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1 Introduction

From what we have learned about transport, we know that there

is no such thing as an ideal (ρ = 0) conventional conductor.

All materials have defects and phonons (and to a lessor degree

of importance, electron-electron interactions). As a result, from

our basic understanding of metallic conduction ρ must be finite,

even at T = 0. Nevertheless many superconductors, for which

ρ = 0, exist. The first one Hg was discovered by Onnes in

1911. It becomes superconducting for T < 4.2◦K. Clearly this

superconducting state must be fundamentally different than the

”normal” metallic state. I.e., the superconducting state must

be a different phase, separated by a phase transition, from the

normal state.

1.1 Evidence of a Phase Transition

Evidence of the phase transition can be seen in the specific heat

(See Fig. 1). The jump in the superconducting specific heat Cs

indicates that there is a phase transition without a latent heat

(i.e. the transition is continuous or second order). Furthermore,
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Figure 1: The specific heat of a superconductor CS and and normal metal Cn. Below

the transition, the superconductor specific heat shows activated behavior, as if there is

a minimum energy for thermal excitations.

the activated nature of C for T < Tc

Cs ∼ e−β∆ (1)

gives us a clue to the nature of the superconducting state. It is

as if excitations require a minimum energy ∆.

1.2 Meissner Effect

There is another, much more fundamental characteristic which

distinguishes the superconductor from a normal, but ideal, con-

ductor. The superconductor expels magnetic flux, ie., B = 0
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within the bulk of a superconductor. This is fundamentally dif-

ferent than an ideal conductor, for which Ḃ = 0 since for any

closed path

C

S

Superconductor

Figure 2: A closed path and the surface it contains within a superconductor.

0 = IR = V =

∮
E·dl =

∫
S

∇×E·dS = −1

c

∫
S

∂B

∂t
·dS , (2)

or, since S and C are arbitrary

0 = −1

c
Ḃ · S ⇒ Ḃ = 0 (3)

Thus, for an ideal conductor, it matters if it is field cooled or

zero field cooled. Where as for a superconductor, regardless

of the external field and its history, if T < Tc, then B = 0

inside the bulk. This effect, which uniquely distinguishes an

ideal conductor from a superconductor, is called the Meissner

effect.
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c
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Figure 3: For an ideal conductor, flux penetration in the ground state depends on

whether the sample was cooled in a field through the transition.

For this reason a superconductor is an ideal diamagnet. I.e.

B = µH = 0⇒ µ = 0 M = χH =
µ− 1

4π
H (4)

χSC = − 1

4π
(5)

Ie., the measured χ, Fig. 4, in a superconducting metal is very

large and negative (diamagnetic). This can also be interpreted
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Figure 4: LEFT: A sketch of the magnetic susceptibility versus temperature of a su-

perconductor. RIGHT: Surface currents on a superconductor are induced to expel the

external flux. The diamagnetic response of a superconductor is orders of magnitude

larger than the Pauli paramagnetic response of the normal metal at T > TC

as the presence of persistent surface currents which maintain a

magnetization of

M = − 1

4π
Hext (6)

in the interior of the superconductor in a direction opposite

to the applied field. The energy associated with this currents

increases with Hext. At some point it is then more favorable

(ie., a lower free energy is obtained) if the system returns to a

normal metallic state and these screening currents abate. Thus

there exists an upper critical field Hc
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Figure 5: Superconductivity is destroyed by either raising the temperature or by ap-

plying a magnetic field.

2 The London Equations

London and London derived a phenomenological theory of su-

perconductivity which correctly describes the Meissner effect.

They assumed that the electrons move in a frictionless state, so

that

mv̇ = −eE (7)

or, since ∂j
∂t = −ensv̇,

∂js
∂t

=
e2ns
m
E (First London Eqn.) (8)
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Then, using the Maxwell equation

∇× E = −1

c

∂B

∂t
⇒ m

nse2
∇× ∂js

∂t
+

1

c

∂B

∂t
= 0 (9)

or
∂

∂t

(
m

nse2
∇× js +

1

c
B

)
= 0 (10)

This described the behavior of an ideal conductor (for which

ρ = 0), but not the Meissner effect. To describe this, the

constant of integration must be chosen to be zero. Then

∇× js = −nse
2

mc
B (Second London Eqn.) (11)

or defining λL = m
nse2 , the London Equations become

B

c
= −λL∇× js E = λL

∂js
∂t

(12)

If we now apply the Maxwell equation∇×H = 4π
c j⇒ ∇×B =

4π
c µj then we get

∇× (∇×B) =
4π

c
µ∇× j = − 4πµ

c2λL
B (13)

and

∇× (∇× j) = − 1

λLc
∇×B = − 4πµ

c2λL
j (14)

or since ∇ · B = 0, ∇ · j = 1
c
∂ρ
∂t = 0 and ∇ × (∇ × a) =

∇(∇ · a)−∇2a we get
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∇2B− 4πµ

c2λL
B = 0 ∇2j− 4πµ

c2λL
j = 0 (15)

B

SC

j  ∝ ∇ × B ∝ z × x
s

�
∂z

∂B
x

x

y z

�

j

^ ^

Figure 6: A superconducting slab in an external field. The field penetrates into the

slab a distance ΛL =
√

mc2

4πne2µ
.

