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Chapter 1

General Principles

1.1 Particle Zoo

High energy physics seeks to understand, at the deepest level, the structure
of matter and the forces by which it interacts. In the past half-century
colossal strides were made in bringing Quantum Field Theory (QFT) to
bear upon a wide variety of phenomena. The Large Hadron Collider (LHC)
promises to take the next leap in this direction. Counter-circulating proton
beams into head-on collisions at a center-of-mass energy /s = 14 TeV, the
LHC will probe deeply into the sub-fermi distances, opening a new territory
where groundbreaking discoveries are expected. In this spirit then, it seems
opportune to review our present understanding of particle interactions.
Today, the accepted model for elementary particle physics views quarks
and leptons as the basic constituents of ordinary matter. These particles
interact via four known basic forces — gravitational, electromagnetic, strong,
and weak — that can be characterized on the basis of the following four
criteria: the types of particles that experience the force, the relative strength
of the force, the range over which the force is effective, and the nature of
the particles that mediate the force. The electromagnetic force is carried by
the photon, the strong force is mediated by gluons, the W* and Z° bosons
transmit the weak force, and the quantum of the gravitational force is called
the graviton. A comparison of the (approximate) relative force strengths is
given in Table 1.1. Though gravity is the most obvious force in daily life, on
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Table 1.1: Relative strength of the four forces for two protons inside a nucleus.

Type Relative Strength Field Particle
Strong 1 gluons
Electromagnetic 1072 photon
Weak 1076 w=* Z°
Gravitational 1038 graviton

Table 1.2: Quark quantum numbers: charge Q, baryon number B, strangeness

S, charm ¢, “beauty” or bottommness b, and “truth” or topness t.

name  symbol Q B S c b t
up u 2 : 0 0 0 0
down d —1 : 0 0 0 0
strange S — % % -1 0 0 0
charm c % % 0 1 0 0
bottom b —1 : 0 0 -1 0
top t —1 : 0 0 0 1

a nuclear scale it is the weakest of the four forces and its effect at the particle
level can nearly always be ignored.

The quarks are fractionally charged spin—% strongly interacting objects
which are known to form the composites collectively called hadrons:

qq (quark + antiquark) mesons integral spin — Bose statistics
qqq (three quarks) baryons half-integral spin — Fermi statistics

There are six different types of quarks, known as flavors: up (symbol: u),
down (d), strange (s), charm (c¢), bottom (b), and top (¢); their properties
are given in Table 1.2. (Antiquarks have opposite signs of electric charge,
baryon number, strangeness, charm, bottomness, and topness.)

Quarks are fermions with spin—% and therefore should obey the exclusion
principle. Yet for three particular baryons (A™+ = wuu, A~ = ddd, and
)~ = sss), all three quarks would have the same quantum numbers, and at
least two quarks have their spin in the same direction because there are only



two choices, spin up (1) or spin down ({). This would seem to violate the
exclusion principle!

Not long after the quark theory was proposed, it was suggested that
quarks possess another “charge” which enables them to interact strongly
with one another. This “charge” is a three-fold degree of freedom which has
come to be known as color,! and so the field theory has taken on the name of
quantum chromodynamics, or QCD. Each quark flavor can have three colors
usually designated red, green, and blue. The antiquarks are colored antired,
antigreen, and antiblue. Baryons are made up of three quarks, one with each
color. Mesons consist of a quark-antiquark pair of a particular color and its
anticolor. Both baryons and mesons are thus colorless or white. Because the
color is different for each quark, it serves to distinguish them and allows the
exclusion principle to hold. Even though quark color was originally an ad
hoc idea, it soon became the central feature of the theory determining the
force binding quarks together in a hadron.

One may wonder what would happen if we try to see a single quark with
color by reaching deep inside a hadron. Quarks are so tightly bound to other
quarks that extracting one would require a tremendous amount of energy,
so much that it would be sufficient to create more quarks. Indeed, such
experiments are done at modern particle colliders and all we get is not an
isolated quark, but more hadrons (quark-antiquark pairs or triplets). This
property of quarks, that they are always bound in groups that are colorless,
is called confinement. Moreover, the color force has the interesting property
that, as two quarks approach each other very closely (or equivalently have
high energy), the force between them becomes small. This aspect is referred
to as asymptotic freedom.? When probed at small distances compared to
the size of a hadron (i.e., about 1 fm = 107" m) the “bare” masses of the
quarks are: m, = 1.5—3.3 MeV, mgq = 3.5 — 6.0 MeV, m, = 104735 MeV,
me = 1.277007 GeV, my = 4.2070%7 GeV and m; = 171.2 + 2.1 GeV.?

'H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47, 365 (1973).

2D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); H. D. Politzer, Phys.
Rev. Lett. 30, 1346 (1973).

3We work in natural units, where & is one unit of action and c is one unit of velocity.
This implies that [length] = [time] = [energy]~! = [mass]~'. Masses are as quoted in

C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).



However, the effective quark masses in composite hadrons are significantly
larger; namely, 0.3 GeV, 0.3 GeV, 0.5 GeV, 1.5 GeV and 4.9 GeV, for u, d, s,
¢, and b; respectively. The lightest flavors are generally stable and are very
common in the universe as they are the constituents of protons (uud) and
neutrons (ddu). More massive quarks are unstable and rapidly decay; these
can only be produced as quark-pairs under high energy conditions, such as
in particle accelerators and in cosmic rays.

Leptons are fractionally spin—% particles which do not strongly interact.
They come in three flavors: electron (e), muon (u), and tau (7), with masses
me = 0.510998910 £0.0000000013 MeV, m,, = 105.658367£0.000004 MeV,
and m, = 1776.84 & 0.17 MeV. Each flavor has an associated neutrino:
Ve, Vy, and v,. It was Fermi who first proposed a kinematic search for the
neutrino mass from the hard part of the spectra in Tritium beta decay. In the
presence of non-vanishing leptonic mixing, this search sets an upper limit on
the absolute mass of any of the neutrinos, m, < 2.2 eV at 95% CL. However,
at present, WMAP data provides the nominally strongest constraint on the
sum of the neutrino masses, > m, < 0.67 eV at 95%CL.*

One important aspect of on-going research is the attempt to find a uni-
fied basis for the different forces. For example, the weak and electromagnetic
forces are indeed two different manifestations of a single, more fundamen-
tal electroweak interaction.> The electroweak theory has had many notable
successes, culminating in the discovery of the predicted W+ and Z° bosons
(mw = 80.403+£0.029 GeV and myz = 91.1876 +0.0021 GeV). However, the
favored electroweak symmetry breaking mechanism requires the existance of
a scalar Higgs boson, as yet unseen.

Nowadays physical phenomena can be discussed concisely and elegantly
in terms of quantum field theories. So far as we know, the veritable “zoo”
of subatomic particles is composed of composites of quarks and leptons that
interact by exchanging force carriers. To understand the subtleties of our
present-day view, we need to begin with the ideas leading up to its formula-
tion. In these lectures, we will provide an elementary introduction to quan-

4E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 180, 330 (2009).
5S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264

(1967); A. Salam, Elementary Particle Physics, ed. N. Svartholm (Nobel Symposium No.
8, Almqvist and Wiksell, Stockholm, 1968) p.367.
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tum electrodynamics (QED), quantum chromodynamics, electroweak theory,
and physics of the Higgs boson. The course will cover the major theoretical
predictions and experimental tests, and is suitable as a starting point for
beginning theory students, a review for more advanced theory students, and
as an introduction to the field for experimentalists. These lectures will build
upon the content of many excellent textbooks.

1.2 Canonical Quantization

The state of a physical system consisting of a collection of N discrete point
particles can be specified by a set of 3/V generalized coordinates ¢;. The action
of such a physical system, S = [ L(g;,q;) dt, is an integral of the so-called
Lagrangian function from which the system’s behavior can be determined by
the principle of least action. (We adopt the standard notation ¢; = 9,¢;.)
In a local field theory the Lagrangian can be written as the spatial integral
of a Lagrangian density, S = [.Z(¢,9,¢)d*z, where the field ¢ itself is a
function of the continuous parameters x#. Minimization condition on .5
yields

0 = 65
= /d4zc [0sL 60+ 09,6-L (0,9)] - (1.2.1)
The second term in the integrand can be integrated by parts,
0= /d4:):[8¢$ 0¢ — 0u(09,6L) 00+ 0,(09,6L 69)], (1.2.2)

with 6(9,¢) = 0.(¢ + 0¢) — 0,6 = 0,(d¢). Using Gauss theorem, the last
term in Eq. (1.2.2) can be written as a surface integral over the boundary
of the four dimensional spacetime region of integration. As in the particle

SF. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Mod-
ern Particle Physics, (Wiley, New York, 1984); J. D. Bjorken and S. D. Drell, Relativistic
Quantum Fields, (McGraw-Hill, New York, 1965); C. Quigg, Gauge Theories of the Strong,
Weak and Electromagnetic Interactions, Front. Phys. 56, 1 (1983); J. L. Rosner, An In-
troduction to Standard Model Physics, in The Santa Fe TASI-87 (eds. R. Slansky and
G. West, World Scientific, Singapore, 1988), p.3.
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mechanics case, the initial and final configurations are assumed given, and
so ¢ is zero at the temporal beginning and end of this region. Hereafter,
we restrict our consideration to deformations d¢ that also vanish on the
spatial boundary of the integration region. Hence, for arbitrary variations
0o, Eq. (1.2.2) leads to the Euler-Lagrange equation of motion for a field:

0,(09,ZL) — 03L = 0. (1.2.3)
For example, one can obtain Maxwell equations,
P70, F,y =0, 0" =ej” (1.2.4)
by substituting the Lagrangian

Plaxwell = —i F o, F" +eA,j" (1.2.5)
into (1.2.3), where A* = (¢, A) is the four-vector potential (related to to the
electric and magnetic fields by E=—0A— ﬁqb and B = V x ff, respectively),
Fr = 9t AY — 0¥ A* is the antisymmetric field strength tensor, and we have
extracted the electron charge e = —|e| from the four-vector current density
4*.7 In the interaction term, the four-current should be understood as an
abbreviation of many terms expressing the electric currents of other charged
fields in terms of their variables; the four current is not itself a fundamental
field.

The canonical momentum for the particle system is p; = 0,; L and the
corresponding quantity for a field, 7(z) = Qi)g , is called the momentum
density conjugate to ¢(z). The Hamiltonian is defined by

3N
H = sz‘ ¢ — L(4i, Gi) (1.2.6)
=1
and so we can write
H= /d% H(x). (1.2.7)
"We adopt Heaviside-Lorentz rationalized units, in which the factors of 47 appear in
Coulomb’s law and the fine structure constant (o = % ~ %) rather than in Maxwell’s
equations.
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where
H (1) = m(x) p(x) — ZL(¢,0,0) (1.2.8)

The Heisenberg commutation relations [p;, q;] = —id;;, [pi, ;] = [@,¢;] = 0
have as their field counterparts

(7 (Z,1), (7, 1)] = —i6®(& - ), (1.2.9)

with all other pairs of operators commuting. If there are various classical
fields to be quantized, e.g. ¢(x) and ¢*(z), the equation 0,[0,¢+L|—0= 2L =
0 will too be satisfied, and the field ¢* will have its canonically conjugate
momentum, 7 = J;..%. The Hamiltonian density will be

H =7(x) o+ () 9" = L(h, 9", 040, 0u0") (1.2.10)
and the additional commutation relation
[7*(Z,1), 6™ (7, t)] = —i6® (Z — 7)) (1.2.11)

will be assumed to hold. All commutators involving starred with unstarred
fields vanish at equal times, since these are independent fields. It is notewor-
thy that the commutation relations are only defined at equal times. Once
these are given, their values at different times are determined by the equa-
tions of motion. In the commutation relations, however, the times were set
equal but not otherwise specified, and therefore a change in the origin of time
has no physical consequences.

1.3 Lorentz Group

One paramount prerequisite to be imposed on a theory describing the behav-
ior of particles at high energies is that it be consistent with the special theory
of relativity.® This can be achieved by demanding covariance of the equa-
tions under Lorentz-Poincaré transformations. A Lorentz-Poincaré change
of referencial is a real, linear transformation of the coordinates conserving
the norm of the intervals between different points of spacetime. For such

8A. Einstein, Annalen Phys. 17, 891 (1905) [Annalen Phys. 14, 194 (2005)].
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transformation, the new spacetime coordinates z'# are obtained from the old
ones z# according to ™ = A¥ z¥ + a*, satisfying x 2" = x,2". Hereafter,
we treat the translation of spacetime axes separately, and give the name of
Lorentz transformation to the homogenous transformations with a# = 0. The
condition of reality leads to (A,,)" = A,, and invariance of the norm yields

G "3 = g 2 2 = gy N g% 2 (1.3.12)

ie.,

G A N5 = Gap - (1.3.13)

where g, = diag(1,—1,—1, —1) is the metric tensor. In addition, there is a
transformation law for the field ¢(x), so that transformed fields ¢'(x’) satisfy
the same equations in the new spacetime coordinates. The quantized theory
will then also be Lorentz invariant if (as indeed is the case) the commutation
relations transform covariantly.

Actually, in QFT, it is possible to discuss Lorentz invariance in a way
divorced from the specific form of the equations of motion. To this end,
consider a system to be fixed and some apparatus that serves to prepare
a physical state |t04). Consider now another, similar, apparatus related to
the first one by a Lorentz transformation, which prepares the physical state
|thar). Apparatus A may, for example, be a black box that emits electrons
through an aperture; aparatus A’ will be the same source, rotated through
an angle # about some axis and moving with some fixed velocity relative to
the apparatus A. Consider, similarly, a measuring apparatus M, which is
being used to make measurements on the state [14) and another measuring
apparatus M’, which differs from M only in that it is shifted relative to M
by the same Lorentz transformation that connects A" with A. The statement
of relativistic invariance is that the measurements made by M on the state
|1h4) yield the same results as those made by M’ on the state [1)4/).

To obtain the formal consequences of this statement, we recall that in
a quantum mechanical measurement we generally determine the probabil-
ity that the physical system is in some state |¢); e.g., we may ask for the
probability that the electrons emitted have momentum p. The probabil-
ity of that happening will be |[(¢,|t04)|?, where |@,) describes the state in
which just this particular momentum is found for the electron. For the
transform source and measuring apparatus, the corresponding probability is

14



|{(dp|ta) |2, where |¢py) is the state for which the electron has the momentum
p’ connected to p by the same Lorentz transformation that connects A and
A’. Because the vector space of states contains all possible physical states,
|th4) and | 4/) must be related by some transformation U(A) that depends
on the Lorentz transformation A. Because the measuring apparatus M and
M’ are connected by the same Lorentz transformation, we must have both
|Yar) = U(A) |¢4) and |¢) = U(A) |¢p). The invariance requirement implies
that [{¢y]wa)]? = |[(Pp|1ha)|?. From this we can deduce that U(A) must be
an unitary (or antiunitary) transformation. Time-reversal invariance is the
only symmetry requiring an antiunitary operator,” and so here we take U to
be unitary.

Now, consider the measurement of the expectation value of the scalar field
¢(z). For a state [14), this will be (¥ 4]|é(z)|104), and for the state 14 it will
be the measurement of the expectation value of the field at the transformed
point, i.e., (Yar|p(2')|1ha). We thus have

(Walo(@)[a) = (WaUN(A)|o(2")|U(A)a) - (1.3.14)

Therefore the scalar field in a Lorentz invariant theory would transform ac-
cording to

o) = UA)o(a)U(A) (1.3.15)

with 2/ = Ax.

If A% > 0, the transformation is called orthochronous because it conserves
the sense of timelike vectors. Additionally, if det (A*,) = 1, the transforma-
tion also conserves the sense of Cartesian systems in ordinary space. The en-
semble of these transformations forms a group dubbed proper Lorentz group
SO(3,1). The proper Lorentz group is a Lie group. The crucial property here
is that all transformations can be expressed as a succession of infinitesimal
transformations

ot — = AP 2 = (0, + Wt (1.3.16)

(arbitrarily close to the identity), where the quantities w*, are infinitesimals
and thus we only keep terms linear in w”,.

9see, for example, S. Gasiorowicz, Elementary Particle Physics, (John Wiley & Sons,

Inc., New York, 1966) p.26.
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For any continuous group, the transformations that lie infinitesimally
close to the identity define a vector space, called the Lie algebra of the group.
The basis vectors for this vector space are called generators of the Lie alge-
bra. For example, each rotation can be labeled by a set of continuosly vary-
ing parameters (61, 65, 3) that can be regarded as the component of a vector
directed along the axis of rotation with magnitude given by the angle of rota-
tion; the generators of the Lie algebra are the angular momentum J*, which
satisfy the commutation relations [J;, J;| = i€ Ji , where €, = +1(—1) if
ijk are a cyclic (anticyclic) permutation of 1 2 3 and ¢;;, = 0 otherwise.
In the lowest-dimension non-trivial representation of the rotation group, the

generators may be written J; = $0;, where o; are the Pauli matrices™

01 0 —i 1 0

The basis (or set of base states) for this representation is conventionally
chosen to be the eigenvectors of o3, that is the column vectors (§) and (9),
describing a spin—% particle of spin projection up (m = % or 1) and spin
projection down (m = —% or |) along the 3-axis, respectively.

For an infinitesimal transformation, the condition (1.3.13) implies
Gupw"'s + gorw”s =0, (1.3.18)

i.e., the infinitesimals are real antisymmetric tensors, w,, + w,, = 0. Note
that an antisymmetric 4 x 4 matrix has 4 x 3/2 = 6 independent components,

Wy = Y Wag (M), (1.3.19)
a<f

which define the 6 transformations of the proper Lorentz group: 3 rotations
and 3 boosts. A 4-dimensional representation for the 6 SO(3, 1) generators
is

(. Py, =i(g"?6%, — g*d”,). (1.3.20)
The following commutation relations result after a little algebra
LA, M) = i(g7° M — g M — g M+ g AP (1.3.21)

10W. Pauli, Z. Phys. 36, 336 (1926).
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Any matrices that are to represent the Lorentz algebra must obey these same
commutation rules.

Locally, we have a correspondence: S0(3,1) = SU(2) & SU(2). The
generators J; of rotations and K; of Lorentz boosts can be expressed as

Ji = teijp M, K= My, (1.3.22)
and the linear combinations (which are neither hermitian nor antihermitian),
A = %(JZ- +iK) and B — %(Ji K (1.3.23)
satisfy the SU(2) commutation relations,
[A;, Aj] = i€ Ak, [Bi, Bj| = i€jx B, [Ai,Bj]=0; (1.3.24)
following from
(i, J;] = i€ijidi, [, K] = i€ Ky,  [Ki, Kj) = —i€jp . (1.3.25)
Under parity P(x° — 2° and # — —Z) we have
Ji—J; and K;— —K;, = A; < B;. (1.3.26)

If we now write U(A) = €, where n is hermitian and reduces to zero
for the identity transformation, for an infinitesimal transformation (1.3.15)
becomes

o(x) +in, p(z)] + - = p(at +wh ") ... . (1.3.27)
Expanding the right hand side in terms of w, we obtain
i, ()] = o(x) + W, 270,06 — ¢(x)
~ Wz,
~ 1w (2,0, — x,0,) ¢(z), (1.3.28)

where in the last line we have used the antisymmetry of w*”. Now, identifying
n= —%w“”///,w, we obtain

il My, d(@)] = (2,0, — 2,0,) ¢(2) = Ly ¢(2) (1.3.29)

17



Note that for W,V = 1, 2, 3 the quantities Ll = L23, L2 = ng, and L3 = L12
are the differential operators representing the orbital angular momentum.
For a displacement, the analog of (1.3.15) is

o(z +a) = Ua)p(z)U' (a) (1.3.30)
If we write U(a) = €%, then for an infinitesimal a,, (1.3.30) becomes
¢(x) + a,0"d(x) = o(x) +i[¢, 9], (1.3.31)

or

iay[P*, ¢(x)] = i[C, ¢(x)] (1.3.32)
so that we can make the identification ( = a,P" and write the unitary
operator U(a) for arbitrary displacements in the form

U(a) = et (1.3.33)

The Hamiltonian generates displacements in time, and the operator P, which
will be seen as the operator representing the momentum of the field, gener-
ates spatial displacements. A little computation leads to the commutation
relations of the Lorentz-Poincaré algebra

A", P7] = i[P'g" — PYg"’] (1.3.34)

and
[P*,P"] =0. (1.3.35)

In closing, we note there is a homeomorphism (not an isomorphism)
SO(3,1) =2 SL(2,C). To see this, take a 4 vector

X=uz,e'=(x0, 21, T2, 3) (1.3.36)

and a corresponding 2 X 2 matrix

X =u,00 = ( oy o ) , (1.3.37)
xr1 + 1Ty Ty — T3

where o* = (1,0") is the 4 vector of Pauli matrices. Transformations
X +— AX under SO(3,1) leave the square

X|? =22 — 27 — 23 — a3 (1.3.38)

18



invariant, whereas the action of SL(2,C) mapping X — NXNT, with N e
SL(2,C) preserves the determinant

det X =22 — a? — 22 — 2. (1.3.39)

The map between SL(2,C) is 2-1, since N = 41 both correspond to A = 1,
but SL(2,C) has the advantage to be simply connected, so SL(2,C) is the
universal covering group.

1.4 Klein-Gordon Equation

The Lagrangian formulation is particularly suited to relativistic dynamics
because provided our choice of .Z is a Lorentz scalar, the equation of motion
resulting from (1.2.3) will be Lorentz invariant. For example, substituting
the Lagrangian

1 1
into (1.2.3) yields the Klein-Gordon equation
0,0"¢ +m*p = (0> + m*)¢p = 0. (1.4.41)

By recalling that a prescription for obtaining Schrodinger equation for a free
particle of mass m is to substitute the classical energy momentum relation
E = p?/2m by the differential operators £ — ihd; and p — —ihV, we can
see that (for & = 1) Klein-Gordon equation satisfies the relativistic energy-
momentum relation

E? =p?+m?. (1.4.42)

Consequently, Eq. (1.4.41) could otherwise have been called the relativistic
Schrodinger equation.

Multiplying Eq. (1.4.41) by —i¢* and the complex conjugate equation by
—1¢, and substracting, leads the continuty equation

0, [i(¢" 0 — ¢ 016")| +V. [=i(¢" Vo — ¢ V™) = 0 (1.4.43)

P J

where p is the probability density (|¢|?d®z gives the probability of finding
the particle in a volume element d3x), and J'is the density flux of a beam of
particles.
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Considering the motion a free particle of energy E and momentum p,
described by Klein-Gordon solution,

¢ = N ' Pe=ED (1.4.44)

from Eq. (1.4.43) we find p = 2 F|N|*> and J = 2p|N|?. We note that the
probability density p is the timelike component of a four-vector

pox B ==4(p? +m*)Y2, (1.4.45)

Thus, in addition to the acceptable £ > 0 solutions, we have negative energy
solutions which have associated a negative probability density. We cannot
simply discard the negative energy solutions as we have to work with a com-
plete set of states, and this set inevitably includes the unwanted states.

Pauli and Weisskopf gave a natural interpretation to positive and negative
probability densities by inserting the charge e into (1.4.43),

et =ie (¢ D — ¢ DG, (1.4.46)

and interpreting it as the electromagnetic charge-current density.!! With this
in mind, ej° represents a charge density, not a probability density, and so
the fact that it can be negative is no longer objectable. In some sense, which
we will make clear in a moment, the £ < 0 solutions may then be regarded
as E/ > 0 solutions for particles of opposite charge (antiparticles).

The prescription for handling negative energy configurations was put for-
ward by Stiickelberg and by Feynman.'? Expressed most simply, the idea is
that a negative energy solution describes a particle which propagates back-
wards in time or, equivalently, a positive energy antiparticle propagating
forward in time. It is crucial to master this idea, as it lies at the heart of our
approach to Feynamn diagrams.

Consider a spin-0 particle of energy FE, three-momentum p, and charge e,
generally referred to as the “spinless electron.” From (1.4.44) and (1.4.46),
we know that the electromagnetic four vector current is

ej'(e”) = 2e|N*(E, p). (1.4.47)

HW. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709 (1934).
12E. C. G. Stiickelberg, Helv. Phys. Acta. 14, 322 (1941); 14, 558 (1941); 15, 23

(1942); R. P. Feynman, Phys. Rev. 74, 939 (1948); 76, 749 (1949).
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Now, taking its antiparticle et of the same (F,p), because its charge is —e,
we obtain

—ej"(e") = —2e|N[*(E,p)
2¢|N|*(—-E, —p), (1.4.48)

which is exactly the same as the current of the original particle with —F, —p.
Hence, as far as a system is concerned, the emission of an antiparticle with
energy F is the same as the absorption of a particle of energy —FE. Pictorially,

we have
Jr

E>0

e

_>_

equivalent to
E <0
— e

time —

In other words, negative-energy particle solutions going backward in time
describe positive-energy antiparticle solutions going forward in time. Of
course the reason why this identification can be made is simply because
p—i(—E)(—1) _ o—iBt

The particle-antiparticle conjugation C' constitutes a finite symmetry
group containing only two elements, the identity / and an element g, satis-
fying g% = I. Invariance of a system under the symmetry operation g means
that if the system is in an eigenstate of (', then transitions can only occur
to eigenstates with the same eigenvalue.

1.5 Dirac Equation

Let us now attempt to construct a wave equation for spin—% relativistic parti-
cles of mass m. Following Dirac!'?® we proceed by analogy with non-relativistic
quantum mechanics and write an equation which, unlike the Klein-Gordon

13p. A. M. Dirac, Proc. Roy. Soc. Lond. A 117, 610 (1928); 118, 351 (1928); 126, 360
(1930); 133, 60 (1931).
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equation, is linear in ;. In order to be covariant, it must also be linear in

—

V, and therefore the Hamiltonian has the general form
H (z) = (a.p+ Bm) ¢(z) (1.5.49)

where the four coefficients 5 and o, as, and ag are determined by the re-
quirement that a free particle must satisfy the relativistic energy-momentum
relation (1.4.42)

H*)p = (aip; + fm)(a;p; + Bm)y
= (o} pl+ (oy+ aja;) pip; + (B + Bay) ppm+ 2 m?) 1.
Y ; ; i

(1.5.50)

Here we sum over repeated indices, with the condition ¢ > j on the second
term. From Eq. (1.5.50) we see that all the coefficients o; and 8 anticommute
with each other, and hence they cannot simply be numbers. We are lead to
consider matrices o (k = 1,2,3) and § , which are required to satisfy the
conditions

oFal +alaf = {oF, o'} = 26", {3} =0, and B =1, (1.5.51)

where 1 is the unit matrix. It turns out that the lowest dimensionality
matrices, which guarantee that the relativistic energy momentum relation
also holds true, are 4 x 4.

A four-component quantity ¥, (x) which satisfies the Dirac equation,

00 1y(2) = —i [apo]* Ot 6o(2) + 0 By (). (1.5.52)

is called a spinor. Its transformation properties are different from that of a
four-vector and we will study them later in this section. Hereafter we omit
the spinor subscripts whenever there is no danger of confusion: (z) will
always stand for a column to the right of the 4 x 4 matrices, and ¥(x) for a
row to the left of the matrices.

It is actually never necessary to have specific representation of the ma-
trices o and /3; nevertheless some calculations become more transparent by
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the choice of a canonical form. The Dirac-Pauli representation is the most
frequently used:

d’Ea:(g_ ((7)-) and 52((])1 —O]I)’ (1.5.53)

where the submatrices o are the Pauli spin matrices (1.3.17). Another pos-
sible representation in a 2 x 2 block form is

—-o 0 0 I
a:< 0 0_) and 52(1 O). (1.5.54)

This representation is called the Weyl or chiral representation. Unless stated
otherwise, we will always use the Dirac-Pauli representation.
On multiplying Dirac’s equation by S from the left, we obtain

iBO =—ifoa.Vih+mi (1.5.55)
which can be rewritten as
i 0 + iy Ot — map = 0, (1.5.56)

or equivalently,
(iv"0, —m)y =0 (1.5.57)

Here, we have introduced four Dirac y-matrices, v* = (3, fa), which satisfy
the anticommutation relations

{77} =2¢". (1.5.58)

This means that y#v” = —y“4* when u # v, (7°)*> = 1, and (v*)? = —1. We
can now unequivocally see that Dirac’s equation is actually four differential

) {Zi Yool O —m %} e =0, (1.5.59)

o=1 o

equations,

which couple the four components of a single Dirac spinor .
We want the Dirac equation to preserve its form under Lorentz trans-
formations. We know that the 4-vectors get their components mixed up by
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Lorentz transformations, so we expect that the components of 1 might get
mixed up too. Because both the Dirac equation and Lorentz transforma-
tion of the coordinates are themselves linear, we ask that the transformation
between 1) and ¢’ be linear, i.e.,

Y (a’) = ' (Ax) = S(A) 9P (x) = S(A)* gy (A1), (1.5.60)

where S(A) is a 4 x 4 matrix which operates on the spinor index of 1.

We need to figure out what S is. The requirement is that the Dirac
equation has the same form in any inertial frame. If we make a Lorentz
transformation from our original frame into another (primed) frame we de-

mand
(z’fy“&u’ —m)yY'(2') =0, (1.5.61)

or equivalently
(iy"A, 0, — m)S(A) Y(x) =0 . (1.5.62)

If we multiply by S~1(A) from the left we get
(iST'ASAY O, —m)Y(x) =0. (1.5.63)

The equation therefore is form-invariant, provided we can find S(A) such
that
STHA) A" S(A) A =47, (1.5.64)

or equivalently
A " = STHA)YS(A). (1.5.65)

To find S(A) we resort to the trick of considering an infinitesimal Lorentz
transformation. Let »
S(A)=1-— %WWZW, (1.5.66)

after a bit of algebra (1.5.64) reduces to the condition
(2, 4°] = —i(g""y" = g""") . (1.5.67)

A solution is seen to be

1 ) ) 0 wpu=v 1
S = Zgh = [yl V] = = —(y"y* — g"). (1.5.68
50 iaRd 2{7“7” MAV} 5 (1" =) ( )
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Note that when p # v we have

;
[ 4P = LU 77

1 1
— L AMAVAB D ABAAY
Q’Y’Y’Y 2777

:—H’ v B__U v o B % v _AM v
27{%7} 5V 2{%7}7 +57"%y

= i(y"g”" — g™ (1.5.69)
By repeated use of (1.5.58), it is easily seen that (1.5.68) satisfies the com-

mutation relations (1.3.21) of the Lorentz algebra, i.e,

?

2,27 = L[5 a0]
i v o} Z v o
= BN+ B
Z’ o UV v_. o vo vV O
=3 (VA7 g — A7 g 4 AP GYT — AP g7 (1.5.70)
using (1.5.68) to write iy#y7 = 25" 4 g, we have
[SH 5] = i(g"PEHT — gMPErT — g - gho ) (1.5.71)

Incidentally ST(A) =% S71(A) 4°. When the Lorentz transformation is not
infinitesimal the form for S(A) becomes

S(A) = e~ W/2 wu 2 (1.5.72)
For a rotation wy; = 0 and w;; = 6y, and because £ = 1% o* we get

S(A) = e (/269 (1.5.73)

which shows the connection between w;; and the parameters characterizing
the rotation (i, j, k =1, 2, 3). For a pure Lorentz transformation w;; = 0
and wy; = ¥;, and because X% = 1o’ we have

S(A) — 6(1/2)19.a
B 1+119 +1 2 +1 92 19.a+
-ty ) T\t ) 2 T
= coshg +7. sinhg : (1.5.74)
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For a special case, we may find the connection between 9} and the velocity
U characterizing the pure Lorentz transformation by looking at (1.5.64). For
example, consider a Lorentz transformation in which the new frame (prime
coordinates) moves with velocity v along the x3 axis of the original frame
(unprimed coordinates). We will leave it to the reader to convince themselves
that

t" = cosh(¥3) t — sinh(d3) z3
ry = —sinh(Y3) ¢t + cosh(V¥3) z3 (1.5.75)

with  and y unchanged; here,

cosh(¥3) = b and J

1 —02

S|

Il
>

(1.5.76)

Because cos(it)3) = cosh(?3) and sin(if)3) = sinh(v3), we see that the Lorentz
transformation may be regarded as a rotation through an imaginary angle
13 in the it-z3 plane.

To construct the currents, we duplicate the calculation of the previous
section taking into account that Dirac’s equation is a matrix equation and
thus we must consider the hermitian, rather than the complex, conjugate
equation. The Dirac’s equation hermitian conjugate is

—i)14°0, — 10T (—") —mayT = 0. (1.5.77)

To restore the covariant form we need to flip the plus sign in the second term
while leaving the first term unchanged. Since 7°4* = —~%40, this can be
accomplished by multiplying (1.5.77) from the right by 4°. Introducing the

adjoint (row) spinor ¥ = 1'7°, we obtain
10,0 +map =0 . (1.5.78)

Before proceeding, we pause to discuss the transformation properties of

(x)y*(x). We have

V(@) (@) = (x) STHA) Y S(A) ¥(x)
= A" () Y(x) . (1.5.79)
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This implies that under a Lorentz transformation, the bilinear combination
Y(x) "9 (z) transforms like a contravariant four-vector. Along these lines,
we can write down a Lagrangian describing the behavior of spin—% relativistic
particles of mass m

Loirac = (i7" 0y —m)i) . (1.5.80)
Let us now resume the derivation of the continuity equation, 9,j* = 0. By
multiplying (1.5.56) from the left by ¢ and (1.5.77) from the right by v, and

adding, we obtain

VA" O + (00)7" = Du(Uy) = 0, (1.5.81)

showing that the probability and flux densities, j# = 1y*1), satisfy the con-
tinuity equation. Moreover,

4
p=30 =y =l =" Jif? (1.5.82)
=1

is now positive definite. In this respect, the quantity i (x) resembles the
Schrodinger wave function, and the Dirac equation may serve as a one particle
equation. In that role, however, the coefficient of —iz® in the decomposition

U(z) = /dp¢(p) e T (1.5.83)

plays the role of the energy, and there is no reason why negative energies
should be excluded.

Next, we discuss the plane wave solutions of the Dirac equation. We will
treat positive and negative frequency terms separately and therefore write

Y(x) = u(p)e™ ™ + v(p) e?* | (1.5.84)

Since v also satisfies Klein Gordon equation, it is necessary that pp, = m?

so that p° = ++/p2+m? = E. Conventionally, we will call the term with
e~"Fo the positive frequency solution. From the Dirac equation it follows
that

(i7" (—ipu) — m]u(p) e”P* + [iv"(ip,) — m]v(p) eP* =0 (1.5.85)
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or equivalently

(Y'pu —m)ulp) =
(V'pu+m)v(p) = 0, (1.5.86)

because the positive and negative frequency solutions are independent.
A point worth noting at this juncture. The two negative energy solutions

(3:4)

u are to be associated with an antiparticle, say the positron. Using the

antiparticle prescription from the previous section: a positron of energy E
and momentum p is described by one of the —F and —p electron solutions,
ie.,

uBY (—p) e LT = D (pyetr- (1.5.87)

where p° = E > 0. The “positron” spinors v are defined just for notational
convenience.

It is useful to introduce the notation v*p, = 7,p* = p. The “slash”
quantities satisfy {d, ¥/} = a,b,{7",7"} = 2a,b" = 2a.b. The Dirac equation
for a plane wave solution may thus be written as

#—m) ulp) =
(B+m)v(p) = 0. (1.5.88)

It is easily seen that

() B—m) =
u(p) +m) = 0. (1.5.89)

When p'= 0, pg = m the equations take the form

(Y —1) mu(0)=0
(7° +1) m v(0) = 0. (1.5.90)

N

There are, therefore, two positive and two negative frequency solutions, which
— identifying «®(0) = v (0) and u®(0) = vV(0) — we take to be

0
uM(0) =

u?(0) = v@(0) =

oS O O =
o O =
o = O O
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Since

B+m)#—m)=p*—m*=0 (1.5.92)

we may write the solution for arbitrary p in the form

u(p) = C(m+p) u(0)
v (p) = C' (m—p) v"(0), (1.5.93)

where r = 1,2, and C' and C’ are normalization constants. For fermions,
we choose the covariant normalization in which we have 2F particles/unit
volume, just as we did for bosons

/ pdV = /W YdV =ul(p) u(p) = 2F, (1.5.94)
unit vol.

where we have used (1.5.82) and (1.5.84). This leads to the orthogonality
relations

ul(p) ul)(p) = 2E6,5, v (p) v (p) = 2E5, . (1.5.95)

By summing @(p) v°(v"p, —m) u(p) = 0 and a(p) (v*p, —m)~° u(p) = 0, we
obtain

2u(p) po u(p) —2mu'(p) u(p) =0, (1.5.96)

where we have used the relation 707% = —~k~0

then become

. The orthogonality relations

i (p) u(p) = Zu(p) u(p) = 2md,, (1.5.97)
and m
07(p) v(p) = =% v (p) v (p) = —2md, . (1.5.98)
Finally, using pp = p* we obtain
a(p) u®(p) = |CPa"(0) (m+ p)(m+ ) u'*(0)
= 2m|C2a"(0) (m + ) u'9(0)

= 2m|C2( a
B | (1.5.99)



and determine the normalization constant

1
O=__- (1.5.100)
m+ B
A straightforward calculation leads to
, 1
= ——— (1.5.101)

vVm+ E

Introducing two-component spinors x(", where x' = (}) and x = (¥), we
may examine the explicit form of the solution of the Dirac equation in the
Pauli-Dirac representation. For E > 0 we have

W) = Yo
vm+E

o m_‘_UgE_'Z.O-QO' ﬁ (,r.)

vm+E
B 1 m+FE —op ¥
- Vm+FE op m-—F 0

— VE+m < A ) , (1.5.102)

(E+m)toyp X(T)

and so the positive-energy four spinor solutions of Dirac’s equation are

(0)

(m+E) ' op (

(")

(m+E) ' op (

U1<E,]5>:\/m+E 1

. (1.5.103)
y

and

UQ(E,ﬁ):\/m+E O

. (1.5.104)
)
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For low momenta, the upper two components are a great deal larger than
the lower ones. For the E < 0 solutions,

1 m+E —op 0
42 (p) = — 1.5.105
o m( o5 m_E><X<r>>’ (1:5105)

hence the four spinor solutions of Dirac equation are

—(m—-FE)toyp < (1) )
us(E,p) = vVm — E 1 . (1.5.106)
0
and
—(m—-FE)toyp < (1) )
u(E,p)=vm—FE : (1.5.107)

(")

To obtain the completness properties of the solutions, we consider the
positive and negative solutions separately. We use the explicit solutions
already obtained,

(Aot = 5 >0l a'0)
_ m Z(¢+m>u<">(0>a<”<0)(¢+m) )
B 1 14+4°
= T {(m%—]/ﬁ) 5 (m+¢)LB
1 1 0
gy {42
_ $(¢+m)a6. (1.5.108)
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Similarly, if we define A_ by

]' T
(A )as = —5— ;va (1.5.109)
we get
1
(A—)aﬁ = % (m - ]5)&6 : (1'5'110)

The completness relation is that

Ay +A_ = im Z (p)— o (p) 8y (p)] =T.  (1.5.111)

The separate matrices, A, and A_, have the properties of projection opera-
tors, because A2 = Ay and AyA_ = A_A, = 0. The operators Ay project
positive and negative frequency solutions, but because there are four soul-
tions, there must still be another projector operator, which separates the
r = 1,2 solutions. This projector operator h must be such that

R RS =5, h" and [B",AL]=0. (1.5.112)

Since the two solutions have something to do with the two possible polar-
ization directions of a spin—% particle, we may expect the operator to be
some sort of generalization of the non-relativistic operator which projects
out the state polarized in a given direction for a two component spinor. On
inspection, we see that the helicity operator,

1 ok 0
h=p.X=—-9p 1.5.113

satisfies (1.5.112), where p = p/|p| is the unit vector pointing in the direction
of momentum. It follows from (1.5.49) that the helicity operator commutes
with H and therefore it shares its eigenstates with H and its eigenvalues are
conserved. To find the eigenvalues of the helicity operator we calculate!*

, 1{(@p? 0o \ 1@ 0
h—4< ; (Uﬁ)2>_4<0 ]52). (1.5.114)

Note that 0; 0 = 8;; + i€;j,0%, and so (o.p)? = o;p' 0 p? = (8;5 + €ijuor)p'p’ =2
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Thus, the eigenvalues of the helicity operator are

L { +% positive helicity, == (1.5.115)

—% negative helicity, <=»>

The “spin” component in the direction of motion, %13.0', is thus a “good”
quantum number and can be used to label the solutions.

Assuming a particle has momentum p’ and choosing the x3-axis along the

direction of p, we can determine which of the four spinors ui, us, v1, and vy

have spin up and spin down. With these assumptions, o.p = o3ps, |p] = p3
and the helicity operator (1.5.113) simplifies to

1 D 1
potosps 0 ) _Lfos 03 (1.5.116)
2 0 03P3 2 0 o3

We then find

1 1
vE+m -1 (0)
hu, = ————
2 1 Eamlop [ L
1 m) T o.p 0

e G

and

1 (0>
E -1 1
huy — +m

0
E+m —1




For antiparticles with negative energy and momentum —p, o.p' = o03(—ps3)
and the helicity operator simplifies to

1 [ —o3p 1({ —
L e L Y e R (1.5.119)
2 0 —03P3 2 0 —03

We then find

vVE4+m 1 P
hvy, = ——
2 —1 0
1 1

vE+m

and
— 1
L (E4+m)™ op
L E+m 1 0
Vg = ————
? 2 —1 1
1 0
s
(E+m)top
_ VE+m 0 1 (1.5.121)
= B 1 = 2’112 . 0.
0

For space invertion, or the parity operation, A”, = diag(1, -1, -1, —1).
Then, (1.5.64) becomes S5'7°Sp = 7 and S5 'y*Sp = —~* (for k = 1,2,3),
which is satisfied by Sp = 4°. In the Dirac-Pauli representation of ~°, the
behavior of the four components of ¢/ under parity is therefore 1| , = 91 5 and
Y3, = —t34. The “at rest” states (1.5.91) are thus eigenstates of parity, with
the positive and negative energy states (that is, the electron and positron)
having opposite intrinsic parities.
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Table 1.3: Bilinear covariants. The list is arranged in increasing order of
the number of v# matrices that are sandwiched between 1) and . The
pseudoscalar is the product of four matrices. If five matrices were used, at
least two would be the same, in which case the product will be reduced to

three and be already included in the axial vector.

No. of Compts. Space Inversion, P
Scalar ) 1 + under P
Vector PyHap 4 Space compts. — under P
Tensor Yot 6
Axial vector  1)y°yH) 4 Space compts. + under P
Pseudoscalar  1)y°1) 1 — under P

To construct the most general form of currents consistent with Lorentz
covariance, we need to tabulate bilinear quantities of the form (¥)(4 x 4)(¢),
which have definite properties under Lorentz transformations, where the 4 x 4

matrix is a product of v-matrices. To simplify the notation, we introduce
7P = i0yiy23 (1.5.122)
It follows that
Y =2% (P)P=1, ¥+ =0. (1.5.123)

In the Dirac-Pauli representation

v® = < g ]é ) : (1.5.124)

We are interested in the behavior of bilinear quantities under proper Lorentz
transformations (that is rotations and boosts), and under space invertion
(the parity operation). An exhaustive list of the possibilities is given in
Table 1.3. Because of the anticommutation relations, (1.5.58), the tensor is
antisymmetric

— ). (1.5.125)



From (1.5.79), it follows immediately that ¢1) is a Lorentz scalar. The prob-
ability density p = 9% is not a scalar, but is the timelike component of
the four vector 1y*1. Because v°Sp = —Spy°, the presence of v° gives rise
to the pseudo-nature of the axial vector and pseudoscalar. For example, a
pseudoscalar is a scalar under proper Lorentz transformations but, unlike a
scalar, changes sign under parity:.

In the Weyl representation, the boost and rotation generators can be

written as
g . 7 ol 0
0 — a0 A0 = , 1.5.126
and
sk _ EW Vk] _ fgjkl ol 0 i (1.5.127)
4+ 2 0 o

From the block-diagonal form of the Lorentz generators, it is evident that
the Dirac representation of the Lorentz group is reducible. We can form
two 2-dimensional representations by considering each block separately and
writing w(ig ). The two-component objects 1, and ©g are called left-handed
and right-handed Weyl spinors. In terms of ¢, and g, the massless Dirac
equation

79, () = ( 0 i(@+0o-V) ) <w<x>

o) . onle) ) =0 (1.5.128)

divides into two decoupled equations,

(0 —o. V=0 — Eup=—0.puL, (1.5.129)
(O +0 . Vyp=0 — Bup= o.pun, (1.5.130)

for two component spinors u(p) and ug(p). Translating these results to four-
component form u = (=), with ¢ (z) = u(p)e
the relativistic energy-momentum relation, £? = p2, and so has one positive
and one negative solution.

—* Rach solution is based on

Assume (1.5.129) is the wave equation for a “massless” fermion, a neu-
trino. The positive energy solution has E = [p] and so satisfies

o.p up=—ur. (1.5.131)
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This means that u; describes a left-handed (h = —%) neutrino of energy F
and momentum p. The remaining solution has negative energy. To interpret
this, we consider a neutrino solution with energy —F and momentum —p. It
satisfies

o . (—]3) ur =1uy,, (15132)

with positive helicity, and hence describes a right-handed (h = +3) antineu-
trino of energy £ and momentum p. Symbolically, we say (1.5.129) describes
vy, and vg. These solutions break invariance under the parity operation P,
which takes v;, — vg. For massless neutrinos this is not a censure, because
weak interactions do not respect parity conservation. The second equation,
(1.5.130) describes the other helicity states vg and vy,

In the Weyl representation,

1 0
5 _ , 1.5.133
v ( 0 I) ( )

thus, we can project a Dirac spinor to a left- or right-handed spinor
I- ’)/5 Io0 uy, ur,
u = = s
2 0 0 UR 0
1+ +° 0 0 0
LY L . (1.5.134)
2 0 I UR UR

Of course, the fact that %(]I — ~°) projects out negative helicity fermions at

high energy does not depend on the choice of representation. Working in the
Dirac-Pauli representation of y-matrices, with £ > m and E ~ |p|, we have

(s) H v(8) (s)
X o.pX . X
4 ( . ) ~ ( o) ) ~ O'.p( o7 (s) ) , (1.5.135)
m+FE X X m+E X

which implies

5l = ( op 0 ) NON (1.5.136)
0 o.p

where u(®) is the electron spinor of 1.5.102. This shows that in the extreme
relativistic limit, the chirality operator (7°) is equal to the helicity operator;
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and so for example, %(]l — ~*)u = uy, corresponds to an electron of negative
helicity. We need only choose a representation if we wish to show explicit
spinors. The particular advantage of the Dirac-Pauli representation is that it
diagonalizes the energy in the non-relativistic limit (7° is diagonal), whereas
the Weyl representation diagonalizes the helicity in the extreme relativistic
limit (° is diagonal).

In closing, it is appropriate to peep ahead at weak interactions, which
are discussed in Chapter 5. A vast number of experimental evidence attest
that leptons enter the “charged-current” weak interactions in a special com-
bination of two bilinear covariants. For example, for the electron and its
neutrino, the weak current

JH=u AT =) u, (1.5.137)

has a V' — A form. Because of the presence of the %(]l — 7%), the mixture
of vector (V) and axial vector (A) ensures that parity is violated. Indeed,
parity is maximally violated, because only left-handed neutrinos (and right-
handed antineutrinos) are coupled to charge leptons by the weak interactions.
Namely, (1.5.134) can be rewritten as,

u=ur+up=3i1-7)u+i(1+~)u, (1.5.138)
and so (1.5.137) becomes
JH =Tt (L + )AL =Y )uy + T3 (1 — )" 5(1 —7°)u, . (1.5.139)

However, since (1 +~+°)(1 —+%) = 0 and y#9® = —*y*, the second term in
(1.5.139) vanishes, yielding

JH =01+ )1 = P )uy = Ty (L — 7P, - (1.5.140)

Note that, 7, = ujy° = u'3(1 —°)7" = a5(1 +7°), because 1° = 4°T and
799" = =754, In summary, the (1 —~°) in (1.5.137) automatically selects
a left-handed neutrino (or a right-handed antineutrino).

