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2 CHAPTER 1. NATURE OF LIGHT

1.1 Light – Wave or stream of particles?

Answer: Yes! As we’ll see below, there is experimental evidence for both interpretations, although
they seem contradictory.

1.1.1 What is a wave?

More familiar types of waves are sound, or waves on a surface of water. In both cases, there is a
perturbation with a periodic spatial pattern which propagates, or travels in space. In the case
of sound waves in air for example, the perturbed quantity is the pressure, which oscillates about
the mean atmospheric pressure. In the case of waves on a water surface, the perturbed quantity
is simply the height of the surface, which oscillates about its stationary level. Figure 1.1 shows
an example of a wave, captured at a certain instant in time. It is simpler to visualize a wave by
drawing the “wave fronts”, which are usually taken to be the crests of the wave. In the case of
Figure 1.1 the wave fronts are circular, as shown below the wave plot.

1.1.2 Evidence for wave properties of light

There are certain things that only waves can do, for example interfere. Ripples in a pond caused
by two pebbles dropped at the same time exhibit this nicely: Where two crests overlap, the waves
reinforce each other, but where a crest and a trough coincide, the two waves actually cancel. This
is illustrated in Figure 1.2. If light is a wave, two sources emitting waves in a synchronized fashion1

should produce a pattern of alternating bright and dark bands on a screen. Thomas Young tried
the experiment in the early 1800’s, and found the expected pattern.

The wave model of light has one serious drawback, though: Unlike other wave phenomena such as
sound, or surface waves, it wasn’t clear what the medium was that supported light waves. Giving
it a name – the “luminiferous aether” – didn’t help. James Clerk Maxwell’s (1831 - 1879) theory of
electromagnetism, however, showed that light was a wave in combined electric and magnetic fields,
which, being force fields, didn’t need a material medium.

1When two sources of waves oscillate in step with each other, they are said to be coherent. We will return to
this when we study interference phenomena in greater detail.
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1.1.3 Evidence for light as a stream of particles

One of the earliest proponents of the idea that light was a stream of particles was Isaac Newton
himself. Although Young’s findings and others seemed to disprove that theory entirely, surprisingly
other experimental evidence appeared at the turn of the 20th. century which could only be explained
by the particle model of light! The photoelectric effect, where light striking a metal dislodges
electrons from the metal atoms which can then flow as a current earned Einstein the Nobel prize
for his explanation in terms of photons.

We are forced to accept that both interpretations of the phenomenon of light are true, although
they appear to be contradictory. One interpretation or the other will serve better in a particular
context. For our purposes, in understanding how optical instruments work, the wave theory of light
is entirely adequate.

1.2 Features of a wave

We’ll consider the simple case of a sine wave in 1 dimension, as shown in Figure 1.3. The distance
between successive wave fronts is the wavelength.

As the wave propagates, let us assume in the positive x direction, any point on the wave pattern
is displaced by dx in a time dt (see Figure 1.4). We can speak of the propagation speed of the
wave

v =
dx

dt
(1.1)

As the wave propagates, so do the wavefronts. A stationary observer in the path of the wave
would see the perturbation oscillate in time, periodically in “cycles”. The duration of each cycle
is the period of the wave, and the number of cycles measured by the observer each second is the
frequency2. There is a simple relation between the wavelength λ, frequency f , and propagation
speed v of a wave:

v = fλ (1.2)

Electromagnetic waves in vacuum always propagate with speed c = 3.0 × 108 m/s. In principle,
electromagnetic waves may have any wavelength, from zero to arbitrarily long. Only a very narrow
range of wavelengths, approximately 400 - 700 nm, are visible to the human eye. We perceive
wavelength as colour; the longest visible wavelengths are red, and the shortest are violet. Longer

2The SI unit of frequency is the Hertz (Hz), equivalent to s−1.
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than visible wavelengths are infrared, microwave, and radio. Shorter than visible wavelengths are
ultraviolet, X rays, and gamma rays.
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Figure 1.1: A wave
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Figure 1.2: Interference
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10 CHAPTER 2. PROPAGATION OF LIGHT

2.1 Huygens’ Principle

In the 1670’s Christian Huygens proposed a mechanism for the propagation of light, nowadays
known as Huygens’ Principle:

All points on a wavefront act as sources of new waves, and the envelope of these sec-
ondary waves constitutes the new wavefront.

