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Chapter 1

Introduction

1.1 Superconducting transition

Superconductivity manifests itself mainly as an absence of resistivity below some
critical temperature. It was discovered in 1911 by H. Kamerlingh Onnes in
Leiden, three years after he first liquefied 4He. He measured the resistivity of
mercury. The resistivity behavior as a function of temperature is shown in Fig.
1.1.

ρ

TTc

ρ
n

ρ = 0

Figure 1.1: Below the transition temperature, the resistivity drops to zero.

The absolute absence of resistivity is a very fundamental phenomenon. In
combination with general quantum-mechanical principles, it can lead to quite
informative conclusions on the properties of the superconducting state. Here we
try to describe the basic picture of superconductivity using minimum amount of
input information. We consider the most striking properties of superconductors
such as their ideal diamagnetism, macroscopic quantum nature of superconduc-
tivity including phase coherence which leads to zero resistivity, to quantization
of magnetic flux and to formation of quantized vortices. The maximum values
of magnetic fields and currents that can be withstood by superconductors are
also briefly discussed. The rest of the course is devoted to a microscopic theory
of superconductivity.
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Table 1.1: Parameters for metallic superconductors

Tc, K Hc, Oe Hc2, Oe λL, Å ξ0, Å κ Type
Al 1.18 105 500 16000 0.01 I
Hg 4.15 400 400 I
Nb 9.25 1600 2700 470 390 1.2 II
Pb 7.2 800 390 830 0.47 I
Sn 3.7 305 510 2300 0.15 I
In 3.4 300 400 3000 I
V 5.3 1020 400 ∼300 ∼ 0.7 II

Table 1.2: Parameters for some high temperature superconductors

Tc, K Hc2, T λL, Å ξ0, Å κ Type
Nb3Sn 18 25 ∼2000 115 II
La0.925Sr0.072CuO4 34 1500 20 75 II
YBa2Cu3O7 92.4 150 2000 15 140 II
Bi2Sr2Ca3CuO10 111 II
Tl2Sr2Ca2Cu3O10 123 II
HgBa2Ca2Cu3O8 133 II
MgB2 36.7 14 1850 50 40 II
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1.2 The London model

We assume that the current flows without dissipation and has the form

js = nsevs

whence the velocity of superconducting electrons is vs = j/nse where ns is
their density. Now we come to the most important argument [F. London and
H. London, 1935]: Being non-dissipative, this current contributes to the kinetic
energy of superconducting electrons. The total free energy is a sum of the kinetic
energy of superconducting electrons and the magnetic energy

F =
∫ [

nsmv2
s

2
+

h2

8π

]
dV =

∫ [
mj2s

2nse2
+

h2

8π

]
dV .

Here h is the “microscopic” magnetic field. Its average over large area in the
sample gives the magnetic induction B. Using the Maxwell equation

js = (c/4π)curlh , (1.1)

we transform this to the following form

F =
∫ [

mc2

32π2nse2
(curlh)2 +

h2

8π

]
dV =

1
8π

∫
dV

[
h2 + λ2

L (curlh)2
]
. (1.2)

Here

λL =
(

mc2

4πnse2

) 1
2

(1.3)

is called the London penetration depth. In equilibrium, the free energy is min-
imal with respect to distribution of the magnetic field. Variation with respect
to h gives

δF =
1
4π

∫
dV

[
h · δh + λ2

L (∇× h) · (∇× δh)
]

=
1
4π

∫
dV

(
h + λ2

L∇×∇× h
)
· δh +

1
4π

∫
dV div [δh × curlh] .

Here we use the identity

div [b × a] = a · [∇× b] − b · [∇× a]

and put a = ∇× h, b = δh. Looking for a free energy minimum and omitting
the surface term we obtain the London equation:

h + λ2
Lcurl curlh = 0 . (1.4)

Since
curl curlh = ∇div h −∇2h

and div h = 0, we find
h − λ2

L∇2h = 0 . (1.5)
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h

hy

x0

S

λL

Figure 1.2: The Meissner effect: Magnetic field penetrates into a superconductor
only over distances shorter than λL.

1.2.1 Meissner effect

Equation (1.5) in particular describes the Meissner effect, i.e., an exponential
decay of weak magnetic fields and supercurrents in a superconductor. The
characteristic length over which the magnetic field decreases is just λL. Consider
a superconductor which occupies the half-space x > 0. A magnetic field hy is
applied parallel to its surface (Fig. 1.2). We obtain from Eq. (1.5)

∂2hy

∂x2
− λ−2

L hy = 0

which gives

hy = hy(0) exp(−x/λ) .

The field decays in a superconductor such that there is no field in the bulk.
According to Eq. (1.1) the supercurrent also decays and vanishes in the bulk.

Therefore,

B = H + 4πM = 0

in a bulk superconductor, where H is the applied filed. The magnetization and
susceptibility are

M = − H
4π

; χ =
∂M

∂H
= − 1

4π
(1.6)

as for an ideal diamagnetic: Superconductor repels magnetic field lines. The
Meissner effect in type I superconductors persists up to the field H = Hc (see
Table 1.1, Fig. 1.7, and the section below) above which superconductivity is
destroyed. Type II superconductors display the Meissner effect up to much
lower fields, after which vortices appear (see Section 1.5).
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1.3 Phase coherence

The particle mass flow is determined by the usual quantum-mechanical expres-
sion for the momentum per unit volume

jm = − ih̄
2

[ψ∗∇ψ − ψ∇ψ∗] = h̄ |ψ|2 ∇χ . (1.7)

In order to have a finite current in the superconductor it is necessary that ψ
is the wave function of all the superconducting electrons with a definite phase χ:
the superconducting electrons should all be in a single quantum state. According
to the present understanding what happens is that the electrons (Fermi parti-
cles) combine into pairs (Cooper pairs, see the next Chapter) which are Bose
objects and condense into a Bose condensate. The current appears when the
phase χ of the condensate function ψ slowly varies in space. Equation (1.7) sug-
gests that P = h̄∇χ is the momentum of a condensate particle (which is a pair in
the superconductor). For charged particles, the momentum is p = P− (e∗/c)A
where P is the canonical momentum, A is the vector potential of the magnetic
field, and e∗ is the charge of the carrier. In superconductors the charge is carried
by pairs of electrons thus e∗ = 2e and the Cooper pair mass is 2m.

Using the definition of the momentum we introduce the velocity of super-
conducting electrons

vs =
h̄

2m

(
∇χ− 2e

h̄c
A
)
. (1.8)

Now the electric current becomes

js = nsevs = −e
2ns

mc

(
A − h̄c

2e
∇χ
)
. (1.9)

where |ψ|2 = ns/2 is the density of electron pairs.
It is instructive to compare this equation with Eqs. (1.1) and (1.4). We find

from these

curl j =
c

4π
curl curlh = − c

4πλ2
L

h = − c

4πλ2
L

curlA

Therefore,

j = − c

4πλ2
L

(A −∇φ) = −e
2ns

mc
(A −∇φ)

where ∇φ is a gradient of some function. It is seen that this coincides with Eq.
(1.9) where φ = (h̄c/2e)χ.

1.3.1 Magnetic flux quantization

Let us consider an non-singly-connected superconductor with dimensions larger
than λL placed in a magnetic field (Fig. 1.3). We choose a contour which goes
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B

l

Figure 1.3: Magnetic flux through the hole in a superconductor is quantized.

all the way inside the superconductor around the hole and calculate the contour
integral∮ (

A − h̄c

2e
∇χ
)
· dl =

∫
S

curlA · dS − h̄c

2e
Δχ = Φ − h̄c

2e
2πn . (1.10)

Here Φ is the magnetic flux through the contour. The phase change along the
closed contour is Δχ = 2πn where n is an integer because the wave function ψ
is single valued. Since j = 0 in the bulk, the l.h.s. of Eq. (1.10) vanishes, and
we obtain Φ = Φ0n where

Φ0 =
πh̄c

e
≈ 2.07 · 10−7 Oe · cm2 (1.11)

is the quantum of magnetic flux. In SI units, Φ0 = πh̄/e.

1.3.2 Coherence length and the energy gap

Cooper pairs keep their correlation within a certain distance called the coher-
ence length ξ (see the next Chapter). This length introduces an important
energy scale. To see this let us argue as follows. Since the correlation of pairs
is restricted within ξ the phase gradient ∇χ cannot exceed 1/ξ; thus the super-
conducting velocity cannot be larger than the critical value

vc =
h̄

αmξ
. (1.12)

where α ∼ 1 is a constant. Thus the energy of a correlated motion of a pair is
restricted to Δ0 ∼ pF vc = h̄vF /αξ. This gives

ξ ∼ h̄vF

Δ0
.

The quantity Δ0 is in fact the value of the energy gap Δ(0) at zero temper-
ature in the single-particle excitation spectrum in the superconducting state.
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We shall see from the microscopic theory in the next Chapter that the energy
of excitations

ε =

√(
p2

2m
− EF

)2

+ Δ2

cannot be smaller than a certain value Δ that generally depends on temperature.
The coherence length is usually defined as

ξ0 =
h̄vF

2πkBTc

where Δ0 = 1.76kBTc and ξ0 is the coherence length at zero temperature of a
clean (without impurities) material. In alloys with 
 < ξ0,

ξ =
√
ξ0


where 
 is the mean free path.
The ratio

κ =
λL

ξ

is called the Ginzburg–Landau parameter. Its magnitude separates all super-
conductors between type-I (κ < 1/

√
2 ≈ 0.7) and type-II (κ > 1/

√
2) supercon-

ductors. For alloys with 
 < ξ0

κ = 0.75
λ0




where λ0 is the London length in a clean material at zero temperature. The
conclusion is that alloys are type-II superconductors. Values of λL, ξ0, and κ
for some materials are listed in Tables 1.1 and 1.2.

1.4 Critical currents and magnetic fields

1.4.1 Condensation energy

The kinetic energy density of condensate (superconducting) electrons cannot
exceed

Fc =
nsmv

2
c

2
=

nsh̄
2

2α2mξ2
. (1.13)

If the velocity vs increases further, the kinetic energy exceeds the energy gain
of the superconducting state with respect to the normal state Fn − Fs, and
superconductivity disappears. Therefore, Fc = Fn − Fs is just this energy gain
which is called the condensation energy.

Assume now that the superconductor is placed in a magnetic field H. It
repels the field thus increasing the energy of the external source that creates
the field. The energy of the entire system increases and becomes

F = Fs +
H2

8π
= Fn − Fc +

H2

8π
.
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In the superconducting state, F < Fn. When the energy reaches the energy of
a normal state Fn, the superconductivity becomes no longer favorable energet-
ically. Thus the thermodynamic critical magnetic field satisfies

Fc =
H2

c

8π
.

Using the expression for λL we find from Eq.(1.13)

Hc =
h̄c

αeλLξ
=

Φ0

απλLξ

The exact expression for Hc at temperatures close to Tc is

Hc =
Φ0

2
√

2πλLξ
(1.14)

Values of Hc for some materials are given in Table 1.1.

1.4.2 Critical currents

There may be several mechanisms of destruction of superconductivity by a cur-
rent flowing through it.

Mechanism 1. Large type-I samples: The critical current Ic creates Hc at
the sample surface. For a cylinder with a radius R,

2πRHc =
4π
c
Ic .

If R � λL, the current flows only within the layer of a thickness λL near the
sample surface. Thus Ic = 2πRλLjc and

jc =
cHc

4πλL
. (1.15)

Mechanism 2. If the transverse dimensions of the superconductor a and b
are small, a, b � λL the current is distributed uniformly over the cross section
of the sample. In this case, the dominating mechanism is the pair-breaking:
superconductivity is destroyed by the high velocity of superconducting electrons.
The critical current is

jc = nsevc = nseh̄/αmξ . (1.16)

In fact, this current density coincides with the critical current in thick samples.
Indeed, inserting Hc and λL in Eq. (1.15) we obtain Eq. (1.16). However, the
magnetic field created at the surface H ∼ (c/4π)jca2/a ∼ (a/λL)Hc is smaller
than Hc. The critical current in Eqs. (1.15), (1.16) is very high. For Hc = 500
Oe and λL = 500 Å it can be as high as 108 A/cm2.

In type-II superconductors, critical magnetic fields and currents are associ-
ated with quantized vortices.
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B

Figure 1.4: Singular lines in a SC with 2πn phase variations around them.

1.5 Quantized vortices

1.5.1 Basic concepts

Consider a type-II superconductor where the London length is large. The super-
current and magnetic field do not vanish within the region of the order of λ from
the surface: there exists a sizable region of nonzero vs. If the magnetic field is
large enough, vs can reach high values, vs ∼ (e/mc)Hr. For fields H ∼ h̄c/eξ2,
the velocity can reach rh̄/mξ2 � vc for r � ξ. This would lead to destruction of
superconductivity if there were no means for compensating a large contribution
to vs due to the magnetic field.

Assume that we have a linear singularity such that the phase χ of the wave
function of superconducting electrons ψ changes by 2πn if one goes around this
lines along a closed contour, see Fig. 1.4. Consider again the integral along this
contour

−mc
e

∮
vs · dl =

∮ (
A − h̄c

2e
∇χ
)
· dl =

∫
S

curlA · dS − h̄c

2e
Δχ

= Φ − h̄c

2e
2πn = Φ − Φ0n . (1.17)

Here Φ is the magnetic flux through the contour, Φ0 is the flux quantum. The
phase change along the closed contour is Δχ = 2πn. We observe that the super-
conducting velocity increase is completely compensated by the phase variation
if the magnetic flux is Φ = Φ0n. One can thus expect that in superconductors
with large λL in high magnetic fields, there will appear linear singularities with
a surface density nL such that (Φ0n)nL is equal to the magnetic induction B.
Under these conditions, the superconducting velocity does not increase with
distance, and superconductivity is conserved on average.

