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I. INTRODUCTION

Condensed matter physics is concerned with the behavior of large aggregates of atoms or

molecules in liquid or solid form. It is one of the largest branches of physics, with a wide

variety of different systems, approaches, challenges and concepts. Often, it is subdivided

in soft condensed matter physics and hard condensed matter physics. While the transi-

tion between the two branches is gradual, one way to distinguish them is by the role of

quantum mechanics for the elementary excitations of the systems. Soft condensed matter

physics (the physics of polymers, liquid crystals, the statistical mechanics of bio-molecules

etc.) is frequently termed "~ = 0"-physics, stressing that classical dynamics suffi ces for

an understanding of the motion and aggregation of these systems. In distinction, for hard

condensed matter physics, i.e. "~ = 1"-physics, the motion of electrons, lattice vibrations

etc. is determined by Schrödinger’s equation.

Physics is a basic science and its ultimate purpose is the accumulation of new knowledge.

In addition, condensed matter physics is closely connected to materials science as well as

mechanical, chemical, and electric engineering that focus on the design of novel materials

and devices, ranging from better batteries, thermoelectric devices for waste heat conversion

to superconductors, magnets, all the way to better agents in drug delivery. This applied

aspect of condensed matter physics is exciting and important. Still, we should not forget

that the field also contributes to the accumulation of fundamental knowledge and to major

philosophical issues of our times. The value of Planck’s quantum, ~, or of the electron

charge, e, are defined via solid state effects in semiconductors and metals (the quantum

Hall effect and the Josephson effect). It is quite amazing that these fundamental constants

of nature are not determined in an experiment at a particle accelerator but rather in a

solid state laboratory. Other frequently cited examples about the fundamental importance

of condensed matter physics are that the famous Higgs particle was first proposed in the

context of superconducting phase transitions, that asymptotic freedom (important for our

current understanding of hadronization of quarks) occurs in case of the Kondo effect of a

magnetic impurity in a metal, that fractional charges emerge naturally in the context of the

fractional Quantum Hall effect etc. etc. The beauty of condensed matter physics is that it

combines hands-on applications with the development of fundamentally new concepts, often

even in the same material!
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Lets discuss one epistemological issue that is heavily debated these days: Particle and

string theorists search to find a better way to formulate the fundamental laws of physics.

This is very exciting research. But suppose for a moment, we knew the fundamental "theory

of everything" (TOE). Does this mean that the physics would stop existing as a basic science?

Well, in condensed matter physics we have a TOE since 1927, yet major discoveries continue

to take place. The TOE of condensed matter physics is the many particle Schrödinger

equation

i~
∂

∂t
Ψ = HΨ (1)

with Hamiltonian

H = Te + Ti + Vee + Vii + Vei (2)

with individual terms:

Te = −
Ne∑
j=1

~2

2m
∇2
j and Ti = −

Ni∑
l=1

~2

2Ml

∇2
l

Vee =
Ne∑

j,j′=1

e2

|rj − rj′|
and Vii =

Ni∑
l,l′=1

e2ZlZl′

|Rl −Rl′|

Vei = −
Ne,Ni∑
j,l=1

e2Zl
|rj −Rl|

. (3)

Here rj (Rl) refers to the coordinates of the Ne (Ni) electrons (nuclei) with mass m (Ml).

Zl is the corresponding nuclear charge. The wave function depends in first quantization on

all coordinates

Ψ (r1, · · · , rNe ,R1, · · · ,RNi) = Ψ ({rj} , {Rl}) . (4)

With the exception of radiation effects and spin-orbit interaction (both can easily be in-

cluded into the formalism) can all phenomena of condensed matter physics be described by

this Hamiltonian and the corresponding equation of motion. At least there is no experi-

ment (or Gedankenexperiment) that is in conflict with this assertion. Thus, the "theory of

everything" of condensed matter physics is well known and established. It would however be

foolish to believe that phenomena like superconductivity, the fractional quantum Hall effect,

electron localization etc. could be derived from Eqs.1,2. Instead a combination of experi-

mental ingenuity, symmetry based reasoning, and a clever analysis of the relevant time and

length scales of a given problem (formalized in terms of the renormalization group theory)

ultimately allows for such conclusions and lead to conceptually new insights. The message
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is that the knowledge of a fundamental "theory of everything" has very little bearing on the

fascinating possibilities that emerge when many particles interact with each other and orga-

nize into new states of matter. There is no reason, other than habit and accepted custom, to

believe that the situation is much different in other areas of physics, such as particle physics

or quantum gravity. These issues have been lucidly discussed by by Phillip W. Anderson,

Science 177, 393—396 (1972) and, more recently, by Robert B. Laughlin and David Pines

(Proceedings of the National Academy of Sciences 97, 28-31 (2000).

II. QUANTUM THEORY OF SOLIDS

A. The Born-Oppenheimer approximation

We start our analysis of Eqs.1,2. Great progress in our understanding can be made if

one recognizes that the two kinetic energy parts of the Hamiltonian are very different. The

ratio of the masses of the electrons and nuclei is small.

m/Ml ' 10−3/Zl � 1. (5)

Thus, the motion of the nuclei is much slower compared to that of the electron and we can

decouple their dynamics. This decoupling goes back to Max Born and Robert Oppenheimner

(1927). One assumes that on the time scale of the electrons the nuclei are frozen. To this

end we assume that the positions of the nuclei are fixed and play for the electronic wave

function,

ψ (r1, · · · , rNe ;R1, · · · ,RNi) = ψ ({rj} ; {Rl}) (6)

solely the role of given parameters. This leads to the simplified Schrödinger equation

i~
∂

∂t
ψ = Helψ (7)

with electronic Hamiltonian

Hel = Te + Vee + Vei. (8)

From the perspective of the electrons the electron-ion Coulomb interaction plays a role of

an "external" potential:

Vei =

Ne∑
j=1

U (rj) (9)
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where U (rj) is the single particle potential that originates from the nuclei:

U (rj) = −
Ni∑
l=1

e2Zl
|rj −Rl|

. (10)

The time independent Schrödinger equation

Helψn = Eel,nψn (11)

determines the eigenvalues of the electronic system that depend parametrically on the ion

positions

Eel,n = Eel,n (R1, · · · ,RNi) . (12)

Next we check whether this approximate treatment is indeed appropriate for m/Ml � 1.

We use the fact that, no matter whether our decoupling is correct or not, the ψn form

a complete set of states for the electronic variables. This allows to expand the full wave

function

Ψ ({rj} , {Rl}) =
∑
n

ψn ({rj} ; {Rl}) Φn ({Rl}) (13)

Formally, the Φn ({Rl}) are the coeffi cients of this expansion into a complete set of states.
Physically, they correspond to the amplitude of the ions to be found at positions {Rl} if the
electrons are in the state ψn. We insert this ansatz into the full Schrödinger equation

HΨ = (Te + Ti + Vee + Vii + Vei)
∑
n

ψnΦn

=
∑
n

(Te + Ti + Vee + Vii + Vei)ψnΦn

=
∑
n

(Eel,n + Ti + Vii)ψnΦn (14)

It holds immediately:

ViiψnΦn = ψnViiΦn. (15)

In addition we have

TiψnΦn = −
Ni∑
l=1

~2

2Ml

∇2
lψnΦn

= −
Ni∑
l=1

~2

2Ml

∇l ((∇lψn) Φn + ψn∇lΦn)

= −
Ni∑
l=1

~2

2Ml

((
∇2
lψn
)

Φn + 2 (∇lψn)∇lΦn + ψn∇2
l Φn

)
(16)
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Suppose we are allowed to ignore the first two terms. Then follows:

(Eel,n + Ti + Vii)ψnΦn ' ψn (Eel,n + Ti + Vii) Φn. (17)

Thus, after the solution of the electronic problem is accomplished, we have to solve the

purely ionic Schrödinger equation (
Ti + V eff

ii

)
Φn = EΦn (18)

with effective ion-ion interaction V eff
ii = Vii +Eel,n. This determines the ionic wave function

and finally the total energy eigenvalue E . A coupled problem of ions and electrons is therefore
simplified into two separate problems of the two subsystems.

To justify this approach it must obviously hold that the two terms

− ~2

2Ml

((
∇2
lψn
)

Φn + 2 (∇lψn)∇lΦn

)
(19)

are negligible compared to ~2
2Ml

ψn∇2
l Φn. This must be checked a posteriori, after the wave

functions ψn and Φn are determined. At this point it is a little bit to early to do this analysis.

As the course proceeds, we will be able to perform this calculation and we will find:

~2

2M
ψn∇2

l Φn '
(m
M

)1/2

εFψnΦn,

~2

M
(∇lψn)∇lΦn '

(m
M

)3/4

εFψnΦn,

~2

2Ml

(
∇2
lψn
)

Φn '
m

M
εFψnΦn, (20)

For m/M � 1 follows that terms that contain a derivative ∇lψn can be neglected relative

to the leading term ~2
2M

ψn∇2
l Φn.

We conclude, that the Born-Oppenheimer approximation, valid in the limit m/M � 1,

justifies the investigation of a purely electronic Hamiltonian

Hel = −
Ne∑
j=1

~2

2m
∇2
j +

Ne∑
j=1

U (rj) +

Ne∑
j,j′=1

e2

|rj − rj′|
. (21)

Still, the problem is only defined if we know the positions of the nuclei. In case of crystalline

solids, where the nuclei are arranged on a periodic lattice, the potential U (r) is periodic

with respect to the discrete translations of the crystal, which simplifies this aspect of the

problem significantly.
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After we established Hel as effective theory of the electronic system only, we study the

impact of the potential U (r) in case of periodic lattices. To this end we first ignore the

electron-electron interaction e2 |rj − rj′ |−1. This seems at first glance a foolish thing to do,

as the Coulomb interaction between electrons is neither small nor irrelevant. At this point

we make this assumption without further justification and come back to it later. We will see

that there are numerous situation where the behavior of the electrons is effectively described

by non-interacting fermions, while in other cases (quasi-one dimensional systems, systems

where plasma excitations of the electrons matter, systems that order magnetically etc.) the

neglect of the Coulomb interaction cannot be justified.

Once electrons are noninteracting the Hamiltonian is a sum over single particle Hamilto-

nians

Hel =
Ne∑
j=1

H (pj, rj)

with

H (p, r) = − ~
2

2m
∇2 + U (r) .

Since we assumed that the electrons are non-interacting, their thermodynamic behavior is

that of an ideal Fermi gas. The remaining task, needed to analyze this Fermi gas, is to

determine the single particle eigenfunctions ϕn (r) and the corresponding eigenvalues εn of

H. Before we discuss these issues we repeat the statistical mechanics of quantum gases and

the formalism of second quantization.

III. QUANTUM STATISTIC OF IDEA GASES

We consider consequences of indistinguishability in quantum statistics. The quantity of

interest in statistical mechanics is the partition function

Z = treβH =
∑
α

exp (−βEα) (22)

where the sum is over all many body states |α〉 with energy Eα and β = 1
kBT

. Once we

know Z we can determine all thermodynamic quantities of a given equilibrium system. For

example, the Boltzmann probability

pα =
1

Z
exp (−βEα)
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is normalized (
∑
α

pα = 1) because of the denominator Z. The mean energy is

U = 〈H〉 =
∑
α

Eαpα =
1

Z

∑
α

Eαe
−βEα

= − ∂

∂β
logZ (23)

For the entropy holds

S = −kB
∑
α

pα log pα = −kB
Z

∑
α

e−βEα (−βEα − logZ)

=
1

T
U + kB logZ (24)

From thermodynamics we know that F = U − TS is the free energy. Thus, it follows:

F (T, V,N) = −kBT logZ. (25)

In some situations one can also include variable particle numbers and one has to obtain the

grand canonical partition function

Zg = treβH =
∑
α

exp (−β (Eα − µNα)) (26)

where Nα is the number of particles in the state |α〉. In this gas holds for the grand potential
(or Gibbs free energy)

Ω (T, V, µ) = −kBT logZg. (27)

and the mean particle number is

〈N〉 =
1

Zg

∑
α

Nα exp (−β (Eα − µNα)) = −∂Ω

∂µ
. (28)

For indistinguishable particles it would be necessary to introduce the symmetrized or

antisymmetrized states in order to perform the above sum, which is technically very compli-

cated. A way out of this situation is the so called second quantization, which simply respects

the fact that labeling particles was a stupid thing to begin with and that one should charac-

terize a quantum many particle system differently. If the label of a particle has no meaning,

a quantum state is completely determined if one knows which states of the system are oc-

cupied by particles and which not. The states of an ideal quantum gas are obviously the

momenta since the momentum operator

p̂l =
~
i
∇l (29)
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commutes with the Hamiltonian of an ideal quantum system

H =

N∑
l=1

p̂2
l

2m
. (30)

In case of interacting systems the set of allowed momenta do not form the eigenstates of

the system, but at least a complete basis the eigenstates can be expressed in. Thus, we

characterize a quantum state by the set of numbers

n1 , n2 , ...nM (31)

which determine how many particles occupy a given quantum state with momentum p1, p2,

...pM . In a one dimensional system of size L those momentum states are

pl =
~2πl

L
(32)

which guarantee a periodic wave function. For a three dimensional system we have

plx,ly ,lz =
~2π (lxex + lyey + lzez)

L
. (33)

A convenient way to label the occupation numbers is therefore np which determined the oc-

cupation of particles with momentum eigenvalue p. Obviously, the total number of particles

is:

N =
∑
p

np (34)

whereas the energy of the system is

E =
∑
p

npε (p) (35)

If we now perform the summation over all states we can just write

Z =
∑
{np}

exp

(
−β
∑
p

npε (p)

)
δN,

∑
p np

(36)

where the Kronecker symbol δN,∑p np
ensures that only configurations with correct particle

number are taken into account.

