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Abstract

After a brief introduction to the statistical description of data, these lecture notes

focus on quantum field theories as they emerge from lattice models in the critical

limit. For the simulation of these lattice models, Markov chain Monte-Carlo methods

are widely used. We discuss the heat bath and, more modern, cluster algorithms.

The Ising model is used as a concrete illustration of important concepts such as

correspondence between a theory of branes and quantum field theory or the duality

map between strong and weak couplings. The notes then discuss the inclusion of

gauge symmetries in lattice models and, in particular, the continuum limit in which

quantum Yang-Mills theories arise.

Notes based on a lecture presented at the XIX Physics Graduate Days at the
University of Heidelberg, 8th - 12th October 2007.
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1 Statistical data analysis

1.1 The central limit theorem

Assume that we would like to determine a physical observable x̄ such as a hadron mass
or a decay constant by a numerical calculation involving statistical methods or by a direct
experimental measurement. A perfect device would just produce x̄ with a single measure-
ment. In practice, such a device does not exist. A realistic device produce a value x in
the interval [x, x + dx] with probability P (x) dx, where the probability distribution P (x)
characterises the apparatus. We will not assume that our experimental device is hampered
by systematic errors, but we will assume that the device produces the exact value x̄ by an
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average over many measurements, i.e.,

∫
dx x P (x) = x̄ , (1)

but, depending on P (x), a single measurement can be far from the true value.

As an example, we consider an observable x̄ = 3 and a crude experiment which can produce
any value for between 0 and 6 with equal probability:

P (x) =

{
1/6 for x ∈ [0, 6]
0 otherwise.

(2)

Obviously, a single measurement for x is not sufficient to reveal the true observable. The
only thing we can do is to repeat the measurement n times and to consider the average:

y =
1

n

[
x1 + . . . + xn

]
,

where x1 to xn are the values obtained from each of the measurements. For the moment,
we will assume that the measurements are independent, i.e., that the probability for finding
a set {x1 . . . xn} of data is given by:

P (x1, . . . , xn) = P (x1) . . . P (xn) .

The crucial question is to which accuracy have we estimated the true observable x̄?

The answer can be inferred from the probability distribution Q(y) for the value y:

Qn(y) =

∫ n∏

i=1

dxi δ

(
y − 1

n
[x1 + . . . + xn]

)
P (x1) . . . P (xn) . (3)

Given the proper normalisation of the single event distributions, i.e.,

∫
dxi P (xi) = 1 ,

using (1), we can easily show that the average of y coincides with the observable:

ȳ =

∫
dy y Qn(y)

=

∫
dy

∫ n∏

i=1

dxi
1

n
[x1 + . . . + xn] δ

(
y − 1

n
[x1 + . . . + xn]

)
P (x1) . . . P (xn) .

=

∫ n∏

i=1

dxi
1

n
[x1 + . . . + xn] P (x1) . . . P (xn) =

1

n
n

∫
dx x P (x) = x̄ .
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A natural measure for the error σ of our estimate is provided by the second moment:

σ2(n) =

∫
dy
(
y − ȳ

)2

Qn(y) , (the variance) . (4)

If the distribution Qn(y) peaks around the true value for our observable x̄ and σ(n) is tiny,
it would mean that a single estimator y has high probability to fall close to x̄ with high
probability implying that it yields a good approximation to x̄.

Let us study the moments of the distribution Q(y):

qm =

∫
dy Qn(y) ym . (5)

In order to draw further conclusions, we need to restrict the classes of single event proba-
bility distributions P (x): we will assume that its Fourier transform

P̄ (β) =

∫
dx P (x) exp {−i β x} (6)

is an analytic function of β at β = 0. As a consequence, the moments of P (x) exist and
are given by:

pm =

∫
dx P (x) xm = im

dm

dβm
P̄ (β) |β=0 . (7)

We will further assume that P̄ (β) vanishes for |β| → ±∞. This seems to be quite a weak
constraint. I point out, however, that systems with rare but large fluctuations generically
fail to possess higher moments. One example is stock market indices [1].

Our aim is to express the moments of Qn(y) in terms of the moments of P (x). For this
purpose, we rewrite the δ-function in (3) as

δ

(
y − 1

n
[x1 + . . . + xn]

)
=

∫
dα

2π
exp[i α y]

n∏

i=1

exp
{
−i α

n
xi

}
, (8)

and find

Qn(y) =

∫
dα

2π
exp(i α y)

[∫
dx P (x) exp

{
−i α

n
x
}]n

, (9)

=

∫
dα

2π
exp(i α y)

[
P̄
(α
n

) ]n
. (10)

The moments of Qn(y) are then obtained from

qm =

∫
dy

∫
dα

2π
(−i)m dm

dαm

[
exp(i α y)

]
P̄ n
(α
n

)
. (11)
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After a series of partial integrations with respect to α (note that boundary terms vanish
by virtue of our above assumptions), the latter equation is given by

qm =

∫
dy

∫
dα

2π
exp(i α y) (i)m dm

dαm

[
P̄ n
(α
n

)]

=

∫
dα

2π

1

nm

∫
dy exp(i α y) (i)m dm

dβm

[
P̄ n (β)

]
=

im

nm

dm

dβm

[
P̄ n (β)

]
|β=0 . (12)

Of particular interest are the so-called cumulants ck[Qn] of the distribution Qn(y). These
are defined via the generating function

TQ(x) =
∑

m=0

1

m!
qm xm , ck[Qn] :=

dk

dxk
lnTQ(x) |x=0 . (13)

Note that in particular we find for the ’error’ σ in (4)

σ2 = q2 − q2
1 = c2[Qn] . (14)

Using Taylor’s theorem and the explicit expression (12), we find

TQ(x) = P̄ n

(
i x

n

)
, ck[Qn] =

ik

nk−1

[
ln P̄ (0)

](k)

, (15)

where (k) denotes the kth derivative. Introducing the cumulants ck[P ] of the single event
distribution as well, i.e.,

ck[P ] = ik
[
ln P̄ (0)

](k)

, (16)

we arrive at a very important result:

ck[Qn] =
1

nk−1
ck[P ] . (17)

Note that the cumulants ck[P ] are finite numbers which characterise the single event proba-
bility distribution. Equation (17) then implies that for increasing number of measurements
n, the higher (k > 1) cumulants of Qn(y) vanish. In particular, we find that

σ(n) =
√
c2[Qn] =

√
c2[P ]√
n

∝ 1/
√
n . (18)

For the above example, we find

p1 =
1

6

∫ 6

0

dx x = 3 , p2 =
1

6

∫ 6

0

dx x2 = 12 , c2[P ] = 12−32 = 3 , (19)

and therefore
σ(n) =

√
3/n .
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It is well known that if ck[G] = 0 for k > 2, the probability distribution G is a Gaussian.
We therefore expect that if n is chosen sufficiently large so that we can neglect ck[Qn] with
k > 2, we should be able to approximate Qn(y) by a Gaussian. To support this claim
(without mathematical rigour), we start from (10):

Qn(y) =

∫
dα

2π
exp(i α y) exp

{
n ln

[
P̄
(α
n

) ]}
,

and expand the logarithm with respect to α:

Qn(y) =

∫
dα

2π
exp(i α y) exp

{
n

∞∑

k=0

1

k!

[
ln P̄ (0)

](k)
(α
n

)k
}

=

∫
dα

2π
exp(i α y) exp

{
n

∞∑

k=1

1

k!
ck[P ]

(
−i α

n

)k
}
,

where we have used P̄ (0) =
∫
dxP (x) = 1 and the definition of the cumulants of P in

(16). Using c1[P ] = p1 = x̄ = ȳ, we find:

Qn(y) =

∫
dα

2π
exp[i α (y − ȳ)] exp

{
− 1

2
c2[P ]

(
α2

n

)
+ O(α3/n2)

}
(20)

Note that the dominant contributions from the α integration arises from the regime where
α <

√
n. In this regime, the correction term is of order

O(α3/n2) ≈ O(1/
√
n)

and will be neglected for sufficiently large n. The remaining integral can be easily per-
formed:

Qn(y) ≈ 1√
2π σ

exp

{
− (y − ȳ)2

2σ2

}
, σ2 =

c2[P ]

n
. (21)

which is the celebrated Gaussian distribution. This finding is called the central limit

theorem: if the moments of probability distribution P (x) exist, the probability distribution
for the average y can be approximated by a Gaussian for sufficiently large n given that the
standard deviation σ is properly scaled with n.

Let us discuss this result. Figure 1 shows the distributions Qn(y) for n = 1, 2, 3 and n = 10.
Already for n = 10 the distribution is well approximated by the Gaussian.

The existence of at least the moment c2[P ] of the single event distribution is crucial for
the error reduction by repeated measurements. Let us consider a Lorentz distribution for
the moment:

PL(x) =
1

πb

1

1 + (x/b)2
. (22)
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Figure 1: Illustration of the central limit theorem: probability distributions of the average
y after n measurements.

With the naked eye this distribution resembles the Gaussian. The crucial difference is,
however, that the second moment does not exist:

∫
dx x2 PL(x) −→ ∞ .

The Fourier transform of PL(x) does, however, exist

P̄L(β) = exp
{
− b |β|

}
. (23)

If we now repeat the measurements n times, the distribution of the average y is, according
to (10), by

Qn(y) =

∫
dα

2π
exp(i α y)

[
exp

(
−b α

n

) ]n
= PL(y) .

Obviously, the probability distribution does not change at all even if we repeat the mea-
surements many times. This actually implies that it impossible to experimentally gain a
reliable value for the observable x̄.

1.2 Error analysis

Let us return to the example in (2), and let us assume a group of experimentalists has
performed n = 12 measurements with the result:
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2.813 2.021 0.331 0.865

5.394 5.937 5.027 1.556

0.325 2.750 1.283 3.890

The average over these values and an estimate 〈x2〉 of c2[P ] are given by

y =
1

n

n∑

k=1

xk ≈ 2.683 , 〈x2〉 =
1

n

n∑

k=1

x2
k ≈ 3.581 . (24)

We point out that 3.581 is a poor estimate of the true value (19) of c2[P ] = 3, but it gives
the order of magnitude. With this estimate for c2[P ], we find for the error (18)

σ(n = 12) ≈
√

3.581

12
≈ 0.546 .

