i, outputs += i )

5 val t3 = ScalaTask("i = i * 4") set ( inputs += i, outputs += i )

6

7 val exploration = ExplorationTask( i in (0 to 100) )

8 val aggregate = ScalaTask("val i = input.i.sum") set (

9 inputs += i.toArray,

10 outputs += i

11 )

12

13 exploration -< t1 -- t2 -- t3

14 exploration -< t1 -- (t2, t3)

15 exploration -< t1 -- t2 -- t3 >- aggregate

Listing 5: Transition types [82].

Our initial example showed the simple case of running a workflow on the user’s machine

using a LocalEnvironment. However, this is only usually done for testing locally before

scaling the experiment and other types of environments are used for real experiments.

Section 3.1.3

The user can be authenticated either with a login and password combination, or via a

private key. Here we define the authentication by specifying the path to the private key,

the associated login and the remote machine’s full address. The encrypted parameter

references a function that will prompt the user for the key’s password in case it is protected.

This process is done once and for all and stores the new authentication in OpenMOLE’s

preferences folder. It is consequently rarely seen in actual workflow scripts that will reuse

an already defined authentication.
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3.1.3 Environments

Remote execution environments are are the engines providing computational power for

running experiments. Generally, environments set up on grids or clusters are created by

providing a shell login on the remote machine as well as its address, but this complexity

needs to be hidden from the user in the case of a cloud environment.

The end goal of the project is to provide an AWSEnvironment, which can be instantiated by

only receiving the user’s AWS credentials as parameters. This should automatically create

a cluster backed up by EC2 instances and configure it with a scheduler that distributes

job submissions generated by the workflow.

Listing 6 shows examples of instantiating SSH servers and cluster environments. For the

SSH server, we also specify the number of cores that can be used by the workflow. Cluster

environments require that the target machine can act as the master of the cluster, being

able to take commands for submitting and querying job status.

1 SSHAuthentication +=

2 PrivateKey(

3 "path/to/private/key",

4 "login",

5 encrypted,

6 "machine-address")

7

8 val sshEnv = SSHEnvironment("login", "machine-address", 8)

9 val condorEnv = CondorEnvironment("login", "master-address")

10 val sgeEnv = SGEEnvironment("login", "master-address")

Listing 6: Usage of various environments.

In OpenMOLE, environments are added through a plugin system by implementing the

BatchEnvironment trait. This comes with a built-in JobManager and various other de-

faults useful for modelling a generic job submission environment. ClusterEnvironment is

wrapper that ensures steady traffic flow to a cluster by limiting the number of outgoing

connections and adds an interface for accessing storage via SSH.

Each concrete environment in OpenMOLE has a corresponding job service. The low-

level mechanics of interacting with the scheduler and running individual jobs remotely

are abstracted away in GridScale, so job services attached to environments decorate this
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behaviour with batch submission capabilities.

1 trait SGEJobService

2 extends ClusterJobService with SSHHost with SharedStorage { self ⇒
3

4 def environment: SGEEnvironment

5 val jobService = new GridScaleSGEJobService with SSHConnectionCache {...}

6

7 protected def _submit(serializedJob: SerializedJob) = {

8 val (remoteScript, result) = buildScript(serializedJob)

9 val jobDescription = new SGEJobDescription {

10 val executable = "/bin/bash"

11 val arguments = remoteScript

12 val workDirectory = serializedJob.path

13 override val queue = environment.queue

14 override val wallTime = environment.wallTime

15 override val memory = Some(environment.requiredMemory)

16 }

17 val jobId = self.jobService.submit(jobDescription)

18 ...

19 }

20 }

Listing 7: Job service used to submit batch jobs to the SGE scheduler.

Listing 7 shows the core of the SGEJobService. Note that objects used to manage individ-

ual jobs at the underlying GridScale level are also called job services, so we must always

consider the distinction. On line 8, a shell script embedding the task to be run is created

from a serialized job. On line 11, the script is assigned to be run by bash as part of an

SGEJobDescription. The job is then submitted to the underlying GridScale job service

on line 17.

3.1.4 Job Distribution

Compared to other workflow platforms, OpenMOLE follows a zero-deployment approach,

meaning that it does not rely on any software being installed on the target machines that

the task-generated jobs will run on [8]. In order to support this, a setup phase is required

before the task execution step itself. This involves uploading several components to the

remove environment [9]:

• The OpenMOLE runtime, which includes the OpenMOLE framework and the Java
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Virtual Machine used to run it.

• Task descriptions along with their serialized execution contexts, which describe vari-

ables used by the task to transport data.

• Resource files used by the tasks.

After all the dependencies are in place, a job is packaged to reference the runtime, task

and context it corresponds to. Once it is assigned to an execution node by the environ-

ment’s native submission system, it downloads the runtime and runs the task in the given

context.

Figure 15: Delegation of a task to remote execution environment in OpenMOLE. [9].
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Note that the potentially expensive step of copying the runtime on each node is rarely

necessary in practice, since clusters and grids usually operate on filesystems shared across

all nodes. OpenMOLE also maintains a cache of the file replicas already uploaded to

remote storages, so that a file never gets uploaded twice to the same storage as long as

it’s not been modified on the host system.

Once finished, jobs upload their results to the storage system. Meanwhile, the OpenMOLE

framework continuously tracks the state of the job by querying the submission system and

downloads the outputs on the local machine of the user upon completion. The whole

process is presented as a sequence diagram in Figure 15.

3.1.5 CARE

Resolution of dependencies is a classical problem in the context of job distribution to

remote environments, especially in the case of having little to no control over their con-

figuration. Compiled binaries like C++ applications require shared libraries at runtime,

while interpreted languages depend on various packages to be present on the execution

node.

Users of grids and clusters do not usually have access to install the needed dependencies.

Grids are particularly tricky, since they represent shared pools of heterogeneous resources

that are likely to be configured and deployed differently than on a local machine that a

workflow is initially tested on [79].

The first partial solutions were application specific and not always feasible. For example,

C++ programs can be built as static binaries that package all the dependencies, but this is

a problem in the case of applications using proprietary libraries without publicly available

source code.

A practice that has recently gained traction in software engineering communities partic-

ularly via Docker [83] is the use of containers. A container consists the entire software

stack required to run an application, including dependencies as packages, binaries or con-

figuration files. Containers accomplish a similar purpose to virtual machines, with the

main advantage that they are designed to be lightweight. They are smaller in size than

full-fledged virtual machine images, can be started faster and numerous instances can be

hosted by a single operating system, making their deployment straightforward in compar-

ison with the hypervisor configuration required to host virtual machines.
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However, the use of Docker containers also presumes the existence of the Docker engine

on the target machine and this can not be ensured for environments over which scientists

only have user access. This leads to the choice for CARE [10], an open-source application

for reproducible executions that only relies on being run on a Linux platform. CARE

works by intercepting all the requirements of an application during an initial run and

repackaging all the dependencies in a self-extracting binary.

CARE also ensures full interoperability between packaging and execution environments,

meaning that all modern Linux-based operating systems support running archives pack-

aged under a different Linux distribution. This allows OpenMOLE to remotely distribute

the application packaged on the user’s machine without concerns about the particularities

of Linux flavours present in a grid or cluster.

