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Preface

This book arises out of a course I am teaching for a three-credit (42 hour) graduate-level
course Dosimetry Fundamentals being taught at the Department of Nuclear Engineering and
Radiological Sciences at the University of Michigan. It is far from complete.

A formal course in dosimetry usually starts at Chapter 4, Macroscopic Radiation Physics,
that describes macroscopic field quantities (primarily fluence). However, this is an approxi-
mation (a good one) for rudimentary dosimetry. Underpinning this, however, is the realiza-
tion that these fields are made up of discrete particles. Therefore, a discussion of microscopic
radiation physics should really be the starting point. This material is given in Chapters 1
and 2, couched in the language of Monte Carlo practitioner, who estimates macroscopic
quantities, from microscopic calculation. Chapter 3 describes transport of particles through
matter, again in a microscopic way.

These first three chapters should be considered pre-requisite material for the following chap-
ters. Perhaps they should be combined into a single chapter with the title “Microscopic
radiation physics”. Deep understanding is not required and much of the language is in a
form more suitable for Monte Carlo practitioners. Nonetheless, knowledge of this material
will aid in the assimilation of the material of the following chapters. The Monte Carlo-specific
details should be glossed over if they are unfamiliar. However, the microscopic processes that
govern interaction and transport must be understood, at least intuitively, before attempting
the later chapters.

Finally, there are many missing figures. This book is far from completion. Anyone volun-
teering figures for this book will be gratefully acknowledged. Chapters 4–7 were all written
up during a very hectic week, from a collection of hand-written notes. There will be spelling
and grammatical errors, some mathematics errors, and perhaps a conceptual error or two. I
would be grateful if these were pointed out to me.

AFB, June 21, 2005
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Chapter 1

Photon Monte Carlo Simulation

“I could have done it in a much more complicated way”
said the red Queen, immensely proud.
Lewis Carroll

In this chapter we discuss the basic mechanism by which the simulation of photon interaction
and transport is undertaken. We start with a review of the basic interaction processes
that are involved, some common simplifications and the relative importance of the various
processes. We discuss when and how one goes about choosing, by random selection, which
process occurs. We discuss the rudimentary geometry involved in the transport and deflection
of photons. We conclude with a schematic presentation of the logic flow executed by a
typical photon Monte Carlo transport algorithm. This chapter will only sketch the bare
minimum required to construct a photon Monte Carlo code. A particularly good reference
for a description of basic interaction mechanisms is the excellent book [Eva55] by Robley
Evans, The Atomic Nucleus. This book should be in the bookshelf of anyone undertaking
a career in the radiation sciences. Simpler descriptions of photon interaction processes are
useful as well and are included in many common textbooks [JC83, Att86, SF96].

1.1 Basic photon interaction processes

We now give a brief discussion of the photon interaction processes that should be modeled
by a photon Monte Carlo code, namely:

• Pair production in the nuclear field

• The Compton interaction (incoherent scattering)

1



2 CHAPTER 1. PHOTON MONTE CARLO SIMULATION

• The photoelectric interaction

• The Rayleigh interaction (coherent scattering)

1.1.1 Pair production in the nuclear field

As seen in Figure 1.1, a photon can interact in the field of a nucleus, annihilate and produce
an electron-positron pair. A third body, usually a nucleus, is required to be present to
conserve energy and momentum. This interaction scales as Z2 for different nuclei. Thus,
materials containing high atomic number materials more readily convert photons into charged
particles than do low atomic number materials. This interaction is the quantum “analog” of
the bremsstrahlung interaction, which we will encounter in the next Chapter, Electron Monte
Carlo simulation. At high energies, greater than 50 MeV or so in all materials, the pair and
bremsstrahlung interactions dominate. The pair interaction gives rise to charged particles
in the form of electrons and positrons (muons at very high energy) and the bremsstrahlung
interaction of the electrons and positrons leads to more photons. Thus there is a “cascade”
process that quickly converts high energy electromagnetic particles into copious amounts of
lower energy electromagnetic particles. Hence, a high-energy photon or electron beam not
only has “high energy”, it is also able to deposit a lot of its energy near one place by virtue
of this cascade phenomenon. A picture of this process is given in Figure 1.2.

The high-energy limit of the pair production cross section per nucleus takes the form:

lim
α→∞

σpp(α) = σpp0 Z2
(
ln(2α)− 109

42

)
, (1.1)

where α = Eγ/mec
2, that is, the energy of the photon divided by the rest mass energy1 of

the electron (0.51099907± 0.00000015 MeV) and σpp0 = 1.80× 10−27 cm2/nucleus. We note
that the cross section grows logarithmically with incoming photon energy.

The kinetic energy distribution of the electrons and positrons is remarkably “flat” except
near the kinematic extremes of K± = 0 and K± = Eγ − 2mec

2. Note as well that the
rest-mass energy of the electron-positron pair must be created and so this interaction has a
threshold at Eγ = 2mec

2. It is exactly zero below this energy.

Occasionally it is one of the electrons in the atomic cloud surrounding the nucleus that
interacts with the incoming photon and provides the necessary third body for momentum
and energy conservation. This interaction channel is suppressed by a factor of 1/Z relative
to the nucleus-participating channel as well as additional phase-space and Pauli exclusion
differences. In this case, the atomic electron is ejected with two electrons and one positron
emitted. This is called “triplet” production. It is common to include the effects of triplet pro-
duction by “scaling up” the two-body reaction channel and ignoring the 3-body kinematics.
This is a good approximation for all but the low-Z atoms.

1The latest information on particle data is available on the web at: http://pdg.lbl.gov/pdg.htmlThis
web page is maintained by the Particle Data Group at the Lawrence Berkeley laboratory.
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Figure 1.1: The Feynman diagram depicting pair production in the field of a nucleus. Occa-
sionally (suppressed by a factor of 1/Z), “triplet” production occurs whereby the incoming
photon interacts with one of the electrons in the atomic cloud resulting in a final state with
two electrons and one positron. (Picture not shown.)
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Figure 1.2: A simulation of the cascade resulting from five 1.0 GeV electrons incident from
the left on a target. The electrons produce photons which produce electron-positron pairs
and so on until the energy of the particles falls below the cascade region. Electron and
positron tracks are shown with black lines. Photon tracks are not shown explaining why
some electrons and positrons appear to be “disconnected”. This simulation depicted here was
produced by the EGS4 code [NHR85, BHNR94] and the system for viewing the trajectories
is called EGS Windows [BW91].
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Further reading on the pair production interaction can be found in the reviews by Davies,
Bethe, Maximon [DBM54], Motz, Olsen, and Koch [MOK69], and Tsai [Tsa74].

1.1.2 The Compton interaction (incoherent scattering)

Figure 1.3: The Feynman diagram depicting the Compton interaction in free space. The
photon strikes an electron assumed to be “at rest”. The electron is set into motion and the
photon recoils with less energy.

The Compton interaction [CA35] is an inelastic “bounce” of a photon from an electron in
the atomic shell of a nucleus. It is also known as “incoherent” scattering in recognition of the
fact that the recoil photon is reduced in energy. A Feynman diagram depicting this process is
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given in Figure 1.3. At large energies, the Compton interaction approaches asymptotically:

lim
α→∞

σinc(α) = σinc0

Z

α
, (1.2)

where σinc0 = 3.33 × 10−25 cm2/nucleus. It is proportional to Z (i.e. the number of elec-
trons) and falls off as 1/Eγ. Thus, the Compton cross section per unit mass is nearly a
constant independent of material and the energy-weighted cross section is nearly a constant
independent of energy. Unlike the pair production cross section, the Compton cross section
decreases with increased energy.

At low energies, the Compton cross section becomes a constant with energy. That is,

lim
α→0

σinc(α) = 2σ
inc
0 Z . (1.3)

This is the classical limit and it corresponds to Thomson scattering, which describes the
scattering of light from “free” (unbound) electrons. In almost all applications, the electrons
are bound to atoms and this binding has a profound effect on the cross section at low energies.
However, above about 100 keV on can consider these bound electrons as “free”, and ignore
atomic binding effects. As seen in Figure 1.4, this is a good approximation for photon energies
down to 100 of keV or so, for most materials. This lower bound is defined by the K-shell
energy although the effects can have influence greatly above it, particularly for the low-Z
elements. Below this energy the cross section is depressed since the K-shell electrons are too
tightly bound to be liberated by the incoming photon. The unbound Compton differential
cross section is taken from the Klein-Nishina cross section [KN29], derived in lowest order
Quantum Electrodynamics, without any further approximation.

It is possible to improve the modeling of the Compton interaction. Namito and Hirayama [NH91]
have considered the effect of binding for the Compton effect as well as allowing for the trans-
port of polarised photons for both the Compton and Rayleigh interactions.

1.1.3 Photoelectric interaction

The dominant low energy photon process is the photoelectric effect. In this case the photon
gets absorbed by an electron of an atom resulting in escape of the electron from the atom and
accompanying small energy photons as the electron cloud of the atom settles into its ground
state. The theory concerning this phenomenon is not complete and exceedingly complicated.
The cross section formulae are usually in the form of numerical fits and take the form:

σph(Eγ) ∝
Zm

En
γ

, (1.4)

where the exponent on Z ranges from 4 (low energy, below 100 keV) to 4.6 (high energy,
above 500 keV) and the exponent on Eγ ranges from 3 (low energy, below 100 keV) to 1
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Figure 1.5: Photoelectric effect

(high energy, above 500 keV). Note that the high-energy fall-off is the same as the Compton
interaction. However, the high-energy photoelectric cross section is depressed by a factor of
about Z3.610−8 relative to the Compton cross section and so is negligible in comparison to
the Compton cross section at high energies.

A useful approximation that applies in the regime where the photoelectric effect is dominant
is:

σph(Eγ) ∝
Z4

E3
γ

, (1.5)

which is often employed for simple analytic calculations. However, most Monte Carlo codes
employ a table look-up for the photoelectric interaction.

Angular distributions of the photoelectron can be determined according to the theory of
Sauter [Sau31]. Although Sauter’s theory is relativistic, it appears to work in the non-
relativistic regime as well.
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Figure 1.6: Rayleigh scattering

1.1.4 Rayleigh (coherent) interaction

Now we consider the Rayleigh interaction, also known as coherent scattering. In terms of
cross section, the Rayleigh cross section is at least an order of magnitude less that the
photoelectric cross section. However, it is still important! As can be seen from the Feyn-
man diagram in Figure 1.6, the distinguishing feature of this interaction in contrast to the
photoelectric interaction is that there is a photon in the final state. Indeed, if low energy
photons impinge on an optically thick shield both Compton and Rayleigh scattered photons
will emerge from the far side. Moreover, the proportions will be a sensitive function of the
incoming energy.

The coherent interaction is an elastic (no energy loss) scattering from atoms. It is not
good enough to treat molecules as if they are made up of independent atoms. A good
demonstration of the importance of molecular structure was demonstrated by Johns and
Yaffe [JY83].
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The Rayleigh differential cross section has the following form:

σcoh(Eγ ,Θ) =
r2e
2
(1 + cos2Θ)[F (q, Z)]2 , (1.6)

where re is the classical electron radius (2.8179 × 10−13 cm), q is the momentum-transfer
parameter , q = (Eγ/hc) sin(Θ/2), and F (q, Z) is the atomic form factor. F (q, Z) approaches
Z as q goes to zero either by virtue of Eγ going to zero or Θ going to zero. The atomic
form factor also falls off rapidly with angle although the Z-dependence increases with angle
to approximately Z3/2.

The tabulation of the form factors published by Hubbell and Øverbø [HØ79].

1.1.5 Relative importance of various processes

We now consider the relative importance of the various processes involved.

For carbon, a moderately low-Z material, the relative strengths of the photon interactions
versus energy is shown in Figure 1.7. For this material we note three distinct regions of single
interaction dominance: photoelectric below 20 keV, pair above 30 MeV and Compton in
between. The almost order of magnitude depression of the Rayleigh and triplet contributions
is some justification for the relatively crude approximations we have discussed. For lead,
shown in Figure 1.8, there are several differences and many similarities. The same comment
about the relative unimportance of the Rayleigh and triplet cross sections applies. The
“Compton dominance” section is much smaller, now extending only from 700 keV to 4 MeV.
We also note quite a complicated structure below about 90 keV, the K-shell binding energy
of the lead atom. Below this threshold, atomic structure effects become very important.

Finally, we consider the total cross section versus energy for the materials hydrogen, water
and lead, shown in Figure 1.9. The total cross section is plotted in the units cm2/g. The
Compton dominance regions are equivalent except for a relative A/Z factor. At high energy
the Z2 dependence of pair production is evident in the lead. At lower energies the Zn(n > 4)
dependence of the photoelectric cross section is quite evident.

1.2 Photon transport logic

We now discuss a simplified version of photon transport logic. It is simplified by ignoring
electron creation and considering that the transport occurs in only a single volume element
and a single medium.

This photon transport logic is schematised in Figure 1.10. Imagine that an initial photon’s
parameters are present at the top of an array called STACK. STACK is an array that retains
particle phase space characteristics for processing. We also imagine that there is a photon
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transport cutoff defined. Photons that fall below this cutoff are absorbed “on the spot”.
We consider that they do not contribute significantly to any tallies of interest and can be
ignored. Physically, this step is not really necessary—it is only a time-saving manoeuvre.
In “real life” low-energy photons are absorbed by the photoelectric process and vanish. (We
will see that electrons are more complicated. Electrons are always more complicated.

The logic flow of photon transport proceeds as follow. The initial characteristics of a photon
entering the transport routine and first tested to see if the energy is below the transport
cutoff. If it is below the cutoff, the history is terminated. If the STACK is empty then a
new particle history is started. If the energy is above the cutoff then the distance to the
next interaction site is chosen, following the discussion in Chapter 3, Transport in media,
interaction models. The photon is then transported, that is “stepped” to the point of in-
teraction. (If the geometry is more complicated than just one region, transport through
different elements of the geometry would be taken care of here.) If the photon, by virtue
of its transport, has left the volume defining the problem then it is discarded. Otherwise,
the branching distribution is sampled to see which interaction occurs. Having done this, the
surviving particles (new ones may be created, some disappear, the characteristics of the ini-
tial one will almost certainly change) have their energies, directions and other characteristics
chosen from the appropriate distributions. The surviving particles are put on the STACK.
Lowest energy ones should be put on the top of the STACK to keep the size of the STACK as
small as possible. Then the whole process takes place again until the STACK is empty and all
the incident particles are used up.
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Problems

1. The Klein-Nishina differential cross section is given by:

dσKN
dΩϕ

=
r20
2

(
k′

k

)2 (
k′

k
+

k

k′
− sin2 ϕ

)

where ϕ is the angle between the scattered photon and incoming photon directions, k
is the incoming photon energy and k′ is the scattered photon energy.

k′

k
=

1

1 + α(1− cosϕ)

α =
k

m0c2

(a) The kinematics of unbound electron scattering correlates absolutely any two of
the four kinematic variables, k′, ϕ, T (the outgoing electron kinetic energy) and
θ (the angle that the outgoing electron energy makes with the incoming photon
direction, see Figure 7.2 in Attix [Att86]), as a function of k. Hence, there are 12
functions of the form, k′(ϕ), ϕ(k′), k′(θ), θ(k′) and so on.

Find them all and show your calculations. You must prove relation (7.10), but
you may use (7.8) and (7.9) in Attix’s book without proof.

i. k′(ϕ) =

ii. ϕ(k′) =

iii. k′(θ) =

iv. θ(k′) =

v. k′(T ) =

vi. T (k′) =

vii. ϕ(θ) =

viii. θ(ϕ) =

ix. ϕ(T ) =

x. T (ϕ) =

xi. T (θ) =

xii. θ(T ) =

(b) Find expressions and plot vs. α (low energy and high energy limits must be seen
clearly)

i. k′/k
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ii. (k′/k)2 − k′/k
2

iii. cosϕ

iv. (cosϕ)2 − cosϕ2

v. cos θ

vi. (cos θ)2 − cos θ2

vii. Discuss the systematics of the above in the high and low energy limits.

Hint: If f(x) is an unnormalized probability distribution defined between x0 and
x1, then

x =

∫ x1
x0
dx xf(x)∫ x1

x0
dx f(x)

x2 =

∫ x1
x0
dx x2f(x)∫ x1

x0
dx f(x)



Chapter 2

Electron Monte Carlo Simulation

In this chapter we discuss the electron and positron interactions and discuss the approxima-
tions made in their implementation. We give a brief outline of the electron transport logic
used in Monte Carlo simulations.

The transport of electrons (and positrons) is considerably more complicated than for pho-
tons. Like photons, electrons are subject to violent interactions. The following are the
“catastrophic” interactions:

• large energy-loss Møller scattering (e−e− −→ e−e−),
• large energy-loss Bhabha scattering (e+e− −→ e+e−),
• hard bremsstrahlung emission (e±N −→ e±γN), and
• positron annihilation “in-flight” and at rest (e+e− −→ γγ).