Now consider a the superconductor in an external field shown

in Fig. 6. The field is only in the x-direction, and can vary in

space only in the z-direction, then since ∇ × B = 4π
c µj, the

current is in the y-direction, so

∂2Bx

∂z2
− 4πµ

c2λL
Bx = 0

∂2jsy
∂z2

− 4πµ

c2λL
jsy = 0 (16)

with the solutions

Bx = B0
xe
− z

ΛL jsy = jsye
− z

ΛL (17)

ΛL =
√

c2λL
4πµ =

√
mc2

4πne2µ
is the penetration depth.
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3 Cooper Pairing

The superconducting state is fundamentally different than any

possible normal metallic state (ie a perfect metal at T = 0).

Thus, the transition from the normal metal state to the super-

conducting state must be a phase transition. A phase transition

is accompanied by an instability of the normal state. Cooper

first quantified this instability as due to a small attractive(!?)

interaction between two electrons above the Fermi surface.

3.1 The Retarded Pairing Potential

The attraction comes from the exchange of phonons. The lat-

v  ∼ 10  cm/s
F

8

+

+ + ++
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+

+

+

+
region of 
positive charge 
attracts a second 
electron

ions 

+ +

+

+

e-
e-

Figure 7: Origin of the retarded attractive potential. Electrons at the Fermi surface

travel with a high velocity vF . As they pass through the lattice (left), the positive ions

respond slowly. By the time they have reached their maximum excursion, the first

electron is far away, leaving behind a region of positive charge which attracts a second

electron.

11



tice deforms slowly in the time scale of the electron. It reaches

its maximum deformation at a time τ ∼ 2π
ωD
∼ 10−13s after the

electron has passed. In this time the first electron has traveled

∼ vFτ ∼ 108cm
s · 10−13s ∼ 1000

◦
A. The positive charge of

the lattice deformation can then attract another electron with-

out feeling the Coulomb repulsion of the first electron. Due

to retardation, the electron-electron Coulomb repulsion may be

neglected!

The net effect of the phonons is then to create an attrac-

tive interaction which tends to pair time-reversed quasiparticle

states. They form an antisymmetric spin singlet so that the

e

e

ξ ∼ 1000Α°

k↑

- k↓

Figure 8: To take full advantage of the attractive potential illustrated in Fig. 7, the

spatial part of the electronic pair wave function is symmetric and hence nodeless. To

obey the Pauli principle, the spin part must then be antisymmetric or a singlet.

spatial part of the wave function can be symmetric and nodeless
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and so take advantage of the attractive interaction. Further-

more they tend to pair in a zero center of mass (cm) state so

that the two electrons can chase each other around the lattice.

3.2 Scattering of Cooper Pairs

This latter point may be quantified a bit better by considering

two electrons above a filled Fermi sphere. These two electrons

are attracted by the exchange of phonons. However, the max-

imum energy which may be exchanged in this way is ∼ h̄ωD.

Thus the scattering in phase space is restricted to a narrow

shell of energy width h̄ωD. Furthermore, the momentum in

k’
2

k
1

k2

k’
1

k’
1

k
1

k2

k’
2

ω
D

E   ∼ k
2

k

Figure 9: Pair states scattered by the exchange of phonons are restricted to a narrow

scattering shell of width h̄ωD around the Fermi surface.
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this scattering process is also conserved

k1 + k2 = k′1 + k′2 = K (18)

Thus the scattering of k1 and k2 into k′1 and k′2 is restricted to

the overlap of the two scattering shells, Clearly this is negligible

unless K ≈ 0. Thus the interaction is strongest (most likely)

if k1 = −k2 and σ1 = −σ2; ie., pairing is primarily between

time-reversed eigenstates.

k
1 -k

2

K

scattering shell

Figure 10: If the pair has a finite center of mass momentum, so that k1 + k2 = K,

then there are few states which it can scatter into through the exchange of a phonon.
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3.3 The Cooper Instability of the Fermi Sea

Now consider these two electrons above the Fermi surface. They

will obey the Schroedinger equation.

− h̄
2

2m
(∇2

1 +∇2
2)ψ(r1r2) +V (r1r2)ψ(r1r2) = (ε + 2EF )ψ(r1r2)

(19)

If V = 0, then ε = 0, and

ψV=0 =
1

L3/2
eik1·r1

1

L3/2
eik2·r2 =

1

L3
eik(r1−r2), (20)

where we assume that k1 = −k2 = k. For small V, we will

perturb around the V = 0 state, so that

ψ(r1r2) =
1

L3

∑
k

g(k)eik·(r1−r2) (21)

The sum must be restricted so that

EF <
h̄2k2

2m
< EF + h̄ωD (22)

this may be imposed by g(k), since |g(k)|2 is the probability of

finding an electron in a state k and the other in −k. Thus we

take

g(k) = 0 for

 k < kF

k >

√
2m(EF+h̄ωD)

h̄

(23)

15



The Schroedinger equations may be converted to a k-space

equation by multiplying it by

1

L3

∫
d3r e−ik

′· r ⇒ S.E. (24)

so that

h̄2k2

m
g(k) +

1

L3

∑
k′

g(k′)Vkk′ = (ε + 2EF )g(k) (25)

where

Vkk′ =

∫
V (r)e−i(k −k′)·rd3r (26)

now describes the scattering from (k,−k) to (k′,−k′). It is

usually approximated as a constant for all k and k′ which obey

the Pauli-principle and scattering shell restrictions

Vkk′ =

 −V0 EF <
h̄2k2

2m , h̄
2k′

2

2m < EF + h̄ωD

0 otherwise
. (27)

so (
−h̄

2k2

m
+ ε + 2EF

)
g(k) = −V0

L3

∑
k′

g(k′) ≡ −A (28)

or

g(k) =
−A

− h̄2k2

m + ε + 2EF

(i.e. for EF <
h̄2k2

2m < EF + h̄ωD)