Figure 16: Delegation of a task to remote execution environment in OpenMOLE. [79].

More specifically, binaries are embedded in OpenMOLE via a CARETask, which takes as

parameters the location of the archive and the specific command that needs to be executed

in the packaged runtime. OpenMOLE then runs the given command in the unpackaged

directory on the remote node, copying the input files in the process as usual. Figure 16

depicts the interplay between a CARE archive created by the user and the CARETask in

OpenMOLE. Listing 8 shows a sample task embedding a Python script.
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1 val output = Val[String]

2 val error = Val[String]

3 val value = Val[Int]

4

5 val pythonTask =

6 CARETask("hello.tgz.bin", "python hello.py /data/fileA.txt") set (

7 stdOut := output,

8 stdErr := error,

9 returnValue := value,

10 hostFiles += ("/home/user/fileA.txt", "/data/fileA.txt")

11 )

Listing 8: Example Python CARETask [79].

3.1.6 Job Management

Most of the logic of coordinating the execution of jobs and collection of results is handled

by a JobManager class. It uses a message queue to direct commands to separate actors

responsible for uploading resources to execution nodes, submitting, querying or purging

jobs, as in Listing 9.

1 class JobManager {

2 ...

3 def !(msg: JobMessage): Unit = msg match {

4 case msg: Upload ⇒ messageQueue.enqueue(msg)

5 case msg: Submit ⇒ messageQueue.enqueue(msg)

6 case msg: Refresh ⇒ messageQueue.enqueue(msg)

7 ...

8

9 case Manage(job) ⇒
10 self ! Upload(job)

11

12 case Uploaded(job, sj) ⇒
13 job.serializedJob = Some(sj)

14 self ! Submit(job, sj)

15

16 case Resubmit(job, storage) ⇒
17 killAndClean(job)

18 job.state = ExecutionState.READY

19 messageQueue.enqueue(Upload(job))

20 ...

21 }

Listing 9: Job lifecycle management.
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The message queue is consumed iteratively by a unique dispatcher actor that routes mes-

sages to the specialised receiver actors. This model ensures a clear separation between

individual actions carried out to monitor the jobs.

3.2 GridScale

GridScale is the library part of the OpenMOLE ecosystem that mediates the access to

distributed computing environments. Being written in Scala, it can be used as part of

any application running on the Java Virtual Machine and it is designed around the strict

type system of the Scala programming language. This leads to improved safety checks for

job definitions at compile time, since their members can now be more refined than plain

strings [25].

3.2.1 Principles

Historically, the scientific community has relied on specifications developed by the OGF4

[84] to establish the guidelines for libraries used to access grids or clusters. However, a

problem that standards like DRMAA5 [85] or SAGA6 [86] encounter is that they require

the commitment of multiple parties interacting with an environment. Users need to im-

plement a particular protocol that matches the version of the specification deployed by

the administrators of the infrastructure. Additionally, the API is often slow to evolve and

inflexible to user requirements.

GridScale chooses to stay away from particular standards and favours an approach where

very few assumptions are made about the configuration of the target infrastructure. In

particular, it only requires that the accessed environment runs a Linux distribution and

the user has access to the bash shell via SSH. This is reasonable to expect from most

machines, since bash is the default in most cases and a login shell is not needed.

Jobs are submitted and monitored using the standard command line tools that would be

manually invoked by the user. For example, SGE jobs are managed using qsub, qstat and

qdel, while Slurm jobs are managed using sbatch, scontrol and scancel for submission,

state querying and termination, respectively.

4Open Grid Forum
5Distributed Resource Management Application API
6Simple API for Grid Applications
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3.2.2 Module Design

Each environment accessed by GridScale is serviced by its own module in the imple-

mentation. Modules are packaged as independent OSGi7 [87] bundles so that they can be

included individually by applications servicing only a specific infrastructure. This enforces

a modular design and reduces the footprint of the library [25].

Every module corresponding to an environment consists of four different components wired

together into a unique block using the cake pattern [88]:

• A Job Description used to define the executable, arguments and other parameters

for the job.

• A Job Service responsible for the job submission mechanisms and resource acquisi-

tion.

• A Storage component that can be shared across modules.

• An Authentication rule for granting access rights using a login and password combi-

nation, SSH or certificate authentication.

Figure 17 illustrates the creation of a Slurm module from particular implementations of

the four component interface. Although the underlying technique in the cake pattern is

different, it achieves a similar result to standard dependency injection in languages like

Java by offering modules easy to assemble.

Figure 17: GridScale architecture and instantiating the Slurm module [25].

7Open Service Gateway Initiative
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Job Description

Job descriptions are typesafe wrappers in Scala that translate to the plaintext scripts

accepted by schedulers to queue jobs. The main advantage is that this ensures syntactical

correctness of jobs and errors that would prevent jobs from being submitted are caught

early. Silent issues such as misusing measurement unit for time or resources are also

avoided by relying on a strong type system.

Listing 10 compares the definition of a simple Slurm job using the standard approach

in a text bash script and its equivalent counterpart in GridScale. Note that, even for a

relatively short description, the plaintext version can easily become ambiguous in sections

where durations or paths are specified.

#!/bin/bash

#SBATCH -o job.out

#SBATCH -e job.err

#SBATCH --cpus-per-task=1

#SBATCH --time=01:00:00

#SBATCH -D /home/foo/bar

/bin/echo success

val description = new SLURMJobDescription {

def executable = "/bin/echo"

def arguments = "success"

def workDirectory = "/home/foo/bar"

override def wallTime = 1 hour

}

Listing 10: Comparison between a Slurm job description in plaintext and in the Open-
MOLE DSL.

Job Service

The job service is the component that manages the lifecycle of jobs. Listing 11 shows

the creation of a job service capable of interacting with Slurm. To connect to the remote

environment, the service relies on the presence of a target host and login, along with a

possibly password-protected SSH private key.

1 val slurmService = new SLURMJobService with SSHPrivateKeyAuthentication {

2 def host = "host"

3 def user = "user"

4 def password = "password"

5 def privateKey = new File("/path/to/private/key")

6 }

Listing 11: Job service used to submit batch jobs to the Slurm scheduler.
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The interface exposed by a job service consists of four main methods: submit, state,

cancel and purge. These allow initiating jobs, checking their status, terminating them

and cleaning up temporary data.

In contrast with other libraries used for distributed resource management that retain

caches of the system status, GridScale job services promote a functional approach and are

designed to be immutable and hold as little state as possible. Therefore, all the public

methods are pure and simply forward the request to the remote scheduler.

Storage

Storage wrappers abstract operations with files on the target environment. They are used

by job services to set up the runtime by uploading files to remote machines and download

results when jobs are done.

Standard POSIX file operations are also enabled in order to complement the usage of

command line tools to delegate work. The implementation of all the connections and

commands relies on the SSHJ [89] library, which handles SSH connections and provides

the SFTP8 primitives directly to Java or Scala.

