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CHAPTER
ONE

INTRODUCTION

1.1 Preface

I have a very bad memory. I am able to memorize quite a lot of things short term, but I am not able to
remember most formulas from quantum mechanics over the long term (e.g. like over the summer). I don’t
remember formulas for perturbation theory (neither time dependent or time independent), I don’t remember
Feynman rules in quantum field theory, I don’t even remember the Dirac equation exactly (where the 4
should be, if there is m or m?, ..). The thing about quantum field theory is not that some particular steps
are difficult, but that there are so many of them and one has to master all of them at once, in order to really
“get it”.

I never got QFT, because once I mastered one part sufficiently, I forgot some other part and it took so much
time to master that other part that I forgot the first part again. However, I was determined that I would get
it. In order to do so, I realized I need to keep notes of things I understood, written in my own way. Then,
when I relearn some parts that I forgot, it just takes me a few minutes to go over my reference notes to
get into it quickly. My own style of understanding is that the notes should be complete (no need to consult
external books), yet very short and getting directly to the point, and also with every single calculation
carried out explicitly.

See also the preface to the QFT part.

If you want to study physics, learn math the physics way (as opposed to the usual mathematics way of a
definition, theorem, proof, ..). When I was beginning my undergrad physics studies (and even on a high
school), T also had this common misconception, that I need to study math and understand every proof and
then I'll be somehow prepared for physics. I was very wrong. I used to study calculus by myself and then
trying to learn the proofs, and Lebesgue integral and I was learning that from the mathematics books. At
the university, I always did all my math exams first (as far as I remember, I always got A from those), hoping
that would be a good start for the physics exams, but I always found out that it was mostly useless.

Now I know that the only way to study physics is to go and do physics directly and learn the math on the
way as needed. The math section of this book reviews all the math, that is necessary for studying theoretical
physics (graduate level).

There are actually quite a lot of good math books written by physicists as well as many excellent physics
books, covering everything that I cover here. But I really like to have all the theoretical physics and the
corresponding math explained in one book, and to keep it as short as possible. Also everyone has a bit
different style and amount of rigor and I have not found a book that would perfectly suite my own style,
thus I wrote one.
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1.2 Introduction

The Theoretical Physics Reference is an attempt to derive all theoretical physics equations (that are ever
needed for applications) from the general and special relativity and the standard model of particle physics.

The goals are:
e All calculations are very explicit, with no intermediate steps left out.

o Start from the most general (and correct) physical theories (general relativity or standard model) and
derive the specialized equations from them (e.g. the Schrodinger equation).

o Math is developed in the math section (not in the physics section).

e Theory should be presented as short and as explicitly as possible. Then there should be arbitrary
number of examples, to show how the theory is used.

e There should be just one notation used throughout the book.

o It should serve as a reference to any physics equation (exact derivation where it comes from) and the
reader should be able to understand how things work from this book, and be ready to understand
specialized literature.

This is a work in progress and some chapters don’t conform to the above goals yet. Usually first some
derivation is written, as we understood it, then the mathematical tools are extracted and put into the math
section, and the rest is fit where it belongs. Sometimes we don’t understand some parts yet, then those are
currently left there as they are.

There are many excellent books about theoretical physics, that one can consult about particular details.
The goal of this book (when completed) is to show where things come from and serve as a reference to any
particular field, so that one doesn’t get lost when reading specialized literature.

Here is an incomplete list of some of the best books in theoretical physics (we only picked those that we
actually read):

1. Landau, L. D.; Lifshitz, E. M: Course of Theoretical Physics
Richard Feynman: The Feynman Lectures on Physics

Walter Greiner: “Classical Theoretical Physics” series of texts
Herbert Goldstein: Classical Mechanics

J.D. Jackson: Classical Electrodynamics

Charles W. Misner, Kip S. Thorne, John Wheeler: Gravitation
Bernard Schutz: A First Course in General Relativity

Carrol S.: The Lecture Notes on General Relativity

© X N> o wN

J.J. Sakurai: Advanced Quantum Mechanics

H
e

Brown L. S.: Quantum Field Theory
. Mark Srednicki: Quantum Field Theory

—_ =
[N

. Claude Itzykson, Jean-Bernard Zuber: Quantum Field Theory
. Zee A.: Quantum Field Theory in a Nutshell

. Steven Weinberg: The Quantum Theory of Fields

. L.H. Ryder: Quantum Field Theory

e e e T
S Ut W

. Jifi Hofejsi: Fundamentals of Electroweak Theory

2 Chapter 1. Introduction



Theoretical Physics Reference, Release 0.5

17. Michele Maggiore: A Modern Introduction to Quantum Field Theory

18. ML.E. Peskin & D.V. Schroeder: An Introduction to Quantum Field Theory
19. J.W. Negele, H. Orland: Quantum Many-Particle Systems

20. X-G. Wen: Quantum Field Theory of Many-Body Systems

21. Dirac, P.A.M.: General Theory of Relativity

1.2. Introduction 3
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CHAPTER

THREE

MATHEMATICS

3.1 Integration

This chapter doesn’t assume any knowledge about differential geometry. The most versatile way to do
integration over manifolds is explained in the differential geometry section.

3.1.1 General Case

We want to integrate a function f over a k-manifold in R"™, parametrized as:

o1(ti,ta, ... tr)

@Q(tl,tQ,. .. ,tk)
@ZRk_)Rn Qﬁ(t]_,tg,-..,tk;): .
On(ti,to, ... ty)

then the integral of f(x1,22,...,2,) over ¢ is:

f(xlax27 s ,mn) ds = f(g@(tl,tQ, . ,tk)) Vv detGdtldtQ cee dtk
M Rn

where G is called a Gram matrix and J is a Jacobian:

Oy, Oy,
(G)lj (J J)l] Jlk(]k'] atl atj
99 O . Op
Oty Otz Oty
6@i ) . . . .
(J)U - 815]- -

The idea behind this comes from the fact that the volume of the k-dimensional parallelepiped spanned by
the vectors

dp Oy
8t1""’8tk

is given by

V =vdetJTJ

where J is an n X k matrix having those vectors as its column vectors.
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Example

Let’s integrate a function f(x,y, z) over the surface of a sphere in 3D (e.g. k =2 and n = 3):

7 sin 0 cos ¢
©(0,¢) = | rsinfsin¢
rcosf

—rsinfsing 1 cosfcos @
J=| rsinfcos¢ rcosfsin¢
0 —rsind

G:JTJ:(rsmGsmgb rsin 6 cos ¢ 0

. . 7 sin 6 cos 7 cos f sin
rcosfcos¢ rcosfsing —rsinf ¢ ¢

0 —rsinf 0

det G = r*sin? 6
Vdet G = 72 sin 6

/ flz,y,2)dS = f(rsinf cos ¢, rsinfsin ¢, 7 cos§) 72 sin § df dop =
M R»

T 21
= / de d¢ f(rsinf cos ¢, rsin @ sin ¢, r cos §) 2 sin 0
0 0

Let’s say we want to calculate the surface area of a sphere, so we set f(x,y,z) =1 and get:

T 27 T
/ ds = / d9/ do r?sinf = 2777'2/ dfsin @ = 4mr?
M 0 0 0

3.1.2 Special Cases

k=n

det G = det JRJ = (det J)?
ds = |detJ|dt1 dtg'“dtk

_ dpq ? deo ? _ d<p2
detG_det((dt) +<dt L) = o

dp
ds_’dt dt

8 Chapter 3. Mathematics

) —rsinfsing rcosfcos P (rzsinQG 0

r

2

)
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det G = det JJ =

— det(-+)2 +det(---)? + - + det(...)? =
2

99 9o . Op
6t1 atz 8tk el
€2
= |det = |w,|?
€n

ds = |wq,| dtl dtg tee dtk

w,, is a generalization of a vector cross product. The det(---) symbol means a determinant of a matrix with
one row removed (first term in the sum has first row removed, second term has second row removed, etc.).

k=2,n=3
detG—ai’xaﬁ2
oty T Oty
|9 _ O
d.;s—’atlxat2 dtldtQ
y = f(x, z)

- of 2 of 2
w1 (24 ()

2 2
ds = \/1—1— (gz) + (gﬁ) dx dz

, Tp) We get:
of \? af \?
=1 —J —
det G +(8x1) +(8x2) +

2 2
(9331 81’2

The “z;” term is missing in the sums above.

in general for x; = f(z1,z2,. ..

Implicit Surface

For a surface given implicitly by

F(zi,z9,...;2,) =0

we get:

dxl tee d.’L‘nfl

F

3.1. Integration
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Orthogonal Coordinates

If the coordinate vectors are orthogonal to each other:

Jp Oy L,
s £
ot ot 0 fori=#j
we get:
Iy || O¢ dyp
dS = |- | =L - | =2\ dty---dt
oty | | oty ‘(’%k ! *

3.1.3 Motivation

Let the k-dimensional parallelepiped P be spanned by the vectors

Oy dp
G

and let J is n x k matrix having these vectors as its column vectors. Then the area of P is
V =+vdetJTJ

so the definition of the integral over a manifold is just approximating the surface by infinitesimal paral-
lelepipeds and integrating over them.

3.1.4 Example

Let’s calculate the total distance traveled by a body in 1D, whose position is given by s(t):

ta
l:/@:/ ds
Y t1 de

t t"’ t
ds 2 |ds
p— —_— dt — dt RS —
/tl a| ¢ /t a| T /t dt

= |5(tl) —s(t1)| + |s(t") — s(t')‘ o s(te) — s(t””"')|

dt =

ds dt —

where t, t”, ... are all the points at which $| = 0, so each of the integrals in the above sum has either
positive or negative integrand.

3.2 Complex Numbers

We start by defining arg(z) by its principal value, then everything else follows from this definition. We could
have also used any other branch, but then most results in this chapter would need to be updated with the
new convention.

Then we define exponential, logarithm, power and so on using simple natural formulas. From these defini-
tions, everything else follows using a very simple algebra manipulation, all the “messy” features are hidden
in the definition and properties of the real atan 2 function. In the derivation of each formula, only formulas
introduced before (above) are used.

Every formula in this chapter holds for all complex numbers, unless explicitly specified otherwise.

10 Chapter 3. Mathematics
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3.2.1 Real and Imaginary Part

A complex number z can be written using its real and imaginary parts:

z=Rez+1i1Imz

The absolute value |z| is defined as:

|z| = VRe? 2 + Im? 2

3.2.2 Argument Function
Principal value of arg(z) is defined as

arg z = atan 2(Im z, Re z)

Thus we have —7 < arg z < w. All operations with argz are then derived using the properties of the real

atan 2 function.

3.2.3 Exponential

Exponential is defined using:

z _ eRez+i1mz —

eRez(

It follows:

e@tt = eRe(@tt) (cosIm(a + b) + i sinIm(a + b)

_ eReaeReb<

_ eRca(

Any complex number can be written in a polar form as follows:

cosIm z + isinIm z)

cosIma + isinIma)e

cos(Ima) cos(Im b) — sin(Im a) sin(Im b) 4 ¢ sin(Im a) cos(Im b) + 4 cos(Im a) sin(Im b)) =
Re b(

I
z=Rez+ilmz = |z| (Rez_i_imz> =
|| |2
2] Rez w Imz _
\/R622+Im2z \/R622+Im22

= |z| (cosatan 2(Im z, Re z) + isinatan 2(Im z, Re z)) =

= |z| (cosarg z + isinarg z) =

= |zle

The following formula holds:

Rez _ilmz iIm z

arge® = arge e =arge =

= arg(cosIm z + i sinIm z)

= atan 2(sinIm z, cosIm z) =

m—Imz

=1 2
mz + 71'{ o

|

1arg z

cosImb+isinImb

=

3.2. Complex Numbers
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and also:
arg ab = arg(|ale’ *&*|ble! *80) =
= arg(|a‘|b‘ L(arga+argb)) —
— arg( i(arg atargb) )
= arg(cos(arg a + argb) + isin(arg a + argh)) =
= atan 2(sin(arg a + arg b), cos(arg a + arg b)) =
- —argh
— arga+ argh 4 2n WagaagJ
L 27
and
1
arg — = —argz + 2w 7T—|—arng
z | 27
and

iarga

1
b

i(arg a—arg b)+2mi L%ﬁng >

|
- ezargb>

arg% = arg <|a|e

(115
=arg | |a| |=|e
b
= arg(e

) =
= arg(cos(arga — argb) + isin(arg a — arg b))
)

i(arg a—argb)

= atan 2(sin(arg a — arg b), cos(arg a — argb)

=arga —argb+ 27 {

™ —arga + argb
27

3.2.4 Logarithm
The logarithm is defined as:
log z = log |z| + iarg = (3.2.4.1)

The motivation is from the following formula:

7= |z|ezargz — elog\z|ezargz — elog\z\+zargz

which using our definition becomes:

log |z|+iarg z

= ¢log= (3.2.4.2)

zZ =€

so a logarithm is an inverse function to an exponential. The formula (3.2.4.2) would be satisfied even if we
add a factor of 2min (where n is an integer) to the right hand side of (3.2.4.1). However, the convention is
to define logarithm using the equation (3.2.4.1) exactly.

We can now derive a few important formulas:

log |¢*| = log|eR°#e!™?| = log|eR®?| = Re z

—1I —1I
loge® =logl|e®| +iarge® =Rez + i (Imz+27r {wsz) =2z +2mi V}sz

2 s

12 Chapter 3. Mathematics
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and

and

3.2.5 Power

= log|a| + log |b| + iarga + iarg b + 2mi {

log ab = log |ab| 4+ i argab =
m—arga—argh|
2 N

- — b
—loga + log+ 2| T ELZMED
2m
log & =1 9’4_' o &=
0g 3 =108 || Trarg =
- b
= log|a| — log |b| +iarga — iargb + 2mi Varg;—i—argJ _
m
- b
—loga — log+ 2 | T BT MED
™

A power of two complex numbers is defined as:

20 — @ log z

From above we can also write the power z% in two different ways:

20 = (elogz)a — elogza

(3.2.4.3)

(3.2.4.4)

But these two cannot be used as a definition of a power, because both require the knowledge of %, which
we are trying to define, where x = z or x = €l°8%,

It follows:
—1 It
log 2% = log €187 — qlog z + 2ri \frI;laong (3.2.5.1)
s
and
(xa)b _ eblogwa _ eb(alongrZTriL%J) _
_ eablogr€27rib|_7ﬂilmilong — (3252)
_ xabe2mbv—71n}2:10g”
As a special case for x = e one gets:
(ea)b _ eabeZWibtiwleir‘aJ (3253)
Similarly:
(wy)a _ ealogmy _ ealogw+alogy+2wiaL%J _
I (3.2.5.4)
_ l,ayae WZGL#J
13
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3.2.6 Examples

For integer n we get from (3.2.5.2):
(z)" = ponp2min| Taless | ap
Using (3.2.5.2):
VEE _ (at)} — ghagmit| stz | ori| e | (e
Using (3.2.5.4):

T—argx—argy T—argxr—argy

VG = (ay)t = ahydem BT o o) P

and as a special case:

1=v1=/(—1)(=1) = v=iv=i(-)l ="l =i.i. (1) =1

Using (3.2.5.3):

Using (3.2.4.3):

2m
=im4im+2mi |3 | =i+ imr — 2w =0

0 =log1 = log(~1)(~1) = log(~1) +log(~1) + 2mi {WJ _

Code:

>>> from math import floor, pi

>>> from cmath import log

>>> log((-1)*(-1))

0j

>>> log(-1)+log(~1)+2*pix*1j*floor ((pi-pi-pi)/(2*pi))
0J

Another example:

) . . .2 . o
it = ezlogz — el A8 — =3

Code:

>>> from math import exp, pi
>>> 1j**x1j
(0.20787957635076193+07)

>>> exp(-pi/2)
0.20787957635076193

Another example, using (3.2.5.1):

m—Im % logz|

27 N

m—Largz
2T

log(v/z) = log(22) = 1logz + 2mi L

:§10g2+2m'{ J zélogz

14 Chapter 3. Mathematics
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and
—Im21
log(+?) = 2log = + 2ri {ng -
2
| m—2argz
= 2logz 4 2mi | L2 1B%
L 2
and
1 —Im(—-1)1
log () =log(z7') = —log z + 2mi m—Im(-1) ngJ =
z L 2m
Clog x4 2mi {HWJ
2T

Another example, following from (3.2.4.1) and (3.2.4.4):

1 1 — 1
argz = —(logz — log |z]) = - logi72m' m—argz+ arg |7| = f,logi
i i 2| 27 i 2|

3.2.7 Complex Conjugate

The complex conjugate is defined by:

z=Rez+1Imz

Zz=Rez—1iImz

Now we can solve for Re z and Im z:
1 _
Rez = 5(2 +2)

Imz = %(—2—1—2)

Any complex function f can be written using Rez and Im z, i.e. f = f(Rez,Imz) or using z and Z, i.e.

f= f(z,é).

Examples

2| = VRe? 2 + Im® 2 = \/<;(2+z)>2 + (;(—z+z))2

2| = VRe? z + Im? z—\/Re 2+ (—Imz)?

ZZ

= ||

argzatan?(Imz,Rez)atan2(;( z+ Zz), (z+z>atan2(( z+Z2),z+ 2)

)
tan 2(I R
argz = atan 2(—Im z,Re z) = —atan2(Im z, Re z) + 27 r an (mz ez JHTJ

—argz+27r{

arg z + ﬂ'J

logz = log |z| —iargz = log|Z| + iarg z — 27i {argz WJ log 7 — 2 {argz—i-ﬂ'J

—_— 1 1 1 1
\/2225 :eilogz _ §(log| z|+iarg z) _eQ(IOg\ z|—iarg z) €§(og| Z|+iarg z—2mi argz+"J)

I
_ (2)% e_mLarg;rerJ (-1 )Laxgz+wJ\/:

3.2. Complex Numbers
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3.2.8 Complex Derivatives

The complex derivative is defined by
f v w (3.2.8.1)

I
dz ,1—>0

Let’s calculate the complex derivative in the direction 6, i.e. we use h = te’? with real ¢t and we introduce
f = f(z,y) with z = Rez, y = Im 2 to simplify the notation:

df f(z+1te”) — f(2)

&Z}g% tem =
— lim f(x+tcos0,y+tsm9)_f(x,y)e_w:
t—0 t
d o
:Ef(w—&-tcos@,y—i—tsme)e w0 _
(AN
= (81: cosf + Dy Sm0>e =
(UM ppet ey
ox 2 oy 21
_gl—ke_%e gl—e_gw B
- Oz 2 oy  2i o
of .of of — Of\ _o
_1 (=  ~J 1Y) e 2i0 _
-2 <8$ Z@y) N (81; Hay c
_Of OF g
9. "oz

In the last step we have expressed the derivatives with respect to x, y in terms of derivatives with respect
to z, Z, using the relations:

of 0xof . oyof

0z 0z0x 0z0y

_1of wof
=1 % — zg
2\ oz Oy
of _ovof oyos
0z  0z0x 0zZ0y
_Lof iof
EEY DY (3.2.8.3)
of  .of
N ZJ
o <3w +Z5y>
Let’s repeat the important result:
df(Z72) 8f(z,2) 3f(z,2) —2i6
= v 3.2.84
dz 0z + 9z ( )

The equation (3.2.8.4) states that the complex derivative along the direction 6 of any function can be
calculated, but the result in general depends on 6. The derivatives for all possible angles 8 lie on a circle,

with the center % and the radius ‘% . When the derivative has different values for different 0, i.e. when

% # 0, it means that the complex limit (3.2.8.1) does not exist. On the other hand, if the derivative does
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not depend on 6, i.e. when % = 0, then the complex limit (3.2.8.1) exists, and the function has a complex

derivative — such functions are called analytic. Analytic functions thus do not depend on zZ and we can
write just f = f(2) for those.

The af and a)zf are called Wirtinger derivatives.

We can see that the function is analytic (i.e. has a complex derivative) if and only if:

of 1 (0f  .Of\ _
9z~ (830 T 8y) =0
We can write f = u + iv:
af ~of
ox +Z€)y =0
Ou+iv) .O(u+iv)
ox e oy =0

%_@ +' %—F@ _0
dr Oy ’ oy  ox)

both the real and imaginary parts must be equal to zero:

Ou v
dz Oy
ou  Ov
dy Oz

These are called the Cauchy-Riemann equations.

We can derive the chain rule:

df(g)_af(g)+ df(g) o210 _

dz 0z 0z
0fdg  0f0g\ (0509  0f09\ s _
dg 82 dg 0z dg 0z ag 0z
(3.2.8.5)
af _|_ @ —2i0 + g —J + @ —2i0 _
" dg 62 9z° ag 82 9z°
_05dg 01 dg
~ Ogdz  0gdz
Another useful formula is the derivative of a conjugate function:
df _0f OF oo _OF OF s _
- aL 0z 0 (3.2.8.6)
8f e—210 4+ == f —2i9 — %6—21'9
9z ¢ 0z dz

Using (3.2.8.6), the chain rule (3.2.8.5) can also be written as:

df(g) _ofdg 9dfdg _9fdg Lo of dg 020 (3.2.8.7)
dz ~ 9dgdz ' 9dgdz dgdz 9y az°

Which has the advantage that only the % derivative is needed, the rest is just conjugation and multiplication.
If f is analytic, then % = 0, the second term vanishes and the chain rule is analogous to real functions.

3.2. Complex Numbers 17
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Examples
dz _ % % —210 1
dz 0z 0z B
% — @ @ —2i0 _ ,—2i0
dz 0z 0z
dRez _ di(z+2) _ 01(z+2) N 8%(2+2)6_2w 11,20
dz dz 0z 0z 202
dimz di(—z+2) 0%i(—2+2) 0%(—2+2) _yy i0 o
dz dz N 0z + 0z ¢ T2 + 2°
dlz| dvzz  9vez N 8\/567%9 _Z+ze 0z 4 zem 2
dz  dz 0z 0z NI
dif(=)| _olf1df  olf|df _ e+ ri
dz of dz = 9f dz 2|f]
dargz datan2(i(—z+2),z+2) OJatan2(i(—z+2),2+2) Jatan2(i(—z+2),2+2) _op
= = + — e =
dz dz 0z 0z
(z+2)(—i)—i(—2+2) (z+2)i—i(—24+2) _g
= — + — e =
42z 42z
i1 1 g\ i —Z+ze
5 () = (R
dlog|z| ié—&—ze‘zi‘g _ Z+ze 2
dz 2| 27| 2522

= —|—Z

dlogz  d(log|z| +iargz) z+ze 20 (—z + 262”) z z 1

dz dz 2|z|? 2 |z|? - 122~ 2z =
dlogz dlogz Ologz 9,9 0Odlogz 0dlogz 59 1 55
T A E
d|log z| _ log zdl;% + log zdlgfz _ 1log z 4 L(log z)e~2 _ zZlog z + z(log z)e 2
dz 2| log z| 2| log z| 2zz|log 2|

Note that if z is real, i.e. z = Z, we recover the real derivative results by setting # = 0, i.e. taking the
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derivative along the z-axis:

do _
de
dRex
dz :%+%:1
dImx__z_i_z_O
de 2 2
dz| _z+c _ =z
de — 2lz| |z
d d d
dif@) _fE+rE 1
dz 2|f| |f]

dargxz i 1 1
=—|——+—-]=0
dx 2 < m+x)

dloglz| x+=z x

de 222 |z?
dlogz 1
de =z
dllogz| wlogz +xlogz  logx
dr 222|logz| = x|logz|

The above approach to first express things in terms of z and z and then differentiate is probably the easiest,
but we can do things in any order we want. For example the derivative of |z| can also be calculated in this

(arguably more complicated) way:

dlef _

dz

(e +2) (3 +3e7%) + (3(-2+2) (4 + $e9)

Rez—dgsz + Im p4imz

dz

dvRe?z 4+ Im? 2 B
dz -

2]

E

7+ Ze—2i«9

2

3.2.9 Testing ldentities Using Computer Code

All the complex identities in this chapter can be tested using the following codes. test_complex.py:

def arg(x):

mnmn

The argument function.
mnimn

from cmath import log
return log(x) .imag

def generate_values():

nmnn

nmnn

Create values to test the function at.

from math import sin, cos, pi
from random import random

# Generate 3 circles in complex plane, with diameters 0.5, 1 and 2. We
# avoid special wvalues like -1, +/- i, etc., because they typically send

(continues on next page)
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(continued from previous page)

# the numerical values close to the branch cut, and numerical errors then
# flip the sign, e.g.:

# In [1]: sqrt((-0.57)**2)

Out[1]: -0.55

In [2]: (-0.57)**2
Out[2]: (-0.25-07)

H OB W R R R

In [3]: sqrt(-0.25)

#  Out[3]: 0.5j

# Here [3] is the correct wvalue and [1] is incorrect, but that happens due
# to the round off errors in [2] (the small negative imaginary part makes
# sqrt() return -0.55 instead of +0.57).

#
# For this reason, we chose N=7.
N=7

circle = []
for n in range(N): circle.append(cos(2*pi*n/N)+1j*sin(2*pi*n/N))
values = []
for n in range(N): values.append(0.5*circle[n])
for n in range(N): values.append(l.0*circle[n])
for n in range(N): values.append(2.0*circle[n])
# Add some random points:
for n in range(30):
values.append((random()-0.5)*20 + 1j*(random()-0.5)*20)
return values

values = generate_values()

def

def

feq(a, b, max_relative_error=le-12, max_absolute_error=1le-12):

nnn

Returns True <f a==b to the given relative and absolute errors, otherwise

False.

nmnn

# if the numbers are close enough (absolutely), then they are equal

if abs(a-b) < max_absolute_error:
return True

# if not, they can still be equal if their relative error s small

if abs(b) > abs(a):
relative_error

else:
relative_error = abs(a-b)/abs(a)

#print abs(a-b), relative_error

return relative_error <= max_relative_error

abs (a-b) /abs(b)

test_zerol(lhs, rhs):

nnn

Tests that a complex function f(x) of one complexr wariable is zero.
for x in values:

r = feq(lhs(x), rhs(x))

if not r:

print "x lhs(x) rhs(x)"
(continues on next page)
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(continued from previous page)

print x, lhs(x), rhs(x)
assert False

def test_zero2(lhs, rhs):

nmnn

Tests that a complex function f(z, y) of two complex wvariables ts zero.
mnimn
for x in values:
for y in values:
r = feq(lhs(x, y), rhs(x, y))
if not r:
print "x y lhs(x, y) rhs(x, y)"
print x, y, lhs(x, y), rhs(x, y)
assert False

def test_zero3(lhs, rhs):

mnmn

Tests that a complex function f(z, y, z) of three complez variables is zero.
nmnn
for x in values:
for y in values:
for z in values:
r = feq(lhs(x, y, z), rhs(x, y, 2z))
if not r:
print "x y z lhs(x, y, z) rhs(x, y, z)"
print x, y, z, lhs(x, y, z), rhs(x, y, 2)
assert False

from math import floor, pi
from cmath import sqrt, exp, log
I=1j

# Test the warious tdentities

test_zerol(lambda x: sqrt(x*+*2), lambda x: (-1)**floor((pi-2*arg(x))/(2*pi))*x)
test_zerol(lambda x: sqrt(exp(x)), lambda x: (-1)**floor((pi-x.imag)/(2*pi))*exp(x/2))
test_zerol(lambda x: log(exp(x)), lambda x: x+2*pi*I*floor((pi-x.imag)/(2*pi)))
test_zerol(lambda x: log(abs(exp(x))), lambda x: x.real)

test_zerol(lambda z: z, lambda z: abs(z)*exp(I*arg(z)))

test_zerol(lambda z: arg(exp(z)), lambda z: z.imag + 2*pi*floor((pi-z.imag)/(2*pi)))
test_zerol(lambda z: sqrt(z).conjugate(), lambda z: (-1)**floor((arg(z)+pi)/

< (2%pi))*sqrt(z.conjugate()))

test_zerol(lambda z: arg(z.conjugate()), lambda z: -arg(z) + 2xpixfloor((arg(z)+pi)/
< (2%pi)))

test_zero2(lambda a,b: exp(a)*+*b, lambda a,b: exp(a*b)*exp(2*pi*I*b*floor((pi-a.imag)/
—(2%pi))))

test_zero2(lambda x,a: log(x*+*a), lambda x,a: a*log(x)+2*pi*I*floor((pi-(a*log(x)).imag)/
< (2%pi)))

test_zero2(lambda a,b: log(a*b), lambda a,b: log(a)+log(b)+2*pi*I*floor((pi-arg(a)-
—arg(b))/(2xpi)))

test_zero2(lambda a,b: arg(a*b), lambda a,b: arg(a)+arg(b)+2*pi*floor((pi-arg(a)-arg(b))/
—(2%pi)))

(continues on next page)
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test_zero2(lambda x,y: sqrt(x*y), lambda x,y: sqrt(x)#*sqrt(y)*(-1)**floor((pi-arg(x)-
—arg(y))/(2xpi)))

test_zero3(lambda x,a,b: (x**a)**b, lambda x,a,b: x**(a*b)*exp(2*pi*I*b*floor((pi-

— (a*log(x)) .imag) /(2*pi))))

test_zero3(lambda x,y,a: (x*y)**a, lambda x,y,a: (x+**a)*(y+**a)*exp(2*pi*I*a*floor((pi-
| —arg(x)-arg(y))/(2*pi))))

test_complex_diff.py:

def arg(x):

nmnn

The argument function.
mnmn

from cmath import log
return log(x).imag

def generate_values():

nnn

Create values to test the function at.
mnmimn
from math import sin, cos, pi
from random import random
# Generate 3 circles in complex plane, with diameters 0.5, 1 and 2. We
# avoid special values like -1, +/- ¢, etc., because they typically send
the numerical values close to the branch cut, and numerical errors then
flip the sign, e.g.:
In [1]: sqrt((-0.57)%*2)
Out[1]: -0.55

In [2]: (-0.57)%%2
Out[2]: (-0.25-07)

HOWH O R R R R R W

In [3]: sqrt(-0.25)

#  Out[3]: 0.575

# Here [3] is the correct wvalue and [1] %s incorrect, but that happens due
# to the round off errors in [2] (the small negative imaginary part makes
# sqrt() return -0.55 instead of +0.57).

#
# For this reason, we chose N=7.
N=7

circle = []
for n in range(N): circle.append(cos(2*pi*n/N)+1j*sin(2*pi*n/N))
values = []
for n in range(N): values.append(0.5*circle[n])
for n in range(N): values.append(l.0*circle[n])
for n in range(N): values.append(2.0*circle[n])
# Add some random points:
for n in range(30):
values.append((random()-0.5)*20 + 1j*(random()-0.5)*20)
return values
values = generate_values()

(continues on next page)
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def feq(a, b, max_relative_error=le-12, max_absolute_error=1le-12):
nmnn
Returns True <f a==b to the given relative and absolute errors, otherwise
False.
nnn
# if the numbers are close enough (absolutely), then they are equal
if abs(a-b) < max_absolute_error:
return True
# if not, they can still be equal if their relative error is small
if abs(b) > abs(a):
relative_error = abs(a-b)/abs(b)
else:
relative_error = abs(a-b)/abs(a)
#print abs(a-b), relative_error
return relative_error <= max_relative_error
def test_zerol(lhs, rhs):
nmnn
Tests that a complex function f(xz) of one complexr wariable is zero.
nmnn
for x in values:
r = feq(lhs(x), rhs(x))
if not r:
print "x lhs(x) rhs(x)"
print x, lhs(x), rhs(x)
assert False
def test_zero2(lhs, rhs):
nnn
Tests that a complex function f(xz, y) of two complexr variables tis zero.
mnn
for x in values:
for y in values:
r = feq(lhs(x, y), rhs(x, y))
if not r:
print "x y lhs(x, y) rhs(x, y)"
print x, y, lhs(x, y), rhs(x, y)
assert False
def test_zero3(lhs, rhs):
nmnn
Tests that a complex function f(xz, y, z) of three complex variables is zero.
nmnn
for x in values:
for y in values:
for z in values:
r = feq(lhs(x, y, z), rhs(x, y, 2))
if not r:
print "x y z lhs(x, y, z) rhs(x, y, z)"
print x, y, z, lhs(x, y, z), rhs(x, y, z)
assert False
(continues on next page)
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(continued from previous page)

def diff(f, z0, theta, eps=1e-8):
h = eps*exp(I*theta)
return (£f(z0+h)-£f(z0)) / h

def diff2(dfdz, dfdconjz, z0, theta):
return dfdz(z0) + dfdconjz(z0)*exp(-2+xI*theta)

def test_zero(f, dfdz, dfdconjz, z0, theta, eps=1e-8):
assert feq(diff(f, z0, theta, eps), diff2(dfdz, dfdconjz, z0, theta),
max_relative_error=eps*le2, max_absolute_error=eps*le2)

from math import floor, pi
from cmath import sqrt, exp, log
I=1j

angles = [0, pi/7, pi/4, pi/2, 3*pi/4, pi]

for x in values:
for theta in angles:
test_zero(lambda x: abs(x), lambda x: x.conjugate()/(2*abs(x)),
lambda x: x/(2*abs(x)), x, theta)
test_zero(lambda x: log(x), lambda x: 1/x, lambda x: 0, x, theta)
test_zero(lambda x: log(exp(x-x.conjugate())), lambda x: 1,
lambda x: -1, x, theta)
test_zero(lambda x: sqrt(x*+*2), lambda x: sqrt(x*+*2)/x, lambda x: 0, x, theta)
test_zero(lambda x: sqrt(x**2), lambda x: x/sqrt(x**2), lambda x: O, x, theta)

3.3 Residue Theorem

The Residue Theorem says that a contour integral of an analytic function f over a closed curve v (loop) is
equal to the sum of residues Res,, f(z) of the function at all singularities zj inside the loop:

/f(z)dz = 2m’ZResZ:Zk f(2)
gl zk

Residue Res;, f(z) is defined as the contour integral around zy divided by 27i:

Res,—,, f(2) = 217”/_ _ f(z)dz

1

and it is equal to the coefficient of in the Laurent series of f(z) around the point zp, as can be easily

calculated: o
Resy—s, f(2) = L / f(z)dz = L / Z cn(z — 29)"dz =
2m 2m 2=
|z—z0|=¢€ |z—z0|=¢€
o0 1 N o0
= nzoo g / (z — 20)"dz = nzoo Cndn,—1 = C_1
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where we used the result of the following integral (we integrate over the curve z = 2z + ee’?, 0 < ¢ < 27, s0
dz = iee'?dyp):

27 41 21
1 1 ) . n )
[ Goaras= o [t —srietap = S [ enriia, -
|z—z0|=¢€ 0 0
n+1 ip(n+1) 2m
ezT[ezuTl)}o =0 forn# -1

= 5n,—1

2m
%fdcpzl forn=-1
0

3.3.1 Computation of Residues

One has to calculate the c_; coefficient in the Laurent series. One way to do that is to write f(z) as:

(z — z0)™

f(z) =

where H(z) is analytic in the vicinity of zg, e.g. f(z) has a pole of order m at zp. Then:

1 d™H(z)
(m—-1! dzm

Resy—z f(2) =co1 =

Z2=Zz0

in particular for m = 1:

Res,—, f(2) = H(zp) = lim (2 — 20) f(2)

zZ—r 20

for m = 2:

Res.—s, £(2) = H'(z0) = lim ~-[(z — 20)2/(2)

z—z0 AZ

f has a pole of order 1 at zg, g is analytic at zg:

Res:—, f(2)g(2) = lim (2 — 20) f(2)9(2) = g(20) lim (z — 20) f(2) = g(20) Resz=, f(2)

zZ—20 zZ—20

f(z0) =0, but f'(20) # 0 and g is analytic at zq:

ReSz:zo M _ . Z— 2

)~ 9@

2=z f(2) — f(20) B f'(20)

3.3.2 Useful Formulas

Jordan’s Lemma

For estimating integrals over semicircles  (z = Re®, 0 < ¢ < 7), we can use the following estimates:

/Qg(z)dz

m
< = f
< amgx\g(zﬂ or >0

< nRmax g(2)|

/ e g(z)dz
Q

(In the first case the integration path can be extended to the full circle if needed (0 < ¢ < 27), in the second
case the semicircle is the maximum path. Also if « < 0, we need to integrate over the lower semicircle.)
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These formulas can be used to make sure the integral over the semicircle goes to zero as R — oo. Intuitively
speaking, in the first case g(z) must vanish faster than & (e.g. #z is ok), in the second case it’s enough if
g(z) just goes to 0 (no matter how fast).

The estimates can be proved easily:

/Qg(z)dz

[ atreyinetsag) < ["latret)| mag < g2 [ = mgxla(o)
0 0 0

and

/eng(z)dz = ‘/ eiO‘Rewg(Rew)iRewdgo‘ <

Q 0

S/ e~ e g(Re'?)| Rdp < ngx\g(zﬂ/ e~oftsineqy <
0 0

™
< Zmaxg(2)|

where we use the following useful estimate for the integral (valid for « > 0):

fud —aR2 ﬂ/2
/7r e~ aBsineqy, < 2/2 e_O‘R%“"d@ Y ’ ﬂ: =
0 0 —CVR; 0
2 —aR ™ —oR T
= —_ ]_ = —_— ]_ — <« < —_
—aR% [e ] aR( € ) aR

Other

Sometimes it is useful to integrate over the arc z = 2o + €e’?, o < ¢ < g + «, and let € — 0 at the end. If
the function is analytic, the result is 0. If the function has a pole of order n > 1, the result is infinity, unless
it’s a full circle (in which case the result is 0). The remaining case is if the function has a pole of order one,
e.g. it can be written (H(z) is analytic at zp):

_ H(?)
o)==
Then:
o pota ip )
/ f(z)dz = (2) dz = / Meiewdgp =
Q Q% — %0 o 20 + €e*? — 2

Yot ) pota
= / H(zg + ee'?)idyp — H(zp)idy = iaH (29) = i Res,—, f(2)
©

0 %o

3.3.3 Complex Substitution

When substituting in integrals, as long as we just substitute for real functions, we use the regular substitution
theorem, e.g. * =y + 1 (f(z) can be a complex function):

| twae= [ s

if, on the other hand, we substitute for complex functions, e.g. = = iy:

/_ O:o fz)dz = /i:w f(iy)idy — L_ h £(iy)idy
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then the first two integrals in the left hand side are equal, however the integral on the right hand side is
over a different integration path and we need to use the Residue Theorem to relate those integrals, e.g. in
general the two integrals on the LHS and the integral on the RHS are not equal. However the idea is that
the integral after the substitution (and changing the limits, e.g. the integration path) is easier to evaluate,
so the substitution guides us which integration path to choose for the Residue Theorem.

3.4 Fourier Transform

The 1D Fourier transform is:

=
"\ﬁ
|||

/ —ZLULE dx

f +1w’r dw

88

P [fw)] = ;

To show that it works:

F'F[f(2)] / {/ f(x)e e dx] eTT dw = % /Z {/(: fla)e dx'} et dw =
= [W f(x") {21# /Z e“"u“"/)dw] dz’ = /Z f(@)d(z —2')da' = f(x)

If x is time (unit [s]), then w is angular frequency (unit [rad/s]). One can express the Fourier transform in
terms of ordinary frequency v (unit [1/s] = [Hz]) by substituting w = 27v:

f((.(.)) - f(QTl'I/ E / f *27\'7,1/1 dx

(E) — /_ f/(V)e+27riuw dV

Both transformations are equivalent and only differ in whether we express the transform in terms of w or v,

the conversion being given by f(w) = f(27v) = f'(v). Third frequently used convention that is however not
equivalent to the above is:

—ikx dz

o
/ +ik:c dk

_1[f(w)] = f(X) = W /_Oo f(w)e“""‘x B

With obvious analogs for other conventions and dimensions.

88

ﬁ\ ﬂ\

The 3D Fourier transform is:

\H
k‘*«z

Ff(x)
(3.4.1)

The sign convention in the exponentials e**** is arbitrary, one can as well flip the sign of the direct and

inverse transforms. In particular, one often uses both sign conventions in the same equation. Consider a
spacetime plane-wave e?*'* = ¢/(“t=kX) Then we obtain (using plus sign convention in the e?**# exponential

for the direct transformation):
F[f E / f zk:cd4x_/ f z(wt kx)d4

-1 = f(r) = 1 £ —ik-x 4
PSR = f () @ﬂg[wfw> '

7z(wt k-x) d4k
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Finally, the equation k-2 = wt — k - x depends on the metric signature, in this case diag(1, -1, -1, —1). For
a signature diag(—1,1,1,1) we would get k- = —wt + k- x.

Unlike the normalization convention, where one has to be very careful, the sign convention in Fourier trans-
form is not a problem, one just has to remember to flip the sign for the inverse transform.

3.4.1 Shift Theorem

The Fourier transform of a shifted function, in 3D:

FU@+bH:/mf&+bk””*fm

= /00 f(x)e_iw'(x_b) Bz =
= WP /°° f(x)e_iw'x A3z =
= 9B F(x)

3.4.2 Scaling

For a > 0:

:/oo flaz)e ™% dzx =
/ flye " evdy =

= ~FIf) (2)

a

3.4.3 Derivative

The Fourier transform of a derivative, in 3D:

Fof] = [ (@050)e 0 =
— e @)™~ [ se0neex
— [ e

7zwja: dS
—(—iw;) /_ f(x)e >3y =
= iw; F[f(x)].

An alternative derivation is to start from:
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and differentiate both sides:

0, (x) = <271r)s /_Oo Flw)dret >
0 f(x) = (271T)3 [m iw; fw)e T 3w

from which:

F[0i f(x)] = iw; f(w) = iw; Ff(x)] .

3.4.4 Convolution

The convolution of two functions f(x) and g(x) is defined as:

f(x)*g(zx) = /_Oo fW)g(x —y)dy

The Fourier transform of a convolution is:

FlfGa) @) = [ [ ftgte — ) dye o =
= [ st s sy =
[ [ swe s ay -

= F[f(2)](w) Flg(z)](w)

Fourier transform of a function multiplication is:

Fifg) = FL F[FI) P [Floll | = 5= FIF~[FIf] » Flglll = 5~ FIf]  Flg]

and for the inverse transform:

F7Ufgl = FTUFIFTf]] FIF'gl] | = FTHEF T f] = F~ gl]) = F~'[f]« F~'[g]
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3.4.5 Radial Fourier Transform

As a special case when the function f(x) = f(r) is spherically symmetric, we introduce spherical coordinates
such that the z-axis is along the w vector and calculate (we use r = |x| and w = |w)|):

F[f( E / f —ux)dex_/ f —zwxd?)x_
/ dr/ a6 [ A6 f(r)em o0 2 sing =
= 27r/ dr/ dff(r)e i reost 2 gin g =
0 0
= 477/ f(r)sinc(wr) r?dr =
0
= 47r/ flr) ST 2y =
0

wr

47 .
= — rsin(wr) f(r)dr,

w Jo

where we used:

T —iwrcosf _: iwru e e —em
e sin #df = e du = | — = =
0 1 iwr |y wr
sin(wr)

=2

= 2si =25 .
o sinc(wr) = 25 (wr)

So the transform is real and spherically symmetric, since the result only depends on w.
Similarly, for the inverse transform:

1

)] = f(x)

w)eT W g3y =

(2m)? /Z Flw)etivo= gy =
- (2717)3 [ O;f
S [ wsin
1

1
= m/o wsin(wr) f(w) dw

o) wsin(wr) f(w) dw =

3.4.6 Examples

Rectangular Function

The rectangular function is defined as:

The Fourier transform is:
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Dirichlet Kernel

The Dirichlet kernel Dy (z) is a partial sum of complex exponentials:

[

(1=
—~
&
B
—~
—~
3
_|_
N
~—
S~—
|
<=
B
—~
—~
3
I
NI
S~—
8
~
~—

n=1
- sin (f) +
~ 2rsin (%) 2

n=1

)
= 27‘('8111'1() <51H<2> +2ZCOS (nz) sin (2)) =

)

)

)

From the definition, it is a periodic function with period 2.

Integral of it is equal to one:

™ T N
Dy(z)dz = /_ % (1 +2 Z cos(nx)) dz =

- n=1
=14 - Z/ cos(nx) =1

also

Dy(z—y)dy =1

—T

The Dirichlet kernel Dy (z) converges towards a train of delta functions (called Dirac comb, see the equation
(3.4.6.2) in the next section):

') N
1 . 1
o g e :A}lm — E einT — hm Dy(z) =
v —00 7T

n=-—oo =

N—oo 2T sm

(3.4.6.1)

n=—oo
Let us do the crucial step in more details using distributions:

/_00 lim sn (V) ) (N+3)2) p(x)dr =

oo N—oco  27sin (%)

) i - /ﬂ sin ((N + 1) (:17+27m))90(x+27m)dx:

L N=oo ) o 27 sin (£272)
= > »(2mn) =
/ Z d(x — 2mn)p(z) dz

n=—oo
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Where we used the fact that

. i sin((N—k%) (as—|—27m)) B
Lvlgnoo /_,r 2 sin (2210 plz +2mn) dfﬂ] —p(2mn) =

_ [ Jim / " Di(w + 27n) o (w + 27n) dm] ~ p(2mn) =

N —o0 -
s

= lim Dy (z + 27mn) (p(x 4+ 2mn) — p(27n)) dox =

N—oo o

oz +2mn) — (2mn) "

N—oo J_p  2msin (Z£212)

n((N+3)(z+2mn)) doe =

=0

Dirac Comb (Shah) Function

The Dirac comb function, also called the Shah function, is defined as:

i §(z —n)
It has the following scaling property: 7
n_z_of 0z — ) n_z_w(s( a(z-2)) :ni;'a (+=2)
and for a = + with L > 0:
111 (%) - i Lé(z — nL)

From which a train of delta functions L distance apart is expressed using a Dirac comb as:

i 0(x —nlL) = %H_I (%)

e (3.4.6.2)
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Using (3.4.6.2) we can now calculate the Fourier transform:

FI(z)](w) = M(w) = /OO I (x)e ™" dr =

/ Z o0(x —n)e T g =

n=—oo

Z/ S(x —n)e “rdr =
i efiwn:

n=—oo

=27 i O(w —2mn) =

()
27

For the inverse Fourier transform we get (using the previous result):

(27w)

Pl =7 | (G2 @) = rFme)en) 10 = 7 | F g ()] @ ] @) -

The following Fourier transform is also useful:

Z 5:r—nL1 )zF[éIH(i)} (w) = F[II(z)](Lw) =

n=—oo

Periodic Summation

The convolution f(x = [ fly —y)dy of a Dirac comb III(x) and an arbitrary function f(z) is
called a periodic summatlon

:/_O;f(y) (@—y dy_/ e Zéz— — n)dy

n=—oo

me—n wa—l—n

n=—oo n=—oo

because the result is a periodic function with period 1:

(f*I)(x+1) = Z flx+n+1)= Z flz+m) = (f =xI)(x)

n=-—oo m=—oo
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Poisson Summation Formula

The Poisson summation formula:

> semy=g S f) (3.4.6.3)

= / () - FIII(w))(x) de =

= [ P mw) do =

zlﬂ/_if(w). 3 6w —n)dw =

n=—oo

An alternative derivation using Fourier series (see next sections):

Z flx+2mn) = g(x Z 271_/ Ye Mdy e =

-3 = / S fly+ 2mmpe iy e
n=-—o00 & T m=—o0
A
@ =—00
o0 1 [o'e)
=Y o[ fweayene
n=-—o0 TJ—co
S 1z inx
:n;w%f(”)e

And setting © = 0 we get the Poisson summation formula (3.4.6.3).
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The last derivation can actually also be done using a Dirac comb function as follows:

3 Stz = 1@ ST () =
el 2]
| Flr@l) [ m ()| }
= P Flf(@))(w) W) () =

Fourier Series

Consider a periodic function f(x) with a period L and let us calculate the Fourier transform of it. We define
a new function fo(x) = f(z) in the [0, L] interval and zero otherwise. Then:

F@) = folw) s 710 (T ) = 32 fole+ Ln)

Apply Fourier transform:

FUH@)@) = F |folo) s 7111 (3)] ) -

L L
— Flfo(@)]() F [2111 (2) ] = Flp@le m  £) =
HZ_:OOF ol <2m) 2%6 (w - 22“) N (3.4.6.4)
Z / f(z)em e/ by 15 (w— 272") _

s 5 o)

where f,, are called Fourier coefficients:

1t :
_ Z/ f(l,)efﬁﬂ'nx/de
0

We can see that the Fourier transform is zero for w # %T” For w = 2”—" it is equal to a delta function times

a 27 multiple of a Fourier series coefficient. The delta functions structure is given by the period L of the
function f(x). All the information that is stored in the answer is inside the f,, coefficients, so those are the
only ones that we need to calculate and store.

The function f(x) is calculated from the f,, coefficients by applying the inverse Fourier transform to the final
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result of (3.4.6.4) as follows:

f(@) = FF[f(2)](w)](z) =

o i 7.0 (w _ 22”)1 (@) =

1 [ > 2\ i
:%[MQW Z fn5(wL>e dw =

n=—oo
o0
— i2mnx/L
= > fae?m

n=—oo

= p-1

(3.4.6.5)

The expansion (3.4.6.5) is called a Fourier series. It is given by the Fourier coefficients f,,. The equation
(3.4.6.4) provides the relation between a Fourier transform and a Fourier series.

For example for f(z) = sin(x), the only nonzero Fourier coefficients for L = 27 are f_1 = % and f; = f%.
The Fourier transform then is:

Flsin(z)](w) = 2m (f16(w — (=1)) + fid(w = 1)) =

- (;6(w 1)) - %5@ - 1)) — ind(w + 1) — imd(w — 1)

For f(z) = 1 the only nonzero Fourier coefficient is fo = 1, the Fourier transform then is:
F[1)(w) =27 fo0(w — 0) = 27 (w)
For f(x) = 3% the only nonzero Fourier coefficient for L = 27 is f3 = 1, the Fourier transform then is:
F[e3™](w) = 27 f30(w — 3) = 270 (w — 3)

For f(z) =52 §(x — 2mn) the Fourier coefficients for L = 27 are all equal to f,, = 5= and the Fourier

n=—oo
transform is:

Flf(@)w) =21 Y fadlw—-n)= > &w—n)

n—=—oo n—=—oo

Note: if we start from (3.4.6.5), for simplicity on an interval [—m,7]:

fl@)y= > foe™ (3.4.6.6)

n=—oo

To calculate the Fourier coefficients f,,, we can just multiply both sides of (3.4.6.6) by e~“"* and integrate:

f(x)efimzdz :/ Z fneinzefimmdl,:

T n=—oco

= Z fn /Tr ei(n_nl)xdx =

n=-—oo

= i fn27r5nm:

n=—o0
=27 fm
SO

fo= 2 7 f@e e (3.4.6.7)

—T
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Convergence of Fourier Series

To see what conditions the function f(z) must satisfy in order for the Fourier series to converge towards it,
we can do the following analysis. Substituting (3.4.6.7) into (3.4.6.6) yields:

—inyd nT _
-y, or ye

n=—oo

N
T )

— ] in(z—y) _
NS5 /_7r or 2 ¢ fy)dy
n=—N

= lim Dy(x —y)f(y)dy

—T

We can now calculate the difference between the Fourier series and the function value:

nm/ Dy(z — y)f(y)dy — f(z) =

N—o0
= Jim [ Dn(e—y)(f(y) - f(x) dy =
s Wsin((N+l)( —y)) B
ngnoo — 27 sin (£52) (f(y) = f(2)) dy

= lim " Msin

N—oo J_. 2mwsin (w;y)

T —w) — f(x)

sin ((N + %) u) du =

Novoo Jo o 27 sin (%)
x4
:J\}Enm - h(u)sin (N + %) u)du =0

where h(u) is finite and well behaved at the origin v = 0:

o = e =L L5 o

The integral is zero because the more and more oscillating sin function cancels the contributions of positive
and negative parts of the integrand. This can be proven explicitly as follows using the fact that h(z), h'(x)
and cos(Nz) is bounded as N — oo:

b
lim h(x) sin(Nz)dx =

N —o0

1
= lim N ([—h(m cos(Nz)] / h'(z)cos(Nx)d ) =0

N—o0

The conditions that we used are that the function h(u) can be integrated, which is satisfied if e.g. f(z) has
derivatives. These conditions can be loosened in various ways.
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3.5 Fourier Transform of a Periodic Function (e.g. in a Crystal)

The Fourier transform in (3.4.1) requires the function f(x) to be decaying fast enough in order to converge.
In an infinite crystal, on the other hand, the function f(x) is typically periodic (and thus not decaying):

f(x + T(nla na, n3)) = f(X)

where T'(n) = T(ny,ne,n3) = n1a; + nsas + ngag are the crystal translation vectors. As such, the Fourier
transform in (3.4.1) is infinite, but it can be made finite by the following definition:

FIf(x)] = f(w) = ~— / F)e X ddy =

CryStal Cl‘ybtal

/ f X + T )) —iW-(x+T(n)) d3£L' _

crystdl Qcen
_ / Fx)em @ O Tm) g3, —
chystal Qcell (3.5.1)
_ 1 —zw T(n) / f —zw X d3£L' —
chystal Qcenl
_ . f —zw X d3l' _
chystal Ce /

Qeell

77,(4) X d3
chll / f

cell

This assumes that the wave vector w = G is equal to the reciprocal space vectors G, defined by
e (3.5.2)

because then > e~ Tm) = Z 1 = Nga.

For w # G, the expression S e T(n) — () vanishes, because the sum is bounded, and so dividing

chy:.tal
by the (infinite) crystal volume makes the expression vanish, and so f (w) = 0. In other words, the only
non-zero Fourier components f(w) of any periodic function f(x) are those with w = G. Equivalently said, if
the Fourier components of a given function are non-zero for some w # G, then the function is not periodic.

Summary: the only difference between the crystal Fourier transform (3.5.1) and the usual Fourier transform
(3.4.1) is the Qcrystar factor. The Fourier transform (3.5.1) of a periodic function is nonzero only for w = G
and is equal to:

Flfx)] =7

/ f(x)e >3y (3.5.3)

cell Qeell

Note: the fact that the sum is bounded follows from:

0o N

N
ikn . ikn .
=1 =1 142 k =
coskN — cosk(N + 1) 2
=| lim
N oo 1—cosk |1 — cos k|

Because |cos kN — cos k(N +1)| < 2. So for k # 27 (i.e. the denominator is non-zero), the sum is bounded
(to be precise, the infinite sum does not converge, because it oscillates, but the point is that the partial sum
is always bounded). For k = 27, the sum is infinite, because e??™" = 1.
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Since we divided the direct Fourier transform in (3.4.1) by Qcrystal to obtain (3.5.1), we need to multiply the
inverse transform in (3.4.1) by Qcrystal:

) = 00 = T [ fwperex e -

_ cellN ell / f +1w X d3w _

s [ e s
G o (3.5.4)
e+iG-x f(G + w)e-l-iw‘x d3w _

Qpz

>
—_ r €+iG~x w)etx g8, —
=Y/ [ swperea
_ Z f(G)e—HG‘x
G

where we used the fact that:

Nccll
Qpz

f(G+w) = f(G)d(w).

Alternatively, if one is only interested to show that the inverse transformation works, one can directly
substitute the direct formula (3.5.3) into (3.5.4) as follows:

()] = 3 f(@eiox =

’ .
_ ( / f 77,G~x d3$/> 6+zG-x _
Cell Qecell

_ / fX 2Gxx)d3/:

cell

Qeell

- / f(X/)(27T)3 el 5(x —x) APz’ =
chll chll

2m)3
=f(x),

—~

where we used the fact that:

Z e = 216 (x) .

n=—oo

Thus we have shown that F~![f(G)] = f(x).

3.5.1 One Dimension (Fourier Series)

In one dimension with a periodic function f(z + L) = f(x), the volume of a unit cell is Qcen = L and the
reciprocal space vectors G are defined using e’“F = 1 from which G}, = 2%1{: The equation (3.5.3) then
becomes:

Flf(z)] = f(Gy) = e = / f(x)e G dg = [Z f(x)e " @mk/L) qg (3.5.1.1)
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This is exactly the definition of a Fourier series (c; are the Fourier coefficients). The inverse transform
follows from (3.5.4):

o0

fl@)= > f(Ge™ = " cpetCrhe/) (3.5.1.2)

k=—o0 k=—o0

3.6 Discrete Fourier Transform

In the discrete case, we only have a finite number N of reciprocal points:

k=0,1,...,N/2—1,—-N/2,—=N/2+1,...,—1 if N is even
k=0,1,...,(N—1)/2,—(N —1)/2,~(N = 1)/2+1,...,—1 if N is odd

E.g. for:

N=8 weget k=0,1,2,3,—4,-3,-2, —1
N=9 weget k=0,1,2,3,4,—4,—3,—-2, —1

The real space function f(z) is sampled at points z,, = %n forn = —=N/2,...,N/2 — 1 and the equation
(3.5.1.1) becomes:

L
1 2 .
cp = 7/2 f(a:)efz(Qﬂkm/L) dr =
L4

N/2-1

1 . L

_ 1 -+ —i(2wkzy /L) _

A 7 D flea)e N
n=—N/2

N/2-1

Z f(In)6727ri%n

n=—N/2

li L
= m —

The equation (3.5.1.2) becomes:

S
f(xn) — Z ckei(Q‘n'kzn/L) —
k=—o00
N/2—1
— lim Z Ckei(Zﬂ'k:wn/L) _

N—o00
k=—N/2

N/2-1
. -k
= lim g cRe2TINT

N—o00
k=—N/2

Using the fact

L L
xn+L:Nn+L:N(n+N):xn+N,

40 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

we can express the periodicity f(z, + L) = f(zn) as f(@nyn) = f(2n). The sums can then be rearranged:

1 N/2—-1
. 2miLn
wngm S st
n=—N/2
-1 N/2—1
ik
= Jm oy | X e S e
n=—N/2 n=0
N—-1 N/2-1
Comik (n_ _onik
— ]\}E)HOON Z f(xan)e 2mi (n—N) + Z f(l'n)e 2N
n=N/2 n=0
=
_ —2misn
= Jim 5D S(ea)e? T
n=0
and if we drop the limit and consider a finite IV only:
N/2—1
f(xn) — Z Ck627ri%n _
k=—N/2
-1 N/2—1
_ Z Ckezm%n + Z CkBQTri%n
k=—N/2 k=0
N-1 N/2—1
_ Z c;@,NeQ”(k?vN)” + Z cke%z%n _
k=N/2 k=0
N-1
— cke2ﬂi%n
k=0
Summary, the direct transform:
=
— —2mikn
k=1 D flan)e ¥ (3.6.1)
n=0
and inverse transform:
N-1
Pk
flan) = ) cpe®™wn, (3.6.2)
k=0

with 2, = £n. In the limit N — oo, the equation (3.6.1) becomes (3.5.1.1) and equation (3.6.2) becomes
(3.5.1.2) and as we increase N, the discrete Fourier transform numerically converges towards the Fourier
series results.

