Physics BooksOptics Books

Lecture Notes Optics (PDF 57P)

Advertisement

Lecture Notes Optics (PDF 57P)

Lecture Notes Optics (PDF 57P)

This note covers the following topics: nature of light, features of a wave, huygens principle, refraction, curved mirrors, ray tracing with mirrors, refraction at a spherical interface, single lens systems, compound optical systems, propagation of light, images, lenses, optical instruments using lenses, interference and diffraction, small angle approximation.

Author(s):

s57 Pages
Similar Books
Classical and Modern Optics

Classical and Modern Optics

This lecture note covers following topics: Linear Algebra, Ray Optics, Fourier Analysis, Electromagnetic Theory, Interference, Gaussian Beams, Fabry–Perot Cavities, Polarization, Fresnel Relations, Thin Films, Fourier Optics, Acousto-Optic Diffraction, Laser Physics, Dispersion and Wave Propagation.

s359 Pages
Small Angle Scattering and Diffraction

Small Angle Scattering and Diffraction

This book shows how the existing technology of material characterization can contribute to science and applied technology. The authors who contributed with this book sought to show the importance of applying the existing techniques in the development of their works.

sNA Pages
Lectures On Geometrical Optics

Lectures On Geometrical Optics

This lecture note explains following topics: Basics of optics, Laws of Reflection and Refraction, Reflection from spherical mirrors, Velocity of image, Refraction at Plane Surfaces, Prism Theory, Defects of images, Refraction from curved surfaces.

s196 Pages
NonLinear Optics Lecture Notes

NonLinear Optics Lecture Notes

This lecture note is intended to provide theoretical background to understand and predict a host of optical phenomena that become possible when nonlinearity in the optical response of a material is included in the description. It includes a detailed description of several of these phenomena, their experimental observation and photonic devices based on them.

sNA Pages
Optics Lecture Notes by M P Vaughan

Optics Lecture Notes by M P Vaughan

This book covers the following topics: Waves and Photons, The Physics of Waves,The Huygens-Fresnel Principle, Diffraction, Maxwell's Equations, Polarisation, Fermats Principle, Spherical Lenses and Mirrors, Crystal Symmetry and Optical Instruments.

sNA Pages
Engineering Optics

Engineering Optics

The main goal of this note is to introduce engineers to the characteristics of light that can be used to accomplish a variety of engineering tasks especially in mechanical analysis at macro and micro scales. Topics covered includes: Geometric Optics and Electromagnetic wave Theory Introduction to Light sources and photodetectors Geometric Moire: In-plane displacement measurement and out of plane displacement measurement, Geometric Moire, Moire Interferometry: Interference and Diffraction, Grating fabrication, Moire Interferometry: Holographic and Laser Speckle, Interferometry, Photoelasticity: theory, techniques and Multilayer structure: waveguide, filters, Introduction to fiber optic and waveguide delivery and detection, Periodic structure sensors.

sNA Pages
Adaptive Optics Progress

Adaptive Optics Progress

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Physics of Light and Optics

Physics of Light and Optics

This curriculum was originally developed for a senior-level optics course in the Department of Physics and Astronomy at Brigham Young University. Topics are addressed froma physics perspective and include the propagation of light in matter, reflection and transmission at boundaries, polarization effects, dispersion, coherence, ray optics and imaging, diffraction, and the quantumnature of light. Students using this book should be familiar with differentiation, integration, and standard trigonometric and algebraic manipulation.

s345 Pages

Advertisement