Returning to our earlier problem of noninteracting quantum gases we therefore find

Zg =
∑
{np}

exp

(
−β
∑
p

np (ε (p)− µ)

)
(37)

9



for the grand partition function. This can be rewritten as

Zg =
∑
np1

∑
np2

...
∏
p

e−βnp(ε(p)−µ) =
∏
p

∑
np

e−βnp(ε(p)−µ) (38)

Fermions: In case of fermions np = 0, 1 such that

ZgFD =
∏
p

(
1 + e−β(ε(p)−µ)

)
(39)

which gives (FD stands for Fermi-Dirac)

ΩFD = −kBT
∑
p

log
(
1 + e−β(ε(p)−µ)

)
(40)

Bosons: In case of bosons np can take any value from zero to infinity and we obtain∑
np

e−βnp(ε(p)−µ) =
∑
np

(
e−β(ε(p)−µ)

)np
=

1

1− e−β(ε(p)−µ)
(41)

which gives (BE stands for Bose-Einstein)

ZgBE =
∏
p

(
1− e−β(ε(p)−µ)

)−1
(42)

as well as

ΩBE = kBT
∑
p

log
(
1− e−β(ε(p)−µ)

)
. (43)

A. Analysis of the ideal fermi gas

We start from

Ω = −kBT
∑
p

log
(
1 + e−β(ε(p)−µ)

)
(44)

which gives

〈N〉 = −∂Ω

∂µ
=
∑
p

e−β(ε(p)−µ)

1 + e−β(ε(p)−µ)
=
∑
p

1

eβ(ε(p)−µ) + 1
=
∑
p

〈np〉 (45)

i.e. we obtain the averaged occupation number of a given quantum state

〈np〉 =
1

eβ(ε(p)−µ) + 1
(46)

Often one uses the symbol f (ε (p)− µ) = 〈np〉. The function

f (ω) =
1

eβω + 1
(47)
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is called Fermi distribution function. For T = 0 this simplifies to

〈np〉 =

 1 ε (p) < µ

0 ε (p) > µ
(48)

States below the energy µ are singly occupied (due to Pauli principle) and states above µ

are empty. µ (T = 0) = EF is also called the Fermi energy.

In many cases will we have to do sums of the type

I =
∑
p

f (ε (p)) =
V

h3

∫
d3pf (ε (p)) (49)

these three dimensional integrals can be simplified by introducing the density of states

ρ (ω) = V

∫
d3p

h3
δ (ω − ε (p)) (50)

such that

I =

∫
dωρ (ω) f (ω) (51)

We can determine ρ (ω) by simply performing a substitution of variables ω = ε (p) if ε (p) =

ε (p) only depends on the magnitude |p| = p of the momentum

I =
V 4π

h3

∫
p2dpf (ε (p)) =

V 4π

h3

∫
dω

dp

dω
p2 (ω) f (ω) (52)

such that

ρ (ω) = V
4πm

h3

√
2mω = V A0

√
ω (53)

with A0 = 4π
h3

√
2m3/2. Often it is more useful to work with the density of states per particle

ρ0 (ω) =
ρ (ω)

〈N〉 =
V

〈N〉A0

√
ω. (54)

We use this approach to determine the chemical potential as function of 〈N〉 for T = 0.

〈N〉 = 〈N〉
∫
ρ0 (ω)n (ω) dω = 〈N〉

∫ EF

0

ρ0 (ω) dω = V A0

∫ EF

0

ω1/2dω = V
2

3
A0E

3/2
F (55)

which gives

EF =
h2

2m

(
6π2 〈N〉

V

)2/3

(56)

If V = d3N it holds that EF ∼ h2

2m
d−2. Furthermore it holds that

ρ0 (EF ) =
V

〈N〉
2m

4π2h2

(
6π2 〈N〉

V

)1/3

=
3

2

1

EF

(57)
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Equally we can analyze the internal energy

U = − ∂

∂β
logZg = − ∂

∂β

∑
p

log
(
1 + e−β(ε(p)−µ)

)
=
∑
p

ε (p)

eβ(ε(p)−µ) + 1
(58)

such that

U =
∑
p

ε (p) 〈np〉 =

∫
ρ (ω)ωn (ω − µ) dω =

3

5
〈N〉EF (59)

At finite temperatures, the evaluation of the integrals is a bit more subtle. The details,

which are only technical, will be discussed in a separate handout. Here we will concentrate

on qualitative results. At finite but small temperatures the Fermi function only changes in

a regime ±kBT around the Fermi energy. In case of metals for example the Fermi energy

with d ' 1 − 10Å leads to EF ' 1...10eV i.e. EF/kB ' 104...105K which is huge compared

to room temperature. Thus, metals are essentially always in the quantum regime whereas

low density systems like doped semiconductors behave more classically.

If we want to estimate the change in internal energy at a small but finite temperature

one can argue that there will only be changes of electrons close to the Fermi level. Their

excitation energy is ∼ kBT whereas the relative number of excited states is only ρ0 (EF ) kBT .

Due to ρ0 (EF ) ∼ 1
EF

it follows in metals ρ0 (EF ) kBT � 1. We therefore estimate

U ' 3

5
〈N〉EF + 〈N〉 ρ0 (EF ) (kBT )2 + ... (60)

at lowest temperature. This leads then to a specific heat at constant volume

cV =
CV
〈N〉 =

1

〈N〉
∂U

∂T
∼ 2k2

Bρ0 (EF )T = γT (61)

which is linear, with a coeffi cient determined by the density of states at the Fermi level. The

correct result (see handout3 and homework 5) is

γ =
π2

3
k2

Bρ0 (EF ) (62)

which is almost identical to the one we found here. Note, this result does not depend on the

specific form of the density of states and is much more general than the free electron case

with a square root density of states.
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Similarly one can analyze the magnetic susceptibility of a metal. Here the energy of the

up ad down spins is different once a magnetic field is applied, such that a magnetization

M = µB (〈N↑〉 − 〈N↓〉)

= µB 〈N〉
(∫ EF

0

ρ0 (ω + µBB)− ρ0 (ω − µBB)

)
dω (63)

For small field we can expand ρ0 (ω + µBB) ' ρ0 (ω) + ∂ρ0(ω)
∂ω

µBB which gives

M = 2µ2
B 〈N〉B

∫ EF

0

∂ρ0 (ω)

∂ω
dω

= 2µ2
B 〈N〉Bρ0 (EF ) (64)

This gives for the susceptibility

χ =
∂M

∂B
= 2µ2

B 〈N〉 ρ0 (EF ) . (65)

Thus, one can test the assumption to describe electrons in metals by considering the ratio

of χ and CV which are both proportional to the density of states at the Fermi level.

B. The ideal Bose gas

Even without calculation is it obvious that ideal Bose gases behave very differently at low

temperatures. In case of Fermions, the Pauli principle enforced the occupation of all states

up to the Fermi energy. Thus, even at T = 0 are states with rather high energy involved.

The ground state of a Bose gas is clearly different. At T = 0 all bosons occupy the state

with lowest energy, which is in our case p = 0. An interesting question is then whether this

macroscopic occupation of one single state remains at small but finite temperatures. Here,

a macroscopic occupation of a single state implies

lim
〈N〉→∞

〈np〉
〈N〉 > 0. (66)

We start from the partition function

ΩBE = kBT
∑
p

log
(
1− e−β(ε(p)−µ)

)
(67)

which gives for the particle number

〈N〉 = −∂Ω

∂µ
=
∑
p

1

eβ(ε(p)−µ) − 1
. (68)

13



Thus, we obtain the averaged occupation of a given state

〈np〉 =
1

eβ(ε(p)−µ) − 1
. (69)

Remember that Eq.68 is an implicit equation to determine µ (〈N〉). We rewrite this as

〈N〉 =

∫
dωρ (ω)

1

eβ(ω−µ) − 1
. (70)

The integral diverges if µ > 0 since then for ω ' µ

〈N〉
∫
dω

ρ (ω)

β (ω − µ)
→∞ (71)

if ρ (µ) 6= 0. Since ρ (ω) = 0 if ω < 0 it follows

µ ≤ 0. (72)

The case µ = 0 need special consideration. At least for ρ (ω) ∼ ω1/2, the above integral is

convergent and we should not exclude µ = 0.

Lets proceed by using

ρ (ω) = V A0

√
ω (73)

with A0 = 4π
h3

√
2m3/2. Then follows

〈N〉
V

= A0

∫ ∞
0

dω

√
ω

eβ(ω−µ) − 1

< A0

∫ ∞
0

dω

√
ω

eβω − 1

= A0 (kBT )3/2

∫ ∞
0

dx
x1/2

ex − 1
(74)

It holds ∫ ∞
0

dx
x1/2

ex − 1
=

√
π

2
ς

(
3

2

)
' 2.32 (75)

We introduce

kBT0 = a0
h2

m

(
〈N〉
V

)2/3

(76)

with

a0 =
2π

ς
(

3
2

)2/3
' 3.31. (77)

The above inequality is then simply:

T0 < T. (78)
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Our approach clearly is inconsistent for temperatures below T0 (Note, except for prefactors,

kBT0 is a similar energy scale than the Fermi energy in ideal fermi systems). Another way

to write this is that

〈N〉 < 〈N〉
(
T

T0

)3/2

. (79)

Note, the right hand side of this equation does not depend on 〈N〉. It reflects that we could
not obtain all particle states below T0.

The origin of this failure is just the macroscopic occupation of the state with p = 0.

It has zero energy but has been ignored in the density of states since ρ (ω = 0) = 0. By

introducing the density of states we assumed that no single state is relevant (continuum

limit). This is obviously incorrect for p = 0. We can easily repair this if we take the state

p = 0 explicitly into account.

〈N〉 =
∑
p>0

1

eβ(ε(p)−µ) − 1
+

1

e−βµ − 1
(80)

for all finite momenta we can again introduce the density of states and it follows

〈N〉 =

∫
dωρ (ω)

1

eβ(ω−µ) − 1
+

1

e−βµ − 1
(81)

The contribution of the last term

N0 =
1

e−βµ − 1
(82)

is only relevant if

lim
〈N〉→∞

N0

〈N〉 > 0. (83)

If µ < 0, N0 is finite and lim〈N〉→∞
N0
〈N〉 = 0. Thus, below the temperature T = T0 the

chemical potential must vanish in order to avoid the above inconsistency. For T < T0

follows therefore

〈N〉 = 〈N〉
(
T

T0

)3/2

+N0 (84)

which gives us the temperature dependence of the occupation of the p = 0 state: If T < T0

N0 = 〈N〉
(

1−
(
T

T0

)3/2
)
. (85)

and N0 = 0 for T > T0. Then µ < 0.

For the internal energy follows

U =

∫
dωρ (ω)ω

1

e−β(ω−µ) − 1
(86)
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which has no contribution from the "condensate" which has ω = 0. The way the existence

of the condensate is visible in the energy is via µ (T < T0) = 0 such that for T < T0

U = V A0

∫
dω

ω3/2

e−βω − 1
= V A0 (kBT )5/2

∫ ∞
0

dx
x3/2

e−x − 1
(87)

It holds again
∫∞

0
dx x3/2

e−x−1
= 3

4

√
πς (5/2) ' 1.78. This gives

U = 0.77 〈N〉 kBT
(
T

T0

)3/2

(88)

leading to a specific heat (use U = αT 5/2)

C =
∂U

∂T
=

5

2
αT 3/2 =

5

2

U

T
∼ T 3/2. (89)

This gives

S =

∫ T

0

c (T ′)

T ′
dT ′ =

5

2
α

∫ T

0

T ′1/2dT ′ =
5

3
α T 3/2 =

5

3

U

T
(90)

which leads to

Ω = U − TS − µN = −2

3
U (91)

The pressure below T0 is

p = −∂Ω

∂V
=

5

3

∂U

∂V
= 0.08

m3/2

h3 (kBT )5/2 (92)

which is independent of V . This determines the phase boundary

pc = pc (vc) (93)

with specific volume v = V
〈N〉 at the transition:

pc = 1.59
h2

m
v−5/3. (94)

IV. SECOND QUANTIZATION

A. The harmonic oscillator: raising and lowering operators

Lets first reanalyze the harmonic oscillator with potential

V (x) =
mω2

2
x2 (95)
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where ω is the frequency of the oscillator. One of the numerous approaches we use to

solve this problem is based on the following representation of the momentum and position

operators:

x̂ =

√
~

2mω

(
â† + â

)
p̂ = i

√
m~ω

2

(
â† − â

)
. (96)

From the canonical commutation relation

[x̂, p̂] = i~ (97)

follows [
â, â†

]
= 1

[â, â] =
[
â†, â†

]
= 0. (98)

Inverting the above expression yields

â =

√
mω

2~

(
x̂+

i

mω
p̂

)
â† =

√
mω

2~

(
x̂− i

mω
p̂

)
(99)

demonstrating that â† is indeed the operator adjoined to â. We also defined the operator

N̂ = â†â (100)

which is Hermitian and thus represents a physical observable. It holds

N̂ =
mω

2~

(
x̂− i

mω
p̂

)(
x̂+

i

mω
p̂

)
=

mω

2~
x̂2 +

1

2m~ω
p̂2 − i

2~
[p̂, x̂]

=
1

~ω

(
p̂2

2m
+
mω2

2
x̂2

)
− 1

2
. (101)

We therefore obtain

Ĥ = ~ω
(
N̂ +

1

2

)
. (102)

Since the eigenvalues of Ĥ are given as En = ~ω
(
n+ 1

2

)
we conclude that the eigenvalues of

the operator N̂ are the integers n that determine the eigenstates of the harmonic oscillator.

N̂ |n〉 = n |n〉 . (103)
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Using the above commutation relation
[
â, â†

]
= 1 we were able to show that

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉 (104)

The operator â† and â raise and lower the quantum number (i.e. the number of quanta).

For these reasons, these operators are called creation and annihilation operators.

B. second quantization of noninteracting bosons

While the above results were derived for the special case of the harmonic oscillator there

is a similarity between the result

En = ~ω
(
n+

1

2

)
(105)

for the oscillator and our expression

E{np} =
∑
p

εpnp (106)

for the energy of a many body system, consisting of non-interacting indistinguishable par-

ticles. While n in case of the oscillator is the quantum number label, we may alternatively

argue that it is the number of oscillator quanta in the oscillator. Similarly we can consider

the many body system as a collection of a set of harmonic oscillators labelled by the single

particle quantum number p (more generally by p and the spin). The state of the many

body system was characterized by the set {np} of occupation numbers of the states (the
number of particles in this single particle state). We the generalize the wave function |n〉 to
the many body case

|{np}〉 = |n1, n2, ..., np, ...〉 (107)

and introduce operators

âp |n1, n2, ..., np, ...〉 =
√
np |n1, n2, ..., np − 1, ...〉

â†p |n1, n2, ..., np, ...〉 =
√
np + 1 |n1, n2, ..., np + 1, ...〉 (108)

That obey [
âp, â

†
p′

]
= δp,p′ . (109)
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It is obvious that these operators commute if p 6= p′. For p = p′ follows

âpâ
†
p |n1, n2, ..., np, ...〉 =

√
np + 1âp |n1, n2, ..., np + 1, ...〉

= (np + 1) |n1, n2, ..., np, ...〉 (110)

and

â†pâp |n1, n2, ..., np, ...〉 =
√
npâ

†
p |n1, n2, ..., np − 1, ...〉

= np |n1, n2, ..., np, ...〉 (111)

which gives âpâ†p − â†pâp = 1. Thus the commutation relation follow even if the operators

are not linear combinations of position and momentum. It also follows

n̂p = â†pâp (112)

for the operator of the number of particles with single particle quantum number p. The

total number operator is N̂ =
∑

p â
†
pâp. Similarly, the Hamiltonian in this representation is

given as

Ĥ =
∑
p

εpâ
†
pâp (113)

which gives the correct matrix elements.