Hence, the final ’experimental’ result for the observable would be

x̄ ≈ 2.683 ± 0.546 = 2.7(5) . (25)

Note that the true result x̄ = 3 lies well with the reach of the error bars.

The above experiment was repeated by several research labs. Depending on the budget
and the focus of research, different labs produce different numbers n of measurements:

CERN GSI DESY BNL
n 120 50 78 150
y 3.112 ± 0.163 2.764 ± 0.255 3.110 ± 0.207 3.083 ± 0.143

The smallest error was produced by the largest experiment (BNL). We could just quote
their result, but it would be a pity to disregard a total of 248 measurements which were
carried out by the other groups. How can we obtain a ‘world average’for the observable x̄
and how can we quantify its (statistical) error?

To answer these questions, we assume that the number n of each measurement was large
enough to approximate the distribution of an individual result yk, k = 1 . . . N (where
N = 4 for the above example) by a Gaussian (21):

Q(yl) ≈ 1√
2π σl

exp

{
− (yl − x̄)2

2σ2
l

}
. (26)

For the world average y we make the ansatz

y =
N∑

l=1

al yl ,
N∑

l=1

al = 1 . (27)
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The weights al must be chosen in an optimal way. This choice will depend on the errors σl

of the individual experiments. In particular, the experiment with the smallest error should
contribute to the world average with the largest weight. Assuming that the experiments at
the different labs were carried out independently, the probability distribution of the world
average is now given by

W (y) =

∫ N∏

k=1

dyk δ
(
y −

N∑

l=1

al yl

)
Q(y1) . . . Q(yN) . (28)

Representing the δ-function in terms of a Fourier integral over α (see (8)), the integrations
over y1 . . . yN can be easily performed:

W (y) =

∫
dα

2π
exp{i(y − x̄)} exp

{
− α2

2

∑

l

a2
l σ

2
l

}
.

Performing the α integration finally fields:

Q(y) ≈ 1√
2π σ

exp

{
− (y − x̄)2

2σ2

}
, σ2 =

∑

l

a2
l σ

2
l . (29)

The optimal result is achieved if the error squared, i.e., σ2, is as small as possible. Here,
we must take into account the normalisation condition in (27). We therefore minimise

∑

l

[
a2

l σ
2
l − λ al

]
−→ min , (30)

where λ is a Lagrange multiplier. The global minimum is easily obtained:

al =
λ

2 σ2
l

,
2

λ
=
∑

l

1

σ2
l

. (31)

The minimal value for σ2 then satisfies

σ2 =
λ

2
⇒ 1

σ2
=
∑

l

1

σ2
l

. (32)

The optimal choice for the weights can therefore also be written as

al =
σ2

σ2
l

. (33)

Let us return to the above example. We find

σ ≈ 0.089 , (34)

a1 ≈ 0.30 , a2 ≈ 0.12 , a3 ≈ 0.19 , a3 ≈ 0.39 .

With the weights at our disposal, we easily find the optimal value for the world average
y ≈ 3.059. Together with the error in (34), the final result is

x̄ = 3.059 ± 0.089 = 3.06(9) . (35)

Note that the true result x̄ = 3 is again covered within error bars and that the error became
significantly smaller than that of the best result provided by the BNL group.
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1.3 Autocorrelations

In the previous subsections, we have repeatedly assumed that the measurements xi are
independent. We will see below that a vital tool of computational quantum field theory is
to use information from the measurement xi to obtain the value for xi+1. In this case, the
data set xi, i = 1 . . . n is generated by the chain

x1 → x2 → . . . → xn−1 → xn,

and the probability of finding a particular set does not factorise anymore:

P (x1, . . . , xn) 6= P (x1) . . . P (xn) .

In the context of QFT simulations we will, however, make an effort to render the values
xi as independent as possible. This generically implies that events which are separated by
some ‘time’τ , i.e., the events xi and xi+τ , can be considered as statistically independent.
The trick for obtaining an idea of the error of the estimator is to group b measurements
together:

yν =
1

b

b∑

i=1

xν+i , ν = 1 . . . M , M =
n

b
, (36)

where we choose
1 ≤ τ ≪ b . (37)

This latter constraint implies that the values yν are statistically independent and that
they have a Gaussian distribution because of the central limit theorem. The quantities of
interest are the average

ȳ =
1

M

M∑

ν=1

yν , (38)

which converges to the observable x̄ in the limit M → ∞, and the corresponding error

σ2 =
1

M
c2[Py] =

b

n
c2[Py] . (39)

where the cumulant c2[Py] is given by

c2[Py] =

〈
1

M

M∑

ν=1

y2
ν

〉
−
[〈

1

M

M∑

ν=1

yν

〉 ]2

, (40)

with

〈f〉 =

∫ n∏

l=1

dxl f(x1 . . . xn) P (x1, . . . , xn) .

Assuming translational invariance, i.e.,

〈xν+ixν+k〉 = 〈xixk〉 ,
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we find

c2[Py] =
1

b2

b∑

i=1

b∑

k=1

c(k − i) , c(k − i) = 〈xixk〉 − 〈xi〉〈xk〉 , (41)

where c(k − i) is called the autocorrelation function. Introducing the relative distance
t = k − i, and trading the summation over k in (41) for a summation over t, we find

c2[Py] =
1

b2

b∑

i=1

b−i∑

t=1−i

c(t) . (42)

Interchanging the summation indices t and i and after summing over i, this last equation
becomes:

c2[Py] =
1

b
c(0) +

2

b2

b−1∑

t=1

(b− t) c(t) .

We have already mentioned that the measurements xi and xi+τ are (almost) uncorrelated.
The equivalent statement is that the correlation function vanishes for sufficiently large
arguments:

c(t) ≈ 0 , for t > τ .

For b≫ τ , we approximately find:

c2[Py] ≈ 1

b
c(0) +

2

b2

b−1∑

t=1

b c(t) =
1

b

b−1∑

t=1−b

c(t) . (43)

It is convenient to introduce the normalised autocorrelation function by

ρ(t) =
c(t)

c(0)
, c(0) = 〈x2〉 − 〈x〉2 = c2[Px] . (44)

The integrated autocorrelation time is then defined by

τ =
1

2

b−1∑

t=1−b

ρ(t) =
1

2
+

b−1∑

t=1

ρ(t) . (45)

Inserting (45,44,43) into (39), we finally obtain for the error which should be attributed to
our estimate ȳ in (38):

σ2 =
2 τ

n
c2[Px] . (46)

Let us perform a consistency check by considering the special case that the measurements
are uncorrelated. In this case, the autocorrelation function ρ(t) vanishes for t ≥ 1, and the
autocorrelation time is given by τ = 1/2. We indeed recover the familiar result

σ2 =
1

n
c2[Px] , for independent measurements. (47)
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Note that autocorrelations increase the error bars. Not knowing the autocorrelations in a
numerical simulations leads us to the erroneous assumption that the error of the estimator is
given by (47), while the true result is by a factor τ larger. Not knowing the autocorrelations
always leads to an underestimation of the statistical error.

2 Lessons from the Ising model

2.1 Phase transitions

A phase transition occurs if the properties of matter change qualitatively when an external
parameter, such as temperature, is altered. The phase transition of water from a liquid
to a gas phase when the temperature exceeds roughly ≈ 1000 Celsius (under normal
conditions), is well known from everyday life. A second example is the ferromagnet: the
interaction between microscopic spins favour a unique orientation of the spins. This yields
an ordered phase at low temperatures. Above the critical temperature, called the Curie

temperature in the present context, the spins are organised in a disordered phase.

Let us assume that a ferromagnet is in the disordered phase at a temperature slightly
bigger than the critical temperature Tc. If we decrease the temperature, the information
of the unique orientation spreads over the spin lattice. This ‘Gedankenexperiment ’shows
that the spatial correlation of the spins becomes large at the critical temperature. This
phenomenon, is quantified with the help of the spin-spin correlation function:

〈
σ(x) σ(y)

〉
∝ exp

{
−|x− y|

ξ

}
. (48)

The correlation length ξ obviously measures the spatial distance over which the spins show
roughly the same orientation. Close to the phase transition, i.e. for T >

∼ Tc, ξ becomes
large anticipating the ordered phase:

ξ ≈ ξ+

∣∣∣∣1 − T

Tc

∣∣∣∣
−ν

, (T >
∼ Tc) , (49)

where ν is a positive number. The divergence of the correlation length at the phase
transition is characteristic for a transition of 2nd (or higher) order. In the case of a 1st

order transition, the increase of ξ is hindered by the nucleation of bubbles which contain
chunks of the new state of matter. These bubbles provide additional disorder and the
correlation length stays finite.

For phase transitions above first order, the singularity of the correlation length has its
fingerprint in many other thermodynamical quantities such as the specific heat C or the
magnetic susceptibility χ:

C ≈ C0

∣∣∣∣1 − T

Tc

∣∣∣∣
−α

, χ ≈ χ0

∣∣∣∣1 − T

Tc

∣∣∣∣
−γ

, (T >
∼ Tc) .
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The critical exponents ν, α, γ are independent of the microscopic properties of the spin
model (such as the lattice geometry), and only depend on the symmetries (present at the
transition) and the number of dimensions. They are often used to sort solid state physics
models into the so-called universality classes.

2.2 Quantum field theory rising

Let the lattice spacing a denote the distance between two neighbouring lattice sites . In the
previous subsection, we found that the correlation length diverges if the coupling constant
β (or inverse temperature in the present context, β = 1/T ) approaches its critical value
(see (49)). This statement can be phrased in units of the lattice spacing as

ξ

a
= κ

(
βc − β

)−ν

, β <
∼ βc , (50)

where κ is a dimensionless constant which can be obtained by numerical means.

Let us now reinterpret these findings. Rather than saying that ξ diverges and a is fixed, we
say that the correlation length ξ is fixed and is given by an observable in physical units. We
will see that this interpretation of the same data defines a quantum field theory. For
fixed correlation length ξ, (50) defines the lattice spacing as a function of β, i.e., a→ a(β),

a(β) =
1

κ
(β − βc)

ν ξ , β → βc . (51)

The key point is if we make the number of spins bigger and bigger and, at the same time,
the distance a between the spins smaller and smaller, we will obtain a field theory in the
limit a→ 0. For the 2d Ising model on a cubic lattice, we have βc ≈ 0.44 and ν = 1. The
field theory limit is then approached when a vanishes linearly with β − βc:

a(β) =
ξ

κ
(β − βc) , (2d Ising model).

