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Chapter 1

Thermodynamics

1.1 General concepts
1. A thermodynamical system is a collection of a huge number of particles: a gas, a solid etc. The thermo-

dynamic limit is reached when N,V →∞ but ρ = N/V remains constant.

2. Large number of particles and fast microchanges (i.e. collisions) require a statistical approach. Every
measurement is an average over many states microscopically different (microstates).

3. A system can be characterized by a small number of variables like temperature, volume, pressure, number
of particle, charge, dipole, viscosity etc

4. For most of what we say, it is sufficient to consider energy E, volume V , number of particles N . Related
quantities are entropy S, temperature T , pressure p, chemical potential µ.

5. A system can be completely isolated (no change in E, V,N), thermally isolated (no transfer of heat), closed
(change in E and V but not in N), open (change in all variables).

6. A variable is called a state variable if it does not depend on the previous history of a system. Mathemat-
ically, this implies that small differences in state variables are exact differentials.

7. When two isolated systems are brought into contact (and kept isolated from the external environment),
they reach an equilibrium, i.e. their state variables (those that are permitted to be exchanged between
the systems) go from a constant but different value before contact to another constant identical value
afterwards.

8. Equilibrium is reached “after a long time”, which means after a period of time much longer than some
relaxation time that depends on the detailed physics of the system. Whenever needed, we will always
assume that we are in such state of equilibrum, without trying to answer the question of how much time
it takes. In equilibrium, all thermodynamical properties of system stay constant in time.

9. A system in equilibrium is called homogeneous if the state variables are the same everywhere (i.e., con-
stant not ony in time but also in space). Two or more systems in equilibrium, possibly with different
thermodynamic properties, separated by boundaries are called heterogeneous.

10. The relations between state variables are called equations of state.

11. A state variable can be intensive if it does not depend on the size (i.e. on N or V ); extensive if it depends
linearly on the size, i.e. if n identical systems with state variable Q have a value nQ when brought into
equilibrium. Intensive variables are p, T, µ. Extensive variables are E,N, V, S.

12. The following obvious rules apply: function of intensive variables only=intensive; intensive×extensive=extensive;
extensive/extensive=intensive; linear combination of extensive variables=extensive.

4



CHAPTER 1. THERMODYNAMICS 5

13. Zero-th law of thermodynamics: if systems A and B are in equilibrium with C, then also A and B are in
equilibrium.

14. The temperature can be defined by the observable effects it induces on some substances, eg the expansion
of a gas or liquid or the radiation emitted by a body or the change in electric resistance. For many gases,
a strictly monotonic relation between T and the gas volume is observed. The scale of T can therefore
always be defined as (thermodynamic temperature)

T = T0
V

V0
(1.1)

assuming P,N constant.

1.2 Ideal gas
1. A ideal gas is defined as a gas of very small classical non-relativistic particles that do not interact with each

other except through direct elastic collision (i.e the kinetic energy, included the rotational or vibrational
one, is conserved), that move frictionless and do not dissipate energy via radiation or other means, and
that is contained into a perfectly elastic-wall container.

2. Every gas at sufficiently high temperature and low pressure behave as a ideal gas.

3. A ideal gas is found to obey the Boyle-Mariotte law:

pV = p0V0 (1.2)

at constant T,N .

4. Combining with (1.1) we obtain
pV

T
= const (1.3)

5. Since p, T are intensive and V is extensive, the constant must be proportional to N . Therefore we have
the equation of a ideal gas

pV = NkT (1.4)
where experimentally it is found the value of k to be Boltzmann’s constant, k = 1.38 · 10−23JK−1.

6. This can be written also as

p = ρkT (1.5)
pV = nRT (1.6)

where ρ is the molecule number density, n the number of moles, and R = Nk/n = NAk the gas constant
and NA ≈ 6 · 1023 is Avogadro’s number.

7. The temperature can be interpreted as a measure of kinetic energy per particle. In fact, denoting with
Nf(−→v )d−→v the number of particles with velocity in d−→v one obtains that the pressure exerted on the walls
of the container of area A along the direction z is

p = 1
A

ˆ
dFA = N

2V

ˆ
dvx

ˆ
dvy

ˆ
dvzf(−→v )2mv2

z

(the overall 1
2 factor arises because only half of the particles move in the positive direction). Assuming an

isotropic distribution of velocities in a ideal gas, f(−→v ) = g(v2) = g1(v2
x)g2(v2

y)gz(v2
z), this becomes

pV = mN

ˆ
d3vf(|−→v |)v2

z = mN〈v2
z〉 = mN

3 〈v
2〉 = 2

3N〈εKIN 〉 (1.7)

ie pV is proportional to the total kinetic energy of the particles. We are assuming here the particles have
only 3 degrees of freedom.
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8. Then we see that

〈εKIN 〉 = 3
2kT (1.8)

EKIN = 3
2NkT (1.9)

i.e. kT/2 for each degree of freedom.

9. If the molecules have d independent kinetic degrees of freedom (all equally excited), one has

EKIN = d

2NkT (1.10)

10. Then one also obtains the unit-normalized Maxwell distribution (see Sect. 3.4 for the derivation):

f(−→v ) =
( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
(1.11)

1.3 Exact and inexact differentials
Let us consider the following differential form

δf = A(x, y)dx+B(x, y)dy (1.12)

This form is called an exact differential if it exists a function f(x, y) such that

A = ∂f

∂x
|y, B = ∂f

∂y
|x (1.13)

In this case, we write df instead of δf . The necessary and sufficient condition for f to exist is

∂A

∂y
|x = ∂B

∂x
|y (1.14)

because in this case
∂2f

∂x∂y
= ∂2f

∂y∂x
(1.15)

as it should. This can be straightforwardly extended to many dimensions. If δf = Aidx
i, (sum over repeated

indexes) then the condition for δf to be an exact differential is Ai = ∂f/∂xi and therefore

∂Ai
∂xj

= ∂Aj
∂xi

(1.16)

where all the other variables are held fixed. In this case, df = ~∇f · d~r where the components of the gradient
vector are ∇if = Ai.

The integral over an exact differential depends only on the initial and final point, not on the path. In fact
ˆ B

A

df =
ˆ B

A

~∇f · d~r = fB − fA (1.17)

Consequently, the integral along any closed curve vanishes. If a force can be written as the gradient of a
potential, then the work done by the force is independent of the path (conservative force).
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1.4 Work and heat
1. If −→F is the force exerted by the system on the environment, the mechanical work done is

δW = −−→F · d−→s (1.18)

where d−→s is the movement along which the force is applied.

2. This can be interpreted in a general way: every work done by the system can be written as a generalized
force times a generalized interval. For instance under the action of pressure one has

δW = −pdV (1.19)

3. The work is not an exact differential so it is not a state variable; it is positive if done on the system (the
volume decreases so dV < 0), negative otherwise.

4. Similarly, the work done on the system when adding a number dN of particles in equilibrium is

δW = µdN (1.20)

where µ is the chemical potential (ie, as we will see better soon, the energy gained by a system when a
single particle is added).

5. Since energy is an extensive quantity, we have

δW = intensive× d(extensive) (1.21)

6. Beside this mechanical (or electric etc) work, a system can increase its energy also by the transfer from
or to the environment of heat, Q. Heat can also be created by doing mechanical work on a system, eg.
stirring a liquid: doing a work of 4.183 J on 1g of water increases its temperature from 14.5 to 15.5 Celsius
degrees at standard pressure. From now on, however, heat is always counted only if it it transferred
from/to the outside. Any other source of internal heat, e.g. friction dissipation, is not included in Q. The
sign of δQ is positive if transferred to the system.

7. One can say that δW expresses the change in ordered energy, while δQ the change in disordered energy.
It is intuitive that while it is easy to transform ordered motion into disordered motion just by random
collisions, the opposite is practically impossible. That is, one can easily (i.e. with a high efficiency)
transform mechanical work into heat but not viceversa.

8. When heat is transferred to a system, its energy, as measured by temperature, is changed

δQ = CdT (1.22)

where C is the heat capacity. Its value depends on how the heat is transferred (indeed, Q is not a state
variable), so there is a CV (when volume is kept constant) and a Cp (when pressure is kept constant).

9. The heat capacity is an extensive variable. The specifis heat c = C/(Nm), where m is the mass of a
molecule, is an intensive variable.

10. A reversible process is a ideal transformation that moves continuously from an equilibrium state to another
one. One can define the state variables at every instant. In practice, one can only have quasi-static
processes, that move so slowly that every state can be assumed to be in equilibrium. In a reversible
transformation, no internal heat (eg due to friction etc) develops. An irreversible process is a process in
which the system goes out of equilibrium. When the system goes back to equilibrium, the state variables
can be measured and their value will be independent of the process. In irreversible processes, some internal
heat always develops.

11. Reversible processes must be engineered with great case; irreversible processes can occur spontaneously.
All natural processes are irreversible to a larger or smaller degree.



CHAPTER 1. THERMODYNAMICS 8

12. The most important processes are isothermal (constant T , obtained by contact with an infinite heat bath),
adiabatic (no heat exchange), isochoric (constant volume), isobaric (constant pressure), cyclic (all the state
variables go back to the inial value).

13. For instance, if a isothermal expansion of a ideal gas is reversible, we can apply the ideal gas law at all
times and obtain the total work

Wtot =
ˆ
δW = −

ˆ
pdV = −NkT

ˆ
dV

V
= −NkT log V2

V1
(1.23)

Here p is both the internal and the extenal pressure, since the gas must always be in an equilibrium
condition. In an irreversible process the work done will always be smaller than this because some work
goes into internal friction, turbulences etc. For instance, if the expansion happens in a previously empty
volume the gas particles do not do any work and Wtot = 0. Similarly, if the volume into which the
expansion takes place has a pressure smaller than pgas, again |Wtot(irr)| < |Wtot(rev)|. Due to our sign
convention, we have then

Wirr > Wrev (1.24)

One can still use Eq. (1.23), but now with pext (if it has a homogeneous value) instead of pgas (which
is ill defined since the gas will not be in equilibrium). So, for two processes that start and end with the
same state variables, the total work is always larger for an irreversible process than for a reversible one
(as usual counting as positive the work done on the system).

1.5 First law
1. The first law of thermodynamics is the conservation of energy

dU = δW + δQ (1.25)

Although W,Q are not state variables, U is, so dU is an exact differential.

2. For reversible processes, δW = −pdV , δQ = CV dT (or δQ = CpdT )

3. If in a process the volume is constant, dU = δQ = CV dT so that

CV = ∂U

∂T
|V (1.26)

and from (1.10)
CV = 3

2Nk (1.27)

(for 3 d.o.f.). In this case CV does not depend on temperature and one has for an ideal gas

U = CV T (1.28)

Notice that the relation dU = CV dT is always valid for reversible processes, although it has been obtained
assuming constant volume. The reason is that U is a state function and it does not depend on the path
chosen to produce a change dU . For instance, in the next line we apply it to an adiabatic process in which
the volume is changing.

4. For an adiabatic process, dU = δW and for an ideal gas one has CV dT = −NkTdV/V , i.e.

pV γ = const (1.29)

where γ = 1+2/d = 5/3 for a monatomic ideal gas, 7/5 for a diatomic one (where we assume equipartition
of energy among the two rotational degrees of freedom of an ideal diatomic molecule, so CV = 5Nk/2).
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5. Consider an irreversible isothermal expansion process that brings an ideal gas from V1 to V2 (i.e. the
system performs work on the environment). Since the process is isothermal and U depends only on T ,
dU = 0. As we have seen, it always will produce less absolute work than a reversible one, (so due to our
sign convention the work is larger); because of the first law, it then will also absorb less heat from the
environment, so we have

Qirr < Qrev (1.30)
Wirr > Wrev (1.31)

That is, since the system gets heated by the dissipation of internal friction and turbulences, it will need
to absorb less heat from the heat bath to keep the same temperature. Similarly, during an isothermal
compression, the irreversible process will dissipate more heat to the environment (because it has to dissipate
also the internally produced heat) and more work on the system will be needed. Eqs. (1.31) are then valid
also during the compression.

6. This property is very general and does not depend on the ideal gas law. In any process in which the total
energy does not change (i.e. in isothermal or cyclic processes) an irreversible process will always produce
less absolute work on the environment (higher W due to the negative sign) and absorb less heat from it,
during an expansion, and requires more work and releases more heat, during a compression.

7. More generally, for any two processes that start with the same state variables and end with the same state
variables, the total work (as usual counting as positive the work done on the system) is always larger, and
total heat absorbed is always smaller, for an irreversible process than for a reversible one.

8. We can now define a heat capacity at constant pressure, CP , as the heat δQP transferred during a process
at p = const in which the temperature varies by dT . For an ideal gas, the work done at constant pressure
is δW = −pdV = −kNdT and dU = (3/2)kNdT . Therefore, by the first law

δQP = dU − δW = 5
2kNdT (1.32)

or δQ = (d+ 1)kNdT/2 for a gas with d degrees of freedom. Therefore for an ideal monoatomic gas,

CP = 5
2kN (1.33)

Since CP > CV , we can say it takes more heat in a p = const process to achieve the same temperature
than in a V = const process, because in the latter case no work is done.

1.6 Second Law
1. In a reversible Carnot cycle (isothermal expansion, adiabatic expansion, isothermal compression, adiabatic

compression), one can show that ˛
δQrev
T

= 0 (1.34)

2. This implies that the quantity δQ/T is a state variable, called entropy (from the Greek, “in transforma-
tion”)

S = SA +
ˆ B

A

δQ

T
(1.35)

i.e. 1/T is an integral factor of δQ, i.e. a factor that transforms a quantity into an exact differential. The
entropy is an extensive variable.

3. The total work (on the environment) done in a Carnot cycle is

−∆W =
˛
pdV =

˛
TdS (1.36)
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and the efficiency is
η = |∆W |
|∆QABS |

= 1− T`
Th
≤ 1

where Th,` are the high, low heat bath temperatures and ∆QABS denotes only the absorbed heat from
Th. The efficiency does not depend on the material, on the pressure, volume etc.

4. Every reversible cycle can be approximated as a number of subsequent Carnot cycles. Therefore, the
equation ˛

δQrev
T

= 0 (1.37)

is true for every reversible cycle.

5. The Carnot cycle is the most efficient cycle among all the reversible cycles operating between Th,` and, a
fortiori, among all the irreversible ones. Other cycles (e.g. Stirling’s cycle) can be as efficient as Carnot
but require several reservoirs at different temperature.

6. In the T, S plane, the Carnot cycle is a rectangle, which has the maximal area between Th and T` once
the state variables p, V of the initial and final expansion state are chosen.

7. Second Law of Thermodyamics. Since δQirr < δQrev and due to the definition of entropy

TdS = δQrev ≥ δQirr (1.38)

If the transformation takes place in a thermally isolated system, such that there is no heat exchange,
δQirr = 0 and therefore

dS ≥ 0 (1.39)

with the equality only for reversible transformation of isolated systems. As a consequence, the entropy
for an isolated system in equilibrium has dS = 0, i.e. it is constant and maximal under any possible
transformation.

8. In statistical mechanics these statements and the entire thermodynamics will be interpreted in a statistical
sense. In particular, the entropy might fluctuate in both directions but for any system the amount of time
the system will spend in a configuration of maximal entropy is by far larger than in any other configuration.
In this sense, the entropy is always maximal except if one prepares the system in a very special initial
condition.

9. From the definition dS = δQ/T we can write for reversible transformations

dU = TdS − pdV (1.40)

or, including the change in particle numbers

dU = TdS − pdV + µdN (1.41)

We say that S, V,N are the natural variables for the function U . Since T is intensive and U extensive, the
entropy S has to be extensive too. T, p, µ are called conjugate variables of S, V,N .

10. Conversely
dS = 1

T
dU + p

T
dV − µ

T
dN (1.42)

and U, V,N are the natural variables for S. If one has U(S, V,N) or S(U, V,N) for a system, then all the
thermodynamical relation can be obtained. This is not necessarily true for other variables. For instance,
from U(T,N) = 3NkT/2 one cannot obtain the other equation of state pV = NkT , but from U(S, V,N)
(see eg Eq. (1.48) below) one can obtain both.
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In a system under reversible reversible reversible irreversible all other cases
a transformation that is... and cyclic and isolated and adiabatic and isolated

the total change in entropy ∆S is 0 0 0 ≥ 0 not constrained

Table 1.1: Change of entropy under various circumstances.

11. Since U, S are state variables (dU, dS are exact differentials), a number of relations (equations of state)
automatically arise:

∂U

∂S
|V,N = T (1.43)

∂U

∂V
|S,N = −p (1.44)

∂U

∂N
|S,V = µ (1.45)

and similarly for S, e.g. ∂S
∂U V,N

= 1
T , etc.

12. By integrating dS, one can obtain the entropy of the ideal gas up to a constant. From eq. (1.42) (dN = 0)
we have

dS = 1
T

3
2NkdT + p

T
Nk(dT

T
− T dp

p2 ) = Nk(5
2
dT

T
− dp

p
) (1.46)

and one obtains

S = S0 +Nk log
(
T

T0

)5/2(
p0

p

)
(1.47)

The entropy increases with temperature, as it should otherwise ∂S
∂U V,N

= 1
T would be negative. Replacing

T, p with the ideal gas equations of state one can also obtain

S(U, V,N) = S0 +Nk log
(
U

U0

)3/2(
N

N0

)−5/2(
V

V0

)
(1.48)

13. The second law applied to two subsystems in contact through a wall that can allow for exchange of heat or
volume or particles shows that heat will always flow from hotter to colder bodies, the volumes will change
until the pression on both sides equalizes, and the particles will flow from denser to less dense regions.
The second law expresses in fact the tendency to equilibrium of all isolated systems.

14. The same setting will allow to show that S has to be a convex function of U, V and U a concave function
of S, V . I.e., the tendency of S to maximize itself is the same as the tendency of U to minimize.

15. By exploiting the fact that U(αS, αV, αN) = αU(S, V,N) one can obtain the Gibbs-Duhem equation

U = TS − pV + µN (1.49)

(or
∑
i µiNi for several species). This is remarkable since in general T, p, µ depend on S, V,N themselves.

16. Combining with dU , one can see that

SdT − V dp+Ndµ = 0 (1.50)

which implies that there must be a relation between the intensive variables T, p, µ, i.e. one of them can
be written as a function of the others.
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function form nat. variables name
U S, V,N energy
F U − TS T, V,N free energy (Helmholtz)
H U + pV S, p,N enthalpy
G U − TS + pV T, p,N Gibbs free energy
Φ U − TS − µN T, V, µ Grand potential

Table 1.2: Thermodynamic potentials

1.7 Thermodynamic potentials
1. By using Legendre transformations one can introduce several other state functions. They can be useful

because in practical experiments one can control, for instance, T or p, but not S,U

2. A Legendre transformation of a function U(q) is defined as a new function Û(p) such that

Û(p) = U − pq (1.51)

where
p = dU

dq
(1.52)

We assume that this relation can be inverted so that we can always write q = q(p). By differentiating U
we have dU = pdq and therefore we find

dÛ = dU − pdq − qdp = −q(p)dp (1.53)

which shows that indeed Û depends only on p. Therefore, the Legendre transformation creates a new
function that depends only on the derivative of the old function. This can be extended to functions of
several variables (one can Legendre-transform with respect to a subset of the variables).

3. One introduces in this way several functions, all of them obtained from the energy (the Legendre functions
obtained from the entropy are more rarely used)

4. In a system with T,N =const , dF = dU − TdS = −pdV , i.e. the change in free energy gives the amount
of energy available to do useful work. If the system is isolated, so no work is done or received, the free
energy is stationary (and a maximum or minimum depending on which variable; is a minimum when the
variables are the standard T, V,N). This is why free energy is useful in engine constructions.

5. We see from Eq. (1.41) that adding a single particle in equilibrium to a system at constant S, V , i.e. for
dN = 1, the energy changes by dU = µ. However, if only V is kept constant, then µ should be interpreted
as the change in free energy, µ = dU − TdS. Adding a particle means increasing U but also S, since
new microstates become available. Whether µ is positive or negative depends therefore on the particular
system.

6. For processes at constant entropy, minimization of F amounts to minimization of U . So systems at constant
entropy minimize the internal energy until they reach equilibrium. For instance, a marble rolling down
a bowl with negligible friction so that it does not get heated but still slows down due to air resistance,
maintains constant entropy, and its energy (potential plus kinetic) will be minimized when its kinetic
energy gets completely dissipated and will stop at the equilibrium point at the bottom of the bowl.

7. For general processes at constant T , neither is entropy maximized nor energy minimized: rather, it’s the
free energy that is minimized.

8. Similarly, for isobaric processes, the change in enthalpy H = U + pV gives the amount of heat and
other non-mechanical work (eg exchange of particles) reselased or absorbed by the system. Most chemical
processes occur at constant (atmospheric) pressure and the enthalpy is therefore the relevant quantity.
In an adiabatic, isobaric process, the enthalpy never increases, stays constant for reversible processes and
reaches a minimum at equilibrium.
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9. Gibbs free energy (also called free enthalpy) G = U − TS + pV gives the amount of non-mechanical work
(eg exchange of particles) in isothermal, isobaric processes.

10. If there are several species, G =
∑
i µiNi. Now, let us consider a chemical reaction between particles (or

an elementary particle interaction), such that we go from an initial number ai of particles Ai to a final
number bi of particles Bi :

a1A1 + a2A2 + ...→ b1B1 + b2B2 + ... (1.54)

Then if the process is isothermal and isobaric, G has to remain constant, dG = 0 and therefore∑
i

µAidNi = 0 (1.55)

In a reaction, the change in number of particles of type i is now dNAi = −aidN and dNBi = bidN , where
dN is a common factor. Then we obtain a condition on the chemical potential that has to be fulfilled in
any reaction ∑

i

µAiai =
∑
i

µBibi (1.56)

11. Finally, one can also define the grand potential Φ = U − TS − µN = −pV , which reaches a minimum if
no mechanical work is performed.

12. The relations between the thermodynamic potentials are called Maxwell relations and can be obtained by
using the identities for partial derivatives.

1.8 Energy and entropy
1. In all branches of physics we learn that systems try to reach their ground state, i.e. the state of minimal

energy. A pendulum will stop oscillating, a marble will roll down a bowl and will stop at the bottom,
an electron in a hydrogen atom will radiate until it reaches the ground state. The reason is that in any
process there is always a fraction of the work done by a system that is irretrievably lost into various forms
of friction, so that the energy of the system will decay into its minimal value. Now we show how this
result is related to the maximization of entropy.

2. Let us consider an isolated system composed by two subsystems A and B, both initially in equilibrium.
System A is thermally isolated, so its entropy is constant, but can exchange work with B. For A, dUA =
δWA since δQA = 0. Now let’s assume an amount δWA < 0 (since it’s work by the system A) is transferred
from A to B, for instance through a movement of the separating wall, or radiation, or a long-range force, so
that system B acquires an energy dUB = −dUA (since UA +UB = const). In a spontaneous process, some
of this work will go into friction, which generates heat in B, so that the amount of work δWA transferred
to B can be divided into a fraction ε as heat, and a fraction 1− ε as work. Then we have

dUB = δQB + δWB = −dUA = −δWA > 0 (1.57)

and
δQB = −εδWA > 0, δWB = −(1− ε)δWA (1.58)

3. We can therefore write δQB = TdSB > 0, i.e. the entropy of system B has increased. This means the
process will indeed take place spontaneously. But this can then be repeated over and over again, until a
new equilibrium state for the whole system is achieved. Therefore system A will lose energy until the two
systems reach an equilibrium state. Total entropy is maximized, while energy of system A is minimized.

4. The conclusion is that a system with constant entropy will tend to a state of minimal energy.
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Figure 1.1: Plot of entropy as a function of internal energy.

1.9 Stability conditions
This section follows the discussion in Callen, Thermodynamics and an Introduction to Thermostatistics.

1. Suppose we have two systems A and B which exchange energy, volume, and particle number so that the
total U, V,N remain constant:

UA + UB = E, VA + VB = V, NA +NB = N (1.59)

Clearly, for every change, dEA = −dEB ,dVA = −dVB , dNA = −dNB . Let us consider the change in
entropy S(U, V,N) = SA(UA, VA, NA) + SB(UB , VB , NB) after the systems are put in contact:

dS = dSA + dSB =
[
∂S

∂U
|A −

∂S

∂U
|B
]
dUA +

[
∂S

∂V
|A −

∂S

∂V
|B
]
dVA +

[
∂S

∂N
|A −

∂S

∂N
|B
]
dUA (1.60)

=
[

1
TA
− 1
TB

]
dUA +

[
pA
TA
− pB
TB

]
dVA +

[
µA
TA
− µB
TB

]
dUA (1.61)

When the combined system reaches equilibrium, dS = 0. Since the three possible changes, dUA, dVA, dNA,
are in general independent, each of the three coefficients in square brackets has to vanish. This shows that
two systems brought in contact will reach the same intensive quantities T, p and µ.

2. Now we study the conditions under which this equilibrium state is stable. Suppose the entropy S(U, V,N)
has a shape in function of U as in Fig. (1.1). Let us consider now two identical systems separated by a
wall and isolated from the external environment. If we transfer an amount ∆U of internal energy from
one system to the other, the entropy will change from 2S(U, V,N) to

S(U −∆U, V,N) + S(U + ∆U, V,N) (1.62)

3. As it appears clearly from Fig. (1.1), the entropy will then increase. This implies that if we remove the
constraints, this transformation will be favoured and therefore will take place. This means that from a
state in which the two joined systems were homogeneous, we reach a state of inhomogeneity. Even inside
each subsystem, such a spontaneous transfer of energy will take place and the system will spontaneously
leave the initial equilibrium state. This particular curve S(U) produces therefore an instability.

4. The condition for stability is therefore that the entropy does not increase, i.e.

S(U −∆U, V,N) + S(U + ∆U, V,N) ≤ 2S(U, V,N) (1.63)

By expanding in Taylor series on the lhs we find

S − ∂S

∂U
∆U + 1

2
∂2S

∂U2 ∆U2 + S + ∂S

∂U
∆U + 1

2
∂2S

∂U2 ∆U2 ≤ 2S (1.64)
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or
∂2S

∂U2 |V,N ≤ 0 (1.65)

That is, the curve S(U) has to be concave everywhere for the system to remain stable.

5. An analogous argument also shows that if we fix U,N and change V , we should also impose the condition

∂2S

∂V 2 |U,N ≤ 0 (1.66)

Changing at the same time U, V , we finally obtain the condition

∂2S

∂V 2
∂2S

∂U2 −
(

∂2S

∂V ∂U

)2

≥ 0 (1.67)

In other words, the stability conditions requires that S(U, V,N) is a concave function of V,U (for fixed
N). The surface S(U, V ) has to remain below the tangent envelope for any U, V .

6. From Eq. (1.65) and the fact that (∂S/∂U)V,N = 1/T one can obtain

∂2S

∂U2 |V,N = − 1
T 2

∂T

∂U
|V,N = − 1

T 2CV
≤ 0 (1.68)

i.e., the heat capacity CV should be positive. We will find below several other similar conditions of
stability.

7. A parallel argument can be developed for the energy U(S, V,N). If the energy were to decrease after
moving some entropy from one subsystem to another one,

U(S −∆S, V,N) + U(S + ∆S, V,N) ≤ 2U(S, V,N) (1.69)

the transformation would be favourable and it will take place, making the system inhomogeneous and
therefore unstable. We have to ensure therefore the following conditions

∂2U

∂S2 |V,N = ∂T

∂S
|V,N ≥ 0 (1.70)

∂2U

∂V 2 |S,N = − ∂p
∂V
|S,N ≥ 0 (1.71)

∂2U

∂S2
∂2U

∂V 2 −
(
∂2U

∂S∂V

)2

≥ 0 (1.72)

That is, the energy surface has to be convex on the plane S, V for the system to remain stable.

8. We can extend these conditions to the other thermodynamic potentials, by using the properties of the
Legendre transformations. Suppose U(X) is a function and

Û = U − PX (1.73)

its Legendre transformation, where P = dU
dX . We have then dÛ = −XdP , where X = −dÛ/dP . Then we

have
dX

dP
= ( dP

dX
)−1 =

(
d2U

dX2

)−1

(1.74)

but at the same time also
dX

dP
= −d

2Û

dP 2 (1.75)

This implies (
d2U

dX2

)−1

= −d
2Û

dP 2 (1.76)
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That is, if a function U(X) is convex with respect to X, its Legendre transform Û is concave with respect
to the conjugate variable P . The other non-transformed variables have the same concavity of the original
function. So, let’s consider the free energy F = U − TS. Since U(S) is convex, we have that

∂2F

∂T 2 |V,N ≤ 0 (1.77)

because T is the conjugate of S, while
∂2F

∂V 2 |T,N ≥ 0 (1.78)

because V is not transformed in this Legendre transformation. By the same arguments, one can see that

∂2H

∂S2 |p,N ≥ 0, ∂2H

∂p2 |S,N ≤ 0 (1.79)

and
∂2G

∂T 2 |p,N ≤ 0, ∂2G

∂p2 |T,N ≤ 0 (1.80)

The general rule is that the thermodynamic potentials (i.e the Legendre transforms of the energy) are
convex functions of their extensive variables and concave functions of their intensive variables. Exactly
the opposite happens with the Legendre transforms of the entropy (sometimes called Massieu functions).

9. These conditions can be also understood as providing constraints on physical quantities as heat capacities
and compressibilities. The latter are defined as

βT = − 1
V

∂V

∂p
|T (1.81)

βS = − 1
V

∂V

∂p
|S (1.82)

i.e. as the relative change in volume when pressure is applied either isothermally (βT ) or adiabatically
(βS). Beside CV ≥ 0, as already seen, we have for the isothermal compressibility the stability condition

∂2F

∂V 2 |T,N = − ∂p
∂V
|T = 1

V βT
≥ 0 (1.83)

i.e. βT > 0. Since from thermodynamics we know that

Cp − CV = V T
α2

βT
> 0 (1.84)

Cp
CV

= βT
βS

(1.85)

(where α is the thermal expansion coefficient, α ≡ 1
V
∂V
∂T |p) we have also Cp ≥ 0, βS ≥ 0.

10. These conditions give a mathematical implementation of the principle of Le Chatelier: every inhomogeneity
that develops in a system should induce a process that tends to smooth out the inhomogeneity.



Chapter 2

Introduction to Statistics

2.1 Probability and frequency
The standard frequentist definition of the probability of having an event X out of many trials N is

P (X) ≡ lim
N→∞

number of occurrences of X
N

(2.1)

that is, the frequency of events. This definition of course assumes that the events X are all equiprobable, which
is a kind of circular statement (replacing with “events produced under identical circumstances” does not solve
the problem). In fact, this is a definition of frequency, rather than of probabilities.

The Bayesian definition, on the other hand, is purely theoretical: the probability is simply assigned to an
event basing on our previous experience or on our previous information about it. If we have no information,
e.g. we use a die for the first time, we should simply assign equal probability to every possible outcome.

In either case, if Xi with i = 1, ..,m are all the possible outcomes of the trials (eg, X1 =”obtaining 1 in a
die throw”, X2 =”obtaining 2” etc)

m∑
i

P (Xi) = 1 (2.2)

The sum of all possible probabilities of any given experiments equals 1.
In the limit in which the random variable ni becomes a continuous variable (eg a temperature, a magnitude

etc), we define a probability density or probability distribution function (PDF) f(x)

f(x)dx = P (x) (2.3)

and we have, within the domain of x (i.e. all its possible values)
ˆ
f(x)dx = 1 (2.4)

The two fundamental properties of probability distributions are
ˆ
f(x)dx = 1 (2.5)

f(x) ≥ 0 (2.6)

We can easily extend the idea to joint events, for instance the probability of obtaining at the same time (non
necessarily in a chronological sense) the measurement x in dx (eg a galaxy magnitude) and y in dy (eg the
galaxy redshift). Then we have

f(x, y)dxdy = P (x, y) (2.7)
f(x, y) ≥ 0 (2.8)ˆ

f(x, y)dxdy = 1 (2.9)

17
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Immediate consequence of the first law is that if F (< X) =
´X
−∞ f(x)dx is the probability of obtaining a result

less than X (F is called cumulative function), then the probability of obtaining a result greater than or equal to
X is F (≥ X) = 1−F (< X). So in general if P (A) is the probability of A, the probability of non-A (ie anything
but A) is simply 1− P (A) , to be denoted as P (Ā).