The % factor is sometimes moved from the direct to the inverse transform, but then the correspondence
with Fourier series is broken (one has to divide and multiply by N appropriately to recover it).
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3.7 Fast Fourier Transform (FFT)

We write the discrete Fourier transform (3.6.1) using a notation more commonly used for FFTs:

N-1
X(k) =Y an)W§"
n=0

where:
WN _ e—QTrZ/N

Similarly, the inverse discrete Fourier transform (3.6.2) becomes:
N-1

1 —kn
3(n) = X (k)W
k=0
3.7.1 Decimation In Frequency (DIF)
We start with radix-4:
N1
X(k)=) zn)Wk =
n=0
41 2N 1 N1 N
= Z x(n)WE + x(n)WE + Z x(n)WE + Z r(n)Wh =
n=0 n=4 n=2% n==2F
X1
X N n 2N nt 2N N nt 3N
- Z [x(”)WJIffn"‘m <”+4> W]I;( ) + <n+4> W]lf[( ) +x<n+3’4> W]lf[( 4 )] =
n=0
-1
X N INY 2y N\ __stx
= Z [az(n)+x <n+4> Wy +x (n+4> WN,Zk +z <n+34> VVN]21 ] Wk =
n=0
X1
5 N 2N N
=Y [x(n) + <n+ 4) (=) +a <n + 4> (-D)F +a (n + 34> zk] wrn
n=0

Now we subdivide the X (k) sequence into 4 subsequences:

N
N_q

X(4k) =) [w(n) +x (n + JZ> (—i)* + = (n + 25) (-1)* + o (n + ?’f) i4k] Wikn —

n=0

n=0
Similarly:

il N 2N 3N
S > L O R S R e

il N 2N 3N
_ _ o <) o4 2nyxrkn
X(4k+2)—nz_0[x(n) x<n+4>+x<n+ 4> sc(n—i— 4)]WNW]4V

il N 2N 3N
X(4k+ 3) = T;) |:SC(7’L) +ix (n+ 4> — X (n+ 4) —1x (n+ 4):| W]%,nW%n
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This has a form of a DFT of length %:

41
kn
X(4k) = 7;) Fo(n)Wy
41
X(4k+1)= Y Fy(n)W§"
n=0
41
X(4k+2)= )" Fy(n)W4
n=0
41
kn
X(4k +3) = ;O F3(n)W¥
where
Fy(n) x(n)—HL‘(n-i—%)—l—x(n—i—%)-ﬁ-x(n—i—%}\)
Fi(n) | _ [2(n) iz (n+ ) —x(n+28) +iz(n+°F) | _
Fy(n) zn)—z(n+4)+z(n+2) —z(n+ X
Fs(n) z(n) +iz (n+ %) —z (n+ ) —iz (n+ 2)
1 1 1 1 x(n)
= -1 z(n+ %)
1 -1 1 -1 x(n+%)
1 ¢+ -1 —i x (n + %)
This coefficient matrix for various radix-n schemes can be generated by:
>>> from sympy import exp, I, pi, pprint, Matrix
>>>n = 2
>>> Matrix(n, n, lambda i, j: exp(-2*pi*I*i*j/mn))
[1 1]
[1 -1]
>>>n =3
>>> Matrix(n, n, lambda i, j: exp(-2*pi*I*(i*j % n)/n))
[1, 1, 1]
[1, exp(-2%I*pi/3), exp(-4*I*pi/3)]
[1, exp(-4xI*pi/3), exp(-2%Ixpi/3)]
>>>n = 4
>>> Matrix(n, n, lambda i, j: exp(-2*pixI*i*j/n))
[1 1 1 1]
[1-I -1 I
[1 -1 1 -1]
[T T -1-1]
>>>n =5
>>> Matrix(n, n, lambda i, j: exp(-2*pi*I*(i*j % n)/n))
[1, 1, 1, 1, 1]
[1, exp(-2xI*pi/5), exp(-4*Ixpi/5), exp(-6*I*pi/5), exp(-8*I*pi/5)]
[1, exp(-4xIxpi/5), exp(-8*Ixpi/5), exp(-2*I*pi/5), exp(-6*I*pi/5)]
[1, exp(-6xI*pi/5), exp(-2%Ixpi/5), exp(-8*I*pi/5), exp(-4*I*pi/5)]
[1, exp(-8xI*pi/5), exp(-6*I*pi/5), exp(-4*I*pi/5), exp(-2%I*pi/5)]
>>> n = 8
>>> Matrix(n, n, lambda i, j: exp(-2%pi*I*(i*j % n)/n))
[1, iy, i, i1, i, i1, i, 1]

(continues on next page)
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(continued from previous page)

[1, exp(-I*pi/4), -I, exp(-3*Ixpi/4), -1, exp(-5*I*pi/4), I, exp(-7T*I*pi/4)]
[1, =L, =i, I, 1, =L, =ilg 1]
[1, exp(-3*I*pi/4), I, exp(-I*pi/4), -1, exp(-7*Ixpi/4), -I, exp(-5*I*pi/4)]
[1, =i, i, =iy, i, =i, iy -1]
[1, exp(-5*I*pi/4), -I, exp(-7*I*pi/4), -1, exp(-I*pi/4), I, exp(-3*I*pi/4)]
[1, I, -1, -I, 1, I, -1, -I]
[1, exp(-7*I*pi/4), I, exp(-5xI*pi/4), -1, exp(-3*Ixpi/4), -I, exp (-I*pi/4)]

One then recursively solves the smaller problems. This approach is used for example in FFTPACK. There
are also other approaches how to decompose the DFT, used in various other libraries.

3.8 Laplace Transform

Laplace transform of f(x) is

x)] = /OOO f@)e " da

o+i00
W =g [ Fe)eds = 3 Res (F(s)e)

The contour integration is over the vertical line o +iw and o is chosen large enough so that all residues are to
the left of the line (that’s because the Laplace transform f(s) is only defined for s larger than the residues,
so we have to integrate in this range as well). It can be shown that the integral over the left semicircle goes
to zero:

3
/ elTHEET (5 4 Re'?)iRe™dyp| <

jus
2

| eatoas

3w

2 Rei®
<Rmman”/ e | dp =
Tﬂ'
= Rmax lg(2) / erftcoseqy, =
Z
= Rmax|g / ””Rsm“”dgo =

ax (2]

5% in the complex plane.

so the complex integral is equal to the sum of all residues of f (s)e

To show that it works:

o+ioco 1 o+i0o o) ,
L—lL —sx sx - = 1\ ,—sx / sx —
[f(z)] = 37 /J - {/ flx dx] e’ ds omi ) [/0 f(zhe dx] e’ ds

/ flz [271_1 /(:41-:0 es(=") ds] dz’ = /000 f(@)o(x —2')da' = f(x)

where we used:

1 e (=) qs = 1 T es@=) qg = 1 - elotie)@=a") iy =
210 J oo 2T J o ioo 2mi
ea(:pfw')

=5 / @) quy = @) § (g — o) = §(x — )

—0o0
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and it can be derived from the Fourier transform by transforming a function U(x):

0% for 3 >
Uls) = flx)e orz >0
0 forz <0

and making a substitution s = o + iw:

Lif@) = fo) = FU@) = 0) = [ UGa) *def/ Fla)e *Mdr/ Fl)e™ da
LY [f(9)] = f(z) = Ux)e”® = FH{U(w)]e™ = FH[f(s)]e” = F~*[f(0 +iw)e”™ ]

o+i00
—/ fo +iw)e™ ™" dw ! f(s)e** ds = ZReSSZSO(f(s)e“)

S0

27” o—100

Where the bar (f) means the Laplace transform and tilde () means the Fourier transform.

3.9 Hilbert Transform

The Hilbert transform is:

HIf(2)](t) = f(t) = p.v.% FF(t) = %m _°° tfii) .

By applying the Fourier transform to both sides of the equation, we get:

FIHI@I0)() = F [pv  10)] () = F || @FL010) = ~isimt) 170

7t

So the Hilbert transform can be calculated using a Fourier transform as:

H[f)(t) = F~" [~isign(w) F[f](w)] (t)

The inverse Hilbert transform can then be calculated by inverting:

F [isign(w)F[f(2)](w)] (t) = HIf](t) = £(t)

—isign(w)F[f(2)(w) = F[f )] (w)

Flf(@)](w) = isign(w) F[f(#)](w)

flw) = F~! [isign(w)Ff(H)](w)] (x)

so we get:

HY[f(t)(x) = f(z) = F~* [isign(w) F[f(D)](w)] (z) =
= —F! [=isign(@) F[f(#)](@)] (z) =
= ~H[J(H)](x) =
= 7%p v.[ J(j)t dt

From this it also follows:

or

In other words, by applying the Hilbert transform twice, the result is the negative of a function.
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3.10 Periodic Functions

A function f(x) is periodic with period T
fle+T) = f(z)
Then you can shift the integration limits by the period T
b b b+T
/ f(z)dx :/ flz+T)dx :/ fla)dx
a a a+T
If you integrate f(x) from 0 to T', you can shift z in f(z) by any constant «:
T
/ flz+ a)dx =
0

T+a
- / f(x)da =
-/ s + / " s + / T e =

T

— [t | " e+ | staae =
= /OT f(x)dx

3.11 Polar Coordinates

Polar coordinates (radial, azimuth) (r, ¢) are defined by

r = 7rcos¢

7 sin ¢

3.11.1 Example

When evaluating integrals of the type:

27
l(z,y) = \/(x—rcosq§)2+(y—rsin¢)2d¢
0

we write x and y using polar coordinates:

x =1 cos ¢’

y=r"sin¢’
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and then use the 27 periodicity of cosz:

27
l(x,y) = \/(3:—rcosqS)Q—i—(y—rsin(;S)?qu:
0

27
= Va2 +y2 + 12— 2r(zcos ¢ + ysing) de =
0

2m

= /12 4 12 — 2177 (cos ¢/ cos ¢ + sin ¢’ sin @) d¢p =
0

2w

= V12 + 12 — 211 cos(¢p — ¢') dop =
0

2m
= V2 + 12 — 27 cos g dp =
0

comparing to:

2m
10(0,y) = V2 + 12 = 2rysin ¢ do
0

we can see that because the integral is symmetric, we can just set x = 0 and then replace y — r’. The above
method does everything algebraically, but you can use this symmetry argument to remember what to do, or
even skip the calculation if you are sure that you didn’t make a mistake in the “symmetry argument”.

3.12 Spherical Coordinates

Spherical coordinates radial (p), zenith (), azimuth (¢):

T = psinfcos ¢
y = psinfsin ¢ (3.12.1)

z = pcosf

Note: this meaning of (6, ¢) is mostly used in the USA and in many books. In Europe people usually use
different symbols, like (¢, 8), (¢, ¢) and others.

The motivation is to first write x and y using polar coordinates:

T = Pgy COS @
Y = Pay sin ¢
and then write z and the projection p,, of p onto the plane x — y using polar coordinates:
z = pcosf
Pzy = psind
so by combining these two we get:
T = Pay COS P = psin b cos ¢

Y = Pay Sin ¢ = psinfsin ¢
z = pcosf
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3.12.1 Example |

To transform differential operators such as % into spherical coordinates, we make use of the chain rule:

0 _po w0 00
or  dxdp 0xdi Oz do

where r, 8 and ¢ are functions of z, y, z to be expressed by inverting (3.12.1):

p(r,y,2) = V2% +y? + 22

z
/Z.Q +y2 +22

¢(z,y,z) = arctan Yy
T

0(x,y, z) = arccos

At the end, the derivatives are expressed using p, 0, ¢ again. For example

@_a /l‘2+y2+22_

or or
_ x —
Va2 +y? + 22
inf
_ psinlcosd i eoso
p

Finally we obtain

278.n9608¢2+00s0005¢27 sing 9
ar ap 0 00  psinf 0¢
0 . ., 0 cosfsing 0 cos¢p 0
Y sino < 9 o
gy ~SmOsmnog T g e 96

Yy
2 *cosﬂé — sinﬂg
0z ap p 00

(3.12.1.1)

These expressions can be combined to obtain more complicated objects such as Laplacian (in spherical
coordinates). However straightforward this approach is, it is also rather cumbersome; an alternative is
discussed in the Spherical Coordinates section of differential geometry (where it is shown, that the coefficients

in (3.12.1.1) are simply the matrix elements of the inverse Jacobian).

3.12.2 Example Il

When evaluating integrals of the type:

™ 2m
l(z,y,2) :/ d9/ dp/(z — rsin @ cos )2 + (y — rsin@sin )2 + (z — rcosh)? sin
0 0

we write x and y using polar coordinates:

T = pyycos @’
Y = Paysin ¢
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and simplify:

T 2m
l(x,y,z):/ d9/ dp/(x — rsinfcos ¢)2 + (y — rsinfsing)2 + (z — rcosh)2 sinh =
0 0

™ 2
:/ d9/ dpr/x2 + y2 + 22 + 12 — 2r(xsinf cos ¢ + ysinfsin ¢ + z cosf) sinh =
0 0

T 2
= / d9/ dd)\/pmy + 22 + 12 — 27 (pgy cos @' SIn O cOS P + pay sin @' sinfsin @ + zcos ) sinfh =
0 0

™ 2m
= / d9/ d(b\/pwy—I—z2 + 172 — 2r(pgy cos(¢ — ¢')sinf + zcosh) sinf =
0 0

™ 2
= / d0/ d(ﬁ\/pxy + 22 +1r2 — 21 (pgy cos psin @ + z cos b)) sin 6
0 0

comparing to:

T 27
1(0,0,2) = / d9/ d¢\/22 + 712 —2rzcosf sinf =
0 0

we can see that because the integral is symmetric, we can just set x = 0, y = 0 and then replace z — p.

3.13 Argument function, atan2

Argument function arg(z) is any ¢ such that
2 =re®

Obviously arg(z) is unique up to any integer multiple of 27. By taking the principal value of the arg(z)
function, e.g. fixing arg(z) to the interval (—m, 7] (so that the branch cut is on the negative z-axis, as usual),
we get the Arg(z) function:

—nm<Argz<m

then arg z = Arg z+ 2nn, where n = 0, £1,+2,.... We can then use the following formula to easily calculate
Argz for any z = x + iy (except x =y = 0, i.e. z =0, where it is not defined):

Arg( ) {7‘(‘ y=0;2 <0
gl +uy) = 2 atan —%—— otherwise
vV r24+y?+z
Finally we define atan 2(y, x) as:
‘ T y=0;2<0;
atan2(y, ) = Arg(z +1y) = 2 atan ﬁ otherwise
z2+y24x

The angle ¢ = atan 2(y, ) is the angle of the point (z,y) on the unit circle (assuming the usual conventions),
and it works for all quadrants (¢ = atan() only works for the first and fourth quadrant, where atan(%) =
atan2(y,z), but in the second and third qudrant, atan(¥) gives the wrong angles, while atan2(y,z) gives
the correct angles). So in particular:

0
atan2(0,1) = 2 atan ————— =10
(0,1) V1240241

atan2(0,—1) ==

1 U

atan2(1,0) =2 atan ———— =2 atan1 = —
(1.0 V0241240 2

-1 0

atan2(—1,0) =2 atan ——— = —2 atan1 = ——
(=L.0) V02 +12+0 2
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This convention (atan 2(y,z)) is used for example in Python, C or Fortran. Some people might interchange

x with y in the definition (i.e. atan2(x,y) = Arg(y + ix)), but it is
The following useful relations hold:

Y

xr

tan atan 2(y, x)

sin atan 2(y, x)

cosatan2(y,x) =

SRS

atan 2(ky, kz) = atan 2(y, )

atan2(sinz,cosx) = x + 27 {

atan2(—y,z) = —atan2(y,z) + 27 {

atan2(y,z) +

not very comion.

except t =y =0

except t =y =0

for z #0
for k>0

|
|

T —X

s

27
0 T
— atan2(y,r) = ———
8yaan (y, ) R
9 y
% atan 2(y, ‘r) = _W
We now prove them. The following works for all x,y except for x = y = 0:
sin y=0;z <0
sinatan 2(y,r) = . . =
(v, ) sin [ 2 atan ——%—— otherwise
z2+4y2+x
{O y=0;z <0
- L otherwise -
V2 4y?
y —_0 )
_ T y=0;2 <0 _ y
\/mélTyz otherwise Va2 + 2
cos T y=0;2<0;
cosatan2(y,x) = =
() cos <2 atan h) otherwise
z24y? 4
{—1 y=0;2z <0;
- z otherwise -
1y p— . .
I v y=0;2 <0 _ z
= otherwise VT2 42

Tangent is infinite for £7, which corresponds to x = 0, so the following works for all x # 0:

tan

tan (2 atan y)
24y2

{

tan atan 2(y, z) =

o

{

8 <

]l 8 [

y=0;2<0;
otherwise
y=0;2<0;
otherwise

y=0;2<0;

otherwise

]|
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Finally:

us T =T;

atan2(sinz, cos ) = {2 atan sinz otherwise
\/cos2 z+sin? z4cos ¢

T T =
2 atan g s otherwise
~+cosx

T T =T T™T—x
= . =z+27 L J
{2 atan (tan %) otherwise 2

In the above, we used the following double angle formulas:

. 2tanx
sin2r = ————
14 tan“zx
1—tan®z
COS20 = —————5—
1+ tan“zx

2tanx
tan2x = ———
1 —tan®z
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to simplify the following expressions:

2tan atan ——4——
[ 2 2
sin (2 atan L > = vy e

2+ 1+tan2atanﬁ
QW 2y< x2—|—y2—|—x)
1+<xzfyz+x)2 ( x2+y2+x>2+y2
) (e
—x2+y2+$\/mz\/x2+y2(\/x2+y2+x) =
Y

1 — tan? atan —2%——

cos (2 atan > i
2 Yy

2?2 +y?+a 1 + tan? atan v

1_< x2+y +w) a:2+y2+x)2—y2
1+< x2+y +z) $2+y2+x)2+y2
x( 2 + 92 —|—x> x( x2—|—y2+x)
*x2+y2+ﬂf\/mz\/z2+y2(\/xz+y2+z) =
x

a2+ y?
2 tan atan 7\/$+
tan (2 atan Y > = Ty

2 42 1 —tan? v
4y’ +zx 1 — tan® atan Tt
2 e 2 (Va?+ 7 + )
= S = 2 _
R (VaZ+ P +a) -2
x2+y2+ax
] ( 2 4+ y2 + 3:) y
x ( x2+y?+ x) €z
Finally, for all £ > 0 we get:
2(ky, kz) = Arg(k ky) {W y =0z <O0;
atan 2(ky, kx) = Arg(kx + iky) = o . _
2 atan ORI otherwise
m y=0;2 <0 ‘
~ )2 atan ﬁ otherwise Arg(x +iy) = atan 2(y, z)
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The symmetry property can be proven by:

- y=0;2 <O0;
atan2(—y,x) = 2 atan ——%——  otherwise -
224(~y)%+z
- y =02 <O0;

- (2 atan 27”> otherwise -
x2+y?+a
atan 2(y, z) + WJ

= —atan2(y,x) + 27 {
27

To prove the derivatives, we do:

0 0

— atan 2(y,x) = 2— atan Y =— v 5

Ay Ay ?+y?+z Y
0 0
— atan2(y, z) = 2— atan Y S
ox Ox x2+y2+x x2+y2

Code:

>>> from sympy import atan, sqrt, var

>>> var("x y")

(x, )

>>> (2*atan(y/(sqrt (x**2+y**2)+x)) .diff (y)) .simplify ()
x/ (x*%2 + y**2)

>>> (2xatan(y/(sqrt (x**2+y**2)+x)) .diff (x)) .simplify ()
-y/ (x**2 + y**2)

An example of an application:

A B
Asinx + Bceosz = \/ A? + B? ( sinz + cosm) =
VA? + B2 VA? + B2
=+ A%?+ B2 (cosdsinz +sindcosx) =/ A% + B2sin(z 4 6) =
= v A% 4+ B?sin(z + atan 2(B, A))
where

B A
VAZ £ B2 \/A? + B2

0 = atan2 < > = atan2(B, A)

Another application

. . T T T
atan 2(cos x, —sinx) = atan 2 (sm (:17 + 5) ,COS (x + 5)) =z+ 5

3.14 Multiple Argument Formulas

3.14.1 sin(a x)

Systematic way to derive all multiple argument formulas is to use the following relation:

sin(ax) = Uy—1(cos x) sinx
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where U, (x) are the Chebyshev polynomials of the second kind, first few are:

U_s(z) = —2z
U_s(z)=-1
U_i(z)=0

1

CV2VE+I

Up(z) =1
20 +1

N N

Ui(z) =2z

Us(x) =42 — 1

Us(z) = 82° — 4

Us(z) = 162* — 1222 + 1

Us(z) = 322° — 3223 + 62

Us(z) = 642° — 802" + 2422 — 1

Code:

>>> from sympy import chebyshevu, var

>>> var("x")

>>> for i in range(7): print "U_J/d(x) = /s" % (i, chebyshevu(i, x))
U 0(x) =1

U_1(x) = 2*x

U_2(x) = -1 + 4xx*%x2

U_3(x) = -4xx + 8%x*%*3

U_4(x) = 1 - 12%x*x2 + 16%x*k*4

U_5(x) = 6*x — 32xx**3 + 32*x*%*5

U_6(x) = -1 + 24xxxx2 — 80*x**4 + B4*xx**6

One can then use this to calculate:
sin(—2xz) = U_s(cosx)sinx = —2coszsinx
sin(—z) = U_z(coszx)sinx = —sinz

sin0 =U_q(cosz)sinz =0

sinz V1——cos?z ~ V1—cosx

V2+v/cosx + 1 - V2+v/cosx + 1 N V2

sinz = Up(cosz)sinz = sinx

. 3z , (2cosx+1)sinz  (2cosz +1)v/1 —cos2z  (2cosz + 1)y/1 —cosx
sin — = Uy (cosz)sinz = = -

2 3 V2 /cosx + 1 V2 /cosx + 1 V2

sin2z = Uy (cosx)sinx = 2coszsinx

sing =U_1(cosz)sinz =

sin3x = Uy(cosx)sinz = (4cos’x — 1) sinz

Code:

>>> from sympy import chebyshevu, var, sin, cos

>>> var("x")

>>> for n in range(l, 7): print "sin(/d*x) = /s" 7 (n, chebyshevu(n-1, cos(x))*sin(x))
sin(1*x) = sin(x)

(continues on next page)
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sin(2*x) = 2*cos(x)*sin(x)

sin(3*x) = -(1 - 4*cos(x)**2)*sin(x)

sin(4*xx) = (-4*cos(x) + 8*cos(x)**3)*sin(x)

sin(5*x) = (1 - 12*cos(x)**2 + 16%*cos(x)**4)*sin(x)
sin(6*x) = (6*cos(x) - 32*xcos(x)**3 + 32xcos(x)**5)*sin(x)

(continued from previous page)

3.14.2 cos(a x)

Similarly as above, we use:

cos(ax) = T,(cosx)

where T, (x) are the Chebyshev polynomials of the first kind, first few are:

Code:

T()(Qj‘) =1
Nz

Ti(z)=x
Ty(r) = =DV
2 V2
To(z) =222 — 1
Ts(z) = 4a® — 3z
Ty(x) = 8z* — 822 +1
Ts(z) = 162° — 202° + 5z
To(z) = 3225 — 482* 4+ 1822 — 1

-

>>> from sympy import chebyshevt, var
>>> Var(”x")

>>> for i in range(7): print "T_Jd(x) = " % (i, chebyshevt(i, x))
T O0(x) =1

T 1(x) = x

T 2(x) = -1 + 2%xx**2

T_3(x) = -3*%x + 4*xx**3

T 4(x) = 1 - 8xx**2 + 8*x*%*4

T_5(x) = 5*x — 20*x**3 + 16*x*%*5

\T_6(x) = -1 + 18*%x**2 — 48xx**4 + 32xx**6

One can then use this to calculate:

cos0 = Tp(cosz) =1

v1+cosx
V2

cosz = Ty(cosz) = cosx

3z (2cosx — 1)y/1+ coszx
cos — = Ts(cosz) =

J V2

cos 2z = Th(cosx) = 2cos’x — 1

cos 3z = Ty(cosx) = 4cos® x — 3cosx

3.14.

Multiple Argument Formulas
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Code:

>>> from sympy import chebyshevt, var, cos

>>> var("x")

>>> for n in range(7): print "cos(/d*x) = J/s" 7, (n, chebyshevt(n, cos(x)))
cos(0xx) = 1

cos(1*x) = cos(x)

cos(2xx) = -1 + 2*cos(x)**2

cos(3*x) = -3*cos(x) + 4*xcos(x)**3

cos(4xx) = 1 - 8*cos(x)**2 + 8*cos(x)*x4

cos(5*x) = b*cos(x) - 20*cos(x)**3 + 16*cos(x)**5

cos(Bxx) = -1 + 18*cos(x)**2 - 48*cos(x)**4 + 32*cos(x)**6

3.15 Delta Function
Delta function 6(z) is defined such that this relation holds:

/f 8(z — t)dz = f(t) (3.15.1)

No such function exists, but one can find many sequences “converging” to a delta function:

O[11_)120 0a(z) = 6(2) (3.15.2)
more precisely:
lim [ f(z dx—/f ) lim 04 (x)dz = £(0) (3.15.3)
a—00 a—o0

one example of such a sequence is:

da(x) = W—lx sin(ax)

It’s clear that (3.15.3) holds for any well behaved function f(z). Some mathematicians like to say that it’s
incorrect to use such a notation when in fact the integral (3.15.1) doesn’t “exist”, but we will not follow their
approach, because it is not important if something “exists” or not, but rather if it is clear what we mean by
our notation: (3.15.1) is a shorthand for (3.15.3) and (3.15.2) gets a mathematically rigorous meaning when
you integrate both sides and use (3.15.1) to arrive at (3.15.3). Thus one uses the relations (3.15.1), (3.15.2),
(3.15.3) to derive all properties of the delta function.

Let’s give an example. Let T be the unit vector in 3D and we can label it using spherical coordinates
t =1(0,¢). We can also express it in cartesian coordinates as ¥(6, ¢) = (cos ¢sin 8, sin ¢ sin 6, cos 6).

f@@) = /5(1‘" — ) f(¢) df (3.15.4)
Expressing f(f) = f(0, ¢) as a function of 6§ and ¢ we have

[0, ¢") = /5(9 —0)5(¢ — ¢')f(0. ) d0do (3.15.5)
Expressing (3.15.4) in spherical coordinates we get

= /5(f — ) £(0, ¢) sin 0 dde
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and comparing to (3.15.5) we finally get

5 — ) = #05(9 — 006 — &)

Sin

In exactly the same manner we get

S(r—r')=0(F — ¢ )‘S(ppf)

See also (3.17.4.1) for an example of how to deal with more complex expressions involving the delta function
like 6%(z).

When integrating over finite interval, this formula is very useful:
/ F@)( — )dz = FB0b — )0t — a)

in other words, the integral vanishes unless a < ¢ < b. In the limit a - —oo and b — oo we get:

O(b—t) — O(co —t) = 1
O(t — a) — 0(t — (—c0)) = 0(t + 00) = 1

Another integral that converges to a delta function is:

[~ I inwl
o e“?dr = lim —/ e“tdy = lim S = (w)
™ — 00

L—oo 2T J_p, L—oo  TW

3.16 Distributions

Some mathematicians like to use distributions and a mathematical notation for that, which I think is making
things less clear, but nevertheless it’s important to understand it too, so the notation is explained in this
section, but I discourage to use it — I suggest to only use the physical notation as explained below. The
math notation below is put into quotation marks, so that it’s not confused with the physical notation.

The distribution is a functional and each function f(z) can be identified with a distribution "T;” that it
generates using this definition (¢(x) is a test function):

"Ty(¢(x))” = / f@)p(@)dz = 7 (@) = "(f(x), o))"

besides that, one can also define distributions that can’t be identified with regular functions, one example is
a delta distribution (Dirac delta function):

"B(6(a))" = 6(0) = [ 3(a)s

The last integral is not used in mathematics, in physics on the other hand, the first expressions ("6(¢(x))”)
is not used, so 0(z) always means that you have to integrate it, as explained in the previous section, so
it behaves like a regular function (except that such a function doesn’t exist and the precise mathematical
meaning is only after you integrate it, or through the identification above with distributions).

One then defines common operations via acting on the generating function, then observes the pattern and
defines it for all distributions. For example differentiation:

S0 = Tple) = [ fode = [ g =150y
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So:
d
niT - ”_T /Y
1) (")
Multiplication:
9T (p)” = "Tes ()" = / gfedx =Ty (g¢)”
s0:

9T (p)” ="T(g¢)”

Fourier transform:

"FTy(p)” ="Tri(p)” =/F(f)<pdx=

:/ U e“”f(k:)dk] o(x)dz = /f(k) U e“”go(:v)dx] dk = /f(ac) U e“”cp(k)dk] de =

— [ £F(o)e = 15(Po)”
S0:
FT(e) = T(Fe)

But as you can see, the notation is just making things more complex, since it’s enough to just work with
the integrals and forget about the rest. One can then even omit the integrals, with the understanding that
they are implicit.

Some more examples:
/5(35 —xg)p(z)dx = /(5 x + xo)dx = p(xg) = 75(p(x + 20))”
Proof of §(—x) =

(@)
et == [ swet-nay= [ s@)e(-a)dn = "se(-0) = o(0) =300 = [ o
0

Proof of zé(x) =
/ w8(x)p(x)dx = "8(xp(x))” = 0~ p(0) = 0

Proof of §(cz) = %:

o (2o _50) _8lete), _ [8@)
/5096 z)dz = |/6 dx— 6< i ) = ] = ] / Ic] p(z)d

To prove that lim, o -= sin(Lz) = d(z) we do the following calculation:

[ jim L sin(La)eto)da] - o(0) =

oo

1 (o]
= lim — h(z)sin(Lz)dz =0
where the function h(x) = M is bounded and h(0) = lim,_,o M = ¢’(0) is finite since the test
function ¢(x) is infinitely differentiable. From the Riemann-Lebesgue lemma, the integral then converges
towards zero as L — oo.
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3.17 Variations and Functional Derivatives

Variations and functional derivatives are generalization of differentials and partial derivatives to functionals.
It is important to master this subject just like regular differentials/derivatives in calculus.

3.17.1 Functions of One Variable

Let’s first review differentials and derivatives of functions of one variable. We will use an approach that
directly generalizes to multivariable functions and functionals. The differential df is defined as:

flz+eh) - f(z)
3

df = lim

e—0

=ah

Last equality follows from the fact, that the limit is a linear function of h:

f(x +eh) — f(x)

lim T Col ) e A G N P A C ) e A CO RS
e—0 € n—0 (%) n—0 n
Where we used the substitution n = eh. We define the derivative % as:
v,
de
To get a formula for %, we set h = 1 and get:
o fere )= @) f@te) - f()
dx e—0 € e—0 15

Using the formulas above we get an equivalent expression for the differential:

d o fat e mh) — fateh)|
£f(17 + €h) e=0 N 7175% n e=0 a
_ oy S ) — (@)
n—0 n
o St eh) — f(a)
e—0 £

So we get a general formula (the analogy of which we will use later):

df = %f(:wsh) g JEEEN 2T

e—0 e—0 IS

The variable x can be treated as a function (a very simple one):

z = g(x)
So we define dz as:
d
de=dg=Th=h
dz
As such, dz can have two meanings: either do = h = x — ¢ (a finite change in the variable z) or a differential
(if = depends on another variable, thanks to the chain rule everything will work). With this understanding,

for all calculations, we only need the following two formulas — the definition of the differential (using a
limit):

df = lim flx+edx) — f(x)

e—0 e
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and the definition of the derivative (using the differential):

_df
df = Tode

where dz is either a differential or a finite change in the variable x.

If for example = = p(y) is a function of y then in the above dz is a differential and we get:

df df dz
df = —dx = ——d
/ dz . dzr dy Y

Thanks to the chain rule, this can also be written as:

df
df = —d
f ay Y
and so the notation is consistent.
3.17.2 Functions of several variables
Let’s have x = (21, 2,...,2y). The function f(x) assigns a number to each x. We define a differential of

f in the direction of h as:

oy SN - Fx)
e—0 £

d
df = $f(x+sh)

e=0

The last equality follows from the fact, that ;—6 f(x+e¢h) ’E

=0
derivative % of f with respect to x; as the i-th component of the vector a:

is a linear function of h. We define the partial

0]
a= —f,ﬁ,...,ﬁ =Vf
83?1 81)2 83?]\]
This also gives a formula for computing 57{2: we set h; = d;;h; and
of d
=a;=a-h= — 0,0,...,1,...,0 =
o —ai=arh= L flxcte )|
— lim fler,xe,... i+ e,...,xn) — f(z1,22,. .., T4y .o, TN)
e—0 3

The usual way to define partial derivatives is to use the last formula as the definition, but here this formula is
a consequence of our definition in terms of the components of a. Every variable can be treated as a function
(very simple one):

€Tr; = g($1, e ,(EN) = 5ijxj
and so we define
dxi = dg = d(éijazj) == hz

and thus we write h; = dz; and h = dx and

dfzzij@h%::(Vf)~dx

So dx has two meanings — it’s either h = x — xq (a finite change in the independent variable x) or a
differential, depending on the context. The above is a detailed explanation why things are defined the way
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they are and what the exact meaning is. With this understanding, the only things that are actually needed
for any calculations are the following — the definition of a differential:

df = if(x+a€dx)

de c—0

Ounly a regular derivative (defined in the previous section) is needed for this definition. The definition of a
partial derivative (and a gradient):

df
dei

df = “Lda; = (Vf) - dx

And finally the understanding that dx means either h = x — x¢ or a differential depending on the context.
That’s all there is to it.

3.17.3 Functionals

Let’s now define functional derivatives and variations. Functional F[f] assigns a number to each function
f(z). The variation is defined as

SF[f] = %F[ersh] =l F[de il V1 /a(x)h(x)dx
We define % as
_GF
=55
This also gives a formula for computing %: we set h(y) = §(z — y) and
oF d
S5 = o) = [ awie )y = L) ey = .
o FI) + e — )] - FlTW)
e—=0 3

Sometimes the functional derivative is defined using the last formula, here this formula just follows from our
definition. Every function can be treated as a functional (although a very simple one):

f(z) = Glf] = / F()8( — y)dy

and so we define

o =46Lf) = LOUE +eh@]| = LU +ehm)|  =h
thus we write h = § f and
SF[f] = (%5 (z)dz

so df have two meanings — it’s either h(z) = f(z) — fo(x) (a finite change in the function f) or a variation of
a functional, depending on the context. It is completely analogous to dx. Let’s summarize the only formulas
needed in actual calculations — the definition of a variation (using a regular derivative):

SF[f] = d%F[f +edf] (3.17.3.2)

e=0
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the definition of the functional derivative:

FIf) = [ 550t @)

and the understanding that §f means either h(x) = f(x) — fo(z) or a variation. The last equation is the

best way to calculate functional derivative — apply § variation, until you get the integral into the form
f ( )5 f(x)dz and then you read off the functional derivative from the expression in the parentheses.

The correspondence between the finite and infinite dimensional case can be summarized using a functional
F[n], function n(x) of continuous parameter x (which can be a scalar or a vector) and its discretized version
n; = n(x;), together with a function F(n):

1 &= X
n, < nx)
dF =0 <= J§F=0
oF OF
on; 0 = on(x) 0

In other words, the basic difference is that the continuous parameter x has been replaced with a discrete
parameter i. Then the function n(x) becomes a vector of values n;, variation becomes a differential and
functional derivative becomes a partial derivative. To minimize a functional, one must search for zero
functional derivative, while in the discrete case one searches for zero partial derivatives (gradient).

We now extend the d-variation notation to any any function g which contains the function f(z) being varied,
you just need to replace f by f + edf and apply % to the whole g, for example (here g = 9,,¢ and f = ¢):

d
60,0 = d§6’h(¢ + £66)

d
=0y dfg(fb +¢ed¢) = 0u0¢

e=0 =0

As such, the F' in (3.17.3.2) can be either a functional or any expression that contains the function f. This
notation allows us a very convenient computation, as shown in the following examples.

First, when computing a variation of some integral, we can interchange ¢ and |:

ﬂﬂ:/K@ﬂmm

OF = 6/K(x)f(;v)da: = %/K(x)(f—i—ah)dx

In the expression 6(K (z)f(x)) we must understand from the context if we are treating it as a functional of
f or K. In our case it’s a functional of f, so we have §(K f) = Kof.
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The second very important note is when taking variation of expression like:
5 [ o) ), =
= [ s stpandts =

:/d%(f(h)+5§f(t1))(f(t2)+€5f(t2)) dt1dtz =

e=0

- / (GF(E))F(ts) + F(t1) (3 (t2))dbrdts =

- / (SF(E)F(t) + F(t) (5£(t1))dtrdts =
:2/f(t2)5f(t1)dt1dt2

then when f is replaced by f + €if, one has to keep track of the independent variable, so f(t1) gets
replaced by f(t1) + €df(t1) and f(t2) gets replaced by f(t2) + €df(t2). Thus the two variations df(¢1) and
0f(to) are different (independent). If there is only one indepenent variable, one can simply write Jf as
it is clear what the independent variable is. This is analogous to using differentials, e.g. d(f(z)f(y)) =
(df(@)fy) + f(x)df(y) = f'(2)dxf(y) + f(z)f'(y)dy, where one has to keep track of the independent
variable as well for each df.

Another useful formula is differentiation of a functional F[¢(6)] where the function (#) depends on a
parameter 6:

dF[p0)] _ d d dy(0) d dy(0) SF[y] dy(0)
do e FWOF Il = G |00 +e—ggm O ) Tal Ot e R
where we used the definition of a variation and a functional derivative with dy = %Ef):
OF = iF[l/} + ed1)] _ [ —dd
" de T st

3.17.4 Examples

Some of these examples show how to use the delta function definition of the functional derivative in equation
(3.17.3.1). However, the simplest way is to calculate variation first and then read off the functional derivative
from the result, as explained above.

1)
5f()/ at' (¢ /dt ) ettt =l
5 [ atrgte) = 5 / s+ 0£ )9l = [ aerear
e=0
‘;];((i)) - U ves—t))| = ae=r)

6f(t)f(t2) _ d
= —(f(t ot —t t 6(t—t
S = o) e~ t))(F (k) + 201t 12)
The next example shows that when taking variation of an expression containing the function f of different
independent variables, one has to keep track of these variables in the variations:

=0(t —t1) f(t2) + f(t1)0(t — t2)

e=0

= (0f(t2)) f(t2) + f(£2)(6f (t2))

e=0

(1) (12)) = SL(T(0) + 07 (1)) (F(02) + 07 (12)
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/dt1dt2K(t1,t2)f(t1)f t2 /dtldtg (tl,tg)(wg})({)(m =

1 ([anrose + [aerse) - [ares)

51 /dtldtQK(tl,t2)f(tl)f(t2 /dtldtQK(t]_,t2)(6f(t1)f(t2))
=} [ Atk (0, 2) (B (0)) F(t2) + £(02) 67 t2)) =
_ / dtrdtz K (11, 12) f(t2) (3 (t1))

The last equality follows from K(t1,t2) = K(t2,t1) (any antisymmetrical part of a K would not contribute
to the symmetrical integration).

Another example is the derivation of Euler-Lagrange equations for the Lagrangian density £ =
ﬁ(npﬁunp’x”)i

oL oL
026525/£d4x“:/5£d4x“: ——=n, + ———6(dyn,) d*zH =

877;) 77p 8(8u77p) ( np)

oL oL

—6n, + =———0,(6n,) d*a
anp 77p 8(8,, ,r)p) ( 779)
oL

oL oL
— 0, =0y | = |6 d4x”+/al,<5 )d‘&wz
o, " (a@np)) K o0 "
oL oL
= — =0, on, d*zt
/ [877/7 (8(81,77,)))} T
We can also write it using a functional derivative (?TS as:

55“_8( oL )
onp,  Omp " \0(0ump)

L 31‘ x:i T r_ Sx
5f(t)/f()d dE/(f()Jreé( 1)

- /S(f(x) +eb(e—0)20(x — t)de| = /3f2(a;)§(a; ~ #)dz = 3f2(1)

One might think that the above calculation is incorrect, because §%(x — t) is undefined. In case of such
problems the above notation automatically implies working with some sequence 6, (z) — d(z) (for example
Sa(z) = = sin(ax)) and taking the limit o — oo:

Another example:

e=0

e=0

570 /f3 dz = lim di/(f(x)—kaéa(ﬂc—t))gdx

= lim [ 3(f(2) + eda(x —1))%60(x — t)da

a—r 00

= lim [ 3f%(x)0n(x —t)dz =

a— o0
e=0

_ / 372(x) lim_da(x — t)do = / 312(2)0(x — t)da = 372(1) (3.17.4.1)

As you can see, we got the same result, with the same rigor, but using an obfuscating notation. That’s why
such obvious manipulations with §, are tacitly implied. However, the best method is to first calculate the

variation:
5/f3(z)d;1: = /6f3(z)d;z: = /3f2(x)5f(x)dx
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and immediately read off the functional derivative:

6 3 . 2
57 [ P =37%0)

Another example with a metric as a function of coordinates g,, = g, (z*):

= d (7 +e(0x7))

d
09 = 09 (at) = d—ggw,(x“ + e(0xt)) =
e=0

ao’.gul/ - (5350)309”1/
e=0

And an example of varying with respect to a metric:

(5\/| det g, | = \/\ det g,.,| d log \/\ det g, | = %\/| det g, | dlog | det g, |

= 1./l det g, |6 Trlog g, = 31/| det guu| Trdlog g

= % | det guw| Tr g"" 09 = % | det g, | 9" 0G0 =

_% | det QW‘ 909"

Another example (varying energy functional):

drg 1/ 03 NP3 1 3 NP
dp 3 \4n(—p) drp? — 3p \4n(-p)) — 3p

O0E[p] = 4mé 7 j_pr ridr =

adp ap 2
=4 ors dr =
W/(b—&-rs CFTRE r>r r
adp ap Ts 9
:4 — _— =
71-/ <b+rs (b+rs)? < 3p> 5p>7" @
a 1 ar
=4 - ° 2
77/ (b—l—rs + 3(b+rs)2> (6p)r=dr

SE[p] . a 1 ars
op = dmr b+rs+§(b—|—7’s)2

Bl = [ MO0 g

2 |I'/ — I.//|

Another example (Hartree energy):

we calculate the variation first:
n(rn(r") 5 , .
SE[n] = %5/ 7|r’ v dBr'd3y” =

JEL R AT

|I‘/ _ I.//|

N[

:/ n(r/) (6n(r”))d37°/d37“”:

‘r/ — r//|

:/ n(r’) (6n(r))d3r'd*r

v —r'|

3.17. Variations and Functional Derivatives
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so the functional derivative is:

SBn] [ n() s,
s = | e

Another example (functional with gradients):

Fln] = / h(n)@d%

2
SFn] = / 5 (h(n)'v:') FE.
2 , _ 2 ,
:/%|Vn| 5n+ h(n) <2nVn Von — |Vn| 5n) Pr =
dn n

the variation is:

2

n
2 .
/<dh h(n)) [Vn| 5n+2h(n)vn V&nd?,r:
dn n n n
2
= / (dh - h(n)> Mén -2V <h(n)vn> on dr =
dn n n n

2 2 2 2
= / (dh - h(n)> [Vn® on—2 <thn + h(n)v n_ h(n) [V ) on d®r =
dn n n n

dn n n 2

_ / Kh(n) _ dh) Val® 2h(n)V2"] sn dPr

n dn n n

from which we read off the functional derivative:

OF[n] _ (h(n) - dh) |Vnf? V2n

on(r) n 2h(n)7

n dn

3.18 Dirac Notation

The Dirac notation allows a very compact and powerful way of writing equations that describe a function

expansion into a basis, both discrete (e.g. a Fourier series expansion) and continuous (e.

g. a Fourier

transform) and related things. The notation is designed so that it is very easy to remember and it just

guides you to write the correct equation.

Let’s have a function f(z). We define

(xf) = [fl=)
@'f) = f@@)
('|x) = (' —x)

B

S~

"
o
S
I
=

The following equation

then becomes
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and thus we can interpret |f) as a vector, |x) as a basis and (x|f) as the coefficients in the basis expansion:

ﬁznuw=/uﬂﬂmu»=/uwnﬂm

That’s all there is to it. Take the above rules as the operational definition of the Dirac notation. It’s like with
the delta function - written alone it doesn’t have any meaning, but there are clear and non-ambiguous rules
to convert any expression with § to an expression which even mathematicians understand (i.e. integrating,
applying test functions and using other relations to get rid of all § symbols in the expression — but the result
is usually much more complicated than the original formula). It’s the same with the ket |f): written alone
it doesn’t have any meaning, but you can always use the above rules to get an expression that make sense to
everyone (i.e. attaching any bra to the left and rewriting all brackets (a|b) with their equivalent expressions)
— but it will be more complex and harder to remember and — that is important — less general.

Now, let’s look at the spherical harmonics:

Yim (£) = (£[lm)

/ \dr—/| #d0o =1

§(¢ — 1) = (&%)

on the unit sphere, we have

thus

/0 " /0 Vi (0, 0) Vi (0, 6) sin 6.6 dp = / (W' |£) (§]im) A = (U |Im)
and from (3.30.1) we get
('m/|lm) = Sy o1/
now

2}% O (0,0)) = (#[lm) (Im]#)

from (3.30.3) we get

so we have

so |lm) forms an orthonormal basis. Any function defined on the sphere f(#) can be written using this basis:

F@E) = (®1F) =D (®lim) (Im]| f) = Zmnﬁm

lm

where

ﬁm=WMﬁ=/ﬁmm@qu=/l
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If we have a function f(r) in 3D, we can write it as a function of p and ¥ and expand only with respect to
the variable f:

In Dirac notation we are doing the following: we decompose the space into the angular and radial part

) =[8) @ [p) = |£) |p)
and write

f(r) = (xlf) = & {plf) = ZYzm ) (Im| {plf)
where

(ml(p\f) = [ ) 6 ol) a0 = [,

Let’s calculate {(p|p’)

SO

We must stress that |lm) only acts in the |#) space (not the |p) space) which means that

(e[lm) = (&| {pllm) = (#|im) (p| = Yim (F) (p|

and V' [lm) leaves V |p) intact. Similarly,
> lim) (im] =1
m

is a unity in the |f) space only (i.e. on the unit sphere).
Let’s rewrite the equation (3.30.4):

47
20+ 1

> (Blim) (Iml#') =

m

(&)

Using the completeness relation (3.29.1):

Z % (2| P) (Pi|x) = (2|)

l

2l+1
> 1Py = —(pl=1
l

we can now derive a very important formula true for every function f(#-#):

2
FE) = (610 = 3 6 #1R) 2 (Rl = 3 e ey B iy =
l Im
= (#ltm) fy (Im|#')

ilm
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where

2 2 gl 2ot
5 :(2l8—;1><ﬂf>:(218—;1)/_1 (P)|z) <g;|f>d:c:(21;;1)/_lﬂ(x)f(w)dx

or written explicitly

e’} l

FEE) =D Vi ®) i () (3.18.1)

=0 m=—1

3.19 Homogeneous Functions (Euler’s Theorem)

A function of several variables f(x1,xa,...) = f(x;) is homogeneous of degree k if

FOm) = X f(ay)

By differentiating with respect to A:

9f(Ax) k-1
i = kA i
5 f(w)
and setting A = 1 we get the so called Euler equation:
of(z;
7228 k)

in 3D this can also be written as:

x- V(%) = kf(x)

3.19.1 Example 1

The function f(x,y,z) = £ is homogeneous of degree 1, because:

AT Ay Ty
Az, Ay, Az) = =2 =\
FOw, Ay, Az) = == ~ = A(,y,2)
and the Euler equation is:
of ~of  of _
x@w +y8y +Zaz =/
or
y , @ Ty\ _ wy
ol e () =7

Which is true.
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3.19.2 Example 2

The function V(r) = —Z is homogeneous of degree -1, because:
A
VOr)=——=X"1v
)=+ (1)

and the Euler equation is:

or

Which is true.

3.20 Green Functions

Green functions are an excellent tool for working with a solution to any ODE or PDE. In this text we explain
how it works and then show how one can calculate them using FEM.

3.20.1 Introduction
Let’s put any ODE or PDE in the form:
Lu(x) = f(x) (3.20.1.1)

Here L is a differential operator and x can have any dimension, e.g. 1D (ODE), 2D, 3D or more (PDE).
Then we can express the solution as

u(z) =L f(z) = /G(x,x’)f(:c')dm’ (3.20.1.2)
where G(z,z') is a Green function, that needs to satisfy the equation:
LG(z,z') = 6(x — 2') (3.20.1.3)

Remember, that L acts on « only, so we can check, that (3.20.1.2) indeed solves the PDE (3.20.1.1):

Lu(x) = L/G(z,x’)f(x’)dx’ = /LG(as,x')f(z’)dx' = /5(1: — ') f(z')dz" = f(x)

3.20.2 Boundary Conditions

The equation (3.20.1.3) doesn’t determine the Green function uniquely, because one can add to it any solution
of the homogeneous equation Lu(z) = 0. We can use this freedom to solve (3.20.1.3) for any boundary
condition. So we prescribe a boundary condition and find the Green function (by solving (3.20.1.3)) that
satisfies the boundary condition. It can be shown, that u(z) determined from (3.20.1.2) then also needs to
satisfy the same boundary condition.
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3.20.3 Symmetry

We write the equation for Green functions at two different points x; and xs:
LG(z,21) = 6(x — 21)
LG(z,z2) = §(z — x2)
and multiply the first equation by G(z, z3), second by G(z, z1):
G(z,x9)LG(x,21) = §(
G(z,21)LG(x,29) = §(
substract them and integrate over z:

G(z,22) LG (2, 21) — G(x,21)LG(x,29) = §(x — 21)G(z, 22) — 0(x — x2)G(x, 1)
/(G(m,xg)LG(x,xl) — G(z,21)LG(z,x9)) da = / (0(z — 21)G(z,22) — 6(x — 22)G(x,21)) dz

x—x1)G(x, x2)

x —x2)G(x,21)

/(G(CL‘, 22)LG(z,21) — Gz, 1) LG (2, 22)) dx = G(x1,22) — G(z2,21)
Assuming that the operator L is Hermitean, we get:
/((LG(x,xg))G(x,zl) — G(z,21)LG(z,x2)) dox = G(z1,22) — G(x2,21)
0=G(z1,22) — G(z2,21)

So the Green function is symmetric for Hermitean operators L.

3.20.4 Examples

Poisson Equation in 1D

Poisson equation:

d2
- u(a) = f(@)

We calculate the Green function using the Fourier transform:

82 ’ /
f@G(x,x )=6(x — )
L 2@ ) , eikx'
_(Z ) ( y & ) - \/ﬂ

é b eikw’
( 733)_ mkz

G(z,2') = —i(z—2')sign(z —2') = —3(z —2")2H(z —2') — 1) = H(z — 2')(2' —2) + 1 (x — 2’)
Check:

2 Gla,a') = ba —o/)(a’ —a) + o —a) (1) + = ~H(z — ') + }
9? , ,
@G(Iyl’ )= —d(x —a")

Then:
u(z) = /G(:z:, ') f(z')da = / (H(z —2")(2' — z) + 3(z — 2')) f(2')da’

The green function can also be written using . = min(z,2’) and x> = max(x,2’):

G,z )=H(x—2) (2 —z)+ 3(z —2') = 3(v< —x>)
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Radial Poisson Equation
Let’s write r~ and r- using the Heaviside step function:

for r >’
T>max(r,r'){r orreT =H(r—rYr+H@ —r)y' =

7 for r < r’

=H(r—rYyr+Q—H@r—r)r'=H@r—r"Yr—r")+7r

and:

7 for r > r’

r< =min(r,7’) = { =H(@r—rY +HF —r)r=

r for r <1’

=H@r -1y +0—-H@E—r))r=H@r—r)Yo"—r)+r

Then we can differentiate:

§r> =5(r—rYr—r"Y+H(r—7")=H(r—r")
,
82
ﬁ"’> = (5(7" — 7"/)
%r< =8(r—rYor'=r)—H(r—7")+1=1—H(r—r")Y=H(" —7r)
82
w'f‘< = _(5<7" — 7“/)
Given:
[e%¢] N\ ,.12
u(r) = / HE gy (3.20.4.1)
0 r>
The Green function is
12
/ PR
G(r,r') = .
Let’s differentiate:
a , 12 a 12 , /2 ,
EG(T,T )= —ang —gH(r—r )= — 3 H(r—1")
and
32 , 12 , 12 ,
aTQG(nT )= +7T—2H(r r') — —2(5(7" —7')
So we get:
82 2 a 2 ,,,/2 ,r/2 2 ,r/2 7,/2
—ﬁG(r, r') — ;EG(T, r') = —;T—2H(r -7+ ﬁé(r —7')+ ;ﬁH(r -7y = T—26(T -7y =6(r—1")

So u(r) from (3.20.4.1) is a solution to the radial Poisson equation:

d? 2d
—qpulr) = - ulr) = f(r)
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Helmholtz Equation in 1D

(;; + 1) u(@) = f(z)
(dQ + 1) G(z,2') = 6(z — o)

dax?
with boundary conditions u(0) = u(5) = 0. We use the Fourier transform:
eik:z'
V2m
B . ek’
Gk,2')= ———
( ) V2r(1 — k2)

G(z,2") = Lsign(z — 2’) sin(z — 2)

((ik)? +1) G(k,2’) =

Check:

%G(ﬂc, 2') = 6(x — 2’) sin(z — ') + % sign(z — 2) cos(z — 2’) =
= 3 sign(z — 2’) cos(z — 2')

2
—G(z,2') = §(x — 2') cos(z — z') — & sign(z — ') sin(z — 2') =

0z
i o) i 1)+ (o)
2

da?

The general solution of the homogeneous equation is:

gG(m,x') =§(x — )

G(x,x') + .

u(z) = Cysinz + Cycosx
so the general Green function is:
G(z,2") = §sign(z — 2') sin(z — 2’) + Cy sin(z + 2') + Cy cos(z + ')

Satisfying the boundary conditions (for all 2’ # 0):

G(0,2') = G(gx’) =0
we get:
C1=-3%
Cy=0
and:
G(z,2") = Lsign(z — a’) sin(z — 2) — Lsin(z + 2') =
= —H(2' —z)sinzcosz’ — H(x — 2') cosxsinz’ =
—sinx cos 2’ z <z .
= . , = —sinz. coszs
—coszsinz T >
and

u(x) = /G(x,x’)f(x’)d:z:’ =— cosx/om f(z")sina’dz’ — sinz:/2 f(x") cosx'da’
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To show that this really works, let’s take for example f(z) = 3sin2z. Then
x 3
u(z) = —cosw / 3sin 22 sinz’'da’ — sinz / 3sin 22’ cos 2’ da’
0 T

We can use SymPy to evaluate the integrals:

In [1]: u = -cos(x)*integrate(3*sin(2*y)*sin(y), (y, 0, x)) - \
sin(x) *integrate (3*sin(2*y)*cos(y), (y, x, pi/2))

In [2]: u
Out[2] :
-(cos(x)*sin(2*x) - 2*cos(2*x)*sin(x))*cos(x) - (sin(x)*sin(2*x)

+ 2*cos(x)*cos(2*x))*sin(x)

In [3]: simplify(u)
Out [3]:
2 2
- cos (x)*sin(2#x) - sin (x)*sin(2#*x)

In [4]: trigsimp(_)
Out[4]: -sin(2*x)

And we get
u(zr) = —sin2z

We can easily check, that v” +u = 3sin 2z:

>>> u = -sin(2#*x)
>>> u.diff(x, 2) + u
3*sin (2*x)

and since f(z) = 3sin 2z, we have verified, that u(x) = — sin 2z is the correct solution.

Poisson Equation in 2D

Let x = (x,y) and we want to solve:

So we have:
V3G (x,x') = §(x — x)

The solution is:

2

Slog((e — )+ (y—y'))

1 1
G(x,x') = %logb{ -x|= Elog\x— x'
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Poisson Equation in 3D

Viu(z) = f(z)
') =0(z—2)

with boundary condition G(x) = 0 at infinity. Then:

V3G (x,

1 1
47 |z — 2|

G(x,2") =

and

)= [ L

|z — x

Helmholtz Equation in 3D

(V2 +k*)u(z) = f(x)
(V2 4+ E)G(z,2") = 6(x — 2')

with boundary condition G(x) = 0 at infinity. Then:

1 6ik|x7:r'|
Gla,a)=——S
(@, 2) A |z — /|
1 f(m/)eik:\w—x'\ ,

—_— L= g
u(@) 47 |z — 2| v

Finite Element Method
Let’s show it on the Laplace equation. We want to solve:
V3G (z,2') = 6(x — ')
We will treat 2’ as a parameter, so we define g, (z) = G(z,z’):
V29 (x) = 8(z — ')

We set g,/(x) =0 on the boundary and we get:
f/ng/(:r) -Vo(z)dz = /v(az)é(x —2)dx
- / Vg () - Vo(z)dz = v(z')

So we choose z’ and then solve for g, (x) using FEM and we get the Green function G(x,2’) for all z and
one particular /. We can then evaluate the integral (3.20.1.2) numerically — one would have to use FEM
for all ' that are needed in the integral, so that is not efficient, but it should work. One will then be able
to play with Green functions and be able to calculate them numerically for any boundary condition (which
is not possible analytically).
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3.21 Binomial Coefficients

For n and k integers, the binomial coefficients are defined by:

(n)_ n! ~nn—-1)---(n—k+1)
T !

For r real, one just uses the second formula as a definition:

(1") r(r—1)-(r—k+1)

k k!
Example I:
-n (=n)(—n—1)---(—n—k+1) nn+1)---(n+k—1) n+k—1
(k): ] = (-1 ] :(_1)k< k )
Example II:
F=3)_ =Dk (hmd-k+) (k- PE-F-D- )
( k >_ k! N k! N
C@k-D(2k-3)---1  (2k—1)! (2K 1 (2
2k k! T 2kE _(2’%!)2_4k(k>

The binomial formula is for n integer:

and for r real and |z| < |y| this can be generalized to:

e =3 ()t

k=0

Example: (for |z| < 1)

e =3 ()= e (T e (e

SO:

k=0

S (1+k—1 = [k =
G

k=0 k=0 k=0

1 K (i+k-1 (k-1 21 2k
-5 _— 2 k _ 2 k __ k
st E (B ()-SR C)

k=0 k=0 k=0

76 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

Another example:

__ (1— (2xt — tz))_% = i L <2n> (22t — t2)" =
V1—2xt + 2 ¢ 4m\n

()
§ EE)E (e
EAEIE (e
_ i i_i . (22 3 Zk) (" . k) (—1)547 (20)"2 —

where we used (3.22.2) and

G =0

The P, (x) are Legendre Polynomials.

3.22 Double Sums

When evaluating double sums, one can use triangular summation to reorder them:

00 oo o n
DD k=) ) anmk

(3.22.1)
n=0 k=0 n=0 k=0
Also it holds
Z Z g Z Z ek (3.22.2)
n=0 k=0 n=0 k=0
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3.23 Triangle Inequality

Triangle inequality (condition) means that none of the three quantities a, b, ¢ is greater than the sum of the
other two:

a+b>c
b+c>a (3.23.1)
c+a>b
This is equivalent to just one equation:
la—b<c<a+bd (3.23.2)

we can do any permutation of the symbols, i.e. the above equation is equivalent to any of these:
b—c|<a<b+ec
lc—al<b<c+a
So instead of stating the three inequalities (3.23.1) it is more convenient to just write (3.23.2), using any
permutation that we like.
To show, that (3.23.1) implies (3.23.2) we rewrite (3.23.1):
at+b>c
c>a—b
c>b—a
SO
a+b>c
c>|a—b
and we get (3.23.2). To show, that (3.23.2) implies (3.23.1) we rewrite (3.23.2) for a > b first:
a>b
la—b<c<a+b
s0:
a>b
a—b<c<a+b
rearranging:
at+b>c
b+c>a
a>b
since ¢ is positive, if a > b then also ¢ + a > b and we get (3.23.1). Finally, for a < b:
a<b
la—b<c<a+b

so:
a<b
—(a—=b)<c<a+b
rearranging:
at+b>c
b>a
c+a>b

since c is positive, if b > a then also b+ ¢ > a and we get (3.23.1).
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3.24 Gamma Function

The Gamma function I'(z) is defined by the following properties for z > 0:

@) =1 (3.24.1)
Iz+1) =al'(z) (3.24.2)
log'(z) is convex (3.24.3)

It can be shown that this determines the function uniquely for z > 0 (this is called the Bohr-Mollerup
theorem) and then it can be extended analytically to the whole complex plane.