Huygens’ Principle states a very fundamental property of waves, which will be a useful tool to
explain certain wave phenomena, like refraction below.

2.2 Refraction

When light propagates in a transparent material medium, its speed is in general less than the
speed in vacuum c. An interesting consequence of this is that a light ray will change direction when
passing from one medium to another. Since the light ray appears to be “broken”, the phenomenon
is known as refraction.

Huygens’ Principle explains this nicely. See Figure 2.1. A plane wavefront (dashed line) approaches
the interface between two media. At one end, a new wavefront propagates outwards reaching the
interface in a time t according to Huygens’ principle, so its radius is v1t. At the other end a new
wavefront is propagating into medium 2 more slowly, so that in the same time t it has reached a
radius v2t. Now consider the angle of incidence θi and the angle of refraction θr between the
incident wavefront and the interface, and between the refracted wavefront and the interface. From
the figure we see that

sin θi =
v1t

x
and sin θr =

v2t

x
⇒ sin θi

sin θr
=

v1

v2
(2.1)

This result is usually written in terms of the index of refraction of each medium, which is defined
as

n =
c

v
(2.2)

so that
n1 sin θi = n2 sin θr (2.3)

a result which is known as Snell’s law.

Refractive indices are greater than 1 (only vacuum has an index of 1). Water has an index of
refraction of 1.33; diamond’s index of refraction is high, about 1.5. It is tempting to think that the

http://www.bbc.co.uk/education/archive/local_heroes98/biogs/huygens.shtml
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index of refraction might be associated with the density of the material, but that is not the case.
The idea lingers in the term optical density, a property of a material that the index of refraction
measures.

2.3 Total internal reflection

One important consequence of Snell’s law of refraction is the phenomenon of total internal reflection.
If light is propagating from a more dense to a less dense medium (in the optical sense), i.e. n1 > n2,
then sin θr > sin θi. Since sin θ ≤ 1, the largest angle of incidence for which refraction is still possible
is given by

sin θi ≤
n2

n1
(2.4)

For larger angles of incidence, the incident ray does not cross the interface, but is reflected back
instead. This is what makes optical fibres possible. Light propagates inside the fibre, which is
made of glass which has a higher refractive index than the air outside. Since the fibre is very
thin, the light beam inside strikes the interface at a large angle of incidence, large enough that it
is reflected back into the glass and is not lost outside. Thus fibres can guide light beams in any
desired direction with relatively low losses of radiant energy.
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3.1 Images

An optical system creates an image from an object. For example, a slide projector shows an
image of a slide on a screen. There are two types of images, real and virtual.

Since an extended object may be treated as a collection of point sources of light, we are specially
interested in the images of point objects.

3.1.1 Real images

The formation of a real image is shown schematically in Figure 3.1. A point object emits light rays
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Figure 3.1: Formation of a real image

in all directions. Some are redirected by the optical elements in the projector so that they converge
to a point image. If a screen is placed there, the image may be seen as the light concentrated there
is scattered by the screen.



3.2. CURVED MIRRORS 15

3.1.2 Virtual images

The reflection from a plane mirror is a good example of a virtual image. See Figure 3.2. The rays
reflected by the mirror seem to come from a point behind the mirror. When those rays enter the
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Figure 3.2: Virtual image formed by a plane mirror

eye of an observer or the objective of a camera, they will be seen as coming from a point. In that
sense, we see the image of the object, but there is of course nothing actually there. If we placed a
screen behind the mirror, nothing would be projected on it.

3.2 Curved mirrors

Curved mirrors are a key element of telescopes. They are usually parabolic in cross-section, for
reasons to be discussed below. A spherical mirror is a good approximation if the curvature is low.
A key property which is satisfied exactly by a parabolic mirror and approximately by a spherical
one is the ability to focus a beam of light parallel to the optical axis – the axis of symmetry of
the mirror – to a point, known as the mirror’s focal point (see Figure 3.3).

3.3 Ray tracing with mirrors

To locate an image formed by a curved mirror, particular auxiliary rays from the object may be
constructed. Consider the situation shown in Figure 3.4. Ray (1) from the object is parallel to the
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Figure 3.3: Focal point of a curved mirror

optical axis, and therefore passes through the focal point F after reflection. Ray (2) passes through
F, and therefore is reflected parallel to the axis, according to the principle of reversibility of light.
Ray (3) is reflected at the vertex of the mirror, so the reflected ray is symmetrical to the incoming
ray with respect to the axis of the mirror. The image is formed at the intersection of the three
rays. In fact, to locate the image we only need to construct two of the three possible auxiliary rays:
Where they intersect is where the image is formed.

