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Quantization in Astrophysics, Brownian Motion, and Supersymmetry

The present book discusses, among other things, various quantization phenomena found in
Astrophysics and some related issues including Brownian Motion. With recent discoveries of
exoplanets in our galaxy and beyond, this Astrophysics quantization issue has attracted
numerous discussions in the past few years.

Most chapters in this book come from published papers in various peer-reviewed journals,
and they cover different methods to describe quantization, including Weyl geometry,
Supersymmetry, generalized Schrodinger, and Cartan torsion method. In some chapters
Navier-Stokes equations are also discussed, because it is likely that this theory will remain
relevant in Astrophysics and Cosmology

While much of the arguments presented in this book are theoretical, nonetheless we
recommend further observation in order to verify or refute the propositions described herein.
It is of our hope that this volume could open a new chapter in our knowledge on the
formation and structure of Astrophysical systems.

The present book is also intended for young physicist and math fellows who perhaps will
find the arguments described here are at least worth pondering.

ISBN 81-902190-9-X
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Preface

This book, titled Quantization in Astrophysics, Brownian Motion, and Supersymmetry,
is a collection of articles to large extent inspired by some less-understood empirical
findings of Astrophysics and Cosmology. Examples in relation to these findings are
small but non-vanishing cosmological constant and accelerating cosmological
expansion, indication of dark matter and dark energy, the evidence for approximate
Bohr quantization of radii of planetary orbits involving gigantic value of effective (or
real) Planck constant, Pioneer anomaly and flyby anomalies, and the Tifft's redshift
quantization.

There is recently no generally accepted theoretical approach to these anomalies and
the book is intended to provide a representative collection of competing theories and
models. The general theoretical backgrounds indeed cover a wide spectrum: mention
only Nottale’'s Scale Relativity and Schrddinger equation assigned with Brownian
motion and its modification proposed by Carlos Castro (#6), Castro’s Extended
Relativity in Clifford algebra and Weyl geometry based cosmology (#8), Diego
Rapoport’'s work with Cartan-Weyl space-time geometry and representation of
random structures via torsion fields (#16,#17), and Pitkanen’s Topological
Geometrodynamics (#3).

In the case of dark matter and energy the proposals include Castro’s proposal for
cosmology based on Weyl geometry (#7). The approach of Pitkanen relies of the
identification of dark matter as a hierarchy of macroscopic quantum phases with
arbitrarily large values of ordinary Planck constant.

In the case of planetary Bohr orbitology one plausible method is based on Nottale's
Scale Relativity inspired proposal that fractal hydrodynamics is equivalent with
Schrédinger equation with effective Planck constant which depends on the properties
of system and by Equivalence Principle is proportional to the product of interacting
gravitational masses in the recent case. Note that Nottale predicted Bohr
quantization already 1993, much before exoplanets provided further evidence for it.
Other early papers describing exoplanets are 1998-1999 Fizika paper of A. Rubcic
and J. Rubcic on Bohr quantization for planets and exoplanets, which are included
here for clarity (#1 & #2).

Several models for the planetary quantization are discussed: Fu Yuhua’s approach
relies on Hausdorff fractal dimension (#5); F. Smarandache & V. Christianto discuss
a plausible extension of Nottale's generalized Schrodinger equation to Ginzburg-
Landau (Gross-Pitaevskii) equation based on phion condensate model (#11, #14,
#26), which can also be considered as superfluid vortex in Cantorian spacetime; M.
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Pitkanen’s approach explains planetary Bohr orbitology as being a reflection of the
guantal character of dark matter in astrophysical length and time scales.

The present book also discuss solutions to a number of known problems with respect
to Relativity, Quantum Mechanics, Astrophysics, i.e. Bell's theorem (F. Smarandache
& V. Christianto, #14), holographic dark energy (Gao Shan, #18), unified
thermostatistics (F. Smarandache & V. Christianto, #25), hypergeometrical universe
and supersymmetry (M. Pereira, #19), rotational aspects of relativity (A. Yefremov,
#21, #22), and also Pioneer anomaly (#20, #23, #24).

In the case of Pioneer anomaly the explanations include modifications of Newton’s
gravitational potential and the notion of metric in general relativity, dark matter
induced acceleration, the acceleration anomaly induced by the compensation of
cosmic expansion in planetary length scale, and mechanism inducing anomalous
Doppler frequency shift as Q-relativity effect. (Perhaps this Doppler frequency shift is
comparable with a daily idiom: “The grass always looks greener on the other side of
the fence.”)*

We would like to express our special thanks to journal editors for their kind
permission to us to include these published papers in this volume, and for all peer-
reviewers for their patience in reading our submitted drafts, and suggesting
improvement.

It is our hope that the present book could open a new chapter in our knowledge on

the formation and structure of Astrophysical systems.

November 26th, 2006
M. Pitkanen

* German: Kirschen in Nachbars Garten sind immer suf3er. Ref:
http://www.proz.com/kudoz/1020232. Also http://www.usingenglish.com/reference/idioms/t.html



Foreword

"The first principles of things will never be adequately known. Science is an open ended
endeavor, it can never be closed. We do science without knowing the first principles.

It does in fact not start from first principles, nor from the end principles, but

from the middle. We not only change theories, but also the concepts and entities
themselves, and what questions to ask. The foundations of science must be continuously
examined and modified, it will always be full of mysteries and surprises.”

(A.O. Barut, Foundation of Physics 24(11), Nov. 1994, p.1571)

The present book is dedicated in particular for various quantization phenomena
found in Astrophysics. It includes various published (and unpublished) papers
discussing how ‘macroquantization’ could be described through different
frameworks, like Weyl geometry, or Cartan torsion field, or generalizing Schrodinger
equation.

To our present knowledge, quantization in various Astrophysics phenomena has not
been studied extensively yet, except by a number of physicists. Mostly, it is because
of scarcity of theoretical guidance to describe such ‘macroquantization phenomena’.
For decades, it becomes too ‘obvious’ for some physicists that quantum physics will
reduce to (semi)-classical mechanics as the scale grows. But as numerous recent
Astrophysical findings have shown, ‘quantization’ is also observed in macro-physics
phenomena, which indicates that quantum physics also seem to play significant role
to describe those celestial objects.

Nonetheless, it is worth noting here that the wavefunction description of the Universe
has been known since 1970s, for instance using Wheeler-DeWitt (Einstein-
Schrddinger) equation, or Hartle’s, Vilenkin’s method in 1980s, albeit it is also known
that these approaches lack sufficient vindication in terms of Astrophysics data.
Therefore, from this viewpoint, the quantization description of Astrophysical systems
is merely a retro and improved version of those earlier ideas. Or, if we are allowed to
paraphrasing John Wheeler in this context, perhaps we could say: “Time is Nature’s
way to avoid all things from happening at once, and Quantization is Nature’'s way to
bring arrangement and to avoid all things from colliding because of n-bodies
interaction,” (as shown by Poincare in early 20t century).

We would like to express our sincere gratitude not only to a number of journal editors
for their kind permission to enable us include these published papers in this volume
(including Fizika editor, AFLB editor, EJTP editor, PiP editor, Gravitation and
Cosmology editor and Apeiron editor); but also to Profs. E. Scholz, T. Love and S.
Trihandaru for their patience in reading the draft version of this book. And to
numerous colleagues and friends who share insightful discussions and with whom
we have been working with.
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As concluding remark to this foreword, we would like to note that after pre-release of
this book (at http://www.gallup.unm.edu/~smarandache/Quantization.pdf), it has
attracted not less than 1325 hits (downloads) to this book in the first three days
(January 21st, 2007), and 3708 hits within the first five days (January 24t 2007).
Perhaps the printed version of this volume will be appreciated in similar way.

January 26th, 2007.
F.S.&V.C.
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LETTER TO THE EDITOR

SQUARE LAW FOR ORBITS IN EXTRA-SOLAR PLANETARY SYSTEMS
ANTUN RUBCIC and JASNA RUBCIC
Department of Physics, University of Zagreb, Bijenicka 32,
10000 Zagreb, Croatia

E-mail: rubcicQsirius.phy.hr

Received 27 April 1999; Accepted 1 September 1999
Reprinted with kind permission from editor of Fizika A

The square law r, = rin? for orbital sizes 7, (r; is a constant dependent on the
particular system, and n are consecutive integer numbers) is applied to the recently
discovered planets of v Andromedae and to pulsars PSR B1257+12 and PSR 1828-
11. A comparison with the solar planetary system is made. The product nv,, of the
orbital velocity v, with the corresponding orbital number n for planets of v An-
dromedae is in good agreement with those for terrestrial planets, demonstrating the
generality of the square law in dynamics of diverse planetary systems. ”Quantized
velocity” of nv, is very close to 24 kms™!, i.e. to the step found in the quantized
redshifts of galaxies. A definite conclusion for planetary systems of pulsars requires
additional observations.

PACS numbers: 95.10.Ce, 95.10.Fh, 95.30.-t UDC 523.2, 531.35

Keywords: planets of v Andromedae and of pulsars PSR B1257+12 and PSR 1828-11,
square law for orbital sizes, ”quantized velocity” nv,,

In our previous papers [1,2], the orbital distribution of planets and satellites in
the solar system has been described by the simple square law

T =T1n%. (1)

Semimajor axes r, of planetary and satellite orbits are proportional to the square
of consecutive integer numbers n, where r; is a constant dependent on the system.
We have also applied the square law to the planetary system of the pulsar PSR
B1257+412 [3].

Very recently, the planetary system of the nearby star v Andromedae (from
hereafter: v And) has been discovered using the Doppler radial velocity method
[4]. Tt is the first system of multiple companions with a parent star similar to the
Sun. Therefore, it is important to check whether the planets of v And obey also the
square law. Moreover, the planets of the pulsar PSR 1828-11 will be considered,
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too, although the present findings are not yet confirmed. So far, only three extra-
solar planetary systems with more than one observed planet per system have been
discovered.

The observational data for v And and two pulsars are given in Table 1. Note
that masses (M) of planets of v And, and those of the pulsars are of the order of the
Jupiter mass (M) and Earth mass (Mg), respectively. Question mark added to
the planet A of PSR B1257+12 means that original results [5] have been questioned
[6] with the suggestion that planet A might be an artefact in the calculations.

TABLE 1. Semimajor axes 1y, masses (M) sin(z), deduced orbital numbers n, prod-
ucts of n with the corresponding orbital velocity v,, and the mean values of nv,
for extra-solar planetary systems.

System rn/(10Mm) | (M)sin(i) | n | nv,/(kms™!)

v Andromedae
v And b 0.0883 0.71 (Mj) 1 138.52
v And ¢ 1.242 211 7 4 147.7
v And d 3.740 4.61 7 7 148.99
145.08

PSRB1257 + 12
A(?) 0.285 0.015 (Mg) | 5 410.49
B 0.540 3.4 7 7 417.50
C 0.705 2.8 7 8 417.59
415.20

PSR 1828-11
A 1.391 3 (Mg) 6 208.57
B 1.975 12 7 7 204.21
C 3.142 18 7 9 208.16
206.98
Data are taken from: Jean Schneider, Eztra-solar Planets Encyclopaedia, update 15
April 1999. http://www.obspm.fr/planets

In order to determine the orbital numbers n for the particular system, the square
roots of orbital semimajor axes have been plotted vs. integer numbers in such a
way that all observational points are close to a straight line without an intercept.
Deviations of the observational points from the straight line for pulsar planetary
systems are found to be less than 2%, while those of v And less than 6.2% on the
average.

The results of the fit to the data in Table 1 are shown in Fig. 1. The square
law satisfactorily describes orbital sizes in extra-solar planetary systems, in spite
of the fact that only few planets per system have been found. It is evident that
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some orbits predicted by the square law are not occupied. For the planetary system
of v And, the orbits at n equal to 2, 3, 5, and 6 are vacant. It may be that at
these orbits small planets exist, but undetectable by the present methods. Future
observations should confirm or disprove these assumptions.

11 T T T T T T T T T

=
o
T
|

©
T
|

EXTRA-SOLAR PLANETS

(semimajor axis)"?
o0}
T
1

v ANDROMEDAE -

rr11/2/ 105 m1/2

s A PSR B1257+12

0 1 2 3 4 5 6 7 8 9
n orbital humber

Fig. 1. Correlation of the square root of the semimajor axes 1, with the orbital num-
bers n for extra-solar planetary systems. Terrestrial planets (open circles, dashed
line) are added for comparison.

We have shown [1] that the radius and velocity at the n-th orbit (within the ap-
proximation of circular orbits) is proportional to n? and 1/n, respectively. Further
investigation [2] has shown that along with the orbital number n, an additional
number k£ may be introduced, resulting in the following relationships

G n?
Ty = %Mﬁ, (2)
'Un:'UQE, (3)
n

where G is the gravitational constant, M the mass of the central body, and vy
a fundamental velocity, which may be considered as an important quantity of all
considered systems.

The integer number n determines the quadratic increase of orbital radii, while
k defines the extension or spacing of orbits. By increasing k, orbits are more closely
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packed. Thus k£ may be named the ”spacing number” to differ from the main
”orbital number” n. Equation (3) states that nwv,, is a constant for a given system,
and for some other systems it is a multiple of the fundamental velocity vg. Indeed,
this has been demonstrated for the solar system [2], i.e. for its five subsystems:
the terrestrial planets and the largest asteroid Ceres (k = 6), the Jovian planets
(k = 1), and satellites of Jupiter (k = 2), Saturn (k¥ = 4) and Uranus (k = 1).
For all these subsystems, the value of nv, = kv is given by (25.0 £0.7)k kms~*
[2], confirming thus Eq. (3). It has to be pointed out that more accurate value of
nv, = [(23.5 + 0.3)k + (4.0 = 1.0)] kms™! was obtained (Eq.(12) in Ref. [2]). A
similar situation for orbital velocities may be expected in extra-solar systems.

I I I I I I I I I I I
Planets of PSR B1257 + 12 (confirmed, except A)

v v
v B C
400 A (?) -
300 -
o
[}
Qo
r 1 €
L =)
D c
E Planets of PSR 1828 -11 (unconfirmed) (=2}
X< 200 F ¥ 4 8
~ ©
c B o
> Terrestrial planets and Ceres "
c b, c, d: Planets oé v Andromedaed ~
b .
. c & 9 o ® 5 6
Me v E Ma Ce
100 Satellites of Saturn o o O o 5 4
Jan Mim Enc Teth Dio Rhea
Am lo Eu Ga Cal
o o 0O O Satellites of Jupiter 2
O
J S u N QP,' Jovian planets
Puck Mir Ar uUm it Satellites
ob—te- -t -y b poogeoooy GRQrENGE 0
0 1 2 3 4 5 6 7 8 9 10 11 12

n orbital number

Fig. 2. Correlation of the products of orbital numbers n and orbital velocities vy,
with n and the spacing number k, for the solar subsystems and three extra-solar
planetary systems.
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The correlation of nv, with n and k is shown in Fig. 2. This figure is based
on Fig. 3. of Ref. [2], where only data for the solar system have been taken into
account. Here, it is supplemented by the extra-solar system data of v And and
pulsars PSR 1828-11 and PSR B1257+12. Figure 2 demonstrates that new data of
the planetary system of v And, with the mean value of nv, equal to 145.1 kms~!
(see Table 1), are compatible with the data for terrestrial planets of the solar
system, for which nv,, has almost the same value of 145.0 kms~! [2]. A similarity
among the two planetary systems can be seen also in Fig. 1. Although the number
of planets for pulsar planetary systems are small, one may notice the well defined
"velocity levels” with the step of nearly 207 kms~!. However, one should not take
this as a final result because only two nv, are known. Future discoveries of other
pulsar planetary systems will probably change the number of levels defined by k in
Fig. 2. Indeed, one may even expect that the step of 207 kms~! might be decreased
to 207/8 = 25.9 kms~!, which is nearly equal to that of the solar system. This
would lead to the similarity in dynamical properties of diverse systems. However,
only future observations should give a definite answer to these expectations.

The velocity about 24 km s~! is deduced from the quantized redshifts of galaxies
[7-11] as one of the possible ”quantized periods”. Some other values like 36, 72 and
144 km s~ are also found. It is a great puzzle why the orbital velocities should be
related to the velocities derived from redshifts. However, one suspects that some
fundamental link exists among the systems.

Some authors prefer the fundamental velocity of about 144 kms~! [12-14]. This
was found for planets in the solar system if one takes all planets as a single system.
In the present model, the terrestrial planets are located at the level £k = 6, and
Jovian planets at k = 1, because vy is addopted to be 24 kms~!. In that case,
Jovian planets are considered as a subsystem with n = 2 for Jupiter, n = 3 for
Saturn, etc., as can be seen in Fig. 2 (see also Refs. [1-3]). The terrestrial planets
could be considered as the remnants of mass of a Jupiter-like planet, which failed
to be formed at n = 1 [1,14]. However, terrestrial planets may be taken as an
independent subsystem, with Mercury at n = 3, Venus at n = 4, etc., as can be
seen in Figs. 1 and 2.

The assumption vg ~ 144 kms~! will introduce many vacant orbits between
Jupiter and Pluto, if the square law for orbital radii is taken into account. Thus,
Jupiter will be at n = 11, Saturn at n = 15, Uranus at n = 21, Neptune at n = 26
and finally Pluto at n = 30. An analysis of the solar-system data suggests that
planets of v And are located at the velocity level k = 6, with vy ~ 24 kms™!. If v
is taken to be 144 kms™!, then k will be equal to one. Consequently, the value of
k, e.g., for the Jovian planets would be then 1/6. According to the present model,
that does not seem likely, because the ”spacing number” k is defined as an integer
number and determines the packing of orbits.

There is a hope that the same value vy can be attributed to the systems around
alike stars. For pulsars, one may suppose that vy could be equal to about 26
kms~! and consequently k should be equal to 8 and 16 for PSR 1828-11 and
PSR B1257+12, respectively. Although this assumption seems very attractive, it
cannot be confirmed without further observations.
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In conclusion, one may claim that the square law is adequate for the descrip-
tion of the orbital distribution for diverse systems: solar subsystems, extra-solar
planetary systems with stars similar to the Sun and even to planetary systems of
pulsars.
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THE QUANTIZATION OF THE SOLAR-LIKE GRAVITATIONAL SYSTEMS
ANTUN RUBCIC and JASNA RUBCIC
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Zagreb, Croatia; e-mail rubcicQsirius.phy.hr

Received 24 January 1998; Accepted 1 June 1998
|Reprinted with kind permission from editor of Fizika B |

Mean orbital distances 7, of planets from the Sun and of major satellites from the parent
planets Jupiter, Saturn and Uranus are described by the square law 7, = r1n?, where the
values of n are consecutive integers, and r; is the mean orbital distance expected atn =1
for a particular system. Terrestrial planets and Jovian planets are analysed as separate sys-
tems. Thus, fve independent solar-like systems are considered. The basic assumption is
that specifi orbital angular momentum is ”quantized”. Consequently, all orbital parame-
ters are also discrete. The number n relates to the law of orbital spacing. An additional
discretization, related to r1, i.e. to the scale of orbits, accounts for the detailed structure of
planar gravitational systems. Consequently, it is also found that orbital velocity v, multi-
plied by n is equal to the multiple of a fundamental velocity vo & 24 km s~*, valid for all
subsystems in the Solar System. This velocity is equal to one of the “velocity” increments
of quantized redshifts of galaxies.

PACS numbers: 95.10.Ce, 95.10.Fh, 96.30.-t UDC 523.2, 531.35
Keywords: planetary and satellite orbits, law of squares of integer numbers, discrete values of orbital
velocities

1. Introduction

Recently, Agnese and Festa [1] published their approach in explaining discrete orbital
spacing of planets in the Solar System. They used Bohr-Sommerfeld quantization rules and
obtained the square law for orbital radii of planets in the form a,, = a;n?, n =1,2,3...
All planets have been treated as one group. That assumption leads to many vacant orbits.
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For example, Jupiter and Saturn occupy the orbits at n = 11 and n = 15, respectively,
leaving three vacant orbits in between. Likewise, there are f ve vacant orbits between Sat-
urn and Uranus. However, according to the current views [2], the planets are about as
closely spaced as they could possibly be. Less massive planets are expected to be in more
tightly packed orbits than the larger ones.

Recently, Oliveira Neto [3] used the square law in the form ry, ., = 7o (n2 + m2) /2,
where n and m are integers. Only for Venus, Earth, Mars and Vesta m is not equal to
n, while n = m for all other planets, asteroid Camilla, Chiron and an unknown planet
between Uranus and Neptune. Moreover, an average mass of all planets and asteroids equal
to about 35 Earth masses is assumed in the calculation, which is not physically justified

In our earlier work [4,5], we have shown that a square law could be applied to planetary
orbital mean distances, as well as to those of major satellites of Jupiter, Saturn and Uranus.
The leading assumption was that vacant orbits should be avoided. A radical change in
treating the planetary orbits has been made by the separation of terrestrial planets from
the Jovian ones. It means that terrestrial planets are considered as an independent system,
enjoying the same status as the Jovian group of planets as well as the satellite system of
Jupiter, Saturn and Uranus. The division of planets into two groups is justifie by their
different physical, chemical and dynamical properties [4,6,7]. From a cosmogonical point
of view, an explanation could be the following: the centres of aggregation of future planets
have been governed by the simple square law. After the accretion process, Jupiter has been
formed in the orbit at n = 2, Saturn at n = 3, ending with Pluto at n = 6. The firs
Jovian protoplanet close to the Sun at n = 1, has never been formed due to the Sun’s
thermonuclear reactions. The high-melting-point materials have survived and accreted as
the system of terrestrial planets, while the gaseous components have been dispersed due to
the solar wind. Only beyond the ’temperature limit” of about 200 K, which corresponds to
about 5 - 10! m, could the giant Jovian planets exist [4].

The division of planets into two groups appeared also in solving the modifie
Schrodinger radial equation of the hydrogen-like atom introducing, of course, the grav-
itational potential [8] and coefficien of diffusion of Brownian motion which characterizes
the effect of chaos on large time scales [9a,10]. From a dynamical point of view, the fve
systems: terrestrial planets, Jovian planets, and satellites of Jupiter, Saturn and Uranus are
to a considerable degree adiabatic. Therefore, the relevant equations in the present model
include characteristic parameters of the particular system, but they also have a necessary
physical generality and consistency. However, many authors [7,11,12] have prefered to
treat the spacing of all planets with a single formula, like the Titius-Bode law or its numer-
ous modifications The authors of this work consider the square law, like that discovered
by Bohr in his planetary model of the hydrogen atom, more favourable for an analysis of
the planar gravitational systems. Moreover, it has been proposed [13] that the square law
of orbital spacing, could be termed the fourth Kepler’s law, in the honour of Kepler who
searched for a rule of planetary spacing about four centuries ago.

An application of the square law to the extra-solar planetary systems will certainly be
examined in the near future. Recently, firs attempts [5,10] were made for the three planets
of pulsar PSR B 1257+12.
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2. The model

A discrete distribution of planetary orbits may be obtained by the ”quantization” of an-
gular momentum J,. Let an orbiting mass be denoted by m,,, and mass of the central body
by M. Then, using Newton’s equation of motion for circular orbits, angular momentum
(supposing that m,, << M) is given by

Jn = Mpvnrn = Mp/GMry, (1)

where G is the gravitational constant, 7, is the radius of the n-th orbit and v, is the orbital
velocity. We assume that angular momentum is ’quantized”,

mup\/GMr, :nE, (2)

2w

where H may be treated as an effective ” Planck’s gravitational constant”, depending on
the particular system and even on the particular orbiting body. Equation (2) is not very
useful. What one can do is to divide H /27 by the mass of the orbiting body to obtain the
”specifi Planck’s constant” H' = H/(2mwm,,) which yields for the orbital radius

n2 HI2

Ty = eI (3)

H' is also system dependent, but the quantity H'/M is of the same order of magnitude for
all systems (see Table 1, and also Ref. 4). Variability of H'/M is described by a dimen-
sionless factor f multiplied by a universal constant 4, i.e., H/(2rm,M) = H'/M = fA.
Then, Eq. (3) takes the form

rn = o (FA) M. @

We have shown [4] that by comparing electrostatic and gravitational forces, as one possible
approach, the constant A may be define by the fundamental physical constants as follows:

A= 277% =1.9157-10" " m? kgt 571, (5)

where a = 2me?/(4dmeghc) is the fine-structur constant, e the charge of an electron, €
the permitivity of vacuum, h the Planck constant and ¢ the velocity of light. The dimension
of the constant A is that of angular momentum per square mass, and, in accordance with
Eq. (5), the simple proportionality between A and the Planck constant per square Planck’s
mass mp = (he/(2nG))Y/? = 2.177 - 108 kg [9b] is given by

h h
A= —>5, or A=—, (6)
am? m3

where mj = am?. A constant analogous to A has been define as p = 0.8 - 107'% m?

kg~! s~! by Wesson [14] in searching for a clue to a unificatio of gravitation and particle
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physics. Such a constant appeared also in Ref. 1 with the value 2.35-107¢ m? kg=! s~ 1.

Slightly different values of the same constant are due to different initial assumptions.
TABLE 1. Mean values of constants r1, H' /M and f, with the assigned values of integers
n, for planetary and satellite systems.

System r1 n H' /M I
(m) (m?s~'kg™")
Terrestrial |(0.639 & 0.016)101° | 3,4,5,6, | (0.462 +0.006)10~1° | 2.41 £ 0.03
planets 8
Jovian (1.751 £0.044)10™ | 2.3.4,5, | (2.418 £0.030)10~1° [12.61+0.16
planets 6
Jupiter’s (4.579 £0.180)107 | 2,3,4,5, | (1.268 £0.025)10~1° | 6.62+0.13
satellites 6
Saturn’s (0.390 £0.012)107 | 6,7,8,9, | (0.676 £0.010)10~° | 3.53 £ 0.05
satellites 10,11
Uranus’ (0.843 £0.018)107 | 3,4,5,6, | (2.542£0.027)10~1° [13.27 £ 0.28
satellites 7,8

Using Eqgs. (4) and (5), some important parameters of the solar subsystems, the orbital
radii 7, = rn?, specifi angular momenta J,, /m.,, orbital periods T}, and velocities vy,
are given by

2
T = (ﬂ) GMn?, (7)
ac

o~ (21) om @),

My, ac

3

T, =27 (@) GMn? (9),
U = %% (10)

In Eq. (10), ac/n = wvpp is the orbital velocity of an electron at the n-th orbit in the
Bohr’s model of the hydrogen atom, and the term 1/(2x f) is a gravitational correction
factor. This term is system dependent and it demonstrates that gravitational systems are
less regular than analogous electrodynamical systems.

3. Results and discussion

Distributions of specifi angular momenta of planets and major satellites according to
the linear relationship (Eq. (8)) are illustrated in Fig. 1.

10
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Fig. 1 Specifi angular momentum Jy,/m,, = /GMr, versus the integer number n for
Jovian and terrestrial planets (left scale) and for the major satellites of Jupiter, Saturn and
Uranus (right scale).

Discrete values of J, /m,, are obtained from Eq. (1) using the observed values of semi-
major axes as the mean distances of planets from the Sun, or of satellites from the parent
planet, which are taken as the orbital radii 7,, of approximate circular orbits. This intro-
duces small errors of r, [4], and of J,, /m,, for Mercury and Pluto, due to the eccentricities
of their orbits of 0.206 and 0.255, respectively [15]. The approximation of circular orbits is
very good for other planets and all major satellites. The integer numbers n are unambigu-
ously determined by the requirement of Eq. (8) that angular momenta are zero at n = 0,
resulting in the straight lines shown in Fig. 1, with no intercepts, as the best fit to the
deduced values of J,/my. The left scale corresponds to Jovian and terrestrial planets,
while the right scale is valid for major satellites of Jupiter, Saturn and Uranus. We have
also included in our calculations the satellites Amalthea, Janus and Puck (the largest of
the small ones), which are near the Roche limit of the parent planets Jupiter, Saturn and
Uranus, respectively, and also the largest asteroid Ceres. Therefore, the values of 1 in the
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square law r,, = r1n? for spacing of planetary orbits in accordance with Eq. (7), and also
of H'/M and f, which are listed in Table 1, differ slightly from the values given in our
earlier work [4]. Note that the orbit of the asteroid Ceres is at n = 8, which is nearly the
center of the Main Belt, whose extention is fromn = 7ton = 9.

There is one exception in treating the spacing of major satellites. Titan, the largest
satellite of Saturn, is not included in the system of smaller satellites from Janus to Rhea.
Titan would have the orbit at n = 19 if it were a member of that system. Seven vacant orbits
between Rhea and Titan suggest that Titan could be a member of a more extensive system,
similarly to Jupiter in the Jovian group of planets in relation to the terrestrial planets. Titan
and small satellites Hyperion and Japetus do not form a complete system.

Note that asteroids (except for the largest, Ceres), comets, planetary rings and outer
small satellites of planets can not be treated by Egs. (7-10) because, due to their small
masses, a variety of other physical processes (scattering, capture, impacts, planetary per-
turbations) prevail over the simple law. Moreover, it was recently shown in modeling the
massive extrasolar planets, that orbital evolution and significan migration of planets could
take place, due to the interaction of a planet with circumstellar disk, with the parent spin-
ning star and also due to the Roche lobe overfl w [16]. A planet may move very far from
its initial position of formation accompanied also with the loss of mass. However, under
certain conditions, planets maintain their position of formation. One may suppose that ini-
tial positions are governed by the square law according to the ”quantum-mechanical laws”,
but possible later evolution might be subjected to numerous “effects of classical physics”.

We have tried to correlate the factor f with the ratio of the total mass (m,, of orbiting
bodies to the mass M of the central body [5], more precisely, of f with (3~ m,,/M)/3.
The values of f for terrestrial planets, Jovian planets and satellites of Jupiter fi very well
a straight line, but there are strong deviations of f for satellites of Saturn, and particularly
for those of Uranus. Note that the planes of planetary orbits are close to the ecliptic (except
those of Mercury and Pluto) which is also valid for satellites of Jupiter, due to the small
inclination of Jupiter’s spin axis. However, the satellites of Saturn have an inclination of
27° and those of Uranus 98°. Their satellites have supposedly been formed in the equatorial
planes after the protoplanets, within the planetary envelopes, and obtained an additional
angular momentum of yet unknown origin. We believe that the deviation of the factor f
from the introduced correlation [5] has the same cause as the change of inclination.

In our later investigation, we have found that reciprocal values of the factor f take
discrete values that may be described by another integer number £, i.e.,
~1 = (0.06753 & 0.00085)k + (0.0115 & 0.0029), (11)
as may be seen in Fig. 2. Therefore, Eq. (10) may be written in the form
nvp, =v; ~ [(23.5+0.3)k + (4.0 £ 1.0)km s~ . (12)
The product of nv,, i.e. the orbital speed vy at n = 1 for a particular system, vs. n is

shown in Fig. 3. The values of n are taken from Table 1, and the mean velocities from
observed semimajor axes as v, = (GM/r,)'/? (see

12
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Fig. 2. Correlation of the reciprocal value of the factor f with integer number k.

Horizontal lines represent “velocity levels” with spacing define by vy = 23.5 km s~ !

(Eq. (12)). The integer number k is related to the scale of orbits in a system. It means that
a given system can have a series of discrete possible orbital distributions. That is hardly
understandable from the standpoints of classical physics, because one can only expect a
continuous change of orbital spacing. For example, Uranian satellites are characterized by
k = 1. Neglecting the value of f~! at k = 0 in Eq. (11), the orbital radii are approximately
described by 7, = const - Mn?/k2. If k = 2, the orbits would be contracted by the factor
four, i.e. contraction of orbits occurs in jumps. Consequently, reduced orbital radii r,, /M
become

| ®

2
_ n
= (1.07 £0.06) - 107** o (13)

n2
k2

By

v

ow

where G/v may be called a characteristic length with a dimension mkg~". The value of
vg in Eq. (13), equal to (25.0 = 0.7) km s~! was obtained from the fi of f~! vs. k with
zero intercept at k¥ = 0, and neglecting a constant term of velocity v1 at k = 0 (i.e., 4.0
km s~! in Eq. (12)). That causes a larger error in the calculation of r,,, v1 and of other
quantities, but the formulae are simpler in illustrating the main
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Fig. 3. The product nv, of mean orbital velocity v, = \/GM/r, and integer number
n versus n for Jovian and terrestrial planets and for the major satellites of Jupiter, Saturn
and Uranus. Integer number k (right scale) is related to the scaling of orbits. The “velocity
levels” are given by Eq. (12).

The orbital integers n and & determine the details of possible discrete gravitational struc-
tures.

The value of vy &~ 24 km s~! has been found as one of increments of the intrinsic
galactic redshifts derived from their ”quantized” values [17-21]. One may suspect that v
is important not only for the Solar System, but that it has a deeper physical meaning to be
revealed.

Equation (13) may be rewritten in another important, symmetrical form

T 9,2 _ G 5 9
Mvok =gcn (14)
The term G/c? is equal to the ratio of the Planck’s length Lp = (hG/(27c®))'/? and
Planck’s mass mp = (he/(27G))'/?,i.e., G/c* = Lp/mp. Hence, Eq. (14) takes a form

Tn L
M(kvo)2 = m—l;(nc)2. (15)
14
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Equation (15) gives a remarkable connection between macroscopic and microscopic pa-
rameters of gravitational systems.

Consider again the initial assumption in our model. The discretization of angular mo-
menta, using the approximation of circular orbits, is given by Eq. (2), i.e., muv,ry, =
nH /2. The present model permits to write a proper “quantum condition” in accordance
with Bohr as

Mm, -1 h
2 =n—. 16
MpVnTn ( m2 7Tf) n27T (16)

An approach to prove Eq. (16), using the theory of similarity, is given in Appendix. Equa-
tion (16) can be interpreted as follows: angular momentum of an orbiting body in a planar
gravitational system is proportional to the mass M of the central body and to the mass
my, of the orbiting body. Therefore, angular momentum per square mass is of special
importance. Further multiplication by m = am? scales a gravitational macroscopic
system to the microscopic (atomic) one. However, the ratio Mm,,/m§ must be multi-
plied by the factor 27 f, which has to be determined from observational data. Dynamic
properties of gravitational systems reach, in the limit, the electrodynamical ones. If the
quantities 7, = GM/v2 and m2 = h/A are introduced in Eq. (16), one easily obtains
vn = (27 f)"Lac/n for the velocity at the n-th orbit, in accordance with Eq. (10). For
2rf = 1, the orbital velocity distribution of the electron in Bohr’s hydrogen atom is ob-
tained. It has already been shown that nv, = v1 = ac/(2nxf) = kvg (see Fig. 3). For
k = 1, one obtains vy = 25.0 km s, and consequently, from vy = ac/(27 fo) follows
that the maximum value of 27 f is 27 fo = 87.6 & 2.5. Orbital radii are then simply given
by 1, = GM /v2 = (2nfo/(ac))>GMn?/k?, which is just Eq. (13). From Eq. (16), an
effective ”Planck’s gravitational constant” appears to be H = (27 f Mm,,/m3)h. Then,
the Schrodinger’s radial wave equation for a gravitational system generates the firs orbital
radius r; in agreement with Eq. (7), as it is shown in Appendix.

The present model describes the structures of planar gravitational systems. It includes
three parameters: two integer numbers, n and k, and a factor fy or velocity vg. Egs. (7-10)
may be written in an approximate form as

o = %GMZ—z, (17)
n‘i—’; = %GM%, (18)
T, = 27T%GMZ—2, (19)
v =l (20)

According to Eq. (12), nv, =~ (23.5k + 4.0) km s~1. Therefore, Eq. (20) deviates from
the best fi (Eq. (12)) by the factor (1 — 25k/(23.5k 4+ 4.0)), i.e. by about 9% if k = 1, and
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1/2

by about -3% if k = 6, while observational mean values of nv,, = n(GM/r,)'/? deviate

from the best fi (Eq. (12)) less than 2% on the average.

One may criticize the use of many parameters in the model. However, they seem to
be necessary, because n is related to the principal spacing of orbits, & takes care of the
packing of orbits, while v (or fy) characterizes several subsystems within a given system
(like our own Solar System). One should not be surprised if in another extra-solar system,
the quantity vg would take a different value compared with the Solar System. It could
possibly be 72, 36, 24, or 18 km s~1, as obtained in an analysis of the quantized redshifts
of the galaxies [17-20]. For example, the pulsar PSR B 1257+12 has three planets in orbits
for n equal to 5, 7 and 8 [5,10]. From the observational data, one obtains nv,, = 410 km
s~1, which gives k = 17 for vy = 24 km s~!. However, if one assumes vy = 37.3 km
s~1 (in accordance with Ref. 21, where the interval for redshift periodicity is 37.2 to 37.7
km s~ then k will be equal to 11. Hopefully, the future investigation of other planetary
systems will confir the ideas proposed in the present model.

4. Conclusion

The basis of the square law for the spacing of orbits of planets and of major satellites is
the discretization of angular momenta, similarly as in the old Bohr’s theory of the hydrogen
atom. However, the angular momentum of an orbiting body has to be reduced by the
mass of orbiting body and also by the mass of the central body. Moreover, the product
of these two masses must also be reduced by square of Planck’s mass multiplied by the
fine-structur constant &, in order to scale the macroscopic gravitational system to the
microscopic level, where the Planck’s reduced constant & = h/2x represents a quantum of
angular momentum. As a result of such an approach, two “quantum numbers” appear, the
firs one n for describing the law of orbital spacing and the second one & for the “packing”
of the orbits. One further parameter is necessary, that is equal for all systems within the
Solar System. It is the characteristic length G/v3 = (1.07 £ 0.06)107'® m kg~!. But
equally well, the third parameter may be a universal velocity vo ~ 24 km s~!. The three
parameters and the mass of the central body (see Egs. (17-20)) defin possible the discrete
structures of a planar gravitational system within the approximation of the circular orbits.

Velocity vy is equal to the velocity increments of the quantized redshifts of galaxies. A
great puzzle is how the planetary orbital velocities can obey the same quantization periods
as the intrinsic redshifts of the galaxies.

It is known that some researches do not believe that “quantum phenomena” play any
role, both in the formation and in the evolution of the Solar System. They rather suppose
that many macroscopic effects have had a predominant influenc on planetary spacing.
However, in our opinion, the derived results shown in Figs. 1 to 3 strongly suggest the
necessity for a certain ”quantum mechanical” treatment. As the firs approach, the model
analogous to the simplest one of the ”old quantum mechanics” has been elaborated in the
present work. Of course, further observational and theoretical investigations are necessary
for the development of more sophisticated models.
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Appendix

The similarity between the gravitational and Coulomb force between two particles of
mass my and charge e is well known. Moreover, one can imagine that these two forces be-
come identical for adequately chosen mass mg. From Gm3 /r? = €2 /(4meor?), it follows
that mg = (e?/(4mep@))/? = (ach/(27G))'/?, independently of the mutual distance of
particles. The mass my is related to the Planck’s mass mp by mo = a'/?2mp = 1.85910°
kg. It is reasonable to assume that for such a micro-gravitational system, a quantization of
angular momentum of the orbiting body should be the same as the one postulated by Bohr
for the electrodynamical system, i.e.,

h
MOVR0Tno = M. (A1)
s

For a real macro-gravitational system an analogous discretization could be

H

MpUplp = N—.
2w

(42)
To reach a complete similarity between the reference micro-model and a real planetary or
satellite system, analogous quantities must be in a constant ratio. These ratios, the so-called
similarity constants, such as N,,, = my,/mg, Ny = vy, /vng and N, = r,, /rng, must be in
definit mutual relationships, which can be generally determined from analogous equations
[22]. Thus, Eq. (A1) will transform into Eq. (A2) only with the correlation

N, N,N, = Nj, = % (A3)

which is an indicator of similarity, satisfie for every orbit and for any value of n. To
determine H, an additional indicator of similarity must be taken into account, which fol-

lows from analogous correlations for the forces corresponding to the micro-model and to
a system of a body (of mass m,,) orbiting the central one (of mass M):

v2gTno = Gmyg, (A4)
vir, = GM, and (45)
M
N2N, = —. (A6)
Mo

Introducing the second indicator of similarity (A6) into the firs one (A3), one obtains
H/h = Mm,/m}N,. Further, from Egs. (A1) and (A4) for mg = a'/?>mp, it follows
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vno = ac/n, and according to Eq. (10), N, = v, /vpe = (2 f)~L. Thus, the effective
”Planck’s gravitational constant” H is given by
Mm,

H = h(2rf
m

)s (A7)

where the factor f (see Table 1), determined from astronomical data, is included.

Finally, by introducing Eq. (A7) into Eq. (A2), the scaled ”quantum condition” pre-
sented by Eq. (16) is proved.

Consequently, Eq. (A7) should be used, e.g., to defin a macroscopic ’de Broglie wave-
length” A,, = H/mpyvy,. Introducing vy, from Eq. (10), one obtains A,, = 277, /n, where
ry, 1s given by Eq. (7). This is an expected result in the present model. A, may be trans-
formed into a form dependent on n and k as A, = (27 /v3)GMn/k? by using Eq. (17).
One may also write A, = Ain, which is an equivalent simple form of the square law

2
Ty = rin’.

Equation (A7) allows the use of the Schrodinger’s radial wave equation [8] to obtain the
orbital spacing. If the gravitational potential V (r) = —GMm/r and effective ”Planck’s

gravitational constant” H are introduced into the radial equation, it takes the form

dr 4 2dR 4 8772m2E’R+ 247T2GMm2R I(1+1)
dr2  rdr H2 r H2 r2

R=0,  (48)

where E' = E/m is the energy per unit mass of the orbiting body, R(r) is the radial
wave function and / is the angular quantum number. From the fourth term, the firs Bohr’s
radius” is

H2
"= GG 49
Introducing H define by Eq. (A7), with m,, = m, one obtains
2 2
o= (lf) aM, (A10)
ac

which is in agreement with Eq. (7) for n = 1. If the angular quantum number is limited
only to the values I = n — 1, then the probability maxima of the mass distribution will be
at positions given by r,, = r1n2. Such an approximation has been recently used by Nottale
et al. [23]. If all wave functions up to n = 10, with all possible values of [ are used [8],
then the positions of probability maxima slightly deviate from the square law. However,
it was already pointed out that the simple approach, related to the old quantum theory is
more appropriate for an understanding of gravitational phenomena [24]. Therefore, the
complete understanding of the rather formal application of the Schrodinger’s equation to
the Solar System needs further research.
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Abstract

The work with von Neumann algebras known as hyper-finite factors
of type II; associated naturally with quantum TGD, led to a proposal
for the quantization of the Planck constants associated with the sym-
metry algebras in M* and CP, degrees of freedom as h(M*) = nyhg
and A(CP,) = nyhg. A generalization of the notion of imbedding
space emerged as a geometric realization of the quantization in terms
of Jones inclusions. As a consequence, also a quantization of the Planck
constant appearing in Schrodinger equation emerges and is given by
h/ho = h(M*)/R(CP,). "Ruler and compass” integers correspond to
a very restricted set of number theoretically preferred values of n, and
ny. In this article the quantization of Planck constant and some of its
astrophysical and biological implications are briefly discussed.
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1.3.3 Improved predictions for planetary radii and predic-
tions for ratios of planetary masses

2 Dark matter hierarchy and quantization of Planck constants
2.1 Generalization of the p-adic length scale hypothesis and pre-
ferred values of Planck constants
2.2 How Planck constants are visible in Kéhler action?
2.3 Phase transitions changing the level in dark matter hierarchy

3 Some astrophysical applications
3.1 Bohr quantization of planetary orbits and preferred values of
Planck constant
3.2 Orbital radii of exoplanets
3.3 A more detailed model for planetary system
3.3.1 The interpretation of hg and pre-planetary period
3.3.2 Inclinations for the planetary orbits and the quantum
evolution of the planetary system
3.3.3 Eccentricities and comets
3.4 About the interpretation of the parameter vg
3.5 How do the magnetic flux tube structures and quantum grav-
itational bound states relate?
3.5.1 The notion of field body
3.5.2 (G, as a symmetry group of field body
3.5.3 Could gravitational Schrodinger equation relate to a
quantum control at magnetic flux tubes?
3.6 p-Adic length scale hypothesis and vy — vo/5 transition at
inner-outer border for planetary system

4 Some applications to condensed matter and biology
4.1 Exceptional groups and structure of water
4.2  Aromatic rings and large A phases
4.3 Model for a hierarchy of EEGs

5 Summary and outlook

1 Introduction

D. Da Rocha and Laurent Nottale, the developer of Scale Relativity, have
ended up with an highly interesting quantum theory like model for the
evolution of astrophysical systems [2]. In particular, this model applies to
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planetary orbits. Nottale predicted Bohr model like quantization for radii of
planetary orbits in his book Fractal Spacetime and Microphysics published
1993. The quantization was later discovered for exoplanets [1].

1.1 The model of Nottale and DaRocha

The model is simply Schrédinger equation with Planck constant & replaced
with what might be called gravitational Planck constant

GmM

Vo

h— hgr =

Here I have used units h = ¢ = 1. vy is a velocity parameter having the value
vo = 144.7 4+ .7 km /s giving vo/c = 4.6 x 10~%. The peak orbital velocity of
stars in galactic halos is 142+ 2 km/s whereas the average velocity is 156 £ 2
km/s. Also sub-harmonics and harmonics of vy seem to appear.

The model makes fascinating predictions which seem to hold true. For
instance, the radii of planetary orbits fit nicely with the prediction of the
hydrogen atom like model. The inner solar system (Mercury, Venus, Earth,
Mars) corresponds to vg and outer solar system to vg/5.

The predictions for the distribution of major axis and eccentrities have
been tested successfully also for exoplanets. Also the periods of 3 plan-
ets around pulsar PSR B1257+412 fit with the predictions with a relative
accuracy of few hours/per several months. Also predictions for the distri-
bution of stars in the regions where morphogenesis occurs follow from the
gravitational Schodinger equation.

What is important is that there are no free parameters besides vg. In [2]
a wide variety of astrophysical data is discussed and it seem that the model
works and has already now made predictions which have been later verified.

1.2 Quantization of Planck constant

In TGD framework [TGDview| the idea about quantized Planck constant
emerged originally from a TGD inspired model of topological quantum com-
putation [E9]. Large values of Planck constant would scale up quantal time
and length scales and make possible macroscopic quantum phases and thus
provide the new physics crucial for quantum models of living matter and
conscious brain.
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1.2.1 Dark matter as macroscopic quantum phase with a gigantic
value of Planck constant

Learning about evidence for Bohr quantization of planetary orbits based
on a gigantic value of gravitational constant [2, 3] led to the idea that the
Bohr orbitology for visible matter might reflect the presence of dark matter
characterized by gigantic values of Planck constant and thus in ” astroscopic”
quantum phase. In a strong contrast with the top-down approach of M-
theory, the road to quantum gravity might mimic the much more modest
approach leading from hydrogen atom to QED. Just as the Bohr model
for hydrogen atom resolved the infrared catastrophe (electron falling into
nucleus by emission of radiation), the Bohr model for planetary system
could prevent collapse of matter to black hole.

1.2.2 Quantization of Planck constants and hyper-finite factors
of type II;

The infinite-dimensional Clifford algebra of the configuration space of 3-
surfaces ("world of classical worlds”) corresponds to von Neumann algebra
known as hyperfinite factor of type II;. The so called Jones inclusions for
these algebras led via a sequence of educated guess to the recent proposal
for the quantization of Planck constants associated with symmetry algebras
of M* and CP; as integer multiples h(M*) = n,ho and h(CPy) = nyhg of
the minimal value hq of Planck constant. n, and n; correspond to orders of
maximal cyclic subgroups for the discrete subgroups of SU(2) characterizing
these inclusions and the formula follows using anyonic arguments.

A considerable generalization of the notion of imbedding space emerged
and a concrete geometric and topological interpretation for how quantum
groups characterized by phases ¢; = exp(in/n;), i = 1,b are realized in
physics. This implies also a model for phase transitions changing the values
of Planck constants as a complete or partial leakage of particle 3-surfaces
between different sectors of generalized imbedding spaces obtained by gluing
together various copies of imbedding space together along common M* or
CP, factor. One can say that two levels of hierarchy are dark relative to
each other if they correspond to a different sector of imbedding space.

The basic prediction is that ordinary Planck constant i appearing in the
Schrédinger equation can be expressed as h/hg = h(M*)/R(CP2) = ng/ny
and can in principle have all rational values. Number theoretic considera-
tions however favor what might be called ruler and compass rationals for
which n, and np define n-polygons constructible using only ruler and com-
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pass (the corresponding quantum phases are obtained by iterated square
root operation from rationals).

Quantization of Planck constants is equivalent with the scaling of co-
variant metrics of M* resp. C'P, by factor ng resp. n? followed by over-all
scaling by factor 1/n2 leaving Kihler action invariant. Hence C P, metric re-
mains invariant, and one avoids mathematical difficulties in gluing of various
copies of the imbedding space together isometrically. M* covariant metric
is scaled by (n/n4)? meaning that effective Planck constant appearing in
Schrodinger equation is (n,/np)ho. In this interpretation scaling of Planck
constants has a purely geometric meaning.

1.3 The evolution of the model for planetary system

A brief summary about the evolution of the model for planetary system is
in order.

1.3.1 Understanding the value of the parameter vy

The first observation was that TGD allows to understand the value of the
parameter vg/c assuming that cosmic strings and their decay remnants are
responsible for the dark matter. The number theoretically preferred predic-
tion would be vy = 27! and expressible in terms of fundamental constants of
quantum TGD (Planck length, C' P, radius, and Kéhler coupling strength).

The harmonics of vy could be understood as corresponding to perturba-
tions replacing cosmic strings with their n-branched coverings so that tension
becomes n?-fold: much like the replacement of a closed orbit with an orbit
closing only after n turns. 1/n-sub-harmonic would result when a magnetic
flux tube split into n disjoint magnetic flux tubes. Also rational multiples
of vg are possible if both mechanisms operate.

The general formula for hy,/hg as ruler and compass rational allowed a
more precise prediction for vy and led also to a prediction for the ratios of
planetary masses as ratios of ruler and compass rationals.

Later a possible interpretation of vy as a reduced light velocity emerged.
The reduction would be due to the warping of dark space-time sheets mean-
ing that the time component of the induced metric is reduced and one can
identify a possible mechanism leading to the warping in the phase transi-
tion increasing Planck constant. This effect implies also time dilatation and
distinguishes between TGD and General Relativity. These two explanations
need not be mutually exclusive.
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1.3.2 View about evolution of planetary system

The study of inclinations (tilt angles with respect to the Earth’s orbital
plane) leads to a concrete model for the quantum evolution of the planetary
system. Only a stepwise breaking of the rotational symmetry and angular
momentum Bohr rules plus Newton’s equation (or geodesic equation) are
needed, and gravitational Shrodinger equation holds true only inside flux
quanta for the dark matter.

a) During pre-planetary period dark matter formed a quantum coher-
ent state on the (Z°) magnetic flux quanta (spherical cells or flux tubes).
This made the flux quantum effectively a single rigid body with rotational
degrees of freedom corresponding to a sphere or circle (full SO(3) or SO(2)
symmetry).

b) In the case of spherical shells associated with inner planets the SO(3) —
SO(2) symmetry breaking led to the generation of a flux tube with the in-
clination determined by m and j and a further symmetry breaking, kind
of an astral traffic jam inside the flux tube, generated a planet moving in-
side flux tube. The semiclassical interpretation of the angular momentum
algebra predicts the inclinations of the inner planets. The predicted (real)
inclinations are 6 (7) resp. 2.6 (3.4) degrees for Mercury resp. Venus). The
predicted (real) inclination of the Earth’s spin axis is 24 (23.5) degrees.

¢) The vg — wvp/5 transition allowing to understand the radii of the
outer planets in the model of Da Rocha and Nottale could be understood
as resulting from the splitting of (Z° and gravi-) magnetic flux tube to five
flux tubes representing Earth and outer planets except Pluto, whose orbital
parameters indeed differ dramatically from those of other planets. The flux
tube has a shape of a disk with a hole glued to the Earth’s spherical flux
shell.

It is important to notice that effectively a multiplication n — 5n of
the principal quantum number is in question. This allows to consider also
alternative explanations. Perhaps external gravitational perturbations have
kicked dark matter from the orbit or Earth to n = 5k, k = 2,3, ..., 7 orbits:
the fact that the tilt angles for Earth and all outer planets except Pluto
(not a planet anymore!) are nearly the same, supports this explanation. Or
perhaps there exist at least small amounts of dark matter at all orbits but
visible matter is concentrated only around orbits containing some critical
amount of dark matter and these orbits satisfy n mod 5 = 0 for some
reason. TGD based explanation for so called flyby anomaly [6] is based on
this assumption [D6].

The rather amazing coincidences between basic bio-rhythms and the pe-
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riods associated with the states of orbits in solar system [D6] suggest that
the frequencies defined by the energy levels of the gravitational Schrodinger
equation might entrain with various biological frequencies such as the cy-
clotron frequencies associated with the magnetic flux tubes. For instance,
the period associated with n = 1 orbit in the case of Sun is 24 hours within
experimental accuracy for vyg.