2.2 Probability of combined events
Suppose we throw two dice; the joint probability of obtaining 1 in a throw and 2 in the other one is the product
of the single-throw probabilities, P12 = P1P2. This is true only because the two throws are independent (do
not influence each other). Then we have P1 = P2 = 1/6 and P12 = 1/36, as of course one could see by the
number of occurrences over the number of experiments. If we have the PDF f(x, y), the event x can be said to
be independent of event y if the probability of x, p(x)dx, does not depend on y. Now the probability of having
x in dx when y is in a sub-range ∆y is

p(x)dx = dx

ˆ
∆y

dyf(x, y) (2.10)

So in order for p(x) not to depend on y it is necessary that f be separable:

f(x, y) = q(x)g(y) (2.11)

So in this case
p(x)dx = q(x)dx

ˆ
∆y

g(y)dy = Nq(x)dx (2.12)

where N is only a normalization constant independent of x (to be fixed by putting
´
p(x)dx = 1 ie. N =

1/(
´
q(x)dx)). Then two events x, y are independent if and only if the joint probability f(x, y) is separable. So

we define the joint probability as:
If PA and PB are the probabilities of the independent events A e B, the probability of having both A and

B is PAPB . Then
P (A ∩B) = P (B ∩A) = P (A)P (B) (2.13)

Other two forms of comibining probabilites can be defined.
Disjoint P. If PA and PB are the prob. of events A and B mutually exclusive (i.e. AANDB = A ∩ B = 0),

the prob. of A or B is PA + PB . Therefore

P (A ∪B) = P (A) + P (B) (2.14)

We have already seen an example of disjoint prob. when we have seen that P (A) = 1− P (A). Since A and A
are mutually exclusive, we can write

P (A ∪A) = 1 = P (A) + P (A) (2.15)

So for instance the prob. of having 1 or 2 in a dice roll is 1/6+1/6=1/3. Considering continuous variables
we have

p(x ∈ A ∪B) =
ˆ
A

f(x)dx+
ˆ
B

f(x)dx (2.16)

only if the ranges A and B do not overlap. If they overlap, the events are not mutually exclusive A ∩ B 6= 0,
and we have:

p(x ∈ A ∪B) =
ˆ
A

f(x)dx+
ˆ
B

f(x)dx−
ˆ
A∩B

f(x)dx (2.17)

In general therefore
P (A ∪B) = P (A) + P (B)− P (A ∩B) (2.18)

So for instance if A is the prob. of having one “1” in the first die, whatever the second is, and B the prob. of
“1” in the second die, whatever the first is, and we consider the prob. of having at least a “1” in two throws,
the event “11” is both A and B. So we have P (A∪B) = 1/6 + 1/6− 1/36 = 11/36, as we can verify easily since
the winning combinations are (11,12,13,14,15,16,21,31,41,51,61) are 11 over 36.
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Conditional P.. We can also define the conditional probability (prob. of A given B):

P (A|B) = P (A ∩B)
P (B) = number of cases that are both A and B

number of cases that are B (2.19)

So for instance, the probability of the combination 1-2 after obtaining 1 in the first roll equals (1/36)/(1/6) =
1/6. Notice that the conditional probability of having A given B is always larger than or equal to the probability
of having both A and B.

This extends obviously to continuous variables. The probability of obtaining x in the range I = (−1, 1)
given that x < 0 is P (x ∈ I|x < 0). The prob. of having x < 0 is

P (x < 0) =
ˆ
<0
f(x)dx (2.20)

and the probability of having x ∈ I and at the same time x < 0 is

P (x < 0, x ∈ I) =
ˆ 0

−1
f(x)dx

Now, the fraction of cases (or area) such that P (x ∈ I|x < 0) is clearly the fraction P (x < 0, x ∈ I)/P (x < 0),
which agrees with the rule above. In other words, if in 100 measures there are 50 with x < 0 and 20 with
−1 < x < 0 it is clear that the fraction of measures with x ∈ I among those with x < 0 is 20/50=2/5.

Another example. The prob. of obtaining ≥ 9 in two dice rolls is 10/36: there are in fact 10 successful
events: 36, 45, 46, 55, 56, 66, 63, 54, 64, 65 in 36 possibilities. Which is the prob. of obtaining a score ≥ 9 given
that in the first roll the result is 6 ? We have

P (x+ y ≥ 9|x = 6) = P (x+ y ≥ 9, x = 6)/P (x = 6) = 4
36

6
1 = 2

3 (2.21)

which indeed is true since if the first die has a 6, then it is sufficient that the second result is 3,4,5,6 to win, i.e.
4 cases out of 6.

The prob. that B ∪B occurs is of course always 1, even in the case of conditional prob. We have therefore

P (B ∪B|A) = 1 = P (A,B ∪B)
P (A) (2.22)

or
P (A,B ∪B) = P (A) (2.23)

In terms of PDF this rule says that integrating a PDF of two variables over the whole domain of one of the two
(marginalization) we obtain the PDF of the other:

ˆ
f(x, y)dy = p(x) (2.24)

Clearly if f(x, y) = p(x)g(y), the p(x) is indeed the PDF of x, which of course confirms that a factorizable
f(x, y) implies that x and y are independent.

2.3 Expected values
Let’s briefly introduce two examples of PDFs.

Uniform distribution.
f(x) = const. in the range x ∈ (a, b). We have

ˆ b

a

f(x)dx = cost.× (b− a) (2.25)

and the normalization requires const = 1/(b− a).
Gauss distribution.
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f(x) = Ae−
(x−x0)2

2σ2 (2.26)

Normalization ˆ
f(x)dx = A

ˆ +∞

−∞
exp(− (x− x0)2

2σ2 )dx = A
√

2πσ2 (2.27)

from which A = (2πσ2)−1/2. The parameters x0 and σ2 are called mean and variance.
These PDFs, like all other distributions we will introduce later on, can be synthetically characterized by

several quantities.
Quantile α: value of x such that ˆ x

−∞
f(x′)dx′ = α (2.28)

(0 ≤ α ≤ 1). If α = 0.5 the quantile is called median.
Mode. The value of x such that P (x) is maximal.
Moments or expected values.
The expected value of a quantity g(x) is defined as

E[g] =< g >≡
ˆ
g(x)f(x)dx (2.29)

The mean is therefore the expectation value of x :

E[x] =
ˆ
xf(x)dx (2.30)

For discrete variables we have

E[n] =
N∑
1
niP (ni) (2.31)

Since P (ni) is defined as the number of events ni divided by the total number of cases, we retrieve the intuitive
definition of mean of a variable as the sum of all the values divided by the number of cases.

The variance (or central moment of second order ) is defined as

E[(x− 〈x〉)2] =
ˆ

(x− 〈x〉)2f(x)dx =
ˆ
x2f(x)dx− x̂2 = 〈x2〉 − 〈x〉2 (2.32)

(sometimes also Var(x)). For a Gaussian one has

E[x] = x0 (2.33)
E[(x− 〈x〉)2] = σ2 (2.34)

Note that E[x− 〈x〉] = 0 and E[y2] 6= E[y]2. For a uniform variable, one has

E[x] = b+ a

2 (2.35)

E[(x− 〈x〉)2] = (b− a)2

12 (2.36)

The variance has great importance in scientific measures. Conventionally in fact the error associated to each
measure is given by the square root of the variance, or standard deviation, and is denoted generally with σ also
for non-Gaussian distributions.

The n-th order moment and the n-the order centra moment are defined respectively as

E[xn] =
ˆ
xnf(x)dx (2.37)

E[(x− 〈x〉)n] =
ˆ

(x− 〈x〉)nf(x)dx (2.38)
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2.4 Transformation of variables
Given a random variable x and its PDF f(x), we could be interested to derive a PDF of a variable function of
x, for instance x2 or 1/x or y(x). If dy = y′dx is the infinitesimal interval of the new variable y as a function of
the old one, it is clear that the prob. of having x in x, x+ dx must be equal to the one of having y in y, y+ dy:

f(x)dx = g(y)dy (2.39)

and therefore the new PDF g(y) is
g(y) = f(x)|dx

dy
| (2.40)

where the absolute value ensures the positivity of the new PDF. Notice that in general

E[g(x)] 6= g(E[x]) (2.41)

We can also consider the transformation of variables in the case of many random variables. The transformation
from x1, x2, ... to y1, y2, .. can be performed introducing the Jacobian of the transformation

f(xi)dnx = g(yi)dny (2.42)

from which
g(yi) = f(xi)|J | (2.43)

where Jij = ∂xi/∂yj and |...| denotes the determinant.

2.5 The main PDFs
Binomial PDF. Let us consider N independent events, eg the scores 1 − 3 − 2 − 6 etc in a series of dice
rolls, or the sequence TTHHTH of heads/tails in coin tosses. We want to evaluate the probability that a joint
event, eg 8 heads out of 10 tosses, or three times a 1 out of 4 dice rolls, regardless of the order in the sequence,
i.e. considering the events as indistinguishables. This is exactly the same kind of statistics we need in eg the
statistics of a gas, which depends on the probability for indistinguishable particles to be in a given region of
phase space.

We need first of all to evaluate the number of possible sequences. If we have N different elements, ag a, b, c,
we can permute the N elements N ! times. For instance, N = 3 elements can be combined 3! = 6 times:
abc, acb, cab, cba, bac, bca. Then N ! is the number of permutations of distinguishable elements.

Suppose now we have only two elements, eg head or tail, or event A and any other event Ā. Then many
permutations are identical, for instance HHTTT remains the same by exchanging the two Hs and the three
T s. Suppose we have n times one of the two elements and, therefore, N − n the number of the other. Then,
among the total N ! permutations, a fraction n! is identical because we permute the same identical n element,
and a fraction (N − n)! will also be identical for the same reason. How many distinguishable combinations will
we obtain? Clearly

total permutations
(permutations among n)(permutations among N − n) = N !

n!(N − n)! ≡
(
N
n

)
(2.44)

For instance, if N = 4 and n = 2 (as in TTHH) we will have 4!/2!/2! = 6 equivalent combinations
(HHTT,HTHT, TTHH, THTH, THHT,HTTH). Notice that for n = 0 we define n! = 1.

The binomial PDF generalizes this calculation to the case in which we have a series of n independent events
A each with the same probability p (eg for “head” the prob. is 1/2, for a 2 in a dice roll is 1/6 etc). In this
case, the occurrence of n events A or prob. p out of N implies the occurrence of N − n events Ā with prob.
1− p. All this implies a joint prob. of

pn(1− p)N−n (2.45)

But clearly we have
(
N
n

)
of such combinations and therefore the binomial prob. will be

P (n;N, p) = N !
n!(N − n)!p

n(1− p)N−n (2.46)
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Figure 2.1: Binomial for N = 120 and p = 1/12 (red dots) e p = 1/24 (blu dots).

where n is the discrete random variable 0 ≤ n ≤ N (number of events A) while N, p are the distribution
parameters. Notice that by employing the rules of the binomial we have, as indeed we should have expected:∑

n

P (n;N, p) = (p+ (1− p))N = 1 (2.47)

It is also intuitive that the mean of events A of prob. (frequency) p out of N events should be the fraction p of
N and indeed

E[n] = Np (2.48)
σ2 = E[(n−Np)2] = Np(1− p) (2.49)

Let’s demonstrate the first one:

E[n] =
∑
n

nP (n;N, p) =
N∑
n=0

nN !
n!(N − n)!p

n(1− p)N−n (2.50)

=
N∑
n=1

N(N − 1)!
(n− 1)!(N − n)!pp

n−1(1− p)N−n (2.51)

= Np

N ′∑
n′=0

(N ′)!
(n′)!(N ′ − n′)!p

n′(1− p)N
′−n′ = Np (2.52)

The binomial distribution for N = 1 is called Bernoulli distribution:

P (n; 1) = pn(1− p)1−n (2.53)

for n = 0, 1. It applies for instance to a single toss of a coin and gives the probability that an event with
probability p, e.g. tail, happens (n = 1) or does not happen (n = 0).

Poissonian PDF. Let us consider now the limit of the Binomial for N →∞ and p→ 0 (rare events), but
keeping Np = ν finite. We obtain then the Poissonian PDF

P (n; ν) = νn

n! e
−ν (2.54)

The moments are

E[n] = e−ν
∑
nν

n

n! = ν (2.55)
E[(n− ν)2] = ν (2.56)
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Figure 2.2: Poissonian for ν = 10 (red) and ν = 5 (blue). Note the similarity to the Binomial.

For large n, we can assume that n is a continuous variable. In this case we generalize to

P (x; ν) = νx

Γ(x+ 1)e
−ν (2.57)

where Γ(x) (equal to (x− 1)! for x integer) is the gamma function

Γ(x) =
ˆ ∞

0
e−ttx−1dt (2.58)

Gaussian PDF. For large ν, the Poissonian is well approximated by the Gaussian with mean and variance
ν. The Gaussian is defined as:

G(µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 (2.59)

and has mean µ and variance σ2. Defining the new variable z = (x − µ)/σ the Gaussian becomes the Normal
distribution:

N(x) = G(0, 1) = 1√
2π
e−

x2
2 (2.60)

We can define the error function
erf(x) = 2√

π

ˆ x

0
e−t

2
dt (2.61)

so that the cumulative function F (x) =
´ x
−∞G(x; 0, 1)dx becomes

F (x) = 1
2 [1 + erf( x√

2
)] (2.62)

The prob. that the gaussian variable x distributed as G(x;µ, σ) in in the range (µ− a, µ+ a) is

P (x ∈ (−a, a)) = erf( a

σ
√

2
) (2.63)

The Gaussian PDF is of such great importance not only because is the large-ν limit of the Poissonian but also
because of the Central Limit Theorem (see Sect. 6.4):

Every random variable X sum (or linear combination ) of many independent variables xi (i.e. X =
∑
i xi)

is distributed approximately as a Gaussian of mean
∑
i µi and variance σ2

X =
∑
i σ

2
i in the limit n → ∞

independently of the individual PDFs .
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Figure 2.3: Conparing Poissonian and Gaussian PDFs for ν = 2 (blue) and ν = 10 (red).

In practice, the CLT can be applied in many experimental situations in which the error is the sum of many
independent causes: reading errors, instrumental noise, contaminations etc. In these cases, the measure can be
assumed to be gaussian distributed.

Three important values of the cumulative function are

F (µ+ jσ)− F (µ− jσ) = erf( j√
2

) = 0.68, 0.95, 0.997 (2.64)

for j = 1, 2, 3: these give the prob. of finding x at j = 1, 2, 3σ from the mean µ. Conventionally, errors are
quoted at 1σ even for non-Gaussian distributions.

Exponential distribution. The PDF is given by

f(x) = λe−λx (2.65)

for x ≥ 0 and 0 otherwise. The mean and the variance are

E[x] = 1
λ

(2.66)

V [x] = E[(x− E[x])2] = 1
λ2 (2.67)

2.6 Multivariate distributions
So far we have seen mostly distributions of single variables. We have however already defined the joint probability

f(x, y)dxdy (2.68)

of having x, y in the area dxdy. The definition of probability requires now that
ˆ
f(x, y)dxdy = 1 (2.69)

It is clear that we can extend this definition to many variables xi in the volume dnx. For independent variables
f(x, y) = f1(x)f2(y).

Analogously to the 1D case, we define the means

E[x] =
ˆ
xf(x, y)dxdy = µx (2.70)

E[y] =
ˆ
yf(x, y)dxdy = µy (2.71)
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and the covariance matrix

Cij = E[(xi − µi)(xj − µj)] (2.72)

=
ˆ

(xi − µi)(xj − µj)f(x1, x2)dx1dx2 (2.73)

where xi is the vector of random variables and µi the mean vector. The elements along the diagonal are the
variances σ2

i of the individual random variables . If x1, x2 are independent then

C12 =
ˆ

(x1 − µx)(x2 − µy)f1(x1)f2(x2)dx1dx2 (2.74)

separates out and by definition of mean C12 = 0: then the covariance matrix of independent variables is diagonal
(however in general C12 = 0 does not imply independent variables, but only uncorrelated variables).

The degree of correlation is indicated by the weight of the off-diagonal elements. For any two variables we
define

ρxy ≡
Cxy
σxσy

(2.75)

If we have the multivariate PDF f(x, y) we can obtain the PDF of the individual variables by integrating
out the other one:

g(x) =
ˆ
f(x, y)dy (2.76)

This new PDF (marginalized over y) gives the probability of having x in dx whatever is y. We realize immediately
that

E[x] =
ˆ
xg(x)dx (2.77)

and similarly for all the other moments of x . All these definitions extent immediately to n dimensions, e.g.

Cij = E[(xi − µi)(xj − µj)] (2.78)

=
ˆ

(xi − µi)(xj − µj)f(x1, x2, x3,...)dnx (2.79)

Multinomial distribution. The binomial distribution can be generalized to the case in which there are
not just two possible outcomes with probability p and 1− p but k possible outcomes each with probability pi,
i = 1, .., k, with the constraint that the outcomes exhaust all the possibilities, so

∑
i pi = 1. Now the probability

of having a particular sequence of independent outcomes formed by x1 outcomes of type 1, x2 of type 2, etc will
be

px1
1 px2

2 px3
3 ...pxxk (2.80)

Just as for the binomial distribution, accounting for all the possible internal permutations leads to the multi-
nomial distribution, i.e. the probability that in a sequence of N trial one finds x1 items of type 1, x2 of type 2
etc . This is given by

P (x1, x2, ..xk) = N !
x1!x2!...xk!p

x1
1 px2

2 px3
3 ...pxxk (2.81)

(provided
∑
i pi = 1). The expected values and variances are

E[xi] = Npi (2.82)
V ar[xi] = Npi(1− pi) (2.83)

Here we have however also a non-zero covariance

Cov[xixj ] = −npipj (2.84)

The negative value reflects the fact that if xi is large (i.e. several items of type i are extracted), then is more
likely to have fewer items j, since the total number of outcomes is fixed to N .
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Multivariate gaussian. The most interesting case of multivariate PDF is the multivariate Gaussian. Let
us consider the most general Gaussian of two variables x1, x2 (with zero mean for simplicity)

G(x1, x2) = N exp[− 1
2(1− ρ2) (x

2
1
σ2

1
+ x2

2
σ2

2
− 2ρx1x2

σ1σ2
)] (2.85)

where N = 1/(2πσ1σ2
√

1− ρ2). The covariance matrix is

Cij =
ˆ
xixjf(x1, x2)dx1dx2 =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
(2.86)

and so ρ = Cxy/σxσy is indeed the correlation coefficient. For ρ = 1 the distribution is degenerate, i.e. detC = 0.
This PDF can be written as

G(x1, x2) = N exp−1
2(XiC

−1
ij Xj) (2.87)

where we defined the vector Xi ≡ (xi − µi) and N = 1/2π
√

detC. This can be immediately generalized to n
variables:

G(xi, i = 1...n) = 1
(2π)n/2

√
detC

exp−1
2(XiC

−1
ij Xj) (2.88)

The contours of equiprobability P = const are ellipsoids with principal axes oriented along the eigenvectors
and semiaxes proportional to the square root of the eigenvalues of C.

2.7 Random walks and Fokker-Planck equation
This section follows the treatment in U. Schwarz, Lecture Notes in Theoretical Statistical Physics.

We can apply now some of these tools to a physical system characterized by random movements of particles.
Let’s start in one dimension. Imagine a particle (or a person) doing a random walk, i.e. a number N of steps
of size ∆x in one dimension, of which nr = i with probability p to the right and nl = N − i with probability
q = 1− p to the left. If each step takes a time ∆t, one has

T = N∆t, total time (2.89)
X = m∆x, total distance (2.90)

where
m = nr − ni = 2i−N (2.91)

We see that the only random variable is i and we expect it to follow a binomial distribution with parameters
N, p. A fraction p of the N steps is therefore expected to be on the right, so:

〈i〉 = pN (2.92)

with a variance
〈(i− 〈i〉)2〉 = 〈i2〉 − 〈i〉2 = Np(1− p) (2.93)

so that
〈i2〉 = Np(1− p) + p2N2 (2.94)

Then the average distance after time T is

〈X〉 = 〈m∆x〉 = 〈(2i−N)∆x〉 = (2〈i〉 −N)∆x (2.95)

= (2p− 1)N∆x = (2p− 1)∆x
∆t T (2.96)

and we can define the average velocity
v ≡ 〈X〉

T
= (2p− 1)∆x

∆t (2.97)
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We assume now the right or left steps are equiprobable, so p = q = 1/2 and 〈X〉 = 0: as expected, in this
symmetric random walk, the average position remains at the origin. The variance is then

σ2 ≡ 〈X2〉 = 〈(2i−N)2〉∆x2 (2.98)
= (4〈i2〉 − 4〈i〉N +N2)∆x2 (2.99)
= (4Np(1− p) + 4p2N2 − 4N2p+N2)∆x2 (2.100)

= 2(4pq∆x2

2∆t T + ((2p− 1)∆x
∆t )2T 2) (2.101)

For p = q = 1/2 we find then
σ2 = 2DT (2.102)

where we defined the diffusion coefficient
D = ∆x2

2∆t (2.103)

It is important to remark that the dispersion σ grows with
√
T . If the motion were “ballistic”, i.e. a particle

moving either to the right or to the left with constant speed, it would have obviously covered a distance that
grows linearly with time. In a random walk, also called Brownian or diffusive motion, the particle would instead
“explore” on average a distance σ ∝ T 1/2, even maintaining its average position at the origin.

This can be generalized to d equivalent dimensions by performing the same operation on the position vector−→
R =

∑i=d
i=1 ~ri, where ~ri is the vector along direction i. As above, in the symmetric case, we have

〈ri〉 = 0 (2.104)

and therefore also 〈~R〉 = 0. Assuming steps in a direction i are uncorrelated with steps in any other direction
j, i.e.

〈~ri~rj〉i6=j = 0 (2.105)
one finds (using 〈r2〉 = 〈X2〉 from the 1-dimensional case,

σ2 = 〈~R2〉 = 〈
∑

~ri ·
∑

~rj〉 =
∑
〈r2〉 (2.106)

= 2dDT (2.107)

(here the central dot is a scalar product). If we apply this to macroscopic (but still small) particles suspended
freely in a fluid randomly hit by the fluid molecules, we see that the macroscopic particles will execute a random
walk with ∆x equal to the mean intermolecular distance and ∆t the mean interval between two consecutive
hits. One can expect that the diffusion coefficients, being proportional to a velocity squared times ∆t, be also
proportional to the temperature, and in fact it can be shown that D = µkBT , with µ being a coefficient that
depends on the viscosity of the fluid.

This approach can be expanded by deriving an equation for the time and space evolution of a probability
distribution P (x, t) that represent the probability of finding a particle at position x and time t in a system of
many particles. We can think of Pdxdt as the fraction of particles that are in the interval dxdt. Then the
fraction of particles at position x at the time t + ∆t must be the sum of the probability of being at the left
position x−∆x at the earlier epoch t weighted by the probability p of jumping to the right, plus the probability
to be at the right position x + ∆x weighted by the probability q = 1 − p of jumping to the left. We are
clearly disregarding the probability of longer jumps, but they could be taken into account by summing over a
probability distribution of jumps. This gives the following conservation equation

P (x, t+ ∆t) = pP (x−∆x, t) + qP (x+ ∆x, t) (2.108)

(for now we assume p, q are constants). One could add the number of particle at x, t minus the particles that
jump right or left from there, but that would exactly zero, because we are assuming at each step all particles
jump for a given location to either left or right. Then we can expand around x, t for small time and space
intervals as follows

P (x, t+ ∆t) = P + Ṗ∆t+ ... (2.109)

P (x±∆x, t) = P ± P ′∆x+ 1
2P
′′∆x2 + ... (2.110)
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where a prime denotes ∂/∂x (whenever the arguments are not explicit, we mean they are x, t). Then, inserting
into the conservation equation, we find

P + Ṗ∆t = (p+ q)P + (q − p)P ′∆x+ 1
2P
′′(p+ q)∆x2 (2.111)

Since p+ q = 1, taking the continuum limit this becomes the Fokker-Planck equation

Ṗ = −vP ′ +DP ′′ (2.112)

where as before

v = (p− q)∆x
∆t , drift velocity (2.113)

D = ∆x2

2∆t , diffusion coefficient (2.114)

The Fokker-Planck equation is a partial derivative equation that governs the evolution of the distribution P (x, t)
in space and time, given an initial distribution. If we now assume that v,D also depend on space and time, we
obtain the full form of the 1-dimensional Fokker-Planck equation:

Ṗ = −(vP )′ + (DP )′′ (2.115)

where now v = v(x, t) and D = D(x, t) (if they are constant, we fall back to (2.112)).
For a Dirac initial condition P (x, t = 0) = δ(x), i.e. all particles of the system are localized at the origin,

the solution of Eq. (2.112) is a Gaussian

P (x, t) = 1√
4πDt

exp− (x− vt)2

4Dt (2.116)

from which we read the same 1-dimensional variance σ2 = 2DT as derived above. In presence of both drift
and diffusion, the distribution moves its peak and increases its variance, until the initial localized distribution
spreads everywhere. The Fokker-Planck equation can be generalized to include the full phase-space distribution.

If we had taken also the second order ∆t2 term in (2.109), then we would have got a term P̈∆t/2 in Eq.
(2.111), and we show now under which conditions this is negligible with respect to the P ′′D term. For this to
happen, the condition ∣∣∣∣ P̈P ′′

∣∣∣∣� (
∆x
∆t

)2
= 2D

∆t (2.117)

should be satisfied. From Eq. (2.111) we can calculate (we take now a symmetric problem, so v = 0)∣∣∣∣ P̈P ′′
∣∣∣∣
x=0

= 3
2
D

t
(2.118)

so we see that the P̈∆t2 term is negligible when t� ∆t, i.e. after a long enough time (at least near the peak).
Same condition is obtained comparing P̈∆t to Ṗ .



Chapter 3

Statistical mechanics

3.1 Statistical definition of entropy
1. Consider a thermodynamical system with E, V,N = const (these state variables are denoted collectively

as a macrostate).

2. The microstate of such a system is represented by the collection of all positions q = −→q and momenta
p = −→p of every particle at a given time. There are therefore 6N such numbers. A microstate is then
represented by a point moving in a 6N -dimensional phase space.

3. If we know the Hamiltonian of the system, H = H(q,p) (we assume H not to depend explicitly on
time since we are discussing equilibrium states), then we can evolve the system through the Hamiltonian
equations

q̇ = ∂H

∂p , ṗ = −∂H
∂q (3.1)

and every function A(t,q,p) of q,p can be obtained by the standard evolution equation

dA

dt
= ∂A

∂t
+ {A,H} (3.2)

where the Poisson brackets stand for

{A,H} =
3N∑
ν

(
∂A

∂qν

∂H

∂pν
− ∂A

∂pν

∂H

∂qν

)
(3.3)

4. The volume of microstates of E in the shell E,E + ∆E can be evaluated in the continuum limit as

∆ω =
ˆ
E≤H≤E+∆E

d3Npd3Nq =
ˆ
E≤H≤E+∆E

dω (3.4)

where dω = d3Npd3Nq is the infinitesimal phase-space cell.

5. The volume of microstates at exactly the value E corresponds to the (hyper)area

σ(E) =
ˆ
E=H

dσ (3.5)

where dσ is an infinitesimal area element on the surface E = H(p, q).

6. Clearly in the classical continuum case, the number of microstates is infinite, since there can be a microstate
for every value of q,p. A finite number can be obtained only is we define a small, but finite, cell, and we
assume that values of p,q within that cell belong to the same microstate.

29
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7. So we define the number Ω of microstates belonging to the same macrostate

Ω(E, V,N) = σ(E, V,N)
σ0

= 1
σ0

ˆ
E=H,V=const,N=const

dσ (3.6)

8. In order to evaluate Ω we first evaluate the volume ω(E) of microstates with energy less than E, and then
we obtain

dω = σ(E)dE (3.7)
so that

σ(E) = ∂ω

∂E
|V,N (3.8)

and finally
Ω(E, V,N) = 1

σ0

∂ω

∂E
(3.9)

9. The fundamental postulates of statistical mechanics state that a) all microstates belonging to the same
macrostate (possible microstates) are in turn reached by the system (ergodicity postulate); b) all mi-
crostates of equal energy are equiprobable (equiprobability postulate) and c) the equilibrium state is
the one with the largest number of possible microstates belonging to the same macrostate (equilibrium
postulate).

10. A more exact definition of ergodicity is: over long periods of time, the time spent by a system in some
region of the phase space of microstates with the same energy is proportional to the volume of this region,
i.e., all accessible microstates are equiprobable over a long period of time.

11. The collection of all possible microstates belonging to a given macrostate is called an ensemble.

12. Because of the ergodic hypothesis, the time a system spends in a particular microstate is proportional to
the probability of that microstate. As a consequence, a measurement, i.e. an average over time, is equal
to an average over all the possible microstates. The latter is called an ensemble average.

13. The ergodic postulate has not been demonstrated in full generality; it remains therefore a working hy-
pothesis that may fail in some cases.

14. For non thermodynamical system, the ergodicity is easily broken: eg a pendulum only visits states along
the initial plane (neglecting Earth’s rotation...), although all other planes are equally energetic.

15. If we consider two non-interacting systems, each with a number Ωi of possible microstates, the number of
possible microstates of the combined system is clearly

Ω(E, V,N) = Ω1(E1, V1, N1)Ω2(E2, V2, N2) (3.10)

where E = E1 + E2 etc. Therefore, log Ω is an extensive quantity.

16. We now define a function, called statistical entropy, that is extensive and depends on Ω alone. Therefore
we require

S(Ω) = S1(Ω1) + S2(Ω2) (3.11)
Ω = Ω1Ω2 (3.12)

which implies immediately that S ∼ log Ω, i.e.

S = k log Ω (3.13)

We will show soon that k has to be identified with Boltzmann’s constant.

17. The system reaches equilibrium when Ω (or equivalently log Ω) is maximized, i.e. when entropy is maxi-
mized. Since this is true also for the thermodynamic entropy already introduced in Sect. 1, we hypothesize
that the two quantities are the same, up to a constant. Later on, we will show indeed that the statistical
entropy so defined coincides with the thermodynamical entropy.
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18. This is not really a full demonstration that S = k log Ω (and other slightly different definitions are possible)
since we just assumed that S depends only on Ω. In fact, there is no such a full proof and one might
as well take this definition as a fundamental postulate of statistical mechanics. As we will see soon, it is
however consistent with the thermodynamical definition.

3.2 Number of microstates
1. We can now evaluate the new definition of S for an ideal gas, where the Hamiltonian is

H =
3N∑ p2

ν

2m (3.14)

2. The volume of microstates is

ω =
ˆ
H<E

d3Nqd3Np = V N
ˆ
H<E

d3Np = V N
ˆ∑

p2<2mE
d3Np (3.15)

ie the volume of the 3N-sphere of radius R =
√

2mE.

3. A standard calculation gives for the volume of a N -sphere of radius R

VN (R) = πN/2

N
2 Γ(N2 )

RN (3.16)

where Γ(n) = (n − 1)! for integer n, and is the Gamma function Γ(z) ≡
´∞

0 xz−1e−xdx for positive real
arguments. A few useful values are Γ(1) = 1,Γ(1/2) =

√
π,Γ(3/2) =

√
π/2. Obviously, we recover the

standard definitions for N = 2, 3.

