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Chapter 1

Introduction

Theoretical physics is the attempt to describe Nature quantitatively using the lan-
guage of mathematics. Indeed there is an interplay between mathematics and the-
oretical physics, with both disciplines enriching each other. Isaac Newton invented
calculus in order to apply it to classical mechanics. Michael Faraday developed the
field concept in order to describe electromagnetism. David Hilbert’s abstract space
of square integrable functions turned out to be the home of quantum mechanical
wave functions. Paul Dirac “invented” the δ-function which motivated mathemati-
cians to develop distribution theory. Abelian gauge symmetry was discovered as
the basic principle underlying Maxwell’s equations. Sophus Lie’s abstract concepts
of non-Abelian symmetry algebras and symmetry groups underlie Wolfgang Pauli’s
ideas about non-Abelian gauge symmetry, which were further developed by Robert
Mills and Chen-Ning Yang and were later discovered to form the basis of the strong
and electroweak interactions. Michael Atiyah and Isidore Singer investigated the
topological properties of Dirac operators, which turned out to be essential in the
context of anomalous symmetries in quantum field theory, which are present at the
classical level but cannot be maintained in the quantization process. Michael Berry
realized that topological features of wave functions play a central role in adiabatic
processes in quantum mechanics and can be characterized by abstract Abelian and
non-Abelian gauge fields in the space of slowly varying external parameters. This list
could be extended much further, and the creative process of discovering new math-
ematics when thinking about Nature or using existing mathematics to describe its
observed behavior is likely to continue for a long time.

In this course, we will familiarize ourselves with some advanced mathematical
concepts that are at the basis of the modern theories of particle and condensed mat-
ter physics, as well as of some advanced topics in quantum mechanics. Although
the subject is mathematical, we will by no means apply the rigor of a mathemati-
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8 CHAPTER 1. INTRODUCTION

cian. Instead, we will concentrate on those aspects that are most relevant in physics
applications. Consequently, we will avoid very abstract mathematical constructions
in favor of a hands-on practitioner’s approach. While we will aim at understand-
ing the subject at a deep level, we will not attempt rigorous proofs, and we will
sometimes even limit ourselves to applying specific procedures, for example, when
we reduce products of SU(n) representations, without proving their validity. When
we discuss Lie algebras and Lie groups, as well as the topology of the corresponding
group manifolds, we will focus on those aspects that are most important in physical
applications. A systematic mathematical exposition of these subjects would go far
beyond the scope of the current course. For example, the concept of the Killing
vector field of a Lie group manifold is not developed, although it does have physical
applications. Although the presented material is neither mathematically rigorous
nor complete, it will hopefully provide the reader with a solid basis for better un-
derstanding the quantum field theories that underlie modern particle physics as well
as some theories in condensed matter physics.

It is a most fascinating aspect of physics that, on all lengths scales, Nature
can indeed be described mathematically. The most fundamental building blocks of
matter, elementary particles such as electrons and photons, as well as quarks and
gluons are precise embodiments of abstract mathematical concepts. Even on much
coarser length scales the plateaus in the resistivity of a quantum Hall sample are
most precisely quantized in units of Planck’s quantum h and the elementary electric
charge e. Even the evolution of the entire cosmos is controlled rather precisely by
the differential equations derived from general relativity assuming the Friedmann-
Lemaitre-Robertson-Walker metric. As I argue in an appendix to these lecture
notes, it is the locality of space and time and the existence of vast hierarchies of
distance scales that leads to the success of physics and thus “explains” why physics
exists. In this course, we will familiarize ourselves with some important advanced
concepts of theoretical physics, in order to be better prepared to understand the
modern theories of particle and condensed matter physics, as well as some aspects
of advanced quantum mechanics. This may even inspire us to “invent” our own new
mathematics or to be creative when trying to describe some new aspect of Nature
mathematically. Mathematics is a universal language spoken by curious minds and
capable brains, and used for various purposes, in particular, to communicate the
abstract beauty of Nature. Let us learn more about this language and let us keep
in mind that theoretical physics is a man- and women-made endeavor that relies on
our curiosity as much as on our mathematical capabilities.



Chapter 2

From Mechanics to Quantum
Field Theory

This chapter provides a brief summary of the mathematical structure of quantum
field theory. Classical field theories are discussed as a generalization of point me-
chanics to systems with infinitely many degrees of freedom — a given number per
space point. Similarly, quantum field theories are just quantum mechanical sys-
tems with infinitely many degrees of freedom. In the same way as point mechanics
systems, classical field theories can be quantized with path integral methods. The
quantization of field theories at finite temperature leads to path integrals in Eu-
clidean time. This provides us with an analogy between quantum field theory and
classical statistical mechanics. We also mention the lattice regularization which has
recently provided a mathematically satisfactory formulation of the standard model
beyond perturbation theory.

2.1 From Point Mechanics to Classical Field The-

ory

Point mechanics describes the dynamics of classical nonrelativistic point particles.
The coordinates of the particles represent a finite number of degrees of freedom.
In the simplest case — a single particle moving in one spatial dimension — we
are dealing with a single degree of freedom: the x-coordinate of the particle. The
dynamics of a particle of mass m moving in an external potential V (x) is described

9



10 CHAPTER 2. FROM MECHANICS TO QUANTUM FIELD THEORY

by Newton’s equation

m∂2
t x = ma = F (x) = −dV (x)

dx
. (2.1.1)

Once the initial conditions are specified, this ordinary second order differential equa-
tion determines the particle’s path x(t), i.e. its position as a function of time. New-
ton’s equation results from the variational principle to minimize the action

S[x] =

∫
dt L(x, ∂tx), (2.1.2)

over the space of all paths x(t). The action is a functional (a function whose argu-
ment is itself a function) that results from the time integral of the Lagrange function

L(x, ∂tx) =
m

2
(∂tx)2 − V (x). (2.1.3)

The Euler-Lagrange equation

∂t
δL

δ(∂tx)
− δL

δx
= 0, (2.1.4)

is nothing but Newton’s equation.

Classical field theories are a generalization of point mechanics to systems with
infinitely many degrees of freedom — a given number for each space point ~x. In this
case, the degrees of freedom are the field values φ(~x), where φ is some generic field.
In case of a neutral scalar field, φ is simply a real number representing one degree
of freedom per space point. A charged scalar field, on the other hand, is described
by a complex number and hence represents two degrees of freedom per space point.
The scalar Higgs field φa(~x) (with a ∈ {1, 2}) in the standard model is a complex
doublet, i.e. it has four real degrees of freedom per space point. An Abelian gauge
field Ai(~x) (with a spatial direction index i ∈ {1, 2, 3}) — for example, the photon
field in electrodynamics — is a neutral vector field with 3 real degrees of freedom
per space point. One of these degrees of freedom is redundant due to the U(1)em
gauge symmetry. Hence, an Abelian gauge field has two physical degrees of freedom
per space point which correspond to the two polarization states of the massless
photon. Note that the time-component A0(~x) does not represent a physical degree
of freedom. It is just a Lagrange multiplier field that enforces the Gauss law. A non-
Abelian gauge field Aai (~x) is charged and has an additional index a. For example,
the gluon field in chromodynamics with a color index a ∈ {1, 2, ..., 8} represents
2 × 8 = 16 physical degrees of freedom per space point, again because of some
redundancy due to the SU(3)c color gauge symmetry. The field that represents the
W - and Z-bosons in the standard model has an index a ∈ {1, 2, 3} and transforms
under the gauge group SU(2)L. Thus, it represents 2 × 3 = 6 physical degrees of
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freedom. However, in contrast to the photon, the W - and Z-bosons are massive
due to the Higgs mechanism and have three (not just two) polarization states. The
extra degree of freedom is provided by the Higgs field.

The analog of Newton’s equation in field theory is the classical field equation of
motion. For example, for a neutral scalar field this is the Klein-Gordon equation

∂µ∂
µφ = −dV (φ)

dφ
. (2.1.5)

Again, after specifying appropriate initial conditions it determines the classical field
configuration φ(x), i.e. the values of the field φ at all space-time points x = (t, ~x).
Hence, the role of time in point mechanics is played by space-time in field theory,
and the role of the point particle coordinates is now played by the field values. As
before, the classical equation of motion results from minimizing the action

S[φ] =

∫
d4x L(φ, ∂µφ). (2.1.6)

The integral over time in eq.(2.1.2) is now replaced by an integral over space-time
and the Lagrange function of point mechanics gets replaced by the Lagrange density
function (or Lagrangian)

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ− V (φ). (2.1.7)

A simple interacting field theory is the φ4 theory with the potential

V (φ) =
m2

2
φ2 +

λ

4!
φ4. (2.1.8)

Here m is the mass of the scalar field and λ is the coupling strength of its self-
interaction. Note that the mass term corresponds to a harmonic oscillator potential
in the point mechanics analog, while the interaction term corresponds to an anhar-
monic perturbation. As before, the Euler-Lagrange equation

∂µ
δL

δ(∂µφ)
− δL

δφ
= 0, (2.1.9)

is the classical equation of motion, in this case the Klein-Gordon equation. The
analogies between point mechanics and field theory are summarized in table 2.1.

2.2 The Path Integral in Real Time

The quantization of field theories is most conveniently performed using the path
integral approach. Here we first discuss the path integral in quantum mechanics
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Point Mechanics Field Theory

time t space-time x = (t, ~x)
particle coordinate x field value φ

particle path x(t) field configuration φ(x)
action S[x] =

∫
dt L(x, ∂tx) action S[φ] =

∫
d4x L(φ, ∂µφ)

Lagrange function Lagrangian
L(x, ∂tx) = m

2
(∂tx)2 − V (x) L(φ, ∂µφ) = 1

2
∂µφ∂

µφ− V (φ)
equation of motion field equation
∂t

δL
δ(∂tx)

− δL
δx

= 0 ∂µ
δL

δ(∂µφ)
− δL

δφ
= 0

Newton’s equation Klein-Gordon equation

∂2
t x = −dV (x)

dx
∂µ∂

µφ = −dV (φ)
dφ

kinetic energy m
2

(∂tx)2 kinetic energy 1
2
∂µφ∂

µφ

harmonic oscillator potential m
2
ω2x2 mass term m2

2
φ2

anharmonic perturbation λ
4!
x4 self-interaction term λ

4!
φ4

Table 2.1: The dictionary that translates point mechanics into the language of field
theory.

— quantized point mechanics — using the real time formalism. A mathematically
more satisfactory formulation uses an analytic continuation to so-called Euclidean
time. This will be discussed in the next section.

The real time evolution of a quantum system described by a Hamilton operator
H is given by the time-dependent Schrödinger equation

i~∂t|Ψ(t)〉 = H|Ψ(t)〉. (2.2.1)

For a time-independent Hamilton operator the time evolution operator is given by

U(t′, t) = exp(− i
~
H(t′ − t)), (2.2.2)

such that
|Ψ(t′)〉 = U(t′, t)|Ψ(t)〉. (2.2.3)

Let us consider the transition amplitude 〈x′|U(t′, t)|x〉 of a nonrelativistic point
particle that starts at position x at time t and arrives at position x′ at time t′.
Using

〈x|Ψ(t)〉 = Ψ(x, t) (2.2.4)

we obtain

Ψ(x′, t′) =

∫
dx 〈x′|U(t′, t)|x〉Ψ(x, t), (2.2.5)
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i.e. 〈x′|U(t′, t)|x〉 acts as a propagator for the wave function. The propagator is of
physical interest because it contains information about the energy spectrum. When
we consider propagation from an initial position x back to the same position we find

〈x|U(t′, t)|x〉 = 〈x| exp(− i
~
H(t′ − t))|x〉

=
∑
n

|〈x|n〉|2 exp(− i
~
En(t′ − t)). (2.2.6)

We have inserted a complete set,
∑

n |n〉〈n| = 1I, of energy eigenstates |n〉 with

H|n〉 = En|n〉. (2.2.7)

Hence, according to eq.(2.2.6), the Fourier transform of the propagator yields the
energy spectrum as well as the energy eigenstates 〈x|n〉.

Inserting a complete set of position eigenstates we arrive at

〈x′|U(t′, t)|x〉 = 〈x′| exp(− i
~
H(t′ − t1 + t1 − t))|x〉

=

∫
dx1〈x′| exp(− i

~
H(t′ − t1))|x1〉

× 〈x1| exp(− i
~
H(t1 − t))|x〉

=

∫
dx1〈x′|U(t′, t1)|x1〉〈x1|U(t1, t)|x〉. (2.2.8)

It is obvious that we can repeat this process an arbitrary number of times. This is
exactly what we do in the formulation of the path integral. Let us divide the time
interval [t, t′] into N elementary time steps of size ε such that

t′ − t = Nε. (2.2.9)

Inserting a complete set of position eigenstates at the intermediate times ti, i ∈
{1, 2, ..., N − 1} we obtain

〈x′|U(t′, t)|x〉 =

∫
dx1

∫
dx2...

∫
dxN−1〈x′|U(t′, tN−1)|xN−1〉...

× 〈x2|U(t2, t1)|x1〉〈x1|U(t1, t)|x〉. (2.2.10)

In the next step we concentrate on one of the factors and we consider a single
nonrelativistic point particle moving in an external potential V (x) such that

H =
p2

2m
+ V (x). (2.2.11)
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Using the Baker-Campbell-Haussdorff formula and neglecting terms of order ε2 we
find

〈xi+1|U(ti+1, ti)|xi〉 = 〈xi+1| exp(− iεp
2

2m~
) exp(−iε

~
V (x))|xi〉

=
1

2π

∫
dp〈xi+1| exp(− iεp

2

2m~
)|p〉〈p| exp(−iε

~
V (x))|xi〉

=
1

2π

∫
dp exp(− iεp

2

2m~
) exp(− i

~
p(xi+1 − xi))

× exp(−iε
~
V (xi)). (2.2.12)

The integral over p is ill-defined because the integrand is a very rapidly oscillating
function. To make the expression well-defined we replace the time step ε by ε− ia,
i.e. we go out into the complex time plane. After doing the integral we take the
limit a → 0. Still one should keep in mind that the definition of the path integral
required an analytic continuation in time. One finds

〈xi+1|U(ti+1, ti)|xi〉 =

√
m

2πi~ε
exp(

i

~
ε[
m

2
(
xi+1 − xi

ε
)2 − V (xi)]). (2.2.13)

Inserting this back into the expression for the propagator we obtain

〈x′|U(t′, t)|x〉 =

∫
Dx exp(

i

~
S[x]). (2.2.14)

The action has been identified in the time continuum limit as

S[x] =

∫
dt [

m

2
(∂tx)2 − V (x)]

= lim
ε→0

∑
i

ε[
m

2
(
xi+1 − xi

ε
)2 − V (xi)]. (2.2.15)

The integration measure is defined as∫
Dx = lim

ε→0

√
m

2πi~ε

N ∫
dx1

∫
dx2...

∫
dxN−1. (2.2.16)

This means that we integrate over the possible particle positions for each intermedi-
ate time ti. In this way we integrate over all possible paths of the particle starting at
x and ending at x′. Each path is weighted with an oscillating phase factor exp( i~S[x])
determined by the action. The classical path of minimum action has the smallest
oscillations, and hence the largest contribution to the path integral. In the classical
limit ~→ 0 only that contribution survives.
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2.3 The Path Integral in Euclidean Time

As we have seen, it requires a small excursion into the complex time plane to make
the path integral mathematically well-defined. Now we will make a big step into
that plane and actually consider purely imaginary so-called Euclidean time. The
physical motivation for this, however, comes from quantum statistical mechanics.
Let us consider the quantum statistical partition function

Z = Tr exp(−βH), (2.3.1)

where β = 1/T is the inverse temperature. It is mathematically equivalent to the
time interval we discussed in the real time path integral. In particular, the operator
exp(−βH) turns into the time evolution operator U(t′, t) if we identify

β =
i

~
(t′ − t). (2.3.2)

In this sense the system at finite temperature corresponds to a system propagating
in purely imaginary (Euclidean) time. By dividing the Euclidean time interval into
N time steps, i.e. by writing β = Na/~, and again by inserting complete sets of
position eigenstates we now arrive at the Euclidean time path integral

Z =

∫
Dx exp(−1

~
SE[x]). (2.3.3)

The action now takes the Euclidean form

SE[x] =

∫
dt [

m

2
(∂tx)2 + V (x)]

= lim
a→0

∑
i

a[
m

2
(
xi+1 − xi

a
)2 + V (xi)]. (2.3.4)

In contrast to the real time case the measure now involves N integrations∫
Dx = lim

a→0

√
m

2π~a

N ∫
dx1

∫
dx2...

∫
dxN . (2.3.5)

The extra integration over xN = x′ is due to the trace in eq.(2.3.1). Note that there
is no extra integration over x0 = x because the trace implies periodic boundary
conditions in the Euclidean time direction, i.e. x0 = xN .

The Euclidean path integral allows us to evaluate thermal expectation values.
For example, let us consider an operator O(x) that is diagonal in the position state
basis. We can insert this operator in the path integral and thus compute its expec-
tation value

〈O(x)〉 =
1

Z
Tr[O(x) exp(−βH)] =

1

Z

∫
Dx O(x(0)) exp(−1

~
SE[x]). (2.3.6)
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Since the theory is translation invariant in Euclidean time one can place the op-
erator anywhere in time, e.g. at t = 0 as done here. When we perform the low
temperature limit, β → ∞, the thermal fluctuations are switched off and only the
quantum ground state |0〉 (the vacuum) contributes to the partition function, i.e.
Z ∼ exp(−βE0). In this limit the path integral is formulated in an infinite Euclidean
time interval, and describes the vacuum expectation value

〈O(x)〉 = 〈0|O(x)|0〉 = lim
β→∞

1

Z

∫
Dx O(x(0)) exp(−1

~
SE[x]). (2.3.7)

It is also interesting to consider 2-point functions of operators at different instances
in Euclidean time

〈O(x(0))O(x(t))〉 =
1

Z
Tr[O(x) exp(−Ht)O(x) exp(Ht) exp(−βH)]

=
1

Z

∫
Dx O(x(0))O(x(t)) exp(−1

~
SE[x]). (2.3.8)

Again, we consider the limit β → ∞, but we also separate the operators in time,
i.e. we also let t → ∞. Then the leading contribution is |〈0|O(x)|0〉|2. Subtracting
this, and thus forming the connected 2-point function, one obtains

lim
β,t→∞

〈O(x(0))O(x(t))〉 − |〈O(x)〉|2 = |〈0|O(x)|1〉|2 exp(−(E1 − E0)t). (2.3.9)

Here |1〉 is the first excited state of the quantum system with an energy E1. The
connected 2-point function decays exponentially at large Euclidean time separations.
The decay is governed by the energy gap E1 − E0. In a quantum field theory E1

corresponds to the energy of the lightest particle. Its mass is determined by the
energy gap E1 − E0 above the vacuum. Hence, in Euclidean field theory particle
masses are determined from the exponential decay of connected 2-point correlation
functions.

2.4 Spin Models in Classical Statistical Mechan-

ics

So far we have considered quantum systems both at zero and at finite tempera-
ture. We have represented their partition functions as Euclidean path integrals over
configurations on a time lattice of length β. We will now make a completely new
start and study classical discrete systems at finite temperature. We will see that
their mathematical description is very similar to the path integral formulation of
quantum systems. Still, the physical interpretation of the formalism is drastically
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different in the two cases. In the next section we will set up a dictionary that allows
us to translate quantum physics language into the language of classical statistical
mechanics.

For simplicity, let us concentrate on simple classical spin models. Here the word
spin does not mean that we deal with quantized angular momenta. All we do is
work with classical variables that can point in specific directions. The simplest spin
model is the Ising model with classical spin variables sx = ±1. (Again, these do
not represent the quantum states up and down of a quantum mechanical angular
momentum 1/2.) More complicated spin models with an O(N) spin rotational
symmetry are the XY model (N = 2) and the Heisenberg model (N = 3). The spins
in the XY model are 2-component unit-vectors, while the spins in the Heisenberg
model have three components. In all these models the spins live on the sites of
a d-dimensional spatial lattice. The lattice is meant to be a crystal lattice (so
typically d = 3) and the lattice spacing has a physical meaning. This is in contrast
to the Euclidean time lattice that we have introduced to make the path integral
mathematically well-defined, and that we finally send to zero in order to reach the
Euclidean time continuum limit. The Ising model is characterized by its classical
Hamilton function (not a quantum Hamilton operator) which simply specifies the
energy of any configuration of spins. The Ising Hamilton function is a sum of nearest
neighbor contributions

H[s] = J
∑
〈xy〉

sxsy − µB
∑
x

sx, (2.4.1)

with a ferromagnetic coupling constant J < 0 that favors parallel spins, plus a
coupling to an external magnetic field B. The classical partition function of this
system is given by

Z =

∫
Ds exp(−H[s]/T ) =

∏
x

∑
sx=±1

exp(−H[s]/T ). (2.4.2)

The sum over all spin configurations corresponds to an independent summation
over all possible orientations of individual spins. Thermal averages are computed
by inserting appropriate operators. For example, the magnetization is given by

〈sx〉 =
1

Z

∏
x

∑
sx=±1

sx exp(−H[s]/T ). (2.4.3)

Similarly, the spin correlation function is defined by

〈sxsy〉 =
1

Z

∏
x

∑
sx=±1

sxsy exp(−H[s]/T ). (2.4.4)
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At large distances the connected spin correlation function typically decays exponen-
tially

〈sxsy〉 − 〈s〉2 ∼ exp(−|x− y|/ξ), (2.4.5)

where ξ is the so-called correlation length. At general temperatures the correlation
length is typically just a few lattice spacings. When one models real materials, the
Ising model would generally be a great oversimplification, because real magnets, for
example, not only have nearest neighbor couplings. Still, the details of the Hamilton
function at the scale of the lattice spacing are not always important. There is a
critical temperature Tc at which ξ diverges and universal behavior arises. At this
temperature a second order phase transition occurs. Then the details of the model
at the scale of the lattice spacing are irrelevant for the long range physics that takes
place at the scale of ξ. In fact, at their critical temperatures some real materials
behave just like the simple Ising model. This is why the Ising model is so interesting.
It is just a very simple member of a large universality class of different models, which
all share the same critical behavior. This does not mean that they have the same
values of their critical temperatures. However, their magnetization goes to zero at
the critical temperature with the same power of Tc − T , i.e. their critical exponents
are identical.

2.5 Quantum Mechanics versus Statistical Mechan-

ics

We notice a close analogy between the Euclidean path integral for a quantum me-
chanical system and a classical statistical mechanics system like the Ising model.
The path integral for the quantum system is defined on a 1-dimensional Euclidean
time lattice, just like an Ising model can be defined on a d-dimensional spatial lat-
tice. In the path integral we integrate over all paths, i.e. over all configurations x(t),
while in the Ising model we sum over all spin configurations sx. Paths are weighted
by their Euclidean action SE[x] while spin configurations are weighted with their
Boltzmann factors depending on the classical Hamilton functionH[s]. The prefactor
of the action is 1/~, and the prefactor of the Hamilton function is 1/T . Indeed ~
determines the strength of quantum fluctuations, while the temperature T deter-
mines the strength of thermal fluctuations. The kinetic energy 1

2
((xi+1 − xi)/a)2

in the path integral is analogous to the nearest neighbor spin coupling sxsx+1, and
the potential term V (xi) is analogous to the coupling µBsx to an external magnetic
field. The magnetization 〈sx〉 corresponds to the vacuum expectation value of an
operator 〈O(x)〉 and the spin-spin correlation function 〈sxsy〉 corresponds to the
2-point correlation function 〈O(x(0))O(x(t))〉. The inverse correlation length 1/ξ is
analogous to the energy gap E1 − E0 (and hence to a particle mass in a Euclidean
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Quantum mechanics Classical statistical mechanics

Euclidean time lattice d-dimensional spatial lattice
elementary time step a crystal lattice spacing

particle position x classical spin variable s
particle path x(t) spin configuration sx

path integral
∫
Dx sum over configurations

∏
x

∑
sx

Euclidean action SE[x] classical Hamilton function H[s]
Planck’s constant ~ temperature T

quantum fluctuations thermal fluctuations

kinetic energy 1
2
(xi+1−xi

a
)2 neighbor coupling sxsx+1

potential energy V (xi) external field energy µBsx
weight of a path exp(−1

~SE[x]) Boltzmann factor exp(−H[s]/T )
vacuum expectation value 〈O(x)〉 magnetization 〈sx〉
2-point function 〈O(x(0))O(x(t))〉 correlation function 〈sxsy〉

energy gap E1 − E0 inverse correlation length 1/ξ
continuum limit a→ 0 critical behavior ξ →∞

Table 2.2: The dictionary that translates quantum mechanics into the language of
classical statistical mechanics.

quantum field theory). Finally, the Euclidean time continuum limit a → 0 corre-
sponds to a second order phase transition where ξ →∞. The lattice spacing in the
path integral is an artifact of our mathematical description which we send to zero
while the physics remains constant. In classical statistical mechanics, on the other
hand, the lattice spacing is physical and hence fixed, while the correlation length ξ
goes to infinity at a second order phase transition. All this is summarized in the
dictionary of table 2.2.

2.6 The Transfer Matrix

The analogy between quantum mechanics and classical statistical mechanics suggests
that there is an analog of the quantum Hamilton operator in the context of classical
statistical mechanics. This operator is the so-called transfer matrix. The Hamilton
operator induces infinitesimal translations in time. In classical statistical mechanics,
on the other hand, the analog of continuous time is a 1-dimensional spatial lattice.
Hence, the transfer matrix cannot induce infinitesimal space translations. Instead
it induces translations by the smallest possible distance — namely by one lattice
spacing. For a quantum mechanical system the transfer matrix transports us by one
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lattice spacing in Euclidean time, and it is given by

T = exp(−a
~
H). (2.6.1)

Now we want to construct the transfer matrix for the 1-dimensional Ising model
without an external magnetic field. The corresponding partition function is given
by

Z =
∏
x

∑
sx=±1

exp(βJ
∑
x

sxsx+1). (2.6.2)

The transfer matrix obeys
Z = TrTN , (2.6.3)

where N is the number of lattice points, and its matrix elements are given by the
Boltzmann factor corresponding to a nearest neighbor pair by

〈sx+1|T |sx〉 = exp(βJsxsx+1). (2.6.4)

This is a 2 × 2 matrix. The eigenvalues of the transfer matrix can be written as
exp(−E0) and exp(−E1). The energy gap then determines the inverse correlation
length as

1/ξ = E1 − E0. (2.6.5)

It is instructive to compute ξ as a function of β to locate the critical point of the
1-d Ising model.

Here we will do the corresponding calculation for the 1-d xy-model. In the xy-
model the spins are unit vectors (cosϕx, sinϕx) in the xy-plane that are attached
to the points x of a d-dimensional lattice. Here we consider d = 1, i.e. we study a
chain of xy-spins. The standard Hamilton function of the xy-model is given by

H[ϕ] = J
∑
〈xy〉

(1− cos(ϕx+1 − ϕx)). (2.6.6)

In complete analogy to the Ising model the transfer matrix is now given by

〈ϕx+1|T |ϕx〉 = exp(−βJ(1− cos(ϕx+1 − ϕx)), (2.6.7)

which is a matrix with an uncountable number of rows and columns, because there
is a continuum of values for ϕx and ϕx+1. Still, we can ask about the eigenvalues of
this matrix. For this purpose we consider the Fourier representation

〈ϕx+1|T |ϕx〉 =
∑
m∈Z

〈ϕx+1|m〉 exp(−βJ)Im(βJ)〈m|ϕx〉, (2.6.8)

where
〈ϕx|m〉 = exp(imϕx), (2.6.9)
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are the eigenvectors of the transfer matrix. The eigenvalues are given in terms of
modified Bessel functions

exp(−Em) = exp(−βJ)Im(βJ). (2.6.10)

The energy gap between the ground state and an excited state is given by

Em − E0 = log
I0(βJ)

Im(βJ)
, (2.6.11)

which is nonzero for finite β. In the zero temperature limit β →∞ we have

I0(βJ)

Im(βJ)
∼ 1 +

m2

2βJ
, (2.6.12)

such that
ξ = 1/(E1 − E0) ∼ 2βJ →∞. (2.6.13)

Hence, there is a critical point at zero temperature. In the language of quantum me-
chanics this implies the continuum limit of a Euclidean lattice theory corresponding
to a quantum mechanical problem. In the continuum limit the energies correspond-
ing to the eigenvalues of the transfer matrix take the form

Em − E0 ∼
m2

2βJ
. (2.6.14)

These energies are in lattice units (the lattice spacing was put to 1). Hence, to
extract physics we need to consider energy ratios and we find

Em − E0

E1 − E0

∼ m2. (2.6.15)

These are the appropriate energy ratios of a quantum rotor — a particle that moves
on a circle. Indeed the xy-spins describe an angle, which can be interpreted as
the position of the quantum particle. Also the eigenvectors of the transfer matrix
are just the energy eigenfunctions of a quantum rotor. Hence, we just solved the
Schrödinger equation with a discrete Euclidean time step using the transfer matrix
instead of the Hamilton operator. The fact that energy ratios approach physically
meaningful constants in the continuum limit is known as scaling. Of course, the
discretization introduces an error as long as we are not in the continuum limit. For
example, at finite β the energy ratio is

Em
E1

=
log(I0(βJ)/Im(βJ)

log(I0(βJ)/I1(βJ)
, (2.6.16)

which is different from the continuum answer m2. This cut-off effect due to a finite
lattice spacing is known as a scaling violation.
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2.7 Lattice Field Theory

So far we have restricted ourselves to quantum mechanical problems and to classical
statistical mechanics. The former were defined by a path integral on a 1-d Euclidean
time lattice, while the latter involved spin models on a d-dimensional spatial lattice.
When we quantize field theories on the lattice, we formulate the theory on a d-
dimensional space-time lattice, i.e. usually the lattice is 4-dimensional. Just as
we integrate over all configurations (all paths) x(t) of a quantum particle, we now
integrate over all configurations φ(x) of a quantum field defined at any Euclidean
space-time point x = (~x, x4). Again the weight factor in the path integral is given
by the action. Let us illustrate this for a free neutral scalar field φ(x) ∈ R. Its
Euclidean action is given by

SE[φ] =

∫
d4x [

1

2
∂µφ∂µφ+

m2

2
φ2]. (2.7.1)

Interactions can be included, for example, by adding a λ
4!
φ4 term to the action. The

Feynman path integral for this system is formally written as

Z =

∫
Dφ exp(−SE[φ]). (2.7.2)

(Note that we have put ~ = c = 1.) The integral is over all field configurations,
which is a divergent expression if no regularization is imposed. One can make
the expression mathematically well-defined by using dimensional regularization of
Feynman diagrams. This approach is, however, limited to perturbation theory. The
lattice allows us to formulate field theory beyond perturbation theory, which is very
essential for strongly interacting theories like QCD, but also for the standard model
in general. For example, due to the heavy mass of the top quark, the Yukawa
coupling between the Higgs and top quark field is rather strong. The above free
scalar field theory, of course, does not really require a nonperturbative treatment.
We use it only to illustrate the lattice quantization method in a simple setting.
On the lattice the continuum field φ(x) is replaced by a lattice field Φx, which is
restricted to the points x of a d-dimensional space-time lattice. From now on we
will work in lattice units, i.e. we put a = 1. The above continuum action can be
approximated by discretizing the continuum derivatives such that

SE[Φ] =
∑
x,µ

1

2
(Φx+µ̂ − Φx)

2 +
∑
x

m2

2
Φ2
x. (2.7.3)

Here µ̂ is the unit vector in the µ-direction. The integral over all field configurations
now becomes a multiple integral over all values of the field at all lattice points

Z =
∏
x

∫ ∞
−∞

dΦx exp(−SE[Φ]). (2.7.4)
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For a free field theory the partition function is just a Gaussian integral. In fact, one
can write the lattice action as

SE[Φ] =
1

2

∑
x,y

ΦxMxyΦy, (2.7.5)

where the matrix M describes the couplings between lattice points. Diagonalizing
this matrix by a unitary transformation U one has

M = U †DU . (2.7.6)

Introducing
Φ′x = UxyΦy (2.7.7)

one obtains

Z =
∏
x

∫
dΦ′x exp(−1

2

∑
x

Φ′xDxxΦ′x) = (2π)N/2detD−1/2, (2.7.8)

where N is the number of lattice points.