1.3.3 Improved predictions for planetary radii and predictions
for ratios of planetary masses

The general prediction for the spectrum of % as ruler and compass rational
gives strong additional constraints but also flexibility since hg, = GMm/vg
can correspond to ruler and compass integer. The planetary mass ratios can
be produced with an accuracy better than 2 per cent assuming that fig,/hg
is ruler and compass rational.

Ruler and compass hypothesis for allows to improve the fit for the plan-
etary radii in solar system. Also the radii of exoplanets can be fitted with
few per cent accuracy (see the section ”Orbital radii of exoplanets” and the
tables of the Appendix). One cannot hope much more since star masses
are deduced theoretically. Moreover the ratios of planetary masses are pre-
dicted to be expressible as ratios of ruler and compass rationals and this
turns out to be true with 2 per cent accuracy (Table 2). Hence it seems that
the hypothesis deserves to be taken seriously. One can even consider the
possibility of deducing masses of stars from the orbital radii of exoplanets
so that stars models could be tested.

To sum up, it would be too early to say that the proposed model has
reached its final form but already at this stage a rich spectrum of predictions
follows. It is probably needless to add that the existence of the proposed
dark matter hierarchy means that a new period of voyages of discovery to
the levels of existence responsible for the special properties of living systems
would be waiting for us.

2 Dark matter hierarchy and quantization of Planck
constants

In this section the quantization of Planck constants in TGD framework is
briefly discussed. The detailed discussion can be found in [A9].

The recent geometric interpretation for the quantization of Planck con-
stants is based on Jones inclusions of hyper-finite factors of type I1; [A9].
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a) One can argue that different values of Planck constant correspond to
imbedding space metrics involving scalings of M* resp. CP, parts of the
metric deduced from the requirement that distances scale as h(CPs) resp.
h(M*%). Denoting the Planck constants by A(M?*) = n,hg and A(CP) =
npho, one has that covariant metric of M* is proportional to ng and covariant
metric of CP; to n?.

This however leads to difficulties with the isometric gluing of C' P» factors
of different copies of H together. Kahler action is however invariant under
over-all scaling of H metric so that one can scale it down by 1/n2 meaning
that M* covariant metric is scaled by (ny/n4)? and CP, metric remains
invariant and the difficulties in isometric gluing are avoided. This means
that if one regards Planck constant as a mere conversion factor, the effective
Planck constant scales as n,/ny, and Planck constant has a purely geometric
meaning as scaling factor of M* metric.

In Kihler action only the effective Planck constant e /ho = h(M*)/h(CPz)
appears and by quantum classical correspondence same is true for Schédinger
equation. Elementary particle mass spectrum is also invariant. Same ap-
plies to gravitational constant. The alternative assumption that M* Planck
constant is proportional to n, would imply invariance of Schrodinger equa-
tion but would not allow to explain Bohr quantization of planetary orbits
and would to certain degree trivialize the theory.

b) M* and CP, Planck constants do not fully characterize a given sec-
tor Mt x C'P,. Rather, the scaling factors of Planck constant given by the
integer n characterizing the quantum phase ¢ = exp(im/n) corresponds to
the order of the maximal cyclic subgroup for the group G C SU(2) char-
acterizing the Jones inclusion N' C M of hyper-finite factors realized as
subalgebras of the Clifford algebra of the ”world of the classical worlds”.
This means that subfactor N gives rise to G-invariant configuration space
spinors having interpretation as G-invariant fermionic states.

¢) Gy, C SU(2) C SU(3) defines a covering of M{ by C'P, points and
G, C SU(2) C SL(2,C) covering of CP» by M? points with fixed points
defining orbifold singularities. Different sectors are glued isometrically to-
gether along CP» if GGy, is same for them and along Mj‘; if G, is same for
them. The degrees of freedom lost by G-invariance in fermionic degrees of
freedom are gained back since the discrete degrees of freedom provided by
covering allow many-particle states formed from single particle states real-
ized in G group algebra. Among other things these many-particle states
make possible the notion of N-atom.

d) Phases with different values of scalings of M* and C'P, Planck con-
stants behave like dark matter with respect to each other in the sense that
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they do not have direct interactions except at criticality corresponding to a
leakage between different sectors of imbedding space glued together along
M* or CP, factors. In large h(M*?) phases various quantum time and length
scales are scaled up which means macroscopic and macro-temporal quan-
tum coherence. In particular, quantum energies associated with classical
frequencies are scaled up by a factor n,/n;, which is of special relevance
for cyclotron energies and phonon energies (superconductivity). For large
h(CPy) the value of heyy is small: this leads to interesting physics: in par-
ticular the binding energy scale of hydrogen atom increases by the factor

(nb/na)z-

2.1 Generalization of the p-adic length scale hypothesis and
preferred values of Planck constants

The evolution in phase resolution in p-adic degrees of freedom corresponds
to emergence of algebraic extensions allowing increasing variety of phases
exp(im/n) expressible p-adically. This evolution can be assigned to the emer-
gence of increasingly complex quantum phases and the increase of Planck
constant.

One expects that quantum phases ¢ = exp(im/n) which are expressible
using only iterated square root operation are number theoretically very spe-
cial since they correspond to algebraic extensions of p-adic numbers obtained
by an iterated square root operation, which should emerge first. Therefore
systems involving these values of ¢ should be especially abundant in Nature.

These polygons are obtained by ruler and compass construction and
Gauss showed that these polygons, which could be called Fermat polygons,
have np = 2 [[, F,, sides/vertices: all Fermat primes F,, in this expression
must be different. The analog of the p-adic length scale hypothesis emerges
since larger Fermat primes are near a power of 2. The known Fermat primes
F, = 22" + 1 correspond to n = 0,1,2,3,4 with Fy =3, [} =5, F = 17,
F3 = 257, Fy = 65537. It is not known whether there are higher Fermat
primes. n = 3,5, 15-multiples of p-adic length scales clearly distinguishable
from them are also predicted and this prediction is testable in living mat-
ter. I have already earlier considered the possibility that Fermat polygons
could be of special importance for cognition and for biological information
processing [HS].

This condition could be interpreted as a kind of resonance condition
guaranteing that scaled up sizes for space-time sheets have sizes given by p-
adic length scales. The numbers nr could take the same role in the evolution
of Planck constant assignable with the phase resolution as Mersenne primes
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have in the evolution assignable to the p-adic length scale resolution.

2.2 How Planck constants are visible in Kahler action?

h(M*) and h(CP,) appear in the commutation and anticommutation rela-
tions of various superconformal algebras. Only the ratio n,/n, of M* and
CP, Planck constants appears in Kahler action. This implies that Kéhler
function codes for radiative corrections to the classical action, which makes
possible to consider the possibility that higher order radiative corrections
to functional integral vanish as one might expect at quantum criticality.
For a given p-adic length scale space-time sheets with all allowed values
of Planck constants are possible. Hence the spectrum of quantum critical
fluctuations could in the ideal case correspond to the spectrum of & coding
for the scaled up values of Compton lengths and other quantal lengths and
times. If so, large h phases could be crucial for understanding of quantum
critical superconductors, in particular high 7, superconductors.

2.3 Phase transitions changing the level in dark matter hi-
erarchy

The identification of the precise criterion characterizing dark matter phase
is far from obvious. TGD actually suggests an infinite number of phases
which are dark relative to each other in some sense and can transform to
each other only via a phase transition which might be called de-coherence
or its reversal and which should be also characterized precisely.

A possible solution of the problem comes from the general construction
recipe for S-matrix. Fundamental vertices correspond to partonic 2-surfaces
representing intersections of incoming and outgoing light-like partonic 3-
surfaces.

a) If the characterization of the interaction vertices involves all points
of partonic 2-surfaces, they must correspond to definite value of Planck
constant and more precisely, definite groups G, and G} characterizing dark
matter hierarchy. Particles of different phases could not appear in the same
vertex and a phase transition changing the particles to each other analogous
to a de-coherence would be necessary.

b) If transition amplitudes involve only a discrete set of common orbifold
points of 2-surface belonging to different sectors then the phase transition
between relatively dark matters can be described in terms of S-matrix. It
seems that this option is the correct one. In fact, also propagators are
essential for the interactions of visible and dark matter and since virtual
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elementary particles correspond at space-time level C'P;, type extremals with
4-dimensional C'P, projection, they cannot leak between different sectors of
imbedding space and therefore cannot mediate interactions between different
levels of the dark matter hierarchy. This would suggest that the direct
interactions between dark and ordinary matter are very weak.

If the matrix elements for real-real partonic transitions involve all or at
least a circle of the partonic 2-surface as stringy considerations suggest [C2],
then one would have clear distinction between quantum phase transitions
and ordinary quantum transitions. Of course, the fact that the points which
correspond to zero of Riemann Zeta form only a small subset of points com-
mon to real partonic 2-surface and corresponding p-adic 2-surface, implies
that the rate for phase transition is in general small. On the other hand, for
the non-diagonal S-matrix elements for ordinary transitions would become
very small by almost randomness caused by strong fluctuations and the rate
for phase transition could begin to dominate.

3 Some astrophysical applications

There is considerable support for the Bohr quantization of planetary orbits
both in solar system and from exoplanets. The needed gigantic values of
gravitational Planck constant can be understood in TGD framework and
assigned to dark matter. Theory also predicts preferred ratios for planetary
masses and provides a possible interpretation for the velocity parameter
characterizing hg4-. The interpretation of the symmetry group Z,, associated
with dark matter can be assigned as broken rotational symmetries of the
gravi-magnetic and electric bodies mediating interaction between star and
planet. Tifft’s quantization of cosmic redshifts can be also understand in
this framework. A thorough discussion of this subject can be found at [D6].
Here only a brief summary is given.

3.1 Bohr quantization of planetary orbits and preferred val-
ues of Planck constant

The predictions of the generalization of the p-adic length scale hypothesis are
consistent with the TGD based model for the Bohr quantization of planetary
orbits and some new non-trivial predictions follow.

Since the macroscopic quantum phases with minimum dimension of al-
gebraic extension should be especially abundant in the universe, the natural
guess is that the values of the gravitational Planck constant correspond to
np-multiples of ordinary Planck constant.
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a) The model can explain the enormous values of gravitational Planck
constant hg,/ho =~ GMm/vy) = ng/ny. The favored values of this pa-
rameter should correspond to ng, /an so that the mass ratios mi/mg =
NE, 1 NF, /M F, NF, , for planetary masses should be preferred. The general
prediction GMm/vy = ng/ny is of course not testable.

b) Nottale [2] has suggested that also the harmonics and subharmonics
of \ are possible and in fact required by the model for planetary Bohr orbits
(in TGD framework this is not absolutely necessary). The prediction is that
favored values of n should be of form np = 2F [ F; such that F; appears at
most once. In Nottale’s model for planetary orbits as Bohr orbits in solar
system n = 5 harmonics appear and are consistent with either np, — Fing,
or with npp — np, /F1 if possible.

T-B Bohr, Bohry, Bohr,
Planet R, /R | [n, Ry /R] [n, Rpr/ R] [r/s, Rpr/R]
Mercury | 1 (3, 1] (3, 1] [1,1]
Venus .93 [4, .95] [4, .95] [1,.95]
Earth | .96 5, 1.08] [5, 1.08] [1,1.08]
Mars | 1.03 | [6, 1.03] [6, 1.03] [1,1.03]
Jupiter | .95 [11, .98] [2 x 5,.81] [17/15,1.04]
Saturn | 1.00 | [3 x 5, 1.00] | [3 x 5, 1.00] | [1,1.00]
Uranus | .95 22, 1.04] | [4x 5,86] | [16/15,.98]
Neptune | 1.23 | (27, 1.03] | [5 x5, .88] | [17/16,.99]
Pluto | .02 31, 1.01] | [6x5,95] | [L,.95]

Table 1. The table represents the ratios Ry, /R of predictions R, of vari-
ous models for orbital radii to their experimental average values R. The first
column represents Titius-Bode law (T-B in table). The remaining columns
represent variants of Bohr orbit model assuming a) that the principal quan-
tum number n corresponds to the best possible fit and vy has single value,
b) assuming the scaling vg — vo/5 for outer planets, ¢) assuming besides
vg — vp/5 the modification vg — (r/s)vg, where r/s is ruler and compass
rational. The scaling of vg is chosen to give complete fit for Mercury.

Table 1 gives the radii of planet for Titius-Bode law and various Bohr
orbit models. Not surprisingly, option a) gives the best fit with errors be-
ing considerably smaller than the maximal error |AR|/R ~ 1/n except for
Uranus. The fit given by option b) is poor for Jupiter, Uranus and Saturnus
but improves for option c).
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The prediction for the ratios of planetary masses can be tested. In the
table below are the experimental mass ratios 7e,, = m(pl)/m(E), the best
choice of rr = [nFqe/nFp] * X, X common factor for all planets, and the
ratios Tpred/Teap = NFa(Planet)npy(Earth)/ngq(Earth)npy(planet). The
deviations are at most 2 per cent.

planet Me |4 E M J
y x5 21 x 17 [ 29 x 5 x 17 | 28 x 17 | 2265
y/x 1.01 .98 1.00 .98 1.01
planet S U N P
y 214 o 3 % 5% 17 22i7><5 2173x17 24§17
y/x 1.01 98 99 99

Table 2. The table compares the ratios x = m(pl)/(m(FE) of planetary
mass to the mass of Earth to prediction for these ratios in terms of integers
ng associated with Fermat polygons. y gives the best fit for the allowed
factors of the known part y of the rational npq/ngp, = yX characterizing
planet, and the ratios y/z. Errors are at most 2 per cent.

3.2 Orbital radii of exoplanets

Orbital radii of exoplanets serve as a test for the quantization hypothesis.
Hundreds of them are already known and in [4] tables listing basic data for
for more than one hundred exoplanets can be found. Tables of Appendix
provide also references and links to sources giving data about stars, in par-
ticular star mass M using solar mass Mg as a unit. Hence one can test the
formula for the orbital radii given by the expression

2
oo My (1)
TE 52 Ms
Here the correction factor X depends on the model.

a) X = 1 corresponds to the prediction of the simplest model allowing
only single value of vg. It turns out that the simplest option assuming X = 1
fails badly for some planets: the resulting deviations of order 20 per cent
typically but in the worst cases the predicted radius is by factor of ~ .5 too
small.

b) Nottale [2] has proposed that it is possible to improve the situation
by allowing harmonics and sub-harmonics of vg which would mean X = n?
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or 1/n?.

¢) In TGD framework general quantization of Planck constant allows X
to be any rational but number theoretical arguments prefer the values of X
which are squares of "ruler and compass” rationals:

X = (—
(n2) :
ng = 2% x[[F, ., F, €{3,517,257,2'9 + 1} . (2)

Si

Here a given Fermat prime F,, can appear only once.

The values of X used in the fit correspond to X € {(2/3)2,(3/4)?,
(4/5)2,(5/6)2, (15/17)2, (15/16)2, (16/17)?} ~ {.44,.56,.64,.69, .78, .88, .89}
and their inverses. The tables summarizing the resulting fit using both
X =1 and value giving optimal fit are given in the Appendix. The devia-
tions are typically few per cent and one must also take into account the fact
that the masses of stars are deduced theoretically using the spectral data
from star models. I am not able to form an opinion about the real error
bars related to the masses.

3.3 A more detailed model for planetary system

The Bohr orbit model for planetary system leads to the idea that the evolu-
tion of planetary system could be understood in terms of dark matter. One
can also ask whether the inclinations and eccentricities of planetary orbits
could be deduced from Bohr orbitology.

3.3.1 The interpretation of 7, and pre-planetary period

ligr could corresponds to a unit of angular momentum for quantum coher-
ent states at magnetic flux tubes or walls containing macroscopic quantum
states. Quantitative estimate demonstrates that 7. for astrophysical ob-
jects cannot correspond to spin angular momentum. For Sun-Earth system
one would have iy, ~ 10""h. This amount of angular momentum realized as
a mere spin would require 1077 particles! Hence the only possible interpre-
tation is as a unit of orbital angular momentum. The linear dependence of
hgr on m is consistent with the additivity of angular momenta in the fusion
of magnetic flux tubes to larger units if the angular momentum associated
with the tubes is proportional to both m and M.

Just as the gravitational acceleration is a more natural concept than
gravitational force, also hg,./m = GM /vy could be more natural unit than
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hgr. It would define a universal unit for the circulation ¢ v - di, which is
apart from 1/m-factor equal to the phase integral ¢ psd¢ appearing in Bohr
rules for angular momentum. The circulation could be associated with the
flow associated with outer boundaries of magnetic flux tubes surrounding
the orbit of mass m around the central mass M > m and defining light like
3-D CDs analogous to black hole horizons.

The expression of hy, depends on masses M and m and can apply only
in space-time regions carrying information about the space-time sheets of
M and and the orbit of m. Quantum gravitational holography suggests that
the formula applies at 3-D light like causal determinant (CD) X;* defined by
the wormhole contacts gluing the space-time sheet X 13 of the planet to that
of Sun. More generally, Xl3 could be the space-time sheet containing the
planet, most naturally the magnetic flux tube surrounding the orbit of the
planet and possibly containing dark matter in super-conducting state. This
would give a precise meaning for hg, and explain why 7,4 does not depend
on the masses of other planets.

The simplest option consistent with the quantization rules and with the
explanatory role of magnetic flux structures is perhaps the following one.

a) X} is a torus like surface around the orbit of the planet contain-
ing delocalized dark matter. The key role of magnetic flux quantization in
understanding the values of vy suggests the interpretation of the torus as
a magnetic or Z° magnetic flux tube. At pre-planetary period the dark
matter formed a torus like quantum object. The conditions defining the
radii of Bohr orbits follow from the requirement that the torus-like object
is in an eigen state of angular momentum in the center of mass rotational
degrees of freedom. The requirement that rotations do not leave the torus-
like object invariant is obviously satisfied. Newton’s law required by the
quantum-classical correspondence stating that the orbit corresponds to a
geodesic line in general relativistic framework gives the additional condition
implying Bohr quantization.

b) A simple mechanism leading to the localization of the matter would
have been the pinching of the torus causing kind of a traffic jam leading to
the formation of the planet. This process could quite well have involved a
flow of matter to a smaller planet space-time sheet Yl3 topologically con-
densed at Xl?’. Most of the angular momentum associated with torus like
object would have transformed to that of planet and situation would have
become effectively classical.

¢) The conservation of magnetic flux means that the splitting of the
orbital torus would generate a pair of Kahler magnetic charges. It is not
clear whether this is possible dynamically and hence the torus could still
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be there. In fact, TGD explanation for the tritium beta decay anomaly
citeTroitsk,Mainz in terms of classical Z° force [F8] requires the existence
of this kind of torus containing neutrino cloud whose density varies along
the torus. This picture suggests that the lacking n = 1 and n = 2 orbits
in the region between Sun and Mercury are still in magnetic flux tube state
containing mostly dark matter.

d) The fact that hg, is proportional to m means that it could have varied
continuously during the accumulation of the planetary mass without any
effect in the planetary motion: this is of course nothing but a manifestation
of Equivalence Principle.

e) It is interesting to look for the scaled up versions of Planck mass mp; =

\/Tigr /i x /]G = /M Ms/vy and Planck length Lp; = y/hgr/hx/L/G =
G\/MlMQ/UO. For M1 = M2 = M this gives mp; = M/\/QT ~ 456 x M
and Lp; = rg/2\/vo ~ 22.8 X rg, where rg is Schwartshild radius. For Sun
rg is about 2.9 km so that one has Lp; ~ 66 km. For a few years ago it was
found that Sun contains ”inner-inner” core of radius about R = 300 km [11]
which is about 4.5 X Lp;.

3.3.2 Inclinations for the planetary orbits and the quantum evo-
lution of the planetary system

The inclinations of planetary orbits provide a test bed for the theory. The
semiclassical quantization of angular momentum gives the directions of an-
gular momentum from the formula

m

cos(0) m

,ml <y (3)
where 6 is the angle between angular momentum and quantization axis and
thus also that between orbital plane and (x,y)-plane. This angle defines the
angle of tilt between the orbital plane and (x,y)-plane.

m = j = n gives minimal value of angle of tilt for a given value of n of
the principal quantum number as

n

cos(l) = —m— . 4

©) n(n+1) )

For n = 3,4,5 (Mercury, Venus, Earth) this gives § = 30.0, 26.6, and 24.0
degrees respectively.
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Only the relative tilt angles can be compared with the experimental
data. Taking as usual the Earth’s orbital plane as the reference the relative
tilt angles give what are known as inclinations. The predicted inclinations
are 6 degrees for Mercury and 2.6 degrees for Venus. The observed values
[12] are 7.0 and 3.4 degrees so that the agreement is satisfactory. If one
allows half-odd integer spin the fit is improved. For j = m = n — 1/2 the
predictions are 7.1 and 2.9 degrees for Mercury and Venus respectively. For
Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto the inclinations are 1.9,
1.3, 2.5, 0.8, 1.8, 17.1 degrees. For Mars and outer planets the tilt angles
are predicted to have wrong sign for m = j. In a good approximation the
inclinations vanish for outer planets except Pluto and this would allow to
determine m as m ~ \/bn(n + 1)/6: the fit is not good.

The assumption that matter has condensed from a matter rotating in
(x,y)-plane orthogonal to the quantization axis suggests that the directions
of the planetary rotation axes are more or less the same and by angular
momentum conservation have not changed appreciably. The prediction for
the tilt of the rotation axis of the Earth is 24 degrees of freedom in the
limit that the Earth’s spin can be treated completely classically, that is for
m = j >> 1 in the units used for the quantization of the Earth’s angular
momentum. What is the value of 7,4, for Earth is not obvious (using the unit
hgr = GM 2 /v the Earth’s angular momentum would be much smaller than
one). The tilt of the rotation axis of Earth with respect to the orbit plane
is 23.5 degrees so that the agreement is again satisfactory. This prediction
is essentially quantal: in purely classical theory the most natural guess for
the tilt angle for planetary spins is 0 degrees.

The observation that the inner planets Mercury, Venus, and Earth have
in a reasonable approximation the predicted inclinations suggest that they
originate from a primordial period during which they formed spherical cells
of dark matter and had thus full rotational degrees of freedom and were in
eigen states of angular momentum corresponding to a full rotational sym-
metry. The subsequent SO(3) — SO(2) symmetry breaking leading to the
formation of torus like configurations did not destroy the information about
this period since the information about the value of 7 and m was coded by
the inclination of the planetary orbit.

In contrast to this, the dark matter associated with Earth and outer
planets up to Neptune formed a flattened magnetic or Z° magnetic flux tube
resembling a disk with a hole and the subsequent symmetry breaking broke
it to separate flux tubes. Earth’s spherical disk was joined to the disk formed
by the outer planets. The spherical disk could be still present and contain
super-conducting dark matter. The presence of this ” heavenly sphere” might
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closely relate to the fact that Earth is a living planet. The time scale T =
2w R/c is very nearly equal to 5 minutes and defines a candidate for a bio-
rhythm.

If this flux tube carried the same magnetic flux as the flux tubes asso-
ciated with the inner planets, the decomposition of the disk with a hole to
5 flux tubes corresponding to Earth and to the outer planets Mars, Jupiter,
Saturn and Neptune, would explain the value of vg correctly and also the
small inclinations of outer planets. That Pluto would not originate from
this structure, is consistent with its anomalously large values of inclination
i = 17.1 degrees, small value of eccentricity e = .248, and anomalously large
value of inclination of equator to orbit about 122 degrees as compared to
23.5 degrees in the case of Earth [12].

3.3.3 Eccentricities and comets

Bohr-Sommerfeld quantization allows also to deduce the eccentricities of the
planetary and comet orbits. One can write the quantization of energy as

2
P2 vj Py kB
2my  2mar?  2mar2sin?(0)  r n? ’
k2 V2
1 thr X mq 5 X mq ( )

Here one has kK = GMm;. FE; is the binding energy of n = 1 state. In
the orbital plane (# = 7/2,pg = 0) the conditions are simplified. Bohr
quantization gives py = mhg,. implying

p% k2 h?]r _ k

Ey
2my  2mr?  r n? -’

(6)

For p, = 0 the formula gives maximum and minimum radii 4 and eccen-
tricity is given by

@2 o e VTR (7)
T+ 1+44/1 -2

For small values of n the eccentricities are very large except for m = n.
For instance, for (m = n — 1,n) for n = 3,4,5 gives e = (.93, .89, .86)
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to be compared with the experimental values (.206, .007, .0167). Thus
the planetary eccentricities with Pluto included (e = .248) must vanish in
the lowest order approximation and must result as a perturbation of the
magnetic flux tube.

The large eccentricities of comet orbits might however have an interpre-
tation in terms of m < n states. The prediction is that comets with small
eccentricities have very large orbital radius. Oort’s cloud is a system weakly
bound to a solar system extending up to 3 light years. This gives the upper
bound n < 700 if the comets of the cloud belong to the same family as
Mercury, otherwise the bound is smaller. This gives a lower bound to the
eccentricity of not nearly circular orbits in the Oort cloud as e > .32.

3.4 About the interpretation of the parameter v,

The formula for the gravitational Planck constant contains the parameter
vo/c = 2711, This velocity defines the rotation velocities of distant stars
around galaxies. The presence of a parameter with dimensions of velocity
should carry some important information about the geometry of dark mat-
ter space-time sheets. The interpretation in terms of cosmic strings and
magnetic flux tubes has been already discussed but also alternative inter-
pretations can be considered.

Velocity like parameters appear also in other contexts. There is evidence
for the Tifft’s quantization of cosmic red-shifts in multiples of vy/c = 2.68 x
1075/3: also other units of quantization have been proposed but they are
multiples of vy [5].

The strange behavior of graphene includes high conductivity with con-
duction electrons behaving like massless particles with light velocity replaced
with vo/c = 1/300. The TGD inspired model [J1] explains the high con-
ductivity as being due to the Planck constant A(M*) = 6k increasing the
delocalization length scale of electron pairs associated with hexagonal rings
of mono-atomic graphene layer by a factor 6 and thus making possible over-
lap of electron orbitals. This explains also the anomalous conductivity of
DNA containing 5- and 6-cycles [J1].

1. Is dark matter warped?

The reduced light velocity could be due to the warping of the space-time
sheet associated with dark electrons. TGD predicts besides gravitational
red-shift a non-gravitational red-shift due to the warping of space-time sheets
possible because space-time is 4-surface rather than abstract 4-manifold. A
simple example of everyday life is the warping of a paper sheet: it bends
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but is not stretched, which means that the induced metric remains flat al-
though one of its component scales (distance becomes longer along direction
of bending). For instance, empty Minkowski space represented canonically
as a surface of M* x C'P, with constant C' P, coordinates can become peri-
odically warped in time direction because of the bending in C'P, direction.
As a consequence, the distance in time direction shortens and effective light-
velocity decreases when determined from the comparison of the time taken
for signal to propagate from A to B along warped space-time sheet with
propagation time along a non-warped space-time sheet.

The simplest warped imbedding defined by the map M* — S!, S! a
geodesic circle of CP,. Let the angle coordinate of S depend linearly on
time: ® = wt. gy component of metric becomes 1 — R%w? so that the light
velocity is reduced to vg/c = V1 — R?w?. No gravitational field is present.

The fact that M* Planck constant ngho defines the scaling factor n? of
C' P> metric could explain why dark matter resides around strongly warped
imbeddings of M*. The quantization of the scaling factor of CP, by R* —
n2R? implies that the initial small warping in the time direction given by
g = 1—¢, e = R?w?, will be amplified to g;; = 1 —n2e if w is not affected in
the transition to dark matter phase. n, = 6 in the case of graphene would
give 1 —x ~ 1 —1/36 so that only a one per cent reduction of light velocity
is enough to explain the strong reduction of light velocity for dark matter.

2. Is c/vg quantized in terms of ruler and compass rationals?

The known cases suggests that c¢/vg is always a rational number express-
ible as a ratio of integers associated with n-polygons constructible using only
ruler and compass.

a) ¢/vg = 300 would explain graphene. The nearest rational satisfying
the ruler and compass constraint would be ¢ = 5 x 210/17 ~ 301.18.

b) If dark matter space-time sheets are warped with cy/v = 2! one can
understand Nottale’s quantization for the radii of the inner planets. For
dark matter space-time sheets associated with outer planets one would have
c/vg =5 x 2.

c¢) If Tifft’s red-shifts relate to the warping of dark matter space-time
sheets, warping would correspond to vg/c = 2.68 x 1075 /3. ¢/vg = 2° x 17 x
257/5 holds true with an error smaller than .1 per cent.

3. Tifft’s quantization and cosmic quantum coherence

An explanation for Tifft’s quantization in terms of Jones inclusions could
be that the subgroup G of Lorentz group defining the inclusion consists of
boosts defined by multiples n = nny of the hyperbolic angle 79 ~ vg/c. This

39
Quantization in Astrophysics ...


me
Rectangle


would give v/c = sinh(nny) ~ nvy/c. Thus the dark matter systems around
which visible matter is condensed would be exact copies of each other in
cosmic length scales since G would be an exact symmetry. The property
of being an exact copy applies of course only in single level in the dark
matter hierarchy. This would mean a delocalization of elementary particles
in cosmological length scales made possible by the huge values of Planck
constant. A precise cosmic analog for the delocalization of electron pairs in
benzene ring would be in question.

Why then 7y should be quantized as ruler and compass rationals? In the
case of Planck constants the quantum phases ¢ = exp(imn/np) are number
theoretically simple for ny a ruler and compass integer. If the boost exp(n) is
represented as a unitary phase exp(imn) at the level of discretely delocalized
dark matter wave functions, the quantization 1y = n/np would give rise to
number theoretically simple phases. Note that this quantization is more
general than ng = np1/nrs.

The interpretation in terms of warping would suggest that the dark mat-
ter associated with distant stars in the galactic halos moves with a reduced
light velocity in a state similar to that of conduction electrons in graphene.
The consistency with the interpretation based on magnetic flux quanta re-
mains open.

3.5 How do the magnetic flux tube structures and quantum
gravitational bound states relate?

In the case of stars in galactic halo the appearance of the parameter vy
characterizing cosmic strings as orbital rotation velocity can be understood
classically. That vy appears also in the gravitational dynamics of planetary
orbits could relate to the dark matter at magnetic flux tubes. The argument
explaining the harmonics and sub-harmonics of vy in terms of properties
of cosmic strings and magnetic flux tubes identifiable as their descendants
strengthens this expectation. As a matter fact, magnetic body corresponds
also to gravi-magnetic body since classical gauge fields and gravitational
field are very closely related since C'P, coordinates are primary dynamical
variables.

3.5.1 The notion of field body

Topological field quantization implies that one can assign to a material sys-
tem also field identity, field body. Field body contains both electric and
magnetic part and consists of flux quanta of these fields identifiable as space-
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time sheets. The notion of magnetic body plays a key role in TGD inspired
theory of consciousness being the ultimate intentional agent, experiencer,
and performer of bio-control and can have astrophysical size. This does not
sound so counter-intuitive if one takes seriously the idea that cognition has
p-adic space-time sheets as space-time correlates and that rational points
are common to real and p-adic number fields. The point is that infinitesi-
mal in p-adic topology corresponds to infinite in real sense so that cognitive
and intentional structures would have literally infinite size.

The magnetic flux tubes carrying various supra phases can be inter-
preted as special instance of dark energy and dark matter. This suggests
a correlation between gravitational self-organization and quantum phases
at the magnetic flux tubes and that the gravitational Schrodinger equation
somehow relates to the ordinary Schrodinger equation satisfied by the macro-
scopic quantum phases at magnetic flux tubes. In [A9] I have proposed that
the transition increasing Planck constant occurs when perturbation theory
fails and thus reduces the higher order radiative corrections. Interestingly,
the transition to large Planck constant phase should occur when the masses
of interacting is above Planck mass since gravitational self-interaction en-
ergy is V.~ GM?/R. For the density of water about 10? kg/m? the volume
carrying a Planck mass correspond to a cube with side 2.8 x 104 meters.
This corresponds to a volume of a large neuron, which suggests that this
phase transition might play an important role in neuronal dynamics.

3.5.2 G, as a symmetry group of field body

The group G, C SU(2) C SL(2,C) appearing in the quantization of Planck
constant, means exact rotational symmetry realized in terms of M% cover-
ings of C'Py. The 5- and 6-cycles in biochemistry (sugars, DNA,....) are
excellent candidates for these symmetries. For very large values of Planck
constant, say for the values A(MZ1)/h(CPy) = GMm/vy = (ng/np)ho,
vp = 27 required by the model for planetary orbits as Bohr orbits [D6],
(G, is huge and corresponds to either Z,, or in the case of even value of n,
to the group generated by Z,, and reflection acting on plane and containing
2n, elements.

The notion of field body, in particular magnetic body, seems to provide
the only conceivable candidate for a geometric object possessing G, as sym-
metries. In the first approximation the magnetic field associated with a dark
matter system is expected to be modellable as a dipole field having rotational
symmetry around the dipole axis. Topological quantization means that this
field decomposes into flux tube like structures related by the rotations of Z,
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or Ds,. Dark particles would have wave functions delocalized to this set of
these flux quanta and span group algebra of G,. Note that electric body as
a structure consisting of radial electric flux tubes makes also sense and can
possess G, as a symmetry.

Magnetic and electric flux quanta would naturally mediate gravi-magnetic
and -electric interactions in the TGD based model for the quantization of
radii of planetary orbits and this explains the dependence of hgy. on the
masses of planet and central object [D6].

3.5.3 Could gravitational Schrodinger equation relate to a quan-
tum control at magnetic flux tubes?

An infinite self hierarchy is the basic prediction of TGD inspired theory
of consciousness (”everything is conscious and consciousness can be only
lost”). Topological quantization allows to assign to any material system a
field body as the topologically quantized field pattern created by the system
[L4, K1]. This field body can have an astrophysical size and would utilize
the material body as a sensory receptor and motor instrument.

Magnetic flux tube and flux wall structures are natural candidates for
the field bodies. Various empirical inputs have led to the hypothesis that
the magnetic flux tube structures define a hierarchy of magnetic bodies, and
that even Earth and larger astrophysical systems possess magnetic body
which makes them conscious self-organizing living systems. In particular,
life at Earth would have developed first as a self-organization of the super-
conducting dark matter at magnetic flux tubes [L4].

For instance, EEG frequencies corresponds to wavelengths of order Earth
size scale and the strange findings of Libet about time delays of conscious
experience [13, 14] find an elegant explanation in terms of time taken for sig-
nals propagate from brain to the magnetic body [K1]. Cyclotron frequencies,
various cavity frequencies, and the frequencies associated with various p-adic
frequency scales are in a key role in the model of bio-control performed by
the magnetic body. The cyclotron frequency scale is given by f = eB/m and
rather low as are also cavity frequencies such as Schumann frequencies: the
lowest Schumann frequency is in a good approximation given by f = 1/27R
for Earth and equals to 7.8 Hz.

1. Quantum time scales as “bio-rhythms” in solar system?

To get some idea about the possible connection of the quantum con-
trol possibly performed by the dark matter with gravitational Schrédinger
equation, it is useful to look for the values of the periods defined by the
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gravitational binding energies of test particles in the fields of Sun and Earth
and look whether they correspond to some natural time scales. For instance,
the period T = 2GMgn?/v} defined by the energy of n'* planetary orbit de-
pends only on the mass of Sun and defines thus an ideal candidate for a
universal ”bio-rhytm”.

For Sun black hole radius is about 2.9 km. The period defined by the
binding energy of lowest state in the gravitational field of Sun is given T =
2G Mg /v3 and equals to 23.979 hours for vy/c = 4.8233 x 104 Within
experimental limits for vy/c the prediction is consistent with 24 hours! The
value of vy corresponding to exactly 24 hours would be vy = 144.6578 km/s
(as a matter fact, the rotational period of Earth is 23.9345 hours). As if as
the frequency defined by the lowest energy state would define a ”biological”
clock at Earth! Mars is now a strong candidate for a seat of life and the day
in Mars lasts 24hr 37m 23s! n = 1 and n = 2 are orbitals are not realized in
solar system as planets but there is evidence for the n = 1 orbital as being
realized as a peak in the density of IR-dust [2]. One can of course consider
the possibility that these levels are populated by small dark matter planets
with matter at larger space-time sheets. Bet as it may, the result supports
the notion of quantum gravitational entrainment in the solar system.

The slower rhythms would become as n? sub-harmonics of this time
scale. Earth itself corresponds to n = 5 state and to a rhythm of .96 hours:
perhaps the choice of 1 hour to serve as a fundamental time unit is not
merely accidental. The magnetic field with a typical ionic cyclotron fre-
quency around 24 hours would be very weak: for 10 Hz cyclotron frequency
in Earth’s magnetic field the field strength would about 10~'! T. However,
T = 24 hours corresponds with 6 per cent accuracy to the p-adic time scale
T(k = 280) = 2137(2,127), where T/(2,127) corresponds to the secondary
p-adic time scale of .1 s associated with the Mersenne prime Mo = 2127 —1
characterizing electron and defining a fundamental bio-rhytm and the dura-
tion of memetic codon [TGDgeme].

Comorosan effect [15, J5] demonstrates rather peculiar looking facts
about the interaction of organic molecules with visible laser light at wave-
length A = 546 nm. As a result of irradiation molecules seem to undergo
a transition S — S5*. S* state has anomalously long lifetime and stability
in solution. S — S* transition has been detected through the interaction
of S* molecules with different biological macromolecules, like enzymes and
cellular receptors. Later Comorosan found that the effect occurs also in non-
living matter. The basic time scale is 7 = 5 seconds. p-Adic length scale
hypothesis does not explain 7, and it does not correspond to any obvious
astrophysical time scale and has remained a mystery.
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The idea about astro-quantal dark matter as a fundamental bio-controller
inspires the guess that 7 could correspond to some Bohr radius R for a solar
system via the correspondence 7 = R/c. As observed by Nottale, n = 1
orbit for v9 — 3wy corresponds in a good approximation to the solar ra-
dius and to 7 = 2.18 seconds. For vg — 2vg n = 1 orbit corresponds to
T = AU/(4 x 25) = 4.992 seconds: here R = AU is the astronomical unit
equal to the average distance of Earth from Sun. The deviation from 7¢ is
only one per cent and of the same order of magnitude as the variation of the
radius for the orbit due to orbital eccentricity (a — b)/a = .0167 [12].

2. Earth-Moon system

For Earth serving as the central mass the Bohr radius is about 18.7
km, much smaller than Earth radius so that Moon would correspond to
n = 147.47 for vy and n = 1.02 for the sub-harmonic vy/12 of vy. For an
afficionado of cosmic jokes or a numerologist the presence of the number of
months in this formula might be of some interest. Those knowing that the
Mayan calendar had 11 months and that Moon is receding from Earth might
rush to check whether a transition from v/11 to v/12 state has occurred
after the Mayan culture ceased to exist: the increase of the orbital radius
by about 3 per cent would be required! Returning to a more serious mode,
an interesting question is whether light satellites of Earth consisting of dark
matter at larger space-time sheets could be present. For instance, in [L4]
I have discussed the possibility that the larger space-time sheets of Earth
could carry some kind of intelligent life crucial for the bio-control in the
Earth’s length scale.

The period corresponding to the lowest energy state is from the ratio
of the masses of Earth and Sun given by Mg/Mg = (5.974/1.989) x 1076
given by Tgp = (Mg/Mg) x Ts = .2595 s. The corresponding frequency
fe = 3.8535 Hz frequency is at the lower end of the theta band in EEG
and is by 10 per cent higher than the p-adic frequency f(251) = 3.5355
Hz associated with the p-adic prime p ~ 2%, k = 251. The corresponding
wavelength is 2.02 times Earth’s circumference. Note that the cyclotron
frequencies of Nn, Fe, Co, Ni, and Cu are 5.5,5.0,5.2,4.8 Hz in the magnetic
field of .5 x 10™* Tesla, which is the nominal value of the Earth’s magnetic
field. In [M4] I have proposed that the cyclotron frequencies of Fe and Co
could define biological rhythms important for brain functioning. For vy/12
associated with Moon orbit the period would be 7.47 s: I do not know
whether this corresponds to some bio-rhytm.

It is better to leave for the reader to decide whether these findings sup-
port the idea that the super conducting cold dark matter at the magnetic
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flux tubes could perform bio-control and whether the gravitational quantum
states and ordinary quantum states associated with the magnetic flux tubes
couple to each other and are synchronized.

3.6 p-Adic length scale hypothesis and vy — vy/5 transition
at inner-outer border for planetary system

vg — vo/b transition would allow to interpret the orbits of outer planets
as n > 1 orbits. The obvious question is whether inner to outer zone as
vo — v/5 transition could be interpreted in terms of the p-adic length scale
hierarchy [E5, TGDpad].

a) The most important p-adic length scale are given by primary p-adic
length scales L(k) = 2(k=151)/2 5 10 nm and secondary p-adic length scales
L(2,k) = 27151 % 10 nm, k prime.

b) The p-adic scale L(2,139) = 114 Mkm is slightly above the orbital
radius 109.4 Mkm of Venus. The p-adic length scale L(2,137) ~ 28.5 Mkm
is roughly one half of Mercury’s orbital radius 57.9 Mkm. Thus strong form
of p-adic length scale hypothesis could explain why the transition vy — vy/5
occurs in the region between Venus and Earth (n = 5 orbit for vy layer and
n =1 orbit for vy/5 layer).

c¢) Interestingly, the primary p-adic length scales L(137) and L(139) cor-
respond to fundamental atomic length scales which suggests that solar sys-
tem be seen as a fractally scaled up ”secondary” version of atomic system.

d) Planetary radii have been fitted also using Titius-Bode law predict-
ing r(n) = ro + 1 x 2. Hence on can ask whether planets are in one-one
correspondence with primary and secondary p-adic length scales L(k). For
the orbital radii 58,110, 150,228 Mkm of Mercury, Venus, Earth, and Mars
indeed correspond approximately to k= 276,278,279,281: note the spe-
cial position of Earth with respect to its predecessor. For Jupiter, Saturn,
Uranus, Neptune, and Pluto the radii are 52,95,191,301,395 Mkm and would
correspond to p-adic length scales L(280 + 2n)), n = 0,...,3. Obviously the
transition vg — vy/5 could occur in order to make the planet—p-adic length
scale one-one correspondence possible.

e) It is interesting to look whether the p-adic length scale hierarchy
applies also to the solar structure. In a good approximation solar radius .696
Mkm corresponds to L(270), the lower radius .496 Mkm of the convective
zone corresponds to L(269), and the lower radius .174 Mkm of the radiative
zone (radius of the solar core) corresponds to L(266). This encourages the
hypothesis that solar core has an onion like sub-structure corresponding to
various p-adic length scales. In particular, L(2,127) (L(127) corresponds
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to electron) would correspond to 28 Mm. The core is believed to contain
a structure with radius of about 10 km: this would correspond to L(231).
This picture would suggest universality of star structure in the sense that
stars would differ basically by the number of the onion like shells having
standard sizes.

Quite generally, in TGD Universe the formation of join along boundaries
bonds is the space-time correlate for the formation of bound states. This
encourages to think that (Z°) magnetic flux tubes are involved with the
formation of gravitational bound states and that for vg — vo/k corresponds
either to a splitting of a flux tube resembling a disk with a whole to k pieces,
or to the scaling down B — B/k? so that the magnetic energy for the flux
tube thickened and stretched by the same factor k? would not change.

4 Some applications to condensed matter and bi-
ology

Dark matter hierarchy has a wide spectrum of biological applications. Ex-
amples are a model for high T, super-conductivity as a quantum criti-
cal phenomenon involving phases with different values of Planck constant
[J1, J2, J3], a model for a hierarchy of EEGs based on the model of super-
conductivity and on the notion of dark magnetic body [M3, F9, J6], the
notion of dark ”N-atoms” (NN corresponds to number of sheets in multi-
ple covering of CP, by M* points suggesting how symbolic representations
and language like structures emerge already at the level of bio-molecules
[F9, L2, J6].

Planck constant can have also values smaller than ordinary Planck con-
stant given in terms of ruler and compass rationals. Hydrinos (hydrogen
atoms with fractional principal quantum number) reported by Mills [10]
could be understood in this framework [A9]. In this model the states with
fractional principal quantum number predicted by g-Laquerre equation [A9]
would serve as intermediate states for transitions to dark matter phase. Here
only two examples are briefly discussed.

4.1 Exceptional groups and structure of water

By McKay correspondence finite subgroups of SU(2) correspond to subset
of ADE groups which has led to a proposal that TGD could be able to
mimic corresponding gauge theories using the states of group algebras of fi-
nite sub-groups. The Dynkin diagrams of exceptional Lie groups Eg and Fg
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correspond to exceptional subgroups of rotation group in the sense that they
cannot be reduced to symmetry transformations of plane. They correspond
to the symmetry group Sy X Zs of tedrahedron and As x Zs of dodecahedron
or its dual polytope icosahedron (As is 60-element subgroup of S5 consist-
ing of even permutations). Maximal cyclic subgroups are Z4 and Z5 and
and thus their orders correspond to Fermat polygons. Interestingly, n = 5
corresponds to minimum value of n making possible topological quantum
computation using braids and also to Golden Mean.

There is evidence for an icosahedral clustering in water [7]. Synaptic
contacts contain clathrin molecules which are truncated icosahedrons and
form lattice structures and are speculated to be involved with quantum com-
putation like activities possibly performed by microtubules. Many viruses
have the shape of icosahedron. One can ask whether these structures could
be formed around templates formed by dark matter corresponding to 120-
fold covering of C'P, points by M4 points and having i(C P») = 5h¢ perhaps
corresponding color confined light dark quarks. Of course, a similar covering
of M$ points by C'P, could be involved.

4.2 Aromatic rings and large i phases

Aromatic rings contain odd number of 7 delocalized electron pairs with
atoms in the same plane. The delocalization of 7 electrons in the ring
is used to explain the stability of these compounds [8]. Benzene is the
classical example of this kind of structure. Delocalization and anomalous
DNA conductivity [9] suggest interpretation in terms n, = 5 or n, = 6 phase
(note that these integers correspond to ruler and compass polygons). DNA
conductivity would result from overlap of electrons between rings along DNA
strand. Delocalization might give also rise to Cooper pairs [J1].

Aromatic rings consisting of 5 or 6 carbons are very common in biol-
ogy. DNA basis have been already mentioned. Carbohydrates consist of
monosaccharide sugars of which most contain aromatic ring (glucose used
as metabolic fuel are exception). Monoamine neurotransmitters are neuro-
transmitters and neuromodulators that contain one amino group that is con-
nected to an aromatic ring by a two-carbon chain (-CH2-CH2-). The neuro-
transmitters known a monoamines are derived from the four aromatic amino
acids phenylalanine, tyrosine, histidine, tryptophan. Also norepinephrine,
dopamine, and serotonin involve aromatic rings As a rule psychoactive drugs
involve aromatic rings: for instance, LSD contains four rings.

These observations inspire the question whether the compounds con-
taining aromatic rings serve as junctions connecting pre- and postsynaptic
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neurons and induce Josephson currents between them. If Josephson ra-
diation codes for the mental images communicated to the magnetic body,
the psychoactive character of these compounds could be understood. One
can also ask whether these compounds induce quantum criticality making
possible generation of large h phases?

4.3 Model for a hierarchy of EEGs

For the model of dark matter hierarchy appearing in the model of living
matter one has ng = 2%, k =1,2,3, .., 7 for cyclotron time scales below life
cycle for a magnetic field By = .2 Gauss at k = 4 level of hierarchy (the field
strength is fixed by the model for the effects of ELF em fields on vertebrate
brain at harmonics of cyclotron frequencies of biologically important ions
[M3]). Note that By scales as 2~ '* from the requirement that cyclotron
energy is constant.

A successful model of EEG emerges explaining its band structure and
narrow resonances inside bands. EEG can be interpreted in terms of com-
munications from cell membrane to magnetic body using dark Josephson
radiation and the control of genome by magnetic body using dark cyclotron
radiation. DNA strands would be organized at magnetic flux sheets like
lines of text on a page of book. Super-genome would code coherent gene ex-
pression at the level of organs and hyper-genome containing super-genomes
of different organisms as text lines would be responsible for coherent gene
expression at the level of populations.

The hierarchical structure of magnetic body implies a hierarchy of EEGs
and ordinary EEG corresponds to a magnetic body with size of order Earth
from Compton length of EEG photons. The large value of h guarantees that
dark EEG photons are above thermal threshold and therefore not masked
by the thermal noise. Great leaps in evolution would naturally correspond
to an emergence of a new level in dark matter hierarchy at the level of
individual organism.

The not easily acceptable general prediction is that the field bodies as-
sociated with living matter would have sizes up to light life. On the other
hand, Libet’s findings about strange time delays of consciousness can be
understood in terms of magnetic body of size of order Earth.

5 Summary and outlook

The predicted dark matter hierarchy means giving up the reductionistic
world view. Fractality and possibility to used simple scaling arguments
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makes this vision highly predictive and testable. Of course, a lot remains to
be understood. For instance, it is not yet clear whether the two interpre-
tations of the parameter vy appearing in the model of planetary orbits are
mutually consistent.

The new view has also implications for elementary particle -, nuclear
-, and condensed matter physics [F8, F9, J6, J1, J2, J3]. Darkness of va-
lence quarks could allow improved understanding of color confinement. Dark
variants of electro-weak gauge bosons and gluons with zoomed up Compton
wave length might be directly relevant to the understanding of even ordinary
condensed matter [F9]. High T, super-conductivity represents one particu-
lar condensed matter application in which zoomed up electrons play a role
[J1].

Perhaps the most fascinating applications of the theory would be to living
systems and to quantum model of brain. For instance, I have proposed that
charge entanglement over macroscopic distances made possible by dark W
bosons might be a fundamental mechanism in quantum control in living
matter.
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Appendix: Tables comparing predicted and observed
radii of exoplanets

The tables below represent the comparison of predictions of TGD based
model for the orbital radii with known radii in the case of exoplanets (the
model is discussed in section ”Orbital radii of exoplanets). In the tables
R denotes the value of minor semiaxis of the planetary orbit using AU
as a unit and M the mass of star using solar mass Mg as a unit. n is
the value of the principal quantum number and R; the radius assuming
X = (r/s)?> = 1 and Ry the value for the best choice of X as ratio of
“ruler and compass integers”. The data about radii of planets are from
tables at http://exoplanets.org/almanacframe.html and star masses from
the references contained by the tables.
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Star Name
HD73256
HD83443
HD46375
HD179949
HD187123b
HD120136
HD330075
BD-103166
HD209458
HD76700
HD217014
HD9826b
HD49674
HD68988
HD168746
HD217107
HD162020
HD130322
HD108147
HD38529b
HD75732b
HD195019
HD6434
HD192263
GJ876c
HD37124b
HD143761
HD75732c
HD74156b
HD168443b
GJ876b
HD3651
HD121504
HD178911
HD16141
HD114762
HD80606
HD117176
HD216770
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Star Name
HD52265
HD73526
HD82943c
HD8574
HD169830
HD9826¢c
HD202206
HD89744
HD134987
HD12661b
HD150706
HD40979
HD92788
HD142
HD28185
HD142415
HD108874b
HD4203
HD177830
HD128311b
HD27442
HD210277
HD82943b
HD20367
HD114783
HD137759
HD19994
HD147513
HD222582
HD65216
HD141937
HD41004A
HD160691b
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.13
.02
.88
.91
.94
11
.82
.94
.88
.07
.01
.04
.05
.13
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15

15

16

15

Orr P P P PO, FPORFRRFPFPFPFPLPOOOOFHLH OO, OORRFEEFE OO

.04
.97
.97
.00
.01
.01
.94
.95
.05
.97
.98
.00
.96
.96
.94
.97
.03
.13
.02
.01
.03
.94
11
.05
.94
.00
.07
.01
.04
.05
.99
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Star Name
HD23079
HD186427
HD4208
HD114386
HD213240
HD10647
HD10697
HD95128b
HD190228
HD114729
HD111232
HD2039
HD136118
HD50554
HD9826d
HD196050
HD216437
HD216435
HD169830c
HD106252
HD12661c
HD23596
HD168443c
HD145675
HD11964Db
HD39091
HD38529c
HD70642
HD33636
HD95128c
HD190360
HD74156¢
HD22049
HD30177
HD89307
HD72659
HD75732d

Quantization in Astrophysics ...

