1 Introduction to quantum mechanics

Quantum mechanics is the basic tool needed to describe, understand and
devise NMR experiments. Fortunately for NMR spectroscopists, the
guantum mechanics of nuclear spins is quite straightforward and many
useful calculations can be done by hand, quite literally "on the back of an
envelope". This simplicity comes about from the fact that although there are
a very large number of molecules in an NMR sample they are interacting
very weakly with one another. Therefore, it is usually adequate to think
about only one molecule at a time. Even in one molecule, the number of
spins which are interacting significantly with one anotlher ére coupled)

is relatively small, so the number of possible quantum states is quite limited.

The discussion will begin with revision of some mathematical concepts
frequently encountered in quantum mechanics and NMR.

1.1 Mathematical concepts

1.1.1 Complex numbers

An ordinary number can be thought of as a point on a line which extends
from minus infinity through zero to plus infinity. émplex number can be
thought of as a point in a plane; theoordinate of the point is threal part

of the complex number and tigeoordinate is themaginary part.

If the real part isa and the imaginary part i3 the complex number is a real

written as & +ib) wherei is the square root of —1. The idea thatl (or in
general the square root of any negative number) might have a "meaning"ciosmplex Cumber can be
one of the origins of complex numbers, but it will be seen that they h@v&n of as a point in the

i H x plane with a real part
man;t; more uses than simply expressing the square root of a neggiife” I imbginary part (5,
number.

i appears often and it is important to get used to its properties:

imaginary
=)

i2 :\/—_]_x\/—_]_:—]_

i*=ixi®=-

it =i*xi>=+1

1 ' L .

T = g%g { multiplying top and bottom by i}
[ [

The complex conjugate of a complex number is formed by changing the
sign of the imaginary part; it is denoted by a *

(a+ib)* =(a-ib)

The square magnitude of a complex numBeis denoted/C|> and is

1-1



found by multiplyingC by its complex conjugatéC|” is always real

if C=(a+ib)

Ic? =CcxC*
=(a+ib)(a-ib)
:a2 +b2

These various properties are used when manipulating complex numbers:

addition: (a+ib)+(c+id) =(a+c)+i(b+d)

multiplication: (a+ib) x(c+id) = (ac-bd) +i(ad + bc)

division:

Ei::;’; = Ei:ii;); X Eg:g;: { multiplying top and bottom by (c +id)*}
(a+ib)(c+id)* (a+ib)(c—id) (ac+bd)+i(bc-ad)

(02+d2) - (c2+d2) - (c2+d2)

Using these relationships it is possible to show that

(CxDxEx..)*=(C*xD*xE*x..)

E The position of a number in the complex plane can also be indicated by
b the distance;, of the point from the origin and the angiebetween the real
/r axis and the vector joining the origin to the point (see opposite). By simple
0\ geometry it follows that
a Re
Rd(a+ib)|=a Im[(a+ib)] =b
An alternative representation of =r cosé@ =rsing [1'1]

a complex number is to specify
a distance, r, and an angle, 6.

Where Re and Im mean "take the real part" and "take the imaginary part”,
respectively.

In this representation the square amplitude is

(a+ib)|" =a2 +b?

=r?(cos? @ +sin? 6) =r?

where the identity c66 + sirf@ = 1 has been used.
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1.1.2 Exponentials and complex exponentials

The exponential function; er exp§), is defined as the power series

exp(x) =1+ & x> +3x3 + L x4 +...

The number e is the base of natural logarithms, so that In(e) = 1.
Exponentials have the following properties

ep(0)=1  exp(A) xexp(B) =exp(A+B)  [exp(A)]" = expl(2A)
exp(A) xexp(— A) = exd A- A) = exff0) = 1
1 exp A)

exp(— A) = m m = EXF( A) X expﬁ— B)

The complex exponential is also defined in terms of a power series.
explif) =1+4(16) +1(i6)° +4(i6)*+...

By comparing this series expansion with those for sin@ and cosé it can
easily be shown that

exp(if) = cos@+ising [1.2]

This is a very important relation which will be used frequently. For
negative exponents there is a similar result

exp(-i6) = cod - 6) +isin(-6)

. [1.3]
=cosfd-ising

where the identities cog - 8) = cosf and sin(— 8) = —sin@ have been used.

By comparison of Egns. [1.1] and [1.2] it can be seen that the complex
number (a + ib) can be written

(a+ib) =rexpli6)

wherer = a® + b? and tand= (b/a).

In the complex exponential form, the complex conjugate is found by
changing the sign of theterm ini

if C=rexp(i6)
then C* = rexp(-i6)
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It follows that

Ic|* =cc*
=rexp(iO)r exp(-i6)
=r?exp(i@-i6) =r?exp(0)

:r2

Multiplication and division of complex numbers in tfed format is
straightforward

let C=rexp(if) and D:sexp(iqo) then

%:T;(ie):?lexp(_ie) ch:rsexp(i(9+qo))
%:rS:XX—EE:Z; :Lsexp(iﬁ) exp(—iw) :Lsexp(i(ﬁ—qo))

1.1.2.1 Relation to trigonometric functions
Starting from the relation
exp(if) = cosf+isind
it follows that, as cos@ = co¥¥and sin(-6) = — sirg,
exp(—i6) = cos@-isiné
From these two relationships the following can easily be shown

expl(i6) + exp(-i6) = 2cosO or 0050:%[exp(i0)+exp(—i6)]
expli6) —exp(-i6) = 2isin@ or sing=%[exp(i6) - exp(-i6)]

1.1.3 Circular motion

In NMR basic form of motion is for magnetization to precess about a
magnetic field. Viewed looking down the magnetic field, the tip of the
magnetization vector describes a circular path. It turns out that complex
exponentials are a very convenient and natural way of describing such
motion.
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Consider a poinp moving in thexy-plane in a circular path, radius
centred at the origin. The position of the particle can be expressed in terms
of the distance and an angl&@ The x—component ig /tosf and they-

component isr /7sinfd. The analogy with complex numbers is very
compelling (see section 1.1.1); if tkeandy-axes are treated as the real and
imaginary parts, then the position can be specified as the complex number

[éxp( 6).

e
N

A point p moving on a circular

In this complex notation the angiis called thephase. Points with pathinthe xy-plane.

different angles@ are said to have different phases and the difference
between the two angles is called phase difference or phase shift between
the two points.

If the point is moving around the circular path with a constant speed then
the phase becomes a function of time. In fact for a constant sfeed,
simply proportional to time, and the constant of proportion is the angular
speed (or frequencyy

0= wt

where@is in radianst is in seconds anais in radians s. Sometimesit is
convenient to work in Hz (that is, revolutions per second) rather than rads™;
the frequency in Hz, v, isrelated to w by w=2 mw.