To extract the energy values of the corresponding quantum Hamilton operator
we need to study the 2-point function of the lattice field

〈ΦxΦy〉 =
1

Z

∫
DΦ ΦxΦy exp(−SE[Φ]). (2.7.9)

This is most conveniently done by introducing a source field in the partition function,
such that

Z[J ] =

∫
DΦ exp(−SE[Φ] +

∑
x

JxΦx). (2.7.10)

Then the connected 2-point function is given by

〈ΦxΦy〉 − 〈Φ〉2 =
∂2 logZ[J ]

∂Jx∂Jy
|J=0. (2.7.11)

The Boltzmann factor characterizing the problem with the external sources is given
by the exponent

1

2
ΦMΦ− JΦ =

1

2
Φ′MΦ′ − 1

2
JM−1J. (2.7.12)

Here we have introduced
Φ′ = Φ−M−1J. (2.7.13)

Integrating over Φ′ in the path integral we obtain

Z[J ] = (2π)N/2detD−1/2 exp(
1

2
JM−1J), (2.7.14)
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and hence

〈ΦxΦy〉 =
1

2
M−1

xy . (2.7.15)

It is instructive to invert the matrix M by going to Fourier space, i.e. by writing

Φx =
1

(2π)d

∫
B

ddp Φ(p) exp(ipx). (2.7.16)

The momentum space of the lattice is given by the Brillouin zone B =]−π, π]d. For
the 2-point function in momentum space one then finds

〈Φ(−p)Φ(p)〉 = [
∑
µ

(2 sin(pµ/2))2 +m2]−1. (2.7.17)

This is the lattice version of the continuum propagator

〈Φ(−p)Φ((p)〉 = (p2 +m2)−1. (2.7.18)

From the lattice propagator we can deduce the energy spectrum of the lattice theory.
For this purpose we construct a lattice field with definite spatial momentum ~p located
in a specific time slice

Φ(~p)t =
∑
x

Φ~x,t exp(−i~p · ~x), (2.7.19)

and we consider its 2-point function

〈Φ(−~p)0Φ(~p)t〉 =
1

2π

∫ π

−π
dpd〈Φ(−p)Φ(p)〉 exp(ipdt). (2.7.20)

Inserting the lattice propagator of eq.(2.7.17) one can perform the integral. One
encounters a pole in the propagator when pd = iE with

(2 sinh(E/2))2 =
∑
i

(2 sin(pi/2))2 +m2. (2.7.21)

The 2-point function then takes the form

〈Φ(−~p)0Φ(~p)t〉 = C exp(−Et), (2.7.22)

i.e. it decays exponentially with slope E. This allows us to identify E as the energy
of the lattice scalar particle with spatial momentum ~p. In general, E differs from
the correct continuum dispersion relation

E2 = ~p2 +m2. (2.7.23)

Only in the continuum limit, i.e. when E, ~p and m are small in lattice units, the
lattice dispersion relation agrees with the one of the continuum theory.



Chapter 3

Lie Groups and Lie Algebras

In 1873 the Norwegian mathematician Sophus Lie discovered the general concept
of non-Abelian continuous symmetry groups and their associated algebras, known
as Lie algebras and Lie groups. The simplest continuous non-Abelian (i.e. non-
commuting) symmetry is SO(3) — the rotation group in a 3-dimensional Euclidean
space, consisting of real orthogonal 3×3 matrices with determinant 1. The associated
algebra is characterized by the angular momentum commutation relations among the
three generators of the so(3) algebra. This algebra is equivalent to the algebra su(2)
which generates the group SU(2) of complex unitary 2×2 matrices with determinant
1. The group manifold of SU(2) is the 3-dimensional sphere S3, while the group
manifold of SO(3) is the coset space S3/Z(2). Here Z(2) = {1,−1} is the so-called
center of the group SU(2), such that SO(3) = SU(2)/Z(2). SU(2) is the so-called
universal covering group of SO(3). The so-called simple compact Lie algebras have
been completely classified by Elie Cartan in 1894. There are the orthogonal algebras
so(n) (with n ≥ 3), the unitary algebras su(n) (with n ≥ 2), the symplectic algebras
sp(n) (with n ≥ 1), as well as the exceptional algebras g(2), f(4), e(6), e(7), and
e(8), which were discovered by Wilhelm Killing in 1890. Correspondingly, there are
the Lie groups SO(n), SU(n), Sp(n), G(2), F (4), E(6), E(7), and E(8). The SO(n)
groups have a universal covering group known as Spin(n).

3.1 Definition of a Lie Algebra

A Lie algebra is spanned by its generators T a with a ∈ {1, 2, . . . , nG}, where nG
denotes the number of generators. A general element of the algebra is given by a

25
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linear combination

H =

nG∑
a=1

ωaT a = ωaT a, (3.1.1)

with real-valued parameters ωa ∈ R. Here we have used Einstein’s convention of
summing over repeated indices. In this case, we do not distinguish between upper
and lower (or co- and contra-variant) indices. Different elements of the algebra can
be added together, i.e.

H1 +H2 = H, H1 = ωa1T
a, H2 = ωa2T

a, ωa1 + ωa2 = ωa, (3.1.2)

such that H again belongs to the algebra. The product H1H2, on the other hand,
does in general not belong to the algebra. Instead, the concept of “multiplication”
in a Lie algebra is represented by the commutator

[H1, H2] = H1H2 −H2H1 = ωa1ω
b
2[T a, T b]. (3.1.3)

The structure of a Lie algebra is characterized by its structure constants fabc ∈ R
which determine the commutation relations between the generators

[T a, T b] = ifabcT
c. (3.1.4)

In particular, i[T a, T b] = −fabcT c and thus i[H1, H2] is again a member of the
algebra. Due to the anti-symmetry of the commutator the structure constants satisfy
fbac = −fabc. The Jacobi identity

[[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0, (3.1.5)

implies that the fabc are even totally anti-symmetric against all permutations of the
indices. The generators of a Lie algebra are Hermitean, i.e.

T a† = T a, (3.1.6)

such that the commutator

[T a, T b]† = (T aT b− T bT a)† = T b
†
T a†− T a†T b† = T bT a− T aT b = −[T a, T b] (3.1.7)

is anti-Hermitean, and i[T a, T b] is indeed again Hermitean. It is a non-trivial feature
of Lie algebras that the commutator of two generators is again a linear combina-
tion of generators. This structure can be realized only with very specific sets of
generators.
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3.2 Simple and Semi-Simple Lie Algebras

Important internal symmetries in particle physics are associated with so-called sim-
ple and semi-simple Lie algebras. By definition, a semi-simple Lie algebra does not
have any invariant Abelian sub-algebras. First of all, a sub-algebra is generated by
a subset Sa of generators (which are linear combinations of the T a) that is closed
under commutation, i.e.

[Sa, Sb] = ifabcS
c. (3.2.1)

An invariant sub-algebra obeys the additional requirement that

[T a, Sb] = ifabcS
c, (3.2.2)

for all generators T a of the algebra and all generators Sb of the sub-algebra. A Lie
algebra is called simple if it has no invariant sub-algebra. A sub-algebra is Abelian
if its generators commute with each other, i.e. [Sa, Sb] = 0. A Lie algebra is called
semi-simple if it has no invariant Abelian sub-algebra. A semi-simple Lie algebra
may still have non-Abelian invariant sub-algebras.

The number of generators of the maximal Abelian sub-algebra of a semi-simple
Lie algebra (which cannot be an invariant sub-algebra) determines the rank r of the
algebra. In the following, we will focus on compact Lie algebras whose associated
Lie groups have a compact group manifold. It turns out that compact Lie algebras
are semi-simple.

3.3 Representations of Lie Algebras

A Lie algebra has many possible representations, which can be viewed as concrete
realizations of its generators, which we have, until now, defined only abstractly and
implicitly through their commutation relations. As we will see, the generators can,
for example, be represented by finite-dimensional matrices. In fact, every semi-
simple Lie algebra has an nG-dimensional representation, which is known as the
adjoint representation. In the adjoint representation, the generators are realized as
nG × nG matrices whose elements can be chosen as

T abc = −ifabc, (3.3.1)

such that
[T a, T b]de = T adfT

b
fe − T bdfT afe = −fadffbfe + fbdffafe. (3.3.2)

The commutation relation [T a, T b]de = ifabcT
c
de = fabcfcde thus implies the consis-

tency condition
−fadffbfe + fbdffafe = fabcfcde, (3.3.3)
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which follows directly from the Jacobi identity (3.1.5).

The conjugate T̃ of a representation is defined as

iT̃ a = (iT a)∗ = −i(T a)T ⇒ T̃ a = −(T a)T (3.3.4)

where ∗ denotes complex conjugation and T denotes transpose. The conjugate is
again a representation of the algebra because

[T̃ a, T̃ b] = [(T a)T , (T b)T ] = (T a)T (T b)T − (T b)T (T a)T = (T bT a − T aT b)T

= −[T a, T b]T = −ifabc(T c)T = ifabcT̃
c. (3.3.5)

A representation is called real, if T̃ a = T a. It is easy to show that the adjoint rep-
resentation is real. A representation is called pseudo-real if T̃ a and T a are unitarily
equivalent, i.e. if there is a unitary transformation U such that UT̃ aU † = T a. Rep-
resentations that are in-equivalent to their conjugate representation are known as
complex representations. Among the compact semi-simple Lie algebras, only su(n)
with n ≥ 3, so(4n+ 2) with n ≥ 1, and e(6) have complex representations.

3.4 The Lie Algebra so(3) and its Representations

The simplest simple Lie algebra has three generators (i.e. nG = 3) which obey the
commutation relations

[T a, T b] = iεabcT
c, (3.4.1)

where εabc is the totally anti-symmetric Levi-Civita tensor. It is straightforward to
show that the consistency condition eq.(3.3.3) is indeed satisfied. The above alge-
bra is well-known from quantum mechanics where the generators T a are the three
components of an angular momentum vector. Angular momentum is conserved as a
consequence of the isotropy of 3-dimensional Euclidean coordinate space. The rota-
tions in this space are described by real orthogonal 3× 3 matrices with determinant
1. Under multiplication, these matrices form the group SO(3). The corresponding
Lie algebra is known as so(3). One can show that so(3) is simple, i.e. it has no
invariant sub-algebra.

The quantum mechanical orbital angular momentum vector of a single particle

~L = ~r × ~p = −i~ ~r × ~∇ (3.4.2)

provides a concrete realization of the commutation relations of the so(3) algebra
when we identify T a = La with a ∈ {1, 2, 3}. As we know, the quantum mechanical
angular momentum operator acts in the Hilbert space of square integrable wave
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functions, which is infinite-dimensional. Hence, the representation of the so(3) gen-

erators by the operator ~L is infinite-dimensional.

As we know from quantum mechanics, general wave functions can be decomposed
into linear combinations of angular momentum eigenstates |lm〉 which obey

~L 2|lm〉 = ~2l(l + 1)|lm〉, L3|lm〉 = ~m|lm〉, l ∈ N, m ∈ {−l,−l + 1, . . . , l}.
(3.4.3)

The operator ~L 2 = LaLa commutes with all components of the angular momentum
vector, i.e. [~L 2, La] = 0. This is characteristic of a so-called Casimir operator of a
Lie algebra, which consists of sums of products of generators and commutes with all
generators T a. The Casimir operators themselves do not belong to the Lie algebra.
According to a theorem due to Racah, the number of independent Casimir operators
of a semi-simple Lie algebra is given by the rank. Since the different components
of an angular momentum vector do not commute with each other, so(3) has rank

1. Consequently, ~L 2 is the only independent Casimir operator. Obviously, any
polynomial of ~L 2 also commutes with all the generators. However, those operators
are not independent of ~L 2.

If we consider a particle moving on the surface of a 2-dimensional sphere S2, in
spherical coordinates its position can be described by the angles θ and ϕ. Corre-
spondingly, its wave function can be expressed as

Ψ(θ, ϕ) = 〈θ, ϕ|Ψ〉 =
∞∑
l=0

l∑
m=−l

clm〈θ, ϕ|lm〉, (3.4.4)

where clm ∈ C and 〈θ, ϕ|lm〉 = Ylm(θ, ϕ) are the spherical harmonics. The set
of all states |lm〉 span the infinite-dimensional Hilbert space of wave functions on
the sphere S2. However, already the states |lm〉 with fixed l ∈ N and with m ∈
{−l,−l+1, . . . , l} alone span a finite (2l+1)-dimensional representation of the so(3)
algebra. The infinite-dimensional representation through the angular momentum
operators ~L is reducible and decomposes into a sum of irreducible representations
characterized by the quantum number l. A representation is called irreducible if the
algebra cannot be realized on any subset of states that are involved. It turns out
that the eigenvalues of the independent Casimir operators uniquely characterize the
irreducible representations of a semi-simple Lie algebra.

The trivial irreducible representation of the so(3) algebra is 1-dimensional and
corresponds to l = 0 (with m = 0) consisting of the single state |00〉. In this trivial
subspace of the Hilbert space, the generators are simply given by

T 1 = T 2 = T 3 = 0, (3.4.5)

which obviously satisfy the commutation relations. A non-trivial 3-dimensional
representation corresponds to l = 1 and is spanned by the three states |11〉, |10〉,
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and |1 − 1〉. In this case, the so(3) generators are represented by concrete 3 × 3
matrices

T 1 =
1√
2

 0 1 0
1 0 1
0 1 0

 , T 2 =
1√
2

 0 −i 0
i 0 −i
0 i 0

 , T 3 =

 1 0 0
0 0 0
0 0 −1

 .

(3.4.6)
It is straightforward to convince oneself that these matrices indeed obey the com-
mutation relations of so(3). The dimension of this representation is equal to the
number of generators nG = 3. Indeed, this representation is equivalent to the ad-
joint representation T abc = −iεabc. Although the representation matrices are not
identical, they span the same algebra, because they are related to each other by a
unitary transformation.

As we know from quantum mechanics, not only orbital angular momentum but
also spin obeys the angular momentum commutation relations. In particular, in
contrast to orbital angular momentum, spin can also be quantized in half-integer
units. For example, the Pauli matrices ~σ give rise to the representation

T 1 =
1

2
σ1 =

1

2

(
0 1
1 0

)
, T 2 =

1

2
σ2 =

1

2

(
0 −i
i 0

)
, T 3 =

1

2
σ3 =

1

2

(
1 0
0 −1

)
.

(3.4.7)
This representation is usually associated with the algebra su(2), which, however,
is identical with the one of so(3) (and also with the one of sp(1)). As we will see,
while the algebras so(3) and su(2) are identical, the corresponding groups SO(3) and
SU(2) are still different. In the following, we will associate general representations
with integer or half-integer angular momentum with the algebra su(2). On the
other hand, when we want to explicitly restrict ourselves to integer representations
only, we will associate them with the algebra so(3). In general, an irreducible (2j +
1)-dimensional representation of the su(2) algebra is characterized by its angular
momentum j ∈ {0, 1

2
, 1, 3

2
, . . .}. The spin j = 1

2
representation is the smallest non-

trivial representation, also known as the fundamental representation. It is easy to
show that this representation is pseudo-real. In fact, all su(2) representations are real
or pseudo-real. Consequently, su(2) has no complex representation. For illustrative
purposes, we also write down the 4× 4 matrices of the spin j = 3

2
representation

T 1 =
1

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 , T 2 =
1

2


0 −i

√
3 0 0

i
√

3 0 −2i 0

0 2i 0 −i
√

3

0 0 i
√

3 0

 ,

T 3 =
1

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 . (3.4.8)
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It is easy to convince oneself that T aT a = 3
2
(3

2
+ 1)1I.

When we couple the orbital angular momentum ~L and the spin ~S of a particle to
its total angular momentum ~J = ~L + ~S, we are working with the direct Kronecker
product of two Lie algebras so(3) × su(2). While so(3) and su(2) (which, in fact,
are the same algebra) are both simple, their product is semi-simple. Indeed, typical
examples of semi-simple Lie algebras are direct products of simple ones.

3.5 The Groups SU(2) and SO(3)

Let us now consider the SU(2) and SO(3) groups associated with the su(2) = so(3)
algebra. The group U(2) consists of all unitary 2× 2 matrices U , i.e.

UU † = U †U = 1I. (3.5.1)

The group SU(2) is a subgroup of U(2) consisting of those unitary 2 × 2 matrices
that have determinant 1. It is straightforward to show that these matrices indeed
form a group under matrix multiplication. The elements of SU(2) can be associated
with elements of the su(2) algebra by exponentiation in the j = 1

2
representation,

i.e.

U = exp(iωaT a) = exp

(
i

2
~ω · ~σ

)
= cos

(ω
2

)
1I +

i

ω
sin
(ω

2

)
~ω · ~σ. (3.5.2)

Here ω = |~ω| and ωa ∈ R. A general SU(2) element can also be expressed as

U =

(
A B
−B∗ A∗

)
, (3.5.3)

with A = Ar+iAi, B = Br+iBi ∈ C and |A|2 +|B|2 = 1. The two complex numbers
A and B with this length constraint correspond to four real numbers (the real and
imaginary parts of A and B) with the constraint A2

r+A2
i +B2

r +B2
i = 1. This implies

that the group elements of SU(2) can be viewed as points on a 3-dimensional sphere
S3 (embedded in a 4-dimensional Euclidean space). Thus the SU(2) group manifold
is the sphere S3.

Every group has a subgroup known as the center which consists of those group
elements that commute with all other group elements. The center of the group
SU(2) consists of the unit-matrix 1I and the matrix −1I (which is unitary and has
determinant 1) and obviously commutes with all group elements. These two elements
of the center form the Abelian group Z(2).
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Similarly, the group SO(3) consists of the real orthogonal 3 × 3 matrices with
determinant 1, i.e.

OOT = OTO = 1I, detO = 1. (3.5.4)

Again, it is easy to convince oneself that these matrices form a group under matrix
multiplication. I this case, the group elements can be obtained by exponentiating
the algebra elements in the 3-dimensional adjoint representation T abc = −iεabc such
that

O = exp(iωaT a) = exp

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 . (3.5.5)

In contrast to SU(2), the center of SO(3) is trivial and consists only of the 3× 3
unit-matrix 1I. In particular, the matrix −1I no longer has determinant 1 and thus
does not belong to the group. Indeed the non-trivial center of SU(2) is related to
the fact that there are two types of su(2) representations: those with integer and
those with half-integer spin, while the so(3) algebra only contains the inter spin
representations.

Since the commutation relations of the su(2) and so(3) algebra are the same, it is
not surprising that the SU(2) and SO(3) groups are also closely related. Indeed, it
is instructive to convince oneself that the adjoint representation of SO(3) is related
to the fundamental representation of SU(2) by

Oab =
1

2
Tr(UσaU †σb). (3.5.6)

In this way, the unit-element U = 1I is mapped to

Oab =
1

2
Tr(σaσb) = δab, (3.5.7)

which corresponds to the unit-element O = 1I of SO(3). The inverse U † of U is
mapped to

1

2
Tr(U †σaUσb) =

1

2
Tr(UσbU †σa) = Oba = OT

ab, (3.5.8)

which corresponds to the inverse of O. It is instructive to convince oneself that the
group structure U1U2 = U is maintained by the mapping such that O1O2 = O.

Since there is a map from the group SU(2) to SO(3), one might expect that
the two groups are identical. This is, however, not the case, because the mapping
is not one to one. In fact, both U and −U are mapped to the same group element
O of SO(3). In other words, SO(3) is insensitive to the center Z(2) of SU(2),
which is consistent with the fact that SU(2) has the center Z(2) while SO(3) has
a trivial center (consisting just of the 3 × 3 unit-matrix 1I). Since U and −U are
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anti-podal points on the SU(2) group manifold S3, the SO(3) manifold is the coset
space S3/Z(2) in which anti-podal points are identified with each other. SU(2) is
known as the universal covering group of SO(3).

3.6 The Unitary Group SU(n) and its Algebra

The unitary n × n matrices with determinant 1 form a group under matrix multi-
plication — the special unitary group SU(n). This follows immediately from

UU † = U †U = 1, detU = 1, detUV = detUdetV = 1. (3.6.1)

Associativity (i.e. (UV )W = U(VW )) holds for all matrices, a unit-element exists
(the unit matrix 1I), the inverse is U−1 = U †, and finally the group property

(UV )†UV = V †U †UV = 1, UV (UV )† = UV V †U † = 1 (3.6.2)

also holds. The group SU(n) is non-Abelian because in general UV 6= V U . Each
element U ∈ SU(n) can be represented as

U = exp(iH), (3.6.3)

where H is Hermitean and traceless. The matrices H form the su(n) algebra. It has
n2−1 free parameters, and hence n2−1 generators T a, among which n−1 commute
with each other. Thus the rank of su(n) is r = n − 1. Correspondingly, su(n) has
n − 1 independent Casimir operators. The simplest non-trivial representation of
su(n) is the fundamental n-dimensional representation.

The group manifold of SU(n) is a product of spheres

SU(n) = S3 × S5 × . . .× S2n−1. (3.6.4)

In order to show this, we decompose a general SU(n) matrix U into an element W
of the subgroup SU(n− 1) and an element V of the coset SU(n)/SU(n− 1)

U = VW, W =



1 0 0 . . . 0

0 Ũ11 Ũ12 . . . Ũ1 n−1

0 Ũ21 Ũ22 . . . Ũ1 n−1

. . . .

. . . .

0 Ũn−1 1 Ũn−1 2 . . . Ũn−1 n−1

 , (3.6.5)
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where the embedded matrix Ũ is in SU(n− 1). It is indirectly defined by

V =



U11 −U∗21 −U∗31(1+U11)

1+U∗11
. . . −U∗n1(1+U11)

1+U∗11

U21
1+U∗11−|U21|2

1+U11
−U∗31U21

1+U∗11
. . . −U∗n1U21

1+U∗11

U31 −U∗21U31

1+U11

1+U∗11−|U31|2
1+U∗11

. . . −U∗n1U31

1+U∗11
. . . .
. . . .

Un1 −U∗21Un1
1+U11

−U∗31Un1
1+U∗11

. . .
1+U∗11−|Un1|2

1+U∗11


∈ SU(n). (3.6.6)

One should convince oneself that V is indeed an SU(n) matrix, and that the resulting
matrix Ũ is indeed in SU(n − 1). The matrix V is constructed entirely from the
elements U11, U21, . . . , Un1 of the first column of the matrix U , which is normalized
to |U11|2 + |U21|2 + . . .+ |Un1|2 = 1. This implies that the matrix V takes values on
the sphere S2n−1 and hence the coset manifold is

SU(n)/SU(n− 1) = S2n−1. (3.6.7)

By successively factoring out odd-dimensional spheres, one reduces SU(n) all the
way down to SU(2), whose group manifold is S3, which thus proves eq.(3.6.4).

The center of SU(n) is the cyclic group Z(n) = {exp(2πim/n)1I,m = 0, 1, . . . , n−
1} consisting of the unit-matrix 1I multiplied by a complex n-th root exp(2πim/n)
of 1. These matrices obviously commute with all other group elements. In addition,
they are unitary and have determinant 1, and thus indeed belong to SU(n).

3.7 The Group SU(3) and its Algebra

Let us consider the group SU(3) and its algebra su(3) in some detail. First of all,
su(3) has 32 − 1 = 8 generators T a = 1

2
λa, where λa are the Gell-Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(3.7.1)
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abc 123 147 156 246 257 345 367 458 678

fabc 1 1
2
−1

2
1
2

1
2

1
2
−1

2

√
3

2

√
3

2

Table 3.1: Non-zero values of the structure constants fabc of the Lie algebra su(3).
The structure constants are completely anti-symmetric against permutation of the
indices a, b, and c.

abc 118 146 157 228 247 256 338 344
dabc 1√

3
1
2

1
2

1√
3

−1
2

1
2

1√
3

1
2

abc 355 366 377 448 558 668 778 888
dabc 1

2
−1

2
−1

2
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1√

3

Table 3.2: Non-zero coefficients dabc of the Lie algebra su(3). These coefficients are
symmetric against permutation of the indices a, b, and c.

The corresponding structure constants of the su(3) algebra are listed in table 2.1.
The three generators λ1, λ2, and λ3 form an su(2) sub-algebra. Since λ3 and λ8

commute, and since there is no other independent linear combination of generators
that commutes with these two, the rank of su(3) is r = 2. According to Racah’s
theorem, this implies that su(3) has two independent Casimir operators. One of
them is quadratic in the generators and simply given by C1 = T aT a. The other
Casimir operator is C2 = dabcT

aT bT c, where the coefficients dabc are listed in table
2.2. The structure constants fabc as well as the coefficients dabc can be expressed as

fabc =
1

4i
Tr([λa, λb]λc), dabc =

1

4
Tr({λa, λb}λc). (3.7.2)

The anti-commutator of two Gell-Mann matrices can be expressed as

{λa, λb} =
4

3
δab1I + 2dabcλ

c. (3.7.3)

In analogy to the raising and lowering operators of spin in the su(2) algebra, we
introduce the following shift operators

T± = T 1 ± iT 2, V± = T 4 ± iT 5, U± = T 6 ± iT 7. (3.7.4)

Besides these, there are the diagonal generators

T 3 =
1

2
λ3, Y =

1√
3
λ8. (3.7.5)
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One then obtains the following commutation relations

[T 3, T±] = ±T±, [T+, T−] = 2T 3,

[T 3, V±] = ±1

2
V±, [V+, V−] =

3

2
Y + T 3,

[T 3, U±] = ∓1

2
U±, [U+, U−] =

3

2
Y − T 3,

[Y, T 3] = [Y, T±] = 0, [Y, V±] = ±V±, [Y, U±] = ±U±,
[T+, V+] = [T+, U−] = [U+, V+] = 0,

[T+, V−] = −U−, [T+, U+] = V+, [U+, V−] = T−. (3.7.6)

Since the generators T 3 and Y commute with each other, we can diagonalize
them simultaneously and characterize the states of an su(3) multiplet by the corre-
sponding eigenvalues. The generators T 1, T 2, and T 3 generate an su(2) sub-algebra
of su(3). Since these three generators all commute with Y , we can also simultane-
ously diagonalize the su(2) Casimir operator C = T 1T 1 +T 2T 2 +T 3T 3 = T (T +1)1I.
The states of an su(3) multiplet can thus be further distinguished by the value of
T . Hence, we characterize states of an irreducible su(3) representation {Γ} by Y ,
T , and T 3, and we denote them as |{Γ}Y TT 3〉. For example, (using the flavor nota-
tion of up, down, and strange quarks) the states of the 3-dimensional fundamental
representation {3} are given by

|u〉 = |{3}1

3

1

2

1

2
〉, |d〉 = |{3}1

3

1

2
− 1

2
〉, |s〉 = |{3} − 2

3
00〉. (3.7.7)

Similarly, the states of the conjugate representation {3} (representing anti-quarks)
are given by

|u〉 = |{3} − 1

3

1

2
− 1

2
〉, |d〉 = |{3} − 1

3

1

2

1

2
〉, |s〉 = |{3}2

3
00〉. (3.7.8)

The raising and lowering operators T± shift the value of T 3 by ±1, i.e.

T±|{Γ}Y TT 3〉 =
√
T (T + 1)− T 3(T 3 ± 1)|{Γ}Y TT 3 ± 1〉. (3.7.9)

The operators V± and U± also act as raising an lowering operators. In particular,
we obtain

Y V±|{Γ}Y TT 3〉 = ([Y, V±] + V±Y )|{Γ}Y TT 3〉
= (±V± + V±Y )|{Γ}Y TT 3〉 = (Y ± 1)V±|{Γ}Y TT 3〉

T 3V±|{Γ}Y TT 3〉 = ([T 3, V±] + V±T
3)|{Γ}Y TT 3〉

= (±1

2
V± + V±T

3)|{Γ}Y TT 3〉 = (T 3 ± 1

2
)V±|{Γ}Y TT 3〉
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Y U±|{Γ}Y TT 3〉 = ([Y, U±] + U±Y )|{Γ}Y TT 3〉
= (±U± + U±Y )|{Γ}Y TT 3〉 = (Y ± 1)U±|{Γ}Y TT 3〉

T 3U±|{Γ}Y TT 3〉 = ([T 3, U±] + U±T
3)|{Γ}Y TT 3〉

= (∓1

2
U± + U±T

3)|{Γ}Y TT 3〉 = (T 3 ∓ 1

2
)U±|{Γ}Y TT 3〉.