Note that the dimensionless parameter β is not at our disposal anymore, since it specifies
the magnitude of the lattice spacing. Instead, the value of ξ parameterises the emerging
quantum field theory. The exchange of a dimensionless parameter for a scale dependent one
in a quantum field theory is known as dimensional transmutation. It is a generic feature
of quantum field theories. For instance in the case of perturbative QCD, the dimensionless
gauge coupling g is eliminated in favour of the scale dependent parameter ΛQCD.

Let us assume that a certain correlation function was obtained by a numerical simulation
of a classical lattice model for large values |x− y|,

D

(
|x− y|

)
=

〈
F (φ(x)) F (φ(y))

〉
∝ exp

{
−m |x− y|

}
, (52)
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Figure 2: Spin correlation along the diagonal and the symmetry axis, respectively.

where m is called the screening mass. Since the distance |x − y| is only known in units
of the lattice spacing by construction, the simulation will provide the mass in units of
the lattice spacing as a function of β, i.e. ma (β). If universality holds, one finds the
characteristic scaling of the lattice model, i.e.,

ma(β) = κm

(
βc − β

)ν

, β <
∼ βc . (53)

Using (50), we see that the product mξ approaches a constant in the vicinity of the critical
limit:

mξ = ma
ξ

a
= κm κ . (54)

Note that κ and κm are two c-numbers which we obtain from the numerical simulations.
With the help of these two numbers we can “measure” the desired mass m in units of 1/ξ,
where ξ is the only free parameter of our theory.

In the case of a quantum field theory, we expect that due to the isotropy of the vacuum
the correlation function (52) only depends on the distance between x and y. In the clas-
sical lattice model, continuous rotational symmetry is violated due to the presence of the
cubic lattice, and it might happen that the quantum field theory which emerges from the
lattice model inherits the anisotropy. This anisotropy can be measured by comparing the
correlation length in lattice units along a lattice symmetry axis, ξ, and a long the diagonal
direction, ξd (see figure 2). As far as global symmetries are concerned, the symmetry under
consideration is restored in the critical limit (51):

ξd = ξ , for a→ 0 .

Further details on the restoration of rotational symmetry in the context of the 2-dimensional
Ising model can be found in [2].
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2.3 Mean-field approximation

The starting point for a thermodynamical description of the Ising model is the partition
function:

Z =
∑

{σx}

exp (−β H(σ)) (55)

where β = 1/T and where a spin σx = ±1 is associated which each site x of the square
lattice. The sum in (55) extends over all possible spin configurations. The ferromagnetic

interaction favours a unique orientation of the spins, and is described by

H(σ) = −
∑

<xy>

σxσy , (56)

where the sum extends over all pairs < xy > of nearest neighbours. In order to preserve
translational invariance, periodic boundary conditions are often used in particle physics
applications, although these conditions are difficult to interpret in the solid state physics
context.
In order to gain an initial insight into the phase structure of the Ising model, we choose a
particular spin σx0

of the lattice, and assume heuristically that that we might replace the
neighbouring spins by the mean

〈σ〉 =
1

Z
∑

{σx}

σx0
exp (−β H(σ)) . (57)

The Hamiltonian is then approximately given by

H(σx0
) ≈ const. − 4〈σ〉 σx0

. (58)

Note that each spin possesses 4 neighbours on a cubic 2d square lattice. Equation (57)
turns into a self-consistency equation to determine the 〈σ〉, which can be interpreted as
the magnetisation per site:

〈σ〉 =
1

N
∑

σx0
=±1

σx0
exp (−β H(σ)) , (59)

N =
∑

σx0
=±1

exp (−β H(σ)) . (60)

Performing the sum over σx0
leaves us with a non-linear equation:

〈σ〉 = tanh
(
4 β 〈σ〉

)
. (61)

Before we proceed with a numerical solution of this equation, we point out that (61) always
possesses the trivial solution

〈σ〉 = 0 .
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Figure 3: Magnetisation per site as function of the inverse temperature β; solid line: mean
field approximation; dashed line: exact

A graphical inspection of (61) easily shows that for

β >
1

4
, (62)

two non-trivial solutions ±c, for c > 0 exist. The physical interpretation of the solution
is clear: for sufficiently small temperature (high β), an ordered phase exists. The critical
value is, in mean-field approximation, given by

βMF
c = 1/4 . (63)

Equation (61) can be easily solved numerically with the Newton method or by fixed point
iteration. The result for the magnetisation as a function of the inverse temperature is
shown in figure 3. Also shown is the exact result [3, 4]:

〈σ〉 =

[
1 − 1

sinh4(2β)

]1/8

(64)
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Figure 4: Geometrical objects on a lattice.

The mean-field result qualitatively reproduces the correct phase structure. The mean field
approximation is able to describe the transition from the disordered to the ordered phase.
However, the mean field approximation fails at a quantitative level. The correct value for
the critical value, which was already obtained by Kramers and Wannier in 1941 [3], is given
by

βc = 0.44068679 . . . (65)

is significantly underestimated. Also the rise of the magnetisation close to βc is not correctly
reproduced. A Taylor expansion of (61) with respect to β around βMF

c = 1/4 (and therefore
also with respect to σ), yields:

〈σ〉 ≈
√

12
(
β − βc

)b

, b =
1

2
. (66)

The mean field critical exponent of 1/2 is much too large compared with the exact exponent
of bexact = 1/8.

The advantage of the mean-field approximation is that it can be easily applied to a variety
of models (e.g. the Ising model in d > 2 where no exact results are available). It often
provides a correct first impression of the phase structure. The disadvantage is that it is
difficult to improve the approximation in a systematic way.

2.4 Duality transformation

Let us list different geometrical objects on a lattice. The sites on a lattice are labelled by
integer coordinates. Links are short line segments which join two neighbouring sites on
the lattice. In order to unambiguously address a link on the lattice, we use coordinates
which are integers with the exception of one coordinate which is half integer, such as 2.5
(see figure 4 for an illustration). Another important object is the so-called plaquette ,
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which is an elementary square of the cubic lattice. Two coordinates are half integer when
a plaquette is addressed. In higher dimensions, there are also cubes, and their coordinates
are half integer, while the other coordinates are integer.

The dual lattice is an important object which helps to gain non-perturbative information
for certain lattice models. The coordinates of the dual lattice are obtained by adding 0.5
to all coordinates of the lattice. If we consider a d dimensional lattice model, the duality
transformation maps an x-dimensional geometrical object into a d− x dimensional object
on the dual lattice. Let us consider 2 dimensions. A site, such as (2, 4) is mapped into
(2.5, 4.5), which are the coordinates of a plaquette, while a link, e.g. (1.5, 5), maps into
another link namely (2, 5.5).

With these prerequisites, let us consider the probabilistic measure of the 2d Ising model.
Since the product σxσy can only be ±1, we expand:

exp
{
β σxσy

}
= a + b σxσy .

Inserting both possible values for the product σxσy, we find:

a + b = eβ , a − b = e−β ,

and finally:

exp
{
β σxσy

}
= cosh β + sinh β σxσy . (67)

Hence, the partition function in (55) can be written as

Z =
∑

{σx}

cosh2N
∏

〈xy〉

[
1 + tanhβ σxσy

]
. (68)

where x and y are nearest neighbours on the lattice, and the corresponding link is denoted
by 〈xy〉. Note also that, in 2 dimensions, there are 2N links for a lattice with N sites.
In order to perform the sum over all spin configurations in (68), we use the important
relations: ∑

σ=±1

σ = 0 ,
∑

σ=±1

σ2 = 2 .

Hence, if we perform the sum over the spin σx in (68), we must make sure that it appears
twice (or an even number of times) when we expand the products of the square brackets.

Thus, if we avoid a vanishing contribution to the partition function, integration over the
spins generates closed loops the corners of which are marked by a pair of spins. For each
link of the closed loop, we get a factor tanhβ. Hence, after we have integrated out all
spins, the partition function can be written as:

Z = cosh2N β 2N
∑

loops

[
tanhβ

]N(L)

, (69)
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where N(L) is the number of links of the closed loop L. Note that we obtained a factor of
2 for each sum over a particular spin σ. This gives rise to the prefactor 2N in front of the
sum in (69). We now have converted the Ising model into a string theory, but we have not
gained much information on the Ising model so far. To proceed further, we must control
the sum over closed loops. For this purpose, we introduce new variables τ = ±1 which are
associated with the plaquettes (see figure 6). If we consider two neighbouring plaquettes,
there is always just one link between them. Now we say that if the product of the two
neighbouring plaquettes is −1, the corresponding link is part of the loop. If the product
is 1, the link is not part of the loop. The advantage of the τ variables is that we can
randomly assign ±1 to them and all loops which we produce are closed. Hence, summing
over all possible τ configurations will do the sum over all possible closed loops for us.

Note that each plaquette of the lattice is mapped to a site on the dual lattice. The link
between two neighbouring plaquettes is mapped into the link between the adjacent sites
of the dual lattice. Finally, we must express N(L) in terms of the τ variables. For this
purpose, we have to count all activated links (links which are part of a loop) on the lattice.
It is easy to check that

N(L) =
∑

〈xdyd〉

1

2

[
1 − τxd

τyd

]
(70)

counts these links: if two neighbouring τs are equal, they do not contribute to N(L), and
is they are different, they contribute 1 as they should. Using the τ -representation of the
closed loops, the partition function (69) becomes

Z = [cosh β]2N [2 tanh β]N
∑

{τxd
}

∏

〈xdyd〉

[
tanh β

]− 1

2
τxdτyd

. (71)

19



1 2 3 4 5

1

2

3 τ = 1

τ = −1

Figure 6: Introducing dual variables to represent closed loops.

This last equation can be written as

Z = sinhN (2β)
∑

{τxd
}

exp
{∑

〈xdyd〉

β̃ τxdτyd

}
. (72)

β̃ = − 1

2
ln tanh β . (73)

We have obtained again a 2d Ising model which is now formulated on the dual lattice: the
only difference is that the coupling is now β̃ rather than β. It is not generally true that
the duality transform yields the same lattice model just with different couplings. Models
which do have this property are called self dual.

Now let us assume that β is large (small temperature). In this case, we find from (73) that

β̃ ≈ e−2β , β large.

By contrast, if β is small (the high temperature limit), we find

β̃ ≈ −1

2
ln β , β small.

