Lecture 11: Basic Josephson Junctions

Outline

- 1. Quantum Tunneling
- 2. Josephson Tunneling
- 3. Josephson current-phase and current-voltage relations
- 4. Basic Josephson Junction lumped element
- 5. AC Josephson Effect
- 6. DC voltage standard

October 9, 2003

The Nobel Prize in Physics 1973

"for their experimental discoveries regarding tunneling phenomena superconductors, respectively"

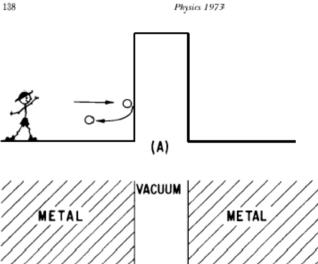
"for his theoretical predictions of the properties of a supercurrent through a in semiconductors and tunnel barrier, in particular those phenomena which are generally known as the Josephson effects-

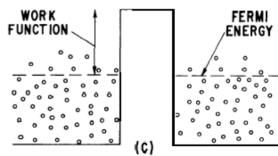
Leo Esaki

Ivar Giaever Josephson

1/4 of the prize	🕕 1/4 of the prize	1/2 of the prize
Japan	USA	United Kingdom
IBM Thomas J. Watson Research Center Yorktown Heights, NY, USA	General Electric Company Schenectady, NY, USA	University of Cambridge Cambridge, United Kingdom
b. 1925	b. 1929 (in Bergen,	b. 1940 •ht

Norway)

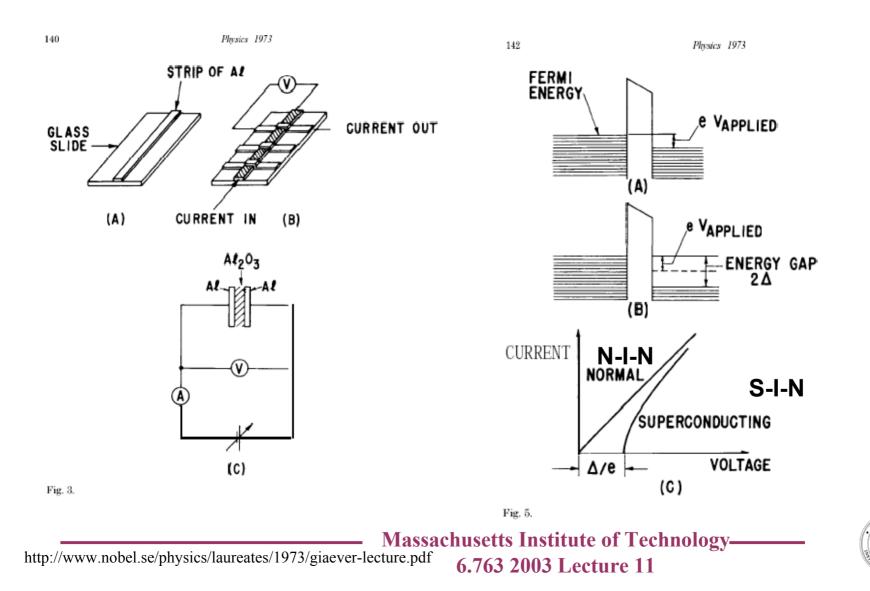




(B)

Massachusetts Institute of Technology •http://www.nobel.se/physics/laureates 0.763 2003 Lecture 11