(3.7.10)

This implies that

V±|{Γ}Y TT 3〉 =
∑
T ′

CT ′Y TT 3|{Γ}Y ± 1, T ′, T 3 ± 1

2
〉,

U±|{Γ}Y TT 3〉 =
∑
T ′

C ′T ′Y TT 3|{Γ}Y ± 1, T ′, T 3 ∓ 1

2
〉, (3.7.11)

where CT ′Y TT 3 and C ′T ′Y TT 3 are coefficients that could be determined by a straight-
forward calculation. It should be noted that T ′ differs from T by a half-integer.

The weight diagrams of some su(3) representations are illustrated in the figures.
David Speiser, a physics professor at Leuven University and nephew of the math-
ematician Andreas Speiser who was a professor in Zürich, has invented a simple
scheme that allows us to couple su(3) representations. In his scheme, the different
su(3) representations are associated with the points of a hexagonal grid that is di-
vided into six sectors associated with alternating + and - signs, and separated by
empty lines that carry no representations. When the origin of a weight diagram of an
su(3) representation is placed on top of an su(3) representation in a + sector of the
grid, one can read off the reduction of the product of the two su(3) representations
into a sum of irreducible representations. This is done by listing all representations
on the grid that are covered by the corresponding states in the weight diagram, tak-
ing into account both the multiplicity of the state and the sign of the sector of the
grid. Points of the weight diagram that fall on top of the empty lines that separate
the sectors do not contribute to the reduction.

This simple and elegant scheme generalizes to all compact semi-simple Lie alge-
bras. For algebras with rank r the corresponding grid as well as the corresponding
weight diagrams are r-dimensional. Hence, the scheme is most practical for the
algebras of rank r = 2, which are su(3), so(4) = su(2) ⊕ su(2), so(5) = sp(2), and
g(2).

3.8 The Permutation Group SN

Let us consider the permutation symmetry of N objects — for example the fun-
damental representations of SU(n). Their permutations form the group SN . The



38 CHAPTER 3. LIE GROUPS AND LIE ALGEBRAS

permutation group has N ! elements — all permutations of N objects. The group
S2 has two elements: the identity and the pair permutation. The representations of
S2 are represented by Young tableaux

1-dimensional symmetric representation,

1-dimensional antisymmetric representation. (3.8.1)

To describe the permutation properties of three objects we need the group S3. It
has 3! = 6 elements: the identity, 3 pair permutations, and 2 cyclic permutations.
The group S3 has three irreducible representations

1-dimensional symmetric representation,

2-dimensional representation of mixed symmetry,

1-dimensional antisymmetric representation. (3.8.2)

The representations of the group SN are given by the Young tableaux with N boxes.
The boxes are arranged in left-bound rows, such that no row is longer than the one
above it. For example, for the representations of S4 one finds

, , , , . (3.8.3)

The dimension of a representation is determined as follows. The boxes of the corre-
sponding Young tableau are enumerated from 1 to N such that the numbers grow
as one reads each row from left to right, and each column from top to bottom. The
number of possible enumerations determines the dimension of the representation.
For example, for S3 one obtains

1 2 3 1-dimensional,

1 2
3 ,

1 3
2 2-dimensional,

3
2
1

1-dimensional. (3.8.4)
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The squares of the dimensions of all representations add up to the order of the group,
i.e. ∑

Γ

d2
Γ = N ! . (3.8.5)

In particular, for S2 we have 12 + 12 = 2 = 2! and for S3 one obtains 12 + 22 + 12 =
6 = 3!.

A general Young tableau can be characterized by the number of boxes mi in its
i-th row. For example the Young tableau

(3.8.6)

has m1 = 7, m2 = 4, m3 = 4, m4 = 3, m5 = 2 and m6 = 2. The dimension of the
corresponding representation is given by

dm1,m2,...,mn = N !

∏
i<k(li − lk)
l1!l2! . . . ln!

, li = mi + n− i. (3.8.7)

Applying this formula to the following Young tableau from S5

(3.8.8)

with m1 = 3, m2 = 1, m3 = 1 and n = 5 yields l1 = 3+3−1 = 5, l2 = 1+3−2 = 2,
l3 = 1 + 3− 3 = 1 and hence

d3,1,1 = 5!
(l1 − l2)(l1 − l3)(l2 − l3)

l1!l2!l3!
= 5!

3 · 4 · 1
5!2!1!

= 6. (3.8.9)

The permuted objects can be the fundamental representations of SU(n). For
SU(2) we identify

= {2}. (3.8.10)

To each Young tableau with no more than two rows one can associate an SU(2)
representation. Such a Young tableau is characterized by m1 and m2, e.g.

(3.8.11)
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has m1 = 7 and m2 = 3. The corresponding SU(2) representation has

S =
1

2
(m1 −m2), (3.8.12)

which is also denoted by {m1−m2 + 1}. The above Young tableau hence represents
S = 2 — a spin quintet {5}. Young tableaux with more than two rows have no
realization in SU(2) since among just two distinguishable objects no more than two
can be combined anti-symmetrically.

3.9 Coupling of su(n) Representations

The simplest nontrivial representation of SU(n) is the fundamental representation.

It is n-dimensional and can be identified with the Young tableau . Every ir-
reducible representation of SU(n) can be obtained from coupling N fundamental
representations. In this way each SU(n) representation is associated with a Young
tableau with N boxes, which characterizes the permutation symmetry of the fun-
damental representations in the coupling. Since the fundamental representation is
n-dimensional, there are n different fundamental properties (e.g. u and d in the
SU(2) isospin or u, d, and s in SU(3) flavor symmetry of quarks). Hence, we can
maximally anti-symmetrize n objects, and the Young tableaux for SU(n) represen-
tations are therefore restricted to no more than n rows.

The dimension of an SU(n) representation can be obtained from the correspond-
ing Young tableau by filling it with factors as follows

n− 5 n− 4

n− 4 n− 3

n− 3 n− 2 n− 1

n− 2 n− 1 n n+ 1

n− 1 n n+ 1 n+ 2

n n+ 1 n+ 2 n+ 3 n+ 4 n+ 5 n+ 6

. (3.9.1)

The dimension of the SU(n) representation is given as the product of all factors di-
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vided by N ! and multiplied with the SN dimension dm1,m2,...,mn of the Young tableau

Dn
m1,m2,...,mn

=
(n+m1 − 1)!

(n− 1)!

(n+m2 − 2)!

(n− 2)!
. . .

mn!

0!

1

N !
N !

∏
i<k(li − lk)
l1!l2! . . . ln!

=

∏
i<k(mi −mk − i+ k)

(n− 1)!(n− 2)! . . . 0!
. (3.9.2)

We see that the dimension of a representation depends only on the differences qi =
mi −mi+1. In particular, for SU(2) we find

D2
m1,m2

=
m1 −m2 − 1 + 2

1!0!
= m1 −m2 + 1 = q1 + 1 (3.9.3)

in agreement with our previous result. For a rectangular Young tableau with n rows,
e.g. in SU(2) for

, (3.9.4)

all qi = 0, and we obtain

Dn
m,m,...,m =

∏
i<k(mi −mk − i+ k)

(n− 1)!(n− 2)! . . . 0!
=

(n− 1)!(n− 2)! . . . 0!

(n− 1)!(n− 2)! . . . 0!
= 1, (3.9.5)

and therefore a singlet. This shows that in SU(3) corresponds to a singlet. It
also explains why the dimension of an SU(n) representation depends only on the
differences qi. Without changing the dimension we can couple a representation with
a singlet, and hence we can always add a rectangular Young tableau with n rows to
any SU(n) representation. For example in SU(3)

∼= . (3.9.6)

We obtain the conjugate representation of a given representation by replacing mi

and qi with

m̄i = m1 −mn−i+1, q̄i = m̄i − m̄i+1 = mn−i −mn−i+1 = qn−i. (3.9.7)

Geometrically the Young tableau of a representation and its conjugate representation
(after rotation) fit together to form a rectangular Young tableau with n rows. For
example, in SU(3)

and (3.9.8)
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are conjugate representations. In SU(2) each representation is unitarily equivalent
to its conjugate representation (i.e. the representations are real or pseudo-real). For
example

and (3.9.9)

are conjugate representations, but

∼= . (3.9.10)

This is not the case for higher n. The dimension of a representation and its conjugate
representation are identical

Dn
m̄1,m̄2,...,m̄n

= Dn
m1,m2,...,mn

. (3.9.11)

For general n the adjoint representation is given by q1 = qn−1 = 1, qi = 0 otherwise,
and it is identical with its conjugate representation. The dimension of the adjoint
representation is

Dn
2,1,1,...,1,0 = n2 − 1. (3.9.12)

Next we want to discuss a method to couple SU(n) representations by operating
on their Young tableaux. Two Young tableaux with N and M boxes are coupled by
forming an external product. In this way we generate Young tableaux with N +M
boxes that can then be translated back into SU(n) representations. The external
product is built as follows. The boxes of the first row of the second Young tableau
are labeled with ‘a’, the boxes of the second row with ‘b’, etc. Then the boxes
labeled with ‘a’ are added to the first Young tableau in all possible ways that lead
to new allowed Young tableau, such that two ‘a’ never end up in the same column.
Then the ‘b’ boxes are added to the resulting Young tableaux in the same way.
Now each of the resulting tableaux is read row-wise from top-right to bottom-left.
Whenever a ‘b’ or ‘c’ appears before the first ‘a’, or a ‘c’ occurs before the first ‘b’
etc., the corresponding Young tableau is deleted. The remaining tableaux form the
reduction of the external product.

We now want to couple N fundamental representations of SU(n). In Young
tableau language this reads

{n} ⊗ {n} ⊗ . . .⊗ {n} = ⊗ ⊗ . . .⊗ . (3.9.13)

In this way we generate all irreducible representations of SN , i.e. all Young tableaux
with N boxes. Each Young tableau is associated with an SU(n) multiplet. It occurs
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in the product as often as the dimension of the corresponding SN representation
indicates, i.e. dm1,m2,...,mn times. Hence we can write

{n} ⊗ {n} ⊗ . . .⊗ {n} =
∑

Γ

dm1,m2,...,mn{Dn
m1,m2,...,mn

}. (3.9.14)

The sum goes over all Young tableaux with N boxes. For example

⊗ ⊗ = ⊕ 2 ⊕ . (3.9.15)

Translated into SU(n) language this reads

{n} ⊗ {n} ⊗ {n} =

{
n(n+ 1)(n+ 2)

6

}
⊕ 2

{
(n− 1)n(n+ 1)

3

}
⊕

{
(n− 2)(n− 1)n

6

}
. (3.9.16)

The dimensions test

n(n+ 1)(n+ 2)

6
+ 2

(n− 1)n(n+ 1)

3
+

(n− 2)(n− 1)n

6
= n3 (3.9.17)

confirms this result. In SU(2) this corresponds to

{2} ⊗ {2} ⊗ {2} = {4} ⊕ 2{2} ⊕ {0}, (3.9.18)

and in SU(3)
{3} ⊗ {3} ⊗ {3} = {10} ⊕ 2{8} ⊕ {1}. (3.9.19)

3.10 Coupling of {3} and {3} in su(3)

In order to further illustrate the coupling of su(n) representations, we now couple
the fundamental {3} representation of su(3) with its conjugate representation {3}.
From the considerations of the previous section, we obtain

{3} ⊗ {3} = {1} ⊕ {8}. (3.10.1)

We now want to explicitly construct the singlet state and all states of the octet, by
calculating the corresponding Clebsch-Gordan coefficients. First of all, we relate the
states in the triplet by shift operators

T−|u〉 = |d〉, T+|d〉 = |u〉, U−|d〉 = |s〉, U+|s〉 = |d〉, V−|u〉 = |s〉, V+|s〉 = |u〉.
(3.10.2)
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The representation {3} is obtained from {3} by conjugation, which is realized by

T̃ a = −(T a)T , such that

T̃−|d〉 = −|u〉, T̃+|u〉 = −|d〉, Ũ−|s〉 = −|d〉, Ũ+|s〉 = −|u〉,
Ṽ−|s〉 = −|u〉, Ṽ+|s〉 = −|d〉. (3.10.3)

We now construct the state in the octet that has the larges value of T 3. This is the
state

|{8}011〉 = |{3}1

3

1

2

1

2
〉|{3} − 1

3

1

2

1

2
〉 = ud. (3.10.4)

Starting from this state, we can now reach the other ones in the multiplet by applying
the appropriate shift operations. In this way, we obtain

−
√

2|{8}010〉 = (T− + T̃−)ud = −uu+ dd ⇒ |{8}010〉 =
1√
2

(uu− dd), (3.10.5)

as well as

√
2|{8}01− 1〉 = (T− + T̃−)

1√
2

(uu− dd) =
√

2du ⇒ |{8}010〉 = du. (3.10.6)

By applying the shift operator U+ one finds

−|{8}11

2

1

2
〉 = (U+ + Ũ+)ud = −us ⇒ |{8}11

2

1

2
〉 = us, (3.10.7)

and in complete analogy we obtain

|{8}11

2
− 1

2
〉 = ds, |{8} − 1

1

2

1

2
〉 = sd, |{8} − 1

1

2
− 1

2
〉 = su. (3.10.8)

We are still lacking the state |{8}000〉, which we reach by applying

(V− + Ṽ−)|{8}11

2

1

2
〉 = (V− + Ṽ−)us = ss− uu = α|{8}000〉+ β|{8}010〉. (3.10.9)

Also demanding normalization and orthogonality, i.e. 〈{8}000|{8}010〉 = 0, one then
obtains

|{8}000〉 =
1√
6

(uu+ dd− 2ss). (3.10.10)

The last remaining state represents the singlet |{1}000〉. Again demanding normal-
ization and orthogonality, one finally obtains

|{1}000〉 =
1√
3

(uu+ dd+ ss). (3.10.11)
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3.11 The Orthogonal Group SO(n) and its Alge-

bra

The real-valued n×n orthogonal matricesO with determinant 1 obeyOOT = OTO =
1I and form the group SO(n) under matrix multiplication. The corresponding so(n)
algebra consists of the purely imaginary traceless Hermitean n× n matrices. There
are nG = n(n− 1)/2 such matrices. The algebra so(4) = su(2)× su(2) is the direct
Kronecker product of two su(2) algebras and thus semi-simple (but not simple).

As we discussed before, the group SO(3) has a trivial center, while its universal
covering group SU(2) has the non-trivial center Z(2). The universal covering group
of SO(n) is called Spin(n), such that Spin(3) = SU(2). Similarly, the universal
covering group of SO(4) is Spin(4) = SU(2)× SU(2), which has the center Z(2)×
Z(2). The center of SO(4) itself, on the other hand, is just Z(2) and consists on the
4×4 unit-matrix 1I and −1I. Since for n = 5 the matrix −1I does not have determinant
1, the group SO(5) has a trivial center, while its universal covering group Spin(5)
has the center Z(2). The so(6) algebra has nG = 6 · 5/2 = 15 generators. This
is the same number as for su(4) which has 42 − 1 generators. Indeed, one can
show that the algebras of so(6) and su(4) are identical. As it was also the case for
so(3) and su(2), the corresponding groups SO(6) and SU(4) are still different. In
particular, the center of SO(6) is Z(2) while the center of SU(4) is Z(4). Indeed, the
universal covering group of SO(6) is Spin(6) = SU(4), and SU(4)/Z(2) = SO(6).
The higher so(n) algebras (with n ≥ 7) are not equivalent to an su(n) algebra. The
center of Spin(n) is Z(2) for odd n, Z(2) × Z(2) for n = 4, 8, 12, . . ., and Z(4) for
n = 6, 10, 14, . . ..

The group manifold of Spin(n) is the product of spheres

Spin(n) = S1 × S2 × . . .× Sn−1. (3.11.1)

Based on the so-called Hopf fibration one can show that

S3/S1 = S2, S7/S3 = S4, S15/S7 = S8, (3.11.2)

such that at least locally

S3 = S1 × S2, S7 = S3 × S4, S15 = S7 × S8. (3.11.3)

Consequently, one obtains

Spin(3) = S1 × S2 = S3 = SU(2),

Spin(6) = S1 × S2 × S3 × S4 × S5 = S3 × S5 × S7 = SU(4). (3.11.4)
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The n(n − 1)/2-dimensional adjoint representation of so(n) transforms as an
anti-symmetric tensor under rotations in n dimensions. Similarly, there is an [n(n+
1)/2− 1]-dimensional representation that corresponds to a symmetric traceless ten-
sor. In addition, so(n) has an n-dimensional vector representation. Since in three
dimensions the vector cross product again generates a vector instead of an anti-
symmetric tensor, for so(3) the vector representation is equivalent to the adjoint.
The so(n) algebras also have spinor representations. While so(3) = su(2) only
has a single 2-dimensional spinor representation {2}, which corresponds to an or-
dinary spin 1

2
, so(4) = su(2) × su(2) has two 2-dimensional spinor representations

{2} × {1} and {1} × {2}, which are both pseudo-real. The algebra so(5) has a sin-
gle 4-dimensional fundamental spinor representation, while so(6) = su(4) has two
in-equivalent 4-dimensional spinor representations, which correspond to the fun-
damental representation {4} of su(4) and its conjugate {4}. In fact, the so(n)
algebras with n = 6, 10, 14, . . . are the only ones that have complex representations.
Continuing this scheme, the algebra so(7) has a single 8-dimensional spinor repre-
sentation, while so(8) has two in-equivalent 8-dimensional pseudo-real spinor repre-
sentations (in addition to its 8-dimensional vector representation). Similarly, so(9)
has one 16-dimensional spinor representations, while so(10) has two in-equivalent
16-dimensional complex spinor representations, which are conjugate to each other.
One of these representations plays an important role in grand unified theories of the
electroweak and strong interaction. It contains one generation of chiral Standard
Model fermions (including quarks and leptons).

3.12 The Symplectic Group Sp(n) and its Algebra

The group Sp(n) is a subgroup of SU(2n) which leaves the skew-symmetric matrix

J =

(
0 1I
−1I 0

)
= iσ2 ⊗ 1I, (3.12.1)

invariant. Here 1I is the n × n unit-matrix and σ2 is the imaginary Pauli matrix.
The elements U ∈ SU(2n) that belong to the subgroup Sp(n) satisfy the constraint

U∗ = JUJ†. (3.12.2)

Consequently, U and U∗ are related by the unitary transformation J . Hence the 2n-
dimensional fundamental representation of Sp(n) is pseudo-real. The matrix J itself
also belongs to Sp(n). It is easy to show that the matrices that obey the constraint
eq.(3.12.2) form a group under matrix multiplication. The constraint implies the
following form of a generic Sp(n) matrix

U =

(
W X
−X∗ W ∗

)
, (3.12.3)
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where W and X are complex n × n matrices. Since U must still be an element of
SU(2n), these matrices must satisfy WW † + XX† = 1I and WXT = XW T . Note
that the eigenvalues of U come in complex conjugate pairs. Since center elements are
multiples of the unit-matrix, in this case eq.(3.12.3) immediately implies W = W ∗.
Hence, the center of Sp(n) is Z(2) for all n. In fact, Sp(n) is its own universal
covering group and thus acquires no further central extension.

Writing U = exp(iH), where H is a Hermitean traceless matrix, eq.(3.12.2)
implies that the generators H of the algebra sp(n) satisfy the constraint

H∗ = −JHJ† = JHJ. (3.12.4)

This relation leads to the following generic form,

H =

(
A B
B∗ −A∗

)
, (3.12.5)

where A and B are n × n matrices. The Hermiticity condition H = H† implies
A = A† and B = BT . Note that, since A is Hermitean, H is automatically traceless.
The Hermitean n×n matrix A has n2 degrees of freedom and the complex symmetric
n× n matrix B has (n+ 1)n degrees of freedom. Hence the dimension of the sp(n)
algebra is nG = n2 + (n + 1)n = (2n + 1)n. There are n independent diagonal
generators of the maximal Abelian Cartan sub-algebra. Hence the rank of Sp(n) is
r = n.

The n = 1 case is equivalent to so(3), while the n = 2 case is equivalent to so(5).
Since the group Sp(n) has the center Z(2) while SO(3) and SO(5) have a trivial
center, the group Sp(1) corresponds to the universal covering group Spin(3) =
SU(2) of SO(3), and the group Sp(2) is the universal covering group Spin(5) of
SO(5). Although both sp(n) and so(2n + 1) have the same number of (2n + 1)n
generators, the two algebras are in-equivalent for n ≥ 3.

Since sp(2) has rank r = 2, the weight diagrams of its representations can be
drawn in a 2-d plane. The weight diagrams of the fundamental representation {4},
the so(5) vector representation {5}, and the adjoint representation {10} are depicted
in figures 3.12, 3.12, and 3.12, respectively. It is instructive to work out the Speiser
scheme for the algebra sp(2) = so(5) in analogy to the su(3) scheme discussed
before.

figure=rep4.eps,width=6cm

Figure 3.1: The weight diagram for the fundamental {4} representation of sp(2).
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figure=rep5.eps,width=6cm

Figure 3.2: The weight diagram for the {5} representation of sp(2) (the vector rep-
resentation of so(5)).

figure=rep10.eps,width=6cm

Figure 3.3: The weight diagram for the adjoint {10} representation of sp(2) (and of
so(5)).

The group manifold of Sp(n) is the product of spheres

Sp(n) = S3 × S7 × . . .× S4n−1, (3.12.6)

which implies

Sp(1) = S3 = SU(2), Sp(2) = S3 × S7 = S1 × S2 × S3 × S4 = Spin(5). (3.12.7)

On the other hand, since S5 × S6 6= S11 we have

Sp(3) = S3×S7×S11 = S1×S2×S3×S4×S11 6= S1×S2×S3×S4×S5×S6 = Spin(7).
(3.12.8)

3.13 The Exceptional Group G(2) and its Algebra

In this section we discuss some basic properties of the Lie group G(2) — the simplest
among the exceptional groups G(2), F (4), E(6), E(7) and E(8) — which do not fit
into the main sequences SU(n), Spin(n), and Sp(n). While there is only one non-
Abelian semi-simple Lie algebra of rank 1 — namely the one of su(2) = so(3) = sp(1)
— there are four of rank r = 2. These rank 2 algebras generate the groups SU(3),
SU(2)× SU(2) = Spin(4), Spin(5) = Sp(2), and G(2), which have 8, 6, 10, and 14
generators, respectively. The group G(2) is of particular interest because it has a
trivial center and still is its own universal covering group.

It is natural to construct G(2) as a subgroup of SO(7) which has rank 3 and
21 generators. The 7 × 7 real orthogonal matrices O of the group SO(7) have
determinant 1 and obey the constraint

OabOac = δbc. (3.13.1)
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The G(2) subgroup contains those matrices that, in addition, satisfy the cubic con-
straint

Tabc = TdefOdaOebOfc. (3.13.2)

Here T is a totally anti-symmetric tensor whose non-zero elements follow by anti-
symmetrization from

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1. (3.13.3)

The tensor T also defines the multiplication rules for octonions. Eq.(3.13.3) implies
that eq.(3.13.2) represents 7 non-trivial constraints which reduce the 21 degrees of
freedom of SO(7) to the 14 parameters of G(2). It should be noted that G(2) inherits
the reality properties of SO(7): all its representations are real.

We make the following choice for the first 8 generators ofG(2) in the 7-dimensional
fundamental representation

Λa =
1√
2

 λa 0 0
0 −λa∗ 0
0 0 0

 . (3.13.4)

Here λa (with a ∈ {1, 2, . . . , 8}) are the usual 3 × 3 Gell-Mann generators of su(3)
which indeed is a sub-algebra of g(2). We have chosen the standard normalization
Trλaλb = TrΛaΛb = 2δab. This representation contains the complex representations
{3} and {3} of su(3). However, it is unitarily equivalent to a real representation.
In the chosen basis of the generators it is manifest that under SU(3) subgroup
transformations the 7-dimensional representation decomposes into

{7} = {3} ⊕ {3} ⊕ {1}. (3.13.5)

Since g(2) has rank r = 2, only two generators can be diagonalized simultaneously.
In our choice of basis these are the su(3) sub-algebra generators Λ3 and Λ8. Conse-
quently, just as for su(3), the weight diagrams of g(2) representations can be drawn
in a 2-dimensional plane. For example, the weight diagram of the fundamental rep-
resentation is shown in figure 3.13. One notes that it is indeed a superposition of

file=figura1.eps,width=60mm,angle=0

Figure 3.4: The weight diagram of the 7-dimensional fundamental representation of
g(2) (rescaled by a factor

√
2).

the weight diagrams of a {3}, {3}, and {1} of su(3). Since all g(2) representation
are real, the {7} representation is equivalent to its complex conjugate. It should be



50 CHAPTER 3. LIE GROUPS AND LIE ALGEBRAS

noted that the {3}⊕ {3} contained in the {7} representation of of g(2) corresponds
to a real reducible 6-dimensional representation of su(3).

As usual,

T+ =
1√
2

(Λ1 + iΛ2) = |1〉〈2| − |5〉〈4|,

T− =
1√
2

(Λ1 − iΛ2) = |2〉〈1| − |4〉〈5|,

U+ =
1√
2

(Λ4 + iΛ5) = |2〉〈3| − |6〉〈5|,

U− =
1√
2

(Λ4 − iΛ5) = |3〉〈2| − |5〉〈6|,

V + =
1√
2

(Λ6 + iΛ7) = |1〉〈3| − |6〉〈4|,

V − =
1√
2

(Λ6 − iΛ7) = |3〉〈1| − |4〉〈6|, (3.13.6)

define su(3) shift operations between the different states |1〉, |2〉,. . . ,|7〉 in the fun-
damental representation. The remaining 6 generators of G(2) also define shifts

X+ =
1√
2

(Λ9 + iΛ10) = |2〉〈4| − |1〉〈5| −
√

2|7〉〈3| −
√

2|6〉〈7|,

X− =
1√
2

(Λ9 − iΛ10) = |4〉〈2| − |5〉〈1| −
√

2|3〉〈7| −
√

2|7〉〈6|,

Y + =
1√
2

(Λ11 + iΛ12) = |6〉〈1| − |4〉〈3| −
√

2|2〉〈7| −
√

2|7〉〈5|,

Y − =
1√
2

(Λ11 − iΛ12) = |1〉〈6| − |3〉〈4| −
√

2|7〉〈2| −
√

2|5〉〈7|,

Z+ =
1√
2

(Λ13 + iΛ14) = |3〉〈5| − |2〉〈6| −
√

2|7〉〈1| −
√

2|4〉〈7|,

Z− =
1√
2

(Λ13 − iΛ14) = |5〉〈3| − |6〉〈2| −
√

2|1〉〈7| −
√

2|7〉〈4|. (3.13.7)

The generators themselves transform under the 14-dimensional adjoint representa-
tion of g(2) whose weight diagram is shown in figure 3.13. From this diagram one
sees that under an SU(3) subgroup transformation the adjoint representation of g(2)
decomposes into

{14} = {8} ⊕ {3} ⊕ {3}. (3.13.8)

Again, it is instructive to work out the Speiser scheme for the algebra g(2).

Let us now discuss the center of G(2). It is interesting to note that the maximal
Abelian (Cartan) subgroup of both G(2) and SU(3) is U(1)2 which must contain
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file=figura2.eps,width=60mm,angle=0

Figure 3.5: The weight diagram of the 14-dimensional adjoint representation of g(2)
(rescaled by a factor

√
2).

the center in both cases. Since G(2) contains SU(3) as a subgroup its center cannot
be bigger than Z(3) (the center of SU(3)) because the potential center elements of
G(2) must commute with all G(2) matrices (not just with the elements of the SU(3)
subgroup). In the fundamental representation of G(2) the center elements of the
SU(3) subgroup are given by

Z =

 z1I 0 0
0 z∗1I 0
0 0 1

 . (3.13.9)

where 1I is the 3 × 3 unit matrix and z ∈ {1, exp(±2πi/3} is an element of Z(3).
By construction, the three 7 × 7 matrices Z commute with the 8 generators of the
SU(3) subgroup of G(2). However, an explicit calculation shows that this is not
the case for the remaining 6 generators. Consequently, the center of G(2) is trivial
and contains only the identity. The above argument applies to any representation
of G(2). In other words, the universal covering group of G(2) is G(2) itself and still
it has a trivial center.

In SU(3) the non-trivial center Z(3) gives rise to the concept of triality. For
example, the trivial representation {1} and the adjoint representation {8} of SU(3)
have trivial triality, while the fundamental {3} and anti-fundamental {3} have non-
trivial opposite trialities. Since its center is trivial, the concept of triality does not
extend to G(2). In particular, as one can see from eqs.(3.13.5,3.13.8), G(2) represen-
tations decompose into mixtures of SU(3) representations with different trialities.
This has interesting consequences for the results of G(2) tensor decompositions. For
example, in contrast to the SU(3) case, the product of two fundamental represen-
tations

{7} ⊗ {7} = {1} ⊕ {7} ⊕ {14} ⊕ {27}, (3.13.10)

contains both the trivial and the adjoint representation. Some further tensor product
decompositions are given by

{7} ⊗ {14} = {7} ⊕ {27} ⊕ {64},
{14} ⊗ {14} = {1} ⊕ {14} ⊕ {27} ⊕ {77} ⊕ {77′}. (3.13.11)

Here {77} and {77′} are two in-equivalent 77-dimensional representations of g(2).
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The group manifold of G(2) is the product of the group manifold of SU(3) with
a 6-dimensional sphere S6, i.e.

G(2) = SU(3)× S6 = S3 × S5 × S6. (3.13.12)

From this one obtains

SO(7) = S1×S2×S3×S4×S5×S6 = G(2)×S1×S2×S4 = G(2)×S3×S4 = G(2)×S7.
(3.13.13)



Chapter 4

Galilei, Lorentz, and Poincaré
Algebras

A non-relativistic system without a preferred rest frame corresponds to a repre-
sentation of the Galilei algebra. Similarly, a relativistic system provides us with a
representation of the Poincaré algebra. We consider the Galilei and Poincaré alge-
bras in one, two, and three spatial dimensions, first without specifying a particular
physical system. Then we consider systems of free particles with and without spin.
We also review the concept of a center of energy — a relativistic generalization of
the center of mass.

