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1

1 INTRODUCTION

1.1 History

The history of elementary particle physics is only 100 years old. J. J. Thomson

discovered the electron in 1897 and the electron remains the prototype of an el-

ementary particle, while many other particles discovered between then and today

have lost that status. Soon came the Rutherford atom and the nucleus and the Bohr

quantization. Neutrons, neutrinos and positrons came in the 30’s, some predicted

and found shortly thereafter, though it took many years to prove the existence of

the neutrinos.1 To understand the interaction of elementary particles, quantum me-

chanics and relativity are necessary. In fact more than the two as separate pieces

are necessary. Quantum field theory, the complete merging of Lorentz invariance

and quantum mechanics, properly allows the description of elementary particles and

their interactions. Field theory explicitly accounts for creation and absorption of

field quanta, corresponding to the experimental reality we observe in the laboratory.

1.2 Elementary particles

The discovery of the electron led to the first model of the atom, by Thomson himself.

Soon after, the Rutherford experiment, executed by Geiger and Marsden, proved

the untenability of the Thomson atom and the atom, or better the nucleus, becomes

understood in its correct form. This rapidly leads to the understanding of the proton.

Thanks to Thomson, Rutherford, Planck, Einstein, Chadwick and Mosley, early in

the last century three elementary particles are known, the electron e, the photon γ

and the proton p. The proton has lost this status today, or better some 40 years

ago.

In a beautiful interplay between theory advances and experiments the list of

particles grows rapidly, adding the neutron, the positron and the neutrino in 1932.

Around 1930 the first glimpses of field theory are developing, culminating in 1950

with the Quantum Electrodynamics, QED, of Feynman and Schwinger, also Tomon-

aga, and the renormalization program. All the problems that had made Lorentz life

miserable, the self-energy of the electron, the divergences of the classical electromag-

netism, are understood. At the very least we know today how to get finite and even

1It turned out that there are three types on neutrinos, the first was found in 1953, the second

was proved to exist in 1962 and the third became necessary in the 70’s and has probably been

observed in the year 2000.
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very accurate answers for measurable quantities, which used to come out infinite in

classical electromagnetism.

Fermi, inspired by the theory of electromagnetic radiation, introduces a four

fermion effective theory of β-decay, which is violently divergent, if used next to

lowest order. The agreement of experiments with lowest order calculations is however

excellent and the theory makes the neutrino a reality, even though it will not be

detected until 1953 (ν̄e). A four fermion interaction is non renormalizable. Yukawa

also extends the em theory of radiation to the strong interactions, introducing a new

field quantum, the pion. The pion corresponds to the photon of electromagnetism,

but with zero spin and non zero mass. The Yukawa theory is renormalizable.

At the end of the World War II years, some new unexpected findings again pushed

forward particle physics, mostly creating hard puzzles. First, after some confusion,

a new fermion is discovered, the muon - µ. The confusion is due to the fact that at

first the muon was thought to be the pion of Yukawa, but Conversi et al. in Rome

proved differently. The pion is soon later discovered. Then come strange parti-

cles, necessitating entirely new ideas about conservation laws and additive quantum

numbers.

A period of rapid development, when new particles were discovered by the dozen,

both created confusion and stimulated the birth of the new ideas which eventually

led to today’s understanding of elementary particles and their interactions.(4)

Table 1.1. Elementary particles in 1960

J Symbol Generic name Elementary?

0 π±,0, K±,0,0̄, .. (P)Scalar mesons no

1/2 e, µ, eµ, νµ Leptons yes

p, n, Λ, Σ... Baryons no

1 γ Photon yes

ρ, ω... Vector mesons no

3/2 ∆++,+,0,−,.. Ξ−,0... Baryons no

It is perhaps odd that today, particle physics is at an impasse: many new ideas

have been put forward without experiment being able to confirm or refute. Particle

physics has been dominated by experiments, theory building beautiful synthesis of

ideas, which in turn would predict new observable consequences. It has not been so

now for some time. But we strongly believe new vistas are just around the corner.

A list of particles, around 1960 is given in the table below.

The vast majority of the elementary particles of a few decades ago do not survive
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as such today. A table of what we believe are elementary particles is given below:

Table 1.2. Elementary particles in 2001

J Symbol Generic name Observed

0 H Higgs scalar no

1/2 e, µ, τ , νe, νµ, ντ leptons yes

u, d, c, s, t, b quarks yes

1 γ photon yes

gi
j gluon (8) yes

W±, Z0 vector bosons yes

2 graviton no

All spin 0, 1/2, 1, 3/2, 2... hadrons have become qq̄ or qqq bound states. We are

left with 1+12+1+8+3=25 particles, plus, for fermions, their antiparticles, which

in a fully relativistic theory need not be counted separately. Pushing a point we

could count just 1+12+1+1+2=17 particles, blaming the existence of 8 different

gluons on the possible values of an internal degree of freedom. Notice that we have

included in the list the Higgs scalar, about which we know nothing experimentally.

It is however needed as the most likely means to explain how the W and Z gauge

boson acquire a non vanishing mass.

Almost in one day, 136 mesons and 118 baryons were just dropped from the

list of particles, elementary that is. Still 17 or 25 elementary particles are a large

number. Theories have been proposed, in which these 17 objects are themselves

made up of a smaller number of constituents. These theories are not self-consistent

at the moment. Other attempts to go beyond present knowledge invoke an entirely

new kind of symmetry, called supersymmetry, which requires instead a doubling

(or more) of the number of elementary particles. Again if such doubling were due

to some internal degree of freedom, such that the new particles’ properties were

uniquely determined by those of the particles we know, we might be more willing

to accept the doubling. It turns out that supersymmetry cannot be an exact, local

symmetry. It can only be a global symmetry, broken in some way. Thus more

parameters appear in the theory: the masses of the new particles and the coupling

constants. There are other unanswered questions, we mention two in the following.
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1.2.1 Masses

There are many puzzles about the masses of the elementary particles. Local gauge

invariance, the field theory formulation of charge conservation, requires that the

gauge vector fields mediating interactions are massless. This appears to be the case

of the photon, to very high experimental accuracy. From the limits on the value of

ε in the Coulomb potential

V (r) ∝ 1

r1+ε
(1.1)

obtained in classical measurements, one finds mγ <6× 10−16 eV. Gluons do appear

to be massless, although at low energy the theory is hard to use and verify. W and Z

definitely are not massless. The Higgs meson is therefore introduced in the standard

model to spontaneously break the electro-weak SU(2)⊗U(1) gauge symmetry. The

gauge bosons acquire a mass and miraculously the theory remains renormalizable.

To be more precise, many years of formal development have lead to the explicit

construction of a “spontaneous” symmetry breaking mechanism which explains how

the gauge bosons acquire mass. The corresponding “almost” gauge invariant theory

was then proven to be renormalizable. The miracle is, perhaps, that this theory,

incomplete and unsatisfactory, is confirmed by experiments, so far.

The mass of the Higgs itself is not determined, the appropriate energy scale

being 1/
√√

2 × GF =246 GeV, where GF =1.166×10−5 GeV−2 is the Fermi coupling

constant.

The values of the fermion masses seem even more peculiar. While the neutrino

mass was originally assumed to be zero, there is no reason for it to be so, except

in the construction of the standard model, the recently discovered top quark has a

mass of 175 GeV. The spin 1/2 fermion masses, leptons and quarks, are generated

in the standard model through Yukawa couplings to the Higgs field, with arbitrary

constants λ, one for each fermion, each to be adjusted so as to give the observed

mass. The theory offers no guide for the value of these coupling constants. The

explanation of the standard model is therefore sterile, a confession of ignorance.

The fermion masses’ spectrum is entirely a mystery at the moment. The zero mass

of the neutrino, in fact, is not too well established. All measurements of m(νe) are

consistent with zero, typically giving m(νe) < 10−15 eV, although all recent experi-

ments consistently find m2(νe) < 0. Recently observations on solar and atmospheric

neutrino intensities have been taken to suggest that neutrinos oscillate between their

possible flavors, leading to neutrino masses in the 10−2-10−3 eV, although with some

conflicts. It has been argued (Okun) that the natural values of the fermion mass
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are either zero or 246 GeV, the value mentioned above. The observed values almost

cover the whole range.

1.2.2 Conserved additive quantities

From the observed absence of expected process one is led to postulate the existence

of additive quantum numbers corresponding to charge-like observables. Thus the

stability of nuclear matter leads to assigning a baryon number to all hadrons and to

the assumption that the baryon number B is conserved, maybe exactly. Again when

the standard model became reasonably established, it became clear that it does not

guarantee in any way the conservation of baryon number. Baryon conservation is

just assumed, i.e. it is put in by hand. Minimal extension of the standard model

predicted that the proton lifetime should be of O(1028 or 29) years but no decay has

been detected, corresponding to lifetimes as large as 1032 years. The interpretation

of the results is somewhat ambiguous. Note that the lifetime of the universe is about

5×1010 years. From a practical point, one mole of protons is ∼1024 protons and 1000

tons of matter, 10×10×10 m3 of water, contain 1033 nucleons. Therefore a lifetime

of 1033 years means one decay per year! This limit might be reached in a few years

by “Super Kamiokande”. SuperK recently suffered a terrible accident.

Another such quantity is the lepton number L. For that matter there are three

conserved lepton numbers, Le, Lµ and Lτ . Reactions in which µ → e don’t appear

to go. Branching ratio limits are 10−11, −12, many orders of magnitude lower than

expected in naive models. Still exact conservation of L implies the existence of three

new kinds of photon-like fields: γe, γµ and γτ .

The problem with the conservation of such charges lies in the fact that, in field

theory, conservation can be guaranteed by the existence of a local gauge invari-

ance. A local gauge invariance requires however the existence of a massless gauge

field, the equivalent of the photon field for the U(1) local gauge symmetry guar-

anteeing conservation of electric charge. There is no evidence whatsoever for such

fields. Historically it was through attempts to understand conservation of baryon

number that non-abelian gauge invariance and the corresponding Yang-Mills fields

were introduced, leading later to the development of the correct theory of strong

interactions, quantum chromo dynamics or QCD.
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1.3 Natural Units: h̄=c=1

Some physical constants are of universal importance and tend to appear in many

relations. For both reasons it is convenient to choose units in which they become

unity and dimensionless. Moreover there is no reason for having four or three or

whatever dimensioned units other than convenience. When this is done physics

appears more transparent, at the cost of having to convert to more common units

at the end of a calculation. In the following we will use units, as is commonly done

in particle physics, which follow from setting h̄=c=1. Then [L] = [T], from c=1

and [E] = [L−1]. Thus we are left with only one dimensionful quantity which can

be taken either as energy, typically measured in eV, (or MeV or GeV) or length,

usually measured in fermi, 1 fm=10−13 cm, or time, for which we retain the second.

Conversion from MeV to fermi to seconds follows from the value of c and h̄. From

h̄×c=197.327 053 MeV×fm, we find

1 fm ∼1/197 MeV−1.

From c=2.99... × 1010 cm/s∼3 × 1023 fm/s we have 1 fm ∼ 3.33 × 10−24 s =1/197

MeV−1. Recalling that τ = 1/Γ, we can rephrase this last statement as - a state

which has a 197 MeV width decays with a lifetime of 3.33×10−24 s. Other convenient

relations are: 1 mb=2.57 GeV−2 and 1 GeV−2=389 µb. For convenience we list below

some conversions between units of interest in particle physics.

Table 1.3. Unit conversion

To convert from to multiply by

1/MeV s 6.58 × 10−22

1/MeV fm 197

1/GeV2 mb 0.389

and the width-lifetime relations typical of strong and weak interactions

Γ=100 MeV → τ=6.58 × 10−24 s

τ=10−10 s → Γ=6.58 × 10−6 eV

∆mK (∼ΓS/2) =0.53 × 1010 s−1 → ∆mK=3.49 × 10−6 eV
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Physical Constants and Units

fermi fm 10−13 cm
barn b 10−24 cm2

angstrom Å 10−8 cm

Speed of light c 2.9979.. × 1010 cm s−1

Electron charge e 1.602... × 10−19 C
Planck’s constant, reduced h̄≡ h/2π 6.582... × 10−22 MeV s

Conversion constant h̄c 197.3... MeV fm
Electron mass me 0.511... MeV

Proton mass mp 938.3... MeV
Fine structure constant α 1/137.035...

Fermi constant GF 1.166 × 10−5 GeV−2

Gravitational constant GN 6.707 × 10−39 GeV−2

Avogadro’s number NA 6.022 × 1023 mole−1

Molar volume 22,414 cm3 mole−1

kT at 1 K 8.617... × 10−5 eV

1.4 The Electromagnetic Interaction

The (potential) energy of two charges of magnitude e, the electron charge, is

V =
e2

r
cgs units

=
e2

4πε0r
MKS units, rationalized

In natural units, h̄=c=1, [e2] = [V r] is dimensionless since [E] = [L−1]. e2 is usually

indicated with α and is called the fine structure constant, since historically it was

first measured in the study of the fine structure of the spectral lines. Putting back

h̄ and c, α is given by:

α =
e2

h̄c
cgs units

=
e2

4πε0h̄c
SI units

International System of Units (SI)

α as written above is dimensionless in both unit systems and its value is

α =
1

137.03 . . .
. (1.2)
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Traditionally in electrodynamics two other systems are used. One is the Gauss

system in which cgs-es, or esu, units are used for electric quantities and cgs-em

units are used for magnetic quantities which results in powers of c appearing when

both quantities enter in a formula. In Gauss units the Lorentz force is

�F = q( �E +
1

c
�v × �B).

The other system of units is the Heaviside system which is like the Gauss one, except

that the Coulomb law is rationalized by introducing a factor 4π in the denominator.

The value of α remains the same, but the unit of charge is different. In the Heaviside

system

α ≡ e2

4πh̄c
=

e2

4π
(1.3)

where the last expression is valid in natural units. Computations in quantum elec-

trodynamics are usually performed in the Heaviside system.

1.5 The many meanings of α

The constant α gives us the strength of the electromagnetic interaction, one of the

fundamental interactions of nature. Before discussing this we derive some simple

expressions involving α. The simplest system, which we can study in quantum me-

chanics, is the hydrogen atom. We can find the lowest energy state of the hydrogen

atom, we set the proton mass to infinity for simplicity, by minimizing the total

energy, expressed as a sum of the potential and kinetic terms. We begin with the

classical expression for the energy

E = V + T = −α

r
+ p2/2me.

Quantizing the system means to use the so-called uncertainty principle which, in our

natural units is simply p = 1/r (h̄=c=1). The meaning here is that if the electron

is confined in a region of dimensions r its average momentum is ∼p. The minimum

energy is found setting to zero the derivative of E with respect to p

d

dp
(−αp + p2/2me) = −α + p/me = 0

giving p = meα from which we find the Bohr radius a∞ = 1/(meα), in natural

units. Reintroducing h̄ and c we find a more familiar expression a∞ = 4πε0h̄
2/mee

2

in SI units (a∞ = h̄2/mee
2 in cgs units). In natural units the Rydberg constant

is α2me/2 or R∞ = 510 999 eV/(2 × 137.0362) = 13.605 . . . eV. Since p/me =

α, α is the velocity of the electron in the lowest orbit. In the limit Mp/me =
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∞, all properties of the hydrogen atom are given in terms of the strength of the

electromagnetic interaction α, a number nobody has found a way to compute, it

comes from experiment, and a second mysterious number, the electron mass.

1.6 The Gravitational Interaction

The gravitational or Newton constant, in SI units, is:

GN = 6.67259 × 10−11 m3 kg−1 s−2

From V = GMm/r and in natural units with [L] = [T] = [M−1] = [E−1] =, GN has

dimensions [M−2] = [E−2]. Conversion to natural units gives:

1 m = 1015 fm

1

1 kg
=

e

c2

1

eV
1

1 s2
=

1

c2 × 1030

1

fm2

which together with

c = 2.997 924 58 × 108 m s−1

e = 1.602 177 33 C

1 fm =
1

197.327 053 MeV

gives

GN = 6.707 112 607 × 10−39GeV−2

We would like to try to characterize the gravitational interaction by a dimensionless

parameter such as α for the interaction between charges and electromagnetic fields.

We can again write the potential energy for two equal masses:

V = GN
m2

r
.

We clearly run into a problem here, V r is dimensionless, m2 certainly is not. In

fact the gravitational constant has dimensions [GN ] = [E−2]. The dimensionless

interaction strength equivalent to α is now GN ×m2 and is not a constant at all, it

grows with m2. While the gravitational interaction is very small in particle physics,

in an the atom or a nucleus for example, for large enough masses we run into

problems. If we consider large enough masses, or small enough distances for that

matter, we can get to an interaction strength of 1. At this point we run into problems
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if we try to compute anything, since the perturbative expansion which takes into

account repeated interactions diverges badly. The relation

GN × m2 = 1

allows computing the mass at which the interaction strength becomes unity. This

mass is called the Planck mass, given by:

MPlanck = 1.221 046 49 × 1019 GeV

and its inverse is the Planck length

LPlanck = 0.82 × 10−19 GeV−1 = 1.9 × 10−20 fm

We can note that in QED the charge is the source of the field and the charge is

dimensionless. In gravity, the mass is the source of the field but mass is also energy.

1.7 Interactions and coupling constants

The elementary interactions are described by terms in the Lagrangian density, L,

linear in the field operators of the elementary objects involved. In general such

terms appear multiplied by an arbitrary parameter, called the interaction coupling

constant. The interaction Hamiltonian Hint is given by:

Hint =
∫

d3xHint = −
∫

d3xLint

where Hint = −Lint is a function of the interacting fields all at the same space-time

point x and in general of their derivatives. Using φ and ψ to generically describe

a spin 0 and a spin 1/2 field, typical interaction terms are: µφφφ, λφφφφ, gφψψ,

Gψψψψ and so on. The coupling constants appearing in different interactions have

different dimensions, which we can easily determine. First we note that since
∫ Ld3x

has dimensions of energy we have [L]=[E4]. The mass terms in the Lagrangian, for

spinless and spin 1/2 fields are respectively m2φ2 and mψ2. From which [φ]=[E]

and [ψ]=[E3/2], we shall simply say dimension 1, etc. The dimension of the coupling

constants for the interactions above are therefore as listed below:

Interaction Coupling Constant Dimension

φφφ µ 1

φφφφ λ 0

φψψ g 0

ψψψψ G −2
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We now turn to the paradigm of an interacting field theory, quantum electrodynam-

ics, whose Lagrangian is:

LQED = LDirac + LMaxwell + Lint

= ψ(i/∂ − m)ψ − 1

4
(Fµν)

2 − eψγµψAµ

where Aµ is the electromagnetic vector potential or better the photon operator,

and the field strengths are Fµν = ∂µAν − ∂νAµ. From the Maxwell term, Aµ has

dimensions 1, i.e. [A]=[E] and the interaction constant e, the electric charge of the

electron, is dimensionless.

Yukawa analogy to QED, the so called Yukawa interaction, is

LYukawa = LDirac + LKlein−Gordon − gψψφ

where the photon is replaced with a scalar particle and g, as we saw, is dimensionless.

There are two kinds of considerations we can make here. Some coupling constants

are dimensionless, which permits a meaningful comparisons of the relative strength

of different interactions. This might just be a convenient point, and in fact today,

with hopes of reaching a sort of grand unification in which three of the once different

interactions, strong, em and weak, might all have the same strength, is not any more

so important. More important is the fact that interactions with a coupling constant

of negative energy dimensions are not renormalizable which means they do not give

finite results beyond the first order. The argument can be made quite simple. In

any theory, higher order terms involve integrals over the 4-momenta of intermediate

particles, which have the form ∫ ∞
d4q

1

q2

and therefore are formally divergent. The standard procedure is to introduce a

cut-off parameter Λ and perform the above integrations only up to Λ. At the end

one takes the limit Λ → ∞, hoping for a finite result, independent of Λ. This

is not possible for couplings with negative dimensions. This goes as follows: the

contribution of any term in the perturbative expansion to the scattering amplitude

contains the coupling constant and must be dimensionless - at least all terms must

have the same dimensions, which we reduce to zero. But the second requirement

implies, for negative dimension couplings, that the diverging terms contain positive

powers of Λ, thus we cannot hope anymore to remove divergences.

In addition to the interaction terms discussed above, we can have two more

Lorentz-scalar terms with vector field and dimension zero coupling constants:

A2∂µA
µ and A4.
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The only Lorentz-scalar, renormalizable, interactions involving scalar, spinor and

vector particles are therefore: µφφφ, λφφφφ, gφψψ, the QED like interaction, often

written as JµAµ and the last two terms just above. All of these interactions appear

in the present models of strong, em and weak interactions. In fig. 1.1 we illustrate

the interactions by the corresponding lowest order amplitudes.

Fig. 1.1. Feynman graphs of the lowest order amplitudes for the renormal-
izable interactions observed in nature. Color indexes are indicated with a and
b and all amplitudes are supposed to be color scalars.

In particular, it is a triumph of the standard model of having gone beyond the

Fermi interaction, with coupling constant GF =10−5 GeV−2, which at lowest order

is an excellent description of the weak interactions. It is just the low energy limit of

a vector-spinor-spinor interactions, current×vector field interaction, formally very

similar to the electromagnetic interaction. Strong interactions have also become a

current×vector field interaction, QCD, with the difference over QED, that gluons

are ‘charged’ and therefore interact among themselves, requiring the trilinear and

quadrilinear couplings last mentioned. The φψψ interaction, originally introduced

by Yukawa to explain the nuclear force, also appears in the standard model to

explain fermion and intermediate vector boson masses.

Finally we can consider the QED Lagrangian for scalar particles. We find the

terms eAµφ∂µφ
∗ and e|φ|2A2 which correspond to a renormalizable interactions but

do not appear to be realized in nature. There are no scalar charged point particles,

unless we allow a proliferation of Higgs bosons.
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2 Order of Magnitude Calculations

2.1 Introduction

Dimensional analysis, together with good physical intuition and some luck, allows

simple and relatively accurate estimates of measurable parameters, cross sections

and decay rate. At least we should get the right order of magnitude and functional

dependence on the appropriate variables, when compared to experiment. The im-

portance of the following examples lies in the fact that they help understanding of

the mechanisms implied by the various theories of the elementary interactions. For

these estimates we will use the values of various parameters as given below.

Fine structure constant α 1/137

Fermi constant GF 10−5 GeV−2

Electron mass me 0.51 MeV

Nucleon radius rp 1 f

Strong interaction coupling constant g 1

To the list of rules, we add that we must respect Lorentz invariance. Note that the

calculation of the Bohr radius done previously does not belong to this class, it is the

correct way of quantizing a classical system.

2.2 e+e−→µ+µ−

We estimate the cross section for this process in the high energy limit. Both par-

ticles are charged leptons for which electromagnetism is the strongest interaction.

The lowest order diagram for the process is shown in figure. In all the following cal-

culations, we use Feynman graphs simply to count powers of the coupling constant

which appear in the amplitude.

Fig. 2.1. Feynman graph for e+e− → µ+µ−. k is the photon 4-momentum.

The process is described kinematically by just one variable: s = kµkµ = E2
CM.

The amplitude is proportional to the electron charge squaredi.e.to α. The transition
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probability is therefore proportional to α2 Therefore in general:

σ(e+e− → µ+µ−) = α2 × f(s,me,mµ),

where f is a function of all independent Lorentz scalars. At high enough energy, the

masses of both electrons and muons can be neglected. Dimensionally [σ] = [L2] =

[E−2] and therefore:

σ(e+e− → µ+µ−) =
α

s
.

The complete calculation of the cross section from the amplitude of fig. 2.1 gives:

σ(e+e− → µ+µ−) =
4π

3

α

s
,

about 4.2 times bigger than our estimate. We will see why we get 2’s and π’s in the

complete calculations. Numerically:

σ(e+e− → µ+µ−) ∼ 4 × 10−32

s (GeV2)
cm2

which is agreement with experiment within the above factor of ∼4.2

2.3 ν + N→. . .

We want to estimate the total cross section for neutrinos on nucleons, summed over

all possible final states. The amplitude of a weak process like this is proportional to

GF and at high energy, where all masses become irrelevant,

σ(νN) = G2
F f(s) = G2

F s,

where s is the CM energy and from the dimensions of σ and GF , f(s) = s follows.

While the reaction we first examined is typically obseved with colliding beams, in

the present case one studies collisions of a beam of neutrinos of energy E against

nucleons of mass mN∼1 GeV in a stationary target. In terms of these variables, we

get s ∼ 2mNEν , and the dimensional analysis result is:

σ(νN) ∼ G2
F mNEν .

Inserting values for GF and mN and using 1/Gev−2∼0.4 mb we find:

σ(νN) ∼ 4 × 10−38 × Eν cm2, with Eν in GeV,

to be compared with measurement:

σ(νN) = 0.6 × 10−38 × Eν cm2.

21/s dependence is characterisc of point-like particles. FF modify s dependence.
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As in the first case, within some factor, we obtain a reasonable estimate and the

correct dependence on energy, even if the two cross sections differ by many orders of

magnitude at 1 GeV. We also note the quite different energy behaviour. The muon

pair cross section vanishes at high energy as 1/s while the neutrino scattering cross

section diverges as s (Eν in the laboratory). The diverging neutrino cross section is

a signal of something wrong.3

2.4 Compton scattering

The lowest order amplitude for Compton scattering

e± + γ → e± + γ

is shown in figure 2.2.

Fig. 2.2. Amplitude for e± + γ → e± + γ. k is the photon 4-momentum
and p that of the electron.

As before the cross section should have the form σCompton = α2f(s, me), the

only variables involved in the process. In the non relativistic limit, s → me and

therefore:

σCompton =
α2

m2
e

while at high energy, the electron mass becomes negligible:

σCompton =
α2

s
.

A complete calculation, to lowest order, gives

σCompton =




8π

3

α

m2
e

s → me

2π
α

s
ln

s

m2
e

s → ∞.
(2.1)

While the low energy limit is off by a factor of 8π/3 as we have come to expect, we

miss completely in finding the logarithmic s dependence at high energy as well as a

factor 2π. The appearance of the log term can in fact be explained on the bases of

quite different considerations, see T.D. Lee.

3S-wave unitarity requires, ignoring many numerical factors, pr < 1 from which s2 < 1/G2.

Unitarity is violated by the calculated cross section for CM energies ∼1/
√

G∼300 GeV.
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2.5 Muon decay

Before continuing with other different cases, we consider the decay µ± → e±νν which

gives us a first result which is quite wrong but about which we can do something

and learn too. As always we begin with

1

τ
= Γ = G2

F × f(mµ)

which is valid if we neglect the much smaller electron mass. Since [Γ] = [E] we are

tempted to conclude:

Γ = G2
F m5

µ

a result which is wrong by a factor 1/(192π3) which is ∼1/6000! What went wrong

this time? Note that if we just compare decay rates of different parent particles

the m5 dependence is in fact correct. The failure by a factor 6000 has to do with

the number of particles in the final state and the sum over final states or simply

the phase space available to the end products. A suppression factor of 32π2∼320

comes from going to three bodies in the final state rather than two as was the case

so far. We were also always wrong by some factor of 4 to 8, which also comes from

neglecting phase space and normalization. Still, after all this, the muon result is

worse than the others by a factor of 4-8. Only an honest calculation can give the

correct answer.

2.6 Pair production and bremsstrahlung

Pair production by a photon can only occur in the field of a nucleus with charge Ze

which absorbs the recoil momentum necessary not to violate Lorentz-invariance as

illustrated in fig. 2.3 A.

Fig. 2.3. A) Amplitude for pair production in the field of a nucleus of
charge Ze. B) Amplitude for γ + γ → e+ + e−.

Before dealing with pair production, we consider the two photon process γγ→e+e−

whose amplitude is shown in fig. 2.3 B. By counting powers of e and dimensional
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arguments we get the familiar result

σ(γ + γ → e+ + e−) =
α2

s

for high enough energies so that the electron mass can be neglected. The connection

between this last process and the one we are interested in is clear: the Coulomb field

of the nucleus, which we take to be of infinite mass, provides an almost real photon

which, together with the initial photon, produces the e+e− pair. The electrostatic

Coulomb potential is Ze/r whose Fourier transform, 1/q2, is the spectrum of the

virtual photons corresponding to the potential. The 4-momentum of the virtual

photon in fig. 2.3 A is p = (0, �p), i.e. the nucleus absorbs momentum but not energy

because its mass is infinite. Because of this exchanged momentum the momenta of

the two final electrons become independent in pair creation, contrary to the case

of γγ→e+e−. Therefore, the final state of the pair production process contains an

extra factor d3p/E for the two electrons. Dimensionally this means that an extra

factor p2 ∼ s must appear in the cross section, canceling the 1/s factor in the γγ

result. Counting powers of e and Z, and taking into account the above, we finally

write σ = Z2α3f(me) and therefore:

σPair ∼ Z2α3

m2
e

.

The complete result is the Bethe-Heitler formula:

σPair =
28

9

Z2α3

m2
e

ln
Eγ

me

which is valid for a point nucleus, without screening. In fact, the Coulomb field

does not extend to infinity because of the atomic electron screening. Taking this

into account, the log term becomes a constant, ∼ln(183 × Z−1/3).

Apart from the fact that we were reasonably able to guess the magnitude and en-

ergy behavior of the pair production cross section in matter for high energy photons,

we want to comment on the implication of the result. At high energy, photons have

a finite, non-zero, mean free path in matter which is essentially energy independent

contrary to a naive expectation that absorption should disappear at high energy.

Finally we remark that the same result applies to bremsstrahlung. The process by

which a high energy electron, or positron, radiates crossing matter is identical to that

of pair creation. Figure 2.4 B shows the relation of the bremsstrahlung amplitude

to that of pair creation, fig. 2.4 A.
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Fig. 2.4. A) Amplitude for pair production in the field of a nucleus of
charge Ze. B) Amplitude for photon radiation by an electron in the field of a
nucleus of charge Ze.

High energy electrons also have a finite, non-zero, mean free path in matter. At

high energy the electron bremsstrahlung cross section is 9/7 times the pair produc-

tion cross section. The property of matter when traversed by high energy electron

or photons can be described in terms of a single parameter, the radiation length X0

which is closely related to the mean free path, λ ∝ 1/σ. From the above discussion,

the radiation length, expressed in g cm−2, in the approximation that for all nuclei

A/Z is a constant, is proportional to 1/Z2. The radiation length for air is 302 m,

for water is 36 cm and for lead is 5.6 mm.

2.7 High energy hadronic total cross sections

Dimensional arguments lead naturally to a total cross section for scattering of any

hadron pair at high energy of order πr2, where r is the Compton wavelength of the

pion, the lightest hadron. This is of course also the range of the strong or nuclear

force and the radius of the proton. For proton-proton scattering we thus find:

σpp = πr2
p ∼ 3 × 10−26 cm ∼ 30 mb

Hadrons, as we shall see are made up of quarks which at high energies can be treated

as quasi free particles. Nucleons, also hyperons, are made up of three quarks. Mesons

of two. We are thus led to expect:

σπp

σpp

∼ σKp

σpp

∼ 2

3
,

for any charge of pions and kaons. Together with the above result, dimensional

arguments give:

σnp ∼ σpp ∼ σp̄p ∼ σp̄n ∼ 30 mb.

and

σπ+p ∼ σπ−p ∼ σK+p ∼ σK−p ∼ 20 mb

The experimental values are:

σnp ∼ σpp ∼ σp̄p ∼ σp̄n ∼ 45 mb
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σπ±p ∼ 25 mb, σK±p ∼ 20 mb

in acceptable agreement with the guesses above.
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3 Reaction rates and Cross Section

3.1 S-matrix, T , M, phase space and transition probability.

The elements Sfi of the scattering matrix or S-matrix describe the transition from

an initial state i to a final state f . Without interaction S=1, where 1 is an identity

matrix. Transitions i→f , with | i 〉	=| f 〉 are due to the transition matrix T defined

by S = 1 + iT .4 We also define the amplitude or matrix element M from

Tfi = (2π)4δ4(pi − pf )M.

|Tfi|2 gives the transition probability densityi.e.the probability for transitions i → f

into a unit volume of the f phase space:

wfi = (2π)4δ4(pi − pf )(2π)4δ4(0)|M|2.

In the following we will aways omit the factor i =
√−1 as well as the sign of Tfi or M,

which do not affect first order calculations. We introduce a normalization 4-volume

V T which will drop out in the end. For V → ∞ and T → ∞, (2π)4δ4(0) = V T .

To obtain the transition probability to an element of the final state f phase space

volume dΦC, we must multiply w by dΦC and normalize. The phase space volume

element is given by

dΦC =
n∏

j=1

d3pjV

(h)3
=

n∏
j=1

d3pjV

(2π)3

having used h3 = (2π)3h̄3 = (2π)3. n is the number of particles in f , pj is the

3-momentum of particle j and the last expression is valid in the natural units which

we use, as usual. We must take care of the proper normalization of the transition

probability. We normalize the wave functions to 2E particles per unit volume. The

normalized transition probability is given by wfi above, divided by N below:

N =
n∏

j=1

2EjV
m∏

i=1

2EiV

where m is the number of particles in the initial state. The normalized transition

probability per unit time therefore is:

dwfi =
wfi

T

dΦC

N
=

V |M|2∏m
i=1 2EiV

dΦ

where

dΦ = (2π)4δ4(pi − pf )
n∏

j=1

d3pj

2Ej

4Remember optics, Babinet’s theorem and the optical theorem
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The replacement of the proper phase space volume element dΦC with dΦ has the

advantage that the latter is manifestly Lorentz-invariant5 and is in fact called the

Lorentz invariant phase space. For one particle in the initial state, m=1, there is no

volune dependence left.

3.2 Decay rate, three bodies

Consider the decay

A → 1 + 2 + 3 . . .

where a parent particle A, of mass M and 4-momentum P = (E, P) decays to

particles 1, 2 etc., each of mass mi and 4-momentum pi. The differential decay rate

dΓ is given by:

dΓ =
1

2E
|M|2dΦ

For three particles in the final state and in the CM of A the rate is

dΓ =
1

2M
|M|2 d3p1

2E1

d3p2

2E2

d3p3

2E3

(2π)4

(2π)9
δ4(P − p1 − p2 − p3)

Strictly speaking the result above is for A, 1, 2 and 3 being spinless particles. If

spin are included but A is unpolarized and the final spins are not observed then

substitute |M|2 → ∑
spins |M|2 and add a factor 1/(2JA +1) for the average over the

initial particle. Integrating over p3 and collecting factors we have

dΓ =
1

2M

1

8(2π)5
|M|2 1

E3

d3p1

E1

d3p2

E2

δ(M − E1 − E2 − E3)

=
1

2M

1

8(2π)5
|M|2 1

E3

p2
1dp1dΩ1

E1

p2
2dp2dΩ2

E2

δ(M − E1 − E2 − E3)

where we have to define how the angles θ1, φ1, θ2 and φ2 are measured. For un-

polarized initial state we can chose any reference system. We then measure the

polar angle of particle 2 with respect to the direction of particle 1 and we call

this angle θ12 to remind us of this. In the following p stands for the modulus

of the 3-momentum p. From δ3(0 − p1 − p2 − p3) we have −p3 = p1 + p2.

Squaring p2
3 = p2

1 + p2
2 + 2p1p2 cos θ12 and differentiating, with p1 and p1 constant,

p1p2d cos θ12 = p3dp3 or d cos θ12 = E3dE3/p1p2. Substituting

dΓ =
1

16M(2π)5E1E2E3

|M|2p1E1dE1dΩ1p2E2dE2

E3dE3

p1p2

dφ2δ(E − E1 − E2 − E3)

5d4p is invariant because the Lorentz transformation is an orthogonal transformation and d3p/E

is obtained from the former integrating out one dimension with the constraint that the p2 = m2
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and integrating

dΓ =
1

16M(2π)5
|M|2dE1dE2dΩ1dφ2

which is valid whether we observe the final spins or not. In the latter case integration

over φ2 gives 2π and over Ω1 gives 4π resulting in

dΓ =
1

8M(2π)3
|M|2dE1dE2 (3.1)

Integration over E2 gives the energy spectrum of particle 1 and over E1 the total

decay rate. If |M|2 is not a function of the energies of the final particles the last

two integrals acquire a simple geometrical meaning. The spectrum of particle 1 is

proportional to E2,Max(E1) − E2,Min(E1) and the rate is proportional to the allowed

area in the plane {E1, E2}, the so-called Dalitz plot. In all the above the choice

1, 2 out of 1, 2 and 3 is of course arbitrary, any of the two particles are equivalent:

dE1dE2 = dE2dE3 = dE3dE1.

3.3 Integration Limits

Ignoring the dependence on the particle energies of the matrix element we can obtain

the energy spectrum of one particle, say i, integrating the second of eqs. (3.1) over

the boundary of the allowed region in the plane {Ei, Ej}. The integration limits can

be obtained in the following way. Consider the decay M→1+2+3, where M , m1,

m2 and m3 are the particle masses. We consider first the process M→1+{2,3}, in

the rest frame of M, i.e. with p2,3 = p2 + p3 = −p1 and E1 = E2 + E3 = M − E1.

M2,3 is the invariant mass of {2,3} given by M2,3 = E2
2,3 − p2

2,3. M2,3 which can be

espressed in terms of the variables of particle 1:

M2,3 =
√

(M − E1)2 − p2
1 =

√
M2 + m2

1 − 2ME1

For E1 = m1, we have M2,3 = M − m1, as expected since p1 = 0. The minimum

value of M2,3 is m2 +m3 and, from a very useful relation EMax
1 = (M2 +m2

1 − (m2 +

m3)
2)/(2M).

Then we look at {2,3}→1+2. This is illustrated below.
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� ����� ��*

�

�

M

Fig. 3.1. Three body decay M→1+2+3 as a two step process: M→1+{2,3},
{2,3}→1+2. The parent particle has mass M , the three final particles have
mass m1, m2 and m2. {2, 3} is the system made up of particles 2 and 3, with
invariant mass M2,3.

θ∗ is the ‘decay’ angle in the {2,3} rest system. In the initial system, {2,3} moves

with

γ =
E2,3

M2,3

=
M − E1√

M2 + m2
1 − 2ME1

(= 1 for E1 = m1)

γβ =
p2,3

M2,3

=
p1√

M2 + m2
1 − 2ME1

(= 0 for E1 = m1).

In the {2,3} system the energies and momenta of 2 and 3 are:

E∗
2 =

M2
2,3 + m2

2 − m2
3

2M2,3

E∗
3 =

M2
2,3 + m3

2 − m2
3

2M2,3

p∗2 = p∗3 =
√

E∗
2
2 − m2

2 =
√

E∗
3
2 − m3

2

In terms of the above E2 and E3 are:

E2 = γE∗
2 + γβp∗2 cos θ∗

E3 = γE∗
3 − γβp∗3 cos θ∗

The integrations limits in E2 and E3 as function of E1 are:

E2 = γE∗
2 − γβp∗2 to γE∗

2 + γβp∗2

E3 = γE∗
3 − γβp∗3 to γE∗

3 + γβp∗3

From the above the spectrum in E1 is given by:

dΓ

dE1

∝ 2γβp∗2 =
p1√

M2 + m2
1 − 2ME1

An example of the boundary is given in fig. 3.2 for M=.., etc. and the corresponding

spectrum in fig. 3.3.
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Fig. 3.2. boundary for M→1+{2,3}, {2,3}→2+3, for M=1.