It is possible to sample the above interactions discretely in a reasonable amount of computing
time for many practical problems. In addition to the catastrophic events, there are also “soft”
events. Detailed modeling of the soft events can usually be approximated by summing the
effects of many soft events into virtual “large-effect” events. These “soft” events are:

• low-energy Møller (Bhabha) scattering (modeled as part of the collision stopping
power),

• atomic excitation (e±N −→ e±N∗) (modeled as another part of the collision stopping
power),

• soft bremsstrahlung (modeled as radiative stopping power), and
• elastic electron (positron) multiple scattering from atoms, (e±N −→ e±N).

Strictly speaking, an elastic large angle scattering from a nucleus should really be considered
to be a “catastrophic” interaction but this is not the usual convention. (Perhaps it should
be.) For problems of the sort we consider, it is impractical to model all these interactions
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discretely. Instead, well-established statistical theories are used to describe these “soft”
interactions by accounting for them in a cumulative sense including the effect of many such
interactions at the same time. These are the so-called “statistically grouped” interactions.

2.1 Catastrophic interactions

We have almost complete flexibility in defining the threshold between “catastrophic” and
“statistically grouped” interactions. The location of this threshold should be chosen by the
demands of the physics of the problem and by the accuracy required in the final result.

2.1.1 Hard bremsstrahlung production

As depicted by the Feynman diagram in fig. 2.1, bremsstrahlung production is the creation
of photons by electrons (or positrons) in the field of an atom. There are actually two
possibilities. The predominant mode is the interaction with the atomic nucleus. This effect
dominates by a factor of about Z over the three-body case where an atomic electron recoils
(e±N −→ e±e−γN∗). Bremsstrahlung is the quantum analogue of synchrotron radiation, the
radiation from accelerated charges predicted by Maxwell’s equations. The de-acceleration
and acceleration of an electron scattering from nuclei can be quite violent, resulting in very
high energy quanta, up to and including the total kinetic energy of the incoming charged
particle.

The two-body effect can be taken into account through the total cross section and angular
distribution kinematics. The three-body case is conventionally treated only by inclusion in
the total cross section of the two body-process. The two-body process can be modeled using
one of the Koch and Motz [KM59] formulae. The bremsstrahlung cross section scales with
Z(Z + ξ(Z)), where ξ(Z) is the factor accounting for three-body case where the interaction
is with an atomic electron. These factors comes are taken from the work of Tsai [Tsa74].
The total cross section depends approximately like 1/Eγ.

2.1.2 Møller (Bhabha) scattering

Møller and Bhabha scattering are collisions of incident electrons or positrons with atomic
electrons. It is conventional to assume that these atomic electrons are “free” ignoring their
atomic binding energy. At first glance the Møller and Bhabha interactions appear to be
quite similar. Referring to fig. 2.2, we see very little difference between them. In reality,
however, they are, owing to the identity of the participant particles. The electrons in the
e−e+ pair can annihilate and be recreated, contributing an extra interaction channel to the
cross section. The thresholds for these interactions are different as well. In the e−e− case,
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the “primary” electron can only give at most half its energy to the target electron if we
adopt the convention that the higher energy electron is always denoted “the primary”. This
is because the two electrons are indistinguishable. In the e+e− case the positron can give up
all its energy to the atomic electron.

Møller and Bhabha cross sections scale with Z for different media. The cross section
scales approximately as 1/v2, where v is the velocity of the scattered electron. Many more
low energy secondary particles are produced from the Møller interaction than from the
bremsstrahlung interaction.

2.1.3 Positron annihilation

Two photon annihilation is depicted in fig. 2.3. Two-photon “in-flight” annihilation can be
modeled using the cross section formulae of Heitler [Hei54]. It is conventional to consider the
atomic electrons to be free, ignoring binding effects. Three and higher-photon annihilations
(e+e− −→ nγ[n > 2]) as well as one-photon annihilation which is possible in the Coulomb
field of a nucleus (e+e−N −→ γN∗) can be ignored as well. The higher-order processes are
very much suppressed relative to the two-body process (by at least a factor of 1/137) while
the one-body process competes with the two-photon process only at very high energies where
the cross section becomes very small. If a positron survives until it reaches the transport
cut-off energy it can be converted it into two photons (annihilation at rest), with or without
modeling the residual drift before annihilation.

2.2 Statistically grouped interactions

2.2.1 “Continuous” energy loss

One method to account for the energy loss to sub-threshold (soft bremsstrahlung and soft
collisions) is to assume that the energy is lost continuously along its path. The formalism that
may be used is the Bethe-Bloch theory of charged particle energy loss [Bet30, Bet32, Blo33]
as expressed by Berger and Seltzer [BS64] and in ICRU 37 [ICR84]. This continuous energy
loss scales with the Z of the medium for the collision contribution and Z2 for the radiative
part. Charged particles can also polarise the medium in which they travel. This “density
effect” is important at high energies and for dense media. Default density effect parameters
are available from a 1982 compilation by Sternheimer, Seltzer and Berger [SSB82] and
state-of-the-art compilations (as defined by the stopping-power guru Berger who distributes
a PC-based stopping power program [Ber92]).

Again, atomic binding effects are treated rather crudely by the Bethe-Bloch formalism.
It assumes that each electron can be treated as if it were bound by an average binding
potential. The use of more refined theories does not seem advantageous unless one wants
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to study electron transport below the K-shell binding energy of the highest atomic number
element in the problem.

The stopping power versus energy for different materials is shown in fig. 2.4. The difference
in the collision part is due mostly to the difference in ionisation potentials of the various
atoms and partly to a Z/A difference, because the vertical scale is plotted in MeV/(g/cm2),
a normalisation by atomic weight rather than electron density. Note that at high energy the
argon line rises above the carbon line. Argon, being a gas, is reduced less by the density
effect at this energy. The radiative contribution reflects mostly the relative Z2 dependence
of bremsstrahlung production.

The collisional energy loss by electrons and positrons is different for the same reasons de-
scribed in the “catastrophic” interaction section. Annihilation is generally not treated as
part of the positron slowing down process and is treated discretely as a “catastrophic” event.
The differences are reflected in fig. 2.5, the positron/electron collision stopping power. The
positron radiative stopping power is reduced with respect to the electron radiative stopping
power. At 1 MeV this difference is a few percent in carbon and 60% in lead. This relative
difference is depicted in fig. 2.6.

2.2.2 Multiple scattering

Elastic scattering of electrons and positrons from nuclei is predominantly small angle with
the occasional large-angle scattering event. If it were not for screening by the atomic elec-
trons, the cross section would be infinite. The cross sections are, nonetheless, very large.
There are several statistical theories that deal with multiple scattering. Some of these theo-
ries assume that the charged particle has interacted enough times so that these interactions
may be grouped together. The most popular such theory is the Fermi-Eyges theory [Eyg48],
a small angle theory. This theory neglects large angle scattering and is unsuitable for ac-
curate electron transport unless large angle scattering is somehow included (perhaps as a
catastrophic interaction). The most accurate theory is that of Goudsmit and Saunder-
son [GS40a, GS40b]. This theory does not require that many atoms participate in the
production of a multiple scattering angle. However, calculation times required to produce
few-atom distributions can get very long, can have intrinsic numerical difficulties and are not
efficient computationally for Monte Carlo codes such as EGS4 [NHR85, BHNR94] where the
physics and geometry adjust the electron step-length dynamically. A fixed step-size scheme
permits an efficient implementation of Goudsmit-Saunderson theory and this has been done
in ETRAN [Sel89, Sel91], ITS [HM84, Hal89, HKM+92] and MCNP [Bri86, Bri93, Bri97].
Apart from accounting for energy-loss during the course of a step, there is no intrinsic diffi-
culty with large steps either. EGS4 uses the Molière theory [Mol47, Mol48] which produces
results as good as Goudsmit-Saunderson for many applications and is much easier to imple-
ment in EGS4’s transport scheme.

The Molière theory, although originally designed as a small angle theory has been shown
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with small modifications to predict large angle scattering quite successfully [Bet53, Bie94].
The Molière theory includes the contribution of single event large angle scattering, for ex-
ample, an electron backscatter from a single atom. The Molière theory ignores differences
in the scattering of electrons and positrons, and uses the screened Rutherford cross sections
instead of the more accurate Mott cross sections. However, the differences are known to
be small. Owing to analytic approximations made by Molière theory, this theory requires a
minimum step-size as it breaks down numerically if less than 25 atoms or so participate in
the development of the angular distribution [Bie94, AMB93]. A recent development [KB98]
has surmounted this difficulty. Apart from accounting for energy loss, there is also a large
step-size restriction because the Molière theory is couched in a small-angle formalism. Be-
yond this there are other corrections that can be applied [Bet53, Win87] related to the
mathematical connection between the small-angle and any-angle theories.

2.3 Electron transport “mechanics”

2.3.1 Typical electron tracks

A typical Monte Carlo electron track simulation is shown in fig. 2.7. An electron is being
transported through a medium. Along the way energy is being lost “continuously” to sub-
threshold knock-on electrons and bremsstrahlung. The track is broken up into small straight-
line segments called multiple scattering substeps. In this case the length of these substeps
was chosen so that the electron lost 4% of its energy during each step. At the end of
each of these steps the multiple scattering angle is selected according to some theoretical
distribution. Catastrophic events, here a single knock-on electron, sets other particles in
motion. These particles are followed separately in the same fashion. The original particle, if
it is does not fall below the transport threshold, is also transported. In general terms, this
is exactly what the electron transport logic simulates.

2.3.2 Typical multiple scattering substeps

Now we demonstrate in fig. 2.8 what a multiple scattering substep should look like.

A single electron step is characterised by the length of total curved path-length to the end
point of the step, t. (This is a reasonable parameter to use because the number of atoms
encountered along the way should be proportional to t.) At the end of the step the deflection
from the initial direction, Θ, is sampled. Associated with the step is the average projected
distance along the original direction of motion, s. There is no satisfactory theory for the
relation between s and t! The lateral deflection, ρ, the distance transported perpendicular
to the original direction of motion, is often ignored by electron Monte Carlo codes. This is
not to say that lateral transport is not modelled! Recalling fig. 2.7, we see that such lateral
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deflections do occur as a result of multiple scattering. It is only the lateral deflection during
the course of a substep which is ignored. One can guess that if the multiple scattering steps
are small enough, the electron track may be simulated more exactly.

2.4 Examples of electron transport

2.4.1 Effect of physical modeling on a 20 MeV e− depth-dose curve

In this section we will study the effects on the depth-dose curve of turning on and off
various physical processes. Figure 2.9 presents two CSDA calculations (i.e. no secondaries
are created and energy-loss straggling is not taken into account). For the histogram, no
multiple scattering is modeled and hence there is a large peak at the end of the range of
the particles because they all reach the same depth before being terminating and depositing
their residual kinetic energy (189 keV in this case). Note that the size of this peak is very
much a calculational artefact which depends on how thick the layer is in which the histories
terminate. The curve with the stars includes the effect of multiple scattering. This leads to
a lateral spreading of the electrons which shortens the depth of penetration of most electrons
and increases the dose at shallower depths because the fluence has increased. In this case, the
depth-straggling is entirely caused by the lateral scattering since every electron has traveled
the same distance.

Figure 2.10 presents three depth-dose curves calculated with all multiple scattering turned off
- i.e. the electrons travel in straight lines (except for some minor deflections when secondary
electrons are created). In the cases including energy-loss straggling, a depth straggling is
introduced because the actual distance traveled by the electrons varies, depending on how
much energy they give up to secondaries. Two features are worth noting. Firstly, the
energy-loss straggling induced by the creation of bremsstrahlung photons plays a significant
role despite the fact that far fewer secondary photons are produced than electrons. They do,
however, have a larger mean energy. Secondly, the inclusion of secondary electron transport
in the calculation leads to a dose buildup region near the surface. Figure 2.11 presents
a combination of the effects in the previous two figures. The extremes of no energy-loss
straggling and the full simulation are shown to bracket the results in which energy-loss
straggling from either the creation of bremsstrahlung or knock-on electrons is included. The
bremsstrahlung straggling has more of an effect, especially near the peak of the depth-dose
curve.
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Figure 2.1: Hard bremsstrahlung production in the field of an atom as depicted by a Feynman
diagram. There are two possibilities. The predominant mode (shown here) is a two-body
interaction where the nucleus recoils. This effect dominates by a factor of about Z2 over the
three-body case where an atomic electron recoils (not shown).
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Figure 2.2: Feynman diagrams depicting the Møller and Bhabha interactions. Note the extra
interaction channel in the case of the Bhabha interaction.
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Figure 2.3: Feynman diagram depicting two-photon positron annihilation.
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2.5 Electron transport logic

Figure 2.12 is a schematic flow chart showing the essential differences between different kinds
of electron transport algorithms. EGS4 is a “class II” algorithm which samples interactions
discretely and correlates the energy loss to secondary particles with an equal loss in the
energy of the primary electron (positron).

There is a close similarity between this flow chart and the photon transport flow chart.
The essential differences are the nature of the particle interactions as well as the additional
continuous energy-loss mechanism and multiple scattering. Positrons are treated by the same
subroutine in EGS4 although it is not shown in fig. 2.12.

Imagine that an electron’s parameters (energy, direction, etc.) are on top of the particle stack.
(STACK is an array containing the phase-space parameters of particles awaiting transport.)
The electron transport routine, picks up these parameters and first asks if the energy of this
particle is greater than the transport cutoff energy, called ECUT. If it is not, the electron is
discarded. (This is not to that the particle is simply thrown away! “Discard” means that the
scoring routines are informed that an electron is about to be taken off the transport stack.) If
there is no electron on the top of the stack, control is given to the photon transport routine.
Otherwise, the next electron in the stack is picked up and transported. If the original
electron’s energy was great enough to be transported, the distance to the next catastrophic
interaction point is determined, exactly as in the photon case. The multiple scattering step-
size t is then selected and the particle transported, taking into account the constraints of the
geometry. After the transport, the multiple scattering angle is selected and the electron’s
direction adjusted. The continuous energy loss is then deducted. If the electron, as a result
of its transport, has left the geometry defining the problem, it is discarded. Otherwise,
its energy is tested to see if it has fallen below the cutoff as a result of its transport. If
the electron has not yet reached the point of interaction a new multiple scattering step is
effected. This innermost loop undergoes the heaviest use in most calculations because often
many multiple scattering steps occur between points of interaction (see fig. 2.7). If the
distance to a discrete interaction has been reached, then the type of interaction is chosen.
Secondary particles resulting from the interaction are placed on the stack as dictated by the
differential cross sections, lower energies on top to prevent stack overflows. The energy and
direction of the original electron are adjusted and the process starts all over again.
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Problems

1. Basic interaction physics...

(a) Ignoring photonuclear processes, what are the 3 most important photon inter-
actions to the general area of medical physics? In what energy range is each
dominant? What is the atomic number dependence of each?

(b) Ignoring electronuclear processes, what are the 2 most important electron inter-
actions to the general area of medical physics? In what energy range is each
dominant? What is the atomic number dependence of each?

(c) Ignoring electronuclear processes, what are the 3 most important positron inter-
actions to the general area of medical physics? In what energy range is each
dominant? What is the atomic number dependence of each?

(d) A 50 MeV photon enters a thick Pb slab. Draw a representative picture of the
entire life of this photon and all of its daughter particles. Make sure that you
show all the interactions described above.

(e) Repeat (d) with a 1 MeV photon. What processes can not occur?



Chapter 3

Transport in media, interaction
models

In the previous chapter it was stated that a simulation provides us with a set of pathlengths,
(s1, s2, s3 · · ·) and an associated set of deflections, ([Θ1,Φ1], [Θ2,Φ2], [Θ3,Φ3] · · ·) that enter
into the transport and deflection machinery developed there. In this chapter we discuss how
this data is produced and give some indication as to its origins. We also present some basic
interaction models that are facsimiles of the real thing, just so that we can have something
to model without a great deal of computational effort.

3.1 Interaction probability in an infinite medium

Imagine that a particle starts at position  x0 in an arbitrary infinite scattering medium and
that the particle is directed along an axis with unit direction vector  µ. The medium can
have a density or a composition that varies with position. We call the probability that a
particle exists at position  x relative to  x0 without having collided , ps( µ ·( x− x0)), the survival
probability. The change in probability due to interaction is characterized by an interaction
coefficient (in units L−1) which we call µ( µ ·( x− x0)). This interaction coefficient can change
along the particle flight path. The change in survival probability is expressed mathematically
by the following equation:

dps( µ · ( x−  x0)) = −ps( µ · ( x−  x0))µ( µ · ( x−  x0))d( µ · ( x−  x0)) . (3.1)

The minus sign on the right-hand-side indicates that the probability decreases with path-
length and the proportionality with ps( µ · ( x−  x0)) on the right-hand-side means the proba-
bility of loss is proportional to the probability of the particle existing at the location where
the interaction takes place.

