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1 What is Solid State Physics

Solid state physics is (still) the study of how atoms arrange themselves into solids and what properties
these solids have.

The atoms arrange in particular patterns because the patterns minimize the energy in a binding,
which is typically with more than one neighbor in a solid. An ordered (periodic) arrangement is called
crystal, a disordered arrangement is called amorphous.

All the macroscopic properties like electrical conductivity, color, density, elasticity and more are de-
termined by and can be calculated from the microscopic structure.

1
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2 Schrödinger Equation

The framework of most solid state physics theory is the Schrödinger equation of non relativistic
quantum mechanics:

i~
∂Ψ
∂t

= −~
2

2m ∇
2Ψ + V (r, t)Ψ (1)

The most remarkable thing is the great variety of qualitativly different solutions to Schrödinger’s
equation that can arise. In solid state physics you can calculate all properties with the Schrödinger
equation, but the equation is intractable and can be only solved with approximations.

For solving the equation numerically for a given system, the system and therewith Ψ are discretized
into cubes of the relevant space. To solve it for an electron, about 106 elements are needed. This is
not easy, but possible. But let’s have a look at an other example:
For a gold atom with 79 electrons there are (in three dimensions) 3 · 79 terms for the kinetic energy in
the Schrödinger equation. There are also 79 terms for the potential energy between the electrons and
the nucleus. With the interaction of the electrons there are additionally 79·78

2 terms. So the solution for
Ψ would be a complex function in 237(!) dimensions. For a numerically solution we have to discretize
each of these 237 axis, let’s say in 100 divisions. This would give 100237 = 10474 hyper-cubes, where
a solution is needed. That’s a lot, because there are just about 1068 atoms in the Milky Way galaxy!
Out of this it is possible to say:

The Schrödinger equation explains everything but can explain nothing.

Out of desperation: The model for a solid is simplified until the Schrödinger equation can be solved.
Often this involves neglecting the electron-electron interactions. Back to the example of the gold atom
this means that the resulting wavefunction is considered as a product of hydrogen wavefunctions.
Because of this it is possible to solve the new equation exactly. The total wavefunction for the
electrons must obey the Pauli exclusion principle. The sign of the wavefunction must change when
two electrons are exchanged. The antisymmetric N electron wavefunctioncan can be written as a
Slater determinant:

Ψ(r1, r2, ..., rN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
Ψ1(r1) Ψ1(r2) . . . Ψ1(rN)
Ψ2(r1) Ψ2(r2) . . . Ψ2(rN)

...
... . . . ...

ΨN (r1) ΨN (r2) . . . ΨN (rN)

∣∣∣∣∣∣∣∣∣∣
(2)

Exchanging two columns changes the sign of the determinant. If two columns are the same, the
determinant is zero. There are still N !, in the example 79! (≈ 10100 = 1 googol) terms.

2
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3 Quantization

The first topic in this chapter is the appearance of Rabi oscillations. For understanding their origin
a few examples would be quite helpful.

Ammonia molecule NH3:
The first example is the ammonia molecule NH3, which is shown in fig. 1.

Figure 1: left: Ammonia molecule; right: Nitrogen atom can change the side

The nitrogen atom can either be on the "left" or on the "right" side of the plane, in which the hydrogen
atoms are. The potential energy for this configuration is a double well potential, which is shown in
fig. 2.
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Figure 2: Double-Well Potential of ammonia molecule

The symmetric wavefunction for the ground state of the molecule has two maxima, where the potential
has it’s minima. The antisymmetric wavefunction of the first excited state of the molecule has only one
maximum in one of the minima of the potential, at the other potential minimum it has a minimum.
If the molecule is prepared in a way that the nitrogen N is on just one side of the hydrogen plane,
this is a superposition of the ground state and the first excited state of the molecule wavefunctions.
It’s imagineable that the resulting wavefunction, which is not an eigenstate, has a maximum on the
side where the nitrogen atom is prepared and nearly vanishes at the other side. But attention: The
energies of the ground state and the first excited state are slightly different. Therefore the resulting

3
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wavefunction doesn’t vanish completely on the other side! There is a small probability for the
nitrogen atom to tunnel through the potential on the other side, which grows with time because the
time developments of the symmetric (e

iE0t
~ ) and antisymmetric (e

iE1t
~ ) wavefunctions are different.

This fact leads to the so called Rabi oscillations: In this example the probability that the nitrogen
atom is on one side oscillates.

Rabi oscillations appear like damped harmonic oscillations. The decay of the Rabi oscillations is
called the decoherence time. The decay appears because the system is also interacting with it’s
surrounding - other degrees of freedom.

4



TU Graz, SS 2010 Advanced Solid State Physics

3.1 Quantization

For the quantization of a given system with well defined equations of motion it is necessary to
guess a Lagrangian L(qi, q̇i), i.e. to construct a Lagrangian by inspection. qi are the positional
coordinates and q̇i the generalized velocities.

With the Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (3)

it must be possible to come back to the equations of motion with the constructed Lagrangian.1

The next step is to get the conjugate variable pi:

pi = ∂L

∂q̇i
(4)

Then the Hamiltonian has to be derived with a Legendre transformation:

H =
∑
i

piq̇i − L (5)

Now the conjugate variables have to be replaced by the given operators in quantum
mechanics. For example the momentum p with

p→ −i~∇.

Now the Schrödinger equation

HΨ(q) = EΨ(q) (6)

is ready to be evaluated.

1 There is no standard procedure for constructing a Lagrangian like in classical mechanics where the Lagrangian is
constructed with the kinetic energy T and the potential U :

L = T − U = 1
2mẋ2 − U

The mass m is the big problem - it isn’t always as well defined as for example in classical mechanics.

5
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3.1.1 Quantization of the Harmonic Oscillator

The first example how a given system can be quantized is a one dimensional harmonic oscillator. It’s
assumed that just the equation of motion

mẍ = −kx

with m the mass and the spring constant k is known from this system. Now the Lagrangian L must
be constructed by inspection:

L(x, ẋ) = mẋ2

2 − kx2

2

It is the right one if the given equation of motion can be derived by the Euler-Lagrange eqn. (3), like
in this example. The next step is to get the conjugate variable, the generalized momentum p:

p = ∂L

∂ẋ
= mẋ

Then the Hamiltonian has to be constructed with the Legendre transformation:

H =
∑
i

piq̇i − L = p2

2m + kx2

2 .

With replacing the conjugate variable p with

p→ −i~ ∂
∂x

because of position space2 and inserting in eqn. (6) the Schrödinger equation for the one dimensional
harmonic oscillator is derived:

− ~2

2m
∂2Ψ(x)
∂x2 + kx2

2 Ψ(x) = EΨ(x)

2position space: Ortsraum

6
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Figure 3: Superconducting ring with a capacitor parallel to a Josephson junction

3.1.2 Quantization of the Magnetic Flux

The next example is the quantization of magnetic flux in a superconducting ring with a Josephson
junction and a capacitor parallel to it (see fig. 3). The equivalent to the equations of motion is here
the equation for current conservation:

CΦ̈ + ICsin

(2πΦ
Φ0

)
= −Φ− Φe

L1

What are the terms of this equation? The charge Q in the capacitor with capacity C ist given by

Q = C · V

with V as the voltage applied. Derivate this equation after the time t gives the current I:

Q̇ = I = C · V̇

With Faraday’s law Φ̇ = V (Φ as the magnetic flux) this gives the first term for the current through
the capacitor

I = C · Φ̈.

The current I in a Josephson junction is given by

I = Ic · sin
(2πΦ

Φ0

)
with the flux quantum Φ0, which is the second term. The third term comes from the relationship
between the flux Φ in an inductor with inductivity L1 and a current I:

Φ = L1 · I

With the applied flux Φe and the flux in the ring this results in

I = Φ− Φe

L1
,

which is the third term.

In this example it isn’t as easy as before to construct a Lagrangian. But luckily we are quite smart
and so the right Lagrangian is

L(Φ, Φ̇) = CΦ̇2

2 − (Φ− Φe)2

2L1
+ Ejcos

(2πΦ
Φ0

)
.

7
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The conjugate variable is

∂L

∂Φ̇
= CΦ̇ = Q.

Then the Hamiltonian via a Legendre transformation:

H = QΦ̇− L = Q2

2C + (Φ− Φe)2

2L1
− Ejcos

(2πΦ
Φ0

)
Now the replacement of the conjugate variable, i.e. the quantization:

Q→ −i~ ∂

∂Φ

The result is the wanted Schrödinger equation for the given system:

− ~2

2C
∂2Ψ(Φ)
∂Φ2 + (Φ− Φe)2

2L1
Ψ(Φ)− Ejcos

(2πΦ
Φ0

)
Ψ(Φ) = EΨ(Φ)

3.1.3 Quantisation of a charged particle in a magnetic field (with spin)

For now we will neglect that the particle has spin, because in the quantisation we will treat the case
of a constant magnetic field pointing in the z-direction. In this simplified case there is no contribution
to the force from the spin interaction with the magnetic field (because it only adds a constant to the
Hamiltonian which does not affect the equation of motion).
We start with the equation of motion of a charged particle (without spin) in an EM-field, which is
given by the Lorentz force law.

F = m
∂2r(t)
∂t2

= q(E + v×B) (7)

One can check that a suitable Lagrangian is

L(r, t) = mv2

2 − qφ+ qv ·A (8)

where φ and A are the scalar and vector Potential, respectively. From the Lagrangian we get the
generalized momentum (canonical conjugated variable)

pi = ∂L

∂ṙx
= mvx + qAx

p = mv + qA (9)

v(p) = 1
m

(p− qA)

8
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The conjugated variable to position has now two components, the first therm in eqn.(9) mv which is
the normal momentum. The second term qA which is called the field momentum. It enters in this
equation because when a charged particle is accelerated it also creates a Magnetic field. The creation
of the magnetic field takes some energy, which is then conserved in the field. When one then tries to
stop the moving particle one has to overcome the kinetic energy plus the energy that is conserved in
the magnetic field, because the magnetic field will keep pushing the charged particle in the direction
it was going ( this is when you get back the energy that went into creating the field, also called self
inductance).

To construct the Hamiltonian we have to perform a Legendre transformation from the velocity v to
the generalized momentum p.

H =
3∑
i=1

pivi(pi)− L(r,v(p, t)

H = p · 1
m

(p− qA)− 1
2m(p− qA)2 + qφ− q

m
(p− qA) ·A

Which then reduces to

H = 1
2m(p− qA)2 + qφ (10)

Eqn.(10) is the Hamiltonian for a charged particle in an EM-field without Spin. The QM Hamiltonian
of a single Spin in a magnetic field is given by

H = −m̂ ·B (11)

where

m̂ = 2gµB
~

Ŝ (12)

µB = q~
2m the Bohr Magnetron and Ŝ is the QM Spin operator. By Replacing the momentum and

location in the Hamiltonian by their respective QM operators we obtain the QM Hamiltonian for our
System

Ĥ = 1
2m(p̂− qA(r̂))2 + qφ(r̂)− 2gµB

~
Ŝ ·B(r̂) (13)

We consider the simple case of constant magnetic field pointing in the z-direction B = (0, 0, Bz) and
φ = 0. Plugging this simplifications in eqn.(13) yields

Ĥ = 1
2m(p̂− qA(r̂))2 − 2gµB

~
BzŜz ≡ Ĥ1 + Ŝ (14)

We see that the Hamiltonian consists of two non interacting parts Ĥ1 = 1
2m(p̂ − qA(r̂))2 and Ŝ =

−2gµB
~ BzŜz. The state vector of an electron consists of a spacial part and a Spin part

9



TU Graz, SS 2010 Advanced Solid State Physics

|Ψ〉 = |ψSpace〉 ⊗ |χSpin〉

Where the Symbol ⊗ denotes a so called tensor product. The Schroedinger equation reads

(Ĥ1 ⊗ ‖̂+ Ŝ ⊗ ‖̂)|ψSpace〉 ⊗ |χSpin〉 = E|ψSpace〉 ⊗ |χSpin〉
Ĥ1|ψ〉 ⊗ |χ〉+ |ψ〉 ⊗ Ŝ|χ〉 = E|ψ〉 ⊗ |χ〉 (15)

From eqn.(14), we see that the Spin part is essentially the Sz operator. It follows that the Spin part
of the state vector is |χ〉 = | ± z〉. Thus, we have

Ŝ|χ〉 = −2gµB
~

BzŜz| ± z〉 = ∓gµBBz| ± z〉 (16)

where we used Ŝz| ± z〉 = ±~
2 . Using eqn.(16), we can rewrite the Schroedinger equation, eqn.(15),

resulting in

Ĥ1|ψ〉 ⊗ | ± z〉 ∓ |ψ〉 ⊗ gµBBz| ± z〉 = E|ψ〉 ⊗ | ± z〉
Ĥ1|ψ〉 ⊗ | ± z〉 = (E ± gµBBz)|ψ〉 ⊗ | ± z〉 ≡ E′|ψ〉 ⊗ | ± z〉 (17)

Where we define E′ = E ± gµBBz. In order to obtain a differential equation in space variables, we
multiply eqn.(17) by 〈r| ⊗ 〈σ| from the left.

(〈r| ⊗ 〈σ|)(Ĥ1|ψ〉 ⊗ | ± z〉) = E′(〈r| ⊗ 〈σ|)(|ψ〉 ⊗ | ± z〉)
〈r|Ĥ1|ψ〉〈σ| ± z〉 = E′〈r|ψ〉〈σ| ± z〉 (18)

Canceling the Spin wave function 〈σ| ± z〉 on both sides of eqn.(18) and plugging in the definition
Ĥ1 = 1

2m(p̂− qA(r̂))2 from eqn.(15) yields

1
2m(~∇+ qA(r))2ψ(r, t) = E′ψ(r, t) (19)

For a magnetic field B = (0, 0, Bz) we can choose the vector potential A(r) = Bzxy (this is called
Landau gauge). Using the Landau gauge and multiplying out the square leaves us with

1
2m(−~2( ∂

2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) + 2i~qBzx
∂

∂y
+ q2B2

zx
2)ψ = E′ψ (20)

In eqn.(20) only x appears explicitly, which motivates the ansatz

ψ(r, t) = ei(kzz+kyy)φ(x) (21)

After plugging this ansatz into eqn.(20), we get

1
2m(−~2φ′′ + ~2(k2

y + k2
z)φ− 2~qBzkyxφ+ q2B2

zx
2φ) = E′φ (22)

10
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By completing the square we get a term −~2k2
y which cancels with the one already there and we are

left with
1

2m(−~2φ′′ + ~2k2
zφ+ (qBzx− ~ky)2φ) = E′φ

1
2m(−~2φ′′ + q2B2

z (x− ~ky
qBz

)2φ) = (E′ − ~2k2
z

2m )φ ≡ E′′φ

− ~2

2mφ′′ + 1
2m

q2B2
z

m2 (x− ~y
qBz

)2 = E′′φ (23)

We see that the z-part of the Energy Ez = ~2k2
z

2m is the same as for a free electron. This is because a
constant magnetic field pointing in the z-direction leaves the motion of the particle in the z-direction
unchanged. Comparing eqn.(23) to the equation of a harmonic oscillator

− ~
2mφ′′ + 1

2mω
2(x− xo)2 = Eφ (24)

with energies En = ~ω(n+ 1
2), we obtain

E′′n = ~
qBz
m

(n+ 1
2)

E′n = ~
qBz
m

(n+ 1
2) + ~2k2

z

2m

En = ~
qBz
m

(n+ 1
2) + ~2k2

z

2m ∓ gµBBz (25)

Where each energy level En is split into two levels because of the term ∓gµBBz. Where the minus
is for Spin up (parallel to B), which lowers the energy because the Spin is aligned and plus for Spin
down (anti parallel). It should be noted that ωc = qBz

m is also the classical angular velocity of an
electron in a magnetic field. Rewriting eqn.(25) by using the cyclotron frequency ωc and µB = q~

2m ,
we end up with

En = ~2k2
z

2m + ~ωc(n+ 1
2)∓ g

2ωc

En = ~2k2
z

2m + ~ωc(n+ 1∓ g
2 ) (26)

3.1.4 Dissipation

Quantum coherence is maintained until the decoherence time. This depends on the strength of the
coupling of the quantum system to other degrees of freedom. As an example: Schrödinger’s cat. The
decoherence time is very short, because there is a lot of coupling with other, lots of degrees of freedom.
Therefore a cat, which is dead and alive at the same time, can’t be investigated.

In solid state physics energy is exchanged between the electrons and the phonons. There are Hamil-
tonians H for the electrons (He), the phonons (Hph) and the coupling between both (He−ph). The
energy is conserved, but the entropy of the entire system increases because of these interactions.

H = He +Hph +He−ph

11
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4 Quantization of the Electromagnetic Field - Quantization Recipe

This chapter serves as a template for the quantization of phonons, magnons, plasmons, electrons,
spinons, holons and other quantum particles that inhabit solids. It is also shown how macroscopic,
easier measurable properties are derived.

The first aim is to get to the equation of motion of electrodynamics - the wave equation. In electro-
dynamics Maxwell’s equations describe the whole system:

∇ ·E = ρ

ε0
(27)

∇ ·B = 0 (28)

∇×E = −∂B
∂t

(29)

∇×B = µ0j + µ0ε0
∂E
∂t

(30)

The field can also be described by a scalar potential V and a vector potential A:

E = −∇V − ∂A
∂t

B = ∇×A

In vacuum, ρ = 0 and j = 0, therefore also V can be chosen to vanish. Coulomb gauge (∇ ·A = 0) is
considered to get

∇ · ∂A
∂t

= 0

∇ · ∇ ×A = 0

∇× ∂A
∂t

= ∂

∂t
∇×A

∇×∇×A = −µ0ε0
∂2A
∂t2

(31)

The first three equations don’t help because they are just a kind of vector identities. But with eqn.
(31) and the vector identity

∇×∇×A = ∇(∇ ·A)−∇2A = −∇2A

because of Coulomb gauge the wave equation

c2∇2A = ∂2A
∂t2

(32)

can be derived. Target reached - now the next step can be done.

The wave equation can be solved by normal mode solutions, which have the form

A(r, t) = Acos(k · r− ωt)

12



TU Graz, SS 2010 Advanced Solid State Physics

A as the amplitude of the plane wave, with a linear dispersion relationship (still classical) of

ω = c|k|.

To quantize the wave equation it is necessary to construct a Lagrangian by inspection. First it is
possible to write the wave equation for every component like

−c2k2As = ∂2As
∂t2

because of Fourier space (∇ → ik). By looking long enough at this equation the Lagrangian which
satisfies the Euler-Lagrange equations (3) is found to be

L = Ȧ2
s

2 −
c2k2

2 A2
s

The conjugate variable is

∂L

∂Ȧs
= Ȧs.

Again the Hamiltonian can be derived with a Legendre transformation:

H = ȦsȦs − L = Ȧ2
s

2 + c2k2

2 A2
s

For quantization the conjugate variable is replaced

Ȧs → −i~
∂

∂As
,

which gives the Schrödinger equation

−~2

2
∂2Ψ
∂A2

s

+ c2k2

2 A2
sΨ = EΨ.

This equation is mathematically equivalent to the harmonic oscillator. In this case also the eigenvalues
are the same:

Es = ~ωs(js + 1
2)

with ωs = c|ks| and js = 0, 1, 2, ..., js is the number of photons in mode s.

13
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To get some macroscopic properties the partition function is useful, especially the canonical partition
function Z(T, V )

Z(T, V ) =
∑
q

e
− Eq
kBT ,

which is relevant at a constant temperature T . For photons the sum over all microstates is:

Z(T, V ) =
∑
j1

...
∑
jsmax

e
− 1
kBT

∑smax
s=1 ~ωs(js+ 1

2 )

The sum in the exponent can be written as a product:

Z(T, V ) =
∑
j1

...
∑
jsmax

smax∏
s=1

e
−

~ωs(js+ 1
2 )

kBT

This is a sum of jsmaxmax terms, each term consisting of smax exponential factors. It isn’t obvisious, but
this sum can also be written as:

Z(T, V ) =
smax∏
s=1

[
e
− ~ωs

2kBT + e
− 3~ωs

2kBT + e
− 5~ωs

2kBT + ...

]

Now if the right factor is put out, the form of a geometric series (1 + 1
x + 1

x2 + ... = 1
1−x) is derived:

Z(T, V ) =
smax∏
s=1

 e
~ωs

2kBT

1− e
~ωs
kBT


The free energy F is given by

F = −kBT ln(Z).

Inserting Z leads to

F =
∑
s

~ωs
2 + kBT

∑
s

ln

(
1− e−

~ωs
kBT

)
. (33)

The first term is the ground state energy, which cannot vanish. Often it is neglected, like in the
following calculations.

14
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Figure 4: Quantization of k-space

For further analysis the sum is converted to an integral. Before this can be done, the density of states
D must be evaluated. For an electromagnetic field in a cubic region of length L with periodic boundary
conditions, the longest wavelength λmax, which fullfills the boundary conditions, is λmax = L. The
next possible wavelength λmax−1 is λmax−1 = L

2 and so on. This gives possible values for k(x,y,z):

k(x,y,z) = 2π
λ

= 0,±2π
L
,±4π

L
, ...

The volume in k-space occupied by one state in 3D is given by
(

2π
L

)3
(see fig. 4). The number of

states in 3D is

L3D(k)dk = 24πk2dk(
2π
L

)3 = k2L3

π2 dk,

where the factor 2 occurs because of the two possible (transverse) polarizations of light (for phonons
there would be 3: 2 transversal, 1 longitudinal). This gives the density of states D(k):

D(k) = k2

π2

With the variable ω instead of k, with ω = ck → dω = cdk this gives:

D(ω) = ω2

c3π2

Now the Helmholtz free energy (density) f can be calculated with eqn. (33):

f = kBT

L3

∑
s

ln

(
1− e−

~ωs
kBT

)
≈ kBT

∫ ∞
0

ω2

c3π2 ln

(
1− e−

~ω
kBT

)
dω

With x = ~ω
kBT

and integration by parts:

f = (kBT )4

~3c3π2

∫ ∞
0

x2ln(1− e−x)dx = − (kBT )4

3~3c3π2

∫ ∞
0

x3

ex − 1dx.
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The entropy (density) s is

s = − ∂f
∂T

= − 4k4
BT

3

3~4c3π2

∫ ∞
0

x3

ex − 1dx

and the internal energy (density) u is

u = f + Ts = −3f = −(kBT )4

~3c3π2

∫ ∞
0

x3

ex − 1dx.

The integral at the end is just a constant factor π4

15 . This gives an internal energy of

u = π2(kBT )4

15~3c3 ,

from which the Stefan-Boltzmann law, the intensity I (power/area) emitted by a black body can
be found to be

I = 2π5(kBT )4

15h3c2 = σT 4,

with σ as the Stefan-Boltzmann constant.
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Figure 5: Planck radiation - internal energy as a function of wavelength at T = 2000 K

Out of these results Planck’s radiation law can be derived. From the internal energy u =
∫∞

0 u(ω)dω
the energy density can be found with substituting x = ~ω

kBT
:

u(ω) = ~ω
ω2

c3π2
1

e
~ω
kBT − 1

dω

This is Planck’s radiation law in terms of ω. The first term is the energy of one mode, the second
term is the density of modes/states, the third term is the Bose-Einstein factor, which comes from
the geometric series. Planck’s law can also be written in terms of the wavelength λ by substituting
x = hc

λkBT
, which is more familiar (see also fig. 5):

u(λ) = 8πhc
λ5

1

e
hc

λkBT − 1
dλ

The position of the peak of the curve just depends on the temperature - that isWien’s displacement
law. It is used to determine the temperature of stars.

λmax = 2897, 8 · 10−6 mK

T

4.1 Thermodynamic Quantities

After an integration over all frequencies (all wavelengths) we get the thermodynamic quantities. The
free energy F has the form

F = −kBT ln(Z) = −4σV T 4

3c J.

17
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So it is ∝ T 4. σ = 2π5k4
B

15h3c2 = 5.67 · 10−8 Wm−2K−4 is the Stefan-Boltzmann constant. The entropy S
is

S = −∂F
∂T

= 16σV T 3

3c J/K.

This is the fermi expression for the entropy for a gas of photons at a specific temperature. By knowing
the free energy F and the entropy S the internal energy U can be calculated:

U = F + TS = 4σV T 4

c
J.

From these expressions one can calulate some more measurable quantities. An important quantity is
the pressure P.

P = −∂F
∂V

= 4σT 4

3c N/m2.

A photon at a specific temperature exerts a pressure. Furthermore photons carry momentum p,
even though they have no mass.

p = ~k

The momentum is related to the wavelength. The specific heat CV is also easy to calculate:

CV = −∂U
∂T

= 16σV T 3

c
J/K (34)

It is the amount of energy in Joule you need to raise the temperature of some volume of material by
1 Kelvin. The specific heat is ∝ T 3. Eqn. 34 is also the Debye form for phonons. So phonons also
have energy. (If you heat up any kind of solid, some energy goes in the lattice vibration)

The difference between phonons and photons is that for photons it is ∝ T 3 for arbitrary high tem-
peratures (its just always ∝ T 3) and for phonons there is a debye frequency (a highest frequency of
soundwaves in a solid), which has to do with the spacing between the atoms. So in terms of sound
waves eqn. 34 is only the low temperature form, but for photons it is for all temperatures.

4.1.1 Recipe for the Quantization of Fields

• The first thing to do is to find the classical normal modes. If it is some kind of linear wave
equation plane waves will always work (so try plane waves). If the equations are nonlinear,
linearize the equations around the point you are interested in.

• Quantize the normal modes and look what the energies are.

• Calculate the density of modes in terms of frequency. (D(k) is always the same)

• Quantize the modes

• Knowing the distribution of the quantum states, deduce thermodynamic quantities.

Z(T, V ) =
∑
q

exp
(
− Eq
kBT

)
F = −kBT lnZ

18
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5 Photonic Crystals

5.1 Intruduction: Plane Waves in Crystals

A crystal lattice is a periodic arrangement of lattice points. If a plane wave hits the crystal, it scat-
ters from every point in it. The scattered waves typically travel as spherical waves away from the
points. There are certain angles where all of these reflections add constructively, hence they generate
a diffraction peak in this direction. In fig. 6 one point is defined as the origin. An incoming radio

Figure 6: Scattering amplitude.

wave scatters from the origin and goes out into a direction where a detector is positioned. Another
ray scatters in some general position r and then also travels out towards the detector. The beam that
goes through the origin has by definition phase 0. The beam that goes through the point r travels an
extra length (r cos θ + r cos θ′).

The phase of the beam scattered at r is (2π
λ (r cos θ + r cos θ′)) = (k − k′)r. So the phase factor

is exp(i(k− k′)r). If the phase difference is 2π or 4π, then the phase factor is 1 and the rays add
coherently. If the phase is π or 3π, then the phase factor is −1 and the rays add destructively.

Now consider a scattering amplitude F .

F =
∫
dV n(r) exp

(
i(k− k′)r

)
=
∫
dV n(r) exp (−i∆kr) (35)

The amplitude of the scattered wave at r is assumed to be proportional to the electron density n(r)
in this point. A high concentration of electrons in r leads to more scattering from there, if there are
no electrons in r then there is no scattering from that point. In eq. (35) the 3rd term is rewritten
because of ∆k = k′ − k→ k− k′ = −∆k.
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Now we expand the electron density n(r) in a fourier series (this is possible because the periodic-
ity of n(r) is the same as for the crystal).

n(r) =
∑
G
nG exp (iG · r) =

∑
G
nG (cos (G · r) + i sin (G · r)) (36)

To expand in terms of complex exponentials the factor nG has to be a complex number, because a real
function like the electron density does not have an imaginary part. If the fundamental wavelength of
the periodic structure is a then there would be a vector G = 2π

a in reciprocal space. So we just sum
over all lattice vectors in reciprocal space which correspond to a component of the electron density.

We combine the scattering amplitude F and the electron density n(r) and get

F =
∑
G

∫
dV nG exp (i (G−∆k) · r)

Thus, the phase factor depends on G and on ∆k. If the condition G −∆k = 0 is fullfilled for every
position r, the phase factor is 1. For all other values of ∆k it’s a complex value which is periodic in r,
so the integral vanishes and the waves interfere destructively. We obtain the diffraction condition

G = ∆k = k′ − k

Figure 7: Geometric interpretation of the diffraction condition

Most of the time in diffraction scattering is elastic. In this case the incoming and the outgoing wave
have the same energy and because of that also the same wavelength. That means |k| = |k′| because
of 2π

λ = k. So for elastic scattering the difference between k and k′ must be a reciprocal lattice vector
G (as shown in fig. 7). We apply the law of cosines and get a new expression for the diffraction
condition.

k2 +G2 − 2kG cos (θ) = k2 → 2k ·G = G2 :4−→ k · G
2 =

(
G

2

)2

The geometric interpretation can be seen in Fig. 8. The origin is marked as 0. The point C is in
the direction of one of the wave vectors needed to describe the periodicity of the electron density. We
take the vector GC half way there and draw a plane perpendicular on it. This plane forms part of a
volume.

20



TU Graz, SS 2010 Advanced Solid State Physics

O

P2

P1

G2
2

k2
G1
2

k1

Figure 8: Brillouin zone

Now we take the inner product of GC with some vector k1. If this product equals G2

2 then k1 will fall
on this plane and the diffraction condition is fullfilled. So a wave will be diffracted if the wavevector
k ends on this plane (or in general on one of the planes).

The space around the origin which is confined by all those planes is called the 1st Brillouin zone.
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(a) (b)

Figure 9: a) Dispersion relation for photons in vacuum (potential is zero!); b) Density of states in
terms of ω for photons (potential is nonzero!).

5.2 Empty Lattice Approximation (Photons)

What happens to the dispersion relationship of photons when there is a crystal instead of vacuum?
In the Empty Lattice Approximation a crystal lattice is considered, but no potential. Therefore
diffraction is possible. The dispersion relation in vacuum is seen in fig. 9(a).

The slope is the speed of light. If we have a crystal, we can reach diffraction at a certain point.
The first time we do that is when k reaches π

a . Then we are on this plane which is the half way to
the first neighboring point in reciprocal space. In a crystal the dispersion relation is bending over
near the brillouin zone boundary and then going on for higher frequencies. With photons it happens
similar to what happens with electrons. Close to the diffraction condition a gap will open in the
dispersion relationship if a nonzero potential is considered (with the Empty Lattice Approximation no
gap occurs, because the potential is assumed to be zero), so there is a gap of frequencies where there
are no propagating waves. If you shoot light at a crystal with these frequencies, it would get reflected
back out. Other frequencies will propagate through.

Because of the gap in the dispersion relationship for a nonzero potential, it also opens a gap in the
density of states. In terms of k the density of states is distributed equally. The possible values of k are
just the ones you can put inside with periodic boundary conditions. In terms of ω (how many states
are there in a particular range of ω) it is first constant followed by a peak resulting of the dispersion
relation’ bending over. After that there is a gap in the density of states and another peak (as seen in
fig. 9(b)).

The Empty Lattice Approximation can be used to guess what the dispersion relationship looks
like. So we know where diffraction is going to occur and what the slope is. This enables us to
tell where the gap occurs in terms of frequency.
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5.3 Central Equations

We can also take the central equations to do this numerically. Now we have the wave equation with
the speed of light as a function of r, which means we assume for example that there are two materials
with different dielectric constants (so there are also different values for the speed of light inside the
material).

c2(r)∇2u = d2u

dt2

This is a linear differential equation with periodic coefficients. The standard technique to solve this
is to expand the periodic coefficients in a fourier series (same periodicity as crystal!):

c2(r) =
∑
G
UG exp (iG · r) (37)

This equation describes the modulation of the dielectric constant (and so the modulation of the speed
of light). UG is the amplitude of the modulation. We can also write

u(r, t) =
∑

k
ck exp (i(k · r− ωt)). (38)

Putting the eqns. (37) and (38) into the wave equation gives us∑
G
UG exp (iG · r)

∑
k
ckk

2 exp (i(k · r− ωt)) =
∑

k
ckω

2 exp (i(k · r− ωt)) (39)

On the right side we have the sum over all possible k-vectors and on the left side the sum over all
possible k- and G-vectors. It depends on the potential how many terms of G we have to take. Eqn.
(39) must hold for every k, so we take a particular value of k and then search through the left side of
eq. (39) for other terms with the same wavelength. So we take all those coefficients and write them
as an algebraic equation:∑

G
(k−G)2UGck−G = ckω

2

The vectors G describe the periodicity of the modulation of the material. So we only do not know
the coefficients and ω yet and we can write this as a matrix equation.

We look at a simple case with just a cosine-potential in x-direction. This means the speed of light is
only modulated in the x-direction. Looking at just 3 relevant vectors of G and with

c2(r) = U0 + U1 exp (iG0r) + U1 exp (−iG0r)

we get (k + G0)2U0 k2U1 0
(k + G0)2U1 k2U0 (k−G0)2U1

0 k2U1 (k−G0)2U0

 ·
 ck+G

ck
ck−G

 = ω2

 ck+G
ck
ck−G

 (40)

as the matrix equation. G and U come from the modulation of the material, k is just the value of k.
So what we do not know are the coefficients and ω. The coefficients have to do with the eigenvectors
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Figure 10: Dispersion relation for photons in a material.

of the matrix and ω2 are the eigenvalues of the matrix. We just need to choose numbers for them
and find the eigenvalues. Solving this over and over for different values of k we get a series of ω that
solves the problem and gives us then the entire dispersion relationship.