1.6 Nonrelativistic Perturbation Theory

So far, free-particle states have been eigenstates of the Hamiltonian. In other
words, we have seen no interactions and no scattering. There is no known

38



method, other than perturbation theory, that could be used to include non-
linear terms in the Hamiltonian (or Lagrangian) that will couple different
Fourier modes (and the particles that occupy them) to one another. There-
fore, in order to obtain a closer description of the real world, inevitably we
are forced to resort to some form of approximation methods.

In perturbation theory we divide the Hamiltonian into two parts Hy and
V(%,t), where Hy is a Hamiltonian for which we know how to solve the
equations of motion,

Holon) = Eolon)  with  (énlén) = /V 6 o dz = Oy, (1.6.141)

and V(Z,t) is a perturbing interaction. For simplicity we have normalized
the solution to one particle in a box of volume V. Since the only soluble
field theory is the free-field theory, we take for Hy the sum of all free particle
Hamiltonians, with the physical masses appearing in them.'® In the formal
development we consider, for the sake of simplicity, a theory involving one
scalar field. The objective is to solve Schrodinger equation

[Ho + V(Z,8)]¢ = i0) (1.6.142)

for such a scalar particle moving in the presence of an iteraction potential
V(Z,t). Any solution of (1.6.142) can be expressed in the form

= ca(t)n)e =3 " e () ¢u(E) e (1.6.143)

When this expression is substituted in the Schrodinger equation we get an
equation for the coefficients ¢, (t)

ch V(T t)n)e Pt =iy~ &, (t)[n)e P! (1.6.144)

or equivalently

D eV (E t)bn(B)e P =0 Y én(t)n(T)e P (1.6.145)

n n

5 A point worth noting a this juncture: the quantities which in the free Lagrangians
play the role of the masses of the free particles, are no longer equal to the masses when

interactions are present because of the possibility of self-interaction.
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Multiplying by ¢%, integrating over the volume and using the orthogonality
relation (1.6.141), we obtain the following coupled linear differential equa-
tions for the coefficients

ep=—iY ca(t) / O3V by, dP ! Fr=FnE (1.6.146)

Assume that before the potential V' acts, the particle is in an eigenstate ¢
of the unperturbed Hamiltonian. We therefore set at time t = —7'/2 all the
cn(=T/2) =0, for n # ¢, and ¢;(—=7/2) = 1. The relation

=> ca(t)n) (1.6.147)

shows that the system state [¢)) = |i), as desired. Replacing the initial
condition into (1.6.146) we get

= —i/d% O3V gy ' Frm ot (1.6.148)

Next, provided that the potential is small and transient, we can, as a first
approximation, assume that these initial conditions remain true at all times.
To find the amplitude for the system to be in the state |f) at ¢, we project
out the eigenstate |f) from [¢)) by calculating

t
cp(t) = —i / dt’ / PPz ¢V gy e Fr= I (1.6.149)
—T/2

and, in particular, at time 7'/2 after the interaction has ceased,

T/2
T = e (TP2) / dt/ d*x ¢y (Z)e™ ]V (&, )]n(F)e™™],

T/2
(1.6.150)
which can be rewritten in a covariant form as follows

Ty = —i/d4x O3 () V(z) ¢i() . (1.6.151)

Certainly, the expression for ¢;(t) is only a good approximation if ¢;(t) < 1,
as this has been assumed in obtaining the result.
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It is tempting to identify |T};|> with the probability that the particle is
scattered from an initial state |i) to a final state |f). To see whether this
identification is possible, we consider the case in which V (&, t) = V(Z) is
time independent; then using

% /: dq €' = §(p) (1.6.152)
(1.6.150) becomes
Ty = —iVy /OO dt " Es=Et
L mi V(B — B, (1.6.153)
with
Vi = / I’z ¢3(2) V(Z) gi() . (1.6.154)

The §-funtion in (1.6.153) expresses the fact that the energy of the particle is
conserved in the transition ¢ — f. By the uncertainty principle, this means
that an infinite time separates the states ¢ and f, and |T};]? is therefore not
a meaningful quantity. We define instead a transition probability per unit
time ,

W = lim @ (1.6.155)

T—o00

Squaring (1.6.153)

|V +7/2 ‘
W = lim 2r———§(E; — E;) dt i(Br—Eot
T—o0 T 72

= 2m|Vu|*6(Ef — E)) . (1.6.156)

This equation can only be given physical meaning after integration over a set
of initial and final states. In particle physics, we usually deal with situations
where we begin with a specified initial state and end up in one set of final
states. We denote with p(Ey) the density of final states, i.e., p(Ef)dEy is
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the number of states in the energy interval (Ey, Ey + dEy). Integration over
this density, imposing energy conservation leads to the transition rate

Wi = 2n [ 4By p(E) Vil? S(E; - E)
= 271|Vul? p(E;). (1.6.157)
This formula, of great practical importance, is known as Fermi’s golden rule.!

Clearly we can improve on the above approximation by inserting the
result for ¢, (t), (1.6.149), in the right-hand side of (1.6.146)

t

Z Vi / dt’ ! En=E

~T/2

ép(t) =+ (—0)? Vi ! Er=Ent(1.6.158)

where the dots represent the first order result. The correction to T7; is

t

Tpi=-— Z Vin Vni/ dt ei(Ef—En)t/ dt’ et (Bn—Et' (1.6.159)

—00

To make the integral over dt’ meaningful, we must include a term in the
exponent involving a small positive quantity € which we let go to zero after

integration
t B0 oi(En—Ei—ie)t
dt' e E TN = e 1.6.160
/_ e “E,—E, +ie ( )
The second order correction to TY; is given by
Ty =---—2mi —— (£ — E)), 1.6.161
f mi Y Lt oy — B (16.161)

n

and the rate for the i — f transition is given by (1.6.157) with the replace-

ment 1
Vi — vfﬁzvfnm Vi + ... (1.6.162)

Equation (1.6.162) is the perturbation series for the amplitude with terms to
first, second, ...order in V.

16E. Fermi, Nuclear Physics, (Chicago: University of Chicago Press, 1950).
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Chapter 2

Symmetries and Invariants

2.1 Noether Theorem

The remarkable connection between symmetries and conservation laws are
summarized in Noether’s theorem: any differentiable symmetry of the action
of a physical system has a corresponding conservation law.! This theorem
grants observed selection rules in nature to be expressed directly in terms
of symmetry requirements in the Lagrangian density. Under an infinitesimal
displacement z, = z,, + ¢€,, the Lagrangian changes by the amount

=S — L =c, L. (2.1.1)

On the other hand, if . is translationally invariant, it has no explicit
coordinate dependence, i.e., for systems described by n independent fields
L(¢pp,0"¢,), where r = 1,... n. Hence,

0L = (05, L (br,0"0y) O + Opup, L (6,,0"0,) 6(0"0,)],  (2.1.2)

T

where
0o, = ¢r(z+€) — or(x) = €, 0”9, (2) . (2.1.3)

'E. Noether, Nachr. d. Konig. Gesellsch. d. Wiss. zu Gottingen, Math-phys. Klasse,
235 (1918) [arXiv:physics/0503066]. For a detailed discussion of this theorem, see e.g., E.
L. Hill, Rev. Mod. Phys. 23, 253 (1957).

43



Equating these two expressions and using Euler-Lagrange equation (1.2.3)
gives

€, "L (b, O"6,) = O [Z Do, L (br, 0" Py €, a"@] . (2.1.4)

Because this holds for arbitrary displacements ¢,, we can write 0"J,, = 0,
where the energy-momentum stress tensor {j,, is defined by

:Lw = G Z + Zﬁau(j)rg 81/¢r . (215)

From this differential conservation law one finds

j / 1 30, = / i [Z 700 br — Gov z] (2.1.6)
and so 9'P, = 0. We have already seen that Joo is the Hamiltonian density

Jo= Ty —L=H (2.1.7)

and
/d3x300 =H. (2.1.8)

Thus, we can identify the operator P, as the conserved energy-momentum
four-vector.

Similarly, we may construct the angular momentum constant of motion by
considering an infinitesimal Lorentz transformation, (1.3.16). The practical
test of Lorentz invariance is to make the replacement

(@) = S A) ds(a) (2.1.9)

in the equations of motion and to determine whether they take the same form
in the prime coordinate system as they did in the unprimed system. Here,
Sys(A) is a transformation matrix for the fields ¢, under the infinitesimal
Lorentz transformation (1.3.16). We have already seen an example of this
for the Dirac equation, where we recall from (1.5.66) and (1.5.68) that

1
Sps(A) = 6,5 + gh’ﬂ Vs - (2.1.10)
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We now take over the test (2.1.10) into the Lagrangian theory and demand
that the Lagrangian density be a Lorentz scalar and hence remain form in-
variant under the replacement (2.1.10), i.e.,

L (S5 du(2), 051 bs(2)) = L ($0(2), 0" po(2) . (2.1.11)

This will guarantee the form invariance of the equations of motion, which
are derived from .Z by an invariant action principle. For an infinitesimal
transformation, we write

= ¢ (') — dp(2) + %wuyz,‘f;’gbs : (2.1.12)

Expanding (2.1.11) about = we find, using the Euler-Lagrange equation,
L) - ZL(x) = wx, 0,.L = 0,[09,4,-L 00y, (2.1.13)
Egs. (2.1.12) and (2.1.13) lead to the conservation law 9,91 = 0, where

0,ﬂﬁ””‘ = 0, {(:L"Ag‘“’ — x”g“’\) L+ 09,6, L [(:E”@A — ZEA@V) O — ia,’fﬁqﬁs}}
= O [(&"3 = 2) = 00,6, L5005 - (2.1.14)

S

The conserved angular momentum is
M = /d3x oMo

= / P [(737 — 2*3") —im B0 64
= i[a"0 — 0", + T () (2.1.15)

so that O, 4" = 0.

Going over now to the QFT, we must ask whether we may still apply
the classical result that, a scalar £ guarantees Lorentz invariance of the
theory and, via the Noether theorem, leads to the energy-momentum and
angular-momentum constants of motion. In QFT the field amplitudes ¢(r)
become operators upon state functions, or vectors, in a Hilbert space. If
we impose the requirements of Lorentz covariance on the matriz elements of
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these operators, which represent physical observables as viewed in two dif-
ferent Lorentz frames, we come to certain operator restrictions on the ¢,(x).
For a QFT a scalar .Z is not sufficient to guarantee relativistic invariance,
but we must also verify that the fields obey these operator requirements. For
most field theories generally discussed in physics the Lagrangian approach
and Noether’s theorem can be carried over directly to the quantum domain
without difficulty. In particular, the P, and .#,,, obtained through Noether’s
procedure in (2.1.6) and (2.1.15) are found to be satisfactory.

2.2 Gauge Invariance

The importance of the connection between symmetry properties and the in-
variance of physical quantities can hardly be overemphasized. Homogeneity
and isotropy of spacetime imply the Lagrangian is invariant under time dis-
placements, is unaffected by the translation of the entire system, and does
not change if the system is rotated an infinitesimal angle. We have seen
that these particular measurable properties of spacetime lead to the conser-
vation of energy, momentum, and angular momentum. These, however, are
only three of various invariant symmetries in nature which are regarded as
cornerstones of particle physics. In this section, we will focus attention on
conservation laws associated with “internal” symmetry transformations that
do not mix fields with internal spacetime properties, i.e., transformations
that commute with the spacetime components of the wave function.

2.2.1 Maxwell-Dirac Lagrangian

We have seen that a free fermion of mass m is described by a complex field
(). Inspection of Dirac’s Lagrangian (1.5.80) shows that () is invariant
under the global phase transformation

¥(x) — exp(ia) ¥(x), (2.2.16)

where the single parameter a could run continuously over real numbers.
Now, Noether’s theorem implies the existance of a conserved current. To
see this, we need to study the invariance of £ under infinitesimal U(1)
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transformations ¥ — (1 + i), Invariance requires the Lagrangian to be
unchanged, that is,

0L = 0yL Y+ 09,0L 6(0u) + 60 05 L 4 6(8,0) D, 5L
= 0pZ (iap) + 0y, 2 (10)) 4. ..
= i [0pL — 0,(09,p L) ¥ + 10D, (09, L V) + ...
= 0. (2.2.17)

The term in square brackets vanishes by virtue of the Euler-Lagrange equa-
tion, (1.2.3), for ¢ (and similarly for ¢) and so (2.2.17) reduces to the form
of an equation for a conserved current d,j" = 0, where

1 = 2 (002 &~ § 00,52) =0 | (22.18)

using (1.5.80). It follows that the charge @ = [ d*z j° must be a conserved
quantity because of the U(1) phase invariance.?

A global phase transformation is surely not the most general invariance,
for it would be more convenient to have independent phase changes at each
point. We thus generalize Eq. (2.2.16) to include local phase transformations

¥ — ' = explio(z)] . (2.2.19)

The derivative J,a(zx) breaks the invariance of Dirac’s Lagrangian, which
acquires an additional phase change at each point

6 Loirac = O iy [i0,0(2)] Y . (2.2.20)

The Lagrangian (1.5.80) is not invariant under local gauge transformations,
but if we seek a modified derivative, 8, — D,, = 9, +1ieA,,, which transforms
covariantly under phase transformations, D,y — em(m)DMw, then local gauge
invariance can be restored

Z = ¢ (iPp-m)
= (i g-mv—cv Alx) ¥ . (2.2.21)

2The spinor operators 1 and ! satisfy the equal-time anticommutation relations

{1/}a(x)a1/}g(y)} = 53(5E - y) dab; {wa(x)ﬂ/)b(y)} = W’l(@ﬂ/’g(y)} =0.

(4
(4
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Namely, if ¢ — 9" and A — A’, we have

L =G P-m) —ed A
= Y@ P-m) -0 [Pa@)] Y —eA v,  (22.22)

and we can ensure .Z = £’ if we demand the vector potential A, to change
by a total divergence

Al () = Ay (x) - é@ua(x), (2.2.93)

which does not change the electromagnetic field strength, F),,. In other words,
by demanding local phase invariance in ¢, we must introduce a gauge field
A, that couples to fermions of charge e in exactly the same way as the photon
field.

An alternative approach to visualize the consequences of local gauge in-
variance is as follows. The wave function of a particle (of charge e) as it
moves in spacetime from point A to point B undergoes a phase change

B
dyp = exp (—ie/ A“(x)d:c”) : (2.2.24)
A

where —eA,,(z) parametrizes the infinitesimal phase change in (z#, 2/ +dz*).?
The integral in (2.2.24) for points at finite separation is known as a Wilson
line.* A crucial property of the Wilson line is that it depends on the path
taken and therefore ® 45 is not uniquely defined. However, if C is a closed
path that returns to A (i.e., a Wilson loop)

Do = exp (—ie f A“(x)d:c“) , (2.2.25)

the phase becomes a nontrivial function of A,,, that is by construction locally
gauge invariant. (Note that for a Wilson loop, any change in the contribution
to ®¢ from the integral up to a given point :L’g will be compensated by an

3C. N. Yang, Phys. Rev. Lett. 33, 445 (1974).
4K. G. Wilson, Phys. Rev. D 10, 2445 (1974). This path-dependent phase was used

long before Wilson’s work, in Schwinger’s early papers of QED, and in Y. Aharonov and
D. Bohm, Phys. Rev. 115, 485 (1959).
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equal and opposite contribution from the integral departing from 552) To
verify this claim, we express the closed path integral (2.2.25) as a surface

integral via Stokes’ theorem

f Au(z)dzt = / Fou(@)do™ (2.2.26)

where do* is an element of surface area. One can now check by inspection
that the Wilson loop is invariant under changes (2.2.23) of A, (z) by a total
divergence.’

To obtain the QED Lagrangian we need to include the kinetic term (1.2.5),
which accounts for the energy and momentum of free electromagnetic fields.

v —iFH,,F‘“’ TP — ) — B A (2.2.27)

If the electromagnetic current is defined as ej, = e@%w, this Lagrangian
leads to Maxwell’s equations (1.2.4). The local phase changes (2.2.19) form
a U(1) group of transformations. Since such transformations commute with
one another, the group is said to be Abelian. Electrodynamics is thus an
Abelian gauge theory.

2.2.2 Yang-Mills Lagrangian

If by imposing local phase invariance on Dirac’s Lagrangian we are lead
to the interacting theory of QED, then in an analogous way one can hope
to infer the structure of other interesting theories by starting from more
general fundamental symmetries. Pioneer work by Yang and Mills considered
that a charged particle moving along in spacetime could undergo not only
phase changes, but also changes of identity (say, a quark can change its
color from red to blue or change its flavor from u to d).° Such a kind of
transformation requires a generalization of local phase rotation invariance
to invariance under any continuous symmetry group. The coefficient eA,
of the infinitesimal displacement dx, should be replaced by a n x n matrix

5The gauge invariance of F, v can also be seen through the commutator of the covariant
derivative, [D,, D,| = ieF),,.
6C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
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—gA,(z) = —gAf(r)t, acting in the n-dimensional space of the particle’s
degrees of freedom, where g is the coupling constant. Here, the t, define a
linearly independent basis set of matrices for such transformations, whereas
the A, are their coefficients.

Both the Wilson line and the Wilson loop can be generalized to Yang-
Mills transformations. However, careful must be taken as some subtleties
arise because the integral in the exponent now contains the matrices A ,(z)
which do not necessarily commute with one another at different points of
spacetime, and consequently a path-ordering (P{}) is needed. Hence, we
introuce a parameter s of the path P, which runs from 0 at x = A to 1 at
x = B. The Wilson line is then defined as the power series expansion of the
exponential with the matrices in each term ordered so that higher values of
s stand to the left

Bp—P {exp (ig /01 ds % Au(:c)) } | (2.2.98)

If the basis matrices t, do not commute with one another, the theory is said
to be non-Abelian.

Now, to ensure that changes in phase or identity conserve probability, we
demand ® 45 be a unitary matrix, i.e., ‘I)LB‘I)AB = 1. If we wish to separate
out pure phase changes (in which A,(z) is a multiple of the unit matrix)
from the remaining transformations, one may consider only transformations
such that det (®45) = 1. The last condition becomes evident if we note that
near the identity any unitary matrix can be expanded in terms of Hermitian
generators of SU(N), and hence for infinitesimal separation between A and
B we can write

®ap = 1 +ic(gAnt,) + O(€) | (2.2.29)
or equivalently
1 = & ,®.45
= T+ige[Au(z) — A (x)] + O(?). (2.2.30)

This shows that we must consider only transformations such that
det (eigAzta) — eigAzTr(ta)

1, (2.2.31)
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corresponding to traceless A, (x). All in all, the n x n basis matrices t, must
be Hermitian and traceless. There are n? — 1 of them, corresponding to the
number of independent SU(N) generators. The basis matrices satisfy the
commutation relations

[t, t5] = icijrte (2.2.32)

where the ¢;;;, are structure constants characterizing the group. In the fun-
damental representation of SU(2), the generators are proportional to Pauli
matrices (t; = 0;/2), and the structure constants are defined by the Levi-
Civita symbol (c;x = €jx). The generators of SU(3) in the fundamen-
tal representation are t; = \;/2, where \;/2 are the Gell-Mann matrices
normalized such that Tr (\;\;) = 24;;.7 The SU(3) structure constants
cijk = fijr are fully antisymmetric under interchange of any pair of indi\c/e_s
3
2
fiar = fres = faa6 = fast = faas = fare = 5. (In the fundamental representa-
tion Tr t;t; = d;;/2.)
Next, by considering an infinitesimal closed-path transformation anal-
ogous to (2.2.25), but for matrices A,(x) that do not commute with one

and the non-vanishing values are permutations of fio3 = 1, fis8 = fors =

another, we write the field-strength tensor, ¥, = [} t,, for a non-abelian
transformation:

F,=0,A,-—0A, —iglA, A, (2.2.33)
or equivalently,
F}, = 0,A, — 0,A, + geijr AL Ay (2.2.34)

An alternative way to introduce non-Abelian gauge fields is to demand
that, by analogy with (2.2.16), a theory involving fermions 1 be invariant
under local transformations,

P(x) = ' (x) = V(x)(z) = exp [iag(x)t?] ¥ (x), (2.2.35)

where V is an arbitrary unitary matrix (VTV = 1) which we show parametrized
by its general form. A summation over the repeated suffix a is implied.
Duplicating the preceding discussion for U(1) gauge group, we demand

"M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
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L — &' where

L = P -my
= VI §—m)Vy
= Y@ @ —m)Y + Vi (0, V) . (2.2.36)
The last term, as in the abelian case, spoils the invariance of .Z. As before,

it can be compensated if we replace d, — D, = 0, —igA,(z). Namely, under
the transformation (2.2.35) the Lagrangian

L =[P —m) (2.2.37)
becomes
Z = Pp —my
= V(i @+ g K —m)Vy
= L+ Pg(VT AV LK) +iVI(PV)]e (2.2.38)

which is equal to .Z if we take
AL = VA,V - é(aHV)vT . (2.2.39)

The covariant derivative acting on 1 transforms in the same way as
itself under a gauge transformation: D, — D)¢" = VD,¢. The field
strength F,,, transforms as F,,, — F:w = VFWVT. As in the abelian case, it
can be computed via [D,, D,] = —igF,,; both sides transform as V( V1
under a local gauge transformation.

To obtain propagating gauge fields, we follow the steps of QED and add a
kinetic term, —(1/4)F., F*" to the Lagrangian. After reminding the reader
the representation ¥, = F},, written for gauge group generators normalized
such that Tr(t;t;) = d;;/2, we are ready to write down the full Yang-Mills
Lagrangian for gauge fields interacting with matter fields

L= —1Te(F,F") + (i —m)y . (2.2.40)

The interaction of a gauge field with fermions corresponds to a term in the
interaction Lagrangian A = gip(z)y*A,(x)y(z). The [A,, A,] term in
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F,, leads to self-interactions of non-Abelian gauge fields, arising solely from
the kinetic term. They have no analogue in QED and arise on account of
the non-abelian character of the gauge group, yielding three- and four-field
vertices of the form

AL = (Aot (221
and
ALY = _%CijkcimnAmAukAlTAZ ’ (2.242)

respectively. These self-interactions are a paramount property of non-Abelian
gauge theories and drive the remarkable asymptotic freedom of QCD, which
leads to its becoming weaker at short distances allowing the application of
perturbation theory.

2.2.3 Isospin

[sospin arises because the nucleon may be view as having an internal degree
of freedom with two allowed states, the proton and the neutron, which the
nuclear interaction does not distinguish.® Consider the description of the
two-nucleon system. Each nucleon has spin % (with spin states 1 and |), and
so following the rules for the addition of angular momenta, the composite
system may have total spin S = 1 or S = 0. The composition of these spin
triplet and spin singlet states is

1S =1,M, =1) =11
5 =1,0M, = 0) = /311 + 1) (2.2.43)
1S =1,M, =—1)=]]

8= 0,Ms = 0) = /3(1L — 11).

Each nucleon is similarly postulated to have isospin T = %, with T3 = :t%

for protons and neutrons respectively. The T'= 1 and T = 0 states of the

8J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, (Wiley, New York,
1952)

53



nucleon-nucleon system can be constructed in exact analogy to spin

T =1.Ts=1) = 0
T =1,T5 = 0) = /20 + ol uf?) (2.2.44)
7= 1,75 = —1) =y

T =0,T; = 0) = /5P — s Pu®)

In general, the most positively charged particle is chosen to have the maxi-
mum value of T5. The nucleon field operators will transform according to

V() 1 uw ua Up(z) | _ Up(2)
U(W)>U _( m)(w)>_%<%($)>. 2.2.49

The preservation of the commutation relations requires that the 2 x 2 matrix
2 be unitary. Such a 2x2 unitary matrix is characterized by four parameters;
when the common phase factor is taken out, we have three parameters, and
a conventional way of writing a general form for U is (ommiting the phase
factor)

U = /DT (2.2.46)

where the three traceless hermitian canonical 2 x 2 matrices

0 1 0 —i 1 0
_ = = 2.2.47

are just the Pauli spin matrices. The close similarity between (2.2.45) and
the way in which we would express rotational invariance’ suggests a way of
characterizing the invariance. We will speak of an invariance under rotations
in an “internal” space.

The isospin T is the analog of the angular momentum

U=e>T, (2.2.48)

The rotational invariance implies that the isospin is conserved. For an in-
finitesimal rotation, (2.2.45) reads

V() +iou[T;, ()] = Y(z) + %iaiTi¢(x) )

9The major difference is that in (2.2.45) the spatial coordinates are not involved.
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ie.,

1
T d(@)] = 5 (=) (2.2.49)
where we represent ( on(z) ) by ¥(z). It is easily seen that these relations are
satisfied by
T = % /d% Ui (z) T (). (2.2.50)
Note that )
Iy=5 /d?’x [ (@) () — ¥l () Yu(2)] - (2.2.51)

Hence, the charge operator for nucleons () may be written as

Q= /dgx @D;(:z) () = /d?’:z W(:ﬂ) HTTS v(x). (2.2.52)

We may introduce the baryon-number operator Ng by the definition

Np = / @ W) + YL @) + ..., (2.2.53)

where the extra terms, not written down, are similar contributions from other
fields carrying baryon number. Therefore, if we consider only protons and
neutrons,

Q=1iNp+1T;. (2.2.54)

It follows from the easily derived commutation relations
15, T;] = i€, Ty (2.2.55)
that
Q, T;] A0 i=1,2 (2.2.56)

so that charge violates isospin conservation.

The construction of antiparticle isospin multiplets requires care. It is well
illustrated by a simple example. Consider a particular isospin transformation
of the nucleon doublet, a rotation through 7 about the 2-axis. We obtain

L I (L Y 2 IO Y
U, (o tn, 10 (8

(2.2.57
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We define antinucleon states using the particle-antiparticle conjugation op-
erator C', C¢, = 15, Cb,, = 1. Applying C' to (2.2.57) therefore gives

(%):(0_1)(%). (2.2.58)
Vn 10 Un

However, we want the antiparticle doublet to transform in exactly the same
way as the particle doublet. We must therefore make two changes. First
we must reorder the doublet so that the most positively chargeed particle
has T3 = 42 and then we must introduce a minus sign to keep the matrix

2
transformation identical to (2.2.57). We obtain

( _% ) = ( 0 -l ) ( B ) . (2.2.59)
A 1 0 Vs

That is, the antiparticle doublet (—5,1;) transforms exactly as the particle
doublet (¢,,,,). This is a special property of SU(2); it is not possible, for
example, to arrange an SU(3) triplet of antiparticles so that it transforms
as the particle triplet. A composite system of a nucleon-antinucleon pair has
isospin states

T =1,T5 = 1) =~
T =1,T5 = 0) = \ /10yt — tuthn) (2.2.60)
T =11 = 1) = bty

T = 0,75 = 0) = \/(dthp + Yuthn) -

2.3 Higgs Mechanism

In the preceding sections much importance has been attached to symmetry
principles. We have discussed the connection between exact symmetries and
conservation laws and have found that the proviso of a local gauge invariance
can serve as a dynamical principle to captain the assembly of interacting field
theories. However, in several areas we are still far from where we need to be.
For example, the gauge principle has lead us to theories in which all the in-
teractions are mediated by massless bosons, while we have already mentioned
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that the carriers of the weak force are massive. Moreover, there are many
situations in physics in which the exact symmetry of an interaction is hidden
by the circumstances. The canonical example is that of a Heisenberg ferro-
magnet, an infinite crystalline array of spin—% magnetic dipoles. Below the
Curie temperature T the ground state is a completely ordered configuration
in which all dipoles are aligned in some arbitrary direction, belying the ro-
tation invariance of the underlying interaction. It is thus of interest to learn
how to deal with symmetries that are not manifest, perhaps in the hope of
evading the conclusion that interactions must be mediated by massless gauge
bosons.

Let us first elaborate on an intuitive description of hidden symmetry. In
the infinite ferromagnet mentioned above, the nearest-neighbor interaction
between spins (or magnetic dipole moments) is invariant under the group
of spatial rotations SO(3). In the disordered paramagnetic phase, which
exists above T, the medium displays an exact symmetry in the absence of
an external field. The spontaneous magnetization of the system is zero and
there is no preferred direction in space. This means the SO(3) invariance
is manifest. A priviliged direction may be selected by imposing an external
magnetic field, which tends to align the spins in the material. The SO(3)
symmetry is hence broken down to an axial SO(2) symmetry of rotations
around the external field direction. The full symmetry is restored when the
external field is turned off. For temperatures below T, when the system is
in the ordered ferromagnetic phase, the situation is rather different. In the
absence of an external field, the configuration of lowest energy has non-zero
spontaneous magnetization, because the nearest-neighbor force favors the
parallel alignment of spins. In these circumstances the SO(3) symmetry is
said to be spontaneously broken down to SO(2). The fact that the direction
of the spontaneous magnetization is random and the fact that the measurable
properties of the infinite ferromagnet do not depend upon its orientation are
vestiges of the original SO(3) symmetry. The ground state is thus infinitely
degenerate. A particular direction for the spontaneous magnetization may
be chosen by imposing an external field which breaks the SO(3) symmetry
explicitely. However, in contrast to the paramagnetic case the spontaneous
magnetization does not return to zero when the external field is turned off.
For the rotational invariance to be broken spontaneously, it is crucial that
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the ferromagnet be infinite in extent, so that rotation from one degenerate
ground state to another would require the impossible task of rotating an
infinite number of elementary dipoles. All in all, spontaneous symmetry
breaking can arise when the Lagrangian of a system possesses symmetries
which do not however hold for the ground state of the system. The Higgs
mechanism is a gauge theoretic realization of such spontaneous symmetry
breaking.'?

To deeply fathom the situation, let us now consider a simple world con-
sisting just of scalar particles described by the Lagrangian

L =5 (0u0) (0"9) = V(9) (2.3.61)

and study how the particle spectrum depends upon the effective potential
V(¢). If the potential is an even functional of the scalar field, V (¢) = V(—¢),
then the Lagrangian (2.3.61) is invariant under the symmetry operation
which replaces ¢ by —¢@. To explore possibilities, it is convenient to con-
sider an explicit potential,

V() = 510" + {A¢" (2.3.62)

where \ is required to be positive so that the energy is bounded from below.
Two qualitatively different cases, corresponding to manifest or spontaneously
broken symmetry, may be distingusihed depending on the sign of the coef-
ficient p?. If u? > 0, the potential has a unique minimum at ¢ = 0 that
corresponds to the ground state, i.e., the vacuum. This identification is per-
haps most easily seen in the Hamiltonian formalism. Substituting (2.3.61)
into (1.2.8) we obtain

1 N

H = [(%gb)z + (Vo) ] +V(6). (2.3.63)
The state of lowest energy is thus seen to be one for which the value of the
field ¢ is constant, which we denote by (¢)o. The value of this constant is
determined by the dynamics of the theory; it corresponds to the absolute
minimum (or minima) of the potential V(¢). (We usually refer to (¢), as

the vacuum expectation value of the field ¢.) For u > 0, the vacuum obeys

10p, W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

58



the reflection symmetry of the Lagrangian, with (¢)o = 0. The approximate
form of the Lagrangian appropriate to study small oscillations around this
minimum is that of a free particle with mass p,

£ = 1[(8,0)(0"0) — p2?). (2:3.64)

The ¢* term shows that the field is self-interacting, because the four-particle
vertex exists with coupling A. If u? < 0, the Lagrangian has a mass term of
the wrong sign for the field ¢ and the potential has two minima. These
minima satisfy ¢(u? + A\¢?) = 0, and are therefore at (¢p)g = v, with
v = y/—p?/A. (The extremum ¢ = 0 does not correspond to the energy
minimum.) The potential has two degenerate lowest energy states, either of
which may be chosen to be the vacuum. Because of the parity invariance of
the Lagrangian, the ensuing physical consequences must be independent of
this choice. Nevertheless, we will see that whatever is our choice the symme-
try of the theory is spontaneously broken: the parity transformation ¢ — —¢
s an invariant of the Lagrangian, but not of the vacuum state. To this end,
let us choose (¢)y = 4+v. Perturbative calculations should involve expansions
around the classical minimum, we therefore write

¢(x) =v+n(x), (2.3.65)

where 7(x) represents the quantum fluctuations about this minimum. Sub-
stituting (2.3.65) into (2.3.61), we obtain

2" = 5(9,m)(0"n) — v*n® — A’ — A" + const. (2.3.66)

The field n has a mass term of the correct sign. Indeed, the relative sign
of the n? term and the kinetic energy is negative. Identifying the first two
terms of ¢’ with (1.4.40) gives m, = V2 v? = y/—2u2. The higher-order
terms in 7 represent the interaction of the n field with itself.

Before proceeding, we pause to stress that the Lagrangian . of (2.3.61)
[with (2.3.62)] and £’ of (2.3.66) are completely equivalent. A transforma-
tion of the type (2.3.65) cannot change the physics. If we could solve the two
Lagrangians exactly, they must yield identical physics. However, in QFT we
are not able to perform such a calculation. Instead, we do perturbation the-
ory and calculate the fluctuations around the minimum energy. Using .Z, we
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find out that the perturbation series does not converge because we are trying
to expand about the unstable point ¢ = 0. The correct way to proceed is to
adopt £’ and expand in 7 around the stable vacuum (¢)q = +v. In pertur-
bation theory, .’ provides the correct physical framework, whereas . does
not. Therefore, the scalar particle (described by the in-principle-equivalent
Lagrangians .Z and .¢”’) is massive.

To approach our destination of generating a mass for the gauge bosons,
we duplicate the above procedure for a complex scalar field, ¢ = %@1 +ig),
with Lagrangian density

L = (0,9)7(0"0) — W’d"¢ — N¢"9)* (2.3.67)

which is invariant under the transformation ¢ — e*®¢. That is .Z possesses
a U(1) global gauge symmetry. By considering A > 0 and p? < 0, we rewrite
(2.3.67) as

Z = 5(061) (9"90)+5 (0,02) (9 6) = T (63 +03) —EA (03 +03)? . (2:3.68)

In this case, there is a circle of minima of the potential V(¢) in the ¢1-¢o
plane of radius v such that ¢7 + ¢2 = v? with v> = —pu?/\. As before, we
translate the field ¢ to a minimum energy position, which without loss of
generality we may take as the point ¢ = v and ¢o = 0. We expand £
around the vacuum in terms of fields n and ¢ by substituting

o) = /3l +n(x) + ()] (2.3.69)
into (2.3.67) and obtain
L' = 3(0,6)* + 5(0,m)* + 1’0 4 const. + O(n?, €%) + O(n*, €*). (2.3.70)

The third term has the form of a mass term (—3m?2n?) for the 7 field. There-
fore, the n-mass is again m, = /—2p2. The first term in .#”’ stands for the
kinetic energy of &, but there is no corresponding mass term for the £ field.
In other words, the theory contains a massless scalar, so-called “Goldstone
boson.” Therefore, in attempting to generate a massive gauge boson we have
encountered a problem: the spontaneously broken gauge theory seems to be
plagued with its own massless scalar particle. Intuitively, it is easily seen
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P1

Figure 2.1: The potential V(¢) for a complex scalar field, for the case u*> < 0
and X > 0.

the reason for its presence. As shown in Fig. 2.1, the potential in the tan-
gent ¢ direction is flat, implying a massless mode; there is no resistance to
excitations along the ¢-direction.

The Lagrangian (2.3.70) is a simple example of the Goldstone theorem,
which states that in a spontaneous symmetry breaking the original symmetry
is still present, but nature manages to camouflage the symmetry in such a
way that its presence can be viewed only indirectly.!! In the ferromagnet
example, the analogue of our Goldstone boson is the long-range spin waves
which are oscillations of the spin alignment.

The final step of this section is to study spontaneous symmetry breaking
of alocal U(1) gauge symmetry. To this end, we must start with a Lagrangian
that is invariant under a local U(1) transformation ¢(x) — €@ ¢(x). This
is accomplished by replacing 0, by a covariant derivative D, = 0, + ieA,,
where the gauge field transforms as A,(x) — A,(z) — d,a(x)/e. The gauge
invariant Lagrangian is thus

L= (0" —ieA")p* (0, +ieAL)p — pPd d — N@*¢)? — 1F,, ™. (2.3.71)

As usual there are two cases, depending upon the parameters of the effective
potential. If p? > 0, (aside from the ¢* self-interaction term) this is just

11]. Goldstone, Nuovo Cim. 19, 154 (1961); J. Goldstone, A. Salam and S. Weinberg,
Phys. Rev. 127, 965 (1962).
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the QED Lagrangian for a charged scalar particle of mass p. The situation
when p? < 0 is that of spontaneously broken symmetry and demands a closer
analysis. On substituting (2.3.69), the Lagrangian (2.3.71) becomes

¥ = %(@5)2 + %(8“77)2 —viAn? + %e%QAHA“ + evA, 0" — iFiV
+ interaction terms . (2.3.72)

The particle spectrum of .Z’ appears to be a massless Goldstone boson &,
a massive scalar 7, and a massive vector A,. Namely, from (2.3.72) we
have mg = 0, m, = V2Mv?%, and my = ev. This implies that we have
generated a mass for the gauge field, but we still are facing the problem of
the ocurrence of the Goldstone boson. However, because of the presence
of a term off-diagonal in the fields A,0"¢, this time care must be taken
in interpreting the Lagrangian (2.3.72). Actually, the particle spectrum we
assigned before to £’ must be incorrect. By giving mass to A,, we have
clearly raised the polarization degrees of freedom from 2 to 3, because it can
now have a longitudinal polarization. We deduce that the fields in .Z’ do not
all correspond to distinct particles. To find a gauge transformation which
eliminates a field from the Lagrangian, we first note that to lowest order in
€ (2.3.69) can be rewritten as

b \/Lw ). (2.3.73)

This suggests that we should substitute a different set of real fields H, 6, A,,,
where

| 1
b \fAlo+ H@ ", A, A, - — 0,0

into the original Lagrangian (2.3.71). This is a particular choice of gauge,
with 0(x) chosen that H is real. We therefore anticipate that the theory will
be independent of 6. Actually, we have

27 = §(0,H)? = WH? 4 3e*0* A2 — WH® — I H*
+ 3 AH? +ve’ A2H — 1F, F* . (2.3.74)

The Goldstone bosson is not actually present in the theory. In other words,
the apparent extra degree of freedom is actually spurious, because it corre-
sponds only to the freedom to make a gauge transformation. The Lagrangian
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describes just two interacting massive particles, a vector gauge boson A, and
a massive scalar H, usually referred to as a Higgs particle. The unwanted
massless Goldstone boson has been turned into the longitudinal polarization
of A,. This is known as the “Higgs mechanism.”

2.4 Standard Model of Particle Physics

The standard model of weak, electromagnetic, and strong interactions is
based on the gauge group SU(3)c x SU(2), x U(1)y, with three fermion
generations. A single generation of quarks and leptons consists of five differ-
ent representations of the gauge group Qr(3, 2)1/6, Ur(3, 1)2/3, Dr(3, 1)_1/3,
Li(1, 2)_1/2, Eg(1, 1)_y1, where the sub-indeces L and R indicate the fermion
chirality. Our notation here means that, for example, a left-handed lepton
field Ly is a singlet of the SU(3) color group, a doublet of the SU(2) weak
isospin, and carries hypercharge —1/2 under the U(1) group. The model
contains a single higgs boson doublet, ¢(1, 2);/2, whose vacuum expectation
value breaks the gauge symmetry into SU(3)c X U(1)gm. The gauge inter-
actions are mediated by eight SU(3) color gluons G (8, 1)o, three SU(2)
left chiral gauge bosons A/ (1, 3), and one U(1) hypercharge gauge field
B, (1, 1)o. All the above gauge bosons are realized in the adjoint represen-
tations of their corresponding gauge groups, and the strength of the inter-
actions are described by their coupling constants g¢,, g, and ¢’. The gauge
interactions arise through the covariant derivative

3 3
D,=0,—i|g Y Gutl+g > A th+ 1B, (2.4.75)
a=1 i=1

where t% = (A?/2;0) for (quarks; lepton, Higgs) and ! = (7¢/2;0) for SU(2)
(doublets; singlets).

We first focus attention on the electroweak sector. Proceeding in the same
spirit of (1.5.137) and anticipating a possible SU(2) structure for the weak
currents, we are led to construct an “isospin” triplet of “weak currents”

J;(x) = %ﬂL VuTi UL, withi =1, 2, 3, (2.4.76)
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for the spinor operators,

uL:LL:<I;e_L>7 ur = L:<ZL>7 (2477)
L L

whose corresponding charges 7% = [ Ji(z) d*z generate an SU(2);, algebra,
see (2.2.55).

The presence of mass terms for AL destroy the gauge invariance of the
Lagrangian. Therefore, to approach the goal of generating a mass for the
gauge bosons, we entertain the mechanism of spontaneous symmetry break-
ing. Consider the complex scalar Higgs boson field, which, if you recall, is in
the spinor representation of the SU(2), group and has a charge 1/2 under

U(].)y, i.e.,
(T _ o[ htids
¢_<¢0>_\/g<¢3+i¢4). (2.4.78)

The gauge invariant Lagrangian is thus
Ly = (0,0)1(0"0) — 1”676 — A(9T9)? . (2.4.79)

We repeat the by now familiar procedure of translating the field ¢ to a true
ground state. The vacuum expectation value is obtained by looking at the
stationary points of %,

12

1
= 0= ¢l =SS+ + o5+ = -5 - (2.4.80)

0.2,
d(¢'9)

The values of (Re ¢, Im ¢*, Re ¢°, Im ¢°) can range over the surface of a 4-
dimensional sphere of radius v, such that v? = —p2/X and ¢'¢ = [¢T|?+|4°|%
This implies that Lagrangian of ¢ is invariant under rotations of this 4-
dimensional sphere, i.e., a group SO(4) isomorphic to SU(2) x U(1). We
must expand ¢(z) about a particular minimum. Without loss of generality,
we define the vacuum expectation value of ¢ to be a real parameter in the
#° direction, i.e., ¢ = ¢y = ¢4 = 0, p3 = —p*/\. We can now expand ¢(z)
about this particular vacuum

1 {0
) =7 ( ) ) . (2.4.81)
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To introduce electroweak interactions with ¢, we replace 9, by the covariant
derivative (2.4.75) in the Lagrangian (2.4.79), and evaluate the resulting
kinetic term (D,¢)T (D" ), at the vacuum expectation value (¢). The relevant
terms are:

1 1 . 1 1 1, 0
AZ = 5(0 v) <§9Afﬁj + 59/3“) (5914 i1+ 59 B“) < ; )
2

. gA +¢'B,  g(A), —iA2) 0
= 2(0v)

. v
g(A}L + ZAi) —gAi +¢'B,

1
= 3 V[ (A))? + g2 (A2)? + (—gA) + ¢'B,)?] . (2.4.82)
Note that
1 1
SV (AL =299 B + 9" B)] = <0*lgA, = ¢'BJ" +0lg' AL + 9B,
L 50 1 2
Therefore, there are three massive vector bosons:
1
+ 1242
and )
720 = ———(gA3 —¢'B,). (2.4.85)
" 2 2 " #
V9~ t+yg
The fourth vector field, orthogonal to Zg,
1 /' A3

remains massless. We identify this field with the electromagnetic vector
potential.

The gauge fields have “eaten up” the Goldstone bosons and become mas-
sive. The scalar degrees of freedom become the longitudinal polarizations
of the massive vector bosons. The spontaneous symmetry breaking rotates
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the four SU(2); x U(1)y gauge bosons to their mass eigenstates by means
of the gauge interaction term of the Higgs fields, {A,, A2} — {WiF, W}
and {A3, B,} — Ay, Z. In terms of the weak mixing angle, 6,, (defined by
tanf, = ¢'/g), the photon and Z°boson fields read

0 o 3
Z, _ c'osé’w sin 0,, A ‘ (2.4.87)
A, sinf,, cosf, B,

The W* and the Z° boson masses, at lowest order in perturbation theory,
can be rewritten as

mw =0 =9
2 2v2 A
showing that the Higgs mass my sets the electroweak mass scale.

In terms of the mass eigenstates the covariant derivative (2.4.75) becomes

mw

and mgyz =

= 2.4.88
cos B, ’ ( )

g ey 1
D, = 0,—i—WTr+W T7) —i———7,(5°T> — ¢"*Y
p 1 Z\/§( 1 L Tm)—i o u(g g7Y)
. g9 3

where T = T' + ¢T?. The normalization is chosen so that, in the spinor
representation of SU(2)

T* =i(c' tio®) =o*. (2.4.90)

After identifying the coefficient of the electromagnetic interaction
e=——— =gsinb,, (2.4.91)

with the electron charge, it becomes evident that the electromagnetic interac-
tion (a U(1) gauge symmetry with coupling e) “sits across” weak isospin (an
SU(2)r symmetry with coupling g and weak hypercharge (a U(1) symmetry
with coupling ¢). Note that the two couplings g and ¢’ can be replaced by e
and 6,,, where the parameter 6, is to be determined by the experiment. After
we identify the electric charge quantum number in (2.4.89) with Q = T3 +Y,
with the manipulation in the Z° coupling

g*T% — ¢°Y = (> + ¢H)T° - §°Q, (2.4.92)
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Table 2.1: Weak isospin, and hypercharge quantum numbers.

Lepton T T3 Q Y Quark T T3 Q Y
w3 3 0 wo b3 %
- 1 1 1 1 1 1 1

e, 3 —z —L 3 dv 3 —3 ~3 %
ug 0 0 2 2

e, 0 0 -1 -1 dg. 0 0 —3 —3

we can rewrite the covariant derivative (2.4.89) as follows

. g — .4 3 ain2 »
D, =0, - ZE(W:TJF +W,T7) - —r Z,(T° — sin” 0,,Q)) — 1eA,Q .
(2.4.93)

The covariant derivative (2.4.93) uniquely determines the coupling of the
W= and Z° fields to fermions, once the quantum numbers of the fermion
fields are specified. For the right-handed fields, 7% = 0 and hence Y =
Q). For the left-handed fields, L; and @Qp, the assignments Y = —1/2 and
Y = +1/6, respectively, combine with 7% = 41/2 to give the correct electric
charge assignments. The weak isospin and hypercharge quantum numbers of
leptons and quarks are given in Table 2.1.

If we ignore fermion masses, the Lagrangian for the weak interactions of
quarks and leptons follows directly from the charge assignments given above.
The fermion kinetic energy terms are

L =Li(i P)Lr + Er(i P)Er + Qp(i P)Qr + Ur(i P)Ur + Dg(i P)Dp.
(2.4.94)
To work out the physical consequences of the fermion-vector boson couplings,
we should write (2.4.94) in terms of the vector boson mass eigenstates. Using
the form of the covariant deivative (2.4.93) we can rewrite (2.4.94) as

& = Li(iP) Ly + Er(id)Er + Q. (i?)Qr + Ur(iP)Ur + Dr(i@) D

+ gWEIF + Wyl + Z)JY) + eA, g, (2.4.95)
where )
JH = (0, yMer, + ay y*dy),
W \/5( L Y'er + ur y'dp)
1 _
Jot = —=(er Y vr +dp YHur),
w \/5( LYVL LY L)
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1 1
Jh = {ﬂL M (5) vi, + e " <—§ + sin? Hw) er +er 7" (sin®0,) er

1 2 2

+ ug ”Y“ 5 9 Sin2 Hw Ur + UgR ’}/'u -z Sin2 Hw UR
2 3 3

1

cos 0,

Y

- 11 . 1
+ dp " (—5 + 3 sin? 9w) dr, +dg " <§ sin” Qw) dR:|
. — a7 2 7 1
gh = ey (=De+ur” +§ u+d " 3 d (2.4.96)

and equivalent expressions hold for the other two generations.

