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[Lecture 1

Quantum Mechanics
for the Impatient



The five-minute history

-+ Quanta hypothesized around 1900
4 Black-body radiation, Planck

+ Atomic levels, Bohr

+ Photoelectric effect, Einstein

+ 1925 Schrodinger turns QM into PDE
+ 1925 Heisenberg turns QM into algebra

+ 1932 von Neumann shows it’s all operator
algebra, represented on Hilbert space.




Quantum mechanics is truly weird

s Spikhafte Ferpwirkians!
s Stern-Gerlach (=

+Double-slit

+EPR paradox, “entanglement”



Stern-Gerlach experiment

. 4+The observable “spin” can be
measured by using a magnetic field to
split a beam of ions. For “spin 12”
particles, there are precisely two
beams, whether split horizontally or
vertically. In quantum physics,
however, a vertical polarization (“up-
down”) is incompatible with a
horizontal polarization (“right-left”)



~ Stern-Gerlach experiment

(Following discussion in Feynman’s lectures
“on quantum mechanics.)
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~ Stern-Gerlach experiment
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Sl Stern-Gerlach experiment
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Sl Stern-Gerlach experiment
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- Stern-Gerlach experiment
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. Quantum mechanics is truly weird

._+Stern-Gerlach
+ Double-slit

+interference patterns as for waves, but
only particles are measured

+EPR paradox, “entanglement”

+measurements in one place

instantaneously affect measurements
somewhere else.




- The parts of QM that are weird

4+ Measurement theory
4 Action at a distance
+ Interference

+ Wave-particle duality
+ Tunneling



Discussion break

== +Quantum mechanics is the effect that
measurement disturbs the system.
True or false?



~ . The parts of QM that are not weird

S Solvi ng for the wave function.
+ Calculating probabilities

+ Calculating the effect of a
measurement

+Dealing with probability distributions



| .»The Schrodinger equation

o) h*

=: H W,
H = H*



~ The 5chrodinger equation

" Why is it reasonable to expect the quantity

hZ
Hy = V3 + V(x))

2m

to arise in a theory in which there 1s both a
local interaction (potential energy V(x))
and an averaging effect that delocalizes the
state over a small region?



_ How does f(x,) relate to averages of
2 f(x) at nearby positions?

f|x|:6 f(x)dS

Let xo — 0 and set f.(0) = 0B.]

if(o),:|536|(ﬁx e, Vf(x)dS + [ f(x adS) S F0)AS [ _ 0dS
deil OB,




_ How does f(x,) relate to averages of
' ‘ f(x) at nearby positions?

Letx0—>0 and set f.(0) := f""Tgéjc)dS.
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How does f(x,) relate to averages of
' f(x) at nearby positions?

= _Therefore f (0) = f(0) + (e/d) V2£(0) + ...

The Laplacian provides a measure of how the spherical
average of a function changes as the radius increases.

Quantum mechanics 1s a mystery, but in so far as a classical
interaction V(x) at a point 1s augmented by some 1soptropic

averaging of a state function over a small neighborhood, the
Schrodinger operator )

h
Hy = —%V%D + V(x)y

1s a reasonable quantity to use in a mathematical model.



Challenges

o Use this interpretation of the Laplacian
to derive the mean value theorem for
solutions of Laplace’s egn.

+Does this argument need to be
modified if f(x) is defined on a
manifold?



Quantum mechanics is not only
weird, it’s hot

- -4Quantum information
+The issues of entanglement and

measurement are the basis for quantum
computation and quantum cryptography.



Quantum mechanics is not only
B ' weird, it’s hot
+ Nanotech nology

~ +Foreseen by Feynman in 1959 at Cal Tech

APS meeting: There’s plenty of room at
the bottom.




Quantum mechanics is not only
weird, it’s hot

---~-~*--+Nanotech nology

+1 nm =10 m. The “nanoscale” refers to
1-100+ nm.

+“Mesoscopic.”: 1nm is about 10 hydrogen
radii.

+Laboratories by 1990



Quantum mechanics is not only
weird, it’s hot

~-4+Nanotechnology

+1 nm =10 m. The “nanoscale” refers to
1-100+ nm. “Mesoscopic.”