So take some value of k, diagonalize the matrix, find the eigenvalues (ω2), take the square root of these
three values and plot them in fig. 10. Then the next step is to increase the value of k a little bit and
do the calculation again, so we have the next three points. This has to be done for all the points be-
tween zero and the brillouin zone boundary (which is half of the way to a first point G out of the origin).

At low values for k we get a linear dispersion relation, so the slope is the average value of the speed of
light of the material. But when we get close to the brillouin zone boundary, the dispersion relationship
bends over and then there opens a gap. So light with a wavelength close to that bragg condition will
just get reflected out again (this is called a Bragg reflector).

After that the dispersion relationship goes on to the left side and then there is another gap (al-
though it is harder to see). Fig. 10 only shows the first three bands. To calculate higher bands, you
need to include more k values.

5.4 Estimate the Size of the Photonic Bandgap

Sometimes we do not need to know exactly what the dispersion relationship looks like, we just want to
get an idea how big the band gap is. Then the way to calculate is to reduce the matrix that needs to be
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solved to a two-by-two matrix, which means that we only take one fourier coefficient into account.(
(k−G0)2U0 k2U1
(k−G0)2U1 k2U0

)
·
(
ck−G
ck

)
= ω2

(
ck−G
ck

)

For k = G
2 it is

G2
0

4

(
U0 U1
U1 U0

)
·
(
ck+G
ck

)
= ω2

(
ck+G
ck

)
Finding the eigenvalues of a two-by-two matrix is easy, we can do that analytically. As a result for
the eigenvalues we get the two frequencies

ω = G0
2
√
U0 − U1 and ω = G0

2
√
U0 + U1.

So we can estimate how large the gap is. Further we know that very long wavelengths do not see the
modulation, so the speed of light in this region is the average speed. If we know the modulation and
where the brillouin zone boundary is, we can analytically figure out what the size of the gap is.

5.5 Density of States

From the dispersion relationship we can determine the density of states. This means how many states
are there with a particular frequency. When we have light travelling through a periodic medium, the
density of states is different than in vacuum. So some of those things calculated for vacuum, like the
radiation pressure or the specific heat, are now wrong because of the different density of states.

In vacuum the density of states in one dimension is just constant, because in the one-dimensional
k-space the allowed values in the periodic boundary conditions are just evenly spaced along k. The
allowed wave that fits in a one-dimensional box of some length L is evenly spaced in k. So in this
region the allowed states is a linear function so it is evenly spaced in ω too.

In a material we start out with a constant density of states. When we get close to the brillouin
zone boundary, it is still evenly spaced in terms of k. But the density of states increases at the bril-
louin zone boundary and then drops to zero, because there are no propagating modes in this frequency
range (photons with these frequencies will get reflected back out). After the gap, the density of states
bunches again and then gets kind of linear (see fig. 9(b)).

In fig. 10 it looks a bit like a sin-function near the brillouin zone boundary, so ω ≈ ωmax| sin ka
2 |.

So we get k = 2
a sin−1

(
ω

ωmax

)
. The density of states in terms of ω is

D(ω) = D(k) dk
dω
.

The density of states in terms of k is a constant. The density of states in ω is

D(ω) ∝ 1√
1− ω2

ω2
max

(41)

It looks like the plot in fig. 11(a).
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(a) (b)

Figure 11: a) Density of states for photons in one dimension in a material in terms of ω; b) Density
of states of photons for voids in an fcc lattice

5.6 Photon Density of States

Now we have a three-dimensional density of states calculated for an fcc crystal. There are holes in
some material and the holes have an fcc lattice. The material has a dielectric constant of 3, the holes
have 1 (looks like some kind of organic material). So we have a lot of holes in the material, a large
modulation and we calculate the density of states. The little line in fig. 11(b) is the vacuum density of
states. But we have this periodic modulation and when there is a band we can get a gap. The peaks
are typically near edges and near the gaps because there the states pile up.
If we have a strange function for the density of states and we want to calculate the corresponding
planck radiation law, we just have to plug it in because the planck radiation law is the energy times
the density of states times the Bose-Einstein factor (see chapter 4).

26



TU Graz, SS 2010 Advanced Solid State Physics

6 Phonons

In the long wavelength limit (at low frequencies), sound obeys the wave equation:

c2∇2u(x, t) = ∂2u(x, t)
∂t2

(42)

By substituting the speed of light with the speed of sound we can make use of all the previously stated
formulas with which we computed the properties of photons, to compute the properties of phonons in
the long wavelength limit.

6.1 Linear Chain

We will now take a closer look at two simple models, the first being the Linear Chain. In this model,
we have a chain of identical masses, which are connected to their neighbors by a linear force.

m m m m

Figure 12: Linear chain of atoms

Thus, Newtons law for the sth mass reads as follows:

m
∂2us(x, t)

∂t2
= C(us+1 − 2us + us−1)

with a spring constant C and the lattice constant a.
By assuming harmonic solutions like

us = Ake
i(ksa−ωt)

we obtain the following equation:

−ω2m = C(eika − 2 + e−ika)

With using the Euler identities this equation simplifies to

−ω2m = 2C(1− cos(ka)).

Hence, the solutions for ω are:

ω =
√

4C
m

∣∣∣∣sin(ka2
)∣∣∣∣

Now it is possible to draw the dispersion relation for this 1-dimensional chain.

The Debye-frequency, which is the highest frequency of the normal mode, can be computed very
easily: The shortest wavelength we can create in our chain is λ = 2a and k can be expressed like
k = 2π

λ , so kD = π
a . This kD also gives us the Brillouin zone boundaries. It also should be noted,
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Figure 13: a) Dispersion relation of a 1-dimensional chain of atoms; b) Density of states for a 1-
dimensional chain of atoms

that for phonons, there are as many normal modes as there are degrees of freedom in the crystal,
therefore our 1-dimensional chain can only have 1 normal mode.

The density of states D(ω) can be obtained the same way as for photons, by computing D(ω) =
D(k) dkdω which leads us to fig. 13(a).

Linear chain of two different types of atoms
Now we generalize our assumption a bit, as we take two different masses M1 and M2 into account, so
every atom of mass M1, to which we assign the position vectors us, is coupled to two atoms of masses
M2 with position vectors vs and vice versa.

M1 M1M2 M2

Figure 14: Linear chain of two different types of atoms

Hence, Newton’s law has to be altered as follows:

M1
∂2us(x, t)

∂t2
= C(vs−1 − 2us + vs)

M2
∂2vs(x, t)

∂t2
= C(us − 2vs + us+1)

As before, we assume harmonic solutions for us and vs

us = uei(ksa−ωt)

vs = vei(ksa−ωt)

to obtain the equations:

−ω2M1u = C(v(1 + e−ika)− 2u)
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−ω2M2v = C(u(1 + eika)− 2v)

These equations can be written in a matrix(
ω2M1 − 2C C(1 + e−ika)
C(1 + eika) ω2M1 − 2C

)(
u
v

)
= 0

In order for this equation to be true, the determinant of the matrix has to vanish, which leads to the
following equation (once again the Euler identities were used):

M1M2ω
4 − 2C(M1 +M2)ω2 + 2C2(1− cos(ka)) = 0

And for ω the following equation must hold:

ω2 = C

( 1
M1

+ 1
M2

)
± C

√( 1
M1

+ 1
M2

)2
− 4 sin2 (ka)

M1M2
= 0

As one can see in fig. 15(a), there are two solutions for ω2 and therefore also two branches if we
plot

√
2C

(
1
M1

+ 1
M2

)
, an optical and an acoustical branch (without loss of generality we assumed

M1 > M2).

0 pi/(2a) pi/a
0

k

ω

(a)

0
ω

D
(ω

)

(b)

Figure 15: a) Density of states for a 1-dimensional chain of two different types of atoms; b) Dispersion
relation of a 1-dimensional chain of two different types of atoms

The density of states for this chain can be seen in fig. 15(b). If both masses are the same, we have
the same case as in fig. 13(a), where the optical branch vanishes and the Brillouin zone boundaries
are at π

a (a is the distance between two atoms). However, if the masses are only slightly different, the
Brillouin zone gets smaller ( π2a), because the lattice constant is now 2a instead of a. The dispersion
relation now looks like as shown in fig. 16, because the branches from the neighboring zones reach in
and there is an optical branch once more.
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Figure 16: Dispersion relation of a 1-dimensional chain of two different types of atoms with similar
masses

6.2 Simple Cubic

Now we take a look at the behavior of phonons in a simple cubic crystal (the indices p, q and r define
the lattice site of the atom in the x-, y- and z-direction).

Figure 17: Simple cubic arrangement of atoms

We assume, that each atom is coupled to its neighbors through linear forces. The spring constant
C1 shall be assigned to the force between the atom and the 6 nearest neighbors (fig. 17), C2 shall be
the spring constant for the 12 second-nearest neighbors and so forth. At first we will only consider
the nearest neighbors and because the atoms in different directions are independent from each other,
Newton’s laws looks the same as for the 1-dimensional chain with identical atoms:

m
∂2xp,q,r
∂t2

= C1(xp−1,q,r − 2xp,q,r + xp+1,q,r)

m
∂2yp,q,r
∂t2

= C1(yp,q−1,r − 2yp,q,r + yp,q+1,r)
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m
∂2zp,q,r
∂t2

= C1(zp,q,r−1 − 2zp,q,r + zp,q,r+1)

Once again, we assume plane wave solutions like

rp,q,r = rke
i(pka1+qka2+rka3−ωt)

(a1, a2 and a3 are the primitive lattice vectors of the simple cubic lattice) and obtain the equations

−ω2
im = 2C1(1− cos(kia))

with i ε{x, y, z}. So in this case, where we only considered the next nearest neighbors, the oscillations
in the x-, y- and z-direction are independent from each other and the energy is just the sum over the
oscillations’ energies in all directions:

Ek = ~(ωx + ωy + ωz) (43)

Now we also want to take a look at the second-nearest neighbors, but we are limiting ourselves to a 2
dimensional problem, because otherwise the equations would get too complicated. Hence, Newton’s
laws read as follows:

m
∂2xp,q
∂t2

= C1(xp−1,q − 2xp,q + xp+1,q) + C2√
2

(xp−1,q−1 + xp−1,q+1 + xp+1,q−1 + xp+1,q+1 − 4xp,q)

+C2√
2

(yp−1,q−1 + yp−1,q+1 + yp+1,q−1 + yp+1,q+1 − 4yp,q)

m
∂2yp,q
∂t2

= C1(yp−1,q − 2yp,q + yp+1,q) + C2√
2

(yp−1,q−1 + yp−1,q+1 + yp+1,q−1 + yp+1,q+1 − 4yp,q)

+C2√
2

(xp−1,q−1 + xp−1,q+1 + xp+1,q−1 + xp+1,q+1 − 4xp,q)

The factor 1√
2 has only been introduced to indicate the direction and could also be involved in a

constant C̃2 = C2√
2 . By assuming plane waves like

rp,q,r = rke
i(pka1+qka2−ωt)

we get the following matrix equation:(
axx axy
ayx ayy

)(
xk
yk

)
= mω2

(
xk
yk

)

axx = 2C1(1− cos (kxa)) + 4C2√
2

(1− cos (kxa) cos (kya))

axy = ayx = −4C2√
2

sin (kxa) sin (kya)

ayy = 2C1(1− cos (kya)) + 4C2√
2

(1− cos (kxa) cos (kya))
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(a) (b)

Figure 18: a) ω as a function of k in the 11-direction; b) ω as a function of kx

Plotting ω in the 10-direction (kx-direction), we get 2 frequencies, which correspond to one longitudinal
and one transverse mode (fig. 18(a)). If we plot ω as a function of the 11-direction however, we only
get 1 frequency, because the x- and the y-direction have the same influence (fig. 18(b)).

If we would have calculated this in 3 dimension, we would have ended up with a matrix equation for
every k, which would look like this:axx axy axz

ayx ayy ayz
azx azy azz


xk
yk
zk

 = mω2

xk
yk
zk

 (44)

This equation has 3 solutions, which correspond to 1 longitudinal and 2 transverse modes. (Fig.
19(a) shows the phonon dispersion relation for Hafnium, which has bcc-structure and 1 atom per unit
cell). Because there is one k for every unit cell we have 3N normal modes in our crystal (N shall be
the number of unit cells in our crystal). If we generalize our assumption as previously and take two
different types of atoms into account, we have 2 atoms per unit cell, which would lead to a 6x6-matrix.
Hence, there would also be 6 eigenvalues which correspond to 3 acoustic and 3 optical branches. (Fig.
19(b) shows the phonon dispersion relation for Silicon, a material with two atoms per unit cell and a
fcc Bravais lattice) If we would have even more atoms per unit cell, the number of optical branches
would be higher, but we still would have 3 acoustic branches.

Although the phonon dispersion relations of some specific materials might look very complicated,
materials with the same crystal structure will have very similar dispersion relations.

6.2.1 Raman Spectroscopy

Raman spectroscopy is a way to determine the occupation of the phonon modes. Typically, a sample
is illuminated with a laser beam. Most of the light scatters elastically (Rayleigh scattering), but the
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little amount of light, that is scattered inelastically, submits part of its energy to phonons. Therefore,
by measuring the change in energy and momentum during inelastic Raman scattering one can measure
the phonon modes. The occupation of the phonon modes can be determined by comparing how many
photons are lifted to higher energy levels (anti-Stokes process) to how many photons are scattered to
lower energies (Stokes process).

(a) (b)

Figure 19: a) Phonon dispersion relation for Silicon; b) Phonon dispersion relation for Hafnium
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7 Electrons

7.1 Free Electron Fermi Gas

The density of states D(E) of an electron gas is D(E) = D(k) dkdE , as stated previously. The energy of
a free electron regardless of the numbers of dimensions considered is always:

E = ~ω = ~2k2

2m
But the density D(k) is of course dependent on the number of dimensions:

D(k)1−D = 2
π
, D(k)2−D = k

π
, D(k)3−D = k2

π2

So computing the derivative dk
dE and expressing everything in terms of E leads us to these equations:

D(E)1−D = 1
~π

√
2m
E
, D(E)2−D = m

~2π
, D(E)3−D = (2m) 3

2

2~3π2

√
E

7.1.1 Fermi Energy

We assume a system of many electrons at temperature T = 0, so our system has to be in the lowest
possible energy configuration. Therefore, we group the possible quantum states according to their
energy and fill them up with electrons, starting with the lowest energy states. When all the particles
have been put in, the Fermi energy is the energy of the highest occupied state. The mathematical
definition looks like this

n =
∫ EF

0
D(E)dE (45)

where n is the electron density, D(E) the density of states in terms of the energy and EF is the Fermi
Energy.

Performing the integral for the densities of states in 1, 2, and 3 dimensions and plugging in these
Fermi energies in the formulas for the density of states gives us (N is the number of electrons and L
is the edge length of the basic cube, see also chapter 3):

1-D:

EF = ~2π2

8m

(
N

L

)2
, D(E) =

√
2m

~2π2E
= n

2
√
EFE

[ 1
Jm

]

2-D:

EF = ~2πN

mL2 , D(E) = m

~2π
= n

EF

[ 1
Jm2

]
3-D:

EF = ~2

2m

(
3π2N

L3

) 2
3

, D(E) = π

2

( 2m
~2π2

) 3
2

= 3n

2E
3
2
F

√
E

[ 1
Jm3

]
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Figure 20: a) Density of states of an electron gas in 3 dimensions; b) Density of states of an electron
gas in 2 dimensions; c) Density of states of an electron gas in 1 dimension

7.1.2 Chemical Potential

The Fermi Energy is of course a theoretical construct, because T = 0 can’t be reached, so we start to
ask ourselves what happens at non-zero temperatures. In case of non-zero temperatures one has to
take the Fermi-statistic into account. With this in mind, we adapt eqn. (45) for the electron density

n =
∫ ∞

0
D(E)f(E)dE (46)

where f(E) is the Fermi-function, so the equation for n reads as:

n =
∫ ∞

0

D(E)dE

e
E−µ
kBT + 1

In this equation, µ stands for the chemical potential, which can be seen as the change of the charac-
teristic state function per change in the number of particles. More precisely, it is the thermodynamic
conjugate of the particle number. It should also be noted, that for T = 0, the Fermi Energy and the
chemical potential are equal.
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7.1.3 Sommerfeld Expansion

When you calculate the thermodynamic quantities the normal way you get stuck analytically at the
density of states D(E) of the dispersion relationship. From this point on you have to work numerically.
The Sommerfeld-Expansion allows you to calculate analytically the leading order term(s) as a function
of temperature, which are enough in a lot of cases. The number of electrons n and the internal energy
u are:

n =
∫ ∞
−∞

D(E)f(E)dE u =
∫ ∞
−∞

E ·D(E)f(E)dE

with f(E) as the fermi function and E as the energy. We would like to perform integrals of the form:∫ ∞
−∞

H(E)f(E)dE

H(E) stands for an arbitrary function which is multiplied by the fermi function. Such an integral
appears if you want to calculate the total number of states or for instance µ, the chemical potential,
which is inside the fermi-function. We integrate by parts:∫ ∞

−∞
H(E)f(E)dE = K(∞)f(∞)−K(−∞)f(−∞)−

∫ ∞
−∞

K(E)df(E)
dE

dE

with

K(E) =
∫ E

−∞
H(E′)dE′ i.e. H(E) = dK(E)

dE
(47)

The fermi function f(E) at T = 0 K looks like a step function at the chemical potential. The last term
with the integral includes the derivation of the fermi function, which is a peak around the chemical
potential. The fermi function vanishes for E →∞, f(−∞) = 1 and H(−∞) = 0. With eqn. (47):∫ ∞

−∞
H(E)f(E)dE = −

∫ ∞
−∞

K(E)df(E)
dE

dE

Then K(E) is expanded around E = µ with a Taylor series (everywhere else the derivation is zero):

K(E) ≈ K(µ) + dK

dE E=µ
(E − µ) + 1

2
d2K

dE2 E=µ
(E − µ)2 + ...

Solving the integral this way is similar that you say that just the states near the fermi surface con-
tribute to the physical properties of the electrons. Only states near the fermi sphere contribute to the
measurable quantities.

With

x = E − µ
kBT∫ ∞

−∞
H(E)f(E)dE = K(µ)

∫ ∞
−∞

ex

(1 + ex)2dx+ kBT
dK

dE E=µ

∫ ∞
−∞

x · ex

(1 + ex)2 + ...
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where every odd term is zero (x, x3, x5) and the other ones are just numbers. If you put in these
terms you get

n =
∫ ∞
−∞

H(E)f(E)dE = K(µ) + π2

6 (kBT )2dH(E)
dE E=µ

+ 7π4

360(kBT )4d
3H(E)
dE3 E=µ

+ ...

Sommerfeld Expansion: Chemical Potential 3D
It is possible to get the chemical potential out of the Sommerfeld expansion. If H(E) = D(E), which
you get out of the dispersion relationship, you can get K(E) which is just the integral of H(E) over
all energies. You get the non-linear relationship of the µ and the T (EF as the fermi energy):

n = nµ1/2

E
3/2
F

+ π2

8 (kBT )2nµ
−1/2

E
3/2
F

+ ...

Dividing both sides by n gives:

1 = µ1/2

E
3/2
F

+ π2

8 (kBT )2µ
−1/2

E
3/2
F

+ ...

Sommerfeld Expansion: Internal energy
In this case H(E) = D(E)E. So we get the expression for the internal energy:

u =
∫ ∞
−∞

H(E)f(E)dE = 3n
5E3/2

F

µ3/2 + 3π2

8 (kBT )2 n

E
3/2
F

µ1/2

Sommerfeld Expansion: Electronic specific heat
If you differentiate the internal energy once you get the specific heat cV . So you see that the specific
heat is linear with the temperature.

cV = du

dT
= 3π2

4 (kBT ) n

E
3/2
F

µ1/2 + ....

If you take a metal and measure the specific heat at a certain temperature T , some of the energy goes
into the electrons (∝ T ) and some into the phonons (∝ T 3), because both are present in a metal:

cV = γT +AT 3

C
T is plotted versus T 2 to get a line (see fig. 21). The slope of the line is the phonon constant A and
the interception with the y-axis gives γ, the constant for the electrons.

Typically metals are given an effective mass m∗, which was reasonable when comparing the calcu-
lated free electron case (mass me, γ) with the results measured (γobserved) (The effective mass is a way
to parameterize a system - interaction was neglected). What was really done with this was specifying
a derivative of the Sommerfeld expansion. So because of history we are talking about effective mass,
but we mean this derivative in the Sommerfeld expansion.

m∗

me
= γobserved

γ
and m∗ = 2

9
dH

dE E=µ
·me
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Figure 21: Plot of the specific heat to get the constants

Sommerfeld Expansion: Entropy, Free Energy, Pressure
We can also calculate the entropy for the system. The specific heat is divided by temperature T and
we get the derivation of the entropy (with constant N and V ). So we get an entropy density s which
is linear with the temperature

s = 3π2

4 k2
BT

n

E
3/2
F

µ1/2 + ...

The Helmholtz free energy can be calculated with:

f = u− T · s

Also other thermodynamic quantities: The pressure P can be calculated with:

P = −
(
∂U

∂V

)
N

= 2
5nEF with EF = ~2

2m
3π2N

V

This pressure comes from the kinetic energy of the electrons, not from the e-e interaction, which
was neglected in this calculation. The bulk modulus B (how much pressure is needed to change the
volume) is:

B = −V ∂P
∂V

= 5
3P = 10

9
U

V
= 2

3n · EF

We can put all the calculated thermodynamic quantities into a table for free electrons (1d-, 2d-
, 3d-Schrödinger equation - see table 1). We started our calculation with the eigenfunction solution
(Ak ·ei(kx−wt)), which we put into the Schrödinger equation to get the dispersion relationship(E = ~ω).
To get the density of states D(k) we have to know how many waves fit in a box with periodic boundary
conditions. After that we calculate the density of states for energy D(E) = D(k) dkdE from that we
can get the Fermi energy. Until now everything can be calculated analytically, so now we go over to
the Sommerfeld equation to get the chemical potential (and internal energy, specific heat, entropy,
Helmholtz free energy, bulk modulus, etc. like seen before).
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1-D, free particle 2-D, free particle 3-D, free particle
i~dΨ

dt = − ~2

2m∆Ψ i~dΨ
dt = − ~2

2m∆Ψ i~dΨ
dt = − ~2

2m∆Ψ
Eigenfunct. sol. Ake

i(kx−wt) Ake
i(k·x−wt) Ake

i(k·x−wt)

Disp. relation E = ~ω = ~2k2

2m E = ~ω = ~2k2

2m E = ~ω = ~2k2

2m
DOS D(k) D(k) = 2

π D(k) = k
π D(k) = k2

π2

D(E) = D(k) dkdE D(E) = 1
π~

√
2m
E = n

2
√
EFE

D(E) = m
π~2 = n

EF
D(E) = (2m)

3
2

2π2~3

√
E = 3n

2E
3
2
F

√
E

Fermi energy EF = π2~2n2

8m EF = π~2n
m EF = ~2

2m(3π2n) 2
3

Chem. pot. ... ... ...

Table 1: Calculated thermodynamic quantities for free electrons

7.1.4 ARPES

The ARPES (angle resolved photo emission spectroscopy) is an experimental method to get the
dispersion relationship, which is needed to start the calculations. Here a photon (x-rays (XPS) or
ultraviolet light (UPS)) comes in, hits the sample and shoots out an electron. An electron analyser
finds out the energy of the electron. This is done just for a specific angle (angle resolved). The k-vector
of the incoming photon and the k-vector of the outgoing electron are known, also the energy of the
electron. From the variation of the energy of the incoming photon the dispersion relationship can be
found. The idea is that you have a density of states and the incoming photons shift the whole thing
up to free electrons. In the following figures 22 and 23 the principle of the arpes is shown.

Figure 22: ARPES(Angle resolved photo emission spectroscopy)
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Figure 23: Shifting the electrons as the density of states over ~ω (energy of photons)

7.2 Electronic Band Structure Calculations

In this section the band structure is calculated. In the sections before this was done for the free
electron gas (1d, 2d, 3d), now the electrons are put in a periodic potential and the properties are
evaluated with these methods:

• Empty lattice approximation

• Central equations

• Tight binding
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7.2.1 Empty Lattice Approximation

The empty lattice approximation is the easiest one for most materials. We know from previous
experiments that gaps will appear in the DOS for solids in a periodic potential. We also know that
if we have a metal, the electrons are almost free - the dispersion-relationship is a parabola. But at
the Brillouin zone boundary there will be some diffraction that will cause a gap. That’s the same for
the next boundary. For most materials that gap is approximately 1 eV big (The energy where the
gap occurs can be calculated with k = π

a and E = ~2k2

2m ). After the 1st Brillouin zone the dispersion
curve would move on to higher k-vectors, but we map it back into the 1st Brillouin zone (see fig.
24). This helps saving paper, but the more important reason is that the crystal lattice conserves the
momentum (i.e. if a photon excites an electron) by absorbing or giving momentum to the electrons
(the whole crystal starts to move with the opposite momentum of the electron). The third reason is
the symmetry (the Hamiltonian H commutes with the symmetry operator S). You can take any atom
and pick it up and put it down on another atom. So the empty lattice approximation just tells you
that you can draw the parabola and then draw another one just one reciprocal lattice vector shifted.
So you can draw the dispersion relationship in the first Brillouin zone. The dispersion relationships
are always symmetric in kx and k−x, so they are in y- and z-direction.

Figure 24: Dispersion relationship for a simple cubic lattice in 3D for the empty lattice approximation

If you have a simple cubic metal the curve plotted in fig. 25 shows the dispersion relation for the
empty lattice approximation. It starts at Γ, where k is zero, to different directions for example to M
at the 110 direction. This complicated looking thing is just the free electron model, where k starts at
zero and grows with k2. If there is a potential, gaps will be formed.

You can do the same for fcc (most metals). Fig. 26 is an equivalent kind of drawing for fcc. Again it
starts at Γ where k is zero and goes to X (to the y direction, in this crystal x, y and z direction have the
same symmetry (6 symmetry related directions)) or L (is closer in k space to Γ because the reciprocal
lattice to fcc is bcc and in bcc there are 8 nearest neighbors which are in the 111 direction).
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Figure 25: Dispersion relationship for a simple cubic lattice for the empty lattice approximation

If you make a calculation you get nearly the same band structure like in the empty lattice approxi-
mation and additionally you get the gaps at the Brillouin zone boundaries like expected. So this is a
good first approximation for the real band structure.

If you compare two materials, for example the group 4 elements, you see that the structures are al-
ways repeating in various crystals. You just look at the valence electrons (C, Si, Ge all have 4 valence
electrons), the other, inner electrons do not contribute to most of the material properties.
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Figure 26: Dispersion relationship for a fcc for the empty lattice approximation

7.2.2 Plane Wave Method - Central Equations

Now we want to talk about the Schrödinger equation with a periodic potential (in the free electron
model the potential was zero), i.e. electrons moving through a crystal lattice. Such calculations are
called band structure calculations (there are bands and bandgaps). Now the plane wave method is
used (simple method, numerically not very efficient). We will end up with something that’s called the
central equations.
We start with the Schrödinger equation, which is a linear differential equation with periodic coeffi-
cients.

−~2

2m ∇
2Ψ + U(r)Ψ = EΨ

When the function U(r) is periodic, it can be written as a Fourier- series (potential as a sum of plane
waves, G as a reciprocal lattice vector). For Ψ a former solution is assumed, which is also periodic,
but in the scale of the crystal (i.e. 1 cm). So the boundary conditions don’t matter.

U(r) =
∑
G
UGe

iGr

Ψ =
∑

k
Cke

ikr

These are put in the Schrödinger equation to get an algebraic equation out of a differential equation:

∑
k

~2k2

2m Cke
ikr +

∑
G

∑
k
UGCke

i(G+k)·r = E
∑

k
Cke

ikr (48)

We know ~2k2

2m and we know which G vectors correspond to the potential. The coefficients Ck are
unknown, but there are linear equations for the C’s. It can be written in a matrix - there is a different
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matrix for every k in the first Brillouin zone:(
~2k2

2m − E
)
Ck +

∑
G
UGCk−G = 0 (49)

By solving these equations we get both, the coefficients C and the energy. This is done for every k to
get the band structure. Before starting to calculate, a potential must be chosen.

Example: FCC-Crystal
We make an example for an fcc crystal. We need to express this periodic potential (U(r) = ∑

G eiGr)
mathematically. For example with a Heaviside stepfunction Θ and a delta function:

Θ(1− |r|
b

) ·
∑
j=fcc

δ(r− rj)

Now we have a mathematical expression for this hard sphere potential. The Fourier transform of this
function is equal to the right side of eqn. (50) because the Fourier transform of the convolution of two
functions is the product of the Fourier transforms of the two functions. The Fourier transformation of
the fcc lattice is a bcc lattice. The Fourier transform of this stepfunction is a Bessel function, which is
zero most of the time, the other time it is the amplitude of the Bessel function. The horizontal lines
in fig. 27 of the Bessel function correspond to the coefficients(UG).

̂
Θ
(

1− |r|
b

) ∑
j=fcc

δ(r− rj) =
̂

Θ
(

1− |r|
b

) ∑
j=bcc

δ(r− rj) (50)

Figure 27: Bessel function with coefficients UG

Now to the relationship between real space lattices and reciprocal space lattices. For a bcc in real you
get an fcc in reciprocal space. That’s the same for fcc in real space, there you get a bcc in reciprocal
space. For simple cubic, tetragonal and orthorhombic lattices in real space you get the same in recip-
rocal space.(for a tetragonal lattice: a, a, b in real space the reciprocal lattice is: 2π

a ,
2π
a ,

2π
b - which is

also tetragonal). An hcp in real space is an hcp rotated by 30 degrees in reciprocal space.

It turns out that hard spheres have these nasty Bessel function - behaviour. So we want to try cubic
atoms, because the Fourier transform is much easier. But an even nicer form to use is a gaussian. The
Fourier transform of a gaussian is a gaussian. It does not have oscillations, and it also looks more like
an atom, for example it could be the s-wave function of an atom.
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Now back to the Central equations (1 dim). These are the algebraic equations we get when we put
the Fourier- series in the Schrödinger equation:(

~2k2

2m − E
)
Ck +

∑
G

UGCk−G = 0

The central equations couple coefficients k to other coefficients that differ by a reciprocal lattice
wavevector G. So we choose a k and already know ~ and m, we only do not know the energy E. The
points of the bravais lattice in reciprocal space are G0, 2G0 and so on. Thus we know the G0’s so the
energies are the eigenvalues of a matrix. We make a matrix like this:

. . .
(~2(k−2G0))2

2m
− E UG0 U2G0

U−G0
(~2(k−G0))2

2m
− E UG0 U2G0

U−2G0 U−G0
~2k2

2m
− E UG0 U2G0

U−2G0 U−G0
(~2(k+G0))2

2m
− E UG0 U2G0

U−2G0 U−G0
(~2(k+2G0))2

2m
− E UG0

. . .





...
Ck+2G0
Ck+G0
Ck

Ck−G0
Ck−2G0

...

 = 0

(51)

The minimum of nearest neighbors in a 1 dimensional problem is one. You get a matrix (2 by 2),
which can be solved and plotted. What you get is the dispersion relationship with the energy over k
(it starts parabolic, then bends over to the Brillouin zone boundary, then there’s a gap, and then the
second band - see fig. 28).

Figure 28: Dispersion relation E(k) evaluated with Central Equations

You can also expand the matrix and take more terms (two to the right and one to the left). Every-
thing is coupled to it’s two nearest neighbors (just a linear chain). For this 4 by 4 matrix you get four
energies (four bands). Thus by making the matrix bigger, higher energies can be calculated.
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Example: Simple Cubic
At first we have to figure out what the Fourier- series is for simple cubic. Just take the nearest
neighbors in k space. So choose gaussian atoms and put them on a simple cubic lattice and make
them pretty wide in real space so they are quite narrow in k-space. Then only the nearest neighbors
are relevant. For the potential only take contribution by the nearest neighbors (6 for sc). They will
correspond to these six terms:

U(r) = U0 + U1(ei
2πx
a + e−i

2πx
a + ei

2πy
a + e−i

2πy
a + ei

2πz
a + e−i

2πz
a )

This is the reciprocal space expansion for the simple cubic. When we put this in the known algebraic
equations (48) and (49) we get a matrix and can solve it. There you get a 7 by 7 matrix. The term
in the middle of the matrix is always the central atom. This central atom is always connected equally
to the nearest neighbors. The terms in the diagonal represent the nearest neighbors (in this case 6)
in ± x, ± y and ± z direction. The smallest G is 2π

a , then one step further in this direction (kx + 4π
a ).

We can neglect the other interactions instead of the nearest neighbors because the gaussian function
falls exponentially.

So if you can construct this matrix you can calculate the band structure for an electron moving in a
periodic potential. If you increase the amplitude there will appear gaps in the band structure where
we thought they would appear in the empty lattice approximation, but you can’t tell what the band
structure would really be.

