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1 Introduction to quantum mechanics

Quantum mechanics is the basic tool needed to describe, understand and
devise NMR experiments.  Fortunately for NMR spectroscopists, the
quantum mechanics of nuclear spins is quite straightforward and many
useful calculations can be done by hand, quite literally "on the back of an
envelope".  This simplicity comes about from the fact that although there are
a very large number of molecules in an NMR sample they are interacting
very weakly with one another.  Therefore, it is usually adequate to think
about only one molecule at a time.  Even in one molecule, the number of
spins which are interacting significantly with one another (i.e. are coupled)
is relatively small, so the number of possible quantum states is quite limited.

The discussion will begin with revision of some mathematical concepts
frequently encountered in quantum mechanics and NMR.
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1.1.1 Complex numbers

An ordinary number can be thought of as a point on a line which extends
from minus infinity through zero to plus infinity.  A complex number can be
thought of as a point in a plane; the x-coordinate of the point is the real part
of the complex number and the y-coordinate is the imaginary part.

If the real part is a and the imaginary part is b, the complex number is

written as (a + ib) where i is the square root of –1.  The idea that − 1  (or in
general the square root of any negative number) might have a "meaning" is
one of the origins of complex numbers, but it will be seen that they have
many more uses than simply expressing the square root of a negative
number.

i appears often and it is important to get used to its properties:
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The complex conjugate of a complex number is formed by changing the
sign of the imaginary part; it is denoted by a *

( ) ( )a ib a ib+ = −*

The square magnitude of a complex number C is denoted C 2  and is
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A complex number can be
though of as a point in the
complex plane with a real part
(a) and an imaginary part (b).
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found by multiplying C by its complex conjugate; C 2  is always real
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These various properties are used when manipulating complex numbers:
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Using these relationships it is possible to show that

( ) ( )C D E C D E× × × = × × ×K K* * * *

The position of a number in the complex plane can also be indicated by
the distance, r, of the point from the origin and the angle, θ, between the real
axis and the vector joining the origin to the point (see opposite).  By simple
geometry it follows that

( )[ ] ( )[ ]Re Im

cos sin

a ib a a ib b

r r

+ = + =
= =θ θ

[1.1]

Where Re and Im mean "take the real part" and "take the imaginary part",
respectively.

In this representation the square amplitude is

( )

( )
a ib a b

r r

+ = +

= + =

2 2 2

2 2 2 2cos sinθ θ

where the identity cos2θ + sin2θ  = 1 has been used.
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a complex number is to specify
a distance, r, and an angle, θ.
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1.1.2 Exponentials and complex exponentials

The exponential function, ex or exp(x), is defined as the power series

( )exp ! ! !x x x x= + + + +1 1
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The number e is the base of natural logarithms, so that ln(e) = 1.
Exponentials have the following properties
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The complex exponential is also defined in terms of a power series:
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By comparing this series expansion with those for sinθ and cosθ it can
easily be shown that

( )exp cos sini iθ θ θ= + [1.2]

This is a very important relation which will be used frequently.  For
negative exponents there is a similar result

( ) ( ) ( )exp cos sin
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[1.3]

where the identities ( )cos cos− =θ θ  and ( )sin sin− = −θ θ  have been used.

By comparison of Eqns. [1.1] and [1.2] it can be seen that the complex
number (a + ib) can be written

( ) ( )a ib r i+ = exp θ

where r = a2 + b2 and tanθ = (b/a).
In the complex exponential form, the complex conjugate is found by

changing the sign of the term in i
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It follows that
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Multiplication and division of complex numbers in the (r,θ) format is
straightforward
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1.1.2.1 Relation to trigonometric functions

Starting from the relation

( )exp cos sini iθ θ θ= +

it follows that, as cos(–θ) = cosθ and sin(–θ) = – sinθ,

( )exp cos sin− = −i iθ θ θ

From these two relationships the following can easily be shown
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1.1.3 Circular motion

In NMR basic form of motion is for magnetization to precess about a
magnetic field.  Viewed looking down the magnetic field, the tip of the
magnetization vector describes a circular path.  It turns out that complex
exponentials are a very convenient and natural way of describing such
motion.
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Consider a point p moving in the xy-plane in a circular path, radius r,
centred at the origin.  The position of the particle can be expressed in terms
of the distance r and an angle θ: The x–component is r ⋅ cosθ and the y-
component is r ⋅ sinθ.  The analogy with complex numbers is very
compelling (see section 1.1.1); if the x- and y-axes are treated as the real and
imaginary parts, then the position can be specified as the complex number r
⋅ exp(iθ).

In this complex notation the angle θ is called the phase.  Points with
different angles θ are said to have different phases and the difference
between the two angles is called the phase difference or phase shift between
the two points.

If the point is moving around the circular path with a constant speed then
the phase becomes a function of time.  In fact for a constant speed, θ is
simply proportional to time, and the constant of proportion is the angular
speed (or frequency) ω

θ = ω t

where θ is in radians, t is in seconds and ω is in radians s–1.  Sometimes it is
convenient to work in Hz (that is, revolutions per second) rather than rad⋅s–1;
the frequency in Hz, ν, is related to ω  by ω = 2 πν.

The position of the point can now be expressed as r exp(iωt), an
expression which occurs very frequently in the mathematical description of
NMR.  Recalling that exp(iθ) can be thought of as a phase, it is seen that
there is a strong connection between phase and frequency.  For example, a
phase shift of θ = ωt will come about due to precession at frequency ω for
time t.

Rotation of the point p in the opposite sense is simply represented by
changing the sign of ω: r exp(–iωt).  Suppose that there are two particles, p
and p', one rotating at +ω and the other at –ω; assuming that they both start
on the x-axis, their motion can be described by exp(+iωt) and exp(–iωt)
respectively.  Thus, the x- and y-components are:

x y

p t t

p t t

- comp. - comp.

cos sin

’ cos sin

ω ω
ω ω−

It is clear that the x-components add, and the y-components cancel.  All that
is left is a component along the x-axis which is oscillating back and forth at
frequency ω.  In the complex notation this result is easy to see as by Eqns.
[1.2] and [1.3], exp(iω t) + exp( - iω t) = 2cosω t.  In words, a point
oscillating along a line can be represented as two counter-rotating points.

x

y

r
p

A point p moving on a circular
path in the xy-plane.

x

y
p

p’

The x-components of two
counter-rotating points add, but
the y-components cancel.  The
resultant simply oscillates along
the x-axis.
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In quantum mechanics, two mathematical objects – wavefunctions and
operators – are of central importance.  The wavefunction describes the
system of interest (such as a spin or an electron) completely; if the
wavefunction is known it is possible to calculate all the properties of the
system.  The simplest example of this that is frequently encountered is when
considering the wavefunctions which describe electrons in atoms (atomic
orbitals) or molecules (molecular orbitals).  One often used interpretation of
such electronic wavefunctions is to say that the square of the wavefunction
gives the probability of finding the electron at that point.

Wavefunctions are simply mathematical functions of position, time etc.
For example, the 1s electron in a hydrogen atom is described by the function
exp(–ar), where r is the distance from the nucleus and a is a constant.

In quantum mechanics, operators represent "observable quantities" such
as position, momentum and energy; each observable has an operator
associated with it.

Operators "operate on" functions to give new functions, hence their name

operator × function = (new function)

An example of an operator is ( )d dx ; in words this operator says

"differentiate with respect to x".  Its effect on the function sin x is

( )d

dx
x xsin cos=

the "new function" is cos x.  Operators can also be simple functions, so for
example the operator x2 just means "multiply by x2".