The gauge invariant QCD Lagrangian for interacting colored quarks ¢
and vector gluons G, with coupling specified by g, follows simply from de-
manding that the Lagrangian be invariant under local phase transformations
to the quark fields. Using (2.2.40) we obtain

Zocp = G0 — m)q; + gs(4;7"taq;) Gy — 3G, GH (2.4.97)

where q1, ¢2, and g3 denote the three color fields and, for simplicity, we
show just one quark flavor. Because we can arbitrarily vary the phase of the
three quark color fields, it is not surprising that eight vector gluon fields are
needed to compensate all possible phase changes. Just as for the photon,
local invariance requires the gluons to be massless.

As we anticipated in Sec. 2.2.2, the field strength tensor GY,, has a re-
markable new property on account of the [G,, G,] term. Imposing the gauge
symmetry has required that the kinetic energy term in Zqcp is not purely
kinetic but includes an induced self-interaction between the gauge bosons.
This becomes clear if we rewrite Lagrangian (2.4.97) in the symbolic form

D%QCD — 77q—q77 + ” G277 + s ”(Y(JG” + s ” G?m + gg 9 G477 ) (2498)

The first three terms have QED analogues. They describe the free propaga-
tion of quarks and gluons and the quark-gluon interaction. The remaining
two terms show the presence of three- and four-gluon vertices in QCD and
reflect the fact that gluons themselves carry color charge. They have no ana-
logue in QED and arise on account of the non-Abelian character of the gauge

group.
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Since explicit fermion mass terms violate the gauge symmetries, the
masses of the chiral fields arise from the Yukawa interactions which cou-
ple a right-handed fermion with its left handed doublet and the Higgs field
after spontaneous symmetry breaking.!? For example, to generate the elec-
tron mass, we include the following SU(2) x U(1) gauge invariant term in
the Lagrangian

+

gy = ¥ (7,01 (5 ) e+ en(07,8°) (), ] (2.4.99)

where Y, is the Yukawa coupling constant of the electron. The Higgs doublet
has exactly the required SU(2) x U(1) quantum numbers to couple to epeg.
We spontaneously break the symmetry and substitute

1 0
b= \g ( v ) ) (2.4.100)

into (2.4.99). The neutral Higgs field H(x) is the only remnant of the Higgs
doublet, (2.4.78), after spontaneous symmetry breaking has taken place. The
other three fields can be gauged away. On substitution of ¢, the Lagrangian
becomes

Y.
%(6L6R+6R6L)H. (24101)

Y,
geYukawa — __e'y(éL6R + éReL) -

V2

We choose Y, so that

Y. v
me = 2.4.102
% (24.102)
and thus generate the required electron mass,
pYukawa — o zo - Megopr (2.4.103)

v

Note however, that because Y, is arbitrary, the actual mass of the electron is
not predicted. Besides the mass term, the Lagrangian contains an interaction
term coupling the Higgs scalar to the electron.

The quark masses are generated in the same way. The only novel feature
is that to generate a mass for the upper member of the quark doublet, we

12H. Yukawa, Proc. Phys. Math. Soc. Jap. 17, 48 (1935).
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must construct the complex conjugate of the Higgs doublet

¢ = —im¢* = (‘ﬁ°,> — \/g(vo“f) . (2.4.104)

breaking

Because of the special properties of SU(2), ¢ transforms identically to ¢ (but
has opposite weak hypercharge to ¢, namely, Y = —1/2). Therefore, it can
be used to construct a gauge invariant contribution to the Lagrangian

Q%Yukawa — _Y;l(ﬂ, d)L (i;r) dR + Yu(ﬂ, CZ)L (_Z;O,> Ur + h.c.
= —mgdd — m,tu — 24ddH — 2ruuH . (2.4.105)

All in all, the Yukawa Lagrangian then takes the form
_gVkava _ Y i G 6 D +Y,7 Q) Q;URijyeij Ly, ¢ Eg,+h.c., (2.4.106)

where 75 are the generation indices.

It is important to note that the standard model also comprises an acci-
dental global symmetry U(1)g x U(1)e x U(1), x U(1),, where U(1)p is the
baryon number symmetry and U(1).,, . are three lepton flavor symmetries,
with total lepton number given by L = L. + L, + L. It is an accidental
symmetry because we do not impose it. It is a consequence of the gauge
symmetries and the low energy particle content. It is possible (but not nec-
essary), however, that effective interaction operators induced by the high
energy content of the underlying theory may violate sectors of the global
symmetry.

Up to now we have “concocted” a standard model of particle physics from
general group-theory considerations of principles of symmetry and invariants.
Of course, in real life a model of nature is usually uncovered in a less pristine
fashion. To convey an impression of how the theories developed, and how
the standard model has successfully confronted experiment, we will describe
a number of the most important theoretical results. We will start from the
most precisely tested theory in physics, QED, and carry on to QCD and the
electroweak theory, both offspring of QED.
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Chapter 3

QED

3.1 Invariant Amplitude

In Maxwell’s theory of electromagnetism, charged particles, such as elec-
trons, interact through their electromagnetic fields. However, for many years
it was difficult to conceive how such action-at-a-distance between charges
came about. In QFT, we have such a tangible connection. The quantum
field theory approach visualizes the force between electrons as an interaction
arising in the exchange of “virtual” photons, which can only travel a dis-
tance allowed by the uncertainty principle. These virtual photons, of course,
cannot live an existence independent of the charges that emit or absorb them.

When calculating scattering cross sections, the interaction between par-
ticles can be described by starting from a free field which describes the in-
coming and outgoing particles, and including an interaction Hamiltonian to
describe how the particles deflect one another. The amplitude for scattering
is the sum of each possible interaction history over all possible intermediate
particle states. The number of times the interaction Hamiltonian acts is the
order of the perturbation expansion. The perturbative series can be written
as a sum over Feynman diagrams; e.g., the lowest order (tree level) diagrams
for Bhabha scattering (ete~™ — ete™) are shown in Fig. 3.1, and the vari-
ous virtual contributions containing one-loop and two-loops (with a closed
electron loop) are shown in Figs. 3.2 and 3.3.

In the non-relativistic limit of perturbation theory, we have introduced
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Figure 3.1: Bhabha scattering tree-level diagrams.

a factor like V,,; for each interaction vertex and for the propagation of each
intermediate state we have introduced a “propagator” factor like 1/(E; —E,,).
[For details, we refer the reader to Eq. (1.6.162).] The intermediate states
are virtual in the sense that the energy is not conserved, F, # FE;, but there
is energy conservation between the initial and final states as indicated by the
delta function §(E; — E;). Throughout this chapter we generalize the pertur-
bative scheme to handle relativistic particles, including their antiparticles.

@ I
=
s

Figure 3.2: Bhabha scattering one-loop diagrams.
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Figure 3.3: Bhabha scattering two-loop diagrams with a closed electron loop.
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Figure 3.4: A “spinless” electron interacting with A*.

We first have to figure out how to use perturbation theory in a covariant
way. We illustrate this, by choosing the interacting particles to be “spinless”
charged leptons, as it is desirable to begin by avoiding the complications
of their spin. This choice requires some explanation. No spinless quark
or lepton has ever been observed in an experiment. Spinless hadrons exist
(e.g., the m-meson), but they are complicated composite structures of spin—%
quarks and spin-1 gluons. The spin-0 leptons (that is leptons satisfying the
Klein-Gordon equation) are completely fictitious objects.

Consider the scattering of a spinless electron in an electromagnetic poten-
tial, shown in Fig. 3.4. In classical electrodynamics, the motion of a particle
of charge e in an electromagnetic potential A* = (¢, ff) is obtained by the
substitution p* — p* —eA*. The corresponding quantum mechanical substi-

tution is therefore iO* — i0* — eA". The Klein-Gordon equation becomes
(0,0 + m*)p = —V¢ (3.1.1)

where

V =ie(0,A" + A*D,) — 2 A? (3.1.2)

is the (electromagnetic) perturbation. Working to lowest order, we neglect
the €A% term in (3.1.2). The amplitude for the scattering of e~ from a state
¢; to ¢y of an electromagnetic potential A, is

Ty = —z/¢}(m) V(z) ¢s(x) d*z
= —z'/gb} ie(A"0, + 0,A") ¢, dz . (3.1.3)
The derivative in the second term, which acts on both A* and ¢;, can be
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Figure 3.5: Tree level diagram for electron-muon scattering.

turned around by integration by parts, so that it acts on ¢}

/¢} Ou(Ald;) d'z = — /@(qﬁ}) A* ¢, d'x (3.1.4)

where the surface term has been omitted as the potential is taken to vanish
as |Z|,t — +oo. We can now rewrite the amplitude in a very suggestive form

Ty = —i / jlleArd's (3.1.5)

where

egi () = ie[d7(Dui) — (0ud}) i) (3.1.6)
which, by comparison with (1.4.46), can be regarded as the electromagnetic
current for the i — f electron transition. If the incoming e~ has four momen-

tum p;, we have ¢;(z) = N;e P2 where N; is the normalization constant.
Using an analogous expression, for ¢; it follows that

ejl’ = eNiNp(pi + pys)y €' 7P (3.1.7)

Next, using the results for the scattering of the “spinless” electron off
an electromagnetic potential, we can calculate the scattering of the same
electron off another charged particle, say a “spinless” muon. The Feynman
diagram of such a process is shown in Fig. 3.5. The calculation is a straight-
forward extension of the previous one; we just have to identify the electro-
magnetic potential A* with its source, the charged “spinless” muon. This
is done with the help of Maxwell’s equations, (J?A* = jé), which determine
the electromagnetic field A* associated with the current

€jé) = eNgNp(pp + pp)" ei(PD—pB)-x’ (3.1.8)
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where the momenta are defined in Fig. 3.5. Now, using [12ei* = —¢? ¢4-*

we obtain ]

Al = —?jé) ) (3.1.9)
with ¢ = pp — pp. Inserting this field due to the muon into (3.1.5), we find
the tree level amplitude for electron muon scattering

: : -1 .
Substituting (3.1.8) and (3.1.7), and carrying out the z integration we find,
Tyi = —iNa Np Ne Np (27)* 6" (pp + pe — pp — pa) M (3.1.11)

where
i = [—ie(pa + po)” (—gq—) [—ie(ps + pp)"] (3.1.12)

A consistency check on (3.1.12) shows that we would have obtained the same
amplitude considering the muon scattering off the electromagnetic field A*
produced by the electron. Consequently, 9, as defined by (3.1.11), is called
the wnvariant amplitude. The delta function expresses energy-momentum
conservation for the process. It is noteworthy that the photon propagator
carries Lorentz indices because it is a spin-1 particle. The four-momentum
q of the photon is determined by four-momentum conservation at the ver-
tices. We see that ¢ # 0, and we say the photon is “virtual” or “off-mass
shell.” Each vertex factor contains the electromagnetic coupling e and a
four-vector index to connect with the photon index. The particular distribu-
tion of the minus signs and factors ¢ has been made up to give the correct
result for higher order diagrams. Note that the multiplicative of the three
factors gives —i91. Whenever the same vertex or internal line occurs in a
Feynman diagram the corresponding factor will contribute multiplicatively
to the amplitude —9 for that diagram.

To relate these calculations to experimental observables, we must set the
normalization N of the free particle wave functions (1.4.44). Recall that
the probability density of particles described by ¢ is p = 2E|N|?. The
proportionality of p to E was just what we needed to compensate for the
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Lorentz contraction of the volume element d®z and to keep the number of
particles pd3x unchanged. We then work with a volume V and normalize to
2F particles within that volume, fV pdV = 2F. This leads to the covariant
normalization

1
N=_—". (3.1.13)

VV

The transition rate per unit volume of the process A+ B — C + D is

|Ty|?
P = , .1.14
Wy v (3.1.14)

where T is the time interval of the interaction and the transition amplitude
is given in (3.1.11). Upon squaring, one delta function remains, and (27)*
times the other gives T'V. Therefore, making use of (3.1.13) we obtain

209 (pa+pp —po — pp) |9
v |

Experimental results on AB — CD scattering are quoted in the form of a
“cross section,” which is related to the transition rate according to

Wy
(initial flux)

Wi = (2) (3.1.15)

cross section = (number of final states) , (3.1.16)
where the factors in brackets allow for the “density” of incoming and outgoing
states. (The derivation of the formula for particle decay rates proceeds along
similar lines, see Appendix A.)

For a single particle, quantum physics restricts the number of final states
in a volume V' with momenta in element d®p to be Vd®p/(27)3, but we have
2F particles in V', yielding

V d3p

No. of final states/particle = @n)i2E " (3.1.17)

Therefore, for particles C, D scattered into momentum elements d*pc, d®pp,

V dgpc V dng
(2m)32E¢ (27)32Ep

No. of available final states = (3.1.18)

It is easiest to calculate the initial flux in the lab frame. The number of
beam particles passing through unit area per unit time is |U/4|2E4/V, and
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the number of target particles per unit volume is 2Ez/V. Therefore, we
obtain the normalization-independent measure of the ingoing “density” by

taking
2F 4 2Ep
. 3.1.19
vV vV ( )

Substituting (3.1.15), (3.1.18), and (3.1.19) into (3.1.16) we obtain the dif-
ferential cross section do for scattering into d*pc d®pp

& L o2 (27)° d’pc d’pp
- 2T 5@
FaREa 2B, Vi (amyi® PatPE=Po—PD) S s

Note that the arbitrary normalization volume cancels. Consequently, here-

Initial flux = |4 ——

do = . (3.1.20)

after we drop V' and work in unit volume, i.e., we normalize to 2E parti-
cles/unit volume, and the normalization factor (3.1.13) of the wave function
is N =1.

For reactions symmetric about the collision axis, we can simplify the
Lorentz invariant phase space factor

*pc *pp

2m)32E¢ (2m)32Ep
by partially evaluating the phase-space integrals in the center-of-mass frame.
We first choose to integrate all three components of pp over the delta func-
tions enforcing 3-momentum conservation. This sets po = —pp and converts

dQ = (2m)* 6™ (pa + pp — po — pD)( (3.1.21)

the Lorentz invariant phase space factor to the form
1 d3pc 1

= — §(Es+Ep—Fc—E
dQ 472 2F¢ 2ED6( a+Ep—FEc—Ep)
1 pZdpc dQ
— T S(W — B — E 1.
472 AE.Ep (W= Eo = Ep), (3.1.22)

where df is the element of solid angle about pe and /s = W = E4 + Ep.
Now, using W = E¢ + Ep = (p} + mg)"? + (p} + m},)"/2, we obtain

aw 1 1
- = +t = 3.1.23
dp; (Ec ED) ( )
and rewrite Eq. (3.1.22) as
. 1 Y4 1
dQ = Rl (EC—I-ED) dW dQ2 §(W — E¢ — Ep)
1
= P yg (3.1.24)

472 4y/s
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Figure 3.6: Lowest-order Feynman diagrams for Mgller scattering.

where |pc| = |pp| = py-
On the other hand, the incident flux for a general collinear collision be-
tween A and B reads,
F = |Ux—vp|2E4 2ER
= 4(|palEp + [PB|Ea)
= 4[(papp)’ —mimp)]"?, (3.1.25)

and hence the differential cross section in the center-of-mass is

do 1 Dy 2

— = —|9m 3.1.26

dsd|. . ~ 64m2sp; 177 ( )
where |pa| = |ps| = pi. In the special case where all four particles have

identical masses (including the commonly seen limit m — 0), Eq. (3.1.26)

reduces to
do _|om?

dQ e 64m2s”

In closing we note that for electron-electron scattering we need to take
into account that we have identical particles in the initial and final states, and
hence the amplitude should be symmetric under the interchange of particle
labels C' <+ D and A < B. Therefore, we have two Feynman diagrams
shown in Fig. 3.6. The tree level invariant amplitude for the scattering of a

(3.1.27)

spinless electron is then

i — <_€2(pA +pc)u(ps +pp)"  €(pa+pp)u(Ps + Pc)*

(pp — pB)? (pc — pB)?
(3.1.28)

Note that the symmetry under po <> pp ensures that 91 is also symmetric
under py <> pg.
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3.2 Unpolarized Cross Section

We have seen that a free electron of four-momentum p* is described by a
spinor, ¥ = u(p)e
The equation for an electron in an electromagnetic field A* is obtained by
the substitution p* — p* —eA*, where we have again taken e to be the charge
of the electron. We find

—ip.x

, which satisfies the Dirac equation (y,p* —m)y = 0.

(Y — m)y ="V o, (3.2.29)

where the perturbation is given by 1°V = ey, A*. The introduction of 4 is
to make (3.2.29) of the form (E +...)1 = V1, so that the potential energy
enters in the same way as in the Schrodinger equation.

Using first-order perturbation theory (1.6.151), the amplitude for the
scattering of an electron from state ; to state ¢y is

T = -i [} V) vl dia

= e / gt AR dte (3.2.30)
where

e = eyt
= eTgry,u; PP (3.2.31)
can be regarded as the electromagnetic transition current between states ¢
and f.

Repeating the steps of the preceding section, the tree level transition
amplitude for electron-muon scattering is

, 4 =1\ .
Ty = —Zez/Jﬁl)(I) <?> ]é) d'x

o -1 o
= —i(eToy,ua) <?) (eipy"up) (27)* 6W(pa +ps — pc — pp),

(3.2.32)
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where ¢ = pa — po, and the factor (27)* times the delta function arises
from the integration over the z dependence of the currents. Recall that the
invariant amplitude 901 is defined by

Ty = —i(2m)*6W (pa + p — pc — pp) M, (3.2.33)

and so we have

—i9M = (—ieucy ua) (_Zg;w) (—ieupyup) . (3.2.34)
q

To calculate the unpolarized cross section, we must amend the cross sec-
tion formulae of Sec. 3.1. By unpolarized we mean that no information about
the electron spins is recorded in the experiment. To allow for scattering in
all possible spin configurations, we therefore have to make the replacement

L 2
(2s4+1)(2sp+1) Z )", (3.2.35)

|0%* — |9t

spins

where s 4, sp are the spins of the incoming particles. That is, we average over
the spins of the incoming particles and sum over the spins of the particles in
the final state.

To obtain the (unpolarized) cross section, we have to take the square of
the modulus of

ﬁn:—éﬂ%ﬁﬁwﬁﬁ(%)H@UWu@> (3.2.36)

and then carry out the spin sums (the momenta are defined in Fig. 3.5, with
pa =k, pg =p, pc =k, pp =79, and ¢ = k — k). It is convenient to
separate the sums over the electron and muon spins by writing (3.2.35) as

4
€ v
M = L L) (3237
where the tensor associated with the electron vertex is
v 1 U rm v *
Lo =5 Z [@(k )y u(k) @)y u k)] (3.2.38)
e—spins

and with a similar expression for L,(ﬁ,).
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The spin summations look like a forbidding task. Fortunately, well-
established trace techniques considerably simplify such calculations. To be-
gin, we note that the second square bracket of (3.2.38) (a 1 x 1 matrix for
which the complex and hermitian conjugates are the same) is equal to

W (k)" 7" (k)" = [ul (k) """ u(k)]
= [u(k)y"u(k)], (3.2.39)
where we have used 7/1/? = +%9%. That is, the complex conjugation in

(3.2.38) simply reverses the order of the matrix product. We now write
the complete product in (3.2.38) explicitely in terms of individual matrix

elements (labeled «, 3, ..., with summation over repeated indices implied)
v 1 —(s’ s —(s v s’
L =5 2 0 W) s D_ug (E (k) Asus” (k) (3.240)
(me) s,

where m, is the mass of the electron. Thus, L’(‘e”) becomes the trace of the
product of 4 x 4 matrices

L = %Tr[( K+ mo)yt (ke +mo) 7). (3.2.41)

A straightforward evaluation of the tensor associated with the electron vertex
(3.2.41) using the trace theorems given in Appendix B leads to

v ]' v 1 v
Liy = STe(EY" k) + gmiTr(y"y")
= 2(k"™kY + K"k — (K .k —m2)g"). (3.2.42)

The evaluation of Lé‘:) is identical, yielding
L) = 2(p,py + plpu — (0'-p — ) guw) (3.2.43)
where m,, is the mass of the muon. Forming the product of (3.2.42) and

(3.2.43), we finally arrived at the following “exact” form for the spin average
e~ pu~ — e p~ amplitude,

WP - Sq—i4[<k' kD + )k )

+ mlp p—mik k4 2mlim)]. (3.2.44)

In the extreme relativistic limit, we could neglect the terms containing m?
and m’,.
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3.3 Mandelstam Variables

In high energy physics, cross sections and decay rates are written using kine-
matic variables that are relativistic invariants. For any “two particle to two
particle” process (A+ B — C'+ D) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables are the scalar prod-
ucts pa . pB, Pa - Pc, Pa - pp- Rather than these, it is conventional to use
the related (Mandelstam) variables

s (pa+pB)* = (pc +pp)?
t = (pa—pc)’ = (ps—pp) (3.3.45)
u = (PA - PD)2 = (pB - Pc)2 .

However, because p? = m? (with i = A, B, C, D) and pa + pg = pc + pp
due to energy momentum conservation,

s+t+u = me+2pi+2pA-(pB—pc—pD)

= > m}, (3.3.46)

i.e., only two of the three variables are independent.
To get a better feel for s, ¢, and u let us evaluate them explicitly in the
center-of-mass frame for particles all of mass m,

s (pa +pp)* = 4(K* +m?),
t = (pa—pc) = —(EZ - Ef)2 = —2Kk*(1 — cos )
u = (pa—pp)= —(Ez + Ef)z = —2k*(1 + cos )

where, py = (Ea Ez)a PB = (Ea _Ei)a Pc = (Ea Ef)a Pp = (_E’ :Ef)a E = (k2 +
m?)Y/2 and 6 is the center-of-mass scattering angle, i.e., k; . k; = k% cos 0. As
k? > 0, we have s > 4m?; and since —1 < cosf < 1, we have t < 0 and u < 0.
Note that ¢t = 0 (u = 0) corresponds to forward (backward) scattering.

In the center-of-mass system for the reaction A+B — C'+ D, s is equal to
the square center-of-mass energy E2 | where Ep, is the sum of the energies of

cm)

1S. Mandelstam, Phys. Rev. 112, 1344 (1958).
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particles A and B, t represents the square of the momentum transfer between
particles A and C, and w (which is not an independent variable) represents
the square of the momentum transfer between particles A and D. This is
called the s-channel process. As we have seen, in the s-channel s is positive,
while ¢ and u are negatives.

From this process we can form another process, AC' — B + D, by taking
the antiparticle of C' to the left-hand side and the antiparticle of B to the
right-hand side. The antiparticles have four-momenta which are the negatives
of the momenta of the particles: pg — —pp and pc — —p¢ relative to
the s-channel reaction. Hence, here s = (ps — pg)%, t = (pa + pc)?, and
u = (pa — pp)*. This is called the t-channel process. In this channel ¢ is
positive and represents the square of center-of-mass energy of the AC system,
whereas s < 0 and u < 0 are squares of momentum transfers.

We can form yet another process from the above, A+ D — B + C, by
taking the antiparticle of B to the left-hand side and the antiparticle of D to
the right-hand side. Correspondingly here, s = (ps — pg)?, t = (pa — pc)?,
and u = (pa + pp)?. This is called the u-channel process. In this channel,
u is positive and represents the square of center-of-mass energy of the AD
system, while s < 0 and ¢ < 0 are squares of momentum transfers.

In the extreme relativistic limit the Mandelstam variables become

s =(k+p)? ~2k.p~2k . p~4k*,
t =(k—K)? ~ 2k. kK ~ =2p.p ~ —2k*(1 —cosf), (3.3.47)
u =(k—p)? ~ 2k.p ~ =2k . p~ —2k*(1 +cosh),

where pa = k, pp = p, pc = k', and pp = p’. At high energies, the
unpolarized e~ = — e~ scattering amplitude (3.2.44) can be rewritten as

8et
M2 = ———= (K. p)(k.p)+ (K . p)(k.p)
(k— k')
L2+ u?
t2
We may also obtain the amplitude for e"et — ptp~ by “crossing” the
result for e“p~ — e~ p~. The required interchange is &’ <+ —p, that is, s <> ¢

in (3.3.48), and we obtain

= 2e

(3.3.48)

2 4+ u?
2

(02 = 2¢*

, (3.3.49)
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Figure 3.7: Feynman diagram for ete™ — putu~.
where now e“e™ — ptpu~ is the s-channel process. The corresponding tree
level diagram is drawn in Fig. 3.7. This result can be translated into a

differential cross section for e”et — p*u~ scattering using (3.1.27). In the
center-of-mass frame we have

do| 1 Ar1 9
ol = 647?2326 [5(1+cos™0)], (3.3.50)
where the quantity in square brackets is (t* + u?)/s%. Using o = €2 /4, this
becomes J )
o a
—| =—(1 20). :3.51
9| 43( + cos” 0) (3.3.51)

To obtain the reaction cross section, we integrate over # and ¢

4 2
Octe——putp- = % . (3352)

A comparison of these results with PETRA data? is shown in Figs. 3.8
and 3.9. The PETRA accelerator consists of a ring of magnets which simul-
taneously accelerate an electron and a positron beam circulating in opposite
directions. In selected spots these beams are crossed, resulting in e*e™ inter-
actions with /s = 2FEpeam, Where Elean is the energy of each beam. Equation
(3.3.52) can be written in numerical form as

20(nb)

Oete——putpu— — Egeam/GeVQ . (3353)

2H. J. Behrend et al. [CELLO Collaboration], Z. Phys. C 14, 283 (1982); Phys. Lett.
B 191, 209 (1987); Phys. Lett. B 222, 163 (1989); W. Bartel et al. [JADE Collaboration],
Z. Phys. C 26, 507 (1985); Phys. Lett. B 161, 188 (1985).
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Figure 3.8: The ete™ — utu~ angular distribution for (v/s) = 39 GeV. The

dot-dashed line shows the relativistic limit of lowest order QED prediction.

4

There are, of course, corrections to (3.3.53) of order o, o, ..., arising due to

interference with, or directly from, the amplitudes of higher order diagrams.

We can now use the procedure sketched in Sec. (3.2) to calculate the
(lowest-order) amplitude for Mgller scattering. As noted in the analysis
of spinless electrons, for e e~ — e~e~, we have identical particles in the
initial and final states, and so the amplitude should be symmetric under the
interchange of particle labels C' <+ D (and A <+ B), i.e., we have to calculate
the ¢t- and u-channel diagrams drawn in Fig. 3.6. To obtain the amplitude
for ee™ — e~e™, we can simply use the antiparticle prescription to “cross”
the result for ee”™ — e~e™. Furthermore, one can immediately check by
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Figure 3.9: Solid (open) symbols indicate the cross section for ete™ — ptu~
(ete™ — 7777 ) measured at PETRA versus the center-of-mass energy. The

dot-dashed line shows the relativistic limit of lowest order QED prediction.
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Figure 3.10: Lowest-order Feynman diagrams for Compton scattering.
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Figure 3.11: Lowest-order Feynman diagrams for pair annihilation.

inspection of Figs. 3.10 and 3.11 that a similar analysis applies to obtain
the amplitude of pair annihilation ee~ — 77 by crossing the amplitude
for Compton scattering ey — e~ 7. In Table 3.1 we give the amplitudes
for all these processes in the extreme relativistic limit. The origin of the
forward and backward peaks in the differential cross section is identified;
corresponding to t- and w-channel exchanged with photons and electrons
being almost on mass shell. Recall that ¢- and u- are the squares of the three
momentum transferred, i.e., the momentum carried by the virtual particle.
When the mediator has a very small momentum squared (i.e., almost on its
mass shell), then by the uncertainty principle the range of interaction is very
large. Interaction with small deflections thus occurs with large cross sections.

Similar results are found in QCD for the strong g¢ — qq, ¢¢ — qq interac-
tions via single gluon exchange. In fact, the results are identical except that
we must average (sum) over the color of the initial (final) quarks, in addition
to their spins, and make the replacement o — a,, where a, = g2/4x is the
quark gluon coupling.
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Table 3.1: Leading order contributions of some QED processes.

Process 1902 /2¢4
) 52 + u? 252 s2+t?
Mgller scattering — - —
~ ~ d t tu U
e"e " —e e~ —— ~~~ SN——
forward interference backward

(Crossing s > u)

(u <> t symmetric)

2 2 2 2 2
. $°+u 2u u® 4+t
Bhabha scattering — + — + —
e~et—e et ~— ~~ S——
forward interference timelike
o o 52+ u?
e —e —
N——
forward
2 2
u”+t
e"et = uput A
S
N——
timelike
. u S
Compton scattering - - - Z
~ ~ - s U

e~ y—e Ty

pair annihilation
-

v~

ete=—vyy

timelike backward

+

(-1~

u
t
~—~

forward backward
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3.4 Feynman Rules

This section encompasses a heuristic treatment of QED based on Feynman’s
intuitive space-time approach.> Our primary aim is to motivate Feynman
rules and to calculate physical amplitudes. We saw earlier [Eq. (1.6.161)]
that the nonrelativistic perturbation expansion of the transition amplitude
is

Tyi = —i2md(Ey — ) [{FIVE) + S (Vi) e nlVI) 4 |
n#l K] n
g (3.4.54)

where we have associated factors of (f|V|n) with the vertices and identified
1/(E; — E,) as the propagator. The state vectors are eigenstates of the
Hamiltonian in the absence of V', i.e., Hyoln) = E,|n). Formally we may
therefore rewrite (3.4.54) as

i

Tyi = 2m0(Ey = E){[|(=V) + (=V) g

(—iV)+...]i), (3.4.55)
where we have made use of the completness relation ) |n)(n| = 1. It is
natural to take (—iV'), rather than V| as the perturbation parameter.* That
is, the vertex factor is —iV/, and the propagator may thus be regarded as i
times the inverse of the Schrodinger operator,

—i(E; — Ho)th = —iVap (3.4.56)

acting on the intermediate state. We can now apply the same technique to
various relativistic wave equations to deduce the form of the propagators for
the corresponding particles.
For example, the form of the Klein-Gordon equation corresponding to
(3.4.56) is
i(0% + m?)p = —iVo, (3.4.57)

see (3.1.1). Guided by the relativistic generalization of (3.4.55), we expect
the propagator for a spinless particle to be the inverese of the operator on

3R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); Phys. Rev. 80, 440 (1950).
4The —i arises from the i in iy /0t = Vb, which leads to a time dependence e~?V? in

the interaction picture.
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the left-hand side of (3.4.57). For an intermediate state of momentum p, this

gives
1 ?
= ) = - (3.4.58)

In a similar fashion, an electron in an electromagnetic field satisfies

(#—me)p = ey" A (3.4.59)

As before, we must multiply by —i. Hence, the vertex factor is is —iey*”. The
electron propagator is therefore the inverse of —i times the left-hand side of
(3.4.59):

L J i(p + me) i -
_Z(ﬁ - me) B ﬁ‘ — Mg - p2 — mg - p2 _ mg ;UU, (3460)

where we have used pp = p? and the completeness relation (1.5.108). The
numerator contains the sum over the spin states of the virtual electron.
In summary, the general form of the propagator of a virtual particle of

i
e > (3.4.61)

spins

mass m is

The spin sum is the completeness relation; we include all possible spin states
of the propagating particle. We would also integrate over the different mo-
mentum states that propagate. For the diagrams we have considered so far,
this momentum is fixed by the momenta of the external particles.

The propagator for the photon is not unique, on account of the freedom
in the choice of A*. Recall that physics is unchanged by the transforma-
tion that is associated with the invariance of QED under phase or gauge
transformations of the wavefunctions of charged particles

Ay — A, = A+ 0ux, (3.4.62)
where y is any function that satisfies
0%y = 0. (3.4.63)
The wave equation for a photon (1.2.4) can be written as

(¢'0% — 9"0M Ay = ¥ (3.4.64)
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and, in fact, a photon propagator cannot exist until we remove some of the
gauge freedom of A,. In our discussion so far, we have chosen to work in the
Lorentz class of gauges with 9yA* = 0. In such a case, the wavefunction A"
for a free photon satisfies the equation

O%A* =0, (3.4.65)
which has solutions
Al = et (q)e - " (3.4.66)

where the four vector ¢ is the polarization vector of the photon. With this
in mind, the wave equation (3.4.64) simplifies to g** 0?4, = j¥, and since
guwy”* = 6, (where &) is the Kronecker delta), the propagator (the inverse
of the momentum space operator multiply by —i) is

_g v
The wave equation for a spin-1 particle of mass M can be obtained from
that for the photon by the replacement 0% — 02 + M?. From (3.4.64) we
see that the wavefunction B, for a free particle satisfies

(g (0% + M?) = 979" B, =0 . (3.4.68)

Proceeding exactly as before, we determine the inverse of the momentum
space operator by solving

(92 (—p* + M?) — p"pM)] " = 6%(Agp + Bpupy) (3.4.69)

for A and B. The propagator, which is the quantity in brackets on the
right-hand side of (3.4.69) multiplied by i, is found to be

i(=g" + p"p"/M?)
i vEmg (3.4.70)

We can show that the numerator is the sum over the three spin states
of the massive particle when taken on-shell p?> = M?2. We first take the
divergence, 0,, of (3.4.68). Two terms cancel and we find

M?0*By = 0. (3.4.71)
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Hence for a massive vector particle, we have no choice but to take 0* B, = 0;
it is not a gauge condition. As a consequence, the wave equation reduces to

(0% + M?*)B, =0 (3.4.72)
with free particle solutions
B,=¢,e " ", (3.4.73)

The condition (3.4.71) demands p*.¢, = 0 and so reduces the number of
independent polarization vectors from four to three in a covariant fashion.

Likewise, the Lorentz condition for photons, d,A" = 0 gives, g, .€" =0,
reducing the number of independent components of e# to three. In this case
we can explore the consequences of the additional gauge freedom (3.4.62).
Choose a gauge parameter

X = iae """ (3.4.74)

with a constant so that (3.4.63) is satisfied. Substituting this, together with
(3.4.66) into (3.4.62) shows that the physics is unchanged by the replacement

€y —> €, =€y ag,. (3.4.75)
.) which differ by a multiple
of g, describe the same photon. We may use this freedom to ensure that
the time component of e# vanishes, € = 0 and the Lorentz condition reduces
to €.¢ = 0. This (noncovariant) choice of gauge is known as the Coulomb
gauge. This means that there are only two independent polarization vectors
and they are both transverse to the three-momentum of the photon. For
example, for a photon traveling along the z-axis, we may take

In other words, two polarization vectors (e, €

e1=(1,0,0), e =(0,1,0). (3.4.76)

A free photon is thus described by its momentum ¢ and a polarization vector
€. Since € transforms as a vector, we can anticipate that it is associated with a
particle of spin-1. Nevertheless, we have associated with a virtual photon the
covariant propagator i(—g,,)/q*, where —g,, implies we are summing over
four polarization states. The completeness relation (in an obvious notation)
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is given by

4
—Gu = Z ZGZ* lj: Z L L+Z€S*€
A=1 T
+

= (5 %%) QZQJ + (—guog,,o) . (3477)
transverse longitudinal scalar

However, in a sense every photon is virtual, being emitted and then sooner or
later being absorbed. How can one reconcile the two descriptions? Consider
a typical Feynman diagram containing a virtual photon exchanged between
charged particles. For such diagrams (e.g., Fig. 3.5) we have found a transi-
tion amplitude of the form

1 = =it [ i) (5 ) i) aa

‘A B ;A B ‘A B ‘A B

. - —

_ _wz/ FIC T J5Ts | BI5 — 300 | iy (3.478)
q q

Vo Vo
transverse longitudinal /scalar

where we have taken the photon four-momentum ¢* = (¢°, 0,0, |q]). That is,
we choose the 3-axis to be along ¢. Recall that charge conservation gives rise
to the continuity equation 0*j, = 0. For both the A and B currents this
implies

¢"ju = q"jo — 1qlja = 0. (3.4.79)
Therefore if the exchange photon is almost real, ¢° ~ |g], then j3 = jy and
the longitudinal and scalar contributions cancel each other, leaving only the
two transverse contributions. For a real photon, we can therefore make the
replacement

Z = ef* €& = —gu (3.4.80)

T

On the other hand, for a virtual photon the longitudinal and scalar compo-
nents cannot be neglected.

Now, in the spirit of (3.4.55), we can obtain the invariant amplitude 9
by drawing all (topologically distinct and connected) Feynman diagrams for
the process and assigning multiplicative factors (summarized in Table 3.2)
with the various elements of each diagram.
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Table 3.2: Feynman rules for —iN.

Multiplicative Factor

e External Lines

spin-0 boson (or antiboson)

spin-3 fermion (in, out)

spin-3 antifermion (in, out)

spin-1 photon (in, out)

e Internal Lines — Propagators
spin-0 boson

spin—% fermion

massive spin-1 boson

massless spin-1 boson

(Feynman gauge)
e Vertex Factors
photon—spin-0 (charge e)

photon—spin-1 (charge e)

I

pZ—m2

i(ytm)

p2—m2

_i(guu —Pubv /JV[2)
p2_M2

—iguv

—ie(p 4 p')*

e Loops: [ d*k/(2m)* over loop momentum; include —1 if fermion loop and

take the trace of associated y-matrices.

e [dentical fermions: —1 between diagrams which differ only in e™ <+ ¢~ or

initial e~ <« final et.
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3.5 Beyond the Trees

In this section, we attempt to provide a glimpse of the rich structure of QFT
and expose the reader to the concepts of loops, renormalization, and running
couplings in a concise and physical way. Because QFT is not the main subject
of this course, the following discussion is rather incomplete and a few results
are not explicitly derived. Nonetheless, only unrevealing algebra is omitted,
which can be found in most field theory books.?

The bulk of hadrons produced in e~ e annihilations are fragments of a
quark and antiquark produced by the process e"et — ¢g. The cross section
for the (QED) process e”et — ¢q is readily obtained from that for the process

drawn in Fig. 3.7,

Ao

Octe——ptu— = 57
3Q?

(3.5.81)

a result obtained in (3.3.52). Here, the center-of-mass energy squared is
s = Q? = 4Fyeam. The required cross section is

Oete——rqq = €0 Octeppt (3.5.82)

where we have taken account of the fractional charge of the quark, e,. The
extra factor of 3 arises because we have a diagram for each quark color and
the cross sections have to be added. To obtain the cross section for producing

all types of hadrons, we must sum over all quark flavors ¢ = u,d, s, ..., and
hence
Oe¢t+e——hadrons — Z Octe——qq
= 3) € Oere syt - (3.5.83)

This simple calculation leads to the dramatic prediction

R= Oete~—hadrons 326 ) (3584)

Oete——p—pt

5E.g., M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory,
(Addison-Wesley, Reading, 1995); R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and
collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1 (1996).
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Figure 3.12: Ratio R of (3.5.84) as a function of the total ete™ center-of-mass
energy. (The sharp peaks correspond to the production of narrow resonances
Just below or near the flavor thresholds.)

Because 0¢+c-—,—,+ is well known (see Fig. 3.9), a measurement of the total
ete” annihilation cross section into hadrons therefore directly counts the
number of quarks, their flavors, as well as their colors. We have

Ro= 30"+ )"+ @) =2 foruds

= 2—1—3(%)2:13—0 for u, d, s, c,
_ §+3(%)2:% for u, d, s, c,b.  (3.5.85)

In Fig. 3.12 these predictions are compared to the measurements of R.® The

6See e.g., M. Bernardini et al., Phys. Lett. B 51, 200 (1974); J. Siegrist et al., Phys.
Rev. D 26, 969 (1982); M. Althoff et al. [TASSO Collaboration], Z. Phys. C 22, 307
(1984); D. Besson et al. [CLEO Collaboration], Phys. Rev. Lett. 54, 381 (1985); B. Adeva
et al. [Mark-J Collaboration|, Phys. Rev. D 34, 681 (1986); T. Kumita et al. [AMY
Collaboration], Phys. Rev. D 42, 1339 (1990).
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value of R ~ 2 is apparent below the threshold for producing charmed par-
ticles at @ = 2(m. + m,) ~ 3.7 GeV. Above the threshold for all five quark
flavors (Q > 2m;, ~ 10 GeV), R = % as predicted. These measurements con-

1L would be reduced

firm that there are three colors of quark, because R = 3

by a factor of 3 if there was only one color.

These results for R will be modified when interpreted in the context of
QCD. Equation (3.5.83) is based on the (leading order) process ete™ — ¢q.
However, we should also include diagrams where the quark and/or antiquark
radiate gluons. In general

R(a,s) = —Jcerzai (3.5.86)
Oete—ptpu—

is a function of the electromagnetic coupling «,

ei ei
¢ (3.5.87)
4’ ¢
~
and the annihilation energy s = 4E2_ -
et g7
! (3.5.88)
€ q 1

As always, in (3.5.88) the antiparticles are drawn using only particle (e~, u~, q)
lines, but note that we omit the arrow lines indicating the time direction of
the antiparticle’s four-momenta. Hereafter we will adopt this simplified no-
tation whenever there is no danger of confusion.

When the annihilation energy far exceeds the light masses m of quarks
and leptons, we must expect that for the dimensionless observable R,

R(cv, s) — constant (3.5.89)
s>m?2

because there is no intrinsic scale in theories with massless exchange bosons.
This prediction disagrees with experiment and is, in fact, not true in renor-
malizable QFT. The exchange of a massless photon is ultraviolet divergent,
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requiring the introduction of a cutoff A. Thus, a scale is introduced into the
calculation and the dimensionless observable R(«, s, A?) is of the form

R= R( A2). (3.5.90)

This seems ugly; it is not: A appears order by order in the perturbative series
but not in the final answer.” Therefore,
R
dA?
This is the renormalization group equation, which can be written more ex-
plicitly:

=0. (3.5.91)

OR da OR

+ AP = .5.92
8A2 OA? D 0, (35.92)
which exhibits that R can depend on A directly, or via the coupling a.
Equation (3.5.92) can be rewritten in the variable ¢ = In(s/A?). Using

A20/(0A?) = —9/[01n(s/A?)], we obtain

(_% + B ) <a(s), %) —0, (3.5.93)

Ja O
oN> Ot
With the identification A? = s, the renormalization group equation has the
very simple solution,

A2

where

f=N_= (3.5.94)

R(a(s), 1) , (3.5.95)

in which the observable depends on s only via the coupling. Because a(s) is
dimensionless, dimensional analysis requires

afs) = F (a(A2), %) , (3.5.96)
which is consistent with (3.5.94),
A?dg‘/;) _ [gf (a(s), z)} =), (3.5.97)

"In other words, because any A-value is arbitrary, physical observables (e.g., R) cannot
depend on A.
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The solution is

a(s) dr
t =In(s/A) = /MM 3

The “running” of the coupling is described by the [-function, which can be

(3.5.98)

computed perturbatively. We discuss this next.
In field theory the interaction of two electrons by the exchange of a virtual
photon is described by a perturbative series

€o €o €o

€o €o €o

- 0 (3.5.99)
where

€o €o

(¢*) = : (3.5.100)
k+q

Note the negative sign associated with the fermion loop, which is made ex-
plicit in order to introduce the summation (3.5.99). TII(¢?) is ultraviolet
divergent as k — oo; explicit calculation (see Appendix C) confirms this and
we therefore write I1(¢?) in terms of a divergent and finite part

e? /A2 dk? e? . —q?

e e

2 2
g A

= In{— ). .5.101
1272 n(—q2> (3:5.101)

() =




The trick is to introduce a new charge e which is finite:

e = eg[I-U(-¢=p")+ ], (3.5.102)
or 1
e = e |l— §H(—q2 =)+ (3.5.103)

We never said what eq was. It is, in fact, infinitesimal and combines with
the divergent loop II to yield the finite, physical charge e. This operation
is performed at some reference momentum g, e.g. e(u = 0) is the Thomson
charge with a = e*(u = 0)/(4m) = 1/137.035999679(94). To illustrate how
this works we calculate e”e™ scattering. The amplitude is (ignoring identical
particle effects)

€o

+

g =

(3.5.104)

where (3.5.104) has been obtained by substituting the renormalized charge e
for the bare charge using (3.5.103)

€
1
}g/ _ \ez/{1_|_§ T . (3.5.105)
2

101



In the last term of (3.5.104) we can just replace eg by e as the additional
terms associated with the substitution (3.5.105) only appear in higher order.
Therefore (3.5.104) can be rewritten as:

DEESE S

—¢* =’
a A? a A?
—hn(— | —=—h{—
3 —q¢? 3 w2
2
a 1 .
=3 In (——q2> = finite! (3.5.106)

The divergent parts cancel and we obtain a finite result to O(a?). In a
renormalizable theory this cancellation happens at every order of perturba-
tion theory. The price we have paid is the introduction of a parameter a(yu?)
which is fixed by experiment. The electron charge, unfortunately, cannot be
calculated.

In summary, by using the substitution (3.5.102) the perturbation series
using infinitesimal charges ey and infinite loops Il has been reshuffled order
by order to obtain finite observables. The running charge (3.5.102) can be
written as

o =ao[1-TI(¢?) +---] :%ﬁ@). (3.5.107)

For the QED result (3.5.101),
(@ =—¢*) =

Qo
_ 3.5.108
1—bag In % ( )

with b = 1/3w. The ultraviolet cutoff is eliminated by renormalizing the
charge to some measured value at Q% = 2,

1 1 2
—b mQ—. (3.5.109)

@) aGE) T e




One also notices that b determines the S-function to leading order in pertur-
bation theory. We obtain indeed from (3.5.94) and (3.5.108) that

8la) = @)

In Table 3.3 we have listed the b-values determining the running of the

=ba® + O(a?). (3.5.110)

other standard model couplings: the weak couplings g, ¢’ and the strong
color charge g,. From Eq. (3.5.95) it is clear that much of the structure of
the gauge theory is dictated by identifying the momentum dependence of the
couplings.

Table 3.3: b-values for the running of the coupling constants.

47

coupling «; = b;-value

2ng — 33
127

Z dng + 3ng — 22
w 127
59 @ng + nd
B 127

ng : number of quarks (2-6)

€ 1
7 3n
gs
g

ng : number of generations (3)

ng : number of Higgs doublets (1)

The formal arguments have revealed the screening of the electric charge.
There is physics associated with Eq. (3.5.99). In quantum field theory a
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charge is surrounded by virtual ete™ pairs which screen the charge more
efficiently at large than at small distances. Therefore a=!(u? = 0) ~ 137 is
smaller than the short-distance value o™ (u? = m%) = 127.925+0.016.5 We
note that, qualitatively,

1 1 1 m?2
— ~~0~_—1In (—Z) ; (3.5.111)

see (3.5.109).

For 3 generations of quarks the b-value for QCD is negative. While
qq pairs screen color charge just like eTe™ pairs screen electric charge (the
2ny /127 term in b), loops with gluons reverse that effect with a larger, neg-
ative b-value of —33/127. The color charge grows with distance yielding
the asymptotic freedom property: as — 0 as () — oo. On the other hand,
the theory becomes strongly coupled (infrared slavery) at the energy scale
Q?* ~ AéCD, presumably leading to the confinement of quarks and gluons.

8]. Erler, Phys. Rev. D 59, 054008 (1999).
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Chapter 4

Hard Scattering Processes

4.1 Deep Inelastic Scattering

Hadrons are composite systems with many internal degrees of freedom. The
strongly interacting constituents of these systems, the so-called “partons”
are described by QCD. This theory is asymptotically free, that is, it can be
treated in a perturbative way for very large values of the four-momentum
transfer, Q> = —¢%. However, the binding forces become increasingly strong
it the momentum transfer decreases towards the region < 1 GeV, which is
the natural habitat of nucleons and pions. In particular, the “running” of
the QCD coupling constant a(Q?), is expected to diverge if Q* decreases
to values near AZcp ~ (250 MeV)?, which defines the “Landau pole” of
QCD.! This behavior is totally different from QED, for which a(Q?) di-
verges for huge momentum transfers at the Planck scale, corresponding to
Q ~ Mp; ~ 1.22 x 10* GeV, or 1.62x 1073 m, below any distance ever to be
resolved by experiment. Contrariwise, the Landau pole of QCD corresponds
to a resolution of nucleon’s size (somewhat below 1 fm or 107 m) and is
referred to as the onset of the “deep inelastic regime.”?