To simplify the notation we translate and rotate so that  x0 = (0, 0, 0) and  µ = (0, 0, 1). (We
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can always rotate and translate back later if we want to.) However, the more complicated
notation reinforces the notion that the starting position and direction can be arbitrary and
that the interaction coefficient can change along the path of the particle’s direction. In the
simpler notation with a small rearrangement we have:

dps(z)

ps(z)
= −µ(z)dz . (3.2)

We can integrate this from z = 0 where we assume that p(0) = 1 to z and obtain:

ps(z) = exp
(
−
∫ z

0
dz′µ(z′)

)
. (3.3)

The probability that a particle has interacted within a distance z is simply 1 − ps(z). This
is also called the cumulative probability:

c(z) = 1− ps(z) = 1− exp
(
−
∫ z

0
dz′µ(z′)

)
. (3.4)

Since the medium is infinite, c(∞) = 1 and ps(∞) = 0.
The differential (per unit length) probability for interaction at z can be obtained from the
derivative of the cumulative probability c(z):

p(z) =
d

dz

[
1− exp

(
−
∫ z

0
dz′µ(z′)

)]
= µ(z) exp

(
−
∫ z

0
dz′µ(z′)

)
= µ(z)ps(z) . (3.5)

There is a critical assumption in the above expression! It is assumed that the existence of
a particle at z means that it has not interacted in any way. ps(z) is after all, the survival
probability. Why is this important? The interaction coefficient µ(z) may represent a number
of possibilities. Choosing which interaction channel the particle takes is independent of
whatever happened along the way so long as it has survived and what happens is only
dependent on the local µ(z). There will be more discussion of this subtle point later.

3.1.1 Uniform, infinite, homogeneous media

This is the usual case where it is assumed that µ is a constant, independent of position
within the medium. That is, the scattering characteristic of the medium is uniform. (The
interaction can depend on the energy ofthe incoming particle, however.) In this case we have
the simplification:

ps(z) = e−µz , (3.6)

which is the well-known exponential attenuation law for the survival probability of particles
as a function of depth. The cumulative probability is:

c(z) = 1− ps(z) = 1− e−µz , (3.7)
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and the differential probability for interaction z is:

p(z) =
d

dz
[1− e−µz] = µe−µz = µps(z) . (3.8)

The use of random numbers to sample this probability distribution was given in Chapter ??.

3.2 Finite media

In the case where the medium is finite, our notion of probability distribution seems to break
down since:

c(∞) = 1− ps(∞) = 1− exp
(
−
∫ ∞
0
dz′µ(z′)

)
< 1 . (3.9)

That is, the cumulative probability at infinity is less than one because either the particle
escapes a finite geometry or µ(z) is zero beyond some limit. (These are two ways of saying
the same thing!)

We can recover our notion of probability theory by drawing a boundary at z = zb at the end
of the geometry and rewrite the cumulative probability as:

c(z) = 1− ps(z) = 1− exp
(
−
∫ z

0
dz′µ(z′)

)
+ exp

(
−
∫ zb

0
dz′µ(z′)

)
θ(z − zb) , (3.10)

where we assume that µ(z) = 0 for z ≥ zb. The probability distribution becomes:

p(z) = µ(z) exp
(
−
∫ z

0
dz′µ(z′)

)
+ ps(zb)δ(z − zb) . (3.11)

The interpretation is that once the particle reaches the boundary, it reaches it with a cu-
mulative probability equal to one minus its survival probability. Probability is conserved.
In fact, this is exactly what is done in a Monte Carlo simulation. If a particle reaches the
bounding box of the simulation it is absorbed at that boundary and transport discontinues.
If this were not the case, an attempt at particle transport simulation would put the logic
into an infinite loop with the particle being transported elsewhere looking for more medium
to interact in. In a sense, this is exactly what happens in nature! Particles escaping the
earth go off into outer space until they interact with another medium or else they transport
to the end of the universe. It is simply a question of conservation of probability!

3.3 Regions of different scattering characteristics

Let us imagine that our “universe” contains regions of different scattering characteristics
such that it is convenient to write:

µ(z) = µ1(z)θ(z)θ(b1 − z)
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µ(z) = µ2(z)θ(z − b1)θ(b2 − z)

µ(z) = µ3(z)θ(z − b2)θ(b3 − z)
... (3.12)

Typically, the µ’s may be constant in their own domains. However, the analysis about to
be presented is much more general. Note also that there is no fundamental restriction to
layered media. Since we have already introduced arbitrary translations and rotations, the
notation just means that along the flight path the interaction changes in some way at certain
distances that we wish to assign a particular status to.

The interaction probability for this arrangement is:

p(z) = θ(z)θ(b1 − z)µ1(z)e
−
∫ z

0
dz′µ1(z′)

+ θ(z − b1)θ(b2 − z)µ2(z)e
−
∫ b1
0

dz′µ1(z′)e
−
∫ z

b1
dz′µ2(z′)

+ θ(z − b2)θ(b3 − z)µ3(z)e
−
∫ b1
0

dz′µ1(z′)e
−
∫ b2

b1
dz′µ2(z′)e

−
∫ z

b2
dz′µ3(z′)

... (3.13)

Another way of writing this is:

p(z) = θ(z)θ(b1 − z)µ1(z)e
−
∫ z

0
dz′µ1(z′)

+ ps(b1)θ(z − b1)θ(b2 − z)µ2(z)e
−
∫ z

b1
dz′µ2(z′)

+ ps(b2)θ(z − b2)θ(b3 − z)µ3(z)e
−
∫ z

b2
dz′µ3(z′)

... (3.14)

Now consider a change of variables bi−1 ≤ zi ≤ bi and introduce the conditional survival
probability ps(bi|bi−1) which is the probability that a particle does not interact in the region
bi−1 ≤ zi ≤ bi given that it has not interacted in a previous region either. By conservation
of probability:

ps(bi) = ps(bi−1)ps(bi|bi−1) . (3.15)

Then Equation 3.14 can be rewritten:

p(z) = p(z1, z2, z3 · · ·) = p(z1) + ps(b1)[p(z2) + ps(b2|b1)[p(z3) + ps(b3|b2)[· · · (3.16)

What this means is that the variables z1, z2, z3 · · · can be treated as independent. If we
consider the interactions over z1 as independent, then from Equation 3.11 we have:

p(z1) = µ1(z1) exp
(
−
∫ z1

0
dz′µ1(z

′)
)
+ ps(b1)δ(z − b1) . (3.17)
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If the particle makes it to z = b1 we consider z2 as an independent variable and sample from:

p(z2) = µ2(z2) exp
(
−
∫ z2

0
dz′µ2(z

′)
)
+ ps(b2|b1)δ(z − b2) . (3.18)

If the particle makes it to z = b2 we consider z3 as an independent variable and sample from:

p(z3) = µ3(z3) exp
(
−
∫ z3

0
dz′µ3(z

′)
)
+ ps(b3|b2)δ(z − b3) , (3.19)

and so on.

A simple example serves to illustrate the process. Consider only two regions of space on
either side of z = b with different interaction coefficients. That is:

µ(z) = µ1θ(b− z) + µ2θ(z − b) . (3.20)

The interaction probability for this example is:

p(z) = θ(b− z)µ1e
−µ1z + θ(z − b)µ2e

−µ1beµ2(z−b) (3.21)

Now, treat z1 as independent, that is

p(z1) = µ1e
−µ1z + e−µ1bδ(z − b) (3.22)

If the particle makes it to z = b we consider z2 as an independent variable and sample from:

p(z2) = µ2e
−µ2z2 (3.23)

which is the identical probability distribution implied by Equation 3.21.

The importance of this proof is summarized as follows. The interaction of a particle is de-
pendent only on the local scattering conditions. If space is divided up into regions of locally
constant interaction coefficients, then we may sample the distance to an interaction by con-
sidering the space to be uniform in the local interaction coefficient. We sample the distance
to an interaction and transport the particle. If a boundary demarcating a region of space
with different scattering characteristics interrupts the particle transport, we may stop at that
boundary and resample using the new interaction coefficient of the region beyond the bound-
ary. The alternative approach would be to invert the cumulative probability distribution
implied by Equation 3.4, ∫ z

0
dz′µ(z′) = − log(1− r) , (3.24)

where r is a uniform random number between 0 and 1. The interaction distance z would
be determined by summing the interaction coefficient until the equality in Equation 3.24 is
satisfied. In some applications it may be efficient to do the sampling directly according to the
above. In other applications it may be more efficient to resample every time the interaction
coefficient changes. It is simply a trade-off between the between the time taken to index the
look-up table for µ(z) and recalculating the logarithm in a resampling procedure.
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3.4 Obtaining µ from microscopic cross sections

A microscopic cross section is the probability per unit pathlength that a particle interacts
with one scattering center per unit volume. Thus,

σ =
dp

n dz
, (3.25)

where dp is the differential probability of “some event” happening over pathlength dz and
n is the number density of scattering centers that “make the event happen”. The units of
cross section are L2. A special quantity has been defined to measure cross sections, the barn.
It is equal to 10−24 cm2. This definition in terms of areas is essentially a generalization of
the classical concept of “billiard ball” collisions.

Consider a uniform beam of particles with cross sectional area Ab impinging on a target of
thickness dz as depicted in Figure 3.1. The scattering centers all have cross sectional area
σ. The density of scattering centers is n so that there are nAbdz scattering centers in the
beam. Thus, the probability per unit area that there will be an interaction is:

dp =
nAbdzσ

Ab
, (3.26)

which is just the fractional area occupied by the scattering centers. Hence,

dp

dz
= nσ , (3.27)

which is the same expression given in Equation 3.25. While the classical picture is useful for
visualizing the scattering process it is a little problematic in dealing with cross sections that
can be dependent on the incoming particle energy or that can include the notion that the
scattering center may be much larger or smaller than its physical size. The electromagnetic
scattering of charged particles (e.g. electrons) from unshielded charged centers (e.g. bare
nuclei) is an example where the cross section is much larger than the physical size. Much
smaller cross sections occur when the scattering centers are transparent to the incoming par-
ticles. An extreme example of this would be neutrino-nucleon scattering. On the other hand,
neutron-nucleus scattering can be very “billiard ball ” in nature. Under some circumstances
contact has to be made before a scatter takes place.

Another problem arises when one can no longer treat the scattering centers as independent.
Classically this would happen if the targets were squeezed so tightly together that their cross
sectional areas overlapped. Another example would be where groups of targets would act
together collectively to influence the scattering. These phenomena are treated with special
techniques that will not be dealt with directly in this book.

The probability per unit length, dp dz is given a special symbol µ. That is,

µ =
dp

dz
, (3.28)
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Figure to be added later

Figure 3.1: Classical “billiard ball” scattering.
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which we have been discussing in the previous sections.

The cross section, σ can also depend on the energy, E, of the incoming particle. In this case
we may write the cross section differential in energy as σ(E). The symbol σ is reserved for
total cross section. If there is a functional dependence it is assumed to be differential in that
quantity.

Once the particle interacts, the scattered particle can have a different energy, E′ and direc-
tion, Θ,Φ relative to the initial z directions. The cross section can be differential in these
parameters as well. Thus,

σ(E) =
∫
dE′ σ(E,E′) =

∫
dΩσ(E,Θ,Φ) =

∫
dE′

∫
dΩσ(E,E′,Θ,Φ) , (3.29)

relates the cross section to its differential counterparts. The interaction coefficient µ can
have similar differential counterparts.

Now, consider a cross section differential both in scattered energy and angle. We may write
this as:

µ(E,E′,Θ,Φ) = µ(E)p(E,E′,Θ,Φ) , (3.30)

where p(E,E′,Θ,Φ) is a normalized probability distribution function, which describes the
scattering of particle with energy E into energy E′ and angles Θ,Φ. We are now ready to
specify the final ingredients in particle transport.

Given a particle with energy E and cross section σ(E,E′,Θ,Φ):

• Form its interaction coefficient,

µ(E) = n
∫
dE′

∫
dΩσ(E,E′,Θ,Φ) . (3.31)

• Usually the number density n is not tabulated but it can be determined from:

n =
ρ

A
NA . (3.32)

where ρ is the mass density, A is the atomic weight (g/mol) and NA is Avogadro’s
number, the number of atoms per mole (6.0221367(36)× 1023 mol−1) [C. 98]1.

• Assuming µ(E) does not depend on position, provide the distance to the interaction
point employing (now familiar) sampling techniques:

s = − 1

µ(E)
log(1− r) , (3.33)

where r is a uniformly distributed random number between 0 and 1. Provide this s and
execute the transport step  x =  xo +  µs. (Do not confuse the direction cosine vector  µ
with the interaction coefficient µ!)

1The latest listing of physical constants and many more good things are available from the Particle Data
Group’s web page: http://pdg.lbl.gov/pdg.html



3.5. COMPOUNDS AND MIXTURES 53

• Form the marginal probability distribution function in E′:

m(E,E′) =
∫
dΩ p(E,E′,Θ,Φ) , (3.34)

and sample E′.

• Form the conditional probability distribution function in Θ,Φ:

p(E,Θ,Φ|E′) = p(E,E′,Θ,Φ)

m(E,E′)
, (3.35)

sample from it and provide [Θ,Φ] to the rotation mechanism that will obtain the new
direction after the scattering.

3.5 Compounds and mixtures

Often our scattering media are made up of compounds (e.g. water, H2O) or homogeneous
mixtures (e.g. air, made up of nitrogen, oxygen, water vapor and a little bit of Argon). How
do we form interaction coefficients for these?

We can employ Equations 3.27 and 3.28 and extend them to include partial fractions, ni of
atoms each with its own cross section σi:

µ(E) =
∑
i

niσi . (3.36)

Often, however, compounds are specified by fractional weights, wi, the fraction of mass due
to one atomic species compared to the total. From Equation 3.36 and 3.32:

µ(E) =
∑
i

ρ̃i
Ai

NAσi . =
∑
i

ρ̃i

(
µi

ρi

)
= ρ

∑
i

wi

(
µi

ρi

)
, (3.37)

or
µ(E)

ρ
=
∑
i

wi

(
µi

ρi

)
. (3.38)

where ρi is the “normal” density of atomic component i (very often it is µi/ρi, called the
mass attenuation coefficient, that is provided in numerical tabulations), ρ̃i is the “actual”
mass density of the atomic species in the compound, ρ is the mass density of the compound
and the fractional weight of atomic component i in the compound is wi = ρ̃i/ρ.
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3.6 Branching ratios

Sometimes the interaction coefficient represents the compound process:

µ(E) =
∑
i

µi(E) . (3.39)

For example, a photon may interact through the photoelectric, coherent (Rayleigh), inco-
herent (Compton) or pair production processes. Thus, from Equation 3.5 we have:

p(z) =
∑
i

pi(z) =
∑
i

µi(E)e
−zµ(E) =

∑
i

µi(E)ps(z) , (3.40)

where we assume (a non-essential approximation) that the µi(E)’s do not depend on position.
Thus the fractional probability for interaction channel i is:

Pi =
pi(z)

p(z)
=

µi(E)

µ(E)
. (3.41)

In other words, the interaction channel is decided upon the relative attenuation coefficients
at the location of the interaction, not on how the particle arrived at that point.

This is one of the few examples of discrete probability distributions and we emphasize this
by writing an uppercase P for this probability. The sampling of the branching ratio takes
the form of the following recipe:

1. Choose a random number r. If r ≤ µ1(E)/µ(E), interact via interaction channel 1.
Otherwise,

2. if r ≤ [µ1(E) + µ2(E)]/µ(E), interact via interaction channel 2. Otherwise,

3. if r ≤ [µ1(E) + µ2(E) + µ3(E)]/µ(E), interact via interaction channel 3. Other-
wise...and so on.

The sampling must stop because
∑

i µi(E)/µ(E) and a random number must always satisfy
one of the conditions along the way.

Note that this technique can be applied directly to sampling from the individual atomic
species in compounds and mixtures. The fractional probabilities can be calculated according
to the discussion of the last section and the sampling procedure above adopted.

3.7 Other pathlength schemes

For complete generality it should be mentioned that there are other schemes for selecting
pathlengths. We shall see this in the later chapter on electron transport. In many applica-
tions, electron transport steps are provided in a pre-prescribed, non-stochastic way, such as
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the pathlength for which a certain average energy loss would be obtained, or a pathlength
that produces a given amount of angular deflection. Deeper discussion would invoke a long
discussion that we will defer until later, after we have built up all the basic of the Monte
Carlo technique that we will need to solve a broad class of problems.

3.8 Model interactions

In this section we will introduce several model interactions and employ them to study some
basic characteristics of Monte Carlo results.

3.8.1 Isotropic scattering

The scattering of low to medium-energy neutrons (before resonances begin to appear) is
nearly isotropic in the center-of-mass. Therefore the scattering of low to medium-energy
neutrons from heavy nuclei is very nearly isotropic. Isotropic scattering is sampled from the
distribution function:

p(Θ,Φ) dΘdΦ =
1

4π
sinΘdΘdΦ . (3.42)

The sampling procedure is:

cosΘ = 1− 2r1
Φ = 2πr2 (3.43)

where the ri are uniform random numbers between 0 and 1.

3.8.2 Semi-isotropic or P1 scattering

The first order correction to isotropic scattering of low to medium-energy neutrons, a cor-
rection that becomes increasingly important for scattering from lighter nuclei is the semi-
isotropic cross angular distribution:

p(Θ,Φ) dΘdΦ =
1

4π
(1 + a cosΘ) sinΘdΘdΦ |a| ≤ 1 . (3.44)

The sampling procedure is:

cosΘ =
2− a− 4r1

1 +
√
1− a(2− a− 4r1)

Φ = 2πr2 (3.45)

where the ri are uniform random numbers between 0 and 1.
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3.8.3 Rutherfordian scattering

A reasonable approximation to the elastic scattering of charged particles is the Rutherfordian
distribution:

p(Θ,Φ) dΘdΦ =
a(2 + a)

4π

sinΘdΘdΦ

(1− cosΘ + a)2
0 ≤ a < ∞ . (3.46)

The sampling procedure is:

cosΘ = 1− 2a 1− r1
a+ 2r1

Φ = 2πr2 (3.47)

where the ri are uniform random numbers between 0 and 1. An interesting feature f the
Rutherfordian distribution is that it becomes the isotropic distribution in the limit a −→ ∞
and the “no-scattering” distribution δ(1− cosΘ) in the limit a −→ 0.