200 300 400

d /d� E1

100

200

E1

Fig. 3.3. E1 spectrum from M→1+{2,3}, {2,3}→2+3, with the boundary
of fig. 3.2.

The procedures applies of course also to the case when M is (properly) included.

Even ignoring the energy dependence of the matrix element, the integration

over the energy of the last of the three final state particles cannot be done gener-

ally a closed form. If two of the masses are non-zero we find an elliptic integral.

The integral can be performed if two of the masses vanish. If all masses vanish:∫
dE1dE2 = M2/8. All this is obvious from fig. 3.4.

Fig. 3.4. Dalitz plot, left, for decay to three massless particles. E1 spectrum,
right, for M=1 and the boundary at left.

G. Wick has observed that:

1. For every massless particle, the kinematic boundary has a cusp.

2. For every pair of massless particles, the boundary contains a straight segment

parallel to an axis.
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Fig. 3.4 is in agreement with the above statements.

3.4 Decay rate, two bodies

Consider the decay of a particles of 4-momentum P and mass M into particles 1

and 2, with 4-momenta p1, p2 and masses m1, m2, schematically M→1+2. In the

center of mass of the parent particle:

Γ =
∫ 1

2M
|M|2(2π)4δ4(P − p1 − p2)

d3p1

(2π)32E1

d3p2

(2π)32E1

=
1

2M

1

(2π)2

1

4E1E2

|M|2p2
1dp1dΩ1δ(E − E1 − E2)

In the CM, p1 = p2 = p. From E = E1 + E2 =
√

m2
1 + p2 +

√
m2

2 + p2 we get

dE = (1/E1 + 1/E2)pdp or pdp = (E1E2/M)dE, substituting:6

Γ =
dΩ

8M × 4π2

∫
|M|2 p

M
δ(E − E1 − E2)dE =

1

32π2

p

M2
|M|2dΩ.

For a non-polarized initial state, apart from a possible factor 1/(2J + 1)

Γ =
1

8π

p

M2
|M|2.

Comparison with a 3-body final state is not obvious because of dimensions:

Γ(3 body) =
1

8M(2π)3

∫
|M|2dE1dE2

unless the form of |M|2 is known.

We can get a feeling as follows. For two body decays, dimensional arguments

require that |M|2 has dimension of an energy squared. We set |M|2 ∼ M2 × “1”

and p/M=1/2, valid for massless final particles. For three body the dimensions are

correct with |M|2 dimensionless. For massless particles
∫

dE1dE2 = M2/8. Then

we can write Γ3 body = M/16/π × (1/8/(2π)2) × “1” and Γ2 body = M/16/π × “1”

where “1” indicates a normalized interaction strenght. In this way we find Γ3 body =

1/8/(2π)2×Γ body or Γ3 body ∼ Γ2 body/300. The factor 1/32π2 obtained for massless

particles becomes smaller for massive particles. In the limit m1 + m2 < M <

m1 + m2 + m3, the three body decay becomes kinematically forbidden! Still the

argument is not rigorous.

6We can also get the correct answer from dE = dE1 + dE2 = p1dp1/E1 + p2dp2/E1. In the

CM, p1 = p2, dE = p1dp1E/(E1E2) or p1dp1 = (E1E2/E)dE
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3.5 Scattering cross section

The cross section for collision of two particles is defined through

dwfi = d�σ · j,

where j is the incident flux. Let a beam of particles a, with velocity βa, collide

with a stationary target of particles b according to the reaction a + b → a + b. The

incident flux is j = βa/V and the cross section is given by

dσ =
dwfi

j
=

1

2Eaβa2Mb

|M|2dΦ.

The quantity EaβaMb = Mb|pa| becomes in general, for collinear collisions, pa‖pb

and of opposite sign:

|pa|Eb + |pb|Ea or, in the CM, p iE

where p i=|pa|=|pb| and E = Ea + Eb. For collinear collisions we can also write the

general expression above in an obviously invariant form:

|pa|Eb + |pb|Ea =
√

(papb)2 − m2
a m2

b .

In the CM we have:

dσ =
1

4p iE
|M|2dΦ

dΦ is calculated as in the two body decay:

dΦ =
∫ (2π)4

4(2π)6
δ4(pa + pb − pc − pd)

d3pc

Ec

d3pd

Ed

=
1

16π

p2
f dp f dΩ

EcEd

δ(W − Ec − Ed)

where p f = pc = pd is the center of mass 3-momentum and W is the total energy.

From dW = dp f(p fW )/(EcEd) we find:

dΦ =
1

16π2

p f

W
dΩ =

1

16π2

p f√
s

dΩ and

dσ =
1

4p i

√
s
|M|2 1

16π2

p f√
s

dΩ =
1

64π2

1

s

p i

p f

|M|2 dΩ.
(3.2)

For |M|2 independent of θ, integration of (3.2) over the entire solid angle gives:

σ =
1

16π

1

s

p i

p f

|M|2

which is also valid in the laboratory, since σ is transverse to the transformation

velocity, with p i and p f measured however in the CM.
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Introducing the function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz

we can also write the differential cross section as the covariant expression

dσ =
1

2λ1/2(s,m2
a,m

2
b)

(2π)4δ4(pa + pb −
n∑

f=1

pf ) × |M|2
n∏

f=1

dpf

(2π)32Ef

(3.3)

where s is the square of the CM energy, s = (pa + pb)
2. Finally introducing the

variables
s = (p1 + p2)

2 = (p3 + p4)
2 = m2

1 + m2
2 + 2(p1 p2)

t = (p1 − p3)
2 = (p2 − p4)

2 = m2
1 + m2

3 − 2(p1 p3)

u = (p1 − p4)
2 = (p1 − p4)

2 = . . .

the cross section for the reaction 1+2→3+4 can be written as:

dσ

dt
=

1

64πs

1

|p1,cm|2 |M|2 (3.4)

where p1,cm=p2,cm is the initial state 3-momentum in the center of mass. In the

center of mass:

t = (E1 − E3)
2 − (p1 − p3)

2 − 4p1p3 sin2 θ/2 ⇒ −s sin2 θ/2

where Ei are energies, pi 3-momenta and θ is the scattering angle between particles

1 and 3, where the limit correspond to E � m1,m2.

Note that only two variable are necessary to kinematically describe two body

scattering. The variables s, t and u satisfy

s + t + u = m2
1 + m2

2 + m2
3 + m2

4

see appendix A1.5.7.

3.6 Accounting for Spin

If initial and final particles have spins, we must pay some attention to properly count

the additional degrees of freedom. We deal here only with the case of unpolarized

initial particles and the case in which we do not observe the orientation of the spin

of the final particles. In this case we must sum over the spin orientation in the

final state and average over the initial spin orientation. The latter we also do by

summing over the initial orientations and dividing by the weights 2J + 1. In other

words instead of |M|2 we must use

1

2Ja + 1

1

2Jb + 1

∑
spins

|M|2
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where Ja . . . are the intrinsic angular momenta of the initial particles and the sum

extends to all spins, initial and final.
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4 The Electromagnetic Interaction

4.1 Introduction: Classical Rutherford Scattering

Consider a particle of charge e approaching with an impact parameter b another

massive particle of charge Ze, stationary, located at the origin O, fig. 4.1. The

moving particle will be deflected under the action of the Coulomb force acting be-

tween the two particles, F = αZ/r2. The direction, away or toward O, of the force

is unimportant. We make the simplifying assumption that the force acts on the

moving particles with constant value, as obtained with r = b, i.e. at the point of

closest approach, for the time it takes to move a distance 2b over an undeflected

path. The approximation is valid for b not too small, more precisely for a deflection

angle θ  1

p 2b
db

b

O

Fig. 4.1. Scattering of an “electron” by a massive charge.

The deflection angle is given by ∆p/p where the momentum change equals the

impulse of the force F acting for the time interval required to travel the distance 2b

at the speed of light.

θ = ∆p/p = F × ∆t/p = αZ/b2 × 2b(×c = 1)/p =
2αZ

bp
or b =

2αZ

θp
.

The scattering cross section is then:

dσ

dθ
=

2πb db

dθ
=

8πα2Z2

p2θ

d

dθ

1

θ
=

8πα2Z2

p2θ3

which is the small angle limit of the Rutherford cross section:

d2σ

d cos θ
=

πα2Z2

2p2θ

1

sin4 θ/2

dσ

dθ
=

8πα2Z2

p2θ3

The reason why we find the correct answer is because the crude approximation used

for ∆p is in fact exact as we derive below.
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4.1.1 Exact computation of ∆p

b

xZe

e
v

Fig. 4.2. Calculating ∆p using Gauss theorem.

Referring to fig. 4.2, consider an infinite cylinder, of radius b around an axis z

through the position of the heavy particle, parallel to the motion of the light particle

of charge e. To compute ∆p =
∫∞
−∞ F⊥dt we use Gauss theorem:∫

S cyl

�E · d�σ = Ze =
∫ ∞

−∞
2πbE⊥dz or

∫ ∞

−∞
E⊥dz =

eZ

2πb

from which ∫ ∞

−∞
F⊥dz =

e2Z

2πb
=

2αZ

b
and

∆p =
∫ ∞

−∞
F⊥dt =

∫ ∞

−∞
F⊥dz/v =

2αZ

βb

where β = v is the velocity of the light particle.

4.1.2 Final remarks

Rutherford was very proud of his derivation of the classical formula for “Rutherford”

scattering, especially when it turned out that his results remains unchanged in

quantum mechanics. The importance of Rutherford’s idea of exploring the structure

of a particles by scattering some probe against it remains fundamental today. Often

we hear about Rutherford’s scattering when applied to quarks and gluons which we

believe today to be the constituents of hadrons. This is meant figuratively of course,

having to take into account relativity and spins for one, not to speak of the fact that

no gluon or quark has been so far observed nor it’s likely to ever be observed.

Finally we wish remark that the spirit of the calculation above is the same as that

of the so-called first Born approximation. Here we compute the transverse impulse

imparted to the light particle, assumed to be travelling in an unperturbed orbit, in

QM we use plane waves for the outgoing state to calculate the perturbation.

4.2 The Elementary EM Interaction

In field theory the coulomb interaction between two charges is described, to low-

est order, in terms of the elementary process of the emission of a quantum of the
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electromagnetic field, the photon, by one of the charges and the reabsorption of the

same photon by the other charge. In fact the absorption and emission are the same

process in field theory, described by the same amplitude, function of the variables

describing the initial charge, the final charge and the initial or final photon. The

most elementary process in quantum electrodynamics, QED, is the emission of a

photon by a (moving) charge. The amplitude for this process is the matrix element

of the interaction (energy) Hamiltonian density H between initial and final state.

We represent this elementary process with the graph of fig. 4.3.

e

A

kp
2

p
1

	

e

e

p
2

p
3p

1

	
e p

4

Fig. 4.3. The eeγ vertex. Fig. 4.4. ee interaction via γ exchange.

The graph is a representation of the physical process in space-time. Since we cannot

sketch a 4-dimensional event on paper, i.e. in two dimensions, we use one axis, the

y-axis, for time and the x-axis for space. The line with arrow going towards the

point A=(x, t) is an incoming electron of 4-momentum p1. At the space-time point

A, a photon, the wavy line, is emitted and the electron continues to propagate as

indicated. The electron’s 4-momentum after photon emission is p2 and the photon’s

4-momentum k is given by p1 − p2. If k 	= 0 and |k|2=0, as we know to be the

case for a real photon, then energy and momentum are not conserved. This can be

seen taking the modulus squared of the initial and final 4-momenta, p1 and p2 + k:

|p1|2 = m2
e, |p2+k|2 = |p2|2+|k|2+2EeEγ−2�p2·�k = m2

e+0+2Eγ(Ee−�p2·�k/|�k|) > m2
e,

since the quantity in parenthesis is always positive. Physically, this means that an

electron cannot become an electron plus a photon, except for |k|=0, which is no

photon at all. This however changes when we put together the emission of a photon

by one electron with the absorption of the same photon by another electron. We

represent this process with the graph of fig. 4.4.

For both processes in fig. 4.3 and 4.4, k2 <0. When this is the case the photon

is not a free photon in vacuum. We describe this situation with the word virtual,

i.e. the photon is said to be virtual or that the photon is off its mass shell.

We can interpret this situation with the help of the uncertainty principle. Let

us consider the reaction in its CM and assume for simplicity that m1=m2=m3=m4.

Then E1 = E2 = E3 = E4. For the process in fig. 4.4 we can distinguish three
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intervals in time. Before the photon is emitted, we have particles 1 and 3, with total

energy 2E. After the photon is emitted but not absorbed, the energy is changed

by an amount Eγ, violating energy conservation. After the photon is reabsorbed

everything is fine again. The question is now whether we can observe this energy

violation. The answer is of course no, if the virtual photon is present for a time T ,

satisfying T < 1/Eγ , in our units with h̄=1. If a photon lives for a time T , during

that time it travels a distance (c=1) L = T = 1/Eγ . Since a photon can have

arbitrarily small energy it can travel arbitrarily large distances. We discover thus

that the electromagnetic interaction has an infinite range of action, as Coulomb’s

law tells us.

It is interesting to compare this situation to an interaction due to the exchange

of a particle of finite mass m. In this case the energy of the virtual particle is always

greater than m. Thus, requiring that energy be conserved, within the limits of the

uncertainty principle, we find that this kind of interaction is limited in its range

to r < 1/m. For a particle of 197 MeV mass, the interaction range is limited to

the order of 1 fm. This is in fact the case of the nuclear interaction which is due

to the exchange of π mesons or pions of 140 MeV mass. Its range is ∼1 fm. The

argument was historically used in the reverse way, deducing from observation of the

finite range of the nuclear forces, that they must be due to the exchange of a massive

particle.

It should be noted that the above picture is not the way Feynman diagram are

meant to be understood. Energy and momentum are conserved at every vertex and

any space-time point. Internal lines correspond to particles which are off their mass

shell.

4.3 The Rutherford cross section

First we recall the formula for the scattering cross section in terms of matrix element

and phase space factor as obtained in perturbation theory, using however relativistic

covariant formalism. We consider the scattering reaction 1+3→2+4, see fig. 4.4,

where all particles are spinless. The infinitesimal cross section for scattering into a

six-dimensional element of the phase space of the outgoing particles 3 and 4 is given

by:

d6σ =
1

|v1 − v3|
1

2E1

1

2E3

|M|2 d3p2

2E2(2π)3

d3p4

2E4(2π)3
(2π)4δ4(p1 + p3 − p2 − p4)

where pi = {pi, Ei} are the four momenta of the particles, M is the matrix element

〈2, 4|H| 1, 3 〉 and |v1 − v3| is the relative velocity of the two particles, essentially
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the flux factor. If particle 3 is at rest, v3=0 and we set |v1| = β. Integrating over

p4 and cancelling some 2π factors gives:

d3σ =
d3p2

β

δ(Ein − Eout)

(2π)2 4E1E3 4E2E4

|M|2

=
p2E2dE2dΩ

β

δ(Ein − Eout)

(2π)2 4E1E3 4E2E4

|M|2.

To first order, the matrix element is obtained from the term JµA
µ in the em inter-

action Hamiltonian density:

M = 〈2, 4|eJ (1, 2)
µ Aµ 1

k2
eAνJ

ν (3, 4)| 1, 3 〉 = e2 vρu
ρ

k2

where v and u are four vectors, functions of the coordinates respectively of particles

1, 2 and 3, 4. The factor 1/k2 is the amplitude for the virtual photon propagation

from emission to absorption, the propagator, and we have summed over polarization

states. The vectors v, u can only be linear combinations of the relevant momenta in

the problem. The matrix element 〈2|J (1, 2)
µ | 1 〉 ∝ v is therefore a linear combination

of the 4-vectors p1 and p2, ap1 + bp2. In fact there is no freedom in the choice of the

coefficients a and b. Gauge invariance requires that the em current be conserve, i.e.:

∂

∂xµ

〈2|Jµ|1〉 = 0.

The matrix element in the eq. above contains the wave functions of the initial

particle 1 and of the final particle 2, therefore it contains the factor exp i(xµp
µ
1 −

xµp
µ
2). The operator ∂µ acting on 〈Jµ〉 gives therefore a factor (p1 − p2)µ = kµ and

the current is conserved only if v = p1+p2. Then current conservation is guaranteed,

(p1 − p2)(p1 + p2) = 0, since m1 = m2.

The matrix element of the current for spinless particles at the 1, 2, γ vertex is

thus e(p1 + p2)µ and at the 3, 4, γ vertex we have e(p3 + p4)µ. The complete matrix

element for scattering of a particle of charge e by another of charge Ze is therefore

|M | = e2Z × (p1 + p2)µ(p3 + p4)
µ/k2, in units such that e2/4π ≡ α = 1/137, with

k = p1 − p2. Rutherford scattering is the scattering of a light particle 1 by a heavy

particle 3, at rest. We therefore use the kinematics limit

E1 = E2 = E, |�p1| = |�p2| = p

E3 = E4 = M, �p3 = 0, �p4 = �p1 − �p2

for which the matrix element becomes:

|M| = e2Z
4EM

k2
.
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Substituting above and integrating over E we have:

d2σ

dφ d cos θ
=

e4Z2

(2π)2

pE

β

(4EM)2

4EM 4EM (k2)2
= 4α2Z2E2 1

(p1 − p2)4

Finally, since in our limit p1 − p2 = {0, �p1 − �p2}, (p1 − p2)
2 = 2p2(1 − cos θ) =

4p2 sin2 θ/2

d2σ

dφ d cos θ
=

α2Z2

4

E2

p4

1

sin4 θ/2
=

α2Z2

4

1

β2p2

1

sin4 θ/2
. (4.1)

The cross section in equation (4.1) was first derived by Rutherford using classical

electrodynamics. It remains today a fundamental tool in the investigation of ele-

mentary particles and their interactions. Notice that this result contains only one

quantity with dimensions, the p2 factor in the denominator. The result is therefore

in units of an inverse energy squared if we measure p in energy units. We might

need to convert to cm2 or b for practical reasons, using the conversion factors given

in chapter 1, table 1.3. Pay attention to the units with which you measure p. The

scattering cross section as computed is valid for scattering of point charges. This is

correct for electrons but not generally so for other particles.

4.4 Electromagnetic Scattering of Spinless Particles

We generalize in the following the result obtained above to the electromagnetic

scattering of two charged, spinless, point particles of identical mass which we call

for convenience pions. We also choose the case of π+ + π− → π+ + π− to which the

annihilation amplitude also contributes. The amplitudes are shown in fig. 4.5. The

electromagnetic current of the pion at the lower vertex in the exchange graph at

right in the figure) follows from gauge invariance and is the same as derived earlier

for “Rutherford scattering”
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Fig. 4.5. Feynman diagrams for electromagnetic π+ + π− → π+ + π−
scattering. The diagram at left is often called the annihilation diagram and
the one at right the photon exchange amplitude. The direction of the external
momenta is indicated as well as the charge flow, in the convention that positive
current corresponds to negative charge motion.
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Jµ = e(p1 + p2)µ and the amplitude for photon exchange is given by:

M = e2(p1 + p2)µ
1

k2
(q1 + q2)

µ

where k = p1 − p2 is the photon 4-momentum. Using

s = (p1 + q1)
2 = 2(p1 q1) + 2m2

π = 2(p2 q2) + 2m2
π

t = (p1 − p2)
2 = −2(p1 p2) + 2m2

π = −2(q1 q2) + 2m2
π

u = (p1 − q2)
2 = −2(p1 q2) + 2m2

π = −2(q1 p2) + 2m2
π

one gets

M = e2 s − u

t
(4.2)

for the photon exchange diagram. Note that the amplitude (4.2) diverges for zero

momentum transfer, the pole of the photon propagator. This is a reflection of the

nature of the Coulomb potential which has an infinite range. We have already en-

countered this infinity in eq. (4.1), which diverges as θ → 0. A complete calculation

in QED removes the infinity.

By gauge invariance the current at the vertex on the in fig. 4.5, left, is Jµ =

(q1 − p1)µ and similarly at the upper vertex. The amplitude for the annihilation

diagram therefore is

M = e2(q1 − p1)µ
1

k2
(q2 − p2)

µ = e2 t − u

s
. (4.3)

which formally corresponds to exchanging the variables s and t. The annihilation

amplitudes has no divergence since the timelike photon has mass squared s > 4m2.

The complete amplitude finally is:

M = e2
(s − u

t
+

t − u

s

)
. (4.4)

Another way to see the connection is to note that the “mass” of the virtual photon

is
√

s in the annihilation case and
√

t in the exchange case. Also the current in

the former case is e(p1 + p2)µ and in the latter e(q1 − p1)µ. The expression derived

contains two terms which reflect the two diagrams in fig. 4.5. If we consider ππ → ππ

scattering with all pions having the same charge, there is no annihilation term.

Likewise for π+π− → Π+Π− with m(Π) > m(π) there is no exchange contribution.

The cross section for π+π− → π+π−, in the CM, is obtained combining eq. (4.4)

and eq. (3.2):

dσ

dΩ
=

α2

4s3

1

sin4 θ/2

{ s2

s − 4m2
+ s(1 − sin2 θ/2 + 2 sin4 θ/2)

+ 4m2 sin2 θ/2(1 − 2 sin2 θ/2)
}2

.

(4.5)
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The complicated results reflects the presence of two amplitudes. At high energy

(4.5) reduces to

dσ

dΩ
=

α2

s

(1 − sin2 θ/2 + sin4 θ/2)2

sin4 θ/2

For π+π− annihilation into a pair of particles of mass M the cross section is

dσ

dΩ
=

α2

4s

(s − 4m2

s

)1/2(s − 4M2

s

)3/2
cos2 θ/2

which for s � m2, M2 simplifies to

dσ

dΩ
=

α2

4s
cos2 θ

The scattering of a negative, singly charged spinless particle by a positive spinless

particle of charge Ze and mass M is given by (4.2) modified as

M = Ze2 s − u

t
(4.6)

from which, with the help of (3.3), one obtains the Rutherford cross section (4.1).

Let E and E ′ by the incoming and outgoing pion energies, θ the pion scattering angle

and Er the recoil energy of the target. Neglecting the pion mass m, but keeping M

finite, we find t = −(2EE ′(1 − cos θ) = 2M(M − Er) = 2m(E ′ − E) and

E ′ =
E

1 + 2E/M sin2 θ/2

t =
−4E2 sin2 θ/2

1 + 2E/M sin2 θ/2

s = M2 + 2ME

u = M2 − 2ME − t

and finally
dσ

dΩlab

=
Z2α2

4E2 sin4 θ/2

( 1 + E/M sin2 θ/2

1 + 2E/M sin2 θ/2

)2
. (4.7)

The last factor in (4.7) accounts for the recoil of the target and vanishes for M → ∞
giving the result (4.1) for β = 1 and p = E, i.e. for m=0, and a Ze charge for the

target particle.

4.5 Pion Compton Scattering

By pion-Compton scattering we mean scattering of a photon on a unit charge spin

zero particle of mass m. The processes is sketched in fig. 4.6.
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Fig. 4.6. Compton scattering of photons on an pion π initially at rest. k,
p′ and k′ are 4-momenta.

Let θ be the scattering angle of the photon in the laboratory, where the pion is

at rest. From fig. 4.6 the components of the four momenta, E, px, py, pz in the

laboratory are

p = m(1, 0, 0, 0)

k = ω(1, 0, 0, 1)

k′ = ω′(1, sin θ, 0, cos θ)

p′ = (m + ω − ω′,−ω′ sin θ, 0, ω − ω′ cos θ).

(4.8)

ω is the photon energy, θ the angle between incident photon, along the z-axis, and

recoil photon. The last of equations (4.8) is obtained from p′ = k + p − k′ in order

to satisfy Lorenz invariance. In addition (p + k)2 = (p′ + k′)2 or p · k = p′ · k′, from

which the famous relation (in natural units λ = 2π/ω):

ω′ =
ω

1 + ω/m(1 − cos θ)
or

1

ω′ −
1

ω
=

1

m
(1 − cosθ). (4.9)

For convenience we also give the variables s and t:

s = (p + k)2 = m2 = 2mω

t = (k − k′) = −2ωω′(1 − cos θ)

The Lagrangian for spinless particles interacting with the electromagnetic field is:

L = LKlein−Gordon + LMaxwell + LInteraction

= ∂µφ
∗∂µφ − m2φ∗φ +

1

4
FµνF

µν

+ ieAµ[φ∗∂µφ − (∂µφ∗)φ] + e2A2
µφ

∗φ

(4.10)

where the last term is required by gauge invariance. Correspondingly the amplitude

for pion Compton scattering contains the three terms of fig. 4.5. The third diagram

requires a combinatorial factor of two, corresponding to the two ways of labelling

the photon lines.
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k’k
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k k

p p p’p’
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Fig. 4.7. Feynman diagrams for pion ‘Compton’ scattering. p and k are the
initial pion and photon 4-momenta, becoming p′ and k′ after scattering.

The complete amplitude, contracted with the photon polarization vectors, is:

M = e2ε′µ(k′)Tµ,νεν(k)

with

T µ,ν =
(2p′ + k′)µ(2p + k)ν

(p + k)2 + m2
+

(2p − k′)µ(2p′ − k)ν

(p − k′)2 + m2
− 2δµ,ν .

Here we recognize a current×field term contracted with a second current×field term

and the pion propagator
1

(p + k)2 + m2

which has a pole at (p+k)2 = −m2 and therefore there is no divergence in the cross

section for Compton scattering.

T µ,ν is transverse for pions on the mass shell:

kνT
µ,ν = k′

νT
µ,ν = 0

Taking the absolute value squared, summing over the final photon polarization and

averaging over the initial one we get:

1

2

∑
pol

|M|2 =
1

2
e4
∑
pol

[ε′µ(k′)Tµ,νεν(k)][ε′ρ(k
′)Tρ,σεσ(k)]∗

=
1

2
e4T µνδρ

µT
ρσδσ

ν =
1

2
e4T µνTµν

= 2e4
{
m4
( 1

p k
− 1

p k′
)2 − 2m2

( 1

p k
− 1

p k′
)

+ 2
}
.

(4.11)

The result (4.11) appears to diverge for ω, ω′ → 0. In fact from (4.8) we have

p k = mω, p k′ = mω′ and

1

p k
− 1

p k′ =
1

m

( 1

ω
− 1

ω′
)

which together with (4.9) gives

1

2

∑
pol

|M|2 = 2e4[(1 − cos θ)2 − 2(1 − cos θ) + 2] = 2e4(1 + cos2 θ) (4.12)

Now that we laboriously arrived to (4.12) we wish to remark that the labor was

in fact unnecessary. Let’s work in the lab and, remembering (4.8), we choose the
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following set of independent real polarization vectors:

εµ(k, 1) = 0, 1, 0, 0

εµ(k, 2) = 0, 0, 1, 0

ε′µ(k′, 1) = 0,− cos θ, 0, sin θ

ε′µ(k′, 2) = 0, 0, 1, 0 .

(4.13)

Since they satisfy k ε = k′ ε′=p ε = p ε′=0 the only gauge invariant, non vanishing

amplitude is M = −2e2(ε(k) ε(k′)). Summing over the photon polarizations:

1

2

∑
pol

|M|2 = 2e4
∑

λ,λ′=1,2

εµ(k, λ)ε′µ(k′, λ′)ερ(k, λ)ε′ρ(k′, λ′)

= 2e4(1 + cos2 θ)

(4.14)

which is identical to (4.12). Finally we find the cross section in the laboratory

dσ

dΩ
=

α2

2m2

1 + cos2 θ

(1 + ω/m(1 − cos θ))2 ,

which in the low energy limit, ω → 0, corresponding to classical scattering of elec-

tromagnetic radiation from a charge, simplifies to

dσ

dΩ
=

α2

2m2
(1 + cos2 θ).

The total cross section, in the same limit,

σ =
8πα2

3m2
(4.15)

is called the Thompson cross section and provides a means to compute the charge

to mass ratio of a particle. If the mass of the particle is known, we can use the

measured cross section to define the value of α at zero momentum transfer. The

result (4.15) was already mentioned in chapter 2, eq. (4.9).

At zero energy, the photon scattering cross section on a pion of mass 139.57. . .

is 8.8 µb. Although we have derived the Thomson cross section for particles of spin

zero, in the low energy limit spin interactions, which are relativistic effects, does not

affect the result. It therefore also applies to the Compton effect on free (atomic)

electrons. Since the mass squared of the electron is ∼75,000 times smaller than that

of the pion, the corresponding cross section is much larger, σ∼0.66 b.

4.6 Scattering from an Extended Charge Distribution, I

The cross section (4.1) computed in section 4.3 describes scattering of point charges,

because we have used Ze2/r, whose Fourier transform is 1/k2 i.e.the photon propaga-

tor, as the potential energy for r > 0. For scattering from an extended distribution of
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charge we have to go back to the explicit form of the potential, introducing a charge

distribution function of r, which we assume here to be spherically symmetric. The

calculation which we will outline in the following section procedure is similar to the

classical formulation of scattering by a Coulomb potential due to a point charge, ex-

cept that a double integration will be necessary. Without entering, for the moment,

in details it is common to introduce the so called form factor, the 3-dimensional

Fourier transform of the charge distribution, a function of the 3-momentum transfer

from the probe particle to the target particle. In general for a finite charge distri-

bution ρ(x), we can find the corresponding form factor F (q2). The scattering cross

section is then given by:
dσ

dΩ
=

dσ

dΩ

∣∣∣
point

× |F (q2)|2

where the subscript point refers to scattering of point charges. The effect of a

diffuse charge distribution can be correctly understood by classical arguments. For

the Coulomb force, as well as any other long range one, small angle scattering

corresponds to large impact parameter collisions. If the charge distribution of a

particle has a finite size, small angle scattering from a point charge or a diffuse charge

will be equal, essentially because of the Gauss theorem. The average scattering angle

increases with decreasing impact parameter for a point charge. However for a finite

charge distribution, the effective charge is smaller, resulting in a smaller probability

of observing large scattering angle events. In general, we therefore find that for a

diffuse charge we have:

dσ(θ)

dΩ
=

dσpoint(θ)

dΩ
for θ = 0

dσ(θ)

dΩ
<

dσpoint(θ)

dΩ
for θ > 0 .

4.7 Scattering from an Extended Charge Distribution, II

We introduce the problem using non relativistic quantum mechanics. The Ruther-

ford cross section is given by
dσ

dΩ
= |f(q2)|

where f(q2) is the scattering amplitude and q is the 3-momentum transfer

q = pin − pout.

The scattering amplitude is the matrix element of the potential:

f(q2) =
m

2π

∫
Ψ∗

outV (x)Ψind
3x.
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To lowest order we compute the scattering amplitude using the so called first Born

approximation, i.e.we use plane wave for both incident and outgoing particle, Ψin =

exp(−ip · x) etc. Then

f(q2) =
m

2π

∫
V (x)e−iq·xd3x.

and, for the Coulomb potential Ze2/x

f(q2) =
2mZe2

q2

from which
dσ

dΩ
=

4m2Z2e4

q4
. (4.16)

Eq. (4.16) is the same as eq. (4.1) with the same approximation that M = ∞,

the scattered particles has the same energy and momentum as the incident one,

pin = pout. From the latter

q = 2p sin
θ

2
.

In the low energy limit, E = m and β = p/m.

We consider now a scattering center, centered at the origin, of charge Ze dis-

tributed over a finite region of space, with a charge density distribution ρ(r), nor-

malized as ∫
ρ(r)d3r = 1.

We must compute the scattering amplitude for the potential energy contribution

from a volume element d3r and integrate over r:

V =
Ze2

4π|x| ⇒ dV =
Ze2

4π|z|ρ(r)d3r.

This is shown in fig. 4.8.

electron out

r

z

d r
3

x

electron in

Fig. 4.8. Vectors �r, �x, �z and the volume element d3r.
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The integral for a point charge∫
e−iq·xd3x

|x| ∝ 1

|q|2 ,

where we recognize the appearance of the propagator in the standard Feynman

approach, becomes ∫
ρ(r)e−iq·rd3r

∫
e−iq·z d3x

4π|z|
where q=pin−qout and the relation between the vectors x, z and r, x=r+z, is

shown in fig. 4.8. In the second integral r is constant and therefore we can set

d3x = d3z. The last integral is therefore the same as the corresponding one for

the point charge case, while the first is the Fourier transform of ρ(r), |F (q2)|. By

construction F (q2 > 0) < 1 and the scattering cross section is indeed:

d2σ

dΩ

∣∣∣
ExtendedCharge

=
d2σ

dΩ

∣∣∣
Rutherford

× |F (q2)|2.
In the above F (q2 = 0) = 1 and F (q2 > 1) < 1. We recall that for Rutherford

scattering q2 = 4p2 sin2 θ/2, thus F (q2) < 1 for θ > 0 confirming the classical guess

above.

We can appreciate better scattering by an extended charge distribution by in-

troducing the mean square radius of the distribution and expanding the form factor

in power series. By definition:

〈r2〉 =
∫

r2ρ(r)d3r .

Expanding the form factor gives:

F (q2) = 1 − q2〈r2〉
6

. . .

Neglecting higher order term, for q2 ∼ 1/〈r2〉, F (q2) ∼ 1−1/6 and |F (q2)|2 ∼ 1−1/3

or 1 − 0.33. Thus in a scattering experiments against an object with an rms radius

of 1 fm and a momentum transfer of order 197 Mev/c we would find a cross section

which is reduced by ∼33% with respect to the Rutherford cross section. Note that

in all the above q is a 3-momentum. We give below some example of the functional

form of F (q2) for various charge distributions.

Charge distribution ρ(r) Form factor F (q2)

δ(r) 1

ρ0 exp(−r/a) 1/(1 + q2a2)2

ρ0 exp(−r2/b2) exp(−q2b2)

ρ0, r ≤ R; 0, r > R (3 sin qr − qr cos qr)/q2r2
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Clearly for r of O(a), we begin to see an effect of the finite size of the charge

distribution for q2 values of O(1/a2) as we expect because of the uncertainty relation.

We will introduce later a fully relativistic generalization of this concept, substi-

tuting |q|2 with qµq
µ = t. By its definition, in scattering processes, t < 0 and the

form factor F (q2) is not anymore the Fourier transform of the charge distribution,

except in the brick-wall or Breit frame of reference. It is however obviously Lorentz

invariant. Thinking in terms of 3-momenta and |q|2 (usually t ≈ −|q|2) keeps the

meaning apparently simple but looses Lorentz covariance.

4.8 Scattering with Spin

The extension to scattering processes involving one or more partcles with spin is

very simple, although we will rarely do complete calculations. The case of extended

charge distribution can be treated in a very similar way. We give in the following the

results for two basic cases. The first is scattering of electrons from an object of spin

zero and charge Ze. This process is called Mott scattering and the corresponding

cross section is given by:

dσ

dΩ

∣∣∣
Mott

=
α2Z2

4β2p2 sin4 θ/2

(
1 − β2 sin2 θ

2

)
=

dσ

dΩ

∣∣∣
Rutherford

×
(
1 − β sin2 θ

2

)
.

This results remains valid also for scattering from an extended charge Ze:

dσ

dΩ

∣∣∣
Mott,extended

=
dσ

dΩ

∣∣∣
Rutherford,extended

×
(
1 − β sin2 θ

2

)
.

The form factor is understood here to be included in the Rutherford cross section,

since it belongs to the spin zero object. The form of the additional terms is such

that for small β Mott and Rutherford scattering are identical as we would expect,

spin interactions being relativistic effects.

The case of spin 1/2 against spin 1/2 is more complicated because spin 1/2

particles have a dipole magnetic moment. This means that we have two form factors:

electric and magnetic. The second can be understood as being due to a magnetic

dipole density of our extended object whose Fourier transform is the magnetic form

factor. For a Dirac proton the invariant amplitude is

M = eJµ(pe, p
′
e)J

µ(pp, p
′
p)

1

k2
, kµ = (pe − p′e)µ = (pp − p′p)µ

with pe and pp the electron and proton 4-momenta. The cross section in the lab

system is:
dσ

dΩ

∣∣∣
Lab

=
α2

4E2

cos2(θ/2) − (q2/2M2) sin2(θ/2)

[1 + (2E/M) sin2(θ/2)] sin4(θ/2)
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in the limit m/E  1, where q = pe − p′e. The factor in square brackets in the

denominator is due to the proton recoil, which we no longer ignore. (Show that

inclusion of recoil results in a factor E/E ′ = 1/[...]). For spin 1/2 particles of

finite radius and with a magnetic moment different from the Dirac value we must

generalize the form of the current density. From Lorentz invariance the current

must be a function of all the coordinates, we work in momentum space, of the

in and out particles, transforming as a 4-vector. The spin coordinates appear via

the appropriate spinor-γ-matrices factors. In addition we have terms in pµ, p′µ all

multiplied by arbitrary functions of any Lorentz invariant we can construct, in this

case just q2 = qµq
µ with q = p − p′. Then the current is:

Jµ = eū(p′)[pµΓ1(q
2) + p′µΓ2(q

2) + γµΓ3(q
2)]u(p)

which, by requiring that it be conserved, reduces to:

Jµ = eū(p′)[(p + p′)µΓ1(q
2) + γµΓ3(q

2)]u(p)

where Γi(q
2) are form factors related to charge and magnetic moment density dis-

tributions. The term (p + p′)µ can be transformed into a magnetic-like interaction

σµνq
ν by use of the Dirac equation for the proton, or the neutron, (/p − M)u = 0.

Then the current can be written as:

Jµ = eū(p′)[γµF1(q
2) + iσµνq

ν κ

2M
F2(q

2)]u(p)

where the form factors F1(q
2) and F2(q

2) are normalized in such a way that at

infinity we see the charge of the proton as 1(×e) and of the neutron as zero:

F1(q
2 = 0) = charge =

{
1 for proton

0 for neutron,

while κ is the experimental value of the anomalous magnetic moment, µ − µDirac in

units of the nuclear magneton, µN = e/2MN , and therefore:

F2(q
2 = 0) =

{
1 for proton

1 for neutron,

κ =
µ − µDirac

µN

=

{
2.79 − 1 =1.79

−1.91 − 0 =−1.91.

Note that the Dirac part of the dipole magnetic moment does not contribute to

the magnetic form factor. Rather, the Dirac part of the dipole magnetic moment is

already accounted for in Jµ = ψ̄γµψ. From the current above we find:

dσ

dΩ

∣∣∣
Lab

=
α2

4E2

(
F 2

1 − κ2q2

4M2
F 2

2

)
cos2 θ

2
− q2

2M2
(F1 + κF2)

2 sin2 θ

2
[1 + (2E/M) sin2(θ/2)] sin4(θ/2)
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the so called Rosenbluth formula. One can remove or hide the “interference” term

between F1 and F2 by introducing the form factors

GE = F1 +
κq2

4M2
F2

GM = F1 + κF2

in terms of which:

dσ

dΩ

∣∣∣
Lab

=
α2

4E2 sin4(θ/2)

E

E ′
[G2

E + bG2
M

1 + b
cos2(θ/2) + 2bG2

M sin2 θ

2

]

=
α2 cos2(θ/2)

4E2 sin4(θ/2)

E

E ′
[G2

E + bG2
M

1 + b
+ 2bG2

M tan2 θ

2

]
, b = −q2/4M2.