(29)
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Summing over k

V0

L3

∑
k

A
h̄2k2

m − ε − 2EF

= +A (30)

or

1 =
V0

L3

∑
k

1
h̄2k2

m − ε − 2EF

(31)

This may be converted to a density of states integral on E =

h̄2k2

2m

1 = V0

∫ EF+h̄ωD

EF

Z(EF )
dE

2E − ε − 2EF
(32)

1 =
1

2
V0Z(EF ) ln

(
ε − 2h̄ωD

ε

)
(33)

ε =
2h̄ωD

1− e2/(V0Z(EF ))
' −2h̄ωDe

−2/(V0Z(EF )) < 0, as
V0

EF
→ 0

(34)

4 The BCS Ground State

In the preceding section, we saw that the weak phonon-mediated

attractive interaction was sufficient to destabilize the Fermi sea,

and promote the formation of a Cooper pair (k ↑,−k ↓). The

scattering

17



(k ↑,−k ↓)→ (k′ ↑,−k′ ↓) (35)

yields an energy V0 if k and k′ are in the scattering shell EF <

Ek, Ek′ < EF + h̄ωD. Many electrons can participate in this

process and many Cooper pairs are formed, yielding a new state

(phase) of the system. The energy of this new state is not just

N
2 ε less than that of the old state, since the Fermi surface is

renormalized by the formation of each Cooper pair.

4.1 The Energy of the BCS Ground State

Of course, to study the thermodynamics of this new phase, it is

necessary to determine its energy. It will have both kinetic and

potential contributions. Since pairing only occurs for electrons

above the Fermi surface, the kinetic energy actually increases:

if wk is the probability that a pair state (k ↑,−k ↓) is occupied

then

Ekin = 2
∑

k

wkξk, ξk =
h̄2k2

2m
− EF (36)

The potential energy requires a bit more thought. It may be

written in terms of annihilation and creation operators for the

18



pair states labeled by k

|1〉k (k ↑,−k ↓)occupied (37)

|0〉k (k ↑,−k ↓)unoccupied (38)

or

|ψk〉 = uk |0〉k + vk |1〉k (39)

where v2
k = wk and u2

k = 1 − wk. Then the BCS state, which

is a collection of these pairs, may be written as

|φBCS〉 '
∏
k

{uk |0〉k + vk |1〉k} . (40)

We will assume that uk, vk ∈ <. Physically this amounts to

taking the phase of the order parameter to be zero (or π), so

that it is real. However the validity of this assumption can only

be verified for a more microscopically based theory.

By the Pauli principle, the state (k ↑,−k ↓) can be, at most,

singly occupied, thus a (s = 1
2) Pauli representation is possible

|1〉k =

1

0


k

|0〉k =

0

1


k

(41)

Where σ+
k and σ−k , describe the creation and anhialation of the

19



state (k ↑,−k ↓)

σ+
k = 1

2(σ1
k + iσ2

k) =

0 1

0 0

 (42)

σ−k = 1
2(σ1

k − iσ2
k) =

0 0

1 0

 (43)

Of course σ+
k

0

1


k

=

1

0


σ+
k |1〉k = 0 σ+

k |0〉k = |1〉k (44)

σ−k |1〉k = |0〉k σ+
k |0〉k = 0 (45)

The process (k ↑,−k ↓) → (k′ ↑,−k′ ↓), if allowed, is

associated with an energy reduction V0. In our Pauli matrix

representation this process is represented by operators σ+
k′σ
−
k ,

so

V = −V0

L3

∑
kk′

σ+
k′σ
−
k (Note that this is Hermitian) (46)

20



Thus the reduction of the potential energy is given by 〈φBCS |V |φBCS〉

〈φBCS |V |φBCS〉 = −V0

L3

{∏
p

(up 〈0| + vp 〈1|)
∑
kk′

σ+
k σ
−
k′

∏
p′

(
up′ |0〉p′ + vp′ |1〉p′

) (47)

Then as k 〈1|1〉k′ = δkk′, k 〈0|0〉k′ = δkk′ and k 〈0|1〉k′ = 0

〈φBCS |V |φBCS〉 = −V0

L3

∑
kk′

vkuk′ukvk′ (48)

Thus, the total energy (kinetic plus potential) of the system of

Cooper pairs is

WBCS = 2
∑
k

v2
kξk −

V0

L3

∑
kk′

vkuk′ukvk′ (49)

As yet vk and uk are unknown. They may be treated as

variational parameters. Since wk = v2
k and 1 − wk = u2

k, we

may impose this constraint by choosing

vk = cos θk, uk = sin θk (50)

At T = 0, we require WBCS to be a minimum.

WBCS =
∑

k 2ξk cos2 θk − V0
L3

∑
kk′ cos θk sin θk′ cos θk′ sin θk

=
∑

k 2ξk cos2 θk − V0
L3

∑
kk′

1
4 sin 2θk sin 2θk′ (51)
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∂WBCS

∂θk
= 0 = −4ξk cos θk sin θk−

V0

L3

∑
k′

cos 2θk sin 2θk′ (52)

ξk tan 2θk = −1

2

V0

L3

∑
k′

sin 2θk′ (53)

Conventionally, one introduces the parametersEk =
√
ξ2
k + ∆2,∆ =

V0
L3

∑
k ukvk = V0

L3

∑
k cos θk sin θk. Then we get

ξk tan 2θk = −∆ ⇒ 2ukvk = sin 2θk =
∆

Ek
(54)

cos 2θk =
−ξk
Ek

= cos2 θk − sin2 θk = v2
k − u2

k = 2v2
k − 1 (55)

wk = v2
k =

1

2

(
1− −ξk

Ek

)
=

1

2

(
1− ξk√

ξ2
k + ∆2

)
(56)