4.1 The Galilei Algebra in One, Two, and Three

Dimensions

The Galilei algebra describes the symmetries of a space-time which is spatially Eu-
clidean with absolute Newtonian time and without an a priori preferred rest frame.
Euclidean space is homogeneous and isotropic, which gives rise to momentum and
angular momentum as the infinitesimal generators of spatial translations and rota-
tions. Translation invariance in time gives rise to the Hamiltonian as an infinitesi-
mal generator of time translations. In addition, although, in this case, there is no
symmetry between space and time, there are generators of Galileian boosts, which
are related to the center of mass coordinate. When matter condenses in Galileian
space-time, its center of mass singles out a preferred rest frame, which amounts to
a spontaneous breakdown of Galileian boost invariance.

In one spatial dimension the Galilei algebra includes the Hamilton operator H,
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the momentum operator P , and the boost operator K. The corresponding commu-
tation relations are

[P,H] = 0, [K,H] = iP, [K,P ] = iM. (4.1.1)

HereM represents the total mass of the system. Energy H, momentum P , as well as
the mass operatorM (which is proportional to the identity 1I) generate an invariant
Abelian sub-algebra. Hence, the Galilei algebra is not semi-simple. Obviously, the
mass operator commutes with all generators of the algebra, and thus plays the role
of a rather trivial Casimir operator.

In two spatial dimensions, in addition to the Hamiltonian there are now two
momenta Pi (i ∈ {1, 2}), one angular momentum operator J that generates spa-
tial rotations, as well as two Galileian boosts Ki (i ∈ {1, 2}). The corresponding
commutation relations are

[Pi, H] = 0, [J,H] = 0, [Ki, H] = iPi, [Pi, Pj] = 0, [J, Pi] = iεijPj,

[Ki, Pj] = iδijM, [J,Ki] = iεijKj, [Ki, Kj] = 0. (4.1.2)

In three spatial dimensions the Galilei algebra consists of the Hamiltonian H,
three momenta Pi, three angular momenta Ji, and three Galileian boosts Ki (i ∈
{1, 2, 3}), with the commutators

[Pi, H] = 0, [Ji, H] = 0, [Ki, H] = iPi, [Pi, Pj] = 0, [Ji, Pj] = iεijkPk,

[Ki, Pj] = iδijM, [Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = 0.

(4.1.3)

Introducing the center of mass coordinate

Ri =
Ki

M
, (4.1.4)

one obtains

[Ri, H] = i
Pi
M

= iVi = iṘi, (4.1.5)

which represents the Heisenberg equation of motion for the center of mass, with
Vi = Ṙi being its velocity. In addition,

[Ri, Pj] = iδij, [Ri, Rj] = 0, (4.1.6)

which identifies the center of mass and the total momentum as canonically conjugate
variables.
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4.2 Representation of the Galilei Algebra with

Non-Relativistic Interacting Particles

Let us consider a system of N free spinless non-relativistic particles of mass ma with
positions ~ra and momenta ~pa (a ∈ {1, 2, ..., N}) the operators of the Galilei algebra
can then be represented as

H =
N∑
a=1

(
ma +

~pa
2

2ma

)
+
∑
a<b

V (|~ra − ~rb|),

~P =
N∑
a=1

~pa, ~J =
N∑
a=1

~ra × ~pa, ~K =
N∑
a=1

ma~ra, M =
N∑
a=1

ma. (4.2.1)

Using the canonical commutation relations

[rai, pbj] = iδabδij, (4.2.2)

it is straightforward to show that the operators from above indeed obey the com-
mutation relations of the Galilei algebra. This is not the most general form of the
potential. In particular, besides 2-body forces, one could also include 3-body or
many-body forces.

Let us also discuss particles with spins ~Sa, obeying the commutation relation

[Sai, Sbj] = iδabεijkSak. (4.2.3)

In this case, one can represent the Galilei algebra as

H =
N∑
a=1

(
ma +

~pa
2

2ma

)
+
∑
a<b

V (~ra − ~rb, ~Sa, ~Sb),

~P =
N∑
a=1

~pa, ~J =
N∑
a=1

(~ra × ~pa + ~Sa), ~K =
N∑
a=1

ma~ra, M =
N∑
a=1

ma. (4.2.4)

In this case, one can include spin-dependent forces. It is instructive to investigate
the constraints on a spin-dependent 2-body potential V (~ra − ~rb, ~Sa, ~Sb), that result
from the Galileian symmetry.

4.3 The Poincaré Algebra in One, Two, and Three

Dimensions

In one spatial dimension the Poincaré algebra has three generators, the Hamilton op-
erator H that generates time translations, the momentum operator P that generates
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spatial translations, and the boost operator K that generates space-time rotations.
The corresponding commutation relations are

[P,H] = 0, [K,H] = iP, [K,P ] = iH. (4.3.1)

The quadratic Casimir operator,

M2 = H2 − P 2, (4.3.2)

commutes with all generators and represents the rest mass squared. Energy and
momentum are components of a Lorentz vector P µ = (H,P ), and K is an element
of an anti-symmetric tensor

Mµν =

(
0 K
−K 0

)
. (4.3.3)

The commutation relations can then be expressed as

[Pµ, Pν ] = 0, [Mµν , Pρ] = i(gνρPµ − gµρPν), [Mµν ,Mρσ] = 0, (4.3.4)

where gµν is the metric of Minkowski space-time.

In two spatial dimensions the Poincaré algebra has six generators. In addition to
the Hamiltonian there are now two momenta Pi (i ∈ {1, 2}), one angular momentum
operator J that generates spatial rotations, as well as two boosts Ki (i ∈ {1, 2}).
The corresponding commutation relations are

[Pi, H] = 0, [J,H] = 0, [Ki, H] = iPi, [Pi, Pj] = 0, [J, Pi] = iεijPj,

[Ki, Pj] = iδijH, [J,Ki] = iεijKj, [Ki, Kj] = −iεijJ. (4.3.5)

Again, the rest mass

M2 = H2 − ~P 2, (4.3.6)

is a Casimir operator. In this case, we can write

Mµν =

 0 K1 K2

−K1 0 J
−K2 −J 0

 , (4.3.7)

which then implies

[Pµ, Pν ] = 0, [Mµν , Pρ] = i(gνρPµ − gµρPν),
[Mµν ,Mρσ] = i(gµσMνρ − gµρMνσ − gνσMµρ + gνρMµσ). (4.3.8)
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Finally, in three spatial dimensions the Poincaré algebra has ten generators: the
Hamiltonian H, three momenta Pi, three angular momenta Ji, and three boosts Ki

(i ∈ {1, 2, 3}), with the commutators

[Pi, H] = 0, [Ji, H] = 0, [Ki, H] = iPi, [Pi, Pj] = 0, [Ji, Pj] = iεijkPk,

[Ki, Pj] = iδijH, [Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk.
(4.3.9)

Once again, one Casimir operator is

M2 = H2 − ~P 2. (4.3.10)

Now angular momenta and boosts combine to

Mµν =


0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0

 , (4.3.11)

which implies

[Pµ, Pν ] = 0, [Mµν , Pρ] = i(gνρPµ − gµρPν),
[Mµν ,Mρσ] = i(gµσMνρ − gµρMνσ − gνσMµρ + gνρMµσ). (4.3.12)

One can also define the Pauli-Lubanski vector

Iµ =
1

2
εµνρσM

νρP σ, (4.3.13)

whose components are given by

I0 = PiJi, Ii = εijkKjPk −HJi, (4.3.14)

and which indeed transforms as a 4-vector

[Pµ, Iν ] = 0, [Mµν , Iρ] = i(gνρIµ − gµρIν). (4.3.15)

whose components obey the commutation relations

[Iµ, Iν ] = iεµνρσI
ρP σ. (4.3.16)

By construction, IµP
µ = 0, however,

IµI
µ = I2

0 − I2
i = −M2 ~J2 (4.3.17)

is another Casimir operator, representing the total spin in the rest frame.
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4.4 Free Spinless Particles

For a system of N free spinless relativistic particles of rest mass ma with positions
~ra and momenta ~pa (a ∈ {1, 2, ..., N}) the operators of the Poincaré algebra can be
represented as

H =
N∑
a=1

√
~pa2 +m2

a, ~P =
N∑
a=1

~pa, ~J =
N∑
a=1

~ra × ~pa,

~K =
N∑
a=1

1

2
(~ra
√
~pa2 +m2

a +
√
~pa2 +m2

a ~ra). (4.4.1)

Using the canonical commutation relations

[rai, pbj] = iδabδij, (4.4.2)

it is straightforward to show that the operators from above indeed obey the com-
mutation relations of the Poincaré algebra.

The resulting relativistic generalization of the free particle Schrödinger equation
takes the form

i∂tΨ = HΨ =
N∑
a=1

√
−∆a +m2

a Ψ, (4.4.3)

It should be noted that the Hamiltonian in eq.(4.4.3) is by construction positive
definite. Consequently, it only describes particles and no anti-particles (negative
energy states). In the context of field theory this would clearly be an undesirable
feature. In fact, upon second quantization a system of indistinguishable particles of
mass ma = m described by eq.(4.5.2) would turn into a field theory with a non-local
(and thus unacceptable) Lagrange density

L[Ψ] = iΨ∗∂tΨ + Ψ∗
√
−∆ +m2 Ψ. (4.4.4)

In field theory a natural path to follow is the one first taken by Klein and Gordon,
which leads to the local Lagrangian

L[Ψ] = Ψ∗[∂2
t −∆ +m2]Ψ. (4.4.5)

The Klein-Gordon scalar field theory describes both particles and anti-particles and
thus has negative energy states. As such it is perfectly well suited as a quantum field
theory, but it is, in fact, unacceptable in the context of relativistic point particle
quantum mechanics with a finite number of degrees of freedom. As long as we do not
want to turn the particle system into a quantum field theory by second quantization,
eq.(4.4.3) is perfectly acceptable from a theoretical point of view. In particular, its
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non-locality is perfectly consistent with the principles of relativity and causality. It
is a separate issue that Nature has chosen to make particles as quanta of fields. This
implies that the field theoretical description with infinitely many degrees of freedom
and with anti-particles is phenomenologically successful. Relativistic point particle
mechanics with its finite number of degrees of freedom — and hence without anti-
particles — is perfectly consistent from a theoretical point of view. Interestingly, as
was shown by Leutwyler, it is essentially limited to non-interacting particle systems.

4.5 Free Particles with Spin

Dirac’s discovery of the wave equation for the electron — which turned out to have
negative energy solutions — led him to the prediction of the positron. Since a single
particle interpretation of the Dirac equation is problematical, it was necessary to
extend it to quantum field theory by second quantization, which then culminated
in the development of QED, QCD and the standard model. Although there is no
doubt that Nature chose to make particles as quanta of fields, we like to investigate
relativistic quantum mechanics which has a finite number of particles built in from
the start. In such a theory anti-particles are undesirable because we insist on the
standard quantum mechanical interpretation of the wave function. Insisting on a
positive definite Hamiltonian, we have already obtained a modification of the Klein-
Gordon equation for spinless particles. We will now apply the same logic in order
to derive a modification of the Dirac equation for particles with spin. We point
out again that what we will get cannot be turned into a local field theory upon
second quantization. If this were our goal, the Dirac equation were the way to
go. However, just like the Klein-Gordon equation, the Dirac equation is not an
equation of relativistic quantum mechanics, but belongs to quantum field theory. In
relativistic quantum mechanics one is led down another path.

We now consider a system of N free particles with spin ~Sa (a ∈ {1, 2, ..., N}). The
corresponding wave function thus has

∏N
a=1(2Sa+1) components. The commutation

relations of the spins are the usual ones

[Sai, Sbj] = iδabεijkSak. (4.5.1)

It is again straightforward to show that the Poincaré algebra can be represented as

H =
N∑
a=1

√
~pa2 +m2

a, ~P =
N∑
a=1

~pa, ~J =
N∑
a=1

[~ra × ~pa + ~Sa],

~Ka =
N∑
a=1

[
1

2
(~ra
√
~pa2 +m2

a +
√
~pa2 +m2

a ~ra) +
~pa × ~Sa

ma +
√
~pa2 +m2

a

]. (4.5.2)
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This form of the boost operator first appeared in [?]. The resulting analog of the
free particle Schrödinger equation is again eq.(4.4.3), but now for a multi-component
wave function.

4.6 The Center of Energy

For non-relativistic particle systems it is useful to separate the center of mass motion
from the relative motion. For relativistic systems various generalizations of a center
of mass have been discussed [?, ?]. Here we consider the concept of a center of

energy ~R as a generalization of the center of mass to relativistic systems. For a
general relativistic system we define

~R =
1

2
(H−1 ~K + ~KH−1), (4.6.1)

which is Hermitean by construction. For a system of free non-relativistic particles
this expression reduces to

Ri =

∑N
a=1 ma~ra∑N
a=1ma

, (4.6.2)

which is just the center of mass. Using the Poincaré algebra we obtain

[Ri, Pj] =
1

2
(H−1[Ki, Pj] + [Ki, Pj]H

−1) = iδij
1

2
(H−1H +HH−1) = iδij, (4.6.3)

i.e. the center of energy is indeed the canonically conjugate momentum to the total
momentum ~P . The commutator with the total angular momentum is

[Ri, Jj] =
1

2
(H−1[Ki, Jj] + [Ki, Jj]H

−1) = iεijk
1

2
(H−1Kk +KkH

−1) = iεijkRk,

(4.6.4)

which just confirms that ~R transforms as a vector under spatial rotations. We also
obtain

[Ri, H] =
1

2
(H−1[Ki, H] + [Ki, H]H−1) = i

1

2
(H−1Pi + PiH

−1) = iVi. (4.6.5)

The velocity of the center of energy,

~V = ~PH−1, (4.6.6)

is a conserved quantity, because both H and ~P are conserved. It enters the Heisen-
berg equation of motion for ~R as

∂t ~R = −i[~R,H] = ~V , (4.6.7)
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which implies that — just like the center of mass in non-relativistic mechanics —
the center of energy moves with a constant velocity.

Despite these similarities with the non-relativistic center of mass, the relativistic
center of energy also has some perhaps unexpected features. It is straightforward
to show that

[Ri, Rj] = i(RiPj −RjPi − εijkJk)H−2. (4.6.8)

Hence, the various components of the position of the center of energy are not simul-
taneously measurable with arbitrary precision. Introducing the angular momentum
of the center of energy,

~J = ~R× ~P , (4.6.9)

one obtains the usual commutation relations,

[Ji,Jj] = iεijkJk, (4.6.10)

and one finds
[Ji, H] = εijk[Rj, H]Pk = iεijkPjH

−1Pk = 0, (4.6.11)

i.e. ~J is conserved. Furthermore one obtains

[Ji, Pj] = iεijkPk, [Ji, Jj] = iεijkJk. (4.6.12)

The relative angular momentum

~j = ~J − ~J , (4.6.13)

is conserved because both the total angular momentum ~J and the angular momen-
tum of the center of energy ~J are conserved. The commutation relations of the
relative angular momentum are given by

[ji, jj] = [Ji − Ji, Jj − Jj] = iεijk(Jk − 2Jk + Jk) = iεijkjk. (4.6.14)

Eq.(4.6.8) can now be written as

[Ri, Rj] = −iεijkjkH−2. (4.6.15)

Hence, two components of the position of the center of energy are simultaneously
measurable only if the relative angular momentum ~j vanishes. It should be noted
that the center of energy can be modified to what has been called the “center of
spin” [?, ?]

~Q = ~R−
~P ×~j

H2 − ~P 2 +H
√
H2 − ~P 2

, (4.6.16)

which obeys [Qi, Pj] = iδij as well as [Qi, Qj] = 0.
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Chapter 5

Abelian and Non-Abelian Gauge
Fields

In this chapter we introduce the concept of non-Abelian gauge fields. Abelian gauge
fields are familiar from classical electrodynamics. The quantization of Abelian gauge
fields leads to quantum electrodynamics (QED), with photons being the field quanta
that mediate the electromagnetic interaction between charged particles. QED is
embedded in the Standard Model of particle physics, which also incorporates the
weak and the strong interactions. The gauge group of the Standard Model is
SU(3)c× SU(2)L×U(1)Y , which thus contains non-Abelian local symmetries. The
concept of non-Abelian local symmetry was first described in an unpublished let-
ter of Wolfgang Pauli to Abraham Pais. The first paper introducing SU(2) gauge
theories is the ground-breaking work of Chen-Ning Yang and Richard Mills in 1954.
It still took until the end of the 1960s to realize that the fundamental forces be-
tween elementary particles are indeed governed by non-Abelian gauge fields. The
quanta of the SU(3)c gauge field are the gluons that mediate the strong interaction
between quarks. In contrast to photons, due to the non-Abelian nature of the group
SU(3), gluons not only couple to quarks but also to other gluons. In other words,
non-Abelian gauge fields themselves carry “charge”, while Abelian gauge fields are
neutral. Remarkably, non-Abelian local symmetries also arise in other physical sys-
tems, including the Pauli equation and the adiabatic Berry phase. Here we introduce
non-Abelian gauge fields in the context of quantum mechanics rather than quantum
field theory.
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5.1 From Abelian U(1) to Non-Abelian SU(2) Gauge

Fields

In appendix E we have summarized the relativistic formulation of classical electro-
dynamics, and in appendix D we have coupled a non-relativistic charged particle to
an external electromagnetic field, both at the classical and at the quantum level.
The corresponding Schrödinger equation takes the form

iDtΨ(x) = − 1

2M
~D · ~DΨ(x), (5.1.1)

with the covariant derivatives given by

DtΨ(x) = ∂tΨ(x)− ieΦ(x)Ψ(x), ~DΨ(x) = ~∇Ψ(x) + ie ~A(x)Ψ(x). (5.1.2)

Here x represents the space-time point (~x, t). The Schrödinger equation is invariant
under the Abelian gauge transformations

Φ(x)′ = Φ(x) + ∂tϕ(x), ~A(x)′ = ~A(x)− ~∇ϕ(x), Ψ(x)′ = exp(ieϕ(x))Ψ(x).
(5.1.3)

Under this transformation, both sides of the Schrödinger equation change by a factor
exp(ieϕ(x)). Canceling this factor out, the equation remains invariant. This is in
contrast to the Schrödinger equation of a free particle

i∂tΨ(x) = − 1

2M
~∇ · ~∇Ψ(x), (5.1.4)

which is invariant only against global U(1) phase rotations

Ψ(x)′ = exp(iφ)Ψ(x). (5.1.5)

We now want to develop the concept of non-Abelian gauge fields by considering
a quantum mechanical particle whose wave function is described by a 2-component
spinor

Ψ(x) =

(
Ψ1(x)
Ψ2(x)

)
. (5.1.6)

We are familiar with 2-component Pauli spinors representing the spin degree of
freedom. Here we do not necessarily identify the two components with spin. The
corresponding Schrödinger equation of a free particle then takes the form

i∂t

(
Ψ1(x)
Ψ2(x)

)
= − 1

2M
~∇ · ~∇

(
Ψ1(x)
Ψ2(x)

)
, (5.1.7)
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which is again invariant against the global phase transformations of eq.(5.1.5). In
addition, the Schrödinger equation is invariant under global SU(2) transformations

Ψ(x)′ = UΨ(x), U ∈ SU(2). (5.1.8)

We now want to promote the SU(2) invariance to a local symmetry, i.e. we want
to modify the Schrödinger equation such that it becomes invariant against SU(2)
gauge transformations U(x). First of all, we then have

∂µΨ(x)′ = ∂µU(x)Ψ(x) + U(x)∂µΨ(x). (5.1.9)

In analogy to Abelian gauge theory, we would like to construct a covariant derivative
that transforms as

DµΨ(x)′ = U(x)DµΨ(x). (5.1.10)

For this purpose, we make the ansatz

DµΨ(x) = (∂µ +Wµ(x))Ψ(x). (5.1.11)

The appropriate transformation behavior of eq.(5.1.10) emerges if

Wµ(x)′ = U(x)(Wµ(x) + ∂µ)U(x)†, (5.1.12)

which is the gauge transformation behavior of a non-Abelian vector potential. Up
to a factor i (which makes Wµ(x) anti-Hermitean) the gauge field itself takes values
in the su(2) algebra, i.e.

Wµ(x) = igW a
µ (x)T a, T a =

1

2
σa. (5.1.13)

Here g is the non-Abelian charge (the analog of the fundamental electric charge e)
which controls the strength of the coupling between non-Abelian charges. An SU(2)
gauge covariant version of the Schrödinger equation then takes the form

iDtΨ(x) = − 1

2M
~D · ~DΨ(x), Ψ(x) =

(
Ψ1(x)
Ψ2(x)

)
. (5.1.14)

5.2 SU(2)s × U(1)em Gauge Symmetry of the Pauli

Equation

Up to corrections of order 1/M3 (where M is the electron mass) the Pauli equation
(i.e. the non-relativistic reduction of the Dirac equation to its upper components)
takes the form

i(∂t − ieΦ + i
e

8M2
~∇ · ~E + i

e

2M
~B · ~σ)Ψ = − 1

2M
(~∇+ ie ~A− i e

4M
~E × ~σ)2Ψ. (5.2.1)
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Here Ψ(x) is a 2-component Pauli spinor, ~σ are the Pauli matrices, Φ(x) and ~A(x)
are the electromagnetic scalar and vector potentials, and

~E(x) = −~∇Φ(x)− ∂t ~A(x), ~B(x) = ~∇× ~A(x), (5.2.2)

are the usual electromagnetic field strengths. The first two terms on the left-hand
side of eq.(5.2.1) form the U(1)em covariant derivative familiar from QED. The third
(Darwin) and fourth (Zeeman) term on the left-hand side represent relativistic cor-
rections. The first two terms on the right-hand side again form an ordinary U(1)em
covariant derivative, while the third term represents the relativistic spin-orbit cou-
pling. The Pauli equation transforms covariantly under U(1)em gauge transforma-
tions

Ψ(x)′ = exp(ieϕ(x))Ψ(x), Φ(x)′ = Φ(x) + ∂tϕ(x), ~A(x)′ = ~A(x)− ~∇ϕ(x).
(5.2.3)

Obviously, it is also covariant under global spatial rotations

OΨ(~x, t) = UΨ(O~x, t), OΦ(~x, t) = Φ(O~x, t), O ~A(~x, t) = OT ~A(O~x, t). (5.2.4)

Here O is a general orthogonal 3× 3 rotation matrix with

Oab =
1

2
Tr(UσaU †σb), (5.2.5)

where U ∈ SU(2)s represents the rotation O ∈ SO(3) in spinor space.

As was noted by Fröhlich and Studer, the Pauli equation for an electron in an
external electromagnetic field indeed has more than just the electromagnetic U(1)em
gauge symmetry. Quite remarkably the SU(2)s spin symmetry manifests itself as a
local symmetry. Up to order M−3 the Pauli equation then takes the form

iDtΨ(x) = − 1

2M
~D · ~DΨ(x), (5.2.6)

with the SU(2)s × U(1)em covariant derivatives given by

Dt = ∂t − ieΦ(x) +W0(x), ~D = ~∇+ ie ~A(x) + ~W (x). (5.2.7)

Here Φ(x) and ~A(x) are the ordinary electromagnetic scalar and vector potentials.
The components of the non-Abelian scalar and vector potential can be identified as
the electromagnetic field strengths ~E(x) and ~B(x), i.e.

W a
0 (x) = µBa(x), W a

i (x) =
µ

2
εiabE

b(x). (5.2.8)

The anomalous magnetic moment µ = gee/2M of the electron (where, up to tiny
QED corrections, ge = 2) appears as a non-Abelian gauge coupling. The Abelian
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vector potential Aµ(x) is the usual one, except for a small additional contribution
to the scalar potential due to the Darwin term,

A0(x) = −Φ(x) +
1

8M2
~∇ · ~E(x). (5.2.9)

Hence, somewhat unexpectedly, the Pauli equation also transforms covariantly under
local SU(2)s transformations

Ψ(x)′ = U(x)Ψ(x), Wµ(x)′ = U(x)(Wµ(x) + ∂µ)U(x)†. (5.2.10)

It should be pointed out that SU(2)s is not a gauge symmetry in the usual sense.
In particular, the non-Abelian vector potential Wµ(x) is not an independent degree
of freedom, but just given in terms of the external electromagnetic field strengths
~E(x) and ~B(x). The local SU(2)s symmetry is related to the global spatial rotations
discussed before. In particular, global SU(2)s transformations take the form

Ψ(x)′ = UΨ(x), Wµ(x)′ = UWµ(x)U †, (5.2.11)

which implies
~E(x)′ = OT ~E(x), ~B(x)′ = OT ~B(x), (5.2.12)

where the resulting 3 × 3 rotation matrix O ∈ SO(3) is given by eq.(5.2.5). In
contrast to a full spatial rotation, a global SU(2)s transformation does not rotate

the argument ~x of the fields to O~x. Also the potentials Φ(x) and ~A(x) are unaffected
by the global SU(2)s symmetry. Consequently, the SU(2)s symmetry is inconsistent
with the Maxwell equations. Despite this, the local SU(2)s symmetry of the Pauli
equation dictates how external electromagnetic fields couple to particles with spin.
In particular, the local SU(2)s structure implies that in non-relativistic systems spin
plays the role of an internal quantum number analogous to flavor in particle physics.

5.3 Non-Abelian SU(2) Field Strength Tensor

Up to now, the gauge field Aµ appeared only as an external field. We have not yet
introduced a kinetic term for it. From classical electrodynamics we indeed know
such a term. We construct the field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x), (5.3.1)

which is the obvious gauge invariant quantity to be built from first derivatives of
Aµ(x),

F ′µν(x) = ∂µA
′
ν(x)− ∂νA′µ(x) = ∂µAν(x) + ∂µ∂νϕ(x)− ∂νAµ(x)− ∂ν∂µϕ(x)

= Fµν(x). (5.3.2)
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The Lagrangian of the free electromagnetic field reads

L =
1

4
F µνFµν . (5.3.3)

In the classical limit this Lagrangian leads to the inhomogeneous Maxwell equations

∂µFµν = 0, (5.3.4)

while the homogeneous Maxwell equations are automatically implied by the use of
the 4-vector potential Aµ.

The field strength tensor of a non-Abelian gauge field is given by

Wµν = DµWν −DνWµ = ∂µWν − ∂νWµ + [Wµ,Wν ], (5.3.5)

and it transforms as

W ′
µν(x) = U(x)Wµν(x)U(x)†. (5.3.6)

We see that it is natural to add the commutator term to Wµν , since it transforms
in the same way as the other terms. Moreover, it is consistent to use the covariant
derivative also for the formulation of the field strength. Hence, we may consider
this as the general form of a field strength. The case of a U(1) gauge field that we
discussed before in eq.(5.3.1) was just the special situation where the commutator
vanishes. The presence of a commutator term in Wµν has important consequences:
in contrast to Abelian gauge fields, non-Abelian gauge fields are themselves charged.
Hence they interact among each other, even if no other charged fields are present.

In analogy to the Abelian gauge theory, eq.(5.3.3), we write

L =
1

4g2
W aµνW a

µν = − 1

2g2
TrW µνWµν , (5.3.7)

which is indeed gauge invariant, and Wµν = igW a
µν

σa

2
.

5.4 General Non-Abelian Gauge Fields

It is straightforward to generalize the structure of non-Abelian gauge theories to
arbitrary compact semi-simple Lie groups beyond SU(2). A general non-Abelian
gauge field is anti-Hermitean and takes values in some Lie algebra with the genera-
tors T a

Gµ(x) = igGa
µ(x)T a. (5.4.1)



5.4. GENERAL NON-ABELIAN GAUGE FIELDS 69

For example, the gluon field in the Standard Model is an SU(3) non-Abelian gauge
field with the generators T a = 1

2
λa given in terms of the Gell-Mann matrices. Un-

der group-valued gauge transformations U(x) ∈ G a non-Abelian vector potential
transforms as

Gµ(x)′ = U(x)(Gµ(x) + ∂µ)U(x)†. (5.4.2)

The corresponding field strength, which is given by

Gµν = ∂µGν − ∂νGµ + [Gµ, Gν ], (5.4.3)

transforms as
G′µν(x) = U(x)Gµν(x)U(x)†. (5.4.4)

This renders the corresponding Lagrange density

L = − 1

2g2
TrGµνGµν (5.4.5)

gauge invariant.
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Chapter 6

Topology of Gauge Fields

Gauge transformations can be viewed as maps from space-time into the correspond-
ing gauge group. Such maps can be classified topologically. Maps that can be
deformed into each other continuously are topologically equivalent, and thus fall
into the same equivalence class, a so-called homotopy class. The various homotopy
classes are characterized by a topological winding number which takes values in the
so-called homotopy group. The non-trivial topology of gauge fields has important
consequences both in particle and in condensed matter physics.

6.1 Maps from Sd to Sn

Let us first consider maps from a circle S1, which we could view, for example, as a
compactified 1-d space x ∈ [0, L] with periodic boundary conditions, into another
circle S1, which we can interpret as the group manifold of U(1). Indeed, U(1)
gauge transformations U(x) = exp(iϕ(x)) ∈ U(1) in a 1-d compactified space can
be viewed as maps x→ U(x) from S1 to S1. Such maps fall in topologically distinct
equivalence classes. Two maps are equivalent if they can be continuously deformed
into each other. The equivalence classes are known as homotopy classes, which are
characterized by a topological winding number

n[U ] =
1

2πi

∫
S1

dx U(x)∗∂xU(x) =
1

2π

∫ L

0

dx ∂xϕ(x) =
1

2π
[ϕ(L)− ϕ(0)]

∈ Π1[U(1)] = Z. (6.1.1)

Periodic boundary conditions mean that U(L) = U(0) which implies ϕ(L)−ϕ(0) =
2πn[U ], where n[U ] ∈ Z is an integer topological winding number that character-
izes the homotopy class of the gauge transformation. The winding numbers n[U ]

71
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form the homotopy group Π1[U(1)] = Z. The winding numbers are additive under
multiplication of the corresponding gauge transformations, i.e.

n[U ] = n[U1] + n[U2], (6.1.2)

where U(x) = U1(x)U2(x).