3.8.4 Rutherfordian scattering—small angle form

One approximation that is made to the Rutherfordian distribution in the limit of small a is
to make the small-angle approximation to Θ as well. The distribution then takes the form:

p(Θ,Φ) dΘdΦ =
2a

π

ΘdΘdΦ

(Θ2 + 2a)2
0 ≤ a < ∞ , 0 ≤ Θ < ∞ . (3.48)

The sampling procedure is:

Θ =

√
2ar

1− r

Φ = 2πr2 (3.49)

If Θ > π is sampled in the first step, it is rejected and the distribution in Θ is resampled.
One also has to take care that the denominator in the √ does not become numerically zero
through some quirk of the random number generator.
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Problems

1. Give a derivation of the sampling procedure in Equation 3.45 for the semi-isotropic
probability distribution given in Equation 3.44 is the isotropic distribution.

2. Prove that the a −→ ∞ limit of the Rutherfordian distribution given in Equation 3.46
is the isotropic distribution.

3. Prove that the a −→ 0 limit of the Rutherfordian distribution is the δ-function
δ(1− cosΘ).

4. Consider the small-angle form of the Rutherfordian distribution:

p(Θ,Φ) dΘdΦ = N
ΘdΘdΦ

(Θ2 + 2a)2
0 ≤ a < ∞ , 0 ≤ Θ < π , (3.50)

where we now exclude the non-physical regime, Θ > π. What is the normalization
factor, N? Develop the sampling procedure for this distribution.



Chapter 4

Macroscopic Radiation Physics

In the chapter, we define the macroscopic field quantities commonly used in radiotherapy
physics and dosimetry.

4.1 Fluence

To start, we introduce the concept of radiation fluence, one of the most fundamental radio-
metric1 quantity.

ϕi( x,E, t) , (4.1)

as a continuous function of 3-space,  x energy, E, and time, t. Whenever the function
dependence of the fluence is necessary for clarity, we shall include it explicitly. The subscript
i denotes a particular particle species, for example, we shall employ i = e− for electrons,
i = e+, or i = γ for photons, but later on. Radiotherapy applications might also employ
similar notation for protons, alphas, heavy ions, or even pions.

We shall more commonly consider Φ to be ϕ integrated over all time, namely:

Φ( x,E) =
∫ +∞

−∞
dt ϕ( x,E, t) , (4.2)

or, when finite time limits are required,

Φ( x,E, ti, tf) =
∫ tf

ti
dt ϕ( x, , E, t) . (4.3)

One quickly notes that complete rigor causes the notation to proliferate. Henceforth, func-
tional dependence will be tacit and assume to be clear from the context, otherwise, the
functional dependence will be shown explicitly.

1A radiometric quantity is a measurement of some aspect of the radiation field.
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Fluence is a measure of the strength of the radiation field. It has two equivalent definitions.
The ICRU definition [ICR80] is as follows. Imagine that a sphere of small (but non-vanishing)
cross sectional area da is impinged upon by (strike the surface from outside the sphere from
any angle) dN particles, of type i. Then,

Φ = lim
da→0

dN

da
. (4.4)

An objection to the definition might be raised at this point. Since the radiation field is
comprised of particles, the only mathematically sensible conclusion is that fluence is ill-
defined!

The practical solution to this conundrum is realized as follows. Imagine that the sphere with
cross section area is large enough so that particles do impinge upon it, and enough time
is allowed so that the number of particles impinging is large, and the variance associated
with that measurement is negligible. Furthermore, imagine that the radiation field has
sufficient spatial uniformity so that the size of the sphere does not matter. Then, the
practical realization of fluence is, dN particles, of type i. Then,

Φ =
〈∆N〉
∆a

. (4.5)

There are circumstances when these conditions do not hold, for very small objects, or very
weak fields, where the variances can not be ignored. This is the domain of microdosimetry,
a very large topic that will not be discussed further. For this discussion, we will assume
that our concept of fluence as a function that can be evaluated at a point, and can be
manipulated with the mechanism of calculus, is valid. Unlike classical mechanics, however,
we are far closer to the quantum limits, and we must always be aware of the limitations of
the definition.

We introduced the concept of spatial uniformity of the radiation field. This will be discussed
more thoroughly later in our discussion of radiation equilibrium. One interesting point to
note, however, is that the ICRU definition, through use of a spherical detection region,
works equally well in isotropic fields and directional fields, which undoubtedly was one of the
motivations for that particular definition. However, it is not clear that this way of measuring
fluence has anything to do with the effect of radiation on matter. How can a particle field
impinging on a test sphere be related, for example, to dose? Chilton’s definition below will
clarify this. Note as well, that Φ has units L−2.

The alternative definition of fluence is attributed to Chilton [Chi78, Chi79],

Φ = lim
dV→0

∑
d l

dV
, (4.6)

where dV is an infinitesimal volume of any shape and
∑
d l is the sum of all the pathlengths

(in some units of length measure) that traverse the interior of dV . The proof of the equiva-
lence for spheres is left to the student. (Problems 1 and 2 at the end of this chapter). This
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is a remarkable result! It also brings a closer connection to the effect of the radiation, as
proportional to the track length of particles through a given volume.

The same mathematical conundrum besets us when taking the limit to small volumes. There-
fore, using the same arguments as before to establish a practical value of fluence using
Chilton’s theorem, leads us to,

Φ =

∑
∆l

∆V
, (4.7)

where
∑
∆l involves enough trajectories to make the variance associated with it negligible,

and the radiation is uniform over the volume, ∆V . It is interesting to note, that Chilton
derived his expression [4.6] based on the common estimate for variance in Monte Carlo
calculations, namely,

Φ̃ =

∑N∆V
i ∆li
∆V

, (4.8)

with it’s associated estimated variance,

σ̃2
Φ̃
=

〈(∑N∆V
i ∆li)

2〉 − 〈∑N∆V
i ∆li〉2

(∆V )2
, (4.9)

where N∆V is the number of particles that entered the volume ∆V .

The integral form of these Chilton’s expression, extended over regions of space where the
irradiation is uniform, and the surfaces may be extended to surfaces of arbitrary shape are,

Φ =

∫
dn

Se
=

∫
dl

V
, (4.10)

where
∫
dn is the number of particles impinging on the outer surface of the volume, Se is the

cross section of the surface exposed to the source, V is the volume of the source, and
∫
dl is

the sum of tracklengths through the source.

In general, tracklength summations in some volume, V , may be calculated analytically using,

∫
dlV =

1

4π

∫
dΩ

∫
S
d S ·  ΩΘ( S ·  Ω)n( xS,  Ω) l( Ω,  ΩS) , (4.11)

where n( xS,  Ω) is the number of particles per unit area with direction  Ω striking the surface

element, d S (that has its normal pointed toward the interior of the volume), Θ() is unity

when its argument is positive and zero otherwise, and l( Ω,  ΩS) is the distance from the
entrance point on the volume to first exit from the volume.

The total number of particle impinging a surface maybe calculated from,

∫
dn =

1

4π

∫
dΩ

∫
S
d S ·  ΩΘ( S ·  Ω)n( xS,  Ω) , (4.12)
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and the cross section of the surface visible to the source, Se, from,

Se( Ω) =
1

4π

∫
dΩ

∫
S
d S ·  ΩΘ( S ·  Ω) , (4.13)

where Ω relates to the angular distribution of the source, as emphasized above.

4.2 Radiation equilibrium

All radiometric quantities measure particle fluence in some fashion, as fluence is the most
fundamental quantity describing a radiation field, from which all others may be derived. The
statement of radiation equilibrium is as follows, assuming we have a fluence measuring device
that may or may not have a directional dependence in a monodirectional field, is sensitive
to only one of the particle species in the radiation field, and is sensitive to only one energy
component, E, of the radiation field . We shall call this detector Di(E,  ΩD). We may also
consider that there may be an externally defined constant vector (gravity, magnetic field,
electric field, some aspect of the source) that provides a coordinate system orientation for

the detector’s  ΩD.

A region of space, V , is considered to be in a state of radiation equilibrium with respect to
particle species i, if that radiation field is constant in time, and any measurement of Φ( x,E)
is invariant with respect to translations of the detector from  x to  x′ within V . In this case
we conclude that Φ( x,E) = Φ(E) within V .

A second statement is required for isotropic radiation.

A region of space, V , is considered to be in a state of isotropic radiation equilibrium with
respect to particle species i, if that radiation field is constant in time, and any measurement
of Φ( x,E) is invariant with respect to translations of the detector from  x to  x′ within V

and invariant with respect to rotations of the detector,  ΩD →  Ω′D in V , providing that the
detector response is uniform with respect to externally defined directions (gravity, electric
and magnetic fields). In this case we conclude that Φ( x,E) = Φ(E) within V , and that the
source is isotropic.

The consequences of radiation equilibrium are central to radiation dosimetry. Consider the
first case, where the radiation field has a direction associated with it, but the detector is
insensitive to it’s orientation within this fields. This idealization is closely approximated
by good radiation detectors. Let us imagine that we have such an ideal detector, and it is
spherical in shape, clearly insensitive to direction. Moreover, the size of this detector, so
long that is fits in V always measures the same fluence. Now, take an arbitrarily-shaped
detector, still that fits in V . Form this arbitrary shape from spherical detectors of smaller
and smaller size, so that in the limit, the volume of this aggregation of spheres equals the
volume of the arbitrarily-shaped detector and the shape is the same in the limit of small
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spheres. (See Figure 4.1.) Each one of these spheres measures the same fluence, and hence,
so the the arbitrarily shaped one. The conclusion is that an ideal detector is independent of
its shape and orientation in a radiation field that is in equilibrium.

Remarkably, conditions of near particle equilibrium and near ideal detectors do exist in ra-
diation physics and enable accurate dosimetry to be done without excessive concern about
exact detector positioning and orientation. (They still are, however, important.) Real de-
tectors are prone to positioning and orientation differences. Thankfully, they are minimized
so long as the radiation fields are near equilibrium.

Finally, sources that produce uniform fields maybe be realized by several means, first as
mathematical ideals, and nearly, as physical constructs. An isotropic source may be produced
at the center of a very large sphere with a uniform surface source, or uniform volume source
(R � ∆a). A monodirectional source may be produced by a point source moved a very long
distance away from the detector (D � ∆a). A uniform source with angular dependence
may be produced by a very large plane source (D � ∆a), of some uniform thickness with
a source distributed through its volume. Self-shielding will cause an angular dependence in
this case.

4.2.1 Planar fluence

Planar fluence is often confused with fluence. Therefore it is important to clarify that point
now. Planar fluence is the number of particles that strike a surface irrespective of direction.
It may be calculated using the fluence from the relation,

ϕi( x,E, t) =
1

4π

∫
dΩ


dni( x,  Ω, E, t)

| Ω ·  nS|


 , (4.14)

where  nS is the inward normal to the surface. Often, one is interested in separating the
planar fluence based on its orientation with respect to the surface. In this case, we write,

dni( x,  Ω, E, t) = dn+i ( x,  Ω, E, t) + dn−i ( x,  Ω, E, t) , (4.15)

for the ingoing and outgoing parts.

This planar fluence is also sometimes called the total scalar flux. It is also possible to define
the net scalar flux as,

dni( x,  Ω, E, t) = dn+i ( x,  Ω, E, t)− dn−i ( x,  Ω, E, t) . (4.16)

It is important to note that planar fluence and fluence are fundamentally different. Fluence is
a point function defined as a volumetric quantity, even in the limit that this volume is made
vanishingly small. The ICRU definition obscures this fact, which is probably the source of
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Figure to be added later

Figure 4.1: An ideal detector of arbitrary shape may be made of up small spherical ideal
detectors.
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confusion, but Chilton’s definition makes it clear. Planar fluence is a surface-related quantity,
and embeds within it, information about the source. This is best illustrated by an example.

Consider a uniform, monodirectional fluence, Φ and a right cylindrical detector with radius
a and depth d. The integrated inward flux of the detector and the fluence are related by,

Φ =
n(θ)

πa(a cos θ + d| sin θ|) , (4.17)

where n(θ) is the number of particles measured with orientation θ, θ is the angle the normal
the flat face of the detector with respect to the incident fluence direction. Thus, a mea-
surement of planar fluence can yield the value of the fluence. Equation (4.17) appears to
be singular in the limit d → 0, θ → π/2. However, in this limit, n → 0 as well. Φ really is
a well-defined number in this context, and it is a constant in this example, independent of
orientation.

4.3 Fluence-related radiometric quantities

4.3.1 Energy fluence

Just as fluence provides a sensible measure of the intensity of a radiation field, the energy
fluence provides a way of measuring the ability of the radiation field to effect change, assum-
ing that that change is proportional to the energy in the radiation field. The energy fluence
is defined as,

ψi( x,E, t) = Eϕi( x,E, t) . (4.18)

Generally, we will be investigating time and energy integrated energy fluences, such as,

Ψ(E, ti, tf) =
∫ tf

ti
dt Eϕ(E, t) , (4.19)

Ψ(E) =
∫ ∞
−∞

dt Eϕ(E, t) , (4.20)

Ψ(Ei, Ef) =
∫ Ef

Ei

dE ϕ(E) , (4.21)

Ψ =
∫ ∞
−∞

dE ϕ(E) . (4.22)

Note that only for the case where the field is monochromatic, may we write an expression
like

Ψ = E0Φ(E0) . (4.23)
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4.4 Attenuation, radiological pathlength

We start by considering the classical derivation of the attenuation law.

Imagine a monoenergetic, monodirectional beam of particles aligned with the ẑ-axis, with
energy E, with infinitesimal cross sectional area dB impinging normally on a semi-infinite
plane of matter. The matter is composed homogeneously of identical “scattering centers”
with cross sectional area σ(E). At some depth x, the probability of a single particle in the
beam interacting with one of the scattering centers is:

dp = ns( x)(dBdz)
(

σ

dB

)
, (4.24)

where ns(x) is the density of scatterers (units: L
−3), ns(x)dBdx is the number of scatterers

in dBdx, and σ/B is the fractional area covered by the scatterers. Assuming, for the time
being, that the scatterers are atomic centers, we may write,

dp = ρ( x)
NA

A
σdz , (4.25)

where ρ( x) is the mass density (units: ML−3), NA is Avogadro’s number (6.023×1023(mole−1)
and A is the atomic mass (units: M-mole−1). Therefore, the change in primary fluence is
described by,

dΦ0( x) = −Φ0( x)µρ( x)dz , (4.26)

where

µ =
NA

A
σ , (4.27)

µ is the mass linear attenuation coefficient (units: L2/M). It is a function of the particle
energy. It is usually a constant in space unless the atomic composition of the medium
changes. The mass linear attenuation coefficient or macroscopic cross section is

Σ( x) = ρ( x)µ , (4.28)

is sometimes used, but is proportional to the density. We mention it here for convenience,
but shall rarely use it.

The integral in expression 4.27 is elementary, yielding,

Φ0( x,E) = Φ0( x; z = 0, E) exp
(
−
∫ z

0
dz µ(E)ρ(x, y, z′)

)
. (4.29)
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The factor,

∫ z

0
dz µ(E)ρ(x, y, z′) , (4.30)

is called the radiological path.

We often consider the case where the density of the material is a constant. In this case, the
above simplifies to:

Φ0( x,E) = Φ0( x; z = 0, E)e
−µ(E)ρz , (4.31)

the most familiar form of the exponential attenuation “law”.

4.4.1 Solid angle subtended by a surface

We shall have need for this type of calculation shortly, and establish the notation now.

Consider a surface S, a surface element dS at  xS, and its unit normal n̂( xS). The solid angle
element of that surface element

dΩ = dS
|n̂( xS) · ( x−  xS)|

| x−  xS|3
, (4.32)

which is just the surface element, divided by the r−2 term, times the magnitude of the cosine
of the angle between n̂ and the vector  x−  xS.

The total solid angle of the surface with respect to the point  x is:

ΩS =
∫
Sv

dS
|n̂( xS) · ( x−  xS)|

| x−  xS|3
, (4.33)

where the integral only includes surface elements that are visible to point  x.

Clearly, the solid angle of any closed surface enclosing  x is 4π. Also, for closed surfaces,
whether or not  x is located inside the surface, we can relax the visibility criterion, and
integrate over the entire surface, as follows.