Tunneling between a normal metal and another normal metal or a superconductor



Tunneling between two superconductors

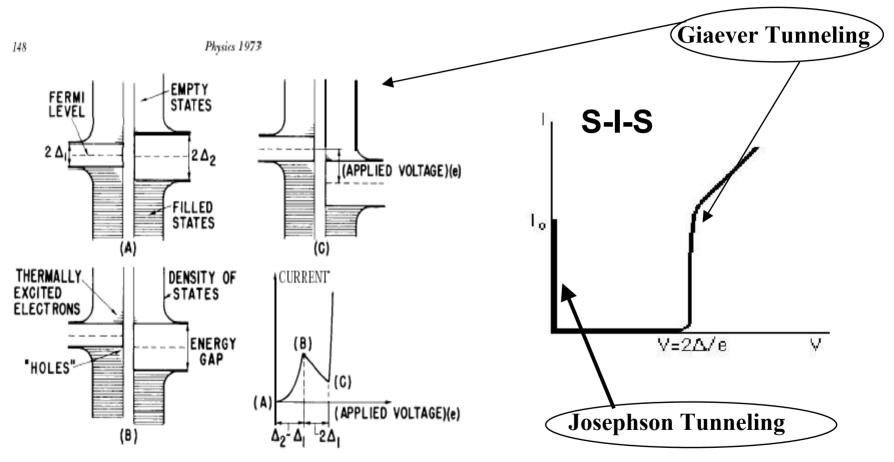
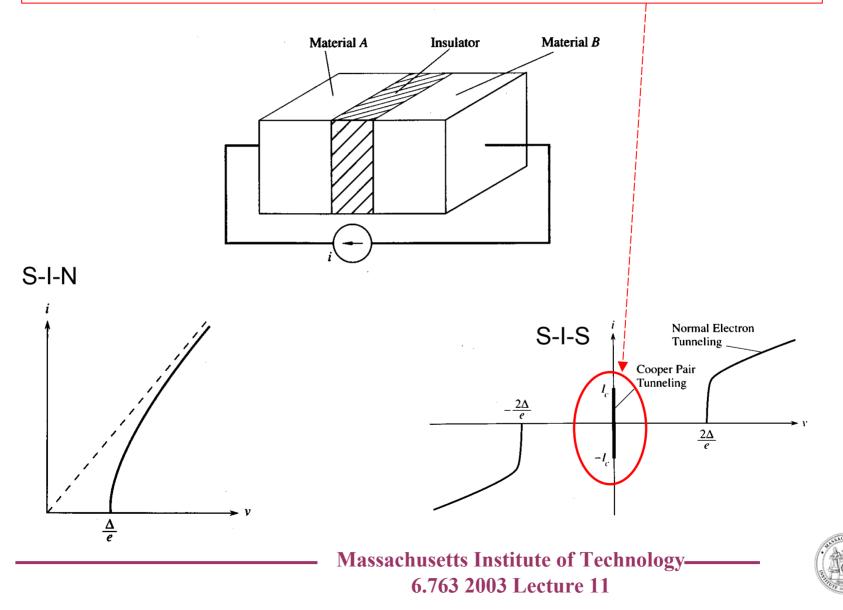


Fig. 10.

.. . . .

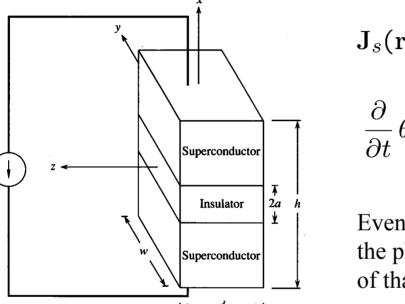
Tunneling between two superconductors with different energy gaps at a temperature larger than 0° K. A. No voltage is applied between the two conductors. B. As a voltage

Tunneling Summary: We are only concerned with the Josephson Tunneling in a *Basic Junction*



In the superconducting electrodes:

The Supercurrent Equations govern the electrodes,



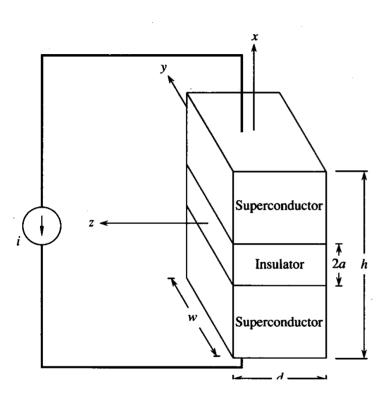
$$\mathbf{J}_{s}(\mathbf{r},t) = -\frac{1}{\Lambda} \left(\mathbf{A}(\mathbf{r},t) + \frac{\Phi_{o}}{2\pi} \nabla \theta(\mathbf{r},t) \right)$$
$$\frac{\partial}{\partial t} \theta(\mathbf{r},t) = -\frac{1}{\hbar} \left(\frac{\Lambda \mathbf{J}_{s}^{2}}{2n^{\star}} + q^{\star} \phi(\mathbf{r},t) \right)$$