The constant gauge transformation U(x) = 1 is topologically trivial, i.e. n[U ] =
0. This gauge transformation maps all points x in the compactified space onto the
same point U(x) = 1. All continuous deformations of this map also have n[U ] = 0,
and are thus again topologically trivial. Let us also consider the identity map
U(x) = exp(2πix/L), which covers each point in the image S1 exactly once, and
thus has n[U ] = 1. Similarly, we can specify a member U(x) = exp(2πinx/L), for
each homotopy class characterized by n[U ] = n. This map covers each point in the
image S1 exactly n times.

The sphere S2 is not a group manifold. Hence we cannot interpret maps from S2

to S2 as gauge transformations. Such maps occur, for example, in the effective field
theory for magnets. The direction of the magnetization at a point x is described by
a 3-component unit-vector ~e(x) ∈ S2. When we compactify space to a 2-d sphere
x ∈ S2, the magnetization defines a map x→ ~e(x) from S2 to S2. Such maps again
fall into homotopy classes characterized by a winding number

n[~e] =
1

8π

∫
d2x εij~e · (∂i~e× ∂j~e) ∈ Π2[S2] = Z. (6.1.3)

It is instructive to convince oneself that this expression indeed always takes integer
values. The winding number n[~e] counts topological excitations in the magnetization
which are known as baby-Skyrmions. When we consider the magnetization field
also as a function of Euclidean time, and if we compactify the corresponding 3-d
space-time to the sphere S3, the magnetization defines a map from S3 to S2. Such
maps again fall into topological classes characterized by the so-called Hopf number
H[~e] ∈ Π3[S2] = Z. This has very interesting consequences in condensed matter
physics, because it implies that in a 3-d space-time, particles need not necessarily
be either bosons or fermions. In fact, particles can then be so-called anyons, with any
fractional spin and any statistics characterized by a statistics parameter Θ ∈]−π, π],
where Θ = 0 and π correspond to bosons and fermions, respectively. For anyons, a
term iΘH[~e] enters the Euclidean action. For example, the quasi-particle excitations
in a fractional quantum Hall sample are anyons with fractional spin, statistics, and
charge, which can be viewed as fractionalized electrons, e.g. with charge −e/3.
However, we should not think of an individual electron dividing itself into three
anyons. Fractionalization is a collective phenomenon that can happen only if a
macroscopic number of electrons behaves coherently at extremely low temperatures.

Next, let us consider maps from S3 to S3, which is the group manifold of SU(2).
For example, gauge transformations U(x) ∈ SU(2) are maps from S3 to S3, if
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x ∈ S3 is a point in a compactified 3-d space. In this case, the corresponding
winding number is given by

n[U ] =
1

24π2

∫
S3

d3x εijkTr[(U∂iU
†)(U∂jU

†)(U∂kU
†)] ∈ Π3[SU(2)] = Z. (6.1.4)

Again, it is instructive to convince oneself that this expression always assumes inte-
ger values. As we will discuss below, the corresponding winding number gives rise
to the so-called vacuum angle θ ∈]− π, π] in non-Abelian gauge theories. The cor-
responding topologically non-trivial Euclidean gauge field configurations are known
as instantons.

The pions in QCD are described by an effective field theory, whose field U(x) ∈
SU(2) again maps a compactified space S3 into the SU(2) group manifold S3. In this
case, n[U ] counts topological Skyrmion excitations in the pion field, which represent
baryons. When we consider a compactified Euclidean space-time S4, the pion field
defines a map from S4 to S3. Interestingly, Π4[S3] = Z(2), which implies that in a
4-d space-time particles are either bosons or fermions, and anyons are not possible
in that case.

The homotopy group Π4[S3] = Z(2) also plays a role in the Standard Model of
particle physics, where it characterizes the topology of SU(2)L gauge transforma-
tions governing the weak interactions. Since in 4-d there are topologically non-trivial
SU(2)L gauge transformations, the Standard Model is affected by Witten’s so-called
“global” anomaly. An anomaly amounts to an explicit violation of gauge invariance
by quantum effects, despite the fact that the classical Lagrangian is gauge invariant.
Gauge anomalies render a theory mathematically inconsistent, and must thus be
canceled. In the Standard Model, the global anomaly is canceled only if the num-
ber of left-handed fermion doublets is even. Since there is one left-handed lepton
doublet (consisting of the left-handed neutrino and electron fields), there must be
an odd number of left-handed quark doublets (consisting of the left-handed up and
down quark fields), which implies that the number of quark colors Nc must be odd.
Indeed, in Nature Nc = 3.

In general, maps from a sphere Sd to Sd are characterized by an integer winding
number in the homotopy group Πd[S

d] = Z.

6.2 Homotopy Groups of Lie Group Manifolds

As we have discussed before, the group manifolds of compact Lie groups are products
of spheres, at least locally. In particular, we have

SU(n) = S3 × S5 × . . .× S2n−1,
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Spin(n) = S1 × S2 × . . .× Sn−1,

Sp(n) = S3 × S7 × . . .× S4n−1,

G(2) = SU(3)× S6 = S3 × S5 × S6. (6.2.1)

It is interesting to note that all these group manifolds contain a factor S3, which
implies that

Π3[SU(n)] = Π3[Spin(n)] = Π3[Sp(n)] = Π3[G(2)] = Z. (6.2.2)

As a consequence, in 4-d all non-Abelian gauge theories have instantons and a
corresponding vacuum angle θ ∈]− π, π].

Interestingly, while Π4[SU(2)] = Z(2), Π4[SU(n)] = {0} is topologically trivial
for n ≥ 3. This implies that in 4-d the corresponding SU(n) gauge transformations
can all be continuously deformed into each other. Hence, there is no global anomaly
for SU(n) with n ≥ 3.

The low-energy effective theory of the Goldstone pions, kaons, and η-mesons in
QCD is formulated in terms of matrix-valued fields U(x) ∈ SU(3). Since Π3[SU(3)] =
Z, again there are Skyrmions which represent baryons. This theory also has anoma-
lies which are represented by the so-called Wess-Zumino-Novikov-Witten term

SWZNW [U ] =
1

480π3i

∫
H5

d5xεµνρσλTr[(U∂µU
†)(U∂νU

†)(U∂ρU
†)(U∂σU

†)(U∂λU
†)].

(6.2.3)
Here H5 is a 5-d hemi-sphere whose boundary ∂H5 = S4 is the compactified 4-
d Euclidean space-time. Interestingly, the WZNW-term can be constructed only
because Π4[SU(3)] = {0}. It enters the Euclidean action as 2πiNcSWZNW [U ]. The
prefactor, which turns out to be given by the number of colors Nc, must be quantized
in integer units because Π5[U ] = Z. In fact, the winding number

n[U ] =
1

480π3i

∫
S5

d5xεµνρσλTr[(U∂µU
†)(U∂νU

†)(U∂ρU
†)(U∂σU

†)(U∂λU
†)]

∈ Π5[SU(3)] = Z, (6.2.4)

gives rise to an ambiguity of SWZNW [U ], which cancels from the Euclidean path
integral only when the prefactor is quantized in integer units.
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6.3 The Topological Charge of a 2-d Abelian Gauge

Field

Let us consider an Abelian gauge field Aµ(x) in 2-d Euclidean space-time. The
corresponding action then takes the form

S[A] =
1

2e2

∫
d2x FµνFµν , (6.3.1)

where Fµν(x) = ∂µAν(x)−∂νAµ(x) is the field strength, and e is the electric charge,
which has the dimension of mass in 2-d. In two space-time dimensions Fµν has
only one non-trivial component F12(x) = E(x), which represents the electric field.
The classical Euclidean equation of motion ∂µFµν(x) = 0 then implies ∂1E(x) =
∂2E(x) = 0, such that E(x) is then a constant.

One can also define a dual object

q(x) =
1

4π
εµνFµν(x) =

1

2π
E(x), (6.3.2)

which is again given by the electric field, and plays the role of a topological charge
density. The corresponding topological charge is given by

Q =

∫
d2x q =

1

4π

∫
d2x εµνFµν . (6.3.3)

The topological charge density is a total divergence

q(x) =
1

4π
εµνFµν(x) =

1

2π
εµν∂µAν(x) = ∂µΩ(0)

µ (x), (6.3.4)

where

Ω(0)
µ (x) =

1

2π
εµνAν(x) (6.3.5)

is known as a 0-cochain. Using Gauss’ theorem, we can the write

Q =

∫
d2x q =

∫
d2x ∂µΩ(0)

µ =

∫
S1

dσµ Ω(0)
µ =

1

2π

∫
S1

dσµ εµνAν , (6.3.6)

where S1 = ∂R2 is a large circle at the boundary of the Euclidean space-time R2.

Let us now consider field configurations of finite action which implies that Fµν(x)
must vanish at space-time infinity. The field strength vanishes when the vector
potential is gauge equivalent to

A′µ(x) = Aµ(x)− ∂µϕ(x) = 0 ⇒ Aµ(x) = ∂µϕ(x), (6.3.7)
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i.e. Aµ(x) is a pure gauge, at least at the boundary of space-time. Hence, the
topological charge can be expressed as

Q =

∫
d2x q =

∫
d2x ∂µΩ(0)

µ =

∫
S1

dσµ Ω(0)
µ =

1

2π

∫
S1

dσµ εµν∂νϕ ∈ Π1[S1] = Z.

(6.3.8)
Here we have identified Q as the topological winding number n[U ] of the gauge
transformation U(x) = exp(iϕ(x)) at space-time infinity.

6.4 The Topological Charge of a 4-d Non-Abelian

Gauge Field

Let us now consider an non-Abelian gauge field Gµ(x) = igGa
µ(x)T a in 4-d Euclidean

space-time. The action then takes the form

S[G] = − 1

2g2

∫
d2x Tr(GµνGµν), (6.4.1)

Here Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. We now define the so-called
Chern-Pontryagin density

q(x) = − 1

32π2
εµνρσTr(Gµν(x)Gρσ(x)), (6.4.2)

which is a total divergence, i.e.

q(x) = ∂µΩ(0)
µ (x). (6.4.3)

Here Ω
(0)
µ (x) is the so-called Chern-Simons density or 0-cochain, which is given by

Ω(0)
µ (x) = − 1

8π2
εµνρσTr[Gν(x)(∂ρGσ(x) +

2

3
Gρ(x)Gσ(x))]. (6.4.4)

It is a good exercise to convince oneself that this satisfies eq.(6.4.3). The topological
charge is defined as

Q = − 1

32π2

∫
d4x εµνρσTr(GµνGρσ) =

∫
d4x q =

∫
d4x ∂µΩ(0)

µ =

∫
S3

d3σµ Ω(0)
µ .

(6.4.5)
We have used Gauss’ law to reduce the integral over Euclidean space-time to an
integral over its boundary, which is topologically a 3-sphere S3. We will restrict
ourselves to gauge field configurations with a finite action. Hence, their field strength
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should vanish at infinity, and consequently the gauge potential should then be a pure
gauge (a gauge transformation of a zero field)

Gµ(x) = U(x)∂µU(x)†. (6.4.6)

Of course, this expression is only valid at space-time infinity. Inserting it in the
expression for the 0-cochain we obtain

Q = − 1

8π2

∫
S3

d3σµ εµνρσTr[(U∂νU
†)(∂ρ(U∂σU

†) +
2

3
(U∂ρU

†)(U∂σU
†))]

= − 1

8π2

∫
S3

d3σµ εµνρσTr[−(U∂νU
†)(U∂ρU

†)(U∂σU
†)

+
2

3
(U∂νU

†)(U∂ρU
†)(U∂σU

†)]

=
1

24π2

∫
S3

d3σµ εµνρσTr[(U∂νU
†)(U∂ρU

†)(U∂σU
†)].

(6.4.7)

The gauge transformation U(x) defines a map of the sphere S3 at space-time infinity
to the gauge group SU(n)

U : S3 → SU(n). (6.4.8)

Such maps have topological properties. They fall into the homotopy class

Π3[SU(n)] = Z. (6.4.9)

The third homotopy group of SU(n) is given by the integers. This means that
for each integer Q there is a class of maps that can be continuously deformed into
one another, while maps with different Q are topologically distinct. The integer Q
that characterizes the map topologically is the topological charge. Now we want to
show that the above expression for Q is exactly that integer. For this purpose we
decompose

U = VW, W =



1 0 0 . . . 0

0 Ũ11 Ũ12 . . . Ũ1,n−1

0 Ũ21 Ũ22 . . . Ũ1,n−1

. . . .

. . . .

0 Ũn−1,1 Ũn−1,2 . . . Ũn−1,n−1

 , (6.4.10)
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where the embedded matrix Ũ is in SU(n− 1). It is indirectly defined by

V =



U11 −U∗21 −U∗31(1+U11)

1+U∗11
. . . −U∗n1(1+U11)

1+U∗11

U21
1+U∗11−|U21|2

1+U11
−U∗31U21

1+U∗11
. . . −U∗n1U21

1+U∗11

U31 −U∗21U31

1+U11

1+U∗11−|U31|2
1+U∗11

. . . −U∗n1U31

1+U∗11
. . . .
. . . .

Un1 −U∗21Un1
1+U11

−U∗31Un1
1+U∗11

. . .
1+U∗11−|Un1|2

1+U∗11


∈ SU(n). (6.4.11)

The matrix V is constructed entirely from the elements U11, U21, . . . , Un1 of the first
column of the matrix U . One should convince oneself that V is indeed an SU(n)
matrix, and that the resulting matrix Ũ is indeed in SU(n− 1). The idea now is to
reduce the expression for the topological charge from SU(n) to SU(n− 1) by using
the formula

εµνρσTr[(VW )∂ν(VW )†(VW )∂ρ(VW )†(VW )∂σ(VW )†] =

εµνρσTr[(V ∂νV
†)(V ∂ρV

†)(V ∂σV
†)

+εµνρσTr[(W∂νW
†)(W∂ρW

†)(W∂σW
†)]

+3∂νεµνρσTr[((V ∂ρV
†)(W∂σW

†)]. (6.4.12)

Again, it is instructive to prove this formula. Applying the formula to the expression
for the topological charge and using U = VW we obtain

Q =
1

24π2

∫
S3

d3σµεµνρσTr[(U∂νU
†)(U∂ρU

†)(U∂σU
†)]

=
1

24π2

∫
S3

d3σµεµνρσTr[(V ∂νV
†)(V ∂ρV

†)(V ∂σV
†)

+ (W∂νW
†)(W∂ρW

†)(W∂σW
†)]. (6.4.13)

The ∂ν term of the formula eq.(6.4.12) drops out using Gauss’ law together with the
fact that S3 has no boundary. It follows that the topological charge of a product of
two gauge transformations V and W is the sum of the topological charges of V and
W . Since V only depends on U11, U21, . . . , Un1, it can be viewed as a map of S3 into
the sphere S2n−1

V : S3 → S2n−1. (6.4.14)

This is because |U11|2 + |U21|2 + . . . + |Un1|2 = 1. Remarkably, the corresponding
homotopy group is trivial for n > 2, i.e.

Π3[S2n−1] = {0}. (6.4.15)

All maps of S3 into the higher dimensional sphere S2n−1 are topologically equivalent
(they can be deformed into each other).
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Since the map V is topologically trivial, its contribution to the topological charge
vanishes. The remaining W term reduces to the SU(n− 1) contribution

Q =
1

24π2

∫
S3

d3σµ εµνρσTr[(Ũ∂νŨ
†)(Ũ∂ρŨ

†)(Ũ∂σŨ
†)]. (6.4.16)

The separation of the V contribution works only if the decomposition of U into V
and Ũ is non-singular. In fact, the expression for V is singular for U11 = −1. This
corresponds to an ((n − 1)2 − 1)-dimensional subspace of the (n2 − 1)-dimensional
SU(n) group space. The map U itself covers a 3-d subspace of SU(n). Hence it
is arbitrarily improbable to hit a singularity (it is of measure zero). Since we have
now reduced the SU(n) topological charge to the SU(n− 1) case, we can go down
all the way to SU(2). It remains to be shown that the SU(2) expression is actually
an integer. First of all

Ũ : S3 → SU(2) = S3, (6.4.17)

and indeed

Π3[SU(2)] = Π3[S3] = Z. (6.4.18)

The topological charge specifies how often the SU(2) group space (which is isomor-
phic to the 3-sphere) is covered by Ũ as we go along the boundary of Euclidean
space-time (which is also topologically S3). Let us parametrize the map Ũ as

Ũ(x) = exp(i~α(x) · ~σ) = cosα(x) + i sinα(x)~eα(x) · ~σ,
~eα(x) = (sin θ(x) sinϕ(x), sin θ(x) cosϕ(x), cos θ(x)). (6.4.19)

It is a good exercise to convince oneself that

εµνρσTr[(Ũ(x)∂νŨ(x)†)(Ũ(x)∂ρŨ(x)†)(Ũ(x)∂σŨ(x)†)]

= 12 sin2 α(x) sin θ(x)εµνρσ∂να(x)∂ρθ(x)∂σϕ(x). (6.4.20)

This is exactly the volume element of a 3-sphere (and hence of the SU(2) group
space). Thus we now write

Q =
1

2π2

∫
S3

d3σµ sin2 α sin θεµνρσ∂να∂ρθ∂σϕ =
1

2π2

∫
S3

dŨ . (6.4.21)

The volume of the 3-sphere is given by 2π2. When the map Ũ covers the sphere
Q times, the integral gives Q times the volume of S3. This finally explains why
the prefactor 1/32π2 was introduced in the original expression for the topological
charge.
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6.5 The Instanton in SU(2)

We have argued mathematically that gauge field configurations fall into topologi-
cally distinct classes. Now we want to construct concrete examples of topologically
nontrivial field configurations. Here we consider instantons, which have Q = 1 and
are solutions of the Euclidean classical field equations. The instanton occurs at a
given instant in Euclidean time. Since these solutions do not exist in Minkowski
space-time they have no direct interpretation in terms of real-time events. Also it is
unclear which role they play in the quantum theory. Instantons describe tunneling
processes between degenerate classical vacuum states. Their existence gives rise to
the θ-vacuum structure of non-Abelian gauge theories.

Here we concentrate on SU(2). This is sufficient, because we have seen that the
SU(n) topological charge can be reduced to the SU(2) case. In this section we go
back to an infinite space with a boundary sphere S3, and we demand that the gauge
field has finite action. Then at space-time infinity the gauge potential is in a pure
gauge

Gµ(x) = U(x)∂µU(x)†. (6.5.1)

Provided the gauge field is otherwise smooth, the topology resides entirely in the
map U . We want to construct a field configuration with topological charge Q = 1,
i.e. one in which the map U covers the group space SU(2) = S3 once, as we integrate
over the boundary sphere S3. The simplest map of this kind is the identity, i.e. each
point at the boundary of space-time is mapped to the corresponding point in group
space, such that

U(x) =
x0 + i~x · ~σ
|x|

, |x| =
√
x2

0 + |~x|2. (6.5.2)

Next we want to extend the gauge field to the interior of space-time without intro-
ducing singularities. We cannot simply maintain the form of eq.(6.5.1) because U
is singular at x = 0. To avoid this singularity we make the ansatz

Gµ(x) = f(|x|)U(x)∂µU(x)†, (6.5.3)

where f(∞) = 1 and f(0) = 0. For any smooth function f with these properties
the above gluon field configuration has Q = 1. Still, this does not mean that we
have constructed an instanton. Instantons are field configurations with Q 6= 0 that
are in addition solutions of the Euclidean classical equations of motion, i.e. they are
minima of the Euclidean action

S[G] = − 1

2g2

∫
d4x Tr[GµνGµν ]. (6.5.4)

Let us consider the following integral

−
∫
d4x Tr[(Gµν ±

1

2
εµνρσGρσ)(Gµν ±

1

2
εµνκλGκλ) =
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−
∫
d4x Tr[GµνGµν ± εµνρσGµνGρσ +GµνGµν ]

= 4g2S[G]± 32π2Q[G]. (6.5.5)

We have integrated a square. Hence it is obvious that

S[G]± 8π2

g2
Q[G] ≥ 0 ⇒ S[G] ≥ 8π2

g2
|Q[G]|, (6.5.6)

i.e. a topologically nontrivial field configuration costs at least a minimum action
proportional to the topological charge. Instantons are configurations with minimum
action, i.e. for them

S[G] =
8π2

g2
|Q[G]|. (6.5.7)

From the above argument it is clear that a minimum action configuration arises only
if

Gµν(x) = ±1

2
εµνρσGρσ(x). (6.5.8)

Configurations that obey this equation with a plus sign are called selfdual. The ones
that obey it with a minus sign are called anti-selfdual. It is instructive to convince
oneself that the above gluon field with

f(|x|) =
|x|2

|x|2 + ρ2
(6.5.9)

is indeed an instanton for any value of ρ. The instanton configuration hence takes
the form

Gµ(x) =
|x|2

|x|2 + ρ2
U(x)∂µU(x)†. (6.5.10)

There is a whole family of instantons with different radii ρ. As a consequence of
scale invariance of the classical action they all have the same action S[G] = 8π2/g2.
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Chapter 7

The Adiabatic Berry Phase

In this chapter we will consider quantum mechanical systems with a Hamiltonian
that depends on some slowly varying external parameters, such that the system
undergoes an adiabatic time evolution. In 1928 Born and Fock derived the adiabatic
theorem in quantum mechanics. According to the theorem, a quantum system
then evolves from an eigenstate of the initial Hamiltonian through the momentary
eigenstates of the time-dependent Hamiltonian. When the Hamiltonian undergoes
a periodic time evolution, the system ultimately returns to the initial eigenstate,
at least up to a complex U(1) phase, known as the Berry phase which was noticed
by Michael Berry in 1983. When the eigenstate is n-fold degenerate, the Berry
phase becomes a non-Abelian U(n) matrix. There is an abstract Abelian or non-
Abelian Berry gauge field in the space of slowly varying external parameters, whose
parallel transport along a closed path in parameter space yields the Berry phase.
Non-Abelian gauge fields even arise in the classical physics of falling cats.

7.1 Abelian Berry Phase of a Spin 1
2 in a Magnetic

Field

Let us consider a spin 1
2

in a time-dependent magnetic field ~B(t). The time-
dependent Hamiltonian then takes the form

H(t) = µ~B(t) · ~σ, (7.1.1)

where ~σ denotes the Pauli matrices, and µ is a magnetic moment.

The states of a spin 1
2

can be parameterized as

|~e〉 = a| ↑〉+ b| ↓〉, |a|2 + |b|2 = 1, (7.1.2)

83
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which gives rise to the projection operator

P (~e) = |~e〉〈~e| = (a| ↑〉+ b| ↓〉)(a∗〈↑ |+ b∗〈↓ |) =

(
|a|2 a∗b
b∗a |b|2

)
=

1

2

(
1 + e3 e1 − ie2

e1 + ie2 1− e3

)
=

1

2
(1I + ~e · ~σ), (7.1.3)

where we have identified

~e = 〈~e|~σ|~e〉 = (a∗b+ b∗a,−ia∗b+ ib∗a, |a|2 − |b|2). (7.1.4)

The vector ~e ∈ S2 associates a spin state with a point on the so-called Bloch sphere.
Thereby we do not distinguish the state |~e〉 from states exp(iα)|~e〉 which differ only
by an irrelevant phase, which cancels in the physical projection operator P (~e) =
|~e〉〈~e|.

Identifying ~e(t) = ± ~B(t)/| ~B(t)| we obtain

H(t)|~e(t)〉〈~e(t)| = H(t)P (t) = µ~B(t) · ~σ1

2
(1I + ~e · ~σ)

=
µ

2
~B(t) · ~σ +

µ

2
~B(t) · ~e(t) =

µ

2
~B(t) · ~σ ± µ

2
| ~B(t)|

= ±µ| ~B(t)||~e(t)〉〈~e(t)|. (7.1.5)

Hence, the state |~e(t)〉 = | ± ~B(t)/| ~B(t)|〉 is a momentary eigenstate of the Hamil-

tonian with eigenvalue ±µ| ~B(t)|.

Let us now consider the time-dependent Schrödinger equation

i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉. (7.1.6)

For a slowly varying external magnetic field, the adiabatic theorem then suggests
the ansatz

|Ψ(t)〉 = exp

(
∓i
∫ t

0

dt′ µ| ~B(t′)|
)

exp(iγ±)|~e(t)〉, (7.1.7)

i.e. the system always remains in a momentary eigenstate |~e(t)〉, but it also accu-
mulates a phase. Inserting this ansatz in the time-dependent Schrödinger equation,
we obtain

i∂t|Ψ(t)〉 =
[
±µ| ~B(t)| − ∂tγ± + i∂t

]
exp

(
∓i
∫ t

0

dt′ µ| ~B(t′)|
)

exp(iγ±)|~e(t)〉,

H(t)|Ψ(t)〉 = ±µ| ~B(t)| exp

(
∓i
∫ t

0

dt′ µ| ~B(t′)|
)

exp(iγ±(t))|~e(t)〉, (7.1.8)

such that
|~e(t)〉∂tγ±(t) = i∂t|~e(t)〉. (7.1.9)
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This equation can be satisfied only when the time-evolution is indeed adiabatic. In
that case, one obtains

∂tγ±(t) = i〈~e(t)|∂t|~e(t)〉. (7.1.10)

The Berry phase is defined for a cyclic variation of the external magnetic field
with the period T , for which ~B(t+ T ) = ~B(t),

γ±(T ) =

∫ T

0

dt ∂tγ±(t) = i

∫ T

0

dt 〈~e(t)|∂t|~e(t)〉. (7.1.11)

Since |~e(t)〉 depends on t only through ~B(t), we can write

|~e(t)〉 = |~e( ~B(t))〉 ⇒ ∂t|~e(t)〉 = ∂t ~B(t) · ~∇B|~e( ~B(t))〉, (7.1.12)

such that

γ±(T ) = i

∫ T

0

dt ∂t ~B(t) ·〈~e( ~B(t))|~∇B|~e( ~B(t))〉 = i

∫
C
d ~B ·〈~e( ~B)|~∇B|~e( ~B)〉. (7.1.13)

This shows that the Berry phase depends only on the curve C along which ~B(t) varies
with time, but not on the velocity of the variation, at least as long as it remains
adiabatic. Consequently, the Berry phase is a purely geometric and not a dynamical
object. This suggests to introduce an abstract vector potential, also known as the
Berry connection,

~A( ~B) = i〈~e( ~B)|~∇B|~e( ~B)〉, (7.1.14)

which is real-valued despite the factor i. The Berry phase is then identified as a
Wilson loop of the abstract Abelian Berry gauge field. It should be pointed out
that this gauge field does not exist in coordinate space, but rather in the space of
external parameters of a quantum system, in this case, in the space of all possible
external magnetic fields ~B.

Let us now make a different choice for the arbitrary phase of a momentary
eigenstate

|~e( ~B)〉′ = exp(iα( ~B))|~e( ~B)〉. (7.1.15)

This implies an Abelian gauge transformation of the vector potential

~A( ~B)′ = ~A( ~B)− ~∇Bα( ~B). (7.1.16)

The Berry phase is gauge invariant, i.e.

γ±(T )′ =

∫
C
d ~B · ~A( ~B)′ =

∫
C
d ~B · [ ~A( ~B)− ~∇Bα( ~B)] = γ±(T ). (7.1.17)
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Let us now associate an abstract Berry field strength with the Abelian vector po-
tential

~F ( ~B) = ~∇B × ~A( ~B), (7.1.18)

which obviously is gauge invariant. Using Stoke’s theorem, the Berry phase can
then be expressed as

γ±(T ) =

∫
C
d ~B · ~A( ~B) =

∫
S

d~s · ~∇B × ~A( ~B) =

∫
S

d~s · ~F ( ~B), (7.1.19)

i.e. it represents the flux of the Berry field strength through a surface S bounded by
the closed curve C.

Let us evaluate the Berry gauge field for the spin 1
2

in an external magnetic field

~B = | ~B|(sin θ cosϕ, sin θ sinϕ, cos θ). (7.1.20)

For ~B = (0, 0, | ~B|) the ground state is given by |~e( ~B)〉 = | ↑〉. The ground state for

a general orientation of ~B is obtained by a rotation

|~e( ~B)〉 = exp(iϕSz) exp(−iθSx)| ↑〉. (7.1.21)

Based on this, it is straightforward to work out

〈~e( ~B)|∂ϕ|~e( ~B)〉 =
i

2
cos θ, 〈~e( ~B)|∂θ|~e( ~B)〉 = 〈~e( ~B)|∂| ~B||~e( ~B)〉 = 0, (7.1.22)

such that one obtains
~A( ~B) = − cos θ

2| ~B| sin θ
~eϕ. (7.1.23)

The corresponding field strength is the one of a “magnetic monopole” in parameter
space

~F ( ~B) = ~∇B × ~A( ~B) = − 1

| ~B| sin θ
∂θ

(
cos θ

2| ~B|

)
~eB =

1

2

~B

| ~B|3
. (7.1.24)

7.2 Non-Abelian Berry Phase

Non-Abelian Berry phases arise when one considers the adiabatic evolution of a set
of n degenerate states, which remain degenerate while some external parameters are
varied. After a slow periodic variation of the external parameters, the initial state
may then not turn back to itself, but may turn into another member of the set of
degenerate states. The Berry phase, which rotates the initial into the final state,
then takes the form of a non-Abelian U(n) matrix.
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As a concrete example, we consider a nuclear spin resonance experiment in which
a probe rotates in a magnetic field. In this case, the interaction of the spin ~S proceeds
via the nuclear quadrupole moment and is given by

H = ω( ~B(t) · ~S)2. (7.2.1)

When ~B = (0, 0, | ~B|), the energy eigenstates are |m〉 with m = −S,−S + 1, ..., S

with eigenvalues Em = ω| ~B(t)|2m2. In particular, the states |m〉 and | − m〉 are
degenerate. Again, we obtain the momentary eigenstates by a rotation

|m( ~B)〉 = exp(iϕSz) exp(−iθSx)|m( ~B)〉. (7.2.2)

In this case, the Berry gauge field is non-Abelian

~A++( ~B) = i〈m( ~B)|~∇B|m( ~B)〉 = −m
2

cos θ

| ~B| sin θ
~eϕ,

~A−−( ~B) = i〈−m( ~B)|~∇B| −m( ~B)〉 =
m

2

cos θ

| ~B| sin θ
~eϕ,

~A+−( ~B) = i〈m( ~B)|~∇B| −m( ~B)〉, ~A−+( ~B) = i〈−m( ~B)|~∇B|m( ~B)〉.(7.2.3)

A straightforward calculation reveals that ~A+−( ~B) and ~A−+( ~B) vanish, unless m =
±1

2
. In that case, one obtains

~A±∓( ~B) =
1

2| ~B|

√
S(S + 1) +

1

4
(±i~eϕ + ~eθ) , (7.2.4)

such that the non-Abelian SU(2) Berry vector potential takes the form

~A( ~B) =
1

2| ~B|

(√
S(S + 1) +

1

4
~eθσ1 +

√
S(S + 1) +

1

4
~eϕσ2 −

cos θ

sin θ
~eϕσ3

)
. (7.2.5)

Under a unitary change U ∈ SU(2) of the two basis states

|m( ~B)〉′ = |n( ~B)〉U( ~B)†nm, (7.2.6)

the Berry gauge field transforms as one would expect for a non-Abelian gauge field

~A( ~B)′ = i′〈n( ~B)|~∇B|m( ~B)〉′ = iU( ~B)〈n( ~B)|~∇B|m( ~B)〉U( ~B)†

= U( ~B) ~A( ~B)U( ~B)† + iU( ~B)~∇BU( ~B)†. (7.2.7)

The corresponding non-Abelian field strength is then given by

~F ( ~B) = ~∇B × ~A( ~B) + i ~A( ~B)× ~A( ~B)

=
~B

2| ~B|3
σ3 +

1

2| ~B|2

[
cos θ

sin θ

√
S(S + 1) +

1

4
~ezσ2 −

(
S(S + 1) +

1

4

)
~ezσ3

]
.