The next issue is band structure, where we try to calculate the dispersion relationship E(k) for
electrons. Typically it starts out like a parabola and then bends over and continues on, so there opens
a gap like you see in fig. 29. In the density of states there are a lot of states in the range of the bands
and no states at the gaps.

Important differences for the DOS and the Fermi energy between the different types of materials:
A metal has partially filled bands with a high density of electron states at the Fermi energy. A
semimetal has partially filled bands with a low density of electron states at the Fermi energy. An
insulator has bands that are completely filled or completely empty with a bandgap greater than 3 eV.
The Fermi energy is about in the middle of the gap. A semiconductor has a Fermi energy in a gap
which is less than 3 eV wide. Some electrons are thermally excited across the gap. The difference
between a semimetal and a semiconductor is that a semiconductor looses all its conductivity during
cooling down. A semimetal does not loose all the conductivity. In fig. 29 you can see the dispersion
relation and the density of states over the energy. At the right you can see the Fermi energies of the
several possibilities.
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Figure 29: Dispersion relation and the density of states over the energy.

7.2.3 Tight Binding Model

The tight binding model is another method for band structure calculations. Starting with the atomic
wavefunction we imagine a crystal where the atoms are much further apart than in a normal crystal
(the internuclear distances are big). They are still in the same arrangement (for example an fcc
structure) but the bond lengths are shorter. Therefore they don’t really interact with each other. The
atomic wavefunctions are the electron states. If you bring the atoms together they will start to form
bonds. The energies will shift. In fig. 30 at the left side the atoms are far apart (they are all in the
ground state, all same energy, 1s) and to the right side the atomic wavefunctions start to overlap and
they start to form bonds. The states split into bands which we are calculating. If the lattice constant
gets smaller the band gets wider and there is more overlap between the wavefunctions (a little bit like
making a covalent bond). If two atoms with given wavefunctions are brought together, they interact
in a way that the wavefunction splits into a bonding state (goes down in energy) and an antibonding
state (goes up in energy). We consider a 1-dimensional crystal and look at the Coulomb potential of
every atom in it. The total potential is the sum over all potentials. Adding a lot of Coulomb potentials
together gives a periodic potential:

V (r) =
∑
n

ν(r− nax) n = .....− 1, 0,+1....

The Hamiltonian then is

H = −~
2

2m ∇
2 +

∑
n

ν(r− nax).

The atomic wavefunction is chosen as a basis. The wavefunction one on every lattice site is taken as a
basis to do the calculation. The wavefunction Ψqn is labeled by two letters. n labels the position and
q labels which excited state it is (1s,2p,..). Knowing the wavefunction and the Hamiltonian we can
form the Hamiltonian matrix. If we solve every matrix element numerically we get the eigenfunctions
(of the Hamiltonian) and the eigenvalues (energies).
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Figure 30: Tight binding model.


〈Ψ1,1 |H|Ψ1,1〉 〈Ψ1,1 |H|Ψ1,2〉 . . . 〈Φ1,1 |H|ΦM,N 〉
〈Ψ1,2 |H|Ψ1,1〉 〈Ψ1,2 |H|Ψ1,2〉 . . . 〈Φ1,2 |H|ΦM,N 〉

... . . . ...
〈ΨM,N |H|Ψ1,1〉 〈ΨM,N |H|Ψ1,2〉 . . . 〈ΦM,N |H|ΦM,N 〉

 (52)

〈Ψ1,2 |H|Ψ3,4〉 =
〈

Ψ1,2

∣∣∣∣∣−~2

2m ∇
2 + V (r)

∣∣∣∣∣Ψ3,4

〉
(53)

If you make these calculations for a 1-dimensional problem (see eqn. (54)), you always get the same
number (ε = 〈Ψq,n |H|Ψq,n〉) for the terms down the diagonal because the wavefunctions are the
same only the position is different. One step away from the main diagonal you get a term −t and
t = −〈Ψq,n |H|Ψq,n+1〉 between the wavefunctions of two neighboring atoms (small number). This
is the overlap of two neighboring atoms. One step further there are just zeros, because the 2nd
nearest neighbors are too far apart. The −t’s in the corners are associated with the periodic boundary
conditions.
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ε −t 0 0 −t
−t ε −t 0 · · · 0
0 −t ε −t 0
0 0 −t ε

...
... . . . −t

−t 0 0 · · · −t ε





1
ei2πj/N

ei4πj/N

ei6πj/N

...
ei2π(N−1)j/N


= (ε−t·(ei2πj/N+ei2(N−1)πj/N ))



1
ei2πj/N

ei4πj/N

ei6πj/N

...
ei2π(N−1)j/N


(54)

This kind of matrix has a known solution as showed in eqn. (54). It looks like plane waves. The first
term of the wavefunction is 1, the next term has a phase factor j, which shows the position in the
chain. It is just an integer and N is the total number of atoms. The next elements always grow with
the same phase factor. If you multiply this vector by the matrix you get three terms and the vector
as you see below. So these terms are the eigenvalues of the matrix:

ε− t
(
e
i2πj
N + e

−i2πj
N

)
= ε− 2t cos

(2πj
N

)
They can be translated from j to k by 2πj

N = ka. So the dispersion relationship is

E(k) = ε− 2t cos (ka),

which is shown in fig. 31.

Figure 31: Dispersion relation for the tight binding model
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Example: Square Well Potential
A square well potential can be solved by the tight binding model by looking for a solution for a
finite potential well. A finite potential well has an exponential decay at the potential wall. In a 1-
dimensional case we could take the lowest energy solution and put it at the bottom of everyone. With
the tight binding model it is possible to calculate the dispersion relationship for electrons moving in
a periodic potential like this. That problem is interesting because it is analytically solvable (Kronig
Penney Model). Therefore the tight binding solution can be compared to the the exact solution.

To get an idea about the solution, a graphically overview (fig. 32) can be quite useful. Solutions occur
that are a lot like the solutions of two wells that form a covalent bond. With a small potential well
between the two waves there is an overlap of the two wavefunctions. So you get a bonding and an
antibonding solution. We have more wells next to each other, you get the lowest total energy solution
when you take them all with a symmetric wavefunction (Take the basic solution. To get the next
solution multiply the first by one). For an antibonding solution you multiply the solution by −1(e iπa )
then by 1(e i2πa ) and so on. So the k-vector is π

a . You have the basic solution and just multiply by
the phase factor. If k is zero you multiply by 1,1,1,.. and if k = π

a you get +1,−1,+1,−1.... and in
between you get a complex factor which is not in the figure because it’s hard to draw. In fig. 32 it is
shown how the solutions look like.

Figure 32: Solution of the square well potential.
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Easier way to do the calculation:
Back to the linear chain model we used for phonons (see chapter 6.1). Now we are talking about
mechanical motion, not about electrons. There are masses connected by springs which we handle with
Newton’s law:

m
d2us
dt2

= C(us+1 − 2us + us−1).

If we write Newton’s law in terms of a matrix equation it looks like shown in eqn. (55). In the diagonal
you always get the 2C and one step away the C. The masses further away are not coupled with each
other, so we get zero. For periodic boundary conditions we get the C in the corners.

−w2m


A1
A2
A3
A4

 =


−2C C 0 C
C −2C C 0
0 C −2C C
C 0 C −2C



A1
A2
A3
A4

 (55)

The matrix is exactly the same as before in the tight binding model. The easy way to solve the
tight bindig model is to write down the Hamiltonian and then write down plane waves times the
wave functions. This solves the Schrödinger equation. We know that plane waves times the atomic
wavefunctions is the answer in the tight binding model. Taking that and putting it into the Schrödinger
equation we get the dispersion relationship.

In the tight binding method we want to find the wavefunctions for electrons in a crystal, and we
know the wavefunctions of the electrons on isolated atoms. When the atoms are pretty far apart, the
atomic wavefunctions are good solutions for the electron wavefunctions of the whole system. We try
to write a basis for the crystal wavefunctions in terms of the atomic wavefunctions and we get the big
hamiltonian matrix. Then you have to diagonalize the matrix and the best solution you can make for
electrons moving in a periodic crystal is

Ψk = 1√
N

∑
l,m,n

ei(lka1+mka2+nka3)Ψ(r− la1 +ma2 + na3). (56)

It is the atomic wavefunction, one on every side (one on every atom) times a phase factor (the same we
used for phonons) that looks like a plane wave. Now we calculate the dispersion curve by calculating
the energy of this particular solution:

Ek = 〈Ψk |H|Ψk〉
〈Ψk|Ψk〉

. (57)

If you guess a wavefunction and the Hamiltonian you can calculate the corresponding energy. This
does not mean that it is the lowest possible wavefunction. The calculation goes over a lot of terms
for the calculation of the matrix elements. But the wavefunction falls exponentially with the distance,
so the interaction is just important between nearest neighbors and next nearest neighbors. Therefore
three atoms apart the interaction is zero (so the product of these two wavefunctions is zero). Our
calculations now are just for the nearest neighbors. In this part of the calculations (the mean diagonal
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elements) the phase factor cancels out.

ε =
∫
d3rΨ∗(r)HΨ(r)
〈Ψk|Ψk〉

Now to the m nearest neighbors. They are all equivalent in the crystal (so there is one kind of atom,
and one atom per unit cell). ρ is the distance to the nearest neighbor. The factor is because there is
a little bit of overlap between two nearest neighbors:

t = −
∫
d3rΨ∗(r− ρm)HΨ(r)

〈Ψk|Ψk〉

In the definition of t there is a minus because t is negative most of the time (but a negative t is not a
must!). If all m nearest neighbors are equivalent there are mN terms like teikρm . All these terms have
a phase factor because there is a difference in the phase factor (the phase factor changes by moving
through the crystal, this is because there are differences when it moves for example in the y-direction
or in the x-direction) a1, a2 and a3 are the primitive lattice vectors in real space.

If you have a wavefunction like in eqn. (56) and you calculate the energy like in (57) you get this
general formula to calculate the total energy with the sum over the phase factors. Equation (58) is
the basic formula to calculate the dispersion relationship.

E = ε− t
∑
m

eik~ρm (58)

~ρm is the distance to the nearest neighbors.

Doing this for a simple cubic crystal structure, all the atoms have 6 nearest neighbors (two in x-, two
in y- and two in z-direction). So we take the sum over the six nearest neighbors for the calculation
of the energy (eqn. (58)). The next equation is just for the nearest neighbors and the first term is
for example in plus x-direction with ρ = a (which is the same in each direction in a simple cubic).
The second term goes in the minus x-direction with ρ = a and so on for the y- and z-direction. And
then you see that you can put it together to a cosinus term, you get an energy versus k dispersion
relationship (for just the nearest neighbor terms). That looks like

E = ε−t(eikxa+e−ikxa+eikya+e−ikya+eikza+e−ikza) = ε−2t(cos(kxa)+cos(kya)+cos(kza)). (59)

For a bcc crystal there are one atom in the middle and eight nearest neighbors at the edges. In this
case the formula consists of 8 terms and looks like

E = ε−t(ei(kx
a
2 +ky a2 +kz a2 ) +ei(kx

a
2 +ky a2−kz

a
2 ) + ...... = ε−8t

(
cos

(
kxa

2

)
+ cos

(
kya

2

)
+ cos

(
kza

2

))
.

This is the dispersion relationship for a bcc crystal in the tight binding model.

In an fcc crystal there are 12 nearest neighbors, so the formula has twelve terms and looks like:

E = ε− t(ei(kx
a
2 +ky a2 ) + ei(kx

a
2−ky

a
2 ) + ..) =

= ε− 4t
(

cos
(
kxa

2

)
cos

(
kya

2

)
+ cos

(
kxa

2

)
cos

(
kza

2

)
+ cos

(
kya

2

)
cos

(
kza

2

))
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Fig. 33 shows the dispersion relationship of a simple cubic. It starts from Γ to X because in the
x-direction there is a nearest neighbor. It starts like a parabola, close to the brillouin zone boundary
it turns over and hits with about 90 degrees. M is in the 110 direction and R is in the 111 direction.
So the energy is higher at the corner and at the edge of the cube. That is what we expected to happen
from the empty lattice approximation. At the bottom we can calculate the effective mass m∗ = ~2

2ta2

which is the second derivation of the dispersion relation. So if the overlap between the atomic wave-
functions is small (that means a small t) the effective mass is high. This makes it difficult to move
the electron through the crystal. This also means that we get very flat bands because of eqn. (59).
In fig. 33 you see just one band. If you want to have the next band you have to take the next atomic
state (2s instead of 1s) and redo the calculation.
If you know kx, ky and kz you can calculate the energy and you can plot the fermi sphere, which

Figure 33: Dispersion relationship for a simple cubic.

looks like a ball. If you go to higher energies there are no more possible states left, so you get a hole
at the brillouin zone boundaries. If you increase the energy the hole becomes bigger and bigger and
at one point there will be no more solutions in this band (from the atomic wavefunction you chose), if
you took a very high energy. For a metal the fermi surface then separates into the occupied and the
unoccupied states in a band.
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In fig. 34 the dispersion relationship for an fcc crystal is shown. It is just plotted from Γ (centre) to L
(111-direction) and to X (100-direction). The energies here are switched around because the nearest
neighbors are in the 111-direction and there is the lowest energy. The facts about the overlap and the
effective mass are also true for fcc. Out of the dispersion relationship it is possible to calculate kx, ky

Figure 34: Dispersion relationship for an fcc crystal.

and kz for a constant energy. The solutions are surfaces with constant energy, this is what is shown
in fig. 35. The surface with the energy equal to the Fermi energy is with a good approximation (tight
binding) the fermisurface.

Figure 35: Surfaces of constant energy for a fcc crystal calculated with the Tight Binding
approximation.

Now the same for bcc crystals. Here the nearest neighbors are in the 111 direction, and so is the lower
energy. You can see that in fig. 36 the brillouin zone is a rhombic dodecahedron. There are corners
with three lines to it and corners with four lines to it. One corner is the N point (closest point) of the
lowest energy. Here the fermi surface shows unexpected behavior, see fig. 37. At a certain energy it is
shaped like a cube. Then it breaks up and the states are getting fewer at higher energies.
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Figure 36: Dispersion relationship for a bcc crystal.

Figure 37: Surfaces of constant energy for a bcc crystal calculated with the Tight Binding
approximation.

7.2.4 Graphene

This part ist about graphene, which is one of the forms of carbon and has 2 atoms per unit cell.
Other forms of carbon are diamond (a pretty hard material) and graphite (a very soft material). In
graphite there is a hexagonal lattice of carbon, and then the layers are just stepped. So graphene is
a single layer of graphite and it turns out that this causes quite different electronic properties. If we
look at the crystal structure in the left of fig. 38, we see that one of the carbon atoms has its bond to
the left and the other one to the right. So there are two inequivalent positions in the unit cell. The
reciprocal lattice is also a hexagonal lattice (can be seen in the right of fig. 38). Trying to calculate
the tight binding model, we see that there is a correlation in between the tight binding model and
phonon calculations. In phonon calculations we had two atoms per unit cell and got an acoustical
branch and an optical branch. Now we get two bands in the dispersion relationship, a lower energy
branch and a higher energy branch.

The wavefunction is calculated by taking the two wavefunctions | ψa > and | ψb > of the atoms a
and b of the unit cell and coupling them together like we were making a covalent bond. To calculate
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Figure 38: Lattice, primitive lattice vectors and reciprocal lattice of of graphene

the energy shift (in a covalent bond) we describe the state of the whole system in terms of these two
wavefunctions and construct the hamiltonian matrix:∣∣∣∣∣ 〈ψa | H | ψa〉 − E 〈ψa | H | ψb〉

〈ψb | H | ψa〉 〈ψb | H | ψb〉 − E

∣∣∣∣∣ =
∣∣∣∣∣ ε− E −t
−t∗ ε− E

∣∣∣∣∣ = 0 → E = ε± |t| (60)

It is only a two-by-two matrix, so it is easy to solve. ε is the energy eigenvalue without interaction
and t is the overlap integral between the atoms a and b (so the nearest neighbour matrix elements).
For the eigenenergy E we get two solutions, one for the bonding state and one for the anti-bonding
state.

Now we do the same thing for two carbon sublattices. We also get the same kind of answer like in
eqn. (60), but this is just the calculation for k = 0. So there are also two eigenvalues for k = 0. For
k 6= 0 we have to redo the calculation multiplied by a phase factor. So we get∣∣∣∣∣ ε− E −tf(k)

−tf∗(k) ε− E

∣∣∣∣∣ = 0

with the phase factor

f(k) = exp
(
ikxa

2

)(
1 + exp

(
−i
(√

3kxa
2 − kya

2

))
+ exp

(
−i
(√

3kxa
2 + kya

2

)))
,

which depends on k (and is the sum over the three nearest neighbours). We plug the phase factor in
the matrix equation∣∣∣∣ ε− E t

(
1 + exp

(
−i
(√

3kxa
2 − kya

2

))
+ exp

(
−i
(√

3kxa
2 + kya

2

)))
t
(

1 + exp
(

+i
(√

3kxa
2 − kya

2

))
+ exp

(
+i
(√

3kxa
2 + kya

2

)))
ε− E

∣∣∣∣ = 0

and after some calculation (using the trigonometric identities cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)
and cos(2a) = 2 cos2(a)− 1) we get

E = ε± t

√√√√1 + 4 cos
(√

3kxa
2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
.

So again we get two solutions (eigenenergies) for every k from this matrix. The energy E is the atomic
energy ε plus the overlap integral t times some function of k. When we plot that function at k = 0
it starts to rise like a parabola (see fig. 39). The two solutions (for the bonding and the anti-bonding
state) are just mirror images of each other. In the upper direction there is the energy. The solutions
touch at six points and the fermi energy also cuts through this point. So we have a fermi surface
which consists of six points. At the fermi surface the dispersion relationship is linear (usually it has
some curvature like a parabola).
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Figure 39: Plot energy versus kx and ky (2 dimensions).

7.2.5 Carbon nanotubes

Carbon nanotubes are made of a sheet of graphene rolled up into a tube. There are three different
types of carbon nanotubes, as we can see in fig. 40.

Figure 40: Different types of carbon nanotubes.

• Armchair: Looks like an armchair.

• Zig-Zag: Going around (along the diameter) the tube it makes zig-zag.

• Chiral: Atomic rows do not go straight on the tube, they twist around (chiral can vary).

Carbon nanotubes can also have different diameters. A terminology to specify what kind of nanotube
we have is to take a plane of graphene like in fig. 41. We choose an origin and count along over
the primitive lattice vectors to another point of the lattice with an equivalent site. Then we cut the
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Figure 41: How to specify the kind of a nanotube.

graphene out perpendicular to this line and role it up so that the end point falls on the origin we
defined.

Now we calculate the band structure, the dispersion relationship for carbon nanotubes. With carbon
nanotubes there are periodic boundary conditions around the short distance (around the diameter
of the tube). So there are only certain ky-values, in the direction kx we also use periodic boundary
conditions but the length L in this direction is much larger, hence there are more values for kx then
for ky. In fig. 42 there is a plot in k-space and on the left this issue is shown for the first brillouin zone
(which goes from −π/a to π/a). If we have a (10,10) tube going around the diameter we only have

Figure 42: Metallic (10,10) armchair tube.

10 values for ky. That means there are fewer allowed k-vectors. But the tight binding problem does
not change with respect to the problem solved for graphene. For carbon nanotubes the calculation is
the same except there are only certain values for ky. In fig. 42 on the right side the highest bonding
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band line corresponds to ky = 0 and it touches the band above at a certain kx point. If we increase
ky a little bit what happens is that we miss this point where the two bands meet and then we get
something that looks like a semiconductor. But this (10,10) armchair tube is metallic because we went
through the points where the two solutions meet.

From the dispersion relationship we can calculate the density of states. For a metallic tube the disper-
sion relationship is constant around the fermi energy and that gives a constant density of states like in
fig. 43. The next allowed value of ky has a maximum and that results in a Van Hove singularity in the

Figure 43: Dispersion relationship and density of states for both a metallic and a semiconducting
carbon nanotube.

density of states (because there are a lot of states in this energy range). If we have a semiconducting
nanotube (as seen on the right in fig. 43) the bands do not meet and the density of states is zero,
there is a gap. But we also have this Van Hove singularity on both sides because of the maxima and
the minima in the bands.

The formula m − n = 3Z (for a (m,n)-nanotube) says that if m−n
3 is an integer the tube will be

metallic, otherwise semiconducting (for example a (10,0) nanotube: 10 − 0 = 10 can not be divided
by three so this should be a semiconducting tube).

Other Nanotubes

Carbon is not the only material which makes tubes, others are:

• Tungsten disulfide

• Boron nitride

• Silicon

• Titanium dioxide

• Molybdenum disulfide

Boron nitride for example has the same bond lengths in all directions and so all the directions are the
same, therefore we get get the same phase factors and band structures with the tight binding model
as for graphene (as we see in fig. 44). But because there are two different types of atoms per unit
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cell the energy of the bonding and antibonding state is never the same - there is always a band gap -
boron nitride is always a semiconductor.

Figure 44: Band structure of graphene and Boron nitride.
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7.3 Bandstructure of Metals and Semiconductors

Metals

In a metal there are a bunch of bands that are electrically inert. They are occupied by electrons
but far away from the fermi energy so that the electrons do not participate in the properties of the
metal (conductivity, specific heat). Hence they are called inert bands. Bands way above the fermi
energy are just empty and electrically inactive too. The interesting band is the one that is partly
filled. The electrons at this level will contribute to the magnetism, the heat capacity, the electrical
conductivity and the thermal conductivity of the material. Fig. 45 is drawn for about room tempera-
ture. At room temperature kBT (the thermal energy) tends to be much smaller than the fermi energy
and the fermi function is pretty sharp.

Figure 45: Bands in a metal.
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Semiconductors

In a semiconductor bands that are filled are also electrically inert. But now the fermi energy falls
in between two bands in a gap. These two bands are called valence band and conduction band. It
is only a semiconductor if the gap is less than 3eV. The value of 3eV comes through the fact that
for low temperatures some electrons are excited thermally above the gap from the valence band into
the conduction band and we measure some kind of conductivity. If the gap is bigger there are zero
electrons excited into the conduction band at low temperatures. In fig. 46 we see the fermi energy
dropping in the gap leaving a few holes in the valence band and a few electrons in the conduction
band.

Figure 46: Bands in a semiconductor.
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Semimetal

A semimetal is a metal where the fermi energy is in the band but the electron density is pretty
low. The right plot in fig. 47 is a bit more a metal than a semimetal. So in a semimetal there are just

Figure 47: Two kinds of a semimetal.

a few states in the upper band. This can happen if there is something that’s almost a semiconductor
but in one direction in k-space the bands overlap in energy. That means that a semimetal is a metal
but with a low electron density. A classical example of a semimetal is bismuth.
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In fig. 48 the periodic table is shown with the tagged d- and f-band metals. For calculating the
band structure of these metals with the tight binding model only the d- and f-band electrons are
interesting, because these are the only electrons which interact with electrons of their neighbor atoms.
The resulting band then is called d respectively f, hence also the metals are called d- and f-band
metals.

Figure 48: Periodic table.
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Fig. 49 displays the band structure of the transition metals (the dotted line is the fermi energy). From
the left to the right the electron density increases and so the fermi energy moves up to the d bands.
But in every point the fermi energy hits the band somewhere. In the d bands the band width is very
small, which means that the matrix element we calculated in the tight binding model is fairly small.
That gives fairly flat bands and if we want to approximate something like parabolas it ends up that
we need a high effective mass (so in something with flat bands the electrons do not move through so
good). For example in copper the fermi energy cuts through the s band and all the d bands are filled.
So in copper all the narrow bands that have a high effective mass just are not contributing any more
and the fermi energy has moved up. The s band makes copper a good conductor. Fig. 50 shows the

Figure 49: Transition metals.

dispersion relationship and the density of states of copper. The density of states of the d band has
some peaks in it. These peaks correspond to places in the dispersion relationship where there are a
lot of states at that energy.

Figure 50: Dispersion relationship and density of states of copper.
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How to calculate the Fermi Energy: One possibility to calculate the fermi energy of a certain
material is to construct it straightforward out of the density of states. To get the density of states we
first need the dispersion relationship. By calculating the energy for every k-value we can look how
many states there are at a certain energy. The curve we get, when we integrate this density of states
gives us the total number of states over the energy. Assuming that you know how many electrons
belong to the material you can read the fermi energy out of that curve.
An example is given in fig. 51 for the transition metal Osmium. The energy, where the curve for the
total number of states reaches the number of electrons determines the fermi energy for Osmium.

Figure 51: Density of states of the transition metal Osmium plus its integrated signal
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7.4 Direct and Indirect Bandgaps

Generally semiconductors can be divided into two types. There are semiconductors with direct
bandgaps (fig. 52 (a)) and those with indirect bandgaps (fig. 52 (b)). In semiconductors with di-
rect bandgaps the top of the valence band and the bottom of the conduction band are at the same
k-value, which is not the case in semiconductors with indirect bandgaps, as fig. 52 shows.
The main differences occur in the relaxation from an excited state. After an electron is excited into

Figure 52: Top of the valence band and bottom of the conduction band in semiconductors with direct
(a) and indirect (b) bandgaps

the conduction band by a photon with an energy, which is high enough, it will occupy the lowest
possible energy state in the conduction band. The generated hole in the valence band will occupy
the highest possible energy state. If those two positions are at different k-values, which is the case in
semiconductors with indirect bandgaps, the particle produced in the relaxation has to carry both the
difference in energy and momentum. Since photons can only carry a very little amount of momentum,
this relaxation will produce phonons. That’s the reason why light emmitting devices are built using
semiconductors with direct bandgaps like Gallium-Arsenite (fig. 54), and solar cells, which shouldn’t
emmit light, can be built using semiconductors with indirect bandgaps like Silicon (fig. 53).
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Figure 53: Band structure of Silicon, example for indirect bandgaps

Figure 54: Band structure of Gallium Arsenide, example for direct bandgaps

68



TU Graz, SS 2010 Advanced Solid State Physics

8 Crystal Physics

The main subject of Crystal Physics is how the symmetries of the crystal affect the physical properties.
Knowledge of the symmetries can ease the measurements of the properties. If we take a simple cubic
crystal for example, repetition of a measurement after a rotation of 90° wouldn’t make much sense.
Tensors, with which one can describe such properties must take that symmetry into account. Knowing
the structure of the tensors, we would know how many independent properties we would have to
measure to be able to explain the whole behavior of the crystal.

8.1 Stress and Strain

To give an example for a physical property that is related to a certain tensor we will look at the stress
and strain relation in solids. If we apply a force to a crystal, it will most likely be deformed. The
former right-angled basis vectors x, y, and z will move to not-right-angled ones x’, y’ and z’, as shown
in fig. 55. This distortion of the material is described by the strain matrix εij .

Figure 55: Shift of the basis vectors because of strain, former right angled vectors (a) get displaced
(b)

x′ = (1 + εxx)x + εxyy + εxzz
y′ = εyxx + (1 + εyy)y + εyzz
z′ = εzxx + εzyy + (1 + εzz)z

The strain matrix enables us to describe shear, the distortion in a different direction than the force
acts.
Correspondingly, stress describes the forces per unit area applied to the material. We can find

nine independent forces Xx, Xy, Xz, Yx, Yy, Yz, Zx, Zy and Zz as shown in fig. 56. The capital
letter describes the direction of the force, the small ones the, to the plane on which the force acts on,
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Figure 56: Forces applyable in the x-direction

orthogonal direction. We can define a stress tensor:

σkl =


Xx
Ax

Xy
Ay

Xz
Az

Y x
Ax

Y y
Ay

Y z
Az

Zx
Ax

Zy
Ay

Zz
Az


The relationship between those two can be described with a rank four stiffness tensor

εij = sijklσkl

Of course, this relationship exists in two directions, the inverse of the stiffness tensor is called the
compliance tensor

σij = cijklεkl

Most physical properties can be connected to each other via tensors, as we will see in chapter 8.2.
One further example is the electric susceptibility χ, which connects the electric field to the electric
polarisation. Since both properties are vectors, the susceptibility is a rank two tensor, a matrix. So if
we want to relate two properties, like the strain and the electric field, we know that since the electric
field is a vector and the strain is a matrix, we will need a tensor of rank three.

8.2 Statistical Physics

As usual in statistical physics we start out with a microcannonical ensemble. There, the internal
energy is described by the extrinsic variables (Just to remind you: Extrinsic variables scale with the
size of the system). We can take the total derivative:

dU = ∂U

∂S
dS + ∂U

∂εij
dεij + ∂U

∂Pk
dPk + ∂U

∂Ml
dMl (61)

Or, using the intrinsic variables:

dU = TdS + σijdεij + EkdPk + HldMl
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For every system, on which we would like to perform experiments, using the extrinsic variables as the
independent ones isn’t a good idea. Usually in an experiment we hold the temperature under control.
To realize this, we can make a Legendre transformation to get the free energy F :

F = U − TS

But in an experiment we usually are also in control of the stress, the electric and the magnetic field we
apply to the material. So it is a good idea to perform a couple of additional Legendre transformations
to get the generalized Gibbs free energy:

G = U − TS − σijεij − EkPk − HlMl

By taking the total derivative and using eqn. (61), we are left with:

dG = − SdT − εijdσij − PkdEk −MldHl

or, using the definition of a total derivative

dG =
(
∂G

∂T

)
dT +

(
∂G

∂σij

)
dσij +

(
∂G

∂Ek

)
dEk +

(
∂G

∂Hl

)
dHl

we can identify

−
(
∂G
∂T

)
= S −

(
∂G
∂σij

)
= εij

−
(
∂G
∂Ek

)
= Pk −

(
∂G
∂Hl

)
= Ml

So if we know the Gibbs free energy of a system in dependence of the intrinsic variables, we can deter-
mine the extrinsic ones with a simple derivation. But calculating the Gibbs free energy is the difficult
part. Remembering the course on statistical physics, we know how to calculate the free energy of a
canonical ensemble:

Z = ∑
j
exp

(
−Ej
kBT

)
F = − kBT ln(Z)

Here the sum over j sums over all microscopic states corresponding to a macroscopic state. But there
occurs the energy of the states in the sum. We can get the energy by solving the system quantum
mechanically. Calculating the Gibbs free energy is very similar, but the energy in the partition function
also depends on the magnetic and the electric fields. The calculations for the hamiltonians of electrons
in electromagnetic fields are part of chapter 4.
By taking the total derivative of the extrinsic variables we can get to materials constants or physical
properties. As an example we take the total derivative of the strain:

dεij =
(
∂εij
∂σkl

)
1
dσkl +

(
∂εij
∂Ek

)
2
dEk +

(
∂εij
∂Hl

)
3
dHl +

(
∂εij
∂T

)
4
dT

Where the single derivations represent:
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1. Elastic deformation (stiffness tensor)

2. Reciprocal piezo-electric effect

3. Reciprocal piezo-magnetic effect

4. Thermal dilatation

8.3 Crystal Symmetries

Intrinsic Symmetries
As seen in chapter 8.2, we can get the stiffness tensor by taking the derivative of the strain in respect
to the stress.

dεij
dσkl

= sijkl

The strain itself is calculated out of the Gibbs free energy:

−
(
∂G

∂σij

)
= εij

So the stiffness tensor can be written as the second derivative of the Gibbs free energy in respect to
two different elements of the stress matrix:

−
(

∂G

∂σij∂σkl

)
= sijkl

Because of Schwarz’ theorem3 we get the same result if we can change the order of the derivatives:

−
(

∂G

∂σkl∂σij

)
= sklij

!= sijkl

This way we can find those symmetries for a lot of different properties, for example the electric and
the magnetic susceptibility:

−
(

∂G

∂Ej∂Ek

)
=

(
∂Pk
∂Ej

)
= χkj = −

(
∂G

∂Ek∂Ej

)
=

(
∂Pj
∂Ek

)
= χjk

−
(

∂G

∂Hk∂Hl

)
=

(
∂Ml

∂Hk

)
= ψlk = −

(
∂G

∂Hl∂Hk

)
=

(
∂Mk

∂Hl

)
= ψkl

3Hermann Schwarz, 1864 till 1951
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Direct and reciprocal effects
In the exact same way we can find relationships between direct and reciprocal effects. As an example
we look at the direct and the reverse piezoelectric effect. This effect describes how the electric polari-
sation of a crystal changes, when we apply stress to it.(

∂Pk
∂σij

)
= dkij

Again following back to the derivatives of the Gibbs free energy leads us to an interesting solution:

−
(

∂2G

∂σij∂Ek

)
=

(
∂Pk
∂σij

)
= −

(
∂2G

∂Ek∂σij

)
=

(
∂εij
∂Ek

)
= dkij

The same tensor elements used for the direct piezoelectric effect are also used in the tensor for the
reverse piezoelectric effect. An interesting use of this symmetry is to track down systematical errors
in a measurement. We could measure the piezoelecric effect by squeezing a crystal and measure the
polarisation as well as applying an electric field to it and measure the strain. If we perform both
measurements and don’t get the same solution there must be a systematic error in at least one of the
two measurements.