If we are dealing with an extended object, the whole image may be constructed this way. In the
present example we can characterize the image as real, inverted (as opposed to upright), and
enlarged (as opposed to reduced).

3.4 The mirror equation

The location of the image may be calculated from the position of the object and of the mirror’s
focal point by means of the mirror equation, which we shall derive shortly. These positions are
measured by the following coordinates, illustrated in Figure 3.4: the object distance p measured
along the axis from the vertex of the mirror, where the axis intersects the mirror; the image
distance i, and the focal length f, measured in the same way. By convention, we draw the
diagram so that the light is incident from the left, and all three lengths are counted as positive
towards the left as indicated in the figure.
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Figure 3.4: Image formation by a curved mirror

Our mirror equation presupposes that the curvature of the mirror is very small, which is true if
the object is relatively small and close to the optical axis. In that case, we can draw the mirror as
approximately flat. The situation is depicted in Figure 3.5. The triangles 4OPF and 4FQI are
similar (check this). This means that the following ratios are equal:

p− f

f
=

f

i− f
(3.1)

After some manipulation, this expression reduces to

1
p

+
1
i

=
1
f

(3.2)

Exercise 3.4.1 Derive equation (3.2) from equation (3.1).
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20 CHAPTER 4. LENSES

4.1 Introduction

Mirrors, which form images by reflection, are important components of telescopes; lenses, which
form images by refraction, are also important components of many optical systems, including
(refracting) telescopes. Next, we shall see how an image is formed as light rays from an object pass
through two interfaces, generally air/glass and glass/air. Our first task is to locate the image of a
point after passing through a single spherical interface.

4.2 Refraction at a spherical interface

We will restrict ourselves to those cases where the curvature of the interface is very small, so that
we can represent it as a flat surface (albeit with a finite radius of curvature!) as shown in Figure
4.1. In the figure, a point object at O emits a ray of light along the optical axis, and another ray

n_1 n_2

p r

i

normal

α

θ

φ
θ−α

θ−α−φ

O

P

C

I
x

Figure 4.1: Refraction at a spherical surface

of light which is refracted at the interface and intersects the first one to form an image at I. The
radius of curvature of the interface is r; as usual, the object distance to the interface is p and the
image distance is i, butnote the following important caveat:
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The sign convention for refraction is different from the one for mirrors: object distances
are counted as positive when the object is in front of the interface, but image distances
are positive when the image is formed behind the interface. The radius of curvature
follows the same convention as the image distances.

In the case of Fig. 4.1, the surface is convex, so the centre of curvature C lies to the right, and r
is positive.

For the oblique ray, the incidence angle is θ and the refracted angle is φ. Then, by the exterior
angle theorem, 6 PCO = θ − α and 6 PIC = θ − α− φ.

In the small angle approximation (see Appendix A), Snell’s law becomes

n1θ = n2φ (4.1)

and we can also approximate the angles as follows:

α =
x

p
(4.2)

θ − α =
x

r
⇒ θ =

x

p
+

x

r
(4.3)

θ − α− φ =
x

i
⇒ φ =

x

r
− x

i
(4.4)

and substituting θ and φ in Snell’s law, we get after cancelling x

n1

p
+

n1

r
=

n2

r
− n2

i
(4.5)

which can be rearranged more meaningfully to
n1

p
+

n2

i
=

n2 − n1

r
(4.6)

If the light is passing from air of refractive index n1 = 1 to glass of index n2 = n, equation 4.6
becomes

1
p

+
n

i
=

n− 1
r

(4.7)

4.3 A lens

4.3.1 Locating the image

In a lens, there are two consecutive refractions, one from air to glass, and then from the glass back
into the air. Figure 4.2 shows the process. Applying eq. (4.6) to the first refraction, we get

http://www.bbc.co.uk/education/gcsebitesize/maths/shape_and_space_i_h/straight_lines_angles_and_polygons_rev.shtml
http://www.bbc.co.uk/education/gcsebitesize/maths/shape_and_space_i_h/straight_lines_angles_and_polygons_rev.shtml
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L

O I’ I

p i’