If we now make these substitutions
(

2ukvk = ∆
Ek
, v2

k = 1
2

(
1− ξk

Ek

))

0

w  = v 
k k

2
T = 0

k F
ξ   = -E  + h  k

2 2

2m

clearly kinetic 
energy increases

1

Figure 11: Sketch of the ground state pair distribution function.
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into WBCS, then we get

WBCS =
∑
k

ξk

(
1− ξk

Ek

)
− L3

V0
∆2. (57)

Compare this to the normal state energy, again measured

relative to EF

Wn =
∑
k<kF

2ξk (58)

or

WBCS −Wn

L3
= − 1

L3

∑
k

ξk

(
1 +

ξk
Ek

)
− ∆2

V0
(59)

≈ −1

2
Z(EF )∆2 < 0. (60)

So the formation of superconductivity reduces the ground state

energy. This can also be interpreted as ∆Z(EF ) electrons pairs

per and volume condensed into a state ∆ below EF . The aver-

age energy gain per electron is ∆
2 .

4.2 The BCS Gap

The gap parameter ∆ is fundamental to the BCS theory. It tells

us both the energy gain of the BCS state, and about its excita-

tions. Thus ∆ is usually what is measured by experiments. To

23



see this consider

WBCS =
∑
k

2ξk
1

2

(
1− ξk

Ek

)
− L3∆2

V0
(61)

↓ Lots of algebra (See I&L)

WBCS = −
∑

2Ekv
4
k (62)

Now recall that the probability that the Cooper state (k ↑,k ↓)

was occupied, is given by wk = v2
k. Thus the first pair breaking

excitation takes v2
k′ = 1 to v2

k′ = 0, for a change in energy

k′↑

-k′↓

k′k′
w   = v   = 12

k′
2v   = 0

e

e

Figure 12: Breaking a pair requires an energy 2
√
ξ2k + ∆2 ≥ 2∆

∆E = −
∑
k 6=k′

2v4
kEk +

∑
k

2v4
kEk = 2Ek′ = 2

√
ξ2
k′ + ∆2 (63)

Then since ξk′ = h̄2k′2

2m −EF , the smallest such excitation is just

∆Emin = 2∆ (64)
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This is the minimum energy required to break a pair, or create

an excitation in the BCS ground state. It is what is measured

by the specific heat C ∼ e−β2∆ for T < Tc.

Now consider some experiment which adds a single electron,

or perhaps a few unpaired electrons, to a superconductor (ie

tunneling). This additional electron cannot find a partner for

superconductor normal
metal

Figure 13:

pairing. Thus it must enter one of the excited states discussed

above. Since it is a single electron, its energy will be

Ek =
√
ξ2
k + ∆2 (65)

For ξ2
k � ∆, Ek = ξk = h̄2k′2

2m −EF , which is just the energy of

a normal metal state. Thus for energies well above the gap, the

normal metal continuum is recovered for unpaired electrons.
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To calculate the density of unpaired electron states, recall

that the density of states was determined by counting k-states.

These are unaffected by any phase transition. Thus it must be

that the number of states in d3k is equal.

d  k
3

k
x

k
y

kz

π
L

3

Figure 14: The number of k-states within a volume d3k of k-space is unaffected by

any phase transition.

Ds(Ek)dEk = Dn(ξk)dξk (66)

In the vicinity of ∆ ∼ ξk, Dn(ξk) ≈ Dn(EF ) since |∆| � EF

(we shall see that ∆ ≤ 2wD). Thus for ξk ∼ ∆

Ds(Ek)

Dn(EF )
=
dξx
dEk

=
d

dEk

√
E2
k −∆2 =

Ek√
E2
k −∆2

Ek > ∆

(67)

Given the experimental and theoretical importance of ∆, it
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∆

1

E

Ds Dn

Density of additional 

electron states only!

Figure 15:

should be calculated.

∆ =
V0

L3

∑
k

sin θk cos θk =
V0

L3

∑
k

ukvk =
V0

L3

∑
k

∆

2Ek
(68)

∆ =
1

2

V0

L3

∑
k

∆√
ξ2
k + ∆2

(69)

Convert this to sum over energy states (at T = 0 all states with

ξ < 0 are occupied since ξk = h̄2k2

2m − EF ).

∆ =
V0

2
∆

∫ h̄ωD

−h̄ωD

Z(EF + ξ)dξ√
ξ2 + ∆2

(70)

1

V0Z(EF )
=

∫ h̄ωD

0

dξ√
ξ2 + ∆2

(71)

1

V0Z(EF )
= sinh−1

(
h̄ωD

∆

)
(72)
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For small ∆,
h̄ωD

∆
∼ e

1
V0Z(EF ) (73)

∆ ' h̄ωDe
− 1
V0Z(EF ) (74)

sinh x

x

∼ ex

Figure 16:

5 Consequences of BCS and Experiment

5.1 Specific Heat

As mentioned before, the gap ∆ is fundamental to experiment.

The simplest excitation which can be induced in a supercon-

ductor has energy 2∆. Thus

∆E ∼ 2∆e−β2∆ T � Tc (75)

28



C ∼ ∂∆E

∂β

∂β

∂T
∼ ∆2

T 2
e−β2∆ (76)

5.2 Microwave Absorption and Reflection

Another direct measurement of the gap is reflectivity/absorption.