Each singularity of the phase can exist if the wave function of the supercon-
ducting electrons, i.e., the density of superconducting electrons ns = 2|ψ|2 goes
to zero at the singular line. The size of the region where ns is decreased with



14 CHAPTER 1. INTRODUCTION

respect to its equilibrium value has a size of the order of the coherence length ξ
and is called the vortex core. Such singular objects are called quantized vortices:
each vortex carries a quantized magnetic flux Φ0n. The condition required for
existence of vortices is λ > ξ or exactly κ > 1/

√
2. More favorable energetically

are singly quantized vortices which carry one magnetic flux quantum and have
a phase circulation 2π around the vortex axis.

Vortices are the objects which play a very special role in superconductors and
superfluids. In superconductors, each vortex carries exactly one magnetic-flux
quantum. Being magnetically active, vortices determine the magnetic properties
of superconductors. In addition, they are mobile if the material is homogeneous.
In fact, a superconductor in the vortex state is no longer superconducting in a
usual sense. Indeed, there is no complete Meissner effect: some magnetic field
penetrates into the superconductor via vortices. In addition, regions with the
normal phase appear: since the order parameter turns to zero at the vortex axis
and is suppressed around each vortex axis within a vortex core with a radius
of the order of the coherence length, there are regions with a finite low-energy
density of states. Moreover, mobile vortices come into motion in the presence
of an average (transport) current. This produces dissipation and causes a finite
resistivity (the so-called flux flow resistivity): a superconductor is no longer
“superconducting”.

To avoid motion of vortices and thus ensure zero resistance of a superconduc-
tor, various defects such as granular structure, lattice defects, artificial defects
are introduced into the superconducting material. These defects attract vor-
tices, or “pin” them in the superconductor. To overcome the pinning force one
has to apply a finite current density, critical depinning current jc, that produces
the Lorentz force

FL =
Φ0

c
[jc × ẑ]

where ẑ is the unit vector in the direction of the magnetic field. Depending
on the material, the critical current can be as high as 104 ÷ 105 A/cm2. For
currents below the depinning current, a type-II superconductor can have zero
resistance up to very high magnetic fields Hc2 which are considerably higher
than Hc (see below).

In superfluids, vortices appear in a container with helium rotating at an
angular velocity Ω above a critical value which is practically not high and can
easily be reached in experiment. Vortices are also created if a superfluid flows in
a tube with a sufficiently high velocity. The driving force that pushes vortices is
now the Magnus force. Vortices move and experience reaction from the normal
component; this couples the superfluid and normal components and produces
a “mutual friction” between them. As a result, the superflow is no longer
persistent.
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1.5.2 Vortices in the London model

Let us take curl of Eq. (1.9). We find

h − h̄c

2e
curl∇χ = − mc

nse2
curl js = −λ2

Lcurl curlh .

This looks like Eq. (1.5) except for one extra term. This term is nonzero if
there are vortices. In the presence of vortices, the London equation should be
modified. For an n-quantum vortex we have

curl∇χ = 2πnẑδ(2)(r)

where ẑ is the unit vector in the direction of the vortex axis. Therefore, the
London equation for a vortex becomes

h + λ2
Lcurl curlh = nΦ0δ

(2)(r) (1.18)

where Φ0 is the vector along the vortex axis with the magnitude of one flux
quantum. For a system of vortices

h + λ2
Lcurl curlh = nΦ0

∑
k

δ(2)(r − rk) (1.19)

where the sum is over all the vortex positions rk.
One can easily find the magnetic field for a single straight vortex (see Prob-

lem 1.1). In cylindrical coordinates h = (0, 0, hz(r)), the magnetic field is

hz(r) =
nΦ0

2πλ2
L

ln
(
λL

r

)

near the vortex axis r � λL. The magnetic field increases logarithmically near
the vortex axis. However, in our model, the coordinate r cannot be made shorter
than the coherence length since ns vanishes at the vortex axis, and the London
equation does not apply for r < ξ. Therefore, at the axis

h(0) =
nΦ0

2πλ2
L

ln
(
λL

ξ

)
.

We can calculate the current around the vortex near the core.

jφ =
c

4π
∂hz

∂r
=

ncΦ0

8π2λ2
Lr

=
nsenh̄

2mr

For a single-quantum vortex the superconducting velocity is

vs,φ =
h̄

2mr

Therefore, the phase is just the azimuthal angle:

χ = φ
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h

⏐ψ⏐=ns
1/2

ξ λ rL

js

Figure 1.5: Structure of a single vortex. The core region with the radius ξ
is surrounded by currents. Together with the magnetic field, they decay at
distances of the order of λL.

1.5.3 Critical fields in type–II superconductors

The free energy of a single-quantum vortex per unit length is

F =
1
8π

∫ [
h
(
h + λ2

Lcurl curlh
)

+ div[h × curlh]
]
d2r

=
1
8π

∫
hzΦ0δ

(2)(r) d2r +
1
8π

∫
[h × curlh] dl . (1.20)

The last integral is taken along a remote contour and vanishes. The first integral
gives

FL =
Φ2

0

16π2λ2
L

ln
λL

ξ
=
h̄2πns

4m
ln
λL

ξ
. (1.21)

For an n-quantum vortex we would obtain

FL =
n2Φ2

0

16π2λ2
L

ln
(
λL

ξ

)
. (1.22)

The energy is proportional to n2. Therefore, vortices with n > 1 are not favor-
able: The energy of n single-quantum vortices is proportional to the first power
of n and is thus smaller than the energy of one n-quantum vortex.

Equation (1.21) allows to find the lower critical magnetic field, i.e., the field
H above which the first vortex appears. The free energy of a unit volume
of a superconductor with a set of single-quantum vortices is FL = nLFL =
(B/Φ0)FL. The proper thermodynamic potential in an external field H is the
Gibbs free energy G = F − HB/4π

G =
BFL

Φ0
− BH

4π
=

BΦ0

16π2λ2
L

ln
(
λL

ξ

)
− BH

4π
.

If H < Hc1 where

Hc1 =
Φ0

4πλ2
L

ln
(
λL

ξ

)
, (1.23)

the Gibbs free energy is minimal for B = 0. This corresponds to zero field in
the bulk: the Meissner effect takes place. The free energy becomes negative if
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Meissner
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T T
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Figure 1.6: Phase diagram of a type II superconductor

− 
4π

M

H Hc1 c2HHc

Figure 1.7: Full line: Magnetization of a type II superconductor. The linear
part at low fields corresponds to the full Meissner effect Eq. (1.6). Dashed line:
Magnetization of a type I superconductor. The Meissner effect persists up to
the thermodynamic critical field Hc.

H > Hc1. Therefore, it decreases with increasing B inside the superconductor.
This means that vortices appear for H > Hc1.

As the magnetic field increases, vortices become more and more dense, and
the normal phase in the cores occupies larger and larger fraction of the sample.
The superconductivity is totally destroyed when their cores start to overlap,
i.e., when their density nL = B/Φ0 ∼ 1/πξ2. The exact condition is

Hc2 =
Φ0

2πξ2
.

Using Eq. (1.14) we note that

Hc1 = Hc
lnκ√

2κ
; Hc2 =

√
2κHc , (1.24)

i.e., for superconductors with a large κ, the critical field Hc1 is considerably
lower than Hc2. At the same time, the upper critical field Hc2 is considerably
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higher than Hc.
The phase diagram of a type II superconductor is shown in Fig. 1.6.
For more reading on vortices in type II superconductors see Refs. [5, 6, 7, 8].



Chapter 2

The BCS theory

2.1 Landau Fermi-liquid

The ground state of a system of Fermions corresponds to the filled states with
energies E below the maximal Fermi energy EF , determined by the number
of Fermions. In an homogeneous system, one can describe particle states by
momentum p such that the spectrum becomes Ep. The condition of maximum
energy Ep = EF defines the Fermi surface in the momentum space. In an
isotropic system, this is a sphere such that its volume divided by (2πh̄)3

nα =
4πp3

F

3(2πh̄)3

gives number of particles with the spin projection α per unit (spatial) volume
of system. For electrons with spin 1

2 , the total number of particles in the unit
volume of the system, i.e., the particle density is twice nα

n =
p3

F

3π2h̄3 (2.1)

This ground state corresponds to a ground-state energy E0.
Excitations in the Fermi liquid that increase its energy as compared to E0

are created by moving a particle from a state below the Fermi surface to a state
above it. This process can be considered as a superposition of two processes.
First is a removal of a particle from the system out of a state below the Fermi
surface. The second is adding a particle to a state above the Fermi surface. By
taking a particle out of the state with an energy E1 < EF we increase the energy
of the system and create a hole excitation with a positive energy ε1 = EF −E1.
By adding a particle into a state with an energy E2 > EF we again increase the
energy and create a particle excitation with a positive energy ε2 = E2 − EF .
The energy of the system is thus increased by ε1 + ε2 = E2 − E1.

Shown in Fig. 2.1 are processes of creation of particle and hole excitations
in a Fermi liquid. Consider it in more detail. Removing a particle with a

19



20 CHAPTER 2. THE BCS THEORY

p
-p'

F
p

p'

Figure 2.1: Particle (shaded circle) and hole (white circle) excitations in Landau
Fermi liquid. The particle excitation is obtained by adding a particle. The hole
excitation is obtained by removing a particle (black circle) with an opposite
momentum.

momentum p′ and an energy E′ from below the Fermi surface, p′ < pF and
E′ < EF , creates an excitation with a momentum −p′ and an energy ε−p′ =
EF −E′. Adding a particle with a momentum p and energy E above the Fermi
surface, p > pF and E > EF , creates an excitation with momentum p and
energy εp = E−EF . For an isotropic system, the excitation spectrum will thus
have the form

εp =

{
p2

2m − EF , p > pF

EF − p2

2m , p < pF

(2.2)

shown in Fig. 2.2.
The particle and hole excitations live in a system of Fermions where a strong

correlation exists due to the Pauli principle. How well elementary excitations
with a free-particle spectrum Eq. (2.2) are defined here?

One can show that uncertainty of the quasiparticle energy due to quasiparticle-
quasiparticle scattering, δε ∼ h̄P , where P is the probability of scattering, in
2 dimensional and 3 dimensional systems is small compared to the energy if
ε � EF , i.e., near the Fermi surface. In other words, quasiparticles are well
defined only near the Fermi surface. For a one dimensional system, however,
the sirtuation is different, and the Landau quasiparticles do not exist. The
one-dimensional system of Fermions is known as the Luttinger liquid, which is
beyond the present course.

Let us now define the Hamiltonian for particles and holes. For particles, we
define a single-electron Hamiltonian

Ĥe =
1

2m

(
−ih̄∇− e

c
A
)2

+ U(r) − μ (2.3)

where μ is the chemical potential and U(r) is some potential energy. In the
normal state, μ = EF . Being applied to a system of totally N =

∫
ndV
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(p /2m) -E2
F

εp

0
pp

F

Figure 2.2: Single-particle spectrum (p2/2m)−EF (dashed line) is transformed
into the Landau excitation spectrum εp in a strongly correlated Fermi liquid.

particles, it will produce a Hamiltonian in the form H − μN where H is the
Hamiltonian of the full system. This is more appropriate for a system where the
chemical potential is fixed rather than the number of particles, as is the case, for
example, in superconductors connected to an external circuit. The Hamiltonian
Eq. (2.3) corresponds to the canonical momentum operator P̂ = −ih̄∇ and is
assumed to be spin independent.

The wave function of a particle excitation uε,p(r) with an energy ε and
momentum p satisfies

Ĥeuε,p(r) = εpuε,p(r) (2.4)

Let us now turn to hole excitations. The hole wave function vε,p(r) with an
energy ε and momentum p satisfies

Ĥhvε,p(r) = εpvε,p(r)

A hole excitation is the absence of a particle with the energy −ε and momentum
−p. According to the Landau Fermi-liquid description, the hole Hamiltonian is
thus

Ĥh = −Ĥ∗
e

The Hamiltonian

Ĥ∗
e =

1
2m

(
ih̄∇− e

c
A
)2

+ U(r) − EF (2.5)

corresponds to the canonical momentum operator −P̂ = ih̄∇. The hole wave
function thus satisfies

Ĥ∗
e vε,p(r) = −εpvε,p(r) (2.6)
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p'

-p'

p

p
F

-p

p

p
F

(a) (b)

Figure 2.3: (a) A Cooper pair is formed out of a particle excitation with a
momentum p and that with a momentum −p above the Fermi surface (shaded
circles), which is equivalent to (b) a particle excitation with a momentum p and
a removed hole excitation (white circle) with nearly the same momentum p′.