L−i’ i

Figure 4.2: Two consecutive refractions

n1

p
+

n2

i′
=

n2 − n1

r1
(4.8)

where r1 is the curvature radius of the first surface. The image formed after the first refraction is
the object of the second refraction, and its distance from the second surface is

p′ = L− i′ (4.9)

so that the final image is formed at a distance i from the second surface given by

n2

L− i′
+

n1

i
=

n1 − n2

r2
(4.10)

In the thin lens approximation, L→ 0 so that eq. (4.10) is reduced to

−n2

i′
+

n1

i
=

n1 − n2

r2
(4.11)

To eliminate the intermediate image and arrive at a single relation between object and image
distances, add the two equations (4.8) and (4.11):

n1

p
+

n1

p
= (n2 − n1)

(
1
r1
− 1

r2

)
(4.12)
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4.3.2 The lensmaker’s equation

Almost always, of course, the outside medium is air – n1 = 1 – , and the material of the lens is
glass, with a refractive index n2 = n depending on the particular type of glass used. In this case,
eq.(4.12)

1
p

+
1
i

= (n− 1)
(

1
r1
− 1

r2

)
(4.13)

Notice that the right-hand side only depends on the characteristics of the lens: What it’s made
of, and the curvature radii of its surfaces. It has dimensions of (length)−1; and what is more, when
the object is at infinity, so that the incident rays are parallel to the axis, the image is formed at
a distance from the lens equal to the inverse of the right-hand side. All this indicates that we can
define a focal length for the lens

1
f

= (n− 1)
(

1
r1
− 1

r2

)
(4.14)

This is the lensmaker’s equation. It tells a lensmaker what curvature radii he should achieve
when he grinds a lens to obtain a desired focal length f , given that he’s working with a particular
type of glass of refractive index n.

4.3.3 The thin lens equation

When we substitute f from equation (4.14) in equation (4.12), we get the following very simple
recipe for locating the image formed by a lens:

1
p

+
1
i

=
1
f

(4.15)

We wil call this the thin-lens equation. It is identical to the mirror equation (3.2)! But beware:
The sign convention is not the same.

4.3.4 Converging and diverging lenses

If the focal length is positive, the image of an object at infinity is formed by rays converging at a
point behind the lens. Such a lens is called converging. On the other hand, if the focal length is
negative, the rays from an object at infinity diverge after passing through the lens, appearing to
come from a point somewhere in front of the lens. This is called a diverging lens.



24 CHAPTER 4. LENSES

���
���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

F1 F2

(1)

(2)

(3)

Figure 4.3: Ray tracing with a converging lens.

Exercise 4.3.1 Use the lensmaker’s equation to show that a converging lens is thicker in the
middle, and a diverging lens is thinner in the middle.

4.3.5 Ray tracing with lenses

For the purposes of ray tracing, every lens is said to have two focal points, a primary focal point
and a secondary focal point. A converging lens has its primary focal point on the side from
where the light is coming (usually drawn on the left), and the secondary focal point is symmetrically
on the other side of the lens. The opposite is true of a diverging lens.

As with mirrors, we can locate an image formed by a lens graphically, with the help of three
auxiliary rays (see Figures 4.3 and 4.4):

• A ray parallel to the axis passes through (or appears to pass through) the secondary focal
point F2. (Ray 1 in the figures).

• A ray passing through (or when extended, appearing to pass through) the primary focal point
F1 emerges from the lens parallel to the axis. (Ray 2 in the figures).

• A ray falling on the lens at its centre passes through undeflected. (Ray 3 in the figures).
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Figure 4.4: Ray tracing with a diverging lens.

4.3.6 Real and virtual images

In Figure 4.4 the image was formed at the intersection not of the light rays emerging from the lens,
but of their extension backwards. This means that the image is virtual: It cannot be projected on
a screen. In fact, the image is formed behind the lens, so if a screen were placed there, the light
would be blocked and would not be able to pass through the lens at all!

It is possible to tell whether an image is real or virtual from the thin-lens equation, without having
to locate it by ray tracing. In the case of Figure 4.4 the thin-lens equation is

1
p

+
1
i

= − 1
|f |

(4.16)

where we have emphasized that the focal length of the lens is negative by writing it as −|f |. Then
the position of the image is

i = − p|f |
p + |f |

< 0 (4.17)

The image is virtual if and only if i is negative.
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y

A

C

B

Figure 4.5: Lateral magnification by a lens.