Hence, large β corresponds to small β̃ and vice versa (see figure 7). This is interesting since
the so-called strong coupling expansion techniques are available for small β. Performing
the expansion with respect to β̃ in the dual model, the large β regime can also be studied
by analytic methods. The basis of this expansion is a Taylor expansion of the exponential
with respect to β. This expansion naturally reaches its radius of convergence when β
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approaches the critical coupling βc. Performing the expansion using the dual model, the
Taylor expansion with respect to β̃ also breaks down at the critical coupling. There are no
other couplings for which singularities in thermodynamical quantities occur. Hence, the
critical point is obtained if

β = β̃ = βc . (74)

Using (73), we therefore find

βc = − 1

2
ln tanh βc , βc =

1

2
ln(1 +

√
2) ≈ 0.44068679 . . . . (75)

Figure 7 also shows the magnetisation as a function of β for a 128× 128 lattice compared
with the mean field result and the exact result in the infinite volume limit.

There are lot of interesting features of field theories already present in the Ising model:
there is the relation between a lattice model and a theory of strings, and there is the duality
transform which maps the high temperature theory onto a low temperature theory.

3 Markov chain Monte-Carlo: the Ising case study

3.1 Foundations

The idea central to all simulations of lattice models is to generate lattice configurations
{σx} according to their probabilistic measure

P (σ) = exp (−β H(σ)) /Z (76)
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where Z is the partition function (55). A straightforward idea to accomplish this task would
be to generate randomly the spins at each site x and to accept or reject this configuration
according to (76). The problem is that we would hardly find any acceptable configurations.
Why is this so?

Let us answer this question in the context of the Ising model of the previous section. The
two dimensional lattice consists of N = 125 × 125 sites. Since σ ∈ {−1,+1}, there are
2N ≈ 104704 different lattice configurations. We further introduce the average action per
site, i.e.

s̄ =
1

N

〈∑

<xy>

σxσy

〉
=

1

N

〈∑

x

〈
A(x)

〉
=

〈
A(x)

〉
=: Ā (77)

where
A(x) :=

∑

y>x,|x−y|=1

σxσy ,
∑

y>x,|x−y|=1

1 = 2 , (78)

and where we have used translational invariance. A measure for the strength of the fluc-
tuations of the action around its average value N s̄ is given by

δ2 =

〈(
∑

<xy>

σxσy − N s̄

)2〉
=

〈[
∑

x

(
A(x) − Ā

)
]2〉

(79)

=
∑

x,y

〈(
A(x) − Ā

) (
A(y) − Ā

)〉
. (80)

The crucial observation is that the connected correlation function

D(x− y) :=
〈(

A(x) − Ā
) (

A(y) − Ā
)〉

(81)

exponentially decreases for large values of |x − y|, i.e. D(x) ∝ exp{−x/ξA}, where ξA is
the correlation length characteristic for fluctuations in the action density. Hence, one finds
that its integrated strength, the so-called susceptibility ρ, is finite at least for β 6= βc,
i.e.,

ρ :=
∑

x

D(x) < ∞ . (82)

These findings tell us that the standard deviation δ (80) linearly grows with the number
of sites, i.e. δ2 = N ρ.

Using the central limit theorem to estimate the probability for accepting an action density
s, we find

PA ≈ exp

(
−(Ns−Ns̄)2

δ2

)
=

[
exp

(
−(s− s̄)2

ρ

)]N

. (83)

Hence, in the case of many sites, only configurations with an action per site close to the
average action density can significantly contribute to the partition function. If we randomly
choose the spins on the sites the action density can take any value between −1 and 1, and
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the argument (s − s̄)/ρ is generically of order 1. Hence the acceptance rate is down to
e−128×128 ≈ 10−7115.

The basic idea is to only generate configurations which are relevant. Starting from a seed
configuration c0, we will generate subsequent configurations c1, c2, . . . , where the result
for ci+1 should only depend on the precessing configuration ci and must not depend on the
configurations ci−1. In this case, the set of configurations,

c0 −→ c1 −→ c2 −→ c3 −→ . . . −→ c∞

is called a Markov chain. Central ingredient to a Markov chain is the probability W (b, a)
with which configuration b is created out of configuration a. This probability must satisfy
certain constraints:

(i) Normalisation
∑

bW (b, a) = 1, ∀a
(ii) Ergodicity W (b, a) > 1, ∀a, b
(iii) Stability

∑
aW (b, a)P (a) = P (b), ∀b ,

where P (a) is given in (76). If these conditions are met, the series ci converges to a con-
figuration which is distributed according to P (c∞) (76). In order to see this, we introduce
the probability Qi(c) for finding a configuration c at position i of the Markov chain, and
denote the deviation from the desired distribution by

ǫi =
∑

c

∣∣∣Qi(c) − P (c)
∣∣∣ . (84)

Because of property (ii), there is a Wmin with

W (a, b) ≥ Wmin > 0 , W ′(a, b) := W (a, b) −Wmin ≥ 0 . (85)

Furthermore, the condition (i) implies that

∑

c

Qi(c) = 1 , as
∑

c

P (c) = 1 . (86)

Using the stability condition (iii), we then obtain:

ǫi+1 =
∑

c

∣∣∣
∑

a

W (c, a)Qi(a) − P (c)
∣∣∣ =

∑

c

∣∣∣
∑

a

W (c, a)
[
Qi(a) − P (a)

]∣∣∣

=
∑

c

∣∣∣
∑

a

W ′(c, a)
[
Qi(a) − P (a)

]
+ Wmin

∑

a

[Qi(a) − P (a)]
∣∣∣

=
∑

c

∣∣∣
∑

a

W ′(c, a)
[
Qi(a) − P (a)

] ∣∣∣. (87)
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Using the triangle inequality and the positivity of W ′, we find

ǫi+1 ≤
∑

c

∑

a

W ′(c, a)
∣∣∣Qi(a) − P (a)

∣∣∣. (88)

Changing the order of summation and using (see (85))

∑

c

W ′(c, a) =
∑

c

(W (c, a) −Wmin) = 1 − nconf Wmin , (89)

where nconf is the number of configurations, we finally find convergence:

ǫi+1 ≤ [1 − nconf Wmin]
∑

a

∣∣∣Qi(a) − P (a)
∣∣∣ = [1 − nconf Wmin] ǫi . (90)

Instead of demanding the less stringent condition (iii), one often demands detailed balance:

(iii) ′ W (b, a) P (a) = W (a, b) P (b) .

The latter condition immediately leads to condition (iii) if we sum the equation (iii) ′ over
the configurations a:

∑

a

W (b, a) P (a) =
∑

a

W (a, b) P (b) = P (b) ,

where we have used condition (i). Since condition (iii) follows from (iii) ′ and only (iii) is
necessary for our proof above, demanding detailed balance, i.e., (iii) ′, is more restrictive.

3.2 Heat-bath algorithm

The heat-bath algorithm works as follows: (i) randomly choose a site x0 and consider the
corresponding spin σ(x0) for the update. Since the spin only interacts with its nearest
neighbours, the interaction can be written as

H = const. − h0 σx0
, h0 =

∑

<xx0>

σx . (91)

The relative probability for choosing σ(x0) = 1 is given by exp{h0β}, and the relative
probability for σ(x0) = −1 is given by exp{−h0β}. (ii) Calculate the absolute probability

p =
exp{βh0}

exp{−βh0} + exp{βh0}
(92)

with which the spin σx0
must be set to 1. Choose a random number z ∈ [0, 1]. For z < p,

choose σx0
= 1 otherwise choose σx0

= −1. (iii) Subsequently, pick another spin for the
update and start again with (i). Once all spins have been visited at least once, one sweep

has been performed.
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Figure 8: Thermalised spin configurations of the 2d Ising model for several β values
starting from high temperature phase to the low temperature ordered phase.

The algorithm above needs an initial configuration. We could choose a unique orienta-
tion of all spins. Since this is the ground state of the Hamiltonian which dominates the
partition function for small values of the temperature, this initialisation is called a cold

start. Alternatively, we could start with a random orientation of the spins. This is a con-
figuration which is relevant at very high temperatures where interactions are negligible.
This initialisation is therefore called a hot start. Independently of our choice, a number
of sweeps is carried out to generate a statistically relevant configuration. This procedure
is known as thermalisation. The number required to arrive at an equilibrated spin lattice
depends on the number of degrees of freedom and the temperature.

Let us now examine typical lattice spin configurations. Starting at low β, the sample
configurations are highly disordered (see figure 8). Increasing β up to ≈ 0.3, the clusters of
spins with the same orientation already extend over several lattice spacings. Approaching
the critical value, e.g. for β ≈ 0.42, the clusters are already as large as the lattice. This
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observation reflects the growth of the spin correlation length which, for the present case,
is

ξ ≈ ξ+

∣∣∣∣1 − T

Tc

∣∣∣∣
−1

, (T >
∼ Tc) , (93)

and hence diverges when β → βc.

If our numerical approach should produce the configurations of a Markov chain, the con-
figurations may not depend on the Monte-Carlo history. To find out whether the config-
urations are indeed statistically independent, we may inspect the autocorrelation time τ
e.g. say for the magnetisation M (recall subsection 1.3 for discussions of autocorrelations).
To guarantee independence, we perform about 2τ Monte-Carlo sweeps before we consider
a configuration eligible for contributing to an estimator. In the case of the heat bath algo-
rithm (in fact, for all local update algorithms), one discovers that the autocorrelation time
strongly increases when the critical point is approached. This implies that the interesting
regime of the model, namely the regime close to the phase transition, is not accessible
with these types of algorithm. The reason for this is the following: consider a spin inside
one of the clusters. All the neighbouring spins are pointing in the same direction. If this
spin is now subjected to a local update procedure, the spin hardly changes because of the
strong mean field produced by the other spins. Hence, only the boundaries of the clus-
ter are significantly modified after one sweep through the lattice. The correct physics is,
however, described by configurations consisting of strongly fluctuating clusters. In order
to change a cluster completely, there are roughly ξ2 lattice sweeps necessary. Hence, only
after ξ2 sweeps, the configuration has changed significantly. This, however, implies that
the autocorrelation time is roughly given by τ ≈ ξ2. Indeed, it was empirically observed
for the Metropolis algorithm that

τ ≈ ξz , zMetro ≈ 2.125 . (94)

The index z is called the dynamical critical exponent and depends on the algorithm. Since
the physical correlation length ξ diverges at the phase transition, (94) implies that the
regime near the phase transition cannot be simulated with local update algorithms.