O DWW WWWWWWWWNNNNNNNDNDNNDNDMNDMNDMNNMNENDNNNMNNNMNNMNNMNNE,ERER, R

R

.65
.67
.67
.62
.03
.10
.13
.09
.00
.08
.97
.19
.40
.32
.53
.43
.43
.70
.75
.54
.60
.86
.87
.85
.10
.29
.71
.30
.56
.73
.65
.82
.54
.86
.15
.50
.90

OO 0O 0O O rOFrRrOFRF PP PP FPPPLPPLPORPLPRPLPLRPRPRPPLPODOOOFRLREP,LEPL,EP,OORRE

.10
.01
.93
.68
.22
.07
.10
.03
.83
.93
.78
.98
.24
.07
.30
.10
.07
.25
.40
.96
.07
.30
.01
.00
.10
.10
.39
.00
.99
.03
.96
.27
.80
.95
.95
.95
.95

O ©W 00 OW W 0 0 ~NO0WOWN~NONNNNNONONNNOYWNOO”B

I e = I =
W= O O = o O

=)
—

DWW W PE WP WWWWNNNNNNNNDNDNDNDMNDMNMENNMENMNNNMNNMNNRER,ERPR,RPR PR

.58
.45
.82
.74
.76
.10
.16
.02
.12
.82
.00
.92
.43
.09
.55
.16
.74
.45
.74
.46
.74
.55
.59
.56
.82
.56
.56
.24
.21
.12
.84
A1
.87
.80
.80
.60
.42

R1/R

PP OOO0OFrRrRRFRPR KPP OCOOMHPHFODLOOOMPROMPROMPROPRPOMPOPFPOPFPOFRP, P, OR,BEL, OO

.96
.87
.09
.07
.87
.00
.01
.97
.06
.88
.01
.88
.01

.01
.89
.13
.91

.97
.05
.89

.91
.08
.96
.98

.05
.08
.09
.98
.92
.02
.09
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R2/R

o

O, OO Rr P ORFP,PR OO0 PR PP RPLPOFPFOOFRRPRPREPERPREPEPERLPLPORLRPEOOOO

.96
.99
.96
.95
.98

.01
.97
.06

.01

.01
.02
.01
.01
.88
.91

.97
.05
.01
.03
.02
.03
.96
.96
.98
.03
.97
.05
.08
.96
.98
.92
.02
.96
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1 Introduction

In [G2] a semiclassical model based on dark matter and hierarchy of Planck
constants is developed for the fractionized principal quantum number n
claimed by Mills [1] to have at least the valuesn = 1/k, k = 2,3,4,5,6,7, 10.
This model could explain the claimed fractionization of the principal quan-
tum number n for hydrogen atom [1] in terms of single electron transitions
for all cases except n = 1/2: the basis reason is that Jones inclusions are
characterized by quantum phases ¢ = exp(ir/n), n > 2. Since quantum
deformation of the standard quantum mechanism is involved, this motivates
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an attempt to understand the claimed fractionization in terms of g-analog
of hydrogen atom.

The Laguerre polynomials appearing in the solution of Schrédinger equa-
tion for hydrogen atom possess quantum variant, so called g-Laguerre poly-
nomials [2], and one might hope that they would allow to realize this semi-
classical picture at the level of solutions of appropriately modified Schrodinger
equation and perhaps also resolve the difficulty associated with n = 1/2. Un-
fortunately, the polynomials discussed in [2] correspond to 0 < ¢ < 1 rather
than complex values of ¢ = exp(im/m) on circle and the extrapolation of the
formulas for energy eigenvalues gives complex energies. It is however easy
to modify the definition of g-derivative and it turns out that it is possible to
reproduce n = 1/2 state exactly and n = 1/m, m > 2 states in a reasonable
approximation as solutions of g-Laquerre equation for s-wave states. Also
the generalization to associated g-Laquerre equation is straightforward.

2 g-Laquerre equation for ¢ = exp(im/m)

The most obvious modification of the Laguerre equation for S-wave sates
(which are the most interesting by semiclassical argument) in the complex
case is based on the replacement

0. — (@ +0D)

3;1)f _ f(qﬂ;)_—lf(l“)7
qg = expim/m) (1)

to guarantee hermiticity. When applied to the Laguerre equation

d’L, dL,
xW—F(l—x) T =nL, , (2)

and expanding L,, into Taylor series

L,(z) = Zlnx”, (3)

one obtains difference equation
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an+lln+1 + bnln =0 )
1

An+1 = E [Ron+1 — Ron + 2Rp11R1 + 3Ry)] + TRl [Rp+1 + Ri)
R 1
- " 94 -
T R
R, = 2cos[(n—1)n/m]—2cos[nm/m] . (4)

Here n? is the fractionized principal quantum number determining the en-
ergy of the g-hydrogen atom. One cannot pose the difference equation on
lp since this together with the absence of negative powers of x would imply
the vanishing of the entire solution. This is natural since for first order
difference equations lowest term in the series should be chosen freely.

3 Polynomial solutions of g-Laquerre equation

The condition that the solution reduces to a polynomial reads as

b, = 0 (5)
and gives
1 R
9 — 4
n > oR, (6)

For n = 1 one has n? = 1 so that the ground state energy is not affected.
At the limit N — 0o one obtains n? — n so that spectrum reduces to that
for hydrogen atom. The periodicity R, +onr = R, reflects the corresponding
periodicity of the difference equation which suggests that only the values n <
2m—1 belong to the spectrum. Spectrum is actually symmetric with respect
to the middle point [N/2] which suggests that only n < [m/2] corresponds to
the physical spectrum. An analogous phenomenon occurs for representations
of quantum groups. When m increases the spectrum approaches integer
valued spectrum and one has n > 1 so that no fractionization in the desired
sense occurs for polynomial solutions.
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4 Non-polynomial solutions of g-Laquerre equa-
tion

One might hope that non-polynomial solutions associated with some frac-
tional values of n? near to those claimed by Mills might be possible. Since
the coefficients a,, and b,, are periodic, one can express the solution ansatz
as

1

_ 2m k_2mk _ p2m
Ln(z) = P, )(x)zk:(lx =Py )(x)m7
2m—1
PyM(x) = Y
k=0
lQm
a = —F , (7)
lo

This solution behaves as 1/ asymptotically but has pole at zo, = (1/a)/?™
for a > 0.
The expression for la,, /lp = a is

2m b
a = _P2m—k (8)
et ®2m—k+1

This can be written more explicitly as

2m
a = (R[] X« .
k=1

Rop—j + (_an) + 1)R1

X = )
Rim—2k+1 — Ram—ok + 4Rom_p+1R1 + 2R3 + 3Ry
R, = 2cos[(n—1)m/m]—2cos[nm/m] . 9)
This formula is a specialization of a more general formula for n = 2m

)

and resulting ratios [,,/ly can be used to construct me with normaliza-

tion P2™(0) = 1.
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5 Results of numerical calculations

Numerical calculations demonstrate following.

a) For odd values of m one has a < 0 so that a a continuous spectrum
of energies seems to result without any further conditions.

b) For even values of m a has a positive sign so that a pole results.

For even value of m it could happen that the polynomial Pgm) () has
a compensating zero at x,, so that the solution would become square inte-
grable. The condition for reads explicitly

p2m) ((1)212) = 0. (10)

If me) (z) has zeros there are hopes of finding energy eigen values satis-
fying the required conditions. Laguerre polynomials and also g-Laguerre
polynomials must posses maximal number of real zeros by their orthogo-
nality implied by the hermiticity of the difference equation defining them.
This suggests that also Pan) (z) possesses them if a does not deviate too
much from zero. Numerical calculations demonstrate that this is the case
for n9 < 1.

For ordinary Laguerre polynomials the naive estimate for the position of
the most distant zero in the units used is larger than n but not too much
so. The naive expectation is that Lo, has largest zero somewhat above
z = 2m and that same holds true a small deformation of Lo, considered
now since the value of the parameter a is indeed very small for n? < 1. The
ratio zo,/2m is below .2 for m < 10 so that this argument gives good hopes
about zeros of desired kind.

One can check directly whether z, is near to zero for the experimentally
suggested candidates for n?. The table below summarizes the results of
numerical calculations.

a) The table gives the exact eigenvalues 1/n,) with a 4-decimal accuracy

and corresponding approximations 1/ nq:) = k for k = 3,...,10. For a given

value of m only single eigenvalue n? < 1 exists. If the observed anomalous
spectral lines correspond to single electron transitions, the values of m for
them must be different. The value of m for which n? ~ 1 /k approximation
is optimal is given with boldface. The value of k increases as m increases.
The lowest value of m allowing the desired kind of zero of P?™ is m = 18
and for k € {3,10} the allowed values are in range 18, .., 38.

b) n? = 1/2 does not appear as an approximate eigenvalue so that for
even values of m quantum calculation produces same disappointing result
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as the classical argument. Below it will be however found that n? = 1/2 is
a universal eigenvalue for odd values of m.

m 1/n2 1/n? | m 1/nq2) 1/n9
18 3 2.7568 | 30 8 7.5762
20 4 3.6748 | 32 8 8.3086
22 ) 4.5103 | 34 9 9.0342
24 5 5.3062 | 36 10 9.7529
26 6 6.0781 | 38 10 10.4668
28 7 6.8330

Table 1. The table gives the approximations 1/n?)_ = 1/k and corre-

sponding exact values 1/n?) in the range k = 3, ..., 10 for which pm (Too)
is nearest to zero. The corresponding values of m = 2k vary in the range,
k = 18,...,38. For odd values of m the value of the parameter a is nega-
tive so that there is no pole. Boldface marks for the best approximation by

1/n2 = k.

6 How to obtain n? = 1/2 state?

For odd values of m the quantization recipe fails and physical intuition tells
that there must be some manner to carry out quantization also now. The
following observations give a hunch about be the desired condition.

a) For the representations of quantum groups only the first m spins are
realized. This suggests that there should exist a symmetry relating the
coefficients I,, and [, ., and implying n? =1 /2 for odd values of m. This
symmetry would remove also the double degeneracy associated with the
almost integer eigenvalues of n?. Also other fractional states are expected
on basis of physical intuition.

b) For n? = 1/2 the recursion formula for the coefficients I,, involves
only the coefficients R,,.

c¢) The coefficients Ry have symmetries Ry, = Ryiom and Ry = — R

There is indeed this kind of symmetry. From the formula

Ly L
o= 2R)" ][] Xx .
lo k=1

R+ (—2n9 + 1R,
X = 2 (11)
[Ron—2k+1 — Rn—okr + 4Rp_p+1R1 + 2R7 + 3Ry
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one finds that for n? =1 /2 the formula giving l,, 4., in terms of [,, changes
sign when n increases by one unit

App1 = (_1)mAna

A, = ] ntm— 2R)™ I Xitn -
im1 dn+m— K+l kel —
(12)
The change of sign is essentially due to the symmetries an4m = —a, and

bnem = b,. This means that the action of translations on A, in the space
of indices n are represented by group Zs.

This symmetry implies a = loy,/lo = —(Im)(lo)? so that for n? = 1/2
the polynomial in question has a special form

P2 = PP Aa™)
A = Ay . (13)

The relationship a = —A? implies that the solution reduces to a form con-
taining the product of m!* (rather than (2m)™) order polynomial with a
geometric series in 2™ (rather than x2™):

m)
Lip@) = D (14)
Hence the n first terms indeed determine the solution completely. For even
values of m one obtains similar result for n9 = 1/2 but now A is negative so
that the solution is excluded. This result also motivates the hypothesis that
for the counterparts of ordinary solutions of Laguerre equation sum (even
m) or difference (odd m) of solutions corresponding to n and 2m — n must
be formed to remove the non-physical degeneracy.
This argument does not exclude the possibility that there are also other
fractional values of n allowing this kind of symmetry. The condition for
symmetry would read as

[[(Re+€eR) = [[(Re—eRy) ,
k=1 k=1
e = (209 -1 . (15)
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The condition states that the odd part of the polynomial in question van-
ishes. Both € and —e solutions so that n? and 1 — n9 are solutions. If one
requires that the condition holds true for all values of m then the compar-
ison of constant terms in these polynomials allows to conclude that € = 0
is the only universal solution. Since € is free parameter, it is clear that the
m:th order polynomial in question has at most m solutions which could cor-
respond to other fractionized eigenvalues expected to be present on basis of
physical intuition.

This picture generalizes also to the case of even n so that also now
solutions of the form of Eq. 14 are possible. In this case the condition is

ﬁ(Rk tek) = - ﬁ(Rk —ely) . (16)
k=1 k=1

Obviously € = 0 and thus n = 1/2 fails to be a solution to the eigenvalue
equation in this case. Also now one has the spectral symmetry ny = 1/2+e.
The symmetry R, = (=1)"Rptm-1 = (—1)"Rp—m-1 = (—1)"Ry—n+1
can be applied to show that the polynomials associated with € and —e contain
both the terms R, — ¢ and R, + € as factors except for odd m for n =
(m 4+ 1)/2. Hence the values of n can be written for even values of m as

1 R m
W) = SEoE L n=l.. (1)
and for odd values of m as
) 1 R, m—+1
= —4+ = — 1
ni(n) 9 2R1 ’ PR 9 ’
n? = 1/2 . (18)

Plus sign obviously corresponds to the solutions which reduce to polynomials
and to n? ~ n for large m. The explicit expression for n? reads as

1 (sin?(m(n —1)/2m) — sin?(7n/2m))

a) _ -
ni(n) = 2 * 2sin?(m/2m) (19)
At the limit of large m one has
n)(n) ~ n, n@(n):l—n. (20)
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so that the fractionization n ~ 1/k claimed by Mills is not obtained at
this limit. The minimum for |n?| satisfies |n?| < 1 and its smallest value
In9| = .7071 corresponds to m = 4. Thus these zeros cannot correspond to
n? ~1 /k yielded by the numerical computation for even values of m based
on the requirement that the zero of P?™ cancels the pole of the geometric
series.

7 Some comments

Some closing comments are in order.
a) An open question is whether there are also zeros |n?| > 1 satisfying

Pgm)((l/a)lﬂm) = 0 for even values of m.

b) The treatment above is not completely general since only s-waves
are discussed. The generalization is however a rather trivial replacement
(1 —x)d/dx — (I +1 — x)d/dz in the Laguerre equation to get associated
Laguerre equation. This modifies only the formula for a,41 in the recursion
for 1,, so that expression for n%, which depends on b,:s only, is not affected.
Also the product of numerators in the formula for the parameter a = la,, /1o
remains invariant so that the general spectrum has the spectral symmetry
n? — 1—n9. The only change to the spectrum occurs for even values of m
and is due to the dependence of z, = (1/a)*/?"™ on [ and can be understood
in the semiclassical picture. It might happen that the value of [ is modified
to its ¢ counterpart corresponding to g-Legendre functions.

¢) The model could explain the findings of Mills and n9) ~ 1/k for k > 2
also fixes the value of corresponding m to a very high degree so that one
would have direct experimental contact with generalized imbedding space,
spectrum of Planck constants, and dark matter.

d) The obvious question is whether g-counterparts of angular momentum
eigenstates (idf,,/d¢ = mf,,) are needed and whether they make sense. The
basic idea of construction is that the phase transition changing & does not
involve any other modifications except fractionization of angular momentum
eigenvalues and momentum eigenvalues having purely geometric origin. One
can however ask whether it is possible to identify g-plane waves as ordinary
plane waves. Using the definition L, = 1/2(04 + 99), u = exp(i¢), one
obtains f,, = exp(ing) and eigenvalues as n? = R, /R, — n for m — ooc.
Similar construction applies in the case of momentum components.

d) The obvious question is whether g-counterparts of angular momentum
eigenstates (idf,,/d¢ = mf,,) are needed and whether they make sense. The
basic idea of construction is that the phase transition changing /& does not

66
Quantization in Astrophysics ...


me
Rectangle


involve any other modifications except fractionization of angular momentum
eigenvalues and momentum eigenvalues having purely geometric origin. One
can however ask whether it is possible to identify g-plane waves as ordinary
plane waves. Using the definition L, = 1/2(04 4+ 99), u = exp(i¢), one
obtains f,, = exp(in¢g) and eigenvalues as n? = R,/Ry — n for m — oc.
Similar construction applies in the case of momentum components.
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On quantization in astrophysics
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1. Some Problems Cannot Be Solved By Relativity
1.1. Special Twin Paradox That Two Brothers’ States of Motion Are Quite Same

According to theory of relativity: Supposing they are pair of twins, the younger brother
keeps on the Earth, the elder brother roams through the outer space as a astronaut. As
the elder brother returns to the Earth, he will be much younger than his younger brother.
The twin paradox means: Because the movement is relative, also may think the younger
brother is carrying on the space navigation, therefore the younger brother should be much
younger than the elder brother. Such two conclusions mutually conflict.

The explanation to this twin paradox given by the theory of relativity is as follows: Two
brothers' states of motion are different. Thereupon we may make another special twin
paradox that two brothers’ states of motion are quite same. If the younger brother doesn’t
keep on the Earth, but the elder brother and the younger brother all ride their respective
high speed airships, facing the completely opposite directions to navigate from the
identical time and the identical site with the same speed along a straight line, after a quite
long period they begin to decelerate simultaneously until static, then they turn around to
navigate again along the same straight line with the manner of front to front, finally
simultaneously return to the starting point. From the younger brother's viewpoint that,
according to the theory of relativity, the elder brother should be much younger than the
younger brother; Similarly, from the elder brother's viewpoint that, according to the theory
of relativity, the younger brother should be much younger than the elder brother. Who is
much younger to the end?

With the theory of relativity, how to explain this special twin paradox that two brothers’
states of motion are quite same?

2. Quantization in Astrophysics Realized by Fractal Method
As everybody knows, the energy formula proposed by Planck is as follows

E, =nhv

where: n=0,1,2, ...

The quantization concept was introduced from this example.

Similarly, the quantization in astrophysics realized by fractal method, will be allowed
to reach this goal through taking some variables in the fractal formula for the integer.

Recently, fractal method has been successful used in many fields, it is used for opening
out the deeply hidden organized structure in the complicated phenomenon. The quantity for
reflecting the character of organized structure is called the fractal dimension, expressed with
the value of D.
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The fractal distribution may be defined as follows "

Nv=C (1)

D
r

where: r is the characteristic scale, such as velocity, mass, time, length and so on, in
astrophysics » may be taken for the planetary orbital motion average velocity, mass,
equatorial radius, volume, average density, orbital semi-major axis and so on; N isthe
quantity related with the value of 7, such as price, temperature, height and so on, in order to
realize the quantization in astrophysics, N may be taken for the planetary arrange

sequence number and so on, namely N =1,2,3,...; C isa constantto be determined,

D is the fractal dimension.
It should be noted that in order to realize the quantization in astrophysics, » also

may be taken for the integer, namely =1, 2,3, .... But we will not consider this case

here.

In the fractal methods for general application at present, the fractal dimension D is a
constant, this kind of fractal may be called constant dimension fractal. It is a straight line on the
double logarithmic coordinates. for example the values of fractal dimension D for different
coastlines may be taken as 1.02, 1.25 and so on. But for the non-straight line functional
relation in the double logarithmic coordinates, it is unable to process with the constant
dimension fractal. While many questions are belonging to this kind of situation. In order to
overcome this difficulty, we introduced the concept of variable dimension fractal in references
[2]~[4], namely the fractal dimension D is the function of characteristic scale 7.

D=F(r)

Furthermore, we also introduced the concept of complex number dimension fractal (the
fractal dimension D was taken for complex number) in reference [ 5 ]; in reference [ 6, 7 ],
we introduced the concept of fractal series, in which the exponents of Taylor series and the
like were changed from integer to fraction.

Now we analyze the fractal quantization structure of the nine planets in solar system,
and forecast the related parameter of the tenth planet. This example is taken from
reference [ 8 ].

The fractal quantization structure of the nine planets in solar system, may be fitted
with two fractal straight lines on the double logarithmic coordinates.

Above all we discuss the orbital motion average velocities of the nine planets (unit:
km/s), taking the characteristic dimension r for some planet orbital motion average
velocity, taking the value of N for the serial number according to the size of the orbital
motion average velocity, firstly considering the case of Mercury r=47.89, then we have
N=1 (Mercury's orbital motion average velocity is the greatest), thereupon we have the
coordinates point (47.89, 1), according to analogizes other 8 planets coordinates points
are as follows: (35.03, 2), (29.79, 3), (24.13, 4), (13.06, 5), (9.64, 6), (6.81, 7), (5.43, 8),
(4.74, 9). The above 9 coordinates points may be plotted on the double logarithmic
coordinates (r, N), they are fitted well with two straight lines, carrying on the fitting of
these two straight lines with least squares method, we have the following results: the
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fractal parameters of the straight line corresponding to the coordinates points with N=1,
2, 3 are as follows: C=7609, D=2.31; the fractal parameters of the straight line
corresponding to the coordinates points with N=4, 5, 6, 7, 8, 9 are as follows:
C=17.56186, D=0.4647264. Therefore, when the tenth planet is located outside Pluto,
its orbital motion average velocity will be smaller than 4.74, namely its value of N should
be equal to 10, from Eq. (1) we have

C 1/D
r= (ﬁ) (2)

Substituting N=10, C=17.56186 and D=0.4647264 into Eq. (2), it gives the value of r,
namely when the tenth planet is located outside Pluto, its orbital motion average velocity is
equal to 3.3594 km/s.

Some scientists believed that, the tenth planet also possibly is located inside Uranus,
here the known nine planets coordinates points should be as follows: (47.89, 1), (35.03, 2),
(29.79, 3), (24.13, 4), (13.06, 5), (9.64, 6), (6.81, 8), (5.43, 9), (4.74, 10), this time the
value of N corresponding to the tenth planet should be equal to 7, namely N=7, by using
the interpolation method to obtain its orbital motion average velocity is equal to 8.76 km/s.

With the similar method we also have: When the tenth planet is located outside Pluto,
to compare with Earth (taking the value of Earth as 1), its mass, equatorial radius, volume,
average density, orbital semi-major axis respectively are as follows: 0.00032, 0.145,
0.0028, 0.10, 64.36. If the tenth planet is located inside Uranus, its orbital semi-major axis
should be equal to 15.94 to compare with Earth.
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Abstract

A new nonlinear Schrédinger equation is obtained explicitly from the
(fractal) Brownian motion of a massive particle with a complex-valued
diffusion constant. Real-valued energy plane-wave solutions and solitons
exist in the free particle case. One remarkable feature of this nonlinear
Schrédinger equation based on a ( fractal) Brownian motion model, over
all the other nonlinear QM models, is that the quantum-mechanical energy
functional coincides precisely with the field theory one. We finalize by
showing why a complex momentum is essential to fully understand the
physical implications of Weyl’s geometry in QM, along with the interplay
between Bohm’s Quantum potential and Fisher Information which has
been overlooked by several authors in the past.

PACS numbers: 03.65, 05.40.J, 47.53, 04.20.G

1 Introduction

Over the years there has been a considerable debate as to whether linear QM
can fully describe Quantum Chaos. Despite that the quantum counterparts of
classical chaotic systems have been studied via the techniques of linear QM, it is
our opinion that Quantum Chaos is truly a new paradigm in physics which is as-
sociated with non-unitary and nonlinear QM processes based on non-Hermitian
operators (implementing time symmetry breaking). This Quantum Chaotic be-
havior should be linked more directly to the Nonlinear Schrodinger equation
without any reference to the nonlinear behavior of the classical limit. For this
reason, we will analyze in detail the fractal geometrical features underlying our
Nonlinear Schrédinger equation obtained in [6].
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Nonlinear QM has a practical importance in different fields, like condensed
matter, quantum optics and atomic and molecular physics; even quantum grav-
ity may involve nonlinear QM. Another important example is in the modern
field of quantum computing. If quantum states exhibit small nonlinearities dur-
ing their temporal evolution, then quantum computers can be used to solve
NP-complete (non polynomial) and #P problems in polynomial time. Abrams
and Lloyd [19] proposed logical gates based on non linear Schrodinger equations
and suggested that a further step in quantum computing consists in finding
physical systems whose evolution is amenable to be described by a NLSE.

On other hand, we consider that Nottale and Ord’s formulation of quantum
mechanics [1], [2] from first principles based on the combination of scale rela-
tivity and fractal space-time is a very promising field of future research. In this
work we extend Nottale and Ord’s ideas to derive the nonlinear Schrodinger
equation. This could shed some light on the physical systems which could be
appropriately described by the nonlinear Schrodinger equation derived in what
follows.

The contents of this work are the following : In section 2 we derive the
nonlinear Schrédinger equation by extending Nottale-Ord’s approach to the case
of a fractal Brownian motion with a complex diffusion constant. We present
a thorough analysis of such nonlinear Schrédinger equation and show why it
cannot linearized by a naive complex scaling of the wavefunction v — 1.

Afterwards we will describe the explicit interplay between Fisher Informa-
tion, Weyl geometry and the Bohm’s potential by introducing an action based
on a compler momentum. The connection between Fisher Information and
Bohm'’s potential has been studied by several authors [24], however the impor-
tance of introducing a complex momentum Py = py + 1Ay (where Ay is the
Weyl gauge field of dilatations) in order to fully understand the physical im-
plications of Weyl’s geometry in QM, along with the interplay between Bohm’s
quantum potential and Fisher Information, has been overlooked by several au-
thors in the past [24], [25]. For this reason we shall review in section 3 the
relationship between Bohm’s Quantum Potential and the Weyl curvature scalar
of the Statistical ensemble of particle-paths ( an Abelian fluid ) associated to a
single particle that was initially developed by [22] . A Weyl geometric formula-
tion of the Dirac equation and the nonlinear Klein-Gordon wave equation was
provided by one of us [23]. In the final section 4 , we summarize our conclusions
and include some additional comments.

2 Nonlinear QM as a fractal Brownian motion
with a complex diffusion constant

We will be following very closely Nottale’s derivation of the ordinary Scrodinger
equation [1]. The readers familiar with this work may omit this section. Re-
cently Nottale and Celerier [1] following similar methods were able to derive the
Dirac equation using bi-quaternions and after breaking the parity symmetry
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dat — —dx#, see references for details. Also see the Ord’s paper [2] and the
Adlers’s book on quaternionic QM [16]. For simplicity the one-particle case is
investigated, but the derivation can be extended to many-particle systems. In
this approach particles do not follow smooth trajectories but fractal ones, that
can be described by a continuous but non-differentiable fractal function #(t).
The time variable is divided into infinitesimal intervals dt which can be taken
as a given scale of the resolution.

Then, following the definitions given by Nelson in his stochastic QM ap-
proach (Lemos in [12] p. 615; see also [13, 14]), Nottale define mean backward
an forward derivatives as follows,

der(t) _ <F(t+At)—F(t)>,

dt At—=+0 At

(1)

from which the forward and backward mean velocities are obtained,

d+7(t)
dt

=by. (2)

For his deduction of Schrodinger equation from this fractal space-time clas-
sical mechanics, Nottale starts by defining the complex-time derivative operator

6 1 (dy  d- 1 /dy d-

dt_2<dt+dt>_22<dt_dt>’ )
which after some straightforward definitions and transformations takes the fol-
lowing form,

) 0 5 = oo
dt_8t+v'v 1DV~. (4)
D is a real-valued diffusion constant to be related to the Planck constant. Now
we are changing the meaning of D, since no longer a symbol for the fractal
dimension is needed, it will have the value 2.
The D comes from considering that the scale dependent part of the velocity

is a Gaussian stochastic variable with zero mean, (see de la Pena at [12] p. 428)
(d€yidEs ;) = +2D6;dt. (5)

In other words, the fractal part of the velocity E, proportional to the 5, amount
to a Wiener process when the fractal dimension is 2.

Afterwards, Nottale defines a set of complex quantities which are generaliza-
tion of well known classical quantities (Lagrange action, velocity, momentum,
etc), in order to be coherent with the introduction of the complex-time deriva-
tive operator. The complex time dependent wave function 9 is expressed in
terms of a Lagrange action S by ¢ = ¢*/(mDP)  § ig a complex-valued action
but D is real-valued. The velocity is related to the momentum, which can be
expressed as the gradient of S, p'= VS. Then the following known relation is
found,

V = —2iDV In1. (6)
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The Schrddinger equation is obtained from the Newton’s equation (force =
mass times acceleration) by using the expression of V in terms of the wave

function 1,
. 5 - 5.
—VU = m%V = —22mD£V1nw. (7)
Replacing the complex-time derivation (4) in the Newton’s equation gives
us
2
—VU = -2im (D;Vln LZJ) — 2DV ( W) . (8)

Simple identities involving the V operator were used by Nottale. Integrating
this equation with respect to the position variables finally yields
oy U
D>V +iD— — —1p =0 9
up to an arbitrary phase factor which may set to zero. Now replacing D by
I/(2m), we get the Schrodinger equation,

L

ih 5 + 2mV Y = Ur. (10)
The Hamiltonian operator is Hermitian, this equation is linear and clearly is
homogeneous of degree one under the substitution v — A\.

Having reviewed Nottale’s work [1] we can generalize it by relaxing the as-
sumption that the diffusion constant is real; we will be working with a complex-
valued diffusion constant; i.e. with a complex-valued A. This is our new contri-
bution. The reader may be immediately biased against such approach because
the Hamiltonian ceases to be Hermitian and the energy becomes complex-valued.
However this is not always the case. We will explicitly find plane wave solutions
and soliton solutions to the nonlinear and non-Hermitian wave equations with
real energies and momenta. For a detailed discussion on complex-valued spectral
representations in the formulation of quantum chaos and time-symmetry break-
ing see [10]. Nottale’s derivation of the Schrodinger equation in the previous
section required a complex-valued action S stemming from the complex-valued
velocities due to the breakdown of symmetry between the forwards and back-
wards velocities in the fractal zigzagging. If the action S was complex then
it is not farfetched to have a complex diffusion constant and consequently a
complex-valued % (with same units as the complex-valued action).

Complex energy is not alien in ordinary linear QM. They appear in optical
potentials (complex) usually invoked to model the absorption in scattering pro-
cesses [8] and decay of unstable particles. Complex potentials have also been
used to describe decoherenc. The accepted way to describe resonant states in
atomic and molecular physics is based on the complex scaling approach, which
in a natural way deals with complex energies [17]. Before, Nottale wrote,

(dC+d(y) = £2Ddt, (11)
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with D and 2mD = h real. Now we set
(dCd(s) = £(D + D")dt, (12)

with D and 2mD = h = o+ complex. The complex-time derivative operator
becomes now
) 0]

- == D+ D* 1
P at-l—VV ( + D*)VZ. (13)

In the real case D = D*. It reduces to the complex-time-derivative operator
described previously by Nottale. Writing again the 1 in terms of the complex

action S,
'l/) — eiS/(QmD) — 67;5/5, (14)

where S, D and & are complex-valued, the complex velocity is obtained from
the complex momentum p'= VS as

V = —2iDVIns. (15)

The NLSE is obtained after we use the generalized Newton’s equation (force
= mass times acceleration) in terms of the 1 variable,
VU OV — —oimp %1 0 (16)
— =m—V = -2imD—VIny.
dt dt
Replacing the complex-time derivation (13) in the generalized Newton’s
equation gives us

VU = 2im D%ﬁln@p —2iD*(VIny - V)(Ving) — %(D + D*)Dv2(€1m/;)]
(17)
Now, using the three identities (i): VV2 = V2V; (ii): 2(VIny - V)(VIng) =
ﬁ(ﬁ In+)?; and (iii): V2Iney = V29 /¢ — (6 In)? allows us to integrate such
equation above yielding, after some straightforward algebra, the NLSE
OV R a_, e]
MG = =gV + VY —ig 2 (Fin) (18)

Note the crucial minus sign in front of the kinematic pressure term and that
h=a+i8 =2mD is complex. When 3 = 0 we recover the linear Schrédinger

equation.
The nonlinear potential is now complex-valued in general. Defining
LN 1 ’ 1
W=W@)=—7->(Viy) (19)
and U the ordinary potential, then the NLSE can be rewritten as
il _ —h—Q—V2+U+zW . (20)
ot 2m h
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This is the fundamental nonlinear wave equation of this work. It has the form
of the ordinary Schrodinger equation with the complex potential U + ¢W and
the complex h. The Hamiltonian is no longer Hermitian and the potential
V =U +iW(¢) itself depends on 9. Nevertheless one could have meaningful
physical solutions with real valued energies and momenta, like the plane-wave
and soliton solutions studied in the next section. Some important remarks are
now in order.

e Notice that the NLSE above cannot be obtained by a naive scaling of the
wavefunction

P = eiS/Mo s = iS/h = (i5/ho)(ho/R) — yX — o/l | = peql.  (21)

related to a scaling of the diffusion constant A, = 2mD, — h = 2mD . Upon
performing such scaling, the ordinary linear Schrodinger equation in the vari-
able 1 will appear to be nonlinear in the new scaled wavefunction 1)’

oY’ B2 Ry , R ho\ (&1 A\2

o= o VA U - (-2 (Vi) v (22)
but this apparent nonlinearity is only an artifact of the change of variables (
the scaling of ¥ ).

Notice that the latter (apparent) nonlinear equation , despite having the
same form as the NLSE | obtained from a complex-diffusion constant, differs
crucially in the actual values of the coefficients multiplying each of the terms.
The NLSE has the complex coefficients «/% (in the kinetic terms), and —ig8/h
(in the nonlinear logarithmic terms) with i = a + i3 = complex. However, the
nonlinear equation obtained from a naive scaling involves real and dif ferent
numerical coefficients than those present in the NLSE . Therefore, the genuine
NLSE cannot be obtained by a naive scaling (redefinition) of the ¢ and the
diffusion constant.

Notice also that even if one scaled 1) by a complex exponent 1) — ¥ with A =
ho/h and h = complex, the actual numerical values in the apparent nonlinear
equation, in general, would have still been different than those present in the
NLSE . However, there is an actual equivalence, if, and only if, the scaling
exponent A = fi,/h obeyed the condition:

ih

a:ho:n—%zl—%zl—hhwzig (23)
in this very special case, the NLSE would be obtained from a linear Schroedinger
equation after scaling the wavefunction 1 — 9 with a complex exponent
A = ho/h = «a/h. In this very special and restricted case, the NLSE could
be linearized by a scaling of the wavefunction with complex exponent.

From this analysis one infers, immediately, that if one defines the norm of
the complex & : ||B|| = /a? 4+ 82 = F, to coincide precisely with the observed
value h, of Planck’s constant, then o # h,, i3 # h — h, and, consequently, the
NLSE cannot be obtained from the ordinary (linear) Schroedinger equations
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after a naive scaling, with a complex exponent, 1) — 1* = ¢"/" _ Therefore,
a complex diffusion constant 2mD = h = a + i3, with the condition 2m||D|| =
[|B]| = v/a? + 3% = ki, ( observed value of Planck’s constant ) ensures that the
NLSE is not a mere artifact of the scaling of the wavefunction ¢ — 1) = ¢/
in the ordinary linear Schroedinger equation.

It is important to emphasize that the diffusion constant is always chosen to
be related to Planck constant as follows: 2m||D|| = ||k|| = h, which is just
the transition length from a fractal to a scale-independence non-fractal regime
discussed by Nottale in numerous occasions. In the relativistic scale it is the
Compton wavelength of the particle (say an electron): A. = fi,/(mc). In the
nonrelativistic case it is the de Broglie wavelength of the electron.

Therefore, the NLSE based on a fractal Brownian motion with a complex
valued diffusion constant 2mD = h = « + i0 represents truly a new physical
phenomenon and a hallmark of nonlinearity in QM. For other generalizations
of QM see experimental tests of quaternionic QM (in the book by Adler [16]).
Equation (18) is the fundamental NLSE of this work.

e A Fractal Scale Calculus description of our NLSE was developed later on
by Cresson [20] who obtained, on a rigorous mathematical footing, the same
functional form of our NLSE equation above ( although with different complex
numerical coefficients) by using Nottale’s fractal scale-calculus that obeyed a
quantum bialgebra. A review of our NLSE was also given later on by [25]. Our
nonlinear wave equation originated from a complex-valued diffusion constant
that is related to a complex-valued extension of Planck’s constant. Hence, a
fractal spacetime is deeply ingrained with nonlinear wave equations as we have
shown and it was later corroborated by Cresson [20].

e Complex-valued viscosity solutions to the Navier-Stokes equations were
also analyzed by Nottale leading to the Fokker-Planck equation. Clifford-valued
extensions of QM were studied in [21] C-spaces (Clifford-spaces whose enlarged
coordinates are polyvectors, i.e antisymmetric tensors) that involved a Clifford-
valued number extension of Planck’s constant; i.e. the Planck constant was
a hypercomplex number. Modified dispersion relations were derived from the
underlying QM in Clifford-spaces that lead to faster than light propagation in
ordinary spacetime but without violating causality in the more fundamental
Clifford spaces. Therefore, one should not exclude the possibility of having
complex-extensions of the Planck constant leading to nonlinear wave equations
associated with the Brownian motion of a particle in fractal spacetimes.

e Notice that the NLSE (34) obeys the homogeneity condition ¢ — A for
any constant A. All the terms in the NLSE are scaled respectively by a factor
A. Moreover, our two parameters «, (3 are intrinsically connected to a complex
Planck constant i = a+43 such that ||i]| = \/a? + 32 = h, (observed Planck’s
constant ) rather that being ah-hoc constants to be determined experimentally.
Thus, the nonlinear QM equation derived from the fractal Brownian motion with
complex-valued diffusion coefficient is intrinsically tied up with a non-Hermitian
Hamiltonian and with complex-valued energy spectra [10].

e Despite having a non-Hermitian Hamiltonian we still could have eigen-
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functions with real valued energies and momenta. Non-Hermitian Hamiltonians
( pseudo-Hermitian) have captured a lot of interest lately in the so-called PT
symmetric complex extensions of QM and QFT [27]. Therefore these ideas
cannot be ruled out and they are the subject of active investigation nowadays.

3 Complex Momenta, Weyl Geometry, Bohm’s
Potential and Fisher Information

Despite that the interplay between Fisher Information and Bohm’s potential has
been studied by several authors [24] the importance of introducing a complex
momentum Py = pi +iAy in order to fully understand the physical implications
of Weyl’s geometry in QM has been overlooked by several authors [24], [25].
We shall begin by reviewing the relationship between the Bohm’s Quantum
Potential and the Weyl curvature scalar of the Statistical ensemble of particle-
paths ( a fluid ) associated to a single particle and that was developed by
[22] . A Weyl geometric formulation of the Dirac equation and the nonlinear
Klein-Gordon wave equation was provided by one of us [23]. Afterwards we will
describe the interplay between Fisher Information and the Bohm’s potential by
introducing an action based on a complex momentum Py = py + 1Ay

In the description of [22] one deals with a geometric derivation of the nonrel-
ativistic Schroedinger Equation by relating the Bohm’s quantum potential @ to
the Ricci-Weyl scalar curvature of an ensemble of particle-paths associated to
one particle. A quantum mechanical description of many particles is far more
complex. This ensemble of particle paths resemble an Abelian fluid that per-
meates spacetime and whose ensemble density p affects the Weyl curvature of
spacetime, which in turn, determines the geodesics of spacetime in guiding the
particle trajectories. See [22], [23] for details).

Again a relation between the relativistic version of Bohm’s potential @
and the Weyl-Ricci curvature exists but without the ordinary nonrelativistic
probabilistic connections. In relativistic QM one does not speak of probability
density to find a particle in a given spacetime point but instead one refers
to the particle number current J* = pdz*/dr. In [22], [23] one begins with
an ordinary Lagrangian associated with a point particle and whose statistical
ensemble average over all particle-paths is performed only over the random
initial data (configurations) . Once the initial data is specified the trajectories
( or rays ) are completely determined by the Hamilton-Jacobi equations. The
statistical average over the random initial Cauchy data is performed by means
of the ensemble density p. It is then shown that the Schroedinger equation
can be derived after using the Hamilton-Jacobi equation in conjunction with
the continuity equation and where the “quantum force” arising from Bohm'’s
quantum potential @ can be related to (or described by) the Weyl geometric
properties of space. To achieve this one defines the Lagrangian

L(g,4.t) = Le(q, 4,t) + (R /m)R(q,1). (24)
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where v = (1/6)(d — 2)/(d — 1) is a dimension-dependent numerical coefficient
and R is the Weyl scalar curvature of the corresponding d-dimensional Weyl
spacetime M where the particle lives.

Covariant derivatives are defined for contravariant vectors V¥ : Vf“ =0;Vk—
I'® V™ where the Weyl connection coefficients are composed of the ordinary
Christoffel connection plus terms involving the Weyl gauge field of dilatations
A; . The curvature tensor R! , = obeys the same symmetry relations as the
curvature tensor of Riemann geometry as well as the Bianchi identity. The
Ricci symmetric tensor R;; and the scalar curvature R are defined by the same
formulas also, viz. R;;, = R}}, and R = gikRik.

RWeyl - RRiemann + (d - ]-)[ (d - 2)A1Al - 2(1/\/‘6)31(\/6"4%) ] (25)

where RRiemann 1S the ordinary Riemannian curvature defined in terms of the
Christoffel symbols without the Weyl-gauge field contribution.

In the special case that the space is flat from the Riemannian point of view,
after some algebra one can show that the Weyl scalar curvature contains only
the Weyl gauge field of dilatations

Rweyr = (d—1)(d — 2)(AxA¥) — 2(d — 1)(9,A%). (26)

Now the Weyl geometrical properties are to be derived from physical prin-
ciples so the A; cannot be arbitrary but must be related to the distribution of
matter encoded by the ensemble density of particle-paths p and can be obtained
by the same (averaged) least action principle giving the motion of the particle.
The minimum is to be evaluated now with respect to the class of all Weyl
geometries having arbitrarily Weyl-gauge fields but with fixed metric tensor .

A variational procedure [22] yields a minimum for

1

which means that the ensemble density p is Weyl-covariantly constant

1
Dip=0=0;p+w(p) pAd; =0 = A;(q,t) = —m@(log p). (28)

where w(p) is the Weyl weight of the density p. Since A; is a total derivative the
length of a vector transported from A to B along dif ferent paths changes by
the same amount . Therefore, a vector after being transported along a closed
path does not change its overall length. This is of fundamental importance to be
able to solve in a satisfactory manner Einstein’s objections to Weyl’s geometry.
If the lengths were to change in a path-dependent manner as one transports
vectors from point A to point B, two atomic clocks which followed different
paths from A to B will tick at dif ferent rates upon arrival at point B .
The continuity equation is

dp

1 (A
a + ﬁ&(\/é pU ) =0. (29)
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In this spirit one goes next to a geometrical derivation of the Schroedinger
equation . By inserting

B 1 0dlogp
A = d—2 Ox* (30)
into
Rweyr = (d —1)(d — 2)(AxAF) — 2(d — 1)0, A (31)

one gets for the Weyl scalar curvature, in the special case that the space is flat
from the Riemannian point of view, the following expression

5= (0:0"\/p). (32)

R
Weyl — 2 \[
which is precisely equal to the Bohm’s Quantum potential up to numerical
factors.
The Hamilton-Jacobi equation can be written as

aS h?
E +HC(quvt) - ’Y(i

R=0 33
2m) ( )
where the effective Hamiltonian is

1. R 1 S 88 h?
H~—~(h2 — k. A~ R = gk
c—v(h*/m)R ng pipktV ,ymR ng O3 Ox Erae 7 R (34)

When the above expression for the Weyl scalar curvature (Bohm’s quantum
potential given in terms of the ensemble density) is inserted into the Hamilton-
Jacobi equation, in conjunction with the continuity equation , for a momentum
given by pr = 0,5, one has then a set of two nonlinear coupled partial differential
equations. After some straightforward algebra, one can verify that these two
coupled differential equations equations will lead to the Schroedinger equation
after the substitution ¥ = ,/p e/ is made.

For example, when d = 3, v = 1/12 and consequently, Bohm’s quantum
potential Q = —(#%/12m)R ( when Rpiemann = 0 ) becomes

G LEVP _ AV
2f A A (35)

as is should be and from the two coupled differential equations, the Hamilton-
Jacobi and the continuity equation, they both reduce to the standard Schroedinger
equation in flat space

o (7, t)

h—ar

—(h?/2m) AV (Z.t) + V(T ). (36)
after, and only after, one defines ¥ = \/p '%/".

If one had a curved spacetime with a nontrivial metric one would obtain the
Schroedinger equation in a curved spacetime manifold by replacing the Laplace
operator by the Laplace-Beltrami operator. This requires, of course, to write
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the continuity and Hamilton Jacobi equations in a explicit covariant manner by
using the covariant form of the divergence and Laplace operator [22] , [23]. In
this way, the geometric properties of space are indeed affected by the presence of
the particle and in turn the alteration of geometry acts on the particle through
the quantum force f; = (h*/m)d; R which depends on the Weyl gauge potential
A; and its derivatives. It is this peculiar feedback between the Weyl geometry
of space and the motion of the particle which recapture the effects of Bohm’s
quantum potential.

The formulation above from [22] was also developed for a derivation of the
Klein-Gordon (KG) equation. The Dirac equation and Nonlinear Relativis-
tic QM equations were found by [23] via an average action principle. The
relativistic version of the Bohm potential (for signature (—,+,+,+)) can be

written
R RGN o
m2  \/p
in terms of the D’Alambertian operator.
To finalize this section we will explain why the Bohm-potential/Weyl scalar
curvature relationship in a flat spacetime

0= _Tigikﬁiak\/ﬁ _ h2gi <2313kp _ 3¢P<2kﬂ> .
m./p 8m p p

encodes already the explicit connection between Fisher Information and the
Weyl-Ricci scalar curvature Ryye,; (for Riemann flat spaces) after one realizes
the importance of the complex momentum Py = py + 1Ay . This is typical of
Electromagnetism after a minimal coupling of a charged particle (of charge e)
to the U(1) gauge field Ay is introduced as follows Il = pj + ieAr. Weyl’s
initial goal was to unify Electromagnetism with Gravity. It was later realized
that the gauge field of Weyl’s dilatations A was not the same as the U(1) gauge
field of Electromagnetism .A.

Since we have reviewed the relationship between the Weyl scalar curvature
and Bohm’s Quantum potential, it is not surprising to find automatically a
connection between Fisher information and Weyl Geometry after a complex
momentum P, = p + 1Ay is introduced. A complex momentum has already
been discussed in previous sections within the context of fractal trajectories
moving forwards and backwards in time by Nottale and Ord.

If p is defined over an d-dimensional manifold with metric g** one obtains a
natural definition of the Fisher information associated with the ensemble density

p

B2 1

(38)

ik

, 10p 0
T=g*n, =% [ 2L 20 4ny
2 p Oyt Oyk

In the Hamilton-Jacobi formulation of classical mechanics the equation of mo-

tion takes the form
oS 1 .08 08
— 4+ 7‘9] -
ot  2m~” Oz Ox*

(39)

+V=0. (40)
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The momentum field p’ is given by p’ = ¢7%(95/0z*). The ensemble probability
density of particle-paths p(t, z*) obeys the normalization condition | d"z p =1
. The continuity equation is

11 ) )
dp/ot) + ——(8/027)(\/g pg’*(85/02%)) = 0. 41
(/)m\@(/)(\f(/)) (41)
These equations completely describe the motion and can be derived from

the action
S = / p {(85/87&) - ﬁgjk(aS/axj)(aS/(’)xk) + V} dtd™z. (42)

using fixed endpoint variation in .S and p.

The Quantization via the Weyl geometry procedure is obtained by defining
the complex momentum in terms of the Weyl gauge field of dilatations Ay as
P, = pi + ieAy and constructing the modified Hamiltonian in terms of the
norm-squared of the complex momentum PkP,;‘ as follows

g* . .
Hwey = o [(pj +ied;)(pr —ieAr)| +V (43)

The modi fied action is now :

. [0S gk . ,
Sweyt = [ dtd"x 5t + %(pj +ieA;)(pr —iedy) + V| . (44)

The relationship between the Weyl gauge potential and the ensemble density
p was
_ Olog(p)
oxk -
the proportionality factors can be re-absorbed into the coupling constant e as
follows P, = pi +ieAr = px. +1 Or(log p). Hence, when the spacetime metric is
flat ( diagonal ) gk =ik Sweyt becomes

Ay

(45)

oz ' i )(@_Z Oz )} V=

oS gk ( 0S  0Olog(p), , 0S8  .0log(p)
ot 2m

SWeyl :/dtdnl‘ - + —

ot om gur) (Ggr)

The expectation value of Syyey is

ik
/dtd”x [85+V+g 05 85} !

ny (100 12
+%/dtdx[p8xk]. (46)

<SWeyl > = < SC > + SFisher: (47)

. oS g% as . , aS 1 . 1dp
/dtdmp[ater(axj)(axk)+‘/]+2m/dtdmp[p].
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This is how we have reproduced the Fisher Information expression directly
from the last term of < Swey > :

SFzsher = m /dtd T p [ p(‘?xk } (48)

An Euler variation of the expectation value of the action < Swey > with
respect to the p yields :

oS o< SWeyl > o< SWeyl >

a0 TGy )0 W)

a8 1 [0S 98 1 0p 0p 2 0%
el = k| 22T i i —
ot + Vr 2m {amﬂ' Oz <p2 Oxzd OzF  p Ox Oz 0 (50)
Notice that the last term of the Euler variation
1 . 1 0p 0 2 92
L [(Loe op 2 0% o)
2m p? 0xd Oxk  p OxIOxF

is precisely the same as the Bohm’s quantum potential , which in turn, is propor-
tional to the Weyl scalar curvature. If the continuity equation is implemented
at this point one can verify once again that the last equation is equivalent to
the Schrédinger equation after the replacement ¥ = ,/p e™S/M is made.

Notice that in the Euler variation variation of < Sy, > w.r.t the p one
must include those terms involving the derivatives of p as follows

d[p@rp/p)?] _ 1. 00kp)> ., _ 2,
0 (GO ) = — oGl = a0 62
This explains the origins of all the terms in the Euler variation that yield Bohm’s
quantum potential.

Hence, to conclude, we have shown how the last term of the Euler variation
of the averaged action < Swey > , that automatically incorporates the Fisher
Information expression after a compler momentum Py = pj + i0x(log p) is
introduced via the Weyl gauge field of dilations Ay ~ —0xlog p, generates once
again Bohm’s potential :

2
Qw(gapapk_2 ?ﬂk) (53)
p? 0xd Ox p 0xiox

To conclude, the Quantization of a particle whose Statistical ensemble of
particle-paths permeate a spacetime background endowed with a Weyl geom-
etry allows to construct a compler momentum P, = 0xS + i0k(log p) that
yields automatically the Fisher Information Spg;spe, term. The latter Fisher
Information term is crucial in generating Bohm’s quantum potential @) after an
Euler variation of the expectation value of the < Sy, > with respect to the
p is performed. Once the Bohm’s quantum potential is obtained one recovers
the Schroedinger equation after implementing the continuity equation and per-
forming the replacement ¥ = ,/p e"S/" . This completes the relationship among
Bohm’s potential, the Weyl scalar curvature and Fisher Information a fter in-

troducing a compler momentum.
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4 Concluding Remarks

Based on Nottale and Ord’s formulation of QM from first principles; i.e. from
the fractal Brownian motion of a massive particle we have derived explicitly a
nonlinear Schrédinger equation. Despite the fact that the Hamiltonian is not
Hermitian, real-valued energy solutions exist like the plane wave and soliton
solutions found in the free particle case. The remarkable feature of the fractal
approach versus all the Nonlinear QM equation considered so far is that the
Quantum Mechanical energy functional coincides precisely with the field theory
one.

It has been known for some time, see Puskarz [8], that the expression for
the energy functional in nonlinear QM does not coincide with the QM energy
functional, nor it is unique. The classic Gross-Pitaveskii NLSE (of the 1960’),
based on a quartic interaction potential energy, relevant to Bose-Einstein con-
densation, contains the nonlinear cubic terms in the Schrodinger equation, after
differentiation, (¢*1))1. This equation does not satisfy the Weinberg homogene-
ity condition [9] and also the energy functional differs from the Eqas by factors
of two.

However, in the fractal-based NLSE there is no discrepancy between the
quantum-mechanical energy functional and the field theory energy functional.
Both are given by

h? a 1G]
HNLSE — T T 2 k0 g0
fractal 2m hw VYUY Zth

¢ (VIny)?y. (54)

This is why we push forward the NLSE derived from the fractal Brownian
motion with a complex-valued diffusion coefficient. Such equation does admit
plane-wave solutions with the dispersion relation E = $?/(2m). It is not hard
to see that after inserting the plane wave solution into the fractal-based NLSE
we get (after setting U = 0),

_ K apf iﬁﬁiﬁa‘ﬂﬂiﬁ (55)
- 2m A R? Eom  2m KB 2m’

since h = a+1i(. Hence, the plane-wave is a solution to our fractal-based NLSE
(when U = 0) with a real-valued energy and has the correct energy-momentum
dispersion relation.

Soliton solutions, with real-valued energy (momentum) are of the form

Y ~ [F(x —vt) +iG(x — vt)]eP*/h =Bt/ (56)

with F', G two functions of the argument x — vt obeying a coupled set of two
nonlinear differential equations.

