
Lecture Notes on

The Mechanics of Elastic Solids

Volume 1: A Brief Review of Some Mathematical

Preliminaries

Version 1.0

Rohan Abeyaratne

Quentin Berg Professor of Mechanics

Department of Mechanical Engineering

MIT

Copyright c© Rohan Abeyaratne, 1987

All rights reserved.

http://web.mit.edu/abeyaratne/lecture notes.html

December 2, 2006



2



3

Electronic Publication

Rohan Abeyaratne

Quentin Berg Professor of Mechanics

Department of Mechanical Engineering

77 Massachusetts Institute of Technology

Cambridge, MA 02139-4307, USA

Copyright c© by Rohan Abeyaratne, 1987

All rights reserved

Abeyaratne, Rohan, 1952-

Lecture Notes on The Mechanics of Elastic Solids. Volume 1: A Brief Review of Some Math-

ematical Preliminaries / Rohan Abeyaratne – 1st Edition – Cambridge, MA:

ISBN-13: 978-0-9791865-0-9

ISBN-10: 0-9791865-0-1

QC

Please send corrections, suggestions and comments to abeyaratne.vol.1@gmail.com

Updated June 25 2007



4



i

Dedicated with admiration and affection

to Matt Murphy and the miracle of science,

for the gift of renaissance.





iii

PREFACE

The Department of Mechanical Engineering at MIT offers a series of graduate level sub-

jects on the Mechanics of Solids and Structures which include:

2.071: Mechanics of Solid Materials,

2.072: Mechanics of Continuous Media,

2.074: Solid Mechanics: Elasticity,

2.073: Solid Mechanics: Plasticity and Inelastic Deformation,

2.075: Advanced Mechanical Behavior of Materials,

2.080: Structural Mechanics,

2.094: Finite Element Analysis of Solids and Fluids,

2.095: Molecular Modeling and Simulation for Mechanics, and

2.099: Computational Mechanics of Materials.

Over the years, I have had the opportunity to regularly teach the second and third of

these subjects, 2.072 and 2.074 (formerly known as 2.083), and the current three volumes

are comprised of the lecture notes I developed for them. The first draft of these notes was

produced in 1987 and they have been corrected, refined and expanded on every following

occasion that I taught these classes. The material in the current presentation is still meant

to be a set of lecture notes, not a text book. It has been organized as follows:

Volume I: A Brief Review of Some Mathematical Preliminaries

Volume II: Continuum Mechanics

Volume III: Elasticity

My appreciation for mechanics was nucleated by Professors Douglas Amarasekara and

Munidasa Ranaweera of the (then) University of Ceylon, and was subsequently shaped and

grew substantially under the influence of Professors James K. Knowles and Eli Sternberg

of the California Institute of Technology. I have been most fortunate to have had the

opportunity to apprentice under these inspiring and distinctive scholars. I would especially

like to acknowledge a great many illuminating and stimulating interactions with my mentor,

colleague and friend Jim Knowles, whose influence on me cannot be overstated.

I am also indebted to the many MIT students who have given me enormous fulfillment

and joy to be part of their education.

My understanding of elasticity as well as these notes have also benefitted greatly from

many useful conversations with Kaushik Bhattacharya, Janet Blume, Eliot Fried, Morton E.
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Gurtin, Richard D. James, Stelios Kyriakides, David M. Parks, Phoebus Rosakis, Stewart

Silling and Nicolas Triantafyllidis, which I gratefully acknowledge.

Volume I of these notes provides a collection of essential definitions, results, and illus-

trative examples, designed to review those aspects of mathematics that will be encountered

in the subsequent volumes. It is most certainly not meant to be a source for learning these

topics for the first time. The treatment is concise, selective and limited in scope. For exam-

ple, Linear Algebra is a far richer subject than the treatment here, which is limited to real

3-dimensional Euclidean vector spaces.

The topics covered in Volumes II and III are largely those one would expect to see covered

in such a set of lecture notes. Personal taste has led me to include a few special (but still

well-known) topics. Examples of this include sections on the statistical mechanical theory

of polymer chains and the lattice theory of crystalline solids in the discussion of constitutive

theory in Volume II; and sections on the so-called Eshelby problem and the effective behavior

of two-phase materials in Volume III.

There are a number of Worked Examples at the end of each chapter which are an essential

part of the notes. Many of these examples either provide, more details, or a proof, of a

result that had been quoted previously in the text; or it illustrates a general concept; or it

establishes a result that will be used subsequently (possibly in a later volume).

The content of these notes are entirely classical, in the best sense of the word, and none

of the material here is original. I have drawn on a number of sources over the years as I

prepared my lectures. I cannot recall every source I have used but certainly they include

those listed at the end of each chapter. In a more general sense the broad approach and

philosophy taken has been influenced by:

Volume I: A Brief Review of Some Mathematical Preliminaries

I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall, 1963.

J.K. Knowles, Linear Vector Spaces and Cartesian Tensors, Oxford University Press,

New York, 1997.

Volume II: Continuum Mechanics

P. Chadwick, Continuum Mechanics: Concise Theory and Problems, Dover,1999.

J.L. Ericksen, Introduction to the Thermodynamics of Solids, Chapman and Hall, 1991.

M.E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1981.

J. K. Knowles and E. Sternberg, (Unpublished) Lecture Notes for AM136: Finite Elas-

ticity, California Institute of Technology, Pasadena, CA 1978.
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C. Truesdell and W. Noll, The nonlinear field theories of mechanics, in Handbüch der

Physik, Edited by S. Flügge, Volume III/3, Springer, 1965.

Volume IIII: Elasticity

M.E. Gurtin, The linear theory of elasticity, in Mechanics of Solids - Volume II, edited

by C. Truesdell, Springer-Verlag, 1984.

J. K. Knowles, (Unpublished) Lecture Notes for AM135: Elasticity, California Institute

of Technology, Pasadena, CA, 1976.

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, 1944.

S. P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1987.

The following notation will be used consistently in Volume I: Greek letters will denote real

numbers; lowercase boldface Latin letters will denote vectors; and uppercase boldface Latin

letters will denote linear transformations. Thus, for example, α, β, γ... will denote scalars

(real numbers); a,b, c, ... will denote vectors; and A,B,C, ... will denote linear transforma-

tions. In particular, “o” will denote the null vector while “0” will denote the null linear

transformation. As much as possible this notation will also be used in Volumes II and III

though there will be some lapses (for reasons of tradition).
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Chapter 1

Matrix Algebra and Indicial Notation

Notation:

{a} ..... m× 1 matrix, i.e. a column matrix with m rows and one column

ai ..... element in row-i of the column matrix {a}
[A] ..... m× n matrix

Aij ..... element in row-i, column-j of the matrix [A]

1.1 Matrix algebra

Even though more general matrices can be considered, for our purposes it is sufficient to

consider a matrix to be a rectangular array of real numbers that obeys certain rules of

addition and multiplication. A m× n matrix [A] has m rows and n columns:

[A] =




A11 A12 . . . A1n

A21 A22 . . . A2n

. . . . . . . . . . . .

Am1 Am2 . . . Amn


 ; (1.1)

Aij denotes the element located in the ith row and jth column. The column matrix

{x} =




x1

x2

. . .

xm


 (1.2)

1



2 CHAPTER 1. MATRIX ALGEBRA AND INDICIAL NOTATION

has m rows and one column; The row matrix

{y} = {y1, y2, . . . , yn} (1.3)

has one row and n columns. If all the elements of a matrix are zero it is said to be a null

matrix and is denoted by [0] or {0} as the case may be.

Two m×n matrices [A] and [B] are said to be equal if and only if all of their corresponding

elements are equal:

Aij = Bij, i = 1, 2, . . .m, j = 1, 2, . . . , n. (1.4)

If [A] and [B] are both m × n matrices, their sum is the m × n matrix [C] denoted by

[C] = [A] + [B] whose elements are

Cij = Aij +Bij, i = 1, 2, . . .m, j = 1, 2, . . . , n. (1.5)

If [A] is a p× q matrix and [B] is a q × r matrix, their product is the p× r matrix [C] with

elements

Cij =

q∑

k=1

AikBkj, i = 1, 2, . . . p, j = 1, 2, . . . , q; (1.6)

one writes [C] = [A][B]. In general [A][B] 6= [B][A]; therefore rather than referring to [A][B]

as the product of [A] and [B] we should more precisely refer to [A][B] as [A] postmultiplied

by [B]; or [B] premultiplied by [A]. It is worth noting that if two matrices [A] and [B] obey

the equation [A][B] = [0] this does not necessarily mean that either [A] or [B] has to be the

null matrix [0]. Similarly if three matrices [A], [B] and [C] obey [A][B] = [A][C] this does

not necessarily mean that [B] = [C] (even if [A] 6= [0].) The product by a scalar α of a m×n
matrix [A] is the m× n matrix [B] with components

Bij = αAij, i = 1, 2, . . .m, j = 1, 2, . . . , n; (1.7)

one writes [B] = α[A].

Note that a m1 × n1 matrix [A1] can be postmultiplied by a m2 × n2 matrix [A2] if and

only if n1 = m2. In particular, consider a m × n matrix [A] and a n × 1 (column) matrix

{x}. Then we can postmultiply [A] by {x} to get the m× 1 column matrix [A]{x}; but we

cannot premultiply [A] by {x} (unless m=1), i.e. {x}[A] does not exist is general.

The transpose of the m× n matrix [A] is the n×m matrix [B] where

Bij = Aji for each i = 1, 2, . . . n, and j = 1, 2, . . . ,m. (1.8)
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Usually one denotes the matrix [B] by [A]T . One can verify that

[A+B]T = [A]T + [B]T , [AB]T = [B]T [A]T . (1.9)

The transpose of a column matrix is a row matrix; and vice versa. Suppose that [A] is a

m × n matrix and that {x} is a m × 1 (column) matrix. Then we can premultiply [A] by

{x}T , i.e. {x}T [A] exists (and is a 1×n row matrix). For any n× 1 column matrix {x} note

that

{x}T{x} = {x}{x}T = x2
1 + x2

2 . . .+ x2
n =

n∑

i=1

x2
i . (1.10)

A n×n matrix [A] is called a square matrix; the diagonal elements of this matrix are the

Aii’s. A square matrix [A] is said to be symmetrical if

Aij = Aji for each i, j = 1, 2, . . . n; (1.11)

skew-symmetrical if

Aij = −Aji for each i, j = 1, 2, . . . n. (1.12)

Thus for a symmetric matrix [A] we have [A]T = [A]; for a skew-symmetric matrix [A] we

have [A]T = −[A]. Observe that each diagonal element of a skew-symmetric matrix must be

zero.

If the off-diagonal elements of a square matrix are all zero, i.e. Aij = 0 for each i, j =

1, 2, . . . n, i 6= j, the matrix is said to be diagonal. If every diagonal element of a diagonal

matrix is 1 the matrix is called a unit matrix and is usually denoted by [I].

Suppose that [A] is a n×n square matrix and that {x} is a n×1 (column) matrix. Then

we can postmultiply [A] by {x} to get a n × 1 column matrix [A]{x}, and premultiply the

resulting matrix by {x}T to get a 1× 1 square matrix, effectively just a scalar, {x}T [A]{x}.
Note that

{x}T [A]{x} =
n∑

i=1

n∑

j=1

Aijxixj. (1.13)

This is referred to as the quadratic form associated with [A]. In the special case of a diagonal

matrix [A]

{x}T [A]{x} = A11x
2
1 + A22x

2
1 + . . .+ Annx

2
n. (1.14)

The trace of a square matrix is the sum of the diagonal elements of that matrix and is

denoted by trace[A]:

trace[A] =
n∑

i=1

Aii. (1.15)
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One can show that

trace([A][B]) = trace([B][A]). (1.16)

Let det[A] denote the determinant of a square matrix. Then for a 2× 2 matrix

det

(
A11 A12

A21 A22

)
= A11A22 − A12A21, (1.17)

and for a 3× 3 matrix

det




A11 A12 A13

A21 A22 A23

A31 A32 A33


 = A11 det

(
A22 A23

A32 A33

)
−A12 det

(
A21 A23

A31 A33

)
+A13 det

(
A21 A22

A31 A32

)
.

(1.18)

The determinant of a n×n matrix is defined recursively in a similar manner. One can show

that

det([A][B]) = (det[A]) (det[B]). (1.19)

Note that trace[A] and det[A] are both scalar-valued functions of the matrix [A].

Consider a square matrix [A]. For each i = 1, 2, . . . , n, a row matrix {a}i can be created

by assembling the elements in the ith row of [A]: {a}i = {Ai1, Ai2, Ai3, . . . , Ain}. If the only

scalars αi for which

α1{a}1 + α2{a}2 + α3{a}3 + . . . αn{a}n = {0} (1.20)

are α1 = α2 = . . . = αn = 0, the rows of [A] are said to be linearly independent. If at least

one of the α’s is non-zero, they are said to be linearly dependent, and then at least one row

of [A] can be expressed as a linear combination of the other rows.

Consider a square matrix [A] and suppose that its rows are linearly independent. Then

the matrix is said to be non-singular and there exists a matrix [B], usually denoted by

[B] = [A]−1 and called the inverse of [A], for which [B][A] = [A][B] = [I]. For [A] to be

non-singular it is necessary and sufficient that det[A] 6= 0. If the rows of [A] are linearly

dependent, the matrix is singular and an inverse matrix does not exist.

Consider a n×n square matrix [A]. First consider the (n−1)×(n−1) matrix obtained by

eliminating the ith row and jth column of [A]; then consider the determinant of that second

matrix; and finally consider the product of that determinant with (−1)i+j. The number thus

obtained is called the cofactor of Aij. If [B] is the inverse of [A], [B] = [A]−1, then

Bij =
cofactor of Aji

det[A]
(1.21)



1.2. INDICIAL NOTATION 5

If the transpose and inverse of a matrix coincide, i.e. if

[A]−1 = [A]T , (1.22)

then the matrix is said to be orthogonal. Note that for an orthogonal matrix [A], one has

[A][A]T = [A]T [A] = [I] and that det[A] = ±1.

1.2 Indicial notation

Consider a n × n square matrix [A] and two n × 1 column matrices {x} and {b}. Let Aij

denote the element of [A] in its ith row and jth column, and let xi and bi denote the elements

in the ith row of {x} and {b} respectively. Now consider the matrix equation [A]{x} = {b}:



A11 A12 . . . A1n

A21 A22 . . . A2n

. . . . . . . . . . . .

An1 An2 . . . Ann







x1

x2

. . .

xn


 =




b1

b2

. . .

bn


 . (1.23)

Carrying out the matrix multiplication, this is equivalent to the system of linear algebraic

equations

A11x1 +A12x2 + . . . +A1nxn = b1,

A21x1 +A22x2 + . . . +A2nxn = b2,

. . . + . . . + . . . + . . . = . . .

An1x1 +An2x2 + . . . +Annxn = bn.





(1.24)

This system of equations can be written more compactly as

Ai1x1 + Ai2x2 + . . . Ainxn = bi with i taking each value in the range 1, 2, . . . n; (1.25)

or even more compactly by omitting the statement “with i taking each value in the range

1, 2, . . . , n”, and simply writing

Ai1x1 + Ai2x2 + . . .+ Ainxn = bi (1.26)

with the understanding that (1.26) holds for each value of the subscript i in the range i =

1, 2, . . . n. This understanding is referred to as the range convention. The subscript i is called

a free subscript because it is free to take on each value in its range. From here on, we shall

always use the range convention unless explicitly stated otherwise.
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Observe that

Aj1x1 + Aj2x2 + . . .+ Ajnxn = bj (1.27)

is identical to (1.26); this is because j is a free subscript in (1.27) and so (1.27) is required

to hold “for all j = 1, 2, . . . , n” and this leads back to (1.24). This illustrates the fact that

the particular choice of index for the free subscript in an equation is not important provided

that the same free subscript appears in every symbol grouping.1

As a second example, suppose that f(x1, x2, . . . , xn) is a function of x1, x2, . . . , xn, Then,

if we write the equation
∂f

∂xk
= 3xk, (1.28)

the index k in it is a free subscript and so takes all values in the range 1, 2, . . . , n. Thus

(1.28) is a compact way of writing the n equations

∂f

∂x1

= 3x1,
∂f

∂x2

= 3x2, . . . ,
∂f

∂xn
= 3xn. (1.29)

As a third example, the equation

Apq = xpxq (1.30)

has two free subscripts p and q, and each, independently, takes all values in the range

1, 2, . . . , n. Therefore (1.30) corresponds to the nine equations

A11 = x1x1, A12 = x1x2, . . . A1n = x1xn,

A21 = x2x1, A22 = x2x2, . . . A2n = x2xn,

. . . . . . . . . . . . = . . .

An1 = xnx1, An2 = xnx2, . . . Ann = xnxn.





(1.31)

In general, if an equation involves N free indices, then it represents 3N scalar equations.

In order to be consistent it is important that the same free subscript(s) must appear once,

and only once, in every group of symbols in an equation. For example, in equation (1.26),

since the index i appears once in the symbol group Ai1x1, it must necessarily appear once

in each of the remaining symbol groups Ai2x2, Ai3x3, . . . Ainxn and bi of that equation.

Similarly since the free subscripts p and q appear in the symbol group on the left-hand

1By a “symbol group” we mean a set of terms contained between +,− and = signs.
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side of equation (1.30), it must also appear in the symbol group on the right-hand side.

An equation of the form Apq = xixj would violate this consistency requirement as would

Ai1xi + Aj2x2 = 0.

Note finally that had we adopted the range convention in Section 1.1, we would have

omitted the various “i=1,2,. . . ,n” statements there and written, for example, equation (1.4)

for the equality of two matrices as simply Aij = Bij; equation (1.5) for the sum of two

matrices as simply Cij = Aij + Bij; equation (1.7) for the scalar multiple of a matrix as

Bij = αAij; equation (1.8) for the transpose of a matrix as simply Bij = Aji; equation

(1.11) defining a symmetric matrix as simply Aij = Aji; and equation (1.12) defining a

skew-symmetric matrix as simply Aij = −Aji.

1.3 Summation convention

Next, observe that (1.26) can be written as

n∑

j=1

Aijxj = bi. (1.32)

We can simplify the notation even further by agreeing to drop the summation sign and instead

imposing the rule that summation is implied over a subscript that appears twice in a symbol

grouping. With this understanding in force, we would write (1.32) as

Aijxj = bi (1.33)

with summation on the subscript j being implied. A subscript that appears twice in a

symbol grouping is called a repeated or dummy subscript; the subscript j in (1.33) is a

dummy subscript.

Note that

Aikxk = bi (1.34)

is identical to (1.33); this is because k is a dummy subscript in (1.34) and therefore summa-

tion on k in implied in (1.34). Thus the particular choice of index for the dummy subscript

is not important.

In order to avoid ambiguity, no subscript is allowed to appear more than twice in any

symbol grouping. Thus we shall never write, for example, Aiixi = bi since, if we did, the

index i would appear 3 times in the first symbol group.
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Summary of Rules:

1. Lower-case latin subscripts take on values in the range (1, 2, . . . , n).

2. A given index may appear either once or twice in a symbol grouping. If it appears

once, it is called a free index and it takes on each value in its range. If it appears twice,

it is called a dummy index and summation is implied over it.

3. The same index may not appear more than twice in the same symbol grouping.

4. All symbol groupings in an equation must have the same free subscripts.

Free and dummy indices may be changed without altering the meaning of an expression

provided that one does not violate the preceding rules. Thus, for example, we can change

the free subscript p in every term of the equation

Apqxq = bp (1.35)

to any other index, say k, and equivalently write

Akqxq = bk. (1.36)

We can also change the repeated subscript q to some other index, say s, and write

Aksxs = bk. (1.37)

The three preceding equations are identical.

It is important to emphasize that each of the equations in, for example (1.24), involves

scalar quantities, and therefore, the order in which the terms appear within a symbol group

is irrelevant. Thus, for example, (1.24)1 is equivalent to x1A11 + x2A12 + . . . + xnA1n =

b1. Likewise we can write (1.33) equivalently as xjAij = bi. Note that both Aijxj = bi

and xjAij = bi represent the matrix equation [A]{x} = {b}; the second equation does not

correspond to {x}[A] = {b}. In an indicial equation it is the location of the subscripts that

is crucial; in particular, it is the location where the repeated subscript appears that tells us

whether {x} multiplies [A] or [A] multiplies {x}.

Note finally that had we adopted the range and summation conventions in Section 1.1,

we would have written equation (1.6) for the product of two matrices as Cij = AikBkj;

equation (1.10) for the product of a matrix by its transpose as {x}T{x} = xixi; equation

(1.13) for the quadratic form as {x}T [A]{x} = Aijxixj; and equation (1.15) for the trace as

trace [A] = Aii.
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1.4 Kronecker delta

The Kronecker Delta, δij, is defined by

δij =

{
1 if i = j,

0 if i 6= j.
(1.38)

Note that it represents the elements of the identity matrix. If [Q] is an orthogonal matrix,

then we know that [Q][Q]T = [Q]T [Q] = [I]. This implies, in indicial notation, that

QikQjk = QkiQkj = δij . (1.39)

The following useful property of the Kronecker delta is sometimes called the substitution

rule. Consider, for example, any column matrix {u} and suppose that one wishes to simplify

the expression uiδij. Recall that uiδij = u1δ1j + u2δ2j + . . . + unδnj. Since δij is zero unless

i = j, it follows that all terms on the right-hand side vanish trivially except for the one term

for which i = j. Thus the term that survives on the right-hand side is uj and so

uiδij = uj. (1.40)

Thus we have used the facts that (i) since δij is zero unless i = j, the expression being

simplified has a non-zero value only if i = j; (ii) and when i = j, δij is unity. Thus replacing

the Kronecker delta by unity, and changing the repeated subscript i → j, gives uiδij = uj.

Similarly, suppose that [A] is a square matrix and one wishes to simplify Ajkδ`j. Then by the

same reasoning, we replace the Kronecker delta by unity and change the repeated subscript

j → ` to obtain2

Ajkδ`j = A`k. (1.41)

More generally, if δip multiplies a quantity Cij`k representing n4 numbers, one replaces

the Kronecker delta by unity and changes the repeated subscript i→ p to obtain

Cij`k δip = Cpj`k. (1.42)

The substitution rule applies even more generally: for any quantity or expression Tipq...z, one

simply replaces the Kronecker delta by unity and changes the repeated subscript i → j to

obtain

Tipq...z δij = Tjpq...z. (1.43)

2Observe that these results are immediately apparent by using matrix algebra. In the first example, note

that δjiui (which is equal to the quantity δijui that is given) is simply the jth element of the column matrix

[I]{u}. Since [I]{u} = {u} the result follows at once. Similarly in the second example, δ`jAjk is simply the

`, k-element of the matrix [I][A]. Since [I][A] = [A], the result follows.
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1.5 The alternator or permutation symbol

We now limit attention to subscripts that range over 1, 2, 3 only. The alternator or permu-

tation symbol is defined by

eijk =





0 if two or more subscripts i, j, k, are equal,

+1 if the subscripts i, j, k, are in cyclic order,

−1 if the subscripts i, j, k, are in anticyclic order,

=





0 if two or more subscripts i, j, k, are equal,

+1 for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2),

−1 for (i, j, k) = (1, 3, 2), (2, 1, 3), (3, 2, 1).

(1.44)

Observe from its definition that the sign of eijk changes whenever any two adjacent subscripts

are switched:

eijk = −ejik = ejki. (1.45)

One can show by direct calculation that the determinant of a 3 matrix [A] can be written

in either of two forms

det[A] = eijkA1iA2jA3k or det[A] = eijkAi1Aj2Ak3; (1.46)

as well as in the form

det[A] =
1

6
eijkepqrAipAjqAkr. (1.47)

Another useful identity involving the determinant is

epqr det[A] = eijkAipAjqAkr. (1.48)

The following relation involving the alternator and the Kronecker delta will be useful in

subsequent calculations

eijkepqk = δipδjq − δiqδjp. (1.49)

It is left to the reader to develop proofs of these identities. They can, of course, be verified

directly, by simply writing out all of the terms in (1.46) - (1.49).
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1.6 Worked Examples.

Example(1.1): If [A] and [B] are n×n square matrices and {x}, {y}, {z} are n× 1 column matrices, express

the matrix equation

{y} = [A]{x}+ [B]{z}

as a set of scalar equations.

Solution: By the rules of matrix multiplication, the element yi in the ith row of {y} is obtained by first pairwise

multiplying the elements Ai1, Ai2, . . . , Ain of the ith row of [A] by the respective elements x1, x2, . . . , xn of

{x} and summing; then doing the same for the elements of [B] and {z}; and finally adding the two together.

Thus

yi = Aijxj +Bijzj ,

where summation over the dummy index j is implied, and this equation holds for each value of the free index

i = 1, 2, . . . , n. Note that one can alternatively – and equivalently – write the above equation in any of the

following forms:

yk = Akjxj +Bkjzj , yk = Akpxp +Bkpzp, yi = Aipxp +Biqzq.

Observe that all rules for indicial notation are satisfied by each of the three equations above.

Example(1.2): The n × n matrices [C], [D] and [E] are defined in terms of the two n × n matrices [A] and

[B] by

[C] = [A][B], [D] = [B][A], [E] = [A][B]T .

Express the elements of [C], [D] and [E] in terms of the elements of [A] and [B].

Solution: By the rules of matrix multiplication, the element Cij in the ith row and jth column of [C] is

obtained by multiplying the elements of the ith row of [A], pairwise, by the respective elements of the jth

column of [B] and summing. So, Cij is obtained by multiplying the elements Ai1, Ai2, . . . Ain by, respectively,

B1j , B2j , . . . Bnj and summing. Thus

Cij = AikBkj ;

note that i and j are both free indices here and so this represents n2 scalar equations; moreover summation

is carried out over the repeated index k. It follows likewise that the equation [D] = [B][A] leads to

Dij = BikAkj ; or equivalently Dij = AkjBik,

where the second expression was obtained by simply changing the order in which the terms appear in the

first expression (since, as noted previously, the order of terms within a symbol group is insignificant since

these are scalar quantities.) In order to calculate Eij , we first multiply [A] by [B]T to obtain Eij = AikB
T
kj .

However, by definition of transposition, the i, j-element of a matrix [B]T equals the j, i-element of the matrix

[B]: BTij = Bji and so we can write

Eij = AikBjk.
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All four expressions here involve the ik, kj or jk elements of [A] and [B]. The precise locations of the

subscripts vary and the meaning of the terms depend crucially on these locations. It is worth repeating that

the location of the repeated subscript k tells us what term multiplies what term.

Example(1.3): If [S] is any symmetric matrix and [W ] is any skew-symmetric matrix, show that

SijWij = 0.

Solution: Note that both i and j are dummy subscripts here; therefore there are summations over each of

them. Also, there is no free subscript so this is just a single scalar equation.

Whenever there is a dummy subscript, the choice of the particular index for that dummy subscript is

arbitrary, and we can change it to another index, provided that we change both repeated subscripts to the

new symbol (and as long as we do not have any subscript appearing more than twice). Thus, for example,

since i is a dummy subscript in SijWij , we can change i → p and get SijWij = SpjWpj . Note that we can

change i to any other index except j; if we did change it to j, then there would be four j’s and that violates

one of our rules.

By changing the dummy indices i→ p and j → q, we get SijWij = SpqWpq. We can now change dummy

indices again, from p→ j and q → i which gives SpqWpq = SjiWji. On combining, these we get

SijWij = SjiWji.

Effectively, we have changed both i and j simultaneously from i→ j and j → i.

Next, since [S] is symmetric Sji = Sij ; and since [W ] is skew-symmetric, Wji = −Wij . Therefore

SjiWji = −SijWij . Using this in the right-hand side of the preceding equation gives

SijWij = −SijWij

from which it follows that SijWij = 0.

Remark: As a special case, take Sij = uiuj where {u} is an arbitrary column matrix; note that this [S] is

symmetric. It follows that for any skew-symmetric [W ],

Wijuiuj = 0 for all ui.

Example(1.4): Show that any matrix [A] can be additively decomposed into the sum of a symmetric matrix

and a skew-symmetric matrix.

Solution: Define matrices [S] and [W ] in terms of the given the matrix [A] as follows:

Sij =
1

2
(Aij +Aji), Wij =

1

2
(Aij −Aji).

It may be readily verified from these definitions that Sij = Sji and that Wij = −Wij . Thus, the matrix [S]

is symmetric and [W ] is skew-symmetric. By adding the two equations in above one obtains

Sij +Wij = Aij ,
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or in matrix form, [A] = [S] + [W ].

Example (1.5): Show that the quadratic form Tijuiuj is unchanged if Tij is replaced by its symmetric part.

i.e. show that for any matrix [T ],

Tijuiuj = Sijuiuj for all ui where Sij =
1

2
(Tij + Tji). (i)

Solution: The result follows from the following calculation:

Tij uiuj =

(
1

2
Tij +

1

2
Tij +

1

2
Tji −

1

2
Tji

)
uiuj =

1

2
(Tij + Tji) uiuj +

1

2
(Tij − Tji) uiuj

= Sij uiuj ,

where in the last step we have used the facts that Aij = Tij − Tji is skew-symmetric, that Bij = uiuj is

symmetric, and that for any symmetric matrix [A] and any skew-symmetric matrix [B], one has AijBij = 0.

Example (1.6): Suppose that D1111,D1112, . . .D111n, . . .D1121,D1122, . . .D112n, . . .Dnnnn are n4 constants;

and let Dijk` denote a generic element of this set where each of the subscripts i, j, k, ` take all values in

the range 1, 2, . . . n. Let [E] be an arbitrary symmetric matrix and define the elements of a matrix [A] by

Aij = Dijk`Ek`. Show that [A] is unchanged if Dijk` is replaced by its “symmetric part” Cijk` where

Cijk` =
1

2
(Dijk` + Dij`k). (i)

Solution: In a manner entirely analogous to the previous example,

Aij = Dijk`Ek` =

(
1

2
Dijk` +

1

2
Dijk` +

1

2
Dij`k −

1

2
Dij`k

)
Ek`

=
1

2
(Dijk` + Dij`k) Ek` +

1

2
(Dijk` − Dij`k) Ek`

= Cijk` Ek`,

where in the last step we have used the fact that (Dijk`−Dij`k)Ek` = 0 since Dijk`−Dij`k is skew symmetric

in the subscripts k, ` while Ek` is symmetric in the subscripts k, `.

Example (1.7): Evaluate the expression δijδikδjk.

Solution: By using the substitution rule, first on the repeated index i and then on the repeated index j, we

have δij δik δjk = δjk δjk = δkk = δ11 + δ22 + . . .+ δnn = n.

Example(1.8): Given an orthogonal matrix [Q], use indicial notation to solve the matrix equation [Q]{x} =

{a} for {x}.
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Solution: In indicial form, the equation [Q]{x} = {a} reads

Qijxj = ai.

Multiplying both sides by Qik gives

QikQijxj = Qikai.

Since [Q] is orthogonal, we know from (1.39) that QrpQrq = δpq. Thus the preceding equation simplifies to

δjkxj = Qikai,

which, by the substitution rule, reduces further to

xk = Qikai .

In matrix notation this reads {x} = [Q]T {a} which we could, of course, have written down immediately from

the fact that {x} = [Q]−1{a}, and for an orthogonal matrix, [Q]−1 = [Q]T .

Example(1.9): Consider the function f(x1, x2, . . . , xn) = Aijxixj where the Aij ’s are constants. Calculate

the partial derivatives ∂f/∂xi.

Solution: We begin by making two general observations. First, note that because of the summation on

the indices i and j, it is incorrect to conclude that ∂f/∂xi = Aijxj by viewing this in the same way as

differentiating the function A12x1x2 with respect to x1. Second, observe that if we differentiatiate f with

respect to xi and write ∂f/∂xi = ∂(Aijxixj)/∂xi, we would violate our rules because the right-hand side

has the subscript i appearing three times in one symbol grouping. In order to get around this difficulty we

make use of the fact that the specific choice of the index in a dummy subscript is not significant and so we

can write f = Apqxpxq.

Differentiating f and using the fact that [A] is constant gives

∂f

∂xi
=

∂

∂xi
(Apqxpxq) = Apq

∂

∂xi
(xpxq) = Apq

[
∂xp
∂xi

xq + xp
∂xq
∂xi

]
.

Since the xi’s are independent variables, it follows that

∂xi
∂xj

=





0 if i 6= j,

1 if i = j,
i.e.

∂xi
∂xj

= δij .

Using this above gives
∂f

∂xi
= Apq [δpixq + xpδqi] = Apqδpixq +Apqxpδqi

which, by the substitution rule, simplifies to

∂f

∂xi
= Aiqxq +Apixp = Aijxj +Ajixj = (Aij +Aji)xj .
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Example (1.10): Suppose that {x}T [A]{x} = 0 for all column matrices {x} where the square matrix [A] is

independent of {x}. What does this imply about [A]?

Solution: We know from a previous example that that if [A] is a skew-symmetric and [S] is symmetric then

AijSij = 0, and as a special case of this that Aijxixj = 0 for all {x}. Thus a sufficient condition for the

given equation to hold is that [A] be skew-symmetric. Now we show that this is also a necessary condition.

We are given that Aijxixj = 0 for all xi. Since this equation holds for all xi, we may differentiate both

sides with respect to xk and proceed as follows:

0 =
∂

∂xk
(Aijxixj) = Aij

∂

∂xk
(xixj) = Aij

∂xi
∂xk

xj +Aijxi
∂xj
∂xk

= Aijδik xj +Aij xi δjk , (i)

where we have used the fact that ∂xi/∂xj = δij in the last step. On using the substitution rule, this simplifies

to

Akj xj +Aik xi = (Akj +Ajk) xj = 0. (ii)

Since this also holds for all xi, it may be differentiated again with respect to xi to obtain

(Akj +Ajk)
∂xj
∂xi

= (Akj +Ajk) δji = Aki +Aik = 0. (iii)

Thus [A] must necessarily be a skew symmetric matrix,

Therefore it is necessary and sufficient that [A] be skew-symmetric.

Example (1.11): Let Cijkl be a set of n4 constants. Define the function Ŵ ([E]) for all matrices [E] by

Ŵ ([E]) = W (E11, E12, ....Enn) = 1
2 CijklEijEkl. Calculate

∂W

∂Eij
and

∂2W

∂Eij∂Ekl
. (i)

Solution: First, since the Eij ’s are independent variables, it follows that

∂Epq
∂Eij

=





1 if p = i and q = j,

0 otherwise.

Therefore,
∂Epq
∂Eij

= δpi δqj . (ii)

Keeping this in mind and differentiating W (E11, E12, ....E33) with respect to Eij gives

∂W

∂Eij
=

∂

∂Eij

(
1

2
CpqrsEpqErs

)
=

1

2
Cpqrs

(
∂Epq
∂Eij

Ers + Epq
∂Ers
∂Eij

)

=
1

2
Cpqrs (δpi δqj Ers + δri δsj Epq)

=
1

2
Cijrs Ers +

1

2
Cpqij Epq

=
1

2
(Cijpq + Cpqij) Epq.
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where we have made use of the substitution rule. (Note that in the first step we wrote W = 1
2 CpqrsEpqErs

rather thanW = 1
2 CijklEijEkl because we would violate our rules for indices had we written ∂( 1

2 CijklEijEkl)/∂Eij .)
Differentiating this once more with respect to Ekl gives

∂2W

∂Eij ∂Ekl
=

∂

∂Ek`

(
1

2
(Cijpq + Cpqij) Epq

)
=

1

2
(Cijpq + Cpqij) δpkδql (iii)

=
1

2
(Cijkl + Cklij) (iv)

Example (1.12): Evaluate the expression eijkekij .

Solution: By first using the skew symmetry property (1.45), then using the identity (1.49), and finally using

the substitution rule, we have eijkekij = −eijkeikj = −(δjk δkj−δjj δkk) = −(δjj−δjj δkk) = −(3−3×3) = 6.

Example(1.13): Show that

eijkSjk = 0 (i)

if and only if the matrix [S] is symmetric.

Solution: First, suppose that [S] is symmetric. Pick and fix the free subscript i at any value i = 1, 2, 3. Then,

we can think of eijk as the j, k element of a 3×3 matrix. Since eijk = −eikj this is a skew-symmetric matrix.

In a previous example we showed that SijWij = 0 for any symmetric matrix [S] and any skew-symmetric

matrix [W ]. Consequently (i) must hold.

Conversely suppose that (i) holds for some matrix [S]. Multiplying (i) by eipq and using the identity

(1.49) leads to

eipqeijkSjk = (δpjδqk − δpkδqj)Sjk = Spq − Sqp = 0

where in the last step we have used the substitutin rule. Thus Spq = Sqp and so [S] is symmetric.

Remark: Note as a special case of this result that

eijkvjvk = 0 (ii)

for any arbitrary column matrix {v}.
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Chapter 2

Vectors and Linear Transformations

Notation:

α ..... scalar

a ..... vector

A ..... linear transformation

As mentioned in the Preface, Linear Algebra is a far richer subject than the very restricted

glimpse provided here might suggest. The discussion in these notes is limited almost entirely

to (a) real 3-dimensional Euclidean vector spaces, and (b) to linear transformations that

carry vectors from one vector space into the same vector space. These notes are designed

to review those aspects of linear algebra that will be encountered in our study of continuum

mechanics; it is not meant to be a source for learning the subject of linear algebra for the

first time.

The following notation will be consistently used: Greek letters will denote real numbers;

lowercase boldface Latin letters will denote vectors; and uppercase boldface Latin letters will

denote linear transformations. Thus, for example, α, β, γ... will denote scalars (real num-

bers); a,b, c, ... will denote vectors; and A,B,C, ... will denote linear transformations. In

particular, “o” will denote the null vector while “0” will denote the null linear transforma-

tion.

17
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2.1 Vectors

A vector space V is a collection of elements, called vectors, together with two operations,

addition and multiplication by a scalar. The operation of addition (has certain properties

which we do not list here) and associates with each pair of vectors x and y in V, a vector

denoted by x + y that is also in V. In particular, it is assumed that there is a unique vector

o ∈ V called the null vector such that x + o = x. The operation of scalar multiplication (has

certain properties which we do not list here) and associates with each vector x ∈ V and each

real number α, another vector in V denoted by αx.

Let x1,x2, . . . ,xk be k vectors in V. These vectors are said to be linearly independent if

the only real numbers α1, α2 . . . , αk for which

α1x1 + α2x2 · · ·+ αkxk = o (2.1)

are the numbers α1 = α2 = . . . αk = 0. If V contains n linearly independent vectors but

does not contain n + 1 linearly independent vectors, we say that the dimension of V is n.

Unless stated otherwise, from hereon we restrict attention to 3-dimensional vector spaces.

If V is a vector space, any set of three linearly independent vectors {e1, e2, e3} is said to

be a basis for V. Given any vector x ∈ V there exist a unique set of numbers ξ1, ξ2, ξ3 such

that

x = ξ1e1 + ξ2e2 + ξ3e3; (2.2)

the numbers ξ1, ξ2, ξ3 are called the components of x in the basis {e1, e2, e3}.

Let U be a subset of a vector space V; we say that U is a subspace (or linear manifold)

of V if, for every x,y ∈ U and every real number α, the vectors x + y and αx are also in U.

Thus a linear manifold U of V is itself a vector space under the same operations of addition

and multiplication by a scalar as in V.

A scalar-product (or inner product or dot product) on V is a function which assigns to

each pair of vectors x, y in V a scalar, which we denote by x · y. A scalar-product has

certain properties which we do not list here except to note that it is required that

x · y = y · x for all x,y ∈ V. (2.3)

A Euclidean vector space is a vector space together with an inner product on that space.

From hereon we shall restrict attention to 3-dimensional Euclidean vector spaces and denote

such a space by E3.
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The length (or magnitude or norm) of a vector x is the scalar denoted by |x| and defined

by

|x| = (x · x)1/2. (2.4)

A vector has zero length if and only if it is the null vector. A unit vector is a vector of unit

length. The angle θ between two vectors x and y is defined by

cos θ =
x · y
|x||y| , 0 ≤ θ ≤ π. (2.5)

Two vectors x and y are orthogonal if x · y = 0. It is obvious, nevertheless helpful, to note

that if we are given two vectors x and y where x ·y = 0 and y 6= o, this does not necessarily

imply that x = o; on the other hand if x · y = 0 for every vector y, then x must be the null

vector.

An orthonormal basis is a triplet of mutually orthogonal unit vectors e1, e2, e3 ∈ E3. For

such a basis,

ei · ej = δij for i, j = 1, 2, 3, (2.6)

where the Kronecker delta δij is defined in the usual way by

δij =

{
1 if i = j,

0 if i 6= j.
(2.7)

A vector-product (or cross-product) on E3 is a function which assigns to each ordered pair

of vectors x,y ∈ E3, a vector, which we denote by x × y. The vector-product must have

certain properties (which we do not list here) except to note that it is required that

y × x = −x× y for all x,y ∈ V. (2.8)

One can show that

x× y = |x| |y| sin θ n, (2.9)

where θ is the angle between x and y as defined by (2.5), and n is a unit vector in the

direction x×y which therefore is normal to the plane defined by x and y. Since n is parallel

to x× y, and since it has unit length, it follows that n = (x× y)/|(x× y)|. The magnitude

|x × y| of the cross-product can be interpreted geometrically as the area of the triangle

formed by the vectors x and y. A basis {e1, e2, e3} is said to be right-handed if

(e1 × e2) · e3 > 0. (2.10)
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2.1.1 Euclidean point space

A Euclidean point space P whose elements are called points, is related to a Euclidean vector

space E3 in the following manner. Every order pair of points (p, q) is uniquely associated

with a vector in E3, say
→
pq, such that

(i)
→
pq = − →

qp for all p, q ∈ P.

(ii)
→
pq +

→
qr=

→
pr for all p, q, r ∈ P.

(iii) given an arbitrary point p ∈ P and an arbitrary vector x ∈ E3, there is a unique point

q ∈ P such that x =
→
pq. Here x is called the position of point q relative to the point p.

Pick and fix an arbitrary point o ∈ P (which we call the origin of P) and an arbitrary basis

for E3 of unit vectors e1, e2, e3. Corresponding to any point p ∈ P there is a unique vector
→
op= x = x1e1 + x2e2 + x3e3 ∈ E3. The triplet (x1, x2, x3) are called the coordinates of p

in the (coordinate) frame F = {o; e1, e2, e3} comprised of the origin o and the basis vectors

e1, e2, e3. If e1, e2, e3 is an orthonormal basis, the coordinate frame {o; e1, e2, e3} is called a

rectangular cartesian coordinate frame.

2.2 Linear Transformations.

Consider a three-dimensional Euclidean vector space E3. Let F be a function (or transfor-

mation) which assigns to each vector x ∈ E3, a second vector y ∈ E3,

y = F(x), x ∈ E3, y ∈ E3; (2.11)

F is said to be a linear transformation if it is such that

F(αx + βy) = αF(x) + βF(y) (2.12)

for all scalars α, β and all vectors x,y ∈ E3. When F is a linear transformation, we usually

omit the parenthesis and write Fx instead of F(x). Note that Fx is a vector, and it is the

image of x under the transformation F.

A linear transformation is defined by the way it operates on vectors in E3. A geometric

example of a linear transformation is the “projection operator” Π which projects vectors

onto a given plane P . Let P be the plane normal to the unit vector n.; see Figure 2.1. For
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P n x

Πx

Figure 2.1: The projection Πx of a vector x onto the plane P.

any vector x ∈ E3, Πx ∈ P is the vector obtained by projecting x onto P . It can be verified

geometrically that P is defined by

Πx = x− (x · n)n for all x ∈ E3. (2.13)

Linear transformations tell us how vectors are mapped into other vectors. In particular,

suppose that {y1,y2,y3} are any three vectors in E3 and that {x1,x2,x3} are any three

linearly independent vectors in E3. Then there is a unique linear transformation F that

maps {x1,x2,x3} into {y1,y2,y3}: y1 = Fx1,y2 = Fx2,y3 = Fx3. This follows from the

fact that {x1,x2,x3} is a basis for E3. Therefore any arbitrary vector x can be expressed

uniquely in the form x = ξ1x1 + ξ2x2 + ξ3x3; consequently the image Fx of any vector x is

given by Fx = ξ1y1 + ξ2y2 + ξ3y3 which is a rule for assigning a unique vector Fx to any

given vector x.

The null linear transformation 0 is the linear transformation that takes every vector x

into the null vector o. The identity linear transformation I takes every vector x into itself.

Thus

0x = o, Ix = x for all x ∈ E3. (2.14)

Let A and B be linear transformations on E3 and let α be a scalar. The linear trans-

formations A + B, AB and αA are defined as those linear transformations which are such

that

(A + B)x = Ax + Bx for all x ∈ E3, (2.15)

(AB)x = A(Bx) for all x ∈ E3, (2.16)

(αA)x = α(Ax) for all x ∈ E3, (2.17)

respectively; A + B is called the sum of A and B,AB the product, and αA is the scalar

multiple of A by α. In general,

AB 6= BA. (2.18)



22 CHAPTER 2. VECTORS AND LINEAR TRANSFORMATIONS

The range of a linear transformation A (i.e., the collection of all vectors Ax as x takes

all values in E3) is a subspace of E3. The dimension of this particular subspace is known

as the rank of A. The set of all vectors x for which Ax = o is also a subspace of E3; it is

known as the null space of A.

