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Quantum Description

Time evolution

We have a complete set of state vectors

|ψ(to) >= |a1 · · · aN > (1)

Which are eigen vectors of a complete set of
commuting operators

A1 · · ·AN

where

Ai |ψ(to) >= ai |ψ(to) > (2)

The time evolution of a state is governed by the
Schrodinger equation

i~
∂|ψ(~x , t) >

∂t
= H(t)|ψ(~x , t) > (3)

I For an isolated system H is independent of time.
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I However, if the system is in contact with the outside
world with time dependent interactions H may be
time dependent.

I The time evolution can also be represented by the
time evolution operator U(t, t0)

|ψ(t) >= U(t, t0)|ψ(t0) > (4)

which satisfies

i~
∂U(t, t0)

∂t
= H(t)U(t, t0) (5)

To see this we write

i~
∂U(t, t0)ψ(t0)

∂t
= H(t)U(t, t0)ψ(t0) (6)

or [
i~
∂U(t, t0)

∂t
− H(t)U(t, t0)

]
ψ(t0) = 0 (7)

I Since this is true for all ψ the term in the bracket
must be zero. Remember U(to , to) = I
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The time evolution operator is unitary.

U†(t, t0) = U−1(t, t0) (8)

Here U† is the hermetian conjugate of U

I In addition

U(t, to) = U(t, t1)U(t1, t0) (9)

If H is independent of time then

U(t, t0) = exp

[
− i

~
H(t − t0)

]
(10)

I This is the Schrodinger picture. We can also use
the Heisenberg picture
In the Heisenberg picture the state vector is
independent of time

|ψH >= U−1(t, t0)|ψ(t) >= |ψ(t0) > (11)

While the dynamical variables represented by the
operator Ai are now functions of time through.
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AH(t) = U−1(t, t0)A(t)U(t, t0) (12)

For generality we have displayed the possible time
dependence of A but usually A is independent of time.

I The Hamiltonian in the Heisenberg picture is

HH(t) = U−1(t, t0)H(t)U(t, t0) (13)

From eqs.(5)(and its hermetian conjugate) and (12)

i~
∂AH

∂t
=
[
AH(t),HH(t)

]
+ i~

(
∂A(t)

∂t

)
H

(14)

I Note that the partials denote that the position
variables are held constant and that if the Scrodinger
operator is independent of time the second term on
the right hand side is zero.

I The brackets [ ] denote the commutator.

I The expectation values of dynamical variables are
independent of representation.
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Density operators and their time evolution

I The above description of a quantum state assumes a
complete(quantum) knowledge of the system.

I Such a system is said to be in a pure state.
In statistical mechanics we often only know the
probability that the system be in a state.

I Consider the projection operator D = |ψ >< ψ|
where < ψ|ψ >= 1
Assume that we have a complete set of states so that

|ψ >=
∑

i

ci |i > (15)

Hence
|ψ >< ψ| =

∑
i ,j

cic
∗
j |i >< j | (16)

and
Dkl =< k|D|l >= ckc∗l (17)
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Suppose we know the probability pn of finding the
system in the state |ψn > where

|ψn >=
∑

i

c
(n)
i |i > (18)

I The |ψn > are normalized but not necessarily
orthogonal.

I As usual
pn ≥ 0

∑
n

pn = 1 (19)

I The system is now said to be in a mixed state or
statistical mixture.

I We define the density operator D by

D =
∑
n

|ψn > pn < ψn| (20)

which is a generalization of the projection operator
given above.
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I The expectation value of A is

< A >=
∑
n

pn < ψn|A|ψn >= TrAD (21)

The first equality is by definition. To see the second
we expand

|ψn >=
∑

l

cl |φl > (22)

where the |φl > form an orthonormal basis.
I Inserting this expansion into the expression for |ψn >

in eq.(21)

< A >=
∑
n

pn

∑
l

c
∗(n)
l < φl |A

∑
m

|φm > c
(n)
m

(23)
I Defining the matrix elements of A to be

Aij =< φi |A|φj > we have

< A >=
∑
n

pn

∑
l

∑
m

c
∗(n)
l c

(n)
m Alm (24)
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I We now insert the expansion in eq(22) into the
definition of the density operator D in eq(20).

D =
∑
n

∑
m

c
(n)
m |φm > pn

∑
l

c
∗(n)
l < φl | (25)

or

D =
∑
m

∑
l

|φm >< φl |
∑
n

c
(n)
m pnc

∗(n)
l (26)

The operator formulation of A is

A = |φi > Aij < φj | (27)

I The matrix representation of A is Aij .

I The matrix representation of D is

Dij =< φi |D|φj >=
∑
n

c
(n)
i pnc

∗(n)
j (28)

I The ij matrix element of the product of A and D is
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(AD)ij =
∑

s

AisDsj =
∑

s

Ais

∑
n

c
(n)
s pnc

∗(n)
j (29)

The trace is then

Tr(AD)ij =
∑

j

∑
s

Ajs

∑
n

c
(n)
s pnc

∗(n)
j (30)

I Remembering that the summation indicies are
arbitrary and that all of the terms in the sum are
constants so the can be rearranged at will eqs.(30)
and (24) are identical.
Hence

< A >= TrAD

I From eq(20) and the fact that pn is real it is obvious
that the density operator D is hermetian.

I D has unit trace
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To see this we use eq.(28)

Dij =
∑
n

c
(n)
i pnc

∗(n)
j

The trace is

TrD =
∑

i

Dii =
∑
n

∑
i

c
(n)
i c

∗(n)
i pn (31)

I Since the c
(n)
i are the expansion coefficients in an

orthonormal basis and the |ψn > are normalized we
have ∑

i

c
(n)
i c

∗(n)
i = 1

I In addition pn are probabilities of being in the nth
state so that ∑

n

pn = 1

and the trace of the D matrix is one.
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I D is a positive operator.
Using the definition of the density operator in
eq.(20) we have for any vector |φ >

< φ|D|φ >=< φ|
∑
n

|ψn > pn < ψn|φ >

=
∑
n

pn| < φ|ψn > |2 ≥ 0 (32)

I A necessary and sufficient condition that the system
be in a pure state is that D2 = D Namely that D is
a projection operator.

I A pure state has pn = 1 for some value of n = no

and pn = 0 for all n 6= no

I For a pure state the density operator (from eq.(20))

D = |ψno >< ψno | (33)

I Since the |ψn > are normalized < ψno |ψno >= 1,
D2 = D
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I Hence the equality D2 = D is necessary if the
system is in a pure state.

From eq.(28) the matrix form of D is

Dij =
∑
n

c
(n)
i pnc

∗(n)
j (34)

Hence

D2 =
∑
n

∑
m

∑
l

c
(n)
i pnc

∗(n)
l c

(m)
l pmc

∗(m)
j (35)

I The c
(n)
j are the coefficients of the expansion of

|ψn >. They are arbitrary because they depend on
the basis used.→ if D2 = D we must have pn = 1
for some n and zero for the rest.

I Here we also use the fact that
∑

l c
(n)
l c

∗(n)
l = 1 since

the |ψn > are normalized.