It is clear from this discussion that operators and functions cannot be re-
ordered in the same way that numbers or functions can be.  For example

( ) ( )
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Generally operators are thought of as acting on the functions that appear to
their right.

1.2.1 Eigenfunctions and eigenvalues

Generally, operators act on functions to give another function:

operator × function = (new function)
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However, for a given operator there are some functions which, when acted
upon, are regenerated, but multiplied by a constant

operator × function = constant  × (function) [1.4]

Such functions are said to be eigenfunctions of the operator and the
constants are said to be the associated eigenvalues.

If the operator is $Q  (the hat is to distinguish it as an operator) then Eqn.
[1.4] can be written more formally as

$Qf qfq q= [1.5]

where fq is an eigenfunction of $Q  with eigenvalue q; there may be more that
one eigenfunction each with different eigenvalues.  Equation [1.5] is known
as the eigenvalue equation.

For example, is exp(ax), where a is a constant, an eigenfunction of the

operator ( )d dx ?  To find out the operator and function are substituted into

the left-hand side of the eigenvalue equation, Eqn. [1.5]

( ) ( ) 
d

dx
ax a ax





 =exp exp

It is seen that the result of operating on the function is to generate the
original function times a constant.  Therefore exp(ax) is an eigenfunction of

the operator ( )d dx  with eigenvalue a.

Is sin(ax), where a is a constant, an eigenfunction of the operator ( )d dx ?

As before, the operator and function are substituted into the left-hand side of
the eigenvalue equation.

( ) ( )

( )

 
d

d

constant

x
ax a ax

ax





 =

≠ ×

sin cos

sin

As the original function is not regenerated, sin(ax) is not an eigenfunction of

the operator ( )d dx .

1.2.2 Normalization and orthogonality

A function, ψ, is said to be normalised if

( )ψ ψ τ*∫ =d 1
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where, as usual, the * represents the complex conjugate.  The notation dτ is
taken in quantum mechanics to mean integration over the full range of all
relevant variables e.g. in three-dimensional space this would mean the range
– ∞ to + ∞ for all of x, y and z.

Two functions ψ and φ are said to be orthogonal if

( )ψ φ τ*∫ =d 0

It can be shown that the eigenfunctions of an operator are orthogonal to one
another, provided that they have different eigenvalues.

( )
if    and  

then   d

$ $

*

Qf qf Qf q f

f f

q q q q

q q

= = ′

=

′ ′

′∫ τ 0

1.2.3 Bra-ket notation

This short-hand notation for wavefunctions is often used in quantum
mechanics.  A wavefunction is represented by a "ket" K ; labels used to
distinguish different wavefunctions are written in the ket.  For example

f q fq q is written  or sometimes 

It is a bit superfluous to write fq inside the ket.

The complex conjugate of a wavefunction is written as a "bra" K ; for
example

( )f qq ′ ′*  is written 

The rule is that if a bra appears on the left and a ket on the right,
integration over dτ is implied.  So

( )′ ′∫q q f fq q implies d* τ

sometimes the middle vertical lines are merged: ′q q .

Although it takes a little time to get used to, the bra-ket notation is very
compact.  For example, the normalization and orthogonality conditions can
be written

q q q q= ′ =1 0
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A frequently encountered integral in quantum mechanics is

ψ ψ τi jQ* $∫ d

where ψi and ψj are wavefunctions, distinguished by the subscripts i and j.
In bra-ket notation this integral becomes

i Q j$ [1.6]

as before, the presence of a bra on the left and a ket on the right implies
integration over dτ.  Note that in general, it is not allowed to re-order the
operator and the wavefunctions (section 1.2).  The integral of Eqn. [1.6] is

often called a matrix element, specifically the ij element, of the operator $Q .

In the bra-ket notation the eigenvalue equation, Eqn. [1.5], becomes

$Q q q q=

Again, this is very compact.

1.2.4 Basis sets

The position of any point in three-dimensional space can be specified by
giving its x-, y- and z-components.  These three components form a
complete description of the position of the point; two components would be
insufficient and adding a fourth component along another axis would be
superfluous.  The three axes are orthogonal to one another; that is any one
axis does not have a component along the other two.

In quantum mechanics there is a similar idea of expressing a
wavefunction in terms of a set of other functions.  For example, ψ may be
expressed as a linear combination of other functions

ψ = + + +a a a1 2 31 2 3 K

where the |i〉 are called the basis functions and the ai are coefficients
(numbers).

Often there is a limited set of basis functions needed to describe any
particular wavefunction; such a set is referred to as a complete basis set.
Usually the members of this set are orthogonal and can be chosen to be
normalized, i.e.

i j i i= =0 1
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1.2.5 Expectation values

A postulate of quantum mechanics is that if a system is described by a
wavefunction ψ then the value of an observable quantity represented by the

operator $Q  is given by the expectation value, $Q , defined as

$
* $

*
Q

Q
=

∫
∫
ψ ψ τ

ψ ψ τ

d

d

or in the bra-ket notation

$
$

Q
Q

=
ψ ψ
ψ ψ
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1.3.1 Spin angular momentum

A mass going round a circular path (an orbit) possesses angular momentum;
it turns out that this is a vector quantity which points in a direction
perpendicular to the plane of the rotation.  The x-, y- and z-components of
this vector can be specified, and these are the angular momenta in the x-, y-
and z-directions.  In quantum mechanics, there are operators which represent
these three components of the angular momentum.

Nuclear spins also have angular momentum associated with them – called
spin angular momentum.  The three components of this spin angular

momentum (along x, y and z) are represented by the operators $ , $ $I I Ix y z and 

(from now on the hats will be dropped unless there is any possibility of
ambiguity).

These operators are extremely important in the quantum mechanical
description of NMR, indeed just about all of the theory in these lectures uses
these operators.  It is therefore very important to understand their properties.

1.3.2 Eigenvalues and eigenfunctions

From now on the discussion is restricted to nuclei with nuclear spin
quantum number, I, = 1

2 .  For such a spin, it turns out that there are just
(2I + 1) = 2 eigenfunctions of any one of the operators I I Ix y z,  and .  As it

is traditional to define the direction of the applied magnetic field as z, the
eigenfunctions of the Iz operator are the ones of most interest. These two
eigenfunctions are usually denoted |α〉 and |β〉; they have the properties

I Iz zα α β β= = −1
2

1
2h h

p

A mass going round a circular
path possesses angular
moment, represented by a
vector which points
perpendicular to the plane of
rotation.
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where   h  is Planck's constant divided by 2π.  These properties mean that |α〉
and |β〉 are indeed eigenfunctions, with eigenvalues 1

2 h  and − 1
2 h

respectively.  These functions are normalized and orthogonal to one another

α α β β α β= = =1 1 0

The interpretation of these two states rests on the idea of angular
momentum as a vector quantity.  It turns out that angular momentum of size

I (here I = 1
2 ) can be represented by a vector of length ( )h I I + 1 ; for spin

1
2  the length of the vector is ( )3 2 h .  This vector can orient itself with

respect to a fixed axis, say the z-axis, in only (2I + 1) ways such that the
projection of the vector I onto the z-axis is ( )I I Ih h K h, ,− −1 , i.e. integer

steps between I and – I.  In the case of I = 1
2 , there are only two possible

projections, + 1
2 h  and − 1

2 h .  These projections are labelled with a quantum

number mI, called the magnetic quantum number.  It has values + 1
2  and

− 1
2 .