Given any linear transformation A, one can show that there is a unique linear transfor-

mation usually denoted by AT such that

Ax · y = x ·ATy for all x,y ∈ E3. (2.19)

AT is called the transpose of A. One can show that

(αA)T = αAT , (A + B)T = AT + BT , (AB)T = BTAT . (2.20)

A linear transformation A is said to be symmetric if

A = AT ; (2.21)

skew-symmetric if

A = −AT . (2.22)

Every linear transformation A can be represented as the sum of a symmetric linear trans-

formation S and a skew-symmetric linear transformation W as follows:

A = S + W where S =
1

2
(A + AT ), W =

1

2
(A−AT ). (2.23)

For every skew-symmetric linear transformation W, it may be shown that

Wx · x = 0 for all x ∈ E3; (2.24)

moreover, there exists a vector w (called the axial vector of W) which has the property that

Wx = w × x for all x ∈ E3. (2.25)

Given a linear transformation A, if the only vector x for which Ax = o is the zero

vector, then we say that A is non-singular. It follows from this that if A is non-singular

then Ax 6= Ay whenever x 6= y. Thus, a non-singular transformation A is a one-to-one

transformation in the sense that, for any given y ∈ E3, there is one and only one vector x ∈ E3

for which Ax = y. Consequently, corresponding to any non-singular linear transformation
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A, there exists a second linear transformation, denoted by A−1 and called the inverse of A,

such that Ax = y if and only if x = A−1y, or equivalently, such that

AA−1 = A−1A = I. (2.26)

If {y1,y2,y3} and {x1,x2,x3} are two sets of linearly independent vectors in E3, then

there is a unique non-singular linear transformation F that maps {x1,x2,x3} into {y1,y2,y3}:
y1 = Fx1,y2 = Fx2,y3 = Fx3. The inverse of F maps {y1,y2,y3} into {x1,x2,x3}. If both

bases {x1,x2,x3} and {y1,y2,y3} are right-handed (or both are left-handed) we say that

the linear transformation F preserves the orientation of the vector space.

If two linear transformations A and B are both non-singular, then so is AB; moreover,

(AB)−1 = B−1A−1. (2.27)

If A is non-singular then so is AT ; moreover,

(AT )−1 = (A−1)T , (2.28)

and so there is no ambiguity in writing this linear transformation as A−T .

A linear transformation Q is said to be orthogonal if it preserves length, i.e., if

|Qx| = |x| for all x ∈ E3. (2.29)

If Q is orthogonal, it follows that it also preserves the inner product:

Qx ·Qy = x · y for all x,y ∈ E3. (2.30)

Thus an orthogonal linear transformation preserves both the length of a vector and the angle

between two vectors. If Q is orthogonal, it is necessarily non-singular and

Q−1 = QT . (2.31)

A linear transformation A is said to be positive definite if

Ax · x > 0 for all x ∈ E3, x 6= o; (2.32)

positive-semi-definite if

Ax · x
¯
≥ 0 for all x ∈ E3. (2.33)
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A positive definite linear transformation is necessarily non-singular. Moreover, A is positive

definite if and only if its symmetric part (1/2)(A + AT ) is positive definite.

Let A be a linear transformation. A subspace U is known as an invariant subspace of

A if Av ∈ U for all v ∈ U. Given a linear transformation A, suppose that there exists an

associated one-dimensional invariant subspace. Since U is one-dimensional, it follows that if

v ∈ U then any other vector in U can be expressed in the form λv for some scalar λ. Since

U is an invariant subspace we know in addition that Av ∈ U whenever v ∈ U. Combining

these two fact shows that Av = λv for all v ∈ U. A vector v and a scalar λ such that

Av = λv, (2.34)

are known, respectively, as an eigenvector and an eigenvalue of A. Each eigenvector of A

characterizes a one-dimensional invariant subspace of A. Every linear transformation A (on

a 3-dimensional vector space E3) has at least one eigenvalue.

It can be shown that a symmetric linear transformation A has three real eigenvalues

λ1, λ2, and λ3, and a corresponding set of three mutually orthogonal eigenvectors e1, e2, and

e3. The particular basis of E3 comprised of {e1, e2, e3} is said to be a principal basis of A.

Every eigenvalue of a positive definite linear transformation must be positive, and no

eigenvalue of a non-singular linear transformation can be zero. A symmetric linear transfor-

mation is positive definite if and only if all three of its eigenvalues are positive.

If e and λ are an eigenvector and eigenvalue of a linear transformation A, then for any

positive integer n, it is easily seen that e and λn are an eigenvector and an eigenvalue of An

where An = AA...(n times)..AA; this continues to be true for negative integers m provided

A is non-singular and if by A−m we mean (A−1)m, m > 0.

Finally, according to the polar decomposition theorem, given any non-singular linear trans-

formation F, there exists unique symmetric positive definite linear transformations U and

V and a unique orthogonal linear transformation R such that

F = RU = VR. (2.35)

If λ and r are an eigenvalue and eigenvector of U, then it can be readily shown that λ and

Rr are an eigenvalue and eigenvector of V.

Given two vectors a,b ∈ E3, their tensor-product is the linear transformation usually

denoted by a⊗ b, which is such that

(a⊗ b)x = (x · b)a for all x ∈ E3. (2.36)
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Observe that for any x ∈ E3, the vector (a⊗b)x is parallel to the vector a. Thus the range

of the linear transformation a ⊗ b is the one-dimensional subspace of E3 consisting of all

vectors parallel to a. The rank of the linear transformation a⊗ b is thus unity.

For any vectors a,b, c, and d it is easily shown that

(a⊗ b)T = b⊗ a, (a⊗ b)(c⊗ d) = (b · c)(a⊗ d). (2.37)

The product of a linear transformation A with the linear transformation a⊗ b gives

A(a⊗ b) = (Aa)⊗ b, (a⊗ b)A = a⊗ (ATb). (2.38)

Let {e1, e2, e3} be an orthonormal basis. Since this is a basis, any vector in E3, and

therefore in particular each of the vectors Ae1,Ae2,Ae3, can be expressed as a unique

linear combination of the basis vectors e1, e2, e3. It follows that there exist unique real

numbers Aij such that

Aej =
3∑

i=1

Aijei, j = 1, 2, 3, (2.39)

where Aij is the ith component on the vector Aej. They can equivalently be expressed as

Aij = ei · (Aej). The linear transformation A can now be represented as

A =
3∑

i=1

3∑

j=1

Aij(ei ⊗ ej). (2.40)

One refers to the Aij’s as the components of the linear transformation A in the basis

{e1, e2, e3}. Note that

3∑

i=1

ei ⊗ ei = I,
3∑

i=1

(Aei)⊗ ei = A. (2.41)

Let S be a symmetric linear transformation with eigenvalues λ1, λ2, λ3 and corresponding

(mutually orthogonal unit) eigenvectors e1, e2, e3. Since Sej = λjej for each j = 1, 2, 3, it

follows from (2.39) that the components of S in the principal basis {e1, e2, e3} are S11 =

λ1, S21 = S31 = 0;S12 = 0, S22 = λ2, S32 = 0;S13 = S23 = 0, S33 = λ3. It follows from the

general representation (2.40) that S admits the representation

S =
3∑

i=1

λi (ei ⊗ ei); (2.42)
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this is called the spectral representation of a symmetric linear transformation. It can be

readily shown that, for any positive integer n,

Sn =
3∑

i=1

λni (ei ⊗ ei); (2.43)

if S is symmetric and non-singular, then

S−1 =
3∑

i=1

(1/λi) (ei ⊗ ei). (2.44)

If S is symmetric and positive definite, there is a unique symmetric positive definite linear

transformation T such that T2 = S. We call T the positive definite square root of S and

denote it by T =
√

S. It is readily seen that

√
S =

3∑

i=i

√
λi (ei ⊗ ei). (2.45)

2.3 Worked Examples.

Example 2.1: Given three vectors a,b, c, show that

a · (b× c) = b · (c× a) = c · (a× b).

Solution: By the properties of the vector-product, the vector (a + b) is normal to the vector (a + b) × c.

Thus

(a + b) · [(a + b)× c] = 0.

On expanding this out one obtains

a · (a× c) + a · (b× c) + b · (a× c) + b · (b× c) = 0.

Since a is normal to (a × c), and b is normal to (b × c), the first and last terms in this equation vanish.

Finally, recall that a× c = −c× a. Thus the preceding equation simplifies to

a · (b× c) = b · (c× a).

This establishes the first part of the result. The second part is shown analogously.

Example 2.2: Show that a necessary and sufficient condition for three vectors a,b, c in E3 – none of which

is the null vector – to be linearly dependent is that a · (b× c) = 0.
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Solution: To show necessity, suppose that the three vectors a,b, c, are linearly dependent. It follows that

αa + βb + γc = o

for some real numbers α, β, γ, at least one of which is non zero. Taking the vector-product of this equation

with c and then taking the scalar-product of the result with a leads to

βa · (b× c) = 0.

Analogous calculations with the other pairs of vectors, and keeping in mind that a · (b× c) = b · (c× a) =

c · (a× b), leads to

αa · (b× c) = 0, βa · (b× c) = 0, γa · (b× c) = 0.

Since at least one of α, β, γ is non-zero it follows that necessarily a · (b× c) = o.

To show sufficiency, let a ·(b×c) = 0 and assume that a,b, c are linearly independent. We will show that

this is a contradiction whence a,b, c must be linearly dependent. By the properties of the vector-product,

the vector b× c is normal to the plane defined by the vectors b and c. By assumption, a · (b× c) = 0, and

this implies that a is normal to b× c. Since we are in E3 this means that a must lie in the plane defined by

b and c. This means they cannot be linearly independent.

Example 2.3: Interpret the quantity a·(b×c) geometrically in terms of the volume of the tetrahedron defined

by the vectors a,b, c.

Solution: Consider the tetrahedron formed by the three vectors a, b, c as depicted in Figure 2.2. Its volume

V0 = 1
3 A0 h0 where A0 is the area of its base and h0 is its height.

nn =
a× b

|a× b|

Volumeolume = 1
3 A0 × h0

= |a× b|A0

= c · nh0

c

a

b n

AreaArea A0

HeighHeight h0

Figure 2.2: Volume of the tetrahedron defined by vectors a,b, c.

Consider the triangle defined by the vectors a and b to be the base of the tetrahedron. Its area A0 can

be written as 1/2 base× height = 1/2|a|(|b|| sin θ|) where θ is the angle between a and b. However from the

property (2.9) of the vector-product we have |a× b| = |a||b|| sin θ| and so A0 = |a× b|/2.

Next, n = (a × b)/|a × b| is a unit vector that is normal to the base of the tetrahedron, and so the

height of the tetrahedron is h0 = c · n; see Figure 2.2.

Therefore

V0 =
1

3
A0h0 =

1

3

( |a× b|
2

)
(c · n) =

1

6
(a× b) · c. (i)
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Observe that this provides a geometric explanation for why the vectors a,b, c are linearly dependent if and

only if (a× b) · c = 0.

Example 2.4: Let φ(x) be a scalar-valued function defined on the vector space E3. If φ is linear, i.e. if

φ(αx+βy) = αφ(x)+βφ(y) for all scalars α, β and all vectors x,y, show that φ(x) = c ·x for some constant

vector c. Remark: This shows that the scalar-product is the most general scalar-valued linear function of a

vector.

Solution: Let {e1, e3, e3} be any orthonormal basis for E3. Then an arbitrary vector x can be written in

terms of its components as x = x1e1 + x2e2 + x3e3. Therefore

φ(x) = φ(x1e1 + x2e2 + x3e3)

which because of the linearity of φ leads to

φ(x) = x1φ(e1) + x2φ(e2) + x3φ(e3).

On setting ci = φ(ei), i = 1, 2, 3, we find

φ(x) = x1c1 + x2c2 + x3c3 = c · x

where c = c1e1 + c2e2 + c3e3.

Example 2.5: If two linear transformations A and B have the property that Ax · y = Bx · y for all vectors

x and y, show that A = B.

Solution: Since (Ax − Bx) · y = 0 for all vectors y, we may choose y = Ax − Bx in this, leading to

|Ax−Bx|2 = 0. Since the only vector of zero length is the null vector, this implies that

Ax = Bx for all vectors x (i)

and so A = B.

Example 2.6: Let n be a unit vector, and let P be the plane through o normal to n. Let Π and R be the

transformations which, respectively, project and reflect a vector in the plane P.

a. Show that Π and R are linear transformations; Π is called the “projection linear transformation”

while R is known as the “reflection linear transformation”.

b. Show that R(Rx) = x for all x ∈ E3.

c. Verify that a reflection linear transformation R is non-singular while a projection linear transformation

Π is singular. What is the inverse of R?

d. Verify that a projection linear transformation Π is symmetric and that a reflection linear transforma-

tion R is orthogonal.
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P n x

Πx

(x · n)n

Rx
(x · n)n

Figure 2.3: The projection Πx and reflection Rx of a vector x on the plane P.

e. Show that the projection linear transformation and reflection linear transformation can be represented

as Π = I− n⊗ n and R = I− 2(n⊗ n) respectively.

Solution:

a. Figure 2.3 shows a sketch of the plane P, its unit normal vector n, a generic vector x, its projection

Πx and its reflection Rx. By geometry we see that

Πx = x− (x · n)n, Rx = x− 2(x · n)n. (i)

These define the images Πx and Rx of a generic vector x under the transformation Π and R. One

can readily verify that Π and R satisfy the requirement (2.12) of a linear transformation.

b. Applying the definition (i)2 of R to the vector Rx gives

R(Rx) = (Rx)− 2
(

(Rx) · n
)
n

Replacing Rx on the right-hand side of this equation by (i)2, and expanding the resulting expression

shows that the right-hand side simplifies to x. Thus R(Rx) = x.

c. Applying the definition (i)1 of Π to the vector n gives

Πn = n− (n · n)n = n− n = o.

Therefore Πn = o and (since n 6= o) we see that o is not the only vector that is mapped to the null

vector by Π. The transformation Π is therefore singular.

Next consider the transformation R and consider a vector x that is mapped by it to the null vector,

i.e. Rx = o. Using (i)2

x = 2(x · n)n.

Taking the scalar-product of this equation with the unit vector n yields x · n = 2(x · n) from which

we conclude that x · n = 0. Substituting this into the right-hand side of the preceding equation leads

to x = o. Therefore Rx = o if and only if x = o and so R is non-singular.

To find the inverse of R, recall from part (b) that R(Rx) = x. Operating on both sides of this

equation by R−1 gives Rx = R−1x. Since this holds for all vectors x it follows that R−1 = R.
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d. To show that Π is symmetric we simply use its definition (i)1 to calculate Πx · y and x · Πy for

arbitrary vectors x and y. This yields

Πx · y =
(
x− (x · n)n

)
· y = x · y − (x · n)(y · n)

and

x ·Πy = x ·
(
y − (x · n)n

)
= x · y − (x · n)(y · n).

Thus Πx · y = x ·Πy and so Π is symmetric.

To show that R is orthogonal we must show that RRT = I or RT = R−1. We begin by calculating

RT . Recall from the definition (2.19) that the transpose satisfies the requirement x ·RTy = Rx · y.

Using the definition (i)2 of R on the right-hand side of this equation yields

x ·RTy = x · y − 2(x · n)(y · n).

We can rearrange the right-hand side of this equation so it reads

x ·RTy = x ·
(
y − 2(y · n)n

)
.

Since this holds for all x it follows that RTy = y − 2(y · n)n. Comparing this with (i)2 shows that

RT = R. In part (c) we showed that R−1 = R and so it now follows that RT = R−1. Thus R is

orthogonal.

e. Applying the operation (I− n⊗ n) on an arbitrary vector x gives
(
I− n⊗ n

)
x = x− (n⊗ n)x = x− (x · n)n = Πx

and so Π = I− n⊗ n.

Similarly (
I− 2n⊗ n

)
x = x− 2(x · n)n = Rx

and so R = I− 2n⊗ n.

Example 2.7: If W is a skew symmetric linear transformation show that

Wx · x = 0 for all x . (i)

Solution: By the definition (2.19) of the transpose, we have Wx · x = x ·WTx; and since W = −WT for a

skew symmetric linear transformation, this can be written as Wx ·x = −x ·Wx. Finally the property (2.3)

of the scalar-product allows this to be written as Wx · x = −Wx · x from which the desired result follows.

Example 2.8: Show that (AB)T = BTAT .

Solution: First, by the definition (2.19) of the transpose,

(AB)x · y = x · (AB)Ty . (i)
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Second, note that (AB)x · y = A(Bx) · y. By the definition of the transpose of A we have A(Bx) · y =

Bx ·ATy; and by the definition of the transpose of B we have Bx ·ATy = x ·BTATy. Therefore combining

these three equations shows that

(AB)x · y = x ·BTATy (ii)

On equating these two expressions for (AB)x · y shows that x · (AB)Ty = x ·BTATy for all vectors x,y

which establishes the desired result.

Example 2.9: If o is the null vector, then show that Ao = o for any linear transformation A.

Solution: The null vector o has the property that when it is added to any vector, the vector remains

unchanged. Therefore x + o = x, and similarly Ax + o = Ax. However operating on the first of these

equations by A shows that Ax + Ao = Ax, which when combined with the second equation yields the

desired result.

Example 2.10: If A and B are non-singular linear transformations show that AB is also non-singular and

that (AB)−1 = B−1A−1.

Solution: Let C = B−1A−1. We will show that (AB)C = C(AB) = I and therefore that C is the inverse

of AB. (Since the inverse would thus have been shown to exist, necessarily AB must be non-singular.)

Observe first that

(AB) C = (AB) B−1A−1 = A(BB−1)A−1 = AIA−1 = I ,

and similarly that

C (AB) = B−1A−1 (AB) = B−1(A−1A)B == B−1IB = I .

Therefore (AB)C = C(AB) = I and so C is the inverse of AB.

Example 2.11: If A is non-singular, show that (A−1)T = (AT )−1.

Solution: Since (AT )−1 is the inverse of AT we have (AT )−1AT = I. Post-operating on both sides of this

equation by (A−1)T gives

(AT )−1AT (A−1)T = (A−1)T .

Recall that (AB)T = BTAT for any two linear transformations A and B. Thus the preceding equation

simplifies to

(AT )−1(A−1A)T = (A−1)T

Since A−1A = I the desired result follows.

Example 2.12: Show that an orthogonal linear transformation Q preserves inner products, i.e. show that

Qx ·Qy = x · y for all vectors x,y.



32 CHAPTER 2. VECTORS AND LINEAR TRANSFORMATIONS

Solution: Since

(x− y) · (x− y) = x · x + y · y − 2x · y
it follows that

x · y =
1

2

{
|x|2 + |y|2 − |x− y|2

}
. (i)

Since this holds for all vectors x,y it must also hold when x and y are replaced by Qx and Qy:

Qx ·Qy =
1

2

{
|Qx|2 + |Qy|2 − |Qx−Qy|2

}
.

By definition, an orthogonal linear transformation Q preserves length, i.e. |Qv| = |v| for all vectors v. Thus

the preceding equation simplifies to

Qx ·Qy =
1

2

{
|x|2 + |y|2 − |x− y|2

}
. (ii)

Since the right-hand-sides of the preceding expressions for x · y and Qx ·Qy are the same, it follows that

Qx ·Qy = x · y.

Remark: Thus an orthogonal linear transformation preserves the length of any vector and the inner product

between any two vectors. It follows therefore that an orthogonal linear transformation preserves the angle

between a pair of vectors as well.

Example 2.13: Let Q be an orthogonal linear transformation. Show that

a. Q is non-singular, and that

b. Q−1 = QT .

Solution:

a. To show that Q is non-singular we must show that the only vector x for which Qx = o is the null

vector x = o. Suppose that Qx = o for some vector x. Taking the norm of the two sides of this

equation leads to |Qx| = |o| = 0. However an orthogonal linear transformation preserves length and

therefore |Qx| = |x|. Consequently |x| = 0. However the only vector of zero length is the null vector

and so necessarily x = o. Thus Q is non-singular.

b. Since Q is orthogonal it preserves the inner product: Qx ·Qy = x ·y for all vectors x and y. However

the property (2.19) of the transpose shows that Qx ·Qy = x ·QTQy. It follows that x ·QTQy = x ·y
for all vectors x and y, and therefore that QTQ = I. Thus Q−1 = QT .

Example 2.14: If α1 and α2 are two distinct eigenvalues of a symmetric linear transformation A, show that

the corresponding eigenvectors a1 and a2 are orthogonal to each other.

Solution: Recall from the definition of the transpose that Aa1 · a2 = a1 ·ATa2, and since A is symmetric

that A = AT . Thus

Aa1 · a2 = a1 ·Aa2 .
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Since a1 and a2 are eigenvectors of A corresponding to the eigenvalues α1 and α2, we have Aa1 = α1a1 and

Aa2 = α2a2. Thus the preceding equation reduces to α1a1 · a2 = α2a1 · a2 or equivalently

(α1 − α2)(a1 · a2) = 0.

Since, α1 6= α2 it follows that necessarily a1 · a2 = 0.

Example 2.15: If λ and e are an eigenvalue and eigenvector of an arbitrary linear transformation A, show

that λ and P−1e are an eigenvalue and eigenvector of the linear transformation P−1AP. Here P is an

arbitrary non-singular linear transformation.

Solution: Since PP−1 = I it follows that Ae = APP−1e. However we are told that Ae = λe, whence

APP−1e = λe. Operating on both sides with P−1 gives P−1APP−1e = λP−1e which establishes the

result.

Example 2.16: If λ is an eigenvalue of an orthogonal linear transformation Q, show that |λ| = 1.

Solution: Let λ and e be an eigenvalue and corresponding eigenvector of Q. Thus Qe = λe and so |Qe| =
|λe| = |λ| |e|. However, Q preserves length and so |Qe| = |e|. Thus |λ| = 1.

Remark: We will show later that +1 is an eigenvalue of a “proper” orthogonal linear transformation on E3.

The corresponding eigvector is known as the axis of Q.

Example 2.17: The components of a linear transformation A in an orthonormal basis {e1, e2, e3} are the

unique real numbers Aij defined by

Aej =

3∑

i=1

Aijei, j = 1, 2, 3. (i)

Show that the linear transformation A can be represented as

A =

3∑

i=1

3∑

j=1

Aij(ei ⊗ ej). (ii)

Solution: Consider the linear transformation given on the right-hand side of (ii) and operate it on an arbitrary

vector x:



3∑

i=1

3∑

j=1

Aij(ei ⊗ ej)


x =

3∑

i=1

3∑

j=1

Aij(x · ej)ei =

3∑

i=1

3∑

j=1

Aijxjei =

3∑

j=1

xj

(
3∑

i=1

Aijei

)
,

where we have used the facts that (p⊗q)r = (q ·r)p and xi = x ·ei. On using (i) in the right most expression

above, we can continue this calculation as follows:



3∑

i=1

3∑

j=1

Aij(ei ⊗ ej)


x =

3∑

j=1

xjAej = A

3∑

j=1

xjej = Ax.
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The desired result follows from this since this holds for arbitrary vectors x.

Example 2.18: Let R be a “rotation transformation” that rotates vectors in IE3 through an angle θ, 0 < θ < π,

about an axis e (in the sense of the right-hand rule). Show that R can be represented as

R = e⊗ e + (e1 ⊗ e1 + e2 ⊗ e2) cos θ − (e1 ⊗ e2 − e2 ⊗ e1) sin θ, (i)

where e1 and e2 are any two mutually orthogonal vectors such that {e1, e2, e} forms a right-handed or-

thonormal basis for IE3.

Solution: We begin by listing what is given to us in the problem statement. Since the transformation R

simply rotates vectors, it necessarily preserves the length of a vector and so

|Rx| = |x| for all vectors x. (ii)

In addition, since the angle through which R rotates a vector is θ, the angle between any vector x and its

image Rx is θ:

Rx · x = |x|2 cos θ for all vectors x. (iii)

Next, since R rotates vectors about the axis e, the angle between any vector x and e must equal the angle

between Rx and e:

Rx · e = x · e for all vectors x; (iv)

moreover, it leaves the axis e itself unchanged:

Re = e. (v)

And finally, since the rotation is in the sense of the right-hand rule, for any vector x that is not parallelel to

the axis e, the vectors x,Rx and e must obey the inequality

(x×Rx) · e > 0 for all vectors x that are not parallel to e. (vi)

Let {e1, e2, e} be a right-handed orthonormal basis. This implies that any vector in E3, and therefore

in particular the vectors Re1,Re2 and Re, can be expressed as linear combinations of e1, e2 and e,

Re1 = R11e1 +R21e2 +R31e,

Re2 = R12e1 +R22e2 +R32e,

Re = R13e1 +R23e2 +R33e,





(vii)

for some unique real numbers Rij , i, j = 1, 2, 3.

First, it follows from (v) and (vii)3 that

R13 = 0, R23 = 0, R33 = 1.

Second, we conclude from (iv) with the choice x = e1 that Re1 ·e = 0. Similarly Re2 ·e = 0. These together

with (vii) imply that

R31 = R32 = 0.
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Third, it follows from (iii) with x = e1 and (vii)1 that R11 = cos θ. One similarly shows that R22 = cos θ.

Thus

R11 = R22 = cos θ.

Collecting these results allows us to write (vii) as

Re1 = cos θ e1 +R21 e2,

Re2 = R12 e1 + cos θ e2,

Re = e,





(viii)

Fourth, the inequality (vi) with the choice x = e1, together with (viii) and the fact that {e1, e2, e} forms

a right-handed basis yields R21 > 0. Similarly the choice x = e2, yields R12 < 0. Fifth, (ii) with x = e1

gives |Re1| = 1 which in view of (viii)1 requires that R21 = ± sin θ. Similarly we find that R12 = ± sin θ.

Collecting these results shows that

R21 = + sin θ, R12 = − sin θ,

since 0 < θ < π. Thus in conclusion we can write (viii) as

Re1 = cos θ e1 + sin θ e2,

Re2 = − sin θ e1 + cos θ e2,

Re = e.





(ix)

Finally, recall the representation (2.40) of a linear transformation in terms of its components as defined

in (2.39). Applying this to (ix) allows us to write

R = cos θ (e1 ⊗ e1) + sin θ (e2 ⊗ e1)− sin θ (e1 ⊗ e2) + cos θ (e2 ⊗ e2) + (e⊗ e) (x)

which can be rearranged to give the desired result.

Example 2.19: If F is a nonsingular linear transformation, show that FTF is symmetric and positive definite.

Solution: For any linear transformations A and B we know that (AB)T = BTAT and (AT )T = A. It

therefore follows that

(FTF)T = FT (FT )T = FTF; (i)

this shows that FTF is symmetric.

In order to show that FTF is positive definite, we consider the quadratic form FTFx · x. By using the

property (2.19) of the transpose, we can write

FTFx · x = (Fx) · (Fx) = |Fx|2 ≥ 0. (ii)

Further, equality holds here if and only if Fx = o, which, since F is nonsingular, can happen only if x = o.

Thus FTFx · x > 0 for all vectors x 6= o and so FTF is positive definite.
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Example 2.20: Consider a symmetric positive definite linear transformation S. Show that it has a unique

symmetric positive definite square root, i.e. show that there is a unique symmetric positive definite linear

transformation T for which T2 = S.

Solution: Since S is symmetric and positive definite it has three real positive eigenvalues σ1, σ2, σ3 with

corresponding eigenvectors s1, s2, s3 which may be taken to be orthonormal. Further, we know that S can

be represented as

S =

3∑

i=1

σi(si ⊗ si). (i)

If one defines a linear transformation T by

T =

3∑

i=1

√
σi(si ⊗ si) (ii)

one can readily verify that T is symmetric, positive definite and that T2 = S. This establishes the existence

of a symmetric positive definite square-root of S. What remains is to show uniqueness of this square-root.

Suppose that S has two symmetric positive definite square roots T1 and T2 : S = T2
1 = T2

2. Let σ > 0

and s be an eigenvalue and corresponding eigenvector of S. Then Ss = σs and so T2
1s = σs. Thus we have

(T1 +
√
σI)(T1 −

√
σI)s = 0 . (iii)

If we set f = (T1 −
√
σI)s this can be written as

T1f = −√σf . (iv)

Thus either f = o or f is an eigenvector of T1 corresponding to the eigenvalue −√σ(< 0). Since T1 is

positive definite it cannot have a negative eigenvalue. Thus f = o and so

T1s =
√
σs . (v)

It similarly follows that T2s =
√
σs and therefore that

T1s = T2s. (vi)

This holds for every eigenvector s of S: i.e. T1si = T2si, i = 1, 2, 3. Since the triplet of eigenvectors form a

basis for the underlying vector space this in turn implies that T1x = T2x for any vector x. Thus T1 = T2.

Example 2.21: Polar Decomposition Theorem: If F is a nonsingular linear transformation, show that there

exists a unique positive definite symmetric linear transformation U, and a unique orthogonal linear trans-

formation R such that F = RU.

Solution: It follows from Example 2.19 that FTF is symmetric and positive definite. It then follows from

Example 2.20 that FTF has a unique symmetric positive definite square root, say, U:

U =
√

FTF. (i)
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Finally, since U is positive definite, it is nonsingular, and its inverse U−1 exists. Define the linear

transformation R through:

R = FU−1. (ii)

All we have to do is to show that R is orthogonal. But this follows from

RTR = (FU−1)T (FU−1) = (U−1)TFT FU−1 = U−1U2U−1 = I. (iii)

In this calculation we have used the fact that U, and so U−1, are symmetric. This establishes the proposition

(except for the uniqueness which if left as an exercise).

Example 2.22: The polar decomposition theorem states that any nonsingular linear transformation F can

be represented uniquely in the forms F = RU = VR where R is orthogonal and U and V are symmetric

and positive definite. Let λi, ri, i = 1, 2, 3 be the eigenvalues and eigenvectors of U. From Example 2.15 it

follows that the eigenvalues of V are the same as those of U and that the corresponding eigenvectors `i of

V are given by `i = Rri. Thus U and V have the spectral decompositions

U =

3∑

i=1

λiri ⊗ ri , V =

3∑

i=1

λi`i ⊗ `i .

Show that

F =

3∑

i=1

λi`i ⊗ ri , R =

3∑

i=1

`i ⊗ ri .

Solution: First, by using the property (2.38)1 and `i = Rri we have

F = RU = R

3∑

i=1

λiri ⊗ ri =

3∑

i=1

λi(Rri)⊗ ri =

3∑

i=1

λi`i ⊗ ri. (i)

Next, since U is non-singular

U−1 =

3∑

i=1

λ−1i ri ⊗ ri.

and therefore

R = FU−1 =

3∑

i=1

λi`i ⊗ ri

3∑

j=1

λ−1j rj ⊗ rj =

3∑

i=1

3∑

j=1

λiλ
−1
j (`i ⊗ ri)(rj ⊗ rj).

By using the property (2.37)2 and the fact that ri · rj = δij , we have (`i ⊗ ri)(rj ⊗ rj) = (ri · rj)(`i ⊗ rj) =

δij(`i ⊗ rj). Therefore

R =

3∑

i=1

3∑

j=1

λiλ
−1
j δij(`i ⊗ rj) =

3∑

i=1

λiλ
−1
i (`i ⊗ ri) =

3∑

i=1

(`i ⊗ ri). (ii)

Example 2.23: Determine the rank and the null space of the linear transformation C = a ⊗ b where a 6=
o,b 6= o.
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Solution: Recall that the rank of any linear transformation A is the dimension of its range. (The range of A

is the particular subspace of E3 comprised of all vectors Ax as x takes all values in E3.) Since Cx = (b ·x)a

the vector Cx is parallel to the vector a for every choice of the vector x. Thus the range of C is the set of

vectors parallel to a and its dimension is one. The linear transformation C therefore has rank one.

Recall that the null space of any linear transformation A is the particular subspace of E3 comprised of

the set of all vectors x for which Ax = o. Since Cx = (b · x)a and a 6= o, the null space of C consists of all

vectors x for which b · x, i.e. the set of all vectors normal to b.

Example 2.24: Let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of the symmetric linear transformation S. Show that S

can be expressed in the form

S = (I + a⊗ b)(I + b⊗ a) a 6= o, b 6= o, (i)

if and only if

0 ≤ λ1 ≤ 1, λ2 = 1, λ3 ≥ 1. (ii)

Example 2.25: Calculate the square roots of the identity tensor.

Solution: The identity is certainly a symmetric positive definite tensor. By the result of a previous example

on the square-root of a symmetric positive definite tensor, it follows that there is a unique symmetric positive

definite tensor which is the square root of I. Obviously, this square root is also I. However, there are other

square roots of I that are not symmetric positive definite. We are to explore them here: thus we wish to

determine a tensor A on E3 such that A2 = I, A 6= I and A 6= −I.

First, if Ax = x for every vector x ∈ E3, then, by definition, A = I. Since we are given that A 6= I,

there must exist at least one non-null vector x for which Ax 6= x; call this vector f1 so that Af1 6= f1. Set

e1 = (A− I) f1; (i)

since Af1 6= f1, it follows that e1 6= o. Observe that

(A + I) e1 = (A + I) (A− I)f1 = (A2 − I)f1 = Of1 = o. (ii)

Therefore

Ae1 = −e1 (iii)

and so −1 is an eigenvalue of A with corresponding eigenvector e1. Without loss of generality we can assume

that |e1| = 1.

Second, the fact that A 6= −I, together with A2 = I similary implies that there must exist a unit vector

e2 for which

Ae2 = e2, (iv)

from which we conclude that +1 is an eigenvalue of A with corresponding eigenvector e2.
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Third, one can show that {e1, e2} is a linearly independent pair of vectors. To see this, suppose that for

some scalars ξ1, ξ2 one has

ξ1e1 + ξ2e2 = o.

Operating on this by A yields ξ1Ae1 + ξ2Ae2 = o, which on using (iii) and (iv) leads to

−ξ1e1 + ξ2e2 = o.

Subtracting and adding the preceding two equations shows that ξ1e1 = ξ2e2 = o. Since e1 and e2 are

eigenvectors, neither of them is the null vector o, and therefore ξ1 = ξ2 = 0. Therefore e1 and e2 are linearly

independent.

Fourth, let e3 be a unit vector that is perpendicular to both e1 and e2. The triplet of vectors {e1, e2, e3}
is linearly independent and therefore forms a basis for E3.

Fifth, the components Aij of the tensor A in the basis {e1, e2, e3} are given, as usual, by

Aej = Aijei. (v)

Comparing (v) with (iii) yields A11 = −1, A21 = A31 = 0, and similarly comparing (v) with (iv) yields

A22 = 1, A12 = A32 = 0. The matrix of components of A in this basis is therefore

[A] =




−1 0 A13

0 1 A23

0 0 A33


 . (vi)

It follows that

[A2] = [A]2 = [A][A] =




1 0 −A13 +A13A33

0 1 A23 +A23A33

0 0 A2
33


 . (vii)

(Notation: [A2] is the matrix of components of A2 while [A]2 is the square of the matrix of components of

A. Why is [A2] = [A]2?) However, since A2 = I, the matrix of components of A2 in any basis has to be the

identity matrix. Therefore we must have

−A13 +A13A33 = 0, A23 +A23A33 = 0, A2
33 = 1, (viii)

which implies that

either

A13 = arbitrary,

A23 = 0,

A33 = 1,





or

A13 = 0,

A23 = arbitrary,

A33 = −1.





(ix)

Consequently the matrix [A] must necessarily have one of the two forms




−1 0 α1

0 1 0

0 0 1


 or




−1 0 0

0 1 α2

0 0 −1


 , (x)
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where α1 and α2 are arbitrary scalars.

Sixth, set

p1 = e1, q1 = −e1 +
α1

2
e3. (xi)

Then

p1 ⊗ q1 = −e1 ⊗ e1 +
α1

2
e1 ⊗ e3,

and therefore

I + 2p1 ⊗ q1 =
(
e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

)
− 2e1 ⊗ e1 + α1e1 ⊗ e3

= −e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + α1e1 ⊗ e3.

Note from this that the components of the tensor I+ 2p1⊗q1 are given by (x)1. Conversely, one can readily

verify that the tensor

A = I + 2p1 ⊗ q1 (xii)

has the desired properties A2 = I,A 6= I,A 6= −I for any value of the scalar α1.

Alternatively set

p2 = e2, q2 = e2 +
α2

2
e3. (xiii)

Then

p2 ⊗ q2 = e2 ⊗ e2 +
α2

2
e2 ⊗ e3,

and therefore

−I + 2p2 ⊗ q2 =
(
− e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3

)
+ 2e2 ⊗ e2 + α2e2 ⊗ e3

= −e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3 + α2e2 ⊗ e3.

Note from this that the components of the tensor −I + 2p2 ⊗ q2 are given by (x)2. Conversely, one can

readily verify that the tensor

A = −I + 2p2 ⊗ q2 (xiv)

has the desired properties A2 = I,A 6= I,A 6= −I for any value of the scalar α2.

Thus the tensors defined in (xii) and (xiv) are both square roots of the identity tensor that are not

symmetric positive definite.
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Chapter 3

Components of Vectors and Tensors.

Cartesian Tensors.

Notation:

α ..... scalar

{a} ..... 3× 1 column matrix

a ..... vector

ai ..... ith component of the vector a in some basis; or ith element of the column matrix {a}
[A] ..... 3× 3 square matrix

A ..... linear transformation

Aij ..... i, j component of the linear transformation A in some basis; or i, j element of the square matrix [A]

Cijk` ..... i, j, k, ` component of 4-tensor C in some basis

Ti1i2....in ..... i1i2....in component of n-tensor T in some basis.

3.1 Components of a vector in a basis.

Let IE3 be a three-dimensional Euclidean vector space. A set of three linearly independent

vectors {e1, e2, e3} forms a basis for IE3 in the sense that an arbitrary vector v can always

be expressed as a linear combination of the three basis vectors; i.e. given any v ∈ IE3, there

are unique scalars α, β, γ such that

v = αe1 + βe2 + γe3. (3.1)

If each basis vector ei has unit length, and if each pair of basis vectors ei, ej are mutually

orthogonal, we say that {e1, e2, e3} forms an orthonormal basis for IE3. Thus, for an

41
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orthonormal basis,

ei · ej = δij (3.2)

where δij is the Kronecker delta. In these notes we shall always restrict attention to or-

thonormal bases unless explicitly stated otherwise. If the basis is right-handed, one has in

addition that

ei · (ej × ek) = eijk (3.3)

where eijk is the alternator introduced previously in (1.44).

The components vi of a vector v in a basis {e1, e2, e3} are defined by

vi = v · ei. (3.4)

The vector can be expressed in terms of its components and the basis vectors as

v = viei. (3.5)

The components of v may be assembled into a column matrix

{v} =




v1

v2

v3


 . (3.6)

e′1

e′2e′3
v′1 v′2

v′3

v

v2

v3
v

v1

Figure 3.1: Components {v1, v2, v3} and {v′1, v′2, v′3} of the same vector v in two different bases.

Even though this is obvious from the definition (3.4), it is still important to emphasize

that the components vi of a vector depend on both the vector v and the choice of basis.

Suppose, for example, that we are given two bases {e1, e2, e3} and {e′1, e′2, e′3} as shown in
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Figure 3.1. Then the vector v has one set of components vi in the first basis and a different

set of components v′i in the second basis:

vi = v · ei, v′i = v · e′i . (3.7)

Thus the one vector v can be expressed in either of the two equivalent forms

v = viei or v = v′ie
′
i. (3.8)

The components vi and v′i are related to each other (as we shall discuss later) but in general,

vi 6= v′i.

Once a basis {e1, e2, e3} is chosen and fixed, there is a unique vector x associated with

any given column matrix {x} such that the components of x in {e1, e2, e3} are {x}. Thus,

once the basis is fixed, there is a one-to-one correspondence between column matrices and

vectors. It follows, for example, that once the basis is fixed, the vector equation z = x + y

can be written equivalently as

{z} = {x}+ {y} or zi = xi + yi (3.9)

in terms of the components xi, yi and zi in the given basis.

If ui and vi are the components of two vectors u and v in a basis, then the scalar-product

u · v can be expressed as

u · v = uivi; (3.10)

the vector-product u× v can be expressed as

u× v = (eijkujvk)ei or equivalently as (u× v)i = eijkujvk , (3.11)

where eijk is the alternator introduced previously in (1.44).

3.2 Components of a linear transformation in a basis.

Consider a linear transformation A. Any vector in IE3 can be expressed as a linear combina-

tion of the basis vectors e1, e2 and e3. In particular this is true of the three vectors Ae1,Ae2

and Ae3. Let Aij be the ith component of the vector Aej so that

Aej = Aij ei. (3.12)
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We can also write

Aij = ei · (Aej). (3.13)

The 9 scalars Aij are known as the components of the linear transformation A in the

basis {e1, e2, e3}. The components Aij can be assembled into a square matrix:

[A] =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 . (3.14)

The linear transformation A can be expressed in terms of its components Aij and the basis

vectors ei as

A =
3∑

j=1

3∑

i=1

Aij(ei ⊗ ej). (3.15)

The components Aij of a linear transformation depend on both the linear transformation

A and the choice of basis. Suppose, for example, that we are given two bases {e1, e2, e3}
and {e′1, e′2, e′3}. Then the linear transformation A has one set of components Aij in the first

basis and a different set of components A′ij in the second basis:

Aij = ei · (Aej), A′ij = e′i · (Ae′j). (3.16)

The components Aij and A′ij are related to each other (as we shall discuss later) but in

general Aij 6= A′ij.

The components of the linear transformation A = a⊗ b are

Aij = aibj. (3.17)

Once a basis {e1, e2, e3} is chosen and fixed, there is a unique linear transformation M

associated with any given square matrix [M ] such that the components of M in {e1, e2, e3}
are [M ]. Thus, once the basis is fixed, there is a one-to-one correspondence between square

matrices and linear transformations. It follows, for example, that the equation y = Ax

relating the linear transformation A and the vectors x and y can be written equivalently as

{y} = [A]{x} or yi = Aijxj (3.18)

in terms of the components Aij, xi and yi in the given basis. Similarly, if A,B and C are

linear transformations such that C = AB, then their component matrices [A], [B] and [C]

are related by

[C] = [A][B] or Cij = AikBkj. (3.19)
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The component matrix [I] of the identity linear transformation I in any orthonormal basis

is the unit matrix; its components are therefore given by the Kronecker delta δij. If [A] and

[AT ] are the component matrices of the linear transformations A and AT , then [AT ] = [A]T

and ATij = Aji.

As mentioned in Section 2.2, a symmetric linear transformation S has three real eigen-

values λ1, λ2, λ3 and corresponding orthonormal eigenvectors e1, e2, e3. The eigenvectors are

referred to as the principal directions of S. The particular basis consisting of the eigenvec-

tors is called a principal basis for S. The component matrix [S] of the symmetric linear

transformation S in its principal basis is

[S] =




λ1 0 0

0 λ2 0

0 0 λ3


 . (3.20)

As a final remark we note that if we are to establish certain results for vectors and linear

transformations, we can, if it is more convenient to do so, pick and fix a basis, and then

work with the components in that basis. If necessary, we can revert back to the vectors and

linear transformations at the end. For example the first example in the previous chapter

asked us to show that a · (b × c) = b · (c × a). In terms of components, the left hand

side of this reads a · (b × c) = ai(b × c)i = aieijkbjck = eijkaibjck. Similarly the right-

hand side reads b · (c × a) = bi(c × a)i = bieijkcjak = eijkakbicj. Since i, j, k are dummy

subscripts in the right-most expression, they can be changed to any other subscript; thus by

changing k → i, i → j and j → k we can write b · (c × a) = ejkiaibjck. Finally recalling

that the sign of eijk changes when any two adjacent subscripts are switched we find that

b · (c × a) = ejkiaibjck = −ejikaibjck = eijkaibjck where we have first switched the ki and

then the ji in the subscript of the alternator. The right-most expressions of a · (b× c) and

b · (c× a) are identical and therefore this establishes the desired identity.

3.3 Components in two bases.

Consider a 3-dimensional Euclidean vector space together with two orthonormal bases {e1, e2, e3}
and {e′1, e′2, e′3}. Since {e1, e2, e3} forms a basis, any vector, and therefore in particular the

vectors e′i, can be represented as a linear combination of the basis vectors e1, e2, e3. Let Qij

be the jth component of the vector e′i in the basis {e1, e2, e3}:

e′i = Qijej. (3.21)
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By taking the dot-product of (NNN) with e′k, one sees that

Qij = e′i · ej, (3.22)

and so Qij is the cosine of the angle between the basis vectors e′i and ej. Observe from

(NNN) that Qji can also be interpreted as the jth component of ei in the basis {e′1, e′2, e′3}
whence we also have

ei = Qji e′j. (3.23)

The 9 numbers Qij can be assembled into a square matrix [Q]. This matrix relates the

two bases {e1, e2, e3} and {e′1, e′2, e′3}. Since both bases are orthonormal it can be readily

shown that [Q] is an orthogonal matrix. If in addition, if one basis can be rotated into the

other, which means that both bases are right-handed or both are left-handed, then [Q] is a

proper orthogonal matrix and det[Q] = +1; if the two bases are related by a reflection, which

means that one basis is right-handed and the other is left-handed, then [Q] is an improper

orthogonal matrix and det[Q] = −1.

We may now relate the different components of a single vector v in two bases.

Let vi and v′i be the ith component of the same vector v in the two bases {e1, e2, e3} and

{e′1, e′2, e′3}. Then one can show that

v′i = Qijvj or equivalently {v′} = [Q]{v} (3.24)

Since [Q] is orthogonal, one also has the inverse relationships

vi = Qjiv
′
j or equivalently {v} = [Q]T{v′}. (3.25)

In general, the component matrices {v} and {v′} of a vector v in two different bases are

different. A vector whose components in every basis happen to be the same is called an

isotropic vector: {v} = [Q]{v} for all orthogonal matrices [Q]. It is possible to show that

the only isotropic vector is the null vector o.

Similarly, we may relate the different components of a single linear transforma-

tion A in two bases. Let Aij and A′ij be the ij-components of the same linear transformation

A in the two bases {e1, e2, e3} and {e′1, e′2, e′3}. Then one can show that

A′ij = QipQjqApq or equivalently [A′] = [Q][A][Q]T . (3.26)

Since [Q] is orthogonal, one also has the inverse relationships

Aij = QpiQqjA
′
pq or equivalently [A] = [Q]T [A′][Q]. (3.27)
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In general, the component matrices [A] and [A′] of a linear transformation A in two

different bases are different. A linear transformation whose components in every basis happen

to be the same is called an isotropic linear transformation: [A] = [Q][A][Q]T for all

orthogonal matrices [Q]. It is possible to show that the most general isotropic symmetric

linear transformation is a scalar multiple of the identity αI where α is an arbitrary scalar.