Groups
Crystals can have translational, rotational, inversion and reflectional symmetries. Those of them,
where one point of the crystal remains the same, can be written as a matrix. The matrices of those
symmetry operations to one crystal form the group of this crystal. The groups, which contain only
operations where one point of the crystal remains the same, are called point groups. (There are 32
of them.) If we also include translational symmetries, where no point in the crystal remains at it’s
incident position, we get the 230 space groups.
Fig. 57 shows the symmetries in a crystal with point group C2 and C4. For C2 we can define the

Figure 57: Illustration of the crystal symmetries in the point groups C2 and C4

symmetry operations

E =

 1 0 0
0 1 0
0 0 1

 , C2 =

 −1 0 0
0 −1 0
0 0 1


where the first one is the identity and the second one rotates the crystal by 180°. As we can easily
verify, those two operations form a group. C4 contains a few more operations.
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E =

 1 0 0
0 1 0
0 0 1

 , C4 =

 0 −1 0
1 0 0
0 0 1

 , C2 =

 −1 0 0
0 −1 0
0 0 1

 , C3
4 =

 0 1 0
−1 0 0
0 0 1

 ,
C4 contains the operations for rotations by 90°, 180°, 270° and the identity. The next step is to find
out how these symmetries affect the properties of the tensors.
As an example we want to find out how a 180° rotational symmetry affects the polarisation tensor.
Since both the electric field and the polarisation can be described as vectors, this is a rank two tensor,
a matrix:  Px

Py
Pz

 =

 χxx χxy χxz
χyx χyy χyz
χzx χzy χzz


 Ex
Ey
Ez


If we perform a crystal symmetry operation on both the electric field and the polarisation, the equation
must hold:

UP = χUE with U =

 −1 0 0
0 −1 0
0 0 1


Now we multiply with the inverse of U from the left

U−1UP = U−1χUE

This can only be true if the susceptibility matrix is invariant under the symmetry operation

χ = U−1χU

which would mean

χ =

 χxx χxy −χxz
χyx χyy −χyz
−χzx −χzy χzz


This is fulfilled if χxz, χyz, χzx and χzy are equal to zero. Further we know from the intrinsic
symmetries explained above, that χij = χji. Thus the susceptability tensor of a crystal with only
the 180° rotational symmetry looks like this:

χ =

 χxx χxy 0
χxy χyy 0

0 0 χzz


Those symmetries and the point- and space groups can be looked up in tables4. Since it would be
far too complicated to write all symmetry operations of one group in such a table, these tables often
only contain the generating matrices. Those matrices describe the symmetry operations with which all
other symmetry operations of this group can be constructed. Another quite important thing is that es-
pecially in those tables, tensors with a rank higher than two have to be displayed. To simplify the high

4i.e. the very own of this course at http://lamp.tu-graz.ac.at/ hadley/ss2/crystalphysics/crystalclasses/crystalclasses.html
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number of indices, crystallographers very often combine pairs of two indices using the following scheme:

11→ 1 12→ 6 13→ 5
22→ 2 23→ 4

33→ 3
So if we got a third rank tensor element g36 it would be g312, if it’s a fourth rank tensor it would be
g3312.
Another interesting consequence of those symmetry operations is, that in all crystals, which have
inversion symmetry, all rank three tensors equal zero, that means, those crystals don’t show effects
described by a rank three tensor. Examples are piezoelectricity, piezomagnetism and the piezo-caloric
effect.

8.4 Example - Birefringence 5

A fairly interesting example is an effect called birefringence. If we look on a piece of newspaper
through a calcite crystal, we will see all letters doubled. This effect occurs from the fact that different
polarisations of light have different velocities in calcite. To explain this, the index of refraction in
calcite must be a matrix. If we follow that clue, we find, that the electric susceptibility has to be a
matrix too. To look up the form of this second rank tensor, we first need to know the point group
of calcite. After some research we can get the point group in two ways. The first possibility is to
look up the crystal structure of calcite, the second one to explicitly look for the point group of it. In
both cases we can look it up in a table and find out the structure of second rank tensors in trigonal
structures (like calcite has).:

gij =

 g11 0 0
0 g11 0
0 0 g33


Which is exactly what we expected. There are two independent constants, so the index of refraction
has to be a matrix.

5Birefringence = Doppelbrechung
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9 Magnetism and Response to Electric and Magnetic Fields

9.1 Introduction: Electric and Magnetic Fields

Physical quantities in solids can be calculated the following way:
Solve the Schroedinger equation → get the dispersion relation → calculate the density of states →
use this to get the Gibbs free energy → take certain derivatives to get quantities as the specific heat,
pressure, piezoelectric constants, piezomagnetic constants, etc.

The main problem seems to be calculating the microscopic states, as anything else is a straight forward
calculation. However, to get the microscopic states, one uses different types of models. Till now, we
often used the free electron model, and the electric field and the magnetic field were expected to be
zero. Because of this, the piezoelectric and the piezomagnetic constants turned out to be zero too,
when calculating the free energy.
As we want to know, how a material responses to an electric or a magnetic field, the simplifications
mentioned above, have to be corrected.

9.2 Magnetic Fields

When a charged particle (in most cases a free electron) moves through a magnetic field, there is
a force on this particle, perpendicular to the velocity. Remember that this force can change the
direction of the electron, but the magnetic field does no mechanical work, because of the electron
moving perpendicular to the force.

F = −ev×B (62)

evBz = mv2

R
(63)

v = wcR (64)

wc = eBz
m

(65)

with wc the angular frequency or cyclotron frequency.

When the particle is moving in a circle around a located position, it is moving around the origin in
k-space as shown in fig. 58.

Usually when a charge is accelerated (which it is, when moving on a circle), it emits electromagnetic
radiation. For solids, a similar thing would be to put a metal into a magnetic field. The electrons
at the fermi surface are moving quite fast and there is also a perpendicular force on them when the
metal is in the field, but they are not emitting radiation. The reason for this is that they simply can’t
get into a state with lower kinetic energy (all filled up) like a free electron does.

The problem of getting the magnetic field into the Schroedinger equation is that the force depends on
the velocity as shown below.

F = q(E + v×B) (66)
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Figure 58: Particle moving on a circle in cartesian coordinates and in k-space. Something moving
on a circle at a located position, moves around the origin in k-space, because the x- and
y-velocity keep going to zero and that’s the path taken in k-space.

So, one has to construct a Lagrangian, which is a function of velocity. Normally one guesses the
Lagrangian and looks if the right force comes out, but luckily in this case the Lagrangian was guessed
before to be

L = 1
2mv

2 − qV (r, t) + qv ·A(r, t). (67)

So by putting this Lagrangian into the Euler-Lagrange equations (eqn. (68)), we obtain the Lorentz
force law6:

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 (68)

d

dt

(
∂L

∂vx

)
− ∂L

∂x
= 0

d

dt

(
∂L

∂vx

)
= d

dt
(mvx + qAx) = m

dvx
dt

+ q
dAx
dt

= m
dvx
dt

+ q

(
dx

dt

∂Ax
∂x

+ dy

dt

∂Ax
∂y

+ dz

dt

∂Ax
∂z

+ ∂Ax
∂t

)
= m

dvx
dt

+ q

(
vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

+ ∂Ax
∂t

)
∂L

∂x
= −q∂V

∂x
+ q

(
vx
∂Ax
∂x

+ vy
∂Ay
∂x

+ vz
∂Az
∂x

)
m
dvx
dt

= −q
(
∂V

∂x
+ ∂Ax

∂t

)
︸ ︷︷ ︸

x component of electric field

+q
(
vy

(
∂Ay
∂x
− ∂Ax

∂y

)
+ vz

(
∂Az
∂x
− ∂Ax

∂z

))
︸ ︷︷ ︸

x component of v x B

With the calculation above in all three dimensions, E = −∇V − ∂A
dt and B = ∇ × A, eqn. (66) is

obtained, which proves eqn. (67) to be the right Lagrangian to solve this problem.

6Der Beweis fuer die Richtigkeit der Lagrangefunktion ist nicht pruefungsrelevant, wird aber der Vollstaendigkeit halber
wiedergegeben. Man sollte aber wissen, dass genau diese Lagrangefunktion das Problem beschreibt.
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So with eqn. (67) the momentum can be calculated as

px = ∂L

∂vx
= mvx + qAx (69)

In this case, beside the kinetic momentum, there is an additional part, which is called the field
momentum. When a charged particle is moving, there is a current flowing, which causes a magnetic
field. So when the particle is decelerated, the inductance of the magnetic field keeps pushing it forward,
so that there is more energy needed to stop the particle than just the kinetic energy.
With this information the Hamiltonian can be constructed:

H = v · p− L

H = 1
2m (p− qA(r, t))2 + qV (r, t)

Finally, with the substitution p→ −i~∇, the Schroedinger equation for electrons in an electromagnetic
field is obtained:

i~
∂Ψ
∂t

= 1
2m (−i~∇− qA(r, t))2 Ψ + qV (r, t)Ψ (70)

9.3 Magnetic Response of Atoms and Molecules

Sometimes it is a good approximation to treat a solid as a noninteracting gas of magnetic atoms or
molecules. The Schroedinger equation reads as follows:

1
2m (−i~∇− qA)2 Ψ + V (r)Ψ = EΨ

It is possible to separate the Hamiltonian into two parts:

H0 = −~
2

2m ∇
2 + V (r)

H1 = 1
2m

(
i~∇ ·A + i~qA · ∇+ q2A2

)
+ gµBSzBz

with g the g-factor which is for the spin of an electron ∼ 2.
H0 is the Hamiltonian for zero magnetic field and H1 contains the additional parts that come from the
magnetic field plus an extra term for the spin (in non-relativistic quantum mechanics one just adds
the term for the spin, there is no logical approach for that). The vector potential can be chosen so
that

∇×A = Bz ẑ (this means that B points into the z-direction).

∇ ·A = 0 (Coulomb gauge)

→ A =

 −1
2yBz

1
2xBz

0
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The second part of the Hamiltonian can be written as

H1 = −i~eBz4m

(
−y ∂

∂x
+ x

∂

∂y

)
+ e2B2

z

8m
(
x2 + y2

)
+ gµBSzBz

The first part of H1 can be identified as the angular momentum operator:

Lz = −i~
(
x
∂

∂y
− y ∂

∂x

)
To get the energy associated with H1, it is necessary to calculate the matrix elements 〈Ψ|H1|Ψ〉. It
turns out, that in most cases spherical symmetric waves are of specific interest. For those waves one
can write the expectation value of r2 as

〈
r2〉 =

〈
x2〉+

〈
y2〉+

〈
z2〉 = 3

〈
x2〉 = 3

2
(〈
x2〉+

〈
y2〉).

So when we use waves of the described form and calculate the matrix elements, we get for the energy
(using the Bohr magneton µB = e~

2me ):

E1 = (〈Lz〉+ g 〈Sz〉)µBBz + e2B2
z

12m
〈
r2
〉
.

The right-side term depends on the average position of the electrons. It also doesn’t matter from
which side one applies the magnetic field, there is always an increase in energy. So this part stands
for the diamagnetic response. This is because the energy in a magnetic problem is calculated by

E = −µ ·B,

so only when the magnetic moment and the magnetic field are antiparallel the energy increases.
The left side-term depends on the orbital angular momentum and the spin angular momentum, which
can either be positive or negative. So it is on the magnetic quantum number (for angular momentum
l = 1 → ml = −1, 0, 1) whether the energy increases or decreases. A good example is the Zeeman
effect, where the two states for spin +1/2 and -1/2 split up and one goes up in energy and one goes
down. Now the state that goes down in energy has a lower energy and therefore is more likely to be
occupied. This leads to a magnetization of the system because there are still both states, but the lower
one is more likely to be occupied than the upper one and there the magnetic moments are aligned
with the magnetic field which is responsible for the paramagnetic effect.

9.3.1 Diamagnetic Response

At the beginning, we need the formula for the diamagnetic moment:

µ = −∂E
∂B

= −e
2Bz
6m

〈
r2
〉

This description is often used in ionic crystals, where the two atoms have an electric closed shell
configuration. For a filled shell with L=0 and S=0 the paramagnetic part vanishes and one is left with
the diamagnetic part. Then the magnetic moment can be calculated like described above.
The minus sign indicates, that the magnetic moment is opposite to the applied field. The energy can
be calculated as E = −µ ·B and always increases with an applied field.
It is not easy to synthesize magnetic molecules, because stable molecules have a closed shell configu-
ration. However there are molecules that do not have a closed shell configuration (e.g. OH), which
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Figure 59: Magnetic behavior of molecules and ions with closed electron shell configuration. The blue
line is the expected behavior for diamagnets.

are called radicals in chemistry. Those molecules are not charged but very reactive in order to get the
stable closed shell configuration.
When there are many electrons,

〈
r2〉 can be substituted by Z2a2 (with Z = number of valence electrons

and a = ionic radius). Then it is possible to write the magnetic susceptibility as

χdia = −µ0
N

V

e2Bz
6m Z2a2.

Fig. 59 shows the magnetic response for some molecules and ions with closed shell configuration, where
the blue line is the expected behavior for diamagnetism, calculated with the formula above.
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9.3.2 Paramagnetic Response

Whenever there is a non-zero angular momentum in the z-direction (spin), there are more than one
states (remember different magnetic quantum numbers), which split into different energy levels due
to the Zeeman effect. So first one has to figure out what the energies of these different states are and
then a partition function7 has to be constructed (lower states are occupied more likely).
Again the energy can be calculated as E = −µ · B, but now using µ = −gJµBJ, with J the total
angular momentum (J = L + S).

Brillouin functions
The average magnetic quantum number can be calculated as following:

〈mJ〉 =
∑J
−J mJe

−E(mJ )/kBT∑J
−J e

−E(mJ )/kBT
=
∑J
−J mJe

−mJgJµBB/kBT∑J
−J e

−mJgJµBB/kBT
= − 1

Z

dZ

dx

Z is the partition function and x = gJµBB/kBT .

Z =
J∑
−J

e−mJx =
sinh

(
(2J + 1)x2

)
sinh

(
x
2
)

The total magnetization then reads

M = −N
V
gJµB 〈mJ〉 = N

V
gJµB

1
Z

dZ

dx

= N

V
gµBJ

(2J + 1
2J coth

(2J + 1
2J

gµBJH

kBT

)
− 1

2J coth
( 1

2J
gµBJH

kBT

))
.

It is possible to plot the temperature dependence of the magnetization for different values of the total
angular momentum as depicted in fig. 60. When no magnetic field is applied, x equals zero and the
magnetization is zero too. For very low temperatures or very high fields, the saturation region is
reached and (nearly) all spins get aligned.
For high temperatures there is a linear region, because here the Curie law holds. (m = χH => m ∝
H
T => χ ∝ 1

T ) So it turns out, that for µB << kBT the susceptibility can be written as χ ≈ µ0M
B = C

T
with the Curie constant C.

9.4 Free Particles in a Weak Magnetic Field

When calculating the paramagnetic response (called Pauli paramagnetism) of free electrons to a
magnetic field, it turns out to be much smaller than it would be for individual atoms. This happens
because free electrons fill up all states to the fermi surface and only those electrons, which are at the
fermi surface participate in paramagnetism. As said before, the two states for spin up and spin down
split up in a magnetic field and the state with spin parallel to the field has the lower energy (see
fig. 61). So one has to calculate the number of electrons that fill up those states in order to get the
magnetization (eqn. (71)).

7Zustandssumme
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Figure 60: Magnetization for different values of the total angular momentum at variable values of
magnetic field and temperature.

Figure 61: Energy versus density of states for spins parallel and antiparallel to the direction of the
applied magnetic field.
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N+ = 1
2

∫ EF

−µB
D(E + µ0µBB)dE ≈ 1

2

∫ EF

0
D(E)dE + 1

2µ0µBBD(EF )

N− = 1
2

∫ EF

µB

D(E − µ0µBB)dE ≈ 1
2

∫ EF

0
D(E)dE − 1

2µ0µBBD(EF )

Here N+ is the number of spins parallel to the magnetic field and N− is the number of spins opposite
to the magnetic field. One can see, as mentioned above, that the only difference occurs at the fermi-
surface and that there is the same number of electrons for both spin orientations in the fermi sphere.
Now the magnetization can be calculated.

M = µB(N+ −N−) (71)

M = µ0µ
2
BD(EF )B (72)

So in this case the magnetization can be calculated as a function of the magnetic field. The suscepti-
bility can be obtained by taking the derivative and it turns out to be temperature independent.

χ

µ0
= dM

dB

χPauli = µ2
BD(EF )

So, Pauli paramagnetism is much smaller than atomic paramagnetism and it is temperature indepen-
dent. However, the Pauli paramagnetism is 2

3 times bigger than the diamagnetic part.

Landau Levels, Landau diamagnetism
The first thing to do is to find the microscopic states for free electrons in a magnetic field. So we take
the Schroedinger equation with zero electric field (V=0).

1
2m(−i~∇− qA)2Ψ(r) = EΨ(r)

Using the Landau gauge A = Bzxŷ one gets

1
2m

(
−~2∇2 + i2~qBzx

d

dy
+ q2B2

zx
2
)

Ψ = EΨ.

So y and z don’t appear in the Hamiltonian and so the solution can be written as a product of functions
of x,y and z (separating variables) and has the form

Ψ = eikyyeikzzg(x).

The equation for g(x) is

1
2m

(
−~2∂

2g(x)
∂x2 + ~2k2

y + ~2k2
z − 2~qBzkyx+ q2B2

zx
2
)
g(x) = Eg(x).

Let’s complete the square

1
2m

(
−~2∂

2g(x)
∂x2 + q2B2

z

(
x− ~ky

qBz

)2)
g(x) =

(
E − ~2k2

z

2m

)
g(x).
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Figure 62: Left: Fermi sphere for zero applied magnetic field. Right: Split of Fermi sphere into
different Landau levels when magnetic field is applied.

This is the equation for a harmonic oscillator

−~2

2m
∂2g(x)
∂x2 + 1

2mω
2(x− x0)2g(x) = Eg(x)

Ekz ,n = ~2k2
z

2m + ~ωc
(
n+ 1

2

)
ωc = qBz

m

The equation holds for a magnetic field in the z-direction because then the electrons can have kinetic
energy in the z-direction without being pushed in this direction. So the oscillation just takes place in
the x-y-plane, where the electrons move in a circle with the cyclotron frequency. Because of this, the
value in kinetic energy in the z-direction is not restricted, but only discrete values in the x-y-plane
are allowed (going with n), because there k2

x + k2
y has to be a constant when the electrons move in a

circle.
So the harmonic motion is quantized and n labels the Landau level.

En = ~ωc
(
n+ 1

2

)
= ~2

2m(k2
x + k2

y)

Fig. 62 shows the splitting of the fermi sphere in cylinders, corresponding to the different Landau
levels. Note that the cylinders have a certain height because the energy in z-direction gets smaller
when the energy in the x-y plane gets bigger. Of course, there would be states at cylinders even with
infinite height, but those would not be occupied. Here only occupied states are depicted and we know
that they are within a fermi-sphere.
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There are two limits where one can solve this problem:
High temperatures / Landau diamagnetism (weak magnetic fields)
For high temperatures the split gets smaller, so the states are close together. This calculation is called
Landau diamagnetism. Usually the calculation is done in a grand-canonical ensemble.
We can use the grand-canonical potential Ω to obtain the Gibbs-free energy G and then get the
magnetization by taking the derivative.

Ω = −kBT lnZG

G = Ω + µN

M = − ∂G
∂H

χ = − ∂
2G

∂H2

In this case, the logarithm of the partition function can be calculated as shown below. After that, the
discrete energies have to be plugged in and after that it is necessary to sum over all Landau levels and
put in the degeneracy of the levels. This is a difficult calculation8 so only the result is presented here
(equ. 75).

Ω = −kBT
∑
k

2 ln
(
1 + eβ(µ−Ek)

)
(73)

En =
(
n+ 1

2

)
~ωc (74)

Ω = −kBT
Am

π~2 ~ωc
∑
n

ln
(
1 + eβ(µ−En)

)
(75)

The factor containing A comes from the degeneracy of the Landau levels. The result, that is obtained
by evaluating the sum, shows that the susceptibility is about a third of the susceptibility for Pauli
paramagnetism.

Ω(H) ≈ Ω(0) + 1
3µ

2
BD(EF )H2 (kBT >> ~ωc)

χ = − ∂
2G

∂H2

χ ≈ −1
3µ

2
BD(EF )

χLandau ≈ −
1
3χPauli

Low temperatures / Landau diamagnetism (strong magnetic fields)
In this limit the energy associated with the steps between the Landau levels are much bigger than
kBT (kBT << ~ωc). Equation (75) stays valid, but when one evaluates it in this limit, the solution
turns out to be proportional to a cosine:

Ω ∝
inf∑
k=1

cos
(

e~k
mEFH

− π

4

)
8the calculation can be looked up in the internet: http://physics.ucsc.edu/~peter/231/magnetic_field/magnetic_field.html
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Figure 63: De Haas-van Alphen effect for gold as a good approximation for a free electron gas. The
magnetic moment is plotted as function of B.

So, when one calculates the magnetization by taking the derivative as shown above, the magnetization
will oscillate. This is the De Haas-van Alphen effect. Fig. 63 shows this effect, using gold as a good
approximation for a free electron gas. As one can see, the magnetic moments oscillate in dependence
of the magnetic field applied.

One can think about that, using the picture of the cylinders of the Landau levels. The diameter of
those cylinder increases with the magnetic field and then the cylinders move through the fermi surface.
This causes a big change in the density of states at that point, which leads to large consequences for
all thermodynamic quantities. So the effect can not only be seen in the magnetization, but in all
thermodynamic quantities, as they are all functions of the free energy.
Another effect is the Quantum Hall Effect. In this case, one varies the magnetic field and measures
the resistivity (green line in fig. 64). There are oscillations in conductivity, called Shubnikov-De Haas
oscillations. The red line depicted in the figure shows the Hall voltage (measured perpendicular to
the applied voltage and the applied field), for a 2-dimensional electron gas (electrons on a surface).
Here we can see steps in this voltage and a constant voltage for regions where the resistivity drops
to zero. Normally electrons travel for a while and then they get scattered off in different directions,
which causes the resistance. When there is a high magnetic field of the right amplitude applied, the
electrons move at the edge of the sample, they don’t get scattered any more. Electrons in the middle
of the sample might also move in circles, but then they don’t participate in the conduction process.

9.5 Ferromagnetism

A ferromagnetic material shows spontaneous magnetization below a certain critical temperature Tc.
Below that temperature the magnetic moments in the solid (i.e. spins, magnetic moments due to
electron movement,... ) align in a preferential direction by themselves. From a classical point of view
this is in deed very puzzling because two neighboring magnetic moments should align antiparallel to
minimize their energy in their mutual magnetic fields. Ferromagnetism is a quantum effect which is
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classically seen due to electric interaction as we shall see in the following. Imagine a two electron
system described by the stationary Schrödinger equation

− ~2

2m(∇2
1 +∇2

2) + V1(r1) + V2(r2) + V1,2(r1, r2)Ψ = EΨ (76)

. Neglecting the electron-electron interaction term V1,2 enables us to use the product wavefunction

Ψ(r1, s1, r2, s2) = ψ(r1)χ(s1) · ψ(r2)χ(s2) (77)

. Because electrons are fermions the wavefunction has to be antisymmetric under an exchange of the
two particles so the possible solutions are either symmetric in spin χS and antisymmetric in position
ψA or vice versa (figure 65). With this picture in mind one sees that ferromagnetism will emerge
if the energy of the symmetric spin state (antisymmetric in position) is lower than the energy of
the antisymmetric spin state (symmetric in position). It is now somehow plausible to see how two
spins may align parallel. Because then their wavefunction is antisymmetric in position and therefore
the electrons are farther away from each other resulting in a more favourable configuration from an
electrostatic point of view. After this rough semiclassical picture of how one can understand the
emergence of ferromagnetism a short overview of a mathematical theory of ferromagnetism shall be
given. The Heisenberg model consists of the hamiltonian

Ĥ = −
∑
i,j

Ji,j ~̂Si · ~̂Sj − gµBB
∑
i

~̂Si (78)

. The first term describes the exchange interaction between spins which raises or decreases the energy
depending on their alignment. One should not forget that this exchange interaction is of electric
nature as described above. The second term accounts for the interaction with an external magnetic
field. We will simplify this model by considering only nearest neighbor interaction (subscript nn).
Further we will remoe the nonlinearity in S by replacing the ~̂Snn operator by its expectation value.
Thereby introducing the mean field hamiltonian

Ĥmf =
∑
i

~̂Si(
∑
nn

Ji,nn < ~S > +gµBB) (79)

. It is possible to rewrite the first term as a magnetic field due to the neigboring spins.

~Bmf = 1
gµB

∑
nn

Ji,nn < ~S > (80)

The magnetization is given as magnetic moment per volume

~M = gµBN

V
< ~S > (81)

. Eliminating < ~S > yields

~Bmf = V

Ng2µ2
B

nnnJ ~M (82)

where nnn is the number of nearest neighbors. So one can use mean field theory to transform the
exchange energy which is coming from Coulomb interaction into a magnetic field of neighboring spins.
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This additional magnetic field may now be used for statistical considerations to calculate the mag-
netization as a function of temperature. The magnetization is the magnetic moment of the electrons
times the differnce in spin occupation (see figure 66).

M = (N1 −N2)µ (83)

We can calculate N1 and N2 in thermal equilibrium

N1
N

= e
µB
kBT

e
µB
kBT + e

−µB
kBT

(84)

N2
N

= e
− µB
kBT

e
µB
kBT + e

−µB
kBT

(85)

Combining these equations leads to a magnetization of

M = (N1 −N2)µ (86)

M = Nµ
e
µB
kBT − e

−µB
kBT

e
µB
kBT + e

−µB
kBT

(87)

M = Nµtanh( µB
kBT

) (88)

In this result for the magnetization we can plug in the magnetic field from the mean field calculation

M = Mstanh(Tc
T

M

Ms
) (89)

with the saturation magnetization

Ms = NgµB
2V (90)

and the Curie temperture

Tc = nnnJ

4kB
(91)

. A well known approximation to this implicit equation is the Curie-Weiss law which is valid for
B << T (see figure 67). Expanding the hyperbolic tangent around Tc yields

~M = χ

µ0
~B, T > Tc (92)

χ = C

T − Tc
(93)

Summing up
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• Ferromagnetic materials show spontaneous magnetization without an external field below the
critical temperature.

• The emerging order can only be explained quantum mechanically (Pauli principle, exchange
interaction).

• A mathematical basis is the Heisenberg hamiltonian. It can be solved in mean field theory. This
is done in treating the exchange energy as an additional magnetic field resulting from the nearest
neighbors.

• Using a statistical approach for the occupation of the spin levels and the magnetic field ob-
tained from the mean field calcualtion one can find a relation between the magnetization and
temperature.
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Figure 64: Conductivity (green line) and Hall voltage (red) line over magnetic field.

Figure 65: Possible states for a two electron-spin system.

Figure 66: Equilibrium spin population. [from Kittel]
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Figure 67: Curie-Weiss law. [from Kittel]
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10 Transport Regimes

Before we start with Transport Regimes we will discuss the Linear Response Theory which we need
to understand.

10.1 Linear Response Theory

What we want to look at is the linear response of a solid to a time dependent force for example
electric field or stress. Linear response means that the response of the solid is proportional to the
force. An other important consideration is causality. Causality requires that effects follow causes this
means that e.g. a bell rings when you hit it and not the other way around. This will lead us to the
Kramers-Kronig relations and the fluctuation dissipation theorem.
To start with the linear response theory we first look at an ordinary linear differential equation:

L g(t, t′) = δ(t− t′) (94)

Where g is called Green’s function, which is the solution to a linear differential equation to a δ-function
driving force (Be careful: the name Green’s function has different meanings!). For instance a damped
spring-mass system:

m
d2g

dt2
+ b

dg

dt
+ kg = δ(t) (95)

withm the mass, b the damping and k the spring constant. This differential equation has the solution

g(t) = 1
b

exp(−bt2m ) sin(
√

4mk − b2
2m t), t > 0 (96)

Where g(t) is the Green’s function for this system which is a decaying sinusoidal function. Green’s
functions are also called impulse response functions.

Figure 68: Example of a response g(t) to δ(t) driving force (eqn. (96))

The advantage of Green’s functions is that every function can be written as a sum over δ peaks:

f(t) =
∫
δ(t− t′)f(t′)dt′

This means that the solution to a linear differential equation Lu(t) = f(t) can be found by a
superposition of Green’s functions.

u(t) =
∫
g(t− t′)f(t′)dt′
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For the damped spring-mass system from above (eq. (95)) this gives us

u(t) =
∫
−1
b

exp
(−b(t− t′)

2m

)
sin
(√

4mk − b2
2m (t− t′)

)
f(t′)dt′ .

But keep in mind this is only possible if the response of the system is linear to the impulse.

Generalized susceptibility:
We now assume we have such a situation where we have a linear differential equation Lu(t) = f(t)
with a driving force f(t). We also assume that the driving force is sinusoidal, f(t) = A exp(iωt).
Because the response of the system is linear, the response will also be sinusoidal with the same
frequency ω as the driving force. The general solution in terms of the Green’s function then is

u(t) =
∫
g(t− t′)f(t′) =

∫
g(t− t′)A exp(iωt′)dt′

We define the generalized susceptibility which is the response of the system divided by the driving
force

χ(ω) = u

f
=

∫
g(t− t′)A exp(iωt′)dt′

A exp(iωt) (97)

Since the integral is over t′, the factor with t can be put in the integral.

χ(ω) = u

f
=

∫
g(t− t′)A exp(−iω(t− t′))dt′

This equation looks similar to a Fourier transformation. If the variables are changed to τ = t− t′

χ(ω) = A ·
∫
g(τ) exp(−iωτ)dτ (98)

we see that the susceptibility is proportional to the Fourier transform of the Green’s function. This
is useful because if we now know the Green’s function we know the response of the system at all
frequencies. (Without loss of generality9 the proportionality factor A can be neglected.)
Any function g(t) can be written as the sum of an even component E(t) and an odd component O(t)

g(t) = E(t) +O(t) (99)

If g = 0 for t < 0, which is the case for the response function for a system (causality), this requires
that

O(t) = sgn(t)E(t). (100)

Therefore the impulse response function is completely specified by either it’s even components or its
odd components.
The Green’s function written as the sum of its even and odd component and put in eq. (98) leads
to:

χ(ω) =
∫
g(τ) exp(−iωτ)dτ =

∫
E(τ) cos(ωτ)dτ + i

∫
O(τ) sin(ωτ)dτ = χ′(ω)+ iχ′′(ω) (101)

9ohne Beschränkung der Allgemeinheit
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Figure 69: Response g(t) of a system to a δ(t) driving force splitted into an even and an odd component

Since the even component of the Green’s function is related to the odd component also the real part
of the susceptibility is related to the imaginary part of the susceptibility. For example if the real part
χ′ is known, the inverse Fourier transform gives the even component E(t) of the Green’s function.
By knowing E(t) the odd component can be determined with O(t) = sgn(t)E(t). The Fourier
transformation of O(t) leads to χ′′. The relationship between the real part and the imaginary part of
the susceptibility is called the Kramers-Kronig relation:

χ′′(ω) = 1
π

∫ ∞
−∞

χ′(ω′)
ω′ − ω

dω′ (102)

χ′(ω) = − 1
π

∫ ∞
−∞

χ′′(ω′)
ω′ − ω

dω′ (103)

This relation is very useful because if you measure e.g. the response of a solid to a light wave you
can either measure the depth which the light wave is penetrating into the material or the polarisation
caused by the light wave and calculate the other one. Or you measure both and check with the
Kramers-Kronig relationship if it is right.
”If you calculated a linear response and want to tell everybody else about it, put it in the Kramers-
Kronig relation to see if it is right. Because if you publish a response and then somebody else says:
’Oh, but it violates causality’ - it looks stupid.”

10.2 Ballistic Transport

The formulas for ballistic transport are the same as for electrons in vacuum, because ballistic means
there are no obstacles and no scattering. Newton’s law with the force F = −eE is

F = ma = − eE = m
dv
dt

. (104)
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This is a differential equation for the velocity v. The velocity can be determined to be

v = −eEt
m

+ v0

and is proportional to the time t, the position x is given by

x = −eEt2

2m + v0t+ x0 .

If the electrons are put into an magnetic field they move on a spiral. For a magnetic and an electric
field the electrons move perpendicular to both fields10.

10.3 Drift-Diffusion

For the diffusive transport the electrons are also accelerated at the beginning like the ballistic electrons,
but after a time t0 the electrons scatter and have a velocity v0 which is randomly distributed. Hence
the average velocity after the scattering event is 〈v0〉 = 0. Newton’s law for an electron in an electric
field is (again)

F = ma = − eE = m
dv
dt
,

and the velocity v can be calculated as

v = − eE(t− t0)
m

+ v0.