4.3.7 Lateral magnification

Figure 4.5 illustrates how an image may be located by ray tracing. The optical axis has been marked
off in units of the focal length f . Notice also that we have drawn a y axis, positive upwards. Clearly,
the image is larger than the object, and also inverted. We can also get this information directly
from the lateral magnification

m =
yi

yo
(4.18)

where yi is the height of the image and yo is the height of the object. These heights are measured
along the y axis, so in this case yo > 0 but yi < 0. In this way, the absolute value of m measures
how much bigger (or smaller) the image is compared with the object, and the sign of m tells us
whether the image is upright or inverted relative to the object.

It is evident from the figure, using ray ABC, that

m = − i

p
(4.19)

Given the position of the object p, from the thin-lens equation we can calculate i, and hence also
the lateral magnification m. For example, in the case of the figure, if we let f = 1, then p = 3/2,
so

2
3

+
1
i

= 1⇒ i = 3⇒ m = −2 (4.20)

which is confirmed by ray tracing.



Chapter 5

Optical instruments using lenses

27



28 CHAPTER 5. OPTICAL INSTRUMENTS USING LENSES

5.1 Single-lens systems

To see how the analytical tools developed in the previous chapter may be applied to the design of
some simple optical systems, we study first systems formed by a single lens. You may find it useful
to reproduce these examples using our virtual optical bench.

5.1.1 A magnifying glass

Angular size

What we perceive as the “size” of an object is the angle that it subtends in our field of vision. (See
Figure 5.1). Clearly, to increase the angular size of a small object in order to see it better, we need
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θ

Figure 5.1: Angular size

to bring it as close to the eye as possible. But there is a limit to how close we can bring it: Beyond
a certain distance, called the near-point distance, we can no longer focus the eye to create a
sharp image on the retina. A magnifying glass is a converging lens which creates an image of an
object very close to the eye at the near point, or slightly beyond it, so that the image may be seen
sharply in focus.

Since the image is formed behind the lens, it is a virtual image. A ray-tracing analysis of the
magnifying glass is shown in Figure 5.2. If the height of the original object is y, its angular size in
the small-angle approximation is essentially the same as the tangent of the angle,

θ =
y

p
(5.1)

The eye is most relaxed when it is focused at infinity, so we want to form the image with the glass
as far away as possible. This means that p must be very slightly under the focal length f , so we
may write equation 5.1 as

θ =
y

f
(5.2)

http://www.phas.ucalgary.ca/physlets/opticalbench.htm
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p

i

F

Figure 5.2: Image formation by a magnifying glass

and this is also the angular size of the image.

If we were obliged to look at the object at the near point distance dN with the naked eye, its
angular size would be

θ′ =
y

dN
(5.3)

so the angular magnification of the magnifying glass is

mθ =
θ

θ′
=

dN

f
(5.4)

Clearly, a magnifying glass should have a small focal length in comparison with dN , which is
normally estimated as 25 cm.

5.2 Compound optical systems

Many useful instruments consist of two or more lenses aligned on a common axis. In this section
we will discuss two-lens systems. The same ray-tracing techniques, and the same thin-lens formulas
may be applied, bearing in mind that the image formed by the first lens becomes an object for the
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second lens. Figure 5.3 shows such a system schematically. The first image is formed at a distance

L1 L2

O

I’ = O’

I

i’ p’ = L − i’p i

L

Figure 5.3: A two-lens system

i′ from the first lens L1 given by

1
p

+
1
i′

=
1
f1

(5.5)

and as an object for the second lens, its object distance is p′ = L− i′. The final image is formed at
a distance i from the second lens, given by

1
L− i′

+
1
i

=
1
f2

(5.6)

Eliminating i′ between these two equations, a single equation may be obtained relating i, p, and
the two focal lengths f1 and f2.

As a practical application of a two-lens system, we will discuss one particular instrument here, the
refracting telescope.
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5.3 The refracting telescope

Although real refracting telescopes have complex lens combinations to correct the image, for the
purpose of understanding how they work it is sufficient to regard a telescope as consisting of two
elements, the objective and the eyepiece, or ocular.

Figure 5.4 shows how an image is formed by a telescope. The object is very distant, and the
objective forms an image of it at an image distance equal to its focal length. The eyepiece is set
up so that its focal point practically coincides with that of the objective, so that the intermediate
image will form an image at infinity as shown. But because the focal length of the eyepiece is
smaller, the angular size of the final image is larger than the angular size of the object.