We generalize the problem and analyze a many body system of particles with single

particle Hamiltonian

ĥ =
p̂2

2m
+ U (r̂) (114)

which is characterized by the single particle eigenstates

ĥ |φα〉 = εα |φα〉 . (115)

α is the label of the single particle quantum number. We can then introduce the occupation

number representation with

|n1, n2, ..., nα, ...〉 (116)

and corresponding creation and destruction operators
[
âα, â

†
α′

]
= δα,α′ . We can then perform

a unitary transformation among the states

|β〉 =
∑
α

Uβα |α〉 =
∑
α

|α〉 〈α|β〉 (117)
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The states |β〉 are in general not the eigenstates of the single particle Hamiltonian (they
only are if Uβα = 〈α|β〉 = δαβ). We can nevertheless introduce creation and destruction

operators of these states, that are most naturally defined as:

âβ =
∑
α

〈β|α〉 âα (118)

and the corresponding adjoined equation

â†β =
∑
α

〈β|α〉∗ â†α. (119)

This transformation preserves the commutation relation (see below for an example).

We can for example chose the basis β as the eigenbasis of the potential. Then holds in

second quantization

Û =
∑
β

〈β |U (r)| β〉 a†βaβ (120)

and we can transform the result as

Û =
∑
β,α,α′

〈α|β〉 〈β |U (r)| β〉 〈β|α′〉 â†αâα′

=
∑
α,α′

〈α |U (r)|α′〉 â†αâα′ (121)

It holds of course 〈α |U (r)|α′〉 =
∫
d3rφα (r)U (r)φα′ (r).

In particular, we can chose |β〉 = |r〉 such that 〈β|α〉 = 〈r|α〉 = φα (r). In this case we

use the notation âr = ψ̂ (r) and our unitary transformations are

ψ̂ (r) =
∑
α

φα (r) âα

ψ̂
†
(r) =

∑
α

φ∗α (r) â†α (122)

The commutation relation is then δα,α′[
ψ̂ (r) , ψ̂ (r′)

]
=
∑
α,α′

φα (r)φ∗α′ (r
′)
[
âα, â

†
α′

]
=
∑
α

φα (r)φ∗α (r′) =
∑
α

〈r|α〉 〈α|r′〉

= 〈r|r′〉 = δ (r− r′) (123)

and it follows

Û =

∫
d3rU (r) ψ̂

†
(r) ψ̂ (r) (124)
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Similarly holds for the kinetic energy

T̂ = − ~
2

2m

∫
d3rd3r′

〈
r
∣∣∇2
∣∣ r′〉 ψ̂† (r) ψ̂ (r′)

= − ~
2

2m

∫
d3rd3r′ψ̂

†
(r)∇2δ (r− r′) ψ̂ (r′)

= − ~
2

2m

∫
d3rψ̂

†
(r)∇2ψ̂ (r) (125)

Thus we find

H =
∑
α

εαâ
†
αâα

=

∫
d3rψ̂

†
(r)

(
−~

2∇2

2m
+ U (r)

)
ψ̂ (r) (126)

With the help of the field operators ψ̂ (r) and ψ̂
†
(r) is it possible to bring the many body

Hamiltonian in occupation number representation into the same form as the Hamiltonian of

a single particle.

C. Example 1: a single particle

We consider the most general wave function of a single spinless boson:

|ψα〉 =

∫
d3rφα (r) ψ̂

†
(r) |0〉 (127)

where |0〉 is the completely empty system. Let the Hamiltonian be

H =

∫
d3rψ̂

†
(r)

(
−~

2∇2
r

2m
+ U (r)

)
ψ̂ (r) (128)

It follows

H |ψα〉 =

∫
d3r

∫
d3r′ψ̂

†
(r)

(
−~

2∇2
r

2m
+ U (r)

)
φα (r′) ψ̂ (r) ψ̂

†
(r′) |0〉

=

∫
d3r

∫
d3r′ψ̂

†
(r)

(
−~

2∇2
r

2m
+ U (r)

)
φα (r′) ψ̂

†
(r′) ψ̂ (r) |0〉

+

∫
d3r

∫
d3r′ψ̂

†
(r)

(
−~

2∇2
r

2m
+ U (r)

)
φα (r′) δ (r− r′) |0〉 (129)

The first term disappears since ψ̂ (r) |0〉 = 0 for the empty state. Performing the integration

over r′ gives

H |ψα〉 =

∫
d3rψ̂

†
(r)

(
−~

2∇2
r

2m
+ U (r)

)
φα (r) |0〉

=

∫
d3r

[(
−~

2∇2
r

2m
+ U (r)

)
φα (r)

]
ψ̂
†
(r) |0〉 (130)
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Thus, we need to find the eigenvalue of and eigenfunction of(
−~

2∇2

2m
+ U (r)

)
φα (r) = εαφα (r) (131)

to obtain

H |ψα〉 = εα

∫
d3r φα (r) ψ̂

†
(r) |0〉 = εα |ψα〉 . (132)

Thus, for a single particle problem we recover the original formulation of the "first quanti-

zation". The function φ (r) in Eq.127 is therefore the wave function of the single particle

problem.

Using ψ̂
†
(r) =

∑
α

φ∗α (r) â†α follows â
†
α =

∫
d3rφα (r) ψ̂

†
(r) and our above wave function

is nothing but

|ψα〉 = â†α |0〉 (133)

Applying the Hamiltonian to the wave function in this basis is obviously giving the same

answer.

H |ψα〉 =
∑
α′

εα′ â
†
α′ âα′ â

†
α |0〉 = εa |ψα〉 (134)

D. Second quantization of interacting bosons

Next we analyze the formulation of particle-particle interactions within the second quan-

tization. We consider a two body interaction V̂ that has, by definition, matrix elements that

depend on the states of two particles. Thus the expression for a single particle where

Û =
∑
α,α′

〈α |U |α′〉 â†αâα′ (135)

will be determined by a matrix elements of the kind:

〈αγ |V |α′γ′〉 =

∫
d3rd3r′φ∗α (r)φ∗γ (r′)V (r, r′)φα′ (r

′)φγ′ (r) . (136)

In general there will be a two particle basis |αγ〉 where the interaction is diagonal

V̂ |αγ〉 = Vαγ |αγ〉 (137)

where Vαγ = 〈αγ |V |αγ〉. In this basis we can proceed just like for the interaction Û ,

where the operator was given by
∑

α 〈α |U |α〉 â†αâα. In case of a two particle interaction we
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have contributions if there are two particles, one in state α the other in state γ. This the

interaction must be

V̂ =
1

2

∑
αγ

VαγP̂αγ (138)

where P̂αβ is the operator which counts the number of pairs of particles in the states |α〉
and |γ〉. The prefactor 1

2
takes into account that each pair is considered only once.

If |α〉 = |γ〉, the number of pairs is nα (nα − 1), while for |α〉 6= |γ〉 it is nαnγ, where the
nα are the occupation numbers of those states. It follows

P̂αγ = n̂αn̂γ − δαγn̂α

= a†αa
†
γaαaγ = a†αa

†
γaγaα (139)

and we find

V̂ =
1

2

∑
αγ

Vαγa
†
αa
†
γaγaα =

1

2

∑
αγ

〈αγ |V |αγ〉 a†αa†γaγaα (140)

Transforming this expression into an arbitrary basis |µ〉 =
∑
α

|α〉 〈α|µ〉 , we insert the
operators in the new basis

â†α =
∑
λ

〈λ|α〉 â†λ.

âα =
∑
λ

〈α|λ〉 âλ (141)

and it follows

V̂ =
1

2

∑
αγ,λµρν

〈λ|α〉 〈µ|γ〉 〈αγ |V |αγ〉 〈α|ρ〉 〈γ|ν〉 a†λa†µaρaν (142)

which simplifies to:

V̂ =
1

2

∑
λµρν

〈λµ |V | ρν〉 a†λa†µaρaν (143)

If for example

〈r, r′ |V | r′′r′′′〉 = v (r− r′) δ (r′′ − r′) δ (r′′′ − r) (144)

for an interaction that only depends on the distance between the two particles, it follows

V̂ =
1

2

∫
d3rd3r′v (r− r′) ψ̂

†
(r) ψ̂

†
(r′) ψ̂ (r′) ψ̂ (r) . (145)
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E. Second quantization of noninteracting fermions

1. The fermionic "harmonic oscillator"

When we introduced the second quantized representation for bosons we took advantage

of the fact that the eigenstates of a free bose system

E =
∑
α

εαnα (146)

could be expressed in terms of the set {nα} of occupation numbers. In case of bosons these
occupation numbers were allowed to take all integer values na = 0, 1, · · · ,∞, reminiscent of
the quantum number of the harmonic oscillator. The latter then led to the introduction of

creation and annihilation operators of the bosons, where the occupation number operator

of a given state was n̂α = â†αâa. The Hamiltonian was then written as

Ĥ =
∑
α

εαn̂α (147)

Obviously, this approach cannot be used to describe fermions where nα = 0 or 1. In case of

fermions, the single particle quantum state always includes the spin, for example α = (k, σ).

We need to find the fermion analog to the harmonic oscillator, i.e. a state that only

allows for the two occupations nα = 0 or 1. We want to express the Hamiltonian for a single

quantum state as

ĥ = εn̂ (148)

This is easily done with the help of a (2× 2) matrix representation (note, these matrices

have nothing to do with the spin of the system). If we introduce

|0〉 =

 1

0

 and |1〉 =

 0

1

 (149)

for the empty and occupied state, it holds

n̂ =

 0 0

0 1

 (150)

We can equally introduce lowering and raising operators

â |0〉 = 0 and â |1〉 = |0〉 (151)
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as well as

â† |1〉 = 0 and â† |0〉 = |1〉 . (152)

It follows easily that this is accomplished by

â =

 0 1

0 0

 and â† =

 0 0

1 0

 . (153)

As in case of bosons, â† is the adjoined operator of â.

The action of these operators of a state with arbitrary occupation is then

â |n〉 = n |n− 1〉 = n |1− n〉

â† |n〉 = (1− n) |n+ 1〉 = (1− n) |1− n〉 (154)

If we now determine a†a it follows

â†â =

 0 1

1 0

 0 1

0 0

 =

 0 0

0 1

 (155)

and we have, just as for bosons,

n̂ = â†â. (156)

However, an important difference is of course that now holds

ââ† + â†â = 1 (157)

in addition we immediately see

â†â† = ââ = 0 (158)

Fermionic creation and annihilation operators do not commute, they anticommute:[
â, â†

]
+

= 1[
â†, â†

]
+

= [â, â]+ = 0. (159)

Note, we could have introduced equally

â = −

 0 1

0 0

 and â† = −

 0 0

1 0

 . (160)

with the only change that now â |1〉 = − |0〉 and â† |0〉 = − |1〉 and all other results remain
unchanged.
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2. Many fermi states

To generalize the single fermi result to many fermions we the any body wave function in

occupation number representation

|n1, n2, . . . , nα, . . .〉 (161)

We then need to analyze the creation and annihilation operators â†α and âafor the individual

states, respectively.

At first glance it is natural to introduce(1− n) |n+ 1〉

âa |n1, n2, . . . , nα, . . .〉 = nα |n1, n2, . . . , nα − 1, . . .〉

â†a |n1, n2, . . . , nα, . . .〉 = (1− nα) |n1, n2, . . . , nα + 1, . . .〉 (162)

(Note, these equations will turn out to be incorrect!)

This implies however that [
âα, â

†
α

]
+

= 1 (163)

while for different states α 6= α′ follows[
âα, â

†
α′

]
+

= 2âαâ
†
α′ (164)

a result that follows from
[
âα, â

†
α′

]
= 0 for α 6= α′. If we now want to transform from one

basis to another, with

|l〉 =
∑
α

|α〉 〈α|l〉 (165)

Just like in case of bosons the new operators should be linear combinations of the old ones,

which yields

âl =
∑
α

〈l|α〉 âα (166)

and the corresponding adjoined equation

â†l =
∑
α

〈l|α〉∗ â†α. (167)

We now require [
âl, â

†
l

]
+

= 1 (168)

which leads to

1 =
∑
α,α′
〈l|α〉 〈α′|l〉

[
âα, â

†
α′

]
+

(169)
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For a complete set of states 〈l|α〉 this is only possible if[
âα, â

†
α′

]
+

= δα,α′ (170)

i.e. for α 6= α′ the anticommutator and not the commutator must vanish. We conclude that

Eq.162 cannot be correct.

Jordan and Wigner realized that a small change in the definition of these operators can

fix the problem. To proceed we need to order the quantum numbers in some arbitrary but

fixed way. We then introduce

να =
α−1∑
α′=1

nα (171)

as the number of occupied states that precede the α-th state. We can then introduce

âα = (−1)να

 0 1

0 0

 and â† = (−1)να

 0 0

1 0

 (172)

The matrix acts on the occupation of the α-th state. As shown above, a prefactor −1 in the

definition of these operators causes no problem. It then follows

âa |n1, n2, . . . , nα, . . .〉 = (−1)να nα |n1, n2, . . . , nα − 1, . . .〉

= (−1)να nα |n1, n2, . . . , 1− nα, . . .〉

â†a |n1, n2, . . . , nα, . . .〉 = (−1)να (1− nα) |n1, n2, . . . , nα + 1, . . .〉

= (−1)να (1− nα) |n1, n2, . . . , 1− nα, . . .〉 (173)

It obviously holds that [
âα, â

†
α

]
+

= 1 (174)

We next analyze (assume α′ prior to α)

âa′ â
†
a |n1, . . . , nα′ , . . . , nα, . . .〉 = (−1)να (1− nα) âa′ |n1, . . . , nα′ , . . . , 1− nα, . . .〉

= (−1)να+να′ nα′ (1− nα) |n1, . . . , 1− nα′ , . . . , 1− nα, . . .〉

On the other hand:

â†aâa′ |n1, . . . , nα′ , . . . , nα, . . .〉 = (−1)να′ nα′ â
†
a |n1, . . . , 1− nα′ , . . . , nα, . . .〉

= (−1)να+να′−1 nα′ (1− nα) |n1, . . . , 1− nα′ , . . . , 1− nα, . . .〉
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It then follows

âa′ â
†
a + â†aâa′ = (−1)να+να′ (nα′ (1− nα)− nα′ (1− nα)) = 0 (175)

The same holds of course if we assume α′ to occur after α.

Thus, we find [
âα, â

†
α′

]
+

= δα,α′ (176)

as desired, yielding after a unitary transformation[
âl, â

†
l′

]
+

=
∑
α,α′
〈l|α〉 〈α′|l′〉

[
âα, â

†
α′

]
+

= δl,l′ (177)

i.e. the anticommutation relation of fermionic operators is independent on the specific

representation.