In the late 60s, deep inelastic scattering experiments paved the way for
understanding the structure of the nucleon. When trying to deduce the struc-

L. D. Landau and I. Y. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 102, 489 (1955).
2R. Devenish and A. Cooper-Sarkar, Deep Inelastic Scattering, (Oxford University

Press, 2004).

105



Figure 4.1: Lowest-order electron scattering by a charge cloud.

ture of composite objects, like hadrons, the underlying idea is quite simple
and straightforward. Suppose we want to determine the charge distribution
shown in Fig. 4.1, which could, for example, be the cloud of an atom. The
procedure to obatin this information is to scatter electrons on this cloud,
measure the angular cross section and compare it with the known cross sec-
tion for scattering of a point distribution. As the charge cloud certainly is
not a point charge, this would give us a form factor F'(¢q), i.e.,

da_ do

T=2 PP, (4.1.)

point
where ¢ is the momentum transfer between the incident electron and the
target, ¢ = k; — ky. We then attempt to deduce the structure of the target
from the F(q) so determined.

We can gain insight into this technique by first looking at the scattering
of unpolarized electrons of energy E from a static spinless charge distribution
—Zep(Z), normalized so that

/p(f) dr=1. (4.1.2)

For a static target, it is found that the form factor in (4.1.1) is just the
Fourier transform of the charge distribution

F() = / p(F) 77 @Bz (4.1.3)

while the reference cross section for a structureless target (see Appendix D)
1s

do
<)

_ do
~ i

(Za)?E?

= Thtemi(ayy T SO/2) (4.1.4)

point
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where k = |k;| = |Ef|, v =k/E, and 0 is the angle through which the electron
is scattered. By virtue of the normalization condition (4.1.2) F'(0) = 1. If
|7] is not too large, we can expand the exponential in (4.1.3), yielding

F(@) = /<1+¢§.f— (‘7'25)2...) p(%) d*x

- / (1 +igr cosf — %qz r? cos? 6. . ) p(r)r? d(cos ) do dr

— 1—é|c]]2<7’2>—|—... : (4.1.5)

where we have assumed that p is spherically symmetric, that is, a function of
r = |Z| alone. The small-angle scattering therefore just measures the mean
square radius,

(r?) = /7"2 p(r) 4w r?dr, (4.1.6)

of the charge cloud. This is because in the small |¢] limit the photon in
Fig. 4.1 is soft and with its large wavelength can resolve only the size of the
charge distribution p(r) and is not sensitive to its detailed structure.

The above discussion cannot be applied directly to yield the structure of
the proton. First, the proton’s magnetic moment is involved in the scattering
of the electron, not just its charge. Second, the proton is not static, but will
recoil under the electron’s bombardment. If, however, the proton were a
point charge e with Dirac magnetic moment e/2M, then we already know
the answer. We can take over the result for electron-muon scattering and
simply replace the mass of the muon by that of the proton:

do a? FE 0 ¢ 5 0
o _ = Z_ in® = 4.1.
Q.. <4E2 sm4(9/2)) E (COS 5 oaz M 2) ’ (4.1.7)
where the factor .
, _
% — (1 + % sin’ g) (4.1.8)

given by (E.0.9), arises from the recoil of the target.
Copying the calculation of the electron muon cross section, the lowest
order amplitude for electron proton elastic scattering (shown in Fig. 4.2) is

Ty = —i/eju <—%) (—e)J*d'r (4.1.9)
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Figure 4.2: Lowest-order electron-proton elastic scattering.

where ¢ = p — p’ and the electron and proton transition currents are, respec-
tively
ej" = eu(k') v u(k)elt =R -z (4.1.10)

—eJt = —eu(p)) | ] u(p)elP' =P (4.1.11)

Since the proton is an extended structure, we cannot replace the square
brackets in (4.1.11) by v*, as for point spin—% particles in (4.1.10). However,
we know that J* must be a Lorentz four vector, and so we must use the most
general four-vector that can be constructed from p, p’, ¢, and the Dirac ~
matrices,

[ 1= [Fl(qz)v“ + ﬁFz(qQ)w’”qy (4.1.12)

where F7 and F, are two independent form factors and x is the anomalous
magnetic moment. (Terms involving v° are ruled out by conservation of
parity.)

For ¢> — 0, that is, when we probe with long-wavelength photons, it does
not make any difference that the proton has structure at order of 1 fermi. We
effectively see a particle of charge e and magnetic moment (1+x)e/2M, where
K, the anomalous moment, is measured to be 1.79. The factors in (4.1.12)
must therefore be chosen so that in this limit F3(0) = 1 and F5(0) = 1.
The corresponding values for the neutron are Fy(0) = 0, F»(0) = 1, and
experimentally x,, = —1.91.

If we use (4.1.12) to calculate the differential cross section for electron-
proton elastic scattering, we find an expression similar to (4.1.7),

do o 1o 22
dS2 |y, <4Ezsin4(«9/2)) E {( L4 2) cos”(6/2)
2
a 2?\42 (Fi+ kEy)’ Sm2(9/2)} : (4.1.13)
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kown as the Rosenbluth formula.? The two form factors, F} »(¢?), parametrize
our ignorance of the detailed structure of the proton represented by the
blob in Fig. 4.2. These form factors can be determined experimentally by
measuring do/dQ) as a function of 6 and ¢?. Note that if the proton were
point-like like the muon, then x = 0 and Fi(¢?) = 1 for all ¢?, and (4.1.13)
would revert to (4.1.7).
In practice, it is better to use linear combinations of the [ o
Gp=F + " g Gy = F + kF 41.14
E= 1+4M2 2, M = Iy + Kl (4.1.14)
defined so that no interference terms, GgG,s, occur in the cross section.
Equation (4.1.13) then becomes

do o’ E' (G%L+71G3, 0 0
dQ =N\ o a0 ) =\ 7, - 2 1 92rG2, sin?2 =
Q. <4E28in4(9/2)> 15 < T 3 + 217Gy, sin 2) 7
(4.1.15)
with 7 = —¢*/4M?. Now that interference terms have disappeared, these

proton form factors may be regarded as generalizations of the non-relativistic
form factor introduced in (4.1.1); Gg and G are referred to as the electric
and magnetic form factors, respectively. The data on angular dependence of
ep — ep scattering can be used to separate G, Gy at different values of ¢>.
The result for Gg(q?) is

2 —2

Gr(q?) ~ (1 - %) (in units of GeV?). (4.1.16)
The behavior for small —¢? can be used to determine the residual terms in
the expansion of (4.1.5). In particular, the mean square proton charge radius
is

(r*) =6 (dGEi(zqz)) = (0.81 x 107** cm)?. (4.1.17)

The same radius of about 0.8 fm is obtained for the magnetic moment dis-
tribution.

Having measured the size of the proton, one might like to take a more
detailed look at its structure by increasing the —g? of the photon to give

3M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).
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Figure 4.3: Lowest-order diagram for ep — eX.

better spatial resolution. This can be done simply by requiring a large energy
loss of the bombarding electron. There is, however, a catch: because of the
large transfer of energy, the proton will often break up. The picture of
Fig. 4.2 would therefore need to be generalized to Fig. 4.3. For modest —¢?,
one might just excite the proton into a A-state and hence produce an extra
m-meson, that is ep — eAT — epn®. In this case, the square of the invariant
mass is W? ~ M3. When —¢? is very large, however, the debris becomes so
messy that the initial state proton loses its identity completely and a new
formalism must be devised to extract information from the measurement.

The problem facing us now is illustrated by recalling (4.1.10), (4.1.11),
and Fig. 4.2. The switch from a muon to a proton target was made by
replacing the lepton current j*(~ wy"u) by a proton current J*(~ wl'*u), and
the most general form of I'* was constructed. This is inadequate to describe
the inelastic events of Fig. 4.3 because the final state is not a single fermion
described by a Dirac w entry in the matrix current. Therefore, J* must
have a more complex structure than (4.1.11). The square of the invariant
amplitude (3.2.37) is generalized to

M2 o L) W (4.1.18)

where L,(fy) represents the lepton tensor of (3.2.41), since everything in the
leptonic part of the diagram above the photon propagator in Fig. 4.3 is left
unchanged. The hadronic tensor W* serves to parametrize our ignorance of
the form of the current at the end of the propagator. The most general form
of the tensor W must now be constructed out of ¢g"” and the independent
momenta p and g (with p’ = p+¢q); v is not included as we are parametrizing
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|2T|2 which is already summed and averaged over spins. We write

W, W, Ws
[ uv wo v
W Wig" + 1" + qu ¢+ ("¢ +q"pY). (4.1.19)

We have omitted antisymmetric contributions to W#¥ since their contribu-
tion to the cross section vanishes after insertion into (4.1.18) because the
tensor L ,,) is symmetric. Note the omission of W3 in our notation; this spot
is reserved for a parity violating structure function when a neutrino beam
is substituted for the electron beam, so that the virtual photon probe is
replaced by a weak boson.

The current conservation at the vertex requires ¢, W* = ¢ W = 0;

consequently,

0 = qWH
W Wy o Wi
— —_ 14 _ = 2
4 Wig"” +M2(p q)p +M2qq +M [P + (p-9)¢"].
(4.1.20)
Setting the coefficients of ¢* and p* to zero, we find
W4 s, Ws
— = 4.1.21
Wy Wi
e —(p.q)+ VL =0 (4.1.22)
which lead to
Wy = —% W, (4.1.23)
) .M2

Hence, only two of the four inelastic structure functions of (4.1.19) are inde-
pendent, and we can write without loss of generality

q“q D-q D-q
B pv Mo K v _ 2V
W Wl<g +Q)+W2M2< q2q)<p qzq)’
(4.1.25)
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where the W,’s are functions of the Lorentz scalar variables that can be
constructed from the four-momenta at the hadronic vertex. Unlike elastic
scattering there are two independent variables, and we choose

(4.1.26)

The invariant mass W of the final hadronic system is related to v and ¢* by
W?=(p+q)* = M?+2Mv + ¢*. (4.1.27)

Evaluation of the cross section for ep — eX is straightforward repetition
of the calculation for e”u~ — e~ u~ scattering with the substituttion of W,,,
given by (4.1.25), for L'%). Using the expression (3.2.42) for Lizy and noting

q“Lfﬁ,) = q”Lffl,) =0, we find

v / 2W / /
LYW = AW (k. K) + W;[Q(p. k)(p. k) — Mk K. (4.1.28)

In the laboratory frame, this becomes
nv / 2 2 0 2 s 02 0
LigWyw =4EE" S Wa(v,¢”) cos B +2Wi(v, ¢%) sin 5[ (4.1.29)

see (E.0.3). By including the flux factor and the phase space factor for the
outgoing electron, we can obtain the inclusive differential cross section for
inelastic electron-proton scattering, ep — eX,

4
do = 1 _ {6_4 LYW, A M }
4[(k.p)2 —m2M?)"? g

d*K

TR (4.1.30)

where |91|? is given by the expression in the braces [recall (3.2.37)]. The
extra factor of 4w M arises because we have adopted the standard convention
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for the normalization of W#. Inserting (4.1.29) in (4.1.30) yields

do 1 B[P
dEdQ|,, 1672 E 47M
(4ma)? B
= — "W,
1672¢* E a
40*E" 0

6 :
- 7 {W2(V, q*) cos® 3 + 2W (v, ¢*) sin® 5}
a

_Wi(@ﬂ){ 2

(4.1.31)

0 0
Wa(v, ¢*) cos® 3 + 2W1 (v, ¢*) sin® —} ,

where we neglect the mass of the electron; to obtain the final result we used
(E.0.3). It is often more convenient to express the differential cross section
with respect to the invariants v and (?

do 7 do
dQ*dv|,, ~ EE dEdQ|,,
4ra? E' 5 5 0 5 .50
= o E {WQ(Q , V) Cos §+2W1(Q , V) sin 3(

In experimental settings one may mantain the same values of ?> and v upon
changing F/, E’, and 6, and then in principle could separate the two structure
functions W; and Ws.

For future reference, it is useful to make a compendium of our results
on form factors. We keep to the laboratory kinematics (see Appendix E)
and neglect the mass of the electron. For all the interactions, the differential
cross section in the energy (E’) and angle (0) of the scattered electron can

be written in the form
4 2El2
- { } . (4.1.32)

lab q

do
dB'dS)

First, for a muon target of mass m (or a quark target of mass m after sub-
stitutions o — a’e? where e, is the quark’s fractional charge),

) q2 ) ) q2
eo2? - T 2% s anN 41,
{ }w_)w (cos 5~ 5,73 Sil 2) (V+ 5o (4.1.33)



For elastic scattering from a proton target

G% + 1G2 0 .0 q*
{ }ep_)ep = <% cos” 3 + 27G3, sin? 5) 0 (1/ + m) (4.1.34)

where 7 = —¢?/4M? and M is the mass of the proton. Finally, for the case
when the proton target is broken up by the bombarding electron

6 0
{ } = Wy(v, ¢*) cos® = + 2Wy (v, ¢*) sin® - . (4.1.35)
ep—eX 2 2

Making use of the delta function, (4.1.33) and (4.1.34) can be integrated over
E’ with the result [see (E.0.12)]

do
s

o? E’
= = . 4.1.36
Wy 4E%sin*(0/2) E { ] ( )

If simple, point-like, spin—% quarks reside inside the proton, we should be
able to illuminate them with a small wavelength (large —q?) virtual photon
beam. The fact that such photons break up the proton target can be handled
by using the inelastic form factors described above. The sign that there are
structureless particles inside a complex system like a proton is that for small
wavelengths, the proton described by (4.1.35) suddenly starts behaving like
a free Dirac particle (a quark) and (4.1.35) turns into (4.1.33). The proton
structure functions thus become simply

2 2 2
gyt — Q5 (L e _ 5 (, - & 4.1.37

! omz’ \" " 2m 2 YT om ) ( )

where Q> = —¢? and m is the quark mass. (The “point” notation reminds

us that the quark is a structureless Dirac particle.)
Using the identity 6(x/a) = ad(x), (4.1.37) may be rearranged to intro-
duce dimensionless structure functions

2mWP (1, Q%) = @ 5(1— i ) ;

2muy 2muy

. Q?
v (1, Q%) = 5(1— ) (4.1.38)

2mv
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These “point” functions now display the intriguing property that they are
only functions of the ratio Q?/2mv and not Q? and v independently. This
behavior can be contrasted with that for ep elastic scattering. For simplicity,
set kK = 0, so that Gg = Gy = G; then comparing (4.1.34) and (4.1.35) we
have

elastic Q2 Q2
wpste = —4M2G2(Q2)5 YT oM

welstic = G2(Q%) § (,/ _ _) . (4.1.39)

In contrast to (4.1.37), the structure functions of (4.1.39) contain a form
factor G(Q?), and so cannot be rearranged to be functions of a single dimen-
sionless variable. A mass scale is explicitly present; it is set by the empirical
value 0.71 GeV in the dipole formula for G(Q?) which reflects the inverse size
of the proton. As Q? increases above (0.71 GeV)?, the form factor depresses
the chance of elastic scattering; the proton is more likely to break up. The
point structure functions, on the other hand, depend only on a dimensionless
variable Q2 /2mv, and no scale of mass is present.? The mass m merely serves
as a scale for the momenta (2, v.

The so-called “Bjorken scaling” can be summarized as follows: in the
limit Q@ — oo and 2Mv — oo such that w = 2(q.p)/Q?* = 2Mv/Q?, the
structure functions would have the following property

MW, (v, Q2) 1agQ2 Fi(w),
vWo(r,@Q%) e Fa(w). (4.1.40)
Note that in (4.1.40) we have changed the scale from what it was in (4.1.38).
We have introduced the proton mass instead of the quark mass to define the
dimensionless variable w. The presence of free quarks is signaled by the fact
that the inelastic structure functions are independent of ? at given value
of w. In the late 60s, deep inelastic scattering experiments conducted by the
SLAC-MIT Collaboration showed that at sufficiently large Q% > A(QQCD, the
structure functions were approximately independent of 2.

4J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
5The data exhibited Bjorken scaling to about 10% accuracy for values of Q2 above
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Figure 4.4: Kinematics of lepton-proton scattering in the parton model.

4.2 Parton Model

Now that scaling is an approximate experimental fact, we adopt the spirit
of the parton model.® The basic idea in the model, shown in Fig. 4.4, is
to represent the inelastic scattering as quasi-free scattering from point-like
constituents within the proton, when viewed from a frame in which the proton
has infinite momentum. Imagine a reference frame in which the target proton
has a very large 3-momentum, i.e, p>> M the so-called “infinite momentum
frame.” In this frame, the proton is Lorentz-contracted into a thin pancake,
and the lepton scatters instantaneously. Furthermore, the proper motion of
the constituents (i.e., of partons) within the proton is slowed down by time
dilation. We envisage the proton momentum p as being made of partons
carrying longitudinal momentum p; = x;p, where the momentum fractions
x; satisfy:

0<z;<1 and Y  z;=1. (4.2.41)

partons ()

Assigning a variable mass z M to the parton is of course out of the question.
Clearly, if the parton’s momentum is xp, its energy can only be zF if we put
m = M = 0. Equivalently, a proton can only emit a parton moving parallel
to it (p. = 0 for both) if they both have zero mass. Moreover, because of
the large momentum transfer (—¢® > M) interactions between partons can
be neglected and therefore the individual current-parton interactions may be

(1 GeV)2. E. D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969); M. Breidenbach et al.,
Phys. Rev. Lett. 23, 935 (1969); J. I. Friedman and H. W. Kendall, Ann. Rev. Nucl. Part.

Sci. 22, 203 (1972); J. S. Poucher et al., Phys. Rev. Lett. 32, 118 (1974).
SR. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969); J. D. Bjorken and E. A. Paschos,

Phys. Rev. 185, 1975 (1969).
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treated incoherently

do do
dtdu - Z(,) / dfilx) S

ep—eX partons(i

(4.2.42)

)
€q;—r€eq;

where f;(x) indicates the probability of finding constituent i inside the pro-
ton, and the sum is over all the contributing partons.
Assuming s > M, the invariant variables of (3.3.48) become

5 = (E+ap)? ~2(2k.p) ~as,
t (k—K)?=t=q¢*, (4.2.43)
o = (K —ap)? ~ (2K .p) ~zu;
therefore . ) 0’
q
_ - _ = =z. 4.2.44
s+u 2p.q 2Mv . ( )

Consequently, from (4.2.44) we have (s +u) +t =0, or §+ 4 +¢ = 0. With
this in mind, the invariant amplitude follows directly from (3.3.48),

a2 ~2
P = 2 (4rae,)’ (4.2.45)

12
Inserting (4.2.45) into (3.1.27) we obtain an expression for the differential
cross section
do  2mo’el (3% + 02
di & < 2 ) |
Using the invariant relations (4.2.44), Eq. (4.2.46) can be rewritten as

(4.2.46)

do do
e = X—=
dtdu],, .. dtda
d [2ma’el (+a?\ . .
= o= = ( = )5(s+u+t)du
2ra’e? [s? 4+ u?
= B (3 :‘2“ ) S(w(s+u)+1).  (4.2.47)

Now, we can rewrite (4.1.28) in terms of the invariant variables

W,
LW, = —2Wit + ﬁj [—su + M?*t] | (4.2.48)
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and because we assume s > M?, we have

LW = [2(s + u)’F) — suFy], (4.2.49)

M(s +u)

where t = —x(s +u), F; = MW, and F» = vW,. Substituting (4.2.49) into
(4.1.31) we have

do 4ra? 1 )
— R F, — usF: 4.2.50
dtdu|,,_,.x 1252 s+ u [(s+u) s 2} ’ ( )

where we have used the kinematic relations in the lab frame (see Appendix E)
s=2ME, wu=-2ME, t=-Q*=—4EFE'sin*(§/2) (4.2.51)

and

QdE" =2 E' = —
dQd wd(cos0)d ” dt i du

Substituting (4.2.47) and (4.2.50) into (4.2.42) and comparing coefficients of
us and s? + u?, we obtain the master formula of the parton model”

2uF)(z) = Fy(r) = Y el x fix). (4.2.53)

7

2
Am L ) . (4.2.52)

We see that F; and F; are functions only of the scaling variable x, here fixed
by the delta function in (4.2.47).
Next, using the lab frame kinematic relation (E.0.3), we obtain

0 Q>  2Mvx  axyM

WS = IBE 1By 2B (4.2:54)
and
coszg = g (1 —y— ]\gf;y) , (4.2.55)
where
y = %\z/% (4.2.56)

"Note that Fp(w) = Y, [dxe?, fi(z)xd(z — 1/w), and Fi(w) = (w/2)F2(w). Recalling
the identification (4.1.40), we see that, at large 2, we can redefine Fy o(w) as Fy 2(z);
namely, vWa (v, Q) = Fa(z) = 3, €2 xfi(x) and MW, (vQ?) — Fi(z) = Fa(x)/(2x).
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Substituting (4.2.54) and (4.2.55) into (4.1.31) we get

do 8M Era? 9 Mazy
= F 1—y— F. 4.2.
drdy O {93?/ 1+ ( Y= 5 ) 2] (4.2.57)
where we have used the identity
T 9 2ME
dE'dQ) = EE’dQ dv = oY dz dy . (4.2.58)

Substituting (4.2.53) into (4.2.57), we obtain the Callan-Gross relation

do  2ma?
dedy Q4

s[1+(1-1y)?Y Z e2xfilr), (E>Mzx). (4259

The behavior [1+ (1 —y)?] in (4.2.59) is specific to the scattering of electrons
from massless fermions.® This relation gave evidence that the partons in-
volved in deep inelastic scattering were fermions, at a time when the relation
between partons and quarks was still unclear.

There are three independent variables which describe the kinematics: E’,
0, and ¢, though the dependence on the latter is trivial. It is convenient
to plot the allowed kinematic region in the (Q*/2ME) — (v/E) plane, as
shown in Fig. 4.5.° The boundary of the physical region is given by the
requirements that 0 < 0 <7, 0< v < E, 0 < x < 1. Because z =
Q*/2Mv = (Q*/2ME)/(v/E), the contours of constant z are straight lines
through the origin with slope x. The relation between Q? and 6 follows from

(E.0.3) and is given by

Q@ 1
OME M

(E —v)(1 —cosb). (4.2.60)

Therefore, lines of constant @ are straight lines passing through the point
v/E = 1, and intersecting the Q?/2M E axis at Q*/2MFE = (E/M)(1—cos ).
Lines of fixed 6 become steeper as the beam energy increases, whereas lines
of fixed z remain constant. The Q? dependence of the kinematic variables
is crucial to understand which terms are important in the deep inelastic

8C. G. . Callan and D. J. Gross, Phys. Rev. Lett. 22, 156 (1969).
9A. V. Manohar, in Symmetry and Spin in the Standard Model, (eds. B. A. Campbell,

L. G. Greeniaus, A. N. Kamal, F. C. Khanna, World Scientific, Singapore, 1992),p.1.
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limit. A generic point in the kinematic plane is given by some value of x
and y. As F — oo, for a fixed value of z and y, the variables v/FE and
Q?/2ME are fixed. Therefore, in the deep inelastic regime v oc Q?/M and
E o« @Q*/M. This implies that a generic point in the physical region has
(1—cos®) oxc M/E o M?/Q?, and hence the scattering angle, § oc M/Q, goes
to zero as Q% — oco. We can also see in Fig. 4.5 that for fixed beam energy
E, there is a limit to the Q* —x region which can be explored experimentally.
The small z region is also the small Q? region, because lines of constant x
approach the horizontal axis for small z. For a fixed value of x, the maximum
allowed value of ? is at the intersection of the line # = 7 with the line for
fixed x. It is elementary to find the intersection point of the two lines,

2F
2 = —_— ~
2 =2MEx (2 n Mx) OMEz,  (E> Mz). (4.2.61)

To be in the deep inelastic region, one needs Q? to be larger than a few
(GeV)?, so this places a limit on the smallest value of x accessible for a given
beam energy. For example, with a 500 GeV lepton beam, and assuming
Q? > 10 (GeV)? is large enough to be considered deep inelastic scattering,
the smallest measurable value of x is 1072,

The Hadron-Elektron-Ring-Anlage (HERA) at DESY was the first ever
constructed storage ring to collide positrons or electrons with protons. It
started operating at the end of 1991 and ceased running in June 2007. Two
experiments, H1 and ZEUS, collected data from collisions of e~ or e™ with
an energy of 27.5 GeV and protons accelerated to an energy of 820 GeV
until 1997 and 920 GeV starting from 1998 onwards. This corresponds to
s =4 x 28 x 820 (920) (GeV)?, allowing measurements of structure functions
down to z &~ 10~% (A similar measurement in a fixed target experiment
would require a 50 TeV lepton beam.) One of the first important results of
the H1 and ZEUS measurements was the observation of a steep rise of the
proton structure function I, towards low values of the Bjorken variable x.1°
This phenomenon has been successfully described by (perturbative) pQCD
calculations. Furthermore, pQCD seems to give a very good description of
the F behaviour down to low values of momentum transfers squared: Q2 of

10M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 316, 412 (1993); 1. Abt et al.
[H1 Collaboration], Nucl. Phys. B 407, 515 (1993); Phys. Lett. B 321, 161 (1994).
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Figure 4.5: The triangle is the allowed kinematic region for deep inelastic
scattering. The dot-dashed lines are curves of constant scattering angle 6.
The dashed lines are lines of constant x. In the deep inelastic limit, the

intercept of the constant 0 lines with the vertical azis becomes infinite.

the order of a few GeV?2. We discuss this next.

4.3 QCD Improved Parton Model

The simple parton model described in the previous section is not true in
QCD, because the properties we assumed for the hadronic blob are explicitly
violated by certain classes of graphs in perturbation theory. Nevertheless,
much of the structure of the parton model remains in perturbation theory,
because of the property of factorization. Factorization permits scattering
amplitudes with incoming high energy hadrons to be written as a product of a
hard scattering piece and a remainder factor which contains the physics of low
energy and momenta. The former contains only high energy and momentum
components and, because of asymptotic freedom, is calculable in perturbation
theory. The latter piece describes non-perturbative physics, but is described
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by a single process independent function for each type of parton called the
parton distribution function (PDF). Without this property of factorization
we would be unable to make predictions for processes involving hadrons using
perturbation theory.

The factorization has been proven within perturbation theory, but it is
assumed to have a validity which transcends perturbation theory. The proofs
require a detailed examination of all the dangerous regions of phase space
in Feynman graphs.!! The plausibility of the factorization property can be
seen from the following argument. The presence of infrared singularities or
singularities coming from regions of collinear emission reveals the sensitivity
of a Feynman graph to very low momentum scales. Because of the Landau
rules, such singularities are associated with real physical processes rather
than virtual processes which occur only as short-live fluctuations. Because
these real processes occur long before the hard interaction, it is appropriate
that they are included in the wave function of the incoming hadron and not
in the short distance cross section. The proofs of factorization establish that
this simple picture is in fact valid in perturbation theory.

Assuming the property of factorization holds we can derive the QCD
improved parton model. The result for any process with a single incoming
hadron leg is

wal.p) =3 [ dra(alop o) o). (1.3.62)

where 42 is the large momentum scale which characterizes the hardness of
the interaction, the sum ¢ runs over all partons in the incoming hadron, and
0 is the short distance cross section calculable as a perturbation series in the
QCD coupling . It is referred to as the short distance cross section because
the singularities corresponding to a long distance physics have been factored
out and abosorbed in the structure functions f;. The structure functions
themselves are not calculable in perturbation theory. In order to perform
the factorization we have introduced a scale u? which separates the high and
low momentum physics.!? No physical results can depend on the particular

HR. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer and G. G. Ross, Nucl. Phys. B

152, 285 (1979); J. C. Collins, D. E. Soper and G. Sterman, Phys. Lett. B 134, 263 (1984).
2Tndeed all quantities in (4.3.62) depend on the renormalization and factorization scales,
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value chosen for this scale. This implies that any dependence on p in ¢ has
to vanish at least to order in «; considered,
d
dIn p?
The evolution of the parton distributions with changes of the scale u are
predicted by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-

o™ = O(a™). (4.3.63)

s

tion, 3
d 2\ Ofs(/,l?) /1 2 2
T = 5 3 4268w = 20) Pyt i) Sy (6w,
(4.3.64)
where the matrix P is calculable as a perturbation series
_ pl0) Fs (1)
Pz, a5) = Py (2) + o Py (2) + ... . (4.3.65)

Examples of Feynman diagrams contributing to P in leading order QCD
are shown in Fig. 4.6. The first two terms of (4.3.65) are needed for next-
to-leading order (NLO) predictions, which is the standard approximation,
although often still with large uncertainties. Currently, the splitting functions
P;; are known to NNLO.

Performing the ( integration we obtain

d Qi(x>:u2) . as(:u2) 1% PQin(Z) qu‘g(z)
dln g2 < 9(z, 11?) ) 2 ;/r o (quj(z> Pyg(2) )

X < 4(@/2 1) ) : (4.3.66)

g(z/z, p?)

which is a system of coupled integro-differential equations corresponding to
the different possible parton splittings

dqi(x7:u2) _ O‘s(:u2) /1 dz

dlnp? 2« z

[qi('x/z7 M2)qu(z> + g(LU/Z, :uz)qu(Z)] ) (4367)

which are usually taken to be the same (u, = py = p).
13V, N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 1218 (1972) [Sov. J. Nucl. Phys. 15, 675

(1972)]; Yad. Fiz. 15, 781 (1972) [Sov. J. Nucl. Phys. 15, 438 (1972)]; Y. L. Dokshitzer,
Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]; G. Altarelli and
G. Parisi, Nucl. Phys. B 126, 298 (1977).
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zp Zp

Figure 4.6: Sample of Feynman diagrams for parton-parton splitting in lead-
ing order QCD. We indicate the collinear momentum flow (p incoming and
zp outgoing) as it enters the calculation of the corresponding splitting func-

tion F)ij .

dfi(lfl’,:;) - as2(:: ) ;/x % [qj(x/ZvN2>qu(z> +g(z/z, M2)P99(2)] :

(4.3.68)
The physical interpretation of the PDFs f;(z, u?) again relies on the infinite
momentum frame. In this frame f;(z, 4?) is the number of partons of type j
carrying a fraction x of the longitudinal momentum of the incoming hadron
and having a transverse dimension r < 1/u. As we increase u, the DGLAP
equation predicts that the number of partons will increase. Viewed on a
smaller scale of transverse dimension 7/, such that " < 1/u, a single parton
of transverse dimension 1/u is resolved into a greater number of partons.

The DGLAP kernels P;; have an attractive physical interpretation as
the probability of finding parton ¢ in a parton of type j with a fraction
z of the longitudinal momentum of the parent parton and transverse size
less than 1/p. The interpretation as probabilities implies that the DGLAP
kernels are positive definite for z < 1. They satisfy the following relations:
[} dz Pyg(2) = 0, [} d2x[Pyg(2) + Pyg(2)] = 0, and [} dz z[2n5 Pyy+ Pyy] = 0,
where ny is the number of flavors. These equations correspond to quark
number conservation and momentum conservation in the splittings of quarks
and gluons.
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The DGLAP kernels at LO become

41+ 22

Pul2) = 57— (4.3.69)

41+ (1-2)>
Pul2) = 5 — (4.3.70)

224 (1—2)?
Pyy(z) = —y (4.3.71)

and )

Py(z) =6 (1 - o — - z)) . (4.3.72)

In the double-leading-logarithmic approximation, that is lim,_,oIn(1/z) and
limge o In(Q?/Aqcp), the DGLAP equation predicts a steeply rising gluon
density at low z, in agreement with the experimental results from HERA,
shown in Fig. 4.7.1% The PDFs, however, cannot be calculated “from first
principles” in pQCD. The DGLAP evolution equations (4.3.67) and (4.3.68)
are solved by inserting certain analytical functions at some starting scale Q3
and evolving them up to higher Q?. The structure function F5 found as a
result of this procedure is adjusted to the experimentally measured one. For
example, as displayed in Fig. 4.8, an input distribution at Q2 = 10 GeV? can
be determined in a global fit from comparison to HERA data.'® The large
difference in the hard squared momentum scale Q? between HERA and LHC
requires the parton evolution based on Egs. (4.3.67) and (4.3.68) to be suffi-
ciently accurate in pQCD. Benchmark CTEQ and MSTW parametrizations
from global fits of hard-scattering data account for the effects of experimen-
tal errors and come with the according uncertainties.!® An example is given
in Fig. 4.9, which shows the NLO PDFs at scales of Q* = 10 GeV? and
Q? = 10* GeV?, including the associated 68%CL uncertainty bands.

148, Chekanov et al. [ZEUS Collaboration], Phys. Rev. D 67, 012007 (2003); C. Adloff
et al. [H1 Collaboration], Eur. Phys. J. C 30, 1 (2003).
5In the framework of QCD a proton consists of three walence quarks interacting via

gluon exchange. The gluons can produce virtual quark-antiquark pairs, so-called sea
quarks, and, because of their selfcoupling (2.2.41) and (2.2.42), other gluons. The gluon

radiation explains the Fy scaling violation, i.e., the F, dependence on Q2.
16J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung,

JHEP 0207, 012 (2002); A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur.
Phys. J. C 63, 189 (2009).
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Figure 4.7: Gluon momentum distributions x f(x, Q?) in the proton as mea-

sured by the ZEUS and H1 experiments at various Q2.
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Figure 4.8: The valence, sea and gluon momentum distributions x f(x, Q%) in
the proton as measured by the ZEUS and H1 experiments at Q* = 10 GeV?
are compared to the MSTW (left) and CTEQ (right) parametrizations.
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Figure 4.9: Evolution of gluon and quarks momentum distributions x f(z, Q%)
in the proton from a low scale at Q* = 10 GeV (left) to LHC energies at
Q? = 10* GeV (right).
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In passing, we should note that because of gluon exchange corrections in
pQCD the longitudinal structure function F}, could differ from zero: because
quarks can have a non-negligible virtuality before scattering on the probing
photon, helicity may not be conserved in this process, and hence the coupling
of a quark on a longitudinally polarized photon becomes possible.

So far, we have not faced the problem of how the quarks turn into hadrons
that hit the detector. It was sufficient to state that quarks must fragment
into hadrons with unit probability. This gives (3.5.83). For more detailed
calculations, this problem cannot be sidestepped.

For example, for ete™ — ¢q, the produced quark and antiquark separate
with equal and opposite momentum in the center-of-mass frame and materi-
alize into back-to-back jets of hadrons which have momenta roughly collinear
with the original ¢ and ¢ directions. The hadrons may be misaligned by a
momentum transverse to the ¢ or ¢ direction by an amount not exceeding
about 300 MeV.

We can visualize jet formation as hadron bremsstrahlung once the ¢ and ¢
separate by a distance of around 1 fm. Namely, o, becomes large, and strong
color forces pull on the separating ¢ and g. The potential energy becomes
so large that one or more qq pairs are created. Eventually, all the energy is
degraded into two jets of hadrons moving more or less in the direction of the
q and q.

To describe the fragmentation of quarks into hadrons, we use an analogous
formalism to that introduced to describe the quarks inside hadrons. Thus, for
a cross section o,,,x of some hadronic final state X in, say, proton-proton
scattering we can write

Opp—X = Z/dxldx2dzfi(xlnu2)fj(x271u2)

ijk
X &ij%k(xlvx%zu szas(M2)7M2)Dk—>X(27M2> ) (4373)

where Dy_,.(z, u?) is the fragmentation function and all other functions have
a clear interpretation. The fragmentation function D(z), describes the tran-
sition (parton — hadron) in the same way that the structure function f(x)
describes the embedding (hadron — parton). Like f functions, the D func-
tions are subject to constraints imposed by momentum and probability con-

128



servation:

2/01 zDM(2)dz =1, (4.3.74)

> [ D4 + Dz = m. (4.3.75)

where zy;, is the threshold energy 2my, /@ for producing a hadron of mas my,,
where ny, is the average multiplicity of hadrons of type h. Equation (4.3.74)
simply states that the sum of the energies of all hadrons is the energy of
the parent quark. Clearly the same relation holds for D;‘(z). Equation
(4.3.75) says that the number ny, of hadrons of type h is given by the sum of
probabilities of obtaining h from all possible parents, namely, from ¢ to ¢ of
any flavor.

A parametrization of the fragmentation spectrum, which is consistent
with the so-called “leading-log QCD” behavior and seems to reproduce quite
well the multiplicity growth as seen in colliders experiments, can be cast in
the following form

% ~ 008 exp [2.6v/In(1/2)] (1-2)? [2y/In(1/2)] T (4376)

where z = E/E, E is the energy of any hadron in the jet, and Eje is
the total energy in the jet.!” With the infrared cutoff set to z = 1073, the
average multiplicity per jet is approximately 54. The main features of the jet
fragmentation process derived from dny/dz ~ (15/16) 273/2 (1 — 2)? (which
provides a reasonable parametrization of Eq. (4.3.76) for 107 < z < 1) are
summarized in Table 4.1.

4.4 Physics of Hadronic Jets

Jet studies in hadron-hadron collisions have traditionally been viewed as less
incisive than those carried out in electron-positron annihilations or in lepton
nucleon scattering because of the added complexity of events. However, in
what follows we illustrate by two brief examples that hard scattering events

17C. T. Hill, Nucl. Phys. B 224, 469 (1983).
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Table 4.1: Properties of jet hadronization.

21 29 fzzf (dny/dz) dz f;f z(dnp/dz)dz  Zequivalent
0.0750 1.0000 3 0.546 0.182
0.0350 0.0750 3 0.155 0.052
0.0100 0.0350 9 0.167 0.018
0.0047 0.0100 9 0.062 0.007
0.0010 0.0047 30 0.069 0.002

take on a much simpler aspect at high energies, and that there is no major
impediment to detailed analyses.

4.4.1 Hadroproduction of Direct Photons

Hadronic reactions producing large-k; direct photons provide remarkable
tests of perturbative QCD.'® Because of the point-like coupling of the photons
to the quarks, the trigger photon represents the full jet; therefore, no (non-
perturbative) decay function enters into the prediction. Moreover, starting at
leading order only two subprocesses are relevant: namely the QCD Compton
process qg — q7, qg — @7y and the annihilation process q¢ — g7, shown in
Fig. 4.10. These two subprocesses may even be disentangled by taking cross
section differences of the type op5_y+ijet — Opp—sy+jet; the valence-quark and
gluon properties in the incident particles can then be studied separately.'®
In this section we show that, at the LHC, Compton scattering becomes the
dominant process contributing to the prompt photon production over most
of the kinematical region. Thus, the reaction pp — v + jet provides a quite
sensitive probe of the gluon distribution. (The quark distributions can be
taken from deep-inelastic scattering.)

18G. R. Farrar, Phys. Lett. B 67, 337 (1977); F. Halzen and D. M. Scott, Phys. Rev.

Lett. 40, 1117 (1978); Phys. Rev. D 18, 3378 (1978).
9P, Aurenche, R. Baier, M. Fontannaz, J. F. Owens and M. Werlen, Phys. Rev. D 39,

3275 (1989).
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Figure 4.10: Leading order processes contributing to direct photon production.

The differential cross section for direct-photon production is

d dé
dgz, =y / dxq dmy fi(2a, Q) fi(xe, Q) 2E dg‘;, (4.4.77)

pp—=y X ik ij—vk

2F'

where z, and z; are the fraction of momenta of the parent hadrons carried
by the partons which collide, ¥’ (E’) is the photon momentum (energy),
do /dPK'|ij—~k is the cross section for scattering of partons of type i and j
according to elementary QCD diagrams, f;(z,, Q) and f;(x,, Q) are PDFs,
@ is the momentum transfer, and the sum is over the parton species: g,q =
u, d, s, ¢, b. In what follows we focus on gqg — ~q, which results in the
dominant contribution to the total cross section at the LHC. Corrections
from the other two processes can be computed in a similar fashion. The hard
parton-level cross section reads,

dé (2m)4 1 1
2E'——- = 20k +p—K) 5 > |
1

_ 1 PN 2
= @ 62 - q+ )y ST, (4.4.78)

spins

where k& and p are the momenta of the incoming partons, ¢ = k — k’, the
parton-parton center-of-mass energy § = z, x5, and —¢®> = —t = Q2. The
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result

—Z|zm|2=1§2 < i +8Tt>, (4.4.79)
et 37 +1t 5

follows directly on substitution of o? — egaas in the corresponding QED

amplitude given in Table 3.1 and insertion of the color factor 1/6 (see Ap-

pendix F). Recall that g; and e are the QCD and electromagnetic coupling

constants, and e, is the fractional electric charge of species ¢q. Likewise, for

qq—_>gfy’ . .
8 , { §+1

- M? = —g?e?e? | ——— — Z— . 4.4.80

T30 = St ( A ) (4.4.80)

spms

Equation (4.4.78) can be most conveniently integrated in terms of the rapidity
y and transverse momentum k; of the final photon
éE 1
= —d’ky dy = mk, dk, dy . 4.4.81

s = od kudy =mkidkydy ( )
Considering that the incoming momentum of the gluon is k = z,p; and that
of the quark is p = xpo, we can re-write the argument of the delta function
as

. g+ =2xyps . (xapr — k) +t=a02p5 —2apy . K +1, (4.4.82)

where p; and py are the initial momenta of the parent protons. Intro-
ducing, k{ = k, coshy, k|’| = ky sinhy, p1 = (1/s/2,0,0,+/s/2), and
p2 = (v/s/2, 0,0, —/s/2) we obtain

Py . K = ? ki (coshy 4+ sinhy) = ? k,eY (4.4.83)
and
t=—2k. kK = —zxa§ kieV=—sk eVa,, (4.4.84)
so that
Szawys —vVsaykye? —sxkie V) = % 0zqmy —mpay ¥ — 0w 7Y)

1

S [xq — x eY]

-y
) (zb— %) . (4.4.85)

Ty — T €Y
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where x, = k; /4/s. The lower bound z;, > 0 implies x, > x, e¢¥. The upper
bound z;, < 1 leads to a stronger constraint

x, eY

T > (4.4.86)

1—z,ev’

which requires z,¢¥ < 1—x,e7Y, yielding x; < (2coshy)~!. Of course there
is another completely symmetric term, in which g comes from ps and ¢ comes
from p;. Putting all this together, the total contribution from gq — ~vq reads

3K 1

Uzz:z% = 2 ;/ 2F" /dza/dxb fg(xaaQ) fq(zbaQ) (27’(’)2
1 1 Tor e Y
X — — |y —
S [y —x e¥] 28 Ty — T €Y

e2g2e? [5+1 5
54 — - . 4.4.87
3 ( 5 5+ t) ( )

With the change of variables z = e Eq. (4.4.87) can be rewritten as

mkydk, dz
ot = 2% [TEEE an, [ dn fy00.Q) (@
q

+

X

o 1 5 Tax 27t
x _——
(27)2 224 mp $%(Tq — 1 2) b Ty — T2

e2g%e? (s +1 S
w 9% (8+ 2 ) . (4.4.88)
3 S S5+t
Now, since
t kie™¥
7:_\/5;6:_&:1’“_1, (4.4.89)
S TpS Ty 2 Tq

Eq. (4.4.88) becomes

6292 1/2 Zmax 1
aQ9—=q s
O-pp_yYX a ].27T$ /xJ_min dIJ_ /Zmin dZ /xa,min dxa fg (xa’ Q)
-1
9 Tol | 2 1 [x,2 Tq
y - 4.4.90
S (E2)| £ (2 2) i
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Figure 4.11: Leading order QCD 0pp_sytiet VS. ki min, for /s =14 TeV. It is

clearly seen that the gq — vq process provides the dominant contribution.

where the integration limits,

111 1 T,z
o = = | — 4 d i = — (4491
T 9 [xl z? an Ta, 11—z, 271 ( )

are obtained from Eq. (4.4.86). Figure 4.11 shows the leading order QCD
cross section o,y tjet US k1 min, as obtained through numerical integration of
Eq. (4.4.90).2° To accommodate the minimal acceptance cuts on final state
photons from the LHC experiments, an additional kinematic cut, |y| < 2.4,
has been included in the calculation.?!

Unfortunately, the advantages of direct photons as a clean probe of parton
distributions are offset by large QCD backgrounds which are about 10% to

20L.. A. Anchordoqui, H. Goldberg, S. Nawata and T. R. Taylor, Phys. Rev. Lett. 100,

171603 (2008); Phys. Rev. D 78, 016005 (2008).
21G. L. Bayatian et al. [CMS Collaboration], J. Phys. G 34, 995 (2007).
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10? times larger than direct photon production. This background is mainly
caused by events where high k£, photons are produced in the decay of neutral
mesons or else are radiated from the quark (such as bremsstrahlung photons
in the NLO QCD subprocesses). Of course, the hadronic activity around the
background photons tends to be much more than around the direct photons,
and therefore isolation cuts can be imposed to separate the hard scattering
v + jet topology. For example, in the so-called tracker isolation criteria one
defines a cone (in k; and rapidity) around the direction of the photon, and
demands an absence of other particle tracks within that cone. This effectively
supresses the photon background by about two orders of magnitude while the
signal efficiency remains between 70% - 80%.

The LO contribution to diphoton reactions is given by the tree level pro-
cess q¢ — y. The invariant amplitude for such a process can be simply
obtained by multiplying Eq. (4.4.80) for a factor of €?/¢g? and then dividing
by a factor of 2 to account for identical particles in the final state. The LO
contribution to the cross section for direct production of photon pairs can
then be estimated by scaling the dot-solid line in Fig. 4.11 by a factor of
about 0.036.

4.4.2 Two-Jet Final States

Hard scattering processes in high-energy hadron-hadron collisions are dom-
inated by events with most of the central hadronic activity concentrated in
two jets. These events provide a testing ground for perturbative QCD, which
at LO describes two-body to two-body processes. The description of events
with more than two jets requires higher-order calculations (which are be-
yond the scope of this course) that should account, at the parton level, for
the radiation which can occur from the initial and final state partons.??
The physical processes underlying dijet production in pp and pp collisions
are the scattering of two partons ij, producing two final partons kl that
fragment into hadronic jets. Consider two-body processes leading to final
states consisting of partons, with equal and opposite transverse momenta k|

22For a comprehensive description of multijet phenomena see e.g., E. Eichten, I. Hinch-
liffe, K. D. Lane and C. Quigg, Rev. Mod. Phys. 56, 579 (1984) [Addendum-ibid. 58, 1065
(1986)].
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and p, , respectively. The distribution of invariant masses W? = (k' + p/)? is
given by

o _ (0t [P0 [y
daw? (271‘)6 /QEi /QEé %/da?a/dl'bfi(fa,W)fj(xb’W)

1 —
x 0 p—K —p)o(p* = W?) = M, (4.4.92)

where p? = 8 = (K +p')? = 2k".p = 21 E; — kjp| + p?, and
5(p — K, — 1) = D — By — Ba) d(py — K — ) 0(FL + 7). (4.4.98)
Using Eqgs. (3.1.27) and (3.2.35) we obtain

1 do do
;_1 2 _ean25 2% _ 16ns2 YO 4.4.94
|90T 1 E |9 = 647 50 67ms " , (4.4.94)

spins ij—kl

where the differential cross sections (do/d#|;; ) for partonic subprocesses
yielding jet pair production (shown in Fig. 4.12) are summarized in Ap-
pendix F.