2.2 The Cooper problem

The original Cooper problem is as follows. Consider an object which is made
out of a pair of electrons with energies εp having opposite spins and opposite
momenta p and −p slightly beyond the Fermi surface, see Fig. 2.3 (a). Their
wave functions are up(r) = eip·r/h̄Up and u−p(r) = e−ip·r/h̄U−p, respectively.
We shall see later that the pair is actually formed out of an electron in a state
up(r) = eip·r/h̄Up above the Fermi surface and an annihilated hole which was
formerly in a state vp′(r) = eip′·r/h̄Vp with nearly the same momentum p′ ≈
p below the Fermi surface. The annihilated hole is in a sense equivalent to
an electron with momentum −p′ and has a wave function v∗p(r) = u−p(r) =
e−ip·r/h̄V ∗

p , Fig. 2.3 (b).
The pair wave function is

Ψpair
p (r1, r2) = up(r1)u−p(r2) = eip·(r1−r2)/h̄UpV

∗
p

The linear combination with various p gives the coordinate wave function

Ψpair(r1, r2) =
∑
p

eip·(r1−r2)/h̄ap (2.7)

where ap = UpV
∗
p . The inverse transformation is

ap = V −1

∫
Ψ(r)e−ipr/h̄ d3r

where V is the volume of the system.
Assume that the electrons in the pair interact through the potentialW (r1, r2) =

W (r1−r2). Their Hamiltonian is Ĥe(1)+Ĥe(2)+W . The Schrödinger equation
has the form[

Ĥe(r1) + Ĥe(r2) +W (r1, r2)
]
Ψpair(r1, r2) = EΨpair(r1, r2)
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Multiplying this by e−ip(r1−r2) and calculating the integral over the volume we
obtain this equation in the momentum representation,

[2εp − Ep] ap = −
∑
p1

Wp,p1ap1

where
Wp,p1 = V −1

∫
e−i(p−p1)·r/h̄W (r) d3r

Assume that

Wp,p1 =
{
W/V, εp and εp1 < Ec

0, εp or εp1 > Ec

where Ec � EF . The interaction strength W ∼ W0v0 where W0 is the magni-
tude of the interaction potential while v0 = a3

0 is the volume where the interac-
tion of a range a0 is concentrated. We have

ap =
W

E − 2εp
1
V

∑
p1

ap1 =
W

E − 2εp

∑
p1

′
ap1 (2.8)

Here the sum
∑

p is taken over p which satisfy εp < Ec, while the sum
∑′ is

taken over the states in a unit volume. Let us denote

C =
∑
p

′
ap

Eq. (2.8) yields

ap =
WC

E − 2εp
whence

C = WC
∑
p

′ 1
E − 2εp

This gives
1
W

=
∑
p

′ 1
E − 2εp

≡ Φ(E) (2.9)

Equation (2.9) is illustrated in Fig. 2.4. Let us put our system in a large
box. The levels εp will become a discrete set εn shown in Fig. 2.4 by vertical
dashed lines. The lowest level ε0 is very close to zero and will approach zero as
the size of the box increases. The function Φ(E) varies from −∞ to +∞ as E
increases and crosses each εn > 0. However, for negative E < 0, the function
Φ(E) approaches zero as E → −∞, and there is a crossing point with a negative
level −1/|W | for negative E. This implies that there is a state with negative
energy E0 < 0 satisfying Eq. (2.9) for a negative W < 0.

For an attraction W < 0 we have

1
|W | =

∑
p

′ 1
2εp − E
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Φ(E)

E-|W|-1

2εn
2ε0

Figure 2.4: The function Φ(E) for a system with a discrete spectrum εn.

Let n(ε) be the number of states within a unit volume per one spin projection
with energies below ε. The quantity

N(ε) =
dn(ε)
dε

is called the density of states (DOS). In the normal state where εp = p2/2m−EF ,

n(ε) =
(4/3)πp3

(2πh̄)3

Therefore,
N(ε) =

mp

2π2h̄3

Having this in mind, we substitute the sum with the integral

∑
p

′
= 2

∫
d3p

(2πh̄)3
= 2

∫
mp

2π2h̄3 dεp

the factor 2 accounts for the spin.
Now, for a negative energy E = E0 = −|E0|

1
|W | = 2

∫ Ec

0

mp

2π2h̄3

dεp
2εp − E0

= 2N(0)
∫ Ec

0

dε

2ε+ |E0|
= N(0) ln

(
|E0| + 2Ec

|E0|

)
(2.10)

Here we replace p with a constant pF since Ec � EF and thus |p− pF | � pF .
We also denote

N(0) =
mpF

2π2h̄3 (2.11)

the density of states at the Fermi surface. Eq. (2.10) yields

|E0| =
2Ec

e1/N(0)|W | − 1
(2.12)
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The dimensionless factor λ ≡ N(0)W ∼ N(0)W0a
3
0 is called the interaction

constant. For weak coupling, N(0)|W | � 1, we find

|E0| = 2Ece
−1/N(0)|W |

For a strong coupling, N(0)|W | � 1,

|E0| = 2N(0)|W |Ec

We see that there exists a state of a particle-hole pair (the Cooper pair) with
an energy |E0| below the Fermi surface. It means that the system of normal-
state particles and holes is unstable towards formation of pairs provided there
is an attraction (however small) between electrons: Indeed, if we place a pair of
extra electrons in a system which has a filled Fermi surface, these two electrons
find a state below the Fermi surface, in contradiction to the assumption that
there are no more available states inside the Fermi surface.

In conventional superconductors, the attraction is caused by an exchange
of phonons. The attraction between electrons can also be caused by magnetic
interactions which favors triplet pairing (with a nonzero spin of pair). The
Coulomb repulsion is strongly reduced by screening effects at distances of the
order of the size of the pair ξ thus it does not destroy pairing. Fig. 2.5 illustrates
the effect on the excitation spectrum of coupling between a particle and a hole
near the Fermi surface shown in Fig. 2.3.

E

E0

pF p

Figure 2.5: The coupling between electron and hole modifies the energy spec-
trum: The gap equal to |E0| opens near the Fermi surface.

This Cooper pairing effect provides a basis for understanding of supercon-
ductivity. According to this picture, the pairs, being Bose particles, form a Bose
condensate in a single state with a wave function that has a single phase for all
pairs, which is the basic requirement for existence of a spontaneous supercur-
rent.
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2.3 The BCS model

2.3.1 The Bogoliubov–de Gennes equations

Coupling between particles and holes is described by introduction of a pairing
field Δ into the particle and hole equations (2.4) and (2.6). The resulting
equations are known as the Bogoliubov–de Gennes equations (BdGE)

Ĥeu(r) + Δ(r)v(r) = εu(r) (2.13)
−Ĥ∗

e v(r) + Δ∗(r)u(r) = εv(r) (2.14)

The functions (u, v) are orthogonal∫
[u∗m(r)un(r) + v∗m(r)vn(r)] d3r = δmn (2.15)

For the momentum representation we have∫ [
u∗q1

(r)uq2(r) + v∗q1
(r)vq2(r)

]
d3r = (2π)3δ(q1 − q2) (2.16)

2.3.2 The self-consistency equation

The pairing field Δ is proportional to a two-particle wave function,

Δ(r) = −W 〈Ψ(r, ↓)Ψ(r, ↑)〉 = W 〈Ψ(r, ↑)Ψ(r, ↓)〉 (2.17)

Here 〈. . .〉 denotes a statistical average. One finds

Δ(r) = W
∑

n

(1 − 2fn)un(r)v∗n(r) (2.18)

where fn is the distribution function. In equilibrium, it is the Fermi function

fn =
1

eεn/T + 1

We see that the pairing field Δ is a linear combination of pair states made out
of particle-like and annihilated hole-like excitations.

2.4 Observables

2.4.1 Energy spectrum and coherence factors

Consider the case where Δ = |Δ|eiχ is constant in space, and the magnetic field
is absent. The BdGE have the form[

− h̄2

2m
∇2 − μ

]
u(r) + Δv(r) = εu(r) (2.19)

−
[
− h̄2

2m
∇2 − μ

]
v(r) + Δ∗u(r) = εv(r) (2.20)
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where μ = h̄2k2
F /2m. We look for a solution in the form

u = e
i
2 χUqe

iq·r , v = e−
i
2 χVqe

iq·r (2.21)

where q is a constant vector. We have

ξqUq + |Δ|Vq = εqUq (2.22)
−ξqVq + |Δ|Uq = εqVq (2.23)

where

ξq =
h̄2

2m
[
q2 − k2

F

]
The condition of solvability of Eqs. (2.22) and (2.23) gives

εq = ±
√
ξ2q + |Δ|2 (2.24)

According to the Landau picture of Fermi liquid, we consider only energies ε > 0.
The spectrum is shown in Fig. 2.6.

The wave functions u and v for a given momentum q are found from Eqs.
(2.22), (2.24). We have

Uq =
1√
2

(
1 +

ξq
εq

)1/2

, Vq =
1√
2

(
1 − ξq

εq

)1/2

(2.25)

Normalization is chosen to satisfy Eq. (2.16).
The energy |Δ| is the lowest single-particle excitation energy in the super-

conducting state. 2|Δ| corresponds to an energy which is needed to destroy
the Cooper pair. Therefore, one can identify 2|Δ| as the pairing energy as
determined by the Cooper problem in the previous Section, |E| = 2|Δ|.

Electrons in the pair have velocity vF . Therefore, the characteristic momen-
tum (in addition to pF ) associated with the pair is δp ∼ |Δ|/vF . Using the
uncertainty principle, δpR ∼ h̄, where R has a meaning of effective “size” of a
Cooper pair, one finds R ∼ h̄vF /|Δ|. This characteristic scale sets up a very
important length scale called the coherence length

ξ ∼ h̄vF /|Δ| .

For a given energy, there are two possible values of

ξq = ±
√
ε2 − |Δ|2 (2.26)

that correspond respectively to particles or holes (see Fig. 2.6).
The quantity

dε

d(h̄q)
= vg
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particlesholes
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Figure 2.6: The BCS spectrum of excitations in a superconductor. The solid
line shows the spectrum of quasiparticles near the Fermi surface where the
Landau quasiparticles are well defined. At higher energies closer to EF the
Landau quasiparticles are not well-defined (dotted line). The dashed line at
lower energies shows the behavior of the spectrum in the normal state ε = |ξp|.

is the group velocity of excitations. One has q2 = k2
F ± (2m/h̄2)

√
ε2 − |Δ|2.

Therefore,

vg =
h̄q

m

ξq√
ξ2q + |Δ|2

= vF
ξq√

ξ2q + |Δ|2
= ±vF

√
ε2 − |Δ|2
ε

(2.27)

where vF = h̄q/m is the velocity at the Fermi surface. We see that the group
velocity is positive, i.e., its direction coincides with the direction of q for ex-
citations outside the Fermi surface ξq > 0. As we know, these excitations are
particle-like. On the other hand, vg < 0 for excitations inside the Fermi surface
ξq < 0, which are known as hole-like excitations.

2.4.2 Density of states

Another important quantity is the density of states (DOS) N(ε) defined as
follows. Let us suppose that there are nα(q) states per spin and per unit volume
for particles with momenta up to h̄q. The density of states is the number of
states within an energy interval from ε to ε+ dε, i.e.

N(ε) =
dnα(q)
dε

As we can see, in a superconductor, there are no excitations with energies ε <
|Δ|. The DOS per one spin projection is zero for ε < |Δ|. For ε > |Δ| we have

N(ε) =
1
2

∣∣∣∣ ddε
(
q3

3π2

)∣∣∣∣ = q2

2π2

∣∣∣∣ dεdq
∣∣∣∣
−1
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=
mq

2π2h̄2

ε√
ε2 − |Δ|2

≈ N(0)
ε√

ε2 − |Δ|2
(2.28)

Here
N(0) =

mpF

2π2h̄3 =
mkF

2π2h̄2

is the DOS per one spin projection in the normal state for zero energy excita-
tions, i.e., at the Fermi surface. We have replaced here q with kF . Indeed, since
Δ � EF , the magnitude of q is very close to kF for ε ∼ Δ. This fact is of a
crucial importance for practical applications of the BCS theory, as we shall see
in what follows.

N
(ε

)/
N

(0
)

εΔ

1

Figure 2.7: The superconducting density of states as a function of energy.

2.4.3 The energy gap

For a state Eq. (2.21) specified by a wave vector q with Uq and Vq from Eq.
(2.25) the product uv∗ becomes

uv∗ = eiχUqVq =
Δ
2εq

The self-consistency equation (2.18) yields

Δ = W
∑
q

(1 − 2fq)
Δ
2εq

(2.29)

We replace the sum with the integral

∑
q

=
∫ q=∞

q=0

d3q

(2π)3
=
∫ ξ=+∞

ξ=−EF

mq

2π2h̄2 dξq ≈ N(0)
∫ +∞

−∞
dξq

and notice that, in equilibrium,

1 − 2fq = tanh
( εq

2T

)
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Moreover,
εq dεq = ξq dξq

When ξ varies from −∞ to +∞, the energy varies from Δ to +∞ taking each
value twice. Therefore, the self-consistency equation takes the form

Δ = W
∑
q

(1 − 2fq)
Δ
2εq

= N(0)W
∫ ∞

|Δ|

Δ√
ε2 − |Δ|2

tanh
( ε

2T

)
dε (2.30)

The integral diverges logarithmically at large energies. In fact, the potential
of interaction does also depend on energy W = Wε in such a way that it vanishes
for high energies exceeding some limiting value Ec � EF . We assume that

Wε =
{
W, ε < Ec

0, ε > Ec

From Eq. (2.30) we obtain the gap equation

1 = λ

∫ Ec

|Δ|

1√
ε2 − |Δ|2

tanh
( ε

2T

)
dε (2.31)

where the dimensionless parameter λ = N(0)W ∼ N(0)W0a
3 is called the inter-

action constant. For phonon mediated electron coupling, the effective attraction
works for energies below the Debye energy ΩD. Therefore, Ec = ΩD in Eq.
(2.31). This equation determines the dependence of the gap on temperature.

This equation can be used to determine the critical temperature Tc, at which
the gap Δ vanishes. We have

1 = λ

∫ Ec

0

tanh
(

ε

2Tc

)
dε

ε
(2.32)

This reduces to
1
λ

=
∫ Ec/2Tc

0

tanhx
x

dx (2.33)

The integral ∫ a

0

tanhx
x

dx = ln(aB)

Here B = 4γ/π ≈ 2.26 where γ = eC ≈ 1.78 and C = 0.577 . . . is the Euler
constant. Therefore,

Tc = (2γ/π)Ece
−1/λ ≈ 1.13Ece

−1/λ (2.34)

The interaction constant is usually small, being of the order of 0.1 ÷ 0.3 in
practical superconductors. Therefore, usually Tc � Ec.

For zero temperature we obtain from Eq. (2.31)

1
λ

=
∫ Ec

|Δ|

dε√
ε2 − |Δ|2

= Arcosh
(
Ec

|Δ|

)
≈ ln(2Ec/|Δ|) (2.35)

Therefore, at T = 0

|Δ| ≡ Δ(0) = (π/γ)Tc ≈ 1.76Tc
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2.4.4 Current

The quantum mechanical expression for the current density is

j =
e

2m

∑
α

{
Ψ†(r, α)

[(
−ih̄∇− e

c
A
)

Ψ(r, α)
]

+
[(
ih̄∇− e

c
A
)

Ψ†(r, α)
]
Ψ(r, α)

}
(2.36)

In superconducting state we obtain

j =
e

m

∑
n

[
fn u

∗
n(r)

(
−ih̄∇− e

c
A
)
un(r)

− (1 − fn) v∗n(r)
(
−ih̄∇ +

e

c
A
)
vn(r) + c.c.