It is warranted to study solutions when one turns-on an external potential
U # 0 and to generalize this construction to the Quaternionic Schroedinger
equation [16] based on the Hydrodynamical Nonabelian-fluid Madelung’s for-
mulation of QM proposed by [26]. And, in particular, to explore further the
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consequences of the Non-Hermitian Hamiltonian ( pseudo-Hermitian) associ-
ated with our NLSE (34) within the context of the so-called PT symmetric
complex extensions of QM and QFT [27]. Arguments why a quantum theory of
gravity should be nonlinear have been presented by [28] where a dif ferent non-
linear Schroedinger equation, but with a similar logarithmic dependence, was
found. This equation [28] is also similar to the one proposed by Doebner and
Goldin [29] from considerations of unitary representations of the diffeomorphism

group.
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Does Weyl’s Geometry solve the Riddle of
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Abstract

We rigorously prove why the proper use of Weyl’s Geometry within the context of
Friedman-Lemaitre-Robertson-Walker cosmological models can account for both the
origins and the value of the observed vacuum energy density ( dark energy ). The
source of dark energy is just the dilaton-like Jordan-Brans-Dicke scalar field that is
required to implement Weyl invariance of the most simple of all possible actions. A
nonvanishing value of the vacuum energy density of the order of 107123 M/ jl)lcmck is
derived in agreement with the experimental observations. The full theory involving
the dynamics of Weyl’s gauge field A, is very rich and may explain the anomalous
Pioneer acceleration and the temporal variations ( over cosmological scales ) of
the fundamental constants resulting from the expansion of the Universe. This is
consistent with Dirac’s old idea of the plausible variation of the physical constants
but with the advantage that it is not necessary to invoke extra dimensions.

The problem of dark energy is one of the most challenging problems facing us today,
see [1], [3] for a review. In this letter we will show how Weyl’s geometry (and its scaling
symmetry) is instrumental to solve this dark energy riddle. Before starting we must
emphasize that our procedure is quite different than previous proposals [4] to explain
dark matter ( instead of dark energy ) in terms of Brans-Dicke gravity. It is not only
necessary to include the Jordan-Brans-Dicke scalar field ¢ but it is essential to have a
Weyl geometric extension and generalization of Riemannian geometry ( ordinary gravity
). It will be shown why the scalar ¢ has a nontrivial energy density despite having trivial
dynamics due entirely to its potential energy density V(¢ = ¢,) and which is precisely
equal to the observed vacuum energy density of the order of 107'22M3, .. For other
approaches to solve the riddle of dark energy and dark matter based on modifications of
gravity by starting with Lagrangians of the type f(R) see [12], [14], [11] and references
therein.

Weyl’s geometry main feature is that the norm of vectors under parallel infinitesimal
displacement going from x* to z* 4 dz* change as follows 0||V|| ~ ||V||A,dz" where
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A, is the Weyl gauge field of scale calibrations that behaves as a connection under Weyl
transformations :

A=A, — 0, Qx).  gu — e g (1)

involving the Weyl scaling parameter Q(z#) .

The Weyl covariant derivative operator acting on a tensor T is defined by D,T =
(V, + w(T) A, ) T; where w(T) is the Weyl weight of the tensor T and the derivative
operator V,, = 9, + I, involves a connection I', which is comprised of the ordinary
Christoffel symbols plus extra A, terms in order for the metric to obey the condition
D, (gv,) = 0. The Weyl weight of the metric g,, is 2. The meaning of D, (g,,) = 0 is that
the angle formed by two vectors remains the same under parallel transport despite that
their lengths may change. This also occurs in conformal mappings of the complex plane.

The Weyl covariant derivative acting on a scalar ¢ of Weyl weight w(¢) = —1 is defined
by

D,u¢ = au Qb + W(¢)Au ¢ = au ¢ - Au ¢ (2)
The Weyl scalar curvature in D dimensions and signature (4, —, —, —....) is
Rweyt = Riiemann — (D — 1)(D —2)A, A" +2(D — 1)V A" (3)

For a signature of (—,+,+,+,....) there is a sign change in the second and third terms
due to a sign change of R riemann-
The Jordan-Brans-Dicke action involving the scalar ¢ and Ryye, is

g = —/d% VIgl [ 82 Ruveyt | (4)

Under Weyl scalings,
7efWeyl - 6_2Q 7Q'V[/eyl; ¢2 — 6_2Q ¢2' (5)

to compensate for the Weyl scaling (in 4D ) of the measure \/@ — e* .\ /]g| in order to
render the action (4) Weyl invariant.

When the Weyl integrability condition is imposed F),, = 0,4, —0,A, =0 = A, =
0,42, the Weyl gauge field A,, does not have dynamical degrees of freedom; it is pure gauge
and barring global topological obstructions, one can choose the gauge in eq-(4)

A, =0; ¢3:

TEre constant. (6)

such that the action (4) reduces to the standard Einstein-Hilbert action of Riemannian
geometry

S =~ | 4 VIsl Rrionamn(a) M

The Weyl integrability condition F),, = 0 means physically that if we parallel transport
a vector under a closed loop, as we come back to the starting point, the norm of the vector
has not changed; i.e, the rate at which a clock ticks does not change after being transported
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along a closed loop back to the initial point; and if we transport a clock from A to B
along different paths, the clocks will tick at the same rate upon arrival at the same point
B. This will ensure, for example, that the observed spectral lines of identical atoms will
not change when the atoms arrive at the laboratory after taking different paths ( histories
) from their coincident starting point. If F,, # 0 Weyl geometry may be responsible for
the alleged variations of the physical constants in recent Cosmological observations. A
study of the Pioneer anomaly based on Weyl geometry was made by [9]. The literature
is quite extensive on this topic.
Our starting action is

S = SWeyl(guwAu) + 5(9). (8)
with
Swenlgus A) = = [d'zflgl 6 [Rwenlgu A 1 )

where we define ¢* = (1/167G). The Newtonian coupling G is spacetime dependent in
general and has a Weyl weight equal to 2. The term S(¢) involving the Jordan-Brans-
Dicke scalar ¢ is

1
So = [ d's \lgl [ 59" (Du)(Dus) — V() ] (10)
where D, ¢ = 0,0 — A,¢. The FRW metric is
ds* = dt* — a*(t) (d—7"2 + 72(dQ)?) (11a)
1 —k(r/Ry)? '

where k& = 0 for a 3-dim spatially flat region; k = £1 for regions of positive and negative
constant spatial curvature, respectively. The de Sitter metric belongs to a special class
of FRW metrics and it admits different forms depending on the coordinates chosen. The
Friedman-Einstein-Weyl equations in the gauge A, = (0,0,0,0) (in units of ¢ = 1)

1 2 5Smatter
G/“/ 87TG iz ¢ 167T G 1% \/m 5gwj ( b)
read
(da/dt) 3k
= . 12
3D + () = BRG(Dy (12)
and
(d*a/dt?) (da/dt) ., k
() - (R — () = 87600 » (134)
From eqs-(12-13a) one can infer the important relation :
d*a/dt? ArG(t
- () T () (13
a 3
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Eqs-(12-13) are the ones one must use instead of the erroneous equations posed by [9] in
the partial gauge A, = H(t), A; =0, i =1,2,3:

<da/dt)2:H2t = — ke —3( Ay(x) Al(x) — 18t AN +
(TN = 10 = = Gagg) —3A0) Ae) = 0l
87T§(t> p- (14a)
and
-y e B = T gy

The density and pressure terms should be given in terms of Weyl covariant derivatives
of the scalar ¢ and the potential density V(¢). The scalar ¢ must be chosen to depend
solely on time , ¢(t), because this is the relevant case suitable for the FRW cosmologies
due to the fact that the geometry is spatially homogeneous and isotropic . The gauge
choice condition imposed by [9] : A, = H(t); A; =0, i = 1,2,3 is compatible with the
spatial isotropy and homogeneity of the FRW models. However, despite that a non-zero
value A; was chosen by [9] there is a residual symmetry that is still available to gauge
A; to zero. As mentioned earlier, Weyl’s integrability condition F),, = 0 when A, is pure
gauge, a total derivative, means that A, does not have true dynamical degrees of freedom
and all of its components can be gauged to zero A, = (0,0, 0,0) barring global topological
obstructions.

However, if one partially fixes the gauge A; = H(t); A; = 0 like it was done in [9], one
arrives at a caveat that was overlooked by [9] . One would arrive at a deep contradiction
and inconsistency between the left hand side (Lh.s) and the right hand side (r.h.s) of
the Friedman-Einstein-Weyl equations ( for example in eq-(14b) ) in the partially fixed
gauge A; = H(t) because the L.h.s does not transform homogeneously under Weyl scalings,
whereas the r.h.s does; if the quantities p and p were to transform properly under Weyl
scalings, homogeneously, this behaviour would be incompatible with the transformation
properties of the A; = H(t) terms appearing in the Lh.s of eqs-(14b).

In order to reconcile this incompatibility between the inhomogeneous transformation
properties of the Lh.s of eq-(14b) with the homogeneous transformation properties of the
r.h.s of (14b), one must fix the gauge A, = 0 fully in the Einstein-Friedman-Weyl
equations as shown in eqs-(12-13). The latter equations are the physically relevant and
not eqs-(14). One may be inclined to say : if one is going to fix the gauge A, = 0 anyway,
then what is the role of Weyl’s geometry and symmetry in all of this 7 We will show
below why despite fixing the gauge A, = 0 one cannot forget the constraint which arises
from the variations of the action w.r.t the Weyl’s field A, ! This constraint holds the key
to see why the density and pressure associated with the scalar ¢ obey the sought after
relation p(¢) = —p(¢) ( which is the hallmark of dark energy ) as we intend to prove next.

The Jordan-Brans-Dicke scalar ¢ must obey the generalized Klein-Gordon equations
of motion

(DuD" + WRupey ) 6 + <‘g) —0 (15)
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notice that because the Weyl covariant derivative obeys the condition D,(g,,) = 0 =
D, (1/]g]) = 0 there are no terms of the form (D,/|g|)(D"¢) in the generalized Klein-

Gordon equation like it would occur in ordinary Riemannian geometry (9,4/|g])(0"¢) # 0.
In addition, we have the crucial constraint equation obtained from the variation of the
action w.r.t to the A" field :

2= 056 (A48 + 0 + 5 (AF — 007) =0 (16)
The last constraint equation in the gauge A, = 0, forces d,0 =0 = ¢ = ¢, = constant.
Consequently G ~ ¢~2 is also constrained to a constant G and one may set 167 Gy ¢ =
1, where GGy is the observed Newtonian constant today.

Furthermore, in the gauge A, = 0, due to the constraint eq-(16), one can infer that
D,p =0, = D'D,¢p =0 because D; ¢(t) =0 ¢ — Ay ¢ = 0y ¢ = 0, and D;p(t) =
—A;6(t) = 0. These results will be used in the generalized Klein-Gordon equation.

Therefore, the stress energy tensor T" = diag (p, —p, —p, —p) corresponding to the

constant scalar field configuration ¢(t) = ¢, , in the A, = 0 gauge, becomes :

po= 30 6= A GP +V(6) = V() po= (06— A6f — V(6) = ~V(9). (1)

Pt 3p=2(0 6 — A 0 — 2V() = —2V(9). (18)

This completes the proof why the above p and p terms, in the gauge A, = 0, become
p(¢) = V(¢p) = —p(¢) such that p+ 3p = —2V(¢) ( that will be used in the Einstein-
Friedman-Weyl equations (13b) ). This is the key reason why Weyl’s geometry and
symmetry is essential to explain the origins of a non — vanishing vacuum energy ( dark
energy ). The latter relation p(¢) = V(¢) = —p(¢) is the key to derive the vacuum energy
density in terms of V(¢ = ¢,), because such relation resembles the dark energy relation
ppe = —ppr- Had one not had the constraint condition Dy ¢(t) = (0y — Ay)p = 0y ¢ =0,
and D;p(t) = —A;¢(t) = 0, in the gauge A, = 0, enforcing ¢ = ¢,, one would not have
been able to deduce the crucial condition p(¢p = ¢,) = —p(d = ¢,) = V(¢ = ¢,) that
will furnish the observed vacuum energy density today.

We will find now solutions of the Einstein-Friedman-Weyl equations in the gauge
A, =(0,0,0,0) after having explained why A, can (and must) be gauged to zero. The
most relevant case corresponding to de Sitter space :

a(t) = e’ A, =(0,0,0,0); k=0; Rwey = RRicmann = —12 H3; . (19)
where we will show that the potential is
V(o) = 12H2¢* +V,. (20)

one learns in this case that V(¢ = ¢,) # 0 since this non-vanishing value is precisely the
one that shall furnish the observed vacuum energy density today ( as we will see below ) .
We shall begin by solving the Einstein-Friedman-Weyl equations eq-(12-13) in the gauge
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A, = (0,0,0,0) for a spatially flat universe k = 0 and a(t) = "', corresponding to de
Sitter metric :

ds? = dt* — et (dr? +r*(d2)?). (21)
the Riemannian scalar curvature when £ = 0 is
d*a/dt? da/dt
Remann = = 6 [ (L) o () 15 g 2
( the negative sign is due to the chosen signature +, —, —, — ).

To scalar Weyl curvature Ry, in the gauge A, = (0,0,0,0) is the same as the
Riemannian one Ryey = RRiemann = —12 Hg. Inserting the condition D,¢ = D;p(t) =
(Orp — Arp) = 0 ¢ = 0, in the gauge A, = 0, the generalized Klein-Gordon equation
(3.20) will be satisfied if, and only if, the potential density V' (¢) is chosen to satisfy

1 ,dV

(12 Hy) ¢ = *(@) = V() = 12H; ¢ + V, (23)

2
One must firstly differentiate w.r.t the scalar ¢ , and only afterwards, one may set ¢ = ¢,,.
V(¢) has a Weyl weight equal to —4 under Weyl scalings in order to ensure that the full
action is Weyl invariant. HZ and ¢? have both a Weyl weight of —2, despite being
constants, because as one performs a Weyl scaling of these quantities ( a change of a
scales) they will acquire then a spacetime dependence. HZ is a masslike parameter, one
may interpret HZ ( up to numerical factors ) as the ”mass” squared of the Jordan-Brans-
Dicke scalar. We will see soon why the integration constant V, plays the role of the
”cosmological constant”.

An important remark is in order. Even if we included other forms of matter in the
Einstein-Fredmann-Weyl equations, in the very large ¢ regime, their contributions will be
washed away due to their scaling behaviour. We know that ordinary matter ( p = 0 );
dark matter ( ppy = wppy with —1 < w < 0 ) and radiation terms ( prag = %pmd ) are
all washed away due to their scaling behaviour :

Pmatter ™~ R(t)_?) Pradiation ™ R(t)_4 PDM ~ R(t)_3(1+w)- (24)

where R(t) = a(t)Ry. The dark energy density remains constant with scale since w = —1
and the scaling exponent is zero, ppr ~ R = costant. For this reason it is the only
contributing factor at very large times.

Now we are ready to show that eqs-(12-13) are indeed satisfied when a(t) = efo%; k =
0; A, =0; ¢ =¢,#0. Eq-(13b), due to the conditions p + 3p = —2V (¢) and ¢(t) = ¢,
(resulting from the constraint eq-(16) in the A, = 0 gauge ) gives :

2 2
_((dCZdt)> — = TN () =
. (87T GN ‘g(¢:¢o)) _ (871' GN ;2 Hg ¢(2)) . SWGZ;V Vvo‘ (25)
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Eq-(12) ( with & = 0 ) is just the same as eq-(13b) but with an overall change of sign
because p(¢ = ¢,) = V(¢ = ¢,). Using the definition 167 G ¢2 =1 in (25) one gets

8t Gy 12 HE ¢? 8t Gn V, 8t Gn V,
gz - T Cv12H 6y BTGN Ve g BTCN Vo
3 3 3
8t Gn V,
—%:HS;» — 87 Gy V, =3 H? (26)
Therefore, we may identify the term — V, with the vacuum energy density so the quantity
3HZ = —8m G V, = A is nothing but the cosmological constant. It is not surprising

at all to obtain A = 3 HZ in de Sitter space . One knew it long ago. What is most
relevant about eq-(26) is that the observed vacuum energy density is minus the constant
of integration V, corresponding to the potential density V(¢) = 12H%¢? +V, . Hence one
has from the last term of eq-(26) :

3H?
& GN ’

and finally, when we set H2 = (1/R2) = (1/R% 4.) and Gy = L%, in the last term of
eq-(26), as announced, the vacuum density pyacuum Observed today is precisely given by :

(27)

_‘/o = Pvacuum =

3H? 3
_V;): vacuum 0 = — (L anc -2 R ubble 2 =
p 87 G 87T(Pl k) (Ruubble)
3 1 L anc —
)4 ( i k>2 ~ 107 (MPlanck‘>4- (28>

8T " Lpianck”  Rrubble
This completes our third derivation of the vacuum energy density given by the formula
(26-28). The first derivation was attained in [5], while the second derivation was attained
in [6] .

Concluding this analysis of the Einstein-Friedman-Weyl eqs-(12-13) : By invoking the
principle of Weyl scaling symmetry in the context of Weyl’s geometry; when k& = 0 (
spatially flat Universe ), a(t) = efot ( de Sitter inflationary phase ) ; H, = Hubble
constant today; ¢(t) = @, = constant, such 167Gy ¢? = 1, one finds that

V(¢ = (bo) =12 Hg ¢z + ‘/o - vaacuum — Puacuum = Pvacuum =
o
N s GN

is precisely the observed vacuum energy density (28) . Therefore, the observed vacuum
energy density is intrinsically and inexorably linked to the potential density V(¢ = ¢,)
corresponding to the Jordan-Brans-Dicke scalar ¢ required to build Weyl invariant actions
and evaluated at the special point ¢? = (1/167Gy).

The case of an ever expanding accelerating universe ( consistent with observations)
is so promising because it incorporates the presence of the Hubble Scale and Planck
scale into the expression for the observed vacuum energy density via the Jordan-Brans-
Dicke scalar field ¢ needed to implement Weyl invariance of the action. Weyl’s scaling

6H3 o2 ~ 1075 M} (29)

lanck"
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symmetry principle permits us to explain why the observed value of the vacuum energy
density puacuum 18 precisely given by the expression (28-29).

In order to introduce true dynamics to the Weyl gauge field, one must add the kinetic
term for the Weyl gauge field F,, F*”. In this case, the integrability condition F), =
oA, — 0,A,, = 0 is no longer obeyed in general and the rate at which clocks tick may
depend on their worldline history. This could induce a variation of the physical constants
( even dimensionless constants like the fine structure constant a = 1/137 ). For instance,
as the size of the universe grows, ( a(t) = e increases with time) the variable speed
of light, Newtonian coupling and cosmological constant , may vary according to the law
[G(t)/c(t) At)] ~ (1/puacuum) if the vacuum energy density pyacuuwm Would remain
constant. Many authors have speculated about this last behaviour among ¢, G, A as
well as the possibility that an explanation of the Pioneer anomaly could be due to the
accelerated expansion of the universe that accounts for an acceleration of ¢®/Rpuppie, if
one views our solar system as non-expanding ”pennies” in an expanding balloon.

The most general Lagrangian involving dynamics for A, is

£ =~ Rt (G Au) + 3 Fas ™ + 56" (D)D) = V(0) + Lunaer + . (30)

The L,,qtter must involve the full fledged Weyl gauge covariant derivatives acting on
scalar and spinor fields contrary to the Cheng-Weyl models of [10] where there is no Weyl
gauge field in the derivatives. L, qgiation terms may be included involving the Maxwell
field A,, which must not be confused with the Weyl gauge field A,. Once could also add
Yang-Mills fields A7, and kinetic and potential terms for the Higgs scalars as well. The
simplest scenario, of course, was the one given in this section.

There are many differences among our approach to explain the origins of dark energy
and that of [7], [2], [3], [1], [10], [13], to cite a few. The Cheng-Weyl approach [10] to
account for dark energy and matter ( including phantom ) does not use the Weyl scalar
curvature with a variable Newtonian coupling 16w G' = ¢~2 for the gravitational part of
the action, but the ordinary Riemannian scalar curvature with the standard Newtonian
gravitational constant . Conformal transformations in accelerated cosmologies have been
studied by [11] but their approach is different than the Weyl geometric one presented
here. Weyl invariance has been used in [8] to construct Weyl-Conformally Invariant Light-
Like p-Brane Theories with numerous applications in Astrophysics, Cosmology, Particle
Physics Model Building, String theory,.....

To end this work, we just point out the known fact that the electron neutrino mass
m, ~ 1073 eV is of the same order as (m,)* ~ 10712 M}, . and that the SUSY breaking
scale in many models is given by a geometric mean relation : mzsUSY = m, Mpianck ~
(5 TeV)?. TFor interesting remarks on the fundamental constants see [15]. We hope
that the contents of this work will help us elucidate further the connection between the
microscopic and macroscopic world.
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THE EXTENDED RELATIVITY THEORY
IN CLIFFORD SPACES
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Abstract

An introduction to some of the most important features of the Extended Rela-
tivity theory in Clifford-spaces (C-spaces) is presented whose ”point” coordinates
are non-commuting Clifford-valued quantities which incorporate lines, areas, vol-
umes, hyper-volumes.... degrees of freedom associated with the collective particle,
string, membrane, p-brane,... dynamics of p-loops (closed p-branes) in target D-
dimensional spacetime backgrounds. C-space Relativity naturally incorporates the
ideas of an invariant length (Planck scale), maximal acceleration, non-commuting
coordinates, supersymmetry, holography, higher derivative gravity with torsion and
variable dimensions/signatures. It permits to study the dynamics of all (closed)
p-branes, for all values of p, on a unified footing. It resolves the ordering ambigu-
ities in QFT, the problem of time in Cosmology and admits superluminal propa-
gation ( tachyons ) without violations of causality. A discussion of the maximal-
acceleration Relativity principle in phase-spaces follows and the study of the in-
variance group of symmetry transformations in phase-space allows to show why
Planck areas are invariant under acceleration-boosts transformations . This invari-
ance feature suggests that a maximal-string tension principle may be operating in
Nature. We continue by pointing out how the relativity of signatures of the un-
derlying n-dimensional spacetime results from taking different n-dimensional slices
through C-space. The conformal group in spacetime emerges as a natural subgroup
of the Clifford group and Relativity in C-spaces involves natural scale changes in
the sizes of physical objects without the introduction of forces nor Weyl’s gauge
field of dilations. We finalize by constructing the generalization of Maxwell theory
of Electrodynamics of point charges to a theory in C-spaces that involves extended
charges coupled to antisymmetric tensor fields of arbitrary rank. In the conclud-
ing remarks we outline briefly the current promising research programs and their
plausible connections with C-space Relativity.

*aCenter for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta ®Jozef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
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1 Introduction

In recent years it was argued that the underlying fundamental physical principle behind
string theory, not unlike the principle of equivalence and general covariance in Einstein’s
general relativity, might well be related to the existence of an invariant minimal length
scale (Planck scale) attainable in nature [8]. A theory involving spacetime resolutions
was developed long ago by Nottale [23] where the Planck scale was postulated as the
minimum observer independent invariant resolution [23] in Nature. Since “points” cannot
be observed physically with an ultimate resolution, it is reasonable to postulate that they
are smeared out into fuzzy balls. In refs.[8] it was assumed that those balls have the Planck
radius and arbitrary dimension. For this reason it was argued in refs.[8] that one should
construct a theory which includes all dimensions (and signatures) on the equal footing.
In [8] this Extended Scale Relativity principle was applied to the quantum mechanics
of p-branes which led to the construction of Clifford-space (C-space) where all p-branes
were taken to be on the same footing, in the sense that the transformations in C-space
reshuffled a string history for a five-brane history, a membrane history for a string history,
for example.

Clifford algebras contained the appropriate algebraic-geometric features to implement
this principle of polydimensional transformations [14]-[17]. In [14]-[16] it was proposed
that every physical quantity is in fact a polyvector, that is, a Clifford number or a Clifford
aggregate. Also, spinors are the members of left or right minimal ideals of Clifford algebra,
which may provide the framework for a deeper understanding of sypersymmetries, i.e.,
the transformations relating bosons and fermions. The Fock-Stueckelberg theory of a
relativistic particle can be embedded in the Clifford algebra of spacetime [15, 16]. Many
important aspects of Clifford algebra are described in [1],[6], [7], [3], [15, 16, 17], [5], [48].
It is our belief that this may lead to the proper formulation of string and M theory.

A geometric approach to the physics of the Standard Model in terms of Clifford al-
gebras was advanced by [4]. It was realized in [43] that the C1(8) Clifford algebra con-
tains the 4 fundamental nontrivial representations of Spin(8) that accomodate the chiral
fermions and gauge bosons of the Standard model and which also includes gravitons via
the McDowell-Mansouri-Chamseddine-West formulation of gravity, which permits to con-
struct locally, in D = 8, a geometric Lagrangian for the Standard Model plus Gravity.
Furthermore, discrete Clifford-algebraic methods based on hyperdiamond-lattices have
been instrumental in constructing Ey lattices and deriving the values of the force-strengths
(coupling constants) and masses of the Standard model with remarkable precision by [43].
These results have recently been corroborated by [46] for Electromagnetism, and by [47],
where all the Standard model parameters were obtained from first principles, despite the
contrary orthodox belief that it is senseless to ”"derive” the values of the fundamental
constants in Nature from first principles, from pure thought alone; i.e. one must invoke
the Cosmological anthropic principle to explain why the constants of Nature have they
values they have.

Using these methods the bosonic p-brane propagator, in the quenched mini superspace
approximation, was constructed in [18, 19]; the logarithmic corrections to the black hole

98
Quantization in Astrophysics ...


me
Rectangle


entropy based on the geometry of Clifford space (in short C-space) were obtained in [21];
The modified nonlinear de Broglie dispersion relations, the corresponding minimal-length
stringy [11] and p-brane uncertainty relations also admitted a C-space interpretation [10],
[19]. A generalization of Maxwell theory of electromagnetism in C-spaces comprised of
extended charges coupled to antisymmetric tensor fields of arbitrary rank was attained
recently in [75]. The resolution of the ordering ambiguities of QFT in curved spaces
was resolved by using polyvectors, or Clifford-algebra valued objects [26]. One of the
most remarkable features of the Extended Relativity in C-spaces is that a higher deriva-
tive Gravity with Torsion in ordinary spacetime follows naturally from the analog of the
Einstein-Hlbert action in curved C-space [20].

In this new physical theory the arena for physics is no longer the ordinary spacetime,
but a more general manifold of Clifford algebra valued objects, noncommuting polyvectors.
Such a manifold has been called a pan-dimensional continuum [14] or C-space [8]. The
latter describes on a unified basis the objects of various dimensionality: not only points,
but also closed lines, surfaces, volumes,.., called 0-loops (points), 1-loops (closed strings) 2-
loops (closed membranes), 3-loops, etc.. It is a sort of a dimension category, where the role
of functorial maps is played by C-space transformations which reshuffles a p-brane history
for a p’-brane history or a mixture of all of them, for example. The above geometric objects
may be considered as to corresponding to the well-known physical objects, namely closed
p-branes. Technically those transformations in C-space that reshuffle objects of different
dimensions are generalizations of the ordinary Lorentz transformations to C-space.

C-space Relativity involves a generalization of Lorentz invariance (and not a defor-
mation of such symmetry) involving superpositions of p-branes (p-loops) of all possible
dimensions. The Planck scale is introduced as a natural parameter that allows us to
bridge extended objects of different dimensionalities. Like the speed of light was need in
Einstein Relativity to fuse space and time together in the Minkwoski spacetime interval.
Another important point is that the Conformal Group of four-dimensional spacetime is
a consequence of the Clifford algebra in four-dimensions [25] and it emphasizes the fact
why the natural dilations/contractions of objects in C-space is not the same physical phe-
nomenon than what occurs in Weyl’s geometry which requires introducing, by hand, a
gauge field of dilations. Objects move dilationally, in the absence of forces, for a different
physical reasoning than in Weyl’s geometry: they move dilationally because of inertia.
This was discussed long ago in refs.[27, 28].

This review is organized as follows: Section 2 is dedicated to extending ordinary Spe-
cial Relativity theory, from Minkowski spacetime to C-spaces, where the introduction of
the invariant Planck scale is required to bridge objects, p-branes, of different dimension-
ality.

The generalized dynamics of particles, fields and branes in C-space is studied in section
3 . This formalism allows us to construct for the first time, to our knowledge, a uni fied
action which comprises the dynamics of all p-branes in C-spaces, for all values of p, in one
single footing (see also [15]). In particular, the polyparticle dynamics in C-space, when
reduced to 4-dimensional spacetime leads to the Stuckelberg formalism and the solution
to the problem of time in Cosmology [15].

In section 4 we begin by discussing the geometric Clifford calculus that allows us
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to reproduce all the standard results in differential and projective geometry [41]. The
resolution of the ordering ambiguities of QFT in curved spaces follows next when we
review how it can be resolved by using polyvectors, or Clifford-algebra valued objects [26].
Afterwards we construct the Generalized Gravitational Theories in Curved C-spaces, in
particular it is shown how Higher derivative Gravity with Torsion in ordinary spacetime
follows naturaly from the Geometry of C-space [20].

In section 5 we discuss the Quantization program in C-spaces, and write the C-space
Klein-Gordon and Dirac equations [15]. The coresponding bosonic/fermionic p-brane
loop-wave equations were studied by [12], [13] without employing Clifford algebra and the
concept of C-space.

In section 6 we review the Maximal-Acceleration Relativity in Phase-Spaces [127],
starting with the construction of the submaximally-accelerated particle action of [53] using
Clifford algebras in phase-spaces; the U(1,3) invariance transformations [74] associated
with an 8-dimensional phase space, and show why the minimal Planck-Scale areas are
invariant under pure acceleration boosts which suggests that there could be a principle of
maximal-tension (maximal acceleration) operating in string theory [68].

In section 7 we discuss the important point that the notion of spacetime signature is
relative to a chosen n-dimensional subspace of 2"-dimensional Clifford space. Different
subspaces V,,—different sections through C-space—have in general different signature [15]
We show afterwards how the Conformal agebra of spacetime emerges from the Clifford
algebra [25] and emphasize the physical differences between our model and the one based
on Weyl geometry. At the end we show how Clifford algebraic methods permits one to
generalize Maxwell theory of Electrodynamics (asociated with ordinary point-charges) to
a generalized Maxwell theory in Clifford spaces involving extended charges and p-forms
of arbitrary rank [75]

In the concluding remarks, we briefly discuss the possible avenues of future research
in the construction of QFT in C-spaces, Quantum Gravity, Noncommutative Geometry,
and other lines of current promising research in the literature.

2 Extending Relativity from Minkowski Spacetime
to C-space

We embark into the construction of the extended relativity theory in C-spaces by a natural
generalization of the notion of a spacetime interval in Minkwoski space to C-space [8, 14,
16, 15, 17]:

dX? = do® + dz,da" + dx,,da" + ... (1)

where 1 < g < ... The Clifford valued polyvector:*

X = XMEy = ol + 2y, + 2", Ay + 2Py Ay A Y- (2)

'If we do not restrict indices according to y; < p2 < ps < ..., then the factors 1/2!, 1/3!, respectively,
have to be included in front of every term in the expansion (1).
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denotes the position of a point in a manifold, called Clifford space or C-space. The series
of terms in (2) terminates at a finite grade depending on the dimension D. A Clifford
algebra Cl(r,q) with r + ¢ = D has 2P basis elements. For simplicity, the gammas v*
correspond to a Clifford algebra associated with a flat spacetime:

S = )

but in general one could extend this formulation to curved spacetimes with metric g*”
(see section 4).

The connection to strings and p-branes can be seen as follows. In the case of a closed
string (a 1-loop) embedded in a target flat spacetime background of D-dimensions, one
represents the projections of the closed string (1-loop) onto the embedding spacetime
coordinate-planes by the variables z#”. These variables represent the respective areas
enclosed by the projections of the closed string (1-loop) onto the corresponding embedding
spacetime planes. Similary, one can embed a closed membrane (a 2-loop) onto a D-dim
flat spacetime, where the projections given by the antisymmetric variables z#*? represent
the corresponding volumes enclosed by the projections of the 2-loop along the hyperplanes
of the flat target spacetime background.

This procedure can be carried to all closed p-branes (p-loops) where the values of p
are p = 0,1,2,3,.... The p = 0 value represents the center of mass and the coordinates
xH kPP, have been coined in the string-brane literature [24]. as the holographic areas,
volumes,...projections of the nested family of p-loops ( closed p-branes) onto the embed-
ding spacetime coordinate planes/hyperplanes. In ref.[17] they were interpreted as the
generalized centre of mass coordinates of an extended object. Extended objects were thus
modeled in C-space.

The scalar coordinate o entering a polyvector X is a measure associated with the
p-brane’s world manifold V,+1 (e.g., the string’s 2-dimensional worldsheet V3): it is pro-
portional to the (p + 1)-dimensional area/volume of V1. In other words, ¢ is propor-
tional to the areal-time parameter of the Eguchi-Schild formulation of string dynamics
[126, 37, 24].

We see in this generalized scheme the objects as observed in spacetime (which is a
section through C-space) need not be infinitely extended along time-like directions. They
need not be infinitely long world lines, world tubes. They can be finite world lines, world
tubes. The o coordinate measures how long are world lines, world tubes. During evolution
they can becomes longer and longer or shorter and shorter.

If we take the differential d X of X and compute the scalar product among two polyvec-
tors < dXTdX >o= dXT * dX = |dX|? we obtain the C-space extension of the particles
proper time in Minkwoski space. The symbol X' denotes the reversion operation and
involves reversing the order of all the basis v* elements in the expansion of X. It is the
analog of the transpose (Hermitian) conjugation. The C-space proper time associated
with a polyparticle motion is then the expression (1) which can be written more explicitly
as:

dX)? = GuydXMdXY =ds?
= do® + L7 %dr,da" + L™ *dv,,da + ...+ L7*Pda, ., da" 2 (4)
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where Gy = E& x Ey is the C-space metric.

Here we have introduced the Planck scale L since a length parameter is needed in order
to tie objects of different dimensionality together: 0O-loops, 1-loops...., p-loops. Einstein
introduced the speed of light as a universal absolute invariant in order to “unite” space
with time (to match units) in the Minkwoski space interval:

ds? = Adt* + dxdxt.

A similar unification is needed here to “unite” objects of different dimensions, such as z*,
xM etc... The Planck scale then emerges as another universal invariant in constructing
an extended relativity theory in C-spaces [8].

Since the D-dimensional Planck scale is given explicitly in terms of the Newton con-
stant: Lp = (Gxn)YP~2 in natural units of A = ¢ = 1, one can see that when D = oo
the value of Lp is then Lo, = G° = 1 (assuming a finite value of G). Hence in D = oo the
Planck scale has the natural value of unity. However, if one wishes to avoid any serious
algebraic divergence problems in the series of terms appearing in the expansion of the
analog of proper time in C-spaces, in the extreme case when D = oo, from now on we
shall focus solely on a finite value of D. In this fashion we avoid any serious algebraic
convergence problems. We shall not be concerned in this work with the representations
of Clifford algebras in different dimensions and with different signatures.

The line element dS as defined in (4) is dimensionless. Alternatively, one can define
[8, 9] the line element whose dimension is that of the D-volume so that:

dx?® = L*Pdo® + L*P?dx,d" 4+ LY ey, da + .+ day, ., datt ke (5)

Let us use the relation
Yo A wos A Vup = Veprpip (6)

and write the volume element as
daht-Hpry, A LAY, =do (7)

where
do = da" " Pe,, up (8)
In all expressions we assume the ordering prescription p; < po < ... < i, ¥ =1,2,..., D.
The line element can then be written in the form
dy? = L*Pdo? + L*P2dz,da” + L*P*dx,, dat + ... + |y]* d6° 9)
where
VP =A%y (10)

Here v is the pseudoscalar basis element and can be writted as v Ay1 A ...yp—1. In
flat spacetime Mp we have that |y|?> = +1 or —1, depending on dimension and signature.

In M, with signature (+ — ——) we have v/ xy = 7Ty =12 = -1 (y = v = Yon11273),
whilst in My with signature (+ — — — —) it is 47y = 1.
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The analog of Lorentz transformations in C-spaces which transform a polyvector X
into another poly-vector X’ is given by

X'=RXR™ (11)
with )
R =" = exp [(O] + 0y, + 0"72, A, (12)
and .
R =e B4 = eqp [~ (0] + 0", + 0”23, Apy.....)]. (13)

where the theta parameters in (12)(13) are the components of the Clifford-value parameter
O = QMEM
0; 0t 6" ... (14)

they are the C-space version of the Lorentz rotations/boosts parameters.

Since a Clifford algebra admits a matrix representation, one can write the norm of a
poly-vectors in terms of the trace operation as: || X||*> = Trace X? Hence under C-space
Lorentz transformation the norms of poly-vectors behave like follows:

Trace X'* = Trace [RX?*R™'] = Trace [RR™'X?] = Trace X?. (15)

These norms are invariant under C-space Lorentz transformations due to the cyclic prop-
erty of the trace operation and RR~! = 1. If one writes the invariant norm in terms of
the reversal operation < XX >, this will constrain the explicit form of the terms in the
exponential which define the rotor R so the rotor R obeys the analog condition of an or-
thogonal rotation matrix Rf = R~'. Hence the appropriate poly-rotations of poly-vectors
which preserve the norm must be :

(X2 =< XX >;=< (R XTRIRXR™" >,=< RXTXR™' >,=< XX > = || X?||.

(16)
where once again, we made use of the analog of the cyclic property of the trace, <
RXTXR ' > =< XTX >, .

This way of rewriting the inner product of poly-vectors by means of the reversal
operation that reverses the order of the Clifford basis generators : (y* A y¥)T = ¥ A y#,
etc... has some subtleties. The analog of an orthogonal matrix in Clifford spaces is
R" = R~ such that

< XX >=< (R XTRIRXR™ >,=< RX'XR™ >,=< X'X >,= invariant.

This condition Rf = R~ |, of course, will restrict the type of terms allowed inside the
exponential defining the rotor R because the reversal of a p-vector obeys

Hence only those terms that change sign ( under the reversal operation ) are permitted
in the exponential defining R = exp[0* E,].
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Another possibility is to complexify the C-space polyvector valued coordinates =
7 =7AF, = XAFE,+iYAE, and the boosts /rotation parameters 6 allowing the unitarity
condition UT = U~ to hold in the generalized Clifford unitary transformations Z' =
UZUT associated with the complexified polyvector Z = Z4FE, such that the interval

< dZVdZ >, = dQdQ+ dz'dz, + dZ"dz,, + d2Pd2,, +

remains invariant ( upon setting the Planck scale A =1 ).

The unitary condition UT = U~! under the combined reversal and complex-conjugate
operation will constrain the form of the complexified boosts/rotation parameters 64 ap-
pearing in the rotor : U = exp[ 04 E, ]. The theta parameters 64 are either purely real or
purely imaginary depending if the reversal E4' = £E 4, to ensure that an overall change
of sign occurs in the terms 64 E 4 inside the exponential defining U so that U = U~! holds
and the norm < Z'Z >, remains invariant under the analog of unitary transformations
in complexi fied C-spaces. These techniques are not very different from Penrose Twistor
spaces. As far as we know a Clifford-Twistor space construction of C-spaces has not been
performed so far.

Another alternative is to define the polyrotations by R = exp (©48[E,4, E]) where
the commutator [E4, Eg] = FapcFEc is the C-space analog of the i[y,,,] commutator
which is the generator of the Lorentz algebra, and the theta parameters ©4% are the
C-space analogs of the rotation/boots parameters §*V. The diverse parameters ©47 are
purely real or purely imaginary depending whether the reversal [E4, Ep|t = £[E,4, Ep]
to ensure that Rf = R~! so that the scalar part < XTX >, remains invariant under the
transformations X’ = RX R~ . This last alternative seems to be more physical because
a poly-rotation should map the F, direction into the Eg direction in C-spaces, hence
the meaning of the generator [E4, Ep] which extends the notion of the [y,,",] Lorentz
generator.

The above transformations are active transformations since the transformed Clifford
number X’ (polyvector) is different from the “original” Clifford number X. Considering
the transformations of components we have

X =X"MEy = LMy XVEy (17)
If we compare (17) with (11) we find
IMyEy = REyR™ (18)
from which it follows that
My =(EM REyR™ )y = EM « (RExyR™Y) = EM % E). (19)

where we have labelled F' as new basis element since in the active interpretation one may
perform either a change of the polyvector components or a change of the basis elements.
The ( )o means the scalar part of the expression and “x” the scalar product. Eq(19)
has been obtained after multiplying (18) from the left by E’, taking into account that
(E'En)o = E7 % Exy = 67 5, and renamiming the index J into M.
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3 Generalized Dynamics of Particles, Fields and
Branes in C-space

An immediate application of this theory is that one may consider “strings” and “branes”
in C-spaces as a unifying description of all branes of different dimensionality. As we have
already indicated, since spinors are in left /right ideals of a Clifford algebra, a supersymme-
try is then naturally incorporated into this approach as well. In particular, one can have
world manifold and target space supersymmetry simultaneously [15]. We hope that the
C-space “strings” and “branes” may lead us towards discovering the physical foundations
of string and M-theory. For other alternatives to supersymmetry see the work by [50]. In
particular, Z3 generalizations of supersymmetry based on ternary algebras and Clifford
algebras have been proposed by Kerner [128] in what has been called Hypersymmetry.

3.1 The Polyparticle Dynamics in C-space

We will now review the theory [15, 17] in which an extended object is modeled by the
components o, z* x* .. of the Clifford valued polyvector (2). By assumption the ex-
tended objects, as observed from Minkowski spacetime, can in general be localized not
only along space-like, but also along time-like directions [15, 17]. In particular, they can
be “instantonic” p-loops with either space-like or time-like orientation. Or they may be
long, but finite, tube-like objetcs. The theory that we consider here goes beyond the
ordinary relativity in Minkowski spacetime, therefore such localized objects in Minkowski
spacetime pose no problems. They are postulated to satisfy the dynamical principle which
is formulated in C-space. All conservation laws hold in C-space where we have infinitely
long world “lines” or Clifford lines. In Minkowski spacetime M, —which is a subspace of
C-space— we observe the intersections of Clifford lines with M,. And those intersections
appear as localized extended objects, p-loops, described above.
Let the motion of such an extended object be determined by the action principle

[=# / dr (X1 % X)V2 = & / dr (XAX )12 (20)

where x is a constant, playing the role of “mass” in C-space, and 7 is an arbitrary
parameter. The C-space velocities X4 = dX4/dr = (&,@", &* ™, ..) are also called
“hollographic” velocities.

The equation of motion resulting from (20) is

d ( XA )

— |7 =0 (21)

dr / XB XB
Taking XZXp = constant # 0 we have that X4 = 0, so that x4(7) is a straight worldline
in C-space. The components x4 then change linearly with the parameter 7. This means
that the extended object position z#, effective area z*¥, 3-volume 2, 4-volume zV*#,

etc., they all change with time. That is, such object experiences a sort of generalized
dilational motion [17].
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We shall now review the procedure exposed in ref. [17] according to which in such a
generalized dynamics an object may be accelerated to faster than light speeds as viewed
from a 4-dimensional Minkowski space, which is a subspace of C-space. For a differ-
ent explanation of superluminal propagation based on the modified nonlinear de Broglie
dispersion relations see [68].

The canonical momentum belonging to the action (20) is

IiXA

P =
A (XBXp)\/2

(22)

When the denominator in eq.(22) is zero the momentum becomes infinite. We shall
now calculate the speed at which this happens. This will be the mazimum speed that
an object accelerating in C-space can reach. Although an initially slow object cannot
accelerate beyond that speed limit, this does not automatically exclude the possibility
that fast objects traveling at a speed above that limit may exist. Such objects are C-
space analog of tachyons [31, 32]. All the well known objections against tachyons should
be reconsidered for the case of C-space before we could say for sure that C-space tachyons
do not exist as freely propagating objects. We will leave aside this interesting possibility,
and assume as a working hypothesis that there is no tachyons in C-space.
Vanishing of XZXp is equivalent to vanishing of the C-space line element

dzO\?% /dz'\? [dzot\? dz2\?  [dz!23\ 2% [/ dp0123\ 2
dXAdXA = d0'2+<L> —<L> —< L2 ) —|—< L2 ) —<L3> _<L4> +...= 0
)

where by “...” we mean the terms with the remaining components such as z2, 2%, 2%,...,
%12 etc.. The C-space line element is associated with a particular choice of C-space
metric, namely Gy = E]TW x En. If the basis Fy, M =1,2,...,2P is generated by the
flat space v# satisfying (3), then the C-space has the diagonal metric of eq. (23) with 4, —
signa. In general this is not necessarily so and the C-space metric is a more complicated
expression. We take now dimension of spacetime being 4, so that x°'2® is the highest
grade coordinate. In eq. (23) we introduce a length parameter L. This is necessary, since
2% = ct has dimension of length, z'? of length square, 223 of length to the third power,
and 2912 of length to the forth power. It is natural to assume that L is the Planck length,
that is L = 1.6 x 107%%m.

Let us assume that the coordinate time ¢t = 2°/c is the parameter with respect to
which we define the speed V' in C-space.

So we have

V2 - Ldﬁ 2+ LIJ 2+ del 2 B ldeZ 2+ idx123 2+ idx0123 2_
B dt dt 2 |/ L dt 12 dt 3 dt
(24)

From egs. (23),(24) we find that the maximum speed is the maximum speed is given

by

7

V= (25)
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First, we see that the maximum speed squared V2 contains not only the components
of the 1-vector velocity dx!/dt, as it is the case in the ordinary relativity, but also the
multivector components such as dz'?/d¢, dz'?3/dt, etc..

The following special cases when only certain components of the velocity in C-space
are different from zero, are of particular interest:

(i) Maximum 1-vector speed

d 1
di; — ¢ =3.0x 10%n/s

(i) Maximum 3-vector speed

d 123
fit =L*c=177x10"%m3/s
d/ 123
di =43 x10"*m/s (diameter speed)

(i) Maximum 4-vector speed

d 0123
”’dt = [Pc=12x 10" %m?/s
d/ 0123
% =1.05 x 107**m/s (diameter speed)

Above we have also calculated the corresponding diameter speeds for the illustration of
how fast the object expands or contracts.

We see that the maximum multivector speeds are very small. The diameters of objects
change very slowly. Therefore we normally do not observe the dilatational motion.

Because of the positive sign in front of the o and x'2, 22, etc., terms in the quadratic
form (23) there are no limits to correspondintg 0-vector, 2-vector and 3-vector speeds. But
if we calculate, for instance, the energy necessary to excite 2-vector motion we find that it
is very high. Or equivalently, to the relatively modest energies (available at the surface of
the Earth), the corresponding 2-vector speed is very small. This can be seen by calculating
the energy

p = (26)

(a) for the case of pure 1-vector motion by taking V' = dz'/d¢, and
(b) for the case of pure 2-vector motion by taking V = dz'?/(Ldt).
By equating the energies belonging to the cases (a) and (b we have

2 2
0 KC KC

p = = (27)

2 2
1 da? 1 dz12
J- (%) - ()
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which gives

1da! 1 12 2\ 2
dx dx _ 1_(/4;0) (28)

cdt  Le dt Po

Thus to the energy of an object moving translationally at dz!/dt =1 m/s, there cor-
responds the 2-vector speed dz'?/dt = Ldx'/dt = 1.6 x 107> m?/s (diameter speed
4 x107'8m/s). This would be a typical 2-vector speed of a macroscopic object. For a
microscopic object, such as the electron, which can be accelerated close to the speed of
light, the corresponding 2-vector speed could be of the order of 1072% m?/s (diameter
speed 1071%m/s). In the examples above we have provided rough estimations of possible
2-vector speeds. Exact calculations should treat concrete situations of collisions of two
or more objects, assume that not only 1-vector, but also 2-vector, 3-vector and 4-vector
motions are possible, and take into account the conservation of the polyvector momentum
Py.

Mazimum 1-vector speed, i.e., the usual speed, can exceed the speed of light when the
holographic components such as do/dt, dx'?/dt, dz®2/dt, etc., are different from zero
[17]. This can be immediately verified from eqs. (23),(24). The speed of light is no longer
such a strict barrier as it appears in the ordinary theory of relativity in M. In C-space
a particle has extra degrees of freedom, besides the translational degrees of freedom. The
scalar, o, the bivector, x'? (in general, ™, r;s = 1,2,3) and the three vector, z%?
(in general, 2%, r s = 1,2, 3), contributions to the C-space quadratic form (23) have
positive sign, which is just opposite to the contributions of other components, such as
a", 2%, a"st x#vr? . Because some terms in the quadratic form have + and some — sign,
the absolute value of the 3-velocity dz”/dz® can be greater than c.

It is known that when tachyons can induce a breakdown of causality. The simplest way
to see why causality is violated when tachyons are used to exchange signals is by writing
the temporal displacements 6t = t¥ — t4 between two events (in Minkowski space-time)
in two different frames of reference:

(6t)" = (0t)cosh(&) + (Ztsinh(f) = (0t)[cosh(&) + (if;)sznh(f)] = (29)

(0t)[cosh(&) + (Brachyon) sinh(§)] (30)

the boost parameter ¢ is defined in terms of the velocity as Bframe = Vframe/c = tanh(§),
where vfpqme s is the relative velocity ( in the z-direction ) of the two reference frames
and can be written in terms of the Lorentz-boost rapidity parameter £ by using hyperbolic
functions. The Lorentz dilation factor is cosh(§) = (1 — ﬂj%mme)*l/ s whereas Buchyon =
Utachyon/ C 18 the beta parameter associated with the tachyon velocity dx/dt . By emitting
a tachyon along the negative x -direction one has Biucnyon < 0 and such that its velocity
exceeds the speed of light |Biachyon| > 1

A reversal in the sign of (dt)" < 0 in the above boost transformations occurs when the
tachyon velocity | Btachyon| > 1 and the relative velocity of the reference frames |5 ¢rame| < 1
obey the inequality condition :
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1
tanh(f) B ﬁfv"ame

thereby resulting in a causality violation in the primed reference frame since the effect (
event B ) occurs before the cause ( event A ) in the primed reference frame.

In the case of subluminal propagation |3yt < 1 there is no causality violation since
one would have :

(6t) = (0t)[cosh(§) — | Brachyon|sinh(§)] <0 =1 < < |Brachyon|- (31)

(8t)" = (6t)[cosh(§) — | Bparticie| sinh(§)] > 0 (32)

due to the hyperbolic trigonometric relation :

cosh?®(€) — sinh?(€) = 1 = cosh(&) — sinh(£) > 0 (33)

In the theory considered here, there are no tachyons in C-space, because physical
signals in C-space are constrained to live inside the C-space-light cone, defined by eq.
(23). However, certain worldlines in C-space, when projected onto the subspace My,
can appear as worldlines of ordinary tachyons outside the lightcone in M,. The physical
analog of photons in C-space corresponds to tensionless p-loops, i.e., tensionless closed
branes, since the analog of mass m in C-space is the maximal p-loop tension. By ‘maximal
p-loop” we mean the loop with the maximum value of p associated with the hierarchy of
p-loops (closed p-branes): p = 0,1,2,.... living in the embedding target spacetime. One
must not confuse the Stueckelberg parameter o with the C-space Proper-time 3 (eq.(5));
so one could have a world line in C-space such that

tensionless branes with a monotonically increasing

d¥ = 0 «» C-space photon «» Stueckelberg parameter o

In C-space the dynamics refers to a larger space. Minkowski space is just a subspace
of C-space. ”Wordlines” now live in C-space that can be projected onto the Minkwoski
subspace M, . Concerning tachyons and causality within the framework of the C-space
relativity, the authors of this review propose two different explanations, described below.

According to one author (C.C) one has to take into account the fact that one is
enlarging the ordinary Lorentz group to a larger group of C-space Lorentz transformations
which involve poly-rotations and generalizations of boosts transformations. In particular,
the C-space generalization of the ordinary boost transformations associated with the
boost rapidity parameter ¢ such that tanh(§) = Bframe will involve now the family of
C-space boost rapidity parameters 611, 912 94123 9123 since boosts are just ( poly
) rotations along directions involving the time coordinate. Thus, one is replacing the
ordinary boost transformations in Minkowski spacetime for the more general C-space
boost transformations as we go from one frame of reference to another frame of reference.

Due to the linkage among the C-space coordinates (poly-dimensional covariance) when
we envision an ordinary boost along the x!- direction, we must not forget that it is also
interconnected to the area-boosts in the z'2-direction as well, and, which in turn, is also
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linked to the 22 direction. Because the latter direction is transverse to the original
tachyonic x'-motion, the latter x2-boosts won't affect things and we may concentrate on
the area-boosts along the z'? direction involving the 62 parameter that will appear in
the C-space boosts and which contribute to a crucial extra term in the transformations
such that no sign-change in ¢’ will occur.

More precisely, let us set all the values of the theta parameters to zero except the
parameters 6% and 0 related to the ordinary boosts in the 2! direction and area-boosts
in the 2'? directions of C-space. This requires, for example, that one has at least one
spatial-area component, and one temporal coordinate, which implies that the dimensions
must be at least D =24 1 =3 . Thus, we have in this case :

_ t1 12 _ptl _pt12
X/ — RXR 1 _ 69 YeAy1+0 %/\'71/\72XMEM6 0 e Ay1—0" 2y Ay Ay2 = XIN _ LJ\N/[XM (34)

where as we shown previously LY, =< ENRER™! >, . When one concentrates on
the transformations of the time coordinate, we have now that the C-space boosts do not
coincide with ordinary boosts in the x! direction :

t' =Ly, XM =< E'"REy R >0 XM #£ (L)t + (LY)2'. (35)

because of the extra non-vanishing § parameter 0%'2 .