GE and GM are called the electric and magnetic form factors normalized as

GE(q2 = 0) =
Q

e
GM(q2 = 0) =

µ

µN

where Q is the particle charge, e the electron charge, µ the magnetic moment and

µN the nuclear magneton, i.e. e/2mN , with mN the proton mass (∼neutron mass).

The form factors GE(q2) and GM(q2) do not have a simple physical connection to

charge and magnetic moment density distributions, except in the Breit or brick-wall

frame, H-M, p. 177-8. Still the rms charge radius is connected to the form factors,

eg

〈r2〉 = 6
(dGE(q2)

dq2

)
q2=0

.

Experimentally:

GE(q2) =
(
1 − q2

0.71

)−2
in GeV.

The extra power of two in the denominator is an embarrassment. Still we derive

several conclusions from all this. First of all, we find that the mean square proton

charge radius is:

〈r2〉 = (0.8 fm)2

in reasonable agreement with other determinations of the size of the proton. The

same result applies to the anomalous magnetic moment radius for proton and neu-

tron. Second, the shape of GE is the Fourier transform of a charge distribution of

the form e−mr:

F (|q|) =
(
1 − q2

m2

)−2
, q2 = −|q|2

That means that somehow masses larger than that of the pion appear to be involved.

Finally the form factor above has a pole at q2∼0.7 GeV2, a value that is not reachable

in ep scattering but becomes physical for e+e− annihilations or pion pion scattering.
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It was in fact from an analysis of the proton form factors that new important ideas

emerged, leading to the prediction of the existence of vector mesons, the ρ meson in

particular. The Yukawa theory of strong interaction introduces in the lagrangian

a term gφψ̄γ5ψ where g ∼ 1. This means that a proton is equally a proton, a

nucleon plus a pion, or any number of pions. The situation is not likely to lead to

simple calculable results but, in a simplistic way, we might try to understand the

photon-proton coupling as due to the contributions shown in fig. 4.9.
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Fig. 4.9. Contributions to the electron-proton scattering amplitude.

Analysis of the data on ep scattering suggested quite a long time ago that the

amplitude should be dominated by a two pion state with JPC = 1−− of mass around

800 MeV, as shown in fig. 4.10, as well as by other possible states.
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Fig. 4.10. The ρ meson contribution to the electron-proton scattering
amplitude.

The existence of the vector mesons was soon confirmed in pion-pion scattering exper-

iment, that is in the study of the mass spectrum of two and three pions in reactions

such as π + p → 2π + N and reactions in which three pions, forming the ω0 meson,

are produced in the final state. Later, the ρ meson was observed in e+e− annihila-

tions as we will discuss soon. All of this became later better understood in terms of

quarks.

4.9 Cross sections for J=1/2 particles

This is a very brief outline of how the modulus squared of a matrix element M

containing fermions is calculated. We will limit ourselves to the common case in

which the polarization of the particles is not observed. This means that we must
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sum over the final state spin orientations and average over the initial ones. The latter

is equivalent to summing also and dividing by the possible values 2J + 1=2 for spin

1/2. For every fermion in the process we will typically have a term ū(pf , sf )Γu(pi, si)

in M. u(p) here is the so called particle, i.e.positive energy spinor obeying the Dirac

equation (/p−m)u(p, s) = 0, while the antiparticle is negative energy spinor v obeying

the Dirac equation (/p + m)v(p, s) = 0. v spinors rather than u spinors can appear

in M. Γ is a combination of γ-matrices. We want to calculate

∑
sf ,si

|M|2

that is

∑
sf ,si

|ū(pf , sf )Γu(pi, si)|2 =
∑
sf ,si

[ū(pf , sf )Γu(pi, si)][ū(pi, si)Γu(pf , sf )],

where Γ = γ0Γ†γ0. With the normalization for spinors ūu = v̄v = 2m and the

completeness relation
∑

s uα(p, s)ūβ(p, s) − vα(p, s)v̄β(p, s) = δαβ, the polarization

sum above is given by the trace:

∑
sf ,si

|ū(pf , sf )Γu(pi, si)|2 = Tr(/pf + m)Γ(/pi + m)Γ.

Finally, the cross section for scattering of two spin 1/2 particles labelled 1, 2 into

two spin 1/2 particles labelled a, b is given by:

dσ =
1

4

1

|v1 − v3|
1

2E1

1

2E2

∑
spins

|M|2 d3pa

2Ea(2π)3

d3pb

2Eb(2π)3
×

(2π)4δ4(p1 + p2 − pa − pb)

where the additional factor 1/4 accounts for the average and not the sum over the

initial spins. Likewise for the decay of a fermion of mass M and 4-momentum P

into three fermions labelled 1, 2, 3, the decay rate is:

dΓ =
1

2

1

2M

∑
spins

|M|2 d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3
×

(2π)4δ4(P − p1 − p2 − p3)

4.10 e+e− → π+π−

What is new for this process is the electron, whose spin we cannot ignore. Referring

to fig. 4.11, the amplitude for the process
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Fig. 4.11. Amplitude for e+e−→π+π−.

is given by

M = Jµ
e Aµ

1

s
Jν

πAν .

Summing over the polarization of the intermediate photon,
∑

AµAν = gµν , we find

M = Jµ(e)Jµ(π)
1

s
.

The electron current above is the 4-vector Jµ
e = eū(q′)γµu(q). I ignore i and signs,

since I do all to first order only. The pion current Jµ
π is e(p − p′)µ, see eq. (4.3).

Thus M = e2 (ū(q′)γµu(q)(p′ − p)µ) /s and

|M|2 =
e4

s2
(ū(q′)γµu(q)(p′ − p)µ) (ū(q′)γνu(q)(p′ − p)ν)

to be averaged over initial spins. The sum over the electron spin orientations is the

tensor

T µν
e = 4

(
q′µqν + q′νqµ − (q′q − m2)gµν

)
.

Dividing by 4 (= (2s1 + 1)(2s2 + 1)) and neglecting the electron mass gives

|M|2 =
e4

s2
(q′P qP + qP q′P − q′q PP ) ; P = p′ − p.

In the CM, with W =
√

s:

Ee = E ′
e = Eπ = E ′

π = W/2

�q = −�q′; |�q| = W/2

�p = −�p′

Therefore

P = (0, 2�p); PP = 4|�p|2; qq′ = 2|�q|2 = 2E2
π

After a little algebra

|M|2 =
e4 p2

π

2E2
π

sin2 θ.

From eq. (3.2):

dσ =
1

32πs

pout

pin

|M|2d cos θ
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we get
dσ

d cos θ
=

1

32πs

pout

pin

e4 p2
π

2E2
π

sin2 θ =
π α2

4s
β3 sin2 θ

and

σ(e+e− → π+π−) =
π α2

3s
β3

The computed cross section is correct for a point-like pion. From Lorentz invariance,

the most general form of the pion current is

Jµ(π) = e(p − p′)µ × F (s)

where the arbitrary function F (s) or Fπ(s) is called the pion form factor. For eπ

scattering we would write Fπ(t). By definition, Fπ(s = 0) = Fπ(t = 0) = 1. With

the form factor, the cross section is given by:

σ(e+e− → π+π−) =
π α2

3s
β3|Fπ(s)|2

The form factor is dominated by the ρ pole, in the simplest form:

|Fπ|2 ∝ (Γρ/2)2

(s1/2 − mρ)2 − (Γρ/2)2

4.11 e+e− → µ+µ−

The amplitude for e−µ− → µ−e− scattering is shown at left in fig. 4.12 and the

corresponding matrix element is given by:

M = −e2ū(p′)γµu(p)ū(q′)γµu(q)
1

k2
, k = p − p′
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Fig. 4.12. Amplitudes for e−µ− → µ−e− and e+e− → µ+µ−.

The sums over spins can be put in the form

∑
spins

|M|2 =
e4

k4
T µν

e Tmuon
µν

The electron tensor is

T µν
e =

1

2
Tr(/p′γµ/pγν + m2γµγν)

= 2(p′µpν + p′νpµ − (p′ · p − m2)gµν)
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with m the electron mass and a very similar result follows for Tmuon

Tmuon
µν = 2(q′µqν + q′νqµ − (q′ · q − M2)gµν)

with M the muon mass. The rest of the calculation is trivial. We only write the

extreme relativistic result, i.e.M, m  √
s or M, m = 0, using the variables s, t, u

s = (p + q)2 = 2(p q) = 2(p′ q′)

t = (p − p′)2 = −2(p p′) = −2(q q′)

u = (p − q′)2 = −2(p q′) = −2(q′ p)

∑
spins

|M|2 = 2e4 s2 + u2

t2

This result applies also to e+e− → µ+µ− scattering by turning around appropriately

the external lines or crossing the amplitude. In the present case this amounts to the

substitutions p′ ↔ −q or s ↔ t in the last result giving

∑
spins

|M|2 = 2e4 t2 + u2

s2

for e+e− → µ+µ− scattering. Performing the phase space integration, remembering

a factor of 1/4 for the initial spin states and with α = e2/4π we find

dσ

dΩ
=

α2

2s

t2 + u2

s2
. (4.17)

In the CM, for all masses negligible, all particles have the same energy E and the

variables s, t, u can be written in term of E and the scattering angle as

s = 2p · q = 4E2

t = −2p · p′ = −2E2(1 − cos θ)

u = −2p · q′ = −2E2(1 + cos θ)

from which
dσ

dΩ

∣∣∣
CM

=
α2

4s
(1 + cos2 θ)

and

σ(e+e− → µ+µ−) =
4πα2

3s

βµ(3 − β2
µ)

2

putting back the threshold dependence on βµ due to the muon mass.
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4.12 Bhabha scattering: e+e− → e+e−

For completeness we give the result for the Bhabha process, i.e. e+e− → e+e−. Two

amplitudes contribute, the exchange and annihilation diagrams, see for instance

fig. 4.5 in section 4.4. The cross section correspondingly contains three terms due,

respectively to the two amplitudes and their interference term.

dσ

dΩ
=

α2

2s

[
s2 + u2

t2
+

t2 + u2

s2
+

2u2

ts

]
.

The first term, being due to one photon exchange, exhibit the usual divergence 1/t2

or 1/ sin4 θ/2. The second term is identical to the result in eq. (4.17) above and the

last is the interference contribution.
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5 e+e−→Hadrons, R, Color etc

5.1 e+e−→Hadrons

If only ρ, first σ becomes large and then σ→0 faster than 1/s.

σ(e+e− → π+π−) =
12π

s
ΓeeΓres

M2
res

(M2
res − s)2 + M2

resΓ
2

lim
s→∞σ(hadrons) ∝ 1

s3

σ(ep)elastic ∼ σRutherford × |f(ρ)|2 ∼ const

t4

5.1.1 Final remarks



53

6 The Weak Interaction. I

6.1 Introduction

The study of the weak interaction begins with the discovery of beta decay of nuclei

(A,Z) → (A,Z − 1) + e−. Soon it became clear that the electron emitted in beta

decay had a continuous spectrum with

0 ≤ Ee ≤ M(A,Z) − M(A,Z − 1) = E0.

In the early days of quantum mechanics physicists were ready to abandon old prej-

udices and non other than Bohr proposed that energy conservation might not apply

at atomic or nuclear scale. Pauli knew better and preferred to propose the existence

of a new particle, later called neutrino by Fermi – the small neutral particle. The

properties of the neutrino were to be: J=1/2, m=0, Q=0 and its interaction with

matter small enough to make it undetectable. Following QED, Fermi proposed that

the beta decay processes be due to an effective four fermion interaction, similar to

the electromagnetic case, but with the four fermion operators taken at the same

space time point, fig. 6.1.

f1

f2

f3

f4
	

f1

f2

f3

f4

Fig. 6.1. The effective Fermi 4-fermion coupling, right, compared to QED,
left. The small gap between vertices reminds us that the 4-fermion interaction
is an effective theory with a coupling constant of dimension -2, about which
we will do something.

Consider the simplest case of n → p + e− + ν or better the crossed process

p + e− → n + ν. The matrix element is taken as

M = GΨ̄nγµΨpΨ̄eγµΨν (6.1)

with G a coupling constant to be determined experimentally. If the proton and neu-

tron mass are large wrt the momenta involced in the decay, the terms in γ1, γ2, andγ3

do not contribute and (6.1) reduces to:

M = GΨ∗
nΨpΨ

∗
eΨν . (6.2)

For
∑

spins |M|2 = 1 we find the electron spectrum for allowed Fermi transitions:

dΓ

dpe

=
G2

π3
p2

e(E − E0)
2.
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The Kurie plot is a graph of the experimentally determined quantity
√

dΓ/dpe /pe

versus Ee. According to (6.1), the graph should be a straight line and this is indeed

the case. Note that if m(ν) is different from zero the spectrum ends before E0 and

is not a straight line near the end point. The so called Kurie plot is shown in fig.

6.2.

d
N

p
d
p

/(
)

�
�

EE0 em = 0�

Fig. 6.2. A plot of the quantity
√

dΓ/dpe /pe versus Ee. Accurate experi-
ments have shown that nuclear β-decay data agrees with the Fermi prediction.
Also indicated is the spectrum shape and the end point, E0 − mν , for a non
zero neutrino mass.

We can crudely integrate the differential rate above, putting pe = Ee, i.e. ne-

glecting the electron mass. We also neglect corrections due to the atomic electrons,

which distort the electron wave function. In this way we obtain

Γ =
1

τ
=

G2E5
0

30π3
.

We can thus extract the value of G, G ≈ 10−5 m−2
p . This value can be obtained

from the measured β-decay lifetimes of several different nuclides. Experimental

evidence thus supports the existence of the neutrino and the validity of the effective

Fermi interaction. Including the above mentioned corrections, as well as radiative

corrections, and using the so called super allowed Fermi transitions (decays of nuclei

where only the vector part contributes, i.e.0→0 transitions betweeen members of an

isospin multiplet) the very precise value below is obtained:

GF (β decay) = 1.166 399(2) × (0.9751 ± 0.0006) Gev−2

whose significance we will discuss later.

6.2 Parity and Charge Conjugation

In 1957 it was experimentally proved that parity, P , is violated in weak interactions.

In general, the experimental observation that the expectaction value of a pseudo
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scalar is different from zero implies that parity is violated. Tn order for this to

happen however interference between two amplitudes, one even under P and one

odd under P is necessary. If only one amplitude A contributes to a process, whether

even or odd under P , |A|2 is even and no parity violation is observable. If on the

other hand the amplituede has an even part and an odd part, A = A+ + A−, than

|A|2 = |A+|2 + |A−|2 + 2�A+∗A− and 2�(A+∗A− is odd under P .

The three 1957 experiments are extremely simple and beautifull and should be

understood in their experimental detailsl. Here we will only briefly recall their

principle and undestand them in terms of measuring a pseudoscalar quantity and

understand the result in terms of neutrino helicity when possible. In the beta decay

process 60Co→60Ni+e+ν correlations between the Co nucleus spin and the direction

of the decay electron are observed, resulting in 〈J · pe〉 	= 0. The experiment is

shown in principle in fig. 6.3.

B

External
Field

Co60

e detector
�

Fig. 6.3. The experiment of C. S. Wu et al.. The probability of 60Co an
electron along or opposite to bf B is different.

The pseudosclar with non-zero average observed is B · pe. Since the magnetic

field aligns the cobalt spin, B·pe is equivalent to J·pe. For negative electron helicity

and positive anti-neutrino helicity, the favoured configuration is shown in fig. 6.4.

Co60 Ni60 e


�e

B

External
Field

Fig. 6.4. Favored orientation of initial, J=5, and final, J=4 nuclear spins
and of the electron and anti-neutrino helicities and momenta in the decay of
60Co.
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Parity violation was also observed in the decay chain π → µ → e, fig 6.5.

e�
��

�-spin
��

Current

Detectors
Absorbers

Pion beam
��

Fig. 6.5. The Garwin and Lederman experiment,

Note that in both cases neutrinos are involved. Parity violation was also observed

in the decay Λ → pπ−, a process with no neutrino, by observing correlations of the

form p1 · p2 × p3 which is a pseudoscalar, fig. 6.6. Fig.

6????

Soon thereafter it was directly proven that electrons emitted in beta decay have

helicity H=−1 and also that H(ν)=−1 in beta decay and in pion decay. A non

vanishing value of the helicity is by itself proof of P and C violation.

MIRROR or P

Right-handed
neutrino not found!

Left-handed
neutrino

`` - MIRROR''C

Left-handed
anti-neutrino not found!

Left-handed
neutrino

`` - MIRROR''CP

Right-handed
anti-neutrino OK

Left-handed
neutrino

Fig. 6.7. P , C and CP on a neutrino.

6.3 Helicity and left-handed particles

We define the helicity of a spin 1/2 particle as the eigenvalue of the helicity operator

H =
1

2
�σ · p̂, p̂ =

�p

p
.



6.4 The V−A interaction 57

The operator H commutes with the Hamiltonian and therefore the helicity is a good

quantum number. It is not, however a Lorentz-invariant quantity for a massive

particle. If a particle of given helicity moves with a velocity β < 1 we can overtake

it and find its helicity flipped around.

The operators O± = (1 ± γ5)/2 are projection operators:

O±2 = O±

O+O− = O−O+ = O.

For a spin 1/2 particle with β = p/E approaching 1 the states O± have positive and

negative helicity. It is usual to define the spinors

uL = O−u

uR = O+u

for m=0, uL has negative helicity. A particle with negative helicity has the spin

antiparallel to the direction of motion and is called a left-handed particle, from

which the L in uL. Similarly uR has positive helicity and corresponds to a right-

handed particle.

6.4 The V−A interaction

The series of experiments at the end of the 50’s lead to a new form of the effective

weak interaction:
G√
2
ūγµ(1 − γ5)u ūγµ(1 − γ5)u (6.3)

where for the moment we do not specify to what particles the four spinors belong.

The factor 1/
√

2, introduced for historical reasons, maintains the value of the Fermi

constant G. Recall that ūγµu and ūγµγ5u transform respectively as a vector (V)

and an axial vector (A), from which the name V−A. The form of the interaction

suggests that we put it in the form of a current×current interaction in analogy with

electromagnetism. We remain to face of course the problem that a four fermion

interaction is a very divergent theory but we will ultimately couple the currents via

a massive vector field which in the end will allow us to describie weak interactions

with a renormalizable theory. For now we maintain the Fermi form and we write

the effective lagrangian as

L =
G√
2
J+

µ (x)J+µ(x) +h.c.

with

J+
µ = (ν̄e)µ + (p̄n)µ
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where, for instance,

(ν̄e)µ = ū(ν)γµ(1 − γ5)u(e).

The superscript ‘+’ reminds us that the current is a charge raising current, corre-

sponding to the transitions n → p and e− → ν in beta decay. The two currents are

taken at the same space time point x.

The presence of the factor 1− γ5 in the current requires that all fermions parte-

cipating in a weak process be left-handed and all antifermions be right-handed. For

neutrino which are massless we expect neutrino to always have negative helicity and

anti neutrino to have positive helicity.

This has been verified experimentally both for neutrinos in β-decay, which we

call electron-neutrinos or νe And for neutrinos from the decay π → µν, the muon-

neutrinos or µν . These experimental results have greatly contributed to establishing

the “V − A” interaction.

We consider now the purely leptonic weak processes.

6.5 Muon Decay

Before writing a matrix element and computing the muon decay, we must discuss

more some neutrino properties. We have seen that there appears to be a conservation

law of leptonic number, which accounts for the observed properties of weak processes.

The experimental observation that the electron in muon decay is not monochromatic

is in agreement with lepton number conservation requiring that two neutrinos be

created in muon decay. Spin also requires three fermions in the final state, i.e. two

neutrinos!

The introduction of an additive quantum requires that we distinguish particle

and antiparticles. A consistent assignment of leptonic number to muons, electrons

and neutrinos is
Particles e− µ− ν L=1

Antiparticles e+ µ+ ν̄ L=-1

with the beta decay and muon decay reactions being

n → pe−ν̄

µ− → e−ν̄ν

The absence of the transition µ → eγ is not however explained by any property

of the weak interaction and we are lead to postulate that in nature there are two

independently conserved lepton numbers: Le and Lµ. We also have to postulate two
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kind of neutrinos: νe and νµ. Then the assignment of Le and Lµ is:

Particle Le Lµ

e−, νe 1 0

e+, ν̄e -1 0

µ−, νµ 0 1

µ+, ν̄µ 0 -1

and the reactions above become

n → pe−ν̄e

µ− → e−ν̄eνµ

The amplitude for muon decay is shown in fig. 6.8.
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Fig. 6.8. Amplitude for muon decay. The gap between vertices reminds us
that the 4-fermion interaction is the limit of a more complete theory.

From now on we will indicate the spinors with the particle symbol. The muon

decay matrix element is:

M =
G√
2

ν̄µγ
α(1 − γ5)µ ēγα(1 − γ5)νe

and summing over the spin orientations∑
spins

|M|2 = 128G2(µ · ν̄e)(e · νµ) = 128G2(Pk1)(pk2)

= 128G2Pαpβk1αk2β

where the term before the last defines the 4-momenta of the four particles. The

decay rate, in the muon rest frame, is given by

dΓ =
1

2

1

2Mµ

∑
spins

|M|2 d3p

2Ee(2π)3

d3k1

2Eν̄e(2π)3

d3k2

2Eνµ(2π)3

× (2π)4δ4(P − p − k1 − k2)

.

The neutrinos are not (observable) observed, therefore we integrate over their mo-

menta:

dΓ =
G2

4Mµ

d3p

2Ee(2π)3

(2π)4

22(2π)6
Pαpβ

×
∫

k1αk2β
d3k1

Eν̄e

d3k2

Eνµ

δ4(q − k1 − k2).
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with q = P − p and, after integration over the δ-function, q = k1 + k2. The integral

is a function of q only and its most general form is:

Iαβ =
∫

k1αk2β
d3k1d

3k2

E1E2

δ4(q − k1 − k2)

= A(q2gαβ + 2qαqβ) + B(q2gαβ − 2qαqβ)

where the last two terms are orthogonal to each other. Multiplying both sides by

q2gαβ − 2qαqβ gives:

B × 4q4 =
∫

k1αk2β(q2gαβ − 2qαqβ) . . .

=
∫

[q2(k1k2) − 2(qk1)(qk2)] . . . = 0

(remember k2
1 = k2

2 = 0 and q = k1 + k2) i.e. B=0. Multiplying by q2gαβ + 2qαqβ

gives

A × 12q4 = q4
∫ d3k1

E1

d3k2

E2

δ4(q − k1 − k2)

= q4
∫ d3k1

E1E2

δ(E − E1 − E2) =
4π

2
q4

where we have used q = (E,q) and computed the last integral in the system where

q=0, i.e. |k1| = |k2| = E1 = E2 and dE = dE1 + dE2 = 2dk1. Finally

Iαβ =
1

6
π (q2gαβ + 2qαqβ)

from which

dΓ =
G2

π448Mµ

[(q2(Pp) + 2(Pq)(pq)]
1

E
p2dpdΩ

Neglecting the electron mass and introducing x = E/(2Mµ), the electron spectrum

can be expressed as

dΓ =
G2M5

µ

96π3
x2(3 − 2x)dx

and, integrating over the spectrum,

Γ =
G2M5

µ

192π3
. (6.4)

Accurate measurements of the muon lifetime allow determining the Fermi coupling

constant G. One must however include radiative corrections. (6.4) then becomes:

Γ =
G2M5

µ

192π3

(
1 − α

2π
(π2 − 25/4)

)

From τµ =(2.19703±0.00004)×10−6 s, G = (1.16639±0.00001)×10−5 GeV−2. Given

the experimental accuracy, we cannot forget the radiative corrections, ∼4.2× 10−3.
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It is not necessary however to go to the next order. If we allow both V−A and V+A

couplings, the muon decay spectrum is:

dΓ = 12Γ[(1 − x) − 2

9
ρ(3 − 4x)]x2 (6.5)

where ρ = 0.75 for pure V-A.

dΓ =
G2M5

µ

96π3
x2(3 − 2x)dx

For pure V+A interaction, ρ = 0 and

dΓ =
G2M5

µ

96π3
6x2(1 − x)dx

whose integral is equal to (6.5). Experimentally, ρ = 0.7518 ± 0.0026, ’63-64. The

two spectra, with correct relative normalization, are shown in fig. 6.9.

0.2 0.4 0.6 0.8 1x

d
/d

�
x

0.2

0.4

0.6

0.8

1

V A


V A�

Fig. 6.9. Electron spetrum in µ-decay for pure V−A and V+A coupling.

There is a strong correlation between the direction of emission of the electron

and the spin of the muon. The favoured, x ∼ 1, and unfavoured, 0 < x  1,

kinematical configurations are shown in fig. 6.10 for the V−A coupling.
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Fig. 6.10. Muon spin-electron direction correlation. A. favoured configura-
tion, pe = Mµ/2. B. pe  Mµ/2. The ‘⇒’ arrows indicate spin orientations

For x = 1, conservation of angular momentum requires that the electron in µ−

decay be emitted in the direction opposite to the muon spin, while for small x

the electron is along the spin. We thus expect the electron direction in average to

tell us the muon spin orientation. Calculations of the electron angular distribution
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integrated over x gives:
dΓ

Γ
=

1

2

(
1 − 1

3
cos θ

)
d cos θ (6.6)

where θ is the angle between the electron mometum and the muon spin, both in the

CM of the muon. This was first observed in 1957 by Garwin and Lederman. The

correlation becomes stronger if a cut x > xmin is experimentally imposed. Note that

(6.6) implies that P is violated, since we observe that the expectation value of a

pseudoscalar is non zero, 〈σ · p〉=〈cos θ〉	= 0. The correlation also violates C since it

changes sign for the charge conjugated process µ+ → e+ν̄µνe.

The results above, apart from being a comfimation of the structure of the weak

coupling for muon decay, have great practical importance in detemining the muon

“anomaly” aµ = (gµ−2)/2 by measuring the difference between cyclotron frequency

and spin precession frequency in a magetic field which is proportional to a. The

decay electron provides a measurement of the spin direction in time while muons

are made to circulate in a storage ring. Another application of this effect is the so

called µMR (muon magnetic resonance), where the precession frequency allows to

probe crystalline fields, used among other things to undestand the structure of high

Tc superconting materials.

6.6 Semileptonic weak decays

We have somewhat litterally taken the weak interaction form of eq. (6.3) and written

in a pure V −A form for the muon decay. Agreement with experiment ultimately fully

justifies doing so. This is not the case for nuclear β-decay, typical being neutron

decay as well as many other processes: π± → π0e±ν(ν̄), π → �ν, Λ → pe−ν̄,

K → µν, K → π�ν and so on. For neutron decay, for instance, we find that the

amplitudes has the form

G√
2
ūpγµ(1 − ηγ5)un ūeγµ(1 − γ5)uν

with η = 1.253 ± 0.007.

6.7 Quarks and the weak current

Since the lepton term does not have complications we propose that for quarks, the

weak interaction retains the simple lepton form. For u and d quarks we assume:

J+
µ (u, d) = ūuγµ(1 − γ5)ud.
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The complications arise when we need the matrix element

〈 p |J+
µ (u, d)|n 〉

although apparently nothing happens for the vector part of the current. We will in

the following use the notations:

Jα(leptons, hadrons) = Lα + Hα

M =
G√
2

LαHα

since µ is used for muon.

Lα = 〈�̄|Oα| ν� 〉e−ikx

Hα = 〈f |O′
α| i 〉e−iqx

k = p� − pν

q = pf − pi

Lα = ū(p�)γα(1 − γ5)u(pν)

Hα = Vα + Aα = u(pf )γα(GV − GAγ5)u(pi)

with GV and GA of order 1 but not necessarily equal to 1.

We now introduce the isospinor

q =

(
u

d

)
, q̄ =

(−d

u

)

and recall the pion isospin wave functions:

π+ = ud̄, π0 =
uū − dd̄√

2
, π− = ūd

The ud current is an isovector, since 1/2⊗1/2=0⊕1 and clearly the third component

is non-zero. The electromagnetic current, which is a Lorentz vector has an isoscalar

and an isovector part as we derive in the following. Using the isospinor q we can

write neutral and charged currents as

ūγαd = q̄γατ+q

d̄γαu = q̄γατ−q

ūγαu − d̄γαd√
2

= q̄γατ3q

or equivalently as

Vα(u, d) = q̄γα�τq.
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τ1,2,3 are the Pauli matrices and

τ± =
τ1 ± iτ2

2

The electromagnetic interaction between quarks and the electromagnetic field which

defines the electromagnetic quark current is given by:

eAα( 2
3
ūγαu − 1

3
d̄γαd) = eAα( 1

2
q̄γατ3q + 1

6
q̄γαq).

The isoscalar part of the electric current contains more terms due to the other quarks.

If isospin invariance holds, the matrix elements of the em and weak currents must

be the same functions of q2. In particular the current ūγαd must be conserved, or

transverse, just as the em current:

∂αūγαd = 0 or qαūγαd = 0

This conservation of the vector part of the weak hadronic current is usually referred

to as CVC. CVC requires that the vector coupling constant remains unmodified

by hadronic complications.7 No similar results applies to the axial vector current.

The latter turns out to be ‘partially’ conserved, this being called PCAC. ∂αūγαγ5d

is small, more precisely ∂αūγαγ5d ∼ mπ. The pion mass can in the appropriate

context be considered small.

6.8 Pion Decay

Charged pion decays to �ν and π0�ν, where � stands for e or µ are due to the

interaction
G√
2

LαHα

with

Hα = Vα + Aα

6.8.1 Pion decay to lepton plus neutrino

For π+ → �+ + ν, the matrix element of Vα equals 0. For the axial part we set

〈 0 |Aα|π 〉=fπφπpα where fπ is an arbitrary constant with dimensions of an energy

and pα is the pion 4-momentum. fπ is infact a form factor, function of the 4-

momentum transfer squared q2 between initial and final state, in this case just the

pion mass squared.

7This strictly applies to the term ūγαd. In the electromagnetic current of proton etc, there are

two ff, f1 and f2. For f1(q2) the relation f1(q2 = 0) = 1 holds. Likewise GV (n → p)=1 at q2 = 0.
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From

pπ = p� + pν

and (p/ − m)u=0 we have

M =
G√
2

fπm�φπūν(1 + γ5)u�.

The proportionality of M to m� is just a consequence of angular momentum conser-

vation which forbids the decay of a spin zero pion into a negative helicity neutrino

and a positive helicity anti electron moving in opposite directions.


� �J �
e �e �



Fig. 6.11. Angular momenta in π → �ν decays.

From the above

∑
spins

|M|2 =
G2

2
f 2

πm2
�8(pνp�) = 4G2f 2

πm2
�mπEν

and using

Γ =
1

2m

∑
spins

|M|2Φp

with Φp the phase space volume equal to Eν/(4πmπ), we finally find

Γ =
G2f 2

πm2
�mπ

8π

(
1 − m2

�

m2
π

)2
.

The ratio between muon and electron decays does not depend on fπ and is given by:

Γ(π → eν)

Γ(π → µν)
=
(me

mµ

)2(1 − m2
e/m

2
π

1 − m2
µ/m

2
π

)2 ∼= 1.3 × 10−4,

in agreement with observation.

From the measured pion lifetime and the above results for the width, ignoring

decay to eν and π0eν which contribute very little to the total with, one finds fπ=130

MeV.

6.8.2 π± decay to π0, electron and neutrino

For the decays π± → π0e±ν(ν̄), the axial part of the hadronic current gives no

contribution. The vector weak current transforms as an isovector and therefore

must have the same form as the electromagnetic current discussed in section 4.4, in

particular must be transverse. In the limit of exact isospin invariance, the charged
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and neutral pion masses are identical and the general form Jα = a(pi−pf )+b(pi+pf )

reduces to (pi + pf ) requiring that ∂αJα=0.

The decay amplitude is given by:

M =
G√
2
Gφiφf

√
2pαν̄γα(1 − γ5)e

with p = pi + pf , from which

Γ =
G2∆4

30π3

(
1 − 5m2

e

∆2
− 3∆

2mπ

)

The factor
√

2 in the matrix element comes from

〈π0|V −
α |π+ 〉 = 〈π0|d̄γαu|π+ 〉 = 〈π0|T−|π+ 〉 =

√
2

where u and d are the quark fields and T− is the isospin lowering operator.

An alternate way, but the same of course, is by using the pion quark wave

functions:

|π+ 〉 = |ud̄ 〉; |π0 〉 = | (dd̄ − uū)/
√

2 〉; |π− 〉 = | ūd 〉

Then 〈 π0 |u†d|π+ 〉 = 〈 (dd̄−uū)/
√

2 |−uū + dd̄〉 = 2/
√

2 =
√

2. Remember that

I−ū = −d̄ but I−u = d, etc.

Matrix element for superallowed Fermi 0+→0+ transitions between members of

an isospin triplet are the same as for pion decay, i.e.
√

2. For neutron β-decay the ma-

trix element of the vector current is 1, computed for instance from
√

T (T + 1) − T3(T3 + 1),

with T3 = −1/2.

6.9 Inverse muon decay.

The process νee → νµµ can be observed experimentally. However of the two pro-

cesses

νe + e− → νµ + µ−

ν̄e + e− → ν̄µ + µ−

the first is not allowed by the weak interaction. If instead the leptons in the final

state are the same as in the initial state, both reaction are possible, mediated by

‘exchange’ and ‘annihilation’ amplitudes as indicated in fig. 6.12.
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Fig. 6.12. Amplitudes for νee → νee scattering. The + superscript indicates
that the current is a charge raising operator.

The diagram on the right applies also to production of µ−ν̄µ. The respective

cross sections are trivial to calculate. Neglecting all masses, in the center of mass

we find:
dσ

dΩ

∣∣∣∣
νe−

=
G2s

4π2

dσ

dΩ

∣∣∣∣
ν̄e−

=
G2s

16π2
(1 + cos θ)2,

where θ is the angle between incident and scattered electron. The different angular

distribution in the two cases can be understood in terms of helicities and angular

momentum conservation which results in a suppression of the scattering cross section

in the backward direction for incident antineutrinos.

�
e e
 Jz�1

Jz
1e
�
e

Fig. 6.13. Backward ν̄ee scattering is forbidden by angular momentum
conservation.

The total cross section is given by:

σ(νe−) =
G2s

π

σ(ν̄e−) =
G2s

3π
.

The second result in both cases is valid also for ν̄ee
− → ν̄µµ

−. The results can also

be rewritten for νµe processes.8

8Why only left-handed ν’s? Because they are the only ones that couple to something. But than

do they still exist, right-handed ν’s? Perhaps. Makes no difference!!
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7 STRANGENESS

7.1 Discovey

1940, ∼50 years ago. In few thousand pictures, ∼1000 π’s, observe production of

particles which decay in few cm. c=30 cm/ns, 1 cm at γ∼3 corresponds to τ∼10−10

s. τ(V-particles)∼10−10 to −8 s. i.e. typical of weak interactions.

Fig. 7.1. Schematic drawings of production and decay of V particles.

Production:

Nevents = Nin × σ × nucleons

cm2

= Nin × σ × g

cm2
× 6 × 1023

g

= 103 × 10−26 × 1 × 6 × 1023

= 6

or few events in 1000 pictures with σ ∼ σstrong. Therefore production time ∼10−23,

decay time ∼10−10. Decay is ∼1013 times slower than production.

Decays of V-particles

Λ0 → π−p

Λ0 → π0n

Σ± → π±n

K±, K0 → 2π

K±, K0 → π�ν

. . .

7.2 A New Quantum Number and Selection Rule

Introduce S, an additive QN – i.e.a charge – a multiplicative QN was tried first and

rejected – with appropriate assignments and selection rule: SI conserve S, if ∆S 	=,
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WI are only process. S, for strangeness is carried by the new (strange) particles and

is zero for pions, nucleons etc.

S is assigned as follows:

S|Λ, Σ . . . 〉 = −1|Λ, Σ . . . 〉
S|K+, K0 〉 = +1|K+, K0 〉
S|K−, K0 〉 = −1|K+, K0 〉

than all observed strong production reactions satisfy ∆S=0.

Associate production:

π−p → Λ0K0

π−p → Σ−K+

πN → K+K−N

. . .

Reactions with |∆S| 	= 0 proceed via the WI.

7.3 Charge and I3

I I3 B Q

1/2 p +1/2 1 +1

n -1/2 1 0

1 π+ +1 0 +1

1 π0 0 0 0

1 π− -1 0 -1

from which clearly the charge is linear in I3, or Q = I3+const. where the constant

is different for baryons and mesons, and clearly can be taken as B/2.

Q = I3 +
B

2
.

This relation is valid for all known non-strange baryon and mesons. For instance,

for I=3/2, B=1 the four states should have charges: +2e, +e, 0 and −e as observed

for the ∆ πN resonance. The relation also implies that non-strange baryons occur

in half integer iso-spin multiplets. Note also that 〈Q〉 is 1/2 for baryons and zero

for mesons. The situation is reversed for strange particles. First we must examine

whether is possible to assign a value of B to them. Since all strange particles heavier

than the proton, called hyperons, decay ultimately to a proton, we can assign to
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them B=1 and take B as conserved. Then we have:

〈Q〉 =

{
0 for hyperons

±1/2 for mesons

The relation above between charge and I3 can be generalized to

Q = I3 +
B + S

2
= I3 +

Y

2
.

This is the Gell-Mann–Nishijima formula and the definition of the quantum number

Y , the hypercharge. Now we have to make some observations. The existence of Σ±,

puts the Σ’s in an iso-triplet and predicts the existence of a Σ0, discovered soon

after the prediction. The K-mesons are more complicated. They must belong to

two iso- doublets:

K =

(
K+

K0

)
K =

(
K−

K0

)

and for the first time we encounter a neutral particles which is not self-charge con-

jugate, since under C, S changes sign.