To calculate the angular magnification of the telescope, mθ = θ′/θ, we note first that

θ = 6 BAD ≈ tan 6 BAD =
h

fo
(5.7)

Here fo is the focal length of the objective, and h is the height of the image formed by the objective.
Notice how the sign conventions apply here: h is negative because the image is oriented downwards,
so θ = h/fo is also negative, since fo > 0 for a converging lens. This is consistent with the convention
that angles are counted as positive going counterclockwise, so the angle θ′ from the optical axis to
the light ray is negative.

As for θ′,

θ′ = 6 BCD ≈ tan 6 BCD = − h

fe
(5.8)

Here fe is the focal length of the eyepiece. The minus sign is necessary to make θ positive, because
h < 0.

Now we can calculate the angular magnification as

mθ =
θ′

θ
= −fo

fe
(5.9)

The telescope forms an inverted image, which is sometimes undesirable. The spyglass, or terres-
trial telescope, is used to observe objects closer to the observer. It is a variation on the telescope
which produces an upright image. The essential difference is that the eyepiece is a diverging lens.
Figure 5.5 shows the paths of the rays in this case.

Notice that the intermediate image formed by the objective lens falls to the right of the eyepiece.
When this happens, this image is said to be a virtual object for the eyepiece. All this means is
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Figure 5.4: A refracting telescope.

that an image would be formed there if the eyepiece didn’t exist. For the purpose of calculation,
the object distance for the eyepiece is negative.

Remarkably, equations (5.7) and (5.8) still hold, so the angular magnification is still given by
equation (5.9). But, since fe < 0, the angular magnification is positive, which means that the final
image is upright.

Exercise 5.3.1 Verify that equations (5.7) and (5.8) still hold even for the spyglass. Pay special
attention to the signs of the angles. Remember that in this case fe < 0.
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Figure 5.5: A spyglass.
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6.1 Wave phenomena

6.1.1 Introduction

Geometrical optics allows us to understand and even to design a wide variety of optical instru-
ments. Certain optical phenomena, however, can only be explained in terms of the wave properties
of light. In this chapter we focus on two such phenomena, interference and diffraction.

6.1.2 Interference

Thomas Young (1773 – 1829) performed a now classical experiment that showed up the wave
properties of light. By splitting up a light beam into two, he effectively created two very close,
coherent sources of light, emitting waves of identical wavelength and in step with each other. As
the wavefronts spread out in space, they combined with each other, producing interference. At
certain locations, the two waves would arrive in step and enhance each other; at certain other
locations, the waves would arrive exactly out of step and cancel each other. This simulation shows
interference produced in a “ripple tank” with surface waves in a liquid.

Location of interference maxima

We limit our analysis to the formation of interference patterns very far from the sources. Consider
the situation illustrated in Figure 6.1. Two rays meeting at a distant point with direction θ
with respect to the symmetry axis of the two sources, will interfere destructively or constructively
depending on the optical path difference (OPD in the figure). If OPD = mλ, where m is a whole
number, then the waves from the two sources will arrive in step where they meet, and interfere
constructively, creating a bright point of light at that location. From the figure we see immediately
that the possible directions of interference maxima are given by

d sin θ = mλ (6.1)

where m = 0,±1,±2, . . ..

6.1.3 Diffraction

More intriguing perhaps is that we observe bright and dark bands even when light passes through
a single slit. This is because accoridng to Huygens’ principle, each point along the aperture acts as

http://wise.fau.edu/~jordanrg/bios/Young/Young_bio.htm
http://www.phas.ucalgary.ca/physlets/ripple.htm
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To point on distant screen

θ
θ

d

OPD

Figure 6.1: Two-slit interference

a new source of circular wave fronts, all of which will combien to produce an interference pattern
far away. (See Figure 6.2).

Location of diffraction minima from a single slit

Of all the countless point sources along the aperture, consider a particular pair: One point on the
edge of the aperture, and another exactly halfway across the aperture, as shown in Figure 6.3.
These will interfere destructively if the OPD = λ/2. Similarly, all other pairs of points across the
aperture separated by a/2 will also interfere destructively. So the first dark fringe will be formed
in a direction given by

a

2
sin θ =

λ

2
(6.2)

or more simply

a sin θ = λ (6.3)
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Figure 6.2: Waves emerging from an aperture.