With the average velocity after a scattering event is being zero the drift velocity vd which is the
average velocity of the electrons is:

vd = 〈v〉 = −eEτSC
m

= −eEl
mvF

= − µE (105)

where µ is the mobility of the electrons and τSC = 〈t − t0〉 is the average time between scattering
events. This means that the drift velocity is not proportional to the time any more only proportional
to τSC and the electric field, therefore also the current density j = nqv is proportional to the electric
field which is Ohm’s law.
Without an electric field the average electron position in a magnetic field is zero, the electrons only
move on circular paths. However if the electrons are in an electric and magnetic field the average
electron position moves on a straight line at the Hall angle to the fields (in contradiction to the
ballistic transport where the electrons move perpendicular to the electric and magnetic field).
The described Drift-Diffusion above is valid for low frequencies, if the frequency of the electric field
is high the probability that the electrons scatter gets smaller. This is because the mean free path
is much longer than the distances the electrons travel before the electric field changes the direction.
Therefore the transport gets more ballistic.
In an insulator in an electric field no current is flowing, although the insulator gets polarized. For an
insulator in a changing electric field the polarisation gets changed and therefore a current is flowing
which is out of phase with respect to the electric field. In the high frequency regime the transport in
metals gets to be ballistic transport because of the unlikely electron scattering as mentioned above.
Therefore metals act like insulators, because the ballistic electrons move out of phase with respect to
the fast changing electric field which is a similar behaviour to an insulator.
10In an electric and magnetic field electrons move with a drift velocity v = E×B

B2
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10.4 Diffusive and Ballistic Transport

We now try to get a uniform picture of the transport e.g. if the frequency is so high that there is some
scattering of electrons but also ballistic transport. In this frequency regime metals can be described by
a dielectric constant which sounds weird, because normally only insulators have a dielectric constant.
But for this particular frequency range the electric field changes faster than the electrons scatter and
therefore the electrons move out of phase just like they do in an insulator (polarization current). Hence
a dielectric constant is also useful to describe a metal in this frequency range.
In general the polarization and the electric displacement are connected to the electric field via a
matrix χ:

Pi(ω, k) =
∑
j

ε0χij(ω, k)Ej(ω, k) (106)

Di(ω, k) =
∑
j

ε0εij(ω, k)Ej(ω, k) (107)

The polarization and the electric displacement are both linear to the electric field which is linear
response theory. The susceptibility (χ = P

ε0E
) and the dielectric constant (ε = D

ε0E
) can be thought

of as generalized susceptibilities as above (see chapter 10.1) and therefore must satisfy the Kramers-
Kronig relations.
The displacement is related to the polarization like

D = ε0E + P,

with this equation, eqn. (106) and (107) the dielectric constant can be written as

ε(ω, k) = 1 + χ(ω, k) .

Often this relation is written

ε(ω) = 1 + χ(ω) .

This is the low - frequency (wavelength longer than the lattice constant) approximation which is
important e.g. for optics.
In an insulator in a changing electric field there are no free electrons to produce a current but there
is a displacement current which is the derivation of the displacement by time.

JD = ∂D
∂t

= ε0ε
∂E
∂t

(108)

For a sinusoidal electric field E(ω) = exp(iωt), the displacement current is

JD = iωε0ε(ω)E(ω), (109)

hence the displacement current and the electric field are 90° out of phase. The displacement current
and Ohm’s law (J = σE) put into Faraday’s law (∇×H = J− ∂D

∂t ) gives

∇×H = σ(ω)E(ω)− iωε0ε(ω)E(ω) (110)
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To describe this equation in a simpler way we could define a complex conductivity σ or a complex
dielectricity ε. Both is possible and both is being done. A complex conductivity is often used for high
frequencies when insulators start to act like metals and a complex dielectric constant is used for very
high frequencies when dielectrics act like metals with poor conductivity.

σ̃(ω) = σ(ω)− iωε0ε(ω) (111)

ε̃(ω) = ε(ω) + i
σ(ω)
ε0ω

(112)

We now look at the response of metals, including the inertial term (eqn. (104)) and the ohmic term
(eqn. (105)), the relation between the electric field an the velocity of an electron is

m

−e
dv(t)
dt︸ ︷︷ ︸

Ballistic

− v(t)
µ︸︷︷︸

Diff.

= E(t) (113)

The same equation written as a function of g(t), the Green’s function

m

−e
dg(t)
dt
− g(t)

µ
= δ(t)

The solution to this differential equation for t > 0 is

g = µ exp(−et
mµ

), t > 0 (114)

At t = 0 the velocity jumps up and then decays, if there would be only the ballistic part the velocity
would also jump up at t = 0 but then stay at the same level all the time because there is no drag
force or scattering.

Figure 70: response g(t) to δ(t) driving force

To get the generalized susceptibility the Fourier transform of g(t) is needed, which is an Lorentzian
for an exponential decay.

G(ω) = µ
1− iωτ
1 + ω2τ2 , τ = mµ

e

The generalized susceptibility is the response divided by the driving force

χ(ω) = v(ω)
E(ω) = µ

1− iωτ
1 + ω2τ2 (115)
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The frequency dependent conductivity is

σ(ω) = j(ω)
E(ω) = nev(ω)

E(ω) = neµ
1− iωτ
1 + ω2τ2 (116)

If we think of low frequencies the conductivity is σ(ω) = neµ which is the same result we got for
diffusive transport. For high frequencies the conductivity is σ = − ineµωτ , hence the current again is
out of phase with respect to the electric field and the metal acts like an insulator.
The polarization is the number of charges multiplied with the displacement, for harmonic solutions
the displacement is x =

∫
v(ω, t)dt = v(ω)

iω

P (ω) = − nex(ω) = −nev(ω)
iω

(117)

The electrical susceptibility is given by the polarization divided by the electric field

χ(ω) = P (ω)
ε0E(ω) = −nev(ω)

iε0ωE(ω) = ne

iε0ω
( iωm
e

+ 1
µ

)−1 (118)

The dielectric constant can be calculated with ε(ω) = 1 + χ(ω) and by using the definition of the
plasma frequency ω2

P = ne2

ε0m
and the mobility µ = eτ

m :

ε(ω) = 1− ω2
P

ω2 + i
ω2
P ε0
σ(ω) ω

(119)

For low damping (large σ) the dielectric constant can be approximated by the following equation

ε(ω) ≈ 1− ω2
P

ω2 , (120)

this is what’s shown in fig. 71(a). At the plasma frequency the dielectric constant is zero and for higher
frequencies ε gets positive, thus the metal acts like an insulator, but what happens if the dielectric
constant is negative?
For a negative dielectric constant there is no propagating wave solution to the wave-equation only
damped solutions, but because the wave and it’s energy has to go somewhere the wave gets reflected
out of the material. In the following fig. 71(b) the reflectivity for Aluminium is shown. For photon
energies 0 − 15 eV aluminium is shiny, in the ultraviolet the reflectivity drops and the light goes
through the aluminium. To remind you: the plasma frequency is depending on the electron density,
this behaviour is used to make transparent contacts for solar cells. There a semiconductor with a low
electron density is used, so visible light can pass through it. However for DC the semiconductor is
still conducting.
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(a) (b)

Figure 71: a) Dielectric constant ε vs. ω. The dielectric constant is positive for frequencies above the
plasma frequency; b) Reflectivity of Aluminium, at about 15 eV it drops, this is where the
frequency of the light is the plasma frequency.

10.5 Skin depth

The skin depth is an important property in microwave engineering and is related to the high frequency
properties of metal. In this case high frequency means that the frequency is still below the plasma
frequency so waves do not propagate in the material. With ω the frequency and τ the scattering time
we can say that below ωτ � 1 electromagnetic waves penetrate into a material to a certain depth
which is called the skin depth.
With the curl of Ohm’s law (J = σE), Faraday’s law (∇×E = − dB

dt ), Ampere’s law (∇×B = µ0J)
and the vector identity ∇×∇×B = ∇ (∇ ·B)︸ ︷︷ ︸

=0

−∇2B the following equation can be obtained:

1
σµ0

= ∇2B = dB
dt

(121)

Once again we assume harmonic solutions B0 = exp [i(kx− ωt)], with this the equation for k can
be calculated to be:

k =
√
iωσµ0 =

√
ωσµ0

2 + i

√
ωσµ0

2︸ ︷︷ ︸
exp.decay

(122)

The inverse (units) of the component which is describing the exponential decay is a length, the skin
depth

δ =
√

2
µ0σω

. (123)

In microwave engineering (GHz) the surface resistance of a transmission line is an important property,
it’s dependent on the skin depth. The resistance of a transmission line can be written as

R = l

σwt
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with l the length, w the width and t the thickness of the transmission line. For high frequencies the
skin depth gets smaller than the thickness, so the resistivity depends on the skin depth, hence also
dependent on the frequency ω.

R ≈ 1
σδ
≈
√
ω
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Dispersion relation general
With Amperes law, Faraday’s law and the electric displacement as D = εE as well as B = µH the
following equation which is a more general dispersion relation for ω and k can be derived (for plane
waves):

ε(ω, k)µ0ε0ω
2 = k2 (124)

On the left side (for positive ε) is c2ω2, with c the speed of light in the material, therefore the waves
are travelling at the speed of light in the material. From the Diffusion-Ballistic regime we now that
the dielectric constant for a metal can be negative.

ε ≈ 1− ω2
P

ω2

Hence k (eqn. (124)) can get complex and a complex k means that the wave decays exponentially, this
shows fig. 72. This phenomenon is similar to electrons shooten into a semiconductor with an energy
in-between the band gap of the semiconductor, which are reflected because there are no allowed states.
For metals there is a forbidden frequency gap for light.

Figure 72: Dispersion relation ω vs. k
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11 Quasiparticles

In many-body quantum mechanics it is convenient to simplify problems because the initial equations
may be too difficult to solve. However it is often possible to calculate the groundstate (at zero tem-
perature). In linearizing the underlying equations, neglecting fast osciallating terms,... one can derive
a handy theory for low-lying excitations which can be built in the language of second quantization
using elementary harmonic oscillators. These quasiparticles will serve as elementary exitations. In
this framework it is possible to excite the system to higher energy by adding quanta of quasiparticles.
Or to lower its energy by removing these quanta until the groundstate is reached again. Because the
concept of quasiparticles is a low energy theory it is not valid for high excitations. For example a
crystal in which the ion lattice undergoes tiny vibrations is said to inhibit phonons. For a crystal
which gets macroscopically distorted it makes no sense to speak of phonons. By investigating the
properties of individual quasiparticles, it is possible to obtain a great deal of information about low-
energy systems, including the flow properties and heat capacity. Most many-body systems possess
two types of elementary excitations. The first type, the quasiparticles, correspond to single particles
whose motions are modified by interactions with the other particles in the system. The second type
of excitation corresponds to a collective motion of the system as a whole. These excitations are called
collective modes.

11.1 Fermi Liquid Theory

The use of the free electron model is a very successful way to describe metals. With the electron
density it is possible to calculate the magnitude of the energy of the electron-electron interaction
(calculation of the Coulomb-energy and sum over all local electrons). The only way to solve the
Schrödinger equation, is to neglect the electron-electron interactions.
Landau was very concerned about this explanation and tried to find another solution for this prob-
lem. He tried to go back and reconstruct the theory with including the electron-electron interaction.
He was interested about the proper normal modes of an electron interacting system which he called
quasiparticles.
One easy example for this would be a system of phonons, in fact, masses which are connected by a
spring. If just one of these masses would be pulled to a side, it would oscillate forward and backward
with some particular frequency. But if you connect them all together and one of them would be pulled
to a side, the energy will spread out and all other masses also will start to oscillate. There won’t be
a periodic solution for this problem anymore.
A model for a crystal would be a lot of springs which connect all phonons and these phonons will
be pulled up and down with a certain k vector. The solution are modes which are eigenmodes of
the system. This model is ideal for phonons because they have a specific wavelength, frequency and
energy.
Landau now includes the electron-electron interaction to find the eigenmodes of the system (these
eigenmodes are called quasiparticles).
If there are just weak interactions (in border case the electron-electron interaction is zero ⇒ free
electron model) the free electron model is almost right. So there is a correspondence between the free
electrons and the quasiparticles. The number of quasiparticles is the same as the number of the free
electrons. This is also true for phonons:
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In a system of N atoms the number of variables which describe the motion is 3N (x, y and z compo-
nents). So there are also 3N phonons (there are as many phonons as primitive lattice vectors in the
first Brillouin zone). As a result the number of modes for phonons is conserved and furthermore there
is also conservation in the electron case. The number of quasiparticles is the same as the number of
free electrons. This quasipartcicles can have the same spin, charge and k vectors as the
electrons.

11.2 Particle like Quasiparticles

11.2.1 Electrons and Holes

11.2.2 Bogoliubov Quasiparticles

11.2.3 Polarons

A polaron is the simplest kind of quasiparticle which describes the interaction between electrons and
phonons. The combination of the electrons and the screening field around them defines the polaron.
In ionic crystals this effect is very important because the Coulomb-interactions between the ions and
the electrons are very high. Therefore in covalent crystals this effect just has a small impact because
the interactions between neutral atoms and electrons are very weak.

There are two types of polarons. The first one is called large polaron and was described by Fröhlich:
This polaron looks like an electron which moves through the crystal with a particular effective mass.
The electron pushes the negative ions away and pulls on the positive ions (the whole system is still
moving). The polarization field is spread out and as a result the energy of the whole system does not
change dramatically. The second type are small polarons which were described by Holstein. This
type is similar to a mott insulator. The electrons get trapped from the ions and at high temperature
(thermal activation) the electrons hop from one place to another. At low temperature the electrons
are tunneling very slowly through the crystal.

11.2.4 Bipolarons

One way to describe superconductivity is via Bipolarons. Bipolarons consist of two polarons which
bind together. The reason is that they reduce the polarization field (sharing of the polarization field).
The bipolarons have two electrons with spin 1

2 but the total spin is integer so they are bosons.

11.2.5 Mott Wannier Excitons

11.3 Collective modes

11.3.1 Phonons

Phonons are a probably the most basic quasiparticle emerging in solids. They characterize the vibra-
tion of the lattice. More on phonons can be found in chapter 6.
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Figure 73: a) electron in ionic crystal (KCL). Forces are symbolized by arrows. b) Electron in a
kind of equilibrium. The ions change there position so the effective mass of the electron
increases

11.3.2 Polaritons

A polariton is a combined wave between light and sound. In fig. 74(a) the photon dispersion is drawn
into a plot of the phonon dispersion. As you can see, the photon dispersion crosses the optical phonon
branch close to k = 0. At this point photons and phonons have the same wavelength and frequency
and thus the same energy. At this point, the optical phonons will couple to the photons and this
coupling is described by a polariton. Polaritons can only occur in materials where there more than
two atoms per unit cell, otherwise there would not be any optical phonons!

We will start the calculation to couple light and sound with Maxwell’s equation for light propagating
in a medium:

∇2E = µ0
δ2D

δt2
, (125)

assuming a plane wave we get

k2E = µ0ω
2(ε0E + P ) . (126)
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(a) (b)

Figure 74: a) Phonon dispersion and photon dispersion; b) Dispersion relationship of polaritons.

The photon dispersion can also be written as

k2 = µ0ε0ε(ω)ω2 . (127)

Now we need to describe the motion of the atoms. We think of the atoms as masses connected by
springs but the atoms also have a charge that reacts to an electric field so Newton’s law for the atoms
is

m
d2x

dt2
= −eE − CX . (128)

Around the crossing point the dispersion of the optical phonons is very flat and we can assume that
the transverse optical phonons have the frequency

ωT =
√
C

m
. (129)

We solved the differential equation for the position of the atoms but the position is related to the
polarization like this:

P = −Nex (130)

If we solve this equation for x and plug it into eqn. (128) we get

ω2mP

Ne
= −eE + mω2

TP

Ne
(131)

−ω2P + ωTP = Ne2E

m
(132)

With eqn. (126) and eqn. (132) we have two equations for the relation between the electric field and
the polarization. (The electric field of the light wave is coupled to the polarization of the atoms.) We
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can solve this system of equations by calculating∣∣∣∣∣ µ0ε0ω
2 − k2 µ0ω

2

Ne2 / m ω2 − ω2
T

∣∣∣∣∣ = 0 , (133)

which gives us a new dispersion relationship between k and ω that is shown in fig. 74(b). There are
two solutions for every k, one for the upper branch and one for the lower branch. In the frequency
range between ωT and ωL there are no waves at all allowed in the crystal. This means that light Bragg
reflects off the sound wave and sound Bragg reflects off the light wave.

In fig. 75 you can see the reflectance of NaCl. At the frequency range of the gap in the polariton
dispersion relationship the reflectance of NaCl is very high as expected. The dielectric constant as a

Figure 75: Reflectance of NaCl; gap = frequency gap of polaritons.

function of ω now looks like

ε(ω) = 1 + P

ε0E
= 1 + Ne2

m(ω2
T − ω2) = ω2

T ε(0)− ω2ε(inf)
ω2
T − ω2 (134)

and at ω = ωT there is divergence as you can see in fig. 76. Therefore there is a region where the
dielectric constant is negative which means that the wave vector k becomes imaginary. This indicates
that waves decay exponentially and are reflected out of the material. So the region where ε < 0
corresponds to the frequency gap of the polaritons.

11.3.3 Magnons

Magnons are the low lying excitations of the ordered ferro- (or antiferro) magnetic state. The ground-
state (zero temperature) of a ferromagnetic linear chain is visualized in figure 77 (a). Let us calculate
the exchange energy in the Heisenberg model

Ĥexc = −2J
N−1∑
k=1

~̂Sk · ~̂Sk+1 (135)
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Figure 76: Dielectric constant as a function of ω
ωT

.

. Calculating the expectation value of this operator in the ground state of the linear spin chain

E0 =< 0|Ĥexc|0 > , where |0 >= |11...1 > (136)

one arrives at

E0 =< 0|Ĥexc|0 >= −2JNS2 (137)

~ was neglected here and also the fact that there are really N-1 interactions instead of N, the spin
expectation value was calculated classically so

√
S(S + 1) is just S. Knowing the ground state energy

E0 we can ask the question what does an elementary excited state look like and what is its energy.
For example we may be tempted to try a single spin flip like in figure 77 (b). Calculating its energy
we see that two terms of equation 135 are affected. Their new energy is +4JS2 while their old energy
was −4JS2. So we end up with a total energy increase of

E1 = E0 + 8JS2 = −2JNS2 + 8JS2 (138)

. There are excitations which have a much lower energy like the one drawn in figure 77 (c). Such an
excited state may have an energy of the order of

E1 ∝ E0 + (nk + 1
2) · ~(2JSa2)k2, where k <≈ π

8a (139)

<≈ E0 + nk ·
JS2

4 (140)

as we shall see later on.
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Figure 77: (a) Ground state of a linear ferromagnetic chain at zero temperature, (b) excited state
where one spin is flipped, (c) excite state where the spin flip is equally distributet among
all available spins resulting in a spin wave. [from Kittel]

To calculate the dispersion relation for Magnons we examine the kth spin in equation 135

Uk = −2J ~Sk · (~Sk−1 + ~Sk+1) (141)

. Inserting the relation between magnetic moment and spin ~µ = γ~S = −gµB ~S into this relation we
obtain

Uk = − ~µk · (
−2J
gµB

(~Sk−1 + ~Sk+1)) (142)

. Because the potential energy of a magnetic dipole is U = −~µ · ~B we may interpret

~Bk = −2J
gµB

(~Sk−1 + ~Sk+1) (143)

as the effective magnetic field on spin k due to the nearest neighbors. The rate of change of angular
momentum is the torque ~T = d~S

dt = ~µ × ~B. Using the torque we set up equations of motion for the
spin

d

dt
~Sk = −gµB

~
~Sk × ~Bk (144)

= 2J
~

(~Sk × ~Sk−1 + ~Sk × ~Sk+1) (145)

. The cartesian components of this relation are

d

dt
~Sxk = 2J

~
(Syk(Szk−1 + Szk+1)− Szk(Syk−1 + Syk+1)) (146)

d

dt
~Syk = 2J

~
(Szk(Sxk−1 + Sxk+1)− Sxk (Szk−1 + Szk+1)) (147)

d

dt
~Szk = 2J

~
(Sxk (Syk−1 + Syk+1)− Syk(Sxk−1 + Sxk+1)) (148)

. One way to solve these nonlinear set of equations it is to linearize them. This is valid in the low
energy limit since we already know that low-lying excitations have a form of 77 (c) and therefore
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Sx, Sy << Sz. It is now reasonable to neglect product terms of SxSx, SySy and SxSy renaming Sz
to S. This results in the linearized system valid in the low energy limit

d

dt
~Sxk = 2J

~
S(2Syk − S

y
k−1 +−Syk+1) (149)

d

dt
~Syk = −2J

~
S(2Sxk − Sxk−1 +−Sxk+1) (150)

d

dt
~Szk = 0 (151)

. To solve this system we use plane wave solutions

Sxp = x0e
i(pka−ωt) (152)

Syp = y0e
i(pka−ωt) (153)

where p is a natural number and a is the lattice constant. Plugging in, the resulting equations are

−iωx0 = 2JS
~

(2− e−ika − eika)y0 = 4JS
~

(1− cos(ka))y0 (154)

−iωy0 = −2JS
~

(2− e−ika − eika)x0 = −4JS
~

(1− cos(ka))x0 (155)

. The solution to this set of equations (setting the determinant to zero) is

ω = 4JS
~

(1− cos(ka)) (156)

which is the magnon dispersion relation in one dimension considering only nearest neighbor interaction.
The eigenfunctions for the S components take the form

Sxp = ξcos(pka− ωt) (157)
Syp = ξsin(pka− ωt) (158)
Szp = η (159)

which is a spin precession around the z axis. Expanding the cosine in the dispersion relation one gets
a E ∝ k2 behaveiour for long wavelengths (see figure 78).

To take a look at the thermal properties of such a system we consider the overall number of magnons
which are excited at temperature T

Nexc =
∑
k

nk =
∫

1.BZ
D(ω) < n(ω) > dω (160)

where < n(ω) > is the Bose-Einstein statistics

< n(ω) >= 1

e
~ω
kBT − 1

(161)
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Figure 78: Magnon dispersion relation (1 dimensional, for nearest neighbor interaction). The slope for
long wavelengths is proportional to k2. [from Kittel]

. And the density of states in three dimensions D(ω) is

D(ω)dω = 1
(2π)3 4πk2 dk

dω
dω (162)

= 1
(2π)3 4πk2(2

√
ω ·

√
3JSa2

~
)dω (163)

= 1
4π2 ( ~

2JSa2 )
3
2
√
ω (164)

where we used the dispersion relation ω ∝ k2 obtained obove. Plugging these into the integral 160 we
find for the total amount of magnons

Nexc = 0.0587 kBT

2JSa2

3
2

(165)

Therefore the relative change in magnetization ∆M
M(0) is proportional to T 3

2 .

11.3.4 Plasmons

Suppose you have some metal where you have a uniform distribution of the positive ions and a uniform
distribution of the negative electrons as seen in fig. 79. We assume that the electrons are much lighter
than the ions so that the ions don’t move and are fixed. But the electrons can move. So if you pull
them off to a side they are not uniformly distributed anymore but the ions still are. This causes a force
on the electrons and if you let them go they will start to oscillate back and forth (the oscillation will
of course decay after a certain time). These oscillations are called plasma oscillations, because they
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Figure 79: Charge density in a metal

are also seen in plasma. Plasma is a gas of positive and negative charges. If you move the electrons
in the x-direction, the resulting force is the electric field that is caused by the protons. So Newton’s
law for a bunch of electrons in an electric field is

nm
d2x

dt2
= −neE (166)

where the electric field E is determined by the following equation (out of Gauss law: ∇ · E = ρ
ε0
,

ρ = ne):

E = nex

ε0
, (167)

with n as the electron density. Now we plug eqn. (167) in eqn. (166) and we get a differential equation
that just depends on x.

nm
d2x

dt2
= −n

2e2x

ε0
(168)

d2x

dt2
+ ω2

px = 0 (169)

The solution of this differential equation is the same like for a harmonic oscillator. The frequency ωp
is called Plasma frequency and it’s defined by

ωp =
√
ne2

mε0
. (170)
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For most metals this plasma frequency is up in the ultraviolet which means that in the visible spectrum
they look shiny but in a frequency range above ωp they are transparent (see chapter 10). Plasma
waves can be quantized like any other waves and there is a quantum that equals ~ωp. This quantum
is called plasmon, it describes oscillations of charges and can be measured with electron energy loss
spectroscopy. Fig. 80 shows the results of an EELS measurement. The peaks correspond to plasma

Figure 80: Results of an EELS measurement

waves with a certain frequency and the spacing between the peaks is the quantum ~ωp. But there is a
smaller second peak which is caused by surface plasmons whereas the dominant peak comes from the
bulk plasmons.

11.3.5 Surface Plasmons

The charge could be non-uniform at the surface and electric fields then penetrate into the vacuum.
In general, surface plasmons are waves in the electron density at the boundary of two materials.

metal

vacuum

+

-

-

e.m. wave

(a)

metal

+
-
-

aptamer

molecule

(b)

Figure 81: a) Surface plasmons; b) Biosensor.

Specifically, waves that propagate along the surface of a metal are a combination of a charge wave in
the metal and an electromagnetic wave in the vacuum above (see fig. 81(a)). Due to that combination
the surface plasmons tend to have a different (lower) frequency than the bulk plasmons. For example,
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this is used in stained glass11. In order to make red glass, gold particles are added during the production
process. The surface plasma waves of these gold particles are down in the red so they have the right
frequency to scatter red light and make the glass look red.

Surface plasmons are also used for biosensors. E.g. an organic light emitting diode is put on a gold
layer and it emits light that excites surface plasmons on the gold structure. On this gold layer there
are aptamers. Aptamers are molecules that stick with one side to a metal and with the other side to
some chemical or biological material. If molecules are attached to the aptamers (see fig. 81(b)), the
dielectric constant right at the interface changes and therefore the wavelength of the surface plasmons
changes too (the frequency is bound to the OLED). This change can be detected.

11.3.6 Frenkel Excitations

11.4 Translational Symmetry

Quasiparticles can be labeled with the symmetry label k. The translation operator T shifts a function
one period (a...lattice constant):

Tf(x) = f(x+ a) (171)

Solutions of Bloch form are eigenfunctions of the translation operator.

ψk(x) = eikxuk (172)

=⇒

Tψk(x) = eik(x+a)uk(x+ a) = eikxeikauk(x) = eikaψk(x) (173)

uk is a periodic function so uk(x) = uk(x + a). It is easy to see that eika is the eigenvalue of the
translation opertator.
The solution depends only on k (because a is always the same) so the labeling of the states happens
only in terms of k.
The translation operator commutes with the Hamiltonian even when the interaction, the symmetry of
the crystal, is the same. As a result it is possible to diagonalize the eigenfunctions of the Hamiltonian
and the translation operator. Furthermore if you know the k you can also specify the eigenstates of the
energy. So the quantum numbers which are used, come from the symmetry (e.g. Hydrogen
atom).
Very important is that there isn’t a good correspondence between the k and the momentum anymore,
cause they don’t describe the same.
One example of a quasiparticle system would be plasmons. Plasmons are oscillating electric charges
which build a slow wave. In fact there are millions or billions of electrons which are involved in this
wave, but (!) it’s still a quasiparticle system with a specific k vector because millions of electrons
making an interaction electron system.

11Buntglas
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11.5 Occupation

If there aren’t any electron-electron interactions (free electron model) the probability of occupation is
given by the Fermi Dirac distribution. Now (including electron-electron interactions) this isn’t correct
anymore, which means that the probability now depends on the temperature and on the other
occupied states. This means that at zero temperature the probability function may look similar to
the Fermi Dirac distribution for temperature T > 0.
Fig. 82 (left) shows a High Temperature Superconductor like Y Ba2Cu3Ox. The x-axis presents the
doping (the doping of Ox; x...doping) the, y-axis presents the Temperature T . The change of these
two variables changes the characteristic of this material completely. For instance high doping and low
temperature will be a Fermi liquid (like discussed above), less doping will lead to a mott insulator.
The right plot of fig. 82 shows CeCoIn5−xSnxwith different doping of In. The y-axis again presents
the temperature T , the x-axis the magnetic field H. This material has three different phases with
different properties. These phases are:

SC ... Superconductor
NFL ... Non Fermi Liquid
FL ... Fermi Liquid

Figure 82: left: Probability of a High Temperature Superconductor like Y Ba2Cu3Ox ; right: Differ-
ent phases of CeCoIn5−xSnx. SC...Superconductor, NFL...Non Fermi Liquid, FL...Fermi
Liquid

A good way understanding certain materials is to analyze the resistance ρ versus temperature T as
shown in fig. 83. Important to understand is that above the Debye temperature all phonon modes
are excited and as a result the resistance increases linear with the temperature.
Also shown in fig. 83 is a specific resistance at ρ = 150 µΩcm. In this region it is possible to describe
Transition metals. Important to describe is the resistance at room temperature:
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If the resistance at room temperature is under 150 µΩcm, the resistance will decrease if the system
cools down. But if the resistance is above 150 µΩcm, the resistance will increase if the system cools
down. That is a specific property of transition metals.

Figure 83: Resistance ρ versus temperature T for different materials

11.6 Experimental techniques

11.6.1 Raman Spectroscopy

11.6.2 EELS

11.6.3 Inelastic Scattering

11.6.4 Photoemission
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12 Electron-electron interactions, Quantum electronics

12.1 Electron Screening

For a single electron in vacuum Gauss’s law is

∇ ·E = −eδ(r)
ε

. (174)

If you use the relationship

E = −∇V (175)

between the electric field E and the electrostatic potential V and plug it into Gauss’s law, you get the
Poisson equation

∇2V = eδ(r)
ε

. (176)

The solution of this differential equation is

V = −e
4πεr . (177)

If a single electron is put in a metal and fixed, the other mobile electrons will react to the electric field
whereas the uniformly distributed positive ions will stay at their position. Before the single electron
was put in, the electrons where uniformly distributed too. The electrons far away are still where they
were before but now the electrons near the fixed negative charge are repelled. The poisson equation
now looks like

∇2V = eδ(r)
ε

+ −ρreaction
ε

. (178)

Now we want to know how ρreaction looks like. Based on observations we can say that the potential goes
to zero far away from the extra added electron. The reaction goes to zero far away too, therefore we
assume in the simplest approximation that ρreaction is proportional to V . So we can rewrite eqn. (178)
as

∇2V − k2V = eδ(r)
ε

(179)

which is the Helmholtz equation where the solution is well known. The proportionality constant is
typically chosen to be k2 with k as a wave vector because the dimension of the factor is 1

length2 . The
Helmholtz equation in 3-d is(

∇2 − k2
)
g = δ(r) (180)

where g is the appropriate Green’s function

g = − exp (−k |r− r′|)
4π |r− r′| . (181)
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Figure 84: Unscreened and screened potential.

So the resulting potential is

V = − exp (−k |r− r′|)
4πε |r− r′| . (182)

Fig. 84 shows the unscreened and the screened Coulomb potential. The distance how far the screened
potential can reach, the screening length, is determined by ks. The Thomas-Fermi approximation is
one possible way to calculate it, where

k2
s = 3e2n

ε0EF
. (183)

The so-called Thomas-Fermi screening length depends mostly on the electron density n in the metal.
If the electron density is large, ks becomes large and the screening length is small and vice versa. This
means that a metal with a large electron density can screen the potential of the extra electron better
than a metal with a small electron density.

The actual screening of a point charge looks different to an exponential decay. For example fig. 85
shows an STM picture of GaAs doped with Si on Ga-sites. Around the dopants there are the screening
clouds of electrons. But the charge goes up and down and makes these oscillations which are called
Friedel oscillations. The reason for these oscillations is that the electrons that shield the point charge
(δ-distribution) have a certain wave number k. But the ones with the highest wave number (shortest
wavelength) are around kF . Therefore you can’t build structures with electron waves that are smaller
than this wavelength and so the reaction distribution oscillates around the point charge.
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Figure 85: STM picture of GaAs doped with Si at Ga-sites.

12.2 Single electron effects

12.2.1 Tunnel Junctions

A tunnel junction looks like in fig. 86 where two metals are separated with an insulating barrier where
a bias voltage is applied. The tunnel junction can be described by a Hamiltonian

H = Hl +Hr +HT

that consists of the Hamiltonian Hl and Hr of the electrons on the left and right side, and of the
tunnelling-Hamiltonian which describes the tunnelling from left to right and contains the height and
width of the barrier. Fermi’s golden rule gives the rate of electrons tunnelling through the barrier

metal insulator metal

eV

Figure 86: Tunnel junction.

Γl→r = 2π
~
|〈l |HT | r〉|2 δ(El − Er) . (184)

The δ-function shows you that the energy of the electron has to be the same before and after the
tunnelling. Therefore only electrons in the energy range between the dashed and the solid line can
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tunnel through the barrier because below all the states on the right side are filled and above there are
no electron states occupied on the left side. So we should integrate over pairs of states where the one
on the left is occupied and the one on the right is empty. The tunnelling rate finally looks like

ΓL→R =
∫ 2π

~
|〈l |HT | r〉|2 DL(EL)f(E − EL)DR(ER)(1− f(E − ER))dE (185)

where DL,R are the density of states of the metal on the left and right side and f(E − EL) is the
Fermi function that describes the occupation of the states on the left and (1−f(E−ER)) is the Fermi
function of the empty states on the right. The density of states for a metal is approximately constant,
especially for small voltage ranges this approximation is okay. So we can pull the density of states out
of the integral and get

ΓL→R = 2πt2DL(EL)DR(ER)
~

∫
f(E − EL)(1− f(E − ER))dE (186)

with t as the transfer integral (overlap of the states on the left and right side). (We assume the same
for the transfer integral as for the density of states.) The integral over the Fermi function of the
occupied states on the left times the Fermi function of the empty states on the right can be calculated
with e.g. Matlab which leads us to

ΓL→R = 2πt2DL(EL)DR(ER)
~

ER − EL
exp

(
−ER−EL

kBT

)
− 1

. (187)

The difference in energy equals the electron charge times the applied voltage on the tunnel junction:

ER − EL = eV .