3.4 Scalar-valued functions of linear transformations.

Determinant, trace, scalar-product and norm.

Let Φ(A; e1, e2, e3) be a scalar-valued function that depends on a linear transformation

A and a (non-necessarily orthonormal) basis {e1, e2, e3}. For example Φ(A; e1, e2, e3) =

Ae1 · e1. Certain such functions are in fact independent of the basis, so that for every two

(not-necessarily orthonormal) bases {e1, e2, e3} and {e′1, e′2, e′3} one has Φ(A; e1, e2, e3) =

Φ(A; e′1, e
′
2, e
′
3), and in such a case we can simply write Φ(A). One example of such a

function is

Φ(A; e1, e2, e3) =
(Ae1 ×Ae2) ·Ae3

(e1 × e2) · e3

, (3.28)

(though it is certainly not obvious that this function is independent of the choice of basis).

Equivalently, let A be a linear transformation and let [A] be the components of A in some

basis {e1, e2, e3}. Let φ([A]) be some real-valued function defined on the set of all square

matrices. If [A′] are the components of A in some other basis {e′1, e′2, e′3}, then in general

φ([A]) 6= φ[A′]). This means that the function φ depends on the linear transformation A

and the underlying basis. Certain functions φ have the property that φ([A]) = φ[A′]) for

all pairs of bases {e1, e2, e3} and {e′1, e′2, e′3} and therefore such a function depends on the

linear transformation only and not the basis. For such a function we may write φ(A).

We first consider two important examples here. Since the components [A] and [A′] of

a linear tranformation A in two bases are related by [A′] = [Q][A][Q]T , if we take the

determinant of this matrix equation we get

det[A′] = det([Q][A][Q]T ) = det[Q] det[A] det[Q]T = (det[Q])2 det[A] = det[A], (3.29)

since the determinant of an orthogonal matrix is ±1. Therefore without ambiguity we may

define the determinant of a linear transformation A to be the (basis independent) scalar-

valued function given by

det A = det[A]. (3.30)
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We will see in an example at the end of this Chapter that the particular function Φ defined

in (3.28) is in fact the determinant det A.

Similarly, we may define the trace of a linear transformation A to be the (basis inde-

pendent) scalar-valued function given by

trace A = tr[A]. (3.31)

In terms of its components in a basis one has

det A = eijkA1iA2jA3k = eijkAi1Aj2Ak3, traceA = Aii; (3.32)

see (1.46). It is useful to note the following properties of the determinant of a linear trans-

formation:

det(AB) = det(A) det(B), det(αA) = α3 det(A), det(AT ) = det (A). (3.33)

As mentioned previously, a linear transformation A is said to be non-singular if the only

vector x for which Ax = o is the null vector x = o. Equivalently, one can show that A is

non-singular if and only if

det A 6= 0. (3.34)

If A is non-singular, then

det(A−1) = 1/ det(A). (3.35)

Suppose that λ and v 6= o are an eigenvalue and eigenvector of given a linear transfor-

mation A. Then by definition, Av = λv, or equivalently (A − λI)v = o. Since v 6= o it

follows that A− λI must be singular and so

det(A− λI) = 0. (3.36)

The eigenvalues are the roots λ of this cubic equation. The eigenvalues and eigenvectors of a

linear transformation do not depend on any choice of basis. Thus the eigenvalues of a linear

transformation are also scalar-valued functions of A whose values depends only on A and

not the basis: λi = λi(A). If S is symmetric, its matrix of components in a principal basis

are

[S] =




λ1 0 0

0 λ2 0

0 0 λ3



. (3.37)
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The particular scalar-valued functions

I1(A) = tr A,

I2(A) = 1/2 [(tr A)2 − tr (A2)] ,

I3(A) = det A,

(3.38)

will appear frequently in what follows. It can be readily verified that for any linear trans-

formation A and all orthogonal linear transformations Q,

I1(QTAQ) = I1(A), I2(QTAQ) = I2(A), I3(QTAQ) = I3(A), (3.39)

and for this reason the three functions (3.38) are said to be invariant under orthogonal trans-

formations. Observe from (3.37) that for a symmetric linear transformation with eigenvalues

λ1, λ2, λ3

I1(S) = λ1 + λ2 + λ3,

I2(S) = λ1λ2 + λ2λ3 + λ3λ1,

I3(S) = λ1λ2λ3.

(3.40)

The mapping (3.40) between invariants and eigenvalues is one-to-one. In addition one can

show that for any linear transformation A and any real number α,

det(A− αI) = −α3 + I1(A)α2 − I2(A)α + I3(A).

Note in particular that the cubic equation for the eigenvalues of a linear transformation can

be written as

λ3 − I1(A)λ2 + I2(A)λ− I3(A) = 0.

Finally, one can show that

A3 − I1(A)A2 + I2(A)A− I3(A)I = O. (3.41)

which is known as the Cayley-Hamilton theorem.

One can similarly define scalar-valued functions of two linear transformations A and B.

The particular function φ(A,B) defined by

φ(A,B) = tr(ABT ) (3.42)

will play an important role in what follows. Note that in terms of components in a basis,

φ(A,B) = tr(ABT ) = AijBij. (3.43)
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This particular scalar-valued function is often known as the scalar product of the two

linear transformation A and B and is written as A ·B:

A ·B = tr(ABT ). (3.44)

It is natural then to define the magnitude (or norm) of a linear transformation A, denoted

by |A| as

|A| =
√

A ·A =

√
tr(AAT ). (3.45)

Note that in terms of components in a basis,

|A|2 = AijAij. (3.46)

Observe the useful property that if |A| → 0, then each component

Aij → 0. (3.47)

This will be used later when we linearize the theory of large deformations.

3.5 Cartesian Tensors

Consider two orthonormal bases {e1, e2, e3} and {e′1, e′2, e′3}. A quantity whose components

vi and v′i in these two bases are related by

v′i = Qijvj (3.48)

is called a 1st-order Cartesian tensor or a 1-tensor. It follows from our preceding discussion

that a vector is a 1-tensor.

A quantity whose components Aij and A′ij in two bases are related by

A′ij = QipQjqApq (3.49)

is called a 2nd-order Cartesian tensor or a 2-tensor. It follows from our preceding discussion

that a linear transformation is a 2-tensor.

The concept of an nth-order tensor can be introduced similarly: let T be a physical entity

which, in a given basis {e1, e2, e3}, is defined completely by a set of 3n ordered numbers

Ti1i2....in . The numbers Ti1i2....in are called the components of T in the basis {e1, e2, e3}. If,

for example, T is a scalar, vector or linear transformation, it is represented by 30, 31 and 32
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components respectively in the given basis. Let {e′1, e′2, e′3} be a second basis related to the

first one by the orthogonal matrix [Q], and let T′i1i2....in be the components of the entity T
in the second basis. Then, if for every pair of such bases, these two sets of components are

related by

T′i1i2....in = Qi1j1 Qi2j2 .... Qinjn Tj1j2....jn , (3.50)

the entity T is called a nth-order Cartesian tensor or more simply an n-tensor.

Note that the components of a tensor in an arbitrary basis can be calculated if its com-

ponents in any one basis are known.

Two tensors of the same order are added by adding corresponding components.

Recall that the outer-product of two vectors a and b is the 2−tensor C = a ⊗ b whose

components are given by Cij = ai bj. This can be generalized to higher-order tensors. Given

an n-tensor A and an m-tensor B their outer-product is the (m + n)−tensor C = A ⊗ B
whose components are given by

Ci1i2..inj1j2..jm = Ai1i2...in Bj1j2...jm . (3.51)

Let A be a 2-tensor with components Aij in some basis. Then “contracting” A over its

subscripts leads to the scalar Aii. This can be generalized to higher-order tensors. Let A
be a n-tensor with components Ai1i2...in in some basis. Then “contracting” A over two of its

subscripts, say the ijth and ikth subscripts, leads to the (n− 2)−tensor whose components

in this basis are Ai1 i2 .. ij−1 p ij+1 ...ik−1 p ik+1 .... in . Contracting over two subscripts involves

setting those two subscripts equal, and therefore summing over them.

Let a,b and T be entities whose components in a basis are denoted by ai, bi and Tij.

Suppose that the components of T in some basis are related to the components of a and b

in that same basis by ai = Tijbj. If a and b are 1-tensors, then one can readily show that

T is necessarily a 2-tensor. This is called the quotient rule since it has the appearance

of saying that the quotient of two 1-tensors is a 2-tensor. This rule generalizes naturally to

tensors of more general order. Suppose that A, B and T are entities whose components in a

basis are related by,

Ai1i2..in = Tk1k2...k` Bj1j2...jm (3.52)

where some of the subscripts maybe repeated. If it is known that A and B are tensors, then

T is necessarily a tensor as well.

In general, the components of a tensor T in two different bases are different: T′i1i2...in 6=
Ti1i2...in . However, there are certain special tensors whose components in one basis are the
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same as those in any other basis; an example of this is the identity 2-tensor I. Such a tensor

is said to be isotropic. In general, a tensor T is said to be an isotropic tensor if its

components have the same values in all bases, i.e. if

T′i1i2...in = Ti1i2...in (3.53)

in all bases {e1, e2, e3} and {e′1, e′2, e′3}. Equivalently, for an isotropic tensor

Ti1i2....in = Qi1j1 Qi2j2 ....Qinjn Tj1j2....jn for all orthogonal matrices [Q]. (3.54)

One can show that (a) the only isotropic 1-tensor is the null vector o; (b) the most general

isotropic 2-tensor is a scalar multiple of the identity linear transformation, αI; (c) the most

general isotropic 3-tensor is the null 3-tensor o; (d) and the most general isotropic 4-tensor

C has components (in any basis)

Cijkl = αδijδkl + βδikδjl + γδilδjk (3.55)

where α, β, γ are arbitrary scalars.

3.6 Worked Examples.

In some of the examples below, we are asked to establish certain results for vectors and linear

transformations. As noted previously, whenever it is more convenient we may pick and fix a

basis, and then work using components in that basis. If necessary, we can revert back to the

vectors and linear transformations at the end. We shall do this frequently in what follows

and will not bother to explain this each time.

It is also worth pointing out that in some of the example below calculations involving

vectors and/or linear transformation are carried out without reference to their components.

One might have expected such examples to have been presented in Chapter 2. They are

contained in the present chapter because they all involve either the determinant or trace of a

linear transformation, and we chose to define these quantities in terms of components (even

though they are basis independent).

Example 3.1: Suppose that A is a symmetric linear transformation. Show that its matrix of components [A]

in any basis is a symmetric matrix.
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Solution: According to (3.13), the components of A in the basis {e1, e2, e3} are defined by

Aji = ej ·Aei. (i)

The property (NNN) of the transpose shows that ej · Aei = ATej · ei, which, on using the fact that A

is symmetric further simplifies to ej ·Aei = Aej · ei; and finally since the order of the vectors in a scalar

product do not matter we have ej ·Aei = ei ·Aej . Thus

Aji = ei ·Aej . (ii)

By (3.13), the right most term here is the Aij component of A, and so (ii) yields

Aji = Aij . (iii)

Thus [A] = [A]T and so the matrix [A] is symmetric.

Remark: Conversely, if it is known that the matrix of components [A] of a linear transformation in some

basis is is symmetric, then the linear transformation A is also symmetric.

Example 2.5: Choose any convenient basis and calculate the components of the projection linear transfor-

mation Π and the reflection linear transformation R in that basis.

Solution: Let e3 be a unit vector normal to the plane P and let e1 and e2 be any two unit vectors in

P such that {e1, e2, e3} forms an orthonormal basis. From an example in the previous chapter we know

that the projection transformation Π and the reflection transformation R in the plane P can be written as

Π = I− e3⊗ e3 and R = I− 2(e3⊗ e3) respectively. Since the components of e3 in the chosen basis are δ3i,

we find that

Πij = δij − (e3)i(e3)j = δij − δ3iδ3j , Rij = δij − 2δ3iδ3j .

Example 3.2: Consider the scalar-valued function

f(A,B) = trace(ABT ) (i)

and show that, for all linear transformations A,B,C, and for all scalars α, this functionf has the following

properties:

i) f(A,B) = f(B,A),

ii) f(αA,B) = αf(A,B),

iii) f(A + C,B) = f(A,B) + f(C,B) and

iv) f(A,A) > 0 provided A 6= 0.

Solution: Let Aij and Bij be the components of A and B in an arbitrary basis. In terms of these components,

(ABT )ij = AikB
T
kj = AikBjk and so

f(A,B) = AikBik . (ii)
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It is now trivial to verify that all of the above requirements hold.

Remark: It follows from this that the function f has all of the usual requirements of a scalar product.

Therefore we may define the scalar-product of two linear transformations A and B, denoted by A ·B, as

A ·B = trace(ABT ) = AijBij . (iii)

Note that, based on this scalar-product, we can define the magnitude of a linear transformation to be

|A| =
√

A ·A =
√
AijAij . (iv)

Example 3.3: For any two vectors u and v, show that their cross-product u×v is orthogonal to both u and

v.

Solution: We are to show, for example, that u · (u× v) = 0. In terms of their components we can write

u · (u× v) = ui (u× v)i = ui (eijkujvk) = eijkuiujvk . (i)

Since eijk = −ejik and uiuj = ujui, it follows that eijk is skew-symmetric in the subscripts ij and uiuj is

symmetric in the subscripts ij. Thus it follows from Example 1.3 that eijkuiuj = 0 and so u · (u× v) = 0.

The orthogonality of v and u× v can be established similarly.

Example 3.4 Suppose that a,b, c, are any three linearly independent vectors and that F be an arbitrary

non-singular linear transformation. Show that

(Fa× Fb) · Fc = det F (a× b) · c (i)

Solution: First consider the left-hand side of (i). On using (3.10), and (3.11), we can express this as

(Fa× Fb) · Fc = (Fa× Fb)i (Fc)i = eijk (Fa)j (Fb)k (Fc)i, (ii)

and consequently

(Fa× Fb) · Fc = eijk (Fjp ap) (Fkq bq) (Fir cr) = eijk FirFjpFkqap bq cr . (iii)

Turning next to the right-hand side of (i), we note that

det F (a× b) · c = det[F ](a× b)ici = det[F ]eijkajbkci = det[F ]erpqapbqcr . (iv)

Recalling the identity erpq det[F ] = eijkFirFjpFkq in (1.48) for the determinant of a matrix and substituting

this into (iv) gives

det F (a× b) · c = eijkFirFjpFkqapbqcr. (v)

Since the right-hand sides of (iii) and (v) are identical, it follows that the left-hand sides must also be equal,

thus establishing the desired result.
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Example 3.5 Suppose that a,b and c are three non-coplanar vectors in IE3. Let V0 be the volume of the

tetrahedron defined by these three vectors. Next, suppose that F is a non-singular 2-tensor and let V denote

the volume of the tetrahedron defined by the vectors Fa,Fb and Fc. Note that the second tetrahedron is

the image of the first tetrahedron under the transformation F. Derive a formula for V in terms of V0 and F.

cc

a

b

Fa

Fb
Fc

Volumeolume V

Volumeolume V0 F

Figure 3.2: Tetrahedron of volume V0 defined by three non-coplanar vectors a,b and c; and its image

under the linear transformation F.

Solution: Recall from an example in the previous Chapter that the volume V0 of the tetrahedron defined by

any three non-coplanar vectors a,b, c is

V0 =
1

6
(a× b) · c.

The volume V of the tetrahedron defined by the three vectors Fa,Fb,Fc is likewise

V =
1

6
(Fa× Fb) · Fc.

It follows from the result of the previous example that

V/V0 = det F

which describes how volumes are mapped by the transformation F.

Example 3.6: Suppose that a and b are two non-colinear vectors in IE3. Let α0 be the area of the par-

allelogram defined by these two vectors and let n0 be a unit vector that is normal to the plane of this

parallelogram. Next, suppose that F is a non-singular 2-tensor and let α and n denote the area and unit

normal to the parallelogram defined by the vectors Fa and Fb. Derive formulas for α and n in terms of

α0,n0 and F.

Solution: By the properties of the vector-product we know that

α0 = |a× b|, n0 =
a× b

|a× b| ;

and similarly that

α = |Fa× Fb|, n =
Fa× Fb

|Fa× Fb| .
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F

a

b

n0 AreaArea α0

Fa

Fb
n

AreaArea α

Figure 3.3: Parallelogram of area α0 with unit normal n0 defined by two non-colinear vectors a and b;

and its image under the linear transformation F.

Therefore

α0n0 = a× b, and αn = Fa× Fb. (i)

But

(Fa× Fb)s = esij(Fa)i(Fb)j = esijFipapFjqbq. (ii)

Also recall the identity epqr det[F ] = eijkFipFjqFkr introduced in (1.48). Multiplying both sides of this

identity by F−1rs leads to

epqr det[F ]F−1rs = eijkFipFjqFkrF
−1
rs = eijkFipFjqδks = eijsFipFjq = esijFipFjq (iii)

Substituting (iii) into (ii) gives

(Fa× Fb)s = det[F ]epqrF
−1
rs apbq = det[F ]erpqapbqF

−1
rs = det F(a× b)rF

−T
sr = det F

(
F−T (a× b)

)
s

and so using (i),

αn = α0 det F(F−Tn0).

This describes how (vectorial) areas are mapped by the transformation F. Taking the norm of this vector

equation gives
α

α0
= |det F| |F−Tn0|;

and substituting this result into the preceding equation gives

n =
F−Tn0

|F−Tn0|
.

Example 3.5: Let {e1, e2, e3} and {e′1, e′2, e′3} be two bases related by nine scalars Qij through e′i = Qijej .

Let Q be the linear transformation whose components in the basis {e1, e2, e3} are Qij . Show that

e′i = QTei;

thus QT is the transformation that carries the first basis into the second.
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Solution: Since Qij are the components of the linear transformation Q in the basis {e1, e2, e3}, it follows

from the definition of components that

Qej = Qijei.

Since [Q] is an orthogonal matrix one readily sees that Q is an orthogonal transformation. Operating on

both sides of the preceding equation by QT and using the orthogonality of Q leads to

ej = QijQ
Tei.

Multiplying both sides of this by Qkj and noting by the orthogonality of Q that QkjQij = δki, we are now

led to

Qkjej = QTek

or equivalently

QTei = Qijej .

This, together with the given fact that e′i = Qijej , yields the desired result.

Example 3.6: Determine the relationship between the components vi and v′i of a vector v in two bases.

Solution: The components vi of v in the basis {e1, e2, e3} are defined by

vi = v · ei,

and its components v′i in the second basis {e′1, e′2, e′3} are defined by

v′i = v · e′i.

It follows from this and (NNN) that

v′i = v · e′i = v · (Qijej) = Qijv · ej = Qijvj .

Thus, the components of the vector v in the two bases are related by

v′i = Qijvj .

Example 3.7: Determine the relationship between the components Aij and A′ij of a linear transformation A

in two bases.

Solution: The components Aij of the linear transformation A in the basis {e1, e2, e3} are defined by

Aij = ei · (Aej), (i)

and its components A′ij in a second basis {e′1, e′2, e′3} are defined by

A′ij = e′i · (Ae′j). (ii)
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By first making use of (NNN), and then (i), we can write (ii) as

A′ij = e′i · (Ae′j) = Qipep · (AQjqeq) = QipQjqep · (Aeq) = QipQjqApq. (iii)

Thus, the components of the linear transformation A in the two bases are related by

A′ij = QipQjqApq. (iv)

Example 3.8: Suppose that the basis {e′1, e′2, e′3} is obtained by rotating the basis {e1, e2, e3} through an

angle θ about the unit vector e3; see Figure 3.4. Write out the transformation rule for 2-tensors explicitly

in this case.

e1

e2

e′1

e′2

e3, e
′
3

θ

θ

Figure 3.4: A basis {e′1, e′2, e′3} obtained by rotating the basis {e1, e2, e3} through an angle θ about the

unit vector e3.

Solution: In view of the given relationship between the two bases it follows that

e′1 = cos θ e1 + sin θ e2,

e′2 = − sin θ e1 + cos θ e2,

e′3 = e3.





The matrix [Q] which relates the two bases is defined by Qij = e′i · ej , and so it follows that

[Q] =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1




.
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Substituting this [Q] into [A′] = [Q][A][Q]T and multiplying out the matrices leads to the 9 equations

A′11 =
A11 +A22

2
+

A11 −A22

2
cos 2θ +

A12 +A21

2
sin 2θ,

A′12 =
A12 −A21

2
+

A12 −A21

2
cos 2θ − A11 −A22

2
sin 2θ,

A′21 = −A12 −A21

2
− A12 −A21

2
cos 2θ − A11 −A22

2
sin 2θ,

A′22 =
A11 +A22

2
− A11 −A22

2
cos 2θ − A12 +A21

2
sin 2θ,

A′13 = A13 cos θ + A23 sin θ, A′31 = A31 cos θ + A32 sin θ,

A′23 = A23 cos θ − A13 sin θ, A′32 = A32 cos θ − A31 sin θ,

A′33 = A33 .

In the special case when [A] is symmetric, and in addition A13 = A23 = 0, these nine equations simplify to

A′11 =
A11 +A22

2
+

A11 −A22

2
cos 2θ + A12 sin 2θ,

A′22 =
A11 +A22

2
− A11 −A22

2
cos 2θ − A12 sin 2θ,

A′12 = − A11 −A22

2
sin 2θ,





together with A′13 = A′23 = 0 and A′33 = A33. These are the well-known equations underlying the Mohr’s

circle for transforming 2-tensors in two-dimensions.

Example 3.9:

a. Let a,b and T be entities whose components in some arbitrary basis are ai, bi and Tij . The components

of T in any basis are defined in terms of the components of a and b in that basis by

Tijk = aibjbk. (i)

If a and b are vectors, show that T is a 3-tensor.

b. Suppose that A and B are 2-tensors and that their components in some basis are related by

Aij = Cijk`Bk`. (ii)

Show that the Cijk`’s are the components of a 4-tensor.

Solution:

a. Let ai, a
′
i and bi, b

′
i be the components of a and b in two arbitrary bases. We are told that the

components of the entity T in these two bases are defined by

Tijk = aibjbk, T ′ijk = a′ib
′
jb
′
k. (iii)
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Since a and b are known to be vectors, their components transform according to the 1-tensor trans-

formation rule

a′i = Qijaj , b′i = Qijbj . (iv)

Combining equations (iii) and (iv) gives

T ′ijk = a′ib
′
jb
′
k = QipapQjqbqQkrbr = QipQjqQkrapbqbr = QipQjqQkrTpqr. (v)

Therefore the components of T in two bases transform according to T ′ijk = QipQjqQkrTpqr. Therefore

T is a 3-tensor.

b. Let Aij , Bij ,Cijk` and A′ij , B
′
ij ,C′ijk` be the components of A,B,C in two arbitrary bases:

Aij = Cijk`Bk`, A′ij = C′ijk`B′k`. (vi)

We are told that A and B are 2-tensors, whence

A′ij = QipQjqApq, B′ij = QipQjqBpq, (vii)

and we must show that Cijk` is a 4-tensor, i.e that C′ijk` = QipQjqQkrQ`sCpqrs. Substituting (vii)

into (vi)2 gives

QipQjqApq = C′ijk`QkpQ`qBpq, (viii)

Multiplying both sides by QimQjn and using the orthogonality of [Q], i.e. the fact that QipQim = δpm,

leads to

δpmδqnApq = C′ijk`QimQjnQkpQ`qBpq, (ix)

which by the substitution rule tells us that

Amn = C′ijk`QimQjnQkpQ`qBpq, (x)

or on using (vi)1 in this that

CmnpqBpq = C′ijk`QimQjnQkpQ`qBpq. (xi)

Since this holds for all matrices [B] we must have

Cmnpq = C′ijk`QimQjnQkpQ`q. (xii)

Finally multiplying both sides by QamQbnQcpQdq, using the orthogonality of [Q] and the substitution

rule yields the desired result

QamQbnQcpQdqCmnpq = C′abcd. (xiii)

Example 3.10: Verify that the alternator eijk has the property that

eijk = Qip QjqQkr epqr for all proper orthogonal matrices [Q], (i)

but that more generally

eijk 6= Qip QjqQkr epqr for all orthogonal matrices [Q]. (ii)
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Note from this that the alternator is not an isotropic 3-tensor.

Example 3.11: If Cijk` is an isotropic 4-tensor, show that necessarily Ciik` = αδk` for some arbitrary scalar

α.

Solution: Since Cijkl is an isotropic 4-tensor, by definition,

Cijkl = Qip Qjq Qkr Qls Cpqrs

for all orthogonal matrices [Q]. On setting i = j in this; then using the orthogonality of [Q]; and finally

using the substitution rule, we are led to

Ciikl = Qip Qiq Qkr Qls Cpqrs = δpq Qkr Qls Cpqrs = Qkr Qls Cpprs .

Thus Ciik` obeys

Ciikl = Qkr Qls Cpprs for all orthogonal matrices [Q],

and therefore it is an isotropic 2-tensor. The desired result now follows since the most general isotropic

2-tensor is a scalar multiple of the identity.

Example 3.12: Show that the most general isotropic vector is the null vector o.

Solution: In order to show this we must determine the most general vector u which is such that

ui = Qijuj for all orthogonal matrices [Q]. (i)

Since (i) is to hold for all orthogonal matrices [Q], it must necessarily hold for the special choice [Q] = −[I].

Then Qij = −δij , and so (i) reduces to

ui = −δijuj = −ui; (ii)

thus ui = 0 and so u = o.

Conversely, u = o obviously satisfies (i) for all orthogonal matrices [Q]. Thus u = o is the most general

isotropic vector.

Example 3.13: Show that the most general isotropic symmetric tensor is a scalar multiple of the identity.

Solution: We must find the most general symmetric 2-tensor A whose components in every basis are the

same; i.e.,

[A] = [Q][A][Q]T for all orthogonal matrices [Q]. (i)

First, since A is symmetric, we know that there is some basis in which [A] is diagonal. Since A is also

isotropic, it follows that [A] must therefore be diagonal in every basis. Thus [A] has the form

[A] =




λ1 0 0

0 λ2 0

0 0 λ3


 (ii)
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in any basis. Thus (i) takes the form




λ1 0 0

0 λ2 0

0 0 λ3


 = [Q]




λ1 0 0

0 λ2 0

0 0 λ3


 [QT ] (iii)

for all orthogonal matrices [Q]. Thus (iii) must necessarily hold for the special choice

[Q] =




0 0 1

1 0 0

0 1 0


 , (iv)

in which case (iii) reduces to 


λ1 0 0

0 λ2 0

0 0 λ3


 =




λ2 0 0

0 λ1 0

0 0 λ3


 . (v)

Therefore, λ1 = λ2.

A permutation of this special choice of [Q] similarly shows that λ2 = λ3. Thus λ1 = λ2 = λ3 = say α.

Therefore [A] necessarily must have the form [A] = α[I].

Conversely, by direct substitution, [A] = α[I] is readily shown to obey (i) for any orthogonal matrix [Q].

This establishes the result.

Example 3.14: If W is a skew-symmetric tensor, show that there is a vector w such that Wx = w × x for

all x ∈ IE.

Solution: Let Wij be the components of W in some basis and let w be the vector whose components in this

basis are defined by

wi = −1

2
eijkWjk. (i)

Then, we merely have to show that w has the desired property stated above.

Multiplying both sides of the preceding equation by eipq and then using the identity eijkeipq = δjpδkq −
δjqδkp, and finally using the substitution rule gives

eipqwi = −1

2
(δjpδkq − δjqδkp)Wjk = −1

2
(Wpq −Wqp)

Since W is skew-symmetric we have Wij = −Wji and thus conclude that

Wij = −eijkwk.

Now for any vector x,

Wijxj = −eijkwkxj = eikjwkxj = (w × x)i.

Thus the vector w defined by (i) has the desired property Wx = w × x.
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Example 3.15: Verify that the 4-tensor

Cijk` = αδijδk` + βδikδj` + γδi`δjk, (i)

where α, β, γ are scalars, is isotropic. If this isotropic 4-tensor is to possess the symmetry Cijk` = Cjik`,
show that one must have β = γ.

Solution: In order to verify that Cijk` are the components of an isotropic 4-tensor we have to show that

Cijk` = Qip Qjq Qkr Q`s Cpqrs for all orthogonal matrices [Q]. The right-hand side of this can be simplified

by using the given form of Cijk`; the substitution rule; and the orthogonality of [Q] as follows:

Qip Qjq Qkr Q`s Cpqrs
= Qip Qjq Qkr Q`s(α δpq δrs + β δpr δqs + γ δps δqr)

= α Qiq Qjq Qks Q`s + β Qir Qjs Qkr Q`s + γ Qis Qjr Qkr Q`s

= α (QiqQjq) (QksQ`s) + β (QirQkr) (QjsQ`s) + γ (QisQ`s) (QjrQkr)

= α δij δk` + β δik δj` + γ δi` δjk

= Cijk`. (ii)

This establishes the desired result.

Turning to the second question, enforcing the requirement Cijk` = Cjik` on (i) leads, after some simpli-

fication, to

(β − γ) (δik δj` − δjk δi`) = 0 . (iii)

Since this must hold for all values of the free indices i, j, k, `, it must necessarily hold for the special choice

i = 1, j = 2, k = 1, ` = 2. Therefore (β − γ)(δ11 δ22 − δ21 δ12) = 0 and so

β = γ. (iv)

Remark: We have shown that β = γ is necessary if C given in (i) is to have the symmetry Cijk` = Cjik`.
One can readily verify that it is sufficient as well. It is useful for later use to record here, that the most

general isotropic 4-tensor C with the symmetry property Cijk` = Cjik` is

Cijk` = αδijδk` + β (δikδj` + δi`δjk) (v)

where α and β are scalars.

Remark: Observe that Cijk` given by (v) automatically has the symmetry Cijk` = Ck`ij .

Example 3.16: If A is a tensor such that

Ax · x = 0 for all x (i)

show that A is necessarily skew-symmetric.

Solution: By definition of the transpose and the properties of the scalar product, Ax ·x = x ·ATx = ATx ·x.

Therefore A has the properties that

Ax · x = 0, and ATx · x = 0 for all vectors x.
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Adding these two equations gives

Sx · x = 0 where S =
(
A + AT

)
.

Observe that S is symmetric. Therefore in terms of components in a principal basis of S,

Sx · x = σ1x
2
1 + σ2x

2
2 + σ3x

2
3 = 0

where the σk’s are the eigenvalues of S. Since this must hold for all real numbers xk, it follows that every

eigenvalue must vanish: σ1 = σ2 = σ3 = 0. Therefore S = O whence

A = −AT .

Remark: An important consequence of this is that if A is a tensor with the property that Ax · x = 0 for all

x, it does not follow that A = 0 necessarily.

Example 2.18: For any orthogonal linear transformation Q, show that det Q = ±1.

Solution: Recall that for any two linear transformations A and B we have det(AB) = det A det B and

det B = det BT . Since QQT = I it now follows that 1 = det I = det(QQT ) = det Q det QT = (det Q)2. The

desired result now follows.

Example 2.20: If Q is a proper orthogonal linear transformation on the vector space IE3, show that there

exists a vector v such that Qv = v. This vector is known as the axis of Q.

Solution: To show that there is a vector v such that Qv = v, it is sufficient to show that Q has an eigenvalue

+1, i.e. that (Q− I)v) = o or equivalently that det(Q− I) = 0.

Since QQT = I we have Q(QT − I) = I −Q. On taking the determinant of both sides and using the

fact that det(AB) = det A det B we get

det Q det(QT − I) = det (I−Q) . (i)

Recall that det Q = +1 for a proper orthogonal linear transformation, and that det A = AT and det(−A) =

(−1)3 det(A) for a 3-dimensional vector space. Therefore this leads to

det(Q− I) = −det(Q− I), (ii)

and the desired result now follows.

Example 2.22: For any linear transformation A, show that det(A−µI) = det(QTAQ−µI) for all orthogonal

linear transformations Q and all scalars µ.

Solution: This follows readily since

det(QTAQ−µI) = det(QTAQ−µQTQ) = det
(
QT (A− µI)Q

)
= det QT det(A−µI) det Q = det(A−µI).
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Remark: Observe from this result that the eigenvalues of QTAQ coincide with those of Q, so that in

particular the same is true of their product and their sum: det(QTAQ) = det A and tr(QTAQ) = tr A.

Example 2.26: Define a scalar-valued function φ(A; e1, e2, e3) for all linear transformations A and all (not

necessarily) orthonormal bases {e1, e2, e3} by

φ(A; e1, e2, e3) =
Ae1 · (e2 × e3) + e1 · (Ae2 × e3) + e1 · (e2 ×Ae3)

e1 · (e2 × e3)
.

Show that φ(A, e1, e2, e3) is in fact independent of the choice of basis, i.e., show that

φ(A, e1, e2, e3) = I1(A, e′1, e
′
2, e
′
3)

for any two bases {e1, e2, e3} and {e′1, e′2, e′3}. Thus, we can simply write φ(A) instead of φ(A, e1, e2, e3);

φ(A) is called a scalar invariant of A.

Pick any orthonormal basis and express φ(A) in terms of the components of A in that basis; and hence

show that φ(A) = trace A.

Example 3.7: Let F(t) be a one-parameter familty of non-singular 2-tensors that depends smoothly on the

parameter t. Calculate
d

dt
det F(t).

Solution: From the result of Example 3.NNN we have

(
F(t)a× F(t)b

)
· F(t)c = det F(t) (a× b) · c

Differentiating this with respect to t gives

(
Ḟ(t)a× F(t)b

)
· F(t)c +

(
F(t)a× Ḟ(t)b

)
· F(t)c +

(
F(t)a× F(t)b

)
· Ḟ(t)c =

d

dt
det F(t) (a× b) · c

where we have set Ḟ(t) = dF/dt. We can write this as

(
ḞF−1Fa× Fb

)
· Fc +

(
Fa× ḞF−1Fb

)
· Fc +

(
Fa× Fb

)
· ḞF−1Fc =

(
d

dt
det F

)
(a× b) · c.

In view of the result of Example 3.NNN, this can be written as

trace
(
ḞF−1

)(
Fa× Fb

)
· Fc =

(
d

dt
det F

)
(a× b) · c

and now using the result of Example 3.NNN once more we get

trace
(
ḞF−1

)
det F (a× b) · c =

(
d

dt
det F

)
(a× b) · c.

or
d

dt
det F = trace

(
ḞF−1

)
det F.
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Example 2.30: For any integer N > 0, show that the polynomial

PN (A) = c0I + c1A + c2A
2 + . . . ckA

k + . . .+ cNAN

can be written as a quadratic polynomial of A.

Solution: This follows readily from the Cayley-Hamilton Theorem (3.41) as follows: suppose that A is non-

singular so that I3(A) = det A 6= 0. Then (3.41) shows that A3 can be written as a linear combination of

I, A and A2. Next, multiplying this by A tells us that A4 can be written as a linear combination of A, A2

and A3, and therefore, on using the result of the previous step, as linear combination of I, A and A2. This

process can be continued an arbitrary number of times to see that for any integer k, Ak can be expressed as

a linear combination of I, A and A2. The result thus follows.

Example 2.31: For any linear transformation A show that

det(A− αI) = −α3 + I1(A)α2 − I2(A)α+ I3(A)

for all real numbers α where I1(A), I2(A) and I3(A) are the principal scalar invariants of A:

I1(A) = trace A, I2(A) = 1/2[(trace A)2 − trace(A2)], I3(A) = det A.

Example 2.32: Calculate the principal scalar invariants I1, I2 and I3 of the linear transformation a⊗ b.

References

1. H. Jeffreys, Cartesian Tensors, Cambridge, 1931.

2. J.K. Knowles, Linear Vector Spaces and Cartesian Tensors, Oxford University Press, New York, 1997.

3. L.A. Segel, Mathematics Applied to Continuum Mechanics, Dover, New York, 1987.



Chapter 4

Characterizing Symmetry: Groups of

Linear Transformations.

Linear transformations are mappings of vector spaces into vector spaces. When an object

is mapped using a linear transformation, certain transformations preserve its symmetry

while others don’t. One way in which to characterize the symmetry of an object is to

consider the collection of all linear transformations that preserve its symmetry. The set of

such transformations depends on the object: for example the set of linear transformations

that preserve the symmetry of a cube is different to the set of linear transformations that

preserve the symmetry of a tetrahedron. In this chapter we touch briefly on the question of

characterizing symmetry by linear transformations.

Intuitively a “uniform all-around expansion”, i.e. a linear transformation of the form αI

that rescales the object by changing its size but not its shape, does not affect symmetry.

We are interested in other linear transformations that also preserve symmetry, principally

rotations and reflections. In this Chapter we shall consider those linear transformations that

map the object back into itself. The collection of such transformations have certain important

and useful properties.

67
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i

j

B

C

D

A

o

Figure 4.1: Mapping a square into itself.

4.1 An example in two-dimensions.

We begin with an illustrative example. Consider a square, ABCD, which lies in a plane

normal to the unit vector k, whose center is at the origin o and whose sides are parallel

to the orthonormal vectors {i, j}. Consider mappings that carry the square into itself. The

vertex A can be placed in one of 4 positions; see Figure 4.1. Once the location of A has

been determined, the vertex B can be placed in one of 2 positions (allowing for reflections

or in just one position if only rotations are permitted). And once the locations of A and

B have been fixed, there is no further flexibility and the locations of the remaining vertices

are fixed. Thus there are a total of 4 × 2 = 8 symmetry preserving transformations of the

square, 4 of which are rotations and 4 of which are reflections.

Consider the 4 rotations. In order to determine them, we (a) identify the axes of rotational

symmetry and then (b) determine the number of distinct rotations about each such axis.

In the present case there is just 1 axis to consider, viz. k, and we note that 0o, 90o, 180o

and 270o rotations about this axis map the square back into itself. Thus the following 4

distinct rotations are symmetry transformations: I,R
π/2

k
, Rπ

k, R
3π/2

k
where we are using the

notation introduced previously, i.e. Rφ
n is a right-handed rotation through an angle φ about

the axis n.

Let Gsquare denote the set consisting of these 4 symmetry preserving rotations:

Gsquare = {I, R
π/2

k
, Rπ

k, R
3π/2

k
}.
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This collection of linear transformations has two important properties: first, observe that

the successive application of any two symmetries yields a third symmetry, i.e. if P1 and P2

are in Gsquare, then so is their product P1P2. For example, Rπ

kR
π/2

k
= R

3π/2

k
, R

π/2

k
R

3π/2

k
=

I, R
3π/2

k
R

3π/2

k
= Rπ

k etc. Second, observe that if P is any member of Gsquare, then so is its

inverse P−1. For example (Rπ

k)−1 = Rπ

k, (R
3π/2

k
)−1 = R

π/2

k
etc. As we shall see in Section

4.4, these two properties endow the set Gsquare with a certain special structure.

Next consider the rotation R
π/2

k
and observe that every element of the set Gsquare can be

represented in the form (R
π/2

k
)n for the integer choices n = 0, 1, 2, 3. Therefore we can say

that the set Gsquare is “generated” by the element R
π/2

k
.

Finally observe that

G ′square = {I,Rπ}

is a subset of Gsquare and that it too has the properties that if P1,P2 ∈ G ′square then their

product P1P2 is also in G ′square; and if P ∈ G ′square so is its inverse P−1.

We shall generalize all of this in Section 4.4.

4.2 An example in three-dimensions.

BB
C

D

A

i

jk

o

Figure 4.2: Mapping a cube into itself.

Before considering some general theory, it is useful to consider the three-dimensional

version of the previous problem. Consider a cube whose center is at the origin o and whose
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edges are parallel to the orthonormal vectors {i, j,k}, and consider mappings that carry the

cube into itself. Consider a vertex A, and its three adjacent vertices B, C, D. The vertex

A can be placed in one of 8 positions. Once the location of A has been determined, the

vertex B can be placed in one of 3 positions. And once the locations of A and B have been

fixed, the vertex C can be placed in one of 2 positions (allowing for reflections or in just one

position if only rotations are permitted). Once the vertices A, B and C have been placed,

the locations of the remaining vertices are fixed. Thus there are a total of 8 × 3 × 2 = 48

symmetry preserving transformations of the cube, 24 of which are rotations and 24 of which

are reflections.

First, consider the 24 rotations. In order to determine these rotations we again (a) identify

all axes of rotational symmetry and then (b) determine the number of distinct rotations about

each such axis. In the present case we see that, in addition to the identify transformation I

itself, we have the following rotational transformations that preserve symmetry:

1. There are 3 axes that join the center of one face of the cube to the center of the

opposite face of the cube which we can take to be i, j,k, (which in materials science

are called the {100} directions); and 90o, 180o and 270o rotations about each of these

axes maps the cube back into the cube. Thus the following 3×3 = 9 distinct rotations

are symmetry transformations:

R
π/2

i
, Rπ

i , R
3π/2

i
, R

π/2

j
, Rπ

j , R
3π/2

j
, R

π/2

k
, Rπ

k, R
3π/2

k

2. There are 4 axes that join one vertex of the cube to the diagonally opposite vertex of

the cube which we can take to be i + j + k, i − j + k, i + j − k, i − j − k, (which in

materials science are called the {111} directions); and 120o and 240o rotations about

each of these axes maps the cube back into the cube. Thus the following 4 × 2 = 8

distinct rotations are symmetry transformations:

R
2π/3

i+j+k
, R

4π/3

i+j+k
, R

2π/3

i−j+k
, R

4π/3

i−j+k
, R

2π/3

i+j−k
, R

4π/3

i+j−k
, R

2π/3

i−j−k
, R

4π/3

i−j−k
.

3. Finally, there are 6 axes that join the center of one edge of the cube to the center

of the diagonally opposite edge of the cube which we can take to be i + j, i − j, i +

k, i − k, j + k, j − k (which in materials science are called the {110} directions); and



4.2. AN EXAMPLE IN THREE-DIMENSIONS. 71

180o rotations about each of these axes maps the cube back into the cube. Thus the

following 6× 1 = 6 distinct rotations are symmetry transformations:

Rπ

i+j, Rπ

i−j, Rπ

i+k, Rπ

i−k, Rπ

j+k, Rπ

j−k.

Let Gcube denote the collection of these 24 symmetry preserving rotations:

Gcube = {I,

R
π/2

i
, Rπ

i , R
3π/2

i
, R

π/2

j
, Rπ

j , R
3π/2

j
, R

π/2

k
, Rπ

k, R
3π/2

k

R
2π/3

i+j+k
, R

4π/3

i+j+k
, R

2π/3

i−j+k
, R

4π/3

i−j+k
, R

2π/3

i+j−k
, R

4π/3

i+j−k
, R

2π/3

i−j−k
, R

4π/3

i−j−k
,

Rπ

i+j, Rπ

i−j, Rπ

i+k, Rπ

i−k, Rπ

j+k, Rπ

j−k }.
(4.1)

If one considers rotations and reflections, then there are 48 elements in this set, where the

24 reflections are obtained by multiplying each rotation by −I. (It is important to remark

that this just happens to be true for the cube, but is not generally true. In general, if R is a

rotational symmetry of an object then −R is, of course, a reflection, but it need not describe

a reflectional symmetry of the object; e.g. see the example of the tetrahedron discussed

later.)

The collection of linear transformations Gcube has two important properties that one can

verify: (i) if P1 and P2 ∈ Gcube, then their product P1P2 is also in Gcube, and (ii) if P ∈ Gcube,

then so does its inverse P−1.

Next, one can verify that every element of the set Gcube can be represented in the form

(R
π/2

i
)p(R

π/2

j
)q(R

π/2

k
)r for integer choices of p, q, r. For example the rotation R

2π/3

i+j+k
(about

a {111} axis) and the rotation Rπ

i+k (about a {110} axis) can be represented as

R
2π/3

i+j+k
=
(
R
π/2

k

)−1(
R
π/2

j

)−1

, Rπ

i+k =
(
R
π/2

j

)−1(
R
π/2

k

)2

.

(One way in which to verify this is to use the representation of a rotation tensor determined in

Example 2.18.) Therefore we can say that the set Gcube is “generated” by the three elements

R
π/2

i
,R

π/2

j
and R

π/2

k
.
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4.3 Lattices.

A geometric structure of particular interest in solid mechanics is a lattice and we now make

a few observations on the symmetry of lattices. The simplest lattice, a Bravais lattice

L{o; `1, `2, `3}, is an infinite set of periodically arranged points in space generated by the

translation of a single point o through three linearly independent lattice vectors {`1, `2, `3}:

L{o; `1, `2, `3} = {x | x = o +
3∑

n=1

ni`i, ni ∈ Z } (4.2)

where Z is the set of integers. Figure 4.3 shows a two-dimensional square lattice and one

possible set of lattice vectors `1, `2. (It is clear from the figure that different sets of lattice

vectors can correspond to the same lattice.)

i

j

a

a

�1

�2

Figure 4.3: A two-dimensional square lattice with lattice vectors `1, `2.

It can be shown that a linear transformation P maps a lattice back into itself if and only

if

P`i =
3∑

j=1

Mij`j (4.3)

for some 3× 3 matrix [M ] whose elements Mij are integers and where det[M ] = 1. Given a

lattice, let Glattice be the set of all linear transformations P that map the lattice back into

itself. One can show that if P1,P2 ∈ Glattice then their product P1P2 is also in Glattice; and if

P ∈ Glattice so is its inverse P−1. The set Glattice is called the symmetry group of the lattice;
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and the set of rotations in Glattice is known as the point group of the lattice. For example the

point group of a simple cubic lattice1 is the set Gcube of 24 rotations given in (4.1).