The next minimum is formed when pairs of sources separated by a/4 interfere destructively, i.e.
when

a

4
sin θ =

λ

2
(6.4)

that is, when
a sin θ = 2λ (6.5)

In general, diffraction minima may be found in the directions given by

a sin θ = mλ (6.6)

where m = ±1,±2, . . ..

Diffraction by a circular aperture

A slit will produce a diffraction pattern consisting of bright and dark fringes parallel to the slit.
Different shape apertures will produce accordingly different shape diffraction patterns. For example,
a circular aperture produces a very bright central spot, surrounded by alternating birght and dark
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Figure 6.3: Formation of diffraction minima by a single slit.

rings. (See this image). A more complex calculation shows that the direction of the first dark ring,
which is practically the same as the edge of the central spot, is given by

sin θ = 1.22
λ

d
(6.7)

Resolution of an optical instrument

Any optical instrument gathers light through an aperture, so a poitn source of light will be imaged
not as a point, but as a diffraction pattern, of which most is contained in the central spot. This
limits the resolution of the instrument, that is, the ability to distinguish sufficient detail. For
example, a telescope may not be able to distinguish two stars that are very close together, because
their diffraction patterns overlap. (See this image). Rayleigh’s criterion states that two points
may not be resolved if their angular separation is less than

θR = arcsin
(

1.22λ

d

)
≈ 1.22λ

d
(6.8)

http://www.phas.ucalgary.ca/phys323/fall/airy.gif
http://www.phas.ucalgary.ca/phys323/fall/airy2.jpg
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Thus the bigger the aperture of a telescope, the better is its resolving power. (Also, it gathers
more light so it is capable of registering fainter objects than a smaller instrument). Another good
example of the use of a large aperture to improve resolution is the unusually large eye of predatory
birds like eagles or owls.

6.1.4 Diffraction gratings

One of the most important applications of interference is spectrometry, based on the interference
pattern produced not by one or two, but by very many thin slits close together. Such devices
are called diffraction gratings. Interference maxima will be produced in the same directions as
with only two slits. Thus, if the separation between adjacent slits is d, the maxima will be in the
directions

d sin θ = mλ (6.9)

where m = 0, 1, 2, . . ..

The important feature of a diffraction grating is that the interference maxima will not be in the
form of broad bands but rather very thin, bright lines. We can show this by calculating the half-
width of the central maximum. (Figure 6.4 shows what we mean by half-width). The brightness
of the line drops to zero in the direction in which the N slits have an interference minimum. As N
is usually a very large number, the situation is very similar to diffraction by a single slit of width
Nd. So the first interference minimum is in the direction ∆θhw, given by

(Nd) sin∆θhw = λ (6.10)

and in the small-angle approximation

∆θhw =
λ

Nd
(6.11)

In general, for any order of interference m,

∆θhw =
λ

N cos θ d
(6.12)

Spectrometry: Application of a diffraction grating

All atoms and molecules are capable of emitting electromagnetic radiation when they absorb en-
ergy, at very distinct wavelengths, characteristic of each particular substance. Thus the “emission
spectrum”, as the set of wavelengths of the emitted light is called, is an important analytical tool.

http://ebiomedia.com/gall/eyes/sharp.html
http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/grating2.html#c1
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∆θ
hw

θ

Intensity

Figure 6.4: The half-width of the central interference line produced by a diffraction grating.

The light emitted by a sample of a substance may be split up effectively by passing it through a
diffraction grating, since the direction of each interference maximum depends on wavelength. More
than one complete spectrum may be formed in principle, one for each order of interference.

An interesting variation on this theme is when a relatively cool gas is illuminated by light with a
broad continuous spectrum (such as the uppermost layers of a star). In this case, the gas absorbs
light at characteristic wavelengths, leaving dark lines in the resulting spectrum. Again, the chemical
composition of this gas is revealed by which wavelengths are absent from the original continuous
spectrum.

For example in astrophysics the chemical composition of distant objects may be revealed by spec-
trometry.

Dispersion and resolving power of a diffraction grating

We use a diffraction grating to measure the wavelength of a light emission by measuring the direction
in which a bright line is formed. In practice, an uncertainty in the direction of the bright line will

http://home.achilles.net/~jtalbot/data/index.html
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result in an uncertainty in the wavelength. According to the error propagation formula,

∆λ =
∣∣∣∣dλ

dθ

∣∣∣∣ ∆θ (6.13)

Two properties of the grating contribute to ∆λ. One is the dispersion of the grating,

D =
∣∣∣∣dθ

dλ

∣∣∣∣ (6.14)

and the other is the minimum separation ∆θ between two lines that the grating can resolve. Now
we have seen that the interference maxima occur at angles θ given by

d sin θ = mλ (6.15)

where m = 0,±1,±2, . . .. Therefore
D =

m

d cos θ
(6.16)

Clearly to reduce the uncertainty ∆λ we want a high value of the dispersion. A small d is helpful.