7.4 Selection rules for hyperon decays

In Λ0 decay the initial I-spin is 0 and the final states π−p and π0n have I3=-1/2. I-

spin is not conserved in weak interaction as we already know from β-decay. However

the weak current has a precise I-spin structure (e. g. I+) in that case. In Λ0 decay,

from the observation above, the weak interaction can transform as an I=1/2, 3/2

state. If the weak interaction induces only ∆I=1/2 transitions than the πN final

state has I, I3=1/2, -1/2 and we can write:

|π,N, I = 1/2, I3 = −1/2 〉 =

√
2

3
|π−p 〉 −

√
1

3
, π0n

leading to Γ(π−p)/Γ(π0n)=2. For ∆I=3/2 the πN state is

|π,N, I = 1/2, I3 = −1/2 〉 =

√
1

3
|π−p 〉 +

√
2

3
|π0n 〉

or Γ(π−p)/Γ(π0n)=1/2. Experimentally, Γ(π−p)/Γ(π0n)=1.85, after correcting for

the small phase space difference. ∆I=1/2 appears to dominate although some

∆I=3/2 amplitude is clearly necessary. Before examining other cases we discuss

briefly parity violation in Λ decay. If the spin of the Λ is 1/2, than the πN final

state can be in an L=0, 1 state and the decay amplitude can be written as:

A(Λ → π−p) = S + P�σ · p̂
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where S and P are the S- and P -wave amplitudes and σ the Pauli spin operator,

acting on the proton spin in its CM. All this from P (πp) = P (π)P (p)(−1)L. Then

dΓ(θ) ∝ (|S|2 + |P |2 +2 �SP ∗ cos θ)d cos θ ∝ (1 + α cos θ)d cos θ

with α = 2�SP ∗/(|S|2 + |P |2). Experimentally α=0.64 for π−p and α=0.65 for π0n.

The maximum value of α is 1. Still 0.65 is a rather strong P violation.

7.5 Measuring the spin of the Λ0

Consider the reaction π−p → Λ0 + K0 with pions interacting in an unpolarized

proton target at rest. In the lab, we chose the quantization axis z along the incident

pion. Then Lz=0 and Jz = sz(p) = ±1/2, where the two. We choose only Λ’s

produced forward. Then again Lz=0 and the Λ has J, Jz=J,M=sΛ, 1/2. Finally

we consider the π−p state from decay. From conservation of angular momentum

it also has J,M=sΛ, 1/2. The possible values of L for the two particles are given

by L = sΛ ± 1/2, the last 1/2 coming from the proton spin. Both values are

allowed because parity is not conserved in the decay. We explicitly derive the angular

distribution of the decay proton for sΛ=1/2 and give the result for other cases.

For L=1 or P -waves and M = 1/2, the πp wave function is:

ψP =

√
2

3
Y +1

1

(
0

1

)
−
√

1

3
Y 0

1

(
1

0

)

= −
√

2

3

√
3

8π
sin θ

(
0

1

)
−
√

1

3

√
3

4π
cos θ

(
1

0

)

=
1√
4π

(
− sin θ

(
0

1

)
− cos θ

(
1

0

))

where we have dropped the φ dependence in the spherical harmonics Y m
l since the

initial state is unpolarized and the azimuthal dependence has to drop out in the

end. The Pauli spinors are the spin wave functions of the proton. For S-waves we

have:

ψS =
1√
4π

(
1

0

)
.

The amplitude for decay to πp is:

Aπ−p = AP + AS = PψP + SψS

where S and P come from the dynamics of the decay interaction and are in general

complex. Finally:

f+(θ) = |AP + AS|2 =
1

4π
(|P |2 + |S|2 − 2�SP ∗ cos θ)
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For M = sz(p) = −1/2 the same calculation gives

ψP =
1√
4π

(
cos θ

(
0

1

)
− sin θ

(
1

0

))

and therefore

f−(θ) =
1

4π
(|P |2 + |S|2 + 2�SP ∗ cos θ).

The complete angular distribution is given just by f+ + f−, since the initial state is

a statistical mixture of spin up and spin down and the interference term therefore

vanishes. For sΛ=1/2 the decay is therefore isotropic. For higher Λ spins the same

calculation can be repeated. The results are:

Λ spin Angular distribution

1/2 1

3/2 1 + 3 cos2 θ

5/2 1 − 2 cos2 θ + 5 cos4 θ

7.6 Σ decays

We must study three processes:

Σ− → π−n, amplitude: A−

Σ+ → π+n, amplitude: A+

Σ+ → π0p, amplitude: A0

If the interaction transforms as an isospinor, i.e. ∆I = 1/2, by the same methods

used for the Λ case we find the following relation:

A+ −
√

2A0 = A−

which applies both to S-waves and P -waves. The P violating parameter α is pro-

portional to �SP ∗ where S and P are required to be real by T -invariance. Final

state interaction however introduces factors of eiφ(πN). φ(πN) are the πN scattering

phases for i=1/2 and S- or P -waves at the energy corresponding to the Σ mass.

These phases are quite small and can be neglected in first approximation. S- and

P -waves are however orthogonal and the As can be drawn in an x, y plane, where

one axis is the P (S)-wave component and the other the S(P )-wave part. Experi-

mentally α−∼α+∼0, while α0∼1. We can thus draw A+(A−) along the x(y) axes

while A0 lies at 45◦ in the plane, see fig. 7.2.
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Fig. 7.2. The amplitudes A+,
√

2A0 and A− in Σ → πN decays.

Finally the very close equality of Γ− = Γ(Σ− → π−n) with Γ+ and Γ0 ensures

that the triangle in the S, P plane closes as required by the relation between am-

plitudes obtained using the ∆I=1/2 assumption. A more complete analysis shows

clearly that there is very little room left for ∆I=3/2.

7.7 Computing the amplitudes

We want to compute the decay amplitude for a process due to an interaction trans-

forming as an iso-tensor corresponding to some value of the isospin IH . We need

that part of the matrix element that contains the iso-spin QN’s. Consider the case in

which the final state is two particles labeled 1 and 2, the initial state is one particle

of i-spin I and the interaction has i-spin IH , i.e.:

〈I(1), I(2), I
(1)
3 , I

(2)
3 |T |I, I3〉

Formally this means to find all isoscalar in the product (I(1) ⊗ I(2)) ⊗ IH ⊗ I and

express the results in terms of appropriate reduced matrix elements in the Wigner-

Eckart theorem sense. That is we consider the interaction itself as a sort of object

of i-spin IH and proceed requiring i-spin invariance. For the case Σ → πN , I(1)=1,

I(2)=2 and I(πN)=1/2, 3/2. Similarly, IH ⊗ I also contains I=1/2, 3/2, in all cases

the I3 values being the appropriate ones for the three possible final state. There are

2 scalars in the total product or two reduced matrix elements, connecting I=3/2 to

3/2 and 1/2 to 1/2, which we call A3 and A1. Expressing A+, A0 and A− in terms

of A3 and A1 is a matter of Clebsch-Gordan coefficients which we do.

|π−n 〉 = | 3/2, 3/2 〉
|π+n 〉 =

√
1/3 | 3/2, 1/2 〉 +

√
2/3 | 1/2, 1/2 〉

|π0p 〉 =
√

2/3 | 3/2, 1/2 〉 −
√

1/3 , | 1/2, 1/2 〉

Note in the decomposition of the Σ⊗ IH we get exactly the same answer as for the

first two lines, since we always have a Σ+ in the initial state. We therefore trivially
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read out the result:
A− = A3

A+ = 1/3(A3 + 2A1)

A0 = 1/3(
√

2A3 −
√

2A1)

Multiply the third line by
√

2 and add:

A+ +
√

2A0 = A3 ≡ A3

This relation is not quite the same as the one announced, in fact it is equivalent. We

have used the more common sign convention in use today for the C-G coefficients.

The case for ∆I = 3/2 reduces to find all scalars in the product (I = 1/2, 3/2)⊗(I =

1/2, 3/2, 5/2). There are two, corresponding to the reduced matrix element B1 and

B3.

7.8 K decays

The situation becomes strikingly clear for the two pion decays of kaons. Consider:

K+,0 → ππ.

The initial state has I=1/2, I3=±1/2. Also the spin of the K is zero, therefore

L(2π)=0. The two pion state must be totally symmetric which means I2π=0 or 2.

For K0→π+π− or π0π0, I3(2π)=0, thus if ∆I=1/2 holds I(2π)=0 and BR(π+π−)=2×BR(π0π0)

in good, not perfect, agreement with observation. For π+π0, I3 is 1, therefore

I(2π)=2 and the decay is not allowed for ∆I=1/2 and it can only proceed by

∆I=3/2. Experimentally Γ(K0 → 2π)=1.1× 1010 and Γ(K+ → 2π)=1.6× 107 s−1.

Therefore Γ0/Γ+=655 and A3/2/A1/2 = 1/
√

655 = 0.04 which is a clear indication

of the suppression of ∆I=3/2 transitions.
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8 The Weak Interaction II. CP

8.1 Introduction

The origin of CP violation, to my mind, is one of the two most important questions

to be understood in particle physics (the other one being the origin of mass). In

the meantime we are finally getting proof - after 51 years of hard work - that C\P\
belongs to the weak interaction with 6 quarks and a unitary mixing matrix. Last

June 1999, “kaon physicists” had a celebratory get together in Chicago. Many of

the comments in these lectures reflect the communal reassessments and cogitations

from that workshop. It is clear that a complete experimental and theoretical albeit

phenomenological solution of the CP violation problem will affect in a most profound

way the fabric of particle physics.

8.2 Historical background

It is of interest, at this junction, to sketch with broad strokes this evolution. With

hindsight, one is impressed by how the K mesons are responsible for many of the

ideas which today we take for granted.

1. Strangeness which led to quarks and the flavor concept.

2. The τ–θ puzzle led to the discovery of parity violation.

3. The ∆I =1/2 rule in non leptonic decays, approximately valid in kaon and all

strange particle decays, still not quite understood.

4. The ∆S =∆Q rule in semileptonic decays, fundamental to quark mixing.

5. Flavor changing neutral current suppression which led to 4 quark mixing -

GIM mechanism, charm.

6. CP violation, which requires 6 quarks - KM, beauty and top.

8.3 K mesons and strangeness

K mesons were possibly discovered in 1944 in cosmic radiation(5) and their decays

were first observed in 1947.(6) A pair of two old cloud chamber pictures of their decay

is on the website

http://hepweb.rl.ac.uk/ppUKpics/pr 971217.html
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demontrating that they come both in neutral and charged versions. The two pictures

are shown in fig. 1.

Fig. 8.1. K discovery

On December 1947 Rochester and Butler (Nature 106, 885 (1947)) published

Wilson chamber pictures showing evidence for what we now call K0→π+π−and

K+→π+π0.

8.3.1 The Strange Problem

Absorber

V particle

Absorber

Cosmic rays
V particle

Cloud chamber

Cosmic rays

Cloud chamber

Fig. 8.2. Production and decay of V particles.

In few triggered pictures, ∼1000 nuclear interactions, a few particles which decay

in few cm were observed. A typical strong interaction cross section is (1 fm)2=10−26

cm2, corresponding to the production in a 1 g/cm2 plate of:

Nevents = Nin × σ × nucleons

cm2
= 103 × 10−26 × 1 × 6 × 1023 = 6
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Assuming the V-particles travel a few cm with γβ∼3, their lifetime is O(10−10 s),

typical of weak interactions. We conclude that the decay of V-particles is weak while

the production is strong, strange indeed since pions and nucleons appear at the be-

ginning and at the end!! This strange property of K mesons and other particles, the

hyperons, led to the introduction of a new quantum number, the strangeness, S.(7)

Strangeness is conserved in strong interactions, while 12 first order weak interaction

can induce transitions in which strangeness is changed by one unit.

Today we describe these properties in terms of quarks with different “flavors”,

first suggested in 1964 independently by Gell-Mann and Zweig,(8) reformulating the

SU(3) flavor, approximate, global symmetry. The “normal particles” are bound

states of quarks: qq̄, the mesons, or qqq, baryons, where

q =

(
u

d

)
=

(
up

down

)
.

K’s, hyperons and hypernuclei contain a strange quark, s:

K0 = ds̄

K+ = us̄

S = +1

K0 = d̄s

K− = ūs

S = −1.

The assignment of negative strangeness to the s quark is arbitrary but maintains

today the original assignment of positive strangeness for K0, K+ and negative for

the Λ and Σ hyperons and for K0 and K−. Or, mysteriously, calling negative the

charge of the electron.

An important consequence of the fact that K mesons carry strangeness, a new

additive quantum number, is that the neutral K and anti neutral K meson are

distinct particles!!!

C|K0 〉= |K0 〉, S|K0 〉= |K0 〉, S|K0 〉=−|K0 〉

An apocryphal story says that upon hearing of this hypothesis, Fermi challenged

Gell-Mann to devise an experiment which shows an observable difference between

the K0 and the K0. Today we know that it is trivial to do so. For example, the

process pp̄ → π−K+K0, produces K0’s which in turn can produce Λ hyperons while

the K0’s produced in pp̄ → π+K−K0 cannot.

Another of Fermi’s question was:

if you observe a K→2π decay, how do you tell whether it is a K0 or a K0? Since

the ’50’s K mesons have been produced at accelerators, first amongst them was the

Cosmotron.
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8.4 Parity Violation

Parity violation, P\, was first observed through the θ-τ decay modes of K mesons.

Incidentally, the τ there is not the heavy lepton of today, but is a charged particle

which decays into three pions, K+ → π+π+π− in todays language. The θ there

refers to a neutral particle which decays into a pair of charged pions, K0 → π+π−.

The studies of those days were done mostly in nuclear emulsions and JLF con-

tributed also long strands of her hair to make the reference marks between emulsion

plates, to enable tracking across plates... The burning question was whether these

two particle were the same particle with two decay modes, or two different ones.

And if they were the same particle, how could the two different final states have

opposite parity?

This puzzle was originally not so apparent until Dalitz advanced an argument

which says that one could determine the spin of τ by looking at the decay distribution

of the three pions in a “Dalitz” (what he calls phase space) plot, which was in fact

consistent with J=0.

The spin of the θ was inferred to be zero because it did not like to decay into a

pion and a photon (a photon cannot be emitted in a 0→0 transition). For neutral

K’s one of the principal decay modes are two or three pions.

l

L

��

��

�


Fig. 8.3. Definition of l and L for three pion decays of τ+.

l

L

��

�


��

Fig. 8.4. Definition of l and L for K0→π+π−π0.

The relevant properties of the neutral two and three pion systems with zero total

angular momentum are given below.

1. � = L = 0, 1, 2 . . .

2. π+π−, π0π0: P = +1, C = +1, CP = +1.
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3. π+π−π−: P = −1, C = (−1)l, CP = ±1, where l is the angular momentum

of the charged pions in their center of mass. States with l > 0 are suppressed

by the angular momentum barrier.

4. π0π0π0: P = −1, C = +1, CP = −1. Bose statistics requires that l for any

identical pion pair be even in this case.

Note that the two pion and three pion states have opposite parity, except for π+π−π0

with �, L odd.

8.5 Mass and CP eigenstates

While the strong interactions conserve strangeness, the weak interactions do not. In

fact, not only do they violate S with ∆S = 1, they also violate charge conjugation,

C, and parity, P , as we have just seen. However, at the end of the 50’s, the weak

interaction does not manifestly violate the combined CP symmetry. For now let’s

assume that CP is a symmetry of the world. We define an arbitrary, unmeasurable

phase by:

CP |K0 〉 = |K0 〉

Then the simultaneous mass and CP eigenstates are:(9)

|K1 〉 ≡ |K0 〉 + |K0 〉√
2

|K2 〉 ≡ |K0 〉 − |K0 〉√
2

, (8.1)

where K1 has CP=+1 and K2 has CP=−1.

While K0 and K0 are degenerate states in mass, as required by CPT invariance,

the weak interactions, which induces to second order K0↔K0 transitions, induces a

small mass difference between K1 and K2, ∆m. We expect that ∆m∼Γ, at least as

long as real and imaginary parts of the amplitudes of fig. 8.5 are about equal, since

the decay rate is proportional to the imaginary part and the real part contributes

to the mass difference. Dimensionally, Γ=∆m=G2m5
π= 5.3 × 10−15 GeV, in good

agreement with measurements. The K1 mass is the expectation value

〈K1|H|K1 〉

. With K1=(K0+K0)/
√

2 and anlogously for K2, we find

m1 − m2 = 〈K0|H|K0 〉 + 〈K0|H|K0 〉,

δm is due to K0 ↔ K0 transitions induced by a ∆S=2 interaction.
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K

�

K
�

K

�

K
�

�1 21 2

Fig. 8.5. Contributions to the K1-K2 mass difference.

8.6 K1 and K2 lifetimes and mass difference

If the total Hamiltonian conserves CP , i.e. [H,CP ] = 0, the decays of K1’s and

K2’s must conserve CP . Thus the K1’s with CP = 1, must decay into two pions

(and three pions in an L = � = 1 state, surmounting an angular momentum barrier

- ∼(kr)2(KR)2∼1/100 and suppressed by phase space, ∼1/1000), while the K2’s

with CP = −1, must decay into three pion final states.

Phase space for 3 pion decay is smaller by 32π2 plus some, since the energy

available in 2π decay is ∼220 MeV, while for three πs decay is ∼90 MeV, the

lifetime of the K1 is much much shorter than that of the K2.

Lederman et al.(10) observed long lived neutral kaons in 1956, in a diffusion cloud

chamber at the Cosmotron.

Today we have τ1 = (0.8959 ± 0.0006) × 10−10 s and :†

Γ1 = (1.1162 ± 0.0007) × 1010 s−1

Γ2 = (1.72 ± 0.02×)10−3 × Γ1

∆m = m(K2) − m(K1) = (0.5296 ± 0.0010) × 1010 s−1

= (3.489 ± 0.008) × 10−6 eV

∆m/(Γ1 + Γ2) = 0.4736 ± 0.0009.

(8.2)

†We use natural units, i.e. h̄ = c = 1. Conversion is found using h̄c=197.3. . .

MeV×fm.

Unit Conversion

To convert from to multiply by

1/MeV s 6.58 × 10−22

1/MeV fm 197

1/GeV2 mb 0.389
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8.7 Strangeness oscillations

The mass eigenstates K1 and K2 evolve in vacuum and in their rest frame according

to

|K1,2 〉 t, = |K1,2 〉 t = 0, e−i m1,2 t−t Γ1,2/2 (8.3)

If the initial state has definite strangeness, say it is a K0 as from the production

process π−p → K0Λ0, it must first be rewritten in terms of the mass eigenstates K1

and K2 which then evolve in time as above. Since the K1 and K2 amplitudes change

phase differently in time, the pure S=1 state at t=0 acquires an S=−1 component

at t > 0. From (8.1) the wave function at time t is:

Ψ(t) =
√

1/2[e(i m1−Γ1/2)t|K1 〉 + e(i m2−Γ1/2)t|K2 〉] =

1/2[(e(i m1−Γ1/2)t + e(i m2−Γ2/2)t)|K0 〉+
(e(i m1−Γ1/2)t − e(i m2−Γ2/2)t)|K0 〉].

The intensity of K0 (K0) at time t is given by: k

I(K0 (K0), t) = |〈K0 (K0)|Ψ(t) 〉|2 =

1

4
[e−tΓ1 + e−tΓ2 +(−)2e−t(Γ1+Γ2)/2 cos ∆m t]

which exhibits oscillations whose frequency depends on the mass difference, see fig.

8.6.

1
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1/4
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I K( ), �m=0

0

1I K( ), � �m=

0




1

I K( ), �m=00

t/�1
Fig. 8.6. Evolution in time of a pure S=1 state at time t=0



82 8 THE WEAK INTERACTION II. CP

The appearance of K0’s from an initially pure K0 beam can detected by the pro-

duction of hyperons, according to the reactions:

K0p → π+Λ0, → π+Σ+, → π0Σ+,

K0n → π0Λ0, → π0Σ0, → π−Σ−.

The KL-KS mass difference can therefore be obtained from the oscillation fre-

quency.

8.8 Regeneration

Another interesting, and extremely useful phenomenon, is that it is possible to

regenerate K1’s by placing a piece of material in the path of a K2 beam. Let’s take

our standard reaction,

π−p → K0Λ0,

the initial state wave function of the K0’s is

Ψ(t = 0) ≡ |K0 〉 =
|K1 〉 + |K2 〉√

2
.

Note that it is composed equally of K1’s and K2’s. The K1 component decays away

quickly via the two pion decay modes, leaving a virtually pure K2 beam.

A K2 beam has equal K0 and K0 components, which interact differently in

matter. For example, the K0’s undergo elastic scattering, charge exchange etc.

whereas the K0’s also produce hyperons via strangeness conserving transitions. Thus

we have an apparent rebirth of K1’s emerging from a piece of material placed in the

path of a K2 beam! See fig. 8.7.

Fig. 8.7. K1 regeneration

Virtually all past and present experiments, with the exception of a couple which will

be mentioned explicitly, use this method to obtain a source of K1’s (or KS’s, as we

shall see later).
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Denoting the amplitudes for K0 and K0 scattering on nuclei by f and f̄ respec-

tively, the scattered amplitude for an initial K2 state is given by:

√
1/2(f |K0 〉−f̄ |K0 〉) =

f + f̄

2
√

2
(|K0 〉−|K0 〉) +

f − f̄

2
√

2
(|K0 〉+|K0 〉)

= 1/2(f+f̄)|K2 〉+1/2(f−f̄)|K1 〉.

The so called regeneration amplitude for K2→K1, f21 is given by 1/2(f − f̄) which

of course would be 0 if f = f̄ , which is true at infinite energy.

Another important property of regeneration is that when the K1 is produced

at non-zero angle to the incident K2 beam, regeneration on different nuclei in a

regenerator is incoherent, while at zero degree the amplitudes from different nuclei

add up coherently.

The intensity for coherent regeneration depends on the K1, K2 mass difference.

Precision mass measurements have been performed by measuring the ratio of co-

herent to diffraction regeneration. The interference of K1 waves from two or more

regenerators has also allowed us to determine that the K2 meson is heavier than the

K1 meson. This perhaps could be expected, but it is nice to have it measured.

Finally we note that the K1 and K2 amplitudes after regeneration are coherent

and can interfere if CP is violated.

8.9 CP Violation in Two Pion Decay Modes

8.9.1 Discovery

For some years after the discovery that C and P are violated in the weak interactions,

it was thought that CP might still be conserved. CP violation was discovered in

’64,(11) through the observation of the unexpected decay K2→π+π−. This beautiful

experiment is conceptually very simple, see fig. 8.8.
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Fig. 8.8. The setup of the experiment of Christenson et al..

Let a K beam pass through a long collimator and decay in an empty space (actually

a big helium bag) in front of two spectrometers. We have mace a K2 beam. The

K2 decay products are viewed by spark chambers and scintillator hodoscopes in the

spectrometers placed on either side of the beam.

Two pion decay modes are distinguished from three pion and leptonics decay

modes by the reconstructed invariant mass Mππ, and the direction θ of their resultant

momentum vector relative to the beam. In the mass interval 494-504 MeV an excess

of 45 events collinear with the beam (cos θ > 0.99997) is observed. For the intervals

484-494 and 504-514 there is no excess, establishing that K2s decay into two pions,

with a branching ratio of the order of 2 × 10−3.

CP is therefore shown to be violated! The CP violating decay KL→π0π0 has

also been observed.

8.9.2 K0 Decays with CP Violation

Since CP is violated in K decays, the mass eigenstates are no more CP eigenstate

and can be written, assuming CPT invariance, as:

KS =
(
(1 + ε)|K0 〉 + (1 − ε)|K0 〉

)
/
√

2(1 + |ε|2)

KL =
(
(1 + ε)|K0 〉 − (1 − ε)|K0 〉

)
/
√

2(1 + |ε|2)
Another equivalent form, in terms of the CP eigenstate K1 and K2 is:

|KS 〉 =
|K1 〉 + ε|K2 〉√

1 + |ε|2
|KL 〉 =

|K2 〉 + ε|K1 〉√
1 + |ε|2

(8.4)

with |ε| = (2.259± 0.018)× 10−3 from experiment. Note that the KS and KL states

are not orthogonal states, contrary to the case of K1 and K2. If we describe an
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arbitrary state a|K0 〉 + b|K0 〉 as

ψ =

(
a

b

)
.

its time evolution is given by

i
d

dt
ψ = (M − iΓ/2)ψ

where M and Γ are 2×2 hermitian matrices which can be called the mass and decay

matrix. CPT invariance requires M11 = M22, i.e.M(K0) = M(K0), and Γ11 = Γ22.

CP invariance requires arg(Γ12/M12)=0. The relation between ε and M, Γ is:

1 + ε

1 − ε
=

√√√√M12 − Γ12/2

M∗
12 − Γ∗

12/2
.

KS and KL satisfy

(M − iΓ)|KS, L 〉 = (MS,L − iΓS,L)|KS, L 〉

where MS,L and ΓS,L are the mass and width of the physical neutral kaons, with

values given earlier for the K1 and K2 states.

Equation (8.3) is rewritten rewritten as:

|KS,L 〉 t, = |KS,L 〉 t = 0, e−i MS,L t−ΓS,L/2 t

d

dt
|KS,L 〉 = −iMS,L|KS,L 〉

with

MS,L = MS,L − iΓS,L/2

and the values of masses and decay widths given in eq. (8.2) belong to KS and KL,

rather than to K1 and K2. We further introduce the so called superweak phase φSW

as:

φSW =Arg(ε)=tan−1 2(MKL
− MKS

)

ΓKS
−ΓKL

=43.63◦ ± 0.08◦.

A superweak theory, is a theory with a ∆S=2 interaction, whose sole effect is to

induce a CP impurity ε in the mass eigenstates. Since 1964 we have been asking

the question: is CP violated directly in K0 decays, i.e. is the |∆S|=1 amplitude

〈ππ|K2 〉 	= 0 or the only manifestation of C\P\ is to introduce a small impurity of

K1 in the KL state, via K0↔K0, |∆S|=2 transitions?
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Wu and Yang,(12) have analyzed the two pion decays of KS, KL in term of the

isospin amplitudes:

A(K0 → 2π, I) = AIe
iδI

A(K0 → 2π, I) = A∗
Ie

iδI

where δI are the ππ scattering phase shifts in the I=0, 2 states. W-Y chose an

arbitrary phase, by defining A0 real. They also introduce the ratios of the amplitudes

for K decay to a final state fi, ηi = A(KL → fi)/A(KS → fi):

η+− ≡ |η+−|e−iφ+− =
〈π+π−|KL 〉
〈π+π−|KS 〉 = ε + ε′

η00 ≡ |η00|e−iφ00 =
〈π0π0|KL 〉
〈π0π0|KS 〉 = ε − 2ε′,

with

ε′ =
i

2
√

2
ei(δ2−δ0) �A2

A0

�A2

�A2

Since δ2 − δ0∼45◦, Arg(ε′)∼135◦ i.e. ε′ is orthogonal to ε. Therefore, in principle,

only two real quantities need to be measured: �ε and �(ε′/ε), with sign.

In terms of the measurable amplitude ratios, η, ε andε′ are given by:

ε = (2η+− + η00)/3

ε′ = (η+− − η00)/3

Arg(ε) = φ+− + (φ+− − φ00)/3.

ε′ is a measure of direct CP violation and its magnitude is O(A(K2 → ππ)/A(K1 →
ππ)).

Our question above is then the same as: is ε′ 	= 0? Since 1964, experiments

searching for a difference in η+− and η00 have been going on.

If η+− 	=η00 the ratios of branching ratios for KL, S→π+π− and π0π0 are different.

The first measurement of BR(KL→π0π0), i.e. of |η00|2 was announced by Cronin

in 1965.......

Most experiments measure the quantity R, the so called double ratio of the four

rates for KL, S→π0π0, π+π−, which is given, to lowest order in ε and ε′ by:

R ≡ Γ(KL → π0π0)/Γ(KS → π0π0)

Γ(KL → π+π−)/Γ(KS → π+π−)
≡
∣∣∣ η00

η+−

∣∣∣2 = 1 − 6�(ε′/ε).

Observation of R	=0 is proof that �(ε′/ε)	=0 and therefore of “direct” CP violation,

i.e. that the amplitude for |∆S|=1, CP violating transitions

A(K2 → 2π) 	= 0.
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All present observations of CP violation, C\P\, i.e.the decays KL→2π, π+π−γ and

the charge asymmetries in K�3 decays are examples of so called “indirect” violation,

due to |∆S|=2 K0↔K0 transitions introducing a small CP impurity in the mass

eigenstates KS and KL.

Because of the smallness of ε (and ε′), most results and parameter values given

earlier for K1 and K2 remain valid after the substitution K1→KS and K2→KL.

8.9.3 Experimental Status

We have been enjoying a roller coaster ride on the last round of CP violation preci-

sion experiments. One of the two, NA31, was performed at CERN and reported a

tantalizing non-zero result:(13)

�(ε′/ε) = (23 ± 6.5) × 10−4.

NA31 alternated KS and KL data taking by the insertion of a KS regenerator in

the KL beam every other run, while the detector collected both charged and neutral

two pion decay modes simultaneously. The other experiment, E731 at Fermilab, was

consistent with no or very small direct C\P\:(14)

�(ε′/ε) = (7.4 ± 5.9) × 10−4,.

E731 had a fixed KS regenerator in front of one of the two parallel KL beams which

entered the detector which, however, collected alternately the neutral and charged

two pion decay modes.

Both collaborations have completely redesigned their experiments. Both experi-

ments can now observe both pion modes for KS and KL simultaneously. Preliminary

results indicate that in fact the answer to the above question is a resounding NO!!!

The great news in HEP for 2001 is that both experiment observe a significant non

zero effect. Combining their results, even though the agreement is not perfect, value

of ε′ is 17.8 ± 1.8 × 10−4, which means that there definitely is direct CP violation.

The observed value is ∼10σ away from zero.

8.10 CP violation in two pion decay

8.10.1 Outgoing Waves

In order to compute weak decay processes we need matrix elements from the par-

ent state to outgoing waves of the final products, in states with definite quantum
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numbers, such as

〈 (2π)out
I |T |K0 〉 = Ae iδI

〈 (2π)out
I |T |K0 〉 = Ā e iδI I = 0, 2.

We derive in the following the reason why the scattering phase δI appear in the

above formulae.

The S matrix is unitary and, from T -invariance of the lagrangian, symmetric.

In the following the small T violation from CP violation and CPT -invariance is

neglected.

We first find the relation between amplitudes for i → f and the reversed transi-

tion i → f which follows from unitarity S†S = SS† = 1 in the approximation that

Afi are small.

We write:

S = S0 + S1, |S0| � |S1|
S0 and S1 are chosen so as to satisfy:

S0
fi = 0

S1
fi 	= 0

S0
ii′ 	= 0

S1
ii′ = 0

S0
ff ′ 	= 0

S1
ff ′ = 0

where i, i′ (f, f ′) are from groups of initial (final) states. we also have

Sfi = S1
fi Sii′ = S0

ii′ Sff ′ = S0
ff ′

From unitarity

(S0 + S1)† (S0 + S1) = 1

and neglecting S1†S1

S0† S0 = 1

S0† S1 + S1† S0 = 0

i.e.
S1 = −S0 S1†S0

S1
fi = −S0

ff ′ S
1†
f ′i′ S

0
i′i

S1
fi = −S0

ff ′ S∗
i′f ′ S0

i′i

since, see above, Sfi = S1
fi. The ii and ff elements of S0 are given by e2iδi and e2iδf ,

where δi and δf are the scattering phases. Then

Sfi = −e2i(δi+δf )S∗
if

. Using the (approximate) symmetry of S, see above,

Sfi = −e2i(δi+δf )S∗
fi
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which means (S and S∗ differ in phase by 2(δi + δf + π))

arg Sfi = δi + δf + π

and, from S = 1 + iT etc., see page 21 of the notes,

arg Afi = δi + δf .

The decay amplitude to an out state with definite L, T etc., (δi=0!) therefore is:

AL,T,... e
iδL,T,...

which justifies the appearance of the ππ scattering phases in the amplitudes used

for computing �(ε′/ε).

8.11 CP Violation at a φ–factory

8.11.1 φ (Υ′′′) production and decay in e+e− annihilations

The cross section for production of a bound qq̄ pair of mass M and total width Γ

with JPC = 1−−, a so called vector meson V , (φ in the following and the Υ(4S)

later) in e+e− annihilation, see fig. 8.9, is given by:

σqq̄,res =
12π

s

ΓeeΓM2

(M2 − s)2 + M2Γ2
=

12π

s
BeeBqq̄

M2Γ2

(M2 − s)2 + M2Γ2

e



e
�

	 V

q

q

Fig. 8.9. Amplitude for production of a bound qq̄ pair

The φ meson is an ss̄ 3S1 bound state with JPC=1−−, just as a photon and the

cross section for its production in e+e− annihilations at 1020 MeV is

σss̄(s = (1.02)2 GeV2) ∼ 12π

s
Bee

= 36.2 × (1.37/4430) = 0.011 GeV−2 ∼ 4000 nb,

compared to a total hadronic cross section of ∼(5/3) ×87∼100 nb.

The production cross section for the Υ(4S) at W=10,400 MeV is ∼1 nb, over a

background of ∼2.6 nb.
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The Frascati φ–factory, DAΦNE, will have a luminosity L = 1033 cm−2 s−1 =

1 nb−1s−1. Integrating over one year, taken as 107 s or one third of a calendar year,

we find ∫
1 y

Ldt = 107 nb−1,

corresponding to the production at DAΦNE of ∼4000× 107 = 4× 1010 φ meson per

year or approximately 1.3 × 1010 K0, K0 pairs, a large number indeed.

One of the advantages of studying K mesons at a φ–factory, is that they are pro-

duced in a well defined quantum state. Neutral K mesons are produced as collinear

pairs, with JPC = 1−− and a momentum of about 110 MeV/c, thus detection of one

K announces the presence of the other and gives its direction.

Since in the reaction:

e+e− → “γ” → φ → K0K0

we have

C(K0K0) = C(φ) = C(γ) = −1.

we can immediately write the 2-K state. Define | i 〉=|KK 〉 t=0, C=-1,. Then | i 〉
must have the form:

| i 〉 =
|K0 〉p, |K0 〉 − p,−|K0 〉p, |K0 〉 − p,√

2

From eq. (8.4), the relations between KS, KL and K0, K0, to lowest order in ε, we

find:

|KS (KL) 〉 =
(1 + ε)|K0 〉 + (−)(1 − ε)|K0 〉√

2
.

|K0 (K0) 〉 =
|KS 〉 + (−)|KL 〉

(1 + (−)ε)
√

2

from which

| i 〉 =
1√
2

(|KS − p 〉|KLp 〉 − |KSp 〉|KL − p 〉)

so that the neutral kaon pair produced in e+e− annihilations is a pure K0, K0

as well as a pure KS, KL for all times, in vacuum. What this means, is that if at

some time t a KS (KL, K0, K0) is recognized, the other kaon, if still alive, is a KL

(KS, K0, K0).

The result above is correct to all orders in ε, apart from a normalization constant,

and holds even without assuming CPT invariance.

The result also applies to e+e−→B0B0 at the Υ(4S).
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8.11.2 Correlations in KS, KL decays

To obtain the amplitude for decay of K(p) into a final state f1 at time t1 and of

K(−p) to f2 at time t2, see the diagram below, we time evolve the initial state in

the usual way:

| t1 p; t2 − p 〉 =
1 + |ε2|

(1 − ε2)
√

2
×

(
|KS(−p) 〉|KL(p) 〉e−i(MSt2+MLt1) −
|KS(p) 〉|KL(−p) 〉e−i(MSt1+MLt2)

)

• • •
t1 t2

KS, KL KL, KS

f1 f2

φ

Fig. 8.10. φ→KL, KS→f1, f2.

where MS,L = MS,L − iΓS,L/2 are the complex KS, KL masses.

In terms of the previously mentioned ratios ηi = 〈 fi|KL 〉/〈 fi|KS 〉 and defining

∆t = t2−t1, t = t1+t2, ∆M = ML−MS and M = ML+MS we get the amplitude

for decay to states 1 and 2:

A(f1, f2, t1, t2) = 〈 f1|KS 〉〈 f2|KS 〉e−iMt/2 ×
(
η1e

i∆M∆t/2 − η2e
−i∆M∆t/2

)
/
√

2.

(8.5)

This implies A(e+e− → φ → K0K0 → f1f2) = 0 for t1 = t2 and f1 = f2 (Bose

statistics).

For t1 = t2, f1 = π+π− and f2 = π0π0 instead, A ∝ η+− − η00 = 3 × ε′ which

suggest a (unrealistic) way to measure ε′.

The intensity for decay to final states f1 and f2 at times t1 and t2 obtained taking

the modulus squared of eq. (8.5) depends on magnitude and argument of η1 and η2

as well as on ΓL,S and ∆M . The intensity is given by

I(f1, f2, t1, t2) = |〈 f1|KS 〉|2|〈 f2|KS 〉|2e−ΓS t/2×
(|η1|2eΓS∆t/2 + |η2|2e−ΓS∆t/2 − 2|η1||η2| cos(∆m t + φ1 − φ2))

where we have everywhere neglected ΓL with respect to ΓS.

Thus the study of the decay of K pairs at a φ–factory offers the unique possibility

of observing interference pattern in time, or space, in the intensity observed at two

different points in space.

This fact is the source of endless excitement and frustration to some people.
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Rather than studying the intensity above, which is a function of two times or

distances, it is more convenient to consider the once integrated distribution. In

particular one can integrate the intensity over all times t1 and t2 for fixed time

difference ∆t = t1 − t2, to obtain the intensity as a function of ∆t. Performing the

integrations yields, for ∆t > 0,

I(f1, f2; ∆t) =
1

2Γ
|〈f1|KS 〉〈f2|KS 〉|2

×
(
|η1|2e−ΓL∆t + |η2|2e−ΓS∆t−

2|η1||η2|e−Γ∆t/2 cos(∆m∆t + φ1 − φ2)
)

and a similar espression is obtained for ∆t < 0. The interference pattern is quite

different according to the choice of f1 and f2 as illustrated in fig. 8.11.
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Fig. 8.11. Interference pattern for f1,2=π+π−, π0π0and �−, �+.

The strong destructive interference at zero time difference is due to the antisymme-

try of the initial KK state, decay amplitude phases being identical. The destructive

interference at zero time difference becomes constructive since the amplitude for

K0→�− has opposite sign to that for K0→�+ thus making the overall amplitude sym-

metric. One can thus perform a whole spectrum of precision “kaon-interferometry”

experiments at DAΦNE by measuring the above decay intensity distributions for

appropriate choices of the final states f1, f2. Four examples are listed below.

- With f1=f2 one measures ΓS, ΓL and ∆m, since all phases cancel. Rates can

be measured with a ×10 improvement in accuracy and ∆m to ∼×2.

- With f1=π+π−, f2=π0π0, one measures �(ε′/ε) at large time differences, and

�(ε′/ε) for |∆t| ≤ 5τs. Fig. 8.11 shows the interference pattern for this case.

- With f1 = π+�−ν and f2 = π−�+ν, one can measure the CPT–violation pa-

rameter δ, see our discussion later concerning tests of CPT . Again the real part of

δ is measured at large time differences and the imaginary part for |∆t| ≤ 10τs. Fig.

8.11 shows the interference pattern
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For f1 = 2π, f2 = π+�−ν or π−�+ν small time differences yield ∆m, |ηππ| and φππ,

while at large time differences, the asymmetry in KL semileptonic decays provides

tests of T and CPT . The vacuum regeneration interference is shown in fig. 8.12.
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Fig. 8.12. Interference pattern for f1 = 2π, f2 = �±

8.12 CP Violation in Other Modes

8.12.1 Semileptonic decays

K-mesons also decay semileptonically, into a hadron with charge Q and strangeness

zero, and a pair of lepton-neutrino. These decays at quark levels are due to the

elementary processes

s → W−u → �−ν̄u

s̄ → W+ū → �+νū.