ΩS =

∣∣∣∣∣
∫
S
dS

n̂( xS) · ( x−  xS)

| x−  xS|3

∣∣∣∣∣ . (4.34)

The absolute value is required because the direction of n̂ is arbitrary.
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4.4.2 Primary fluence determinations

Distributed volumetric source

Consider an elemental volumetric source, in vacuum, of radiation emitting particles with
energy E at a rate ṅ( x′,  Ω, E, t)d x′. A measurement of fluence at  x is,

dϕi( x,E, t) =
1

4π

ṅ( x′,  Ω�x−�x′, E, t)d x′

( x−  x′)2
exp

(
−
∫ �x

�x′
dl µ(E, l)ρ(l)

)
, (4.35)

where the integral over l is the straight-line path from the source element to the point of
fluence measurement, and accounts for attenuation. Note that both the material composition
and the density of the medium can vary along this path.

Integrating over the source gives

ϕi( x,E, t) =
1

4π

∫
V

ṅ( x′,  Ω�x−�x′, E, t)d x′

( x−  x′)2
exp

(
−
∫ �x

�x′
dl µ(E, l)ρ(l)

)
. (4.36)

A common example is for a fluence measurement at  x = 0, due to a point, isotropic, mo-
noenergetic source, constant in time, with uniform intervening medium, for which the result
is:

Φ(E) = n0
e−µ(E)ρr

4πr2
. (4.37)

4.4.3 Volumetric symmetry

The result of the previous section may be used to illustrate an interesting symmetry. Imagine
that a measurement, M , involves an integral over the volume of a detector, and the response
function of the detector R(E). The measurement is expressed as follows,

MD←S(E) =
∫
D
d xΦi( x,E)R(E) =

1

4π

∫
D
d x
∫
S

n( Ω|�x−�x′|, E)d x
′

( x−  x′)2
exp

(
−
∫ �x

�x′
dl µ(E, l)ρ(l)

)
,

(4.38)

where the subscripts D and S refer to the detector and source regions respectfully, and the
source is homogeneous and has the symmetry, n( Ω�x−�x′, E) = n( Ω|�x−�x′|, E). This is the case
for isotropic sources, and can be arranged for directional sources.

Note that

MD←S(E) =MS←D(E) , (4.39)
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under conditions where the material making up the detector is the same as the source, and
the source has the above reflection symmetry.

Therefore, under these conditions, the response of the detector to primary fluence in volume
D due to source at S is the same as if the source occupied region D and the detector occupied
region S.

Simpler “geometry symmetry” relations may be derived from equation 4.38 directly.

4.5 Fano’s theorem

Consider the time-independent transport equation in a uniform medium,

 Ω· ∇n( x,  Ω, E)+Σ( x,E)n( x,  Ω, E) = S( x,  Ω, E)+
∫ ∞
0
dE′

∫
4π
dΩ′Σs( x,E

′ → E,  Ω· Ω′)n( x,  Ω′, E′) ,
(4.40)

where n( x,  Ω, E) is the total scalar flux, Σ( x,E) is the “out-scattering” macroscopic cross sec-

tion (“out in the sense of out from (E,  Ω) to a different energy and/or direction, Σs( x,E
′ →

E,  Ω·) is the “in-scattering” macroscopic cross section (“in” in the sense of from (E′,  Ω′)

to (E,  Ω), and S( x,  Ω, E) is the source. Assume that the local density, ρ( x) is everywhere
non-zero, and that Σ, Σs, and S are proportional to the local ρ. That is,

Σ( x,  Ω, E) = ρ( x)µ( Ω, E)

Σs( x,E
′ → E,  Ω ·  Ω′) = ρ( x)µs(E

′ → E,  Ω ·  Ω′)
S( x,  Ω, E) = ρ( x)s( Ω, E) (4.41)

(The macroscopic usually are unless the atomic composition changes. We are making an
assumption about the source, in this case.) Divide by the local density to give,

 Ω ·  ∇n( x,  Ω, E)

ρ( x)
+µ(E)n( x,  Ω, E) = s( Ω, E)+

∫ ∞
0
dE′

∫
4π
dΩ′ µs(E

′ → E,  Ω ·  Ω′)n( x,  Ω′, E′) .
(4.42)

Now consider the tentative solution for the total scalar flux,

µ(E)n0( Ω, E) = s( Ω, E) +
∫ ∞
0
dE′

∫
4π
dΩ′ µs(E

′ → E,  Ω ·  Ω′)n0( Ω′, E′) , (4.43)

with the same µ(E), µs(E
′ → E,  Ω ·  Ω′), and s( Ω, E).
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Since there should be a unique solution to the transport equation, this solution, independent
of  x is also a solution to the space-dependent equation 4.42. Therefore, invoking this property
of uniqueness, we may identify n( x,  Ω, E) in equation 4.42 with n0( Ω, E) in equation 4.43.

Therefore, under the conditions specified by expressions 4.41,

 ∇n( x,  Ω, E) = 0 . (4.44)

In other words, if the macroscopic cross sections and the source are proportional to density,
the total scalar flux is independent of  x, irrespective of how the density changes. In addition,
since fluence may be derived from total scalar flux via equation 4.14.

This is a powerful result and, along with the concept of radiation equilibrium has far-reaching
consequences for radiation dosimetry. It has already been argued that if radiation equilibrium
exists in some volume of space, measurements become insensitive to position of the detector.
Now, we find that under these conditions, the density of the medium may change arbitrarily,
so long as the source and scattering physics are proportional to density. Again, we shall find
that conditions of radiation equilibrium are not uncommon in our applications. Therefore,
as we shall see shortly, we we wish to determine the dose to water (for example) in a region of
near equilibrium, we may use a detector of any density, so long as the atomic composition is
the same. Air-filled ionization chambers are such a device. It is truly remarkable that we may
take an ionization chamber measurement in water and measure the dose to within an accuracy
of a few percent. The few-percent departures account for departures from equilibrium and
atomic composition, and may be calculated or measured to within an accuracy of a percent
or so with good confidence. (We shall discuss this topic in detail later.) Were this not the
case, the entire field of radiation dosimetry, that requires accuracy to within a percent or
so for medical physics purposes, would be on very shaky ground. Fortunately, dosimetry
methods are very robust, and obtaining sufficient accuracy is always possible in the field
with enough care and practice.
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Problems

1. (a) What is the definition of fluence?

(b) What is the definition of planar fluence?

(c) What does Chilton’s theorem on fluence state?

(d) A monodirectional photon beam characterized by N photons/cm2 is incident nor-
mally on a cylindrical disk with radius a and depth L. Ignoring interactions in
this disk, what is the photon fluence within it? If the disk were rotated Θ degrees
with respect to the beam, what would the photon fluence within it be?

(e) If only the primary photons were allowed to interact in the disk above, qualita-
tively explain what would the primary photon fluence as a function of Θ would
be.

2. A fluence, differential in energy E has the form

ϕ(E) =
A

E
Emin ≤ E ≤ Emax

and zero everywhere else.

(a) What is the total fluence? Hint: Φ =
∫
dE ϕ(E) over the appropriate limits.

(b) What is the energy fluence, differential in energy?

(c) What is the total energy fluence?

3. A fluence, differential in energy E has the form

ϕ(E) =
A

E2
Emin ≤ E ≤ Emax

and zero everywhere else. A is a constant.

(a) What is the total fluence? Hint: Φ =
∫
dE ϕ(E) over the appropriate limits.

(b) What is the energy fluence, differential in energy?

(c) What is the total energy fluence?

4. Assume that a fluence, Φ, is uniform in space and that the radiation is monodirectional.
A perfect fluence detector (one that responds equally to all fluence at any energy
with the same reading), comprised of a right circular cylinder, is employed to take
measurements.

(a) If the detector is placed such that its axis is in the same direction as the beam,
what track length per unit volume does it measure?
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(b) If the detector is placed such that its axis is perpendicular to the direction of the
beam, what track length per unit volume does it measure?

(c) If the detector is placed such that its axis is 45◦ to the direction of the beam,
what track length per unit volume does it measure?

5. A perfect planar fluence detector, in the shape of a right circular cylinder, is employed
to take measurements in the same radiation field as the above. A perfect planar fluence
detector counts the number of particles that strike its surface.

(a) If the detector is placed such that its axis is in the same direction of the beam,
how many particles does it detect?

(b) If the detector is placed such that its axis is perpendicular to the direction of the
beam, how many particles does it detect?

(c) If the detector is placed such that its axis is 45◦ to the direction of the beam, how
many particles does it detect?

6. A small isotropically radiating source is situated at point A in vacuum. The rate of
particles emanating from the source is constant per unit time. The center of a detector
with the shape of a thin disk (diameter � length) is situated at point B, a flat side
facing the source. The detector is so thin that it perturbs negligibly the radiation field.

(a) As a function of distance, what is the relative number of source particles per unit
time that strike the disk’s surface?

(b) As a function of distance, what is the relative fluence rate of source particles
within the detector? A practical realization of fluence is “track length per unit
volume”.

(c) At large distances, what is the ratio fluence rate to the number of particles per
unit time that impinge the surface of the detector.

(d) Sketch the ratio of the fluence rate to the number that strike the detector surface
per unit time normalized to unity at large distances.

7. Consider a spherical volume in vacuum with radius R impinged upon by a monodi-
rectional field of particles with incident fluence Φ0. Starting with expression [4.11]
calculate explicitly

∫
d l. Draw a conclusion regarding the consistency of Chilton’s

definition of fluence yields and the ICRU definition for finite volumes.

8. Consider a spherical volume in vacuum with radius R impinged upon by an isotropic
field of particles with incident fluence Φ0. Calculate Starting with expression [4.11]
calculate explicitly

∫
d l. Draw a conclusion regarding the consistency of Chilton’s

definition of fluence yields and the ICRU definition for finite volumes.
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9. (a) As a function of z, what is the fluence inside and outside an infinite plane (in the
lateral sense) at z = Z, of thickness t with a uniform volume source source that
has a constant attenuation factor Σ? What happens when z → Z and t → 0?

(b) An infinitely thin uniform line source of radiation is situated at  x = ([−L →
L], 0, D). What is the primary fluence in vacuum at  x = (0, 0, 0), with and
without attenuation?

(c) An infinitely thin uniform disk source of radiation is situated at  x = (| ρ| ≤
a,D). What is the primary fluence in vacuum at  x = (0, 0, 0), with and without
attenuation?

10. A radioactive monoenergetic source of photons is sprayed uniformly on a thin spherical
shell, with an areal decay rate ṅ0 [1/(L

2T )]. In the following, derive all your results,
show your work and discuss the results.

(a) Assume the shell is infinitely thin, and is filled inside and outside with vacuum.
The shell has radius R. As a function of r, the distance from the center, what is
the fluence rate ϕ̇(r) for 0 ≤ r < ∞?

(b) Under the assumptions stated in (a), what is ϕ̇(0)?

(c) Under the assumptions stated in (a), what is the leading order asymptotic behav-
ior of ϕ̇(r) in the limit r � R? From your expression, what can you conclude?

(d) Now assume that the sphere is filled with material of uniform density, rho, and
atomic composition, characterized by a mass linear attenuation coefficient, µ,
which attenuates the photons and does not cause any scattered radiation of any
kind. Show that the fluence rate inside the sphere is given by:

ϕ̇(r) =
ṅ0
2x

∫ 1+x

1−x
dν

e−εν

ν
,

where x = r/R, and ε = µρR.

(e) Under conditions (d), show that the fluence rate outside the sphere may be ex-
pressed as:

ϕ̇(r) =
ṅ0
2x

[
1

2
log

(
x+ 1

x− 1

)
+
∫ x+1

√
x2−1

dν
e−εl(x,ν)

ν

]
,

where l(x, ν) = (1 + ν2 − x2)/ν.

(f) Take the limit ε → ∞ in (e) and discuss your result.

(g) Obtain the leading order behavior in x for (f). Interpret your result.

11. Consider an isotropically radiating source of radiation at point A. An observer is at
point B, some distance away from A. The observer wants to make it to location C
with as little exposure as possible to the radiation.
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• Points A, B, C form an equilateral triangle.

• The observer can only move at constant velocity.
• The dimensions of the observer and the source are very small compared to the
distance between A and B.

The observer considers two possible paths:

Path 1 A straight-line path between B and C.

Path 2 A circular path between B and C with the center of the circle situated at
point A.

Ignoring air scatter or scatter from the ground,

(a) Which is the better path to take?

(b) What is the ratio of the exposure of Path 1 to Path 2?

(c) It turns out that neither of the above paths is the optimum solution to this
problem. What is the best path to take? Hint: A technique called “Calculus of
Variations” may be used to solve this problem efficiently.

12. A dirty bomb is a conventional explosive packed with radioactive material. Dirty
bombs are nasty, anti-social things.

(a) The full calculation

Compute the fluence at point (x, y) = (L, 0) from a dirty bomb (you may consider
it to be a point source) launched with velocity v at angle θ0 with respect the the
ground. v is large so that we may approximate the trajectory of the projectile as
y = x tan θ0, 0 ≤ x ≤ ∞. The motion takes place entirely in the x − y plane.
The activity (photons/second) of the source is Ṅ0 and is made up entirely of mo-
noenergetic photons. Account for attenuation through the attenuation constant
µ and scatter using a build-up factor. The buildup factor is discussed starting on
page 53 of Attix.

The resulting integral can not be performed analytically. Leave your calculation
in integral form.

(b) An approximate calculation

Now, ignore attenuation and scatter. Perform the integral. You might find the
following expression useful:

∫ z1

z0
dz

1

z2 + 1
= arctan z1 − arctan z0

Discuss the following:
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i. v −→ 0, v −→ ∞
ii. L −→ 0, L −→ ∞
iii. θ0 −→ 0, θ0 = π/2



Chapter 5

Photon dose calculation models

5.1 Kerma, collision kerma, and dose for photo irradi-

ation

5.1.1 Kerma

Now we specialize to the case where the incident particle field is comprised of photons, and
consider energy deposition in a medium.

Consider a volume, V , in space comprised of some medium, where a photon with energy
Eγ , interacts, and transfers energy to charged particles. The interactions that cause charged
particles to be set into motion occur via three mechanisms: 1) the Compton or incoherent
interaction, 2) pair (including triplet and higher order) production, and 3) the photoelectric
effect. Figure 5.1 illustrates this. Each of these interactions is governed by its own mi-
croscopic cross section, and the individual mass attenuation coefficients are called µinc(Eγ),
µpp(Eγ), and µph(Eγ), respectfully. Since Rayleigh (coherent) scattering does not set charged
particles into motion, we ignore it in this discussion. In this figure we ignore all secondary
interactions, except for the annihilation of the positron in the case of pair production and the
corresponding annihilation quanta. The relative proportions of the primary photon interact-
ing via one of these interaction channels (branching rations) are given by µinc(Eγ)/µ(Eγ) for
the incoherent interaction, µpp(Eγ)/µ(Eγ) for pair production, and µph(Eγ)/µ(Eγ) for the
photoelectric interaction, where µ(Eγ) = µinc(Eγ) + µpp(Eγ) + µph(Eγ).

In the kerma approximation, we imagine that the volume shrinks to a point, but on its
way to collapse at this point, the primary charged particle tracks, and all their daughter
particles (δ-rays, and bremsstrahlung γ’s), except for the annihilation quanta and Compton
scattered photon from the primary interaction, are trapped within V , as depicted in Figure
5.2. These charged particles have some kinetic energy associated with them, and that energy
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Figure to be added later

Figure 5.1: Idealizations of photons interacting in matter, employed to construct the Kerma.
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Figure to be added later

Figure 5.2: Trapping the primary charged particles within a small volume to illustrate Kerma.
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is “trapped” inside V . The Kerma is defined as the ratio of the kinetic energy of the primary
electrons trapped in this way, less the energy of the annihilation quanta that arise from the
annihilation of the positrons within V , with one of the electrons in an atomic shell of one of
the constituent atoms in V .

The mass energy transfer coefficient for each interaction channel is calculated according to,

µtr(Eγ) =
µ(Eγ)

Eγ

∫ ∞
0
dEkin

e± Ekin
e± σ̃(Eγ, E

kin
e± ) , (5.1)

where σ̃() is the microscopic cross section that is normalized according to,

σ̃(Eγ , E
kin
e± ) = σ(Eγ , E

kin
e± )

/(∫ ∞
0
dEkin

e± σ(Eγ, E
kin
e± )

)
. (5.2)

Expression 5.1 is somewhat symbolic. However, it is meant to define the ratio of kinetic
energy that goes into the primary charged particle(s) to the kinetic energy of the primary
photon. Tables of µtr(Eγ) may be found in standard reference texts, for example, Attix’s
book [ [Att86]].

Finally, we may state the definition of Kerma,

K( x) =
∫ Emax

γ

0
dEγ Φ( x,Eγ)Eγµtr(Eγ) , (5.3)

An alternative microscopic form for K is,

K( x) = lim
∆V→0

〈∆ε0kin〉
ρ( x)∆V

, (5.4)

where 〈∆ε0kin〉 is the expectation value of the kinetic energy of primary charged particles set
in motion in ∆V . Note that K has units E-M−1.