Time evolution of the density operator
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Suppose the density operator at time t0 is

D(t0) =
∑
n

|ψn(t0) > pn < ψn(t0)| (36)

and |ψn(t) >= U(t, t0)|ψn(t0) > we have

D(t) = U(t, t0)D(t0)U
−1(t, t0) (37)

From eqs.(7) and (37) it is straightforward to obtain

i~
∂D

∂t
= [H(t),D] (38)

Note that the time evolution of D in eq.(37) and in
eq.(12)have the time evolution operators U and U−1 in
opposite order. This results in the commutators having
the Hamiltonian and the operator reversed in the
differential form of the time evolution equation.
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I The density operator D acts like the state vector in
that it contains the information about the system.

I In the Schrodinger representation D is time
dependent. In the Heisenberg representation it is
independent of time like the state vector.

DH = U−1(t, t0)D(t)U(t, t0) (39)

Since the trace is invariant under cyclic permutation
we have

< A > (t) = TrA(t)D(t) = TrAH(t)DH (40)

I If we could have complete (quantum) knowledge of a
system we would have it’s state vector.

I The best we can have is the probability that various
microstates are realized.

I This implies that the density matrix is as complete a
description of a quantum system that we can have.
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I The simplest illustration of the density matrix uses
the spin 1/2 system.

I Spin 1/2 systems are described by a set of 4 2× 2
matricies, the three Pauli matricies and the identity.

I In the basis in which the z component is diagonal
they are

σx =

(
0 1
1 0

)
(41)

σy =

(
0 −i
i 0

)
(42)

σz =

(
1 0
0 −1

)
(43)

I =

(
1 0
0 1

)
(44)
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The eigenvectors of σz are

|+ >=

(
1
0

)
(45)

|− >=

(
0
1

)
(46)

I The vectors |+ > and |− > are orthonormal and
span the space of 2 component vectors.
It is simple to show that the eigenvectors of σy are

1√
2

(
|+ > +i |− >

) 1√
2

(
|+ > −i |− >

)
(47)

In matrix form this is
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1√
2

(
1
i

)
(48)

and

1√
2

(
1
−i

)
(49)

Now we assume that we have a number of spin 1/2
particles that have been polarized in the positive y
direction by a Stern-Gerlach apparatus.

I Since the system is in a pure state it is described by
the eigenvector of σy with the eigenvalue 1.

I In matrix representation this is given in eq.(48).
I In bra and ket notation this is 1√

2

(
|+ > +i |− >

)
The density operator is

1√
2

(
|+ > +i |− >

) 1√
2

(
< +| − i < −|

)
(50)
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In matrix form

Dij =

(
1
2 − i

2
i
2

1
2

)
(51)

I The trace is 1 and the matrix is Hermetian which are
general properties of density matricies

I Since we have a pure state the average of e.g. σz is

1

2

(
< +|−i < −|

)[
|+ >< +|−|− >< −|

](
|+ > +i |− >

)
(52)

= 0

I The density matrix approach gives

< σz >= Tr

(
1 0
0 −1

)(
1 −i
i 1

)
= 0 (53)
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Now we have a mixture of spins oriented in the up or
positive z direction with probability 1/2 and others
oriented in the positive y direction with probability 1/2.
The density operator is

|+ >
1

2
< +|+ 1

2

(
|+ > +i |− >

)1
2

(
< +|− i < −|

)
(54)

In matrix form

Dij =

(
3
4 − i

4
i
4

1
4

)
(55)

I The average of σz is

< σz >= Tr

(
1 0
0 −1

)(
3
4 − i

4
i
4

1
4

)
=

1

2
(56)

I This makes sense since we have half the spins with
expectation value of 1 and half with expectation
value of 0.

I From eq.(34) we can easily show that the density
matrix is Hermetian and with unit trace.
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I Suppose we ask for the time evolution of the density
matrix in the above problem in potential free space.
From eq.(38)

i~
∂D

∂t
=
[
H(t),D

]
I In this case ∂D

∂t = 0 → and the initial value of D
(eq.(55)) is constant.

I Suppose now that we have a constant(spatial and
temporal) magnetic field ~B in the z direction.
The Hamiltonian is

H = −γ~S · ~B (57)

where the vector
~S =

1

2
~σ (58)

I The components of the vector ~σ are the Pauli spin
matricies in eqs.(41) - (43)
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I If ~B points in the z direction then the Hamiltonian is

H = −γBσz (59)

where B = |~B|. Using eq.(38) and setting γB = 1

−i~
∂

∂t

(
a b
c d

)
=

(
1 0
0 −1

)(
a b
c d

)
−
(

a b
c d

)(
1 0
0 −1

)
(60)

i~
∂

∂t

(
a b
c d

)
=

(
0 −2b
2c 0

)
(61)

Clearly b and d are temporal constants. Since D has
a unit trace a + d = 1 and are fixed by the initial
conditions.

I If the system is initiated as in eq.(55) then a = 3/4
and d = 1/4.

I In addition we have

i~
∂b

∂t
= −2b i~

∂c

∂t
= 2c (62)

b(t) = b(0)e i2t/~ c(t) = c(0)e−i2t/~ (63)
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I With the same initiation as above b(0) = −i/4 and
c(0) = i/4.
Hence

D(t) =

(
3
4 −i e i2γBt/~

4

i e−i2γBt/~

4
1
4

)
(64)

where we have made the γB dependence explicit.
I Note that D(t) is Hermetian with unit trace.

The average of σz is

< σz >= Tr

(
1 0
0 −1

)(
3
4 −i e i2γBt/~

4

i e−i2γBt/~

4
1
4

)
=

1

2

(65)
I Note that this is independent of time.

The average of σx is

< σx >= Tr

(
0 1
1 0

)(
3
4 −i e i2γBt/~

4

i e−i2γBt/~

4
1
4

)
(66)
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< σx >=
sin(2γBt/~)

2
(67)

I This can be considered as a precessing of the spin
about the z axis.

I A similar result is obtained for < σy >
I We will return to the density operator after we

discuss ensembles.

Quantum phase space
I In the following it will be important to know how to

count energy levels.
I We start will the simplest case of a one dimensional

box with end points [0, L]
I The free particle of mass m is confined to the box

and it has energy ε
The Schrodinger equation is

− ~2

2m

d2

dx2
ψ(x) = εψ(x) (68)
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I The boundary conditions are ψ(0) = ψ(L) = 0
I The solutions are (with n ≥ 0)

ψn(x) = Asin(knx) kn =
πn

L
(69)

I We want to count energy levels so for convenience
we will take periodic boundary conditions
ψ(x) = ψ(x + L).
The solutions are

ψn(x) =
1√
L
e iknx kn =

2π

L
(70)

where the 1/
√

L is a normalization and the integer n
takes on both positive and negative values.

I Since the number of states (n) is doubled (n is not
positive) but the kn spacing is twice as big as the
original the number of states will be the same.