The position of the point can now be expressed as r exp(iat), an
expression which occurs very frequently in the mathematical description of
NMR. Recalling that exp(if) can be thought of as a phase, it is seen that
there is a strong connection between phase and frequency. For example, a
phase shift of &= at will come about due to precession at frequency wfor
timet.

Rotation of the point p in the opposite sense is simply represented by
changing the sign of w r exp(-+at). Suppose that there are two particfes,
andp', one rotating at @and the other atet assuming that they both start

‘\,D

on thex-axis, their motion can be described by expfr and exp(at)
respectively. Thus, the andy-components are:

/
NIV

| X -comp. Yy -comp. The x-components of two

. counter-rotating points add, but

P cosat sinat the y-components cancel. The

) . resultant simply oscillates along
p cosat —snat the x-axis.

It is clear that the-components add, and tgeeomponents cancel. All that

is left is a component along tikeaxis which is oscillating back and forth at
frequencyw In the complex notation this result is easy to see as by Eqns.
[1.2] and [1.3], exp@t) + exp(-iwt) =2coswt. In words, a point
oscillating along a line can be represented as two counter-rotating points.




1.2 Wavefunctions and operators

In quantum mechanics, two mathematical objects — wavefunctions and
operators — are of central importance. The wavefunction describes the
system of interest (such as a spin or an electron) completely; if the
wavefunction is known it is possible to calculate all the properties of the

system. The simplest example of this that is frequently encountered is when
considering the wavefunctions which describe electrons in atoms (atomic
orbitals) or molecules (molecular orbitals). One often used interpretation of
such electronic wavefunctions is to say that the square of the wavefunction
gives the probability of finding the electron at that point.

Wavefunctions are simply mathematical functions of position, tfoe
For example, the 1s electron in a hydrogen atom is described by the function
exp(-ar), wherer is the distance from the nucleus and a constant.

In quantum mechanics, operators represent "observable quantities” such
as position, momentum and energy, each observable has an operator
associated with it.

Operators "operate on" functions to give new functions, hence their name
operatorx function = (new function)

An example of an operator i£d/dx); in words this operator says
"differentiate with respect td'. Its effect on the function skis

i(sinx) = COSX
dx

the "new function" is cog. Operators can also be simple functions, so for
example the operataf just means "multiply by?".

It is clear from this discussion that operators and functansot be re-
ordered in the same way that numbers or functions can be. For example

2x3isthesameas 3x 2
x x sin(x) isthe same as sin(x) x x

d . . . d
but %Qx sin(x) is not the same as sin(x) x %@

Generally operators are thought of as acting on the functions that appear to
their right.

1.2.1 Eigenfunctionsand eigenvalues

Generally, operators act on functions to give another function:

operatorx function = (new function)




However, for a given operator there are some functions which, when acted
upon, are regenerated, but multiplied by a constant

operatorx function = constani (function) [1.4]

Such functions are said to b®genfunctions of the operator and the
constants are said to be the associeigshval ues.

If the operator isQ (the hat is to distinguish it as an operator) then Eqn.
[1.4] can be written more formally as

A

&, = df, [1.5]

wheref_is an eigenfunction oQ with eigenvaluey; there may be more that

one eigenfunction each with different eigenvalues. Equation [1.5] is known
as theeigenval ue equation.

For example, is expk), wherea is a constant, an eigenfunction of the
operator(d/dx)? To find out the operator and function are substituted into
the left-hand side of the eigenvalue equation, Eqgn. [1.5]

e Ferolax) = aex(a

It is seen that the result of operating on the function is to generate the
original function times a constant. Therefore exp(s an eigenfunction of

the operato(d/dx) with eigenvalue.

Is sin@x), wherea is a constant, an eigenfunction of the operéﬂi;z&dx) ?

As before, the operator and function are substituted into the left-hand side of
the eigenvalue equation.

@%@s n(ax) = acod ax)
# constant x sin(ax)

As the original function is not regenerated, @ (s not an eigenfunction of
the operato(d/dx) .

1.2.2 Normalization and orthogonality

A function, ¢, is said to beormalised if

[l*)pdr=1
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where, as usual, the * represents the complex conjugate. The notaison d
taken in quantum mechanics to mean integration over the full range of all
relevant variables.g. in three-dimensional space this would mean the range
— oo to +oo for all of x, y andz

Two functionsy andgare said to berthogonal if

J’((/J*)qodr:O

It can be shown that the eigenfunctions of an operator are orthogonal to one
another, provided that they have different eigenvalues.

it Qf, =df, and Qf, =q'f,
then [(f,*) f, dr=0

1.2.3 Bra-ket notation

This short-hand notation for wavefunctions is often used in quantum
mechanics. A wavefunction is represented by a "kef/'; labels used to
distinguish different wavefunctions are written in the ket. For example

f, iswritten ‘q) or sometimes‘ fq>

It is a bit superfluous to writg inside the ket.

The complex conjugate of a wavefunction is written as a "brd" for
example

(fq,)* iswritten <q\

The rule is that if a bra appears on flet and a ket on theight,
integration over dis implied. So

(9] a) impIiesJ'(fq, *) f,dr

sometimes the middle vertical lines are merdqd|:q>.

Although it takes a little time to get used to, the bra-ket notation is very
compact. For example, the normalization and orthogonality conditions can
be written

{ala)=1 (a'|g)=0
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A frequently encountered integral in quantum mechanics is

Jw' Qu,dr

where ¢ and ¢ are wavefunctions, distinguished by the subscrig@tsdj.
In bra-ket notation this integral becomes

A

(iR

i) [1.6]

as before, the presence of a bra on the left and a ket on the right implies
integration over d Note that in general, it is not allowed to re-order the
operator and the wavefunctions (section 1.2). The integral of Eqn. [1.6] is

often called anatrix element, specifically théj element, of the operat®).
In the bra-ket notation the eigenvalue equation, Egn. [1.5], becomes

Q

a)=dq)

Again, this is very compact.

1.2.4 Basissets

The position of any point in three-dimensional space can be specified by
giving its x-, y- and zcomponents. These three components form a
complete description of the position of the point; two components would be
insufficient and adding a fourth component along another axis would be
superfluous. The three axes are orthogonal to one another; that is any one
axis does not have a component along the other two.

In quantum mechanics there is a similar idea of expressing a

wavefunction in terms of a set of other functions. For exampl®ay be
expressed as a linear combination of other functions

@) =aln+a,l2) +al3+.

where thei[Jare called thebasis functions and thea are coefficients
(numbers).