A phonon impacting a superconductor can either be reflected

or absorbed. Unless h̄ω > 2∆, the phonon cannot create an ex-

citation and is reflected. Only if h̄ω > 2∆ is there absorption.

Consider a small cavity within a superconductor. The cavity

has a small hole which allows microwave radiation to enter the

cavity. If h̄ω < 2∆ and if B < Bc, then the microwave in-

hω

cavity

B

10

hω
hω = 2∆

I
n

I  - Is n

microwave

superconductor

B=0

Figure 17: If B > Bc or h̄ω > 2∆, then absorption reduces the intensity to the

normal-state value I = In. For B = 0 the microwave intensity within the cavity is

large so long as h̄ω < 2∆
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tensity is high I = Is. On the other hand, if h̄ω > 2∆ ,or

B > Bc, then the intensity falls in the cavity I = In due to

absorbs ion by the walls.

Note that this also allows us to measure ∆ as a function of

T . At T = Tc,∆ = 0, since thermal excitations reduce the

number of Cooper pairs and increase the number of unpaired

electrons, which obey Fermi-statistics. The size of (Eqn. 71) is

k′↑

-k′↓
e

e

kT ∼ 2∆

Figure 18:

only effected by the presence of a Cooper pair . The probabil-

ity that an electron is unpaired is f
(√

ξ2 + ∆2 + EF , T
)

=

1

exp β
√
ξ2+∆2+1

so, the probability that a Cooper pair exists is
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1− 2f
(√

ξ2 + ∆2 + EF , T
)

. Thus for T 6= 0

1

V0Z(EF )
=

∫ h̄ωD

0

dξ√
ξ2 + ∆2

{
1− 2f

(√
ξ2 + ∆2 + EF , T

)}
(77)

Note that as
√
ξ2 + ∆2 ≥ 0, when β → ∞ we recover the

T = 0 result.

This equation may be solved for ∆(T ) and for Tc. To find Tc

∆(T)
∆(0)

T/Tc1

In
Sn

Pb

Real SC data (reflectivity)

Figure 19: The evolution of the gap (as measured by reflectivity) as a function of tem-

perature. The BCS approximation is in reasonably good agreement with experiment.

consider this equation as T
Tc
→ 1, the first solution to the gap

equation, with ∆ = 0+, occurs at T = Tc. Here

1

V0Z(EF )
=

∫ h̄ωD

0

dξ

ξ
tanh

(
ξ

2kBTc

)
(78)

which may be solved numerically to yield

1 = V0Z(EF ) ln
1.14h̄ωD
kBTc

(79)
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kBTc = 1.14h̄ωDe
−1/{V0Z(EF )} (80)

but recall that ∆ = 2h̄ωDe
−1/{V0Z(EF )}, so

∆(0)

kBTc
=

2

1.14
= 1.764 (81)

metal Tc
◦K Z(EF )V0 ∆(0)/kBTc

Zn 0.9 0.18 1.6

Al 1.2 0.18 1.7

Pb 7.22 0.39 2.15

Table 1: Note that the value 2.15 for ∆(0)/kBTc for Pb is higher than BCS predicts.

Such systems are labeled strong coupling superconductors and are better described by

the Eliashberg-Migdal theory.

5.3 The Isotope Effect

Finally, one should discuss the isotope effect. We know that

Vkk′, results from phonon exchange. If we change the mass of

one of the vibrating members but not its charge, then V0N(EF )

etc are unchanged but

ωD ∼
√

k

M
∼ M−1

2 . (82)
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Thus Tc ∼ M−1
2 . This has been confirmed for most normal

superconductors, and is considered a ”smoking gun” for phonon

mediated superconductivity.

6 BCS ⇒ Superconducting Phenomenology

Using Maxwell’s equations, we may establish a relation between

the critical current and the critical field necessary to destroy the

superconducting state. Consider a long thick wire (with radius

r0 � ΛL) and integrate the equation

d l

Λ
L

S r0 j
0

j = j  e
0

0(r - r  )/ΛL

H
⊗•

H

Figure 20: Integration contour within a long thick superconducting wire perpendicular

to a circulating magnetic field. The field only penetrates into the wire a distance ΛL.

∇×H =
4π

c
j (83)
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along the contour shown in Fig. 20.∫
∇×HdS =

∫
H · dl =

4π

c

∫
j · ds (84)

2πr0H =
4π

c
2πr0ΛLj0 (85)

If j0 = jc (jc is the critical current), then

Hc =
4π

c
ΛLjc (86)

Since both Hc and jc ∝ ∆, they will share the temperature-

dependence of ∆.

At T = 0, we could also get an expression for Hc by noting

that, since the superconducting state excludes all flux,

1

L3
(Wn −WBCS) =

1

8π
H2
c (87)

However, since we have earlier

1

L3
(Wn −WBCS) =

1

2
N(0)∆2, (88)

we get

Hc = 2∆
√
πN(0) (89)

We can use this, and the relation derived above jc = c
4πΛL

Hc,
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to get a (properly derived) relationship for jc.

jc =
c

4πΛL
2∆
√
πN(0) (90)

However, for most metals

N(0) ' n

EF
(91)

ΛL =

√
mc2

4πne2µ
(92)

taking µ = 1

jc =
c

4π

√
4πne2

mc2
2∆

√
πn2m

h̄2k2
F

=
√

2∆
ne

h̄kF
(93)

This gives a similar result to what Ibach and Lüth get, but

for a completely different reason. Their argument is similar to

one originally proposed by Landau. Imagine that you have a

fluid which must flow around an obstacle of mass M . From the

perspective of the fluid, this is the same as an obstacle moving

in it. Suppose the obstacle makes an excitation of energy ε and

momentum p in the fluid, then

E ′ = E − ε P′ = P− p (94)

or from squaring the second equation and dividing by 2M
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Mv Mv P

E

Figure 21: A superconducting fluid which must flow around an obstacle of mass M .