]
(2.37)
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Chapter 3

Andreev reflection

We assume that there are no barriers or other potentials that vary over distances
of the order of the electronic wave length k−1

F . The energy gap should also be
smooth over the distances of the order of the electronic wave length. It may,
however, vary at distances shorter than the coherence length ξ. In this case the
quasiparticle momentum of the order of h̄kF is a good quantum number such
that we can look for a solution in the form(

u
v

)
= eik·r

(
U(r)
V (r)

)
(3.1)

where |k| = kF while U(r) and V (r) vary slowly over distances of the order of
k−1

F .

e

h

e

x0

ε

Δ
vg p

vg p vg p

Figure 3.1: The NS structure.

Consider a particle incident from the normal region on the superconducting
half-space x > 0 (see Fig. 3.1) with a momentum parallel to the x axis. Assume
that the gap varies over distances longer than the electron wave length k−1

F

and that both the normal metal and the superconductor have the same Fermi
velocity, and there are no insulating barriers between them. We assume that
the magnetic field is absent. In this case Δ and all other potentials depend only

33
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Figure 3.2: The Andreev reflection. If the incident state (i) has an energy
above the gap, a transmitted state (c) exists in the superconductor. A particle
is partially transmitted and partially reflected back as a hole (a). If the energy
is below the gap, there are no states in superconductor, and the particle is fully
reflected back as a hole (a).

on one coordinate x and the BdG equations take the form

− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u− h̄2k2

F

2m
u+ Δ(x)v = εu (3.2)

h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
v +

h̄2k2
F

2m
v + Δ∗(x)u = εv (3.3)

Consider first the case of high energies ε > |Δ|. The particle will penetrate
into the superconductor and partially will be reflected back into the normal
metal. However, since the gap varies slowly, the reflection process where the
momentum is changed such that k → −k is prohibited.

In the normal region (on the left) the order parameter decreases to zero at
distances shorter than ξ, so that one can consider Δ = 0 for x < 0. The wave
functions are(

u
v

)
L

= ei(kx+ε/h̄vx)x+ikyy+ikzz

(
1
0

)
+ aei(kx−ε/h̄vx)x+ikyy+ikzz

(
0
1

)
(3.4)

Here
vx = h̄kx/m

The wave function thus contains an incident particle [state (i) in Fig. 3.2] and a
reflected hole [state (a)]. We choose the coefficient unity in front of the incident
wave to ensure the unit density of particles in the incident wave.

The wave function on the right (in the S region) has the form(
u
v

)
R

= cei(kx+λS)x+ikyy+ikzz

(
U0

V0

)
(3.5)

Eqs. (3.2), (3.3) give
λS =

√
ε2 − |Δ|2/h̄vx (3.6)
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It describes a transmitted particle. The coherence factors U0 and V0 are deter-
mined by Eq. (2.25):

U0 =
1√
2

[
1 +

√
ε2 − |Δ|2
ε

]1/2

, V0 =
1√
2

[
1 −

√
ε2 − |Δ|2
ε

]1/2

They satisfy

U2
0 − V 2

0 =

√
ε2 − |Δ|2
ε

, U0V0 =
|Δ|
2ε

The boundary conditions require continuity of the slow functions at the
interface whence

a = V0/U0 , c = 1/U0 (3.7)

The coefficient a describes a process when a particle is reflected as a hole from
a spatially non-uniform gap; this process is called the Andreev reflection [9].

For the sub-gap energy ε < |Δ|, there are no states below the gap in the S
region, thus the wave should decay for x > 0. The wave function on the right is(

u
v

)
R

= ce(ikx−λ̃S)x+ikyy+ikzz

(
Ũ0

Ṽ0

)
(3.8)

where
λ̃S =

√
|Δ|2 − ε2/h̄vx (3.9)

and

Ũ0 =
1√
2

(
1 + i

√
|Δ|2 − ε2

ε

)
, Ṽ0 =

1√
2

(
1 − i

√
|Δ|2 − ε2

ε

)

The coefficients are
a = Ṽ0/Ũ0 , c = 1/Ũ0

However, now
|a|2 = 1 (3.10)

The Andreev reflection is complete since there are no transmitted particles.
The Andreev reflection has an interesting and surprising property. The

magnitude squared of the particle momentum in Eq. (3.4) is

p2 = p2
x +p2

y +p2
z = h̄2[(kx± ε/h̄vx)2 +k2

y +k2
z ] = h̄2

[
k2

F ± 2kxε

h̄vx

]
= h̄2k2

F ±2mε

The total momentum of the incident particle is thus p = h̄kF + ε/vF such that
p > pF . Its energy corresponds to the rising (right) part of the spectrum branch
[point (i)] in Fig. 3.2,

ε(p) = vF (p− pF )

The reflected hole has the momentum p = pF − ε/vF such that p < pF . Its
energy thus corresponds to the decreasing (left) part of the spectrum branch
[point (a)] in Fig. 3.2,

ε(p) = vF (pF − p)
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annihilated hole 
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vg

-2|e|

Figure 3.3: Illustration of the nature of Andreev reflection for ε < |Δ at an ideal
SN interface: An incident electron forms a Cooper pair in the superconductor
together with an annihilated hole. This hole is expelled into the normal metal
and moves back as a reflected object.

One can calculate the components of the group velocity

vg x =
∂ε

∂px
= ±px

m
≈ ±vx , vg y =

∂ε

∂py
= ±py

m
≈ ±vy

We see that particle and hole have opposite signs of the group velocity but with
almost the same magnitude. Therefore, Andreev reflected hole moves along the
same trajectory as the incident particle but in the opposite direction!

q+

q−

h

gv

gve

θ+
θ−

x

y

SN

Figure 3.4: The trajectories of an incident particle and the Andreev reflected
hole.

In fact, directions of the incident and reflected trajectories are slightly dif-
ferent. Indeed, the change in the momentum during the Andreev reflection
is

Δpx = (h̄kx − ε/vx) − (h̄kx + ε/vx) = −2ε/vx
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This change is much smaller than the momentum itself. This is because the
energy of interaction ∼ Δ is much smaller than EF . At the same time, the
momentum projections py and pz are conserved. As a result, the trajectory of
the reflected hole deviates, but only slightly, from the trajectory of the incident
particle (see Fig. 3.4).
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Chapter 4

Weak links

4.1 Josephson effect

A supercurrent can flow through a junction of two superconductors separated
by narrow constriction, by a normal region or by a high-resistance insulating
barrier, or by combinations of these. This is the Josephson effect (B. Joseph-
son, 1962). The current is a function of the phase difference between the two
superconductors. These junctions are called weak links. There may be various
dependencies of the current on the phase difference. The form of this dependence
and the maximum supercurrent depend on the conductance of the junction: The
smaller is the conductance the closer is the dependence to a simple sinusoidal
shape.

The presence of a supercurrent is a manifestation of the fundamental prop-
erty of the phase coherence that exists between two superconductors separated
by a weak link.

4.1.1 D.C and A.C. Josephson effects

The general features of the Josephson effect can be understood using a very
general example of transitions between two superconductors. Assume that two
superconducting pieces are separated by a thin insulating layer. Electrons can
tunnel through this barrier. Assume also that a voltage V is applied between
the two superconductors.

The wave function of superconducting electrons is a sum

Ψ =
∑
α

Cα(t)ψα

of the states ψ1 and ψ2 in superconductor 1 or superconductor 2, respectively.
Each wave function ψ1 and ψ2 of an uncoupled superconductor, taken separately,
obeys the Schrödinger equation

ih̄
∂ψα

∂t
= Eαψα

39
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χ

χ

2

1

eV

Figure 4.1: The Josephson junction of two superconductors separated by an
insulating barrier.

Here Eα (α = 1, 2) are the energies of the states in uncoupled superconductors
1 and 2.

When these superconductors are coupled, the wave function Ψ satisfies the
Schrödinger equation

ih̄
∂Ψ
∂t

= ĤΨ

where Ĥ is the total Hamiltonian. This equation determines the variations of
the coefficients. If the wave functions ψα are normalized such that∫

ψ∗
βψα dV = δαβ

the coefficients obey

ih̄
∂Cβ

∂t
=
∑
α

[Hβα − Eαδβα]Cα(t) .

Here
Hβα =

∫
ψ∗

βĤψα dV

are the matrix elements. The diagonal elements

H11 = E1 + e∗ϕ1 = E1 + e∗V/2 , H22 = E2 + e∗ϕ2 = E2 − e∗V/2

correspond to the energies of the state 1 and 2, respectively. The charge of the
Cooper pair is e∗ = 2e. The off-diagonal matrix elements describe transitions
between the states 1 and 2

H12 = H21 = −K .

The equation becomes

ih̄
∂C1

∂t
= eV C1(t) −KC2(t) , (4.1)

ih̄
∂C2

∂t
= −KC1(t) − eV C2(t) . (4.2)
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The coefficients are normalized such that |C1|2 = N1, |C2|2 = N2 where N1,2

are the number of superconducting electrons in the respective electrodes. We
put

C1 =
√
N1e

iχ1 , C2 =
√
N2e

iχ2 .

Inserting this into Eqs. (4.1), (4.2) we obtain, separating the real and imaginary
parts

h̄
dN1

dt
= −2K

√
N1N2 sin(χ2 − χ1)

h̄
dN2

dt
= 2K

√
N1N2 sin(χ2 − χ1)

and

h̄N2
dχ2

dt
= eV N2 +K

√
N1N2 cos(χ2 − χ1)

h̄N1
dχ1

dt
= −eV N1 +K

√
N1N2 cos(χ2 − χ1)

From the first two equations we obtain the charge conservation N1 +N2 =
const together with the relation

Is = Ic sinφ (4.3)

where

Is = 2e
dN2

dt
= −2e

dN1

dt

is the current flowing from the first into the second electrode, Ic = 4eK
√
N1N2/h̄

is the critical Josephson current, while φ = χ2 − χ1 is the phase difference.
To interpret the second pair of equations we note that the overall phase of

the device plays no role. Therefore we can put χ2 = φ/2 while χ1 = −φ/2. We
find after subtracting the two equations

h̄
∂φ

∂t
= 2eV . (4.4)

Equation (4.3) has a familiar form and describes the so called d.c. Josephson
effect: The supercurrent can flow through the insulating layer provided there is
an interaction between the superconducting regions. Equation (4.4) describes
the a.c. Josephson effect: the phase difference grows with time if there is a
voltage between two superconductors. The d.c. and a.c. Josephson effects
are manifestations of the macroscopic quantum nature of superconductivity.
Various devices which employ these effects can be used for observations and
for practical implementations of the quantum properties of the superconducting
state.
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Figure 4.2: A SQUID of two Josephson junctions connected in parallel.

4.1.2 Superconducting Quantum Interference Devices

Equation (4.3) form a basis of SQUIDs. Consider a divice consisting of two
Josephson junctions in parallel connected by bulk superconductors, Fig. 4.2.
Let us integrate vs defined by Eq. (1.8) along the contour that goes clockwise
all the way inside the superconductors (dashed line in Fig. 4.2). We have

χ3 − χ1 + χ2 − χ4 −
2e
h̄c

(∫ 3

1

A · dl +
∫ 2

4

A · dl
)

= 0

since vs = 0 in the bulk. Neglecting the small sections of the contour between
the points 1 and 2 and between 3 and 4, we find

φa − φb =
2e
h̄c

∮
A · dl =

2πΦ
Φ0

(4.5)

where φa = χ2 − χ1 and φb = χ4 − χ3.
The total current through the device is

I = Ic sinφa + Ic sinφb = 2Ic cos
(
πΦ
Φ0

)
sin
(
φa − πΦ

Φ0

)
.

The maximum current thus depends on the magnetic flux through the loop

Imax = 2Ic cos
(
πΦ
Φ0

)
. (4.6)

Monitoring the current through the SQUID one can measure the magnetic flux.

4.2 Dynamics of Josephson junctions

4.2.1 Resistively shunted Josephson junction

Here we consider the a.c. Josephson effects in systems which carry both Joseph-
son and normal currents in presence of a voltage. As we know, the normal cur-
rent has a complicated dependence on the applied voltage which is determined
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R JV

I

Figure 4.3: The resistively shunted Josephson junction.

by particular properties of the junction. In this Section, we consider a simple
model that treats the normal current as being produced by usual Ohmic resis-
tance subject to a voltage V . This current should be added to the supercurrent.
Therefore, the total current has the form

I =
V

R
+ Ic sinφ (4.7)

where the phase difference is φ = χ2 −χ1. Since the Josephson current through
the junction is small, the current density in the bulk electrodes is also small.
Thus, the phases χ1 and χ2 do not vary in the bulk, χ1,2 = const. The difference
of the phases at the both sides from the hole obeys the Josephson relation

h̄
∂φ

∂t
= 2eV (4.8)

This equation describes the so called resistively shunted Josephson junction
(RSJ) model (see Fig. 4.3).

The full equation for the current is

I =
h̄

2eR
∂φ

∂t
+ Ic sinφ (4.9)

If I < Ic, the phase is stationary:

φ = arcsin(I/Ic)

and voltage is zero. The phase difference reaches π/2 for I = Ic.
If I > Ic, the phase starts to grow with time, and a voltage appears. Let t0

be the time needed for the phase to grow from π/2 to π/2 + 2π. The average
voltage is then

(2e/h̄)V = 2π/t0 ≡ ωJ (4.10)

The time t0 is found from Eq. (4.9):

t0 =
h̄

2eR

∫ π/2+2π

π/2

dφ

I − Ic sinφ
=

h̄

2eR

(∫ π/2

−π/2

dφ

I − Ic sinφ
+
∫ π/2

−π/2

dφ

I + Ic sinφ

)

=
Ih̄

eR

∫ π/2

−π/2

dφ

I2 − I2
c sin2 φ

=
h̄

2eR
2π√
I2 − I2

c
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II

V

c

Figure 4.4: The current–voltage curve for resistively shunted Josephson junc-
tion.