Even in the absence of E&M fields, a gradient of the phase can cause a current and the time change of that phase can cause a voltage. For example, for a constant current J_0 , at the boundaries we find

$$\mathbf{J}_{\mathsf{S}}(\pm a,t) = -\frac{\Phi_o}{2\pi\Lambda}\nabla\theta(\pm a,t) = \mathbf{J}_{\mathsf{O}} \quad \& \quad \frac{\partial}{\partial t}\theta(\pm a,t) = -\frac{1}{\hbar}\left(\frac{\Lambda\mathbf{J}_{\mathsf{O}}^2}{2n^\star}\right) = -\frac{\mathcal{E}_o}{\hbar}$$

So that the wavefunction in the electrode is $\Psi(\mathbf{r},t) = \Psi(\mathbf{r})e^{-i(\mathcal{E}_{o}t/\hbar)}$

In the insulator



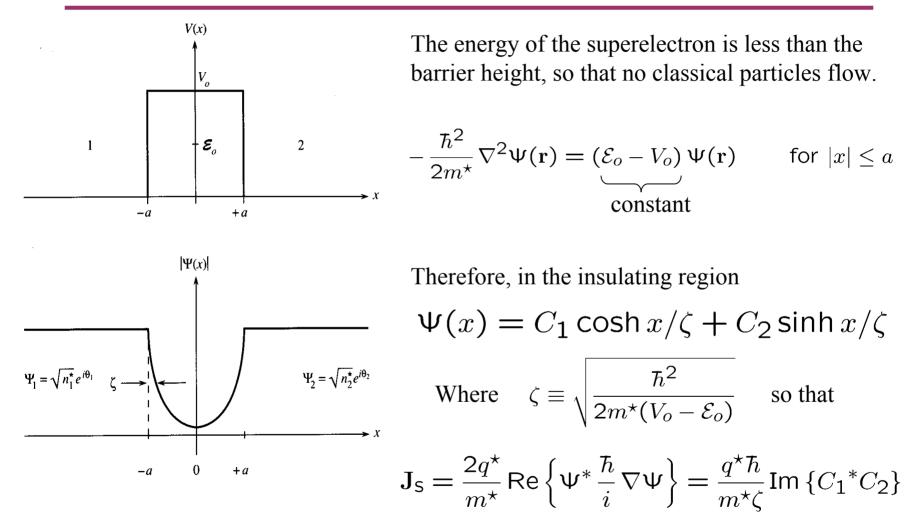
The current must be continuous, so it must flux through the insulating barrier; a process which is not allowed classically. But quantum mechanically the superelectrons can tunnel through the insulating barrier as a supecurrent with zero voltage. This is the Josephson current.

Because the supercurrent equation does not hold in the insulating region, the full macroscopic wave equation must be used to find Y in the insulating region, with the boundary conditions given by the wavefunction at the electrodes.

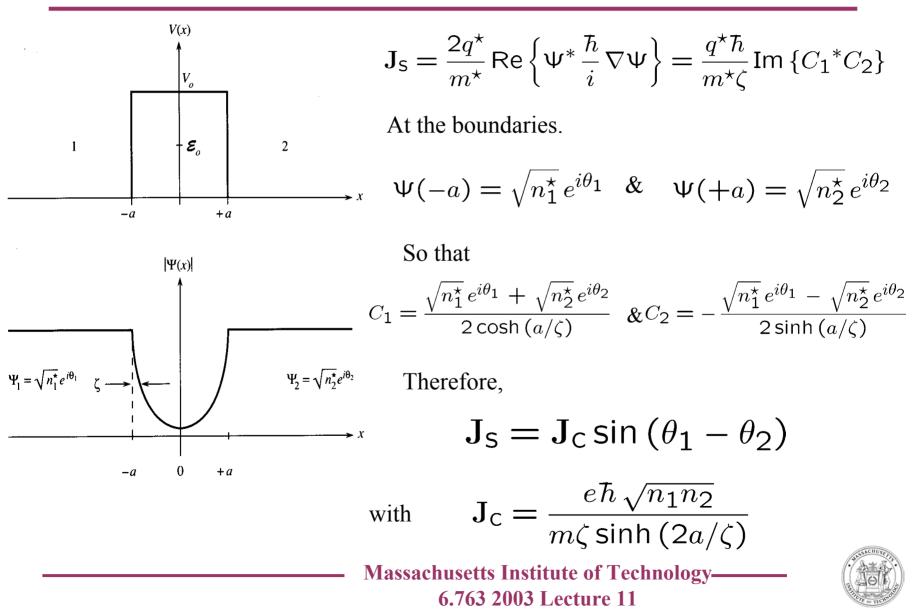
$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r},t) = \frac{1}{2m^{\star}} \left(\frac{\hbar}{i} \nabla - q^{\star} \mathbf{A}(\mathbf{r},t) \right)^{2} \Psi(\mathbf{r},t) + q^{\star} \phi(\mathbf{r},t) \Psi(\mathbf{r},t) + \underbrace{V(x) \Psi(\mathbf{r},t)}_{\smile \checkmark} \Psi(\mathbf{r},t)$$