The other contribution to the uncertainty in λ is that lines have a finite half-width. So if two
lines are very close in wavelength, so that their separation is less than their half-width, they will
overlap. To estimate the minimum ∆λ that the instrument can resolve, we’ll substitute ∆θhw

from equation (6.12):

∆λ =
dcosθ

m

λ

N cos θd
=

λ

mN
(6.17)

The resolution of the grating is defined as

R =
λ

∆λ
= Nm (6.18)

The higher the resolution, the smaller the uncertainty ∆λ. Increasing the number of slits will do
the trick.

6.2 Summary of formulas in this chapter

Two-slit interference: The directions of interference maxima are given by

d sin θ = mλ (6.19)

where m = 0,±1,±2, . . .. d is the separation between the slits.
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Diffraction by a single slit: The directions of diffraction minima are given by

a sin θ = mλ (6.20)

where m = ±1,±2, . . .. a is the width of the slit.

Diffraction by a circular aperture: The angular half-width of the central diffraction spot is
given by

sin θ = 1.22
λ

d
(6.21)

Rayleigh’s criterion: Two points on an object may be resolved by an optical instrument of
aperture diameter d in light of wavelength λ if their angular separation is at least

θR = arcsin
(

1.22λ

d

)
≈ 1.22λ

d
(6.22)

Diffraction grating: A diffraction grating produces bright lines in directions θ given again by

d sin θ = mλ (6.23)

where m = 0,±1,±2, . . ..

The half-width of a line is
∆θhw =

λ

Nd cos θ
(6.24)

where N is the number of slits in the grating.

The dispersion of the grating is
D =

m

d cos θ
(6.25)

and the resolution is
R =

λ

∆λ
= Nm (6.26)
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A.1 Small angle approximation

For small values of θ, the functions sin θ and tan θ take on particularly simple forms. Consider a
very “thin” right triangle, as shown in Figure A.1. Since a ≈ h,

a

h

o s

θ

Figure A.1: A thin right triangle

sin θ ≈ tan θ (A.1)

Also, to a very good approximation the triangle resembles a circular wedge, with o replaced by the
arc s, so that o/h ≈ s/h = θ (if θ is measured in radians). Putting everything together,

θ ≈ sin θ ≈ tan θ (A.2)
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B.1 Derivations for the Module 7 exam

1. Snell’s Law: Two transparent media (call them 1 and 2) are separated by a plane interface.
Waves travel in each medium with speed v1 or v2. A plane wavefront propagating in medium
1 reaches the interface at an angle θi, and propagates into medium 2 at a different angle θr

with respect to the interface. Show that

sin θi

v1
=

sin θr

v2

Answer: See Figure B.1. The line PR is part of the incident wave front, and QS is part of
the refracted wave front. In a time t, point P propagates to Q in medium 1. The distance PQ
is v1t. In the same time, point R propagates inside medium 2 to another point S, a distance
v2t from R. In fact, because Q and S are on the same wave front, S must be where it is shown
in the figure. In triangle PQR, we have that

R

S

P

Q

v 1 t

v
2

t

xθ

θ

i

r

Figure B.1: Derivation of the law of refraction.

sin θi =
v1t

x
(B.1)

and in triangle QRS,

sin θr =
v2t

x
(B.2)
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and therefore
sin θi

v1
=

sin θr

v2
(B.3)

2. Mirror equation: Derive the mirror equation

1
i

+
1
p

=
1
f

where i is the image distance, p is the object distance, and f is the focal length of the mirror.

Answer: See Section 3.4. Please note that all the steps must be completed explicitly, includ-
ing the notes say “after some algebraic manipulation...”.

3. Young’s experiment: Light of wavelength λ illuminates two thin slits, separated by a
distance d. On a distant screen an interference pattern is produced. Define an axis from the
slits to the central maximum. Show that every other maximum lies in a direction at an angle
θm with respect to this axis, given by

d sin θm = mλ

where m = 0,±1,±2, . . ..

Answer: See section 6.1.2.
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