The Hamiltonian of noninteracting fermions is then

H =
∑
α

εαâ
†
αâα (178)

which in case of free particles reads

H =
∑
k,σ

εkâ
†
k,σâk,σ (179)

where k goes over all momentum values and σ = ±1
2
.

To incorporate interaction effects is now rather similar to the case of bosons. We start

from the two particle basis |αγ〉 where the interaction is diagonal

V̂ |αγ〉 = Vαγ |αγ〉 . (180)

Here Vαγ = 〈αγ |V |αγ〉. In this basis we can proceed just like for bosons. In case of a two
particle interaction we have contributions if there are two particles, one in state α the other

in state γ. This the interaction must be

V̂ =
1

2

∑
αγ

VαγP̂αγ (181)

where P̂αβ is the operator which counts the number of pairs of particles in the states |α〉 and
|γ〉. The prefactor 1

2
takes into account that each pair is considered only once. It follows

again
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P̂αγ = n̂αn̂γ − δαγn̂α

= a†αaαa
†
γaγ − δαγa†αaα

= −a†αa†γaαaγ + a†αδαγaγ − δαγa†αaα

= a†αa
†
γaαaγ (182)

and we find

V̂ =
1

2

∑
αγ

Vαγa
†
αa
†
γaγaα (183)

just as in case of bosons. Transforming this expression into an arbitrary basis |µ〉 =∑
α

|α〉 〈α|µ〉 where âµ =
∑
α

〈µ|α〉 âα it holds

V̂ =
1

2

∑
λµρν

〈λµ |V | ρν〉 a†λa†µaρaν (184)

If for example

〈r, r′ |V | r′′r′′′〉 = v (r− r′) δ (r′′ − r′) δ (r′′′ − r) (185)

for an interaction that only depends on the distance between the two particles, it follows

V̂ =
1

2

∫
d3rd3r′v (r− r′) ψ̂

†
(r) ψ̂

†
(r′) ψ̂ (r′) ψ̂ (r) . (186)

3. Example 1: free electron gas

We want to derive the ground state wave function of the free electron gas. The Hamil-

tonian of an individual electron is

h = −~
2∇2

2m
(187)

which leads to the single particle eigenvalues

εk =
~2k2

2m
. (188)

The Hamiltonian of the many fermion system is then

H =
∑
k,σ

εkâ
†
k,σâk,σ. (189)
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The ground state wave function is the state where all single particle states with energy

εk < EF (190)

are occupied and all states above the Fermi energy are empty. ,

EF =
~2

2m

(
3π2 〈N〉

V

)2/3

(191)

was determined earlier. The ground state wave function is then

|Ψ0〉 =
∏

k,σ(εk<EF )

â†k,σ |0〉 (192)

This state is normalized:

〈Ψ0|Ψ0〉 =

〈
0

∣∣∣∣∣ ∏
k,σ(εk<EF )

âk,σâ
†
k,σ

∣∣∣∣∣ 0
〉

=

〈
0

∣∣∣∣∣ ∏
k,σ(εk<EF )

(
1− â†k,σâk,σ

)∣∣∣∣∣ 0
〉

=
∏

k,σ(εk<EF )

〈0|0〉 = 1 (193)

and it is indeed the eigenstate of the problem

H |Ψ0〉 =
∑
k,σ

εkâ
†
k,σâk,σ |Ψ0〉 (194)

It follows immediately that

â†k,σâk,σ
∏

q,σ(εq<EF )

â†q,σ |0〉 = θ (EF − εk) |Ψ0〉 . (195)

Either k is among the states below the Fermi surface or it isn’t. This yields

H |Ψ0〉 = E0 |Ψ0〉 (196)

with

E0 =
∑
k,σ

θ (EF − εk) εk (197)

The states that contribute to the ground state energy are all those with an energy below

EF . Since εk = ~2k2
2m

is implies that the magnitude of the momentum must be smaller than

a given value
~2k2

2m
<
~2k2

F

2m
= EF (198)
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Here kF is the so called Fermi momentum. All momentum states inside the sphere of radius

kF are occupied. Those outside are empty. Our above result for the Fermi energy yields

kF =
(
3π2ρ

)1/3
(199)

where ρ = 〈N〉 /V is the electron density.

F. Example 2: two particles

The natural state of two noninteracting particles is

∣∣ψα,α′〉 = â†αâ
†
α′ |0〉 (200)

Applying the Hamiltonian

H =
∑
α

εαâ
†
αâα (201)

to this wave function gives

H
∣∣ψα,α′〉 =

∑
γ

εγ â
†
γ âγ â

†
αâ
†
α′ |0〉

= −
∑
γ

εγ â
†
γ â
†
αâγ â

†
α′ |0〉+ εαâ

†
αâ
†
α′ |0〉

= −εα′ â†α′ â†α |0〉+ εαâ
†
αâ
†
α′ |0〉

= (εα + εα′)
∣∣ψα,α′〉 (202)

The eigenvalue is Eα,α′ = εα + εα′ . The wave function can also be written as∣∣ψα,α′〉 =
1√
2

∫
d3rd3r′φα (r)φα′ (r

′) ψ̂
†
(r) ψ̂

†
(r′) |0〉 (203)

Since a labelling of the particles is not necessary within the second quantization, there is no

need to symmetrize φα (r)φα′ (r
′) in this formulation.

To determine the wave function in real space we analyze

Ψαα′ (r, r
′) =

〈
r, r′|ψα,α′

〉
(204)

It holds

|r, r′〉 = ψ̂
†
(r) ψ̂

†
(r′) |0〉 (205)
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such that

〈r, r′| = 〈0| ψ̂ (r′) ψ̂ (r) (206)

and we can analyze

〈
r, r′|ψα,α′

〉
=

1√
2

∫
d3r′′d3r′′′φα (r′′)φα′ (r

′′′) (207)

×〈0| ψ̂ (r′) ψ̂ (r) ψ̂
†
(r′′) ψ̂

†
(r′′′) |0〉 (208)

It holds

〈0| ψ̂ (r′) ψ̂ (r) ψ̂
†
(r′′) ψ̂

†
(r′′′) |0〉 = −〈0| ψ̂ (r′) ψ̂

†
(r′′) ψ̂ (r) ψ̂

†
(r′′′) |0〉

+δ (r− r′′) 〈0| ψ̂ (r′) ψ̂
†
(r′′′) |0〉

= −δ (r− r′′′) 〈0| ψ̂ (r′) ψ̂
†
(r′′) |0〉

+δ (r− r′′) 〈0| ψ̂ (r′) ψ̂
†
(r′′′) |0〉

= −δ (r− r′′′) δ (r′−r′′) + δ (r− r′′) δ (r′−r′′′)

Inserting this yields

Ψαα′ (r, r
′) =

1√
2

(φα (r)φα′ (r
′)− φα (r′)φα′ (r)) (209)

This is of course the correct result for the wave function of two indistinguishable fermions.

V. PERIODIC STRUCTURES AND BLOCH THEOREM

Following our Born-Oppenheimer decoupling we consider the ionic problem of the coupled

electron-ion system, governed by the Schrödinger equation:(
Ti + V eff

ii

)
Φn = EΦn (210)

with effective ion-ion interaction V eff
ii = Vii + Eel,n. Here, the Eel,n are determined by the

electronic Schrödinger equation

Hel = −
Ne∑
j=1

~2

2m
∇2
j +

Ne∑
j=1

U (rj) +
Ne∑

j,j′=1

e2

|rj − rj′ |
.

The atoms in a solid tend to order in a crystalline form, i.e. most systems arrange

their atomic constituents at suffi ciently low temperatures in a periodic lattice. here are a
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number of exceptions, such as glasses (systems believed to be kinetically unable to reach

the crystalline ground state), quasicrystals (possibly metastable structures that arrange in

highly ordered, yet non-crystalline form), or He (forming in equilibrium a quantum fluid

without periodic order, related to its large zero-point fluctuations of the crystalline state).

The reason for the periodic arrangement is ultimately the dominance of the potential energy

term V eff
ii over the kinetic energy Ti.

Thus, it holds

Φn (Ri) = eiφΦn (Ri + t)

where t is a vector that characterizes the periodic structure.

We can write

t =l1a1 + l2a2 + l3a3

where the ai are the primitive translation vectors and the li are integers. The three primitive

translation vectors span a parallelepiped with volume

Ω = a1 · (a2 × a3) .

This parallelepiped is also called the primitive unit cell of the crystalline solid. Inside this

unit cell one might find a number of distinct atoms, at locations rl relative to the origin

of the primitive cell. The set of the atoms within the unit cell and their corresponding

locations are refereed to as the basis of the unit cell. The choice of the primitive translation

vectors and thus, of the primitive unit cell is not unique. A very convenient choice is the

Wigner-Seitz cell. The Wigner—Seitz cell around a lattice point is defined as the locus of

points in space that are closer to that lattice point than to any of the other lattice points.

A Wigner—Seitz cell is a primitive cell spanning the entire Bravais lattice without leaving

any gaps or holes. Its volume is given by Ω defined above. The cell may be chosen by first

picking a lattice point. Then, lines are drawn to all nearby (closest) lattice points. At the

midpoint of each line, another line is drawn normal to each of the first set of lines. In the

case of a three-dimensional lattice, a perpendicular plane is drawn at the midpoint of the

lines between the lattice points. By using this method, the smallest area (or volume) is

enclosed in this way and is called the Wigner—Seitz primitive cell. All area (or space) within

the lattice will be filled by this type of primitive cell and will leave no gaps.

Consider now a set of points t constituting a Bravais lattice, and a plane wave defined
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by:

eir·K

If this plane wave has the same periodicity as the Bravais lattice, then it satisfies the equa-

tion:

ei(t+r)·K = eir·K

such that

eit·K

the reciprocal lattice as the set of all vectors K that satisfy the above identity for all lattice

point position vectors t. Thus

t ·K =2πm

with integer m. This reciprocal lattice is itself a Bravais lattice, and the reciprocal of

the reciprocal lattice is the original lattice. The reciprocal lattice can be determined by

generating its three reciprocal primitive vectors, through

b1 =
2π

Ω
a2 × a3,

b2 =
2π

Ω
a3 × a1,

b3 =
2π

Ω
a1 × a2.

where

K =m1b1 +m2b2 +m3b3

with integers mi. The Brillouin zone is a primitive unit cell of the reciprocal lattice. In

other words, the Wigner—Seitz cell in the reciprocal lattice is the first Brillouin zone.

The simple cubic Bravais lattice, with cubic primitive cell of side a, has for its reciprocal a

simple cubic lattice with a cubic primitive cell of side 2π/a. The cubic lattice is therefore said

to be self-dual, having the same symmetry in reciprocal space as in real space. The reciprocal

lattice to an face-centered cubic (FCC) lattice is the body-centered cubic (BCC) lattice and

vice versa. The reciprocal to a simple hexagonal Bravais lattice with lattice constants c and

a is another simple hexagonal lattice with lattice constants 2π/c and 4π/
(√

3a
)
rotated

through 30◦ about the c axis with respect to the direct lattice. The reciprocal lattice of the

reciprocal lattice is the original, or direct lattice.
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Consider a lattice periodic function, such as the electron density ρ (r). Due to its

periodicity, we can expand it in a Fourier series

ρ (r) =
∑
K

ρKe
iK·r,

where the periodicity implies that K is a vector of the reciprocal lattice. In order to de-

termine the Fourier coeffi cients, we write multiply ρ (r) with e−iK·r and integrate over the

volume ∫
V

d3rρ (r) e−iK·r =
∑
K′

ρK′

∫
V

d3reiK
′·re−iK·r

=
∑
K′

ρK′V δK′,K = V ρK

which yields

ρK =
1

V

∫
V

d3rρ (r) e−iK·r.

When we evaluate this integral it is, given the periodicity, suffi cient to integrate only over

the unit cell with volume V0

ρK =
1

V0

∫
V0

d3rρ (r) e−iK·r.

Suppose the masses are distributed in point form

ρ (r) = M
∑
t

δ (r− t)

it follows

ρK =
M

V0

∑
t

∫
V0

d3rδ (r− t) e−iK·r

=
M

V0

e−iK·t0 =
M

V0

where t0 is the one Bravais lattice point inside the unit cell. We obtain

ρ (r) =
M

V0

∑
K

eiK·r.

In particular, we find the identity∑
K

eiK·r = V0

∑
t

δ (r− t) .
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Scattering measurements can determine the Fourier coeffi cients ρK. Our above results

implies that all Fourier coeffi cients are exactly the same. This is indeed only true in case of

a system with only one point-like atom per unit cell. Lets consider two pointlike atoms per

unit cell, one at the origin and one at a1/2. It follows

ρ (r) = M1

∑
t

δ (r− t) +M2

∑
t

δ (r− t− a1/2) .

If we determine the Fourier coeffi cients of this expression we find

ρK =
M1

V0

+
M2

V0

e−iK·a1/2.

=
M1

V0

+
M2

V0

e−im1b1·a1/2

=
M1

V0

+
M2

V0

e−iπm1 =
M1

V0

+ (−1)m1
M2

V0

The structure inside the unit cell is therefore reflected in a modulation of the density com-

ponents in the reciprocal lattice. This is a general property that is being used to determine

the structure of complex unit cells.

A. Bloch Theorem

Potential of ions are periodic with periods being the vectors of the Bravais lattice. We

are looking for the eigenfunctions of the Hamiltonian

H = − ~
2

2m
∇2 + U (r)

where U (r) = U (r+ t). According to the Bloch Theorem, the eigenstates have the

following form:

ψnk (r) = eik·runk (r)

where unk (r) is periodic, i.e., unk (r) = unk (r+ t) and k is Element of the first Brillouin

zone.

To prove the theorem we define translation operator Tt such that Ttf (r) = f (r+ t). Tt

is unitary (unitary operators satisfy U−1 = U †). We have obviously

T−1
t = T−t (211)
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To obtain T †t we note the following

〈φ1|Tt |φ2〉 =

∫
d3rφ∗1(r)Ttφ2(r)

=

∫
d3rφ∗1(r)φ2(r+ t)

=

∫
d3rφ∗1(r− t)φ2(r)

=

∫
d3r(T−tφ1(r))∗φ2(r) (212)

Thus T †t = T−t = T−1
t .

Furthermore, Tt commutes with H, [Tt, H] = 0.

TtHψ = H(r+ t)ψ(r+ t) = H(r)ψ(r+ t) = HTtψ (213)

All operators Tt commute with each other.

Tt1Tt2ψ = Tt2Tt1ψ = ψ(r+ t1 + tr) (214)

which implies

Tt1Tt2 = Tt2Tt1 = Tt1+t2. (215)

This means that the set of operators H, Tt (all of them) have common eigenstates (a full

set of them).