The most common formula for I'(z) that satisfies (3.24.1), (3.24.2) and (3.24.3) is:
I'(z) = / t*~le~tdt (3.24.4)
0
It satisfies (3.24.1) because:
1) = / tHletdt = / e tdt =[-e P =1
0 0
It satisfies (3.24.2) by integrating by parts:
I(z) = / Fle=tdt = (5 — 1)/ F=2etdt — [1F1e= = (2 — DT(z — 1)
0 0

Finally it satisfies (3.24.3) by verifying the convex condition directly (z,y > 0 and 0 < X\ < 1):

logT'(Ax + (1 — N)y) = log/ PrerA=Ny—le=tqp —
0

_ log/ (tasfleft))\(tyfleft)lf)\dt <
0

[e%e] A 0o 1—X
< log (/ tzletdt) (/ tyletdt) =
0 0

= AogT'(x) 4+ (1 — A) log ()

And thus (3.24.4) uniquely determines the Gamma function. We can use (3.24.4) to calculate I'(3):

(e e’} eft e’} 67‘702 e’} R
ri :/ tz=letdt :/ —dt :/ 2xdz = 2/ e ¥dx =
(2) 0 0o Vit 0 T 0

:/ e dy = / e—‘”2dx/ e vidy = 277/ e~ rdr =
Lo oo o 0
= 27r/ e*“%du =7
\ 0

From this and the definition of the Gamma function we get for integer n:

I'n+1)=nl'(n)=nn—-1)I'(n—-1)=nn—-1)(n—-2)---2-1-T(1) =

=nn—-1)(n-2)---1=n (3.24.5)
and
Hne == P = =P -1 = Pro-1-H=-po-1-p i -
_27’),—127’1—327’1—5 1 1 _(Qn_l)” 1 _(27’1—1)” 3.24.6
== 5 syl = TG) = VT
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3.25 Incomplete Gamma Function

The upper incomplete gamma function is defined by:

I‘(z,ac)z/ t*~le~tdt

Integrating by parts we get:

F(z+1,:c):/

x

tPetdt = z/ e tdt — [tPe ! = 20 (2, 2) + 2%e
Some special values are:
T(z,0) = / #letdt = T(2)
Lo
I'(1l,z) = / etdt =[P =e"
x
oo 1 oo
ri,z)= / t"2etdt = 2/ e ds = V/merfe(y/x)

Nz

For integer n we get:

I(n+1,2) =nl(n,z) + 2" * =nn—1)I(n—1,2) + (nz" "t +2™)e ™™
=nn—-1)(n-2Tn-2,2)+ (n(n—1)z" 2 +nz" ' +2")e® =

=nn—1n-2)--2-1.T(L,z)+ (n(n—-1)--- 22" + - +n(n —1)z" 2 4+ na"" +2™)e™ "
=nle™+(n(n—1)---20" +-- +nn— 12" 2 +nz" L+ 2™)e " =

=nle™* Z r
V!

v=0

(2n — 1)!! 2n— DI 2
= T(3,2) ( — M, >
2 2 o
2n — 1)!! -
= % Vmerfe(vz) + e
v=1

The lower incomplete gamma function is defined by:

v(z,x) = /Oz t*~tetdt =T'(z) — T'(z,2)

and as such all expressions can be easily derived using the gamma and upper incomplete gamma functions.
The recursion relation is then:

vyz+1,2) =T(24+1) —T(z+ 1,2) = 2I'(z) — (2T(z,z) + e ") = 27v(z,z) — x”e™ "
Some special values are:
v(z,0) =T(2) = T'(2,0) =T(2) = T'() =0
v(1,2)=T(1)-T(l,z)=1—e""
A(,2) = T(}) — T3, 2) = Vi — V/rerfe(v/E) = v/rerf(V)
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By repeated application of the recursion formula we get:

1 x? 1 fvd x#tl
= — 1 - = 2 T — —_— | =
~v(z, ) Z*y(z+ ,x) +e . z(z+1)7(z+ ,x) +e (z + (z+1)>
1 n z+k
f— 1
z(z+1)...(z—|—n)7(z+n+ ) = z(z+1) z—|—k)
I'(z) -
- -\ 1 —z
Teinyn Lo+l kgol“z—i—k:—&-
e xk
where we used:
lim 222 _
Z—00 F(z)

which can be proven by the following inequality which uses the fact that the function f(t) = t*~le~! is an
increasing function for ¢t < z — 1, so as long as ¢ < z — 1 we get:

'y(z,x):/ t*"le~tdt = /f t)dt <

< f zf(z) =

0

=L/ Flz)dt <

z—1—x

z—1
< L/ FH)dt <

z—1—=x
ZIZ o0
<m/0 f(tdt =
T T(2)

Using (3.25.1) we can now write v(z, z) using the Kummer confluent hypergeometric function 1 Fi (a, b, z) as
follows:

:zflf:c

v(z,x) = xzr T hE D) =a*z e Py (1,z+ 1,2) =272  Fi(z,2 + 1, —2)
k=0

3.25.1 Example

Consider the class of integrals:
F.(t) = /1 uQme_tuzdu, (t>0;,m=0,1,2,...)
0
We write them using the lower incomplete gamma function as:
Rt = [ (7)o (5)F =y [ hervan < 2R
0

1 1
t 2t ) tm+§ 2tm+§
We can also write it using the confluent hypergeometric function as follows:

1
m+ 3.t t"T2 (m 4 )71
Fm(t):’Y( 2 ) ( 12) 1Fiim+3,m+3,—t)=
2tm+§ 2tm+§

1Fi(m+3,m+3,-1)
2m+1
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For m = 0 we get:

Using the recursion relation we get:

1
Ym+5+1,1)  (m+ y(m+ 3,0 —t" et (m+ ) et
Fm+1(t): 1 = 1 = P Fm(t)_Tt:
2tm+§+1 2tm+§t
C@Cm4+1)E, ) —e !
N 2t

By expressing F),(t) from the equation we obtain the inverse relation:

- 2tFm+1(t) +et

Fo.(t) =
() 2m + 1
From (3.25.1) we get:
m+ .t 1 = th
Fm(t):w 21 ) _ tm+2F(m+%)e_tZ . —
2™+ 2™t o Pm+g+k+1)
0 k
_ ll—‘(m—‘rl)e_tz t =
2 2 = T(m+k+3)
=0
L Cm-DT & tk 7
-2 om € Z 2m+2k+D)!1/7T
k=0 = gmTRFL

i 2m =Dtk
- kZ:O(Qm+2k+l)!!_
N (2t)

- ’;O(2m+1)(2m+3)~~(2m+2k+1)

3.26 Factorial

The factorial n! is defined as
nl=nn—-1)mn-2)---3-2-1
By (3.24.5) it can be written using the Gamma function as:

nl=T(n+1)

3.27 Double Factorial

The double factorial n!! is defined as:

" nn—2)(n—4)(n—6)---5-3-1 forodd n =2k +1
nll =
nn—2)(n—4)(n—6)---6-4-2 for even n = 2k
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One can rewrite double factorial using a factorial as:

6- (2k):2k(1.2-3-..k)=2kk!
2-3-4-5---(2k) _ (2k)!  (2k)!
2-4-6---(2k)  (2k)I1  2kK!

2k =24
1-

2k-1N=1-3-5---(2k—1)=
For odd n it can be written using the Gamma function, see (3.24.6):

(2k — 1)l = —_2kT (k+3)

VT
3.27.1 Example
_1-3-5 2n—1) (@2n-1I'  (2n)! 1 (2n
Aln) = 1-2-3----- no n! 2”(n!)22”(n>
_1-3:5-----(2n—-1) (2n-D1!  (2n)! 1 (2n
B =%~ @ _(2nn!)2_4n(n>

3.28 Fermi-Dirac Integral

The Fermi-Dirac integral (sometimes just called a Fermi integral) is defined as:

* €2de
I(p) = / _cde

ech +1
Examples:

° Vede
Iy (p) = e 1
2 o eSH+1

[eo'e) 3

ezde

I% (1) = /0 ecTH +1

The Fermi-Dirac integral can also be written using the polylogarithm, see The Series pFq for details.

3.29 Legendre Polynomials

Legendre polynomials P;(x) defined by the Rodrigues’ formula

l
Pi(x) = gl ~ 1)

they also obey the completeness relation

S 2 B Ruw) = (- o) (3.20.1)

and orthogonality relation:
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Two Legendre polynomials can be expanded in a series:

k41 2
Pu@)Pia) = 3 (’g é ’g) (2m + 1) Py (2)

m=|k—l|

This was first proven by [Adams], where he shows:

ot — S — S—1m) 4sm
PR = 3 A(s k)A(A(S)l)A( )225 :11 @)
m=|k—l|

k+l4+m
2

where s = and

1-2.3-----n T oom(nl)2 T 2
The coefficient in the expansion can then be written using a 3j symbol as:
A(s —k)A(s—DA(s—m) 1

n

A(n) = 1-3-5.-... (2n —1) (2n)! 1 <2n>

A(s) 25 +1

_ =)= G e ) 1
5 (%) 25 +1

_ 2° CHCoe 1
9s—k+s—I+s—m (238) 25+ 1
o] (o [ G IS W

(255) 25 +1

(25 —2k)! (2s—2D)! (2s—2m)! (s 1
T (=2 ((s—=DN2((s—m))2 (2s)! 25 +1
(2s — 2k)!1(2s — 21)!(2s — 2m)! s! B

2
(2s 4+ 1)! [(S—k)!(s—l)!(s—m)!] N

(k1 om\®
“lo o o

So we will be just using the 35 symbol form from now on. We can now calculate the integral of three Legendre
polynomials:

1
/ Py (z)Py(x) Py (x)dx =

-1

:/ 11 > (’3 : g>2(2n+1)P7L($)Pm(l‘)dx:

L=k
k+1 2
k1l n 20nm
= 2 <0 0 0) @n g, 1 =
n=|k—I|
(kT om\?
o o0 o0
k+l1 om

RR@ = Y. 252 [ P@R@ P Pale) -

m=|k—I|

(3.29.2)

This is consistent with the series expansion:

_ kil (’8 é 73)2(2m+1)Pm(x)

m=|k—l|

84 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

Any function f(z) (where —1 < x < 1) can be expanded as:

ji:,ﬁf%

For the following choice of f(z) we get (for [¢t| < 1):

1
T) = ——o—
/@) V1 — 2zt + t2
_R2442
PURCES A <2Z+1>/'“'Pl(1 m“)(R)dR
R R AN 2 Sy R t
1)l 1_ R24 42 1) [l 1_R2442
_ (24 X/ P R*+1 dR:(m+ %/ P R*+1t dR =
2t Ju_y 21 % ), 2

= ¢

Code:

>>> from sympy import var, legendre, integrate
>>> var("1 R t")

(1, R, t)

>>> f = (2x1+1) / (2*%t) * integrate(legendre(l, (1-Rk*2+tx*x2) / (2%t)),
(R, 1-t, 1+t))

>>> for _1 in range(20): print _1, f.subs(1l, _1).doit().simplify()
1

t

tx*2

t**3

tx*4

t**5

t**6

T**T7

t**8

t**9

t*x10

tH*x11

12 t*%x12

13 t**13

14 tx*x14

15 t*x15

16 t*x16

17 t*x17

18 t*x18

19 t*x19

© 00 N O d WN - O -

=
= O

So the Legendre polynomials are the coefficients of the following expansion for |¢| < 1:

V1-— 2xt+t2 g
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Note that for |t| > 1 we get:

oo l oo
1 1 1 1 1
S ==Y P () =signt Y Py(x)t~!7!
1—2xt+1t2 |t 1_2x%+(%)2 \ﬂ; ¢ 12:;

3.29.1 Example |

Very important is the following multipole expansion:

1 B 1 - 1 B 1 -
_ | - -
R G r>¢1—2<$)f v (=)
> > (3.29.1.1)
0o l 0 l
1 T< Y < A ol
- <) pE-t) =
> (T>) HE- 1) Z A E)

) ) o o 7’/ o 7n, 2 7,13
=r<Po(r r)+P1(I"r/)?+P2(r'rl) <r> +O(T3)>:

r— 1’|
o o r 2 '3
(rreetesoeer o (7) o)) -

1 r-r 3 -r)2—r2? r’3
_lyrr, e +o(ﬂ>

r r3 2r5

3.29.2 Example Il

Let’s find the expansion of
o=V T3t
)= e
Vv1-—-2xt+t

for |t| < 1. We get:

_p2 2 _a
2l—|—1 U p(x)e= V1= Vi—2ztti? (20 +1) 1—t] P, (1 %tﬂ )e R R
dz = B\ 4p-
1 V1—2zt + 12 2 41 R .
\1+t| P2 42 Lt e
= / F L e / B 1=RHEN —argp
. 1= 2t 2t 1—t 2t

Here is the result for the first few {:

(e2at _ 1) e—ozt—oz

Jo= 2at
i = 3 (a2te2at + ot + ate®® + at — e + o — 20t 1) e~
173 o3t2
5 (a4t2e2at — a*t? 4 3a8t2e2t — 303t? — 3aBte2® — 305t -
f= 2 b3

X = 3a2e?® — 302 — 9ate®®t — 9at + 9ae?t — 9o + 962t — 9
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Expanding in t up to O (t7) we get:

fi=e%a
%=1+}M¥+ALM#+Aiﬂfﬁ+Oﬁm
6 120 5040
1 1 1 1
=t t 7 2t3 i 3t3 - 4t5 i 5t5 O t7
g + +—10a +—10a +—280a +—280a + ( )
g:F+M”lﬁﬁ+i&#+iﬁ#+i&#+£ﬂﬁMHLfﬁ+;LJ#+OM)
? 3 14 14 42 504 504 1512
2 1 1 1 1 1
— 43 BLla28 1L 2P 1 3B L a3 L oM A Lo+
gs =t + gattl o etk oot 4 gt 4 palli 4 e’ + O (¢)
g:#+mﬁéﬁﬁ+i&ﬁ+3&#+i&ﬁ+JﬂmM~i&ﬁ+iﬂW+—LJﬁ+OM)
! 7 22 21 22 105 154 231 2310
Code:

>>> from sympy import var, legendre, integrate, exp, latex, cse
>>> var("l R t alpha")
(1, R, t, alpha)
>>>
>>> f = (2x1+1) / (2*t) * integrate(legendre(l, (1-Rk*2+t*x2) / (2*t)) \
* exp(-alpha*R),
.. (R, 1-t, 1+t))
>>>
>>> for _1 in range(3):
print "f_Jd & =" %_1, latex(f.subs(l, _1).doit().simplify()), "\\\\"

\frac{\left(e"{2 \alpha t} -1\right) e~{- \alpha t - \alpha}}{2 \alpha t} \\
\frac{3}{2} \frac{\left(\alpha"{2} t e~{2 \alpha t} + \alpha~{2} t + \alpha t e~
—{2 \alpha t} + \alpha t - \alpha e”{2 \alpha t} + \alpha - e~{2 \alpha t} + 1\right) e~
—{- \alpha t - \alpha}}{\alpha~{3} t~{2}} \\

f_ 2 & = \frac{5}{2} \frac{\left(\alpha"{4} t {2} e~{2 \alpha t} - \alpha~{4} t {2} + 3 \
—alpha”{3} t7{2} e"{2 \alpha t} - 3 \alpha™{3} t7{2} - 3 \alpha™{3} t e“{2 \alpha t} -
3 \alpha~{3} t + 3 \alpha"{2} t~{2} e"{2 \alpha t} - 3 \alpha~{2} t~{2} - 9 \alpha~{2},
~t e {2 \alpha t} - 9 \alpha~{2} t + 3 \alpha"{2} e“{2 \alpha t} - 3 \alpha~{2} - 9 \
—alpha t e“{2 \alpha t} - 9 \alpha t + 9 \alpha e~{2 \alpha t} - 9 \alpha + 9 e {2 \
—alpha t} -9\right) e~{- \alpha t - \alpha}}{\alpha~{5} t~{3}} \\

>>> for _1 in range(5):

result = f.subs(l, _1).doit().simplify() / exp(-alpha)

print "g_Jd & =" 7_1, latex(result.series(t, 0, 7)), "\\\\"

£0&
f1&

g 0 & = 1 + \frac{1}{6} \alpha~{2} t~{2} + \frac{1}{120} \alpha~{4} t~{4} + \frac{1}
—{5040} \alpha~{6} t~{6} + \operatorname{\mathcal{0}}\left(t~{7}\right) \\

g 1 & =t + \alpha t + \frac{1}{10} \alpha~{2} t7{3} + \frac{1}{10} \alpha”{3} t~{3} + \
—frac{1}{280} \alpha~{4} t~{5} + \frac{1}{280} \alpha~{5} t~{5} + \operatorname{\mathcal
~{0}N\1left (t7{7H\right) \\

g_2 & = t7{2} + \alpha t~{2} + \frac{1}{3} \alpha~{2} t~{2} + \frac{1}{14} \alpha~{2} t~
—{4} + \frac{1}{14} \alpha~{3} t~{4} + \frac{1}{42} \alpha~{4} t~{4} + \frac{1}{504} \
—alpha~{4} t~{6} + \frac{1}{504} \alpha {5} t7{6} + \frac{1}{1512} \alpha~{6} t~{6} + \
—operatorname{\mathcal{0}}\left (t"{7}\right) \\

g_3 & = t7{3} + \alpha t~{3} + \frac{2}{5} \alpha~{2} t~{3} + \frac{1}{18} \alpha~{2} t~
—{5} + \frac{1}{15} \alpha~{3} t~{3} + \frac{1}{18} \alpha~{3} t~{5} + \frac{1}{45} \
—alpha~{4} t°{5} + \frac{1}{270} \alpha~{5} t~{5} + \operatorname{\mathcal{0}}\left(t~
~{7H\right) \\

(continues on next page)
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(continued from previous page)

g_4 & = t7{4} + \alpha t~{4} + \frac{3}{7} \alpha~{2} t~{4} + \frac{1}{22} \alpha~{2} t~
—{6} + \frac{2}{21} \alpha~{3} t~{4} + \frac{1}{22} \alpha~{3} t~{6} + \frac{1}{105} \
—alpha~{4} t7{4} + \frac{3}{154} \alpha~{4} t7{6} + \frac{1}{231} \alpha“{6} t~{6} + \
—frac{1}{2310} \alpha~{6} t {6} + \operatorname{\mathcal{O0}}\left(t~{7*\right) \\

3.29.3 Example Il

. o< Vepr g (m<)?
= . >¢1 2(r>D> +(:5) | e—aVI—2atF
1| . 2 o VI- 20t 4 12
() )
where:
a="2
D
z=1
t=-<
r>
3.29.4 Example IV
e_\"lgrﬂ
Vv r —ro|) = ——
(I ) It = ra]

The potential V is a function of r1, 79 and cos 6 only:

V(e —ra|) =V <\/r% —2rq -To +7’%> =V <\/r% — 2ryrycosf + r%) =V (ry,rs,cosb)

So we expand in the cos 6 variable using the Legendre expansion:

V(jry —r2|) = V(r1,7re,cos86) = ZVl(m,rg)Pl(cosﬂ)

1=0
where V(r1,72) only depends on r1 and rs:
20+1 !
Vi(ri,rs) = T+ V(|1 — ra) Pi(cos 8)d(cos ) =
—1
[ry—rof
20 +1 /1 e” D
= Pi(cosf)d(cosl) =
5 ) o] 1(cos 0)d(cos 0)
14T 2 _ .2 2
- 2l+1/ U ep (rl " +T2)dr
2r1ro [y 2r1ry
In the limit D — oo we get:
Pl
‘/l(rlaTQ) — lil
r>
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In general, the Vi(r1,72) expressions are complicated. For the first few [ we get:

D _lri—mrol )
Vol(ri,re) = (e D —e
2’/“1’/‘2
Ty Ty Ty T _r_r
3D (—Dze2 5 + D2 — Drie?D + Dry + Drye?D + Dro + rir9e?D + r1r2> e~ DD
Vi(ri,m) = -
( ’ ) 2 ’I"%T%

In Vi(r1,72) we assume r1 > ro.

3.30 Spherical Harmonics

Are defined for m > 0 by

2041 (1 —m)!

A (I4+m)! Bi" (cosf) €™

where P/™ are associated Legendre polynomials defined by

PIMa) = (-1)"(1 = 2™ )

and P; are Legendre polynomials. For m < 0 they are defined by:
Yim (Q) = (=1)"Y,_,,,(Q)
Sometimes the spherical harmonics are written as:
Yim (0, ¢) = O (0) P ()

where:

D (0) = \/—Q?e””d’

{ 2041 (I—m)! le(COS 0) form >0
(

"2 (+m)!

Oum (0) =
l —1)mO;, _m(0) form <0

The spherical harmonics are orthonormal:

27 ™
/ Vi Vi, dQ = / / Vi (0,8) Yy (60, 6) sin 0d0 dé = 8,y S10 (3.30.1)
o Jo
and complete (both in the l-subspace and the whole space):
l
2041
Y 2= .30.
3 Wm0 = = (3:302)
o] l 1
DD Vim0, 0)Yi (0, ¢) = g0 —0)3(¢—¢) =6(2 —¢) (3.30.3)
=0 m=—1
The relation (3.30.2) is a special case of an addition theorem for spherical harmonics
l
20+1
S Yin(0,0)Yi (0, 6) = 4: Py(cos) (3.30.4)
m=—1
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where 7 is the angle between the unit vectors given by & = (0, ¢) and ¥/ = (¢', ¢'):
cosy = cosf cos )’ + sinfsin ' cos(¢p — ¢') = ¢ -

Relations between complex conjugates is:

Vi (Q) = (=1)"Y1,-m ()
(71)m}/l?<—m(Q) = }/lm(Q)

3.30.1 Examples

/ Pk(l')d.%' = /_1 Pk({L‘)Po(CL')dZL' = 25k:0

-1

/Yko(Q)dQ = /Yko(Q)\/‘EYOO(mdQ = Vardko

3.31 Gaunt Coefficients
We use the Wigner-Eckart theorem:

. . m kg . .
Gl = - (28T G
Where:
T =Yiq

In order to calculate the reduced matrix element (j||7%||;j'), we evaluate the W-E theorem for m = g = m’ =

0:
GO0 = (<17 (3§ ) GITH)
and also evaluate the left hand side explicitly:
GOITELS'0) = (701¥4al'0) = [ ¥;o()Yio()Yyo(Dds2 =

_ \/ (25 + 1)(%447; D(2j" + 1)$ / P;(cos 0) Py.(cos 0) Pjs (cos 0) sin §d0d¢ =
_ \/(2.7’ + 1)(21€4J7rr 1(2j' + 1) % /_1 Pi(2)Po(x) Py (2)dz =

_\/(2j+1)(2k+1)(2j/+1) <j . j,)g

- 47

where we used (3.29.2). Comparing these two results, we get:

R L (@)Y (§ k
GITHL) = (-1 e (56 %)
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and finally:

/ Q) Yo ()Y (2)dQ =

m q m

(3, 4 ) oy BB gy

- BRI ) (4, )

In order to evaluate other integrals of spherical harmonics, we just use the above result, for example:

— GmlTE ) = (~1) (_j ko ) GIITH) =

[ Yiam, () Yiama ()i, (052 =

_ (_1)m1(_1)—<—m1>\/(2h+1>(212+1)(213+1) <11 Iy 13> ( (11 ly 13) _

47 0 0 0 — 77’TL1) mo M3

_\/(211+1)(212+1)(213+1) holo L\ (L o s
B 4 0 0 O mip Mo M3

This is the most symmetric relation. It was first obtained by [Gaunt] (equation (9), p. 194, where he
expanded the 35 symbols, so his formula is more complex but equivalent to the above).

It is useful to incorporate the selection rule m; + my + m3 = 0 of the 35 symbols into the formula and we

get:
&F,m, ', m') 1/%H/ )Yk (Q) Vi (Q)dQ =
dr \/2z+1 )2k +1)(2 + 1) AN k r\
2k +1 O 0 0 -m m-m'" m')
I kU l k 4
—_(_1\—m /
=(-1) 20+ 1)(21 +1) (o 0 0> (_m o m,>

From the other selection rules of the 3j symbols it follows, that the c¢*(I,m,l’,m’) coefficients are nonzero
only when:

V| <k<i+V
I+ 1 + k = even integer

3.31.1 Example |

Co(lvmallvm/) =V 47.[-/}/l;kn(Q)YVOO(Q)}/l"m/(Q)dQ = 01/ Omm’
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3.31.2 Example Il

l
S Htmtom) = Y[ [ ViY@ (@0 -
m=-—I m
Vo / 5 Win (@Yo )00 =

ir 20+1
2k+1 4r /Y’CO(Q)dQ’

ir 2041
2%k +1 4r " Amoro =

= (214 1)dko

3.31.3 Example 1l

47r
\,m') )Yz, Yirm _
\/E/(—)lmq) Gk:m m/(I)m m’@l’m/q)m/ sin 9d9d¢ =
2
\/;/ @lm@k ,m— m’@l’m/ sin 0d0/0 (I)mq)m—m’(bm/dqs =

T 1 3 21 ) _ , .,
O1m Ok, m—m O sin 6df () / e imeeim—mim'd gy —
/0 V2T 0

47 4 1 3 2
- mOk.m—m Oy sin 0d0 | —= dé —
\/E/o O1mOr, Opms sin (\/ﬂ) /0 &
\/;/ OOk, m—m Ovm sin 6dd

47
2k +1

3.31.4 Example IV

&, —m, ', —m)
A T l k U

_(_1\m 7
= (-1) 214+ 1)(2l' + 1) (0 0 0) <m ) —m’>
kU (1 A
0 0 -m m-m' m')
kU (1 AN
0 0 -m m-m' m')

&F,m, ', m')

o~

= (=)™ (=) I+ 1) (21 + 1)

(
= (_1)—m\/m(

o

O o~

Where we used the fact, that [ + &k + I is an even integer and (—1)™ = (—1)"™. c* is not symmetric in Im
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and I'm’

!

o~

= (-1 /@I +1)(20 + 1) (
(1>m'¢m(
:(_1)—m/\/(2z+1—21/+1(l

S~ O

o

l

_ (_Dm—m’(_l)—m (2l+ 2[/ T 1 0

o X OF O o
N AN AN AN

Few other identities:

. , Ik o\
F(1,0,0,0) = /@2 + D)2 + 1)

00 0
(z k 1/)2_ k00,00 &@1,0,k0  (,0,k,0)
00 0) Joei+n@+1) JReI+D2k+1) J/RI+D2k+1)

*(1,0,1,0) = *(I',0,1,0)

3.31.5 Example V

, Ik N[0 k '\

Z2l+1 2l+1)(0 0 0> -m m-m' m')
B , 1k ! k '\’
(21+1)(21+1)<O 0 0> Z R

B , A A
(21+1)(21+1)<0 0 0) et

o ko
_(2z+1)(0 ¢ 0) _

2+ Ay
“Vati© (,0,1,0)
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3.31.6 Example VI

S [ Vi (¥ ()i (DY, ()i ()8 =

m’ q
20 +1 2 1
2l’+12’<+1“+’“ DT ey 4m A
- 1 (OO Z V3 () Y3 () Vi ()9 =

A= \l’

2l’+12k+1“+’“ IN+1 A
1 (0, N, 057 § Yo (0008, =
p=—A

A= \l’
2k+1 [2H1 .,
= l 1,0)Ym
An 214—1 ( 07 ,0) l (Q)

S Vi (¥ () = =P %)

2k 41 X
Zqu )Y, () = Tpk(x.x')

Where we used the following identities:

Puk-&)Pr(%-%)= ) 0 0) A+ 1)P\(k-%) =
A=|l'—k

)\l+k
HT 4 L
’/21/+1 (I',0,A,0)P5\(% - %) =

A=|l/—

A=U'+k
2T 4
,/ (I,0,1,0) Vi ()Y
W+ 1° 2)\+1 Z 2 ()Y (2)

A= \1/

U+k (k I
\

Note: using the integral of 3 spherical harmonics directly in (3.31.6.1):

S5 [ Vi (¥ ()i (DY, (Yo ()8 =

4
= > Yirm (QYi o () g ¢ om. 1)

(3.31.6.1)

doesn’t straightforwardly lead to the final result, as it is not obvious how to simplify things further.

3.32 Wigner 3j Symbols

Relation between the Wigner 3j symbols and Clebsch-Gordan coefficients:

JuoJ2 J (=przmme ,
(o e o) = et Grmdamali =

(jimajamaljsms) = (1)1 7724 /245 + 1 (Jl e n )

mp Mg  —Ms3
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They are nonzero only when:
my+mo+m3z =0
J1+ Jo + j3 = integer (or even integer if m; = my = mg = 0)
Imi| < ji
lj1 — Jal < js < ji+J2

They have lots of symmetries. The 3j symbol is invariant for an even permutation of columns:

g2 g3 _
mip m2 M3
_(J2 sz g\ _
mo M3 17
_ (I3 J1 g2
ms Mmip M2
For an odd permutation of columns it changes sign if j; + jo 4+ j3 is an odd integer:
JiooJ2 g3\ _
m; Mmoo M3
— (71)]1+]2+]3 j2 jl J3 —
m2 M1 Mms3
— (_1)j1+32+J3 jl j?) j2 _
mi1 M3 Mmsg
— (_1)j1+j2+j3 j3 j2 jl
ms3 Mo My
and the same if you change the sign of the second row:
g2 g3 _
mp Mg Mms
— (_1)j1+j2+j3 J J2 J3
—ma —MmMy —ms
Orthogonality relations:

3 vode G\ (o gz 7\ _ 95 0mm
mi mg m/) \mi mg m 27 +1
maimo
As a special case, we get:
3 ! k '\ o1
~\-m m-m' m')] 241
m

Here is a script to check that the equation (3.32.1) works:

(3.32.1)

from sympy import S
from sympy.physics.wigner import wigner_3j

def doit(1l, k, 1lp, m):
s =0
for mp in range(-1lp, 1lp+1):
s += wigner_3j(1, k, lp, -m, m-mp, mp)**2

(continues on next page)
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(continued from previous page)

print "J2d 72d J2d 24 " % (1, k, lp, m), s, " ", S(1)/(2%1+1)

k=4
1p = 3
print " 1 k 1p m: 1lhs rhs"
for 1 in range(l, 6):
for m in range(-1, 1+1):
doit(1l, k, 1p, m)

it prints:

lp m: 1lhs rhs
3 -1 1/3 1/3
1/3  1/3
1 1/3 1/3
=2 1/5 1/5
-1 1/5 1/5

w
o

0 1/5 1/5
1 1/5 1/5
2 1/5 1/5

-3 /7 1/7
-2 /7 /7
-1 /7 1/7

o /7 1/7
1 /7 1/7
2 /7 1/7

3 /7 1/7
-4 1/9 1/9
-3 1/9 1/9
-2 1/9 1/9

1/9 1/9
0 1/9 1/9
1 1/9 1/9
2 1/9 1/9
3 1/9 1/9
4 1/9 1/9

-5 1/11 1/11
-4 1/11 1/11
-3 1/11 1/11
-2 1/11 1/11
-1 1/11 1/11

T OOl ol ololono oD DD DD DD DD WWWWWWOWwNNDN0NNR R~
SRR GO NG NGOGV G GGG NG NG NG NG NG Y NGO NG NGO NGO NGO NG SO NG NG NG N N N N N N N N N N
W W W Wwowowomwomwaomwaowaowaowaowaowaowowowowaowaowaowaowaowaowaowaowaowowowowow w

|

A

0 1/11 1/11
1 1/11 1/11
2 1/11 1/11
3 1/11 1/11
4 1/11 1/11
5 1/11 1/11

Values of the 3j coefficients for a few special cases (use the symmetries above to obtain values for permuted
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symbols):
E 1 m\ _ s [(2s=2k)!(2s — 2])!(2s — 2m)! s! B
(o 0 o)‘H)\/ (@25 1 1)1 MG Di(s )l or = hAlmeven
(lg (l) 73)20 for 2s =k + 1+ m odd
itz 7 N yemt [ d-m+3
(nr iy 1) G+ D@ +2)
<j+1 j 1>:<_1)j_m_1\/ (j—m)—m+1)
m  —m-1 1 (25 + 1)(25 +2)(2] + 3)
<j+1 j 1)2(_1)j_m_1 2 +m+1)(j —m+1)
m  —m 0 (25 +1)(25 +2)(27 + 3)

3.32.1 Examples

Jja— 3
e L
2

g3 N _( s Js—3 % _(i+3 J %
—ms -m3 mz—3 3 m  —-m-3 3

. 1 1 -
— (_1).7'3—%+m3—% . J3—3 + m3 + 2 _ (_1)j3+m3—1 ]34‘77713
(25 — 1+ 1)(2j5 — 1 + 2) 25(2j5 + 1)

o — 1 1 1 1,1 i o — L 1 ) i L ; 1
(.]3 21 2 J3 > — (_1)j3*§+§+j3 (]3 J3 2 L %> — (_1>213 (.7 + 5 J 1 i
2

1
mz+45 —5 —mMm3 m3 —mM3—35 35 m —-m— 3

N
—
[N

1
j=jz—gym=—ms

1
j=js—gim=ms

. 1 1 R
= (_1)23'3(_1)3'3_%_7"3_% - J3 "5 — m.g ta = (_1)2j3(_1)j3—m3—1 :73 _ ms
(2j3 —1+1)(2js —1+42) 2j3(2j3 + 1)

] 11 i 1 ; 1 ) .1 .
J3 ) = (=1)3T2tatss <J3 + 2 B3 %) = (—1)%st1 (J ;2 J

—ms m3—5 —m3 3

js + %
mg—%

DO

. 1
J=J3im=m3—yg

= (—1)2j3+1( l)Jd m3+§ 5 Js—ms+ 5 + 2 _ (_1)2j3+1(_1)j3*m3 Js—mz+1
(273 + 1)(233 + 2) (273 + 1)(2J3 + 2)

1

7

2
js++ % Jz o\ _ Js+3  Js % :(jﬂLé J §)
moy Sy m) Uty DU iy DL

]3+m3—|— +2

_ (71)j3+7n3+2 2 . (71)j3+m3 j3 +ms3 + 1
(23 + 1)(233 +2)

(23 + 1)(2j3 +2)

3.33 Multipole Expansion

Using (3.29.1.1) we get:

1 > rl< (& . R
W_Zrlﬂpl £-1) Z e QZH Yim (8) Y5, ()
=0
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where we used the formula:

S (#fim) (mliy = 2251 6|y
3.34 Hypergeometric Functions
The series:
>t
k=0

with tg = 1 is geometric if the ratio of two consecutive terms ¢;1/t; is a constant (with respect to k):

b1 _
L

then we get:
o0 o0
> te=) a*
k=0 k=0
It is hypergeometric if the ratio t;41/¢x is a rational function (with respect to k):

tre1  P(k)

t  Q(k)
where P(k) and Q(k) are polynomials in k, which we can completely factor into the form

thier  P(k) (k4 a)(k+a2) - (k+ap)
b T QW) T bk b (b)) M

where z is a constant and the (k 4 1) factor is just a convention (if the polynomial Q(k) does not contain
the factor (k4 1) we can just add it to both numerator and denominator and absorb the “1” into a,). The
hypergeometric series is then given by:

i (a1)k(a2)k - (ap)r «
P q(a17a27 ,Clp,bl,bQ, 7bq7'r) o (bl)k(bQ)k(bQ)k k'

where

(@) ~_Tla+k) Jala+1)(a+2)---(a+k—-1), ifk>1;
a)r = I'(a) - 1, ifk=0

is the rising factorial function (also called the Pochhammer symbol).

To write a function as a hypergeometric series, we simply expand it in series and then write the ratio 541/t
in the form (3.34.1) and immediately identify the proper ,F, function. If the ratio cannot be put into the
form (3.34.1) then the function is not hypergeometric.
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3.34.1 Convergence Conditions

If any a; = 0,—1,—2, ..., then the series is a polynomial of degree —a;.

If any b, = 0,—1,—2,... then the denominators eventually become 0 (unless the series is terminated as a
polynomial before that, due to the previous point) and the series is undefined.

Except the previous two cases, the radius of convergence R of the hypergeometric series is:
oo ifp < g
R={1 ifp=q+1;
0 ifp>qg+1.

3.34.2 Elementary and Special Functions

The hypergeometric functions for low p and ¢ have special names:

oF1 confluent hypergeometric limit function
1F1 Kummer’s confluent hypergeometric function of the first kind
oF;  Gauss’ hypergeometric function

Most common functions can be expressed using ,Fy as follows:

The Series OF0

Elementary functions:

The Series 1F0

Elementary functions:

[
1 > (a+k—1)!
(T—a) ™ 2 (a—1)k! ¥ =1Fy(a;)
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The Series 0OF1

Elementary functions:

Bessel function:

Jo(2) = Z

o

DRE)T G

~—

sinz = z oFl(%;—

~—

cosz = OFl(%§ —

~—

sinhz = z oFl(%;

~—

coshz = 0F1(%;

”;‘NM”;‘NM”;‘NM”;‘NM

k=0

E(k+a)  T(a+1

Spherical Bessel function of the first kind:

L(z) =" u(iz) = Z k:('(2k +v)! - F(ul—i— 1) (%)V o1 (V +h Z4>

The Series 1F1

Elementary functions:

Lower incomplete gamma function:

v(z,z) = 2*T(2)e™™ Z

A
T(zt+k+1)

2%e* = 1F(a;a — §;—22)

k=0
Error function:
1 2x
erf(z) = ﬁ’y(%,xQ) = N 1F1(%; %,—J;Q)
Hermite polynomials:
n (2n)!
Hy,(x) = (-1) g Fi(—n; %;xQ)
2n + 1)!
Hon () = (-1 2 0 (o 302)

Laguerre polynomials:

) ) o (e )

=2z e Pz +1z) =227 [ Fi(z 2+ 1; —x)

(3.34.2.1)
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Solution Pp;(r) = rRy;(r) of the radial Schrodinger equation in the Coulomb potential V(r) = —Z/r (we
use (3.34.2.1) in the second equation below):

The Series 2F1

Elementary functions:

27r\'"™ _ 2 27
Pnl(r)—an< T) e 1 ( n+1+1;20+ 2; T)
n n

22r\'"" _z s (227 2L+ D)(n—1-1)
= 1Vpl n e n L 1\ — =

n—l= n (n+)!
1 [ Zn—1=1) (22r\'""" 20 o0 (221
= A7 |/ e Lty
n (n+1)! n n
N 1 Z(n+1)!
nl =

n@+ D\ (n—1—1)

log(l+2) =2z 2F1(1,1;2; -z
log(z) =(2—1) 2F1(1,1;2;1 — 2

)

)
arcsinz = z o Fy (3, 3;3;2%)
arccos z = g —z 2F1(% % 3722)
arctan z = z o Fy(1 ,2,2,—22)

Legendre polynomials (and associated Legendre polynomials):

1_
P,(2) = oF, (—n,n +1;1; 2Z>

B
1 1+2)\2 1—=z

PH = - Fo = 1:1 — u

) r(l—m(l—z) i ( T )

Chebyshev polynomials:

Gegenbauer polynomials:

Jacobi polynomials:

2 1—
Ch(z) = ( :) 2 F1 (—n,?a—&-n;a-ﬁ-%?;)

(a+1),

P (z) = S
n:

1_
o F (—n,1+a—|—ﬁ—|—n;a+l; 2Z>

Complete elliptic integrals:

3.34. Hypergeometric Functions 101



Theoretical Physics Reference, Release 0.5

The Series 3F2

Elementary functions:

tan() = g afa(ly = S h+ id - A )
Dilogarithm:
Lix(2) = 2 3F>(1,1,1;2,2; 2)
Digamma:
P(z) = (2 —1) 3F2(1,1,2 = 2;2,2;1) — v
The Wigner 3j symbol:
1

J1 J2 3 — (_1)—j1+]‘2+m367m it

my mz M3 ST (=g + gz 4+ ma)! (=1 + jz — ma)!

V1 = da + 33) (=1 + ja + 33)!(G1 + m1) (G2 — m2)!(js + m3)!(jz — m3)!
V1 + d2 — 33)1G + g2 + Js + DI — ma)! (G2 + ma)!

3F5(=j1 — j2 + ja,m1 — j1, —jo — ma; —j1 + j3 —mo + 1, —ja + jz +my + 1;1)

The Series pFq

Polylogarithm:
Lis(2) = z 41 Fs(1,1,...,152,...,2; 2)

Fermi-Dirac integral:

(e o) tz/ . N
I,,(x) = /; Wdt = —F(V + 1)Ll,}+1(—€ )

3.34.3 Exampile |
By writing out the series expansion for the ¢;41/t; ratio we can prove that:

p1Fi(a;b;z) +q1Fi(a+ 1;b;2) = (p+q) oF <a,a (‘Z+1> +1;b,a (erl) ;z)
The left hand side is equal to:

a)g+qla+ 1) 4

p1Fi(a;bie) +q 1 Fi(a+1ib2) = ) al OnE

k=0

We simplify the t; term:

o pla)y +qla+ g 4 (@) (p+Q+%) k

tp = =
b O (0)ik! “
We calculate the ratio tx41/tr as well as to to get the normalization:
to=p+gq
tho1 (k+a) (p+q+ q(kaﬂ)) o (k+a) (k+a(§+1) +1) i

t (k+b)(k+1)(p+q+%) (k+b)(k+a(§+1))(k+1)

From which we read the arguments of the hypergeometric function 5 F5 on the right hand side and we need
to multiply it by the normalization factor tg = p + q.

102 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

3.34.4 Example Il

By writing out the series expansion for the txy1/tx ratio we can prove that:

I2
e "1 F(15222) = o Y <§; 4>

We can also use the substitution z = %2:

e VE I FI(1;2:4v2) = o Fy (3:2)
Which is a special case of
oF1 (a;2) = e V% | Fi(a — 1:2a — 1;4/2)

3
for a = 3.

3.34.5 Example Il
One way to express sinh(z) is
sinhz = ze™% 1 F1(1;2;22)

using the previous example, this is equal to:
52
sinhz = ze™* 1F1(1;2;22) = z o F} (S, 4)

So the lowest hypergeometric function that can express sinh(z) is oF}.

3.35 Feynman Parameters

When integrating a denominator like ﬁ, the idea is to introduce auxiliary parameters in order to make the
denominator simpler. We start with the identity:

1 ' - 1 . dz+y—1)
AB_/o d (xA+ (1 — z)B)? /d/ JCA+yB) (3.35.1)

which can be proven easily:

>>> var("A B")

(A, B)

>>> integrate(1/(x*A + (1-x)*B)*x2, (x, 0, 1))
1/(A*xB - Ax*2) - 1/(-A*B + B*x*2)

>>> simplify ()

1/ (A%B)

By repeatedly differentiating with respect to B:

/ / 2yé(x+y—1)
A32 (zA +yB)®

/ / M (3.35.2)
AB3 (zA+yB)*

/dx/ ny" 16(z +y—1)
AB" (zA+yB)" !
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Then we prove:

1 ! ! (n—=116(x1+--+x,—1)
— day - dz, o 3.35.3
AjAg--- A /0 ! /0 (x1 41+ -+ x,A4,) ( )
For n = 2 we get (3.35.1) and if it holds for n it also holds for n + 1, because we multiply (3.35.3) by Anlﬂ
and get:
1 1
AjAy - Ay An
1 1 1
= dey--- | dep(n—1D0(x1+-- -+, — 1 o =
~/0 ! /O ( ) ( ' )($1A1++xnf4n) An-i-l

1 1 n 1 -1
z/dxl---/ dep(n —D)!o(z1 + -+ 2, — 1 /dx/ dy Owty—1) v}
0 0 (xApy1 + y(x1A1 +- ot z4))
1 | -1 n—1
:/ dxy - / dxn/ dy M@+t - Ly el =
(1—-y n+1+y(l‘1A1 +--Fz4,))
| _ n
:/ dz; - / dxn/ dy oy + -+ yn — )y — =
0 1 - 71+1 +y ('TlAl R 'TnAn))
n'5 T, + - Fyx, —
:/ yday - - / ydxn/ dy (yz1 Y ) T =
0 (1 —y)Aps1 + (yxlAl + ot yz,dy))
| _
/ dz; - / dzn/ dy nlo(er+ -+ 20 —y) — =
1 - n+1+(zlA1++ZnAn))
| ! _
0 1 y AnJrl + (ZlAl + -+ ZnAn))

) ne1 — 1
= / dxq -- / dap41 oo + F it n)+1
0 0 (1414 -+ zpy1An41)

Where we used (3.35.2) and the fact, that 6(x1+---+z,—1) = y§(yx1+- - - +yx, —y), after the substituation
we also restricted the limits of integration from 1 to i, since x1, g, .. are all positive.

3.35.1 Example 1

/(k—p) 2(k2 — m?) /d4k/ dedy 2TV =0 $+Z/ 1)

D =z(k —p)? +y(k* —m?) = (x + y)k* — 22k - p+ xp® — ym? = k? — 2zk - p + xp* — ym?

where

In the last part we used = 4+ y = 1. We now shift &£ by introducing;:

l=k—zp
d'k =d"l
and we get:
D =k* —2zk-p+ap® —ym® = 1> — 2°p® + xp® —ym?
thus:

/d4/dd x“’ fety-b _
d(z +y71)
= [ I*k [ dad
/ /0 TV =2+ ap? — ym?)2
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3.35.2 Example 2

d*k ! 20(x+y+2z—1)
= [ d*k | dazdyd
/(kz—mQ—l—ie)((kJ +p)2 —m? +ie)((k — p)? + ie) / /0 e D?

where
D = 2(k® —m? +ie) + y((k +p)* — m? +ie) + z((k — p)? +ie) =
=(z+y+2)k*+2k- (yg—2p) +yg® +2p* — (x+y)m® + (z +y + 2)ie =
= k> +2k - (yg — 2p) + yq* + 2p> — (x + y)m® + ic

In the last part we used = 4+ y + z = 1. We now shift k& by introducing:

l=Fk+yqg—2zp
d*k =d"
and we get:
D =k* +2k - (yq — 2p) + yg* + 2p* — (z + y)m? + ie =
— A +ie
where
A= —2yg® + (1 — 2)*m?
thus:

! 20 +y+z2—1
/ d*k / dzdydz ( 3 ) _

/d4/da:dd 25w+y+z—1)_
— A +ie)3

25 x+y+z—1)
4
/d ZE/ dxdydz l2 FNE =

20(x +y+2z—1)
= dQ/ di dxdyd =
(= / o TP (1% +A)3
l3

= (—i4772)/0 dxdydz&(m—&-y—l—Z—l)/o dlEﬁA)S =

h—A

1
:(—i47r2)/ dwdydzé(m+y+z—1)/ dh TR
0 A

1
— (_iAr2 _ _
= (—idr )/O dedydzé(x +y + 2 1)4

1
-1
(i) / dxdydzw _
0

1
) z+y+z—-1)
= (—in? dzdyd
(”)/o T 22 m? —ayg?

This integral has an infrared divergence. We can cure this by pretending that the photon has a small nonzero
mass u, then in the denominator of the photon propagator we need to change:

(k—p)® = (k—p)* —p°

This denominator is multiplied by z later on, so at the end we need to do the change:

A= A+ zp?
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and we get:
Mz +y+z-1)
dadydz
<”f>/ T =
—im? /dxdyd dzt+y+z—1)
— 2)?m? — xyq® + 2y

for ¢ = 0 we get:

de+y+z-1)
( — 2)?m? — zyq® + zp®
5(:17+y+271)

— (—im?) dxd dz( It o =

11—z 1
d d =
—im? / z/ y It o

1—=2
= d
i [ ot

1
(—in?) /0 dzdydz

We can use the following integral:

atan L atan i
! 12 1 L —ltE Vo

that is equal to %log(ﬁ) in the limit g — 0.

here are a few special cases for p =1, p=1/2 and p=1/3:

LR 1
/ T2 =13
0

1—2422 9
1
1-— 1 1 1 1
/ 7Zdz:flog(4)+—\/ﬁatan —Vv15 ) + —+v15atan l\/ﬁ
0 15 15 15 15

1— 22422 2

b1z 1 1 1 1 17
— % dz=_log(9) + o—V35atan [ ——v/35 ) + ——V/35atan ( =35
/01— 2 g le O gy aan(35 >+35 aan<35 )

Code:

>>> from sympy import log, atan, var, sqrt, Eq, Integral, S
>>> var("z m mu"
>>> F = -log(zx(1 - 2/m) + 1/m + z**2/m)/2 + \
atan((1 - 2/m + 2xz/m)/sqrt(-1 + 4/m))/sqrt(-1 + 4/m)
>>> f = F.diff(z).simplify()
>>> print £
(1 - 2)/(1 - 2%z + m*xz + zZ**2)
>>> integ f 0_1 = F.subs(z, 1) - F.subs(z, 0)
>>> e = Eq(Integral(f.subs(m, mu**2), (z, 0, 1)), integ_f_0_1.subs(m, mu**2))
>>> print e
Integral((1 - z)/(1 - 2%z + z**2 + z*xmu*x*2), (z, 0, 1)) == log(mu*+*(-2))/2 + atan((-1 +,
SA/muxx2) ¥x(=1/2)) /(=1 + 4/mu**2)**(1/2) - atan((1 - 2/mu**2)/(-1 + 4/mu**2)**(1/2)) /(-
<1+ 4/mux*2) *x*x (1/2)
>>> print e.subs(mu, 1)

(continues on next page)
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(continued from previous page)

Integral((1 - z)/(1 - z + zx%2), (z, 0, 1)) == pix3*x(1/2)/9

>>> print e.subs(mu, S(1)/2)

Integral((1 - z)/(1 - T*z/4 + z**2), (z, 0, 1)) == log(4)/2 + 15%*(1/2)*atan(15xx(1/2)/
—15)/15 + 16%x(1/2)*atan(7*15%x(1/2)/15)/15

>>> print e.subs(mu, S(1)/3)

Integral((1 - z)/(1 - 17%z/9 + z**2), (z, 0, 1)) == log(9)/2 + 35**(1/2)*atan(35%*(1/2)/
<»35)/35 + 35 (1/2)*atan(17*35%*(1/2)/35)/35

Then for m = 1 and small p we get:

1
1—=2
-2
_ d =
( ”’/0 A2 1 a2

1
- 2\1
= (—’Lﬂ' )§10g;

2

3.36 Groups

These are notes of Karel Vyborny and Ondiej Certik on the group theory as a result of the firss VDNK
(Vyprava do neznamych kraji) held between October 30 and November 2, 2006 in Prague. So that the next
time we look at it we should be able to quickly recover our forgotten ideas.

3.36.1 Theory

Definition of a group:
e i z,yeG=2ye G

e I2: there exist e such that ex = xe = x for each x € G

1 1

e I3: there exist 7! such that zxz~! = 712 = e for each z € G

o I4: (zy)z = x(yz) for each z,y,2 € G

Every finite group is isomorphic to a subgroup of S,, (permutations).

Representation

Set of linear operators T'(z) (for each x € G there is one T'(x))
T(x)T(y) = T(zy), T(e)=1.

T'(z) fulfills all the group axioms I1, 12, I3, I4. The requirement T'(e) = 1 is non-trivial, consider for example

the following 4 matrices
o 0 1 0

that fulfill T'(z)T(y) = T'(zy) but not T(e) = 1.

The representation T'(z) is said to be faithful if there is a one-to-one relationship between T'(x) and z (an
isomorphism).

Equivalent representations 7) and T: there exist S such that T, = STy (2)S~* for each z € G.
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Reducible representation T'(z): there exist an equivalent representation that is diagonal:

T, 0

T'(z) = ST(2)S™! = <0 Ty

> ., Vzeg. (3.36.1.1)

We say that T” is a direct sum of 7] and T4: T' =T] & Tj.
Irreducible representation: is not reducible.
Conjugate element: z is conjugate to y ( ~ y) if there exist ¢ such that:

T = cyc*1

if x ~yand y ~ z then x ~ z.
Conjugate class: elements which are all conjugate to each other
No element may belong to more than one class = every group may be broken up into separate classes.

Character x of the representation T'(x): set of numbers x(z) = TrT'(z) as the group element x runs through
the group.

Equivalent representations have the same character:
X (z)=TeT'(z) = Tr ST(z)S™ = Tr T(x) = x(x)

Representations having the same character are equivalent.

Proof: Characters can be thought of as elements of a gq-dimensional vector space where q is the number of
conjugacy classes. Using the orthogonality relations derived above, we find that the q characters for the
q inequivalent irreducible representations forms a basis set. Also, according to Maschke’s theorem, both
representations can be expressed as the direct sum of irreducible representations. Since the character of the
direct sum of representations is the sum of their characters, from linear algebra, we see they are equivalent.

All the elements in the same class have the same character.

Maschke’s theorem: for finite groups, every class of equivalent representations contains unitary representa-
tions. The theorem is also true for most infinite groups of interest in physics.

Let T be a reducible representation, then:
T = mlT(l) e mQT(Q) e m3T(3) Q-

where T(M | T2 TG) dots are all the inequivalent irreducible representations and m. (=1,2,3,...) gives
the number of times that the irreducible representation 7(®) occurs in the reduction.

Similar relation holds for group characters:
x = mix® + max® + may® + -+

and it can be shown [Elliott] (eq. 4.28, page 63):

ma =+ 3 @) =

zeG

1 *
= ZCPX;Q) Xp
9 P

where ¢, is the number of elements in the class p, g is the number of elements in G (the order of the group).
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Example

Consider the S3 permutation group. The character table is:

Ss | e 3(12) 2(123)
A1 1 1
Ay |1 —1 1
El2 0 —1

From the table we read ¢y =1, co =3,c3=2and g =c1 +co +c3 =1+ 3+ 2 = 6. There are 3 classes and
3 irreducible representations.

Case I
We are given a representation given by the following matrices:

G (s ) i )
S@ 9 G D)

These 6 matrices belong to the following three classes {e}, {a,b,c}, {d, f} and the corresponding
characters for each class are:

X1 =2
x2 =0
x3=—1
and we get:
1
ml:6(1.1.2+3~1-0+2~1'(—1)):O
1
m2:6(1.1.24_3-(—1)-0—1—2'1'(—1)):0
1
my=(1:2:243:0-042- (1) (-1)) =1
So this representation is irreducible and it is equivalent to m1A; @ moAs @ mgF = E.
Case 11

We are given a representation given by the following matrices:

e:d:f:((l) (1)> a:b:c:é<__\}§ _1/§>

These 6 matrices belong to the following three classes {e}, {a,b,c}, {d, f} and the corresponding
characters for each class are:

X1 =2
x2 =0
X3 =2

and we get:
1
m1:6(1-1~2+3-1~0+2-1~2):1
1
m2:6(1-1~2+3-(—1)-0+2-1-2):1

1
my=2(1:2:243:0:0+2(~1)-2) =0
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So this representation is reducible and it is equivalent to mi A1 ®moAsdmsE = A1 ® Ay. The matrices

are equivalent to:
1 0 1 0
e—d—f—<0 1), a-b-c-(o _1>.

Other facts

Number of irreducible representations = the number of classes.

Regular representation of G:
Take R™ with n = #G and assign a canonical basis to the elements g; of G. A matrix A, assigned
to a € G now describes the mapping (g1, go,...) — (ag1,ags,...), i.e. in if agy = g5, then the fifth
element of the first row is one and others of that row are zero in A,. Each IR of the reg. rep. occurs
in its decomposition with the multiplicity equal to its dimension. Thus (p. 65, [Sternberg])

#G =Y pi.

Element Order
The order n of an element ¢ is the least integer for which ¢” = e. The order n can be determined
from the group multiplication table for example. Theorem: n must divide the size (order) of the group
(for finite groups). Example: For a group of six elements, the only possible orders are Tll, 2, 3 and 6.

Note: the element order is the same for the whole conjugacy class because: z” = (cyc’l) =cytc! =

cect =e.

Schur’s lemma
(a) Ber an IR of G. If [r(a),T] =0, Va € G, then T = cI.

(b) Be r1, 7o two inequivalent IRs of G. Then 71(a)T = Try(a) valid Va € G implies T = 0. See p. 55
in [Sternberg]. This can be used to derive the orthogonality relations for characters.

Complete reducibility
Every rep can be decomposed into IRs: true for finite (p. 52) and compact (p. 179 in [Sternberg])
groups. Counterexample for larger groups, p. 53.

Sum of reps.
Opposite process to reduction, p @ o, it lives on the direct sum of the two vector spaces of p and o.

Take an IR p of G. Then p will also be a rep. of any subgroup H C G, but it need not be an IR, because
the condition for reducibility, Eq. (3.36.1.1), is less strict: it suffices if the matrices T(g) are simultaneously
block diagonal only for g € H, not for all g € G. This is called restriction and it is denoted by |.

Induced representation, denoted by T, is an opposite of the restriction. It works as follows: if F = G ® H,
then p(f) = p(g), when f =g ® h.

Product of representations, p ® o lives on the direct product of the two vector spaces. Product of IRs need
not be an IR. Most prominent example: adding of angular momenta.
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Interesting examples

O and Ty (see Crystallographic Point Groups) are isomorphic to Sy (p. 35 in [Sternberg]). Written as
matrices in 3D, they are 3D representations. Since O has only det A = 1 matrices unlike Ty, they are
inequivalent.

Homeomorphism of SL(2,C) into the Lorentz group [or SU(2) into SO(3)], p. 7 [Sternberg]}. Start with
the following 1 — 1 correspondence between Z and z:

To+ 3 T —1x9
T1+1iT2 To—T3 )

f:(x()a$17x27x3)T7 T = (

For any matrix of A € SL(2,C) take AzA* = z’. Decode 2’ into &’ and the relation between Z and &’ defines
uniquely a Lorentz transformation; thus A was mapped into some Lorentz group element. If g = 0 this
gives a mapping from SU(2) into SO(3). The mapping is 2 — 1 because A and —A give the same z’.

SO(3) is not simply connected. Consider matrices Uy = diag(e~ ", e?) € SU(2), § € [0,7]. These map
into SO(3) rotations by 26 around the z—axis. These matrices Ag = R, 29 in SO(3) form a closed loop,
R.o = R, 2x. If SO(3) were simply connected it would be possible to contract this loop into a point while
keeping Ag and A, unchanged. But then the same would have to happen with the original curve of matrices
Uy while keeping Uy and U, at their place. Since U, = —I # Uy = I, this curve is not closed and such a
contraction is not possible.

All IRs of S3 are in [Sternberg], p. 57.

3.36.2 Crystallographic Point Groups

Point group is a subgroup of O(3).
Crystallographic point groups are all subgroups of O(3), which leave a monoatomic crystal lattice invariant.

Those can be symmetries of an infinite crystal (e.g. Cj is excluded since pentagons cannot cover the plane).

There are only 7 crystallographic point groups: So (triclinic), Ca; (monoclinic), Dy (orthorhombic), D3y
(rhombohedral), Dy, (tetragonal), Dgp, (hexagonal) and O}, (cubic).

For simple monoatomic crystals with one atom per unit cell these seven are the only possible crystallographic
point groups. For more complicated crystals with a molecule or an arrangement of atoms in the unit cell, the
symmetry will be reduced to the subgroup which leaves not only the lattice but also the unit cell invariant.

The complete list of all possible crystallographic point groups will therefore be given by the above seven
together with all their subgroups (Tab. 3 in [Birss] or Tab. 4 in [Sternberg]):

So Cin, So
Can Cy, Cin, Copy
Doy, Dy, Cyy, Doy,
D3q (3,86, D3, C3y, D3g
Dy, C4,84,Can, Dy, Cayyy Dag, Dyp,
Den, C3,86, D3, Csy, D34, Cs, C3p, Cony De, Covs D3ns Den
Oh T, Th707 Td7 Oh

There are 37 subgroups together. Dsg is a subgroup of Dgp (so all 5 subgroups of D3, are also subgroups
of Dgy). Together we get 37-5 = 32 distinct subgroups. Groups, which might at first sight appear to be
missing from the list are Cy,,, D1, Dip, S1, and S3, but these are the same as Cyy, Cs, Csy, Cip and Cyy,
respectively.

The following groups are isomorphic:

Clha ‘5’27 02

3.36. Groups 111



Theoretical Physics Reference, Release 0.5

Sy, Cy

Se, Csn, Cs

Can, C2, Do

Csy, D3

Dsg, Cuyy Dy
D34, D3p, Cev, De
Ty, O

The way to derive the above lists is the following.
Procedure:
1. Find all finite crystallographic subgroups of SO(3) called rotation subgroups
2. Take each subgroup from 1) and add —I and close the subgroup (‘non-rot containing —1I’)

3. for each subgroup G” in 1), find whether it has some normal subgroups G of index 2 (half a size of
G”) and construct G U (—1)aG™, where a ¢ G and a € G; this will be a ‘non-rot not containing
—I" (for each G" there can be zero, one or more such GT).

The sum of 1.,2.,3. are all finite crystallographic groups of O(3). The procedure is described in [Sternberg],
p. 28-40.

An example: O (all rot. symm. of a cube, i.e. no mirroring) is 1), O" (all symm. of a cube) is 2) made of
O and T, (all symm. of a tetrahedron) is 3) made of 1).

Zoology

Schonflies notation: C, is an n—fold rotation (2,, 3, ..) group (planar polygon), D,, is a diedric group, i.e.
C', plus turn-the-page two-fold rotations (e.g. 2., 2,), T, O and I (=Y) are the rotational symmetries of a
tetrahedron, octahedron (identical to those of a cube) and icosahedron (identical to those of a dodecahedron),
respectively. Additional indexes mean reflection planes, horizontal, vertical, diagonal (h,v,d) or —I (i). Some
atypical notation: So = C;, S¢ = Cs;, Sy = Co;, Cs = Cip.

Hermann—-Mauguin (HM, international) notation: 2,3,4 means C,,, 4 means rotation-inversion axis (rotation
followed by —1I), m is a vertical mirror plane, /m is a horizontal mirror plane.

Symmetry operations (in Table 3 of [Birss]): like HM, 2, means a two-fold rotation around xz—axis, 2, means

some other axis in the xy plane than z,y or zy (diagonal), 3, is a rotation followed by —I. 3(2,) means
three different two-fold axes 2 .

Construction and usage of the character table

For simpler groups the character tables can be fully constructed by the following rules:

1. The sum of the squares of the dimensions n; of the irreducible representations is equal to the order g
of the point group:

k
Yomn=g

p=1
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The dimension n,, is given by the character of the identity matrix (first column) n, = x*(E), so the
sum of squares of the first column is g. It is customary to put the characters of the one dimensional
representation (x'(C;) = 1) into the first row, so the first row is filled with 1s. Also, n; must divide g.