Tunneling Potential Barrier

Tunneling through the Barrier

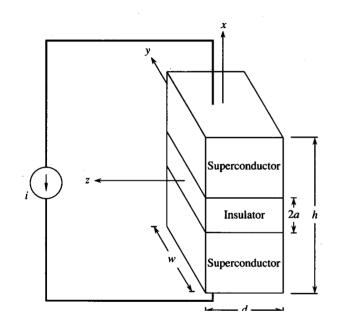


Tunneling through the Barrier



Josephson Current-Phase relation

 $\mathbf{J}_{\mathsf{S}} = \mathbf{J}_{\mathsf{C}} \sin\left(\theta_1 - \theta_2\right)$



In the presence of and electromagnetic field, the Josephson current-phase relation generalizes to

$$\mathbf{J}_{\mathsf{S}}(\mathbf{r},t) = \mathbf{J}_{\mathsf{C}}(y,z,t) \sin \varphi(y,z,t)$$

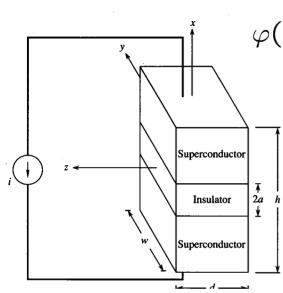
where the gauge-invariant phase is defined as

$$\varphi(y,z,t) = \theta_1(y,z,t) - \theta_2(y,z,t) - \frac{2\pi}{\Phi_o} \int_1^2 \mathbf{A}(\mathbf{r},t) \cdot d\mathbf{l}$$

Which is invariant under $\mathbf{A}' = \mathbf{A} + \nabla \chi \cdot \theta' = \theta + \frac{q^*}{\hbar} \chi \cdot \phi' \equiv \phi - \frac{q}{\hbar} \chi$

Josephson Voltage-Phase relation

The gauge-invariant nhase is



$$\varphi(y, z, t) = \theta_1(y, z, t) - \theta_2(y, z, t) - \frac{2\pi}{\Phi_o} \int_1^2 \mathbf{A}(\mathbf{r}, t) \cdot d\mathbf{l}$$

The rate of change of the gauge-invariant phase is

$$\frac{\partial \varphi}{\partial t} = \frac{\partial \theta_1}{\partial t} - \frac{\partial \theta_2}{\partial t} - \frac{2\pi}{\Phi_o} \frac{\partial}{\partial t} \int_1^2 \mathbf{A}(\mathbf{r}, t) \cdot d\mathbf{l}$$