This is because the rotor R includes the extra generator 82, Ay, A, which will bring
extra terms into the transformations ; i.e. it will rotate the Ej9 bivector- basis , that
couples to the holographic coordinates x'2, into the F, direction which is being contracted
with the E* element in the definition of L},. There are extra terms in the C-space boosts
because the poly-particle dynamics is taking place in C-space and all coordinates X
which contain the ¢, 2!, 22 directions will contribute to the C-space boosts in D = 3,
since one is projecting down the dynamics from C-space onto the (¢, ') plane when one
studies the motion of the tachyon in M, .

Concluding, in the case when one sets all the theta parameters to zero, except the 6%
and 02 the X' = RXME,;R~! transformations will be :

(0t) = Ly (0" 0")(6X™) # Li(dt) + Ly(oz"). (36)

due to the presence of the extra term L!,(6X'?) in the transformations. In the more
general case, when there are more non-vanishing theta parameters , the indices M of
the XM coordinates must be restricted to those directions in C-space which involve the
t,xt, 22, 212, .. directions as required by the C-space poly-particle dynamics. The gen-
eralized C-space boosts involve now the ordinary tachyon velocity component of the poly-
particle as well as the generalized holographic areas, volumes, hyper-volumes...velocities
VM = (§XM/6t) associated with the poly-vector components of the Clifford-valued C-
space velocity.

Hence, at the expense of enlarging the ordinary Lorentz boosts to the C-space Lorentz
boosts, and the degrees of freedom of a point particle into an extended poly-particle
by including the holographic coordinates, in C-space one can still have ordinary point-
particle tachyons without changing the sign of ¢, and without violating causality, due to
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the presence of the extra terms in the C-space boosts transformations which ensure us
that the sign of 0t > 0 is maintained as we go from one frame of reference to another one.
Naturally, if one were to freeze all the § parameters to zero except one "' one would end
up with the standard Lorentz boosts along the 2! -direction and a violation of causality
would occur for tachyons as a result of the sign-change in §t" .

In future work we shall analyze in more detail if the condition 6t = L%, (6X™) > 0
is satisfied for any physical values of the theta C-space boosts parameters and for any
physical values of the holographic velocities consistent with the condition that the C-
space velocity Vi, VM > 0. What one cannot have is a C-space tachyon; i.e. the physical
signals in C-space must be constrained to live inside the C-space light-cone. The analog
of 7 photons ” in C-space are tensionless branes . The corresponding analog of C-space
tachyons involve branes with imaginary tensions, not unlike ordinary tachyons m? < 0 of
imaginary mass.

To sum up : Relativity in C-space demands enlarging the ordinary Lorentz group (
boosts ) to a larger symmetry group of C-space Lorentz group and enlarging the degrees
of freedom by including Clifford-valued coordinates X = XM E};. This is the only way
one can have a point-particle tachyonic speed in a Minkowski subspace without violat-
ing causality in C-space. Ordinary Lorentz boosts are incompatible with tachyons if one
wishes to preserve causality . In C-space one requires to have, at least, two theta param-
eters 0% and 02 with the inclusion, at least, of the ¢, 2!, z'? coordinates in a C-space
boost, to be able to enforce the condition §t > 0 under ( combined ) boosts along the
x! direction accompanied by an area-boost along the z'? direction of C-space . It is be-
yond the scope of this review to analyze all the further details of the full-fledged C-boosts
transformations in order to check that the condition §¢" > 0 is obeyed for any physical
values of the theta parameters and holographic velocities.

According to the other author (M.P.), the problem of causality could be explained as
follows. In the usual theory of relativity the existence of tachyons is problematic because
one can arrange for situations such that tachyons are sent into the past. A tachyon T}
is emitted from an aparatus worldline C at z and a second tachyon T} can arrive to the
same worldline C at an earlier time /% < % and trigger destruction of the aparatus. The
spacetime event E’ at which the aparatus is destroyed cooncides with the event E at
which the aparatus by initial assumtion kept on functioning normally and later emitted
T;. So there is a paradox from the ordinary ( constrained ) relativistic particle dynamics.

There is no paradox if one invokes the unconstrained Stueckelberg description of su-
perluminal propagation in M. It can be described as follows. A C-space worldline can be
described in terms of five functions x*(7), () (all other C-space coordinates being kept
constant). In C-space we have the constrained action (20), whilst in Minkowski space we
have a reduced, unconstrained action. A reduction of variables can be done by choosing
a gauge in which o(7) = 7. It was shown in ref.[16, 15, 17] that the latter unconstrained
action is equivalent to the well known Stueckelberg action [33, 34]. In other words, the
Stueckelberg relativistic dynamics is embedded in C-space. In Stueckelberg theory all
four spacetime coordinates z# are independent dynamical degrees of freedom that evolve
in terms of an extra parameter o which is invariant under Lorentz transformations in Mj.

From the C-space point of view, the evolution parameter o is just one of the C-space
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coordintes X . By assumption, ¢ is monotonically increasing along particles’ worldlines.
Certain C-space worldlines may appear tachyonic from the point of view of My. If we now
repeat the above experiment with the emission of the first and absorption of the second
tachyon we find out that the second tachyon 75 cannot reach the aparatus worldline earlier
than it was emmitted from. Namely, T, can arrive at a C-space event £’ with 20 < 29,
but the latter event does not coincide with the event E on the aparatus worldline, since
although having the same coordinates z* = z#, the events E' and E’ have different extra
coordinates o’ # 0. In other words, £ and E’ are different points in C-space. Therefore
T, cannot destroy the aparatus and there is no paradox.

If nature indeed obeys the dynamics in Clifford space, then a particle, as observed
from the 4-dimensional Minkowski space, can be accelerated beyond the speed of light
[17], provided that its extra degrees of freedom z#”, z#** ... are changing simultaneously
with the ordinary position z#. But such a particle, although moving faster than light
in the subspace My, is moving slower than light in C-space, since its speed V', defined
in eq.(24), is smaller than c. In this respect, our particle is not tachyon at alll In C-
space we thus retain all the nice features of relativity, but in the subspace M, we have,
as a particular case, the unconstrained Stueckelberg theory in which faster-than-light
propagation is not paradoxical and is consistent with the quantum field theory as well
[15]. This is so, because the unconstrained Stueckelberg theory is quite different from
the ordinary (constrained) theory of relativity in My, and faster than light motion in the
former theory is of totally different nature from the faster that light motion in the latter
theory. The tachyonic “world lines” in M, are just projections of trajectories in C-space
onto Minkowski space, however, the true world lines of My must be interpreted always as
being embedded onto a larger C-space, such that they cannot take part in the paradoxical
arrangement in which future could influence the past. The well known objections against
tachyons are not valid for our particle which moves according to the relativity in C-space.

We have described how one can obtain faster than light motion in M, from the theory of
relativity in C-space. There are other possible ways to achieve superluminal propagation.
One such approach is described in refs. [84]

An alternative procedure In ref.[9] an alternative factorization of the C-space line
element has been undertaken. Starting from the line element d¥ of eq.(5), instead of
factoring out the (dz°)? element, one may factor out the (dQ2)? = L?Pdo? element, giving
rise to the generalized "holographic ” velocities measured w.r.t the €2 parameter, for
example the areal-time parameter in the Eguchi-Schild formulation of string dynamics
[126], [37], [24], instead of the 2° parameter (coordinate clock). One then obtains

o nZ
dz, dz op—q Az da

+ +||2d&2
40 A0 aQ a0 T an

dy? =d0? |1+ L*P (37)

The idea of ref. [9] was to restrict the line element (37) to the non tachyonic values which
imposes un upper limit on the holographic velocities. The motivation was to find a lower
bound of length scale. This upper holographic-velocity bound does not necessarily trans-
late into a lower bound on the values of lengths, areas, volumes....without the introduction
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of quantum mechanical considerations. One possibility could be that the upper limiting
speed of light and the upper bound of the momentum myc of a Planck-mass elementary
particle (the so-called Planckton in the literature) generalizes now to an upper-bound in
the p-loop holographic velocities and the p-loop holographic momenta associated with
elementary closed p-branes whose tensions are given by powers of the Planck mass. And
the latter upper bounds on the holographic p-loop momenta implies a lower-bound on the
holographic areas, volumes,..., resulting from the string/brane uncertainty relations [11],
[10],[19]. Thus, Quantum Mechanics is required to implement the postulated principle of
minimal lengths, areas, volumes...and which cannot be derived from the classical geometry
alone. The emergence of minimal Planck areas occurs also in the Loop Quantum Gravity
program [111] where the expecation values of the Area operator are given by multiples of
Planck area.

Recently in [134] an isomorphism between Yang’s Noncommutative space-time algebra
(involving two length scales) [136] and the holographic area coordinates algebra of C-
spaces (Clifford spaces) was constructed via an AdSs space-time which is instrumental
in explaining the origins of an extra (infrared) scale R in conjunction to the (ultraviolet)
Planck scale A characteristic of C-spaces. Yang’s Noncommutative space-time algebra
allowed Tanaka [137] to explain the origins behind the discrete nature of the spectrum
for the spatial coordinates and spatial momenta which yields a minimum length-scale
A (ultraviolet cutoff) and a minimum momentum p = h/R ( maximal length R, infrared
cutoff ) . In particular, the norm-squared A? of the holographic Area operator X 45X 4P
has a correspondence with the quadratic Casimir operator ¥ ,45%4” of the conformal
algebra SO(4,2) ( SO(5,1) in the Euclideanized AdSs case ). This holographic area-
Casimir relationship does not differ much from the area-spin relation in Loop Quantum
Gravity A2 ~ MY 5;(j; + 1) in terms of the SU(2) Casimir J? with eigenvalues j(j + 1)
and where the sum is taken over the spin network sites.

3.2 A Unified Theory of all p-Branes in C-Spaces

The generalization to C-spaces of string and p-brane actions as embeddings of world-
manifolds onto target spacetime backgrounds involves the embeddings of polyvector-
valued world-manifolds (of dimensions 2¢) onto polyvector-valued target spaces (of di-
mensions 2°), given by the Clifford-valued maps X = X () (see [15]). These are maps
from the Clifford-valued world-manifold, parametrized by the polyvector-valued variables
Y, onto the Clifford-valued target space parametrized by the polyvector-valued coordi-
nates X. Physically one envisions these maps as taking an n-dimensional simplicial cell
(n-loop) of the world-manifold onto an m-dimensional simplicial cell (m-loop) of the target
C-space manifold ; i.e. maps from n-dim objects onto m-dim objects generalizing the old
maps of taking points onto points. One is basically dealing with a dimension-category of
objects. The size of the simplicial cells (p-loops), upon quantization of a generalized har-
monic oscillator, for example, are given by multiples of the Planck scale, in area, volume,
hypervolume units or Clifford-bits.

In compact multi-index notation X = X™T';; one denotes for each one of the compo-
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nents of the target space polyvector X:
XM = Xpbzetin <y << e (38)
and for the world-manifold polyvector ¥ = S4E,:
$A = gnezts g <y < < a, (39)

where I'ny = (1, V4, Vv, --.) and E4 = (1, eq, €qp, ...) form the basis of the target mani-
fold and world manifold Clifford algebra, respectively. It is very important to order the
indices within each multi-index M and A as shown above. The above Clifford-valued coor-
dinates XM 34 correspond to antisymmetric tensors of ranks r, s in the target spacetime
background and in the world-manifold, respectively.

There are many different ways to construct C-space brane actions which are on-shell
equivalent to the analogs of the Dirac-Nambu-Goto action for extended objects and that
are given by the world-volume spanned by the branes in their motion through the target
spacetime background.

One of these actions is the Polyakov-Howe-Tucker action:

I= Z / (DX H|[HAP0, XM 05 XN Garn + (2 — 29)]. (40)

with the 29-dim world-manifold measure:

(D] = (d)(d®) (A ) (dg™1725).... (41)

Upon the algebraic elimination of the auxiliary world-manifold metric H4?Z from the
action (40), via the equations of motion, yields for its on-shell solution the pullback of
the target C-space metric onto the C-space world-manifold:

HAB(on - shell) == GAB == 8AXM83XNGMN (42)

upon inserting back the on-shell solutions (42) into (40) gives the Dirac-Nambu-Goto
action for the C-space branes directly in terms of the C-space determinant, or measure,
of the induced C-space world-manifold metric G 4g, as a result of the embedding;:

[=T / DY) /Det(94 X MDp XN Gar). (43)

However in C-space, the Polyakov-Howe-Tucker action admits an even further gener-
alization that is comprised of two terms S; + Ss. The first term is [15] :

S, = / IDX]|E|EAEP9, XM 95X Ty . (44)

Notice that this is a generalized action which is written in terms of the C-space coor-
dinates XM (X)) and the C-space analog of the target-spacetime vielbein /frame one-forms
e™ = e™,dx" given by the '™ variables. The auxiliary world-manifold vielbein variables
e?, are given now by the Clifford-valued frame E4 variables.
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In the conventional Polyakov-Howe-Tucker action, the auxiliary world-manifold metric
h associated with the standard p-brane actions is given by the usual scalar product of
the frame vectors e®.e’ = eZel,jg‘“’ = h%. Hence, the C-space world-manifold metric HA?
appearing in (42) is given by scalar product < (E4)TE? >q= HAB where (E4)" denotes
the reversal operation of £4 which requires reversing the orderering of the vectors present
in the Clifford aggregate E4.

Notice, however, that the form of the action (44) is far more general than the ac-
tion in (40). In particular, the S; itself can be decomposed futher into two additional
pieces by rewriting the Clifford product of two basis elements into a symmetric plus an
antisymmetric piece, respectively:

1 1
EAEP = 5{EA,EB} + 5[EA, EP. (45)

1 1
I'yl'y = §{FM, Iy} + §[PM7 INNIE (46)

In this fashion, the S; component has two kinds of terms. The first term containing
the symmetric combination is just the analog of the standard non-linear sigma model
action, and the second term is a Wess-Zumino-like term, containing the antisymmetric
combination . To extract the non-linear sigma model part of the generalized action above,
we may simply take the scalar product of the vielbein-variables as follows:

(1) sigma = :g JDEE| < (B*00XTan) (BP9 X T) >0 . (47)

where once again we have made use of the reversal operation (the analog of the hermitian
adjoint) before contracting multi-indices. In this fashion we recover again the Clifford-
scalar valued action given by [15].

Actions like the ones presented here in terms of derivatives with respect to quantities
with multi-indices can be mapped to actions involving higher derivatives, in the same
fashion that the C-space scalar curvature, the analog of the Einstein-Hilbert action, could
be recast as a higher derivative gravity with torsion (reviewed in sec. 4). Higher derivatives
actions are also related to theories of Higher spin fields [117] and W-geometry, W-algebras
[116], [122]. For the role of Clifford algerbras to higher spin theories see [51].

The S5 (scalar) component of the C-space brane action is the usual cosmological
constant term given by the C-space determinant |E| = det(H“?) based on the scalar part
of the geometric product < (E)TEP >,= HAB

T
5= 5 [IDZ)E|2 -2 (48)
where the C-space determinant |E| = y/|det(HAB)| of the 2¢ x 2¢ generalized world-
manifold metric H4? is given by:
1
det(HAB) = (Qd)' €A1A2....A2d EBlBQ....BQd HAlBl HAQB2 ....HA2dB2d . (49)
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The €4, 4,... Ay is the totally antisymmetric tensor density in C-space.

There are many different forms of p-brane actions, with and without a cosmological
constant [123], and based on a new integration measure by recurring to auxiliary scalar
fields [115], that one could have used to construct their C-space generalizations. Since all
of them are on-shell equivalent to the Dirac-Nambu-Goto p-brane actions, we decided to
focus solely on those actions having the Polyakov-Howe-Tucker form.

4 Generalized Gravitational Theories in Curved C-
spaces: Higher Derivative Gravity and Torsion
from the Geometry of C-Space

4.1 Ordinary space
4.1.1 Clifford algebra based geometric calculus in curved space(time)

Clifforfd algebra is a very useful tool for description of geometry, especially of curved
space V,,. Let us first review how it works in curved space(time). Later we will discuss a
generalization to curved Clifford space [20].

We would like to make those techniques accessible to a wide audience of physicists
who are not so familiar with the rigorous underlying mathematics, and demonstrate how
Clifford algebra can be straightforwardly employed in the theory of gravity and its general-
ization. So we will leave aside the sophisticated mathematical approach, and rather follow
as simple line of thought as possible, a praxis that is normally pursued by physicists. For
instance, physicists in their works on general relativity employ a mathematical formulation
and notation which is much simpler from that of purely mathematical or mathamatically
oriented works. For rigorous mathematical treatment the reader is adviced to study, refs.
1, 76, 77, 78, 79].

Let the vector fields 7v,, u = 1,2, ...,n be a coordinate basis in V,, satisfying the Clifford
algebra relation

1
T Y = 5(%% + 71/7#) = Juv (50)

where g, is the metric of V,,. In curved space 7, and g,, cannot be constant but neces-
sarily depend on position z#. An arbitrary vector is a linear superposition [1]

a=a'"y, (51)

where the components a* are scalars from the geometric point of view, whilst «, are
vectors.
Besides the basis {7,} we can introduce the reciprocal basis® {7#} satisfying

Py = (VY ) = g (52)

2In Appendix A of the Hesteness book [1] the frame {y#} is called dual frame because the duality
operation is used in constructing it.
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where ¢g"” is the covariant metric tensor such that ¢"“g,, = é*,, v, + 7" = 20", and
’Y'u = g"".

Following ref.[1] (see also [15]) we consider the vector derivative or gradient defined
according to

0=+"0, (53)

where 0, is an operator whose action depends on the quantity it acts on [26].
Applying the vector derivative 0 on a scalar field ¢ we have

¢ =7"0u9 (54)

where 0,¢ = (0/0x")¢ coincides with the partial derivative of ¢.
But if we apply it on a vector field a we have

da =49, (a" ) = +*(0ua" v + a”0u) (55)
In general 7, is not constant; it satisfies the relation [1, 15]
Ot =T Ya (56)
where 1", is the connection. Similarly, for v = g"*y, we have
8, = Tl (57)

The non commuting operator 9, so defined determines the parallel transport of a basis
vector 7. Instead of the symbol 0, Hestenes uses O,, whilst Wheeler et. al. [36] use
V, and call it “covariant derivative”. In modern, mathematically opriented literature
more explicit notation such as D,, or V,, is used. However, such a notation, although
mathematically very relevant, would not be very practical in long computations. We
find it very convenient to keep the symbol 9, for components of the geometric operator
0 = v*0,. When acting on a scalar field the derivative 0, happens to be commuting and
thus behaves as the ordinary partial derivative. When acting on a vector field, 9, is a non
commuting operator. In this respect, there can be no confusion with partial derivative,
because the latter normally acts on scalar fields, and in such a case partial derivative and
0, are one and the same thing. However, when acting on a vector field, the derivative
0, is non commuting. Our operator d, when acting on v, or 4* should be distinguished
from the ordinary—commuting—partial derivative, let be denoted 7” ,, usually used in
the literature on the Dirac equation in curved spacetime. The latter derivative is not used
in the present paper, so there should be no confusion.
Using (56), eq.(55) becomes

da ="y, (0ua” +T7,a%) = "y,Dua” = ~+"9"Dya, (58)

where D), is the covariant derivative of tensor analysis..
Decomposing the Clifford product v#+* into its symmetric and antisymmetric part [1]

YA =ty Ay (59)
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where

1% 1 v v v
Yy = 5(7“7 +4"9*) = g* (60)
is the inner product and
12 1 12 v
Ay = 5(7“7 —7"") (61)

the outer product, we can write eq.(58) as
da = ¢"" D,a, + " ANy"Dya, = D,a + ;'y“ A~"(Dua, —Dyay,) (62)
Without employing the expansion in terms of «, we have simply
da=0-a+0ANa (63)
Acting twice on a vector by the operator O we have?
00a = ~"0,(v"0,)(a"Va) = V"7 7aDyDya®

1
= ’YaDuDMaa + 5(7” A 7y>7a [Dua Du]aa
= 7.D.D"a” ++*(R, 0" + K,."D,a®)

1 4 o (6%
+§(W” AV A Vo) (Rywp“a” + K" D a®) (64)
We have used
D,,D,]a” = R, a” + K,,,’D,a” (65)
where
Kuup - FZV - I'_‘/V)M (66)

is torsion and R,,,," the curvature tensor. Using eq.(56) we find

[0, Op) v = Rapu” v (67)
from which we have
Rop,” = ([[Oa; aﬁh/#) - (68)

Thus in general the commutator of derivatives d,, acting on a vector does not give zero,
but is given by the curvature tensor.
In general, for an r-vector A = ¢ “r

00..0A = (V" 0u,) (7" 0py) - (V"0 ) (@™ Yoy Vaz - Vay)
YA AR Yag Yo Dy Dy - Dy a7 (69)

Vo1 Vaz Vo, WE have

3We use (a Ab)c= (aAb)-c+aAbAc[l] and (a Ab)-c= (b-c)a— (a-c)b.
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4.1.2 Clifford algebra based geometric calculus and resolution of the ordering
ambiguity for the product of momentum operators

Clifford algebra is a very useful tool for description of geometry of curved space. More-
over, as shown in ref.[26] it provides a resolution of the long standing problem of the
ordering ambiguity of quantum mechanics in curved space. Namely, eq.(53) for the vector
derivative suggests that the momentum operator is given by

p=—i0=—iy"0, (70)
One can consider three distinct models:

(i) The non relativistic particle moving in ndimensional curved space. Then, u =
1,2,...,n, and signature is (+ + + + ....).

(ii) The relativistic particle in curved spacetime, described by the Schild action [37].
Then, ©=0,1,2,...,n — 1 and signature is (+ — — — ...).

(iii) The Stueckelberg unconstrained particle. [33, 34, 35, 29].

In all three cases the classical action has the form
1 L
HXH::ZK/dT%W@jXﬂX” (71)

and the corresponding Hamiltonian is

A A
H= 7911 (w)pupu = *p2 (72)
2 2
If, upon quantization we take for the momentum operator p, = —i 9, then the ambi-

guity arises of how to write the quantum Hamilton operator. The problem occurs because
the expressions ¢"'p,p,, pug"’'p, and p,p,g"" are not equivalent.

But, if we rewrite H as

A
H:§ﬁ (73)

where p = 7#p,, is the momentum vector which upon quantization becomes the momentum
vector operator (70), we find that there is no ambiguity in writing the square p?. When
acting with H on a scalar wave function ¢ we obtain the unambiguous expression

A A A
Ho = 506 = 5 (=P (00,06 = —5D,D 6 (74)

in which there is no curvature term R. We expect that a term with R will arise upon
acting with H on a spinor field 1.
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4.2 (C-space

Let us now consider C-space and review the procedure of ref. [20]. . A basis in C-space
is given by
Ea = {9 Vs Yu A Vo Y AV A Yy oo} (75)

where in an r-vector 7, A v, A ... A7, we take the indices so that p; < ps < ... < p,.
An element of C-space is a Clifford number, called also Polyvector or Clifford aggregate
which we now write in the form

X =X2Ey=sy+aly, + 2" Ay, + ... (76)

A C-space is parametrized not only by 1-vector coordinates z* but also by the 2-vector
coordinates z*, 3-vector coordinates x***, etc., called also holographic coordinates, since
they describe the holographic projections of 1-loops, 2-loops, 3-loops, etc., onto the co-
ordinate planes. By p-loop we mean a closed p-brane; in particular, a 1-loop is closed
string.

In order to avoid using the powers of the Planck scale length parameter L in the
expansion of the polyvector X we use the dilatationally invariant units [15] in which L is
set to 1. The dilation invariant physics was discussed from a different perspective also in
refs. [23, 21].

In a flat C-space the basis vectors E4 are constants. In a curved C-space this is no
longer true. Each E4 is a function of the C-space coordinates

XA = {s,a" 2", ..} (77)

which include scalar, vector, bivector,..., r-vector,..., coordinates.
Now we define the connection I'G 5 in C-space according to

OaEp =TS,Ec (78)

where 94 = 9/0X4 is the derivative in C-space. This definition is analogous to the one
in ordinary space. Let us therefore define the C-space curvature as

RABCD = ([8A, 8B]EC) * ED (79)

which is a straightforward generalization of the relation (68). The ‘star’ means the scalar
product between two polyvectors A and B, defined as

where 'S’ means 'the scalar part’ of the geometric product AB.

In the following we shall explore the above relation for curvature and see how it is
related to the curvature of the ordinary space. Before doing that we shall demonstrate
that the derivative with respect to the bivector coordinate x*” is equal to the commutator
of the derivatives with respect to the vector coordinates x*.
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Returning now to eq.(78), the differential of a C-space basis vector is given by

0E 4

dE, =
AT 9XB

dX? =195 EcdX? (81)

In particular, for A =y and E4 = v, we have

v 07 b .
dfyu aXud —|—8x“d 4+ .. —F EAdQJ +Faﬂ EAd;U
- (Fwﬂ/a + I‘[pa]vp Ao + ...)dx”
(F[QB]H/YP + F{a,@’}]yVP A Vo + )dxaﬂ + ... (82)

We see that the differential dv, is in general a polyvector, i.e., a Clifford aggregate. In
eq.(82) we have used

0

azﬁ — Py + Ty, Ay (83)
al? o rleo]
5pof — LlasluYe T Tagl Yo Ao + - (84)

Let us now consider a restricted space in which the derivatives of 7, with respect to
z¥ and 2 do not contain higher rank multivectors. Then eqs. (83),(84) become

=T ~, 85
T, (85)
0V ~

OB Ffaﬁ]lﬂp (86)

Further we assume that

(i) the components Fa of the C-space connection 'Y Ap coincide with the connection I'}
of an ordinary space

ii) the components I’ , of the C-space connection coincide with the curvature tensor
~lofln
R,p," of an ordinary space.

Hence, eqs.(85),(86) read

a’yﬂ a
ax,/ vp Il (87)
v
8x; = Ra/o’,u Yo (88>
and the differential (82) becomes
dy, = (I'},dz" + %Raﬁupdfaﬁ)% (89)

The same relation was obtained by Pezzaglia [14] by using a different method, namely
by considering how polyvectors change with position. The above relation demonstrates
that a geodesic in C-space is not a geodesic in ordinary spacetime. Namely, in ordinary
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spacetime we obtain Papapetrou’s equation. This was previously pointed out by Pezzaglia
[14].

Although a C-space connection does not transform like a C'-space tensor, some of its
components, i.e., those of eq. (86), may have the transformation properties of a tensor in
an ordinary space.

Under a general coordinate transformation in C-space

XA N X/A — X/A<XB) (90)
the connection transforms according to*

OX'C ox7 9XK ., 9XC g2X/
OXF OXA 9XBL K T 5xXT aXAgX T

In particular, the components which contain the bivector index A = [af] transform as

f‘ISB - (91)

. X" 9X7 9XK - N
1P _ E
Flesie = 9xF ggiad g I8 ¥ 9x7 gt gam (92)

Let us now consider a particular class of coordinate transformations in C-space such that

ox'P ozt
Dt =0, S =0 (93)

Then the second term in eq.(92) vanishes and the transformation becomes

0X'P 0zP” Ox” -,

—_—
(@Bl ™ " Hpe doleB §yn lPoly (94)
Now, for the bivector whose components are dz®’ we have
Ao’ Ayl = da®Pye A s (95)

Taking into account that in our particular case (93) 7, transforms as a basis vector in an
ordinary space

Ozt
Vo = Oy TH (96)
we find that (95) and (96) imply
o 0Tt Oz Y
Ao o g — 4" (97)

which means that

Ozt 1 (02t 9z” Oz Oz _ Oxlt 92 03
do'oB — 2\ 9z’ 9x'  dx'* 9z’ ) — dx'™ OB (98)
4This can be derived from the relation
8El 8XD 6X’B
dE, = 8X’% dX'B  where E/ = syl and dX'B = I dx©
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The transformation of the bivector coordinate z# is thus determined by the transforma-
tion of the vector coordinates x*. This is so because the basis bivectors are the wedge
products of basis vectors ,,.

JFrom (94) and (98) we see that ffpo] , transforms like a 4th-rank tensor in an ordinary
space.

Comparing eq.(88) with the relation (67) we find

0
1 = [0a: D51 (99)

The derivative of a basis vector with respect to the bivector coordinates z°° is equal to
the commutator of the derivatives with respect to the vector coordinates z¢.
The above relation (99) holds for the basis vectors 7,. For an arbitrary polyvector

A= AYE) = 57+ a®y + aPya Ays + ... (100)
we will assume the validity of the following relation
5w = [D,,D,]4 (101)
where D/Dz# is the covariant derivative, defined in analogous way as in egs. (58):
DAY 9AY -, o
oxF = pxp T oA (102)
JFrom eq.(101) we obtain
Ds
5 = Dy Duls = K0, (103)
Da” a a p p «a
Dow = D,,Dy]Ja® = R,,,%a” + K,,,’D,a (104)
Using (102) we have that
Ds 0s
= 105
Dz Qxmv (105)
and Dae 5a° 94
a a - a N
Dziv  gphv + D0’ = v + Rup®a” (106)

where, according to (ii), f‘aw] , has been identified with curvature. So we obtain, after
inserting (105),(106) into (103),(104) that

(a) the partial derivatives of the coefficients s and a®, which are Clifford scalars®, with
respect to x#” are related to torsion:

0s

— P
B K, 0,s (107)
da”
_ P a

W = KMV Dp(l (108)
5In the geometric calculus based on Clifford algebra, the coefficients such as s, a®, a®?, ..., are called
scalars (although in tensor calculus they are called scalars, vectors and tensors, respectively), whilst the

objects Yo, Ya A3, ..., are called vectors, bivectors, etc. .
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(b) whilst the derivative of the basis vectors with respect to x*" are related to curvature:

Ma

Gars = R (109)

In other words, the dependence of coefficients s and a® on x*” indicates the presence
of torsion. On the contrary, when basis vectors 7, depend on x*” this indicates that the
corresponding vector space has non vanishing curvature.

4.3 On the relation between the curvature of (-space and the
curvature of an ordinary space

Let us now consider the C-space curvature defined in eq.(79) The indices A,B, can be of

vector, bivector, etc., type. It is instructive to consider a particular example.
A=[w], B=[af],C =~ D=0

0 0
Using (88) we have
o 0 0 ,
o Hxob Ty = O (RCYB’YP’YP) - chﬁwa,uz/p Vo (111)

where we have taken 9

WRO‘IB’YP - 0 (112)
which is true in the case of vanishing torsion (see also an explanation that follows after
the next paragraph). Inserting (111) into (110) we find

Riuwdasl’ = Ry Ragy’ = Rapy’ Ruve” (113)

which is the product of two usual curvature tensors. We can proceed in analogous way
to calculate the other components of Rapc” such as Rapd]jpole R[amg][pgm]ﬁ[“”], etc. .
These contain higher powers of the curvature in an ordinary space. All this is true in
our restricted C-space given by eqs.(85),(86) and the assumptions (i),(ii) bellow those
equations. By releasing those restrictions we would have arrived at an even more involved
situation which is beyond the scope of the present paper.

After performing the contractions of (113) and the corresponding higher order relations
we obtain the expansion of the form

R=R+aR*+ R, R" + .. (114)

So we have shown that the C-space curvature can be expressed as the sum of the products
of the ordinary spacetime curvature. This bears a resemblance to the string effective
action in curved spacetimes given by sums of powers of the curvature tensors based on
the quantization of non-linear sigma models [118].
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If one sets aside the algebraic convergence problems when working with Clifford alge-
bras in infinite dimensions, one can consider the possibility of studying Quantum Gravity
in a very large number of dimensions which has been revisited recently [83] in connection
to a perturbative renormalizable quantum theory of gravity in infinite dimensions. An-
other interesting possibility is that an infinite series expansion of the powers of the scalar
curvature could yield the recently proposed modified Lagrangians R + 1/R of gravity to
accomodate the cosmological accelerated expansion of the Universe [131], after a judicious
choice of the algebraic coefficients is taken. One may notice also that having a vanishing
cosmological constant in C-space, R = A = 0 does not necessarily imply that one has a
vanishing cosmological constant in ordinary spacetime. For example, in the very special
case of homogeneous symmetric spacetimes, like spheres and hyperboloids, where all the
curvature tensors are proportional to suitable combinations of the metric tensor times the
scalar curvature, it is possible to envision that the net combination of the sum of all the
powers of the curvature tensors may cancel-out giving an overall zero value R = 0. This
possibility deserves investigation.

Let us now show that for vanishing torsion the curvature is independent of the bivector
coordinates =, as it was taken in eq.(112). Consider the basic relation

Y " Vv = Guv (115)
Differentiating with respect to 2*° we have

(9 87;1 8’71/

e ) = e T e = o Ragu =0 (116)
This implies that
0G,u
30“5 = [aaa aﬁ]g;w =0 (117)

Hence the metric, in this particular case, is independent of the holographic (bivector)
coordinates. Since the curvature tensor —when torsion is zero— can be written in terms
of the metric tensor and its derivatives, we conclude that not only the metric, but also
the curvature is independent of z*”. In general, when the metric has a dependence on the
holographic coordinates one expects further corrections to eq.(113) that would include
torsion.

5 On the Quantization in C-spaces

5.1 The momentum constraint in C-space

A detailed discussion of the physical properties of all the components of the polymomen-
tum P in four dimensions and the emergence of the physical mass in Minkowski spacetime
has been provided in the book [15]. The polymomentum in D = 4, canonically conjugate
to the position polyvector

X =0+ "y, +" v Nv + 7, + 575 (118)
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can be written as:
P = p+p'y,+ 5"y A + 75y, + mos. (119)

where besides the vector components p* we have the scalar component u, the 2-vector
components S* that are connected to the spin as shown by [14]; the pseudovector com-
ponents 7# and the pseudoscalar component m.

The most salient feature of the polyparticle dynamics in C-spaces [15] is that one can
start with a constrained action in C-space and arrive, nevertheless, at an unconstrained
Stuckelberg action in Minkowski space (a subspace of C-space) in which p,p* is a constant
of motion. The true constraint in C-space is:

PAPA = p,2 —|—pup“ — QSMVS,W + 7TM7T“ - m2 = MQ- (120)

where M is a fized constant, the mass in C-space. The pseudoscalar component m is a
variable, like p1, p,, S*, and 7#, which altogether are constrained according to eq.(120).
It becomes the physical mass in Minkwoski spacetime in the special case when other
extra components vanish, i.e., when y = 0, S*” = 0 and 7* = 0. This justifies using the
notation m for mass. This is basically the distinction between the mass in Minkowski space
which is a constant of motion p,p* and the fixed mass M in C-space. The variable m is
canonically conjugate to s which acquires the role of the Stuckelberg evolution parameter
s that allowed ref.[29, 15] to propose a natural solution of the problem of time in quantum
gravity. The polyparticle dynamics in C-space is a generalization of the relativistic Regge
top construction which has recently been studied in de Sitter spaces by [135].

A derivation of a charge, mass, and spin relationship of a polyparticle can be obtained
from the above polymomentum constraint in C-space if one relates the norm of the axial-
momentum component 7 of the polymomentum P to the charge [80]. It agrees exactly
with the recent charge-mass-spin relationship obtained by [44] based on the Kerr-Newman
black hole metric solutions of the Einstein-Maxwell equations. The naked singularity Kerr-
Newman solutions have been interpreted by [45] as Dirac particles. Further investigation is
needed to understand better these relationships, in particular, the deep reasons behind the
charge assignment to the norm of the axial-vector 7 component of the polymomentum
which suggests that mass has a gravitational, electromagnetic and rotational aspects to it.
In a Kaluza-Klein reduction from D = 5 to D = 4 it is well known that the electric charge
is related to the ps; component of the momentum. Hence, charge bears a connection to
an internal momentum.

5.2 C-space Klein-Gordon and Dirac Wave Equations

The ordinary Klein-Gordon equation can be easily obtained by implementing the on-shell
constraint p* —m? = 0 as an operator constraint on the physical states after replacing p,
for —i0/0z* (we use units in which A =1,¢=1):

( i + m2> ¢ =0. (121)

Oxr0x,,
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The C-space generalization follows from the P? — M? = 0 condition by replacing

.0 {0 0 0
PA—)_ZW__Z (%”W’W’) (122)
0? 0? 0?
M) D= 12
(ao—2 ¥ ooz, 0wz, T ) . (123)

where we have set L = h = ¢ = 1 for convenience purposes and the C-space scalar field
O(o,zH, M, ....) is a polyvector-valued scalar function of all the C-space variables. This
is the Klein-Gordon equation associated with a free scalar polyparticle in C-space.

A wave equation for a generalized C-space harmonic oscillator requires to introduce the
potential of the form V = xX? that admits straightforward solutions in terms of Gaussians
and Hermite polynomials similar to the ordinary point-particle oscillator. There are now
collective excitations of the Clifford-oscillator in terms of the number of Clifford-bits and
which represent the quanta of areas, volumes, hypervolumes,..., associated with the p-
loops oscillations in Planck scale units. The logarithm of the degeneracy of the first
collective state of the C-space oscillator, as a function of the number of bits, bears the
same functional form as the Bekenstein-Hawking black hole entropy, with the upshot
that one recovers, in a natural way, the logarithmic corrections to the black-hole entropy
as well, if one identifies the number of Clifford-bits with the number of area-quanta of
the black hole horizon. For further details about this derivation and the emergence of
the Schwarzschild horizon radius relation, the Hawking temperature, the maximal Planck
temperature condition, etc., we refer to [21]. Perhaps the most important consequence
of this latter view of black hole entropy is the possibility that there is a ground state of
quantum spacetime, resulting from of a Bose-Einstein condensate of the C-space harmonic
oscillator.

A C-space version of the Dirac Equation, representing the dynamics of spinning-
polyparticles (theories of extended-spin, extended charges) is obtained via the square-root
procedure of the Klein-Gordon equation:

0 0
—i| = A U= MU 124
@((%Jrv oz, TN + > (124)

0T

where W(o, z#, 2", ...) is a polyvector-valued function, a Clifford-number, ¥ = WAE, of
all the C-space variables. For simplicity we consider here a flat C-space in which the
metric Gap = EL x g = nap is diagonal, nap being the C-space analog of Minkowski
tensor. In curved C-space the equation (124) should be properly generalized. This goes
beyond the scope of the present paper.

Ordinary spinors are nothing but elements of the left /right ideals of a Clifford algebra.
So they are automatically contained in the polyvector valued wave function W. The
ordinary Dirac equation can be obtained when W is independent of the extra variables
associated with a polyvector-valued coordinates X (i.e., of z#¥, x#P ...). For details see
[15].

Thus far we have written ordinary wave equations in C-space, that is, we considered
the wave equations for a “point particle” in C-space. From the perspective of the 4-
dimensional Minkowski spacetime the latter “point particle” has, of course, a much richer
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structure then a mere point: it is an extended object, modeled by coordinates x*, x#, ....
But such modeling does not embrace all the details of an extended object. In order to
provide a description with more details, one can considere not the “point particles” in
C-space, but branes in C-space. They are described by the embeddings X = X (X), that
is XM = XM(¥%4) considered in sec.3.2. Quantization of such branes can employ wave
functional equation, or other methods, including the second quantization formalism. For
a more detailed study detailed study of the second quantization of extended objects using
the tools of Clifford algebra see [15].

Without emplying Clifford algebra a lot of illuminating work has been done in relation
to description of branes in terms of p-loop coordinates [132]. A bosonic/fermionic p-brane
wave-functional equation was presented in [12], generalizing the closed-string(loop) results
in [13] and the the quantum bosonic p-brane propagator, in the quenched-reduced min-
isuperspace approximation, was attained by [18]. In the latter work branes are described
in terms of the collective coordinates which are just the highest grade components in the
expansion of a poplyvector X given in eq (2). This work thus paved the way for the next
logical step, that is, to consider other multivector components of X in a unified description
of all branes.

Notice that the approach based on eqs.(123),(124) is different from that by Hestenes
[1] who proposed an equation which is known as the Dirac-Hestenes equation. Dirac’s
equation using quaternions (related to Clifford algebras) was first derived by Lanczos [91].
Later on the Dirac-Lanczos equation was rediscovered by many people, in particular by
Hestenes and Gursey [92] in what became known as the Dirac-Hestenes equation. The
former Dirac-Lanczos equation is Lorentz covariant despite the fact that it singles out
an arbitrary but unique direction in ordinary space: the spin quantization axis. Lanczos,
without knowing, had anticipated the existence of isospin as well. The Dirac-Hestenes
equation 0Wey = mWe, is covariant under a change of frame [133] , [93]. €, = Ue, U™
and W' = WU ! with U an element of the Spin, (1,3) yielding 0¥'e,; = mP'e; . As
Lanczos had anticipated, in a new frame of reference, the spin quantization axis is also
rotated appropriately , thus there is no breakdown of covariance by introducing bivectors
in the Dirac-Hestenes equation.

However, subtleties still remain. In the Dirac-Hestenes equation instead of the imagi-
nary unit ¢ there occurs the bivector vy — 2. Its square is —1 and commutes with all the
elements of the Dirac algebra which is just a desired property. But on the other hand, the
introduction of a bivector into an equation implies a selection of a preferred orientation
in spacetime; i.e. the choice of the spin quantization axis in the original Dirac-Lanczos
quaternionic equation. How is such preferred orientation (spin quantization axis) deter-
mined 7 Is there some dynamical symmetry which determines the preferred orientation
(spin quantization axis) ? is there an action which encodes a hidden dynamical principle
that selects dynamically a preferred spacetime orientation ( spin quantization axis ) 7

Many subtleties of the Dirac-Hesteness equation and its relation to the ordinary Dirac
equation and the Seiberg-Witten equation are investigated from the rigorous mathematical
point of view in refs. [93]. The approach in refs. [16, 15, 17, 8], reviewed here, is different.
We start from the usual formulation of quantum theory and extend it to C-space. We
retain the imaginary unit . Next step is to give a geometric interpretation to i. Instead
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of trying to find a geometric origin of 7 in spacetime we adopt the interpretation proposed
in [15] according to which the ¢ is the bivector of the 2-dimensional phase space (whose
direct product with the n-dimensional configuration space gives the 2n-dimensional phase
space). ® This appears to be a natural assumption due to the fact that complex valued
quantum mechanical wave functions involve momenta p,, and coordinates z* (e.g., a plane
wave is given by exp[ip,z*], and arbitrary wave packet is a superposition of plane waves).

6 Maximal-Acceleration Relativity in Phase-Spaces

In this section we shall discuss the maximal acceleration Relativity principle [68] based on
Finsler geometry which does not destroy, nor deform, Lorentz invariance. Our discussion
differs from the pseudo-complex Lorentz group description by Schuller [61] related to
the effects of maximal acceleration in Born-Infeld models that also maintains Lorentz
invariance, in contrast to the approaches of Double Special Relativity (DSR). In addition
one does not need to modify the energy-momentum addition (conservation) laws in the
scattering of particles which break translational invariance. For a discussions on the
open problems of Double Special Relativity theories based on kappa-deformed Poincare
symmetries [63] and motivated by the anomalous Lorentz-violating dispersion relations in
the ultra high energy cosmic rays [71, 72, 73|, we refer to [70].

Related to the minimal Planck scale, an upper limit on the maximal acceleration prin-
ciple in Nature was proposed by long ago Cainello [52]. This idea is a direct consequence
of a suggestion made years earlier by Max Born on a Dual Relativity principle operating
in phase spaces [49], [74] wherethere is an upper bound on the four-force (maximal string
tension or tidal forces in the string case) acting on a particle as well as an upper bound
in the particle velocity. One can combine the maximum speed of light with a minimum
Planck scale into a maximal proper-accleration a = ¢*/L = within the framework of
Finsler geometry [56]. For a recent status of the geometries behind maximal-acceleration
see [73]; its relation to the Double Special Relativity programs was studied by [55] and the
possibility that Moyal deformations of Poincare algebras could be related to the kappa-
deformed Poincare algebras was raised in [68]. A thorough study of Finsler geometry and
Clifford algebras has been undertaken by Vacaru [81] where Clifford/spinor structures
were defined with respect to Nonlinear connections associated with certain nonholonomic
modifications of Riemann—Cartan gravity.

Other several new physical implications of the maximal acceleration principle in Na-
ture, like neutrino oscillations and other phenomena, have been studied by [54], [67], [42].
Recently, the variations of the fine structure constant a [64], with the cosmological ac-
celerated expansion of the Universe, was recast as a renormalization group-like equation
governing the cosmological reshift (Universe scale) variations of o based on this maximal
acceleration principle in Nature [68]. The fine structure constant was smaller in the past.
Pushing the cuttof scale to the minimum Planck scale led to the intriguing result that
the fine structure constant could have been extremely small (zero) in the early Universe

5Yet another interpretation of the imaginary unit ¢ present in the Heisenberg uncertainty relations
has been undertaken by Finkelstein and collaborators [96].
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and that all matter in the Universe could have emerged via the Unruh-Rindler-Hawking
effect (creation of radiation/matter) due to the acceleration w.r.t the vacuum frame of
reference. For reviews on the alledged variations of the fundamental constants in Nature
see [65] and for more astonishing variations of adriven by quintessence see [66].

6.1 Clifford algebras in Phase space

We shall employ the procedure described in [15] to construct the Phase Space Clifford
algebra that allowed [127] to reproduce the sub-maximally accelerated particle action of
[53].

For simplicity we will focus on a two-dim phase space. Let e, e, be the Clifford-algebra
basis elements in a two-dim phase space obeying the following relations [15]:

1
€p.€g = §(eqep + eye,) = 0. (125)
and ey.e, = e4.64 = 1.
The Clifford product of e,, e, is by definition the sum of the scalar and the wedge
product:
epeq = €p.eqt+e, Neg=04+¢e, Ne, =1i. (126)

such that i* = e e,e,6, = —1. Hence, the imaginary unit 7, > = —1 admits a very natural
interpretation in terms of Clifford algebras, i.e., it is represented by the wedge product
i = e, N\ €4, a phase-space area element. Such imaginary unit allows us to express vectors
in a C-phase space in the form:

Q = Q = ({€q + PE€q

Qeq =q+peyeg =q+1ip==2

e, =q+pee,=q—ip=2" (127)
which reminds us of the creation/anihilation operators used in the harmonic oscillator.

We shall now review the steps in [127] to reproduce the sub-maximally accelerated
particle action [53]. The phase-space analog of the spacetime action is:

dQ.dQ = (dg)? + (dp)? = S = m / J(dg)? + (dp)2. (128)

Introducing the appropriate length/mass scale parameters in order to have consistent
units yields:

s=m [ g+ Ly (129)

where we have introduced the Planck scale L and have chosen the natural units h = ¢ = 1.
A detailed physical discussion of the dilational invariant system of units h = ¢ = G =
4me, = 1 was presented in ref. [15]. G is the Newton constant and ¢, is the permitivity
of the vacuum.
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Extending this two-dim result to a 2n-dim phase space result requires to have for
Clifford basis the elements e, , e,,, where = 1,2,3,...n. The action in the 2n-dim phase
space is:

s=m | J (dgndg,) + (22 dprdp,) = m [ W L (2 R(dp» ) dp,dr). (130)
where we have factored-out of the square-root the infinitesimal proper-time displacement
(dr)?* = dg"dg,.

One can reccognize the action (130), up to a numerical factor of m/a, where a is the
proper acceleration, as the same action for a sub-maximally accelerated particle given by
Nesterenko [53] by rewriting (dp*/dr) = m(d*z" /dT?):

S=m / dr\/1+ L2(d2ak [d7?) (2w, [ d72). (131)

Postulating that the maximal proper-acceleration is given in terms of the speed of light
and the minimal Planck scale by a = ¢®/L = 1/L, the action above gives the Nesterenko
action, up to a numerical m/a factor:

S=m / dr\/1+ a-2(d2ar [d72) (dx, [ d7). (132)

The proper-acceleration is orthogonal to the proper-velocity and this can be easily
verified by differentiating the timelike proper-velocity squared:

dat da AV A2z
= =V =150 V=V, =0 (133)

dr dr? "

which implies that the proper-acceleration is spacelike:

A’z dPx f g?
2
g(T):_d72 d72“>O:>S:m/dT 1—?:m/dw. (134)

where the analog of the Lorentz time-dilation factor for a sub-maximally accelerated

particle is given by
g (1)
dw = dry|1 — . (135)

Therefore the dynamics of a sub-maximally accelerated particle can be reinterpreted
as that of a particle moving in the spacetime tangent bundle whose Finsler-like metric is

g*(7)

V2

(dw)? = g, (2", dzt)da*dz” = (dr)*(1 — ). (136)

The invariant time now is no longer the standard proper-time 7 but is given by the
quantity w(7). The deep connection between the physics of maximal acceleration and
Finsler geometry has been analyzed by [56]. This sort of actions involving second deriva-
tives have also been studied in the construction of actions associated with rigid particles

(strings) [57], [58], [59], [60] among others.
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The action is real-valued if, and only if, g < a® in the same fashion that the action
in Minkowski spacetime is real-valued if, and only if, v? < ¢?. This is the physical reason
why there is an upper bound in the proper-acceleration. In the special case of uniformly-
accelerated motion ¢(1) = g, = constant, the trajectory of the particle in Minkowski
spacetime is a hyperbola.

Most recently, an Extended Relativity Theory in Born-Clifford-Phase spaces with an
upper and lower length scales (infrared/ultraviolet cutoff ) has been constructed [138].
The invariance symmetry associated with an 8D Phase Space leads naturally to the real
Clifford algebra C1(2,6, R) and complexified Clifford Clx(4) algebra related to Twistors.
The consequences of Mach’s principle of inertia within the context of Born’s Dual Phase
Space Relativity Principle were also studied in [138] and they were compatible with the
Eddington-Dirac large numbers coincidence and with the observed values of the anomalous
Galileo-Pioneer acceleration. The modified Newtonian dynamics due to the upper/lower
scales and modified Schwarzschild dynamics due the maximal acceleration were also pro-
vided.

6.2 Invariance under the U(1,3) Group

In this section we will review in detail the principle of Maximal-acceleration Relativity
[68] from the perspective of 8D Phase Spaces and the U(1,3) Group. The U(1,3) =
SU(1,3) ® U(1) Group transformations, which leave invariant the phase-space intervals
under rotations, velocity and acceleration boosts, were found by Low [74] and can be
simplified drastically when the velocity/acceleration boosts are taken to lie in the z-
direction, leaving the transverse directions x, y, p,, p, intact ; i.e., the U(1,1) = SU(1,1)®
U (1) subgroup transformations that leave invariant the phase-space interval are given by
(in units of h = ¢ = 1)

(dE)* — (dP)* _
b2 B

(do)* = (dT)* — (dX)* +

dE/dT)* — (dP/dT)*
b2

where we have factored out the proper time infinitesimal (d7)? = dT? — dX? in eq.(137)
and the maximal proper-force is set to be b = mpA, . mp is the Planck mass 1/Lp so
that b = (1/Lp)?, may also be interpreted as the maximal string tension when Lp is the
Planck scale.

The quantity g(7) is the proper four-acceleration of a particle of mass m in the z-
direction which we take to be X. Notice that the invariant interval (do)? in eq.(137) is
not strictly the same as the interval (dw)? of the Nesterenko action eq.(132), which was
invariant under a pseudo-complexification of the Lorentz group [61]. Only when m = mp,
the two intervals agree. The interval (do)? described by Low [74] is U(1,3)-invariant
for the most general transformations in the 8D phase-space. These transformatiosn are
rather elaborate, so we refer to the references [74] for details. The analog of the Lorentz
relativistic factor in eq.(137) involves the ratios of two proper forces. One variable force
is given by ma and the maximal proper force sustained by an elementary particle of

| = (dr)*[1 — %}. (137)

(d7)?[1 + (
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mass mp (a Planckton) is assumed to be Fyax = Mpranekc?/Lp. When m = mp, the
ratio-squared of the forces appearing in the relativistic factor of eq.(137) becomes then
g*/A? . and the phase space interval (137) coincides with the geometric interval of (132).
The transformations laws of the coordinates in that leave invariant the interval (137)
are [74]:

T' = Teoshe + (f”X + ng )‘”zhg (138)
E' = Ecoshé + (—£,X + &P) ‘”Zhg. (139)
X' = Xcoshé + (6,7 — ngE ) Sizhg. (140)
P’ = Pcoshé + (5” +ET) S”gh? (141)

The &, is velocity-boost rapidity parameter and the &, is the force/acceleration-boost
rapidity parameter of the primed-reference frame. They are defined respectively (in the
special case when m = mp):

tanh>—= = ————. 142
o b mPAmaw ( )

The effective boost parameter £ of the U(1, 1) subgroup transformations appearing
in eqs.(138)—(141) is defined in terms of the velocity and acceleration boosts parameters
&, &, respectively as:

2 2
&= é + 1592 (143)
Our definition of the rapidity parameters are different than those in [74].