4. Therefore
ω = π3N/2

3N
2 Γ( 3N

2 )
(2mE)3N/2V N (3.17)

and the number of microstates on the energy surface is

Ω(E, V,N) = 1
σ0

∂ω

∂E
= 2mπ3N/2

σ0Γ( 3N
2 )

(2mE)3N/2−1V N (3.18)

5. The entropy is then

S(E, V,N) = k log
(

2mπ3N/2

σ0Γ( 3N
2 )

(2mE)3N/2−1V N

)
(3.19)

Note that the argument of the log is indeed dimensionless, since mE ∼ p2, V ∼ q3, σ0 ∼ p3Nq3N/E ∼
p3N−2q3Nm (here ∼ means “has the same dimension as”).

6. For N � 1 we can use the Stirling approximation

log Γ(n) ≈ n logn− n (3.20)

(notice that log Γ(n) ≈ log Γ(n+ 1) = n! in the limit n� 1) so (redefining σ0 → (σ0E)1/N )

S(E, V,N) = Nk

(
3
2 + log

(
V

σ0

)(
4πmE

3N

)3/2
)

(3.21)

Just to have an idea, the Stirling formula approximates the exact result to better than 0.1% for n > 400.
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7. From this expression we can immediately obtain the standard thermodynamical relations (the residual
dependence of σ0 on E is negligible for large N)

1
T

= ∂S

∂E
|V,N = 3

2
Nk

E
(3.22)

p

T
= ∂S

∂V
|E,N = Nk

V
(3.23)

which give the equations of state of ideal gases, E = 3NkT/2 and pV = NkT . This confirms that k is
indeed Boltzmann constant.

8. The entropy so defined however is not an extensive quantity, since it depends on log V rather than on
log V/N (Gibbs’ paradox). This problem is corrected by noting that, from a quantum mechanical point
of view, elementary particles are indistinguishable and therefore the counting of microstates Ω has to be
divided by the number of permutations among N particles, i.e. by N !

9. Then we have

S(E, V,N) = Nk

(
3
2 + log

(
V

σ0

)(
4πmE

3N

)3/2
)
− k logN ! (3.24)

= Nk

(
5
2 + log

(
V

Nσ0

)(
4πmE

3N

)3/2
)

(3.25)

(using Stirling’s formula) which is now extensive. The dependence on E, V,N is the same as we have
already seen in Eq. (1.48).

10. Let us now count the number of quantum mechanical microstates. Assuming a single particle in a box of
size L one has the energy levels

εn = h2

8mL2 (n2
x + n2

y + n2
z) (3.26)

with nx,y,z ≥ 1 are integer values, so the vector −→n characterizes completely the quantum state.

11. If the total energy per particle is ε, the microstates are limited to a shell of radius R =
√
n2
x + n2

y + n2
z =

(L/h)
√

8mε in ~n space.

12. For N particles we have an energy sphere of radius

E = h2

8mL2

3N∑
i

n2
i (3.27)

The number of possible microstates are then the number of points on the surface of this sphere or, more
exactly, on the energy shell of radius E and thickness δE, to be quantified below.

13. Notice that there is only a single ground microstate, ie ni = 1 for every i. Since the ground state is reached
when T = 0, this shows that the entropy vanishes when T → 0. This is a general property of quantum
systems and is called Third Law of Thermodynamics.

14. If we define the dimensionless energy

E∗ = 8mL2

h2 E =
3N∑
i

n2
i (3.28)

then we see that the volume of the 3N -sphere of radius E∗ is equal to the number of grid points in the
nx,y,z space

Vn = π3N/2

3N
2 Γ( 3N

2 )
(E∗)3N/2 (3.29)
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We need however to consider only positive values of nx,y,z, i.e. take only the positive octant of this sphere.
This means dividing by 23N . Then we obtain that the number of microstates inside E is

Σ = Vn>0 = π3N/2

23N 3N
2 Γ( 3N

2 )
(E∗)3N/2 (3.30)

=
(
V

h3

)N (2πmE)3N/2

3N
2 Γ( 3N

2 )
(3.31)

(V = L3) which is identical to Eq. (3.17) if each phase-space cell is taken to be h3 in size. One can say
that h is the quantum of phase-space.

15. Now the number of microstates on the energy shell of radius R =
√

2mE and thickness δR is

Ω = Σ(R)− Σ(R− δR) =
(
V

h3

)N (2πm)3N/2

3N
2 Γ( 3N

2 )(2m)3N/2 (R3N − (R− δR)3N ) (3.32)

=
(
V

h3

)N (2πm)3N/2

3N
2 Γ( 3N

2 )(2m)3N/2R
3N (1− (1− δR

R
)3N ) (3.33)

=
(
V

h3

)N (2πmE)3N/2

3N
2 Γ( 3N

2 )
(1− (1− δR

R
)3N ) (3.34)

Then, since the scatter ∆ni of the quantum number ni at the surface is around unity, we see that

δR

R
= 1

2
δE∗

E∗
=
∑

surface

∆ni
ni
≈ 1

3N (3.35)

and therefore for N →∞,
(1− δR

R
)3N ≈ (1− 1

3N )3N → e−1 (3.36)

In fact, this correction is in general much smaller, because we can take a shell of states such that ∆ni is
equal to a few units, rather than 1. Discarding this little correction, finally we obtain

Ω =
(
V

h3

)N (2πmE)3N/2

3N
2 Γ( 3N

2 )
(3.37)

One should notice that δR disappears, and that the number of microstates at the energy surface is ap-
proximately equal to the number of microstates in the entire volume! That is, for large N , the microstates
are essentially all on the energy surface.

16. We still need to include Gibbs’ correction factor N !. So finally

Ω =
(
V

h3

)N (2πmE)3N/2

N !( 3N
2 )!

(3.38)

( we used 3N
2 Γ( 3N

2 ) = (3N
2 )!) and we obtain the Sackur-Tetrode formula

S = Nk

(
5
2 + log

[
V

Nh3

(
4πmE

3N

)3/2
])

(3.39)

= Nk

(
5
2 + log v

λ3

)
(3.40)

(replacing E = 3NkT/2) where the constant σ0 is now no longer arbitrary and where we have defined the
volume per particle v = V/N and the thermal wavelength

λ = h√
2πmkT

(3.41)
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Notice that the energy in the Sackur-Tetrode formula is just the kinetic energy of the system. One can see
that the dependence on E, V,N is the same as in the thermodynamic treatment (1.48), thereby confirming
that the statistical definition of the entropy is the same as the thermodynamic one (a more general proof
is given below). As we will se later on, this derivation is only valid for v/λ3 � 1, i.e. large temperatures,
which represents the classical limit.

17. From S one can derive all the thermodynamic equations of state. For istance, the chemical potential is

µ = −T ∂S
∂N
|E,V = −kT log v

λ3 (3.42)

Pay attention to keeping E constant: one needs to use Eq. (3.39) rather than (3.40), because this second
expression, where E has been replaced, is not in the natural variables U, V,N and some information is
lost.

18. Since we approximated the number of microstates with a continuous function Ω(E), the limit T → 0 we
obtain, namely S → −∞, is not correct. Since as we noticed there is just a single microstate of lowest
energy, the correct limit is S(T → 0)→ 0, as we will see when a proper quantum-mechanical calculation
is realized.

3.3 Microcanonical ensemble
1. We can now introduce an important quantity, the probability distribution of microstates, ρ(q,p), where

q,p as usual define a representative point in the 6N phase-space. The fraction of microstates in the volume
d3Npd3Nq is then defined to be

ρ(q,p)d3Npd3Nq (3.43)

and of course the distribution ρ is normalized to unity in the entire allowed (i.e., compatible with the
macrostate) phase-space ˆ

ρ(q,p)d3Npd3Nq = 1 (3.44)

2. Any quantity f(q,p) has then an ensemble average

〈f〉 =
ˆ
f(p,q)ρ(q,p)d3Npd3Nq (3.45)

which by the ergodic hypothesis is equal to the time average, i.e. to the measurement of f over a
macrostate. To every observable quantity one must then associate a function f(q,p).

3. If the macrostate has constant energy (and constant V,N), the fundamental postulate of statistical me-
chanics is that the microstates are equiprobable. Since there are Ω of them, we have

ρ = ρmc = 1
Ω (3.46)

This is called the microcanonical ensemble.

4. This can be written as
ρmc = δ(E −H(p,q))

ω(E) (3.47)

(δ is Dirac’s delta and ω(E) the volume of available microstates, in this case the surface at E =const)
so that the normalization condition is automatically fulfilled. In practice we assume a small shell ∆E of
equiprobable states and put

ρmc = 1
Ω(E) for E ≤ H ≤ E + ∆E (3.48)

and zero otherwise.
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5. Since we should always consider phase-space cells of size h3 for the correct counting of microstates, we
can include this factor into the normalization and write always

d3Npd3Nq

h3N (3.49)

in the averages. Gibbs’ factor N ! should also be included for indistinguishable particles.

6. The distribution ρ, assumed independent of time because we are considering equilibrium states, is con-
served along the trajectories of the system in phase space. In fact from Liouville’s theorem (see 6.2) we
have

dρ

dt
=
∑
i

{ρ,H} = 0 (3.50)

This guarantees that the fundamental assumption of equiprobability of microstates, if true at one moment,
remains true at all times. It follows also that ρ commutes with H and therefore has to be a function of
integrals of motion, e.g. H itself.

7. Imagine a closed region dV of phase-space delimited by a number of representative points (let’s think of
them as particles for a moment). This region will move in the phase space along with the representative
points. Particles in this region cannot move out because otherwise they will cross other particle trajectories,
but crossing is forbidden since a point in phase space defines the initial conditions, and to each initial
condition there is (classically) only one trajectory. So since the density ρ is constant because of Liouville’s
theorem, and the number ρdV of representative particles in dV is also constant, it means the volume dV
can be distorted along the flow but must remain of the same size.

8. Since every observable is an average of a function, also the entropy should be defined as the average of
some quantity. We have then (omitting the brackets on the l.h.s.)

S(E, V,N) = k

h3N

ˆ
d3Npd3Nqρ(q,p) log Ω = k

h3N

ˆ
d3Npd3Nqρmc [− log ρmc] (3.51)

= −k〈log ρmc〉 (3.52)

where the last expression, since ρmc is constant, equals k log Ω, as it should. The definition of entropy,
called Gibbs’ entropy1, as

S = −k〈log ρ〉 (3.53)

is indeed the most general one, as it applies to all possible ensembles.

9. In this form, the entropy coincides with the so called uncertainty function, or information entropy. Suppose
we have a discrete probability distribution pi. The information entropy is defined as

H(pi) = −
∑
i

pi log pi (3.54)

This function quantifies the amount of ignorance with respect to a given system. A state that is certain
(ie, no ignorance, pi = 0 or 1) does not contribute to it; it is maximized by equal probabilities if one does
not have any further information and it always increases if more information is added to the system.

10. It is easy to show that the distribution pi that maximizes the uncertainty H(pi) subject to the constraint∑
pi = 1 is the microcanonical distribution. The same principle of maximum entropy allows to derive

other ensemble distributions when other constraints are imposed.

11. As already mentioned, in quantum mechanics, the ground state of a system is reached for T → 0. In all
cases of physical interest, there is only one ground state, or a small number. The number of microstates
corresponding to T → 0 is therefore one or a very small number. Then S(T → 0) = 0, or a number much
smaller than S at any given finite temperature. We will assume then from now on that the reference state
of entropy is the one at zero temperature for which S = 0 (Third Law of Thermodynamics).

1Unfortunately, there is at least another quantities called Gibbs’ entropy, defined as S = k log Ω≤E where Ω≤E is the number
of microstates of energy less than or equal to E (instead of our definition of microstates on the surface of constant E).
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3.4 The canonical ensemble
1. Consider now a closed system S characterized by energy ES embedded in a heat bath or reservoir R with

energy ER, both in equilibrium at temperature T . The heat bath is, as usual, supposed to be very large
so its temperature does not change even if some heat is exchanged.

2. Since ER � ES , we have
ES
E

= 1− ER
E
� 1 (3.55)

where E = ES + ER. We ask for the probability of finding the system S in a state with energy Ei. The
probability of S being in Ei must be the same as the probability of R being in E − Ei. This probability
is then equal to the fraction of microstates of the heat bath for the energy E −Ei, or proportional to the
number of microstates, since all microstates with total fixed energy E are equiprobable:

pi ∝ ΩR(E − Ei) (3.56)

3. We can now expand log ΩR (or the entropy S) for Ei � E:

S = k log ΩR(E − Ei) ≈ k log ΩR(E)− ∂

∂E
[k log ΩR(E)]Ei + ... (3.57)

Now, since
∂SR
∂E
|V,N = k∂ log ΩR

∂E
|V,N = 1

T
(3.58)

(we are by construction at constant volume and number of particles) we find

ΩR(E − Ei) ≈ ΩR(E) exp
(
− Ei
kT

)
(3.59)

4. The term we neglected in (3.57) is

1
2
∂2S

∂E2 |RE
2
i = E2

i

2

(
∂

∂E

1
T

)
R

(3.60)

= − E2
i

2T 2

(
∂E

∂T

)−1

R

= − E2
i

2T 2CV,R
(3.61)

where CV,R is the heat capacity of the reservoir. This term is negligible because CV is an extensive
quantity and becomes infinite when the heat bath become infinite.

5. Since E = const, this means that the probability that R is in E − Ei, and therefore that S is in Ei, is

pi ∝ exp
(
− Ei
kT

)
(3.62)

Properly normalized over all possible microstates, this means

pi =
exp

(
− Ei
kT

)∑
i exp

(
− Ei
kT

) (3.63)

or, in continuous notation
pc = exp [−βH(p,q)]

h−3N
´
d3Npd3Nq exp [−βH(p,q)]

(3.64)

where β = 1/kT and H is the Hamiltonian. The integral extends over all possible values of p,q. This is
the canonical phase-space density, or distribution, or ensemble.

6. Any quantity can therefore be obtained as an average of some function. For instance the average energy
(or average hamiltonian) is

U = 〈H〉 =
∑
iEi exp (−βEi)∑
i exp (−βEi)

(3.65)
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3.5 Maximization of entropy
1. The canonical distribution can be obtained also as the distrbution that maximizes the entropy given the

constraints
〈E〉 =

ˆ
Ep(Γ) dΓ, 1 =

ˆ
p(Γ)dΓ (3.66)

where for simplicity we define the integration over the phase space simply as dΓ = h−3Nd3Npd3Nq. Then
we have

S = −k〈log p〉 = −k
ˆ
p log p dΓ (3.67)

To extremize S given the constraints, we use the Lagrange multipliers

S/k =
ˆ
p log pdΓ− β(〈E〉 −

ˆ
EpdΓ) +A(1−

ˆ
pdΓ) (3.68)

and obtain by differentiating p

δS/k =
ˆ

[dp log p+ dp+ βEdp−Adp] dΓ = 0 (3.69)

which requires
dp(log p+ βE + 1−A) = 0 (3.70)

Since this must be true for every non-zero interval dp, we obtain the canonical distribution

pc ∝ e−βE (3.71)

2. In order to identify β we can proceed as follows. We define the partition function

Z =
∑
i

exp(−βEi) (3.72)

or
Z =

ˆ
dΓ exp [−βH(p,q)] (3.73)

3. Then we get for the entropy

S = −k〈log p〉 = kβ〈H〉+ k logZ = kβU + k logZ (3.74)

and therefore
1
T

= ∂S

∂U
= kU

∂β

∂U
+ kβ + ∂

∂U
(k logZ) (3.75)

It follows
β = 1

kT
(3.76)

as expected. This shows in a very clear way that the equilibrium distribution maximizes the entropy
subject to some constraints.

4. Notice moreover that Eq. (3.74) can be written as

TS = U + kT logZ (3.77)

and therefore the free energy is
F = U − TS = −kT logZ (3.78)

The canonical ensemble can then be written also as

pc =
exp(− E

kT )
Z

= exp(F − E
kT

) (3.79)

5. The use of the Hamiltonian in Eq. (3.64) makes it clear that if H(q,p) is invariant with respect to the
change of the individual coordinates pi, qi, then the number of indistinguishable microstates such that one
(any) particle is at q1, p1, another (any other) at q2, p2 etc. is N !. This means that the partition function,
i.e. the sum over all possible distinguishable microstates, should be divided by N !.
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3.6 The partition function
1. Since the canonical partition function gives F (T, V,N), all thermodynamical quantities can be obtained

from it. The relation between partition function and free energy is one of the most important results of
statistical physics.

2. Directly from the partition function, we can obtain all the moments of the energy

〈E〉 = − ∂Z

Z∂β
(3.80)

〈E2〉 = ∂2Z

Z∂β2 (3.81)

〈En〉 = (−1)n ∂nZ

Z∂βn
(3.82)

so we can say that Z acts as a moment generating function.

3. For an ideal gas,

Z = 1
N !h3N

ˆ
d3Npd3Nq exp [−βH(p,q)] (3.83)

= 1
N !h3N V

N

ˆ
d3Np exp

[
−β
∑
ν

p2
ν

2m

]
(3.84)

= 1
N !h3N V

N
N∏
ν

ˆ
d3pν exp

[
−β p

2
ν

2m

]
(3.85)

= V N

N !

(
2πmkT
h2

)3N/2
= V N

N !λ3N (3.86)

(
∏
i is the productory symbol) from which F = −kT logZ and we can obtain, for instance,

p = −∂F
∂V
|T,N , S = −∂F

∂T
|V,N (3.87)

from which we recover the Sackur-Tetrode entropy formula (approximating logN ! ≈ N logN−N). Notice
that in the canonical ensemble, the phase-space integrals extend to infinity, since there is no longer any
restriction on the energy.

4. The thermal wavelength
λ ≡ h

(2πmkT )1/2 (3.88)

is up to order of unity constants equal to h/(mEkin)1/2 ∼ h/p, i.e. it represents the average de Broglie
wavelength for particles moving with momentum p at temperature T . As long as λ � (V/N)1/3, i.e.
a thermal wavelength much smaller that the typical interparticle distance, the quantum effects can be
neglected. That is, the particle’s wavefunctions do not overlap. Typical values of λ at room temperature
are around 10−11 m. Typical mean interparticle distances in ordinary gases are of the order of 10−8−10−9

m, so much larger than λ.

5. For non-interacting identical particles, one obviously has H(q,p) =
∑
i hi(pi, qi) and

Z(T, V,N) = 1
N !h3N

ˆ
d3Npd3Nq exp [−βH(p,q)] = Z(T, V, 1)N

N ! (3.89)

and analogously (Z1 = Z(T, V, 1))

ρN = N !e
−βh1e−βh2 ...

ZN1
(3.90)
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while the probability of finding one particle at q, p is just

p1 = e−βh(p,q)

Z1
(3.91)

as if it were a system of a single particle.

6. The observable quantities, as already mentioned, are the averages of some properly defined functions. For
instance, the density of the i-th particle is

ρi(−→r ) = 〈δ(−→ri − r)〉 (3.92)

the total density is
ρ(−→r ) = 〈

∑
i

δ(−→ri − r)〉 (3.93)

7. Since in the canonical distribution the energy is not fixed, we can evaluate its fluctuations, defined as the
variance of the distribution. First we define the density of energy states g(E) by calculating the number
of microstates in the energy shell E,E + dE as

dΓ = 1
h3N

ˆ
E≤H≤E+dE

d3Npd3Nq = g(E)dE (3.94)

so that g(E)dE gives the number of microstates in the energy interval dE, and the associated probability
of finding a system in the range E,E + ∆E is

pcdE = Z−1g(E)dE exp (−βE) (3.95)

The density of states increases with the energy, while the exponential decreases: this means that there
should be a maximum somewhere. The maximum of the distribution ρc occurs at that E that solves the
equation

∂pc
∂E

= 1
Z

( ∂g
∂E
− gβ)e−βE = 0 (3.96)

and one can find that the maximum coincides with the constant value of the microcanonical ensemble.
In fact, since S = k log Ω = k log[g(E)∆E], the condition becomes (assuming the shell ∆E is fixed
independent of E)

k∂ log g
∂E

|Emax = ∂S

∂E
|Emax = 1

T
(3.97)

which is exactly the relation we should employ in the microcanonical ensemble to find the constant energy
given the temperature. Moreover, this also coincides with the average

U ≡ 〈E〉 = − ∂

∂β
logZ(β) = F + TS (3.98)

The variance is then

σ2
E = 〈E2〉 − 〈E2〉 = ∂2Z

Z∂β2 −
(
∂Z

Z∂β

)2

= ∂2 logZ
∂β2 = −∂U

∂β
= kT 2 ∂U

∂T
|V,N = kT 2CV (3.99)

This is an example of a fluctuation-dissipation relation, i.e. the relation among a fluctuation quantity,
σ2
E , and a “dissipation”, i.e. the response of a system variable, U , to a change in an external control

parameter, here T .

8. Since CV and E are both extensive, the relative variance σ/〈E〉 decreases as 1/
√
N for large N , as

expected. Since the fluctuations around the mean energy E are extremely small, the canonical ensemble
gives for all practical purposes the same thermodynamical relations as the microcanonical ensemble. On
the other hand, the derivation of thermodynamics, i.e. of F or S, is much simpler for the canonical than
for the microcanonical ensemble.



CHAPTER 3. STATISTICAL MECHANICS 40

9. The heat capacity might become infinity during a phase transition: when water boils, the heat goes into
the formation of bubbles while the temperature stays constant, so that ∂T/∂U = C−1

V → 0. In this case,
the fluctuations are no longer negligible and the system goes well out of equilibrium.

10. Since we now quantified the thickness of the energy shell, we can assume that ∆E/E ≈ N−1/2 is the
typical uncertainty of the energy of a classical system. Now, as we have seen, the number Ω of microstates
in a shell of thickness ∆E and the number Σ in the entire volume from 0 to E are related by

Ω = dΣ
dE

∆E = EdΣ
dE

∆E
E

= EdΣ
dE

1
N1/2 (3.100)

If, as we have estimated, Σ increases like E3N/2, we see that, writing Σ = aE3N/2, one has

Ω = 3N
2 aE3N/2 1

N1/2 = 3N
2 Σ 1

N1/2 (3.101)

and therefore
log Ω = log Σ + log 3N1/2

2 (3.102)

Clearly, since log Σ increases like N , the last term is negligible for N sufficiently large. Therefore, the
formulation of the entropy of the microcanonical system in terms of the full volume of microstates (S =
k log Σ) or in terms of a thin energy shell (S = k log Ω), are practically equivalent. There are so many
more states near the outer surface of the energy sphere that including also those inside the volume does
not make much of a difference.

3.7 Maxwell-Boltzman distribution
1. For an ideal gas

Z(T, V, 1) = V λ−3 (3.103)

and

p1 = e−
p2

2mKT

V h−3(2πmkT )3/2 (3.104)

This is probability that a single particle is in the region h−3V dp3 of phase space. The probability of it being
in d3p is just P = p1V h

−3, and the probability of it being in d3v can be obtained by the transformation
relation p(v)d3v = P (p)d3p. Since p = mv for a non-relativistic particle, we obtain

p(v) = m3P (p) =
( m

2πkT

)3/2
e−

mv2
2KT (3.105)

2. We have therefore also obtained the Maxwell-Boltzmann distribution of velocities for a single particle,
correctly normalized to unity, as

p(~v)d3v =
( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
d3v (3.106)

If one is only interested in the speed v = |~v|, one can write d3v = v2 sin θdθdφdv and integrate out the
angles, obtaining

p(v)dv =
( m

2πkT

)3/2
4πv2 exp

(
−mv

2

2kT

)
dv (3.107)

which has a maximum at vp =
√

2kT/m and a mean speed 〈v〉 = 2vp/
√
π (notice that instead of course

〈~v〉 = 0).
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3. We can now find the density of energy states g(E) by applying Eq. (3.94). We first recall the integral in
Eq. (3.31), which gives the number of microstates in the an energy volume

Σ = 1
h3N

ˆ
E≤H

d3Npd3Nq =
(
V

h3

)N (2πmE)3N/2

3N
2 Γ( 3N

2 )
(3.108)

Then we obtain g(E) as
g(E)dE = dΣ

dE
dE (3.109)

This gives

g(E) =
(
V

h3

)N (2πmE)3N/2

Γ( 3N
2 )E

(3.110)

(the Gibbs’ factor 1/N ! should be included “by hand” for indistinguishable particles). Then if Γ represents
the phase-space coordinates, we can write p(Γ)dΓ = p(E)dE, and since dΓ = g(E)dE we have p(E) =
p(Γ)g(E).

4. Then we see that the canonical distribution can be written as

p(E) = g(E)e−βE

Z
= AE−1+3N/2e−βE (3.111)

where A is an overall factor. This distribution peaks at dp(E)/dE = 0 i.e. for

E = 3
2NkT (3.112)

(for N � 1) as of course we should have expected. So although the canonical distribution in phase space
has a maximum for E = 0, in the energy space the maximum is at the ideal gas energy. The average
energy is

〈E〉 =
´∞

0 Eg(E)e−βEdE´∞
0 g(E)e−βEdE

=
Γ(2 + 3N

2 )
βΓ(1 + 3N

2 )
=

(1 + 3N
2 )!

β( 3N
2 )!

= (1 + 3N
2 )kT (3.113)

which again in the large N limit coincides with the expected result.

5. It is a simple exercise to show that

〈Em〉 = β−m
Γ(1 +m+ 3N

2 )
Γ(1 + 3N

2 )
= β−m

(m+ 3N
2 )!

3N
2 !

(3.114)

6. Then, we find the variance (one has to be careful in taking the N →∞ limit only at the end)

σ2
E = 〈E2〉 − 〈E〉2 =

3N
2 !(2 + 3N

2 )!− [(1 + 3N
2 )!]2

β2[( 3N
2 )!]2

(3.115)

=
3N
2 !(2 + 3N

2 )!− (1 + 3N
2 )!(1 + 3N

2 )( 3N
2 )!

β2[( 3N
2 )!]2

(3.116)

=
(2 + 3N

2 )(1 + 3N
2 )− (1 + 3N

2 )(1 + 3N
2 )

β2 (3.117)

= 1
β2 (1 + 3N

2 )→ 3N
2 (kT )2 (3.118)

which coincides with Eq. (3.99) for CV = 3Nk/2. So the use of the density of energy states allows one to
perform several calculations by integrating over a single variable, E, rather than over the full 6N phase
space coordinates.
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3.8 Proof that the statistical entropy equals the thermodynamic
entropy

We have now two definitions of entropy, a thermodynamic one Eq. (1.38) and a statistical one, Eq. (3.53). From
each expression one can derive the same thermodynamic relations and therefore we expect they refer to the same
physical quantity. However, one can have other definitions of statistical entropy that give by differentiation the
same thermodynamic quantities. In this section we establish their identity in a general way.

Let us consider the Hamiltonian of a gas of interacting particles with potential U(~q) which depends only on
the interparticle distance and is symmetric with respect to the exchange of any two particles. The partition
function is then

Z = 1
N !h3N

ˆ
d3Npd3Nq exp

[
−β
∑
ν

p2
ν

2m − βU(~q)
]

(3.119)

= 1
N !h3N

3N∏
ν

ˆ
d3pν exp

[
−β p

2
ν

2m

] ˆ
d3Nq exp [−βU(~q)] (3.120)

= 1
N !λ3N V

ˆ
d3q2...d

3qN exp [−βU(~q)] = 1
N !λ3NW (3.121)

where W = V
´
d3q2...d

3qN exp [−βU(~q)] and in the last line we used the fact that one can rewrite U to be
independent of one of the particle’s coordinate, e.g. q1. The distribution function in the canonical ensemble is
then

p =
exp

[
−β
∑
ν
p2
ν

2m − βU(~q)
]

Z
(3.122)

and Gibbs’ entropy is defined as (Gibbs’ factor N ! plays no role here, so it can also be neglected everywhere)

S(V, T ) = −k
ˆ
p log pd

3Npd3Nq
N !h3N (3.123)

= k

ˆ exp
[
−β
∑
ν
p2
ν

2m − βU(~q)
]

Z
[β
∑
ν

p2
ν

2m + βU(~q) + logW − log(N !λ3N )]d
3Npd3Nq
N !h3N (3.124)

= kβ(〈K〉+ 〈U(~q)〉) + k logW − k logN !− 3kN log λ (3.125)

where we used the fact that the average of constants, here logW, logN !, log λ3N , are equal to the constants
themselves. Now we consider a reversible transformation in T and V . We need now two relations. The first one
is

∂ logW
∂β

= −〈U〉 (3.126)

This can be seen from the following equation:

〈U〉 = 1
Z

ˆ
d3Npd3Nq
N !h3N U exp

[
−β
∑
ν

p2
ν

2m − βU(~q)
]

= 1
ZN !h3N

ˆ
d3Np exp

[
−β
∑
ν

p2
ν

2m

] ˆ
d3NqU exp [−βU(~q)]

=

´
d3Np exp

[
−β
∑
ν
p2
ν

2m

] ´
d3NqU exp [−βU(~q)]

N !h3N

N !h3N

´
d3Np exp

[
−β
∑
ν
p2
ν

2m

] ´
d3Nq exp [−βU(~q)]

=
´
d3NqU exp [−βU(~q)]´
d3Nq exp [−βU(~q)]

= − ∂W

W∂β

The second relation is
∂ logW
∂V

= β〈p〉 (3.127)
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This can be obtained from the first of the Eqs. (3.87). In fact F = −kT logZ = −kT logW + kT log(N !λ3N ),
and since the volume V is only in W , we get Eq. (3.127).

Therefore, the change in S is

dS = ∂S

∂β
dβ + ∂S

∂V
dV (3.128)

= kβ(d〈K〉+ d〈U〉) + k(〈K〉+ 〈U〉)dβ + k
∂ logW
∂β

dβ + k
∂ logW
∂V

dV − 3kN dλ

λ
(3.129)

= d〈K〉+ d〈U〉
T

+ k(〈K〉+ 〈U〉)dβ − k〈U〉dβ + 〈p〉dV
T

− 3
2kN

dβ

β
(3.130)

= d〈K〉+ d〈U〉
T

+ k〈K〉dβ + 〈p〉dV
T

− 〈K〉
T

dβ

β
(3.131)

= d〈K〉+ d〈U〉
T

+ k〈K〉dβ + 〈p〉dV
T

− k〈K〉dβ (3.132)

= d〈K〉+ d〈U〉+ 〈p〉dV
T

= δQ

T
(3.133)

where we employed 〈K〉 = N〈 p
2
i

2m 〉 = 3
2NkT . We see finally that on the rhs we have the general expression for

δQ/T , i.e. the thermodynamic definition of entropy. This completes our proof (for more detail, see Jaynes,
Gibbs vs Boltzmann Entropies, American Journal of Physics, 391, 1965).

Historically, the entropy was introduced by Boltzmann as

SB = −kN
ˆ
p1 log p1d

3pd3q (3.134)

where p1 is the probability distribution for a single particle

p1 = λ3

V
exp

[
−β
∑
ν

p2
ν

2m

]
(3.135)

It is not difficult to show that S = SB only for non-interacting particles. Gibbs’ entropy is therefore more
general.

3.9 Virial and equipartition theorems
1. Given a system characterized by a Hamiltonian H(q,p), we want to calculate now the mean value of
xi

∂H
∂xk

where xi with i = 1, ..6N represents any one of the coordinates q,p. We have then

〈xi
∂H

∂xk
〉 = 1

h3N

ˆ
d6Nx ρ(x)xi

∂H

∂xk
(3.136)

where ρ can be either the micro- or the canonical distribution.