From the perspective of the fluid, this is the same as an obstacle, with a velocity equal

and opposite the fluids, moving in it.

M
P

E
M

P′

E′

p

(a) (b)

ε

Figure 22: A large mass M moving with momentum P in a superfluid (a), creates an

excitation (b) of the fluid of energy ε and momentum p

P ′2

2M
− P 2

2M
= −P · p

M
+

p2

2M
= E ′ − E = ε (95)

P′

P

p

v = P/M

θ

Figure 23:

ε =
pP cos θ

M
− p2

2M
(96)

ε = pv cos θ − p2

2M
(97)

36



If M → ∞ (a defect in the tube which carries the fluid could

have essentially an infinite mass) then

ε

p
= v cos θ (98)

Then since cos θ ≤ 1

v ≥ ε

p
(99)

Thus, if there is some minimum ε,then there is also a mini-

mum velocity below which such excitations of the fluid cannot

happen. For the superconductor

vc =
εmin
p

=
2∆

2h̄kF
(100)

Or

jc = envc = ∆
ne

h̄kF
(101)

This is the same relation as we obtained with the previous

thermodynamic argument (within a factor
√

2). However, the

former argument is more proper, since it would apply even for

gapless superconductors, and it takes into account the fact that

the S.C. state is a collective phenomena ie., a minuet, not a

waltz of electric pairs.
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7 Coherence of the Superconductor ⇒ Meisner

effects

Superconductivity is the Meissner effect, but thus far, we have

not yet shown that the BCS theory leads to the second London

equation which describes flux exclusion. In this subsection, we

will see that this requires an additional assumption: the rigidity

of the BCS wave function.

In the BCS approximation, the superconducting wave func-

tion is taken to be composed of products of Cooper pairs. One

can estimate the size of the pairs from the uncertainty principle

2∆ = δ

(
p2

2m

)
∼ pF

m
δp⇒ δp ∼ 2m

∆

pF
(102)

ξcp ∼ δx ∼ h̄

δp
∼ h̄pF

2m∆
=
h̄2kF
2m∆

=
EF

kF∆
(103)

ξcp ∼ 103 − 104
◦
A∼ size of Cooper pair wave function (104)

Thus in the radius of the Cooper pair, about

4πn

3

(
ξcp
2

)3

∼ 108 (105)

other pairs have their center of mass.

38



Figure 24: Many electron pairs fall within the volume of a Cooper wavefunction.

This leads to a degree of correlation between the pairs and to rigidity of the pair

wavefunction.

The pairs are thus not independent of each other (regardless

of the BCS wave function approximation). In fact they are

specifically anchored to each other; ie., they maintain coherence

over a length scale of at least ξcp.

SC
Normal Metal

φ    
BCS

2

ξ     > ξ
cpcoh

Figure 25:

In light of this coherence, lets reconsider the supercurrent

j = − 2e

4m
{ψp∗ψ∗ + ψ∗pψ} (106)
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where pair mass = 2m and pair charge = −2e.

p = −ih̄∇ − 2e

c
A (107)

A current, or a CM momentum K, modifies the single pair state

ψ(r1, r2) =
1

L3

∑
k

g(k)eiK· (r1+r2)/2eik· (r1−r2) (108)

ψ(K, r1, r2) = ψ(K = 0, r1, r2)eiK·R (109)

where R = r1+r2
2 is the cm coordinate and h̄K is the cm mo-

mentum. Thus

ΦBCS ' eiφΦBCS(K = 0) = eiφΦ(0) (110)

φ = K · (R1 + R2 + · · · ) (111)

(In principle, we should also antisymmetrize this wave function;

however, we will see soon that this effect is negligible). Due to

the rigidity of the BCS state it is valid to approximate

∇ = ∇R +∇r ≈ ∇R (112)

Thus

js ≈
2e

4m

∑
ν

{
Φ∗BCS

(
−ih̄∇Rν +

2eA

c

)
ΦBCS

+ΦBCS

(
ih̄∇Rν +

2eA

c

)∗
Φ∗BCS

}
(113)
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or

js = − 2e

2m

{
|Φ(0)|2 4eA

c
+ 2h̄ |Φ(0)|2

∑
ν

∇Rνφ

}
(114)

Then since for any ψ,∇ × ∇ψ = 0

∇× js = −2e2

mc
|Φ(0)|2∇× A (115)

or since |Φ(0)|2 = ns
2

∇× j = −ne
2

mc
B (116)

which is the second London equation which as we saw in Sec. 2

leads to the Meissner effect. Thus the second London equation

can only be derived from the BCS theory by assuming that the

BCS state is spatially homogeneous.