2. The number of irreducible representations r (rows) is equal to the number of classes k (columns)

3. The rows must satisfy

k
3 g (C)X"(Co)* = gbu
=1

4. The columns must satisfy

5. Characters of all one-dimensional representation must be roots of unity, equal to xy = e%, where n
is the element order, which must divide the group size g (and it is the same for the whole conjugacy
class). In general, k is any integer (for faithful representation it would be k = 1). This follows from
the fact, that the character is also the one-dimensional representation matrix and they all commute,
thus the group is Abelian. Also, the characters (=representation matrices) must respect the group
operations, so for example if for two group elements g7 = g, then their characters must also obey
X1 = xe-

6. Character of an element is the complex conjugate of its inverse. If they both belong to the same
conjugacy class, the character must be real. If the character is complex, it means that its inverse is
not from the same conjugacy class and then there must be a complex conjugate for another conjugacy
class from the same irreducible representation.

7. Characters come in complex conjugate pairs, since complex conjugate of a representation is also a
representation. If there is only one representation of the dimension d, then it must be real (since it is
its own conjugate). If there are two representations of dimension d and one is complex, then the other
one must be its complex conjugate. Another way to look at this is that if we conjugate each entry of
the character table, then we must get the same character table (up to a possible reordering of rows
within the same dimension).

8. If there is one dimensional representation A; (with characters x;1) and any other representation 7' of
dimension d (with characters ), then there must be a representation of dimension d with characters
x1X (corresponding to the tensor product A; @ T').

There exists a systematic approach that works for any group, but it is complicated (see for example [Dixon67],
[Blokker72], [Cannon69] and [Chillag86]).

The notation for irreducible representation: One-dimensional irreducible representations are labeled either
A or B according to whether the character of a 27” (proper or improper) rotation about the symmetry axis

of highest order n is +1 or —1. If there is no symmetry axis, all one-dimensional representations are labeled
A.

For general information, see [Elliott] (sec. 4.15, page 67) and [Bishop], page 128.
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Example |

Let’s take the group Cl,, which has three classes E (1 element), C3 (2 elements) and o, (3 elements).

Sogr =1, go =2 and g3 = 3 and the order is g = g1 + g2 + g3 = 6. Therefore it has three irreducible
representations, whose dimensions must satisfy:

n?+n3+ni=6
The only integer solution (up to a permutation) is n; = ny = 1 and n3 = 2. So we immediately have:

Cso | E 2C5 3o,

1 1 1
1 a b
2 c d

The rule 3. generates the following equations for all x4 and v:

Sk 9" (COXY(Co)* = 9o

6=26
1+2a+3b=0
24+2c+3d=0

1+2a2+4+32 =6
24+ 2ac+3bd=0
442¢4+3d2=6

WNN R = =T
W WD WD -

Solving all these equations simultaneously, we get two independent solutions. One is:

a=1
b=-1
c=-1
=0
and the other is:

ae 71
5

3
b= -

5
_1
°T5
g 2

5

The rule 4. generates the following equations for all ¢ and j:

i G o M (COx(Cy)T = Loy
1 1 6=06

1 2 l1+a+2¢c=0

1 3 1+b+2d=0

2 2 1+a?+c?=3

2 3 l1+ab+ecd=0

3 3 1+024+d?>=2

Both of the above solutions for (a, b, ¢, d) satisfy all of these equations, so the column equations are redundant.
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Now we use the rule 5. and see that the second solution is not a root of unity, so we discard it. The final
character table is:

Cgv ‘ E 203 3071
A |1 1 1
A | 1 1 -1
E |12 -1 0

Code:

-

from sympy import var, solve, Matrix
var("a, b, c, d")
g =[1, 2, 3]
M = Matrix([
IS PN
[1, a, b],
[2, ¢, d11)

def rows(mu, nu, M, g):
eq =0
for i in range(len(g)):
eq += glil * M[mu, il * M[nu, il
if mu == nu:
eq —= sum(g)
return eq

def cols(i, j, M, g):
eq =0
for nu in range(len(g)):
eq += M[nu, il * M[nu, j]
if i == j:
eq —= sum(g) / glil
return eq

print "Character table:"
print M
print "Rows conditions:"
egs = []
for mu in range(3):
for nu in range(mu, 3):
eq = rows(mu, nu, M, g)
eqs.append (eq)
print mu+l, nu+l, ": ", eq
print "-"x*40
print "Columns conditions:"
eqs2 = []
for i in range(3):
for j in range(i, 3):
eq = cols(i, j, M, g)
eqs2.append(eq)
print i+1, j+1, ": ", eq
print "-"*40
print "Solving the 1, 2, 4, 5 equations out of 0..5 from the rows conditions"
s = solve(eqs[1:3]+eqs[4:]1, [a, b, c, dl)

(continues on next page)
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(continued from previous page)

print s
print "Test that all the solutions satisfy the rest of the equations:"
for a, b, ¢, d in s:

print

print "Solution:", a, b, c, d

r = eqs[3].subs({

nan

a": a,
Ilbll: b,
”C": C,
Ildll: d’
i)
print "Equation 3 from rows conditions, result: ", r
assert r ==

print "Columns conditions:"
for i, eq in enumerate(egs2):
r = eq.subs({

n

"a": a,
Il'bll: b,
IICII: C,
lldll: d’
)
print "Equation /% from columns conditions, result: /r" % (i, r)

assert r ==

.

This prints:

-

Character table:
[1, 1, 1]

[1, a, b]

[2, c, d]

Rows conditioms:
11 : 0

12 : 2%xa + 3%b + 1

13 : 2%c + 3%d + 2

2 2 : 2%a**2 + 3xb**2 - b5
2 3 2xa*c + 3*xbxd + 2

3 & 2xc*k*2 + 3xd**2 - 2

11 : 0

12 : a + 2%c + 1

13 : b + 2%d + 1

2 2 ax*2 + ckx*2 - 2

2 3 : axb + c*xd + 1

g & b**2 + dx*2 - 1

Solving the 1, 2, 4, 5 equations out of 0..5 from the rows conditions
[(-7/5, 3/5, 1/5, -4/5), (1, -1, -1, 0)]

Test that all the solutions satisfy the rest of the equations:

Solution: -7/5 3/5 1/5 -4/5
Equation 3 from rows conditions, result: O

(continues on next page)
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Columns conditions:

(continued from previous page)

Equation O from columns conditions, result: O
Equation 1 from columns conditions, result: O
Equation 2 from columns conditions, result: O
Equation 3 from columns conditions, result: O
Equation 4 from columns conditions, result: O
Equation 5 from columns conditions, result: O
Solution: 1 -1 -1 0

Equation 3 from rows conditions, result:
Columns conditions:

Equation O from columns conditions, result: O
Equation 1 from columns conditions, result: O
Equation 2 from columns conditions, result: O
Equation 3 from columns conditions, result: O
Equation 4 from columns conditions, result: O
Equation 5 from columns conditions, result: O
Example Il

We derive the character table for C3, again, using another approach. First we determine the element orders,
that must divide the size of the group (possible values are 1, 2, 3, 6). Element order of the class E is 1,
because E? = 1. The element order of Cs is 3, because C3 = 1. Finally, the element order of o, is 2, because

2 _
o;=1.

O 3v E 2 03 30 v
class sizes 1 2 3
element orders | 1 3 2
Aq 1 1 1
A2 1 a b
E 2 c d

Rule 7: The characters of the representation As must be real, because otherwise A; would have to be a
complex conjugate. E is the only representation of dimension 2, so it must be real as well.

Rule 5: As is Abelian, with element orders 1, 3 and 2. As such, we must have:

Where k£ and [ are unknown integers.
(corresponding to a = 1) and [ = 0,1 (corresponding to b = +1).

Rule 3 gives:

a=e€

ik

3

27

b=e2

1+2a+3b=0

However, since both a and b is real, the only solution is £k = 0

And plugging in @ = 1 this implies b = —1, consistent with the previous paragraph.

Rule 8: multiplying A3 by E must give characters of dimension 2, which is F, so we get:

+l-c=c
—-1-d=d
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From which d = 0. Rule 3 gives:
24+2c+3d=0

Where we use d = 0 and we get ¢ = —1. The final character table is:

Cso | E 205 30,
A 1 1 1
Ay 1 1 -1
E |2 -1 0

Example IlI

We derive the character table for Cs.

Co E O

class sizes 1 1
element orders | 1 2
Aq 1 1

A2 1 a

We have two classes, group order is 2, so we must have two representations of dimension 1. Using the rule
3. we get:

14+4a=0

so a = —1 and the final character table is:

Example IV

We derive the character table for Cj.

Cs E (O3 032
class sizes 1 1 1
element orders | 1 3 3

We have 3 classes and representations, group order is 3, so they must be one dimensional:

Cs E C3 C2

class sizes 1 1 1
element orders | 1 3 3
A 1 1 1
AQ 1 a b
A3 1 Cc d
Rule 3 says:
l1+a+b=0
Rule 5 says:
a =k
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27

where w = €73, so:
1+ +wl=0

Which has only two solutions: &k = 1,1 =2 and k = 2, [ = 1. If we choose the first solution, we get a = w
and b = w? = @. Using the rule 7. it follows that ¢ = @ = @ = w? and d = b = w. If we choose the second
solution, we get the pairs a,b and ¢, d interchanged, however, we can reorder the rows, so these two options
are equivalent. The final character table is:

Cs |E C5 C3
A1 1 1
As |1 w  w?
As |1 w? w
ori —1+1iV3
w=e3 =——
2
Example V
Group Cy:
Cy E C, 3 3
class sizes 1 1 1 1
element orders | 1 4 2 4
Ay 1 1 1 1
Ao 1 a b c
As 1
Ay 1
Rule 5 gives:
a=i*
= (-1
c=1i"
Rule 3 gives:
1+a+b+c=0 (3.36.2.1)
Using the rule 7. we know that at least one of Ay, A3 and A4 must be real, so let it be Ay. The only
real solutions of the equation (3.36.2.1) are a = 1, b = —1, ¢ = —1 and permutations. The representation
however must be isomorphic to the C,; group, so in particular a> = b, from which b = 1 and then a = —1
and ¢ = —1.

The group operations give:

a’=b
ab=c
ac =
which gives:
2k =1
k+l=m

k+m=0,4,812, ...
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The possible solutions are:

— N
NN O~
HWMS

3

The first solution is real and it is equal to As. The other two solutions are complex conjugate and they must
be solutions of A3 and A4, because A3 and A, cannot be real (otherwise they would have to be equal to A
and the orthogonality relation for columns would not hold). The final character table is:

Cy ‘ E Cy C} C3
A |1 1 1 1
A |1 -1 1 -1
As |1 ¢ -1 —3
Ay |1 —1 =1 4
Example VI
Group T*
T E 4C3 40% 30,
class sizes 1 4 4 3
element orders | 1 3 3 2
Ay 1 1 1 1
Ay 1 a b c
Az 1
T 3 d e f

The group size is 1 + 4 + 4 + 3 = 12, so the only possible option for dimensions of the 4 representations is
1,1, 1 and 3.

Rule 5 gives:

27i

where w = e73 . Rule 3 gives:
144w + 4w +3(-1)™ =0

The only solution is m =0, k =1 and [ = 2 (and k with [ interchanged). This fully determines A5 and As.
The last row is determined from column orthogonality conditions (we compare the given column with the
first column):

l4w+w?+3d=0
l1+w?+w+3e=0
14+14+143f=0

Using the relation 1 +w+w? =0 we get d =0, e =0 and f = —1.

The final character table is:

T ‘ E 4C3 4C% 30,
A1 1 1 1
Ay | 1w w? 1
As |1 w2 w 1

T |13 0 0 -1

120 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

3.36.3 Applications of finite groups

Distinct energy levels (‘vibrations’)
Assume that we know number of atoms in a molecule and measure the number of its distinct vibrational
modes (frequencies) in a multiplet. We want to know its symmetry.

We go through the list of all possible (point) symmetries S of such a molecule and look at what all reps. S
has. If an n—tuplet was observed among the vibrational modes and there is no n-dimensional IR of S, then
can be excluded.

This procedure assumes that (a) the original symmetry S is slightly disturbed because of something and (b)
two multiplets (m and n dimensional) do not accidentally happen to have the same frequencies (‘accidental
degeneracy’).

Selection rules (‘transitions’)

According to [Pilar], p. 572.

Probability of an optical transition is proportional to
(i[H1lf) , (3.36.3.1)
where |i), | f) are the initial and final states and H; is the operator of the interaction causing the transition.

This is the Fermi golden rule (first order time dep. perturbation theory).

The integral ((3.36.3.1)) may vanish because of the symmetry. A simple 1D example is that |f) is an even
function f(z), |¢) is an odd function i(z) and H; is an even function hq(z). Then i*(x)hq(z)f(x) is odd and
thus the integral over (—o0, 00) vanishes. The group theory only generalizes this observation.

The procedure is: find the IRs p;, py to which |¢), |f) belong and also p, the regular rep of Hy in order
to catch all IRs of H; (is this procedure correct?). Then construct p; ® p ® py, decompose it into IRs and
see if the trivial rep is present. If not, the integral ((3.36.3.1)) vanishes. This procedure is claimed to be
equivalent to checking whether p; ® py and p contain at least one common IR.

The infrared absorption (IRa) is described by H; x z (or y, z, depending probably on the polarization of
light), the Raman scattering has H; oc 2% (it comes from the second order perturbation theory?).

Zoology

Todo:
e Describe the representations A1, As, By, E etc.

« Reps are specified by the generating functions f(x,y, z) and the symmetry operations T" acting on these
functions f(z,y,z) — f(2',y/,2") then transform the arguments, (x,y,z2) — (2/,y,2") = T(z,y, 2).
Explain what functions are commonly used (x, R, ...) and give maybe some examples.

e Further reading: Davydov, p. 318, 195. Joe Penrose: Symmetry in Science.
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3.36.4 Continuous Groups
Lie groups+algebras

A continuous group with metrics is a Lie group (more exactly a differentiable manifold and a — ag and
a — a~! are differentiable Vg, p. 172 in [Sternberg]) usually a subgroup of GL(n) is meant, a linear Lie
group (i.e. matrices). Peter—Weyl theorem (p. 179 in [Sternberg]) looks like that compact Lie groups are
practically as nice as finite groups.

Consider G = O(n), p. 234 in [Sternberg]. If A € G then exp(—tA) C G where t € R. At least in O(3) and
probably in any O(n), any element of G can be written as exp(—tA) where A is a 7/2 rotation around some
axis. These A’s are the generators of G.

Typical example: for G = SO(3) there are three generators, i4,, iA,, iA,, where A, is the rotation by m/2
around z-axis in R®. The generators form a vector space (here the linear span of i4,, iA,, i4,) with an
additional operation of commutation. This structure is closed and it is called the Lie algebra of the group
G. The commutation relations between the generators fully specify the Lie algebra. E.g. [i4,,14,] = iA,
and the two other ones.

This is a great simplification because a continuous (infinite) group was thus mapped on a vector space, the
algebra, where it suffices to look at the basis elements, the generator. The net effect is that we have to watch
only three objects instead of infinitely many in the example above.

Todo: weights, roots and Dynkin diagrams. Octets and decuplets. Classification of IRs of SU(n). From
[Georgi].

IRs of SU(2)

p. 181 in [Sternberg]; alternative somewhere in [Georgi].

The Peter-Weyl theorem concerns also the orthogonality of characters and that in turn strongly restricts any
possible characters of SU(2). The conjugacy classes of SU(2) are exemplified by matrices Uy = diag(e??, e=%)
and their possible characters can only be

S

x(0) = Z exp(—i2k0)

k=—s

with 2s integer.

All the corresponding reps exist, they are defined on the space 23¢, z%s_le, ..., 235 by U_@zfs_kzéC —
[expi(2s — 2k)0] 2257k 25,

For an IR of SU(2) the complex conjugate is just the original. For other SU(n) it is not necessarily the case,
p. 182 in [Sternberg].

IRs of SO(3) are just those of SU(2) but s must be an integer.
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Young diagrams
YD is a systematic method to find all IRs of any symmetric group S,, (permutations of an n-element set).
The idea:

« find all conjugacy classes of S,

e assign an IR to each of them

Char’n of the conjugacy classes: each permutation can be decomposed into cycles. This cycle structure
(i.e. how many cycles of length 1, how many of length 2, etc. = [v1,va ...,1,]) is a unique mark of each
conjugation class. The Young diagram is written by rows, each row has A; empty boxes and \;—\;; = v; > 0.
Each conjugacy class has one YD. An YD of S,, has n boxes.

A Young tabloid (YTd) is obtained by filling an YD with numbers 1, ..., n where ordering in each row does
not matter. A Young tableau is an YTd where all orderings (thus also in rows) matter.

The IRs of S,,. Take an YD A. On the space of all corresponding YTd’s (M)) a rep. of the S, is created.
It is decomposed into IRs and shown to have some ‘new’ IR compared to p > A.

Details are explained in [Sternberg], p. 76 or in the lecture notes of J. Niederle.

Comments from p. 82 of [Sternberg]: Basis of M) is defined (e;; d{;; means probably a function on My
which is zero for all {y} unless {y} = {t}). The action of a € S,, on this basis functions is described.

3.36.5 Literature

Books:
Articles:

3.37 Wigner D Function

The Wigner D function gives the matrix elements of the rotation operator R in the jm-representation. For
the Euler angles «, 3, v, the D function is defined as:

<j7 m|R(oz, 67 7)|j/7 m/> = 5jj/D(ja m, m/7 (&%) Bv 7)
Where the rotation operator R(a, 8,7) is defined using the z-y-z convention:
R(O[, ﬂ7 'Y) _ e—iane—iBJye—i’sz

Here J; is the projection of the total angular momentum on an é-axis. The |jm) is the eigenstate of the
operators J2 and J,. Using the fact that e=*7/= |jm) = e~ |jm), we can see that the Wigner D function
can always be written using the Wigner small-d function as:

D(j7 m’ m/7 a? ﬁ7 7) = <j7 m‘R(aﬂ /87 ’V)|j7 ml> = <j7 m|e_zane_lﬂJye_z’sz |j7 m/> =

— e—z’m(x <], m|e—1’/3’Jy |], m/> e_im/»y _ e—imad(j) m, m/’ B)e_im/’Y
where

d(j,m,m/, B) = (j,m|e”"7|j,m’)
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We can use the following relations to evaluate d(j, m, m’, 3):

J
d(j,m,m’, ) =i~ (=12 N d(j,m,m”,

T i . ™
5)6 . Bd(]am//a 7m/a 5)

i 3= o [ s () ()

3.37.1 Derivation

The small-d function formula above can be derived from the following formula:

COs sin

e VG MG —m)G+mG =) ik B ok —m B
A mem' 5) = 3 () o S T R ) st

k

by substituting
—lia B L, 3
a=+e 2"%cos — 5 e 2"

1,
b= —e 2" smg +2W

into

Z(_l)k \/(.7 + m)'(] - m)'(] + m/)'(j - m/)' ajfm’fka*j+mfkbkb*k+m'7m
- (G—m' — k)G +m—k)El(k+m —m)!
This follows from:
€ =ae+bC
¢'=-be+a’¢
let the polynomial be:
tmei—m

VI +m)l(G—m)!

fm(e, Q) =

and (using binomial theorem in the process):

_— b i+m b* j—m
Pufn(e.0) = fnla*e — b +a0) = ein m>('<j€—+ m;) —-

+ . B
_ f ]f \/(J +m)!(j — m)! ak’a*jer—kbkb*jfm—k’Ezjfkfk’CkJrk' _
k‘k”j—i—m )G —m— k)

k=0 k’'=

_ ] +m)(.7 - m)'(J +m/)'(] - m/)' i—m/—k xj+m—kjkyxk+m’ —m
ZZ Gonl — G T m— e+ —m® fonr(€,€)

And it is the coefficient of f,,/.
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3.38 Ordinary Differential Equations

3.38.1 Finite Difference Formulas

We define the backward difference operator Vy, by:
Vinf(a) = fa) = fla—h)
Repeated application gives:

Vif(a) = Vi(f(a)— fla—h)) = f(a) — fla—h) — fla—h)+ f(a — 2h) = f(a) — 2f(a — h) + f(a — 2h)
Vif(a) = f(a) = 3f(a—h)+3f(a—2h) — f(a— 3h)

n

b =3 () Vs )

k=0
We can also derive a formula for f(a 4+ t) where ¢ is any real number, independent of h:
fla=h)=(1-Vpn)f(a)
(1—=Vn) "' fla—h) = f(a)
(1=Va) ' fa) = fla+h)
(1—=Vi)"fla )
)

Now we can express the following general integral using the function value from either left (f(a)) or right
(f(a+ h)) hand side of the interval h:

a+h h h
/a f(t)dt:/o f(a—i—t)dt:/o (1= V) F f(a)dt =

o WV, o
BRI AL

) 3
:h(1+§vh+mvi+8v§;+---)f(a)=
hVj

hVy

= Tlog(i-Vy) Vh)(l — Vi) f(a) = _mf(a+h) =
:h<1—;vh—112v,%—214vi+---)f(a+h)

Code:

>>> from sympy import var, simplify, integrate

>>> var("nabla t h")

(nabla, t, h)

>>> s = integrate((l-nabla)**(-t/h), (t, 0, h))

>>> simplify(s)

h*nabla/(-log(l - nabla) + nabla*log(l - nabla))

>>> s.series(nabla, 0, 5)

h + hxnabla/2 + 5xh*nabla**2/12 + 3*h*nabla**3/8 + 251*h*nabla**4/720 + 0(nabla**5)
>>> g2 = s*(l-nabla)

>>> simplify(s2)

-h*nabla/log(l - nabla)

>>> g2.series(nabla, 0, 5)

h - h*nabla/2 - h*nabla**2/12 - h*nabla**3/24 - 19*h*nabla**4/720 + 0(nabla**5)
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Keeping terms only to third-order, we obtain:

ath o hVj - 1 3 _
/a F(6)dt = (1_vh)log(1_vh)f(a)~h<l+ Vit s v + V)f()

= hf(a) +hg (f(a) = fla—h)) + h% (fla) =2f(a—h) + fla—2h))+

2 (f(a) ~8f(a— h)+3f(a—20) ~ f(a—3h)) =
h(1+§+152+2>f(a)h< +215+383)f(ah)+
+h (152+383> f(a—zh)—h@) fla—3h) =

(a —3h) =

55 37 3
= hoo fla) — h3 4 fla— )+ hot fla—2h) R f
%(55]‘( ) —59f(a — h) + 37f(a — 2h) — 9f(a — 3h))

Similarly:
a+h hV) 1 L, 1
/a F(0)t =~ fa+ ) ~ b (1 ~ 1V - Vi~ 24Vh> fla+h) =
= % (9f(a+h) +19f(a) — 5f(a— h) + f(a — 2h))
Code:

>>> from sympy import var

>>> var("f0 f1 £2 £3")

(fo, f1, f2, £3)

>>> nablal = f0O - f1

>>> nabla2 = £f0 - 2xf1 + f2

>>> nabla3 = f0 - 3*xf1 + 3%xf2 - £3

>>> 24x(f0 + nablal/2 + 5*nabla2/12 + 3*nabla3/8)
-59*xf1 - 9%f3 + 37*xf2 + 55*f0

>>> 24%(f0 - nablal/2 - nabla2/12 - nabla3/24)

£f3 - 5xf2 + 9*xf0 + 19%f1

3.38.2 Integrating ODE

Set of linear ODEs can be written in the form:

Y _ oy (3.38.2.1)

For example for the Schrodinger we have

= Loyt e o)

Now we need to choose a grid r = r(t), where t is some uniform grid. For example 7 = rg(e? — 1):

ri = ro(el — 1)
t;=(G—1)h
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where i = 1,2,3,..., N. We also need the derivative, for the exampe above we get:
dr '
— =rge
e~ °

Now we substitute this into (3.38.2.1):

dy dr

at —at Y
We can integrate this system from a to a + h on a uniform grid ¢;:

a+h a+h

y(a+h) = y(a) + / d—ZGydt:y(a)Jr / F(t)dt

a a

where f(t) = %Gy and we use some method to approximate the integral, see the previous section.

3.38.3 Radial Poisson Equation
Radial Poisson equation is:
2
V"(r)y+ =V'(r) = —4nn(r) (3.38.3.1)
T
The left hand side can be written as:
2 1 1
V4 SV = = (V" 12V = = (V)"
r r r
So the Poisson equation can also be written as:

(rvV)" = —dnrn (3.38.3.2)

Now we determine the values of V(0), V’'(0) and the behavior of V(c0) and V’(00). The equation determines
V up to an arbitrary constant, so we set V' (co) = 0 and now the potential V is determined uniquely.

The 3D integral of the (number) density is equal to the total (numeric) charge, which is equal to Z (number
of electrons). We can then use the Poisson equation to rewrite the integral in terms of V:

7Z = /n(x)d3;v = /n(r)erer = /OOo 4rn(r)ridr =
=— /OOO(TV)”rdr =

= /OO(TV)’dr — (V)7 =
0

r]e° =

=[rV - (rV)rl5° =

R

= lim V'(r)r? — lim V'(r)r?

Let

lim V' (r)r? = C

r—0

Then around r — 0 we get V'(r) = T% and V(r) = —% + D (for some constant D). As such, C' is a point

charge (delta function) at the origin. From now on, we will assume no point charge, i.e. C' = 0.
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In the limit » — oo, we get the equation:

T — OQ:

Integrating (3.38.3.2) directly, we get:
(oo}
[(rV)]ee = —47r/ rn(r)dr
0

[V 4+rV'ee = —47r/ rn(r)dr
0

We already know that V' behaves like —T% in infinity, so V' vanishes. Requiring V itself to vanish in infinity,

the left hand side simplifies to —V(0) and we get:

V(0) = d4n /0 ()

Last thing to determine is V’(0). To do that, we expand the charge density and potential (and it’s derivatives)

into a series around the origin:

n(r):n0+n1r+ngr2+-~-=anrk
V(r)=Vo+Vir+Ver? 4+ =Y Virk

= i ka’r'kil

G Z Viek(k — 1)r

And substitute into the equation (3.38.3.1):

Zka — 1)k 24 va’“ 1 :—47rinkrk
k=0

i Viek(k — 1)7']““72 + ;Vl + - Z VikrF~! = —4x inkrk
k=2 k=2 k=0

o0 2 o0 o0
Vik(k — D)rF2 + 21, 2V krF2 = —4 7k
D Vi(h = )rt % DV 32V w )

k=2
2 o0

;Vl—i—kZQka(( -1+2)r ——47Tanr
4/1+ka1< (k+1 :—47rznkr

k=2
fvl JrZVl+2 (I+2)(1+3)r! = —47ankr

=0

2 o0
;Vl = — Z (drng + Viya(k 4+ 2)(k 4+ 3)) rk

k=0
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We now multiply the whole equation by r and then set r = 0. We get V3 =0, so V/(0) = V; = 0. We put it
back into the equation to get:

(4rny + Vigo(k +2)(k+3))rF =0

NE

>
Il

0

This must hold for all r, so we get the following set of equations for Kk =0,1,---:
drng + Viyo(k+2)(k+3) =0

from which we express Vi for all £ > 2. We already know the values for £k = 1 and k& = 0 from earlier, so
overall we get:

W= 477/ rn(r)dr
0

V1=0
% _ 47Tnk
2T Tk +2)(k+3)
in particular:
47n 2m
Vo =— 5 0 = —5 "o
47nq s
Vs=——g = —3m
41no s
Vi=—= = pm
4mng 27
V _— — _
b 30 15 °

So we get the following series expansion for V and V':

27 m m 2m
V=Vy— =ngr® — —nyr® — —nor* — —ngr® — ...

3 3 ) 15
4 4 s 2
V' = —%ngr — mnyr? — ?ﬂngrd — §n37‘4 —

Examples

It is useful to have analytic solutions to test the numerical solvers. Here we present a few.

Gaussian Charge

The Gaussian charge is simply a Gaussian, normalized in such a way that the total charge is Z:

3
n(r) = 29 g=a®r (3.38.3.3)

T2

3.38. Ordinary Differential Equations 129



Theoretical Physics Reference, Release 0.5

Let us verify the normalization by calculating the total charge Q:

Q= / 32 =4n /000 n(r)ridr =

© 7.3
:477/ a e 12y —

3
2

™
_ 4Za® / ot 2y _

izt v
7T 4a3

So the total charge is QQ = Z, as expected. Code:

>>> from sympy import var, integrate, exp, Symbol, oo
>>> var("r")

r

>>> alpha=Symbol("alpha", positive=True)

>>> integrate (exp(-alpha**2*r**2)*r**2, (r, 0, 00))
sqrt (pi)/ (4*alpha**3)

Now we calculate the potential V'(r) from the Poisson equation (3.38.3.2):

3
(rV(r))" = —4mrn(r) = —40\[/226_0‘%2
2Z
(V) = ze " 1 A

N
rV(r) = Zerf(ar) + Ar + B
V(r)=2 f(r‘”") A+t

We have two integration constants A and B. We fix the potential using the condition V' (oo0) = 0, which
implies A = 0. The other constant B is a point charge at the origin, which in our case (3.38.3.3) is zero, so
B=0.

We finally obtain the potential:

erf(ar)

V(r)=2 .

We can calculate the electrostatic self-energy, i.e. the energy of interaction of the charge n(r) with the
potential generated by this charge V(r):

Eself—*/ (x)V dsx_—/ yr2dr =

:27r/ Za ol Zerf(ar) 2 —
0 T

7r2
27%a3 2 2
= \fa / e~ "erf(ar)rdr =
™ Jo
272203 V2
N
7%

Code:
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>>> from sympy import var, integrate, exp, Symbol, oo, erf
>>> var("r")

T

>>> alpha=Symbol("alpha", positive=True)

>>> integrate (exp(-alpha**2*r**2)*erf (alpha*r)*r, (r, 0, 00))
sqrt (2) / (4xalphax**2)

Exponential Charge
The exponential charge is simply an exponential, normalized in such a way that the total charge is Z:

_ Za?

n(r) = gefm (3.38.3.4)

Let us verify the normalization by calculating the total charge Q:
oo
Q= /n(x)d3a: = 477/ n(r)ridr =
0

o0 Z 3
= 47r/ 29 arp2q, —
0 8T

Zad [
= 2a e Tr3dr =
2 Jo
_ Zad 2 _
T2 ad

So the total charge is @Q = Z, as expected.
Now we calculate the potential V() from the Poisson equation (3.38.3.2):

Zo3
(rV(r)" = —4wrn(r) = ——2@ re "
a 1\ _,. B
V(T’)——Z(2+r)€ +A+’I"

Similarly as for the Gaussian charge, we require the potential V' (r) to vanish at infinity, which implies A = 0.
Then we calculate the point charge at the origin:

C = lim V'(r)r? =
r—0
= lir%% (=2Be*" + Zar (ar+ 1)+ Z (ar+2))e " =
r—
=7Z-B
We do not have any point charge at the origin, so C' = Z — B = 0, from which it follows B = Z. We finally

obtain:
1 Z 1 _ —Qar —Qar
V(r):—Z<O‘+)e—a’“+:Z( c. e )
T r 2
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Let us calculate the self-energy:

Code:

>>> from sympy import var, integrate, exp, Symbol, oo

>>> var("r Z B")

(r, Z, B)

>>> alpha=Symbol("alpha", positive=True)

>>> integrate(exp(-alpha*r)*r**2, (r, 0, 00))

2/alpha**3

>>> V = integrate(-Zxalpha**3/2 * r * exp(-alpha*r), r, r)/r
>>> V.simplify ()

-Z*x(alpha*r + 2)*exp(-alpha*r)/(2xr)

>>> ((V+B/r) .diff (r)*r*+*2) .simplify ()

(-2xB*exp(alpha*r) + Zxalpha*r*(alpha*r + 1) + Zx(alpha*r +
2)) *exp(-alpha*r)/2

>>> ((V+B/r) .diff (r)*r*+*2).1limit(xr, 0)

=18 T+ %

>>> integrate(exp(-alpha*r)*((l-exp(-alpha*r))/r-alpha*exp(-alpha*r)/2)*r**2, (r, 0, 00))
5/ (8xalphax**2)

Piecewise Polynomial Charge

We will use a second-derivative continuous piecewise polynomial for n(r), normalized in such a way that the
total charge is Z:

n(r) = {—212(7‘ —710)3(6r% + 3rre. +12)/(5mrd) for 0 <r <r. (3.38.3.5)

0 for r > r,

Let us verify the normalization by calculating the total charge Q:

Q= /n(x)d?’x = 471'/ n(r)ridr =
0
= 47r/ ’ —21Z(r —re)®(6r2 + 3rr. + 1) /(57rd)r?dr =
0
=7

So the total charge is Q = Z, as expected.
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Now we calculate the potential V (r) from the Poisson equation (3.38.3.2):
(rV (r)" = —dmwrn(r) = dnr - 21Z(r — r.)3 (612 + 3rr. 4+ r2)/ (57rd)
Vi) {ZTQ (9r° — 30r*r, + 28372 — 14r2) + A + &1 for 0 <r <7,
T)=

8
578

Ag—i—% for r > r,

Similarly as for the Gaussian charge, we require the potential V' (r) to vanish at infinity, which implies As = 0.
Then we calculate the point charge at the origin:

C = lim V'(r)r? =
r—0

i (. 83218362 5 287 o 98
= ! 5r8 rl " 78 " 5r3
= _Bl

We do not have any point charge at the origin, so C = —B; = 0, from which it follows B; = 0. Then B, is
calculated from the condition of a continuous first derivative at r = r:

V’( ) —T% for0<r<r,
re) = c
—=22 for r > r,

So By = Z. Finally, 4; is calculated from the continuous values of V (r.):

Z
V(rc):{Al_;”c for0<r<r,

z
= for r > r,

which implies 4; = % We finally obtain:

Z
Vir)= { ZC

Let us calculate the self-energy:

(977 — 30787 + 28r°r2 — 14r2r} 4+ 12r7) for 0 < r <,

for r > r.

Eseir = %/n(X)V(X)dSJJ = 47” n(r)V(r)r*dr =
0

Te Z
— 27r/ —21Z(r — 10)3(6r2 + 3rre + 12) ) (5% o (9r™ — 30787, + 287%r2 — 14r%r] + 12¢]) r?dr =
0 Te

1596222
© 178757,

Let us also calculate the following integral:

= [ (£ -vea) ato=an [ at) (£ vin) rar
1097622

178757,
Which agrees with [Pask2012], equation (10c). The following integral over the sphere of radius r.:

Ispn = /Q< (f - V(x)) A3z = 4r /Or (f - Vm) r2dr =

_ 1471'er
75

Again in agreement with [Pask2012], the paragraph after equation (17).
Code:
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>>> from sympy import var, pi, integrate, solve
>>> var("r r_c Z A B")
(r, rc, Z, A, B)

>>> n = -21*Z* (r-r_c)**3*% (6*r**2+3*r*r_c+r_c**2) /(5*pi* r_c**8)
>>> 4xpikxintegrate(n*r**2, (r, 0, r_c))
Z

>>> V = integrate(-4*pi*r*n, r, r)/r

>>> V.simplify ()

ZxT**2% (Qxr**x5 — 30*r**4*r_c + 28*%r**k3*r_c**2 — 14d*xr_ c**5)/(5*r_c*x*8)
>>> ((V+A+B/r) .diff (r)*r*+*2) .simplify ()

-B + 63%Zxr**8/(5*r_c**8) — 36*Zkr**7/r_cx*x7 + 28*Z*r**6/r_cx*6 — 28*Z*r**3/(5*r_c**3)
>>> (V+A) .diff(r) .subs(r, r_c)

-Z/r_c*x*2

>>> (V+A) .subs(r, r_c)

A - 7*xZ/(5%r_c)

>>> A = solve((V+A) .subs(r, r_c)-Z/r_c, A)[0]

>>> A

12*Z/ (6*r_c)

>>> V =V + A

>>> V.simplify ()

Z* (r**2% (Oxr**k5 — 30*r**4*r_c + 28*r**3*r_cx*x2 — 14*xr_c**5) + 12*%r_c**7)/(5*r_c**8)
>>> 2*pi*integrate(nxV*r**2, (r, 0, r_c))

15962*Z**2/ (17875*r_c)

>>> 4xpixintegrate(n*(Z/r-V)*r**2, (r, 0, r_c))

10976%Z**2/ (17875*r_c)

>>> 4xpixintegrate((Z/r-V)*r**2, (r, 0, r_c))

14*pi*Z*r_c**2/75

L

Alternatively, one can also calculate this using a Piecewise function:

>>> from sympy import var, pi, integrate, solve, Piecewise, oo, Symbol

>>> var("r Z A B")

(r, Z, A, B)

>>> r_c = Symbol("r_c", positive=True)

>>> n = Piecewise((-21*Z*x(r - r_c)**3*(6*r**2 + 3*r*r_c + r_c**2)/(5xpi*r_c**8), r <= r_
—~c), (0, True))

>>> 4xpixintegrate(nxr*x2, (r, 0, 00))

Z

>>> V = integrate(-4#*pi*r*n, r, r)/r

>>> V.simplify ()

Piecewise ((Zxrx*2x (9*kr**5 — 30*r**x4d*xr_c + 28*r**3%r_c**2 — 14*r c**5)/(5*r_c**8), r <= r_
~c), (0, True))

>>> ((V+A+B/r) .diff (r)*r*+*2) .simplify ()

Piecewise((-B + 63*Z*r**8/(5*r_c**8) — 36*Z*r**7/r_c**7 + 28*Z*r**6/r_c**6 — 28*Z*r**3/
— (5*r_c**3), r <= r_c), (-B, True))

>>> (V+A) .diff(r) .subs(r, r_c)

-Z/1_c**2

>>> (V+A) .subs(r, r_c)

A - 7xZ/(5*r_c)

>>> A = solve((V+A) .subs(r, r_c)-Z/r_c, A)[0]

>>> A

12%Z/ (5%r_c)

>>> V = V + Piecewise((A, r <= r_c), (0, True))

(continues on next page)
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(continued from previous page)

>>> V.simplify()

Piecewise ((Zx (r**2*% (9*xr**5 — 30*r**4d*xr_c + 28*r**3*r_c**2 — 14*r_c*x5)/r_c*x*7 + 12)/(5*r_
—~c), r <= r_c), (0, True))

>>> 2*pixintegrate(n*V*r**2, (r, 0, 00))

15962*7Z**2/ (17875*r_c)

>>> 4xpi*integrate(n*(Z/r-V)*r**2, (r, 0, 00))

10976%Z**2/ (17875*r_c)

3.39 Linear Algebra

3.39.1 Scalar Product

Virtually all spaces used in physics are Hilbert spaces (treated in the weak sense, i.e. equipped with distri-
butions), which means that they have a scalar product and a norm.

The braket (f|g) in Dirac notation is a scalar product and we are free to define it anyway we like, as long as
it satisfies the following properties:

(flg) = (91N
(flag) = a(flg)
(fi + f2lg) = (filg) + (f2lg)

{(fIf) =0
where (f|f) = 0 if, and only if, |f) = 0. Scalar product induces the norm:
A = VAL
Any norm has to satisfy the following properties:
lla £} 11 = Talll [F)1]
)+ 1) < [T+ g I
AN =0

where || |f) || = 0 if, and only if, | f) = 0. Those properties are automatically satisfied by the induced norm.

In general, any of these properties can be weakened, one can study spaces that have a norm, but not a scalar
product, or spaces, that have objects resembling a norm (or a scalar product), that only satisfy some of the
properties of the norm (or a scalar product). Those are not very important in physics. On the other hand, it
is very important to understand how to work with Hilbert spaces (in the weak sense). Dirac notation makes
it very easy to understand and remember how to work with such spaces.

Examples

Some examples of frequently used spaces and scalar products follows.
Finite dimensional spaces:

i
3
I
Fl=(h f = fa)
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R™ FEuclidean scalar product:

9
g2
flog=CfH fo - fu) : = fig2 + fag2a + -+ fagn
In
Infinite dimensional spaces:
fi
/=1 2
(fl=(H fo )
12 scalar product:
g1

(flog=(CH fo ) 9? = f1g> + fags + - -

Function spaces:

{(fl=rf"(=)

mmzéﬁumwm

L? scalar product:

H' scalar product:

(o) = [ £@(o) + " (@)g' ()
H? scalar product:
(o) = [ @ota) + 1 (2)g' @) + " (@)’ (2)da
Energy scalar product:
(o) = [ 1 @atalgta) + 1 (@)pla)g (@)a

All of these scalar products automatically satisfy all of the properties of the scalar product, only the energy
scalar product doesn’t automatically satisfy (f|f) > 0, which imposes some conditions on the parameters

p(z) and ¢(z).

3.39.2 Projections

Projection is a linear idempotent operator P:
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It takes a vector |u) from V and projects it onto a vector |w) = P |u) from W. Further application of the
operator P gains nothing: P|w) = P?|u) = Plu) = |w). It decomposes the space V into a direct sum
V =W @ W+ of the projection subspace W and its complement W. If |w) is from W then its complement
|u) — P |u) is from W.

Orthogonal projection is a projection that is Hermitean:
P =P
The complement of an orthogonal projection is orthogonal to any vector from W:

(u — Pulw) = (u|w) — (Pulw) = (u|w) — (u| PT|w) =
= (u|w) = (u|Plw) = (u|lw) — (ujw) =0
In other words, orthogonal projection projects a vector |u) from the space V into an orthogonal subspace

(projection subspace) W. The two spaces W and W+ are orthogonal, because any vector from W is
orthogonal to all vectors from W+. Given the space W, the operator P is unique.

The complement of non-orthogonal projection is not orthogonal to any vector from W:
(u — Pulw) = (u|w) — (u|Plw) # (u|w) — (ul PTlw) = (uw) — (ulw) =0

And the two spaces W and W+ are not orthogonal, because any vector from W is not orthogonal to any
vector from W+. Given both spaces W and W+, the operator P is unique.

If we choose any orthonormal basis |wg), |wi), |wa), .., of the subspace W, then the orthogonal projection
P is:

P=>"|wg) (w| (3.39.2.1)
because:

Z|wk wk|2\wz (wi| = Z lwi) (w|wi) (wi| =

k,1=0
o0 o0
=) wk) O (wr = w) (wi| =
k,1=0 k=0

and

(lek wk|) Z(lwk (wi])! lek (wi| =

k=0

P is independent of the basis, i.e Yo Jwg) (wi| = > 1o, |w) (w], as long as |u;) span the same subspace as
|wy), because the operator P is unique.

To find the closest vector |w) from W to the vector |u) from V', we need to minimize the norm || |u) — |w) |].
So we write |w) = P |u) 4 |z) for some vector |z) from W and simplify the norm:

[l ) = Jw) |I* = (u — wlu — w) = (u— Pu—zlu — Pu—z) =
= (u— Pulu— Pu) + (z]z) — (u — Pu|z) — (z|]u — Pu) =
= (u — Pulu — Pu) + (z|2)
which is minimal for |z) = 0, so we found out that the closest vector is |w) = P |u). We used the fact that

(u— Pulz) = 0, because |u — Pu) is from the orthogonal complement to the subspace W. In other words,
orthogonal projection finds the closest vector from a subspace onto which it projects.
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Projection Coefficients

Given the basis |v;) (orthogonal or non-orthogonal), we would like to find a formula for the projection
coefficients ¢y defined by:

Plu) =" |vk) ¢ (3.39.2.2)
k=0

This holds, because P |u) belongs to the space W and every vector from it can be expressed as a linear
combination of |vy).

Projecting to Orthogonal Basis

For orthogonal projections we simply substitute the equation (3.39.2.1) into (3.39.2.2) and get:

Plu)y =Y wg) (wglu) = |wk) ¢x,
k=0 k=0
from which the projection coefficients ¢, are given by
Projecting to Nonorthogonal Basis

In order to project onto a nonorthogonal basis |vy) (for example a finite element basis), we multiply (3.39.2.2)
by (v| from the left and simplify:

(| Pluy = (vilox) i
k=0

(| PHu) =~ (vilor) o
k=0

(oilu) =~ (vilvr) o

=
Il
o

so we need to solve a linear system for the coefficients ¢x:

Awdr = f1, (3.39.2.4)
where
A = (ur|og)
fi = (uilu) .

This works for any basis, it doesn’t have to be normalized nor orthogonal. In the special case of a (normalized)
orthogonal basis, we get Ay, = (vi|vk) = dix and from (3.39.2.4) we get

Ao = owdr = &1 = fi = (ulu) ,

so we recovered the equation (3.39.2.3) as expected.
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Examples

R3 orthogonal projection. Orthogonal basis:

1

jwo) = 0

0

0

jwi) = | 1

0

1 0 0 0 0 0 1 00

P =|wo) {(wo| + |w1){(wr|=]1 0 0 0 |+ 0 1 0 |=]1010

0 0 0 0 0 0 0 0 O

Different orthogonal basis:
1
1

Wp) = —= 1

wo) = 5
=L
wy)=— | —
1 72 .
1 1 10 1 -1 0 1 0 0
P:\w0><w0|—|—|w1><w1|:§ 1 1 0 + = -1 1 0 = 01 0
0 0 0 0o 0 0 0 0 0

R? non-orthogonal (oblique) projection (a # 0):

Because the projection is not orthogonal (in the R? Euclidean scalar product), the projected point (z+ ay,0)
is not the closest point (in the induced Euclidean R? norm) to (z,y). For a = 0 the projection becomes
orthogonal and indeed the projected point (z,0) then becomes the closest point to (z,y).

Lagrange interpolation projection onto the space {1, z}:

P (UL CINRIUEYC)
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L? projection onto the space {1,z}. Orthogonal basis:

3
lwy) = 2@

P |u) = |wo) (wolu) + w1) (w1 |u) =

712 dx+\/7/\/7f )dz = = /f )dz + x[xf()

Different orthogonal basis:

\ S

lwo) = 1 (1+2)
) = 221 - 32)
Plu) = [wo) (wolu) + [w1) (w1 |u) =
_ \f(l—l—x)/l \f(l—i-x)f(x)dx+\f(1—3x)/l fu—sx)f / f(@)dz + Sx[ of(2)dz
Nonorthogonal basis:
lwo) =1
lw) =14
Akt = fi

e () = (k) i) -

S, Bl ) (31
)

NDIWw wloo DN

a4
= ()= () - ( P e
) i )-
)

( 21, f(@) = 301 +2) f(2)dz )
_%f_llf( )

N
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H' projection. Nonorthogonal basis:

|w0>—1
|w1) =1+
Aipr = fi

_( Ao Ao (wolwo)  (wo|wr)
Alk_(Alo An) ( (w1]wo) w1|w1 )_
B [ da Jh1+ade 2)

o\ [ l+ads f_l(l-l—:v +1dz 3

7 3
w-(47)

_( fo\ _ [ (wolu) \ _ () dw

fi= f1)<<w1|u>)<f11 >f<>+f<>dx>

(0N g, (L -2 [ )
o= (o) == 2 §8><121+x (z) + f(x)dm>‘
1) -3

:< 1 51@) - 30+ @) (@) = 3 (@)de >:
S5 =4 @) + 20+ 2)f (@) + 2 (@)de
Plu) = [wo) o + |w1) 1 =

=1 (/11 @) - S0+ 2)f() - gf’(x)dx) +(1+a) </1 2@+ S+ D))+ 2f’(x)dx) _

1
_ 1%f(x)7§f,(x)dx+x/,1 gxf(x)Jrgf/(;p)dx:
1 1

_ %/_1 f(x)dx+gx/_l xf(x)dx—i—%(—l"‘x)(f(l)_f(_l))

3.40 Differential Geometry

3.40.1 Manifolds

Scalars, Vectors, Tensors

Differentiable manifold U is a space covered by an atlas of maps, each map covers part of the manifold and
is a one to one mapping to an euclidean space R™:

¢:U—R"

Let’s have a one-to-one transformation between z# and z’# coordinates (we simply write x = z#, etc.):

Scalar ¢(z) is such a field that transforms as (¢'(z') is it’s value in z’ coordinates):

¢'(2') = ¢(x)
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One form p,,(z) is such a field that transforms the same as the gradient ag;gff) of a scalar, that transforms as
(‘9?;(72/) is it’s value in #’ coordinates):
9¢'(z')  0x¥ 94/ (z')  da¥ Oop(x)
gun  own Quw | Oa'n Ox
S0

ox”
P;(fﬂ/) = wpu(fﬂ)

Vector V¢ is such a field that produces a scalar ¢ = V*p, when contracted with a one form and this fact is
used to deduce how it transforms:

oxP

/ — V/a / — V/Oé
¢ pOé axla

ps=¢="V"pg
so we have

Io 8$B Vﬁ

ax/a -

8zP dz'* _ 9zt
dx'> 9zP — dx’™

oz'*
0xb

Higher tensors are build up and their transformation properties derived from the fact, that by contracting
with either a vector or a form we get a lower rank tensor that we already know how it transforms.

%”;/g and using the fact that

multiplying by

= 0K we get

Ve — VA

Having now defined scalar, vector and tensor fields, one may then choose a basis at each point for each field,
the only requirement being that the basis is not singular. For example for vectors, each point in U has a
basis €,, so a vector (field) V has components V% with respect to this basis:

V =Vee,

Covariant differentiation

The derivative of the basis vector g% is a vector, thus it can be written as a linear combination of the basis
vectors:
€y, .

—_TH
axﬁ - FaﬁeH

Differentiating a vector is then easy:

oV _ o Ve 08, OV fove N
W:VﬁV—WeawLV w—wea‘FV Faﬁe#(ax,@JrFMgV)ea
So we define a covariant derivative:
VeV = 928 + F,‘fﬂV‘L
and write
v - o o
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I.e. we have:
VsV = Va(VOE,) = (VaV*)éa
We also define:
VeV =Vxee,V=XVsV = XP(VsV)e,

A scalar doesn’t depend on basis vectors, so its covariant derivative is just its partial derivative

_ 99
V0¢¢*w

Differentiating a one form p, is done using the fact, that ¢ = p, V' is a scalar, thus

Ipa V" — %VO‘
oxP  OxB

oV Opa . . o .
50F = gV Pa VsV —TVH) =

v5¢: + Pa

«@ apa [} «@ «@

where we have defined

Mo
Vgpa = 928 Faﬁpu

This is obviously a tensor, because the above equation has a tensor on the left hand side (Vg¢) and tensors
on the right hand side (p, VgV and V¢). Similarly for the derivative of the tensor A*” we use the fact that
VH = APp, is a vector:

VaVH =Vg(A*p,) = 0g(A*p,) + FgﬁAa”p,, = p, 0g A" + A" Ogp, + FgﬂAaUpy =
= DDA + A (Vpy + Tligp ) + Ty A™p, = p, Vg AP + APV p,

where we define
VA" = 0g A" + FZﬁAO"’ + [y g At

and so on for other tensors, for example:
VgAt, = 0gA", + FgﬁAO‘y —I7sAY
VA =0sAu —UhgAar =T340

One can now easily proof some common relations simply by rewriting it to components and back:

Vi (fY) = (Vg /)Y + [VzY

Z) = VX?—FVXZ

Change of variable:

ozt dxv . 02’  Ox' O%ax°

F/Oé — +
BY = 9xB oz M 9z 0z 0x'Pox
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Parallel transport

If the vectors V at infinitesimally close points of the curve z#(\) are parallel and of equal length, then Vis
said to be parallel transported along the curve, i.e.:

dVv
-0
dA
So
dv. d(Vee,) dx oo daf oo
o oy V) = g (VeVTen =0
In components (using the tangent vector U# = %):
dve
=UPVzV* =0
dA Ve
Fermi-Walker transport
In local inertial frame:
Ug = (1,0,0,0)
ds?
=0
dt
We require orthogonality S, U* = 0, in a general frame:
ds« dU*

o - =S

where A was calculated by differentiating the orthogonality condition. This is called a Thomas precession.

For any vector, we define: the vector X* is Fermi-Walker tranported along the curve if:

dX* dUu® dU+
X Uk x el
dA “da v U dA

If X* is perpendicular to U*, the second term is zero and the result is called a Fermi transport.

Why: the U* is transported by Fermi-Walker and also this is the equation for gyroscopes, so the natural,
nonrotating tetrade is the one with e = U*, which is then correctly transported along any curve (not just
geodesics).

Geodesics

Geodesics is a curve () that locally looks like a line, i.e. it parallel transports its own tangent vector:
UPNV U =0

SO

UPosU™ +T4,UPUY =0
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or equivalently (using the fact UP9pU® = &2 dz — dz_).

d2z> dz? dz”
a —0 3.40.1.1
dx2 B dx da ( )

Let’s determine all possible reparametrizations that leave the geodesic equation invariant:
N = f ( )
dz® _ dXda® =\ )
dh  dx dN d/\’

Zpe ¢ ¢ T
o = (WG ) = I+ 3 S =

A2~ dA aN N dX dN
de® | g, d da®

=N PN g g =
d2 a
= PO PN S

Substituting into the geodesic equation, we get:

£ dz® 2z , daf daﬂ) _

DY R i

v T < vz v v

So we can see that the equation is invariant as long as f”(\) = 0, which gives:
FO) =ar+b

This is called an affine reparametrization.

Another way to derive the geodesic equation is by finding a curve that extremizes the proper time:

1 dx# dav
T—/dT—/\/—d52 /\/—&gwdxudxl’ :/ zgw = /Kd)\

Here A can be any parametrization. We have introduced K to make the formulas shorter:

1 dzt dxv
K=\ - =g —
29N T
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We vary this action with respect to z*:

(57':(5/Kd)\:

B 5/ daH da:”
c2g“” D

1 dz* dz” dzx dz* dz”
_/_cz’((égw) i g (055) B gy (0 dA))dA:
2K

1 dz* dx” dz*\ dz¥
_ 1 (550) xS — 9w (0%55) O5) 4 _
c2 K
a " dx d(dz?) da”
1 (7%(51: )3a9uvdd>\ dd)\ — Yav (d)\ )dd/\ )d)\ B
=3 T -

1 _%(5xa)aagwddx: dda)\ d gw% o _
w/( K T\ T )0 A=
L[kl Gor 'Sy \ _ 14, dr"da”
“2 ) k\ Ttk 20"

_l i Ki i +dgau%+ d?a 19 dz* dz”
—2) ko \x Dy ez 2% 9wy

/1 Ki 1 n d2x”+8 dat da” 15 da# dx”
d Jov -z T Onder gy T 209 Ty

dA =

A
1 1 d /1 d2zv dm”dm
= -5 = (K— (= AT 2 0 av au e aa 1/
1

d
d 1 A%z dzt dx”
= _— B _— _— —_— l — ap =
2 / K A (K) 9av- g+ 3 Onar + 0ugan = Jagur) g3 ) g% (0arp)dA

d
1 1 d /1Y , d?z” o dzt dz”
= — / ? (Kd>\ (K g P+ 5Vp A2 + ég p(augoa/ + 8ugo¢u - aozguu)i ) ((5l‘p)d)\ =

dx dA
1 1 d /1 d2zP dz* dx¥
| (k=) g e &8
cz/K< ax (K)g T Py dA)WjP)dA

By setting the variation 67 = 0 we obtain the geodesic equation:

d /1 d2z? dz* dx¥
K~ (=) g re S ST 3.40.1.2
ax (K)g e ey 70 ( )

We have a freedom of choosing A, so we choose such parametrization so that dA = d7, which makes K =1
and we recover (3.40.1.1):

d2zr , dz’ dz¥

dA? HYodh dA

Note that the equation (3.40.1.2) is parametrization invariant, but (3.40.1.1) is not (only affine reparametriza-
tion leaves (3.40.1.1) invariant).
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Riemann Curvature Tensor

Curvature means that we take a vector V#, parallel transport it around a closed loop (which is just applying
a commutator of the covariant derivatives [V, Vg]V*#) and see how it changes. We express the result in
terms of the vector V*:

[VQ,V[a]V“ = RHVQIBVV
The coefficients R*,,g form a tensor called Riemann curvature tensor. Expanding the left hand side:

[Va, VaIVH = VoV VF — V VaVH =
=V VsV* — (a B) =
= 0 VVH =TV, VE 4 TE VsV — (a5 ) =

=0, (aﬁv“ + F“UV") — T, (0, VE +TE V) + T8 (95V7 +T5, V) — (a ¢ B) =

= 0a05VH + 0oTs, V7 + T 0,V + T, 05V + T4, T5,V" —
= 9, Vo + T, T, V" —

(
(
= 0 (05V" + T4, V") +Th, (95V° +T5, V") — (@ ¢ ) =
(a6 ) =
(a )=
_ (aarﬁy + T4, TG, — (> B) V*

Where we have used the fact that all terms symmetric in o8 (in particular I'? op and 0, 0gV*H and FggaaV” +
It 03V7) get canceled by the same term in the (a <> 3). We get

RMyop = 0ull, +Th, TG, — (& ) = 0al, — 95Tk, +Th, TG, — 5,7,
In order to see all the symmetries, that the Riemann tensor has, we lower the first index
R;wa,ﬁ = gp)\R)\uaﬁ = Gux (8(1ng + Fgargy - (a A B))

and use local inertial frame coordinates, where all Christoffel symbols vanish (not their derivatives though):

Rumx,@ = Gux (aargy - (Oé Ans ﬂ))

= Jur (aa (%g)\a(aﬁgov + 8uga[3 - 3ggﬂy)) - (OZ e 5)) -
= %guAg)\U (0a (0895 + Ovgop — Oogpr) — (e 3 )

= 10,7 (0a (88901 + 0090p — Osgpy) — (o ¢+ B)) =

= % (00089uv + 000y gup — 0a0ugpy — (v 3 B)) =

= 5 (000,918 — 0a0ugsy — (a ¢ B)) =
= % (aaaugu,é’ - 8aaug,6’u - aﬁaugua + aﬁaugau)
We will also need:

VaRuvap = %8)\ (aaar/guﬁ - aaaugﬂv - (O‘ A /8)) =
= % (000a0u9u3 — 02x0a0,980 — 02080, gua + 02050, 9ar)
Using these expressions for the curvature tensor in a local inertial frame, we derive the following 5 symmetries
of the curvature tensor by simply substituting for the left hand side and verify that it is equal to the right
hand side:
Ruvap = —Ruvpa
Ruvap = —Rypap
Rivap = Rapuy
Ruvas + Ruagy + Rugva =0
v)\R#yaﬁ + V#RVAaﬁ + VVRApaﬁ =0
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These are tensor expressions and so even though we derived them in a local inertial frame, they hold in all
coordinates. The last identity is called a Bianchi identity.

The Ricci tensor is defined as:
Ry = RN ow = 9 Ropns
From the last equality we can see that it is symmetric in uv. A Ricci scalar is defined as:
R=R', =¢"" R,
The Einstein tensor is defined as:
Guw = Ry — SRy

It is symmetric in pr due to the symmetry of the metric and Ricci tensors. By contracting the Bianchi
identity twice, we can show that Einstein tensor has zero divergence:
70" (VARuap + ViuRiuras + ViRrjag) =
= V9"’ Ruvap + Vg *RP rap + VPG Rypap =
= V9"’ Ryupa — Vg R rga + VPR 0 =
= VR’ 50 — Vg " Raa + VP Ry =
= VRya — VR + VR, =
=2V*Ryn -V, R =
=2V* (Rua — 39uaR) =
=2V*Ga =0

Lie derivative

Definition of the Lie derivative of any tensor T is:

it can be shown directly from this definition, that the Lie derivative of a vector is the same as a Lie bracket:
LoV = (0,7
and in components
L5V =[U,V]* =UPVaV —VAVU® = UPGsVe — VP9zU
Lie derivative of a scalar is
Lof=V"o.f
and of a one form p, is derived using the observation that f = p,V* is a scalar:
Lopy=V"'Voupu +0,V, VY =VY0,p, + 0, V"
and so on for other tensors, for example:

E\_}guu = Vavagul/ + gauv;tva + guavuva = Vaaaguu + gal/auva + guaﬁyva
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Metric

In general, the Christoffel symbols are not symmetric and there is no metric that generates them. However,
if the manifold is equipped with metrics, then the fundamental theorem of Riemannian geometry states that
there is a unique Levi-Civita connection, for which the metric tensor is preserved by parallel transport:

vugaﬁ =0

We define the commutation coeflicients of the basis ¢, by

a = - -
C Hyea == vé'“ey - vg,,elb

In general these coefficients are not zero (as an example, take the units vectors in spherical or cylindrical
coordinates), but for coordinate bases they are. It can be proven, that

Ths = 39" (9900 + 0agos — 0oGap + Caop + Cooa — Coap)
and for coordinate bases c¢*,,,, = 0, so
FZB =14,
Fg[f = %gua (aﬁgoa + 8ocgoﬁ - 6ogaﬁ)

As a special case:

P/ljﬁ = %gﬂa (aﬁga’# + aﬂgaﬁ - aa'g,u[}) = %g”aaggw =

= %Trg_lﬁgg = 1Trdglogg = 303 Trlog g = 303 log | det g| = dglog /| det g| =

1 1
= —0Ogdetg = ——0 det
Sdetg0? 49 oy 5/ | det g

All last 3 expressions are used (but the last one is probably the most common). g is the matrix of coefficients
guv- At the beginning we used the usual trick that ¢g*? is symmetric but 0,903 —0-9,5 is antisymmetric. Later
we used the identity Trlog g = log | det g|, which follows from the well-known identity detexp A = expTr A
by substituting A = log g and taking the logarithm of both sides.