The average voltage is

(2e/h̄)V = 2π/t0 =
2eR
h̄

√
I2 − I2

c

The current–voltage curve takes the form

V = R
√
I2 − I2

c (4.11)

It is shown in Fig. 4.4.

4.2.2 The role of capacitance

The Josephson junction has also a finite capacitance. Let us discuss its effect
on the dynamic properties of the junction.

The current through the capacitor (see Fig. 4.5) is

I = C
∂V

∂t

The total current becomes

I =
h̄C

2e
∂2φ

∂t2
+

h̄

2eR
∂φ

∂t
+ Ic sinφ (4.12)

Let us discuss this equation. Consider first the work

δA =
∫ δt

0

IV dt =
h̄

2e
Iδφ

produced by an external current source. We find

δA =
∫ δt

0

∂

∂t

[
h̄2C

8e2

(
∂φ

∂t

)2

− h̄Ic
2e

cosφ

]
dt+

h̄2

4e2R

∫ δt

0

(
∂φ

∂t

)2

dt

This equation has the form of a balance of energy

δ [Ecapacitor + Ejunction] = δA− h̄2

4e2R

∫ δt

0

(
∂φ

∂t

)2

dt
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R J CI

Figure 4.5: The capacitively and resistively shunted Josephson junction.

where the energy of the capacitor is

Ecapacitor =
h̄2C

8e2

(
∂φ

∂t

)2

=
CV 2

2
(4.13)

The energy of the Josephson junction is

Ejunction = EJ [1 − cosφ] , where EJ =
h̄Ic
2e

(4.14)

The last term in the energy balance is the dissipative function.
Eq. (4.12) can also be written as a mechanical analogue equation

J
∂2φ

∂t2
+ η

∂φ

∂t
+ EJ sinφ = F (4.15)

of a pendulum with the moment of inertia (or “mass”)

J =
h̄2C

4e2
=

h̄2

8EC

and the maximum gravity force torque mgl = EJ in a viscous medium with a
viscosity

η =
h̄2

4e2R
=

h̄2

8ECRC

under action of a constant torque

F =
h̄I

2e

Here we introduce the energy

EC =
e2

2C
associated with charging the capacitor C with one electron charge. We will
meet this quantity later when we discuss the Coulomb blockade effects in small
junctions.

The resonance frequency of the pendulum is

ωp =

√
EJ

J
=

√
2eIc
h̄C

=
√

2πcIc
Φ0C

=
√

8EJEC

h̄
(4.16)
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It is called the plasma frequency.
Equation (4.15) can be considered as an equation of motion of a particle

with a coordinate φ, a mass J in a potential

U(φ) = EJ [1 − cosφ] − (h̄I/2e)φ = EJ [1 − cosφ− φI/Ic] (4.17)

in presence of viscosity. The potential Eq. (4.17) is called a tilted washboard
potential, Fig. 4.6.

E

φ

Figure 4.6: The tilted washboard potential. The tilting angle is determined
by the ratio I/Ic. The dot shows a particle with a coordinate φ in a potential
minimum.

Sometimes it is convenient to introduce an effective inductance equivalent
to the Josephson junction if the phase variations are small. For example, for
small φ the Josephson current becomes IJ = Icφ. On the other hand, due to
the Josephson relation,

φ =
2e
h̄

∫
V dt

Therefore, the Josephson current is

IJ =
2eIc
h̄

∫
V dt

It looks like a current through an inductance where the voltage across the in-
ductance is

V =
1
c

∂Φ
∂t

=
L

c2
∂I

∂t

(in Gaussian units) whence

I =
c2

L

∫
V dt

Therefore, the effective inductance is

LJ =
h̄c2

2eIc
(4.18)

In terms of the effective inductance, the plasma frequency is

ωp =

√
2eIc
h̄C

=
c√
LJC
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which coincides with the resonance frequency of an LC circuit.
Equation (4.12) can be written also as

ω−2
p

∂2φ

∂t2
+Q−1ω−1

p

∂φ

∂t
+ sinφ =

I

Ic
(4.19)

where we introduce the quality factor

Q = ωpRC =

√
2eIcR2C

h̄
(4.20)

that characterizes the relative dissipation in the system. This parameter is large
when resistance is large so that the normal current and dissipation are small.

Consider the dynamics of the Josephson junction in an increasing current.
As long as the current is below Ic, the phase φ is stationary: it is determined
by I = Ic sinφ. The junction is superconducting. In the representation of a
mechanical particle with a coordinate φ in a tilted washboard potential this
means that the particle is localized in one of the minima of the potential (state
φ0 in Fig. 4.7). As I increases and approaches Ic, the tilt increases, and the
minima gradually disappear as shown in Fig. 4.7. For I > Ic the particle
begins to roll down the potential relief. A nonzero velocity ∂φ/∂t determines
the voltage across the junction.

E

φ

1

2

φ0

Figure 4.7: The tilted washboard potential for I/Ic close to unity. Dashed line:
I < Ic, the potential has minima. Solid line: I > Ic, the minima disappear.

The current–voltage dependence is most simple for an overdamped junction
which corresponds to small Q i.e., to small capacitance and large dissipation. In
this case we can neglect the term with the second derivative in Eq. (4.15). We
thus return to the case considered in the previous section where the current–
voltage dependence is determined by Eq. (4.11).

For a finite Q the current–voltage dependence becomes hysteretic (see Fig.
4.8). With increasing current voltage is zero and the phase φ is localized (state
φ0 in Fig. 4.7) until I reaches Ic. For I > Ic the particle rolls down the
potential (solid line in Fig. 4.7), and a finite voltage appears which corresponds
to a voltage jump shown by a solid line in Fig. 4.8. However, when the current
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is decreased, a dissipative regime with a finite voltage extends down to currents
smaller than Ic. The current at which the voltage disappears is called retrapping
current. It corresponds to trapping of the particle back into one of the potential
minima φ0 in Fig. 4.7.

This behavior has a simple explanation. A particle with a small dissipation
will roll down the potential overcoming the potential maxima by inertia even
if I < Ic provided the loss of energy during its motion from one maximum
(state 1 in Fig. 4.7) to the next (state 2) is smaller than the energy gain
(h̄/2e)Iδφ = πh̄I/e. If the dissipation is larger (i.e., Q is smaller), the energy
loss exceeds the energy gain and the particle has no energy to continue its
motion, thus it falls down into the potential minimum and remains trapped there
(state φ0 in Fig. 4.7). In a sense, this describes a transition from “insulating”
to superconducting state with increasing dissipation.

II

V

cIr

Figure 4.8: The current–voltage curve for resistively and capacitively shunted
Josephson junction. The dotted line (coinciding with Fig. 4.4) is for resistively
shunted junction, small Q. The solid lines show the hysteretic behavior of a
contact with a large Q.

It can be shown that, for a highly underdamped junction , i.e., for large
Q→ ∞, the retrapping current goes to zero while the I–V curve has the linear
Ohmic dependence. For large Q, the voltage is almost constant V ≈ V̄ , even at
I ∼ Ic and the phase has the form

φ = 2eV̄ t/h̄+ δφ

where δφ� 1. Indeed, Eq. (4.19) yields for the time-independent component

2eV̄
h̄

=
QωpI

Ic
=

2eIR
h̄

where we use Eqs. (4.16) and (4.20) so that the I-V curve is linear

V̄ = IR

For the oscillating component we have

ω−2
p

∂2δφ

∂t2
+Q−1ω−1

p

∂δφ

∂t
+ sin(ωJ t) = 0
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where we put

ωJ =
2eV̄
h̄

For a large Q we neglect the first derivative and find

δφ =
ω2

p

ω2
J

sin(ωJ t)

The variation δφ is small if ωp/ωJ � 1. This condition reads

ω2
p

ωpωJ
=

Ic
IωpRC

=
Ic
IQ

� 1

Therefore it should be Ic/IQ� 1. If the current does not satisfy this condition,
δφ becomes large, and the finite voltage regime breaks down. Therefore, the
retrapping current is

Ir ∼ Ic/Q (4.21)

It goes to zero as Q→ ∞.

4.2.3 Thermal fluctuations

Consider first overdamped junction. A particle with a coordinate φ is mostly
sitting in one of the minima of the washboard potential in Fig. 4.6. It can
go into the state in a neighboring minimum if it receives the energy enough to
overcome the barrier. This energy can come from the heat bath, for example,
from phonons. The probability of such a process is proportional to exp(−U/T )
where U is the height of the barrier as seen from the current state of the particle.
The probability P+ to jump over the barrier from the state φ0 to the state φ0+2π
and the probability P− to jump over the barrier from the state φ0 + 2π back to
the state φ0 are

P± = ωa exp
[
−U0 ∓ (πh̄I/2e)

T

]
where ωa is a constant attempt frequency, and U0 is the average barrier height.
Therefore, the probability that the particle will go from the state φ0 to the state
φ0 + 2π is

P = P+ − P− = 2ωa exp
[
−U0

T

]
sinh

(
πh̄I

2eT

)
This will produce a finite voltage

V̄ =
(
h̄

2e

)
2πP =

2πh̄ωa

e
exp

[
−U0

T

]
sinh

(
πh̄I

2eT

)

For low currents, I � Ic, the barrier height is independent of the current
U0 = 2EJ . For I → 0 we find

V̄ =
π2h̄2ωaI

e2T
exp

(
−2EJ

T

)
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II

V

c

Figure 4.9: The current–voltage curves of a RSJ junction in presence of thermal
fluctuations. The curves from bottom to top correspond to decreasing EJ/T ;
the curve starting at I = Ic refers to EJ = ∞.

This is a linear dependence characterized by certain resistance that depends on
the attempt frequency. One can express the attempt frequency in terms of the
resistance in the normal state R. Indeed, for T ∗ ∼ EJ the Josephson barrier is
ineffective thus the exponent can be replaced by unity, and the current voltage
dependence defines the normal resistance

π2h̄2ωa

e2T ∗ = R

whence ωa = e2EJR/π
2h̄2. Using this we find for the voltage

V̄ =
EJRI

T
exp

(
−2EJ

T

)

This determines the effective resistance of the junction [?]

RJ =
EJR

T
exp

(
−2EJ

T

)
(4.22)

It is exponentially small for low temperatures.
We see that the junction has a finite (though small) resistance even for

low currents. The current–voltage curve for an overdamped RSJ junction in
presence of thermal fluctuations is shown in Fig. 4.9.

In the case of underdamped junctions, the particle will roll down the po-
tential relief as soon as it gets above the potential barrier. The probability of
this process is just P = ωa exp(−U/T ). The attempt frequency ωa is now the
oscillation frequency in the potential minimum determined by sinφ = I/Ic such
that

ω2
a = ω2

p

∂2

∂φ2
cosφ = ω2

p

(
1 − I2

I2
c

)1/2

The barrier height is U = Umax − Umin where Umin is the value of the energy
Eq. (4.17) at φ = arcsin(I/Ic) while Umax is its value at φ = π − arcsin(I/Ic).
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Therefore

U = 2EJ

[
cos arcsin

I

Ic
− I

Ic
arccos

I

Ic

]

= 2EJ

√
1 − I2

I2
c

− 2IEJ

Ic
arccos

(
I

Ic

)
(4.23)

The probability is more important for large currents I → Ic when the barrier is
small,

U ≈ 4
√

2
3
EJ (1 − I/Ic)

3/2 (4.24)

As the current increases from zero to Ic the probability P = ωa exp(−U/T )
of an escape from the potential minimum increases from exponentially small
up to P ∼ ωp ∼ 1010 sec−1. The voltage generated by escape processes is
V ∼ (πh̄/e)P .

The rising part of the I–V curve in Fig. 4.9 for an overdamped junction near
Ic is also determined by an exponential dependence V = (πh̄/e)P+ where the
probability P+ contains the barrier from Eq. (4.24). Indeed, the probability
of the reverse process P− is now strongly suppressed by a considerably higher
barrier seen from the next potential minimum.

4.2.4 Shapiro steps

When a Josephson junction is driven by an a.c. voltage (or is subject to a
microwave irradiation) with a frequency ω, the d.c. component of supercurrent
through the junction exhibits the so called Shapiro steps: jumps of the current
at constant voltages satisfying Vn = nh̄ω/2e.

Let the voltage across the junction be

V = V0 + V1 cos(ωt)

The phase difference across the junction is then

φ = φ0 + ωJ t+ (2eV1/h̄ω) sin(ωt)

where ωJ = 2eV0/h̄. The supercurrent becomes

I = Ic sinφ = Ic

∞∑
k=−∞

(−1)kJk(2eV1/h̄ω) sin(φ0 + ωJ t− kωt)

where k runs over integer numbers. We use here the expansion

eiz sin α = J0(z) + 2
∞∑

k=1

J2k(z) cos(2kα) + 2i
∞∑

k=0

J2k+1(z) sin[(2k + 1)α]

=
∞∑

k=−∞
Jk(z) cos(kα) + i

∞∑
k=−∞

Jk(z) sin(kα)
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I

V

ΔI1

hω/2e

2hω/2e

3hω/2e

Figure 4.10: The current–voltage curves of a RSJ junction irradiated by a mi-
crowave with frequency ω.

with z = 2eV1/h̄ω and α = ωt. We note that due the parity Jk(z) = (−1)kJ−k(z)
of the Bessel functions, the components with odd k drop out from the first sum
in the second line, while the components with even k drop out from the second
sum. Using this we arrive at the above expression for the current.

We see that for ωJ = kω, i.e., for

Vk = kh̄ω/2e

the supercurrent has a d.c. component Ik = IcJk(2eV1/h̄ω) sin(φ0 + πk). This
d.c. component adds to the total d.c. current and produces the step parallel to
the current axis with the width ΔIk = 2IcJk(2eV1/h̄ω).