An alternative way of denoting the two eigenfunctions of the operator Iz

is to label them with the mI values

I m m m

i e I I

z I I I

z z

=

= − = −

h

h h. . 1
2

1
2

1
2

1
2

1
2

1
2

So 1
2  and − 1

2  correspond to |α〉 and |β〉 which can be thought of as "spin

up" and "spin down".

The functions |α〉 and |β〉 are not eigenfunctions of either Ix or Iy.

1.3.3 Raising and lowering operators

The raising operator, I+, and the lowering operator, I–, are defined as

I I iI I I iIx y x y+ −= + = − [1.7]

These operators have the following properties

I I

I I

+ +

− −

− = =

= − − =

1
2

1
2

1
2

1
2

1
2

1
2

0

0

h

h
[1.8]

Their names originated from these properties.  The raising operator acts on

the state − 1
2 , which has mI = − 1

2 , in such a way as to increase mI by one

unit to give mI = + 1
2 .  However, if I+ acts on the state 1

2  there is no

z z

1
2+

1
2-

3 2

Vector representation of the
spin angular momentum of a
spin half and its projections
onto the z-axis.
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possibility of further increasing mI as it is already at its maximum value;

thus I+ acting on 1
2  gives zero.

The same rationalization can be applied to the lowering operator.  It acts

on 1
2 , which has mI = + 1

2 , and produces a state on which mI has been

lowered by one i.e. mI = − 1
2 .  However, the mI value can be lowered no

further so I– acting on − 1
2  gives zero.

Using the definitions of Eqn. [1.7], Ix and Iy can be expressed in terms of
the raising and lowering operators:

( ) ( )I I I I I Ix y i= + = −+ − + −
1
2

1
2

Using these, and the properties given in Eqn. [1.8], it is easy to work out the
effect that Ix and Iy have on the states |α〉 and |β〉; for example

( )I I I

I I

x α α
α α

β

β

= +

= +

= +

=

+ −

+ −

1
2

1
2

1
2

1
2

1
2

0 h

h

By a similar method it can be found that

I I I i I ix x y yα β β α α β β α= = = = −1
2

1
2

1
2

1
2h h h h [1.9]

These relationships all show that |α〉 and |β〉 are not eigenfunctions of Ix and
Iy.

���� +DPLOWRQLDQV

The Hamiltonian, H, is the special name given to the operator for the energy
of the system.  This operator is exceptionally important as its eigenvalues
and eigenfunctions are the "energy levels" of the system, and it is transitions
between these energy levels which are detected in spectroscopy.  To
understand the spectrum, therefore, it is necessary to have a knowledge of
the energy levels and this in turn requires a knowledge of the Hamiltonian
operator.

In NMR, the Hamiltonian is seen as having a more subtle effect than
simply determining the energy levels.  This comes about because the
Hamiltonian also affects how the spin system evolves in time.  By altering
the Hamiltonian the time evolution of the spins can be manipulated and it is
precisely this that lies at the heart of multiple-pulse NMR.

The precise mathematical form of the Hamiltonian is found by first
writing down an expression for the energy of the system using classical
mechanics and then "translating" this into quantum mechanical form

i

j  

Ei 

Ej

E = h  ν

A spectroscopic transition
takes place between two
energy levels, Ei and Ej, which
are eigenvalues of the
Hamiltonian; these levels
correspond to eigenfunctions of
the Hamiltonian.
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according to a set of rules.  In this lecture the form of the relevant
Hamiltonians will simply be stated rather than derived.

In NMR the Hamiltonian changes depending on the experimental
situation.  There is one Hamiltonian for the spin or spins in the presence of
the applied magnetic field, but this Hamiltonian changes when a radio-
frequency pulse is applied.

1.4.1 Free precession

Free precession is when the spins experience just the applied magnetic field,
B0, traditionally taken to be along the z-axis.

1.4.1.1 One spin

The free precession Hamiltonian, Hfree, is

Hfree = γB0hIz

where γ is the gyromagnetic ratio, a constant characteristic of a particular
nuclear species such as proton or carbon-13.  The quantity γB0h has the units
of energy, which is expected as the Hamiltonian is the operator for energy.
However, it turns out that it is much more convenient to write the
Hamiltonian in units of angular frequency (radians s–1), which is achieved
by dividing the expression for Hfree by h to give

Hfree = γB0Iz

To be consistent it is necessary then to divide all of the operators by h.  As a
result all of the factors of h disappear from many of the equations given
above e.g. they become:

I Iz zα α β β= = −1
2

1
2 [1.10]

I I+ −= =β α α βh [1.11]

I I I i I ix x y yα β β α α β β α= = = = −1
2

1
2

1
2

1
2 [1.12]

From now on, the properties of the wavefunctions and operators will be used
in this form.  The quantity γB0, which has dimensions of angular frequency
(rad s–1), is often called the Larmor frequency, ω0.

Eigenfunctions and eigenvalues

The eigenfunctions and eigenvalues of Hfree are a set of functions, |i〉, which
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satisfy the eigenvalue equation:

H i i

I i i
i

z i

free =
=

ε
ω ε0

It is already known that |α〉 and |β〉 are eigenfunctions of Iz, so it follows that
they are also eigenfunctions of any operator proportional to Iz:

H I zfree α ω α
ω α

=
=

0

1
2 0

and likewise H I zfree β ω β ω β= = −0
1
2 0 .

So, |α〉 and |β〉 are eigenfunctions of Hfree with eigenvalues 12 0ω  and

− 1
2 0ω , respectively.  These two eigenfunctions correspond to two energy

levels and a transition between them occurs at frequency

( )( )1
2 0

1
2 0 0ω ω ω− − = .

1.4.1.2 Several spins

If there is more then one spin, each simply contributes a term to Hfree;
subscripts are used to indicate that the operator applies to a particular spin

H I Iz zfree = + +ω ω0 1 1 0 2 2, , K

where I1z is the operator for the first spin, I2z is that for the second and so on.
Due to the effects of chemical shift, the Larmor frequencies of the spins may
be different and so they have been written as ω0,i.

Eigenfunctions and eigenvalues

As Hfree separates into a sum of terms, the eigenfunctions turn out to be a
product of the eigenfunctions of the separate terms; as the eigenfunctions of
ω0,1I1z are already known, it is easy to find those for the whole Hamiltonian.

As an example, consider the Hamiltonian for two spins

H I Iz zfree = +ω ω0 1 1 0 2 2, ,

From section 1.4.1.1, it is known that, for spin 1

ω α ω α ω β ω β0 1 1 1
1
2 0 1 0 1 1 1

1
2 0 2 1, , ,I Iz z= = −and
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likewise for spin 2

ω α ω α ω β ω β0 2 2 2
1
2 0 2 2 0 2 2 2

1
2 0 2 2, , , ,I Iz z= = −and

Consider the function |β1〉|α2〉, which is a product of one of the
eigenfunctions for spin 1 with one for spin 2.  To show that this is an
eigenfunction of Hfree, the Hamiltonian is applied to the function

( )

( )

H I I

I I

I

z z

z z

z

free β α ω ω β α

ω β α ω β α

ω β α ω β α

ω β α ω β α

ω ω β α

1 2 0 1 1 0 2 2 1 2

0 1 1 1 2 0 2 2 1 2

1
2 0 1 1 2 0 2 1 2 2

1
2 0 1 1 2

1
2 0 2 1 2

1
2 0 1

1
2 0 2 1 2

= +

= +

= − +

= − +

= − +

, ,

, ,

, ,

, ,

, ,

As the action of Hfree on |β1〉|α2〉 is to regenerate the function, then it has
been shown that the function is indeed an eigenfunction, with eigenvalue

( )− +1
2 0 1

1
2 0 2ω ω, , .  Some comment in needed on these manipulation needed

between lines 2 and 3 of the above calculation.  The order of the function
|β1〉 and the operator I2z were changed between lines 2 and 3.  Generally, as
was noted above, it is not permitted to reorder operators and functions;
however it is permitted in this case as the operator refers to spin 2 but the
function refers to spin 1.  The operator has no effect, therefore, on the
function and so the two can be re-ordered.