Physical K-mesons could decay as:

K0 →π−�+ν, ∆S = −1, ∆Q = −1

K0 →π+�−ν̄, ∆S = +1, ∆Q = +1

K0 →π−�+ν, ∆S = +1, ∆Q = −1

K0 →π+�−ν̄, ∆S = −1, ∆Q = +1.

In the standard model, SM , K0 decay only to �− and K0 to �+. This is commonly

referred to as the ∆S = ∆Q rule, experimentally established in the very early days

of strange particle studies. Semileptonic decays enable one to know the strangeness

of the decaying meson - and for the case of pair production to “tag” the strangeness

of the other meson of the pair.

Assuming the validity of the ∆S = ∆Q rule, the leptonic asymmetry

A� =
�− − �+

�− + �+
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in KL or KS decays is

2�ε �
√

2|ε| = (3.30 ± 0.03) × 10−3.

The measured value of A� for KL decays is (0.327±0.012)%, in good agreement with

the above expectation, a proof that CP violation is, mostly, in the mass term.

In strong interactions strangeness is conserved. The strangeness of neutral K-

mesons can be tagged by the sign of the charge kaon (pion) in the reaction

p + p̄ → K0(K0) + K−(+) + π+(−).

8.13 CP violation in KS decays

CP violation has only been seen in KL decays (KL → ππ and semileptonic decays).

This is because, while it is easy to prepare an intense, pure KL beam, thus far it

has not been possible to prepare a pure KS beam.

However, if the picture of C\P\ we have developed so far is correct, we can predict

quite accurately the values of some branching ratios and the leptonic asymmetry.

It is quite important to check experimentally such predictions especially since

the effects being so small, they could be easily perturbed by new physics outside the

standard model.

8.13.1 KS → π0π0π0

At a φ–factory such as DAΦNE, where O(1010) tagged KS/y will be available, one

can look for the C\P\ decay KS → π0π0π0, the counterpart to KL → ππ.

The branching ratio for this process is proportional to |ε + ε′000|2 where ε′000 is a

quantity similar to ε′, signalling direct CP violation. While ε′000/ε might not be as

suppressed as the ε′/ε, we can neglect it to an overall accuracy of a few %. Then

KS→π+π−π0 is due to the KL impurity in KS and the expected BR is 2×10−9. The

signal at DAΦNE is at the 30 event level. There is here the possibility of observing

the CP impurity of KS, never seen before.

The current limit on BR(KS→π+π−π0) is 3.7 × 10−5.

8.13.2 BR(KS→π±�∓ν) and A�(KS)

The branching ratio for KS→π±�∓ν can be predicted quite accurately from that

of KL and the KS-KL lifetimes ratio, since the two amplitudes are equal assuming
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CPT invariance. In this way we find

BR(KS → π±e∓ν) = (6.70 ± 0.07) × 10−4

BR(KS → π±µ∓ν) = (4.69 ± 0.06) × 10−4

The leptonic asymmetry in KS (as for KL) decays is 2�ε=(3.30±0.03)×10−3.

Some tens of leptonic decays of KS have been seen recently by CMD-2 at Novosi-

birsk resulting in a value of BR of 30% accuracy, not in disagreement with expec-

tation. The leptonic asymmetry A� in KS decays is not known. At DAΦNE an

accuracy of ∼2.5 × 10−4 can be obtained. The accuracy on BR would be vastly

improved.

This is again only a measurement of ε, not ε′, but the observation for the first

time of CP violation in two new channels of KS decay would be nonetheless of

considerable interest.

8.14 CP violation in charged K decays

Evidence for direct CP violation can be also be obtained from the decays of charged

K mesons. CP invariance requires equality of the partial rates for K± → π±π+π−

(τ±) and for K± → π±π0π0 (τ ′±).

With the luminosities obtainable at DAΦNE one can improve the present rate

asymmetry measurements by two orders of magnitude, although alas the expected

effects are predicted from standard calculations to be woefully small.

One can also search for differences in the Dalitz plot distributions for K+ and

K− decays in both the τ and τ ′ modes and reach sensitivities of ∼10−4. Finally,

differences in rates in the radiative two pion decays of K±, K±→π±π0γ, are also

proof of direct CP violation. Again, except for unorthodox computations, the effects

are expected to be very small.

8.15 Determinations of Neutral Kaon Properties

8.16 CPLEAR

The CPLEAR experiment(15) studies neutral K mesons produced in equal numbers

in proton-antiproton annihilations at rest:

pp̄ →K−π+K0 BR=2 × 10−3

→K+π−K0 BR=2 × 10−3



96 8 THE WEAK INTERACTION II. CP

The charge of K±(π±) tags the strangeness S of the neutral K at t=0. CPLEAR

has presented several results(16,17)from studying π+π−, π+π−π0 and π±�∓ν̄(ν) final

states. Of particular interest is their measurement of the KL–KS mass difference

∆m because it is independent of the value of φ+−, unlike in most other experiments.

They also obtain improved limits on the possible violation of the ∆S = ∆Q rule,

although still far from the expected SM value of about 10−7 arising at higher order.

The data require small corrections for background asymmetry ∼1%, differences in

tagging efficiency, ε(K+π−)−ε(K−π+)∼10−3 and in detection, ε(π+e−)−ε(π−e+)∼3×
10−3. Corrections for some regeneration in the detector are also needed.

8.16.1 K0(K̄0) → e+(e−)

Of particular interest are the study of the decays K0(K0)→e+(e−). One can define

the four decay intensities:

I+(t) for K0 → e+

I
−
(t) for K0 → e−

}
∆S = 0

I
+
(t) for K0 → e+

I−(t) for K0 → e−

}
|∆S| = 2

where ∆S = 0 or 2 means that the strangeness of the decaying K is the same as it

was at t=0 or has changed by 2, because of K0 ↔ K0 transitions. One can define

four asymmetries:

A1(t) =
I+(t) + I

−
(t) − (I

+
(t) + I−(t))

I+(t) + I
−
(t) + I

+
(t) + I−(t)

A2(t) =
I
−
(t) + I

+
(t) − (I+(t) + I−(t))

I
−
(t) + I

+
(t) + I+(t) + I−(t)

AT (t) =
I

+
(t) − I−(t)

I
+
(t) + I−(t)

, ACPT (t) =
I
−
(t) − I+(t)

I
−
(t) + I+(t)

From the time dependence of A1 they obtain: ∆m = (0.5274±0.0029±0.0005)×1010

s−1, and ∆S = ∆Q is valid to an accuracy of

(12.4 ± 11.9 ± 6.9) × 10−3.

Measurements of AT , which they insist in calling a direct test of the validity of

T but for me is just a test of CP invariance or lack of it, involves comparing T

“conjugate” processes (which in fact are just CP conjugate) is now hailed as a

direct measurement of T violation. The expected value for AT is 4×�ε=6.52×10−3.

The CPLEAR result is AT = (6.6±1.3±1.6)×10−3. In other words, just as expected

from the CP impurity of Ks.
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8.16.2 π+π− Final State

From an analysis of 1.6 × 107 π+π− decays of K0 and K0 they determine |η+−| =

(2.312± 0.043± 0.03± 0.011τS
)× 10−3 and φ+− = 42.6◦ ± 0.9◦ ± 0.6◦ ± 0.9◦∆m. Fig.

8.13 shows the decay intensities of K0 and K0.
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Fig. 8.13. Decay distributions for K0 and K0

Fig. 8.14 is a plot of the time dependent asymmetry A+− = (I(K0 → π+π−) −
αI(K0 → π+π−))/(I(K0 → π+π−) + αI(K0 → π+π−)).
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8.17 E773 at FNAL

E773 is a modified E731 setup, with a downstream regenerator added. Results have

been obtained on ∆m, τS, φ00 − φ+− and φ+− from a study of K→π+π− and π0π0

decays.(18)

8.17.1 Two Pion Final States

This study of K→ππ is a classic experiment where one beats the amplitude A(KL →
ππ]i)=ηiA(KS →ππ) with the coherently regenerated KS→ππ amplitude ρA(KS →
ππ), resulting in the decay intensity

I(t) =|ρ|2e−ΓSt + |η|2e−ΓLt+

2|ρ||η|e−Γt cos(∆mt + φρ − φ+−)

Measurements of the time dependence of I for the π+π− final state yields ΓS, ΓL,

∆m and φ+−. They give: τS = (0.8941 ± 0.0014 ± 0.009) × 10−10 s. With φ+− =

φSW = tan−1 2∆m/∆Γ and ∆m free:

∆m = (0.5297 ± 0.0030 ± 0.0022) × 1010 s−1.

Including the uncertainties on ∆m and τS and the correlations in their measurements

they obtain: φ+− = 43.53◦ ± 0.97◦

From a simultaneous fit to the π+π− and π0π0 data they obtain ∆φ = φ00−φ+− =

0.62◦±0.71◦±0.75◦, which combined with the E731 result gives ∆φ = −0.3◦±0.88◦.
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8.17.2 K0→π+π−γ

From a study of π+π−γ final states |η+−γ| and φ+−γ are obtained. The time de-

pendence of the this decay, like that for two pion case, allows extraction of the

corresponding parameters |η+−γ| and φ+−γ. The elegant point of this measurement

is that because interference is observed (which vanishes between orthogonal states)

one truly measures the ratio

η+−γ =
A(KL → π+π−γ, C\P\ )

A(KS → π+π−γ, CP OK )

which is dominated by E1, inner bremsstrahlung transitions. Thus again one is

measuring the CP impurity of KL. Direct CP could contribute via E1, direct

photon emission KL decays, but it is not observed within the sensitivity of the

measurement.

The results obtained are:(19) |η+−γ| = (2.362 ± 0.064 ± 0.04) × 10−3 and φ+−γ =

43.6◦ ± 3.4◦ ± 1.9◦. Comparison with |η+−| ∼ |ε| ∼ 2.3, φ+− ∼ 43◦ gives excellent

agreement. This implies that the decay is dominated by radiative contribution and

that all one sees is the CP impurity of the K states.

8.18 Combining Results for ∆m and φ+− from Different Ex-

periments

The CPLEAR collaboration(20) has performed an analysis for obtaining the best

value for ∆m and φ+−, taking properly into account the fact that different experi-

ments have different correlations between the two variables. The data(16,17,18,21−27)

with their correlations are shown in fig. 8.15.
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Fig. 8.15. A compilation of ∆m and φ+− results, from ref. 20
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A maximum likelihood analysis of all data gives

∆m = (530.6 ± 1.3) × 107s−1

φ+− = 43.75◦ ± 0.6◦.

Note that φ+− is very close to the superweak phase φSW=43.44◦±0.09◦.

8.19 Tests of CPT Invariance

In local field theory, CPT invariance is a consequence of quantum mechanics and

Lorentz invariance. Experimental evidence that CPT invariance might be violated

would therefore invalidate our belief in either or both QM and L-invariance. We

might not be so ready to abandon them, although recent ideas,(28) such as distortions

of the metric at the Planck mass scale or the loss of coherence due to the properties

of black holes might make the acceptance somewhat more palatable. Very sensitive

tests of CPT invariance, or lack thereof, can be carried out investigating the neutral

K system at a φ–factory.

CPT invariance requires M11 − M22 = M(K0) − M(K0) = 0. CPLEAR finds

a limit for the mass difference of 1.5 ± 2.0 ± ×10−18. KTEV, using a combined

values of the τs, ∆m, φSW , and ∆φ = (−0.01 ± 0.40) obtained the bound that

(M(K0)−M(K0))/〈M〉 = (4.5± 3)× 10−19, with some simplifying assumptions. If

we note that m2
K/MPlanck is approximately a few times 10−20 it is clear that we are

probing near that region, and future experiments, especially at a φ–factory is very

welcome for confirmation.

8.20 Three Precision CP Violation Experiments

Three new experiments: NA48(29) in CERN, KTEV(30) at FNAL and KLOE(31) at

LNF, have begun taking data, with the primary aim to reach an ultimate error in

�(ε′/ε) of O(10−4).

The sophistication of these experiments takes advantage of our experience of

two decades of fixed target and e+e− collider physics. Fundamental in KLOE is the

possibility of continuous self-calibration while running, via processes like Bhabha

scattering, three pion and charged K decays.

8.21 KTEV

The major improvements of KTeV are: CsI crystal calorimeter, simultaneous mea-

surements of all four modes of interest.
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Fig. 8.16. Plan view of the KTeV experiment. Note the different scales.

Their result is �(ε′/ε) = 0.00207 ± 0.00028 (Jul 2001)
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8.22 NA48
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Fig. 8.17. The NA48 experiment at CERN

Their result is �(ε′/ε) = 0.00153 ± 0.00026 (Jul 2001)

8.23 KLOE

The KLOE detector,(32) designed by the KLOE collaboration and under construction

by the collaboration at the Laboratori Nazionali di Frascati, is shown in cross section

in fig. 8.18. The KLOE detector looks very much like a collider detector and will

be operated at the DAΦNE collider recently completed at the Laboratori Nazionali

di Frascati, LNF.
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Fig. 8.18. Cross section of the KLOE experiment.

The main motivation behind the whole KLOE venture is the observation of direct

CP violation from a measurement of �(ε′/ε) to a sensitivity of 10−4. A pure KS

beam is unique of φ–factory.(33,34)A result from KLOE would be quite welcome in the

present somewhat confused situation. KLOE is still wating for DAΦNE to deliver

adequate luminosity.

9 Quark Mixing

9.1 GIM and the c-quark

Quite some time ago Cabibbo mixing was extended to 2 quark families u, d and c, s

by GIM. In addition to defining mixing in a more formal way, GIM mixing solved the

problem of the absence of the decay KL→µ+µ−. All this at the cost of postulating

the existence of a fourth quark, called the charm quark. The c-quark did not exist at
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the time and was discovered in 1974 in an indirect way and two years later explicitly.

The postulate that quarks appear un the charged weak current as

J+
µ = (ū c̄)γµ(1 − γ5)V

(
d

s

)
,

with V a unitary matrix, removes the divergence in the box diagram of fig. 9.1,

since the amplitudes with s → u → d and s → c → d cancel out.

u

d

�

�

�

s

u

d

�

�

�

s

G W

G W

K
�

Fig. 9.1. Diagrams 9.1 for KL→µ+µ−. Left in the Fermi four fermion style,
right with the W boson. To the graph on the left we add we must add another
with the c quark in place of u.

I mean 9.1. The process K→µ+µ− is expected to happen to second order in weak

interactions, as shown in fig. 9.1 to the left. In the Fermi theory the amplitude is

quadratically divergent. If however we can justify the introduction of a cut-off Λ,

then the amplitude is computable in terms of a new effective coupling Geff = G2Λ2.

The graph at right suggest that the cut-off is MW and Geff ∼6 × 10−7 GeV−2.

We compute the rates for K±→µ±ν and KL→µ+µ− from:

Γ ∝ G2∆5

where ∆ = MK −∑i=out mi. Factors as fK and sin θC cancel in the ratio, for which

we find:
Γµµ

Γµν

=
∼ 10−15

∼ 10−12
= 10−3.

Both K±→µ±ν and K→µ+µ− are (mildly) helicity suppressed. We crudely estimate

in this way BR(µ+µ−)∼10−3, to be compared with BR(µ+µ−)=7 × 10−9.

9.2 The KL-KS mass difference and the c-quark mass

We can go further and use a similar graph to describe K0→K0 transition. It becomes

possible in this way to compute the KS-KL mass difference. Again the quadratic

divergence of the box diagram amplitude is removed. The low energy part of the

integral over the internal momentum is however non-zero because of the c mass,

where we neglect the u mass.
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Fig. 9.2. The four terms of the K0→K0 amplitude in the GIM scheme.

From fig. 9.2 we can write an effective ∆S = 2 interaction for sd̄→ds̄ fo the form:

H∆S=2, eff = G2s̄γα(1 − γ5)d d̄γα(1 − γ5)s

with

G2 =
1

16π2
G2(mc − mu)

2 sin2 θ cos2 θ =
1

16π2
G2m2

c sin2 θ cos2 θ

Finally:

∆ML,S � 4m2
c cos2 θ

3πm2
µ

Γ(K+ → µ+ν)

from which mc is of order of 1 GeV. The t quark does in fact contribute signifi-

cantly. . .

9.3 6 quarks

The Standard Model has a natural place for CP violation (Cabibbo, Kobayashi

and Maskawa). In fact, it is the discovery of CP violation which inspired KM(35)

to expand the original Cabbibo(36) -GIM(37) 2×2 quark mixing matrix, to a 3×3

one, which allows for a phase and therefore for CP violation. This also implied an

additional generation of quarks, now known as the b and t, matching the τ in the

SM. According to KM the six quarks charged current is:

J+
µ = (ū c̄ t̄)γµ(1 − γ5)V




d

s

b




where V is a 3×3 unitary matrix: V†M=1. Since the relative phases of the 6 quarks

are arbitrary, V contains 3 real parameter, the Euler angles, plus a phase factor,

allowing for C\P\. We can easily count the number of ‘rotations in the 3×3 CKM
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matrix. For the original case of Cabibbo, there is just one rotation, see fig. 9.3

u

d s

s

d

1

�C

� � �( )s d sin� C
2

(Strange part. decays)

VC = ( )cos sin� �C C
Fig. 9.3. Cabibbo mixing.

For the four quark case of GIM, there is still only one angle, see fig. 9.4, since the

rotation is in the s − d “space”.

u c

d s

GIM, neutral currents, 2 by 2 unitary
matrix, calculable loops

cos sin
sin cos
� �


 � �
C C

C C
VCGIM = ( (

Fig. 9.4. GIM mixing.

The charged and neutral currents are given by

J+
µ (udcs) = ū(cos θC d + sin θC s) + c̄(− sin θC d + cos θC s)

J0
µ = d̄d + s̄s − No FCNC: K0 → µµ suppression.

Note that there are no flavor changing neutral currents. For six quarks we need one

angle for b→u transitions and also one for b→c transitions, fig. 9.5. Note that there
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is still a phase, which we cannot get from geometry.

u c t
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(( cos cos sin cos sin
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2

VCKM =

u

d s b

1
�1
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� � � � �������������( )b u sin B1

b

Fig. 9.5. Kobayashi and Maskawa mixing.

These geometric illustrations are justified by counting parameters in an n×n unitary

matrix. 2n2 real numbers define a complex matrix, of which n2 are removed requiring

unitarity. 2n− 1 phases are unobservable and can be reabsorbed in the definition of

2n − 1 quark fields. In total we are left with (n − 1)2 parameters. In n dimensions

there are n(n − 1)/2 orthogonal rotation angles since there are

n − 1 + n − 2 + . . . + 1 = n(n − 1)/2

planes. Thus a n×n unitary matrix contains n(n−1)/2 rotations and (n−1)(n−2)/2

phases. For n = 3 we have three angles and one phase.

The complete form of the matrix, in the Maiani notation, is:


c12c13 s12c13 c13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




with c12 = cos θ12 = cos θC , etc.

While a phase can be introduced in the unitary matrix V which mixes the quarks




d ′

s ′

b ′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






d

s

b


 ,

the theory does not predict the magnitude of any of the four parameters. The

constraint that the mixing matrix be unitary corresponds to the original Cabibbo
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assumption of a universal weak interaction. Our present knowledge of the magnitude

of the Vij elements is given below.




0.9745 - 0.9757 0.219 - 0.224 0.002 - 0.005

0.218 - 0.224 0.9736 - 0.9750 0.036 - 0.047

0.004 - 0.014 0.034 - 0.046 0.9989 - .9993




The diagonal elements are close but definitely not equal to unity. If such were the

case there could be no CP violation. However, if the violation of CP which results

in ε 	= 0 is explained in this way then, in general, we expect ε′ 	= 0. For technical

reasons, it is difficult to compute the value of ε′. Predictions are ε′/ε ≤ 10−3, but

cancellations can occur, depending on the value of the top mass and the values of

appropriate matrix elements, mostly connected with understanding the light hadron

structure.

A fundamental task of experimental physics today is the determination of the

four parameters of the CKM mixing matrix, including the phase which results in

C\P\. A knowledge of all parameters is required to confront experiments. Rather,

many experiments are necessary to complete our knowledge of the parameters and

prove the uniqueness of the model or maybe finally break beyond it.

9.4 Direct determination of the CKM parameters, Vus

The basic relation is:

Γ(K → π�ν) ∝ |Vus|2

From PDG

m ∆ Γ BR(e3) Γ(e3)
MeV Mev 107 s−1 106 s−1

K± 493.677 358.190 8.07 0.0482 3.89

error - - 0.19% 1.24% 1.26%

KL 497.672 357.592 1.93 0.3878 7.50

error - - 0.77% 0.72% 1.06%

The above rates for Ke3 determine, in principle, |Vus|2 to 0.8% and |Vus| to 0.4%.

Yet in PDG

|Vus| = 0.2196 ± 1.05%.

The problem is estimating-guessing matrix element corrections due to isospin and

SU(3)flavor symmetry breaking. Decay rates for | i 〉→| f 〉 are obtained from the
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transition probability density wfi = |Tfi|2 (S = 1 + iT ):

wfi = (2π)4δ4(pi − pf )(2π)4δ4(0)|M|2

where

M = 〈 f |H| i 〉
from which

dΓ =
1

8M(2π)3
|M|2dE1dE2.

Γ(�3) ∝ G2
F × |Vus|2 but we must deal with a few details.

1. Numerical factors equivalent to an overlap integral between final and initial

state. Symmetry breaking corrections, both isospin and SU(3)F .

2. An integral over phase space of |M|2.

3. Experiment dependent radiative corrections. Or, bad practice, correct the

data.

〈 π0 |JH
α |K+ 〉 = 〈 (uū − dd̄)/

√
2 |uū〉 = 1/

√
2

〈 π− |JH
α |K0 〉 = 〈 dū |dū〉 = 1

〈 π+ |JH
α |K0 〉 = 〈 d̄u |d̄u〉 = 1

〈 π+ |JH
α |KL 〉 = −〈 d̄u |d̄u〉/

√
2 = −1/

√
2

〈 π− |JH
α |KL 〉 = 〈 d̄u |d̄u〉/

√
2 = 1/

√
2

〈 π+ |JH
α |KS 〉 = 〈 d̄u |d̄u〉/

√
2 = 1/

√
2

〈 π− |JH
α |KS 〉 = 〈 d̄u |d̄u〉/

√
2 = 1/

√
2 (×f+(q2)qα〈JL〉α . . .)

Ignoring phase space and form factor differences:

Γ(KL → π±e∓ν̄(ν)) = Γ(KS → π±e∓ν̄(ν))

= 2Γ(K± → π0e±ν(ν̄))

An approximate integration gives

Γ =
G2|Vus|2
768π3

|f+(0)|2M5
K(0.57 + 0.004 + 0.14δλ+)

with δλ = λ − 0.0288. Integration over phase space gives a leading term ∝ ∆5,

where ∆ = MK −∑f (m) and (∆5
+ − ∆5

0)/∆
5=0.008.

From data, Γ0 = (7.5 ± 0.08) × 106, 2Γ+ = (7.78 ± 0.1) × 106 and (2Γ+ −
Γ0)/Σ = (3.7 ± 1.5)%. This is quite a big difference, though only 2σ, but typical of
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violation of I-spin invariance. The slope difference is ∼0.001, quite irrelevant. The

big problem remains the s − u, d mass difference. For K0 the symmetry breaking

is ∝ (ms − 〈mu,d〉)2 in accordance with A-G. But then (ms − 〈mu,d〉)2 acquires

dangerous divergences, from a small mass in the denominator. It is argued that it

is not a real problem.

Leutwyler and Roos (1985) deal with all these points and radiative corrections.

They are quoted by PDG (Gilman et al., 2000), for the value of |Vus|. After isospin

violation corrections, K0 and K+ values agree to 1%, experimental errors being

0.5%, 0.6%. Reducing the errors on Γ+ and Γ0, coming soon from KLOE, will help

understand whether we can properly compute the corrections.

9.5 Wolfenstein parametrization

Nature seems to have chosen a special set of values for the elements of the mixing

matrix: |Vud|∼1, |Vus|=λ, |Vcb|∼λ2 and |Vub|∼λ3. On this basis Wolfenstein found

it convenient to parameterize the mixing matrix in a way which reflects more im-

mediately our present knowledge of the value of some of the elements and has the

CP violating phase appearing in only two off-diagonal elements, to lowest order in

λ=sin θCabibb a real number describing mixing of s and d quarks. The Wolfenstein(38)

approximate parameterization up to λ3 terms is:

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




1 − 1
2
λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1


 .

A, also real, is close to one, A∼0.84±0.06 and |ρ − iη|∼0.3. CP violation requires

η 	= 0. η and ρ are not very well known. Likewise there is no C\P\ if the diagonal

elements are unity. The Wolfenstein matrix is not exactly unitary: V †V = 1+O(λ4).

The phases of the elements of V to O(λ2) are:




1 1 e−iγ

1 1 1

e−iβ 1 1




which defines the angles β and γ.

Several constraints on η and ρ can be obtained from measurements. ε can be

calculated from the ∆S=2 amplitude of fig. 9.6, the so called box diagram. At the

quark level the calculations is straightforward, but complications arise in estimating

the matrix element between K0 and K0. Apart from this uncertainties ε depends
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on η and ρ as |ε| = aη + bηρ a hyperbola in the η, ρ plane as shown in figure 9.6

which is the same as fig. 9.2 but with t quark included.

u c t, ,
d

W

s

d

W
u c t, ,

s

Fig. 9.6. Box diagram for K0→K0

The calculation of ε′ is more complicated. There are three ∆S=1 amplitudes

that contribute to K→ππ decays, given below to lowest order in λ for the real

and imaginary parts. They correspond to a u, c and t quark in the loop and are

illustrated in fig. 9.6, just look above the dashed line.

A(s → uūd) ∝ VusV
∗
ud ∼ λ (9.1)

A(s → cc̄d) ∝ VcsV
∗
cd ∼ −λ + iηA2λ5 (9.2)

A(s → tt̄d) ∝ VtsV
∗
td ∼ −A2λ5(1 − ρ + iη) (9.3)

where the amplitude (9.1) correspond to the natural way for computing K→ππ in

the standard model and the amplitudes (9.2), (9.3) account for direct C\P\. If the

latter amplitudes were zero there would be no direct CP violation in the standard

model. The flavor changing neutral current (FCNC) diagram of fig. 9.7 called the

penguin diagram, contributes to the amplitudes (9.2), (9.3). Estimates of �(ε′/ε)

range from few×10−3 to 10−4.

u c t, , d
u c t, ,

W

	� �g Z
q

s

q

Fig. 9.7. Penguin diagram, a flavor changing neutral current effective
operator

9.6 Unitary triangles

We have been practically inundated lately by very graphical presentations of the fact

that the CKM matrix is unitary, ensuring the renormalizability of the SU(2)⊗U(1)
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electroweak theory. The unitarity condition

V †V = 1

contains the relations ∑
i

V ∗
ijVik =

∑
i

V ∗
jiVki = δjk

which means that if we take the products, term by term of any one column (row)

element with the complex conjugate of another (different) column (row) element

their sum is equal to 0. Geometrically it means the three terms are sides of a

triangle. Two examples are shown below.

1, 3 triangle

1, 2 triangle

V V
td ts

*

V V
cd cs

*

V V
ud us

*

V V
ud ub

*

V V
cd cb

*

V V
cd cb

*

V V
cd cb

*

1

V V
td tb

*

V Vcd cb
* �
�
 �i�
 �i �

�	

Fig. 9.8. The (1,2) and (1,3) Unitarity triangles

The second one has the term VcdV
∗
cb pulled out, and many of you will recognize it

as a common figure used when discussing measuring CP violation in the B system.

Cecilia Jarlskog in 1984 observed that any direct CP violation is proportional

to twice the area which she named J (for Jarlskog ?) of these unitary triangles,

whose areas are of course are equal, independently of which rows/columns one used

to form them. In terms of the Wolfenstein parameters,

J � A2λ6η

which according to present knowledge is (2.7 ± 1.1) × 10−5, very small indeed!

This number has been called the price of C\P\. Its smallness explains why the ε′

experiments are so hard to do, and also why B factories have to be built in order

to study CP violation in the B system, despite the large value of the angles in the

B unitary triangle. An illustration of why CP effects are so small in kaon decays is
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given in fig. 9.9. The smallness of the height of the kaon triangle wrt two of its sides

is the reason for CP there being a 10−6 effect. The B triangle has all its sides small

and the CP effects are relatively large. Measuring the various J ’s to high precision,

to check for deviations amongst them, is a sensitive way to probe for new physics!

 

A  �
h A  ��

h A  ��! ��"� #
$

J13

J12

Fig. 9.9. The B and K Unitarity triangles

9.7 Rare K Decays

Rare K decays offer several interesting possibilities, which could ultimately open a

window beyond the standard model. The connection with ρ and η is shown in fig.

9.10.
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Fig. 9.10. Constraints on η and ρ from measurements of ε, ε′, rare decays
and B meson properties.

Rare decays also permit the verification of conservation laws which are not

strictly required in the standard model, for instance by searching for K0→µe de-

cays. The connection between ε′ and η is particularly unsatisfactory because of the

uncertainties in the calculation of the hadronic matrix elements. This is not the
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case for some rare decays. A classifications of measurable quantities according to

increasing uncertainties in the calculation of the hadronic matrix elements has been

given by Buras(39) .

1. BR(KL→π0νν̄),

2. BR(K+ → π+νν̄),

3. BR(KL→π0e+e−), εK ,

4. ε′K , BR(KL→µµ̄]SD), where SD=short distance contributions.

The observation ε′ 	= 0 remains a unique proof of direct C\P\. Measurements of 1

through 3, plus present knowledge, over determine the CKM matrix.

Rare K decay experiments are not easy. Typical expectations for some BR’s are:

BR(KL → π0e+e−, C\P\]dir) ∼ (5 ± 2) × 10−12

BR(KL → π0νν̄) ∼ (3 ± 1.2) × 10−11

BR(K+ → π+νν̄) ∼ (1 ± .4) × 10−10

Note that the incertainties above reflect our ignorance of the mixing matrix param-

eters, not uncertainties on the hadronic matrix element which essentially can be

“taken” from K�3 decays.

The most extensive program in this field has been ongoing for a long time at BNL

and large statistics have been collected recently and are under analysis. Sensitivities

of the order of 10−11 will be reached, although 10−(12 or 13) is really necessary. Ex-

periments with high energy kaon beams have been making excellent progress toward

observing rare decays.

9.8 Search for K+→π+νν̄

This decay, CP allowed, is best for determining Vtd. At present after analyzing half

of their data, E781-BNL obtains BR is about 2.4× 10−10. This estimate is based on

ONE event which surfaced in 1995 from about 2.55× 1012 stopped kaons. The SM

expectation is about half that value. Some 100 such decays are enough for a first

Vtd measurements.

9.9 KL→π0νν̄

This process is a “pure” direct C\P\ signal. The νν̄ pair is an eigenstate of CP with

eigenvalue −1. Thus CP is manifestly violated.
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s d sd

u, c, t

u, c, t
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W
W
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Z
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Fig. 9.11. Feyman Diagrams for KL→π0νν̄

It is theoretically particularly “pristine”, with only about 1-2% uncertainty, since

the hadronic matrix element need not be calculated, but is directly obtained from

the measured K�3 decays. Geometrically we see it as being the altitude of the J12

triangle.

J12 = λ(1 − λ2/2)�(VtdV
∗
ts) ≈ 5.6[B(KL → π0νν̄)]1/2

The experimental signature is just a single unbalanced π0 in a hermetic detector.

The difficulty of the experiment is seen in the present experimental limit from E799-

I, BR<pt5.8,-5,. The sensitivities claimed for E799-II and at KEK are around 10−9,

thus another factor of 100 improvement is necessary. The new FNAL and BNL

proposals at the main injector are very ambitious. There is “hope” to make this

measurement a reality early in the third millenium.

9.10 B decays

9.10.1 Introduction

The discovery at Fermilab, in 1977, of the Υ, with mass of ∼10 GeV, was immedi-

ately taken as proof of the existense of the b quark, heralded by KM and already so

christened: b for beauty or bottom. The b quark has B flavor B=-1. The fourth Υ

is barely above threshold for decayng into a BB̄ pair, where the B meson are bū, bd̄

and their charge conjugate states, in complete analogy to charged and neutral kaons.

B0 and B0 are not self conjugate states. That the Υ(4S) decays only to B0B0 pairs

was demonstrated by CUSB searching (and not finding) low energy photons from

B∗ decays. B0B0’s are produced in a C-odd state as K0K0 and can be used for CP

studies in the B system, once the short B lifetime problem is overcome. CUSB also

determined the thresholds for B∗B, B∗B∗, BsB̄s etc. production.(40)
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9.11 B semileptonic decays

Because of their massiveness, B’s can decay - weakly - into many more channels than

the K’s. We might recall that we owe the long lifetime of the KL to the smallness

of the phase space for 3 body decays. The average particle multiplicity in the decay

of B and B̄ is about six. The leptonic modes have a branching ratio of about 25%,

with a unique signature, namely a lepton with energy up to half that of the parent

Υ. It was infact through the observation of the sudden appearance of high energy

electrons that the existence of the b quark was unambiguously proved in 1980, since

the Υ after all has B=0. At quark level beauty decays are: b → c�−ν̄ and b → u�−ν̄

with the selection rule ∆B=∆Q. b̄ decay to positive leptons.

The endpoint of the lepton spectrum and its shape depend on the flavor of the

hadronic system appearing in the final state. We define as Xc a hadronic system

with charm C = ±1 and U=0 where U is the uppityness. Likewise Xu has U = ±1

and C=0. The leptonic decays are:

B → �± + ν(ν̄) + Xc

B → �± + ν(ν̄) + Xu

where Xc=D, D∗ . . . with M(Xc)∼2 GeV and Xu=π, ρ.. with M(Xu)∼0.7 GeV.

The expected lepton spectra are shown in figure 9.12.
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Fig. 9.12. Leptonic Spectrum in B semileptonic decays.

Total decay rates, i.e. the inverse of the lifetimes, and branching ratios of B mesons

provide the determination of |Vcb| and |Vub|. A preferred way is to measure the

semileptonic branching ratio by integrating over the whole spectrum. An early

determination by CUSB already indicated that |Vub/Vcb| is very small, less than

0.06. However, uncertainties in the calculation of the hadronic matrix elements and

the shape of the spectrum near the end pont introduce errors in the extraction of
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|Vub/Vcb|. Methods (HQET) have been developed to make use of exclusive channels,

a good twenty years has been spent in refining such measurements, which still need

to be improved!

9.12 BB̄ Mixing

9.12.1 discovery

Just as with K-mesons, neutral B mesons are not C eigenstates and can mix, i.e,

transitions B0↔B0 are possible. The first observation of mixing was reported by

Argus at the DESY DORIS collider running on the Υ(4S).

They observed mixing by comparing the �+�+ and �−�− decay rates from BB

pairs. Defining the ratio

r =
�+�+ + �−�−

�+�− + �−�+ + �+�+ + �−�−

r 	= 0 is proof of mixing, not however of C\P\. Today, instead of r, the χd parameter,

which is a measure of the time-intergrated B0-B0 mixing probability that a produced

B0(B0) decays as as B0(B0), is used. They are related simply by r = χd/(1 − χd).

The present value of χd is 0.172 ± 0.01.

9.12.2 Formalism

We define, analogously to the K0K0 system,

BL = p |B0 〉 + q |B0 〉
BH = p |B0 〉 − q |B0 〉

with p2 + q2=1 Here L, H stand for light and heavy. The Bd’s also have different

masses but very similar decay widths.

Mixing is calculated in the SM by evaluating the standard “box” diagrams with

intermediate u, c, t and W states. We define:

∆M = MH − ML, ∆Γ = ΓH − ΓL

note that ∆M is positive by definition. The ratio q/p is given by:

q/p = (∆M − i/2∆Γ)/2(M12 − i/2Γ12) =

2(M∗
12 − i/2Γ∗

12)/(∆M − i/2∆Γ)

where

Γ12 ∝ [VubV
∗
ud + VcbV

∗
cd]

2m2
b = (VtbV

∗
td)

2m2
b
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and M12 ∝ (VtbV
∗
td)

2m2
t , so they have almost the same phase. x and y, for Bd and

Bs mesons are:

xd,s = ∆Md,s/Γd,s, yd,s = ∆Γd,s/Γd,s

yd is less than 10−2, and xd is about 0.7, and if we ignore the width difference

between the two Bd states,

q

p

∣∣∣∣∣
Bd

≈ (V ∗
tbVtd)

(VtbV ∗
td)

= e−2iβ

Therefore |q/p|d is very close to 1 and since 2�εBd
≈ 1− |q/p|d, εBd

is imaginary. ys

is about 0.2, and xs theoretically could be as large as 20, so far only lower bounds

are quoted.

χd as defined before, in terms of q, p, x, y is

χd =
1

2

∣∣∣∣∣qp
∣∣∣∣∣
2

x2
d − y2

d/4

(1 + x2
d)(1 − y2

d/4)

which reduces to a good approximation:

χd =
x2

d

2(1 + x2
d)

,

from which one obtains that xd = 0.723 ± 0.032.

In summary, from evaluating the box diagrams, one finds:

xl ∝ m2
t τBl

mBl
|VtlV

∗
tb|2.

where the subscript l refers to the light meson partner which makes up the B meson,

i.e. l =s or d.(41)

An amusing historical note. The surprisingly large amount of mixing seen re-

quired that the top mass be larger than the then acceptable value of about 20 GeV.

Stretching beyond reason the limits for |Vub| and the value of r than known, a lower

limit Mtop ≥ 40 GeV was obtained. The first CUSB limit on |Vub| already implied

Mtop >120 MeV. Theorist were at that time still misled by prejudice and intimdated

by very wrong results experimental findings and only had the courage to claim a

top mass of ∼40 GeV.

Using the top mass today known, and ∆M measured from the B0B0 oscillation

frequency from experiments at FNAL and LEP, one obtains the estimates |Vtd| =

(8.4 ± 1.4) × 10−3 and �(VtdV
∗
tb) = (1.33 ± 0.30) × 10−4.
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Fig. 9.13. Fit to data in the η-ρ plane.

From a fit, shown in fig. 9.13, Parodi et al.,(42) obtain

sin 2β = 0.71 ± 0.13 , sin 2γ = 0.85 ± 0.15.

Of course the whole point of the exercise is to measure directly η and ρ and then

verify the uniqueness of the mixing matrix.

9.13 CP Violation

Semileptonic decays of Bs allow, in principle, to observe C\P\ by studying the dilepton

and total lepton charge asymmetries. This however has turned to be rather difficult

because of the huge background and so far yielded no evidence for C\P\ in B.