Chapter 5

Coulomb blockade in
normal double junctions

5.1 Orthodox description of the Coulomb block-
ade

See [12]. For more detailed description including the effects of environment see,
for example, review [13], [15].

C1, R1 C2, R2

V1 V2
Vg

Cg

Island

Figure 5.1: The equivalent circuit of a SET. The island is coupled to the voltage
source via two contacts with resistances R1, R2 and capacitances C1, C2, and
to the gate through the capacitor Cg. The bias voltage is V = V1 − V2.

Consider the device called the single electron transistor (SET) with the
equivalent circuit shown in Fig. 5.1. For simplicity we assume a symmetric
situation C1 = C2, R1 = R2 ≡ RT such that V1 = V/2, V2 = −V/2, and that
the capacitance of the gate Cg is small. Let the charge on the island provided
by the gate voltage be Q0 = VgCg.

For zero bias voltage V = 0, the electrostatic energy of the island having
a charge Q consisting of the continuous offset charge Q0 provided by the gate
electrode and a discrete charge of k electrons that have tunneled into the island,
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e/2 3e/2-3e/2 0 Q0

E

e-e -e/2 2e-2e

k=0 k=-1k=1

Figure 5.2:

Q = ke+Q0, is

Q2

2CΣ
=

(Q0 + ke)2

2CΣ
=

Q2
0

2CΣ
+
ke(Q0 + ke/2)

CΣ

Here CΣ = C1 +C2 is the total capacitance. The spectrum is shown in Fig. 5.2.
The parabolas intersect at Q0 = −ke/2.

If the temperature is low, T � EC , the tunneling into the island at small
bias voltage becomes possible and the current can flow through the junction
only for those gate charges for which the parabolas intersect. For other gate
charges, the low-voltage current is zero. Let us consider the conditions for the
current as functions of the bias voltage and the gate charge.

The energy difference between the state of the island after k electrons have
tunneled from the source which has the bias potential Vb is

δE =
(Q0 + ke)2

2CΣ
− Q2

0

2CΣ
− keVb =

ke(Q0 + ke/2)
CΣ

− keVb

The difference vanishes when Vb = Vb,k, where

Vb,k =
Q0 + ke/2

CΣ

For tunneling of one electron, the voltage when the tunneling starts is

Vb,1 =
Q0 + e/2
CΣ

[see Fig. 5.3 (a)]. It vanishes if the offset charge on the island provided by the
gate is Q0 = −e/2. For this charge, the I-V curve starts from zero voltage, Fig.
5.3 (b).

If the bias voltage is increased, the two-electron tunneling becomes possible
when

Vb,2 =
Q0 + e

CΣ
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Vb1 Vb2 Vb3 Vb

I

(a)
Vb2

Vb3 Vb

I

(b)

Figure 5.3: The Coulomb staircase: The current exhibits steps at V = Vb,k. (a)
Zero offset charge Q0 = 0, when Vb,k = (ke/2C; (b) Offset charge Q0 = −e.

and so on. The appearance of the two-electron process is seen on the I-V curve
as another step. The steps associated with multiple-charge tunneling are called
the Coulomb staircase.

Let us consider now the one-electron processes and calculate the tunneling
rates.

In the presence of the bias voltage, the electrostatic energy change in a
state with a charge Q on the island for adding an electron to the normal island
through the left junction is

ΔE+
L =

(Q+ e)2

2CΣ
−
(
Q2

2CΣ
+
eV

2

)
=
e(Q+ e/2)

CΣ
− eV

2
= 2EC

(
ñ+

1
2

)
− eV

2
(5.1)

Here EC = e2/2CΣ is the characteristic charging energy of the island, and
ñ = Q/e = n+Q0/e where n is an integer number of extra electrons.

In general, the electrostatic energy change in a state with a charge ñ =
n + Q0/e on the island for adding (+) or removing (−) an electron to the
normal island through the left junction is

ΔE±
L (n) = ±2EC(ñ± 1/2) ∓ eV/2

The electrostatic energy change in a state with a charge ñ on the island for
adding (+) or removing (−) an electron to the normal island through the right
junction is

ΔE±
R (n) = ±2EC(ñ± 1/2) ± eV/2

The tunnelling rates are

Γ±
L(R)(n) =

1
e2RT

∫ ∞

−∞
dE f1(E)[1 − f2(E − ΔE±

L(R)(n))]. (5.2)

Here RT is the resistance of one contact, f1(E) is the distributions on the source
electrode, while f2(E − ΔE) is the distribution on the target electrode before
the tunneling event; therefore 1−f2(E−ΔE) is the probability to find that the
state is empty where the tunneling should occur. The probability of tunneling
is proportional to the transparency of the contact T ∝ 1/RT . The other factors
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in the coefficient in front of the integral in Γ are chosen in such a way as to
provide the correct expression for the resistance of the contact in the Ohmic
regime, see Eq. (5.7) below.

For equilibrium distribution fi(E) = (1 + eE/Ti)−1 with T1 = T2,we have

f(E)[1 − f(E − ΔE±(n))] =
f(E) − f(E − ΔE±)

1 − exp(ΔE±/T )

One can also prove that∫ ∞

−∞
dE [f(E) − f(E + x)] = x

Therefore, Eq. (5.2) yields

Γ±(n) =
1

e2RT

ΔE±

exp(ΔE±/T ) − 1
(5.3)

The current into the island through the left (right) junction is

IL(R) = e

∞∑
n=−∞

σ(n)[Γ+
L(R)(n) − Γ−

L(R)(n)] (5.4)

where σ(n) is the probability of having n extra electrons on the island. We have

∞∑
n=−∞

nσ(n) = 0 (5.5)

by symmetry, and

∞∑
n=−∞

σ(n) = 1 ,
∞∑

n=−∞
ñσ(n) = Q0/e (5.6)

5.1.1 Low temperature limit

For T → 0 the tunneling rates Eq. (5.3) are

Γ±
L(R)(n) =

1
e2RT

|ΔE±
L(R)|Θ(−ΔE±

L(R))

The rates vanish when all ΔE±
L(R) are positive. This takes place when

ΔE(+)
L > 0 : eV/2 − 2EC(ñ+ 1/2) < 0 (a)

ΔE(−)
L > 0 : eV/2 − 2EC(ñ− 1/2) > 0 (b)

ΔE(+)
R > 0 : eV/2 + 2EC(ñ+ 1/2) > 0 (c)

ΔE(−)
R > 0 : eV/2 + 2EC(ñ− 1/2) < 0 (d)
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(a)

(b)

(c)

(d)
V

Qe/2-e/2

e/C

-e/C

Figure 5.4: The region of stable charge is shaded. The lines (a)–(d) correspond
to equalities in Eqs. (a) to (d).

V

Q0e/2-e/2 3e/2-3e/2

n=0n=1 n=-1

Figure 5.5: The regions of stable charge n = 0,±1, . . . as functions of the gate
charge.

In Fig. 5.4 the diamond-shaped region in the plane (V,Q = eñ) is shaded where
all the rates are zero. This is the region where the current to and out of the
island is zero, and the charge on the island does not change due to the Coulomb
blockade. If the offset charge Q0 is in the range −e/2 < Q0 < e/2, the state
with n = 0 is stable.

With change in the gate voltage, the stable charge on the island will vary by
integer number of electrons due to tunneling to or from the respective electrode.
The regions of stable states with n = 0,±e, . . . as functions of the gate charge
are shown in Fig. 5.5.

5.1.2 Conductance in the high temperature limit

We have for the left junction

Γ+
L(n) − Γ−

L (n) =
1

e2RT

[
ΔE+

L

exp(ΔE+
L /T ) − 1

− ΔE−
L

exp(ΔE−
L /T ) − 1

]

Up to the first order in EC/kBTe we have

Γ+
L(n) − Γ−

L (n) =
T

e2RT

[
v

(
1

1 − ev
+

1
1 − e−v

)

−2ñEC

T
[f(v) + f(−v)] +

EC

T
[f(v) − f(−v)]

]
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=
T

e2RT

[
v − 2ñEC

T
+
EC

T
[f(v) − f(−v)]

]

Here we introduce the reduced voltage v ≡ eV/2T and denote

f(v) =
1

1 − ev
+

vev

(1 − ev)2

We also use
f(v) + f(−v) =

1
1 − ev

+
1

1 − e−v
= 1

Using Eqs. (5.5) and (5.6) we find

IL =
T

eRT

[
v − 2Q0EC

eT
+
EC

T
[f(v) − f(−v)]

]

=
T

eRT

[
v − 2Q0EC

eT
− EC

T

sinh v − v

2 sinh2 v

]

We find for the differential conductance [14]

G

GT
= 2RT

dI

dV
= 1 − EC

T

v sinh v − 4 sinh2(v/2)
4 sinh4(v/2)

(5.7)

where G−1
T = 2RT is the total resistance of the contacts. This equations shows

in particular that the resistance of the junction in the absence of charging effects
is 2RT , i.e., the resistance of each tunnel contact is RT . This confirms the choice
of the coefficient in Eq. (5.2). The depth of the conductance minimum at V = 0
in Eq. (5.7) is

ΔG/GT = −EC

3T
The behavior of the conductance is shown in Fig. 5.6.

V0

G/GT

1

T1

T2

Figure 5.6: The minimum in conductance as a function of the bias voltage due to
Coulomb effects at hight temperatures. The two temperatures satisfy T2 < T1.



Chapter 6

Quantum phenomena in
Josephson junctions

6.1 Quantization

6.1.1 Quantum conditions

Quantum effects can be observed in Josephson structures consisting, for exam-
ple, of a very small superconducting grain connected to superconducting charge
reservoirs through small tunnel junctions having very low capacitance and high
tunnel resistance, as shown in Fig. 6.1. The equivalent circuit is shown in Fig.
5.1. The necessary constraints can be easily estimated from general arguments.
First, the Coulomb charging energy for one electron e2/2C should be larger than
temperature T to avoid thermal smearing of the charge states on the supercon-
ducting island. For T ∼ 1 K this gives C < 10−15 F which strongly restricts
the size of the junction by an area ∼ 10−8 cm2. Second, the tunnel resistance
should be large enough to avoid averaging out by quantum fluctuations in the
particle number. To be observable, the charging energy e2/2C must exceed the
quantum uncertainty in energy h̄/Δt ∼ h̄/RC associated with the finite life-
time of the charge on the capacitor. Equating e2/2C to h̄/RC we find that
the capacitance drops out and the condition becomes R > R0 where R0 is the
resistance quantum R0 = h/2e2 ≈ 12 kΩ, the quantity already familiar from
Eq. (??).

Another realization may be a small Josephson junction with a capacitance
C and tunnel resistance R satisfying the above conditions, which is connected
through small-capacitance, Cext � C, high-resistance contacts such that R0 �
Rext � R to the external current source, Fig. 6.2. The detailed description of
quantum phenomena can be found, for example, in review [13].
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V

R,C R,C

L I

G

1 L2

Cg

Figure 6.1: Realization of the quantum Josephson junction device: A small
island I is connected to the external leads L1 and L2 by tunnel contacts. The
tunnel resistance R should be larger than R0. An additional gate electrode G
is connected to the island through a capacitor Cg to control the voltage on the
island.

R

R C

S Sext

extC

V

L1 L2

Figure 6.2: Another realization of the quantum Josephson junction device: A
small Josephson junction is connected to the external leads L1 and L2 by high-
resistance Rext and low capacity Cext � C contacts. Both Rext and the tunnel
resistance R should be larger than R0.

6.1.2 Charge operator

Consider an isolated Josephson junction. The charging energy of the capacitor
is

Q2

2C
=
CV 2

2
=
C

2

(
h̄

2e
∂φ

∂t

)2

If the phase difference φ is treated as a particle coordinate, the time derivative
∂φ/∂t should be considered as a velocity, while the charging energy is equivalent
to the kinetic energy.

In quantum mechanical description, the kinetic energy is written in terms of
the momentum operator. If the coordinate is φ then the momentum operator
is defined as

p̂φ = −ih̄ ∂

∂φ
(6.1)

This definition complies with the usual commutation rule

[p̂φ, φ]− = −ih̄ (6.2)

To find out the physical meaning of the momentum operator let us consider
the continuity equation for the supercurrent

d(eNs)
dt

= −
∫
∂js x

∂x
d3r
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The current density j has the form of the charge flow density ensvs which is

e
∂Es

∂ps

where ps is the momentum of a superconducting particle and Es is the super-
conducting energy density. The momentum of the Cooper pair is 2ps = h̄∂χ/∂x
so that the continuity equation takes the form

d(eNs)
dt

= −e
∫

∂

∂x

∂Es

∂ps
d3r = −2e

h̄

∫
∂

∂x

∂Es

∂(φ/x)
d3r = −2e

h̄

∂Es

∂φ

since the phase gradient over the length x is ∂χ/∂x = φ/x where φ is the (given)
phase difference. The quantity

Es =
∫
Es d

3r

is the superconducting energy. Therefore,

h̄

2
dNs

dt
= −∂Es

∂φ
(6.3)

This equation can be considered as one of the Hamiltonian equations ∂p/∂t =
−∂H/∂x. Since φ is the coordinate and E is the energy, the quantity h̄Ns/2 is
the momentum of the particle. However, according to Eq. (6.2) the canonically
conjugated momentum operator is p̂φ. Therefore, p̂φ = h̄Ns/2 and

−i ∂
∂φ

=
Ns

2
= Np (6.4)

is the operator of the number of Cooper pairs Np = Ns/2. The second Hamil-
tonian equation has the form

∂x

∂t
=
∂H
∂p

⇒ ∂φ

∂t
=

E
∂(h̄Ns/2)

or
1
2
∂φ

∂t
=

∂Es

∂(h̄Ns)
=
μs

h̄

where μs is the chemical potential of Cooper pairs. This equation coincides with
the Josephson relation since μs = eV .