3.3 Cluster update algorithms

State-of-the-art simulations which explore the transition regime use the so-called cluster
algorithms. The difference to local update algorithms is that many spins are flipped at a
time. To derive the prescription of such a cluster update, we rewrite the partition function
(55) as

Z =
∑

{σx}

exp

(
β
∑

<xy>

σxσy

)
=
∑

{σx}

∏

<xy>

exp
(
β σxσy

)
. (95)

If both neighbouring spins, σx and σy, in (95) are equal, the probabilistic factor in (95)
equals exp β. For an opposite orientation of the spins, the probabilistic factor is given by
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exp(−β). We therefore cast (95) into

Z =
∑

{σx}

∏

<xy>

eβ

[
(1 − p) + p δσxσy

]
, p := 1 − e−2β . (96)

We now are going to make the representation of the partition function even more involved
by using the identity

a + b =
1∑

n=0

[
a δn0 + b δn1

]
.

Introducing variables nxy ∈ {0, 1}, which are associated with each link of the lattice, we
obtain

Z =
∑

{σx}

∑

{nxy}

∏

<xy>

eβ

[
(1 − p) δnxy,0 + p δσxσy

δnxy,1

]
. (97)

The cluster update prescription is now obtained by performing standard heat bath steps
for the variables {σx} and {nxy}.
Let us consider the update for the link variables nxy first. In order to avoid generating a
configuration of vanishing probability, we must choose nxy = 0 if the neighbouring spins
{σx} and {σy} are different (see (97)). If these spins are equally oriented, the probabilistic
measure in (97)) is given by

(1 − p) δnxy,0 + p δnxy,1 ,

implying that the link nxy is set to 1 with probability p. Given an initial spin distribution,
the values of all link variables can be chosen according to the above prescription.

Let us now consider the spin update. According to probabilistic measure, i.e.,

(1 − p) δnxy,0 + p δσxσy
δnxy,1 ,

all spins which are connected by links nxy = 1 must be of equal orientation. All spins
which are connected by so-called activated links, i.e., nxy = 1, are said to be part of a
cluster. The task is now to find all such clusters on the lattice. Once these clusters have
been identified, we assign ±1 (with equal probability) to all spins of the same cluster.

This first versions of such cluster update algorithms are due to Fortuin and Kasteleyn [5],
Swendsen and Wang [6] and Wolff [7]. It is found empirically that the dynamical critical
exponent is strongly reduced:

τ ≈ ξz , zcluster ≈ 0.2 . (98)

Introductory discussions can be found in [5–8].
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4 Quantum field theories on computers

4.1 Quantum mechanics

Let us assume that the motion of a particle of mass m in 1 dimension is governed by a
potential V (x). The classical equation of motion can be calculated by variational methods
from the action

S =

∫ t

0

dt
{m

2
ẋ2 − V (x)

}
. (99)

Classically, these equations of motion determine the time evolution of the position of the
particle x(t). At quantum mechanical level, the partition function

Z(T ) = tr exp

{
− 1

T
H

}
(100)

is a convenient starting point to discuss the thermodynamics of the physical system. Here,
H is the quantum mechanical Hamiltonian, i.e.,

H = − ~
2

2m

d2

dx2
+ V (x) . (101)

T is the temperature, and is considered as an external parameter. Once one has succeeded
in calculating the partition function (100), thermodynamical quantities can be easily ob-
tained by taking derivatives, e.g., the temperature dependence of the internal energy is
given by

〈H〉 = T 2 d lnZ(T )

dT
. (102)

Although a direct calculation of the eigenstates 〈n| of the Hamiltonian might be the easiest
way to calculate a quantum mechanical partition function in practical applications, I would
like to reformulate (100) in terms of a functional integral. This will be of great help when
we generalise the quantum mechanical considerations to the case of a quantum field theory.

For these purposes, I introduce a length scale L := 1/T and an interval [0, L] which I
decompose into N equidistant portions of length a ≪ L, where a is called lattice spacing.
It is trivial to obtain

exp

{
− 1

T
H

}
= exp

{
−

N∑

ν=1

a H

}
=

N∏

ν=1

exp{− aH} . (103)

Let us define complete sets of momentum and position eigenstates (|p〉 and |x〉, respectively)
by

1 =

∫
dxν |xν〉 〈xν| , 1 =

∫
dpν |pν〉 〈pν| , (104)

for ν = 1 . . .N . As usual, these states obey

〈pk|xk〉 = exp
{
− i

~
pkxk

}
.
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Using a complete set |x0〉 of position eigenstates to evaluate the trace in (100), we find

∫
dx0 〈x0|

N∏

ν=1

exp{−aH}|x0〉 =

∫
dx0 dp0 dx1 dp1 . . . dxN−1 dpN−1

〈x0|e−aH |p0〉 〈p0|x1〉 〈x1|e−aH |p1〉 〈p1|x2〉 . . . 〈xN−1|e−aH |pN−1〉 〈pN−1|x0〉 .

Note that the operators p2 and V (x) do not commute. We may, however, write:

exp

{
−a p

2

2m
− aV (x) +

a2

4m
[V (x), p2] + . . .

}
= exp {−aV (x)} exp

{
−a p

2

2m

}
.

Since |x〉 and |p〉 are eigenstates of the position operator and momentum operators, re-
spectively, we find

〈xk| exp{−aH}|pk〉 = exp

{
−a
[
p2

k

2m
+ V (xk) + O(a)

]}
exp{ i

~
pkxk} .

The partition function therefore becomes up to terms of order a2

Z(T ) =

∫
dx0 dp0 dx1 dp1 . . . dxN−1 dpN−1 dxN exp

{
−a

N−1∑

k=0

[
p2

k

2m
+ V (xk)

]}

exp

{
− i

~

N−1∑

k=0

pk(xk+1 − xk)

}
〈x0|xN〉 (105)

It is straightforward to perform the momentum integrations, which are Gaussian,

Z(T ) =

(
4πm

a

)N/2 ∫
dx0 dx1 . . . dxN δx0xN

(106)

exp

{
−a

N−1∑

k=0

[
m

2

(xk+1 − xk)
2

a2 ~2
+ V (xk)

]}

This equation is a completely regularised expression for the partition function and can
be directly used in numerical simulations. Note that in the framework of quantum field
theory, one sets ~ = 1.

A compact notation can be derived by formally taking the lattice spacing a to zero. For
this purpose, we define ah := ~ a, and the Euclidean action by

SE =

∫ L

0

dτ

{
m

2
ẋ2 + V (x)

}
. (107)

Note the sign change in front of the potential compared with the standard action (99).
The interval [0, L], which was introduced above (103), is called Euclidean time interval.
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Figure 9: Classical versus quantum partition functions of a 1-dimensional particle chain.

By construction (see above), the length of the Euclidean time interval is given by the
inverse temperature, i.e., L = 1/T . We also introduce a Euclidean particle trajectory, and
a Euclidean velocity

xk → x(τ)
xk+1 − xk

ah
→ ẋ(τ) , (108)

where we identify dτ = ah. Using the shorthand notation

(
4π~m

ah

)N/2 ∫
dx0 dx1 . . . dxN−1 → Dx(τ) ,

the partition function (106) can be formally written as a functional integral

Z(T ) =

∫
Dx(τ) exp

{
−1

~
SE

}
. (109)

Eq.(109) suggests that an average over all Euclidean trajectories x(τ) must be performed
where the probabilistic weight of each trajectory is given by exp{−SE/~}. Note also that
in view of the δ-function in (106) only trajectories which are periodic in Euclidean time
must be considered, i.e., x(0) = x(L = 1/T ).

4.2 Quantum field theory

For illustration purposes, we consider the 1-dimensional particle chain in figure 9. Here,
the positions of the particles i = 0 . . . n are characterised by their extensions ui from the
equilibrium position. The particles experience a harmonic potential depending on the
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distance to the nearest neighbour. Here, I choose the boundary conditions u0 = 0, un = 0.
The Hamiltonian, which describes the classical physics, is given by

H =

n−1∑

i=1

[
1

2m
p2

i +
D

2
(ui+1 − ui)

2

]
. (110)

Hence the classical partition function is given by the multi-dimensional integral

Zcla(T ) ∝
∫
dp1 . . . dpn−1 du1 . . . dun−1 exp

{
−H
T

}
. (111)

In order to calculate the full quantum mechanical partition function of the particle chain,
we first write down the Euclidean partition function. Note for this purpose that the
displacements ui now acquire an additional dependence on the Euclidean time ui → ui(τ) ≡
uτi. With this notation the Euclidean action is given by

SE =
N∑

τ=1

n−1∑

i=1

a

[
m

2a2
(uτ, i − uτ−1, i)

2 +
D

2
(uτ, i+1 − uτ, i)

2

]
. (112)

The interactions between the c-number fields uτi can be easily visualised (see figure 9): the
fields uτi harmonically interact with their nearest neighbours. The harmonic interaction
strength is given by D/2 in space direction and m/2a2 for neighbours in Euclidean time
direction. The quantum mechanical partition function can be calculated by integrating
over of the fields uτi located at the sites of a 2-dimensional grid, .i.e.

Z(T ) ∝
∫

Du exp{−SE} , (113)

where the temperature enters the consideration via the extension of the lattice in Euclidean
time direction with fields obeying periodic boundary conditions.

To conclude, we observe that the partition function of a classical D + 1 dimensional field
theory (in lattice regularisation) describes the full partition function of a D dimensional
quantum system. D is the number of space dimensions. This correspondence is very
helpful in understanding the quantum behaviour of a theory, since it can be mapped to a
classical field theory (at the expense of an additional dimension). In the next section, we
will study classical partition functions in 4-dimensional Euclidean space in order to derive
the information on the thermodynamics of the full quantum system.

5 Lattice gauge theory

5.1 The gauged Ising model

The Ising model, strictly speaking the partition function (55), is invariant under the global

transformation of the spins given by

σΩ(x) = Ω σ(x) , Ω = ±1 . (114)
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The transformation is called global because the transformation affects all spins at the same
time, i.e., Ω is independent of the coordinates (sites). The corresponding symmetry group
is Z2.