I Since L is macroscopic the spacing between energy
levels is small → continuum approximation for the
counting.
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To do this we introduce the density of states ρ(k)

I The number of states in the interval [k, k + ∆K ] is
ρ(k)∆k

I Since kn = 2π
L we have

∆n =
L

2π
∆k = ρ(k)∆k (71)

Hence

ρ(k) =
L

2π
(72)

In d = 3 for a particle confined to a rectangular box
with sides (Lx , Ly , Lz)

~k =

(
2πnx

Lx
,
2πny

Ly
,
2πnz

Lz

)
(73)

ρ(~k) =
LxLyLz

(2π)3
=

V

(2π)3
(74)
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The number of states then is

ρ(~k)d3k =
V

(2π)3
d3k (75)

We can also use the momentum ~p = ~~k

ρ(~p)dp3 =
V

h3
dp3 (76)

I This result is independent of kinematic
regime(relativistic and non-relatavistic)

I We now consider the density of energy levels i.e. the
number of levels per unit energy.
Let Φ(ε) be the number of levels whose energy is ≤ ε
We use the non-relatavistic dispersion relation
p =

√
2mε and the continuum approximation.
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Φ(ε) =

∫
p≤

√
2mε

ρ(~p)d3p =
V

h3

∫
p≤

√
2mε

d3p (77)

where we have used the density of states in eq.(76).

Φ(ε) =
4πV

h3

∫ √
2mε

0
p2dp (78)

where the last expression is obtained by going to spherical
coordinates. Evaluating the integral

Φ(ε) =
4πV

3h3
(2mε)3/2 =

V

6π2~3
(2mε)3/2 (79)

ρ(ε) = Φ′(ε) =
Vm

2π2~3
(2mε)1/2 (80)

In d = 2 in a box with area S

ρ(ε) =
Sm

2π~2
(81)
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Classical description Liouville’s theorem

I In classical mechanics the system is described
microscopically by the Hamiltonian which depends
on the 2N coordinates qi and pi

N is the number of degrees of freedom In
d = 3,N = 3N̄ where N̄ is the number of particles.

I We assume a Hamiltonian of the form

H =
N̄∑

i=1

p2
i

2m
+ U({qi}) (82)

I H is not an explicit function of time and U depends
only on the set {qi}.
Hamilton’s equations

∂H

∂pi
= q̇

∂H

∂qi
= −ṗ (83)

where the dot denotes the time derivative.
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I The set of coordinates {qi , pi} constitutes the phase
space.

I The trajectory in phase space is uniquely determined
by Hamilton’s equations and the initial conditions
qi (0) and pi (0) so that the trajectories do not
intersect.

I If the trajectories intersect they would not be unique.

I Defining a microstate in classical mechanics
corresponds to knowing all the coordinates
{qi (t), pi (t)} at an arbitrary time t.
Liouville’s Theorem
Consider two times t and t + dt and define q = q(t)
and q′ = q(t + dt), p = p(t) and p′ = p(t + dt)

q′ = q + q̇dt = q +
∂H

∂p
dt (84)

p′ = p + ṗdt = p − ∂H

∂q
dt (85)

where we have used eq.(83).
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I The differential volume dqdp evolves under the
natural motion dictated by Hamilton’s equations.

I This implies that dqdp → dq′dp′ where dq′ and dp′

are specified in eqs.(84) and (85)
I The relation between the primed and unprimed

volumes in phase space involves the Jacobian J(t)
where

∂(q′, p′)

∂(q, p)
= det

(
1 + ∂2H

∂p∂qdt ∂2H
∂p2 dt

−∂2H
∂q2 dt 1− ∂2H

∂p∂qdt

)
(86)

where we have assumed that the order of the partials
is not relevant.
Hence

∂(q′, p′)

∂(q, p)
= 1 + O(dt)2 (87)

I → The Jacobian is 1 independent of time or

dpdq = dp′dq′ (88)

(incompressible fluid)
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I With N degrees of freedom we generalize the
previous result to

d3r1 · · · d3rNd3p1 · · · d3pN = d3r ′1 · · · d3r ′Nd3p′1 · · · d3p′N
(89)

The integration volume(measure) then is

dΓ = C
N∏

i=1

d3pid
3ri (90)

The constant C is arbitrary in classical mechanics
but it can be fixed, as we will see, by quantum
considerations.

Density in phase space
A classical system has a set of positions and
momenta ~pi (0), ~qi (0) at time t = 0.

I A microstate is specified by the set of variables
{~ri , ~pi} at any time t including t = 0.
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The probability of observing this microstate will be
denoted by D(~ri , ~pi ). At t = 0 by D0(~ri , ~pi ).

D(~ri , ~pi ) ≥ 0 and

∫
dΓD0(~ri , ~pi ) = C

∫ N∏
i=1

d3pid
3riD0(~ri , ~pi ) = 1 (91)

I The probability density plays the same role in
classical statistical physics that the density operator
plays in quantum statistical physics.

I The normalization in eq.(91) is the analog of
TrD = 1 in quantum systems.
We adopt the notation

x = {~p1 · · ·~pN ;~r1 · · ·~rN} (92)

As time t evolves

~pi → ~pi (t) ~ri → ~ri (t) (93)
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I This evolution is governed by Hamilton’s equations.
With the above notation the time evolution can be
denoted by

x → y = φt(x) (94)

Since the trajectories are unique we can write

x = φ−1
t (y) (95)

From Liouville’s theorem dx = dy where these are
the integration measures.

I Let A be a classical variable which depends only on
the coordinates with no explicit time dependence.
We have

A(t = 0) = A(~pi ,~ri ) = A(x) (96)

A(t) = A(~pi (t),~ri (t)) = A(φt(x)) (97)

At t = 0

< A > (t = 0) =

∫
dxD0(x)A(x) (98)
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I At time t

< A > (t) =

∫
dxD0(x)A(φt(x)) (99)

I In this formulation we use the assumption of equal a
priori probability.

I That is the probability of each micro state({~pi ,~ri})
is the same.

I Equation (99) is analogous to the expectation value
in the Heisenberg picture.

I D is independent of time(state vectors) while the
dynamical variables(operators) depend on time

I This is the usual picture in classical mechanics
The analog of the Schrodinger picture is found by
changing variables x → φt(x) = y and Liouvilles’s
theorem.

< A > (t)

∫
dyD0(φ−t(y))A(y) =

∫
dxD(x(t), t)A(x)

(100)



Physics 541

W. Klein

Quantum Description

Density operators and
their time evolution

Quantum phase space

Classical description

Statistical entropy

Boltzmann Distribution

Where
D(x(t), t) = D0(φ−t(x)) (101)

I Here the phase space density D depends on time but
the dynamical variables do not. Evolution of D
with time We consider one degree of freedom to
obtain

D
(
q(t + dt), p(t + dt), t + dt

)
dq′dp′ =

D
(
q(t), p(t), t

)
dqdp (102)

I Using eq.(102), Liouville’s theorem dpdq = dp′dq′

and the expansion of D as a function of q′ and p′ in
a Taylor series

D
(
q(t + dt), p(t + dt), t + dt

)
= D

(
q(t), p(t), t

)
+(

∂D

∂q
q̇ +

∂D

∂p
ṗ +

∂D

∂t

)
dt = D

(
q(t), p(t), t

)
(103)
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Since dt is arbitrary(
∂D

∂q
q̇ +

∂D

∂p
ṗ +

∂D

∂t

)
= 0 (104)

I This clearly implies that dD
dt = 0 where this is the

total derivative.
I This implies that D is a constant along a trajectory

defined by the natural motion(Hamilton’s eqs.)
I Note that the partial derivative is taken at a fixed

point in phase space.