We can estimate the magnitude of the leptonic asymmetry from

4�εB = �
(

Γ12

M12

)
=

|Γ12|
|M12|Arg

(
Γ12

M12

)

or approximately
m2

b

m2
t

× m2
c

m2
b

which is O(10−4).

9.13.1 α, β and γ

Sensitivity to CP violation in the B system is usually discussed in terms of the 3

interior angles of the U13 triangle.

α = Arg

(
− VtdV

∗
tb

VudV ∗
ub

)
β = Arg

(
− VcdV

∗
cb

VtdV ∗
tb

)
γ = Arg

(
− VudV

∗
ub

VcdV ∗
cb

)
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The favorite measurements are asymmetries in decays of neutral B decays to

CP eigenstates. fCP , in particular J/ψ(1S)KS and possibly ππ, which allow a

clean connection to the CKM parameters. The asymmetry is due to interference of

the amplitude A for B0→J/ψ KS with the amplitude A′ for B0→B0→J/ψ KS.

As in the case in the K system, direct C\P\ needs interference of two different

amplitudes, more precisely amplitudes with different phases. If A is the amplitude

for decay of say a B0 to a CP eigenstate, given by A =
∑

i Aie
i(δi+φi), the amplitude

Ā for the CP conjugate process is Ā =
∑

i Aie
i(δi−φi). The strong phases δ do not

change sign while the weak phases (CKM related) do. Direct CP violation requires

|A| 	= |Ā|, while indirect CP violation only requires |q/p| 	= 1.

The time-dependent CP asymmetry is:

afCP
(t) ≡ I(B0

( t) → J/ψ KS) − I(B0
( t) → J/ψ KS)

I(B0
( t) → J/ψ KS) + I(B0

( t) → J/ψ KS)

=
(1 − |λfCP

|2) cos(∆Mt) − 2�(λfCP
) sin(∆Mt)

1 + |λfCP
|2

= �λfCP
sin(∆Mt)

with

λfCP
≡ (q/p)(ĀfCP

/AfCP
), |λfCP

| = 1.

In the above, B0
(t) (B0

(t)) is a state tagged as such at time t, for instance by the

sign of the decay lepton of the other meson in the pair.

The time integrated asymmetry, which vanishes at a B-factory because the B0B0

pair is in a C-odd state, is given by

afCP
=

I(B0 → J/ψ KS) − I(B0 → J/ψ KS)

I(B0 → J/ψ KS) + I(B0 → J/ψ KS)
=

x

1 + x2
�λfCP

Staring at box diagrams, with a little poetic license one concludes

afCP
∝ �λfCP

= sin 2β.

or

afCP
≈ 0.5 sin 2β ∼ 1

The license involves ignoring penguins, which is probably OK for the decay to

J/ψ KS, presumably a few % correction.

For the ππ final state, the argument is essentially the same. However the branch-

ing ratio for B → ππ is extraordinarily small and penguins are important. The

asymmetry is otherwise proportional to sin(2β + 2γ) = − sin 2α. Here we assume

α + β + γ=π, which is something that we would instead like to prove. The angle γ
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can be obtained from asymmetries in Bs decays and from mixing, measurable with

very fast strange Bs.

9.14 CDF and DØ

CDF at the Tevatron is the first to profit from the idea suggested first by Toni

Sanda, to study asymmetries in the decay of tagged B0 and of B0 to a final state

which is a CP eigenstate. They find

sin 2β = 0.79+0.41
−0.44, 0.0 ≤ sin 2β < 1 at 93% CL

Their very lucky central value agrees with the aforementioned SM fit, but there is at

least a two fold ambiguity in the determination of β which they can not differentiate

with their present errors. In the coming Tevatron runs, CDF not only expect to

improve the determinations of sin 2β by a factor of four, so δ sin 2β ≈ 0.1, but to

measure sin(2α) from using the asymmetry resulting from B0 → π+π− interfering

with B0 → π+π− to a similar accuracy. Being optimistic, they hope to get a first

measurement of sin(γ) by using B0
s/B̄

0
s → D±

s K∓ from about 700 signal events.

DØwill have te same sensitivity

9.15 B-factories

In order to overcome the short B lifetime problem, and still profit from the coher-

ent state property of B’s produced on the Υ(4S), two asymmetric e+e− colliders

have been built, PEP-II and KEKB. The two colliders both use a high enrgy ≈9

GeV beam colliding against a low energy, ≈ 3.1 GeV, beam so that the center of

mass energy of the system is at the Υ(4S) energy, but the B’s are boosted in the

laboratory, so they travel detectable distances before their demise. In order to pro-

duce the large number of B0B0 pairs, the accelerators must have luminosities on

the order of 3 × 1033 cm−2s−1, about one orders of magnitude that of CESR. Both

factories have infact achieved luminosities of 2× 1033 cm−2 s−1 and in SLAC Babar

collects 120 pb−1 per day while Belle gets around 90. Both experiments will have

40% mearuments of β by summer 2000 and reach higher accuracy if and when the

colliders will achieve an surpass luminosities of 1034.

B-factories will likely provide the best measurements of |Vcb and |Vcb.
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9.16 LHC

The success of CDF shows that LHCB, BTeV, ATLAS and CMS will attain, some

day, ten times better accuracy than the almost running ones (including Belle and

Babar), so bear serious watching. In particular the possibility of studying very high

energy strange B’s, Bs will allow to measure the mixing oscillation frequency which

was not possible at LEP.

9.17 CP , kaons and B-mesons: the future

CP violation, C\P\ in the following, was discovered in neutral K decays about 36

years ago, in 1964.(11) Two important observations about C\P\ were to follow in the

next 10 years. In 1967 Andrej Sakharov(43) gave the necessary conditions for baryo-

genesis: baryon number violation, C and CP violation, thermal non-equilibrium.

Finally in 1973, Kobayashi and Maskawa(35) extended the 1963 mixing idea of Nicola

Cabibbo(36) and the GIM(37) four quark idea to three quark families, noting that C\P\
becomes possible in the standard model.

Since those days C\P\ has been somewhat of a mystery, only observed in kaon

decays. While the so-called CKM mixing matrix allows for the introduction of a

phase and thus C\P\, the standard model does not predict its parameters. It has

taken 35 years to be able to prove experimentally that �(ε′/ε) 	= 0 and quite a long

time also to learn how to compute the same quantity from the CKM parameters.

In the last few years calculations(44) had led to values of �(ε′/ε) of O((4-8)×10−4)

with errors estimated to be of the order of the value itself. Experimental results

are in the range (12-27) × 10−4 with errors around 3-4 in the same units. This is

considered a big discrepancy by some authors. More recently it has been claimed(45)

that �(ε′/ε) could well reach values greater than 20 × 10−4. I would like to discuss

in more general terms the question of how to test whether the standard model is

consistent with C\P\ observations independently of the value of �(ε′/ε) and where

can we expect to make the most accurate measurements in the future.

Quite some time ago by Bjorken introduced the unitarity triangles. Much propa-

ganda has been made about the “B-triangle”, together with claims that closure of

the triangle could be best achieved at B-factories in a short time. This has proved

to be over optimistic, because hadronic complications are in fact present here as

well. Cecilia Jarlskog(46) has observed that C\P\ effects are proportional to a factor

J which is twice the area of any of the unitarity triangles. J , called the price of C\P\
by Fred Gilmann, does not depend on the representation of the mixing matrix we
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use.

In the Wolfenstein approximate parametrization J = λ6A2η, as easily verified.

The K or 1,2 and B or 1,3 triangles have been shown. The 2,3 triangle is also

interesting. In the above λ=0.2215±0.0015 is the sine of the Cabibbo angle (up

to V 2
ub ∼ 10−5 corrections), a real number describing mixing of s and d quarks,

measured in K decays since the early days. A, also real, is obtained from the

B → D . . . together with the B-meson lifetime and is close to one, A∼0.84±0.06.

From b → u transitions |ρ − iη|∼0.3.

Present knowledge about J is poor, J = 2.7 ± 1.1 × 10−5, i.e. ∼40% accuracy.

J is a small number and as such subject to effects beyond present physics. The

important question is where and when can we expect to get more precise results.

Lets call Jmn the area of the triangles corresponding to the mth and nth columns of

V. J12 is measured in K decays,(47) including λ2 corrections:

J12 = λ(1 − λ2/2)�VtdV
∗
ts

where the first piece is 0.219±0.002 and the last is equal to 25.6×
√

BR(K0 → π0νν̄).

There are no uncertainties in the hadronic matrix element which is taken from Kl3

decays.

While the branching ratio above is small, 3×10−11, it is the most direct and clean

measure of η, the imaginary part of Vtd and Vub. 100 events give J12 to 5% accuracy!

Then the SM can be double checked e.g. comparing with ε, and K+ → π+νν̄, as

shown in fig. 9.14 and �(ε′/ε) will be measured and computed to better accuracy.

B decays give J13 from |Vcb|, |Vub|, B − B̄ mixing, B → J/ψK, B → ππ. Long

terms goals are here 2-3 % accuracy in |Vcb|, 10% for |Vub|, sin2β to 0.06 and sin2α

to 0.1. CDF, who has already measured sin2β to 50%, and DØ at FNAL(48) offer

the best promise for sin2β. B-factories will also contribute, in particular to the

measurements of |Vcb| and |Vub|. It will take a long time to reach 15% for J13. LHC,

with good sensitivity to Bs-B̄s mixing, will reach 10% and perhaps 5%.
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Fig. 9.14. Constraints in K decays.

The branching ratio for K0 → π0νν̄ is not presently known. The experience

for performing such a measurement is however fully in hand. The uniquely precise

way by which this ratio determines η, makes it one of the first priorities of particle

physics, at this time. Compared to the very large investments in the study of the B

system, it is a most competitive way of obtaining fundamental and precise results

at a small cost.
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10 The Weak Interaction. III

10.1 Beauty Decays

In the following we integrate the four Fermion effective coupling, over the neutrino

energies, to obtain the electron spectrum and then over the electron momentum to

obtain the total rate. We begin with the decay b → ceν, as shown in figure 1, which

is identical to µ± → e±νν. The W−-boson exchange is shown for convenience in

Fig. 10.1. b → ceν

keeping track of charges and particles and antiparticles, but

we do assume its mass to be infinite and therefore use the

usual form of the effective lagrangian. The four momenta

of b, c, e and ν are labelled with the same symbol as the

corresponding particle. After performing the usual sum

over spins, we obtain

P ≡ ∑
spins

|M|2 ∝ (ce)(νb) (10.1)

where (ab) ≡ aµb
µ ≡ AB − �a ·�b is the scalar product of the four vectors a and b.

The 9–fold differential decay rate:

d9Γ = P d3pc

Ec

d3pe

Ee

d3pν

Eν

δ4(b − c − e − ν)

reduces to a 2–fold differential rate after integrating over the delta function variables

(4 dimensions reduction) and irrelevant angles (2+1 dimensions reduction), to

d2Γ = PdE1dE2 (10.2)

where E1, E2 are the energies of any two of the three final state particles. Since we

are interested in the electron spectrum we chose E1 as the electron energy (to good

accuracy equal to the momentum). If we choose the (anti)neutrino energy for E2,

then we can reduce P to a polinomial in Eν and easily perform the first integration.

We have:

(ce) = ((b − e − ν)e) = (be) − (ee) − (νe) = MbEe − EeEν + �pν · �pe,

neglecting M2
e ≈ 0, where �pν · �pe is obtained from

|�pν + �pe|2 = |�pc|2

2�pν · �pe = |�pc|2 − E2
e − E2

ν

= (Mb − Ee − Eν)
2 − M2

c − E2
e − E2

ν

= M2
b − M2

c − 2MbEe − 2MbEν + 2EeEν
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from which:

(ce) =
1

2
(M2

b − M2
c − 2MbEν)

and

P ∝ 1

2
(M2

b − M2
c − 2MbEν)EνMb (10.3)

Substituting y = 2(Eν/Mb), α = Mc/Mb, we have:

d2Γ ∝ M5
b (1 − y − α2)y dEe dy (10.4)

The electron spectrum is given by the integral:

dΓ ∝ dEe

∫ ymax(Ee)

ymin(Ee)
(1 − y − α2)y dy. (10.5)

To obtain the limits of integration, consider the ν, c system recoiling against the

electron of energy Ee and momentum �pe, (pe = Ee), in the b rest frame. Then

Mν, c = M2
b −2EeMb, neglecting Me, and γν, c = (Mb−Ee)/Mν, c, (γβ)ν, c = Ee/Mν, c.

Defining E∗
ν as the energy of the neutrino in the ν, c rest frame, given by (M2

ν, c −
M2

c )/(2Mν, c) then, in the b rest frame

Eν

∣∣∣∣max

min
= E∗

νγν, c(1 ± βν, c)

or

Eν

∣∣∣∣max

min
=

M2
b − 2EMb − M2

c

2(M2
b − 2EMb)

(Mb − Ee ± Ee)

and, with x = 2Ee/Mb:

ymin = 1 − x − α2, ymax =
1 − x − α2

1 − x
(10.6)

Before performing this integration, we ought to put back all the factors that we

have been dropping. To begin with the proper double differential decay width is

given by:

d2Γ =
G2

F

128π5Mb

∑
spins

|M|28π2 dE1 dE2 (10.7)

which, for Mc = 0, integrated over the neutrino momentum, gives the well known

electron differential decay rate as:

dΓ

dx
=

G2
F M5

b

96π3
(3 − 2x)x2 (10.8)

and, integrating over x,

Γ =
G2

F M5
b

192π3
(10.9)
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Without neglecting Mc, the differential decay rate is:

dΓ

dx
=

G2
F M5

b

192π3
× 12

[
1 − α2

2

(
(1 − x − α2)2

(1 − x)2
− (1 − x − α2)2

)

− 1

3

(
(1 − x − α2)3

(1 − x)3
− (1 − x − α2)3

)] (10.10)

Note that equations (10.8) and (10.9) are the well known results for muon decay,

in particular the electron spectrum, given by f(x) = x2(3 − 2x) is maximum at

x=1, that is at the kinematic limit pe = M/2. For the case of Mc 	= 0, the electron

spectrum is given by the espression in square bracket in equation (10.10)or by the

less cumbersome espression:

f(x) = x2 (1 − x − α2)2

(1 − x)3
[(3 − 2x)(1 − x) + (3 − x)α2], (10.11)

which has the general shape of the muon electron spectrum, but rounded off at high

momentum and ending at pmax
e = (M2

b −M2
c )/(2Mb) or x = 1−α2, with zero slope.

All the results above apply also to b → ueν, with the substitution Mc → Mu ≈ 0.

10.2 Charm Decays

Fig. 10.2. c → se+ν

For the case of charmed leptonic decays, the decay ampli-

tude is given in figure 2. Note that the incoming c-quark

emits a W+ boson, while for a b quark a W− was emitted.

This is required by charge conservation. The net result is

that e and ν are charge conjugated in the two processes,

while the quarks are not. Examination of the diagram im-

mediately leads to:

P ≡ ∑
spins

|M|2 ∝ (sν)(ce) (10.12)

We triviallly obtain:

P = (sν)(ce) ∝ M4
c (1 − α2 − x)x (10.13)

where y = 2(Eν/Mc), α = Ms/Mc and x = 2(Ee/Mc), and

d2Γ ∝ M6
c (1 − x − α2)x dx dy (10.14)

For Ms = 0, i.e. α = 0, the electron spectrum is given by

dΓ

dx
∝ (1 − x)x

∫ 1

1−x
dy = x2(1 − x). (10.15)
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The electron spectrum from up–like quarks is therefore softer then that for down–

like quarks, discussed above. The former peaks at x = 2/3 and vanishes at the

kinematic limit. Without neglecting Ms, the electron spectrum is given by:

f(x) = x2 (1 − x − α2)2

1 − x
(10.16)

10.3 Decay Rate

To obtain the total rate for decay we must integrate equation (10.10). The limits of

integrations are now 0 and 1 − α2 and the result is:

Γ =
G2

F M5
b

192π3
× (1 − 8α2 + 8α6 − α8 − 24α4 log α).

The same result is also obtained integrating equation (10.14) with all the appropriate

factors included.

10.4 Other Things

10.5 Contracting two indexes.

εαβµνεαβρσ = 2(δνρδµσ − δµρδνσ)

threfore

εµναβεµνγδaαbβcγdδ = 2[(bc)(ad) − (ac)(bd)]

10.6 Triple Product “Equivalent”.

εαβγδP
αpβ

1p
γ
2p

δ
3 = M(�p1 × �p2 · �p3)

in the system where P=(M,0).



129

11 QuantumChromodynamics



130 12 HADRON SPECTROSCOPY

12 Hadron Spectroscopy

Fig. 12.1. Experimental observation of the 4 Υ mesons, CUSB.

Fig. 12.2. R below and above the BB̄ threshold, CUSB.
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Fig. 12.3. The first observation of the Υ(4s) meson, CUSB.
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13 High Energy Scattering

14 The Electro-weak Interaction
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15 Spontaneous Symmetry Breaking, the Higgs

Scalar

15.1 Introduction

The potential is illustrated in fig. 15.1.

�

m0 mode

/�

V ( )�

m 0 mode

Fig. 15.1. The potential.

where the massless mode and the massive mode are indicated.
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16 Neutrino Oscillation

16.1 Introduction

For a long time it was assumed that Pauli’s neutrino had zero mass. To date direct

measurements are consistent with this assumption. It is of course impossible to prove

that a quantity, the neutrino mass in this case, is exactly zero. After experiments

required the introduction of a second neutrino, νµ, different from the neutrino of

β-decay, νe, neutrinos can exhibit iteresting phenoma, mixing and oscillations, if

heir mass is not zero. There some evidence that this might be the case. Together

with the three neutrino flavors, νe, νµ and ντ , we have introduced three different

lepton numbers which appear to be conserved. This implies that in β-decay, only

νe are emitted, while in pion decays almost only νµ are produced.

It is possible however to conceive a situation in which

1. The neutrinos have masses

2. The mass eigenstate do not coincide with flavor eigenstates.

Then we can introduces a unitary mixing matrix U which connects flavor and

mass eigestates through:

Vf = UVm Vm = U†Vf (16.1)

where

Vf =




νe

νµ

ντ


 Vm =




ν1

ν2

ν3




are the flavor and mass neutrino eigenstates. If the masses of the three different

neutrinos are different then a beam which at t=0 was in pure flavor state, oscillates

into the other flavor species.

16.2 Two neutrinos oscillation

We consider in the following oscillations between two neutrinos only, in order to

derive relevant formulae which are esier to appreciate. The case of three or more

neutrinos is slightly more complicate but follows exactly the same lines. For definit-

ness we also chose νe and νµ as the flavor states. Eqs. (16.1) can be written as

| νe 〉 = cos θ| ν1 〉 + sin θ| ν2 〉 | νµ 〉 = − sin θ| ν1 〉 + cos θ| ν2 〉
| ν1 〉 = cos θ| νe 〉 − sin θ| νµ 〉 | ν2 〉 = sin θ| νe 〉 + cos θ| νµ 〉.

(16.2)
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We recall that a unitary 2×2 matrix has only one real paramater, the angle θ. We

consider now the time evolution of a state which at t=0 is a pure flavor eigenstate

| νe 〉. At time t the state wave function is

Ψe(t) = cos θ| ν1 〉eiE1t + sin θ| ν2 〉eiE2t

where the subscript e reminds us of the initial state. Substituting for | ν1 〉 and | ν2 〉
their expansion in eqs. (16.2) and projecting out the νe and νµ components we find

the amplitudes

A(νe, t) = cos2 θeiE1t + sin2 θeiE2t

A(νµ, t) = − cos θ sin θeiE1t + cos θ sin θeiE2t

and the intensities:

I(νe, t) = |A(νe, t)|2 = cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos |E1 − E2|t
I(νµ, t) = |A(νµ, t)|2 = 2 cos2 θ sin2 θ(1 − cos |E1 − E2|t).

(16.3)

Using cos4 θ+sin4 θ = 1−2 cos2 θ sin2 θ, 2 sin θ cos θ = sin 2θ and 1−cos θ = 2 sin2 θ/2,

eqs. (16.3) can be rewritten as:

I(νe, t) = 1 − sin2 2θ sin2 E1 − E2

2
t

I(νµ, t) = sin2 2θ sin2 E1 − E2

2
t.

(16.4)

Notice that I(νe, t) + I(νµ, t)=1, as we should expect. Finally we find the mass

dependence, expanding E(p) to first order in m:

E = p +
m2

2p

form which

E1 − E2 =
m2

1 − m2
2

2p
=

∆m2

2p

and substituting into eqs. (16.4):

I(νe, t) = 1 − sin2 2θ sin2 ∆m2

4p
t

I(νµ, t) = sin2 2θ sin2 ∆m2

4p
t.

(16.5)

Using 1 MeV=1015/197 m−1 and E ∼ p we get:

I(νe, t) = 1 − sin2 2θ sin2 1.27 × ∆m2 × l

E
t

I(νµ, t) = sin2 2θ sin2 1.27 × ∆m2 × l

E
t.

(16.6)
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valid if E is expressed in MeV, ∆m2 in eV2 and l in meters.

Therefore, under the assumptions of eq. (16.1), a pure beam of one flavor at

t = 0, νe in the example, oscillates into the other flavors and back, with travelled

distance. This effect can be checked experimentally. Starting with a νe beam we

can search for the appereance of muon neutrinos or the disappearence of the initial

electron neutrinos. From the magnitude of the effect and its dependence on distance

one can obtain the value of the parameters θ and ∆m2. In practice the dependence

on distance has not been studied so far. Equivalent results can be obtained from

studying the dependence on energy of the flavor oscillation. In the limit of very large

distance and a sufficiently large energy range of the neutrinos, the initial intensity

of the beam will be halved, in the case of only two neutrino flavors.

Particles e− µ− ν L=1

Antiparticles e+ µ+ ν̄ L=-1

with the beta decay and muon decay reactions being

...

Evidence.

Solar ν’s in Cl, more than half, missing. Low E νµ’s cannot make µ’s. Same in

gallium.

Atmospheric ν’s. π → µ − νµ, µ → νµνe
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17 Neutrino Experiments. A Seminar

17.1 The invention of the neutrino

1. Continuous β-spectrum, 1914, 1927

2. Bohr as late as ’36 thought energy might not be conserved in nuclear physics

3. Pauli ν, 1930 (-1+3), Dear Radioactive Ladies and Gentlemen. . .

4. Fermi, in Zeitschrift fur Physik 88 161 (1934) (16 January)

5. Emmy Noether, 1918, Noether’s theorem

d
d

N
p

p
/(

)
�

�

EE0 em � 0�

From Fermi’s paper, in German. Kurie plot.

17.2 Neutrino Discovery

Bethe & Peierls 1934. λν−abs∼1019 cm, 10 light-years for ρ=3, will never be

observed.

Reines & Cowan, try 100 m from an atomic bomb?... Attempt at small

breeder, then at large power reactor. June ’56 sent a telegram to Pauli to reas-

sure him ν’s exist. (24 y vs >? 40 y for Higgs)

1013 ν/cm2/s→3 events/h in ∼1 ton detector

ν̄ + p → n + e+

Nev[/s] = f [/cm2/s] × σ[cm2] × V [cm3] × ρH[gH2/cm
3] × N [p/gH2 ]

N = f × σ × N × M



140 17 NEUTRINO EXPERIMENTS. A SEMINAR

NUCLEAR EXPLOSIVE

- F I R E B A L L

- - I

The proposed bomb experiment.

Cowan and Reines experiment at a reactor

1957 to the 70’s and on
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Reactor: ν̄’s, not ν’s; R. Davis, ’55, chlorine (BMP)

Parity

µ→/ eγ, νe 	= νµ

νe and νµ helicity

Observation of νµ All the way to the SM where neutrinos have zero mass

m(νe) <2.8 eV, 3H − β decay

Just 3 neutrinos

If m=0, helicity is L-invariant and H = ±1 states are independent. νright, ν̄left

need not exist

17.3 Something different, neutrinos from the sun

1964 Look for solar ν’s, just to peek inside the sun. 100,000 gallon of tetra-

chloroethylene - dry cleaning fluid - are enough to observe

ν +37Cl →37Ar + e−

as computed in SSM, from the reactions:

p + p → d + e+ + ν

p + p + e− → d + ν

Emax = 0.42 MeV

E = 1.44 MeV

d + p →3 He + γ 3He +3 He →4 He + p + p 3He +4 He →7 Be + γ

7Be + e− →
7Li + ν

7Li + ν

E = 0.86 MeV, 90%

E = 0.38 MeV, 10%

7Be + p →8 Bo + γ

Bo → Be + e+ + ν Emax = 15 MeV
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plus all return reactions without ν’s.
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Bahcall-Pinsonneault 2000

400 ton C2H2Cl4. Extract Ar. Count Ar decays

Add and recover Ar (non radioactive) Neutron source check
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30 Year Run

Define: SNU≡1 interaction/sec/1036 atoms≈1 int./ton/year

Ray Davis, chlorine experiment, expected 7 SNU, gave upper limit of 2.5 by

1968. Eν >0.8 MeV

Is the experiment wrong? No, all checks OK!

Is the SSM correct? Doubts but with help of Helioseismology and many checks

had to be accepted.

vsound ∝ T 1/2 while φν(
7Be) ∝ T 10

The sun
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New Experiments

1. Gallex-Sage, Ga, Eν >0.25 MeV

2. K-SuperK, H2O, Eν >6.5 MeV

Source Flux Cl Ga

(1010 cm−2s−1) (SNU) (SNU)

pp 5.94 ± 1% 0.0 69.6

pep 1.39 × 10−2 ± 1% 0.2 2.8

hep 2.10 × 10−7 0.0 0.0

7Be 4.80 × 10−1 ± 9% 1.15 34.4

8B 5.15 × 10−4 + 19%,−14% 5.9 12.4

13N 6.05 × 10−2 + 19%,−13% 0.1 3.7

15O 5.32 × 10−2 + 22%,−15% 0.4 6.0

17F 6.33 × 10−4 + 12%,−11% 0.0 0.1

Total 7.7+1.2
−1.0 129+8

−6

Observe 2.6 ± .23 73 ± 5
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Gallium: 71Ga→71Ge: Sage and Gallex

Gallex in the Gran Sasso underground Laboratory.
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Are there any ν from the sun?
Super-Kamiokande. A H2O Cerenkov detector. 41.4 m h × 39.3 m dia. 50,000

tons of pure water. 11,200 50 cm dia. PMTs, plus more, outer det.

ν events point to the sun ok. Emax ≤15 MeV ok. But:

SuperK ν

SSM
= 0.44 ± 0.03



17.3 Something different, neutrinos from the sun 147



148 17 NEUTRINO EXPERIMENTS. A SEMINAR

Neutrinos disappear
In the E-W SM, neutrinos have no mass and νe 	= νµ 	= ντ

Pontecorvo in ’67 had speculated on what could happen if lepton flavor is not

conserved and neutrino have mass.

Mass eigenstates are distinct from flavor eigenstates, and connected by a unitary

mixing matrix.

Vf = UVm Vm = U†Vf

where

Vf =




νe

νµ

ντ


 Vm =




ν1

ν2

ν3




are the flavor and mass neutrino eigenstates.

Example. Two flavors, e, µ; two masses, 1, 2

| νe 〉 = cos θ| ν1 〉 + sin θ| ν2 〉 | νµ 〉 = − sin θ| ν1 〉 + cos θ| ν2 〉
| ν1 〉 = cos θ| νe 〉 − sin θ| νµ 〉 | ν2 〉 = sin θ| νe 〉 + cos θ| νµ 〉.

If at time t = 0, Ψ(t) = | νe 〉 the state evolves as:

Ψe(t) = cos θ| ν1 〉eiE1t + sin θ| ν2 〉eiE2t.



17.3 Something different, neutrinos from the sun 149

Substitute and project out the e, µ amplitudes

A(νe, t) = cos2 θeiE1t + sin2 θeiE2t

A(νµ, t) = − cos θ sin θeiE1t + cos θ sin θeiE2t

The intensities then are:

I(νe, t) = cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos |E1 − E2|t
I(νµ, t) = 2 cos2 θ sin2 θ(1 − cos |E1 − E2|t).

more conveniently

I(νe, t) = 1 − sin2 2θ sin2
(

E1 − E2

2
t
)

I(νµ, t) = sin2 2θ sin2
(

E1 − E2

2
t
)

.

or (∆E = ∆m2/2E, t = l/c, using h̄ = c = 1)

I(νe, t) = 1 − sin2 2θ sin2

(
1.27 × ∆m2 × l

E

)

I(νµ, t) = sin2 2θ sin2

(
1.27 × ∆m2 × l

E

)
.

with E in MeV (GeV), ∆m2 in eV2 and l in meters (km). νe oscillate from 1 to 0

and back and forth. . .

νµ appear and then fade and so on. . .

That of course if

1. You are lucky

2. You are in control of the experiment

Typically, neutrinos have a continuous spectrum. Then in average some of the

νe disappear and just as many νµ appear. For just two species, the limit is 1/2

disappearance and 1/2 appearance.

With solar neutrinos, E < 15 MeV, the muon (tau) neutrino are not positively

observable because νµ + X → µ + X ′ is energetically impossible.

1. This is encouraging but not quite enough. . .

2. No oscillation has ever been seen, except. . .

3. The missing neutrinos can be detected by scattering

4. There is more: atmospheric ν’s
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But, before that, what does one get from solar ν’s?

In fact many solutions, must include oscillations in matter (MSW). Wave length

changes in matter.
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Atmospheric neutrinos

IMB, Kamiokande and SuperK find that high energy νµ are not twice νe. High

energy ν’s come from cosmic rays as:

π → µ + νµ

µ → e + νµ + νe

⇒ 2νµ + 1νe

Super-K gives (νµ/νe)obs./(νµ/νe)SSM=0.63. Striking for high E, upward ν’s. Also

seen in Macro at Gran Sasso.



17.3 Something different, neutrinos from the sun 151

The only hint for oscillation

Diameter of Earth

Neutrino Flight Distance (km)

P(νµ→νµ) = 1-sin22θsin2(1.27∆m2L/E)
Neutrinos that travel

short distances keep their
original flavor

Neutrinos that travel
long distances have roughly 50%
chance to have changed flavors
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up/dawn

up/dawn
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∆M2 = 2.4 × 10−3
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17.4 Reactor and high energy ν’s

Chooz

1 km to reactor - 300 � liq. scint. Lots of ν̄’s
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Conventional high energy ν beams

Recent example. Nomad, closed. 450 GeV p produce 1013 νµ every 13 s
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LSND - Karmen

The only appearance experiments

π+ → µ+ νµ

|
→e+ νe ν̄µ

|
→ν̄e mixing

ν̄ + p → n + e+

Prompt e and delayed n (n + p → d + γ)

LSND 51 ± 20 ± 8 events

Karmen No signal, lower sensitivity

Bugey

BNL776

sin22Θ

∆
2 [

2 ]
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17.5 The missing ν’s are found

SNO. A new kind of detector

D2O Cerenkov - 1000 ton heavy water inside 7000 ton water.

Reactions:
ν e → ν e, El. scatt, ES

νe d → p p e−, CC

ν d → p n ν, NC

J

J
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σ(νe e → νe e) ∼ 6.5 × σ(νx e → νx e)

σ(νe d → p p e) ∼ 10 × σ(νe e → νe e)

From measurements of CC and ES can find flux of νe and νx from sun to earth.

φES
SNO(νx) = 2.39 ± 0.34 ± 0.15 × 106 /cm2/s

φCC
SNO(νe) = 1.75 ± 0.07 ± 0.11 ± 0.05 × 106 /cm2/s

∆φ = 1.6 σ

Therefore use SuperK result:

φES
SK(νx) = 2.32 ± 0.03 ± 0.1.08 × 106 /cm2/s

∆φ = 3.3 σ

ES data contain all ν’s (νe favored by 6.5 to 1) while CC data only due to νe.

The difference is therefore evidence for non-e neutrinos from the sun.

SNO, LP01, summer 2001: found missing solar ν’s
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Neutrinos have mass

δM2
atm(Mass)2

δM2
solar

ν3

ν2
ν1

Consistent for solar, atmospheric and reactor data. LSND requires a fourth, sterile

neutrino

Most of the detector that led to the above results were not originally meant for

measuring neutrino masses.

Reactor Experiments Verify ν existence

Underground Experiments Sun dynamics

Proton decay

Accelerator experiments Verify ν existence†

Hadron structure

E-W parameters

The results were surprising. What is still mostly missing are clear observations

of oscillation and appearance of different flavors.

†Donut has reported observation of 4 ντ → τ events.
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17.6 Future Experiments

The future will be dominated by the so-called long baseline experiments. If ∆m is

small one needs large l.

Accelerator Detectorl

p, �
��

Earth surface

KEK has been sending ν’s to SuperK, 250 km away. for a year and events have been

observed.

∆m
2 (e

V
2 )

sin2(2θ)

νµ→νx 90%C.L.

K2K

(99%)

CDHS

CHARM

MINOS

Kamiokande
sub-GeV + multi-GeV

Super-Kamiokande
535 days (33.0 kiloton-years)

sub-GeV + multi-GeV, F.C.+ P.C.
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Two new projects are underway. MINOS in the USA, l=730 km to the Soudan

Mine site. CERN-Gran Sasso, with l=732. Ultimately one would like to see the
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appearance of ντ .

MiniBooNE will begin data taking this year to confirm or otherwise the LSND

claim, which seem to need a fourth neutrino.

More sensitive reactor experiments are on the way.

A real time experiment in Gran Sasso will measure the 7Be flux in real time by

ν − e elastic scattering.

There will also be experiments under water: Nestor, Baikal, Dumand. And also

under ice, Amanda and over, RAND.

ντ appearance at Gran Sasso
L=732 km, 〈E〉=17 GeV, ∆m2(S-K)=2.4 × 10−3 eV2

∆m2, eV×103 5 3.5 2.4 2 1.5 1

I(ντ ) au 4.3 2.1 1 0.7 0.4 0.17

Events/5 y, Opera 46 23 11 7.5 4.2 2

Years, Icarus 4 8 17 24 43 97

We will know more, but not very soon.

In the meantime we have to change the SM and possibly understand the origin

of fermion masses.

Neutrinos have added a new huge span to the values covered.

Theories are around but which is the right way?
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18 The Muon Anomaly. A Seminar

18.1 Introduction

By definition, the gyromagnetic ratio g of a state of angular momentum J and

magnetic moment µ is:

g =
µ

µ0

/J

h̄
.

For a particle of charge e in a state of orbital angular momentum L we have:

�µ = µ0L, µ0 =
e

2m
, g = 1.

For an electron g∼2 - the Dirac value, µ0 = µB= 5.788 . . . × 10−11 MeV T−1 (±7

ppb).

The importance of g in particle physics is many-fold. A gross deviation from the

expected value, 2 for charged spin 1/2 Dirac particles, is clear evidence for structure.

Thus the electron and the muon (g∼2.002) are elementary particles while the proton,

with gp=5.6 is a composite object. For the neutron g should be zero, measurements

give gn = −3.8

Small deviations from 2, ∼0.1%, appear as consequence of the self interaction

of the particles with their own field. Experimental verifications of the computed

deviations are a triumph of QED.

We also define the anomaly, a = (g− 2)/2, a measure of the so called anomalous

magnetic moment, (g − 2)µ0.

QED is not all there is in the physical world. The EW interaction contributes to

a and new physics beyond the standard model might manifest itself as a deviation

from calculations.

Magnetic moment

The classical physics picture of the magnetic

moment of a particle in a plane orbit under a

central force is illustrated on the side. �µ is along

L, µ0 = q/2m and g=1. This remains true in

QM. For an electron in an atom, µB = e/2me

is the Bohr magneton. L ‖ �µ is required by

rotational invariance.

L

vr

µ

When we get to intrinsic angular momentum or spin the classic picture loses

meanings and we retain only �µ ‖ L. We turn now to relativistic QM and the Dirac

equation.
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18.2 g for Dirac particles

In the non-relativistic limit, the Dirac equation of an

electron interacting with an electromagnetic field (pµ →
pµ + eAµ) acquires the term

e

2m
�σ · B − eA0

which implies that the electron’s intrinsic magnetic mo-

ment is

�µ =
e

2m
�σ ≡ g

e

2m
S ≡ gµBS,

where S = �σ/2 is the spin operator and g=2.

E B=�0
�

�
B � �

�

�

The prediction g=2 for the intrinsic magnetic moment is one of the many tri-

umphs of the Dirac equation.

18.3 Motion and precession in a B field

The motion of a particle of momentum p and charge e in a uniform magnetic field

B is circular with p = 300×B× r. For p  m the angular frequency of the circular

motion, called the cyclotron frequency, is:

ωc =
eB

m
.

The spin precession frequency at rest is given by:

ωs = g
eB

2m

which, for g=2, coincides with the cyclotron frequencies.

This suggests the possibility of directly measuring g − 2.

`Cyclotron' orbit,

B

r

B
T

S

Spin precession, 1S1C

p

For higher momenta the frequencies become

ωc =
eB

mγ

and

ωs =
eB

mγ
+ a

eB

m



18.3 Motion and precession in a B field 165

or

ωa = ωs − ωc = a
eB

m
= aγωc

a=0 a=0.1

For a = 0.1 (γ=1), spin rotates wrt momentum by 1/10 turn per turn.

π → µ → e

e�
��

�-spin
��

Current

Detectors
Absorbers

Pion beam
��

��� ��+ ��* ��2 ���

x

d
/d

�
x

���

��+

��*

��2

�

V A


V A�

The rate of high energy decay electrons is time modulated with a frequency

corresponding to the precession of a magnetic moment e/m(µ) or a muon with g=2.

First measurement of g(µ)!! Also a proof that P and C are violated in both πµν

and µ → eνν̄ decays.

S-p correlation fundamental to all muon ano-

maly experiments

�� (at rest)

e�

��



�e

spin

p

High energy positrons have momentum along the muon spin. The opposite is true

for electrons from µ−. Detect high energy electrons. The time dependence of the

signal tracks muon precession.
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18.4 The first muon g − 2 experiment

A

Shaped B field

Incident
�

Performed in CERN, in the sixties. Need more turns, more γ. Next step: a

storage ring.

