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Lecture 1 

Quantum Mechanics  
for the Impatient 



The five-minute history 

 Quanta hypothesized around 1900 
 Black-body radiation, Planck 
 Atomic levels, Bohr 
 Photoelectric effect, Einstein 

 1925 Schrödinger turns QM into PDE 
 1925 Heisenberg turns QM into algebra 
 1932 von Neumann shows it’s all operator 

algebra, represented on Hilbert space. 



 Stern-Gerlach 
 Double-slit 
 EPR paradox, “entanglement” 






Stern-Gerlach experiment 

 The observable “spin” can be 
measured by using a magnetic field to 
split a beam of ions.  For “spin ½” 
particles, there are precisely two 
beams, whether split horizontally or 
vertically.  In quantum physics, 
however, a vertical polarization (“up-
down”) is incompatible with a 
horizontal polarization (“right-left”)   



Stern-Gerlach experiment 
(Following discussion in Feynman’s lectures 
on quantum mechanics.)
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 Stern-Gerlach 
 Double-slit 

 interference patterns as for waves, but 
only particles are measured 

 EPR paradox, “entanglement” 
 measurements in one place 

instantaneously affect measurements 
somewhere else. 



 Measurement theory 
 Action at a distance 
 Interference 
 Wave-particle duality 
 Tunneling 



Discussion break 

 Quantum mechanics is the effect that 
measurement disturbs the system.  
True or false? 



 Solving for the wave function. 
 Calculating probabilities 
 Calculating the effect of a 

measurement 
 Dealing with probability distributions 



The Schrödinger equation 

=: H Ψ,   

                  H = H* 




The Schrödinger equation 

Why is it reasonable to expect the quantity


to arise in a theory in which there is both a 
local interaction (potential energy V(x)) 
and an averaging effect that delocalizes the 
state over a small region? 




How does f(x0) relate to averages of 
f(x) at nearby positions? 



How does f(x0) relate to averages of 
f(x) at nearby positions? 



How does f(x0) relate to averages of 
f(x) at nearby positions? 

Therefore   fε(0) = f(0) + (ε/d) ∇2 f(0) + …


The Laplacian provides a measure of how the spherical 
average of a function changes as the radius increases.


Quantum mechanics is a mystery, but in so far as a classical 
interaction V(x) at a point is augmented by some isoptropic 
averaging of a state function over a small neighborhood, the 
Schrödinger operator


is a reasonable quantity to use in a mathematical model.




Challenges 

 Use this interpretation of the Laplacian 
to derive the mean value theorem for 
solutions of Laplace’s eqn. 

 Does this argument need to be 
modified if f(x) is defined on a 
manifold?   



 Quantum information 
 The issues of entanglement and 

measurement are the basis for quantum 
computation and quantum cryptography. 



 Nanotechnology 
 Foreseen by Feynman in 1959 at Cal Tech 

APS meeting:  There’s plenty of room at 
the bottom. 



 Nanotechnology 
 1 nm = 10-9 m.  The “nanoscale” refers to 

1-100+ nm.   
 “Mesoscopic.”: 1nm  is about 10 hydrogen 

radii. 
 Laboratories by 1990 



 Nanotechnology 
 1 nm = 10-9 m.  The “nanoscale” refers to 

1-100+ nm.  “Mesoscopic.” 
 1 nm is about 10 atomic radii 
 Most viruses 30-200 nm 
 Visible light has wavelength 400-800 nm 
 Most bacteria 200-1000 nm (0.2-1 µm) 
 Mammal cells 2-100 µm = 2000-100,000 nm 
 Human hair 20-200 µm = 17,000-200,000 nm 



 Nanotechnology 
 Electrical and electronic devices 

 Wires 
 Waveguides 
 Novel semiconductors 

 Motors and other mechanical devices 
 Medical applications 

 Drug delivery 
 Sensors 
 Surgical aids 



Some recent nanoscale objects 

 Z.L. Wang, Georgia Tech, zinc oxide wire loop 
 W. de Heer, Georgia Tech, carbon graphene sheets 
 E. Riedo, GT Physics, 2007.  Lithography on 

polymers  
 Semiconducting silicon quantum wires, H.D. Yang, 

Maryland 
 UCLA/Clemson, carbon nanofiber helices 
 UCLA, Borromean rings (triple of interlocking rings) 
 Many, many more. 

Graphics have been suppressed in the public version of this seminar.  They are easily found 
and viewed on line.




Quantum wires and waveguides 

 Electrons move “ballistically” except 
for being constrained to a narrow 
waveguide. 

 The only forces are the forces of 
constraint, and these reflect 
essentially the geometry of the guide. 

 The problem of thin domains.  How 
does a 3D PDE become 2D?   



Graphene –  
an important new material 

 How hard is it to make?   

High-tech 
equipment for 
making graphene




Nanoelectronics 

 Quantum wires 
 Semi- and non-conducting “threads” 
 Quantum waveguides 

   In simple but reasonable mathematical 
models, the Schrödinger equation responds 
to the geometry of the structure either 
through the boundary conditions or through 
an “effective potential.”   