2. Let us begin with the canonical calculation. As it will be clear, it is much simpler than the microcanonical
one. One has in fact

〈xi
∂H

∂xk
〉 = 1

Zh3N

ˆ
d6Nx e−βHxi

∂H

∂xk
= 1
Zh3N

ˆ
d6N−1x dxk

∂H

∂xk
e−βHxi (3.137)

= 1
Zh3N

ˆ
d6N−1x dxk

∂e−βH

(−β)∂xk
xi = 1

βZh3N

ˆ
d6N−1x dxk e

−βH ∂xi
∂xk

(3.138)

= δik
βZh3N

ˆ
d6N−1x dxk e

−βH = δik
βZh3N

ˆ
d6Nx e−βH = δik

β
= δikkT (3.139)

where δij is the Kronecker symbol (equal 0 for any i 6= j and 1 otherwise), we employed integration by parts
in the second line, and discarded the boundary terms assuming that H is infinity (so e−βH → 0) whenever
a coordinate q reaches to the container wall (where the potential energy is infinite) or the momentum p
goes to infinity.
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3. We now do the same calculation in the microcanonical ensemble. Then we have ρ = 1/Ω in the energy
shell and zero outside, so

〈xi
∂H

∂xk
〉 = 1

Ωh3N

ˆ
E≤H≤E+∆E

d6Nxxi
∂(H − E)

∂xk
(3.140)

(we used the fact that ∂E/∂xi = 0).

4. This can be evaluated as

〈xi
∂H

∂xk
〉 = 1

Ωh3N ∆E ∂

∂E

ˆ
0≤H≤E

d6Nxxi
∂(H − E)

∂xk
(3.141)

= − 1
Ωh3N ∆E ∂

∂E

ˆ
0≤H≤E

d6Nx (H − E) ∂xi
∂xk

(3.142)

where we integrate by parts with respect to xk, and as before we neglected the boundary term because
the variable xk on the boundary evolves according to the equation E = H(x) and therefore lies always on
the energy surface, where H − E = 0.

5. Finally, since ∂xi
∂xk

= δik, we have

〈xi
∂H

∂xk
〉 = − δik

Ωh3N ∆E ∂

∂E

ˆ
0≤H≤E

d6Nx (H − E) (3.143)

= δik
Ωh3N ∆E ∂

∂E

ˆ
0≤H≤E

d6Nx = δikΣ
Ω ∆E (3.144)

(here one should include the differentiation also of the integral limit, but it turns out to be zero), where
Σ = h−3N ´

0≤H≤E d
6Nx counts the number of microstates in the energy sphere 0 ≤ H ≤ E .

6. Now Ω is the number of microstates in the energy shell, and therefore

Ω = ∂Σ
∂E

∆E (3.145)

so finally
〈xi

∂H

∂xk
〉 = δik

∂ log Σ
∂E

(3.146)

7. Now we employ again the approximation we used before, namely that

log Σ ≈ log Ω (3.147)

ie that the number of microstates in the energy shell of thickness ∆E∗
E∗ ≈ 1 is almost equal to the entire

number of microstate in the energy sphere; that is, the “skin” of the energy sphere contains the bulk of
the microstates. (Alternatively, one could have defined S = k log Σ from the start, as actually proposed
by Gibbs.)

8. This gives the equipartition theorem

〈xi
∂H

∂xk
〉 = k

δik
∂S
∂E |N,V

= δikkT (3.148)

That is, every term xi∂H/∂xk in the Hamiltonian accounts for a kT in a thermodynamic system.

9. If xi is a coordinate or a momentum, this means respectively

〈xi
∂H

∂xi
〉 = −〈qiṗi〉 = −〈qiFi〉 = kT (3.149)

〈xi
∂H

∂xi
〉 = 〈piq̇i〉 = kT (3.150)
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10. In the second case, we can also recognize 〈piq̇i〉 = 2〈Kqi〉, i.e. twice the kinetic energy in the direction qi,
so we have the mean kinetic energy for a particle i (three degrees of freedom)

〈Ki〉 = 3
2kT (3.151)

11. Similarly from (3.149), and summing over the three directions, we can write for the i-th particle

− 〈−→q ·
−→
F 〉i = 〈−→q · −→∇V 〉i = 3kT (3.152)

and assuming a power law potential V ∝ rα one has

〈−→r ·
−→
∇V 〉i = 〈r ∂V

∂r
〉i = α〈V 〉i (3.153)

(where ~∇V (r) = dV
dr

~r
r and r = |~r|) so that, for three degrees of freedom of a single particle,

α〈V 〉+ i = −〈−→q · −→F 〉i = 3kT (3.154)

and for N particles we obtain the virial theorem

〈K〉 = α

2 〈P 〉 = 3
2NkT (3.155)

where P = NVi . For quadratic potential, α = 2, the kinetic energy, K = NKi, and potential energy,
P = NVi, are equal on average.

12. For any quadratic Hamiltonian

H =
3N∑
ν

(
Aνp

2
ν +Bνq

2
ν

)
(3.156)

one has then
〈H〉 = 1

2fkT (3.157)

where f = 6N is the number of degrees of freedom, regardless of Aν , Bν . So the equipartition theorem
applied to quadratic Hamiltonians says that the energy associated with each degree of freedom at tem-
perature T is kT/2. Therefore, we also find that the heat capacity in the classical limit is CV → 1

2k×
d.o.f..

13. The equipartition theorem applied to an ideal gas gives as expected the equation of state pV = NkT .

14. The use of integrals instead of sums over discrete states is crucial for this derivation of the equipartition
theorem, as we will see in the next section.

3.10 Applications of the canonical ensemble: quantum oscillators
1. The canonical ensemble is also called Boltzmann statistics when applied to classical systems.

2. Even quantum systems can be discussed with the Boltzmann statistics under some limitations.

3. Let us consider a system of fixed quantized harmonic oscillators. The energy spectrum for every oscillator
of frequency ω is

εn = ~ω(n+ 1
2) (3.158)

with n = 0, 1, 2.... The quantum number n takes now the place of the phase-space variables p, q.
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4. Assuming the particles are non-interacting, we have for N distinguishable oscillators (eg atoms fixed in a
lattice)

Z(T, V,N) = [Z(T, V, 1)]N (3.159)
where the one-particle partition sum is

Z(T, V, 1) =
∑
n

exp−βεn = e−
β~ω

2
∑
n

(e−β~ω)n

= e−
β~ω

2

1− e−β~ω = [2 sinh(β~ω2 )]−1

where we used the sum rule of geometric series
∞∑
n=0

rn = 1
1− r (3.160)

if r < 1. Notice also the useful rule obtained by differentiation
∞∑
n=0

nrn = r

(1− r)2 (3.161)

and the generalization for N > 0 (binomial expansion)

1
(1− x)N =

∞∑
`=0

(
N + `− 1

`

)
x` (3.162)

5. Finally
Z(T, V,N) = [2 sinh(β~ω2 )]−N (3.163)

and the free energy is

F = −kT logZ = NkT log[2 sinh(β~ω2 )] = N

2 ~ω +NkT log(1− e−β~ω) (3.164)

where the first term represents the zero-point energy.

6. From F , all other thermodynamic relations follow. For instance

µ = ∂F

∂N
|T,V = F

N
(3.165)

p = −∂F
∂V
|N,V = 0 (3.166)

(no pressure because the oscillators are fixed at their location).

7. The entropy and average energy are

S = −∂F
∂T
|V,N = Nk[ β~ω

eβ~ω − 1 − log(1− e−β~ω)] (3.167)

U = F + TS = N~ω[ 12 + 1
exp(β~ω)− 1 ] (3.168)

Notice that the entropy vanishes for β~ω → ∞ i.e. at zero temperature, as required by the Third Law.
The energy can be written also as

U = N〈εn〉 (3.169)
where 〈εn〉 is the mean energy of an oscillator and is

〈εn〉 = ~ω[ 12 + 1
exp(β~ω)− 1 ] (3.170)

which can of course also be calculated directly as 〈εn〉 = −∂ logZ1
∂β .
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Figure 3.1: Plot of CV /Nk as a function of temperature for the quantum oscillators.

8. Notice that the classical equipartition theorem U = NkT is recovered only in the limit of T → ∞, i.e.
when the discrete sum can be approximated as an integral. In the opposite limit T → 0 one has instead
U = N~ω/2, ie the sum of all the zero-point energies.

9. Similarly, one can also evaluate the mean quantum number 〈n〉

〈n〉 =
〈εn〉 − ~ω

2
~ω

= 1
exp(β~ω)− 1 (3.171)

10. The heat capacity is now
CV = ∂U

∂T
|V,N = Nk(β~ω)2 exp(β~ω)

(exp(β~ω)− 1)2 (3.172)

and we see that for T → 0 , the capacity approaches zero. That is, for very small temperatures, the
system cannot absorb any heat, ie no oscillator gets excited. In the opposite limit of large temperatures,
CV = Nk, as we expected from the virial theorem for N particles with two degrees of freedom each (kinetic
and potential).

11. We use now again the concept of density of energy states. Consider the probability of being in microstates
of a given energy E, each one occurring with the same probability pc. If there are g(E) of them, the
probability will be the sum of all the p’s:

p(E) = pc(E)g(E) (3.173)
p(E)dE = pc(E)g(E)dE (3.174)

where the second line applies in the continuous limit, so g(E)dE is the number of microstates in dE.
So instead of considering separately the probability of each microstate, we can consider the weighted
probability pc(E)g(E). The function g(E) is called density of energy states. Accordingly, the partition
function becomes

∑
g(E)p(E), where the sum now is over the energy levels and not over the microstates.

12. We can now obtain the density of states g(E) for our model. With the use of the binomial expansion
(3.162) we can rewrite the partition function as

Z(T, V,N) = [2 sinh(β~ω2 )]−N =
[ exp(− 1

2β~ω)
1− exp(−β~ω)

]N
(3.175)

=
∞∑
`=0

(
`+N − 1

`

)
exp[−β~ω(1

2N + `)] (3.176)
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1 2 3

Figure 3.2: There are six ways to distribute ` = 2 quanta of energy in N = 3 particles (oscillators). This

corresponds to
(
`+N − 1

`

)
, since there are N − 1 bars and ` balls.

This expression can be compared to the general expression that defines the density of states g(E) for
discrete states

Z(T, V,N) =
∑
i

g(Ei)e−βEi (3.177)

to obtain

g` ≡ g(E`) =
(
`+N − 1

`

)
(3.178)

E` ≡ ~ω(`+ N

2 ) (3.179)

13. The energy states E` can be interpreted as the energy of ` quanta of energy ~ω each, plus the zero-point
energy of N oscillators. The density of states for discrete states is called degeneracy factor or multiplicity,
g`. It corresponds to the number of ways one can distribute ` indistinguishable quanta of energy among
N different (distinguishable) possible states (i.e., how many states with energy ` among N oscillators).
See Fig. 3.2 for an example.

14. It is possible now to show that the entropy S = k log Ω coincides with S = k log g`, since g` gives the
number of microstates at any given energy.

3.11 Applications of the canonical ensemble: paramagnetism
1. If a system of infinitesimal magnetic dipoles (i.e., particles with spin) with magnetic moment ~µi is under

the action of an external homogeneous magnetic field ~H, the energy of the system is

E = −
N∑
i

~µi · ~H (3.180)

The minus sign implies that the energy is minimized when the spins align with the external field. That
is, it takes some work to disalign the spins.

2. Neglecting the translational degrees of freedom (dipole fixed in a lattice), the dipole can only change their
orientation with respect to an axis z that is chosen to be along ~H. The degrees of freedom are then the
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two angle θ, φ for each dipole. The Hamiltonian (with a hat to distinguish from the magnetic field) is then

Ĥ = −
N∑
i

~µi · ~H = −
N∑
i

µiH cos θi (3.181)

3. We are also neglecting the spin-spin interactions. These will be studied in Sect. (5.4).

4. If the dipoles are all identical, then the partition function of this system is

Z(T,H,N) =
ˆ
dΩ1

ˆ
dΩ2...

ˆ
dΩN exp

(
βµH

N∑
i

cos θi

)
(3.182)

where dΩi = sin θidθidφi and where one see that H takes the role of the volume here.

5. Since we are neglecting any interaction among the dipoles, we have

Z(T,H,N) = Z(T,H, 1)N (3.183)

Z(T,H, 1) =
ˆ

sin θdθdφ exp(βµH cos θ) (3.184)

= 2π
ˆ +1

−1
dx exp(βµHx) (3.185)

= 4π sinh(βµH)
βµH

(3.186)

6. Then the probability for a dipole to be oriented in θ + dθ, φ+ dφ is

ρ(θ, φ)dΩ = exp(βµH cos θ)
Z(T,H, 1) sin θdθdφ (3.187)

7. The mean magnetic dipole can then be evaluated as the mean of the vector ~µ = µ {sin θ cosφ, sin θ sinφ, cos θ}.
One finds 〈µx〉 = 〈µy〉 = 0 and

〈µz〉 = µ

Z1

ˆ
cos θ exp[βµH cos θ] sin θdθdφ (3.188)

= µ

[
coth(βµH)− 1

βµH

]
(3.189)

One can also write
〈µz〉 = 1

β

∂

∂H
logZ(T,H, 1) = − ∂

∂H
F (T,H, 1) (3.190)

where F (T,H, 1) = −kT logZ(T,H, 1) = F (T,H,N)/N .

8. The total dipole 〈Dz〉 = N〈µz〉 in the direction z is then

〈Dz〉 = − ∂

∂H
F (T,H,N) (3.191)

This shows that here the averages of µz and H (or better NH, so to obtain an extensive quantity as V )
take the role of p, V in the context of gases. Notice that

〈Dz〉 = N〈µz〉 = −〈E〉
H

(3.192)

9. Explicitly, we find

F (T,H,N) = −NkT log 4π sinh(βµH)
βµH

(3.193)

〈Dz〉 = Nµ

[
coth(βµH)− 1

βµH

]
(3.194)
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The behavior of 〈Dz〉/Nµ as a function of x = βµH is a curve that rises from 0 for zero magnetic field H
or large temperatures (no net alignment) to a saturation value 1 (full alignment) for large fields or small
temperatures. This behavior (no net magnetization for H = 0) is called paramagnetic.

10. The entropy can be derived as S = −∂F/∂T |H,N , and then the magnetization energy is

U = F + TS = N(kT − µH coth(µH
kT

)) (3.195)

For T →∞, coth(µH/kT )→ kT/µH and therefore U → 0. That is, if the temperature is very large, the
dipoles will move randomly in all directions, and the average projection on the ~H axis tends to zero. For
small temperatures, instead, one gets U → −NµH, since the dipoles become all aligned with ~H.

11. Finally, one can get the heat capacity

CH = ∂U

∂T
|H,N = Nk

(
1− x2

sinh2 x

)
(3.196)

where x = βµH. One sees then that CH → 0 for large temperatures (see Fig. 3.4). This is typical
for systems with an energy upper bound. That is, once the system is completely randomized at high
temperature, it cannot absorb any more energy. Moreover, CH → Nk for small temperatures. Of course,
this takes into account only the magnetization energy: the system can still absorb heat in the other degrees
of freedom (rotation, vibrations, etc) that we neglect here.

12. For quantum systems, the spin states are quantized. The simplest case is when each dipole can only
assume two states, up or down, with energies E = −gµBHσ and σ = ±1/2 (here g is the gyromagnetic
ratio, equal to 2 for the intrinsic spin of electrons and µB = e~/2mec is Bohr’s magneton). Then the
one-particle partition function is

Z(T,H, 1) =
σ=+1/2∑
σ=−1/2

exp(−βE) = 2 cosh(βε) (3.197)

with ε = µBH for electrons.

13. The free energy is then
F (T,H,N) = −NkT log[2 cosh(βε)] (3.198)

from which again all thermodynamic quantities can be obtained. In particular, the average magnetization
is

〈Dz〉 = − ∂F
∂H
|T,N = NµB tanh βε (3.199)

(see Fig. 3.3) and the average spin per particle is

σ ≡ 〈Dz〉/NµB = tanh βε (3.200)

14. As usual, from the enetropy S = −∂F/∂T |H,N we obtain the energy

U = F + TS = −NµBH tanh(βε) (3.201)

and the heat capacity
CH = ∂U

∂T
= Nk(βε)2 cosh−2(βε) (3.202)

For small and large x = βε the heat capacity can be approximated as CH ∼ x2e−2x. So now one sees
again that CH → 0 for high temperature, but also for small temperatures, since the dipoles cannot absorb
arbitrarily small amount of energy and if they are totally aligned, they remain so. The heat capacity
has therefore a maximum at approximately ε ≈ kT . This behavior (see Fig. 3.5) is called Schottky heat
capacity.
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Figure 3.3: Plot of Dz/Nµ as a function of temperature for a paramagnet.
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Figure 3.4: Plot of CH/Nk as a function of temperature for a classical paramagnet.
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Figure 3.5: Plot of CH/Nk as a function of temperature for a quantum paramagnet.
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3.12 The macrocanonical ensemble
1. If we repeat the steps of Sect. 3.4 to a subsystem S that can exchange both energy and particles with the

environment R, we find the probability for S to be in a state with energy Ei � E and particles NS � N
to be

pi,N ∝ ΩR(E − Ei, N −NS) ≈ ΩR(E,N)
[
1− ∂ log ΩR

∂E
Ei −

∂ log ΩR
∂N

NS + ...

]
(3.203)

and
log ps ∝ log ΩR(E − Ei, N −NS) ≈ log ΩR(E,N)− ∂ log ΩR

∂E
Ei −

∂ log ΩR
∂N

NS + ...

2. Therefore since SR = k log ΩR and

∂SR
∂E
|V,N = 1

T
,

∂SR
∂N
|V,E = −µ

T
, (3.204)

we obtain

ps ∝ ΩR(E,N) exp
[
−∂ log ΩR

∂E
Ei −

∂ log ΩR
∂N

NS

]
(3.205)

= ΩR(E,N) exp(− Ei
kT

+ µNS
kT

) (3.206)

The prefactor can of course be absorbed into the normalization.

3. The macrocanonical (or grand-canonical) distribution is then

pi,N = exp(−β(Ei − µN))∑
N

∑
i exp(−β(Ei − µN)) (3.207)

4. As before, this distribution can also be obtained as the distribution that maximizes the uncertainty∑
p log p when the constraints on the average energy and the average number of particles are enforced

(see later).

5. A relation between the macrocanonical partition function

Z =
∑
N

∑
i

exp(−β(Ei − µN)) (3.208)

and the grand potential Φ also exists, analogously to the relation between free energy and the canonical
ensemble. The grand potential is

φ = U − TS − µN (3.209)

from which
dΦ = −SdT − pdV −Ndµ (3.210)

which shows that Φ = Φ(T, V, µ). It follows that from Φ we can obtain all thermodynamical quantities:

∂Φ
∂T

= −S, ∂Φ
∂V

= −p, ∂Φ
∂µ

= −N (3.211)

Now we have

S = −k〈log p〉 = − 1
βT
〈−β(E − µN)〉+ logZ

βT
(3.212)

= 〈E〉 − µ〈N〉
T

+ logZ
βT

(3.213)

and therefore
Φ = −TS + U − µN = −kT logZ (3.214)

Given Z, therefore, one can get all thermodynamical quantities.
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6. One can also write the macrocanonical partition sum as a weighted sum of the canonical partition function

Z(T, V, µ) =
∑
N

(
e
µ
kT

)N
Z(T, V,N) (3.215)

The factor z = e
µ
kT is called fugacity.

7. For noninteracting, indistinguishable systems one has

Z(T, V, µ) =
∑
N

1
N !

(
e
µ
kT

)N
Z(T, V, 1)N (3.216)

=
∑
N

1
N !

[
e
µ
kT Z(T, V, 1)

]N
(3.217)

= exp
[
Z(T, V, 1) exp( µ

kT
)
]

(3.218)

where we used the sum rule ∑
i

xn

n! = ex (3.219)

8. In many cases then the macrocanonical partition function can be simply written in terms of the canonical
one. In fact, all partition functions are mathematically connected by Laplace transformations (see e.g.
Greiner’s textbook, p. 247).

9. We can now show that the relative fluctuations in the macrocanonical ensemble go as N−1/2, and are
therefore negligible. We need to calculate

σ2
N = 〈(N − 〈N〉)2〉 = 〈N2〉 − 〈N〉2 (3.220)

We have

〈N〉 =
∑
i,N Ne

−β(Ei−µN)∑
i,N e

−β(Ei−µN) = 1
βZ

dZ
dµ

(3.221)

〈N2〉 =
∑
i,N N

2e−β(Ei−µN)∑
i,N e

−β(Ei−µN) = 1
β2Z

d2Z
dµ2 (3.222)

= 1
β2Z

d

dµ

dZ
dµ

= 1
βZ

d

dµ
(〈N〉Z) (3.223)

= 1
β

d

dµ
〈N〉+ 〈N〉

βZ
dZ
dµ

= 1
β

d

dµ
〈N〉+ 〈N〉2 (3.224)

Therefore,
σ2
N = 〈N2〉 − 〈N〉2 = 1

β

d

dµ
〈N〉 (3.225)

so we see that σ2
N ∼ N is extensive, and therefore the relative fluctuation vanish fpr large N :

σN
〈N〉

∼ 〈N〉−1/2 (3.226)

10. We can also use the Gibbs-Duhem relation (1.50) to write this result in another way. From

Ndµ = −SdT + V dp (3.227)

and for T = const, we get
N
∂µ

∂N
|T,V = V

∂p

∂N
|T,V (3.228)



CHAPTER 3. STATISTICAL MECHANICS 54

Moreover, we can use the general relation (which is immediate to verify for an ideal gas)

∂p

∂N
|T,V = −V

N

∂p

∂V
|T,N (3.229)

to write
∂µ

∂N
|T,V = −V

2

N2
∂p

∂V
|T,N (3.230)

Inserting this in Eq. (3.225), we find (as usual in thermodynamic notation, we disregard the average
brackets, since all quantities are supposed to be averages)

σ2
N

N2 = 1
βN2

d

dµ
N = − 1

V 2
∂V

∂p
|T,N = kT

V
βV (3.231)

where we defined the compressibility (see Eq. 1.81)

βV = − 1
V

∂V

∂p
|T,N (3.232)

Here again, since βV is an intensive quantity, the relative number fluctuations vanish in the thermodynamic
limit V →∞.

11. A similar argument holds for the energy fluctuations which now can be written as

σ2
E

E2 = σ2
can

U2 + σ2
N

U2

(
∂U

∂N
|T,V

)2
(3.233)

Since the fluctuations around the equilibrium state are very small, the macrocanonical ensemble gives the
same thermodynamic relations as the other ensembles.

12. During the isothermal compression of a gas, below a certain critical temperature, there is a phase transition
during which the pressure does not change, in spite of compression, because the gas condenses in the liquid
phase. Then one has (∂p/∂V )T = 0 and consequently βV →∞. This shows that during a phase transition
the fluctuations are no longer negligible.

13. In analogy to what we did in Sec. (3.5), we can derive the macrocanonical distribution by maximizing the
entropy with two Lagrange multipliers that enforce energy and number constraints (here dΓ includes also
a sum over N)

− S =
ˆ
p log pdΓ− β(〈E〉 −

ˆ
EpdΓ) + α(〈N〉 −

ˆ
NpdΓ) (3.234)

We have then

−δS =
ˆ

log pδpdΓ +
ˆ
δpdΓ + β

ˆ
EδpdΓ− α

ˆ
NδpdΓ (3.235)

=
ˆ

(log p+ 1 + βE − αN)δpdΓ (3.236)

and therefore
p ∼ exp(−βE + αN) (3.237)

We can now identify
β = 1

kBT
, α = µ

kBT
(3.238)

to obtain the macrocanonical distribution.
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3.13 The chemical potential
1. As we have seen, the chemical potential is the change in energy when a particle is added to it, at constant

entropy and volume. Keeping a constant entropy is not trivial, and the resulting change can be positive
or negative.

2. Let us consider a simple example: a system with two particles, e.g. two harmonic oscillators. Two quanta
of energy 2ε distributed among the two particles can be assigned both to one of the particles (so two
possible states of the system, let’s call them 11, 22), or one for each particles (12), for a total of three
possible combinations, i.e. three possible energy states. The entropy is k log 3.

3. If we add one particle, the total number of combinations when still having 2ε of energy is six: 11, 22, 33,
12, 13, 23. The entropy is k log 6. So we added a particle but the entropy changed, so we can’t say what
the chemical potential µ is.

4. In order to add one particle while keeping the number of states constant to three, there is only one solution:
reducing the quanta to 1ε. In this case, in fact, we have again three states: one ε to particle 1, or 2, or 3.
Then we see that the energy to add a particle at constant entropy is actually negative and equal to −ε.

5. This can be generalized. The Sackur-Tetrode entropy for N particles is S(U, V,N). Adding one particle
while changing U to U + µ is S′(U + µ, V,N + 1). We can get µ by requiring that S = S′, i.e. solving for
µ the equation

S(U, V,N) = S′(U + µ, V,N + 1) (3.239)
in the limit of N � 1 and U � µ. The result is Eq. (3.42).

3.14 Ultra-relativistic ideal gas
1. The relativistic relation between energy and momentum is

E =
√
m2c4 + p2c2 (3.240)

For a massive particle at rest, E = mc2. For a massive non-relativistic particle, p� mc, E ≈ mc2 + p2

2m .
Finally, for ultra-relativistic particles (eg, photons)

E = pc (3.241)

So the energy depends linearly with p, rather than quadratically.

2. For photons, we also know that E = ~ω = ~ck, so the momentum vector can be written as ~p = ~~k, where
~k is the wavevector.

3. A gas of photons in equilibrium at constant T follows Planck’s law (see later). In this case, the energy
density is not a free variable, but depends only on T according to Stefan-Boltzmann’s law. Therefore if
we bring a particle in or out from the photon gas system at constant T , the energy does not change (as
also the pressure and the number density). This implies µ = 0. Essentially, the reason is that photon
number is not conserved so adding a photon at equilibrium does not change the number of microstates.
Therefore, the macrocanonical ensemble reduces to the canonical one.

4. Then, also assuming indistinguishability, we have

Z = 1
N !

N∏
i

(
ˆ
d3pid

3qi
h3 e−βcpi) (3.242)

= V N

N !h3N (
ˆ
d3pie

−βcpi)N (3.243)

= V N

N !h3N (4π
ˆ ∞

0
p2dpe−βcp)N (3.244)

= V N

N !(βch)3N (4π
ˆ ∞

0
x2dxe−x)N = 1

N !

(
V

λ3

)N
(3.245)
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where we used the formula
Γ(3) =

ˆ ∞
0

x2dxe−x = 2 (3.246)

and defined a new relativistic thermal wavelength

λrel ≡
hc

2π1/3kT
(3.247)

that has the same role as the previously defined non-relativistic wavelength λnr. We can notice that, up
to some order of unity constants (

λrel
λnr

)2
= mc2

kT
(3.248)

and that mc2 � kT for a classical non-relativistic gas.

5. The free energy is then

F = −kT logZ = kT logN !−NkT log(V/λ3) (3.249)
= kT (N logN −N)−NkT log(V/λ3) (3.250)
= −NkT [(1− logN + log(V/λ3) (3.251)

= −NkT (1 + 3 log d
λ

) (3.252)

where
d ≡ (V/N)1/3 (3.253)

is the mean interparticle distance. Quantum effects become important for λrel � d, i.e. when the photon
wavefunctions overlap because they are larger than the typical interparticle separation. The overlap of the
wavefunctions can be treated only in a fully quantum-mechanical calculation, as we will see in the next
chapter.

6. We can now obtain the thermodynamic relations:

S = −∂F
∂T

= kN

[
4 + 3 log

(
d

λ

)]
(3.254)

and
p = −∂F

∂V
= NkT

V
(3.255)

just like for non-relativistic particles, since the dependence of F on the volume is exactly the same.

7. Moreover,
E = F + TS = F − T ∂F

∂T
= 3NkT (3.256)

and CV = 3Nk. We see that this is larger than for the non-relativistic gas, CV = 3Nk/2. In fact, if we
rederive the virial theorem for a kinetic term that is linear in the momentum p, rather than quadratic, we
find that E = kT×d.o.f.



Chapter 4

Statistical mechanics of quantum
systems

4.1 Density operators
This subsection follows in part the notes by S. J. van Enk at http://pages.uoregon.edu/svanenk/solutions/
Mixed_states.pdf, to which we refer for further details. We also benefited from Griffith, Quantum Mechanics.

1. In quantum mechanics we denote the solution of the Schroedinger equation a pure state |ψ〉. Any linear
combination (superposition) of pure states is another pure state. We will always consider normalized
vectors in the following, i.e. 〈ψ|ψ〉 = 1.

2. The dual bra vector 〈φ| is a linear operator in Hilbert space that transforms ket vectors in C-numbers,
〈φ|ψ〉. This is completely analogous to the scalar product of vectors, but applies also to vectors with
infinite degrees of freedom, i.e. functions.

3. An operator Ô is a linear operation that transforms vectors into other vectors; any operator and its
hermitian conjugate can be expressed as a linear combination of

Ô = |φ〉〈ψ| (4.1)
Ô† = |ψ〉〈φ| (4.2)

4. The expected value of Ô on the state |ψ〉 is

〈Ô〉 = 〈ψ|Ô|ψ〉 (4.3)

Only hermitian operators can represent physical observables, because they produce real values of 〈Ô〉.

5. A special case is the hermitian operator
ρ̂ = |ψ〉〈ψ| (4.4)

which is obviously a projection operator, i.e.

(ρ̂)2 = ρ̂ (4.5)

6. Denoting with |n〉 an orthonormal basis on Hilbert space, any vector can be uniquely decomposed in this
basis as |ψ〉 =

∑
n |n〉〈n|ψ〉. We can then define the orthonormality relation as

I =
∑
n

|n〉〈n| (4.6)

and obviously I|ψ〉 = |ψ〉.

57
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7. The elements of an operator Ô in the basis |n〉 are

Omn = 〈n|Ô|m〉 (4.7)

and its Trace is then
TrÔ =

∑
n

Onn =
∑
n

〈n|Ô|n〉 (4.8)

Notice that the Trace is a number, not an operator. A crucial property of the trace is that it is invariant
with respect to a basis transformation, provided the transformation is unitary, i.e. (using matrix notation)
if O′ = U∗OU with U∗U = 1. In fact, since Tr(AB) = Tr(BA) we have

TrO′ = Tr(U∗(OU)) = Tr(OUU∗) = Tr(O) (4.9)

8. By inserting the identity I =
∑
n |n〉〈n| we find that for any operator Ô we can write the expected value

on the state |ψ〉 as

〈Ô〉 = 〈ψ|Ô|ψ〉 =
∑
n

〈ψ|Ô|n〉〈n|ψ〉 (4.10)

=
∑
n

〈n|ψ〉〈ψ|Ô|n〉 =
∑
n

〈n|ρ̂ψÔ|n〉 (4.11)

= Tr(ρ̂ψÔ) = Tr(Ôρ̂ψ) (4.12)

9. Analogously, we can express probabilities and overlaps in terms of ρ̂

|〈φ|ψ〉|2 = Tr(ρ̂ψ|φ〉〈φ|) = Tr(|φ〉〈φ|ρ̂ψ) (4.13)

10. Since the expectation values of arbitrary operators and probabilities and overlaps can be expressed by the
operator ρ̂, the state |ψ〉 is completely characterized by ρ̂, which is called density operator.

11. Since |ψ〉 is normalized, we have
Trρ̂ = 1 (4.14)

12. For an example, take a particle moving in a 1D space x. The wavefunction is

〈x|ψ〉 = ψ(x) (4.15)

Inserting twice the identity
´
dx |x〉〈x| , the density matrix can written then as

ρ̂ = |ψ〉〈ψ| =
ˆ
dx

ˆ
dx′|x′〉〈x′|ψ〉〈ψ|x〉〈x| (4.16)

The matrix elements of ρ̂ are then

〈x′|ρ̂|x〉 = ρ(x′, x) = ρx′x = ψ(x′)ψ∗(x) (4.17)

One can see then that
Tr(ρ̂) =

ˆ
dx|ψ(x)2| = 1 (4.18)

13. Consider now a mixture of N pure states, or mixed state

ρ̂ =
N∑
k=1

pk|ψk〉〈ψk| (4.19)

where the weights pk obey
0 < pk ≤ 1,

∑
pk = 1 (4.20)

Now ρ̂ is no longer a projection operator. So the rule (ρ̂)2 = ρ̂ is only valid for pure states and indeed can
be used to distinguish between pure and mixed states in a basis invariant way.
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14. In general, we can think of mixed state as a collection of pure states, each with associated probability pk.
One reason we consider such mixed states is because the quantum states are hard to isolate, and hence
often entangled (“mixed”) to the environment. A mixed state can be for instance a beam of photons each
with its own polarization or any collection of pure states prepared with probability pk, i.e. an ensemble
of pure states.