Hψ = Eψ (216)

Ttψ = ctψ (217)

From unitarity follows |ct| = 1. From commutativity of Tt: ct1ct2 = ct1+t2 .

t are the vectors of Bravais lattice. Thus t = n1a1 + n2a2 + n3a3. This gives

ct = (ca1)
n1(ca2)

n2(ca3)
n3 (218)

We define caj = e2πixj . Then

ct = e2πi(n1x1+n2x2+n3x3) (219)
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Now we start using the reciprocal lattice. We define k =
∑
xjbj where bj are the

elementary vectors of the reciprocal lattice. Then we can rewrite as follows

ct = eik·t (220)

Indeed, k · t =
∑

jl xjnlbj · al = 2π
∑

j xjnj (for reciprocal lattice we have bj · al = 2πδjl).

Thus we obtain

Ttψ = eik·tψ , (221)

i.e., each eigenvector is characterized by a vector k. Thus we have

ψ = eik·ru(r) , (222)

where u(r+ t) = u(r). (We can define u as e−ik·rψ).

Thus all eigenstates are split into families, characterized by different vectors k. Only

k belonging to the first Brillouin zone (the Wigner-Seitz unit of the reciprocal lattice) or

any other primitive unite of the reciprocal lattice give different families. This follows from

ei(k+K)·t = eik·t. Indeed, if k is outside the first Brillouin zone, then we can find K in the

reciprocal lattice so that q = k−K is in the first Brillouin zone. Then we use

ψ = eik·ru = eik·re−iK·ru = eiq·rũ , (223)

where ũ ≡ e−iK·ru and ũ(r+R) = ũ(r).

In each family we introduce the index n counting the states of the family. The functions

u depend on k ∈ first B.Z. and on n. Thus, finally we obtain:

ψnk (r) = eik·runk (r) . (224)

B. Born-von Karmann boundary conditions

The B-v-K conditions read:

ψ(r+Njaj) = ψ(r) , (225)

for j = 1, 2, 3 and N1, N2, N3 � 1. The total number of primitive cells is then N1N2N3.

This limits the possible values of k. Namely we must have eiNjk·aj = 1. With k =
∑
xjbj

where bj are the elementary vectors of the reciprocal lattice we obtain xj = mj/Nj.
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Although it would be better to chose all allowed values of k within the first Brillouin

zone it is simpler here to use a different primitive cell in the reciprocal lattice. Namely we

can chose mj = 0, 1, ..., Nj − 1. This gives

k =
∑
j

mj

Nj

bj , (226)

for mj = 0, 1, ..., Nj − 1. There are N = N1N2N3 allowed vectors k.

The volume in the reciprocal lattice per one vector k:

∆k1∆k2∆k3 = ∆k1 · (∆k2 ×∆k3) =
b1

N1

·
(
b2

N2

× b3

N3

)
=

1

N

(2π)3

Ω
, (227)

where Ω ≡ V
N

= a1 · (a2 × a3).

To calculate a sum over the whole primitive cell (1-st B.Z.) we use in the limit of large

N : ∑
k

=

∫
d3k

∆k1∆k2∆k3

→ NΩ

(2π)3

∫
d3k =

V

(2π)3

∫
d3k (228)

1. Schrödinger equation with B-K boundary conditions

We expand both the wave function and the potential in the basis of momentum states,

i.e., plane waves. Thus:

ψ(r) =
∑
q

cq e
iq·r. (229)

The boundary conditions, e.g., those of Born-von Karmann, make the set of k-vectors dis-

crete:

k =
∑
j

mj

Nj

bj , (230)

where mj ∈ Z. The sum is not limited to the first Brillouin zone.

The potential energy is a periodic function (Bravais-lattice). Thus it can be expanded as

U(r) =
∑
Q

UQe
iQ·r , (231)

where Q runs over the reciprocal lattice. We have

UQ =
1

Ω

∫
P.U.

d3r U(r)e−iQ·r , (232)
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where the integration is over a primitive unit of the Bravais lattice and Ω is the volume of

the primitive unit. Since U is real (Hermitian) we have U−Q = U∗Q.

The Schrödinger equation now reads

Eψ = E
∑
q

cq e
iq·r =

(
− ~

2

2m
∇2 + U

)
ψ

=
∑
q

~2q2

2m
cq e

iq·r +
∑
Q,q

UQcq e
i(Q+q)·r

=
∑
q

~2q2

2m
cq e

iq·r +
∑
Q,q

UQcq−Q e
iq·r , (233)

where in the last line we substituted q→ q−Q. The coeffi cients in front of each harmonics
must satisfy this equation. Thus(

E − ~
2q2

2m

)
cq =

∑
Q

UQcq−Q . (234)

We see that only q’s related by a vector of the reciprocal lattice influence each other. Each

such family can be characterized by a vector in the 1-st Brillouin zone. Thus, in each family

we introduce k and all the q’s in the family are given by k + K, where K runs over the

reciprocal lattice. This gives(
E − ~

2(k+K)2

2m

)
ck+K =

∑
Q

UQck+K−Q . (235)

The number of equations for each k ∈ 1-st B.Z. is infinite asK runs over the whole reciprocal

lattice.

We will use the index n to count the solutions of Eq. (235). The solution number n is a

set cn,k+K for all vectors K ∈ reciprocal lattice. Since Eq. (235) is a Schrödinger equation
and the sets cn,k+K are the wave functions, they are orthonormal, i.e.,∑

K

c∗n1,k+Kcn2,k+K = δn1,n2 , (236)

and complete ∑
n

c∗n,k+K1
cn,k+K2

= δK1,K2 . (237)

(Note that K serves here as coordinate of the wave function.)

The eigenstates in the coordinate representation then read

ψn,k(r) =
∑
K

cn,k+K e
i(k+K)·r = eik·r

∑
K

cn,k+K e
iK·r = eik·run,k(r) , (238)
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where

un,k(~r) ≡
∑
K

cn,k+K e
iK·r . (239)

Now, if we slightly change k, only the LHS of the equation (235) changes slightly. One

can expect that in each family n the states and the eigen-energies change smoothly. We

obtain bands.

2. Properties of the Bloch states

Bloch states are orthonormal.

• We obtain∫
d3r ψ∗n1,k1(r)ψn2,k2(r) =

∑
K1,K2

c∗n1,k1+K1
cn2,k2+K2

∫
d3r ei(k2+K2−k1−K1)

= V
∑
K1,K2

c∗n1,k1+K1
cn2,k2+K2δk2+K2,k1+K1 , (240)

Since k1 and k2 both are in the 1-st B.Z. we have δk2+K2,k1+K1 = δk1,k2δK1,K2 . Thus∫
d3r ψ∗n1,k1(r)ψn2,k2(r) = δk1,k2V

∑
K1

c∗n1,k1+K1
cn2,k1+K1

= V δk1,k2 δn1,n2 . (241)

In the thermodynamic limit V →∞ we have V δk1,k2 → (2π)3δ(k1 − k2).

Basis of Bloch states is complete.

• ∑
n

∑
k∈1.B.Z

ψ∗n,k(r1)ψn,k(r2)

=
∑
n

∑
k∈1.B.Z

∑
K1,K2

c∗n,k+K1
cn,k+K2 e

−iK1·r1eiK2·r2eik·(r2−r1)

=
∑

k∈1.B.Z

∑
K

ei(k+K)·(r2−r1) = V δ(r2 − r1) . (242)

Momentum and crystal momentum
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• The vector ~k is not the momentum and the Bloch states are not eigenstates of the

momentum operator. Indeed

p̂ψn,k = −i~∇ψn,k = ~kψn,k + eik·r∇un,k . (243)

The vector ~k is called "crystal momentum".

In order to determine the expectation value of the momentum operator

〈nk |p̂|nk〉 = −i~
∫
V

d3re−ik·ru∗nk (r)∇eik·runk (r)

= ~k
∫
V

d3r |u∗nk (r)|2 − i~
∫
V

d3ru∗nk (r)∇unk (r)

= ~k− i~
∫
V

d3ru∗nk (r)∇unk (r) .

We insert ψnk (r) = eik·runk (r) into the Schrödinger equation(
−~

2∇2

2m
+ U − i~

2

m
k ·∇−Enk +

~2k2

2m

)
unk (r) = 0

We change k→ k+δk which yields Enk → Enk + δEnk = Enk + (∂Enk/∂k) · δk as well as
unk → unk + δunk and it follows(
−~

2∇2

2m
+ U − i~

2

m
k ·∇−Enk +

~2k2

2m

)
δunk = i

~2

m
δk ·∇unk + δEnkunk −

~2k·δk
m

unk

This is an inhomogeneous differential equation for δunk with inhomogeneity on the right

hand side. In order for a unique solution to exist, the solution of the homogeneous equation,

i.e. unk, must be orthogonal to the inhomogeneity:∫
V

d3ru∗nk (r)

(
i
~2

m
δk ·∇unk + δEnkunk −

~2k·δk
m

unk

)
= 0.

Inserting δEnk yields

δk·
∫
V

d3ru∗nk (r)

(
i
~2

m
∇unk + (∂Enk/∂k)unk −

~2k

m
unk

)
= 0

Since this should be true for an arbitrary δk we obtain∫
V

d3ru∗nk (r)

(
i
~2

m
∇unk + (∂Enk/∂k)unk −

~2k

m
unk

)
= 0

which yields

−i~
∫
V

d3ru∗nk (r)∇unk = m~−1 (∂Enk/∂k)− ~k
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such that

〈nk |p̂|nk〉 = m~−1 (∂Enk/∂k) = mvnk.

This, essential for the determination of the momentum is the energy dispersion Enk. Here

we also introduced the velocity vnk = ~−1 (∂Enk/∂k).

Discreetness of states indexed by n.

• The Schrödinger equation for a given k(
E − ~

2(k+K)2

2m

)
ck+K =

∑
Q

UQck+K−Q (244)

can be rewritten for the function

uk(r) ≡
∑
K

ck+K e
iK·r . (245)

as (
E − ~

2(k− i∇)2

2m

)
uk(r) = U(r)uk(r) , (246)

accompanied by the periodic boundary conditions uk(r+ t) = uk(r). The problem

thus must be solved in one primitive unit of the Bravais lattice and can give only

discreet spectrum.

VI. ALMOST FREE ELECTRONS.

We start from the Schrödinger equation(
En,k −

~2(k+K)2

2m

)
cn,k+K =

∑
Q

UQcn,k+K−Q (247)

for the coeffi cients of the function

un,k(~r) ≡
∑
K

cn,k+K e
iK·r . (248)

Renaming K1 ≡ K and K2 ≡ K−Q we obtain(
En,k −

~2(k+K1)2

2m

)
cn,k+K1 =

∑
K2

UK1−K2cn,k+K2 (249)

We start from the limit of free electrons U = 0. The solutions of (249) are trivial: for

each n there is Kn such that

En,k = ε
(0)
n,k ≡

~2(k+Kn)2

2m
(250)
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n and cn,k+Kl
= δn,l.

Now consider U 6= 0. First, UQ=0 gives a total shift of energy. Thus, we take it into

account and put UQ=0 = 0. There are two possibilities:

1) For a given k there are no other vectors of the reciprocal latticeKl such that ε
(0)
l,k ≈ ε

(0)
n,k

(more precisely the difference of the two energies of order or smaller than U). Then we are

in the situation of the non-degenerate perturbation theory. This gives for l 6= n

cn,k+Kl
=

UKl−Kn

ε
(0)
n,k − ε

(0)
l,k

+O(U2) (251)

and for the band energy we obtain

En,k = ε
(0)
n,k +

∑
l 6=n

UKn−Kl
UKl−Kn

ε
(0)
n,k − ε

(0)
l,k

+O(U3) (252)

The bands repel each other.

2) There are some (at least one in addition to Kn) vectors Kl 6= Kn such that ε
(0)
l,k ≈ ε

(0)
n,k.

We denote all m such vectors (including Kn) by Kl with l = 1, . . . ,m. The degenerate

perturbation theory tells us to solve the following system of m equations (j = 1, . . . ,m):(
Ek −

~2(k+Kj)
2

2m

)
ck+Kj

=
m∑
i=1

UKj−Ki
ck+Ki

(253)

Consider a special, but most important case when the degeneracy is between two energies

corresponding to vectors K1 and K2. First we note that the condition on k for this to

happen coincides with the one for the Bragg scattering of the X-rays. Namely, the condition

of degeneracy reads |k+K1| = |k+K2| = |k+K1 − (K1 −K2)|. Introducing q ≡ k+K1

andK ≡ K1−K2 (K ∈ reciprocal lattice) we see that the relation between the wave vectors
in the expanded band picture q = k +K1 and q −K = k +K2 is like between the wave

vectors of the incident and the reflected waves in the Bragg scattering. Both have to end

at the so called "Bragg plane" as depicted in Fig. 1. In particular the condition on q reads

|q ·K| = 1
2
|K|.

The eigenvalues are determined as zeros of the determinant of the following matrix Ek − ε(0)
1,k −UK

−U−K Ek − ε(0)
2,k

 (254)

The solutions read

E~k =
ε

(0)
1,k + ε

(0)
2,k

2
±

√√√√(ε(0)
1,k − ε

(0)
2,k

2

)2

+ |UK|2 (255)
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In particular, the splitting exactly at the Bragg plain, where ε(0)
1,k = ε

(0)
2,k is given by

E2,k − E1,k = 2|UK|.

Example in 1D:

Extended zone and Bragg scattering at

the BZ boundary in one dimension.

VII. TIGHT BINDING APPROXIMATION

A. Wannier functions

One can show that the Bloch states can be presented in a different form:

ψn,k(r) =
∑
R

eik·Rwn(r−R) , (256)

where R is a vector of the Bravais lattice and

wn(k) =
1

N

∑
k∈1. B.Z.

ψn,k (r)

=
V

N

∫
1. B.Z.

d3k

(2π)3
ψn,k (r) . (257)

By operation of translation we obtain

wn(r−R) =
1

N

∑
k∈1. B.Z.

ψn,k (r−R) =
1

N

∑
k∈1. B.Z.

e−ik·Rψn,k (r) . (258)
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Indeed, substituting Eq.(258) into Eq.(256) we obtain

ψn,k (r) =
∑
R

eik·R
1

N

∑
q∈1. B.Z.

e−ik·Rψn,k (r)

=
∑

q∈1. B.Z.

δk,q ψn,q(~r) = ψn,k(~r) . (259)

Wannier functions of different bands n are orthogonal. Also orthogonal are the Wannier

functions of the same band but shifted to different R’s.