5.1.2 Collision Kerma

If one were more faithful to the physics, and allowed the primary electron to generate δ-
rays, and also allowed all charged particles to create bremsstrahlung, we could imagine this
process to look somewhat like the idealized version shown in Figure 5.3. This time, allow
V to shrink. However, the shrinking traps all charged particles, and allows all photons to
escape, as seen in Figure 5.4. This concept is intended to separate local deposition of energy,
ionizations and excitations by charged particles, from non-local energy transport, carried
away by photons.
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Figure to be added later

Figure 5.3: Idealizations of photons interacting in matter, employed to construct the collision
Kerma.
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Figure to be added later

Figure 5.4: Trapping all the charged particles within a small volume to illustrate collision
Kerma.
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This fraction of energy carried away by secondary photons is characterized by the mass
energy absorption coefficient µen(Eγ) and allows us to define the collision Kerma,

Kc( x) =
∫ Emax

γ

0
dEγ Φ( x,Eγ)µen(Eγ) , (5.5)

An alternative microscopic form for K is,

Kc( x) = lim
∆V→0

〈∆εkin〉
ρ( x)∆V

, (5.6)

where 〈∆εkin〉 is the expectation value of the energy of ionizations and excitations caused by
charged particles set in motion in ∆V . Note that µen(Eγ) < µtr(Eγ), hence, Kc( x) < Kc( x).
Tables of µen(Eγ) may be found in standard reference texts, for example, Attix’s book [
[Att86]]. It should be mentioned that µen(Eγ) can be estimated analytically by integrating
the bremsstrahlung and annihilation cross sections as a function of electron or positron
energy. However, this neglects the small component of bremsstrahlung that arises from δ-
rays. One can appeal to Monte Carlo calculations to provide the small corrections necessary.

5.1.3 Dose

Finally, we get to dose. Consider Figure 5.5, that illustrates the definition of dose. Dose is
only defined as follows,

D( x) = lim
∆V→0

〈∆εrin −∆εrout〉
ρ( x)∆V

, (5.7)

where ∆εrin is the total kinetic energy of all particles entering ∆V and ∆εrout is the total kinetic
energy of all particles leaving ∆V . Thus, although the charged particles are generated within
∆V , and may be transported in the vicinity of ∆V , they are allowed to leave. The energy left
behind goes into ionizations and excitations, and these effect radiological change. Moreover,
the effects of electron transport are incorporated. These are important, particularly at higher
energies where the electrons may transport a large distance (in terms of the underlying
structures) away from their point of generation.

Thus we see how collision Kerma and Kerma are approximations to dose, the first ignoring
electron transport, and the second ignoring non-local deposition do to radiant photons.
Under certain situations, collision Kerma may be a good approximation if there exists a
state of charged particle equilibrium. This sometimes occurs, but never in cases where there
is a strong charged particle disequilibrium. Without getting into details of electron transport,
we may illustrated some of these concepts using idealized thought experiments.
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Figure to be added later

Figure 5.5: Idealizations of photons interacting in matter, employed to construct the dose.
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5.1.4 Comparison of dose deposition models

Let us construct a fictitious medium that allows primary photons to interact with it, but
then by some mysterious process, regenerates the primary photon at the point of interaction
with the original energy and direction1. Given this artifice, we may sketch the behavior with
depth, of K0( ρ, z), K0

c ( ρ, z) and D0( ρ, z), due to a beam of monoenergetic (E0) photons,
with intensity Φ0 incident normally at the surface (0 ≤  ρ ≤ RB), and monodirectionally

( Ω = ẑ) on a semi-infinite plane (0 ≤  ρ < ∞, z > 0) of this fictitious material. Everywhere
else, there is vacuum. (We are only considering dose due to primary photons.)

By construction, K0 and K0
c are constants inside the “tube” defined by the beam. So, in

this example,

K0( ρ, z) = Θ(RB − | ρ|)Ψ0µtr(E0)

,

and

K0
c ( ρ, z) = Θ(RB − | ρ|)Ψ0µen(E0). .

To sketch D0( ρ, z) we need only introduce the barest of details of electron transport, namely,
1) electrons have a finite range, that we’ll call Re, 2) because of multiple scattering, electron
transport is ergodic within a sphere of radius Re i.e. will visit the entire sphere given enough
electrons starting at its center), and 3) the electron transport is somewhat forward directed
within this sphere. Given this knowledge we may sketch qualitatively the 3 quantities in
question. This is done in Figure 5.6. In this example, we have considered that Re < RB,
and shown the central axis dose, and two lateral profiles, one where z < Re and one where
z > Re.

We note the following features. K0 and K0
c are constants within the tube of the beam and

zero everywhere else. K0 > K0
c within the tune of the beam. D(| ρ|, 0) is non-zero at the

surface of the material, because electrons can transport backwards (via multiple scattering)
from their point of generation.

• D(| ρ| < RB −Re, z ≥ Re) = K0
c (| ρ| < RB −Re, z ≥ Re).

• D(| ρ| < RB +Re, z > 0) is non-zero, and zero elsewhere.

• D(RB −Re ≤ | ρ| ≤ RB +Re, z ≥ Re) falls monotonically to zero at | ρ| = RB +Re and
equals K0

c at | ρ| = RB −Re.

1A purist might object to out violation of physical laws to illustrate a pedagogical point at the juncture.
Certainly such a material does not exist in reality. However, it is very easy to do so in a Monte Carlo
calculation, or in theory. Moreover, we shall use exactly such a construct later on in our development of
ionization chamber theory.
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Figure to be added later

Figure 5.6: K0( ρ, z), K0
c ( ρ, z) and D0( ρ, z) for our model problem.
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• D(| ρ| < RB −Re, z < Re) < K0
c there.

• D(RB −Re ≤ | ρ| ≤ RB +Re, z < Re) falls monotonically zero at | ρ| = RB +Re.

Thus, we see by construct, we have formed a zone of radiation equilibrium within the coor-
dinates (| ρ| < RB −Re, z ≥ Re) for which we may easily predict the dose from the collision
kerma. In this zone, we may also vary the density of the medium arbitrarily and still calcu-
late the same dose! Such is the power of the results of Fano’s theorem combined with the
concept of radiation equilibrium!

The zone (RB − Re ≤ | ρ| < RB − Re, z ≥ 0) is the region of strong electron disequilibrium.
Without further insight we can only be qualitative. The zone (| ρ| < RB −Re, z ≥ 0) has no
dose because electrons can not reach there. The zone (z < 0) has no dose because there is
no material there to deposit in.

5.1.5 Transient charged particle equilibrium

The previous section bent the laws of physics to illustrate the power of radiation equilibrium.
Even when we allow for primary beam attenuation, however, we are close to this idealization.
Consider the same beam, but now, allow the medium to attenuate the primary photons. Now,
K0 and K0

c are no longer constants inside the “tube” defined by the beam. However, we
may still calculate them easily. In this example,

K0( ρ, z) = Θ(RB − | ρ|)Ψ0µtr(E0) exp[−µ(E0)ρ( x)z] ,

and

K0
c ( ρ, z) = Θ(RB − | ρ|)Ψ0µen(E0) exp[−µ(E0)ρ( x)z] .

The same considerations with respect to electron transport apply, and we may draw the
following conclusions:

• D(| ρ| < RB −Re, z ≥ Re) > K0
c (| ρ| < RB −Re, z ≥ Re), but only slightly.

• D(| ρ| < RB +Re, z > 0) is non-zero, and zero elsewhere.

• D(RB −Re ≤ | ρ| ≤ RB +Re, z ≥ Re) falls monotonically to zero at | ρ| = RB +Re and
equals it’s equilibrium value, slightly greater than K0

c at | ρ| = RB −Re.

• D(| ρ| < RB−Re, z < Re) < K0
c there. (It can be slightly greater at z = Re, depending

on the model of electron transport.)
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Figure to be added later

Figure 5.7: K0( ρ, z), K0
c ( ρ, z) and D0( ρ, z) for our more realistic model.
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• D(RB −Re ≤ | ρ| ≤ RB +Re, z < Re) falls monotonically zero at | ρ| = RB +Re.

These results are illustrated in Figure 5.7.

The region forms a zone of transient charged particle equilibrium (TCPE) within the coor-
dinates (| ρ| < RB −Re, z ≥ Re) for which we may easily predict the dose from the collision
kerma, plus a small correction. In this zone, we may also vary the density of the medium
arbitrarily and still calculate nearly the same dose! Generally the perturbations by the den-
sity variations is quite small owing to the fact that Re � µ−1. Hence, the intensity of the
primary photon fluence varies very little over distances characteristic of electron transport.

The small correction factor arises because the electrons are produced (on average) up-
stream from where they deposit dose. The attenuation is less then, hence the correction
factor is greater than unity, but only slightly. This correction factor is often quoted as
exp(µ(E0)〈zdrift〉 >, for monoenergetic beams. This is really an approximation and depends
on the electron transport model. We shall have more to say on this topic after we cover the
basics of electron transport.

5.1.6 Dose due to scattered photons

We return to out general expression for dose in the collision Kerma approximation, expressed
by Equation 5.5, however, we now split off the primary photon fluence from all other photon
fluences, that arise from scattering process. That is,

Kc( x) = K0
c ( x) +Ks

c ( x) = K0
c ( x) +

∫ Emax
s

0
dEsΦs( x,Es)µen(Es) . (5.8)

In order to calculate Φs( x,Es), we start with a fluence of primary photons on a surface S,
Φ0( xS, Eγ). We assume that the photon fluence arising from an interaction of the primary
photon at  x′ is given generically by a function of the form,

Φs( x,Es;  x
′, Eγ) =

f(Eγ, Es, cos θ�x′,�x−�x′)

4π| x−  x′|2 exp

(
−
∫ |�x−�x′|

0
dlρ( l)µ( l, Es)

)
, (5.9)

in other words, a function of the distance from the interaction, the energy of the photon that
set the scattered photon into motion, and the angle between the initiating photon direction
and vector from that point to  x,

cos θ�x′,�x−�x′ =
 x′ · ( x−  x′)

| x′|| x−  x′| .

and the radiological path and attenuation from the interaction point.
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The number of a primary photons with energy Eγ starting at  xS and interacting at  x
′ is,

n( x′, Eγ)d x
′dEγ = Φ0( xS, Eγ)ρ( x

′)µ(Eγ)d x
′dEγ exp

(
−
∫ |�x′−�xS |

0
dlρ( l)µ( l, Eγ)

)
, (5.10)

accounting for the attenuation via the radiological path, and an incident photon fluence that
is differential in energy.

Therefore,

Ks( x) =
∫
d x′

∫ ∞
0
dEγn( x

′, Eγ)
∫ ∞
0
dEsΦe( x,Es;  x

′, Eγ)Esµen(Es) , (5.11)

which also may be written,

Ks( x) =
∫
d x′ ρ( x′)

∫ ∞
0
dEγKc( x

′, Eγ)
1

〈Ee(Eγ)〉

∫ ∞
0
dEsΦs( x,Es;  x

′, Eγ)Esµen(Es) , (5.12)

where 〈Ee(Eγ)〉 is the mean energy deposited by an electron and its δ-rays set in motion by
a photon with energy Eγ.
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Problems

There are no problems made up for this chapter yet.



Chapter 6

Electron dose calculation models

6.1 The microscopic picture of dose deposition

All energy deposition occurs due to electron transport, irrespective of the quality of the
initiating interaction, be it high-energy photons or elections. The high-energy photos set
primary electrons into motion and these lose energy through creating δ-rays, which make
more δ-rays, and so on. The only real difference between high-energy photons or elections as
sources is that high-energy electrons are a “surface” dose for subsequent electron sub-tracks,
while high-energy photons are a volume dose for these subsequent electron sub-tracks.

Eventually, the bulk of the damage is done by electrons in the 10 eV range, that cause
ionizations directly on the DNA itself (direct effect), or by ionizing water in the surrounding
sheath of the DNA molecule. These radicals may then diffuse, before de-excitation, may
diffuse to the DNA molecule, and cause further damage (indirect effect). Currently it is
thought that the direct and indirect effects are about equal in their abilities to cause lesions
on the DNA, and two and especially more lesions within two base pairs on the DNA chain,
are thought to be lethal to the cell, in the sense that it’s reproduction can not continue.

So, a complete picture of dosimetry and radiotherapy calculation might include a precise
calculation of the electron fluences down to energies less than 10 eV and coupling those with
response functions that measure damage. In this realm, we are still in the early stages of
predicting damage at this level of resolution. For now, for most calculations, we are limited
to transport down to 1 keV or so, even by the best Monte Carlo codes, and rely upon “dose”
as a surrogate for our lack of fine detail. Keep in mind, however, that dose, as defined
previously, is only an approximate picture of the truth.

These approximations are buried deeply into our concept of “stopping” power, which we now
discuss in detail.
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6.2 Stopping power

Consider the picture of electron slowing down in condensed matter, as depicted in Figure
6.1. The macroscopic picture shows an entire electron track. For typical radiotherapy energy
electrons, in the 1 - 20 MeV range, this track, in water can be about 5mm to 10cm in total
length. These electron tracks twist and turn as they encounter nuclei that change their
direction, usually smoothly, but occasionally by large discrete angular jumps. They also
ionize and excite atoms along the way, and lose energy in those processes. There can also be
bremsstrahlung that removes energy from the electron and transports it out of the vicinity.
It appears that at this level of resolution, the electron tracks can be described by continuous
functions in space, and the loss of energy along the way described similarly.

The mesoscopic picture shows that all tracks have subtracks of δ-rays, with their own sub-
tracks and so on. This level of resolution is sub-millimeter. We have turned off angular
scattering to simplify the representation. The tracks look similar to a “fractal tree” although
the bifurcation into separate tracks can not continue forever. It also appears as if the
“continuous” functional distributions persist at this level.

Finally, we arrive at the microscopic level. (Perhaps nanoscopic would have been more
apropos.) Here, we see the individual atoms, and see that the “continuous” model of energy
deposition breaks down. This is the realm of microdosimetry where our definition of dose,
as defined earlier in Equation 5.7 becomes problematic. Recall that definition,

D( x) = lim
∆V→0

〈∆εrin −∆εrout〉
ρ( x)∆V

, (6.1)

we note that our continuous model no longer applies. Energy is transferred via discrete
ionisation and excitation events, and the fluctuations in 〈∆εrin−∆εrout〉 are large. Moreover,
since the events are discrete, the spatial and temporal correlations of the individual events
will play a critical role in our understanding of the radiological effect of electron “dose”. Aside
from recognizing its importance, and noting that this is the launchpad of a microdosimetric
discussion, an interesting and rich science unto itself. For now, we step back and draw the
line at the mesoscopic level, and pretend that the electron energy losses are described by
continuous functions, and that “dose”, as defined above is well-defined.

This continuous slowing down description has several realizations.

6.2.1 Total mass stopping power

The total mass stopping power of electrons and photons is calculated from the first energy
moment of the macroscopic cross section (Møller, Bhabha, and bremsstrahlung) in the fol-
lowing way.
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Figure to be added later

Figure 6.1: Electron trajectories in condensed matter at 3 levels of resolution, macroscopic,
mesoscopic, and microscopic.
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For electrons,

se
−
(E) = se

−
c (E) + se

−
r (E) , (6.2)

splitting the stopping power into a collisional part, due to Møller interactions,

se
−
c (E) =

∫ E/2

0
dEδ Eδµ

e−
δ (E,Eδ) , (6.3)

and a radiative part, due to bremsstrahlung emission,

se
−
r (E) =

∫ E

0
dEγ Eγµ

e−
γ (E,Eγ) . (6.4)

Note that the upper limit integral in Equation 6.3 stops at E/2. This is because the Møller
interaction has two electrons in the final phase space. The δ-ray is defined as that having
the lower energy.

Similarly, for positrons,

se
+

c (E) =
∫ E

0
dEδ Eδµ

e+

δ (E,Eδ) , (6.5)

and a radiative part, due to bremsstrahlung emission,

se
+

r (E) =
∫ E

0
dEγ Eγµ

e+

γ (E,Eγ) . (6.6)

Note that the total mass stopping power is in units E-L2-M−1.

The idea of exploiting the total stopping power is as follows. Consider a small volume ∆V
with an electron that enters, produces a δ-ray and a bremsstrahlung photon. Both these
daughter particles escape ∆V in this example. (See Figure 6.2.) Now, consider a model that
estimates the dose to ∆V by assuming that the daughter particles all “curl up” and deposit
all their energy in ∆V . If the tracklength of the primary electron in ∆V is ∆t, then, the
energy deposited in this example is,

∆E =
∫ ∆t

0
dt′ ρ( x, t′)s(E(t′)) ,

where we have explicitly accounted for the possibility that the stopping-power may change
over the track of the particle, and the density of the material might have a spatial variation
in ∆V . Also, this integral is a path integral over the path of the electron, which accounts
for the possibility that electron paths are curved due to the underlying scattering processes.
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Figure to be added later

Figure 6.2: Various ways of computing the dose using total stopping power.
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Therefore, the above equation is really a formal equation unless we provide some information
about the underlying scattering processes.

However, in the limit as ∆V → 0, we note that,

∆E = lim
∆V→0

∫ ∆t

0
dt′ ρ( x, t′)s(E(t′)) = ∆tρ( x)s(E) .

This permits us to write the dose, in this model, for a fluence, Φ0
e−( x,E) of primary electrons,

D( x) =
∫ ∞
0
dE Φ0

e−( x,E)s(E) . (6.7)

The model expressed by Equation 6.7 tacitly assumes that all daughter particles “curl up”
and deposit all their energy at the point  x. If there is a substantial radiative component,
and that radiation component is not in equilibrium, we may wish to consider only the dose
due to collisional processes,

D( x) =
∫ ∞
0
dE Φ0

e−( x,E)sc(E) . (6.8)

Nonetheless, these are dose deposition models, with varying degrees of approximation.