Authentication

The authentication component provides access to all environments covered by GridScale.

Private clusters are managed by opening an SSH connection to the master node, so the

authentication consists of the address of this machine, the name of the user and a password

or private key.

On the other hand, grids often require authentication methods that cover the security

model of the middleware managing them. This is achieved in GridScale by allowing the

installation of P129 and PEM10 certificates [25].

8Secure File Transfer Protocol
9PKCS - Public-Key Cryptography Standards

10Privacy Enhanced Mail
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Implementation

This chapter describes the design and implementation of a new service adding support

for running workflows on clouds, with the specific target infrastructure being AWS EC2

machines. The deployment, configuration and lifecycle management of the underlying

nodes executing the workflow should be transparent to the user, who is only required to

provide his credentials to an AWS account.

In accordance with the considerations presented in Chapter 3 about the architecture and

implementation details of both OpenMOLE and GridScale, we take a layered approach in

adding support for a new cloud environment.

The first part of the chapter discusses the approach taken to bootstrap and configure a

cluster consisting of EC2 machines. The cluster needs to be coordinated by a scheduler

that can take job submissions and distribute them for execution.

We then proceed to analyse the integration of the cloud service with the overall Open-

MOLE application. Here we treat issues such as triggering the teardown of the cluster

depending on the batch submission activity and the inherent differences between the new

cloud environment and the already existing types of environments.

Although we focus on deployment on AWS, the same high-level technique can easily be

extended to support other cloud providers, so at the end of the chapter we briefly discuss

the details of adding support for the Google Compute Engine infrastructure.

Throughout the chapter, we motivate choices made along the development process and

detail problems or advantages of alternative approaches. Since the main challenge of the

implementation is reliably wiring together different libraries, command line tools and cloud

services, we favour the use of diagrams and code listings to show the interaction between

core system components.
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4.1 GridScale AWS Module

As explained in Section 3.2, access to each target environment in GridScale is implemented

via a module. For the purpose of implementing an AWS module, we need to provide each

of the four components: a Job Description, a Job Service, a Storage interface and an

Authentication method.

4.1.1 Design Motivation

The initial idea was to simply implement an AWS specific version of each component.

This is though not necessary, as we can reuse some of the already existing components

from other modules and GridScale in fact encourages this approach through its modular

packaging using OSGi bundles.

In particular, GridScale already supports cluster environments managed by specific sched-

ulers. By building a cluster from a set of machines provisioned from AWS and configuring

to emulate the required behaviour, we are able to partially delegate the job management

work to an already functional cluster job service. This means that, in contrast with a

regular cluster service that acts as a DAO1 for an existing infrastructure, we also need to

provide interface methods through which users of the library can manage the lifecycle of

the deployed cluster. We argue that this is a sane choice from an engineering perspective,

since we are already familiar with reliably supported schedulers like SGE and Slurm.

The type of the job description depends on the job service, since it performs a translation

to a script that can be sent to the scheduler. Therefore, forwarding the submission and

monitoring methods to a cluster service as discussed above implies that we need to directly

use the description corresponding to the job service.

As long as we can deploy a cluster with a filesystem shared across the network, the

SSHStorage trait allows accessing the same data volume for the master and slave nodes.

EC2 instances can be backed up by either EBS volumes or internal storage, but the solution

of installing NFS on the cluster is agnostic to the underlying storage choice and enables

using a wide range of instance types.

Authentication is indeed based on the AWS credentials stored locally by the user and

1Data Access Object
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requires a new model. However, the standard authentication implementation relying on

SSH keys can still be reused as a lower layer of this new implementation in order to access

the master node that controls the job submission queue.

External applications make use of the AWS module by instantiating an AWSJobService,

which publicly exposes the following methods:

• start launches and configures a job submission cluster to be used by the service.

• close completely tears down the job cluster.

• submit, cancel, state and purge fulfil their regular functions within the service.

Listing 12 shows an example usage of the service. The service takes as parameters the

region the job should run in, as well as the number of EC2 instances that the service should

create under the clusterSize parameter. The other authentication-related parameters

are discussed in Section 4.1.2.

1 val awsService = AWSJobService(AWSJobService.Config(

2 region = "eu-west-1",

3 awsUserName = "adrian",

4 awsCredentialsPath = "/Users/adrian/.aws/credentials.csv",

5 awsUserId = "434676269080",

6 awsKeypairName = "openmole",

7 privateKeyPath = "/Users/adrian/.ssh/id_rsa",

8 clusterSize = 1))

9

10 awsService.start()

11

12 val description = new AWSJobDescription {

13 def executable = "/bin/sleep"

14 def arguments = "5"

15 def workDirectory = aws.home

16 }

17

18 val job = awsService.submit(description)

19 while (awsService.state(job) != Done) {

20 Thread.sleep(WAIT_TIME)

21 }

22

23 awsService.purge(job)

24 awsService.close()

Listing 12: Submitting a job to the cloud using the AWS module.
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4.1.2 Cluster Deployment

The design of the module presented above outlines the requirement for a system that

can create clusters of AWS EC2 machines and configure them with a job scheduler and a

shared filesystem across all nodes.

Tool Choice

During the investigations in Section 4.1.2, we found that most cost-efficient tools and

frameworks for creating the cluster are StarCluster, Elasticluster and Jclouds. The main

reason for excluding Mesosphere DC/OS was that it is generally heavyweight and requires

running more expensive machines to power the cluster. CfnCluster was dismissed for being

too reliant on the AWS software stack, which incurs various extra costs for operations that

can easily be performed without Amazon resources.

Jclouds allows mounting various cloud storage devices, but it did not fit our use case

since it does not have built-in support for NFS installations. Although Elasticluster can

perform all the required tasks, we opted for StarCluster as the cloud deployment tool,

since it also provides a load balancer that can be used to optimize the cost or run time of

a workflow.

Coordinator Node

The choice for StarCluster raises the problem that it is only offered as a command line

tool and it needs to be on the machine it is run on. Although most cluster orchestration

tools require manual installation and interaction, forcing the user of the library to install

an external is both unreasonable and impractical from GridScale’s perspective.

An initial idea could have been running a Docker container with StarCluster, but we can,

once again, not assume the presence of a Docker engine on the user’s machine.

The solution we picked was to create an EC2 instance with StarCluster already installed.

We call this particular instance the cluster coordinator or orchestrator, since it controls

the whole cluster activity by executing the StarCluster commands to operate it.

The coordinator is launched using Jclouds within the start method of the AWSJobService

created on the local machine. Its configuration is based on a prebuilt AMI2 with an

2Public AMI ID: ami-b7d8cedd
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installation of StarCluster and maintained by the developers of GridScale. After the

coordinator is in a running state and its public IP address has been established, the

AWSJobService can start sending commands to it via an SSH channel. This represents

step 1 in Figure 18.

Figure 18: Creating a new cluster using a proxy coordinator node and StarCluster.