15. Expectation values, i.e. experimentally measured values, are obtained as

〈Ô〉 = Tr(ρ̂Ô) =
∑
k

pkTr(|ψk〉〈ψk|Ô) (4.21)

i.e. a sum of Ok = Tr(|ψk〉〈ψk|Ô) weighted by pk.

16. Since ρ̂ is hermitian, we can diagonalize it:

ρ̂ =
M∑
k=1

λk|φk〉〈φk| (4.22)

where the M states |φk〉 are orthogonal and span the Hilbert space. Since ρ̂|φi〉 = λi|φi〉, the λi are the
eigenvalues of ρ̂.

17. In statistical physics, the probability for the k-th system of an ensemble formed by N elements to be
in a state |n〉 (we assume from now on that we adopt the orthonormal energy wavefunctions as basis) is
different from system to system. If the system is in |ψk〉 =

∑
n a

k
n|n〉, the probability of obtaining as a

result of a measurement the energy value corresponding to n is |akn|2.

18. The coefficients akn evolve according to

i~ȧkn(t) =
∑
m

Hnma
k
m(t) (4.23)

where Hnm are the matrix elements of Ĥ and of course for all k the normalization∑
n

|akn|2 = 1 (4.24)

is maintained.

19. Now the density operator is defined as the operator with matrix elements

ρnm =
N∑
k=1

λka
k
n(t)ak∗m (t) (4.25)

The diagonal elements ρnn are then the ensemble average over the probabilities |akn|2; the latter themselves
are averages over possible measurements on a single system. Then ρnn is the probability that a system
chosen at random in the ensemble is in the state n. The normalization condition∑

n

ρnn = 1 (4.26)

applies.

20. By differentiating Eq. (4.25) with respect to time and inserting (4.23) and its conjugate, we can see that
the operator ρ̂ obeys the quantum generalization of Liouville equation (von Neumann equation)

i~ρ̇mn = (Ĥρ̂− ρ̂Ĥ)mn (4.27)

or
i~ ˙̂ρ = [Ĥ, ρ̂] (4.28)
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Here again, as in the classical case, for a system to be in equilibrium ρ̂ must not depend on time and
therefore it commutes with Ĥ; therefore it has to depend on Ĥ, itself independent of time and can be
diagonalized with Ĥ. Therefore ρ̂, just as Ĥ, is represented by a diagonal matrix in the basis formed by
the energy eigenstates:

ρnm = ρnδnm (4.29)

In other representations ρ̂ is not diagonal, but is always symmetric (otherwise the probability to make a
transition from a state to another one would be different from the inverse and equilibrium could not be
maintained).

21. Quantum statistics therefore consists in expressing the density operator ρ̂ in terms of Ĥ. Once we have
ρ̂, the expectation value of any observable is Tr(ρ̂Ô), regardless of the basis.

4.2 Quantum ensembles
1. We can consider now the same ensembles we studied so far. For instance, the canonical ensemble ρc

becomes now a density operator

ρ̂c =
exp

(
−βĤ

)
Tr exp

(
−βĤ

) (4.30)

(let us be reminded that Tr exp
(
−βĤ

)
is a number, not an operator). The expression e−βĤ should be

interpreted as

e−βĤ =
∑
n

(−βĤ)n

n! (4.31)

Since Ĥm|n〉 = (En)m|n〉, one has

e−βĤ |m〉 =
∑
n

(−βĤ)n

n! |m〉 =
∑
n

(−βEm)n

n! |m〉 = e−βEm |m〉 (4.32)

Therefore, the matrix elements of ρ̂c in the energy basis are

ρnm =
〈n| exp

(
−βĤ

)
|m〉

Tr exp
(
−βĤ

) = exp (−βEn)
Tr exp (−βEn)δnm (4.33)

which obviously satisfies the normalization condition
∑
n ρnn = 1 and is indeed in the form (4.29). The

expression Tr in the last expression just means “sum over n”.

2. The average of any observable Ô is then

〈Ô〉 = Tr(ρ̂Ô) =
Tr
[
exp

(
−βĤ

)
Ô
]

Tr exp
(
−βĤ

) (4.34)

=
∑
n,m

ρnmOmn (4.35)

if Onm are the elements of Ô in the energy basis.
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3. For instance, the average energy is

U = 〈Ĥ〉 = Tr(ρ̂Ĥ) =
Tr
[
exp

(
−βĤ

)
Ĥ
]

Tr exp
(
−βĤ

) (4.36)

=
∑

n [exp (−βEn)En]∑
n exp (−βEn) (4.37)

= − ∂

∂β
log Tr exp

(
−βĤ

)
(4.38)

= − ∂

∂β
logZ(T, V,N) (4.39)

just as in the classical case.

4. For the grand canonical esemble one has, similarly,

ρ̂c =
exp

(
−β(Ĥ − µN̂

)
Tr exp

(
−β(Ĥ − µN̂)

) (4.40)

where now also N̂ is an operator (equal to N only for systems with constant number of particles).

5. For instance, let us evaluate the average energy of a single free particle,

U = 〈Ĥ〉 = Tr(ρ̂Ĥ) (4.41)

We can choose any basis, since the Trace is invariant with respect to transformations. Since for a free
particle Ĥ = p̂2/2m, we can choose the momentum basis 〈~k|, for which the matrix that represents Ĥ is
diagonal. We have

Ĥ|~k〉 = E|~k〉 (4.42)

where

E = ~2~k2

2m (4.43)

where in a box of size L one has ~k = π
L (nx, ny, nz). This basis is assumed orthonormalized, so 〈~k|~k′〉 =

δ(~k − ~k′) . We need first to find the elements of the density operator. We have

〈~k| exp(−βĤ)|~k′〉 = exp(−β ~
2~k2

2m )δ~k~k′ (4.44)

while the canonical partition function is

Z(T, V, 1) =
∑
~k

〈~k| exp(−βĤ)|~k′〉 =
∑
~k

exp(−β ~
2~k2

2m ) (4.45)

6. When the eigenvalues ~k lie very close together, we can approximate the sum as an integral. To do this,
we replace ∑

~k

→ V

(2π)3

ˆ
d3k (4.46)

since the elementary cell for ~k has volume in k-space equal to (2π/L)3. Then we obtain

Z(T, V, 1) = V

(2π)3

ˆ
d3k exp(−β ~

2~k2

2m ) = V

(2π)3

(
2mπ
β~2

)3/2
= V

λ3 (4.47)
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and finally the elements of the density operator

ρ~k~k′ = λ3

V
exp(−β ~

2~k2

2m )δ~k~k′ (4.48)

Since the elements of Ĥ in the momentum basis are ~2~k2/2m, the average energy of a single particle is
now

〈Ĥ〉 = Tr(ρ̂Ĥ) =
∑
~k~k′

ρ~k~k′H~k~k′ (4.49)

=
∑
~k~k′

λ3

V
exp(−β ~

2~k2

2m )~
2~k2

2m δ~k~k′ (4.50)

= V

(2π)3
λ3

V

~2

2m

ˆ
d3k~k2 exp(−β ~

2~k2

2m ) (4.51)

= λ3

(2π)3
~2

2m4π
ˆ ∞

0
dk k4 exp(−β ~

2k2

2m ) (4.52)

= λ3

2π2
~2

2m

(
2m
β~2

)5/2 ˆ ∞
0

dxx3/2 exp(−x) (4.53)

= 3
2kT (4.54)

(the last integral is Γ(5/2) = 3
√
π/4) in exact correspondance with the classical result.

7. The same result could have been obtained much faster by the usual relation between partition function
and average energy (applied in this case to a single particle)

〈Ĥ〉 = −∂ logZ(T, V, 1)
∂β

(4.55)

8. For N free particles, the partition function is simply

Z(T, V,N) = (Z(T, V, 1))N = V N

λ3N (4.56)

Notice that the Gibbs factor is missing, since we have not yet accounted for indistinguishable particles.

4.3 Symmetry of many-particle wave functions
1. Let us consider now a system of two particles, and a Hamiltonian that is the sum of two independent

Hamiltonians. The Hamiltonian is then invariant under a permutation of the two particles. Writing
the Hamiltonian as a differential operator, we know that in such case, the solution can be written as
a separable function: ψ(r1, r2) = φa(r1)φb(r2), which should be read as “particle 1 is in state a, par-
ticle 2 in state b”. However, this wavefunction is not invariant under permutation, since in general
φa(r1)φb(r2) 6= φb(r1)φa(r2). We can however always symmetrize ψ in two ways, obtaining a symmetric
and an antisymmetric wavefunction,

ψS(r1, r2) = A[φa(r1)φb(r2) + φa(r2)φb(r1)] (4.57)
ψA(r1, r2) = A[φa(r1)φb(r2)− φa(r2)φb(r1)] (4.58)

In the second case, the wavefunction gets an overall minus sign under permutation, but this is not a
problem since wavefunctions are always defined up to a phase. This scheme can be applied to any number
of particles.
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2. More in general, if the Hamiltonian of a system is invariant under a certain operation (symmetry), there
must be an operator which commutes with Ĥ and can therefore be diagonalized along with Ĥ. In our
case, first applying a Hamiltonian operator to get the energy states and then a permutation is the same
as first permuting the particles and then applying the Hamiltonian.

3. For a Hamiltonian that is invariant under the exchange between two particles, eg under exchange of
particles i and j, we associate the permutation (or transposition) operator Pij such that

P̂ijψ(...ri...rj ...) = ψ(...rj ...rj ...) (4.59)

Permuting twice among i, j one returns to the original wavefunction, so P̂ 2
ij = Î. Its eigenvalues are then

obtained by noting that

P̂ijψ = λψ (4.60)
P̂ 2
ijψ = ψ = λ2ψ (4.61)

which therefore gives the two eigenvalues λ = ±1. Under an exchange of particles i, j , therefore, the
eigenfunctions of P̂ij either remain the same (λ = 1; symmetric states) or change sign (λ = −1; antisym-
metric states). This implies that there exist a class of particles such that no two of them can occupy the
same state (Pauli principle). These particles are the fermions. All the other particles are called bosons.
A general permutation can be decomposed into a number P of 2-particle transpositions P̂ij .

4. If the Hamiltonian is invariant with respect to arbitrary permutations, there is a generalized permutation
operator P̂ that operates such permutations. Since P̂ can be diagonalized simultaneously with Ĥ, one
can express any wavefunction as a sum of eigenstates of the permutation operator. This means that one
can take any wavefunction and symmetrize or antisymmetrize it by a linear combination of permuted
wavefunctions

ψS =
∑
P

P̂ψ (4.62)

ψA =
∑
P

(−1)P P̂ψ (4.63)

where the sum extends over all distinguishable permutations.

5. Take now a system of N non-interacting particles, such that Ĥ =
∑
i ĥ(ri, pi). This Hamiltonian is clearly

invariant under any permutation. Its energy eigenstates are simply products of the 1-particle eigenstates

ψ =
N∏
i

φki = φk1(r1)φk2(r2)... (4.64)

and consequently the most general normalized A,S wavefunctions can be formed by a A,S linear combi-
nation of eigenfunctions

ψS = A
∑
P

P̂

(
N∏
i

φki

)
(4.65)

ψA = 1√
N !

∑
P

(−1)P P̂
(

N∏
i

φki

)
(4.66)

where A is a normalization constant still to be determined (one has to take into account the fact that if
several particles have the same k̂, then the permutation should not be counted when forming ΨS since they
corresponds to the same state, so are not distinguishable). The second normalization constant, 1/

√
N !,

simply takes into account the fact that there are N ! permutation among N numbers.
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6. Notice that ∑
P

(−1)P P̂
(∏

i

φki

)
= det Φ (4.67)

where Φ is the matrix formed by a first row equal to φk1(r1), φk1(r2), φk1(r3)..., followed by a second row
equal to φk2(r1), φk2(r2), φk2(r3)... etc. This is called Slater determinant. If two of the quantum numbers
ki are equal, i.e. if two particles occupy the same quantum state, the determinat vanishes and there is no
antisymmetric wavefunction.

7. A powerful theorem (the spin-statistics theorem) that can be demonstrated in quantum field theory says
that fermions have half-integer spin, while bosons have integer spin, and they keep this feature until they
exist.

8. The constant A can be determined only if we know how many permutations are possible. If there are ni
bosons in the state ki, the normalization is A = (N !n1!n2!...)−1/2.

4.4 Ideal quantum systems
1. A quantum system of identical particles can therefore be characterized by either a symmetric or antisym-

metric wavefunction
|k1, k2, ...kN 〉A,S (4.68)

and correspondingly the canonical partition function is

Z(T, V,N) = Tr[exp(−βĤ)] (4.69)

= 1
N !
∑
〈k1, k2, ...kN | exp(−βĤ)|k1, k2, ...kN 〉A,S (4.70)

2. Both A,S states can be approximated for non-interacting particles at high temperatures by the Maxwell-
Boltzmann partition function, which can be simply written for indistinguishable quantum states as above
with the factorized wavefunction

|k1, k2, ...kN 〉MB = |k1〉|k2〉...|kN 〉 (4.71)

3. In the energy representation
Ĥ|k1, k2, ...kN 〉A,S = E|k1, k2, ...kN 〉A,S (4.72)

where E =
∑
εki , so that exp(−βĤ) diagonalizes into exp(−βE). The energies εk are the 1-particle

energy levels.

4. As we have seen already, for the MB statistics, the partition function factorizes:

ZMB(T, V,N) = 1
N ! [Z(T, V, 1)]N (4.73)

5. In order to find a similar simplification for fermions and bosons, we introduce the concept of occupation
numbers. Instead of expressing a state by enumerating the quantum numbers for each particle, as in
|k1, k2, ...kN 〉A,S , we can express it by enumerating how many particles sit in state k1, how many in k2
etc., as in

|n1, n2, ...〉A,S (4.74)

with the convention that n1 refers to the occupation number of the lowest-energy state, the number n2 to
the second level and so on. For instance, if there are six particles, two in state k1, three in k2, and one in
k3, instead of writing |k1, k1, k2, k2, k2, k3〉 we write |2, 3, 1〉. Clearly the constraint

N =
∞∑
k

nk (4.75)
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must be fulfilled, and the total energy eigenvalues can be written in function of the occupation numbers
as

E =
∞∑
k

εknk (4.76)

(notice that the latter expression is not a constraint, since in the canonical and grand canonical ensembles
E is not constant).

6. The ordered sequence nk, along with the specification of the symmetry of the state, completely determine
the state of the quantum system.

7. For bosons, the occupation numbers can be any value from zero to N (Bose-Einstein statistics, BE). For
fermions, only n = 0, 1 is allowed, due to Pauli principle (Fermi-Dirac statistics, FD).

8. We define now the number operator through the relation

N̂ |n1, n2, ...〉A,S = N |n1, n2, ...〉A,S (4.77)

and the occupation number operator through

n̂k|n1, n2, ...〉A,S = nk|n1, n2, ...〉A,S (4.78)

where nk = 0, 1, 2, .. for bosons and nk = 0, 1 for fermions.

9. The orthonormality relation now becomes

〈n′1, n′2, ...|n1, n2, ...〉A,S = δn1n′1
δn2n′2

... (4.79)

10. It is then clear that the density operator acting on a state defined by the occupation numbers is

〈n′1, n′2, ...|ρ̂|n1, n2, ...〉A,S = Z−1 exp(−β
∞∑
k=1

nkεk)δn′1n1δn′2n2 .... (4.80)

where

Z(T, V,N) =
∑
{nk}

exp(−β
∞∑
k=1

nkεk) (4.81)

and of course the sum
∑
{nk} must run over all the configurations compatible with the constraintN =

∑
nk

and with the Pauli principle.

11. The diagonal entries of the matrix representing ρ̂

P{nk} = 〈n1, n2, ...|ρ̂|n1, n2, ...〉A,S = Z−1 exp
(
−β

∞∑
k=1

nkεk

)
(4.82)

are then to be interpreted as the probability of finding the particular configuration {nk}.

12. Similarly, for the grand canonical density operator one finds

〈n′1, n′2, ...|ρ̂|n1, n2, ...〉A,S = Z(T, V, µ)−1 exp(−β
∞∑
k=1

nk(εk − µ))δn′1n1δn′2n2 .... (4.83)

Now however there is no longer the constraint N =
∑
nk, since N is not fixed in the grand canonical case.

Finally, the probability of a particular configuration is

P{nk} = Z−1 exp
(
−β

∞∑
k=1

nk(εk − µ)
)

(4.84)
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13. Now comparing Eq. (4.73) and Eq. (4.81), one realizes that it is possible to write the partition function
in a very general way

Z(T, V,N) =
∑
{nk}

g{nk} exp
(
−β

∞∑
k=1

nkεk

)
(4.85)

where the statistical weight g is defined as

g{nk} = 1
n1!n2!... MB

g{nk} = 1, BE
g{nk} = 1, if all nk = 0, 1, FD

0, otherwise

Notice that the N ! factor of Eq. (4.70) now disappears, since we are summing over distinct configurations
{nk}.

14. For the MB statistics, this statement can be proved by making use of the multinomial theorem, according
to which

(x1 + x2 + ...+ xm)N =
N∑

n1,n2,...nm

N !
n1!n2!...nm!

m∏
t=1

xntt (4.86)

(with
∑
k nk = N). Then we see that

1
N !

N∑
n1,n2,..

N !
n1!n2!... exp(−βε1)n1 exp(−βε2)n2 ... = 1

N !

( ∞∑
k=1

exp(−βεk)
)N

(4.87)

= 1
N ! [Z(T, V, 1)]N (4.88)

15. The same goes for the grand canonical partition function

Z(T, V, µ) =
∑
{nk}

g{nk} exp
(
−β

∞∑
k=1

nk(εk − µ)
)

(4.89)

Here the sum is not constrained by N =
∑
k nk and many calculations become easier

16. Now, for BE, the latter expression can be simplified as follows

Z(T, V, µ) =
∑
n1

∑
n2

...

∞∏
k=1

exp (−βnk(εk − µ)) (4.90)

=
∑
n1

exp (−βn1(ε1 − µ))
∑
n2

exp (−βn2(ε2 − µ)) ... (4.91)

that is, as a product of sums:

ZBE(T, V, µ) =
∞∏
k=1

∞∑
nk=0

[exp(−β(εk − µ)]nk (4.92)

=
∞∏
k=1

1
1− z exp(−βεk) (4.93)

(z is the fugacity), where we have employed the geometric sum rule (3.160).
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17. For the Fermi-Dirac statistics we have

ZFD(T, V, µ) =
∞∏
k=1

1∑
nk=0

([exp(−β(εk − µ)]nk (4.94)

=
∞∏
k=1

(1 + z exp(−βεk)) (4.95)

18. The same calculation also leads to the MB grand canonical partition function

ZMB(T, V, µ) =
∞∏
k=1

exp [z exp(−βεk)] (4.96)

which coincides with Eq. (3.218).

19. The three grand canonical partition functions can be summarized as

logZ = 1
a

∞∑
k=1

log(1 + az exp(−βεk)) (4.97)

with a = 1 (FD), a = −1 (BE) and a→ 0 (MB). We see that the classical MB case is recovered for z → 0:
we will often employ this limit in the following to obtain the classical results. Notice that µ depends on
T , so T →∞ does not imply z = eµ/KT → 1.

20. From the grand canonical partition function one obtains the grand potential

Φ(T, V, µ) = −kT logZ(T, V, µ) = U − TS − µN = −pV (4.98)

and all the thermodynamical relations.

21. From the general recipe for the average on an observer,

〈Ô〉 = Tr(ρ̂Ô) =
Tr
[
exp

(
−β(Ĥ − µN̂

)
Ô
]

Tr exp
(
−β(Ĥ − µN̂)

) (4.99)

one obtain several important relations, as for instance the expected total particle number

N =
∞∑
k=1
〈n̂k〉 = kT

∂

∂µ
logZ =

∞∑
k=1

1
z−1 exp(βεk) + a

(4.100)

where the fugacity is z = exp(βµ), from which it follows the average occupation number

〈n̂k〉 = 1
exp(β(εk − µ)) + a

(4.101)

The one-particle energy levels εk are to be determined by the one-particle Hamiltonian ĥ. Notice that
µ < 0 for bosons, so there is no singularity for εk = µ.

22. The BE average occupation number always is larger than MB, while the FD is smaller. For small occu-
pation numbers, the three distributions tend to the MB one (Figs. 4.1,4.2).

23. Finally, the average energy is

U = 〈Ĥ〉 = −∂ logZ
∂β

|z,V =
∞∑
k=1

εk
z−1 exp(βεk) + a

(4.102)

where one should notice that the derivative is performed by keeping z constant, i.e. βµ constant (not just
µ).

24. If the particles (bosons or fermions) have gs = 2s+ 1 spin degrees of freedom (for instance, gs = 2 for spin
1/2 fermions) or gs polarizations states (e.g. gs = 2 for photons), then the occupation numbers must be
multiplied by gs, also called spin degeneracy.
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Figure 4.1: Plot of 〈nk〉 for BE, FD and MB statistics.
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Figure 4.2: Plot of 〈nk〉 for a fermion gas.
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Figure 4.3: Plot of gn(z).

4.5 Bose gas
1. From Eq. (4.100) written for a boson gas, ie a = −1, one can obtain the fugacity of µ from N . Since
N ≥ 〈nk〉 one sees that εk > µ for any quantum number k. If the smallest energy level is zero (as in an
ideal gas in an infinite volume) then εk=0 = 0 and µ ≤ 0. This in turn implies 0 ≤ z ≤ 1.

2. For a large volume, the sum in k can be approximated by an integral
∞∑
k=1
→ V

(2π)3

ˆ
d3k = 2πV

h3 (2m)3/2
ˆ ∞

0
ε1/2dε =

ˆ ∞
0

g(ε)dε (4.103)

where we used ε = ~2~k2/2m (valid for non relativistic particles) and where

g(ε) = 2πV
h3 (2m)3/2ε1/2 = V

λ3
2√
π
β3/2ε1/2 (4.104)

is the one-particle density of states.

3. However the integral is not a good approximation near ε = 0, where the discreteness of the energy levels
is important. In order to take this into account, the grand canonical partition must therefore be written
as

logZ = −
∑
k

log(1− z exp(−βεk)) (4.105)

= −
ˆ
g(ε) log(1− z exp(−βε))dε− log(1− z) (4.106)

Also, we have
N =

ˆ
g(ε)

z−1 exp(βε)− 1dε+ z

1− z (4.107)

The last term is indeed the expected number of particles in the ground state.

1. These integrals can be performed by defining the function

gn(z) = 1
Γ(n)

ˆ ∞
0

xn−1dx

z−1 exp(x)− 1 (4.108)

(see Fig. 4.3) for 0 ≤ z ≤ 1 and n > 1. Two useful values for Γ(n) are Γ(3/2) =
√
π/2 and Γ(5/2) = 3

√
π/4.

We have then

logZ = V

λ3 g5/2(z)− log(1− z) (4.109)

N = V

λ3 g3/2(z) + z

1− z = Nε +N0 (4.110)
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Figure 4.4: Plot of z as a function of N . The straight orange line is the approximation z ∼ N of Eq. (4.114).
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Figure 4.5: Plot of z as a function of temperature for N = 103 (bottom curve) and N = 104 (top curve), and
V/λ3 = 1. For large T , the behavior is z ∼ T−3/2. The vertical lines mark the critical Tc below which a BEC
forms.
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where the last term denotes the number of particles in excited states and the number of particles in the
ground state, respectively. The equation for N can be used to obtain, numerically, z as a function of N
(see Fig. 4.4). For very small z the ground state is empty; for z → 1, however, it gets progressively filled
up.

2. The Bose-Einstein function gn(z) has the useful Taylor expansion for 0 ≤ z ≤ 1

gn(z) =
∞∑
k=1

zk

kn
(4.111)

which shows that for small z,gn(z) ∼ z. The value at z = 1 equals the Riemann function ζ(n) defined as

gn(1) = ζ(n) =
∞∑
k=1

1
kn

(4.112)

Some important values are ζ(3/2) = 2.612, ζ(4) = π4/90. Another useful property is the recursion

∂

∂z
gn(z) = 1

z
gn−1(z) (4.113)

3. For very small z we have then N ≈ Nε = V z/λ3, i.e.

z = λ3N

V
(4.114)

or z ∼ T−3/2. Then we recover the result for a classical ideal gas obtained from the Sackur-Tetrode
formula Eq. (3.42)

µ = −kT log V

λ3N
(4.115)

For very large temperatures therefore z → 0 (notice that this could not have been guessed from the
definition z = eµ/kT , since µ depends on T as well). For very small T , instead, Nε → 0 and z →
N0/(1 +N0)→ 1 (taking as usual N ∼ N0 →∞). This behavior is represented in Fig. (4.5).

4. The maximum number of particles that can be contained in excited states is

Nε(max) = V

λ3 ζ(3/2) (4.116)

where ζ is the Riemann function and ζ(3/2) = g3/2(1) ≈ 2.612. If N > Nε(max) then a fraction of particles
will have to stay in the ground state: this is called Bose-Einstein condensation (BEC). Predicted by Bose
and Einstein in the 20s, the BEC has been observed only in 1995.

5. This happens then when
Nλ3

V
= ρλ3 > ζ(3/2) (4.117)

(λ = h/(2πmkT )1/2 and ρ ≡ N/V ) ie for large densities and/or small temperatures. In this situation,
the de Broglie thermal wavelength λ is larger than the mean particle separation and the wavefunctions
overlap. When this condition is satisfied, the system will start to condense more and more into the ground
state. Any additional particle added to the system will also condense. The entire system can be described
as a single coherent quantum state. Since high densities often imply a departire from an ideal gas (or even
liquefaction or solidification), BECs are typically produced at extremely low temperatures, of the order of
nK.

6. In order for the ground state to be significantly populated, N0/N has to be close to unity. For very large
N this is possible only if z ≈ 1. So in a Bose-Einstein condensation we can approximate z = 1.
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7. The critical temperature at which a BEC begins is

kTc =
(
N

V

)2/3
h2

2πmζ2/3(3/2)
(4.118)

In practice, the temperature for all interesting physical systems is extremely low, of the order of nanoKelvins,
except for Helium-4 (2.17K), which however cannot be described by a simple non-interacting gas. At these
low temperatures, a typical gas liquifies or solidifies. In order to maintain the gas phase, the systems have
to be very rarefied, i.e. N/V very small.

8. The pressure can be easily obtained by Eq. (3.214), pV = kT logZ. This gives

p = kT

λ3 g5/2(z)− kT

V
log(1− z) (4.119)

The second term becomes negligible in the thermodynamic limit V →∞, even when z → 1 (because then
V −1 log(1− z)→ −V −1 log(1 +N0)→ 0 for large V,N0 such that N0/V = const). This is due to the fact
that the ground state does not contribute to pressure since it has no kinetic energy. In a BEC we can put
z = 1 and therefore we can approximate

p ≈ kT

λ3 ζ(5/2) (4.120)

We see then than in a BEC the pressure depends only on temperature, not on volume. Every new particle
added to the system will have to go to the ground state, without contributing to pressure. The same
applies for a volume compression, which decreases Nε and therefore increases N0 for a given N .

9. On the other hand, for z � 1, p = kTz/λ3. Since at the same time N ≈ Nε = V z/λ3, we obtain
pV = NkT , i.e. the classical ideal gas law.

10. Eq. (4.120) shows that along an isothermal compression the curve p(V ) is horizontal, just as during
a gas-liquid phase transition. Here the phases are the condensed state and the excited particles. The
Bose-Einstein condensation takes place in momentum space rather than in physical space.

11. For the energy we have

U =
´ g(ε)ε
z−1 exp(βε)−1dε = 3

2kT
V

λ3 g5/2(z) (4.121)

(there is no ground state term now since ε0 = 0) . For small z this reproduces the classical ideal gas case
(using Eq. 4.114)

U = 3
2kT

V

λ3 g5/2(z) ≈ 3
2kT

V

λ3 z = 3
2NkT (4.122)

while for z → 1

U = 3
2kT

V

λ3 g5/2(1) = 3
2kT

V

λ3 ζ(5/2) (4.123)

12. The heat capacity can be evaluated using the thermodynamical relations

U = −∂ logZ
∂β

|z,V (4.124)

CV = ∂U

∂T
|V,N (4.125)

(notice that to evaluate U we fix z, but to evaluate CV we need ∂z/∂T |V,N ). A good approximation valid
for T > Tc is as follows (see similar calculation in Sec. 4.8)

CV
Nk
≈ 15

4
g5/2

g3/2
− 9

4
g3/2

g1/2
(4.126)
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Figure 4.6: Plot of CV for a boson gas.

while, for T < Tc, differentiation of Eq. (4.123) gives immediately

CV
Nk
≈ 15

4 ζ(5/2) V

Nλ3 (4.127)

For very small z, gn(z) ≈ z for any n, and we see that for T > Tc the heat capacity CV → 3NkT/2, i.e.
the classical result. For T < Tc, instead, we see that the heat capacity goes to zero as CV ∼ T 3/2.

13. The plot of CV /Nk shows a cusp at T = Tc in the limit N →∞ (Fig. 4.6). This is a typical property of
second-order phase transitions: the heat capacity is continuous but its derivative is discontinuous.

14. Combining p and U , one can immediately show that the equation of state for a boson for any temperature
is the standard one for a monoatomic ideal gas (3N degrees of freedom, so (3/2)NkT = U)

p = 2
3
U

V
(4.128)

(to avoid confusion, notice that here U is just the kinetic energy; since the rest mass energy U0 = Nmc2

is much larger than the kinetic energy in the non-relativistic regime we are considering, one has also
p � ρ ≡ U0/V , so that in General Relativity or Cosmology one says that matter has equation of state
p ≈ 0, meaning that p� ρ).

15. One finds also, as expected from the Third Law, that S → 0 for T → 0. In fact, since for T → 0 we can
consider in Φ = −kT logZ (Eq. 4.106) only the ground state, we have

S = −∂Φ
∂T
|V,µ = k

∂

∂kT
(kT log(1− eµ/kT )|V,µ (4.129)

= k log(1− eµ/kT ) + k2Tµeµ/kT

(kT )2(1− eµ/kT )
(4.130)

→ 0 (4.131)

since eµ/kT → 0 for T → 0 because µ is negative and we are keeping µ constant, and T−1eµ/kT → 0 in
the same limit. Notice that in some cases, like here, we perform partial derivative keeping µ constant,
but in other cases, like in Eq. (4.124), we need to keep z, not µ, constant, and in yet other cases, like Eq.
(4.125), neither are kept constant and one has to consider that µ depends on T as well.
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4.6 Photon gas
1. For a gas of photons we can proceed exactly in the same manner, except now

εk = ~ω = ~c|~k| (4.132)

Then we obtain for the number of states in dε

g(ε)dε = 2V
(2π)3 d

3k = 8πV k2

(2π)3 dk = V

(~c)3
ε2

π2 dε (4.133)

where the initial factor of 2 comes from considering both polarization states (gs = 2). Then we obtain

g(ε) = V

(~c)3
ε2

π2 (4.134)

Moreover, we need to take a vanishing chemical potential, µ = 0, since massless bosons in the state ε→ 0
can be created without expenditure of energy (photon number is not conserved due to the process of
absorption and reemission of the container’s walls).