Equation (6.4) defines the operator of “superconducting charge” transferred
through the junction

Q̂ = eN̂s = 2eN̂p = −2ie
∂

∂φ
(6.5)

The commutation relation takes the form

[Q̂, φ]− = −2ie

Therefore, the quantum uncertainty in phase Δφ and in charge ΔQ are restricted
by the charge of a Cooper pair ΔφΔQ ∼ 2e.
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The eigenfunction of a state with the charge Q obeys the equation

Q̂ΨQ = QΨQ or − 2ie
∂ΨQ

∂φ
= QΨQ

It is
ΨQ(φ) = CeiQφ/2e (6.6)

Assuming a single-valued wave function

ΨQ(φ+ 2π) = ΨQ(φ)

we obtain quantization of charge of a Cooper pair πQ/e = 2πn, i.e.,

Q = 2en

where n is a integer.
Note that φ is the phase of the wave function of a Cooper pair of electrons.

The single electron phase would be φ1 = φ/2. If we now require a single-valued
one-electron wave function,

ΨQ(φ1) = CeiQφ1/e

so that Ψ(φ1 + 2π) = Ψ(φ1), we obtain 2πQ/e = 2πn such that the single-
electron charge is integer: Q = en.

6.1.3 The Hamiltonian

The charging energy of a capacitor can be written as

Q2

2C
= −4e2

2C
∂2

∂φ2
= −4EC

∂2

∂φ2

where

EC =
e2

2C
is the the charging energy for the charge of one electron.

The total energy of the Josephson junction becomes

H = −4EC
∂2

∂φ2
+ EJ [1 − cosφ] (6.7)

This is the Hamiltonian of the junction in the quantum mechanical description.
If the junction is connected to a current source, the charge operator changes

Q̂ = −2ie
∂

∂φ
+ q(t)

where q(t) is a continuous charge supplied by the current source. The Hamilto-
nian becomes

H = 4EC

(
−i ∂
∂φ

+
q(t)
2e

)2

+ EJ [1 − cosφ] (6.8)
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In the classical limit this Hamiltonian is equivalent to the washboard poten-
tial. Indeed, the classical analogue of Eq. (6.8) is

E =
[Q+ q(t)]2

2C
+ EJ [1 − cosφ]

where Q is the charge that is transferred through the junction. Using the
Josephson relation V = (h̄/2e)(dφ/dt) the charging energy can be transformed
as

[Q+ q(t)]2

2C
=

Q2

2C
+

[Q+ q(t)]q(t)
C

− q2(t)
2C

=
Q2

2C
+ V q(t) − q2(t)

2C
=
Q2

2C
− h̄φ

2e
dq

dt
+

d

dt

[
h̄φ

2e
q(t)

]
− q2(t)

2C

=
Q2

2C
− h̄φ

2e
I +

dF (t)
dt

Here I = dq/dt. The last term dF (t)/dt is a full derivative of certain function.
It can be omitted. With Eq. (6.5) for the operator Q, the total Hamiltonian
assumes the usual form of a Hamiltonian of a particle in the tilted washboard
potential

H = −4EC
∂2

∂φ2
+ EJ [1 − cosφ] − h̄I

2e
φ (6.9)

The quantum-mechanical description goes over into the classical picture de-
scribed in Chapter 4 when the charge Q in the charge eigen-function Eq. (6.6) is
large as compared to the electron charge and can be considered as a continuous
variable.

6.2 Macroscopic quantum tunnelling

With the account of quantum effects, the behavior of the junction in presence
of a high bias current is different from that considered in the previous chapter.
Consider the Hamiltonian Eq. (6.9) for a representative particle in a washboard
potential. The representative particle with the coordinate φ can now escape
from the potential minimum at φ0 by tunnelling through the potential barrier,
see Fig. 6.3, maximum 1. If the maximum 2 in Fig. 6.3 is lower than the
minimum φ0, the particle needs one tunnelling through the barrier shown by a
gray region in the figure.

Tunnelling of the representative particle means a tunnelling of the entire
system from one macroscopic state that contains many particles to another
macroscopic state. This process involves a macroscopic number of particles
and thus its probability should be inherently small. However, the Josephson
junction provides a tool that can help us to observe these macroscopic quantum
tunnelling (MQT) events.

The easiest way to solve the Schrödinger equation[
−4EC

∂2

∂φ2
+ U(φ)

]
Ψ(φ) = EΨ(φ)
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E

φ1

2φ0

0

Figure 6.3: The tilted washboard potential in the quantum case. A quantum
particle can escape from the potential minimum by tunnelling through the bar-
rier (grey region).

with the washboard potential

U(φ) = EJ

[
1 − cosφ− I

Ic
φ

]

is to use the WKB approximation

Ψ = exp
(
i

∫
λ(φ) dφ

)

assuming dλ/dφ� λ2. We find

λ2 =
E − UJ(φ)

4EC

The WKB approximation holds if dU/dφ� λ3EC or when EJ � EC .
For the energy below the potential maximum we have

λ = iλ̃ =
i
√
UJ(φ) − E

2E1/2
C

which ensures the decay of the wave function for positive φ. The transmission
probability through the barrier is proportional to the square of the transmission
amplitude

exp

(
−
∫ φ′

φ0

λ̃ dφ

)

where φo and φ′ are the turning points satisfying E = U(φ). The probability of
tunnelling becomes

P ∼ ωa exp

(
−E−1/2

C

∫ φ′

φ0

√
UJ(φ) − E dφ

)
(6.10)

The exponent is generally of the order of

(EJ/EC)1/2Δφ� 1
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where Δφ = φ′ − φ0. This results in a very small probability. For zero current,
δφ ∼ π. Writing h̄ωp = (8EJEC)1/2 we can present the probability as

P ∼ ωp exp (−2πEB/h̄ωp)

where EB ∼ 2EJ is the barrier height. This will transform into the Boltzmann
factor exp(−EB/T ) for the crossover temperature

Tcr ∼ h̄ωp/2π

For typical value of ωp ≈ 1011 sec−1 this corresponds to Tcr ≈ 100 mK.
The tunnelling probability increases for I → Ic, when the barrier height is

getting small, see Eq. (4.24). We have

U ≈ 4
√

2
3
EJ (1 − I/Ic)

3/2

while
Δφ = arccos(I/Ic) =

√
1 − (I2/I2

c )

so that the factor in the exponent for the probability becomes

∼ −(EJ/EC)1/2[1 − (I/Ic)]5/4

6.2.1 Effects of dissipation on MQT

For low temperatures, the system occupies the low energy states in the potential
minimum with the oscillator frequency ωp. Consider the limit of low currents.
The characteristic “time” it takes for the system to tunnel through the barrier
is tt ∼ 2π/ωp. The energy dissipated during this time is

ED ∼ h̄2

4e2R

(
dφ

dt

)2

tt ∼
2πh̄2ωp

4e2R

It should be smaller than the energy itself, ED � h̄ωp/2, otherwise the sys-
tem cannot tunnel into a state in another potential minimum. This gives the
condition

R� R0 =
h

2e2
R0 being the quantum of resistance. If this condition is fulfilled, the MQT is
possible. The phase can escape from the potential minimum, and the current
driven junction will exhibit a finite voltage. It will not be superconducting in a
strict sense. However, if the dissipation is larger, i.e., R < R0, the phase cannot
tunnel. There will be no voltage: the junction is superconducting. Therefore,
the dissipation helps the superconductivity, which is a counterintuitive result.

We can look at this estimate also in a different way. When the phase is fixed
to one of the potential minima, the charge Q on the superconducting island
is not defined due to the quantum uncertainty relation. Thus, the quantum
fluctuations of charge are large. On the contrary, when the phase can tunnel,
its uncertainty increases and the charge becomes more localized. This agrees
with the estimates on the barrier resistance made in the beginning of the present
Chapter.
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6.3 Band structure

6.3.1 Bloch’s theorem

The Band structure of the energy states in a periodic potential is a consequence
of the Bloch’s theorem known in solid state physics [11]: Any solution of the
Schrödinger equation for a particle in a potential U(x) periodic with a period a
has the form

Ψk(x) = uk(x)eikx

where uk(x) is a periodic function

uk(x+ a) = uk(x)

An equivalent formulation of the Bloch’s theorem is that for a particle in a
potential U(x) periodic with a period a there exists a quantity k such that the
wave function obeys

Ψk(x+ a) = eikaΨk(x) (6.11)

The quantity k is called quasimomentum. The energy, i.e., the eigenvalue of the
Schrödinger equation[

− h̄2

2m
d2

dx2
+ U(x)

]
Ψk(x) = EkΨk(x)

depends on the quasimomentum. The energy spectrum is split into intervals
continuously filled by the values Ek as functions of k (energy bands) separated
by intervals where there no values of Ek (forbidden bands). These energy bands
are labelled by the band numbers n such that E = Ekn.

The quasimomentum is defined within an interval

−π
a
≤ k ≤ π

a

which is called the first Brillouin zone. All the quasimomenta that differ by an
integer multiple of 2π/a are equivalent, i.e., the quasimomenta

k′ = k + (2π/a)n

refer to the same quasimomentum. Indeed, Eq. (6.11) shows that Ψk′(x+ a) =
eikaΨk′(x), i.e., belongs to the same quasimomentum as Ψk. However, there
may be many states belonging to the same quasimomentum, so that k and
k + (2π/a)n do not necessarily belong to the same state. An example can be
constructed for a free particle with a spectrum E = p2/2m if one introduces
a very small (zero) potential with an (arbitrary) period a. This spectrum is
shown in Fig. 6.4.

Since the quasimomenta π/a and −π/a differ by 2π/a, the points at the right
and left boundary of the Brillouin zone are equivalent. One can thus consider
the so called extended zone scheme where the energy is periodic as a function
of quasimomentum with a period 2π/a. This is shown in Fig. 6.4 by dashed
curves.
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π/a−π/a 3π/a−3π/a 0 k

E

Figure 6.4: The energy spectrum for a free particle in the presence of a small
periodic potential. The spectrum shown by solid lines is reduced to the first
Brillouin zone −π/a < k < π/a. The dashed lines refer to the extended zone
scheme.

6.3.2 Bloch’s theorem in Josephson devices

In the case of Josephson junctions, the coordinate is φ. If the junction is not
connected to the current source, the period of the Josephson potential is 2π.
Therefore, solutions of the Schrödinger equation with the Hamiltonian Eq. (6.7)

−4EC
∂2

∂φ2
Ψk + EJ [1 − cosφ]Ψk = EΨk (6.12)

should obey
Ψk(φ+ 2π) = ei2πkΨk(φ) (6.13)

where k is defined within the first Brillouin zone −1/2 < k < 1/2. Equation
(6.12) is known in mathematics as the Mathieu equation.

Without the potential we would have

Ψk = eikφ

Comparing this with Eq. (6.6) we recognize that k plays the role of charge Q/2e.
Therefore, the quasimometum k in the presence of potential is the quasicharge

Q = 2ek

defined within the first Brillouin zone

−e < Q < e (6.14)

If we require a single-valued wave function Ψk(φ+2π) = Ψk(φ) we find that
k = n so that the quasicharge defined within the first Brillouin zone is zero, i.e.,
Q = 0. The energies of a free charge (see Fig. 6.4) are

EQ = 4ECn
2 =

(2en)2

2C
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which corresponds to an integer number of electron pairs on the junction.
The situation changes if we have an external current source. The Hamilto-

nian has the form of Eq. (6.8). The Schrödinger equation becomes

4EC

(
−i ∂
∂φ

+
q(t)
2e

)2

Ψ + EJ [1 − cosφ]Ψ = EΨ (6.15)

We make a gauge transformation

Ψ = Ψ̃e−iq(t)φ/2e

where the function Ψ̃ satisfies Eq. (6.12) and obeys the Bloch’s theorem, Eq.
(6.13), i.e.,

Ψ̃Q(φ+ 2π) = eiπQ/eΨ̃Q(φ) (6.16)

As a result the function Ψ satisfies

ΨQ(φ+ 2π) = eiπ[Q−q(t)]/eΨQ(φ) (6.17)

Requiring it to be single valued we find

Q = q(t) + 2en (6.18)

whence
dQ

dt
=
dq

dt
= I (6.19)

We see that the quantum mechanics of the Josephson junction connected to
the current source can be described by the Hamiltonian Eq. (6.7) where the
quasimomentum depends on time according to Eq. (6.19).

6.3.3 Large Coulomb energy: Free-phase limit

This limit is realized when the Josephson energy EJ is much smaller that the
charging energy EC , i.e., EJ � EC . The Schrödinger equation (6.12)

−4EC
∂2

∂φ2
ΨQ + EJ [1 − cosφ]ΨQ = EQΨQ (6.20)

It has the solutions which are close to the eigenstates for fixed charge Eq. (6.6).
The spectrum has the form of parabolas

E − EJ = EC
Q2

e2
=

(q + 2en)2

2C

shown in Fig. 6.5. The parabolas are shifted by integer multiple of the Cooper
pair charge 2e.

The quantum-mechanical description implies that the the charge q in Fig. 6.5
is replaced by a quasicharge Q reduced to the first Brillouin zone, −e < Q < e.
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e 3e−3e 0 q

E

2e−2e −e 4e−4e

Figure 6.5: The energy spectrum of a free charge (in a zero Josephson potential)
as a function of the bias charge q.

e−e 3e−3e 0 Q

E

Eg

Figure 6.6: The energy spectrum for a Josephson junction in the limit of nearly
free phase. The spectrum in the first Brillouin zone −e < Q < e is shown by
solid lines.