In order to start the coordinator node, Jclouds needs to authenticate the user. Amazon

encourages using IAM3 roles for authentication. This means that the user does not need to

provide the root account password, but can instead create a user associated with GridScale,

which is granted access to manage EC2 instances. Jclouds then uses the access key ID

and secret key corresponding to the user role to manage machines via the API. The file

containing the keys can be downloaded by the user from the Security Credentials page

in the AWS Console [90]. The path to the CSV credentials file must be passed as the

3Identity Access Management
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awsCredentialsPath parameter when creating a new AWSJobService.

Apart from using the IAM credentials to make EC2 API calls, we are also opening SSH

channels to deliver commands to the coordinator. To do this we need to register the SSH

key we are using to initiate the connection to the coordinator on AWS. This is achieved by

importing the public key on AWS and giving it a name. The awsKeypairName associated

with the private key is then always mentioned when openning an SSH connection.

Although it might seem that introducing a proxy node for passing StarCluster commands is

inefficient, the actual overhead is minimal. The reason for the limited impact is that Star-

Cluster is only explicitly invoked during the initialisation and destruction of the cluster.

All job scheduling interactions with the job submission controller bypass the coordinator,

since the job service can obtain the address of the master node and send it jobs directly.

The coordinator does indeed incur a cost for being provisioned for as long as the cluster

runs, but this is insignificant since we only need one of the cheapest instance types to run

it.

StarCluster Configuration

StarCluster relies on a configuration file instead of command line parameters to specify

the characteristics of clusters it is creating. The file must be located on the machine where

StarCluster is being run, so we need to ensure that it is present on the coordinator node.

Since the configuration parameters depend on the preferences of the user, the file cannot

be statically embedded in the AMI that the coordinator is constructed from and needs

to be generated dynamically. Listing 13 shows an example StarCluster configuration file

constructed on-the-fly.

The authentication method used for bringing up EC2 instances is the same as the one used

by Jclouds and StarCluster also needs an SSH keypair in order to set up SSH access to the

master node and password-less SSH within the nodes in the cluster. Therefore, as step 2 in

Figure 18, we first create a new private key, saved in this case as starcluster-d4c9b13a,

and import it into AWS.

Step 3 is creating the config file on the coordinator node from the parameters passed to

the AWSJobService. After the job service triggers the cluster initialization at step 4, the

coordinator performs the launch using the starcluster start command at step 5.

The actions above leave the system in a state where the AWS cluster is initialized and
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1 [global]

2 DEFAULT_TEMPLATE = jobcluster

3 ENABLE_EXPERIMENTAL = True

4

5 [aws info]

6 AWS_REGION_NAME = eu-west-1

7 AWS_REGION_HOST = ec2.eu-west-1.amazonaws.com

8 AWS_ACCESS_KEY_ID = <access-key-id>

9 AWS_SECRET_ACCESS_KEY = <secret-access-key>

10 AWS_USER_ID = <user-id>

11

12 [key starcluster-d4c9b13a]

13 KEY_LOCATION = .starcluster/starcluster-d4c9b13a

14

15 [cluster jobcluster]

16 KEYNAME = starcluster-d4c9b13a

17 CLUSTER_SIZE = 1

18 CLUSTER_USER = sgeadmin

19 CLUSTER_SHELL = bash

20 NODE_IMAGE_ID = ami-044abf73

21 MASTER_INSTANCE_TYPE = m3.medium

22 NODE_INSTANCE_TYPE = m1.small

Listing 13: StarCluster configuration file.

configured with the SGE scheduler, so we can start submitting jobs to the master node,

which acts as a submission controller. For the purpose of job management, the job service

should now ignore the coordinator and communicate directly with the master of the cluster.

Figure 19 illustrates how this is achieved.

After obtaining the address of the master, the local machine needs to establish an SSH

connection with it. Instead of creating a new set of SSH keys, we chose to reuse the

keypair used by the coordinator to communicate with the cluster and transfer the private

key locally under a temporary ~/.gridscale directory. This keypair is already set up for

connections to all nodes in the cluster and helps avoid the complexity of managing even

more keys.

SGE Delegation

StarCluster deploys SGE as its scheduler and, as discussed in Section 4.1.1, we are able to

delegate all job submission methods of the AWSJobService to an SGEJobService. This is

possible thanks to full compatibility between the interfaces of different GridScale modules.
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Figure 19: Connecting the local machine with the master node via SSH and distributing
jobs.

A side effect is that AWSJobDescription is just a subtype of SGEJobDescription, as we are

in fact submitting SGE jobs. The AWSJobService could have used SGEJobDescriptions,

but we chose to hide this module dependency from the user of the library.

Tasks are specified in the same way as for plain SGE and are eventually translated to SGE

jobs. Steps 4 and 5 in Figure 19 show the normal job submission mechanism after the

setup phase is finished. Once a queue of jobs is populated, the work is distributed by the

scheduling system to all nodes in the cluster.

Cluster Lifecycle
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The coordinator node and the cluster are tightly coupled in our design because the cluster

cannot be altered without the coordinator, which, in turn, is not relevant on its own.

Therefore it makes sense for the lifecycle of the two components to be managed together,

so the close method of AWSJobService shuts down the cluster, destroys the orchestrator

and kills Jclouds communication channels to AWS.

Even though start and close could have been implicitly called respectively when an

instance of the job service is created and when all jobs are finished, keeping them in the

public API allows the user of a library more flexibility towards reusing the service for more

sessions without having to repeatedly wait for the initialization steps.

4.1.3 Load Balancing

We use the built-in StarCluster load balancer to decrease or increase the number of nodes

in the cluster between limits specified by the user. We start the daemon that performs

job monitoring right after launching the cluster and keep the standard 60 seconds polling

interval.

If the user does not specify a minimumClusterSize or maximumClusterSize for elastic

scaling purposes when creating the job service, then we allow the cluster to shrink or extend

in size between 1 node and its initial size. We argue that this is the cautious choice, since

it can potentially only reduce costs and not incur any unexpected ones.

Another option we expose is to automatically killing the cluster (by setting the autoClose

flag) if it is stays completely idle for a certain period after all jobs have been terminated.

Some consumers of the library may prefer this as the default option rather than having to

explicitly estimate when work is done and call close.

To obtain a highly elastic cluster, users can also reduce the 3 minute lookback window

via the lookbackWindow parameter, which represents the time after which an idle node is

considered for elimination. However, note that nodes will never be eliminated unless they

have already been running for at least 45 minutes of the hour they have been rented for.

Due to Amazon’s hourly rental policy, an overly eager resource cutting approach would

be non-optimal, since we would be giving away power that has already been paid for and

might be employed in case of a sudden spike in job submissions.
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4.1.4 Spot Instances

We support running a spot cluster by leveraging StarCluster to bid for the desired type of

worker instances. An important consideration is that only slave nodes in the cluster are

allowed to be spots, since we can easily deal with their downscaling by requeuing failed

jobs. The master is always a dedicated on-demand instance, because having it suddenly

killed would require restarting the whole cluster.

GridScale automates the spot bidding decision by using a simple heuristic based on the

current bids for the instance and the average for the past month. We assume that the

correct price will always tend towards the average, so we choose a bid depending on the

relation between the current price and the average.