There are four possible products of the single-spin eigenfunctions and
each of these can be shown to be an eigenfunction.  The table summarises
the results; in it, the shorthand notation has been used in which |β1〉|α2〉 is
denoted |βα〉 i.e. it is implied by the order of the labels as to which spin they
apply to

Eigenfunctions and eigenvalues for two spins
eigenfunction mI,1 mI,2 M eigenvalue

αα + 1
2 + 1

2
1 + +1

2 0 1
1
2 0 2ω ω, ,

αβ + 1
2 − 1

2
0 + −1

2 0 1
1
2 0 2ω ω, ,

βα − 1
2 + 1

2
0 − +1

2 0 1
1
2 0 2ω ω, ,

ββ − 1
2 − 1

2
1 − −1

2 0 1
1
2 0 2ω ω, ,
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Also shown in the table are the mI values for the individual spins and the
total magnetic quantum number, M, which is simply the sum of the mI

values of the two spins.
In normal NMR, the allowed transitions are between those levels that

differ in M values by one unit.  There are two transitions which come out at
ω0,1, |βα〉 ↔ |αα〉 and |αβ〉 ↔ |ββ〉; and there are two which come out at
ω0,2, |βα〉 ↔ |ββ〉 and |αβ〉 ↔ |αα〉.  The former two transitions involve a
flip in the spin state of spin 1, whereas the latter pair involve a flip of the
state of spin 2.  The energy levels and transitions are depicted opposite.

1.4.1.3 Scalar coupling

The Hamiltonian for scalar coupling contains a term 2πJijIizIjz for each
coupled pair of spins; Jij is the coupling constant, in Hz, between spins i and
j.  The terms representing coupling have to be added to those terms
described in section 1.4.1.2 which represent the basic Larmor precession.
So, the complete free precession Hamiltonian for two spins is:

H I I J I Iz z z zfree = + +ω ω π0 1 1 0 2 2 12 1 22, ,

Eigenfunctions and eigenvalues for two spins

The product functions, such as |β1〉|α2〉, turn out to also be eigenfunctions of
the coupling Hamiltonian.  For example, consider the function |β1〉|α2〉; to
show that this is an eigenfunction of the coupling part of Hfree, the relevant
operator is applied to the function

( )

2 2

2

2

12 1 2 1 2 12 1 1 2 2

12 1 1
1
2 2

12
1
2 1

1
2 2

1
2 12 1 2

π β α π β α

π β α

π β α

π β α

J I I J I I

J I

J

J

z z z z

z

=

=

= −

= −

As the action of 2πJ12I1zI2z on |β1〉|α2〉 is to regenerate the function, then it
follows that the function is indeed an eigenfunction, with eigenvalue

( )− 1
2 12πJ .  As before, the order of operators can be altered when the

relevant operator and function refer to different spins.
In a similar way, all four product functions can be show to be

eigenfunctions of the coupling Hamiltonian, and therefore of the complete
free precession Hamiltonian.  The table shows the complete set of energy
levels.

αβ

ββ

βα

αα

ω0 1,

ω0 1,

ω 0 2,

ω0 2,

The four energy levels of a two-
spin system.  The allowed
transitions of spin 1 are shown
by dashed arrows, and those of
spin 2 by solid arrows.
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There are two allowed transitions in which spin 1 flips, 1–3 and 2–4, and
these appear at ω0,1 + πJ12 and ω0,1 - πJ12, respectively.  There are two
further transitions in which spin 2 flips, 1–2 and 3–4, and these appear at
ω0,2 + πJ12 and ω0,2 - πJ12, respectively.  These four lines form the familiar
two doublets found in the spectrum of two coupled spins.

Transition 1–2 is one in which spin 2 flips i.e. changes spin state, but the
spin state of spin 1 remains the same.  In this transition spin 2 can be said to
be active, whereas spin 1 is said to be passive.  These details are
summarized in the diagram below

2 J122 J12

1↔3 2↔4 1↔2 3↔4

0,1 0,2

flips
flips

spin 1
spin 2

The spectrum from two coupled spins, showing which spins are passive and active in each transition.
The frequency scale is in rad s–1, so the splitting of the doublet is 2πJ12 rad s–1, which corresponds to
J12 Hz.

Eigenfunctions and eigenvalues for several spins

For N spins, it is easy to show that the eigenfunctions are the 2N possible
products of the single spin eigenfunctions |α〉 and |β〉.  A particular
eigenfunction can be labelled with the mI values for each spin, mI,i and

written as m m mI I I i, , ,1 2K .  The energy of this eigenfunction is

( )m m m JI i
i

N

i I i I j ij
j i

N

i

N

, , , ,
= >=
∑ ∑∑+

1
0

1

2ω π

The restricted sum over the index j is to avoid counting the couplings more
than once.

Eigenfunctions and eigenvalues for two coupled
spins

number eigenfunction M eigenvalue

1 αα 1 + + +1
2 0 1

1
2 0 2

1
2 12ω ω π, , J

2 αβ 0 + − −1
2 0 1

1
2 0 2

1
2 12ω ω π, , J

3 βα 0 − + −1
2 0 1

1
2 0 2

1
2 12ω ω π, , J

4 ββ 1 − − +1
2 0 1

1
2 0 2

1
2 12ω ω π, , J
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1.4.2 Pulses

In NMR the nuclear spin magnetization is manipulated by applying a
magnetic field which is (a) transverse to the static magnetic field i.e. in the
xy-plane, and (b) oscillating at close to the Larmor frequency of the spins.
Such a field is created by passing the output of a radio-frequency transmitter
through a small coil which is located close to the sample.

If the field is applied along the x-direction and is oscillating at ωRF, the
Hamiltonian for one spin is

H I t Iz x= +ω ω ω0 12 cos RF

The first term represents the interaction of the spin with the static magnetic
field, and the second represents the interaction with the oscillating field.
The strength of the latter is given by ω1.

It is difficult to work with this Hamiltonian as it depends on time.
However, this time dependence can be removed by changing to a rotating
set of axes, or a rotating frame.  These axes rotate about the z-axis at
frequency ωRF, and in the same sense as the Larmor precession.

In such a set of axes the Larmor precession is no longer at ω0, but at
(ω0–ωRF); this quantity is called the offset, Ω.  The more important result of
using the rotating frame is that the time dependence of the transverse field is
removed.  The details of how this comes about are beyond the scope of this
lecture, but can be found in a number of standard texts on NMR.