Diagonal Metric

Many times the metric is diagonal, e.g. in 3D:

R0 0
gij=|0 h3 0
0 0 h?

(in general g;; = diag(h?, h3,...)), then the Christoffel symbols T'}; can be calculated very easily (below we
do not sum over 4, j and k):

IF = 10" (09 + 0igi; — 019i5) = 39" 09k + Oigrj — Ongij)

If k=14ior k=jthen

i i ii ii 1 1
Iy =T5 =T% = 39" (059 + 0igij — 0i9i5) = 39" 095 = %ﬁﬁjhf = 0;hi (3.40.1.3)
otherwise (i.e. k # ¢ and k # j) then either i = j:
1 h;
Iy =15 = 39" (Oigni + Oigri — Ogii) = — 59" Ogii = —%hﬁakhf = _ﬁakhi (3.40.1.4)
k k
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ori#j (e 1 #j#k):
Ffj = 20" (0jgki + Oigij — Okgij) =0

In other words, the symbols can only be nonzero if at least two of 4, j or k are the same and one can use
the two formulas (3.40.1.3) and (3.40.1.4) to quickly evaluate them. A systematic way to do it is to write
(3.40.1.3) and (3.40.1.4) in the following form:

_ . 1
Iy =T%= Eéjhi i, j arbitrary
o (3.40.1.5)
I = —h—éajhi i F£J
J
Then find all ¢ and j for which 0;h; is nonzero and then immediately write all nonzero Christoffel symbols
using the equations (3.40.1.5).

For example for cylindrical coordinates we have h, = h, = 1 and hy = p, so 0;h; is only nonzero for i = ¢
and j = p and we get:

1 1 1
I =0% = —3,hg = ~dpp= -
op pé h¢9¢ ppp P
h
P _ [ __P _
F¢¢——hg89h¢——128pp——p

all other Christoffel symbols are zero. For spherical coordinates we have h, = 1, hy = p and hg = psinf, so
Ojh; is only nonzero for i =6, j =pori=¢, j=pori=¢, j =0 and we get:

1 1 1
0p poO hg plto p pP p
) 14
FSG = —ﬁaphg = —ﬁapp = —p
P
re =r? ia he 0,(psing) = E
bp P9 hy " psing " p
h in 0
%o —h—‘é’a,,% = %%@sm 0) = —psin® 0
P
1 cos
ad 0¢ he 9oho psinf Do (psin0) sin 6
psiné

Fg¢ = —];Lé’agh(b =— e Op(psing) = —sinf cosd

All other symbols are zero.

Symmetries, Killing vectors

We say that a diffeomorphism ¢ is a symmetry of some tensor T if the tensor is invariant after being pulled
back under ¢:

6T =T

Let the one-parameter family of symmetries ¢, be generated by a vector field V#(z), then the above equation
is equivalent to:

L;T =0

150 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

If T is the metric g, then the symmetry is called isometry and V# is called a Killing vector field and can
be calculated from:

Lygu =V Vaguw + 9o ViV + gua VLV =V, V, +V,V, =0

The last equality is Killing’s equation. If x* is a geodesics with a tangent vector U* and V* is a Killing
vector, then the quantity V,U* is conserved along the geodesics, because:

d(V,U")

5 = UIVL(VUY) = UV UYLV, + VUV, U =0

where the first term is both symmetric and antisymmetric in (p,v), thus zero, and the second term is the
geodesics equation, thus also zero.

Symmetry and Antisymmetry
Every tensor can be decomposed into symmetric and antisymmetric parts:
Tap = 5(Tap + Tpa) + 5(Tap — Tsa)

In particular, for a symmetric tensor Sog = Sgo We get:

Sap = 5(Sap + Spa)
and for antisymmetric tensor Ang = —Aga we get:

1

Aap = 5(Aap — Apa)

When contracting a symmetric tensor with an antisymmetric tensor we get zero:

S AP =
= 1505(4°F — A7)
(SapA®® = SapA™?)
(SapA®® — S5 A7)
(SapA®® = SapA™P)

N~ N~ N|—
|

o

When contracting a general tensor 7" with a symmetric tensor S, only the symmetric part of T contributes:

TS =
= 5(Tap + Tpa)S* + 5(Tap — Tpa) S =
= %(Taﬁ + Tﬂa)SaB

When contracting a general tensor 7" with an antisymmetric tensor A, only the antisymmetric part of T’
contributes:

T AP =
= 3(Tup + Tpa) AP + §(Top — Tpa) A =

= %(TOCB - Tﬁa)Aa'B
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Example |

We want to rewrite:

dzt da”

20,
92" qs ds ds

So we write the left part as a sum of symmetric and antisymmetric parts:

dx* dx¥
(aug,u)\ + 8;1,91/)\ + aug#)\ - 8/,1,91/)\) ds dS
Here 0,9,n — Ougv is antisymmetric and d(fs dcfs
result is:
da* dx”
(auguk + a,ugy)\) ds d
Example Il

Let F,, = 0,A, — 0, A,. Then we can simplify:

FWE,, = F"™(9,A, —0,A,) =
— 2P 1(9,A, — 0,A,) = 2F" 9, A,

is symmetric in u, v, so the contraction is zero. The final

Here £ (0,A,—08,A,,) is the antisymmetric part (the only one that contributes, because F*” is antisymmetric)

of 9, A,

Example I

Let F},, = 0,A, — 0,A,. Then we get

BV
F ot =0,

because F),, is an antisymmetric tensor, while v#v" is a symmetric tensor.

Divergence Operator

V, A = 9, AP 4 T A7 =

\/17 (6, V/Tdetg]) A7 =
o ()

=0, A" +

\d tg
If the metric is diagonal (let’s show this in 3D):
R 0 0
9ij =0 h3 0
0 0 h
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then
\/ | det gij‘ = h1h2h3

7z 00
gi=10 hi% 0
1

0 0 5

and

Laplace Operator

V2p =V, Vi =,V" o+ T, V‘Tgo 0,00+ T, 07

= 0,0Mp + ——— ﬁd (3 \/MTQ> % =
\/W (Jnga ) \/ﬁu( Idetglg‘“’ﬁa@)

If the metric is diagonal (let’s show this in 3D):

h% 0 0
gij =10 h% 0
0 0 h%
then
\/ | det gm‘ = h1h2h3
1
] 0 O
g7=10 3 0
1
0 0 2
and
1 hihohs
Vip = i 0;
4 Z hihahs ( h?

Covariant integration

If f(z) is a scalar, then the integral [ f(z)d*z depends on coordinates. The correct way to integrate f(z)

in any coordinates is:

JECNS
where g = det g,,,. The Gauss theorem in curvilinear coordinates is:
/ V,ut/|gldte = / \/|g u“) V0gld*z = / Oy (\/mw‘) diz =
Q o lg Q
= / Vlglutn,dPz = / u'n,\/|g|ld*x
o0

where 0f) is the boundary (surface) of € and n, is the normal vector to this surface
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3.40.2 Examples

Weak Formulation of Laplace Equation

As an example, we write the weak formulation of the Laplace equation in arbitrary coordintes:
V%e—f=0

/ (V2<pv — fv) \/Hd%’ =0

/ <\/1?8i ( |g|g”3jso) v— fv> Vigld®z =0
/ (&* ( Iglg”ajw) v— fv\/@) d’r =0
Now we apply per-partes (assuming the boundary integral vanishes):
/ (— 919" 0000 — fv\/@) d’r=0
[ a05600 — o) Vgl =0

For diagonal metric this evaluates to:

1
/ <— Z ﬁ@i(paﬂ} — fU) hlhghgdgl‘ =0

Cylindrical Coordinates

T = pcosqo
y=psing
z=2z

The transformation matrix is
a(z,y,2) cos¢p —psing 0

—= <~ =|sin¢g pcos¢p O

The metric tensor of the cartesian coordinate system 2% = (z, vy, 2) is gu» = diag(1, 1, 1), so by transformation
we get the metric tensor g;; in the cylindrical coordinates z* = (p, ¢, 2):

02 02", <65c>T .0

9 = o 0w = \oz) 92 =
oz T 1 0 0 z)
— y’ O 1 0 z,Y, _
p7¢7 O 0 1 7¢72)
cos ¢ sing 0 1 0 0 cosp —psing 0 1 0 0
= | —psing pcos¢p O 0 1 0 sing pcos¢p 0] =0 p> 0O
0 0 1 0 0 1 0 0 1 0 0 1
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1 0 0
g7=1[0 2 0
0 0 1
det g = det g;; = 0>
hy=h,=1
h¢=p
1 1 1
¢ _ 1P _ _ —
FW—FW—ﬁ@phd)—;@pp—;
he p
ngﬁ = *ﬁapf% = *ﬁapp =P
P
, 1 ) 1 )
V-A=V;A" = 0; (h1hohsA') = =0; (pA") =
hihahs ( 1182163 ) P (P )

1 1
= S0u(pA”) + 09 A® + 0. A% = 9,A° + A+ DpA? + 0, A7

V2% = ViV, = 0. (VIdetglg0s0) =

-

/| det g|
1 - 1 1 1 1

= —0; (pg” 0;0) = =0, (POpp) + =0 (pa ap>+8z pOzp) =
p ( J ) P p( P ) P ¢ p2 (3 p ( )

1 1
= ;3p (POpp) + pﬁaas@w +0.0.¢0 =

1 1
= 6,,8p<p + ;6,;@;7 + ﬁ%&bap + 0,0,p

As a particular example, let’s write the Laplace equation with nonconstant conductivity for axially symmetric
field. The Laplace equation is:

V-oVe=0

so we use the formulas above to get:

B i 0 Op 10 0p O Op oy
0=V UVQP_VJVM_8p08p+p26¢08¢>+82082+p6p
but we know that ¢ = ¢(p, z), so g—:; = 0 and the final equation is:

9 dp 0 Op ddp

ap° 0p 9702 +;8p =0

To write the weak formulation for it, we need to integrate covariantly (e.g. pdpdédz in our case) and rewrite
it using per partes. We did exactly this in the previous example in a coordinate free maner, so we just use
the final formula we got there for a diagonal metric:

1
/ (—8pg08pv — —0sp0sv — 8Z¢8Zv> opdpdpdz =0
p
and for dz = 0, we get:

—or / (0,00,v + 0,900,v) opdpdz =0
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Spherical Coordinates

The relation between cartesian coordinates #* = (x, %, z) and spherical coordinates x* = (p, 8, ¢) is:

x = psin 6 cos ¢
y = psinfsin ¢ (3.40.2.1)
z = pcost
The transformation matrix (Jacobian) is calculated by differentiating (3.40.2.1):
. infcos¢p pcosfcos¢p —psinfsing
P 9 sin
a—m = a(:c,i;oy,z) = | sinfsing pcosfsing psinécose (3.40.2.2)
r (p:0,9) cos 6 —psinf 0

The inverse Jacobian is calculated by inverting the matrix (3.40.2.2):

sinfcos¢ sinfsing cosf

@ - a(p, 9, QS) . cos 0 cos ¢ cos 0 sin ¢ __sinf
0t I(z,y,2) _ dng cos b Op
psin @ psin 6

We expressed the above Jacobians using p, 0, ¢ and we can use (3.40.2.1) to express them using z, y, z.
Code:

from sympy import var, sin, cos, zeros, Matrix, simplify, latex
var("rho theta phi")
x_hat = Matrix([
rho * sin(theta) * cos(phi),
rho * sin(theta) * sin(phi),
rho * cos(theta)l)
x = Matrix([rho, theta, phil)

M = zeros(3, 3)
for i in range(3):
for j in range(3):
M[i, j1 = x_hat[i].diff(x[j])

N = M.inv(method="ADJ")
one = sin(phi)**2*sin(theta)**2 - cos(phi)**2*cos(theta)**2 + \

cos(phi)**2 + cos(theta)**2
one_simple = one.subs(sin(phi)**2, 1-cos(phi)**2).expand().simplify()
N.simplify ()
# one_simple is equal to 1, but stmplify() can't do this automatically yet:
N = N.subs(one, one_simple)

print "J =", latex(M)
print
print "J°{-1} =", latex(N)

Output:

sin (0) cos (¢) p cos (¢) cos () —psin (¢p) sin (0)
J = | sin(¢)sin (8) psin (¢)cos(8) psin () cos (¢)
0

cos (0) —psin (0)
sin (0) cos (¢) sin (¢) sin () cos (0)
J_l cos (¢) cos (0)  sin (¢) cos () _ sin (6)
= P P P
_ sin (¢) cos () 0
7sin (0) osin (0)
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The transformation matrices (Jacobians) are then used to convert vectors

oz -
Vi= =V
ox?

and tensors

0% 9zb .
oxt OxI

ab

between spherical and cartesian coordinates. For example the partial derivatives from cartesian to spherical
coordinates transform as:

01° A
% = ozt D
sinfcos¢p pcosfcosg —psinfsing
(3p Oy 8¢) = (&c Oy 82) sinfsing pcosfsing psinfcoso
cos 6 —psind 0

and from spherical to cartesian as:
A oz’
Oo= 5o
0z®

sinfcos¢ sinfsing cosh

(81 3y az) = (3;» 80 a¢) cosfcos ¢ cos 0 sin ¢ 7¥

9

) o
__ sing cos ¢ 0
psin 6 psin @

Care must be taken when rewriting the index expression into matrices — the top index of the Jacobian is the
row index, the bottom index is the column index.

The metric tensor of the cartesian coordinate system 2% is gq, = diag(1,1,1), so by transformation we get
the metric tensor g;; in the spherical coordinates z*:

gij—@@gab: - 9%

_(a<m,y,z>>T 01 A
d(p,0,9) 00 1

8

9% 97 (agz)T N

A(p,0,9)

sin 6 cos ¢ sin 6 sin ¢ cosf 1 00 sinfcos¢ pcosfcos¢ —psinfsing
= | pcosfcos¢ pcosfsing —psinf 01 0 sinflsing pcosfsing psinfcos¢ | =
—psinfsing psinfcos ¢ 0 0 0 1 cos 6 —psiné 0
1 0 0
=[0 p? 0
0 0 p*sin®6

Once we have the metric tensor expressed in spherical coordinates, we don’t need the cartesian coordinates
anymore. All formulas only contain the spherical coordinates and the metric tensor.

1 0 0
gi=(0 = 0
0 0 p? si1n20

det g = det g;; = p*sin® 0

) ) 1 .
iIN7.h— 9. . Ik —
V'Vip = 000 + Sdeta detgaj (det g) ¢’ Ok
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= 97 0:0;0 + == (0p(p" sin® 0) g0, + Dy (p* sin® ) " Dyy)
2ptsin” 6
iy 2 cosf
= g 9,0, ) — Opo =
g J<p+p p@+p25m9 %
1 1 cos
—5p3p¢+?8989¢+m3¢3¢90+ ap@+p251n9 0%

Rotating Disk

Let’s have a laboratory Euclidean system z* = (¢, z, y, z) and a rotating disk system a'* = (¢',2',y’, 2"). The
relation between the frames is

t 1 0 0 0 t t

| |0 coswt sinwt 0 T 2 coswt + y sinwt
y | |0 —sinwt coswt 0 y| | —xsinwt + ycoswt
-4 0 0 0 1) \z z

The inverse transformation can be calculated by simply inverting the matrix:

t 1 0 0 0 t/
z| |0 coswt' —sinwt’ 0] |2
y| |0 sinwt coswt’ 0 y'
z 0 0 0 1 2
so the transformation matrices are:
1 0 0 0
dz' | —zwsinwt 4+ yweoswt  coswt  sinwt 0| _ 02’
Ozv | —zwcoswt —ywsinwt —sinwt coswt 0] 9z
0 0 0 1
1 0 0 0
gz | —2'wsinwt’ —y'wcoswt’ coswt’ —sinwt’ 0| _ Jx
or'* | Twceoswt —y'wsinwt’  sinwt’  coswt’ 0] 9z
0 0 0 1

The problem now is that Newtonian mechanics has a degenerated spacetime metrics (see later). Let’s pretend
we have the following metrics in the x* system:

1000
{01 0 0] _
=100 1 0]
0 0 0 1
and
1+w2(x’2+y’2) 7wy/ wx' 0
, _ Oxt Ox [ Oz T o B —wy' 1 o o] _
gaﬁ_ww““‘(w) g(a:a)‘ wa! 0 1 of Y
0 0 0 1

However, if we calculate with the correct special relativity metrics:

2

Q
o
o

Juv =

o O O
OO = O
S = O
_ O O
Il
Q
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and
_02 +w2(x’2+y’2) _wy/ wr' 0
, _ Oxt Oz [ Ox T/ ox B —wy/ 1 o o _
Jab = pgta ggB I = (ax’> g (ax’) - wa! o 1 o]~Y
0 0 0 1

We get the same Christoffel symbols as with the diag(1,1,1,1) metrics, because only the derivatives of the
metrics are important. Then the only nonzero Christoffel symbols are

Igo = —2'w?
_ 1l
Lo =130 = ~w
2 12
oo =—yw

2 2
o =T =w
If we want to avoid dealing with metrics, it is possible to start with the Christoffel symbols in the z* system:

rs, =0

v
and then transforming them to the z’# system using the change of variable formula:

ozt Ozv . 0x'* 92’ %a° oz’ 9%x°

ox'B oz~ M dze + Oxo 9x'Boxy — Hxo dx'Box!Y

F/aﬁv =

As an example, let’s calculate the coefficients above:

ox'? 9%x° o2 9 0x°

2 _ —
oo = 0xo 0x002'0  Ox° Ox'0 9z'0
1
. . 0 | —2wsinwt’ —y/ t/
= (—a:w coswt — ywsinwt —sinwt coswt O) = :/c o.;smwl ;%w?osw/ =
ot | r'wcoswt’ — ywsinwt
0
0
. . —x'w? coswt’ + y'w? sin wt’ /9
= (—xw coswt —ywsinwt —sinwt coswt 0) ' sinwt! — yw? coswt! | T —yw
0
F/loo — _x/w2
2y, = 72, — 0z'?  0%2° _ 0z'% 0 0x° _
Ox® 9z/00x't Oz Ox'0 dx't
0
. . 0 | coswt’
= (—xw coswt —ywsinwt —sinwt coswt 0) 2t | sinwt' | =
0
0
. . —w sinwt’
= (f:cw coswt —ywsinwt —sinwt coswt O) wsmw/ =w
w €os wt
0
F/102 — 1—\/120 = —w

So we got the same results.
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Now let’s see what we have got. Later we’ll show, that the T}, coefficients are just ;¢ in the Newtonian

theory. E.g. in our case we have:

Too = —2'w? = 0,6

I = —y'w? = 9,0

3
F60 =0= 3;¢
from which:
Ot a,y,2) = —5 (2" +y?)w’ + O(1)

and the force acting on a test particle is then:

F=-mVeé=m(z,y,0)w? =mr'w

where we have defined v’ = (2,9,0). This is just the centrifugal force. Also observe, that we could have
read ¢ directly from the metrics itself — just compare it to the Lorentzian metrics (with gravitation) in the

next chapter.

The other two terms (', ['3 and the symmetric ones) don’t behave as a gravitational force, but rather only

act when we are differentiating (e.g. only act on moving bodies). Below we show this is just the —2w x §F

term (responsible for the Coriolis acceleration).

Let’s write the full equations of geodesics:

e dx 0°gN dX
d2 3
A
dA2
This becomes:
d?z 9 dy
7 Q-2
at2 Ty
d?y 9 dz
zJ_  Y—
a ~ YTy
d2
2
dt2
we can define r = (z,y,0) and w = (0,0,w). Then the above equations can be rewritten as:
d’r 9 dr
@ =rw’ — 2w X a

So we get two fictituous forces, the centrifugal force and the Coriolis force.

Now imagine a static vector in the z* system along the z axis, i.e.

vh =

OO ==

dr
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then
1 1
Vi ox'+ v _ 0x' | —zwsinwt + ywcoswt +coswt | _ | y'w+coswt’ | _ v/
Oz T 9r | —mwcoswt —ywsinwt —sinwt | T | —2'w —sinwt’ |
0 0

In the last equality we transformed from z* to x’'* using the relation between frames.

Differentiating any vector in the z* coordinates is easy — it’s just a partial derivative (due to the Euclidean
metrics). Let’s differentiate any vector in the 2'* coordinates with respect to time (since t = ¢/, the time is
the same in both coordinate systems):

VoV’ =8V + T, V"

V/() aovl() aovl(]
v AoV + TV + Ty V7 V" — WV — WV
v0 V/2 = aole + F%()v/o + I\(Q)lvll = (c)Ole _ y/w2vl0 + OJV/I =

V/3 aov/B 80‘//3
v 0 0O 0 O Vo
1% —2'w? 0 —w 0 v

= | e | + e w0 ol |ve (3.40.2.3)

%6 0 0 0 O %6

For our particular (static) vector this yields:

1

v, y'w + coswt’ _

—2'w — sinwt’

0

o O o O

as expected, because it was at rest in the x* system. Let’s imagine a static vector in the z'# system along
the 2’ axis, i.e.

1
1
' —
w 0
0
1 1
W — ozt o | —2'wsinwt’ —y'wcoswt’ +coswt’ | | —yw + coswt
T Ol T | Ywceoswt —y'wsinwt’ +sinwt’ | T | zw +sinwt
0 0
then
1 0
1 z'w?
VoW'™ =V, ol = YW tw
0 0
1 0 00 0 O 0
w_ —yw t+coswt | | —w sin wt 0 0 —w O coswt | _
Vol % Tw + sinwt w cos wt 0O w 0 O sin wt wx W
0 0 00 0 O 0
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Similarly

0

/, 3
—UYy w —w
VoVoW == [ 7Y

oOVvVo —JJIOJ3

0

0
2
—w* cos wt
—w?sinwt
0

VoVoWH ==

How can one prove the relation:

dA < A4 dA

W

dt dt
that is used for example to derive the Coriolis acceleration etc.? We need to write it components to under-

stand what it really means:

(3.40.2.4)

AN (00 0 0\ (A" A0
ar| o 0 —w o [an A"
Volaz ]| =lo w o of[a2] %] ae
at) o o 0 o) \a® A

Comparing to the covariant derivative above, it’s clear that they are equal (provided that 2’ = 0 and ¢y’ = 0,
i.e. we are at the center of rotation).

Let’s show the derivation by Goldstein. The change in a time dt of a general vector G as seen by an observer
in the body system of axes will differ from the corresponding change as seen by an observer in the space
system:

(dG)space = (dG)body + (AG)rot
Now consider a vector fixed in the rigid body. Then (dG)pody = 0 and
(dG)rot = (dG)space = dQ x G
For an arbitrary vector, the change relative to the space axes is the sum of the two effects:
(dG)space = (AG)body + d2 x G
A more rigorous derivation of the last equation follows from:
Gi = ;G
dG; = a;idG’; + daj; G

Let’s make the space and body instantaneously coincident at time t, then aj; = §;; and daj; = —€;,dQ =
€ik;d€)y, so we get the same equation as earlier:

dGZ = dG: + eikdek-Gz'
Anyhow, introducing w by:
749

w = —

dt

( dG > ( dG )
— =|— +wxG
dt space dt body
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Linear Elasticity Equations in Cylindrical Coordinates

Authors: Pavel Solin & Lenka Dubcova

In this paper we derive the weak formulation of linear elasticity equations suitable for the finite element
discretization of axisymmetric 3D problems.

Original equations in Cartesian coordinates

Let’s start with some notations: By w = (uy,us2,u3)” we denote the displacement vector in 3D Cartesian
coordinates, and by € the tensor of small deformations,

1 8ui an L.
i = = 1< < 3.
6” 2(8;6]_'_8:1;1)’ _Z?.]_
The stress tensor o has the form
oij = Aojidive + 2pej, 1<, <3, (3.40.2.5)
where
0
diV’LL = Uk Z €Lk = Tr

The symbols A and p are the Lam'e constants and ¢;; is the Kronecker symbol (¢;; = 1if ¢ = j and d;; =0
otherwise). The equilibrium equations have the form

3
Z 004 L+ fi=0, 1<i<3, (3.40.2.6)

where (f1, fa, f3)T is the vector of internal forces (such as gravity).

The boundary conditions for linear elasticity are given by

Uu; = ﬁi onF1
E oin; = gi onlg,

where g; are surface forces.

Weak formulation

Multiplying by test functions and integrating over the domain €2 we obtain

80”
<1<
/E 83:] /fl v, 1<i<3. (3.40.2.7)

Using Green’s theorem and the boundary conditions

i oynivi = | fiv, 1<i<3.
/z% /mz i = [
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Thus

3
Ov; .
/ Z%jiv —/ giv; = / fivi, 1<4<3. (3.40.2.8)
Q55 Ox; Iy Q

Let us write the equations (3.40.2.8) in detail using relation (3.40.2.5)

8 81]1 6U1 8’(1,2 61}1 811,1 6U3 61}1
2 —_— —_— —_— R — R — _— =
/Q [Adm” For, } oz, (amg + 8901) Dy (axg + 8x1> 923 /F 101 /Qf1 UL
8u1 3’&2 (9’[12 aUQ 6’02 a’u,g 8U3 81)2
/ﬂ“(awam)amﬁ{””“”“a ]m*“(m*axz)axg%”” R

(9u1 a’LL3 8’03 8’LL2 3U3 8113 . 8’&3 32)3 / /
— ) = —2 Y| Qp—— | = — = :
/QN (8%‘3) + (’)xl) 81‘1 * " <8x3 * 8372) 6332 |: i M8$3:| 8l‘3 Ty g3vs Q f3 s

Elementary transformation relations

First let us show how the partial derivatives of a scalar function g are transformed from Cartesian coordinates
1, T3, x3 to cylindrical coordinates r, ¢, z. Note that

l‘l(T,QZ)):TCOS(]S, xQ(T7¢):TSin¢7 ‘T3(Z):Z

Since
9(1'1, z2, .Zg) = 9(1'1(7", ¢)a SUQ(T', ¢)a xB(Z)),
it is
) 9g
o~ on cosp + —— Dis sin ¢,
g—i = %( rsin¢g) + aa—ircosgb,
9 _ 99
0z  Oxg
From here we obtain
dg 8 1 dg
o 0s¢ — — Tf) sin ¢,
dg ﬁg 1 9g
Omy oSOt 50080
99 _ 9
drs 0z’
The relations between displacement components in Cartesian and cylindrical coordinates are
Uy = Uy COSQ,
Uy = U, SinQ,
us = Uy.

The same relations hold for surface forces g; and volume forces f;.

Applying (3.40.2) to w1, we obtain

aul 8 10u Uy .
87951 or ¢7787¢ sin ¢,
aul aul . 18’[1,1

(97372 = WSIHQﬁ‘F;TgbCOSQﬁ,
Oun _ Ow

dxrs 0z
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Using (3.40.2) and the fact that u, does not depend on ¢, this yields

r .
g—;: = 85; cos® ¢ + ;u,« sin? ¢,
- 1
% = aicosqﬁsingb — —U, COS P sin @,
0xo or r
% _ Ow cos ¢
8%3 - 0z '
Analogously, for us we calculate
r . 1 .
% = aicosgbsmd) — —U, COS P sin @,
0x1 or r
ou ou, . 1
Ous ou,
87‘%3 = a Sln¢
For ug, using that it does not depend on ¢, we have
Oug - _ Ous cos ¢
dry  Or ’
8’1,&3 8uz .
9~ or O
Ous - Ous
81’3 n 0z '

For further reference, transform also divu into cylindrical coordinates

Bul a'u,g 8u3

d' = R — _— _— =
v 8$1 + 81‘2 + 6.133

ou, 1 ou, . 1 ou,,

- & cos2¢+fursin2¢+Lsmzd)+7urcos2¢>+i:
or r or r 0z
ou, n 1 n Ou,

= —Up
or r 0z

Axisymmetric formulation

Assuming that the domain € is axisymmetric, we can begin to transform the integrals in (3.40.2) to cylindrical
coordinates. Recall that the Jacobian of the transformation is J(r, ¢, z) = r. The first equation in (3.40.2)
has the form:

ou, 1 ou,, ou
/QT[A(ar e G5+ 20

sin (b)] (%r 0s? ¢ + vrsm o)+

r2u (aﬁr cos ¢ sin ¢ — luT cos ¢ sin (b) (%q;r cos ¢ sin ¢ — %vr cos ¢ sin qb) +

ou,
TH 0z

The second equation in (3.40.2) has the form:

Ou ovy
Y cos ¢ &or cos ¢ — gy UrCOS°h = / rfy vy cos? @,
or 0z Iy Q

/ 24 (8 cos ¢sin g — lur cos¢smq§) (avT cos ¢sin g — 1vr cos¢sin¢) +
Q or r or r

)+ 2 s

c9 . 2
)( " sin¢) — /F2 7¢y Uy Sin ng—/Qrfr vy sin® ¢,

ou, 1 ou,
m X or + ;ur + 0z

T (a in ¢
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Adding these two equations together we get

ou, 1 ou, ., 0v, 1
/Qr/\( or + ;ur + 0z ) or + ;UT) +

ou,. O 1 Ov,. . 10u, . 1 .
/ rin |2 [ 290 ot 4 =, 2 sin? peos? ¢ 4+ — o, sin? ¢ cos? ¢+ —u,v, sint ¢ | +
Q or or r o or r Or 72

5 (8ur Ov,

ou,

or

1 0 1
sin® ¢ + furﬁ sin? ¢ cos® ¢ + —
T r

or Or or

Ouy Ouy : 1 Ov, . 1 duy . 1 :
Ur 79 cos? ¢sin? ¢ — —u, Y cos® ¢sin? ¢ — — Y vy cos? psin? ¢ + —u,v, cos® gsin? ¢ | +
or Or r = Or r Or r2

8uravr+8uzﬁvr 7/ vr*/fvr
0z 0z Jr 0z Iy Jrnl = ol
This can be simplified to
/ )\(8ur+1 +8uz)(8vr+1 )+/ 9 auravT_i_i i aur%+%8vr
Q Mo TR T e Ny TR Q s ar or 2t 0z 0z or 0z

7/ grvrrz/fr UrT
T's Q

Finally, the third equation in (3.40.2) has the form

1
vy sin? 10) cos? ¢+ T—Quwr cost qb) +

ou, ou, Ov, ou, . ou, . ov, .
/Qr,u ( 9% cos ¢ + o cos¢) Wcosq&—l—r,u ( 5% sin ¢ + o sm¢> Wsmqﬁ—k

ou, 1 Oou, Oou, | Ov, _
r[)\( o —&-;ur-i- P )+ 2u 8,2} P —/Fzgzvzr—/gfz VLT

This gives us

Oou, Ov,  Ou, Ov, Ou, Ov, ou, 1 ou, \ Ov,
2 A - —_— — = .
/Qr'u ( dz Or + or Or + 0z 0z tr or + P + 0z ) 0z /112 gz 0=t /sz var
Since the integrands do not depend on ¢, we can simplify this to integral over 2y, where (2 is the intersection
of the domain 2 with the z} x3 half-plane. Dividing both equations by 27 we get

/ A(au”r} +8uz)<8vr+1 )+/ 9 8uravr+i L 8uravr+8uzﬁvr
Q0 e TEY T e N TR 2 e ar or 2 0z 0z ar 0z

_/ grUrT = f'r‘ UrT
I Qo

/r 8uravz+8uz8vz+28u28vz e 8ur+1u +auz avzi/ N f. v
% ¥\ 8z ar " or or 0z Oz o r " 0z ) 0z Fzgz = e

Coordinate Independent Way

Let’s write the elasticity equations in the cartesian coordinates again:
oij = Aéijakuk + 1(05u; + Oyuy)
9,07 + f1=0
Those only work in the cartesian coordinates, so we first write them in a coordinate independent way:
0 = A\gIVpuF 4+ p(Viu' + Viud)
Vo + f'=0
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so:
V; (A\g¥ V" + p(Viu' + Vi) + ff =0
The weak formulation is then (do not sum over 4):
—/Vj ()\gijvkuk + u(Viut + Viuj)) viy/|gld®z = /fivi\/Ede
We apply the integration by parts:
/ ()\gijvkuk + u(Viu' + Viul)) Vjvi\/@d‘q'x = /fivi\/m&x

This is the weak formulation valid in any coordinates. Using the cylindrical coordinates (see above) we get:

x=(p,¢,2)

d3z = dpdedz

1 0 0
g7=10 % 0
0 0 1

Vgl =+/ldetgij| = p

1 1
V" = —0(/|glu*) = ;3k(f)uk) =

vari
1
= —u’ 4+ 0,u” + 5‘¢u¢ + 0,u”
P

(Viu? + V) )V 07 = (¢7"Viu® + g7 Viud ) V07 = (9,u* + ,uP)0,0° + (8,u” + 0,u™)0,07 =
= (0,u* + 0,uP)0,v* + 20,u”0,v°

) 1
gV juP = gPPV P = 90 + szvk = 0,0 + ;v‘z’
. 1 1 1
g¢7Vjv¢ = g¢¢V¢U¢ = ﬁ(8¢v¢ + Ff(bvk) = ?(@;v‘b + ;vp) =
ngVjvz = g**V,v* = 0,v° + I’izvk = 0,v"
/ (x\g” (pup + 0pu’ + dgu® + 8zuz) + (V7 + V’uj)) Vv'pdpdedz = /flvzp dpd¢pdz
for i =1,2,3 we get:
1 1
/)\ (pup + 0,uf + Ogu® + 3Zuz> (3pvp + pv¢> P+ 1 (20,uP0,v” + (0,uf + 0,u*)0,v”) pdpdedz = /f"v"pdpdqi)dz
1 1 1
//\ (pup + 0pu’ + Ogu® + E?zuz> 7 (8¢U¢ + pv”) p+ 1 (20,u”0,0° + (0.u” + 0,u*)0,0v”) pdpdpdz = /f¢v¢pdpd¢dz

1
/)\ (u” + Dpu’ + dgu® + (9Zuz) 0.0°p + 1 ((0pu® + 0,u”)0,v° + 20,u*0,v%) pdpdpdz = /fzvzpdpdgbdz
p
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3.41 Operators

3.41.1 Introduction
The domain of the operator A is D(A), a subspace of the Hilbert space 5. Linear operator is:
Ala|u) + B v)) = ad|u) + BA|v)
for all |u),|v) € D(A). Symmetric operator is:
(u|Av) = (Aulv)
for all |u), [v) € D(A) dense in . If D(A) is dense in 7, then the adjoint operator AT is defined by
(u|ATv) = (Aulv)

for all |u) € D(A). The domain D(A") is given by all |v) for which the above relation holds. It can be shown
that D(A) C D(AT).

Operator A is self-adjoint if A = AT. Symmetric operator is self-adjoint only if D(A) = D(A"). (Bounded
symmetric operator is always self-adjoint.) Hermitean operator is a bounded symmetric operator.

Hermitian implies self-adjoint implies symmetric, but all converse implications are false. Below, we need the
operator to be self-adjoint (we assume unbounded by default).

3.41.2 Spectrum
To obtain a spectrum of the operator A, we need to solve the following problem:
AN = AN

Those values of A for which the solution |[A) € 2 belong to the discrete part of the spectrum. A are called
eigenvalues and |A) eigenvectors. Those values of A for which |A\) can be normalized to a delta function:

Ag) = 6(A— k)

belong to the continuous part of the spectrum (note that in this case |\) ¢ ).

Eigenvectors belonging to the continous part of the spectrum obey the completeness relation:

/ ) (A = 1
Eigenvectors belonging to the discrete part obey the following completeness relation:

DTN Aldd=1
A

The sum or integral runs over the whole spectrum (if the spectrum contains both discrete and continous
part, we simply combine sums and integrals).

Spectrum of a self-adjoint operator is real, because

(AJAA) = A AN = A" AV
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The eigenvectors are orthogonal:
(Alk) = & (Ali) = A (Alk)
(k= A) (Alr) =0

So for k # X we get (k) =0, for kK = X the (A|A) is equal to 1 if A belongs to the discrete spectrum and we
get:

(AlK) = s
or it is normalized as a delta function if it belongs to the continous part:
(Alr) = 0(A — k)

As such, eigenvectors of a self-adjoint operator are complete and orthogonal in the above sense. Thus any
function from the space can then be expanded into the series:

flx) = (alf) =D (A (AIf)
A

where (z|\) are the eigenvectors and the coefficients (A|f) are given by:

Wﬁ:/W@Mﬁmz/QMth

The sum over A runs over the whole spectrum (i.e. it becomes an integral over the continuos parts). Also
the coefficients (A|f) are either discrete or continous depending on the part of the spectrum. The series
converges in the norm, i.e. the following norm goes to zero as we sum over A:

Fla) = () Al =0
A
3.41.3 Derivative Operator
We have the eigenvalue problem
Au = du
where
d
A=—i—
! dx

The operator A is unbounded. A is self-adjoint if:

/ab u* (z)Av(z)de = /b(AU(a?))*v(x)dx

a

/ab u* (z)Av(z)de = /ab u* () (—zi}) v(z)de =

So

Il
T~
o
7N
-~
Q‘ A
<
*
—
Nk
~__

[
—
&

o,

=2

|
~.

IS

*

&
SN~—

[
—
8
5=

I

N /ab <_idx“(x>>* v(z)da — i[u*(z)v(z))) =
= /ab(AU(x))*U(x)dx —ifu*(z)v(z)]’

b _
. =

The operator is self-adjoint if and only if [u*(z)v(x)] 0. Few boundary conditions that satisfy this

condition:
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e Dirichlet boundary conditions

e Periodic boundary conditions

u(a) = u(b)
e Antiperiodic boundary conditions
u(a) = —u(b)
Solving the eigenproblem:
Au=du
—iau = A\u
u(x) = e

Fourier Series

We restrict our space to periodic functions. Applying the periodic boundary condition:

u(a) = e = u(b) = e’

SO
ei)\(bfa) -1
2mn
A= forn=0,4+1,£2,...
b—a
The normalized eigenvectors are:
(1) = e eifEte
Up(x) = e'v=
n b —a
27N

These eigenvectors belong to our space and as such all A = 7™ form a discrete spectrum. Other solutions

do not satisfy the periodic boundary condition and so there is no continous part in the spectrum.

The eigenvectors must be orthogonal, as we can check:
b
/ Ur () U, (z)dz =
a

b

1 _i2zn 1 omm

= / e 'p—a? e'v—aPdr =
o Vb—a vVb—a

b
1 27 (m—n)
= 67’ b—a wdx =
b—a/,

1 b0 _
[, e’dx form=n
1 ,L-27r(b7n—n)x b . =
T & ¢ |, form#mn

1 form=n
= or(m—n) 2 (m—n) =
% (el b=a 0 — ¢l ba a) form #n

27 (m—n

1 form=n

— j2m(m=n) _

m 2m(m—n) =
%(ez bma “)—1) for m #n

27 (m—n)
1 form=n
= = 5mn
0 form#n
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The eigenvectors must be complete:

S o)l =1
> (aln) (nl2') = (xla’)
Z up (z)u) (2 )de = 6(z — ')

Any function f(z) can then be expanded on the interval [a,b] into the Fourier series:

oo

= 2”—"1 - i
)= el = Y G olf) = Y danle) = Y et 3 gt
en =y = (nlf) —= ) (@lf) do = —= / s (@) o) = / e ()
""Vb—a Vb—a \/b— b—al, " b—a /,
Equivalently, this can be written using sin and cos directly:
o= > et
Z cncos( ) Z zcnsm( x> =

oo

ot Sty (2) 5 (2

By introducing the coefficients a,, and b,:

n =Cn+cC_p forn=0,1,2,...

by, = i(cn — c—p) forn=1,2,...
we can write the series as:

—I—Zancos( >+Zb sm<

)

we get:
| L 25n 2 [t 2
U = o+ Cop = / <e_2%x + e’g—a‘”) f(z)dz = m/ﬂ cos (b in) f(z)dz
i b - 27n - 27n 2 b 27T7”L
by, =i(cy, —c_p) = - a/a (eilbfa - ezbfam) flz)dx = m/@ sin (b — aw) flx)dx
Conceptually, we are taking the complex orthonormal basis u,(z) = \/bl_faei%I and creating a real or-

thonormal basis vy, (z) composed of ug, Reuy, Reus, ..., Imuy, Imus, ... as follows:

fReun—\/LCObbz—”anx forn >0

vp(x) = up = \/ﬁ forn=20

fImuW—\/‘Lsmb”\np: forn <0

We are only summing over the positive arguments in sin and cos, thus the absolute value for n < 0. The
basis v,, is orthonormal:

/ab U () Vi (2)dT = O
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and complete:

oo

Z v (2)vp(2)dz = §(x — 2')

n=—oo

This is not the only way to create the real orthonormal basis. In general:
un () = (z[n)
v (2) = (z[n) g
|”>R = Z Unm |m)
We require the new basis |n), to be orthonormal:
(n|m) g = nm
> KU Umill) = o
kl
Z U;kUml(Skl = 5nm

kl
k

This restricts the U,,,, matrices to be unitary (U~ = UT), because:
vUt =1
UU ) mn = (D = Gmn
2Ok (U )i = b

k
Z U’mkU:k = 5mn
k

The unitarity condition also makes sure, that the real basis is complete:

Do Iginle =" Unk) Uz =" 8ulk) (L= k) (kK =1
n kl k

n kil

Requiring |n) to be real and using |m)" = |—m) we get:

|n>}} = |n>R

S Ui lm)™ = 3" Ui [m)
i Uy |[—m) = i Upm )
Zm: Up —m Im) = i U |m)
mZ(Unm - U:,:J m) =0

m
Uwm =Up _m,
Upm = Un,—m
Because the basis |m) is complete. So the only conditions on the matrices U, are:
Ut =ut
Upm = Un,—m
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They imply that the new basis will be real, orthonormal and complete. Our final restriction is that we want
each real basis element to correspond to the same frequency +m (possible sign change is ok): this means

that we can only mix the same frequencies, i.e.:

Upm =0 for |n| # |m|

and also that the nonzero matrix elements can only be of the form Re*z™ for n =0, 1,2, 3 (i.e. £R or iR

for some positive R).

Up to possible sign changes and permutations, this determines the matrix uniquely. Our choice above is:

Snm+0n,—m
T for n > 0
Unm - 5Om forn=0
6n m 5n ,—m
T fOr n < O
In other words, we get (except that the matrix is infinite):
1
V3 V2 1 1
V2 V2 ) L V2
v 7z 7
Vo = 1
. 1 1
-1 1 iv2 iv2 1
) /2 V2
_ =

Fourier Transform

Our domain is (—o0, 00), so the solution of the eigen problem is:

Au = du

—z'@u = \u
u(x) = e

The normalized eigenfunctions are:

We calculate the normalization:

— 00

/OO 1 —iAz inmd
= —c ——e"dr =
—oo V2T V2m

1

:% .

=d(k—A)

So the spectrum is continous. The eigenvectors must be complete:
o0
/ A) (A[dA = 1
— 0o
| @l ) ar= (el

— 00

/OO ux(z)ul (2" )d\ = 6(z — ')

— 00

/OO ul (z)ug(z)de =

0 .
ez(n—/\)xdx —

Sl

us
U2
U
Uo
U—1
U—2
U—3
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Any function f(x) can then be written as:

oo

f) = tals) = [

— 00

o0 “ 1 o0 i “
(2]A) (ALf) dx = / u@far= / M

where f()) is called the Fourier transform of f(z):

o0 o0

f(A):<A|f>:/ (Az) <x|f)dx:/

—0o0 — 00

uy(2) f(x)dx = \/% /jo e~ f(z)da

Note that both for Fourier series and Fourier transform, the sign convention in the exponentials (e****)

follows from choosing the sign in A = fi% and as such it is arbitrary. We can also choose A’ = i-& and

dx
then the sign will be flipped.

3.41.4 Sturm-—Liouville Operator

The Sturm-Liouville operator L is:

2ue) = s (-4 (0 42 ) + oyt

Everything is real. The scalar product is weighted by w(z). The operator is self-adjoint if:

b b
/u(m)Lv(x)w(m)dx:/ (Lu(x))v(x)w(z)dz

0
/a " () L)) —

_ / bu(aﬁ)w(lx) (‘i: (p(x) di’g)) + q(w)v(x)) w(z)de =

- [ (~o 2t (p02) 4wttty ) e =

Il
T~
o
/T
|~
N
=
—
(oW
I
—~
=
S—
~_
[
—
Nl
+
=
&
SN—
=2
K
SN~—
[~
—
N
~__
(oW
&
|
| — |
<
—~
S
S—
=
—~
S
S—
Q.
=
&
N~—
|
(oW
I
—~
&
i~
—~
S—
=
&
SN—
_ 1
Il

And the operator L is self-adjoint if and only if:

[u(@)p(2)v'(z) — o/ (2)p(z)v(w)]
This condition can be satisfied by various boundary conditions. For example:

e Dirichlet boundary conditions

e Neumann boundary conditions
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e Periodic boundary conditions

o Antiperiodic boundary conditions
u(a) = —u(b)
u'(a) = —u/(b)

or mixtures of these, e.g. Dirichlet at © = a and Neumann at = = b.

Legendre Polynomials

Legendre polynomials P, (x) are solutions of the Sturm-Liouville problem on the interval [—1, 1] with p(x) =
1—22,qx) =0, w(z) =1and A = n(n+1):

Lu(z) = n(n + 1)u(x)
Lu(z) = f% ((1 - x2)dl;f)>

The operator L is self-adjoint due to vanishing p(z) at the endpoints:

1

[(u(@)o (@) = ' (@)o(@))p(e)]2, = [(u(@)(z) — ' (@)o(@))(1 - 2*)] -, =0

We restrict our space to bounded functions. The solutions of the eigenvalue problem for integer n are
Legendre polynomials P, (x), the normalized eigenvectors u,(x) are:

U () = \/ ?Fn(ff)

Solutions for non integer n are Legendre functions that are singular at the end points and as such are not
solutions that we want. As such, the spectrum is discrete and the Legendre polynomials form a complete
orthogonal basis for functions on the interval [—1,1]:

/1 U () Uy () = 2n2—|— 1 /1 P, (2) P (x) = 6pm

-1 -1

Y tnehun(e) = PEE S P Pata) = 6o - )
n=0 n=0

any function f(z) on the interval [—1, 1] can be expanded as:
— - 2n + 1 =
f@) =3 frunle) =D fy| =5 Pal@) = > _ fuPa(@)
n=0 n=0 n=0

o=t = [ @ = 2 [ pse)

-1

3.41.5 Angular Momentum Operator
The angular momentum operators L1, Ly and L3 are given by:

Lj = —iEjkl.’Ekal
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in spherical coordinates:
L, =i (sing 9y + cotfcosp Jy)
Ly =i(—cos¢ Og + cotOsing Oy)
L3 = —i0y

and

1 1
L?=L1°+12+1L%2=—(—0y(sinf 0 0?2
1tletls sin 0 b (sin 9)+sin29 ¢
The eigenproblem is:

L?|lm) = I(1 + 1) |Im)

L lim) = m [im) (3.41.5.1)
Using Condon & Shortley phase convention, it can be shown that:
(L +iLy) |l,m) = /(I Fm)I£m+1)[l,m+1) (3.41.5.2)
and by repeated application:
(Ly £14Lo)" |1, m) =
=ViTm)(lTm—-1) - (IFm—-k+1)(tm+1)({xtm+2)---(Tm+k)|[,mEk)=
e e e
where
Ly +iLy =ising Op +icotOcos¢p Oy £ (cosp Op — cotOsing dp) =
= %% (£0p + i cot 00,)
The solution of (3.41.5.1) is of the form:
(09lim) = Yim (0, ¢) = Oum (0) P (9) (3.41.5.3)
and we get from (3.41.5.1):
i (6) = b (9)
do

on the interval [0, 27] with the boundary condition ®,,(0) = ®,,(27). From Derivative Operator the eigen-
values are all integer m and the normalized eigenvector is:

e'mo (3.41.5.4)

Substituting (3.41.5.4) into (3.41.5.3) we get from (3.41.5.1) an ordinary second order differential equation
for ©y,,,(0):

L2 |lm) = 1(1 + 1) |Im)

1 1 1 1
_ in@ 2 zm¢ m = l 1 zm¢ m
<Sin98€ (sm 59) + 751112 98¢) m O, ( + )ﬁ O,

1 d m?
g (03g0m) + (1040 255 o0
d , - d
dcosf ((1_COS 9)(chC)s0®lm> + (Z(H_l 1—co 529) Otm =
)Glm
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where
z =cosf
This equation can be solved using the following approach. From (3.41.5.2) we get:
(L1 £iL2)Yim (0, ¢) = (L1 £ iL2)Oum (0)Prm () =
1

= Ti® (£09 + i cot 80y) O (6) eme —

1 . d
= Ee’(mﬂ)(b (id —mcotf | O, (0

1, d dsinf
_ i(m=E1)¢p : —
+ ¢ (Smadcosﬁ qzmdcos@) Oum(6)

_ d
HmEDS i 1£m g (9 sinF™ @zm(é))) =

COS

V2r
= TP,11(p)sin'T ™ (

dcosf sin ™0 @lm(e))
and by repeated application we get:

k

& sin T 0 (0) ) =
(dcos )k S O )>

- \/Ei I Z;: E; i Z i_ :;iq)mik((b)@l,mik(e)

(Ly +iL2)*Vi (0, ¢) = (F1)5 4 (¢) sin*=™ @ (

from which we obtain:

(E£m)!{Fm-—k)! b dF )
= MY ——sinT™0 O,,,(0 3.41.5.5
Otma(6) \/(l Fm)! (I £m+k)! (FL)"sin (dcos )k S Oum (6) ( )
As a special case for m = 0 and k = m > 0 we get:
(I—m)! . am
= m m [ — 0 3.41.5.6
C_')l,:l:m(e) (:Fl) (l T m)' sin™ 6 (d cos e)m@zo( ) ( )

and for m =1 and k =1 —m we get (we only use the Oy ,,_j, branch):

Oum(0) = O 1—1—m)(0) =
_ \/(l — l)' (l + l— (l - )')' (+1)l—m Sinlfmfl 0 ((dl_m Sil’l+l 2] @ll(e)) —

I+ (1—=1+1—m)! dcos)l-m (3.41.5.7)

1 (+m) 1 ( di-m
(

ol
@) (I —m) sin™ 0 \ (dcos@)—m > 4 9u(9)>

From (3.41.5.2) we get:

(Ly + L)Yy = /A= DI +1+ )Yy =0

Using (3.41.5.4) this gives us a first order differential equation:
(Ll + iLQ)@ll@l =0

' (Dp +icot 0dy) e =0
00
TOH —lcotd @ll =0
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from which

|
ou(f) = (-1)’ @% sin' 0 (3.41.5.8)

It is normalized as:
/ O©%sinf df =1
0

We used the value of the integral:

/’T n2+1 g 4o — VA T(+1) 2 oot 22
0 COTU+d @+ et (2U+2)0
(2HUN2(1+1)  424N2(1+1) 2(2'11)2

T @+2) @+ DRI+1) @+ 1)

Using (3.41.5.8) in (3.41.5.7) we get:

[2l+1(1+m)! 1 1 di=m . ol
= —1 ! _— S
Oum(6) = (=1) 2 (I—m)!21!sin™ 0 (dcosf)i—™ sin™0

20+1 1 d! .
O (0) = (-1)"4/ > 9101 {dcos0)] sin? =
2411 d 2 -
B 2 QT“(dCOSQ)l(COS -1 =
:\/213_1]31((3089)
1 d

_ 2 l
= oqiga® Y

for m = 0 we obtain:

where
Py(z)

is the Rodrigues’ formula for Legendre polynomials. We substitute ©;¢ into (3.41.5.6) and get:

@l,:l:m(e) =(F1)™ %T—Fl Eg :_ :;: sin™ 0 ((dci:@)mpl(cos 9)) (3.41.5.9)

Hence Oy, = (—1)"0;,_,,. Using associated Legendre polynomials, we can write:

O (0) = Ar1=my

5 (l m m)' Bm(cos 9) (341510)

where (for all m):

I+m)l 1 1 di-m )
pm —(—1 l( i 2l
" (cosf) = (=1) (I —m)! 21! sin™ 0 (d cos §)i—™ sin”0
+ml1 1 di=m 9 .
= —_— S — 1
(I —m)! 24! sin™ @ (d cos 0)l—m (cos™9 —1)

1 (1—cos®)mg  dltm™

_(_1\ym _— 2 l _
= (=1 21 sin™@  (dcos@)itm (cos"6 — 1)
_ m L. mg dl+m 2 0 I _
= (—1) QTl' S1n W(COS — 1) =
m 1 m dl-‘rm
=(-1) ﬁ(l—zQ)z W(ZQ—UI
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hence (comparing the second and fourth equation above):

(L=t o (3.41.5.11)

P(z) = (—1)mm 1

This is valid for all m (positive or negative). For m > 0 we get from (3.41.5.9) and (3.41.5.11):

dm
(dcoso)™
B (cos0) = 8 T Z;I s (dci:e)m Fi{eosd)

le(z) _ (_1)m(1 _ ZQ)%
(I —m)!
I+ m)!

P (cosf) = (—=1)"sin™ 6 Pi(cos )

P(z) =

This is usually used as the definition of the associated Legendre polynomials. They include the Condon &
Shortley phase factor (—1)™ (only for positive m). Some authors omit it (then it needs to be included in
the equation (3.41.5.10)). Note that (3.41.5.10) for m < 0 can be also written as:

Ll —m)!
m(0) =/ —— P (cosf) = P (cosf) =
@l ( ) 9 (l ¥ m)' l (COS ) 9 (l _ m)' (l +m)' l (COS )
20411 +m)! __ 20411 = |m|)! Jjm)
— _1 m P m _ 1 m P
( ) 2 (l 7777,)' l (COSQ) ( ) 9 (l+ |m|)1 l (COSH)
Thanks to
m—lm| _ 1 form >0
(=)™ form <0
we can write for all m:
o 2h+1(l-m)! ~mefm] (2L 1= MY i)
O (0) = > —|—m)!Pl (cos®) =1 > U+ |m|)‘Pl (cos @)
The normalization of associated Legendre polynomials is:
1
/ @lm(e)@l/m(e) sin #df = 5”/
-1
iy B 2 (L+m)
[1 P] (SC)P]/ (I)dl’ = 2[74—1 (l _ m)!éll/
Finally, we get (for all m):
2041 (1 —m)! ,
Ym 97 = m 0 (I)m = P imé —
im— 20+1 (l_ |m|)' m ;
i 0T |m|)'Pl (cosB)e
; 20+1 (l_ |m|)‘ m ;
_ (_1\m;m+|m| |28 2T ) pm| ime
(=1)™4 I U+ |m|)'Pl (cosB)e

3.41. Operators 179



Theoretical Physics Reference, Release 0.5

Any function on the sphere can be expanded as:

0o l
£00,8) = (081f) =D > (6¢lim) (Im|f) = Z Z Yim (0, ) fim
=0 m=—1 =0 m=—1

27 e 27 T
= [ ao [ avamios) wolpysino = [ ao [ a0 Y5, (0.0)1(0.0)sin0

Real Spherical Harmonics

The most obvious approach is to use a similar way as for Fourier series. We rearrange the sum:

l

3 Ym fm: @m “mpfm—
lz;zll =3 Y Ol o)y

m=— =0 m=—1
1

N S (O (6,6 cos b + Oum (8, B)isinm i) —

=0 m=—1

. Z (@lo (6, ) fio + Z (©1m(0: ) frm + Ot —m (0, 6) fi,—m) cos m + i(On (0, 0) fim — Ot —m (6, 8) fi,-m) sin mg)

l:O m=1

9] l
% (@zo ) fio + Y (Oum(0,0)(fum + (=1)™ fr,—m) cos M + Ot (0, )i (fim — (1) fi,—m) sin M)
= m=1

oo l m —(=1)™
=2 (@lo 0.0+ <@lm(97¢>> et o B cos o+ 00, 0,00 == sinns )
l:(] m=1

5~
3

00 l
(elo(e, O fio+ 3 (O (8, 0) fim V208 M6 + O (6, 0) i, -V 2sinmo)

=0 m=1

o] l
1 N
= 5= 2 | O 9)fuo+ > Oun(6,9)fin V2 cosme + Z Ojm (6, 9) firm V25in [mlg | =
=0 m=1 m=—1
[e'S) l
:Z Z Zlm
=0 m=—1
Where the real spherical harmonics Z;,, are:
V2Gzcosmo  form >0 (\2Re(Yin(6,0)) L (Vi (0, 6) + Y;5,(0,9))
Zim(0,0) = 4 = for m =0 = { Viy(0, ¢) = { Yio(0, ¢)
\/5(?}‘23‘ sin|ml¢ for m <0 V2Im(Yym (0, ¢)) %(Yl\m\(ev(b) - Yl’rm\(@,@)
and the coefficients flm are:
.flm+(_\]}zm.fl,—m fOI' m > 0 f Y}tn+(7\>)>n13/ltfm fdQ
~ 2 2
Jim =< fro for m =0 =< [V fdQ
ifl,fmfx(/%l) fim fOI“ m < 0 fi}/l,f'm_f/_il) }/l'm fdQ
J e £40 J e £
={ [Vipfdo —{ [Yiofd® — | Zifdo
lefnzt Yl— fdQ leIMI Y1|m|fdQ
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The factor v/2 in the definition makes the real spherical harmonics properly normalized:

/ Zlm(ov ¢)Zl/m’ (9, ¢))dQ = 6ll’5mm/

From the above derivation, it is not immediately clear how to obtain other parametrizations of real spherical

harmonics. And also what identities they obey. More systematic approach is to use the transformation
matrices just like for the Fourier series:

l
Zuu(0,0) = 081y g = D> Ul Yim (0 Z m (06]1m)
m=—I m=—I
1) = Z m [1m)
m=—I

We require orthonormality:

(Ipllp)y g = O

This implies unitarity of the U' matrices for the given I. Requiring |lu), to be real and using |im)* =
(=1)™|l,—m) we get:

)k = 1) g

Z( um |lm Z pum |lm

D> U) (=1)™ | = Z i |lm)
Z(Ul _) (=)™ Im) = Z m |[lm)

Y Ul = Uy —) ) (=1)™) [tm) = 0
U;lnn = (_ )m(Ul m)*
(Uhm)* = (=1)"U,

Hy,—m

As for Fourier series, we require not to mix frequencies and phases, so we get:
L _

and also that the nonzero matrix elements can only be of the form Re’2" for n = 0,1,2,3 (i.e. =R or +iR
for some positive R). Up to signs and permutations, this determines the matrices uniquely. As for Fourier
series, this implies orthonormality and completeness of the real spherical harmonics:

(I'm/|lm) 5 = O Gy

00 l

Z Z [lm)p (Im|p =1

=0 m=—1

Also, thanks to unitarity we get:

l
Z Zlm( Zlm Z Z Umm’ lm’ )(Um’m”) le’m” Q/ Z 57” m”}/lm’ ) lrrL”(Q/)

m=—1 m=—Ilm’'m’’ m/m/’’

2l+1
ZYzm )Y (@) = = —Pi(cos)

m=—1
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and

1 > rl< Ry o a Tl< dm R
|I'—I‘/| :lio l>+1 I‘ I‘ Z l+1 2l+1)/IM(r)Y2m(r)_%n: 1+1 21+lzlm(r)Zlm( )

Following the Fourier series, the most natural way to choose the signs in the U matrices is such so as to
keep sin and cos in the basis with positive frequencies (thus the absolute value for m < 0):

V2Re(Yim(6,4)) form >0 %(}flm(ea ¢) +Y5(0,9))

Zlm(gv (b) = }/lO(ev ¢) form=0= YlO(e (b) =
V2Im(Yyj (9, ¢)) form <0 5 (Yim| (0,0) = Y., (6, 9))
5 (Yin (0, 0) + Y55, (0, 9)) \%( Yim (0, 0) + (=1)"Y,,—m (0, ¢))

= 4 Yio(6,9) = { Yio(6,9) -
~ (Vi (8, 6) — Y5, (6, 9)) L (Vi (6, 6) = (=1)Yim (6, 0))
2l 8+2; P™(cos ) cosme

= \/MP(COSG)

2041 (I— \m\)'p“"‘(cos 0) sin |m|¢

2m  (I4+|m]|)!
This gives:
St GO o 5
U}Lm: Oom for p =10
S =G0 for < 0

Other convention

Some people use the following convention:

()" VAR(Yin(0,6)  form>0 (=1 Vin(6.0) + Yi_n(6,0))
Zlm(ea (b) = Y20(97 ¢) form=0 = Y20(97 (rb) =
(—=1)"V2Im(Yyj (0, ¢)) for m <0 2\1/5(( ™Y1, —m(0,0) = Yim (0, ¢))
—1)m, /2t (§+Z§:]Dl (cos 6) cos ma
= i—jr ) (cos 0)
(=)™ 2 g Pl (cos 0) sin [mlo

It has the advantage that there are no minus signs in the final expressions using sin, cos or using z, ¥y, 2
However, we will not use this convention.
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Tables

Spherical harmonics:

Yo.0(0, 6) = #

Yi_1(0,0) = \/w

Yio(0, ) = ﬁ’m@

Yi,1(0,0) = —\/&Zsﬁi:lw)

Yo a(6,6) = \/%Sj%n 0)

Yo 1(0,6) = mﬁ‘wzij;@) cos (0)

Yao(6, ) = V5 (3 Cgig) -1

Yor (0, 0) = Y30 Si%) cos (6)

Ya2(6,0) = W

Ys_5(0,0) = ‘/ﬁeg’j;in‘? 9)

Ya-2(0,6) = m“”;;l; (6) cos (6)
Ya1(6,6) = — V21 (6sin’ (9)4—8 \2/4; Ziirj((:)) cos? (0)) e™**
Yao(0, 6) = VT (=3 sin® (9)2 i;); (0) + cos? (6))
Yo (0,0) = - Y2LEO COSQ5(7?\;E72) ¢ sin (9)
V00, ) = Y210 ;13; (6) cos (9)

Yoa(t,g) = - YOI

3.41.