If the current market price is lower than the average, then we are ahead of the bidders

that will soon lose their machines as prices will rise. In the opposite scenario, we know

that the equilibrium price is lower than the current one, so we can afford to bid less than

the market price while still remaining confident to be competitive.

If the current market price is lower than the average, then we are safe to use the instance for

at least a couple of hours by simply bidding the average value, since spot prices fluctuate

at a relatively steady rate. In the opposite scenario, we bid the market price plus an

additional 10% to account for unexpected change, but we assume that the price will tend

towards the average.

Overall, the strategy is rather conservative. We believe that no aggressive bids are needed

to reduce renting costs, because prices for spot instances are already approximately 6 times

lower than for on-demand ones as of June 2016 in US East, as shown in Table 2. Section

4.2 also details how OpenMOLE can gracefully deal with spot instances being lost, so

complicated strategy to optimise bidding only has diminishing returns.

Price ($ per hour)
Instance type Spot On-Demand

c3.large 0.0177 0.105

m3.medium 0.0108 0.067

m3.xlarge 0.037 0.266

m3.2xlarge 0.0842 0.532

Table 2: Differences in prices between spot and on-demand instances [68].
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4.2 OpenMOLE AWS Environment

The AWSEnvironment in OpenMOLE adapts the GridScale AWSJobService to the require-

ments of OpenMOLE and decorates it with extra batch submission and failure recovery

capabilities.

Since user credentials and preferences are passed directly to the GridScale module, the

environment’s constructor parameters are, in the simplest case when default instance types

are used, identical to those of the job service. Listing 14 shows how we modify the simple

workflow from Listing 3 to run on an AWS cluster instead of the local machine.

1 val i = Val[Int]

2 val res = Val[Int]

3

4 val exploration = ExplorationTask(i in (1 to 100 by 1))

5

6 val model =

7 ScalaTask("val res = i * i") set (

8 inputs += i,

9 outputs += (i, res)

10 )

11

12 val env = AWSEnvironment(

13 region = "eu-west-1",

14 awsUserName = "adrian",

15 awsUserId = "434676269080",

16 awsKeypairName = "openmole",

17 awsCredentialsPath = "/Users/adrian/.aws/credentials.csv",

18 privateKeyPath = "/Users/adrian/.ssh/id_rsa",

19 clusterSize = 8

20 )

21

22 exploration -< (model on env hook ToStringHook())

Listing 14: Workflow running on an AWS cluster.

An important feature of the cluster built using GridScale is that it provides a network

shared /home directory that is mounted on every node. This facilitates the runtime distri-

bution in OpenMOLE, since it only needs to be copied remotely once, after which every

machine can use it to run tasks in their packaged context. Section 6.1 discusses a future

improvement that will allow us to avoid transferring the runtime remotely for every cluster
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instantiation.

4.2.1 Job Service Lifecycle

The GridScale AWSJobService was designed specifically to allow for its lifecycle to be

managed externally. In the OpenMOLE integration, we take advantage of this feature and

turn off the entire environment based on events occurring in the message queue.

Specifically, we do not terminate the job service immediately after all the initial jobs

have been consumed, but instead track all types of events occurring in the JobManager

allocated to the environment and only kill the cluster once all potentially failed jobs

have been successfully rerun, results have been copied and assembled back on the user’s

machine.

4.2.2 Spot Clusters

OpenMOLE’s mechanism for job submission and dealing with unexpected failures of ex-

ecution nodes plays well with the concept of spot clusters and automatic scaling of the

number of worker nodes.

While adding or removing nodes based on the load in the cluster does not impact the runs

of any jobs because only machines that have already been idle long enough are removed,

tasks running on spot instances can be unexpectedly killed when the market price of the

instance rises over the current bid. This case is dealt with by continuously polling for

job results and resubmitting the job if the target machine is unreachable or the job has

been cancelled for external reasons. The new submission is automatically picked up by

the message queue and directed to one of the healthy nodes.

4.2.3 Resource Mapping

Although the default approach followed by OpenMOLE for running workflows is to try

providing sane defaults for users without deep technical expertise, one of parameters that

can be specified when constructing an environment is OpenMOLEMemory, which indicates

the amount of memory that the workflow is expected to need.
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For the AWSEnvironment, resources are allocated in terms of the number and types of

instances chosen to form the underlying cluster, so we allow users unwilling to rely on the

default m3.medium master and m1.small slave nodes to specify their own preferences for

the cluster machines.

Additionally, to allow seamless transition from workflows that were previously being spec-

ified using the memory requirements to cloud-based executions, we introduce a resource

mapper that translates the memory specification to a set of instances covering the desired

configuration.

4.3 Other Cloud Platforms

Although the main focus of the implementation was to provide a fully functional system

for running OpenMOLE experiments on AWS, the technique we used is not tied to a single

cloud provider. Command line tools like CfnCluster, DC/OS and Elasticluster are similar

with StarCluster in terms of interfaces and capabilities, so the cluster configuration layer

can easily be replaced.

Additionally, most of the behaviour and structure of the AWS GridScale module and

OpenMOLE environment can be extracted to interfaces for cloud services, especially since

cloud providers themselves offer similar functionality. For instance, the AWSJobService

can be split in multiple platform agnostic components that can be combined in a generic

CloudJobService:

• The coordinator node is already created using Jclouds, so it can be deployed to many

commercial clouds.

• All the mechanisms for transferring the OpenMOLE runtime remotely, packaging

jobs and configuring SSH connections to nodes in the cluster only require access to

a shell, so they do not depend on where resources are provisioned from.

• The job submission controller can delegate responsibility for translating and monitor-

ing jobs to existing implementations such as the SGEJobService, the SLURMJobService

or others based on the requirements of the underlying cluster.

• OpenMOLE cloud environments are virtually identical, since resource access is en-

capsulated in the GridScale modules with matching interfaces. Once multiple providers

are supported, we only need a single cloud environment that instantiates different

job services.
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4.3.1 GCE Support

Taking Google Compute Engine as an example, we outline the main aspects that need to

be considered when adding support for a new cloud platform. We do not yet provide a full

working implementation for GCE, but we analyse the main differences and components

that need to be changed in comparison with AWS.

The GCEJobService acts as the interface of the GridScale GCE module and it needs to

provide the same public methods as the AWSJobService. The implementation details

of starting and stopping the service depend on the tool chosen to manage the underlying

cluster, while the submit, cancel, state and purge calls can be forwarded to the scheduler

controlling the cluster.

Both Elasticluster and Mesosphere DC/OS provide primitives for creating and managing

a GCE cluster, but we dismiss DC/OS due to the more elevated costs incurred by the

usage of more powerful instances. On the other hand, Elasticluster’s operating paradigm

makes it very similar to StarCluster, with a few minor differences pointed out in Section

2.3.2.

Since we want to preserve the assumption of no configuration being necessary on behalf

of the user and Elasticluster is a command line tool, it needs to be run by a remote

coordinator node. The proxy node is started using the Jclouds API and SSH pairing

between the local machine and the coordinator is performed by importing an SSH keypair

associated with a service accounts. These serve a similar purpose as Amazon IAM roles and

essentially regulate programmatic access to resources associated with the account.