The final solution for the tunnel rate looks like this

ΓL→R = V

eR

1
exp

(
− eV
kBT

)
− 1

. (188)

At low temperatures the exponential term can be neglected and the tunnel rate only depends on V
R

but at high temperatures electrons are thermally activated across the barrier and the temperature
dependent term becomes important again. A tunnel rate from right to left can be calculated equiv-
alently. If you bias the tunnel junction so that the electrons will move from left to right, at finite
temperature there are still some electrons that can move in the opposite direction because the Fermi
function allows some electrons on the right to occupy states that are empty on the left. The resulting
tunnelling current is the difference of the tunnelling rates times the electron charge

IL→R = − |e| (ΓL→R − ΓR→L) . (189)

The temperature dependent parts cancel out and the current only depends on V and R:

IL→R = V

R
(190)

with R as

R = ~
2πe2Dl(El)Dr(Er)t2

(191)

So the tunnelling current is proportional to the applied voltage.

If you combine two tunnel junctions you get a single electron transistor.
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12.2.2 Single Electron Transistor

Figure 87: Single electron transistor.

In fig. 87 you can see a single electron transistor with its three gold electrodes and an island (size of
1 µm) where only one electron at the time can tunnel on. The gate electrode is not connected to the
island but there is a thick insulating layer between the gold and the island where no tunnelling can
take place. But an applied voltage can induce a polarisation to the island which pulls the electrons
on the left side that causes a change in the bias across the tunnel junctions. The total capacitance of
the island is about 1 µF . If an electron tunnels on the island the voltage changes. For a capacitor the
formula Q = CV has to be used with Q = e which leads to a voltage change of ∆V = 10−4 V .

Figure 88: I vs V: blue line: without Coulomb blockade; red line: with Coulomb blockade.

If you apply a bias less than ∆V across the whole thing no tunnelling will happen because there is
a Coulomb blockade. But a voltage change on the gate can suppress the Coulomb blockade and the
current will be linear to the applied voltage as you would expect for a tunnel junction. At other
voltages there is still the Coulomb blockade and the current will increase only at a certain voltage (see
fig. 88). For the model with the little crystals it means that at low bias voltages none of the electrons
will tunnel and the material will become an insulator.

We will discuss the single electron transistor (SET) now in more detail. In experiments a SET has
usually two gates. One where the signal comes in and one to tune whether the Coulomb blockade is
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suppressed or at its maximum. Figure 89 shows the set up and its circuit.

island

gate 2

gate 1

source drain

V1 Vg1 Vg2 V2

Cg1 C0 Cg2

Q0

C1 , R1 C2 , R2

Figure 89: Single electron transistor with two gates and its circuit.

The total charge Q on the island is

Q = C1(V − V1) + C2(V − V3) + Cg1(V − Vg1) + Cg2(V − Vg2) + C0V (192)

but Q needs to be an integer number n times electron charge plus a background charge Q0 that is
caused by electric field lines that can come from any other electronic device.

So the voltages that the island is allowed to have are

V (n) = (−ne+Q0 + C1V1 + C2V2 + Cg1Vg1 + Cg2Vg2)/CΣ (193)

with CΣ as the total capacitance of the island:

CΣ = C1 + C2 + Cg1 + Cg2 + C0 . (194)

The energy needed to add an infinitesimal charge dq to an island at voltage V (n) is V (n)dq. The
energy needed to add a whole electron at a given number of electrons on the island is therefore:

∆E =
∫ −e

0
V (n)dq = −eV (n) + e2

2CΣ
(195)

The extra term e2

2CΣ
is the charging energy that comes from the fact that every time you add a fraction

of an electron to the island the voltage changes.

The energy needed to remove a whole electron is analog as above:

∆E =
∫ e

0
V (n)dq = eV (n) + e2

2CΣ
(196)

The charging energy is still the same because the sign of the charge vanishes when it’s being squared.

You can take these formulas to calculate the energy that is needed for the four possible tunnel events:
an electron can tunnel from the first electrode on the island or from the island on the first electrode
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and from the island on the second electrode or from the second electrode on the island. The relating
change in energy is as follows:

∆E1R(n) = eV1 − e(−ne+Q0 + C1V1 + C2V2 + Cg1Vg1 + Cg2Vg2)/CΣ + e2

2CΣ
(197)

∆E1L(n) = −eV1 + e(−ne+Q0 + C1V1 + C2V2 + Cg1Vg1 + Cg2Vg2)/CΣ + e2

2CΣ
(198)

∆E2R(n) = −eV2 + e(−ne+Q0 + C1V1 + C2V2 + Cg1Vg1 + Cg2Vg2)/CΣ + e2

2CΣ
(199)

∆E2L(n) = eV2 − e(−ne+Q0 + C1V1 + C2V2 + Cg1Vg1 + Cg2Vg2)/CΣ + e2

2CΣ
. (200)

If the change in energy is negative the electron will tunnel. Figure 90 shows a plot where all four of
them are plotted as a function of the bias and the gate voltage. All other voltages are held constant.
The shaded regions show where none of the tunnel events can decrease the energy which is called the

Figure 90: Coulomb blockade; shaded region: Coulomb blockade is active - none of the four tunnel
events decrease the energy; the number in the region says how many electrons are allowed
to tunnel on the island.

Coulomb blockade regime. The region labelled with 0 determines the bias and gate voltage range
where no electron is allowed to tunnel on or off the island. But if you increase the gate voltage you
come to a region where one electron can tunnel on the island because the positive gate voltage pulls
one electron on it. The higher the gate voltage the more electrons can tunnel. But if you increase the
bias voltage nothing happens until you get to the region that is labelled with 0, 1 which shows us that
at a given number n of electrons either n or n+ 1 electrons are allowed on the islands. It depends now
on the number of electrons on the island which tunnel processes decrease or increase the energy.

This illustration is important to interpret experimental data (see fig. 91). In the Coulomb blockade
regime there is no current flowing but if you increase the bias voltage you get into a regime where there
is a current that changes periodically with the change of the gate voltage (instead of linear compared
to usual transistors).
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Figure 91: Experimental data: current as a function of Vb and VG.

Figure 92: Coulomb staircase.

Figure 92 shows the so-called Coulomb staircase at different gate voltages and different temperatures.
The first picture shows the current depending on the bias voltage at different gate voltages. The
second one shows that at high temperatures like room temperature the Coulomb staircase disappears
and the current-bias voltage line looks like the one of a resistor. We can say that the staircase gets
washed out when you increase the temperature which can be explained with the thermal fluctuations.
Because at high temperatures the thermal energy is bigger than the charging energy

e2

2CΣ
� kBT (201)

and the thermally activated electrons can tunnel easily on the island.

But the Coulomb blockade can also be suppressed by quantum fluctuations. The Heisenberg uncer-
tainty relation for energy looks like

∆E ·∆t ∼ ~ (202)

and the average time of a quantum fluctuation of the order of the charging energy is then

∆t ∼ ~2CΣ
e2 . (203)
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Now we have a look at the charging time of the capacitance which is RCΣ. If this charging time is
much faster than a quantum fluctuation

RCΣ <
~2CΣ
e2 (204)

the system has time to move an electron on the island. The capacitance cancels out and we can
calculate the critical resistance:

R <
2~
e2 ≈ 8 kΩ (205)

If the resistance is smaller than 8 kΩ the Coulomb blockade can be suppressed by quantum fluctuation
otherwise it can not be suppressed. But all the calculations were not very precise and we used the
uncertainty relation so one generally says that if the resistance between the crystals in a material is
below the resistance quantum

h

e2 ≈ 25.5 kΩ , (206)

quantum fluctuations can suppress the Coulomb blockade. If it is above, you get an insulator at low
temperatures.

The critical resistance can also be related to the dimensions of the crystals:

Rcrit ≈
h

e2 = ρl

wt
, (207)

with w as width, l as length, t as thickness and ρ as the resistivity of the crystal. If we assume that
the crystals are squared which means that w = l and that they have about the thickness of a regular
crystal t ≈ 0.2 nm, the resistivity then has to be ρ = 500 µΩ cm. In general you can say that materials
with resistivities > 1 mΩ cm tend to be a Mott insulator.

Another way to check if you have a Mott insulator is to look at the formula of the conductivity that
just depends on the mean free path and the electron density:

σ = ne2l

~(3π2n)1/3 . (208)

By measuring the conductivity and knowing the electron density you can calculate the mean free path
and if it is smaller than the size of an atom the free electron model is wrong and electron-electron
interactions need to be considered.

Disorder plays also a role in the Mott transition because it favours the insulating state. As you
can see in fig. 93 a linear chain of islands with uniform tunnel barriers below the resistance quantum
characterizes a metal. But if there are random tunnel barriers and some of them have resistances above
the resistance quantum, the whole section between them form an island. Although these islands are
metallic in between those barriers, the Coulomb blockade effect at the barrier forces the material to
go into the insulating state.

The Mott transition is also relevant for high-temperature superconductors. They have a conductivity
which is 100 times worse than the conductivity of a metal like copper or aluminium but as you cool them
down they become superconductors. But if you change the charge doping (oxygen concentration) they
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Figure 93: Uniform tunnel barrier;
Random tunnel barriers, some with resistance above the resistance quantum.

make a transition to a Mott insulating anti-ferromagnet. And for a anti-ferromagnet the resistivity
goes up as the temperature goes down.

Another example for a Mott insulator is shown in fig. 94. It shows the conductivity of Si doped with
P, which is a donor in Si, at low temperature. If the doping is above ∼ 4 · 1018 cm−3 it’s acting like a
metal and it’s a so-called degenerate semiconductor but if the doping is below ∼ 4 · 1018 cm−3 it acts
like an insulator because the donors freeze out. This transition is also a Mott transition.

12.3 Electronic phase transitions

12.3.1 Mott Transition12

The simple models that we use to describe metals or semiconductors neglect the electron-electron
interactions. And it often happens that materials that supposed to be a metal (based on the inde-
pendent electron models) are actually insulators. Mott showed that electron-electron interactions can
cause an insulating state where electrons can be better described as localized than extended over the
whole crystal. The Mott transition is a transition from a metallic to an insulating state that takes
place because of the electron-electron interaction. The electron screening is related to the Mott tran-
sition. If the screening length is very short, in some sense the electron electron interactions are not
that important. But if it is long, the electron-electron interactions become more important. This also
means that metals with a low electron density go more likely through a Mott transition than metals
with a high electron density.

A simple model to describe a Mott insulator is showed in fig. 95. The material is considered to
be consisting of coupled metal crystals connected by tunnel junctions. For strong coupling, if the
crystals are close together, the material is a metal. For weak enough coupling the material is an
insulator. By changing the tunnel coupling you can go from a metal to an insulator. The tunnel
coupling is characterized by a resistance. If crystals are arranged in a two dimensional square array
the critical resistance R equals ~/e2 = 25.5 kΩ. If the resistance of the tunnel coupling is below this
value, the material acts like a metal at low temperatures, if it is above, it acts like an insulator (see
fig. 96). If the coupling is strong and the material is cooled down the crystals come closer together

12Nevill Francis Mott won the Nobel prize in physics 1977
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Figure 94: Semiconductor at low temperature: P in Si.

and become one big crystal and the conductivity gets better. If they are weakly coupled the electrons
get localized on the crystals as they are cooled down and the material becomes an insulator. In order
to understand the Mott transition, we start with the description of a tunnel junction.

12.3.2 Peierls Transition

The transition at low temperature from a metal state to an insulator state is called Peierls transition.
This Peierls transition gain from an electron-phonon interaction and happens in quasi-one dimen-
sional metals. Those materials are three dimensional crystals with a certain chain length structure
which have much better conductivity in one direction than in the other one.
One way to understand this theory is to consider a one dimensional lattice of atoms with a lattice
constant a as shown in fig. 97. Fig. 98 shows a periodic distortion of this one dimensional lattice with
a periodicity of 2 a (new lattice constant). This kind of distortion is called dimerization.
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Figure 95: Small crystals as a model to describe a Mott insulator.

R

T

critical Resistance

insulator

metal

Figure 96: T vs. R;
starting with resistance above the critical resistance - insulator
starting with resistance below the critical resistance - metal.

If N is the number of atoms per unit cell there are 2 N states in each band:
In a one dimensional conductor it is possible to label the electronic states with spin and k-vector.
Every k state corresponds to a certain translational symmetry. So if there are N atoms in a row with
periodic boundary conditions, there are N translational symmetries.

On the one hand every k vector corresponds to a symmetry, on the other hand there are 2 values of
spin (up and down) for every state, which gives all in all 2 N states for every band. If the crystal is
getting bigger the number of states in each band does not change because there is an increase of the
symmetry and also an increase of the k states so again: 2 N states.

Last but not least it is very important how many atoms are in the unit cell. If there is an even number
of atoms, the material will be an insulator or a semiconductor (because there are just filled and empty

Figure 97: One dimensional lattice of atoms with lattice constant a
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Figure 98: Periodic distortion of a one dimensional lattice with lattice constant 2 a.

bands), if there is an odd number of atoms per unit cell, the material will be a metal.

Fig. 99 shows dispersion relations of a material which has one electron per unit cell (band is half
filled). The left plot shows a periodic function (one dimensional lattice of atoms), the right plot a
periodic distortion. The dispersion relation of the normal periodic function looks like a parabola, the
dispersion relation on the right side shows a particular gap at k = π

2a . The gap arises because the
energy on the left side of k = π

2a decreases, while the energy on the right side of k = π
2a increases

(fig. 100 ).

So all in all for small displacements the system decreases the energy because there is an increase of
the elastic energy (∆2) and a decrease of the electronic energy with ∆. The linear term always wins
for small displacements.

Figure 99: Material with one elctron per unit cell. left: peridoc function, right: periodic distortion of
a one dimensional lattice
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Figure 100: Plot of the band gap at k = π
2a

One example for a Peierls transition is shown in fig. 101. Due to two different types of bonds (single
and double) the lattice is dimerized and as a result a Peierls transition can be observed.

Figure 101: Structure of polyacetylene. The lattice gets dimerized because of the single and double
bonds. Furthermore Peierls transition is possible

Another example for a Peierls transition would be NbSe3. This certain crystal is a very good conductor
in one direction and because of the Peierls transition it gets an insulator when the system cools down.
If the material is an insulator the electron density forms a wave and as a result, dimerized regions can
be observed. This wave starts to slide if an electric field affects on the material. Fig. 102 shows the
current versus voltage for such a material at low temperatures. At a particular point (high electric
field) the current starts to increase, that’s the point where the electron density wave starts to slide.
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I

V

Figure 102: Current flow of NbSe3. If an electric field affects on the material the current increases
and the charge density wave starts to slide.
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13 Optical Processes

In chapter 10.1 (Linear Response Thoery) we derived the Kramers-Kronig relations. The Kramers-
Kronig relations relate the real component (χ′) of a generalized susceptibility to the imaginary com-
ponent (χ′′):

χ′′(ω) = 1
π

∫ ∞
−∞

χ′(ω′)
ω′ − ω

dω′ (209)

χ′(ω) = − 1
π

∫ ∞
−∞

χ′′(ω′)
ω′ − ω

dω′ (210)

The characteristics of the two parts of the generalized susceptibility parts are:

χ′(ω) = χ′(−ω)
χ′′(ω) = − χ′′(−ω)

This form (eqn. (209) and (210)) of the Kramers-Kronig relations should be used for mathematical
calculations. For experimental data the second form of the Kramers-Kronig relation should be used
(eqn. (211) and eqn. (212)). Now it is possible to transform the first form of the Kramers-Kronig
relation into the second:
First step is to split the integral and change the sign of ω:

=⇒

χ′(ω) = − 1
π

∫ 0

−∞

χ′′(ω′)
ω′ − ω

dω′ − 1
π

∫ ∞
0

χ′′(ω′)
ω′ − ω

dω′

=⇒

χ′(ω) = − 1
π

∫ ∞
0

χ′′(ω′)
ω′ + ω

dω′ − 1
π

∫ ∞
0

χ′′(ω′)
ω′ − ω

dω′

With the relationship

1
ω′ + ω

+ 1
ω′ − ω

= 2ω′
ω′2 − ω2

the second form of the Kramers-Kronig relation is derived:

χ′(ω) = 2
π
P

∫ ∞
0

ω′χ′′(ω′)
ω′2 − ω2 dω

′ (211)

χ′′(ω) = − 2ω
π
P

∫ ∞
0

χ′(ω′)
ω′2 − ω2dω

′ (212)
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Here P represents the Principle part, which is important because at a particular point ω′ = ω the
integral gets undefined (singularity). With this Principle part it is possible to integrate around this
singularity.

13.1 Optical Properties of Materials

Dielectric Constant
One way to calculate the dielectric functions is to measure the index of refraction n and the extinction

coefficient K (this coefficient tells how quickly a wave dies out). Taking the square of the following
relationship√

µ0ε0ε(ω) = n(ω) + iK(ω)

gives the dielectric function:

ε(ω) = n2 −K2 + 2inK
µ0ε0

= ε′(ω) + iε′′(ω) (213)

Important to mention is that n2 −K2 and 2nK are related by the Kramers-Kronig relation.

Dielectric Response of Insulators
Insulators do not have free electrons, which means that their charge is bound. The electrons can be
modeled to be coupled by a spring to the ions and as a result it’s possible to describe this function as
a harmonic oscillator. A hit of this function with a δ-function will give the response function (Green’s
function) for this linear harmonic oscillator:

m
d2g

dt2
+ b

dg

dt
+ kg = δ(t)

g(t) = − 1
b
exp

(−bt
2m

)
sin

(√
4mk − b2

2m t

)
t > 0

To have the same notation as Kittel, the response function g(t) is called α(t) now.

Response of a Harmonic Oscillator
The solutions (assumption) for the displacement and the force have the form x(ω)e−iωt and F (ω)e−iωt.

m
d2x

dt2
+ b

dx

dt
+ kx = F (t)

=⇒

−ω2mx(ω)− iωbx(ω) + kx(ω) = F (ω)

The generalized susceptibility α(ω) is

α = F (ω)
x(ω) = F

−ω2m− iωb+ k
= F

m

ω2
0 − ω2 + iωb

(ω2
0 − ω2)2 + ω2b2

(214)
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Figure 103: Response of a mass spring system

with

ω0 =
√
k

m
.

Fig. 103 shows an expected response of a mass spring system. At low frequencies (below the resis-
tant frequency) the mass will move in phase, at much higher frequencies the system will oscillate
out of phase. The Fourier transform of the impulse response function is the generalized
susceptibility.

13.1.1 Dielectric Response of Insulators

Fig. 104 shows the real (doted line) and the imaginary part of a dielectric response of an insulator.
The peak of the imaginary part indicates energy losses at a particular frequency.

Calculation of the dielectric constant:

ε = 1 + χ = 1 + P

ε0E
(215)

with

P = nex

The +1 in eqn. (215) shifts the response function in the positive direction, which means that in
comparison to fig. 104 the dielectric constant of insulators goes to +1 instead to zero at higher
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Figure 104: Dielectric response of an insulator. The dotted line represents the real part, the solid line
the imaginary part.

frequencies. As a result an insulator reflects incoming waves at particular frequencies where
the dielectric constant is below 0.

With eqn. (214) and the static dielectric constant εst = ε(ω = 0) we get

ε(ω) = ε∞ + (εst − ε∞) ω2
0 (ω2

0 − ω2 + iωb)
(ω2

0 − ω2)2 + ω2b2
(216)

Now it is possible to do some quantum calculations. There is a coupling between electromagnetic
waves and electron states. When light hits the crystal, absorption is possible, which means that an
electron of the filled state goes to an empty state. With Fermi’s golden rule it is possible to calculate
the transition rate of this process. The couplings of the initial state and the final state has to do
with the dipole moment, which means that the oscillator strength (eqn. (217)) is proportional to the
tunneling rate.

ε = 1 + χ = 1 + P

ε0E
= 1 + ne2

ε0m

∑
i,k

fik
ω2
ik − ω2 (217)

with the Oscillator strength fik:

fij = 2m
~
ωik|(rik)|2

Fig. 105 shows an example of such calculations with two harmonic oscillators (2 frequencies). For real
materials it’s common that there are more than one residents.

Another example would be an infrared absorption of very thin materials, which is shown in fig. 106.
Every peak stands for a certain mode with a certain frequency. At theses frequencies there is a resident
and as a result an energy loss (absorption).
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Figure 105: Example of a quantum calculation with two harmonic oscillators

Figure 106: Infrared absorption of a thin material
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Figure 107: Plot of the dielectric function over the photon energy. At every maximum the valence and
the conduction bands are parallel

13.1.2 Inter- and Intraband Transition

Transition can take place from a filled into an empty state. For an insulator only interband transition
is possible, because they only have full valence bands and empty conduction bands.
For metals and semiconductors either inter- or intraband transitions are allowed. Intraband transition
means that transition in the same band is possible. When there are regions, where the conduction
band and the valence band are parallel, peaks in the absorption will be observed. Parallel bands
means, that a photon can excite a lot of states in the conduction and in the valence band. This effect
is shown in fig. 107. At every maximum (particular energy, e.g. Λ or X in fig. 107) the bands are
parallel. This measurement is very important to understand the band structure.
The condition for absorption is:

~ω = Ec(k)− Ev(k)
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13.2 Collisionless Metal

In collisionless metals electrons travel ballistically which means that the scattering time and the mean
free path are infinite. The relationship between velocity v and the electric field E is:

m

−e
dv(t)
dt

= E(t) (218)

So if an oscillating field influences the material, the electrons start to oscillate but they oscillate out
of phase . The derivative of the velocity is proportional to the electric field (eqn. (218)).
To solve this problem, the solution of a harmonic oscillator is assumed (E(ω)e−iωt , v(ω)e−iωt). From
eqn. (218):

( iωm
e

)v(ω) = E(ω)

The conductivity:

j = σE ⇒ σ = j

E
= −nev(ω)

E(ω) = ine2

ωm
(219)

So σ is purely imaginary because the motion of the electrons is out of phase, but of course there
must be a real part. With the Kramers-Kronig relation it is possible to calculate the real part:

σ′′(ω) = 1
π

∫ ∞
−∞

σ′(ω′)
ω′ − ω

dω′ (220)

iσ′′(ω) = −nev(ω)
E(ω) = ine2

ωm
(221)

To calculate the real part we guess the solution (the reason for this is that it is easier)

σ′(ω) = πne2

m
δ(ω) (222)

Equation (222) in eqn. (220) gives:

σ′′(ω) = ne2

m

∫ ∞
−∞

δ(ω′)
ω′ − ω

dω′ (223)

After integrating this and comparing with eqn. (221) the real part is derived. Now its possible to write
the imaginary and the real part of the conductivity:

σ(ω) = ne2

m
(πδ(ω) + i

ω
) (224)

Furthermore it is possible to calculate the dielectric constant ε(ω). For the dielectric constant the
susceptibility is needed:

χ(ω) = P (ω)
ε0E(ω) = nex(ω)

ε0E(ω) = nev(ω)
ε0E(ω)(−iω) (225)
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with eqn. (219):

⇒ χ(ω) = σ(ω)
iωε0

= ne2

iωε0m
(πδ(ω) + i

ω
) (226)

We used:

x(ω, t) = x(ω)e−iωt ⇒ v(ω, t) = x(ω)e−iωt(−iω)⇒ x(ω) = v(ω, t)
−iω

eiωt = v(ω)
−iω

So the dielectric constant is derived:

ε(ω) = 1 + χ(ω) = 1 + ne2

iωε0m
(πδ(ω)− i

ω
) = 1−

ω2
p

ω2 + iω2
pπδ(ω) (227)

with the Plasma frequency:

ω2
p = ne2

mε0

Fig. 108 shows the real part of the dielectric constant:

ε(ω) = 1−
ω2
p

ω2 (228)

At the Plasma frequency ωp the dielectric constant is zero. Below zero (so below the Plasma frequency)
the material reflects and above zero (above the Plasma frequency) the material transmits incoming
waves.

Figure 108: Real part of the dielectric constant of a collisionless material. Below the plasma frequency
the material reflects, above the plasma frequency the material transmits incoming waves.
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13.3 Diffusive Metals

In diffusive metals, there is one component which is out of phase and one component which is in phase
(eqn. 229):

m

−e
dv(t)
dt︸ ︷︷ ︸−

v(t)
µ︸︷︷︸ = E(t) (229)

The first term is the initial term (out of phase), the second term is the scattering term (in phase).
Again, the solution of a harmonic oscillator is assumed (E(ω)e−iωt; v(ω)e−iωt):

( iωm
e
− 1
µ

)v(ω) = E(ω) (230)

As before we calculate the conductivity:

σ(ω) = j(ω)
E(ω) = −nev(ω)

E(ω) = ne(−iωm
e

+ 1
µ

)−1

=⇒

σ(ω) = ne( eµ

e− iµωm
) = neµ( 1

1− iωτ ) = neµ( 1 + iωτ

1 + ω2τ2 ) (231)

For low frequencies (the probability for the electrons to get scattered is high) it is possible to neglect
iωτ
ω2τ2 and as a result the conductivity is:

σ(low ω) = neµ

The solution for high frequencies is the same as for collisionless metals:

σ(high ω) = ine2

ωm

with

µ = eτ

m

With σ it’s possible to calculate the susceptibility:

χ(ω) = P (ω)
ε0E(ω) = nex(ω)

ε0E(ω) = nev(ω)
iωε0E(ω) = σ(ω)

iωε0
= neµ

iωε0
( 1 + iωτ

1 + ω2τ2 ) (232)

And again the dielectric constant:

ε(ω) = 1 + χ = 1− neµ

ωε0
( ωτ − i
1 + ω2τ2 ) (233)

=⇒

ε(ω) = 1− ω2
p(
ωτ2 − iτ
ω + ω3τ2 ) (234)
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Fig. 109 shows the real part of the dielectric function:

ε′(ω) = 1−
ω2
p

ω2 + 1
τ2

(235)

For diffusive metals the real part of the dielectric constant does not diverge.

The imaginary part depends on ω! When τ goes to infinity the imaginary part of the dielectric constant
can be:

ε′′(ω) = 0 for ω > 0
ε′′(ω) = ∞ for ω = 0

Figure 109: Real part of the dielectric constant of an diffusive material.

13.3.1 Dielectric Function

Fig. 110 shows the dielectric functions of different metals. These dielectric function were explained by
different theories or measurements. Fig. 110 contains three types:
The first type is called reflection electron energy loss spectra (REELS). Electrons (or light) are shot
at the surface of a crystal and the measurement of the energy of the reflected electrons will give the
dielectric constant. Furthermore, the surface of the crystal must be very clean because light does not
penetrate the surface very deep.
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The second type is called Palik, which is an optical measurement method.
The third plot is calculated via density functional theory (DFT). In this theory it is very simple to
calculate things like dispersion relationships or the density of states. Its possible to get software pack-
ages which calculate all these things more or less exactly.

Figure 110: Real (right) and imaginary (left) part of the Dielectric function of different materials.

Dielectric function of semiconductors:
A common approximation for the real part of the dielectric function of a semiconductor is:

ε′(ω) = 1 +
ω2
p

ω2
g − ω2 (236)

with ωg the gap frequency (Eg = ~ωg).
Fig. 111 shows the real part of the dielectric function for a semiconductor. The imaginary part would
be a peak around this resident. When ωg gets smaller and smaller, in the end the band gap gets
smaller and smaller and as a result a metal observes.

Fig. 112 and 113 show some experimental functions of semiconductors. As discussed above, it is very
simple to see the real part (has negative components) and the imaginary part (peaks around the res-
idents). It is very interesting that the peaks of the real part aren’t very strict, which is common for
semiconductors. One explanation for that property is, that semiconductors do have two atoms per
unit cell, so they have two coupled modes which splits the peaks.
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Figure 111: Real part of a dielectric function of a semiconductor. The imaginary part would have a
peak around the residents.

Figure 112: Real and imaginar part of a dielectric function of the semiconductors Germanium and
Silicon. The imaginary part has two peaks around the resident.

Figure 113: Real and imaginar part of a dielectric function of the semiconductors Galium-Phosphor
and Galium-Arsenid. The imaginary part has two peak around the resident.
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14 Dielectrics and Ferroelectrics

14.1 Excitons

14.1.1 Introduction

An exciton is a bound state of an electron and a hole in a semiconductor or an insulator. The
generation of an exciton is comparable to the principle of a solar cell. A photon comes in and creates
an electron-hole pair in the pn-junction. These electrons and holes get separated because of an electric
field and so an electric current starts to flow. If we just have a pure semiconductor (undoped) there
is no field to push the electrons and the holes away from each other, because there is just a coulomb
force which holds them together. What happens here, is comparable to the hydrogen atom, where we
have a light electron moving around a heavy proton. Here the mass of electrons and holes is almost
the same, but not exactly.

We remember that an incoming photon with an energy, which is higher than the band gap, can move
an electron to the conduction band and a hole is generated in the valence band. Now we think about
photons with energies less than the band gap. These are the photons that can create bound electron-
hole-pairs. Excitons are not very stable and so they will decay after a little amount of time and a
photon is emitted again. Another possibility to loose their energy is to interact with electrons or
phonons. This process can be seen in the optical absorption.

14.1.2 Mott Wannier Excitons

There are two types of excitons. One of them is called the Mott Wannier exciton. The important
thing about them is that their size is much bigger than the lattice constant.

To calculate the binding energy of excitons we can use the formula of the hydrogenic model with the
effective masses of electrons and holes.

En,K = Eg −
µ∗e4

32π2~2ε2ε20n
2 + ~K2

2(m∗h +m∗e)︸ ︷︷ ︸
kinetic energy

(237)

The quantum number n again defines the energy level and here an additional term appears, which
belongs to the kinetic energy of the exciton. When we calculate the energies, we draw them on the
same axis as the dispersion relationship with the valence band and the conduction band. The result
is, that there are additional states near the conduction band for the excitons, which can be seen in
fig. 114.

The result of an interesting experiment to see excitons is shown in fig. 115. Normally, light should
go right through a semiconductor, if the energy is less than the energy gap, so that no electrons are
taken from the valence to the conduction band, but in fig. 115 we see a number of absorption peaks.
These peaks appear when the incoming photons can excite excitons. Another experiment was done
with Gallium Arsenide (GaAs). In fig. 116 we see that the absorption has a peak, when the photon
energy is smaller than the energy gap. This happens again because of the excitation of excitons.
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Figure 114: Dispersion relationship for a semiconductor with the energy levels of excitons

The concentration of the created excitons in an insulator depends on the intensity of the incoming
light. When we have a look at fig. 117 we see that at low temperatures and low concentrations, which
means low intensity of light, a free exciton gas is generated. The material still remains to be an
insulator, because excitons are uncharged particles and are uninvolved by an external electric field.
When the intensity of light gets bigger, more and more excitons are created and they start to overlap,
which has influence on the screening of the electrons (Mott criterion in fig. 117). So there are no more
bound states and the result is a gas of unpaired electrons and holes, which means that the insulator
becomes a semiconductor.

14.1.3 Frenkel excitons

In contrast to a Mott Wannier exciton, a Frenkel exciton is localized on an atom or molecule in a
crystal. For example solid krypton has a band gap of 11.7 eV but the lowest atomic transition in the
solid is at 10.17 eV. So it is possible to excite an atom to a higher state without bringing electrons
from the valence band to the conduction band. When an exciton is created in an ideal molecular
crystal at one site, it can move to another site, because in a perfect crystal all the sites are equivalent.
That’s the working principle of organic solar cells.

It is possible to describe this movement with a hamiltonian:

Hψj = E0ψj + t(ψj−1 + ψj+1) (238)

The exciton has an energy at a specific site and there is also some coupling to the neighboring sites.
This is the same problem as for a linear chain of phonons, spinons or the tight binding model. The
solutions of such problems are plane waves, which should be already known from the tight binding
model:

ψk =
∑
j

eijkaψj (239)

Ek = E0 + 2t · cos(ka) (240)
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Figure 115: Absorption experiment to show the excitation levels of excitons

Figure 116: Result of an experiment to show the existence of excitons
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Figure 117: Phase diagram for photoexcited electrons and holes in unstressed silicon

In fig. 118 we see the energy dependence of the wave vector k. Remember that the solution has
similarity with the tight binding model beside the sign.

Frenkel excitons occur in organic solar cells, organic light emitting diodes and in photosynthesis. They
can transport energy but no charge.

14.2 Optical measurements

14.2.1 Introduction

There are various types of optical measurements. It is possible to shine light on a sample and analyse
the reflected light or the electrons that come out. It is also possible to shine an electron beam on the
sample and analyse the light that comes out.

When light comes in, it appears as an oscillating electric field for the sample. This electric field changes
the polarization of the material, which is made of many little dipoles. The dipoles start to oscillate
with the incoming frequency and emit dipole radiation, which is perpendicular to the oscillation axis.
With the detected scattered radiation it is possible to determine what the dipole is, which generates
this radiation. Then it is possible to calculate the electric field and the polarization. With these two
quantities, we can calculate the susceptibility and the dielectric constant.