Operators



Theoretical Physics Reference, Release 0.5

Real spherical harmonics:

Zo,0(0,9) = %

71 1(0,6) = —W

Z10(0,9) = \/52(;\(;(9)

Zur(0,0) = Y3 Sin2<j>;os (9)

o (0, 6) = Y1550 f;é% sin? (0)

Zy_1(0,0) = \/ﬁsin(aﬁ;jr%(e)cos ()

Zoo(8,6) = \/5@0;?;59) - 1)

Zo1(0,0) = — VI5sin (9);;);(@ cos ()

Zo2(0, ) = \/ﬁsmili%ws (2¢)

Zo_ (6, ¢) — Y705 éf’j?z sin” (6)

Zs_5(0,0) = V105 sin (2(3)\;;12 (6) cos (6)
Zs_1(0,0) = — V/42 (360 cos? (26— \/7;) sin () sin (6)
Zs0(0,8) = VT (=3 sin’ (9)2 3;(9) + cos® (0))
Z51(0,0) = — V/42 (360 cos? (?76_ \/77?2) sin () cos (&)
Z5(0,) = V105 sin” (92\3(;5 (26) cos (6)

Z5.5(0,0) = — mSinBSE%COS (30)
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Real spherical harmonics (using x, y and z, assuming x2 + % + 22 = 1):

1
Zoo(x,y,2) = PN

Zy—1(z,y,2) = _;/jgr
Zl,o(m,y7z) = ;/j;

Zl,l(x,y,z) - _;(3;
Zy,_o(x,y,2) = @;y
Zo_1(z,y,2) = — \é%z
Zoolz,y,2) = \/5(4&}7:1)
Zayi(w,y,2) = \/2?;2
Zyo(w,y,2) = \/w
Zs_a(,y,2) = V70y (8_\3;;2 +4?)
Y105y

To S Sshtetaddod
3, 2(1’,’%2) 2ﬁ
VA2y (=522 + 1)

Zs _1(z,y,2) = =
Zol,y,2) = ﬁzf;—g)
Zs1(x,y,2) = VA2 2;5;2 T 1)
Z3a(2,y,2) = W
Znalar,s) = L (8_52; 3y°)

These tables were generated using spherical_harmonics.py:

from sympy import (sympify, factorial, var, cos, S, sin, Dummy, sqrt, pi, exp,
I, latex, symbols)

def PIm(l, m, z):

nnn

Returns the associated Legendre polynomial P_{lm}(z).

The Condon & Shortley (-1) m factor ts included.

nmnn

1 = sympify(1)

(continues on next page)
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(continued from previous page)

m = sympify(m)
z = sympify(z)
if m >= 0:
r = ((z**2-1)**x1) .diff(z, 1+m)
return (-1)**m * (1-z**2)**x(m/2) * r / (2*%*1 * factorial(l))
else:
m = -m
r = ((z**2-1)**1) .diff(z, 1+m)

return factorial(l-m)/factorial(l+m) * (1-z**2)**x(m/2) * r / (2%*1 *
—factorial(l))

def Plm_cos(1l, m, theta):

nnn

Returns the associated Legendre polynomial P_{lm}(cos(theta)).

The Condon & Shortley (-1) m factor ts included.

1 = sympify(1)

m = sympify(m)

theta = sympify(theta)

z = Dummy("z")

r = ((z**2-1)*x1) .diff(z, 1+m).subs(z**2-1, -sin(theta)**2).subs(z, cos(theta))
return (-1)**m * sin(theta)**m * r / (2%*1 * factorial(l))

def Ylm(l, m, theta, phi):

Returns the spherical harmonics Y_{lm}(theta, phi) using the Condon & Shortley,
—convention.

1, m, theta, phi = sympify(1l), sympify(m), sympify(theta), sympify(phi)

return sqrt((2+1+1)/(4*pi) * factorial(l-m)/factorial(l+m)) * Plm_cos(1l, m, theta) *
—exp (I*m*phi)

def Zlm(l, m, theta, phi):

nmnn

Returns the real spherical harmonics Z_{lm}(theta, pht).
1, m, theta, phi = sympify(1l), sympify(m), sympify(theta), sympify(phi)
if m > O:
return sqrt((2x1+1)/(2*pi) * factorial(l-m)/factorial(l+m)) * Plm_cos(l, m,,
—theta) * cos(m*phi)
elif m < O:
m= -m
return sqrt((2x1+1)/(2*pi) * factorial(l-m)/factorial(l+m)) * Plm_cos(l, m,,
—theta) * sin(m*phi)
elif m ==
return sqrt((2+1+1)/(4*pi)) * Plm_cos(1l, O, theta)
else:
raise ValueError("Invalid m.")

def Zlm_xyz(l, m, x, y, 2):

(continues on next page)
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(continued from previous page)

nmnn

Returns the real spherical harmonics Z_{lm}(z, y, z).

It is assumed T**2 + y**2 + 2¥*2 == 1.
1, m, x, y, z = sympify(1), sympify(m), sympify(x), sympify(y), sympify(z)
if m > O:
r = (x+Ixy)**m
r = r.as_real_imag() [0]
return sqrt((2*1+1)/(2+pi) * factorial(l-m)/factorial(1l+m)) * Plm(l, m, z) * r /.
—sqrt (1-z**2) **m

elif m < O:
m = -m
r = (x+I*xy)**m

r = r.as_real_imag() [1]
return sqrt((2+1+1)/(2*pi) * factorial(l-m)/factorial(l+m)) * Plm(1l, m, z) * r /,
—8qrt (1-z**2) **m
elif m ==
return sqrt((2x1+1)/(4*pi)) * P1m(1l, 0, =z)
else:
raise ValueError("Invalid m.")

var ("theta phi")
X, y, z = symbols("x y z", real=True)
print "Spherical harmonics:"
print
print ".. math::"
print
for 1 in range(4):
for m in range(-1, 1+1):

print r" Y_{/d,d}(\theta, \phi) =" % (1, m), \
latex(Ylm(1l, m, theta, phi))
print
print
print "Real spherical harmonics:"
print
print ".. math::"
print

for 1 in range(4):
for m in range(-1, 1+1):

print r" Z_{7d,Zd} (\theta, \phi) =" % (1, m), \
latex(Z1lm(l, m, theta, phi))
print

print
print "Real spherical harmonics (using $x$, $y$ and $z$, assuming $x72 + y™2 + z72 = 1$):
print
print ".. math::"
print
(continues on next page)
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(continued from previous page)

for 1 in range(4):
for m in range(-1, 1+1):

print r" Z_{/d,zd}¥(x, y, z) =" % (1, m), \
latex(Zlm_xyz(1l, m, x, y, 2z).simplify())
print

3.42 Variational Formulation of PDEs

Not every equation allows a variational formulation (e.g., Navier-Stokes or Euler equations do not have such
a formulation), but many equations have one, and we explain how it works on several examples.

3.42.1 Poisson Equation

The Lagrangian for Poisson equation is:

b
Ll = [ [3u*(@) - flo)ulz)] do  g(a)u(e)]h. (3.42.1.1)

Important note: technically, as we will see below, this imposes the Neumann boundary condition and 1D
Poisson equation with two Neumann boundary conditions does not have a unique solution. At least one
Dirichlet boundary condition is needed for a unique solution. For example with u(a) = ug and «'(b) = ¢ the
boundary term becomes just —gu(b). However, for simplicity, we will show the derivation with two Neumann
boundary conditions first and we will discuss how to impose the Dirichlet boundary condition later.

The variational formulation is:
6L =0,

which yields:

b
oL

= f()du(x)] dz — [g(x)du()];

(3.42.1.2)
b

= f(@)]du(@)dz + [(/ () — g(x))du()];

| W@
[ @) — F@)buta))de + o (@)du(a)l - lo(a)uta)]:
JRSHORY,

0,

where we applied integration by parts. This equation holds for any Ju(z), and in particular it holds for
du(z) = 0 at the boundary (i.e., for du(a) = 0 and Ju(b) = 0). Then the boundary term in (3.42.1.2)
vanishes and we obtain:

/ () — f(2)] Sula)de = 0., (3.42.1.3)
a
This equation holds for any du(z) that is zero at the boundary, and thus it implies:

u(x)+ f(z) =0. (3.42.1.4)
Now we substitute (3.42.1.4) into (3.42.1.2) and obtain:

[(u'(2) — g(x))du(z)], = 0. (3.42.1.5)
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Thus (3.42.1.2) implies both (3.42.1.4) and (3.42.1.5). The equation (3.42.1.5) holds for any du(z) (generally
not zero at the boundary) and thus it implies:

v (z) —g(z) =0 (3.42.1.6)
at the boundary. Thus g(x) imposes the Neumann boundary condition, i.e., the value of the derivative
u'(z) = g(x) at the boundary. This condition is imposed variationally.

To impose a Dirichlet boundary condition, we want to impose the value of u(z) = ug(x) at the boundary for
some constant ug(z). As such, u(x) is not allowed to vary at that part of the boundary, which means that
the variation du(z) = 0 at the boundary. So we restrict the variation du(x) to be zero at the Dirichlet part
of the boundary in (3.42.1.2) and thus also in (3.42.1.5). This implies that (3.42.1.6) does not hold at the
Dirichlet part of the boundary and we have to set the value u(z) there directly.

Example

As a particular example, let u(a) = ug and u’(b) = g. Then the Lagrangian (3.42.1.1) becomes:

Llu] = / [3u(2) — f(2)u(x)] dz — gu(b) . (3.42.1.7)

We can explicitly define the space U of all trial functions v € U that one can choose (admissible) and
substitute in (3.42.1.7) as follows. We have to impose the Dirichlet condition u(a) = ug on the space itself,
and we also have to choose how smooth functions we want. For finite element applications one typically
chooses H'! (i.e., values and first derivatives are from L?) and we obtain:

U:={u:uc H (a,b),u(a) =ug} (3.42.1.8)

Now we derive what space the variation du(x) belongs to. Let umi, be the solution (the extremum of the
functional (3.42.1.7)). Then from calculus of variations:

U = Upin + £0u() (3.42.1.9)

Here w is called the trial function and du(z) is called the test function. Both w and wuy;, are from the space
U. Thus we can compute:

u(a) — umin(a) _ g — Up
€ €

=0.

ou(a) =

In addition, both u, Ui, € H'(a,b), so also their difference u(x) — Umin () and thus also du(z) = M

is from H'(a,b). There are no other conditions (u(b) and umin(b) are generally different, so in general
du(b) # 0) and so du(x) € Uy where the space Uy is:

Up :={w:w e H'(a,b),w(a) = 0}. (3.42.1.10)

The definition of the space Uy in (3.42.1.10) is derived from the definition of the space U in (3.42.1.8).

To compute the variation of L, we substitute (3.42.1.9) into (3.42.1.7), differentiate with respect to ¢ and
then set € = 0 using (3.17.3.2):

0L[u] = iL[umin + edu]

de e=0

as was done in (3.42.1.2) and one obtains the weak form (below we drop the label min from wm;, and just
use u):

b
O0L[u] = / [v/ (x)6u' () — f(x)ou(z)]dz — géu(b) = 0. (3.42.1.11)

3.42. Variational Formulation of PDEs 189



Theoretical Physics Reference, Release 0.5

The task is to find such function v € U so that (3.42.1.11) holds for all du € Uy. From (3.42.1.11) one
obtains (as in (3.42.1.2)):

/b [—u"(z) — f(2)] du(z)dz + (v’ (b) — g)du(b) =0. (3.42.1.12)
The governing equation (3.42.1.4) is the same:
u'(z) + f(z) = 0. (3.42.1.13)
The boundary term (3.42.1.5) becomes (see (3.42.1.12)):
(u'(b) — g)du(b) =0.

Which implies v/ (b) = g.

The Dirichlet boundary condition is part of the definition of the function space (3.42.1.8), so all trial functions
u that one can choose (admissible) and substitute in L[u] must lie in U. From the derivation of the space Uy
in (3.42.1.10) we can see that since the value of u(a) is fixed, we always have Ju(a) = 0; on the other hand,
since u(b) is not fixed, in general we have du(b) # 0.

The Neumann boundary condition is imposed variationally due to the surface term in the weak form
(3.42.1.11).

Summary

We have shown above that there are three equivalent formulations which fully and uniquely determine the
solution and boundary conditions (both Dirichlet and Neumann):

1. Define the functional L[u] in (3.42.1.7) and the space U for the trial functions v € U in (3.42.1.8).
2. Define the weak form (3.42.1.11) and the two spaces U and Uy, where u € U and du € Uy.
3. Define the strong form (3.42.1.13) and the boundary conditions u(a) = ug and u'(b) = g.

Let us write down the three formulations in detail.

Variational Formulation
The variational formulation is the formulation 1. above.
b
Llu] = / [2u?(z) — f(z)u(z)] dz — gu(d).
The task is to find such u € U that extremizes this functional (§L[u] = 0), where:
U:={u:uc H (a,b),u(a) =up}.
Weak Formulation

Weak formulation is the formulation 2. above, and it is customary to write w(z) = du(z) in the weak form
(3.42.1.11):

b
/ [ (z)w'(z) — f(z)w(x)]dz — gw(b) =0. (3.42.1.14)
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The task is to find such u € U so that (3.42.1.14) holds for all w € Uy, where

U:={u:uc H (a,b),u(a) =up},
Up :={w:w e H'(a,b),w(a) = 0}.

We can also define:
b
a(u,w) = / o (2)w' (z)dx,

b
bw) = [ F@)ula)ds + gu(t
and write (3.42.1.14) as:

a(u, w) = b(w).

Strong Formulation

Strong formulation is the formulation 3. above. We are solving the equation:
u'(@) + f(z) =0

subject to boundary conditions u(a) = ug and u'(b) = g.

3.42.2 Radial Schrodinger Equation

The derivation is similar as for the Poisson equation, except that we have g(x) = 0 based on physical
reasoning (that we cannot set the derivative to a given value, or, alternatively, that we require the operator
to be self-adjoint).

The Lagrangian for the radial Schrédinger equation is:

L[R] = /OOO [;R’Q(r) + (V(r) + M) RQ(T)} r2dr. (3.42.2.1)

22
We minimize the Lagrangian subject to the normalization condition N[R] = [; R*(r)r?dr =1 as follows:
0=0(L—e(N—-1))
= 5/000 [37°R”? + (r*V 4+ 3(1+1))R* — er®R?] dr =

- 3.42.2.2
= 2/ [4r2R/(SRY + (r*V + 3(L + 1)) ROR — er® ROR)] dr = ( )
0

= 2/ [~ 3(r2R)Y + (r*V + 31(1 + 1))R — er®R] SRdr + [r*R'6R]T
0

This equation holds for any 6 R(r), and so it also holds when we restrict §R(r) = 0 on the boundary and the
boundary term vanishes. Then it implies the radial Schrédinger equation:

=R (r)) + (r*V(r) + 311+ 1)R(r) = er’R(r) (3.42.2.3)
Substituting (3.42.2.3) into (3.42.2.2) we obtain:

[F2R'SR)C =0 (3.42.2.4)
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And we can see that (3.42.2.2) implies both the equation (3.42.2.3) and the boundary term (3.42.2.4). The
boundary term is zero for r = 0, so it reduces to:
. 2 ! _
Tlggor R'(r)éR(r)=0 (3.42.2.5)
We can see that there is no natural condition at » = 0, and for r = co we only have two possible options.

Either we impose d R(o0) = 0 and obtain the Dirichlet condition and the boundary term (3.42.2.5) vanishes.
Or we allow 0 R(o0) to vary, and then (3.42.2.5) implies R'(c0) = 0.

Unlike for the Poisson equation we are not allowed to set R’'(00) to anything other than zero, and that’s why
(3.42.2.1) has no surface term.
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FOUR

CLASSICAL MECHANICS, SPECIAL AND GENERAL RELATIVITY

4.1 Gravitation and Electromagnetism as a Field Theory

The action for macroscopic gravity, electromagnetism and (possibly) charged relativistic dust is:
S:SH+SM+SEM+Sq

where:

SH[g“ }_ 16m G R\/ d4

Sa[g", xt]) = —c/p vt/ —gdtx
1
Semlg"”, AH] = —— /FQBF‘X’B\/—gd‘lx
4pio
Syt AM] = — / pEarvh A,/ —gd'e
where z* is the field of the matter, A* is the electromagnetic field and ¢g"*” is the gravitational field. We

vary with respect to each of them to obtain (interacting) equations of motion. ¢ is the speed of light, G is

the gravitational constant, gy the permeability of vacuum. p is the mass density of the dust, pgas is the

charge density of the dust, v# = d% is 4-velocity of the dust, Fog = VaoAg — VA, is the electromagnetic

field tensor, R is the Ricci scalar.

4.1.1 Gravitation

We vary with respect to g*”. By changing the metric, we also change the invariant volume element (thus
also p), so we need to be careful to vary properly. We start with Sg:

0Sy =

16 G/er4x—
/ (09" ) Ryu/ =G + 9" (0R,)W/—g + R(6y/—g)d'z =

o C
T 16mG
/ (89" ) Ruwv/=g + g (VA(T3,) — Vi (6T3,)) V=9 + R(— 33/ =9 guv (69" ))d "z =

- C
167G
4

= 167G

/(59”")Ruu\/*9 + (Vag"™ (oT3,) — Vug”"(fsfi ) V=9 — 3 Rgu/—g (64" )d*z =
le\/ $Rguw/—g (0g")d e =

16G

- 167rG o = 5Rgu) (69")/=gd*x
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Variation of S, is:
oSy = —cé/p\/vuvf‘\/—gdzlx =

— 5 / e/pdte =

d(gh
_ 7/6 (" 0uB) 0 _
2/pp”
200
—2
= _/Cipvupvy 9 5(g")d*e
2pcy/—g

=— / 1pv,0,6(g" )/ —gd'z

§(gh)de =

The variation of Sgps is:
1
5SE1\/[ = 75/ rFagFaﬂ\/jg(fLI =
Ho

1
- —5/ 197" FapFypy/=gd's =
Ho

1 . o
=~ | B9 FasFapy/=g + 99" Fap s, (3V/=g)) d'z =
1
Y (2(69°M)9°° FapFapv/=g + 9°* 9" FapFxp (— 3V =99u (59"))) d'a =
1
= o | (209" Fas P = 3FapF g, (09")) V=gd'e =

1 1 o v
=5 <FMgFl,5 ~1 asF Bglw) (6g" )\/fgd4:17
Ho

The variation of 65, = 0.

The equations of motion are:

A

1 1
1 1 o _
1671‘7G (RII,U - §Rg;u/) - §plUlu,vz/ - 2/,1/0 (F#[%Fuﬁ - Z aﬁF ﬁglu‘y> = 0
We rearrange:
8nG 8tG 1 <

RHV — %Rg'm, = CT,OUH’UV + 0747

1 (e}
to Fup Bl = 3 FosF ﬁg’”)

We define the stress energy tensor as:

8rG
R/,Ll/ - %Rg/u/ = 71—’/111
T 2 5(SM + SEm +Sq)
Vg Sghv

And we get:
T =T + TN

M
T,, = pvuvy

1 1
TEM — (F Ff — ZF3F*Pg V)
1% 1o up 4 B K

(4.1.1.1)

(4.1.1.2)

(4.1.1.3)
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The equations (4.1.1.1) are called Einstein’s equations and the equations (4.1.1.3) are stress energy tensors for
the relativistic dust and electromagnetism. The equation (4.1.1.2) is the stress energy tensor corresponding
to the given action. Sometimes it is not possible to write an action for more complex matter (perfect fluid,
Navier-Stokes equations for fluid, ...) in which case we cannot use (4.1.1.2), but we can still specify the stress
energy tensor directly and (4.1.1.1) are the equations of motion.

4.1.2 Electromagnetism

We vary with respect to A#. The variation of §Sy = 0. The variation of 6Sy; = 0. The variation of Sgjs is:

0SEM =
1 / B Fr\/—gd*z =
4pio
1
=——— [ F™(6F,,)y/—gd*z =
2410

-1 /F’W(é'@yAM)\/fgdzlx =
Ho

1
=—— [ F"9,(0A,)y/—gd*z =
Ho
1

=L [ mpeand -

1 1 o o
-1 (HW ﬁ)) (54,)vgd

_ i / Y, (54, —gd'z

The variation of S is:
05, =
-5 / pEMVY A/ —gdie =
= f/pEMv”(éAl,)\/jgd‘l:c =
The equation of motion is:

1
—V, F" — ppyv” =0
Ho

Rearranging:

VHF’“/ = uopEMUV

4.1. Gravitation and Electromagnetism as a Field Theory 195



Theoretical Physics Reference, Release 0.5

4.1.3 Relativistic Dust

We vary the whole action with respect to x*. The variation of Sy = 0. The variation of Sy, is:

6Sm = —65/p\/vuv“\/—gd4x =
— s / e/prdt =

o(gH
:_/C (" Buby) 4 _
2\/p %
2g*p, (6
:—/Cg p,u,(pu)d4$:
AVIN S
P 4
=— [ c—(op*)d*z =
[ e
pu v v 4
=— /e a, (pV (6z#) — pH(0x¥)) d*z =
N (0" (0*) — p*(62"))
p
= [ co, r )p” Szt — pH(62¥)) dte =
[ oo (i) 0 6241 - w6240

- /c ((“),, ( §§Pa> — (\/{{::7)> p’ (6x")d 'z =
[ e(m ()~ () it -
- / (Vovu — V) po* (2#)y/—gd*z =

= / p(V,v,)v" (52H)/—gd*a

The variation of Sy = 0. The variation of S, is:
08, = —6/pEMv“AM\/—7gd4x =
=4 / JAdre =

__ / 9, (¥ (5) — (627)) Az =

N / (" (0a) —(92")) 0, Apd'x =
= /J’”(ém“)(@,,Au —0,A,))d*z =
= /pEMv”(Vl,AM — VA (631)/—gdtz =

= —/pEJM’UDFMV(él'H)\/jgdALJ}

The equation of motion is:
p(Vyv,)v” — ppav” Fuy =0
Rearranging:

p(Vov)v” = peamv” Fu
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This is the geodesic equation with Lorentz force.

4.1.4 Equations of Motion

All together, the equations of motion are:

G &G 1 1
1/_l v— T v -1 F Fuﬁ_fozFa/B v
R, sRgu o PV, + o No( uB qles 9u

V" = popeyv”
p(Vou,)v” = pruv” Fu

The first equation determines g, from the given sources (the stress energy tensors) on the right hand side,
that depend on p, v*, A* and g,,,. The second equation determines A* from the sources (pgar and v*) and
from g,,,, (through the covariant derivative). Finally, the last equation determines z* and v* from the given
fields A" (through the electromagnetic field tensor) and g, (through the covariant derivative).

Conservation

We apply covariant 4-divergence and use Bianci identities on the first equation:
0=V, 1" =V, (Ty +Tgy)
So the total stress energy tensor is conserved. This fact makes the equations of motion (that follow from the
action principle) not all independent. The third equation can be derived from the fist two as follows.
We calculate:
VI = V(o)
V#Tgl]/w = FCWPEM'UQ
and we get:
Vu(pv'v”) + F* ppavg =0
V., (po*)v” 4+ poV 0" + F pparve =0
The first term vanishes, because:
U,V (pv*)0Y 4+ v, pv*V 07 + 0, F* ppavg =0
v,V (pv" )0 + v, F* pppve =0
c2V#(pv“) + v, P pppve =0
AVu(pt) =0

where we used v, V, 0" =0 (follows from differentiating 2= v,v") and v, F*v,, = 0 (contracting symmetric
and antisymmetric tensors). We are left with:

pHV 0" + F* pppyrvg =0
po"'V v = —F* ppavg
pot'V 0" = FY pppva

Which is the third equation.
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4.2 Classical Mechanics

4.2.1 Rigid Body Rotation

In all the sections below, the rigid body is rotating around the w axis, so:

V=wXT

Kinetic Energy

The kinetic energy is:

Angular Momentum

Total angular momentum is:
L— /p(r)(r x v)dr =

_ /p(r)(r x (w x 1)) =

— [ pwr® — (e wd’r =

- / p(r) (172 — 1) dr - w =

I w

Where I is the moment of inertia tensor:

I= /,o(r)(]lr2 —rr)d®r
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Moment of Inertia

The moment of inertia tensor and its components are:
I= /p(r)(1r2 —rr)d®r
IV = /p(r)(éijrka — rip)d3r
Let’s write w = wn (where n is a unit vector), then the kinetic energy is:

T=iw L=1iw-I-w=1in-1-nw’ =1’

1 1
2 2
where I is the moment of inertia about the axis of rotation:

I=n-I-n=
=n- /p(r)(]lr2 —rr)d®r-n=
= [ o) = (s

Cylinder

Solid cylinder of radius R, height h and mass m. We’ll use cylindrical coordinates. First for rotation about
the z axis:
V =nR%h
n=(0,0,1)
r = (pcos¢,psing, 2)
r-n=z

r2 = p? 4 2

I= /p(r)(r2 — (r-n)?)d%r = /%(f + 22 = A)d3r =

moage—™ [y RdR %d 2
f/vp T*V/O ¢/O /g ZpTp =
m R*

m_ R*
:—2 B — :72 _— :l 2
T 1 h R T 1 h=3mR

Code:

>>> from sympy import var, integrate, pi

>>> var("m V R rho z phi h")

(m, V, R, rho, z, phi, h)

>>> I = m/V * integrate(rho**2 * rho, (rho, O, R), (phi, 0, 2*pi), (z, -h/2, h/2))
>>> I.subs(V, pi * R¥*2 * h)

R**2xm/2

4.2. Classical Mechanics 199




Theoretical Physics Reference, Release 0.5

And about the x axis:
n=(1,0,0)

r = (pcos 6, psin o, 2)
r-n=pcos¢o

P2 p? 42
I= /p(r)(r2 — (r-n)?)d*r = / %(p2 + 22 — p?cos? ¢)d®r =

V/Qﬂdqﬁ/ dR/_idzp + 22 — p?cos? ¢)p =

m ( TR*h th‘3 R4h>

2
m TR*h 7rR2h3 B 7rR4h -
TR2h 2 o

(6R2 + A% — 3R2
= E(3R2 + h?)

Code:

>>> from sympy import var, integrate, pi, cos

>>> var("m V R rho z phi h")

(m, V, R, rho, z, phi, h)

>>> I = m/V * integrate((rho**2+z**2-rho**2*cos(phi)**2) * rho, (rho, 0, R), (phi, 0,
—2xpi), (z, -h/2, h/2))

>>> I.subs(V, pi * R**2 * h).simplify()

m* (3*%R**2 + h*x2)/12

Special cases are a rod of length h (set R = 0 above) and a thin solid disk of radius R and mass m (set h =0
above).
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Sphere

Solid sphere of radius R and mass m. We'll use spherical coordinates. All axes are equivalent, so we use
rotation about the z axis:

4
V= §7TR3
n=(0,0,1)

r = (pcos¢sind, psin ¢sin b, p cos )

r-n=pcosf

r? = p?
1= [o0)? - o)t = [ T~ 2 cos? o)t =

m 27
= / dgb/ dR/ dfp?(1 — cos? 0)p*sinf =
m 2
:7/ d</>/ dR/ dfp?sin® 6 =
V- Jo 0 0

m2 R% 4
= —2T—— =
V"5 3
_m8 5 m 8 5_2 9
v STt T mE

Code:

>>> from sympy import var, integrate, pi, sin

>>> var("m V R rho theta phi")

(m, V, R, rho, theta, phi)

>>> 1 = m/V * integrate(rho**4 * sin(theta)**3, (rho, 0, R), (phi, 0, 2#pi), (theta, 0,

~pi))

>>> 1

8xpixR**5*m/ (15%V)

>>> T.subs(V, 4*pi*R**3/3)
2xR**2*m/5

4.3 Relativity

4.3.1 Introduction: Why Tensors

This section gives a brief introduction, and in the next sections we derive everything in detail. The Newton
law is:

d%x
e = F
and using a potential for F', we get:
d?x

=-V
de? ¢

d2zt -

i 1
de? ¢
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the last two equations are two different equivalent ways to write a tensor equation in 3D, which means that
this equation has the exact same form (is valid) in any (spatial) coordinate system (rotated, translated, in
cartesian coordinates, spherical coordinates, ...). Each coordinate system has a different metric, but we can
always locally transform into g;; = diag(1,1,1).

However, if our coordinate transformation depends on time (e.g. a rotating disk), then the above tensor
equation changes (e.g. for the rotating disk, we get the Coriolis acceleration term), that’s because time is
treated as a parameter, not as a coordinate.

To fix this, we need to work in 4D and treat time as a coordinate, so we introduce z° = ct where c is any

constant speed (it can be any speed, doesn’t have to be the speed of light). Then in 4D, the above equations
are not tensor equations anymore, because the operator % = ¢y is not a tensor. The 4D tensor formulation
happens to be the geodesic equation:

da? dz®
——Vg——=0

dA dA
Roo == 47TGp
Rij =0

Which (given that we know how to calculate the Ricci tensor in our coordinates) is valid in any coordinates,
not only rotated, translated, cartesian, spherical, ..., but also with arbitrary time dependence, e.g. a rotating
disk, accelerating disk, ...

After suitable local coordinate transformation, we can only get two possible metrics (that connect the time
and spatial coordinates): diag(—1,1,1,1) and diag(1,1,1,1). Inertial systems have no fictitious forces, so
the metrics is one of the two above (possibly with ¢ — 00). Transformation between inertial systems is such
a coordinate transformation that leaves the metric intact, e.g.:

g =ATgA

There is no coordinate transformation that turns the metric diag(—1,1,1,1) into diag(1, 1,1, 1), so we need
to choose either one to describe one inertial system and then all other inertial systems will automatically
have a metric with the same signature.

The Newton law is valid for small speeds compared to the speed of light, so when we want to extend the
theory for all speeds, we only have 4 options: O(3, 1) with either ¢ — oo or ¢ finite and O(4) with either
¢ — oo or ¢ finite. If ¢ is finite, it has to be large enough, so that we still recover the Newton law for small
speeds with the given experimental precision. All 4 cases give the correct Newton law, but give different
predictions for large speeds. All we need to do to decide which one is correct is to perform such large speeds
(relativistic) experiments. It turns out that all such relativistic experiments are in agreement with the O(3,
1) case where c is the (finite) speed of light and with disagreement with the 3 other cases. For small speeds
however (i.e. Newtonean physics), all 4 cases will work, as long as ¢ is chosen large enough.

Given a tensor equation, we can easily determine, if it transforms correctly under the Galilean (¢ — o0) or
Lorentz transformations (c is finite). All we have to do is to perform the limit ¢ — oo. For example the
Newton second law is recovered if we do the ¢ — oo limit, but Maxwell equations are only recovered if we
choose ¢ to be exactly the speed of light in the Maxwell equations.

The reason why we write equations as tensor equations in 4D is that we can then use any coordinates
(including any time dependence), i.e. any observer, and the equations still have the exact same form. So
specifying the metrics is enough to define the coordinates (observer) and since the equations has only one
form, that is all we need. If we write equations only as tensors in 3D, we not only need to specify the
(3D) metrics, but also how the observer accelerates with respect to some (usually inertial) frame where the
equations (let’s say Newton law) is defined and we then need to transform all the time derivatives correctly.
By using tensors in 4D, all those transformations are taken care of by the standard tensor machinery and
all we need to care about is exactly one observer, defined by its metric tensor.
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By choosing the correct metrics and ¢ (i.e. diag(—1,1,1,1) and ¢ the speed of light), all equations are then
automatically Lorentz invariant. If we choose ¢ — oo (and any metric), we automatically get all equations
Galilean invariant.

4.3.2 High School Formulation

The usual (high school) formulation is the second Newton’s law:

d%x
m—s =F
de?
for some particle of the mass m and position x. To determine the force F, we have at hand the Newton’s
law of gravitation:

mims
r2

F| =G

that expresses the magnitude |F| of the force between two particles with masses m; and mo and we also
know that the direction of the force is directly towards the other particle. We need to take into account all
particles in the system, determine the direction and magnitude of the force due to each of them and sum it

up.

4.3.3 College Formulation

Unfortunately, it is quite messy to keep track of the direction of the forces and all the masses involved, it
quickly becomes cumbersome for more than 2 particles. For this reason, the better approach is to calculate
the force (field) from the mass density function p:

V-F=—-4rGmp(t,z,y, z)
To see that both formulations are equivalent, integrate both sides inside some sphere:
/V -Fdxdydz = —4nGme /pdxdydz
apply the Gauss theorem to the left hand side:
/V~Fdxdydz:/F~ndS:47rr2F~n

where n = ﬁ and the right hand side is equal to —47Gmims and we get:

mimsg

F-n=-G 5

r

now we multiply both sides with n, use the fact that (F-n)n = F (because F is spherically symmetric), and
we get the traditional Newton’s law of gravitation:

mimsa
n

F=-G

r2

It is useful to deal with a scalar field instead of a vector field (and also not to have the mass m of the test
particle in our equations explicitly), so we define a gravitational potential by:

F= _mv¢(t7 z,Y, Z)
then the law of gravitation is

V2¢ = 4nGp (4.3.3.1)
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and the second law is:

Note about units:

[r] = [x] =m
[m] = kg
[ = kgm™?
[F] = kgms™>

Example

Calculate the force acting on a test particle inside an infinitely thin spherical shell of radius R and surface
mass distribution o (6, ¢) = 1. We need to solve

V3¢ = 4nGp (4.3.3.2)

with

play.2) = 0(0,6) 22D

r=+/x2+y2+ 22

the Green function of (4.3.3.2) is

1
Gx,y) = W

so the solution is:

¢= /G(x,y)47er(y)d3y = 47TG/ |Xp(yi,|d3y =
A G/ U(@,(ﬁ)@?’j sin 0
=4r
V/(z —rsinfcos )2 + (y — rsinfsin )2 + (z — r cos 0)2
O0(R—r)sind

:47TG/
V/(z —rsinfcos¢)? + (y — rsinfsing)? + (2 — rcos )2

d0dedr =

d6depdr =

sin 0

:47TG/
V/(z — Rsinfcos ¢)2 + (y — Rsinfsin¢)? + (2 — Rcos0)?

dode =

sin 6

:47rG/ d6d¢
Va2 +y2 + 22+ R2 — 2R(zsinf cos ¢ + ysinfsin ¢ + 2 cos0)
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for symmetry reasons we can set © = 0, y = 0 (it can also be done more exactly, as shown in Ezample II):

2m 4 sin 0
0,0,2)=47G [ do | a6 -
g ?) i /0 ¢/0 V22 + R2 —2Rzcosf

sin 6

= 87‘(’2G/ dé =
0 V22 + R?2 — 2Rz cosf
1
= 87r2G/ =
—1v/22+ R? - 2Rzy
472G /(R+Z)2 du
(

Rz J(r—2)e Vu
_ _47r2G {2 }(RH)Q

Rz b (R—z)? -
v ole
- 7};2 [2|R+z| —2|R—z|} -
472G
Rz [ ‘
167G
B R
This must hold for all  and y (less than R), so:
672G
¢(.’L‘, Y, Z) =

R
And the force is

1 2
F =-mVo¢(t,x,y,z) = —mV <— 671; G> =0

So the force acting on a test particle inside the shell is zero.

4.3.4 Differential Geometry Formulation

There are still problems with this formulation, because it is not immediatelly clear how to write those
laws in other frames, for example rotating, or accelerating — one needs to employ nontrivial assumptions
about the systems, space, relativity principle and it is often a source confusion. Fortunately there is a way
out — differential geometry. By reformulating the above laws in the language of the differential geometry,
everything will suddenly be very explicit and clear. As an added bonus, because the special and general
relativity uses the same language, the real differences between all these three theories will become clear.

We write z,y, z and t as components of one 4-vector

< 8

z

In this section, you can imagine ¢ = 1, but we’ll need it later, so we put it in right now, so that we don’t
need to rederive all equations again. Now we need to connect the Newtonian equations to geometry. To do
that, we reformulate the Newton’s second law:

%zt

@ T 5996 =0
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by choosing a parameter A such, that ‘011275‘ =0, so in general

A=at+b
and
@
dt? d)\2
SO
d2zt

1
W+¥5Jaj¢:0

and using the relation % = a we get

2z dt \?
g, - —
KA aqu(dA) 0

So using x° instead of ¢, we endup with the following equations:

d2a0
e
d2at 1 ... da® 2
— 599, =) -
oz e aj¢(dA> 0

But this is exactly the geodesic equation for the following Christoffel symbols:
. 1 .
Lo = 0—26”8]¢ (4.34.1)

and all other components are zero.

In order to formulate the gravitation law, we now need to express V2¢ in terms of geometric quantities like

I'5, or R*g5. We get the only nonzero components of the Riemann tensor:

, , 1
R oko = =R ook, = — 070,00
C
we calculate the R, by contracting:
” i 1 sii
Roo = RFouo = R'oip = 0725 0;0;¢

Rij =0
comparing with (4.3.3.1) we see that the Newton gravitation law is

4nG
Roo = —5-p

Rij:O

Thus we have reformulated the Newton’s laws in a frame invariant way — the matter curves the geometry
using the equations:

_ ArG

Rog = ——
00 020

Rij =0
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from which one can (for example) calculate the Christoffel symbols and other things. The particles then
move on the geodesics:

d?z® dz? dz

—_— o — —
Dz AT
Both equations now have the same form in all coordinate systems (inertial or not) and it is clear how to

transform them — only the Christoffel symbols (and Ricci tensor) change and we have a formula for their
transformation.

Obviously this works for any value of ¢ (as it cancels out in the final equations of motion) and at this level
we don’t really need it yet, so we can set ¢ = 1 and forget about it. In the next section we will need some
constant in the metric to send to infinity in order to obtain the correct Christoffel symbols, and we can
conveniently just use c. Later on we introduce special relativity and we need to introduce a speed of light
and it turns out that we can again just use ¢ for that without any loss of generality.

4.3.5 Metrics

There is a slight problem with the metrics — it can be proven that there is no metrics, that generates the
Christoffel symbols above. However, it turns out that if we introduce an invariant speed c in the metrics,
then calculate the Christoffel symbols (thus they depend on ¢) and then do the limit ¢ — oo, we can get the
Christoffel symbols above.

In fact, it turns out that there are many such metrics that generate the right Christoffel symbols. Below we
list several similar metrics and the corresponding Christoffel symbols (in the limit ¢ — 00), so that we can
get a better feeling what metrics work and what don’t and why:

—2-26 0 0 0

B 0 1 0 0

G = 0 0 -1 0

0 0 0 1

1 _

F00_83159ZS
Fgoz_y(%5
F80:8Z¢

=26 0 0 0

B 0 1 0 0

Guw = 0 0 -1 0

0 0 0 -1
F(lJozaﬂc(é
I%O:_y(b
F802_82¢

—2-26 0 0 0

B 0 1 0 0

Guw = 0 0 -1 0

0 0 0 -1
Fé():_z¢
Fgoz_y¢
Fgozfzd’
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—c?445-2¢ 0 0 0
B 0 1 0 0
G 0 01 0
0 00 1
Lo = 0:6
F(Q)ozay¢
IG5y = 0-¢
—c2—2¢ 0 0 0
0 1-2 0 0
uw 0 0 1-2% 0
0 0 0 1-2%
Lo = 0:6
I‘oozayqﬁ
Foozaz¢
—2-2¢ 0 0 0
_ 0 100
Guw = 0 01 0
0 00 1
F(lJO:aw(é
F%028y¢
F%o:az¢
=26 0 0 0
B 0 1 00
Jpwr = 0 01 0
0 00 1
P(l)o:a:c¢
F30:3y¢
IG5y = 0-¢
-2 0 0 0
B 0 2 00
G = 0 0 1 0
0 0 0 1
Fgozay¢
F80282¢
=2 0 0 0
| o 10 %
G = 0 01 0
0 00 1
F(1)0:8304Zs
Fgozay?b
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F80:8z¢

-2 0 0 0

_ 0 1 0 ¢

G 0 01 0

0 00 1
Lo = —o0
F%ozay?b
Fgozazﬁb

=26 0 0 0

_ 0 1 05

G = 0 01 0

0 00 1

['Yy = 0x¢ — 50.¢

Fgozay¢
F8028Z¢)

2—-26 0 5 0

B 0 100

G = 0 01 0

0 00 1
F(l)o:azﬁb
Fgozay¢
Fgozazéb

If we do the limit ¢ — oo in the metrics itself, all the working metrics degenerate to:

400 0 0 0
o 100
9w =10 0 1 0

0 00 1

(possibly with nonzero but finite elements go; = g0 # 0). So it seems like any metrics whose limit is
diag(£o0, 1,1, 1), generates the correct Christoffel symbols:

1—‘(1)0 = 0,0
F(Q)O = 8y¢
F%O =0.¢

but this would have to be investigated further.
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Let’s take the metrics
the limit ¢ — 00):

J72 7

py

diag(—c? — 2¢,

1-21-2%

2 c2

- i—f) and calculate the Christoffel symbols (without

Fo(tz,y,2)

Zo(t,2,y,2)

2 o(tm,y,2)  Ztaye) _ Feltay.z)  LZotay.z)
(a2 2itay.s) e 245,52 = T
o(t,x,y, Z) %‘b(tﬁxvy!z) 0 O
—245(* w,z)—c? c2(=2¢(t,w,y,2)—c?)
2 6(ta,y,2) 0 L2 p(t,x,y,2) 0
—20(60,0,5)— 2 FC%tey -
87¢(t#m7y7z) 0 0 m‘fb(tazvyvz)
—2¢(t,w,y,2)—c? c2(—=2¢(t,x,y,2)—c?)
é%d)(t,x,y,z) _ D (b(t,x,y 2) 0 0
1—2 ¢(t.zéy,z) C2(1 2¢(t x, y 7))
c
Zo(t,m,y,2) e .2) 3y 0(tay.2) _ Zeltwy,z)
(32(1_2%) 2 1 2¢(flyz)) (.2(1 QM) C2(1_2W)
0 o By ‘fb(t ) ¢(t z,Y,%) 0
(.2( 2¢(tzy2)) (1 2¢>(try2))
c
0 5z ¢(t z,Y,2) O %¢(t,z,y,z)
02(1 24’“ x y z)) 62<1—2 ¢(t,:2,y.z))
2 o(tz,y,2) 0 _ Feltmy,2) 0
1-2 ¢(t,w2~y12) (.2( _9 ¢(t x, y Z))
¢
. Lotews) | o) .
62(1_2¢v(t,:t2,’y,z)) c2(1— 2¢(t‘t Y, z))
c
) 2 4(t,2,9,2) Lotteys)  Detay)
02(1_2%M) C2(1_2‘f’(%2v9v72)> c2(1 2¢(t*yz)) 02(1 QW%M)
0 0 L o(t,x,y,2) 87/ o(t,x,y,2)
c2(1 2¢>(t¢y2)) (1 2¢(t:y2))
%gf)(t@,y,z) 0 0 - i ¢(t z,Y,2)
1-200zy) (12 20z
0 2 o(t,2,y,2) 0 2 6(t,2,y, Z)
02(1_2 ¢(t,x2,y,z)) 02 1 2¢7(t 7,5,2)
c
0 0 %¢(t1xvyvz)

2 (128 n)
c
_ gotay,2)

(1 2¢>(tL Y,2)

3z ¢ (t,x,y,2)

02(1_2 d’(t,:éy,Z) )

02(1_2 <P(tvz'2vy»2) )

c2(1_2 ¢>(t,:2,y12) )

By taking the limit ¢ — oo, the only nonzero Christoffel symbols are:

or written compactly:

So the geodesics equation

1—‘(1)0 = 0,0

OO_ ’U¢

OO_

9:¢

60 = 5ijaj¢

d2ze

(0%

Azt de? e
dx2 By dx da

)

)
Em ¢(t x yvz)

)

)

(1 2¢(tLyZ)

becomes
d2z0°
ax
d?z’ + 5ij84¢ dixo ’ =0
dA2 J dA N
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From the first equation we get 2 = a\ + b, we substitute to the second equation:

1 d2%z? Iy
a? d\2 +04Y9;6=0
or
%zt ii
d(x9)2 0100 =0
A2zt .
gz = 0709

So the Newton’s second law ¢s the equation of geodesics.

In the above, we have set ¢ = 1 in the Christoffel symbols themselves (see the last paragraph from the last
section) and introduced another constant ¢ in the metric itself. As we can see, the metric will become infinite
with this approach in the limit ¢ — oco. Another approach is to store this ¢ in the x* vector itself, then
the metric stays finite (in fact becomes a diagonal matrix diag(41,1,1,1), thus it gives all the Christoffel
symbols equal to zero, in the limit), but the vector becomes infinite in the limit.

Either way our formalism breaks down, and thus we need to keep c finite and only do the limit in the final
equations (after we don’t need differential geometry anymore). When needed, we can also carefully neglect
higher terms in ¢, that will not appear in the final equations after doing the limit, but one needs to make
sure that no mistake is made.

It is customary to put the constant ¢ into the vector z# and so we will do so too from this point on.

4.3.6 Conclusion About Metric

We will use the convention to keep ¢ in the 4-vector and the simplest metric that generates the correct
Christoffel symbols is the following;:

£1-2 0 0 0

B 0 1-22 0 0
I =10 0 1-2 o
0 0 0o 1-%

In the limit ¢ — oo we get the following nonzero Christoffel symbols (for both signs in +1 above):
i Lo
00 — 075 959

all other symbols contain higher powers of ¢ and thus will not contribute in the limit ¢ — oco. The remaining
c? in T, will cancel with the ¢ in #° = ¢t in the final equations.

As seen above, there is some freedom in which metric we can use in order to obtain the correct Christoffel
symbols, but the above metric is the simplest, so we’ll use it from now on.

4.3.7 Einstein’s Equations

Einstein’s equations are derived from the Hilbert action:

ct 4 ct
= — 1224 4
Sy e /R1/|detg,“,|d T= e /g R,/ | det g|d*x

The Lagrangian density R+/|det g,, | has to be given, that’s our assumption and everything else is derived
from it. In principle it can have other terms, for example oy R? + s R, R* + 39"V, RV, R+ - - and there
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are a lot of possibilities and ultimately the exact form of the Lagrangian has to be decided by experiment.
The Hilbert action is the simplest possible action and it already gives a theory which agrees with experiment,
so that will be our starting point.

Varying it with respect to the metric g" we get:

4

095 = 6160776' / Ry/| det gld'z =

= % /(59“”)Ruum+ 9" (8R,w)\/[det g| + R(6+/[ det g|)d'z =

= % /(@W)Rw\/m-i-gw (V,\((SF{}#) - VV((SFj\\M)) V] det g| + R(‘%\/Mguy((Sg“”))d‘lx _
~ s [ O R TG (a5 002, Vo (0T,)) VTt - g/ [t ] (G )a%a =
: [ 6 By 1ot gl — R/ [det ] (59 )% =

~ 167G
c* )
167G / (R“” B %Rg,w) (0g"") |detg|d4g;

Where we used the following identities:
§v/| det g| = —5 /| det g| g, (3g"")
SR = VA(SL),) — Vl,(éFf\M)
0R, = 6R xy = VA(T,) — V,,(0T3,,)

Vi
and the fact that the four divergence doesn’t contribute to the integral. By setting Sy = 0, we get:

2 58[—] _ 64
,/|detg| 69“” 3G

Combining the Hilbert action Sy with the action for matter Sy, we get:

(R = 3 Rgp) =0

S=8g+ Sy
Varying this action as above we get:

&S 4 2 4S
= (R = 5Rgw) + =0

2
V[ det g[ 6g*" — 87G /| det g| 09"

SO:

87rG 2 0SS 871G
R v lR v — T = T, v
: 21 ct /| det g| 09" T

Where we set:
B 2 0Sm

Ty = ———
g /I det g| 69"

This is a definition of the stress energy tensor corresponding to the action Sy = [ L4/ det gld*z. We can
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also write it in terms of the Lagrangian L, directly as:

2 0Snm

2 § [ Lary/] det gld*x
Vldetg] og
o J(3Lar)/Tdetg] + Las (3\/Tdetg]) dt
- /[ detg] o9
o J (8 6gm) VIdetgl + Lar (5 /et gl guu(69™) ) d'a

/| det g oghv

B 2 0L 1 _

5£M
= I/L:
59 + uvknMm

If this action contains electromagnetic field, we get an electromagnetic stress energy tensor. For continous
matter, we get the stress energy tensor for continous matter, see the next section. The right hand side of
the Einstein’s equations contains the sum of all stress energy tensors (for all fields in the Lagrangian).

4.3.8 Continuous Distribution of Matter

The action is:
Sy = —/pc,/vllv“\/|detg\d4x

But it isn’t suitable for applying variations because p and v* are not independent quantities. So we write it
in terms of a 4-momentum vector density p*:

pt = po*

pt = p/|det g| = pv*y/[ det g
VB = \/pvm/ldet glpvty/| det g| = py/v vt/ | det g

and the action becomes:

= —/pc\/vuv“\/|detg|d4m: —/c‘ /p#p”d‘lm

We vary Sj; with respect to g+:

5Sy = 75/01 /pprdle =

5(ghv
:_/C (g pupy)d%
2¢/p 0

R 4
= o(g")d*x =
/ 2R (e")

B PULPV |detg\ g4
=—fec 6(g"")d x =
2pc+/| det g

:—/%pvuv,,é(g“”)\/|detg|d4x
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And the stress energy tensor is:
2 05,
Ty = ———— ot _
VI det g] 39"

2
- () -

= PUuVy

Now we vary Sjp; with respect to z#:

oSy = —6/0, /pu{J“d‘lx =

S(gh
_ _/C (g p,my)d%
AV
2g"vp (8
cig {J#( py)d4x
2/ b

“)d4x =

b
_/ o
D, (p” (dxH) — p(52¥)) d*x =

:/ <":pa>( V(52 — pr(6a)) die =
(o) (-
AR R ) .

= /(VVUH — V) pv” (52+)+/| det g|d*z =
=/ (Vyv,)v” (d2")+/| det g d4

So the equation of motion is the geodesic:
p(Vyu,)v" =0

Charged matter has the interaction action:

S0= [ o a/Taetglate = - [,/ detgite = - [#a,d%

where we have introduced the 4-current j# and 4-current density j*:

"= pemv"

f = j"/|detg| = pparv* /| det g
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We vary S, with respect to x*:
65, =6 / JFA,dr =
= / (6f)Audte =
. / By ( (52 — *(52)) A d'a =
_ /(j”(&x“) 1 (6a")) 0, A, d e =
- / ¥ (62")(0, A,y — 8, A, )d e =
= /pEMUV(auAM - 8;1141/)(595#)@&33 =
= —/PEMUVFW((SQJ’”)\/M&Z"

So the combined action Sy + S, yields:
p(Vyu,)v” — pppv”Fu, =0

Varying S, with respect to A* yields the 4-current j# = pgarv* which ends up on the right hand side of the
Maxwell’s equations when varying the Sgjs action.

4.3.9 Obsolete Section

This section is obsolete, ideas from it should be polished (sometimes corrected) and put to other sections.

The problem is, that in general, Christoffel symbols have 40 components and metrics only 10 and in our
case, we cannot find such a metrics, that generates the Christoffel symbols above. In other words, the
spacetime that describes the Newtonian theory is affine, but not a metric space. The metrics is singular, and
we have one metrics diag(—1,0,0,0) that describes the time coordinate and another metrics diag(0,1,1,1)
that describes the spatial coordinates. We know the affine connection coefficients I'j. , so that is enough to
calculate geodesics and to differentiate vectors and do everything we need.

However, for me it is still not satisfactory, because I really want to have a metrics tensor, so that I can easily
derive things in exactly the same way as in general relativity. To do that, we will have to work in the regime
c is finite and only at the end do the limit ¢ — oo.

We start with Einstein’s equations:

8rGG

Ra,B - %Rgaﬁ = CTTQB

or
&G
Rop = CT(Tozﬁ - %Tgag)
o 8rG .,
R B = e (T B %T)
The energy-momentum tensor is
T8 = pUueU”

in our approximation U? ~ 0 and U° ~ ¢, so the only nonzero component is:

T00 — pe?
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T = pc
and
; 8rG 4G
R j= C4 (_%pcz) = - 02
8rG 4G
ROO = e (%pcz) = 2
We need to find such a metric tensor, that
1
R = V%9
c

then we get (4.3.3.1).

There are several ways to choose the metrics tensor. We start We can always find a coordinate transformation,
that converts the metrics to a diagonal form with only 1, 0 and —1 on the diagonal. If we want nondegenerate
metrics, we do not accept 0 (but as it turns out, the metrics for the Newtonian mechanics is degenerated).
Also, it is equivalent if we add a minus to all diagonal elements, e.g. diag(1,1,1,1) and diag(—1,—1,—1, —1)
are equivalent, so we are left with these options only: signature 4:

g = diag(1,1,1,1)
signature 2:
g = diag(—1,1,1,1)
gy = diag(1,-1,1,1)
g = diag(1,1,-1,1)
gy = diag(1,1,1,-1)
signature 0:
gy = diag(—1,-1,1,1)
g = diag(—1,1,—-1,1)

uv = dlag(_la 17 17 _1)

No other possibility exists (up to adding a minus to all elements). We can also quite easily find coordinate
transformations that swap coordinates, i.e. we can always find a transformation so that we first have only
—1 and then only 1 on the diagonal, so we are left with: signature 4:

g = diag(1,1,1,1)
signature 2:
gy = diag(—1,1,1,1)
signature 0:
g = diag(—1,-1,1,1)
One possible physical interpretation of the signature 0 metrics is that we have 2 time coordinates and 2 spatial

coordinates. In any case, this metrics doesn’t describe our space (neither Newtonian nor general relativity),
because we really need the spatial coordinates to have the metrics either diag(1,1,1) or diag(—1, —1,—1).
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So we are left with either (this case will probably not work, but I want to have an explicit reason why it
doesn’t work):

1 0 0 O

lo1 00

=10 0 10

0 0 0 1

or (this is the usual special relativity)

-1 0 0 O

lo 100

=10 010

0 0 0 1

It turns out, that one option to turn on gravitation is to add the term —i—f]l to the metric tensor, in the
first case:

1-2 0 0 0
g | O 1 2 0 0
n 0 1-2 0
0 0 0o 1-%
and second case:
-1-22 0 0 0
B 0 1-22 0 0
I =1 0 0 1-2 o
0 0 0o 1-%

The second law is derived from the equation of geodesic:
d2z® , dzf dx”
- + [
dx2 A dn da

in an equivalent form

dU~
dr

a 17877y —
+I'g,U U'=0

The only nonzero Christoffel symbols in the first case are (in the expressions for the Christoffel symbols
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below, we set ¢ = 1):

FO

py T

N2

N2

nv

and in the second case, only I'

py

Now we assume that 9,¢ ~ ¢ < 2, so all '3, are of the same order. Also |U?| < |U°] and U° = ¢, so the

only nonnegligible term is

Fo(tz.y,2)

2 o(t,z,y,2)

2 6(t5,5,2)

2 o(t,z,y,2)

S 1-2(ayz)  1-29(hayE)  1-26(kayz)  1-26(6ay.2)

2ty Abltmyz) 0 0
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)

%¢(t7xvyvz) O %45(757377%2) O

T 1-24(t,3,y,2) 1-26(t,2,y,2)

) 0 0 26(tay.?)
1-2¢(t,z,y,2) 1-2¢(t,z,y,2)
Lottows) _ Hotaye) 0 0
N BN
2 (t,z,y,z) &= d(t,x,y,2) 3, 2(t,x,y,2 o= d(t,z,y,2)

a 18—t?¢(t,f67y72) B 1852¢(t,96-,y72) - 1—de>(t,z7y7Z) B 18—2¢>(t7r7y72)

0 . afy¢(t7r,y,2) %qS(t,x,y,z) 0
152qzi>((t7w-,yyz)) 1-2¢(t,z,y,2) 2 4 )
7z ¢(t,z,y,z 55 P(tx,y,z

0 T1720(tw.0.2) 0 1220(t,0.,%)

Zo(tzy,2) 0 _ Fotay.z) 0
1-2¢(t,2,y,2) 5 1-2¢(t,2,y,2)

O Ty¢(t7mvy’z) _ %¢(t,m,y,z) O

1-2¢(t,2,y,2) 1-2¢(t,2,y,2)
26(te,,2) 2 3(t,2,9,2) 2 6(t,3,.2) 2 6(ta.2)

T 1-2¢(twy,z)  1-26(twy,z)  1-26(tz,y,.2)  1—-20(ta,y,2)

0 0 o %gﬁ(t,m,y,z) %¢(tvryyvz)

1-2¢(t,2,y,2) 1-2¢(t,2,y,2)
£6(t0.9.2) 0 0 _ Foltay.e)
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)

0 (%qﬁ(t,m,y,z) 0 _ %qﬁ(t,m,y,z)

1-2 1 1-2

. ¢(8x,y,z) 2 ptye) 8%(;3((:%925;))

1=2¢(tz,y,2)  1-26(t,,y,2)
& o(t,z,y.2) L o(t2.y.2) 7y 0 (ty.2) Loty
- 1-2¢(t,x,y,2) - 1-2¢(t,x,y,2) - 1-2¢(t,x,y,2) - 1-2¢(t,x,y,2)

0
Qv

2 o(tx,y,2)

is different:

Zo(tmy,2)

2 b(tx,y.2)

£ o(t,2,y,2)

14+2¢(t,2,y,2)
2 o(t,2,y,2)

1+2¢(t,x,y,2)
2 o(tx,y,2)

1+24(t,2,y,2)
)
1426(t,2,y,2)
%¢(t1$7y72)
14+26(t,2,y,2)

T 142¢(tm,y,2)
0

0

dU~
dr

Substituting for the Christoffel symbol we get

Ut 690;%
=-—

dr

e

C

and multiplying both sides with m:

o= (1+0(%)) -

dU?
dr

m

1+26(t,2,y,2)
0

ety
14+26(t,2.y.2)

0

+T5,(U%)? =0

= 7maj¢ 5ij

1+2¢(t,,y,2)
0

0

ety
14+26(t,2.y,2)

2
—599,6+ O ((j;) )

which is the second Newton’s law. For the zeroth component we get (first case metric)

mdUO B
dr

m

d¢
dr
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second case:
LUt de
dr dr

Where mU? = p° is the energy of the particle (with respect to this frame only), this means the energy is
conserved unless the gravitational field depends on time.

To summarize: the Christoffel symbols (4.3.4.1) that we get from the Newtonian theory contain ¢, which up
to this point can be any speed, for example we can set ¢ = 1 ms~!. However, in order to have some metrics
tensor that generates those Christoffel symbols, the only way to do that is by the metrics

2
diag(—1,1,1,1) — —‘f]l
C

2
then calculating the Christoffel symbols. If we neglect the terms of the order O ((f;) ) and higher, we get

the Newtonian Christoffel symbols (4.3.4.1) that we want. It’s clear that in order to neglect the terms, we
must have |¢| < ¢2, so we must choose ¢ large enough for this to work. To put it plainly, unless c is large,
there is no metrics in our Newtonian spacetime. However for ¢ large, everything is fine.

4.3.10 Inertial frames

What is an inertial frame? Inertial frame is such a frame that doesn’t have any fictitious forces. What is
a fictitious force? If we take covariant time derivative of any vector, then fictitious forces are all the terms
with nonzero Christoffel symbols. In other words, nonzero Christoffel symbols mean that by (partially)
differentiating with respect to time, we need to add additional terms in order to get a proper vector again —
and those terms are called fictitious forces if we are differentiating the velocity vector.