Often there is a limited set of basis functions needed to describe any
particular wavefunction; such a set is referred to asnaplete basis set.
Usually the members of this set are orthogonal and can be chosen to be
normalized;j.e.




- d

[

A mass going round a circular
path possesses angular
moment, represented by a
vector which points
perpendicular to the plane of
rotation.

1.2.5 Expectation values

A postulate of quantum mechanics is that if a system is described by a
wavefunctiony then the value of an observable quantity represented by the

operatorQ is given by the expectation vah(éf)) , defined as

()= [w*Qydr

Jwrydr

or in the bra-ket notation

A

5 _ (@ldy)
Q)= (w|w)

1.3 Spin operators

1.3.1 Spin angular momentum

A mass going round a circular path (an orbit) possesgggar momentum;

it turns out that this is a vector quantity which points in a direction
perpendicular to the plane of the rotation. Khey- andz-components of

this vector can be specified, and these are the angular momentacinythe
andz-directions. In quantum mechanics, there are operators which represent
these three components of the angular momentum.

Nuclear spins also have angular momentum associated with them — called
spin angular momentum. The three components of this spin angular
momentum (along, y andz) are represented by the operatbys I, and [,

(from now on the hats will be dropped unless there is any possibility of
ambiguity).

These operators are extremely important in the quantum mechanical

description of NMR, indeed just about all of the theory in these lectures uses
these operators. It is therefore very important to understand their properties.

1.3.2 Eigenvaluesand eigenfunctions

From now on the discussion is restricted to nuclei with nuclear spin
guantum numbern, = 3. For such a spin, it turns out that there are just
(21 + 1) = 2 eigenfunctions of any one of the operalgrsl, and 1,. As it

is traditional to define the direction of the applied magnetic field, dise
eigenfunctions of thé, operator are the ones of most interest. These two
eigenfunctions are usually denotedidnd 0] they have the properties

l,la) =3nla)

p)=-11p)

I z
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where’ is Planck’'s constant divided byz2 These properties mean thail|
and PO are indeed eigenfunctions, with eigenvalugg and -3#
respectively. These functions are normalized and orthogonal to one another

(ala)=1(p|B)=1(a|p)=0

z

The interpretation of these two states rests on the idea of angular 7
momentum as a vector quantity. It turns out that angular momentum of size
— 1 . : g \/5/2
| (herel = 1) can be represented by a vector of lentgfi (1 +1) ; for spin ~y
2
e} p)

3 the length of the vector ié\/g Z)h. This vector can orient itself with

respect to a fixed axis, say tkeaxis, in only (2 + 1) ways such that the @

projection of the vectorl onto thez-axis is 1%,(1 —1#,...—1%, i.e. integer vector representation of the
. i | f
steps betweehand —I. In the case of = %, there are only two possiblehn T and s projactione

projections,+ 7 and-#. These projections are labelled with a quantuffi®™® =2

numberm, called the magnetic quantum number. It has valugsand
1

2 .
An alternative way of denoting the two eigenfunctions of the operator
is to label them with they values

Izm,>:m|h‘m,>

Dy 1-d=-bi

i.e

I z
So |%> and|—%> correspond tag[Jand fCOwhich can be thought of as "spin

up" and "spin down".
The functionsdUand pUare not eigenfunctions of eithigror |y.

1.3.3 Raising and lowering operators

The raising operatol,, and the lowering operatdr, are defined as
=1, +il, 1_=1, il [1.7]

These operators have the following properties

[1.8]

Their names originated from these properties. The raising operator acts on
the state |—%>, which has m = — 3, in such away as to increase m by one

unit to give m = +5. However, if |, acts on the state |%> there is no
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possibility of further increasingy as it is already at its maximum value;
thusl. acting on| 1) gives zero.

The same rationalization can be applied to the lowering operator. It acts

on |£), which hasm = +%, and produces a state on whichhas been
lowered by one i.em = —3. However, them value can be lowered no
further sol_ acting on |—%> gives zero.

Using the definitions of Eqgn. [1.7], Iy and |y can be expressed in terms of
the raising and lowering operators:

Lo=2(,+12) 1, =40, -1.)

Using these, and the properties given in Eqn. [1.8], it is easy to work out the
effect that 1, and 1, have on the states |aCland |BL] for example

By asimilar method it can be found that

Lla)y=30B) 1|B)=3na) 1 |a)=4in|g) 1,|B)=-%inla) [19]

These relationships al show that |aJand |Slare not eigenfunctions of I, and
Iy.

1.4 Hamiltonians

E g ) The Hamiltonian, H, is the special name given to the operator for the energy
E=m of the system. This operator is exceptionally important as its eigenvalues

and eigenfunctions are the "energy levels' of the system, and it is transitions

£, e | between these energy levels which are detected in spectroscopy. To

A spectroscopic  transiion  Understand the spectrum, therefore, it is necessary to have a knowledge of

takes place between two the energy levels and this in turn requires a knowledge of the Hamiltonian
energy levels, E and E, which

are ei_genvalues of the operator.

Foenond o cigomunctione of !N NMR, the Hamiltonian is seen as having a more subtle effect than

the Hamiltonian. smply determining the energy levels. This comes about because the
Hamiltonian also affects how the spin system evolves in time. By altering
the Hamiltonian the time evolution of the spins can be manipulated and it is
precisely thisthat lies at the heart of multiple-pulse NMR.

The precise mathematical form of the Hamiltonian is found by first
writing down an expression for the energy of the system using classica
mechanics and then "trandating” this into quantum mechanical form
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according to a set of rules. In this lecture the form of the relevant
Hamiltonians will simply be stated rather than derived.

In NMR the Hamiltonian changes depending on the experimental
situation. There is one Hamiltonian for the spin or spins in the presence of
the applied magnetic field, but this Hamiltonian changes when a radio-
frequency pulse is applied.

1.4.1 Freeprecession
Free precession is when the spins experience just the applied magnetic field,
Bo, traditionally taken to be along tkexis.

1.4.1.1 Onespin

The free precession Hamiltonidflee, IS

Hfree = VBo/;

where y is the gyromagnetic ratio, a constant characteristic of a particular
nuclear species such as proton or carbon-13. The qugBgityas the units

of energy, which is expected as the Hamiltonian is the operator for energy.
However, it turns out that it is much more convenient to write the
Hamiltonian in units of angular frequency (radiany, svhich is achieved

by dividing the expression for Hsee by Zto give

Htree = )Bol;

To be consistent it is necessary then to divide all of the operatorsby 7. Asa
result all of the factors of # disappear from many of the equations given
above e.g. they become:

lla) =% a) 1,|8) =-%|B) [1.10]
L|B)=la)  1la)=1p) [1.11]
Lla)=38) 1B =%a) 1 |a)=%iB) 1,|8)=-3%ila) [112]

From now on, the properties of the wavefunctions and operators will be used
in this form. The quantity yBo, which has dimensions of angular frequency
(rad s, is often called the Larmor frequency, .