This symmetry group can be generalised to a local symmetry, also known as gauge sym-

metry, by demanding invariance under

σΩ(x) = Ω(x) σ(x) , Ω(x) = ±1 . (115)

Of course, the action (56) of the standard Ising model is not invariant under the huge
symmetry group which is now [Z2]

N , where N is the number of sites. In order to obtain
a version of the Ising model which possesses a Z2 gauge symmetry, we need to change the
action. The only way to do it, is to introduce an additional field, Zµ(x). This field is
associated with the links of the lattice: x specifies the site and µ the direction in which we
find the link. Alternatively, we could write:

Zµ(x) = Z〈xy〉 , y = x+ êµ ,

where êµ is the unit vector in µ direction. For the latter expression, we will also abbreviate

x+ êµ = x + µ .

For the action, we choose

Smatter = κ
∑

〈xy〉

σ(x)Zµ(x) σ(x+ µ) , (116)

and demand that the link Zµ transforms under gauge transformations as

ZΩ
µ (x) = Ω(x) Zµ(x) Ω(x+ µ) . (117)

Since spin and link transform simultaneously with the same Ω(x) and since Ω2(x) = 1, one
easily proves the gauge invariance of the action (116).

Obviously, the action Smatter describes the interaction between the matter fields, i.e., the
spins, and the new link fields. What is left to do is to design a gauge invariant action for
these new degrees of freedom. This interaction should be short ranged in order to preserve
some desirable features such as universality. A possible choice is

Slink = β
∑

x, µ>ν

Pµν(x) , Pµν(x) = Zµ(x)Zν(x+ µ)Zµ(x+ ν)Zν(x) . (118)

Here, the numbers (x, µ > ν) specify the plaquette of the lattice the lower left corner
of which is located at site x and which is spanned by the directions µ and ν. The field
combination Pµν(x) is often called the plaquette for short. The proof that Pµν(x) is indeed
invariant under gauge transformations (117) is left to the reader.
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The total action of the gauged Ising model consists of two parts: the matter part and the
“gauge” part. Correspondingly, there are two coupling constants: the convention is that β
is the pre-factor in the pure gauge action, while κ multiplies the matter part.

Once our system is now gauged, it only makes sense to consider gauge invariant observables
since non-gauge invariant quantities vanish. Let us explore this for a simple gauge variant
quantity such as the spin correlation function:

C(x0, y0) =
1

Z
∑

{σ}

σ(x0) σ(y0) exp
{
S[σ]

}
, S[σ] = Smatter + Slink , (119)

Z =
∑

{σ}

exp
{
S[σ]

}
, (120)

Let us now consider a particular gauge transformation (115) of the spins, i.e.,

Ω(x) =

{
−1 for x = x0

1 else
(121)

Renaming all spins in the sum in (119) by σ(x) → σΩ(x), we use the gauge invariance of
the action and the sum , i.e.,

S[σ] = S[σΩ] ,
∑

{σ}

=
∑

{σΩ}

.

The sum is trivially invariant, since we sum anyhow over all possible ±1 combinations for
the spins. Thus, we obtain:

C(x0, y0) =
1

Z
∑

{σ}

σΩ(x0) σ
Ω(y0) exp

{
S[σ]

}

=
1

Z
∑

{σ}

[−σ(x0)] σ(y0) exp
{
S[σ]

}
= −C(x0, y0) , (122)

where we used our particular choice (121) in the last line above. We conclude from this
that C(x0, y0) = 0.

5.2 Pure Z2 gauge theory: 3 and 4 dimensions

Let us now consider the particular case κ = 0 when the matter fields are absent from the
theory. The emerging theory is called pure Z2 gauge theory, and it is a theory of link fields
only. What are the physical (i.e. gauge invariant) degrees of freedom in this case? Let us
consider the more interesting case of 3 and 4 dimensions for these considerations. In order
to talk about gauge invariant information, we now consider the plaquettes Pp, p = (x;µν),
defined in (118). We say that a short flux line (vortex) passes through the plaquette p if
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link = −1

flux  line

Figure 10: Flux passing through an elementary cube (left) and closed flux lines on a 3d
lattice (right).

Pp = −1. Since the plaquette variables P are gauge invariant, so are the flux lines. More
formally, we introduce a vortex plaquette variable by

vp =
∏

l∈p

Zl (123)

and consider the flux lines which enter/leave an elementary cube of the lattice. We take
the product of all vortex plaquettes which are associated with the faces of the elementary
cube and find ∏

p∈c

vp = (−1)ν , (124)

where ν is the total number of vortices at the faces of the cube. Inserting the definition
(123), we also find that ∏

p∈c

vp =
∏

p∈c

∏

l∈p

Zl = 1 , (125)

since in the latter products all Zl factors appear twice (see figure 10, left panel; remember
Z2

l = 1). Comparing (125) with (124), we realise that ν must be even. In particular, ν = 1
is excluded implying that a vortex never ends inside a cube. Considering 3 dimensions
(or the spatial hypercube of 4-dimensional space time), we find that the gauge invariant
vortices form closed lines in space. See figure 10, right panel, for an illustration.

4 dimensions: Let us consider the 4 dimensional model first. The constraint (125) is
most easily interpreted on the dual lattice. A plaquette p of the original lattice maps onto
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a plaquette ∗p of the dual lattice, and a cube c corresponds to a link ∗l on the dual lattice.
Hence, the constraint (125) reads on the dual lattice

∏

∗p∈∗l

v∗p = 1 . (126)

This simply means that the number of vortex plaquettes which are attached to a link on
the dual lattice must be even. Accordingly, the vortex plaquettes form closed surfaces on
the dual lattice. If n denotes the number of negative plaquettes on the original lattice, the
number of trivial plaquettes in 4 dimension is 6N − n, where N is the number of lattice
points. Hence, the probabilistic weight of such a configuration is:

[exp {β}]6N−n [exp {−β}]n = exp {6N β} exp {−2β n} ,

so that the partition function can be written as

Z = exp {6N β}
∑

{closed surfaces}

exp {−2β n} . (127)

Let us interpret this partition function: the degrees of freedom are closed two dimensional
sheets (2-branes) embedded in four dimensions. The surface A of these branes is given by
n. Hence, the probabilistic factor is given by

exp
{
−2β A

}

implying that 2β can be interpreted as the surface tension. At zero temperature (β → ∞),
the empty vacuum (no 2-branes) is realised. At finite temperatures, the brane entropy
competes with the penalty from the weight factor. A direct calculation of the entropy
of 2d world-sheets in 4d would be cumbersome. However, exploiting the relation to the
Z2 gauge theory makes the calculation of brane expectation values easily accessible by
numerical means.

Let us proceed to obtain the duality map of the 4d Z2 gauge theory. The basic trick
to perform the sum over the closed surfaces is to introduce degrees of freedom which
automatically resolve the constraint. In the present case, these are links ∗Z∗l on the dual
lattice. Let us consider ∑

{∗Z
∗l}

∏

∗p

[
1 + t P∗p[

∗Z]
]
, (128)

where P∗p[
∗Z] is the plaquette generated by the links ∗Z on the dual lattice. When we

remove the brackets in (128), the only way to have a non-vanishing contribution to the
sum is by making sure that each link ∗Z∗l appears an even number of times. This, however,
means that the negative plaquettes P∗p[

∗Z] form closed surfaces. Hence, we find

∑

{∗Z
∗l}

∏

∗p

[
1 + t P∗p[

∗Z]
]

= 24N
∑

{closed surfaces}

tn . (129)
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Note that there are 4N links on the 4 dimensional lattice and that the factor 24N arises
from the sum over ∗Z∗l. Thus, using (129) in (127), we find

Z = exp {6N β} 2−4N
∑

{∗Z
∗l}

∏

∗p

[
1 + t P∗p[

∗Z]
]
, t = exp{−2β} . (130)

Since the plaquette P∗p[
∗Z] only acquires values ±1, we may write:

∏

∗p

exp
{
β̃ P∗p[

∗Z]
}

= [cosh β̃]6N
∏

∗p

[
1 + tanh β̃ P∗p[

∗Z]
]
. (131)

The partition function (130) therefore becomes

Z =

[
exp{β}
cosh β̃

]6N

2−4N
∑

{∗Z
∗l}

exp
{
β̃
∑

∗p

P∗p[
∗Z]
}
, (132)

exp{−2β} = tanh β̃ . (133)

First of all we note that the dual of pure Z2 gauge theory is another 4-dimensional Z2

gauge theory: the model is self-dual. Furthermore, relation (133) is already familiar to us:

we have obtained a complete analogue of the relation between β and its dual β̃ for the 2d
Ising model. We therefore once again encounter the fact that the weak coupling regime is
mapped to the strong coupling regime of the same model. As a byproduct we find that
the critical coupling is given by

βc =
1

2
ln(1 +

√
2) ≈ 0.44068679 . . . . (134)

The fact that the critical couplings of the 2d Ising model and 4d pure Z2 gauge theory
coincide might be a numerical accident. At least, I do not know any deeper reason for
it. I finally point out that the Z2 gauge symmetries of the original and the dual formu-
lation are completely unrelated. This can be most easily seen from the fact that, at an
intermediate stage, we have formulated the model entirely in terms of physical, i.e., gauge
invariant variables: the closed vortex sheets of the dual lattice. Resolving this constraint,
the gauge invariance of the dual model arose from a parameterisation invariance, namely,
the redundancy when we performed the sum over all closed world sheets with the help of
dual gauge links ∗Z.

3 dimensions: Let us finally discuss the 3-dimensional model. In 3 dimensions, a
plaquette p is mapped to a link ∗l and a cube c is mapped to a site ∗x on the dual lattice.
The constraint (125) then translates to

∏

∗l∈∗x

v∗l = 1 . (135)
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The plaquettes carrying negative flux on the original lattice are represented by links forming
closed loops on the dual lattice. The partition function now takes the form (there are 3N
links on the lattice):

Z = exp {3N β}
∑

{closed loops}

exp {−2β n} . (136)

We already know how to perform the sum over all closed loops from subsection 2.4:

2−3N
∑

{τ∗x}

∏

∗l

exp
{
β̃ τ∗xτ∗y

}
(137)

=
[cosh β̃

2

]3N ∑

{τ∗x}

∏

∗l

[
1 + tanh β̃ τ∗xτ∗y

]
=
[
cosh β̃

]3N ∑

{closed loops}

[tanh β̃]n .