Inertial frame is a frame without fictitious forces, i.e. with all Christoffel symbols zero in the whole frame.
This is equivalent to all components of the Riemann tensor being zero:

RY~5 =0

In general, if R*g,s # 0 in the whole universe, then no such frame exists, but one can always achieve that
locally, because one can always find a coordinate transformation so that the Christoffel symbols are zero
locally (e.g. at one point), but unless R*g,5 = 0, the Christoffel symbols will not be zero in the whole frame.
So the (local) inertial frame is such a frame that has zero Christoffel symbols (locally).

What is the metrics of the inertial frame? It is such a metrics, that I'“g, = 0. The derivatives 0,1“g
however doesn’t have to be zero. We know that taking any of the metrics listed above with ¢ = const we
get all the Christoffel symbols zero. So for example these two metrics (one with a plus sign, the other with
a minus sign) have all the Christoffel symbols zero:

+2 0 0 0
o 10 0
9w =19 01 0

0 0 0 1

Such a metrics corresponds to an inertial frame then.

What are the (coordinate) transformations, that transform from one inertial frame to another? Those are
all transformations that start with an inertial frame metrics (an example of such a metrics is given above),
transform it using the transformation matrix and the resulting metrics is also inertial. In particular, let x*
be inertial, thus g, is an inertial metrics, then transform to z’# and g¢':

) _Oatoxt o (0x\' (0w
Jab = Gpra gp8I = \ oz ) I\ ox'
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if we denote the transformation matrix by A:

oxH
AMO‘ = ox'e

then the transformation law is:
g = AT gl

Now let’s assume that ¢’ = g, i.e. both inertial systems are given by the same matrix and let’s assume this
particular form:

£+ 0 0 0
;o 100
G = =10 0 1 0

0 0 0 1

(e.g. this covers almost all possible Newtonian metrics tensors).

4.3.11 Lorentz Group
The Lorentz group is O(3,1), e.g. all matrices satisfying:
g=ATgA (4.3.11.1)

with g = diag(—c?,1,1,1). Taking the determinant of (4.3.11.1) we get (det A)? = 1 or det A = 1. Writing
the 00 component of (4.3.11.1) we get

—? = —c2(A%)? + (AP1)? + (A%)? + (A%)?
(AOO)2 =14+ C% ((A01)2 + (A02)2 4 (A03)2)

Thus we can see that either A% > 1 (the transformation preserves the direction of time, orthochronous) or
A% < —1 (not orthochronous). Thus we can see that the O(3, 1) group consists of 4 continuous parts, that
are not connected.

First case: elements with det A = 1 and A% > 1. Transformations with det A = 1 form a subgroup and are
called SO(3, 1), if they also have A% > 1 (orthochronous), then they also form a subgroup and are called
the proper Lorentz transformations and denoted by SO™(3,1). They consists of Lorentz boosts, example in
the z-direction:

1 =2
—— 0 0
Vies o s
AR o v _ 1 _ 0 0
T Vs Vs
0 0 1 0
0 0 01
which in the limit ¢ — oo gives
1 0 0 0
v _|-v 1.0 0
A = 0 0 1 0
0 0 0 1
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and spatial rotations:

1 0 0 0
0 1 0 0
Ri(9) = 0 0 cos¢g sing
0 0 —sing coso¢
1 0 0 0
0 cos 0 sin
0 —sing 0 coso¢
1 0 0 0
10 cos¢p sing O
Rs(9) = 0 —sing cos¢ 0
0 0 0 1

(More rigorous derivation will be given in a moment.) It can be shown (see below), that all other elements
(improper Lorentz transformations) of the O(3, 1) group can be written as products of an element from
SO™(3,1) and an element of the discrete group:

(1, P, T, PT}

where P is parity (also called space reflection or space inversion):

1 0 0 O
0 -1 0 O
P= 0 0 -1 0
0o 0 0 -1
and T is time reversal (also called time inversion):
-1 0 0 0
0 1 0 0
= 0 01 0
0 0 01

Second case: elements with det A = 1 and A% < —1. An example of such an element is PT. In general, any
product from SO (3,1) and PT belongs here.

Third case: elements with det A = —1 and A% > 1. An example of such an element is P. In general, any
product from SO (3,1) and P belongs here.

Fourth case: elements with det A = —1 and A% < —1. An example of such an element is 7. In general, any
product from SO (3,1) and T belongs here.

Example: where does the reflection around a single spatial axis (¢, xz,y,2) — (¢, —x,y, z) belong to? It is the

third case, because the determinant is det A = —1 and the 00 element is 1. Written in the matrix form:
1 0 0 0 1 0 0 0 1 0 O 0
A— 0 -1 0 0] [0 -1 O 0 01 0 01
~{0o 0o 1 o] l0 0 -1 0 00 -1 0]
0 0 01 0 0 0o -1 0 0 0 -1
1 0 0 0 1 0 0 0
0 -1 0 0 0 1 0 0
“{o 0o -1 0 0 0 cosm sinm| PR, (7)
0 O 0 -1 0 0 —sinm cosw

4.3. Relativity 221



Theoretical Physics Reference, Release 0.5

So it is constructed using the R; element from SO™(3,1) and P from the discrete group above.

We can now show why the decomposition O(3,1) = SO (3,1) x {1, P, T, PT} works. Note that PT = —1.
First we show that SO(3,1) = SOT(3,1) x {1,—1}. This follows from the fact, that all matrices with
A% < —1 can be written using —1 and a matrix with A% > 1. All matrices with det A = —1 can be
constructed from a matrix with det A = 1 (i.e. SO(3, 1)) and a diagonal matrix with odd number of -1,
below we list all of them together with their construction using time reversal, parity and spatial rotations:

diag(—1,1,1,1) =T
diag(1,—1,1,1) = PRy ()
diag(1,1,—1,1) = PRa(m)
diag(1,1,1,—1) = PRs(~w
diag(1, —1,—1, -1)=Pr
diag(—1,1,—-1,—1) = TRy (7
diag(—1, —1, 1 ,—1) =TRa(w
diag(—1,-1,-1,1) = TR3(n)

But R;(7) belongs to SOT(3, 1), so we just need two extra elements, T and P to construct all matrices with
det A = —1 using matrices from SO(3, 1). So to recapitulate, if we start with SO (3, 1) we need to add the
element PT = —1 to construct SO(3, 1) and then we need to add P and T to construct O(3, 1). Because
all other combinations like PPT = T reduce to just one of {1, P,T,—1}, we are done.

The elements from SO™(3,1) are proper Lorentz transformations, all other elements are improper. Now
we’d like to construct the proper Lorentz transformation matrix A explicitly. As said above, all improper
transformations are just proper transformations multiplied by either P, T or PT, so it is sufficient to
construct A.

We can always write A = e”, then:
det A =detel =™l =1
so Tr L = 0 and L is a real, traceless matrix. Rewriting (4.3.11.1):
g=A"gA

A—l _ g—lATg

— _ T —17T
e L =g el g =L

—L=g'L"g

—gL = (gL)"
The matrix gL is thus antisymmetric and the general form of L is then:

0 Lo1 Loz Loz
c2 c2 c2

Loy 0 Lo L3

Loy —Lqo 0 Lo

Loz —Liz —Lxz O

One can check, that gL is indeed antisymmetric. However, for a better parametrization, it’s better to work
with a metric diag(—1,1,1,1), which can be achieved by putting ¢ into (ct, z,y, z), or equivalently, to work
with o# = (¢, z,y, z) and multiply this by a matrix C = diag(e, 1,1, 1) to get (ct, z,y, z). To get a symmetric
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L, we just have to do Cz' = LCz, so to get an unsymmetric L from the symmetric one, we need to do
C~'LC, so we get:

0 G G2 C3
Lot 0 s e ol L ic. oM

G2 w3 0 —¢
G —p2 1 0

We have parametrized all the proper Lorentz transformations with just 6 parameters (1, (3, (3, @1, @2 and
3. The matrices L and M are defined as:

00 0 0
oo 0o o
Li==ifg o o 1
00 —1 0
000 0
000 -1
La==ily o 0 o
010 0
0 0 0 0
0 0 1 0
Ls==ify 1 ¢ o
0 0 0 0
0100
1000
My=ilg g o o
000 0
0010
1o o0 0 o0
My=ily o 0 o
000 0
00 0 1
1o 0o 0 o
Ms=i1g o 0 0
100 0

Straightforward calculation shows:
[Li, L;] = i€ Ly
[Li, M;] = iesjp My
[M;, M| = —i€jp Ly

The first relation corresponds to the commutation relations for angular momentum, second relation shows
that M transforms as a vector under rotations and the final relation shows that boosts do not in general
commute.

We get:

A= e—up.L—ig-C*lMc — LT L—i¢'M
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As a special case, the rotation around the z-axis is given by ¢ = (0,0, ¢) and ¢ = 0:

0 0
cosp sine
—sing cosyp
0 0

A=e s =1 — L2 4+ iLssing + L2cosp =

OO O
= O O O

The boost in the z-direction is ¢ = 0 and ¢ = ({,0,0), e.g.:

cosh( sinh(

0 cosh ¢ % sinh ¢
sinh{ cosh(¢ 0
0

0 0
csinh( cosh¢ 0 O
10
01

=c!

A=C Mo = ! (1+ M? — iM; sinh ¢ — M} cosh() C =
1 ¢=

0 0
0 0

0 0
0 0

— o o o

from the construction, —oco < { < 0o, so we may do the substitution ¢ = atanh (%), where —c < v < ¢. The
inverse transformation is:

1
cosh( =
v2
e
sinh( = —2—
1-4%
and we get the boost given above:
1 P
cosh ¢ %sinh( 0 0 -2 122 00
Ao csinh¢ cosh¢ 0 O _ v L_ 00
N 0 0 1 0 - 1=z
0 0 0 1 0 0 10
0 0 0 1

Depending on the sign of v, we can also put a minus sign in front of the off-diagonal elements.

Adding two boosts together:

L = 00 L 2 0 0
Vios o ies Vi-s o iom
A(u)A(v) = — L~ 0 0| | ——F= L_ 0 of_
WA = | 7 ViR i -
0 0 10 0 10
0 0 0 1 0 0 0 1
wiwg \/i;z 00
S = 0 0
-|vE v
0 0 0
0 0 0 1
with
w— U+
14+
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4.3.12 O(4) Group

The group of rotations in 4 dimensions is O(4), e.g. all matrices satisfying:
g=ATgA (4.3.12.1)

with g = diag(c?,1,1,1). Taking the determinant of (4.3.12.1) we get (det A)?> = 1 or det A = +1. Writing
the 00 component of (4.3.12.1) we get

02 — 02(A00)2 + (A01)2 + (A02)2 + (A03)2
(A00)2 =1— Clz ((A01)2 4 (A02)2 4 (A03)2)

Thus we always have —1 < A% < 1. That is different to the O(3, 1) group: the O(4) group consists of only
2 continuous parts, that are not connected. (The SO(4) part contains the element —1 though, but one can
get to it continuously, so the group is doubly connected.)

Everything proceeds much like for the O(3, 1) group, so gL is antisymmetric, but this time g =
diag(c?,1,1,1), so we get:

L L L
0 ﬁ_%_%

Loy 0 L L3
Los —Lio 0 L3
Loz —Liz —Los 0

and so we also have 6 generators, but this time all of them are rotations:
A=Clealag

with @ = 1,2,3,4,5,6. The spatial rotations are the same as for O(3, 1) and the remaining 3 rotations are
(t,x), (t,y) and (t, z) plane rotations. So for example the (¢, z) rotation is:

cospg singpg 0 0 COS Py % sinps 0 O

1| —singpy cosgs O | —csingpy  coseps 0O O
A=0C 0 0 1 0 C= 0 0 1 0
0 0 0 1 0 0 0 1

Now we can do this identification:

sin gy = 7\/1£W
1
COS (b4 = W

so we get the Galilean transformation in the limit ¢ — oco:

CH
2

. - 0 0
VIFGR? VLR 1 (1) 8 8
——= 00 —v
A= \/1+(%)2 \/1+(%)2 - 0 01 0
0 0 1 0 0 0 0 1
0 0 0 1
Adding two boosts together:
2 _ 0 L Z_ 0 0
Vit it Viem o irs
——= 00 ——= 00
A(u)A(v) = Vit 1+ Vit 1+ =
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
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1 =3
2 0 0
_ > L_ 00
| VuE Ve
0 0 1 0
0 0 0 1
with
u—+v
w = uv
e

However, there is one peculiar thing here that didn’t exist in the O(3, 1) case: by adding two velocities less
than ¢, for example u = v = ¢/2, we get:

c 4c <
w= T =5 >c

1—-3 3
(as opposed to w = 1ﬁ% = % < ¢ in the O(3, 1) case). So one can get over c¢ easily. By adding u = v = %
together:

8c

5 24

w = 3 16 = _?C 0
1-3
8c

(as opposed to w = 1-&-3% = % > 0 in the O(3, 1) case). So we can also get to negative speeds easily.
One also needs to be careful with identifying cos ¢4 = \/ﬁw, because for ¢4 > m/2 we should probably

set cos py = f\/ﬁ. All of this follows directly from the structure of SO(4), because one can get from

A% > 0to A% < 0 continuously (this corresponds to increasing ¢4 over 7/2). In fact, by adding two speeds
u=v>c(v/2— 1), one always gets w > ¢. But if ¢(v/2 — 1) = 0.414c is larger than any speed that we are
concerned about, we are fine.

4.3.13 Proper Time

Proper time 7 is a time elapsed by (physical) clocks along some (4D) trajectory. Coordinate time ¢ is just
some time coordinate assigned to each point in the space and usually one can find some real clocks, that
would measure such a time (many times they are in the infinity). To find a formula for a proper time (in
terms of the coordinate time), we introduce a local inertial frame at each point of the trajectory — in this
frame, the clocks do not move, e.g. z, y, z is constant (zero) and there is no gravity (this follows from the
definition of the local inertial frame), so the metric is just a Minkowski metric.

For any metrics, ds? is invariant:
d82 = gu,,dx“dx”

so coming to the local inertial frame, we have x, y, z constant and we get:

d82 = goodT2
so:
ds?
dr =4/ —
goo
since we are still in the local inertial frame (e.g. no gravity), we have goo = —c? (depending on which metrics

we take it could also be +c?), so:
[ ds?
dr = =
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This formula was derived in the local inertial frame, but the right hand side is the same in any inertial frame,
because ds? is invariant and ¢ too. So in any frame we have:

ds? Gupdarda
dr = V e \/ B —

We’ll explain how to calculate the proper time on the 1971 Hafele and Keating experiment. They transported
cesium-beam atomic clocks around the Earth on scheduled commercial flights (once flying eastward, once
westward) and compared their reading on return to that of a standard clock at rest on the Earth’s surface.

We'll calculate it with all the metrics discussed above, to see the difference.

Weak Field Metric

Let’s start with the metrics:

d52<1+2(f)02dt2+<12¢) (dz? + dy? + d2?)
C C

Then:
oo [ B A o
P 26 1 d dy dz\*\ _
= [ (4 %) - ( (a ’ dt) +(dt>>—
[l (1+2) - £ (-2 v
where

dz\ 2 dy 2 dz\?
V2= (= - et
ve- () « (@) + (@)

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with
low powers of c:

B
o= [ (102) - L (-2 wve= [Ca(is G )
B
TAB:/A dt(1—012<;|v2—¢>)

Now let V, = V,(t) be the speed of the plane relative to the (rotating) Earth (positive for the eastbound

flights, negative for the westbound ones), Vg = 271—2{;{@ % the surface speed of the Earth, then the proper time

for the clocks on the surface is:
B
1 /1
= [ dt(1—-=(zVE-
= [, (1o (3% -9s))

T:/ABdt(l—;<;(Vg+V@)2—¢>>
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then the difference between the proper times is:

1 [P 1 ) 1, 1 (B 1
T—T@ZATZC*Q/A dt (—5 (Vg +Ve) + o+ Vs — ¢a ch/A dt (& —de — 5Vy(Vy +2Va)

but ¢ — ¢g = gh, where h = h(t) is the altitude of the plane, so the final formula is:
1 [P 1
AT = z/, dt [ gh — §Vg(Vg +2Vy)
Let’s evaluate it for typical altitudes and speeds of commercial aircrafts:

Rg = 6378.1km = 6.3781 - 10°m

2rRg 1 2TRe 1 276.3781-10°m m
Vi, = - S A T T  463.83 —
@ 24 h 24-3600 s 24-3600 s s

km m

V, = 870 —— = 241.67 —

g h S

h = 12km = 12000 m
2 27 6.3781 - 106
p o 2o 2m03T81 107 0 oot 415~ 46

Vy 241.67
c=3-1082
s
For eastbound flights we get:

ot
=2

1
AT (gh —5VoVy + QV@)) = —4.344-10"%s = —43.44ns

and for westbound flights we get:
t 1 .
AT = = gh — ng(Vg —2Vg) | =3.6964 - 107 s = 369.63 ns

By neglecting gravity, one would get: eastbound flights:

t

1
AT = = (—QVg(Vg + 2V®)) = —260.34ns

and for westbound flights:

t 1
Ar — = <_2vg(Vg — 2V®)) = 152.73 ns

By just taking the clocks to the altitude 12km and staying there for 46 hours (without moving with respect
to the inertial frame, e.g. far galaxies), one gets:

ht
Ar =92 — 216.90ns
C

Rotating Disk Metric

The rotating disk metrics is (taking weak field gravitation into account):

2 2
ds? = — (1 + C—f - %(:52 + y2)> Adt? + (dz? + dy? + d2?) — 2wy dadt 4 2w dydt
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Then:
B
ds2
TAB:/ dT:/ >
A A
B 2¢  w? 1 2wy 2wx
= L+ = — = (22 +y?) ) dt? — 5 (d2? + dy? + d2?) + —5- dedt — —- dydt =
A c c c c c
B
290  w? 1 2wy dx 2wz dy
= diy/ {1+ = — =22 +¢?) | - 5 |VP+ — — — — —
/A \/( = 02(36 —l—y)) 02| *+ 2 dt 2 dt
where

dz )\ 2 dy 2 dz\?
2 had _J _
M (dt> +(drf) *(dt)

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with
low powers of c:

B

1 d d
TAB:/ dt<1+q;_v|2+wyx_wxy>
A ¢ ¢ ¢

B
B 1 /1,9 dx dy
TAB—/A dt (1 =2 <2V| ¢ —wy a +wz dt))

Now as before let V; = V,(t) be the speed of the plane (relative to the rotating Earth, e.g. relative to our

SO

frame), Vg = QT;IZ@ % the surface speed of the Earth, so wRgq = Vg. For the clocks on the surface, we have:
Tr = R@
y=0
z=0
SO
de_dy _dz_
dt At dt
VI>=0

then the proper time for the clocks on the surface is:

Tg = /ABdt (1 - C% (—¢@)>

and for the clocks in the plane we have:
x = (R + h) cos 2t
y = (Rg + h)sinQt
z=0

where 2 is defined by Q(Rg + h) =V, so

i—gg = —(Rg + h)Qsin Ot
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d
d—i = (Rg + h)Qcos
@ _
dt
VP = Q%R + 1)?
wyi—f = —wQ(Rg + h)?sin® Qt
wx% = wQ(Rg + h)?cos® Qt

and

7= /Bdt (1 - @QQ(R@ Th)* — ¢+ w(Re +h)2>)

A

then the difference between the proper times is:

B
T—T@:ATZ—/ dt (—;QQ(R@-I-h)Q—wQ(R@+h)2+¢_¢€B> =
A

1 [P 1, h
:? " dt 75%*‘/@‘/‘(] ].+R7€B +¢*¢@ -

1 (B 1 h

but ¢ — ¢g = gh, where h = h(t) is the altitude of the plane and we approximate

so the final formula is the same as before:
1 (B 1
AT = — dt | gh — zV4(Vy +2Vg)
C A 2

2
Note: for the values above, the bracket (1 + %) = 1.00377, so it’s effect on the final difference of the

proper times is negligible (e.g. less than 1ns). The difference is caused by a slightly vague definition of the
speed of the plane, e.g. the ground speed is a bit different to the speed relative to the rotating Earth (this
depends on how much the atmosphere rotates with the Earth).

Concluding Remarks

The coordinate time ¢ in both cases above is totally different. One can find some physical clocks in both cases
that measure (e.g. whose proper time is) the particular coordinate time, but the beauty of the differential
geometry approach is that we don’t have to care about this. ¢ is just a coordinate, that we use to calculate
something physical, like a proper time along some trajectory, which is a frame invariant quantity. In both
cases above, we got a different formulas for the proper time of the surface clocks (and the clocks in the
plane) in terms of the coordinate time (because the coordinate time is different in both cases), however the
difference of the proper times is the same in both cases:

1 (B 1
AT = —2/ dt | gh — ZV4(V, +2Vg)
C A 2

There is still a slight difference though — the ¢ here used to evaluate the integral is different in both cases.
To do it correctly, one should take the total time as measured by any of the clocks and then use the right
formula for the proper time of the particular clock to convert to the particular coordinate time. However,
the difference is small, of the order of nanoseconds, so it’s negligible compared to the total flying time of 46
hours.
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4.3.14 FAQ

How does one incorporate the fact, that there are only two possible transformations, into all
of this? For more info, see: http://arxiv.org/abs/0710.3398. Answer: in that article there are actually
three possible transformations, K < 0 corresponds to O(4), K > 0 to O(3, 1) and K = 0 to either of them
in the limit ¢ — oo.

What is the real difference between the Newtonian physics and special relativity? E.g. how do
we derive the Minkowski metrics, how do we know we need to set ¢ = const and how do we incorporate
gravity in it? Answer: there are only three possible groups of transformations: O(4), O(3, 1) and a limit of
either for ¢ — oo. All three provide inequivalent predictions for high speeds, so we just choose the right one
by experiment. It happens to be the O(3, 1). As to gravity, that can be incorporated in either of them.

4.3.15 Questions Without Answers (Yet)

How can one reformulate the article http://arxiv.org/abs/0710.3398 into the language of the O(4) and O(3,
1) groups above? Basically each assumption and equation must have some counterpart in what we have said
above. I'd like to identify those explicitely.

What are all the possible metrics, that generate the Newtonian Christoffel symbols? (Several such are
given above, but I want to know all of them) Probable answer: all metrics, whose inverse reduces to g"” =
diag(0,1,1,1) in the limit ¢ — oo. I would like to have an explicit proof of this though.

What is the role of the different metrics, that generate the same Christoffel symbols in the limit (¢ — 00)?
Can one inertial frame be given with one and another frame with a different form of the metrics (e.g. one
with goo = ¢? and the other one with ggg = —c??) Possible answer: there is no transformation to convert a
metrics with signature +4 to signature 42, so one has to choose one and then all other inertial frames have
the same one.

What are all the allowed transformations between inertial frames? If we assume that the inertial frames are
given with one given metrics (see the previous question), then the answer is: representation of the O(3, 1)
group if goo = —c? or O(4) group if goo = c*>. But if one frame is goo = —c? and we transform to another
frame with goo = c?, then it is not clear what happens. Possible answer: one has to choose some signature
and stick to it, see also the previous question.

What is the real difference between Newtonian physics and general relativity? Given our formulation of
Newtonian physics using the differential geometry, I want to know what the physical differences are between
all the three theories are.
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CHAPTER
FIVE

CLASSICAL ELECTROMAGNETISM

5.1 Maxwell’s Equations

5.1.1 Electromagnetic Field

The electromagnetic field is fully described by a vector field called the 4-potential A%. It has four components
that we can label any way we want, the traditional way is to use:

e (2
C

where ¢ is called the electrostatic scalar potential, A is called the vector potential and c is the speed of light.
The Lagrangian density for the free (noninteracting) field is:

L= fiaaAﬁaaAﬁ
2410
The Lagrangian for a (charged) particle is:
L(z*,v") = —Fmuav®
it produces the following charge density:
p=qé(r—s)

The interaction between the charged particle (or in general any charged body) with some charge density and
the electromagnetic field is given by the Lagrangian density (this follows from Local Gauge Invariance):

L=—j A%
where:
" = pvt =p(c,v)
All together, the Lagrangian of a charged particle and an electromagnetic field is:
1 « 1 a AB 33 . a3
L(z", 0", A¥ 0, AY) = —5muav® — 2—8(“4,38 APd’x — [ j,AYd’x =
Ho
2

= —dImov® — / %8QA/38°‘A/3d3:c — /pvaAo‘d?’x = (5.1.1.1)
Ho

1
= —Imuav® — / ——0a A0 AP P — qua A
240
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Note that:

Vo A%

Yo +yv- A

There are several approaches how to obtain the above Lagrangian from some other assumptions, but ul-
timately the exact form of the Lagrangians has to be given by experiment. This Lagrangian is our only

assumption and we derive everything else from it.

The Euler-Lagrange equations for the electromagnetic field (in terms of A* and 9, A") are:

aﬂi

arAv) \ 2

(

fiaaAﬁaaAﬁ jaAa) =
Ho

0

1
R aAB «
> ( B OﬁaAﬁé) A JaA )

0 1 0
w__ - 5Ae aAﬁ — e
0 8(6“A”) <2uogéage,38 0 ) aAU]a
1
%8“950[965 (05050 AP + 0° A°6560) = jaos
1 o a AB O A€ .
%a (g,uozguﬂa A +gr5,ugeua A ) =Jv
1
—0" (0,4, +0,4.)) = Ju
210 (O WAv) =J
1
—0"0, A, = 4,
Ho
00, AL = pojy (5.1.1.2)
Equations for the particle (in terms of z* and v*) are:
dor oL
dr ov, Oz,
d 0 3 0A~
“T_ 5. \9 * « ozAa = a5
37 Doy, (37 Ve T aad) = v
d o o 0A~
E (%mg B((Sa,u.vﬁ’ + Ua(sﬁ'u,) + q5auA ) = ql}aiam‘u
d B u 0A~
— (L gy AM) = qug, ——
3 (3mlg""vs + g™va) +qA*) = qv o
d P N 0A~
(e o) =0
0A~
— " my —
T (mo* 4+ gA*) = qu, o,
Iz I
i
m% = ¢ (—va 0" AP + v, 0" A%)
i
m S = (0" A — 0 A,
o
mdi = qF*%y, (5.1.1.3)

dr

Where F# is called the electromagnetic field strength tensor:

Fr = grAY — 9 AV

The only way to measure the electric field is through its interaction with the charge particle. As such, the
actual physical field (that can be measured) is F*”, which is invariant under any gauge transformation:

A% 5 A% 4 0%
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where 1 is a gauge function:
FrY — OF(AY + 0¥) — OV (A + OMep) = OH AY — OV A + 99V — §¥OHp = OH AV — OV A = FHY

In other words, two different A* related by the gauge transformation represent the exact same physical
electromagnetic field (as given by the field tensor). As such, we can modify the Lagrangian by applying the
gauge transformation to the field A#: this changes the equations of motion for the field (thus the numerical
values for A* will be different), but doesn’t change the equation of motion for the particle, so the change
will not have any physical effect (cannot be measured).

By choosing v as a solution to the equation 9,,0"1 = —0, A", we get:
Ou(AF 4 0"9Y) = 0, A" 4 0,0"p = 0, A" — 9, A" =0
So for any 4-potential we can find v such that the transformed 4-potential A* obeys the Lorenz gauge
condition 9,A* = 0.
In order to obtain a gauge invariant Lagrangian, we need to express it using F'*” using the following identity:

iFaBFO‘B = i(aaAﬁ — 95A,) (0% AP — 9P A%) =

= (00 A AT~ 0,4,07 A7 — 0, A7 AT 1 054,07 A") =
= L (0nAs0 A7 — 0,4, A7) =

= 10,450°A% — 195A4,0" AP =

= 10,450°A% — J(0°An)? — 105(Aa0° AP — AP9*A,)

The 4-divergence 9g(A,0% AP — AP9*A,) doesn’t change Euler-Lagrange equations, so we can ignore it. We
can see, that in the Lorenz gauge 0*A, = 0 the term iFQBF @B (which is gauge invariant) simplifies to the
term 0, Ag0*AP in the Lagrangian (5.1.1.1). The gauge invariant Lagrangian is:

1
L(z*, v*, A", 0,A") = —Ltmuav®™ — / rFagFaBde - /jaAo‘d?’x (5.1.1.4)
Ho
The E.-L. equation for the particle doesn’t change, the equation for the field becomes:
(0, AL, — 0LA,) = tojy

0" Fpuy = piojy (5.1.1.5)

Which in Lorenz gauge simplifies to equation (5.1.1.2). In order to write equations of motion in terms of
F#¥ only, we need another equation for it:

P10, Fop = 7100, (0aAp — 0pAa) =
€ o € o a
e h oo ) (5.1.1.6)
= e*109,0, A — €720, 054, =0

We used the fact, that the partial derivatives are symmetric in the indices ya and v8 while €*#7° is anti-
symmetric.

5.1.2 Maxwell’s Equations

Maxwell’s equations are the equations for the electromagnetic field in terms of the physical field strengh
tensor, equations (5.1.1.5) and (5.1.1.6):

aﬂFul/ - //(’Ojl/
P19, Fop =0
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The field strength tensor is antisymmetric, so it has 6 independent components (we use metric tensor with

signature -2):

FOizaoAi_aiAozlaA
c Ot
iy o o OAI OA* o .
Fii=0Al — 1A = — = (667, — &
0 0 oz, + oz (6"

0 ? B _1 B P B OA*
dr;c ¢ ox; ot
. OQA™ g OA™
J — _J K
m0”1) o, € im g

There is freedom in how we label the components. The standard way is to express them using physical fields

E and B that are introduced by:

0A

E=-V¢— —

ve ot

B=VxA

or in components:
0 QA
El=_-2"_
8:@ ot

Bk _ Eklm,lem

Comparing to the above, we get:

FOi _ _E
c
Fi = —¢.B*
In particular:
F12 _ 612kBk _ *612333 —_ *BS
F13 — 613kBk: _ —613 32 _ +B2
F23 623kBk —623131 _ _Bl
so we get:
E? E? E
A
v — -~ 0 —B B
E B3 0o -B!
% -B? B! 0
B! E? B?
(1)51 o T3 T2
—= 0 -B B
ELU = g,uagl/ﬁFaﬁ = EC2 3 1
. B 0 -B
-£ -B* B' 0

In terms of E and B fields, the Maxwell’s equations become:

V-E = cpuop

. 1O0E
VXB—NOJ"‘C*QE
V-B=0

OB

E=-2

V x ot

In Lorenz gauge, the equation for the 4-potential is (5.1.1.2):

o* 8”1411 = ,UOju
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The solution to this equation is:

Joyt = 2

Mo 3
AP(x,t) =2 d
(x,t) = 7 / x—] y
For scalar potential (8 = 0) we get:
¢(X7t) _ Ho / Cp(Yat_ @)d?,
= —— —d"y
c 4r |x — y]
2 t— Ix=y| 1 t— Ix=y|
wa=mc/M% =) sy = /M” =)y (5.1.2.1)
4 |x — ] 4eg |x — y]
And for vector potential (8 =) we get:
: |x—y]
S e
A@ﬂz“f/myc)&y (5.1.2.2)

A Ix -yl
5.1.3 Lorentz Force
The equation for the charge particle (5.1.1.3) is:

do#

T gFray,

e T
In components:
d 0 i
me— = gF%v, = —q—;
dr

dv?
dr

m

i

= qF*%, = q (—Cvo — e”kBkvj) =gq (UO + eljkBka) =qv (E’ + (v x B)Z)

C

Using coordinate time t and coordinates x instead of the proper time 7 and 4-vector z#, we need to rewrite

the action:

1
S = /L(x“,v”)drz/;l/(a:“,v“)dt = /Lcowd(x,v)dt

where L.oora(X, V) is the Lagrangian expressed in coordinates x and v (and thus is not Lorentz invariant):

1
Lcoord(x7v) = 7L(xli7vﬂ) =
v

ch €

T 4 gAY
T

ch

+ %(—chO + yu; AY) =

2 v?
—mc [l —— —ep+ev-A
c

the particle’s canonical momentum P is:

oLt
PZ n 81}1- o

+eA =ymv+eA =p+ecA

Ji-g
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where p = P — eA = ymv is the kinetic momentum. Euler-Lagrange equations are:

i mu;
dit a2
c2
d
dt

; 0
- —|—€Ai) = (91’1

gaLcoord o aLcoord
dt 8%‘ o (9%‘1
i - aLcoord
dt v 8.%‘1
2 v?
—mc 1—0—2—e¢+ev-A
g muv; edAZ — ¢ 8¢ +ev 0A
dt w2 dt - (‘33:1 81‘1
d [ my _. _8¢_dAi+U48Aj
dt 122 N ox; dt ! O,
muv; —e 78(;5 78Aiiv_8Ai+v_8Aj
w2 N (‘)xi ot J (‘)xj J 81‘1
dfmv ) _cE+vxB)
dt 1 @2

For continuous case (current), the force due to the magnetic field is:

F:/ijd3x:I/dl><B
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5.1.4 Hamiltonian

Expressing v in terms of P we get:

2 v? 2 2
(P,—eA)* |1 — = | =m*v;

(U% +U§ +U§’)2) — m2y2
2
2 (Pl — €Ai)202

T e (P —eA)?

(P —eAi)? (1 -

[P — eAq
|vil =
\/m—l-c%(P—eA)2
Py —eA;
vV =
\/m—l—C%(P—eA)2
P—-cA
VvV =
\/mz—i—c%(P—eA)2
P —eA
L dP-cA)

B Vm2c + (P — eA)?

The system of equations was solved for v; using the code (in there vls = v?, vs = v? and P1 = P; — eA;):

>>> from sympy import var, solve
>>> var("P1 P2 P3 m ¢ vis v2s v3s")
(P1, P2, P3, m, c, vls, v2s, v3s)
>>> yvs = vlstv2s+v3s
>>> solve ([P1**2* (1-vs/c**2) -viskm**2,

P2**2% (1-vs/c*x*2) -v2s*m**2,
.. P3**2% (1-vs/c*x*2) -v3s*m**2], [vls, v2s, v3s])
{vls: Pl**2%c*x*2/(P1**2 + P2%*2 + P3%*2 + cx*2¥m**2),
v2s: P2¥¥2xcxx2/(P1**2 + P2%%2 + P3%*2 + c**2*m*x*2) ,
v3s: P3**2%xcxx2/(P1**2 + P2%%x2 + P3%*2 + c**2*mx*x2)}

And the absolute value was removed by using the fact, that v; has the same sign as p; = P; — eA; which
follows from the second equation.
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The Hamiltonian is:

Hx,P,t)=v-P—-L=

/ 2
=v-P+mc 1—v—2+e¢—ev~A:
c
02
=v-(P—eA)+mc®\[1— = +ep =
c

¢(P—eA)- (P —ecA) ) 1_1( c(P —eA) >2+e¢:

= + mc
Vm2c2 + (P — eA)? @\ /m2c2 + (P — eA)?

c(P —eA)? e 1 (P —eA)? bep=
- /m2Z £ (P —eA)? m2c? 4+ (P — eA)? B

= o(P — eA)2 + ch\/ mec? +ep =
Vm2c2 + (P — eA)? m2c? 4+ (P —eA)?

_c (P —eA)? + m?c?)

Vm2e + (P — eA)?

=cy/m2c2 + (P —eA)? + e¢

+ep =

5.1.5 Electromagnetic Stress Tensor

The stress tensor is calculated from the Lagrangian:

1

L=
410

1
wpFoP = —%(%Agao‘/lﬁ — DgAn0*AP)

using the Noether formula:

oL

T#, = o0, Aq — 0", L =
(0 Aa)
1 1
= ——F"0,Aq + —0", FapF*?
Ho 4pio

We raise the v index:
1 1
THY = g" THy = —— FHY9QY A, + — g Fop FP
o 410
This tensor is not symmetric under the exchange of the pv indices. To make it symmetric, we add a

total derivative term 0, K **”, where K*"" is antisymmetric in its first two indices. This guarantees that
0u0a K" = 0 so that the new stress energy tensor is still conserved. We choose K**” = %OF“O‘A" and get:

1 1 1
T“y + 6QK()¢/U/ — _7F1LaaVAa + 7gILVFaﬂFaB + 7801(F/1.()4Au) —
Mo 40 Ho
1 1 1
= —FF (0, A" — 0" As) + ——g" FapF*’ + — (0o F"*) A
Ho ( ) 40 g Mo( )
1 1
= —FMF,Y + —g" FopF*P =
Ho 40
= _i (F“aF”a _ 1g””Fa5FO"B>
Ho 4

where we used 9, F** = 0.
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Another way to derive the stress energy tensor is from general relativity using the formula:

. 2 5SEM

T = ———
: /[ det g| o9

So we write the action:
Sem = —/47;0 L FOP /| det g|die = —/igo‘)‘gﬁpFaﬁFAp\/m&x
And vary with respect to gh":
58pa = —5/ ﬁgwgﬂpFaﬁFm\/Md% =

1
= (5(g“gﬁp)FaﬁFAp\/ |det g| + g*g"P FagF, (5\/ | det g\)) dlz =

K

1 v
=i (2009°%)9% Fus Fapv/Tdet g] + 697 o Py, (~3v/[det glgu(69) ) ) d*e =
1
TN (2(69°N) FapFa" = 3 FagF " g, (3g")) /| det g|d*z =
1 1 v
- _QTLO (FWFZ,B — 4Fa[3FaﬁgW> (6g"")V/| detg|d4x

And we get:

1 1
Tiljzi FJ, Fyﬁff « FaﬁgLu)
/ Mo(lﬁ 4 B |

5.1.6 Examples

Coulomb Law
Maxwell’s equations in Lorenz gauge (5.1.1.2):
0.0 AP = 1oj°

have the solution for the scalar potential (5.1.2.1):

_ x=yl
b(x.1) = 1 /p(yi — )dgy

dreg Ix —y|

Assuming @ < t:

1 p(y,t) 3
t) = d
o(x,1) dreg ) -y %Y

Assuming the vector potential A(x,t) = A(x) is time independent, we get for the electric field:

8A({(;f7t) — —V¢(X, t) = _V 1 p(Yat) d3

E(x,t) = =Vo(x,t) — dreg J |x—y]| N

1 1
- t By =
47T60/p(y7 )V|X_y‘ Yy
1

X—-y 3
= ) —2_d
Teg /p(y, )|X_y|3 y
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If the charge distribution can be approximated by an infinitely-narrow wire with linear charge density

Ay, t) = d(i(lt), we get:

ply, t)d®y = Ay, t)dl
and:

x—1

B(x,t) = — / A 2= g

~ 4meo |x —1]3
Example: Straight Wire

Let’s assume infinite straight wire with constant linear charge density \:

1=(0,0,1)

dl= (0,0,1)dl

x = (2,9,2)

x—1=(z,y,2 1)
A < x-1

Elx) = 4eg /_0o |x—l|3dl -

A > (z,y,z—1)dl

~ dmeg /_OO (22 + 92+ (2 —1)?)3

A /°° (z,y,0)dl

CAmeo Jooo (22 42+ (2 —1)2)3

o du
= (.%',y,O) / 3 =
Amey J oo (22 + Y% + u?)2
A 2
= ) P ——
A 1
= ) EA———
For y = 0:
Al A
E(z,0,2) = (2,0,0) — — = (1,0,0
(@.0.9) = (@.0.0) 55— = (1.0.0) 7=~
We can also calculate the scalar potential as follows:
A < dl
9(x) = 4rreg /,OC x—1

) /°° al B
imeo oo (@ 42 + (2 - 1)2)3

A /°° du B
= 47760 - /x2+y2+7u2 —

=0

Note that in the radial direction (let’s set for example y = 0) the result is scale (translation) invariant, i.e.

p(kx) = ¢(x).
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In order to calculate with ¢(x), we need to regularize it first. Cutoff regularization is:

A /L du B

- 47'(60 /2 +y2 +u2 -
s/x2+y +L2+L

471'60 «/x2+y FI2-—

where L is the regulator and also an auxiliary scale. In this regularization, we lost the translational symmetry.
The physical quantities don’t depend on L in the limit L — oo:

B é (z) = A L R A
v 2mepr /L2 + 12 2megx

or

and

A 2424+ L2+ 12-L A 2
86 = 6(r2) — plar) = ——log LT L LV — o log )
dmeg T \/r3+ L2 —L\/r?+ L2+ L Ameo a3

Dimensional regularization expresses the integral in the dimension n = 1 — 2¢ as follows:

#(x) /dQ/ du
47r60 An—1 x2+y +u2

r ()

“ (“AT\/%)

AT
" 4re 2e

A

2

A1 A
= R | log ———
o |E - roem o+ 000

Here € is the regulator and A is the auxiliary scale. This regularization preserves the translational symmetry.
Now we can renormalize the integral. The minimal subtraction (MS) renormalization is:

oms(x) A logm +lo 7/\2
- -y — ™
MS dreq Y g g 212

Another option is the modified minimal subtraction (MS) renormalization is:
A2

ors(x) = —log ——

s (%) 4meq &2 + 92

Once we choose a renormalization scheme, we can calculate the electric field as follows:

0 0 A A?
€Tr) =

Oz 4dmeg 8 72

= A ﬁAQ 2\
4meq A2 3

A1
2meg x
and the potential difference as:
A2 xl A x?

A¢ = Pyg(x2) — dypg(m1) =

47eq 82 3 A2 dre 8 x3

In agreement with the previous result. The final results don’t depend on the auxiliary scale A and we are
not doing any limits.
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Biot-Savart Law

Maxwell’s equations in Lorenz gauge (5.1.1.2):
8(!6&145 = /J/O]B

have the solution for the vector potential (5.1.2.2):

: Ix—yl
po [ily.t—"20)
Ax,t)="— | ————=—=d
(x,t) = / x—7l y
Assuming @ < t:
Ix -yl
The magnetic field is then:
B V x A(x,t)
(x,t) = ( |X — y|

Ho 1 . 3
-0 Hd3y =
g <Vx_y|) x j(y, t)d’y
1o X-y . 3
pm < |X_y|3) x j(y, t)d%y

. X—Y 3
iy, t) x d’y
&) Ix —y?

_ o
47

If the current can be approximated by an infinitely-narrow wire, we get:
iy )d®y = I(t)dl

and:

L x—1

Example: Straight Wire

Let’s assume infinite straight wire carrying constant current I:
1=(0,0,1)
dl = (0,0,1)dl

x = (z,y,2)
x—1=(z, y,z—l)

.UOI _
=1t [ \x—1|3 -

I [~ —1
= B (0,0,1) x (x ks Jdi 3 —
A J oo (@2 +y% + (2 - 1)%)2
1 dl
= (v, _1'70)&/ 3 —
AT Jose (22 g2+ (2 - 1))
kol 2
(y7 ’ )477 $2+y -
o pol 1
- (ya ) o IQ +y
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Where we used the value of the folowing integral:

/°° al B /°° du B
coo (@224 (2= 1)2)F S (22 Y2 +u2)?
> signu

@+ 92 ()" (4) 1

u

(22 +y2) Va2 +y? +u? |

_ 1 1 _ 2
_z2+y2 z2+y2 _:c2+y2

For y = 0:
pol 1 pol
B =(0,— 07— —(0,—1,0)22=
(,0,2) = (0, 2,022~ = (0,-1,0) 4%
Example: Circular Loop
Let’s assume a circular loop:
1= (rcose,rsing,0)
dl
1 = (—rsing,rcos ¢,0)
= (z,y,2)
x—1=(x—rcosd,y —rsmgb, 2)
ol x—1
B(x)=— [dlx ——— =
&)= Tn / “x=1P
:L.I (—rsiné, r cos 6,0) X (x —rcosd,y —rsing, z)do _
ar Jo ’ ’ ((x — rcosd)? + (y — rsing)? + 22)3

_ ol /2” (—zcos ¢, —zsing, (x —rcosP) cos ¢ + (y — rsing)sinp)rdp
4m ((x — rcos @) + (y — rsin¢)? + 22)3

_ Hol 2T (—zcos ¢, —zsin b, x cos ¢ + ysin ¢ — r)rde

4 Jo o (@2 + 92 + 22 + 712 — 2zrcosd — 2yrsing)?

Due to the symmetry of the problem, we can set y = 0:

B(z,0,2) = Hol /27r (—zcos ¢, —zsin ¢,z cos ¢ — T)rdqb _
in (22 + 22 + 12 — 2z7 cos ) 2
_ ol T (—zcos ¢, 0,z cos ¢ — r)rde

CAm Joo (22422412 —2zrcos @i

In the last equation we used the fact, that sin ¢ is odd and cos ¢ is even on the interval (0,27). Forz =y =0
we get:

pol T (—zco8¢,0,—1)rd¢

B(0=0>Z): A1 0 ( 2+22)%
1 2d
= (0,0,-1)E= / 27"7(?5% _
™ ( + z )2
I 2
= (0,0,- ) ————
2 (r2+22)§
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Helmholtz Coil

Helmholtz coil is a set of two circular loops of radius r, that are d apart, where d = r. Let’s calculate the
magnetic field on the axis. Magnetic field of the first coil is (see the previous example):

pol 12

Bl(0,0,Z) = (0,07_1) B m

Second coil is positioned d above the first one:

T 2
B»(0,0,2) = (0,0,- )™ — T
2 (24 (2 - )

The total magnetic field is:

B(0,0,z) =B;(0,0,2) + B2(0,0,2) =
I 2 1 2
=0.0,-n" T 0Dt =
2 (12 + 2)} 2 (2 + (- )}

_ L Holr? 1 L
= (0,0,-1) 2 ((r2+z2)g+(T2+(z_d)2)A>

wlw

The field in the middle:

d Ir? 1 1
B(0707§):(0a07—1)uozr ( 2 d\2\3 T 2 d\? 3) -
(r2+(3))2  (2+(9))?
:(070771)%
(r?+(5)7)2
For r = d we get:
T 2
B(070762l) = (070a_1> Hoo” 2.3
(r2+(5))3

= (0,0, _1)ﬁ7 =

=(0,0,-1)B
where the magnitude of B is:

B 5 ol
5V5 T
For r = 0.15m and N = 130 turns we get the magnitude of the field as (we use SI units, so [ is in A and B
in tesla):

8 NI 8 4w1077-1301

- = =7.79-107*I
55 1 5v5 0.15

Code:
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>>> from math import pi, sqrt

>>> "Je" 7 (8x4*pikxle-T7x130
'7.792861e-04"'

/ (5%sqrt(5)*0.15))

Equation of motion for an electron in this field is:

d2x
maE = ¢ (vxB)
d%x
e eB (vy, —vg,0)
The general solution is:
vm n eB(t o) ,eB(t o)
x=—|x+cos—(t — —sin —(t — tg), 2
eB m 0)Y m 0

So the electron is moving in a circle with a center (,y, z), to depends on the initial direction of the velocity
and v is the magnitude of the initial velocity. There can also be a possible movement in the z direction, but

for the following initial condition

Then we get:

So the radius of the circle is R =

So the initial velocity is:

and we get for the radius:

from which the electron charge v

s there is none:

xop = (0,0,0)
Vo = (O, —v, 0)

vm eB . eB
x=—|—-14cos—t,—sin —t,0
eB m m

. eB eB
v=ov(—sin—t,—cos —t,0
m m

vm

Y2 . Let the electrons by accelerated by the electric potential V:

eB

%va =eV

2eV
m

R="5=cB\ m "B

vm m QeV_ 1\/2mV
e

ersus mass ratio is:

e 2V 2V B
m  R2B*> R2 (LM)Z
5V5 T
125V7r?
T 32u2R?N2I?

For r =0.15m, N =130, V =300V, R=0.05m, I = 1.48 A we get:

Code:

£ 180 101 C kg !
m
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-

.

>>> from math import pi

>>> r = 0.15

>>> N = 130

>>> V = 300

>>> R = 0.05

>>> 1 = 1.48

>>> mu0 = 4+*pixle-7

>>> "Je" Y (125 * V % r**2 / (32 * muO**2 * R¥*2 * Nk*x2 * I*%2))

'1.804238e+11"

Reference value is:

€ 175881011 C kg
m

Code:

-

.

>>> e = 1.6021766e-19

>>> ¢ = 299792458

>>> eV = e

>>> KeV = 1e3 * eV

>>> m = 510.998910 * KeV / c**2

>>> m
9.109382795192204e-31
S>> 1 n % (e / m)

'1.758820e+11"

or even simpler (we do not actually need the value of the electron charge e):

>>> ¢ = 299792458

>>> KeV = 1e3

>>> m = 510.998910 * KeV / cx*2
>>> "Je" Y (1/m)

'1.758820e+11"

We can use the experimental value to calculate the electron rest mass energy:
2 ¢

Ampere’s Force Law
The force on a wire 1 due to a magnetic field of a wire 2 is:

F = Il/dll X B(ll)

x—1
B(x) = Z—;/Ig(t)dlg x ﬁ
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Where B(x) is the magnetic field produced by the wire 2. Combining these two equations we get:

lel/dhXB(ll):
L -1
:Il/d11><<4/12()d12><|11_12|3>:

‘LLOIlIQ // d11 X d12 X 11 712)) .

L —1f?
,uoflfg // de d11 11 — ) ( 1 —12)((2112 dll)
|11 - L

Parallel Straight Wires

We calculate the force between two parallel straight infinite wires:

L = ( 0,01)

dl = (0 0,dl,)

12 :( 07l2)

dly — (o 0, dls)

L -l = (4,0, —Is)

dly(dly - (1 —13)) — (I, — Lp)(dly - dly) = (0,0, dly) (1, — lp)dly — (d, 0,1, — ly)dladly = (—d, 0,0)dl;dly
,U,OIlIQ // d12 dll 11 — 12)) — (11 — 12)<d12 . dll) o

1y *12|3 B

,[L(,Illg// dOOdl dlg

(@2 + (I — 15)2)3
LI

(100”“2/d11/ dls d _

(@ + (I —12)%)2

= (- 100“"11]2/&%

tolila
1,0,0 dl
= ) 2wd / !

Where we used the value of the folowing integral:

/ dly d 3:/ dx%:
—oo (@ H(L—1)Y)7 Joee (2 +2?)?

B [ x } o 51gn x B
dvVd? + 2] _ / 2.9
1 2
)~ d
As such, the direction of the force on the first wire (at coordinates (g, 0,0) going in the z direction) will be

to the left and the force per unit length is:

tolrIo
2nd
Because the second wire is at the coordinates (—g, 0,0) and the force on the first wire is in the direction

(—1,0,0), the force between the wires is attractive, as long as I; and I have the same sign (either both
currents go up, or both down) and repulsive if I; and Iy have opposite signs.

F =
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Let d=1m, I = I, = 1 A, then the force is attractive and (we also use pg = 47 - 1077):

47 - 1077
Fp=—""" N.m'=2.107"N.-m™!
21

Perpendicular Straight Wires

We calculate the force between two perpendicular straight infinite wires:

I, = (* 0,01)
dl, = (0,0, dly)

d
I, = (—f l5,0)
dly = (0, dls, 0)
11712*( 12711)

dly(dly - (1 — 1p)) — (I — L)(dly - dly) = (0,dls, 0)l1dly = (0,11, 0)dlydls

o ,uoflfg // d12 dl; - 11 — 12)) — (11 - 12)((112 . dll) _
L —L?

Moflfg// (0,11,0)dl cu2 B
d2+l2+l2

Mo12
0,1,0) dl dl =
= / 1/ 2d2+12+l2)%

Hol1lo 2l
1,0,0 dli——— =
= (= L 47 /_OO et 12

=0

The integral is an odd functin of [y, so it is zero. We used the value of the folowing integral (but in fact it
is already seen before this integral is needed that the double integral must be zero):

/oodlz—l
o (2B +B)3

lily

(@+B)/@+13+15|

l1signls
(a2 +12)\/( 2)2 + (33)2 +1

Y A
2+ 2+12) &2+

—0o0

As such, there will be no net force.

Infinitely Long Wire and a Square Loop

We calculate the net force on a square loop with current I; of side a, whose center is d far from an infinitely
long wire with current I5:

The wire has coordinates (0,0, z) and the magnetic field from it is (see the example above):

I
B(I707 Z) = (07 7]% O)gﬂ_%
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The four sides of the loop are (0 < 1; < a):

and the differentials are:

The net force on the loop is:

ll_(d_g+llu 7;)
11—(d+%,07g—11)
L= (d+5—0,0-3)
L =(d g& g+m

dl; = (—1,0,0
dl; = (0,0,1)dl;

dl; = (1,0,0)dl,
dl; = (0,0, —1)dl;
)
)

diy

pols
F=L [dyxB=1I [d -1 =
wol1ls (/“ (0,0,1)dly /a (1,0,0)dly /a (0,0, —-1)dly /“ (—1,0,0)d11>
=5 oy T Tora T a + a =
2T 0 d—§+l1 0 d+§ 0 d+§—ll 0 d—g
polils a a a a a
=——=1(0,0,1) |1 ‘d—f l‘—l ‘d f—l‘ 1,0,0) | — — —— =
o <( ){% p thlosldty 1L+( )d+% i—
I I 2
= ((0,0,1)-0+<1,o,0) S >=
T @ — (%)
I 1. 2
:(17070)/10 142 .
e (3)
Magnetic Dipole
[om X r
Afr) ==
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Bar Magnet

A good model of a bar magnet of the length L and width W is a combination of two magnetic monopoles
(that sit inside the magnet, so one cannot actually see them, just their behavior outside the magnet):

poQm [ X —P1 X — P2
B(x) = —
0= (s~ )
where:
p1:(0707d)
p2:(0707_d)
L-W
d:
2

The magnetic moment vector is:
m = Qp,(P1 — P2)
and its magnitude then is:
m = 2Qmnd
The permeability is:
po=47-100"H-m ' =47-107"V-s-A~t.m™!

For a typical bar magnet, we have for example:

L=5cm
W =1cm
Qm=33Am
L —
d= WzO.OQm

m=2Qmd =2x33x0.02A -m?=0.132A - m?

The unit of B is Tesla: 1T =V -s-m~2.

Bar Magnet in a Coil

We throw a magnet through a coil and calculate the voltage on the coil. We use two model of the bar
magnet: a magnetic dipole and two monopoles 2d apart.

Geometry:
v =(0,0,v)
1= (acos¢,asing, z)
a_ (—asin ¢, acos ¢,0)
dqs - ) )
Field of the dipole:
E=0
o (3r(m-r) m
B ro _
O e )
m = (0,0, m)
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we will need:

3l(m -1 m
va(l):Z—;vx ((l5)l3>
o (3(vxD(m-1) vxm
- 47r< 5 B >
o 3(v x D(m - 1)
Ta B
o 3(vasin®, —vacos,0)mz
- E (a2—|—22)%
_ 3pem avz
4w (a2 + 22)3

(sinf, —cos6,0)
and

vxB-—

dg
3
= /jlgrm = T;)% (sinf, —cos6,0) - (—asin ¢, acos ¢,0) =

3uom  alvz

47(' (a2 + 22)

5
Field of two monopoles:

E=0
B(X)ZMOQm<X—P1 _ X—Pp2 )

x—p1]*  [x—p2f
P1 = (0707d)
P2 = (ana _d)

we will need:

_ o@m (vx(1-p1) vx(-ps)
v = (SRR )
~ poQm <(0,0,v) X (acos¢,asing,z —d)  (0,0,v) x (acos¢,asin¢,z+d)>
o A (a2 + (2 — d)2)2 (a2 + (z +d)2)2

_ HoQmav 1 B ) o
= 4 <(a2 +(z— d)2)% (@ + (2 + d)?) ) (sin ¢, — cos ¢, 0)

o

and

dl
vxB-—

dp
_ MOQmav 1 _ 1 i _ . (—asi =
== ((a2 s d)2)% e d)2)3> (sin ¢, — cos ¢, 0) - (—asin ¢, a cos ¢, 0)

:_M()Qmazv( 1 B 1 )
ir \@re-a)! @+ Gt
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Now we can calculate the voltage:

V:}{(E—kva)-dl:

zj{va-dlz

2 dl
— | vxB- do
/0 do

for the dipole we get

V:...:_/Qﬂ‘g‘“’m T -
0 47 (a2 + 22)3

3uom  alvz

2 (a2+z2)%

For two monopoles we get

27 2
m 1 1
V::—/ MOQGU( 3 3>d¢:
0 4 (a®+(z=d)?)2  (a®>+ (2 +d)?)2
B 7;10Qma21) < 1 B 1 )
2 @+ (z—d)?)3  (a®+ (z+d)?)%
For the dipole, the function
z
(a% + 22)%
has a maximum and minimum for:
a
=4
T

with the max value:

Code:

>>> from sympy import var, solve, S, refine, Q
>>> var("a z")

(a, 2)

>>> f = z / (ax*2+z*x2)**(S(5)/2)

>>> solve(f.diff(z), z)

[-a/2, a/2]

>>> f.subs(z, a/2)

16*sqrt (5) *a/ (125% (ax*2)*x(5/2))

>>> refine(f.subs(z, a/2), Q.positive(a))
16*sqrt (5) / (125xa**4)

So the maximum voltage is:

po 3va’mz Lo 216\/5
= ———— = —3mua =
2 (a2 =+ 22)5 2 125(14
_ 24+/5 Lomu

125 a2
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If we drop the magnet from height h above the coil into it, then its speed will be vy = /2hg in the middle
of the coil, when ¢t = 0. Then:

z:vot+%gt2
v =19+ gt

And we get for the voltage dependence for dipole:

v _Ho 3va’mz Mo 3(vo + gt)a*m(vot + %gt2)
2 (a2 +2)F 2 (a2 + (vt + 5912)?)3
The time difference between the maximum and minimum is the time difference between z = —2 and 2 = +3,

SO:

At — 2h+a7 2h —a
g g

The total flux doesn’t depend on the particular dependence of z(t) and v(t):

For the voltage dependence of two monopoles, we get:

1o Qma*v

1 1
V= 2 ((a2+(z—d)2)g_(a2+(z+d)2)g):

_ _MOQma (UO + gt) L _ 1
2 (a2 + (vot + 2gt2 — d)2)2  (a® + (vot + L9t + d)?)?
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The total flux doesn’t depend on the particular dependence of z(t) and v(¢

/ V(t)dt

- /000 uOQm;QZZ) ((a2 n (z(i) —02)E (@4 ( ) =
- HOQW{ ((32 Ry ) "
:_/0 quQma ((a2+(zl—d)2)%_( z+d 3>dzz

MOQW( N ST
R / @+ (z—d2)i / (@ + (z+d)2)F z+d

__M i 1+L 1 1—- —
B 2 a? Va? + d? a? a2+d2

__ fo@md
va? + d?
Note that in the limit d — 0, we get the magnetic moment m = 2d@),,, and the last formula for two monopoles
flux becomes the dipole flux.

As a particular example, consider a coil with N = 500 loops, a = 1.4cm, d = 1.8cm, @Q,,, =43 A - m. Then
the total flux from the second peak is:

N/-LOde

P=——""——""=-0.021V"5s
va? + d?
Code:
>>> from math import pi, sqrt
>>> mu0 = 4xpixle-7
>>> cm = 0.01
>>> Q_m = 43.
>>> d = 1.8%cm
>>> a = 1.4%cm
>>> N = 500
>>> -N+muO*Q_m*d/sqrt (a**2+d**2)
-0.02132647889395681
For a single loop with a = 1.25cm we get:
/u’OQm _5
b=——""FT-—=-444%x10""V" s
Va? +d?
and for a single loop with a = 1.8 cm we get:
Ho@md _5
d=——"FT"-—=-382x10""V"s
Va? +d?