A small Josephson potential introduces small energy gaps at the boundary
of the Brillouin zone where the free-charge parabolas cross (black point in Fig.
6.5). To calculate the first energy gap we note that the potential

−EJ cosφ = −EJ

2
[
eiφ + e−iφ

]
couples the states at the Q = e boundary of the Brillouin zone

ΨQ=e = eiφ/2

and the states at the Q = −e boundary

ΨQ=−e = e−iφ/2

which differ by δQ = 2e and thus belong to the same quasicharge Q. The wave
function at Q = e will thus be a linear combination

Ψe = c1e
iφ/2 + c2e

−iφ/2
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Inserting this into the Schrödinger equation (6.20) we find

EC

[
c1e

iφ/2 + c2e
−iφ/2

]
− EJ

2

[
c1e

3iφ/2 + c2e
iφ/2 + c1e

−iφ/2 + c2e
−3iφ/2

]
= (E − EJ)

[
c1e

iφ/2 + c2e
−iφ/2

]
The harmonics with ±3iφ/2 couple to the Q = 3e quasicharge. Comparing the
coefficients at the ±iφ/2 harmonics we find

(EC − E + EJ )c1 −
EJ

2
c2 = 0

(EC − E + EJ )c2 −
EJ

2
c1 = 0

whence
E = (EC + EJ) ± EJ

2
This means that the energy gap has the width Eg = EJ with the middle at
EC + EJ , see Fig. 6.6. The middle point is shifted with respect to its free-
phase-limit (EJ = 0) location at EC due to the constant component of the
potential. The lowest energy is also shifted above zero, see Problem 7.1.

Since the boundaries Q = −e and Q = e of the Brillouin zone are equivalent,
as well as they are, in general, for any Q = 2em (m is an integer), one can use the
so called extended zone scheme where the energy in each band EQ,n ≡ En(Q)
is a periodic function of Q:

En(Q+ 2em) = En(Q)

This is shown by dashed lines in Figs. 6.4, 6.6.

6.3.4 Low Coulomb energy: Tight binding limit

In this limit the Josephson energy is larger than the charging energy EJ � EC

which implies large capacitance. The system behavior is close to that for a
particle in a series of deep potential wells. One can expand the potential near
each minimum

U(φ) =
EJφ

2

2
to get the oscillator potential. The Schrödinger equation (6.20) transforms into
the oscillator equation

−4EC
d2ψ

dφ2
+
EJφ

2

2
ψ = Eψ

The energy spectrum is

En =
√

8ECEJ

(
n+

1
2

)
= h̄ωp

(
n+

1
2

)
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φ

U

Eb

Ψ

0 2π−2π

Figure 6.7: The energy band spectrum for a Josephson junction in the limit of
large Josephson energy (tight binding). The energy bands are widened oscillator
levels for a localized particle with the wave function ψ.

The energy spacing h̄ωp ∼ EJ

√
EC/EJ � EJ . The lowest energy wave function

is

ψ0(φ) = C exp

(
−φ

2

4

√
EJ

2EC

)

Due to the periodic nature of the potential one can construct the true wave
function

ΨQ,n(φ) =
∑
m

ei2πm(Q/2e)Ψn(φ− 2πm)

where Ψn(φ− 2πm) is a function centered at φ = 2πm. The function Ψn(φ) is
called the Wannier function [11]. It is close to the wave function ψn(φ) obtained
by solving the equation near each minimum. This wave function ΨQ,n(φ) sat-
isfies the Bloch condition Eq. (6.16). Each level is broadened into an energy
band (see Problem 7.3)

EQ = En − 1
2
Eb,n cos

πQ

e
(6.21)

The band width is determined by overlaps of the wave functions Ψn(φ) centered
at φm = 2πm. It is exponentially small. For example, the lowest band width is

Eb,0 = 32
(
EJEC

π

)1/2(
EJ

2EC

)1/2

exp

(
−
√

8EJ

EC

)

The quantum properties of Josephson junctions are discussed in review [?].

6.4 Coulomb blockade

Let us consider Fig. 6.5. If we increase, by a bias current from the external
source, the charge starting from q = 0 for n = 0 the energy will increase until
it reaches the crossing point (black dot) at q = e corresponding to the charge
e on the capacitor and to the voltage e/C across the capacitor. With a further
increase in q the system will go over to a state with n = −1 corresponding to
the parabola shifted by 2e to the right that has a lower energy. The transition
from n = 0 to n = −1 corresponds to the 2e charge transfer through the
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tunnel Josephson junction. We see that the charge transfer (current) through
the capacitor occurs only when the voltage reaches a threshold value VC = e/C.
This is the Coulomb blockade: preventing of the charge transfer by the charging
energy. To describe the Coulomb blockade quantum-mechanically, we need first
to consider the semi-classical equation of motion in a periodic potential.

6.4.1 Equation of motion

In the semi-classical theory than neglects transition between energy bands, the
equation of motion for the quasimomentum of a particle is [11]

h̄
∂k

∂t
= F

For a constant force F this gives h̄k = Ft. The velocity is

∂x

∂t
=
∂En

h̄∂k

where En(k) is the band energy. This yields

∂x

h̄∂k
=

1
F

∂En

h̄∂k

or
x = F−1En(k) , h̄k = Ft

For a free particle in zero potential E(k) = h̄2k2/2m, so that the particle is
continuously accelerated. However, in a periodic potential, E(k) is a periodic
function. Therefore, instead of being accelerated, the coordinate of particle
performs Bloch oscillations with the amplitude Δx = 2Eb/F and a period

t =
2πh̄
aF

In a first Brillouin zone picture, the particle is moving until it is reflected
at the zone boundary such that its quasimomentum changes from kB = π/a at
one boundary to kB − 2π/a = −kB at another boundary.

6.4.2 Bloch oscillations and the Coulomb blockade in Joseph-
son junctions

Consider low currents such that the (Zener) transitions from one band to another
have low probability. In a Josephson junction, the force equation has the form

∂Q

∂t
= I (6.22)

while
∂φ

∂t
=
∂EQ,n

h̄∂k
=

2e
h̄

∂EQ,n

∂Q
(6.23)
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e−e 3e−3e 0 Q

E

Eg

Q = I
.

ZenerBloch

Figure 6.8: The Bloch oscillations are reflections of a particle from the Brillouin
zone boundaries within one energy band. The Zener transitions between the
bands lead to semiclassical behavior.

Therefore, for a constant current,

∂φ

∂Q
=

2e
Ih̄

∂EQ,n

∂Q

so that
φ =

2e
Ih̄
En(Q)

The period of Bloch oscillations is from Eq. (6.22)

tB =
2e
I

The amplitude of Bloch oscillations is

Δφ =
2e
Ih̄
Eb

In the limit of large Coulomb energy (free phase), EC � EJ

Eb ≈ EC

and
Δφ ≈ 2eEC/Ih̄ ∼ tB/R0C � 1

The phase is not fixed: it oscillates rapidly with a large amplitude. The voltage
is

V =
h̄

2e
∂φ

∂t
=
∂EQ,n

∂Q
≈ Q

C
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e/C

-e/C

V

t

Figure 6.9: The voltage across the junction as a function of time for a constant
current bias.

φ

U

Eb

0 2π−2π

Figure 6.10: MQT is equivalent to Landau–Zener transitions between the energy
bands up to the continuum. The energy bands are widened oscillator levels for
a localized particle with the wave function ψ.

Each time when the quasicharge Q approaches the boundary of the Brillouin
zone QB = +e (or QB = −e), the quasicharge changes QB → QB ±2e such that
the voltage jumps from +e/C to −e/C (or vice versa). The average voltage is
zero.

The change in the quasicharge Q by 2e means the 2e charge transfer through
the Josephson junction. We see that the charge transfer through the junction
occurs only when the voltage across the junction reaches a threshold value e/C.
This is the quantum-mechanical picture of the Coulomb blockade. The charging
energy of the junction prevents the charge transfer through it unless the voltage
exceeds the threshold. At the threshold VC = e/C, the charging energy Q2/2C
of a charge Q = e becomes equal to the charging energy (Q − 2e)2/2C of the
charge Q = e − 2e = −e on the capacitor after the Cooper pair has tunnelled
through the junction. To see the Coulomb blockade one needs a junction with
a rather low capacity.

On the contrary, if the capacity is high such that EJ � EC , the band width
is very narrow, and the amplitude of phase oscillations is exponentially small.
The phase is essentially fixed such that the current Ic cosφ flows without voltage:
the junction is superconducting. A finite voltage can then appear as a result of
macroscopic quantum tunnelling considered in the previous Section within the
semiclassical approach. In the semiclassical picture of Eqs. (6.22) and (6.23),
the macroscopic quantum tunnelling is equivalent to Zener transitions from a
lower band up to higher bands in Fig. 6.7 and finally to the continuum for
E > EJ (see Fig. 6.10). Neglecting the Zener transitions implies absence of
MQT and assumes that the bias current is small.



6.4. COULOMB BLOCKADE 75

6.4.3 Effect of dissipation

R J CI

Figure 6.11: The resistively shunted Josephson junction.

Consider the resistively shunted junction, Fig. 6.11, described by [?]

I =
∂Qn

∂t
+
V

R
(6.24)

where, as before, the voltage across the junction

V =
∂EQ,n

∂Q

We again neglect the inter-band transitions assuming that the current is smaller
that what is required for Zener transitions.

For high Coulomb energy,

∂EQ,n

∂Q
=
Q

C

Eq. (6.24) becomes
∂Qn

∂t
= I − Q

RC
(6.25)

Assume that the charge is within the first Brillouin zone −e ≤ Q ≤ +e.
If the current is below the threshold value I < Ith where

Ith =
e

RC

the current flows entirely through the shunt resistance, such that the charge and
voltage are constant, V = Q/C = const and

I = V/R

If I > Ith, the Bloch oscillations begin. Eq. (6.25) has the solution

Q = Ae−t/RC + IRC

For t = 0 we have Q = 0 and ∂Q/∂t = I. This gives

A = −IRC
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V/Vth

I/Ith

1

1

Figure 6.12: The d.c. I-V curve for resistively shunted quantum junction for
the limit of high Coulomb energy. Vth = IthR = e/C.

Assume that at t = −t1 the charge was at the end Q = −e of the Brillouin zone,
while at t = t2 the charge was at the end Q = +e of the Brillouin zone. We find

A exp(−t2/RC) = e− IRC , A exp(t1/RC) = −e− IRC

Therefore

exp
(
t1 + t2
RC

)
=
IRC + e

IRC − e

The average voltage is found from

(t1 + t2)
V

R
=
∫ t2

−t1

[
A

RC
exp

(
− t

RC

)
+ I

]
dt

= (t1 + t2)
(
I +

A

t1 + t2
[exp(t1/RC) − exp(−t2/RC)]

)

Finally,
V

R
= I − 2Ith

[
ln
I + Ith
I − Ith

]−1

The second term is zero for I − Ith and diverges for I → ∞. The I-V curve is
shown in Fig. 6.12. The maximum d.c. voltage V is Vth = IthR = e/C. For
R→ ∞ the I-V curve is vertical which means zero d.c. voltage.

6.5 Parity effects

Let us consider a junction in Fig. 6.1 made of normal conductors and study
how its properties change when a superconducting gap is introduced.
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e/2−e/2 3e/2−3e/2 0 q

E

e 2e−2e −e

Figure 6.13: The e-periodic energy dependence of a normal junction as a func-
tion of the continuous charge q supplied by the external source.

In the case of a normal junction, the wave function depends on a single-
electron phase φ1 = φ/2 such that the charge operator in Eq. (6.5) becomes

Q̂ = −2ie
∂

∂φ
= −ie ∂

∂φ1
(6.26)

The eigenfunction has the form

ΨQ = eiQφ1/e

which is 2π-periodic for Q = ne. The Josephson current disappears, and the
Hamiltonian becomes

H = −EC
∂2

∂φ2
1

If the junction is connected to the external leads, the Hamiltonian takes the
form

H = EC

(
−i ∂

∂φ1
+
q(t)
e

)2

The solution of the corresponding Schrödinger equation has the form

Ψ = ei(Q−q)φ1/e

The condition of 2π-periodicity gives Q = q +me where m is an integer.
The energy is

EQ = EC
Q2

e2
= EC

(q +me)2

e2

It is shown in Fig. 6.13. The different parabolas correspond to different values
of m.

Assume we start with m = 0. As we increase the charge q supplied by the
external source, the energy grows until q reaches e/2 which corresponds to the
voltage VC = e/2C. At this moment, the energy of the capacitor becomes equal
to the energy for the state with m = −1, i.e., to (q − e)2/2C. At this point the
charge at the capacitor decreases by e, one electron being transferred through
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Figure 6.14: The energy of junctions. (a) e-periodic dependence in the normal
state. (b) Energy of odd-number states is shifted by Δ < EC . The charge
transfer occurs at the crossing points (black dots). (c) Δ > EC , the charge
transfer occurs with a 2e periodicity.

the junction via tunnelling. We see again that the charge transfer (current) does
not occur unless voltage reaches the threshold value VC (Coulomb blockade).

Consider again the device shown in Fig. 6.1 and apply a gate voltage VG

between the island and the gate electrode. If VG = VC , the energy of the
junction corresponds to the level where the parabolas cross (black dots in Fig.
6.13). This means that an infinitely small voltage V can lead to a continuous
transfer of charge from lead L1 to lead L2.

Let us now assume that the island I is superconducting with an energy gap
Δ. For simplicity we restrict ourselves to zero temperatures. If the number
of electrons on it is even, they all are included into Cooper pairs and form
the ground state with zero energy plus the charging energy. If now we add an
extra (odd) particle, it can only occupy a state above the gap thus the energy
will be Δ plus the charging energy. One more particle will make a pair with
the previous one thus decreasing the total energy down to simply the charging
energy. Therefore, the states with odd number of particles will have energy
which is the charging energy for the given number of particles shifted by +Δ
with respect to the energy for the even number of particles. This is shown in
Fig. 6.14.

Shift of the parabolas for odd particle numbers destroys the e-periodicity
of the energy spectrum. When Δ becomes larger than the charging energy
Δ > EC , the charge transfer occurs only within the states with even number of
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particles, and the 2e-periodicity characteristic for a superconducting system is
restored (Fig. 6.14(c)).

When also the leads become superconducting, the Josephson energy appears,
and the gaps open at the crossing points shown by black dots. The energy depen-
dence returns to Fig. 6.6 for a superconducting Josephson junction considered
before.
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