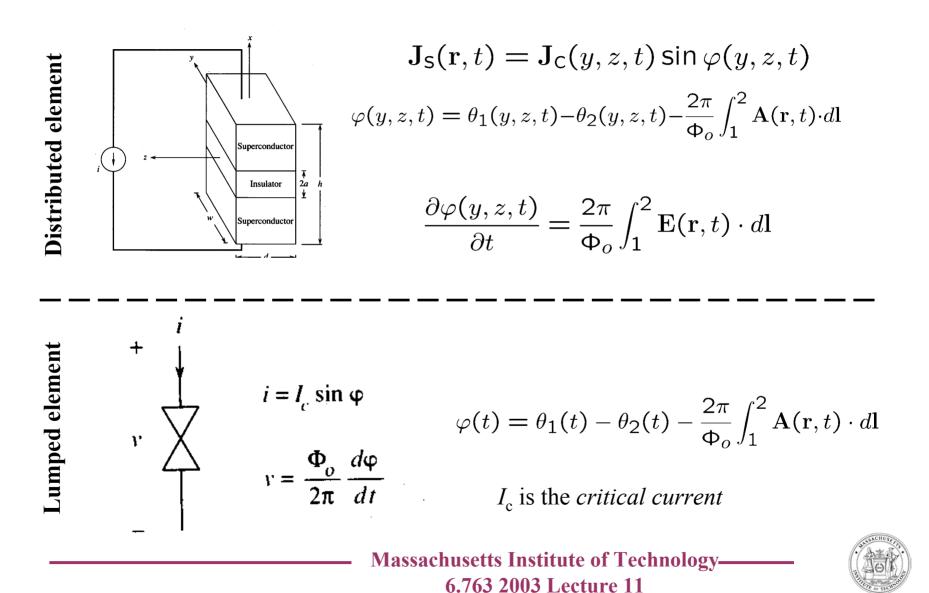
At the boundary in the electrodes,

$$\frac{\partial}{\partial t}\theta(\mathbf{r},t) = -\frac{1}{\hbar} \left(\frac{\Lambda \mathbf{J}_{\mathsf{S}}^2}{2n^\star} + q^\star \phi(\mathbf{r},t) \right) \quad \text{so that}$$

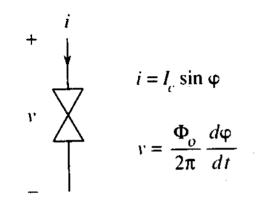
$$\frac{\partial \varphi}{\partial t} = -\frac{1}{\hbar} \left(\frac{\Lambda}{2n^{\star}} \left[\underbrace{\mathbf{J}_{\mathsf{S}}^{2}(-a) - \mathbf{J}_{\mathsf{S}}^{2}(a)}_{0} \right] + q^{\star} \underbrace{\left[\phi(-a) - \phi(a)\right]}_{\int_{1}^{2} - \nabla \phi \cdot d\mathbf{l}} \right) - \frac{2\pi}{\Phi_{o}} \frac{\partial}{\partial t} \int_{1}^{2} \mathbf{A}(\mathbf{r}, t) \cdot d\mathbf{l}$$

Therefore, $\frac{\partial \varphi}{\partial t} = \frac{2\pi}{\Phi_o} \int_1^2 \left(-\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} \right) \cdot d\mathbf{l}$ or $\frac{\partial \varphi(y, z, t)}{\partial t} = \frac{2\pi}{\Phi_o} \int_1^2 \mathbf{E}(\mathbf{r}, t) \cdot d\mathbf{l}$

Basic Lumped Junctions



Energy in a Basic Josephson Junction



The energy $W_{\rm J}$ in the basic junction is

$$W_J = \int_0^{t_o} iv \, dt$$

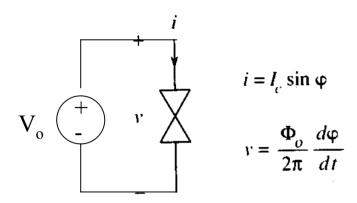
Use the Josephson relations to write as

$$W_{J} = \int_{0}^{t_{o}} \left(I_{c} \sin \varphi' \right) \left(\frac{\Phi_{o}}{2\pi} \frac{d\varphi'}{dt} \right) dt = \frac{\Phi_{o}I_{c}}{2\pi} \int_{0}^{\varphi} \sin \varphi' d\varphi'$$

Therefore, $W_{J} = \frac{\Phi_{o}I_{c}}{2\pi} \left(1 - \cos \varphi \right)$
$$\underbrace{\frac{i}{l_{c}} \frac{W_{t} - W_{t_{o}}}{(\Phi_{o}l_{c}/2\pi)}}_{0}$$

Massachusetts Institute of Technology
6.763 2003 Lecture 11

AC Josephson Effect



The voltage source is DC with $v=V_0$, so that

$$\varphi(t) = \varphi(0) + \frac{2\pi}{\Phi_o} V_o t$$

The resulting current is ac!