14.2.2 Ellipsometry

The incoming light gets polarized and the polarization of the outgoing light is measured. This is
done for many different polarizations of the incoming light, so that one can get an impression of the
dependence of the polarizations of the two light beams. The measured signal gives a lot of information
about the thickness and the dielectric constant of the involved layers. For this technique to work, it
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Figure 118: Solution of the energy, when frenkel excitons move through a perfect crystal

is important that there are well defined homogenous layers in the crystal, so that one would be able
to know of which layers the peaks are coming from. So ellipsometry is very surface sensitive because
the light gets only a few atomic layers into the crystal before it will be sent out again.

The advantage of ellipsometry is that the ratio of the polarizations is independent of fluctuations of
the air or of the light source.

14.2.3 Reflection electron energy loss spectroscopy

Instead of sending light to the crystal, electrons are used as incoming beam and the scattered electrons
are measured. The fast moving electrons are creating a time dependent electric field and this field
polarizes the material. The oscillating dipoles of the polarized sample are sending out radiation. If
the polarization of the material moves out of phase with the electric field of the electrons, energy will
be lost. This means that the energy of the reflected electrons must be less than the energy of the
incoming ones. It is possible to calculate the dielectric constant with the informations collected by
this experiment.

14.2.4 Photo emission spectroscopy

At this type of spectroscopy photons with high energy are shot against the sample and electrons are
knocked out. When this is done with ultraviolet light, it is called UPS (ultraviolet photoemission spec-
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Figure 119: Principle of optical measurement

Figure 120: Principle of reflection electron energy loss spectroscopy

troscopy). If x-rays are used as radiation source it is called XPS (x-ray photoemission spectroscopy).
The amount of electrons at a certain energy gives information about the density of states of the ma-
terial. As we already know, there are occupied states in the atom up to the fermi level. The incoming
photon can hit an electron and puts it from the bounded level to the vacuum level. So the pattern
which comes out of the energy analyzer is the same as the pattern of the density of states. Fig. 122
shows the measurement for silver and we can see that there are no occupied states after the fermi
level.

14.2.5 Raman spectroscopy

The principle of Raman spectroscopy is the inelastic scattering of light. Normally it is done with visible
or infrared light. If the light is shined on the sample most of the light is scattered elastically, which
means that the frequency and wavelength of the outgoing beam is the same as for the incoming beam.
Some of the light is scattered inelastically, so a part of the energy is given to a phonon, a plasmon,
a magnon, a polariton or to an exciton. Because of the conservation of charge, it is not allowed to
emit an electron or a polaron. The outgoing light will have a lower frequency and a longer wavelength
and this is called a stokes process in Raman spectroscopy. It could also happen that the incoming
light absorbs a phonon or something like that and so the outcoming light has a higher frequency and
a lower wavelength. This is called an anti-stokes process. This two situations are shown in fig. 123.
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Figure 121: The principle of XPS and UPS

Figure 122: Photoemission spectroscopy for silver
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Figure 123: Stokes and anti-stokes process of Raman spectroscopy

The equations for the conservation of energy and momentum are:

ω = ω′ ± Ω (241)
k = k′ ±K±G (242)

In the equation of the momentum conservation an additional term appears, which is a reciprocal
lattice vector G. Whenever a collision like this happens in a crystal, the crystal can give or absorb
momentum with the reciprocal lattice vector, which is discrete.

Now we think of the problem in terms of waves and not particles. We start with a susceptibility that
is constant over the time. The ∆χ in fig. 124 stands for any kind of wave which comes along the
crystal. For example, the wave belongs to a phonon, so the structure gets stretched locally and this
has influence on the susceptibility and it gets modulated by the frequency of the phonon wave.

Figure 124: Modulation of susceptibility and the effect to the spectrum of the scattered intensity

Mathematically this can be explained by an oscillating term in the formula of χ in eqn. (243). The
result is that the polarization doesn’t oscillate only with the frequency of the incoming light, but also

150



TU Graz, SS 2010 Advanced Solid State Physics

with the additional term of the phonon wave. Some of the scattered phonons are forbidden by crystal
symmetry and in this case, there are no peaks captured by the Raman spectroscopy.

χ = χ0 + ∂χ

∂X
X cos(Ωt) (243)

P = ε0χE cos(ωt) + ε0
∂χ

∂X
X cos(Ωt)E cos(ωt) (244)

In fig. 124 the stokes and anti-stokes peaks could be seen in the intensity-over-ω diagram. An interest-
ing fact is, that the peaks of the stokes and anti-stokes process do not have exactly the same height.
This has to do with the probability that a phonon would be absorbed or emitted. Equations (245)
and (246) show the intensity of the peak in dependence of the number nk of phonons in the state k.

Stokes: I(ω − Ω) ∝ nk + 1 (245)
Anti-Stokes: I(ω + Ω) ∝ nk (246)

If the temperature gets smaller, the ratio between the intensity of the stokes and anti-stokes peaks
gets bigger and it is possible to calculate the probability that the state is occupied. The ratio of the
heights at different temperatures can be seen in fig. 125.

Figure 125: Different heights of stokes and anti-stokes peaks depending on the temperature
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14.3 Dielectrics

14.3.1 Introduction

Dielectrics seem to be really boring materials for electronics, because an ideal dielectric doesn’t con-
duct. But experimentally everything conducts, if the voltage is high enough. What we exactly want
to have is that they don’t conduct at DC and that they have low losses at AC. It is not possible to
have zero losses at AC, because the dielectric constant always has a real part and an imaginary part.
The real part corresponds to the out-of-phase components of the electric field and the current. The
imaginary part corresponds to the in-phase components, which is the dissipative part, so there always
have to be losses.

Sometimes low dielectric constants are needed for transporting signals (CMOS) and sometimes high
dielectric constants are needed for supercapacitors. This kind of capacitors is used to store the won
energy of braking a car and to give it back when accelerating.

It is possible to use the complex dielectric function to describe the AC losses, but that is not done in
practice. Instead of that, we start with an ideal capacitor, where the current leads the voltage by 90◦.
Because of the complex dielectric part, this angle will not be exactly 90◦, so we add an offset angle
90◦− δ. As we see in eqn. (247), the power loss depends on the tangent of this offset angle and it gets
bigger, when the frequency gets higher.

Power loss = wε1V
2

0
2 tan(δ) (247)

In fig. 126 many loss tangents for different materials are listed to get a feeling for the size of them. As
we see, they are really small numbers, so it doesn’t matter if someone speaks about the loss tangent
or someone speaks about the angle δ, because they are nearly the same near zero (tan(δ) ∼ δ, δ � 1).

Barium titanate is a material which is used in capacitors as a dielectric. It can appear as white powder
or as a transparent crystal. The unit cell is a cube, where the Barium atoms sit on the corners. There
is one titanium in the middle and the oxygens sit on the faces of the cube. This structure is called a
perovskit.

In fig. 127 we can see, that the dielectric constant has several peaks at different temperatures, which
will be explained in the chapter of structural phase transistions. In addition, the dielectric constant
depends on the applied voltage. The developer of an electronic element has to think about the
temperatures inside the element, when the device is working. A typical temperature for the processor
of a mobile phone is about 100◦ C, which leads to an εr of approximately 2000, which is not a bad
value for a dielectric.

When the temperature is increased, it leads to a structural phase transition, which will be discussed
in chapter 14.4.4.
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Figure 126: Different loss tangents for different materials. Remember that they are small numbers
and because of that tan(δ) ∼ δ
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Figure 127: Dependence of the dielectric constant of the temperature and the voltage

14.3.2 Polarizability

There are different sources of polarizability. Four of them are discussed in this chapter:

• Electronic polarizability

• Ionic polarizability

• Orientation polarizability

• Space charge polarizability

Electronic polarizability:

We think of an atom. There we have the positive protons somewhere in the middle and the negative
electrons are moving around the protons. The resulting dipole moment is zero. If an electric field is
applied, the protons and electrons will move in opposite directions and so a dipole moment is induced.
Of course, if the applied field is oscillating, the generated dipoles will oscillate too.

For gases the polarization is easy to describe mathematically. It’s just proportional to the electric
field and the count of atoms with the polarization α as constant of proportionality:

P = NαE = Np (248)

In solids and liquids the local field depends on the applied field and the field induced by the neighboring
dipoles. There are three types of fields to observe. The applied field, the local microscopic field around
the atom and the macroscopic field, which is the mean electric field over many atoms, but smaller
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compared to the wavelength of light. It has to be said, that every material has a polarization, because
everything consists of atoms.

Ionic polarizability:

The effect of ionic polarizability only appears in ionic substances. The positive and negative ions are
pushed in different directions by an electric field and local dipole moments are induced.

Orientation (dipolar) polarizability:

It is easy to understand this effect when we think of a gas with permanent dipole moments. In such
a gas at high temperatures and zero field, all the dipoles are oriented randomly. If a field is applied,
the average of the dipoles will show in the direction of the field. The theory is very similar to the
theory of paramagnetism. There the spins get oriented by an external field and at low temperatures
and high fields there will be saturation. If we do the same calculation for the polarization as for the
paramagnetism, we see that the susceptibility χ diverges at low temperatures:

χ ∝ 1
T

(249)

For gases and liquids this effect is easy to describe, because there the dipole moments can arrange
freely. However, in solids the moments are bound and so another model is needed to describe this
effect here. The theory is based on ion jumps in solid crystals which have defects. In such defects
double charged ions are attracted and trapped. In fig. 128 the double charged ion is marked with a
bold border. Now it could happen, that this ion changes its position with a single charged ion and
what happens is that the polarization changes the direction.

Figure 128: A solid crystal with a defect, where a double charged ion is attracted and trapped. When
this ion swaps the position with another ion, the polarization will change the direction

Space charge polarizability:
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This effect is often observed in insulators with different phases in them and these different phases have
different dielectric constants. If one phase has a much higher resistivity than the others, the whole
material will be an insulator. Between these phases there are other phases, which conduct a little bit.
So the whole thing looks like a chain of resistors and capacitors and this has a specific AC response.

Total polarizability:

In fig. 129 the parts of the different polarizabilities are shown in dependence of the frequency. First it
has to be said, that the part of the space charge polarizability is not from big technical interest and
so it is not plotted, but it would be at low frequencies.

The important thing is, that if the frequency is increased, there is a point where one can observe a
behaviour that can also be seen when the charges in an atom oscillate naturally. The oscillations are
so fast, that they get out of phase and the polarizability gets negative. This is a typical response of a
mass-spring system. When the applied force oscillates at low frequencies, the masses move with the
force and at high frequencies the masses move out of phase to the applied force.

Figure 129: Diagram of the different polarizability parts of the total polarizability

14.4 Structural phase transitions

14.4.1 Introduction

This chapter is about structural phase transitions and the consequences to the dielectric constant. A
structural phase transition is a transition from one crystal structure to another, for example from fcc to
bcc. The stability of the crystal structure of a certain material is often dependent to the temperature.
So it could happen, that the structure changes, if the temperature changes.
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14.4.2 Example: Tin

A popular example for structural phase transitions is tin (Chemical symbol: Sn). This element has
two forms:

• α-Sn: Gray tin, appears as a semiconductor, diamond crystal structure, stable below 13.2◦C

• β-Sn: White tin, appears as a metal, tetragonal crystal structure, stable above 13.2◦C

If tin is needed in applications where the temperature is colder than the transition temperature, it
looses its good metal properties. To avoid the phase transition, some impurities have to be added to
the pure metal. To understand the process of these transitions, we have to look at the free energy:

F = U − TS (250)

The system tries to reduce its free energy F and so we can see, that the crystal structures must have
different entropies. An easy model to explain the different entropies of the crystal structures is to
think about the speed of sound, which has to be different, too. A lower speed of sound means softer
phonon modes, which leads to more possible configurations, which means a higher entropy.

In order to calculate the entropy, we have to do some steps. First we need to measure or calculate the
dispersion relationships of the two crystal structures. They are shown in fig. 130 for tin. When we
have the dispersion relationships, we can calculate the density of states, which is plotted in fig. 131.
With this we can write down the equation for the internal energy

U(ω) =
∫ ∞

0
~ω︸︷︷︸

Energy

D(ω)︸ ︷︷ ︸
DoS

1
exp( ~ω

kBT
)− 1︸ ︷︷ ︸

Probability

dω (251)

and the integral for the entropy:

S =
∫
dU |V=const

T
=
∫
cV
T
dT (252)

If this is done for both crystal structures, we should be able to predict where the structural phase
transition will happen.

In the prior calculations, we said that the crystal tries to minimize the entropy, but at low temperatures
often the enthalpy H is important for the choice of the crystal structure.

H = U + pV (253)

At normal conditions the volume of a solid doesn’t change very much, if the pressure is changed.
So usually the enthalpy is almost the same as the free energy. In many experiments the controlled
parameters are the temperature and the pressure. So we do two Legendre transformations and get
the Gibbs free energy, which we have to minimize:

G = U + pV − TS (254)
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Figure 130: Dispersion relations for α-tin and β-tin

Figure 131: Density of states of α-tin and β-tin
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14.4.3 Example: Iron

Fig. 132 shows the phase diagram of iron with the specific heat in dependence of the temperature
and the crystal structure. The low temperature phase is bcc. At higher temperatures it changes
to a fcc structure, which is more tightly packed than the bcc structure. Normally, we expect the
opposite, because tight packed structures are often dependent to low temperatures. This effect can be
understood by considering the magnetic energy. At low temperatures the bcc phase is ferromagnetic,
whereas the fcc phase is antiferromagnetic. Therefore, to create steel, which is not magnetic, impurities
have to be added to the fcc phase at high temperatures to prevent the material of phase transitions
to magnetic phases.

If the free energy including the magnet component is calculated, it turns out that the bcc phase has a
lower energy than the fcc phase at low temperatures. In experiments it is always easy to measure the
specific heat capacity, because that’s just the energy you need to warm the material up. If we have a
look at fig. 132, we can see that there is a jump from one phase to the other phase, where the solid
line marks the stable phase. So the specific heat has a jump at the phase transition. When the fcc
phase is stabilized by impurities, it is possible to measure the specific heat of this phase down close to
zero degrees. What we see is a peak at about 15 K, which is called the Néel temperature. That’s the
temperature where an antiferromagnetic material becomes paramagnetic. The other big peak at about
1100 K coresponds to the Curie temperature, where a ferromagnet becomes a paramagnet. Because
of its form, such peaks are called λ-points.

Remember that the two peaks correspond to electronic phase transitions, where the two jumps have
to do with the structural phase transitions.

Figure 132: Phase diagram of iron with the specific heat in dependence of the temperature

14.4.4 Ferroelectricity

It turns out that interesting ferroelectric materials at room temperature are perovskits. The structure
of a perovskit is shown in fig. 133, where we use BaTiO3 as an example. The high temperature phase is
cubic and there is no dipole moment. In the low temperature phase the positive charged ions (barium
and titanium) move with respect to the oxygen, which is negative charged. So the unit cell gets a
dipole moment and this effect is called ferroelectricity.
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In fig. 134 we can see the spontaneous polarization of barium titanate as a function of temperature.
The phase transition from tetragonal to cubic is not in the plot, but that will happen at about 120◦
C. In this case the spontaneous polarization will go to zero. In the specific heat-over-temperature
diagram this transition again has the form of a λ.

Figure 133: The structure of a perovskit with the example BaTiO3

Figure 134: Spontaneous polarization of BaTiO3 as a function of temperature

If we compare the dielectric constant of barium titanate (fig. 127) to the spontaneous polarization
(fig. 134), we can see that the peaks are at the same temperatures. If the material is at a temperature
near a phase transition (for example −80◦) the energies of the two states are almost the same. So it
easy for an electric field to switch between these two states, because of the nearly same free energies.
That makes a high susceptibility and explains the peaks in the dielectric diagram. Above 120◦C the
material becomes paraelectric, which means that there is only polarization if an electric field is applied.
This transition is similar to the ferromagnetic to paramagnetic transition. The susceptibility diverges
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like the Curie-Weiss law:

χ = 1
T − TC

(255)

The fact that susceptibility and dielectric constant are related, causes the peak in the dielectric diagram
with a 1

T -decay. The peak in the diagram smears out because of impurities.

In such materials, domains with the same polarization direction are created. If higher electric fields
are applied, the ferroelectric domains get smaller. Some domains will point in one direction and some
in the other direction. This is done to minimize the electric energy, that’s the same what happens in
a ferromagnet. If a ferroelectric material is cooled down, the polarized domains will get very small
but macroscopically there will be no polarization. But if the material is cooled down in a strong
electric field, the domains will be pushed all in one direction, so the material will have a macroscopic
polarization.
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14.4.5 Pyroelectricity

Pyroelectricity is strongly related to ferroelectricity in the way that in both cases, one needs a material
that consists of ions. At high temperatures, the crystal has a high symmetry crystal structure like a
cubic structure and the centre of the positive charges in the unit cell is the same as for the negative
charges and no spontaneous polarization can be observed. If this material is cooled down however,
it will undergo a structural phase transition and end up in a lower symmetry crystal structure like a
tetragonal structure, where the centres of the positive and the negative charges don’t coincide anymore,
which leads to a polarization. Generally speaking one can state, that all ferroelectrics go through a
phase transition when they are cooled down, which leads to a change in the polarization.

Pyroelectric materials are used as sensors to detect heat for example and two of the most common
pyroelectrics are ZnO and LaTaO3

Fig. 135 shows the specific heat of PbT iO3, a material that can be counted as a pyroelectric as well as
a ferroelectric. The characteristic peak marks the point where the phase transition takes place. Above
the transition temperature, there is no spontaneous polarization and because of that, the pyroelectric
constant ∂P

∂T , which is plotted as a function of the temperature in fig. 136(a) vanishes. Another in-
teresting quantity to look at is the dielectric constant ε, which is proportional to 1

T−TC , where TC is
the critical temperature at which the phase transition occurs. This constant doesn’t vanish for high
temperatures, but it has also got a peak at the phase transition temperature. The dependence of ε
on the temperature can be seen even better if one plots 1

ε as a function of T , in which case it’s just a
linear function. (fig. 136(b))

Figure 135: Specific heat of PbT iO3

14.4.6 Antiferroelectricity

Some structures, like PbZrO3, also have a cubic structure at high temperatures and undergo a struc-
tural phase transition like pyroelectrics. But in contrast to pyroelectric materials antiferroelectrics
don’t have a macroscopic polarization, because the dipols in the unit cells arrange themselves antipar-
allel, hence the net polarization of the whole crystal vanishes.

Fig. 137 is a graphical summary of what was said in the last sections. As one can see, pyroelectrics
and ferroelectrics behave the same at temperatures above and below the critical temperature. If an
electric field at T < TC is applied however, the polarizations in the pyroelectric unit cells won’t change,
whereas the polarization in the ferroelectric unit cells amplifies the outer field by aligning parallel.
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(a) (b)

Figure 136: a) Pyroelectric constant of PbT iO3; b) Dielectric constant of PbT iO3

Figure 137: Graphical description for pyroelectricity, ferroelectricity, antipolarity and
antiferroelectricity

Antipolars and antiferroelectrics also behave the same without an electric field, but in contrast to
pyroelectric and ferroelectric materials they don’t exhibit a macroscopic polarization below TC . By
applying an electric field however, the antiferroelectric material behaves the same as the ferroelectric
material below TC , while the polarization of the antipolar material doesn’t change at all.

14.4.7 Piezoelectricity

This material property is related to pyro- and ferroelectricity in a sense, that the crystal gets longer,
when an electric field is applied. This happens, because the electric field couples with the polarization,
which stretches the dipols apart and thus the material expands. Hence, in order to become piezoelec-
tric, a material first has to show a spontaneous polarization.
The most commonly used piezoelectric materials are: PZTs(Pb[ZrxTi1−x]O3, 0 < x < 1), BaTiO3,
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PbT iO3, KNbO3 and LiNbO3.
Fig. 138 shows the phase diagram of PZT. The area labeled PC means in there the crystal is paraelec-
tric with a cubic crystal structure. FEi labels areas with ferroelectric behaviour and a rhombohedral
structure and FT ferroelectric areas with tetragonal structure.

Figure 138: Phase diagram of PZT

14.4.8 Polarization

As one could see in the previous sections, all the mentioned material properties are in some sort
related to each other and because of that we want to express the polarization in mathematical terms.
Basically, the polarization can be computed by taking the derivative of the free energy G with respect
to the electric field Ei (see chapter 8.2 Statistical Physics):

Pi = ∂G

∂Ei

Now, one can build the total derivation of the polarization as follows:

dPi = ∂Pi
∂σkl

dσkl + ∂Pi
∂Ek

dEk + ∂Pi
∂Hk

dHk + ∂Pi
∂T

dT (256)

Here, σkl is one element of the strain tensor, H is the magnetic field and T the temperature. The
first term describes the piezoelectric effect, the second term the electric polarization, the third the
magneto-electric polarization and the fourth the pyroelectric effect.

The strain is also a very interesting property to look at, because as the polarization it also reveals
much of a material’s behaviour. Again, we compute the total derivation of the element i, j of the
strain-tensor:

dεij = ∂εij
∂σkl

dσkl + ∂εij
∂Ek

dEk + ∂εij
∂Hk

dHk + ∂εij
∂T

dT (257)

We identify the first term as the one ruling the elastic deformation, the second term describes the
reciprocal piezoelectric effect, the third one the reciprocal piezomagnetic effect and the fourth the
thermal expansion.
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14.5 Landau Theory of Phase Transitions

Landau took a look at phase transitions and realized that each of these transitions is associated with
a break in symmetry (except for infinite-order phase transitions, which will not be approached here).
By cooling water to ice for example, there is a break in the translation symmetry, the transition
of a material to superconductivity leads to a break in the gauge symmetry and so on. Therefore,
Landau introduced an order parameter for each transition, which can be defined to be zero above the
phase transition and nonzero below the transition. For ferromagnetism, this order parameter is the
magnetization, for ferroelectricity the polarization, etc...

Phase transitions can be divided in first order and second order transitions. First order transitions
exhibit a discontinuity in the first derivate of the free energy, e.g. a latent heat. The phase transition
of water → ice is a typical example for a first order transition.
Second order phase transitions are continuous in the first derivate of the free energy but have a
discontinuity in the second derivate of the free energy, thus they have no latent heat and the order
parameter increases continuously. The transitions to ferromagnetism and ferroelectricity are second
order transitions for example.

14.5.1 Second Order Phase Transitions

We will now take a closer look at the second order phase transitions, because they can be treated
more easily with the Landau theory than first order transitions. Since the order parameter, in our
specific case the magnetization, is zero above TC and nonzero below TC , it has to be small in the
closer neighbourhood of TC . Because of that, we can expand the free energy f in terms of the order
parameter m.

f = f0 + αm2 + 1
2βm

4 + . . . (258)

There are only even terms in this equation, because the odd ones cancel out for the magnetization
due to reasons concerning the symmetry. By minimizing the free energy

df

dm
= 2αm+ 2βm3 + ...

we get two solutions for m:

m = ±
√
−α
β

at T < TC and

m = 0 at T > TC

α must be temperature dependent too, because it’s negative above TC and positive below TC , so
we have another quantity that is small in the closer neighbourhood of TC . Because of that, we
rewrite α = α0(T − TC) and are left with the following expressions for the free energy and the order
parameter:

f = f0 + α0(T − TC)m2 + 1
2βm

4 + . . . ,m = ±
√
−α0(TC − T )

β
at T < TC
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The free energy as a function of m is plotted in fig. 139. One can see, that the curvature of the free
energy at the critical temperature is quite small, which leads to large fluctuations during the phase
transition in a real material. (E.g. arising of steam bubbles while heating water to the boiling point)
In our example of the magnetization there would be large areas in the material that are magnetized
while other areas are still unordered at T = TC .

Figure 139: The free energy f as a function of the order parameterm for second order phase transitions

So in our case of ferromagnetism, the magnetization has to exhibit a square root dependence on the
temperature, which coincides very well with experimental datas. (see fig. 140, the circles stand for
experimental datas, the solid line for theoretical predictions)

Figure 140: The magnetization as a function of temperature
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For ferroelectricity, one gets the same dependence of the order parameter P on the temperature
(fig. 141) and also the superconductivity exhibits a similar dependence (fig. 142)

Figure 141: The polarization as a function of temperature

Figure 142: The superconductivity as a function of temperature

We now go back to the formula for the free energy and plug in our expression of the order parameter,
to reveal the temperature dependence of the free energy at T < TC :

f = f0 −
α2

0(T − TC)2

β
+ . . . (259)

In many applications, the entropy S and the specific heat cV are important quantities, so we also want
to compute these at T < TC since we already know the free energy to test our theory.

s = − ∂f
∂T

= s0 −
2α2

0(T − TC)
β

+ . . .

cV = T
∂s

∂T
= c0 −

2α2
0T

β
+ . . .
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These results are quite interesting, as one can see that the entropy changes slope at the phase transition
(fig. 143) and the specific heat is linear in temperature but exhibits a discontinuity at TC (fig. 144).
(These figures originally belong to a calculation about superconductivity, but they also hold true
for our computations. The index n stands for "‘normal"’ and s for "‘superconducting"’, which is the
material that undergoes the phase transition).

Figure 143: The entropy as a function of temperature

Figure 144: The specific heat as a function of temperature

We now want to take our calculations even further and include a magnetic field B, so the formula for
the free energy becomes:

f = f0 + α0(T − TC)m2 + 1
2βm

4 −mB (260)

By minimizing the free energy as before, one is left with an expression for small values of the order
parameter m at T > TC , which looks similar to the Curie-Weiss law:

m = B

2α0(T − TC)
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14.5.2 First Order Phase Transitions

First order phase transitions are very complicated to deal with, because the order parameter isn’t
necessarily small in the closer neighbourhood of TC and even shows a discontinuity at TC . There are
many different ways to look at first order phase transitions and we want to take a closer look at the
free energy f as before.

f = f0 + α0(T − TC)m2 + 1
2βm

4 + 1
3γm

6 + . . . (261)

Figure 145: The free energy f as a function of the order parameter m for first order transitions

Here the first constant α0 is positive, β is negative and γ keeps the free energy from diverging at
extreme values for T . Fig. 145 shows a plot of the free energy as a function of the order paramter.
At T > TC , there is only one minimum at m = 0 but at T = TC , there are three minima at different
values for m. By cooling the material even further, the central minimum slowly vanishes while the
outer minima become deeper. Because of that, processes like supercooling (lowering the temperature
of a liquid or gas below its freezing point without becoming a solid) or superheating (heating a liquid
above its boiling point without boiling) are possible, because the material is trapped in a metastable
state, e.g. the local minimum at m = 0 of the free energy for some time.

Fig. 146 shows the polarization of BaTiO3 as a function of the temperature, which is a typical example
for a first order phase transitions.

We now minimize the free energy as in the last section and get the following solutions for m:

m = 0,±
√
−β ±

√
β2 − 4α0(T − TC)γ

2γ

so far small values of the order parameter, the free energy is approximately:

f ≈ f0 + α0(T − TC)−β ±
√
β2 − 4α0(T − TC)γ

2γ (262)
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Figure 146: The polarization of BaTiO3 as a function of temperature
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15 Summary: Silicon

Silicon is the second most common element in the earth’s crust (in the form of rocks, sand, glass, etc...)
and because SiO2 is such a good insulator, silicon is the most important semiconducting material in
the world today. Most of the time, when silicon is used as a semiconductor, it is doped with other
elements to obtain certain properties of the material.

Figure 147: Crystal structure of silicon

The silicon crystal has a diamond structure, as depicted in fig. 147, the primitive lattice vectors are:

a1 = a

2Y + a

2Z a2 = a

2X + a

2Z a3 = a

2X + a

2Y

and the basis vectors therefor are:

B1 = −a8X− a

8Y− a

8Z B2 = a

8X + a

8Y + a

8Z

where a is the lattice constant

The first Brillouin zone for a silicon crystal is illustrated in fig. 148 and the phonon dispersion rela-
tionship is shown in fig. 149. Because silicon has two atoms per unit cell, there are 6 branches in the
dispersion relation, 3 acoustic and 3 optical branches. (see chapter 6).

How would you calculate the dispersion relation? (see chapter 6)
By knowing the crystal structure, one can write down Newton’s laws for the case that the atoms
are connected to each other by linear forces. Solving the resulting system of equations by assuming
harmonic solutions, one can plot the phonon dispersion curve for different directions and different
values of k.

What is the Debye frequency? (see chapter 6)
The Debye frequency is the highest frequency of the phonons possible in the crystal. The highest
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Figure 148: First Brillouin zone of silicon

Figure 149: Phonon dispersion relation of silicon

frequency is determined by the shortest wavelength that can evolve in this crystal (fig. 150, a is the
distance between 2 atoms).

What is the speed of sound in Si?
The speed of sound is the slope of the dispersion relation near the Γ-point and there are actually 2
different speeds of sound, one for the transverse and one for the longitudinal mode. (in the range of
a few THz)

How do you calculate the phonon density of states from the phonon dispersion relation?
The actual calculation is quite difficult and it’s done numerically for most of the time. What you have
to do is choose one k-value and write down all possible frequencies for this k. This is done for all
k-values and then one counts how often a specific fequency occured, which leads to a picture like fig.
151.

Why does the energy gets scaled for the electron dispersion relation of the elements of
the 4th main group?
Now we want to take a look at the electron dispersion relationship for the elements of the 4th main
group. One difference compared to phonons is, that there is no maximum energy for the electrons,
there is nothing that restricts the wavelength of the electron wavefunction. The biggest difference
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Figure 150: Vibration of atoms with the shortest wavelength

Figure 151: Phonon density of states of silicon

however is, that the vertical scale gets elongated. Take a look at the dispersion relations of diamond
(fig. 152), silicon (fig. 153), germanium (fig. 154) and tin (fig. 155). Although all these materials
do have the same crystal structure (see fig. 156 for the first Brillouin zone of these materials) and
the same amount of valence electrons, the dispersion relation of diamond reaches from −40 to 10 eV,
whereas the dispersion relation of tin only goes from −20 to 0 eV. The reason for this lies in the
different lattice constants of the crystal (table 2). The solutions of the equations of motion of the
electrons are Bloch-waves and they look the same for each of these materials. But because diamond
has a very short lattice constant compared to the others, the Bloch-waves get compressed, e.g. the
frequencies and therefore the energies are increasing.

material 10−10m
diamond 3.56
silicon 5.43
germanium 5.65
tin 6.48

Table 2: lattice constants
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Figure 152: Electron dispersion relation of diamond

Figure 153: Electron dispersion relation of silicon
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Figure 154: Electron dispersion relation of germanium

Figure 155: Electron dispersion relation of tin
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Figure 156: Brillouin Zone of diamond, silicon, germanium and tin
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16 Superconductivity
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16.1 Introduction

Superconductivity is the phenomenon of unmeasurable low resistance below a critical (or transition)
temperature Tc. It is observed in a wide class of materials, however, the theoretical description includes
numerous subtleties. Today the phenomenon is (basically) well understood but the development of
appropriate theoretical models and the corresponding experimental inspections display many aspects
of the development of physics in the 20th century.

In 1911 Kamerlingh Onnes, three years after he first liquefied helium, observed that the electrical
resistance of mercury drops to an unmeasurable low value below the critical temperature of Tc ≈ 4.2
K. In fact it is fundamentally impossible to show that the resistance is exactly zero, but it is possible
to give an upper limit. K. Onnes classified the first superconducting state with an upper limit to
the resistance of 10−5 Ω. However, the more surprising fact was that the resistance did not increase
with an increase of impurities in the mercury sample. Moreover, the resistance drops discontinuously
within a temperature range of less than 0.01 K, see Fig. 157.

An elementary property of superconductivity as observed by K. Onnes is the experimental fact,
that the superconducting state may be destroyed by placing the sample in a strong magnetic field.
Furthermore, superconductivity reappears when the field is removed and the field strength required
to destroy the superconducting state depends on the orientation of the specimen within the field.
Nowadays, many different materials are known to show such behavior. Amongst non transition metals,
such as Be or Al, the phenomenon is also observed in samples of transition metals, such as Nb, Mo or
Zn, and even, when first exposed to high pressure (transition to the metallic phase) and then cooled
to very low temperatures (transition to superconducting state), in semiconductors, such as Si, Ge,
Se, Te. Typical transition temperatures for such materials are in the range of liquefied helium (∼ 4
K). The transition temperature may depend on the crystal structure of the material, such as in Bi,
where different modifications show different transition temperatures, but the crystal structure is not
a necessary condition for superconductivity. Moreover, a wide range of alloys show superconducting
behavior. For instance, the alloy Nb3Al0.75Ge0.25 was for a long period the material with the highest
yet observed transition temperature (Tc = 20.3 K). Amongst the most fascinating materials today are
high temperature superconductors such as Y-Ba-Cu-O alloys with transition temperatures up to 100
K (e.g. YBa2Cu3O7−x) or more exotic alloys, such as (Sn5In)Ba4Ca2Cu10Ox with Tc = 212 K.
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Figure 157: Resistance as a function of temperature for a mercury sample as investigated by K. Onnes.