2. The average occupation number and energy are then

〈nk〉 = 1
eβεk − 1 (4.135)

〈εk〉 = εk
eβεk − 1 (4.136)

The total energy is
U =

ˆ
g(ε)εdε
eβε − 1 =

ˆ
gω(ω)~ωdω
eβε − 1 (4.137)

where gω(ω) = g(ε)(dε/dω) = g(ε)~. Denoting with u(ω)dω the amount of energy density in the frequency
interval dω, we can define the spectral distribution u(ω) of the energy density as

u(ω) = 1
V
g(ε) ~2ω

eβε − 1 = ~ω3

c3π2(eβ~ω − 1) (4.138)

This is indeed the famous Planck’s black body radiation formula. For small ω (long wavelengths), the
behavior can be approximated as u(ω) ∼ ω2, which is the Rayleigh-Jeans approximation, while for large
ω one recovers Wien’s approximation u(ω) ∼ ω3e−β~ω. Planck’s law has a peak at ~ω ≈ 2.82kT (see Fig.
4.7).

3. The total energy density is then
U

V
=
ˆ ∞

0
u(ω)dω = (kT )4

π2~3c3

ˆ
x3dx

ex − 1 = π2

15
(kT )4

~3c3
(4.139)

(the last integral equals ζ(4)Γ(4) = π4/15). The characteristic T 4 behavior is called Stefan’s Law. Stefan’s
constant σ is obtained when writing the expression for the radiation that leaks out of a cavity (black body
box). In this case the radiation flow per unit area is Uc/4V = σT 4 where σ = π2k4/60~3c2.

4. The grand canonical partition function for a photon gas is

logZ = pV

kT
= −

∑
k

log(1− e−βε)→ −
ˆ
g(ε) log(1− e−βε)dε (4.140)

The additional ground state term is now always negligible in the limit of large V with respect to the
integral. With an integration per parts we obtain

logZ = β

3

ˆ
εg(ε)dε

exp(βε)− 1 = β

3
V

(~c)3
1
π2

ˆ (βε)3d(βε)
exp(βε)− 1 (4.141)

= 1
3

V

(~cβ)3
1
π2

ˆ
x3dx

expx− 1 = 1
3

V

(~cβ)3
1
π2 ζ(4)Γ(4) (4.142)

= V

(~cβ)3
π2

45 (4.143)
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Figure 4.7: Planck spectrum for various temperatures (kT is in units of ~/sec; the units of u are arbitrary).
The vertical lines mark the peak at 2.82kT .

from which we obtain all the thermodynamical relations. For instance we have the relativistic equation of
state

p = π2

45
(kT )4

(~c)3 = 1
3
U

V
= 1

3ρ (4.144)

where ρ is the energy density. Here, contrary to Eq. (4.128), we are in a relativistic regime so this equation
of state holds also in GR and cosmology. The two general-relativistic expressions for massive and massless
particles are then p = 0 and p = ρ/3, respectively.

4.7 Phonons
1. Phonons are collective excitations of atoms in a lattice. We only consider phonons produced thermally

by random excitations of a monoatomic lattice, not acoustic phonons produced by external perturbations
or optical phonons produced by diatomic ions. Because of their properties that are similar to the wave
representation of particles, phonons are also called quasi-particles.

2. A solid can be schematically approximated as a collection of atoms of equal massm at positions x1, x2, ...xN
(each of the x′s represent the three coordinates of the atoms) oscillating around their average positions
x̄i, x̄2, ..., where the potential is supposed to possess a minimum. Around this minimum, the potential can
be approximated as

V (x1, x2, ..xN ) ≈ V0 + 1
2
∑
i,k

∂2V

∂xi∂xk
|min(xi − x̄i)(xk − x̄k) =

∑
i,k

αikξiξk (4.145)

where ξn = xn − x̄n. We now put the irrelevant constant V0 to zero. The corresponding Hamiltonian is

H =
N∑
i

1
2mξ̇

2
i +

N∑
i,k

αikξiξk (4.146)

3. The real, symmetric matrix αij can now be diagonalized (simultaneously with the kinetic term mδij ξ̇iξ̇j
since the identity matrix commutes with any matrix), by introducing new coordinates qi

H =
3N∑
i

1
2m(q̇2

i + ω2
i q

2
i ) (4.147)

where now the sum extends to 3N for N atoms each with three spatial degrees of freedom. The coordinates
qi, also called normal modes, are linear combinations of the atoms’ coordinates xi. Their oscillations rep-
resent therefore collective motions, i.e. waves propagating through the solid: the phonons. The frequencies
ωi are the phonon eigenfrequencies.
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Figure 4.8: Illustration of phonons in a square lattice. Credit: Wikipedia, FlorianMarquardt

4. To simplify further the problem we adopt now Einstein’s assumption that all eigenfrequencies are the same.
The problem is then identical to 3N independent, distinguishable, quantum oscillators with frequency ω.
However the frequency ω has to be interpreted not as the oscillation frequency of a single atom but as the
frequency of the phonon waves. Although the oscillators are distinguishable, the phonons are not, and we
can apply the BE statistics.

5. The average excitation level for each oscillator is

〈n〉 = 1
eβ~ω − 1 (4.148)

and the average energy is 〈ε〉 = ~ω( 1
2 + 〈n〉). In view of the phonon interpretation, the average excitation

level should be interpreted as the number of indistinguishable excitation quanta per oscillator, each of
them of energy ~ω. So instead of having many oscillators at different energy levels, we have many waves
each carrying a ~ω quantum of energy. The two pictures are completely interchangeable.

6. In this way, we see the phonons as very similar to photons. They are the energy quanta of the oscillations
in a solid and each quantum carries an energy ∆ε = ~ω. Their velocity of propagation is however not
the speed of light but some value cs (speed of sound) which in general also depends on whether the wave
oscillates transversally or longitudinally with respect to the direction of propagation ~k.

7. The problem can then be immediately solved using the Bose-Einstein distribution. Just as for the photon
case, the phonons are not conserved and the chemical potential vanishes. The energy is found to be

U = 3N〈ε〉 = 3N~ω
(

1
2 + 1

eβ~ω − 1

)
(4.149)

and the heat capacity becomes

CV = ∂U

∂T
|V,N = 3Nk(β~ω)2 eβ~ω

(eβ~ω − 1)2 (4.150)

and is formally identical to the one for quantum oscillators, see Eq. (3.172) and Fig. (3.1).
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8. The heat capacity goes to zero as expected for T → 0 while it takes the classical value CV = 3Nk for
large temperatures, in agreement with the virial theorem for 6N degrees of freedom (3N kinetic terms,
3N potential terms) .

9. The assumption of a single frequency is of course too crude. Debye generalized the Einstein model by
assuming a continuous spectrum of frequencies up to the largest allowed by the discrete nature of the
atom lattice, the cut-off frequency ωc, corresponding to a wavelength λc = 2πv/ωc of the order of the
mean interparticle distance, if v is the wave propagation speed. The density of states g(ε) for a system
that obeys a linear relation ε = ~csk is Eq. (4.133), which was however for two polarizations; so for one
polarization we have

g(ε) = V

2(~cs)3
ε2

π2 (4.151)

For phonons, we have in fact three polarization, two transversal with velocity ct and one longitudinal with
velocity cl, so

g(ε) = V

(~ct)3
ε2

π2 + V

2(~cl)3
ε2

π2 (4.152)

10. The total number of normal modes is 3N , so we must impose the condition

3N =
ˆ εc

0
g(ε)dε (4.153)

(εc = ~ωc) to obtain the cut-off frequency

ω3
c = 18π2N

V
( 1
c3l

+ 2
c3t

)−1 (4.154)

which indeed shows that λc = 2πcl,t/ωc is approximately the interparticle mean separation (V/N)1/3.
Then we see that

g(ε) = 9N ε2

(~ωc)2 (4.155)

11. Then, since g(ω) = g(ε)~, one obtains

U =
ˆ ωc

0
g(ω)〈ε〉dω = 9N~

ω3
c

ˆ ωc

0
ω3dω( 1

eβ~ω − 1 + 1
2) (4.156)

and

CV = 9Nk
(
kT

~ωc

)3 ˆ xc

0
dx

x4ex

(ex − 1)2 (4.157)

with xc = ~ωc/kT , and one can see that CV ∼ T 3 for small T (the integral evaluates to the constant
4π4/15 for xc →∞), in better agreement with experiments than the exponential behavior of the Einstein
model. The cut-off frequency ωc depends on the transverse and longitudinal speed of sound and in practice
is estimated from measurements. Even the Debye model is however just a rough approximation to the
real cases.

12. The heat capacity does not take into account the degrees of freedom associated with the free electrons in
a metal. This however is a very good approximation at room temperature. The electrons are fermions
and obey the Fermi distribution; as we will see in the next section, their heat capacity goes to zero for
temperatures below their Fermi temperature, which in metals happens to be of the order of 104 ÷ 105 K
(10eV)
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4.8 Fermi gas
1. For a gas of non-interacting fermions, the grand canonical partition function is

logZ =
∑
k

log(1 + z exp(−βεk)) (4.158)

where again the fugacity is to be evaluated as a function of N using the relation

N =
∞∑
k=1
〈n̂k〉 =

∞∑
k=1

1
z−1 exp(βεk) + 1 (4.159)

Now the fugacity z can take any positive value.

2. Converting sums to integrals, we have

logZ =
ˆ ∞

0
g(ε) log(1 + z exp(−βε))dε (4.160)

N =
ˆ ∞

0

g(ε)
z−1 exp(βε) + 1dε (4.161)

where for non relativistic particles with spin s we have

g(ε) = gs
2πV
h3 (2m)3/2ε1/2 (4.162)

where gs = 2s+ 1 is the degeneracy of states due to the spin.

3. The additional k = 0 term that was necessary in the boson case, see Eqs. (4.110), is now negligible in the
thermodynamic limit: in fact, z/(1 + z) is always smaller than unity. This implies immediately that there
is no Bose-Einstein condensations for fermions, due to the Pauli principle.

4. As in the boson case, we define the integral function

fn(z) = 1
Γ(n)

ˆ ∞
0

xn−1dx

z−1 exp(x) + 1 =
∞∑
k=1

(−1)k−1 z
k

kn
(4.163)

(see Fig. 4.9) and express the integrals as (integrating by parts ε1/2 in 4.160)

logZ = gsV

λ3 f5/2(z) (4.164)

N = gsV

λ3 f3/2(z) (4.165)

5. The function fn(z) is a monotonous function that grows as z for z � 1 and as (log z)n/n! for z � 1, and
is (1− 21−n)ζ(n) for z = 1. They obey the recursion relation

∂

∂z
fn(z) = 1

z
fn−1(z) (4.166)

6. Since we have Z we can evaluate all the thermodynamical equations of state. So we have for instance the
internal energy

U = − ∂

∂β
logZ|z,V = 3

2NkT
f5/2(z)
f3/2(z) (4.167)

At small densities, high temperatures one has z � 1 and one obtains the usual EOS of the ideal gas,
U = 3NkT/2 and p = 2U/3V = (2/3)ρ.
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Figure 4.9: Plot of fn(z).
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Figure 4.10: Heat capacity for fermions for two values of the gas density (higher curve, lower density, i.e. “more
classical”).
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7. The specific heat can be evaluated by the usual expression CV = (∂U/∂T )|V,N . One need however also
(∂z/∂T )|V,N . This can be evaluated by making use of the recursion relation. One has in fact

∂z

∂T

1
z
f1/2 = ∂z

∂T

∂

∂z
f3/2 =

∂f3/2

∂T
(4.168)

Now from Eq. (4.165) one has that f3/2 = Nλ3/V gs depends on T only through λ3, so that

∂f3/2

∂T
= − 3

2T
Nλ3

V gs
= − 3

2T f3/2 (4.169)

and finally
∂z

∂T
|V,N = −3

2
z

T

f3/2

f1/2
(4.170)

8. Then we have (we put f ′ = ∂f/∂z)

CV = ∂U

∂T
|V,N = 3

2Nk
f5/2

f3/2
+ 3

2NkT (
f ′5/2

f3/2
−
f5/2f

′
3/2

f2
3/2

) ∂z
∂T

(4.171)

= 3
2Nk

f5/2

f3/2
− 9

4NkT (
f3/2

zf3/2
−
f5/2f1/2

zf2
3/2

) z
T

f3/2

f1/2
(4.172)

= 15
4 Nk

f5/2

f3/2
− 9

4Nk
f3/2

f1/2
(4.173)

See Fig. (4.10).

9. For large temperatures, fn(z)→ z and one recovers the classical result CV = 3Nk/2.

10. From the expressions for U,N and from µ ≡ kT log z and pV/kT = logZ one obtains also the free energy
and entropy

F = Nµ− pV = NkT (log z −
f5/2

f3/2
) (4.174)

S = U − F
T

= Nk(5
2
f5/2

f3/2
− log z) (4.175)

11. For T → 0, z � 1 and we can use the approximation fn(z) = (log z)n/n!. Moreover, the mean occupation
number can be approximated by a step function

〈nk〉 ≈ Θ(µ− ε) (4.176)

where Θ(x) = 0 for x < 0 and 1 otherwise, i.e. all the states are occupied by a single (or gs) fermion for
ε < µ and are empty above this threshold.

12. Then one gets the equations of state for a degenerate (T → 0) fermion ideal gas

p ≈ gs

(
2πm
h2

)3/2
µ5/2 8

15
√
π

(4.177)

n ≡ N

V
≈ gs

(
2πm
h2

)3/2
µ3/2 4

3
√
π

(4.178)

Contrary to the boson case, now the pressure does not vanish for T → 0 and is actually independent of T .
Combining these two equations, we see that the p−n equation of state for the degenerate non-relativistic
Fermion gas can be written as

p = Knrn
5/3 (4.179)

where Knr is independent of T .
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13. Also, the expected total energy is

U =
ˆ ∞

0
εg(ε)Θ(µ− ε) = gsV

(
2πm
h2

)3/2
µ5/2 4

5
√
π

(4.180)

From these relations we obtain the average energy per particle

U

N
= 3

5µF (4.181)

where

εF ≡ µF = ~2

2m

(
6π2

gs

N

V

)2/3

(4.182)

This value of the chemical potential is called Fermi energy, εF : it gives the highest energy (per particle)
that the fermions reach when they are all in the ground state, i.e. for T → 0. The average energy per
particle in this state is 3εF /5. The Fermi momentum is

pF =
√

2mεF = ~
(

6π2N

gsV

)1/3

(4.183)

14. One finds that
µF
kT

= ~2

2mkT

(
6π2

gs

N

V

)2/3

= λ2

`2

(
6π2

gs(4π)3/2

)2/3

= O(1)
(
λ

`

)2
(4.184)

where ` = (V/N)1/3 is the mean interparticle separation. This shows that for kT � µF the gas behaves
classically, while for kT � µF the quantum properties are important and the gas becomes degenerate.

15. The free electrons in a metal have a density n ≈ 1023 cm−3 and therefore µF ≈ 8eV (actually a bit less
because the mass gets an effective correction due to interactions), while room temperature equals 1/40eV,
so µF /kT � 1. On the other hand mc2/kT � 1, so the electrons are non-relativistic (see next section).
Therefore free electrons in a metal at room temperature is an example of a non-relativistic almost ideal
Fermi gas at the T → 0 limit.

16. The specific heat for T → 0 is linear in T (rather than T 3/2 as for bosons),

CV
Nk
≈ π2

2
kT

εF
(4.185)

and goes to zero for small temperatures (notice that if we replace the large z approximation fn →
(log z)n/n! in Eq. (4.173) we get zero, so we need to use a more accurate approximation; see Greiner’s
book pp. 348-349 for the full calculation). This means that, for instance, the electrons in a metal, or
the nuclear energy states, for which kT � εF , do not contribute at all to the heat capacity, instead of
contributing kT/2 per degree of freedom as expected classically.

17. One finds also, as expected, that S → 0 for T → 0, just as for the Bose condensate. In fact for T → 0, i.e.
z →∞, one has fn ≈ (log z)n/n! and

S → Nk

[
5
2

Γ(5/2)(log z)5/2

Γ(7/2)(log z)3/2 − log z
]
→ 0 (4.186)

as expected. The degenerate Fermi gas is the most ordered state of fermion systems.

4.9 Relativistic fermions
1. In Special Relativity, for particles of mass m, one has

ε2 = m2c4 + ~2k2c2 (4.187)
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Therefore, one converts the integral V (2π)−3d3k = V (2π)−34πk2dk over momenta into an integral over
energy as

V 4πk2

(2π)3~3 dk = V 4π
(2π)3~3c3

(ε2 −m2c4)1/2εdε (4.188)

and the density of states, including spin degeneracy, is

g(ε)dε = V gs
(2π)3~3c3

4πk2dk = V gs
2π2~3c3

(ε2 −m2c4)1/2εdε (4.189)

2. One obtains therefore the following general equations for the number density, the energy density, and the
pressure, valid in both the relativistic and non-relativistic regimes

n = N

V
=
ˆ

g(ε)
z−1 exp(βε) + 1dε = gs

2π2~3c3

ˆ ∞
mc2

(ε2 −m2c4)1/2

eβ(ε−µ) + 1
εdε (4.190)

ρ = E

V
=
ˆ

g(ε)ε
z−1 exp(βε) + 1dε = gs

2π2~3c3

ˆ ∞
mc2

(ε2 −m2c4)1/2

eβ(ε−µ) + 1
ε2dε (4.191)

p = kT logZ
V

= kT

V

ˆ
g(ε) log(1 + z exp(−βε))dε = kT

gs
2π2~3c3

ˆ ∞
mc2

(ε2 −m2c4)1/2ε log(1 + z exp(−βε))dε

= 1
3

gs
2π2~3c3

ˆ ∞
mc2

(ε2 −m2c4)3/2

eβ(ε−µ) + 1
dε (4.192)

where as usual in the last integral we performed an integration by parts (d(ε2 − m2c4)3/2/3 = (ε2 −
m2c4)1/2ε). The same expressions, but with a −1 in the denominator instead of +1, apply to bosons.
The integrals can only be solved numerically. These equations play an important role in many fields. In
cosmology, for instance, they express the abundance of particles as a function of temperature and therefore
of cosmic expansion.

3. For large temperatures, or equivalently for z → 0, the occupation number can be replaced by the MB
distribution e−β(ε−µ). One sees then that p = nkT in both the non-relativistic and the relativistic regime,
as we already noticed in Sec. 3.14.

4. The Fermi energy now is given by

n = gs
2π2~3c3

ˆ µF

mc2
(ε2 −m2c4)1/2εdε = gs

6π2~3c3
(
µ2
F −m2c4

)3/2 (4.193)

which for µF = mc2 + εF with εF � mc2 reduces to the non-relativistic value Eq. (4.182). In general,
then, the Fermi energy (only the kinetic part εF = µF −mc2 is usually considered) becomes

εF
mc2

=
[

~2

m2c2

(
6π2n

gs

)2/3

+ 1
]1/2

− 1 (4.194)

5. For a degenerate Fermion gas one uses Eq. (4.176) and the p, ρ-integrals become

ρ = gs
2π2~3c3

ˆ µF

mc2
(ε2 −m2c4)1/2ε2dε (4.195)

= 1
8

gs
2π2~3c3

(
µF
√
µF 2 −m2c4

(
2µF 2 −m2c4

)
+m4c8 log

(
mc2√

µF 2 −m2c4 + µF

))
(4.196)

p = 1
3

gs
2π2~3c3

ˆ µF

mc2
(ε2 −m2c4)3/2dε

= 1
8

gs
6π2~3c3

(
µF

√
µ2
F −m2c4

(
2µF 2 − 5m2c4

)
− 3m4c8 log

(
mc2√

µF 2 −m2c4 + µF

))
(4.197)
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The expressions can be algebraically simplified by defining the dimensionless momentum y as y2 = (µ2
F −

m2c4)/m2c4 ≡ p2
F /m

2c2 , so that

p = 1
8
gsm

4c8

6π2~3c3

(
y
√
y2 + 1

(
2y2 − 3

)
+ 3 log

(
y +

√
y2 + 1

))
(4.198)

ρ = 1
8
gsm

4c8

2π2~3c3

(
y
√
y2 + 1

(
2y2 + 1

)
− log

(
y +

√
y2 + 1

))
(4.199)

n = gsm
4c8

6π2~3c3
y3 (4.200)

In the ultra-relativistic limit we can take y � 1 and we find

n ∼ y3 (4.201)

p = 1
3ρ ∼ y

4 (4.202)

and we obtain the p− n equation of state for a degenerate, ultra-relativistic Fermionic gas

p = Kurn
4/3 (4.203)

where again Kur is independent of T .

6. We see then that Fermion gases can exist in four qualitatively different regimes, each with their own p−n
equation of state: classical and non-relativistic (p = nkT ), classical and relativistic (p = nkT ), degenerate
and non-relativistic (p = Knrn

5/3), degenerate and relativistic (p = Kurn
4/3). The gas become relativistic

for mc2/kT � 1 and degenerate for µF /kT � 1.

7. Neutrinos are extremely light fermions, with mass smaller than 1eV. They are therefore relativistic, because
essentially any process that create them, e.g. in stars, occurs at much higher energy. The cosmological
neutrino background has been relativistic (i.e. mc2 � kT ) for the entire cosmic history except very
recently. For neutrinos, therefore, in most cases one can put m = 0 in the above equations.

8. An important application of Fermi gas is to the electrons and helium atoms in a white dwarf. At a typical
temperature of 107K the helium atoms are completely ionized and the electrons behave as a relativistic
(since pF ≈ me) but cold (since kT ≈ 1keV� εF ) gas, while the atoms are non-relativistic. The pressure
of the degenerate electron gas supports the star from gravitational collapse if the mass is smaller than the
Chandrasekhar mass

M0 = 9
64

(
3π
α3

)(
~c
Gm2

n

)3/2
mn (4.204)

where mn is the mass of the nucleons and α is a inhomogeneity correction factor of order unity. This is
roughly 1.44 solar masses. See Greiner’s textbook, example 14.5 p. 359 for the full calculation.

9. The formulae in this chapter make large use of the constants k, ~ and c. A system of units, called natural
units, can be defined in which temperature are expressed in energy units, velocities are expressed in units
of c and actions (= energy×time) in units of ~. This would then be very convenient, because in this
system one has by definition k = c = ~ = 1 . Of the three standard units (mass, length, time) only one
(or a combination) would then be needed to express all physical quantities, and very often the energy unit
(in electronvolt) is chosen. For instance, a length is converted in units of 1/energy by multiplying it by
1/~c; an unit of time also acquires dimensions of 1/energy when multiplied by 1/~, etc.. Finally, if one
uses also units in which G = 1, called Planck units, then all physical quantities become dimensionless.



Chapter 5

Phase transitions

5.1 General properties of phase transitions
1. Real systems display behavior much more complicated that those that have been studied so far. The most

dramatic example is the so-called phase transition, i.e. a rapid departure from one state of equilibrium in
the transition to another one. Phase transitions assume many different forms: condensation of a gas into
a liquid, solidification, boiling, spontaneous magnetization, superfluidity, etc.

2. Although very different phenomena, the phase transitions have also some common “universal” aspects: in
particular, they all display a discontinuity in some quantity and they all show the establishment of long-
range order in a previously disordered system. For instance, in the process of condensation of a gas through
volume compression, the density changes abruptly at the boundary between the gas and its liquid phase
and the compressibility at constant temperature becomes infinite (the volume of the system gas+liquid
is reduced but the pressure does not change). In a ferromagnetic substance, the residual magnetization
that remains when the external field is switched off changes sign depending on whether the external field
is reduced to zero from the positive or the negative side, etc.

3. At the same time, the systems develop some form of long-range order or correlation: larger and larger
regions of liquid phase form, or the individual spins of the ferromagnetic substance align spontaneously.
It is clear that a necessary condition to achieve long-range correlations is that the particles interact in
some way. In fact, the stronger the interaction is, the more likely a system undergoes a phase transition
for a given temperature.

4. Phase transitions develop normally only below some critical temperature Tc: the long-range correlation
is destroyed at high temperatures. For instance, a substance may develop ferromagnetic properties below
some temperature (in this case called Curie temperature TCurie) and paramagnetic (i.e. no residual or
spontaneous magnetization) above it.

5. Phase transitions are sometimes called first order or discontinuous if an intensive quantity called order
parameter (e.g. density for gas-liquid condensation, specific magnetization for a ferromagnet) changes
discontinuously from a phase to another one. They are called second order or continuous if the quantity
changes continuously but its derivative is discontinuous (i.e., the order parameter has a spike).

6. A more modern classification is based on the existence of latent heat, i.e. the amount of heat that is
absorbed or released during the transition while the temperature remains constant (and therefore the heat
capacity is infinite). The latent heat is non-zero if the heat goes into the new phase (e.g. from the liquid
to the gas) rather than into the kinetic energy of the old phase. If there is latent heat, the transition is
called first order or discontinuous, otherwise second order or continuous. So the most typical example of
first order transition is the liquid-gas transition below critical temperature (where phases coexist), while
ferromagnetism in an example of second order transition, as is also liquid-gas at or above the critical
temperature.

84
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7. The study of phase transitions is one of the most active area of research in statistical mechanics. The
general goals are to find universal relations that apply to many different systems and to approach the
description of real systems. In most cases, the problem is tractable only numerically through simulations.
There are only a few analytical result available, two of which we will review next, namely the condensation
in real gases and the Ising model.

5.2 Gas with interacting particles
1. If the molecules of a gas interact, the Hamiltonian will include a potential

H =
∑
i

p2
i

2m +
∑
i<k

Uik(|~ri − ~rk|) (5.1)

The classical canonical partition function can be integrated over the momenta as before

Z(T, V,N) = 1
N !h3N

(
2πm
β

)3N/2
Q(V, T ) (5.2)

where we still have to evaluate
Q(V, T ) =

ˆ
d3Nr

∏
i<k

exp(−βUik) (5.3)

which contains the space part.

2. For an ideal gas, exp(−βUik) → 1. A first order deviation from ideal systems can be therefore obtained
by expanding in

fik = exp(−βUik)− 1 (5.4)
Then we obtain ∏

i<k

(1 + fik) ≈ 1 +
∑
i<k

fik +
′∑

i,k,m,`

fikfm` + ... (5.5)

(whenever we put a prime on a sum it means the sum has to obey some additional constraint). In this
section we consider only the first two terms, i.e. we put fik � 1. A systematic way to perform the
expansion term by term is to use Mayer’s cluster method, see for instance Pathria, Statistical Mechanics.

3. The integral Q is now

Q(V, T ) ≈ V N + V N−2
∑
i<k

ˆ
d3ri

ˆ
d3rk[exp(−βUik)− 1] (5.6)

If we assume that the potential Uik has the same form U for all pairs, we can simplify the integration
using relative coordinates ~r = ~ri − ~rj and center-of-mass coordinates ~R = (~ri + ~rj)/2. These latter can
then be integrated over and we obtain

Q(V, T ) = V N + V N−1N(N − 1)
2

ˆ
d3r[exp(−βU(r))− 1] (5.7)

(the factor N(N − 1)/2 ≈ N2/2 counts the number of pairs with i < k). Finally, we put

a(β) =
ˆ
d3r[exp(−βU(r))− 1] (5.8)

= 4π
ˆ
r2dr[exp(−βU(r))− 1] (5.9)

so that finally

Z(T, V,N) ≈ 1
N !

(
2πmkT
h2

)3N/2(
V N + V N−1N

2

2 a(T )
)

(5.10)

= 1
N !

(
V N

λ3N

)(
1 + N2

2V a(T )
)

(5.11)
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4. This gives a first correction over the ideal gas EOS in the limit of small a:

p = −∂F
∂V
|T,N = ∂

∂V
(kT logZ) = NkT

V
− kT

a
2
N2

V 2

1 + a
2
N2

V

(5.12)

≈ NkT

V
(1− a

2
N

V
) (5.13)

5. Various potentials have been proposed to model the strong repulsion for small distances and the attraction
for larger distances that occur for real gas molecules. A simple analytical result can be obtained with the
Sutherland potential (Fig. 5.1), which is attractive as U = −U0(r0/r)6 up to the small distance r0, below
which is infinitely repulsive (solid spheres). Then we have (we assume βU0 � 1)

a(β) =
ˆ
d3r[exp(−βU(r))− 1] (5.14)

= 4π
ˆ r0

0
r2dr[−1] + 4π

ˆ ∞
r0

r2dr[exp(βU0(r0/r)6)− 1] (5.15)

≈ −4π
3 r3

0 + 4πβU0

ˆ ∞
r0

r2dr(r0/r)6 (5.16)

= −4π
3 r3

0(1− βU0) (5.17)

from which the EOS becomes
p = kT

v
(1 + 2πr3

0
3v (1− U0

kT
)) (5.18)

where v = V/N , i.e. the inverse of the number density. Since the correction terms are supposed to be
small, this expression can be transformed as

p+ 2πr3
0

3v2 U0 = kT

v
(1 + 2πr3

0
3v ) ≈ kT

v
(1− 2πr3

0
3v )−1 (5.19)

and finally (
p+ 2πr3

0
3v2 U0

)
(v − 2πr3

0
3 ) = kT (5.20)

i.e. just like the Van der Waals EOS (p+ a/v2)(v − b) = kT , with

a = 2πr3
0

3 U0 (5.21)

b = 2πr3
0

3 (5.22)

where we see that, up to constants, a measures the strength of the interaction and b measures the volume
of the particles.

6. Due to the various limiting assumptions, in particular the assumption of constant density, the isothermals
of the Van der Waals potential display an unphysical behavior, since they contain regions where the
compressibility is negative, i.e. the slope of p(V ) is positive (e.g. the interval d−e in Fig. 5.2). This would
cause the system to go irreversibly out of equilibrium, instead of performing a phase transition. Although
a physical behavior can be obtained from first principles through an exact or numerical evaluation, the
so-called Maxwell construction (horizontal lines in the pV plane such that the area below is the same as
for the Van der Waals isotherm, e.g. the segment a− c in Fig. 5.2) gives a reasonable approximation in a
much easier way.

7. The Van der Waals EOS, corrected through the Maxwell construction, gives a qualitatively accurate
description of phase transitions, including the existence of a critical temperature, of co-existent phases
and of discontinuities.
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Figure 5.1: Sutherland potential U(r) with r0 = 1 (arbitrary units)

8. The critical temperature occurs at the inflection point of p(v), i.e. for ∂p/∂v = ∂2p/∂v2 = 0, i.e. for

pc = a

27b2 , vc = 3b, Tc = 8a
27b (5.23)

The ratio
K = kTc

Pcvc
= 8/3 (5.24)

is then a universal quantity, regardless of the particular gas. For an ideal gas, K = 1, so K can be seen
as a deviation from ideal gas condition. The Van der Waals equation can then be written in a universal
or reduced form

(pr + 3
v2
r

)(3vr − 1) = 8Tr (5.25)

where pr = p/pc, vr = v/vc, Tr = T/Tc are all dimensionless quantities written in units of the critical val-
ues. This expression is called “law of corresponding states”, because different systems have corresponding
(i.e. universal) forms. It is of course only an approximation to real behavior.

9. The equation can be written as a third order polynomial in vr:

3prv3
r − (pr + 8Tr)v2

r + 9vr − 3 = 0 (5.26)

On any isotherm (Tr = const) one has then three roots for vr with constant pr lines. In general, they
can all three be real, or one real and two complex. More in detail, one can easily confirm that for some
temperatures (lower than Tc, i.e. Tr < 1) there are three real roots, while above Tc only one.

10. Above the critical temperature, the fluid is called supercritical and shares with continuity (i.e., without a
sharp phase transition) properties of liquids (at high pressures) and of gases (at low pressures). For water,
the critical values are Tc = 647K, pc = 218 atm, vr = 0.0032 m3/kg. As it can be seen, the pressure is
very high, as with most other substances (Helium is an exception).