8 Quantization of Magnetic Flux

The rigidity of the wave function (superconducting coherence)

also guarantees that the flux penetrating a superconducting

loop is quantized. This may be seen by integrating Eq. 114

along a contour within the superconducting bulk (at least a
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distance ΛL from the surface).

js = −e
2ns
mc

A− eh̄ns
2m

∑
ν

∇Rνφ (117)∫
◦js · dl = −e

2ns
ms

∫
◦A · dl − eh̄ns

2m

∑
ν

∫
◦∇Rνφ · dl (118)

Presumably the phase of the BCS state ΦBCS = eiφΦ(0) is

X

X

X
X

X
XX

X

X

X
X

X

X

X

X
X

X
B

ΛL

C

superconducting loop

Figure 26: Magnetic flux penetrating a superconducting loop is quantized. This may

be seen by integrating Eq. 114 along a contour within the superconducting bulk (a

distance ΛL from the surface).

single valued, so∑
ν

∫
∇Rνφ · dl = 2πN N ∈ Z (119)

Also since the path l may be taken inside the superconductor

by a depth of more than ΛL, where js = 0, we have that∫
js · dl = 0 (120)
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so

−e
2ns
ms

∫
A · dl = −e

2ns
ms

∫
B · ds = 2Nπ

eh̄ns
2m

(121)

Ie., the flux in the loop is quantized.

9 Tunnel Junctions

Imagine that we have an insulating gap between two metals,

and that a plane wave (electronic Block State) is propagating

towards this barrier from the left

a b c

V
0

metal insulator metal

d  ψ
dx

2

2
2m

2h
+       Eψ = 0

dx2
d  ψ2 2m

2h
+       (E - V  )ψ0

d  ψ
dx

2

2
2m

2h
+       Eψ = 0

V

x
0 d

Figure 27:

ψa = A1e
ikx + B1e

−ikx ψb = A2e
ik′x + B2e

−ik′x

ψc = B3e
−ikx (122)
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These are solutions to the S.E. if

k =

√
2mE

h̄
in a & c (123)

k′ =

√
2m(E − V0)

h̄
in b (124)

The coefficients are determined by the BC of continuity of ψ

and ψ′ at the barriers x = 0 and x = d. If we take B3 = 1

and E < V0, so that

k′ = iκ =

√
2m(E − V0)

h̄
(125)

then, the probability of having a particle tunnel from left to

right is

Pl→r ∝
|B3|2

|B1|2
=

1

|B1|2
=

{
1

2
− 1

8

(
k

κ
− κ

k

)2

+
1

8

(
k

κ
+
κ

k

)2

cosh 2κd

}−1

(126)

For large κd
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Pl→r ∝ 8

(
k

κ
+
κ

k

)−2

e−2κd (127)

∝ 8

(
k

κ
+
κ

k

)−2

exp

{
−

2d
√

2m(V0 − E)

h̄

}
(128)

Ie, the tunneling probability falls exponentially with distance.

Of course, this explains the physics of a single electron tun-

neling across a barrier, assuming that an appropriate state is

filled on the left-hand side and available on the right-hand side.

This, as can be seen in Fig. 28, is not always the case, espe-

cially in a conductor. Here, we must take into account the

densities of states and their occupation probabilities f . We will

be interested in applied voltages V which will shift the chemical

potential eV . To study the gap we will apply

eV ∼ ∆ (129)

We know that 2∆
kBTc
∼ 4,∆ ∼ 4kBTc

2 ∼ 10◦K. However typical

metallic densities of states have features on the scale of electron-

volts∼ 104◦K. Thus, on this energy scale we may approximate
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X
eV

S I N

N(E)

E

Figure 28: Electrons cannot tunnel accross the barrier since no unoccupied states are

available on the left with correspond in energy to occupied states on the right (and

vice-versa). However, the application of an appropriate bias voltage will promote the

state on the right in energy, inducing a current.

the metallic density of states as featureless.

Nr(ε) = Nmetal(ε) ≈ Nmetal(EF ) (130)

The tunneling current is then, roughly,

I ∝ P

∫
dεf (ε− eV )Nr(EF )Nl(ε)(1− f (ε))

−P
∫
dεf (ε)Nl(ε)Nr(EF )(1− f (ε− eV )) (131)

For eV = 0, clearly I = 0 i.e. a balance is achieved. For

eV 6= 0 a current may occur. Let’s assume that eV > 0

and kBT � ∆. Then the rightward motion of electrons is
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E
F

Figure 29: If eV= 0, but there is a small overlap of occupied and unoccupied states on

the left and right sides, then there still will be no current due to a balance of particle

hopping.

suppressed. Then

I ∼ PNr(EF )

∫
dεf (ε− eV )Nl(ε) (132)

and
dI

dV
∼ PNr(EF )

∫
dε
∂f (ε− eV )

∂V
Nl(ε) (133)

∂f

∂V
∼ eδ(ε− eV − EF ) (T � EF ) (134)

dI

dV
' PNr(EF )Nl(eV + EF ) (135)

Thus the low temperature differential conductance dI
dV is a mea-

sure of the superconducting density of states.
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∆/e

I

V
V

∆/e

dI
dV

Figure 30: At low temperatures, the differential conductance in a normal metal–

superconductor tunnel junction is a measure of the quasiparticle density of states.

10 Unconventional Superconductors

From different review articles, it is clear that there are different

definitions of unconventional superconductivity. For example,

some define it as beyond BCS, or to only include superercon-

ductors, such as odd-frequency superconductors, that clearly

cannot be described by the BCS equations (although it may be

possible to describe them with the Eliashberg equations). An-

other definition, which I will adopt, is to define unconventional

superconductors that are not described by the simple discus-

sion of the BCS equations that we have discussed so far in this

chapter. These will include (and will be finined below) triplet,

lower symmetry (e.g., d-wave) of often magnetically mediated

48



supererconductors, to very unusual ideas, that have not yet

been observed, such as odd-frequency superconductors. In each

case, I will assume that the superconducting state is formed via

Cooper pairing of fermions, so that the order parameter must

remain odd under a product of symmetry operations, such as

parity, time reversal, spin, etc. as summarized in Tab. 2.