+ 1 nm is about 10 atomic radii

+ Most viruses 30-200 nm

+ Visible light has wavelength 400-800 nm

+ Most bacteria 200-1000 nm (0.2-1 pm)

+ Mammal cells 2-100 ym = 2000-100,000 nm
+ Human hair 20-200 pm = 17,000-200,000 nm



Quantum mechanics is not only
weird, it’s hot

- 4Nanotechnology
+Electrical and electronic devices
+Wires

+Waveguides
+Novel semiconductors

+Motors and other mechanical devices

+Medical applications
+Drug delivery
+S5ensors
+Surgical aids



Some recent nanoscale objects

+ Z.L. Wang, Georgia Tech, zinc oxide wire loop

-~ 4+ W. de Heer, Georgia Tech, carbon graphene sheets

+ E. Riedo, GT Physics, 2007. Lithography on
polymers

+ Semiconducting silicon quantum wires, H.D. Yang,
Maryland

+ UCLA/Clemson, carbon nanofiber helices
+ UCLA, Borromean rings (triple of interlocking rings)
+ Many, many more.

Graphics have been suppressed in the public version of this seminar. They are easily found
and viewed on line.



Quantum wires and waveguides

4+ Electrons move “ballistically” except
for being constrained to a narrow
waveguide.

+The only forces are the forces of
constraint, and these reflect
essentially the geometry of the guide.

+ The problem of thin domains. How
does a 3D PDE become 2D?



Graphene -
an important new material
+How hard is it to make?
High-tech

equipment for
making graphene

n l/” X 800 in (22.2 yd)
12,7 mm x20.3 m




Nanoelectronics

4+ Quantum wires
+ Semi- and non-conducting “threads”
+ Quantum waveguides

In simple but reasonable mathematical
models, the Schrodinger equation responds
to the geometry of the structure either
through the boundary conditions or through

an “effective potential.”



Graphene -
Some physical properties

+Essent1ally a two dimensional surface
+Mean free path: 200-600 nm.

+ Electrons act like massless relativistic
particles but speed c/300.

+Semiconductors with 0 band gap.



The weak form of a
differential operator

One of the ways analysts understand partial differential
operators 1s to consider the quadratic forms they define on
test functions. Suppose H 1s a linear differential operator (not
necessarily Schrodinger), acting on functions defined in a
region 2. The coefficients in H and the boundary of €2 may
not be very nice, so we can begin by asking how H acts on
functions ¢ € C°(£2), the set of infinitely smooth functions
that vanish in a neighborhood of 9€2.



The weak form of a
differential operator

~<=~Pefining an inner product as

(¥, p) = [) Y(x)p(x)dV,

we can choose to analyze the functionals ¥, ¢ € C>* — (¢, Hyp) rather
than directly calculating H. For instance, we can integrate by parts
and get a functional requiring fewer derivatives on ¢: In the case of
the Laplacian,

(Y, —Ap) = / Vi - V(x)dV.
0



The weak form of a
differential operator

If you have a sufficiently representative set of test
functions you can fully understand a linear operator in
terms of its associated quadratic form,

QY — <, AYP>



The weak form of a
differential operator

~~ Because of the polarization identity,

(0, Ho) = 7((%+ 0, HW +¢)) — (& — ¢, H — ¢)) +

+i (¥ + i, H(W + ip)) — i (¢ — i, H(¥ — ip)) ),

it is often sufficient to understand the quadratic functional ¢ — (p, Hyp).



The weak form of a
differential operator

“Thus for the Laplacian, it suffices to understand the Dirichlet
form, which in quantum mechanics 1s the kinetic energy
associated with a state @.

T(0) = (o, —~Ag) = / Vo(x)[2dV.



. Thin structures and local
/ geometry

 “Thin domain of fixed width

-~~~ variable r= distance from edge

Energy form in separated variables:

]lV” qzdd+lx+[ |c(;r|2 dd+1X



. Enetgy form 1n separated variables:

]|V” ‘qzdd”x+f |‘L:,.|2dd”x
D D

First term 1s the energy form of Laplace-Beltrami.

Conjugate second term so as to replace it by a potential.



We split the components of the Dirichlet form

/|V||<|2dd+1ilﬁ—|—/ |Cr|2dd+1x
D D

and rewrite the second term (only) in coordinates (r, ), where & are some
coordinates on ).

[ 1epata= | ( / 5|<T|2,o<x>dr) Ve



The trick of conjugation.

Write the t}est function as

\F - (vVrS)
and use the product rule in the form
(£9))? = () + 8 (1) + 5 () ()

to find

/ G 2pdr = / ( (/) + 1 (;)2|<|2p+§(%)r<p|<|2>r> a8



The trick of conjugation.

Write the test function as

< f - (v/pC)
] and use the product rule in the form
(F9))? = PGV + PV + 5 (0

to find

/ |Cr’2pd7°—/ < (VPO)l* + ~ (;)2|C|2p—l—g<;)r(pd2)r> dr

When the final term is integrated by parts, we get

)
2 1d+1 . 2 1d+1 2
/DWHC} d 93+/DQ( )¢ d af+/ﬂ(/0 [(v/7<), d'r) AV,



Effective potential

L ( pr 2_|_1,0'r'r
4\ p 200



Effective potential

L (p\° 1,0rr
4x) =4 (_> T2

Exercise: As 0 — 0, the effective potential tends to:

,
d d

q(x) = i (Z HJ) DL
P, =

l\.J||»—*



Hint: Two helpful formulae.
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:  - ’The trick of conjugation.