There are similar models for positrons that extend the above in the obvious ways. Tables of
electron and photon total mass collision stopping powers are available [ICR84], and employed
for calculations.

6.2.2 Restricted mass stopping power

Appealing again to Figure 6.2, and considering the aforementioned models, we see that even
high-energy δ-rays may escape the volume, ∆V . We may undo that approximation, but first
we have to define the restricted mass stopping power, l
ell(E,∆Ee− ,∆Eγ), both the collisional and radiative components, as follows.

For electrons,

;e
−
(E,∆Ee− ,∆Eγ) = le

−
c (E,∆Ee−) + le

−
r (E,∆Eγ) , (6.9)

splitting the restricted stopping power into a collisional part, due to Møller interactions,

;e
−
c (E,∆Ee−) =

∫ min[E/2,∆Ee− ]

0
dEδ Eδµ

e−
δ (E,Eδ) , (6.10)
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and a radiative part, due to bremsstrahlung emission,

;e
−
r (E,∆Eγ) =

∫ ∆Eγ

0
dEγ Eγµ

e−
γ (E,Eγ) . (6.11)

Note that the upper limit integral in Equation 6.3 stops at E/2. This is because the Møller
interaction has two electrons in the final phase space. The δ-ray is defined as that having
the lower energy.

Similarly, for positrons,

;e
+

c (E,∆Ee−) =
∫ min[E/2,∆Ee− ]

0
dEδ Eδµ

e+

δ (E,Eδ) , (6.12)

and a radiative part, due to bremsstrahlung emission,

;e
+

r (E,∆Eγ) =
∫ ∆Eγ

0
dEγ Eγµ

e+

γ (E,Eγ) . (6.13)

Now, we have a more accurate model that estimates the dose to ∆V by assuming that only
those daughter particles below the ∆Ee− ,∆Eγ energy thresholds, “curl up” and deposit all
their energy in ∆V . Those above the threshold are allowed to transport out of the volume,
∆V . If the tracklength of an electron in ∆V is ∆t, then, the energy deposited in this example
is,

∆E =
∫ ∆t

0
dt′ ρ( x, t′);(E(t′),∆Ee−,∆Eγ) ,

As before, we now shrink ∆V , permitting us to provide the dose at a point, in this model,
to a fluence of electrons.

D( x) =
∫ ∞
0
dE Φe−( x,E);(E,∆Ee−,∆Eγ) . (6.14)

Note that if an electron in the fluence spectrum has an energy below the cutoff values, total
stopping powers should replace the restricted stopping powers in the above expression. Also,
all electrons, not just primaries, are represented in the electron fluence.

The data required to tabulate ;(E,∆Ee− ,∆Eγ) is voluminous. Fortunately, there are com-
puter programs available for this purpose [Ber92].

6.3 Electron angular scattering

As mentioned previously, electrons scatter into different directions predominantly from elas-
tic Coulomb interactions with nuclei (Rutherford scattering), and, to a lesser extent, from
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inelastic interactions with atomic electrons. The Coulomb interaction is long range, the
cross sections are very large, and the deflection from each interaction is very small, except
occasionally, an electron makes a close approach to a nucleus and the deflection can be very
large. A relativistic electron can undergo as many as 105 elastic electron-nuclear interactions
and 106 inelastic electron-electron interactions in the course of its entire trajectory.

Adding to this complication is the non-linear and coupled aspect of the electron-photon of
the transport process. Electrons can set other electrons into motion, electrons can emit
bremsstrahlung photons, and photons can set electrons into motion in a variety of ways.

Even if we ignored the non-linearity of the transport and transport the primary electron
by modelling energy losses in using the total stopping power (this is called the CSDA,
continuous slowing down approximation), a complete mathematical prescription, one with
sufficient accuracy for radiotherapy and dosimetry, has not been found.

Therefore, in the following development, we describe, however briefly, Monte Carlo calcu-
lations. Only Monte Carlo calculations can provide the required accuracy, but do little to
build our intuition on the behavior of particle fields, except by the laborious process of virtual
experimentation. We do, however, introduce a simple analytic model that is too approxi-
mate for quantitative results, yet has enough physical content to permit semi-quantitative
understanding, and intuitive fortification.

6.4 Dose due to electrons from primary photon inter-

action

Equation 6.14 provides a general form for energy deposition due to electrons. We now restrict
the discussion to those electrons that arise from primary photon interactions.

We start with a fluence of primary photons on a surface S, Φ0( xS, Eγ). We assume that the
electron fluence arising from an interaction of the primary photon at  x′ is given generically
by a function of the form,

Φe( x,Ee;  x
′, Eγ) = f(Eγ, Ee, | x−  x′|, cos θ�x′,�x−�x′) , (6.15)

in other words, a function of the distance from the interaction, the energy of the photon
that set the electron into motion, and the angle between the initiating photon direction and
vector from that point to  x,

cos θ�x′,�x−�x′ =
 x′ · ( x−  x′)

| x′|| x−  x′|

The number of a primary photons with energy Eγ starting at  xS and interacting at  x
′ is,
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n( x′, Eγ)d x
′dEγ = Φ0( xS, Eγ)ρ( x

′)µ(Eγ)d x
′dEγ exp

(
−
∫ |�x′−�xS |

0
dlρ( l)µ( l, Eγ)

)
, (6.16)

accounting for the attenuation via the radiological path, and an incident photon fluence that
is differential in energy. Therefore,

D( x) =
∫
d x′

∫ ∞
0
dEγn( x

′, Eγ)
∫ ∞
0
dEeΦe( x,Ee;  x

′, Eγ);(E,∆Ee,∆Eγ) , (6.17)

which also may be written,

D( x) =
∫
d x′ρ( x′)

∫ ∞
0
dEγK

0
c ( x
′, Eγ)

1

〈Ee(Eγ)〉

∫ ∞
0
dEeΦe( x,Ee;  x

′, Eγ);(E,∆Ee,∆Eγ) ,

(6.18)

where 〈Ee(Eγ)〉 is the mean energy deposited by an electron and its δ-rays set in motion by
a photon with energy Eγ.

Energy conservation is thus implied, for in infinite media,

1

〈Ee(Eγ)〉

∫
d x
∫ ∞
0
dEeΦe( x,Ee;  x

′, Eγ);(E,∆Ee,∆Eγ) = 1 . (6.19)

We can also note, if we “curl up” the electrons by letting,

Φe( x,Ee;  x
′, Eγ) = δ( x−  x′)Φe(Ee; , Eγ) ,

we recover charged particle equilibrium, and Equation 6.18 collapses to,

DCPE( x) =
∫ ∞
0
dEγK

0
c ( x
′, Eγ) = K0

c ( x) . (6.20)

6.4.1 A practical semi-analytic dose deposition model

The following model for electron transport is remarkable effective for describing electron
transport, at least in a semi-quantitative way, when those electrons are set in motion by
external photon fields.

• Energy loss is constant. The energy of an electron at any point in its trajectory is
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E(t) = E0

(
1− t

Re

)
, (6.21)

where E0 is the initial energy, Re is it’s range, an t is the straight line distance from
the point in space where the electron was set in motion.

• The angular distribution of is given either by the forward approximation,

Φe( x,Ee;  x
′, Eγ) =

1

4π
Θ(z − z′)Θ(z − z′ −Re)δ(Ee − 〈Ee(Eγ)〉)δ(1− cos θ′), (6.22)

where θ is the polar angle with respect to the photon that set the electron in motion.

Another more realistic approximation is the semi-isotropic approximation,

Φe( x,Ee;  x
′, Eγ) =

1

4π
δ(Ee − 〈Ee(Eγ)〉)Θ(| x−  x′| ≤ Re)(1 + ω cos θ′) , (6.23)

where ω is an anisotropy factor. When ω = 0, the distribution is isotropic. As
ω increases, the distribution gets more forward directed. The logical upper limit is
ω = 1, to prevent the angular distribution from becoming negative. The lower limit
is ω = −1, which describes a distribution that is directed backwards, a theoretical
curiosity, but admitted by the mathematics.

Dose due to primary photons in the straight ahead approximation

Imagine a uniform broad beam source of monoenergetic photons, E = Eγ impinging normally
on a semi-infinite volume of water.

The dose in this model is obtained by substituting Equation 6.22 into eqnref6.4.0.5, to give,

D(z) = K0
c (0)

(
Θ(1− x)

∫ x

0
+Θ(x− 1)

∫ x

x−1

)
dx′ exp(−εx′) , (6.24)

where x = z/Re and ε = µ(Eγ
0 )ρRe.

The integrals are elementary, and results in,

D(z)

K0
c (z)

=
(
Θ(1− x)

eεx − 1
ε

+Θ(x− 1)e
ε − 1
ε

)
. (6.25)

Note that the dose goes to zero at the surface in the build-up region, Θ(1−x), and the ratio
of dose to collision Kerma is a constant in the exponential tail region Θ(x− 1). In the limit
ε = µ(E0)

γ)ρRe � 1, the usual physical situation, we may write.
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D(z)

K0
c (z)

= Θ(1− x)x
(
1 +

εx

2

)
+Θ(x− 1)

(
1 +

ε

2

)
, (6.26)

The constant offset in the exponential tail is often interpreted (perhaps mistakenly) as an
average drift factor, for, in the same spirit of approximation, we may write,

(
1 +

ε

2

)
= exp(µ(Eγ

0 )ρ〈zd〉) , (6.27)

identifying the drift as,

〈zd〉 =
Re

2
,

in this model, as expected.

At least this model captures the concept of electron drift from an upstream interaction.
However, the model is unrealistic, as a plot of the predicted curve would reveal. The build-
up portion goes to zero at the surface and has a discontinuous slope at z = Re, counter to
the real situation. We shall try a more realistic model in the next section.

Dose due to primary photons in the semi-isotropic approximation

The dose in this model is obtained by substituting Equation 6.23 into Equation 6.18, to give,

D(z)

K0
c (z)

= Θ(1− x)I<(x) + Θ(x− 1)I> , (6.28)

where, after some analysis it can be shown for the exponential tail, that,

I> =
1

2

∫ 1

−1
dy (1− ωy)

(
1− e−εy

εy

)
, (6.29)

and, for the build-up region,

I<(x) = I> − 1

2

∫ 1

x
dy (1 + ωy)

(
eεy − eεx

εy

)
, (6.30)

expressed as integrals.
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At the time of this writing, I have not found a non-integral form for I<(x), but I have
for I>(x)

1 Now, the results are more realistic. The surface dose is non-zero, and the slope
continuous at x = 1, and the shape is more realistic.

However, the physics is further revealed by an expansion in small-ε expansion, which yields,

•

D(0)

K(0)
=
1

2

[
1− ω

2
− ε

4

(
1− 2

3
ω
)

.
]
,

In the case the ω = 1, the dose at the surface is about half the Kerma, less a small
portion for attenuation.

• The peak occurs slightly to the left of x = 1, at

xmax = 1−
2ε

1 + ω
‘,

and the dose there is,

D(xmax) = D(1)

(
1 +

ε2

1 + ω

)
.

• The longitudinalal shift, owing to lesser attenuation upstream, in the fall-off region is,

∆x =
w

6
+

ε

18

(
1− ω2

4

)
.

This identifies the average drift as

〈zd〉 =
ωRe

6
.

1

I> =
1
ε2
{εSi(ε) + ω[sinh(ε)− ε]} ,

where

Si(ε) =
∫ ε

0

du
sinh(u)

u
.
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6.5 The convolution method

The convolution method derives its formal basis from Equation 6.18. The basic idea is to
take the conditional electron kernel,Φe( x,Ee;  x

′, Eγ), and rewrite is as follows,

Φe( x,Ee;  x
′, Eγ) = Φ

0
e( x,Ee;  x

′, Eγ) + Φ
1
e( x,Ee;  x

′, Eγ) , (6.31)

where Φ0
e() contains all the electrons and their δ-rays from the primary photon interaction,

and Φ1
e() that contains all other electrons, irrespective of origin, higher Compton scatter,

and those set in motion by all generations of bremsstrahlung photons. The motivation for
doing so is that these two fluences are very different. The first is tightly centered within an
electron range of the primary interaction point. The second is highly diffuse, governed by
the interaction length of the primary photons. These kernels can be calculated analytically
or computed via Monte Carlo calculations.

Although the convolution method is approximately 20 years old, there is not much more
sophistication to the method than looking up pre-computed tables of data. To my knowledge,
there has been no practical exploitation of the very different natures of these kernels.

6.6 Monte Carlo methods

To be added later
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Problems

1. A 50 MeV beam of photons with fluence rate Φ̇γ is incident normally on a thin slab
of lead of thickness d. A 50 MeV beam of electrons with fluence rate Φ̇e− is incident
normally on the same slab. The incident photon fluence is 100 times that of the incident
electron fluence. Assume that the slab is thin in the sense that any electrons the are
generated in the slab have ranges that greatly exceed the slab thickness.

(a) Using reasonable approximations that you must justify, at least in words, estimate
the dose rate in the slab due to the incident photons.

(b) Using reasonable approximations that you must justify, at least in words, estimate
the dose rate in the slab due to the incident electrons.

(c) Using the results of the above, what thickness would the plate have to be so
that the dose due to the incident electrons and photons is the same. Provide a
numerical result. Was the thin slab approximation a good one?

Hints: The photon data can be found on page 553 of Attix. The electron data can
be found on page 573 of Attix. (Use the CSDA range.) The density of lead is 11.33
gm/cm3.

2. A beam of monoenergetic electrons with an energy of 30 MeV and a fluence of 10000
electrons/cm2/s is normally incident on a lead foil of thickness 0.1 gm/cm2. (See the
tables in Attix for physical data. You are expected to provide numerical answers. The
density of lead is 11.35 g/cm3.)

(a) What is the dose deposited in the foil in 1 minute?

(b) The foil is now 10 cm thick. What is the dose deposited in the foil in 1 minute?

(c) The foil is now 1 cm thick. What is the dose deposited in the foil in 1 minute?
You must make some assumptions to calculate a numerical answer in this case.
Assume that all the bremsstrahlung photons that are generated are generated at
the front face of the foil, are forward directed and have energy 10 MeV.

(d) Without resorting to any approximations, qualitatively sketch the dose in the foil
for thicknesses 0 to 100 cm.

3. Consider a beam of photons collimated to radius R, that is,
√
x2 + y2 ≤ R, impinging

on a semi-infinite medium (−∞ < x, y < ∞, 0 ≤ z < ∞) characterized by µ
ρ
(E) the

mass attenuation constant for photons of energy E, µen

ρ
(E) and ρ( x).

In all the cases below, you will derive expressions for D( x) where you must specify the
full functional relationships on  x and E. In all cases, you must sketch the dose on the
central axis DCAX(x, y, z) = D(0, 0, z) and two radial profiles D(x, y, 0) and D(x, y, z1)
where z1 � Re,max and Re,max is the range of the maximum energy electron that can
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exist in the problem. You may assume, in all cases, that cylindrical symmetry holds,
that is, D( x) = D(

√
x2 + y2, z).

Approximation I

• The beam is monoenergetic at energy E0

• The beam is normal to the surface

• The beam at the surface is in radiation equilibrium (RE) for
√
x2 + y2 ≤ R

• Use the Kc approximation for dose

• Include beam attenuation

• Ignore the dose deposited by scattered photons
• The medium is homogeneous

Justifying every part of your derivation, show that the solution in this case is...

DI( x) = E0Φ0 exp

[
−µ

ρ
(E0)ρz

] (
µen
ρ
(E0)

)
Θ(R−

√
x2 + y2)Θ(z)

where Φ0 is the fluence of the beam at the surface. Note that the theta function
Θ(u) is shorthand for Θ(u) = 1 ∀ u ≥ 0 ∩ Θ(u) = 0 ∀ u < 0, in other words, the
step function.

(Don’t forget to do the sketches!)

Approximation II
Case I, except that the medium is no longer uniform in space. Justifying every
part of your derivation, show that the solution in this case is...

DII( x) = E0Φ0 exp

[
−
∫ z

0
dz′

(
µ

ρ
(E0)

)
ρ(x, y, z′)

](
µen
ρ
(E0)

)
Θ(R−

√
x2 + y2)Θ(z)

In your plots, assume that there is a slab of different material centered at z1.
Compare with the plots of Approximation I.

Approximation III
Case I, except that the fluence has an energy distribution. ϕ(E), between 0 and
E0. Justifying every part of your derivation, show that the solution in this case is...

DIII( x) =
∫ E0

0
dE Eϕ(E) exp

[
−µ

ρ
(E)ρz

] (
µen
ρ
(E)

)
Θ(R−

√
x2 + y2)Θ(z)

Compare your plots with those of Approximation I.

Approximation IV
Case I, except that the photons arise from an isotropically radiating point source
located at (0, 0,−L). Although the RE is now violated, the Kc approximation for
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dose still makes sense if L is large enough. Answer the question, “Large enough
compared to what?”
Compare your plots with those of Approximation I.

Approximation V
Case I, except you must now account for the dose that arises from the first scat-
tered photon. Only the Compton interaction is to be considered.