The invariants may be expressed in terms of

cosf = (1 —4p%/3)2, (4.4.95)
the cosine of the scattering angle in the parton-parton center-of-mass, as

t=—2(1—cosb) (4.4.96)

NNV

and

~

i = g (1+ cosb). (4.4.97)

The integration over d®k’ d3p’ can be conveniently rewritten in terms of jet
rapidities y; and s, and their common transverse momentum:

&Pp 7 2

where y = %(yl—yg). Since E] = p, coshyy, k|’| = p, sinhyy, EY = p; coshys,
and ph = p, sinh g5, a straightforward calculation leads to

E\Ey — kjp| = P’ cosh(y; — y2) = p? cosh2y. (4.4.99)
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Figure 4.12: Leading order Feynman diagrams for jet pair production.
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Now, using the identity of hyperbolic functions, 1 + cosh 2y = 2 cosh?y, we
define

a W2 4 2
=22 cosh? y (4.4.100)
S S S
so that
1 W?2
5(8 — W?) = §(4p? Wy-WH=—— 6(p» - — | .
(s ) (4p1 cosh™y ) 4cosh2y PL 4 cosh? Y
(4.4.101)
Using

/d% d*py 5(EJ_ +71) 6(p1 — W?/4cosh’y) = W/dpi
X 8(p2 — W?/4cosh?y)
=, (4.4.102)

Eq. (4.4.92) becomes

do T 9
T2 = (27‘(‘)2 (27TW )/dy1 /dy2ij%/dxa /dxbfi(xCHW) fj(foW)

1 , , do
o(E— By — Eé) 5(p|| - k|| —ph) E

(4.4.103)

2
4 cosh” y ij—kl

We now define a = £ — E; — Fy and b = p| — k|’| —ph to perform the change
of variables A = a+0b and B = a — b, such that 6(a)d(b) = No(A) §(B), with

normalization N given by

/ da dbé(a) 5(b) = / dAdB 8‘9&’2) N§(A)8(B) = g = 1.  (4.4.104)

The new variables can be rewritten as {#1} = E+p; — (E; + ki) — (E2 £p)),
where £ £ p| = {ﬁi:}, By k) = pretv = p ety — (1 + v2),
and Fy + ph =pet? = p eV Y Putting all this together, the product of
delta functions in Eq. (4.4.103) becomes
0(E — B — Es) o(py — k| —p|) = 20(V/sz4 —2p1e coshy)
x  6(v/szy —2pre”Y coshy)
= 26(v/s2q — We¥)d(y/smy, — We™),
(4.4.105)
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Figure 4.13: Dijet invariant mass distribution in pp collisions, as measured
by the CDF Collaboration, at /s = 1.8 TeV. The measurement is compared
to a LO QCD calculation.

and hence integration over the fraction of momenta is straightforward, yield-

ing
do 1 1 do
=Wt [dyd (Ve W) fi(VTe W) —
i 7/ iy %f(\ﬁe ) fi(V/Te ) i
(4.4.106)
The Jacobian is found to be
3(2/172&)
dy; dys = =2—22dYdy = 2dY d 4.4.107
vy =55 y Y, ( )

and the region of integration becomes |y;| = |y + Y| and |y2| = |y —Y|. Note
that 4,2, < 1, implying —In(1/4/7) <Y < In(1/4/7). The cross section
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per interval of W for pp — dijet can be rewritten in the form
0

j_g/ - Wr Z[/_ dY fi(za, W) fi(zp, W)

ijkl Yimax

ymax+Y d
X / dy il

- (ymax +Y) di\

1

2
ij—kl cosh”y

. / Y i W) £ W)
0

Ymax—Y d 1
x / dy = — (4.4.108)
—(Ymax—Y) dt ikl cosh” y
where z, = \/7¢¥, 1, = /Te~¥ and the Mandelstam invariants occurring in
the cross section are given by { = —1W? e/ coshy, & = —1W? e™¥/ coshy,
and § = W2

The CDF Collaboration made a precise measurement of the inclusive di-
jet differential cross section in pp collisions at /s = 1.8 TeV. The measure-
ment is based on data binned according to the dijet invariant mass, setting
cuts on jet rapidities, |y1], |y2| < 2, and on the scattering angle in the di-
jet center-of-mass frame, cosf < 2/3. The data sample, collected with the
Collider Detector at Fermilab, corresponds to an integrated luminosity of
106 pb™'. Figure 4.13 shows the dijet invariant mass distribution as mea-
sured by the CDF Collaboration.?® The measurement is compared to a LO
QCD calculation obtained through numerical integration of Eq. (4.4.108).
The stated cuts on jet rapidities are equivalent to |y + Y|, |y — Y| < 2. Using
(4.4.95), the cut cos@ < 2/3 translates into a cut on the transverse momen-
tum, p; > (v/5/6) W = 0.37W. The Y integration range in Eq. (4.4.108)
is then Yiyae = min{In(1/4/7), Ymax}, with rapidity cuts |y1], |yo| < 2. The
kinematics of the scattering (4.4.100) provides the relation W = 2p, coshy,
which, when combined with the p, cut further constrains the rapidity space:
ly| < 0.81. The cross section calculated at the partonic level using CTEQG6D
PDF's and renormalization scale ;. = p, is normalized to the low energy data
(180 GeV < W < 321 GeV) dividing the result of the calculation by 0.66.
The data distributions are in good agreement with LO QCD predictions.

ZSquares are from F. Abe et al. [CDF Collaboration], Phys. Rev. D 48, 998 (1993);
circles are from F. Abe et al. [CDF Collaboration], Phys. Rev. D 55, 5263 (1997).
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Figure 4.14: Left Panel: Ratio of dijet invariant mass cross sections for ra-
pidities in the interval 0 < |y1|, |y2| < 0.5 and 0.5 < |y1|,|yo] < 1. The
experimental points (solid circles) reported by the DO Collaboration are com-
pared to a LO QCD calculation indicated by a dot-dashed line. The error bars
show the statistical and systematic uncertainties added in cuadrature, and the
crossbar shows the size of the statistical error. Right Panel: LO QCD differ-
ential cross section as a function of dijet (v + jet) invariant mass, fory <1
(y < 2.4) and \/s = 14 TeV. The Z + jet invariant mass spectrum is also
shown. (For details of the pp — Z + jet calculation see Appendiz G).

As shown in Fig. 4.12 QCD parton-parton cross sections are dominated
by t-channel exchanges that produce dijet angular distributions which peak
at small center-of-mass scattering angles. In contrast, excitations of (hidden)
recurrences result in a more isotropic distribution. In terms of rapidity vari-
able for standard transverse momentum cuts, coshy = (1 —cos? #)~/2, dijets
resulting from QCD processes will preferentially populate the large rapidity
region while the “new resonant” processes generate events more uniformly
distributed in the entire rapidity region. To analyze the details of the rapidity
space it is useful to introduced a new parameter,

= da/dW|(\y1\,\yz\<0.5)
da/dW|(0-5<\y1\,\y2\<1.0) ’
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the ratio of the number of events, in a given dijet mass bin, for both ra-
pidities |y1], |y2] < 0.5 and both rapidities 0.5 < |yi], |y2| < 1.0. Figure 4.14
shows the ratio R. The experimental points reported by the DO Collabora-
tion?* (with integrated luminosities L = 0.35340.027, 4.6940.37, 54.7+3.4,
and 91 £5.6 pb~! for jet transverse energy thresholds of 30, 50, 85, and
115 GeV, respectively) are in good agreement with LO QCD calculation
obtained through numerical integration of Eq. (4.4.109).%

In Fig. 4.14 we show the dijet invariant mass distribution at /s = 14 TeV,
as obtained through numerical integration of (4.4.108). To accommodate
the minimal acceptance from the LHC experiments an additional kinematic
cut on the different jet rapidities, |y1],|y2| < 1, has been included in the
calculation. For comparison we also show the invariant mass distribution of
the photon + jet final state, as obtained from numerical integration of

0

j—lj'[/ - Wr Z [/ dY fi(za, W) fi(zp, W)

- Ymax

ijk

Ymax+Y do.
X / dy —

- (ymax +Y) di\

1

2
ik cosh”y

)/max
+ / dY fi(llfa, W) fj(!)ﬁ'b, W)
0
ymax_Y do.
X / dy -
_(ymax_y) dt
with the corresponding cuts on photon and jet rapidities. As we anticipated
in the previous section, the cross section for the inclusive process pp — dijet
is about 2 to 3 orders of magnitude larger than pp — v + jet.
The dijet invariant mass distribution from pp collisions of the early LHC
run at /s = 7 TeV is consistent with standard model expectations. The data,

recorded by the ATLAS and CMS detectors, correspond to an integrated
luminosity of 1 fb=1.26

! (4.4.110)
ij—k cosh®y | .

24B. Abbott et al. [DO Collaboration], Phys. Rev. Lett. 82, 2457 (1999).

25L. A. Anchordoqui, H. Goldberg, D. Lust, S. Nawata, S. Stieberger and T. R. Taylor,
Phys. Rev. Lett. 101, 241803 (2008).

263, Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 704, 123 (2011); G. Aad et
al. [ATLAS Collaboration], arXiv:1108.6311.
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Chapter 5

Precision Electroweak Physics

5.1 Charged and Neutral Currents

The oldest and best-known examples of weak processes are the [-decay of
atomic nuclei and the more fundamental neutron decay, n — pre~. By anal-
ogy to the emission of photons in nuclear-y decay, Fermi considered the
neutrino-electron pair to be created and emitted in the nuclear transition
of a neutron to a proton. Inspired by the current-current form of the elec-
tromagnetic interaction he proposed that the invariant amplitude for the
[-decay process be given by

M = Gp (WY up) (Teyptie) (5.1.1)

where the effective coupling G, known as the Fermi constant, needs to be
determined by experiment.! The amplitude (5.1.1) explained the properties
of some features of §-decay, but not others. Over the following 25 years
or so, attempts to unravel the true form of the weak interaction lead to
a whole series of ingenious (-decay experiments, reaching the climax with
the discovery of parity violation in 1956.2 Amazingly, the only essential

'E. Fermi, Nuovo Cim. 11, 1 (1934); Z. Phys. 88, 161 (1934).

2T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956); C. S. Wu, E. Ambler,
R. W. Hayward, D. D. Hoppes and R. P. Hudson, Phys. Rev. 105, 1413 (1957); R. L. Gar-
win, L. M. Lederman and M. Weinrich, Phys. Rev. 105, 1415 (1957); J. I. Friedman and
V. L. Telegdi, Phys. Rev. 105, 1681 (1957).
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change required in Fermi’s original proposal was the replacement of v* by
(1 — ~5).3 Fermi had not forseen parity violation and had no reason to
include a v5+* contribution; a mixture of v* and °y* automatically violates
parity conservation; e.g., the charge-raising weak current

JH = U,/Y”%(]l — ), (5.1.2)

couples an ingoing negative helicity electron ey to an outgoing negative he-
licity neutrino. Besides the configuration (e;,vy), the charge-raising weak
current also couples the following (ingoing, outgoing) lepton pair configura-
tions: (Vg,e}), (0,vrer), and (e;7g,0).* Further, the charge-lowering weak

current (1.5.137) is the hermitian conjugate of (5.1.2),

[, 75 (1 = ~°)ue]’
= [ul /"L (1 — 4%)u,]!
ufy*y0 (1 — 4P )T u

= UeY %(]l - )7 Yy,
= U531 =7 )u,. (5.1.3)

Weak interaction amplitudes are of the form

o = 29r —= gt (5.1.4)
\/7
Charge conservation requires that 91 is the product of a charge-raising and
a charge-lowering current. The factor of 4 arises because the currents are
defined with the normalized projection operator (1 — +°) rather than the
old-fashioned (1 — ~®). The 1/4/2 is pure convention (to keep the original
definition of G which did not include ~°).

3S. S. Gershtein and Y. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 29, 698 (1955); R. P. Feyn-
man and M. Gell-Mann, Phys. Rev. 109, 193 (1958); E. C. G. Sudarshan and R. E. Mar-

shak, Phys. Rev. 109, 1860 (1958); J. J. Sakurai, Nuovo Cim. 7, 649 (1958).
4Recall that the spinor component of a right-handed antiparticle corresponds to the

spinor component of a left-handed particle with negative energy. This implies that the
projection operator of the right-handed antiparticle is (1 —~®)/2. Therefore, (5.1.2) repre-
sents a right-handed antineutrino 7x incoming and the right-handed positron e} outgoing,

(TR, eT); viz., outgoing vy, is the same as incoming Ur and viceversa.
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The cumulative evidence of many experiments is that indeed only 7 (and
vr) are involved in weak interactions. The absence of the “mirror image”
states, 7y, and vg, is a clear violation of parity invariance. Also, charge
conjugation, C, is violated , since C' transforms a vy, state into a v, state.’
However, the (1 —~°) form leaves the weak interaction invariant under the
combined C'P operation. For example,

D(rt — ptvp) #0(n" — utvg) =0 P violation,
D(rt = ptvp) #0(n~ — p ) =0  C violation,

but
D(r" — pvp) =T(r~ — u"vg) C'P invariance .

In this example, v denotes a muon neutrino. We discuss C'P invariance in
the next section.
The values of G obtained from the measurements of the neutron lifetime,

Gr = (1.136 £0.003) x 107° GeV 2, (5.1.5)
and muon lifetime
Gr = 1.16637(1) x 107> GeV ™2, (5.1.6)

are found to be within a few percent. Comparison of these results supports
the assertion that the Fermi constant is the same for all leptons and nucleons,
and hence universal. It means that nuclear S-decay and the decay of the
muon (see Appendix H) have the same physical origin. The reason for the
small difference is important and is discussed in the next section.

Although the experiments exposing the violation of parity in weak in-
teractions (polarized ®Co decay, K decay, m decay, etc) are some of the
highlights in the development of particle physics, parity violation and its
V — A structure can now be demonstrated experimentally much more di-
rectly. In fact, these days, neutrinos, particularly muon neutrinos, can be
prepared in intense beams which are scattered off hadronic targets to probe
the structure of the weak interaction. This is analogous to the study of the

5T. D. Lee, R. Oechme and C. N. Yang, Phys. Rev. 106, 340 (1957).
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electromagnetic lepton-quark interaction by scattering high-energy electron
beams off hadronic targets, which we described in Chapter 4.

To predict the neutrino-quark cross sections, we clearly need to know the
form of the quark weak currents. Quarks interact electromagnetically just
like leptons, apart from their fractional charge. Our inclination therefore is
to construct the quark weak current just as we did for leptons. For example,
we model the charge-raising quark current,

JE =1, (1 = ~°)ua, (5.1.7)

q

on the weak current
JH =a,4" %(]l V) ; (5.1.8)

the hermitian conjugates give the charge-lowering weak currents. The short
range of the weak interaction results from the exchange of a heavy gauge
boson of mass myy:

S RRCOE ORI

= 4GFJ Jet (5.1.10)

NoA

Upon inserting the currents (5.1.7) and (5.1.8) into (5.1.10), we obtain the
invariant amplitude for the charged current (CC) neutrino-quark scattering.

To confront pQCD predictions with experiment, it is simplest to con-
sider isoscalar nucleon targets, in which the nuclei contain equal numbers of
protons and neutrons, N = (p + n)/2. The procedure to embed the con-
stituent cross sections in the overall ¥V inclusive cross section is familiar

from Chapter 4:
a_/ da:/ dQQd dQ2, (5.1.11)




where
ok _ Gy
dzdQ? 4wz

2 2
(G ) |V P @)~ (e @) + Y- (00|
w (5.1.12)

is the differential cross-section given in terms of the structure functions, with
Vi=1+(1-9)% Y. =1-(1-y)? y=Q*/szr,and s = 2E,my. At LO in
pQCD, the structure functions are given in terms of parton distributions as
FY = x(u+d+2s+2b+u+d+2c+2t), o FY = x(u+d+25+2b—t—d—2c—2t),
and F = 0, and hence (5.1.12) can be written in an “old hat” form

d?cSy  G%s

< = )2[xqi’c(:c,@2>+<1—yf@fo(f’f@z)]’

dedy — m \Q2+m},
(5.1.13)
where
(2, Q) + dy(2, Q%) | us(z, Q) + dy(, Q%)
qgc(xv Q2> - D) + D)
+ ss(w, Q%) + bs(z,Q%) , (5.1.14)
0, 7) = BT L@) - g i re0y, (5.15)

2
the subscripts v and s label valence and sea contributions, and u, d, ¢, s, t,
and b denote the distributions for various quark flavors in a proton.

The calculation of 7N scattering proceeds along the lines of that for v NV
scattering, except for the replacement of Fy, xFY and FY by FY, xF} and
FY, respectively. At leading order FY = z(u +d + 2c+ 2t + @ + d + 25 + 2b),
oF? = x(u+d+ 2c+ 2t — 4 — d — 25 — 2b). Going through the same steps,
we obtain

d?cSy  G%s m? 2
o = SRS () [ Q) 4 (L ()
w

(5.1.16)
If there were just three valence quarks in a nucleon, ¢°“(x,Q?) = 0, the
neutrino-nucleon and antineutrino-nucleon scattering data would exhibit the
dramatic V' — A properties of the weak interaction. That is,
doSy doSy

_ (1 N2
2 =c, ay =c(l—y)*, (5.1.17)
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where ¢ can be found from (5.1.13); and for the integrated cross sections

CC
oy _ 1
= —. 5.1.18

At NLO, the relation between the structure functions and the quark mo-
mentum distributions involve further QCD calculable coefficient functions,
and contributions from Fp, can no longer be neglected. Therefore, QCD
predictions for the structure functions are obtained by solving the DGLAP
evolution equations at NLO in the MS scheme with the renormalization
and factorization scales both chosen to be Q2. Recall that these equations
yield the PDFs at all values of Q? provided these distributions have been
input as functions of x at some input scale Q2. The resulting PDFs are then
convoluted with coefficient functions, to obtain the structure functions. Pre-
dictions for high energy v N CC inclusive cross sections have been calculated
within the conventional DGLAP formalism of NLO QCD using the ZEUS-S
global fit PDF analysis (updated to include all the HERA-I data).® The cal-
culation accounts in a systematic way for PDF uncertainties deriving from
both model uncertainties and from experimental uncertainties of the input
data set. In Fig. 5.1, the NLO predictions for vN and 7N CC inclusive cross
sections are compared to those from a LO calculation using (5.1.13) and
CTEQ4 PDFs.” The NLO results show a less steep rise of o at high energies,
reflecting the fact that more recent HERA data display a less dramatic rise
at low-z than early data which was used to calculate the CTEQ4 PDFs. At
low energies, where the contribution of the valence quarks predominates, the
v cross sections are about a factor of 3 smaller than the corresponding v N
cross sections, because of the (1 —1)? behavior of the 7q cross section. Above
E, ~ 10% GeV, the valence contribution is negligible and the vN and 7N
cross sections become equal.®

6L. A. Anchordoqui, A. M. Cooper-Sarkar, D. Hooper and S. Sarkar, Phys. Rev. D 74,

043008 (2006); A. Cooper-Sarkar and S. Sarkar, JHEP 0801, 075 (2008).
"R. Gandhi, C. Quigg, M. H. Reno and 1. Sarcevic, Phys. Rev. D 58, 093009 (1998).
8Ultrahigh energy cosmic neutrinos are unique probes of new physics as their inter-

actions are uncluttered by the strong and electromagnetic forces and upon arrival at the
Earth may experience interactions with /s > 200 TeV. Rates for new physics processes,

however, are difficult to test since the flux of cosmic neutrinos is virtually unknown. It is
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Figure 5.1: The NLO inclusive vN (left) and vN (right) cross section along
with the £1o uncertainties (shaded band), compared with LO calculation.

The discovery of neutrino-induced muonless events in 1973 heralded a
9 These events, most readily interpretable as
V()N — v,(7)+ hadrons, are evidence of a weak neutral current,

new era in particle physics.

Jw) =1 (@A (1 =), (5.1.19)

T = (L~ ) (5:1.20)

If we compare (5.1.20) with (2.4.96), we see that the vector and axial-vector
couplings, ¢y and ¢4 are determined in the standard model (given the value
of sin?@,,). Their values are

o =17 —2sin*0,Q; =1}, (5.1.21)

where T})’ and @y are, respectively, the third component of the weak isospin
and the charge of the fermion f (given in Table 2.1). In general, the JEC,
unlike the charged current J,, are not pure V — A currents (cy # ca); they
have right-handed components. The neutral current interaction is described

possible to mitigate this by using multiple observables which allow one to decouple effects
of the flux and cross section; see e.g., L. A. Anchordoqui, J. L. Feng, H. Goldberg and

A. D. Shapere, Phys. Rev. D 65, 124027 (2002).
9F. J. Hasert et al. [Gargamelle Neutrino Collaboration], Phys. Lett. B 46, 138 (1973).

149



by a coupling g/ cos 6,

JC
~———7

[ g/ cosBy

| (e} (L) (9 ment) (5199
Z | (cosé’wj“ ) (mzz) <cosé’wJ (5.1.22)
|

—

—
JNC u+
4Gp NC yNC
= —=2pJNC NCuT (5.1.23)
\/§ H

The relative strength of the neutral and charged currents is parametrized by
the weak angle cos#@,,, or by the p-parameter as can be seen by comparing
(5.1.9) with (5.1.22) and (5.1.10) with (5.1.23), respectively. Identification
of (5.1.9) and (5.1.10) yields

% - 855% , (5.1.24)
while combining (5.1.22) with (5.1.23) gives
2
p% - 8m%zos2 0, (5.1.25)
from the last two equations and (2.4.88)
miy
P T o~ (5.1.26)

In other words, if the model is successful, all neutral current phenomena will
be described by a common parameter. For the moment we will leave i,
¢4y and p as free parameters to be determined by experiment. For further
discussion it is useful to remember that neutral currents have a coupling
pGr and that p represents the relative strength of neutral and charged weak
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currents, e.g. for neutrino-quark scattering:

v : T
1 1
'z L O SR
! :
p= (5.1.27)
v 1 H [
1 1
:W + tOB + ...
. :

Ap measures the quantum corrections to the ratio of the neutral- and charged-
current amplitudes at low energy.

The calculation of inclusive cross sections vN — v.X proceeds exactly as
that for the charged current processes. At LO in pQC we find

oS pG2ME, m> 2 B
Z

(5.1.28)
where the quark densities are given by

@) = DD [ ey
+ 2 {us(x’Q >J2rds(x’Q q [(e))? + (4 + (¢))” + (c9)?]
+ 2[ss(2, Q%) + bz, Q*)] [(c])? + (c4)?]
+ 2es(w, Q%) + to(x, Q)] [(ch)* + (¢4)7] (5.1.29)
and

2w - |




A quantitative comparison of the strength of NC to CC weak processes has
been obtained by the NuTeV Collaboration, by scattering neutrinos off an
iron target.! The experimental values are

NC

o
T2 0.3916 + 0.0007, (5.1.31)
O-l/uN—>,uX

exp
R,

NC

exp _ T0uN—i, X
RyP = 2 = 0.4050 £ 0.0016, (5.1.32)

05, N—uX

whereas for E, > 107 GeV, the prediction from (5.1.13), (5.1.16), and
(5.1.28), using CTEQ4 PDFs, is R, = R, ~ 0.4.

5.2 Quark Flavor Mixing

So far, we have seen that leptons and quarks participate in weak interactions
through charged V' — A currents constructed from the following pairs of (left-
handed) fermion states:

<€f>, (M’i), and <d>. (5.2.33)

All these charged currents couple with universal coupling Gr. It is natural
to attempt to extend this universality to embrace the doublet

<§> (5.2.34)

formed from the heavier quark states. However, we already know that this
cannot be quite correct. For example, the decay K+ — pu*v, occurs. The
K™ is made of u and s quarks. There must thus be a weak current which
couples a u to an § quark. This contradicts the above scheme, which only
allows weak transitions between u <+ d and ¢ <+ s.

0G. P. Zeller et al. [NuTeV Collaboration], Phys. Rev. Lett. 88, 091802 (2002)
[Erratum-ibid. 90, 239902 (2003)].
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Instead of introducing new couplings to accommodate observations like
K* — p*v,, let’s try to keep universality but modify the quark doublets.
We assume that the charged current couples “rotated” quark states

(;) (;) (5.2.35)

d =dcosf,. + ssinfb,
s' = —dsinf, + scos,. (5.2.36)

where

This introduces an arbitrary parameter 6., the quark mixing angle, known
as the Cabibbo angle.!! In 1963, Cabibbo first introduced the doublet u, d’
to account for the weak decays of strange particles. Indeed the mixing of the
d and s quark can be determined by comparing AS = 1 and AS = 0 decays.
For example
I(KY = pty,)
I(rt — pty,)
[(KT — mYetu,)
[(rt — 7letr,)

~ sin? 6,

~ sin? ..

After allowing for the kinematic factors arising from the different particle
masses, the data show that AS = 1 transitions are suppressed by a factor
of about 20 as compared to the AS = 0 transitions. This corresponds to
sin . = 0.2255 £ 0.0019.

What we have done is to change our mind about the CC (5.1.7). We now
have Cabibbo favored transitions (proportional to cos 6..)

W+_ ->c_os,_96 I/I/_+_ ->c_os,_0c

and “Cabibbo suppressed” transitions

1IN. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
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+ sin 0 + sin 6
w pome w S e

[see (5.2.36)], and similar diagrams for the charge lowering transitions. We
can summarize this by writing down the explicit form of the matrix element
describing the CC weak interactions of the quarks. From (5.1.4)

4G p

M = WJ”JIL (5.2.37)

with

I = (@ e)M U ( d ) | (5.2.38)

The unitary matrix U performs the rotation (5.2.36) of the d and s quarks

states:
g sl sinfe ) (5.2.39)
—sinf,. cosf,

Of course, there will be amplitudes describing semileptonic decays constructed
from the product of a quark with a lepton current, J* (quark) JIE (lepton).
All this has implications for our previous calculations. For example, we must
replace G in (5.1.5) by Gr = Gr cos 0., whereas the purely leptonic p-decay
rate, which involves no mixing, is unchanged. The detailed comparison of
these rates, (5.1.5) and (5.1.6) supports Cabibbo’s hypothesis.

The form (5.2.39) gives a zero'"-order approximation to the weak interac-
tions of the u, d, s, and ¢ quarks; their coupling to the third family, though
non-zero, is very small. It is straightforward to extend the weak current,
(5.2.38), to embrace the additional doublet of quarks

d

Jh=(a ¢ QMU s | (5.2.40)
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The 3 x 3 matrix U contains three real parameters (Cabibbo-like mixing
angles) and a phase factor €. The original parametrization was due to
Kobayashi and Maskawa.!? An easy-to-remember approximation to the ob-

served magnitude of each element in the 3-family matrix is

|Uud| |Uus| |Uub| 1 A )\3
U= ‘Ucd| ‘ch| ‘Ucb| ~ A1)\ . (5.2.41)
|Ual  |Uss|  |Us| AN 1

where A\ = sinf,.'> These are order of magnitude only; each element may
be multiplied by a phase and a coefficient of O(1). The approximation in
(5.2.41) displays a suggestive but not well understood hierarchical structure.
Unlike the 2 x 2 matrix of (5.2.39), because of the phase §, the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is complex. This has fundamental im-
plications concerning C'P invariance, which we discuss next.

To investigate C'P invariance, we first compare the amplitude for a weak
process, say the quark scattering process ab — cd, with that for an antiparti-
cle reaction ab — ¢d. We take ab — cd to be the charged current interaction
of Fig. 5.2.a. The amplitude is

M o~ T,
~ (1A (1 = ) Ueqtta) (57, (1 = °)Upquia)'
~ UnUgy (0" (1 = 7" )ua) (@, —7")w) ,  (5.2.42)

because Ugd = Uj,. M describes either ab — ed or ¢d — ab (remembering the
antiparticle prescription of Sec. 1.4).

On the other hand, the amplitude 9V for the antiparticle process ab — éd
(or c¢d — ab) is

M~ (T Tua
~ ULUa (@ (L = ")) (G, (1 —7°)ua) ; (5.2.43)

that is, 9 = 9M'. This should not be surprising. It is demanded by the
hermiticity of the Hamiltonian. By glancing back at (3.1.3) and (3.1.11), we

12M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
131, Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
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Figure 5.2: The processes described by (a) the weak amplitude 9 (ab — cd)

and (b) its hermitian conjugate.

see that 901 is essentially the interaction Hamiltonian V' for the process. The
total interaction Hamiltonian must contain 9t + 9, where 9t describes the
i — f transition and 9" describes the f — i transition in the notation of
Chapter 3.

In Sec. 5.1, we have seen that weak interactions violate both P invariance
and C invariance, but have indicated that invariance under the combined C'P
operation may hold. How do we verify that the theory is C'P invariant? We
calculate from M(ab — cd) of (5.2.42) the amplitude Mcp, describing the
C P-transformed process, and see whether or not the Hamiltonian remains
hermitian. If it does, that is, if Mcp = MT, then the theory is C'P invariant.
If it does not, then is C'P violated.

Mep is obtained by substituting the C'P-transformed Dirac spinors in
(5.2.42)

u; — P(u;)¢, i=a,...d, (5.2.44)

where u¢ are charged conjugate spinors defined by
u® = Ca®, (5.2.45)
see Sec. 1.4. Clearly to form 9Mcp, we need u¢ and also, to know how
(1 — +°) transforms under C. In the standard representation of gamma

matrices we have

¢ = uTy0 = (1 u*) 10 = uT72CTH°0 = —uT'CTH040 = —uTC™1 | (5.2.46)
Y= (OO T = —Oy 0T = Oy OTE (5,247
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With the replacements (5.2.44), the first charged current of (5.2.42) becomes

(Jh)° = Uea(tie)y" (1 —~°)(ua)
_chauTC’_1 N(]l - '75)0@5
Ueatty [V*(1 + )",
= ()Uealta?™ (1 +7")uc . (5.2.49)

The origin of the extra minus sign introduced in the last line is subtle but
important. The minus sign is related to the connection between spin and
statistics; in field theory it occurs because of the antisymmetric nature of the
fermion fields. In field theory, the charge conjugation operator C' changes a
positive-energy particle into a positive-energy antiparticle, and the formal-
ism is completely f < f symmetric. However, in a single-particle theory,
antiparticles states are not allowed; rather C' changes a positive-energy par-
ticle state into a negative-energy particle state. As a result, we must add to
our Feynmann rules the requirement that we insert by hand an extra minus
sign for every negative-energy particle in the final state of the process. The
parity operation P = ~°, and so P~'4#(1 +~°)P = 4*1(1 — 4°). Thus

(Jt)ep = () Ueatiay" (1 — 7% )ue, (5.2.50)
and hence
Mep ~ UeaUp, [0y (1 — ") ue] [0y, (1 = 7°)ua] - (5.2.51)

We can now compare Mcp with MT of (5.2.43). Provided the elements of
the matrix U are real, we find 9Mcp = MMT, and the theory is C'P invariant.
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At the four-quark (u, d, ¢, s) level, this is the case as the 2 x 2 matrix U,
(5.2.39), is indeed real. However, with the advent of the b and ¢ quarks,
the matrix U becomes the 3 x 3 CKM matrix. It now contains a complex
phase factor €. Therefore, in general, we have Mcp # M’ and the theory
neccesarily violates C'P invariance.

In fact, a tiny C'P violation had been established many years before the
introduction of the CKM matrix. The evidence for the indirect violation of
C P-invariance was first revealed in 1964 in the mixing of neutral kaons.'*
These particles offer a unique “window” through which to look for small C'P
violating effects. In particular, direct C'P-violation, not mixing-assisted, has
been established in the decay B; — Km with a significance in excess of 50.
Today, precision data on neutral kaons have been accumulated over 40 years;
thus far, the measurements can, without exception, be accommodated by the
standard model with three families. Whenever the experimental precision in
C P-violation measurements has increased, the results have fit snugly within
the standard model. Given the rapid progress and the better theoretical
understanding of the standard model expectations relative to the K system,
the hope is that at this point, the glass is half full and that improved data
will pierce the standard model’s resistant armor.!?

5.3 Scalars were already part of the Theory!

One can illustrate this statement simply by calculating the cross section for
top quark annihilation into Z’s, t¢ — ZZ, in a standard model without
scalars. In the energy limit, /s > my, straightforward Feynmanology yields

¢ -

do N crossed | a®m] Lo <1)

s | § diagram m
t =~

(5.3.52)

14J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev. Lett. 13, 138
(1964).

I5F. Halzen, M. C. Gonzalez-Garcia, T. Stelzer and R. A. Vazquez, Phys. Rev. D 51,
4861 (1995); A. Masiero and O. Vives, Ann. Rev. Nucl. Part. Sci. 51, 161 (2001).
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We first notice there is no angular dependence; do/df2 is independent of €.
The process is purely S-wave. We therefore have to conclude that the process
violates S-wave unitarity, which requires that

1
Oj=0 "~ ; s (5353)

where s is the square of the ¢ annihilation energy.
We remind the reader that the unitarity constraint (5.3.53) simply follows
from the partial wave expansion of the cross section in ordinary quantum

mechanics: 16
us
o= EJ:(QJ + D)7, (5.3.54)
with
fr=exp(id;) sind, . (5.3.55)

Here 4, are the phase shifts. Obviously |f;|* < 1 from (5.3.55) which, when
combined with (5.3.54), yields

1
oy < 16m(2J +1)- (5.3.56)
s
and (5.3.53) represents the special case J = 0.
The Higgs particle comes to the rescue, introducing the additional dia-

gram:

2 oz 2
H 7 T
Y, ~ my ____<\ o ml (5.3.57)
t NZ

which cancels the ill-behaved J = 0 term (5.3.52).!6 The cancellation requires
that the top-Higgs coupling Y; (endowing the top quark with mass) satisfies

Y2 ~m?, (5.3.58)

a result indeed intrinsic to the Higgs origin of fermion masses. So, if scalars
were not invented to solve the problem of mass, they would have to be in-
troduced to salvage unitarity.

16C. H. Llewellyn Smith, Phys. Lett. B 46, 233 (1973).
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We have not found the Higgs particle, but we know that
1144 GeV <mpy <1 TeV. (5.3.59)

The lower limit can be deduced from unsuccessful searches.!” The vacuum
expectation value

1

1
vi= Zdm?, = = (246 GeV)? 5.3.60
2w = s ( ) ( )

yields the upper limit
mu = (22?)"? < V2v ~ 350 GeV . (5.3.61)

The inequality follows from A < 1, a requirement which follows from the
recognition that the standard model’s perturbative predictions are correct.
This requires couplings to be small, an argument which cannot be taken too
literally as it cannot distinguish A < 1 from A < 4, for instance. Hence our
1 TeV value quoted in (5.3.59).

5.4 Electroweak Model @ Born Level

Some 150 years ago Maxwell unified the electric and magnetic forces by
postulating the identity of the electric and magnetic charges:

F=¢E+eyixB, (5.4.62)

with
e=-ey. (5.4.63)

Note that the velocity v is the variable which mixes electric and magnetic
interactions; when v — 0 magnetic interactions are simply absent but, for
charges moving with significant velocity v, the two interactions become sim-
ilar in importance. Unification of the two forces introduces a scale in the
mixing variable v: the speed of light.

17The combination of LEP data yields a 95% CL lower mass of 114.4 GeV. Very recently,
Tevatron data excluded the mass range (160 GeV, 170 GeV) at 95% CL.
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Unification of the electromagnetic and weak interaction follows this pat-
tern with
e=gsind,, (5.4.64)

expressing the equality of electric and weak charge g in terms of the param-
eter 0, introduced in (5.1.22). In the electroweak theory (5.4.64) generalizes
(5.4.63) to include the weak force. What is the variable mixing electromag-
netic and weak forces? At low energy the effects of weak forces between
charged particles are swamped by their electromagnetic interaction. At a
modern accelerator the weak and electromagnetic forces are equally obvious
in the collisions of high energy particles, just like the electric and magnetic
forces are in the interaction of high velocity charges. Energy is the mixing
variable of electromagnetic and weak forces. The energy scale introduced by
their unification is the weak boson mass myy.

The sad reality is that electroweak unification (5.4.64) contains a pa-
rameter #,, which is left to be determined by experiment. The parameter
represents the relative strength of charged and neutral currents (cf. (5.1.9)
and (5.1.22) and recall (5.1.27)) as well as the ratio of the weak boson masses
my and myz; see (2.4.88). The first and only tangible confirmation of elec-
troweak unified theory has been provided by verification that the ratio of the
weak boson masses determined at proton-antiproton colliders yields a value
of the weak angle which is in agreement with the value determined in the
pioneering neutral current neutrino experiments. On a more mundane level,
this common value verifies the doublet nature of the scalar field introduced
in Sec. 2.4 via (2.4.88).

Not until the mid-ninties did true verification of the electroweak theory
become possible with the first confrontation of its calculated radiative correc-
tions with high statistics measurements performed at the LEP and SLC ete™
colliders and at the pp Fermilab Tevatron.!® We have barely started down
the road of high precision tests familiar from quantum electrodynamics. We
describe the first successful steps next.

8The first phase of the LEP/SLC program involved running at the Z pole, ete™ —
Z — €T4~, qq, and vi. During the period 1989-1995 the four LEP experiments ALEPH,
DELPHI, L3, and OPAL at CERN observed ~ 2 x 107 Z bosons. The SLD experiment
at the SLC at SLAC observed some 5 x 10° events. LEP2 ran from 1995-2000, with
center-of-mass energy gradually increasing from about 140 GeV to 209 GeV.
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Figure 5.3: Electromagnetic and weak contributions to eTe™ — utu~.

5.4.1 Interference in ete~ annihilation

When contemplating the vast amount of evidence for the standard model,
covering strong and electroweak interactions, collider and fixed-target exper-
iments with lepton, photon, and hadron beams, it is easy to overlook the fact
that verification of the theory at the quantum level is in its infancy, at least
by QED standards. In the electroweak sector familiar tests of the standard
model probe the Lagrangian at Born level. Perhaps, the oldest of these tests
has been the measurement of electroweak interference in e*e™ collisions.

ete” annihilations can occur through electromagnetic () or weak neu-
tral current (Z) interactions. Therefore, high-energy ete™ colliding beam
machines are an ideal testing ground for the interference effect of the elec-
tromagnetic and the neutral weak amplitude. As we discussed in Sec. 3.3,
the measurement of the reaction ete™ — p*u~ at PETRA energies provides
tests of the validity of QED at small distances. In what follows, we show
that such a measurement also provides a unique test of the asymmetry aris-
ing (in the angular distribution of muon pairs) from the interference of the
electromagnetic amplitude 9MEM ~ 2 /k? with a small weak contribution.
The size of this effect is found to be

|9ﬁEM9ﬁNC|N GF N10—4]{;2
‘gﬂEM|2 Nez/kz’“ m?v )

(5.4.65)

using Gp &~ 107°/m3 [see Appendix H] and e?/47 = 1/137. For PETRA
eTe™ beam energies ~ 20 GeV we have k? ~ s &~ (40 GeV)? and so predicts
about a 15% effect, which is readily observable.

To make a detailed prediction, we assume that the neutral current process
is mediated by a Z boson with couplings given by (5.1.20). Using Feynman
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rules, the amplitudes 9, and M, corresponding to the diagrams of Fig. 5.3

are 9
€

M, =~z (I w)(Ene), (5.4.66)

My

2 2
_ o — kuky/m3,
———— [ (1 — 4y’ (
4 cos? 0, [ v 4 } k? —m?

x  [ey7 (51— )e] (5.4.67)

where k is the four-momentum of the virtual  (or Z), s ~ k. With electron-
muon universality, the superscripts on cy, 4 are superfluous here, but we keep
them so as one is able to translate the results directly to eTe™ — ¢g. We
ignore the lepton masses, so the Dirac equation for the incident positron
reads (%kg)@y” = 0 and the numerator of the propagator simplifies to g,,-.
Thus, (5.4.67) becomes

\/EG m2 — v - v e (= € (5
My =~ (" um) + ¢ (ury 1o [CErven) + e Euren)]
(5.4.68)
using (5.1.24) and (5.1.26) with p = 1, and where
CR=Cy — Ca, cL=cy+cy. (5.4.69)
That is we have chosen to write
vl —cay’ = (ev — ca) (L +7°) + (e + ca)s(1 —7°) . (5.4.70)

The (1 £ ~°) are projection operators, which enable Mz to be expressed
explicitly in terms of right- and left-handed spinors. It is easier to calculate
|71, 4+ Mz|? in this form. With definite electron and muon helicities, we can
apply the results of the QED calculation of ete™ — p*pu~ given in Sec. 3.3.
For example,

d a?

% = E(l +cosf)?[1+rdics ], (5.4.71)
eLeR—HL ik

d 2

% = %(1 +cos0)? [1 4 reics) (5.4.72)
eLehHRHL
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[see (3.3.51)]. Here, r is the ratio of the coefficients in front of the brackets
n (5.4.68) and (5.4.66), that is,

(5.4.73)

T =

fot (3.

2 .
s —my +imyzl'y \e?

where we have included the finite resonance width I'y, which is important
for s ~ m% [see Appendix A].

Expressions similar to (5.4.71) and (5.4.72) hold for the other two non-
vanishing helicity configurations. To calculate the unpolarized ete™ — p™u~
cross section, we average over the four allowed L, R helicity combinations.

We find,

W _a
dQ  4s

where, (assuming electron-muon universality ¢/ = ¢f = ¢;)

[Ao(1 + cos® ) + A; cosb] | (5.4.74)

Ay = 1+ %%e(r)(cL +cg)*+ i|r|2(ch + c?;z)2

14 2§Re(r)c%/ + |7’|2(c%/ i C,%;)2 ’ (5.4.75)
Ay = Re(r)(cp —cr)® + 5l (cf — R)?
= 4ARe(r)ch + 8|r*ctc . (5.4.76)

The lowest-order QED result (Ay = 1, A; = 0) gives a symmetric regular
distribution. We now see that the weak interaction introduces a forward-
backward asymmetry (A; # 0). Let us calculate the size of the integrated
asymmetry defined by

F B

Integrating (5.4.74), we obtain for s < m% (i.e., |r| < 1)

App = ~ = Re(r)ch ~ 3¢ (GFS) : (5.4.78)

e2

This is in agreement with the expectations of the order of magnitude esti-
mate, Gps/e?, of (5.4.65); an asymmetry which grows quadratically with the
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Figure 5.4: The ete™ — uptp~ angular distribution for all CELLO data
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energy of the colliding eTe™ beams (for s < m%). We may use the standard
model couplings (c4 = —3, cy = —3% + 2sin”6,, >~ 0) to compare (5.4.74)
with the experimental measurements of the high-energy ete™ — p*pu~ angu-
lar distribution, see Fig. 5.4. Compared to the results shown in Fig. 3.8, we
see in this case the larger statistics clearly reveal the data are inconsistent
with QED predictions. Since ¢y ~ 0, these data do not, however, offer an
accurate determination of sin?#6,,.

5.4.2 The NuTeV anomaly

Neutral current processes in deep inelastic neutrino-nucleon scattering pro-
vide a direct measurement of the electroweak mixing angle. LO analytic
expressions for the strength of NC to CC weak processes can be easily ob-
tained from (5.1.13) and (5.1.28). Including only first generation quarks, for

an isoscalar target (¢ = “I%), these are given by

(397 + gn)xrq(r, Q) + (3% + g1 )xq(x, Q?)

R, =
3zq(z,Q?) + zq(z, Q?)
and
R~ B9kt gi)wa(w Q%) + (Bgi + gr)7d(, Q)
Y xq(r, Q?) + 3xq(z, Q%)
1
= 91+ ~0r) (5.4.80)
where ) , ,
r = TaNotx 300 @) Y oqlz, ) (5.4.81)
awN—)ZX SxQ(va ) _'_xQ(va )
1
92 =(g")? + (902 = 5~ sin? 6, + gsin4 O (5.4.82)
gfz = (gR)2 + (gﬁé)2 =3 sint 4, , (5.4.83)
and
91 = 3(cl + ), g = 5(cl — ). (5.4.84)
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The difference of the effective couplings g? — g% is subject to smaller theo-
retical and systematic uncertainties than the individual couplings. Indeed,
under the assumptions of equal momentum carried by the u and d valence
quarks in the target and of equal momentum carried by the heavy quark and
antiquark seas, we obtain

RV — TR,;
1—r
OyN—vX — OpN—pX

RPW

OuN—tX — OpN—IX
= 97 — g%
= 1 _sin?0,, (5.4.85)

2

which is seen to be independent of ¢ and ¢, and therefore of the information
on the partonic structure of the nucleon.?

Actually, the observables RSP, R, R\ measured at NuTeV differ from
the expressions given in (5.4.79), (5.4.80), and (5.4.85). On the theoretical
side, this is because of contributions from second—generation quarks, as well
as QCD and electroweak corrections. On the experimental side, this is be-
cause total cross sections can only be determined up to experimental cuts and
uncertainties, such as those related to the spectrum of the neutrino beam,
the contamination of the muon neutrino beam by electron neutrinos, and
the efficiency of NC/CC discrimination.? Once all these effects are taken
into account, the NuTeV data can be viewed as a measurement of the ratios
between the CC and the NC squared neutrino effective couplings.

The electroweak parameter sin?6,, extracted from a single parameter fit
to the NuTeV data is about 30 at variance with the overall fit of the standard
model to precision observables, a fact that is known as “the NuTeV anomaly.”
A 3o effect is not neccesarily cause for excitement; of every 100 experiments
you expect about one 3o effect. Furthermore, the NuTeV measurement is

9E. A. Paschos and L. Wolfenstein, Phys. Rev. D 7, 91 (1973).
20As a matter of fact, Rpw is more difficult to measure than the ratio of the neutral

current to charged current cross sections, primarily because the neutral current scattering
of v and 7 yield identical observed final states which can only be distinguished through «
priori knowledge of the initial state neutrino. Therefore, the measurement of Rpw requires

separated neutrino antineutrino beams.
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fraught with hadronic uncertainties, e.g., the ~ 3¢ result is reduced to ~ 20
if one incorporates the effects of the difference between the strange and anti-
strange quark momentum distributions.?! Other possible systematic effects
that could contribute to bridge the gap are large isospin violation in the
nucleon sea, NLO QCD effects, electroweak radiative corrections, and nu-
clear shadowing. A full re-analysis of the data, taking into account all these
considerations and their uncertainties, is yet to see the light of day.

5.5 Radiative Corrections

As a rule, the size of radiative corrections to a given process is determined
by the discrepancy between the various mass and energy scales involved.
In Z-boson physics, the dominant effects arise from light charged fermions,
which induced large logarithms of the form o”In™[m7/m3] (with m < n) in
the fine structure constant, and from the top quark, which generates power
corrections of the orders Gpm?2, Gpm}, a,Grm?, etc.

For a wide class of low-energy and Z-boson observables, the dominant ef-
fects originate entirely in the gauge boson propagators (oblique corrections)
and may be parametrized conveniently in terms of four electroweak parame-
ters: Aa, Ap, Ar, and Ax.??> These parameters bear the following physical
meanings: (i) Aa determines the running fine structure constant at the Z
boson scale a(myz)/a = (1 — Aa)™Y; (i) Ap measures the quantum cor-
rections to the ratio of the neutral- and charged-current amplitudes at low
energy; (i11) Ar embodies the non-photonic corrections to the muon lifetime;
(iv) Ak controls the effective weak mixing angle, sin?#f,, = sin?0,,(1 + Ax),
that occurs in the ratio of the Zff vector and axial-vector couplings, i.e.,
d Jcl =1 —4)Qy| sin? b,,.