Generalizing this to N particles and 3 dimensions we
have

{H,D}+
∂D

∂t
= 0 (105)

Where the Poisson bracket is

{A,B} =
∑
i ,α

(
∂A

∂pi ,α

∂B

∂qi ,α
− ∂A

∂qi ,α

∂B

∂pi ,α

)
(106)

where α labels the components of ~qi or ~pi and i
labels the particle.
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If we have a dynamical variable
A({pi ,α(t), qi ,α(t)}, t) then the total time derivative of A
is

dA

dt
=
∑
i ,α

(
∂A

∂qi ,α
q̇iα +

∂A

∂pi ,α
ṗi ,α

)
+
∂A

∂t
(107)

From Hamilton’s equations

∂H

∂pi ,α
= q̇i ,α

∂H

∂qi ,α
= −ṗi ,α (108)

we have

dA

dt
=
∑
i ,α

(
∂A

∂qi ,α

∂H

∂pi ,α
− ∂A

∂pi ,α

∂H

∂qi ,α

)
+
∂A

∂t
(109)

dA

dt
=
∑
i ,α

(
∂H

∂pi ,α

∂A

∂qi ,α
− ∂H

∂qi ,α

∂A

∂pi ,α

)
+
∂A

∂t
(110)
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dA

dt
= {H,A}+

∂A

∂t
(111)

I In the usual case ∂A
∂t = 0. Therefore

dA

dt
= {H,A} (112)

I The time dependence of D is

∂D

∂t
= −{H,D} (113)

I The difference in the sign in the Poisson bracket is
similar to the different signs in the time evolution of
the dynamical operators and the density matrix in
quantum mechanics

I Note that ∂D
∂t = 0 if D is only a function of H. This

is easy to see by substitution.
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Statistical Entropy

Let {em} be a set of possible events with
m = 1 · · ·M and the probability of em be Pm with

Pm ≥ 0
M∑

m=1

Pm = 1 (114)

Definition The entropy of the probability distribution
P defined by the Pm is defined by

S [P] = −
M∑

m=1

Pm lnPm (115)

I Clearly if Pm = 0 then this term does not contribute
to the entropy.

I If Pm = 1 for some m and zero for all others then
S [P] = 0
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I If all events have the same probability M−1 then we
have the minimum of information and S [P] = lnM

I We have that

0 ≤ S[P] ≤ lnM (116)

I To see this we look for the extrema of S [P] with the
constraint that

∑
m Pm = 1.

I We deal with the constraint by using the Lagrange
multiplier.

We define

S̃ [P] = −
M∑

m=1

PmlnPm − λ
( M∑
m=1

Pm − 1
)

(117)

∂S̃

∂Pm
= −

(
lnPm + 1 + λ

)
= 0 (118)

→ Pm = e−(1+λ) (119)

Since
∑M

m=1 Pm = 1 → Me−(λ+1) = 1 or
I Pm = 1/M.
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I Hence Pm = 1/M is an extremum of S that satisfies
the normalization constraint.

I The second derivative of S̃ or S is
− 1

Pm
→ Pm = 1/M is a maximum.

I This implies that the maximum of the entropy is lnM
I Since Pm ≥ 0 by definition, the inequality in

eq.(116) is satisfied.
The entropy of a probability distribution is
additive
Let there be two sets of independent events {e ′m′}
and {em}

I The probability of observing the pair {em, e
′
m′}

Pm,m′ = PmPm′

S [Pm,m′ ] =
∑
m

∑
m′

PmPm′
(
lnPm + lnPm′

)
(120)

Since
∑

m′ Pm′ = 1∑
m

∑
m′

PmPm′ lnPm =
∑
m

PmlnPm (121)
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Therefore

S [Pm,m′ ] = S [Pm] + S [Pm′ ] (122)

We state without proof the general inequality

S [P × P ′] ≤ S [P] + S [P ′] (123)

Statistical entropy of a mixed quantum state

The definition of the entropy in a mixed quantum
stated is modeled after that of the probability distribution.

Let D be the density operator of a mixture

D =
∑
m

|ψn > pn < ψn| (124)

If we now switch to an ortho-normal basis |m >

D =
∑
m

|m > Pm < m| (125)

The statistical entropy Sst of the mixed state described
by D is defined as
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Sst [D] = −k
∑
m

PmlnPm = −kTrDlnD (126)

The last step can be seen in the following way.

I Since the basis is ortho-normal D is diagonal with
the diagonal elements ≤ 1

I We can write D = I + α where I is the identity
matrix and α is diagonal where αi ≤ 1

I The operator lnI + α is a diagonal matrix with
elements equal to

∑∞
n=1(−1)n+1 (αi )

n

n

I DlnD is then a diagonal matrix with elements
PmlnPm so the trace of DlnD is

∑
n PnlnPn

I k is Boltzmann’s constant which is introduced so
that this definition of entropy will correspond, as we
will see, to the thermodynamic entropy in
equilibrium.
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I The additivity property of the statistical entropy is
obtained by by examining a system made of two
non-interacting sub systems.

I Let H(a) be the Hilbert space of the first system and
H(α) of the second.

I The total Hilbert space is the tensor product
H(a) × H(α)
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I Operators in this product space are of the form (each
Hilbert space is two dimensional in this example) of
a 4 index tensor. Symbolically we can write

Daα;bβ = D
(a)
ab D

(α)
αβ (127)

I We assume that we can diagonalize the sub-matrices
so that the product operator can be put in diagonal
form.

In diagonal form

Daα;bβ = D
(a)
aa D(α)

αα δabδαβ (128)

Therefore the entropy is

TrD lnD =
∑
a,α

D
(a)
aa D(α)

αα

(
lnD

(a)
aa + D(α)

αα

)
(129)

TrD lnD = TrD(a) lnD(a) + TrD(α) lnD(α) (130)
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Therefore

Sst [D] = Sst [D
(a)] + Sst [D

(α)] (131)

I The entropy is additive when the systems do not
interact

I When the systems are not independent the density
operator of one system is defined by taking the trace
of the total density operator with respect to the
indicies that define the other system.

I We will refer to this as a partial trace.

That is

D(α) = TrαD = D
(a)
ab =

∑
α

Daα;bα (132)

Suppose A is an operator that acts only on the a
part of Hilbert space. A = A(a) × I (α)
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< A >= TrAD =
∑

a,α,b,β

A
(a)
ab δαβDbβ;aα (133)

< A >=
∑
ab

A
(a)
ab

∑
α

Dbα;aα = TrA(a)D(a) (134)

I Note that the average reduces to the trace using the
reduced density operator generated from the partial
trace.
We now state two theorems without proof.

I In analogy with the entropy of a probability
disribution (eq.(123)) when two systems interact the
statistical entropy satisfies

Sst [D] ≤ Sst [D
(a)] + Sst [D

(α)] (135)

I If X and Y are two positive Hermetian operators

TrX lnY − TrX lnX ≤ TrY − TrX (136)

where the equailty only holds if X = Y
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Time evolution of the statistical entropy

To calculate the time evolution we need to calculate
the time derivative of −KBTrD lnD.