Write th‘_e: test function as

= \F - (vp¢)
- "and use the product rule in the form
1
(f9))* = (¢ +°(f)" + 5(F*) (g°)

to find

/ |Cr‘2pd7“—/ < (VPQ): I + = (;)2|C|2p—|—g<;>r(pd2)r> dr

When the finaltaumemisainteorated by parts, we get




Some subtleties

-+ The limit is singular - change of
dimension.

+If the particle is confined e.g. by
Dirichlet boundary conditions, the
energies all diverge to +infinity

+ “Renormalization” is performed to

separate the divergent part of the
operator.



Thin-domain Schrédinger operator

— —Vﬁ +q(x) = —Aq + q(x)



Discussion break

4+ Think about specific dimensions

d=1,2,3.

+Other thin-domain problems involving
Laplacian. What do we expect about
the effective potential?



A ssecond look at quantum mechanics

S + The weirdness of physics can be modeled by
~ treating “observables” as belonging to a
noncommutative algebra.




- A second look at quantum mechanics

-+ Let x be a Cartesian position and p the
corresponding momentum (classically,
p = m V). Then Heisenberg’s canonical
commutation relation reads:
+X p - p x =i, where Planck’s constant is
n=1.0545716..x 10-34 J-s
+ In “atomic units” we set 7= 1.



~Classical vs. quantum mechanics

 +Classical mechanics
+Variables x and p can be measured
simultaneously. xp=px, and in fact p = mx

+A pure state is determined by a point in
phase space (x,p)

+The future is determined by the present

state and the Hamiltonian energy H(p,Xx)

2
+0ne non-relativistic particle: H(p,x) = Ipl” + V(x)

2m
+Kinetic energy of relativistic particle: c|p|



Canonical commutation

+ Heisenberg thought that p and x could be
represented as square matrices, since the

algebra of matrices M" is not commutative,
but this is impossible!

+ QUIZ: Why?



Canonical commutation

 tXp-px=1,

+ The argument against Heisenberg fails if it is
not possible to calculate a trace. The usual
way to represent the CCR is with p and x

operators on L2(R): x ¢ is the operator
multiplying ¢ by x, whilep — -1 0/0x.

+ Then by the chain rule
PXx®@ =(pX)p +XPpQ,so
XpP@-pX®@=-(px)p =1.



- Classical vs. quantum mechanics

ST 4+ Quantum mechanics
+Variables x, and p, cannot be measured
simultaneously. xp-px = i. '



. Classical vs. quantum mechanics

4+ Quantum mechanics

+Variables x_, and p, cannot be measured
simultaneously. xp-px = i. '

+A pure state is determined by a vector in
Hilbert space, usually L%(Q).



. Classical vs. quantum mechanics

4+ Quantum mechanics

+Variables x_, and p, cannot be measured
simultaneously. xp-px = i. '

+A pure state is determined by a vector in
Hilbert space, usually L%(Q).

+The future is determined by the present
state and the Hamiltonian energy H(p,X)
via the Schrodinger equation iy, = H
+Change p, where it occurs to -i 0/0x,,.



The postulates of guantum theory

; + Every “observable” is modeled by a self-

adjoint operator <A ¢, P> = <¢p, AP> on a
Hilbert space. (Complete normed lmear
space. Usually LX(Q), (/.0) = [ fGgbx)av

+ The possible measurements are sp(A)
+ If A has discrete eigenvalues, it is “quantized.”

+ The state of the system is defined by a
vector that has been normalized:

[]P = (0, ) =1
+ Expectation values: E(f(A)) =<(A) ¥, b>



. The postulates of quantum theory

; + How do things change in time?

+ There is a Hamiltonian operator, corresponding to
the total energy: H, which is a function of
momentum p and position X.

+
zﬁﬂ = Ha.
ot
b(t) = e~*4h(0)
-h?
Hy = —Vy + V(x)y



Not at all weird

4+ Solving for the wave function.

+ A well-defined initial value problem for a
PDE:

u. = Hu, where H = H*

+ The solution operator is a unitary group in
Hilbert space



( ont z/ncg attractions

~ 4+ The spectrum - eigenvalues and other good

things.
+ The spectral theorem
+ The role of the eigenvalues in physics

+ Some good examples

+ Some good techniques

+ variational methods
+ perturbation theory
+ algebraic methods