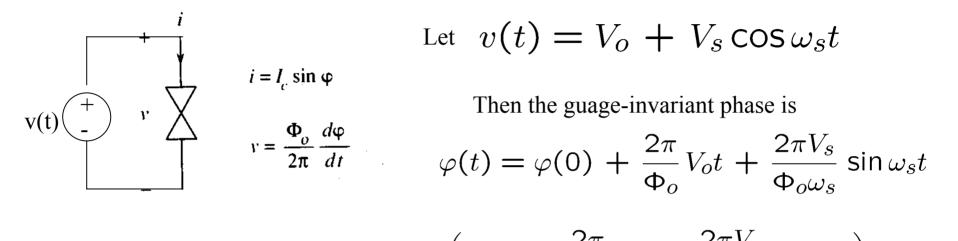
$$i = I_c \sin\left(\frac{2\pi}{\Phi_o}V_o t + \varphi(0)\right)$$

$$= I_c \sin\left(2\pi f_J t + \varphi(0)\right)$$

The Josephson frequency is
$$f_J = \frac{V_o}{\Phi_o} = \frac{2e}{h}V_o = 483.6 \times 10^{12} V_o$$
 (Hz)

A dc voltage of 10 μ V causes an oscillation frequency of about 5 GHz, a Josephson microwave oscillator. But with a typical I_c of 1 mA, this oscillator delivers a very small power of the order of 10 nW. Therefore need many synchronous oscillators.

AC and DC voltage drives



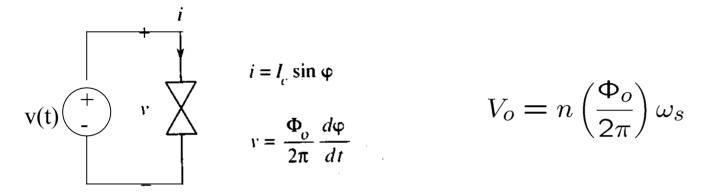
The current is FM-like:
$$i = I_c \sin \left(\varphi(0) + \frac{2\pi}{\Phi_o} V_o t + \frac{2\pi V_s}{\Phi_o \omega_s} \sin \omega_s t \right)$$

Use the Fourier-Bessel series to express the current as a Fourier series

$$i = I_c \sum_{n=-\infty}^{\infty} (-1)^n \left[J_n \left(\frac{2\pi V_s}{\Phi_o \omega_s} \right) \right] \sin \left[(2\pi f_J - n\omega_s) t + \varphi(0) \right]$$

A dc current will occur when $2\pi f_J = n \omega_s$, that is, $V_o = n \left(\frac{\Phi_o}{2\pi}\right) \omega_s$

Principle of the DC Voltage Standard



An ac voltage of 1 GHz applied across the junction will give a dc current, at $V_0 = 0$ and at dc voltages of integral multiples of $2\mu V$.

The principle of the dc Volt: Put 5000 Josephson junctions in series, and apply a fixed frequency, which can be done very accurately, and measure the interval of the resulting dc voltages that occur at precise voltage intervals.

Summary: Basic Josephson Junction (I<I_c)

Superconductor
Nb
$$\Psi_1 = \sqrt{n_1} e^{i\theta_1}$$
 Insulator
 $\Psi_2 = \sqrt{n_2} e^{i\theta_2}$ $\sim 10\text{\AA}, \text{Al}_2\text{O}_3$

• Josephson relations:

• Behaves as a nonlinear inductor:

$$I = I_c \sin \varphi$$

$$V = \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt}$$

$$\varphi = \theta_2 - \theta_1$$

$$-\frac{2\pi}{\Phi_0} \int_2^1 A(r, t) \cdot dt$$

$$V = L_J \frac{dI}{dt},$$

where
$$L_J = \frac{\Phi_0}{2\pi I_c \cos \varphi}$$

 $\Phi_0 = \text{flux quantum}$ 483.6 GHz / mV