Eigenfunctions and eigenvalues

The eigenfunctions and eigenvalues of Hiee are a set of functions, [iC) which
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satisfy the eigenvalue equation:

Hfree|i>:€i|i>
w0|z|i> gli)

It is already known thatr[Jand PUare eigenfunctions af, so it follows that
they are also eigenfunctions of any operator proportional to

Hiel @) = wyl,|a)
=za|a)
and likewiseH, | 8) = w)l,|8) = -1 w)| B) .

So, plland plare eigenfunctions oflye with eigenvaluessw, and

-3 w,, respectively. These two eigenfunctions correspond to two energy
levels and a transition between them occurs at frequency

(fen (i) = e

1.4.1.2 Several spins

If there is more then one spin, each simply contributes a terkdo
subscripts are used to indicate that the operator applies to a particular spin

Hfree = wO,lIlz + w0,2|22+"‘

wherely; is the operator for the first spib; is that for the second and so on.
Due to the effects of chemical shift, the Larmor frequencies of the spins may
be different and so they have been writtemuas

Eigenfunctions and eigenvalues

As Hge Separates into sum of terms, the eigenfunctions turn out to be a
product of the eigenfunctions of the separate terms; as the eigenfunctions of
w1l1; are already known, it is easy to find those for the whole Hamiltonian.

As an example, consider the Hamiltonian for two spins

Hfree = wO,lI 1z + wO,Z l 2z

From section 1.4.1.1, it is known that, for spin 1

wo,lllz 0’1> = %wo‘al> and wO,lllz :81> = _%wO,Z‘ﬁl>
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likewise for spin 2

[i>:"%ahJ/%>

_1
w0,2|22 a2>_5wo,2‘a2> and w0,2|22

Consider the functioB]a,[] which is a product of one of the
eigenfunctions for spin 1 with one for spin 2. To show that this is an
eigenfunction oHse, the Hamiltonian is applied to the function

H

free

:81>‘ 0'2> = (wo,lllz * C‘)O,Z|2z) 131>‘ 0'2>
:81>‘0'2>+w0,2|2z ﬁ1>‘02>
= _%“’0,1‘:81>‘0'2>+w0,2‘131>|2z 0'2>
=-3w|B)la,) +3 a8 a,)
= (-1, +1a, ) B)la)

= wO,ll 1z

As the action oHse on [Bil.lis to regenerate the function, then it has
been shown that the function is indeed an eigenfunction, with eigenvalue

(—%wovl +%a)012). Some comment in needed on these manipulation needed

between lines 2 and 3 of the above calculation. The order of the function
|A.0and the operatdp, were changed between lines 2 and 3. Generally, as
was noted above, it is not permitted to reorder operators and functions;
however it is permitted in this case as the operator refeg@ind® but the
function refers tospin 1. The operator has no effect, therefore, on the
function and so the two can be re-ordered.

There are four possible products of the single-spin eigenfunctions and
each of these can be shown to be an eigenfunction. The table summarises
the results; in it, the shorthand notation has been used in v@i@[llis
denotedfati.e. it is implied by the order of the labels as to which spin they

apply to

Eigenfunctions and eigenvalues for two spins
eigenfuncton mj; m, M eigenvalue

laa) +1 411 +iwitia,
\aB) +1 -1 0 +iw,iay
| Bar) -1 +1 0  -iatia,
\ﬁm -1 -1 1 e,
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|BB)

laa)

The four energy levels of a two-
spin  system. The allowed
transitions of spin 1 are shown
by dashed arrows, and those of
spin 2 by solid arrows.

Also shown in the table are ting values for the individual spins and the
total magnetic quantum numbe¥], which is simply the sum of thm
values of the two spins.

In normal NMR, the allowed transitions are between those levels that
differ in M values by one unit. There are two transitions which come out at
w1, |fale |aaland gf0- |GGG and there are two which come out at
w2, |falo BBUand S0« |aall The former two transitions involve a
flip in the spin state of spin 1, whereas the latter pair involve a flip of the
state of spin 2. The energy levels and transitions are depicted opposite.

1.4.1.3 Scalar coupling

The Hamiltonian for scalar coupling contains a termd;R,l;, for each
coupled pair of spinsl; is the coupling constant, in Hz, between spins i and

J.  The terms representing coupling have to be added to those terms
described in section 1.4.1.2 which represent the basic Larmor precession.
So, the complete free precession Hamiltonian for two spins is:

Hfree = a)O,lllz +w0,2|22 +2m12|lz|22

Eigenfunctions and eigenvalues for two spins

The product functions, such glJa-[) turn out to also be eigenfunctions of
the coupling Hamiltonian. For example, consider the funcithliabl] to
show that this is an eigenfunction of the coupling paiti®f, the relevant
operator is applied to the function

270,151 5,| B @) = 20,1, B0 a,)
=270,,1,,|8)%]a,)
=2m,(-3) A)3|a,)
= —%71]12‘,81>‘a2>

As the action of 2J;,l1,l2; on [Gi[J,lis to regenerate the function, then it
follows that the function is indeed an eigenfunction, with eigenvalue

(—%mlz). As before, the order of operators can be altered when the
relevant operator and function refer to different spins.

In a similar way, all four product functions can be show to be
eigenfunctions of the coupling Hamiltonian, and therefore of the complete
free precession Hamiltonian. The table shows the complete set of energy
levels.
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Eigenfunctions and eigenvalues for two coupled

spins
number  eigenfunction M eigenvalue
1 |O'O'> 1 +%%,1+%%,2+%7ﬂ12
2 ‘0',3> 0 +%%,1_%%,2_%7ﬂ12
3 ‘ﬁa> 0 _%%,1"'%%,2_%71]12
4 ‘ﬁﬁ> 1 _%%,1_%%,2"'%”]12

There are two allowed transitions in which spin 1 flips, 1-3 and 2-4, and
these appear adw; + 701> and wy; - 7012, respectively. There are two
further transitions in which spin 2 flips, 1-2 and 3—-4, and these appear at
w2 + 7012 and wy, - 712, respectively. These four lines form the familiar
two doublets found in the spectrum of two coupled spins.