B. Schrödinger equation for Wannier functions

Assume the total potential is a sum of atomic ones (for a simple Bravais lattice with one

atom per unit):

U(r) =
∑
R

Ua(r−R) . (260)

Then from

Hψn,k =

(
−~

2∆

2m
+
∑
R

Ua(r−R)

)
ψn,k = En,kψn,k (261)

we obtain

En,k
∑
~R

eik·Rwn(r−R) =

(
−~

2∆

2m
+
∑
R1

Ua (r−R1)

)
eik·Rwn(r−R) . (262)

In the r.h.s. we separate the terms with R1 = R from those where R1 6= R:

En,k
∑
~R

eik·Rwn(r−R) =
∑
R

(
−~

2∆

2m
+ Ua (r−R)

)
eik·Rwn(r−R)

+
∑
R

∑
R1 6=R

Ua (r−R1) eik·Rwn(r−R)

=
∑
R

(
−~

2∆

2m
+ Ua (r−R)

)
eik·Rwn(r−R)

+
∑
~R

∆U(r,R)eik·Rwn(r−R) , (263)

where ∆U(r,R) ≡
∑

R1 6=R Ua(r−R1) = U(r)− Ua(r−R).

C. Linear Combination of Atomic Orbitals (LCAO)

Simplest approximation for the Wannier function w =
∑

m bmφm where φm are the atomic

orbitals, such that Haφm = Ea,mφm. This can be, e.g., a multiplet of the orbital momentum
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L with 2L+ 1 degenerate states (we omit the band index n). This gives∑
m

bm(Ek − Ea,m)
∑
~R

eik·Rφm(r−R) =
∑
m

bm
∑
~R

∆U(r,R)eik·Rφm(r−R) ,

We have restricted our Hilbert space to linear combinations of atomic orbitals φm(r−R)

shifted to all vectors of the Bravais lattice. While we cannot guarantee that Eq. (??) holds

exactly (in the whole Hilbert space) we can choose the coeffi cients bm and the energy E~k so

that Eq. (??) holds in our restricted space. That is we demand that Eq. (??) projected on

all φm(r − R) holds. Due to the periodicity of the l.h.s. and the r.h.s. of Eq. (??) it is

suffi cient to project only on φm(r) .

Projecting on φl(r) we obtain

(Ek − Ea,l)bl +
∑
m

bm(Ek − Ea,m)
∑
R6=0

eik·R
∫
d3rφ∗l (r)φm(r−R)

=
∑
m

bm
∑
R

eik·R
∫
d3rφ∗l (r)∆U(r,R)φm(r−R) , (264)

Introducing

Sl,m(R) ≡
∫
d3rφ∗l (r)φm(r−R) (265)

and

tl,m(R) ≡
∫
d3rφ∗l (r)∆U(r,R)φm(r−R) (266)

we obtain

(E~k − Ea,l)bl +
∑
m

bm(Ek − Ea,m)
∑
R6=0

eik·RSl,m(R)

=
∑
m

bm
∑
R

eik·Rtl,m(R) , (267)

This is a homogeneous matrix equation on coeffi cients bm. To have solutions one has to

demand that the determinant of the matrix vanishes, This determines the band energies

En,k. The number of bands is equal to the number of states in the multiplet.

D. Single orbital (s states), one band

We obtain

Ek = Ea +

∑
R e

ik·Rt (R)

1 +
∑

R6=0 e
ik·RS(R)

, (268)
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Assume that only nearest neighbors matrix elements, do not vanish (and also t(0)). It is

important to note that S(R)� 1. Thus

Ek ≈ Ea + t(0) +
∑
R,nn

eik·Rt (R) , (269)

Then, for different Bravais lattices with one ion per primitive cell we obtain:

1) 1-D lattice with step a.

Ek = Ea + t(0) + 2W cos(ak) , (270)

where W = t(a).

2) sc-lattice, a1 = ax, a2 = ay, a3 = az, φ(r) is rotational symmetric:

Ek = Ea + h(0) + 2t (cos(akx) + cos(aky) + cos(akz)) , (271)

where W = t (a).

3) bcc-lattice. One of the possible choices of the primitive basis is: a1 = ax, a2 =

ay, a3 = 1
2
a(x+y+z), however the nearest neighbors are at R = a

2
(±x±y±z). Altogether

8 neighbors each at distance
√

3a/2. We obtain

E~k = Ea + t(0) + 8W cos(akx/2) cos(aky/2) cos(akz/2) , (272)

where W = t(
√

3a/2). (Interesting exercise: show that the reciprocal lattice in fcc).

E. Alternative formulation of tight-binding method

Each primitive cell is characterized by states |R,m〉. Index m can count either states of

the same atom or states of different atoms in the cell. For example in graphen we would

have m = A,B, where A and B denote sub-lattices. The overlaps of different states vanish:

〈R1,m1| |R2,m2〉 = δR1,R2δm1,m2 . One postulates a tunneling Hamiltonian

H =
∑
R1,m1

∑
R2,m2

tm1,m2(R1 −R2)a†R2,m2
aR1,m1 (273)

The Hamiltonian is Hermitian, i.e., tm1,m2(R) = t∗m2,m1
(−R).

The Bloch states:

|ψR〉 =
∑
R

eik·R
∑
m

bma
†
R,m |0〉 . (274)
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The Wannier w.f.: |w〉 =
∑

m bma
†
R2,m2

|0〉.
The energies and the coeffi cients bm are determined by substituting the Bloch wave func-

tion into the Schrödinger equation: H |ψR〉 = Ek |ψR〉.
We obtain

H |ψR〉 =
∑
R1,m1

∑
R2,m2

tm1,m2(R1 −R2)a†R2,m2
aR1,m1

∑
R

eik·R
∑
m

bma
†
R,m |0〉

= −
∑
R1,m1

∑
R2,m2

tm1,m2(R1 −R2)a†R2,m2

∑
R

eik·R
∑
m

bma
†
R,maR1,m1 |0〉

+
∑
R1,m1

∑
R2,m2

tm1,m2(R1 −R2)eik·R1bm1a
†
R2,m2

|0〉

= Ek
∑
R2

eik·R2

∑
m2

bm2a
†
R2,m2

|0〉 (275)

Comparing coeffi cients in front of a†R2,m2
|0〉 we obtain∑

R1,m1

tm1,m2(R1 −R2)eik·R1bm1 = Eke
ik·R2bm2 . (276)

With R ≡ R1 −R2 ∑
R,m1

eik·Rbm1 tm1,m2(R) = Ekbm2 . (277)

We again have reduced the problem to a matrix equation.

1. Example: Copper-Oxide High temperature superconductors

The copper oxide high Tc superconductors are attracted the attention of the condensed

matter physics community for a number of decades now. Here we want to develop a simple

model to describe the electronic states in the vicinity of the Fermi level. Consider for example

the system La2−xSrxCuO4. Electronically interesting states are usually those that are not

associated with closed electronic shells. It is known that elements like La or Sr tend to

donate electrons to obtain a closed shell configuration. From the periodic table follows that

La3+ and Sr2+ are the corresponding valence states. Generally, oxygen tends to attract two

electrons to achieve its closed shell configuration, i.e. one can assume (for a more detailed

discussion, see below) an O2− valence state. Charge neutrality then determines the valence

vCu of copper. Consider first x = 0 and we obtain:

2× 3 + vCu − 4× 2 = 0 (278)
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yielding vCu = 2. The electronic configuration of Copper is Ar3d104s1, where Ar stands

for the closed shell configuration of argon. Thus, we expect for a Cu2+ state an electronic

configuration Ar3d9, i.e. with one hole per 3d-shell. In a spherical environment all 3d orbitals

are degenerate Already a cubic environment leads to a so called crystal field splitting of

the 3dxy, 3dxz, 3dyz orbitals from the 3dx2−y2 and 3dz2−3r2 orbitals. These two subsets of

orbitals are still degenerate among each other. However, the crystal structure of the cuprates

is tetragonal which leads to a further splitting of the 3dx2−y2 and 3dz2−3r2 orbitals. The

energetically highest orbital is the 3dx2−y2 orbital. Thus, to achieve the 3d9 configuration,

the electron will be transferred from the 3dx2−y2 to the oxygen states. This leaves us with

a model of a single hole in the 3dx2−y2 orbital of copper. For x > 0, i.e. substituting Sr for

La, charge neutrality implies

(2− x)× 3 + x× 2 + vCu − 4× 2 = 0 (279)

which leads to

vCu = 2 + x. (280)

Substitution of La by Sr yields therefore additional hole doping.

Now, the Cu-sites are arranged on a square lattice, with weak hybridization perpendicular

to those planes. In between two copper sites is an oxygen site. The key orbital of those

oxygen states are the 2px and the 2py orbitals, depending of whether they connect two

copper sites along the x- or y-axis. Consider the overlap integral

tx2−y2,x(ax) =

∫
d3rφ∗x2−y2(r)∆U(r, ax)φx(r− ax) (281)

and

tx2−y2,x(−ax) =

∫
d3rφ∗x2−y2(r)∆U(r,−ax)φx(r+ ax) (282)

The potential ∆U(r,R) is given by:

∆U(r,R) =
∑
R1 6=R

Ua(r−R1) = U(r)− Ua(r−R) (283)

Thus, in case of inversion symmetry (which exists in case of the copper-oxides) we have:

∆U(r,R) = ∆U(−r,−R) (284)

Since φx2−y2(r) = φx2−y2(−r) and φx(r) = −φx(−r), follows

tpd ≡ tx2−y2,x(ax) = −tx2−y2,x(−ax) (285)
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The same is true for the y-direction.

Thus, if we confine ourselves to the overlap between those nearest neighbor copper and

oxygen states it follows:

Ekbm2 =
∑
R,m1

tm1,m2(R)eik·Rbm1 (286)

performing the sum explicitly yields:

Ekbd = εdbd + tpd
(
1− e−ikxa

)
bpx + tpd

(
1− e−ikya

)
bpy

Ekbpx = εpbpx + tpd
(
1− eikxa

)
bd

Ekbpy = εpbpy + tpd
(
1− eikya

)
bd (287)

which implies that we determine E from the eigenvalues of

â =


εd − E tpd

(
1− e−ikxa

)
tpd
(
1− e−ikya

)
tpd
(
1− eikxa

)
εp − E 0

tpd
(
1− eikya

)
0 εp −H

 (288)

It holds

det â = (εp − E)
(
εpεd − 4t2pd − (εp + εd)E + E2 + 2t2pd (cos kxa+ cos kya)

)
(289)

and we obtain

E± =
1

2

(
εp + εd ±

√
(εp − εd)2 + 16t2pdγ (k)

)
(290)

and

E0 = εp (291)

where

γ (k) = 1− 1

2
(cos (kxa) + cos (kya)) (292)

Thus, we obtain a bonding a non-bonding and an antibonding band. The bonding and

antibonding bands are mixtures of copper and oxygen states that hybridize. Charge neuality

demands that the number of holes in the lowest (bonding) band is 1 + x.

This model is not yet suffi cient to describe the physics of the copperoxides. A prediction

of this model would be that the material for x = 0 would be a metal, as the Fermi level is
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in the middle of the band. A widely accepted model that includes electron correlations is

the Hubbard model with

H = Htight−binding + U
∑
R

ndR↑ndR↓ (293)

where ndRσ = d†RσdRσ is the occupation number on the copper site. The strong local

Coulomb repulsion strongly suppresses charge fluctuations and for x = 0 and for suffi ciently

large values of U does indeed lead to an insulating state. This state is called a Mott insulator.

VIII. ELECTRON-ELECTRON INTERACTIONS

A. The role of long range Coulomb interactions

Until now we have ignored the electron-electron Coulomb interaction. To get a first

qualitative sense for the role of this important interaction, we consider a simplified model

where the electronic band structure is given by a parabolic band with Ek = ~k2/ (2m).

Here m could also stand for the effective mass that results from the inclusion of the periodic

lattice. Thus we analyze the Hamiltonian

H = − ~
2

2m

∑
i

∇2
ri

+
1

2

e2

4πε

∑
i 6=j

1

|ri−rj|
. (294)

In order to get a qualitative understanding of the role of the interaction term it is always

useful to introduce a dimensionless measure. To this end we consider a system with electron

density n. The resulting characteristic length scale of the problem is the mean electron

distance

d = n1/d (295)

where d is the dimension of space. This is useful in particular due to the fact that a

realization of the above Hamiltonian is achieved in semiconductor heterostructures, where

in a narrow inversion layer an effective two dimensional system has been realized, i.e. d = 2.

If we now introduce dimensionless positions

xi = ri/d (296)
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we can rewrite the above Hamiltonian as

H =
~2

2md2

(
−
∑
i

∇2
xi

+
α

4π

∑
i 6=j

1

|xi−xj|

)
(297)

where we introduced a dimensionless strength of the interaction

α =
e2md

~2ε
=

d

aB
(298)

where aB = ~2ε
me2

is the Bohr radius known from the Hydrogen atom problem. Here the

dielectric constant ε of the solid (or in d = 2, the dielectric constant of the substrate) can

lead to larger values compared to the canonical value in vacuum aB,0 = ~2
me2

= 0.529177249×
10−10 m.

These considerations imply that systems with high electron density (which for the above

energy dispersion would be metallic) have small values of d, i.e. small values of the electron-

electron interaction. This somewhat surprising result is a consequence of the fact that the

kinetic energy only dominates once the crystal momenta are large, which is the case in dense

systems. In this high-density limit we will find that the electron-electron interaction can

frequently be ignores or treated in a simplifies perturbative way as small corrections to the

kinetic energy. The main effect will be shown to be the emergence of plasma-oscillations

(collective density oscillations). On the other hand, in dilute systems, where the electron-

electron interaction becomes large compared to aB, interactions are expected to be domi-

nant. Here the kinetic energy can often be considered a small perturbation compared to

the electron-electron interaction. The ground state is then a result of the optimal Coulomb

interaction, At fixed density this leads to the formation of an electron crystal, referred to

as the Wigner crystal. The kinetic energy leads solely to vibrations of the electrons in the

crystal, similar to lattice vibrations of atoms in solids.

The above conclusions are a direct consequence of the assumed parabolic spectrum. An-

other, system of current interest in graphene, where electrons near isolated point in the BZ

have a linear spectrum. In this case we would start from the Hamiltonian

H = −i~v
∑
i

σ ·∇ri +
1

2

e2

4πε

∑
i 6=j

1

|ri−rj|
, (299)

where σ = (σx, σy) is the two dimensional vector of Pauli matrices, acting in the space of

the two atoms per unit cell. In terms of dimensionless length scales, follows

H = −i~v
d

(∑
i

σ ·∇xi +
α

4π

1

2

∑
i 6=j

1

|xi−xj|

)
, (300)
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where

α =
e2

~vε
(301)

is a density-independent coupling strength. This is a result of the fact that both, the kinetic

and the potential energy, are proportional to inverse length-scales. Inserting the value of

the electron velocity of graphene yields α ' 2.2/ε and can be tuned by varying the dielectric

constant of the substrate. The key aspect of these considerations is that even the same

interaction leads to quite different behavior, depending on the nature of the band-structure

of a system. For example, the value of the velocity of graphene which implies α < 2.2,

excludes the option of a Wigner crystal in this system.