4.4 Groups of Linear Transformations.

A collection G of non-singular linear transformations is said to be a group of linear trans-

formations if it possesses the following two properties:

(i) if P1 ∈ G and P2 ∈ G then P1P2 ∈ G,
(ii) if P ∈ G then P−1 ∈ G.

Note from this that the identity transformation I is necessarily a member of every group G.

Clearly the three sets Gsquare,Gcube and Glattice encountered in the previous sections are

groups. One can show that each of the following sets of linear transformations forms a group:

- the set of all orthogonal linear transformations;

- the set of all proper orthogonal linear transformations;

- the set of all unimodular linear transformations2 (i.e. linear transformations with de-

terminant equal to ±1); and

- the set of all proper unimodular linear transformations (i.e. linear transformations

with determinant equal to +1).

The generators of a group G are those elements P1,P2, . . . ,Pn which, when they and

their inverses are multiplied among themselves in various combinations yield all the elements

of the group. Generators of the groups Gsquare and Gcube were given previously.

In general, a collection of linear transformations G ′ is said to be a subgroup of a group

G if
(i) G ′ ⊂ G and

(ii) G ′ is itself a group.

1There are seven different types of symmetry that arise in Bravais lattices, viz. triclinic, monoclinic,

orthorhombic, tetragonal, cubic, trigonal and hexagonal. Because, for example, a cubic lattice can be body-

centered or face-centered, and so on, the number of different types of lattices is greater than seven.
2While the determinant of an orthogonal tensor is ±1 the converse is not necessarily true. There are

unimodular tensors, e.g. P = I + αi ⊗ j, that are not orthogonal. Thus the unimodular group is not

equivalent to the orthogonal group.
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One can readily show that the group of proper orthogonal linear transformations is a sub-

group of the group of orthogonal linear transformations, which in turn is a subgroup of the

group of unimodular linear transformations. In our first example, G ′square is a subgroup of

Gsquare.

It should be mentioned that the general theory of groups deals with collections of elements

(together with certain “rules” including “multiplication”) where the elements need not be

linear transformations. For example the set of all integers Z with “multiplication” defined

as the addition of numbers, the identity taken to be zero, and the inverse of x taken to be

−x is a group. Similarly the set of all matrices of the form




coshx sinhx

sinhx coshx


 where −∞ < x <∞,

with “multiplication” defined as matrix multiplication, the identity being the identity matrix,

and the inverse being 


cosh(−x) sinh(−x)

sinh(−x) cosh(−x)


 ,

can be shown to be a group. However, our discussion in these notes is limited to groups of

linear transformations.

4.5 Symmetry of a scalar-valued function of symmetric

positive-definite tensors.

When we discuss the constitutive behavior of a material in Volume 2, we will encounter

a scalar-valued function ψ(C) defined for all symmetric positive definite tensors C. (This

represents the energy in the material and characterizes its mechanical response). The sym-

metry of the material will be characterized by a set G of non-singular tensors P which has

the property that, for each P ∈ G,

ψ(C) = ψ(PTCP) for all symmetric positive− definite C. (4.4)



4.5. SYMMETRY OF A SCALAR-VALUED FUNCTION 75

It can be readily shown that this set of tensors G is a group. To see this, first let

P1,P2 ∈ G so that

ψ(C) = ψ(PT
1 CP1), ψ(C) = ψ(PT

2 CP2), (4.5)

for all symmetric positive-definite C. Then ψ((P1P2)TCP1P2) = ψ(PT
2 (PT

1 CP1)P2) =

ψ(PT
1 CP1) = ψ(C) where we have used (4.5)2 and (4.5)1 in the penultimate and ultimate

steps respectively. Thus if P1 and P2 are in G, then so is P1P2. Next, suppose that P ∈ G.

Since P is non-singular, the equation S = PTCP provides a one-to-one relation between

symmetric positive definite tensors C and S. Thus, since (4.4) holds for all symmetric

positive-definite C, it also holds for all symmetric positive-definite linear transformations

S = PTCP. Substituting this into (4.4) gives ψ(S) = ψ(P−TSP−1) for all symmetric

positive-definite S; and so P−1 is also in G. Thus the set G of nonsingular tensors obeying

(4.4) is a group; we shall refer to it as the symmetry group of ψ.

Observe from (4.4) that the symmetry group of ψ contains the elements I and −I, and

as a consequence, if P ∈ G then −P ∈ G also.

To examine an explicit example, consider the function

ψ(C) = ψ̂
(

det C
)
. (4.6)

It is seen trivially that for this ψ̂, equation (4.4) holds if and only if det P = ±1. Thus the

symmetry group of this ψ consists of all unimodular tensors ( i.e. tensors with determinant

equal to ±1).

As a second example consider the function

ψ(C) = ψ̂
(
Cn · n

)
(4.7)

where n is a given fixed unit vector. Let Qn be a rotation about the axis n through an

arbitrary angle. Then since n is the axis of Qn we know that Qnn = n. Therefore

ψ(QT
n CQn) = ψ̂

(
QT

n CQnn · n
)

= ψ̂
(
CQnn ·Qnn

)
= ψ̂

(
Cn · n

)
= ψ(C). (4.8)

The symmetry group of the function (4.7) therefore contains the set of all rotations about

n. (Are there any other tensors in G?)
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The following result will be useful in Volume 2. Let H be some fixed nonsingular linear

transformation, and consider two functions ψ1(C) and ψ2(C), each defined for all symmetric

positive-definite tensors C. Suppose that ψ1 and ψ2 are related by

ψ2(C) = ψ1(HTCH) for all symmetric positive− definite tensors C. (4.9)

If G1 and G2 are the symmetry groups of ψ1 and ψ2 respectively, then it can be shown that

G2 = HG1H
−1 (4.10)

in the sense that a tensor P ∈ G1 if and only if the tensor HPH−1 ∈ G2. As a special case

of this, if H is a spherical tensor, i.e. if H = αI, then G1 = G2.

Next, note that any nonsingular tensor P can be written as the product of a spherical

tensor αI and a unimodular tensor T as P = (αI)T provided that we take α = (| det P|)1/3

since then det T = ±1. This, together with the special case of the result noted in the

preceding paragraph provides a hint of why we might want to limit attention to unimodular

tensors rather than consider all nonsingular tensors in our discussion of symmetry.

This motivates the following slight modification to our original notion of symmetry of a

function ψ(C). We characterize the symmetry of ψ by the set G of unimodular tensors P

which have the property that, for each P ∈ G,

ψ(C) = ψ(PTCP) for all symmetric positive− definite C. (4.11)

It can be readily shown that this set of tensors G is also a group, necessarily a subgroup of

the unimodular group.

A function ψ is said to be isotropic if its symmetry group G contains all orthogonal

tensors. Thus for an isotropic function ψ,

ψ(C) = ψ(PTCP) (4.12)

for all symmetric positive-definite C and all orthogonal P. From a theorem in algebra it

follows that an isotropic function ψ depends on C only through its principal scalar invariants

defined previously in (3.38), i.e. that there exists a function ψ̂ such that

ψ(C) = ψ̂
(
I1(C), I2(C), I3(C)

)
(4.13)
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where

I1(C) = trace C

I2(C) = 1/2 [(trace C)2 − trace (C2)] ,

I3(C) = det C.





(4.14)

As a second example consider “cubic symmetry” where the symmetry group G coincides

with the set of 24 rotations Gcube given in (4.1) plus the corresponding reflections obtained

by multiplying these rotations by −I. As noted previously, this group is generated by

R
π/2

i
,R

π/2

j
,R

π/2

k
and −I, and contains 24 rotations and 24 reflections. Then, according to a

theorem in algebra (see pg 312 of Truesdell and Noll),

ψ(C) = ψ̂
(
i1(C), i2(C), i3(C), i4(C), i5(C), i6(C), i7(C), i8(C), i9(C)

)
(4.15)

where

i1(C) = C11 + C22 + C33,

i2(C) = C22C33 + C33C11 + C11C22

i3(C) = C11C22C33

i4(C) = C2
23 + C2

31 + C2
12

i5(C) = C2
31C

2
32 + C2

12C
2
23 + C2

23C
2
31

i6(C) = C23C31C12

i7(C) = C22C
2
12 + C33C

2
31 + C33C

2
23 + C11C

2
12 + C11C

2
31 + C22C

2
23

i8(C) = C11C
2
31C

2
12 + C22C

2
12C

2
23 + C33C

2
23C

2
31

i9(C) = C2
23C22C33 + C2

31C33C11 + C2
12C11C22





(4.16)

If G contains I and all rotations Rφ
n, 0 < φ < 2π, through all angles φ about a fixed axis

n, the corresponding symmetry is called transverse isotropy.

If G includes the three elements −Rπ

i , −Rπ

j , −Rπ

k which represent reflections in the

planes normal to i, j and k, the symmetry is called orthotropy.

4.6 Worked Examples.

Example 4.1: Characterize the set Hsquare of linear transformations that map a square back into a square,

including both rotations and reflections.
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BB

CD

A

i

j

Figure 4.4: Mapping a square into itself.

Solution: We return to the problem describe in Section 4.1 and now consider the set rotations and reflections

Hsquare that map the square back into itself. The set of rotations that do this were determined earlier and

they are

Gsquare = {I, R
π/2

k
, Rπ

k, R
3π/2

k
}.

As the 4 reflectional symmetries we can pick

H = reflection in the horizontal axis i,

V = reflection in the vertical axis j,

D = reflection in the diagonal with positive slope i + j,

D′ = reflection in the diagonal with negative slope −i + j,

and so

Hsquare =
{

I, R
π/2

k
,Rπ

k,R
3π/2

k
,H,V,D,D′

}
. (i)

One can verify that Hsquare is a group since it possesses the property that if P1 and P2 are two transfor-

mations in G, then so is their product P1P2; e.g. D′ = R
3π/2

k
H, D = HR

3π/2

k
etc. And if P is any member

of G, then so is its inverse; e.g. H−1 = H etc.

Example 4.2: Find the generators of Hsquare and all subgroups of Hsquare.

Solution: All elements of Hsquare can be represented in the form (R
π/2

k
)iHj for integer choices of i = 0, 1, 2, 3

and j = 0, 1:

Rπ
k = (R

π/2

k
)2, R

3π/2

k
= (R

π/2

k
)3, I = (R

π/2

k
)4.

D′ = (R
π/2

k
)3H, V = (R

π/2

k
)2H, D = R

π/2

k
H.

Therefore the group Hsquare is generated by the two elements H and Rπ/2.

One can verify that the following 8 collections of linear transformations are subgroups of Hsquare:

{
I,Rπ/2,Rπ,R3π/2

}
,
{
I,D,D′,Rπ

}
, {I,H,V,Rπ} , {I,Rπ} ,

{I,D} ,
{
I,D′

}
, {I,H} , {I,V} ,
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Geometrically, each of these subgroups leaves some aspect of the square invariant. The first leaves the face

invariant, the second leaves a diagonal invariant, the third leaves the axis invariant, the fourth leaves an axis

and a diagonal invariant etc. There are no other subgroups of Hsquare.

Example 4.3: Characterize the rotational symmetry of a regular tetrahedron.

BB

C

D

A

i

j

k

p

Figure 4.5: A regular tetrahedron ABCD, three orthonormal vectors {i, j,k} and a unit vector p. The axis

k passes through the vertex A and the centroid of the opposite face BCD, while the unit vector p passes

through the center of the edge AD and the center of the opposite edge BC.

Solution:

1. There are 4 axes like k in the figure that pass through a vertex of the tetrahedron and the centroid

of the opposite face; and right-handed rotations of 120o and 240o about each of these axes maps the

tetrahedron back onto itself. Thus these 4× 2 = 8 distinct rotations – of the form R
2π/3

k
,R

4π/3

k
, etc.

– are symmetry transformations of the tetrahedron.

2. There are three axes like p shown in the figure that pass through the mid-points of a pair of opposite

edges; and a right-handed rotation through 180o about each of these axes maps the tetrahedron

back onto itself. Thus these 3 × 1 = 3 distinct rotations – of the form Rπ
p, etc. – are symmetry

transformations of the tetrahedron.

The group Gtetrahedron of rotational symmetries of a tetrahedron therefore consists of these 11 rotations

plus the identity transformation I.

Example 4.4: Are all symmetry preserving linear transformations necessarily either rotations or reflections?

Solution: We began this chapter by considering the symmetry of a square, and examining the different ways

in which the square could be mapped back into itself. Now consider the example of a two-dimensional a× a
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square lattice, i.e. the set of infinite points

Lsquare = {x | x = n1ai + n2aj, n1, n2 ∈ Z ≡ Integers} (i)

depicted in Figure 4.6, and examine the different ways in which this lattice can be mapped back into itself.

i

j

a

a

�1

�2

Figure 4.6: A two-dimensional `× ` square lattice.

We first note that the rotational and reflectional symmetry transformations of a a × a square are also

symmetry transformations for the lattice since they leave the lattice invariant. There are however other

transformations, that are neither rotations nor reflections, that also leave the lattice invariant. For example,

if for every integer n, one rigidly translates the nth row of the lattice by precisely the amount n` in the

i direction, one recovers the original lattice. Thus, the “shearing” of the lattice described by the linear

transformation

P = I + ai⊗ j (ii)

is also a symmetry preserving transformation.

Example 4.5: Show that each of the following sets of linear transformations forms a group: all orthogonal

tensors; all proper orthogonal tensors; all unimodular tensors (i.e. tensors with determinant equal to ±1);

and all proper unimodular tensors (i.e. tensors with determinant equal to +1).

Example 4.6: Show that the group of proper orthogonal tensors is a subgroup of the group of orthogonal

tensors, which in turn is a subgroup of the group of unimodular tensors.

Example 4.7: Suppose that a function ψ(C) is defined for all symmetric positive definite tensors C and that

its symmetry group is the set of all orthogonal tensors. Show that ψ depends on C only through its principal

scalar invariants, i.e. show that there is a function ψ̂ such that

ψ(C) = ψ̂
(
I1(C), I2(C), I3(C)

)
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where Ii(C), i = 1, 2, 3, are the principal scalar invariants of C defined previously in (3.38).

Solution: We are given that ψ has the property that for all symmetric positive-definite tensors C and all

orthogonal tensors Q

ψ(C) = ψ(QTCQ). (i)

In order to prove the desired result it is sufficient to show that, if C1 and C2 are two symmetric tensors

whose principal invariants Ii are the same,

I1(C1) = I1(C2), I2(C1) = I2(C2), I3(C1) = I3(C2), (ii)

then ψ(C1) = ψ(C2).

Recall that the mapping (3.40) between principal invariants and eigenvalues is one-to-one. It follows

from this and (ii) that the eigenvalues of C1 and C2 are the same. Thus we can write

C1 =

3∑

i=1

λie
(1)
i ⊗ e

(1)
i , C2 =

3∑

i=1

λie
(2)
i ⊗ e

(2)
i , (iii)

where the two sets of orthonormal vectors {e(1)
1 , e

(1)
2 , e

(1)
3 } and {e(1)

1 , e
(1)
2 , e

(1)
3 } are the respective principal

bases of C1 and C2. Since each set of basis vectors is orthonormal, there is an orthogonal tensor R that

carries {e(1)
1 , e

(1)
2 , e

(1)
3 } into {e(2)

1 , e
(2)
2 , e

(2)
3 }:

Re
(1)
i = e

(2)
i , i = 1, 2, 3. (iv)

Thus

RT

(
3∑

i=1

λie
(2)
i ⊗ e

(2)
i

)
R =

3∑

i=1

λiR
T (e

(2)
i ⊗e

(2)
i )R =

3∑

i=1

λi(R
Te

(2)
i )⊗ (RTe

(2)
i ) =

3∑

i=1

λi(e
(1)
i ⊗ (e

(1)
i ), (v)

and so RTC2R = C1. Therefore ψ(C1) = ψ(RTC2R) = ψ(C2) where in the last step we have used (i).

This establishes the desired result.

Example 4.8: Consider a scalar-valued function f(x) that is defined for all vectors x. Let G be the set of all

non-singular linear transformations P that have the property that for each P ∈ G, one has f(x) = f(Px)

for all vectors x.

i) Show that G is a group.

ii) Find the most general form of f if G contains the set of all orthogonal transformations.

Solution:

i) Suppose that P1 and P2 are in G, i.e. that

f(x) = f(P1x) for all vectors x, and

f(x) = f(P2x) for all vectors x.

}
(i)
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Then

f
(
(P1P2)x

)
= f

(
P1(P2x)

)
= f(P2x) = f(x)

where in the penultimate and ultimate steps we have used (i)1 and (i)2 respectively.

Next, suppose that P ∈ G so that

f(x) = f(Px) for all vectors x.

Since P is non-singular we can set y = Px and obtain

f(P−1y) = f(y) for all vectors y.

It thus follows that G has the two defining properties of a group.

ii) If x1 and x2 are two vectors that have the same length, we will show that f(x1) = f(x2), whence

f(x) depends on x only through its length |x|, i.e. there exists a function f̂ such that

f(x) = f̂(|x|) for all vectors x.

If x1 and x2 are two vectors that have the same length, there is a rotation tensor R that carries x2

to x1: Rx2 = x1. Therefore

f(x1) = f(Rx2) = f(x2),

where in the last step we have used the fact that G contains the set of all orthogonal transformations,

i.e. that f(x) = f(Px) for all vectors x and all orthogonal P. This establishes the result claimed

above.

Example 4.9: Consider a scalar-valued function g(C,m⊗m) that is defined for all symmetric positive-definite

tensors C and all unit vectors m. Let G be the set of all non-singular linear transformations P that have

the property that for each P ∈ G, one has g(C,n⊗ n) = g(PTCP,PT (n⊗ n)P) for all symmetric positive-

definite tensors C and some particular unit vector n. If G contains the set of all orthogonal transformations,

show that there exists a function ĝ such that

g(C,n⊗ n) = ĝ
(
I1(C), I2(C), I3(C), I4(C,n), I5(C,n)

)

where I1(C), I2(C), I3(C) are the three fundamental scalar invariants of C and

I4(C,n) = Cn · n, I5(C,n) = C2n · n.

Remark: Observe that with respect to an orthonormal basis {e1, e2, e3} where e3 = n one has I4 = C33 and

I5 = C2
31 + C2

32 + C2
33.

Solution: We are told that

g(C,n⊗ n) = g(QTCQ,QT (n⊗ n)Q) (i)

for all orthogonal Q and all symmetric positive definite C. As in Example 4.7, it is sufficient to show that if

C1 and C2 are two symmetric positive definite linear transformations whose “invariants” Ii, i = 1, 2, 3, 4, 5”

are the same, i.e.

I1(C1) = I1(C2), I2(C1) = I2(C2), I3(C1) = I3(C2), I4(C1,n) = I4(C2,n), I5(C1,n) = I5(C2,n) (ii)
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then g(C1,n⊗ n) = g(C2,n⊗ n). From (ii)1,2,3 and the analysis in Example 4.7 it follows that there is an

orthogonal tensor R such that RTC2R = C1. It is readily seen from this that RTC2
2R = C2

1 as well. It

now follows from this, the fact that R is orthogonal, (ii)4,5 and the definitions of I4 and I5 that

Rn ·Rn = n · n, C2Rn ·Rn = C2n · n, C2
2Rn ·Rn = C2

2n · n, (iii)

and this must hold for all symmetric positive define C2. This implies that

Rn = ±n and consequently RTn = ±n,

as may be seen, for example, for expressing (iii) in a principal basis of C2. Consequently

g(C1,n⊗ n) = g(RTC2R, (R
Tn)⊗ (RTn)) = g(RTC2R,R

T (n⊗ n)R) = g(C2,n⊗ n)

where we have used (i) in the very last step. This establishes the desired result.
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Chapter 5

Calculus of Vector and Tensor Fields

Notation:

α ..... scalar

{a} ..... 3× 1 column matrix

a ..... vector

ai ..... ith component of the vector a in some basis; or ith element of the column matrix {a}
[A] ..... 3× 3 square matrix

A ..... second-order tensor (2-tensor)

Aij ..... i, j component of the 2-tensor A in some basis; or i, j element of the square matrix [A]

C ..... fourth-order tensor (4-tensor)

Cijk` ..... i, j, k, ` component of 4-tensor C in some basis

Ti1i2....in ..... i1i2....in component of n-tensor T in some basis.

5.1 Notation and definitions.

LetR be a bounded region of three-dimensional space whose boundary is denoted by ∂R and

let x denote the position vector of a generic point in R+ ∂R. We shall consider scalar and

tensor fields such as φ(x),v(x),A(x) and T(x) defined on R+ ∂R. The region R+ ∂R and

these fields will always be assumed to be sufficiently regular so as to permit the calculations

carried out below.

While the subject of the calculus of tensor fields can be dealt with directly, we shall take

the more limited approach of working with the components of these fields. The components

will always be taken with respect to a single fixed orthonormal basis {e1, e2, e3}. Each com-

ponent of say a vector field v(x) or a 2-tensor field A(x) is effectively a scalar-valued function

85
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on three-dimensional space, vi(x1, x2, x3) and Aij(x1, x2, x3), and we can use the well-known

operations of classical calculus on such fields such as partial differentiation with respect to

xk.

In order to simplify writing, we shall use the notation that a comma followed by a sub-

script denotes partial differentiation with respect to the corresponding x-coordinate. Thus,

for example, we will write

φ,i =
∂φ

∂xi
, φ,ij =

∂2φ

∂xi∂xj
, vi,j =

∂vi
∂xj

, (5.1)

and so on, where vi and xi are the ith components of the vectors v and x in the basis

{e1, e2, e3}.

The gradient of a scalar field φ(x) is a vector field denoted by grad φ (or ∇φ). Its

ith-component in the orthonormal basis is

(grad φ)i = φ,i, (5.2)

so that

grad φ = φ,iei.

The gradient of a vector field v(x) is a 2-tensor field denoted by grad v (or ∇v). Its ijth-

component in the orthonormal basis is

(grad v)ij = vi,j, (5.3)

so that

grad v = vi,jei ⊗ ej.

The gradient of a scalar field φ in the particular direction of the unit vector n is denoted by

∂φ/∂n and defined by
∂φ

∂n
= ∇φ · n. (5.4)

The divergence of a vector field v(x) is a scalar field denoted by div v (or ∇ · v). It is

given by

div v = vi,i. (5.5)

The divergence of a 2-tensor field A(x) is a vector field denoted by div A (or ∇ · A). Its

ith-component in the orthonormal basis is

(div A)i = Aij,j (5.6)
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so that

div A = Aij,jei.

The curl of a vector field v(x) is a vector field denoted by curl v (or ∇ × v). Its ith-

component in the orthonormal basis is

(curl v)i = eijkvk,j (5.7)

so that

curl v = eijkvk,jei.

The Laplacians of a scalar field φ(x), a vector field v(x) and a 2-tensor field A(x) are

the scalar, vector and 2-tensor fields with components

∇2φ = φ,kk, (∇2v)i = vi,kk, (∇2A)ij = Aij,kk, (5.8)

5.2 Integral theorems

Let D be an arbitrary regular sub-region of the region R. The divergence theorem allows

one to relate a surface integral on ∂D to a volume integral on D. In particular, for a scalar

field φ(x) ∫

∂D

φn dA =

∫

D

∇φ dV or

∫

∂D

φnk dA =

∫

D

φ,k dV. (5.9)

Likewise for a vector field v(x) one has

∫

∂D

v · n dA =

∫

D

∇ · v dV or

∫

∂D

vknk dA =

∫

D

vk,k dV, (5.10)

as well as
∫

∂D

v ⊗ n dA =

∫

D

∇v dV or

∫

∂D

vink dA =

∫

D

vi,k dV. (5.11)

More generally for a n-tensor field T(x) the divergence theorem gives

∫

∂D

Ti1i2...in nk dA =

∫

D

∂

∂xk
(Ti1i2...in) dV (5.12)

where some of the subscripts i1, i2, . . . , in may be repeated and one of them might equal k.
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5.3 Localization

Certain physical principles are described to us in terms of equations that hold on an arbitrary

portion of a body, i.e. in terms of an integral over a subregion D of R. It is often useful

to derive an equivalent statement of such a principle in terms of equations that must hold

at each point x in the body. In what follows, we shall frequently have need to do this, i.e.

convert a “global principle” to an equivalent “local field equation”.

Consider for example the scalar field φ(x) that is defined and continuous at all x ∈
R+ ∂ R and suppose that∫

D
φ(x) dV = 0 for all subregions D ⊂ R. (5.13)

We will show that this “global principle” is equivalent to the “local field equation”

φ(x) = 0 at every point x ∈ R. (5.14)

z

ε

Bε(z)

D

Figure 5.1: The region R, a subregion D and a neighborhood Bε(z) of the point z.

We will prove this by contradiction. Suppose that (5.14) does not hold. This implies that

there is a point, say z ∈ R, at which φ(z) 6= 0. Suppose that φ is positive at this point:

φ(z) > 0. Since we are told that φ is continuous, φ is necessarily (strictly) positive in some

neighborhood of z as well. Let Bε(z) be a sphere with its center at z and radius ε > 0. We

can always choose ε sufficiently small so that Bε(z) is a sufficiently small neighborhood of z

and

φ(x) > 0 at all x ∈ Bε(z). (5.15)

Now pick a region D which is a subset of Bε(z). Then φ(x) > 0 for all x ∈ D. Integrating φ

over this D gives ∫

D
φ(x) dV > 0 (5.16)

thus contradicting (5.13). An entirely analogous calculation can be carried out in the case

φ(z) < 0. Thus our starting assumption must be false and (5.14) must hold.
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5.4 Worked Examples.

In all of the examples below the region R will be a bounded regular region and its boundary

∂R will be smooth. All fields are defined on this region and are as smooth as in necessary.

In some of the examples below, we are asked to establish certain results for vector and

tensor fields. When it is more convenient, we will carry out our calculations by first picking

and fixing a basis, and then working with the components in that basis. If necessary, we will

revert back to the vector and tensor fields at the end. We shall do this frequently in what

follows and will not bother to explain this strategy each time.

Example 5.1: Calculate the gradient of the scalar-valued function φ(x) = Ax · x where A is a constant

2-tensor.

Solution: Writing φ in terms of components

φ = Aijxixj .

Calculating the partial derivative of φ with respect to xk yields

φ,k = Aij(xixj),k = Aij(xi,kxj + xixj,k) = Aij(δikxj + xiδjk) = Akjxj +Aikxi = (Akj +Ajk)xj

or equivalently ∇φ = (A + AT )x.

Example 5.2: Let v(x) be a vector field and let vi(x1, x2, x3) be the ith-component of v in a fixed orthonormal

basis {e1, e2, e3}. For each i and j define

Fij = vi,j .

Show that Fij are the components of a 2-tensor.

Solution: Since v and x are 1-tensors, their components obey the transformation rules

v′i = Qikvk, vi = Qkiv
′
k and x′j = Qjkxk, x` = Qj`x

′
j

Therefore

F ′ij =
∂v′i
∂x′j

=
∂v′i
∂x`

∂x`
∂x′j

=
∂v′i
∂x`

Qj` =
∂(Qikvk)

∂x`
Qj` = QikQj`

∂vk
∂x`

= QikQj`Fk`,

which is the transformation rule for a 2-tensor.

Example 5.3: If φ(x), u(x) and A(x) are a scalar, vector and 2-tensor fields respectively. Establish the

identities

a. div (φu) = u · grad φ+ φ div u
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b. grad (φu) = u⊗ grad φ+ φ grad u

c. div (φA) = A grad φ+ φ div A

Solution:

a. In terms of components we are asked to show that (φui),i = uiφ,i + φ ui,i. This follows immediately

by expanding (φui),i using the chain rule.

b. In terms of components we are asked to show that (φui),j = uiφ,j + φ ui,j . Again, this follows

immediately by expanding (φui),j using the chain rule.

c. In terms of components we are asked to show that (φAij),j = Aijφ,j + φ Aij,j . Again, this follows

immediately by expanding (φAij),j using the chain rule.

Example 5.4: If φ(x) and v(x) are a scalar and vector field respectively, show that

∇× (φv) = φ(∇× v)− v ×∇φ (i)

Solution: Recall that the curl of a vector field u can be expressed as ∇× u = eijkuk,jei where ei is a fixed

basis vector. Thus evaluating ∇× (φv):

∇× (φv) = eijk (φvk),j ei = eijk φ vk,j ei + eijk φ,j vk ei = φ∇× v + ∇φ× v (ii)

from which the desired result follows because a× b = −b× a.

Example 5.5: Let u(x) be a vector field and define a second vector field ξ(x) by ξ(x) = curl u(x). Show

that

a. ∇ · ξ = 0;

b. (∇u−∇uT )a = ξ × a for any vector field a(x); and

c. ξ · ξ = ∇u ·∇u−∇u ·∇uT

Solution: Recall that in terms of its components, ξ = curl u = ∇× u can be expressed as

ξi = eijk uk,j . (i)

a. A direct calculation gives

∇ · ξ = ξi,i = (eijk uk,j),i = eijk uk,ji = 0 (ii)

where in the last step we have used the fact that eijk is skew-symmetric in the subscripts i, j, and

uk,ji is symmetric in the subscripts i, j (since the order of partial differentiation can be switched) and

therefore their product vanishes.
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b. Multiplying both sides of (i) by eipq gives

eipq ξi = eipq eijk uk,j = (δpj δqk − δpk δqj) uk,j = uq,p − up,q, (iii)

where we have made use of the identity eipq eijk = δpj δqk − δpk δqj between the alternator and the

Kronecker delta infroduced in (1.49) as well as the substitution rule. Multiplying both sides of this

by aq and using the fact that eipq = −epiq gives

epiq ξiaq = (up,q − uq,p)aq, (iv)

or ξ × a = (∇u−∇uT )a.

c. Since (∇u)ij = ui,j and the inner product of two 2-tensors is A ·B = AijBij , the right-hand side of

the equation we are asked to establish can be written as ∇u ·∇u −∇u ·∇uT = (∇u)ij(∇u)ij −
(∇u)ij(∇u)ji = ui,jui,j − ui,juj,i. The left-hand side on the hand is ξ · ξ = ξi ξi.

Using (i), the aforementioned identity between the alternator and the Kronecker delta, and the sub-

stitution rule leads to the desired result as follows:

ξi ξi = (eijk uk,j) (eipq up,q) = (δjp δkq − δjq δkp) uk,j up,q = uq,p up,q − up,q up,q . (v)

Example 5.6: Let u(x),E(x) and S(x) be, respectively, a vector and two 2-tensor fields. These fields are

related by

E =
1

2

(
∇u + ∇uT

)
, S = 2µE + λ trace(E) 1, (i)

where λ and µ are constants. Suppose that

u(x) = b
x

r3
where r = |x|, |x| 6= 0, (ii)

and b is a constant. Use (i)1 to calculate the field E(x) corresponding to the field u(x) given in (ii), and then

use (i)2 to calculate the associated field S(x). Thus verify that the field S(x) corresponding to (ii) satisfies

the differential equation:

div S = o, |x| 6= 0. (iii)

Solution: We proceed in the manner suggested in the problem statement by first using (i)1 to calculate the

E corresponding to the u given by (ii); substituting the result into (i)2 gives the corresponding S; and finally

we can then check whether or not this S satisfies (iii).

In components,

Eij =
1

2
(ui,j − uj,i) , (iv)

and therefore we begin by calculting ui,j . For this, it is convenient to first calculate ∂r/∂xj = r,j . Observe

by differentiating r2 = |x|2 = xi xi that

2rr,j = 2xi,j xi = 2δijxi = 2xj , (v)

and therefore

r,j =
xj
r
. (vi)



92 CHAPTER 5. CALCULUS OF VECTOR AND TENSOR FIELDS

Now differentiating the given vector field ui = bxi/r
3 with respect to xj gives

ui,j =
b

r3
xi,j + bxi (r−3),j =

b

r3
δij − 3b

xi
r4
r,j

= b
δij
r3
− 3b

xi
r4

xj
r

= b
δij
r3
− 3b

xi xj
r5

.

(vii)

Substituting this into (iv) gives us Eij :

Eij =
1

2
(ui,j + uj,i) = b

(
δij
r3
− 3

xi xj
r5

)
. (viii)

Next, substituting (viii) into (i)2, gives us Sij :

Sij = 2µ Eij + λEkkδij = 2µb

(
δij
r3
− 3xi xj

r5

)
+ λb

(
δkk
r3
− 3

xk xk
r5

)
δij

= 2µb

(
δij
r3
− 3xi xj

r5

)
+ λb

(
3

r3
− 3

r2

r5

)
δij = 2µb

(
δij
r3
− 3xi xj

r5

)
.

(ix)

Finally we use this to calculate ∂Sij/∂xj = Sij,j :

1

2µb
Sij,j = δij (r−3),j −

3

r5
(xi xj),j − 3xi xj (r−5),j

= δij

(
− 3

r4
r,j

)
− 3

r5
(δij xj + xi δjj)− 3xi xj

(
− 5

r6
r,j

)

= −3
δij
r4

xj
r
− 3

r5
(xi + 3xi) +

15xi xj
r6

xj
r

= 0. (x)

Example 5.7: Show that ∫

∂R

x⊗ n dA = V I, (i)

where V is the volume of the region R, and x is the position vector of a typical point in R+ ∂R.

Solution: In terms of components in a fixed basis, we have to show that
∫

∂R

xinj dA = V δij . (ii)

The result follows immediately by using the divergence theorem (5.11):
∫

∂R

xinj dA =

∫

R

xi,j dV =

∫

R

δij dV = δij

∫

R

dV = δijV. (iii)

Example 5.8: Let A(x) be a 2-tensor field with the property that

∫

∂D
A(x)n(x) dA = o for all subregions D ⊂ R, (i)
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where n(x) is the unit outward normal vector at a point x on the boundary ∂D. Show that (i) holds if and

only if div A = o at each point x ∈ R.

Solution: In terms of components in a fixed basis, we are told that

∫

∂D
Aij(x)nj(x) dA = 0 for all subregions D ⊂ R. (ii)

By using the divergence theorem (5.12), this implies that

∫

D
Aij,j dV = 0 for all subregions D ⊂ R. (iii)

If Aij,j is continuous on R, the result established in the previous problem allows us to conclude that

Aij,j = 0 at each x ∈ R. (iv)

Conversely if (iv) holds, one can easily reverse the preceding steps to conclude that then (i) also holds. This

shows that (iv) is both necessary and sufficient for (i) to hold.

Example 5.9: Let A(x) be a 2-tensor field which satisfies the differential equation div A = o at each point

in R. Suppose that in addition

∫

∂D
x×An dA = o for all subregions D ⊂ R.

Show that A must be a symmetric 2-tensor.

Solution: In terms of components we are given that

∫

∂D
eijkxjAkpnp dA = 0,

which on using the divergence theorem yields

∫

D
eijk(xjAkp),p dV =

∫

D
eijk[δjpAkp + xjAkp,p] dV = 0.

We are also given that Aij,j = 0 at each point in R and so the preceding equation simplifies, after using the

substitution rule, to ∫

D
eijkAkj dV = 0.

Since this holds for all subregions D ⊂ R we can localize it to

eijkAkj = 0 at each x ∈ R.

Finally, multiplying both sides by eipq and using the identity eipqeijk = δpjδqk − δpkδqj in (1.49) yields

(δpjδqk − δpkδqj)Akj = Aqp −Apq = 0

and so A is symmetric.
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Example 5.10: Let ε1(x1, x2) and ε2(x1, x2) be defined on a simply connected two-dimensional domain R.

Find necessary and sufficient conditions under which there exists a function u(x1, x2) such that

u,1 = ε1, u,2 = ε2 for all (x1, x2) ∈ R. (i)

Solution: In the presence of sufficient smoothness, the order of partial differentiation does not matter and so

we necessarily have u,12 = u,21. Therefore a necessary condition for (i) to hold is that ε1, ε2 obey

ε1,2 = ε2,1 for all (x1, x2) ∈ R. (ii)

C′ D

(x1, x2)

(0(0, 0)0)

R

s

n

s1 = −n2, s2 = n1

(0(0, 0)0)

(x1, x2)

s

C

R

(ξ1, ξ2) = (ξ1(s), ξ2(s))))

(s1, s2) = (ξ′1(s), ξ
′
2(s))))

s

(a) (b)

Figure 5.2: (a) Path C from (0, 0) to (x1, x2). The curve is parameterized by arc length s as ξ1 = ξ1(s), ξ2 =

ξ2(s), 0 ≤ s ≤ s0. The unit tangent vector on S, s, has components (s1, s2). (b) A closed path C′ passing

through (0, 0) and (x1, x2) and coinciding with C over part of its length. The unit outward normal vector on

S is n, and it has components (n1, n2)

.

To show that (ii) is also sufficient for the existence of u, we shall provide a formula for explicitly

calculating the function u in terms of the given functions ε1 and ε2. Let C be an arbitrary regular oriented

curve in R that connects (0, 0) to (x1, x2). A generic point on the curve is denoted by (ξ1, ξ2) and the curve

is characterized by the parameterization

ξ1 = ξ1(s), ξ2 = ξ2(s), 0 ≤ s ≤ s0, (iii)

where s is arc length on C and (ξ1(0), ξ2(0)) = (0, 0) and (ξ1(s0), ξ2(s0)) = (x1, x2). We will show that the

function

u(x1, x2) =

∫ s0

0

(
ε1(ξ1(s), ξ2(s))ξ′1(s) + ε2(ξ1(s), ξ2(s))ξ′2(s)

)
ds (iv)

satisfies the requirement (i) when (ii) holds.
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To see this we must first show that the integral (iv) does in fact define a function of (x1, x2), i.e. that it

does not depend on the path of integration. (Note that if a function u satisfies (i). then so does the function

u+ constant and so the dependence on the arbitrary starting point of the integral is to be expected.) Thus

consider a closed path C′ that starts and ends at (0, 0) and passes through (x1, x2) as sketched in Figure

NNN (b). We need to show that

∫

C′

(
ε1(ξ1(s), ξ2(s))ξ′1(s) + ε2(ξ1(s), ξ2(s))ξ′2(s)

)
ds = 0. (v)

Recall that (ξ′1(s), ξ′2(s)) are the components of the unit tangent vector on C′ at the point (ξ1(s), ξ2(s)):

s1 = ξ′1(s), s2 = ξ′2(s). Observe further from the figure that the components of the unit tangent vector s and

the unit outward normal vector n are related by s1 = −n2 and s2 = n1. Thus the left-hand side of (v) can

be written as ∫

C′

(
ε1s1 + ε2s2

)
ds =

∫

C′

(
ε2n1 − ε1n2

)
ds =

∫

D′

(
ε2,1 − ε1,2

)
dA (vi)

where we have used the divergence theorem in the last step and D′ is the region enclosed by C′. In view of

(ii), this last integral vanishes. Thus the integral (v) vanishes on any closed path C′ and so the integral (iv) is

independent of path and depends only on the end points. Thus (iv) does in fact define a function u(x1, x2).

Finally it remains to show that the function (iv) satisfies the requirements (i). This is readily seen by

writing (iv) in the form

u(x1, x2) =

∫ (x1,x2)

(0,0)

(
ε1(ξ1, ξ2)dξ1 + ε2(ξ1, ξ2)dξ2

)
(vii)

and then differentiating this with respect to x1 and x2.

Example 5.11: Let a1(x1, x2) and a2(x1, x2) be defined on a simply connected two-dimensional domain R.

Suppose that a1 and a2 satisfy the partial differential equation

a1,1(x1, x2) + a2,2(x1, x2) = 0 for all (x1, x2) ∈ R. (i)

Show that (i) holds if and only if there is a function φ(x1, x2) such that

a1(x1, x2) = φ,2(x1, x2), a2(x1, x2) = −φ,1(x1, x2). (ii)

Solution: This is simply a restatement of the previous example in a form that will find useful in what follows.

Example 5.12: Find the most general vector field u(x) which satisfies the differential equation

1

2

(
∇u + ∇uT

)
= O at all x ∈ R. (i)

Solution: In terms of components, ∇u = −∇uT reads:

ui,j = −uj,i. (ii)
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Differentiating this with respect to xk, and then changing the order of differentiation gives

ui,jk = −uj,ik = −uj,ki.

However by (ii), uj,k = −uk,j . Using this and then changing the order of differentiation leads to

ui,jk = −uj,ki = uk,ji = uk,ij .

Again, by (ii), uk,i = −ui,k. Using this and changing the order of differentiation once again leads to

ui,jk = uk,ij = −ui,kj = −ui,jk.

It therefore follows that

ui,jk = 0.

Integrating this once gives

ui,j = Cij (iii)

where the Cij ’s are constants. Integrating this once more gives

ui = Cijxj + ci, (iv)

where the ci’s are constants. The vector field u(x) must necessarily have this form if (ii) is to hold.

To examine sufficiency, substituting (iv) into (ii) shows that [C] must be skew-symmetric. Thus in

summary the most general vector field u(x) that satisfies (i) is

u(x) = Cx + c

where C is a constant skew-symmetric 2-tensor and c is a constant vector.

Example 5.13: Suppose that a scalar-valued function f(A) is defined for all symmetric tensors A. In terms

of components in a fixed basis we have f = f(A11, A12, A13, A21, . . . A33). The partial derivatives of f with

respect to Aij ,
∂f

∂Aij
, (i)

are the components of a 2-tensor. Is this tensor symmetric?

Solution: Consider, for example, the particular function f = A · A = AijAij which, when written out in

components, reads:

f = f1(A11, A12, A13, A21, . . . A33) = A2
11 +A2

22 +A2
33 + 2A2

12 + 2A2
23 + 2A2

31 . (ii)

Proceeding formally and differentiating (ii) with respect to A12, and separately with respect to A21, gives

∂f1
∂A12

= 4A12,
∂f1
∂A21

= 0, (iii)

which implies that ∂f1/∂A12 6= ∂f1/∂A21.
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On the other hand, since Aij is symmetric we can write

Aij =
1

2
(Aij +Aji) . (iv)

Substituting (iv) into the formula (ii) for f gives f = f2(A11, A12, A13, A21, . . . A33) :

f2(A11, A12, A13, A21, . . . A33)

= A2
11 +A2

22 +A2
33 + 2

[
1

2
(A12 +A21)

]2
+ 2

[
1

2
(A23 +A31)

]2
+ 2

[
1

2
(A31 +A13)

]2
,

= A2
11 +A2

22 +A2
33 +

1

2
A2

12 +A12A21 +
1

2
A2

21 + . . .+
1

2
A2

31 +A31A13 +
1

2
A2

13 . (v)

Note that the values of f1[A] = f2[A] for any symmetric matrix [A]. Differentiating f2 leads to

∂f2
∂A12

= A12 +A21,
∂f2
∂A21

= A21 +A12 , (vi)

and so now, ∂f2/∂A12 = ∂f2/∂A21.

The source of the original difficulty is the fact that the 9 Aij ’s in the argument of f1 are not independent

variables since Aij = Aji; and yet we have been calculating partial derivatives as if they were independent.

In fact, the original problem statement itself is ill-posed since we are asked to calculate ∂f/∂Aij but told

that [A] is restricted to being symmetric.

Suppose that f2 is defined by (v) for all matrices [A] and not just symmetric matrices [A]. We see that

the values of the functions f1 and f2 are equal at all symmetric matrices and so in going from f1 → f2,

we have effectively relaxed the constraint of symmetry and expanded the domain of definition of f to all

matrices [A]. We may differentiate f2 by treating the 9 Aij ’s to be independent and the result can then be

evaluated at symmetric matrices. We assume that this is what was meant in the problem statement.

In general, if a function f(A11, A12, . . . A33) is expressed in symmetric form, by changing Aij → 1
2 (Aij +

Aji), then ∂f/∂Aij will be symmetric; but not otherwise. Throughout these volumes, whenever we encounter

a function of a symmetric tensor, we shall always assume that it has been written in symmetric form; and

therefore its derivative with respect to the tensor can be assumed to be symmetric.

Remark: We will encounter a similar situation involving tensors whose determinant is unity. On occasion we

will have need to differentiate a function g1(A) defined for all tensors with det A = 1 and we shall do this

by extending the definition of the given function and defining a second function g2(A) for all tensors; g2 is

defined such that g1(A) = g2(A) for all tensors with unit determinant. We then differentiate g2 and evaluate

the result at tensors with unit determinant.
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Chapter 6

Orthogonal Curvilinear Coordinates

6.1 Introductory Remarks

The notes in this section are a somewhat simplified version of notes developed by Professor

Eli Sternberg of Caltech. The discussion here, which is a general treatment of orthogonal

curvilinear coordinates, is a compromise between a general tensorial treatment that includes

oblique coordinate systems and an ad-hoc treatment of special orthogonal curvilinear co-

ordinate systems. A summary of the main tensor analytic results of this section are given

in equations (6.32) - (6.37) in terms of the scale factors hi defined in (6.17) that relate

the rectangular cartesian coordinates (x1, x2, x3) to the orthogonal curvilinear coordinates

(x̂1, x̂2, x̂3).

It is helpful to begin by reviewing a few aspects of the familiar case of circular cylindrical

coordinates. Let {e1, e2, e3} be a fixed orthonormal basis, and let O be a fixed point chosen

as the origin. The point O and the basis {e1, e2, e3}, together, constitute a frame which we

denote by {O; e1, e2, e3}. Consider a generic point P in R3 whose position vector relative

to this origin O is x. The rectangular cartesian coordinates of the point P in the frame

{O; e1, e2, e3} are the components (x1, x2, x3) of the position vector x in this basis.

We introduce circular cylindrical coordinates (r, θ, z) through the mappings

x1 = r cos θ; x2 = r sin θ; x3 = z;

for all (r, θ, z) ∈ [0,∞)× [0, 2π)× (−∞,∞).



 (6.1)

The mapping (6.1) is one-to-one except at r = 0 (i.e. x1 = x2 = 0). Indeed (6.1) may be

99
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explicitly inverted for r > 0 to give

r =
√
x2

1 + x2
2; cos θ = x1/r, sin θ = x2/r; z = x3. (6.2)

For a general set of orthogonal curvilinear coordinates one cannot, in general, explicitly

invert the coordinate mapping in this way.