The Elasticluster configuration file is based on the interplay between different Ansible

playbooks and also needs to be generated dynamically. The example file shown in Listing

15 exposes similarities with StarCluster. It begins by specifying the details of the desired

cloud provider, login details and Ansible playbook that provides a Slurm installation and

an NFS-shared storage volume. Line 19 bring the components together and assembles a

cluster with a single master node acting as an SSH entry point and two worker nodes.

After the cluster is created, the job submission workload can be forwarded to a SLURMJobService.

A caveat is that Elasticluster does not provide a built-in way of expanding or shrinking

the cluster depending on the load, but this can be implemented using the existing calls

for adding and removing individual nodes.
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1 [cloud / google]

2 provider = google

3 gce_client_id = <client-id>

4 gce_client_secret = <client-secret>

5 gce_project_id = <project-id>

6 zone = europe-west1-b

7

8 [login / google]

9 image_user = <google-username>

10 user_key_name = elasticluster

11 user_key_private = ~/.ssh/id_rsa

12 user_key_public = ~/.ssh/id_rsa.pub

13

14 [setup / ansible-slurm]

15 provider = ansible

16 frontend_groups = slurm_master

17 compute_groups = slurm_clients

18

19 [cluster / gridscale-cluster]

20 cloud = google

21 login = google

22 setup_provider = ansible-slurm

23 image_id = ubuntu-1404-trusty-v20160509a

24 flavor = f1-micro

25 frontend_nodes = 1

26 compute_nodes = 2

27 ssh_to = frontend

Listing 15: Elasticluster configuration file.

One advantage of running clusters on GCE is that instance initialisation times tend to be

lower compared to AWS, resulting in a faster startup of the whole system. GCE does not

have spot instances that vary in renting costs depending on demand. Instead, it introduces

the concept of preemptible instances [91], which are even 70% cheaper than normal ones

but can be interrupted under specific conditions.

A GCEEnvironment in OpenMOLE would wrap the job service and is not even necessary

in the case of factoring out a generic CloudEnvinronment that receives the required job

service as a parameter. However, the resource mapping feature needs to be overriden in

order to account for Google-specific instance types and prices.
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Evaluation

In this chapter, we describe our approach to evaluating the new cloud-based execution

environment in terms of performance, operating costs, as well as benefits brought to the

end user. We describe the results of various benchmarks run against clusters with dif-

ferent configurations and discuss the challenges involved in correctly identifying the most

influencing factors for the performance of distributed systems.

Although the specific end goal of the project was providing a new environment for running

experiments on AWS from OpenMOLE, we also benchmark the underlying GridScale

AWS module separately, since it can be used as a standalone component. We use DoC’s1

HTCondor and Slurm deployments to compare the speed of the new system with a locally

hosted cluster.

Throughout the chapter, we delve into considerations about the costs of running specific

workflows on AWS and advocate the use of different types of clusters depending on the

nature of the workload. To illustrate the benefits of the fully automated job delegation to

the cloud, we contrast it with the manual steps previously needed to obtain similar results

with other experiment frameworks.

5.1 Fully Automated Experiments

OpenMOLE is now, to our knowledge, the only scientific experimentation framework that

allows users to run experiments on commercial cloud environments without any form of

configuration beyond providing their credentials. Listing 16 shows how the switch to the

cloud is made by injecting the new environment in the workflow instantiation.

1Imperial College’s Department of Computing
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1 val (t1, t2, t3) = (EmptyTask(), EmptyTask(), EmptyTask())

2

3 val localhost = LocalEnvironment(threads = 8)

4 val aws = AWSEnvironment(

5 region = "eu-west-1",

6 awsUserName = "adrian",

7 awsUserId = "434676269080",

8 awsKeypairName = "gridscale",

9 awsCredentialsPath = "/Users/adrian/.aws/credentials.csv",

10 privateKeyPath = "/Users/adrian/.ssh/id_rsa",

11 clusterSize = 8

12 )

13

14 val localMole = t1 -- (t2 on localhost) -- t3

15 val cloudMole = t1 -- (t2 on aws) -- t3

Listing 16: Creating an experiment ready to run both locally an in the cloud.

As described in the background chapter, other workflow platforms such as Taverna, Galaxy,

or the Humman Connectome project have recently started cloud initiatives, but they still

rely on a tedious setup on behalf of the user, who is required to follow long and complicated

instruction steps [92–94].

Although quantifying the ease of use is a subtle task, we have so far been encouraged by

feedback. We believe that features such as automatically mapping resources to cloud in-

stances and generating bidding strategies for spot instances bring a quality of life improve-

ment and encourage more users to take advantage of commercial clouds for research.

5.2 GridScale Benchmarks

As the foundation layer OpenMOLE’s access to remote resources, GridScale bears signif-

icant importance for the overall performance of the application. We believe that bench-

marks at this level offer valuable insights into the impact of choosing an appropriate

instance type for the master node of the cluster, since the job submission system is eval-

uated in isolation from other configuration and setup routines employed by higher level

systems.
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5.2.1 Methodology

In this section, we particularly focus on the rate of at which jobs can be submitted, queried

or cancelled on a cluster deployed on Amazon EC2. At this stage, we are not interested

in the overall execution time of the submitted jobs, so we do not delegate real work and

jobs are just busy-waiting to be cancelled.

Our setup consists of 5 different types of clusters with different types of instances as the

single master node. The master is the only job submission controller, so no worker nodes

are needed. For each run, we instantiate an AWSJobService, submit, query and eventually

cancel a number of jobs between 100 and 1000 increasing in steps of 100.

To ensure a better estimation of the real duration, we repeat each run 10 times and average

the results. Table 3 shows the specifications and prices of all types of instances used in

this chapter.

Price ($ per hour)
Instance Type Memory (GB) ECUs2 vCPUs3 Network Performance Spot On-Demand

m1.small 1.7 1 1 Low (125 Mbps) 0.01 0.047

m1.medium 3.75 2 1 Moderate (250 Mbps) 0.01 0.095

m3.medium 3.75 3 1 Moderate (300 Mbps) 0.01 0.073

c1.medium 1.7 5 2 Moderate (250 Mbps) 0.02 0.148

m1.xlarge 15 8 4 High (1000 Mbps) 0.04 0.379

c3.xlarge 7.5 14 4 Moderate (500 Mbps) 0.043 0.239

c3.4xlarge 30 62 16 High (2 Gbps) 0.168 0.953

c3.8xlarge 60 132 36 Very High (10 Gbps) 0.327 1.906

Table 3: Performances and prices of AWS EC2 instances. Prices as of June 2016 in EU
West [21].

At the moment, not all GridScale modules support batching commands sent to the sub-

mission controller via multiple sessions within the same SSH connection, so we consider

two main scenarios based on whether operations to the master are transmitted using only

one or more sessions.

5.2.2 Results

In the case of a single session per connection, we also compare the 5 master nodes of the

GridScale SGE cluster with the manager of the HTCondor in DoC. This is an Intel Xeon

2An EC2 Compute Unit is the approximate equivalent of a 1.0-1.2 GHz 2007 Intel Xeon
3Virtual CPUs
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E5-2470 with 32GB RAM and 16 virtual cores running at 2.3GHz.