Code:

>>> a = 1.25*xcm

>>> —muO*Q_m+*d/sqrt (a**2+d**2)
-4.438304942066266e-05

>>> a = 1.8%cm

>>> -muO*Q_m+*d/sqrt (a**2+d**2)
-3.820879326816195e-05
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RC Circuit

Let’s consider resistor (with voltage V' = RI) and capacitor (with voltage V' = % and current I(t) = Q'(¢))

in a series. Voltage on the battery is V', then the equation for the circuit is:

Q)
I t —_—
RI(t) + C 14
with initial condition Q(0) = 0. We differentiate it:
I(t)
RI'(t)+ —+ =0
)+ C

and the initial condition follows from the first equation I(0) = %. The solution is:

I(t) = %B_R%

Now we calculate the charge (using the initial condition for the charge above for the lower bound of the
integral):

k Vv ¢ ! 1% ot
_ Ny Vo ey = V[ —2
aw = [ 1wy =¥ [ etear = T [-roe ]’
v -He ot
:E[—RC% RC —|—RC}—VC(1—@ RC)
The voltage on the resistor is:
RI(t) = R%e’ﬁ — Ve we

The voltage on the capacitor is:

t

Qg) _ve(s C‘””) v (1)

Half life of the capacitor is defined as the time 7 so that the charge is half of the total charge, and we get:

1—6_%2%
%:(37#

T
logl=——1
82~ "Re

T = —RC’log% = RC'log 2

5.2 Semiconductor Device Physics

In general, the task is to find the five quantities:
n(x,t),p(x,t), Jn(x,t), Jn(x,t), E(x,t)

where n (p) is the electron (hole) concentration, J, (J,) is the electron (hole) current density, E is the
electric field.
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And we have five equations that relate them. We start with the continuity equation:

dp
VeIt o =0

where the current density J is composed of electron and hole current densities:
J=J,+J,

and the charge density p is composed of mobile (electrons and holes) and fixed charges (ionized donors and
acceptors):

p=qlp—n+C)

where n and p is the electron and hole concetration, C is the net doping concetration (C' = pp — na where
pp is the concentration of ionized donors, charged positive, and n 4 is the concentration of ionized acceptors,
charged negative) and q is the electron charge (positive). We get:

Op Oon 0OC ) _0

VJn+VJp+q<at_at+at

Assuming the fixed charges C' are time invariant, we get:
on dp
n— (= = — -J — | =4qR
rm (V rtag t) q

where R is the net recombination rate for electrons and holes (a positive value means recombination, a
negative value generation of carriers). We get the carrier continuity equations:

v-J

% =R+ év I,
o . (5.2.1)

Then we need material relations that express how the current J is generated using E and n and p. A
drift-diffusion model is to assume a drift current (qu,nE) and a diffusion (¢D,,Vn), which gives:

Jn = qunnE +¢D,Vn

(5.2.2)
Jp = quppE — qDpVp
where i, ftp, Dyn, D), are the carrier mobilities and diffusivities.
Final equation is the Gauss’s law:
V- (eE)=p
V-(eE)=q(p—n—+C) (5.2.3)

5.2.1 Equations

Combining (5.2.2) and (5.2.1) we get the following three equations for three unknowns n, p and E:

O — R4V (uanB) + V- (D)
op
rr —R—=V - (4ppE) +V - (D, Vp)

V-(E)=q(p—n+0C)
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And it is usually assumed that the magnetic field is time independent, so E = —V¢ and we get:

%:‘ — —R—V - (nV¢) + V- (D, Vn)
5 2.1.1
87]7? =—-R+ V- (uppVe)+ V- (DpVp) ® :

V- (eVep) = —q(p—n+0C)

These are three nonlinear (due to the terms p,nVe and p,pVe) equations for three unknown functions n,
p and ¢.

Example 1

We can substract the first two equations and we get:

dq(p —n)

5 = —qV - ((tpp + pnn)E) + ¢V - (D,Vp — D,,Vn)

V- (eE)=q(p—n+0C)
and using p = q(p —n+ C) and 0 = q(upp + pnn), we get:

% _ 00 _ -V - (6E)+¢V - (D,Vp —D,Vn)

V- (eE)=p

So far we didn’t make any assumptions. Most of the times the net doping concetration C is time independent,
which gives:

o Tor

0
5g::—V(aE)+qv-(Dpvp--Dnvn)
V-(eE)=p
Assuming further D,Vp — D,,Vn = 0, we just get the equation of continuity and the Gauss law:
dp
— +V.(cE)=0
5 TV (0E)
V- (eE)=p
Finally, assuming also that that p doesn’t depend on time, we get:
V-(cE)=0
V-(eE)=p

Example 2

As a simple model, assume D,,, D,, i, ip and € are position independent and C' =0, R = 0:

% = +u,nV -E+ p,E-Vn+ D, V?n
Op 2
5 = —uppV -E -y, E-Vp+ D, V<p
eV-E=q(p—n)
Using E = —V¢ we get:
on 2 2
S = —nV0 — V6 Y+ Dy VP
dp 2 2
o = HipVZo+ Vo Vp+ DyVip

eV2p = —q(p—n)
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5.2.2 Example 3

Let’s calculate the 1D pn-junction. We take the equations (5.2.1.1) and write them in 1D for the stationary

state (% = % =0):

0=—R~ (uang’) + (Dnn')
0=—R+ (upp¢') + (Dpp’)’
(e¢) = —q(p—n+C)

We expand the derivatives and assume that p and D is constant:

0 — _R_/,Lnn/(b/ _Mnn¢// +Dnnll
0= =R+ ppp'¢" + ppps” + Dpp”
e¢" = —qlp—n+C)

and we put the second derivatives on the left hand side:

1
n' = 7(R + Mnn/(bl + Mnnd)//)

1
' =5 (R= ppp'¢’ = jippe") (5.2.2.1)
P
§= S nio)
now we introduce the variables y;:
Yo =
y1=yo=n'
Y2 =p
/ /
Ys=Ya ="p
Ys = ¢
Ys =Yy = ¢’
and rewrite (5.2.2.1):
! ]' /
Y1 = - (B+ pnynys + pnyoys)
Y3 = 5 (R — 1pysys — HpYoys)

hS]

q
ys = —g(y2 —y +C)

So we are solving the following six nonlinear first order ODE:
I
v =22 =40 +C)
Yo = Y1
/ 1 /
Y1 = - (B+ pnynys + pnyoys)
n (5.2.2.2)
/!
Y2 = Y3
ys = (R — mpysys — [1py2ys)

Yy = Y5
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CHAPTER
SIX

THERMODYNAMICS AND STATISTICAL PHYSICS

6.1 Thermodynamics

6.1.1 Fundamental Thermodynamic Relation
The first law of thermodynamics is dU = d@Q — dW, where @ is the heat supplied to the system and W is

the work done by the system. The second law of thermodynamics is d.S = %. By substituting into the first
law, and expressing the work dW = pdV using pressure and volume, we obtain:

dU =TdS — pdV
This can then be generalized to:
dU =TdS — pdV + udN

where p is the chemical potential and N the number of particles in the system.

6.1.2 Thermodynamic Potentials

We start by writing the internal energy (derived in the previous section)
U=U(S,V,N)= /(TdS —pdV + pdN)

as a function of entropy S, volume V and a number of particles N. Now we want to express it as a function
of temperature T, pressure p or a chemical potential u, without losing any information, i.e. we still want
to just differentiate to obtain other quantities. In order to do that, we have to use the Legendre transform.
Including U, there are 8 possible combinations of Legendre transforms that one can do (three of them are
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applying it to just one variable, three of them to two variables, one to all three variables):
—U(S,V,N) = / (TdS — pdV + pdN)
F=F(T,V,N) = U*TS:/(*SdT*pdV+MdN)
=H(S,p,N)=U+pV = /(TdS+Vdp+udN)
X1 =X1(S,V,u) =U — pN = /(TdS—pdV—Nd,u)
G=G(T,p,N)=U-TS+pV = /(—SdT+ Vdp + pudN)
Q=QT,V,u)=U—-TS — uN = /(—SdT—pdV—Nd,u)
Xo = Xo(S,p,u) =U +pV — uN = /(TdS—FVdp—Ndu)
X =X3(T,p,u) =U —-TS +pV —uN = /(—SdT+ Vdp — Ndu)

Of these, U is the internal energy, F' is the Helmholtz free energy, H is the enthalpy, G is the Gibbs free
energy, € is the grand potential (sometimes also called a Landau potential). The unnamed potentials are
simply labeled X1, X5 and X3. The X3 is sometimes called a null function.

From the differentials, we can then read off the derivatives (and what other variables are constant), here are

r= (55, (), = (5),,~ (5),,

= (30), - (), (), G,
(ZU) (), (), (),
() (5,5, - ().,
2),.- (), - ()., - (59,
v (58, (), - (), - ().,

.

)

0
2

)

&)
%’\::

W=

/\

A large system is defined as: if the number of particles N is made A times as large, U, V, and S all become
A times larger. In other words, the internal energy of a large system is a homogeneous function of S, V', and
N of order one:

U(AS, AV, AN) = AU(S, V, N)

Now we can apply the Euler’s theorem (see Homogeneous Functions (Euler’s Theorem,)):

oU oU oU
US,V.NY=S5| — VI — N | — =TS8 —pV N
(5, V. N) (aS)V,N+ (aV>S,N+ (azv)S,v prm
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And from the definitions of all the potentials we can calculate their forms for large systems:

U(S,V,N)=TS — pV + uN
F(T,V,N)=U —TS = —pV + uN
H(S,p,N)=U+pV =TS + uN
XS, Vi) =U —uN =TS —pV
G(T,p,N)=U—-TS+pV =uN
QUT,V,u)=U—-TS — uN = —pV
Xo(S,p,pp) =U+pV —uN =TS
Xs(T,p,p) =U—-TS+pV —puN =0

Other first derivatives

Other commonly used first derivatives are the heat capacity at constant volume:

oU oS O%2F
Cv <8T>V,N (aT)V,N (W)m

and the heat capacity at constant pressure

OH oS 0%G
Cp <8T>p,N <8T>p,N <8T2>p,N

Note that these first derivatives are differentiating the thermodynamic potential that is not expressed in its
canonical variables (the only canonical first derivatives are already enumerated in the previous section). In
both cases the quantity can be expressed as a second derivative of a potential in its canonical variables. As
shown below, the canonical second derivatives can also be enumerated.

Second derivatives

Here are the most commonly used second derivatives. The particle density:

" ( ) T ( 2 > T ( ) TV
aV M oVou ou ’
The speed of sound:

ey _ vy _ [eieoy [ (o
N op S7N_ m \ OV S,N_ m \ V2 S,N_ ) sy

where p = % is the density and v = % is the specific volume. The isothermal speed of sound:

%
on [(OP) _ V2 (OF
= Op T7N_ m \oV2? ),y

- Op e 02U
Bs=r <8p>s,N =pe=V ((WZ)S,N

Adiabatic coeflicient of compressibility:
g L__1(vy 1 on
S_BS_ V \ op S,N_ V \ op? SN

6.1. Thermodynamics 263

The adiabatic bulk modulus:




Theoretical Physics Reference, Release 0.5

The isothermal bulk modulus:

dp 5 0?F
B+ = —_— = = _—
T <8P>T,N per =V (3V2 T,N

Isothermal coeflicient of compressibility:

1 1 /0V 1 /0%G
ﬁT = — = —— _— = —— 72
Br VA\Op /) N VA\or? ) rn

)

The Griineisen parameter:

The coefficient of thermal expansion

-H 3,45
V\or),y V \0Top)y
Note: there are three possible second derivatives of the Gibbs free energy G(T, p, N) with respect to T and
p:

<3QG> __ %

oT? N T

0%’G
(o707, =¥

0%G
(aw2)1N"‘5TV

Every other second derivative of other thermodynamic potentials can be expressed using these three deriva-
tives (i.e., using Cp, o and fBr). For example:

TV a?
VG T

TV a?
Bs = Br — c

6.1.3 Examples

Ideal Gas

The internal energy as a function of S, V and N is equal to:
NO v
U(S,V,N) = CVNk'B (V(’/NiB) v (6131)

where cy is the heat capacity at a constant volume (% for monoatomic gases, g for diatomic gases), kg is
the Boltzman constant and ® is a constant that may vary for different gases, but it is independent of the
thermodynamic state of the gas.

At this level, the above expression is simply given. We would have to use statistical physics in order to
calculate any of the thermodynamic potentials.
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Now we calculate the free energy F(T,V, N). First we must calculate the temperature T":

oU
r= (as)VN

(6.1.3.2)

|
|
n
7N
o)
<
=
>
s3]
/\
<j
?r(Il
w
S~
QH
\_/
Il

In order to calculate the the free energy, we must use (6.1.3.2) to eliminate S:

Ve
S = Nkglog < NG ) (6.1.3.3)

and then express F' as a function of 7', V and N only:

F(T,V,N)=U—TS =

1

N® s \ev
:CVNkB <V€NiB) v -T5 =
N ) -

cv
= NkgT (cv — log (VAJ;(I) )) .

This calculation shows that one can also express the internal energy as a function of T, V and N as U =
U(T,V,N) = cy NkgT. This is a valid expression, but unlike U = U(S,V, N), this is not a thermodynamic
potential, because we lost some information. In particular, if we use U = U(T,V, N) to find U = U(S,V, N):

= ¢y NkgT — TNkg log (

U= U(T VN)—CkaBT—CkaB <glsj)

d
ds = chkBﬁU (V and N constant)

S =cyNkglogU + C (V and N constant)
s N\
U(S,V,N) = f(V,N) (¥ )™,

we can see, that we recovered the correct formula for U(S,V, N) except an arbitrary function f(V,N) of V

and N. Compared to (6.1.3.1) we can see that it must be f(V,N) = cy Nkp (%)i, but this information
got lost. For this reason, only U = U(S,V,N) as well as FF = F(T,V,N), that we just calculated, are
thermodynamic potentials and both contain equivalent information. But U = U(T,V, N) is not and it does
not contain full information.

To convert F(T,V,N) back to U(S,V, N), we first calculate the entropy S:

oF
or V,N
0 Ve
=7 (vt (o2 (5 ) )) -

VTev N® VeyTev—!
- N Nkgl + NkpT =
kpev + Nkp Og( NG > Wl e —Ne
Ve
—nglog< NG >
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which is the same equation as (6.1.3.3). From this, we express T, we get (6.1.3.2). Finally, we can calculate
the internal energy and substitute T for S using (6.1.3.2):

U(S,V,N)=F+TS =

= NkBT <CV 710g <V]\j;q) )) +TS =

viTev
:NkBTCV —NkBT10g< No ) —‘rTS:
= NkgTcey —TS+TS =
= Cka’BT:

This is the same equation as (6.1.3.1). This shows that all thermodynamic potentials contain the same
information and can be converted to one another using the Legendre transformation.

Note: in equations like F(T,V,N) = U — TS, we can use any expressions for U and S (e.g. we can use
U=U(S,V,N)or U= (T,V,N), etc.) in the intermediate steps, but at the end, we must express the final
formula using 7', V' and N only.

To calculate the Gibbs energy, we need to calculate pressure first. We can use any of the potentials U, F,
X1 or 0 to do so. Since the equation of state is typicaly expressed as p = p(T,V, N), then the free energy
F(T,V,N) is the natural choice:

P==\ov )~

0 Ve
iy -5 )-

0 VIev

1
= NksT.

and we get the ideal gas law pV = NkgT. The Gibbs energy is equal to:

G(T,p,N)=U-TS+pV =F+pV =

= NkgT —1 VIt + NkgT =
I A W B = (6.1.3.5)
kpTev+!
= NkgT 1) —1 _— .
o (e 1)~ 1og (2 ))
For the enthalpy, we first need:
__(9U) _
P=7\ov ) o n
N® _s °;71N<I> s 1
o ()T e ()
g (N0 iz )
= — —_ B
% B € )
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we need to use this to express the volume V:

1

c 1 v +171.C o

yo - Nko (N@exin)™ = (NCV it @eNiB> Y
p eV

1 1

cy+1.c oy 1 cy+1

V = <N i kBV @6 NiB ) v = NkB (p(beNiB ) v
pev p \ks

now we can calculate H(S,p, N):
H(S,p,N)=U+pV =
1
N® s \°v
:Cka‘B (VeNiB> Y +pV:

— (ov 4 1)V = (6.1.3.6)

AN
:(Cv—‘rl)Nk‘B (zeNiB> v .
B

The enthalpy in terms of temperature H = H(T,p, N) can be calculated as:
H(T,p,N) = (cy + 1)pV = (cv + 1)NkpT .
The specific heat capacity at a constant volume can be calculated as:

-l o1 (U
V= Nkg VT Nkg (8T)V,N
10
_NkBﬁ(

CkaBT) =Cy

This provides proof that the ¢y in (6.1.3.1) is indeed the specific heat capacity at a constant volume.

The specific heat capacity at a constant pressure can be calculated as:

_ L L foHy
T Nks " Nks \OT )

1 OH(T,p,N) _
~ Nkp or B

1 0
:NikBaiT((Cv—‘rl)NkBT):Cv—i-l

Using this relation ¢, = ¢y + 1 we can then express (6.1.3.5):

ch—i-l

kBTCp
:NkBT(cp—log( oD )),

and (6.1.3.6) as:

pd _s Cv1+1
H(S,p,N) = (cy +1)Nkgp kfeNkB =
B
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In order to calculate the grand potential, we first need to find the chemical potential:
(ov)
M = —_— =
ON ) 1y
0 virev
= — | NkgT —1 =
o (17 (v = () ))
vTev
= kT 1) -1
B ((Cv—i—) 0g<N(I) )),

Ve

PV T mT

and express N using p:

N =

Now we can calculate Q(T,V, p):
UT,V,u)=U—-TS —uN =F — uN =

Tev
= NkpT (cv — log (VN<I> )) — uN =

7
=NkgT (| ——1) —uN =
B (k:BT ) 2

= —NkpT =

kBVTCV+1

e -
kgVTer

cp—Es
PP EpT

(6.1.3.7)

To compute X3, we can do:

=—7M+pV:

where we used:
o0 kgTc°»
P (W)T,# B e T
As we can see, the last equation cannot be used to compute V as a function of p, and also the X3 potential

evaluates to zero, so it cannot be used as a thermodynamic potential, because we have cannot convert it
back to the other potentials.

6.2 Statistical Physics

6.2.1 Microcanonical Ensemble

The entropy is equal to:
1
S = kBlOgW = ﬁlOgW

where W is the micronanonical partition function, the number of microstates within the range of energy.
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6.2.2 Canonical Ensemble

The partition function is:
can Z e_ﬁE

The Helmholtz free energy is equal to:

1 1
F=—=logZn=—=1o e PEn
o8 Zean = ~Glos )

6.2.3 Grand Canonical Ensemble

The partition function for fermions is:

Zyr = Z ¢~ B(Bn—y)

( ) e*ﬁ(Enfl"Nn) —
a na=0

= <H ZI: ) e B(Eanaca—nLona) =
a 0
_ H i ) He—ﬁna(ea—u) —

— (i e—ﬂm(m—u)) —
« =0

H (1 +e” 6“"‘))

[e3%

Similarly, for bosons we would get:

— Ze—B(En—/LNn) -
— (H i ) e B(En—pNn) _

a nqe=0

(I3 I -

a neg=

1(E)-

Nna=0

-11 (1 _ e—ﬁ(wu))

-1
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The grand potential for fermions is then equal to:

1
Q=—=logZ, =
5 g

= —% log (1;[ (1 + e_ﬂ(ea_“))> =
_ _% za:log (1 n e—ﬂ(ea—u))

Similarly, the grand potential for bosons is equal to:

1
O =——log Z, =
CR

= —%log (1;[ (1 — eﬁ(ea”))1>
1

= —% Zlog (1 — e*ﬂ(ea*“))_ =
= % Zlog (1 _ e*ﬁ(ea*#))

6.2.4 Examples

Ideal Gas

Ideal gas is simply a system of classical particles, where for a given microstate specified by a set of coordinates
x; and momenta p; , the total energy of the microstate is given by the following Hamiltonian:

2
i

N
H(xiapi) = Z P
=1

2m’

that is, the particles are non-interacting, each has a mass m and a momentum p;. The canonical partition
function is then equal to:

ann(Tv ‘/7 N) = Z eiﬁEn =

n
dng d3Np

-7 P =BH(xipi) —
NI(2rh)3N

PN d™p _gew o
N!(2mh)3N B

_ L ([ Ladp g2
N! (2wh)3

2
_ 1 V/ 47tp dp g

1 <v dn f(2m)3>

)N
|

TN\ (rhp T apd
1 AN

m 2
:N!<(27rh2ﬁ) V) ’
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where we used the following integral:

S

oo 2
2,—ap _
pe P dp =
/o 4o

The Helmholtz free energy is then equal to:

e

F(T,V,N)= —%lomen(T, V,N)=

3 N
1 1 m 2
“ e\ W ((m) V)

N (3 1 m Vez 0 log N _
sl %\ \2mm2) N N -
3 VT3 log N
= NkgT | = —1 _
k‘B 9 og % +O( N ) y
N 27rh2r
kae%

where we used the Stirling’s approximation for N!. For large N this is equal to the Helmholtz free energy of

the ideal gas (see Ideal Gas):
vVTev
F(T,V,N) = NkgT (cv —log < )) 7

N®

3
P 2
with ¢y = % and & = (2]:525> . See that section where all other thermodynamic properties are derived
mkpe3

from it.

We can also start from the grand canonical partition function:

Zor(T, Vi) = Y " Zean(T, V. N)

N=0
N
v> -

> 1 m
=2 S <(27rh26)

wlw
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And the grand potential is:

This is equal to the grand potential of an ideal gas:

QT V,p) =

27h?

mkpe3

withcp:%andq)z (

_ kB Vier

>
PP FRT

2
) . The thermodynamics section then shows that the corresponding Helmholtz

free energy is the same as we obtained above from the canonical ensemble. Note that we also obtained the

same ® as before.
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CHAPTER
SEVEN

7.1 Fluid Dynamics

7.1.1 Stress-Energy Tensor

FLUID DYNAMICS

In general, the stress energy tensor is the flux of momentum p* over the surface z¥. It is a machine that
contains a knowledge of the energy density, momentum density and stress as measured by any observer of

the event.

Imagine a (small) box in the spacetime. Then the observer with a 4-velocity u* measures the density of

dp® . .
4-momentum - in his frame as:

dp®
av
and the energy density that he measures is:
_E_ u%pa
P=yv = v

=-u = uTyhpu

—To‘guﬂ

e WPa ]

dv

One can also obtain the stress energy tensor from the Lagrangian £ = L(n,,0,1,,2") by combining the

Euler-Lagrange equations

oL oL
— =0, =——— ] =0
37];) <a(aunp)>
with the total derivative %:
dL oL oL
T = 00, 200 50y 10 Ok =
oL oL
=0, =———— | 0un, + =———9,0.m, +0,.L =
(a@np)) W D@,m,) T
oL
=9, (8(61,77,,)8”%) +0.L
or

or
O <a(aynp)a“"”

This can be written as:

0,1,

—MJ>+@£:O

"V—fy,:O
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where

v oL v
TH = m@unp — ;C(s'u

fu=0.,L
The Navier-Stokes equations can be derived from the conservation law:
T + fF =0

To obtain some Lagrangian (and action) for the perfect fluid, so that we can derive the stress energy tensor
T+ from that, is not trivial, see for example arXiv:gr-qc/9304026. One has to take into account the
equation of state and incorporate the particle number conservation V,(nu”) = 0 and no entropy exchange
V. (nsut) = 0 constraints.

The equation of continuity follows from the conservation of the baryon number — the volume V that contains
certain number of baryons can change, but the total number of baryons nV must remain constant:

d(nV)
dr 0
dn dv
u*(0qn)V + n(0qu*)V =0
Oa(nu®) =0

Perfect Fluids

Perfect fluids have no heat conduction (T%°° = T9% = () and no viscosity (T = pl), so in the comoving
frame:

% = diag(pe?, p,p,p) = (p+ %) uu? +pg®”

where in the comoving frame we have g*” = diag(—1,1,1,1), u° = ¢ and u* = 0, but 9,U* # 0. p is the
pressure with units [p) = Nm™2 = kgm™'s? (then [5] = kgm™?), p is the rest mass density with units
[p] = kgm™3, and pc? is the energy density with units [pc?] = kgm~!s2.

The last equation is a tensor equation so it holds in any frame. Let’s write the components explicitly:

p p 1 v?
TOO:(p+—2)u0uofp:(p+—2)czfyz—p: p®+p(1l—= ) )= (p+p= )"
c c 5 c

, , , , 1
T =7"= (p + %) ulu' = (p + %) cv'y® =~
C C C

(pc® +p) v'y?
ij _ PN i g ij _ PN i j.2 ij
TV = (p+ 5 )u'v! +pé? = (p+ ) v'v’y" +pd
c c
We now use the conservation of the stress energy tensor and the conservation of the number of particles:
a,TH* =0 (7.1.1.1)
Ou(nut) =0 (7.1.1.2)
The equation (7.1.1.2) gives:
Ay (ny) 4 9i(nv'y) =0

9y (nm#y) + 9;(nma'y) =0 (7.1.1.3)
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Or(nmc2y) + 0;(nmc*v'y) =0 (7.1.1.4)
The equation (7.1.1.1) gives for u = 0:

8, T =0
8T +9,T" =0

1 2 v? 2 1 2 i 2
Oy S\ trg )Y +0; E(pc +p)v'y? | =0

2
O ((p02 —&-p;) 72> +0; ((pc® +p) v'?) =0 (7.1.1.5)
We now substract the equation (7.1.1.4) from (7.1.1.5):

2
v ,
O ((pc% — nmc® + P57 7) +0; ((pc®y — nme® + py) v'y) =0
We define the nonrelativistic energy as:
v
2

4
E = pc?y —nmc® = %pvQ—i— (p —nm)c® + 0O (c )

so it contains the kinetic plus internal energies. We substitute back into (7.1.1.5):

v? .
Oy ((E —|—p62’y) ’y) +0; (E+py)v'y) =0 (7.1.1.6)
This is the relativistic equation for the energy. Substituting nm = py — C% into (7.1.1.3):
E E .
O <p72 - J) +0; <<p72 — J) vz> =0 (7.1.1.7)
c c

The equation (7.1.1.1) for u = i gives:
9, T" =0
9T +0;T =0
1 _ o ,
0, <c2 (pc® +p) vlfyz) +0; ((p + %) vivly? +p5”) =0
P i 2 . P g2 i) _
o\ (p+ 5 )v"Y)+0;((p+ 5 )v' vy +pd?) =0 (7.1.1.8)
c c
This is the momentum equation. The equations (7.1.1.7), (7.1.1.8) and (7.1.1.6) are the correct relativistic
equations for the perfect fluid (no approximations were done). We can take either (7.1.1.7) or (7.1.1.5) as the
equation of continuity (both give the same nonrelativistic equation of continuity). Their Newtonian limit is
obtained by ¢ — oo (which implies v — 1):
dep + 0;(pv")
Oy (pvi) +0; (pvivj —l—péij)
OHE +9; (v (E+p))

0
0
0

those are the Euler equations, also sometimes written as:

Ip
9Py - 7.1.1.9
5t TV (V) =0 ( )

I(pv)
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%—erV-(v(Equ)):O (7.1.1.11)

The momentum equation can be further simplified by expanding the parentheses and using the continuity
equation:

6((5:) + V- (pvw) +Vp=0
ap ov
(m+V~(pv)>v+p(m+v-Vv> +Vp=0
0
ov
p(at +V-Vv) +Vp=0 (7.1.1.12)

Where we used:

& (pva)]i = 8;(pv'v?) = 00, (p?) + pr? d;v' = [VV - (pv) + pv - V]’
Alternative Derivation

We can also take the non-relativistic limit in the stress energy tensor:
T% — pc?
708 _ i _ lpCQUi
c
T4 — pv'vd + pst
and plug it into the equation (7.1.1.1). For = 0 we get the equation of continuity:

0, T =0
8" + 9T =0

1 1 ;
O <p02> +0; (pc%l) =0
c c
op+0; (pv') =0
and for yu = we get the momentum equation:
9,T" =0
oT™ + 0,7 =0
1 . o iy
O <C2pc2vl> + 0 (pv'v? +ps7) =0
Oy (pvi) +0; (pvivj —l—p(;ij) =0

However, in order to derive the equation for energy E, one needs to take into account the full relativistic
stress energy tensor, see the previous section for details.
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Energy Equation

The energy equation can also be derived from thermodynamic and the other two Euler equations. We have
the following two Euler equations:
Owp + 0;(pu') = 0
poyu’ + pu? Oju’ + 67 9;p =0

We’ll need the following formulas:

O (uju) = (Opus)u’ + u;Oput = (8tui)5ijuj + u;Out =
= (8tui5ij)uj + u; O’ = ((’9tuj)uj + w; 00’ = 2u; 050
9 (wiu') = 2u;0;u’

dep = —0;(pu’)

. s
o' = —woju’ — —0;
p

—u?0jp+ 04(pU) =
d
= —2 40+ (pU) =
dp
=g TopU +p)=
dp d .
=g T PV +p) —w9;(pU +p) =
dp  dp p d P ;
:—dt+dt<U+p>+pdt<U+p - 0;(pU + p) =
_ W b d e U + p)ojul — 8;(pUn? + pul) =
=cw T \Ut,) g \Ut )+ Ut p)op’ = (pUu’ + pu’) =
d d d , , _
= {pdt (U—i— i) - dﬂ + (U—I—i) [df —I—pajuj} — 0i(pUv! +pu’) =

= —0;(pUn’ + pu?)

1 1
OdeszSsz—I—pded(U-i—pV)—Vdp:d(U—i-Zp)) —;dp:dH—;dp

where V = % is the specific volume and H = U + % is entalphy (heat content).
Then:

O FE =

= Oz puin’ + pU) =

= %uiuiatp + %p@t(uiui) + 0:(pU)

= —2uu';(pu?) + pu o’ + 9, (pU)

(

(

= —uu'9;(pu?) — puin? Ou’ — ;6 9;p + 0, (pU)

= —guu'd;(pu’) — 5pu? 0(uiu’) — ;¥ 0p + Oy (pU) =
= —10;(pusu'n’) — W 0;p + 9, (pU) =

= —30;(pugu'v’) — 8;(pUn’ + pu’)

=—0; (W (3puin’ + pU +p))

=—0; (v (E+p))
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SO:

HE +0; (v (E+p)) =0

OF
E—i—V-(u(E—HD)):O

7.1.2 Navier-Stokes Equations

We start with the following nonrelativistic components of the stress energy tensor:
TOO N pC2
, , 1 A
TOz _ T’LO N 7/)62'01
c
T — pv'v! — o'

where 0% = —pé% + T (more below) and plug it into the equation (7.1.1.1). For u = 0 we get the equation
of continuity as for perfect fluids:

8, T% =0
AT + 5,7 =0

1 1 ;
O <p62> + 0; (pczvz) =0
c c
Op+0; (pv*) =0
and for = ¢ we get the momentum equation:

8,,Ti” — fz
QT +0,T7 = f*

1 , o g ,
O (CQpCQUZ) +0; (pv'v) — o) = f*
Oy (pvi) +0; (pvivj — aij) = f
By using the continuity equation in the momentum equation (as in perfect fluids), we get:
p (00" +0'007) — 050" = f*

This is sometimes called the Cauchy momentum equation:

p<8a;’+v~Vv>V~cr+f

where the stress tensor ¢ can be written as:
c=—-pl+T
and we get the Navier-Stokes equations:
p(Z—&-v-Vv) =—-Vp+V. -T+f

Those are the most general equations. If we assume some more things about the fluid, they can be further
simplified.
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For Newtonian fluids, we want T to be isotropic, linear in strain rates and it’s divergence zero for fluid at
rest. It follows that the only way to write the tensor under these conditions is:

Ti; = 2pe;; + 6ij)\V -V
where the strain rate is:
1
¢ij = 5 (95vi + 0iv))
The trace of T is:
TrT = Tii = 2M6ii + 5“)\V V= (2M + 3)\)V '

Note that T has zero trace, which is automatically satisfied for incompressible flow (V - v = 0), but for
compressible flow this imposes:

A=-—=
3M

The divergence of the tensor is:
0;Ti; = 2udjeij + 050 AV - v = 10;0jv; + pdiV - v + Ao;V - v = 1d;05v; + (1 + AoV - v
or in vector form (these are usually called the compressible Navier-Stokes equations):
V-T=pV*v+(u+ANVV-v
For incompressible fluid we have V - v = 0, so we get the incompressible Navier-Stokes equations:
V-T =pViv
and for a perfect fluid we have no viscosity, e.g. u = 0, then we get the Euler equations (for perfect fluid):

V.-T=0

7.1.3 Incompressible Equations

Incompressible flow means that the material derivative of density is zero:

dp Op
_ Uy 0. 7.1.3.1
= B +v-Vp=0 ( )

Putting this into the equation of continuity (7.1.1.9) one obtains pV - v = 0 or equivalently:

V-v=0. (7.1.3.2)

But also (7.1.3.2) implies (7.1.3.1), so these two equations are equivalent: the divergence of the velocity field
is zero if and only if the material derivative of the density is zero.

Using the condition V- v =0 in (7.1.1.9) and (7.1.1.12) we obtain:

V-v=0,
dp
a—&—v-Vp—O,

0
p(az-kv-Vv)—i—Vp:uVQv.
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In addition to incompressibility, we can also assume a constant density p(z,y, z) = po, then we obtain the
incompressible Navier-Stokes equations:

V-v=0, (7.1.3.3)

0
0 <a;’ +v- VV) +Vp= NV2V- (7.1.3.4)

For o = 0 they become the incompressible Euler equations. At the given time step with known v and p, the
equation (7.1.3.4) is solved for v at the new time step. Then we solve for new p as follows. Apply divergence
to (7.1.3.4):

0
pUV-(a‘t’+v-VV>+V-Vp=uV~V2v,

o(V -
po ((atv)+v<v-vv)>+v2p—w.v2v,

now we use the following identities:

V. (v Vv) = 0;(v79;0%) = (9;07)(0j0") + v/ 0;0;0" = Te(Vv)? +v - V(V - v),
V- V2V = aiajaj'l}i = ajajai'l}i = VZ(V . V) s

to get:

oV -
o (DG A TV v V() ) 4 Vo = T ).
Finally we use the equation (7.1.3.3) to simplify:
—V?p = po Tr(Vv)?, (7.1.3.5)

which is a Poisson equation for p. Note again that Tr(Vv)? = (9;v7)(8;v"). The equation (7.1.3.5) is then
used to solve for p at the new time step.

Divergence Free Velocity

Typically by propagating (7.1.3.4), we obtain a velocity v* that is not divergence free. To make it so, we
want to find such a divergence free v that is closest to v* in the L? norm [|[v — v*|| =/ [(v — v*)2d3z, in

other words we want to find the L? projection onto the divergence free subspace, so we have to minimize the
following functional:

R[V,/\]:%||v—v*||2—/)\V-vdga::/%(v—v*)Q—/\V~Vd3alc7

where we used a Langrange multiplier A = A\(x) in the second term to impose the zero divergence on v = v(x)
for all points x (that is why X is a function of x and not a constant) and in the first term we ensure that v
is as close as possible to the original field v* in the L? sense. Let’s calculate the variation:

6R[V,/\}:/(V—V*)-5v—/\V'5V—(V~v)5)\d3x:
:/(va*)~6v+(V/\)~5v7(V~v)6)\d3x+/)\5v~ndS:

:/(v—v*—i—V)\)~6v—(V~V)5Ad3x+/)\5v~ndS.
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From the condition dR[v,A\] = 0 and assuming the surface integral vanishes (i.e. either A=0or dv-n=0
everywhere on the boundary) we obtain the two Euler-Lagrange equations:

OR[v, Al =v-v'+VA=0, (7.1.3.6)
ov
SR[v, Al
A Yoy = 7.1.3.7
3 V.-v=0. ( )

Applying divergence to (7.1.3.6) and using (7.1.3.7) we obtain:
VIA=V.v*". (7.1.3.8)

After solving this Poisson equation for A we can calculate the divergence free v from (7.1.3.6):

v=v*=VA. (7.1.3.9)
Time Discretization
The incompressible Euler equations are:
V-v=0,
0 1
8—;’ =V Vv -, (7.1.3.10)
We use first order time discretization:
V-v"' =0, (7.1.3.11)
V.v'tl =0, (7.1.3.12)
n+l _ n
0

The velocity at time steps n and n + 1 must be divergence free, per (7.1.3.11) and (7.1.3.12). The simplest
discretization of (7.1.3.10) is to use an explicit scheme, so we evaluate the term v - Vv at the time step
n. Regarding the pressure term Vp, if we evaluated it at the time step n, then from (7.1.3.13) we could
calculate v ! that would not be divergence free, per (7.1.3.12). So we are led to evaluate the pressure term
at the time step n + 1, then all the equations (7.1.3.11), (7.1.3.12) and (7.1.3.13) can be satisfied.

To solve this system of equations, we use an operator splitting on (7.1.3.13), the most natural is probably
the following;:

vi—v" 1

— = —v". Vv - —Vp" 7.1.3.14
At v M 00 P ( )

V7L+1 _ V* 1

T = _%V(pn-‘rl —pn) . (713.15)

The first equation (7.1.3.14) is just like (7.1.3.13), except that the pressure term is evaluated at the time
step m, which forces us to change v"*! into v*, which is not divergence free. The second equation (7.1.3.15)
is then uniquely given by the condition that the sum of (7.1.3.14) and (7.1.3.15) is equal to (7.1.3.13).

The equation (7.1.3.15) is equivalent to (7.1.3.9), with A = %(p”+1 — p"), so this is an L? projection of v*

onto the divergence free subspace to obtain v®t!, also sometimes called a pressure projection. We use the
same method as was used to obtain the Poisson equation (7.1.3.8) for A, i.e. take a divergence and rearrange:

At

Vi =V? (
Lo

("t — p”)) =V.-v". (7.1.3.16)
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One solves (7.1.3.14) for v*, then the Poisson equation (7.1.3.16) for A (i.e. the pressure update p"*! — p™),
and then one computes v using (7.1.3.15) (or equivalently (7.1.3.9)).

These equations are derived from Euler equations (7.1.3.11) and (7.1.3.12) using a time discretization and
an operator splitting technique. The theory of the L? projection onto the divergence free subspace is not
needed to derive these equations, but it helps with understanding of what is going on.

Note 1: the operator splitting of (7.1.3.13) into (7.1.3.14) and (7.1.3.15) is not unique. Another option is:

% — v Vv, (7.1.3.17)
n+1l _ * 1
% - —%Vp"+l. (7.1.3.18)

The sum of (7.1.3.17) and (7.1.3.18) is still (7.1.3.13) and the equation (7.1.3.18) is still equivalent to (7.1.3.9),

only this time with A = %p”“. The Poisson equation then becomes:
At
Vi = V2 (p”“) =V-v*. (7.1.3.19)
Po

n+1

The only difference to the previous scheme is that now the L? norm of ||[v**1 —v*|| = || V]| is larger, because

A now depends on the full pressure instead of the pressure difference, so v* is not as close to v?*! as in the
previous scheme.
Note 2: By applying divergence to (7.1.3.17) we obtain:
V.-v*
A: =-V- (V" -Vv") = - Tr(Vv")?,
and substituting into (7.1.3.19) we obtain:
At
v? (p"“) =V -v'=-AtTr(Vv")?,
Po
or
—V2pH = po Tr(Vv™)?, (7.1.3.20)

which is the discrete analog of the equation (7.1.3.5). The same result is obtained by applying a divergence
to (7.1.3.14) and substituting into (7.1.3.16):

At
V2 <p0(p”Jrl —p”)) =V v = -AtTr(Vv")? —

At
Po

V2pn
Which simplifies to (7.1.3.20).

7.1.4 Bernoulli’s Principle

Bernoulli’s principle works for a perfect fluid, so we take the Euler equations:
9]
,0<8:+V-VV> =-Vp+f
and put it into a vertical gravitational field f = (0,0, —pg) = —pgVz, so:

0
p((,;t,‘FV'VV) =—-Vp—pgVz,
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we divide by p:

0
V—s—v-Vv:—V(i—i—gz)

ot
and use the identity v - Vv = 1Vo? + (V x v) x v:
0 1
(,%4—5V112+(V><v) xv+V<z+gz> =0,
so:
ov

N Ty (L gzt ) =0
5 V) XV 5 T2 ) =0

If the fluid is moving, we integrate this along a streamline from the point A to B:

ov v? D B
—dl+ | = =l =0.
ot +{2+92+P]A

So far we didn’t do any approximation (besides having a perfect fluid in a vertical gravitation field). Now
we assume a steady flow, so %—‘t’ = 0 and since points A and B are arbitrary, we get:

U2

— tgz+ b_ const.
2 p

along the streamline. This is called the Bernoulli’s principle. If the fluid is not moving, we set v = 0 in the
equations above and immediately get:

gz + L const.
p

The last equation then holds everywhere in the (nonmoving) fluid (as opposed to the previous equation that
only holds along the streamline).

Hydrostatic Pressure

Let p; be the pressure on the water surface and py the pressure h meters below the surface. From the
Bernoulli’s principle:

D1 b2

B—g(-m+2

P P
SO

p1+ hpg = pa

and we can see, that the pressure h meters below the surface is hpg plus the (atmospheric) pressure p; on
the surface.

Torricelli’'s Law

We want to find the speed v of the water flowing out of the tank (of the height h) through a small hole at
the bottom. The (atmospheric) pressure at the water surface and also near the small hole is p;. From the
Bernoulli’s principle:

v? b1
—=—+g-(-h)+ =
p 2 (=) p
SO:

v = +/2gh

This is called the Torricelli’s law.
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Venturi Effect

A pipe with a cross section Ay, pressure p; and the speed of a perfect liquid vy changes it’s cross section to
Aag, so the pressure changes to po and the speed to vy. Given Ap = p; — pa, A; and As, calculate v; and vs.

We use the continuity equation:
Ajvy = Asvg
and the Bernoulli’s principle:
vop_ v p
2 p 2 0
so we have two equations for two unknowns v, and v, after solving it we get:

A 2Ap
V1 = Ag | 5oy
p(AT — A3)
2Ap
v = A1y | —o—
27N (A7 - 43

Hagen-Poiseuille Law

We assume incompressible (but viscuous) Newtonean fluid (in no external force field):

ov
p <8t +V~Vv) = —Vp+uV3v
flowing in the vertical pipe of radius R and we further assume steady flow %‘[ = 0, axis symmetry v, =
vg = Og(--+) = 0 and a fully developed flow 9,v, = 0. We write the Navier-Stokes equations above in the
cylindrical coordinates and using the stated assumptions, the only nonzero equations are:

0=— rD

1
0=-0.,p+ u;&(r@,.vz)
from the first one we can see the p = p(z) is a function of z only and we can solve the second one for

v, = v,(1):

1
v, (r) = @(azp)r2 + Cilogr + Cy

We want v, (r = 0) to be finite, so C; = 0, next we assume the no slip boundary conditions v,(r = R) = 0,
so Cy = —ﬁ([“)zp)R2 and we get the parabolic velocity profile:

1
z = - _82 R2 —r?
) = - (-0)(R? = 1%)
Assuming that the pressure decreases linearly across the length of the pipe, we have —9,p = % and we get:
AP
UZ(T) = 4,U/L (R2 - TQ)

We can now calculate the volumetric flow rate:

v d dz m R
Q—E—a/zdS—/adS—/vzdS_/O /Ovzrdrd(j)_

_ Apr [F APTR!
—2ul J, 8uL
so we can see that it depends on the 4th power of R. This is called the Hagen-Poiseuille law.

(R* — r?)rdr =
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7.2 MHD Equations

7.2.1 Introduction

The magnetohydrodynamics (MHD) equations are:

dp

9LV (pv) = 7.2.1.1
2V (pv) =0 (7.2.1.1)

ov 1
p(at+(v~V)v) :—Vp—i—;(VXB) x B+ pg (7.2.1.2)
%—? =V x (vxB)+nV°B (7.2.1.3)
V-B=0 (7.2.1.4)

assuming 7 is constant. See the next section for a derivation. We can now apply the following identities (we
use the fact that V- B = 0):

[(V X B) X BL = Eijk(v X B)jBk = EijkEjlm(ale)Bk = (§k16im — §km5¢l)(ale)Bk =

= (OrB;)By, — (0; Bx)Br = |(B-V)B — %V|B|2 _
(V x B) xB:(B-V)B—%V|B|2:(B-V)B+
Vx(vxB)=(B-V)v-B(V-v)+v(V-B) -
V(o) = (V- () v+ plv - D)y = P

So the MHD equations can alternatively be written as:

dp
9P y. - 7.2.1.5
5 TV (pv) =0 ( )
Opv T 1 1 9
- T V-(pvv')=-Vp+ m V-(BB') — §V|B| + g (7.2.1.6)
%—]:’ =V (Bv' —vBT) +nV’B (7.2.1.7)
V-B=0 (7.2.1.8)

One can also introduce a new variable p* = p + %V|B\2, that simplifies (7.2.1.6) a bit.

7.2.2 Derivation

The above equations can easily be derived. We have the continuity equation:

ap B
E—Fvo(pv)fO

Navier-Stokes equations (momentum equation) with the Lorentz force on the right-hand side:

0
p(a‘tf—i-(v~V)v> =-Vp+jxB+pg
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where the current density j is given by the Maxwell equation (we neglect the displacement current 57):

1
j=-VxB
I
and the Lorentz force:
1,
—j=E+vxB
o

from which we eliminate E:
1. 1
E=-vxB+-j=-vxB+—VxB
o ol

and put it into the Maxwell equation:

0B
2= E
5 V X
so we get:
8Bsz(va)—Vx(leB)
ot ol

1

Tp

assuming the magnetic diffusivity n = is constant, we get:

%?:Vx(va)anx(VxB):VX(V><B)+77(V2B*V(V~B)):VX(VXBHWQB

where we used the Maxwell equation:

7.2.3 Finite Element Formulation

We solve the following ideal MHD equations (we use p* = p + %V\BF, but we drop the star):

%‘; +(u-Vu—(B-V)B+Vp=0 (7.2.3.1)

%3 +(u-V)B=(B-V)u=0 (7.2.3.2)

V-u=0 (7.2.3.3)

V-B=0 (7.2.34)

If the equation (7.2.3.4) is satisfied initially, then it is satisfied all the time, as can be easily proved by
applying a divergence to the Maxwell equation %—? = —V x E (or the equation (7.2.3.2), resp. (7.2.1.3)) and

we get %(V -B) =0, so V - B is constant, independent of time. As a consequence, we are essentially only

solving equations (7.2.3.1), (7.2.3.2) and (7.2.3.3), which consist of 5 equations for 5 unknowns (components
of u, p and B).

We discretize in time by introducing a small time step 7 and we also linearize the convective terms:

u” — un—l L L
— WLV - (B V)B"+ Vp =0 (7.2.3.5)

T
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Bn—l

B" —
+ (un—l . V)Bn _

T

B" - V)u" =0
V-u"=0

(7.2.3.6)

(7.2.3.7)

Testing (7.2.3.5) by the test functions (v1,v2), (7.2.3.6) by the functions (C7,C3) and (7.2.3.7) by the test

function g, we obtain the following weak formulation:

/ W ("t V)ujv; — (B"1 - V)Biy —p% dx = / I
o Ox

T Q T

a n—1
/ ke + (U V)uguy — (B" - V) Bovy — pﬂ dx = / 2 V2 g4y
o T ay Q T

n—1
/ 56 + (u" - V)B,C; — (B"! - V)u Oy dx:/ Ladx
Q T Q T
n—1
/BQC2 +(u”71~V)BQC’27(B”71~V)UQngx:/ By Gy
Q T Q T
8u1 (9UQ
—q+ —=—qdx=0
Q 6:cq+ Jy 7

(7.2.3.8)

(7.2.3.9)

(7.2.3.10)

To better understand the structure of these equations, we write it using bilinear and linear forms, as well as
take into account the symmetries of the forms. Then we get a particularly simple structure:

+A(u1,v1) —X(p,v1) —B(B1,v1) =
+A(uz,v2) =Y (p,v2) —B(By,v2) =
+X(q,u1) +Y (g, u2) =
—B(ul,Cl) +A(Bl,01) =
—B(UQ, Cg) +A(B2, CQ) =

where:

v
X(u,v) = Qu%dx
Ov
Y (u,v :/u—dx
(u,v) "By
u?
l = 1 d
1(v) /Q —dx

ll(vl)
ZQ(’UQ)
0

14(Cy)
I5(Ca)

E.g. there are only 4 distinct bilinear forms. Schematically we can visualize the structure by:

A -X -B

A Y -B
X Y
-B A

-B A
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In order to solve it with Hermes, we first need to write it in the block form:

air(ui,v1) + az(uz,v1) + awz(p,v1) + aw(Bi,vi) 4+ ais(Bz,v) = li(v1)
agi(ui,v2) +  ag(uz,v2) + 23(17,7)2) + ag4(B1,v2) 4+ ags5(B2,v2) = Ia(v2)
azi(ui,q)  + as2(uz,q)  + ass(p,q)  + asa(Bi,q)  + ass(B2,q) = I3(q)
as1(u1,C1) +  asa(u2,Ci) +  ass(p, C'1) + au(B1,C1) + ass(B2,Cr) = 1u(Ch)
as1(u1,C2) + as2(u2,C2) + as3(p,C2) + asa(B1,C2) + ass5(B2,Ca) = 15(C2)
comparing to the above, we get the following nonzero forms:
arr(ui,v1) + 0 + aw(p,v1) + au(Bi,v) + 0 = li(v1)
0 +  age(uz,v2) + ags(p,v2) + 0 +  ags(Bo,v2) = la(va)
azgi(ui,q)  + asz(uz,q) + O + 0 + 0 =0
a41(u1,C1) + 0 + 0 + a44(Bl,Cl) + 0 = 14(01)
0 + a52(u2,02) + 0 + 0 + a55(B2,CQ) = 15(02)
where:
a11(ug,v1) = A(ug, v1)
ag2(ug,v2) = A(uz,vs)
a44(B1,C1) = A(Bl,Cl)
ass(Bg,C1) = A(B2,Cs3)
ar3(p,v1) = —X(p,v1)
az1(u1,q) = X(q,u1)
az3(p,v2) = =Y (p,v2)
as2(u2,q) = Y(q,u2)
a14(B1,v1) = —B(B1,v1)
aq1(u1,Ch) = —B(u1,Ch)
CL25(BQ,’()2) = —B(BQ,’UQ)
aso(uz, Cy) = —B(ug, Cs)
and [1, ..., I5 are the same as above.

7.3 Compressible Euler Equations

7.3.1 Introduction

The compressible Euler equations are equations for perfect fluid. Perfect fluids have no heat conduction
(T = T = 0) and no viscosity (T% = pl), so in the comoving frame the stress energy tensor is:

7% = diag(pe?, p,p,p) = (p+ %) uu? +pg®”

) ) )

energy tensor and the particle number conservation:

(we use g = diag(—1,1,1,1)). Relativistic Euler equations are given by the conservation of the stress

a,TH =0
Ou(nut) =0
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By doing the nonrelativistic limit (see Perfect Fluids for a detailed derivation), we get the following Euler
equations:

dp
a+V (pu) =0
o(pu) (pua”) + Vp— £ =0
ot
)]
o TV (u(E+p) =0
where
E:pe—&—%qu

is the total energy per unit volume, composed of the kinetic energy per unit volume (% pu?) and the internal
energy per unit volume (pe), where e is the internal energy per unit mass (e = %) The energy E doesn’t
contain the rest mass energy, but all other energies are hidden in the internal energy.

We use the ideal gas equations, so:

e="Tec,

n = nM R R
= —-RT = —— —T=pRT = pR— = —(E — Lpu?
p=5 vl =r pvcv( 3Pu”)
where n is the number of moles of gas, M is the molar mass of the gas (i.e. a mass of one mole of the gas,
e.g. for dry air we get M = 28.956 g/mol, as it is mainly composed of 20% of oxygen with atomic mass 16
and 78% of nitrogen with atomic mass 14, both form diatomic molecules, so the molecular mass is twice the
atomic mass giving the total of 0.2-2-16 + 0.78 - 2 - 14 = 28.24, the rest is given by the other components

and one also has to average over all isotopes), R = Nikp = 8.3145 7 Jol is the ideal gas constant (Ng4 is

the Avogadro constant and kB is the Boltzmann constant), R = % is the specific ideal gas constant (e.g.
for dry air we get R = 3833;512 K = 287.14 kJK) p= LM = 2 is the density of the gas (e.g. for dry air at
the pressure 10° Pa and temperature 22 °C we get p = Wj‘m =118 kg %), ¢y is the specific heat

capacity at constant volume (i.e. the amount of energy needed to heat one kg by one Kelvin at constant
volume, e.g. for dry air the experimental value is about ¢, = 717.5 kgK) V is the volume and T is the

temperature of the gas. Of those, V, n, M, R, R are constants, p, e, E and T are functions of (,z,y, z).

Here are the SI units of the various terms in the Euler equations:

-1

[u] =ms
[p] = kgm™?
N =kgms >

J=Nm=kgm?s2

[p))=Nm 2 =kgm 's?

[3pu°] = [p][u]® = kgm P m®s™* = kgm~'s7?

[E]=Jm™ 3 =kgm 's?2

[Rl=Jkg 'K ' =m?s 2K !
Cy| = - I =m2s”

[ ] Jkg lK 1 2K 1

[E] _ kgm~™'s™? 2 —2

[e]zmzmzms

In order to calculate the specific heat ratio x, we use R = ¢, — ¢,:

R R
ho e _ofR_ R
Cy Cy Cy
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and the speed of sound is:

Cc = R—

7.3.2 Dimensionless Euler Equations

We choose 3 constants l,., u, and p, - characteristic length of the domain, velocity and density. Now we
multiply the Euler equations with proper combinations of these constants as follows:

dp 1 L
[Bt + V- (pu)_ oty =0
9(pu) T | L
. _f =
[ o + V. (puu')+Vp | ootz 0
OF 1 1,
it . E _
5+ Y B+ S =0
This is equal to:
o = ..
—+ V. =0
5 TV (P)
a(g;) +V - (pua”) +Vp—F=0
oE o . -
~+V-(@WE+p)=0
ot
where:
Ly
t, =
Uy
~ t
f=—
tr
P
=1
Pr
. u
ua=—
Uy
V=10V
- E
E =
pru}
S p
b pru;
~ l
f=f——
pru?
In particular, if £ = (0,0, —pg), then
f=(0,0,-79)
i 8
g = gu% = glr

So the dimensionless Euler equations look exactly the same as the original ones, we just need to rescale all
the quantities using the relations above.
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7.3.3 Conservative Form of the Euler Equations

We can write the Euler equations as:

ow of, Of, Of.

o " or oy " 9. '8
where:
0 Wo
puL w1
W = pPU = wa
pus w3
FE w4y
pUL A
2 wy
pui +p we TP
fz = puUIU2 = 771)110’!02
pu1Us ity
wo
ur(E + p) i (wg +p)
w
pUQ 11)23)1
PU2UL W0
f, = pu3 +p = Wt
0
u(E +p) w2 (wg +p)
pu3 u};}il
pusul w9,
f, = pu3U = wo
pu3 +p Yiitp
us(E +p) w2 (wg +p)
0
_far
g= *fy
_fz
0
R : R w? + wi + w?
p=2(E-tot+adrad)) = 2 (- A
Cy Cy 2'(,00

We solve for the unknowns wg, w1, wa, ws and w4 as functions of (¢, x,y, 2), the rest (R, ¢y, fu, fy, f2) are
either constants or depend on the unknowns. In order to convert from the physical quantities p, w1, ug, us,
FE and p to wy, ..., wy, we use:

wo = p
w1 = puy
W = pU2
w3 = pus

Cy
w4:E:pE+%p(u%+u§+u§)
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the opposite conversion is:

p = Wo

w1

Uy = —

Wo

w2

Ugp = —

Wo

w3

uz = —

Wo

E:U}4
R w} + w3 + w3
p=—|lwy — ——=

Cy 2wg

Sometimes people also use u, v and w instead of uy, uy and ug.

Note: pu = j, where j is the fluid density current (it’s a 3-vector) and also w* = j* (here w* is the same
as wy, e.g. we are a bit sloppy about the notation), where j* is the density 4-current (e.g. the first 4
components of w are exactly the components of the 4-current j*):

cp
pUL
pu2
pus

g =pv" = py(c,u) =

where as usual y = 0,1,2, 3 is the relativistic index, c is the speed of light, and in the nonrelativistic limit
(c — 00) we get ¥ — 1 and the remaining c in j° will cancel with ¢ in 9y = %%, so it will not be present in
the final equations (that involve terms like d,,5"). We can also just set ¢ = 1 as usual in relativistic physics.

7.3.4 Weak Formulation

The Euler equations:
87W + % + % + ot
ot or Oy 0z

are nonlinear. The time-derivative is approximated using the implicit Euler method

witl — wn N Of, (wnth) N of, (wnt1h) N of, (wntl)

+g=0

=0
T ox dy 0z ts
The vector-valued test functions for the above system of equations have the form:
0 0 0 0 0
0 o? 0 0 0
U o .| ¢ |, 0o 1, 0
0 0 0 3 0
0 0 0 0 ot

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain
(here the index i = 0,1,2,3,4 is numbering the 5 equations, so we are not summing over it):

ntl _ om0 9 (f(whtD)). o 9 (f,(wnt)). . 9 (f(wnT!
/wz wy %014_ ( ( )>z<pz+ (y( ))lwl"" ( ( )>
Q T Ox Oy 0z
Now we integrate by parts:

szH_l —IU? i n 64101 n
[ (), 2 (g,

Lol +gip' P =0

o'
dy

0’ '

_ n+1 b At a3

(fz(w ))Z o + gip" d°z+

+/ (£ (w")), @' na + (£,(W" ) 0 ny + (E(W"H)), o' n. d®z =0
90
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where n = (ng, ny,n.) is the outward surface normal to 0. Rearranging:

“’?Hi n+1 o' n+1 o' n+1 o' 3
/QT P = (Bw"), 5 — (f(w ))iafy*(fz(w ), 5, Tat

n

+/ (E.(wW"* ), @' na + (£, (W), 0 ny + (E(Ww")), 0 n. &Pz = / ' —gip' A

oQ Q

We can then linearize this for example by taking the flux jacobians A, (w"*!) on the previous time level
A, (wh).

The finite element formulation is obtained from here by replacing in the standard way the unknown solution
w™t! by a piecewise-polynomial unknown function

N
1 _
wy fE Yk,
=1

where v are the basis functions of the piecewise-polynomial finite element space. This turns the above weak
formulation into a finite number of nonlinear algebraic equations of the form F(Y') = 0 that will be solved
using the Newton’s method.

Explicit Method

We also derive the weak formulation for the explicit method. Euler equations:
87W 4 % + % 4 GE
ot or oy 0z

The time-derivative is approximated using the explicit Fuler method
witl —wn N Of,(w™) N of,(w") N of,(w™)

T ox dy 0z

The vector-valued test functions for the above system of equations have the form:

+g=0

+g=0

o 0 0 0 0
0 ot 0 0 0
o |, o f, ]« |.] o].,] o
0 0 0 o3 0
0 0 0 0 o

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain
(here the index ¢ = 0,1,2,3,4 is numbering the 5 equations, so we are not summing over it):

witt —wp A (E(wW), o O(f,(W), ;O (E(w"))
/Q @'+ o'+

T vt ox dy 0z

Now we integrate by parts:

o'+ gip' AP =0

n+l %

| B — ), G = (6 ), G — (), B+ ot

n / (B (W™)); @ 110+ (B (W™)), & 1y + (£ (™)), @ 12 %2 = 0
o0

where n = (ng, ny, n,) is the outward surface normal to 0. Rearranging:

w:‘lﬂ i 13 wi n ' n Do’ n Ao’ i 13
/QT<P d 1‘—/9?80 + (fz(w")), 7 + (£, (w™)); 2y + (f.(w ))ig—gz@ d’z+

= [ B e+ W),y + (W), e
oQ
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7.3.5 Flux Jacobians

Now we write the spatial derivatives using the so called flux Jacobians A,, A, and A:

o, _ 00w, ow
dx  Ow dxr T oz
of,

A, =A =2

m =(W) ow

Similarly for y and z, so we get:

ow ow ow ow

One nice thing about these particular f;, f, and f, functions is that they are homogeneous of degree 1:
f.(Aw) = A, (w)

so the Euler equation/formula for the homogeneous function is:

of, (w
T =)
w-A, =f.(w)
So both the f, and it’s derivative can be nicely factored out using the flux Jacobian:
f,=A,w
of,, ow
b A i
Ox * Ox
by differentiating the first equation and substracting the second, we get:
0A,
=0
or

similarly for y and z. To calculate the Jacobians, we’ll need:

apzﬁ(wf-*-w%ﬁ _wi w2 w3 1)

2
6W Cy 2w0 wo wo wo

then we can calculate the Jacobians (and we substitute for p):

2 2 2 2
_W R witwitws 2wy _ Rw _ R ws
'wg Cy QwS wo Cy Wo Cy Wo
A_ afm _ wiw2 w2 wi
= — = 2
2(W) p) w wo wo
w w1 w3 w3
—wu 0
w, wo
2+ 02+ 2 2+ 2+ 2 2+ 2+ 2 2
—wiwy _ wp B (), WyTwedwy ) | wy RWpywotwy w4 LR o, whtwetws ) R R wiws
w2 w2 ¢y 2w wo Cy 2w? wo wo Cy 2wo Cy w2 cy w?
_ wawy wa wy
wi wo wo
2 2 2
of, _wi | Rwitwitw] _Ruw 2wy _ R w
Ay(W) = = wg Cy 211)3 cy Wo wo cy Wo
ow _ waws 0 w3
w wo
2+ 02+ 2 2+ 2+ 2 2+ 2+ 2 2
_Wwaly  wp R, WitWoHWE ) wy R Witwotwy R wewy  ws 4 LR (,,  WitWhtws) R Wy
w3 wg ¢y 4 2w wQ Coy 2w? cy  wi wo wQ Cy 4 2w Cy w3
_Lg’l w3 0 wi
w wo wo
0
sz __ws 12”2 0 w3 wo
A, (w) = = ) wgoo wo wo
ow _wi o R witwitw] _Rwi  _Ruw 2wy _ R uws
w? Cy 2w2 Cy Wo Cy Wo wo 