The Jacobian determinant of the mapping (6.1) is

∆(r, θ, z) = det




∂x1/∂r ∂x1/∂θ ∂x1/∂z

∂x2/∂r ∂x2/∂θ ∂x2/∂z

∂x3/∂r ∂x3/∂θ ∂x3/∂z




= r ≥ 0.

Note that ∆(r, θ, z) = 0 if and only if r = 0 and is otherwise strictly positive; this reflects

the invertibility of (6.1) on (r, θ, z) ∈ (0,∞) × [0, 2π) × (−∞,∞), and the breakdown in

invertibility at r = 0.

x1

x2

x3 z = constanconstant

z

r

θ r = constanconstant

θ = constanconstant

θ

r

z-co-coordinateordinate lineline

r-co-coordinateordinate lineline θ-co-coordinateordinate lineline

z

Figure 6.1: Circular cylindrical coordinates (r, θ, z).

The circular cylindrical coordinates (r, θ, z) admit the familiar geometric interpretation

illustrated in Figure 6.1. In view of (6.2), one has:

r = ro = constant : circular cylinders, co− axial with x3 − axis,

θ = θo = constant : meridional half − planes through x3 − axis,

z = zo = constant : planes perpendicular to x3 − axis.

The above surfaces constitute a triply orthogonal family of coordinate surfaces; each “regular

point” of E3 ( i.e. a point at which r > 0) is the intersection of a unique triplet of (mutually
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perpendicular) coordinate surfaces. The coordinate lines are the pairwise intersections of

the coordinate surfaces; thus for example as illustrated in Figure 6.1, the line along which

a r-coordinate surface and a z-coordinate surface intersect is a θ-coordinate line. Along

any coordinate line only one of the coordinates (r, θ, z) varies, while the other two remain

constant.

In terms of the circular cylindrical coordinates the position vector x can be written as

x = x(r, θ, z) = (r cos θ)e1 + (r sin θ)e2 + ze3. (6.3)

The vectors

∂x/∂r, ∂x/∂θ, ∂x/∂z,

are tangent to the coordinate lines corresponding to r, θ and z respectively. The so-called

metric coefficients hr, hθ, hz denote the magnitudes of these vectors, i.e.

hr = |∂x/∂r|, hθ = |∂x/∂θ|, hz = |∂x/∂z|,

and so the unit tangent vectors corresponding to the respective coordinate lines r, θ and z

are:

er =
1

hr
(∂x/∂r), eθ =

1

hθ
(∂x/∂θ), ez =

1

hz
(∂x/∂z).

In the present case one has hr = 1, hθ = r, hz = 1 and

er =
1

hr
(∂x/∂r) = cos θ e1 + sin θ e2,

eθ =
1

hθ
(∂x/∂θ) = − sin θ e1 + cos θe2,

ez =
1

hz
(∂x/∂z) = e3.





The triplet of vectors {er, eθ, ez} forms a local orthonormal basis at the point x. They are

local because they depend on the point x; sometimes, when we need to emphasize this fact,

we will write {er(x), eθ(x), ez(x)}.

In order to calculate the derivatives of various field quantities it is clear that we will

need to calculate quantities such as ∂er/∂r, ∂er/∂θ, . . . etc. ; and in order to calculate the

components of these derivatives in the local basis we will need to calculate quantities of the

form
er · (∂er/∂r), eθ · (∂er/∂r), ez · (∂er/∂r),

er · (∂eθ/∂r), eθ · (∂eθ/∂r), ez · (∂eθ/∂r), . . . etc.
(6.4)



102 CHAPTER 6. ORTHOGONAL CURVILINEAR COORDINATES

Much of the analysis in the general case to follow, leading eventually to Equation (6.30) in

Sub-section 6.2.4, is devoted to calculating these quantities.

Notation: As far as possible, we will consistently denote the fixed cartesian coordinate system

and all components and quantities associated with it by symbols such as xi, ei, f(x1, x2, x3),

vi(x1, x2, x3), Aij(x1, x2, x3) etc. and we shall consistently denote the local curvilinear coor-

dinate system and all components and quantities associated with it by similar symbols with

“hats” over them, e.g. x̂i, êi, f̂(x̂1, x̂2, x̂3), v̂i(x̂1, x̂2, x̂3), Âij(x̂1, x̂2, x̂3) etc.

6.2 General Orthogonal Curvilinear Coordinates

Let {e1, e2, e3} be a fixed right-handed orthonormal basis, let O be the fixed point cho-

sen as the origin and let {O; e1, e2, e3} be the associated frame. The rectangular cartesian

coordinates of the point with position vector x in this frame are

(x1, x2, x3) where xi = x · ei.

6.2.1 Coordinate transformation. Inverse transformation.

We introduce curvilinear coordinates (x̂1, x̂2, x̂3) through a triplet of scalar mappings

xi = xi(x̂1, x̂2, x̂3) for all (x̂1, x̂2, x̂3) ∈ R̂, (6.5)

where the domain of definition R̂ is a subset of E3. Each curvilinear coordinate x̂i belongs

to some linear interval Li, and R̂ = L1 × L2 × L3. For example in the case of circular

cylindrical coordinates we have L1 = {(x̂1 | 0 ≤ x̂1 < ∞}, L2 = {(x̂2 | 0 ≤ x̂2 < 2π} and

L3 = {(x̂3 | − ∞ < x̂3 < ∞}, and the “box” R̂ is given by R̂ = {(x̂1, x̂2, x̂3) | 0 ≤ x̂1 <

∞, 0 ≤ x̂2 < 2π,−∞ < x̂3 <∞}. Observe that the “box” R̂ includes some but possibly not

all of its faces.

Equation (6.5) may be interpreted as a mapping of R̂ into E3. We shall assume that

(x1, x2, x3) ranges over all of E3 as (x̂1, x̂2, x̂3) takes on all values in R̂. We assume further

that the mapping (6.5) is one-to-one and sufficiently smooth in the interior of R̂ so that the

inverse mapping

x̂i = x̂i(x1, x2, x3) (6.6)

exists and is appropriately smooth at all (x1, x2, x3) in the image of the interior of R̂.
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Note that the mapping (6.5) might not be uniquely invertible on some of the faces of R̂

which are mapped into “singular” lines or surfaces in E3. (For example in the case of circular

cylindrical coordinates, x̂1 = r = 0 is a singular surface; see Section 6.1.) Points that are not

on a singular line or surface will be referred to as “regular points” of E3.

The Jacobian matrix [J ] of the mapping (6.5) has elements

Jij =
∂xi
∂x̂j

(6.7)

and by the assumed smoothness and one-to-oneness of the mapping, the Jacobian determi-

nant does not vanish on the interior of R̂. Without loss of generality we can take therefore

take it to be positive:

det[J ] =
1

6
eijkepqr

∂xi
∂x̂p

∂xj
∂x̂q

∂xk
∂x̂r

> 0 . (6.8)

The Jacobian matrix of the inverse mapping (6.6) is [J ]−1.

The coordinate surface x̂i = constant is defined by

x̂i(x1, x2, x3) = x̂oi = constant, i = 1, 2, 3;

the pairwise intersections of these surfaces are the corresponding coordinate lines, along

which only one of the curvilinear coordinates varies. Thus every regular point of E3 is the

point of intersection of a unique triplet of coordinate surfaces and coordinate lines, as is

illustrated in Figure 6.2.

Recall that the tangent vector along an arbitrary regular curve

Γ : x = x(t), (α ≤ t ≤ β), (6.9)

can be taken to be1 ẋ(t) = ẋi(t)ei; it is oriented in the direction of increasing t. Thus in the

case of the special curve

Γ1 : x = x(x̂1, c2, c3), x̂1 ∈ L1, c2 = constant, c3 = constant,

corresponding to a x̂1-coordinate line, the tangent vector can be taken to be ∂x/∂x̂1. Gen-

eralizing this, ∂x/∂x̂i are tangent vectors and

êi =
1

|∂x/∂x̂i|
∂x

∂x̂i
(no sum) (6.10)

1Here and in the sequel a superior dot indicates differentiation with respect to the parameter t.
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x1

x2

x3

e1

e2

e3

ê1

ê2

ê3

Qijij = êi · ej

x̂1

x̂2

x̂3 x̂1-co-coordinateordinate surfacesurface

x̂2-co-coordinateordinate surfacesurface

x̂3-co-coordinateordinate surfacesurface

Figure 6.2: Orthogonal curvilinear coordinates (x̂1, x̂2, x̂3) and the associated local orthonormal basis

vectors {ê1, ê2, ê3}. Here êi is the unit tangent vector along the x̂i-coordinate line, the sense of êi being

determined by the direction in which x̂i increases. The proper orthogonal matrix [Q] characterizes the

rotational transformation relating this basis to the rectangular cartesian basis {e1, e2, e3}.

are the unit tangent vectors along the x̂i− coordinate lines, both of which point in the sense

of increasing x̂i. Since our discussion is limited to orthogonal curvilinear coordinate systems,

we must require

for i 6= j : êi · êj = 0 or
∂x

∂x̂i
· ∂x

∂x̂j
= 0 or

∂xk
∂x̂i
· ∂xk
∂x̂j

= 0. (6.11)

6.2.2 Metric coefficients, scale moduli.

Consider again the arbitrary regular curve Γ parameterized by (6.9). If s(t) is the arc-length

of Γ, measured from an arbitrary fixed point on Γ, one has

|ṡ(t)| = |ẋ(t)| =
√

ẋ(t) · ẋ(t). (6.12)
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One concludes from (6.12), (6.5) and the chain rule that

(
ds

dt

)2

=
dx

dt
· dx

dt
=

dxk
dt
· dxk

dt
=

(
∂xk
∂x̂i

dx̂i
dt

)
·
(
∂xk
∂x̂j

dx̂j
dt

)
=

(
∂xk
∂x̂i
· ∂xk
∂x̂j

)
dx̂i
dt

dx̂j
dt

.

where

x̂i(t) = x̂i(x1(t), x2(t), x3(t)), (α ≤ t ≤ β),

Thus (
ds

dt

)2

= gij
dx̂i
dt

dx̂j
dt

or (ds)2 = gij dx̂i dx̂j, (6.13)

in which gij are the metric coefficients of the curvilinear coordinate system under consider-

ation. They are defined by

gij =
∂x

∂x̂i
· ∂x

∂x̂j
=
∂xk
∂x̂i

∂xk
∂x̂j

. (6.14)

Note that

gij = 0, (i 6= j), (6.15)

as a consequence of the orthogonality condition (6.11). Observe that in terms of the Jacobian

matrix [J ] defined earlier in (6.7) we can write gij = JkiJkj or equivalently [g] = [J ]T [J ].

Because of (6.14) and (6.15) the metric coefficients can be written as

gij = hihjδij, (6.16)

where the scale moduli hi are defined by23

hi =
√
gii =

√
∂xk
∂x̂i

∂xk
∂x̂i

=

√(
∂x1

∂x̂i

)2

+

(
∂x2

∂x̂i

)2

+

(
∂x3

∂x̂i

)2

> 0, (6.17)

noting that hi = 0 is precluded by (6.8). The matrix of metric coefficients is therefore

[g] =




h2
1 0 0

0 h2
2 0

0 0 h2
3



. (6.18)

From (6.13), (6.14), (6.17) follows

(ds)2 = (h1dx̂1)2 + (h2dx̂2)2 + (h3dx̂3)2 along Γ, (6.19)

2Here and henceforth the underlining of one of two or more repeated indices indicates suspended sum-

mation with respect to this index.
3Some authors such as Love define hi as 1/

√
gii instead of as

√
gii
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which reveals the geometric significance of the scale moduli, i.e.

hi =
ds

dx̂i
along the x̂i − coordinate lines. (6.20)

It follows from (6.17), (6.10) and (6.11) that the unit vector êi can be expressed as

êi =
1

hi

∂x

∂x̂i
, (6.21)

and therefore the proper orthogonal matrix [Q] relating the two sets of basis vectors is given

by

Qij = êi · ej =
1

hi

∂xj
∂x̂i

(6.22)

6.2.3 Inverse partial derivatives

In view of (6.5), (6.6) one has the identity

xi = xi(x̂1(x1, x2, x3), x̂2(x1, x2, x3), x̂3(x1, x2, x3)),

so that from the chain rule,
∂xi
∂x̂k

∂x̂k
∂xj

= δij.

Multiply this by ∂xi/∂x̂m, noting the implied contraction on the index i, and use (6.14),

(6.16) to confirm that
∂xj
∂x̂m

= gkm
∂x̂k
∂xj

= h2
m

∂x̂m
∂xj

.

Thus the inverse partial derivatives are given by

∂x̂i
∂xj

=
1

h2
i

∂xj
∂x̂i

. (6.23)

By (6.22), the elements of the matrix [Q] that relates the two coordinate systems can be

written in the alternative form

Qij = êi · ej = hi
∂x̂i
∂xj

. (6.24)

Moreover, (6.23) and (6.17) yield the following alternative expressions for hi:

hi = 1
/√( ∂x̂i

∂x1

)2

+
( ∂x̂i
∂x2

)2

+
( ∂x̂i
∂x3

)2

.
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6.2.4 Components of ∂êi/∂x̂j in the local basis (ê1, ê2, ê3)

In order to calculate the derivatives of various field quantities it is clear that we will need to

calculate the quantities ∂êi/∂x̂j; and in order to calculate the components of these derivatives

in the local basis we will need to calculate quantities of the form êk · ∂êi/∂x̂j. Calculating

these quantities is an essential prerequisite for the transformation of basic tensor-analytic

relations into arbitrary orthogonal curvilinear coordinates, and this subsection is devoted to

this calculation.

From (6.21),

∂êi
∂x̂j
· êk =

{
− 1

h2
i

∂hi
∂x̂j

∂x

∂x̂i
+

1

hi

∂2x

∂x̂i∂x̂j

}
· 1

hk

∂x

∂x̂k
,

while by (6.14), (6.17),

∂x

∂x̂i
· ∂x

∂x̂j
= gij = δijhihj. (6.25)

Therefore

∂êi
∂x̂j
· êk = −δik

hi

∂hi
∂x̂j

+ +
1

hihk

∂2x

∂x̂i∂x̂k
· ∂x

∂xk
. (6.26)

In order to express the second derivative term in (6.26) in terms of the scale-moduli and

their first partial derivatives, we begin by differentiating (6.25) with respect to x̂k. Thus,

∂2x

∂x̂i∂x̂k
· ∂x

∂x̂j
+

∂2x

∂x̂j∂x̂k
· ∂x

∂x̂i
= δij

∂

∂x̂k
(hihj) . (6.27)

If we refer to (6.27) as (a), and let (b) and (c) be the identities resulting from (6.27) when

(i, j, k) are replaced by (j, k, i) and (k, i, j), respectively, then 1
2
{(b)+(c) -(a)} is readily found

to yield

∂2x

∂x̂i∂x̂j
· ∂x

∂x̂k
=

1

2

{
δjk

∂

∂x̂i
(hjhk) + δki

∂

∂x̂j
(hkhi)− δij

∂

∂x̂k
(hihj)

}
. (6.28)

Substituting (6.28) into (6.26) leads to

∂êi
∂x̂j
· êk = −δik

hi

∂hi
∂x̂j

+
1

2hihk

{
δjk

∂

∂x̂i
(hjhk) + δki

∂

∂x̂j
(hkhi)− δij

∂

∂x̂k
(hihj)

}
. (6.29)

Equation (6.29) provides the explicit expressions for the terms ∂êi/∂x̂j · êk that we sought.



108 CHAPTER 6. ORTHOGONAL CURVILINEAR COORDINATES

Observe the following properties that follow from it:

∂êi
∂x̂j
· êk = 0 if (i, j, k) distinct,

∂êi
∂x̂j
· êk = 0 if k = i,

∂êi
∂x̂i
· êk = − 1

hk

∂hi
∂x̂k

, if i 6= k

∂êi
∂x̂k
· êk = − 1

hi

∂hk
∂x̂i

if i 6= k.





(6.30)

6.3 Transformation of Basic Tensor Relations

Let T be a cartesian tensor field of order N ≥ 1, defined on a region R ⊂ E3 and suppose

that the points of R are regular points of E3 with respect to a given orthogonal curvilinear

coordinate system.

The curvilinear components T̂ijk...n of T are the components of T in the local basis

(ê1, ê2, ê3). Thus,

T̂ij...n = QipQjq . . . QnrTpq...r, where Qip = êi · ep. (6.31)

6.3.1 Gradient of a scalar field

Let φ(x) be a scalar-valued function and let v(x) denote its gradient:

v = ∇φ or equivalently vi = φ,i.

The components of v in the two bases {e1, e2, e3} and {ê1, ê2, ê3} are related in the usual

way by

v̂k = Qkivi

and so

v̂k = Qkivi = Qki
∂φ

∂xi
.

On using (6.22) this leads to

v̂k =

(
1

hk

∂xi
∂x̂k

)
∂φ

∂xi
=

1

hk

∂φ

∂xi

∂xi
∂x̂k

,
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so that by the chain rule

v̂k =
1

hk

∂φ̂

∂x̂k
, (6.32)

where we have set

φ̂(x̂1, x̂2, x̂3) = φ(x1(x̂1, x̂2, x̂3), x2(x̂1, x̂2, x̂3), x3(x̂1, x̂2, x̂3)).

6.3.2 Gradient of a vector field

Let v(x) be a vector-valued function and let W(x) denote its gradient:

W = ∇v or equivalently Wij = vi,j.

The components of W and v in the two bases {e1, e2, e3} and {ê1, ê2, ê3} are related in the

usual way by

Ŵij = QipQjqWpq, vp = Qnpv̂n,

and therefore

Ŵij = QipQjq
∂vp
∂xq

= QipQjq
∂

∂xq
(Qnpv̂n) = QipQjq

∂

∂x̂m
(Qnpv̂n)

∂x̂m
∂xq

.

Thus by (6.24)4

Ŵij = QipQjq

3∑

m=1

1

hm
Qmq

∂

∂x̂m
(Qnpv̂n) .

Since QjqQmq = δmj, this simplifies to

Ŵij = Qip
1

hj

∂

∂x̂j
(Qnpv̂n),

which, on expanding the terms in parentheses, yields

Ŵij =
1

hj

{
∂v̂i
∂x̂j

+Qip
∂Qnp

∂x̂j
v̂n

}
.

However by (6.22)

Qip
∂Qnp

∂x̂j
v̂n = Qip

∂

∂x̂j
(ên · ep)v̂n = êi ·

∂ên
∂x̂j

v̂n,

and so

Ŵij =
1

hj

{
∂v̂i
∂x̂j

+

[
êi ·

∂ên
∂x̂j

]
v̂n

}
, (6.33)

in which the coefficient in brackets is given by (6.29).

4We explicitly use the summation sign in this equation (and elsewhere) when an index is repeated 3 or

more times, and we wish sum over it.
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6.3.3 Divergence of a vector field

Let v(x) be a vector-valued function and let W(x) = ∇v(x) denote its gradient. Then

div v = trace W = vi,i.

Therefore from (6.33), the invariance of the trace of W, and (6.30),

div v = trace W = trace Ŵ = Ŵii =
3∑

i=1

1

hi

{
∂v̂i
∂x̂i

+
∑

n 6=i

1

hn

∂hi
∂x̂n

v̂n

}
.

Collecting terms involving v̂1, v̂2, and v̂3 alone, one has

div v =
1

h1

∂v̂1

∂x̂1

+
v̂1

h2h1

∂h2

∂x̂1

+
v̂1

h3h1

∂h3

∂x̂1

+ . . .+ . . .

Thus

div v =
1

h1h2h3

{
∂

∂x̂1

(h2h3v̂1) +
∂

∂x̂2

(h3h1v̂2) +
∂

∂x̂3

(h1h2v̂3)

}
. (6.34)

6.3.4 Laplacian of a scalar field

Let φ(x) be a scalar-valued function. Since

∇2φ = div(grad φ) = φ,kk

the results from Sub-sections (6.3.1) and (6.3.3) permit us to infer that

∇2φ =
1

h1h2h3

{
∂

∂x̂1

(h2h3

h1

∂φ̂

∂x̂1

)
+

∂

∂x̂2

(h3h1

h2

∂φ̂

∂x̂2

)
+

∂

∂x̂3

(h1h2

h3

∂φ̂

∂x̂3

)}
(6.35)

where we have set

φ̂(x̂1, x̂2, x̂3) = φ(x1(x̂1, x̂2, x̂3), x2(x̂1, x̂2, x̂3), x3(x̂1, x̂2, x̂3)).

6.3.5 Curl of a vector field

Let v(x) be a vector-valued field and let w(x) be its curl so that

w = curl v or equivalently wi = eijkvk,j.
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Let

W = ∇v or equivalently Wij = vi,j .

Then as we have shown in an earlier chapter

wi = eijkWkj, ŵi = eijkŴkj.

Consequently from Sub-section 6.3.2,

ŵi =
3∑

j=1

1

hj
eijk

{
∂v̂k
∂x̂j

+

[
êk ·

∂ên
∂x̂j

]
v̂n

}
.

By (6.30), the second term within the braces sums out to zero unless n = j. Thus, using the

second of (6.30), one arrives at

ŵi =
3∑

j,k=1

1

hj
eijk

{
∂v̂k
∂x̂j
− 1

hk

∂hj
∂x̂k

v̂j

}
.

This yields

ŵ1 =
1

h2h3

{
∂

∂x̂2

(h3v̂3)− ∂

∂x̂3

(h2v̂2)

}
,

ŵ2 =
1

h3h1

{
∂

∂x̂3

(h1v̂1)− ∂

∂x̂1

(h3v̂3)

}
,

ŵ3 =
1

h1h2

{
∂

∂x̂1

(h2v̂2)− ∂

∂x̂2

(h1v̂1)

}
.

(6.36)

6.3.6 Divergence of a symmetric 2-tensor field

Let S(x) be a symmetric 2-tensor field and let v(x) denote its divergence:

v = div S, S = ST , or equivalently vi = Sij,j, Sij = Sji.

The components of v and S in the two bases {e1, e2, e3} and {ê1, ê2, ê3} are related in the

usual way by

v̂i = Qipvp, Sij = QmiQnjŜmn,

and consequently

v̂i = QipSpj,j = Qip
∂

∂xj
(QmpQnjŜmn) = Qip

∂

∂x̂k
(QmpQnjŜmn)

∂x̂k
∂xj

.
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By using (6.24), the orthogonality of the matrix [Q], (6.30) and Ŝij = Ŝji we obtain

v̂1 =
1

h1h2h3

{
∂

∂x̂1

(h2h3Ŝ11) +
∂

∂x̂2

(h3h1Ŝ12) +
∂

∂x̂3

(h1h2Ŝ13)

}

+
1

h1h2

∂h1

∂x̂2

Ŝ12 +
1

h1h3

∂h1

∂x̂3

Ŝ13 −
1

h1h2

∂h2

∂x̂1

Ŝ22 −
1

h1h3

∂h3

∂x̂1

Ŝ33,

(6.37)

with analogous expressions for v̂2 and v̂3.

Equations (6.32) - (6.37) provide the fundamental expressions for the basic tensor-analytic

quantities that we will need. Observe that they reduce to their classical rectangular cartesian

forms in the special case xi = x̂i (in which case h1 = h2 = h3 = 1).

6.3.7 Differential elements of volume

When evaluating a volume integral over a region D, we sometimes find it convenient to

transform it from the form∫

D

(
. . .
)
dx1dx2dx3 into an equivalent expression of the form

∫

D′

(
. . .
)
dx̂1dx̂2dx̂3.

In order to do this we must relate dx1dx2dx3 to dx̂1dx̂2dx̂3. By (6.22),

det[Q] =
1

h1h2h3

det[J ].

However since [Q] is a proper orthogonal matrix its determinant takes the value +1. Therefore

det[J ] = h1h2h3

and so the basic relation dx1dx2dx3 = det[J ] dx̂1dx̂2dx̂3 leads to

dx1dx2dx3 = h1h2h3 dx̂1dx̂2dx̂3. (6.38)

6.3.8 Differential elements of area

Let dÂ1 denote a differential element of (vector) area on a x̂1-coordinate surface so that

dÂ1 = (dx̂2 ∂x/∂x̂2) × (dx̂3 ∂x/∂x̂3). In view of (6.21) this leads to dÂ1 = (dx̂2 h2 ê2) ×
(dx̂3 h3 ê3) = h2h3dx̂2dx̂3 ê1. Thus the differential elements of (scalar) area on the x̂1-, x̂2-

and x̂3-coordinate surfaces are given by

dÂ1 = h2h3dx̂2dx̂3, dÂ2 = h3h1dx̂3dx̂1, dÂ3 = h1h2dx̂1dx̂2, (6.39)

respectively.
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6.4 Some Examples of Orthogonal Curvilinear Coordi-

nate Systems

Circular Cylindrical Coordinates (r, θ, z):

x1 = r cos θ, x2 = r sin θ, x3 = z;

for all (r, θ, z) ∈ [0,∞)× [0, 2π)× (−∞,∞);

hr = 1, hθ = r, hz = 1.





(6.40)

Spherical Coordinates (r, θ, φ):

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ;

for all (r, θ, φ) ∈ [0,∞)× [0, 2π)× (−π, π];

hr = 1, hθ = r, hφ = r sin θ .





(6.41)

Elliptical Cylindrical Coordinates (ξ, η, z):

x1 = a cosh ξ cos η, x2 = a sinh ξ sin η, x3 = z;

for all (ξ, η, z) ∈ [0,∞)× (−π, π]× (−∞,∞);

hξ = hη = a
√

sinh2 ξ + sin2 η, hz = 1 .





(6.42)

Parabolic Cylindrical Coordinates (u, v, w):

x1 = 1
2
(u2 − v2), x2 = uv, x3 = w;

for all (u, v, w) ∈ (−∞,∞)× [0,∞)× (−∞,∞);

hu = hv =
√
u2 + v2, hz = 1 .





(6.43)

6.5 Worked Examples.

Example 6.1: Let E(x) be a symmetric 2-tensor field that is related to a vector field u(x) through

E =
1

2

(
∇u + ∇uT

)
.
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In a cartesian coordinate system this can be written equivalently as

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Establish the analogous formulas in a general orthogonal curvilinear coordinate system.

Solution: Using the result from Sub-section 6.3.2 and the formulas for êk ·(∂êi/∂x̂j one finds after elementary

simplification that

Ê11 =
1

h1

∂û1
∂x̂1

+
1

h1h2

∂h1
∂x̂2

û2 +
1

h1h3

∂h1
∂x̂3

û3, E22 = . . . , E33 = . . . ,

Ê12 = Ê21 =
1

2

{
h1
h2

∂

∂x̂2

(
û1
h1

)
+
h2
h1

∂

∂x̂1

(
û2
h2

)}
, E23 = . . . , E31 = . . . ,





(i)

Example 6.2: Consider a symmetric 2-tensor field S(x) and a vector field b(x) that satisfy the equation

div S + b = o.

In a cartesian coordinate system this can be written equivalently as

∂Sij
∂xj

+ bi = 0.

Establish the analogous formulas in a general orthogonal curvilinear coordinate system.

Solution: From the results in Sub-section 6.3.6 we have

1

h1h2h3

{
∂

∂x̂1
(h2h3Ŝ11) +

∂

∂x̂2
(h3h1Ŝ12) +

∂

∂x̂3
(h1h2Ŝ13)

}

+
1

h1h2

∂h1
∂x̂2

Ŝ12 +
1

h1h3

∂h1
∂x̂3

Ŝ13 −
1

h1h2

∂h2
∂x̂1

Ŝ22 −
1

h1h3

∂h3
∂x̂1

Ŝ33 + b̂1 = 0,

. . . . . . . . . etc.

(i)

where

b̂i = Qipbp

Example 6.3: Consider circular cylindrical coordinates (x̂1, x̂2, x̂3) = (r, θ, z) which are related to (x1, x2, x3)

through

x1 = r cos θ, x2 = r sin θ, x3 = z,

0 ≤ r <∞, 0 ≤ θ < 2π, −∞ < z <∞.





Let f(x) be a scalar-valued field, u(x) a vector-valued field, and S(x) a symmetric 2-tensor field. Express

the following quanties,

(a) grad f
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x1

x2

x3

r

θ

z
er

eθ

ez

er = coscos θ e1 + sinsin θ e2,

eθ = − sinsin θ e1 + coscos θ e2,

ez = e3,





Figure 6.3: Cylindrical coordinates (r, θ, z) and the associated local curvilinear orthonormal basis

{er, eθ, ez}.

(b) ∇2f

(c) div u

(d) curl u

(e) 1
2

(
∇u + ∇uT

)
and

(f) div S

in this coordinate system.

Solution: We simply need to specialize the basic results established in Section 6.3.

In the present case we have

(x̂1, x̂2, x̂3) = (r, θ, z) (i)

and the coordinate mapping (6.5) takes the particular form

x1 = r cos θ, x2 = r sin θ, x3 = z. (ii)

The matrix [∂xi/∂x̂j ] therefore specializes to




∂x1/∂r ∂x1/∂θ ∂x1/∂z

∂x2/∂r ∂x2/∂θ ∂x2/∂z

∂x3/∂r ∂x3/∂θ ∂x3/∂z




=




cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1



,
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and the scale moduli are

hr =

√(
∂x1
∂r

)2

+

(
∂x2
∂r

)2

+

(
∂x3
∂r

)2

= 1,

hθ =

√(
∂x1
∂θ

)2

+

(
∂x2
∂θ

)2

+

(
∂x3
∂θ

)2

= r,

hz =

√(
∂x1
∂z

)2

+

(
∂x2
∂z

)2

+

(
∂x3
∂z

)2

= 1.

(iii)

We use the natural notation

(ur, uθ, uz) = (û1, û2, û3) (iv)

for the components of a vector field, and

(Srr, Srθ, . . .) = (Ŝ11, Ŝ12, . . .) (v)

for the components of a 2-tensor field, and

(er, eθ, ez) = (ê1, ê2, ê3) (vi)

for the unit vectors associated with the local cylindrical coordinate system.

From (ii),

x = (r cos θ)e1 + (r sin θ)e2 + (z)e3,

and therefore on using (6.21) and (iii) we obtain the following expressions for the unit vectors associated

with the local cylindrical coordinate system:

er = cos θ e1 + sin θ e2,

eθ = − sin θ e1 + cos θ e2,

ez = e3,





which, in this case, could have been obtained geometrically from Figure 6.3.

(a) Substituting (i) and (iii) into (6.32) gives

∇f =

(
∂f̂

∂r

)
er +

(
1

r

∂f̂

∂θ

)
eθ +

(
∂f̂

∂z

)
ez

where we have set f̂(r, θ, z) = f(x1, x2, x3).

(b) Substituting (i) and (iii) into (6.35) gives

∇2f̂ =
∂2f̂

∂r2
+

1

r

∂f̂

∂r
+

1

r2
∂2f̂

∂θ2
+
∂2f̂

∂z2

where we have set f̂(r, θ, z) = f(x1, x2, x3).
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(c) Substituting (i) and (iii) into (6.34) gives

div u =
∂ur
∂r

+
1

r
ur +

1

r

∂uθ
∂θ

+
∂uz
∂z

(d) Substituting (i) and (iii) into (6.36) gives

curl u =

(
1

r

∂uz
∂θ
− ∂uθ

∂z

)
er +

(
∂ur
∂z
− ∂uz

∂r

)
eθ +

(
∂uθ
∂r

+
uθ
r
− 1

r

∂ur
∂θ

)
ez

(e) Set E=(1/2)(∇u + ∇uT ). Substituting (i) and (iii) into (6.33) enables us to calculate ∇u whence we

can calculate E. Writing the cylindrical components Êij of E as

(Err, Erθ, Erz, . . .) = (Ê11, Ê12, Ê13 . . .),

one finds

Err =
∂ur
∂r

,

Eθθ =
1

r

∂uθ
∂θ

+
ur
r
,

Ezz =
∂uz
∂z

,

Erθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
,

Eθz =
1

2

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
,

Ezr =
1

2

(
∂uz
∂r

+
∂ur
∂z

)
.





Alternatively these could have been obtained from the results of Example 6.1.

(f) Finally, substituting (i) and (iii) into (6.37) gives

div S =

(
∂Srr
∂r

+
1

r

∂Srθ
∂θ

+
∂Srz
∂z

+
Srr − Sθθ

r

)
er

+

(
∂Srθ
∂r

+
1

r

∂Sθθ
∂θ

+
∂Sθz
∂z

+
2Srθ
r

)
eθ

+

(
∂Szr
∂r

+
1

r

∂Szθ
∂θ

+
∂Szz
∂z

+
Szr
r

)
ez

Alternatively these could have been obtained from the results of Example 6.2.

Example 6.4: Consider spherical coordinates (x̂1, x̂2, x̂3) = (r, θ, φ) which are related to (x1, x2, x3) through

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ,

0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.





Let f(x) be a scalar-valued field, u(x) a vector-valued field, and S(x) a symmetric 2-tensor field. Express

the following quanties,
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x1

x2

x3

r
θ

φ

er = (sinsin θ coscosφ) e1 + (sinsin θ sinsinφ) e2 + coscos θ e3,

eθ = (coscos θ coscosφ) e1 + (coscos θ sinsinφ) e2 − sinsin θ e3,

eφ = − sinsinφ e1 + coscosφ e2,





er

eθ

eφ

Figure 6.4: Spherical coordinates (r, θ, φ) and the associated local curvilinear orthonormal basis {er, eθ, eφ}.

(a) grad f

(b) div u

(c) ∇2f

(d) curl u

(e) 1
2

(
∇u + ∇uT

)
and

(f) div S

in this coordinate system.

Solution: We simply need to specialize the basic results established in Section 6.3.

In the present case we have

(x̂1, x̂2, x̂3) = (r, θ, φ), (i)

and the coordinate mapping (6.5) takes the particular form

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ. (ii)

The matrix [∂xi/∂x̂j ] therefore specializes to




∂x1/∂r ∂x1/∂θ ∂x1/∂φ

∂x2/∂r ∂x2/∂θ ∂x2/∂φ

∂x3/∂r ∂x3/∂θ ∂x3/∂φ




=




sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0
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and the scale moduli are

hr =

√(
∂x1
∂r

)2

+

(
∂x2
∂r

)2

+

(
∂x3
∂r

)2

= 1,

hθ =

√(
∂x1
∂θ

)2

+

(
∂x2
∂θ

)2

+

(
∂x3
∂θ

)2

= r,

hφ =

√(
∂x1
∂φ

)2

+

(
∂x2
∂φ

)2

+

(
∂x3
∂φ

)2

= r sin θ.

(iii)

We use the natural notation

(ur, uθ, uφ) = (û1, û2, û3) (iv)

for the components of a vector field,

(Srr, Srθ, Srφ . . .) = (Ŝ11, Ŝ12, Ŝ13 . . .) (v)

for the components of a 2-tensor field, and

(er, eθ, eφ) = (ê1, ê2, ê3) (vi)

for the unit vectors associated with the local spherical coordinate system.

From (ii),

x = (r sin θ cosφ)e1 + (r sin θ sinφ)e2 + (r cos θ)e3,

and therefore on using (6.21) and (iii) we obtain the following expressions for the unit vectors associated

with the local spherical coordinate system:

er = (sin θ cosφ) e1 + (sin θ sinφ) e2 + cos θ e3,

eθ = (cos θ cosφ) e1 + (cos θ sinφ) e2 − sin θ e3,

eφ = − sinφ e1 + cosφ e2,





which, in this case, could have been obtained geometrically from Figure 6.4.

(a) Substituting (i) and (iii) into (6.32) gives

∇f =

(
∂f̂

∂r

)
er +

(
1

r

∂f̂

∂θ

)
eθ +

(
1

r sin θ

∂f̂

∂φ

)
eφ.

where we have set f̂(r, θ, φ) = f(x1, x2, x3).

(b) Substituting (i) and (iii) into (6.35) gives

∇2f =
∂2f̂

∂r2
+

2

r

∂f̂

∂r
+

1

r2
∂2f̂

∂θ2
+

1

r2
cot θ

∂f̂

∂θ
+

1

r2 sin2 θ

∂2f̂

∂φ2

where we have set f̂(r, θ, φ) = f(x1, x2, x3).
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(c) Substituting (i) and (iii) into (6.34) gives

div u =
1

r2 sin θ

[
∂

∂r
(r2 sin θ ur) +

∂

∂θ
(r sin θuθ) +

∂

∂φ
(ruφ)

]
.

(d) Substituting (i) and (iii) into (6.36) gives

curl u =

(
1

r2 sin θ

[
∂

∂θ
(r sin θvφ)− ∂

∂φ
(rvθ)

])
er +

(
1

r sin θ

[
∂vr
∂φ
− ∂

∂r
(r sin θvφ)

])
eθ

+

(
1

r

[
∂

∂r
(rvθ)−

∂vr
∂θ

])
eφ .

(e) Set E=(1/2)(∇u + ∇uT ). We substitute (i) and (iii) into (6.33) to calculate ∇u from which one can

calculate E. Writing the spherical components Êij of E as

(Err, Erθ, Erφ, . . .) = (Ê11, Ê12, Ê13 . . .),

one finds

Err =
∂ur
∂r

,

Eθθ =
1

r

∂uθ
∂θ

+
ur
r
,

Eφφ =
1

r sin θ

∂uφ
∂φ

+
ur
r

+
cot θ

r
uθ,

Erθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
,

Eθφ =
1

2

(
1

r sin θ

∂uθ
∂φ

+
1

r

∂uφ
∂θ
− cot θ

r
uφ

)
,

Eφr =
1

2

(
1

r sin θ

∂ur
∂φ

+
∂uφ
∂r
− uφ

r

)
,





Alternatively these could have been obtained from the results of Example 6.1.

(f) Finally substituting (i) and (iii) into (6.37) gives

div S =

(
∂Srr
∂r

+
1

r

∂Srθ
∂θ

+
1

r sin θ

∂Srφ
∂φ

+
1

r
[2Srr − Sθθ − Sφφ + cot θSrθ]

)
er

+

(
∂Srθ
∂r

+
1

r

∂Sθθ
∂θ

+
1

r sin θ

∂Sθφ
∂φ

+
1

r
[3Srθ + cot θ(Sθθ − Sφφ)]

)
eθ

+

(
∂Srφ
∂r

+
1

r

∂Sθφ
∂θ

+
1

r sin θ

∂Sφφ
∂φ

+
1

r
[3Srφ + 2 cot θSθφ]

)
eφ

Alternatively these could have been obtained from the results of Example 6.2.

Example 6.5: Show that the matrix [Q] defined by (6.22) is a proper orthogonal matrix.

Proof: From (6.22),

Qij =
1

hi

∂xj
∂x̂i

,
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and therefore

QikQjk =
1

hihj

∂xk
∂x̂i

∂xk
∂x̂j

=
1

hihj
gij = δij ,

where in the penultimate step we have used (6.14) and in the ultimate step we have used (6.16). Thus [Q]

is an orthogonal matrix. Next, from (6.22) and (6.7),

Qij =
1

hi

∂xj
∂x̂i

=
1

hi
Jji

where Jij = ∂xi/∂x̂j are the elements of the Jacobian matrix. Thus

det[Q] =
1

h1h2h3
det[J ] > 0

where the inequality is a consequence of the inequalities in (6.8) and (6.17). Hence [Q] is proper orthogonal.
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Chapter 7

Calculus of Variations

7.1 Introduction.

Numerous problems in physics can be formulated as mathematical problems in optimization.

For example in optics, Fermat’s principle states that the path taken by a ray of light in

propagating from one point to another is the path that minimizes the travel time. Most

equilibrium theories of mechanics involve finding a configuration of a system that minimizes

its energy. For example a heavy cable that hangs under gravity between two fixed pegs

adopts the shape that, from among all possible shapes, minimizes the gravitational potential

energy of the system. Or, if we subject a straight beam to a compressive load, its deformed

configuration is the shape which minimizes the total energy of the system. Depending on

the load, the energy minimizing configuration may be straight or bent (buckled). If we dip a

(non-planar) wire loop into soapy water, the soap film that forms across the loop is the one

that minimizes the surface energy (which under most circumstances equals minimizing the

surface area of the soap film). Another common problem occurs in geodesics where, given

some surface and two points on it, we want to find the path of shortest distance joining those

two points which lies entirely on the given surface.

In each of these problem we have a scalar-valued quantity F such as energy or time that

depends on a function φ such as the shape or path, and we want to find the function φ that

minimizes the quantity F of interest. Note that the scalar-valued function F is defined on a

set of functions. One refers to F as a functional and writes F{φ}.

As a specific example, consider the so-called Brachistochrone Problem. We are given two

123
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points (0, 0) and (1, h) in the x, y-plane, with h > 0, that are to be joined by a smooth wire.

A bead is released from rest from the point (0, 0) and slides along the wire due to gravity.

For what shape of wire is the time of travel from (0, 0) to (1, h) least?

x

y = φ(x)

g

y

(0(0, 0)0)

(1(1, h)

1

Figure 7.1: Curve joining (0, 0) to (1, h) along which a bead slides under gravity.

In order to formulate this problem, let y = φ(x), 0 ≤ x ≤ 1, describe a generic curve

joining (0, 0) to (1, h). Let s(t) denote the distance traveled by the bead along the wire at

time t so that v(t) = ds/dt is its corresponding speed. The travel time of the bead is

T =

∫
ds

v

where the integral is taken along the entire path. In the question posed to us, we are to find

the curve, i.e. the function φ(x), which makes T a minimum. Since we are to minimize T by

varying φ, it is natural to first rewrite the formula for T in a form that explicitly displays

its dependency on φ.

Note first, that by elementary calculus, the arc length ds is related to dx by

ds =
√
dx2 + dy2 =

√
1 + (dy/dx)2 dx =

√
1 + (φ′)2 dx

and so we can write

T =

∫ 1

0

√
1 + (φ′)2

v
dx.

Next, we wish to express the speed v in terms of φ. If (x(t), y(t)) denote the coordinates

of the bead at time t, the conservation of energy tells us that the sum of the potential and

kinetic energies does not vary with time:

−mgφ(x(t)) +
1

2
mv2(t) = 0,
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where the right hand side is the total energy at the initial instant. Solving this for v gives

v =
√

2gφ.

Finally, substituting this back into the formula for the travel time gives

T{φ} =

∫ 1

0

√
1 + (φ′)2

2gφ
dx. (7.1)

Given a curve characterized by y = φ(x), this formula gives the corresponding travel time

for the bead. Our task is to find, from among all such curves, the one that minimizes T{φ}.

This minimization takes place over a set of functions φ. In order to complete the for-

mulation of the problem, we should carefully characterize this set of “admissible functions”

(or “test functions”). A generic curve is described by y = φ(x), 0 ≤ x ≤ 1. Since we are

only interested in curves that pass through the points (0, 0) and (1, h) we must require that

φ(0) = 0, φ(1) = h. Finally, for analytical reasons we only consider curves that are continu-

ous and have a continous slope, i.e. φ and φ′ are both continuous on [0, 1]. Thus the set A of

admissible functions that we wish to consider is

A =
{
φ(·)

∣∣ φ : [0, 1]→ R, φ ∈ C1[0, 1], φ(0) = 0, φ(1) = h
}
. (7.2)

Our task is to minimize T{φ} over the set A.

Remark: Since the shortest distance between two points is given by the straight line that

joins them, it is natural to wonder whether a straight line is also the curve that gives the

minimum travel time. To investigate this, consider (a) a straight line, and (b) a circular arc,

that joins (0, 0) to (1, h). Use (7.1) to calculate the travel time for each of these paths and

show that the straight line is not the path that gives the least travel time.

Remark: One can consider various variants of the Brachistochrone Problem. For example, the

length of the curve joining the two points might be prescribed, in which case the minimization

is to be carried out subject to the constraint that the length is given. Or perhaps the position

of the left hand end might be prescribed as above, but the right hand end of the wire might

be allowed to lie anywhere on the vertical line through x = 1. Or, there might be some

prohibited region of the x, y-plane through which the path is disallowed from passing. And

so on.

In summary, in the simplest problem in the calculus of variations we are required to find

a function φ(x) ∈ C1[0, 1] that minimizes a functional F{φ} of the form

F{φ} =

∫ 1

0

f(x, φ, φ′)dx
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over an admissible set of test functions A. The test functions (or admissible functions) φ are

subject to certain conditions including smoothness requirements; possibly (but not neces-

sarily) boundary conditions at both ends x = 0, 1; and possibly (but not necessarily) side

constraints of various forms. Other types of problems will be also be encountered in what

follows.

7.2 Brief review of calculus.

Perhaps it is useful to begin by reviewing the familiar question of minimization in calculus.

Consider a subset A of n-dimensional space Rn and let F (x) = F (x1, x2, . . . , xn) be a real-

valued function defined on A. We say that xo ∈ A is a minimizer of F if1

F (x) ≥ F (xo) for all x ∈ A. (7.3)

Sometimes we are only interested in finding a “local minimizer”, i.e. a point xo that

minimizes F relative to all x that are “close” to x0. In order to speak of such a notion we

must have a measure of “closeness”. Thus suppose that the vector space Rn is Euclidean so

that a norm is defined on Rn. Then we say that xo is a local minimizer of F if F (x) ≥ F (xo)

for all x in a neighborhood of xo, i.e. if

F (x) ≥ F (xo) for all x such that |x− xo| < r (7.4)

for some r > 0.

Define the function F̂ (ε) for −ε0 < ε < ε0 by

F̂ (ε) = F (x0 + εn) (7.5)

where n is a fixed vector and ε0 is small enough to ensure that x0+εn ∈ A for all ε ∈ (−ε0, ε0).