The ensuing discussion contains an apercu of the theory of electroweak

21D. Mason et al., Phys. Rev. Lett. 99, 192001 (2007).
22D. A. Ross and M. J. G. Veltman, Nucl. Phys. B 95, 135 (1975); M. J. G. Veltman,

Nucl. Phys. B 123, 89 (1977); A. Sirlin, Rev. Mod. Phys. 50, 573 (1978) [Erratum-ibid.
50, 905 (1978)]; Phys. Rev. D 22, 971 (1980); S. Sarantakos, A. Sirlin and W. J. Marciano,
Nucl. Phys. B 217, 84 (1983); A. Sirlin, Phys. Lett. B 232, 123 (1989); W. F. L. Hollik,
Fortsch. Phys. 38, 165 (1990); S. Fanchiotti and A. Sirlin, Phys. Rev. D 41, 319 (1990);
G. Degrassi, S. Fanchiotti and A. Sirlin, Nucl. Phys. B 351, 49 (1991).
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radiative corrections and its role in testing the standard model, predicting
the top quark mass, constraining the Higgs boson mass, and searching for
deviations that may signal the presence of new physics. Implementing such a
program can be first formulated from the point of view of the experimentalist.
Introducing the notation

sin?f, =s*=1-¢*, my, =w, my =z, (5.5.86)
electroweak theory predicts at the Born level that:
o(v.e) 3 —12s* 4 165" (5.5.87)
o(v,e)  1—4s2+416s* o
Yo1-8, (5.5.88)
z
Ta 1 9
— =35, 5.5.89
I'(Z—= ff «
RIS e (W + (7). (5.5.90)
4 1/2
ALR ~ AT ~ |:§AFB:| ~ 2(1 — 482> . (5591)

Equations (5.5.87)—(5.5.91) represent an incomplete list of experiments ca-
pable of measuring sin? ,,. Validity of the standard model requires that each
measurement yields the same value of s*: (i) the ratio (5.5.87) of v, scatter-
ing on left- and right-handed electrons, which is a function of sin?#,, only;
(1) the measurement of the weak boson masses (5.5.88); (%ii) the combina-
tion of my, a, and G as determined by the muon lifetime (5.5.89); (iv) the
partial widths (5.5.90) of the Z into a fermion pair with vector and axial cou-
pling ¢f, and ¢/}, and color factor C = 3 (1) for quarks (leptons); and (v) the
various asymmetries (5.5.91) measured at Z-factories (see Appendix I).
The study of the quantum corrections to the measurements (5.5.87)—
(5.5.91) is not straightforward. After inclusion of the O(«) corrections, the
sin? @,, values obtained from the different methods will no longer be the same
because radiative corrections modify (5.5.87)—(5.5.91) in different ways. For
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example, the diagram

(5.5.92)

e Ve e

modifies the t-channel Z propagator measured by (5.5.87); see also (5.1.27).
It does not, however, contribute to O(«) shifts in the W, Z masses

f w
MV5W+WQ/WV+W/§}\/M+---
7 w

(5.5.93)
f H
77N
'VV\V\//\/\, + MNQ\N\A + va 4+ ...
f W
(5.5.94)

which yield an improved sin? 6, value via (5.5.88). There is no real mystery
here. After inclusion of O(«) contributions in Egs. (5.5.87)—(5.5.91), they
represent different definitions of sin?6,,. The experimentalist has to make
a choice and define the Weinberg angle to O(«) by one of the observables
(5.5.87)—(5.5.91). Subsequently, all other experiments should be reformulated
in terms of the preferred “sin®#” What this choice should be is no longer a
matter of debate and we will define sin?6,, in terms of the physical masses
of the weak bosons, i.e.

2

sin? 6, = 1 — Z—V; = 0.23122(15) . (5.5.95)
Z
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A most straightforward test of the theory is now obtained by fixing (5.5.95)
in terms of the measured weak boson masses and verifying that its value co-
incides with the value of sin?6,, obtained from an analysis of v deep-inelastic
scattering data using the O(«) prediction for (5.5.87) written in terms of
(5.5.88). The same procedure can be repeated for the other measurements
of O, e.g., (5.5.89), (5.5.90) and (5.5.91).

The choice (5.5.95) is particularly useful in that one can estimate the
radiative corrections in terms of the renormalization group, which has been
previously introduced. The O(«) corrections can be qualitatively understood
in terms of the loop corrections to the vector-boson propagators (5.5.93) and
(5.5.94). In a more technical sense the choice (5.5.95) is closely related to
the use of the on-mass-shell (OMS) renormalization scheme, which gener-
alizes the renormalization techniques, introduced for electrodynamics, in a
straightforward way to the electroweak model.

Renormalization techniques take care of UV divergences appearing in
gauge theories at the quantum level. In Sec. 3.5 we illustrated how the
divergence in the photon vacuum polarization is absorbed into the Thomson
charge. We pay a price: the Thomson charge is no longer predicted and the
charge is renormalized to its measured value at ¢ = 0. Not all predictive
power is lost. The screening of the charge a(q?) can still be predicted and
confronted with experiment. All UV divergences in QED can be absorbed in
two parameters, a and m,.. It is eminently reasonable to copy this scheme
for calculations in electroweak theory. The list of parameters, to be fixed by
experiment, now includes

@, My, Mz, My, mf7 (5596)

where my represents the lepton and quark masses me,...,m;. The weak
mixing angle sin®#,, does not appear in the list of parameters; its value is
automatically determined by my, mz via (5.5.95). For some this proce-
dure may seem unfamiliar. Traditionally the standard model Lagrangian is
determined in terms of

g, glv )\7 s va (5597)

which represent the bare electroweak couplings, the parameters of the min-
imal Higgs potential, and the “Yukawa” couplings of the Higgs particle to
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fermions. There is no mystery here. In principle any choice will do. There
is, in fact, a direct translation between sets (5.5.96) and (5.5.97)

P (5.5.98)
Z— W
g2 =22 (5.5.99)
w
2
zm
A =é? a 5.5.100
c 8w(z — w) ( )
and ,
Y=t (5.5.101)
2w(z —w)

As an example we will show how the relation (5.5.89) is calculated to
O(«) in terms of the weak angle 6, defined by (5.5.88). The origin of the
relation (5.5.89) is the muon’s lifetime which, to leading order, is given by

the diagram
ro _ _ _V (5.5.102)

In Fermi theory, electromagnetic radiative corrections must be included to
obtain the result to O(«). Symbolically,

Gr
'Y = == 11 + photonic corrections], 5.5.103
D= E | (5.5.103)
where
photonic corrections = ——V'F - (5.5.104)
Y

172



In electroweak theory, on the other hand,

2

rd = 8;? [1 + photonic corrections
+ propagator (5.5.105)
+  vertex
+ box]
where
~ Vo LA
propagator = —Q— + —Q—
f b
H J/
+ L +... (5.5.106)
Vy V
vertex =  Zg I>—— +... (5.5.107)
o
and

__Z__V
box = |- ___ _ 4+ ... (5.5.108)

(14 Ar), (5.5.109)



with
2
Ar=Aa — SAp+ A (5.5.110)
S

We note that the purely photonic corrections drop out. As mentioned above,
the electroweak radiative corrections are gathered in Ar. Notation (5.5.110)
recognizes the fact that in the OMS scheme, vacuum polarization loops domi-
nate this quantity. We specifically isolated the fermions which are responsible
for the running of v from the muon to the Z mass,

Aa = Z «MAQW (5.5.111)
!

t
Ap = (5.5.112)
w
b

Other contributions are small in the OMS scheme and are grouped in the
“remainder” Ajem.

Before discussing the status of measurements of Ar, we make several com-
ments. To leading order Ar = 0 and, using (3.5.87) and (2.4.88), (5.5.109)
reduces to the Born relation (5.5.89). The full order « calculation of Ar will
not be presented here. We have attempted to describe the full formalism in
a relatively accessible way elsewhere.? To the extent that A,ey is small, one

ZF. Halzen and D. A. Morris, Phys. Lett. B 237, 107 (1990); Part. World 2, 10 (1991);
F. Halzen and B. A. Kniehl, Nucl. Phys. B 353, 567 (1991); F. Halzen, P. Roy and
M. L. Stong, Phys. Lett. B 277, 503 (1992); F. Halzen, B. A. Kniehl and M. L. Stong,
Z. Phys. C 58, 119 (1993); M. C. Gonzalez-Garcia, F. Halzen and R. A. Vazquez, Phys.
Lett. B 322, 233 (1994).
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can imagine summing the series

ot o e o

by the replacement (1 4+ Ar) — (1 — Ar)~! in (5.5.109).
We already discussed the running of o from the small lepton masses to

(5.5.113)

myz; see (3.5.111). The other large contribution Ap, which represents the
loop (5.5.112), is our primary focus here. Its value is given by

(0% z

Ap = ym%Wtblz (mPF(m?,m}) +miF(mi,m3)] ,  (5.5.114)
with .
F(mf,m3) =/ dz x In [mi(1 — z) + miz] , (5.5.115)
0
where No = 3 is the number of colors and Uy, is the CKM matrix ele-

ment; |Up|? ~ 1. The diagram has the important property that, defining
my = my + €,

Gr
Ap ~ 3.3 € (5.5.116)

So in QED, where only equal mass fermions and antifermions appear in
neutral photon loops, € = 0 and diagrams of this type are not possible. They
are, in fact, prohibited in QED by general arguments. This can be seen by
rewriting (5.5.114) and (5.5.115) in the form

Gr | , s 2mim? . om?
Ap = —47T mt _'_mb_imf—m% lnﬁ%
GF 2 3o 1 mf
~ it~ — 5.5.117
4 M 167 252 2 ( )

The appearance of a m?/z contribution to an observable is far from routine.
It is indeed forbidden in QED and QCD where virtual particle effects are
suppressed by “inverse” powers of their masses; (5.5.116) embodies this re-
quirement because ¢ = 0 for photon loops. Conversely, the appearance of an
m?/z term is a characteristic feature of the electroweak theory. Ap provides
us with a most fundamental probe of electroweak theory short of discovering
the Higgs boson.
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We are now ready to illustrate that Ap # 0 and is, in fact, consistent with
the standard model value (5.5.117) calculated using the experimental value

of the mass of the top quark. We first determine the experimental value of
Ar from (5.5.109). Using (5.1.24) and (5.4.64):

Aro. ~1— (37.281 2 ~0.035. 5.11
Fexp (37.281 GeV) o 0.035 (5.5.118)

We next recall (3.5.111):

0 128
O 4128 4 066 (5.5.119)

Aa~1-— ~
“ a(m2) 137

The crucial point is that Arep, # Aa; cf. (5.5.118) and (5.5.119). The O(«)
standard model relation (5.5.110) requires a non-vanishing value of Ap. Using
(5.5.117), we obtain that Ap = 0.0086 and (5.5.110) yields

2
(AP eatentated = Ao — =Ap = 0.037, (5.5.120)
S

in agreement with the experimental value (5.5.118). We leave it as an exercise
to insert errors into the calculation and show that our argument survives a
straightforward statistical analysis.

The Higgs particle makes a contribution to Ar:

H
SO a1l m
_ / ‘ _ 0 5.
Ah AAAAAAAAAAAAAAA A8T 2 In 2 (5.5.121)
W

From (5.3.59) we obtain that Ah < 0.0006, a contribution too small to
be sensed by the simple analysis presented above. The quantity Ar is in
principle sensitive to the Higgs mass. More sophisticated analyses which
include the dominant O(a?) corrections are now yielding weak, but definite,
constraints on the value of my.

Other measurements support the electroweak model’s radiative correction
associated with the tb loop Ap. Recall that charged weak currents couple with
strength G, while neutral currents couple as pGp; see (5.1.10) and (5.1.23).
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The neutral current decay of Z into neutrinos is therefore proportional to

pGp:
[(Z — vi) = (pGF)B—\/im%. (5.5.122)
241
The measured value of 499.0 + 1.5 MeV is larger than the value calculated
from the above equation which is 497.9, although the statistics are not over-
whelming. Nevertheless, the loop contribution (5.5.117) increases p to a
value 1+ Ap = 1.0086, bridging the gap. In the end a professional approach
follows the technique we previously mentioned: generalize the theoretical ex-
pressions for the observables (5.5.87)—(5.5.91) to 1-loop and show that all
measurements yield a common value of sin?6,,.

The radiative corrections predicted by the standard model have success-
fully confronted experiment. The program is however far from complete. It
will not have escaped the reader’s attention that the precision of the con-
frontation between theory and experiment is limited by the relatively large
errors on the measurements of my, and m;. The problem can be quantified
by rewriting (5.5.118) and (5.5.110) as

Arexy = F(my, my, my) , (5.5.123)

using (5.5.117), (5.5.119) and (5.5.121). Using the Z-pole measurements of
SLD and LEP1, electroweak radiative corrections are evaluated to predict the
masses of the top quark and the W-boson. The resulting 68% CL contour
curve in the (my;, my ) plane is shown in Fig. 5.5. Also shown is the contour
curve corresponding to the direct measurements of both quantities at the
Tevatron and LEP2. The two contours overlap, successfully testing the stan-
dard model at the level of electroweak radiative corrections. The diagonal
band in the figure shows the constraint between the two masses within the
standard model, which depends on the unknown mass of the Higgs boson,
and to a small extent also on the hadronic vacuum polarization (small arrow
labeled Ac«). Both the direct and the indirect contour curves prefer a low
value for the Higgs mass. The combined LEP2 and Tevatron data (solid
line) prefers a region outside the diagonal band. Confirmation of the stan-
dard model will, of course, require the detection of the Higgs particle within
this band.

Failure to do so will undoubtedly raise the question of the precision of the
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Figure 5.5: Contour curves of 68% CL in the (my, my ) plane for direct mea-
surements and the indirect determinations. The band shows the correlation

between my, and m; expected in the standard model.
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computations. State of the art calculations include all dominant 2-loop ef-
fects. This should be sufficient to confront Higgs vacuum polarization effects
such as (5.5.121) with experiment. Some doubts remain about the accuracy
of the eTe™ data in the vicinity of charm thresholds which are used to eval-
uate the charm quark contribution to the running of «; see (5.5.111). The
evaluation of the threshold contribution of the ¢t loops to the same integral is
not totally understood. These most likely represent the true limitation of the
calculation but neither problem is likely to preclude the indirect measurement
of my.

5.6 Lepton Flavor Mixing

5.6.1 Neutrino Oscillations

At present, convincing experimental evidence exists for (time dependent) os-
cillatory transitions v, = vg between the different neutrino flavors. The
simplest and most direct interpretation of the atmospheric data is that of
muon neutrino oscillations.?* The evidence of atmospheric v, disappearing
is now at > 150, most likely converting to v,. The angular distribution of
contained events shows that for E, ~ 1 GeV, the deficit comes mainly from
Latm ~ 10?2 — 10* km. These results have been confirmed by the KEK-to-
Kamioka (K2K) experiment which observes the disappearance of accelerator
v,’s at a distance of 250 km and finds a distortion of their energy spectrum
with a CL of 2.5 — 40.%% Data collected by the Sudbury Neutrino Observa-
tory (SNO) in conjuction with data from Super-Kamiokande (SK) show that
solar v/s convert to v, or v, with CL of more than 70.26 The KamLAND

21Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Lett. B 433, 9 (1998);
Phys. Rev. Lett. 81, 1562 (1998); S. Fukuda et al. [Super-Kamiokande Collaboration],
Phys. Rev. Lett. 85, 3999 (2000); Y. Ashie et al. [Super-Kamiokande Collaboration],

Phys. Rev. D 71, 112005 (2005).
25S. H. Ahn et al. [K2K Collaboration], Phys. Lett. B 511, 178 (2001); Phys. Rev. Lett.

90, 041801 (2003);Phys. Rev. Lett. 93, 051801 (2004).
26Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1158 (1998)

[Erratum-ibid. 81, 4279 (1998)]; Phys. Rev. Lett. 82, 1810 (1999); S. Fukuda et al. [Super-
Kamiokande Collaboration], Phys. Rev. Lett. 86, 5656 (2001); Phys. Lett. B 539, 179
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Collaboration has measured the flux of 7, from distant reactors and find that
v,’s disappear over distances of about 180 km.?” All these data suggest that
the neutrino eigenstates that travel through space are not the flavor states
that we measured through the weak force, but rather mass eigenstates.?

The flavor eigenstates |v,) and the mass eigenstates |v;) are related by a
unitary transformation U (i.e., mixing matrix)

Va) = ZUM|V,<:>|V,> > (UNialva) = Z *|va) (5.6.124)

07

with

UU =1, ie, Y UnlUj =0up and > UnUl; =6;.  (5.6.125)

For antineutrinos one has to replace U,; by U}, i.e.

Z ). (5.6.126)

The number of parameters of an n x n unitary matrix is n?. It is easy to see
that 2n — 1 relative phases of the 2n neutrino states can be redefined such
that (n — 1)? independent parameters are left. For these it is convenient to
take the %n(n — 1) “weak mixing angles” of an n-dimensional rotation and
2(n —1)(n — 2) “CP-violating phases.”

Being eigenstates of the mass matrix, the states |v;) are stationary states,
i.e., they have the time dependence

() = e

Vi) (5.6.127)

m2 m2
Ei:4/p2+m?%p+2—;%E—l—ﬁ, (5.6.128)

(2002); S. N. Ahmed et al. [SNO Collaboration], Phys. Rev. Lett. 92, 181301 (2004).
2TT. Araki et al. [KamLAND Collaboration], Phys. Rev. Lett. 94, 081801 (2005).
28Contrariwise, charged leptons are states of definite mass and hence cannot undergo

oscillations. S. Pakvasa, Lett. Nuovo Cim. 31, 497 (1981); E. K. Akhmedov, JHEP 0709,
116 (2007).

with
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where F =~ p is the total neutrino energy. (Here it is assumed that neutrinos
are stable.) Thus a pure flavor state |v,) = Y. Uqi|vi), present at ¢t = 0,
develops with time into the state

(1)) =Y Usie ) =Y " UaiUge P |vg) . (5.6.129)
i i\B
The time dependent transition amplitude for the transition from flavor v, to
flavor v therefore is

Ao = v5) = (Walv(t) = 3 Unillze™ ™

= ZUaz’(sz’je_iEit(UT)jﬁ
i\j
= (UDU"),p, (5.6.130)
with D;; = &;;¢ i (diagonal matrix). An equivalent expression for the
transition amplitude is obtained by inserting (5.6.128) into (5.6.130) and
extracting an overall phase factor e~

.2
imy t

Q[(I/a — Vg,t) = ZUMU;Z e 2E

_ im? L

= > UnilUj e 2, (5.6.131)

where L = ct (recall c=1) is the distance of the detector, in which vg is
observed, from the v, source. For an arbitrary chosen fixed j the transition
amplitude becomes

vy — vp,t) = eiEftQ[(l/a — vg, t)
= Y UnilUj e P

= ap+ Y UniUp; [e7 P — 1]

= Oap+ Y UniUp [e7%9 —1] | (5.6.132)
i
with
omy; L
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when L is measured in km, £ in GeV and omj, = m; —m? in eV>. In
(5.6.132) the unitarity relation (5.6.125) has been used. The transition am-
plitudes are thus given by the (n—1)? independent parameters of the unitary
matrix (which determines the sizes of the oscillations) and the n — 1 mass
square differences (which determine the frequencies of the oscillations), i.e.,
by n(n — 1) real parameters. If C'P is conserved in neutrino oscillations, all
C P-violating phases vanish and the U,; are real, i.e., U is an orthogonal
matrix (U~' = UT) with {n(n — 1) parameters. The number of parameters
for the transition amplitude is then 1(n —1)(n + 2).

Using (5.6.126) we obtain the amplitudes for the transitions between an-
tineutrinos

(o = Dpit) = Y UnUpie 5t (5.6.134)

Therefore, comparing (5.6.130) and (5.6.134), the following relation holds
for transformations between neutrinos and antineutrinos, which also follows
directly from the C'PT theorem: C' changes particle into antiparticle, P
provides the necessary flip from left-handed neutrino to right-handed an-
tineutrino and vice versa, and 1" reverses the arrow indicating the transition

W0y — vg) = UV — Vo) # AVa — v3). (5.6.135)

If C'P is conserved, U,; and Up; are real in (5.6.130) and (5.6.134). That is,
if time reversal invariance holds, one has

Wy — Up) = vy — vg) = UUg = Us) = Avp = Va) . (5.6.136)

Therefore, C'P violation can be searched for by e.g., comparing the oscilla-
tions v, — vg and vz — 1,.%

The transition probabilities are obtained by squaring the moduli of the
amplitudes (5.6.130)

2

Pl/a —)I/g

E * —ik;t
7

= Gag— 4> Re (U, Up Us; Upy) sin® A
1>]
+ 2 Sm (U, Us; Uaj Up,) sin2A; . (5.6.137)

i>j

V. D. Barger, K. Whisnant and R. J. N. Phillips, Phys. Rev. Lett. 45, 2084 (1980).
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In the standard treatment of neutrino oscillations, the flavor eigenstates |v,)
(v = e, p, 7) are expanded in terms of 3 mass eigenstates |v;) (i = 1, 2, 3).
In such a case, atmospheric neutrino data suggest that the corresponding
oscillation phase must be maximal, A, ~ 1, which requires dm?2,  ~ 107 —
10~2 eV2. Moreover, assuming that all upgoing v,’s which would yield multi-
GeV events oscillate into a different flavor while none of the downgoing ones
do, the observed up-down asymmetry leads to a mixing angle very close to
maximal, sin? 26, > 0.85. The combined analysis of atmospheric neutrinos
with K2K leads to a best fit-point and 1o ranges, ém?,, = 2.215% x 1073 eV?
and tan? 0., = 17052, On the other hand, reactor data suggest |U,s|? < 1.3
This twin happenstance, @, ~ 45° and Re(Ue3) ~ 0, is sufficient to generate
“v,-v; interchange symmetry.”

To simplify the discussion hereafter we use the fact that |U.3|? is nearly
zero to ignore possible C'P violation and assume that the elements of U are

real. With this in mind, we can define a mass basis as follows,

|1) = sin g |v*) + cosbOg|ve) , (5.6.138)
|vg) = cos O |v*) — sinOg|ve) | (5.6.139)
and )
vy) = —(lv.) + |vr)) 5.6.140
|v3) \/5(\ w) £ lvr) ( )
where 6 is the solar mixing angle and
. 1
") = —=(lv) — ) (5.6.141)

V2

is the eigenstate orthogonal to |v3). Inversion of the neutrino mass-to-flavor
mixing matrix leads to

|Ve) = cosbg|vy) — sin O |va) (5.6.142)

and
|v*) = sin Oy |v1) + cosbg|va) . (5.6.143)

30M. Apollonio et al. [CHOOZ Collaboration|, Phys. Lett. B 466, 415 (1999);
S. M. Bilenky, D. Nicolo and S. T. Petcov, Phys. Lett. B 538, 77 (2002).
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Finally, by adding Eqgs. (5.6.140) and (5.6.141) one obtains the v, flavor
eigenstate,

1
lv,) = 7 [|v3) + sin O |v1) + cos O|a)] (5.6.144)

and by substracting these same equations the v, eigenstate. The combined
analysis of Solar neutrino data and KamLAND data are consistent at the
30 CL, with best-fit point and lo ranges: dm2 = 8.2703 x 107° eV?* and
tan? 0, = 0.397003. 3!

For A;; > 1 (as would be the case for far-out neutrinos propagating over
cosmic distances), the phases will be erased by uncertainties in L and E.
Consequently, averaging over sin® A,; in (5.6.137) we obtain

P(vo = V) = 60p — 2 Y Uai Upi Unj Us; . (5.6.145)

i>j

Now, using 2, = >, i —>_,;; Eq. (5.6.145) can be re-written as

P(vy, = vg) = 0op — Z Uai Ui Un; Uy + Z Ui Ui Uai Ug;

4, i
2
= Oup — (Z Um-Uﬁi) + Z UzU3; . (5.6.146)

Since 0,5 = 535, the first and second terms in Eq. (5.6.146) cancel each other,
yielding
P(va —vg) =Y UZ U, . (5.6.147)

The probabilities for flavor oscillation are then
1
Py, —»v,) =P, > v)= 1 (cos O +sin* O, + 1), (5.6.148)

P, = v.) = P(ve > v,) = P(v. = v,) = sin? 0, cos’ 6,  (5.6.149)

and
P(ve — v.) = cos* O, + sin* 0, . (5.6.150)

31For a general discussion of the mixing parameters see e.g., M. C. Gonzalez-Garcia and
M. Maltoni, Phys. Rept. 460, 1 (2008).
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Now, let the ratios of neutrino flavors at production in the cosmic sources
be written as w, : w, : w, with ) w, = 1, so that the relative fluxes of each
mass eigenstate are given by w; = > wq U, gj. From our previous discussion,
we conclude that the probability of measuring on Earth a flavor « is given
by

Py, actected = »_ Uz Y wg U, . (5.6.151)
J B

Straightforward calculation shows that any initial flavor ratio that contains
w, = 1/3 will arrive at Earth with equipartition on the three flavors. Since
neutrinos from astrophysical sources are expected to arise dominantly from
the decay of charged pions (and kaons) and their muon daughters, their ini-
tial flavor ratios of nearly 1 : 2 : 0 should arrive at Earth democratically
distributed. So there is a fairly robust prediction of 1:1:1 flavor ratios for
measurements of cosmic neutrinos. In contrast, the prediction for a pure
U, source, originating via neutron (-decay, has different implications for the
flavor ratios: w, = 1 yields Earthly ratios ~ 5 : 2 : 2.32 Such a unique ratio
would appear above the 1:1:1 background in the direction of the neutron
source. Such a beam from the heavens could be used to study the neu-
trino oscillation parameters by comparing flavor ratios in the direction of the
beam and the rest of the sky. With the growth of neutrino observatories,
flavor identification of cosmic neutrinos on a statistical basis becomes pos-
sible, opening up a window for discoveries in particle physics not otherwise
accessible to experiment.33

Altogether, neutrinos are massive and therefore the standard model needs
to be extended as we discuss next.

5.6.2 How to kill a vampire

In the standard model masses arise from Yukawa interactions, which couple
a right-handed fermion with its left-handed doublet and the Higgs field, after
spontaneous symmetry breaking [see Sec. 2.4]. However, because no right-
handed neutrinos exist in the standard model, Yukawa interactions (2.4.106)

321,. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler, Phys. Lett. B 593, 42
(2004).
33F. Halzen, Science 315, 66 (2007).
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leave the neutrinos massless. One may wonder if neutrino masses could arise
from loop corrections or even by non-perturbative effects, but this cannot
happen because any neutrino mass term that can be constructed with stan-
dard model fields would violate the total lepton symmetry. Therefore, in
order to introduce a neutrino mass term we must either extend the particle
content, or else abandon gauge invariance and/or renormalizability. In this
section we illustrate different types of neutrino mass terms, assuming we keep
the gauge symmetry and we introduce an arbitrary number m of additional
right-handed neutrino states (singlets under hypercharge) vgr(1,1),.

With the particle contents of the standard model and the addition of an
arbitrary m number of right-handed neutrinos one can construct two types
of mass terms that arise from gauge invariant renormalizable operators

L, = Y > Mp™ v via + %MN“ Upi Vi +hee.,  (5.6.152)
a=e,u,7 i=1

where v¢ indicates a charge conjugated field (v* = CvT), Mp is a complex
m X 3 matrix, and My is a symmetric matrix of dimension m x m.

Forcing My = 0 leads to a Dirac mass term, which is generated after
spontaneous electroweak symmetry breaking from Yukawa interactions
v
ok
similarly to the charged fermion masses. Such a mass term conserves total
lepton number, but it breaks the lepton flavor number symmetries. For m = 3
we can identify the hypercharge singlets with the right-handed component

Y, Ups &' Lpo = Mp™ =Y, (5.6.153)

of four-spinor neutrino fields. Since the matrix Y is, in general, a complex
3 x 3 matrix, the flavor neutrino fields v., v,, and v; do not have a definite
mass. The massive neutrino fields are obtained via diagonalization of %, .
This is achieved through the transformations

3 3
Via = Z V,,akl/Lk, VRj = Z VVRjkl/Rk (56154)
k=1 k=1

with two 3 X 3 unitary matrices, V,, and V, g which perform the biunitary
diagonalization

jk
VieMpVy = —= (VIV)" = madse, (5.6.155)

v
V2
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Figure 5.6: Order of magnitude of the masses of quarks and leptons.

with real positive masses my. The resulting diagonal mass term can be
written as

3 3
—Zn, = Z miVpkvik + hec. = Z My ViV, (5.6.156)
k=1 k=1

where v, = vr, + v, are the Dirac fields of massive neutrinos.

As shown in Fig. 5.6, neutrino masses are much lighter than the cor-
responding charged fermion masses. Therefore, to get reasonable neutrino
masses (below the eV range) the Yukawa couplings would have to be ex-
ceedingly small: Y," < 107!, (For charged fermions, the Yukawa couplings
range from Y; ~ 1 for the top quark down to Y, ~ 107 for the electron).
Dirac neutrino masses in the experimentally preferred range can be gener-
ated if right-handed neutrinos are not complete singlets of the low energy
gauge group, but they are charged under additional U(1) gauge symmetries
broken at the TeV-scale.?* Such additional U(1) symmetries are theoretically
well motivated, as they represent the simplest augmentation of the standard
model, and carry a large amount of interesting phenomenology. For example,
the gauge-extended U(1)¢ x SU(2), x U(1)g x U(1), model has the attrac-
tive property of elevating the two major global symmetries of the standard
model, B and L, to local gauge symmetries; but of course neutrinos are able
to oscillate in the standard way since it is only the diagonal lepton number,
L=1L.+L,+ L,, which is an exact symmetry.*

If My # 0, neutrino masses receive an important contribution from the
Majorana mass term. Such a term is different from the Dirac mass term in
many important aspects. It is a singlet of the standard model gauge group.

34D. A. Demir, L. L. Everett and P. Langacker, Phys. Rev. Lett. 100, 091804 (2008).
35L. A. Anchordoqui, I. Antoniadis, H. Goldberg, X. Huang, D. Lust and T. R. Taylor,

arXiv:1107.4309.
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Therefore, it can appear as a bare mass term. Furthermore, since it involves
two neutrino fields, it breaks lepton number by two units. More generally,
such a term is allowed only if the neutrinos carry no additive conserved
charge. This is the reason that such terms are not allowed for any charged
fermions which, by definition, carry U(1)gy charges.

In general (5.6.152) can be rewritten as

— %y == ¢ M, 7 +hec., (5.6.157)

N —

where

0 ME
M, = b (5.6.158)
Mp My

and 7 = (77, U§)" is a (3+m)-dimensional vector. The matrix M, is complex
and symmetric. It can be diagonalized by a unitary matrix of dimension
(34 m), V,, so that

V,TM,V,, = diag(my, ma, ..., Mapm) - (5.6.159)

In terms of the resulting 3 4+ m mass eigenstates, V. = (V,,)1 7, (5.6.157)
can be rewritten as

1 3+m 1 3+m
_Dg/ﬂMu - 5 Z my (ljrcnass,kymass,k + ﬁmass,kyrcnas&k) = = mkﬂMkVMk 5
k=1 k=1
(5.6.160)
where
UMk = Vmass,k —+ Vrcnass,k = (VVT ﬁ)k —+ (V,,Jr 17)2, (56161)

which obey the Majorana condition, vy, = v§,, and are referred to as Ma-
jorana neutrinos.?® Notice that this condition implies that there is only one
field which describes both neutrino and antineutrino states. Thus a Majo-
rana neutrino can be described by a two-component spinor unlike the charged
fermions, which are Dirac particles, and are represented by four-component
spinors.

We have seen that the order of magnitude of the elements of the Dirac
mass matrix Mp is expected to be smaller than v, because Yukawa couplings

306E. Majorana, Nuovo Cim. 14, 171 (1937).
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are expected to be unnaturally small. In general, since a Dirac mass term
is forbidden by the symmetries of the standard model, it can arise only
as a consequence of symmetry breaking and hence Dirac mass terms are
proportional to the symmetry-breaking scale. This fact is often summarized
by saying that Dirac masses are protected by the symmetries of the standard
model. On the other hand, since a Majorana mass term is a standard model
singlet, the elements of the Majorana mass matrix My are not protected by
the standard model symmetries. It is plausible that the Majorana mass term
is generated by new physics beyond the standard model and the right-handed
chiral neutrino fields v belong to nontrivial multiplets of the symmetries of
the high energy theory. In this case, the elements of the mass matrix My
are protected by the symmetries of the high energy theory and their order
of magnitude corresponds to the breaking scale of these symmetries, which
could be much higher than the scale of electroweak symmetry breaking (¢).
The mass matrix can be diagonalized by blocks, up to corrections of order

(My'Mp)
M, 0
VMV, = | (5.6.162)
0 M,
with
o (1 — %M},M]*V‘le;lMD) V; MMV
’ — My MpV; (1= sy MpMEME T Vs
(5.6.163)

where V; and V), are 3 x 3 and m X m unitary matrices respectively. The light
3 x 3 mass matrix M; and the heavy m x m matrix M) are given by

My~ -VIMEMG MpV;, My, ~ VMV, (5.6.164)

The heavy masses are given by the eigenvalues of My, whereas the light
masses are given by the eigenvalues of M;, whose elements are suppressed
with respect to the elements of the Dirac mass matrix Mp by the very small
matrix factor (Mp” My'). This is the see-saw mechanism which explains
naturally the smallness of light neutrino masses.®” Note, however, that the

3TP. Minkowski, Phys. Lett. B 67, 421 (1977); R. N. Mohapatra and G. Senjanovic,
Phys. Rev. Lett. 44, 912 (1980).
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values of the light neutrino masses and their relative sizes can vary over wide
ranges, depending on the specific values of the elements of Mp and My.
Because the off-diagonal block elements of V,, are very small, the three flavor
neutrinos are mainly composed by the three light neutrinos. Thus, the see-
saw mechanism implies the effective low-energy mixing of three Majorana
neutrinos with an approximately unitary 3 x 3 mixing matrix U composed
by the first three rows and the first three columns of V.

5.7 The Good, the Bad, and the Ugly

The saga of the standard model is still exhilarating because it leaves all ques-
tions of consequence unanswered. The most evident of unanswered questions
is why the weak interactions are weak — in gauge theory the only natural
values for my, are zero or the Planck mass, and the model does not contain
the physics that dictates why its actual value is of order 100 GeV.

Already in 1934 Fermi provided an answer with a theory that prescribed
a quantitative relation between the fine structure constant and the weak
coupling, G ~ a/m3,. Although Fermi adjusted my, to accommodate the
strength and range of nuclear radioactive decays, one can readily obtain a
value of my, of 40 GeV from the observed decay rate of the muon for which
the proportionality factor is 7/v/2. The answer is off by a factor of 2 because
the discovery of parity violation and neutral currents was in the future and
introduces an additional factor 1 — m%,/m?%,

To }[ 1
Vem, | [1—mi, /m}

Fermi could certainly not have anticipated that we now have a renormaliz-

Gp = { } (14 Ar). (5.7.165)

able gauge theory that allows us to calculate the radiative correction Ar to
his formula. Besides regular higher order diagrams, loops associated with the
top quark and the Higgs boson contribute; they have been observed. There
is no feeling though that we are now dotting the i’'s and crossing the t’s of a
mature theory. As a matter of fact, the present victories are bittersweet. If
one calculates the radiative corrections to the mass i appearing in the Higgs
potential, the same theory that withstood the onslaught of precision experi-
ments at LEP /SLC and the Tevatron yields a result that grows quadratically;
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the difference between the bare and renormalized masses is

1
Ap? = i (992 +3g7 +24X =8> Ny Yf) A?
f
~ ﬁ (2m3y +m3 +my — 4m?) A* (5.7.166)

where g and ¢’ are the SU(2); x U(1)y gauge couplings, A is the quartic
Higgs coupling, Y7 are the Yukawa couplings, Ny = 1 (3) for leptons (quarks),
my, = 19°0%, v = 246 GeV, m% = (g% + ¢”)v?, mi = $Y20?, m¥ = 2007,
and A is a cutoff.?® Upon minimization of the potential, this translates
into a dangerous contribution to the Higgs vacuum expectation value which
destabilizes the electroweak scale. The standard model works amazingly
well by fixing A at the electroweak scale. It is generally assumed that this
indicates the existence of new physics beyond the standard model. Following
Weinberg,

1

1 auge ukawa,
ZL(mw) = mz‘ HTH+Z )‘(HTH)2+$ngg —|—.§/ﬂs§1</[k "‘A

Loy %36 +...,

(5.7.167)
where the operators of higher dimension parametrize physics beyond the
standard model. The optimistic interpretation of all this is that, just like
Fermi anticipated particle physics at 100 GeV in 1934, the electroweak gauge
theory requires new physics to tame the divergences associated with the Higgs
potential. By the most conservative estimates this new physics is within our
reach. Avoiding fine tuning requires A < 2 — 3 TeV to be revealed by the
CERN LHC. For example, for my = 115 — 200 GeV,

Ap? dv?
= <102 A=2-3TeV, (5.7.168)
1 v

where we have implicity used v? = —p?/) [valid in the approximation of

disregarding terms beyond O(H*) in the Higgs potential].

Dark clouds have built up around this sunny horizon because some elec-
troweak precision measurements match the standard model predictions with
too high precision, pushing A to 10 TeV. The data push some of the higher or-
der dimensional operators in Weinberg’s effective Lagrangian to scales beyond

38M. J. G. Veltman, Acta Phys. Polon. B 12, 437 (1981).
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10 TeV. Some have resorted to rather extreme lengths by proposing that the
factor multiplying the unruly quadratic correction (2m?, +m?% + m?3, —4m?)
must vanish; exactly! This has been dubbed the Veltman condition. The
problem is now “solved” because scales as large as 10 TeV, possibly even
higher, can be accommodated by the observations once one eliminates the
dominant contribution. One can even make this stick to all orders and for
A <10 TeV, this requires that my ~ 210 — 225 GeV.

Figure 5.7: Supersymmetry offers a neat solution of the bad behavior of ra-
diative corrections in the standard model. As for every boson there is a com-
panion fermion, the bad divergence associated with the Higgs loop is cancelled

by a fermion loop with opposite sign.

Let’s contemplate the possibilities. The Veltman condition happens to
be satisfied and this would leave particle physics with an ugly fine tuning
problem. This is very unlikely; LHC must reveal the Higgs physics already
observed via radiative correction, or at least discover the physics that im-
plements the Veltman condition. It must appear at 2 — 3 TeV, even though
higher scales can be rationalized when accommodating selected experiments.
Supersymmetry (SUSY) is a textbook example (see Appendix J). Even
though it elegantly controls the quadratic divergence by the cancellation of
boson and fermion contributions (see Fig. 5.7), it is already fine-tuned at a
scale of ~ 2 — 3 TeV. There has been an explosion of creativity to resolve
the challange in other ways; the good news is that all involve new physics in
the form of scalars, new gauge bosons, non-standard interactions... Alter-
natively, it is possible that we may be guessing the future while holding too
small a deck of cards and LHC will open a new world that we did not antic-
ipate. Particle physics would return to its early traditions where experiment
leads theory, as it should be, and where innovative techniques introduce new
accelerators and detection methods that allow us to observe with an open
mind and without a plan, leading us to unexpected discoveries.
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Chapter 6

Big Bang Cosmology

6.1 Lookback Time

At first sight, elementary particles and cosmology seem to be completely
different branches of physics, one concerned with the universe’s elementary
constituents and the other concerned with the universe as a whole. In recent
years, however, the most powerful particle accelerators have recreated condi-
tions that existed in the universe just a fraction of a second after the big-bang,
opening a window to the very early history of the universe. At the same time,
a flood of high-quality data from the Supernova Cosmology Project, the Su-
pernova Search Team, the Wilkinson Microwave Anisotropy Probe (WMAP),
and the Sloan Digital Sky Survey (SDSS) pin down cosmological parameters
to percent-level precision, establishing a new paradigm of cosmology.! The
standard big-bang model assumes homogeneity and isotropy. A surprisingly
good fit to the data is provided by a simple geometrically flat (expanding)
universe, in which 30% of the energy density is in the form of non-relativistic
matter and 70% is in the form of a new, unknown dark energy component

'A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116, 1009
(1998); S. Perlmutter et al. [Supernova Cosmology Project Collaboration|, Astrophys. J.
517, 565 (1999); D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148,
175 (2003); R. A. Knop et al. [Supernova Cosmology Project Collaboration], Astrophys.
J. 598, 102 (2003); M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 69, 103501
(2004).
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with strongly negative pressure. Adding to the puzzle, baryons represent only
a minor percentage (about 4%) of the matter-energy budget of the universe.

The most general form for the metric tensor (consistent with WMAP
and SDSS data) is that of the flat Robertson-Walker spacetime, which in
co-moving coordinates is given by

ds* = dt* — a®(t) [dr® + r* (d6” + sin® 0d¢?)] (6.1.1)

where a(t) is the cosmological scale factor that distinguishes the metric from
flat Minkowski space.? (A co-moving volume is a volume where expansion
effects are removed.) It is common to assume that the matter content of the
universe is a perfect fluid. The Friedmann equations,

N 2
8rGnp A
= (%) = 2 1.2
<a> 3 * 3 (6.1.2)
and A G
a 4
S=g 5 0+ 3), (6.1.3)

are the result of applying general relativity (with a pefect fluid source) to
a (3+1)-dimensional spacetime that is homogeneous and isotropic, where
H(t) is the Hubble parameter, Gy = Mp? is Newton’s constant, A is the
cosmological constant, and p and p are the pressure and energy density of
the matter and radiation driving the expansion of the universe.® Energy
conservation leads to a third useful equation [which can also be derived from
(6.1.2) and (6.1.3)]

p=—3H(p+p). (6.1.4)

These equations form the basis of the standard big-bang model. The ex-
pansion rate of the universe as a function of time can be determined by
specifying the matter or energy content through an equation of state, which
relates energy density to pressure. For a perfect fluid, the equation of state
is characterized by a dimensionless number w = p/p.

2H. P. Robertson, Astrophys. J. 82, 284 (1935); 83, 187, 257 (1936); A. G. Walker,

Proc. Lond. Math. Soc. (2), 42 90 (1936).
3A. Friedmann, Z. Phys. 10, 377 (1922); 21, 326 (1924).
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Aside from the well-known Hubble parameter, it is useful to define several
other measurable cosmological parameters. The Friedmann equation can be
used to define a critical density such that when A =0,

3H?

pe =g = 1.05x 107°h? GeVem ™ (6.1.5)
TGN

where the scaled Hubble parameter, h, is defined by
H =100h kms~" Mpc™'. (6.1.6)

The cosmological density parameter is defined as the energy density relative
to the critical density

Qtot = p/pc (617)

Since the universe is expanding, the galaxies should be moving away from
each other. Hence, we should observe galaxies receding from us. Recall that
the wavelength of light emitted from a receding object is stretched out so
that the observed wavelength is larger than the emitted one. It is convenient
to define this stretching factor as the redshift z,

)\obsorvod 1
Lz e — o (6.1.8)

Perhaps the most conclusive piece of evidence for the big-bang is the
cosmic microwave background (CMB), discovered by chance in 1965.* One
fascinating feature of the CMB is its Planck spectrum: it follows the black-
body curve at a temperature TMP = 2.72540.001 K (10) to extremely high
precision over more than three decades in frequency.® This implies that the
universe was in thermal equilibrium when these photons were last scattered.
An even more fascinating feature is that, to better than a part in 10°, the
CMB temperature is the same over the entire sky. This strongly suggests
that everything in the observable universe was in thermal equilibrium at one
time in its evolution.

Because the early universe was to a good approximation in thermal equi-
librium, particle reactions can be modeled using the tools of thermodynamics

4A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).
5J. C. Mather, D. J. Fixsen, R. A. Shafer, C. Mosier and D. T. Wilkinson, Astrophys.

J. 512, 511 (1999).
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and statistical mechanics. The number density n, energy density p and pres-
sure p of a dilute weakly-interacting gas of particles with ¢ internal degrees
of freedom is given in terms of its phase space distribution (or occupancy)
function f(p)

g — 3
n = @ﬂa/ﬂpmp,
g - N 13
p = o | B, (619

_ _9 ﬁ N

with £ and p'satisfying the relativistic relation (1.4.42). For a particle species
of type 7 in kinetic equilibrium, the phase space occupancy f is given by the
familiar Fermi-Dirac or Bose-Einstein distrubutions,

£ !

)= dEm T
where T; is the temperature, p; is the chemical potential (if present), and
=+ corresponds to either Fermi or Bose statistics. Moreover, if the species of
type i is in chemical equilibrium, then its chemical potential is related to the
chemical potentials of other species j, k, [ with which it interacts; e.g., if

(6.1.10)

it k+l, (6.1.11)

then p; + p1; = px + fu, whenever chemical equilibrium holds.
From the equilibrium distributions, it follows that for a particle species

of mass m;
. [ (B2 —m2)Y/2
pPi = J —( - ml) E-szz‘a
272 e(Bi—pi)/Ti 41 "

g [C (B )
T %elvgﬁmmf;qﬂd&, (6.1.12)

i o (B2 _m?2)3/2

6m2 ), eEi—m)/Ti 41

where g; counts the total degrees of freedom for type 7. The entropy density

is
_Pi + pi — pin;

11
- (6:1.13)

[
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In the standard model, a chemical potential is often associated with baryon
number, and since the net baryon density relative to the photon density is
known to be very small, O(107'%), we can neglect any such chemical potential
when computing total thermodynamic quantities.

For a nondegenerate (T; > u;), relativistic species (T; > m;), we have

% ((3)g:T?  for bosons
T Y 23,¢(3)gT? for fermi
3L giT? for fermions

2
z o T for b

po=  WI OF DOsons (6.1.14)
309 L for fermions

pi = pi/3’

where ((3) = 1.20206... is the Riemann Zeta function of 3. On the other
hand, for a nonrelativistic particle species (T; < m;), the relevant statisti-
cal quantities follow a Maxwell-Boltzmann distribution and thus there is no
difference between fermions and bosons

3/2
m;T; R
n; = gl( 27T) € l/TZa

pi = m;n;, (6.1.15)
pi = nd; L p;.

For a nongenerate, relativistic species, the average energy per particle is

4

2T, ~2.701T; for bosons

(Ei) = pifni{ %D o (6.1.16)
T, ~3.1517T, forf
m i = O. ; I0T Iermions
whereas for a non-relativistic species
3

(E;) =m; +=T;. (6.1.17)

2

For photons, we can compute all of the thermodynamic quantities rather
easily

o 1 4p 2¢(3)
pr=12D0 Pr= oy sy = ﬁ% ny = =517 (6.1.18)
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Table 6.1: Effective numbers of degrees of freedom in the standard model

Temperature New particles AN(T)
T < me v's + U's 29
me <T <m, et 43
my, <T <mg puE o7
m, <1 <Tr 'S 69
T. <T < Meharm -7's + u,u,d,d, s, 5 + gluons 247
me. <T < m; c,C 289
my < T < Mpottom T 303
my < T < mwz b, b 345
mw.z < T < MHiggs W+, Z 381
my < T < Myep H° 385
my <T t,t 427

*T,. corresponds to the confinement—deconfinement transition between quarks and

hadrons.

In the limit 7" > m,, the total energy density can be conveniently expressed
by

2

7 2 s
PR = (ZQB +3 ZQF) %T‘l = o5 N(T) T,  (6.1.19)
B F

where gp(r) is the total number of boson (fermion) degrees of freedom and the
sum runs over all boson (fermion) states with m; < T'. The factor of 7/8 is
due to the difference between the Fermi and Bose integrals. Equation (6.1.19)
defines the effective number of degrees of freedom, N(T'), by taking into
account new particle degrees of freedom as the temperature is raised. The
change in N(T') (ignoring mass effects) is given in Table 6.1. At higher
temperatures, N(7T) will be model dependent.

At early times, t < 10° yr, the universe is thought to have been dominated
by radiation. The equation of state can be given by w = 1/3. If we neglect

6See e.g., E. W. Kolb and M. S. Turner, The Early universe, Front. Phys. 69, 1 (1990).
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the contributions to H from A (this is always a good approximation for small
enough a) then we find that a ~ /2 and pr ~ a~*. Substituting (6.1.19) into
(6.1.2) we can rewrite the expansion rate as a function of the temperature in
the plasma

. 87TGNpR 1/2 . 87’(‘3 1/2 2
H = (T) = WN(T) T2/ Mp
~ 1.66y/N(T)T?/Mp; . (6.1.20)

Neglecting the T-dependence of N (i.e. away from mass thresholds and
phase transitions), integration of (6.1.20) yields the useful commonly used
approximation

3z \ 1 T \?
t o ~ 2.4 . 6.1.21
(327TPR) NT) \Mev ) ° (62.21)

The universe made the transition between radiation and matter domination
when pg = py,, or when T’ =~ few x 103 K at 2., ~ 3300. For a matter or dust

dominated universe, w = 0, and therefore a(t) ~ t*/3 and p,, ~ ™. In a
vacuum or A dominated universe (which we are approaching today) w = —1,
yielding a ~ eVABt The current best measurement of the equation of state
(assumed constant) is w,—g = —1.00670957.