Straightforward algebra allows us to verify that these transformations leave the interval
of eq.(137) in classical phase space invariant. They are are fully consistent with Born’s
duality Relativity symmetry principle [49] (@, P) — (P, —@Q). By inspection we can see
that under Born duality, the transformations in eqs.(138)-(141) are rotated into each
other, up to numerical b factors in order to match units. When on sets £, = 0 in (138)—
(141) one recovers automatically the standard Lorentz transformations for the X, 7T and
E, P variables separately, leaving invariant the intervals d7? — dX? = (d7)? and (dE? —
dP?)/b* separately.

When one sets £, = 0 we obtain the transformations rules of the events in Phase
space, from one reference-frame into another uniformly-accelerated frame of reference,
a = constant, whose acceleration-rapidity parameter is in this particular case:

fa ma
=2 tanhé = ——— 144
f o 5 mPAmax ( )
The transformations for pure acceleration-boosts in are:
P
T' = Tcoshé + zsinhf. (145)
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E' = Ecoshé — bX sinh€. (146)
E
X' = Xcosh§ — 33inh5 (147)

P' = Pcosh§ + bT'sinhé. (148)

It is straightforwad to verify that the transformations (145)—(147) leave invariant the

fully phase space interval (137) but does not leave invariant the proper time interval
(dr)? = dT? — dX?. Only the combination:

m292

)
m2PA72’)’L(Z(E

(do)? = (d7)*(1 — (149)

is truly left invariant under pure acceleration-boosts (145)—(147). One can verify as well
that these transformations satisfy Born’s duality symmetry principle:

(T,X)— (E,P). (E,P) — (-T,—-X). (150)
and b — % The latter Born duality transformation is nothing but a manifestation of
the large/small tension duality principle reminiscent of the T-duality symmetry in string
theory; i.e. namely, a small/large radius duality, a winding modes/ Kaluza-Klein modes
duality symmetry in string compactifications and the Ultraviolet/Infrared entanglement
in Noncommutative Field Theories. Hence, Born’s duality principle in exchanging coor-
dinates for momenta could be the underlying physical reason behind T-duality in string
theory.

The composition of two succesive pure acceleration-boosts is another pure acceleration-
boost with acceleration rapidity given by £’ = & + £'. The addition of proper four-forces
( accelerations ) follows the usual relativistic composition rule:

_ tanh§ + tanh & N ma’ _ m";CfA + TT;/A (151)
1 + tanh&tanhg’  mpA 1 4 mlad

2 A2
ms, A

tanh&" = tanh(€ + &)

and in this fashion the upper limiting proper acceleration is never surpassed like it happens
with the ordinary Special Relativistic addition of velocities.

The group properties of the full combination of velocity and acceleration boosts (138)—
(141) requires much more algebra [68]. A careful study reveals that the composition rule
of two succesive full transformations is given by £” = £ 4+ ¢’ and the transformation laws
are preserved if, and only if, the &; &;&"...... parameters obeyed the suitable relations:

S _G_G_ &

ETe @ e 1)
“_&_& _ & (153)

£ & & e+
Finally we arrive at the compostion law for the effective, velocity and acceleration
boosts parameters £”; &); £ respectively:
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& =&+ & (154)
& =8 +&: (155)

'=¢+¢. (156)
The relations (152, 153, 154, 155, 156) are required in order to prove the group composition
law of the transformations of (138)—(141) and, consequently, in order to have a truly
Maximal-Acceleration Phase Space Relativity theory resulting from a phase-space change
of coordinates in the cotangent bundle of spacetime.

6.3 Planck-Scale Areas are Invariant under Acceleration Boosts

Having displayed explicity the Group transformations rules of the coordinates in Phase
space we will show why infinite acceleration-boosts (which is not the same as infinite
proper acceleration) preserve Planck-Scale Areas [68] as a result of the fact that b =
(1/L%) equals the mazimal invariant force, or string tension, if the units of h = ¢ = 1
are used.

At Planck-scale Lp intervals/increments in one reference frame we have by definition
(in units of b = ¢ = 1): AX:AT:LpandAE:AP:ﬁwherebE éisthe
maximal tension. ;jFrom eqgs.(138)—(141) we get for the transformation rules of the finite
intervals AX, AT, AE, AP, from one reference frame into another frame, in the in finite
acceleration-boost limit & — oo,

AT’ = Lp(cosh§ + sinh€) — oo (157)
1

AFE = L—(cosh&“ — sinh&) — 0 (158)
P

by a simple use of L’Hopital’s rule or by noticing that both cosh&; sinh& functions ap-
proach infinity at the same rate.

AX' = Lp(cosh§ — sinh&) — 0. (159)
AP = Ll(coshf + sinh€) — oo (160)
P

where the discrete displacements of two events in Phase Space are defined: AX = X, —
XIILP, AE:EQ—Elzﬁ,AT:TQ—leLP andAP:PQ—Plzﬁ.
Due to the identity:

(cosh& + sinh€)(coshé — sinh€) = cosh*¢ — sinh*¢ =1 (161)
one can see from eqs. (157)—(160) that the Planck-scale Areas are truly invariant under
infinite acceleration-boosts & = oc:

Lp

AX'AP' =0 x 00 = AXAP(cosh*¢ — sinh*¢) = AXAP = =L (162)
P
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Lp

AT'AE' = 0o x 0 = ATAFE(cosh*¢ — sinh*¢) = ATAE = =L (163)
P
AX'AT =0 x co = AXAT(cosh*¢ — sinh*¢) = AXAT = (Lp)*. (164)
AP'AE' = 0o x 0 = APAFE(cosh*¢ — sinh*¢) = APAE = L12 (165)
P

It is important to emphasize that the invariance property of the minimal Planck-scale
Areas (maximal Tension) is not an exclusive property of infinite acceleration boosts
£ = 00, but, as a result of the identity cosh?¢ — sinh?¢ = 1, for all values of £, the minimal
Planck-scale Areas are always invariant under any acceleration-boosts transformations.
Meaning physically, in units of i = ¢ = 1, that the Maximal Tension (or maximal Force)
b= % is a true physical invariant universal quantity. Also we notice that the Phase-
space areas, or cells, in units of h, are also invariant ! The pure-acceleration boosts
transformations are ” symplectic It can be shown also that areas greater ( smaller
) than the Planck-area remain greater ( smaller ) than the invariant Planck-area under
acceleration-boosts transformations.

The infinite acceleration-boosts are closely related to the infinite red-shift effects when
light signals barely escape Black hole Horizons reaching an asymptotic observer with an
infinite redshift factor. The important fact is that the Planck-scale Areas are truly
maintained invariant under acceleration-boosts. This could reveal very important infor-
mation about Black-holes Entropy and Holography. The logarithimic corrections to the
Black-Hole Area-Entropy relation were obtained directly from Clifford-algebraic meth-
ods in C-spaces [21], in addition to the derivation of the maximal Planck temperature
condition and the Schwarzchild radius in terms of the Thermodynamicsof a gas of p-loop-
oscillatorsquanta represented by area-bits, volume-bits, ... hyper-volume-bits in Planck
scale units. Minimal loop-areas, in Planck units, is also one of the most important conse-
quences found in Loop Quantum Gravity long ago [111].

2

7 Some Further Important Physical Applications
Related to the C'-Space Physics

7.1 Relativity of signature

In previous sections we have seen how Clifford algebra can be used in the formulation of
the point particle classical and quantum theory. The metric of spacetime was assumed, as
usually, to have the Minkowski signature, and we have used the choice (+ — ——). There
were arguments in the literature of why the spacetime signature is of the Minkowski type
[113, 43]. But there are also studies in which signature changes are admitted [112]. It has
been found out [16, 15, 30] that within Clifford algebra the signature of the underlying
space is a matter of choice of basis vectors amongst available Clifford numbers. We are
now going to review those important topics.
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Suppose we have a 4-dimensional space V; with signature (+ + + +). Let e, p =
0,1, 2,3, be basis vectors satisfying

ey ey = %(euey +eve,) =0, (166)

where 0, is the Euclidean signature of V4. The vectors e, can be used as generators
of Clifford algebra C, over V; with a generic Clifford number (also called polyvector or
Clifford aggregate) expanded in term of e; = (1, €., €4, €uvas Cuvas), 1 <V < a < f3,

A=dle;=a+ at'e, + a"ey e, + a' e e eq + a“”aﬁeueyeaeg. (167)
Let us consider the set of four Clifford numbers (e, €;e0), ¢ = 1,2, 3, and denote them as

€ = 70,
€;eh = - (168)

The Clifford numbers v,, 1 = 0, 1,2, 3, satisfy

%(’YM’VV + '71/}/;1) = Nuv » (169)

where 7, = diag(l,—1,—1,—1) is the Minkowski tensor. We see that the v, behave
as basis vectors in a 4-dimensional space V; 3 with signature (+ — ——). We can form a
Clifford aggregate

a = aty, (170)

which has the properties of a vector in V; 3. From the point of view of the space Vj the
same object « is a linear combination of a vector and bivector:

a = a’ey + aleeg. (171)

We may use 7, as generators of the Clifford algebra C; 3 defined over the pseudo-Euclidean
space V; 3. The basis elements of Cy 3 are vy = (1,74, Yuw» YVuwas Yuvag), With p < v < a <
B. A generic Clifford aggregate in C; 3 is given by

B = b7y = b+ 0y, + 8%+ Y+ 0Py, Ya s (172)

With suitable choice of the coefficients b7 = (b, b*,b*, b b#**F) we have that B of
eq. (172) is equal to A of eq.(167). Thus the same number A can be described either with
e, which generate Cy, or with 7, which generate C; 3. The expansions (172) and (167)
exhaust all possible numbers of the Clifford algebras C; 3 and C4. Those expansions are
just two different representations of the same set of Clifford numbers (also being called
polyvectors or Clifford aggregates).

As an alternative to (168) we can choose

eots = Vo,
e = Y, (173)
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from which we have
%(5/#’?1/ + ’71/5/;1) = ﬁuu (174)
with 7, = diag(—1,1,1,1). Obviously 7, are basis vectors of a pseudo-Euclidean space
‘71,3 and they generate the Clifford algebra over ‘71,3 which is yet another representation of
the same set of objects (i.e., polyvectors). The spaces Vj, V; 3 and ‘7173 are different slices
through C-space, and they span different subsets of polyvectors. In a similar way we can
obtain spaces with signatures (+ — ++), (+ + —+), (+ ++-), (—+ ——), (— — +-),
(———+) and corresponding higher dimensional analogs. But we cannot obtain signatures
of the type (+ + ——), (+ — +—), etc. In order to obtain such signatures we proceed as
follows.
4-space. First we observe that the bivector I = egey satisfies I? = —1, commutes
with eq, es and anticommutes with es, e;. So we obtain that the set of Clifford numbers
v, = (e11, eal, e3, e3) satisfies
Vo Vo = v (175)
where 77 = diag(—1,—-1,1,1).
8-space.  Let e4 be basis vectors of 8-dimensional vector space with signature (4 +
+ + + 4+ + +). Let us decompose

€A = (e,uu eﬁ) ) no= 07 172737
p = 0,1,2,3. (176)
The inner product of two basis vectors
eA-eB:5AB, (177)
then splits into the following set of equations:
ep € = Ou,
en- €y = Ops,
e,-e; = 0. (178)
The number I = egejeses has the properties
rr =1,
Te, = e,
The set of numbers
’y,u = eu )
Yo = el (180)
satisfies
Yo Y = (S,uz/ )
Yo Vo = 5;UJ )
Yo Ya = 0. (181)
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The numbers (v, 7z) thus form a set of basis vectors of a vector space Vj 4 with signature
(++++-———).

10-space.  Let eq = (eu,en), p=1,2,3,4,5; i =1,2,3,4,5 be basis vectors of a 10-
dimensional Euclidean space Viy with signature (+ + +....). We introduce I = ejesesejes
which satisfies

r’r =1,
e = —Ie, .
exl = Iep. (182)
Then the Clifford numbers
Yo = eul_ )
T = €u (183)
satisfy
YT = _6,ull )
ViV = O,
Yu v = 0. (184)
The set v4 = (74, 7a) therefore spans the vector space of signature (— ———— ++++4+).

The examples above demonstrate how vector spaces of various signatures are obtained
within a given set of polyvectors. Namely, vector spaces of different signature are different
subsets of polyvectors within the same Clifford algebra. In other words, vector spaces of
different signature are different subspaces of C-space, i.e., different sections through C-
space’.

This has important physical implications. We have argued that physical quantities are
polyvectors (Clifford numbers or Clifford aggregates). Physical space is then not simply
a vector space (e.g., Minkowski space), but a space of polyvectors, called C-space, a
pandimensional continuum of points, lines, planes, volumes, etc., altogether. Minkowski
space is then just a subspace with pseudo-Euclidean signature. Other subspaces with
other signatures also exist within the pandimensional continuum C' and they all have
physical significance. If we describe a particle as moving in Minkowski spacetime V; 5 we
consider only certain physical aspects of the object considered. We have omitted its other
physical properties like spin, charge, magnetic moment, etc.. We can as well describe the
same object as moving in an Euclidean space Vj. Again such a description would reflect
only a part of the underlying physical situation described by Clifford algebra.

"What we consider here should not be confused with the well known fact that Clifford algebras
associated with vector spaces of different signatures (p, ¢), with p + ¢ = n, are not all isomorphic.
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7.2 Clifford space and the conformal group
7.2.1 Line element in C-space of Minkowski spacetime

In 4-dimensional spacetime a polyvector and its square (1) can be written as

1
dX = do + da'y, + §dw"”7ﬂ Ny +dat Iy, +dol (185)

1
[AX[? = do® + da*da, + Sda*da,, — di*dz, — d5” (186)

The minus sign in the last two terms of the above quadratic form occurs because in 4-
dimensional spacetime with signature (+———) we have I? = (Yo717273) (Yon17273) = —1,
and I'T = (y372717%) (om17273) = —1.

In eq.(186) the line element da*dz, of the ordinary special or general relativity is
replaced by the line element in Clifford space. A “square root” of such a generalized line
element is dX of eq.(185). The latter object is a polyvector, a differential of the coordinate
polyvector field

X =o0+aly, + ;ZL“’W’}/M Ny + a1y, + ol (187)

whose square is
| X|? = o® + 2tz, + ;x’“’mw — %, — &* (188)
The polyvector X contains not only the vector part z*v,, but also a scalar part o, tensor
part 'y, A v, pseudovector part " I, and pseudoscalar part ¢l. Similarly for the

differential d.X.
When calculating the quadratic forms |X|? and |dX|? one obtains in 4-dimensional

spacetime with pseudo euclidean signature (+ — ——) the minus sign in front of the
squares of the pseudovector and pseudoscalar terms. This is so, because in such a case
the pseudoscalar unit square in flat spacetime is 12 = I'] = —1. In 4-dimensions IT = |

regardless of the signature.
Instead of Lorentz transformations—pseudo rotations in spacetime—which preserve

ax*zx, and dz*dz, we have now more general rotations—rotations in C-space—which pre-
serve | X|? and |dX|?.

7.2.2 (-space and conformal transformations

From (186) and (188) we see [25] that a subgroup of the Clifford Group, or rotations in
C-space is the group SO(4,2). The transformations of the latter group rotate z*, o, &,
but leave z#¥ and z* unchanged. Although according to our assumption physics takes
place in full C-space, it is very instructive to consider a subspace of C-space, that we shall
call conformal space whose isometry group is SO(4,2).

Coordinates can be given arbitrary symbols. Let us now use the symbol n* instead of
z#, and 1°,n% instead of &, 0. In other words, instead of (z*, 5, o) we write (n*, n°,7°) = n°,
w=0,1,2,3a=0,1,2,3,5,6. The quadratic form reads

10 = gab11" (189)
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with

gap = diag(1,—1,—1,—1,—-1,1) (190)
being the diagonal metric of the flat 6-dimensional space, a subspace of C-space,
parametrized by coordinates n®. The transformations which preserve the quadratic form
(189) belong to the group SO(4,2). It is well known [38, 39] that the latter group, when

taken on the cone
1. =0 (191)
is isomorphic to the 15-parameter group of conformal transformations in 4-dimensional
spacetime [40].
Let us consider first the rotations of n° and 1% which leave coordinates n* unchanged.
The transformations that leave —(n°)? + (7°)? invariant are

n”® = n° cosh a + n° sinh a
n"® = n° sinh a 4 7° cosh a (192)

where « is a parameter of such pseudo rotations.
Instead of the coordinates 1%, 7% we can introduce [38, 39] new coordinates s, A
according to

K=n" =1 (193)
A=n"+1n° (194)

In the new coordinates the quadratic form (189) reads

"N = 0" — (0°)* = (°)° = 0"n, — KA (195)

The transformation (192) becomes
K =p 1tk (196)
N = pA (197)

where p = e®. This is just a dilation of x and the inverse dilation of \.
Let us now introduce new coordinates z* according z* to®

nt = kat (198)
Under the transformation (198) we have
=" (199)

but
't = pxt (200)

The latter transformation is dilatation of coordinates z*.

8These new coordinates z* should not be confused with coordinate z* used in Sec.2.

141
Quantization in Astrophysics ...


me
Rectangle


Considering now a line element
dn*dn, = dn*dn, — dkdA (201)
we find that on the cone n®n, = 0 it is
dn*dn, = k* dz*dz, (202)
even if k is not constant. Under the transformation (196) we have
dif*drf, = difdn, (203)
dzdz), = p* da'dz, (204)

The last relation is a dilatation of the 4-dimensional line element related to coordinates z*.
In a similar way also other transformations of the group SO(4,2) that preserve (191) and
(203) we can rewrite in terms of of the coordinates z*. So we obtain—besides dilations—
translations, Lorentz transformations, and special conformal transformations; altogether
they are called conformal transformations. This is a well known old observation [38, 39|
and we shall not discuss it further. What we wanted to point out here is that conformal
group SO(4,2) is a subgroup of the Clifford group.

7.2.3 On the physical interpretation of the conformal group SO(4,2)

In order to understand the physical meaning of the transformations (198) from the coordi-
nates n* to the coordinates z* let us consider the following transformation in 6-dimensional
space Vg :

= /i_ln#
-1

a=—K
A=X—r""n, (205)
This is a transformation from the coordinates n* = (n*,k,\) to the new coordinates

z* = (x*,a,A). No extra condition on coordinates, such as (191), is assumed now. If
we calculate the line element in the coordinates n® and x®, respectively, we find the the
following relation [27]

dntdn” g, — drd\ = o *(da*dz" g, — dadA) (206)

We can interpret a transformation of coordinates passively or actively. Geometric
calculus clarifies significantly the meaning of passive and active transformations. Under
a passive transformation a vector remains the same, but its components and basis vector
change. For a vector dn = dn“y, we have

dn’ = dn'*y, = dn*y, = dn (207)
with oyya
dy/® = a?;b dn® (208)
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and

on®
Since the vector is invariant, so it is its square:
dn® = dn/*y;, dif®y = dif*dn g, = d*dn’ gay (210)
i From (209) we read that the well known relation between new and old coordinates:
on° on?
, n° o 211)

Gab = % W Ged

Under an active transformation a vector changes. This means that in a fixed basis the
components of a vector change:

dn’ = dn*v, (212)

with oyya
dn'e = 21 qpp 913
= (213)

The transformed vector dn’ is different from the original vector dn = dn®y,. For the

square we find
an/a an/b
d/2:dlad/ba: dcdda 214
n 0D g = 5 g 1A G (214)
i.e., the transformed line element dn'? is different from the original line element.
Returning now to the coordinate transformation (205) with the identification n'* = 2%,
we can interpret eq. (206) passively or actively.
In the passive interpretation the metric tensor and the components dn* change under

a transformation, so that in our particular case the relation (210) becomes

dz®da’ g, = a %(da"dz” g, — dadA) = dn®dn’ge, = dn*dn” g, — drdX (215)

with
gMV O O guu O O
gp=a2l 0 0o -1 |, gu=|0 0 -} (216)
0 -1 o0 0 -1 o0

2 2
In the above equation the same infinitesimal distance squared is expressed in two different
coordinates n® or z.

In active interpretation, only dn® change, whilst the metric remains the same, so that
the transformed element is

dz® da’ go = datdz” g, — dadA = k2 dndn’ge = £ 2(d"dn g, — ded))  (217)

The transformed line lelement dx®dz, is physically different from the original line element
dn®dn, by a factor o? = k2

A rotation (192) in the plane (7° n°) (i.e., the transformation (196),(197) of (x, \))
manifests in the new coordinates z¢ as a dilatation of the line element dz?dx, = x~2 dnn,:

dz'dz! = p*dz*dz, (218)
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All this is true in the full space V5. On the cone nn, = 0 we have A = A\ — knn, =0,
dA = 0 so that dz*dz, = da#dz, and we reproduce the relations (204) which is a dilatation
of the 4-dimensional line element. It can be interpreted either passively or actively. In
general, the pseudo rotations in V4, that is, the transformations of the 15-parameter group
SO(4,2) when expressed in terms of coordinates x*, assume on the cone 77, = 0 the form
of the ordinary conformal transformations. They all can be given the active interpretation
(27, 28].

We started from the new paradigm that physical phenomena actually occur not in
spacetime, but in a larger space, the so called Clifford space or C-space which is a manifold
associated with the Clifford algebra generated by the basis vectors v, of spacetime. An
arbitrary element of Cliffod algebra can be expanded in terms of the objects E4, A =
1,2,...,2P  which include, when D = 4, the scalar unit 1, vectors Yu, bivectors v, A v,
pseudovectors I, and the pseudoscalar unit I = 75. C-space contains 6-dimensional
subspace Vg spanned? by 1, v, and 5. The metric of Vg has the signature (+——— —+).
It is well known that the rotations in Vj, when taken on the conformal cone n%n, = 0, are
isomorphic to the non linear transformations of the conformal group in spacetime. Thus
we have found out that C-space contains —as a subspace— the 6-dimensional space Vg
in which the conformal group acts linearly. From the physical point of view this is an
important and, as far as we know, a novel finding, although it might look mathematically
trivial.  So far it has not been clear what could be a physical interpretation of the 6
dimensional conformal space. Now we see that it is just a subspace of Clifford space. The
two extra dimensions, parametrized by x and A, are not the ordinary extra dimensions;
they are coordinates of Clifford space C} of the 4-dimensional Minkowski spacetime V.

We take C-space seriously as an arena in which physics takes place. The theory is
a very natural, although not trivial, extension of the special relativity in spacetime. In
special relativity the transformations that preserve the quadratic form are given an active
interpretation: they relate the objects or the systems of reference in relative translational
motion. Analogously also the transformations that preserve the quadratic form (186) or
(188) in C-space should be given an active interpretation. We have found that among
such transformations (rotations in C-space) there exist the transformations of the group
SO(4,2). Those transformations also should be given an active interpretation as the
transformations that relate different physical objects or reference frames. Since in the
ordinary relativity we do not impose any constraint on the coordinates of a freely moving
object so we should not impose any constraint in C-space, or in the subspace V5. However,
by using the projective coordinate transformation (205), without any constraint such as
n°n, = 0, we arrived at the relation (217) for the line elements. If in the coordinates n“
the line element is constant, then in the coordinates x® the line element is changing by a
scale factor k which, in general, depends on the evolution parameter 7. The line element
need not be one associated between two events along a point particle’s worldline: it can

91t is a well known observation that the generators Ly, of SO(4,2) can be realized in terms of 1, v,,, and
5. Lorentz generators are M, = —i [V, 7], dilatations are generated by D = Lgs = —%75, translations
by P, = Ls,+Le, = 37,(1—i7s) and the special conformal transformations by Ls, — Le,, = 37, (1+47s).
This essentially means that the generators are Ly, = —i[ea, ep] with e, = (y4,7s, 1), where care must be
taken to replace commutators [1,vs] and [1,,] with 2v5 and 2+,
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be between two arbitrary (space-like or time-like) events within an extended object. We
may consider the line element (= distance squared) between two infinitesimally separated
events within an extended object such that both events have the same coordinate label
A so that dA = 0. Then the 6-dimensional line element dz*dz” g,, — dardA becomes
the 4-dimensional line element dz*dz” ¢,, and, because of (217) it changes with 7 when
k does change. This means that the object changes its size, it is moving dilatationally
[27, 28]. We have thus arrived at a very far reaching observation that the relativity in C-
space implies scale changes of physical objects as a result of free motion, without presence
of any forces or such fields as assumed in Weyl theory. This was advocated long time
ago [27, 28], but without recurse to C-space. However, if we consider the full Clifford
space C' and not only the Minkowski spacetime section through C', then we arrive at a
more general dilatational motion [17] related to the polyvector coordinates z#”, x#* and
2912 = 5 (also denoted s) as reviewed in section 3.

7.3 C-space Maxwell Electrodynamics

Finally, in this section we will review and complement the proposal of ref.[75] to general-
ize Maxwell Electrodynamics to C-spaces, namely, construct the Clifford algebra-valued
extension of the Abelian field strength F' = dA associated with ordinary vectors A,. Us-
ing Clifford algebraic methods we shall describe how to generalize Maxwell’s theory of
Electrodynamics asociated with ordinary point-charges to a generalized Maxwell theory
in Clifford spaces involving extended charges and p-forms of arbitrary rank, not unlike
the couplings of p-branes to antisymmetric tensor fields.

Based on the standard definition of the Abelian field strength F' = dA we shall use
the same definition in terms of polyvector-valued quantities and differential operators in
C-space

A=ANEN = oL+ A" + A A+ (219)

The first component in the expansion ¢ is a scalar field; A, is the standard Maxwell
field A,,, the third component A, is a rank two antisymmetric tensor field....and the last
component of the expansion is a pseudo-scalar. The fact that a scalar and pseudo-scalar
field appear very naturally in the expansion of the C-space polyvector valued field Ay
suggests that one could attempt to identify the latter fields with a dilaton-like and axion-
like field, respectively.Once again= , in order to match units in the expansion (219),
it requires the introduction of suitable powers of a length scale parameter, the Planck
scalewhich is conveniently set to unity.

The differential operator is the generalized Dirac operator

d=EM0y =10, + "0, + 7" N7"0

Tpv

+.) (220)

the polyvector-valued indices M, N.... range from 1,2.....2° since a Clifford algebra in
D-dim has 2% basis elements. The generalized Maxwell field strength in C-space is

F=dA=EMoy(ENAy) = EMENOy Ay = ;{EM, ENYOy An+

=
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§[EM, ENoy Ay = 5F(MN){EM, ENY + 5 Flng [EM BN (221)
where one has decomposed the Field strength components into a symmetric plus antisym-
metric piece by simply writing the Clifford geometric product of two polyvectors EM BV
as the sum of an anticommutator plus a commutator piece respectively,

1

1

Let the C-space Maxwell action (up to a numerical factor) be given in terms of the
antisymmetric part of the field strength:

4] = / DX Fag FMN. (224)

where [DX] is a C-space measure comprised of all the (holographic) coordinates degrees
of freedom
[DX] = (do)(da’dat...) (da® dx?...)....(dx"*P). (225)

Action (224) is invariant under the gauge transformations
Ay = Ay + 0uA (226)

The matter-field minimal coupling (interaction term) is:
/ ApdXM = / [DX]Jar AM, (227)

where one has reabsorbed the coupling constant, the C-space analog of the electric charge,
within the expression for the A field itself. Notice that this term (227) has the same form
as the coupling of p-branes (whose world volume is p + 1-dimensional) to antisymmetric
tensor fields of rank p + 1.

The open line integral in C-space of the matter-field interaction term in the action is
taken from the polyparticle’s proper time interval S ranging from —oo to +00 and can be
recast via the Stokes law solely in terms of the antisymmetric part of the field strength.
This requires closing off the integration countour by a semi-circle that starts at S = +o0,
goes all the way to C-space infinity, and comes back to the point S = —oco. The field
strength vanishes along the points of the semi-circle at infinity, and for this reason the
net contribution to the contour integral is given by the open-line integral. Therefore, by
rewriting the [ Ay dX™ via the Stokes law relation, it yields

[ Anax™ = [ By = [ Fapg x*ax™ =

/ dS Fiyn XM (dX ™ /dS). (228)
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where in order to go from the second term to the third term in the above equation we have
integrated by parts and then used the Bianchi identity for the antisymmetric component

The integration by parts permits us to go from a C-space domain integral, represented
by the Clifford-value hypersurface SM¥ to = a C-space boundary-line integral

/ dSMN = / (XMaxN — XNxM). (229)

The pure matter terms in the action are given by the analog of the proper time integral
spanned by the motion of a particle in spacetime:

AXM Xy
S = [ dSy S 2
/S “/ N5 ds (230)

where & is a parameter whose dimensions are (mass)P™! and S is the polyparticle proper
time in C-space.
The Lorentz force relation in C-space is directly obtained from a variation of

/ dS Fpyn XM (dX™ /dS). (231)

p / dS = k / JAXMdXy,. (232)

with respect tothe XM variables:

and

d*X o ax™
"asy T TN
where we have re-introduced the C-space charge e back into the Lorentz force equation in
C-space. A variation of the terms in the action w.r.t the A, field furnishes the following
equation of motion for the A fields:

(233)

Oy FIMNT — N (234)

By taking derivatives on both sides of the last equation with respect to the XV coordinate,
one obtains due to the symmmetry condition of 93,0y versus the antisymmetry of FM¥]
that
ONOy FMN = 0 = 9 JN = 0. (235)
which is precisely the continuity equation for the current.
The continuity equation is essential to ensure that the matter-field coupling term of

the action [ ApdX™M = [[DX]JM Ay, is also gauge invariant, which can be readily verified
after an integration by parts and setting the boundary terms to zero:

5 / [DX]JM Ay = / [DX]JMOpA = — / [DX](pr M)A = 0. (236)

Gauge invariance also ensures the conservation of the energy-momentum (via Noether’s
theorem) defined in tems of the Lagrangian density variation. We refer to [75] for further
details.
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The gauge invariant C-space Maxwell action as given in eq. (224) is in fact only a
part of a more general action given by the expression

um:/mmFuF:/wX]<ﬁF>mm. (237)

This action can also be written in terms of components, up to dimension-dependent
numerical coefficients, as [75] :

I114] = /[DX] (Faan) FM™N + Fipg FIMN) (238)

For rigor, one should introduce the numerical coefficients in front of the F' terms, notic-
ing that the symmetric combination should have a different dimension-dependent co-
efficient than the anti-symmetric combination since the former involves contractions of
{EM ENY*{Ey\, Ex} and the latter contractions of [EM, EN|*[Ey, En]

The latter action is strictly speaking not gauge invariant, since it contains not only the
antisymmetric but also the symmetric part of F. It is invariant under a restricted gauge
symmetry transformations. It is invariant ( up to total derivatives) under in finitesimal
gauge transformations provided the symmetric part of F' is divergence-free 0, F(MN) = ()
[75] . This divergence-free condition has the same effects as if one were fixing a gauge
leaving a residual symmetry of restricted gauge transformations such that the gauge
symmetry parameter obeys the Laplace-like equation 9,0 A = 0. Such residual ( re-
stricted ) symmetries are precisely those that leave invariant the divergence-free condition
on the symmetric part of F'. Residual, restricted symmetries occur, for example, in the
light-cone gauge of p-brane actions leaving a residual symmetry of volume-preserving
diffs. They also occur in string theory when the conformal gauge is chosen leaving a
residual symmetry under conformal reparametrizations; i.e. the so-called Virasoro alge-
bras whose symmetry transformations are given by holomorphic and anti-holomorphic
reparametrizations of the string world-sheet.

This Laplace-like condition on the gauge parameter is also the one required such that
the action in [75] is invariant under finite (restricted) gauge transformations since under
such (restricted) finite transformations the Lagrangian changes by second-order terms of
the form (9y;0nA)?, which are total derivatives if, and only if, the gauge parameter is
restricted to obey the analog of Laplace equation 9,0 A = 0

Therefore the action of eq- ( 233 ) is invariant under a restricted gauge transformation
which bears a resemblance to volume-preserving diffeomorphisms of the p-branes action in
the light-cone gauge. A lesson that we have from these considerations is that the C-space
Maxwell action written in the form (237) automatically contains a gauge fixing term.
Analogous result for ordinary Maxwell field is known from Hestenes work [1], although
formulated in a slightly different way, namely by direclty considering the field equations
without emplying the action.

It remains to be seen if this construction of C-space generalized Maxwell Electrody-
namics of p-forms can be generalized to the Nonabelian case when we replace ordinary
derivatives by gauge-covariant ones:

F=dA— F=DA=(dA+ AeA). (239)
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For example, one could define the graded-symmetric product E,; e Ey based on the
graded commutator of Superalgebras:

[A,B] = AB — (—1)*4*5 BA. (240)

Sa, sp is the grade of A and B respectively. For bosons the grade is even and for fermions
is odd. In this fashion the graded commutator captures both the anti-commutator of two
fermions and the commutator of two bosons in one stroke. One may extend this graded
bracket definition to the graded structure present in Clifford algebras, and define

EM [ ] EN == EMEN - (—1>SMSNENEM. (241)

su, Sy is the grade of Ejy; and Ey respectively. Even or odd depending on the grade of
the basis elements.

One may generalize Maxwell’s theory to Born-Infeld nonlinear Electrodynamics in C-
spacesbased on this extension of Maxwell Electrodynamics in C-spaces and to couple a
C-space version of a Yang-Mills theory to C-space gravity, a higher derivative gravity with
torsion, this will be left for a future publication. Clifford algebras have been used in the
past [62] to study the Born-Infeld model in ordinary spacetime and to write a nonlinear
version of the Dirac equation. The natural incorporation of monopoles in Maxwell’s theory
was investigated by [89] and a recent critical analysis of 7 unified ” theories of gravity
with electromagnetism has been presented by [90]. Most recently [22] has studied the
covariance of Maxwell’s theory from a Clifford algebraic point of view.

8 Concluding Remarks

We have presented a brief review of some of the most important features of the Extended
Relativity theory in Clifford-spaces (C-spaces). The ”coordinates” X are noncommuting
Clifford-valued quantities which incoporate the lines, areas, volumes,....degrees of freedom
associated with the collective particle, string, membrane,... dynamics underlying the
center-of-mass motion and holographic projections of the p-loops onto the embedding
target spacetime backgrounds. C-space Relativity incoporates the idea of an invariant
length, which upon quantization, should lead to the notion of minimal Planck scale [23].
Other relevant features are those of maximal acceleration [52], [49] ; the invariance of
Planck-areas under acceleration boosts; the resolution of ordering ambiguities in QFT;
supersymmetry ; holography [119]; the emergence of higher derivative gravity with torsion
;:and the inclusion of variable dimensions/signatures that allows to study the dynamics of
all (closed) p-branes, for all values of p, in one single unified footing, by starting with the
C-space brane action constructed in this work.

The Conformal group construction presented in 7 , as a natural subgroup of the
Clifford group in four-dimenions, needs to be generalized to other dimensions, in particular
to two dimensions where the Conformal group is infinite-dimensional. Kinani [130] has
shown that the Virasoro algebra can be obtained from generalized Clifford algebras. The
construction of area-preserving diffs algebras, like wo, and su(oo), from Clifford algebras
remains an open problem. Area-preserving diffs algebras are very important in the study
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of membranes and gravity since Higher-dim Gravity in m + n-dim has been shown a
while ago to be equivalent to a lower m-dim Yang-Mills-like gauge theory of diffs of an
internal n-dim space [120] and that amounts to another explanation of the holographic
principle behind the AdS/CFT duality conjecture [121]. We have shown how C-space
Relativity involves scale changes in the sizes of physical objects, in the absence of forces
and Weyl'gauge field of dilations. The introduction of scale-motion degrees of freedom
has recently been implemented in the wavelet-based regularization procedure of QFT by
[87]. The connection to Penrose’s Twistors program is another interesting project worthy
of investigation.

The quantization and construction of QFTs in C-spaces remains a very daunting
task since it may involve the construction of QM in Noncommutative spacetimes [136],
braided Hopf quantum Clifford algebras [86], hypercomplex extensions of QM like quater-
nionic and octonionic QM [99], [97], [98], exceptional group extensions of the Standard
Model [85],hyper-matrices and hyper-determinants [88], multi-symplectic mechanics, the
de Donde-Weyl formulations of QFT [82], to cite a few, for example. The quantization
program in C-spaces should share similar results as those in Loop Quantum Gravity [111],
in particular the minimal Planck areas of the expectation values of the area-operator.

Spacetime at the Planck scale may be discrete, fractal, fuzzy, noncommutative... The
original Scale Relativity theory in fractal spacetime [23] needs to be extended futher
to incoporate the notion of fractal ”manifolds”. A scale-fractal calculus and a fractal-
analysis construction that are esential in building the notion of a fractal "manifold” has
been initiated in the past years by [129]. It remains yet to be proven that a scale-
fractal calculus in fractal spacetimes is another realization of a Connes Noncommutative
Geometry. Fractal strings/branes and their spectrum have been studied by [104] that
may require generalized Statistics beyond the Boltzmann-Gibbs, Bose-Einstein and Fermi-
Dirac, investigated by [105], [103], among others.

Non-Archimedean geometry has been recognized long ago as the natural one operat-
ing at the minimal Planck scale and requires the use p-adic numbers instead of ordinary
numbers [101]. By implementing the small/large scale, ultraviolet/infrared duality prin-
ciple associated with QFTs in Noncommutative spaces, see [125] for a review, one would
expect an upper maximum scale [23] and a maximum temperature [21] to be operating
in Nature. Non-Archimedean Cosmologies based on an upper scale has been investigated
by [94].

An upper/lower scale can be accomodated simultaneously and very naturally in the
q-Gravity theory of [114], [69] based on bicovariant quantum group extensions of the
Poincare, Conformal group, where the ¢ deformation parameter could be equated to the
quantity e, such that both A = 0 and L = oo, yield the same classical ¢ = 1 limit. For
a review of ¢-deformations of Clifford algebras and their generalizations see [86], [128].

It was advocated long ago by Wheeler and others, that information theory [106], set
theory and number theory, may be the ultimate physical theory. The important role of
Clifford algebras in information theory have been known for some time [95]. Wheeler’s
spacetime foam at the Planck scale may be the background source generation of Noise in
the Parisi-Wu stochastic qunatization [47] that is very relevant in Number theory [100].
The pre-geometry cellular-networks approach of [107] and the quantum-topos views based
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on gravitational quantum causal sets, noncommutative topology and category theory
[109], [110], [124] deserves a futher study within the C-space Relativity framework, since
the latter theory also invokes a Category point of view to the notion of dimensions.
C-space is a pandimensional continuum [14], [8]. Dimensions are topological invariants
and, since the dimensions of the extended objects change in C-space, topology-change is
another ingredient that needs to be addressed in C-space Relativity and which may shed
some light into the physical foundations of string/M theory [118]. It has been speculated
that the universal symmetries of string theory [108] may be linked to Borcherds Vertex
operator algebras (the Monstruous moonshine) that underline the deep interplay between
Conformal Field Theories and Number theory. A lot remains to be done to bridge together
these numerous branches of physics and mathematics. Many surprises may lie ahead of
us. For a most recent discussion on the path towards a Clifford-Geometric Unified Field
theory of all forces see [138], [140]. The notion of a Generalized Supersymmetry in Clifford
Superspaces as extensions of M, F' theory algebras was recently advanced in [139]
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Abstract

We explore Yang’s Noncommutative space-time algebra (involving two
length scales) within the context of QM defined in Noncommutative space-
times and the holographic area-coordinates algebra in Clifford spaces.
Casimir invariant wave equations corresponding to Noncommutative coor-
dinates and momenta in d-dimensions can be recast in terms of ordinary
QM wave equations in d + 2-dimensions. It is conjectured that QM over
Noncommutative spacetimes (Noncommutative QM) may be described by
ordinary QM in higher dimensions. Novel Moyal-Yang-Fedosov-Kontsevich
star products deformations of the Noncommutative Poisson Brackets are
employed to construct star product deformations of scalar field theo-
ries. Finally, generalizations of the Dirac-Konstant and Klein-Gordon-
like equations relevant to the physics of D-branes and Matrix Models are
presented.

1 Introduction

Yang’s noncommutative space time algebra [?] is a generalization of the Snyder
algebra [?] (where now both coordinates and momenta are not commuting) that
has received more attention recently, see for example [?] and references therein.
In particular, Noncommutative p-brane actions, for even p+1 = 2n-dimensional
world-volumes, were written explicitly [?] in terms of the novel Moyal-Yang (
Fedosov-Kontsevich ) star product deformations [?], [?] of the Noncommutative
Nambu Poisson Brackets (NCNPB) that are associated with the noncommuting
world-volume coordinates ¢4,p? for A = 1,2,3,..n. The latter noncommut-
ing coordinates obey the noncommutative Yang algebra with an ultraviolet Lp
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(Planck) scale and infrared (R ) scale cutoff. It was shown why the novel p-
brane actions in the ”classical” limit h.sy = hLp/R — 0 still acquire nontrivial
noncommutative corrections that differ from ordinary p-brane actions . Super
p-branes actions in the light-cone gauge are also amenable to Moyal-Yang star
product deformations as well due to the fact that p-branes moving in flat space-
time backgrounds, in the light-cone gauge, can be recast as gauge theories of
volume-preserving diffeomorphisms. The most general construction of noncom-
mutative super p-branes actions based on non (anti) commuting superspaces
and quantum group methods remains an open problem.

The purpose of this work is to explore further the consequences of Yang’s
Noncommutative spacetime algebra within the context of QM in Noncommuta-
tive spacetimes and the holographic area-coordinates algebra in Clifford spaces
[?]. In section 2 we study the interplay among Yang’s Noncommutative space-
time algebra and the former area-coordinates algebra in Clifford spaces . In
section 3 we show how Casimir invariant wave equations corresponding to
Noncommutative coordinates and momenta in D-dimensions, can be recast in
terms of ordinary QM wave equations in D + 2-dimensions. In particular, we
shall present explicit solutions of the D’Alambertian operator in the bulk of AdS
spaces and explain its correspondence with the Casimir invariant wave equations
associated with the Yang’s Noncommutative spacetime algebra at the projec-
tive boundary of the conformally compactified AdS spacetime. We conjecture
that QM over Noncommutative spacetimes ( Noncommutative QM ) may be
described by ordinary QM in higher dimensions.

In section 4 we recur to the novel Moyal-Yang (Fedosov-Kontsevich) star
products [?], [?] deformations of the Noncommutative Poisson Brackets to con-
struct Moyal-Yang star product deformations of scalar field theories. The role
of star products in the construction of p-branes actions from the large N limit
of SU(N) Yang-Mills can be found in [?] and in the Self-Dual Gravity/ SU(cc)
Self Dual Yang-Mills relation in [?], [?], [?].[?]. Finally, in the conclusion 5 , we
present the generalizations of the Dirac-Konstant equations (and their ”square”
Klein-Gordon type equations ) that are relevant to the incorporation of fermions
and the physics of D-branes and Matrix Models .

2 Noncommutative Yang’s Spacetime Algebra
in terms of Area-Coordinates in Clifford Spaces

The main result of this section is that there is a subalgebra of the C-space
operator-valued coordinates [?] which is isomorphic to the Noncommutative
Yang’s spacetime algebra [?], [?] . This, in conjunction to the discrete spec-
trum of angular momentum, leads to the discrete area quantization in multiples
of Planck areas. Namely, the 4D Yang’s Noncommutative space-time algebra
[?] (written in terms of 8D phase-space coordinates) is isomorphic to the 15-
dimensional subalgebra of the C-space operator-valued coordinates associated
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with the holographic areas of C-space. This connection between Yang’s algebra
and the 6D Clifford algebra is possible because the 8D phase-space coordinates
aH, pH (associated to a 4D spacetime ) have a one-to-one correspondence to the
X 13, Xu6 holographic area-coordinates of the C-space (corresponding to the 6D
Clifford algebra). Furhermore, Tanaka [?] has shown that the Yang’s algebra
[?] ( with 15 generators ) is related to the 4D conformal algebra (15 generators)
which in turn is isomorphic to a subalgebra of the 4D Clifford algebra because
it is known that the 15 generators of the 4D conformal algebra SO(4,2) can be
explicitly realized in terms of the 4D Clifford algebra as shown in [?] .

The correspondence between the holographic area coordinates X 48 « \2%4B
and the angular momentum variables when A, B = 1,2, 3, .....6 yields an isomor-
phism between the holographic area coordinates algebra in Clifford spaces [?]
and the noncommutative Yang’s spacetime algebra in D = 4 . The scale A is the
ultraviolet lower Planck scale. We begin by writing the exchange algebra be-
tween the position and momentum coordinates encapsulated by the commutator

2
X6 %56 = —inZyfo s o, (A1 hR;sﬂ, AZEPO] = NSO (2.1)

from which we can deduce that :

hoan (2.2)

50 Y56) — ;66 1L
[p ) ] ”7 )\R

hence, after using the definition ' = (A\/R)X°¢, where R is the infrared upper
scale, one has the exchange algebra commutator of p* and N of the Yang’s
spacetime algebra given by

[N = —in® =i (2.3)
From the commutator
[X“ﬁ,XSG] — —[X/L57X65} — 7;7755)\2)2'/16 PN [)\:f;/}" )\2256] — 2-7755/\2)\2 %ﬁu.
(2.4)
we can deduce that
AR

(@, 7] = i S, (2.5)

h

and after using the definition ' = (A\/R)%%® one has the exchange algebra
commutator of z* and A of the Yang’s spacetime algebra

. a5 AT
[, N = i 2= (2.6)

The other relevant holographic area-coordinates commutators in C-space are
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[Xu57Xu5] _ _in55)\2X/w PN [.f;‘“,:f?”] _ _in55)\22uy. (2-7)

that yield the noncommuting coordinates algebra after having used the repre-
sentation of the C-space operator holographic area-coordinates

. 1 A
iXHY s z’AzﬁMW = iAZZA X5 o N2R50, (2.8)

where we appropriately introduced the Planck scale A\ as one should to match
units. From the correspondence

h ho1
ot — w6 0
PP=R" T Rx

one can obtain nonvanishing momentum commutator

X6, (2.9)

% X . gz INTRRENY, . hQ v
[X16) XV0) = —inSO N2 XM o [pH, "] = —17766??‘ . (2.10)
The signatures for AdSs space are n°® = +1; n% = —1 and for the Euclideanized
AdSs space are n°° = +1 and 7 = +1. Yang’s space-time algebra corresponds
to the latter case. Finally, the modified Heisenberg algebra can be read from
the following C-space commutators :

[X;L57XD6} _ Z-n;w>\2f(56 PN

[&H, pH] = ihn“"%E% = i N. (2.11)

Eqs-(2.1-2.11) are the defining relations of Yang’s Noncommutative 4D space-
time algebra [?] involving the 8D phase-space variables. These commutators
obey the Jacobi identities. There are other commutation relations like [M** z*],
.... that we did not write down. These are just the well known rotations ( boosts
) of the coordinates and momenta.

When A — 0 and R — oo one recovers the ordinary commutative spacetime
algebra. The Snyder algebra [?] is recovered by setting R — oo while leaving A
intact. To recover the ordinary Weyl-Heisenberg algebra is more subtle. Tanaka
[?] has shown the the spectrum of the operator N = (\/R)XC is discrete given
by n(A/R) . This is not suprising since the angular momentum generator M56
associated with the Fuclideanized AdSs space is a rotation in the now compact
x5 — 2% directions. This is not the case in AdSs space since 7% = —1 and this
timelike direction is no longer compact. Rotations involving timelike directions
are equivalent to noncompact boosts with a continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra from Yang’s Non-
commutative spacetime algebra, and the standard uncertainty relations AzAp >
h with the ordinary A term , rather than the nh term, one needs to take the
limit » — oo limit in such a way that the net combination of n2 — 1. This can

R
be attained when one takes the double scaling limit of the quantities as follows

A—0. R—oo. AR— L?
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. A A2 nA?
limy—oo N—= =

R™"XR ™ 12
From eq-(2.12) one learns then that :

- 1. (2.12)

nA? = \R = L°. (2.13)

The spectrum n corresponds to the quantization of the angular momentum
operator in the 2% — 2% direction (after embedding the 5D hyperboloid of throat
size R onto 6D ) . Tanaka [?] has shown why there is a discrete spectra for
the spatial coordinates and spatial momenta in Yang’s spacetime algebra that
yields a minimum length A ( ultraviolet cutoff in energy ) and a minimum
momentum p = h/R ( maximal length R , infrared cutoff ) . The energy and
temporal coordinates had a continous spectrum.

The physical interpretation of the double-scaling limit of eq-( 2.12 ) is that
the the area L? = AR becomes now quantized in units of the Planck area A2
as L? = n)\? . Thus the quantization of the area ( via the double scaling limit
) L? = AR = n\? is a result of the discrete angular momentum spectrum in
the 2° — 2% directions of the Yang’s Noncommutative spacetime algebra when
it is realized by ( angular momentum ) differential operators acting on the
Euclideanized AdSs space ( two branches of a 5D hyperboloid embedded in
6D ). A general interplay between quantum of areas and quantum of angular
momentum, for arbitrary values of spin, in terms of the square root of the
Casimir A ~ A2./j(j + 1), has been obtained a while ago in Loop Quantum
Gravity by using spin-networks techniques and highly technical area-operator
regularization procedures [?] .

The advantage of this work is that we have arrived at similar ( not identical
) area-quantization conclusions in terms of minimal Planck areas and a discrete
angular momentum spectrum n via the double scaling limit based on Clifford
algebraic methods (C-space holographic area-coordinates). This is not surpris-
ing since the norm-squared of the holographic Area operator has a correspon-
dence with the quadratic Casimir ¥ 4p%48 of the conformal algebra SO(4,2)
( SO(5,1) in the Euclideanized AdSs case ). This quadratic Casimir must not
be confused with the SU(2) Casimir J? with eigenvalues j(j + 1) . Hence, the
correspondence given by eqs-(2.3-2.8) gives A2 «» \1¥,gpX4B.

In [?] we have shown why AdS, gravity with a topological term; i.e. an
Einstein-Hilbert action with a cosmological constant plus Gauss-Bonnet terms
can be obtained from the vacuum state of a BF-Chern-Simons-Higgs theory
without introducing by hand the zero torsion condition imposed in the McDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of
[?] was that a geometric mean relationship was found among the cosmological
constant A, , the Planck area A? and the AdS, throat size squared R? given by
(A.)~! = (N)?(R?). Upon setting the throat size to be of the order of the Hubble
scale Ry and A = Lp (Planck scale), one recovers the observed value of the cos-
mological constant L5 R;;> = Lp*(Lp/Ry)? ~ 10712004, A similar geometric
mean relation is also obeyed by the condition AR = L?(= nA?) in the double
scaling limit of Yang’s algebra which suggests to identify the cosmological con-
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stant as A, = L~* . This geometric mean condition remains to be investigated
further. In particular, we presented the preliminary steps how to construct a
Noncommutative Gravity via the Vasiliev-Moyal star products deformations of
the SO(4, 2) algebra used in the study of higher conformal massless spin theories
in AdS spaces by taking the inverse-throat size 1/R as a deformation parameter
of the SO(4,2) algebra. A Moyal deformation of ordinary Gravity via SU(c0)
gauge theories was advanced in [?] .

3 Noncommutative QM in Yang’s Spacetime from
ordinary QM in Higher Dimensions

In order to write wave equations in non-commuting spacetimes we start with
a Hamiltonian written in dimensionless variables involving the terms of the
relativistic oscillator ( let us say oscillations of the center of mass ) and the rigid
rotor/top terms ( rotations about the center of mass ) :

H = (20)? + (7
P

/R )+ ()2, (3.1)

with the fundamental difference that the coordinates z# and momenta p* obey
the non-commutative Yang’s space time algebra. For this reason one cannot
naively replace p* any longer by the differential operator —ihd/0x* nor write the
YH¥ generators as (1/h)(x#0,, — 2”0, ). The correct coordinate realization of
Yang’s noncommutative spacetime algebra requires, for example, embedding the
4-dim space into 6-dim and expressing the coordinates and momenta operators
as follows :

Du MGf'l I3 _ x6 Tu M5f'l 1% _ X5
(h/R) <—)E 77,h(X 6X6 X aXu)' LP <—>2 —Zh(X 8X5 X 8Xu)'

1 1
S i (X Ox, — X" Ox,,). N =5 iﬁ(X58X5 - X%x,). (3.2)

this allows to express H in terms of the standard angular momentum op-
erators in 6-dim. The X4 = X* X% X© coordinates (1 = 1,2,3,4) and
PA = Pr P% P% momentum variables obey the standard commutation rela-
tions of ordinary QM in 6-dim

(X4 XB)=0. [PYPP]=0. [X* PB]=im"B. (3.3)

so that the momentum admits the standard realization as P4 = —ihd/0X 4
Therefore, concluding, the Hamiltonian H in eq-( 3-1) associated with the

non-commuting coordinates z# and momenta p* in d — 1-dimensions can be

written in terms of the standard angular momentum operators in (d — 1) +2 =
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d+1-dim as H = Cy — N2, where C, agrees precisely with the quadratic Casimir
operator of the SO(d — 1,2) algebra in the spin s = 0 case,

Cy = YapY?B = (X0 — Xpd,)(X10P — XBo4). (3.4)

One remarkable feature is that Cy also agrees with the D’Alambertian operator
for the Anti de Sitter Space AdSq of unit radius ( throat size ) (D, D) a4s, as
it was shown by [?].