To see that this is not straightforward we note that
functions of operators are defined by Taylor series. That is

f (A) =
∞∑

n=0

1

n!
f (n)(0)An (137)

d

dt
An =

dA

dt
An−1 + A

dA

dt
An−2 + · · ·+ An−1 dA

dt
(138)

This cannot be regrouped to give nAn−1dA/dt unless
A commutes with dA/dt. In general this is not true.

I The trace is invariant under cyclic permutations so

TrA
dA

dt
An−1 = TrAn dA

dt
(139)

I The operators A and dA/dt can be treated as
commuting within the trace.
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Hence

Tr

(
d

dt
An

)
= nTr

(
An−1 dA

dt

)
(140)

Hence by re-summing the series

Tr

(
d

dt
f (A)

)
= Tr

(
f ′(A)

dA

dt

)
(141)

We can also write since the derivative commutes
with the trace(do 2×2)

d
(
Tr f (A)

)
= Tr

(
f ′(A)dA

)
(142)

dSst

dt
= −KB

d

dt
TrD lnD = −KBTr lnD

dD

dt
(143)

where

Tr
dD

dt
=

dTrD

dt
=

d

dt
1 = 0 (144)
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Since (eq.(38))

dD

dt
= − 1

i~
[H(t),D] (145)

Hence
dSst

dt
=

KB

i~
Tr lnD[H(t),D] (146)

Since the trace is invariant under cyclic permutation
we have

lnTrD[H(t),D] = Tr
[
lnD

(
H(t)D − DH(t)

)]
(147)

= Tr
[
H(t)D lnD − H(t) ln DD

]
(148)

= Tr
(
H(t)[D, lnD]

)
= 0 ∝ dSst

dt
(149)

→ For a system evolving under Hamiltonian motion
the entropy is conserved
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Boltzmann Distribution

We now address the question of the probability of
the microscopic state Pm consistent with the specified
macroscopic constraints that give rise to the (probability)
density (operator) D.

I If there is no information that constrains the
probability then we know that each of the M
accessible states is equally probable so that
Pm = 1/M.

I We want to generalize this to the case where we
have partial information.

I The partial information can be of two types.
I We have data that puts definite constraints on the

microscopic states. For example we might know that
the energy is constrained to be between E and
E + ∆E .

I We have data that puts statistical constraints on the
microscopic variables. For example we might know
the average energy so that < H >= TrDH is fixed.
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In the case of definite microscopic constraints; If the
energy uncertainty ∆E is small compared with the energy
E (∆E << E ) but ∆E >> 1/ρ(E ) (ρ(E ) is the energy
level density) so that ∆E is much greater than the energy
level spacing, we call this constraint micro canonical.

I Then the only acceptable states |r > are the
eigenvectors of H such that H|r >= Er |r > and

E ≤ Er ≤ E + ∆E (150)

I If there are no other constraints then each allowed
microscopic state will be equally probable and
Pr = 1/M where M = ρ(E )∆E is the number of
states that satisfy eq(150).

I The density operator is then

D =
∑

r

|r > 1

M
< r | E ≤ Er ≤ E + ∆E (151)
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I The entropy is (eq(126))

Sst [D] = −KBTrD lnD (152)

I Since the |r > are energy eigen-states they are
ortho-normal(or can be made so) so that the density
matrix is diagonal and

Sst = KB lnM (153)

I The micro-canonical ensemble is not very convenient
and in general does not reflect the usual
experimental constraints. We turn to statistical
constraints.

I To express these constraints conveniently we adopt
the notation that

Āi =< Ai >= TrDA (154)
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I We adopt the principle of equal a priori
probability.That is: Consistent with constraints, each
micro-scopic state is equally likely.

I This is reasonable in that if there is no reason to
prefer one state over the other they are equally likely.

I Since the equally probable micro-states maximize
the entropy this leads to the postulate

Postulate of maximum statistical entropy
Among all the density operators consistent with the
macroscopic constraints, we must choose the density
operator D that gives the maximum statistical
entropy Sst . At equilibrium, a macro-state will be
represented by this density operator.
(Remember the definition of equilibrium in chapter
1.)

I This means that we choose the most disordered
macro-state consistent with the available information

I The density operator contains no information beyond
what is necessary to satisfy the macroscopic
constraints.
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Equilibrium distribution

Statistical constraints define various ensembles. The
two most common examples are

I If we impose the constraint on the average energy
< H >= TrDH this will be referred to as the
canonical ensemble.

I If, in addition, one is given the particle number
operator N and < N >= TrDN is fixed we have the
grand canonical ensemble.

I In addition to these statistical constraints we also
have the constraint

TrD = 1 (155)

The method for finding the equilibrium distributions
is to maximize the entropy subjects to the above
constraints. That is
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1

KB
S̃st [D] = −TrD lnD+

∑
i

λi (TrDAi−Āi )−λo(TrD−1)

(156)

I We want to maximize S̃st with respect to D. →
Take the differential with respect to D.

I We use eq.(142)

d(Trf (A)) = Tr(f ′(A)dA) (157)

Tr

[
dD

(
lnD + 1−

∑
i

λiAi + λo

)]
(158)

I Since dD is arbitrary the term in the () must be
zero. →

DB =
1

Z
exp
(∑

i

λiAi

)
(159)
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I Z−1 = exp[1 + λo ] is chosen to obtain TrD = 1.

→ Z = Tr exp
(∑

i

λiAi

)
(160)

I DB is referred to as the Gibbs or Gibbs-Boltzmann
distribution and Z is the partition function.
Clearly

SB = Sst [DB ] = −KBTrDB lnDB (161)

SB = −KB lnZ −
∑

i

λi Āi (162)

where we have used eq.(159) in eq.(161).

I The entropy is an extremum by construction. We
now show it is a maximum.
Let D be a density operator that satisfies

TrDAi = Āi TrD = 1 (163)
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Using eq.(136)

TrX lnY − TrX lnX ≤ TrY − TrX

and substituting Y → DB and X → D we obtain

TrD lnDB − TrD lnD ≤ TrDB − TrD (164)

Since
TrDB = TrD = 1 (165)

we have
− TrD lnD ≤ −TrD lnDB (166)

− TrD lnD ≤ TrD lnZ − TrD
∑

i

λiAi (167)

− TrD lnD ≤ lnZ −
∑

i

λi Āi (168)

where we have used TrDAi = Āi and TrD = 1.
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Since Sst = KBTrD lnD and from eq.(162) we have

Sst [D] ≤ Sst [DB ] = SB (169)

I Clearly if a distribution satisfies the conditions in
eq.(163) then the form DB in eq.(159) maximizes
the entropy.

I Also the fact that eq.(136) is only satisfied as an
equality when X = Y means that the solution to the
maximization equation is unique.
Legendre transformation

I The average values of the operators Ai can be
related to the derivatives of the partition function
with respect to the Lagrange multipliers λi

Using eq.(157)

d(Trf (A)) = Tr(f ′(A)dA)

or alternatively we can assume that we can exchange
the derivative with respect to λi with the trace.
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1

Z

∂

∂λj
Tr exp

[∑
i

λiAi

]
=

1

Z
Tr
(
Aj exp

[∑
i

λiAi

])
(170)

= Tr(DBAj) = Āj (171)

In other words

Āj =
∂

∂λj
lnZ [λj ] (172)

I Equation(172) indicates that the partition function
Z should be considered a function of the Legendre
multipliers {λi}.
From eq.(162)

SB = −KB lnZ −
∑

i

λi Āi

and eq.(172) we have
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1

KB
SB = ln Z −

∑
i

λi
∂ lnZ

∂λi
(173)

I As we will see eq.(173) is a Legendre transformation
equivalent to the Legendre transformations discussed
in the section on thermodynamics.