For a system in thermodynamic equilibrium, (6.1.4) can be converted into
an equation for conservation of entropy per co-moving volume. Recognizing
that p = sT', (6.1.4) becomes

4
dt

viz., a non-evolving system would stay at constant number or entropy density

(sa®) =0, (6.1.22)

in co-moving coordinates even though the number or entropy density is in
fact decreasing due to the expansion of the universe. For radiation, this
corresponds to the relationship between expansion and cooling, T o< a™! in
an adiabatically expanding universe. Note that both s and n scale as T°.
The nucleosynthesis taking place in the primordial plasma is undoubt-
edly one of the observational pillars of the standard cosmological model,

indeed known simply as big-bang nucleosynthesis (BBN).” BBN probes the

"K. A. Olive, G. Steigman and T. P. Walker, Phys. Rept. 333, 389 (2000).

199



t-channel

Figure 6.1: The neutral current v,e” — v,e” interaction.

evolution of the universe during its first few minutes, providing a glimpse
into its earliest epochs (z ~ 10%). The physical processes involved, which
have been well-understood for some time, interrelate the four fundamental
interactions: gravity sets the dynamics of the “expanding cauldron,” weak
interactions determine the neutrino decoupling and the neutron-proton equi-
librium freeze-out, and electromagnetic and nuclear processes regulate the
nuclear reaction network. The final abundance of the synthesized elements
is sensitive to a variety of parameters and physical constants, allowing many
interesting probes on physics beyond the standard model. In the following
we provide a simple illustrative example.

Extrapolating the present state of the cosmos backwards in time, we infer
that at a temperature of say a few tens of MeV the universe was filled with a
plasma of protons, neutrons, electrons, positrons, photons, neutrinos, and an-
tineutrinos (p, n, v, e, e*, v, and 7). The baryons are of course nonrelativis-
tic while all the other particles are relativistic. Introducing the ratio of the
baryon number density to the photon number density, n = ny,/n, ~ 5x1071°,
we see that nmy /T ~ 107® and thus nucleons contribute a negligible fraction
to pr. These particles are kept in thermal equilibrium by various electromag-
netic and weak processes of the sort vv = eTe™, ve™ = ve™, nv, = pe”,
vy = ete™, vp = p, etc.

The v,e” and p,e” scattering processes can only proceed via a neutral
current interaction (see Fig. 6.1). The current-current form of the invariant
amplitude for the process v,e” — v,e” is analogous to that of vg — vq
scattering,

M (ve — ve) = pGTzF [79"(1 = 7°)v] [evu(cs — ¢57)e] - (6.1.23)
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In what follows, we take p = 1 and define the momenta according to
vu(w, k) +e (E,p) — v (W, ) +e (B 7). (6.1.24)

Since mean energies of interacting particles are of the order of the tempera-
ture T'~ MeV < my, we can express the averaged square amplitude (for
massless electrons) as

[N = 16GT[(cf +c5)* (0"ka) (k) + (¢ — ) (0 ko) (p7K)] - (6.1.25)
Now, using (3.3.48) we rewrite (6.1.25) as

(M = AGE((c] + ) + () — )]

= Grs*[A(cy + )+ (¢ — ¢4)*(1 + cos0)?] . (6.1.26)

The integration over the phase space (3.1.27) is straightforward, yielding

G2
o(ve” — e ) = 3—F s (5% 4 ¢ ¢+ 5P (6.1.27)
T
Comparing (5.1.29) and (5.1.30) it is easily seen that for 7,e” elastic scat-
tering, c4 — —c4 in (6.1.26) and so
G%’ e 2 e e e 2
o(ve” — ve ):3—S(CA -Gy +ey) . (6.1.28)
™
The process v.e~™ — v.e~ offers the intriguing possibility of studying
charged current and neutral current interference. The scattering amplitude
comes from two diagrams, with Z in the ¢t—channel and W in the u—channel
(see Fig. 6.2). The amplitude for t-channel process is 9MNC of (6.1.23) with
v = v,. For the u-channel we have
cC Gr 5 . 5
M = —— [ev"(1 — ") ve] [Pevu(l —7°)e] (6.1.29)
V2
where the minus sign relative to (6.1.23) arises from interchange of the out-
going leptons. We may use Fierz reordering theorem to rewrite (6.1.29) as
Gr

Mee = 7 [y (1 = °)e] [E7,(1 —7)e] . (6.1.30)
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Figure 6.2: The neutral and charged current v.e™ — vee™ interaction.

To obtain the amplitude M (v.e™ — vee”), we add the amplitudes (9N and
IMCC) for the two diagrams of Fig. 6.2. We find 9 = MNC + MCC is given
by (6.1.23) with

cy —~cy +1, cya —ca+1. (6.1.31)

Thus, with these replacements, the r.e™ and v.e™ elastic scattering cross
sections are in turn given by (6.1.27) and (6.1.28).

Now, from (6.1.15) we first obtain the number density of massless particles
ne-(T) = 0.182 T® and then compute the weak interaction rate (per neutrino
species)

Iy, ~ne- o(ve” = ve ), (6.1.32)

where v = p*k,/(Ew) = (1 — cosf) is the Moller velocity. Ocurring in the
rate is the product of cv. We adopt a thermal average followed by the angular
average on this factor; namely

(vo) = = /1 Ch o2, (1— cosf) d(cos) %G% 2, (B) (W), (6.1.33)

—5
2 3m
where s = 2Ew(1 — cosf), (E£) and (w) are given by (6.1.16), 2,, = 2,, =
2+ s+ 5% and 2, = (1+ &)+ (1+ )1+ %) + (14 ¢4)? The
electron neutrino interaction rate is then
T 5
I, =116x107%2 [ =2 . 6.1.34
¢ % (Me\/) ( )

Comparing (6.1.34), with the expansion rate (6.1.20) calculated for N(T') =
10.75

T 3
H ~ 446 x 107% <MeV) , (6.1.35)
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we see that at high T, weak interaction processes are fast enough. But as
the temperature drops below some characteristic decoupling temperature,
Tdec, neutrinos “decouple” - they lose thermal contact with electrons.® The
condition I, (T,3*) = H(T,J*) sets the decoupling temperature for neutrinos:
Ty ~ 1.56 MeV and Ty« ~ T ~ 2.88 MeV. In complying with the
precision demanded of our phenomenological approach it would be sufficient
to consider that all neutrino species decouple at 79 &~ 2 MeV.

The much stronger electromagnetic interaction continues to keep the pro-
tons, neutrons, electrons, positrons, and photons in equilibrium. The reac-
tion rate per nucleon, 'y ~ T3a?/m3, is larger than the expansion rate as

long as
2

m
T > 027]\]}1)1 ~ a very low temperature , (6.1.36)

where the non-relativistic form of the electromagnetic cross section, o ~
a?/m3%, has been obtained by dimensional analysis. The nucleons are thus
mantianed in kinetic equilibrium. The average kinetic energy per nucleon
is %T. One must be careful to distinguish between kinetic equilibrium and
chemical equilibrium. Reactions like vy — pp have long been suppressed, as
there are essentially no anti-nucleons around.

For T'> m. ~ 0.5 MeV ~ 5 x 10? K, the number of electrons, positrons,
and photons are comparable, n.- ~ n.+ ~ n,. The exact ratios are of course
easily supplied by inserting the appropriate “g-factors.” Because the universe
is electrically neutral, n.- —n.+ = n, and so there is a slight excess of electrons
over positrons. When T drops below m,, the process 7y — eTe™ is severely

—me/T a5 only very energetic photons

suppressed by the Boltzmann factor e
in the “tail-end” of the Bose distribution can participate. Thus positrons
and electrons annihilate rapidly via eTe”™ — 77 and are not replenished
(leaving a small number of electrons n.- ~ n, ~ 5 x 107%,,). As long as
thermal equilibrium was preserved, the total entropy remained fixed. We
have seen that if a is the separation between any pair of typical particles,
then sa® o« N(T)T3a® = constant. For T" 2 m,, the particles in thermal

equilibrium with the photons include the photon (g, = 2) and e* pairs

8R. A. Alpher, J. W. Follin and R. C. Herman, Phys. Rev. 92, 1347 (1953);
Ya. B. Zel’dovich, Adv. Astron. Astrophys. 3, 241 (1965); Sov. Phys. Usp. 9, 602
(1967).
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(gt = 4). The effective total number of particle species before annihilation
i8 Npefore = 11/2. On the other hand, after the annihilation of electrons and
positrons, the only remaining abundant particles in equilibrium are photons.
Hence the effective number of particle species is N,ger = 2. It follows from
the conservation of entropy that

11
- (Ta)’

5 = 2(T,a)®

(6.1.37)

before after

That is, the heat produced by the annihilation of electrons and positrons
increases the quantity 7.a by a factor of

(T'ya)|after 11 1/3
- = — ~14. 1.
(T'ya) |bef0re 4 (6 38)

Before the annihilation of electrons and positrons, the neutrino temperature
T, is the same as the photon temperature 7,. But from then on, 7, simply
dropped like @™, so for all subsequent times, T, a equals the value before
annihilation,

(Tl/a')|after - (Tl/a')|before - (T'ya')|before . (6139)

We conclude therefore that after the annihilation process is over, the photon
temperature is higher than the neutrino temperature by a factor of

5 (Tfy a) ‘ after
T,

=" ~14. (6.1.40)
after (T,,CL) |aftor

The energy density stored in relativistic species is customarily given in

terms of the so-called “effective number of neutrino species,” N, through

7 4\
L+ 3 <ﬁ> N;H] Py - (6.1.41)
Without a doubt,

Ne (pR—m)

14 pl/

898 (1B ! 'gr (TF !
7%7(?”) +ZF:7 ) (6.1.42)
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where p, denotes the energy density of a single species of massless neutrinos,
T's(r) is the effective temperature of boson (fermion) species, and the primes
indicate that electrons and photons are excluded from the sums.” The nor-
malization of N is such that it gives N = 3 for three families of massless
left-handed standard model neutrinos. For most practical purposes, it is
accurate enough to consider that neutrinos freeze-out completely at about
1 MeV. However, as the temperature dropped below this value, neutrinos
were still interacting with the electromagnetic plasma and hence received a
tiny portion of the entropy from pair annihilations. The non-instantaneous
neutrino decoupling gives a correction to the normalization ANT = 0.046.10
Near 1 MeV, the CC weak interactions,

n, =pe ., net =p+rv, n=pt+e +r. (6.1.43)

guarantee neutron-proton chemical equilibrium. Defining A, as the summed
rate of the reactions which convert neutrons to protons,

Aip = A(nve = pe”) + A(net = pi.) + A(n — pe™2.) , (6.1.44)

the rate \,, for the reverse reactions which convert protons to neutrons is
given by detailed balance:

Apn = App € 2T, (6.1.45)

where Am = m,,—m, = 1.293 MeV. For simplicity, in (6.1.45) we ignored the
possibility of a large chemical potential in electron neutrinos. The chemical
potential of electrons is negligible since any excess of electrons that survive
the annihilation epoch at T" ~ m, must equal the small observed excess of
protons, given that the universe appears to be electrically neutral to high

9G. Steigman, D. N. Schramm and J. E. Gunn, Phys. Lett. B 66, 202 (1977);
G. Steigman, K. A. Olive, D. N. Schramm and M. S. Turner, Phys. Lett. B 176, 33
(1986).

0D, A. Dicus, E. W. Kolb, A. M. Gleeson, E. C. G. Sudarshan, V. L. Teplitz and
M. S. Turner, Phys. Rev. D 26, 2694 (1982); S. Dodelson and M. S. Turner, Phys. Rev.
D 46, 3372 (1992); G. Mangano, G. Miele, S. Pastor and M. Peloso, Phys. Lett. B 534,
8 (2002); G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P. D. Serpico, Nucl.
Phys. B 729, 221 (2005).
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accuracy. The evolution of the fractional neutron abundance X,y = n,/ny
is described by the balance equation

an/N(t)

o = (O = Xy (O] = Ay (6) Xy (1) (6.1.46)

where ny is the total nucleon density at this time, ny = n, + n,. The
equilibrium solution is obtained by setting d.X,,/n(t)/dt = 0:

X (1) = = [14 A/ (6.1.47)

The neutron abundance tracks its value in equilibrium until the inelastic
neutron-proton scattering rate decreases sufficiently so as to become compa-
rable to the Hubble expansion rate. At this point the neutrons freeze-out,
i.e. go out of chemical equilibrium. The neutron abundance at the freeze-

out temperature 7" /(])V = (.75 can be approximated by its equilibrium value
(6.1.47),

TFO

X (Tojae) = X5 (Tan) = [1 + e n/N] " (6.1.48)
Since the ratio Am/T nF/CJ)V is of O(1), a substantial fraction of neutrons survive
when chemical equilibrium between neutrons and protons is broken.

At this time, the photon temperature is already below the deuterium
binding energy Ap ~ 2.2 MeV, thus one would expect sizable amounts of D
to be formed via np — D~ process. However, the large photon-nucleon den-
sity ratio n~! delays deuterium synthesis until the photo—dissociation process
become ineffective (deuterium bottleneck). Defining the onset of nucleosyn-
thesis by the criterion

eAp/TeeNy 1 (6.1.49)

we obtain Tgpny ~ 89 keV. Note that (6.1.49) ensures that below Tgpy the
high energy tail in the photon distribution, with energy larger than Ap, has
been sufficiently diluted by the expansion. At this epoch, N(T) = 3.36,
hence the time-temperature relationship (6.1.21) dictates that nucleosynthe-
sis begins at

tgpy >~ 167 s ~ 180 s, (6.1.50)
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as widely popularized by Weinberg.!!

Once D starts forming, a whole nuclear process network sets in. When the
temperature dropped below ~ 80 keV, the universe has cooled sufficiently
that the cosmic nuclear reactor can begin in earnest, building the lightest
nuclides through the following sequence of two-body reactions

pn — D,

pD —3He~, DD —3Hen, DD — pT,

TD —'Hen, ‘He T —Lin,

*Hen — p'T, SHeD —*Hep, 3*He*He —"Berw, ° (6.1.51)

Lip —*He*He, "Ben —'Lip,

By this time the neutron abundance surviving at freeze-out has been depleted
by [-decay to
Xn/N(TBBN) ~ Xn/N(TE/?V) 6_tBBN/Tn s (6152)

where 7,, >~ 887 s is the neutron lifetime. Nearly all of these surviving
neutrons are captured in *He because of its large binding energy (Asy, =
28.3 MeV) via the reactions listed in (6.1.51). Heavier nuclei do not form in
any significant quantity both because of the absence of stable nuclei with A=>5
or 8, which impedes nucleosynthesis via n *He, p “He or *He *He reactions,
and because of the large Coulomb barrier for reactions such as *He T — "Li
v and 3He *He — "Be v. By the time the temperature has dropped below
~ 30 keV, a time comparable to the neutron lifetime, the average thermal
energy of the nuclides and nucleons is too small to overcome the Coulomb
barriers; any remaining free neutrons decay, and BBN ceases. The resulting
mass fraction of helium, conventionally referred to Y, is simply given by

Yp ~ 2Xn/N<tBBN> = 0.251 3 (6153)

where the subscript p denotes primordial. The above calculation demon-
strates how the synthesized helium abundance depends on the physical pa-
rameters. After a bit of algebra, (6.1.53) can be rweritten as'?

Y, ~ 0.251 + 0.014 AN*F + 0.0002A7, + 0.009 In <$) . (6.1.54)

1S, Weinberg, The First Three Minutes (Basic Books, New York, 1977).
128, Sarkar, Rept. Prog. Phys. 59, 1493 (1996).

207



In summary, primordial nucleosynthesis has a single adjustable parame-
ter: the baryon density. Observations that led to the determination of pri-
mordial abundance of D, *He and “Li can determine 7. The internal consis-
tency of BBN can then be checked by comparing the abundances of the other
nuclides, predicted using this same value of 77, with observed abundances. In-
terestingly, in contrast to the other light nuclides, the BBN-predicted primor-
dial abundance of *He is very insensitive to the baryon density parameter.
Rather, the *He mass fraction depends on the neutron-to-proton ratio at
BBN because virtually all neutrons available at that time are incorporated
into *He. Therefore, while D, 3He, and "Li are potential baryometers, ‘He
provides a potential chronometer.

The observationally-inferred primordial fractions of baryonic mass in *He
(Y, = 0.2472 £ 0.0012, Y, = 0.2516 £ 0.0011, Y, = 0.2477 £ 0.0029, and
Y, = 0.240 + 0.006)'® have been constantly favoring N < 3.11 Out of
the blue, two recent independent studies yield Y,, values somewhat higher
than previous estimates: Y, = 0.2565 £ 0.001(stat) £ 0.005(syst) and Y, =
0.2561 £ 0.011.* For 7,, = 885.44+0.9 s and 7,, = 878.5 £ 0.8 s, the updated
effective number of light neutrino species is reported as N = 3.687050 (20)
and Nt = 3.8015%0 (20), respectively.

The photons in the presently observed CMB were last scattered at T ~
3x 103 K, when ions and electrons combined to make hydrogen atoms and the
primordial plasma became predominantly neutral.!® In practice, this takes
place at z ~ 1100, some 400,000 yr after BBN. A key observable quantity
inherent of the relic photons is the variation in temperature (or intensity)
from one part of the microwave sky to another. Observations show that the
CMB contains anisotropies, ATSMB(6, ¢)/TMB < 1075, over a wide range

13Y . 1. Izotov, T. X. Thuan and G. Stasinska, Astrophys. J. 662, 15 (2007); M. Peimbert,
V. Luridiana and A. Peimbert, Astrophys. J. 666, 636 (2007); G. Steigman, Ann. Rev.

Nucl. Part. Sci. 57, 463 (2007).
14V, Simha and G. Steigman, JCAP 0806, 016 (2008).
15Y. I. Izotov and T. X. Thuan, Astrophys. J. 710, L67 (2010); E. Aver, K. A. Olive

and E. D. Skillman, JCAP 1103, 043 (2011); E. Aver, K. A. Olive and E. D. Skillman,

JCAP 1005, 003 (2010).
16This is often referred to as the “recombination era” a singularly inappropriate term,

for at the time we were considering, the nuclei and electrons had never in the previous
history of the universe been combined into atoms!
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of angular scales. These anisotropies are usually expressed using a spherical
harmonic expansion of the CMB sky

T, 6) =3 i Vi (6, 6) - (6.1.55)
Im

The vast majority of the cosmological information is contained in the tem-
perature 2-point function, i.e., the variance as a function of only angular
separation, since we notice no preferred direction.

The CMB has a mean temperature of TgMB, which can be considered
as the monopole component of CMB maps, agy. Monopole measurements
can only be made with absolute temperature devices, such as the FIRAS
instrument on the COBE satellite. A blackbody of the measured temperature
from (6.1.18) corresponds to

8 ]{ITCMB 4
Py = % = 7.56464 x 107(T5MP /K)* erg/em? (6.1.56)
and o (3
= % TOMB ~ 411 em ™. (6.1.57)

(Recall that 1 J = 107 erg = 6.24 x 10" eV.)

The largest anisotropy is in the ¢ = 1 (dipole) first spherical harmonic,
with amplitude 3.355 + 0.008 mK. The dipole is interpreted to be the re-
sult of the Doppler shift caused by the solar system motion relative to the
nearly isotropic blackbody field, as confirmed by measurements of the radial
velocities of local galaxies. The motion of an observer with velocity 5 = v/c
relative to an isotropic Planckian radiation field of temperature T produces
a Doppler-shifted temperature pattern

(15
1— Bcost
~ Tp[1+ Bcosf+ (8°/2) cos(20) + O(B%)] . (6.1.58)

At every point in the sky, one observes a blackbody spectrum with tem-
perature T'(f). The implied velocity for the solar system barycenter is v =
369.0 + 0.9 km/s, assuming a value Ty = T.°MP, towards (I,b) = (263.99° £
0.14°,48.26°0.03°), in galactic coordinates. Such a solar system motion im-
plies a velocity for the Galaxy and the Local Group of galaxies relative
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to the CMB. The derived value is vpg = 627 £ 22 km/s towards (I,b) =
(276° £ 3°,30° £ 3°), where most of the error comes from uncertainty in the
velocity of the solar system relative to the Local Group. The dipole is a
frame-dependent quantity, and one can thus determine the “absolute rest
frame” as that in which the CMB dipole would be zero. Our velocity relative
to the Local Group, as well as the velocity of the Earth around the Sun and
any velocity of the receiver relative to the Earth, is normally removed for the
purposes of further CMB anisotropy study.

The variations in the CMB temperature maps at higher multipoles (¢ > 2)
are interpreted as being mostly the result of perturbations in the density of
the early universe, manifesting themselves at the epoch of the last scattering
of the CMB photons. On sub-degree scales, 100 < ¢ < 1000, the rich struc-
ture in the anisotropy spectrum is the consequence of gravity-driven acoustic
oscillations occurring before the primordial plasma in the universe became
neutral. Perturbations inside the horizon at last scattering have been able to
evolve causally and produce anisotropy at the last scattering epoch, which
reflects this evolution. The frozen-in phases of these sound waves imprint a
dependence on the cosmological parameters, which gives CMB anisotropies
their great constraining power.

The underlying physics can be understood as follows. Before the uni-
verse became neutral, the proton-electron plasma was tightly coupled to the
photons, and these components behaved as a single photon-baryon fluid.
Perturbations in the gravitational potential dominated by the dark matter
component (see Sec. 6.2) were steadily evolving. They drove oscillations in
the photon-baryon fluid, with photon pressure providing most of the restor-
ing force and baryons giving some additional inertia. The perturbations were
quite small in amplitude, O(107°), and so evolved linearly. That means each
Fourier mode developed independently, and hence can be described by a
driven harmonic oscillator with frequency determined by the sound speed in
the fluid. Thus the fluid density underwent oscillations, giving time varia-
tions in temperature. After the universe (re)combined, the radiation decou-
pled from the baryons and freely streamed towards us. At that point, the
phases of the oscillations were frozen-in and became projected on the sky as
a harmonic series of peaks. The physical length scale associated with the
peaks is the sound horizon at last scattering. This length is projected onto
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the sky, leading to an angular scale that depends on the geometry of space,
as well as the distance to last scattering. Hence the angular position and
relative heights of the peaks can be used to pull out information about the
cosmological parameters (such as the spatial curvature of the universe, the
cosmological baryon and dark matter densities, etc.).!”

The way that we use CMB measurements to determine N is relatively
simple. The relativistic particles that stream freely influence the CMB in
two ways: (i) their energy density changing the matter-radiation equality
epoch, and (7i) their anisotropic stress acting as an additional source for the
gravitational potential via Einstein’s equations. Incidentally, the relativistic
particles that do not stream freely, but interact with matter frequently, do
not have a significant anisotropic stress because they isotropize themselves
via interactions with matter; thus, anisotropic stress of photons before the
decoupling epoch was very small. Neutrinos, on the other hand, decoupled
from matter much earlier (~ 2 MeV), and thus their anisotropic stress was
significant at the decoupling epoch.

The number of light relativistic species becomes a function of the matter
density (€,,h?) and the redshift of matter-radiation equality (2),

2 2 4/3 -1
Do Sl + ! <i) / N;ff] : (6.1.59)
Qrh?  Qh?

1+ 2, =
+ 2o s \11

where Q. h? = 2.469 x 107° is the present-day photon energy density. The
variation in N°T reads

eff 2
AN g g5 BN o 45 Bl

Nil(j)ﬂ‘ — W 1 + Zeq . (6.1-60)

The equality redshift is one of the fundamental observables that one can
extract from the CMB power spectrum. More specificallyy, WMAP data
constrain zeq mainly from the height of the third acoustic peak relative to
the first peak.!® The fractional error in €2,,h? is determined using external
data: the latest distance measurements from the Baryon Acoustic Oscilla-
tions (BAO) in the distribution of galaxies and precise measurements of the

ITFor a thorough introduction to CMB anisotropies, see for example, S. Dodelson, Mod-

ern Cosmology, (Academic Press, Amsterdam, Netherlands, 2003).
I8E. Komatsu et al. [WMAP Collaboration|, Astrophys. J. Suppl. 192, 18 (2011).
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Hubble constant Hy.! The parameter constraints from the combination of
WMAP 7-year data, BAO, and Hy lead to N = 4.34708° (68%CL).

All in all, though significant uncertainties remain, the most recent cos-
mological observations show a consistent preference for additional relativistic
degrees of freedom during BBN and the CMB epochs,

ANCT — 0.68703  (lo) BBN
Y] 1347988 (1) WMAP + BAO+H,

(6.1.61)

We have seen that in models involving new TeV-scale gauge bosons, the
new U(1) symmetry often prevents the generation of Majorana masses, lead-
ing to three superweakly interacting right-handed neutrinos. Interestingly,
the superweak interactions of these Dirac states (through their coupling to
the TeV-scale gauge bosons) tolerate right-handed neutrino decoupling just
above the QCD phase transition (180 MeV < Tj}gc < 220 MeV). In this
intermediate temperature range, the residual temperature ratio between vy,
and v at BBN and at the CMB epochs is such as to generate extra rela-
tivistic degrees of freedom consistent (within 1o) with WMAP observation

and the most recent estimate of the primordial *He mass fraction.?

6.2 Dark Matter

6.2.1 Observational Evidence

The earliest, and perhaps still most convincing, evidence for dark matter
comes from the observation that various luminous objects (stars, gas, clouds,
globular clusters, or entire galaxies) move faster than one would expect if
they only felt the gravitational atraction of other visible objects.?! The
classic example is the measurement of galactic rotation curves. The rotational

9W. J. Percival et al. [SDSS Collaboration], Mon. Not. Roy. Astron. Soc. 401, 2148

(2010); A. G. Riess et al., Astrophys. J. 699, 539 (2009).
20L. A. Anchordoqui and H. Goldberg, arXiv:1111.7264.
21F. Zwicky, Helv. Phys. Acta 6, 110 (1933); V. C. Rubin, N. Thonnard and W. K. . Ford,

Astrophys. J. 238, 471 (1980); K. G. Begeman, A. H. Broeils and R. H. Sanders, Mon.
Not. Roy. Astron. Soc. 249, 523 (1991).

212



velocity v of an object on a stable Keplerian orbit with radius r around a
galaxy scales like v(r) o< /M (r)/r, where M (r) is the mass inside the orbit.
If r lies outside the visible part of the galaxy and mass tracks light, one would
expect v(r) o« 1/4/r. Instead, in most galaxies one finds that v becomes
approximately constant out to the largest values of r where the rotation
curve can be measured; in our own galaxy, v ~ 220 km/s at the location
of our solar system, with little change out to the largest observable radius.
This implies the existence of a dark halo, with mass density p(r) o< 1/r2, i.e.,
M (r) o< r. Of course, at some point p will have to fall off faster (in order to
keep the total mass of the galaxy finite), but we do not know at what radius
this will happen. This leads to a lower bound on the cold dark matter mass
density, Qcpy < 0.1,

The observation of clusters of galaxies tends to give somewhat larger val-
ues, Qcpm 2 0.2, A particularly compelling example involves the bullet
cluster (1E0657-558), which recently (on cosmological time scales) passed
through another cluster. As a result, the hot gas forming most of the clus-
ters baryonic mass was shocked and decelerated, whereas the galaxies in the
clusters proceeded on ballistic trajectories. Gravitational lensing shows that
most of the total mass also moved ballistically, indicating that dark matter
self-interactions are indeed weak.??

The most accurate, if somewhat indirect, determination of Qcpym cur-
rently comes from global fits of cosmological parameters. In this regard,
the WMAP mission has recently produced sky maps from 7 years of ob-
servations. These data rigorously test the standard cosmological model
and place constraints on the matter and vacuum energy densities: €2, =
0.266 + 0.26 and Q4 = 0.734 £ 0.029, respectively.?> The matter bud-
get has only 3 free parameters: the present day Hubble expansion rate
ho = 0.710£0.025, the matter density ,,h2 = 0.133415:0022, and the density
in baryons, (k2 = 0.02258T5 0o0es-2* This confirms that the structure of the

22D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones and

D. Zaritsky, Astrophys. J. 648, 1109 (2006).
ZD. Larson et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 16 (2011).
24The latter is consistent with the estimate from BBN, based on measurements of deu-

terium in high redshift absorption systems, Qph% = 0.020 & 0.002. S. Burles, K. M. Nol-
lett and M. S. Turner, Astrophys. J. 552, L1 (2001); R. H. Cyburt, B. D. Fields and
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universe is dictated by the physics of as-yet-undiscovered cold dark matter
(Qcpmh? = 0.1109 4 0.0056) and the galaxies we see today are the remnants
of relatively small overdensities in the nearly uniform distribution of matter
in the very early universe.

The particle (or particles) that make up most of the dark matter must
be stable, at least on cosmological time scales, and non-baryonic, so that
they do not disturb the subprocesses of BBN. They must also be cold or
warm to properly seed structure formation, and their interactions must be
weak enough to avoid violating current bounds from dark matter searches.?
Among the plethora of dark matter candidates, weakly interacting massive
particles (WIMPs) represent a particularly attractive and well-motivated
class of possibilities. This is because they combine the virtues of weak scale
masses and couplings and their stability often follows as a result of discrete
symmetries that are mandatory to make electroweak theory viable, inde-
pendent of cosmology (see Appendix J). Moreover, WIMPs are naturally
produced with the cosmological densities required of dark matter.2 It is this
that we now turn to study.

6.2.2 WIMP Relic Density

Generic WIMPs were once in thermal equilibrium, but decoupled while strongly
non-relativistic. Consider a particle y (of mass m,) in thermal equilibrium
in the early universe. The evolution of the number density as the universe
expands is driven by Boltzmann’s equation,

Dy SH(T)ny = — (o) (n? — no?) (6.2.62)

p ny = —{ov)(n, —nl%), 2.
where n, is the number density of WIMPs, n{! is the equilibrium number
density, and (ow) is the thermally averaged annihilation cross section of the
x particles multiplied by their relative velocity. The product ov is usually

K. A. Olive, Phys. Lett. B 567, 227 (2003).
2G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005); J. L. Feng, Annals

Phys. 315, 2 (2005).

26R. J. Scherrer and M. S. Turner, Phys. Rev. D 33, 1585 (1986) [Erratum-ibid. D
34, 3263 (1986)]; K. Griest, M. Kamionkowski and M. S. Turner, Phys. Rev. D 41, 3565
(1990).
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referred to as the annihilation cross section, with the velocity implied. At
equilibrium, (6.1.15) gives the number density of a non-relativistic species

mo T 3/2
ng = gy (#) e~/ (6.2.63)
where g, is the number of internal degrees of freedom of the WIMP parti-
cle. Note that in the very early universe, when n, ~ nil, the right hand
side of Eq. (6.2.62) is small and the evolution of the density is dominated by
Hubble expansion. As the temperature falls below m, , however, the equilib-
rium number density becomes suppressed and the annihilation rate increases,
rapidly reducing the number density. Finally, when the number density falls
enough, the rate of depletion due to expansion becomes greater than the an-
nihilation rate and the y particles freeze-out of thermal equilibrium. Defining
freeze-out temperature to be the time when n, (ov) = H, we have

ne_1 lm( 45 gy _myMpi{ov) )F, (6.2.64)
My TFO 8 273 TFO N(T}:O)

When solved by integration, for weak scale cross sections and masses, one
obtains xpo ~ 20 — 30. Recall that m,v?/2 = 3T/2, and so WIMPs freeze-
out with velocity v ~ 0.3. In (6.2.64) we have taken a typical weak cross
section derived from dimensional analysis

9 1 8 2
~ —_— ~ ]_ - - 2
o (47r) 7 07° GeV ™=, (6.2.65)

with ¢ ~ 0.65 and My = (Gr)~"/2 ~ 300 GeV. Freeze-out temperatures
5 GeV < TEO < 80 GeV correspond to WIMPs with 100 GeV < m, <
1500 GeV. Adding up the standard model degrees of freedom lighter than
80 GeV leads to N(T;°) = 92. (For a very heavy or very light WIMP, this
number may change somewhat, but is not expected to significantly modify
the result.) Altogether,

(ov) ~3x 1077 GeV 2~ 3 x 107 cm?/s. (6.2.66)

After freeze-out, the density of y particles that remain is given by

O p2 = Px _ My 10 GeV™' o 1
X = — = ~Y

Pe Pec MPI \/ N(Tpo) <UU> .
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Numerically, this expression yields
3x 107 cm?/s
{ov)

Thus we see that the observed cold dark matter density (Qcpyh? ~ 0.1) can
be obtained for a thermal relic with weak scale interactions.
Using direct and indirect detection methods, the hypothesis that relic

Qh% ~ 0.1 x (6.2.68)

WIMPs are the constituents of dark matter halos can be experimentally
verified for the local dark matter halo of our Galaxy.

6.2.3 WIMP Detection Schemes

When our galaxy was formed the cold dark matter inevitably clustered with
the luminous matter to form a sizeable fraction of the

py = 0.4 GeV/cm® (6.2.69)

galactic matter density implied by observed rotation curves. Unlike the
baryons, the dissipationless WIMPs fill the galactic halo which is believed to
be an isothermal sphere of WIMPs with average velocity

vy, = 300 km/s . (6.2.70)

In summary, we know everything about these particles (except whether they
really exist!). We know that their mass is of order of the weak boson mass;
we know that they interact weakly. We also know their density and average
velocity in our Galaxy given the assumption that they constitute the domi-
nant component of the density of our galactic halo as measured by rotation
curves.

For a first look at the experimental problem of how to detect these par-
ticles it is sufficient to recall that they are weakly interacting with masses in
the range

tens of GeV < m, < several TeV . (6.2.71)

WIMPs have a mass of order the weak boson mass, in the tens of GeV to
several TeV range. Lower masses are excluded by accelerator and (in)direct
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searches with existing detectors while masses beyond several TeV are ex-
cluded by cosmological considerations. Two general techniques, referred to
as direct (D) and indirect (ID), are pursued to demonstrate the existence of
WIMPs. In direct detectors one observes the energy deposited when WIMPs
elastically scatter off nuclei. The indirect method infers the existence of
WIMPs from observation of their annihilation products. WIMPs will anni-
hilate into neutrinos which can be detected in a generic Cherenkov detector
which measures the direction and, to some extent, the energy of a secondary
muon produced by a neutrino of WIMP origin in or near the instrument.

A series of first-generation experiments have demostrated that high en-
ergy neutrinos with ~ 100 GeV energy and above can be detected by ob-
serving the Cherenkov radiation from secondary particles produced in neu-
trino interactions inside large volumes of highly transparent ice or water
instrumented with a lattice of photomultiplier tubes. The IceCube neutrino
telescope, deployed near the Amundsen-Scott station, is the first second-
generation detector. This facility comprises a cubic-kilometer of ultra-clear
ice instrumented with long strings of sensitive photon detectors which record
light produced when neutrinos interact in the Antarctic ice-cap. The In-ice
array is complemented by IceTop, a surface air shower detector consisting of
frozen water tanks, which serve as a veto for atmospheric muon background.
The IceCube DeepCore sub-array is being built to expand the neutrino en-
ergy threshold by an order of magnitude, to energies as low as about 10 GeV.
With its lower neutrino energy threshold, DeepCore will have sensitivity to
WIMP masses 2-3 times lighter than the standard IceCube array.

The indirect detection is greatly facilitated by the fact that the sun rep-
resents a dense and nearby source of accumulated cold dark matter particles.
Galactic WIMPs, scattering off nuclei in the sun, lose energy. They may
fall below escape velocity and be gravitationally trapped. Trapped WIMPs
eventually come to equilibrium temperature and accumulate near the center
of the sun. While the WIMP density builds up, their annihilation rate into
lighter particles increases until equilibrium is achieved where the annihilation
rate equals half of the capture rate. The sun has thus become a reservoir
of WIMPs which we expect to annihilate mostly into heavy quarks and, for
the heavier WIMPs, into weak bosons. The leptonic decays of the heavy
quark and weak boson annihilation products turn the sun into a source of
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high-energy neutrinos with energies in the GeV to TeV range, rather than in
the keV to MeV range typical for neutrinos from thermonuclear burning.

The performance of future detectors is determined by the rate of elastic
scattering of WIMPs in a low-background, germanium detector and, for the
indirect method, by the flux of solar neutrinos of WIMP origin. Both are
a function of WIMP mass and of their elastic cross section on nucleons. In
standard cosmology WIMP capture and annihilation interactions are weak,
and we will suggest that, given this constraint, dimensional analysis is suffi-
cient to compute the scattering rates in germanium detectors as well as the
neutrino flux from the measured WIMP density in our galactic halo. We de-
rive and compare rates for direct and indirect detection of weakly interacting
particles with mass m, >~ my assuming:

e that WIMPs represent the major fraction of the measured halo density,
ie.

o4 Ge\?)/ 3 % 10508 = 12107 cm s
m, cm S My Gev

. (6.2.72)

Px = Ny Uy =

where my, gev = (m, /1 GeV) is in GeV units;

e a WIMP-nucleon interaction cross section based on dimensional anal-
ysis

? =opr =6 x 1072 cm? ; (6.2.73)

1
o(xN) = (Gpm?\,) —5
my,
e that WIMPs annihilate 10% of the time in neutrinos (this is just the

leptonic branching ratio of the final state particles in the dominant
annihilation channels yy — W*W~ or QQ, where Q is a heavy quark).

Clearly the cross section for the interaction of WIMPs with matter is
uncertain. Arguments can be invoked to raise or decrease it. Important
points are that (1) our choice represents a typical intermediate value, (2) all
our results for event rates scale linearly in the cross section and can be easily
reinterpreted, and (3) the comparison of direct and indirect event rates is
independent of the choice.
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Our conclusions will not be surprising. We find that the direct method is
superior if the WIMP interacts coherently and, if its mass is lower or compa-
rable to the weak boson mass my,. In all other cases, i.e. for relatively heavy
WIMPs and for all WIMPs interacting incoherently, the indirect method is
competitive or superior. Especially for heavier WIMPs the indirect tech-
nique is powerful because underground high energy neutrino detectors have
been optimized to be sensitive in the energy region where the neutrino in-
teraction cross section and the range of the muon are large. The IceCube +
DeepCore facility (with effective area ~ 10° m? and with appropriately low
threshold) can probe WIMP masses up to the TeV-range, beyond which they
are excluded by cosmological considerations.

For high energy neutrinos the muon and neutrino are aligned, with good
angular resolution, along a direction pointing back to the sun. The number of
background events of atmospheric neutrino origin in the pixel containing the
signal will be small. The angular spread of secondary muons from neutrinos
coming from the direction of the sun is well described by the relation ~
1.2° / V E,.(TeV).?" Measurement of muon energy, which may be only up
to order of magnitude accuracy in some experiments, can be used to infer
the WIMP mass from the angular spread of the signal. The spread contains
information on the neutrino energy and, therefore, the WIMP mass. More
realistically, measurement of the muon energy can be used to reduce the
search window around the sun, resulting in a reduced background.

Our analysis will quantify all statements above in a simple and totally
transparent framework. It finesses all detailed dynamics and gives answers
that are sufficiently accurate considering that the mass of the particle has
not been pinned down.

The number of solar neutrinos of WIMP origin can be calculated in 5
easy steps by determining

e the capture cross section in the sun, which is given by the product of
the number of target nucleons in the sun and the elastic scattering cross
section

oo = f[1.2x 10°] opa . (6.2.74)

21T, K. Gaisser, F. Halzen and T. Stanev, Phys. Rept. 258, 173 (1995) [Erratum-ibid.
271, 355 (1996)].
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This includes a focussing factor f given, as usual, by the ratio of ki-
netic and potential energy of the WIMP near the sun. It enhances the
capture rate by a factor 10;

the WIMP flux from the sun which is given by
bo = Oyo0/And® (6.2.75)
where d = 1 a.u. = 1.5 x 103 cm;

the actual neutrino flux, which is obtained after inclusion of the branch-
ing ratio. From (6.2.72),(6.2.73) and (6.2.74),(6.2.75)

1 -5
b, =107" X ¢ = 3x 1077 cm2s7h (6.2.76)
My GeV

the probability to detect the neutrino, which is proportional to

P = po, R, with
p = Avagadro# = 6 x 10%
0, = neutrino interaction cross section = 0.5 X 10_38E,,7Gev cm?

R,, = muon range = 500 cm £, gev ,

yielding
P=2x10""m} g (6.2.77)

Here we assumed the kinematics of the decay chain
XX — Wrw-
o

with £, = m, /2 (this would be m, /3 for @ decay) and E, = E,/2 =
my /4

finally,
dNip/dA = ¢, P =1.8 x 107 m, gey (year) ' (m?)~!'  (6.2.78)

where dNp/dA represents the number of events from the sun per unit
area (m?) detected by a neutrino telescope.

220



The linear rise of o,, R, with energy, which are the origin of the good
detection capability of neutrino telescopes for large WIMP masses, are valid
approximations up to
My miy

m

E, ~
so the approximations are valid for m, well into the TeV mass range. This
is sufficient as m, > 1 TeV is cosmologically unacceptable.

The event rate in a direct detector is proportional to the WIMP cross

section, flux and the density of targets m]_vl, ie.

% = mLN(?XJDA’ (6.2.80)
where dNp/dM represents the number of direct events per unit of target
mass.

We can now summarize our results so far by comparing a 10* m? first

generation neutrino detector (e.g., AMANDA) with a kilogram of hydrogen:

dNip/dA = 1.8 x 10*my gev (10" m?) ™ (year)™!
1.4

dNp /dM = (kg) ™" (year) ™"
My Gev
4...2 1
dNp/dM (10'm?\ 7810 62:81)
dNID/dA kg mx GeV

Direct detection is superior only in the mass range m, < 10 GeV, but this
region is, arguably, ruled out by previous searches. Indirect detection is
the preferred technique. This straightforward conclusion may, however, be
invalidated when WIMPs interact coherently and targets other than hydrogen
are considered.

The coherent enhancement factor for a nucleus A, including a factor A~!
for the target density, is given by

Ny = LAAmNPI (my +my)?
 A(Amy +my)? mim2

)’ (6.2.82)
(Ampy + m,)? o
1+
my

A+ X

mn

mx
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After inclusion of above coherence factors in Eq. (6.2.81), the ratio of direct
to indirect events (which is independent of the WIMP-nucleon cross section)
can be summarised by the following equation:

dNp/dM 7.8 x 10" N(Ap)
dNip/dA — miqey N(Aw) [p(Am)/p(H)]

As in Eq. (6.2.81) the units are 10* m? /kg. Ap and Arp are the atomic num-
bers appropriate for the nuclei involved in the direct detection and capture
in the sun, respectively. The latter is weighted by its relative mass abun-

(6.2.83)

dance [p(Ap)/p(H)] in the sun and a summation over elements is under-
stood. Because of additional nuclear form factor effects, which are neglected
in (6.2.83), it is adequate to consider oxygen, with a solar abundance of
p(Amp)/p(H) = 0.011 and A;p = 16, as a “typical” element.

Our simple evaluations, made so far, overestimate the indirect rates for
very heavy WIMPS because high energy neutrinos, created by annihilation
near the core, may be absorbed in the sun. Absorption is stronger for neu-
trinos and, therfore, mostly antineutrinos form the signature for very heavy
WIMPS. The probability that an antineutrino escapes without absorption
is well parametrized by (1 + 3.8 x 107E,)~", where E, ~ m, /2. The final
rates for indirect detection are

+ o)
dNip/dA ~ {1.8 x 107*my gev} § 0.011A° TnN]
mN
x {14+ 1.9% 10 mycev} " (6.2.84)

Next, we estimate backgrounds. For the indirect detection the back-
ground event rate is determined by the flux of atmospheric neutrinos in the
detector coming from a pixel around the sun. The number of events in a
10* m? detector is ~ 10*/E,(TeV) and the pixel size is determined by the
angle between muon and neutrino ~ 1.2° / V E,(TeV). Using the kinematics

E, >~ m, /4 we obtain

102/Eu(TeV) L1x 10°
5 =
27r/ 1.2° 175 My qev
v/ E.(TeV)
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This is only valid for large m,, i.e. for E, = m, /4 > 100 GeV. Estimates of
background event rates without this approximation are given in Table 6.2.
For large m,, the signal to background ratio is

Table 6.2: Indirect background.

# bkgd. events # pixels of solar bkgd. events
in 10% m? size in 2w per 10*m?
E,(GeV) in 27 per pixel, per year
10 3200 140 23
100 1060 1.4 x 103 0.8
1000 110 1.4 x 10* 8 x 1073

N\ _ dNip/dA
B), ~ dBip/dA

Clearly, the extremely optimistic predictions for signal-to-noise are unlikely

~ 7.2 % 107°m3 qoy (6.2.85)

to survive the realities of experimental physics. One expects, typically, to
measure muon energy only to order-of-magnitude accuracy in the initial ex-
periments. The energy of showers initiated by electron neutrinos should be
determined to a factor 2. It is not excluded that future, dedicated experi-
ments may do better. The conclusion that high energy muons pointing at
the sun represents a superb signature, is unlikely to be invalidated.

For direct detection experiments the background is estimated to be about
300 events per year per kg.?® Signal-to-noise therefore exceeds unity up to
2 TeV WIMP mass.

The relative merits of the two methods are summarised in Table 6.3, which
establishes that a kilogram of germanium and a 10* m? are competitive.

We conclude that the direct method yields more events for the lower
masses, even when compared to a 10% m? detector like IceCube. As expected,
the indirect method is competitive for heavier WIMPs with a detection rate
growing like E? or mi. A 10° m? covers the full WIMP mass range, even if the
WIMPs do not coherently interact with nuclei in the sun. These conclusions
are reinforced after considering the signal-to-noise for both techniques. Our
final results are encapsulated in Fig. 6.3.

28@G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996).
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#events #events
/kglyear 1104m2/year

Direct Indirect

104+ 108

103 102

102 | L ! 10
10 102 108 5000 102 108 5000
My My
#events
lyear
104

— Direct: 1 kg Ge
103 -—- Indirect: 10°m? telescope

—-— absorption of v in sun

102
a(XN) = 6 x 104% cm?

10

Figure 6.3: The results shown are for o(xN) = 6 x 1072 cm?. All event rates

scale linearly in o(xN). The relative direct and indirect rates are independent
of a(xN).
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Table 6.3: Event rates and signal to background (N/B).

m, (GeV) Direct (/kg/year) Indirect (/10% m? /year)
events  N/B events N/B
50 2.2 x 103 7 2.3 x 10! ~1
500 1.1 x 103 7 2 x 102 ~ 102
2000 2.9 x 102 1 1.7 x 102 ~ 104

We emphasize that above considerations are valid for the specific and
much studied example where the lightest supersymmetric particle is Nature’s
WIMP. Clearly dynamics, which is now defined, can alter our conclusions,
but only in “conspiratorial” ways. Dynamics can, on the other hand, increase
rates as well, sometimes by well over an order of magnitude, over and above
the rates obtained from dimensional analysis in this paper. Our qualitative
conclusions are valid, at least in some average sense, in SUSY.

We feel that the development of detectors should be guided by an analysis
like ours rather than by dynamics of theories beyond the standard model for
which there is, at present, no experimental guidance.