The proof requires to show that the D’Alambertian operator for the d + 1-
dim embedding space ( expressed in terms of the X4 coordinates ) is related to
the D’Alambertian operator in AdS, space of unit radius expressed in terms of

the 21,22, ....., 2% bulk intrinsic coordinates as :
0? d o 1 .
(D D¥) g = o2 pop + pﬁ(DuDl )ads =

Co = p* (D, D")gasr + [ (d—1) + pgp ] p(%

This result is just the hyperbolic-space generalization of the standard decom-
position of the Laplace operator in spherical coordinates in terms of the ra-
dial derivatives plus a term containing the square of the orbital angular mo-
mentum operator L?/r?. In the case of nontrivial spin, the Casimir Cy =
YapXAP 4+ S,45S4P has additional terms stemming from the spin operator.

The quantity ®(z%, 22, ..... ,zd)|boundary restricted to the d — 1-dim projec-
tive boundary of the conformally compactified AdSy space ( of unit throat size,
whose topology is S92 x S! ) is the sought-after solution to the Casimir in-
variant wave equation associated with the non-commutative x* coordinates and
momenta p* of the Yang’s algebra ( p = 1,2,....,d — 1 ). Pertaining to the
boundary of the conformally compactified AdSy space, there are two radii Ry, Rs
associated with S4~2 and S*, respectively, and which must not be confused with
the two scales R, Lp appearing in eq-(3-1). One can choose the units such that
the present value of the Hubble scale ( taking the Hubble scale as the infrared
cutoff ) is R = 1. In these units the Planck scale Lp will be of the order of
Lp ~ 10759, In essence, there has been a trade-off of two scales Lp, R with the
two radii Ry, Rs.

Once can parametrize the coordinates of AdSy = AdS),+2 by writing [?]

= (DuD")ads, (3.5)

Xo = R cosh(p)cos(T). X,11 = R cosh(p)sin(r). X; = R sinh(p)Q;. (3.6a)
The metric of AdSy = AdSp+2 space in these coordinates is :
ds* = R*[—(cosh?p)dr? + dp? + (sinh?p)dQ?]. (3.60)

where 0 < p and 0 < 7 < 27 are the global coordinates. The topology of
this hyperboloid is S' x RPT!. To study the causal structure of AdS it is
convenient to unwrap the circle S' ( closed-timelike coordinate 7 ) to obtain
the universal covering of the hyperboloid without closed-timelike curves and
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take —oo < 7 < 4o00. Upon introducing the new coordinate 0 < 6§ < 7/2
related to p by tan(f) = sinh(p), the metric in (3-6b) becomes

R2
ds? =
y c0s20

[—d7? 4 d6* + (sinh?p)dQ?). (3.7)

It is a conformally-rescaled version of the metric of the Einstein static universe.
Namely, AdSq = AdS,+2 can be conformally mapped into one-half of the Ein-
stein static universe, since the coordinate 6 takes values 0 < 6 < 7/2 rather
than 0 < § < 7. The boundary of the conformally compactified AdS,42 space
has the topology of S? x S! (\identical to the conformal compactification of the
p + 1-dim Minkowski space ). Therefore, the equator at § = 7/2 is a boundary
of the space with the topology of S?. (1, is the solid angle coordinates corre-
sponding to SP and 7 is the coordinate which parametrizes S*. For a detailed
discussion of AdS spaces and the AdS/CFT duality see [?] .

The D’Alambertian in AdSy space ( of radius R, later we shall set R =1 )
is :

1
D,D" = % Oy (Vg g"0, ) =

1

cos?6
52 —_
+ R? tan?0

?[ - 07 m&g((Rt(mG)p&g)] +

L2 (3.8)
where £2? is the Laplacian operator in the p-dim sphere SP whose eigenvalues
are [(l+p—1).

The scalar field can be decomposed as ® = e“?™ V;(Q,) G(#) and the wave

equation
(D,D" —m*)® = 0. (3.9)
leads to :
(l+p—1)
20 (W2 + 92 p Y/ _ p2R? 0)=0. (3.1
[cos™0 (w™+ 0y + tanf cos?6 ) tan?0 m "] G(6) = 0. (3.10)
whose solution is
G(0) = (sinf)" (cosh) * 2 Fy(a,b,c; sinb). (3.11)
The hypergeometric function is defined
b
2Fi(a,be,2) =) W 2 |zl < 1. (3.12)
Vo =1. (A)p= W A DA A b b —1). k=12, ..
(3.13)
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where
1 1 1
azi(H—)\i—wR). b:5(1+Ai + wR). c=l—|—§(p—|-1)>0. (3.14a)

A = %(p +1)+ %\/(p +1)2 +4(mR)2. (3.14b)

The analytical continuation of the hypergeometric function for |z| > 1 is :

SFi(a,b,c,2) = ——) )/01 P11 )ebL(1 — g2)0dr. . (3.15)

I'I(c—»b
with Real(c) > 0 and Real(b) > 0. The boundary value when 6 = /2 gives

L(e)T'(c—a—0)

li - F(a,b,c;2) = ————. 1
im,_1- F(a,b,c;z) (e —aT(c—0) (3.16)
Let us study the behaviour of the solution G(#) in the massless case
m=0. A_=0. Apf=p+1L (3.17)

Solutions with Ay = p+1 yield a trivial value of G(#) = 0 at the boundary 6 =
7/2 since cos(m/2)PT! = 0. Solutions with A_ = 0 lead to cos(6)*~ = cos(6)° =
1 prior to taking the limit § = 7/2. The expression cos(m/2)*~ = 0° = is ill
defined. Upon using L’ Hopital rule it yields 0. Thus, the limit § = 7/2 must
be taken afterwards the limit A_ =0 :

limg_z /2 | cos(0)*-] = limg_ /2 [cos(0)°] = limg_r /o [1] = 1. (3.18)

In this fashion the value of G(0) is well defined and nonzero at the boundary
when A_ = 0 and leads to the value of the wavefunction at the boundary of the
conformally compactified AdSy ( for d = p 4+ 2 with radius R )

L+ (p+D/2T((p+1)/2)

@(mn S in‘ryg
boundary = € /() PwR+(+p+1)/2T(-wR + (I +p+1)/2)

(3.19a)
upon setting the radius of AdSy space to unity it gives
; I+ (@+1)/2)T((p+1)/2)
o oundary = “TY(02 . (3.19b
poundary = W) T D (et (a2 O

Hence, ®poundary in €g-(3-19b) is the solution to the Casimir invariant wave
equation in the massless m = 0 case :

Cr @ =] ((hp/‘}_z))2 + (i—‘;)2 + ()4 N2 = 0. (3.20)

And :
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Tn
Lp

Py 2 2 w2 . _ 5 o B
[((h/R)) F(E)PHE)]E = [CG-N]=-wd (when R=1)
(3.21)

since A = ¥°6 is the rotation generator along the S' component of AdS space. It
acts as /07 only on the e™F7 piece of ®. Concluding : ®(2%, 22, ....., 29 [poundary,
restricted to the d — 1-dim projective boundary of the conformally compactified
AdS; space ( of unit radius and topology S%=2 x S' ) given by eq-(3-19), is the
sought-after solution to the wave equations (3-20, 3-21) associated with the non-
commutative z* coordinates and momenta p* of the Yang’s algebra and where
the indices p range over the dimensions of the boundary p = 1,2,.....d — 1 .
This suggests that QM over Yang’s Noncommutative Spacetimes could be well
defined in terms of ordinary QM in higher dimensions ! This idea deserves
further investigations. For example, it was argued by [?] that the quantized
Nonabelian gauge theory in d dimensions can be obtained as the infrared limit
of the corresponding classical gauge theory in d + 1-dim.

4 Star Products and Noncommutative QM

The ordinary Moyal star-product of two functions in phase space f(x,p), g(z,p)
is :

(f * Z ol Z C(s.)(0; "0, f (x,p))(0:0, "g(x.p))  (4.1)

where C(s,t) is the binomial coefficient s!/t!(s —t)!. In the i — 0 limit the star
product f * g reduces to the ordinary pointwise product fg of functions. The
Moyal product of two functions of the 2n-dim phase space coordinates (g;, p;)
with ¢ = 1,2...n is:

(f *9)(x,p) ZZ 1 Z (5,0)(0571 0y, f(,p))(5, 05 g(,p)) (4.2)
The noncommutative, associative Moyal bracket is defined:

{fi9tmB = %(f*g—g*f)- (4.3)

The task now is to construct novel Moyal-Yang star products based on the
noncommutative spacetime Yang’s algebra. A novel star product deformations
of (super) p-brane actions based on the noncommutative spacetime Yang’s alge-
bra where the deformation parameter is h.fr = hLp/R , for nonzero values of
T, was obtained in [?] The modified (noncommutative) Poisson bracket is now
given by
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{F @™ p™), G W@ ") Ya=(0mF) {¢",q"} (0G) +

O F U} 000) = O F) ("7 (00 ) + O ) (™47} 0. 0)
4.4
where the entries {¢™,¢"} # 0, {p™,p"} # 0, and {p™,¢"} = —{q¢",p™} can
be read from the commutators described in section 2 by simply defining the
deformation parameter h.ry = R(Lp/R). One can generalize Yang’s original
4-dim algebra to noncommutative 2n-dim world-volumes and/or spacetimes by
working with the 2n + 2-dim angular-momentum algebra SO(d,2) = SO(p +
1,2) = SO(2n,2).
The Noncommutative Poisson brackets ( NCPB ) are defined by

1

L2
——[¢",¢" = —=-X"". (4.
mo =5 (450)

Qq™,q") =1{q¢",¢" }ncpB = limn, ;0

1 h
Q m 7 — m n — l . m’ T — _ Zmn 45b
(™, p") ={p",p"}NcPB YMp, ¢ —0 rigff ™, p"] 72 ( )
Q(q P ) - *Q(p 4 ) = {q P }NC’PB = llmheff—>0 ih 7 [q P ] =N
(4.5¢)

where X" above is the " classical ” hef¢r = (hLp/R) — 0 limit ( R — oo, Lp —
0, RLp = L?, % # 0) of the quantity ¥ = F(X™P" — X"P™), after em-
bedding the d — 1 dimensional spacetime ( boundary of AdS,; ) into an ordinary
(d — 1) + 2-dimensional one. In the R — oo, ...... limit, the AdSy space ( the
hyperboloid ) degenerates into a flat Minkowski spacetime and the coordinates

q™,p"™, in that infrared limit, coincide with the coordinates X", P™. Conclud-
ing, in the ”classical” limit ( R — oo, ....., flat limit ) one has
by Eﬁ(X pP"—-X"P )—>ﬁ(qp —q"p™). (4.5d)

and then one recovers in that limit the ordinary definition of the angular mo-
mentum in terms of commuting coordinates ¢’s and commuting momenta p’s.

Denoting the coordinates (¢™,p™) by Z™ and when the Poisson structure
Q™" i given in terms of constant numerical coefficients, the Moyal star product
is defined in terms of the deformation parameter h.yy = hLp/R as

(FxG)(z) = eap | (ihess) Q™ 05 0 ] F(z1) G(2)]zspmse (4.6)

where the derivatives 95" act only on the F(z;) term and o act only on
the G(z2) term. In our case the generalized Poisson structure Q™" is given in
terms of variable coefficients, it is a function of the coordinates, then 9Q2™™ # 0,
since the Yang’s algebra is basically an angular momentum algebra, therefore
the suitable Moyal-Yang star product given by Kontsevich [?] will contain the
appropriate corrections QX" to the ordinary Moyal star product
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Denoting by 0, = 9/0z™ = (0/9q™; /3/Ip™) the Moyal-Yang-Kontsevich
star product, let us say, of the Hamiltonian H (g, p) with the density distribution
in phase space p(q,p) (not necessarily positive definite) , H(q,p) * p(q,p) is

.he 2
Hp + ihegy @ (0, Houp) + P00 s grane (02, H) (02,,,9) +

‘he 2
(i ?{f) [ QM1 (9, Q™272) (8, Oy HOpy p— Oy HOm, Oy ) }JFO(ngff). (4.7)

where the explicit components of Q™" are given by eqgs-(4-5a-4-5d). The Kont-
sevich star product is associative up to second order [?] (f xg) xh = f * (g *
h) + O(hl ).

The most general expression of the Kontsevich star product in Poisson man-
ifolds is quite elaborate and shall not be given here. Star products in curved
phase spaces have been constructed by Fedosov [?] . Despite these technical
subtlelties it did not affect the final expressions for the ”classical” Noncommu-
tative p-brane actions as shown in [?] when one takes the h.yy — 0 ”classical”
limit. In that limit there are still nontrivial noncommutative corrections to
the ordinary p-brane actions.

In the Weyl-Wigner-Gronewold-Moyal quantization scheme in phase spaces
one writes

H(z,p) * p(z,p) = p(x,p) * H(z,p) = Ep(z,p). (4.8)
where the Wigner density function in phase space associated with the Hilbert
space state | > is

1 h h )
;m@mz—/@ww—iwm+ﬁnwm (4.9)
2w 2 2

plus their higher dimensional generalizations. It remains to be studied if this
Weyl-Wigner-Gronewold-Moyal quantization scheme is appropriate to study
QM over Noncommutative Yang’s spacetimes when we use the above Moyal-
Yang-Kontsevich star products. A recent study of the Yang’s Noncommutative
algebra and discrete Hilbert (Buniy-Hsu-Zee) spaces was undertaken by Tanaka

7).

Let us write down the Moyal-Yang-Konstevich star deformations of the Field
theory Lagrangian corresponding to the scalar field ® = ®(X45) which de-
pends on the holographic-area coordinates X“4? [?]. The reason one should not
try to construct the star product of ®(z™) % ®(z™) based on the Moyal-Yang-
Kontsevich product, is because the latter star product given by eq-(4-7) will
introduce explicit momentum terms in the r.h.s of ®(x™) x ®(z™), stemming
from the expression X" = z™p™ — z"p™ of eq-(4-5d), and thus it invalidates
writing ¢ = ¢(z) in the first place. If the ¥™" were numerical constants, like
©™" | then one could write the ®(z™) * ®(2™) in a straightforward fashion as
it is done in the literature.

The reason behind choosing ® = ®(X“#) is more clear after one invokes the
area-coordinates and angular momentum correspondence discussed in detail in
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section 2 . It allows to properly define the star products. A typical Lagrangian
is of the form

2
L=—®x0%. O(XAB) + %(I)(XAB) « D(XAB) 4

%@(XAB) % ®(XAP) 5 %, B(XAB). (4.10)

and leads to the equations of motion

—(8/0XAB ) (9/0XAB ) ®(XAP) +m? &(XAP) +
g" (XA« B(XAB) % . wp B(XAB) = 0. (4.11)
when the multi-symplectic Q4BCP form is coordinate-independent, the star
product is

(@ +®) (ZAB) = exp [ (iX QABL 9yan Oyas )] (XAB) O(YAB)|xy—z

=exp [ ( BB Oxap Oyan )] ®(XAP) ®(YAP)|xoy—z (4.12)

where 2A4BCED is derived from the structure constants of the holographic area-

coordinate algebra in C-spaces [?]

[XAB, XCD] — EABCD = ZL%) (’I]ADXBC 777ACXBD +nBCXAD . T]BDXAC).

(4.13)
there are nontrivial derivative terms acting on X48¢P in the definition of the
star product ( ®*® ) (ZMY) as we have seen in the definition of the Kontsevich
star product H(z,p) * p(x,p) in eq-(4-7) . The expansion parameter in the star
product is the Planck scale squared A = L%. The star product has the same
functional form as (4-7) with the only difference that now we are taking deriva-
tives w.r.t the area-coordinates X% instead of derivatives w.r.t the variables
z, p, hence to order O(L%), the star product is

D x® = 0%+ NABCD (5,5000pP)+

L G A1BiCi Dy 2 42B5C5D
g DU pememe (94, 8,428,®) (02, D,0,0,2) +
1

g[ R4 B Dy ( achl EAQB2C2D2)( aAlBl 814232(p 802D2q) — By < Bs ) ] (414)
Notice that the powers of iL2 are encoded in the definition of 348D, The star
product is noncommutative but is also nonassociative at the order O(L%) and
beyond. The Jacobi identities would be anomalous at that order and beyond.
The derivatives acting on 248D are

. B3Ch ByDs
(0¢,p, 21272 2P2) =i}, (77A2D2501D1 - 77142025ch1 ) +
iLp (02960202 —nPP200 0. (4.15)
where 048 = 5465 — 6405 and the higher derivatives like ailBlchlEAQBQCQDQ
will be zero.
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5 On the Generalized Dirac-Konstant Equation
in Clifford Spaces

To conclude this work we will discuss the wave equations relevant to fermions.
The ”square” of the Dirac-Konstant equation

(IS, )0 = 2T, (5.1)

yields
(fy[ul/],y[m]zwzm)qj =20 =

[,y[/wp‘r] + (nup,y[m—] _n/n—,y[yp] o ) + (nupnw—l _nprnupl)] Euuzpr U = )\2\11.

(5.2)
where we omitted numerical factors. The generalized Dirac equation in Clifford
spaces is given by [?]

0 7] 0 0

o m [pv] [wip2eepa ¥ —
z(aa+7 urt +7 me—l- ............. +7 8$H1M2“"“d) U=V (5.3)
where o, x| ... are the generalized coordinates associated with the Clifford
polyvector in C-space
X =0l 4+, + " 22 0, + o R P (5.4)

after the length scale expansion parameter is set to unity. The generalized
Dirac-Konstant equations in Clifford-spaces are obtained after introducing the
generalized angular momentum operators [?]

E[ [Hip2....pn] [V1va....vp] | —

Z ’Y[ [wipa..... /Ln],.y[lﬂVQ ..... vn] ] Z[ (1 f12 oo pin] [1vrnvm] | U = \U. (56)

and where we sum over all polyvector-valued indices (antisymmetric tensors
of arbitrary rank) . Upon squaring eq-(5-5), one obtains the Clifford space
extensions of the D0-brane field equations found in [?] which are of the form

[ XAP(0/0Xcp)—XCP(0/0X ap) | [ Xap(0/0XP)—Xcp(0/0XAP) ] ¥ = 0.
(5.6)
where A, B = 1,2,...,6. It is warranted to study all these equations in future
work and their relation to the physics of D-branes and Matrix Models [?]. Yang’s
Noncommutative algebra should be extended to superspaces, meaning non-anti-
commuting Grassmanian coordinates and noncommuting bosonic coordinates.
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RUNNING NEWTONIAN COUPLING AND HORIZONLESS
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Abstract

It is shown how the exact Nonperturbative Renormalization Group flow of the running
Newtonian coupling G(r) in Quantum Einstein Gravity is consistent with the existence
of an ultra-violet cutoff R(r = 0) = 2G N M, in the most general Schwarzschild solutions.
After setting gy = 1 —2GyM,/R(r) = 1—2G(r)M(r)/r, and due to the condition G(r =
0) =0and M(r =0) ~ 1/2GyM,, we prove why there is no horizon, since g (r = 0) = 0,
and there is a delta function scalar curvature singularity at » = 0. Similar results follow in
generalized Anti de Sitter-Schwarzschild metrics with a running cosmological parameter
A(r) and Newtonian coupling G(r). The ultra-violet cutoff in this latter case is no longer
given by 2G y M, but instead is given by a real-valued positive root R, of a cubic equation
associated with the condition gu(R(r = 0)) = gu(R.) = 0. A running Newtonian coupling
G/(r) can also be accommodated naturally in a Jordan-Brans-Dicke scalar-tensor theory
of Gravity via a trivial conformal transformation of the Schwarzschild metric. However,
the running Newtonian coupling G(r) = (167®%)~! corresponding to the scalar field
® does not satisfy the asymptotic freedom condition G(r = 0) = 0 associated with
the ultra-violet non-Gaussian fixed point of Nonperturbative Quantum Einstein Gravity.
Nevertheless, our results exhibit an interesting ultra-violet /infrared duality behaviour of
G(r) that warrants further investigation. Some final remarks are added pertaining naked
singularities in higher derivative gravity, Finsler geometry, metrics in phase spaces and the
connection between an ultra-violet cutoff in Noncommutative spacetimes and the general
Schwarzschild solutions.

Keywords: Renormalization Group, Quantum Gravity, General Relativity, Strings,
Black Holes. PACS numbers: 04.60.-m, 04.65.4-¢, 11.15.-q, 11.30.Ly

Lcastro@ctsps.cau.edu
2nieto@uas.uasnet.mx
3ifgh.teorfizikisto@gmail.com

178
Quantization in Astrophysics ...


me
Rectangle


1 Renormalization Group Flow and Schwarzschild
solution

1.1 Introduction

We begin by writing down the class of static spherically symmetric (SSS) solutions of
Einstein’s equations [1] studied by [5], [8], [7], [6] among others, and most recently [12]
given by a infinite family of solutions parametrized by a family of admissible radial
functions R(r)

(ds)> = goo (dt)> — grr (dR)® — R? (dQ)* =

dR
goo (dt)* —grr (=)* (dr)* = R* (dQ)* = goo (di)* =gy (dr)* = (R(r))* (dQ)* (1.1a)
where the solid angle infinitesimal element is
(dQ)? = sin’(¢)(dB)* + (dop)>. (1.1b)
and
_(1_2GNMO)_ 1 1
o Ry 7 T g T 1= (2 Gy M,/R()
. 2 GN MO dR(T)

9rr = YRR (dR/dT>2 = (1 R(T) )_1 ( dr )2‘ (110)
Notice that the static spherically symmetric (SSS) vacuum solutions of Einstein’s
equations, with and without a cosmological constant, do not determine the form of the
radial function R(r) [12], [10]. There are two classes of solutions; ( i ) those solutions
whose radial functions obey the condition R(r = 0) = 0, like the Hilbert textbook black
hole solution R(r) = r with a horizon at r = 2G yM,; and ( ii ) those horizonless solutions
with an ultraviolet cutoff R(r = 0) = 2GyM,. In particular, for radial functions like

2G'y M,

R(r) =7 +2GyMy;  R(r) = [r* + 2GxMo)'|"% R(r) = 7=

(1.2)
found by Brillouin [3] , Schwarzschild [2] and Fiziev-Manev [7] respectively obeying the
conditions that R(r = 0) = 2GNyM, and when r >> 2GyM, = R(r) —r.

It is very important to emphasize that despite the fact that one can always relabel
the variable r for R in such a way that the metric in eq-(1.1) has exactly the
same functional form as the standard Hilbert textbook solution [4] (black-holes so-
lutions with a horizon at r = 2GxM,) this does not mean that the Hilbert textbook
metric is dif feomorphic to the metric in eq-(1.1). The reason is that the values of r
range from 0 to oo while the values of R range from 2GnyM, to co. The physical ex-
planation why there is an ultra-violet cutoff at R = 2G M, was provided long ago by
Abrams [5], and rather than imposing this ultraviolet ( UV ) cutoff R = 2G y M, by fiat
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(by decree, by hand) there is a deep physical reason for doing so; namely it has been
argued that the Hilbert textbook solution R(r) = r does not properly represent the static
gravitational field of a point mass centered at the origin r = 0 [5], [7], [8], [6] because the
Hilbert textbook solution is not static in the region 0 < r < 2G y M, after performing the
Fronsdal-Kruskal-Szekeres analytical continuation in terms of the new u, v coordinates.

In section 3 we will explain the physical meaning of this UV cutoff R(r = 0) = 2Gy M,
resulting from the noncommutativity of the spacetime coordinates. Since the point r = 0
is fuzzy and delocalized, it has an area. Another interpretation as to why the proper
area of the point mass at r = 0 is not zero ( while the volume is zero ) may be due to
the stringy nature of a "point” and can be understood if one formulates the problem in
phase space, in particular within the framework of the Finsler geometry associated with
the co-tangent bundle of spacetime. Thus a nonzero area of the point mass at » = 0
stems from the additional momentum degrees of freedom in phase space after imposing
the mass-shell condition p,p* = M?.

There are many physical differences among the Hilbert textbook solution that has
a horizon at r = 2GyM, and the original 1916 Schwarzchild’s horizonless solution [2].
The Schwarzschild 1916 solution is not a naive radial reparametrization of the Hilbert
solution because the radial function chosen by Schwarzschild R® = |r|? + (2GyM,)? can
never zero. The absolute value |r| properly accounts for the field of a point mass source
located at r = 0. Thus, the lower bound of R is given by 2GyM,, and R cannot be zero
for a nonvanishing point mass source.

The Fronsdal-Kruskal-Szekeres analytical continuation of the Hilbert textbook solution
for r < 2GNyM, yields a spacelike singularity at » = 0 and the roles of t and r are
interchanged when one crosses r = 2G Ny M,; so the interior region r < 2GyM, is no
longer static. The Schwarzchild solution is static for all values of r and in particular for
r < 2G Ny M, ; there is no horizon at r = 2G y M, and there is a timelike naked singularity
at r = 0, the true location of the point mass source. Notice that when r >> 2G M, the
Schwarzchild solution reduces to the Hilbert solution and one has the correct Newtonian
limit.

Colombeau [11] developed the rigorous mathematical treatment of tensor-valued dis-
tributions in General Relativity, new generalized functions (nonlinear distributional ge-
ometry) and multiplication of distributions in nonlinear theories like General Relativity
since the the standard Schwarz theory of linear distributions is invalid in nonlinear the-
ories. This treatment is essential in order to understand the physical singularity at the
point-mass location r = 0. In [10] we studied the many subtleties behind the introduction
of a true point-mass source at » = 0 ( that couples to the vacuum field ) and the physical
consequences of the delta function singularity (of the scalar curvature) at the location of
the point mass source r = 0. Those solutions were obtained from the vacuum SSS solu-
tions simply by replacing r for |r|. For instance, the Laplacian in spherical coordinates
in flat space of 1/|r| is equal to —(1/r*)d(r), but the Laplacian of 1/r is zero. Thus,
to account for the presence of a true mass-point source at » = 0 one must use solutions
depending on the modulus |r| instead of r.

One can have an infinite number of metrics parametrized by a family of arbitrary
radial functions R(r) with the desired behaviour at 7 = 0 and r = oo, whose values for
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the scalar curvature (parametrized by a family of arbitrary radial functions R(r)) are

given by [10]

o 2 GN MO 5(7“)
R? (dR/dr)

Since the scalar curvature R (1.3a) is a coordinate invariant quantity, this result in
eq-(1.3a) that depends explicitly on the family of radial functions R(r) corroborates once
more that one cannot view the role of the radial function R(r) as a naive change of radial
coordinates from r to R. Hence, one must view the radial function squared R*(r) as just
one of the metric tensor-field components gus(r) = R%*(r); i.e. R(r)? is a function of
the radial coordinate r that has a lower cutoff given by gss(r = 0) = (2GNyM,)?. One
must not confuse R with r and even after relabeling r for R, the metric in eq-(1.1) is
not diffeomorphic to the Hilbert textbook solution due to the cutoff R = 2GyM,. If one
chooses the radial functions to obey the condition R(r = 0) = 0 and R(r — oo) ~ r
then only in this case these metrics are diffeomorphic to the Hilbert textbook black hole
solution.

The relevant invariant physical quantity independent of the any arbitrary choice of
R(r) is the Einstein-Hilbert action, whether it obeys the condition R(r = 0) = 0 or
R(r = 0) = 2GNM,. In particular, the Euclideanized action after a compactification of
the temporal interval yields an invariant quantity which is precisely equal to the ”black
hole” entropy in Planck area units. The invariant area is the proper area at r = 0
given by 47R(r = 0)? = 47(2GxM,)* . We shall see that the source of entropy is due
entirely to the scalar curvature delta function singularity at the location of the point
mass source given by R = —[2GyM,/R*(dR/dr)]é(r) [10] after using the 4-dim measure
47 R? (|grr|*/?dR) (|gu|'/*dt) = 47 R? dR dt in the Euclidean Einstein-Hilbert action.

Therefore, the Einstein-Hilbert action associated with the scalar curvature delta func-
tion in eq-(1.3a) when the four-dim measure is

R = ; in units of ¢ =1. (1.3a)

d*z = 47 R* dR dt. (1.3b)
is
1 2M 6(r)
= 41 R2 ) =
SR ToRva / G B2 AR d0) (= R )
1 26N M, ,
- 4 . 1.
ong | (e o)) (e dr di) (1.30)

Notice that the action (1.3¢) is truly invariant and independent of any arbitrary choice
of the radial function R(r) , whether or not it is the Hilbert textbook choice R(r) = r, or
any other choice for R(r). The Euclideanized action (1.3c) becomes, after reinserting the
Newtonian coupling G = L%, in order to have the proper units,

47(GNyM,)? 47 (2GNM,)? A
S(Euclidean) = m(CG M) _— ( 2N ) = ;“ea . (1.3d)
GN 4 LPlanck 4 LPlanck
when the Euclidean time coordinate interval 27tp is defined in terms of the Hawking

temperature Ty and Boltzman constant kg as 2wty = (1/kgTy) = 8nGyM,. Tt is
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interesting that the Euclidean action (1.3c) is the same as the ”black hole” entropy (1.3d)
in Planck area units. The source of entropy is due entirely to the scalar curvature delta
function singularity at the location of the point mass source. Furthermore, this result
that the Euclidean action is equal to the entropy in Planck units can be generalized to
higher dimensions upon recurring to Schwarzschild-like metrics in higher dimensions.

The fact that a point-mass can have a non-zero proper area 4rR(r = 0)* =
47(2G N M,)?, but no volume, due to the metric and curvature singularity at r = 0 seems
to indicate a stringy nature underlying the very notion of a point-mass itself. The string
world-sheet has a non-zero area but zero volume. Aspinwall [13] has studied how a string
(an extended object) can probe space-time points due to the breakdown of our ordinary
concepts of Topology at small scales. In [12] it was shown how the Bars-Witten stringy
1 + 1-dim black-hole metric [14] can be embedded into the 4-dim con formally re-scaled
metrics displayed in eq-(1.1), if and only if, the radial function R(r) was given implicitly
by the following relationship involving R and r ( the left hand side has the same functional
form as the radial tortoise coordinate) :

dR R —2GNM, _ r
= 2G N M, ————) = 2GpyM, — ]
1 2GN M,/ R + 2GNM, In ( o0, ) Gy Oln[sthGNMo]
(1.4a)
one can verify that there is an ultra-violet cutoff at » =0
R(r=0) = 2GyM,; R(r—o0) — R ~ . (1.4b)

which precisely has the same behaviour at » = 0 and oo as the radial functions displayed
in this section. The fact that the stringy black-hole 1 4+ 1-dim solution can be embedded
into the conformally rescaled solutions of this section, for a very specific functional form
of the radial function R(r), with the same "boundary” conditions at r = 0 and r = oo
as the radial functions displayed in this section, is very appealing. Similar conclusions
apply to horizonless solutions in higher dimensions D > 4 [12] with a cutoff R(r = 0) =
[167GpM,/(D — 2)Qp_5]"/P~3 where the point-mass has a nonzero D — 2-dimensional
measure and a zero D — 1-dim ”volume”. The point-mass in this case is p — branelike in
nature with p+1 = D — 2. For example, in D = 5 one has a membrane-like behaviour
of a point mass. In D = 6 one has a 3-brane-like behaviour of a point mass, etc.... The
D = 4 case is special since it corresponds to the string.

1.2 Renormalization Group Flow and Horizonless Solutions

The purpose of this section is to explain the meaning of the ultra-violet cutoff R(r =
0) = 2GN M, within the context of the exact Nonperturbative Renormalization Group
flow of the Newtonian coupling G = G(r) in Quantum Einstein Gravity [16] where a non-
Gaussian ultra-violet fixed point was found G(r = 0) = 0. The presence of an ultra-violet
cutoff R = 2G'y M, originates from the mere presence of matter and permits to relate
the metric component gy = 1 — 2GNM,/R(r) to g = 1 — 2G(r)M(r)/r, in such a way
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that the the small distance behaviour of G(r) eliminates the presence of a horizon at
r =2GNM, : we will see why the metric component g;; evaluated at the location of the
point mass source r = 0 is gu(r = 0) = 0, due to G(r = 0) = 0, M(r = 0) = finite but
it does not eliminate the delta function singularity of the scalar curvature at » = 0. This
result is compatible with the ultra-violet cutoff of the radial function R(r = 0) = 2GyM.
Gy is the value of the Newtonian coupling in the deep infrared and M = M, is the Kepler
mass as seen by an observer at asymptotic infinity.
The momentum dependence of G(k?) was found by Reuter et al [16] to be

Gy
2
= 1.
G(k) 1+a Gy k2 ( 5&)
The momentum-scale relationship is defined

K = (D(ﬁR))Q’ B = constant. (1.5b)

in terms of the proper radial distance D(R)

PR = [ ammdk = [ il _

26N Mo GyMo (/1 — (2 Gy M,/R)
R R —2GyM,
VR (R—2Gy M) +2GNMOln[\/2GNMO \/ coar (19

where the lower (ultra-violett cutoff ) is R(r = 0) = 2GyM,. The proper distance
corresponding to r = 0 is D(R(r = 0)) = D(R = 2GyM,) = 0 as it should since the
proper distance from r = 0 is zero when one is located at r = 0.

Hence,

2
G = G(R) = _ Gy Gy D) : (1.7)
1+ a Gy k? D(R)? 4+ af? Gy
such that G(R(r = 0)) = G(R = 2GnM,) = 0 consistent with the findings [16] since
D(R(r=0)) = D(R=2GyM,) = 0.

An important remark is in order. There is a fundamental dif ference between the
work of Reuter et al [16] and ours . The metric components studied by [16] were of the
form, g = 1—2G(r)M,/r, .... and are not solutions of Einstein’s field equations. Whereas
in our case, the metric components (1.1) gy =1 —2G(r)M(r)/r =1 — 2GNM,/R(r), ....
are solutions of Einstein’ equations displayed in eq-(1.1). This is one of the most salient
features in working with the most general metric (1.1) involving the radial functions R(r)
instead of forcing R(r) = r.

Hence, given that R = R(r), by imposing the following conditions valid for all values
of r

20w My

S 0 R

). (1.8)
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(422 1
dr - . (1.9)
(1 - 2 %I\(]T)Mo) (1 _ 2 G(T‘) M(’r‘))

from eqs-(1.7, 1.8, 1.9) one infers that

dR

- =1 = R(r) = r+2GyM,. (1.10)
”

which is the Brillouin choice for the radial function as well as the relation

M, . Gy D(R)?
) = DwEreray

G(r) =G () (

r D(R)2 + aﬁQ GN
— . 1.11
5 (P (111)
that allows us to determine the form of the M(r) once the radial function R(r) = r +
2G' M, is plugged into D(R) given by eq-(1.6). The constant found by Reuter et al [16]
is 3% = 118/15m and the proper distance D(R) is given by eq-(1.6).

When r = 0 a careful analysis reveals

M(r — 0) — (constant) (1.12)

2Gy M,

therefore, the running mass parameter at » = 0, M(r =0) ~ 1/R(r = 0) = 1/(2GnM,)
is finite instead of being infinite. The running mass at » = 0 has a cutoff given by
the inverse of the ultra-violet cutoff R(r = 0) = 2GNM, ( up to a numerical constant
). When r = 0 one has in eqs-(1.7, 1.11) that G(r = 0) = 0. When r — oo one has
M(r — o0) — M, as expected, where M, is the Kepler mass observed by an observer at
asymptotic infinity ( deep infrared ) and G(r — o0) — Gy.

The running flow M(r) was never studied by [16]. Our ansatz in eqs-(1.8, 1.9) is an
heuristic one ( a conjecture ). In the special case when M(r = 0) = M, one gets the
interesting result for the value of M, given by M, ~ Mpnex which is the same, up to
a trivial numerical factor, to the Planck mass remnant in the final state of the Hawking
black hole evaporation process found by [16] after a Renormalization Group improvement
of the Vaidya metric was performed.

Concluding, R = r + 2Gy M, is the sought after relation between r and R, out of an
infinite number of possible functions R(r) obeying the SSS vacuum solutions of Einstein’s
equations. We may notice that r = r(R) = D(R) given by eq-(1.6) is the appropriate
choice for the radial function if, and only if, the spatial area coincides with the proper
area 4w R(r)? . The spatial area A(r) is determined in terms of the infinitesimal spatial
volume dV (r) as follows :

(dR/dr)
V1= 2GyM,/R(r)

dV(r) = A(r)dr = A(r) =47 R(r)? (1.13a)

When A(r) = 47 R* then
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(dR/dr)
V1 —2GNM,/R

= 1. (1.13b)

since the integration of eq-(1.12) was performed in eq-(1.6), one can infer then that r =
r(R) = D(R) is the choice in this case for the functional relationship between R and r;
in particular A(r = 0) = 47(2G N M,)?, which is not true in general when the proper area
is not equal to the spatial area. The volume is zero at r = 0.

To finalize this subsection, when the radial function R = r+2G y M, has been specified
by the RG flow solutions [16] , the scalar curvature is

2 GN MO 5(7‘) 2 GN MO 5(7")
R — — = — ) 1.14
R? (dR/dr) (r + 2G N M,)? (1.140)
and has a delta function singularity at » = 0 of the form
2Gy M, é(r=0) d(r=0)
— = ———. 1.14b
(2GNM,)? 2Gy M, ( )

compared to the stronger singular behaviour of the Hilbert textbook solution at » = 0
when R=r

. 2GN Mo 5(7") ZGN MO (5(7’)
R(H@lbert) = — W = — T =
R(r=0) = 2O Ml =0) (1140

02
The reason the singularity of (1.14b) is softer than in (1.14c) is because when there is
an ultra-violet cutoff of the radial function R(r = 0) = 2GxM, (due to the presence
of matter) the proper area 47 (2GyM,)? is finite at 7 = 0 and so is the surface mass
density. However, since the volume is zero at the location r = 0 of the point-mass, the
volume mass density is infinite and one cannot eliminate the singularity at r = 0 given

by R = =d(r =0)/(2GnM,) .

1.3  Anti de Sitter-Schwarzschild Metrics and running Cosmo-
logical Constant

We begin with the generalized de Sitter and Anti de Sitter metrics that will help us
understand the nature of the infrared cutoff required to solve the cosmological constant
problem. In [10] we proved why the most general static form of the ( Anti ) de Sitter-
Schwarzschild solutions are given in terms of an arbitrary radial function by

2GyM, A,
R(r) 3

2GyM, A, 91 9
— R0 -y R(r)* )™ (dR(r)/dr)-.
(1.15)

goo = (1 — R(r)*), gw=-(1

The angular part is given as usual in terms of the solid angle by —(R(r))?(dS2)>.
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A, is the cosmological constant. The A, < 0 case corresponds to Anti de Sitter-
Schwarzschild solution and A, > 0 corresponds to the de Sitter-Schwarzschild solution.
The physical interpretation of these solutions is that they correspond to ”black holes”
in curved backgrounds that are not asymptotically flat. For very small values of R one
recovers the ordinary Schwarzschild solution. For very large values of R one recovers
asymptotically the ( Anti ) de Sitter backgrounds of constant scalar curvature.

Since the radial function R(r) can be arbitrary, one particular expression for the
radial function R(r) , out of an in finite number of arbitrary expresions, in the de Sitter-
Schwarzschild (A, > 0) case one may choose [10]

! ! + A, (1.16)
R — (QGNMO) N T 3 ) ’
When A, = 0 one recovers R = r + (2GnM,) that has a similar behaviour at » = 0 and
r = oo as the original Schwarzschild solution of 1916 given by R* = r3 + (2GyM,)?; i.e.
R(r = 0) = 2GyM, and R(r — o0) ~ r respectively. When M, = 0 one recovers the

pure de Sitter case and the radial function becomes

1 1 A
— = - N 1.17
R r * 3 ( )

In this case, one encounters the reciprocal situation ( the ”dual” picture ) of the
Schwarzschild solutions : (i ) when r tends to zero ( instead of r = oo ) the radial
function behaves R(r — 0) — r ; in particular R(r = 0) =0 and (ii) when r = oo (

3

1 and one reaches the location
o

instead of r = 0 ) the value of R(r = 00) = Ryorizon =
of the horizon given by the condition gg|[R(r = 00)] = 0.
A reasonable and plausible argument as to why the cosmological constant is not zero

and why it is so tiny was given by [10] : In the pure de Sitter case, the condition

A
goo(r =00) =0 = 1— =2 R(r = 00)* =0 (1.18)

has a real valued solution

R(r =o00) = j = Ruorizon = Infrared cutof f. (1.19)

and the correct order of magnitude of the observed cosmological constant can be derived
from eq-(1.19) by equating R(r = 00) = Ryorizon = Hubble Horizon radius as seen today
since the Hubble radius is constant in the very late time pure inflationary de Sitter phase
of the evolution of the universe when the Hubble parameter is constant H,. The metric in
eq-(1.15) is the static form of the generalized de Sitter ( Anti de Sitter ) metric associated
with a constant Hubble parameter.

Therefore, by setting the Hubble radius to be of the order of 10 Lpu,. and by
setting G = L%, ( B =c =1 units) in

SWGpvacuum = Aa = 5% — 55 —
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3 1 1 3 1 Lp,

Pvacuum = 87T L%:) R%] - 87'[' Lz]l) (RH)

we obtain a result which agrees with the experimental observations when Rpgyuppe ~
1061LPlanck:'

Notice the importance of using the radial function R = R(r) in eq-(1.17). Had one used
R = r in eq-(1.17) one would have obtained a zero value for the cosmological constant
when r = oo . Thus, the presence of the radial function R(r) is essential to understand
why the cosmological constant is not zero and why it is so tiny .

The idea now is to relate the metric components in the Anti de Sitter-Schwarzcshild
case involving the running G(r), M(r), A(r) parameters with the metric components
of (1.15) involving the unique and sough-after radial function R(r) and the constants
Gn, M,, A\, (as seen by an asymptotic observer in the deep infrared region). The equa-
tions which determine the forms of M (r) and R(r) are given by

~ 107 (Mpianee)*, - (1.20)

(1- 25 = Ry = (1= 2R A (1.21)
(1= 250 =S R ) R = (1= 2T S 2 )

then from eqs-(1.21, 1.22) one infers that

dR
— =1 =R(r) = r+ R, (1.23)
dr

where the constant of integration R, is now the root of the cubic equation, and not the
value 2G y M, given by

R(r:0)2:1—w+&}22: = 0. (1.24)

2Gy M, A,
3 R, 3

" Re-0)

such that g (R(r = 0)) = gu(R.) = 0. The real positive root of the cubic equation (found
after multiplying (1.24) by R, # 0) is

R. = | [RARE /3,

3G N M, J(saNAQV 1

3GyM, | (3GNM,)? 1
A, A2 AP B

A, AT AP

(1.25)

Because Anti de Sitter space has A 445 < 0, we have already aken into account the negative

sign in the expression in eq-(1.25) by writing Asss = —|A,| and we must disregard the
two complex roots (a pair of complex conjugates).

The values of R range from 0 < R, < R < oo and correspond to the values of

r ranging from 0 < r < oo. This is very reasonable since R has an ultra-violet cutoff

given by the root of the cubic R, > 0. If R was allowed to attain the values of zero the

metric component gy would blow up. 7 can in fact attain the zero value, but not the
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radial function R(r) = r + R,. The metric component ¢, in (1.15) blows up at r = 0,
location of the singularity.

Notice that one cannot take the limits Ag — 0 in eq-(1.25) after having found the
roots of the cubic equation because that limit is singular. One must take the limit |[A,| — 0
of eq-(1.24) before and afterwards find the root of gy (R.) = 0 given by R. = 2GyM,
(when |A,| = 0).

After having found the root R, of the cubic equation, from eq-(1.21) one infers

2 GN Mo Ao 2 2 G(T) M<T) A(T) 2
Ao )2 = , 1.2
T+R*+3<T+R) r * 3 " (1.26)
which yields M(r)
2G'N M, A A
M(r) = L Gy | Ao (r+ R.)? — (r) r? . (1.27)

2G(r) [ T+ R, 3 3

where now the proper distance D(R) associated with the metric (1.15) is given the elliptic
integral whose lower limit of integration is now given by the cubic root R, (instead of
QGNMO) .

R R dR -y
D(R) = /R* VIrr AR = /R* \/1 — G% T % = = FElliptic Integral. (1.28a)

such
D(R(r=0))=D(R=R,)=0. (1.280)

The running coupling is the one given by [16]

Gy Gy D(R)?
l+a Gy k2 D(R?+af® Gy’

G = G(R) = (1.29)

where D(R) is given by the elliptic integral and the running cosmological parameter is
[16]
bGy ., bGy B4
|A(k)‘ — |AO| + 4 (k ) - |AO| + 4 D(R)4
where the momentum-scale relation is k* = (3?/D(R)?) .

As expected, in eq-(1.27) we have the correct limits : M(r — oo) — M,, since when
r— o0, R(r) — r, |A(r)| — |Ao] and G(r) — Gn. M(r =0) ~ 1/R, is finite also because
r/G(r) and A(r)r? are finite as r — 0.

In the case of de Sitter-Schwarzschild metric , A, > 0, one has a negative real root
and a positive double root [10] Ry = R3 > 0, R; < 0; however, there is no horizon since
g does not change signs as once crosses the double-root location ; there is problem with
the R; < 0 solutions and there is a pole of g at R = 0 . For this reason we have focused
on the Anti de Sitter-Schwarzschild metric in this subsection.

(1.30)
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2 Jordan-Brans-Dicke Gravity

We wish now to relate the metric of eq-(1.1) that solves the vacuum Einstein field equations
for » > 0 written in terms of Gy, M,, R(r) with a metric written in terms of G(r), M(r),r
that does not solve the vacuum field equations but instead the field equations in the
presence of a scalar field ® associated with the Jordan-Brans-Dicke theory of gravity.
Such metric is given by

(ds)* = gue(r) (dt)* — gor(r) (dr)* — p(r)* (d2)*. (2.1)

A conformal transformation g, = e?* g, relating the two metrics can be attained by
starting with the Brans-Dicke-Jordan scalar-tensor action

/ d'z g [ PR + 6 (V) (VD). (2.2)

and which can be transformed into a pure gravity action by means of a conformal trans-
formation

9w = € gui \/; = ™ /3. (2.3)

VI RI(g) = V5P [R =6 (V,VFA) =6 (V,A)(VHA) ] (2.4)
By setting
g G
oA N
S ® o (25)
one can rewrite :
Vo R(g) = [qﬂR 6 (V,V" )] (2.6)

due to the fact that (V, \/g) =0 then

VI (V. V" ®) =V, (5 BV* @) — /7 (V,8)(V"). (2.7)

since total derivative term drops from the action one has the equalities
/d4 (2R + 6 (V,D) (V'D) /d4 PR —6 (V,V' )] =

167TGN /d4 Jg R(¢) (2.8)

therefore, one can solve the Einstein vacuum field equations for the metric g, ( for r > 0
) and perform a conformal transformation g, = e?* g,,, to obtain the metric that solves
the field equations corresponding to the Jordan-Brans-Dicke action.
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The running Newtonian coupling G(r) is now defined explicitly in terms of the scalar

field as follows

1 1
o PP = . 2.9
167G(r)  ° 167Gy (2.90)
and the dimensionless scaling factor 2! is given by the ratio :
Gn b2
22 — = —, 29b
© TG e (2.90)

such that the equalities among the three lines of eq-(2.5) are satisfied.
The scalar field ® that determines the functional form of G(r) must solve the general-
ized Klein-Gordon equation obtained from a variation of the action (2.5) w.r.t the scalar

field ®

(V, .,V — (1372) ® =0, forr>0. (2.10)

and the latter equation is equivalent to the equation R’(g’) = 0 since the scalar curvature
R, for r > 0, is fixed by eq-(2.6) after setting R'(¢") = 0 because the metric g, is a
solution of the Einstein vacuum field equations for » > 0. When R'(¢’) = 0, for r > 0,
yields the scalar curvature

R(g) = g(vuw D). (2.11)

which is precisely equivalent to the generalized Klein-Gordon equation (2.10). This means
that the scalar ® field does not have dynamical degrees of freedom since it is identified
with the conformal factor e* = ®/®,. Therefore one can safely equate the scalar field ®2
with (1/167G(r)) giving

R(r) = g(vrvr ) —

6 1 o .
R 0r (V9 9" 0p \/G(r) ). (2.12)

%

where the metric components g, necessary to evaluate the Laplace-Beltrami operator are
obtained directly via the conformal scaling of the metric that solves the vacuum static
spherical solutions of Einstein’s equations of the previous section :

. 26N,
g = e (1 R0 )- (2.13)
grr = e 1_21GNMO’ 9rr = 9rr (dR/dr)*. (2.14)
R
gso = € X R(r)* = p(r)?, gew = e R(r)” sin’(¢). (2.15)
Vg = e R(r)? (dR/dr) sin(¢). (2.16)
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Since e=** = G(r) /Gy and G(r = 0) = 0 then the radial rho function obeys the condition
p(r=20)=0.
The new proper distance D(R) is now given by

(R e (R (G(R)/Gy)'?
D(R) = /ZGNMO NEcemTT R — /2GNMO = Qo dR (217)

and dif fers from the expressions of eq-(1.6) because of the conformal factor.
However, there is a caveat if we now try to use the running flow of the Newtonian
coupling of the previous section [16]

Gy D(R)? (B Gy) G(R)
G = Sppyamar = P = J ey (2.18)

because the RG flow equations must dif fer now due to the presence of the scalar field
®. To prove why one cannot use the running flow equation (2.18) for G used in section
1.2, 1.3, let us differentiate both sides of the expression for D(R) in eq-(2.18) and upon
equating the result with the integrand of eq-(2.17) leads to the dif ferential equation
obeyed by G(R) :

dD(R) _ aff? G% dG(R) _ (G(R)/Gn)"? . (2.19)
dR 2 (Gy — G(R)? | [lePam e dR V11— (2GNM,/R)

subject to the boundary conditions G(R(r = 0)) = G(R = 2GyM,) = 0 and G(r — o0) =
G(R — o0) — Gy. The differential equation (2.19) is the equation that determines the
functional form of G(R). Notice that functional form of G(R) which obeys the above
differential equation is not the same as the result obtained for G(R) in eq-(1.7) of the
previous section because the proper distance D(R) given by the integral of eq-(2.17)
dif fers from the integral of eq-(1.6). The constant found by Reuter et al [16] is a3* =
118/157.
One can integrate eq-(2.19) giving the functional relationship between G and R :

m_m G / ar —
Go \/T 26xMo /1 — (2GxM,/R)
Vol G2 9 2 arctanh [ /1 — (G/Gy) |

2 | Gny/(Gn — G) - (GN)3/2

R R — 2G N M,
VR(R—2Gy M,) + 2Gy M, In [\ saar +,/2G—]\];]. (2.20)
NiVlo NiVio

where G, = G(R = 2GyM,).
One can immediately deduce that the first integral diverges when G = G which is
compatible with the condition G(R — oo) = G. But there is a problem in enforcing the

] - [[Go] =
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behaviour of G(r = 0) = 0; one cannot impose the condition G, = G(R = 2GyM,) =0
because the G integral also diverges when G = G, = 0! ( the integral is —oo ).
Therefore, one must have the condition G, = G(R = 2GyM,) # 0. The value of G,
obeying G > G, = G(r =0) > 0 can be determined from solving the transcendental
equation derived from the condition

1G]

_ 1/05522 G 2 2 arctanh [ /1 —(G,/Gy) | _ 0. (221)

en Gy -Gy (Gn)32 |

The result I|G,] = 0 is now compatible with the behaviour of the R integral which is zero
when R(r = 0) = 2GyM,. To sum up : one cannot satisfy the condition G(R(r = 0)) =0
required by eqs-(1.7, 2.18) found by [16].

The same conclusions apply ( one is forced to impose G, > 0 ) if we had taken a minus
sign in front of the square root in the R integral which leads to G(r — c0) =0 ( R~ r
when r — o0), as opposed to the desired behaviour G(r — oco) — Gy It is interesting
that this result G(r — oo) = 0, when the minus sign in front of the square root is chosen,
is ”dual” to the behaviour found in the RG flow solutions by [16] where at r = 0 (instead
of r = 0o ) one encounters G(R(r =0)) = G(R = 2GyM,) = 0 ( asymptotic freedom).

Concluding, the fact that G integral (2.20) diverges at G = 0 is a signal that one
cannot use the running flow equation (2.18) for G in the presence of the Jordan-Brans-
Dicke scalar ®. One would have to solve the modi fied RG equations that will involve the
beta functions for the ® field in addition to the metric g,,,. A similar divergence problem
was encountered by [17]. One can bypass this divergence problem by imposing G(r = 0) =
G(R = 2GyM,) = G, > 0 where G, is given by a solution of the trascendental equation.
By taking the minus sign in front of the square root we found an ultraviolet/infrared
"duality” behaviour of the couplings, at » = 0 and R ~ r — 0o, which warrants further
investigation.