Graphene –  
Some physical properties 

 Essentially a two dimensional surface 
 Mean free path: 200-600 nm. 
 Electrons act like massless relativistic 

particles but speed c/300. 
 Semiconductors with 0 band gap.      



The weak form of a 
differential operator 

One of the ways analysts understand partial differential 
operators is to consider the quadratic forms they define on 
test functions.  Suppose H is a linear differential operator (not 
necessarily Schrödinger), acting on functions defined in a 
region Ω.  The coefficients in H and the boundary of Ω may 
not be very nice, so we can begin by asking how H acts on 
functions                     the set of infinitely smooth functions 
that vanish in a neighborhood of ∂Ω.




The weak form of a 
differential operator 



The weak form of a 
differential operator 

If you have a sufficiently representative set of test 
functions you can fully understand a linear operator in 
terms of its associated quadratic form,


          ϕ,ψ    →  <ϕ, A ψ> 




The weak form of a 
differential operator 



The weak form of a 
differential operator 

Thus for the Laplacian, it suffices to understand the Dirichlet 
form, which in quantum mechanics is the kinetic energy 
associated with a state ϕ.




Thin structures and local 
geometry 



Energy form in separated variables:


First term is the energy form of Laplace-Beltrami.


Conjugate second term so as to replace it by a potential.






The trick of conjugation. 



The trick of conjugation. 



Effective potential 



Effective potential 

Exercise:  As  δ  →  0, the effective potential tends to:




Hint:  Two helpful formulae.




The trick of conjugation. 



Some subtleties 

 The limit is singular - change of 
dimension. 

 If the particle is confined e.g. by 
Dirichlet boundary conditions, the 
energies all diverge to +infinity 

 “Renormalization” is performed to 
separate the divergent part of the 
operator. 



Thin-domain Schrödinger operator 



Discussion break 

 Think about specific dimensions 
d=1,2,3. 

 Other thin-domain problems involving 
Laplacian.  What do we expect about 
the effective potential? 



 The weirdness of physics can be modeled by 
treating “observables” as belonging to a 
noncommutative algebra. 



 Let x be a Cartesian position and p the 
corresponding momentum (classically,  

   p = m v).  Then Heisenberg’s canonical 
commutation relation reads: 
 x p – p x = i   , where Planck’s constant is 
                  = 1.0545716…× 10−34 J·s 
 In “atomic units” we set    = 1. 



Classical vs. quantum mechanics 

 Classical mechanics 
 Variables x and p can be measured 

simultaneously.  xp=px, and in fact p = mx 
 A pure state is determined by a point in 

phase space (x,p) 
 The future is determined by the present 

state and the Hamiltonian energy H(p,x) 
 One non-relativistic particle:  
 Kinetic energy of relativistic particle:  c|p|  

.



 x p – p x = i  , 
 Heisenberg thought that p and x could be 

represented as square matrices, since the 
algebra of matrices Mnn is not commutative, 
but this is impossible! 

 QUIZ:  Why? 



 x p – p x = i ,    
 The argument against Heisenberg fails if it is 

not possible to calculate a trace.  The usual 
way to represent the CCR is with p and x 
operators on L2(R):  x φ is the operator 
multiplying φ by x, while p → – i  ∂/∂x.    

 Then by the chain rule  
          p x φ  = (px)φ  + x p φ, so 

         x p φ - p x φ = - (px)φ = i .    



Classical vs. quantum mechanics 

 Quantum mechanics 
 Variables xα and pα cannot be measured 

simultaneously.  xp-px = i. 
.



Classical vs. quantum mechanics 

 Quantum mechanics 
 Variables xα and pα cannot be measured 

simultaneously.  xp-px = i. 
 A pure state is determined by a vector in 

Hilbert space, usually L2(Ω). 

.



Classical vs. quantum mechanics 

 Quantum mechanics 
 Variables xα and pα cannot be measured 

simultaneously.  xp-px = i. 
 A pure state is determined by a vector in 

Hilbert space, usually L2(Ω). 
 The future is determined by the present 

state and the Hamiltonian energy H(p,x) 
via the Schrödinger equation iψt = H ψ

 Change pα where it occurs to –i ∂/∂xα.  

.



 Every “observable” is modeled by a self-
adjoint operator  <A ϕ, ψ> = <ϕ, Aψ> on a 
Hilbert space.  (Complete, normed, linear 
space.  Usually L2(Ω),                          . )  

 The possible measurements are sp(A) 
 If A has discrete eigenvalues, it is “quantized.” 

 The state of the system is defined by a 
vector  that has been normalized: 

 Expectation values:  E(f(A)) =<(A) ψ, ψ>  



 How do things change in time? 
 There is a Hamiltonian operator, corresponding to 

the total energy:  H, which is a function of 
momentum p and position x.   

   

-




 Solving for the wave function. 
 A well-defined initial value problem for a 

PDE: 

            ut = H u, where H = H* 

 The solution operator is a unitary group in 
Hilbert space 



 The spectrum – eigenvalues and other good 
things. 
 The spectral theorem 
 The rôle of the eigenvalues in physics 

 Some good examples 
 Some good techniques 

 variational methods 
 perturbation theory 
 algebraic methods    -