I Since the partition function is to be considered a
function of the λi we have

d lnZ =
∑

i

∂ lnZ

∂λi
dλi =

1

Z

∂

∂λi
Tr exp

[∑
i

λiAi

]
dλi

(174)

=
∑

i

Tr
1

Z
Ai exp

[∑
i

λiAi

]
dλi (175)

d lnZ =
∑

i

Āidλi (176)
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Hence from eqs.(173) - (176)

dSB = d lnZ −
∑

i

λidĀi −
∑

i

Āidλi (177)

dSB = −KB

∑
i

λidAi (178)

I In general it is the partition function we use to
calculate the properties of the system rather than
the density operator

I We want to look at the response of the system to
changes in the Legendre multipliers λj .

I We begin by assuming that the operators Aj and Ai

commute ∀ i and j .
If the operators commute then we can take the
derivative of the partition function and treat the Ai

as scalars. Hence
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∂2Z

∂λi∂λj
= Tr

[
AiAj exp

(∑
k

λkAk

)]
= Z < AiAj >

(179)
or

1

Z

∂2Z

∂λi∂λj
−
(

1

Z

∂Z

∂λi

)(
1

Z

∂Z

∂λj

)
=
∂2 lnZ

∂λi∂λj
(180)

As we have shown (eq.(172)

∂ lnZ

∂λi
= Āi (181)

So

∂2 lnZ

∂λi∂λj
=
∂Āi

∂λj
(182)
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We have then

∂2 lnZ

∂λi∂λj
=
∂Āi

∂λj
=< Ai−Āi >< Aj−Āj >=< AiAj > −Āi Āj

(183)

I This is called the fluctuation-response theorem since
< AiAj > −Āi Āj measures the fluctuations in the

dynamical variable Ai and ∂Āi
∂λj

is the response of Āi

to a change in the Legendre multiplier λj and
eq.(183) relates them..

I We can use this result to prove an important
positivity result
Define an operator

B =
∑
k

ak(Ak − Āk) (184)

where the ak are real numbers.
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From eq.(183) we have

∑
i ,j

aiaj
∂2 lnZ

∂λi∂λj
=
∑
i ,j

aiCijaj =< B2 >≥ 0 (185)

I Note that
∑

i ,j aiCijaj ≥ 0 along with the fact that
the {ai} are arbitrary and real implies that

Cij =
∂2 lnZ

∂λi∂λj
(186)

is a positive definite matrix and lnZ is a convex
function of the {λi}. Also → the diagonal elements
Cii ≥ 0.

I This is the same condition we saw in the discussion
of stability in chapter 1.

I This implies (as we have seen) that SB , the Legendre
transform of ln Z is a concave function of the {Ai}.
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Canonical and Grand Canonical Ensemble

We now want to introduce the canonical and grand
canonical ensemble. We will treat them in more detail
later.

I In the canonical ensemble the volume V and the
number of particles N are controlled and hence are
known precisely.

I The energy is not controlled but its average value is
→ Ai=1 = H;Ai = 0 ∀i 6= 1.
It is conventional to write λ1 = β and we will see
that β = 1/KBT .
The partition function is then

Z = Tr exp[−βH] (187)

and the density operator DB is

DB =
1

Z
exp[−βH] =

1

Z

∑
r

|r > e−βEr < r | (188)
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Where H|r >= Er |r > and the |r > are an
ortho-normal basis.

To see the second equality we have

e−βH |ψ >=
∑

r

e−βHar |r >=
∑

r

ar

∑
n

(−βH)n

n!
|r >

(189)

=
∑

r

ar

∑
n

(−βEr )
n

n!
|r >=

∑
r

are
−βEr |r > (190)

We also have∑
r

|r > e−βEr < r |ψ >=
∑

r

|r > e−βEr
∑
n

< r |an|n >

(191)

=
∑

r

|r > e−βEr
∑
n

anδnr =
∑

r

ar |r > e−βEr (192)

as in eq.(190).
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If the system is composed of two non-interacting
subsystems then

H = H(a) + H(b) [H(a),H(b)] = 0 (193)

I We saw in the previous discussion that operators on
spaces that are the sum of two independent systems
are tensor products of operators acting
independently of the sub-systems

I The basis in Hilbert space is factorized so we have

|l >= |a > ×|α > |m >= |b > ×|β > (194)

where {|a >} and {|α >} are the eigen vectors of
H(a) and H(α) respectively and are ortho-normal
bases vectors of the Hilbert spaces.
Hence we have
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< l |H|m >=< a|× < α|(H(a) + H(α))|α > ×|a >

= (H
(a)
ab + H

(α)
αβ )δabδαβ (195)

I Since H(a) and H(α) commute we have from the
Taylor series expansion

< l |e−βH |m >= exp[−βH
(a)
ab ] exp[−βH

(α)
αβ ]δabδαβ

(196)
Therefore

Z = Tre−βH =
(∑

a

e−βH
(a)
aa
)(∑

α

e−βH(α)
αα

)
= Z (a)Z (α) (197)

The partition function of two non-interacting
systems is the product of the partition functions
of each system
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In the grand canonical ensemble we have A1 = H
and A2 = N and all the other operators Ai = 0

I It is customary to write λ1 = β as in the canonical
ensemble and λ2 = α

I We will see that α = βµ where µ is the chemical
potential.
The grand canonical or grand partition function is

Q = Tr exp[−βH + αN] (198)

and the density operator is

DB =
1

Q
exp[−βH + αN] (199)

Thermodynamics Revisited
Heat and work: first law
We now want to relate the thermodynamic
quantities that we considered in the first two weeks
to the statistical concepts we just discussed.
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We now consider a system A that can exchange heat
with a reservoir R.

I The combined system R + A is thermally isolated
from the outside world

I A is connected to a piston so that work can be done
on or by the system.

I We only consider quasi static processes so that the
process can be described by a Hamiltonian

I The systems walls are impermeable so that the
number of particles is fixed.
The Hamiltonian of the system is

Htot = H + HR + V (200)

where H is the Hamiltonian of the system A, HR is
that of the reservoir and V is interaction between
the system and the reservoir.