Transition 1-2 is one in which spin 2 flips. changes spin state, but the
spin state of spin 1 remains the same. In this transition spin 2 can be said to
be active, whereas spin 1 is said to lhmassive. These details are
summarized in the diagram below

1.3 2.4 1.2 3.4
211, 211,
f— f—
o1 10)0,2 L
spinl  flips a B
spin2 « B flips

The spectrum from two coupled spins, showing which spins are passive and active in each transition.
The frequency scale is in rad s, so the splitting of the doublet is 2771, rad s7*, which corresponds to
Ji2 Hz.

Eigenfunctions and eigenvalues for several spins

For N spins, it is easy to show that the eigenfunctions are the 2" possible
products of the single spin eigenfunctions |alJand |00 A particular
eigenfunction can be labelled with the my values for each spin, m; and

written as ‘m m,..m ,i> . The energy of this eigenfunction is

The restricted sum over the index j is to avoid counting the couplings more
than once.
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lab. frame
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rotating frame
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X ——— Y
@ - ORF

At object rotating at frequency
win the xy-plane when viewed
in the lab. frame (fixed axes)
appears to rotate at frequency
(w — arF) when observed in a
frame rotating about the z-axis
at akr.

2
I |
|
!

o ORF

lllustration of the relationship
between the Larmor frequency,
wy, the transmitter frequency,
akr, and the offset, Q.

1.4.2 Pulses

In NMR the nuclear spin magnetization is manipulated by applying a
magnetic field which is (a) transverse to the static magneticifeelth the
xy-plane, and (b) oscillating at close to the Larmor frequency of the spins.
Such a field is created by passing the output of a radio-frequency transmitter
through a small coil which is located close to the sample.

If the field is applied along the-direction and is oscillating atkr, the
Hamiltonian for one spin is

H=w)l, + 2w, coswyt |,

The first term represents the interaction of the spin with the static magnetic
field, and the second represents the interaction with the oscillating field.
The strength of the latter is given &y

It is difficult to work with this Hamiltonian as it depends on time.
However, this time dependence can be removed by changingotatiag
set of axes, or arotating frame. These axes rotate about thaxis at
frequencyakr, and in the same sense as the Larmor precession.

In such a set of axes the Larmor precession is no longes, d&ut at
(a—are); this quantity is called theffset, Q. The more important result of
using the rotating frame is that the time dependence of the transverse field is

removed. The details of how this comes about are beyond the scope of this
lecture, but can be found in a number of standard texts on NMR.

In the rotating frame, the Hamiltonian becomes time independent

H = (- we)l, + @l
:QIZ+0)1IX

Commonly, the strength of the radiofrequency field is arranged to be much
greater than typical offsetsy >>|Q|. It is then permissible to ignore the
offset term and so write the pulse Hamiltonian as (for pulses of either phase)

Hpulse,x = a)ll X or Hpulse,y = a)ll y
Such pulses are described l@sd or non-selective, in the sense that they

affect spins over a range of offsets. Pulses with lower field strengttese
termedsel ective or soft.

1.4.2.1 Several spins

For multi-spin systems, a term of the foonlix is added for each spin that is
affected by the pulse. Note that in heteronuclear systems, pulses can be
applied independently to nuclei of different kinds
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H =l tawl, +...

pulse,x

The product functions given above are not eigenfunctions of these
Hamiltonians for pulses.

From now it, it will be assumed that all calculations are made in the
rotating frame. So, instead of the free precession Hamiltonian being in
terms of Larmor frequencies it will be written in terms of offsets. For
example, the complete free precession Hamiltonian for two coupled spins is

Hie = Q 1, +Q,1,, +273,1,1

free 1z° 2z

1.5 Time evolution

In general, the wavefunction describing a system varies with time, and this
variation can be computed using the time-dependent Schrodinger equation

dy(t) _
4t —iHw(t) [1.13]

where {(t) indicates that the wavefunction is a function of time. From this
equation it is seen that the way in which the wavefunction varies with time
depends on the Hamiltonian. In NMR, the Hamiltonian can be manipulated
— for example by applying radio-frequency fields — and it is thus possible to
manipulate the evolution of the spin system.

As has been seen in section 1.2.5, the size of observable quantities, such
as magnetization, can be found by calculating the expectation value of the
appropriate operator. For example, #amagnetization is proportional to
the expectation value of the operdtor

wherek is a constant of proportion. As the wavefunction changes with time,
so do the expectation values and hence the observable magnetization.

1.6 Superposition states

This section will consider first a single spin and then a collection of a large
number of non-interacting spins, called emsemble. For example, the
single spin might be an isolated proton in a single molecule, while the
ensemble would be a normal NMR sample made up of a large number of
such molecules. In an NMR experiment, the observable magnetization
comes from the whole sample; often it is called kb magnetization to
emphasize this point. Each spin in the sample makes a small contribution to
the bulk magnetization. The processes of going from a system of one spin
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to one of many is calleshsemble averaging.
The wavefunction for one spin can be written

@) = c, (V) @) +c,(t)| B)

wherecy(t) andcg(t) are coefficients which depend on time and which in
general are complex numbers. Such a wavefunction is called a
superposition state, the name deriving from the fact that it is a sum of
contributions from different wavefunctions.

In elementary quantum mechanics it is all too easy to fall into the
erroneous view that "the spin must be either up or down, that is inostaite
state8". This simply is not true; quantum mechanics makes no such claim.

1.6.1 Observables

Thex-, y- andz-magnetizations are proportional to the expectation values of
the operatordy, Iy andl,. For brevity,cq(t) will be written cq, the time
dependence being implied.

Lla0= (1/2) |a0 Consider first the expectation valuelp{section 1.2.5)
kB0= —(112) |30
Hlat= (A= 1 (1,)=

(c:al+ caBl)(c.la) +c,| 8)

_ c,c.lall,la)+ce < )+ ch >+c;cﬁ<
C,Colala) +cye <:3‘ >+Cacﬁ<a‘ﬁ>+cﬁcﬁ<lg‘ﬁ>

te,c,lala)+3cye, (Bla)+(-3)cic al B) + cue,(- 3)(BI8)

c,C, ><1+cﬂca x0+c,c, x0+cCuc, x1

)

66, x1+3ie, X0+ (= eic, x0+ e (-1

_1{% ( C;Cﬁ)
2

(C c, t CﬁCﬁ)

C,Cy *+C4C4

Extensive use has been made of the facts that the two wavefunefiansl |
|B0are normalized and orthogonal to one another (section 1.3.2), and that the
effect ofl, on these wavefunctions is know (Eqn. [1.10]).

To simplify matters, it will be assumed that the wavefuncit) is
normalized so thafly [¢/0= 1; this implies that;c, +c,c, =1.