18.5 The BNL g-2 experiment

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	 π + +

Ideal Orbit

Injection Orbit

Inflector

Kicker
Modules

π 
  µ         ν +

momentum

spin

In Pion Rest Frame

"Forward" Decay Muons are 

Target

Protons 
from AGS p = 3.1 GeV/c

Pions µ    νµ

highly polarized 

Storage
      Ring

(g−2)    Experiment at BNLµ

µ

LP01 James Miller - (g-2)µ Status: Experiment and Theory 21
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Storage
Ring

ωa= eB

(exaggerated ~20x)

mcµa

spin

momentum

With homogeneous �B, all muons precess at same rate

LP01 James Miller - (g-2)µ Status: Experiment and Theory 22

With homogeneous �B, use quadrupole �E to focus and
store beam

Spin Precession with �B and �E

�ωa =
e

mc
[aµ �B − (aµ − 1

γ2 − 1
)�β × �E]

Choose “Magic” γ =
√

1+a
a

∼= 29.3 → Minimizes the �β × �E
term

• γ ∼= 29.3 → pµ
∼= 3.094

• B ∼= 1.4T → Storage ring radius ∼= 7.112m

• Tc
∼= 149.2ns Ta

∼= 4.365µs

• γτ ∼= 64.38µs

(Range of stored momenta: ∼= ±0.5%)

LP01 James Miller - (g-2)µ Status: Experiment and Theory 23

ωa Measurement

• µ+ → e+ν̄µνe, 0 < Ee < 3.1GeV

• Parity Violation → for given Ee, directions of �pe+ and
�sµ are correlated

For high values of Ee, �pe+ is preferentially parallel to �sµ

• number of positrons with E > Ethreshold

N(t) = N0(1 + A(E) cos(ωat + φ))

LP01 James Miller - (g-2)µ Status: Experiment and Theory 24
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� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �

� � � � �
� � � � �
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� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

Pb + SciFi Calo

PMT

E

e

muon orbit

t

muon
electron

+

Digitizer
Wave Form

LP01 James Miller - (g-2)µ Status: Experiment and Theory 25

LP01 James Miller - (g-2)µ Status: Experiment and Theory 26
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YOKE

inner coil

tube
beam

wedge

g-2 Magnet in Cross Section cable car
tube on 
through beam
probes moves
Array of NMR

bump
pole

current sheet
programmable 

pole piece

dipole correction coil

NMR
probes

thermal  
insulation

outer
coils

LP01 James Miller - (g-2)µ Status: Experiment and Theory 27

Determination of Average B-field (ωp ) of Muon
Ensemble

Mapping of B-field

• Complete B-Field map of storage region every 3-4 days

Beam trolley with 17 NMR probes

• Continuous monitor of B-field with over 100 fixed probes

Determination of muon distribution

• Fit to bunch structure of stored beam vs. time

LP01 James Miller - (g-2)µ Status: Experiment and Theory 28

Determination of Muon Distribution

LP01 James Miller - (g-2)µ Status: Experiment and Theory 30
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Log plot of 1999
data (109 e+)
149 ns bins
100 µs segments
Statistical error:
δωa
ωa

=
√

2
ωaγτµA

√
Ne

1,025 million e+ (E > 2 GeV, 1999 data)
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5-parameter function (used to fit to 1998 data)

N(t) = N0e−λt[1 + A cos(ωat + φ)]

LP01 James Miller - (g-2)µ Status: Experiment and Theory 32

1,025 million e+ (E > 2 GeV, 1999 data)
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18.6 Computing a = g/2 − 1

e

e
or
�

e

�000�000

	 ��

+ e ⇒ µ, τ ; u, d, c, s, t, b; W± . . .

ae =
α

2π
+ . . . c4(

α

π
)4 = (115965215.4 ± 2.4) × 10−11

Exp, e+ and e−: = ( . . . 18.8 ± 0.4) × 10−11

Agreement to ∼30 ppb or 1.4 σ. What is α?

18.7 aµ

Both experiment and calculation more difficult. aµ is m2
µ/m

2
e∼44,000 times more

sensitive to high mass states in the diagrams above. Therefore:

1. aµ can reflect the existence of new particles - and interactions not observed so

far.

2. hadrons - pion, etc - become important in calculating its value.

Point 1 is a strong motivation for accurate measurements of aµ.

Point 2 is an obstacle to the interpretation of the measurement.

1. – New Physics

For calibration we take the E-W interaction

γ

Zµ µ

γ

ν µµ

W W

γ

µ µH

+389  -194 < 1

〈φ〉 = 236 GeV M∼90 G

δaµ(EW)=150 × 10−11
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SUSY
ν

µµ

γ

χ χ− −

∼

µ∼µ∼
µµ

χ 0

γ

+
δaµ(SUSY) ∼150 × 10−11×(100 Gev/M̃)2×tanβ

18.8 HADRONS

Need

� �� �� �� �

� �� �� �� �µ
hγ

γ
i.e.

u d s, , ... g

�s

		

p-QCD

which is not calculable at low q2.

Instead measure σ(e+e− → hadrons) and use dispersion relations.

δaµ, (hadr - 1)∼7000 × 10−11

All these effects are irrelevant for ae

aµ =
α

2π
+ . . . c4(

α

π
)4 = (116591596 ± 67) × 10−11

Exp, µ+ : = ( . . . 2030 ± 150) × 10−11

Meas.−comp.=430±160 or 2.6 σ, ∼3.7±1.4 ppm; before fall ’01

!!!!????

Today

1. H&D: Meas.−comp.=260±160 or 1.6 σ

2. J: Meas.−comp.=180±180 or 1.0 σ
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Standard Model Value for aµ [1]

aµ(QED) = 116584706(3) × 10−11

aµ(HAD; 1) = 6924(62) × 10−11 (DH98)

aµ(HAD;> 1) = −100(6) × 10−11 (Except LL)

aµ(HAD;LL) = −85(25) × 10−11

aµ(EW ) = 151(4) × 10−11

TOTAL = 116591596(67) × 10−11

[1] Czarnecki, Marciano, Nucl. Phys. B(Proc. Suppl.)76(1999)245

Used by the BNL g-2 experiment for comparison. Addition of above errors in

quadrature is questionable.

Light-by-light now is +85

18.9 σ(e+e− → π+π−)

δaµ(hadr - 1)∼7000 × 10−11

σ(e+e− → hadrons) is dominated below 1 GeV by e+e−→π+π−. Low mass π+π−

(ρ, ω) contributes δaµ∼5000±30.

σ(e+e−→π+π−) or (γ→π+π−) is measured:

1. at e+e− colliders, varying the energy

2. in τ -lepton decays

3. at fixed energy colliders using radiative return

- 1. - Extensive measurements performed at Novosi-

birsk. Corrections for efficiency and scale plus ab-

solute normalization (Bhabha, e+e−→e+e−) are re-

quired for each energy setting. Data must also be

corrected for radiation and vacuum polarization.

e

e Vac pol

fsr

isr

�

�

- 2. - τ data come mostly from LEP. To get σ(hadr)

requires I-spin breaking, M(ρ±)-M(ρ0), I=0 cntrib...

corrections. Radiative corrections are also required.

� �
 �

��

W



�


I-spin rotate
unto � �
 �

- 3. - The radiative return method is being used by the KLOE collaboration, spear-

headed by the Karlsruhe-Pisa groups.
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Can turn initial state radiation into an advantage.

At fixed collider energy W , the π+π−γ final state

covers the di-pion mass range 280 < Mππ < W

MeV. Correction for radiation and vacuum polar-

ization are necessary. All other factors need be

obtained only once.

At low mass, di-muon production exceeds that of

di-pion. ISR and vacuum polarization cancel.
e e
 �

�
 ��

hard 	
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-!��", nb
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to ( 10 )a� x
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1987et al.



18.9 σ(e+e− → π+π−) 175

20569 events
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Use small angle radiation, higher x-section but miss low Mπ+π− .

1200

1000

800

600

400

200

KLOE

MC (EVA)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s (GeV ) 2

-! ��	"ee�-! ��"ee (nb)�

� �a( )=

660 10x

��

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s (GeV )2

.

Small mass, small�� ��

�
	

Unsatisfactory points:

1. Effect is not very compelling.

2. Meas-estimate ∼EW contribution. What about LEP, b → sγ, MW , Mtop,

�(ε′/ε), sin2β . . .

3. Hadronic corrections difficult, author dependent.Light×light sign finally OK?

4. SUSY as a theory is not predictive at present. Too many unknown/free pa-

rameters. There is no exp. evidence for it nor a prediction follows from the

possible effect in the muon anomaly.

Soon better statistics and both signs muons. Still very exciting at present.
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19 Higgs Bosons Today. A Seminar

19.1 Why are Higgs so popular?

1. No pretense for accuracy or depth

2. A simple reminder of a few things

Higgs and sociology

SSC was justified for its potential for Higgs discovery

TeV-I is today devoted to Higgs: CDF and DØ.

Major portion of US (and world) resources devoted to Higgs search

LHC under construction is commonly justified for Higgs discovery and study.

ATLAS and CMS, 2 detectors and 2 collaborations, >3000 physicists

Why?

For example

1. SM is still fine, it just survived the muon anomaly and the measurement of
sin 2β attacks.

2. Is the Higgs fundamental or can it be substituted by something else?

3. If the Higgs is heavy then there something nearby (see MEP)

4. Experiments are big and expensive.

5. Other reasons?

Look-up Michael E Peskin home page
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19.2 Weak Interaction and Intermediate Boson

S-wave unitarity:

σ� =
4π

k2
(2� + 1)|a�|2 ≤ 4π(2� + 1)

k2

σ�=0 ∼ 1

s
σF = G2s

Unitarity bound is violated for:

σF ≥ σ�=0 s ≥ 1

G

E ≥
√

1/G ∼ 300 GeV

π=2=1 above.

But suppose that:

ff

f f
f f

W�

ff

G

g

g

then
dσ

d|t| ∝
g4

(M2
W − t)2

instead of dσ/d|t| ∝ G2. Low energy phenomenology (|t|, s  M2
W ) requires g2 ≈

G × M2
W .

Late 50’s, MW few GeV.

Today: g2 ∼ 10−5 GeV−2×802 GeV2 ∼ 0.064 ∼ α.

This suggest unifying weak and electromagnetic interactions with the help of vector

bosons.

EM: JµA
µ. Current Jµ is a Lorentz vector and is “neutral”

WI (V −A)µW
µ. Current (V −A)µ is a Lorentz vector and axial vector, violates

parity, is “charged”.

Can one do it all from a local gauge invariance principle?

QED follows form an abelian local U(1) invariance. All of QED follows from

∂/µ→∂/+ieAµ. The current couples to a massless gauge field H = JµA
µ.

WI are more complex, because of ∆Q = ±1. Minimal group is SU(2) but then

you get three gauge fields, W+, W− and W0!
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Neutral currents appear in experiments in the late 60’s.

There is another problem with local gauge theories. Gauge bosons ought to

be massless. After a real tour de force – Nambu-Goldston-Higgs – spontaneous

symmetry breaking is understood and the gauge bosons are allowed to have a mass.

But. . . is the E-W interaction renormalizable?

It turns out it is – t’Hooft-Lee-Veltman – and the E-W interaction the – Glashow-

Salam-Weinberg – theory of the so-called Standard Model is finally respectable. It

is a local non-abelian gauge theory. The gauge group is SU(2) × U(1). There are

two couplings which are related to α and GF .

SU(2)w−ispin × U(1)Y : 4 generators ⇒ 4 gauge fields:

W+,W 0,W− and B0.

There is also a mixing angle which gets from W 0
µ–B0

µ to Z0
µ–Aµ, with Aµ a mass-

less field, the photon.

Specifically a complex scalar doublet is introduced in the Lagrangian. The mani-

fest initial symmetry is spontaneously broken. The vacuum acquires non zero energy.

Or rather the “true” vacuum, the lowest energy state, corresponds to a non zero

value of the scalar field φ.

One number is well defined,

v = 〈φ〉 =

√
1√
2 G

= 246 GeV

V!�"

�
v

But because the gauge symmetry is local, three of the degrees of freedom of the

Higgs field, φ+, φ0, φ̄0 and φ− become the zero helicity states of the gauge bosons

which thus acquire mass.

The vector boson masses are

MW =
1

sin θ

(
πα√
2G

)1/2

=
37.3

sin θ
GeV

MZ =
MW

cos θ

One scalar boson survives as an observable elementary particle, it is called the Higgs

boson. So all is left to be done is to find the Higgs.
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19.3 Searching for Higgs. Where?

It would help to know how and where, i.e.

1. Mass - at least some guess

2. Production and decays or couplings to the world

3. Anything else

It is typical of the SM that it can relate many things but it has not much predictive

power about the many parameters that enter into it. The Higgs mass is certainly

one such example.

Mass
There is no a priori knowledge about the Higgs mass as well as many other things.

But. . . In the Lagrangian we find a quartic coupling λφ4, where λ is an arbitrary

dimensionless coupling constant. The Higgs mass is given by MH = v
√

λ/2. What

is λ?.

From effective HH coupling, MH > αv MH > 7.3 GeV. If <, the vacuum

becomes unstable. . . ! This limit can be somewhat softened.

There is an exception: if mt∼80 GeV the lower bound disappears: MH > 0 if

mt=80 GeV. This is just of historical interest.

Upper limits. If MH > 1 TeV than WW scattering exceeds unitarity. What,

again?

Also for MH∼1 TeV, ΓH∼1 TeV. . .

800

600

400

200

10 10 10 1010 9 12 15 186

M
(G

eV
)

H

5����! "GeV

Stability,  6�

Triviality, 1 .

upper limit

gut

lower limit

Higgs mass limit vs new physics scale Λ. Upper unitarity, lower stability.
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Radiative Corrections

Example:
MW =

(πα/
√

2G)1/2

sin θ(1 − ∆r)

where ∆r are the SU(2)×U(1) radiative corrections. ∆r = ∆r0 −
ρt/ tan2 θ + O(log MH/Λ). ∆R0 = 1 − α/α(MZ) = 0.0664

ρt = . . . Gm2
t . . . = 0.00925 × (mt/174.3 GeV)2+logs. PREDICTS mt, partly

cancels QED. ∆r = 0.0350 ± 0.0019 ± 0.0002. Last error from α(MZ)

From MZ , MW , mt, etc., can find MH .

0

2

4

6

102
HM G Ve

Excluded

0.02761 0.000367

0.02738 0.000207

theory uncertainty
(5)

�������had

M 1966 GeV (95% CL)

�)�

H

MH = 88+53
−35 GeV
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Breaking Symmetry

Peter Higgs

Restoring Symmetry

Glashow Salam Weinberg
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However. . .

10�

2�

10�

3�

0.23� 0.232� 0.234�

sin�

2�θ
lept�

eff�

m
� H

�  �[
G

eV
�]

χ2�/d.o.f.: 12.8 / 5�

A�

0,l�

fb�

0.23099 �± 0.00053�

A�l�(P�τ)� 0.23159 �± 0.00041�

A�l�(SLD)� 0.23098 �± 0.00026�

A�

0,b�

fb�

0.23226 �± 0.00031�

A�

0,c�

fb�

0.23272 �± 0.00079�

<Q�fb�

> 0.2324 �± 0.0012�

Average� 0.23152 �± 0.00017�

∆αhad�

= 0.02761 �± 0.00036�∆α(5)�

m�Z�

= 91.1875 �± 0.0021 GeV�

m�t�= 174.3 �± 5.1 GeV�

Prob.�2.5%

����������������sin2θeff
lept

�from�only
���leptons�����.23113�±�.00021
���hadrons����.23230�±�.00029

Either:
-�Statistical�fluctuation,
-� unknown�sources�of
�������������������systematic�errors,
-�or�evidence�for�new�physics.

Note:
��Only�average�sin2�θeff

��consistent�with�mH

�����������O(100�GeV)�.
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19.4 Searching fo Higgs. How?

Production and decay

The Higgs couples universally to fermion and vector bosons

f

f
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H
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and therefore also to photons and gluons
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Couplings ∝(mass). We can chose the best way to detect it!
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Yield vs background
As long as Γ(H) < 1 GeV, a rare final state can be better than a a copious one.

1. e+e− µ+µ− can be measured to few %.

2. γγ could have best resolution for low MH , BR lowest.

3. ττ is characteristic but has no mass resolution.

4. Jet-jet has poor mass resolution but b-tag might help

5. Missing energy, always an interesting signal, but. . .

Very light Higgs and axions. Heavy qu-

arks couple more to Higgs. Can search

for light Higgs in Υ → γ + H. CUSB

excluded Higgs with MH < 3-4 GeV

	

H

Generic Higgs production at e+e− col-

liders
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LEP EVENTS

Expt Ecm Decay MH (GeV) ln(1 + s/b) @115 GeV

1 Aleph 206.7 4-jet 114.3 1.73

2 Aleph 206.7 4-jet 112.9 1.21

3 Aleph 206.5 4-jet 110.0 0.64

4 L3 206.4 E-miss 115.0 0.53

5 Opal 206.6 4-jet 110.7 0.53

6 Delphi 206.7 4-jet 114.3 0.49

7 Aleph 205.0 Lept 118.1 0.47

8 Aleph 208.1 Tau 115.4 0.41

9 Aleph 206.5 4-jet 114.5 0.40

10 Opal 205.4 4-jet 112.6 0.40

11 Delphi 206.7 4-jet 97.2 0.36

12 L3 206.4 4-jet 108.3 0.31

13 Aleph 206.5 4-jet 114.4 0.27

14 Aleph 207.6 4-jet 103.0 0.26

15 Opal 205.4 E-miss 104.0 0.25

16 Aleph 206.5 4-jet 110.2 0.22

17 L3 206.4 E-miss 110.1 0.21

18 Opal 206.4 E-miss 112.1 0.20

19 Delphi 206.7 4-jet 110.1 0.20

20 L3 206.4 E-miss 110.1 0.18

LEP Limitation
If 2σ signal at MH=115 GeV, it would have taken ≥6× more integrated lumi-

nosity to reach a 5σ proof of the Higgs existence.

The Future
The next place where to continue the Higgs hunt is FNAL at the Tevatron

operated as collider at W =
√

s=2 TeV.
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Lots more to do
Even if a Higgs is found, lots more needs doing: BR’s, h,H,A,H±, ratio of vev’s

– see later That is in any case a job for LHC, W=14 TeV.

When:

1. CDF and DØ. OK for low mass. 2006??

2. LHC. Atlas and CMS, but it will be a few years before there is an LHC.

Higgs production in hadron collisions
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Higgs production in hadron collisions
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Many Higss-bosons
Supersymmetry adds more Higgs. In MSSM just one more complex doublet. No

new Higgs is necessary for giving mass to additional gauge boson and we now have

5 physical particles:

1. Two neutral scalars, h0, H0

2. One neutral pseudoscalar, A0

3. Two charged scalars, H+, H−

At tree level:

Mh ≤ MZ ≤ MH MA ≤ MH MH± ≤ MW±

After radiative corrections Mh ≤ 135 GeV.

Energy and Luminosity
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Clean signals
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High mass Higgs
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Search for A
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What’s next

Can the Higgs mass exceed the value from the standard
model fit? It has been proven that there are several ways to
generate an apparent downward shift of the Higgs mass in the
SM fit shown.

In some models, new fermions and boson with electroweak
charge are assumed, in others new vector boson are introduced.
It is even possible to reach the same result without new parti-
cles.

In this case there are unique predictions in the way the SM
parameters should change, within the present constraint.

The first possibility is verifiable LHC. The latter could be
verified by very precise measurements at a linear collider.
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MEANWHILE

The CMS Detector
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20 App. 1. Kinematics

20.1 4-vectors

Le coordinate nello spazio-tempo, uno spazio a quattro dimensioni spesso chiamato

lo spazio di Minkowski, sono definite dal vettore contravariante:

xµ ≡ (x0, x1, x2, x3) ≡ (t, x, y, z) ≡ (t, r) ,

dove abbiamo posto c=1 e r è un vettore nello spazio euclidiano a 3 dimensioni.

Useremo spesso la notazione |r| = r. Il vettore covariante xµ è dato da

xµ ≡ (x0, x1, x2, x3) ≡ (t,−r) = gµνx
ν

con

gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 (20.1)

ed usando la convenzione di somma sugli indici ripetuti. La teoria della relatività

speciale richiede che il modulo quadrato del quadrivettore xµ, dato da xµxµ ≡
xµxµgµν , misurato in sistemi inerziali in moto relativo sia invanriante. Come pure

è invariante il prodotto scalare di due vettori: xµyµ. Le componenti del vettore x′µ

misurate in un sistema O′ in moto rispetto al sistema O, con velocità β lungo l’asse

z ≡ x3, con origini coincidenti per t=0 e z ‖ z′, sono date in O dalla trasformazione

di Lorentz: 


x

y

z

t


 =




1 0 0 0

0 1 0 0

0 0 γ βγ

0 0 βγ γ







x′

y′

z′

t′


 (20.2)

dove γ = (1 − β2)
−1/2

. Trasformazioni di Lorentz per il caso più generale in cui la

velocità relativa fra sistemi non sia lungo un asse e gli assi non coincidano per t=0,

si ottengono semplicemente combinando traslazioni e rotazioni tridimensionali in O,

O′ e la relazione (20.2). La matrice in eq. (20.2) è anche il Jacobiano J = ∂(x)/∂(x′)

della trasformazione di variabili x → x′. Il suo determinante è dato da Det(J)=1,

per cui l’elemento di volume d4x=dx0dx1dx2dx3 è invariante: d4x=d4x′.

Ogni quantità aµ ≡ (a0, a1, a2, a3) che si trasforma secondo l’equazione (20.2)

è un quadrivettore nello spazio di Minkowski. Il quadrivettore energia-impulso, o

quadri-impulso, pµ = (E,p) è di fondamentale importanza in fisica delle particelle.
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20.2 Invariant Mass

Per una particella, pµpµ = m2 è la massa quadrata della particella a riposo ed è

un invariante relativistico. Il sistema di riposo è definito da p=0 e viene spesso

chiamato centro di massa, CM. Per un sistema di n particelle, chiameremo pµpµ la

massa invariante quadrata del sistema, dove pµ =
∑

n pµ
i è la somma dei quadri-

impulsi di tutte le particelle. Riintrucendo esplicitamente la velocita della luce c,

otteniamo la famosa relazione fra massa e energia E0 = mc2, dove il sottoscritto 0

ci ricorda che la relazione è valida nel CM.9

20.3 Other Concepts

Altre relazioni seguono dalla trasformazione di Lorentz:

γ =
E

m

β =
p

E

γβ =
p

m

(20.3)

Dalla (20.2) si vede come le componenti trasverse al moto del quadrivettore non

vengono toccate dalla trasformazioni di Lorentz. Questo permette di scrivere la

trasformazione di Lorentz distinguendo solo le componenti longitudinali e trasversali

della parte spaziale del quadrivettore come sotto




p⊥
p‖
E


 =




1 0 0

0 γ βγ

0 βγ γ






p′⊥
p′‖
E ′


 (20.4)

dove i simboli ⊥ e ‖ stanno, rispettivamente per perpendicolare o trasverso e par-

allelo o longitudinale. L’elemento di volume nello spazio dei quadrimpulsi, dp4 è

anche esso invariante per trasformazioni di Lorentz. Se il quadrimpulso p si riferisce

ad una particella di massa m, energia ed impulso non sono indipendenti. Formal-

mente possiamo imporre la condizione che la particella sia sul cosidetto mass shell

introducendo una (distribuzione) funzione δ, definita da

{
δ(x) = 0 per x 	= 0∫ d
−d δ(x)dx = 1 per d > 0

L’elemento di volume con la condizione che il sistema abbia massa m è quindi

dp4 δ(p2 − m2). Integrando su una componente di p, l’energia, rimuove la funzione

9Vedi per esempio L. B. Okun, The Concept of Mass, Physics Today, 42, 31 (1989).
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δ:

d3p
∫

dEδ(p2 − m2) =
d3p

E
(20.5)

L’integrale in eq. (20.5) segue dalla relazione

δ(f(x)) =
∑ δ(x − xi)∣∣∣df

dx

∣∣∣
x=xi

dove xi sono le soluzioni di f(x) = 0. Nel nostro caso

δ(p2 − m2) =
δ(E +

√
p2 + m2) + δ(E −√

p2 + m2)

2E

L’elemento di volume tridimensionale d3p/E é anch’esso un invariante di Lorentz,

per costruzione.

Per completezza ricordiamo altre relazioni fondamentali. L’operatore impulso,

in rappresentazione di coordinate, è scritto come:

pµ → i
∂

∂xµ

≡
(
i
∂

∂t
,
1

i
∇
)

e si trasforma come un vettore contravariante:

pµpµ = − ∂

∂xµ

∂

∂xµ
≡ −�

Il quadrivettore del potenziale elettromagnetico è dato da:

Aµ = (ρ,A) = gµνAν

e l’equazione di continuità, scritta nella rapresentazione degli impulsi diviene:

kµAµ = 0.

dove kµ è l’impulso portato dal campo elettromagnetico.

20.4 Trasformazione di uno spettro di impulsi

È importante in generale trovare la relazione tra lo spettro di impulso dei prodotti

di un decadimento in due corpi A → B + C, osservato in sistemi in moto rela-

tivo. Incominciamo con considerazioni puramente cinematiche. Nel centro di massa,

CM, le due particelle di decadimento si muoveranno in direzioni opposte e con lo

stesso impulso. Ripetendo varie volte l’esperimento potremmo costruire la superfice

definita dal vettore p delle particelle e troviamo che essa è rappresentata da una

sfera di raggio r = |p|. Ci chiediamo adesso, come apparirebbe questa superfice ad
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un osservatore nel sistema del laboratorio, rispetto al quale il CM di A si muove

con velocità β. Qualitativamente la superfice verrà elungata nella direzione di β

mantenedo una simmetria di rotazione attorno a β, e spostata nella direzione di β,

perdendo la simmetria rispetto all’origine. Mentre nel CM lo spettro d’impulsi è

una linea, cioè le particelle sono monocromatiche, per l’osservatore nel laboratorio

vi sarà una banda di valori possibili, compresi tra la distanza massima e minima

dei punti dell’ellissoide dal centro della sfera originale, dipendenti dall’angolo di

emissione tra p e la direzione di β. Le componenti dell’impulso perpendicolari alla

velocità rimangono immutate, mentre quella parallela si trasforma secondo la

p‖ = γ(p′ cos θ + βE ′). (20.6)

e nel laboratorio saranno possibili tutti i valori p‖ tali che

γ(−p + βE ′) < p‖ < γ(p + βE ′)

Dunque lo spettro d’impulso di una delle due particelle nel laboratorio è rappresen-

tato da un ellissoide. A questo proposito distinguiamo tre casi:

1. quando la massima velocità raggiungibile da una delle particelle è, nel centro

di massa, maggiore di β, l’ellissoide ha ancora una porzione nel semispazio in

cui le particelle appaiono muoversi ‘all’indietro’ nel laboratorio (i.e. p‖ < 0).

2. Aumentando la velocità del centro di massa rispetto al laboratorio si arriva

fino a che il massimo valore possibile di p′‖ è proprio pari a βE ′. A questo

punto l’ellissoide è tutto contenuto nel semispazio p‖ > 0 ma tocca ancora

l’origine: le particelle che, nel CM, si muovono all’indietro appariranno ferme

nel laboratorio.

3. Quando, infine, la velocità del centro di massa è maggiore, in modulo, della

velocità massima che ciascuna particella può acquistare, misurata nel CM,

allora gli impulsi misurati saranno tutti positivi e le particelle si muoveranno

tutte in avanti. In particolare, per partcelle di massa nulla, vi saranno sempre

particelle emesse in direzione opposta a β, che è equivalente al fatto che la

velocità della luce è costante in ogni sistema.

La superfice dell’elissoide ci chiarifica come gli impulsi siano connessi nei due

sistemi, la forma dello spettro di p è tuttavia il risultato d’interesse di una misura.

Per chiarezza, cosideriamo un caso concreto, di comune interesse. In un esperimento

supponiamo di avere un fascio di mesoni π0, che decadono in due fotoni. Vogliamo
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calcolare lo spettro dell’impulso dei fotoni in funzione dell’energia del π0. Per fotoni

p = E e possiamo parlare di p od E, come più conveniente. Nel CM l’energia dei

fotoni è mπ/2, dalla conservazione dell’energia. Inoltre sia θ′ l’angolo d’emissione

del fotone nel centro di massa, misurato rispetto all’impulso del π. Nel laboratorio

l’energia dei fotoni è data da:

Eγ = γπ
mπ

2
+ γπβπ

mπ

2
cos θ′

che, usando l’equazione (20.3) diviene:

Eγ =
1

2
(Eπ + pπ cos θ′) (20.7)

L’energia dei fotoni nel laboratorio può quindi variare tra i valori Emin = (1/2)×
(Eπ − pπ) e Emax = (1/2) × (Eπ + pπ) ed avrà uno spettro piatto. Quest’ultima

affermazione segue dal fatto che nel CM la distribuzione angolare è isotropica, cioè

dN/d cos θ′ = cost. e dall’equazione (20.7), dEγ = cost.×d cos θ′ e quindi dNγ/dE =

cost. 10

Se i pioni neutri hanno uno spettro di energie dato da dNπ0 = f(Eπ0)dEπ0 , per

esempio come mostrato in fig. 2.1, lo spettro dell’energia dei fotoni nel laboratorio

è dato da:

g(Eγ) =
∫ ∞

Emin
π (Eγ)

f(Eπ)

pπ

dEπ =
∫ ∞

pmin
π (Eγ)

f(Eπ)

Eπ

dpπ. (20.8)

vedi fig. 2.2.

Nell’equazione (20.8), che segue facilmente dalla eq. (20.7) e dalle cosiderazioni

sulla forma dello spettro per decadimento di pioni di energia fissa, Emin
π (Eγ) è

l’energia minima necessaria per un π0 per produrre fotoni di energia Eγ, data da

Eγ + m2
π/4Eγ . La seconda espressione per g(E) è più conveniente per integrazione

numerica, non avendo lo zero esplicito pπ = 0 nel denominatore. Lo spettro g(Eγ) in

fig. 2.2 è calcolato numericamente a partire dallo spettro in fig. 2.1. Per semplicità

abbiamo posto mπ0= 140 MeV. Possiamo notare che lo spettro dei γ ha un massimo

a 70 MeV, cioè a mπ0/2. Questo segue in generale dalle equazioni (20.7) e (20.8).

Se lo spettro dei pione non raggiunge il limite Eπ = mπ, lo spettro dei γ diventa

piatto attorno a mπ0/2.

10Anticipiamo qui che il π0 ha spin nullo e quindi la distribuzione angolare dei γ è isotropica nel

CM. Se lo spin delle particelle che decadono fosse diverso da zero ed orientato preferenzialmente

in qualche direzione, in generale la distribuzione angolare dei prodotti di decadimento non sarebbe

uniforme.
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Fig. 20.1. Pion energy spectrum f(Eπ) in the lab. E is the kinetic energy.
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Fig. 20.2. Photon spectrum g(Eγ) from decay of pions with the spectrum
of fig. 20.1.

20.5 Esempi

20.5.1 Decadimenti a due corpi

Vogliamo determinare le energie e gli impulsi nel centro di massa delle particelle

emesse in un decadimento a due corpi. I quadrimpulsi coinvolti nella reazione sono

indicati qui di seguito, calcolati nel CM:




pµ
0 = (M, 0) Particella che decade, ferma nel CM

pµ
1 = (E1,p) Particella di massa m1

pµ
2 = (E2,−p) Particella di massa m2.
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Le due particelle emesse hanno impulso uguale ed opposto per la conservazione della

quantità di moto totale. Inoltre ricordiamo che vale:

|p|2 = m2 = E2 − |p|2 ovvero E =
√

m2 + |p|2

Scriviamo, allora, la conservazione dell’energia per la nostra reazione:

M = E1 + E2 =
√

m1
2 + |p|2 +

√
m2

2 + |p|2

Con un pò di algebra si può ricavare il valore di |p| e quindi di E1 ed E2:

|p|2 =
(M2 − (m1 − m2)

2)(M2 − (m1 + m2)
2)

4M2

E1 =
M2 + m2

1 − m2
2

2M

E2 =
M2 − m2

1 + m2
2

2M

(20.9)

che risponde alla domanda. Nel CM, quindi, le energie e gli impulsi delle particelle

derivanti da un decadimento a due corpi sono perfettamente fissate.

In pratica questo modo di procedere è laborioso e non necessario. È molto più

immediato trovare E1 ed E2, scrivendo la conservazione del quadri-impulso come

p1 = p0 − p2, il cui modulo quadro nel CM di della particella di massa M immedi-

atamente da:

m2
1 = M2 + m2 − 2ME2

da cui la terza delle equazioni (20.9). Vedi anche l’esempio 3 più sotto.

20.5.2 Decadimenti a tre corpi

Cosideriamo un decadimento a tre corpi: M→A+B+C, nel sistema di riposo di M.

Siano M, ma, mb, mc le masse delle particelle. Vogliamo trovare la massima energia

di ciascune delle tre particelle finali. Consideriamo per esempio la paricella A. Essa

avrà la massima energia quando rincula contro il sistema (B,C) che ha la minima

energia interna possibile, cioè quando nel CM di B e C non v’è moto relativo. Questa

condizione corrisponde ad un sistema (B,C) con massa invariante M(A,B) = ma+mb.

Dalle equazioni (20.9) segue:

EA, Max =
M2 + m2

a − (mb + mc)
2

2M

e permutazioni cicliche. L’argomento è intuitivo ma facilmente verificabile.
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20.5.3 Decadimento π → µν

Immaginiamo un mesone π+ che decade in volo in un neutrino ν ed in un leptone

µ. Nel sistema del laboratorio misuriamo gli impulsi e le energie dei prodotti del

decadimento: quali sono i valori massimi e minimi possibili per tali grandezze?

Supponiamo che il mesone iniziale abbia energia Eπ=280 MeV oppure Eπ=30 GeV.

Le masse delle particelle sono: mπ=140 MeV, mµ=105 MeV e mν=0 MeV. Dalla

seconda e terza eq. (20.9) otteniamo impulsi e energie nel CM.

Eµ =109.4 MeV

Eν =30.6 Mev

|pν | = |pµ| = Eν =30.6 Mev/c

γ e β, secondo le eq. (20.3) sono, per le due diverse energie del π+:

Eπ = 280 MeV γ = 2 β = 0.87

Eπ = 30 GeV γ = 214 β = 0.999989 � 1.

Per quanto si era visto nel paragrafo 2.2.4, i valori massimi e minimi delle energie e

degli impulsi delle particelle “figli” del decadimento si ottengono in corrispondenza

delle emissioni in direzioni parallele (o antiparallele) alla linea di volo del mesone π+,

ovvero quando cos θ′ = +1. Mettendo i valori opportuni nelle (20.6) si ottengono i

seguenti risultati:

Eπ = 280 Muon Neutrino

Max Min Max Min

p (MeV/c) 251.6 129 114.4 7.9

E (MeV) 272 165.6 114.4 7.9

20.5.4 Annichilazioni e+-e−

Supponiamo di voler annichilare un elettrone ed un positrone in modo da avere 100

GeV di energia disponibili per la produzione di altre particelle. Si deve calcolare

quale energia devono avere le particelle iniziali nel caso in cui esse appartengano

a due fasci, e nel caso, invece, in cui un fascio di positroni collida su un bersaglio

elettronico fermo. Ricordiamo la definizione di massa invariante M di un insieme

di N particelle:

M =

√√√√∣∣∣ N∑
i=1

pi
µ
∣∣∣2 (20.10)
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Per definizione, quindi, essa si conserverà in ogni processo fisico, raggruppando in

un’unica legge la conservazione dell’energia e dell’impulso spaziale. In particolare,

è utile calcolare il quadrato di M nel CM, ed imporne la conservazione:

M2 = (E1 + E2)
2 − (p1 + p2)

2 = m2
1 + m2

2 + 2E1E2 − 2p1p2 cos θ = 10000 GeV2

Vediamo per primo il caso in cui un fascio collida su un bersaglio fermo. Poniamo

pari a zero l’impulso della particella 2 ed assumiamo che le due particelle abbiano

la stessa massa m; automaticamente, allora, sarà E2 = m2 = m e

M2 = 2m(m + E1) = 4m2 + 2mT � 2mT,

avendo indicato con T l’energia cinetica del fascio, T = E1−m, ed avendo trascurato

la massa dell’elettrone e del positrone, m=∼0.5 MeV. Per ottenere una massa in-

variante di 100 GeV, si dovrà avere, dunque, un fascio di E = M2/2m = 10000 GeV

ben al di sopra delle capacità degli attuali accelleratori. Consideriamo,invece, ora il

caso di due fasci che collidono. Ancora una volta faremo l’assunzione che le masse

siano trascurabili rispetto all’energia delle particelle, cioè E = p. Senza neanche

usare la formula sopra, M = 2E, E=50 GeV. Risulta chiaro, da questo Esempio,

come sia di gran lunga più conveniente, nonostante le difficoltà pratiche, costruire

macchine in cui entrambi i fasci di particelle vengano accelerati. Solo cos̀ı, infatti,

è pensabile di poter raggiungere quelle energie abbastanza alte da permettere di

esplorare le zone ancora incognite delle interazioni subnucleari.

20.5.5 Angolo minimo tra due fotoni da π0 → γγ

Consideriamo un π0 di energia E che decade in due photoni che nel sistema di riposo

del pione hanno un impulso p∗=mπ0/2=65.75 MeV/c. Nel sistema in cui il pione si

muove l’angolo dei due gamma e’ proiettato in avanti, nella direzione di p, anche

se uno dei fotoni può essere emesso indietro, dato che βγ=1. Si puo’ facilmente

(esercizio per il lettore) dimostrare che l’angolo minimo tra i due γ nel laboratorio

corrisponde all’emissione dei due fotono nel CM a 90◦, rispetto alla direzione di moto.

Nel laboratorio abbiamo allora p⊥=mπ0/2 e p‖=p/2 e infine θγγ = 2 arctan(p⊥/p‖).

20.5.6 Energia dei prodotti di decadimenti a tre corpi

Come esercizio, trovare il contorno nel piano Ei, Ej, i, j = 1, 2, 3 che contiene i

valori possibile per le energie di due delle tre particelle.
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20.5.7 2 particelle→2 particelle

Cosideriamo la reazione 1+2→3+4. Per particelle senza spin, abbiamo simmetria

cilindrica, quindi la reazione è descritta cinematicamente dall’angolo polare di def-

lessione, essendo dati le masse m1, m2, m3, m4 e l’energia totale. Una descrizione

relativisticamente invariante è data dalla variabile t = |p1−p3|2, sempre conoscendo

masse ed energia. In generale possiamo introdurre tre invarianti s, t, u, definiti come

s =(p1 + p2)
2 = (p3 + p4)

2

t =(p1 − p3)
2

u =(p1 − p4)
2

massa invariante quadrata

modulo quadro del momento trasferito

come sopra, incrociato

Due delle tre variabili descrivono la configurazione cinmatica. s è il quadrato

dell’energia totale nel centro di massa, uguale per lo stato iniziale [1,2] e quello

finale [3,4]. Le tre variabili soddisfano la relazione

s + t + u = m2
1 + m2

2 + m2
3 + m2

4 (20.11)

Questo è facilmente verificato nel CM dove p1 = −p2 e p3 = −p4. Infatti

s =(E1 + E2)
2

t =m2
1 + m2

3 − 2E1E3 + 2p1 · p3

u =m2
1 + m2

4 − 2E1E4 − 2p1 · p3

da cui

s + t + u = m2
1 + m2

3 + m2
1 + m2

4 + E2
1 + E2

2 + 2E1(E2 − E3 − E4)

= m2
1 + m2

3 + m2
1 + m2

4 + E2
2 − E2

1

= m2
1 + m2

2 + m2
3 + m2

4.