(7.2.8)
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7.3 SO(3) Gauge Fields in Falling Cats

Cats have the ability to land on their feet, even if they are dropped head down from
some height. They twist their body and use their tail, such that their body undergoes
a net rotation. Let us try to understand this phenomenon in mathematical terms.
Somewhat surprisingly, we will encounter a non-Abelian gauge field in the space of
all shapes of the cat’s body, whose non-Abelian Berry phase gives the net rotation
angle of the cat.

Let us discretize the cat by a set of point masses mi at positions ~xi, and let
us imagine that the cat has control over the shape of its body, by influencing the
relative orientation of the point masses. While the cat is in free fall, it does not feel
gravity, at least until it hits the ground. During the fall, we can simply go to the
accelerated center of mass frame of the cat, and then describe the time-dependent
shape of the cat in the absence of gravity. The key to the understanding of this
problem is angular momentum conservation. The angular momentum of the cat is
simply given by

~L =
∑
i

mi~xi ×
d~xi
dt
. (7.3.1)

When the cat is originally released at rest, the angular momentum vanishes and will
remain ~L = 0 until the cat hits the ground, as a consequence of angular momentum
conservation.

Let us now define a possible shape of the cat as a particular configuration of the
points ~xi, with configurations being identified if they differ just by an SO(3) spatial
rotation. Any possible shape can be characterized by a reference configuration ~yi,
which can then be realized in all possible orientations

~xi = O~yi, OTO = OOT = 1I, detO = 1. (7.3.2)

Here O ∈ SO(3) is an orthogonal rotation matrix that rotates the reference con-
figuration ~yi into the general orientation ~xi, keeping the shape fixed. Let us now
assume that, by controlling its body, the cat can send the point masses inside its
body through any time-dependent sequence of shapes, defined by time-dependent
reference configurations ~yi(t) that the cat can choose at will. The question then is
how the reference configuration is rotated by a time-dependent orthogonal rotation
O(t) into the actual position of the cat ~xi(t). This simply follows from angular
momentum conservation

~L =
∑
i

mi~xi(t)×
d~xi(t)

dt

=
∑
i

miO(t)~yi(t)×
d

dt
[O(t)~yi(t)]
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=
∑
i

miO(t)~yi(t)×
[
dO(t)

dt
~yi(t) +O(t)

d~yi(t)

dt

]
= 0, (7.3.3)

which thus implies

O(t)
∑
i

mi~yi(t)×O(t)T
dO(t)

dt
~yi(t) = −O(t)

∑
i

mi~yi(t)×
d~yi(t)

dt
⇒

∑
i

mi~yi(t)×O(t)T
dO(t)

dt
~yi(t) = −

∑
i

mi~yi(t)×
d~yi(t)

dt
= − ~M(t), (7.3.4)

where ~M(t) is the non-conserved “angular momentum” of the reference configura-
tion. We now introduce the anti-Hermitean non-Abelian SO(3) vector potential

A(t) = O(t)T
dO(t)

dt
= iAa(t)T a, T abc = −iεabc. (7.3.5)

Expressed in components, eq.(7.3.4) takes the form∑
i

miεabcy
b
i (t)A

d(t)εdcey
e
i (t) = −Ma(t) ⇒∑

i

mi[y
e
i (t)y

e
i (t)δab − yai (t)ybi (t)]Ab(t) = Ma(t). (7.3.6)

Introducing the moment of inertia tensor

Iab(t) =
∑
i

mi[y
e
i (t)y

e
i (t)δab − yai (t)ybi (t)], (7.3.7)

we finally obtain

Iab(t)A
b(t) = Ma(t) ⇒ ~A(t) = I(t)−1 ~M(t). (7.3.8)

Of course, the reference configuration ~yi for a given shape of the cat can be
chosen arbitrarily. Let us investigate how the vector potential A(t) changes when
the reference configuration is rotated to a new configuration

~yi(t)
′ = Ω(t)~yi(t), Ω ∈ SO(3). (7.3.9)

After such a rotation, the new transformation O′(t) that rotates ~yi(t)
′ into ~xi(t), is

given by

~xi(t) = O(t)′~yi(t)
′ = O(t)′Ω(t)~yi(t) → O(t)′ = O(t)Ω(t)T . (7.3.10)
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The corresponding vector potential then takes the form

A(t)′ = O(t)′
T dO(t)′

dt
= Ω(t)O(t)T

(
dO(t)

dt
Ω(t)T +O(t)

dΩ(t)T

dt

)
= Ω(t)

(
A(t) +

d

dt

)
Ω(t)T . (7.3.11)

Hence, the change of reference configuration for a given shape amounts to an SO(3)
gauge transformation. This is not surprising because the different shapes play the
role of gauge equivalence classes.

Finally, let us calculate the total rotation of the cat during a sequence of shape
changes after which the cat returns to its initial shape. Using

O(t)A(t) =
dO(t)

dt
, (7.3.12)

we obtain

O(T ) = P exp

(∫ T

0

dt A(t)

)
, (7.3.13)

where P denotes path ordering. Hence, when the cat returns from its initial shape
to the same final shape after a time T , its net rotation can be computed as a closed
Wilson loop in an SO(3) gauge field, very much like a non-Abelian Berry phase in
quantum mechanics. Of course, all this does not explain why the cat is actually
able to perform the difficult task of landing on her feet. While it is unlikely that
it has an SO(3) Wilson loop computer hard-wired in its brain, at least our brain is
capable of describing the cat’s motion using the abstract mathematical concept of
non-Abelian gauge fields.

7.4 Final Remarks

One message of all this is that there are gauge fields in many places. They arise
naturally when we use redundant variables to describe Nature, be they fundamental
quantum fields in the Standard Model of particle physics, ambiguous phases of
quantum mechanical wave functions, or standard orientations of falling cats. From
this point of view, gauge fields are clearly a human invention resulting from our
choice of redundant variables. One may speculate whether Nature herself also uses
redundancies in order to realize the phenomena that we describe with gauge theories.
I personally like to think that this may not be the case. Trying to understand
what Nature does (perhaps at the Planck scale) in order to generate effective gauge
theories at low energies is interesting and may perhaps even reveal deep insights into
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the emergence of space-time at short distances. While all this is highly speculative,
there is now doubt that, endowed with great curiosity, theoretical physicists will
continue to use their mathematical capabilities to push the boundaries of current
knowledge further into the unknown. This course may be viewed as an invitation
to participate in this most exciting and potentially quite satisfying enterprise.
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Appendix A

Angular Momentum in Quantum
Mechanics

Angular momentum is a fundamental quantity that is conserved in any known phys-
ical process. Angular momentum conservation is a consequence of the isotropy of
space — the laws of Nature are invariant against spatial rotations. Of course, ro-
tation invariance may be broken explicitly under certain conditions, for example,
in the presence of external electric or magnetic fields. In that case, the subsystem
without the fields is not rotation invariant. Still, the total system behaves in the
same way when everything including the fields is spatially rotated. Angular mo-
mentum is a vector. In quantum mechanics its components cannot be measured
simultaneously because the corresponding operators do not commute. This has in-
teresting consequences for the physical behavior of quantum mechanical particles
under spatial rotations.

A.1 Angular Momentum Commutation Relations

Besides the orbital angular momentum ~L = ~r× ~p familiar from classical mechanics,
quantum mechanical particles can carry an internal angular momentum known as
spin. While orbital angular momentum is quantized in integer units, spin may
be quantized in integer or half-integer units. Interestingly, there is an intimate
connection between spin and statistics: particles with half-integer spin obey Fermi-
Dirac statistics and are thus fermions, while particles with integer spin obey Bose-
Einstein statistics and are hence bosons. This connection between spin and statistics
can be understood in the framework of relativistic quantum field theory — but not
from quantum mechanics alone.
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When particles carry both orbital angular momentum ~L and spin ~S, in general
only their total angular momentum ~J = ~L + ~S is conserved. In that case, one is
confronted with the problem of coupling two angular momenta together. The same
problem arises when several particles add their angular momenta together to the
conserved angular momentum of the total system. Performing the corresponding
angular momentum “gymnastics” is an important tool of the quantum mechanic.
Although the subject is a bit formal, its understanding is vital in atomic, molecular
and particle physics, as well as in other branches of our field.

Let us consider the commutation relations of an arbitrary angular momentum
~J in quantum mechanics. Here ~J may be an orbital angular momentum, a spin,
or any combination of these. For an orbital angular momentum ~L we have already
derived the commutation relation

[Li, Lj] = i~εijkLk, (A.1.1)

from the definition ~L = ~r × ~p and from the fundamental commutation relation
[xi, pj] = i~δij. Now we postulate

[Ji, Jj] = i~εijkJk, (A.1.2)

for any angular momentum in quantum mechanics. In particular, different compo-
nents of the angular momentum vector do not commute with one another. However,
all components commute with the magnitude ~J2 = J2

x +J2
y +J2

z , i.e. [Ji, ~J
2] = 0. As

a consequence, one can construct simultaneous eigenstates of the operator ~J2 and
one component Ji. Usually one chooses Jz, i.e. the arbitrary quantization direction
is then the z-direction. In general, this choice does not imply a physical violation of
rotation invariance. One could have chosen any other quantization axis without any
effect on the physics. When rotation invariance is already broken, for example, by
the direction of an external electric or magnetic field, it is very convenient to choose
the quantization axis along the same direction. As usual, we choose the z-direction
as our quantization axis and we thus construct simultaneous eigenstates |j,m〉 of

both ~J2 and Jz,

~J2|j,m〉 = ~2j(j + 1)|j,m〉, Jz|j,m〉 = ~m|j,m〉. (A.1.3)

It will turn out that both j and m are either integer or half-integer.

For convenience, we introduce the angular momentum raising and lowering op-
erators

J± = Jx ± iJy. (A.1.4)

They obey the commutation relations

[J+, J−] = 2~Jz, [ ~J2, J±] = 0, [Jz, J±] = ±~J±. (A.1.5)



A.2. COUPLING OF ANGULAR MOMENTA 95

We have

JzJ±|j,m〉 = (J±Jz + [Jz, J±])|j,m〉 = ~(m± 1)J±|j,m〉, (A.1.6)

i.e. the state J±|j,m〉 is also an eigenstate of Jz and has the quantum number m±1.
Similarly

~J2J±|j,m〉 = J± ~J
2|j,m〉 = ~2j(j + 1)J±|j,m〉, (A.1.7)

i.e. J±|j,m〉 is still also an eigenstate of ~J2 with the unchanged quantum number j.
Since j determines the magnitude of the angular momentum vector, one expects that
for fixed j the m quantum number that measures the z-component of the angular
momentum vector should be bounded from above and from below. On the other
hand, for any state |j,m〉 with quantum number m one can construct the states

J±|j,m〉 = Cj,m|j,m± 1〉, (A.1.8)

with quantum number m ± 1. The apparent contradiction is resolved only if the
constant Cj,m vanishes for a given m = mmax or m = mmin. Let us compute Cj,m
from the normalization condition 〈j,m± 1|j,m± 1〉 = 1. Using the relation

J†±J± = J∓J± = ~J2 − J2
z ∓ ~Jz, (A.1.9)

we obtain

|Cj,m|2 = |Cj,m|2〈j,m± 1|j,m± 1〉 = 〈j,m|J†±J±|j,m〉
= 〈j,m| ~J2 − J2

z ∓ ~Jz|j,m〉
= ~2[j(j + 1)−m(m± 1)]. (A.1.10)

For fixed j, the maximal value mmax of the quantum number m is determined by
Cj,mmax = 0, which implies mmax = j. Similarly, the minimal value is determined by
Cj,mmin = 0, which implies mmin = −j. Hence, for fixed j there are 2j + 1 possible
m values

m ∈ {mmin,mmin + 1, ...,mmax − 1,mmax} = {−j,−j + 1, ..., j − 1, j}. (A.1.11)

Since the difference mmax − mmin = 2j is an integer, j can be an integer or a
half-integer. Both possibilities are realized in Nature.

A.2 Coupling of Angular Momenta

Let us now couple two angular momenta ~J1 and ~J2 together to a total angular
momentum

~J = ~J1 + ~J2. (A.2.1)
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The angular momenta ~J1 and ~J2 could, for example, be orbital angular momentum
and spin of the same particle, or angular momenta of two different particles. In any
case, since they act in different Hilbert spaces the two angular momentum operators
commute with one another, i.e.

[J1i, J2j] = 0. (A.2.2)

As a consequence, the total angular momentum operator ~J = ~J1 + ~J2 indeed obeys
the usual commutation relations

[Ji, Jj] = [J1i, J1j] + [J2i, J2j] = i~εijk(J1k + J2k) = i~εijkJk. (A.2.3)

Let us assume that the states of subsystem 1 have a fixed quantum number j1 and
are given by |j1,m1〉. Similarly, the states of subsystem 2 have quantum number j2

and are given by |j2,m2〉. Hence, the combined system has (2j1 +1)(2j2 +1) product
states |j1,m1〉|j2,m2〉 which span the Hilbert space of the total system. How does
this space decompose into sectors of definite total angular momentum? It will turn
out that the possible values for j are restricted by

j ∈ {|j1 − j2|, |j1 − j2|+ 1, ..., j1 + j2}. (A.2.4)

Indeed, the total number of states then is

(2|j1− j2|+ 1) + (2|j1− j2|+ 3) + ...+ (2(j1 + j2) + 1) = (2j1 + 1)(2j2 + 1). (A.2.5)

Also the question arises how one can construct states

|(j1, j2)j,m〉 =
∑
m1,m2

Cm1,m2|j1,m1〉|j2,m2〉, (A.2.6)

as linear combinations of the product states? This is the “gymnastics” problem of
coupling together two angular momenta. The factors Cm1,m2 are known as Clebsch-
Gordan coefficients.

A.3 Coupling of Two Spins 1/2

Let us consider the spins of two spin 1/2 particles, for example, a proton and a neu-
tron forming the atomic nucleus of heavy hydrogen (deuterium). The corresponding
bound state of proton and neutron is known as a deuteron. What are the possible
total spins of the coupled system? In this case j1 = j2 = 1/2 and thus

j ∈ {|j1 − j2|, |j1 − j2|+ 1, ..., j1 + j2} = {0, 1}, (A.3.1)
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i.e. the total spin j is either 0 (a singlet) or 1 (a triplet). Altogether, there are four
states. This is consistent because there are also four product states |j1,m1〉|j2,m2〉
with m1 = ±1/2 and m2 = ±1/2. For these four states we introduce the short-hand
notation

|1
2
,
1

2
〉|1

2
,
1

2
〉 = | ↑↑〉, |1

2
,
1

2
〉|1

2
,−1

2
〉 = | ↑↓〉,

|1
2
,−1

2
〉|1

2
,
1

2
〉 = | ↓↑〉, |1

2
,−1

2
〉|1

2
,−1

2
〉 = | ↓↓〉. (A.3.2)

These product states are eigenstates of Jz = J1z + J2z,

Jz| ↑↑〉 = ~(
1

2
+

1

2
)| ↑↑〉 = ~| ↑↑〉,

Jz| ↑↓〉 = ~(
1

2
− 1

2
)| ↑↓〉 = 0, Jz| ↓↑〉 = ~(−1

2
+

1

2
)| ↓↑〉 = 0,

Jz| ↓↓〉 = ~(−1

2
− 1

2
)| ↑↓〉 = −~| ↓↓〉. (A.3.3)

The first and the last of the four states must belong to j = 1 because they have
m = ±1, i.e.

|(1

2
,
1

2
)1, 1〉 = | ↑↑〉, |(1

2
,
1

2
)1,−1〉 = | ↓↓〉. (A.3.4)

The two remaining states have m = 0. One linear combination of them is the m = 0
state of the triplet, and the orthogonal combination is the m = 0 state with j = 0.
In order to identify the m = 0 state with j = 1 we act with the lowering operator

|(1

2
,
1

2
)1, 0〉 =

1√
2
J−|(

1

2
,
1

2
)1, 1〉 =

1√
2

(J1−+J2−)| ↑↑〉 =
1√
2

(| ↑↓〉+ | ↓↑〉). (A.3.5)

The orthogonal combination

|(1

2
,
1

2
)0, 0〉 =

1√
2

(| ↑↓〉 − | ↓↑〉), (A.3.6)

should hence be the state with j = 0. This can be checked explicitly, for example,
by acting with the operator ~J+ = J1+ + J2+, i.e.

~J+|(
1

2
,
1

2
)0, 0〉 = (J1+ + J2+)

1√
2

(| ↑↓〉 − | ↓↑〉) =
1√
2

(| ↑↑〉 − | ↑↑〉) = 0. (A.3.7)

Hence, according to the previous discussion the spin of the deuteron could be 0
or 1. The proton and neutron that form the deuteron nucleus attract each other
through the so-called strong interaction. This interaction is spin-dependent. There
is a term proportional to − ~J1 · ~J2 (where ~J1 and ~J2 are the spin operators of proton
and neutron) in the proton-neutron potential. One can write

~J2 = ( ~J1 + ~J2)2 = ~J2
1 + ~J2

2 + 2 ~J1 · ~J2, (A.3.8)
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and hence

− ~J1 · ~J2 =
1

2
( ~J2

1 + ~J2
2 − ~J2). (A.3.9)

Since both the proton and the neutron have spin 1/2 we have

~J2
1 = ~J2

2 = ~2 1

2
(
1

2
+ 1) =

3

4
~2. (A.3.10)

In the spin singlet state we have ~J2 = 0 and hence

− ~J1 · ~J2|(
1

2
,
1

2
)0, 0〉 =

3

4
~2|(1

2
,
1

2
)0, 0〉. (A.3.11)

In the spin triplet state, on the other hand, ~J2 = 2~2 such that

− ~J1 · ~J2|(
1

2
,
1

2
)1,m〉 = −1

4
~2|(1

2
,
1

2
)1,m〉. (A.3.12)

In the triplet channel the proton-neutron interaction is attractive while in the singlet
channel it is repulsive. As a consequence, the deuteron has spin 1, while in the spin
0 channel there is no bound state.

The strong interaction is mediated by gluons, just as electromagnetic interactions
are mediated by photons. The strong interaction analogs of electrons and positrons
are quarks and anti-quarks — the basic building blocks of protons and neutrons.
There are two u-quarks and one d-quark in each proton. A u-quark has electric
charge 2/3 and a d-quark has −1/3. Hence, the charge of a proton is indeed 2 ×
2/3−1/3 = 1. Similarly, a neutron contains one u-quark and two d-quarks and thus
has charge 2/3 − 2 × 1/3 = 0. Like electrons, quarks are fermions with spin 1/2.
What is the possible total spin of a bound system of three quarks? As we learned
before, two spin 1/2 particles can couple to a total spin j = 0 or j = 1. When a
third spin 1/2 particle is added to the j = 0 state, the total spin is 1/2. If it is
added to the j = 1 state the total spin can be either j−1/2 = 1/2 or j+ 1/2 = 3/2.
Again, the strong interactions between quarks are spin-dependent and they favor
the total spin 1/2 states corresponding to proton and neutron. The spin 3/2 state
also exists but is unstable. It is known in particle physics as the ∆-isobar.

A.4 Coupling of Orbital Angular Momentum and

Spin

Just as there are spin-dependent strong interactions between protons and neutrons or
between quarks, there are also spin-dependent electromagnetic interactions between
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electrons and protons. In particular, there are spin-orbit coupling terms proportional
to

~L · ~S =
1

2
( ~J2 − ~L2 − ~S2) =

~2

2
(j(j + 1)− l(l + 1)− 3

4
). (A.4.1)

Let us consider the coupling of an orbital angular momentum l and a spin s =
1/2 of an electron in more detail. In this case, there are 2(2l + 1) product states
|l,ml〉|s,ms〉. The possible values of the total angular momentum are

j ∈ {|l − s|, l + s} = {l − 1

2
, l +

1

2
}. (A.4.2)

Indeed, there are again

2(l − 1

2
) + 1 + 2(l +

1

2
) + 1 = 2(2l + 1) (A.4.3)

states. The direct product state

|(l, 1

2
) l +

1

2
, l +

1

2
〉 = |l, l〉| ↑〉 (A.4.4)

has m = l + 1/2 and must thus have j = l + 1/2. We can construct the other
states with j = l + 1/2 and with lower m-values by acting with J− = L− + S−. For
example,

|(l, 1

2
) l +

1

2
, l − 1

2
〉 =

1√
2l + 1

J−|l, l〉| ↑〉

=
1√

2l + 1
(L− + S−)|l, l〉| ↑〉

=
1√

2l + 1
(|l, l〉| ↓〉+

√
2l|l, l − 1〉| ↑〉). (A.4.5)

The orthogonal combination

|(l, 1

2
) l − 1

2
, l − 1

2
〉 =

1√
2l + 1

(
√

2l|l, l〉| ↓〉 − |l, l − 1〉| ↑〉), (A.4.6)

has j = l − 1/2 and m = l − 1/2. Again, by acting with J− one can generate all
other states with j = l − 1/2 and smaller m-values.
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Appendix B

The Constituent Quark Model

The dynamics of quarks and gluons, which are permanently confined inside hadrons,
i.e. mesons and baryons, is described by Quantum Chromodynamics (QCD). QCD
is a strngly coupled relativistic quantum field theory, whose dynamics can be inves-
tigated from first principles using the regularization on a space-time lattice. The
constituent quark model, provides a very crude approximation of these dynamics.
It describes baryons as 3-quark states and mesons as quark-anti-quark states in a
rather naive manner. Still, it accounts for the most prominent particle states that
exist in the QCD spectrum. Here we are interested in the constituent quark model
as an application of the group theory of SU(2) and SU(3).

B.1 Isospin Symmetry

Proton and neutron have almost the same masses

Mp = 0.938 GeV, Mn = 0.940 GeV. (B.1.1)

While the proton seems to be absolutely stable, a free neutron decays radioactively
into a proton, an electron and an electron-anti-neutrino n→ p+e+ ν̄e. Protons and
neutrons (the nucleons) are the constituents of atomic nuclei. Originally, Yukawa
postulated a light particle mediating the interaction between protons and neutrons.
This π-meson or pion is a boson with spin 0, which exists in three charge states π+,
π0 and π−. The corresponding masses are

Mπ+ = Mπ− = 0.140 GeV, Mπ0 = 0.135 GeV. (B.1.2)

In pion-nucleon scattering a resonance occurs in the total cross section as a function
of the pion-nucleon center of mass energy. The resonance energy is interpreted as

101
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Hadron Representation I I3 Q S
p, n {2} 1

2
1
2
, −1

2
1, 0 1

2

∆++, ∆+, ∆0, ∆− {4} 3
2

3
2
, 1

2
, −1

2
, −3

2
2, 1, 0, -1 3

2

π+, π0, π− {3} 1 1, 0, -1 1, 0, -1 0
ρ+, ρ0, ρ− {3} 1 1, 0, -1 1, 0, -1 1

Table B.1: The isospin classification of hadrons.

the mass of an unstable particle — the so-called ∆-isobar. One may view the ∆-
particle as an excited state of the nucleon. It exists in four charge states ∆++, ∆+,
∆0 and ∆− with masses

M∆++ ≈M∆+ ≈M∆0 ≈M∆− ≈ 1.232 GeV (B.1.3)

Similar to pion-nucleon scattering there is also a resonance in pion-pion scattering.
This so-called ρ-meson comes in three charge states ρ+, ρ0 and ρ− with masses

Mρ+ ≈Mρ0 ≈Mρ− ≈ 0.768 GeV. (B.1.4)

Particles with different electric charges have (almost) degenerate masses, and it is
natural to associate this with an (approximate) symmetry. This so-called isospin
symmetry is similar to the ordinary spin SU(2) rotational symmetry. Isospin is,
however, not related to space-time transformations, it is an intrinsic symmetry.
As we know each total spin S = 0, 1/2, 1, 3/2, ... is associated with an irreducible
representation of the SU(2)S rotation group containing 2S + 1 states distinguished
by their spin projection

Sz = −S,−S + 1, ..., S − 1, S. (B.1.5)

In complete analogy the representations of the SU(2)I isospin symmetry group are
characterized by their total isospin I = 0, 1/2, 1, 3/2, .... The states of an isospin
representation are distinguished by their isospin projection

I3 = −I,−I + 1, ..., I − 1, I. (B.1.6)

A representation with isospin I contains 2I+1 states and is denoted by {2I+1}. We
can classify the hadrons by their isospin. This is done in table B.1. For the baryons
(nucleon and ∆) isospin projection and electric charge are related by Q = I3 + 1

2
,

and for the mesons (π and ρ) Q = I3.

Isospin is an (approximate) symmetry of the strong interactions. For example,
the proton-pion scattering reaction p+ π → ∆ is consistent with isospin symmetry
because the coupling of the isospin representations of nucleon and pion

{2} ⊗ {3} = {2} ⊕ {4} (B.1.7)
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does indeed contain the quadruplet isospin 3/2 representation of the ∆-isobar. The
isospin symmetry of the hadron spectrum indicates that the strong interactions are
charge independent. This is no surprise because the charge Q is responsible for the
electromagnetic but not for the strong interactions.

B.2 Nucleon and ∆-Isobar in the Quark Model

We want to approach the question of the hadronic constituents by investigating vari-
ous symmetries. First we consider isospin. Since the hadrons form isospin multiplets
the same should be true for their constituents. The only SU(2) representation from
which we can generate all others is the fundamental representation — the isospin
doublet {2} with I = 1/2 and I3 = ±1/2. We identify the two states of this multiplet
with the constituent quarks up (I3 = 1/2) and down (I3 = −1/2). A constituent
quark is a quasiparticle carrying the same quantum numbers as a fundamental (cur-
rent) quark, but also containing numerous gluons. After all, a constituent quark is
not a very well defined object. We can view it as a basic building block for hadrons
that plays a role in some simple phenomenological models for the strong interactions.
Still, the concept of constituent quarks leads to a rather successful group theoretical
classification scheme for hadrons.

Since the ∆-isobar has isospin 3/2 it contains at least three constituent quarks.
We couple

{2} ⊗ {2} ⊗ {2} = ({1} ⊕ {3})⊗ {2} = {2} ⊕ {2} ⊕ {4}, (B.2.1)

and we do indeed find a quadruplet. For the charges of the baryons we have

Q = I3 +
1

2
=

3∑
q=1

(I3q +
1

6
) =

3∑
q=1

Qq, (B.2.2)

and hence we obtain for the charges of the quarks

Qq = I3q +
1

6
, Qu =

1

2
+

1

6
=

2

3
, Qd = −1

2
+

1

6
= −1

3
. (B.2.3)

The quarks have fractional electric charges. Using Clebsch-Gordon coefficients of
SU(2) one finds

1 2 3
3/2 = uuu ≡ ∆++,

1 2 3
1/2 =

1√
3

(uud+ udu+ duu) ≡ ∆+,

1 2 3
−1/2 =

1√
3

(udd+ dud+ ddu) ≡ ∆0,

1 2 3
−3/2 = ddd ≡ ∆−. (B.2.4)
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These isospin states are completely symmetric against permutations of the con-
stituent quarks.

We write the general coupling of the three quarks as

1 ⊗ 2 ⊗ 3 = 1 2 3 ⊕
1 2
3 ⊕

1 3
2 ⊕ 3

2
1

. (B.2.5)

Translated into SU(2) language this equation reads

{2} ⊗ {2} ⊗ {2} = {4} ⊕ {2} ⊕ {2} ⊕ {0}. (B.2.6)

Here {0} denotes an empty representation — one that cannot be realized in SU(2)
because the corresponding Young tableau has more than two rows. We identify the
totally symmetric representation as the four charge states of the ∆-isobar, and we

write as before 1 2 3
I3 .

Before we can characterize the state of the ∆-isobar in more detail we must
consider the other symmetries of the problem. The ∆-isobar is a resonance in the
scattering of spin 1/2 nucleons and spin 0 pions. The experimentally observed spin of
the resonance is 3/2. To account for this we associate a spin 1/2 with the constituent
quarks. Then, in complete analogy to isospin, we can construct a totally symmetric
spin representation for the ∆-particle

1 2 3
3/2 = ↑↑↑,

1 2 3
1/2 =

1√
3

(↑↑↓ + ↑↓↑ + ↓↑↑),

1 2 3
−1/2 =

1√
3

(↑↓↓ + ↓↑↓ + ↓↓↑),

1 2 3
−3/2 = ↓↓↓ . (B.2.7)

The isospin-spin part of the ∆-isobar state hence takes the form

|∆I3Sz〉 = 1 2 3
I3

1 2 3
Sz . (B.2.8)

This state is symmetric with respect to both isospin and spin. Consequently, it is
symmetric under simultaneous isospin-spin permutations. For illustrative purposes
we write down the state for a ∆+ particle with spin projection Sz = 1/2

|∆1

2

1

2
〉 =

1

3
(u ↑ u ↑ d ↓ +u ↑ u ↓ d ↑ +u ↓ u ↑ d ↑

+ u ↑ d ↑ u ↓ +u ↑ d ↓ u ↑ +u ↓ d ↑ u ↑
+ d ↑ u ↑ u ↓ +d ↑ u ↓ u ↑ +d ↓ u ↑ u ↑). (B.2.9)



B.2. NUCLEON AND ∆-ISOBAR IN THE QUARK MODEL 105

One sees explicitly that this state is totally symmetric.