In the rotating frame, the Hamiltonian becomes time independent

( )H I I

I I
z x

z x

= − +
= +

ω ω ω
ω

0 1

1

RF

Ω

Commonly, the strength of the radiofrequency field is arranged to be much
greater than typical offsets: ω1 >> Ω .  It is then permissible to ignore the
offset term and so write the pulse Hamiltonian as (for pulses of either phase)

H I H Ix x y ypulse, pulse,or= =ω ω1 1

Such pulses are described as hard or non-selective, in the sense that they
affect spins over a range of offsets.  Pulses with lower field strengths, ω1, are
termed selective or soft.

1.4.2.1 Several spins

For multi-spin systems, a term of the form ω1Iix is added for each spin that is
affected by the pulse.  Note that in heteronuclear systems, pulses can be
applied independently to nuclei of different kinds

lab. frame

x y

z

rotating frame

x y

z
RF

 - RF

At object rotating at frequency
ω in the xy-plane when viewed
in the lab. frame (fixed axes)
appears to rotate at frequency
(ω – ωRF) when observed in a
frame rotating about the z-axis
at ωRF.

0 RF

Illustration of the relationship
between the Larmor frequency,
ω0, the transmitter frequency,
ωRF, and the offset, Ω.
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H I Ix x xpulse, = + +ω ω1 1 1 2 K

The product functions given above are not eigenfunctions of these
Hamiltonians for pulses.

From now it, it will be assumed that all calculations are made in the
rotating frame.  So, instead of the free precession Hamiltonian being in
terms of Larmor frequencies it will be written in terms of offsets.  For
example, the complete free precession Hamiltonian for two coupled spins is

H I I J I Iz z z zfree = + +Ω Ω1 1 2 2 12 1 22π

���� 7LPH�HYROXWLRQ

In general, the wavefunction describing a system varies with time, and this
variation can be computed using the time-dependent Schrödinger equation

( ) ( )d

d

ψ
ψ

t

t
iH t= − [1.13]

where ψ(t) indicates that the wavefunction is a function of time.  From this
equation it is seen that the way in which the wavefunction varies with time
depends on the Hamiltonian.  In NMR, the Hamiltonian can be manipulated
– for example by applying radio-frequency fields – and it is thus possible to
manipulate the evolution of the spin system.

As has been seen in section 1.2.5, the size of observable quantities, such
as magnetization, can be found by calculating the expectation value of the
appropriate operator.  For example, the x-magnetization is proportional to
the expectation value of the operator Ix

( ) ( )
( ) ( )

M k I
t I t

t t
x x

x= =
ψ ψ

ψ ψ

where k is a constant of proportion.  As the wavefunction changes with time,
so do the expectation values and hence the observable magnetization.

���� 6XSHUSRVLWLRQ�VWDWHV

This section will consider first a single spin and then a collection of a large
number of non-interacting spins, called an ensemble.  For example, the
single spin might be an isolated proton in a single molecule, while the
ensemble would be a normal NMR sample made up of a large number of
such molecules.  In an NMR experiment, the observable magnetization
comes from the whole sample; often it is called the bulk magnetization to
emphasize this point.  Each spin in the sample makes a small contribution to
the bulk magnetization.  The processes of going from a system of one spin
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to one of many is called ensemble averaging.
The wavefunction for one spin can be written

( )ψ α βα βt c t c t= +( ) ( )

where cα(t) and cβ(t) are coefficients which depend on time and which in
general are complex numbers.  Such a wavefunction is called a
superposition state, the name deriving from the fact that it is a sum of
contributions from different wavefunctions.

In elementary quantum mechanics it is all too easy to fall into the
erroneous view that "the spin must be either up or down, that is in state α or
state β".  This simply is not true; quantum mechanics makes no such claim.

1.6.1 Observables

The x-, y- and z-magnetizations are proportional to the expectation values of
the operators Ix, Iy and Iz.  For brevity, cα(t) will be written cα, the time
dependence being implied.

Consider first the expectation value of Iz (section 1.2.5)

( ) ( )
( )( )

( ) ( )

I
c c I c c

c c c c

c c I c c I c c I c c I

c c c c c c c c

c c c c c c c c

c

z

z

z z a z z

a

a

=
+ +

+ +

=
+ + +

+ + +

=
+ + − + −

α β α β

α β α β

α α β α β β β

α α β α β β β

α α β α β β β

α

α β α β

α β α β

α α β α α β β β
α α β α α β β β

α α β α α β β β

* *

* *

* * * *

* * * *

* * * *

*

1
2

1
2

1
2

1
2

( ) ( )

( )
( )

c c c c c c c

c c c c c c c c

c c c c

c c c c

c c c c

a

a

α β α β β β

α α β α β β β

α α β β

α α β β

α α β β

× + × + × + ×

=
× + × + − × + − ×

+

=
−

+

1 0 0 1

1 0 0 1

1

2

1
2

1
2

1
2

1
2

* * *

* * * *

* *

* *

* *

Extensive use has been made of the facts that the two wavefunctions |α〉 and
|β〉 are normalized and orthogonal to one another (section 1.3.2), and that the
effect of Iz on these wavefunctions is know (Eqn. [1.10]).

To simplify matters, it will be assumed that the wavefunction ψ(t) is
normalized so that 〈ψ |ψ〉 = 1; this implies that c c c cα α β β

* *+ = 1 .

Using this approach, it is also possible to determine the expectation
values of Ix and Iy.  In summary:

Iz|α〉 = (1/2) |α〉

Iz|β〉 = –(1/2) |β〉 

〈α|β〉 = 〈β|α〉 = 0

〈α|α〉 = 〈β|β〉 = 1
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( ) ( )
( )

I c c c c I c c c c

I c c c c

z x

y
i

= − = +

= −

1
2

1
2

2

α α β β β α α β

β α α β

* * * *

* *
[1.14]

It is interesting to note that if the spin were to be purely in state |α〉, such
that cα = 1, cβ = 0, there would be no x- and no y-magnetization.  The fact
that such magnetization is observed in an NMR experiment implies that the
spins must be in superposition states.

The coefficients cα and cβ are in general complex, and it is sometimes
useful to rewrite them in the (r/φ) format (see section 1.1.2)

( ) ( )
( ) ( )

c r i c r i

c r i c r i

α α α β α β

α α α β β β

φ φ

φ φ

= =

= − = −

exp exp

exp exp* *

Using these, the expectation values for Ix,y,z become:

( ) ( )
( )

I r r I r r

I r r

z x

y

= − = −

= −

1
2

2 2
α β α β α β

α β α β

φ φ

φ φ

cos

sin

The normalization condition, c c c cα α β β
* *+ = 1 , becomes ( )r rα β

2 2 1+ =  in this

format.  Recall that the r's are always positive and real.

1.6.1.1 Comment on these observables

The expectation value of Iz can take any value between 1
2  (when rα = 1,

rβ = 0) and − 1
2  (when rα = 0, rβ = 1).  This is in contrast to the quantum

number mI which is restricted to values ± 1
2  ("spin up or spin down").

Likewise, the expectation values of Ix and Iy can take any values between
− 1

2  and +1
2 , depending on the exact values of the coefficients.

1.6.1.2 Ensemble averages; bulk magnetization

In order to compute, say, the x-magnetization from the whole sample, it is
necessary to add up the individual contributions from each spin:

I I I Ix x x x= + + +
1 2 3

K

where I x  is the ensemble average, that is the sum over the whole sample.

