This note covers
the following topics:The Mathematical Formalism of Quantum Mechanics,
Postulates of Quantum Mechanics, Density Operator, Spatial Degrees of Freedom,
Time Evolution in Quantum Mechanics, The WKB Method, Harmonic Oscillators and
Coherent States, The Propagator and the Path Integral, Charged Particles in
Magnetic Fields, Rotations in Ordinary Space, Rotations in Quantum Mechanics,
and Rotations of Spin / Systems, Representations of the Angular Momentum
Operators and Rotations, Spins in Magnetic Fields, Orbital Angular Momentum and
Spherical Harmonics, Central Force Motion, Hydrogen, Coupling of Angular Momenta,
Irreducible Tensor Operators and the Wigner-Eckart Theorem, Bound-State
Perturbation Theory, The Stark Effect in Hydrogen and Alkali Atoms, The
Photoelectric Effect.

This note explains the following topics:
The Classical State, Historical Origins of Quantum Mechanics, The Wave-like
Behaviour of Electrons, Energy and Uncertainty, Quantum State, Operators and
Observations, Rectangular Potentials, The Harmonic Oscillator, Spectrum of
Angular Momentum, Aspects of Spin, Electron Spin, Approximation Methods, Quantum
Mechanics as Linear Algebra, Feynman Path-Integral Quantization.

This note is
intended to teach quantum mechanics to undergraduate students as well as
graduate students. Topics covered includes: Classical Mechanics, Quantum
Mechanics, Time-Dependent Schr¨odinger Equation, Mathematical Preliminarie,
Approximate Methods in Quantum Mechanics, Quantum Mechanics in Crystals, Angular
Momentum, Density Matrix, 2 Quantization of Classical Fields, Schrodinger Wave
Fields, Quantum Information and Quantum Interpretation.

This book covers the following topics: Maxwell’s Equations, Electrostatic Fields, Potential Theory, Magnetostatic
Fields, Magnetostatics in Magnetic Media, Wave Propagation in Uniform
Dielectric Media, Wave Propagation in Inhomogeneous Dielectric Media,
Radiation and Scattering, Resonant Cavities and Waveguides, Multipole
Expansion, Relativity and Electromagnetism.

This note explains
the following topics:Quantum Mechanics in Hilbert Spaces, Symmetries,
One-Particle Bound States in R3, Quantum Mechanics in L2(R3), Spin in
Quantum Mechanics, Combining Angular Momentum Eigenstates, Quantum Mechanics
of Identical Particles, Approximation Methods for Stationary States,
Elementary Scattering Theory and Elements of Formal Scattering Theory.