As we have seen, the Young tableau is associated with the isodoublet {2}.
Hence, it is natural to expect that the nucleon state can be constructed from it.

Now we have two possibilities

1 2
3

I3 and

1 3
2

I3 corresponding to symmetric or
antisymmetric couplings of the quarks 1 and 2. Using Clebsch-Gordon coefficients
one finds

1 2
3

1/2 =
1√
6

(2uud− udu− duu),

1 2
3

−1/2 =
1√
6

(udd+ dud− 2ddu),

1 3
2

1/2 =
1√
2

(udu− duu),

1 3
2

−1/2 =
1√
2

(udd− dud). (B.2.10)

Proton and neutron have spin 1/2. Hence, we have two possible coupling schemes
1 2
3

Sz and

1 3
2

Sz . We now want to combine the mixed isospin and spin permuta-
tion symmetries to an isospin-spin representation of definite permutation symmetry.
This requires to reduce the inner product

I3 × Sz = I3Sz ⊕ I3Sz ⊕ I3Sz (B.2.11)

in S3. The two isospin and spin representations can be coupled to a symmetric,
mixed or antisymmetric isospin-spin representation. As for the ∆-isobar we want to
couple isospin and spin symmetrically. To do this explicitly, we need the Clebsch-
Gordon coefficients of the group S3. One finds

|NI3Sz〉 =
1√
2

(

1 2
3

I3

1 2
3

Sz +

1 3
2

I3

1 3
2

Sz). (B.2.12)

In our construction we have implicitly assumed that the orbital angular momen-
tum of the constituent quarks inside a hadron vanishes. Then the orbital state is
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completely symmetric in the coordinates of the quarks. The orbital part of the

baryon wave function therefore is described by the Young tableau . Since
also the isospin-spin part is totally symmetric, the baryon wave function is com-
pletely symmetric under permutations of the quarks. Since we have treated con-
stituent quarks as spin 1/2 fermions, this contradicts the Pauli principle which re-
quires a totally antisymmetric fermion wave function, and hence the Young tableau

. To satisfy the Pauli principle the color symmetry comes to our rescue. In

SU(3)c, corresponds to a singlet representation, which means that baryons are
color-neutral. Since we have three colors we can now completely antisymmetrize
three quarks

=
1√
6

(rgb− rbg + gbr − grb+ brg − bgr). (B.2.13)

The color symmetry is the key to the fundamental understanding of the strong
interactions. As opposed to isospin, color is an exact and even local symmetry.

B.3 Anti-Quarks and Mesons

We have seen that the baryons (nucleon and ∆) consist of three constituent quarks
(isospin doublets, spin doublets, color triplets). Now we want to construct the
mesons (pion and ρ) in a similar manner. Since these particles have spin 0 and 1
respectively, they must contain an even number of constituent quarks. When we use
two quarks, i.e. when we construct states like uu, ud, or dd, the resulting electric
charges are 4/3, 1/3, and −2/3 in contradiction to experiment. Also the coupling
of two color triplets

⊗ = ⊕
{3} ⊗ {3} = {6} ⊕ {3̄}, (B.3.1)

does not contain a singlet as desired by the confinement hypothesis.

We have seen already that a representation together with its conjugate represen-
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tation can always be coupled to a singlet. In SU(3) this corresponds to

⊗ = ⊕
{3̄} ⊗ {3} = {1} ⊕ {8}, (B.3.2)

Hence it is natural to work with anti-quarks. Anti-quarks are isospin doublets, spin
doublets, and color anti-triplets. We have quarks ū and d̄ with electric charges
Qū = −2/3 and Qd̄ = 1/3. Now we consider combinations of quark and anti-quark
ud̄, uū, dd̄, and dū, which have charges 1, 0, and −1 as we need them for the mesons.
First we couple the isospin wave function

⊗ = ⊕
{2} ⊗ {2} = {3} ⊕ {1}, (B.3.3)

and we obtain

1 = ud̄,

0 =
1√
2

(uū− dd̄),

−1 = dū,

0 =
1√
2

(uū+ dd̄). (B.3.4)

We proceed analogously for the spin and we obtain

|πI3Sz〉 = I3 Sz ,

|ρI3Sz〉 = I3 Sz . (B.3.5)

Since quarks and anti-quarks are distinguishable particles (for example they have
different charges) we don’t have to respect the Pauli principle in this case. As
opposed to the baryons here the coupling to color singlets follows only from the
confinement hypothesis.

Of course, we can combine isospin and spin wave functions also in a different
way

|ωI3Sz〉 = I3 Sz ,

|η′I3Sz〉 = I3 Sz . (B.3.6)
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Indeed one observes mesons with these quantum numbers with massesMω = 0.782GeV
and Mη′ = 0.958GeV.

B.4 Strange Hadrons

Up to now we have considered hadrons that consist of up and down quarks and their
anti-particles. However, one also observes hadrons containing strange quarks. The
masses of the scalar (S = 0) mesons are given by

Mπ = 0.138GeV,MK = 0.496GeV,Mη = 0.549GeV,Mη′ = 0.958GeV, (B.4.1)

while the vector (S = 1) meson masses are

Mρ = 0.770GeV,Mω = 0.783GeV,MK∗ = 0.892GeV,Mϕ = 1.020GeV. (B.4.2)

Altogether we have nine scalar and nine vector mesons. In each group we have so
far classified four (π+, π0, π−, η′ and ρ+, ρ0, ρ−, ω). The number four resulted from
the SU(2)I isospin relation

{2̄} ⊗ {2} = {1} ⊕ {3}. (B.4.3)

The number nine then suggests to consider the corresponding SU(3) identity

{3̄} ⊗ {3} = {1} ⊕ {8}. (B.4.4)

Indeed we obtain nine mesons if we generalize isospin to a larger symmetry SU(3)F .
This so-called flavor group has nothing to with with the color symmetry SU(3)c. It
is only an approximate symmetry of QCD, with SU(2)I as a subgroup. In SU(3)F
we have another quark flavor s — the strange quark.

The generators of SU(3) can be chosen as follows

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(B.4.5)
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Two of the generators commute with each other [λ3, λ8] = 0. We say that the group
SU(3) has rank 2. One can now identify the generators of the isospin subgroup
SU(2)I

I1 =
1

2
λ1, I2 =

1

2
λ2, I3 =

1

2
λ3. (B.4.6)

Also it is convenient to introduce the so-called strong hypercharge

Y =
1√
3
λ8, (B.4.7)

(not to be confused with the generator of U(1)Y gauge transformations in the stan-
dard model). Then I2, I3, and Y commute with each other, and we can characterize
the states of an SU(3)F multiplet by their isospin quantum numbers and by their
hypercharge. Starting with the SU(3)F triplet we have

I2u =
1

2
(
1

2
+ 1)u =

3

4
u, I3u =

1

2
u, Y u =

1

3
u,

I2d =
1

2
(
1

2
+ 1)d =

3

4
d, I3d = −1

2
d, Y d =

1

3
d,

I2s = 0, I3s = 0, Y s = −2

3
s. (B.4.8)

The electric charge is now given by

Q = I3 +
1

2
Y, (B.4.9)

such that

Qu =
2

3
, Qd = −1

3
, Qs = −1

3
, (B.4.10)

i.e. the charge of the strange quark is the same as the one of the down quark. If
SU(3)F would be a symmetry as good as SU(2)I the states in an SU(3)F multiplet
should be almost degenerate. This is, however, not quite the case, and SU(3)F is
only approximately a symmetry of QCD.

Of course, we can also include the s quark in baryons. Then we have

{3} ⊗ {3} ⊗ {3} = {10} ⊕ 2{8} ⊕ {1} (B.4.11)

compared to the old SU(2)I result

{2} ⊗ {2} ⊗ {2} = {4} ⊕ 2{2} ⊕ {0}. (B.4.12)

Indeed one observes more baryons than just nucleon and ∆-isobar.



110 APPENDIX B. THE CONSTITUENT QUARK MODEL

The baryon masses for the spin 1/2 baryons are

MN = 0.939GeV, MΛ = 1.116GeV, MΣ = 1.193GeV, MΞ = 1.318GeV, (B.4.13)

while the spin 3/2 baryon masses are

M∆ = 1.232GeV, MΣ∗ = 1.385GeV, MΞ∗ = 1.530GeV, MΩ = 1.672GeV. (B.4.14)

Proton and neutron are part of an octet: is {2} in SU(2)I and {8} in SU(3)F .

The ∆-isobar is part of a decouplet: is {4} in SU(2)I and {10} in SU(3)F .

One does not find an SU(3)F singlet . This is because a spatially symmetric color
singlet wave function is totally antisymmetric. To obtain a totally antisymmetric

wave function also the spin part should transform as . Of course, in SU(2)S this
is impossible.

We want to assume that the SU(3)F symmetry is explicitly broken because the
s quark is heavier than the u and d quarks. Based on the quark content one would
expect

MΣ∗ −M∆ = MΞ∗ −MΣ∗ = MΩ −MΞ∗ = Ms −Mq. (B.4.15)

In fact one finds experimentally

MΣ∗−M∆ = 0.153GeV, MΞ∗−MΣ∗ = 0.145GeV, MΩ−MΞ∗ = 0.142GeV. (B.4.16)

B.5 Gellman-Okubo Baryon Mass Formula

We have seen that the constituent quark model leads to a successful classification
of hadron states in terms of flavor symmetry. The results about the hadron dy-
namics are, however, of more qualitative nature, and the assumption that a hadron
is essentially a collection of a few constituent quarks is certainly too naive. The
fundamental theory of the strong interactions is QCD. Here we want to use very
basic QCD physics together with group theory to describe patterns in the hadron
spectrum. The interaction between quarks and gluons is flavor-independent, and
therefore SU(3)F symmetric. Also the gluon self-interaction is flavor symmetric be-
cause the gluons are flavor singlets. A violation of flavor symmetry results only from
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the quark mass matrix

M =

 mu 0 0
0 md 0
0 0 ms

 . (B.5.1)

We want to assume that u and d quark have the same mass mq, while the s quark
is heavier (ms > mq). The quark mass matrix can be written as

M =
2mq +ms

3

 1 0 0
0 1 0
0 0 1

+
mq −ms

3

 1 0 0
0 1 0
0 0 −2


=

2mq +ms

3
1I +

mq −ms√
3

λ8. (B.5.2)

The mass matrix contains an SU(3)F singlet as well as an octet piece. Correspond-
ingly, the QCD Hamilton operator can be written as

HQCD = H1 +H8. (B.5.3)

We want to assume that H8 is small and can be treated as a perturbation. Then
we first consider H1 alone. This is justified if the mass difference mq −ms is small.
Since H1 is SU(3)F symmetric we expect degenerate states in SU(3)F multiplets —
the hadron octets and decouplets. Here we assume that the flavor symmetry is not
spontaneously broken. This should indeed be correct for QCD.

Let us start with the baryons. The eigenstates of H1 are denoted by |B1Y II3〉

H1|B1Y II3〉 = MB1|B1Y II3〉. (B.5.4)

We use degenerate perturbation theory to first order in H8 and obtain

MB = MB1 + 〈B1Y II3|H8|B1Y II3〉. (B.5.5)

A diagonalization in the space of degenerate states is not necessary, since H8 trans-
forms as the λ8 component of an octet, and can therefore not change Y , I, and I3.
Next we will compute the required matrix elements using group theory. Starting
with the baryon decouplet, we obtain a nonzero value only if {8} and {10} can couple
to {10}. Indeed the decouplet appears in the reduction. Using the Wigner-Eckart
theorem we obtain

〈B1Y II3|H8|B1Y II3〉 = 〈B1||H8||B1〉〈{10}Y II3|{8}000{10}Y II3〉, (B.5.6)

where 〈B1||H8||B1〉 is a reduced matrix element, and the second factor is an SU(3)F
Clebsch-Gordon coefficient given by

〈{10}Y II3|{8}000{10}Y II3〉 =
Y√

8
. (B.5.7)
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Then we obtain for the baryon masses in the decouplet

MB = MB1 + 〈B1||H8||B1〉
Y√

8
, (B.5.8)

and hence

MΣ∗ −M∆ = MΞ∗ −MΣ∗ = MΩ −MΞ∗ = − 1√
8
〈B1||H8||B1〉. (B.5.9)

Indeed, as we saw before, the three mass differences are almost identical. In view
of the fact that we have just used first order perturbation theory, this is quite
remarkable.

Next we consider the mass splittings in the baryon octet. Here we must ask if
{8} and {8} can couple to {8}. One finds

{8} ⊗ {8} = {27} ⊕ {10} ⊕ {1̄0} ⊕ 2{8} ⊕ {1}. (B.5.10)

Hence there are even two ways to couple two octets to an octet. One is symmetric,
the other is antisymmetric under the exchange of the two octets. We can write

〈B1Y II3|H8|B1Y II3〉 = 〈B1||H8||B1〉s〈{8}Y II3|{8}000{8}Y II3〉s
+ 〈B1||H8||B1〉a〈{8}Y II3|{8}000{8}Y II3〉a.

(B.5.11)

The Clebsch-Gordon coefficients are given by

〈{8}Y II3|{8}000{8}Y II3〉s =
1√
5

(I(I + 1)− 1

4
Y 2 − 1),

〈{8}Y II3|{8}000{8}Y II3〉a =

√
3

4
Y, (B.5.12)

and we obtain for the baryon octet

MB = MB1 + 〈B1||H8||B1〉s
1√
5

(I(I+ 1)− 1

4
Y 2− 1) + 〈B1||H8||B1〉a

√
3

4
Y. (B.5.13)

These formulas for the baryon masses were first derived by Gellman and Okubo.
From the octet formula one obtains

2MN + 2MΞ = 4MB1 + 〈B1||H8||B1〉s
4√
5

(
3

4
− 1

4
− 1),

MΣ + 3MΛ = 4MB1 + 〈B1||H8||B1〉s
1√
5

((2− 1) + 3(−1)),

2MN + 2MΞ = MΣ + 3MΛ. (B.5.14)

Experimentally the two sides of the last equation give 1.129 GeV and 1.135 GeV in
excellent agreement with the theory.



Appendix C

Structure of Minkowski
Space-Time

Relativistic theories such as Einstein’s special relativity or Maxwell’s electrodynam-
ics are invariant not only under spatial translations and rotations but also under
Lorentz transformations that rotate spatial and temporal coordinates into one an-
other. The resulting enlarged invariance is known as Lorentz invariance (against
space-time rotations) or as Poincaré invariance against space-time rotations and
translations.

C.1 Lorentz Transformations

Hermann Minkowski was first to realize that in relativistic theories space and time
(which are separate entities in Newtonian mechanics) are naturally united to space-
time. A point in Minkowski space-time is described by four coordinates — one for
time and three for space — which form a 4-vector

xµ = (x0, x1, x2, x3) , x0 = c t . (C.1.1)

In particular, the time t (multiplied by the velocity of light c) plays the rôle of the
zeroth component of the 4-vector. From now on, we choose natural units and simply
put c = 1. Minkowski’s space-time does not have Euclidean geometry. In particular,
the length squared of the 4-vector xµ is given by

s2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 , (C.1.2)
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and may thus be negative. Besides the contra-variant vector xµ it is useful to
introduce an equivalent form

xµ = (x0, x1, x2, x3) , (C.1.3)

the co-variant 4-vector. Both the co- and the contra-variant 4-vectors contain the
same physical information. Their components are simply related by

x0 = x0 , x1 = −x1 , x2 = −x2 , x3 = −x3 . (C.1.4)

The length squared of the 4-vector can then be written as

3∑
µ=0

xµx
µ = (x0)2 − (x1)2 − (x2)2 − (x3)2 = s2 . (C.1.5)

Instead of always writing sums over space-time indices µ explicitly, Einstein has
introduced a summation convention according to which repeated indices (one co-
and one contra-variant index) will automatically be summed. Using Einstein’s sum-
mation convention the above equation simply takes the form

xµx
µ = (x0)2 − (x1)2 − (x2)2 − (x3)2 = s2 . (C.1.6)

The summation over µ is no longer written explicitly, but is still implicitly under-
stood, because the index µ occurs twice (once as a co- and once as a contra-variant
one).

The norm of a 4-vector induces a corresponding metric via

(x0)2 − (x1)2 − (x2)2 − (x3)2 =
3∑

µ=0

3∑
ν=0

gµνx
µxν = gµνx

µxν . (C.1.7)

In the last step, we have again used Einstein’s summation convention and have
dropped the explicit sums over the repeated indices µ and ν. The metric tensor g
with the elements gµν is a 4× 4 matrix given by

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (C.1.8)

The metric tensor can also be used to relate co- and contra-variant 4-vectors by
lowering a contra-variant index, i.e.

xµ = gµνx
ν =

3∑
ν=0

gµνx
ν . (C.1.9)
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Again, the repeated index ν is summed over, while the unrepeated index µ is not
summed. Let us also introduce the inverse metric g−1 with the components gµν

which is given by

g−1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (C.1.10)

and which obeys
gg−1 = 1I . (C.1.11)

In components this relation takes the form

gµνg
νρ =

3∑
ν=0

gµνg
νρ = δ ρ

µ , (C.1.12)

where δ ρ
µ is just the Kronecker symbol, i.e. it represents the matrix elements of the

unit matrix 1I. The inverse metric can now be used to raise co-variant indices, e.g.

xµ = gµνxν =
3∑

ν=0

gµνxν . (C.1.13)

Let us ask under what kind of rotations the length squared of a 4-vector is
invariant. The rotated 4-vector can be written as

x′
µ

= Λµ
νx

ν , (C.1.14)

where Λ is a 4× 4 space-time rotation matrix. Similarly, we obtain

x′µ = gµνx
′ν = gµνΛ

ν
ρx

ρ . (C.1.15)

The length squared of x′µ is then given by

s′
2

= x′µx
′µ = gµνΛ

ν
ρx

ρΛµ
σx

σ . (C.1.16)

It is invariant under space-time rotations, i.e. s′2 = s2, only if

gµνΛ
ν
ρΛ

µ
σ = gρσ . (C.1.17)

This can be rewritten as
ΛT µ
σ gµνΛ

ν
ρ = gTσρ , (C.1.18)

or equivalently as the matrix multiplication

ΛTgΛ = gT = g . (C.1.19)
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This condition is the Minkowski space-time analog of the Euclidean space condition
ΩTΩ = 1I for orthogonal spatial rotations. One now obtains

x′µ = gµνΛ
ν
ρx

ρ = gµνΛ
ν
ρg
ρσxσ = [gΛg−1] σµ xσ = xσ[gΛg−1]T

σ

µ = xσΛ−1σ
µ . (C.1.20)

Here we have used eq.(C.1.19) which leads to

[gΛg−1]T = g−1ΛTg = Λ−1 . (C.1.21)

Finally, as a consequence of eq.(C.1.20) we obtain

xν = x′µΛµ
ν . (C.1.22)

Space-time rotations which obey eq.(C.1.19) are known as Lorentz transformations.

The distance squared in space-time between two 4-vectors xµa and xµb is given by

(∆s)2 = (x0
a − x0

b)
2 − (x1

a − x1
b)

2 − (x2
a − x2

b)
2 − (x3

a − x3
b)

2 , (C.1.23)

and may again be negative. This distance is invariant under both Lorentz transfor-
mations Λ and space-time translations dµ, i.e. (∆s′)2 = (∆s)2, with

x′a
µ

= Λµ
νx

ν
a + dµ , x′b

µ
= Λµ

νx
ν
b + dµ . (C.1.24)

Lorentz transformations and space-time translations again form a group — the
Poincaré group — which contains the Lorentz group as a subgroup.

C.2 Gradient as a 4-Vector and d’Alembert Op-

erator

In order to do field theory in manifestly Lorentz-invariant form, we also need to
combine temporal and spatial derivatives to a 4-vector. Let us introduce

∂µ = (∂0, ∂1, ∂2, ∂3) =

(
∂

∂x0

,
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
. (C.2.1)

How does this object transform under Lorentz transformations? Using eq.(C.1.22)
one obtains

∂µ′ =
∂

∂x′µ
=
∂xν
∂x′µ

∂

∂xν
= Λµ

ν∂
ν . (C.2.2)

This shows that ∂µ indeed transforms as a contra-variant 4-vector. Similarly, one
can define the co-variant 4-vector

∂µ = (∂0, ∂1, ∂2, ∂3) =

(
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (C.2.3)
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One can form the scalar product of the co- and contra-variant derivative 4-
vectors. In this way one obtains a second derivative operator which transforms
as a space-time scalar, i.e. it is invariant under Lorentz transformations. This
Minkowski space-time analog of the Laplace operator in Euclidean space is known
as the d’Alembert operator and is given by

2 = ∂µ∂
µ =

∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

. (C.2.4)
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Appendix D

Particle in an Electromagnetic
Field

In this appendix we consider the quantum mechanics of a charged particle (e.g.
an electron) in a general classical external electromagnetic field. In principle, the
electromagnetic field itself should also be treated quantum mechanically. This is
indeed possible and naturally leads to quantum electrodynamics (QED). QED is
a relativistic quantum field theory — a subject beyond the scope of this course.
Here we will limit ourselves to classical electrodynamics. Hence, we will only treat
the charged particle moving in the external field (but not the field itself) quantum
mechanically.

D.1 The Classical Electromagnetic Field

Let us investigate the quantum mechanical motion of a charged particle in a general
classical external electromagnetic field. For this purpose, we remind ourselves of
Maxwell’s equations

~∇ · ~E(~x, t) = 4πρ(~x, t),

~∇× ~E(~x, t) +
1

c
∂t ~B(~x, t) = 0,

~∇ · ~B(~x, t) = 0,

~∇× ~B(~x, t)− 1

c
∂t ~E(~x, t) =

4π

c
~j(~x, t). (D.1.1)
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Adding the time-derivative of the first and c times the divergence of the last equation
one obtains the continuity equation

∂tρ(~x, t) + ~∇ ·~j(~x, t) = 0, (D.1.2)

which guarantees charge conservation.

The electromagnetic fields ~E(~x, t) and ~B(~x, t) can be expressed in terms of scalar

and vector potentials Φ(~x, t) and ~A(~x, t) as

~E(~x, t) = −~∇Φ(~x, t)− 1

c
∂t ~A(~x, t),

~B(~x, t) = ~∇× ~A(~x, t). (D.1.3)

Then the homogeneous Maxwell equations

~∇× ~E(~x, t) +
1

c
∂t ~B(~x, t)

= −~∇× ~∇ · Φ(~x, t)− 1

c
~∇× ∂t ~A(~x, t) +

1

c
∂t~∇× ~A(~x, t) = 0,

~∇ · ~B(~x, t) = ~∇ · ~∇× ~A(~x, t) = 0, (D.1.4)

are automatically satisfied. The inhomogeneous equations can be viewed as four
equations for the four unknown functions Φ(~x, t) and ~A(~x, t).

All fundamental forces in Nature are described by gauge theories. This includes
the electromagnetic, weak, and strong forces and even gravity. Gauge theories have
a high degree of symmetry. In particular, their classical equations of motion (such
as the Maxwell equations in the case of electrodynamics) are invariant against local
space-time dependent gauge transformations. In electrodynamics a gauge transfor-
mation takes the form

Φ(~x, t)′ = Φ(~x, t) +
1

c
∂tϕ(~x, t),

~A(~x, t)′ = ~A(~x, t)− ~∇ϕ(~x, t). (D.1.5)

Under this transformation the electromagnetic fields

~E(~x, t)′ = −~∇Φ(~x, t)′ − 1

c
∂t ~A(~x, t)′ = −~∇Φ(~x, t)− 1

c
∂t ~A(~x, t)

− 1

c
~∇∂tϕ(~x, t) +

1

c
∂t~∇ϕ(~x, t) = ~E(~x, t),

~B(~x, t)′ = ~∇× ~A(~x, t)′ = ~∇× ~A(~x, t)− ~∇× ~∇ϕ(~x, t) = ~B(~x, t),

(D.1.6)
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remain unchanged — they are gauge invariant. As a consequence, Maxwell’s equa-
tions themselves are gauge invariant as well. In fact, in a gauge theory only gauge in-
variant quantities have a physical meaning. The scalar and vector potentials Φ(~x, t)

and ~A(~x, t) vary under gauge transformations and are not physically observable. In-
stead they are mathematical objects with an inherent unphysical gauge ambiguity.
Instead, as gauge invariant quantities, the electromagnetic fields ~E(~x, t) and ~B(~x, t)
are physically observable.

D.2 Classical Charged Particle in an External Elec-

tromagnetic Field

The motion of a point particle is governed by Newton’s equation

m~a(t) = ~F (t). (D.2.1)

For a particle with charge −e moving in an external electromagnetic field the force
is given by

~F (t) = −e[ ~E(~x(t), t) +
~v(t)

c
× ~B(~x(t), t)]. (D.2.2)

Newton’s equation can be derived from the action

S[~x(t)] =

∫
dt

m

2
~v(t)2 −

∫
dtd3y [ρ(~y, t)Φ(~y, t)−~j(~y, t) · 1

c
~A(~y, t)], (D.2.3)

where

ρ(~y, t) = −eδ(~y − ~x(t)),
~j(~y, t) = −e~v(t)δ(~y − ~x(t)), (D.2.4)

are the charge and current densities of the charged particle at position ~x(t). It is
easy to show that charge is conserved, i.e.

∂tρ(~y, t) + ~∇ ·~j(~y, t) = 0. (D.2.5)

Inserting eq.(D.2.4) into eq.(D.2.3), for the action one obtains

S[~x(t)] =

∫
dt [

m

2
~v(t)2 + eΦ(~x(t), t)− e~v(t)

c
· ~A(~x(t), t)]. (D.2.6)

This action is indeed invariant under gauge transformations because∫
dt [Φ(~x(t), t)′ − ~v(t)

c
· ~A(~x(t), t)′] =∫

dt [Φ(~x(t), t) +
1

c
∂tϕ(~x(t), t)− ~v(t)

c
· ( ~A(~x(t), t)− ~∇ϕ(~x(t), t))] =∫

dt [Φ(~x(t), t)− ~v(t)

c
· ~A(~x(t), t) +

1

c

d

dt
ϕ(~x(t), t)], (D.2.7)
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and because the total derivative

d

dt
ϕ(~x(t), t) = ∂tϕ(~x(t), t) + ~v · ~∇ϕ(~x(t), t), (D.2.8)

integrates to zero as long as ϕ(~x(t), t) vanishes in the infinite past and future. Iden-
tifying the Lagrange function

L =
m

2
~v(t)2 + eΦ(~x(t), t)− e~v(t)

c
· ~A(~x(t), t), (D.2.9)

it is straightforward to derive Newton’s equation as the Euler-Lagrange equation

d

dt

δL

δvi(t)
− δL

δxi
= 0. (D.2.10)

The theory can also be formulated in terms of a classical Hamilton function

H = ~p(t) · ~v(t)− L, (D.2.11)

where ~p is the momentum canonically conjugate to the coordinate ~x. One finds

m~v(t) = ~p(t) +
e

c
~A(~x(t), t), (D.2.12)

and thus one obtains

H =
1

2m
[~p(t) +

e

c
~A(~x(t), t)]2 − eΦ(~x(t), t). (D.2.13)

This is indeed consistent because

vi(t) =
dxi(t)

dt
=

∂H

∂pi(t)
=

1

m
[pi(t) +

e

c
Ai(~x(t), t)]. (D.2.14)

The other equation of motion is

dpi(t)

dt
= − ∂H

∂xi(t)
= − e

mc
[pj(t)+

e

c
Aj(~x(t), t)]∂iAj(~x(t), t)+e∂iΦ(~x(t), t). (D.2.15)

It is straightforward to show that these equations of motion are again equivalent to
Newton’s equation.

D.3 Gauge Invariant Form of the Schrödinger Equa-

tion

Remarkably, the gauge invariance of electrodynamics is intimately related to the
phase ambiguity of the quantum mechanical wave function. As we have seen earlier,
the Schrödinger equation

i~∂tΨ(~x, t) = − ~2

2m
∆Ψ(~x, t) + V (~x)Ψ(~x, t), (D.3.1)
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determines the wave function only up to a global phase ambiguity

Ψ(~x, t)′ = Ψ(~x, t) exp(iφ). (D.3.2)

Here φ is a constant, independent of space and time.

We now apply the gauge principle to the Schrödinger equation, i.e. we demand
that the physics is invariant even under local transformations

Ψ(~x, t)′ = Ψ(~x, t) exp(iφ(~x, t)), (D.3.3)

with a space-time dependent phase φ(~x, t). Of course, if the wave function Ψ(~x, t)
solves the original Schrödinger equation (D.3.1), the wave function Ψ(~x, t)′ of eq.(D.3.3)
in general does not. This is easy to see because

∂tΨ(~x, t)′ = [∂tΨ(~x, t) + iΨ(~x, t)∂tφ(~x, t)] exp(iφ(~x, t)), (D.3.4)

contains the second term on the right hand side that was not present in the original
Schrödinger equation. However, if the potential energy V (~x) is replaced by a scalar
potential −eΦ(~x, t), the Schrödinger equation takes the form

i~DtΨ(~x, t) = − ~2

2m
∆Ψ(~x, t), (D.3.5)

with the covariant derivative

DtΨ(~x, t) = ∂tΨ(~x, t)− i e
~

Φ(~x, t)Ψ(~x, t). (D.3.6)

Using the gauge transformation property

Φ(~x, t)′ = Φ(~x, t) +
1

c
∂tϕ(~x, t), (D.3.7)

of the electromagnetic scalar potential, one obtains

DtΨ(~x, t)′ = ∂tΨ(~x, t)′ − i e
~

Φ(~x, t)′Ψ(~x, t)′

= [∂tΨ(~x, t) + iΨ(~x, t)∂tφ(~x, t)] exp(iφ(~x, t))

− i
e

~
[Φ(~x, t) +

1

c
∂tϕ(~x, t)]Ψ(~x, t) exp(iφ(~x, t))

= DtΨ(~x, t) exp(iφ(~x, t)), (D.3.8)

provided that we identify

φ(~x, t) =
e

~c
ϕ(~x, t). (D.3.9)

We also introduce a space-like covariant derivative

~DΨ(~x, t) = ~∇Ψ(~x, t) + i
e

~c
~A(~x, t)Ψ(~x, t), (D.3.10)
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which also transforms as

~DΨ(~x, t)′ = ~∇Ψ(~x, t)′ + i
e

~c
~A(~x, t)′Ψ(~x, t)′

= [~∇Ψ(~x, t) + iΨ(~x, t)~∇φ(~x, t)] exp(iφ(~x, t))

+ i
e

~c
[ ~A(~x, t)− ~∇ϕ(~x, t)]Ψ(~x, t) exp(iφ(~x, t))

= ~DΨ(~x, t) exp(iφ(~x, t)), (D.3.11)

under a gauge transformation. Using ~p = (~/i)~∇ one obtains

~
i
~D = ~p+

e

c
~A(~x, t), (D.3.12)

which is the quantum version of m~v from eq.(D.2.12) that we encountered in the
classical theory.