B. Hartree-Fock approximation

The Hartree-Fock approximation is among the simplest methods to treat interactions in

many body systems. Here the dynamic problem of interacting electrons is replaced by an

effective one-electron problem, where electrons are moving in a static field caused by the

other electrons.

We consider in second quantization the Hamiltonian of the many electron problem

H =
∑
σ

∫
d3rψ†σ (r)

(
−~

2∇2
r

2m
+ U (r)

)
ψσ (r)

+
1

2

∑
σ,σ′

∫
d3rd3r′v (r− r′)ψ†σ (r)ψ†σ′ (r

′)ψσ′ (r
′)ψσ (r) . (302)

The main spirit of the Hartree-Fock approximation is based on the identity

AB = (A− 〈A〉) (B − 〈B〉) + A 〈B〉+B 〈A〉 − 〈A〉 〈B〉 . (303)

The first term is the joint deviation of the operators A and B from their expectation values.

This first term is called the correlation of the two operators AB and is being ignored in the

Hartree-Fock approach:

AB ' A 〈B〉+B 〈A〉 − 〈A〉 〈B〉 . (304)

On the level of operators in the Hamiltonian, constants (like the last term 〈A〉 〈B〉) are
frequently being ignored. In case of the electron-electron interaction the corresponding
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approximation is

ψ†σ (r)ψ†σ′ (r
′)ψσ′ (r

′)ψσ (r) '
〈
ψ†σ (r)ψσ (r)

〉
ψ†σ′ (r

′)ψσ′ (r
′) +

〈
ψ†σ′ (r

′)ψσ′ (r
′)
〉
ψ†σ (r)ψσ (r)

−
〈
ψ†σ (r)ψσ′ (r

′)
〉
ψ†σ′ (r

′)ψσ (r)−
〈
ψ†σ′ (r

′)ψσ (r)
〉
ψ†σ (r)ψσ′ (r

′) .

Thus, if we introduce

ρσσ′ (r, r
′) =

〈
ψ†σ (r)ψσ′ (r

′)
〉

it follows for the Hamiltonian

HHF =
∑
σ

∫
d3rψ†σ (r)

(
−~

2∇2
r

2m
+ U (r) + UH (r)

)
ψσ (r)

−
∑
σ,σ′

∫
d3rd3r′ψ†σ (r) v (r− r′) ρσ′σ (r′, r)ψσ′ (r

′) (305)

where

UH (r) =
∑
σ′

∫
d3r′v (r− r′) ρσ′σ′ (r′, r′)

=
e2

4πε

∫
d3r′

ρ (r′)

|r− r′| (306)

with electron density

ρ (r) =
∑
σ′

ρσ′σ′ (r
′, r′) . (307)

The last term in HHF is the Fock term It cannot be expressed in terms of the electron density

alone. Still HHF is a one particle Hamiltonian albeit with a non-local effective potential.

We expand

ψσ (r) =
∑
α

ϕα (r) cασ (308)

is ϕα (r) = 〈r|α〉 is some complete set of states (for example a = k,n in case of Bloch

electrons). Then we obtain

HHF =
∑
σ,σ′

∑
αβ

Hσσ′

αβ c
†
ασcβσ′ (309)

with matrix elements

Hσσ′

αβ = H0
αβδσσ′ +

∑
γδ

∑
σ′′

Vαγδβ

〈
c†γσ′′cδσ′′

〉
δσσ′ −

∑
γδ

Vαγβδ

〈
c†γσ′cδσ

〉
(310)

determined by the non-interacting matrix elements

H0
αβ =

∫
d3rϕ∗α (r)

(
−~

2∇2
r

2m
+ U (r)

)
ϕβ (r) (311)
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as well as the two-particle matrix elements:

Vαβγδ =

∫
d3rd3r′ϕ∗α (r)ϕ∗β (r′) v (r− r′)ϕγ (r′)ϕδ (r) . (312)

To solve the Hartree-Fock equations one starts from a trial ansatz for the matrix elements〈
c†γσ′cδσ

〉
. Given a basis set, the Vαβγδ are given and only need be determined once. The

next step is to evaluate all matrix elements of Hσσ′
αβ . Diagonalization of H

σσ′
αβ leads to the

eigenvalues of a problem that is formally noninteracting, i.e. the occupations of this one-

particle problem can be analyzed explicitly. This leads to
〈
c†γσ′cδσ

〉
and we can compare it

with our initial guess. If it agrees, the Hartree Fock equations are solved. Otherwise, we

may take those recalculated expectation values
〈
c†γσ′cδσ

〉
as starting point for the subsequent

evaluation of the Hσσ′
αβ until the procedure converges.

C. Stoner Theory of Ferromagnetism

The Stoner theory of ferromagnetism is a famous application of the Hartree-Fock ap-

proach. We first make a simplifying assumption for the relevant matrix elements Vαβγδ. We

consider only one band and take a single particle basis ϕα (r) = 〈r|α〉 as Wannier functions,
i.e. α = i corresponds to a lattice site. Then we only include the matrix element with same

sites (i.e. α = β = γ = δ = i)

U ≡ Viiii =

∫
d3rd3r′ϕ∗i (r)ϕ∗i (r′) v (r− r′)ϕi (r′)ϕi (r) (313)

Then follows with the additional assumption that there is a well defined spin-quantization

axis
〈
c†iσ′ciσ

〉
= δσσ′ 〈niσ〉

Hσσ′

ij =

(
H0
ij +

∑
σ′′

U 〈niσ′′〉 − U 〈niσ〉
)
δσσ′

=
(
H0
ij + U 〈niσ〉 δij

)
δσσ′ (314)

Here we introduced the notation that σ is the spin opposite to σ. The resulting single-particle

Hamiltonian is therefore

HHF =
∑
ij,σ

(
H0
ij + U 〈niσ〉 δij

)
c†iσcjσ. (315)
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This result could have been obtained from the above approximation for AB with A = ni↑

and B = ni↓ if we start from the Hubbard Hamiltonian

HHF =
∑
ij,σ

H0
ijc
†
iσcjσ + U

∑
i

ni↑ni↓. (316)

Thus, we perform the decoupling

ni↑ni↓ ' 〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↓〉 〈ni↑〉 . (317)

Ignoring the constant shift in the overall energy, this leads to exactly the same single-particle

Hamiltonian HHF. To solve this problem we assume that lattice translation invariance in

unbroken, i.e. 〈ni↑〉 = 〈n↑〉 which allows Fourier transformation to Block states

HHF =
∑
k,σ

(εk − µ+ U 〈nσ〉) c†kσckσ (318)

which allows immediately to determine the occupations of momentum states

〈nkσ〉 =
〈
c†kσckσ

〉
=

1

exp (β (εk − µ+ U 〈nσ〉)) + 1
(319)

The occupation in real space follows as

〈niσ〉 =
1

N

∑
k∈BZ

〈nkσ〉 eik·Ri . (320)

Given the assumed translation invariance we can evaluate this sum at any lattice site i and

take for convenience Ri = 0:

〈nσ〉 =
1

N

∑
k∈BZ

1

exp (β (εk − µ+ U 〈nσ〉)) + 1
(321)

This is a coupled equation for the occupations of the two spin states. Introducing

n = 〈n↑〉+ 〈n↓〉 (322)

for the total charge density and

m = 〈n↑〉 − 〈n↓〉 (323)

for the spin polarization (which will determine the macroscopic magnetization

M = NµBm (324)
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with Bohr magneton µB. It follows

〈nσ〉 =
1

2
(n+ σm) (325)

and we find

n =
1

N

∑
k∈BZ

∑
σ

1

eβ(εk−µ+U
2

(n−σm)) + 1
, (326)

and

m =
1

N

∑
k∈BZ

∑
σ

σ

eβ(εk−µ+U
2

(n−σm)) + 1
. (327)

The first equation can be used to determine the chemical potential µ of the system. It is

convenient to absorb the spin independent shift U
2
n into a redefinition of µ→ µr = µ−Un/2.

Here we concentrate on the second term. that becomes

m =
1

N

∑
k∈BZ

(
1

eβ(εk−µr−
U
2
m) + 1

− 1

eβ(εk−µr+
U
2
m) + 1

)
=

1

N

∑
k∈BZ

sinh (βUm/2)

cosh (βUm/2) + cosh (β (εk − µr))
(328)

Obviously, one solution of this nonlinear equation is always m = 0. To check whether there

are other solutions we write the sum over momenta in terms of an integral over the density

of states

m =

∫
dωρ (ω)

sinh (βUm/2)

cosh (βUm/2) + cosh (β (ω − µr))
(329)

which is normalized to one
∫
dωρ (ω) = 1. This follows from the definition

ρ (ω) =
1

N

∑
k∈BZ

δ (ω − εk) (330)

along with the fact that there are exactly N crystal momenta in the BZ:∫
dωρ (ω) =

1

N

∑
k∈BZ

∫
dωδ (ω − εk)

=
1

N

∑
k∈BZ

1 = 1. (331)

At high temperatures follows with sinh (x� 1) ' x and cosh (x� 1) ' 1

m = m
U

4kBT

∫
dωρ (ω) = m

U

4kBT
. (332)
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Since by assumption kBT � U it follows that only m = 0 is an allowed solution. Suppose

we are looking for very small, but finite m as solutions, which justifies a Taylor expansion

on the right hand side:

m = am− bm3 + · · · (333)

with coeffi cients:

a =
Uβ

2

∫
dωρ (ω)

1

1 + cosh (β (ω − µr))

b = −U
3β3

48

∫
dωρ (ω)

cosh (β (ω − µr))− 2

(1 + cosh (β (ω − µr)))
2 (334)

Nontrivial solutions with small m can only exist if a > 1 and b > 0. Thus, at the transition

from ordered state to disordered state yields

Uβc
2

∫
dωρ (ω)

1

1 + cosh (βc (ω − µr))
= 1 (335)

An interesting limit is Tc → 0 which addresses the issue of when does the ferromagnetic

ground state is allowed to exist. Here we use that

δ (x) = lim
α→∞

α

cosh (αx)
(336)

such that Tc → 0 corresponds to
U

2
ρ (µr) = 1. (337)

Thus, at T = 0 a ferromagnetic ground state is expected for Uρ (µr) /2 > 1. This condition

is called the Stoner criterion.

In case where b < 0 the transition cannot have an infinitesimally small solution. However

a detailed analysis yields that a discontinuous jump to a finite value is possible. This

behavior corresponds to a first order phase transition.

D. Landau Theory of Fermi-liquids

The key concept underlying Fermi liquid theory is adiabacity, i.e. the assumption that

the low energy excitations of an interacting Fermi system are in one-to-one correspondence

to the excitations of a non-interacting Fermi gas. The theory was originally developed for
3He, which at low temperatures is a structureless fermion due to the net spin 1/2 in the
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nucleus. The proton charge is compensated by the two electrons that forma a singlet state

and therefore don’t contribute to the total spin of the system. One simplifying aspect of
3He is the absence of an underlying crystalline lattice. The bare dispersion is then given in

form of the free particle dispersion

εfree
k =

~k2

2m
. (338)

The quantum numbers of the excited states of a free fermi gas are the occupations nkσ of

single particle states, the corresponding single particle states are characterized by momentum

and spin: |kσ〉.
Momentum and spin of excitations can only serve as quantum numbers if an excitation

with |kσ〉 doesn’t immediately decay into other states. To demonstrate that the decay rate
of fermions with excitation energies � kBT is indeed small, we use Fermi’s golden rule for

the decay of one particle with energy ε above the Fermi surface. Assume further that all

other states below the Fermi surface are filled and those outside the Fermi surface are empty.

Then we would consider a collision of the particle with energy ε with an occupied state of

energy ε2 leading to final states with energy ε3 and ε4 outside the Fermi sea. Measuring all

energies relative to the Fermi surface we obtain for the decay rate

Γ = V 2

∫
dε2ρ (ε2)

∫
dε3ρ (ε3)

∫
dε4ρ (ε4)

×f (ε2) (1− f (ε3)) (1− f (ε4)) δ (ε+ ε2 − ε3 − ε4) (339)

Here, the integration should go over all energies with finite density of states. Since the

integral is convergent and dominated by small energies, we can without problem extend the

integration limit to ±∞. First we integrate over ε2:

Γ = V 2ρ3
F

∫
dε3

∫
dε4 f (ε3 + ε4 − ε) (1− f (ε3)) (1− f (ε4)) . (340)

where we also approximated all densities of states by their value at the Fermi level. Next we

take into account that for T = 0, ε3, ε4 > 0 and ε3 +ε4 < ε, which determines the integration

limits

Γ (ε) = V 2ρ3
F

∫ ε

0

dε3

∫ ε−ε3

0

dε4 =
1

2
V 2ρ3

F ε
2 (341)

Similarly we can perform the integration at ε = 0 and for finite temperatures. Now

Γ (T ) = V 2ρ3
F

∫
dε3

∫
dε4

1

eβ(ε3+ε4) + 1

1

e−βε3 + 1

1

e−βε4 + 1

= V 2ρ3
F

∫
dε3

ε3

eβε3 − 1

1

e−βε3 + 1
= V 2ρ3

F

π2

4
(kBT )2 . (342)
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Thus we find that for suffi ciently small energy is Γ � max (ε, kBT ). In case of a wave

function, where damping leads to

ψ (t) ∝ exp

(
−iεt
~
− 1

~
Γt

)
(343)

it implies that the coherent oscillations go on for many periods until the damping leads

to a suppression of the oscillating amplitude. Thus, we demonstrated that single particle

excitations above the Fermi energy do not immediately radiate and decay.

In the ground state we continue to assume that the system is characterized by a filled

Fermi sea with

n
(0)
kσ = θ (kF − k) (344)

where kF is the same as for an ideal Fermi gas with same density:

N

V
= 2

∫
d3k

(2π)3n
(0)
kσ

=
1

π2

∫ kF

0

k2dk =
k3
F

3π2
(345)

which yields kF = (3π2N/V )
1/3. Excitations are now characterized by changes δnkσ of the

occupations, i.e.

nkσ = n
(0)
kσ + δnkσ. (346)

The corresponding change in energy is then given by

δE =
∑
k,σ

εkσδnkσ. (347)

Since the labelling of quantum numbers is the same compared to the free fermi system, purely

statistical aspects, like the entropy, should also only be determined by the corresponding

ideal fermi gas expressions. This implies

S = −kB
∑
k,σ

(nkσ log nkσ + (1− nkσ) log (1− nkσ)) (348)

Maximizing this expression with the condition that E =
∑

k,σ εkσnkσ and N =
∑

k,σ nkσ,

yields

nkσ =
1

eβεkσ + 1
. (349)

where the excitation energy εkσ is measured relative to the Fermi energy. Near EF we make

the assumption

εkσ ' ε0
kσ = v (k − kF ) (350)

61



where the parameter v = kF/m
∗ is often expressed in terms of the effective mass m∗. This

immediately leads to the density of states

ρF =
m∗kF
π2~2

(351)

that is enhanced by the factorm∗/m compared to the free fermion expression. An immediate

consequence of this modified density of states emerges or the heat capacity

C =
∑
k,σ

εkσ
d

dT
nkσ = ρF

∫ ∞
−∞

dεε
d

dT

1

eε/(kBT ) + 1

= γT (352)

where

γ =
π2k2

B

3
ρF =

m∗

m
γfree (353)

where γfree is the heat capacity of non-interacting fermions.