Figure 20 shows that submissions to the HTCondor server are significantly faster for all

instructions, partly due to the high bandwidth on the local network, but mostly thanks to

the very low latency, which reduces the time needed to establish an SSH connection.

(a)

(b) (c)

Figure 20: Comparison for submission, query and cancellation times in the case of only
one session per SSH connection.

While the m3.medium clearly lags behind given its low bandwidth, the three high-CPU c3

instances exhibit close performance and are faster than the high-throughput m1.xlarge

instance, indicating that bandwidth only has diminishing returns and the CPU is more

important, while latency remains a constant factor.

When connections to master nodes are allowed to open multiple sessions, Figure 21 shows

the rate of commands per second improves dramatically across the board. For each of the

three commands, multi-session SSH connections bring 15x improvements to the execution
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time. The c3 instances continue to exhibit similar performance, which is mildly surprising

due to the vastly superior specifications of the c3.8xlarge instance.

(a)

(b) (c)

Figure 21: Comparison for submission, query and cancellation times in the case of
multiple sessions per SSH connection.

In this case, we are comparing the command latencies with the Slurm master node,

which has the same characteristics as the HTCondor one. Despite being on the local

network when the benchmark was run, it responds to cancel requests slower than the c3

instances.
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5.3 OpenMOLE Workflow Benchmarks

On the OpenMOLE level, we are interested in how the application behaves as a whole

when distributing real algorithms over a cloud cluster. In this section, we look at the

performance of the system when engaged in running two full different workflows with

different underlying cluster configurations. We then estimate the cost of running each of

the workflows.

5.3.1 π Computation

The algorithm presented in Appendix A, Listing 17 computes a Monte-Carlo estimation

of π. It first computes the result of 100 parallel executions of the ScalaTask starting each

time from a generated random seed, after which it collects the results and averages them

to give a final estimation. This is still a simple algorithm, but more substantial than the

ones we have presented so far.

Table 4 summarises the results of running the algorithm 10 times with different types of

master and worker nodes, while also using different number of estimations to obtain the

final result. Note that each estimation corresponds to a random seed in the workflow.

The total cost of each run is computed using the prices in Table 3 and we also show

prices for on-demand cluster, even if all the experiments were carried out using full spot

clusters.

Total Price ($)
Master Instance Worker Instance Worker Nodes Estimations Time (s) Spot On-Demand

1 m1.medium m1.small 1 200 5054 0.04 0.284
2 c1.medium m1.small 1 100 3565 0.02 0.142
3 c3.8xlarge c3.xlarge 4 100 929 0.499 2.862
4 c3.8xlarge c3.xlarge 8 100 1032 0.671 3.818
5 c3.8xlarge c3.xlarge 8 100 915 0.671 3.818
6 c3.8xlarge c3.xlarge 8 100 2820 0.671 3.818
7 c3.8xlarge c3.xlarge 16 100 792 1.015 5.73
8 c3.4xlarge c3.xlarge 4 100 1142 0.34 1.909
9 c3.4xlarge c3.xlarge 8 100 964 0.512 2.865
10 c3.4xlarge c3.xlarge 16 1000 4827 1.712 9.554

Table 4: Summary of various runs of the π computation algorithm, including the price
of each execution.

We can already observe large differences in execution times between runs with similar

cluster configurations. For example, run 6 is over 300% slower than run 5, given identical

instance types and the same number of jobs. By inspecting the load of the system during
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the workflow run, we observed that the available CPU and memory often fluctuated ag-

gressively without the instances being flooded with requests. We partially attribute this

to the fact that in the end we are working with virtual instances that share the same

physical machine.

Very long runs like 7 occur occasionally when instances in the cluster are not reliable.

An occasional pattern occurring in particular with spot clusters was instances rejecting to

receive jobs due to insufficient disk space, although we are not storing anything specifically

on the machines themselves and the working directory is always set to /home, the volume

shared on the network by StarCluster.

Since each run spends the first approximately 330 - 380 seconds setting up the cluster, we

consider total running times of about 1000 seconds acceptable. This is because the sim-

ple task executions used here actually require the same networking resources as genuinely

CPU-intensive ones to reach their destinations execution nodes, so more complicated work-

flows are not necessarily more time-consuming.

5.3.2 Random Forest

The random forest workflow in Appendix B, Figure 18 explores the parameters of the

forest.py script, which performs random forest image classification [95] to distinguish 3

types of leaves. The Python script is packaged as a CARE task and receives as parameters

the location of the dataset, the number of trees in a forest and the depth of each tree.

The output of the script is a single floating point number representing the precision of the

k-fold trained classifier.

As before, we ran the workflow multiple times with different configurations, but eventually

only chose the results in Table 5 for display.

Total Price ($)
Master Instance Worker Instance Worker Nodes Generated Jobs Time (s) Spot On-Demand

1 c3.8xlarge c3.xlarge 4 337 3219 0.499 2.862
2 c3.8xlarge c3.xlarge 8 337 2625 0.671 3.818
3 c3.4xlarge c3.xlarge 8 337 4117 1.024 5.73

Table 5: Summary of various runs of the random forest classifier training, including the
price of each execution.

Here we can notice that, despite only having 337 generated jobs to execute, the tasks were

indeed more time consuming, which is in accordance with the training of the classifier in
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the Python script. It would probably be expected that the second cluster configuration is

the fastest one, but it is interesting to compare run 1 and 3. This leads us to the conclusion

that a powerful instance as the master is indicated to having a larger pool of workers, since

the master can easily become a bottleneck for very demanding workflows.

5.4 Spot Clusters

Throughout this section, we have learned that clusters consisting entirely of spot instances

are not always reliable. Although we can deal with instances being revoked by EC2 via

OpenMOLE’s resubmission mechanisms, this has only been necessary once during the

whole development and testing process.

Spot prices do not usually change abruptly, so instances being suddenly revoked is not

a very common problem. Additionally OpenMOLE can already recover from sudden job

failures and non-critical instances failing.

However, we do not recommend ever letting the master node of a cluster be a spot instance,

since it being revoked would result into an irrecuperable state for OpenMOLE. Apart from

the possibility of it being revoked, the biggest concern is in fact the potential flakiness

of spot instances. Theoretically, spots are advertised as being the same as on-demand

instances, but in practice we have found them to be more unreliable.

Despite all the potential issues with spot instances, we do recognize that they offer great

value and workflows run on spot clusters are, as seen in Table 4, on average between 5

and 8 times cheaper than on-demand clusters. This is particularly true if generating many

short-lived jobs whose recovery in case of failure is cheap.

Another issue discovered during the evaluation was that Amazon limits by default the

number of spot instances a user can bid for or run simultaneously to 20. This is, however,

not a hard requirement and can be changed by negotiating directly with the provider.

5.5 Challenges and Limitations

The evaluation of our implementation on both the OpenMOLE and the GridScale level

was influenced by several factors. We did manage to overcome some of the problems,
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while others issues require deeper changes in the structure of the project in order to be

solved.