The contribution from the ith spin, 〈Ix〉i, can be calculate using Eqn. [1.14].
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( ) ( ) ( )
( )

( )

I I I I

c c c c c c c c c c c c

c c c c

r r

x x x x= + + +

= + + + + + +

= +

= −

1 2 3

1
2 1

1
2 2

1
2 3

1
2

K

Kβ α β α β α β α β α β α

β α β α

α β α βφ φ

* * * * * *

* *

cos

On the third line the over-bar is short hand for the average written out
explicitly in the previous line.  The fourth line is the same as the third, but
expressed in the (r,φ) format (Eqn. [1.15]).

The contribution from each spin depends on the values of rα,β and φα,β
which in general it would be quite impossible to know for each of the
enormous number of spins in the sample.  However, when the spins are in
equilibrium it is reasonable to assume that the phases φα,β of the individual
spins are distributed randomly.  As 〈Ix〉 = rα rβ cos(φα - φβ) for each spin, the
random phases result in the cosine term being randomly distributed in the
range –1 to +1, and as a result the sum of all these terms is zero.  That is, at
equilibrium

I Ix yeq eq
= =0 0

This is in accord with the observation that at equilibrium there is no
transverse magnetization.

The situation for the z-magnetization is somewhat different:

( ) ( ) ( )
( ) ( )
( )

I I I I

r r r r r r

r r r r r r

r r

z z z z= + + +

= − + − + −

= + + + − + + +

= −

1 2 3

1
2 1

2
1

2 1
2 2

2
2

2 1
2 3

2
3

2

1
2 1

2
2

2
3

2 1
2 1

2
2

2
3

2

1
2

2 2

K

K K

α β α β α β

α α α β β β

α β

, , , , , ,

, , , , , ,

Note that the phases φ do not enter into this expression, and recall that the r's
are positive.

This is interpreted in the following way.  In the superposition state
cα |α〉 + cβ |β〉, c c rα α α

* = 2  can be interpreted as the probability of  finding the

spin in state |α〉, and c c rβ β β
* = 2  as likewise the probability of finding the

spin in state |β〉.  The idea is that if the state of any one spin is determined by
experiment the outcome is always either |α〉 or |β〉.  However, if a large
number of spins are taken, initially all in identical superposition states, and
the spin states of these determined, a fraction c cα α

*  would be found to be in

state |α〉, and a fraction c cβ β
*  in state |β〉.

From this it follows that
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I P Pz = −1
2

1
2α β

where Pα and Pβ are the total probabilities of finding the spins in state |α〉 or
|β〉, respectively.  These total probabilities can be identified with the
populations of two levels |α〉 or |β〉.  The z-magnetization is thus
proportional to the population difference between the two levels, as
expected.  At equilibrium, this population difference is predicted by the
Boltzmann distribution.

1.6.2 Time dependence

The time dependence of the system is found by solving the time dependent
Schrödinger equation, Eqn. [1.13].  From its form, it is clear that the exact
nature of the time dependence will depend on the Hamiltonian i.e. it will be
different for periods of free precession and radiofrequency pulses.

1.6.2.1 Free precession

The Hamiltonian (in a fixed set of axes, not a rotating frame) is ω0Iz and at
time = 0 the wavefunction will be assumed to be

( )

( )[ ] ( )[ ]
ψ α β

φ α φ β

α β

α α β β

0 0 0

0 0 0 0

= +

= +

c c

r i r i

( ) ( )

( ) exp ( ) exp

The time dependent Schrödinger equation can therefore be written as

( )

[ ] [ ]
[ ]

d

d

d

d

ψ
ψ

α β
ω α β

ω α β

α β
α β

α β

t

t
iH

c t c t

t
i I c t c t

i c t c t

z

= −

+
= − +

= − −

( ) ( )
( ) ( )

( ) ( )

0

0
1
2

1
2

where use has been made of the properties of Iz when acting on the
wavefunctions |α〉 and |β〉 (section 1.4 Eqn. [1.10]).  Both side of this
equation are left-multiplied by 〈α|, and the use is made of the orthogonality
of |α〉 and |β〉

[ ] [ ]d

d
d

d

α α α β
ω α α α β

ω

α β
α β

α
α

c t c t

t
i c t c t

c t

t
i c t

( ) ( )
( ) ( )

( )
( )

+
= − −

= −

0
1
2

1
2

1
2 0

Iz|α〉 = (1/2) |α〉

Iz|β〉 = –(1/2) |β〉

〈α|β〉 = 〈β|α〉 = 0

〈α|α〉 = 〈β|β〉 = 1
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The corresponding equation for cβ is found by left multiplying by 〈β|.

d

d

c t

t
i c t

β
βω

( )
( )= 1

2 0

These are both standard differential equations whose solutions are well
know:

( ) ( )c t c i t c t c i tα α β βω ω( ) ( ) exp ( ) ( ) exp= − =0 01
2 0

1
2 0

All that happens is that the coefficients oscillate in phase, at the Larmor
frequency.

To find the time dependence of the expectation values of Ix,y,z, these
expressions for cα,β(t) are simply substituted into Eqn. [1.14]

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

I t c t c t c t c t

c c i t i t

c c i t i t

c c c c

z = −

= −

− −

= −

1
2

1
2

1
2 0

1
2 0

1
2

1
2 0

1
2 0

1
2

1
2

0 0

0 0

0 0 0 0

α α β β

α α

β β

α α β β

ω ω

ω ω

* *

*

*

* *

exp exp

exp exp

As expected, the z-component does not vary with time, but remains fixed at
its initial value.  However, the x- and y-components vary according to the
following which can be found in the same way

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

I t r r t

I t r r t

x

y

= − +

= − +

1
2 0

1
2 0

0 0 0 0

0 0 0 0

α β β α

α β β α

ω φ φ

ω φ φ

cos

sin

Again, as expected, these components oscillate at the Larmor frequency.

1.6.2.2 Pulses

More interesting is the effect of radiofrequency pulses, for which the
Hamiltonian (in the rotating frame) is ω1Ix.  Solving the Schrödinger
equation is a little more difficult than for the case above, and yields the
result

( ) ( ) ( )
( ) ( ) ( )

c t c t ic t

c t c t ic t

α α β

β β α

ω ω

ω ω

= −

= −

0 0

0 0

1
2 1

1
2 1

1
2 1

1
2 1

cos sin

cos sin

In contrast to free precession, the pulse actually causes that coefficients to
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change, rather than simply to oscillate in phase.  The effect is thus much
more significant.

A lengthy, but straightforward, calculation gives the following result for
〈Iy〉

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

I t c c c c t

c c c c t

y
i= −

− −

2 1

1
2 1

0 0 0 0

0 0 0 0

α β α β

α α β β

ω

ω

* *

* *

cos

sin
[1.16]

The first term in brackets on the right is simply 〈Iy〉 at time zero (compare
Eqn. [1.14]).  The second term is 〈Iz〉 at time zero (compare Eqn. [1.14]).
So, 〈Iy〉(t) can be written

( ) ( ) ( )I t I t I ty y z= −0 01 1cos sinω ω

This result is hardly surprising.  It simply says that if a pulse is applied about
the x-axis, a component which was initially along z 〈Iz〉(0) is rotated towards
y.  The rotation from z to y is complete when ω1t = π/2, i.e. a 90° pulse.