Using this approach, it is also possible to determine the expectation
values ofly andly. In summary:
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[1.14]

It is interesting to note that if the spin were to be purely in stajesjich
thatcy = 1, cg = 0, there would be ne- and noy-magnetization. The fact
that such magnetization is observed in an NMR experiment implies that the
spins must be in superposition states.

The coefficientsc, andcg are in general complex, and it is sometimes
useful to rewrite them in th@/¢ format (see section 1.1.2)

c, =Tr, exp(iqg,) Cy =T, exp(i%)
c,6 =T, exp(—iqoa) Cy =1, exp(—igoﬂ)

Using these, the expectation valueslfgr, become:

(1.)=4(r2-r2) (1)=rr,c0t - )

<I y> =T, sin(qaa - qaﬁ)

The normalization conditiorg,c, +c,c, =1, becomes{r,f + rﬁz) =1 in this
format. Recall that thes are always positive and real.

1.6.1.1 Comment on these observables

The expectation value df can take any value between (whenry =1,

rg = 0) and-3 (whenrq = 0,rg = 1). This is in contrast to the quantum
numberm which is restricted to values$ ("spin up or spin down").
Likewise, the expectation values fandl, can take any values between
-3 and +;, depending on the exact values of the coefficients.

1.6.1.2 Ensemble averages; bulk magnetization

In order to compute, say, themagnetization from the whole sample, it is
necessary to add up the individual contributions from each spin:

Where<l X> is the ensemble average, that is the sum over the whole sample.
The contribution from théh spin,y[] can be calculate using Eqn. [1.14].
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(=0, + (10, + (1),

1 1 1
2(cﬂc +C,C ) 2(cﬂc +C4C ) 2(cﬂc +cﬂc)+..

-1
= g(cﬁca + cﬁca)

S cos(qaa - %)

On the third line the over-bar is short hand for the average written out
explicitly in the previous line. The fourth line is the same as the third, but
expressed in th@, ¢ format (Eqn. [1.15]).

The contribution from each spin depends on the valueggand @ g
which in general it would be quite impossible to know for each of the
enormous number of spins in the sample. However, when the spins are in
equilibrium it is reasonable to assume that the phasesf the individual
spins are distributecandomly. As = rq rg cOs(@ - ¢) for each spin, the
random phases result in the cosine term being randomly distributed in the
range —1 to +1, and as a result the sum of all these terms is zero. That is, at
equilibrium

This is in accord with the observation that at equilibrium there is no
transverse magnetization.

The situation for the-magnetization is somewhat different:

Note that the phasesdo not enter into this expression, and recall that'the
are positive.

This is interpreted in the following way. In the superposition state
Cq la# ¢ |B0) c,c, =2 can be interpreted as theobability of finding the
spin in stateqt] and cﬂc; = rj as likewise the probability of finding the
spin in stated] The idea is that if the state of any one spin is determined by

experiment the outcome is always eith&rl¢r |01 However, if a large
number of spins are taken, initially all in identical superposition states, and

the spin states of these determined, a fractign would be found to be in
state ¢l and a fraction:ﬁc; in state fU

From this it follows that
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whereP, andPg are the total probabilities of finding the spins in staféof

|80 respectively. These total probabilities can be identified with the
populations of two levelsall or |1 The zmagnetization is thus
proportional to the populatiorifference between the two levels, as
expected. At equilibrium, this population difference is predicted by the
Boltzmann distribution.

1.6.2 Timedependence
The time dependence of the system is found by solving the time dependent
Schrédinger equation, Eqn. [1.13]. From its form, it is clear that the exact

nature of the time dependence will depend on the Hamiltorgaib will be
different for periods of free precession and radiofrequency pulses.

1.6.2.1 Freeprecession

The Hamiltonian (in a fixed set of axes, not a rotating frameplisand at
time = 0 the wavefunction will be assumed to be

|(0) =c, (0)]a) +c,(0)| )
=1, (0) explig (0)] ) +1,(0) expli (0)] B)

The time dependent Schrédinger equation can therefore be written as  ,jac= 1/2) a0

l|f0= —(1/12) | B0
d[/l(t) _ _IH(/I (0= [Blad=0
Tdt [r|al= [BA0= 1
dlc,(Ola) +c,(0|B)|
[ + a ] = -yl ,|c, (1) a) +c,3(t)|ﬁ>]

- -iw[ke, 0]} - 2c, )] )

where use has been made of the properties, afhen acting on the
wavefunctions d¢i1and P (section 1.4 Eqgn. [1.10]). Both side of this
equation are left-multiplied biy|, and the use is made of the orthogonality
of |aJand pUJ

d(alc, (0]a) +(alc, )| A)]
dt

= a)o[(aI%ca Mla) - <a|%C;;(t)|ﬁ>]

d,(t) ..
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The corresponding equation fgyis found by left multiplying byA.

dc, ()
dt

= %iwo C/;(t)

These are both standard differential equations whose solutions are well
know:

c,(t) =c,(0) exp(—%ia)O t) c,(t) =c,4(0) exp(%ia)0 t)

All that happens is that the coefficients oscillate in phase, at the Larmor
frequency.

To find the time dependence of the expectation valuekof these
expressions fot, g(t) are simply substituted into Eqn. [1.14]

(1,)0) = {c; (e, (1) - ¢ (t)e, (1)
¢, (0)c, (0) exp(3ia, t) expl~ 3ica )
~ 3¢,(0)c,(0) exp(—%ia)0 t)exp(%ia)0 t)
=3¢,(0)c,(0) -3c,(0)c,(0)
As expected, the-component does not vary with time, but remains fixed at

its initial value. However, th& andy-components vary according to the
following which can be found in the same way

—
x

e
—_

~—+
N—
1

N[

r,(0)r,(0) cod t - ,(0) + ,(0))
r, (0r,(0) sinfet - 4,(0) + ¢, (0))

—

<

—~_—
—_

~+
N
I

N

Again, as expected, these components oscillate at the Larmor frequency.

1.6.2.2 Pulses

More interesting is the effect of radiofrequency pulses, for which the
Hamiltonian (in the rotating frame) isulx. Solving the Schrodinger
equation is a little more difficult than for the case above, and yields the
result

c,(t) =c,(0) cosj wt —ic,(0) sing wt
c,(t) = c,(0) cosz wyt ~ic, (0) sing wt

In contrast to free precession, the pulse actually causes that coefficients to
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change, rather than simply to oscillate in phase. The effect is thus much
more significant.