Identifying once again
exp{−2β} = tanh β̃ , (138)

we find

Z =

[
exp{β}
2 cosh β̃

]3N ∑

{τ∗x}

exp
{∑

∗l

β̃ τ∗xτ∗y

}
. (139)

Obviously, the Z2 gauge theory is dual to a theory which is not a gauge theory anymore, the
3d Ising model. This has tremendous consequences: for the standard Ising model, cluster
update algorithms are available. Using the Swendsen-Wang or Wolff type cluster update,
we are able to simulate a gauge theory with much less autocorrelations. Unfortunately,
such a framework is not (yet) available for more relevant theories such as lattice Yang-Mills
theories.

5.3 Setting up lattice Yang-Mills theory

Due to the universality conjecture, the lattice model with the correct number of dimensions
and the correct symmetries uniquely defines the corresponding quantum field theory in the
critical limit. The purpose of the present subsection is to propose a classical lattice model
which satisfies these prerequisites in the case of Yang-Mills theory.

The QCD matter fields (quarks) belong to the fundamental representation of the so-called
SU(Nc) colour group (Nc = 3 for QCD). Gauge invariance means that the action of the
quark fields is invariant under the local unitary transformations, i.e.,

q(x) → q′(x) = Ω(x) q(x) , Ω(x) ∈ SU(Nc). . (140)

As explained in many text books, local gauge invariance of the quark kinetic term may
only be achieved by introducing additional dynamical fields, the gluon fields Aµ(x).
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Figure 11: Path ordered product of link variables.

The quark fields are associated with the sites in a lattice formulation. Hence, the symmetry
group of the classical lattice Yang-Mills model is [SU(Nc)]

Ns , where Ns is the number of
lattice sites. In order to enforce such a high symmetry in the critical limit of a lattice
model, it has turned out essential to realise the symmetry even for finite values of the
lattice spacing a. This in turn forces the model to maintain local gauge invariance in the
continuum limit [9]. A potential candidate for a quark kinetic term in the non-interacting
case is ∑

x,µ

1

2

[
q̄(x) γµ q(x+ µ) − q̄(x+ µ) γµ q(x)

]
, (141)

where the γµ are the Euclidean γ matrices. Of course, the action (141) is not invariant under
the gauge transformations (140). To achieve this invariance, we introduce an additional
field of vector type, thus being related to the links of the lattice,

Uµ(x) ∈ SU(Nc) . (142)
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Figure 12: Lattice plaquette variable

Generalising the quark kinetic term (141) to

SQ =
∑

x,µ

1

2

[
q̄(x) γµUµ(x) q(x+ µ) − q̄(x+ µ) γµU

†
µ(x) q(x)

]
, (143)

one obtains the desired local invariance upon demanding that the link fields transform as

Uµ(x) → Ω(x)Uµ(x) Ω†(x+ µ) . (144)

Let us follow the case of the gauged Ising model and construct a kinetic term for the link
fields Uµ(x). For lattice models “kinetic” means that the interactions of the fields on the
lattice are short range, i.e., only nearest neighbours are involved. In order to design a
gauge invariant kinetic term for every value of the lattice spacing, we firstly investigate the
transformation properties of a path ordered product of link variables. Let us consider an
open path C which starts at point x and ends at y (see figure 11 for an illustration), and
define

P (x, y) = P
∏

x∈C

U(x) , (145)

where P implies path ordering. Inserting the gauge transformed links (144) into (145), one
finds

P (x, y) → P ′(x, y) = Ω(x) P (x, y) Ω(y) . (146)

With the help of (145), it is easy to construct a kinetic term for the link variables which
(i) is gauge invariant and (ii) involves only next to nearest neighbours. For this purpose
one chooses C to be a closed path starting at x and ending at y = x which encircles an
elementary plaquette (see figure 12):

Pµν(x) =
1

Nc

trP (x, y)

=
1

Nc

tr
{
Uµ(x) Uν(x+ µ) U †

µ(x+ ν) U †
ν(x)

}
. (147)
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Using (146) and the invariance of the trace under cyclic permutations, one easily shows
that the plaquette (147) is indeed gauge invariant.

The lattice partition function involves an integration over the dynamical fields of the theory.
In the case of the group valued link variables (142), the question arises which measure DUµ

should be employed for the integrations. We must demand that the integration measure
does not spoil gauge invariance. To ensure this we use the so-called Haar measure which
satisfies

dUµ(x) = d

(
AUµ(x)B

)
, A, B ∈ SU(Nc) . (148)

The Haar measure is available in closed form for the unitary groups SU(Nc). Here, I will
only present the Haar measure for SU(2) group integrations. The SU(2) unitary matrix U
is conveniently parameterised in terms of the Pauli matrices,

U = a0 + i~a~τ , UU † = 1 → a2
0 + ~a2 = 1 . (149)

Since the constraint UU † = 1, i.e. a2
0 + ~a2 = 1, is not changed if U is multiplied with A

from the left and B from the right, respectively, these multiplications can be viewed as
rotations in the 4-dimensional space spanned by (a0,~a). Therefore, an invariant measure
can be defined by

dU = da0 da1 da2 da3 δ

(
a2

0 + ~a2 − 1

)
. (150)

Introducing polar coordinates for the 3-dimensional vector ~a := a~n, ~n~n = 1, the integration
over the norm of the vector ~a can be performed with the help of the δ function in (150).
We obtain the final result for the SU(2) Haar measure, i.e.,

dU = da0

√
1 − a2

0 dΩ~n , (151)

which is commonly used in lattice simulations.

Finally, the lattice representation of the gauge invariant partition function is given by

Z =

∫
DU Dq Dq† exp

{
−SQ + β

∑

x,µ>ν

1

2

[
Pµν(x) + h.c.

]}
, (152)

where the quark interaction is encoded in SQ (143) and Pµν(x) is the plaquette (147). β
is related to the bare gauge coupling constant g of the continuum formulation by β =
2Nc/g

2. The particular choice (152) of the lattice regularised gluonic action is known as
the Wilson action [9]. Note that the fields q(x), q†(x) are anti-commuting Grassmann
fields. This choice for the fermionic fields is necessary to obtain the correct Fermi statistics
as well as to ensure the Pauli principle. It implies that the lattice model (152) cannot be
straightforwardly be used in numerical simulations. Rather, since the action for the quark
fields is quadratic, the integration over the quark fields has to be performed analytically:

∫
Dq Dq† exp

{
−q̄AMABqB

}
= DetM [U ] . (153)

40



where the index A comprises space-time as well as spinorial, etc. indices. The quark deter-
minant DetM [U ] is a gauge invariant function of the link variables Uµ(x). Note, however,
that the link interaction mediated by the quark determinant is non-local, implying that
a link at a particular site is coupled to all other links of the lattice. In practice, this
implies that a local update of a single link enforces the calculation of a functional deter-
minant. This explains why the numerical simulation of Yang-Mills theory with dynamical
quarks requires much more computational resources than the simulation of the theory in
quenched approximation, where the quark determinant is neglected for the update of the
link variables.

5.4 The fermion doubling problem

It turns out that the treatment of the quark degrees of freedom in (152) is still too naive:
since the Dirac equation is linear in momentum, its lattice analogue does not produce just
the desired quark degrees of freedom in the limit a → 0, but rather 2D copies of them (D
is the number of space time dimensions). This is already true for the free theory as will be
shown in what follows.

Let us firstly introduce the generating functional for connected Green functions in the case
of free and massless bosonic theory,

Z[j] =

∫
Dφ exp

{
−1

2
φkΠklφl + jxφx

}
. (154)

A sum is understood over indices which appear twice. One easily verifies that the connected
correlation function is obtained from Z[j] via

f(x− z) := 〈φxφz

〉
−
〈
φx

〉〈
φz

〉
=

d lnZ[j]

djx djz
. (155)

By “completing the square” in (154), we find

Z[j] ∝ exp

{
1

2
jx

(
Π−1

)

xz
jz

}
, (156)

and hence for the free bosonic case

〈
φxφz

〉
−
〈
φx

〉〈
φz

〉
=

(
Π−1

)

xz

. (157)

In order to evaluate the inverse Π−1, of the ”kinetic” operator, we introduce its eigenvalues
and eigenvectors, whereupon

Π |k〉 = λk |k〉 , (158)

and formally write (
Π−1

)
xz

=
∑

k

|k〉 1

λk

〈k| . (159)
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Figure 13: Dispersion relation from the tree level kinetic term (continuum versus lattice
formulation) for the bosonic case (left) and the fermionic case (right panel).

It is now easy to calculate the correlation function for the continuum case Π = −∂2. The
eigenfunctions are subjected to periodic boundary conditions φ(x) = φ(x+ L), i.e.,

φ(x) ∝ eikx , , eikL = 1 , k =
2π

L
n , n ∈ Z . (160)

The discrete k levels are called Matsubara frequencies. In the continuum, there are no
further restrictions on the integer n. Making the ansatz (160), we find that the eigenvalues
are given by

λ(k) = k2 (continuum) . (161)

Hence, a free massless particle manifests itself in the correlation function (159) as a pole
at zero momentum transfer. The lattice version of the eigenvalue equation is

Πφ(x) =
∑

µ

[
−φ(x+ µ) + 2φ(x) − φ(x− µ)

]
= λlatta

2 φ(x) . (162)

In order to solve this equation, we use the plane wave ansatz (160). One crucial difference
between the lattice and the continuum version is that only wavelengths l obeying

l

2
≥ a ,

π

k
≥ a (163)

are sensible. The lattice naturally provides an UV momentum cutoff, i.e., ΛUV = π/a.
Inserting (160) into (162) one finds

λlatta
2 =

∑

µ

[
2 − eikµa − e−ikµa

]
= 4

∑

µ

sin2
(kµa

2

)
. (164)

For momenta which are small compared to the UV cutoff, i.e., ka ≪ π, we recover the
continuum dispersion relation

λlatt = k2
[
1 + O(k2a2)

]
. (165)

42



In figure 13 the continuum dispersion relation for bosons is compared to its lattice version.
The lattice correlation function has only one singularity reflecting that in the scaling limit
λa2 ≪ 1, ka≪ π, the dispersion relation of the continuum free particle is recovered.