The sensitivity of direct detection experiments has been improving at
a steady rate. The data collected by the Cryogenic Dark Matter Search
(CDMS-II) experiment and the XENON100 detector currently have produced
the strongest limits on the coherent elastic scattering cross section.?? These
data exclude coherent elastic scattering cross sections larger than approxi-
mately 8 x 107* c¢m? for a 50 GeV WIMP and 5 x 10~* em™2 (m,, /500 GeV)
for a heavier WIMP. It is noteworthy that the allowed region of the parame-
ter space is well below the weak-scale cross section ops. The state of affairs
is different for incoherent scattering. Even with data analyzed from only 22
of the 86 strings deployed, the IceCube Collaboration established the most
stringent limit on WIMP incoherent interactions. For WIMP masses of about
500 GeV, cross sections larger than 2 x 1074 cm? and 2 x 10738 cm? are ex-
cluded at the 90%CL on the assumption of hard (W*W~) and soft (QQ)
annihilation channels, respectively.3’

297. Ahmed et al. [CDMS-II Collaboration], Science 327, 1619 (2010); E. Aprile et al.

[XENON100 Collaboration], Phys. Rev. Lett. 105, 131302 (2010).
30R. Abbasi et al. [IceCube Collaboration], Phys. Rev. Lett. 102, 201302 (2009).
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6.3 Lookahead

Shielded at the nexus of particle physics, astrophysics, and cosmology grows
one of the most compelling mysteries that faces physics today: that of un-
ravelling the identity and properties of dark matter. From measurements of
galactic rotation curves and velocity dispersions to observations of the gravi-
tational lensing of galaxy clusters and the detection of specific acoustic peaks
of the CMB, ample circumstantial evidence suggests that most of the matter
in the universe does not interact strongly or electromagnetically. Such matter
is therefore electrically neutral (dark) and presumed non-relativistic (cold).
Beyond these properties, however, very little is known about the nature of
dark matter.

To expose the identity of dark matter, it is necessary to measure its non-
gravitational couplings. Many approaches have been developed to attempt to
detect dark matter. Such endeavors include direct detection experiments that
hope to observe the scattering of dark matter particles with the target mate-
rial of the detector and indirect detection experiments, which are designed to
search for the products of WIMP annihilation into gamma-rays, anti-matter,
and neutrinos. In addition, particle accelerators of the next generation, such
as the LHC, may have enough energy to directly produce WIMPs. Once
produced, WIMPs would escape the detector without interactions, leading
to an apparent energy imbalance, or “missing energy” signature. Monojets
and final states with multiple jets plus £ could become the smoking gun for
dark matter hunters. Should we be so lucky, the coming years of exploration
will not only provide our first incisive probe of the Fermi scale, but they
will no doubt open a wondrous new view of the cosmos, its contents, and its
evolution.
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Appendix A

Decay Rate in Terms of )i

In nonrelativistic quantum mechanics, an unstable atomic state shows up
in scattering experiments as a resonance. Such an unstable particle decays
according to the exponential law,

[W()|* = [(0) %™, (A.0.1)

where 7 = 1/I" is called the lifetime of the state. (The particle half-life is
7 In2.) Thus, the time dependence of ¢ () for an unstable state must include
the decay factor I'/2; that is

Y(t) ~ e Mt IH2 (A.0.2)

where M is the rest mass energy of the state. As a function of the center-of-
mass energy E of the system, the state is described by the Fourier transform

X(FE) = /Q/J(t)eiEtdt (A.0.3)
1

E— M+ (il/2)’ (4.0.4)

the experimenter thus sees a reaction rate of the form

1

|X(E)‘2 X (E — M)2 + (F/2)2 )

(A.0.5)
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This function has a sharp peak centered at M with a width determined by
I'. In the narrow-width-approximation (A.0.5) becomes
(T'/2m) 2r 27

X(B)[? o EoraaE T o T CE-M. (A.0.6)

The Breit-Wigner formula (A.0.4) also applies in relativistic quantum
mechanics.! In particular, it gives the scattering amplitude for processes
in which initial particles combine to form an unstable particle, which then
decays. The unstable particle viewed as an excited state of the vacuum,
is a direct analogue of the unstable non-relativistic atomic state. Particles
that decay by strong interactions do not live long enough to leave tracks in
an experimentalist’s detector. Rather, they are identified by tracking their
decay products. The mass of the decaying particle is the total energy of
these products as measured in its rest frame. Due to its short lifetime, the
uncertainty in its mass (~ h/At) is sufficiently large to be directly observable.
For example, in 7p scattering, the AT is formed and rapidly (7 ~ 1072 )
decays, mp — ATt — xtp*. The decay rate of the AT (assumed to be at
rest) is

Number of decays per unit time

= (A.0.7)

Number of A++ particles present -

Hence, the differential rate for the decay A™" — 77p into momentum ele-
ments d>p.+, d®p, of the final state particles is

ar— L mp Er gm0 (A08)
2B (2m)2E, (2n)2E, o

where 2E{" is the number of decaying particles per unit volume and 90 is the
invariant amplitude which has been computed from the relevant Feynman
diagram. The formula has the form of (3.1.20). In 1952, using a beam
of 77 with varying amounts of energy directed through a hydrogen target
(protons), Fermi found that the number of interactions (7" scattered) when
plotted versus the pion kinetic energy has a prominent peak around 200 MeV,
with ' ~ 100 MeV.2

1G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).
2H. L. Anderson, E. Fermi, E. A. Long and D. E. Nagle, Phys. Rev. 85, 936 (1952).
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Appendix B

Trace Theorems and Properties

of v-Matrices

Using (1.5.58) the trace of a product of y-matrices can be evaluated without
ever explicitly calculating a matrix product. The trace of one v matrix is
easy,
Tr(v*) = Tr(y°y°+*) because (7°)* = 1
= —Tr(y°y*4° because
—Tr(y°y°4H) using cyclic property of trace
= —Tr(y").

The trace theorems are (using again the notation ¢ = v,a"):
e Tr1=4

e Trace of an odd number of ~,’s vanishes.

Tr(dy ... dy) = Tr(dy ... d,v°7°); now, the anticonmmutation relation

{v*,7°} = 0 leads to: (—1)" Tr(~® dy... d,7°) = (=1)" Tr(dy ... dy).
Therefore, if n is odd, Tr(d; ... d,) = 0.

e Tr(d{)=4a.b
Te(d §) = $Te(d Y+ W f) = 329" a,b, Tr(1) = 4a . b.
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o Tr(d W ¢ d)=4[(a.b)(c.d) —(a.c)b.d) +(a.d)b.c)

Te(d Y ¢ d) = Te[(— P d+2a.b) ¢4
= 2a.bTx(¢ d) = Te(J d ¢ d)

8(a.b)(c.d)—2a.cTe(d W)+ Te(¥ ¢ & d)
= 8(a.b)(c.d)—8(a.c)(b.d)+8(a.d)(b.c)

— Tr(§éd d).
Hence, Te(d J ¢ d) = 4](a . b)(c . d) — (a . &)(b . d) + (a . d)(b . ).
o Tr(y;) =0
Tr(ys) = Tr(y"9°%) = =Tr(y"7*7") = =Tr(y"7*y") = = Tr(+*).
oTr(vs d ) = 0 (B.0.1)

Te(ys d §) = Tr(iy*y'7*7*9"7") abs
= [=2ig" Te(v'9*7°7") + 2ig™ Tr(v'7**4")
= Tr(insy' 7"y "")] aby

Hence, Tr(ys ¢ §) = 2i[—g™Tr(y'v**y") + g™ Tr(y'v*y*+")]aubu = 0.

oTr(vs d U ¢ d) = di€pn, a* b *d7, (B.0.2)

where €,,,, = +1 (—1) for p, v, A, 0 and even (odd) permutation of 0, 1, 2, 3;
and 0 if two indices are the same. Interchanging any two of the indices
simply changes the sign of the trace, and so it must be proportional to €,
The overall constant can be easily obtained by plugging in (urvAo) = (0123).
Expressions resulting from the use of the last formula can be simplified by
means of the identities: €*#79 €apys = —24; eaﬁ“’“eaﬁw = —60";

e =P — (5% §F — 5% 52y, B.0.3
P mvp pY o p’ o

Other useful results for simplifying trace calculations (that follow directly
from the trace theorems) are:

o Y =4x1T=4
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.'Vudfy —’7;1(2@# d)_Qﬁl ddg=-24d
o Y d = (2a,— gy )20 = ) =4da. b—4d dY+4dY=4a.b
e A Y A= 2a— dv) Y =2§¢d—4(a.c) d

=2[2(b.c)—

P d—ab.c)d=-2¢)4d

The following relations are useful for the computation of the invariant
amplitude of weak interaction processes:

o Tr(v'§h17"¥s) = 20iTr (7" %)

= Tr($7y"7"Ps)

= 2p}1LTr(7VZ/52) - QQWTT(ZZ‘H/%) + Tl"(lfjﬂu”yuléz)

= QP}fTr(VV%) - 29WT1"(Z/51152) —I—QpSTr(]ﬁlv ) —Tr(]&ly”]ﬁﬂ“)
= 2[PATe(V¥y + 5 Te (v 1) — 9" Tr(Bishy) | — Tr (4" $17"1o)
= 4[pips + phpy — " (p1-p2)] - (B.0.4)

o Tr[v"(1 — ¥°) 7" (1 — +°)phs)]

and because {7*,7°} = 0 we have

Tr[v*(1 — )y (1 — "))

= TPy o + VY17 Y P
— T["By" Y8y + 1Y B, (B.O.5)

= 2Te [y 17" i) + 2Tr [y 17 o) . (B.0.6)

Using (B.0.1) and (B.0.2) in the second term, we obtain

Tr[y*(1 =)y (1 = 7)) = 2T (V917" o) + 8ie" prapas . (B.0.7)

OTI‘(’}/M]él7V¢2)Tr(7u¢37uﬁ4)

+

I+

16[pyp5 + phpY — 9" (p1 - p2)]

[D3pPav + Daplsy — Guw (D3 - Da)]

16[(p1 - p3)(p2 - pa) + (P1 - pa) (P2 - D3)

(p1-p2)(P3-pa) + (p2-p3)(P1 - pa)

(p2-pa)(p1-p3) — (p1-p2)(P3 - pa)

(p1-p2)(P3-pa) — (p1-p2)(P3 - Pa)

4(p1-p2)(p3 - pa)]

32[(p1 - p3)(p2-pa) + (1 -pa)(P2-p3)] .-
(B.0.8)
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oTr(V' Py Vb)) Te (Vb ba) = Te(V B iy ) Te (Y hay" ds )
= (4i)2€auﬁyp2aplﬁep/wupng
= 32[(p1p3)(p2-p4a) — (P1-pa)(P2-P3),
(B.0.9)

where to obtain the second line we have used (B.0.1) and (B.0.2), and to
obtain the third line (B.0.3).

oIl = Tr[y"(1 — ")y (1 — V" )ho] Tl = 7")is7 (1 — ")
= 64[pi'ps + phpl — g (p1 . p2) + i€ prapas)
X P3P + PapPsy — G (P3 - Pa) + i€upmoP5PT]
= 64[(p1-p3)(p2-pa) + (p1-pa) (P2 - p3) — (P1-p2)(p3 . pa)
+ (p2-p3)(p1-pa) + (P2 -pa)(P1-P3) — (P1-D2)(P3-Pa) — (P3-Pa)(P1-P2)
— (p1-p2)(P3-pa) +4(p1-p2) (3. pa) — E’Lmﬁ@upoplapzﬁpgpﬂ
= 64[2(p1-p3)(p2-pa) +2(p1 - pa) (P2 - p3) + 2(5355 - 5553)p1ap2ﬁp§pi]
= 64[2(p1 . p3)(p2 - p4) + 2(p1 - Pa) (P2 P3) + 2(p1 - p3) (P2 - Pa)
— 2(p2-p3)(p1-p4)]
= 256(p1 . p3)(p2-p4) - (B.0.10)
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Appendix C
Dimensional Regularization

In QFT a charge is surrounded by virtual e™e™ pairs (vacuum polarization)
which are the origin of the s-dependence of a. This can be visualized in
terms of Feynman diagrams

’ ’ ’ ’
e // €eo // + €eo // + eo // +
\ - \ \ \ o ’
A A A A
\ \ \ \

where the dashed lines represent a test charge “measuring” the electron
charge on the left. The measured charged is obtained through a perturbative
calculation including all vacuum polarization loops,

e(¢%) = e — egll(q*) + eI (¢%) — ... . (C.0.1)

The geometric series can be summed to give
@
a(q?) -

- T (C.0.2)

How to compute b, formally introduced in (3.5.110), or II(¢?) is clear.
The answer is given by (3.5.100), (3.5.107) and (3.5.108). The UV cutoff A
removes the infinite part of the loop which can, in a renormalizable gauge
theory, be absorbed in a redefinition of the bare charge.! The latter becomes
a parameter to be fixed by experiment. This is standard old-fashioned QED.
Nowadays we avoid the explicit introduction of a cutoff such as A in (3.5.101)

!Here, bare refers to the fact that the vertex is stripped of all loops.
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which spoils the gauge invariance of the calculation. One instead uses dimen-
sional regularization to compute I1(¢?).2 The basic idea is to carry out loop
integrations in a space with dimensions n < 4, where they are finite. The
result is then analytically continued to n = 4 where the UV divergent part
of the loop appears as a 1/(n —4) pole. Propagators and interaction vertices
remain unchanged, e.g., for the loop (3.5.100)

il (q) = _i(q2guu_qqu)H(q2)

(6()#47”)2(_1)/(05”’{«‘”%{% (k+me) (¢i+k+me)}

2m) (k2 —me] [(q+ k)* —m]

1 an
= 4 2 n—4/ d /
A S NCHT

G [Q_T"Qz +m? + ¢*x(1 — SL’)} —2¢,q,7(1 — x)
(@2 = [m2 + a(z - 1))}

(C.0.3)

where m, is the electron mass and k the 4-momentum circulating in the loop.
The only modification is the introduction of the 't Hooft mass p introduced

(4=n) in order to keep the coupling constant dimensionless. In

as a factor
the last line we have omitted terms linear in () in the numerator which do not
contribute to the integral; this last relation follows by executing the following
steps:

i) use the Feynman trick for combining denominators

! 1
= / dx 5
ab 0 l[az +b(1 — )]

(C.0.4)

this equation can be verified by direct calculation

/01 [a:(a—d;f)—l—b]Q - _aib [a;(a—lb)ME

I S e
 a—=bla b|’

2G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 44, 189 (1972); C. G. Bollini and
J. J. Giambiagi, Nuovo Cim. B 12, 20 (1972); G. ’t Hooft, Nucl. Phys. B 61, 455 (1973).
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ii) change the integration variable k£ by the variable
Q=k+qx (C.0.5)

(this is chosen such that the term in the denominator linear in the integration
variable disappears);
iii) do the traces as usual, but notice that

wt = nl,
TuYVa¥ = (2= 1)Va - C.0.7)

aa

From (C.0.3) we then find that

- 86(2)M(4_n)

H@%_.u&ﬁﬁ Aiﬁxﬂ—x)Wﬁ+q%@%ﬂﬂ%41(2—ﬁ)(QO&

2

by using the relation

/ él?n @ - ce (16;2)2 r(z-g)ct. (€09)

We now make a Taylor expansion of (C.0.8) around n = 4 using the
following relations:

4 —
,u(4—n):1_'_ nln,u2—|—~-~,
n _4
(1671'2)1:1671'2 <1—|—n 11147T+) ,
n 2
r@——):— (= 05772, ),
5 — vg (= 0.577 )
and A
cE2) =14+ ey

We thus obtain the desired separation of the n = 4 infinite and finite parts
of TI(¢?) with

1
—7E+ln47r—6/ drz(l —x)
0

3r | n—4
m? + ¢*z(1 —z
x In ( M2( )) +0O(n — 4)} : (C.0.10)
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which yields (3.5.101) in the limit of large (—g¢?).
In old-fashioned QED the renormalized charge (i.e., the Thomson charge
at ¢ = 0) would be defined as

2, n—4 2
egi e
2 0 o=

1+11(0) ’ 4

(C.0.11)

e

3

with T1(0) given by (C.0.10). In the modern approach, previously introduced,
vacuum polarization effects are completely absorbed in the °
malized coupling by allowing i to vary; a(u) = €*(u)/(4x) is related to a

by
2
T (“—) . (C.0.12)

a(p?) a  3n \m?

‘running” renor-

Equation (C.0.12) implements the so-called modified minimal subtraction
(MS) renormalization scheme where the terms 22 — 11In4r are subtracted
out along with the (n — 4)~! pole into the renormalized charge.®> We have
now succeeded in computing b appearing in the formal relation (3.5.110).
Eq. (C.0.12) just evolves the MS charge from Q? = 0 to Q* = p? and one

sees that 1

:3—71-.

If 42 is such that other loops of leptons and quarks contribute then

111 .
=— - — In| — .0.14
a(p?)  « BWZf:Qf n(m?) ’ (C.0.14)

b (C.0.13)

where the sum is over all fermions with charge Q.

3W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev. D 18, 3998 (1978).
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Appendix D

Mott Scattering

The scattering of electrons from nuclei has given us the most precise infor-
mation about nuclear size and charge distribution. The electron is a better
nuclear probe than the alpha particles of Rutherford scattering because it is
a point particle and can penetrate the nucleus. For low energies and under
conditions where the electron does not penetrate the nucleus, the electron
scattering can be described by the Rutherford formula. As the energy of the
electrons is raised enough to make them an effective nuclear probe, a number
of other effects become significant, and the scattering behavior diverges from
the Rutherford formula. The probing electrons are relativistic, they produce
significant nuclear recoil, and they interact via their magnetic moment as
well as by their charge. In the so-called “Mott scattering,” the magnetic
moment and recoil are taken into account.!
The electromagnetic field due to —Zep(z) may be described as an external
field
A = (¢,0), (D.0.1)

where using (3.4.65)
V2 = Zep(T). (D.0.2)

The Feynamn diagram for scattering of an electron by an external field
is shown in Fig. 4.1. The general expression for the transition amplitude

IMott scattering is also referred to as spin-coupling in elastic Coulomb scattering,
because it is mostly used to measure the spin polarization of an electron beam scattering
off the Coulomb field of heavy atoms.
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follows from (3.2.30) and (3.2.31)
Ty = (—i) / d'z e j5i(x) A"(x)
= (—z')/d4xeﬂf7uuiei(pf_pi)'xA“(at), (D.0.3)
or using (D.0.1)
Ty = (—z')/da:oei(Ef_Ei)'xoeﬂf%ui/d?’x e'1-%p(7)
= (=2mi)0(E; — E;) eupyou; / Pz T H(T), (D.0.4)

where ¢ = py — p;. Considering the boundary condition, ¢(Z) — 0 when
|Z] — oo, we first integrate by parts

/ TE 2 0(F) da = —|q? / T (F) dPx (D.0.5)
then we substitute (D.0.2) into (D.0.5)
/ew'”%(f) dr = —S—;/ei‘f‘fp(f) dx
- —S—;F@, (D.0.6)

and after that we substitute (D.0.6) into the scattering amplitude (D.0.4)

. Ze? _
Ty = 2mid(Ey — EZ)WF(CT) (Tsyowi) - (D.0.7)
Now, from (3.1.16) the differential cross section can be written as
T|?/TV
= % (number of final states) , (D.0.8)
initial flux

where T" and V are the time of the interaction and the normalized volume.
We write the momentum and energy of the incoming (outgoing) electron as

ki (Kp), E; (Ef); then for k = |k;| = |k,

2F
(initial flux) = v71 (D.0.9)
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and .
d3k:f
(2m)32EF "’

where v = k;/E; is the velocity of the incoming electron. Using the above

(number of final states) = (D.0.10)

formulae we take over (D.0.8) to arrive at

T2 /1 &
do = . D.0.11
7771 \2E ) @nRE, (D-0-11)

On squaring (D.0.7) one delta function remains and

T/2
216(Ey — E;) = / . e Pr=Etqy — T (D.0.12)
—T/2

The remaining delta function can be integrated as follows
&P*kiS(E; — B;) = k]% dky dQ(Ef — E;)
= kfE/dEqdQS(Er — E;)
= kEdQ, (D.0.13)
where F; = Ey = E and k; = ky = k.

To obtain the unpolarized cross section, we rewrite (D.0.11) summing
final, and averaging initial, electron spins

Il ) ZeF(P° kEdQ [ 1
do = §Z|uf70u,~| (2m) { FE } 2r)72E <U2E) , (D.0.14)

Si,Sf
where

1

5 2 [apowl* = LE = 2[K%° + KK — (k. K —m?)g"]

81,8 f

= 2[2E® — E* + k*cos0 + E* — k7]
_ [Ez_k;l—cose}

2
k? 0

= 4F? {1 ~ = sin® 5}

= 4E?[1 —v*sin® ¢ (D.0.15)
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and 6 is the angle through which the electron is scattered. We can now
rewrite (D.0.14) using |7]? = |k; — k| = 4k? sin*(6/2)

do E? 0\ [e2Z\?
QO (12l ) (£2) |F@)? D.0.16
dQ ~ 4ktsin'(6/2) ( v 2) <47r) F(@) ( )

or equivalently

do
dQ

_do

2172
= (Za)' E (1 — v?sin? Q) : (D.0.17)

e AkTsin®(0/2) 2

point
where o = 2 /47. Putting all this together yields the advertised result

da_ do

- = 30 |F(9))? (D.0.18)

Mott

with the form factor given by (4.1.3).
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Appendix E
Laboratory Kinematics

In this appendix we determine the e”u~ — e~ cross section in the lab-
oratory frame. To this end, we return to the exact formula (3.2.44) for
e (k) p=(p) — e (k') p~(p') and neglect only the terms involving the elec-
tron mass m,

WP - i—f[(k/.p'w«pw<k:'.p><k.pf>—M?k%k]
Re?

q4

[—3¢°(k.p— K .p)+2(K .p)(k.p) + 3M*¢°], (E0.1)

where m, = M, and ¢ = k — k’. To obtain the last line, we have used
p=k—kK+p k*=k?>~0and ¢* ~ —2k.k". We want to evaluate the
cross section in the lab frame, i.e., the frame where the initial muon is at

rest, p = (M,0). Evaluating (E.0.1) in the lab frame we find

s 8t 1, , a2 L2 o
P = = | S M(E — B) + 2BE'M* + M
q
8e? q? ¢ M(E—F)
= —2M*F'E |1 —
7 { TIEE TP T 2EE
8e* 0 0
_ q—i2M2E’E [cosz5 - 2?\42 sin? 5} , (E.0.2)

where to reach the last line we have used the following kinemtic relations

¢~ —2k.k ~ —2EFE'(1 — cosf) = —4FEE'sin*(0/2) . (E.0.3)

241



In addition, squaring ¢ + p = p’ we obtain

2
P =—-2p.q=—2wM 5o qu—E’:—zq—M. (E.0.4)

To calculate the cross section, we make use of (3.1.20)

1 M2 3K d3p'
(2E)(2M) 47?2 2E' 2p;
1?1 d3p'
= — —E'dE" dQ—— §W — ). E.0.
AME 472 2 2 (p+q-7) (E.0.5)

do Wp+k—p —k)

The flux is the product of beam and target densities (2F)(2M) multiplied
by the relative velocity which is 1 (i.e., the speed of light) in the limit where
m. has been neglected.

Now, from

5(p* — M?) = o(pf —p”* — M?)

1
= mwpé —VP?+ M?) +6(py + VPP + M?)
(E.0.6)
we obtain the relation
/dp6 205 O(py) 6(p* — M?) =1 (E.0.7)

and so

d?’p’ A dsp/ ) ) 4
/ ~Wp+q—p) = /—, dpy ©(py) 2p4 6(p* — M?) 6W(p + q — p)
2]90 2]90

= /d3p’ dpy ©(ph) S(* — M*) sW(p+q —p)

= 0((p+q)?*—M?
= §(p® - M*+2p.q+ %)

_ (s & (E.0.8)
— o\ o) e

where the step function O(z) is 1 if x > 0 and 0 otherwise. To obtain the last
line we have used p?* = M? and the (E.0.4). Substitution of the kinematic
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relation (E.0.3) into (E.0.8) leads to

/ Cé;‘l;/é(4)(p +q-p) = ﬁé (E _ g 2EE SEQ(HM)
-2
zzif(gg+%@%@@)f@
(e ) 09
where
A=1+ % sin? g : (E.0.10)

Inserting (E.0.2) into (E.0.5) and using (E.0.8), we obtain

"2 2 2
dg’il(l = (2a§) {coszg — L gip? Q} o (1/ + Qq—M) . (E.0.11)
q

Using (E.0.9) we can perform the dE’ integration and, replacing ¢* by (E.0.3),
we finally arrive at the following formula for the differential cross section for
e~ scattering in the lab frame

do
s

o? FE 0 ¢ .0
(2 )= 7 in2~ | | E.0.12
. <4E2 sin4(9/2)> E {COS 2 o 2} (£0.12)

Next, using (3.2.37) with L,(f,‘,) replaced by (p + p')u(p + p'), we obtain
the amplitude for elastic scattering of unpolarized electrons from spinless
point-like particles

4

WP = 5 S ) ulk) [ u k)] 0+ )l -+ ),
= 5o T F )+ 1) 0+ 1), (E.013)

In what follows, we neglect once more the mass of the electron and M again
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denotes the target mass; using p + k = p/ + k' we obtain

4 et / / / /
M = ?{4%-29)(% p)+2[(k.p) — (K. p)l(k.E) = (k. k)
_(ka) [4M2 _q2]}
4 2 4 2

_ 4_3 {4EE’M2 Y 2M(E — E') (—q) _ L Ly g
q 2 4 4

o 4et /a2 2 —q q' 2 2

= {4EEM —q (T) —5+Mq]
4 et

= —[4EE'M? — 4EE'M?sin*(0/2)]
q
et 2 / 102

= —(AMPEE'") [1—sin*(0/2)]
q
4et 2 ' 2

= —(AM*EE")cos*(0/2) . (E.0.14)
q

After substituting (E.0.14) into (E.0.5), straightforward integration leads to

do
d9

o? E .0
= |2 cos?o. E.0.15
. [4E2 sin4(9/2)] E ‘"2 (E0.15)

Comparing (E.0.15) with the cross section for e~ = — e~ p~, we see that the
sin?(#/2) in (E.0.12) is due to the scattering from the magnetic moment of
the muon.
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Appendix F

Spin- and Color-Averaged

Cross Sections

In QED, the strength of the electromagnetic coupling between two quarks is
given by: e, X €4, X «, where e, is the electric charge in units of e (that is
g, = —I—%, or — %) and « is the fine structure constant. Similarly, in QCD,
the strength of the (strong) coupling for single-gluon exchange between two
color charges is % X €1 X ¢y X (g, Where ¢; and ¢y are the color coefficients
associated with the vertices. It has become conventional to call Cr = %|0102|
the color factor (although, in fact, it would have been more natural to absorb
the factor % in a redefinition of the strong coupling a; and just let the product
|cic2| be known as the color factor).

The simplest example to analyze is the Drell-Yan process, in which a high-
mass lepton pair ¢T/~ emerges from ¢g annihilation in a pp collision.! The
differential cross section follows from the relevant expression of conventional

QED in Table 3.1, supplemented by the appropiate color factor

do dmeia® {2 4 &2
= = Cp—0ot —, (F.0.1)
dt qG—+i— S S

where Cp = % X % X % X 3 = %. The factors of % average over the initial

q and ¢ colors, and the factor of 3 sum over gg color combinations which

!S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970) [Erratum-ibid. 25, 902
(1970)].
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can annihilate to form a colorless virtual photon. To LO QCD, the cross
section for qg — £1¢~, is simply related to the cross section for ete™ — ¢g
given in (3.5.82). The only difference between the two calculations is that we
must average rather than sum over the color orientations of the quark and
antiquark. Duplicating this reasoning we obtain for the annihilation process
qq — gv, Cp = % X é X é x 8, and for the Compton process qg — q7,
Cr=1xixixs

In a similar fashion, the differential cross section for (massless) partonic
subprocesses leading to jet pair production can be written, to lowest order
in QCD, as
ma?

= 5—28 Rk (F.0.2)

do
dt

ij—kl

where

Zgg—ﬂlq —

9 tu  su st
Y9999 — 2 (g _ = _ 27 i

2 ( s t? u2) ’

1

6

2 2
Y9099 — §<E+E)_§t tu

27 \u t 3 52 7
soage _ 4 (s u) s% 4+ u?
9 \y s 27
EQin_NIin — %82 + u2
9 ¢z 7
VGGG 4 (s +u? + $* 412 8 s
9 t2 u? 27 tu’
SdaH 4 (s*+u? +u2+t2 8 u?
9 12 52 27 ts’
NG — %u2 + t?
9 s2 7

and for simplicity, we drop carets for the parton subprocesses.?

2J. F. Owens, E. Reya and M. Gluck, Phys. Rev. D 18, 1501 (1978).
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Appendix G
Monojets

Events with a single jet plus missing energy (£;) with balancing transverse
momenta (so-called “monojets”) are incisive probes of new physics. In the
standard model the dominant source of this topology is ij — kZ° followed
by Z° — vu. Ignoring the Z mass (i.e., keeping only transverse Z’s), the
differential cross section follows from the relevant expression of conventional
QED in Table 3.1, supplemented by the appropiate color factor, couplings,
and mixings. For example, using (2.4.96) and

do do ol u S
yer —ver Yer—e
we obtain
do 9?2g% [5 — 2sin*6, 17 @ 3
dt | gy 70, " 167 cos 0., 21 8§ u
_ 14l 3 — 3sin’0, 11 a s (G.0.2)
6 167 cos 6, 21 5§ al’
do 1 g2 —%+§sin29w ’ 1 u § (G.0.3)
dt ody—Zdy © 6 167 cos 0, 21 s al’ o
do 1 g2 —2sin” 0, 17 a4 3 (G.0.4)
dt Juns Zug 6 167 cos 0, 21 s 4’ o
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and

do 1@ L0171 [ a3 (.05
dt ng%ZdR_ﬁi 167 | cosf, 21 5 a4l o

Now, combining (G.0.2), (G.0.3), (G.0.4), and (G.0.5) the contributions to
gq — Zq become

do Tasa +—2sin®0, +8sin*0, 1 [ 4 &
—_— — 4 3‘ 3 29 A—2 - — = y (G06)
dt | s zu 6 sin® 6, cos? 0, 21 § 4]
d s 1_Llgin?0,+2sin*0,1 [ a4 &]
do|  _mesajogsnilutgsnlfulf @ 5) g0
dt | 44— 2z4 6 sin“ 0,, cos? 0y, 21 5 u
Finally, for ¢q¢ — Zg we obtain
d draga 2 —2sin?6, + 8sin'l, 1 [0 ¢
o] _drova jofsntberfsinttulfa 0] g
dt | ya—zg 9 sin” 0y, cos? 0, 201t u
and
do drasa L —1Lsin?60, + 2sin*6, 1 [0 ©
A L L A (e
dt | 4g—szg 9 sin® 6, cos? 0, 2|t u

In Fig. 4.14 we show the invariant mass distribution of the Z + jet final
state, as obtained from numerical integration of

0

j_g/ - Wr Z[/ dY fi(xa, W) fi(xp, W)

Z‘]kf _)/max

ymax+Y d
X / dy il

- (ymax +Y) th

1

2
ij—Zk cosh”y

Ymax
\ / dY fi(xa, W) fi(zy, W)
0
ymax_y d
/ dy il
—(ymax_Y) dt

for 31,2 < 1.1 The branching fraction of Z into F is 20.00 £ 0.06%.

X

! ] , (G.0.10)

2
ijszr cosh™y

L. A. Anchordoqui, H. Goldberg, D. Lust, S. Nawata, S. Stieberger and T. R. Taylor,
Nucl. Phys. B 821, 181 (2009).
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Appendix H

Muon Decay

Muon decay
1 (p) = e (p) Te(K) vu(k), (H.0.1)

is the model reaction for weak decays. The particle four momenta are defined
in (H.0.1), and the Feynman diagram is shown in Fig. H.1. According to the
Feynman rules, it must be drawn using only particle lines; and so the outgoing
U, is shown as an incoming v,. The invariant amplitude for muon decay is

M = CE[m(k)y* (1 — 7 )u(p)] [T 71— 7)o (k)] (H.0.2)

where the spinors are labeled by the particle momenta. Recall that the
outgoing 7, is described by v(k’). The muon decay rate can now be obtained
using (A.0.8),

1

dl' =
2K

|901)2 dQ) , (H.0.3)
where the invariant phase space is

By Pk PR

2V SO (p — ) — kb — K
4 (2m)32F (27)%2w (gﬂ)szw/( oW (p—p —k—k)
I T ' Y
B (27T)52E’2w’®(E_E_W)é((p_p—k))7

(H.0.4)
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(a) (b)

Figure H.1: Tree level diagram of muon decay. According to the Feynman

rules introduced in Chapter 3, the diagram must be drawn using only particle

lines; and so in (a) the outgoing U, is shown as incoming v.. In (b) we show

the time direction of the antiparticle’s four-momentum.

with p® = E, k° = w, and so on, and where in reaching the last line we have
performed the d®k integration using

/d‘*k O(w)d(k?) = /dw/d% O(w) 6(w” — |K[*)

1 - d3k
= dgk/dwfé w— |k :/—. H.0.5
/ st li = [ @os)

Using (H.0.2) and neglecting m, we find the spin-averaged probability,

(M2 =

5> I

spin

3 (52) Solan (1 - u) (1 - )ue)

D W) (L =)o (KoK )7 (1 =+ )u(p)

5 (SE) Dl (=)0 - m (1 - )

Tr[zé'w(ﬂ; V) K (1 =7

% (%) {Te[ " (1 =)y (1 —7°)]

Trlf v, (1 — %) K7 (1 —~°)]

my, Tr[ Fy* (1 = 7°)y" (1 = ) Te[ (L = 7°) Fy (L —~°)]} .
(H.0.6)

spin
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Substituting (B.0.10) in the first term we obtain
T2 G% / / 2 / /
|92 = e 256 (k. p") (K" .p) = 64G%(k.p") (K . p), (H.0.7)

because the trace of the second term vanishes, i.e., Tr[ Ay*(1 — +°)y*(1 —
7v9)] = Tr[ ky*+" (1 ++°)(1 —~°)] = 0. Because we neglected the mass of the
electron p — k' = p' + k and k? = p'?> = 0, so

20k.p)(K .p) = (' +k)*(K .p)
(p—K)?(K .p)
= [P’ —2(p. KK .p). (H.0.8)

In the muon rest frame, where p = (m,,0,0,0), we have p. k" = m,w’; there-
fore 2(k.p") (K .p) = (m, — 2m,w')m,w'. Gathering these results together,
the decay rate in the muon rest frame is
G2 d3 /dsk,/
dl' = r_&P mw'(m
2m,, 5 2E" 2w’

x 0 (m2—2m,E —2m,w’ +2E'W' (1 —cosh)) . (H.0.9)

2_

5 — 2myw')

Now, we can replace d®p'd3k’ by 4nE"?dE"2rw™dw'd cos§, and use the fact

that
1

2F'W!
to perform the integration over the opening angle 6 between the emitted e~

O(-+ +2F'W cosf) =

O(-++—cos®) (H.0.10)

and 7, and obtain
G
/ / / /
dl' = 2—7r3dE dw' m, W (m, —2uw'). (H.0.11)
The delta function integration introduces the following restrictions on the
energies F', ', stemming from the fact that —1 < cosf < 1:

im, —F < <im,, (H.0.12)

0< E <1Im,. (H.0.13)

1
2
These limits are easily understood in terms of the various limits in which
three-body decay p — evv, becomes effectively a two-body decay. For
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example when the electron energy E’ vanishes, (H.0.12) yields ' = m,/2,
which is expected because then the two neutrinos share equally the muon’s
rest energy.

To obtain the energy spectrum of the emitted electron, we perform the
w’ integration of (H.0.11)

dr m,G% [2™
2"
Gy 2 AE

This prediction is in excellent agreement with the observed electron spectrum.
Finally, we calculate the muon decay rate

M=-= (H.0.15)

/m‘ﬁdE’ dr G%mi'
; dE' ~ 19273

S

Inserting the measured muon lifetime 7 = (2.197019 £ 0.000021) x 1076 s,
we can calculate the Fermi coupling. We find

Gp~107°/m3, (H.0.16)

where we have chosen to quote the value with respect to the nucleon mass.
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Appendix 1
Asymmetries at the Z-pole

Equation (5.5.91) is valid near ¢* ~ z with

1 - 7 0 o 7
Arg = / alcos@alg(6 ¢ > 1)) —/ dcos@da(e e =1/
0 dcosf 1 dcos

X {U(eJre_ — ff)y1 , (1.0.1)

Arg = {o— (Fer = ) — o (eter — ff)] Jolere 7). (102

and
A, = [a (efe” = 77) —o(efe” — T§T+)] /U(e+e_ —77). (10.3)

In the above asymmetries 6 is the angle between the produced fermion f and
the incoming e~ ey i represent left- and right-handed longitudinally polar-
ized electrons and 7y g left- and right-handed 7’s whose polarization can be
experimentally analyzed by observing the decay ™ — 7v.,.

The principal Z-pole observables and their standard model predictions are
summarized in Table I.1! These include the Z mass my, the total width ',
and partial widths ['(f f) for Z — ff, where fermion f = e, y, 7, hadrons, b,

'H. Flacher, M. Goebel, J. Haller, A. Hocker, K. Monig and J. Stelzer, Eur. Phys. J.
C 60, 543 (2009) [Erratum-ibid. C 71, 1718 (2011)].
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Table I.1: Z-pole physics.

Quantity Experimental Values | Standard Model
my [GeV] 91.1875 4 0.0021 | 91.1874 «+ 0.0021
', [GeV] 2.4952 £ 0.0023 2.4959 4 0.0015
I'(had) [GeV] 1.7444 + 0.0020 —
I(inv) [MeV] 499.0 £ 1.5 —
T(0H6) [MeV] 83.984 + 0.086 —
Ohad [1b] 41.540 + 0.037 41.477 4+ 0.014
Ry 20.767 + 0.025 20.743 + 0.018
R. 0.1721 +0.0030 | 0.17224 4 0.00006
Ry 0.21629 =+ 0.00066 0.2158170 00007
Al 0.1499 + 0.0018 0.1478T0-0010
At 0.15138 4 0.00216 —
Al 0.142 + 0.015 —
ATn 0.136 & 0.015 —
Al 0.0171 + 0.0010 | 0.01638 % 0.0002
Al 0.0169 + 0.0013 —
Ang 0.0188 + 0.0017 —
A, 0.150 & 0.013 = 0.009 —

or c. For the global electroweak fit, it is convenient to use the variables
my, 'z, Ry = I'(had)/T(¢+(7), R, = I'(bb)/T'(had), R. = I'(bb)/T'(had),
Onad = 1277 (eTe™)T'(had)/m%I%, most of which are weakly correlated exper-
imentally. (I'(had) is the partial width into hadrons, and ¢ = e, yi, 7). There
are also measurements of various Z-pole asymmetries. The value for Afy is
the average of LEP (Afy = 0.1465+0.0033) and SLD (Af; = 0.1513+0.0021)

measurements.?

2K. Abe et al. [SLD Collaboration], Phys. Rev. Lett. 84, 5945 (2000); 86, 1162 (2001);
S. Schael et al., [ALEPH, DELPHI, L3, OPAL, and LSD collaborations], Phys. Rept. 427,
257 (2006); T. C. Paul, CERN-THESIS-98-008.
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Appendix J
Supersymmetry Essentials

SUSY is an extension of the known spacetime symmetries.! The spacetime
symmetries of rotations, boosts, and translations are generated by angular
momentum operators .JJ, boost operators K, and momentum operators P,
respectively. The J and K generators form Lorentz symmetry (1.3.22), and
all 10 generators together form Lorentz-Poincaré symmetry: (1.3.21), (1.3.34)
and (1.3.35). SUSY is the symmetry that results when these 10 generators
are further supplemented by fermionic operators Q.2

If a symmetry exists in nature, acting on a physical state with any gener-
ator of the symmetry gives another physical state; e.g, acting on an electron
with a momentum operator produces another physical state, namely, an elec-
tron translated in space or time. Spacetime symmetries leave the quantum
numbers of the state invariant — in this example, the initial and final states
have the same mass, electric charge, etc. In an exactly supersymmetric
world, then, acting on any physical state with the SUSY generator (), pro-
duces another physical state. As with the other spacetime generators, @,
does not change the mass, electric charge, and other quantum numbers of
the physical state. In contrast to the Lorentz-Poincaré generators, however,
a supersymmetric transformation changes bosons to fermions and vice versa:

(Qo|Boson) = |Fermion), ()o|Fermion) = |Boson) . (J.0.1)

1J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974); Phys. Lett. B 49, 52 (1974).
2J. Wess and J. Bagger, Supersymmetry and supergravity, (Princeton University Press,

Princeton, NJ, 1992).
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It is straightforward to see that no particle of the standard model (SM) is
the superpartner of another. SUSY therefore predicts a plethora of superpart-
ners, none of which has (yet) been discovered. More specifically, to construct
the minimal supersymmetric standard model (MSSM) we start enlarging the
SM particle spectrum by adding a second complex SU(2)-doublet Higgs field,
with hypercharge Y = —1/2. We denote the Y = —1/2 [Y = +1/2| Higgs
doublet fields by Hj [Hj], where i is a weak SU(2) index. Armed with this
slightly augmented version of the SM, we construct the particle spectrum of
the MSSM by adding supersymmetric partners to each SM particle, such that
the supersymmetric theory has an equal number of bosonic and fermionic de-
grees of freedom. The end result is displayed in Table J.1. Note that some
‘normal’ particles have more than one superpartner, e.g., each quark has two
squarks, ¢;, and g, as superpartners, but the number of degrees of freedom
(2 for the quark (spin 3) and 1 for each squark (spin 0)) sums up to be
the same for the normal particle and its superpartner(s). The general no-
tation is to have a tilde on the symbol for the superpartners, but for the
charginos and neutralinos we will usually drop the tilde since there is no risk
for misinterpretations.

The novel feature of SUSY, its boson-fermion symmetry, also posses one
important drawback: Bose-Fermi symmetry has not been observed in nature.
Thus, if SUSY can serve as a theory of low energy interactions, it must be
a broken symmetry. If SUSY were unbroken, a SM particle and its super-
partner would have the same mass and quantum numbers (except for spin).
From the phenomenological perspective, the most interesting mechanisms re-
sponsible for SUSY breaking are those with “low-energy” (or weak-scale”)
SUSY, in which the effective scale of SUSY breaking is tied to the scale of
electroweak symmetry breaking.?

Although there are many reasons for considering SUSY as a candidate
extension to the SM, one of the most compelling is its role in understanding
the gauge hierarchy problem; namely, why /how is

My ~ Gp'? < Mp ~ G (J.0.2)

One might naively think that it would be sufficient to set Mw < Mp, by
hand. However, we have seen in Sec. 5.7 that radiative corrections tend to

3S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 150 (1981).
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destroy this hierarchy. For example, one-loop diagrams generate
SMZ, = O (9) AZ> M2, (1.0.3)
T

where A is a cut-off representing the appearance of new physics. If the
radiative corrections to a physical quantity are much larger than its measured
values, obtaining the latter requires strong cancellations, which in general
require fine-tuning of the bare input parameters. However, the necessary
cancellations are natural in SUSY, where one has equal numbers of bosons b
and fermions § with equal couplings, so that (J.0.3) is replaced by

2 o 2 2
My, =0 (;) [mp — mg| . (J.0.4)

The residual radiative correction is naturally small if [mg —m?| <1 TeV?.

Weak-scale superpartners solve the gauge hierarchy problem through their
virtual effects. However, without additional structure, they also mediate
baryon and lepton number violation at unacceptable levels. For example,
proton decay p — met may be mediated by a squark.

An elegant way to prevent this decay is to impose the conservation of
R-parity R, = (—1)35-L)+25 where B, L, and S are baryon number, lepton
number, and spin, respectively. All standard model particles have R, = 1,
and all superpartners have R, = —1. R-parity conservation implies IIR, = 1
at each vertex, and so both B and L violating proceses are forbidden.

An immediate consequence of R-parity conservation is that the lightest
supersymmetric particle cannot decay to SM particles and is therefore stable.
Particle physics constraints therefore naturally suggest a symmetry that pro-
vides a new stable particle that may contribute significantly to the present
energy density of the universe.

Electroweak symmetry breaking is caused by the fields H; and H, acquir-
ing vacuum expectation values

(Hy) = ( 1(’)1 ) . (Hy) = ( 52 ) : (J.0.5)

“H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983); J. R. Ellis, J. S. Hagelin,
D. V. Nanopoulos, K. A. Olive and M. Srednicki, Nucl. Phys. B 238, 453 (1984).
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where v; and vy can be chosen real and non-negative by using appropriate
phases for the Higgs fields. They are related to the W boson mass by

1
miy, = 592(1)% + v3) (J.0.6)
and we also have the convenient expression for the Z boson mass

1
m? = 5 (9% + 97) (vi +v3) , (J.0.7)
where g and ¢’ are the usual SU(2) and U(1) gauge coupling constants. We
define the ratio of the vacuum expectation values,

tan § = %2 (J.0.8)
U1
There are five physical Higgs bosons in the MSSM, H?, HY, A° and H*. Of
the neutral ones, A is CP-odd and HY and HY are CP-even.

There are four neutralinos (Y, X3, X3, X9), which are linear combinations
of the superpartners of the neutral SU(2) and U(1) gauge bosons and of the
neutral component of the two Higss doublets: (Wg, B, f[?, f[g), respectively.
The the lightest one, to be called the neutralino y, is an attractive dark

matter candidate.
The first 1 fb~! of data from the LHC has shown no evidence for SUSY.5

5S. Chatrchyan et al. [CMS Collaboration], arXiv:1109.2352; G. Aad et al. [ATLAS
Collaboration], arXiv:1110.6189.
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Table J.1: The MSSM particle spectrum.

Boson Fields Fermionic Partners SU(3)c SU((2).  U(l)y
g 3 8 0 0
we we 1 3 0
B B 1 1 0
L= (,é” - 1 2 ~1/2
leptons ¢ ~ Ei o v ec s /
E = ¢ég €7, 1 1 1
Q7 = (g, dy) (u,d)r, 3 2 1/6
quarks U — a}% ui 3* 1 _2/3
D= d, ds 3* 1 1/3
. [ Hi (HY,H )L 1 2 ~1/2
Higgs y ~, =
H; (Hy , H3)1 1 2 1/2

Normal particles/fields

Supersymmetric partners
Interaction eigenstates
Symbol Name

Mass eigenstates
Symbol Name

Symbol Name
q=d,c,bu,s,t quark
l=epu,7 lepton

V= Ve, Vy,Vr neutrino

g gluon

W+ W-boson
H~ Higgs boson
HT Higgs boson
B B-field

w3 W3-field
HY Higgs boson
HY Higgs boson
A° Higgs boson

qr, qr ~ squark

lp, lr slepton

v sneutrino
g gluino
W+ wino

H 1 higgsino
H oS higgsino
B bino

w3 wino

H iy higgsino
H 9 higgsino

q1, 2 squark

I, Iy slepton

17 sneutrino
g gluino
)ng chargino

XY,54 meutralino
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NOTE ADDED

A preliminary combination of standard model Higgs searches with the
ATLAS and CMS experiments was presented today, December 13, 2011.

Per ATLAS reporting: In a dataset corresponding to an integrated lu-
minosity of up to 4.9 fb~! of pp collisions collected at /s = 7 TeV, an
excess of events is being observed for a Higgs boson mass hypothesis close to
mpy = 126 GeV. The maximum local significance of this excess is 3.60 above
the expected standard model background, while the global probability of such
a fluctuation to happen anywhere in the full explored Higgs mass domain is
estimated to be approximately 1%, corresponding to a global significance
of 2.30. The three most sensitive channels in this mass range, H — 77,
H — ZZ% — ¢t0—0+¢— and H - WW® — ¢+tu0~7, contribute individual
local significances of 2.8¢, 2.10 and 1.40, respectively, to the excess.

Per CMS reporting: The combination of results of searches for a standard
model Higgs boson in five decay modes (gg, bb, tt, WW, and ZZ) yields a
2.40 significance at my = 124 GeV. The data correspond to an integrated
total luminosity of up to 4.7 fb™* of pp collisions at /s = 7 TeV.”

SATLAS Collaboration, ATLAS-CONF-2011-163.
"CMS Collaboration, CMS PAS HIG-11-032.
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