A key additional aspect of the Landau theory is that changes in the occupations δnkσ

will lead to changes δεkσ of the quasi-particle energies. Thus one writes generally

εkσ = ε0
kσ + δεkσ (354)

where

δεkσ =
1

N

∑
k′,σ′

fkσ,k′σ′δnk′σ′ (355)

where fkσ,k′σ′ is a phenomenological interaction parameter that determines the extend to

which the energy of state |k,σ〉 is affected by a change in population δnk′σ′ of |k′,σ′〉. If we
do not want to have a preference of one spin direction over the other (in the absence of an

external magnetic field) we write

fkσ,k′σ′ = f sk,k′ + σσ′fak,k′ . (356)

In addition we assume that all relevant momenta are on the Fermi surface, i.e. k =kFek

and k′=kFek′ where e2
k = e2

k′ = 1 are unit vectors. In an isotropic system like 3He, with no

preferred direction, one expects that f s,ak,k′ only depend on the angle θ between k and k
′, i.e.

on cos θk,k′ = ek · ek′ :
f s,ak,k′ = f s,a

(
cos θk,k′

)
. (357)

Since f s,a are of dimension energy, dimensionless quantities follow via

F s,a = ρFf
s,a. (358)
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We expand F s,a
(
cos θk,k′

)
in Legendre polynomials

F s,a
(
cos θk,k′

)
=

∞∑
l=0

(2l + 1)F s,a
l Pl

(
cos θk,k′

)
(359)

and use the usual representation in terms of spherical harmonics

F s,a
(
cos θk,k′

)
= 4π

∞∑
l=0

l∑
m=−l

F s,a
l Ylm (ek)Y ∗lm (ek′) . (360)

The orthogonality of the Legendre polynomials

1

2

∫ 1

−1

d cos θPl (cos θ)Pl′ (cos θ) =
δl,l′

2l + 1
(361)

allows for the representation

F s,a
l =

1

2

∫ 1

−1

d cos θF s,a (cos θ)Pl′ (cos θ)

=
1

4π

∫ 2π

0

dϕ

∫ π

0

sin θdθF s,a (cos θ)Pl′ (cos θ)

=
1

4π

∫ 2π

0

dϕ

∫ π

0

sin θdθ

∫
dεF s,a (cos θ)Pl′ (cos θ) δ (ε)

=
2

ρF

1

N

∑
k′

F s,a
k,k′Pl

(
cos θk,k′

)
δ (εk) . (362)

Suppose we are at T = 0 we add an external perturbation of the type

δε0
kσ = vσl Ylm (ek) (363)

where the spherical harmonic determines the directional dependence on the momentum

and vσl is the amplitude of the perturbation. In case of an external magnetic field holds

δε0
kσ = −σµBB, i.e. we have m = l = 0 and, due to Y00 = 4π, vσ0 = −σµBB/4π. A change

in the chemical potential δµ amounts to δε0
kσ = −δµ, i.e. m = l = 0 and vσ0 = −δµ/4π.

This allows us to determine physical observables like the magnetic susceptibility

χs =
1

V

∂M

∂B

∣∣∣∣
B=0

(364)

with magnetization M = µB
∑

k,σ σnkσ. Another option is the charge susceptibility

χc =
1

V

∂N

∂ (δµ)

∣∣∣∣
δµ=0

(365)
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with particle number N =
∑

k,σ nkσ. χc is closely related to the compressibility

κ = − 1

V

∂V

∂p

In case where the free energy of a system can be written as

F (V,N) = Nf (n) (366)

where n = N/V is the particle density, it follows

p = − ∂F

∂V

∣∣∣∣
N

= n2∂f (n)

∂n
(367)

which allows us to write
1

κ
= −V ∂P

∂V

∣∣∣∣
N

= n
∂p

∂n
(368)

On the other hand it holds for the chemical potential

µ =
∂F

∂N

∣∣∣∣
N

= f (n) + n
∂f (n)

∂n
(369)

The change of the pressure and chemical with density are then:

∂p

∂n
= 2n

∂f (n)

∂n
+ n2∂

2f (n)

∂n2

∂µ

∂n
= 2

∂f (n)

∂n
+ n

∂2f (n)

∂n2
(370)

which implies
∂p

∂n
= n

∂µ

∂n
(371)

and we obtain

κ = n−2∂n

∂µ
. (372)

In case of a free Fermi gas follows

χ0
s = µ2

Bρ
0
F

χs = ρ0
F . (373)

where the mass is m.

Since fermions of a Fermi liquid are interacting it there is no reason that an external field

or chemical potential change will change the quasiparticle energies εkσ in the exact same

fashion. Thus, we assume

δεkσ = δε0
kσ +

1

N

∑
k′,σ′

fkσ,k′σ′δnk′σ′

= tσl Ylm (ek) (374)
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where in general tσl 6= vσl . Suppose there is such an energy shift, then we can determine the

associated particle density shift from Eq.349

nkσ =
1

eβ(ε
0
kσ+δεkσ) + 1

= θ (kF − k)− δ
(
ε0
kσ

)
δεkσ (375)

which yields

δnkσ = −δ
(
ε0
kσ

)
δεkσ. (376)

This result can now be inserted into Eq.374 which yields

δεkσ = δε0
kσ −

1

N

∑
k′,σ′

fkσ,k′σ′δ
(
ε0
k′σ′
)
δεk′σ′ (377)

or equivalently

tσl Ylm (ek) = vσl Ylm (ek)− 1

N

∑
k′,σ′

fkσ,k′σ′δ
(
ε0
k′σ′
)
tσ
′

l Ylm (ek′) (378)

Now we can use the above expansion of fkσ,k′σ′ in spherical harmonics

tσl Ylm (ek) = vσl Ylm (ek)− ρF
2

∫
dΩk′

∑
σ′

fkσ,k′σ′t
σ′

l Ylm (ek′)

= vσl Ylm (ek)− ρF
2

∫
dΩk′

4π

∑
σ′

fkσ,k′σ′t
σ′

l Ylm (ek′)

= vσl Ylm (ek)− 1

2

∫
dΩk′

∑
σ′

∞∑
l′=0

l′∑
m′=−l′

(F s
l′ + σσ′F a

l′ )

×Yl′m′ (ek)Y ∗l′m′ (ek′) t
σ′

l Ylm (ek′) (379)

We use the orthogonality of the spherical harmonics∫
dΩk′Y

∗
l′m′ (ek′)Ylm (ek′) = δll′δmm′ (380)

and obtain

tσl = vσl −
1

2

∑
σ′

tσ
′

l (F s
l + σσ′F a

l ) (381)

If we consider for example a change in the chemical potential with, vσ0 = −δµ/4π, it follows
for tσ0 = t0 spin independent, that

t0 = v0 − t0F s
0 (382)
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which leads to

t0 =
v0

1 + F s
0

. (383)

It is now straightforward to determine the charge susceptibility via

χc =
1

V

∂N

∂ (δµ)
= − 1

4π

1

V

∂N

∂v0

= − 1

4π

1

V

∂N

∂t0

∂t0
∂v0

= − 1

1 + F s
0

1

4π

1

V

∂N

∂t0
. (384)

To determine −1
4π

1
V
∂N
∂t0
we use

nkσ =
1

e
β
(
kF
m∗ (k−kF )+4πt0

)
+ 1

The derivative of N =
∑

k,σ nkσ with respect to t0 can be performed, e.g. by resorting to

our above result for the charge susceptibility of a free electron gas (with the difference that

we need to consider the effective mass, not the bare mass). It follows −1
4π

1
V
∂N
∂t0

= ρF and we

obtain

χc =
ρF

1 + F s
0

Thus, the charge susceptibility is different from the free fermi gas value in two ways. First,

in the density of states the mass m is replaced by the effective mass m∗. In addition the

interactions lead to an overall coeffi cient (1 + F s
0 )−1. The theory is therefore stable as long

as F s
0 < −1. If F s

0 → −1 the system will undergo a transition to a regime where different

densities phase segregate. An analogous analysis can be performed for the spin susceptibility

(homework).

IX. DYNAMICS OF BLOCH ELECTRONS

A. Semi-classical equation of motion of Bloch electrons

We want to describe the evolution of electron’s wave function when a weak and slowly

changing external field is added. That is the Hamiltonian now reads

H =

(
−i~∇+ e

c
A(r)

)2

2m
+ U(r)− eφ(r) , (385)

66



where (the signs are consistent with negative charge, that is e = |e| > 0, but the charge of

the electron is −e < 0.) The potential U(r) is periodic while A and φ change little on the

scale of primitive cell of the Bravais lattice (slow fields).

Our aim to prove that the electrons in the band n with energy En (k) are governed by

the following effective Hamiltonian

Heff,n = En

(
−i∇+

e

~c
A
)
− eφ . (386)

B. Wave packet argument

We localize the electron of a certain band n into a wave packet:

Φ(r) =

∫
d3k g(k)ψn,k(k) =

∫
d3k g(k)un,k(k)eik·r. (387)

The function g(k) is centered around a certain crystal momentum k0 and has a width ∆k

such that the width of the wave packet in the real space ∆r is small enough. The two are

related as ∆k∆r ∼ 1.

The time evolution of the wave packet is given by

Φ(r, t) =

∫
d3k g(k)un,k(r)eik·r−iεn,kt/~. (388)

We expand around k0 and εn,k0 . We assume one can approximate un,k(r) ≈ un,k0 in the

whole interval of ∆k. Then

Φ(r, t) ≈ un,k0(~r)e
ik0·r−iεn,k0 t/~

∫
d3δk g(k)e

iδk·
(
r−

∂εn,k
∂k

t/~
)
. (389)

Thus we conclude that the wave packet propagates with the velocity

v =
∂r

∂t
=

1

~
∂εn,k
∂k

. (390)

Assume now the electron is influenced by an electric field E. The work done by the field

pro unit of time is −eE · v. This work is "used" to change the energy of the electron. Thus
we obtain

∂ε

∂t
=
∂εn,k
∂k

dk

dt
= ~v·dk

dt
= −eE · v . (391)

Thus we obtain

~
dk

dt
= −eE . (392)

The quasi-momentum ~k satisfies the same equation as the usual momentum for free elec-

trons!
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C. Proof for potential perturbation (not for vector potential)

We consider the following problem

H =
(−i~∇)2

2m
+ U(r) + Uext(r) = H0 + Uext(r) , (393)

Here U is the periodic lattice potential and Uext = −eφ is the external and weak potential.
More precisely what has to be weak is the external electric field, i.e., ∼∇Uext.

We want to solve the time-dependent Schrödinger equation:

i~
∂ψ

∂t
= Hψ (394)

We expand ψ(t) in basis of Wannier functions

ψ(t) =
∑
n,R

an,R(t)wn(r−R) (395)

Recall the representation of a Bloch wave function

ψn,k(~r) =
∑
R

eik·Rwn(r−R) . (396)

In this case an,R = eik·R. Wannier functions are given by

wn(r) =
1

N

∑
k∈1. B.Z.

ψn,k(r) . (397)

and

wn(r−R) =
1

N

∑
k∈1. B.Z.

e−ik·Rψn,k(r) . (398)

First we investigate how H0 acts on the (shifted) Wannier functions using the fact

H0ψn,~k = εn,kψn,k.

H0wn(r−R) =
1

N

∑
k∈1. B.Z.

e−ik·RH0ψn,k(r)\

=
1

N

∑
k∈1. B.Z.

e−ik·Rεn,kψn,k(r) . (399)

We use now the Wannier expansion (396) and obtain

H0wn(r−R) =
∑
R1

1

N

∑
k∈1. B.Z.

εn,ke
ik·(R1−R)wn(r−R1)

=
∑
R1

εn(R1 −R)wn(r−R1) , (400)
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where

εn(R) ≡ 1

N

∑
k∈1. B.Z.

εn,ke
ik·R . (401)

The Schrödinger equation now reads:

i~
∂ψ

∂t
= i~

∑
n,R

ȧn,R(t)wn(r−R)

= Hψ = (H0 + Uext)ψ =
∑
n2,R2

an2,R2(t)(H0 + Uext)wn2(r−R2)

=
∑
n2,R2

an2,R2(t)
∑
R1

εn2(R1 −R2)wn2(r−R1)

+
∑
n2,R2

an2,R2(t)Uextwn2(R−R2) . (402)

The Wannier functions form a complete orthonormal basis. Thus we just compare the

coeffi cients:

i~ȧn,R =
∑
R2

an,R2εn2(R−R2))

+
∑
n2,R2

an2,R2

∫
d3r w∗n(r−R)Uext(r)wn2(r−R2) . (403)

The first term in the r.h.s. of (403) is rewritten as follows∑
R2

an,R2εn(R−R2) =
∑
R1

εn(R1)an,R−R1 =
∑
~R1

εn(R1)e−iR1·(−i∇)an,R

= εn(k→ −i∇)an,R . (404)

Here we have used an,R−R1 = e−iR1·(−i∇)an,R. That is already here we consider an,R as a

well behaved function in all the space, i.e., an,r.

The second term of the r.h.s. of (403) is approximated as∑
n2,R2

an2,R2

∫
d3r w∗n(r−R)Uext(r)wn2(r−R2) ≈ Uext(R)an,R . (405)

That is only diagonal matrix elements of Uext are left. Since Uext is slowly changing in space,

i.e,. it changes very little on the scale of primitive cell, while the Wannier functions are

localized on the scale of a cell this approximation is justified.

Thus, the SE for the "envelope" wave function an,~R reads

i~ȧn,R = [εn(−i∇) + Uext(R)] an,R . (406)
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If we now "forget" that an,~R is defined only in the locations ~R and define it in the

whole space, an,r we obtain a Schrödinger equation with the effective Hamiltonian Heff,n =

εn(−i∇) + Uext(r). In presence of vector potential it becomes (with no proof given here)

Heff,n = εn

(
−i∇+

e

~c
A
)
− eφ . (407)
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