11. Near criticality, we can put pr = 1 +π, vr = 1 +ψ, Tr = 1 + t and study the behavior for small deviations
from 1 when moving along various directions. Then we obtain a polynomial of third order in ψ:

3ψ3 + 8(π − t)ψ2 + (7π − 16t)ψ + 2(π − 4t) = 0 (5.27)

where we just neglected a higher order term 3ψ3π. On the critical isotherm t = 0 and at the lowest order
in π, ψ we obtain

π ≈ −3
2ψ

3 (5.28)

which shows how flat is the critical isotherm around criticality.
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Figure 5.2: Van der Waals isotherms. The liquid+gas phase is bounded by the coexistence curve. The horizontal
lines like a − c represent the Maxwell constructions, while the interval d − e is the unphysical region. The big
red dot is the critical point.

12. We then consider moving near criticality along π ≈ 4t. Inserting this equivalence in (5.27) we get three
roots for ψ, one at ψ = 0 and (neglecting the higher order term 8(π − t)ψ = −24tψ)

ψ1,2 = ±2|t|1/2 (5.29)

where the upper sign is for the gas phase (higher ψ, i.e. higher v = 1/n, and therefore smaller density)
while the lower sign is for the liquid phase. The curve ψ2 = −4t is the inverted parabola that delimits
(near criticality) the coexistence region, and is called coexistence curve.

13. Along the coexistence curve (and therefore for T < Tc) we see that the difference of number densities of
the liquid and the gas is given by

n` − ng = 1
v`
− 1
vg

= 1
vc(1 + ψ`)

− 1
vc(1 + ψ`)

≈ 1
vc

(ψg − ψ`) = 2
vc
√
Tc
|T − Tc|1/2 (5.30)

while in the T > Tc regime one has obviously n` = ng. The parameter δn = n` − ng can be called a order
parameter of the liquid-gas phase transition: the transition occurs when varying the order parameter, in
particular when it goes from zero (gas = disordered phase) to a finite value (liquid = more ordered phase).
One has then

δn ∼ |T − Tc|1/2 T < Tc (5.31)
δn = 0 , T ≥ Tc (5.32)

The exponent β = 1/2 is called critical exponent (see next section) and characterizes this kind of transition.

14. We can also estimate the dimensionless isothermal compressibility KT ≡ pcβT = −pcV −1∂V/∂p|T,N ∼
−∂ψ/∂π|t . From Eq. (5.27) we have

π = 8t+ 16tψ + 8tψ2 − 3ψ3

(1 + ψ)2(2 + 3ψ) (5.33)
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Then we obtain

KT = −∂ψ
∂π
|t = −

(
∂π

∂ψ

)−1

t

≈ (1 + ψ)3(2 + 3ψ)2

6(4t(1 + ψ)3 + ψ2(3 + 4ψ) (5.34)

Now moving along ψ = 0 for T ≥ Tc i.e. t > 0 we obtain

KT ≈
1
6t (5.35)

but if we approach the critical point along the coexistence curve for which (5.29) is valid, then for t < 0
we get

KT ≈
1

12|t| (5.36)

The different behavior shows a discontinuity as t→ 0, again a fundamental property of phase transitions.
So, analogously to δn, we have now

KT ∼ α1|T − Tc|−1 T < Tc (5.37)
KT ∼ α2|T − Tc|−1 , T ≥ Tc (5.38)

with different positive coefficients. The exponents γ± = −1 of the two laws are again called critical
exponents. The various laws just found also show then another typical property of phase transitions,
namely the existence of power laws in the vicinity of the critical point.

15. More details about the Van der Waals phase transitions in Pathria, Statistical Mechanics, Chap. 10 and
12.

5.3 Critical exponents
1. As already mentioned, one of the goal of the study of phase transition is to find universal properties near

the transition, independent of the details of the systems. Since the transitions are always characterized
by singularities or discontinuities, one expect to be able to describe them with inverse or fractional power
laws. The exponents of these power laws are called critical exponents and are found to be rather general.

2. In any phase transition one can identify one (or more) quantity that undergoes one of these singulari-
ties/discontinuities when a conjugate field is varied. In a liquid-gas transition, for instance, the pressure
and volume are such a pair: the pressure is a smooth function of the volume before or after the transition,
but the compressibility becomes infinite during the coexistence.

3. We define order parameter m a quantity that undergoes a discontinuity (in the function itself or some of its
derivatives) when its conjugate field (ordering field) h vanishes. For a liquid-gas condensation, the order
parameter is the density difference, as we have already seen, and the ordering field is the pressure. (Note
that as long as the number of particles stays constant, volume and number density are interchangeable
quantities.) We take the number density difference m = δn = n` − ng, and identify the ordering field as
h = p − pc. Then we see indeed that for h → 0, m is such that it is zero for T ≥ Tc (homogeneous gas
phase) while it is positive for T < Tc. In each phase transitions one can identify such ordering parameters
and fields. For ferromagnetism, for instance, m is the average magnetization and h the external field.

4. The derivative
χ0 =

(
∂m

∂h

)
T ;h→0

(5.39)

is called in general susceptibility (for the liquid-gas systems, it would be in fact the isothermal compress-
ibility 5.35). It represents the response of the system to an external action. During the phase transition
the susceptibility becomes singular for T → Tc.
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Critical
expo-
nents

Magnetic
systems

Gas-liquid
systems

Binary
fluid
mixtures

Binary alloys Ferroelectric
systems

Superfluid
He4(f)

Mean
field
results

α, α′ 0.0-0.2 0.1-0.2 0.05-0.15 – – -0.026 0
β 0.30-0.36 0.32-0.35 0.30-0.34 0.305±0.005 0.33-0.34 – 1/2
γ 1.2-1.4 1.2-1.3 1.2-1.4 1.24±0.015 1.0±0.2 inaccessible 1
γ′ 1.0-1.2 1.1-1.2 – 1.23±0.025 1.23±0.02 inaccessible 1
δ 4.2-4.8 4.6-5.0 4.0-5.0 – – inaccessible 3
ν 0.62-0.68 – – 0.65±0.02 0.5-0.8 0.675 1/2
η 0.03-0.15 – – 0.03-0.06 – – 0

Table 5.1: Table of experimental critical exponents (entries from Pathria, Statistical Mechanics)

5. The behavior of the ordering parameters/fields and of the susceptibility near a transition is characterized
by power laws in function of temperature or of the field h, as in Eq. (5.29) or (5.35). This lets us introduce
the following critical exponents:

m ∼ (Tc − T )β , (h→ 0, T ≤ Tc) (5.40)

χ0 ∼

{
(T − Tc)−γ , (h→ 0, T ≥ Tc)
(Tc − T )−γ′ , (h→ 0, T ≤ Tc)

(5.41)

m|T=Tc ∼ h1/δ .(h→ 0, T = Tc) (5.42)

The last expression corresponds to Eq. (5.28) for the liquid-gas case.

6. Finally, we define two other critical exponents based on the heat capacity CV :

CV ∼

{
(T − Tc)−α , T ≥ Tc
(Tc − T )−α′ , T ≤ Tc

(5.43)

In case the exponent is very small, one can have instead a logarithmic behavior, e.g. CV ∼ log(1/|T −Tc|)
or a behavior that is better fitted by a function f ∼ (|t|−λ − 1)/λ (where t = T − Tc). The derivative
df/dt would be in any case a power law.

7. For a gas-liquid transition we have

β = 1
2 , γ = γ′ = 1, δ = 3, α = α′ = 0 (5.44)

(we have not demonstrated the CV behavior for the liquid-gas transition; see Pahtria’s textbook for more
information). Remarkably, the same values are found for magnetic systems in the so-called mean-field
approximation. Although these specific values are not a very good approximation to real cases, the fact
that different systems possess similar critical exponents is indeed verified experimentally (see Tab. 5.1).

8. The critical exponents are not completely independent. Some general inequality among them have been
shown to exist, like the Ruskbrooke inequality

α′ + 2β + γ′ ≥ 2 (5.45)

9. The estimation of the critical exponents from first principles is an important goal of research in statistical
physics.
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5.4 Ising model
1. In this section we investigate a relatively simple model of phase transitions, the Ising model. This model

is a schematical approximation of a system of interacting magnetic dipoles but with minor modifications
can also be employed to model binary alloys, spin glasses and other many-particle systems.

2. The Ising model, investigated for the first time by Lenz and Ising in the 20’s, consists in N magnetic
dipoles fixed on a regular lattice at locations indexed by i which can take the two spin values σi = ±1 and
interact through the Hamiltonian

HJ = −J
∑
nn

σiσk (5.46)

where the sum extends only to the nearest neighbors. The idea is that the interaction over larger distances
can be neglected. Assuming a constant J > 0, the neighboring spin will tend to have the same sign (i.e.
to align themselves), since then the energy is minimized.

3. The number of nearest neighbors depend of course on the space dimensionality. They are 2 in 1 dimension,
4 in 2 dimensions, and 2d in general (for a cubic lattice).

4. On top of the interaction Hamiltonian there is also the magnetic energy in presence of an external magnetic
field H that we already studied in Sect. (3.11)

H0 = −
∑
i

Hµσi (5.47)

where µ is the magnetic dipole.

5. The magnetization
〈M〉 =

∑
i

µ〈σi〉 (5.48)

that remains when the external field is switched off is called spontaneous or residual or permanent mag-
netization and the materal is called ferromagnetic. A paramagnetic behavior, as we have seen, occurs
when no spontaneous magnetization develops (either because there is no interaction or because it is not
sufficient to create spontaneous magnetization). The onset of spontaneous magnetization below a certain
temperature TCurie is an example of phase transitions.

6. The Ising model allows to find a relation between 〈M〉 and temperature. Such a relation is analytical and
exact in 1 (Ising) or 2 (Onsager) dimensions, and approximated or numerical beyond this.

7. In one dimension, the partition function of a Ising model (that we denote Q in this section) is relatively
simple since there are only two neighbors for each spin

Q(β,N,H) =
∑
spins

e−β(H0+HI) (5.49)

=
∑
σ1=±1

∑
σ2=±1

... exp(βµH
N∑
i

σi + βJ

N−1∑
i

σiσi+1) (5.50)

This can be written in a symmetric form if we identify σN+1 with σ1 (periodic boundary conditions).
Then we have in fact

Q(β,N,H) =
∑
σ1=±1

∑
σ2=±1

... exp(βµH
N∑
i

σi + βJ

N∑
i

σiσi+1) (5.51)

=
∑
σ1=±1

∑
σ2=±1

... exp
[
β

N∑
i

(1
2µH(σi + σi+1) + Jσiσi+1)

]
(5.52)
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8. This sum can be calculated in various ways. One that makes use of transfer matrices is the following.

Let us represent the two states spin up and spin down by the two orthonormal vectors |σa〉 =
(

1
0

)
and

|σb〉 =
(

0
1

)
. Then we have by completeness

∑
k=a,b

|σk〉〈σk| =
(

1 0
0 0

)
+
(

0 0
0 1

)
= I (5.53)

(identity matrix) for every site i.

9. Now let us define an operator P̂ acting on the |σ〉 space such that

〈σi|P̂ |σi+1〉 = expβ
[
Jσiσi+1 + 1

2µH(σi + σi+1)
]

(5.54)

The explicit form of the operator is

P̂ =
(

exp(β(J + µH)) exp(−βJ)
exp(−βJ) exp(β(J − µH))

)
(5.55)

as it can be seen by explicit evaluation. For instance, if both spin at sites i and i+ 1 are up, one has

〈σi,a|P̂ |σi+1,a〉 = (1, 0)P̂
(

1
0

)
= eβ(J+µH) (5.56)

which indeed is (5.54) for σi = σi+1 = 1. Then we have

Q(β,N,H) =
∑
σ1=±1

∑
σ2=±1

... exp
[
β

N∑
i

(1
2µH(σi + σi+1) + Jσiσi+1)

]
(5.57)

=
∑
σ1=±1

∑
σ2=±1

...〈σ1|P̂ |σ2〉〈σ2|P̂ |σ3〉...〈σN |P̂ |σ1〉 (5.58)

=
∑
σ1=±1

〈σ1|P̂N |σ1〉 = TrP̂N (5.59)

(employing (5.53)).

10. The Trace of P̂ can be calculated by summing its eigenvalues. The eigenvalues λ1,2 are obtained by the
equation det(P̂ − λI) = 0, i.e.

λ2 − 2λ exp(βJ) cosh(βµH) + 2 sinh(2βJ) = 0 (5.60)

from which
λ1,2 = ey

[
cosh x±

√
sinh2 x+ e−4y

]
(5.61)

where x = βµH and y = βJ . The Trace of P̂N is then simply Q = λN1 +λN2 and we obtain the free energy

F (N,H, T ) = −kT log
(
λN1 + λN2

)
(5.62)

11. In the case without interaction, J = 0, we should obtain the paramagnetic behavior (3.198). We have in
fact in this case λ1 = 2 cosh βµH and λ2 = 0 and therefore

F (N,H, T )J=0 = −NkT log (2 cosh βµH) (5.63)

When instead we switch off the external field H we obtain λ1 = 2 cosh βJ , λ2 = 2 sinh βJ . Since λ1 > λ2,
for large N the term λN2 is negligible and we obtain

F (N, 0, T ) = −NkT log (2 cosh βJ) (5.64)
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12. The total magnetic moment is given by

〈M〉 = − ∂F
∂H
|N,T = −βµ∂F

∂x
|N,T (5.65)

= −Nµλ
N−1
1 λ′1 + λN−1

2 λ′2
λN1 + λN2

(5.66)

= Nµ sinh x
(e−4y + sinh2 x)1/2

λN1 − λN2
λN1 + λN2

(5.67)

where we used Eq. (5.61) to obtain

λ′1,2 ≡
dλ1,2

dx
= sinh x√

sinh2 x+ e−4y
(±λ1,2) (5.68)

(+ for λ1 and − for λ2).

13. Again neglecting λN2 we obtain simply

〈M〉 = Nµ sinh x
(e−4y + sinh2 x)1/2

(5.69)

For J → 0, i.e. y → 0, we obtain M = Nµ tanh x. It appears that M → 0 for x→ 0, which implies that
there is no spontaneous magnetization at finite temperature when the external field is switched off. The
one-dim Ising model is indeed not ferromagnetic.

14. From these expressions also other quantities like the average spins up or down N± can be evaluated. One
can in fact write

〈M〉 = µ
∑
i

σi = µ(N+ −N−) (5.70)

where N± are the average number of spins up or down. Then, since N = N+ +N−, we have

N± = 1
2(N ± 〈M〉

µ
) (5.71)

and therefore
N± = 1

2N
(

1± sinh x
[e−4y + sinh2 x]1/2

λN1 − λN2
λN1 + λN2

)
(5.72)

As expected, in the limit of high temperature x → 0 there is an equal number of spins up and down. In
the limit of high external field, x→∞, all spins are aligned.

15. One can also estimate the spin correlation, i.e. 〈σiσj〉 and from this quantities like N++ or N−− , i.e.
the average number of neighboring pairs with positive or negative spin. It is interesting to note that
even in absence of external field one finds that there is a non-zero correlation among spins due to their
self-interaction.

16. The Ising model is not ferromagnetic only in one dimension. The reason is that in one dimension each
spin has only two neighbors and this interaction is too weak to provide the strong correlation needed to
produce a phase transition. The energy difference between a completely spin-up system with maximal
magnetization (−NJ) and a system with the first half spin up and the second half down, for a net vanishing
total magnetization ((−N + 4)J), is very small, and there is no energetic advantage in a phase transition.

17. In any dimension larger than one, analytical or numerical results show that there is always a residual
magnetization, i.e. a discontinuity in M for H → 0 below some temperature (Curie temperature).

18. For 2 dimensions the general solution has been found by Onsager in the 40s:

Q(β,N,H = 0) =
(
2 cosh(βJ)eI

)N (5.73)



CHAPTER 5. PHASE TRANSITIONS 94

y=0.6

y=0.3

y=0

ferrom.

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

x
M
/N

μ

Figure 5.3: Magnetization of the 1D Ising model, for increasing interaction strength y. The dotted line represents
a ferromagnetic transition.

where
I = (2π)−1

ˆ π

0
dφ log[12(1 + (1− κ2 sin2(φ))1/2)] (5.74)

with κ = 2 sinh(2βJ)/ cosh2(2βJ). It can be shown that a phase transition occurs here for any T < TC =
2.269J/k, where TC is the root of sinh 2βJ = 1.

19. The energy of the system is as usual (we consider all quantities constant except T )

U = −kT d logQ
dβ

= kT 2 d logQ
dT

(5.75)

20. The heat capacity is singular near the phase transition:

C = ∂U

∂T
|H=0 = 2

T
U + kT 2 d

2 logQ
dT 2 ≈ kT 2 d

2 logQ
dT 2 ∼ − log |T − TC | (5.76)

(near Tc, the regular first term in C is negligible with respect to the singular second term) and the
magnetization for T < TC is

M/N ∼ (TC − T )β (5.77)

with β ≈ 1/8, while of course M = 0 for T > Tc (see Fig. 5.4). Notice how this behavior is qualitatively
similar to the liquid-gas order parameter Eq. (5.32).

21. The exponents of these power laws are the critical exponents introduced in the previous section. In three
dimensions, the specific heat and the specific magnetization behave like C/N ∼ |T − TC |α, M/N ∼
(TC − T )β , with α ≈ 0.125 and β ≈ 0.313.

22. The Ising model can help investigating various kinds of phase transitions. For instance, one can think of a
system of particles in a container. If we divide up the volume into cells so small that at most they contain
either zero or one particle, then we can associate a state up (cell is occupied) or down (cell is empty) with
each cell. When two particles are in nearest-neighbor cells, the system acquires an energy −ε, which means
the system goes into a preferred, lower energy state if the particles are close together. This reproduces
an interaction among particles. Now the system is completely equivalent to the Ising model and can be
studied with the same means, reproducing a phase transitions for certain values of temperature 1/β and
of interaction energy ε.
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Figure 5.4: Magnetization versus temperature of a garnet ferrite, showing the typical transition from param-
agnetic to ferromagnetic behavior (from Caffarena and Ogasawara, Mat. Res. [online]. 2003, vol.6, n.4, pp.
569-576).

5.5 The Renormalization Group
This section follows very closely the treatment in Chandler, Introduction to Modern Statistical Mechanics, to
which we refer for further details.

1. One important technique for solving the Ising model is the Renormalization Group (RG) method. We can
illustrate the main points of this method already in one dimension.

2. Let us start with Eq. (5.52) for H = 0

Q(K,N) =
∑

σ1,σ2,σ3...

expK(σ1σ2 + σ2σ3 + σ3σ4 + ...) (5.78)

where K = J/kT (previously called y) and write it as

Q(K,N) =
∑

σ1,σ2,...

expK(σ1σ2 + σ2σ3) expK(σ3σ4 + σ4σ5).... (5.79)

3. Now we can integrate over all the even numbered spins σ2, σ4, ...:

Q(K,N) =
∑

σ1,σ3,...

[expK(σ1 + σ3) + exp−K(σ1 + σ3))][expK(σ3 + σ5) + exp−K(σ3 + σ5))].... (5.80)

In this way we have removed half of the spins. If we could recast this expression in a form similar to (5.78),
but with possibly different K,N , then we would have obtained a recursive relation that could perhaps be
solved. That is, we need to be able to write for every σ, σ′ an expression as the following one

expK(σ + σ′) + exp−K(σ + σ′) = f(K)eK
′σσ′ (5.81)

If this is possible, then we obtain

Q(K,N) = f(K)N/2Q(K ′, N/2) (5.82)

since now only N/2 spins are left. A transformation that achieves this is called a Kadanoff transformation.
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4. If σ, σ′ are both either +1 or −1, we have

e2K + e−2K = f(K)eK
′

(5.83)

and if they have opposite signs then
2 = f(K)e−K

′
(5.84)

These are two conditions in two unknowns, f(K) and K ′. The solution is

K ′ = 1
2 log cosh 2K (5.85)

f(K) = 2 cosh1/2 2K (5.86)

Then we can see that we can form the recursion relation

logQ = N

2 log f(K) + logQ(K ′, N/2) (5.87)

or by putting logQ = Ng(K)
g(K) = 1

2 log f(K) + 1
2g(K ′) (5.88)

or
g(K ′) = 2g(K)− log[2

√
cosh(2K)] (5.89)

5. Eq. (5.89) along with the Kadanoff transformation provide a recursive way to renormalize the partition
function. Since the recursive property can be seen as forming a group, the scheme is called renormalization
group.

6. Now Q(K,N) can be evaluated by iterating the recursion. We can start by inverting (5.85)

K = 1
2 cosh−1 e2K′ (5.90)

and, inverting (5.84) and inserting it in (5.88),

g(K) = 1
2 [g(K ′) + log 2 +K ′] (5.91)

We begin the iteration with a very small K ′ eg K ′ = 0.01. Since K ′ is very small, we can approximate
Q(K ′, N) ≈ Q(0, N) =

∑
spins 1 = 2N (i.e. no interaction). Now by definition g(K ′) = (1/N) logQ(K ′, N)

and therefore g(K ′) = log 2. Inserting K ′ and g(K ′) in Eqs. (5.90) and (5.91) we obtain K = 0.100334
and g(K) = 0.698. Next, we can use these as new primed values of K ′, g(K ′) and iterate. After just a few
iterations, one obtains results in agreement with the exact values of the previous section (for H = 0), i.e.

g(K)→ logQ
N
|H=0 = log λN1 + λN2

N
|H=0 ≈ log λ1 = log (2 cosh βJ) (5.92)

7. The iteration proceeds until it reaches one of the fixed points for K, where any new iteration does not
change the result. For the 1D Ising model, the fixed points are at 0 and ∞; at these fixed points the
temperature is either zero or infinity: these are called trivial fixed point. The iteration process can be seen
as a continuous change in scale, i.e. viewing the system averaged over a larger and larger scale. When we
reach a fixed point, it means that a change in scale does not change the properties of the system. Since
this “scale-invariance” is a property of the phase transitions associated with the existence of long-range
correlations, we can conclude that the existence of a fixed point at finite temperature signals the existence
of a phase transition. The fact that in the Ising 1D model there is no fixed point at finite values is a
consequence of the absence of phase transitions.

8. The key ideas of the RG approach are then: the integration over a subset of degrees of freedom, the
rescaling Kadanoff procedure that generates a recursion relation, and the search for non trivial fixed
points.
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9. In 2D, thing become quite more complicate; here we give only a schematic derivation (see Chandler, sec.
5.7 for details). The procedure is the same: integrating out some degrees of freedom in order to construct
a recursive relation. Now there are 4 neighbors for every spin. Consider spins 5 and 6, whose nearest
neighbors are spins 1,2,3,4,7,8 (see Fig. 5.5). Now integrating over 5 and 6 we obtain terms like

Q(K,N) =
∑

σ1,σ2,...

[expK(σ1 + σ2 + σ3 + σ4) + exp−K(σ1 + σ2 + σ3 + σ4)] (5.93)

×[expK(σ2 + σ3 + σ7 + σ8) + exp−K(σ2 + σ3 + σ7 + σ8)]... (5.94)

Again, such a form should be valid for all possible spin configurations. However now there will be several
distinct choices of spin values, of which only four give distinct terms, for instance σ1 = σ2 = σ3 = σ4 = ±1,
but we still have only two possible Kadanoff transformations (5.85) and a complete solution is not possible.
We need more parameters, K1,K2,K3. So we can try to obtain 4 equations like the following one

eK(σ1+σ2+σ3+σ4) + e−K(σ1+σ2+σ3+σ4) = f(K)e 1
2K1(σ1σ2+σ2σ3+σ3σ4+σ4σ1)+K2(σ1σ3+σ2σ4)+K3(σ1σ2σ3σ4)

(5.95)
which can now be solved for f(K),K1,K2,K3 as a function of K, obtaining in particular

f(K) = 2 cosh1/2(2K) cosh1/8(4K) (5.96)

K1 = 1
4 log cosh(4K) (5.97)

K2 = 1
8 log cosh(4K) (5.98)

K3 = 1
8 log cosh(4K)− 1

2 log cosh(2K) (5.99)

If we insert this back into Q(K,N) we obtain a complicate expression in which there are sums over nearest
neighbors, over next-to-nearest neighbors and over 4 spins at once.

10. This is still too complicated. We therefore now neglect K3 and write

Q(K,N) = f(K)N/2
∑
spins

e
1
2K1(σ1σ2+σ2σ3+σ3σ4+σ4σ1)+K2(σ1σ3+σ2σ4)e

1
2K1(σ2σ3+σ3σ8+σ7σ8+σ7σ2)+K2(σ2σ8+σ7σ3)

Then we see that every nearest neighbor (nn) pair, e.g. σ2σ3, is repeated twice (and the same would be
for σ1σ4 if we added more terms), while the next nearest-neighbors (nnn) like σ2σ4, only once. Then we
can write

Q(K,N) = f(K)N/2
∑

N/2spins

exp[K1
∑
nn

σiσj +K2
∑
nnn

σiσj ] (5.100)

and we simplify again by assuming that the sum can be written as sums over only nn but with a different
K ′:

K1
∑
nn

σiσj +K2
∑
nnn

σiσj ≈ K ′
∑
nn

σiσj (5.101)

and therefore finally we obtain a recursion relation

Q(K,N) = f(K)N/2
∑

N/2spins

exp[K ′
∑
nn

σiσj ] = f(K)N/2Q(K ′, N/2) (5.102)

11. It turns out that neglecting the four spin combination entirely, an approximated recursive relation can be
found

g(K) = 1
2 [log f(K) + g(K ′)] (5.103)

g(K ′) = 2g(K)− log[2 cosh1/2(2K) cosh1/8(4K)] (5.104)
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Figure 5.5: Summing over spins 5 and 6.

Approximating K ′ = K1 +K2 we obtain from Eq. (5.98), the recursive relation

K ′ = 3
8 log cosh(4K) (5.105)

Now this equation has a fixed point: the valueKc ≈ 0.50698 in fact solves the equationK = 3
8 log cosh(4K),

which means that once we reach that value we don’t move away from it. However, it is an unstable fixed
point, meaning that if we start from anywhere near Kc, the next iterations bring us away from it, i.e.
K ′ < K for K < Kc and K ′ > K for K > Kc. The fixed points at 0 and ∞ (the trivial fixed points)
are instead stable. Kc ≈ 0.5 means Tc ≈ 2J/k, not far from the exact value ≈ 2.3J/k obtained in the
previous section.

12. The heat capacity near Tc is

C ∼ d2g(K)
dK2 ≈ |T − Tc|−α (5.106)

where we replaced the T -derivative with the K-derivative, since T = J/kK. The heat capacity diverges
around the critical temperature, with α ≈ 0.131. (The exact result from Onsager’s solution is however a
logarithm divergence).

5.6 Mean field theory
1. The Ising model and many other systems out of equilibrium can also be approximated by the mean-field

theory method. The idea here is to approximate the interactions on a given spin with a smooth average
field rather than with the discrete lattice.

2. So instead of the exact form of the energy

E = −µH
∑
i

σi −
∑
i,j

Jijσiσj (5.107)

where Jij = J for nearest neighbors and 0 otherwise we seek an approximated form

Emf = −µ(H + ∆H)
∑
i

σi (5.108)

which is then equivalent to a system with no interactions and a modified field H + ∆H.
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3. Let us replace σi = m+ δσi, where m = 〈σi〉 is independent of i, and δσi is the deviation from the mean
value. Then we can write

E = −µH
∑
i

σi −
∑
i,j

Jij(m2 + 2mδσi + δσiδσj) ≈ −µH
∑
i

σi −
∑
i,j

Jij(m2 + 2mδσi) (5.109)

= −µH
∑
i

σi −
∑
i,j

Jij(m2 + 2m(σi −m)) = −µH
∑
i

σi −
∑
i,j

Jij(−m2 + 2mσi) (5.110)

where we crucially neglect the quadratic fluctuations, assuming they are small. We now put Jij = J and
assume there are z nearest neighbors, so that∑

i,j

... =
∑
nn

... = 1
2
∑
i

∑
j∈nn(i)

... (5.111)

(the one-half factor is needed otherwise each nn bond is counted twice). Then we obtain

E ≈ 1
2Jm

2
∑
i

∑
j∈nn(i)

1− µH
∑
i

σi − Jzm
∑
i

σi =
(

1
2JNm

2z

)
− µHmf

∑
i

σi (5.112)

where
Hmf ≡ H + 1

µ
Jzm (5.113)

where z = 2D is the number of nearest neighbors in D dimensions. In this way we obtain a mean field
acting on the spins instead of the true instantaneous value. In this sense, the spins act as if they were
uncoupled but in a modified mean external field Hmf independent of i. The constan term in bracket can
be neglected since it just gives an overall additive constant to the free energy ∼ logQ.

4. Such a non-interacting field has been already solved in Sect. 3.11. The partition function is

Qmf = (2 cosh[βµ(H + ∆H)])N (5.114)

where ∆H = 1
µJzm and the average spin m ≡ 〈σ〉 is given by the equation (see Eq. 3.200)

m = tanh[βµ(H + ∆H)] = tanh[βµ(H + 1
µ
Jzm)] (5.115)

This is a transcendental equation for m which can easily be solved numerically. For H = 0, it gives
non-zero solutions for m only if βJz > 1 i.e. for T < TC where (for z = 2D)

TC = 2DJ
k

(5.116)

This is therefore the critical temperature.

5. The mean field approximation is completely wrong in one dimension. In this case, in fact, the predicted
TC = 2J/k is well different from the exact result, TC = 0 (no phase transition). In 2 dimensions the mean
field result TC = 4J/k is not so far from the exact result TC = 2.3J/k and in higher dimensions it gets
closer to the numerical estimates. The predicted behavior near the critical point is however not really
good. The critical exponent β is in fact predicted to be 1/2 instead of the exact value 0.313 in 3D.

5.7 Correlation functions
This section follows closely the discussion in Pathria, Statistical Mechanics, Sect. 11.11, to which we refer for
further details.
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1. Phase transitions have another fundamental property: a strong correlation between distant points. In fact,
this can be taken as the property that distinguishes phase transitions from ordinary fluctuations around
an equilibrium state, in which the correlation among particles rapidly (typically, exponentially) decays
away with distance. The residual magnetization of a ferromagnet can then be seen as the establishment
of a long-range correlation among the spins, even if the microscopical interaction acts only among nearest
neighbors.

2. We define the correlation function for pair of spins as

g(i, j) = 〈σiσj〉 − 〈σi〉〈σj〉 (5.117)

If the spins are uncorrelated obviously g(i, j) = 0. Notice that∑
i,j

g(i, j) = 〈(
∑
i

σi)2〉 − 〈
∑
i

σi〉2 = 1
µ2 (〈M2〉 − 〈M〉2) (5.118)

where M = µ
∑
i σi is the total magnetization and 〈M〉 its average.

3. Let us consider again the Ising partition function

Q(β,H, J) =
∑
{σi}

exp(βµH
N∑
i

σi + βJ

N−1∑
i

σiσi+1) (5.119)

It follows that

∂

∂H
logQ = 1

Q

∑
{σi}

(βµ
N∑
i

σi) exp(βµH
N∑
i

σi + βJ

N−1∑
i

σiσi+1) (5.120)

= βµ〈
N∑
i

σi〉 = β〈M〉 (5.121)

and similarly

1
Q

∂2

∂H2Q = 1
Q

∑
{σi}

(βµ
N∑
i

σi)2 exp(βµH
N∑
i

σi + βJ

N−1∑
i

σiσi+1) = β2〈M2〉 (5.122)

Therefore, the magnetic susceptibility is

χ = ∂〈M〉
∂H

= 1
β

∂2

∂H2 logQ (5.123)

4. Moreover we have
∂2

∂H2 logQ = 1
Q

∂2Q

∂H2 −
1
Q2

(
∂Q

∂H

)2
= β2(〈M2〉 − 〈M〉2) (5.124)

and therefore, because of Eq. (5.118), the magnetic susceptibility is

χ = ∂〈M〉
∂H

= β(〈M2〉 − 〈M〉2) (5.125)

= βµ2
∑
i,j

g(i, j) (5.126)

This is called a fluctuation-dissipation relation. We have seen another example for ideal gases in Eq.
(3.99). This relation shows that a large (or infinite) susceptibility, typical of a phase transition, implies
also a strong correlation.