In the presence of sufficient smoothness we can write

F̂ (ε)− F̂ (0) = F̂ ′(0)ε+
1

2
F̂ ′′(0)ε2 +O(ε3). (7.6)

Since F (x0 + εn) ≥ F (x0) it follows that F̂ (ε) ≥ F̂ (0). Thus if x0 is to be a minimizier of F

it is necessary that

F̂ ′(0) = 0, F̂ ′′(0) ≥ 0. (7.7)

1A maximizer of F is a minimizer of −F so we don’t need to address maximizing separately from mini-

mizing.
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It is customary to use the following notation and terminology: we set

δF (xo,n) = F̂ ′(0), (7.8)

which is called the first variation of F and similarly set

δ2F (xo,n) = F̂ ′′(0) (7.9)

which is called the second variation of F . At an interior local minimizer x0, one necessarily

must have

δF (xo,n) = 0 and δ2F(xo,n) ≥ 0 for all unit vectors n. (7.10)

In the present setting of calculus, we know from (7.5), (7.8) that δF (xo,n) = ∇F (xo) ·n
and that δ2F (xo,n) = (∇∇F (xo))n·n. Here the vector field ∇F is the gradient of F and the

tensor field ∇∇F is the gradient of ∇F . Therefore (7.10) is equivalent to the requirements

that

∇F (xo) · n = 0 and (∇∇F(xo))n · n ≥ 0 for all unit vectors n (7.11)

or equivalently

n∑

i=1

∂F

∂xi

∣∣∣∣∣
x=x0

ni = 0 and
n∑

i=1

n∑

j=1

∂2F

∂xi∂xj

∣∣∣∣∣
x=x0

ninj ≥ 0 (7.12)

whence we must have ∇F (xo) = o and the Hessian ∇∇F (xo) must be positive semi-definite.

Remark: It is worth recalling that a function need not have a minimizer. For example, the

function F1(x) = x defined on A1 = (−∞,∞) is unbounded as x→ ±∞. Another example is

given by the function F2(x) = x defined on A2 = (−1, 1) noting that F2 ≥ −1 on A2; however,

while the value of F2 can get as close as one wishes to −1, it cannot actually achieve the

value −1 since there is no x ∈ A2 at which f(x) = −1; note that −1 /∈ A2. Finally, consider

the function F3(x) defined on A3 = [−1, 1] where F3(x) = 1 for −1 ≤ x ≤ 0 and F (x) = x

for 0 < x ≤ 1; the value of F3 can get as close as one wishes to 0 but cannot achieve it since

F (0) = 1. In the first example A1 was unbounded. In the second, A2 was bounded but open.

And in the third example A3 was bounded and closed but the function was discontinuous on

A3. In order for a minimizer to exist, A must be compact (i.e. bounded and closed). It can

be shown that if A is compact and if F is continuous on A then F assumes both maximum

and minimum values on A.



128 CHAPTER 7. CALCULUS OF VARIATIONS

7.3 The basic idea: necessary conditions for a mini-

mum: δF = 0, δ2F ≥ 0.

In the calculus of variations, we are typically given a functional F defined on a function

space A, where F : A → R, and we are asked to find a function φo ∈ A that minimizes F

over A: i.e. to find φo ∈ A for which

F{φ} ≥ F{φo} for all φ ∈ A.

x
0

y

(0(0, a)

(1(1, b)

y = φ1(x)

1

y = φ2(x)

Figure 7.2: Two functions φ1 and φ2 that are “close” in the sense of the norm || · ||0 but not in the sense

of the norm || · ||1.

Most often, we will be looking for a local (or relative) minimizer, i.e. for a function φ0

that minimizes F relative to all “nearby functions”. This requires that we select a norm so

that the distance between two functions can be quantified. For a function φ in the set of

functions that are continuous on an interval [x1, x2], i.e. for φ ∈ C[x1, x2], one can define a

norm by

||φ||0 = max
x1≤x≤x2

|φ(x)|.

For a function φ in the set of functions that are continuous and have continuous first deriva-

tives on [x1, x2], i.e. for φ ∈ C1[x1, x2] one can define a norm by

||φ||1 = max
x1≤x≤x2

|φ(x)| + max
x1≤x≤x2

|φ′(x)|;

and so on. (Of course the norm ||φ||0 can also be used on C1[x1, x2].)
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When seeking a local minimizer of a functional F we might say we want to find φ0 for

which

F{φ} ≥ F{φo} for all admissible φ such that ||φ− φ0||0 < r

for some r > 0. In this case the minimizer φ0 is being compared with all admissible functions

φ whose values are close to those of φ0 for all x1 ≤ x ≤ x2. Such a local minimizer is called a

strong minimizer. On the other hand, when seeking a local minimizer we might say we want

to find φ0 for which

F{φ} ≥ F{φo} for all admissible φ such that ||φ− φ0||1 < r

for some r > 0. In this case the minimizer is being compared with all functions whose values

and whose first derivatives are close to those of φ0 for all x1 ≤ x ≤ x2. Such a local minimizer

is called a weak minimizer. A strong minimizer is automatically a weak minimizer.

Unless explicitly stated otherwise, in this Chapter we will be examining weak local ex-

trema. The approach for finding such extrema of a functional is essentially the same as that

used in the more familiar case of calculus reviewed in the preceding sub-section. Consider

a functional F{φ} defined on a function space A and suppose that φo ∈ A minimizes F . In

order to determine φ0 we consider the one-parameter family of admissible functions

φ(x; ε) = φ0(x) + ε η(x) (7.13)

that are close to φ0; here ε is a real variable in the range −ε0 < ε < ε0 and η(x) is a once

continuously differentiable function. Since φ is to be admissible, we must have φ0 + εη ∈ A

for each ε ∈ (−ε0, ε0). Define a function F̂ (ε) by

F̂ (ε) = F{φ0 + εη}, −ε0 < ε < ε0. (7.14)

Since φ0 minimizes F it follows that F{φ0 + εη} ≥ F{φ0} or equivalently F̂ (ε) ≥ F̂ (0).

Therefore ε = 0 minimizes F̂ (ε). The first and second variations of F are defined by

δF{φ0, η} = F̂ ′(0) and δ2F{φ0, η} = F̂ ′′(0) respectively, and so if φ0 minimizes F , then

it is necessary that

δF{φ0, η} = 0, δ2F{φ0, η} ≥ 0. (7.15)

These are necessary conditions on a minimizer φo. We cannot go further in general.

In any specific problem, such as those in the subsequent sections, the necessary condition

δF{φo, η} = 0 can be further simplified by exploiting the fact that it must hold for all

admissible η. This allows one to eliminate η leading to a condition (or conditions) that only

involves the minimizer φ0.
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Remark: Note that when η is independent of ε the functions φ0(x) and φ0(x) + εη(x), and

their derivatives, are close to each other for small ε. On the other hand the functions φ0(x)

and φ0(x)+ε sin(x/ε) are close to each other but their derivatives are not close to each other.

Throughout these notes we will consider functions η that are independent of ε and so, as

noted previously, we will be restricting attention exclusively to weak minimizers.

7.4 Application of the necessary condition δF = 0 to

the basic problem. Euler equation.

7.4.1 The basic problem. Euler equation.

Consider the following class of problems: let A be the set of all continuously differentiable

functions φ(x) defined for 0 ≤ x ≤ 1 with φ(0) = a, φ(1) = b:

A =
{
φ(·)

∣∣ φ : [0, 1]→ R, φ ∈ C1[0, 1], φ(0) = a, φ(1) = b
}
. (7.16)

Let f(x, y, z) be a given function, defined and smooth for all real x, y, z. Define a functional

F{φ}, for every φ ∈ A, by

F{φ} =

∫ 1

0

f (x, φ(x), φ′(x)) dx. (7.17)

We wish to find a function φ ∈ A which minimizes F{φ}.

x
0

y

(0(0, a)

(1(1, b)y = φ0(x) + εη(x)

y = φ0(x)

Figure 7.3: The minimizer φ0 and a neighboring function φ0 + εη.
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Suppose that φ0(x) ∈ A is a minimizer of F , so that F{φ} ≥ F{φ0} for all φ ∈ A. In

order to determine φ0 we consider the one parameter family of admissible functions φ(x; ε) =

φ0(x) + ε η(x) where ε is a real variable in the range −ε0 < ε < ε0 and η(x) is a once

continuously differentiable function on [0, 1]; see Figure 7.3. Since φ must be admissible we

need φ0 + ε η ∈ A for each ε. Therefore we must have φ(0, ε) = a and φ(1, ε) = b which in

turn requires that

η(0) = η(1) = 0. (7.18)

Pick any function η(x) with the property (7.18) and fix it. Define the function F̂ (ε) =

F{φ0 + εη} so that

F̂ (ε) = F{φ0 + εη} =

∫ 1

0

f(x, φ0 + εη, φ′0 + εη′) dx. (7.19)

We know from the analysis of the preceding section that a necessary condition for φ0 to

minimize F is that

δF{φo, η} = F̂ ′(0) = 0. (7.20)

On using the chain-rule, we find F̂ ′(ε) from (7.19) to be

F̂ ′(ε) =

∫ 1

0

(
∂f

∂y
(x, φ0 + εη, φ′0 + εη′) η +

∂f

∂z
(x, φ0 + εη, φ′0 + εη′)η′

)
dx,

and so (7.20) leads to

δF{φo, η} = F̂ ′(0) =

∫ 1

0

(
∂f

∂y
(x, φ0, φ

′
0)η +

∂f

∂z
(x, φ0, φ

′
0)η′
)
dx = 0. (7.21)

Thus far we have simply repeated the general analysis of the preceding section in the

context of the particular functional (7.17). Our goal is to find φ0 and so we must eliminate η

from (7.21). To do this we rearrange the terms in (7.21) into a convenient form and exploit

the fact that (7.21) must hold for all functions η that satisfy (7.18).

In order to do this we proceed as follows: Integrating the second term in (7.21) by parts

gives ∫ 1

0

(
∂f

∂z

)
η′ dx =

[
η
∂f

∂z

]x=1

x=0

−
∫ 1

0

d

dx

(
∂f

∂z

)
η dx .

However by (7.18) we have η(0) = η(1) = 0 and therefore the first term on the right-hand

side drops out. Thus (7.21) reduces to

∫ 1

0

[
∂f

∂y
− d

dx

(
∂f

∂z

)]
η dx = 0. (7.22)
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Though we have viewed η as fixed up to this point, we recognize that the above derivation

is valid for all once continuously differentiable functions η(x) which have η(0) = η(1) = 0.

Therefore (7.22) must hold for all such functions.

Lemma: The following is a basic result from calculus: Let p(x) be a continuous function on [0, 1] and suppose

that ∫ 1

0

p(x)n(x)dx = 0

for all continuous functions n(x) with n(0) = n(1) = 0. Then,

p(x) = 0 for 0 ≤ x ≤ 1.

In view of this Lemma we conclude that the integrand of (7.22) must vanish and therefore

obtain the differential equation

d

dx

[
∂f

∂z
(x, φ0, φ

′
0)

]
− ∂f

∂y
(x, φ0, φ

′
0) = 0 for 0 ≤ x ≤ 1. (7.23)

This is a differential equation for φ0, which together with the boundary conditions

φ0(0) = a, φ0(1) = b, (7.24)

provides the mathematical problem governing the minimizer φ0(x). The differential equation

(7.23) is referred to as the Euler equation (sometimes referred to as the Euler-Lagrange

equation) associated with the functional (7.17).

Notation: In order to avoid the (precise though) cumbersome notation above, we shall drop

the subscript “0” from the minimizing function φ0; moreover, we shall write the Euler equa-

tion (7.23) as
d

dx

[
∂f

∂φ′
(x, φ, φ′)

]
− ∂f

∂φ
(x, φ, φ′) = 0, (7.25)

where, in carrying out the partial differentiation in (7.25), one treats x, φ and φ′ as if they

were independent variables.

7.4.2 An example. The Brachistochrone Problem.

Consider the Brachistochrone Problem formulated in the first example of Section 7.1. Here

we have

f(x, φ, φ′) =

√
1 + (φ′)2

2gφ
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and we wish to find the function φ0(x) that minimizes

F{φ} =

∫ 1

0

f(x, φ(x), φ′(x))dx =

∫ 1

0

√
1 + [φ′(x)]2

2gφ(x)
dx

over the class of functions φ(x) that are continuous and have continuous first derivatives on

[0,1], and satisfy the boundary conditions φ(0) = 0, φ(1) = h. Treating x, φ and φ′ as if they

are independent variables and differentiating the function f(x, φ, φ′) gives:

∂f

∂φ
=

√
1 + (φ′)2

2g

1

2(φ)3/2
,

∂f

∂φ′
=

φ′√
2gφ(1 + (φ′)2)

,

and therefore the Euler equation (7.23) specializes to

d

dx

(
φ′√

(φ)(1 + (φ′)2)

)
−
√

1 + (φ′)2

2(φ)3/2
= 0, 0 < x < 1, (7.26)

with associated boundary conditions

φ(0) = 0, φ(1) = h. (7.27)

The minimizer φ(x) therefore must satisfy the boundary-value problem consisting of the

second-order (nonlinear) ordinary differential equation (7.26) and the boundary conditions

(7.27).

The rest of this sub-section has nothing to do with the calculus of variations. It is simply

concerned with the solving the boundary value problem (7.26), (7.27). We can write the

differential equation as

φ′√
φ(1 + (φ′)2)

d

dφ

(
φ′√

φ(1 + (φ′)2)

)
+

1

2φ2
= 0

which can be immediately integrated to give

1

(φ′(x))2
=

φ(x)

c2 − φ(x)
(7.28)

where c is a constant of integration that is to be determined.

It is most convenient to find the path of fastest descent in parametric form, x = x(θ), φ =

φ(θ), θ1 < θ < θ2, and to this end we adopt the substitution

φ =
c2

2
(1− cos θ) = c2 sin2(θ/2), θ1 < θ < θ2. (7.29)
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Differentiating this with respect to x gives

φ′(x) =
c2

2
sin θ θ′(x)

so that, together with (7.28) and (7.29), this leads to

dx

dθ
=
c2

2
(1− cos θ)

which integrates to give

x =
c2

2
(θ − sin θ) + c1, θ1 < θ < θ2. (7.30)

We now turn to the boundary conditions. The requirement φ(x) = 0 at x = 0, together

with (7.29) and (7.30), gives us θ1 = 0 and c1 = 0. We thus have

x =
c2

2
(θ − sin θ),

φ =
c2

2
(1− cos θ),





0 ≤ θ ≤ θ2. (7.31)

The remaining boundary condition φ(x) = h at x = 1 gives the following two equations for

finding the two constants θ2 and c:

1 =
c2

2
(θ2 − sin θ2),

h =
c2

2
(1− cos θ2).





(7.32)

Once this pair of equations is solved for c and θ2 then (7.31) provides the solution of the

problem. We now address the solvability of (7.32).

To this end, first, if we define the function p(θ) by

p(θ) =
θ − sin θ

1− cos θ
, 0 < θ < 2π, (7.33)

then, by dividing the first equation in (7.32) by the second, we see that θ2 is a root of the

equation

p(θ2) = h−1. (7.34)

One can readily verify that the function p(θ) has the properties

p→ 0 as θ → 0+, p→∞ as θ → 2π−,

dp

dθ
=

cos θ/2

sin3 θ/2
(tan θ/2− θ/2) > 0 for 0 < θ < 2π.
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p(θ)

θ

h−1

θ2 2π

Figure 7.4: A graph of the function p(θ) defined in (7.33) versus θ. Note that given any h > 0 the equation

h−1 = p(θ) has a unique root θ = θ2 ∈ (0, 2π).

Therefore it follows that as θ goes from 0 to 2π, the function p(θ) increases monotonically

from 0 to ∞; see Figure 7.4. Therefore, given any h > 0, the equation p(θ2) = h−1 can be

solved for a unique value of θ2 ∈ (0, 2π). The value of c is then given by (7.32)1.

Thus in summary, the path of minimum descent is given by the curve defined in (7.31)

with the values of θ2 and c given by (7.34) and (7.32)1 respectively. Figure 7.5 shows that

the curve (7.31) is a cycloid – the path traversed by a point on the rim of a wheel that rolls

without slipping.

A

P

θ

P

P

A Aπθ =x(θ) y(θ)( , )

P'

R

x

y

R

y(θ) = APAP ′ − APAP coscos θ = R(1(1− coscos θ)

x(θ) = PP ′ − APAP sinsin θ = R(θ − sinsin θ)





Figure 7.5: A cycloid x = x(θ), y = y(θ) is generated by rolling a circle along the x-axis as shown, the

parameter θ having the significance of being the angle of rolling.
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7.4.3 A Formalism for Deriving the Euler Equation

In order to expedite the steps involved in deriving the Euler equation, one usually uses the

following formal procedure. First, we adopt the following notation: if H{φ} is any quantity

that depends on φ, then by δH we mean2

δH = H(φ+ εη)−H(φ) up to linear terms. (7.35)

that is,

δH = ε
dH{φ+ εη}

dε

∣∣∣∣
ε=0

, (7.36)

For example, by δφ we mean

δφ = (φ+ εη)− (φ) = εη; (7.37)

by δφ′ we mean

δφ′ = (φ′ + εη′)− (φ′) = εη′ = (δφ)′; (7.38)

by δf we mean

δf = f(x, φ+ εη, φ′ + εη′)− f(x, φ, φ′)

=
∂f

∂φ
(x, φ, φ′) εη +

∂f

∂φ′
(x, φ, φ′) εη′

=

(
∂f

∂φ

)
δφ+

(
∂f

∂φ′

)
δφ′;

(7.39)

and by δF , or δ

∫ 1

0

f dx, we mean

δF = F{φ+ εη} − F{φ} = ε

[
d

dε
F{φ+ εη}

]

ε=0

= ε

∫ 1

0

[(
∂f

∂φ

)
η +

(
∂f

∂φ′

)
η′
]
dx

=

∫ 1

0

[
∂f

∂φ
δφ+

∂f

∂φ′
δφ′
]
dx =

∫ 1

0

δf dx.

(7.40)

We refer to δφ(x) as an admissible variation. When η(0) = η(1) = 0, it follows that

δφ(0) = δφ(1) = 0.

2Note the following minor change in notation: what we call δH here is what we previously would have

called ε δH.



7.5. GENERALIZATIONS. 137

We refer to δF as the first variation of the functional F. Observe from (7.40) that

δF = δ

∫ 1

0

f dx =

∫ 1

0

δf dx. (7.41)

Finally observe that the necessary condition for a minimum that we wrote down previously

can be written as

δF{φ, δφ} = 0 for all admissible variations δφ. (7.42)

For purposes of illustration, let us now repeat our previous derivation of the Euler equa-

tion using this new notation3. Given the functional F , a necessary condition for an extremum

of F is

δF = 0

and so our task is to calculate δF :

δF = δ

∫ 1

0

f dx =

∫ 1

0

δf dx.

Since f = f(x, φ, φ′), this in turn leads to4

δF =

∫ 1

0

[(
∂f

∂φ

)
δφ+

(
∂f

∂φ′

)
δφ′
]
dx.

From here on we can proceed as before by setting δF = 0, integrating the second term by

parts, and using the boundary conditions and the arbitrariness of an admissible variation

δφ(x) to derive the Euler equation.

7.5 Generalizations.

7.5.1 Generalization: Free end-point; Natural boundary conditions.

Consider the following modified problem: suppose that we want to find the function φ(x)

from among all once continuously differentiable functions that makes the functional

F{φ} =

∫ 1

0

f(x, φ, φ′) dx

3If ever in doubt about a particular step during a calculation, always go back to the meaning of the

symbols δφ, etc. or revert to using ε, η etc.
4Note that the variation δ does not operate on x since it is the function φ that is being varied not the

independent variable x. So in particular, δf = fφδφ+ fφ′δφ′ and not δf = fxδx+ fφδφ+ fφ′δφ′.
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a minimum. Note that we do not restrict attention here to those functions that satisfy

φ(0) = a, φ(1) = b. So the set of admissible functions A is

A =
{
φ(·)| φ : [0, 1]→ R, φ ∈ C1[0, 1]

}
(7.43)

Note that the class of admissible functions A is much larger than before. The functional

F{φ} is defined for all φ ∈ A by

F{φ} =

∫ 1

0

f(x, φ, φ′) dx. (7.44)

We begin by calculating the first variation of F :

δF = δ

∫ 1

0

f dx =

∫ 1

0

δf dx =

∫ 1

0

[(
∂f

∂φ

)
δφ+

(
∂f

∂φ′

)
δφ′
]
dx (7.45)

Integrating the last term by parts yields

δF =

∫ 1

0

[
∂f

∂φ
− d

dx

(
∂f

∂φ′

)]
δφ dx+

[
∂f

∂φ′
δφ

]1

0

. (7.46)

Since δF = 0 at an extremum, we must have

∫ 1

0

[
∂f

∂φ
− d

dx

(
∂f

∂φ′

)]
δφ dx+

[
∂f

∂φ′
δφ

]1

0

= 0 (7.47)

for all admissible variations δφ(x). Note that the boundary term in (7.47) does not automat-

ically drop out now because δφ(0) and δφ(1) do not have to vanish. First restrict attention

to all variations δφ with the additional property δφ(0) = δφ(1) = 0; equation (7.47) must

necessarily hold for all such variations δφ. The boundary terms now drop out and by the

Lemma in Section 7.4.1 it follows that

d

dx

[
∂f

∂φ′

]
− ∂f

∂φ
= 0 for 0 < x < 1. (7.48)

This is the same Euler equation as before. Next, return to (7.47) and keep (7.48) in mind.

We see that we must have

∂f

∂φ′

∣∣∣∣
x=1

δφ(1) − ∂f

∂φ′

∣∣∣∣
x=0

δφ(0) = 0 (7.49)

for all admissible variations δφ. Since δφ(0) and δφ(1) are both arbitrary (and not necessarily

zero), (7.49) requires that
∂f

∂φ′
= 0 at x = 0 and x = 1. (7.50)
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Equation (7.50) provides the boundary conditions to be satisfied by the extremizing function

φ(x). These boundary conditions were determined as part of the extremization; they are

referred to as natural boundary conditions in contrast to boundary conditions that are given

as part of a problem statement.

Example: Reconsider the Brachistochrone Problem analyzed previously but now suppose

that we want to find the shape of the wire that commences from (0, 0) and ends somewhere

on the vertical through x = 1; see Figure 7.6. The only difference between this and the first

Brachistochrone Problem is that here the set of admissible functions is

A2 =
{
φ(·)

∣∣ φ : [0, 1]→ R, φ ∈ C1[0, 1], φ(0) = 0
}

;

note that there is no restriction on φ at x = 1. Our task is to minimize the travel time of

the bead T{φ} over the set A2.

x
0

g

y

y = φ(x)

1

Figure 7.6: Curve joining (0, 0) to an arbitrary point on the vertical line through x = 1.

The minimizer must satisfy the same Euler equation (7.26) as in the first problem, and

the same boundary condition φ(0) = 0 at the left hand end. To find the natural boundary

condition at the other end, recall that

f(x, φ, φ′) =

√
1 + (φ′)2

2gφ
.

Differentiating this gives
∂f

∂φ′
=

φ′√
2gφ(1 + (φ′)2)

.

and so by (7.50), the natural boundary coundition is

φ′√
2gφ(1 + (φ′)2)

= 0 at x = 1,
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which simplifies to

φ′(1) = 0.

.

7.5.2 Generalization: Higher derivatives.

The functional F{φ} considered above involved a function φ and its first derivative φ′. One

can consider functionals that involve higher derivatives of φ, for example

F{φ} =

∫ 1

0

f(x, φ, φ′, φ′′) dx.

We begin with the formulation and analysis of a specific example and then turn to some

theory.

u′

x

y

MM

u

φ = u′

EnergyEnergy perer unitunit lengthlength = 1
2Mφ′ = 1

2EI(u′′)2

δφ

M = EIφ′

Figure 7.7: The neutral axis of a beam in reference (straight) and deformed (curved) states. The bold lines

represent a cross-section of the beam in the reference and deformed states. In the classical Bernoulli-Euler

theory of beams, cross-sections remain perpendicular to the neutral axis.

Example: The Bernoulli-Euler Beam. Consider an elastic beam of length L and bending

stiffness EI, which is clamped at its left hand end. The beam carries a distributed load p(x)

along its length and a concentrated force F at the right hand end x = L; both loads act in

the −y-direction. Let u(x), 0 ≤ x ≤ L, be a geometrically admissible deflection of the beam.

Since the beam is clamped at the left hand end this means that u(x) is any (smooth enough)

function that satisfies the geometric boundary conditions

u(0) = 0, u′(0) = 0; (7.51)



7.5. GENERALIZATIONS. 141

the boundary condition (7.51)1 describes the geometric condition that the beam is clamped

at x = 0 and therefore cannot deflect at that point; the boundary condition (7.51)2 describes

the geometric condition that the beam is clamped at x = 0 and therefore cannot rotate at

the left end. The set of admissible test functions that we consider is

A =
{
u(·) | u : [0, L]→ R, u ∈ C4[0, L], u(0) = 0, u′(0) = 0

}
, (7.52)

which consists of all “geometrically possible configurations”.

From elasticity theory we know that the elastic energy associated with a deformed con-

figuration of the beam is (1/2)EI(u′′)2 per unit length. Therefore the total potential energy

of the system is

Φ{u} =

∫ L

0

1

2
EI(u′′(x))2 dx−

∫ L

0

p(x)u(x) dx− F u(L), (7.53)

where the last two terms represent the potential energy of the distributed and concentrated

loading respectively; the negative sign in front of these terms arises because the loads act

in the −y-direction while u is the deflection in the +y-direction. Note that the integrand

of the functional involves the higher derivative term u′′. In addition, note that only two

boundary conditions u(0) = 0, u′(0) = 0 are given and so we expect to derive additional

natural boundary conditions at the right hand end x = L.

The actual deflection of the beam minimizes the potential energy (7.53) over the set

(7.52). We proceed in the usual way by calculating the first variation δΦ and setting it equal

to zero:

δΦ = 0.

By using (7.53) this can be written explicitly as

∫ L

0

EI u′′δu′′ dx−
∫ L

0

p δu dx− F δu(L) = 0.

Twice integrating the first term by parts leads to

∫ L

0

EI u′′′′δu dx−
∫ L

0

p δu dx− F δu(L)−
[
EIu′′′δu

]L
0

+
[
EIu′′δu′

]L
0

= 0.

The given boundary conditions (7.51) require that an admissible variation δu must obey

δu(0) = 0, δu′(0) = 0. Therefore the preceding equation simplifies to

∫ L

0

(EI u′′′′ − p) δu dx− [EIu′′′(L) + F ] δu(L) + EIu′′(L)δu′(L) = 0.
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Since this must hold for all admissible variations δu(x), it follows in the usual way that the

extremizing function u(x) must obey

EI u′′′′(x)− p(x) = 0 for 0 < x < L,

EI u′′′(L) + F = 0,

EI u′′(L) = 0.





(7.54)

Thus the extremizer u(x) obeys the fourth order linear ordinary differential equation (7.54)1,

the prescribed boundary conditions (7.51) and the natural boundary conditions (7.54)2,3.

The natural boundary condition (7.54)2 describes the mechanical condition that the beam

carries a concentrated force F at the right hand end; and the natural boundary condition

(7.54)3 describes the mechanical condition that the beam is free to rotate (and therefore has

zero “bending moment”) at the right hand end.

Exercise: Consider the functional

F{φ} =

∫ 1

0

f(x, φ, φ′, φ′′)dx

defined on the set of admissible functions A consisting of functions φ that are defined and

four times continuously differentiable on [0, 1] and that satisfy the four boundary conditions

φ(0) = φ0, φ′(0) = φ′0, φ(1) = φ1, φ′(1) = φ′1.

Show that the function φ that extremizes F over the set A must satisfy the Euler equation

∂f

∂φ
− d

dx

(
∂f

∂φ′

)
+

d2

dx2

(
∂f

∂φ′′

)
= 0 for 0 < x < 1

where, as before, the partial derivatives ∂f/∂φ, ∂f/∂φ′ and ∂f/∂φ′′ are calculated by treating

φ, φ′ and φ′′′ as if they are independent variables in f(x, φ, φ′, φ′′).

7.5.3 Generalization: Multiple functions.

The functional F{φ} considered above involved a single function φ and its derivatives. One

can consider functionals that involve multiple functions, for example a functional

F{u, v} =

∫ 1

0

f(x, u, u′, v, v′) dx
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that involves two functions u(x) and v(x). We begin with the formulation and analysis of a

specific example and then turn to some theory.

Example: The Timoshenko Beam. Consider a beam of length L, bending stiffness5 EI and

shear stiffness GA. The beam is clamped at x = 0, it carries a distributed load p(x) along its

length which acts in the −y-direction, and carries a concentrated force F at the end x = L,

also in the −y-direction.

In the simplest model of a beam – the so-called Bernoulli-Euler model – the deformed

state of the beam is completely defined by the deflection u(x) of the centerline (the neutral

axis) of the beam. In that theory, shear deformations are neglected and therefore a cross-

section of the beam remains perpendicular to the neutral axis even in the deformed state.

Here we discuss a more general theory of beams, one that accounts for shear deformations.

u′

φ
u′ φ-

x

y

Figure 7.8: The neutral axis of a beam in reference (straight) and deformed (curved) states. The bold lines

represent a cross-section of the beam in the reference and deformed states. The thin line is perpendicular

to the deformed neutral axis, so that in the classical Bernoulli-Euler theory of beams, where cross-sections

remain perpendicular to the neutral axis, the thin line and the bold line would coincide. The angle between

the vertical and the bold line if φ. The angle between the neutral axis and the horizontal, which equals the

angle between the perpendicular to the neutral axis (the thin line) and the vertical dashed line, is u′. The

decrease in the angle between the cross-section and the neutral axis is therefore u′ − φ.

In the theory considered here, a cross-section of the beam is not constrained to remain

perpendicular to the neutral axis. Thus a deformed state of the beam is characterized by two

5E and G are the Young’s modulus and shear modulus of the material, while I and A are the second

moment of cross-section and the area of the cross-section respectively.
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fields: one, u(x), characterizes the deflection of the centerline of the beam at a location x,

and the second, φ(x), characterizes the rotation of the cross-section at x. (In the Bernoulli-

Euler model, φ(x) = u′(x) since for small angles, the rotation equals the slope.) The fact

that the left hand end is clamped implies that the point x = 0 cannot deflect and that the

cross-section at x = 0 cannot rotate. Thus we have the geometric boundary conditions

u(0) = 0, φ(0) = 0. (7.55)

Note that the zero rotation boundary condition is φ(0) = 0 and not u′(0) = 0.

In the more accurate beam theory discussed here, the so-called Timoshenko beam theory,

one does not neglect shear deformations and so u(x) and φ(x) are (geometrically) independent

functions. Since the shear strain is defined as the change in angle between two fibers that

are initially at right angles to each other, the shear strain in the present situation is

γ(x) = u′(x)− φ(x);

see Figure 7.8. Observe that in the Bernoulli-Euler theory γ(x) = 0.

γγ

S = GAGAγ

S

S
M

δφ

M = EIφ′

M

Figure 7.9: Basic constitutive relationships for a beam.

The basic equations of elasticity tell us that the moment-curvature relation for bending

is

M(x) = EIφ′(x)
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and that the associated elastic energy per unit length of the beam, (1/2)Mφ′, is

1

2
EI(φ′(x))2.

Similarly, we know from elasticity that the shear force-shear strain relation for a beam is6

S(x) = GAγ(x)

and that the associated elastic energy per unit length of the beam, (1/2)Sγ, is

1

2
GA(γ(x))2.

The total potential energy of the system is thus

Φ = Φ{u, φ} =

∫ L

0

{
1

2
EI(φ′(x))2 +

1

2
GA(u′(x)− φ(x))2

}
dx −

∫ L

0

pu(x)dx− Fu(L),

(7.56)

where the last two terms in this expression represent the potential energy of the distributed

and concentrated loading respectively (and the negative signs arise because u is the deflection

in the +y-direction while the loadings p and F are applied in the −y-direction). We allow

for the possibility that p, EI and GA may vary along the length of the beam and therefore

might be functions of x.

The displacement and rotation fields u(x) and φ(x) associated with an equilibrium con-

figuration of the beam minimizes the potential energy Φ{u, φ} over the admissible set A of

test functions where take

A = {u(·), φ(·)
∣∣∣u : [0, l]→ R, φ : [0, l]→ R, u ∈ C2([0, L]), φ ∈ C2([0, L]), u(0) = 0, φ(0) = 0}.

Note that all admissible functions are required to satisfy the geometric boundary conditions

(7.55).

To find a minimizer of Φ we calculate its first variation which from (7.56) is

δΦ =

∫ L

0

{
EIφ′ δφ′ +GA(u′ − φ)(δu′ − δφ)

}
dx−

∫ L

0

p δu dx− F δu(L).

6Since the top and bottom faces of the differential element shown in Figure 7.9 are free of shear traction,

we know that the element is not in a state of simple shear. Instead, the shear stress must vary with y such

that it vanishes at the top and bottom. In engineering practice, this is taken into account approximately by

replacing GA by κGA where the heuristic parameter κ ≈ 0.8− 0.9.
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Integrating the terms involving δu′ and δφ′ by parts gives

δΦ =
[
EIφ′ δφ

]L
0
−
∫ L

0

d

dx

(
EIφ′

)
δφ dx

+
[
GA(u′ − φ)δu

]L
0
−
∫ L

0

d

dx

(
GA(u′ − φ)

)
δu dx−

∫ L

0

GA(u′ − φ)δφ dx

−
∫ L

0

p δu dx− Fδu(L).

Finally on using the facts that an admissible variation must satisfy δu(0) = 0 and δφ(0) = 0,

and collecting the like terms in the preceding equation leads to

δΦ = EIφ′(L) δφ(L) +
[
GA
(
u′(L)− φ(L)

)
− F

]
δu(L)

−
∫ L

0

[
d

dx

(
EIφ′

)
+GA(u′ − φ)

]
δφ(x) dx

−
∫ L

0

[
d

dx

(
GA(u′ − φ)

)
+ p

]
δu(x) dx.

(7.57)

At a minimizer, we have δΦ = 0 for all admissible variations. Since the variations

δu(x), δφ(x) are arbitrary on 0 < x < L and since δu(L) and δφ(L) are also arbitrary,

it follows from (7.57) that the field equations

d

dx

(
EIφ′

)
+GA(u′ − φ) = 0, 0 < x < L,

d

dx

(
GA(u′ − φ)

)
+ p = 0, 0 < x < L,





(7.58)

and the natural boundary conditions

EIφ′(L) = 0, GA
(
u′(L)− φ(L)

)
= F (7.59)

must hold.

Thus in summary, an equilibrium configuration of the beam is described by the deflec-

tion u(x) and rotation φ(x) that satisfy the differential equations (7.58) and the boundary

conditions (7.55), (7.59). [Remark: Can you recover the Bernoulli-Euler theory from the

Timoshenko theory in the limit as the shear rigidity GA→∞?]

Exercise: Consider a smooth function f(x, y1, y2, . . . , yn, z1, z2, . . . , zn) defined for all x, y1, y2, . . . , yn,

z1, . . . , zn. Let φ1(x), φ2(x), . . . , φn(x) be n once-continuously differentiable functions on [0, 1]
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with φi(0) = ai, φi(1) = bi. Let F be the functional defined by

F {φ1, φ2, . . . , φn} =

∫ 1

0

f(x, φ1, φ2, . . . , φn, φ
′
1, φ
′
2, . . . , φ

′
n) dx (7.60)

on the set of all such admissible functions. Show that the functions φ1(x), φ2(x), . . . , φn(x)

that extremize F must necessarily satisfy the n Euler equations

d

dx

[
∂f

∂φ′i

]
− ∂f

∂φi
= 0 for 0 < x < 1, (i = 1, 2, . . . , n). (7.61)

7.5.4 Generalization: End point of extremal lying on a curve.

Consider the set A of all functions that describe curves in the x, y-plane that commence from

a given point (0, a) and end at some point on the curve G(x, y) = 0. We wish to minimize a

functional F{φ} over this set of functions.

x
0

y = φ(x)

y

G(x,x, y) = 0
(0(0, a)

y = φ(x) + δφ(x)

xR

xR + δxR

Figure 7.10: Curve joining (0, a) to an arbitrary point on the given curve G(x, y) = 0.

Suppose that φ(x) ∈ A is a minimizer of F . Let x = xR be the abscissa of the point at

which the curve y = φ(x) intersects the curve G(x, y) = 0. Observe that xR is not known a

priori and is to be determined along with φ. Moreover, note that the abscissa of the point

at which a neighboring curve defined by y = φ(x) + δφ(x) intersects the curve G = 0 is not

xR but xR + δxR; see Figure 7.10.

At the minimizer,

F{φ} =

∫ xR

0

f(x, φ, φ′)dx
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and at a neighboring test function

F{φ+ δφ} =

∫ xR+δxR

0

f(x, φ+ δφ, φ′ + δφ′)dx.

Therefore on calculating the first variation δF , which equals the linearized form of F{φ +

δφ} − F{φ}, we find

δF =

∫ xR+δxR

0

(
f(x, φ, φ′) + fφ(x, φ, φ′)δφ+ fφ′(x, φ, φ

′)δφ′
)
dx−

∫ xR

0

f(x, φ, φ′)dx

where we have set fφ = ∂f/∂φ and fφ′ = ∂f/∂φ′. This leads to

δF =

∫ xR+δxR

xR

f(x, φ, φ′)dx +

∫ xR

0

(
fφ(x, φ, φ′)δφ+ fφ′(x, φ, φ

′)δφ′
)
dx

which in turn reduces to

δF = f
(
xR, φ(xR), φ′(xR)

)
δxR +

∫ xR

0

(
fφ δφ+ fφ′ δφ

′
)
dx.

Thus setting the first variation δF equal to zero gives

f
(
xR, φ(xR), φ′(xR)

)
δxR +

∫ xR

0

(
fφ δφ+ fφ′ δφ

′
)
dx = 0.

After integrating the last term by parts we get

f
(
xR, φ(xR), φ′(xR)

)
δxR +

[
fφ′δφ

]xR
0

+

∫ xR

0

(
fφ −

d

dx
fφ′
)
δφ dx = 0

which, on using the fact that δφ(0) = 0, reduces to

f
(
xR, φ(xR), φ′(xR)

)
δxR + fφ′

(
xR, φ(xR), φ′(xR)

)
δφ(xR) +

∫ xR

0

(
fφ−

d

dx
fφ′
)
δφ dx = 0.

(7.62)

First limit attention to the subset of all test functions that terminate at the same point

(xR, φ(xR)) as the minimizer. In this case δxR = 0 and δφ(xR) = 0 and so the first two

terms in (7.62) vanish. Since this specialized version of equation (7.62) must hold for all such

variations δφ(x), this leads to the Euler equation

fφ −
d

dx
fφ′ = 0, 0 ≤ x ≤ xR. (7.63)

We now return to arbitrary admissible test functions. Substituting (7.63) into (7.62) gives

f
(
xR, φ(xR), φ′(xR)

)
δxR + fφ′

(
xR, φ(xR), φ′(xR)

)
δφ(xR) = 0 (7.64)
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which must hold for all admissible δxR and δφ(xR). It is important to observe that since

admissible test curves must end on the curve G = 0, the quantities δxR and δφ(xR) are not

independent of each other. Thus (7.64) does not hold for all δxR and δφ(xR); only for those

that are consistent with this geometric requirement. The requirement that the minimizing

curve and the neighboring test curve terminate on the curve G(x, y) = 0 implies that

G(xR, φ(xR)) = 0, G(xR + δxR, φ(xR + δxR) + δφ(xR + δxR)) = 0, .

Note that linearization gives

G(xR + δxR, φ(xR + δxR) + δφ(xR + δxR))

= G(xR + δxR, φ(xR) + φ′(xR)δxR + δφ(xR))

= G(xR, φ(xR)) +Gx(xR, φ(xR))δxR +Gy(xR, φ(xR))
(
φ′(xR)δxR + δφ(xR)

)
,

= G(xR, φ(xR)) +
(
Gx(xR, φ(xR)) + φ′(xR)Gy(xR, φ(xR))

)
δxR +Gy(xR, φ(xR)) δφ(xR).

where we have set Gx = ∂G/∂x and Gy = ∂G/∂x. Setting δG = G(xR + δxR, φ(xR + δxR) +

δφ(xR+δxR))−G(xR, φ(xR)) = 0 thus leads to the following relation between the variations

δxR and δφ(xR):
(
Gx(xR, φ(xR)) + φ′(xR)Gy(xR, φ(xR))

)
δxR +Gy(xR, φ(xR)) δφ(xR) = 0. (7.65)

Thus (7.64) must hold for all δxR and δφ(xR) that satisfy (7.65). This implies that7

f
(
xR, φ(xR), φ′(xR)

)
− λ
(
Gx(xR, φ(xR)) + φ′(xR)Gy(xR, φ(xR))

)
= 0,

fφ′
(
xR, φ(xR), φ′(xR)

)
− λGy(xR, φ(xR)) = 0,





for some constant λ (referred to as a Lagrange multiplier). We can use the second equation

above to simplify the first equation which then leads to the pair of equations

f
(
xR, φ(xR), φ′(xR)

)
− φ′(xR)fφ′

(
xR, φ(xR), φ′(xR)

)
− λGx(xR, φ(xR)) = 0,

fφ′
(
xR, φ(xR), φ′(xR)

)
− λGy(xR, φ(xR)) = 0.



 (7.66)

7It may be helpful to recall from calculus that if we are to minimize a function I(ε1, ε2), we must satisfy

the condition dI = (∂I/∂ε1)dε1 + (∂I/∂ε2)dε2 = 0. But if this minimization is carried out subject to the

side constraint J(ε1, ε2) = 0 then we must respect the side condition dJ = (∂J/∂ε1)dε1 + (∂J/∂ε2)dε2 = 0.

Under these circumstances, one finds that that one must require the conditions ∂I/∂ε1 = λ∂J/∂ε1, ∂I/∂ε2 =

λ∂J/∂ε2 where the Lagrange multiplier λ is unknown and is also to be determined. The constrain equation

J = 0 provides the extra condition required for this purpose.
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Equation (7.66) provides two natural boundary conditions at the right hand end x = xR.

In summary: an extremal φ(x) must satisfy the differential equations (7.63) on 0 ≤
x ≤ xR, the boundary condition φ = a at x = 0, the two natural boundary conditions

(7.66) at x = xR, and the equation G(xR, φ(xR)) = 0. (Note that the presence of the

additional unknown λ is compensated for by the imposition of the additional condition

G(xR, φ(xR)) = 0.)

Example: Suppose that G(x, y) = c1x+c2y+c3 and that we are to find the curve of shortest

length that commences from (0, a) and ends on G = 0.

Since ds =
√
dx2 + dy2 =

√
1 + (φ′)2 dx we are to minimize the functional

F =

∫ xR

0

√
1 + (φ′)2 dx.

Thus

f(x, φ, φ′) =
√

1 + (φ′)2, fφ(x, φ, φ′) = 0 and fφ′(x, φ, φ
′) =

φ′√
1 + (φ′)2

. (7.67)

On using (7.67), the Euler equation (7.63) can be integrated immediately to give

φ′(x) = constant for 0 ≤ x ≤ xR.

The boundary condition at the left hand end is

φ(0) = a,

while the boundary conditions (7.66) at the right hand end give

1√
1 + φ′2(xR)

= λc1,
φ′(xR)√

1 + φ′2(xR)
= λc2.

Finally the condition G(xR, φ(xR)) = 0 requires that

c1xR + c2φ(xR) + c3 = 0.

Solving the preceding equations leads to the minimizer

φ(x) = (c2/c1)x+ a for 0 ≤ x ≤ −c1(ac2 + c3)

c2
1 + c2

2

.
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7.6 Constrained Minimization

7.6.1 Integral constraints.

Consider a problem of the following general form: find admissible functions φ1(x), φ2(x) that

minimizes

F{φ1, φ2} =

∫ 1

0

f(x, φ1(x), φ2(x), φ′1(x), φ′2(x)) dx (7.68)

subject to the constraint

G(φ1, φ2) =

∫ 1

0

f(x, φ1(x), φ2(x), φ′1(x), φ′2(x)) dx = 0. (7.69)

For reasons of clarity we shall return to the more detailed approach where we introduce

parameters ε1, ε2 and functions η1(x), η1(x), rather than following the formal approach using

variations δφ1(x), δφ2(x). Accordingly, suppose that the pair φ1(x), φ2(x) is the minimizer. By

evaluating F and G on a family of neighboring admissible functions φ1(x) + ε1η1(x), φ2(x) +

ε2η2(x) we have

F̂ (ε1, ε2) = F{φ1(x) + ε1η1(x), φ2(x) + ε2η2(x)},

Ĝ(ε1, ε2) = G(φ1(x) + ε1η1(x), φ2(x) + ε2η2(x)) = 0.
(7.70)

If we begin by keeping η1 and η2 fixed, this is a classical minimization problem for a function

of two variables: we are to minimize the function F̂ (ε1, ε2) with respect to the variables

ε1 and ε2, subject to the constraint Ĝ(ε1, ε2) = 0. A necessary condition for this is that

dF̂ (ε1, ε2) = 0, i.e. that

dF̂ =
∂F̂

∂ε1

dε1 +
∂F̂

∂ε2

dε2 = 0, (7.71)

for all dε1, dε2 that are consistent with the constraint. Because of the constraint, dε1 and dε2

cannot be varied independently. Instead the constraint requires that they be related by

dĜ =
∂Ĝ

∂ε1

dε1 +
∂Ĝ

∂ε2

dε2 = 0. (7.72)

If we didn’t have the constraint, then (7.71) would imply the usual requirements ∂F̂ /∂ε1 =

∂F̂ /∂ε2 = 0. However when the constraint equation (7.72) holds, (7.71) only requires that

∂F̂

∂ε1

= λ
∂Ĝ

∂ε1

,
∂F̂

∂ε2

= λ
∂Ĝ

∂ε2

, (7.73)
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for some constant λ, or equivalently

∂

∂ε1

(F̂ − λĜ) = 0,
∂

∂ε2

(F̂ − λĜ) = 0. (7.74)

Therefore minimizing F̂ subject to the constraint Ĝ = 0 is equivalent to minimizing F̂ −λĜ
without regard to the constraint; λ is known as a Lagrange multiplier. Proceeding from

here on leads to the Euler equation associated with F − λG. The presence of the additional

unknown parameter λ is balanced by the availability of the constraint equation G = 0.