I Since we will assume that the interaction between A
and R is a surface effect we can assume it to be
negligible. However it is not zero.
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Let Dtot be the density operator of the
system/reservoir combination. We have for the time
evolution

i~
dDtot

dt
= [H,Dtot ] + [HR ,Dtot ] + [V ,Dtot ] (201)

I The density operator of the system is obtained by
taking the partial trace over the reservoir variables.
Defining TrRDtot = D we have (since H does not
depend on the reservoir variables)

i~
dD

dt
= [H,D]+TrR [V ,Dtot ]+TrR [HR ,Dtot ] (202)

I Remember that the total density operator Dtot

operates on the product Hilbert space and hence is a
four index tensor Daγ;bα

I HR is a four index operator or tensor acting
non-trivially only on the reservoir Hilbert space.
Hence
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HR:aα;cγ = HR:αγδac (203)

I We now take the partial trace with respect to the
reservoir variables

TrR(HRDtot) =
∑
α

(HRDtot)aα;bα =

∑
α,γ

HR:α,γDtot:a,γ;b,α (204)

I The HR:α,γ and Dtot:a,γ;b,α terms and the
summation indicies can be interchanged to give∑

γ,α

Dtot:a,α;b,γHR:γ,α (205)

This is simply TrR(DtotHR) so that
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TrR(HRDtot) = TrR(DtotHR) → TrR [HR ,Dtot ] = 0
(206)

Hence

i~
dD

dt
= [H,D] + TrR [V ,Dtot ] (207)

This equation is not closed. dD/dt does not depend only
on the system variables

I This implies that there is no Hamiltonian that
governs the evolution of D.
The time change of the average energy E is given by

dE

dt
=

d

dt
Tr(DH) = Tr(H

dD

dt
) + Tr(D

dH

dt
) (208)

I The trace is over the system variables.
The first term on the right hand side describes the
interaction with the reservoir since it depends on V .
From eq.(207) we have
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Tr(H
dD

dt
) =

1

i~
Tr(H[H,D]) +

1

i~
TrTrR(H[V ,Dtot ])

(209)

I The trace is invariant under cyclic permutation

Tr(H[HD − DH]) = Tr(HHD)− Tr(HDH)

= Tr(HHD)− Tr(HHD) = 0 (210)

Hence

Tr(H
dD

dt
) =

1

i~
TrTrRH[V ,Dtot ] (211)

From TrTrR = Trtot (the trace over all degrees of
freedom) and the invariance of the trace under cyclic
permutation

Tr(H
dD

dt
) =

1

i~
Trtot(Dtot [H,V ]) (212)
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Therefore

dE

dt
=

1

i~
Trtot(Dtot [H,V ]) + Tr(D

dH

dt
) (213)

Since D = TrRDtot and H is the system Hamiltonian they
do not depend on the properties of the reservoir.

I The second term on the right hand side of eq.(213)
then cannot describe heat transfer since it is
independent of the reservoir.

I The heat transfer is described by the first term on
the right hand side of eq.(213) which depends on V .

I The second term on the right hand side of eq.(213)
describes the energy change in the form of work.

To see this we note that the time dependence of the
Hamiltonian depends on the controllable external
parameters.

I We have assumed that the Hamiltonian is time
independent if the system is isolated → the time
dependence is in the external parameters.
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I For example in the Ising model the Hamiltonian

H = −J
∑
ij

si sj − h
∑

j

sj (214)

depends on the magnetic field h and the coupling
constant J.

I We will take the coupling constant J to be
independent of the time.

I In most cases of interest the interaction is
independent of the time but it can happen in for
example very high pressure.

I This means that the work will come from the time
dependence of h

I In a fluid the controllable external variable is the
volume. The simplest way to see this is the quantum
Hamiltonian

H =
∑
n

|n > En < n| (215)
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The |n > are the eigen-vectors of the Hamiltonian
and the En are eigen-values.

I Consider a free particle. The eigen-values and
eigen-vectors depend on the system size.

Since the potential of interaction will (usually) not
change, the Hamiltonian will change with the
volume.
We have with these examples

Tr

(
D

dH

dt

)
=
∑

i

(
D
∂H

∂xi
|xj 6=i

)
dxi

dt
(216)

This implies that

dE = d(Tr(DH)) = Tr(HdD)+Tr(DdH) = dQ+dW
(217)

I We identify

dQ = Tr(HdD) dW = Tr(DdH) (218)
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I With these considerations we can say that the
transfer of heat changes the occupation of energy
levels and the work modifies the levels
themselves(Hamiltonian) This is true for quasi static
transformations.
Entropy and Temperature
We now show that the Lagrange multiplier β is an
inverse temperature. We begin with the Boltzmann
entropy (eq.(161))

SB = −KBTr
(
DB lnDB

)
dSB = −KBTr

(
dDB(lnDB + 1)

)
(219)

where we have used eq.(157). Using the fact that
again from eq.(157)

TrdDB = dTrDB = d1 = 0 (220)
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From the form DB = e−βH/Z (eqs.(187 and (188))

dSB = KBTr
(
dDB [lnZ + βH]

)
= KBβTr(HdDB) (221)

where we again have used the fact that TrdDB = 0 and
Z is already traced over.

I From eq,(218) we have

dSB = KBβdQ (222)

Remembering that SB is the statistical entropy and
S is the thermodynamic entropy we have

dS =
dQ

T
(223)

so
dSB = KBβTdS (224)

I Dividing both sides of eq.(224) by dβ and taking the
limit dβ → 0 keeping the external parameters
constant we have
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∂SB

∂β
= KBβT

∂S

∂β
(225)

Doing the same thing for the external parameters

∂SB

∂xi
= KBβT

∂S

∂xi
(226)

Differentiating eq.(225) with respect to xi and using the
facts that the partials can be exchanged and that T is
independent of xi .

∂2SB

∂β∂xi
= KBβT

∂2S

∂β∂xi
(227)

Differentiating eq.(226) with respect to β and
exchanging the partials we have

∂2SB

∂β∂xi
= KBβT

∂2S

∂β∂xi
+
∂(KBβT )

∂β

∂S

∂xi
(228)
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Equating eqs.(227) and (228) we see that KBβT
must be a constant.

I We can always choose units where β = 1/KBT so
that SB − S = constant.(Integrate both sides of
dSB = dS)

I The constant of integration is zero since S and SB

vanish at T = 0.
I The thermodynamic entropy goes to zero as T → 0

(see chapter 1)
I The Boltzmann entropy also goes to zero since at

T = 0 the system is in its (energy) ground state.

Entropy of Mixing
We discuss the entropy of mixing which illustrates
that entropy increase is not always associated with
heat.

I We will use as an example the ideal gas in the
canonical ensemble.

I We begin with the Hamiltonian for a system of N
particles
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H =
N∑

i=1

~p2
i

2m
(229)

where ~p is the momentum operator. For the ideal gas the
partition function is the product of the individual
partition functions ζ. We have then

ζ =
∑
~p

< ~p| exp
(
−β

~p2

2m

)
|~p > (230)

ζ =
V

h3

∫
d3p exp

(
−β

~p2

2m

)
= V

(
2πm

βh2

)3/2

(231)

where we have used eq.(76)

I Therefore the partition function of the ideal gas with
N particles in d = 3 is

ZN = V N

(
2πm

βh2

)3N/2

(232)
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This expression needs to be modified.

I Note that this expression leads to a free energy
(lnZ ) that is not extensive since it will have a term
of order N lnV

I To correct this problem we note that in quantum
systems the particles are indistinguishable which
means that the number of configurations
(example:lattice gas) is over counted and we must
divide by N!

I Hence the partition function becomes

ZN =
V N

N!

(
2πm

βh2

)3N/2

(233)

I Note that this will also be the case in the classical
limit of the quantum systems which we will see later
in the semester.