A lengthy, but straightforward, calculation gives the following result for
0,0

(1,)(t) =4(c, (0)c;(0) - c; (0)c,(0)) coscat

[1.16]
(c. (0, (0) - 3 (0)c,(0) sineat

N[

The first term in brackets on the right is simplyJat time zero (compare
Eqgn. [1.14]). The second term [ik[Jat time zero (compare Eqn. [1.14]).
So, [0, [{t) can be written

<I y>(t) = <I y>(0)c:osa)lt—<l ,)(0)sinawt

This result is hardly surprising. It simply says that if a pulse is applied about
thex-axis, a component which was initially alond,[{0) is rotated towards
y. The rotation fronztoy is complete whemt = 772, i.e. a 90° pulse.

The result of Eqn. [1.16] applies to just one spin. To make it apply to the
whole sample, the ensemble average must be taken

<I y>(t) = <I y>(O)cosa)1t—<l )(0)sinawt [1.17]

Suppose that time zero corresponds to equilibrium. As discussed above, at
equilibrium then ensemble average of theomponents is zero, but tlze
components are not, so

<Iy>(t):—<lz>eqsina)1t

where [I,[4; is the equilibrium ensemble average of theomponents. In
words, Eqn. [1.17] says that the pulse rotates the equilibrium magnetization
from z to -y, just as expected.
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N

Each spin makes a contribution
to the magnetization in each
direction (top diagram). A
pulse, here 90° about the x-
axis, rotates all of these
contributions in the same sense
through the same angle
(bottom diagram).

1.6.3 Coherences

Transverse magnetization is associated in quantum mechanics with what is
known as acoherence. It was seen above that at equilibrium there is no
transverse magnetization, not because each spin does not make a
contribution, but because these contributions are random and so add up to
zero. However, at equilibrium trecomponents do not cancel one another,
leading to a net magnetization along zkgirection.

During the pulse, the-component from each spin is rotated towayds
according to Eqgn. [1.17]. The key point is that all the contributions from all
the spins, although they start in random positions iryzfane, are rotated
through thesame angle. As a result, what started out as a net alignment in
the z-direction rotates in they-plane, becoming a net alignment along —
after a 90° pulse.

Another interpretation is to look at the way in which the individual
coefficients vary during the pulse

c,(t) =c,(0) cosj wt —ic,(0) sing wt
c,(t) = c,(0) cosz wyt —ic, (0) sinz wt

In words, what happens is that the size of the coefficients atttiane
related to those at time zero in a way which issdree for all spins in the
sample. Although the phases are random at time zero, for each spin the
phase associated witl at time zero is transferred tg, andvice versa. It

is this correlation of phases between the two coefficients which leads to an
overall observable signal from the sample.

1.7 Density matrix

The approach used in the previous section is rather inconvenient for
calculating the outcome of NMR experiments. In particular, the need for
ensemble averaging after the calculation has been completed is especially
difficult. It turns out that there is an alternative way of casting the
Schrédinger equation which leads to a much more convenient framework for
calculation — this isdensity matrix theory. This theory, can be further
modified to give an operator version which is generally the most convenient
for calculations in multiple pulse NMR.

First, the idea ofmatrix representations of operators needs to be
introduced.

1.7.1 Matrix representations

An operator,Q, can be represented as a matrix in a partidedais set of
functions. A basis set is a complete set of wavefunctions which are
adequate for describing the system, for example in the case of a single spin
the two functionsdiJand J0form a suitable basis. In larger spin systems,
more basis functions are needed, for example the four product functions
described in section 1.4.1.2 form such a basis for a two spin system.
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The matrix form ofQ is defined in this two-dimensional representation is
defined as

alQle) (alQdB)E
oF éﬁl@la ﬁlQIﬁ)%

Each of the matrix element§j;, is calculated from an integral of the form
Q| where i[Jand j0are two of the basis functions. The matrix element
Q; appears in thegh row and thgth column.

1.7.1.1 Onespin

Particularly important are the matrix representations of the angular
momentum operators. For example,

I,|a0= (1/2) |aO

I all,la) (ah,|B)0 M= —(1U2) 5

Z > <'BIZ ,3>% 0= [Blal=0
alila) (al-%|B)0 o= A= 1
Blila) (gl-3p)f

£ °

I:II:II:I

N[

As usual, extensive use have been made of the propertiesnof the ortho-
normality of the basis functions (see sections 1.3.2).

The representations &f andly are easily found, by expressing them in
terms of the raising and lowering operators (section 1.3.3), to be

L
2

0 3 [0
I, = O IZDi
5 o vZ8 o

[

1.7.1.2 Direct products

The easiest way to find the matrix representations of angular momentum
operators in larger basis sets is to useltieet product.

When twonxn matrices are multiplied together the result is anather
matrix. The rule is that thgth element of the product is found by
multiplying, element by element, thi row by thejth column and adding
up all the products. For example:

A bOOp qO [aAp+br ag+bsd

B: HB SH ECp+dr cq+dsH
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The direct product, symbolized, of two nxn matrices results in a larger
matrix of size Bxzh. The rule for this multiplication is difficult to express
formally but easy enough to describe:

0 0Op qd (p q
by p o 25 s P*hH %
Ec dH sH_beDp qD Dp qr!

T 9B o

The right-hand matrix is duplicated four times over, because there are four
elements in the left-hand matrix. Each duplication is multiplied by the
corresponding element from the left-hand matrix. The final result is

Eapaq
EabDquD[gras
T a1 o

cs

Et:r

bp qu Eap aq bp baQ

O
br bsD [pr as br bsp
do dald” [k 0
P qD oP « dp OIOID
dr ds0 [Ckr cs dr dsO

(the lines in the central matrix are just to emphasise the relation toxtRe 2
matrices, they have no other significance).

The same rule applies to matrices with just a single row (row vectors)

(a,b) 0 (p.a) = (ap,aq,bp,ba)

1.7.1.3 Two spins

The basis set for a single spin can be writtexC{[5.[] the basis set for two
spins can be found from the direct product of two such basis sets, one for
each spin:

(‘ al>,‘,31>) b (‘az>":32>) =(‘a1>‘ @)l a) B).|B) a2>,‘,81>‘,82>)

In this basis the matrix representationlgf can be found by writing the
operator as the direct product

Iy 0 Es [1.18]

whereE is the unit matrix
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The subscript 2 on thie in Egn. [1.18] is in a sense superfluous as the unit
matrix is the same for all spins. However, it is there to signify that in the
direct product there must be an operator for each spin. Furthermore, these
operators must occur in the correct order, with that for spin 1 leftmost and so
on. So, to find the matrix representatiori gtthe required direct product is

Ei O I
In matrix formE; O I is

E O _[Il ODDEO 0
1 ZX_H) 15 % OD

M 3 0 0O

0

_% 0 0 O

- 10

BD 00 37

M 0 3 0O

andly O Eyis

0 30 [ 0g
IlXDE2=% OED 1H

O 0 3 0O

O 0

M 0 0 30

[k 0

o 00 OD

M 3 0 00

As a final exampléy, O 1oy is

I 10 D -3
(O 0 O —izD
0 i 0
M 0 7 0p
- _i 0
Bﬁj i 0 OD
0 0 00

All of these matrices are hermetian, which means that matrix elements
related by reflection across the diagonal have the proper@tha®;*.
1.7.2 Density matrix

For a one spin system the density matuy,is defined according to its
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elements

where the over-bars indicate ensemble averaging. This matrix contains all
the information needed to calculate any observable quantity. Formadly,
defined in the following way:

1.7.2.1 Observables

It can be shown that the expectation value of an opefates,given by

(@ =Troq]

where Tr\] means take th&ace, that is the sum of the diagonal elements,
of the matrixA.