The history of the theoretical investigation of superconductivity includes numerous aspects of 20th
century theoretical physics. It took approximately 50 years until the first microscopic consistent
explanation was presented by Bardeen, Cooper and Schrieffer, today known as the BCS theory of
superconductivity. This theory required the development of quantum mechanics (1925), the discovery
of quantum field theories in the late 1940s and finally the application of quantum field theoretical
methods to solid state environments in the early 1950s. It turned out that the superconducting state
is a quantum many particle effect of macroscopic size. Note that the effect of zero resistance is not
describable within the framework of one electron dynamics. In a real crystal finite conductivity is the
result of interactions of electrons (or holes) with crystal defects or phonons. Even if this interaction
could be suppressed, electron-electron scattering would still cause a finite conductivity. In contrast to
the simplified one electron picture, the BCS theory explains the superconducting state as a superfluid
of Cooper pairs, which are quasiparticles consisting of two electrons which interact through phonons.
The BCS theory was the basis for many different explanations of new phenomena in many particle
systems.

Today’s applications of superconductors range from superconducting magnets, used in NMR spectrom-
eters, mass spectrometers or particle accelerators, to SQUIDs, which exploit the Josephson effect.
Several researches were awarded the Nobel prize of Physics for achievements in the field of super-
conductivity: Onnes on Matter at low temperature (1913), Bardeen, Cooper and Schrieffer on
Theory of superconductivity (1972), Esaki, Giaever and Josephson on Tunneling in superconduc-
tors (1973), Bednorz and Müller on High-temperature superconductivity (1987) and Abrikosov,
Ginzburg and Leggett on Pioneering contributions to the theory of superconductors and superfluids
(2003).

It is the aim of this section to give a brief introduction into some aspects of superconductivity. This
short introductory subsection is followed by a review of the fundamental experimental observations
in the second subsection. Phenomenological descriptions, i.e. thermodynamic considerations, the
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London equations and the Ginzburg - Landau equations, are the topic of the third subsection. In
the fourth subsection we will give a short introduction into some fundamental concepts of the BCS
theory and discuss the flux quantization in this context. The Josephson effect will be topic of the
fifth subsection.
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Table 3: Transition temperatures Tc for some selected materials.
Material Tc / K

Ti 0.4
Hg 4.2
C60 19.2

Rb2CsC60 19.2
YBa2Cu3O6.9 90.0

(Sn5In)Ba4Ca2Cu10Ox 212

16.2 Experimental Observations

16.2.1 Fundamentals

We already observed that superconductivity occurs in many metallic compounds, but also alloys, doped
semiconductors and even organic molecules. The transition temperatures Tc range from Tc = 0.001
K for Rh up to Tc = 212 K for (Sn5In)Ba4Ca2Cu10Ox. Some materials reach the phase transition
only under high pressure, for instance for Si p = 165 kbar and Tc = 8.3 K. In Tab. 3 the transition
temperatures of some selected compounds are given. However, we can state that a material has to
be nonmagnetic in order to become a superconductor under appropriate conditions (in particular,
this statement is not true for high Tc superconductors, which are based on cuprates). The question
whether every nonmagnetic material will become a superconductor at sufficiently low temperatures or
not, can fundamentally not be answered.

One of the earliest observations was that strong magnetic fields destroy superconductivity. The critical
field as a function of temperature, Hc(T ) where Hc(Tc) = 0, separates the normal from the supercon-
ducting state, see Fig. 158. Note that Hc = 1

µ0
Bac, where Bac is the critical magnetic field and µ0 is

the magnetic permeability of vacuum. The applied magnetic field will in the following be denoted by
Ba.

Since the superconducting state is destroyed above the critical magnetic field, there exists a maximum
current within the superconductor because a higher current would induce a magnetic field destroying
superconductivity. This maximum current is called critical current Jc. It can be estimated by equating
the energy of the critical magnetic field with kinetic energy of n electrons:

µ0H
2
c ≈

1
2nmev

2, (263)

where me is the electron mass and v the electron’s velocity. Since the current density can be written
as J = −nqv (with q the elementary charge) we obtain an estimate for the critical current Jc as a
function of the critical magnetic field

Jc ≈
√

2µ0
q2nme

Hc. (264)
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Figure 158: The critical magnetic field Hc(T ) as a function of temperature T . For T = Tc we have
Hc(Tc) = 0. Hc(T ) separates the normal (above the curve) from the superconducting
(below the curve) state.

16.2.2 Meissner - Ochsenfeld Effect

In 1933 Meissner and Ochsenfeld observed that if a superconductor within an external magnetic
field B is cooled below the transition temperature Tc, then the magnetic field is pushed out of the
interior of the superconductor, i.e. B = 0 within the superconductor. Note that this effect is reversible.
This observation has several consequences. For instance, in case of a superconducting wire we can
immediately deduce that current cannot flow within the superconductor due to Ampere’s law∇×B =
µ0J. The current must therefore flow in the surface of the wire.

A second consequence is that a superconductor is not equal to an ideal conductor. For an ideal
conductor we obtain from Ohm’s law E = ρJ, with E the electrical field and ρ the resistivity, that
E → 0 in the limit ρ → 0, since J < ∞ within the superconductor. However, from Maxwell’s
equations we now deduce that Ḃ ∼ ∇×E = 0. This is not equivalent to the observation by Meissner
and Ochsenfeld since in the case of an ideal conductor we obtain that the magnetic field must not
change on cooling through the transition temperature. Hence, we obtain that perfect diamagnetism
is an essential property of the superconducting state.

We now explicitly write the magnetic field within the superconductor

B = Ba + µ0M, (265)

where M is the magnetization. Since B = 0 for Ba < Bac we have in the one-dimensional case

M

Ba
= − 1

µ0
= −ε0c

2, (266)

where ε0 is the dielectric constant of vacuum and c is the vacuum speed of light. In Fig. 159(a) this
relation is illustrated. Note that the superconductor undergoes a first order phase transition at Hc for
T 6= Tc. However, such behavior is only observed in a a certain class of materials, which are nowadays
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Figure 159: Illustration of the dependence of the magnetization on the applied magnetic field for type
I and type II superconductors. In case of type I superconductors (complete Meissner -
Ochsenfeld effect) the magnetization above the critical field (i.e. in the normal state)
is too small to be resolved in this figure. In case of a type II superconductor (incomplete
Meissner - Ochsenfeld effect) the magnetic field B starts to penetrate the supercon-
ductor at a critical value Hc1 which is lower than the thermodynamic critical value Hc.
Above the second critical pointHc2 the compound is normal conducting, the state between
Hc1 and Hc2 is called vortex state or Shubnikov phase. Note that the area under both
curves is the same.

known as type I superconductors. Type I superconductors are typically pure materials with low values
of electrical resistance. For other materials, typically alloys or transition metals with a high electric
resistance in the normal state, a different behavior is observed. These materials are referred to as type
II superconductors since they undergo a second order phase transition at the critical magnetic field.
Such a transition is depicted in Fig. 159(b). Type II superconductors posses two critical magnetic
fields, Hc1 and Hc2. Below Hc1 the Meissner - Ochsenfeld effect is complete, while between Hc1
and Hc2 it is said to be incomplete. However, the sample is superconductive up to the second critical
field Hc2. Between Hc1 and Hc2 the magnetic field within the superconductor is not equal to zero,
B 6= 0. I.e., the sample is threaded by flux lines. This state is referred to as the vortex state or
Shubnikov phase. Note that Hc2 can be larger than Hc by orders of magnitude (which is in case of
type II superconductors defined by the thermodynamics of the system).

16.2.3 Heat Capacity

Measurements show that for temperatures below the critical temperature, T < Tc, the entropy of the
system is decreased, see Fig. 160. This contains the information that the superconducting state is
more ordered than the normal state. This observation was of crucial importance for the development
of microscopic theories. Since the change in entropy is very small, this must mean that only a small
fraction of all conduction electrons participate in the transition to the superconducting state.

Furthermore, the heat capacity is discontinuous at the critical temperature for Ba = 0, see Fig. 161
and the observed form suggests an exponential form with argument proportional to − 1

T , while in the
normal state, the specific heat increases linearly with temperature. This allows the interpretation of
excitations of electrons over an energy gap, see Fig. 161 and 162. The energy gap is well described
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Figure 160: In the superconducting state the entropy is decreased with respect to the normal state.

Figure 161: Schematic illustration of the dependence of the heat capacity on temperature in a
superconductor.

within the BCS theory. In difference to normal insulators, the energy gap in superconductivity is not
a result from electron-lattice interactions, but from electron-electron interactions.

16.2.4 Isotope Effect

The experimental observation that Tc varies with the isotopic mass is referred to as the isotope effect.
For instance, in case of Hg one measures a change of Tc from 4.185 K to 4.146 K under a variation
of the isotopic mass M from 199.5 to 203.4 atomic mass units. The experimentally observed relation
between Tc and M reads

MαTc = const., (267)

where some selected values for α are given in Tab. 4. This observation includes a further, highly
important information about the underlying physical processes: Since the transition temperature of
the superconductor varies with the atomic mass rather then with the electronic structure we can
conclude that electron phonon interactions might play a crucial role.
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Figure 162: Schematic illustration of the energy gap in a superconductor.

Table 4: Some selected values of the exponent α related to the isotope effect. The vanishing value for
some materials (such as Ru) was explained by means of its particular band structure.

Material α

Ru 0.0
Mo 0.3
Hg 0.5
Sn 0.5
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16.3 Phenomenological Description

16.3.1 Thermodynamic Considerations

Since the transition between the superconducting and the normal state is reversible we can apply the
basic concepts of thermodynamics in order to obtain an expression for the free energy F as a function
of the critical field curve Hc and T . The work done on a type I (complete Meissner - Ochsenfeld
effect) superconductor in an external magnetic field can be expressed by

W =
∫ Ba

0
dB ·M. (268)

Thus we identify the differential of the free energy as

dF = −M · dB. (269)

Since we deal with a type I superconductor we can exploit the known relationship between M and Ba
in the superconducting state in order to obtain

dFS = 1
µ0

B · dB, (270)

or in particular for B : 0→ Ba

FS(Ba)− FS(0) = 1
2µ0

Ba
2. (271)

If we consider a nonmagnetic metal in the normal state and neglect the magnetic susceptibility, then
M = 0 and accordingly

FN (Ba) = FN (0). (272)

Now at Ba = Bac the energies are equal in the normal and in the superconducting state:

FN (Bac) = FS(Bac) = FS(0) + 1
2µ0

Bac
2. (273)

Hence, at zero field, we have

∆F = FN (0)− FS(0) = 1
2µ0

Bac
2. (274)

Here ∆F is the stabilization free energy of the superconducting state. Hence, at a temperature
T < Tc, the superconducting state is more stable up to a critical magnetic field Bac. Above this field
the normal state is more stable. The results for the stabilization energy are in excellent agreement
with experimental results.
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16.3.2 The London Equations

It is the aim of the following considerations to derive the Meissner - Ochsenfeld effect from a
particular ansatz for the electrodynamic laws in the superconducting state. We write the equation of
motion of a charged particle in an electrical field E

mv̇ = −qE. (275)

We now insert the current density js = −qnsv, where ns is the density of superconducting electrons,
in order to obtain the first London equation

j̇s = nsq
2

m
E. (276)

From ∇×E = −Ḃ we obtain

∂

∂t

(
m

nsq2∇× js + B
)

= 0. (277)

This equation describes an ideal conductor, i.e. ρ = 0. However, the expulsion of the magnetic field
in the Meissner - Ochsenfeld effect is not yet included. Integrating this equation with respect
to time and neglecting the integration constant yields the second London equation, which already
includes to correct physical description:

∇× js = −nsq
2

m
B. (278)

Note that since B = ∇×A we can conclude that

js = −nsq
2

m
A ≡ − 1

µ0λ2
L

A, (279)

where we defined λL =
√

m
nsµ0q2 with the dimension of length. Here, A has to be understood in the

London gauge. For a simply connected superconductor it may be expressed by ∇·A = 0 and An = 0,
where An is the normal component of A on an external surface, through which no current flows. The
second London equation can be rewritten in the following way

∇× js = − 1
µ0λ2

L

B. (280)

Further, from Maxwell’s equations

∇×B = µ0js, (281)

we obtain

∇×∇×B = −∇2B = µ0∇× j. (282)

Combining Eqs. (280) and (282) yields

∇2B− 1
λ2
L

B = 0. (283)

186



TU Graz, SS 2010 Advanced Solid State Physics

Figure 163: Illustration of the above example of a semi-infinite superconductor in a homogeneous
magnetic field in vacuum.

Equivalently, we can combine Eqs. (278) and (282) in order to obtain

∇2js −
1
λ2
L

js = 0. (284)

We regard a semi-infinite superconductor (z > 0) in a magnetic field which is homogeneous in vacuum
(z < 0), see Fig. 163. In case that B = Bxex we obtain from Eq. (281) that js is of the form
js = jsyey. We can calculate the magnetic field and the current density in the superconductor from
Eqs. (283) and (284):

Bx(z) = B0
x exp

(
− z

λL

)
, (285)

and

jsy(z) = j0
sy exp

(
− z

λL

)
. (286)

This means that the magnetic field as well as the current decay exponentially with distance into the
superconductor. Here, λL is referred to as the London penetration depth. For a typical supercon-
ductor such as Sn, its value is approximately 26 nm. Hence, the London equations describe the
Meissner - Ochsenfeld effect particularly well.

16.3.3 Ginzburg - Landau Equations

In order to obtain the Ginzburg - Landau equations one introduces a complex valued order pa-
rameter ϕ where |ϕ|2 = ns is the density of superconducting electrons. Based on Landau’s theory
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of second order phase transitions, Ginzburg and Landau suggested that the free energy FS in the
superconducting state can be written in the following form

FS = FN − α|ϕ|2 + β

2 |ϕ|
4 + 1

2m
∣∣∣(−i~∇− qA)ϕ

∣∣∣2 + 1
2µ0

Ba
2, (287)

where α and β are phenomenological constants and m is the quasiparticle’s mass. Further, FN
denotes the free energy of the normal state. The equation can be interpreted in the following way:
α|ϕ|2 + β

2 |ϕ|
4 is a term of the typical form appearing in Landau’s theory of second order phase

transitions, 1
2m

∣∣∣(−i~∇− qA)ϕ
∣∣∣2 is an additional term which accounts for energy corrections due

to spatial variations of the order parameter ϕ and the last term, 1
2µ0

Ba
2 represents an additional

contribution to the free energy according to Eq. (271). Minimizing the free energy FS with respect ϕ
yields the Ginzburg - Landau equations in terms of functional derivatives:

δFS = δFS
δϕ

δϕ+ δFS
δϕ∗

δϕ∗. (288)

Note that |ϕ| = ϕϕ∗. We obtain

δFS =
[
−αϕ+ β|ϕ|2ϕ+ 1

2m (−i~∇− qA)ϕ · (i~∇− qA)
]
δϕ∗ + h.c.

= 0. (289)

In the kinetic term of the right hand side we have to deal with a term of the form ∇ϕ · ∇δϕ∗. We
note that

∫
dr∇ϕ · ∇δϕ∗ = −

∫
dr(∇2ϕ)δϕ∗, where we assumed that δϕ∗ vanishes at the integration

boundaries. Conclusively we obtain∫
drδFS =

∫
dr
[
−αϕ+ β|ϕ|2ϕ+ 1

2m (−i~∇− qA)2 ϕ

]
δϕ∗ + h.c. (290)

This is expression is equal to zero if

−αϕ+ β|ϕ|2ϕ+ 1
2m (−i~∇− qA)2 ϕ = 0. (291)

This is the first Ginzburg - Landau equation. In order to obtain the second Ginzburg - Landau
equation, one minimizes FS , Eq. (287), with respect to the vector potential A.

δFS
δA = q

2m [ϕ (−i~∇+ qA)ϕ∗ − ϕ∗ (−i~∇− qA)ϕ] + 1
µ0
∇×∇×A, (292)

where we employed some rules of functional derivatives in the sense of distributions. In particular, we
first define the functional Ba(r) = F [A] =

∫
dr′[∇×A(r′)]2δ(r− r′). We now write

〈
δF [A]
δA , f

〉
= d

dεF [A + εf ]
∣∣∣
ε=0

= 2
∫
dr′ (∇× f) · (∇×A) δ(r− r′)

= 2
∫
dr′f · ∇ ×∇×Aδ(r− r′). (293)

188



TU Graz, SS 2010 Advanced Solid State Physics

In the last step (integration by parts) we used that f is some test function, i.e. it decays sufficiently
fast for |r| → ∞. From the last line we deduce the desired result

δBa
2(r)

δA(r′) = 2∇×∇×A(r′)δ(r− r′). (294)

Using ∇×∇×A = ∇×Ba = µ0jS and δFS
δA = 0 we obtain the second Ginzburg - Landau equation

as

jS = − q

2m [ϕ (−i~∇+ qA)ϕ∗ − ϕ∗ (−i~∇− qA)ϕ]

= q

m
Re [ϕ∗ (−i~∇− qA)ϕ] . (295)

where jS is called the supercurrent.

We now regard several interesting outcomes of this model: Let A = 0 and α� β|ϕ|2. Then we obtain
in the one dimensional case from the first Ginzburg - Landau equation (291)

− ~2

2m
d2

dx2ϕ = αϕ (296)

with the solution ϕ(x) = exp (ix/ξ) where ξ = ~/
√

2mα. ξ may be interpreted as the intrinsic
coherence length which will later turn out to be the average distance between the two electrons of a
Cooper pair.

Another interesting case is obtained by regarding the situation of ϕ = 0 at x = 0 and ϕ = ϕ0 as
x→∞. This situation resembles a boundary between normal and superconducting state, i.e. there is
a magnetic field Hc in the normal region. We regard an extreme type I superconductor, in particular
the penetration depth satisfies λL � ξ. We have to solve

− ~2

2m
d2

dx2ϕ− αϕ+ β|ϕ|2ϕ = 0. (297)

A proper solution satisfying the boundary conditions is

ϕ(x) =
√
α

β
tanh

(
x√
2ξ

)
. (298)

Inside the superconductor we obtain ϕ0 =
√

α
β as the solution of the minimization of −α|ϕ|2 + 1

2β|ϕ|
4.

Since inside the superconductor we have FS = FN − α2

2β = FN − 1
2µ0

B2
ac we obtain

Bac =
√
µ0α2

β
. (299)

For a small penetration length (ϕ ≈ ϕ0) we obtain from the second Ginzburg - Landau equation

jS = −q
2

m
|ϕ0|2A. (300)
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Comparison with the Eq. (279) yields

λL =
√

mβ

µ0q2α
. (301)

We now introduce the dimensionless parameter κ:

κ = λL
ξ
≡ m

~q

√
2β
µ0
. (302)

We now show that this parameter characterizes the transition between type I and type II supercon-
ductors. We regard a type II superconductor exposed to a magnetic field which is slightly below the
critical field Hc2. Accordingly, we can linearize the first Ginzburg - Landau equation:

1
2m (−i~∇− qA)2 ϕ = αϕ. (303)

The vector potential is assumed to be of the form A = Bxey, i.e. B = Bez. We obtain

− ~2

2m

(
∂2

∂x2 + ∂2

∂y2

)
ϕ+ 1

2m

(
i~
∂

∂y
+ qBx

)2
ϕ = αϕ. (304)

We employ the ansatz ϕ = exp [i(kyy + kzz)]χ(x) and obtain

1
2m

[
−~2 d2

dx2 + ~2k2
z + (~ky − qBx)2

]
χ = αχ. (305)

Substituting E = α− ~2k2
z

2m and X = x− ~kyqB
2m yields

− ~2

2m
d2

dX2χ+ q2B2

2m X2χ = Eχ (306)

This is the equation of a harmonic oscillator with frequency ω = qB
m and eigenvalues En =

(
n+ 1

2

)
~ω.

We note that the largest value of the magnetic field is given by the lowest energy eigenvalue E0 =
1
2~ω = α− ~2k2

z
2m , hence:

Bmax = µ0Hc2 = 2αm
q~

. (307)

By use of Eqs. (302) and (299) we obtain the interesting result

Hc2 =
√

2κHc. (308)

For κ > 1/
√

2 we have Hc2 > Hc and the superconductor is of type II.
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16.4 Microscopic Theories

16.4.1 BCS Theory of Superconductivity

We briefly discuss the fundamental concepts of the BCS theory of superconductivity as developed
by Bardeen, Cooper and Schrieffer in 1957. The applications of BCS theory range from the
description of superfluidous He3 to type I and type II metallic superconductors, and even some high-
temperature superconductors. Moreover, the BCS theory proved to be very important for our modern
understanding of theoretical solid state physics since many concepts appearing in the framework of this
theory reappeared in the context of numerous further effects and phenomena, such as the fractional
quantum Hall effect, topological insulators or even in nuclear physics.

The basic ingredient to a successful microscopic description is the realization that at sufficiently low
temperatures two electrons form an energetically favored state through electron - phonon - electron
interaction, called a Cooper pair. This attractive interaction between the electrons yields a ground
state which is separated from the excited states by a band gap, as experimentally observed, see
Sec. 16.2.3. Also the fact that phonons play a crucial role in the formation of this ground state
was observed experimentally through the isotope effect, Sec. 16.2.4. Most of the thermodynamic
properties of superconductors are a direct consequence of the occurrence of a band gap, thus a profound
understanding of Cooper pairs is essential in a microscopic description of superconductivity.

16.4.2 Some BCS Results

We briefly summarize some of the most remarkable results from the BCS theory

(i) Attractive interaction between electrons leads to the formation of Cooper pairs. The ground-
state is separated from the excited state by an energy gap. With the help of this energy gap
one can explain phenomena such as the critical field, thermal properties and electromagnetic
properties.

(ii) The electron - lattice - electron interaction can be understood in an intuitive way with the help
of the following simplified picture: One electron interacts with the lattice and deforms it, the
second electron is affected by the lattice deformation and moves therefore in the field of the
first electron. In particular, the two electrons interact through the lattice deformation. In this
attractive process the total energy is lowered.

(iii) The London equations, and therefore also the penetration depth as well as the coherence
length, are a direct consequence of the BCS theory. Since the London equations account for
the Meissner - Ochsenfeld effect, also this experimental fact is implicitly accounted for within
the microscopic theory.

(iv) It is (correctly) predicted that the transition temperature is influenced by the electron density
of the orbitals at the Fermi energy of one spin, D(εF ) and the electron lattice interaction
parameter V which is connected to the electrical resistance at room temperature. In particular
case V D(εF )� 1 (V attractive) the BCS theory predicts

Tc = 1.14Θ exp
(
− 1
V D(εF )

)
, (309)
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Figure 164: The superconducting band gap versus temperature. Comparison between theoretical
(BCS) and experimental data for Ta.

where Θ is the Debye temperature. This relation coincides qualitatively with experimental
observations. Note that this means, the higher V (means large resistance at room temperature),
the more likely the material will be superconductor when cooled below Tc.

(v) The magnetic flux through a superconducting ring is quantized (see Sec. 16.4.4) and since a
Cooper pair consists of two electrons, the unit of charge is 2q. This can be accounted for in the
London equations and in the Ginzburg - Landau equations when one replaces the quantities
accordingly (ns is now the density of Cooper pairs, q → 2q, . . . ).

(vi) There exists a BCS groundstate: In case of a non-interacting electron system one obtains the
Fermi sea as the groundstate. Arbitrarily small excitations are possible. Within the frame-
work of the BCS theory, one obtains, that for an appropriate attractive interaction potential a
superconducting groundstate, which is separated from the excited states by an energy gap Eg,
is formed. The most important property of the BCS groundstate is that orbitals are occupied
in pairs: for every orbital with wavevector k and some spin occupied the orbital with opposite
spin and wavevector −k is also occupied. These pairs are referred to as Cooper pairs; we give
a short discussion below. Cooper pairs are bosons.

(vii) The BCS theory states that superconducting band gap ∆(T ) as a function of temperature is
implicitly given through the solution of the following equation:

∆(T )
∆(0) = tanh

[
TC
T

∆(T )
∆(0)

]
. (310)

Comparison with experimental data of Ta shows perfect agreement, see Fig. 164
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16.4.3 Cooper Pairs

We regard a two electron system in a cube of volume 1 and periodic boundary conditions. We write
the wave function in the basis of plane wave product state:

ψ(k1,k2; r1, r2) = exp [i (k1 · r1 + k2 · r2)] . (311)

Furthermore, we assume that the two electrons are of opposite spin. We perform a coordinate trans-
formation according to

K = k1 + k2, k = 1
2 (k1 − k2) (312)

and

R = 1
2 (r1 + r2) , r = r1 − r2. (313)

Consequently,

ψ(K,k; R, r) = exp (iK ·R) exp (ik · r) , (314)

where the corresponding kinetic energy of the system is given by

εK + Ek = ~2

m

(1
4K2 + k2

)
. (315)

We now investigate the special case of K = 0, i.e. k1 = −k2 and expand the wave function in terms
of the resulting basis functions:

χ(r) =
∑

k
gk exp (ik · r) , (316)

Let us introduce an interaction Hamiltonian HI . The corresponding Schrödinger equation reads

(H0 +HI − ε)χ(r) =
∑
k′

[(Ek′ − ε) gk′ +HIgk′ ] exp
(
ik′ · r

)
= 0. (317)

Taking the scalar product with exp (ik · r) yields

(Ek − ε) gk +
∑
k′
gk′
〈
k
∣∣HI

∣∣k′〉 = 0. (318)

Transforming the sum over k′ into an integral over the energy E′ gives

(E − ε) g(E) +
∫
dE′g(E′)HI(E,E′)N(E′) = 0, (319)

where N(E) is the number of states with K = 0 within the kinetic energy window of width dE′

around E′. Detailed studies of the matrix elements HI(E,E′) revealed that the contribution is most
important in an energy range slightly above the (one electron) Fermi energy εF with thickness ~ωD,
where ωD is the Debye phonon cutoff frequency. We approximate H(E,E′) within this energy region
by a constant, i.e.

H(E,E′) = −V = const. for E,E′ ∈ [2εF , 2εm] with εm = εF + ~ωD. (320)
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Hence,

(E − ε)g(E) = V

∫ 2εm

2εF
dE′g(E′)N(E′) = C, (321)

with C a constant. We readily obtain

g(E) = C

E − ε
(322)

and

V

∫ 2εm

2εF
dE′

N(E′)
E′ − ε

= 1. (323)

We now approximate N(E′) ≈ NF within this energy range and obtain the desired result

NFV

∫ 2εm

2εF
dE′

1
E′ − ε

= NFV log
(2εm − ε

2εF − ε

)
= 1, (324)

or with the help of ε = 2εF −∆

∆ = 2~ωD
exp

(
1

NFV

)
− 1

. (325)

For V > 0 (attractive interaction) the energy is lowered by excitation of a Cooper pair above the
Fermi level. Here ∆ is the binding energy of a Cooper pair. Within the framework of the BCS
theory it is shown that this binding energy is closely related to energy gap of a superconductor.

16.4.4 Flux Quantization

In this section we aim to reproduce the result of flux quantization in a superconducting ring. Therefore
we regard a gas of charged bosons (Cooper pairs). Let ψ be the pair wave function and n = ψψ∗ =
const. the total number of pairs. We express ψ as

ψ =
√
n exp (iθ) (326)

where the phase θ may be a function of local space. The particle velocity operator is given by

v = 1
m

(−i~∇− qA) (327)

and, consequently, the particle flux is given by

ψ∗vψ = n

m
(~∇θ − qA) . (328)

We can write the electric current density as

j = qψ∗vψ = qn

m
(~∇θ − qA) . (329)
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Taking the curl of both sides of this equation yields the London equation:

∇× j = q2n

m
∇×A, (330)

since ∇×∇g = 0 independent of the scalar function g. Due to the Meissner - Ochsenfeld effect
we know that B = 0 in the interior of the superconductor. Therefore, we have j = 0 and it follows
from (329) that

qA = ~∇θ. (331)

We now select a closed path C through the interior of the superconductor and integrate the right hand
side of (331):

~
∮
C
dl ∇θ = ~(θ2 − θ1), (332)

i.e. ~ times the change of the phase when going once around the contour C. Since ψ must not change
through the integration we obtain that

θ2 − θ1 ≡ 2πs, (333)

with s some integer. For the left hand side of (331) we obtain through Stokes’ theorem

q

∮
C
dl A = q

∫
F
dF · ∇ ×A = q

∫
F
dF ·B = qΦ, (334)

the magnetic flux. Here, dF is an element of the area bounded by the contour C. Accordingly

Φ = ~2πs
q

= Φ0s, (335)

with the flux quantum (referred to as fluxoid) Φ0. Note that in the particular case of Cooper pairs
we have to replace q → 2q.

In type II superconductors one observes these quantized magnetic flux tubes in the Shubnikov phase.
The magnetic field penetrates the superconductor and is organized in vortices. These vortices interact
with each other and are rearranged in a periodic structure (like a lattice), see Fig. 165. The complete
theory of type II superconductors was given by Ginzburg, Landau, Abrikosov and Gorkov.
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Figure 165: Schematic illustration of the flux penetration in the Shubnikov phase.
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Figure 166: Schematic illustration of the IV characteristic of a tunnel barrier device, i.e. two metals
separated by a thin insulator.

Figure 167: Schematic illustration of the IV characteristic of a superconducting tunnel barrier device,
i.e. two metals separated by a thin insulator, where one of the metals is superconducting.

16.5 The Josephson Effect

16.5.1 Single Particle Tunneling

We regard the situation of two metals separated by a thin insulating layer. In the classical case, one
observes tunneling through the barrier when a voltage is applied. The typical IV characteristic is of
the form illustrated in Fig. 166, i.e. the current rises linearly with the applied voltage. The situation
changes drastically if one of the metal plates is a superconductor, Fig. 167. This is due to the bandgap
occurring in superconductors, Fig. 162. At T = 0 K, no current can flow until the applied voltage
exceeds V = Eg

2q . At finite temperatures one observes a small current also at low temperatures due to
thermal excitations of electron pairs across the bandgap.
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16.5.2 The Josephson Effect

We regard two superconductors separated by a thin insulating layer. In the following ψ1 denotes
the probability amplitude on one side and ψ2 on the other side of the insulator. We write the time
dependent Schrödinger equations for this problem

i~
∂

∂t
ψ1 = ~Tψ2, i~

∂

∂t
ψ2 = ~Tψ1, (336)

where ~T is the interaction rate between the electron pairs, referred to as electron pair coupling.
Similar to Sec. 16.4.4 we write ψi as ψi = √ni exp(iθi). We now insert these expressions in the above
equations, (336) and multiply the resulting equations with ψ∗1 and ψ∗2, respectively. We obtain

1
2
∂

∂t
n1 + in1

∂

∂t
θ1 = −iT√n1n2 exp(iδ) (337)

and

1
2
∂

∂t
n2 + in2

∂

∂t
θ2 = −iT√n1n2 exp(iδ) (338)

where δ = θ2 − θ1. We now equate the real and imaginary parts in order to obtain

∂

∂t
n1 = 2T√n1n2 sin(δ) ∂

∂t
n2 = −2T√n1n2 sin(δ), (339)

and

∂

∂t
θ1 = −T

√
n1
n2

cos(δ), ∂

∂t
θ2 = −T

√
n2
n1

cos(δ). (340)

In particular for n1 ≈ n2, we have

∂

∂t
(θ2 − θ1) = 0, (341)

and

∂

∂t
(n2 + n1) = 0. (342)

Since the current is proportional to ∂
∂tn2 we obtain

J = J0 sin(θ2 − θ1) (343)

where J0 serves as a proportionality constant. Note that J0 is also proportional to T . Hence, we
obtained that there is a current flow according to the phase difference δ even if no external field is
applied. This is the dc Josephson effect.

We now regard the case of an applied potential V . The equations (336) apply:

i~
∂

∂t
ψ1 = ~Tψ2 − qV ψ1, i~

∂

∂t
ψ2 = ~Tψ1 + qV ψ2. (344)
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We perform the same operations as above and we obtain

∂

∂t
n1 = 2T√n1n2 sin(δ) ∂

∂t
n2 = −2T√n1n2 sin(δ), (345)

and
∂

∂t
θ1 = qV

~
− T

√
n1
n2

cos(δ), ∂

∂t
θ2 = −qV

~
− T

√
n2
n1

cos(δ). (346)

Again, we assume n1 ≈ n2 and obtain

∂

∂t
(θ2 − θ1) = ∂

∂t
δ = −2qV

~
, (347)

or equivalently

δ(t) = δ(0)− 2qV t
~

. (348)

The superconducting current in this case is given by

J = J0 sin
[
δ(0)− 2qV t

~

]
. (349)

This is the ac Josephson effect. The current oscillates with a frequency given by ω = 2qV
~ . This is a

very convenient method to determine ratio e
~ by measuring the frequency and the voltage.

16.5.3 SQUID

A SQUID (superconducting quantum interference device) is a very precise magnetometer based on
the Josephson effect. It consists of two Josephson junctions in parallel, see Fig. 168. We do not
apply a voltage and we assume that a magnetic flux Φ passes through the interior of the circuit. From
Sec. 16.4.4 we know that

δa − δb = 2q
~

Φ, (350)

so that we can write

δa = δ0 + q

~
Φ, (351)

and

δb = δ0 −
q

~
Φ. (352)

The total current in this case is given by

J = J0

[
sin
(
δ0 + q

~
Φ
)

+ sin
(
δ0 −

q

~
Φ
)]

= 2J0 sin(δ0) cos
(
q

~
Φ
)
. (353)

Since the current varies with the magnetic flux Φ, this is a very elegant method to measure the
magnetic field.
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Figure 168: Schematic illustration of a SQUID.
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