The result of Eqn. [1.16] applies to just one spin.  To make it apply to the
whole sample, the ensemble average must be taken

( ) ( ) ( )I t I t I ty y z= −0 01 1cos sinω ω [1.17]

Suppose that time zero corresponds to equilibrium.  As discussed above, at
equilibrium then ensemble average of the y components is zero, but the z
components are not, so

( )I t I ty z= −
eq

sinω1

where 〈Iz〉eq is the equilibrium ensemble average of the z components.  In
words, Eqn. [1.17] says that the pulse rotates the equilibrium magnetization
from z to –y, just as expected.
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1.6.3 Coherences

Transverse magnetization is associated in quantum mechanics with what is
known as a coherence.  It was seen above that at equilibrium there is no
transverse magnetization, not because each spin does not make a
contribution, but because these contributions are random and so add up to
zero. However, at equilibrium the z-components do not cancel one another,
leading to a net magnetization along the z-direction.

During the pulse, the z-component from each spin is rotated towards y,
according to Eqn. [1.17].  The key point is that all the contributions from all
the spins, although they start in random positions in the yz-plane, are rotated
through the same angle.  As a result, what started out as a net alignment in
the z-direction rotates in the zy-plane, becoming a net alignment along –y
after a 90° pulse.

Another interpretation is to look at the way in which the individual
coefficients vary during the pulse

( ) ( ) ( )
( ) ( ) ( )

c t c t ic t

c t c t ic t

α α β

β β α

ω ω

ω ω

= −

= −

0 0

0 0

1
2 1

1
2 1

1
2 1

1
2 1

cos sin

cos sin

In words, what happens is that the size of the coefficients at time t are
related to those at time zero in a way which is the same for all spins in the
sample.  Although the phases are random at time zero, for each spin the
phase associated with cα at time zero is transferred to cβ, and vice versa.  It
is this correlation of phases between the two coefficients which leads to an
overall observable signal from the sample.

���� 'HQVLW\�PDWUL[

The approach used in the previous section is rather inconvenient for
calculating the outcome of NMR experiments.  In particular, the need for
ensemble averaging after the calculation has been completed is especially
difficult.  It turns out that there is an alternative way of casting the
Schrödinger equation which leads to a much more convenient framework for
calculation – this is density matrix theory.  This theory, can be further
modified to give an operator version which is generally the most convenient
for calculations in multiple pulse NMR.

First, the idea of matrix representations of operators needs to be
introduced.

1.7.1 Matrix representations

An operator, Q, can be represented as a matrix in a particular basis set of
functions.  A basis set is a complete set of wavefunctions which are
adequate for describing the system, for example in the case of a single spin
the two functions |α〉 and |β〉 form a suitable basis.  In larger spin systems,
more basis functions are needed, for example the four product functions
described in section 1.4.1.2 form such a basis for a two spin system.

y

y

z

z

Each spin makes a contribution
to the magnetization in each
direction (top diagram).  A
pulse, here 90° about the x-
axis, rotates all of these
contributions in the same sense
through the same angle
(bottom diagram).
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The matrix form of Q is defined in this two-dimensional representation is
defined as

Q
Q Q

Q Q
=











α α α β
β α β β

Each of the matrix elements, Qij, is calculated from an integral of the form
〈i|Q|j〉, where |i〉 and |j〉 are two of the basis functions.  The matrix element
Qij appears in the ith row and the jth column.

1.7.1.1 One spin

Particularly important are the matrix representations of the angular
momentum operators.  For example, Iz:

I
I I

I Iz
z z

z z

=










=
−
−











=
−









α α α β
β α β β

α α α β
β α β β

1
2

1
2

1
2

1
2

1
2

1
2

0

0

As usual, extensive use have been made of the properties of Iz and the ortho-
normality of the basis functions (see sections 1.3.2).

The representations of Ix and Iy are easily found, by expressing them in
terms of the raising and lowering operators (section 1.3.3), to be

I Ix y

i

i=






 =

−







0

0

0

0

1
2

1
2

2

2

1.7.1.2 Direct products

The easiest way to find the matrix representations of angular momentum
operators in larger basis sets is to use the direct product.

When two n×n matrices are multiplied together the result is another n×n
matrix.  The rule is that the ijth element of the product is found by
multiplying, element by element, the ith row by the jth column and adding
up all the products.  For example:

a b

c d

p q

r s

ap br aq bs

cp dr cq ds















 =

+ +
+ +









Iz|α〉 = (1/2) |α〉

Iz|β〉 = –(1/2) |β〉

〈α|β〉 = 〈β|α〉 = 0

〈α|α〉 = 〈β|β〉 = 1
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The direct product, symbolized ⊗, of two n×n matrices results in a larger
matrix of size 2n×2n.  The rule for this multiplication is difficult to express
formally but easy enough to describe:

a b

c d

p q

r s

a
p q

r s
b

p q

r s

c
p q

r s
d

p q

r s







 ⊗







 =

×






 ×









×






 ×



























The right-hand matrix is duplicated four times over, because there are four
elements in the left-hand matrix.  Each duplication is multiplied by the
corresponding element from the left-hand matrix.  The final result is

a b

c d

p q

r s

ap aq bp bq

ar as br bs

cp cq dp dq

cr cs dr ds

ap aq bp bq

ar as br bs

cp cq dp dq

cr cs dr ds







 ⊗







 =



















≡



















(the lines in the central matrix are just to emphasise the relation to the 2 × 2
matrices, they have no other significance).

The same rule applies to matrices with just a single row (row vectors)

( ) ( ) ( )a b p q ap aq bp bq, , , , ,⊗ =

1.7.1.3 Two spins

The basis set for a single spin can be written (|α1〉,|β1〉; the basis set for two
spins can be found from the direct product of two such basis sets, one for
each spin:

( ) ( ) ( )α β α β α α α β β α β β1 1 2 2 1 2 1 2 1 2 1 2, , , , ,⊗ =

In this basis the matrix representation of I1x can be found by writing the
operator as the direct product

I1x ⊗ E2 [1.18]

where E is the unit matrix

E =








1 0

0 1
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The subscript 2 on the E in Eqn. [1.18] is in a sense superfluous as the unit
matrix is the same for all spins.  However, it is there to signify that in the
direct product there must be an operator for each spin.  Furthermore, these
operators must occur in the correct order, with that for spin 1 leftmost and so
on.  So, to find the matrix representation of I2x the required direct product is

E1 ⊗ I2x

In matrix form E1 ⊗ I2x is

E I x1 2

1
2

1
2

1
2

1
2

1
2

1
2

1 0

0 1

0

0

0 0 0

0 0 0

0 0 0

0 0 0

⊗ =






 ⊗









=



















and I1x ⊗ E2 is

I Ex1 2

1
2

1
2

1
2

1
2

1
2

1
2

0

0

1 0

0 1

0 0 0

0 0 0

0 0 0

0 0 0

⊗ =






 ⊗









=



















As a final example I1x ⊗ I2y is

I Ix y

i

i

i

i

i

i

1 2

1
2

1
2

2

2

4

4

4

4

0

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

⊗ =






 ⊗

−







=

−

−



















All of these matrices are hermetian, which means that matrix elements
related by reflection across the diagonal have the property that Qji = Qij*.

1.7.2 Density matrix

For a one spin system the density matrix, σ, is defined according to its
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elements

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

σ α α α β

β α β β

t
c t c t c t c t

c t c t c t c t
=













* *

* *

where the over-bars indicate ensemble averaging.  This matrix contains all
the information needed to calculate any observable quantity.  Formally, σ is
defined in the following way:

( ) ( ) ( )σ ψ ψt t t=

1.7.2.1 Observables

It can be shown that the expectation value of an operator, Q, is given by

[ ]Q Q= Tr σ

where Tr[A] means take the trace, that is the sum of the diagonal elements,
of the matrix A.