20.6 Limite di massa infinita e limite non relativistico

Consideriamo il caso in cui la massa M di una particella è molto più grande delle al-

tre coinvolte in un processo e dell’energia totale del sistema, nel suo centro di massa,

meno il valore di M . In meccanica classica, nella collisione elastica di un piccola

massa con una molto grande, possiamo trascurare nella conservazione dell’energia

il cambio di energia dell’oggetto di grande massa ma dobbiamo tener conto corret-

tamente della conservazione dell’impulso. Il caso limite tipico è l’urto elastico di

una palla contro un muro. La palla rimbalzo con la stessa velocità che aveva prima

dell’urto. Energia non viene trasferita al muro ma questo acquista un impulso uguale

al cambiamento di impulso della palla, che può raggiungere due volte il suo valore
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prima dell’urto. Questo è possibile perchè l’impulso è proporzionale alla velocità v

ed alla massa m mentre l’energia è proporzionale a m e v2. Nel caso relativistico

questo risultato rimane valido. Possiamo dimostrarlo a partire dall’espressione per

l’energia di una particella di massa M :

E =
√

M2 + p2 = M

√
1 +

p2

M2
∼ M

(
1 +

1

2

p2

M2

)
.

L’energia cinetica è data da T = E − M ∼ p2/M , che è zero per M → ∞, p finito.

Quindi anche nel caso relativistico abbiamo ∆E=0 mentre ∆�p 	=0.

Possiamo applicare questa semplificazione alle collisioni di un elettrone con un

protone. Definiamo con gl’indici 1, 2, 3, e 4 le variabili rispettivamente di elettrone

incidente, elettrone diffuso, protone iniziale e protone dopo l’urto:


E1,p1 elettrone incidente

E2,p2 elettrone diffuso

E3,p3 protone iniziale

E4,p4 protone dopo l’urto

.

Per un urto elastico, usando l’approssimazione di cui sopra risulta in

E2 = E1, |�p1| = |�p2|
E3 = E4, �p4 = �p3 + �p2 − �p1

e per il caso in cui il protone sia a riposo nel sistema di riferimento

E2 = E1, |�p1| = |�p2|
E3 = E4 = M, �p4 = �p2 − �p1

Nel caso della collisione di un fotone con un protone a riposo abbiamo:


Eγ, |�pγ| = Eγ fotone incidente

Eγ, |�pγ| = Eγ fotone diffuso

M, 0 protone bersaglio

M, �p1 − �p2 protone di rinculo

ed il massimo impulso trasferito al bersaglio è 2×Eγ . L’energia cinetica di rinculo

del protone è data, al prim’ordine da T =
√

M2 − (2Eγ)2 − M . Per Eγ  M

troviamo T  E gam, confermando la validità dell’approssimazione. Se T  M

possiamo anche usare l’approssimazione non-relativistica T = p2/(2M). Ponendo

per esempio Eγ=10 MeV/c abbiamo per il massimo impulso di rinculo, pMAX=20

MeV e TMAX=40/(2×938)∼20 /1000=0.02 MeV, trascurabile rispetto a Eγ, che

quindi effetivamente non cambia. Il significato di questo calcolo è che una particelle

leggera non può trasferire energia ad una pesante.
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Questo risultato è infatti qualitativamente valido anche per particelle leggere di

grande energia in urti contro bersaglio fisso. In questo caso per particelle di massa

nulla e energia incidente E � M l’energia di rinculo è dell’ordine di
√

EM/2. Per

esempio nella collisione di un fotone di 1000 GeV contro un protone, l’energia del

protone dopo la collisione è ∼√
500∼22 GeV. Per E → ∞, la frazione di energia di

rinculo del bersaglio è data da ER/E = (1/E) ×
√

M/2 e quindi tende a zero.

20.6.1 Esercizio

Ricavate le relazioni asserite nell’ultimo paragrafo precedente.
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21.1 Orbital angular momentum

From the classical definition of angular momentum

L = r × p

by canonical substitution we obtain the orbital angular momentum operator −ix× �∇
with components Li, for example

Lz = −i
(
x

∂

∂y
− y

∂

∂x

)
= −i

∂

∂φ
.

If L commutes with the hamiltonian, (particle) states are simultaneous eigenstates

of L and one of its components, traditionally chosen as Lz:

L2| l, m 〉 = l(l + 1)| l, m 〉
Lz| l, m 〉 = m| l, m 〉

with l and m integers and m = −l, . . . , l, which are 2l +1 distinct values. Any state

with angular momentum l can be written as a superposition of 2l + 1 independent

states. 2l + 1 is the dimension of the representation of the group of operators L,

belonging to the eigenvalue l. The operators Li satsfy the commutation relations

[Li, Lj] = iεijkLk

where εijk is the totally antisymmetric tensor, with ε123 = 1. We also recall the

raising and lowering operators

L± = L1 ± iL2

which operating on a state |L,L3 〉 raise or lower the third component by one unit:

L±|L,L3 〉 =
√

(L ∓ L3)(L ± L3 + 1)|L,L3 ± 1 〉.
The three operators L+, L− and L3 are the three components of L in spherical co-

ordinates. These operators, and the equivalent ones such as J± for the total angular

momentum or I± for isospin, allow to easily obtain Clebsch-Gordan coefficients in

many simple cases.

The operators Li, in either of the above choices, form a group which is isomorphic

with rotations in three dimensions. A rotation of a vector r in 3-d is described by

the equation:

r′ = Mr

where M is an orthogonal and real 3×3 matrix. These rotations, and the corre-

sponding matrices, form a group.
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1. The product of two rotations, i.e.one rotation R1 followed by another rotation

R2 is a rotation R3, given for instance by the matrix M3 = M1 × M2

2. The unity element exists, in the matrix representation M is unity, Mij = δij

3. The inverse rotation, R−1, such that R−1R = 1 exists.

To understand the meaning of representation and reduction, we begin with the

vector xi. It belongs to a representation of the group because a rotation transforms

it into another vector in R3. The components of the new vector are linear com-

binations of the original ones. Under parity. i.e. inversion of the direction of the

coordinate axes, the sign of the vector changes. The outer product of two vectors xi

and yi is a set of 9 numbers xiyj, or a 3×3 matrix or a tensor Tij. A rotation mixes

the original components and results in a new two index tensor T′. 3×3 tensors

thus costructed form another representation of the rotation group. However we can

identify subsets of the xiyj consisting of linear combinations of the components of

Tij which transforms only among themselves. We say that the outer product of xi

and yi is a reducible representation and we proceed to isolate the irreducible repre-

sentation. The first such is the scalar product x ·y=xiyi, sum over repeated indeces

is understood, a one component irreducible representation of the rotation group,

called a scalar. The second set is the vector product x×y, an antisymmetric tensor,

with only 3 non zero components. Finally we can build the symmetric 3×3 tensor,

with zero trace, having 5 non zero components. Since rotations do not change the

symmetry of the tensors, the components of symmetric and antisymmetric tensors

do not mix and therefore the corresponding representations are irreducible. The

scalar, the antisymmetric and the symmetric tensor parts of the tensor costructed

do not change under parity, which we will indicate by P = +.

We now make connections with angular momentum. In quantum mechanics, an

L = 0 state is a scalar, with positive parity, which we denote by LP = 0+ and has

only one component. An L = 1 state transform under rotation as a polar vector r.

It has three components and negative parity, we denote it by LP = 1−. Remember

not to confuse the transformation properties of L, an axial vector, with those of the

state. An L = 2 state has five componets and LP = 2+. We see that the scalar,

and symmetric tensor described before, together with the vector xi from which we

began correspond to the states of orbital angular momentum 0, 1, 2 for a single

particle state, having the same dimensions and the same transformation properties,

parity included. The reduction of the product of two vectors can be written with an
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abbreviation which reminds us of the number of components of the representations:

3 ⊗ 3 = 1 ⊕ 3 ⊕ 5.

According to the rules for combining angular momenta and parities leads us to

writing instead:

LP1
1 + LP2

2 = (1− + 1−) ⇒




LP =0+

LP =1+

LP =2+

.

Thus we see that just from the study of the rotation group we arrive to the rules

concerning orbital angular momentum in quantum mechanics. Infact the group of

rotations and of transformations under the angular momentum operator are iso-

morphic. And finally the properties of the group are uniquely consequencies of the

algebra of the group given by the commutation relations for the operators.

21.2 SU(2) and spin

It turns out that the commutation relations derived for the Li’s define a more general

group than the orthogonal rotations in real space. This group is called SU(2), for

simple, i.e. unimodular or with unit determinant, unitary group in two dimension.

Representations of the group can be constructed from the product of the simplest

non trivial representation which in this case is a two dimensional representation.

The operators acting on the simplest non trivial basis states(
1

0

)
,

(
0

1

)

are unitary, unimodular complex matrices. There are 3 2×2 independent matrices

(n2−1 n×n matrices for SU(n)), usually taken as the Pauli matrices. The dimensions

of the representations of SU(2) are: 1, 2, 3, 4. . .. If we retain the requirement

that there be 2J + 1 magnetic substates, we can identify the representations of

the group with states of total angular momentum J=0, 1/2, 1, 3/2,. . .. Clearly

J is quantized but can also assume half integer values. The rules for additions of

angular momentum follow from the decomposition of the product of representations

into irreducible representations:|J1 + J2| = |J1 − J2| · · · J1 + J2

The group SU(2) appears frequently in particle physics and should become famil-

iar to us. Its connection to angular momentum, as pointed above, does not however

prove that it is in fact angular momentum that we are dealing with. It is interesting

for that matter to notice that Pauli originally only proposed that electrons should

have a two-valued attribute in order to explain the strong doublets in the alkaline
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emission lines. Later Uhlenbeck and Goudsmith proposed that the two valued quan-

tity should be angular momentum. The intrinsic angular momentum is a property

of many elementary particles and we have many way of measuring it today.

In group theory we define Casimir operators. All members of an irreducible

representation are eigenstates of the Casimir operators belonging to the same eigen-

value. SU(N) has N − 1 Casimir operators, one of which is the so called quadratic

Casimir operator, the sum of all the generators of the group. For SU(N), the op-

erator is J2 = J2
x + J2

y + J2
z . The eigenvalues of the Casimir operators completely

define the rapresentation. For SU(2), representations are uniquely distinguished by

the egeinvalue of J2, which are J(J + 1). We can also refer to a rapresentation by

its dimension or number of components, 2J + 1. A simple way to reduce a prod-

uct of representations is by means of the weight diagram and symmetry arguments.

Consider a state | ab, J, Jz 〉 of two particles a, b of spin 1/2. Each particle belongs

to a represantion of dimension 2 and the state of two particles has dimension 4.

Jz
 �1 0 1
a

b b

Fig. 21.3. The weights, Jz of particle b are added to the the two values of
particle a.

The weight in this case is the value of Jz, ±1/2 for each particle. The weights of

the two particle states are −1, 0 - twice - and 1. The two values of 0 for Jz=0

correspond to the states:

| ab, 1, 0 〉 =
| a, 1/2, 1/2 〉| b, 1/2,−1/2 〉 + | b, 1/2, 1/2 〉| a, 1/2,−1/2 〉√

2

| ab, 0, 0 〉 =
| a, 1/2, 1/2 〉| b, 1/2,−1/2 〉 − | b, 1/2, 1/2 〉| a, 1/2,−1/2 〉√

2

where we assign the symmetric state to J=1 and the antisymmetric one to J=0,

because the SU(2) operations do not change symmetry properties and the states

| ab, 1,±1 〉 are symmetric. We write this decomposition as 2 ⊗ 2 = 1 ⊕ 3.

21.3 SU(3)

The simple unitary group in three dimension, SU(3), is also of great importance

in particle physics. The simplest non trivial state on which the group operates

has three componets and the fundamental rapresentation contains 8 indipendent

operators. The group has herefore 8 generators λi and the matrices are U = e1/2λiωi ,
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with ωi real. An explicit rapresentation of the λi is:

λ1 =




0 1 0

1 0 0

0 0 0




λ2 =




0 −i 0

−i 0 0

0 0 0




λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0




λ5 =




0 0 −i

0 0 0

−i 0 0




λ6 =




0 0 0

0 0 1

0 1 0




λ7 =




0 0 0

0 0 −i

0 i 0




λ8 =
1√
3




1 0 0

0 1 0

0 0 −2




The algebra of the group is defined by:

Tr λiλj = δi,j [λiλj] = 2ifijkλk {λiλj} = 3/4δij + 2idijkλk

where {. . .} is the anticommutator, the group structure constant fijk are antisym-

metric in any pair of indeces while dijk are symmetric. In fig. 21.4 we illustrate

the weight diagram for the 3 and 3 representation as well as the decomposition

3 ⊗ 3 = 1 ⊕ 8.

������  2 �8 9

 9




�

�

Fig. 21.4. The weight diagram for 3, 3 and the reduction of 3 ⊗ 3 to 1 ⊕ 8.

In fig. 21.4 we use for weights the eigenvalues of λ3 and λ8 which are diagonal.

More precisely we plot on the x-axis the eigenvalues of 1/2 × λ3 and on the y-axis

those of λ8/
√

3. The subdivision of the 9 states from 3⊗3 is obtained from symmetry

consideration. Note that the (0, 0) state appears twice in the octet. If we were to

identify the value x with of T3. we would say that the octet of SU(3) contains an

iso-spin singlet and a triplet, both with zero hypercharge.

When we deal with SU(3) as the gauge group of QCD, it is necessary to compute

the scalar product of two color charges, the equivalent of the electric charge squared

α which appears in the potential energy V = α/r. In other words we want the
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expectation values of the scalar product 〈C1 · C2〉, which is the equivalent of the

spin×orbit coupling, 〈L · s〉. The latter is calculated squaring L + s = J :

J2 = (L + s)2 = L2 + s2 + 2(L · s)

from which

〈L · s〉 =
1

2
(J(J + 1) − L(L + 1) − s(s + 1)).

Let C = C1 + C2, where 1 and 2 stand for two representations of SU(3). As for

SU(2), C2 is the quadratic Casimir operator:

C2 =
8∑
1

λ2
i

and

〈C1 · C2〉 =
1

2
(〈C2〉 − 〈C2

1〉 − 〈C2
2〉).

We have to find the eigenvalues of C for a representation, a slightly boring exercise.

Quadratic Casimir Operator in SU(n).

SU(n) is a group of complex matrices U , which are unitary, U †U = 1, and

unimodular, simple group, detU ≡ ‖ U ‖ = 1. The fundamental multiplet is an

n-dimensional spinor: 


a1

a2
...

an




and the fundamental representation is given by n × n matrices. The general form

of the matrices is U = eiωi
λi
2 where i = 1 · · ·n2 − 1, because of unitarity and

unimodularity. λi are the generators of the group, ωi real constant.

For SU(2) and n = d = 2, the dimension of the fundamental representation, λi

are the Pauli matrices. Setting Ti = 1/2λi, T is the angular momentum operator J

or the isotopic spin operator I. SU(3) has 8 generators λi and again we set T=�λ. The

quadratic Casimir operator C = T2 =
∑2n2−1

i=1 T 2
i has the same expectation value

for all member of a representation and, in SU(N), it is equivalent to average the

square of any single operator over the representation or to sum over all generators.

Using the former the value of T2 is given by:

〈T2〉|d = (n2 − 1)
∑

all members of rep.

T 2
i /d.
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For SU2 (spin for example), we choose J3 and verify the well known result J2 =

J(J + 1) as in the table below, up to J=3/2.

d J J3
∑

J2
3 3×Σ/d J(J + 1)

2 1/2 1/2 1/4
-1/2 2/4 3/4 3/4

3 1 1 1
0 1
-1 2 2 2

4 3/2 3/2 9/4
1/2 10/4
-1/2 19/4
-3/2 5 15/4 15/4

For SU(3), we also chose the equivalent of I3 and go back to the quark model

where we simply look-up all eigenvalue of the third of isospin in 3, 3∗, 6, 8 and

10-dimensional multiplets. The table below gives the expectation value of T2 and

all that is necessary for the computation.

d I3
∑

I2
3 8×Σ/d=T 2

1 0 0 0

3 1/2, -1/2; 0 2/4 4/3

6 1, 0, 1 2
1/2, -1/2; 0 10/4 10/3

8 1/2, -1/2 2/4
1, 0, 1; 0 10/4
1/2, -1/2 12/4 3

10 6

Next, from (Ta + Tb)
2 = T2

a + T2
b + 2(Ta ·Tb) we obtain: Ta ·Tb = ((Ta + Tb)

2 −
T2

a − T2
b)/2. We can therefore estimate the coulomb interaction potential for a qq̄

pair, taking it proportional to the scalar product of the SU(3) charges for the 8-

and 1-dimensional representation contained in 3 × 3∗. From the a bove table:

T(3) · T(3∗)|qq̄, d=1 = (0 − 4/3 − 4/3)/2 = −4/3

and likewise for other representations in 3⊗3∗ and other combinations. The results

are given below, where states with more than two quarks are analyzed assuming

that the potential is due to the sum of two body contributions

V ∝∑
i<j

〈T(i) · T(j)〉.
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Configuration Ta · Tb

qq̄|1 -4/3

qq̄|8 1/6

qq|3∗ -2/3

qq|6 1/3

qqq|1 -2

qqq|8 -1/2

qqq|10 1

qqqq|3 -2

References for SU(2), SU(3), SU(n)

L. B. Okun, Leptons and Quarks, North-Holland, Personal library

C. Quigg, Gauge Theories of the Strong, Weak and Electromagnetic Interactions,

Benjamin/Cummings, p. 195.

See Quigg. How to get 〈C2〉 etc.

21.4 Magnetic moment

We turn now however to the magnetic moment of a particle, beginning with the mag-

netic moment associated with the orbital angular momentum of a charged particle.

We note that from simplest point of view, the splitting of the strong alkaline lines

is understandable in terms of an interaction between the electron magnetic dipole

moment and the magnetic field generated by the orbital motion of the electron in

the atom. The splitting is due to the fact that the energy of a magnetic dipole �µ

in a field B is −�µ · B and if µz is quantized, assuming only two values, a doublet

is observed. Introducing the intrinsic angular momentum, or spin, S the magnetic

interaction is proportional to S·L. If the electron spin is 1/2 and is quantized as

the orbital angular momentum, again we obtain the observed doublets. We now do

explicitly some calculations.

B

Area

++
+

+

+

µ

L

vr

µ

Fig. 21.5. A current loop in magnetic field. Fig. 21.6. A particle in a closed orbit.

Classically a charge moving on a closed orbit is a current loop, which we know is a
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magnetic dipole, of magnitude proportional to the loop are an therefore the angular

momentum L. In gaussian units, the magnetic moment of a current loop is:

µ =
1

c
current×area.

The magnetic moment �µ is perpendicular to the loop and a positive current and

the resulting magnetic dipole form a right handed screw. If we consider a particle

of charge q, mass m and velocity v moving on a circular path, the current is i =

q/T = qv/(2πr) and the magnetic dipole is µ = (1/c) × qv/(2πr) × πr2 = qvr/2c.

The angular mometum is L = mvr and therefore µ = qL/2mc, where we still keep

c. The relation is correct also for vectors:

�µ =
q

2mc
L.

The main result is that �µ is parallel to L and proportional to L, with µ/L = q/2mc.

The derivation is of course classical and for a circular orbit, but correct in fact for

any central motion.

It is a most amazing fact that the relation is also valid in quantum mechanics,

for orbital motion. Let us assume that a similar relation is valid for any angular mo-

mentum J=L+S, which, using the relation derived above, we write, for an electron

i.e.with q = e, m = me, in magnitude:

µ = g
e

2mec
J

where g is an arbitrary constant which is called the Landé factor or more simply

the gyromagnetic ratio. J above is in gaussian units. Multiplying and dividing by

h̄, the relation becomes:

µ = g
eh̄

2mec

J

h̄
= gµ0j

whre µ0 = h̄e/2mec is the so called Bohr magneton and j the eigen-value of the

angular momentum in units of h̄. For atomic states, with angular momenum l, g is

one, just as for the classical calculation above. For intrinsic angular momentum, i.e.

for a charged particle with spin, a classical calculation cannot be performed without

making untenable assumptions about spinning charge and the likes. One easily finds

speeds greater than c and similiar absurdities. Moreover g is not unity! It is one

of the great triumphs of merging quantum mechanics and Lorentz invariance, as

Dirac did with his famous equations, that electrons, treated as point particles, have

spin 1/2 and for them g=2, in agreement with experiments, except for corrections

of order α/2π∼1/1000, which are calculable to great accuracy, another triumph of

relativistic quantum mechanics. These corrections have been verified to accuracies

of order 1/1010 in beautiful experiments.
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22 App. 3. Symmetries

22.1 Constants of Motion

Consider a stationary state Ψ which satisfies the Schrödinger eq.

i
d

dt
Ψ = HΨ.

Let F be a physical observable to which corresponds an operator F and 〈F 〉 be its

expectation value. The question is: when is 〈F 〉 constant in time, i.e. when is F a

conserved quantity? The condition of constancy in time is:

d

dt
〈F 〉 =

d

dt

∫
Ψ∗FΨd3x

=
∫

(
d

dt
Ψ)∗FΨd3x +

d

dt

∫
Ψ∗F (

d

dt
Ψ)d3x = 0

Taking the complex conjugate of the Schr eq.

−i
d

dt
Ψ∗ = (HΨ)∗ = Ψ∗H

we obtain
d

dt
〈F 〉 = i

∫
Ψ∗(HF − FH)Ψd3x = 0

HF − FH = [H,F ] = 0.

Therefore the vanishing of the commutator [H,F ] insures that 〈F 〉 is a constant of

the motion. If [H,F ] = 0, F is called a conserved quantity and the states Ψ can

chosen as simultaneous eigenstate of H and F .

HΨ = EΨ

FΨ = FΨ
.

22.2 Finding Conserved Quamtities

In principle, from H we could extract all ops F such that [H, F ]=0. However, most

often H is not completely known, but some symmetry properties of H might be

known. If there is some operator U under which the physical system described by

H is invariant, then there exist a conserved quantity. Let U be an operator such

that under U:

Ψ →UΨ′.

In general, the operator U can be a function of a continuous parameter, the pa-

rameter need not even be a scalar. We call the symmetry a continous symme-

try in this case. We begin however with the simple case of a discrete symmetry.
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22.3 Discrete Symmetries

As a simple example let’s consider a discrete symmetry operator U , such that

Ψ →UΨ′ →UΨ

That is U on Ψ′ gives back Ψ or

U(UΨ) = U2Ψ = UΨ′ = Ψ.

This is equivalent to U2 = I or U = U−1 and therefore U † = U , i.e. the operator

U is hermitian and therefore an observable. Let U be the parity op. P , defined as

the operation which changes the sign of the x, y and z coordinate axes. Then what

are the eigenvalues P of P in PΨ = PΨ? The eigenvalues of P must be ±1, but

its not obvious that the eigenstate of H should be eigenstate of P since in general

Ψ(r) can be quite different from Ψ(−r). But if [H,P ] = 0 and HΨ = EΨ, then

also HΨ′ = EΨ′, i.e., unless Ψand Ψ′ are degenerate states belonging to the same

eigenvalue E, than

PΨ = PΨ,

22.4 Other conserved additive Q. N.

If conservation of the numbers qb, q�(e), q�(µ), q�(τ) . . . where to be taken as conse-

quence of a corresponing local gauge symmetry, this requires that the the hamilto-

nian must be

H = Hkin + Hcharge−field

with Hcharge−field of the form qζA
(ζ)
0 , where A

(ζ)
0 is the time component of a 4-

potential describing a field whose source is the charge qζ . The quanta of this field

are massless photons γζ

Thus there exists the photons γb, γ�(e), γ�(µ), γ�(τ) . . . and qb, q�(e), q�(µ), q�(τ) . . .

are charges just like the electric charge, not electric of course, just with all the same

properties.

22.5 JPC for a fermion anti-fermion pair

Consider a fermion-antifermion pair. The parity of charged particles can only be

determined up to a sign, because of charge conservation. However, from the anti-

commutation relations for fermions and anti fermion creation and destruction op-

erators, it follows that if P | f 〉 = Pf | f 〉 then Pf = −Pf̄ . Therefore the parity of
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a fermion-antifermion pair is given by P | ff̄ 〉 = −(−1)L| ff̄ 〉, where L is the pair

orbital angular momentum. Because of conservation of charge, electric or of any

other kind such as barionic number etc., fermions cannot generally be eigenstate of

charge conjugation C. An ff̄ pair is however neutral in all respects and therefore

it can be an eigenstate of C as well as P . Fermions obey Fermi-Dirac statistics that

is, for two fermions, Ψ(f1, f2) = −Ψ(f2, f1). Remember that two fermions are not

distinguishable, by f2, f1, we mean a fermion with coordinates “1” and another

with coordinates “2”. We can write the two fermion state as a product of a spin

coordinate function and a space function. We can also consider charge, of whatever

kind, as an additional coordinate. Then we write

Ψ(1, 2) = Ψ(r1, r2)Ψ(σ1, σ2)Ψ(q1, q2).

Under the operation 1↔2, the overall wavefunction changes sign, space and spin

parts behave as usual and Ψ(q1, q2) changes or not sign according to the C eigenvalue

of the two fermion state. Then performing a 1↔2 exchange, we can write

−1 = (−1)L × [ − (−1)S] × C

C = (−1)S × (−1)L

P = −(−1)L

CP = −(−1)S

where S is the spin of the fermion pair, 0 or 1, L is the orbital angular momentum

and C is the charge conjugation eigenvalue of the fermion pair. Let’s consider S-

waves, L=0. There are two state, singlet and triplett, 3S1 and 1S0. For the former,

from the eq. above we get C=−1 and the latter C=1. Using further P = −1×(−1)L

we find JPC = 1−− and JPC = 0−+ for triplett and singlet S-wave ff̄ states.

We can do the same with the P -wave states. For singlet 1P1 we find C=−1

and P=1, or JPC = 0+−. For the triplett states 3P2,
3P1 and 3P0 we have JPC =

2++, 1++, 0++.

This argument is not liked by theorists but it gives the correct answer and can

be justified as rigorous. As far as two neutrinos go, P and C lead to non physical

states and I do not know what to do.

It is said that KL→π0νν̄ violates CP while KS→π0νν̄ does not. Since

CP |π0 〉 = +|π0 〉
CP |K1 〉 = +|K1 〉
CP |K2 〉 = −|K2 〉
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KL→π0 is mostly due to a CP violating coupling, therefore it is ultimately due to

η and Γ(KL → π0νν̄) ∝ η2. Why however it is said that Γ(KS → π0νν̄) ∝ ρ2 + η2?
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23 App. 4. CKM Matrix

23.1 Definition, representations, examples

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




Unitarity is satisfied by the representation:

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




where c12 = cos θ12 etc. δ is the CP violating phase. Experiment plus unitarity

gives, for |Vij|:

V =




0.9745 − 0.9760 0.217 − 0.224 0.0018 − 0.0045

0.217 − 0.224 0.9737 − 0.9753 0.036 − 0.042

0.004 − 0.013 0.035 − 0.042 0.9991 − 0.0994




Take as an example |Vud|=0.975, |Vub|=0.003, |Vcb|=0.04. Then we have:

V =




.975 0.222184608 0.003 e−iδ

· · · · · · 0.04

0.00888746 − 0.00292267 eiδ −0.03900035 − 0.00066602 eiδ 0.9991956




s12 = 0.22218561 c12 = .97500439

s13 = 0.00030000 c13 = .99999550

s23 = 0.04000018 c23 = .99919967

Check on unitarity

3∑
VuiV

∗
ti = [1.1 + .11e−iδ] × 10−18
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24 App. 5. Accuracy Estimates

24.1 Testing a theory or measuring one of its paramaters

Given a theory to be experimentally tested or just the necessity of determining

one of its parameter is a fundamental to particle physics. The maximum likelyhood

method is the general way through wich we can do this. We describe in the following

the estimations of the number of events require to obtain the desired accuracy in

the measurement of a parameter.

24.2 A priori estimates

Consider a variable x, normally distributed around a mean x, with variance σ2:

f(x; x) =
1√
2π σ

exp
(
− (x − x)2

2σ2

)

The joint probability or likelihood of an observation consisting of a set of N mea-

surements xi is:

L =
N∏
1

1√
2π σi

exp
(
− (xi − x)2

2σ2
i

)
.

W = logL is then −1/2× the χ2 function:

W = logL = −1

2

N∑
1

(xi − x)2

σ2
i

= −1

2
χ2.

The best estimate for x is the value which maximizes the likelihood of the observa-

tion, L or W = logL, obtained by solving

2
∂W

∂x
=
∑ xi − x

σ2
i

= 0

which gives the well known result:

x =

∑
xi/σ

2
i∑

1/σ2
i

.

For large N the likelihood function approaches a gaussian. If L(x, x) is the likelihood

for observing x, x being the best estimate, than the rms fluctuation of x is given by:

δx
2

=

∫
(x − x)2L dx∫ L dx

.

For a gaussian likelihood,

L(x; x) =
1√
2π σ

exp
(
− (x − x)2

2σ2

)
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we have (δx)2 = σ2, where we set δx = δx. The value of σ can be expressed in terms

of the second derivative of W :

∂W

∂x
=
∑ x − x

σ2

∂2W

∂x2
= − 1

σ2

and therefore:

δx = σ =

√√√√√√− 1

∂2W

∂x2

(24.12)

Consider now a variable x with a probability density function f(x; p), with the

usual meaning that dP , the probability of observing an event at x in dx, is f(x) dx.

The function f is normalized to unit over the whole x−interval where x is physical

and p is a (set of) parameter(s) we wish to estimate. From L =
∏

f(x, p), for one

event, we have W = logL = log f . If we want the accuracy with which we can

determine the parameter p, we use the result in equation (24.12), relating
∂2W

∂p2
to

δp with:
∂2W

∂p2
=

∂2 log f(x; p)

∂p2

averaged over repeated measurements of one event each:

〈∂2W

∂p2

〉
=
∫ ∂2 log f(x; p)

∂p2
f(x; p) dx

and for N events 〈∂2W

∂p2

〉
= N

∫ ∂2 log f(x; p)

∂p2
f(x; p) dx.

Computing the derivative in the integral above gives:∫ ∂2 log f

∂p2
dx = −

∫ 1

f

(∂f

∂p

)2
dx +

∫ ∂2f

∂p2
dx,

where the last term vanishes, exchanging integration and differentiation, since
∫

f dx

= 1. Thus finally we obtain:

δp =
1√
N

( ∫ 1

f

(∂f(x; p)

∂p

)2
dx
)−1

2 (24.13)

24.3 Examples

As an application we find the number of events necessary do determine a slope

parameter g defined as in f(x; g) = (1 + xg)/2, with x in {−1, 1}. The integral in

equation (24.13) is:

∫ 1

−1

x2

2(1 + gx)
dx =

1

2g3

(
log
(1 + g

1 − g

)
− 2g

)
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giving, approximately, δg =
√

3/N .

For the case of the slope in a Dalitx plot (taken as a circle with center at the

origin) population, the probability density is f(x; g) = 2/π(1 + gx)
√

1 − x2, with x

in {−1, 1}. The error on g is given by:

(δg)2 =
1

N

( 2

π

∫ 1

−1

x2
√

1 − x2

1 + gx
dx
)−1

=
k2

N

where for g = 0.26, the value for K±
3π decays, k = 1.9785 resulting in a fractional

accuracy, δg/g = 7.56/
√

N .

24.4 Taking into account the experimental resolution

We assume the resolution function is known, otherwise the case is of course hopeless.

There is often the tentation to try to unfold resolution from the data. This procedure

is ambiguous and can lead to incorrect results. The correct procedure is very simple.

Convolute the resolution with the theory:

g′(x; p) =
∫

g(x − x′)r(x′) dx′,

make sure that g′ is correctly normalized and proceed as above.
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25 App. 6. χ-squared

25.1 Likelihood and χ2

For variables which are normal-distributed the logarithm of the likelihhod function

L is equal to the negative of the χ2 sum. Maximizing the former or its logarithm,

since L is positive definite, is therefore equivalent to minimizing the χ2 sum.

25.2 The χ2 solution

Let m be a set of measurements to be matched to a (set) of functions f, in the sense

of minimizing the sum of the squares of the difference between the functions and

the measurements, defined by:

m =




m1

m2
...

mN


 , f =




f1

f2
...

fN


 (25.14)

The elements of the function’s vector f, are functions of the parameter’s vector x,

to be determined, defined as:

x =




x1
...

xL


 , with L < N. (25.15)

Let c be the corrections vector to be applied to the measurements, in order to obtain

equality with the functions, with the assumption that c is unbiased, i.e. 〈ci〉 = 0,

defined as:

f(x) = m + c. (25.16)

The error matrix of the measurements (the so called covariance matrix) is defined

by:

(G−1
m )i,j = δmiδmj. (25.17)

In terms of all the above, we define the sum of squares SS as:

SS = cTGmc (= χ2), (25.18)

the general form for SS, valid also when the measurement errors are correlated and

therefore the error matrix is non diagonal. The values of x for which SS is minimum

is an unbiased estimate of the parameters xi with smallest variance (Gauss–Markov

theorem). The matrix Gm and its inverse are symmetric, see equation 4. If he
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quantities m or c are normally distributed, the least square sum is the natural

logarithm of the likelihood (joint probability) of the observation and is called the χ2

function. Its distribution is the well known χ2 distribution.

Solving the L simultaneous equations:

∂(SS)

∂x
= 0 or

∂(χ2)

∂x
= 0 (25.19)

gives the parameter’s vector x. The solution of the equation above is trivial if f is

a linear function of x. If these is not the case we can solve for xby iteration after

expanding fin Taylor series around a “first guess” for the unknowns, x:

f(x) = f(x) + (∂f/∂x)(x − x) = f(x) + A∆x. (25.20)

The last identity defines the matrix A (Aij = ∂fi/∂xj) and the vector ∆x. In term

of the derivative matrix A, the vector ∆x and the so called residues, r = f(x)−m,

the correction vector c is given by c = r + A∆x and χ2 by:

χ2 = (r + A∆x)TGm(r + A∆x) (25.21)

and (∂x = ∂∆x) equation (25.19)becomes

2ATGm(r + A∆x) = 0 (25.22)

from which one obtains

∆x = −(ATGmA)−1ATGmr (25.23)

If f is linear in x, this solution is exact, for any x, in particular one can choose

x = 0 giving x = ∆x. If f is not linear, after a choice of x and solving for ∆x, one

substitutes x = x + ∆x and iterates until χ2 is stationary. Next to determining x

we need the errors for the parameters. The usual propagation of errors

δxiδxj =
∑∑

(∂xi/∂mk)(∂xj/∂ml)δmkδml (25.24)

can be written in our notation as (∂m = ∂r)

G−1
x = (∂∆x/∂r)TG−1

m (∂∆x/∂r) (25.25)

which, using the solution for ∆x, equation (25.23), gives:

G−1
x = (ATGmA)−1ATGmG−1

m GmA(ATGmA)−1 = (ATGmA)−1. (25.26)

Note that this matrix already appears in equation (25.23) for ∆x.
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25.3 Matrix dimensions

Sometimes, when writing a program, one can get confused with the matrix dimen-

sions. We explicitly exhibit the dimensions of all matrices. All vectors are taken to

have one column, the transposed vectors have one row. The error matrices are by

definition, square and symmetric, thus:

G−1
m =




δ1δ1 δ1δ2 . . . δ1δN

δ2δ1 δ2δ2 . . . δ2δN
...

...
. . .

...

δNδ1 δNδ2 . . . δNδN


 . (25.27)

This is also called the covariance matrix. The complete definition of the matrix

elements is:

(G−1
m )i,j = δmiδmj = (mi − mi)(mj − mj). (25.28)

The diagonal elements of G−1 are positive definite. If the measurements are uncor-

related, the off–diagonal elements are zero.

The derivative matrix is rectangular, with N rows, as many as the number of

measurements and functions and L columns, as many as the number of parameters

to be determined. Explicitly:

A =




∂f1/∂x1 . . . ∂f1/∂xL
...

...

∂fN/∂x1 . . . ∂fN/∂xL


 . (25.29)

25.4 A Simple Example

Often a series of measurements of a quantity are performed for different discrete

values of a single variable, for instance velocity versus time, intensity vs deflection

etc. The measurements are expected to be described by some function of the vari-

able, the function containing some arbitrary parameters to be determined. Calling

the values of the variable vi, the functions of section 1.1 are, in the present case,

the values the function to be fitted assumes for the different values of the variable

vi. We consider the following simple concrete case. Let the functions be given in

the form fi = x1g(vi) + x2h(vi). The form of the function h and g is known and can

be computed for the values of vi for which the measurements were performed. The

unknowns to be determined are the two parameters x1 and x2. AT is:

AT =

(
g(v1) g(v2) · · · g(vN)

h(v1) h(v2) · · · h(vN)

)
≡
(

g1 g2 · · · gN

h1 h2 · · · hN

)
(25.30)
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and

Gm =




1/δ2
1

1/δ2
2

. . .

1/δ2
N


 , r = −m. (25.31)

Gm is a diagonal matrix if the measurements are uncorrelated, as usually counts are.

If the measurements consist of counts (i.e. number of events) the a–priori fluctuation

on each is the square root of the expected number of counts, i.e. δi =
√

fi. Note that

its often stated that the error is given by
√

observed count. This is incorrect and

leads to incorrect fits which among other mistakes do not obey simple constraint such

as giving the correct area under the curve. Often the least square fit is understood

as assigning equal weight to all measurements, i.e. setting

Gm =




1

1
. . .

1




1

σ2
.

Gx is given by:

Gx = ATGmA =

( ∑
g2

i /δ
2
i

∑
gihi/δ

2
i∑

gihi/δ
2
i

∑
h2

i /δ
2
i

)
(25.32)

This matrix is trivially inverted, giving

G−1
x =

( ∑
h2

i /δ
2
i −∑ gihi/δ

2
i

−∑ gihi/δ
2
i

∑
g2

i /δ
2
i

)
1

det(Gx)

The solution for x1, x2 is:

x =

(∑
h2

i /δ
2
i

∑
gimi −∑ gihi/δ

2
i

∑
himi/δ

2
i∑

g2
i /δ

2
i

∑
himi −∑ gihi/δ

2
i

∑
gimi/δ

2
i

)
1

det(Gx)

For the case of equal errors, we can set them to 1 in the above formula and obatin

the least square solution for x1, x2:

x1 =

∑
h2

i

∑
gimi −∑ gihi

∑
himi∑

h2
i

∑
g2

i − (
∑

gihi)2

x2 =

∑
g2

i

∑
himi −∑ gihi

∑
gimi∑

h2
i

∑
g2

i − (
∑

gihi)2

and the errors: δx1 =
√

(Gx)2,2/ det(Gx), δx2 =
√

(Gx)1,1/ det(Gx).

While a generalization cannot be given on finite amounts of paper, the solution

in matrix form given above allows to write simple programs fo solving arbitrarily

complicated cases. A 10×10 matrix can be inverted in less then a second on a home

PC (of 15 yeats ago!).
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