Type spin symmetry inversion symmetry time reversal symmetry

odd-frequency triplet (even) even odd

odd-frequency singlet (odd) odd (p-wave) odd

d-wave S=0 L=2 singlet (odd) even even

triplet S=1 L=1 triplet (even) odd even

Table 2: Types and characteristics of the order parameter of unconventional super-

conductors formed from electron pairs.

Below, we will discuss each of these unconventional super-

conductors, and identify their properties and experimental sig-

natures.

10.1 D-wave Superconductors

Cuprate superconductors which are nearly antiferromagnetic,

and so highly anisotropic that they may be viewed as nearly

two-dimensional.

49



Figure 31: The Fermi surface of

the 2D non-interacting half-filled

Hubbard model with near-neighbot

hopping. The pairing interactions

due to the magentic correlations

are strongest at half filling and

on the Fermi survace near the

magnetic order vectors (±π.± π).

Since they are purely repulsive, the

order parameter, which is largest

in between the ording vectors (i.e.,

(0, π)) must change sign like a d0-

wave orbital (see text).

In fact the modeling of Zhang and

Rice reduces the cuprates to a 2D

t-J or Hubbard model, which are re-

lated by a Schrieffer-Wolf transfor-

mation, and the models are close to

half filling where the non-interacting

fermi surface forms a square as il-

lustrated in Fig. 31 and strong an-

tiferromagnetic correlations begin to

form. The latter are believed to pro-

vide the pairing interaction, despite

the fact that the pairing interaction

from antiferromagnetic correlations

is purely repulsive.

Whereas conventional s-wave su-

perconductors form spin singlet pairs

with s-wave symmetry (S=0, L=0), d-wave superconductors

form lower symmetry pairs (S=0, L=2). This pairing may

be described by the BCS formalism with a k-dependent ∆(k).
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We assume that the pairing interaction is strongly peaked at

the antiferromagnetic ordering wavenumbers k = (±π,±π), or

V (k) = −V0δ(k − (±π,±π)) where V0 > 0 and is only finite

at energies near the fermi surface. Since the pairing is due to

magnetic correlations, the width of the scattering shell is now

roughly J which is assumed to be J � EF . In this case the

gap equation becomes

∆(k′) =
1

2L3

∑
k

∆(k)V (k− k′)√
ξ2
k + ∆(k)2

(136)

In order to have a solution, the minus sign in V must be

canceled. The large contributions to the sum comes when

k − k′ is a magnetic ordering vector where V is large. Sup-

pose k − k′ = (π, π), and k = (π, 0) and k′ = (0,−π), then

to cancel the minus sign, we need ∆(k) = −∆(k′), so that

the order parameter changes sign for every rotation by π/2 and

presumably is zero along the diagonal, just like a dx2−y2 orbital.

Hence the name d-wave superconductivity.

Note that the lower symmetry of the order parameter has

experimental consequences. First the d-wave geometry of the

order parameter may be directly confirmed by creating a tun-
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nel junction with a conventional s-wave superconductor, as illus-

trated in Fig. 32.

Figure 32: Cartoon of a corner

junction between a conbentional s-

wave and a d-wave, cuprate, su-

perconductor.

Here, the phase difference across one

of the s-d junctions causes a persis-

tant current and a trapped magnetic

flux measurable by a SQUID. d-wave

superconductivity is very sensitive to

disorder, such as Zn doping for Cu

where only a few percent of impu-

rities can destroy superconductivity.

The reason for this sensitivity is that

the elastic scattering from the Zn impurities is nearly local, and

hence mixes ∆(k) with all other k values on the fermi surface,

and when averaged over the fermi surface, the order parame-

ter is zero. Furthermore since the gap has a range of values

extending to zero, so do the excitations across the gap. As a

result, the activated T-dependence seen in the specific heat is

replaced by algebraic or power-law T-dependence seen in the

nuclear magnetic resonance relaxation rate and specific heat.
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10.2 Triplet Superconductors

As illustrated in Tab. 2, triplet superconductivity is also pos-

sible which is even in spin or odd in orbital symmetry. More

complex triplet states are also possbile, but will not be discussed

here. Triplet superconductivity may actually be an old subject

if it include condensation of 3He which is spin 1/2 and forms

a triplet condensate which is not a superconductor since 3He

carries no charge. as (S=1, L=1). The pairing is believed to be

mediated by magnetic fluctuations enhanced by the proximity

to a ferromagnetic transition (similar to the case for the cuprates

where the magnetic fluctuations are enhanced by proximity to

half filling). It is believed that the triplet state is favored by the

exchange hole that keeps the pair of electrons apart, avoiding

the short ranged repulsive interaction between them.

In addition to 3He triplet superconductivity, with a real su-

percurrent, is believed to exist in a number of solids, including

Sr2RuO4 which is believed to have a chiral p-wave state and

a complex gap function which breaks time-reversal so that the

pairs have a finite magnetic moment.
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This triplet state should have a number of experimental con-

sequences. Perhaps the most obvious is that, like the d-wave

superconductors, the pairing should be very sensitive to diorder,

at least disorder with a mean-free path that is shorter than the

pairing length. I.e., the stronger the pairing, the less sensitive

the state is do disorder.

10.3 Odd-frequency Superconductors

Another, not yet observed (to the best of my knowledge) type

of pairing is odd in frequency or in time. In this case both the

spin and orbital part of the pairing can be even or both odd.

Of course, it is difficult to treat such a state in the BCS formal-

ism since the frequency-dependence of the order parameter is

suppressed.
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