3 Concluding Remarks : On Noncommutative and
Finsler (Geometries

We conclude by discussing some speculative remarks. It is well known (see references in
[17]) that by replacing Gy — G(k?) = Gn(1 + Gyk?)™! leads to 1/k* modifications of
the propagator

G(k?) Gy 1 1 )
— — Gy [ — — Gy M
k2 k2 (1+ Gnk?) v 2k + M2, ;G Mp

lanck — L. (31)
that correspond to quadratic curvatures R? of perturbative quantum gravity. The
Lanczos-Lovelock theories of Gravity involving higher powers of the curvature have the at-
tractive feature that the equations of motion are no more than second order in derivatives
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of the metric and contain no ghosts. The authors [18] have found black hole solutions,
topological defects, and naked singularities as well, in pure Lanczos-Lovelock Gravity with
only one Euler density term. The fact that naked singularities were found by [18] deserve
further investigation within the context of modified propagators induced by a running
Newtonian coupling.

Another interesting field of study is Noncommuttaive Geometry, Fuzzy spaces, Fractal
geometries, etc... The standard noncommutative algebra ( there are far more fundamental
algebras like Yang’s algebra in noncommutative phase spaces ) is of the form

[zt "] =i0*. [ptp"] =0 [z p"] =in"” (3.2)
where n*¥ is a flat space metric and the structure constants (c-numbers ) O# = —Q"*

are c-numbers that commute with z, p and that have dimensions of length?; the ©* are
proportional to the L%, .. A change of coordinates

! 1 /
xh =at+ 5@“” p,. pHt=p" (3.3)
leads to an algebra with commuting coordinates and momenta

Ml=0. [prpY]=0. [¢"p"] =i, (34)

Due to the mizing of coordinates and momentum in the new commuting variables
x',p/ one can envisage coordinate and momentum dependent metrics in phase space,
in particular Finsler geometries, and whose average over the momentum coordinates
< Tw(z,p) >, = guw(z) yield the effective spacetime metric. This momentum av-
eraging procedure is very similar to the averaging of the momentum-scale dependent
metrics employed in the Renormalization Group flow of the effective average action by
[16]. Morever, the momentum dependence of the new coordinates x’ leads to a momentum

(2", x

dependent radial coordinate ' = y/x’ z! involving commuting z'# coordinates

A 1
= \/(xl + 59“’ pp) (i + §@ir p). (3.5)

Similar attempts to study the Noncommutative effects on black holes by modifying r — »’/

have been made by many other authors , [29], [30] however, to our knowledge its relation

to phase spaces and Finsler geometries has not been explored. The impending question

is to find another interpretation of the radial function R(r) and the physical meaning of

the cutoff R(r = 0) = 2Gy M, in terms of the momentum dependent radial coordinate 7.
When 2/ =0 = r = 0 and (3.5) becomes

1 ,
¢ = ern ey (36)

The expression inside the square root can be written in terms of p,p* = M2, in the static
case when |p] = p' = 0, ¢ = 1,2,3, after the following steps. Firstly, due to the static
condition p* = 0, py = E = M, one has

O” Qi p,pT = O O, p,p — 0% O pip = O O, p, (3.7)
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this last expression may be recast as
O Our P’ = Ap,pT = XM, (3.8)
if, and only if, the 4 x 4 antisymmetric matrix ©*” obeys the eigenvalue condition :
" O, pp = A p-. (3.9)

In the static case p, = (M,,0,0,0), the eigenvalue condition yields the following 4 condi-
tions

0 O,0p = Apy, O Oup =p =0,i=123. (3.10)

that will restrict the values of the 6 components of the 4 x 4 antisymmetric matrix ©";
i.e. the 6 components are not independent.

Therefore, in the static case p* = p = 0, upon imposing the eigenvalue condition
and after adjusting the value of the constant A\ = 16 L%, = 16 G%, gives then the
ultra-violet cutoff

1 ,
7’/(7’:0) = 5\/W = QL?J Mo = 2CTYN Mo~ (311>

consistent with R(r = 0) = 2Gx M, with the only subtlety that that r = y/ziz; involves
now noncommuting coordinates x*.

When r # 0, the terms
" p,x, + O, ' p" = " p,x, + O x,p; =

" p,x, + O x,p, = O (x,p,—in,,) + " x,p, = 20" x,p, (3.12)

due to the antisymmetric property of ©#”, one has ©** 7, = 0.

The quantity ©” z; p, involving the angular momentum operator, x; p,—x, p; does not
preserve the spherically symmetry unless one imposes a condition (constraint) in phase
space like

O g, Pp ~ Ly Mo w(r) r* = Gy M, w(r) r? (3.13)

where w(r) is a scale-dependent frequency. Concluding, in the most general case one has

r=r'(r) = \Jr? + 200 2 p, + (2GNM,)2 (3.14)

Since eq-(3.14) involves the phase space variabes x,p the question is to see whether or
not phase space metrics solutions of the form g,,(z,p) = g, (x* + ©*°p,) solve the field
equations corresponding to Moyal-Fedosov star product deformations of Noncommuta-
tive Finsler Gravity associated with the contangent bundle [20]. For a recent status of
Noncommutative Riemannian gravity see [21] and references therein. However, we must
believe that it is Finslerian geometry the appropriate one to study and the proper arena
to quantize gravity. When r = 0 one recovers the cutoff 7'(r = 0) = 2GyM,. There-
fore this procedure to relate the effects of the Noncommutativity of coordinates with the

194
Quantization in Astrophysics ...


me
Rectangle


ultra-violet cutoff R(r = 0) = 2Gx M, is quite promising . We shall leave it for future
work.

Let us summarize the main conclusions of this work :

1. The original Schwarzschild’s 1916 solution has no horizons and is static for all
values of r with a timelike naked singularity at » = 0. The radial function R =
[r% 4+ (2G N M,)?]/3 has an UV cutoff in R(r = 0) = 2Gy M,

2. The ”"black hole” entropy expression is the same as the Euclideanized Einstein-
Hilbert action corresponding to the scalar curvature delta function singularity due
to the presence of a mass point at the origin r = 0. Such delta function scalar
curvature singularity can account for the ”"black hole” entropy. For this reason a
microscopic theory of a point-mass is needed to understand key aspects of Quantum
Gravity. A point-mass may be stringy in Nature since due to the ultra-violet cutoff
R(r = 0) = 2GyM,, a point-mass source at r = 0 has non-zero area but zero
volume; a string world-sheet has non-zero area and zero volume.

3. In section 1.2 we showed how the exact Nonperturbative Renormalization Group
flow of the running Newtonian coupling G(r) in Quantum Einstein Gravity [16]
was consistent with the existence of an ultra-violet cutoff R(r = 0) = 2GyNM,
of the Schwarzschild solutions in eq-(1.1), after setting g, = 1 — 2GNyM,/R(r) =
1 —=2G(r)M(r)/r,..... We proved that due to the condition G(r = 0) = 0 and
M(r =0) ~ 1/2GNM,, there was no horizon since it is at the location r = 0 that

gtt('r = 0) =0.

4. Similar results followed in the case of Anti de Sitter-Schwarzschild metrics in section
1.3 with a running cosmological parameter A(r) and Newtonian coupling G(r).
The ultra-violet cutoff in this case was no longer given by 2G M, but instead by
a real-valued positive root R, of the cubic equation associated with the condition
git(R(r =0)) = g(R.) = 0. There was a singularity at r = 0.

5. Generalized de Sitter metrics led to an infrared cuttoff R(r = 00) = Ryuppie =
(3/A,)"? in the very late time de Sitter inflationary phase of the evolution of the
universe ( when the Hubble parameter is constant ) and provided a plausible argu-
ment why the cosmological constant is not zero and why it is so tiny [10].

6. In section 2 we studied how a running Newtonian coupling G(r) could also be
accommodated naturally in a Jordan-Brans-Dicke scalar-tensor theory of Gravity via
a trivial conformal transformation of the Schwarzschild metric solution. However,
the running Newtonian coupling G(r) = (167®?)~! corresponding to the scalar field
® could not satisfy the asymptotic freedom condition G(r = 0) = 0 found by [16].
Nevertheless, our results in section 2 exhibited an interesting ultra-violet /infrared
duality behaviour of G(r) that warrants further investigation. A combinatorial
geometry and dual nature of gravity was proposed by [19] using Matroid theory.
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To finalize we should stress the search for the foundational (quantum equivalence)
principle of Quantum Gravity which is related to the true origin of inertia (mass/energy).
Mach’s principle is an intriguing concept with several formulations and applications [22],
[24], [25], [26], [27], [23]. A proper and precise implementation of Mach’s principle, beyond
the equivalence’s principle of General Relativity, in modern physics is still lacking, to our
knowledge. Furthermore, it is very likely that our naive notions of Topology break down at
small scales [13] and for this reason we must redefine our notion of a ”point” such that this
novel ”fuzzy” topology is compatible with the stringy geometry. For the role of Fractals
in the construction of a Scale Relativity theory based on scale resolutions of ”points” and
the minimal Planck scale see [15]. A Phase Space Extended Relativity theory involving
an ultra-violet ( minimal scale ) and infrared cutoff ( maximum scale ) in Clifford spaces
has been advanced by [27] based on Max Born [28] Reciprocal principle of Relativity in
Phase spaces where there is a limiting speed and limiting force (acceleration).
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Appendix A

Consider the conformal map

G = €G- (A1)
Here, the indices p, v run from 0,1, ...,d — 1. The Christoffel symbols become

Les(9) = Tas(9) + Xag, (A.2)
where
Egﬁ = 55)‘75 +55>\aa _gaﬂ)"u‘ (AB)

Using (A.2) one finds that the Riemann tensor can be written as
RzlaB(g/) - Rﬁaﬁ(g) + VQEIZB - vﬁzﬁa + Zga gﬁ - Egﬁzga (A4)

where V,, denotes covariant derivative in terms of I, 5(g). By straightforward computa-
tion, using (A.3) we find

Rias(d) = Rias(9) +{05Varw =04V A0 —gusVal* + guaVA#} |
(A5
+{<5Z>‘75 _65)‘704 ))‘W _(559113 - 5ggVa)A>0 A — (gl/a)‘vﬁ _gyﬁ)\,a ))‘VM}‘

From (A.5) we get the Ricci tensor
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Ris(9') = Ruplg) = {(d = 2)VpA +905V A"}

(A.6)
+<d - 2){)‘7[3 )‘W _gVﬁ)‘w )"#}7
which in turn gives us the scalar curvature
R =e R —2(d— 1)V, I — (d—2)(d — 1)\, M} (A7)

Therefore we get

VogR = V=ge MR —2(d — )V, A — (d—2)(d — DA, A} (AS8)

Since V /=g =0, (A.8) can also be written as
VETR! = Ve IR — V() g e )

+(d — 2)(d — 1)y/—geld=2AN , AH.
We observe that the second term is a total derivative and therefore can be dropped. So,
we have

(A.9)

V=R = /=g "INR + (d—2)(d — 1)\, \M). (A.10)
For d = 4 the expression (A.10) is reduced to
V—9R = /=ge** (R + 6),, \*). (A.11)

Some times it becomes convenient to write e* = ®. In this case, we have \,, = ®~'®,,.
Consequently, we see that (A.11) can also be written as

V—9R =/—g(®*R + 69,, &) (A.13)
or
V—9R = /=g(®P*R + 6V, DV D). (A.14)

since V,® = & ,.
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On the origin of macroquantization in astrophysics and
celestial motion
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Annales de la Fondation Louis de Broglie

ABSTRACT. Despite the use of Bohr radius formula to predict celestial
quantization has led to numerous verified observations, the cosmological
origin of this macroquantization remains an open question. In this article
various plausible approaches are discussed. Further observation to verify or
refute this proposition is recommended, in particular for exoplanets.

RESUME: En dépit de I'utilisation de la formule de rayon de Bohr de
prévoir la quantification céleste a mené aux nombreuses observations véri-
fiées, l'origine cosmologique de ce macroquantization est une question en
suspens. En cet article de diverses approches plausibles sont discutées.
Promouvez 1'observation pour vérifier ou réfuter cette proposition est re-
commandée, en particulier pour des exoplanets.

1 Introduction

It is known that the use of Bohr radius formula [1] to predict celestial
quantization has led to numerous verified observations [2][3]. This approach
was based on Bohr-Sommerfeld quantization rules [4][5]. Some implications
of this quantum-like approach include exoplanets prediction, which has
become a rapidly developing subject in recent years [6][7]. While this kind
of approach is not widely accepted yet, this could be related to a recent sug-
gestion to reconsider Sommerfeld’s conjectures in Quantum Mechanics [8].

While this notion of macroquantization seems making sense at least in the
formation era of such celestial objects, i.e. “all structures in the Universe,
from superclusters to planets, had a quantum mechanical origin in its
earliest moments” [9], a question arises as to how to describe the physical
origin of wave mechanics of such large-scale structures [5].

URL: http://www.ensmp.fr/aflb/AFLB-311/aflb311m370.pdf
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A plausible definition of the problem of quantization has been given by
Grigorescu [10]: “select an infinite, discrete number of quantum possible
real motions, from the continuous manifold of all mechanically possible
motions.” While this quantization method has been generally acceptable to
describe physical objects at molecular scale, there is not much agreement
why shall we also invoke the same notion to describe macrophenomena,
such as celestial orbits. Nonetheless, there are plenty efforts in the literature
in attempt to predict planetary orbits in terms of wave mechanics, including
a generalisation of Keplerian classical orbits [11].

In this article we discuss some plausible approaches available in the
literature to describe such macroquantization in astrophysics, in particular to
predict celestial motion:

a. Bohr-Sommerfeld’s conjecture;

b. Macroquantum condensate, superfluid vortices;

c.  Cosmic turbulence and logarithmic-type interaction;
d. Topological geometrodynamics (TGD) approach.

While these arguments could be expected to make the notion of macro-
quantization a bit reasonable, it is beyond the scope of this article to con-
clude which of the above arguments is the most consistent with the observed
data. There is perhaps some linkage between all of these plausible argu-
ments. It is therefore recommended to conduct further research to measure
the reliability of these arguments, which seems to be worthwhile in our at-
tempt to construct more precise cosmological theories.

2 Bohr-Sommerfeld’s quantization rules

In an attempt to describe atomic orbits of electron, Bohr proposed a con-
jecture of quantization of orbits using analogy with planetary motion. From
this viewpoint, the notion of macroquantization could be considered as re-
turning Bohr’s argument back to the celestial orbits. In the meantime it is not
so obvious from literature why Bohr himself was so convinced with this idea
of planetary quantization [12], despite such a conviction could be brought
back to Titius-Bode law, which suggests that celestial orbits can be de-
scribed using simple series. In fact, Titius-Bode were also not the first one
who proposed this kind of simple series [13], Gregory-Bonnet started it in
1702.

In order to obtain planetary orbit prediction from this hypothesis we could
begin with the Bohr-Sommerfeld’s conjecture of quantization of angular
momentum. As we know, for the wavefunction to be well defined and
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unique, the momenta must satisfy Bohr-Sommerfeld’s quantization condi-
tion [14]:

§p.dx =27x.nh €))
r
for any closed classical orbit I'. For the free particle of unit mass on the unit
sphere the left-hand side is
T
I Vdr=a'T =270 ©)
0
where T=2m/® is the period of the orbit. Hence the quantization rule
amounts to quantization of the rotation frequency (the angular momen-
tum): @ = n#i. Then we can write the force balance relation of Newton’s
equation of motion:
GMm/r* =mv* /I r 3)
Using Bohr-Sommerfeld’s hypothesis of quantization of angular momen-
tum (2), a new constant g was introduced:
mvr =ng /27w 4)
Just like in the elementary Bohr theory (before Schrodinger), this pair of
equations yields a known simple solution for the orbit radius for any quan-
tum number of the form:

r=n.g" (47> GM .m*) )
or
_ 2 2
r=n".GM /v, (©6)
where r, n, G, M, v, represents orbit radii (semimajor axes), quantum num-

ber (n=1,2,3,...), Newton gravitation constant, and mass of the nucleus of
orbit, and specific velocity, respectively. In this equation (6), we denote
v, =2n/g).GMm ©)

The value of m is an adjustable parameter (similar to g).

Nottale [1] extends further this Bohr-Sommerfeld quantization conjecture
to a gravitational-Schrédinger equation by arguing that the equation of mo-
tion for celestial bodies could be expressed in terms of a scale-relativistic
Euler-Newton equation. For a Kepler potential and in the time independent
case, this equation reads (in Ref [1c] p. 380):

2D*AY +(E/m+GM [r)¥ =0 @®)

Solving this equation, he obtained that planetary orbits are quantized
according to the law:
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a,=GMn* /v, )
where a,,G,M,n,v, each represents orbit radius for given n, Newton gravita-
tion constant, mass of the Sun, quantum number, and specific velocity
(vo=144 km/sec for Solar system and also exoplanet systems), respectively.
These equations (8)-(9) form the basis of Nottale’s Scale Relativity predic-
tion of planetary orbits [1]; and equation (9) corresponds exactly with equa-
tion (6) because both were derived using the same Bohr-Sommerfeld’s quan-
tization conjecture. Another known type of observed quantization in astron-
omy is Tifft’s 72 km/sec quantization [13].

3 Macroquantum condensate, superfluid vortices

Provided the above Bohr-Sommerfeld description of macroquantization
corresponds to the facts, then we could ask further what kind of physical
object could cause such orbital quantization. Thereafter we could come to
the macroquantum condensate argument. In this regard, astrophysical objects
could be seen as results of vacuum condensation [15][16]. For instance Ily-
anok & Timoshenko [17] took a further step by hypothesizing that the uni-
verse resembles a large Bose Einstein condensate, so that the distribution of
all celestial bodies must also be quantized. This conjecture may originate
from the fact that according to BCS theory, superconductivity can exhibit
macroquantum phenomena [18]. There is also a known suggestion that the
vacua consist of hypercrystalline: classical spacetime coordinate and fields
are parameters of coherent states [19].

It is perhaps interesting to remark here that Ilyanok & Timoshenko do not
invoke argument of non-differentiability of spacetime, as Nottale did [1]. In
a macroquantum condensate context, this approach appears reasonable be-
cause Bose-Einstein condensate with Hausdorff dimension Dy~2 could ex-
hibit fractality [20], implying that non-differentiability of spacetime conjec-
ture is not required. The same fractality property has been observed in vari-
ous phenomena in astrophysics [21], which in turn may also correspond to
an explanation of the origin of multifractal spectrum as described by Gorski
[22]. In this regard, Antoniadis et al. have discussed CMBR temperature
(2.73° K) from the viewpoint of conformal invariance [23], which argument
then could be related to Winterberg’s hypothesis of superfluid Planckian
phonon-roton acther [24].

Based on previous known analogy and recent research suggesting that
there is neat linkage between gravitation and condensed matter physics
[25][26], we could also hypothesize that planetary quantization is related to
quantized vortex. In principle, this hypothesis starts with observation that in
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quantum fluid systems like superfluidity, it is known that such vortexes are
subject to quantization condition of integer multiples of 2w, or

§VS .dl = 27.nh/ m, . Furthermore, such quantized vortexes are distributed

in equal distance, which phenomenon is known as vorticity [4]. In large
superfluid system, usually we use Landau two-fluid model, with normal and
superfluid component. The normal fluid component always possesses some
non-vanishing amount of viscosity and mutual friction. Similar approach
with this proposed model has been considered in the context of neutron stars
[27], and this quantized vortex model could also be related to Wolter’s vor-
tex [28].

4 Cosmic turbulence and logarithmic type interaction

Another plausible approach to explain the origin of quantization in as-
tronomy is using turbulence framework. Turbulence is observed in various
astrophysical phenomena [21], and it is known that such turbulence could
exhibit a kind of self-organization, including quantization.

Despite such known relations, explanation of how turbulence could ex-
hibit orbital quantization is not yet clear. If and only if we can describe such
a flow using Navier-Stokes equation [29], then we can use R.M. Kiehn’s
suggestion that there is exact mapping from Schrodinger equation to Navier-
Stokes equation, using the notion of quantum vorticity [30]. But for fluid
which cannot be described using Navier-Stokes equation, such exact map-
ping would not be applicable anymore. In fact, according to Kiehn the Kol-
mogorov theory of turbulence is based on assumption that the turbulent state
consists of “vortices” of all “scales” with random intensities, but it is not
based on Navier-Stokes equation explicitly, in fact “the creation of the tur-
bulent state must involve discontinuous solutions of Navier-Stokes equa-
tions.” [31] However, there is article suggesting that under certain condi-
tions, solutions of 3D Navier-Stokes equation could exhibit characteristic
known as Kolmogorov length [32]. In this kind of hydrodynamics approach,
macroquantization could be obtained from solution of diffusion equation
[33].

In order to make this reasoning of turbulence in astrophysics more consistent
with the known analogy between superfluidity and cosmology phenomena [26],
we could also consider turbulence effect in quantum liquid. Therefore it seems
reasonable to consider superfluid turbulence hypothesis, as proposed for instance
by Kaivarainen [34]. There are also known relations such as discrete scale in-
variant turbulence [35], superstatistics for turbulence [36], and conformal turbu-
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lence. Furthermore, such a turbulence hypothesis could lead to logarithmic inter-
action similar to Kolmogorov-type interaction across all scales [28].

Another way to put such statistical considerations into quantum mechani-
cal framework is perhaps using Boltzmann kinetic gas approach. It is known
that quantum mechanics era began during Halle conference in 1891, when
Boltzmann made a remark: “I see no reason why energy shouldn’t also be
regarded as divided atomically.” Due to this reason Planck subsequently

called the quantity 2774 after Boltzmann — ‘Boltzmann constant.’ Using the
same logic, Mishinov et al. [37] have derived Newton equation from TDGL:

m*dV (t)=e*.E-m*V ()7, (10

This TDGL (time-dependent Ginzburg-Landau) equation is an adequate
tool to represent the low-frequency fluctuations near T, and it can be con-
sidered as more universal than GPE (Gross-Pitaevskii equation).

5 TGD viewpoint on the origin of macroquantization in astrophysics
and celestial motion

Topological geometrodynamics (TGD) viewpoint on this macro-
quantization subject [38] was based on recognition that this effect could be
considered as simple substitution of Planck constant:

h—h, =GMm/v, (11

provided we assert that /i = ¢ =1. The motivation is the earlier proposal
inspired by TGD [39] that the Planck constant is dynamical and quantized.

As before v,=144.7+0.7 km/sec, giving v, /c = 4.82x1 0~*km/sec . This

value is rather near to the peak orbital velocity of stars in galactic halos. As a
sidenote, this is not the only plausible approach to make extension from
geometrodynamics to Planck scale, and vice versa [41].

A distinction of TGD viewpoint [42] from Nottale’s fractal hydrodynam-
ics approach is that many-sheeted spacetime suggests that astrophysical
systems are not only quantum systems at larger space-time sheets but corre-
spond to a gigantic value of gravitational Planck constant. The Bohr’s rules
for the visible matter reflect the quantum dynamics of the dark matter at
larger space-time sheets. Furthermore, TGD predicts the value of the pa-
rameter v, appearing in equation (9) and explains its harmonic and subhar-
monics. There is also a plausible linkage between hydrodynamics approach
and Kébhler structure to describe the Schrodinger equation [43].
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5.1. Consistency with TGD based model of galactic dark matter
The first step is to see whether the TGD based model for dark matter is
consistent with the gravitational Schrodinger equation. The following argu-
ment was based on Bohr quantization rules [41].
a. The gravitational potential energy V(r) for a mass distribution
M(r)=xTr (T denotes string tension) is given by:

V(r)=Gm[" M(r).dr/r* =GmTlog(r/R)  (12)

Here R, corresponds to a large radius so that the potential is negative,
as it should in the region where binding energy is negative.
b. The Newton equation for circular orbit:

mv? [r=GmxT | r (13)
which gives
v=xGT (14)
c. Bohr quantization condition for angular momentum by equation (11)
reads as
mvr = nh o (15)
and gives:
r, =nh, /(mv)=nn (16)
rn=GM/(vv,) (17)

where v is rather near to v,
d. Bound state energies are given by

E,=mv’/2—xTlog(r,/R,))+ xTlog(n) (18)
The energies depend only weakly on the radius of the orbit.

e. The centrifugal potential /(/+1)/7”in the Schrodinger equation is

negligible as compared to the potential term at large distances so that
one expects that degeneracies of orbits with small values of / do not
depend on the radius.

5.2. TGD based model of planetary system

The magnetic flux quanta (shells and flux tubes) are the carriers of the
quantum coherent dark matter and behave effectively like quantum rigid
bodies. This leads to a simple model for the generation of planetary system
via a breaking of rotational symmetry. For inner planets this process leads
from spherical shells with a full rotational symmetry to flux tubes with re-
duced rotational symmetry inside with planet are eventually formed. Earth
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and outer planets were formed by a splitting of a flattened flux tube in the
common orbital plane to 5 flux tubes corresponding to Earth and outer plan-
ets except Pluto, which indeed has orbital parameters differing dramatically
from those of other planets. The replacement of v, by its subharmonic v,/5
for these Jovian planets corresponds topologically to the splitting of a mag-
netic flux tube to five separate tubes.

Flux tubes and spherical cells containing quantum dark matter are pre-
dicted to be still there. The amazing finding is that the quantum time scales
associated with Bohr orbits seem to correspond to important biological time
scales. For instance, the time scale

T=h,/E (19)

associated with n=1 orbit is precisely 24 hours. This apparently supports the
prediction of TGD based theory of living matter in with quantum coherent
dark matter plays a fundamental role [40].

The inclinations of planetary orbits could be a test problem for the hy-
pothesis outlined above. The prediction is not merely statistical like the
predictions given by Nottale and others [1d][1e]. The minimal value of in-
clination for a given principal quantum number n follows from semiclassical
view about angular momentum quantization for maximal value of z-
component of angular momentum m=j=n [38]:

cos(@)=n//n(n+1 (20)

where @ is the angle between angular momentum and quantization axis and

thus also between orbital plane and (x,y)-plane. This angle defines the tilt
angle between the orbital plane and (x,y)-plane. For n=3,4,5 (Mercury,
Earth, Venus) this equation gives @ =30.0°,26.6",24.0° respectively.
Only the relative tilt angle can be compared with the experimental data.
Taking Earth’s orbital plane as reference will give ‘inclination’ angle, i.e. 6
degrees for Mercury, and 2.6 degrees for Venus. The observed values are 7.0
and 3.4 degrees, respectively, which are in good agreement with prediction.
Bohr-Sommerfeld rules allow also estimating eccentricities and the predic-

tion is [38]:
e =2.(N1=m*/n*) /A +~N1=m*/n*) (2D

The eccentricities are predicted to be very large for m<n unless n is very
large and the only possible interpretation is that planets correspond in the lowest
order approximation to m=n and e=0 whereas comets with large eccentricities
could correspond to m<n orbits. In particular, for m<n comets in Oort Clouds
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(n<700) the prediction is €>0.32. This could be a good test problem for further
astronomical observation.

Concluding remarks

In this article, some plausible approaches to describe the origin of macro-
quantization in astrophysics and also celestial motion are discussed. While
all of these arguments are interesting, it seems that further research is re-
quired to verify which arguments are the most plausible, corresponding to
the observed astrophysics data.

After all, the present article is not intended to rule out the existing meth-
ods in the literature to predict quantization of celestial motion, but instead to
argue that perhaps this macroquantization effect in various astronomy phe-
nomena requires a new kind of theory to describe its origin.
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The Cantorian Superfluid
Vortex Hypothesis

V. Christianto, vxianto@yahoo.com
| Reprinted with kind permission from Apeiron editor |

The present article suggests a preliminary version of Cantorian
superfluid vortex hypothesis as a plausible model of non-
linear cosmology. Using the proposed model we explain the
physical origin of quantum-like approach to describe planetary
orbits as proposed in the recent literature. The meaning of the
Cantorian superfluid vortex hypothesis is discussed,
particularly in the context of offering a plausible mechanism
of gravitation-related phenomena from boson condensation.
Some advantages and unsolved questions are discussed.

Keywords: superfluid aether, Bose-Einstein condensate, phion,
multiple vortices, gravitational instability.

Introduction

In recent years, there has been a growing interest in the quantum
approach to describing orbits of celestial bodies. While this approach
has not been widely accepted, the motivating idea of this approach
was Bohr-Sommerfeld’s hypothesis of quantization of angular
momentum, and therefore it shows some resemblance to the
Schrodinger wave equation (Chavanis 1999, Nottale 1996, Neto e al.
2002). The application of wave mechanics to large-scale structures
(Coles 2002) has led to impressive results in terms of prediction of
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planetary semimajor axes, especially orbits of exoplanets (Nottale et
al. 1997, 2000). However, a question arises as to how to describe the
physical origin of wave mechanics of such large-scale structures. This
leads to the Volovik-Winterberg hypothesis of the superfluid phonon-
roton as a quantum vacuum aether (Volovik 2001, Winterberg 2002a,
2002b).

To extend the superfluid aether hypothesis further in order to
explain nonlinear phenomena in cosmology, we propose a new
Cantorian Superfluid Vortex (CSV) hypothesis. The present article
discusses some questions related to this hypothesis, including:

a. What is the meaning of Cantorian Superfluid Vortex?

b. Why do we require this model?

c. How can we represent various high-temperature phenomena

in cosmology using low-temperature superfluid physics?

d. What are its advantages and implications compared to present

theories?

e. What are the unsolved questions and possible future research?
We begin with question b, in particular with reference to reconciling
Quantum Mechanics and GTR. Further discussion of the proposed
hypothesis will be reserved for a forthcoming article.

QM, GTR, QED, Sachs

For almost eight decades theoretical physicists have toiled to
reconcile Quantum Mechanics and Einstein’s (General) Theory of
Relativity, beginning with Dirac, and continuing with leading
scientists up to this time. As a result, several different approaches
are taken by theoretical physicists today, including such theories
as:
e QED & QFT: these can be considered as two of the best
experimentally confirmed theories up to this day. For an
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introduction, see for example Weinberg (1993, 1997) and
Siegel (1999).

* Sachs’s theory: in principle Sachs has attempted to bring the
four-dimensional geometrical world into QM.

* Other refinements of GTR such as Weyl’s (conformal
gravity) solution, efc.

* Various versions of string theories: supergravity, superstring,
supersymmetry, brane universe, etc.

*  One lesser known approach is the diametrical opposite of
Sachs’s approach: it claims that quantum (wave) mechanics
theory is sufficient to explain the phenomena corresponding
to GTR (Coles 2002).

A major obstacle here is how to reconcile the four-dimensional
geometrisation of GTR with common three-dimensional QM. As is
well known, GTR was constructed as a geometrification of physical
reality: GTR’s attempt to describe gravity is purely geometric and
macroscopic. As such, there are some known limitations in GTR,?
including:

a. Classical general relativity by itself is unable to
predict the sign of the gravitational force (attraction
rather than repulsion). Consoli (2000) also noted:
“Einstein had to start from the peculiar properties of
Newtonian gravity to get the basic idea of
transforming the classical effects of this type of
interaction into a metric structure.” In other words, it
seems that GTR is not the complete theory Einstein
was looking for.

b. There is no mechanism for gravitational forces: the
‘graviton’ has never been observed.
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c. There is no convincing mechanism to describe the
interaction between matter, inertia, and space (Mach
principle is merely postulated).

d. There is no description of the medium of space.
Although Einstein apparently considered a perfect
fluid to describe this medium in his Leiden lecture in
1921 (Einstein 1921), he never attempted to theorize
this medium formally—perhaps for good reason.’

e. It is quite difficult to imagine how matter can affect
the spacetime curvature and vice versa as postulated
by GTR (for instance H. Arp).

f.  Using GTR it is also quite difficult to explain the so-
called ‘hidden matter’ which is supposed to exist in
order to get average density of matter in the universe
that required for flat universe, Q=1 (Chapline 1998).
Alternatively some theorists have shown we can
reconcile this issue using Navier-Stokes model
(Gibson 1999).

g. The spacetime curvature hypothesis cannot explain
phenomena in the micro world of Quantum
Mechanics. In contrast, by the Ehrenfest theorem,
Quantum Mechanics reduces to classical physics if we
use classical parameters consistently (see also Signell
2002).

However, we should recognize that the strong point of GTR is to
generalize the Maxwell equations to the gravity field and to introduce
the equivalence principle, as observed by recent experiments.
Therefore according to Consoli (2000): “all classical experimental
tests of general relativity would be fulfilled in any theory
incorporating the Equivalence Principle.” We should also note that
Einstein was quite right in pointing out the incompleteness of QM (as
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described by the Copenhagen school). Therefore, we would expect to
find a reformulation of QM, which is capable of describing known
phenomena in support of GTR, such as the bending of light rays,
clock delay due to the gravitational field and also the precession of the
perihelion of planet Mercury. Attempts to generalise (QM) wave
mechanics to describe the motion and distribution of celestial objects
have been made, for instance by Coles (2002), Neto et al. (2002),
Nottale et al. (1997, 2000) and Zakir (1999).

Therefore, we may conclude the following: to reconcile GTR
(phenomena) and QM, we have to begin by finding the mechanism of
gravitation and its interaction with the medium of space. This leads us
to the scalar field hypothesis as discussed below.

Whittaker, scalar field, phion condensate

The scalar field hypothesis as a description of gravitation is not a
recent idea at all. Whittaker, a leading physicist and mathematician in
his time, originated the idea of a (longitudinal) scalar field while
studying the nature of partial differential equations.* To quote
Whittaker:

...the gravitational force in each constituent field will be
perpendicular to the wave-front: the waves will be
longitudinal... this undulatory theory of gravity would
require gravity should be propagated with a finite
velocity, which however need not be the same as of light,
and may be enormously greater.

Whittaker’s student, Dirac, upon reading Whittaker’s idea, then
came up with his idea of the ‘electron sea’, though this was later
found to be at odds with observation. Therefore the scalar field must
be closely linked to the medium of space (aether, or its modern
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version ‘quantum vacuum fluctuation’; see Chapline 1998, Rothwarf
1998). In Whittaker’s formulation, one of the features of this scalar
field is that its speed is much higher than the speed of light c. This
hypothesis is recently supported by Van Flandern’s theory on the
‘speed of gravity’.”

Now if we accept that a scalar field can describe the mechanism of
gravitation, the question then arises: what is the physical nature of this
scalar field. Some physicists have argued that gravitation is actually a
long-wavelength excitation of a scalar condensate inducing
spontaneous symmetry breaking (Consoli 2000, 2002). This scalar
field is represented by the ‘phion condensate’. In this sense, the Mach
principle represents an inextricable linkage between inertia and
gravity due to the common origin of the phenomena: condensation of
the scalar field.°

We now come to the core hypothesis of CSV theory: the ‘phion
condensate’ can be modeled by zero temperature superfluid physics
(Consoli 2000). Therefore, we treat the ‘superfluid’ as the quantum
vacuum aether medium (as proposed by Winterberg 2002a, 2002b).
In this way, we are no longer considering superfluidity merely as a
useful analogy to describe various phenomena of cosmology
(Volovik 2000b, 2001), but instead as a real fluid medium in
accordance with Gibson’s model (Gibson 1999).” In this regard, it
becomes very convenient to consider the Navier-Stokes equations
(Zalaletdinov 2002). Furthermore to represent a real superfluid model
in cosmology, we propose a new term: ‘superfluid cosmology.” This
conjecture implies that there should be various nonlinear phenomena
in cosmology which are thus far inexplicable using the
‘geometrification’ approach, including the ‘hidden matter’ problem.
In other words, if we use a real fluid model for nonlinear cosmology,
we do not have to invoke some kind of exotic matter to explain the
nature of ‘hidden matter’.
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Now, with regard to GTR experiments, we also consider Consoli’s
(2000) idea that “all classical experimental tests of general relativity
would be fulfilled in any theory incorporating the Equivalence
Principle.” Therefore, because the CSV hypothesis was in principle
also based on the same phion condensate mechanism, we can predict
the same effects as were predicted by Consoli (2000).

Furthermore, the real Cantorian superfluid model also implies that
it is possible to conduct a set of laboratory experiments to replicate
real cosmological objects (Volovik 2001, Zurek 1995), provided we
take into consideration proper scale modeling (similitude) theories.

What is the Cantorian superfluid vortex?

Once we agree with the above proposition on the role of phion
condensate in describing the gravitational interaction, we are now
ready to consider the meaning of the Cantorian Superfluid Vortex
(CSV) hypothesis. Term ‘Cantorian’® here represents the transfinite
set introduced by Georg Cantor. As we know, the transfinite set
introduces the mapping of a set onto itself, better known as a ‘self-
similar’ pattern. This pattern is observed in various natural
phenomena, including vortex phenomena. The notion of Cantorian
vortices can be defined in simple terms as the tendency of multiple
vortices to be present in a real fluid medium, including superfluidity.
(See Nozieres & Pines 1990, Quist 2002, Volovik 2000a, 2000b,
2000c.)’ Therefore, with regards to superfluid cosmology, in principle
the Cantorian Superfluid Vortex hypothesis suggests that there is a
tendency in nature as follows:

Lemma I: “There are mini vortices within bigger vortices
ad infinitum.”

A flow pattern where the streamlines are concentric circles is
known as a circular vortex. If the fluid particles rotate around the
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vortex centre, the vortex is called rotational. It also follows that the
vortex moves with the fluid. It is also known that real fluid flow is
never irrotational, though the mean pattern of turbulent flow
outside the boundary layer resembles the pattern of irrotational
flow. In rotational flow of real fluids, vorticity can develop as an
effect of viscosity. The term ‘vorticity’ is defined as the number of
circulations in a certain area, and it equals the circulation around
an elemental surface divided by the area of the surface (assuming
the vortex lattice exists). Since the vortex moves with the fluid, the
vortex tube retains the same fluid elements. and these elements
retain their vorticity. And provided other factors remain the same,
vortices can neither be created nor destroyed in a non-viscous
fluid.

In quantum fluid systems like superfluidity, it is known that such
vortices are subject to a quantization condition of integer multiples of

2T, or fvs.dl =2p.nh/m, =nkK,. Such quantized vortices are

distributed at equal distance from one another, which is known as
vorticity. Furthermore, in large superfluid systems usually we use
Landau two-fluid model, with normal and superfluid components.
The normal fluid component always possesses some nonvanishing
amount of viscosity and mutual friction.

This vortex formation phenomenon is well known in various
turbulence-related fluid phenomena such as tornadoes and tropical
hurricanes; and it can be represented by the Navier-Stokes equation
(Zalaletdinov 2002). Therefore, mathematically we treat the ‘vortex’
as a stable solution (Kivshar et al. 1999) and a consequence of
Navier-Stokes equation. Furthermore it is known there is exact
mapping between the Schrodinger equation and Navier-Stokes
equation (Kiehn 1989, 1999), therefore the Cantorian Superfluid
Vortex hypothesis requires a second conjecture:
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Lemma Il: “Vortices are considered stable solutions of
the Navier-Stokes equations.”

Since we know the Navier-Stokes equation leads us to nonlinear fluid
phenomena in cosmology (Gibson 1999) and also superfluid vortices
(Godfrey et al. 2001, Prix 2000), then the Cantorian Superfluid
Vortex hypothesis also proposes:

Lemma lll: “Cantorian Superfluid Vortex theory is
capable to represent various phenomena of nonlinear
cosmology.”

Nottale’s Scale Relativity Theory (Nottale 1996, 1997, 2001, 2002)
leads us to some interesting implications including:

I. The Euler-Newton equation can be generalized to represent
various phenomena in cosmology across different scales.
Because the Euler-Newton equation can be considered a
subset (in the inviscid limit) of the Navier-Stokes equation,
then the Navier-Stokes equation can also be considered
applicable to any scale (scale covariant).

II. Because Scale Relativity Theory can be used to derive the
Dirac equation (Celerier & Nottale 2002), we also conclude
that Scale Relativity Theory implies there is an ‘electron sea’
medium, in Dirac’s words, to represent interactions across
different scales.

Hence we may also conclude that:
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Lemma IV: “The Cantorian Superfluid Vortex is a
plausible medium to describe the motion of various
celestial objects governed by the Navier-Stokes
equation, and to represent a medium for interactions
across various scales.”

In other words, and considering the exact correspondence between
the Schrodinger equation and the Navier-Stokes equation, the
Cantorian Superfluid Vortex hypothesis also suggests: '’

Lemma V: “Schrodinger equation can be treated as a
real diffusion theory, capable of describing various
celestial phenomena at various scales.”

In this sense, despite some similarities in their consequences and
cosmological implications, the Cantorian Superfluid Vortex model is
quite different from Nottale’s Scale Relativity Theory, since it relies
on a real fluid model right from the beginning.'' Using this model, we
can expect to get a proper mechanism and medium for gravity
interactions, which GTR is lacking.

A question arises here concerning whether the proposed Cantorian
Superfluid Vortex hypothesis is really different from Nottale’s Scale
Relativity Theory. Therefore it is perhaps worth mentioning here
Nottale’s own opinion (Nottale 1996):

We stress once again the fact, diffusion here is only an
interpretation. Qur theory is not statistical in its essence,
contrarily to quantum mechanics or to diffusion
approaches. In scale relativity, the fractal space-time can
be completely ‘determined’, while the undeterminism of
trajectories is not set as a founding stone of the theory,
but as a consequence of the nondifferentiability of space-
time. In our theory, ‘God does not play dice’, ...
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In summary, our point of view is quantum objects are
neither ‘waves’ nor ‘particles’, ... while our experiments,
being incomplete, put into evidence only the module.
There is no ‘complementarity’ here, since the phase is
never directly seen,.... There is therefore no mystery when
one can jump instantaneously from observing the ‘wave’
behavior to observing the ‘particle’ behavior without
physically disturbing the system, but only by changing the
observing way. Both properties were present before the
observation, even if only one of them was seen.

In other words, we argue here that Nottale’s Scale Relativity Theory
is insightful in its representation of a scale covariant theory of
gravitation, but it is lacking an explanation of the medium of the
gravitation interaction mostly due to th evagueness of the distinction
between the real diffusion theory and the statistical interpretation of
QM (in particular, Schrédinger equation).'

Furthermore, this could have been anticipated, because Nottale’s
Scale Relativity Theory tends to neglect the significance of real
medium modeling: it has some inherent limitations in predicting
nonlinear phenomena in cosmology (Gibson 1999).

In this regard, the Cantorian Superfluid Vortex hypothesis can be
considered an extended version of Nottale’s scale relativity theory
toward a real fluid model of nonlinear cosmology. In other words, the
proposed Cantorian Superfluid Vortex theory considers Scale
Relativity Theory merely a transformation theory, such as STR or the
Ehrenfest theorem: its contribution is to show the generality and
applicability of the Schrédinger equation for predicting phenomena at
cosmological scales. However, in the present author’s opinion,
Nottale’s Scale Relativity Theory lacks a convincing description of
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why and what kind of medium and mechanism can represent these
phenomena.

What are its advantages over the present
theories

From the Cantorian Superfluid Vortex hypothesis we can expect
certain advantages over existing theories, including:

a.

Describes the origin of outer planet distribution in a (planar)
solar system, without invoking an ad hoc second quantum
number as Nottale (1996) or Neto ez al. (2002) did;

Predicts the existence of a vortex center in galaxies (similar to
the ‘eye’ in hurricane and tornadoes);

Predicts new planets in the outer orbits beyond Pluto;

Explains the same phenomena as predicted by GTR
(precession of perihelion of Planet Mercury, efc.) similar to
what has been suggested by Consoli (2000);

Describes the physical nature of the quantum vacuum aether
medium and also the mechanism of the gravitation interaction
(Chapline 1998, Consoli 2000, 2002);

Simplicity preserved by retaining the notion of three
dimensional space and one dimension time; thus QM can be
generalized to cosmological scales naturally (Coles 2002,
Neto et al. 2002, Signell 2002, Zakir 1999, Zurek 1995);
Explains why the universe is observed as flat Euclidean, not
as curved spacetime as predicted by Einstein (flat spacetime
has also been considered for instance by K. Akama and P.V.
Moniz)."® This is because there is no such thing as curved
spacetime, at least not in the proposed Cantorian Superfluid
Vortex theory (see also Chapline 1998, Winterberg 2002a,
2002b);
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h. Solves some known paradoxes in QM.

Unsolved questions and possible future
research

Despite the above advantages, there are unsolved questions that
require further research, including:

* Explain other nonlinear cosmological phenomena from
superfluidity viewpoint, including nebulae, pulsars, neutron
stars, gamma ray bursts, efc. (DeAquino 2002, 2002a, Gibson
1999, Sedrakian & Cordes 1997);

* Reconcile the proposed Cantorian Superfluid Vortex theory
with various phenomena at quantum scale, as predicted by
QED, etc. (Nottale 1996, 1997, 2001, 2002a, 2002b);

* Provide a mathematical explanation of various known QM
paradoxes;

* Explain known electromagnetic theories of Maxwell, etc.;

* Provide a measurable prediction of the smallest entity in
nature. The proposed Cantorian Superfluid Vortex theory
prefers ‘vorton’ instead of ‘photon’ as the smallest entity in
nature.

Other phenomena may have been overlooked here. The above list is
merely an introductory ‘fo-do list’.

In the present article we have discussed some reasons for
considering Cantorian superfluid vortices as the basis of cosmology
modeling. While of course this approach has not been widely
accepted yet, in the author’s opinion it could reconcile some known
paradoxes both in quantum mechanics (e.g., duality of wave-particle),
and also in cosmology (clustering, inhomogeneity, hidden matter).
Further discussion of the proposed hypothesis will be reserved for a
forthcoming article where some implications and open questions will
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be discussed. Furthermore, in the near future we expect that there will
be other theories based on a real fluid model, which are capable of
predicting various cosmological phenomena in a more precise way.
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! See the articles by Mendel Sachs at http://www.compukol.com/mendel, also
Annales Foundation Louis de Broglie vol. 27, 85 (2002). Also Chapter 11 in
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Modern Nonlinear Optics Part 1. Advances in Chemical Physics, Volume 119,
Series editors: 1. Prigogine et al., John Wiley & Sons, Inc. (2002).

* For more discussion on this issue, we refer to C. Will’s report: “The
confrontation between general relativity and experiments: 1998 update,
McDonnell Center for the Space Sciences, Washington University. Recently
there are also some articles discussing some features indicating incompleteness
of GTR, for example arXiv.gr-qc/0102056, particularly related to the so-called
Pioneer anomaly.

3 See Munera (1998), who provides calculation to show Michelson-Morley
experiments actually never were null. Since Michelson-Morley experiments are
often considered as the building block of relativity theory (STR), we know what
this article suggests.

* See Whittaker, E., On the partial differential equations in mathematical
physics, Cambridge Univ., (1903).

> See articles by T. Van Flandern at http://www.metaresearch.org

% Of course, there are several other interpretations of the nature of the scalar field
besides the ‘phion condensate.” See for instance Barcelo et al. (2000), Dereli &
Tucker (2000), Roberts (2001), Siegel (2002).

7 See also other articles by Gibson at arXiv.org:astro-ph/9904230, 9904237,
9904260, 9904284, 9904283, 9904317, 0003147, 9911264, 9904362, 9904269,
9904366, 9908335, 0002381.

¥ Recently Castro, Granik, & El Naschie (2000) reintroduced this term to
describe the exact dimension of our universe.

? There is already literature describing vortices in some cosmology phenomena,
for instance Barge & Sommeria (1995) and also Chavanis (1999).

' In this regards, see Coles (2002), Neto et al. (2002), Rosu (1994), Zakir
(1999).

" For a discussion on the meaning of interpreting Schrodinger equation as real
fluid phenomena, see also Rosu (1994).

12 See also Neto et al. (2002), Rosu (1994), Zakir (1999).

13 See for instance P.V. Moniz (arXiv:gr-qc/0011098) and K. Akama
(arXiv:hep-th/0007001, hep-th/0001113).
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A NOTE ON GEOMETRIC AND INFORMATION FUSION
INTERPRETATION OF BELL’S THEOREM AND QUANTUM
MEASUREMENT!

F. SMARANDACHE? AND V. CHRISTIANTO?

1. INTRODUCTION

It is generally accepted that Bell’s theorem [1] is quite exact to describe the
linear hidden-variable interpretation of quantum measurement, and hence ‘quantum
reality.” Therefore null result of this proposition implies that no hidden-variable
theory could provide good explanation of ‘quantum reality.’

Nonetheless, after further thought we can find that Bell’s theorem is nothing
more than another kind of abstraction of quantum observation based on a set of
assumptions and propositions [7]. Therefore, one should be careful before making
further generalization on the null result from experiments which are ‘supposed’ to
verify Bell’s theorem. For example, the most blatant assumption of Bell’s theorem
is that it takes into consideration only the classical statistical problem of chance
of outcome A or outcome B, as result of adoption of Von Neumann’s definition of
‘quantum logic’. Another critic will be discussed here, i.e. that Bell’s theorem is
only a reformulation of statistical definition of correlation; therefore it is merely
tautological. [5]

Therefore in the present paper we will discuss a few plausible extension of Bell’s
theorem:

(a) Bayesian and Fuzzy Bayesian interpretation.

(b) Information Fusion interpretation. In particular, we propose a modified
version of Bell’s theorem, which takes into consideration this multival-
ued outcome, in particular using the information fusion theory of Dezert-
Smarandache [2, 3, 4]. We suppose that in quantum reality the outcome of
P(AUB) and also P(AN B) shall also be taken into consideration. This is
where DSmT theory could be found useful. [2]

(¢) Geometric interpretation, using a known theorem connecting geometry
and imaginary plane. In turn, this leads us to 8-dimensional extended-
Minkowski metric.

(d) As an alternative to this geometric interpretation, we submit the viewpoint
of photon fluid as medium for quantum interaction. This proposition leads
us to Gross-Piteavskii equation which is commonly used to describe bose
condensation phenomena. In turn we provide a route where Maxwell equa-
tions and Schrodinger equation could be deduced from Gross-Pitaevskii
equation by using known algebra involving bi-quaternion number. In our

1. Note: The notion ‘hronir wave’ introduced here was inspired from Borges’ Tlon, Ugbar,

Orbis Tertius.
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opinion, this new proposition provides us a physical mechanism of quan-

tum interaction, beyond conventional ‘quantum algebra’ which hides causal
explanation.

By discussing these various approaches, we use an expanded logic beyond ‘yes’

or ‘no’ type logic [3]. In other words, there could be new possibilities to describe

quantum interaction: ‘both can be wrong’, or ‘both can be right’, as described in
Table 1 below:

TABLE 1. Going beyond classical logic view of QM

QM without vio-
lating Special Rel-
ativity

Maxwell electro-
magnetic theory
can be unified.
New  worldview

Alternative Bell’s theorem Implications Special relativity
QM is nonlocal Invalid Causality breaks | Is not always ap-
down; Observer | plicable
determines  the
outcome
QM is local with | Valid Causality  pre- | No interaction can
hidden variable served; The | exceed the speed
moon is there | of light
even without
observer.
Both can be right | Valid, but there is | QM, special | Can be ex-
a way to explain | relativity and | panded using

8-dimensional
Minkowski metric
with  imaginary
plane

shall be used.

Both can be wrong | Invalid, and so | New nonlocal | Is not always ap-
Special Relativity | QM theory is | plicable
is. We need a new | required, involv-
theory ing quantum
potential

It could be expected that a combined interpretation represents multiple-facets of
quantum reality. And hopefully it could bring better understanding on the phys-
ical mechanism beneath quantum measurement, beyond simple algebraic notions.
Further experiments are of course recommended in order to verify or refute this
proposition.

2. BELL’S THEOREM. BAYESIAN AND FuUZZy BAYESIAN INTERPRETATION

Despite widespread belief of its ability to describe hidden-variables of quantum
reality [1], it shall be noted that Bell’s theorem starts with a set of assumptions
inherent in its formulation. It is assumed that each pair of particles possesses a
particular value of A, and we define quantity p(A) so that probability of a pair being
produced between A and A+d is p(A)dA. Tt is also assumed that this is normalized
so that:

/p()\)d)\ -1 (1)
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Further analysis shows that the integral that measures the correlation between
two spin components that are at an angle of (6 — ¢) with each other, is therefore
equal to C"(§ — ¢). We can therefore write:

[C"(¢) = C"(0)| - C"(6 —¢) <1 (2)

which is known as Bell’s theorem, and it was supposed to represent any local hidden-
variable theorem. But it shall be noted that actually this theorem cannot be tested
completely because it assumes that all particle pairs have been detected. In other
words, we find that a hidden assumption behind Bell’s theorem is that it uses
classical probability assertion [12], which may or may be not applicable to describe
Quantum Measurement.

It is wothnoting here that the standard interpretation of Bell’s theorem includes
the use of Bayesian posterior probability [13]:

 plap(z] )
Plale) = ol 5 3)

As we know Bayesian method is based on classical two-valued logic. In the
meantime, it is known that the restriction of classical propositional calculus to a
two-valued logic has created some interesting paradoxes. For example, the Barber
of Seville has a rule that all and only those men who do not shave themselves are
shaved by the barber. It turns out that the only way for this paradox to work is if
the statement is both true and false simultaneously. [14]. This brings us to fuzzy
Bayesian approach [14] as an extension of (3):

(4)
Where [14, p. 339]:

p(M | si) = plex | si)narlar). ()
k=1

Nonetheless, it s