For example, the expectation valud a6

_ 1.2 _.2
_E(ra _rﬂ)

This is directly comparable to the result obtained in section 1.6.1.2.

The very desirable feature of this definition of the density matrix and the
trace property for calculation observables is that the ensemble averaging is
done before the observable is computed.

The expectation value of is
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—_ TE060 e 0e0D
(=T @(t)c;(t) cﬁ(t)c;(w% o%
0+ ,0)

(¢, (e, (0 + ¢, (0)c; ()

N

Again, this is directly comparable to the result obtained in section 1.6.1.2

The off diagonal elements of the density matrix can contribute to
transverse magnetization, whereas the diagonal elements only contribute to
longitudinal magnetization. In general, a non-zero off-diagonal element

c (t)c;(t) indicates aoherence involving levelsi andj, whereas a diagonal
element,c (t)c (), indicates the population of leviel

From now on the ensemble averaging and time dependence will be taken
as implicit and so the elements of the density matrix will be written simply

C c; unless there is any ambiguity.

1.7.2.2 Equilibrium

As described in section 1.6.1.2, at equilibrium the phases of the super-
position states are random and as a result the ensemble averégest)

and c,(t)c, (t) are zero. This is easily seen by writing then itipéormat

*

C,Cp =T, exp(igoa)rﬁ exp(—igoB)
=0 at equilibrium

However, the diagonal elements do not average to zero but rather
correspond to the populatiord, of the levels, as was described in section
1.6.1.2

c.C.

a-a

r, explig, )r, exp(-ig)

Q

1
—
qU = ,\J|

The equilibrium density matrix for one spin is thus

B °F
%700 PO

As the energy levels in NMR are so closely spaced, it turns out that to an
excellent approximation the populations can be written in terms of the
average population of the two levesy, and the difference between the two
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populationsA, whereA = Py - Pg

Q
1
Dljla
o +

o
|
N[~
>
|

Comparing this with the matrix representationsl,obnd E, g, can be
written

0, = P,E+AI,

It turns out that the part from the matrix does not contribute to any
observables, so for simplicity it is ignored. The fadiatepends on details

of the spin system and just scales the final result, so often it is simply set to
1. With these simplificationgy is simplyl,.

1.7.2.3 Evolution

The density operator evolves in time according to the following equation,
which can be derived from the time dependent Schrédinger equation
(section 1.5):

d‘;—ft) _ Si[Holt) - o{t ] [1.19]

Note that asH and o are operators their order is significant. Just as in
section 1.5 the evolution depends on the prevailing Hamiltonian.

If H is time independent (something that can usually be arranged by using
a rotating frame, see section 1.4.2), the solution to Eqn. [1.19] is
straightforward

o(t) = exp(-iHt)o(0) expliHt)

where again the ordering of the operators must be preserved. All the terms
Is this equation can be thought of as either matrices or operators, and it is the
second of these options which is discussed in the next section.

1.7.3 Operator form of the density matrix

So far, Hamiltonians have been written in terms of operators, specifically
the angular momentum operatdss,, and it has also been seen that these
operators represent observable quantities, such as magnetizations. In
addition, it was shown in section 1.1.2.2 that the equilibrium density matrix
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has the same form &s These observations naturally lead to the idea that it
might be convenient also to write the density matrix in terms of the angular
momentum operators.

Specifically, the idea is to expand the density matrix as a combination of
the operators:

a(t) = a(t)l, + bt)l, + c(t)l,

wherea, b andc are coefficients which depend on time.

1.7.3.1 Observables

From this form of the density matrix, the expectation value of, for example,
Ix can be computed in the usual way (section 1.7.2.1).

(1,)=Tral,]
:Tr[(alx +bl, +cl )|]

=Tral, 1]+ Trlbi 1|+ Tofel, 1]

where to get to the last line the property that the trace of a sum of matrices is
equal to the sum of the traces of the matrices has been used.

It turns out that Tifl,] is zero unlesp = q when the trace is 3; for
example

Tr[lxlx]:Tr%D % -
O OCh

This is a very convenient result. By expressing the density operator in the
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form o(t) = a(t)l, + b(t)ly + c(t)l, the x-, y- and zz-magnetizations can be
deduced just by inspection as being proportionah(tp, b(t), and c(t)
respectively (the factor of one half is not important). This approach is
further developed in the lecture 2 where fiteduct operator method is
introduced.

1.7.3.2 Evolution

The evolution of the density matrix follows the equation
o(t) = exp(-iHt)o(0) expliHt)

Often the Hamiltonian will be a sum of terms, for example, in the case of
free precession for two spib= (111, + l,,. The exponential of thaum

of two operators can be expressed psoduct of two exponentials provided
the operatorsommute

exp(A+ B) = exp(A) exp(B) provided A and B commute

Commuting operators are ones whose effect is unaltered by changing their
order:i.e. ABy = BAY;, not all operators commute with one another.

Luckily, operators for different spins do commute so, for the free
precession Hamiltonian

exp(—iHt) = exp(-i[Q, 1, + Q,1,,]t)
= exp(— 1Q,1 1Zt) exp(— 1Q,1 22t)

The evolution of the density matrix can then be written
o(t) = exp(-iQ, 1 ,t) exp(-iQ,1,,t)a(0) exp(iQ, I ,t) exp(iQ, 1 ,,t)

The operators for the evolution due to offsets and couplings also commute
with one another.

For commuting operators the order is immaterial. This applies also to
their exponentialse.g. exp@) B =B exp@). This property is used in the
following

exp(=i1Q,1,t)1,, expliQ, 1 ,t) = exp(-iQ,1 ,t) exp(iQ,1 ,t)1,,
= exp(=iQ, It +iQ, I )1,
= exp(o)lZX = I2x

In words this says that the offset of spin 1 causes no evolution of transverse
magnetization of spin 2.

1-34



These various properties will be used extensively in lecture 2.

1-35