I The classical limit of the quantum case(either fd or
be) will be referred to as Maxwell-Boltzmann
statistics.
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I Note that in the limit N >> 1 we can use Stirling
approximation N! ∼ N lnN − N
In the limit N →∞

N! ∼ NN exp(−N) ∼ NN (234)

Hence

ZN ∼
(

V N

NN

)(
2πm

βh2

)3N/2

(235)

so the free energy will be extensive.

I From eq.(173) with the Legendre multiplier λ = −β
(since we are in the canonical ensemble) the entropy
is

S = KB lnZN − KBβ
∂ lnZN

∂β

∣∣∣∣
V

(236)

S = KB

[
ln

V

N
+

3

2
ln

(
2πmKBT

h2

)
+

5

2

]
(237)

Where we have used eq.(235) for ZN in eq.(236).
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Note that we could have done the entire calculation
classically by replacing quantum operators with classical
vectors in eq.(231).

I That is

Z class
N = C

∫ N∏
i=1

d3rid
3pi exp

(
−
∑

i

~p2
i

2m

)
(238)

where we have used the integration measure in
eq.(90).

I As mentioned previously we cannot determine the
constant C from purely classical arguments but must
go to quantum mechanics.

I Comparing the results of the integral in eq.(238)
with eq.(233 we can see that the constant C
contains quantum effects and

C =
1

N!h3N
(239)
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I The classical expression for the phase space measure
is

dΓ =
1

N!

N∏
i=1

d3rid
3pi

h3
(240)

I Since the free energy is F = E − TS and (as we will
see) the free energy is proportional to the 1

T lnZ we
have

S = KB lnZN − KBβ
∂ lnZN

∂β

∣∣∣∣
V

(241)

I We can also see this from eq.(173) with the
Lagrange multiplier λ1 = −β
Using eq.(233) and Stirling approximation we obtain

S = KBN

[
ln

V

N
+

3

2
ln

(
2πmKBT

h2

)
+

5

2

]
(242)

I Consider now two different, classical, ideal gasses in
two compartments of a rigid adiabatic chamber
(volume V ) with volumes V1 and V2 where
V = V1 + V2
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I Each chamber has the same pressure P and
temperature T and the number of molecules is N1

and N2 with N = N1 + N2.
I Since the gasses in the two chambers are not

interacting the initial partition function of the
combined system is the product

Z
(in)
N = ZN1(T ,V1)ZN2(T ,V2) (243)

=
V N1

1

N1!

(
2πm1KBT

h2

)3N1/2 V N2
2

N2!

(
2πm2KBT

h2

)3N2/2

(244)
In the final partition function the two types of
particles also do not interact but both types fill the
volume V . Hence

Z
(fin)
N (T ,V ) = ZN1(T ,V )ZN2(T ,V ) (245)

=
V N1

N1!

(
2πm1KBT

h2

)3N1/2 V N2

N2!

(
2πm2KBT

h2

)3N2/2

(246)
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I Since the term −KBβ(∂ lnZN/∂β)|V in eq(241) is
the energy, which is a function only of the
temperature in an ideal gas, and the temperature
remains constant, the term gives the same
contribution to the initial and final entropies.
Therefore

Sfin − Sin

= KB ln
Z

(fin)
N

Z
(in)
N

= KB

[
N1 ln

V

V1
+ N2 ln

V

V2

]
≥ 0

(247)
I Note that this means that the mixing of two gasses

increases the entropy and hence the process is
irreversible.

I Once the gasses are mixed they will not return to
their initial compartments.

I The final state is more disordered than the initial
state

I The increase in entropy is called the entropy of
mixing.
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I If the two gases are identical there is no entropy of
mixing.

I Since the pressure and temperature are the same and
we have an ideal gas then N1/V1 = N2/V2 = N/V

I This means that the final partition function is

Z
(fin)
N =

V N

N!

(
2πmKBT

h2

)3N/2

(248)

I Note that this is not the expression we get if we
simply put m1 = m2 in eq(246).

I We can easily show that in the case of identical
particles that the entropy difference is given by

Sfin − Sin = KB

[
N1 ln

N1V

NV1
+ N2 ln

N2V

NV2

]
(249)

However, from above the argument of both ln terms
is one so that the entropy change is zero.
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Pressure and Chemical Potential

We now evaluate the energy exchanged in the form
of work during a quasi-static process.

From eq(218) we have that dW = Tr(DdH)
Therefore

dW = Tr

[
DB

∑
i

∂H

∂xi
dxi

]
=
∑

i

Xidxi (250)

I We will refer to Xi as the conjugate variable to xi

calculated at equilibrium

I From eq(188) we have that

Xj =<
∂H

∂xj
>=

1

Z
Tr

[
∂H

∂xj
e−βH

]
= − 1

β

∂ lnZ

∂xj

∣∣∣∣
β,xi 6=j

(251)
In particular we can look at the variable conjugate to
the volume, i.e. the pressure.
We have
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P =
1

β

∂ lnZ

∂V

∣∣∣∣
β,N

(252)

Consider now that our system is connected to both a
heat and particle reservoir. The volume, chemical
potential and temperature are now the control
parameters. The energy and the number of particles are
only known on the average. The change in the
Boltzmann entropy is given by eq.(219)

dSB = −KBTr(dDB(lnDB + 1))

which we have rewritten for convenience. The operator
DB in now the density operator in the grand canonical
ensemble.(eq.(199))

DB =
1

Q
exp(−βH + αN)

and Q is the partition function. Using the fact that
TrdDB = 0(eq.(220)) we have
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dSB = KBβTr(HdDB)− KBαTr(NdDB)

= KBβdE − KBαdN (253)

Where we used eq(220) so that

Tr(HdDB) = dTr(HDB) = dE

and the same for dN. Note that we have also used

Tr(dHDB) = 0 (254)

I Note that since H is a fluctuating variable the
average of the difference < dH >= 0 as is
< dN >= 0
Using these results we have from eq(253)

TdSB = KBTβdE − KBTαdN (255)



Physics 541

W. Klein

Quantum Description

Density operators and
their time evolution

Quantum phase space

Classical description

Statistical entropy

Boltzmann Distribution

If we demand that the Boltzmann entropy and the
thermodynamic entropy are the same then

β =
1

KBT
α =

µ

KBT
(256)

Irreversibility and the Growth of Entropy

I The equations of motion of classical physics are time
reversal invariant.

I This follows from the fact that there is a second
derivative with respect to time.

I A movie run backwards with look physically
reasonable.

I A counter example is a damped harmonic oscillator
e.g. A pendulum in a viscous fluid.

m
d2x(t)

dt2
+ α

dx(t)

dt
+ mω2

ox(t) = 0 (257)

I The first time derivative changes the sign of the
friction term and the resulting equation has the
friction accelerate the motion rather than
de-accelerate it.



Physics 541

W. Klein

Quantum Description

Density operators and
their time evolution

Quantum phase space

Classical description

Statistical entropy

Boltzmann Distribution

I The macroscopic world is irreversible. Particles
spread out from a small space to a larger space and
do not return.

I Microscopic reversibility will not return system to its
original state due to chaos.

I Poincare recurrence time for a macroscopic system is
longer than the lifetime of the universe.

I The thermodynamic limit makes the recurrence time
infinite and we do not need to consider it.
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