CHAPTER 5. PHASE TRANSITIONS 101

5. If the system is statistically homogeneous, its properties do not depend on the particular location. In this
case we expect χ to depend only on the inter-particle separation ~r and not on the individual position i, j.
We may then convert the sum into an integral as

∑
ij [...]→

∑
i

∑
j [...]→

∑
i a
−d ´ [...]d~r = Na−d

´
[...]d~r

and therefore
χ = Nβµ2

∑
~r

g(~r) ≈ Nβµ2

ad

ˆ
g(~r)d~r (5.127)

where ad is the volume in d dimensions of an elementary lattice cell, such that Nad = V .

6. There are no exact calculations of g(~r). An approximate form can be obtained in mean field theory. In
this case we have seen in fact that

〈σi〉 = tanh(βµHmf ) (5.128)

where
Hmf = Hi + 1

µ
J
∑
nn

〈σi〉 (5.129)

Contrary to what we have done so far, we consider now a non-homogeneous external field Hi. We then
think of 〈σi〉 as a field over space and write∑

nn

〈σi〉 ≈ z〈σi〉+
∑
j

∇j〈σi〉dxj + 1
2
∑
`m

∇`∇m〈σi〉dx`dxm + ... (5.130)

where ∇i = ∂/∂xi. The term in ∇〈σi〉 cancels out because of the symmetric configuration of nearest
neighbor spins. Expanding up to second order, and keeping only the isotropic term ∇2 =

∑
i∇i∇i, we

obtain then
Hmf ≈ Hi + z

µ
J〈σi〉+ cJa2

µ
∇2〈σi〉 (5.131)

Here, z is the number of nearest neighbors, c is a order-of-unity factor that depends on the particular
lattice. Finally, a is an effective lattice length constant, equal to the typical interparticle distance.

7. Approximating for small x

〈σi〉 = tanh(βµHmf ) ≈ βµHi + zβJ〈σi〉+ cβJa2∇2〈σi〉 (5.132)

we obtain near the critical point Hi = 0 the approximate expression

βµHi ≈ (1− zβJ)〈σi〉 − cβJa2∇2〈σi〉 (5.133)

Near the critical point, zJ = kTc, as we have seen in the mean field approximation. For T ≈ Tc we have
then

(t− c′a2∇2)〈σi〉 = hi (5.134)

where c′ = c/z and where we introduced the ordering field and the order parameter, respectively:

hi = βµHi t = T − Tc
Tc

≈ βc − β
βc

(5.135)

Differentiating, we obtain
(t− c′a2∇2)∂〈σi〉

∂hj
= δij (5.136)

where we considered every local value hi as independent of the field hj at different locations. Now, one
can show that

∂〈σi〉
∂hj

= g(i, j) (5.137)

In fact, since 〈M〉 = µ
∑
i〈σi〉, we can expand and write

δ〈M〉 = µ
∑
i

∑
j

〈 ∂σi
∂Hj

δHj〉 (5.138)
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Putting for simplicity δHj = δH, we see that

δ〈M〉
δH

= βµ2
∑
i

∑
j

〈 ∂σi
∂hj
〉 (5.139)

and comparing with (5.126) we recover (5.137). Then we have an equation for the correlation function.
In the continous limit, g(i, j)→ g(r) and δij → δ(r), so

(t− c′a2∇2)g(r) ≈ δ(r) (5.140)

As is well known, the Laplacian ∇2 in spherical coordinates becomes r−2(d/dr)r2(d/dr) and one can show
by direct substitution that g(r) = (a/r)e−r/ξ is a solution. Alternatively, one can go to Fourier space, in
which g(r)→ ĝ(k)eik·r; this means that

ĝ(k) = 1
t+ c′a2k2 (5.141)

In real space, the Fourier anti-transform gives a simple expression in three dimensions:

g(~r) =
ˆ

e−ik·rd3k

t+ c′a2k2 = 2π
ˆ
e−ikr cos θk2dkd(cos θ)

t+ c′a2k2 ∼ a

r
e−r/ξ (5.142)

where ξ = a(c′/t)1/2 is the correlation length, which diverges as expected for T → Tc. This law, first
derived by Ornstein and Zernike in 1914-16, well exemplifies the transition from exponentially decaying
correlations for r � ξ (and therefore for T � Tc) to a power law for r � ξ.

8. For any dimension d and at small scales r � ξ we also obtain a power law behavior

g ∼ ad−2

rd−2 (5.143)

9. The scale ξ measures the scale below which the system is correlated. As the critical temperature is
approached, the correlation length diverges to infinity. This is exactly the sort of long-range order that is
created during a phase transition. It is this macroscopic behavior that allows to describe phase transitions
in a way that does not depend on the microscopic features and leads to some kind of universal laws.



Chapter 6

Mathematical appendix

6.1 Partial derivative identities
Here we collect some useful identities concerning partial derivatives.

1. Chain rule. Consider a function f(x, y) and suppose x, y depend on another variable s, i.e. x(s),y(s). Then

df

ds
= ∂f

∂x

dx

ds
+ ∂f

∂y

dy

ds
(6.1)

2. Chain rule. Consider a function f(x, y) and suppose x, y depend on two other variables, i.e. x(s, r),y(s, r).
Then

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
(6.2)

∂f

∂r
= ∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r
(6.3)

(where the variable kept fixed is always the other one belonging to the same pair x, y or s, r). As a
particular case, if we have f [x(s, y), y], i.e. if the transformation is from x, y to s, y (in other words, we
transform only x) then

∂f

∂s
|y = ∂f

∂x
|y
∂x

∂s
|y + ∂f

∂y
|x
∂y

∂s
|y = ∂f

∂x
|y
∂x

∂s
|y (6.4)

∂f

∂y
|s = ∂f

∂x
|y
∂x

∂y
|s + ∂f

∂y
|x
∂y

∂y
|s = ∂f

∂x
|y
∂x

∂y
|s + ∂f

∂y
|x (6.5)

3. Product rule
∂

∂x
(uv) = u

∂v

∂x
+ v

∂u

∂x
(6.6)

4. Commutation rule
∂2f

∂x∂y
= ∂2f

∂y∂x
(6.7)

5. Reciprocals (
∂f

∂x

)
y

=
(
∂x

∂f

)−1

y

(6.8)

but note the variable held fixed has to be the same, so if, e.g., f(x, y, z)(
∂f

∂x

)
y

6=
(
∂x

∂f

)−1

z

(6.9)
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6. Triple product rule. If f(x, y) = const, then(
∂f

∂x

)
y

(
∂y

∂f

)
x

(
∂x

∂y

)
f

= −1 (6.10)

Analogously, if x, y, z are not independent variables, i.e. if a relation f(x, y, z) = 0 exists (which is identical
to say that z(x, y) = const as in the previous case) then(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (6.11)

7. Transformation of variables. If we have n functions yi of n variables xj , one can build the Jacobi matrix
of the transformation from y to x

Jij ≡
∂yi
∂xj

(6.12)

(this means implicitly that all the other xm6=j are kept fixed). Its inverse, obtained with the rules for the
inversion of a matrix, is (

J−1)
ij
≡ ∂xi
∂yj

(6.13)

(this means first take the inverse, then take the i, j entry) where again all the other ym6=j are kept fixed.
It follows ∑

m

(J−1)imJmj =
∑
m

∂xi
∂ym

∂ym
∂xj

= δij (6.14)

Notice that
∂xi
∂yj
6=
(
∂yi
∂xj

)−1
(6.15)

since the variables kept fixed are different on the two sides.

6.2 Liouville’s theorem
A flow of particles that are neither destroyed nor created (“conserved”) and do not collide against each other
is governed by the collisionless Boltzmann equation, also called Liouville’s equation when generalized to the
thermodynamical phase-space. Let the number dN of particles in a space volume dV and with moments within
volume dpxdpydpz be

dN = f(t,x,p)dxdydzdpxdpydpz (6.16)
where f is the distribution function and the space-momentum volume element is called the phase-space vol-
ume. Points in the full thermodynamic 6N -phase-space are also conserved and do not “collide” (two different
microstates will always remain different, i.e. they will never occupy the same 6N -point, at least classically,
because otherwise the same initial conditions in terms of positions and momenta would give rise to two different
trajectories, breaking classical determinism). So although to fix the ideas we begin with f as a particle number
density, we will at the end generalize the result to the number of microstates in a 6N -dimensional cell d3Nqd3Np,

dNM = f(t,q,p)d3Nqd3Np (6.17)

Let’s first consider a 1-dimensional example. Since the particle number is conserved, the number of particles
with momentum px entering in a space volume dxdydz in direction x in the time interval dt is ρdxdydz =
ρvxdtdydz (vx is the x-component of the velocity and ρ is the number density of particles), minus the number
exiting from the other side; if the particles move only along x, this has to be equal to the change in the number
of particles inside the volume itself, dρdV . Then we have the continuity equation (the incoming velocity is taken
negative)

dρdxdydz = −d(ρvx)dtdydz (6.18)
or

∂ρ

∂t
= −∂(ρvx)

∂x
(6.19)
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This simple derivation can be extended to all six phase-space coordinates. The demonstration makes use of the
following relations, valid in any number of dimensions and any choice of coordinates w:

∂

∂t

ˆ
fdV = −

ˆ
∂V

(fv) · ndA = −
ˆ
V

∇ · (fv)dV (6.20)

where v = ẇ and n is the unit normal to the surface ∂A enclosing V . The first equality applies when f is
a conserved quantity (mass, or number of particles, or number of microstates), the second is the divergence
theorem and is always valid. Since the volume V is arbitrary, the integrands of the first and third member must
be equal. For the phase-space coordinates this gives the generalized version of Eq. (6.19), namely

∂f

∂t
+

6∑
i=1

∂(fẇi)
∂wi

= 0 (6.21)

where w = {x, y, z, px, py, pz} = {q,p} is the phase-space vector of coordinates. Notice that if we allow for
collisions, i.e. instantaneous interactions, f would not be differentiable, and an extra term taking into account
this should be included. Now since q̇ = ∂H/∂p and ṗ = −∂H/∂q, where H is the Hamiltonian, we have

6∑
i=1

∂(fẇi)
∂wi

=
6∑
i=1

(
f
∂ẇi
∂wi

+ ẇi
∂f

∂wi

)
(6.22)

= f

(
∂2H

∂q∂p −
∂2H

∂p∂q

)
+

6∑
i=1

ẇi
∂f

∂wi
(6.23)

=
6∑
i=1

ẇi
∂f

∂wi
(6.24)

Then we are left finally with Liouville’s theorem, i.e. that the total differential of f vanishes:

df

dt
= ∂f

∂t
+

6∑
i=1

ẇ
∂f

∂wi
= 0 (6.25)

Intuitively, this means that f is constant along the flow of the particles (although does not have to be constant
for a fixed position, i.e. ∂f/∂t is not necessarily zero).

Finally, since ẇi = {q̇i, ṗi}, this can be written also as

df

dt
= ∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
(6.26)

= ∂f

∂t
+
∑
i

{f,H} = 0 (6.27)

where the Poisson brackets are defined as {A,B} ≡ ∂A
∂q

∂B
∂p −

∂B
∂q

∂A
∂p . Eq. (6.27) is completely general, as long

as f is a conserved quantity, and can be applied also to non-equilibrium states.
Since Eq. (6.20) is valid in any number of dimensions, this result extends directly to the full 6N -dimensional

phase-space of thermodynamic systems, where f represents the density of microstates in the 6N volume element
d3Nqd3Np. Clearly, if f is independent of time, i.e. it represents an equilibrium distribution, ∂f/∂t = 0 and
the Poisson bracket vanishes. This means that f must depend on p,q only through constants of motion of the
system. Typically, for a thermodyamic system, for which we are not interested in translations or rotations, the
energy is the only constant of motion, and therefore we might quite generally assume that f = f(H), as we
do when deriving the canonical ensemble. In the grand-canonical ensemble, also N is a relevant constant of
motion for every microstate, so f = f(H,N) (obviously, in general, both H and N can vary from microstate to
microstate, unless they are constrained).
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6.3 Moment generating function
The moments are the most important descriptors of a probability distribution function (PDF). It is therefore
useful to be able to calculate them easily. To this scope, one introduces the moment generating function (MGF),
defined for a single variable as

mx(t) ≡ 〈etx〉 =
ˆ
etxf(x)dx (6.28)

It it easy to show that
drmx(t)
dtr

|t=0 = 〈xr〉 (6.29)

One has in fact

drmx(t)
dtr

|t=0 = dr〈etx〉
dtr

|t=0 = 〈d
retx

dtr
|t=0〉 (6.30)

= 〈xretx〉t=0 = 〈xr〉 (6.31)

Analogously, one can define the MGF for central moments:

mx−µ(t) ≡ 〈et(x−µ)〉 =
ˆ
et(x−µ)f(x)dx (6.32)

Suppose now we have two independent variables x, y distributed as f(x), g(y). Let us find the MGF of the sum
s = x+ y. We have p(x, s)dsdx = f(x)g(y)dxdy and therefore

p(s, x) = f(x)g(y)|J | (6.33)

where the Jacobian of the transformation from (x, y) to (s, x) is

J =
(

1 0
−1 1

)
(6.34)

and therefore |J | = 1. Then the distribution of s is given by marginalizing p over x,

q(s) =
ˆ
p(s, x)dx =

ˆ
f(x)g(y)dx (6.35)

It follows

ms(t) = 〈ets〉 =
ˆ
etsq(s)ds =

ˆ
etsp(s, x)dxds (6.36)

=
ˆ
et(x+y)f(x)g(y)dxdy = 〈ets〉〈ety〉 = mx(t)my(t) (6.37)

i.e. the MGF of the sum of two independent variables is the product of the two MGFs. This extends obviously
to the sum of any number of independent variables.

If the MGF exists, then two PFDs with the same MGF are identical; in other words, the MGF characterizes
completely the PDF (under some general smoothness conditions).

6.4 Central limit theorem
The MGF helps us to demonstrate the Central Limit Theorem, according to which the Gaussian is the asymptotic
distribution of the sum of n independent identically distributed (IID) random variables in the limit of n→∞.

Let xi with i = 1, .., n be n IID random variables with mean µ and variance σ2, with an unknown PDF. The
CLT states that the variable

Y ≡ x̂− µ
σ/
√
n

(6.38)
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where x̂ =
∑
i xi/n tends to a Gaussian variable for n→∞. Let us define the normal variables

zi = xi − µ
σ

(6.39)

with 〈zi〉 = 0 and 〈z2
i 〉 = 0. Clearly

Y = 1√
n

∑
i

zi (6.40)

Let us find the MGF of Y . By the property of additive variables we have

mY (t) = 〈eY t〉 = 〈ezit/
√
n〉n (6.41)

Now

〈ezit/
√
n〉n = 〈1 + zit√

n
+ z2

i t
2

2!n + z3
i t

3

3!n3/2 + ...〉n (6.42)

= (1 + 〈zi〉t√
n

+ 〈z
2
i 〉t2

2!n + 〈z
3
i 〉t3

3!n3/2 + ...)n (6.43)

Since 〈zi〉 = 0 and 〈z2
i 〉 = 1 we obtain for n� 1

〈ezit/
√
n〉n = (1 + t2

2!n + 〈z
3
i 〉t3

3!n3/2 + ...)n (6.44)

≈ (1 + t2

2n )n ≈ 1 + t2

2 ≈ e
1
2 t

2
(6.45)

which is the MGF of a Normal Gaussian variable, QED.
The importance of this theorem is that it guarantees that if the errors in a measure are the results of many

independent errors due to various parts of the experiment, then they are expected to be distributed in a Gaussian
way. It can be extended to the case of independent variables with different mean and variances but in this case
the condition n� 1 is not a sufficient condition for normality.

6.5 Estimators of mean and variance.
In this section we assume always independent and identically distributed variables. The sample mean

x̂ ≡
∑
i xi
n

(6.46)

is an unbiased estimator of µ = E[x] . In fact

E[x̂] = 1
n

∑
i

ˆ
xif(x)dx =

∑
µ

n
= µ (6.47)

Notice also that even a single measure, eg x1, is an unbiased estimator of the mean: E[x1] = µ. The choice
should then be the estimator of minimal variance. As we see below, the variance of the mean goes like 1/n; the
mean is therefore a better estimator than a single measure, or any mean of a subset of measures.

The sample variance
s2 = 1

n− 1
∑
i

(xi − x̂)2 (6.48)

is an unbiased estimator of σ2 = E[(x − µ)2]. Notice that both xi and x̂ are random variables; if the mean is
known in advance, the denominator of the unbiased estimator would be n instead of n− 1.

Analogously, the unbiased estimator of the covariance is

V̂ij = 1
n− 1

∑
k

(xk − x̂i)(xk − x̂j) (6.49)
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For two variables this is
V̂xy = n

n− 1(x̂y − x̂ŷ) (6.50)

where in this specific instance we use theˆto denote the sample average, for instance

x̂y = 1
n

∑
i

xiyi (6.51)

Finally, an estimator of the correlation coefficient is

r = V̂xy
sxsy

= x̂y − x̂ŷ√
(x̂2 − x̂2)(ŷ2 − ŷ2)

(6.52)

(note x̂2 6= x̂2). This is only asymptotically unbiased, even if V̂xy, sx, sy are unbiased quantities; however is
often used because of its simplicity.

We can now estimate the variance of the mean:

V ar[x̂] = E[x̂2]− (E[x̂])2 = E[( 1
n

∑
xi)(

1
n

∑
xj)]− µ2 (6.53)

= 1
n2

∑
i,j

E[xixj ]− µ2 (6.54)

= 1
n2 [(n2 − n)µ2 + n(µ2 + σ2)]− µ2 = σ2

n
(6.55)

where in the last step we have employed E[xixj ] = µ2 for i 6= j and E[x2
i ] = µ2 + σ2 (and that there are n2 − n

combinations i 6= j and n of i = j). The same result can be readily obtained by the law of error propagation,
which in this case is exact since the mean is a linear combination of random variables. This is a very important
result: the standard deviation of the mean is a factor 1/

√
n smaller wrt the standard deviation of a single

measure. So if we perform another measurement, we expect it to deviate by ∼ σ wrt the mean; but if we take
another mean of a set of n similar measurements, then we expect the new mean to deviate from the old one
only by ∼ σ/

√
n.

6.6 Parameter estimation: Statistics, sample, bias
So far we have analysed the theoretical properties of the distributions. However, what we really normally have
is a number of measurements x1, x2, x3...xn. If the measures are independent, we can assume that the joint
PDF of the full set xi is

fsample(xi) = f(x1)f(x2)f(x3)...f(xn) (6.56)

Our problem now is to derive from the n measures the estimates of the population parameters, that is, the
parameters that chracterize f(x), for instance the mean µ and the variance σ2 . We need to find then functions
of the data xi, generally called statistics, such that they approximate the parameters of the f(x). We have
already seen an example of estimator: the mean

x̂ =
∑
i xi
n

(6.57)

(now we use a hat to denote the estimator as a random variable, rather than any specific estimate) is in fact
an estimator of µ = E[x]. We can certainly have several estimators for any given parameter; here we see now
which are the main properties that “good” estimator should possess.

Let θ be the parameter of f(x) to be estimated and θ̂ the estimator, function of the n measures xi. If θ̂
approximates θ in the limit of large n, the estimator is said to be consistent :

lim
n→∞

P (|θ̂ − θ| > ε) = 0 (6.58)

for every ε > 0.
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The expected value of θ̂ = θ̂(x1, x2, ...) is by definition

E[θ̂] =
ˆ
θ̂f(x1; θ)f(x2; θ)...dx1...dxn (6.59)

If the bias
b = E[θ̂]− θ (6.60)

is zero for every n, the estimator θ̂ is unbiased. If b→ 0 only for large n, the estimator is said to be asymptotically
unbiased. The bias is a systematic error because it does not depend on how good the measures are but on our
choice of the estimator. At least in principle, one can always choose a better estimator or a unbiased one.

We define also consider the variance of the estimator:

V [θ̂] = E[(θ̂ − E[θ̂])2] =
ˆ

(θ̂ − E[θ̂])2f(x1; θ)f(x2; θ)...dx1...dxn (6.61)

The variance of θ̂ is a statistical error because is unavoidable (although it can be minimized), since it depends
ultimately on the fact that θ̂ is a random variable.

We define also the mean square error

MSE = E[(θ̂ − θ)2] = E[(θ̂ − E(θ) + E(θ)− θ)2] = V [θ̂] + b2 (6.62)

which can be indeed interpreted as the sum of the statistical and systematic errors.

6.7 Maximum likelihood estimators and Bayes’ theorem
Let us suppose we know, or have good reasons to suspect, that a random variable x, e.g., the apparent magnitude
of a supernova, has a probability distribution function (PDF) f(x; θ) that depends on an unknown parameter θ,
e.g., the absolute magnitude. The “;” (previously we used the vertical bar |) is meant to distinguish the random
variables x from the parameter θ. As we have already seen, such a probability is called a conditional probability of
having the data x given the theoretical parameter θ. We may for instance suppose that the apparent magnitude
m is distributed as a Gaussian variable with a given variance σ2 (the observational error on m), but we do not
know one of the cosmological parameters that enter the expected valuemth = 5 log10 dL(z; Ω(0)

m ,Ω(0)
Λ )+constant,

where dL is the luminosity distance.
If we repeat the measure and we obtain x1, x2, x3..., then the law of joint probability tells us that the

probability of obtaining x1 in the interval dx1 around x1, x2 in the interval dx2 around x2 and so forth is

f(xi; θ)dnxi ≡
∏
i

fi(xi; θ)dxi = f1(x1; θ)f2(x2; θ)f3(x3; θ)...dx1dx2dx3... , (6.63)

if the measures are independent of each other. Clearly, for every θ this multivariate PDF will assume a different
value. It is logical to define the best θ as the value for which

∏
i f(xi; θ) is maximal. Indeed, if we generate ran-

dom variables distributed as f(x; θ), the most likely outcome for x is that value maximizing f(x; θ). Conversely,
if we have a particular outcome x, then our best bet is to assume that θ is such as to maximize the occurrence
of that x. We used as an example independent data and a single parameter but this is by no means necessary.
We define the best θα as those parameters that maximizes the joint function f(x1, x2, ..xn; θ1, θ2, ...θm). Since
in general we have many parameters to estimate, we write the function simply f(xi; θα), meaning all the xi’s
and all the θα’s.

The maximum likelihood method of parameter estimation consists therefore in finding the parameters that
maximize the likelihood function f(xi; θα) by solving the system

∂f(xi; θα)
∂θα

= 0 , α = 1, ..,m . (6.64)

Let us denote the solutions of these equations as θ̂α. They are functions of the data xi and therefore are random
variables, just as the data are. So the classical frequentist approach would try to determine the distribution of
the θ̂αs knowing the distribution of the xis; if this is possible, one can assign probabilities to θ̂α’s ranges, for
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instance determine the interval of θ̂α that contains 95% probability that a particular set of data has been drawn
from the theoretical distribution (we will se this in later chapters). One problem with this approach is that it
is often too difficult to derive the θ̂j ’s distribution analytically and very demanding to derive them numerically
through simulated datasets. But the main problem is that this approach does not take into account what we
already know concerning the theoretical parameters, for instance the result of previous experiments. To handle
this information properly we need to switch to the Bayesian approach. Instead of looking for the probability
f(xi; θα) of having the data given the model, we estimate the probability L(θα;xi) of having the model given
the data.

This problem is solved by the fundamental theorem of conditional probabilities, the so-called Bayes’ theo-
rem1:

P (T ;D) = P (D;T )P (T )
P (D) , (6.65)

where we denote the known data xi with D and the unknown theory (that is, the theoretical parameters θα) with
T . On the r.h.s., P (D;T ) is the conditional probability of having the data given the theory; P (T ) and P (D) are
the probability of having the theory and the data, respectively; finally, on the l.h.s., P (T ;D) is the conditional
probability of having the theory given the data. Bayes’ theorem is a consequence of the definition of conditional
probability given in Eq. (2.19) P (A;B) ≡ P (A,B)/P (B) and of the symmetry of the joint probability P (A,B)
(the probability of having both A and B) under the exchange of A,B.

It follows that
P (θα;xi) = f(xi; θα)p(θα)

g(xi)
, (6.66)

where p(θα) is called the prior probability for the parameters θα, while g(xi) is the PDF of the data xi. The final
function P (θα;xi) (or simply P (θα) for shortness) is called posterior. The posterior contains the information we
are looking for: the probability distribution of the parameters given that we observed the data xi and that we
have some prior knowledge about the parameters themselves. In fact the whole method in the Bayesian context
should be called “the posterior method” rather than the “likelihood” method. Of course, the frequentist and the
Bayesian estimator coincide if the prior is uniform; however, the PDF of the parameter would still be different.

Since P (θα;xi) is a probability distribution function for θα, it has to be normalized to unity:
ˆ
P (θα;xi)dnθα = 1 =

´
f(xi; θα)p(θα)dnθα

g(xi)
, (6.67)

and therefore ˆ
f(xi; θα)p(θα)dnθα = g(xi) . (6.68)

The integral on the l.h.s. is called evidence and the same name is sometimes given also to g(xi). The function
g(xi) does not depend on the parameters θα and therefore it is of no help in estimating the parameters. From
the point of view of P (θα) it is just a normalization factor. The prior p(θα) is also often unknown. Normally
we do not know the probability distribution of theories, that is, whether for instance the ΛCDM model is more
probable, from an absolute point of view, than a modified gravity model or whether the cosmological constant
density fraction Ω(0)

Λ = 0 is more probable than Ω(0)
Λ = 0.7. However, we often do know something which, while

not quite absolute in any sense, still represents some form of information independent of the data at hand.
Namely, we know the results of previous experiments. If an experiment convincingly excluded, say, Ω(0)

Λ < 0.5,
then we could use this information, putting p(Ω(0)

Λ < 0.5) = 0. If instead we believe that Ω(0)
Λ = 0.7 ± 0.1,

then we could use as p(Ω(0)
Λ ) a Gaussian with mean 0.7 and standard deviation 0.1. These are typical prior

distributions. An improper prior, i.e. one which is not normalized to unity, can also be employed. For instance,
one can assume a uniform prior in the entire range from −∞ to +∞.

Once we have P (θα) we need to search the maximum to obtain the maximum likelihood estimators θ̂i.
Because of the priors, this will differ in general from the maximum of f(xi; θα). Equation (6.64) is then replaced
by

∂P (θα)
∂θα

= 0 , α = 1, .., n . (6.69)

1Reverend Thomas Bayes (1702–1761) studied what in modern terminology is the binomial distribution and introduced the
concept of conditional probability. His work was published posthumously in 1763.
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If, as usually the case, we do not know the denominator g(xi) in Eq. (6.66), the posterior P is not normalized
and its normalization has to be recalculated. The overall normalization N is the integral over the parameter
space:

N =
ˆ
P (θα) dnθα , (6.70)

where the integral extends to the whole parameter domain. From the normalized likelihood [i.e. P (θα)/N which
we keep calling P (θα)], we can derive the regions of confidence (or belief ) for the parameters. These are defined
as regions R(α) of constant P (θα) for which

ˆ
R(α)

P (θα) dnθ = α . (6.71)

The region R(α) is the region for which the integral above evaluates to 0 < α < 1 (remember that now P is
normalized and therefore its integral over the whole domain is 1). To find R one evaluates

ˆ
P̂ (pi) dnθ = αi , (6.72)

where P̂ (pi) = P if P > pi and 0 elsewhere (i.e. the volume lying within the curve of “height” pi, smaller than
the peak of P ). By trial and error (or by interpolating over a grid of pi) one finds the preferred αi. The typical
choices are α = 0.683, 0.954, 0.997 (also denoted as 1, 2, 3σ, respectively), but sometimes other reference values
are also employed. The value pi that corresponds to αi is the level at which we have to cut P to find the region
R(αi).

6.8 Information entropy
The concept of information entropy was introduced by Shannon in the 50s to estimate how much information is
on average transmitted through cables, in order to optimize the efficiency of communications. In other words,
it’s a measure of order: the more ordered a signal is (e.g., a text containing only “a”s), the less information it
conveys, the smaller the entropy.

Imagine a reporter located in A needs to communicate every day to the journal in B some information, eg.
the sport results. The transmitted text, encoded through a binary sistem of “0” and “1”, contains the sport,
the score, the scorers, the weather condition, the audience, and other information. Let’s focus just on the sport
discipline. Suppose in order to specify the kind of sport, the reporter just sends a code from a table ordered
according to sport popularity that contains all disciplines, eg “1” is for football, “2” for tennis, etc. This can
be encoded by approximately bi = log2Ni/2 = logNi − 1 bits, where Ni is the entry position in the table for
sport i. E.g., if football is the first entry, it just needs a “0”; tennis will need ”1” so one bit is suffient; basket
needs “10” , two bits, and so forth, so 2(Ni−1) bits for position Ni or Ni + 1 Clearly, the less popular a sport
is, the more bits it needs to be encoded, so Ni has to be an inverse function of popularity pi, which is just the
frequency with which that discipline is mentioned. The simplest choice is therefore Ni = 1/pi, but any inverse
power would not change the final result.

What is the average number of bits for the first field in the report? Sport i is mentioned with frequency pi
and every time requires logNi bits (for large Ni we can neglect the -1). Then the average length is

S =
∑
i

pi log2Ni = −
∑
i

pi log pi (6.73)

We see that if Ni = p−ki , one would just rescale S; the same if we use another log basis. In all generality, we
can then say that

S = −k
∑
i

pi log pi = −k〈log pi〉 (6.74)

is the average length of the report for the field “sport discipline”. Every other field will have the same form,
so can be added to S. That is, one can send any message by compiling a table containing all possible “words”
ranked in order of usage frequency, and then just send the table entry. So instead of saying “hello world” we
will say, e.g., “word number 251 and word number 676” in the frequency table. S will measure the average
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number of bits we need for such messages. A word that is always used (pi = 1), or never used, and therefore
never transmitted, (pi = 0), has zero entropy, so it uses no “cable resources”. So here “amount of information”
strictly means “communication of data weighted by their frequency”.


	Thermodynamics
	General concepts
	Ideal gas
	Exact and inexact differentials
	Work and heat
	First law
	Second Law
	Thermodynamic potentials
	Energy and entropy
	Stability conditions

	Introduction to Statistics
	Probability and frequency
	Probability of combined events
	Expected values
	Transformation of variables
	The main PDFs
	Multivariate distributions
	Random walks and Fokker-Planck equation

	Statistical mechanics
	Statistical definition of entropy
	Number of microstates
	Microcanonical ensemble
	The canonical ensemble
	Maximization of entropy
	The partition function
	Maxwell-Boltzman distribution
	Proof that the statistical entropy equals the thermodynamic entropy
	Virial and equipartition theorems
	Applications of the canonical ensemble: quantum oscillators
	Applications of the canonical ensemble: paramagnetism
	The macrocanonical ensemble
	The chemical potential
	Ultra-relativistic ideal gas

	Statistical mechanics of quantum systems
	Density operators
	Quantum ensembles
	Symmetry of many-particle wave functions
	Ideal quantum systems
	Bose gas
	Photon gas
	Phonons
	Fermi gas
	Relativistic fermions

	Phase transitions
	General properties of phase transitions
	Gas with interacting particles
	Critical exponents
	Ising model
	The Renormalization Group
	Mean field theory
	Correlation functions

	Mathematical appendix
	Partial derivative identities
	Liouville's theorem
	Moment generating function
	Central limit theorem
	Estimators of mean and variance.
	Parameter estimation: Statistics, sample, bias
	Maximum likelihood estimators and Bayes' theorem
	Information entropy