For example, the expectation value of Iz is

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )
( )

I
c t c t c t c t

c t c t c t c t

c t c t

c t c t

c t c t c t c t

r r

z =










 −




















=
−























= −

= −

Tr

Tr

α α α β

β α β β

α α

β β

α α β β

α β

* *

* *

*

*

* *

1
2

1
2

1
2

1
2

1
2

1
2

2 2

0

0

K

K

This is directly comparable to the result obtained in section 1.6.1.2.
The very desirable feature of this definition of the density matrix and the

trace property for calculation observables is that the ensemble averaging is
done before the observable is computed.

The expectation value of Ix is



1–31

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

I
c t c t c t c t

c t c t c t c t

c t c t c t c t

x =































= +

Tr α α α β

β α β β

α β β α

* *

* *

* *

0

0

1
2

1
2

1
2

Again, this is directly comparable to the result obtained in section 1.6.1.2
The off diagonal elements of the density matrix can contribute to

transverse magnetization, whereas the diagonal elements only contribute to
longitudinal magnetization.  In general, a non-zero off-diagonal element

( ) ( )c t c ti j
*  indicates a coherence involving levels i and j, whereas a diagonal

element, ( ) ( )c t c ti i
* , indicates the population of level i.

From now on the ensemble averaging and time dependence will be taken
as implicit and so the elements of the density matrix will be written simply
c ci j

*  unless there is any ambiguity.

1.7.2.2 Equilibrium

As described in section 1.6.1.2, at equilibrium the phases of the super-

position states are random and as a result the ensemble averages ( ) ( )c t c tα β
*

and ( ) ( )c t c tβ α
*  are zero.  This is easily seen by writing then in the r/φ format

( ) ( )c c r i r iα β α α β βφ φ* exp exp= −

= 0 at equilibrium

However, the diagonal elements do not average to zero but rather
correspond to the populations, Pi, of the levels, as was described in section
1.6.1.2

( ) ( )c c r i r i

r

P

α α α α α α

α

α

φ φ* exp exp= −

=
=

2

The equilibrium density matrix for one spin is thus

σ α

β
eq =









P

P

0

0

As the energy levels in NMR are so closely spaced, it turns out that to an
excellent approximation the populations can be written in terms of the
average population of the two levels, Pav, and the difference between the two
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populations, ∆, where ∆ = Pα - Pβ

σeq
av

av

=
+

−








P

P

1
2

1
2

0

0

∆
∆

Comparing this with the matrix representations of Iz and E, σeq, can be
written

σeq av

av

= +

=






 +

−








P E I

P

z∆

∆
1 0

0 1

0

0

1
2

1
2

It turns out that the part from the matrix E does not contribute to any
observables, so for simplicity it is ignored.  The factor ∆ depends on details
of the spin system and just scales the final result, so often it is simply set to
1.  With these simplifications σeq is simply Iz.

1.7.2.3 Evolution

The density operator evolves in time according to the following equation,
which can be derived from the time dependent Schrödinger equation
(section 1.5):

( ) ( ) ( )[ ]d

d

σ
σ σ

t

t
i H t t H= − − [1.19]

Note that as H and σ are operators their order is significant.  Just as in
section 1.5 the evolution depends on the prevailing Hamiltonian.

If H is time independent (something that can usually be arranged by using
a rotating frame, see section 1.4.2), the solution to Eqn. [1.19] is
straightforward

( ) ( ) ( ) ( )σ σt iHt iHt= −exp exp0

where again the ordering of the operators must be preserved.  All the terms
is this equation can be thought of as either matrices or operators, and it is the
second of these options which is discussed in the next section.

1.7.3 Operator form of the density matrix

So far, Hamiltonians have been written in terms of operators, specifically
the angular momentum operators Ix,y,z, and it has also been seen that these
operators represent observable quantities, such as magnetizations.  In
addition, it was shown in section 1.1.2.2 that the equilibrium density matrix



1–33

has the same form as Iz.  These observations naturally lead to the idea that it
might be convenient also to write the density matrix in terms of the angular
momentum operators.

Specifically, the idea is to expand the density matrix as a combination of
the operators:

σ(t) = a(t)Iz + b(t)Iy + c(t)Iz

where a, b and c are coefficients which depend on time.

1.7.3.1 Observables

From this form of the density matrix, the expectation value of, for example,
Ix can be computed in the usual way (section 1.7.2.1).

[ ]
( )[ ]

[ ] [ ] [ ]

I I

aI bI cI I

aI I bI I cI I

x x

x y z x

x x y x z x

=

= + +

= + +

Tr

Tr

Tr Tr Tr

σ

where to get to the last line the property that the trace of a sum of matrices is
equal to the sum of the traces of the matrices has been used.

It turns out that Tr[IpIq] is zero unless p = q when the trace is = 1
2 ; for

example

[ ]Tr Tr

Tr

I Ix x =



























=




















=

0

0

0

0

1
2

1
2

1
2

1
2

1
4

1
4

1
2

K

K

[ ]Tr Tr

Tr

I Ix z =








−




















=
















 =

0

0

0

0

0

0
0

1
2

1
2

1
2

1
2

K

K

In summary it is found that

I a I b I cx y z= = =1
2

1
2

1
2

This is a very convenient result.  By expressing the density operator in the
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form σ(t) = a(t)Iz + b(t)Iy + c(t)Iz the x-, y- and z-magnetizations can be
deduced just by inspection as being proportional to a(t), b(t), and c(t)
respectively (the factor of one half is not important).  This approach is
further developed in the lecture 2 where the product operator method is
introduced.

1.7.3.2 Evolution

The evolution of the density matrix follows the equation

( ) ( ) ( ) ( )σ σt iHt iHt= −exp exp0

Often the Hamiltonian will be a sum of terms, for example, in the case of
free precession for two spins H = Ω1I1z + Ω2I2z.  The exponential of the sum
of two operators can be expressed as a product of two exponentials provided
the operators commute

( ) ( ) ( )exp exp expA B A B A B+ =    provided  and  commute

Commuting operators are ones whose effect is unaltered by changing their
order: i.e. ABψ = BAψ; not all operators commute with one another.

Luckily, operators for different spins do commute so, for the free
precession Hamiltonian

( ) [ ]( )
( ) ( )

exp exp

exp exp

− = − +

= − −

iHt i I I t

i I t i I t

z z

z z

Ω Ω

Ω Ω
1 1 2 2

1 1 2 2

The evolution of the density matrix can then be written

( ) ( ) ( ) ( ) ( ) ( )σ σt i I t i I t i I t i I tz z z z= − −exp exp exp expΩ Ω Ω Ω1 1 2 2 1 1 2 20

The operators for the evolution due to offsets and couplings also commute
with one another.

For commuting operators the order is immaterial.  This applies also to
their exponentials, e.g. exp(A) B = B exp(A).  This property is used in the
following

( ) ( ) ( ) ( )
( )
( )

exp exp exp exp

exp

exp

− = −

= − +

= =

i I t I i I t i I t i I t I

i I t i I t I

I I

z x z z z x

z z x

x x

Ω Ω Ω Ω

Ω Ω
1 1 2 1 1 1 1 1 1 2

1 1 1 1 2

2 20

In words this says that the offset of spin 1 causes no evolution of transverse
magnetization of spin 2.
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These various properties will be used extensively in lecture 2.