Example: Consider a heavy inextensible cable of mass per unit length m that hangs under

gravity. The two ends of the cable are held at the same vertical height, a distance 2H apart.

The cable has a given length L. We know from physics that the cable adopts a shape that

minimizes the potential energy. We are asked to determine this shape.

x
0

y = φ(x)

g

y

H−H

Let y = φ(x), −H ≤ x ≤ H, describe an admissible shape of the cable. The potential

energy of the cable is determined by integrating mgφ with respect to the arc length s along

the cable which, since ds =
√
dx2 + dy2 =

√
1 + (φ′)2 dx, is given by

V {φ} =

∫ L

0

mgφds = mg

∫ H

−H
φ
√

1 + (φ′)2 dx. (7.75)

Since the cable is inextensible, its length

`{φ} =

∫ L

0

ds =

∫ H

−H

√
1 + (φ′)2 dx (7.76)

must equal L. Therefore we are asked to find a function φ(x) with φ(−H) = φ(H), that

minimizes V {φ} subject to the constraint `{φ} = L. According to the theory developed
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above, this function must satisfy the Euler equation associated with the functional V {φ} −
λ`{φ} where the Lagrange multiplier λ is a constant. The resulting boundary value problem

together with the constraint ` = L yields the shape of the cable φ(x).

Calculating the first variation of V −λmg`, where the constant λ is a Lagrange multiplier,

leads to the Euler equation

d

dx

{
(φ− λ)

φ′√
1 + (φ′)2

}
−
√

1 + (φ′)2 = 0, −H < x < H.

This can be integrated once to yield

φ′ =

√
(φ− λ)2

c2
− 1

where c is a constant of integration. Integrating this again leads to

φ(x) = c cosh[(x+ d)/c] + λ, −H < x < H,

where d is a second constant of integration. For symmetry, we must have φ′(0) = 0 and

therefore d = 0. Thus

φ(x) = c cosh(x/c) + λ, −H < x < H. (7.77)

The constant λ in (7.77) is simply a reference height. For example we could take the x-axis

to pass through the two pegs in which case φ(±H) = 0 and then λ = −c cosh(H/c) and so

φ(x) = c
[

cosh(x/c) − cosh(H/c)
]
, −H < x < H. (7.78)

Substituting (7.78) into the constraint condition `{φ} = L with ` given by (7.76) yields

L = 2c sinh(H/c). (7.79)

Thus in summary, if equation (7.79) can be solved for c, then (7.78) gives the equation

describing the shape of the cable.

All that remains is to examine the solvability of (7.79). To this end set z = H/c and

µ = L/(2H). Then we must solve µz = sinh z where µ > 1 is a constant. (The requirement

µ > 1 follows from the physical necessity that the distance between the pegs, 2H, be less

than the length of the rope, L.) One can show that as z increases from 0 to ∞, the function

sinh z − µz starts from the value 0, decreases monotonically to some finite negative value at

some z = z∗ > 0, and then increases monotonically to ∞. Thus for each µ > 0 the function

sinh z − µz vanishes at some unique positive value of z. Consequently (7.79) has a unique

root c > 0.
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7.6.2 Algebraic constraints

Now consider a problem of the following general type: find a pair of admissible functions

φ1(x), φ2(x) that minimizes ∫ 1

0

f(x, φ1, φ2, φ
′
1, φ
′
2)dx

subject to the algebraic constraint

g(x, φ1(x), φ2(x)) = 0 for 0 ≤ x ≤ 1.

One can show that a necessary condition is that the minimizer should satisfy the Euler

equation associated with f−λg. In this problem the Lagrange multiplier λ may be a function

of x.

Example: Consider a conical surface characterized by

g(x1, x2, x3) = x2
1 + x2

2 −R2(x3) = 0, R(x3) = x3 tanα, x3 > 0.

Let P = (p1, p2, p3) and Q = (q1, q2, q3), q3 > p3, be two points on this surface. A smooth

wire lies entirely on the conical surface and joins the points P and Q. A bead slides along

the wire under gravity, beginning at rest from P. From among all such wires, we are to find

the one that gives the minimum travel time.

x1
x2

x3

P
Q

g

Figure 7.11: A curve that joins the points (p1, p2, p3) to (q2, q2, q3) and lies on the conical surface x21 +

x22 − x23 tan2 α = 0.

Suppose that the wire can be described parametrically by x1 = φ1(x3), x2 = φ2(x3) for

p3 ≤ x3 ≤ q3. (Not all of the permissible curves can be described this way and so by using



7.6. CONSTRAINED MINIMIZATION 155

this characterization we are limiting ourselves to a subset of all the permited curves.) Since

the curve has to lie on the conical surface it is necessary that

g(φ1(x3), φ2(x3), x3) = 0, p3 ≤ x3 ≤ q3. (7.80)

The travel time is found by integrating ds/v along the path. The arc length ds along the

path is given by

ds =
√
dx2

1 + dx2
2 + dx2

3 =
√

(φ′1)2 + (φ′2)2 + 1 dx3.

The conservation of energy tells us that 1
2
mv2(t)−mgx3(t) = −mgp3, or

v =
√

2g(x3 − p3).

Therefore the travel time is

T{φ1, φ2} =

∫ q3

p3

√
(φ′1)2 + (φ′2)2 + 1√

2g(x3 − p3)
dx3 .

Our task is to minimize T{φ1, φ2} over the set of admissible functions

A =
{

(φ1, φ2)
∣∣∣ φi : [p3, q3]→ R, φi ∈ C2[p3, q3], φi(p3) = pi, φi(q3) = qi, i = 1, 2

}
,

subject to the constraint

g(φ1(x3), φ2(x3), x3) = 0, p3 ≤ x3 ≤ q3.

According to the theory developed the solution is given by solving the Euler equations

associated with f − λ(x3)g where

f(x3, φ1, φ2, φ
′
1, φ
′
2) =

√
(φ′1)2 + (φ′2)2 + 1√

2g(x3 − p3)
and g(x1, x2, x3) = x2

1 + x2
2 − x2

3 tan2 α,

subject to the prescribed conditions at the ends and the constraint g(x1, x2, x3) = 0.

7.6.3 Differential constraints

Now consider a problem of the following general type: find a pair of admissible functions

φ1(x), φ2(x) that minimizes ∫ 1

0

f(x, φ1, φ2, φ
′
1, φ
′
2)dx
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subject to the differential equation constraint

g(x, φ1(x), φ2(x), φ′1(x), φ′2(x)) = 0, for 0 ≤ x ≤ 1.

Suppose that the constraint is not integrable, i.e. suppose that there does not exist a func-

tion h(x, φ1(x), φ2(x)) such that g = dh/dx. (In dynamics, such constraints are called non-

holonomic.) One can show that it is necessary that the minimizer satisfy the Euler equation

associated with f − λg. In these problems, the Lagrange multiplier λ may be a function of

x.

Example: Determine functions φ1(x) and φ2(x) that minimize

∫ 1

0

f(x, φ1, φ
′
1, φ
′
2)dx

over an admissible set of functions subject to the non-holonomic constraint

g(x, φ1, φ2, φ
′
1, φ
′
2) = φ2 − φ′1 = 0, for 0 ≤ x ≤ 1. (7.81)

According to the theory above, the minimizers satisfy the Euler equations

d

dx

[
∂h

∂φ′1

]
− ∂h

∂φ1

= 0,
d

dx

[
∂h

∂φ′2

]
− ∂h

∂φ2

= 0 for 0 < x < 1, (7.82)

where h = f − λg. On substituting for f and g, these Euler equations reduce to

d

dx

[
∂f

∂φ′1
+ λ

]
− ∂f

∂φ1

= 0,
d

dx

[
∂f

∂φ′2

]
+ λ = 0 for 0 < x < 1. (7.83)

Thus the functions φ1(x), φ2(x), λ(x) are determined from the three differential equations

(7.81), (7.83).

Remark: Note by substituting the constraint into the integrand of the functional that we can

equivalently pose this problem as one for determining the function φ1(x) that minimizes

∫ 1

0

f(x, φ1, φ
′
1, φ
′′
1)dx

over an admissible set of functions.
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7.7 Piecewise smooth minimizers. Weirstrass-Erdman

corner conditions.

In order to motivate the discussion to follow, first consider the problem of minimizing the

functional

F{φ} =

∫ 1

0

((φ′)2 − 1)2dx (7.84)

over functions φ with φ(0) = φ(1) = 0.

This is apparently a problem of the classical type where in the present case we are

to minimize the integral of f(x, φ, φ′) =
[
(φ′)2 − 1

]2
with respect to x over the interval

[0, 1]. Assuming that the class of admissible functions are those that are C1[0, 1] and satisfy

φ(0) = φ(1) = 0, the minimizer must necessarily satisfy the Euler equation d
dx

(∂f/∂φ′) −
(∂f/∂φ) = 0. In the present case this specializes to 2[ (φ′)2−1](2φ′) = constant for 0 ≤ x ≤ 1,

which in turn gives φ′(x) = constant for 0 ≤ x ≤ 1. On enforcing the boundary conditions

φ(0) = φ(1) = 0, this gives φ(x) = 0 for 0 ≤ x ≤ 1. This is an extremizer of F{φ} over

the class of admissible functions under consideration. It is readily seen from (7.84) that the

value of F at this particular function φ(x) = 0 is F = 1

Note from (7.84) that F ≥ 0. It is natural to wonder whether there is a function φ∗(x)

that gives F{φ∗} = 0. If so, φ∗ would be a minimizer. If there is such a function φ∗, we know

that it cannot belong to the class of admissible functions considered above, since if it did,

we would have found it from the preceding calculation. Therefore if there is a function φ∗ of

this type, it does not belong to the set of functions A. The functions in A were required to

be C1[0, 1] and to vanish at the two ends x = 0 and x = 1. Since φ∗ /∈ A it must not satisfy

one or both of these two conditions. The problem statement requires that the boundary

conditions must hold. Therefore it must be true that φ is not as smooth as C1[0, 1].

If there is a function φ∗ such that F{φ∗} = 0, it follows from the nonnegative character

of the integrand in (7.84) that the integrand itself should vanish almost everywhere in [0, 1].

This requires that φ′(x) = ±1 almost everywhere in [0, 1]. The piecewise linear function

φ∗(x) =





x for 0 ≤ x ≤ 1/2,

(1− x) for 1/2 ≤ x ≤ 1,
(7.85)

has this property. It is continuous, is piecewise C1, and gives F{φ∗} = 0. Moreover φ∗(x)

satisfies the Euler equation except at x = 1/2.
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But is it legitimate for us to consider piecewise smooth functions? If so are there are

any restrictions that we must enforce? Physical problems involving discontinuities in certain

physical fields or their derivatives often arise when, for example, the problem concerns an

interface separating two different mateirals. A specific example will be considered below.

7.7.1 Piecewise smooth minimizer with non-smoothness occuring

at a prescribed location.

Suppose that we wish to extremize the functional

F{φ} =

∫ 1

0

f(x, φ, φ′)dx

over some suitable set of admissible functions, and suppose further that we know that the

extremal φ(x) is continuous but has a discontinuity in its slope at x = s: i.e. φ′(s−) 6= φ′(s+)

where φ′(s±) denotes the limiting values of φ′(s ± ε) as ε → 0. Thus the set of admissible

functions is composed of all functions that are smooth on either side of x = s, that are

continuous at x = s, and that satisfy the given boundary conditions φ(0) = φ0, φ(1) = φ1:

A = {φ(·)
∣∣φ : [0, 1]→ R, φ ∈ C1([0, s) ∪ (s, 1]), φ ∈ C[0, 1], φ(0) = φ0, φ(1) = φ1} .

Observe that an admissible function is required to be continuous on [0, 1], required to have

a continuous first derivative on either side of x = s, and its first derivative is permitted to

have a jump discontinuity at a given location x = s.

1
x

y

s

φ(x)

φ(x) + δφ(x)

φ(x)

φ(x) + δφ(x)

Figure 7.12: Extremal φ(x) and a neighboring test function φ(x) + δφ(x) both with kinks at x = s.



7.7. WEIRSTRASS-ERDMAN CORNER CONDITIONS 159

Suppose that F is extremized by a function φ(x) ∈ A and suppose that this extremal has

a jump discontinuity in its first derivative at x = s. Let δφ(x) be an admissible variation

which means that the neighboring function φ(x) + δ(x) is also in A which means that it is

C1 on [0, s)∪ (s, 1] and (may) have a jump discontinuity in its first derivative at the location

x = s; see Figure 7.12. This implies that

δφ(x) ∈ C([0, 1]), δφ(x) ∈ C1([0, s) ∪ (s, 1]), δφ(0) = δφ(1) = 0.

In view of the lack of smoothness at x = s it is convenient to split the integral into two parts

and write

F{φ} =

∫ s

0

f(x, φ, φ′)dx+

∫ 1

s

f(x, φ, φ′)dx,

and

F{φ+ δφ} =

∫ s

0

f(x, φ+ δφ, φ′ + δφ′)dx+

∫ 1

s

f(x, φ+ δφ, φ′ + δφ′)dx.

Upon calculating δF , which by definition equals F{φ+ δφ}−F{φ} upto terms linear in δφ,

and setting δF = 0, we obtain
∫ s

0

(fφδφ+ fφ′δφ
′) dx+

∫ 1

s

(fφδφ+ fφ′δφ
′) dx = 0.

Integrating the terms involving δφ′ by parts leads to

∫ s

0

[
fφ −

d

dx
(fφ′)

]
δφ dx +

∫ 1

s

[
fφ −

d

dx
(fφ′)

]
δφ dx +

[
∂f

∂φ′
δφ

]s−

x=0

+

[
∂f

∂φ′
δφ

]1

x=s+

= 0.

However, since δφ(0) = δφ(1) = 0, this simplifies to
∫ 1

0

[
∂f

∂φ
− d

dx

(
∂f

∂φ′

)]
δφ(x) dx +

(
∂f

∂φ′

∣∣∣∣
x=s−

− ∂f

∂φ′

∣∣∣∣
x=s+

)
δφ(s) = 0.

First, if we limit attention to variations that are such that δφ(s) = 0, the second term

in the equation above vanishes, and only the integral remains. Since δφ(x) can be chosen

arbitrarily for all x ∈ (0, 1), x 6= s, this implies that the term within the brackets in the

integrand must vanish at each of these x’s. This leads to the Euler equation

∂f

∂φ
− d

dx

(
∂f

∂φ′

)
= 0 for 0 < x < 1, x 6= s.

Second, when this is substituted back into the equation above it, the integral now disappears.

Since the resulting equation must hold for all variations δφ(s), it follows that we must have

∂f

∂φ′

∣∣∣
x=s−

=
∂f

∂φ′

∣∣∣
x=s+
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at x = s. This is a “matching condition” or “jump condition” that relates the solution on

the left of x = s to the solution on its right. The matching condition shows that even though

φ′ has a jump discontinuity at x = s, the quantity ∂f/∂φ′ is continuous at this point.

Thus in summary an extremal φ must obey the following boundary value problem:

d

dx

(
∂f

∂φ′

)
− ∂f

∂φ
= 0 for 0 < x < 1, x 6= s,

φ(0) = φ0,

φ(1) = φ1,

∂f

∂φ′

∣∣∣
x=s−

=
∂f

∂φ′

∣∣∣
x=s+

at x = s.





(7.86)

x
0

y

n1(x,x, y)

n2(x,x, y)

(a,a, A)

(b,b, B)

x = 0, −∞ < y < ∞

θ+
θ−

Figure 7.13: Ray of light in a two-phase material.

Example: Consider a two-phase material that occupies all of x, y-space. The material oc-

cupying x < 0 is different to the material occupying x > 0 and so x = 0 is the interface

between the two materials. In particular, suppose that the refractive indices of the materials

occupying x < 0 and x > 0 are n1(x, y) and n2(x, y) respectively; see Figure 7.13. We are

asked to determine the path y = φ(x), a ≤ x ≤ b, followed by a ray of light travelling from

a point (a,A) in the left half-plane to the point (b, B) in the right half-plane. In particular,

we are to determine the conditions at the point where the ray crosses the interface between

the two media.
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According to Fermat’s principle, a ray of light travelling between two given points follows

the path that it can traverse in the shortest possible time. Also, we know that light travels

at a speed c/n(x, y) where n(x, y) is the index of refraction at the point (x, y). Thus the

transit time is determined by integrating n/c along the path followed by the light, which,

since ds =
√

1 + (φ′)2 dx can be written as

T{φ} =

∫ b

a

1

c
n(x, φ(x))

√
1 + (φ′)2 dx.

Thus the problem at hand is to determine φ that minimizes the functional T{φ} over the

set of admissible functions

A = {φ(·)
∣∣φ ∈ C[a, b], φ ∈ C1([a, 0) ∪ (0, b]), φ(a) = A, φ(b) = B}.

Note that this set of admissible functions allows the path followed by the light to have a

kink at x = 0 even though the path is continuous.

The functional we are asked to minimize can be written in the standard form

T{φ} =

∫ b

a

f(x, φ, φ′) dx where f(x, φ, φ′) =
n(x, φ)

c

√
1 + (φ′)2 .

Therefore
∂f

∂φ′
=
n(x, φ)

c

φ′√
1 + (φ′)2

and so the matching condition at the kink at x = 0 requires that

n

c

φ′√
1 + (φ′)2

be continuous at x = 0.

Observe that, if θ is the angle made by the ray of light with the x-axis at some point along

its path, then tan θ = φ′ and so sin θ = φ′/
√

1 + (φ′)2. Therefore the matching condition

requires that n sin θ be continuous, or

n+ sin θ+ = n− sin θ−

where n± and θ± are the limiting values of n(x, φ(x)) and θ(x) as x → 0±. This is Snell’s

well-known law of refraction.
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7.7.2 Piecewise smooth minimizer with non-smoothness occuring

at an unknown location

Suppose again that we wish to extremize the functional

F (φ) =

∫ 1

0

f(x, φ, φ′) dx

over the admissible set of functions

A = {φ(·) : φ : [0, 1]→ R, φ ∈ C[0, 1], φ ∈ C1
p [0, 1], φ(0) = a, φ(1) = b}

Just as before, the admissible functions are continuous and have a piecewise continuous first

derivative. However in contrast to the preceding case, if there is discontinuity in the first

derivative of φ at some location x = s, the location s is not known a priori and so is also to

be determined.

1
x

y

s s + δs

φ(x)

φ(x) + δφ(x)

φ(x)

φ(x) + δφ(x)

Figure 7.14: Extremal φ(x) with a kink at x = s and a neighboring test function φ(x) + δφ(x) with kinks

at x = s and s+ δs.

Suppose that F is extremized by the function φ(x) and that it has a jump discontinuity

in its first derivative at x = s; (we shall say that φ has a “kink” at x = s). Suppose further

that φ is C1 on either side of x = s. Consider a variation δφ(x) that vanishes at the two ends

x = 0 and x = 1, is continuous on [0, 1], is C1 on [0, 1] except at x = s + δs where it has a

jump discontinuity in its first derivative:

δφ ∈ C[0, 1] ∪ C1[0, s+ δs) ∪ C1(s+ δs, 1], δφ(0) = δφ(1) = 0.

Note that φ(x) + δφ(x) has kinks at both x = s and x = s + δs. Note further that we have

varied the function φ(x) and the location of the kink s. See Figure 7.14.
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Since the extremal φ(x) has a kink at x = s it is convenient to split the integral and

express F{φ} as

F{φ} =

∫ s

0

f(x, φ, φ′)dx+

∫ 1

s

f(x, φ, φ′)dx.

Similarly since the the neigboring function φ(x) + δ(x) has kinks at x = s and x = s + δs,

it is convenient to express F{φ+ δφ} by splitting the integral into three terms as follows:

F{φ+ δφ} =

∫ s

0

f(x, φ+ δφ, φ′ + δφ′)dx+

∫ s+δs

s

f(x, φ+ δφ, φ′ + δφ′)dx

+

∫ 1

s+δs

f(x, φ+ δφ, φ′ + δφ′)dx.

We can now calculate the first variation δF which, by definition, equals F{φ+ δφ} − F{φ}
upto terms linear in δφ. Calculating δF in this way and setting the result equal to zero, leads

after integrating by parts, to

∫ 1

0

Aδφ(x)dx + B δφ(s) + C δs = 0,

where

A =
∂f

∂φ
− d

dx

(
∂f

∂φ′

)
,

B =

(
∂f

∂φ′

)

x=s−
−
(
∂f

∂φ′

)

x=s+

,

C =

(
f − φ′ ∂f

∂φ′

)

x=s−
−
(
f − φ′ ∂f

∂φ′

)

x=s+

.

(7.87)

By the arbitrariness of the variations above, it follows in the usual way that A,B and C all

must vanish. This leads to the usual Euler equation on (0, s) ∪ (s, 1), and the following two

additional requirements at x = s:

∂f

∂φ′

∣∣∣
s−

=
∂f

∂φ′

∣∣∣
s+
, (7.88)

(
f − φ′ ∂f

∂φ′

) ∣∣∣
s−

=

(
f − φ′ ∂f

∂φ′

) ∣∣∣
s+
. (7.89)

The two matching conditions (or jump conditions) (7.88) and (7.89) are known as the

Wierstrass-Erdmann corner conditions (the term “corner” referring to the “kink” in φ).

Equation (7.88) is the same condition that was derived in the preceding subsection.
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Example: Find the extremals of the functional

F (φ) =

∫ 4

0

f(x, φ, φ′) dx =

∫ 4

0

(φ′ − 1)2(φ′ + 1)2dx

over the set of piecewise smooth functions subject to the end conditions φ(0) = 0, φ(4) = 2.

For simplicity, restrict attention to functions that have at most one point at which φ′ has a

discontinuity.

Here

f(x, φ, φ′) =
[
(φ′)2 − 1

]2
(7.90)

and therefore on differentiating f ,

∂f

∂φ′
= 4φ′

[
(φ′)2 − 1

]
,

∂f

∂φ
= 0. (7.91)

Consequently the Euler equation (at points of smoothness) is

d

dx
fφ′ − fφ =

d

dx

[
4φ′
(
(φ′)2 − 1

)]
= 0. (7.92)

First, consider an extremal that is smooth everywhere. (Such an extremal might not, of

course, exist.) In this case the Euler equation (7.92) holds on the entire interval (0, 4) and

so we conclude that φ′(x) = constant for 0 ≤ x ≤ 4. On integrating this and using the

boundary conditions φ(0) = 0, φ(4) = 2, we find that φ(x) = x/2, 0 ≤ x ≤ 4, is a smooth

extremal. In order to compare this with what follows, it is helpful to call this, say, φ0. Thus

φo(x) =
1

2
x for 0 ≤ x ≤ 4,

is a smooth extremal of F .

Next consider a piecewise smooth extremizer of F which has a kink at some location

x = s; the value of s ∈ (0, 4) is not known a priori and is to be determined. (Again, such an

extremal might not, of course, exist.) The Euler equation (7.92) now holds on either side of

x = s and so we find from (7.92) that φ′ = c = constant on (0, s) and φ′ = d = constant on

(s, 4) where c 6= d; (if c = d there would be no kink at x = s and we have already dealt with

this case above). Thus

φ′(x) =





c for 0 < x < s,

d for s < x < 4.
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Integrating this, separately on (0, s) and (s, 4), and enforcing the boundary conditions φ(0) =

0, φ(4) = 2, leads to

φ(x) =





cx for 0 ≤ x ≤ s,

d(x− 4) + 2 for s ≤ x ≤ 4.
(7.93)

Since φ is required to be continuous, we must have φ(s−) = φ(s+) which requires that

cs = d(s− 4) + 2 whence

s =
2− 4d

c− d . (7.94)

Note that s would not exist if c = d.

All that remains is to find c and d, and the two Weirstrass-Erdmann corner conditions

(7.88), (7.89) provide us with the two equations for doing this. From (7.90), (7.91) and (7.93),

∂f

∂φ′
=





4c(c2 − 1) for 0 < x < s,

4d(d2 − 1) for s < x < 4.

and

f − φ′ ∂f
∂φ′

=




−(c2 − 1)(1 + 3c2) for 0 < x < s,

−(d2 − 1)(1 + 3d2) for s < x < 4.

Therefore the Weirstrass-Erdmann corner conditions (7.88) and (7.89), which require re-

spectively the continuity of ∂f/∂φ′ and f−φ′∂f/∂φ′ at x = s, give us the pair of simultaneous

equations

c(c2 − 1) = d(d2 − 1),

(c2 − 1)(1 + 3c2) = (d2 − 1)(1 + 3d2).





Keeping in mind that c 6= d and solving these equations leads to the two solutions:

c = 1, d = −1, and c = −1, d = 1.

Corresponding to the former we find from (7.94) that s = 3, while the latter leads to s = 1.

Thus from (7.93) there are two piecewise smooth extremals φ1(x) and φ2(x) of the assumed

form:

φ1(x) =





x for 0 ≤ x ≤ 3,

−x+ 6 for 3 ≤ x ≤ 4.

φ2(x) =




−x for 0 ≤ x ≤ 1,

x− 2 for 1 ≤ x ≤ 4.
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φ0(x)

φ1(x)

φ2(x)

1 2 3
x

y

1

2

3

4

φ2(x)

φ1(x)

Figure 7.15: Smooth extremal φ0(x) and piecewise smooth extremals φ1(x) and φ2(x).

Figure 7.15 shows graphs of φo, φ1 and φ2. By evaluating the functional F at each of the

extremals φ0, φ1 and φ2, we find

F{φo} = 9/4, F{φ1} = F{φ2} = 0.

Remark: By inspection of the given functional

F (φ) =

∫ 4

0

[
(φ′)2 − 1

]2
dx,

it is clear that (a) F ≥ 0, and (b) F = 0 if and only if φ′ = ±1 everywhere (except at

isolated points where φ′ may be undefined). The extremals φ1 and φ2 have this property and

therefore correspond to absolute minimizers of F .

7.8 Generalization to higher dimensional space.

In order to help motivate the way in which we will approach higher-dimensional problems

(which will in fact be entirely parallel to the approach we took for one-dimensional problems)

we begin with some preliminary observations.

First, consider the one-dimensional variational problem of minimizing a functional

F{φ} =

∫ 1

0

f(x, φ, φ′, φ′′) dx
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on a set of suitably smooth functions with no prescribed boundary conditions at either

end. The analogous two-dimensional problem would be to consider a set of suitably smooth

functions φ(x, y) defined on a domain D of the x, y-plane and to minimize a given functional

F{φ} =

∫

D
f(x, y, φ, ∂φ/∂x, ∂φ/∂y, ∂2φ/∂x2, ∂2φ/∂x∂y, ∂2φ/∂y2) dA

over this set of functions with no boundary conditions prescribed anywhere on the boundary

∂D.

In deriving the Euler equation in the one-dimensional case our strategy was to exploit

the fact that the variation δφ(x) was arbitrary in the interior 0 < x < 1 of the domain. This

motivated us to express the integrand in the form of some quantity A (independent of any

variations) multiplied by δφ(x). Then, the arbitrariness of δφ allowed us to conclude that A

must vanish on the entire domain. We approach two-dimensional problems similarly and our

strategy will be to exploit the fact that δφ(x, y) is arbitrary in the interior of D and so we

attempt to express the integrand as some quantity A that is independent of any variations

multiplied by δφ. Similarly concerning the boundary terms, in the one-dimensional case we

were able to exploit the fact that δφ and its derivative δφ′ are arbitrary at the boundary

points x = 0 and x = 1, and this motivated us to express the boundary terms as some

quantity B that is independent of any variations multiplied by δφ(0), another quantity C

independent of any variations multiplied by δφ′(0), and so on. We approach two-dimensional

problems similarly and our strategy for the boundary terms is to exploit the fact that δφ

and its normal derivative ∂(δφ)/∂n are arbitrary on the boundary ∂D. Thus the goal in

our calculations will be to express the boundary terms as some quantity independent of any

variations multiplied by δφ, another quantity independent of any variations multiplied by

∂(δφ)/∂n etc. Thus in the two-dimensional case our strategy will be to take the first variation

of F and carry out appropriate calculations that lead us to an equation of the form

δF =

∫

D
Aδφ(x, y) dA +

∫

∂D
B δφ(x, y) ds+

∫

∂D
C
( ∂
∂n

(δφ(x, y))
)
ds = 0 (7.95)

where A,B,C are independent of δφ and its derivatives and the latter two integrals are on

the boundary of the domain D. We then exploit the arbitrariness of δφ(x, y) on the interior

of the domain of integration, and the arbitrariness of δφ and ∂(δφ)/∂n on the boundary

∂D to conclude that the minimizer must satisfy the partial differential equation A = 0 for

(x, y) ∈ D and the boundary conditions B = C = 0 on ∂D.

Next, recall that one of the steps involved in calculating the minimizer of a one-dimensional

problem is integration by parts. This converts a term that is an integral over [0, 1] into terms
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that are only evaluated on the boundary points x = 0 and 1. The analog of this in higher

dimensions is carried out using the divergence theorem, which in two-dimensions reads

∫

D

(
∂P

∂x
+
∂Q

∂y

)
dA =

∫

∂D
(Pnx +Qny) ds (7.96)

which expresses the left hand side, which is an integral over D, in a form that only involves

terms on the boundary. Here nx, ny are the components of the unit normal vector n on ∂D
that points out of D. Note that in the special case where P = ∂χ/∂x and Q = ∂χ/∂y for

some χ(x, y) the integrand of the right hand side is ∂χ/∂n.

Remark: The derivative of a function φ(x, y) in a direction corresponding to a unit vector m

is written as ∂φ/∂m and defined by ∂φ/∂m = ∇φ ·m = (∂φ/∂x)mx +∂φ/∂y)my where mx

and my are the components of m in the x- and y-directions respectively. On the boundary

∂D of a two dimensional domain D we frequently need to calculate the derivative of φ in

directions n and s that are normal and tangential to ∂D. In vector form we have

∇φ =
∂φ

∂x
i +

∂φ

∂y
j =

∂φ

∂n
n +

∂φ

∂s
s

where i and j are unit vectors in the x- and y-directions. Recall also that a function φ(x, y)

and its tangential derivative ∂φ/∂s along the boundary ∂D are not independent of each other

in the following sense: if one knows the values of φ along ∂D one can differentiate φ along

the boundary to get ∂φ/∂s; and conversely if one knows the values of ∂φ/∂s along ∂D one

can integrate it along the boundary to find φ to within a constant. This is why equation

(7.95) does not involve a term of the form E ∂(δφ)/∂s integrated along the boundary ∂D

since it can be rewritten as the integral of −(∂E/∂s) δφ along the boundary

Example 1: A stretched membrane. A stretched flexible membrane occupies a regular

regionD of the x, y-plane. A pressure p(x, y) is applied normal to the surface of the membrane

in the negative z-direction. Let u(x, y) be the resulting deflection of the membrane in the

z-direction. The membrane is fixed along its entire edge ∂D and so

u = 0 for (x, y) ∈ ∂D. (7.97)

One can show that the potential energy Φ associated with any deflection u that is compatible

with the given boundary condition is

Φ{u} =

∫

D

1

2

∣∣∇u
∣∣2dA−

∫

D
pu dA
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where we have taken the relevant stiffness of the membrane to be unity. The actual deflection

of the membrane is the function that minimizes the potential energy over the set of test

functions

A = {u
∣∣ u ∈ C2(D), u = 0 for (x, y) ∈ ∂D}.

x

y

0

∂D

D

FixedFixed

Figure 7.16: A stretched elastic membrane whose mid-plane occupies a region D of the x, y-plane and

whose boundary ∂D is fixed. The membrane surface is subjected to a pressure loading p(x, y) that acts in

the negative z-direction.

Since

Φ{u} =

∫

D

1

2
(u,xu,x + u,yu,y) dA−

∫

D
pu dA,

its first variation is

δΦ =

∫

D
(u,xδu,x + u,yδu,y) dA−

∫

D
pδu dA,

where an admissible variation δu(x, y) vanishes on ∂D. Here we are using the notation

that a comma followed by a subscript denotes partial differentiation with respect to the

corresponding coordinate, for example u,x = ∂u/∂x and u,xy = ∂2u/∂x∂y. In order to make

use of the divergence theorem and convert the area integral into a boundary integral we

must write the integrand so that it involves terms of the form (. . .),x + (. . .),y; see (7.96).

This suggests that we rewrite the preceding equation as

δΦ =

∫

D

(
(u,xδu),x + (u,yδu),y − (u,xx + u,yy)δu

)
dA−

∫

D
pδu dA,

or equivalently as

δΦ =

∫

D

(
(u,xδu),x + (u,yδu),y

)
dA−

∫

D

(
u,xx + u,yy + p

)
δu dA.
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By using the divergence theorem on the first integral we get

δΦ =

∫

∂D

(
u,xnx + u,yny

)
δu ds −

∫

D
(u,xx + u,yy + p) δu dA

where n is a unit outward normal along ∂D. We can write this equivalently as

δΦ =

∫

∂D

∂u

∂n
δu ds −

∫

D

(
∇2u+ p

)
δu dA. (7.98)

Since the variation δu vanishes on ∂D the first integral drops out and we are left with

δΦ = −
∫

D

(
∇2u+ p

)
δu dA (7.99)

which must vanish for all admissible variations δu(x, y). Thus the minimizer satisfies the

partial differential equation

∇2u+ p = 0 for (x, y) ∈ D

which is the Euler equation in this case that is to be solved subject to the prescribed boundary

condition (7.97). Note that if some part of the boundary of D had not been fixed, then we

would not have δu = 0 on that part in which case (7.98) and (7.99) would yield the natural

boundary condition ∂φ/∂n = 0 on that segment.

NNN Show the calculations for just one term w2
xx. Include nu 6= 0 in text.NNN

NNN Check signs of terms and sign conventionNNN

Example 2: The Kirchhoff theory of plates. We consider the bending of a thin plate

according to the so-called Kirchhoff theory. Solely for purposes of mathematical simplicity

we shall assume that the Poisson ratio ν of the material is zero. A discussion of the case

ν 6= 0 can be found in many books, for example, in “Energy & Finite Elements Methods in

Structural Mechanic” by I.H. Shames & C.L. Dym. When ν = 0 the plate bending stiffness

D = Et3/12 where E is the Young’s modulus of the material and t is the thickness of the

plate. The mid-plane of the plate occupies a domain of the x, y-plane and w(x, y) denotes

the deflection (displacement) of a point on the mid-plane in the z-direction. The basic con-

stitutive relationships of elastic plate theory relate the internal moments Mx,My,Mxy,Myx

(see Figure 7.17) to the second derivatives of the displacement field w,xx, w,yy, w,xy by

Mx = −Dw,xx, My = −Dw,yy, Mxy = Myx = −Dw,xy, (7.100)
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where a comma followed by a subscript denotes partial differentiation with respect to the

corresponding coordinate and D is the plate bending stiffness; and the shear forces in the

plate are given by

Vx = −D(∇2w),x, Vy = −D(∇2w),y. (7.101)

The elastic energy per unit volume of the plate is given by

1

2

(
Mxw,xx +Myw,yy +Mxyw,xy +Myxw,yx

)
=
D

2

(
w2
,xx + w2

,yy + 2w2
,xy

)
. (7.102)

x

y

z

Mx My

Mxyxy

Vx

Vy
Mx = D(w,xx,xx + νwyy)

My = D(w,y,yy + νwxxxx)

D(1(1− ν)w,xy,xy

Vx = D(∇2w),y,y

Vy = D(∇2w),x,x

dxdx

dydy

t Myx
Mxyxy = Myx =

Figure 7.17: A differential element dx× dy× t of a thin plate. A bold arrow represents a force and thus Vx

and Vy are (shear) forces. A bold arrow with two arrow heads represents a moment whose sense is given by

the right hand rule. Thus Mxy and Myx are (twisting) moments while Mx and My are (bending) moments.

x

y

a

b

0

ClampClampeded

x

y

Ω

∂Ω1

∂Ω2

0

Freeree

ClampClampeded

n

s

nx = 1, ny = 0

sx = 0, sy = 1

Freeree
∂Ω2

Figure 7.18: Left: A thin elastic plate whose mid-plane occupies a region Ω of the x, y-plane. The segment

∂Ω1 of the boundary is clamped while the remainder ∂Ω2 is free of loading. Right: A rectangular a× b plate

with a load free edge at its right hand side x = a, 0 ≤ y ≤ b.
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It is worth noting the following puzzling question: Consider the rectangular plate shown

in the right hand diagram of Figure 7.18. Based on Figure 7.17 we know that there is a

bending moment Mx, a twisting moment Mxy, and a shear force Vx acting on any surface

x = constant in the plate. Therefore, in particular, since the right hand edge x = a is free

of loading one would expect to have the three conditions Mx = Mxy = Vx = 0 along that

boundary. However we will find that the differential equation to be solved in the interior of

the plate requires (and can only accommodate) two boundary conditions at any point on

the edge. The question then arises as to what the correct boundary conditions on this edge

should be. Our variational approach will give us precisely two natural boundary conditions

on this edge. They will involve Mx,Mxy and Vx but will not require that each of them must

vanish individually.

Consider a thin elastic plate whose mid-plane occupies a domain Ω of the x, y-plane as

shown in the left hand diagram of Figure 7.18. A normal loading p(x, y) is applied on the

flat face of the plate in the −z-direction. A part of the plate boundary denoted by ∂Ω1 is

clamped while the remainder ∂Ω2 is free of any external loading. Thus if w(x, y) denotes the

deflection of the plate in the z-direction we have the geometric boundary conditions

w = ∂w/∂n = 0 for (x, y) ∈ ∂Ω1. (7.103)

The total potential energy of the system is

Φ{w} =

∫

Ω

[D
2

(
w2
,xx + 2w2

,xy + w2
,yy

)
− pw

]
dA (7.104)

where the first group of terms represents the elastic energy in the plate and the last term

represents the potential energy of the pressure loading (the negative sign arising from the

fact that p acts in the minus z-direction while w is the deflection in the positive z direction).

This functional Φ is defined on the set of all kinematically admissible deflection fields which

is the set of all suitably smooth functions w(x, y) that satisfy the geometric requirements

(7.103). The actual deflection field is the one that minimizes the potential energy Φ over this

set.

We now determine the Euler equation and natural boundary conditions associated with

(7.104) by calculating the first variation of Φ{w} and setting it equal to zero:
∫

Ω

(
w,xxδw,xx + 2w,xyδw,xy + w,yyδw,yy −

p

D
δw
)
dA = 0. (7.105)

To simplify this we begin be rearranging the terms into a form that will allow us to use

the divergence theorem, thereby converting part of the area integral on Ω into a boundary
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integral on ∂Ω. In order to use the divergence theorem we must write the integrand so that

it involves terms of the form (. . .),x + (. . .),y; see (7.96). Accordingly we rewrite (7.105) as

0 =

∫

Ω

(
w,xxδw,xx + 2w,xyδw,xy + w,yyδw,yy − (p/D)δw

)
dA,

=

∫

Ω

[(
w,xxδw,x + w,xyδw,y

)
,x +

(
w,xyδw,x + w,yyδw,y

)
,y

−w,xxxδw,x − w,xxyδw,y − w,xyyδw,x − w,yyyδw,y − (p/D)δw
]
dA,

=

∫

∂Ω

[(
w,xxδw,x + w,xyδw,y

)
nx +

(
w,xyδw,x + w,yyδw,y

)
ny

]
ds

−
∫

Ω

[
w,xxxδw,x + w,xxyδw,y + w,xyyδw,x + w,yyyδw,y + (p/D)δw

]
dA,

=

∫

∂Ω

I1 ds−
∫

Ω

I2 dA.

(7.106)

We have used the divergence theorem (7.96) in going from the second equation above to the

third equation. In order to facilitate further simplification, in the last step we have let I1

and I2 denote the integrands of the boundary and area integrals.

To simplify the area integral in (7.106) we again rearrange the terms in I2 into a form

that will allow us to use the divergence theorem. Thus

∫
Ω
I2 dA =

∫

Ω

[
w,xxxδw,x + w,xxyδw,y + w,xyyδw,x + w,yyyδw,y + p/D δw

]
dA,

=

∫

Ω

[(
w,xxxδw + w,xyyδw

)
,x +

(
w,xxyδw + w,yyyδw

)
,y

−
(
w,xxxx + 2w,xxyy + w,yyyy − p/D

)
δw
]
dA,

=

∫

∂Ω

[(
w,xxxδw + w,xyyδw

)
nx +

(
w,xxyδw + w,yyyδw

)
ny

]
ds

−
∫

Ω

(
∇4w − (p/D)

)
δw dA,

=

∫

∂Ω

[
w,xxxnx + w,xyynx + w,xxyny + w,yyyny

]
δw ds

−
∫

Ω

(
∇4w − p/D

)
δw dA,

=

∫

∂Ω

P1 δw ds−
∫

Ω

P2 δw dA,

(7.107)
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where we have set

P1 = w,xxxnx + w,xyynx + w,xxyny + w,yyyny and P2 = ∇4w − p/D. (7.108)

In the preceding calculation, we have used the divergence theorem (7.96) in going from the

second equation in (7.107) to the third equation, and we have set

∇4w = ∇2(∇2w) = w,xxxx + 2w,xxyy + w,yyyy.

Next we simplify the boundary term in (7.106) by converting the derivatives of the

variation with respect to x and y into derivatives with respect to normal and tangential

coordinates n and s. To do this we use the fact that ∇δw = δw,xi + δw,yj = δw,nn + δw,ss

from which it follows that δw,x = δw,n nx + δw,s sx and δw,y = δw,n ny + δw,s sy. Thus from

(7.106),

∫
∂Ω
I1 ds =

∫

∂Ω

[(
w,xxnxδw,x + w,xynxδw,y

)
+
(
w,xynyδw,x + w,yynyδw,y

)]
ds,

=

∫

∂Ω

[(
w,xxnx + w,xyny

)
δw,x +

(
w,xynx + w,yyny

)
δw,y

]
ds,

=

∫

∂Ω

[(
w,xxnx + w,xyny

)(
δw,nnx + δw,ssx

)
+
(
w,xynx + w,yyny

)(
δw,nny + δw,ssy

)]
ds,

=

∫

∂Ω

[(
w,xxn

2
x + w,xynxny + w,xynxny + w,yyn

2
y

)
δw,n

+
(
w,xxnxsx + w,xysxny + w,xynxsy + w,yynysy

)
δw,s

]
ds,

=

∫

∂Ω

[(
w,xxn

2
x + w,xynxny + w,xynxny + w,yyn

2
y

)
δw,n + I3

]
ds.

(7.109)

To further simplify this we have set I3 equal to the last expression in (7.109) and this term

can be written as

∫
∂Ω
I3 ds =

∫

∂Ω

[(
w,xxnxsx + w,xysxny + w,xynxsy + w,yynysy

)
δw,s

]
ds,

=

∫

∂Ω

[(
w,xxnxsx + w,xysxny + w,xynxsy + w,yynysy

)
δw
]
,s

−
[(
w,xxnxsx + w,xysxny + w,xynxsy + w,yynysy

)
,s δw

]
ds.

(7.110)

If a field f(x, y) varies smoothly along ∂Ω, and if the curve ∂Ω itself is smooth, then

∫

∂Ω

∂f

∂s
ds = 0 (7.111)
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since this is an integral over a closed curve8. It follows from this that the first term in the

last expression of (7.110) vanishes and so

∫
∂Ω
I3 ds = −

∫

∂Ω

[(
w,xxnxsx + w,xysxny + w,xynxsy + w,yynysy

)
,s δw

]
ds. (7.112)

Substituting (7.112) into (7.109) yields
∫

∂Ω

I1 ds =

∫

∂Ω

P3
∂

∂n
(δw) ds−

∫

∂Ω

∂

∂s
(P4) δw ds, (7.113)

where we have set

P3 = w,xxn
2
x + w,xynxny + w,xynxny + w,yyn

2
y,

P4 = w,xxnxsx + w,xynysx + w,xynxsy + w,yynysy.
(7.114)

Finally, substituting (7.113) and (7.107) into (7.106) leads to
∫

Ω

P2 δw dA −
∫

∂Ω

(
P1 +

∂

∂s
(P4)

)
δw ds+

∫

∂Ω

P3
∂

∂n
(δw) ds = 0 (7.115)

which must hold for all admissible variations δw. First restrict attention to variations which

vanish on the boundary ∂Ω and whose normal derivative ∂(δw)/∂n also vanish on ∂Ω. This

leads us to the Euler equation P2 = 0:

∇4w − p/D = 0 for (x, y) ∈ Ω. (7.116)

Returning to (7.115) with this gives

−
∫

∂Ω

(
P1 +

∂

∂s
(P4)

)
δw ds+

∫

∂Ω

P3
∂

∂n
(δw) ds = 0. (7.117)

Since the portion ∂Ω1 of the boundary is clamped we have w = ∂w/∂n = 0 for (x, y) ∈ ∂Ω1.

Thus the variations δw and ∂(δw)/∂n must also vanish on ∂Ω1. Thus (7.117) simplifies to

−
∫

∂Ω2

(
P1 +

∂

∂s
(P4)

)
δw ds+

∫

∂Ω2

P3
∂

∂n
(δw) ds = 0 (7.118)

for variations δw and ∂(δw)/∂n that are arbitrary on ∂Ω2 where ∂Ω2 is the complement of

∂Ω1, i.e. ∂Ω = ∂Ω1 ∪ ∂Ω2. Thus we conclude that P1 + ∂P4/∂s = 0 and P3 = 0 on ∂Ω2:

w,xxxnx + w,xyynx + w,xxyny + w,yyyny

+ ∂
∂s

(w,xxnxsx + w,xynysx + w,xynxsy + w,yynysy) = 0

w,xxn
2
x + w,xynxny + w,xynxny + w,yyn

2
y = 0,





for (x, y) ∈ ∂Ω2.

