This note explains the
following topics: Vectors and vector calculus, Multidimensional integration,
Dirac delta, Special functions, Overview of fields, Maxwell equations in free
space, The Wave, Electrostatics, Multipole expansion, Conductors, Laplace
equation in a semi-infinite stripe, Dielectrics, Magnetostatics, Energy in
magnetic field, Maxwell Equations.

This note covers the
following topics: Electrostatic energy calculations, Poisson equation and
Green's theorm, Green's functions for cartesian coordinates, Method of images,
Cylindrical and spherical geometries, Multipole analysis of charge
distributions, Dipoles and dielectrics, Magnetostatics, Maxwells equations,
Electromagnetic energy and force, Dynamic dielectric media and their effects,
Radiation from moving charges and Special Theory of Relativity.

This note explains the
following topics: Vectors and vector calculus, Multidimensional integration,
Dirac delta, Special functions, Overview of fields, Maxwell equations in free
space, The Wave, Electrostatics, Multipole expansion, Conductors, Laplace
equation in a semi-infinite stripe, Dielectrics, Magnetostatics, Energy in
magnetic field, Maxwell Equations.

This note explains the following topics: Introduction to the Theory of
Distributions, Differentiation of Distributions, Integration of Distributions,
The Laplace Operator and Green’s Function, Electrostatics, Boundary value
problems of electrostatics, Magnetism, Electromagnetic Waves and Harmonic plane
waves.

This book covers the following topics:
Vector Calculus and Field Theories, Maxwell’s Equations and the Lorentz Force,
Scalar and Vector Potentials, Solving Maxwell’s Equations: Electromagnetic
Waves, Energy and Momentum of Electromagnetic Fields, Radiation Sources and
Antennas, Electrodynamics in Macroscopic Media, Surfaces, Wave Guides and
Cavities and Relativistic formulation of electrodynamics.

This book covers
the following topics: Tensor calculus, Minkowski space-time, The electromagnetic
tensor, Variational principle, Maxwell Equations, Conservation laws and the
Stress-Energy tensor, Poisson equation, Cloaking, Electromagnetic waves,
Radiation and Radiation reaction.

This set of lecture notes is designed to be used to teach graduate
students in classical electrodynamics. It covers the following topics in detail:
Mathematical Physics, Non Relativistic Electrodynamics and Relativistic
Electrodynamics.

This
note tries to develop a unified approach to the solution of problems in
electrostatics, magnetostatics and electromagnetism. It introduces new concepts,
such as Gauge Invariance and Special Relativity, in electrodynamics. Covered
topics are: Potentials, Electromagentic Waves, Classical Optics from Maxwell's
Equations, Boundary value problems, Radiation and Antenna's, Relativity and
ElectroDynamics