Approximation VI
Case I, except now we relax theKc approximation for dose. Assume that electrons
with energy 1

2
E0 are transported in the forward direction away from the interaction

point. Assume that the stopping power is a constant.

Approximation VII
Case VI, except assume that the electrons are emitted isotropically.

Bonus!
This is optional and worth bonus points, although the extra marks will be very
tough to get! Turn off as many approximations as you can. If you wish to
consider electron transport in detail, you may assume that the electron fluence
arising from an interaction at the origin directed along the z-axis has a form
f(
√
x2 + y2, z, Eγ , E), where Eγ is the energy of the photon that set it in mo-

tion and E is the electron’s energy at  x. Typically, f() is calculated by detailed
Monte Carlo calculations or measured. This technique forms the basis for the
convolution/superposition dose calculation model that is the state-of-the art dose
calculation technique presently. However, in a few years, this model will be re-
placed completely by ab initio Monte Carlo calculations.

4. A circular beam of monoenergetic photons is incident normally on a semi-infinite phan-
tom of water, z ≥ 0, 0 ≤ ρ < ∞. (Here, ρ is the radius in cylindrical coordinates.) The
incident fluence is Φ0 for ρ ≤ a, z < 0, Φ0 exp(−µz) for ρ ≤ a, z ≥ 0, and zero else-
where. Ignoring photon scattering but accounting for primary photon attenuation and
electron scattering via the 1+ω cosΘ transport model, provide an analytic expression
for D(z, ρ, φ) for z ≥ Re. In addition, sketch Kc(z, ρ)/Kc(0, 0) and D(z, ρ)/Kc(0, 0) at
some depth z > Re, for a−Re ≤ ρ ≤ a+Re.



Chapter 7

Ionization chamber-based air kerma
standards

7.1 Bragg-Gray cavity theory

Imagine an interface formed by two materials, the one on the left z < 0 wee will call
(suggestively) material “w” and the one on the right z > 0, material “g”. We consider an
electron transport model in the vicinity of the interface where energy losses are computed
using total mass collision stopping powers. That is, δ-rays are not transported explicitly,
but their energies are “rolled up” in the stopping powers. Now, imagine an electron beam
that crosses the interface. Since electron fluence is conserved across the interface, we can
say that,

Φ0
e(Ee, x, y, 0−) = Φ0

e(Ee, x, y, 0+) = Φ
0
e(Ee, x, y, 0) , (7.1)

Dw(x, y, 0−) =
∫ ∞
0
dEeΦ

0
e(x, y, 0)sw(Ee) , (7.2)

and,

Dg(x, y, 0+) =
∫ ∞
0
dΦ0

e(x, y, 0)sg(Ee) , (7.3)

from which we can infer that,
Dg(x, y, 0+)

Dw(x, y, 0−)
= (s)gw (7.4)

where,
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(s)gw ≡
∫∞
0 dEeΦ

0
e(x, y, 0)sg(Ee)∫∞

0 dEeΦ0
e(x, y, 0)sw(Ee)

. (7.5)

Now consider a volume of material “w” (wall material). We wish to measure the dose at
some point  x in “w” by placing within it, a gas cavity “g” that has  x within its domain.
Thus, under the following assumptions:

BG-1 the size of the gas layer is so small that in any dimension it is smaller than Rw
e , the

electron range in the “w” material,

BG-2 the dose in the cavity is assumed to be deposited entirely by electrons crossing it,

photon interactions in the cavity may be ignored,

then,

Dw( x) = Dg( x)(s)
w
g . (7.6)

That is, we can determine the dose to the wall material from a measurement of the dose to
the gas.

Note that under conditions of charged particle equilibrium, but with the proviso that the
atomic composition of the gas and wall material are the same, BG-1 may be relaxed, and
the cavity allowed to assume any shape and size.

Under these conditions, we may also write,

Kw
c ( x) = Kg

c ( x)(s)
w
g . (7.7)

7.1.1 Exposure measurements

Often, ionization chamber measurements are made in terms of exposure. Dose and “expo-
sure” are related by the following relation,

Dg =
(
∆Q

∆m

)(
W

e

)
g

, (7.8)

where, ∆Q is the charge of the ions of one sign collected (assuming complete collection) from
the “active volume” of the gas during irradiation, ∆m is the mass of the “active volume” of

the gas, and
(
W
e

)
g
is the average energy deposited in the gas divided by the charge of one of
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the ion pairs, per ion pair created. The concept of “active volume” just means that volume
of the gas for which electric field lines can sweep ions toward the electrodes. There may be
“guard” volumes or inactive volumes that still logically comprise the cavity volume, but do
not participate in sweeping the ions toward the electrodes.

Therefore, assuming an exposure measurement has been made, we may write,

Dw =
(
∆Q

∆m

)(
W

e

)
g

(s)wg . (7.9)

Corollary 1: Same wall, different gases

Consider two exposure measurements involving the same instrument involving the same
source of radiation, but one in which the gas may be substituted. It can be shown, from
Equation 7.9, that,

∆Q2

∆Q1
=

(
ρ2
ρ1

) (
W/e

)
1(

W/e
)
2

(s)g2g1 . (7.10)

It appears that the wall material has vanished from the above equation! However, it is still
there, represented by the electron fluence within it, in the stopping power ratio. That the
fluence is not perturbed by the gas cavity bears some emphasis here.

Corollary 2: Different walls, same gases

Consider two exposure measurements involving the similar instruments involving the same
source of radiation, but one in which the wall material may be substituted, and the gas,
while remaining the same, may occupy a different volume. To start, imagine that the cavity
region is filled with wall material. Under conditions of charged particle equilibrium, we note
that the dose to any point in this location is,

DCPE
w = Kc =

∫ ∞
0
dEγ Ψ(Eγ)µen(Eγ) , (7.11)

or,

DCPE
w = Ψµen , (7.12)

where,
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Ψ =
∫ ∞
0
dEγ Ψ(Eγ) , (7.13)

and,

µen =
1

Ψ

∫ ∞
0
dEγ Ψ(Eγ)µen(Eγ) . , (7.14)

Therefore,

Dw2

Dw1

= (µen)
w2

w1
, (7.15)

where,

(µen)
w2

w1
=

∫∞
0 dEγ Ψ(Eγ)µ

w2
en (Eγ)∫∞

0 dEγ Ψ(Eγ)µw1
en (Eγ)

, (7.16)

from which it can be shown, from Equation 7.9, that,

∆Q2

∆Q1
=
(
∆V2
∆V1

)
(µen)

w2

w1
(s)w1

w2
. (7.17)

It appears that the gas material has vanished from the above equation, except for the volume
they occupy. This is an interesting consequence of radiation equilibrium.

7.2 Spencer-Attix cavity theory

The substantial improvement Spencer and Attix made to Bragg-Gray cavity theory was to
employ restricted stopping powers, assuming that the high-energy δ-ray fluence spectrum
might be sensitive to atomic differences as the interface. Therefore, the foregoing discussion
may be modified straightforwardly by employing restricted stopping powers.

Ignoring the contribution of bremsstrahlung to the stopping power, the dose may be calcu-
lated from

D =
∫ ∞
0
dE Φe(E);c(E,∆) , (7.18)

where ∆ is the energy above which electrons can be set in motion and contribute to the
electron fluence spectrum, Φe−(E). The choice of ∆ is an interesting one. General practice
is to set ∆ to an energy that corresponds to a an electron range, Re(∆), in the gas material
that is characteristic of the size of the cavity. To my knowledge, this parameter has not been
effectively tested over a range of materials and parameter-size selections.
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Direct analytic calculations of Equation 7.18 are problematic, as there is no sufficiently
accurate theory to predict Φe(E). However, as we shall soon see in “Modern Cavity Theory”
that analytic calculations still have an important role to play.

7.3 Modern cavity theory

Radiation equilibrium is a mathematical fiction, yet, it is closely approximated by thick-
walled ionization chambers. In this section we develop modern cavity theory and demonstrate
the important role of radiation equilibrium conditions and the role of Fano’s theorem.

Consider a volume of gas material in which there exists an electron fluence of any character.
The dose to that gas, obtained by integrating over the energy deposited in the gas, and
dividing by it’s mass, may be written as

Dg =
1

Vg

∫
dEe

∫
d xϕg(Ee,  x)Rg(Ee,  x) , (7.19)

where Vg is the volume of the gas, ϕg(Ee,  x) is the electron fluence arising from all sources, and
Rg(Ee,  x) is a response function of the gas, that has units EL2/M . We keep the discussion
general for now, but have in mind to use restricted stopping powers later on. Henceforth,
we will employ a a compact notation for the above,

Dg =
∫

ϕgRg . (7.20)

We would like to transform Equation 7.19 into a form that exhibits radiation equilibrium
explicitly. It will take many steps to get there.

First, split the electron fluence into that which arises from the primary interaction of a
photon, including all δ-rays. Bremsstrahlung and annihilation photons are considered, but
if they produce an electron fluence in the cavity, that fluence goes into the “scattered” part.
Therefore, we write, ϕg = ϕ0

g + ϕs
g, and we rewrite the dose as,

Dg =
(∫

ϕ0
gRg

)
Ascat , (7.21)

where

Ascat =
1 +

(∫
ϕs
gRg

)
∫
ϕ0
gRg

. (7.22)

Ascat is usually close to unity, for most ionization chambers, since the scattered radiation
that results in ionization in the chamber is usually overwhelmed by the primary ionization.
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Now the strategy is revealed. We will keep simplifying the electron fluence until we get it into
equilibrium, and produce correction factors that are close to unity (we hope) and amenable
to analytic or Monte Carlo calculations.

The primary photon fluence is not yet in equilibrium, since it is attenuating across the
chamber. Therefore, assume that we can undo this this contribution to disequilibrium,
thereby producing a primary electron fluence that arises from unattenuated primary photons.
We call this fluence, ϕ̃0

g and rewrite Equation 7.21 as,

Dg =
(∫

ϕ̃0
gRg

)
AscatAatt , (7.23)

where

Aatt =

∫
ϕ0
gRg∫

ϕ̃0
gRg

. (7.24)

As, Ascat is close to, but greater than unity, Aatt is close to, but less than unity. To some
extent they undo each other, as the action of attenuation usually leads to scattered radiation.

We still have not completely undone primary photon equilibrium, because the photon fluence
arises from a geometric source, usually a near-point source, distance from the chamber.
Nonetheless, 1/r2-effects and other geometric effects must be undone. We determine the
photon fluence at the center of the chamber (one may use the center-of-mass to define this)
and call this the point of measurement. The source can then be converted into a broad
parallel beam with the same energy spectrum. Now we rename the electron fluence obtained
in this way, ϕ̃0,||

g , and rewrite as,

Dg =
(∫

ϕ̃0,||
g Rg

)
AscatAattApn , (7.25)

where

Apn =

∫
ϕ0
gRg∫

ϕ̃
0,||
g Rg

. (7.26)

A typical source configuration for a standards measurement is a small radioactive source
about 1 cm across at a distance of 100 cm. So, this correction is near unity as well.

Now, the primary photon fluence that set the electrons in motion is in, however, the electron
fluence is not. Imagine that we have wall material in the place of the cavity, and we employ
that fluence, but with the gas response function. That permits a rewrite of Equation 7.25
as,

Dg =
(∫

ϕ̃0,||
w Rg

)
AscatAattApnAfl , (7.27)
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where

Afl =

∫
ϕ̃0
gRg∫

ϕ̃
0,||
w Rg

. (7.28)

Afl is a correction that accounts for the perturbation of the electron fluence by the gas cavity.
If the atomic composition of the gas and the wall is not too dissimilar, this is expected to
be a small effect.

We may also rewrite Equation 7.27 to be,

Dg =
(∫

ϕ̃0,||
w Rw

)
AscatAattApnAfl (s)

g
w , (7.29)

where

(s)gw =

∫
ϕ̃0
gRg∫

ϕ̃0,||
w Rw

. (7.30)

Here we identify (s)gw as a generalized “stopping power” ratio. We can also identify the first
term in Equation 7.29 as the dose to the wall material due to primary photons in a state of
complete radiation equilibrium. Thus, Equation 7.29 can also be expressed as,

Dg = Ψ
0,||(µen)w (s)

g
w AscatAattApnAfl , (7.31)

where,

(µen)w =
1

Ψ0,||

∫ ∞
0
dEγ Ψ

0,||(Eγ)µen(Eγ) . (7.32)

Finally, we may rewrite Equation 7.32 as, or equivalently,

Dg = K0,||
c (µen)

w
q (s)

g
w AscatAattApnAfl , (7.33)

which related a real measurement of dose to the gas to it’s collision Kerma under conditions
of radiation equilibrium. The connection between the two is really a ratio of factors quite
close to unity.

7.4 Interface effects

To be written later

7.5 Saturation corrections

To be written later
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7.6 Burlin cavity theory

To be written later

7.7 The dosimetry chain

We start with Equation 7.33, but expressed as a charge measurement of the primary standard
instrument in a Standards Laboratory. That is,

(
∆Q

∆m

)(
W

e

)
g

= Dg = K0,||
c,g (µen)

w
q (s)

g
w (
∏

A)S , (7.34)

where (
∏
A) is the product of all the “A” correction factors.

We can can rewrite the above as,

K0,||
c,g =

(
∆QS

∆mS

) (
W
e

)
g

(µen)
w
g (s)

q
w (
∏
A)S

. (7.35)

All the factors on the right hand side are known accurately by the Standards Laboratory,
and thus, an internal calibration of the primary chamber provides a measurement of the
primary Kerma at the Standard Laboratory.

Now, consider a client’s chamber, subject to a charge measurement in the standard field of
the Standards Laboratory, namely,

(
∆Q

∆m

)
C

(
W

e

)
g

= K0,||
c,g (µen)

w
g (s)

g
w (
∏

A)C , (7.36)

This, taken in ratio with a similar measurement of the standard chamber yields,

∆mC = ∆mS(∆Q)CS (µen)
wS
wC
(s)wC

wS
(
∏

A)SC . (7.37)

All quantities on the right hand side are measured or calculable. Therefore, the measurement
in the Standards Laboratory is tantamount to measuring the active mass of gas in the client’s
chamber.

Once the client receives their chamber, they wish to determine the dose to the air cavity of
an ion chamber in their beam. Thus, they measure,
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Dg =
(
∆Q

∆m

)
H

(
W

e

)
g

, (7.38)

back in, for example, their hospital setting. The only unknown in Equation 7.38 is the
mass of the gas in their standard chamber, and this is provided by the calibration from the
Standards Laboratory. How one goes from dose in the gas to the dose to the medium in the
client’s laboratory is the subject of various dosimetry protocols which will not be compared
here. However, before concluding, it it worthy to note how robust the calibration is. All the
factors on the right hand side of Equation 7.37 are very well known, typically to less then
several 10’ths of a percent.
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Problems

1. Discuss the essential differences among the Bragg-Gray, Spencer-Attix and Burlin cav-
ity theories. Is Spencer-Attix theory an improvement over Bragg-Gray? When should
Burlin cavity theory be employed.

2. Two thick-walled cavity chambers, identical in all respects except for the wall ma-
terial (Lead in one case, Aluminum in the other) are placed in a spatially uniform,
monoenergetic 1 MeV photon beam.

Assume that the irradiation conditions are such that you may consider there to exist
a state of charged-particle equilibrium (CPE) in the chambers. Two measurements
are performed and the dose to the sensitive material is measured for both chambers.
What range of values should you expect for a measurement of the ratio of the dose to
the sensitive material in the Lead chamber to the dose to the sensitive material in the
Aluminum chamber?

You may assume that the charged particle spectrum in the sensitive material is com-
prised of monoenergetic 500 keV electrons.

3. The ratio of ionization collected in an air gas cavity ionization chamber is Q1/Q2 =
0.95, for V1 = 100 Volts and V2 = 200 Volts when subject to continuous ionizing
radiation.

(a) Assuming you know that the chamber is in the ”initial” or ”columnar” recombi-
nation regime between 100 and 200 Volts, what is the recombination correction at
100 and 200 Volts, assuming the ionization in the chamber is nearly all collected?

(b) Assuming you know that the chamber is in the ”general” or ”volume” recombina-
tion regime between 100 and 200 Volts, what is the recombination correction at
100 and 200 Volts, assuming the ionization in the chamber is nearly all collected?

(c) What if you do not know the saturation characteristics of this chamber between
100 and 200 Volts. How should you proceed?

4. The following expressions were derived for the dose to the sensitive material of a cavity
type detector.

Dg =
1

Vg

∫
dEe

∫
d x ϕg(Eγ, Sγ, Ee,  x)Rg(Ee,  x)

=
∫

ϕgRg (compact notational form)

=
(∫

ϕ̃0,||
w Rw

)
R

g
wAscatAattAflAan

= Kc,g

(
µ

ρ

)w

g

R
g
wAscatAattAflAan
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(a) Explain what every symbol in the above equations means, including the domains
of the integrations.

(b) Using the compact notational form, what are the expressions in terms of ratios of
integrals for (

µ

ρ

)w

g

, R
g
w, Ascat, Aatt, Afl, Aan

(c) Under what approximations do the above equations reproduce Bragg-Gray and
Spencer-Attix theories?