(7.119)

8In the present setting one would have this degree of smoothness if there are no concentrated loads applied

on the boundary of the plate ∂Ω and the boundary curve itself has no corners.
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Thus, in summary, the Kirchhoff theory of plates for the problem at hand requires that

one solve the field equation (7.116) on Ω subjected to the displacement boundary conditions

(7.103) on ∂Ω1 and the natural boundary conditions (7.119) on ∂Ω2.

Remark: If we define the moments Mn,Mns and force Vn by

Mn = −D (w,xx nxnx + w,xy nxny + w,yx nynx + w,yy nyny)

Mns = −D (w,xx nx sx + w,xy ny sx + w,yx nx sy + w,yy ny sy)

Vn = −D (w,xxx nx + w,xyy nx + w,yxx ny + w,yyy ny)

(7.120)

then the two natural boundary conditions can be written as

Mn = 0,
∂

∂s

(
Mns

)
+ Vn = 0. (7.121)

As a special case suppose that the plate is rectangular, 0 ≤ x ≤ a, 0 ≤ y ≤ b and that

the right edge x = a, 0 ≤ y ≤ b is free of load; see the right diagram in Figure 7.18. Then

nx = 1, ny = 0, sx = 0, sy = 1 on ∂Ω2 and so (7.120) simplifies to

Mn = −D w,xx

Mns = −D w,yx

Vn = −D (w,xxx + w,xyy)

(7.122)

which because of (7.100) shows that in this case Mn = Mx,Mns = Mxy, Vn = Vx. Thus the

natural boundary conditions (7.121) can be written as

Mx = 0,
∂

∂y

(
Mxy

)
+ Vx = 0. (7.123)

This answers the question we posed soon after (7.101) as to what the correct boundary

conditions on a free edge should be. We had noted that intuitively we would have expected

the moments and forces to vanish on a free edge and therefore that Mx = Mxy = Vx = 0 there;

but this is in contradiction to the mathematical fact that the differential equation (7.116)

only requires two conditions at each point on the boundary. The two natural boundary

conditions (7.123) require that certain combinations of Mx,Mxy, Vx vanish but not that all

three vanish.

Example 3: Minimal surface equation. Let C be a closed curve in R3 as sketched in

Figure 7.19. From among all surfaces S in R3 that have C as its boundary, we wish to
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determine the surface that has minimum area. As a physical example, if C corresponds to

a wire loop which we dip in a soapy solution, a thin soap film will form across C. The

surface that forms is the one that, from among all possible surfaces S that are bounded

by C, minimizes the total surface energy of the film; which (if the surface energy density is

constant) is the surface with minimal area.

yy

x

z

D ∂D

C :

z = φ(x,x, y)

z = h(x,x, y)

S :

i

j

k

Figure 7.19: The closed curve C in R3 is given. From among all surfaces S in R3 that have C as its boundary,

the surface with minimal area is to be sought. The curve ∂D is the projection of C onto the x, y-plane.

Let C be a closed curve in R3. Suppose that its projection onto the x, y-plane is denoted

by ∂D and let D denote the simply connected region contained within ∂D; see Figure 7.19.

Suppose that C is characterized by z = h(x, y) for (x, y) ∈ ∂D. Let z = φ(x, y) for (x, y) ∈ D
describe a surface S in R3 that has C as its boundary; necessarily φ = h on ∂D. Thus the

admissible set of functions we are considering are

A{φ
∣∣φ : D → R, φ ∈ C1(D), φ = h on ∂D} .

Consider a rectangular differential element on the x, y-plane that is contained within D.

The vector joining (x, y) to (x+dx, y) is dx = dx i while the vector joining (x, y) to (x, y+dy)

is dy = dy j. If du and dv are vectors on the surface z = φ(x, y) whose projections are dx

and dy respectively, then we know that

du = dx i + φx dxk, dv = dy j + φy dy k.

The vectors du and dv define a parallelogram on the surface z = φ(x, y) and the area of

this parallelogram is |du× dv|. Thus the area of a differential element on S is

|du× dv| =
∣∣∣− φxdxdy i− φydxdy j + dxdy k

∣∣∣ =
√

1 + φ2
x + φ2

y dxdy.
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Consequently the problem at hand is to minimize the functional

F{φ} =

∫

D

√
1 + φ2

x + φ2
y dA.

over the set of admissible functions

A = {φ | φ : D → R, φ ∈ C2(D), φ = h on ∂D}.

It is left as an exercise to show that setting the first variation of F equal to zero leads to the

so-called minimal surface equation

(1 + φ2
y)φxx − 2φxφyφxy + (1 + φ2

x)φyy = 0.

Remark: See en.wikipedia.org/wiki/Soap bubble and www.susqu.edu/facstaff/b/brakke/ for

additional discussion.

7.9 Second variation. Another necessary condition for

a minimum.

In order to illustrate the basic ideas of this section in the simplest possible setting, we confine

the discussion to the particular functional

F{φ} =

∫ 1

0

f(x, φ, φ′)dx

defined over a set of admissible functions A. Suppose that a particular function φ minimizes

F , and that for some given function η, the one-parameter family of functions φ + εη are

admissible for all sufficiently small values of the parameter ε. Define F̂ (ε) by

F̂ (ε) = F{φ+ εη} =

∫ 1

0

f(x, φ+ εη, φ′ + εη′)dx,

so that by Taylor expansion,

F̂ (ε) = F̂ (0) + εF̂ ′(0) +
ε2

2
F̂ ′′(0) +O(ε3),

where
F̂ (0) =

∫ 1

0
f(x, φ, φ′)dx = F{φ},

εF̂ ′(0) = δF{φ, η},

ε2F ′′(0) = ε2
∫ 1

0
{fφφη2 + 2fφφ′ηη

′ + fφ′φ′(η
′)2} dx def

= δ2F{φ, η}.
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Since φ minimizes F , it follows that ε = 0 minimizes F̂ (ε), and consequently that

δ2F{φ, η} ≥ 0,

in addition to the requirement δF{φ, η} = 0. Thus a necessary condition for a function φ to

minimize a functional F is that the second variation of F be non-negative for all admissible

variations δφ:

δ2F{φ, δφ} =

∫ 1

0

{
fφφ(δφ)2 + 2fφφ′(δφ)(δφ′) + fφ′φ′(δφ

′)2
}
dx ≥ 0, (7.124)

where we have set δφ = εη. The inequality is reversed if φ maximizes F .

The condition δ2F{φ, η} ≥ 0 is necessary but not sufficient for the functional F to have

a minimum at φ. We shall not discuss sufficient conditions in general in these notes.

Proposition: Legendre Condition: A necessary condition for (7.124) to hold is that

fφ′φ′(x, φ(x), φ′(x)) ≥ 0 for 0 ≤ x ≤ 1

for the minimizing function φ.

Example: Consider a curve in the x, y-plane characterized by y = φ(x) that begins at (0, φ0)

and ends at (1, φ1). From among all such curves, find the one that, when rotated about the

x-axis, generates the surface of minimum area.

Thus we are asked to minimize the functional

F{φ} =

∫ 1

0

f(x, φ, φ′) dx where f(x, φ, φ′) = φ
√

1 + (φ′)2,

over a set of admissible functions that satisfy the boundary conditions φ(0) = φ0, φ(1) = φ1.

A function φ that minimizes F must satisfy the boundary value problem consisting of

the Euler equation and the given boundary conditions:

d

dx

(
φφ′√

1 + (φ′)2

)
−
√

1 + (φ′)2 = 0,

φ(0) = φ0, φ(1) = φ1.





The general solution of this Euler equation is

φ(x) = α cosh
x− β
α

for 0 ≤ x ≤ 1,
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where the constants α and β are determined through the boundary conditions. To test the

Legendre condition we calculate fφ′φ′ and find that

fφ′φ′ =
φ

(
√

1 + (φ′)2 )3
,

which, when evaluated at the particular function φ(x) = α cosh(x− β)/α yields

fφ′φ′ |φ=α cosh(x−β)/α =
α

cosh2(x− β)/α
.

Therefore as long as α > 0 the Legendre condition is satisfied.

7.10 Sufficient condition for minimization of convex

functionals

x
0

y

x1x2

y = F (x)

F (x1) ≥ F (x2) + F ′(x2)(x1 − x2) forfor allall x1, x2 ∈ D.

D

y = F (x2) + F ′(x2)(x− x2)

Figure 7.20: A convex curve y = F (x) lies above the tangent line through any point of the curve.

We now turn to a brief discussion of sufficient conditions for a minimum for a special

class of functionals. It is useful to begin by reviewing the question of finding the minimum of

a real-valued function of a real variable. A function F (x) defined for x ∈ A with continuous

first derivatives is said to be convex if

F (x1) ≥ F (x2) + F ′(x2)(x1 − x2) for all x1, x2 ∈ A;
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see Figure 7.20 for a geometric interpretation of convexity. If a convex function has a station-

ary point, say at xo, then it follows by setting x2 = xo in the preceding equation that xo is a

minimizer of F . Therefore a stationary point of a convex function is necessarily a minimizer.

If F is strictly convex on A, i.e. if F is convex and F (x1) = F (x2) + F ′(x2)(x1 − x2) if and

only if x1 = x2, then F can only have one stationary point and so can only have one interior

minimum.

This is also true for a real-valued function F with continuous first derivatives on a domain

A in Rn, where convexity is defined by9

F (x1) ≥ F (x2) + δF (x2,x1 − x2) for all x1,x2 ∈ A.

If a convex function has a stationary point at, say, xo, then since δF (xo,y) = 0 for all y

it follows that xo is a minimizer of F . Therefore a stationary point of a convex function

is necessarily a minimizer. If F is strictly convex on A, i.e. if F is convex and F (x1) =

F (x2) + δF (x2,x1 − x2) if and only if x1 = x2, then F can have only one stationary point

and so can have only one interior minimum.

We now turn to a functional F{φ} which is said to be convex on A if

F{φ+ η} ≥ F{φ}+ δF{φ, η} for all φ, φ+ η ∈ A.

If F is stationary at φo ∈ A, then δF{φo, η} = 0 for all admissible η, and it follows that φo

is in fact a minimizer of F . Therefore a stationary point of a convex functional is necessarily

a minimizer.

For example, consider the generic functional

F{φ} =

∫ 1

0

f(x, φ, φ′)dx. (7.125)

Then

δF{φ, η} =

∫ 1

0

(
∂f

∂φ
η +

∂f

∂φ′
η′
)
dx

and so the convexity condition F{φ+ η} − F{φ} ≥ δF{φ, η} takes the special form

∫ 1

0

[
f(x, φ+ η, φ′ + η′)− f(x, φ, φ′)

]
dx ≥

∫ 1

0

(
∂f

∂φ
η +

∂f

∂φ′
η′
)
dx. (7.126)

In general it might not be simple to test whether this condition holds in a particular case.

It is readily seen that a sufficient condition for (7.126) to hold is that the integrands satisfy

9See equation (??) for the definition of δF (x,y).
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the inequality

f(x, y + v, z + w)− f(x, y, z) ≥ ∂f

∂y
v +

∂f

∂z
w (7.127)

for all (x, y, z), (x, y + v, z + w) in the domain of f . This is precisely the requirement that

the function f(x, y, z) be a convex function of y, z at fixed x.

Thus in summary: if the integrand f of the functional F defined in (7.125) satisfies the

convexity condition (7.127), then, a function φ that extremizes F is in fact a minimizer of F .

Note that this is simply a sufficient condition for ensuring that an extremum is a minimum.

Remark: In the special case where f(x, y, z) is independent of y, one sees from basic calculus

that if ∂2f/∂z2 > 0 then f(x, z) is a strictly convex function of z at each fixed x.

Example: Geodesics. Find the curve of shortest length that lies entirely on a circular

cylinder of radius a, beginning (in circular cylindrical coordinates (r, θ, ξ)) at (a, θ1, ξ1) and

ending at (a, θ2, ξ2) as shown in the figure.

a

ξ

(a,a, θ1, ξ1)

(a,a, θ2, ξ2)

a

θ1 θ2

x = a coscos θ
y = a sinsin θ
= ξ(θ)

θ1 ≤ θ ≤ θ2

ξ

Figure 7.21: A curve that lies entirely on a circular cylinder of radius a, beginning (in circular cylindrical

coordinates) at (a, θ1, ξ1) and ending at (a, θ2, ξ2).

We can characterize a curve in R3 using a parametric characterization using circular

cylindrical coordinates by r = r(θ), ξ = ξ(θ), θ1 ≤ θ ≤ θ2. When the curve lies on the surface

of a circular cylinder of radius a this specializes to

r = a, ξ = ξ(θ) for θ1 ≤ θ ≤ θ2.



7.11. DIRECT METHOD 183

Since the arc length can be written as

ds =
√
dr2 + r2dθ2 + dξ2 =

√(
r′(θ)

)2
+
(
r(θ)

)2
+
(
ξ′(θ)

)2
dθ = =

√(
a2 +

(
ξ′(θ)

)2
dθ.

our task is to minimize the functional

F{ξ} =

∫ θ2

θ1

f(θ, ξ(θ), ξ′(θ)) dθ where f(x, y, z) =
√
a2 + z2

over the set of all suitably smooth functions ξ(θ) defined for θ1 ≤ θ ≤ θ2 which satisfy

ξ(θ1) = ξ1, ξ(θ2) = ξ2.

Evaluating the necessary condition δF = 0 leads to the Euler equation. This second order

differential equation for ξ(θ) can be readily solved, which after using the boundary conditions

ξ(θ1) = ξ1, ξ(θ2) = ξ2 leads to

ξ(θ) = ξ1 +

(
ξ1 − ξ2

θ1 − θ2

)
(θ − θ1). (7.128)

Direct differentiation of f(x, y, z) =
√
a2 + z2 shows that

∂2f

∂z2
=

a2

(a2 + z2)3/2
> 0

and so f is a strictly convex function of z. Thus the curve of minimum length is given

uniquely by (7.128) – a helix. Note that if the circular cylindrical surface is cut along a

vertical line and unrolled into a flat sheet, this curve unfolds into a straight line.

7.11 Direct method of the calculus of variations and

minimizing sequences.

We now turn to a different method of seeking minima, and for purposes of introduction, begin

by reviewing the familiar case of a real-valued function f(x) of a real variable x ∈ (−∞,∞).

Consider the specific example f(x) = x2. This function is nonnegative and has a minimum

value of zero which it attains at x = 0. Consider the sequence of numbers

x0, x1, x2, x3 . . . xk, . . . where xk =
1

2k
,

and note that

lim
k→∞

f(xk) = 0.
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1

2

3
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1

2

3

(a) (b)

f(x) = 1

f(x) = x2 f(x) = x2

x x

Figure 7.22: (a) The function f(x) = x2 for −∞ < x < ∞ and (b) the function f(x) = 1 for x ≤ 0,

f(x) = x2 for x > 0.

The sequence 1/2, 1/22, . . . , 1/2k, . . . is called a minimizing sequence in the sense that

the value of the function f(xk) converges to the minimum value of f as k → ∞. Moreover,

observe that

lim
k→∞

xk = 0

as well, and so the sequence itself converges to the minimizer of f , i.e. to x = 0. This latter

feature is true because in this example

f( lim
k→∞

xk) = lim
n→∞

f(xk).

As we know, not all functions have a minimum value, even if they happen to have a finite

greatest lower bound. We now consider an example to illustrate the fact that a minimizing

sequence can be used to find the greatest lower bound of a function that does not have a

minimum. Consider the function f(x) = 1 for x ≤ 0 and f(x) = x2 for x > 0. This function

is non-negative, and in fact, it can take values arbitrarily close to the value 0. However it

does not have a minimum value since there is no value of x for which f(x) = 0; (note that

f(0) = 1). The greatest lower bound or infimum (denoted by “inf”) of f is

inf
−∞<x<∞

f(x) = 0.

Again consider the sequence of numbers

x0, x1, x2, x3 . . . xk, . . . where xk =
1

2k
,

and note that

lim
k→∞

f(xk) = 0.
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In this case the value of the function f(xk) converges to the infimum of f as k →∞. However

since

lim
k→∞

xk = 0

the limit of the sequence itself is x = 0 and f(0) is not the infimum of f . This is because in

this example

f( lim
k→∞

xk) 6= lim
n→∞

f(xk).

Returning now to a functional, suppose that we are to find the infimum (or the minimum

if it exists) of a functional F{φ} over an admissible set of functions A. Let

inf
φ∈A

F{φ} = m (> −∞).

Necessarily there must exist a sequence of functions φ1, φ2, . . . in A such that

lim
n→∞

F{φk} = m;

such a sequence is called a minimizing sequence.

If the sequence φ1, φ2, . . . converges to a limiting function φ∗, and if

F{ lim
n→∞

φk} = lim
n→∞

F{φk},

then it follows that F{φ∗} = m and the function φ∗ is the minimizer of F . The functions φk

of a minimizing sequence can be considered to be approximate solutions of the minimization

problem.

Just as in the second example of this section, in some variational problems the limiting

function φ∗ of a minimizing sequence φ1, φ2, . . . does not minimize the functional F ; see the

last Example of this section.

7.11.1 The Ritz method

Suppose that we are to minimize a functional F{φ} over an admissible set A. Consider an

infinite sequence of functions φ1, φ2, . . . in A. Let Ap be the subset of functions in A that

can be expressed as a linear combination of the first p functions φ1, φ2, . . . φp. In order to

minimize F over the subset Ap we must simply minimize

F̂ (α1, α2, . . . , αp) = F{α1φ1 + α2φ2 + . . .+ αpφp}
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with respect to the real parameters α1, α2, . . . αp. Suppose that the minimum of F on Ap is

denoted by mp. Clearly A1 ⊂ A2 ⊂ A3 . . .⊂ A and therefore m1 ≥ m2 ≥ m3 . . .
10. Thus, in

the so-called Ritz Method, we minimize F over a subset Ap to find an approximate minimizer;

moreover, increasing the value of p improves the approximation in the sense of the preceding

footnote.

Example: Consider an elastic bar of length L and modulus E that is fixed at both ends and

carries a distributed axial load b(x). A displacement field u(x) must satisfy the boundary

conditions u(0) = u(L) = 0 and the associated potential energy is

F{u} =

∫ L

0

1

2
E(u′)2dx−

∫ L

0

bu dx.

We now use the Ritz method to find an approximate displacement field that minimizes

F . Consider the sequence of functions v1, v2, v3, . . . where

vp = sin
pπx

L
;

observe that vp(0) = vp(L) = 0 for all intergers p. Consider the function

un(x) =
n∑

p=1

αp sin
pπx

L

for any integer n ≥ 1 and evaluate

F̂ (α1, α2, . . . αn) = F{un} =

∫ L

0

1

2
E(u′n)2dx−

∫ L

0

bun dx.

Since
∫ L

0

2 cos
pπx

L
cos

qπx

L
dx =





0 for p 6= q,

L for p = q,

it follows that
∫ L

0

(u′n)2dx =

∫ L

0

(
n∑

p=1

αp
pπ

L
cos

pπx

L

)(
n∑

q=1

αq
qπ

L
cos

qπx

L

)
dx =

1

2

n∑

p=1

α2
p

p2π2

L

Therefore

F̂ (α1, α2, . . . αn) = F{un} =
n∑

p=1

(
1

4
E α2

p

p2π2

L
− αp

∫ L

0

b sin
pπx

L
dx

)
(7.129)

10If the sequence φ1, φ2, . . . is complete, and the functional F{φ} is continuous in the appropriate norm,

then one can show that lim
p→∞

mp = m.
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To minimize F̂ (α1, α2, . . . αn) with respect to αp we set ∂F̂ /∂αp = 0. This leads to

αp =

∫ L
0
b sin pπx

L
dx

E p2π2

2L

for p = 1, 2, . . . n. (7.130)

Therefore by substituting (7.130) into (7.129) we find that the n-term Ritz approximation

of the energy is

−
n∑

p=1

1

4
E α2

p

p2π2

L
where αp =

∫ L
0
b sin pπx

L
dx

E p2π2

2L

,

and the corresponding approximate displacement field is given by

un =
n∑

p=1

αp sin
pπx

L
where αp =

∫ L
0
b sin pπx

L
dx

E p2π2

2L

.
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7.12 Worked Examples.

Example 7.N: Consider two given points (x1, h1) and (x2, h2), with h1 > h2, that are to be joined by a

smooth wire. The wire is permited to have any shape, provided that it does not enter into the interior of the

circular region (x − x0)2 + (y − y0)2 ≤ R2. A bead is released from rest from the point (x1, h1) and slides
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x
0

y = φ(x)

g

y

(x1, h1)

(x2, h2)

x1 x2

Figure 7.23: A curve y = φ(x) joining (x1, h1) to (x2, h2) which is disallowed from entering the forbidden

region (x− x0)2 + (φ(x)− y0)2 < R2.

along the wire (without friction) due to gravity. For what shape of wire is the time of travel from (x1, h1) to

(x2, h2) least?

Here the wire may not enter into the interior of the prescribed circular region . Therefore in considering

different wires that connect (x1, h1) to (x2, h2), we may only consider those that lie entirely outside this

region:

(x− x0)2 + (φ(x)− y0)2 ≥ R2, x1 ≤ x ≤ x2. (i)

The travel time of the bead is again given by (7.1) and the test functions must satisfy the same requirements

as in the first example except that, in addition, they must be such satisfy the (inequality) constraint (i). Our

task is to minimize T{φ} over the set A1 subject to the constratint (i).

Example 7.N: Buckling: Consider a beam whose centerline occupies the interval y = 0, 0 < x < L, in an

undeformed configuration. A compressive force P is applied at x = L and the beam adopts a buckled shape

described by y = φ(x). Figure NNN shows the centerline of the beam in both the undeformed and deformed

configurations. The beam is fixed by a pin at x = 0; the end x = L is also pinned but is permitted to move

along the x-axis. The prescribed geometric boundary conditions on the deflected shape of the beam are thus

φ(0) = φ(L) = 0.

By geometry, the curvature κ(x) of a curve y = φ(x) is given by

κ(x) =
φ′′(x)

[1 + (φ′(x))2]3/2
.

From elasticity theory we know that the bending energy per unit length of a beam is (1/2)Mκ and that

the bending moment M is related to the curvature κ by M = EIκ where EI is the bending stiffness of the

beam. Thus the bending energy associated with a differential element of the beam is (1/2)EIκ2 ds where ds
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x

y

P

L

O

Figure 7.24: An elastic beam in undeformed (lower figure) and buckled (upper figure) configurations.

is arc length along the deformed beam. Thus the total bending energy in the beam is

∫ L

0

1

2
EI κ2(x) ds

where the arc length s is related to the coordinate x by the geometric relation

ds =
√

1 + (φ′(x))2 dx.

Thus the total bending energy of the beam is

∫ L

0

1

2
EI

(φ′′)2

[1 + (φ′)2]5/2
dx.

Next we need to account for the potential energy associated with the compressive force P on the beam.

Since the change in length of a differential element is ds − dx, the amount by which the right hand end of

the beam moves leftwards is

−
(∫ L

0

ds −
∫ L

0

dx
)

= −
(∫ L

0

√
1 + (φ′)2 dx − L

)
.

Thus the potential energy associated with the applied force P is

− P

(∫ L

0

√
1 + (φ′)2 dx − L

)
.

Therefore the total potential energy of the system is

Φ{x, φ, φ′, φ′′} =

∫ L

0

1

2
EI

(φ′′)2

[1 + (φ′)2]5/2
dx−

∫ L

0

P
(√

1 + (φ′)2 − 1
)
dx.

The Euler equation, which for such a functional has the general form

d2

dx2

(
fφ′′

)
− d

dx

(
fφ′

)
+ fφ = 0,
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simplifies in the present case since f does not depend explicitly on φ. The last term above therefore drops out

and the resulting equation can be integrated once immediately. This eventually leads to the Euler equation

d

dx

(
φ′′

[1 + (φ′)2]5/2

)
+

φ′

2[1 + (φ′)2]1/2

(
P

EI/2
+ 5

[
φ′′

[1 + (φ′)2]3/2

]2)
= c

where c is a constant of integration, and the natural boundary conditions are

φ′′(0) = φ′′(L) = 0.

Example 7.N: Linearize BVP in buckling problem above. Also, approximate the energy and derive Euler

equation associated with it.

Example 7.N: u(x, t) where 0 ≤ x ≤ L, 0 ≤ t ≤ T Functional

F{u} =

∫ T

0

∫ L

0

(1

2
u2t −

1

2
u2x

)
dxdt

Euler equation (Wave equation)

utt − uxx = 0.

Example 7.N: Physical example? Functional

F{u} =

∫ T

0

∫ L

0

(
1

2
u2t −

(1

2
u2x +

1

2
m2u2

))
dxdt

Euler equation (Klein-Gordon equation)

utt − uxx +m2u = 0.

Example 7.N: Null lagrangian

Example 7.2: Soap Film Problem. Consider two circular wires, each of radius R, that are placed coaxially, a

distance H apart. The planes defined by the two circles are parallel to each other and perpendicular to their

common axis. This arrangement of wires is dipped into a soapy bath and taken out. Determine the shape of

the soap film that forms.

We shall assume that the soap film adopts the shape with minimum surface energy, which implies that we

are to find the shape with minimum surface area. Suppose that the film spans across the two circular wires.
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H
x

y

R

R

−H

y = φ(x)

By symmetry, the surface must coincide with the surface of revolution of some curve y = φ(x),−H ≤ x ≤ H.

By geometry, the surface area of this film is

Area{φ} = 2π

∫
φ(x)ds = 2π

∫ H

−H
φ(x)

√
1 + (φ′)2dx,

where we have used the fact that ds =
√

1 + (φ′)2dx, and this is to be minimized subject to the requirements

φ(−H) = φ(H) = R and

φ(x) ≥ 0 for −H < x < H.

In order to determine the shape that minimizes the surface area we calculate its first variation δArea

and set it equal to zero. This gives the Euler equation

d

dx

{
φφ′√

1 + (φ′)2

}
−
√

1 + (φ′)2 = 0

which we can write as
φφ′√

1 + (φ′)2
d

dx

{
φφ′√

1 + (φ′)2

}
− φφ′ = 0

or

d

dx

(
φφ′√

1 + (φ′)2

)2

− d

dx
(φ)2 = 0.

This can be integrated to give

(φ′)
2

=

(
φ

c

)2

− 1

where c is a constant. Integrating again and using the boundary conditions φ(H) = φ(−H) = R, leads to

φ(x) = c cosh
(x
c

)
(i)

where c is to be determined from the algebraic equation

cosh
H

c
=
R

c
. (ii)
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ζ = coshcosh ξ

ζ = µξ, µ > µ∗

ζ = µ∗ξ

ζ = µξ, µ < µ∗

ξ

ζ

Figure 7.25: Intersection of the curve described by ζ = cosh ξ with the straight line ζ = µξ.

Given H and R, if this equation can be solved for c, then the minimizing shape is given by (i) with this value

(or values) of c.

To examine the solvability of (ii) set ξ = H/c and µ = R/H and then this equation can be written as

cosh ξ = µξ.

As seen from Figure 7.25, the graph ζ = cosh ξ intersects the straight line ζ = µξ twice if µ > µ∗; once if

µ = µ∗; and there is no intersection if µ < µ∗. Here µ∗ ≈ 1.50888 is found by solving the pair of algebraic

equations cosh ξ = µ∗ξ, sinh ξ = µ∗ where the latter equation reflects the tangency of the two curves at the

contact point in this limiting case.

Thus in summary, if R < µ∗H there is no shape of the soap film that extremizes the surface area; if

R = µ∗H there is a unique shape of the soap film given by (i) that extremizes the surface area; if R > µ∗H

there are two shapes of the soap film given by (i) that extremize the surface area (and further analysis

investigating the stability of these configurations is needed in order to determine the physically realized

shape).

Remark: In order to understand what happens when R < µ∗H consider the following heuristic argument.

There are three possible configurations of the soap film to consider: one, the film bridges across from one

circular wire to the other but it does not form on the flat faces of the two circular wires themselves (which

is the case analyzed above); two, the film forms on each circular wire but does not bridge the two wires;

and three, the film does both of the above. We can immediately discard the third case since it involves more

surface area than either of the first two cases. Consider the first possibility: the soap film spans across the

two circular wires and, as an approximation, suppose that it forms a circular cylinder of radius R and length

2H. In this case the area of the soap film is 2πR(2H). In the second case, the soap film covers only the two

end regions formed by the circular wires and so the area of the soap film is 2×πR2. Since 4πRH < 2πR2 for

2H < R, and 4πRH > 2πR2 for 2H > R, this suggests that the soap film will span across the two circular
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wires if R > 2H, whereas the soap will not span across the two circular wires if R < 2H (and would instead

cover only the two circular ends).

Example 7.4: Minimum Drag Problem. Consider a space-craft whose shape is to be designed such that the

drag on it is a minimum. The outer surface of the space-craft is composed of two segments as shown in

Figure 7.26: the inner portion (x = 0 with 0 < y < h1 in the figure) is a flat circular disk shaped nose of

radius h1, and the outer portion is obtained by rigidly rotating the curve y = φ(x), 0 < x < 1, about the

x-axis. We are told that φ(0) = h1, φ(1) = h2 with the value of h2 being given; the value of h1 however is

not prescribed and is to be chosen along with the function φ(x) such that the drag is minimized.

x

y

y = φ(x)

dFdF = pdAdA

θ

p ∼ (V coscos θ)2s

0 1

h1

h2

V

dAdA = 2πφdsds

Figure 7.26: The shape of the space craft with minimum drag is generated by rotating the curve y = φ(x)

about the x-axis. The space craft moves at a speed V in the −x-direction.

According to the most elementary model of drag (due to Newton), the pressure at some point on a surface

is proportional to the square of the normal speed of that point. Thus if the space craft has speed V relative to

the surrounding medium, the pressure on the body at some generic point is proportional to (V cos θ)2 where

θ is the angle shown in Figure 7.26; this acts on a differential area dA = 2πyds = 2πφds. The horizontal

component of this force is therefore obtained by integrating dF cos θ = (V cos θ)2× (2πφds)× cos θ over the

entire body. Thus the drag D is given, in suitable units, by

D = πh21 + 2π

∫ 1

0

φ(φ′)3

[1 + (φ′)2]
dx,

where we have used the fact that ds = dx
√

1 + (φ′)2 and cos θ = φ′/
√

1 + (φ′)2.

To optimize this we calculate the first variation of D, remembering that both the function φ and the

parameter h1 can be varied. Thus we are led to

δD = 2πh1δh1 + 2π

∫ 1

0

(φ′)3

[1 + (φ′)2]
δφ dx + 2π

∫ 1

0

φ

[
3(φ′)2

1 + (φ′)2
− 2(φ′)4

[1 + (φ′)2]2

]
δφ′ dx,

= 2πh1δh1 + 2π

∫ 1

0

(φ′)3

[1 + (φ′)2]
δφ dx + 2π

∫ 1

0

[
φ(φ′)2(3 + (φ′)2)

[1 + (φ′)2]2

]
δφ′ dx.
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Integrating the last term by parts and recalling that δφ(1) = 0 and δφ(0) = δh1 (since the value of φ(1) is

prescribed but the value of φ(0) = h1 is not) we are led to

δD = 2πh1δh1 +2π

∫ 1

0

(φ′)3

[1 + (φ′)2]
δφ dx− 2π

∫ 1

0

d

dx

[
φ(φ′)2(3 + (φ′)2)

[1 + (φ′)2]2

]
δφ dx− 2πφ(φ′)2(3 + (φ′)2)

[1 + (φ′)2]2

∣∣∣∣
x=0

δh1.

The arbitrariness of δφ and δh1 now yield

d

dx

[
φ(φ′)2(3 + (φ′)2)

[1 + (φ′)2]2

]
− (φ′)3

[1 + (φ′)2]
= 0 for 0 < x < 1,

(φ′)2(3 + (φ′)2)

[1 + (φ′)2]2

∣∣∣∣
x=0

= 1.

(i)

The differential equation in (i)1 and the natural boundary condition (i)2 can be readily reduced to

d

dx

(
φ(φ′)3

[1 + (φ′)2]2

)
= 0 for 0 < x < 1,

φ′(0) = 1.

(ii)

The differential equation (ii) tells us that

φ(φ′)3

[1 + (φ′)2]2
= c1 for 0 < x < 1, (iii)

where c1 is a constant. Together with the given boundary conditions, we are therefore to solve the differential

equation (iii) subject to the conditions

φ(0) = h1, φ(1) = h2, φ′(0) = 1, (iv)

in order to find the shape φ(x) and the parameter h1.

Since φ(0) = h1 and φ′(0) = 1 this shows that c1 = h1/4.

It is most convenient to write the solution of (iii) with c1 = h1/4 parametrically by setting φ′ = ξ. This

leads to

φ =
h1
4

(
ξ−3 + 2ξ−1 + ξ

)
,

x =
h1
4

(3

4
ξ−4 + ξ−2 + log ξ

)
+ c2,





1 > ξ > ξ2,

where c2 is a constant of integration and ξ is the parameter. On physical grounds we expect that the slope φ′

will decrease with increasing x and so we have supposed that ξ decreases as x increases; thus as x increases

from 0 to 1 we have supposed that ξ decreases from ξ1 to ξ2 (where we know that ξ1 = φ′(0) = 1). Since

ξ = φ′ = 1 when x = 0 the preceding equation gives c2 = −7h1/16. Thus

φ =
h1
4

(
ξ−3 + 2ξ−1 + ξ

)
,

x =
h1
4

(3

4
ξ−4 + ξ−2 + log ξ − 7

4

)
,





1 > ξ > ξ2. (v)
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The boundary condition φ = h1, φ
′ = 1 at x = 0 has already been satisfied. The boundary condition

φ = h2, x = 1 at ξ = ξ2 requires that

h2 =
h1
4

(
ξ−32 + 2ξ−12 + ξ2

)
,

1 =
h1
4

(3

4
ξ−42 + ξ−22 + log ξ2 −

7

4

)
,





(vi)

which are two equations for determining h2 and ξ2. Dividing the first of (vi) by the second yields a single

equation for ξ2:

ξ52 − h2ξ42 log ξ2 +
7

4
h2ξ

4
2 + 2ξ32 − h2ξ22 + ξ2 −

3

4
h2 = 0. (vii)

If this can be solved for ξ2, then either equation in (vi) gives the value of h1 and (v) then provides a parametric

description of the optimal shape. For example if we take h2 = 1 then the root of (vii) is ξ2 ≈ 0.521703 and

then h1 ≈ 0.350943.

Example 7.5: Consider the variational problem where we are asked to minimize the functional

F{φ} =

∫ 1

0

f(φ, φ′)dx

over some admissible set of functions A. Note that this is a special case of the standard problem where the

function f(x, φ, φ′) is not explicitly dependent on x. In the present case f depends on x only through φ(x)

and φ′(x).

The Euler equation is given, as usual, by

d

dx
fφ′ − fφ = 0 for 0 < x < 1.

Multiplying this by φ′ gives

φ′
d

dx
fφ′ − φ′fφ = 0 for 0 < x < 1,

which can be written equivalently as
[
d

dx
(φ′fφ′)− φ′′fφ′

]
−
[
d

dx
f − φ′′fφ′

]
= 0 for 0 < x < 1.

Since this simplifies to
d

dx

[
φ′fφ′ − f

]
= 0 for 0 < x < 1,

it follows that in this special case the Euler equation can be integrated once to have the simplified form

φ′fφ′ − f = constant for 0 < x < 1.

Remark: We could have taken advantage of this in, for example, the preceding problem.

Example 7.6: Elastic bar. The following problem arises when examining the equilibrium state of a one-

dimensional bar composed of a nonlinearly elastic material. An equilibrium state of the bar is characterized



196 CHAPTER 7. CALCULUS OF VARIATIONS

by a displacement field u(x) and the material of which the bar is composed is characterized by a potential

Ŵ (u′). It is convenient to denote the derivative of W by σ,

σ̂(u′) = Ŵ ′(u′),

so that then σ(x) = σ̂(u′(x)) represents the stress at the point x in the bar. The bar has unit cross-sectional

area and occupies the interval 0 ≤ x ≤ L in a reference configuration. The end x = 0 of the bar is fixed, so

that u(0) = 0, a prescribed force P is applied at the end x = L, and a distributed force per unit length b(x)

is applied along the length of the bar.

An admissible displacement field is required to be continuous on [0, L], piecewise continuously differen-

tiable on [0, L] and to conform to the boundary condition u(0) = 0. The total potential energy associated

with any admissible displacement field is

V {u} =

∫ L

0

Ŵ (u′(x))dx −
∫ L

0

b(x)u(x)dx − Pu(L),

which can be written in the conventional form

V {u} =

∫ L

0

f(x, u, u′)dx where f(x, u, u′) = Ŵ (u′)− bu− Pu′.

The actual displacement field minimizes the potential energy V over the admissible set, and so the three

basic ingredients of the theory can now be derived as follows:

i. At any point x at which the displacement field is smooth, the Euler equation

d

dx

(
∂f

∂u′

)
− ∂f

∂u
= 0

takes the explicit form
d

dx
Ŵ ′(u′) + b = 0,

which can be written in terms of stress as

d

dx
σ + b = 0.

ii. The displacement field u(x) satisfies the prescribed boundary condition u = 0 at x = 0. The natural

boundary condition at the right hand end is given, according to equation (7.50) in Section 7.5.1, by

fu′ = 0 at x = L,

which in the present case reduces to

σ(x) = Ŵ ′(u′(x) = P at x = L.

iii. Finally, suppose that u′ has a jump discontinuity at some location x = s. Then the first Weirstrass-

Erdmann corner condition (7.88) requires that ∂f/∂u′ be continuous at x = s, i.e. that the stress

σ(x) must be continuous at x = s:

σ
∣∣
x=s− = σ

∣∣
x=s+

. (i)
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The second Weirstrass-Erdmann corner condition (7.89) requires that f − u′∂f/∂u′ be continuous at

x = s, i.e. that the quantity W − u′σ must be continuous at x = s:

W − u′σ
∣∣∣
x=s−

= W − u′σ
∣∣∣
x=s+

(ii)

Remark: The generalization of the quantity W −u′σ to 3-dimensions in known as the Eshelby tensor.

0 u′

W (u′)

0

σ

σ̂(u′)

u′(s+)+)u′(s−)
u′

(a) (b)

̂

Figure 7.27: (a) A nonmonotonic (rising-falling-rising) stress response function σ̂(u′) and (b) the corre-

sponding nonconvex energy Ŵ (u′).

In order to illustrate how a discontinuity in u′ can arise in an elastic bar, observe first that according

to the first Weirstrass-Erdmann condition (i), the stress σ on either side of x = s has to be continuous.

Thus if the function σ̂(u′) is monotonically increasing, then it follows that σ = σ̂(u′) has a unique solution

u′ corresponding to a given σ, and so u′ must also be continuous at x = s. On the other hand if σ̂(u′)

is a nonmonotonic function as, for example, shown in Figure 7.27(a), then more than one value of u′ can

correspond to the same value of σ, and so in such a case, even though σ(x) is continuous at x = s it is possible

for u′ to be discontinuous, i.e. for u′(s−) 6= u′(s+), as shown in the figure. The energy function Ŵ (u′) sketched

in Figure 7.27(b) corresponds to the stress function σ̂(u′) shown in Figure 7.27(a). In particular, the values

of u′ at which σ̂ has a local maximum and local minimum, correspond to inflection points of the energy

function Ŵ (u′) since Ŵ ′′ = 0 when σ̂′ = 0.

The second Weirstrass-Erdmann condition (ii) tells us that the stress σ at the discontinuity has to have

a special value. To see this we write out (ii) explicitly as

Ŵ (u′(s+))− u′(s+)σ = Ŵ (u′(s−)− u′(s−)σ

and then use σ̂(u′) = Ŵ ′(u′) to express it in the form

∫ u′(s+)

u′(s−)
σ̂(v)dv = σ

[
u′(s+)− u′(s−)

]
. (iii)
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This implies that the value of σ must be such that the area under the stress response curve in Figure 7.27(a)

from u′(s−) to u′(s+) must equal the area of the rectangle which has the same base and has height σ; or

equivalently that the two shaded areas in Figure 7.27(a) must be equal.

Example 7.7: Non-smooth extremal. Find a curve that extremizes

F{φ} =

∫ 1

0

f(x, φ(x), φ′(x))dx,

that begins from (0, a), and ends at (1, b) after contacting a given curve y = g(x).

Remark: By identifying the curve y = g(x) with the surface of a mirror and specializing the functional F to

the travel time of light, one can thus derive the law of reflection for light.

Example 7.8: Inequality Constraint. Find a curve that extremizes

I(φ) =

∫ a

0

(φ′(x))
3
dx, φ(0) = φ(a) = 0,

that is prohibited from entering the interior of the circle

(x− a/2)2 + y2 = b2.

Example 7.9: An example to caution against simple-minded discretization. (Due to John Ball). Let

F{u} =

∫ 1

0

(u3(x)− x)2 (u′(x))2dx

for all functions such that u(0) = 0, u(1) = 1. Clearly F{u} ≥ 0. Moreover F{ū} = 0 for ū(x) = x1/3.

Therefore the minimizer of F{u} is ū(x) = x1/3.

Discretize the interval [0, 1] into N segments, and take a piecewise linear test function that is linear on

each segment. Calculate the functional F at this test function, next minimize it at fixed N , and finally take

its limit as N tends to infinity. What do you get? (You will get an answer but not the correct one.)

To anticipate this difficulty in a different way, consider a 2 element discretization, and take the continuous

test function

u1(x) =





cx for 0 < x < h,

ū(x) for h < x < 1.
(i)

Calculate F{u} for this function. Take limit as h → 0 and observe that F{u} does not go to zero (i.e. to

F{ū}).
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Example 7.10: Legendre necessary condition for a local minimum: Let

F{ε} =

∫ 1

0

f(x, φ+ εη, φ′ + εη′)dx

for all functions η(x) with η(0) = η(1) = 0. Show that

F ′′(0) =

∫ 1

0

{
fφφη

2 + 2fφφ′ηη′ + fφ′φ′(η′)2
}
dx.

Suppose that F ′′(0) ≥ 0 for all admissible functions η. Show that it is necessary that

fφ′φ′(x, φ(x), φ′(x)) ≥ 0 for 0 ≤ x ≤ 1.

Example 7.11: Bending of a thin plate. Consider a thin rectangular plate of dimensions a× b that occupies

the region A = {(x, y) | 0 < x < a, 0 < y < b} of the x, y-plane. A distributed pressure loading p(x, y)

is applied on the planar face of the plate in the z-direction, and the resulting deflection of the plate in the

z-direction is denoted by w(x, y). The edges x = 0 and y = 0 of the plate are clamped, which implies the

geometric restrictions that the plate cannot deflect nor rotate along these edges:

w = 0,
∂w

∂x
= 0 on x = 0, 0 < y < b,

w = 0,
∂w

∂y
= 0 on y = 0, 0 < x < a;





(i)

the edge y = b is hinged, which means that its deflection must be zero but there is no geometric restriction

on the slope:

w = 0, on y = b, 0 < x < a; (ii)

and finally the edge x = a is free in the sense that the deflection and the slope are not geometrically restricted

in any way.

The potential energy of the plate and loading associated with an admissible deflection field, i.e. a function

w(x, y) that obeys (i) and (i) is given by

Φ{w} =
D

2

∫

A

[(
∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)

(
∂2w

∂x2
∂2w

∂y2
−
(
∂2w

∂x∂y

)2
)]

dxdy −
∫

A

pw dxdy. (iii)

where D and ν are constants. The actual deflection of the plate is given by the minimizer of Φ. We are asked

to derive the Euler equation and the natural boundary conditions to be satisfied by minimizing w.

Answer: The Euler equation is

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂x4
=

p

D
0 < x < a, 0 < y < b, (iv)

and the natural boundary conditions are

∂2w

∂y2
+ ν

∂2w

∂x2
= 0, on y = b, 0 < x < a; (v)
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and
∂2w

∂x2
+ ν

∂2w

∂y2
= 0 and

∂3w

∂x3
+ 2(1− ν)

∂3w

∂x∂y2
= 0, on x = a, 0 < y < b; (vi)

Example 7.12: Consider the functional

F{φ} =

∫ 1

0

[(
(φ′)2 − 1

)2
+ φ2

]
dx, φ(0) = φ(1) = 0, (i)

and determine a minimizing sequence φ1, φ2, φ3, . . . such that F{φk} approaches its infimum as k → ∞. If

the minimizing sequence itself converges to φ∗ show that F{φ∗} is not the infimum of F .

Remark: Note that this functional is non-negative. If the functional takes the value zero, then, since its

integrand is the sum of two non-negative terms, each of those terms must vanish individually. Thus we must

have φ′(x) = ±1 and φ(x) = 0 on the interval 0 < x < 1. These cannot be both satisfied by a regular

function.

0 1
h

h =
1

k

nhnh (n + 1)1)h

h/h/2

x

φk(x) = x− nhnh φk(x) = −x + (n + 1)1)

Figure 7.28: Sawtooth function φk(x) with k local maxima and linear segments of slope ±1.

Let φk(x) be the piecewise linear saw-tooth function with k-local maxima as shown in Figure 7.28; the

slope of each linear segment is ±1. Note that the base h = 1/k and the height is h/2. Thus as k increases

there are more and more teeth, each of which has a smaller base and smaller height. Observe that the first

term in the integrand of (i) vanishes identically for any k; the second term, which equals the area under the

square of φk approaches zero as k → ∞. Thus the family of saw-teeth functions is a minimizing sequence

of (i). However, note that since φk(x) → 0 at each fixed x as k → ∞ the limiting function to which this

sequence converges, i.e. φ(x) = 0, is not a minimizer of (i).