One of the main drawbacks of our evaluation process was that it required extensive man-

ual intervention and supervision. Although we were able to write a framework that au-

tomatically collects data about job submission statistics as part of GridScale, the holistic

evaluation at the OpenMOLE layer was mostly performed using either the console mode

of the command line tool or the web interface. This did not provide us with too much

control over testing scenarios and we were limited to running the application as a simple

user. More granular access to the internals of the application would have enabled us to

more easily identify bottlenecks.

A challenge adjacent to the first point we made was the lack of integration testing present

in both GridScale and OpenMOLE. Although setting up an integration testing framework

is an inherently hard problem in the context of applications dealing with distributed sys-

tems, the presence of a reliable test suite would certainly increase the confidence of the

developers in the functional correctness of the product and eventually speed up develop-

ment cycles.

One of the reasons for which the experiment results may be seriously skewed is the volatility

of Amazon’s EC2 resource pool. Especially in the case of spot instances, which we have

used almost exclusively for experiments, differences in performance can become a rather

serious problem when trying to diagnose issues with the application.

Our comparison with job submission systems supported by the Department of Computing

may also suffer from inaccuracies. In fact, this is a more general problem, since compar-

ing systems relying on different resource pools will always cause slight differences. One

concrete example is the comparison between workflows run on an EC2 cluster and on

DoC’s Slurm or HTCondor deployment. The average machine in the department is the

rough equivalent of the c3.4xlarge, the second most powerful machine we rented for

testing purposes. The network speed of the local connection also generally skews results

against the cloud approach, although we always accounted for it when trying to explain

performance differences.
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Conclusion

In this report, we describe the approach taken towards adding cloud platforms to the

arsenal of execution environments supported at levels of both OpenMOLE and GridScale.

We discuss in detail the specifics of adding support for Amazon EC2 and present a generic

design, under which new cloud providers can be added easily. We then proceed to evaluate

our implementation in a real-world setting by using the new environments in various

benchmarks and present the cost implications and practical considerations of operating a

cluster in the cloud.

We believe that we have accomplished the main goals set out for this project. We have

conducted an extensive analysis on tools used to manage and leverage cloud resources,

followed by the successful integration of the GridScale AWS module with OpenMOLE and

the evaluation of our results. Overall, we can draw multiple insights about our current

setup and cloud computing in general from the experiments we have conducted. One of

them is that cloud instances can and will experience slowdowns or failures. Unless renting

more expensive dedicated instances, additional care needs to be taken for dealing with

bottlenecks in a cluster.

Furthermore, choosing the right environment to distribute work to is contextual. As we

have seen, network performance is an important factor for workflows dominated by light

short-lived jobs, since in our benchmarks local servers almost always performed better,

while remote machines with vastly different specifications but same network performance

fared similarly.

Before embarking on the project, we had not considered some of these factors and were

initially surprised that cloud environments do not translate automatically to improved

performance in relation to our local clusters. However, we now have several ideas for

improving the speed and resilience of our implementation, as discussed in Section 6.1
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6.1 Future Work

Some of the ideas we have for future improvements of the project include:

• Adding support for multiple cloud providers, including continuing development for

the GCE module that is already under development. We believe that this is the

aspect that will attract the most users, since most other workflow management

systems only support Amazon as the single cloud provider, if any.

• Implementing support for SGE Arrays as a way of batching jobs sent for submission

to SGE clusters as part of StarCluster. We already know that workloads with a large

number of short-lived jobs are common in when performing parameter explorations,

so this could significantly decrease average submission times to SGE.

• One of the main slowdown reasons at the start of OpenMOLE’s workflow execution

on clusters in the cloud is the fact that it always needs to transfer its runtime re-

motely since a fresh machine is provisioned on each cluster instantiation. This could

potentially be avoided by creating an EBS volume containing the required pack-

ages and mounting it on every instance in the cluster. This would avoid uploading

approximately 400MB of data, saving therefore significant time.

• A more open ended problem is the issue of dealing with nodes in a cluster that

become bottlenecks over the course of a run. Simple potential solutions include

cancelling the jobs the node is currently running and giving it time to recover or

even kill it in extreme cases.

• An important factor for the long-term development of the project would be creating

a thorough integration testing framework. Both developers and users would vastly

benefit from this move, as it would strongly enforce the resilience of the application.
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Appendix A

π Computation

1 val seed = Val[Long]

2 val pi = Val[Double]

3 val piAvg = Val[Double]

4

5 val exploration =

6 ExplorationTask(seed in UniformDistribution[Long]() take 5)

7

8 val model =

9 ScalaTask("""

10 |val random = newRNG(seed)

11 |val points = 100000

12 |val inside =

13 | for {

14 | i <- (0 until points).toIterator

15 | x = random.nextDouble()

16 | y = random.nextDouble()

17 | } yield { (x * x) + (y * y) }

18 | val pi = (inside.count(_ < 1).toDouble / points) * 4

19 |""".stripMargin) set (

20 name := "pi",

21 inputs += seed,

22 outputs += pi

23 )

24

25 val average =

26 ScalaTask("""val piAvg = pi.sum / pi.size""") set (

27 name := "average",

28 inputs += pi.toArray,

29 outputs += piAvg

30 )

31

32 val env = AWSEnvironment(...)

33

34 exploration -< (model on env) >- (average hook ToStringHook())

Listing 17: Workflow computing an approximation of π using a Monte Carlo algorithm
[12].
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Appendix B

Random Forest

1 val images = Val[Array[File]]

2 val nbTrees = Val[Int]

3 val treeDepth = Val[Int]

4 val kFold = 10

5

6 val testDir = File("/Users/adrian/randomforest")

7 val random = new util.Random(42)

8 val imagesArrays =

9 (0 until kFold).map(i => random.shuffle((testDir / "images").listFiles.toSeq).toArray)

10

11 val parameterExploration =

12 ExplorationTask(

13 (nbTrees in (5 to 25 by 5)) x

14 (treeDepth in (3 to 18 by 3))

15 )

16

17 val imagesExploration =

18 ExplorationTask(images in imagesArrays) set (

19 inputs += (nbTrees, treeDepth),

20 outputs += (nbTrees, treeDepth)

21 )

22

23 val learningOutput = Val[String]

24

25 val learning = CARETask(

26 testDir / "archive_python2.bin",

27 "python forest.py /Users/adrian/randomforest/images ${nbTrees} ${treeDepth}"

28 ) set (

29 inputs += (nbTrees, treeDepth),

30 inputFileArrays += (images, "/Users/adrian/randomforest/images/image", ".jpg"),

31 stdOut := learningOutput,

32 outputs += (nbTrees, treeDepth)

33 )

34

35 val env = AWSEnvironment(...)

36

37 val pointsHook =

38 AppendToCSVFileHook(

39 testDir / "points.csv",

40 nbTrees, treeDepth, learningOutput)

41

42 parameterExploration -< imagesExploration -< (learning on env hook pointsHook)

Listing 18: Workflow exploring the parameters of a random forest image classifier written
in Python. [12].
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