Let us move on to the fermionic case. In order to reproduce the correct Fermi statistics,
fermion fields ψ(x) are of Grassmann type and obey anti-periodic boundary conditions. I
refer to the textbook [2] for an introduction to the free fermionic theory, and only quote the
final result for the correlation function which formally agrees with (159). In the continuum,
the eigenvalue equation is given by

Πψ(x) = ∂/ψ(x) = λψ(x) , (166)

where anti-hermitian (Euclidean) γ matrices are used. The ansatz for the spinor wave
functions is again of plane wave type,

ψ(x) ∝ u(k) eikx , eikL = −1 , k =
2π

L

(
n+

1

2

)
, n ∈ Z . (167)

The spectrum λ(k) is determined by making the ansatz

u(k) =
[
ik/ + λ

]
u0 , (168)

which yields [
ik/− λ

]
u(k) =

[
ik/− λ

][
ik/+ λ

]
u0 = 0 , (169)

and therefore [
k2 − λ2

]
u0 = 0 . (170)

Hence, the spectrum of the continuum theory is linearly increasing, λ = ±
√
k2. Using

the kinetic energy for a free quark theory introduced in (141), the lattice version of the
eigenvalue equation is given by

1

2

∑

µ

[
γµ ψ(x+ µ) − γµ ψ(x− µ)

]
= λ a ψ(x) . (171)

The ansatz (167) also provides the eigenvectors of the eigenvalue problem (171). Repeating
the steps which have led to the continuum dispersion relation, one finds its lattice analogue

λ a =

√∑

µ

sin2
(
kµa
)
. (172)

The fermionic eigenvalue distribution is shown in figure (13), right panel. Close to the
critical limit (λa ≪ 1), one recovers the continuum dispersion relation from (172) by
making a Taylor expansion with respect to ka. In addition, a second singularity occurs for
ka ≈ π. This shows that even if λa ≪ 1 a second fermion flavour arises from the lattice
fermion action (141).
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It can be shown that this fermion doubling problem must occur for a chirally invariant
action which is translationally invariant and local (Nielsen-Ninomiya No-Go theorem).
At the present stage, a lot of research effort is devoted to incorporate chiral symmetry at
the expense of, say, a moderate non-locality of the action [10].

5.5 Overlap fermions

In the continuum formulation, the chirally invariant Dirac operator D satisfies the relations
{
D, γ5

}
= 0 ,

{
D−1, γ5

}
= 0 , (173)

which tells us that the non-zero eigenvalues λ̄ appear in pairs {λ̄,−λ̄}. Let D denote a
lattice candidate of the Dirac operator (in units of the lattice spacing a) satisfying the
so-called Ginsparg-Wilson relation [11],

{
D, γ5

}
= 2D γ5 D . (174)

One observes that the right hand side of (174) is of order a2 (compared with the order a of
the left hand side) implying that the naive continuum limit a→ 0 of (174) reduces to the
chiral relation (173). The most important observation, however, is that a certain remnant
of the chiral symmetry is still present in the lattice version. Defining

D̃−1 := D−1 − 1 , (175)

and using {
γ5, D

−1
}

= 2 γ5 ,

which directly follows from the Ginsparg-Wilson relation (174), we observe that D̃−1 may
be used as a chirally invariant quark propagator, i.e.,

{
γ5, D̃

−1
}

= 0 . (176)

Hence, we are left with the task to find an operatorD obeying the Ginsparg-Wilson relation
(174). Here, I will briefly discuss the Overlap Dirac operator [12]- [14], firstly introduced
in the pioneering paper [12] by Narayanan and Neuberger. One introduces

D =
1

2

[
1 + γ5H

]
, (177)

where H is a Hermitian operator with eigenvalues ±1. Common choice is

H = Dw /
(
D†

wDw

)1/2

, (178)

where Dw is the standard Hermitian Wilson-Dirac operator. Inserting (177) into (174), it
is straightforward to prove that D from (177) satisfies the Ginsparg-Wilson relation (174).
A comprehensive discussion of the quark propagator (175) in the context of a simulation
of SU(3) Yang-Mills theory can be found in [15].
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Figure 14: Wilson loop and loop–loop correlation function

5.6 Measuring observables

We have observed that the trace of the path ordered product P (x, y) of link variables (145)
is gauge invariant when taken along a closed curve C, i.e., x = y. Depending on the choice
for the loop C, the expectation value of such loop variables can be connected to physical
observables. For instance, for the so-called Wilson loop, we choose a rectangular loop with
size r in one spatial direction and the extension t in the Euclidean time direction (see figure
14, left panel). In the limit of large t, the Wilson loop expectation value is related to the
potential V (r) between a static quark and a static anti-quark which are separated by the
distance r, i.e., 〈

W [C]
〉

∝ exp
{
−V (r) t

}
, (179)

In the particular case that the potential is linearly rising, V (r) = σr with string tension

σ, one observes that the Wilson loop expectation value exponentially decreases with the
area A enclosed by the loop C. Since a linearly rising quark anti-quark potential implies
confinement (see discussion below), this area law (due to Wilson) is a litmus test for quark
confinement.

Furthermore, one can calculate the correlation function L(tx−ty, ~x−~y) of two loops centred
at x and y, respectively (see figure 14), right panel). Here, information is transported from
point x to y by gauge invariant states |ph〉 . The shape of a particular loop determines its
behaviour under the symmetry transformations of the underlying lattice. These symmetry
transformations correspond to rotations in the continuum limit. Therefore, it is possible
to select the spin quantum number of the state |ph〉 by adjusting the shape of the loop.
For large distances ∆ = tx − ty, the correlation function exponentially decreases, i.e.,

∑

~u

L(tx − ty, ~u = ~x− ~y) ∝ exp
{
−ma ∆

}
. (180)
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Figure 15: The static quark anti-quark potential as obtained from pure SU(2) lattice
gauge theory. Plot from [16].

Hence, the calculation of loop correlation functions provides access to the so-called screening

massesm of physical particles. In the purely gluonic theory, the only gauge invariant states
are the glue balls, while in full QCD also hadronic states contribute to the correlation func-
tions.

5.7 The continuum limit

For definiteness, I confine myself to the case of pure (i.e. no quarks) SU(2) gauge theory.
The generalisation of the findings of the present section to SU(Nc) is straightforward. The
task is now to find the critical limit of the lattice Yang-Mills theory.

There is a lesson to learn from continuum Yang-Mills theory. In order to renormalise the
continuum theory, one absorbs a logarithmic divergence into the bare gauge coupling. A
detailed calculation yields

1

g2(Λ)
=

11

24π2
ln

Λ2

µ2
+ finite , (181)

where Λ is the UV cutoff and where µ is an arbitrary renormalisation point. The coefficient
in front of the logarithmic term is the quantity of interest and can be obtained by evaluating
a bunch of one-loop Feynman diagrams. Eq.(181) shows that in the critical limit Λ →
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Figure 16: Approaching the continuum limit of SU(2) (left) and SU(3) (right) lattice
gauge theory (improved action from [16]).

∞ the bare coupling vanishes. This is one manifestation of the celebrated property of
asymptotic freedom. Switching from the continuum to the lattice formulation we identify
Λ = π/a and use β = 4/g2 to straightforwardly derive

a2(β) = const. exp

{
−6π2

11
β

}
. (182)

Due to asymptotic freedom, we expect that the critical limit is approached when β → ∞.
The perturbative relation between a and β in (182) is called asymptotic scaling.

Modern computer simulations use a more complicated “kinetic” term for the gluon fields.
One example of such an improved action is given by

S = β
∑

µ>ν,x

[
κ1 P̄µν(x) + κ2 P̄

(2)
µν (x)

]
. (183)

where P̄
(2)
µν (x) is the 2 × 2 Wilson loop. Imposing the constraint

κ1 + 16 κ2 = 1 , (184)

ensures that the familiar relation between β and the bare gauge coupling g, β = 2Nc/g
2,

is maintained. The residual freedom of choosing κ1 and κ2 can be used to obtain a rather
good agreement with asymptotic scaling on rather coarse lattices.

In order to search for the critical limit with the help of numerical simulations, we calculate
a physical quantity, e.g. the string tension σ in units of the lattice spacing as a function
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of the only parameter β. This is done by calculating the static quark anti-quark potential
V (r) as a function of the quark anti-quark distance r = n a. The outcome in units of the
lattice spacing is shown in figure 15. By fitting the numerical data to

V (r)a = v0 − α

n
+ σa2 n ,

we find the string tension in units of the lattice spacing, σa2, for each value of β. The
outcome of this calculation is shown in figure 16. One indeed observes that the c-number
σa2 exponentially decreases for large values of β in agreement with the prediction (182) of
continuum Yang-Mills theory. The quantum field theoretical limit of the classical lattice
model is obtained by interpreting the correlation length, i.e., the string tension σ in the
present example, as a fixed physical quantity, and reinterpreting the β dependence of the
numerical data for σa2 as the β dependence of the lattice spacing.

Let us assume we have obtained a glue ball mass m in lattice units, i.e., we know ma as
a function of β. If the mass m is a physical observable, one must recover from the data
the characteristic dependence a(β) (see (182)) for sufficiently large β values. Hence, the
ratio of the two dimensionless numbers m2a2/σa2 approaches a constant for β close to the
critical point (see figure 16, right panel). Extrapolating the data to the continuum limit
a → 0, i.e., β → ∞, one determines the physical mass m in units of another physical
scale, i.e.,

√
σ. Finally, let us count the number of parameters. The only parameter of

the classical lattice model is β, but β is no longer at our disposal in the quantum field
theory limit (which implies β → ∞). However, the physical value of the correlation length
(or

√
σ in the present example) takes over the role of a free parameter. The replacement

of a dimensionless parameter by a mass scale in the continuum limit is a feature of many
quantum field theories and is called dimensional transmutation. On the lattice every
mass scale is obtained in units of the string tension,

√
σ = 440 MeV is used to assign the

familiar units of QCD to observables. For 32 lattice points in any space-time direction, we
then find:

β (input) 1.250 1.400 1.500 1.600
σa2 (calculated) 0.279(2) 0.0922(7) 0.0528(3) 0.0311(2)
L = Na 7.7 fm 4.4 fm 3.3 fm 2.6 fm
Λ = π/a 2.6 GeV 4.6 GeV 6.0 GeV 7.8 GeV

For a fixed number of lattice points, we note that we cannot make β arbitrarily small since
the physical volume becomes too small. Small values of β result in large volumes, but we
cannot make β too small in order to have a reasonably large UV cutoff. Thus, for a fixed
number of points, there is a small window of β values which are appropriate for a study of
QCD particle properties. This window is sometimes called the scaling window.
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