Finally, in the Schrödinger equation we replace ∆Ψ(~x, t) = ~∇ · ~∇Ψ(~x, t) with
~D · ~DΨ(~x, t) and we obtain

i~DtΨ(~x, t) = − ~2

2m
~D · ~DΨ(~x, t). (D.3.13)

Inserting the explicit form of the covariant derivatives, the Schrödinger equation for
a charged particle in an arbitrary external electromagnetic field takes the form

i~[∂t− i
e

~
Φ(~x, t)]Ψ(~x, t) = − ~2

2m
[~∇+ i

e

~c
~A(~x, t)] · [~∇+ i

e

~c
~A(~x, t)]Ψ(~x, t). (D.3.14)

This equation is invariant under gauge transformations of the form

Φ(~x, t)′ = Φ(~x, t) +
1

c
∂tϕ(~x, t),

~A(~x, t)′ = ~A(~x, t)− ~∇ϕ(~x, t),

Ψ(~x, t)′ = Ψ(~x, t) exp(i
e

~c
ϕ(~x, t)). (D.3.15)

Under this transformation, both sides of the Schrödinger equation change by a factor
exp(i(e/~c)ϕ(~x, t)). Canceling this factor out, the equation remains invariant.

As usual, the wave function Ψ(~x, t) that solves the gauged Schrödinger equation
(D.3.14) can be interpreted as the probability amplitude for finding the particle at
position ~x at time t. In particular, the probability density

ρ(~x, t) = |Ψ(~x, t)|2, (D.3.16)

is gauge invariant and hence physically meaningful. Again, probability conservation
follows from a continuity equation

∂tρ(~x, t) + ~∇ ·~j(~x, t) = 0. (D.3.17)
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However, in the presence of electromagnetic fields the usual probability current must
be modified by replacing ordinary with covariant derivatives such that now

~j(~x, t) =
~

2mi
[Ψ(~x, t)∗ ~DΨ(~x, t)− ( ~DΨ(~x, t))∗Ψ(~x, t)]. (D.3.18)
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Appendix E

Relativistic Formulation of
Classical Electrodynamics

The relativistic nature of Maxwell’s equations is not manifest in their original form.
In this Appendix, we formulate electrodynamics such that its invariance under
Lorentz transformations — i.e. under rotations in Minkowski space-time — becomes
manifest. In order to better see the connection with the original Maxwell equations,
in this appendix we do not put c = 1.

E.1 Current and Vector Potential

In order to express electrodynamics in manifestly Lorentz co-variant form, we pro-
ceed step by step and begin with the charge and current densities ρ(~x, t) and ~j(~x, t).
The corresponding continuity equation which expresses charge conservation takes
the form

∂tρ(~x, t) + ~∇ ·~j(~x, t) = 0 . (E.1.1)

Since temporal and spatial derivatives are combined to a gradient 4-vector, it is
natural to combine ρ(~x, t) and ~j(~x, t) to the current 4-vector

jµ(x) = (cρ(~x, t), jx(~x, t), jy(~x, t), jz(~x, t)) . (E.1.2)

Here we have introduced x = (~x, t) as a short-hand notation for a point in space-
time. It goes without saying that this should not be confused with the x-component
of the spatial vector ~x. In Lorentz-invariant form the continuity equation thus takes
the form

∂µj
µ(x) =

1

c
∂tcρ(~x, t) + ∂xjx(~x, t) + ∂yjy(~x, t) + ∂zjz(~x, t) = 0 . (E.1.3)

127
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Here we have combined the co-variant 4-vector ∂µ and the contra-variant 4-vector
jµ(x) to the Lorentz-scalar zero. The Lorentz invariance of the continuity equation
implies that charge conservation is valid in any inertial frame, independent of the
motion of an observer.

Of course, the charge and current densities themselves are dependent on the
reference frame in which they are considered. If a general (non-uniform and non-
static) charge and current density is transformed into another reference frame, one
must also transform the space-time point x at which the density is evaluated, i.e.

j′
µ
(x′) = Λµ

νj
ν(x) = Λµ

νj
ν(Λ−1x′) . (E.1.4)

From the scalar potential φ(~x, t) and the vector potential ~A(~x, t) one can con-
struct another 4-vector field

Aµ(x) = (φ(~x, t), Ax(~x, t), Ay(~x, t), Az(~x, t)) . (E.1.5)

Under Lorentz transformations it again transforms as

A′
µ
(x′) = Λµ

νA
ν(Λ−1x′) . (E.1.6)

Scalar and vector potentials transform non-trivially under gauge transformations

ϕφ(~x, t) = φ(~x, t) +
1

c
∂tϕ(~x, t) , ϕ ~A(~x, t) = ~A(~x, t)− ~∇ϕ(~x, t) . (E.1.7)

In 4-vector notation this relation takes the form

ϕAµ(x) = Aµ(x) + ∂µϕ(x) . (E.1.8)

Here ϕ(x) is an arbitrary space-time dependent gauge transformation function. This
function is a space-time scalar, i.e. under Lorentz transformations it transforms as

ϕ′(x′) = ϕ(Λ−1x′) . (E.1.9)

The Lorentz gauge fixing condition

1

c
∂tφ(~x, t) + ~∇ · ~A(~x, t) = 0 (E.1.10)

can be re-expressed as
∂µA

µ(x) = 0 . (E.1.11)

In the Lorentz gauge the wave equations take the form

1

c2
∂2
t φ(~x, t)−∆φ(~x, t) = ρ(~x, t) ,

1

c2
∂2
t
~A(~x, t)−∆ ~A(~x, t) =

1

c
~j(~x, t) , (E.1.12)

which can be combined to

2Aµ(x) =
1

c
jµ(x) . (E.1.13)
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E.2 Field Strength Tensor

It may not be entirely obvious how to express the electric and magnetic fields ~E(~x, t)

and ~B(~x, t) in relativistic form. We need to use

~E(~x, t) = −~∇φ(~x, t)− 1

c
∂t ~A(~x, t) , ~B(~x, t) = ~∇× ~A(~x, t) . (E.2.1)

Obviously, ~E(~x, t) and ~B(~x, t) are constructed from the 4-vectors ∂µ and Aµ(x). The
scalar product of these two 4-vectors

∂µA
µ(x) =

1

c
∂tφ(~x, t) + ~∇ · ~A(~x, t) (E.2.2)

appears in the Lorentz gauge fixing condition but does not yield the electric or
magnetic field. The 4-vectors ∂µ and Aµ(x) can also be combined to the symmetric
tensor

Dµν = ∂µAν(x) + ∂νAµ(x) , (E.2.3)

as well as to the anti-symmetric tensor

F µν = ∂µAν(x)− ∂νAµ(x) . (E.2.4)

Under gauge transformations these tensors transform as

ϕDµν = ∂µ ϕAν(x) + ∂ν ϕAµ(x)

= ∂µAν(x) + ∂µ∂νϕ(x) + ∂νAµ(x) + ∂ν∂µϕ(x) = Dµν + 2∂µ∂νϕ(x) ,
ϕF µν = ∂µ ϕAν(x)− ∂ν ϕAµ(x)

= ∂µAν(x) + ∂µ∂νϕ(x)− ∂νAµ(x)− ∂ν∂µϕ(x) = F µν , (E.2.5)

i.e. the anti-symmetric tensor F µν is gauge invariant, while the symmetric tensor
Dµν is not. As a consequence, it does not play any particular rôle in electrodynamics.
Since the electromagnetic fields are gauge invariant, we expect them to be related
to F µν . Let us consider the various components of this tensor

F 01(x) = ∂0A1(x)− ∂1A0(x) =
1

c
∂tAx(~x, t) + ∂xφ(~x, t) = −Ex(~x, t) ,

F 02(x) = ∂0A2(x)− ∂2A0(x) =
1

c
∂tAy(~x, t) + ∂yφ(~x, t) = −Ey(~x, t) ,

F 03(x) = ∂0A3(x)− ∂3A0(x) =
1

c
∂tAz(~x, t) + ∂zφ(~x, t) = −Ez(~x, t) ,

F 12(x) = ∂1A2(x)− ∂2A1(x) = −∂xAy(~x, t) + ∂yAx(~x, t) = −Bz(~x, t) ,

F 23(x) = ∂2A3(x)− ∂3A2(x) = −∂yAz(~x, t) + ∂zAy(~x, t) = −Bx(~x, t) ,

F 31(x) = ∂3A1(x)− ∂1A3(x) = −∂zAx(~x, t) + ∂xAz(~x, t) = −By(~x, t) .

(E.2.6)
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Hence, the anti-symmetric tensor indeed contains the electric and magnetic fields as

F µν(x) =


0 −Ex(~x, t) −Ey(~x, t) −Ez(~x, t)

Ex(~x, t) 0 −Bz(~x, t) By(~x, t)
Ey(~x, t) Bz(~x, t) 0 −Bx(~x, t)
Ez(~x, t) −By(~x, t) Bx(~x, t) 0

 . (E.2.7)

The co-variant components of this tensor are given by

Fµν(x) =


0 Ex(~x, t) Ey(~x, t) Ez(~x, t)

−Ex(~x, t) 0 −Bz(~x, t) By(~x, t)
−Ey(~x, t) Bz(~x, t) 0 −Bx(~x, t)
−Ez(~x, t) −By(~x, t) Bx(~x, t) 0

 . (E.2.8)

E.3 Maxwell Equations

Let us first consider the inhomogeneous Maxwell equations

~∇ · ~E(~x, t) = ρ(~x, t) , ~∇× ~B(~x, t)− 1

c
∂t ~E(~x, t) =

1

c
~j(~x, t) . (E.3.1)

These are four equations with the components of the 4-vector current jµ(x) on the
right-hand side. Hence, on the left-hand side there must also be a 4-vector. The
left-hand side consists of derivatives, i.e. of components of the gradient 4-vectors
∂µ, and of the electromagnetic fields, i.e. of the components of the field strength
tensor F µν . Hence, the 4-vector ∂µ and the tensor F µν on the left-hand side must
be combined to another 4-vector. This can be achieved by forming ∂µF

µν(x) and
thus by contracting (i.e. by summing) one co- and one contra-variant index. The
various components of this object take the form

∂µF
µ0(x) = ∂xEx(~x, t) + ∂yEy(~x, t) + ∂zEz(~x, t)

= ~∇ · ~E(~x, t) = ρ(~x, t) ,

∂µF
µ1(x) = −1

c
∂tEx(~x, t) + ∂yBz(~x, t)− ∂zBy(~x, t)

= [~∇× ~B]x(~x, t)−
1

c
∂tEx(~x, t) =

1

c
jx(~x, t) ,

∂µF
µ2(x) = −1

c
∂tEy(~x, t)− ∂xBz(~x, t) + ∂zBx(~x, t)

= [~∇× ~B]y(~x, t)−
1

c
∂tEy(~x, t) =

1

c
jy(~x, t) ,

∂µF
µ3(x) = −1

c
∂tEz(~x, t) + ∂xBy(~x, t)− ∂yBx(~x, t)

= [~∇× ~B]z(~x, t)−
1

c
∂tEz(~x, t) =

1

c
jz(~x, t) . (E.3.2)
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Indeed, these equations can be summarized as

∂µF
µν(x) =

1

c
jν(x) . (E.3.3)

At this point the usefulness of the compact 4-dimensional notation should be obvi-
ous. Inserting eq.(E.2.4) into the inhomogeneous Maxwell equations, we obtain

∂µF
µν(x) = ∂µ(∂µAµ(x)− ∂νAµ(x)) = 2Aν(x)− ∂ν∂µAµ(x) =

1

c
jν(x) . (E.3.4)

If the 4-vector potential obeys the Lorentz gauge fixing condition ∂µA
µ(x) = 0, this

is nothing but the wave equation eq.(E.1.13).

How can we express the homogeneous Maxwell equations

~∇ · ~B(~x, t) = 0 , ~∇× ~E(~x, t) +
1

c
∂t ~B(~x, t) = 0 (E.3.5)

in 4-dimensional form? Except for the vanishing right-hand side, they look very
similar to the inhomogeneous equations. All we need to do is to substitute ~E(~x, t)

by − ~B(~x, t) and ~B(~x, t) by ~E(~x, t). Such a substitution is known as a duality
transformation. Under this operation the field strength tensor turns into the dual
tensor

F̃ µν(x) =


0 Bx(~x, t) By(~x, t) Bz(~x, t)

−Bx(~x, t) 0 −Ez(~x, t) Ey(~x, t)
−By(~x, t) Ez(~x, t) 0 −Ex(~x, t)
−Bz(~x, t) −Ey(~x, t) Ex(~x, t) 0

 , (E.3.6)

and the homogeneous Maxwell equations can thus be expressed as

∂µF̃
µν(x) = 0 . (E.3.7)

The co-variant components of the dual field strength tensor take the form

F̃µν(x) =


0 −Bx(~x, t) −By(~x, t) −Bz(~x, t)

Bx(~x, t) 0 −Ez(~x, t) Ey(~x, t)
By(~x, t) Ez(~x, t) 0 −Ex(~x, t)
Bz(~x, t) −Ey(~x, t) Ex(~x, t) 0

 . (E.3.8)

It is obvious that the field strength tensor F µν(x) and its dual F̃µν(x) consist of

the same components, namely of the electric and magnetic fields ~E(~x, t) and ~B(~x, t).
Hence, there must be a relation between the two tensors. This relation takes the
form

F̃µν(x) =
1

2
εµνρσF

ρσ(x) . (E.3.9)
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Here εµνρσ is a totally anti-symmetric tensor with components 0 or ±1. If any of
the indices µ, ν, ρ, and σ are equal, the value of εµνρσ is zero. Only if all indices are
different, the value of εµνρσ is non-zero. The value is εµνρσ = 1 if µνρσ is an even
permutation of 0123 (i.e. it requires an even number of index pair permutations to
turn µνρσ into 0123). Similarly, εµνρσ = −1 if µνρσ is an odd permutation of 0123.
For example, we obtain

F̃01(x) =
1

2
ε01ρσF

ρσ(x) =
1

2

(
ε0123F

23(x)− ε0132F
32(x)

)
= F 23(x) = −Bx(~x, t) ,

(E.3.10)
as well as

F̃12(x) =
1

2
ε12ρσF

ρσ(x) =
1

2

(
ε1203F

03(x)− ε1230F
30(x)

)
= F 03(x) = −Ez(~x, t) ,

(E.3.11)

Inserting eq.(E.3.9) into the homogeneous Maxwell equations (E.3.7) one obtains

∂µF̃µν(x) =
1

2
εµνρσ∂

µF ρσ(x) =
1

2
εµνρσ∂

µ (∂ρAσ(x)− ∂σAρ(x)) = 0 . (E.3.12)

Due to the anti-symmetry of εµνρσ and the commutativity of the derivatives ∂µ and
∂ρ, this equation is automatically satisfied. This is no surprise, because the original
Maxwell equations were also automatically satisfied by the introduction of the scalar
and vector potentials φ(~x, t) and ~A(~x, t). The homogeneous Maxwell equations can
alternatively be expressed as

∂µF ρσ + ∂ρF σµ + ∂σF µρ = 0 . (E.3.13)

Indeed, multiplying this relation with εµνρσ and applying cyclic permutations to the
indices µ, ρ, and σ, one again arrives at eq.(E.3.12).

E.4 Space-Time Scalars from Field Strength Ten-

sors

Which scalar quantities can be formed by combining the field strength tensors F µν(x)

and F̃ µν(x)? First, we can construct the combination

1

4
Fµν(x)F µν(x) =

1

2

(
~B(~x, t)2 − ~E(~x, t)2

)
, (E.4.1)

which will later turn out to be the Lagrange density of electrodynamics. Then we
can construct

1

4
F̃µν(x)F̃ µν(x) =

1

2

(
~E(~x, t)2 − ~B(~x, t)2

)
, (E.4.2)
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which is thus the same up to a minus-sign. While the electromagnetic fields them-
selves are obviously not Lorentz-invariant, the difference of their magnitudes squared
is.

One can also mix the field strength tensor with its dual and one then obtains

1

4
Fµν(x)F̃ µν(x) = ~E(~x, t) · ~B(~x, t) . (E.4.3)

Similarly, one obtains

1

4
F̃µν(x)F µν(x) = ~E(~x, t) · ~B(~x, t) , (E.4.4)

which is thus equivalent. Interestingly, the projection of the electric on the magnetic
field ~E(~x, t) · ~B(~x, t) is also Lorentz invariant, i.e. it has the same value in all inertial
frames.

E.5 Transformation of Electromagnetic Fields

Since they form the components of the field strength tensors, it is obvious that the
electromagnetic fields ~E(~x, t) and ~B(~x, t) are not Lorentz-invariant, i.e. they depend
on the motion of the observer. Under a Lorentz transformation the field strength
tensor transforms as

F µν ′(x′) = Λµ
ρΛ

ν
σF

ρσ(x) = Λµ
ρΛ

ν
σF

ρσ(Λ−1x′) . (E.5.1)

This can be rewritten in matrix form as

F µν ′(x′) = Λµ
ρF

ρσ(Λ−1x′)ΛT ν

σ ⇒ F ′(x′) = ΛF (Λ−1x′)ΛT . (E.5.2)

E.6 Action and Euler-Lagrange Equation

The Lagrangian for the electromagnetic field interacting with a charge and current
distribution jµ is given by

L(Aν , ∂µAν) = −1

4
FµνF

µν − 1

c
Aνj

ν . (E.6.1)

The corresponding action is obtained by integrating the Lagrangian over space-time,
i.e.

S[A] =

∫
dt d3x L =

∫
d4x

1

c

(
−1

4
FµνF

µν − 1

c
Aνj

ν

)
. (E.6.2)
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The action can be viewed as a functional (i.e. a function of a function) of the electro-
magnetic 4-vector potential Aµ. The Euler-Lagrange equation of motion resulting
from the principle of least action now takes the form

∂µ
δL

δ∂µAν
− δL
δAν

= ∂µF
µν − 1

c
jν = 0 . (E.6.3)

Indeed, this yields just the inhomogeneous Maxwell equations

∂µF
µν =

1

c
jν . (E.6.4)

The homogeneous Maxwell equations are automatically satisfied as a consequence
of F µν = ∂µAν − ∂νAµ.

E.7 Energy-Momentum Tensor

Let us consider the energy-momentum tensor of the free electromagnetic field (i.e.
in the absence of charges and currents)

T µν = −F µρF ν
ρ − Lgµν , (E.7.1)

which obeys the continuity equation

∂µT
µν = 0 . (E.7.2)

The time-time component of the energy-momentum tensor is given by

T 00 = −F 0ρF 0
ρ +

1

4
FρσF

ρσg00 = ~E2 +
1

2
( ~B2 − ~E2) =

1

2
( ~E2 + ~B2) . (E.7.3)

which is the energy density of the electromagnetic field. The space-time components
of the energy-momentum tensor take the form

T i0 = −F iρF 0
ρ +

1

4
FρσF

ρσgi0 = εijkEjBk = ( ~E × ~B)i . (E.7.4)

Here εijk is the completely anti-symmetric Levi-Civita tensor and ~E × ~B is the
Poynting vector which is known to represent the momentum density of the electro-
magnetic field. The continuity equation that represents energy conservation takes
the form

∂µT
µ0 = ∂0T

00 + ∂iT
i0 = 0 . (E.7.5)



Appendix F

Why Physics Exists

In the following, I present a few thoughts that may shed some light on the question
why physics exists. People seem not to talk about this very much. All I’ll have to say
is therefore wide open for criticism and far from being well established. While this
appendix also addresses some questions at the interface of physics and philosophy,
it does not comply with the conceptual rigor of the latter discipline. For example,
in the text below the notion of “existence” is not defined or clarified further in a
philosophical context. The reader is assumed to be familiar with some notions of
modern physics, such as, for example, the concept of an effective field theory.

F.1 Structures and Physicists

Physics is the man-made observation and experimental investigation as well as the
theoretical mathematical description of Nature. As such, the existence of physics
requires the existence of physicists, i.e. the existence of curious minds and capable
brains. Of course, it is equally important that there is something “out there” to
be discovered, i.e. that Nature does contain structures that can be adequately de-
scribed in mathematical terms. Both such structures as well as curious minds and
capable brains obviously do exist in our Universe. Of course, we can easily imagine
much simpler hypothetical “Universes” that follow some strict mathematical laws
of Nature. For example, we can imagine a “Universe” consisting of just two New-
tonian point particles, to be called Sun and Earth, orbiting their center of mass
in elliptical orbits for the rest of time. While such a simple system can easily be
understood from outside, it is obvious that it cannot understand itself from within.
Remarkably, by evolving the human subspecies of the experimental and theoretical
physicist, in some sense our Universe is “thinking” about itself. This requires an
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enormous degree of complexity.

F.2 Space, Time, and Separable Entities

In order to understand something from within, one must still be able to distant
oneself from the object of study, at least to some extent. It is the existence of space
and time that allows us to do just that. While we currently do not understand
the origin of space and time, the related puzzles lead to the deepest questions we
can currently ask in physics. After all, space and time are fundamental ordering
principles, deeply rooted in physical reality, that allow us to separate ourselves from
other more or less independent entities. In this sense, space and time are necessary
prerequisites for doing physics from within the system. It should be pointed out
that we can easily imagine a mathematical “Universe” without invoking the concept
of time. For example, equilibrium statistical mechanics follows strict mathematical
rules, but knows nothing about time. Indeed, a “Universe” following just the rules
of equilibrium statistical mechanics would have a hard “time” understanding even
part of itself from within.

F.3 Space-Time Locality

Along with the concepts of space and time comes the concept of space-time locality.
Indeed without locality, space and time would loose their meaning as the most basic
ordering principles, and would therefore cease to be useful concepts. In our hypo-
thetical “Universe” consisting of just Sun and Earth interacting via instantaneous
Newtonian gravity, there is locality in time but not in space. As a consequence,
space is not even a very useful concept in a hypothetical world like this. The coordi-
nates of the two particles as well as their distance are completely sufficient. Thinking
about the particles as existing in an otherwise empty space seems natural to us, who
live in a much more dynamical space. However, in the very restricted two-particle
“Universe” the whole concept of space is to a large extent an unnecessary luxury.
The situation changes drastically when we endow the two point particles with Ein-
stein gravity (i.e. general relativity). Then there is a metric attached to each point
in space-time, which becomes a dynamical entity governed by local laws of Nature.
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F.4 Hierarchies of Scales

The existence of curious minds and capable brains is likely to require the existence
of vastly different length scales. If every separable entity would be of a similar size,
for example, if everything including the potential physicist would exist at atomic
scales, it is unlikely that physics would ever have taken off. This is because, in that
case, one must identify the correct “Theory of Everything” (TOE) before physics
can get started. In a hypothetical “Universe” consisting only of atomic scale enti-
ties governed by the rules of quantum mechanics, even if something like a “brain”
would exist, it would almost certainly not be capable enough to discover quantum
mechanics (which we may think of as the TOE in that world), in one gigantic strike
of genius.

F.5 Anthropic Arguments

Although we don’t know why they exist in our Universe, we have identified the
existence of mathematical structures including space, time, and locality, as well as
hierarchies of vastly different length scales as necessary prerequisites for the existence
of physics. Today it is all too popular to invoke the anthropic principle. Still, the
above mentioned prerequisites for the existence of physics may very well be necessary
conditions for the existence of curious minds and capable brains as well. Hence,
we can argue that potential physicists (i.e. curious minds and capable brains) can
only exist in a world in which the basis for doing physics also automatically exists.
Invoking the anthropic principle, i.e. using the fact of our own existence, we can
then “explain” why the basis for physics exists as well.

F.6 Effective Field Theory

Once we have mathematical structures, space-time locality, hierarchies of different
length scales, as well as curious minds and capable brains, we are suddenly in busi-
ness for doing physics. In particular, thanks to space-time locality and the existence
of hierarchies, we are free to do physics at some length scale, without the need to
discover the “Theory of Everything” before we can even get started. Identifying the
relevant degrees of freedom at some scale, and constructing the most general local
dynamics while respecting the relevant symmetries is the technique of systematic
effective field theory. Being able to understand aspects of the world step by step
in scale, is a major reason why physics is so successful. An effective field theory
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always contains some a priori unknown physical parameters, whose values can be
fixed, for example, by comparison with experiments. Eventually, one may reach a
deeper level of understanding by matching these parameters to a more fundamental
effective theory valid at shorter length scales. In this way, by matching effective field
theories, we may patch together a “quilt” of mathematical descriptions of Nature
that may eventually cover the entire landscape of physical phenomena.

F.7 Renormalization Group, Universality, and the

Benefit of 4-d

The success of the effective field theory method relies on Kenneth Wilson’s renor-
malization group and the related concept of universality. Universality implies that
the physics at long distances or low energies is insensitive to the details of what
happens at much higher energy scales. In the process of renormalization, the dy-
namics is attracted to a renormalization group fixed point that is characteristic of a
universality class. Theories which may differ substantially at high energies may still
flow to the same fixed point at low energies. This implies that we need not know all
about physics (i.e. the TOE) before we can start to explore the low-energy regime.
As a flip-side of the same coin, it is practically impossible to infer the correct TOE
from low-energy data. In view of universality, doing successful fundamental physics
is reduced to identifying the correct renormalization group fixed point, which makes
life a lot easier. This is also thanks to the dimension of space-time. In particular,
in the 4-dimensional space-time we live in, there are relatively few non-trivial fixed
points of the renormalization group, namely those related to non-Abelian gauge
theories. Indeed, it is non-Abelian gauge fields that dominate the physics of the
Standard Model of particle physics — our most fundamental theory today. In a 2-d
space-time, for example, the situation would be very different. In 2-d, there is an
enormous number of non-trivial fixed points, such that identifying the correct one
would be much more difficult than in 4-d. As Martin Lüscher from CERN once said:
in 2 space-time dimensions, physics would be as complicated as politics. Thanks
to our 4-d space-time, as complicated as physics may seem, it does, in fact, exist
because it is not too difficult (for the more capable brains).

F.8 The Theory of Everything

By moving towards ever decreasing length scales (and thus ever increasing energy
scales), we may (or may not) eventually discover the true “Theory of Everything”.
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Already the Standard Model of particle physics is based on fundamental objects such
as quarks or W-bosons, which are precise embodiments of abstract mathematical
concepts. Even if physicists may eventually discover the ultimate TOE, which would
obviously be a tremendous achievement, this would in no way obviate the need
for effective field theories covering the low-energy domain. Just as the Standard
Model is extremely powerful at particle physics energy scales, but pretty useless for
understanding the complex dynamics of condensed matter, the TOE would be really
useful only at the shortest distance scales. In this sense, the “Theory of Everything”
may very well be a “Theory of Nothing” relevant at presently accessible energy
scales. Furthermore, just as Bertrand Russell’s Principia Mathematica, a “Theory
of Everything” may suffer from Gödelian incompletenesses. We may have to be
content with consistency, instead of urging for completeness.

F.9 Model Building

When doing physics, it is often useful to build models. Our model “Universe” con-
sisting of just Sun and Earth is a good example. In this way, by mentally or even
experimentally isolating a small part of the world from external influences, we have
a chance to completely understand it. In some sense, Newton’s classical mechanics
is the theory of everything that is important to understand the dynamics of slowly
moving macroscopic objects under the influence of gravity. Similarly, the Hubbard
model describes the “world” inside doped antiferromagnets. Experts argue whether
or not the Hubbard model is the theory of everything that is necessary to under-
stand the origin of high-temperature superconductivity. Quantum Chromodynamics
(QCD) is far more than just a model in this sense. In fact, it is an integral part
of our most fundamental description of Nature — the Standard Model of parti-
cle physics. While (due to its “triviality” in the renormalization group sense) the
Standard Model is necessarily “just” an effective theory, thanks to its asymptotic
freedom, QCD could hold at arbitrarily high energy scales. In this sense, it may
be considered as the “Theory of Everything” about the strong interaction. Isolated
“worlds” like the Hubbard model or QCD are still sufficiently complicated that we
cannot understand them completely analytically. In that case, effective field theory
again plays an important role. The low-energy regimes of both the Hubbard model
at low doping and QCD at low baryon density can be described by systematic low-
energy effective field theories. Although they cannot be derived rigorously from the
underlying microscopic theories, the physical consequences of emergent phenomena
like antiferromagnetism or chiral symmetry breaking can then be addressed quan-
titatively in the low-energy effective theory. The matching between the underlying
short-distance and the emergent long-distance theory works, because it connects
two local theories which are mathematically formulated using the basic concepts of
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space and time.

F.10 Numerical Simulation

To accurately investigate model “worlds” such as the Hubbard model or (lattice)
QCD, numerical simulations play an important role. For example, the low-energy
parameters of the corresponding effective theories can be derived numerically from
the underlying microscopic models. Still, in several interesting cases accurate nu-
merical simulations are prevented by severe sign or complex action problems. For
example, the exploration of high-temperature superconductivity in the Hubbard
model is hindered by a severe fermion sign problem, and the exploration of the
“condensed matter physics of QCD” (as Krishna Rajagopal and Frank Wilczek
from MIT have called it) is hindered by a severe complex action problem of lattice
QCD at non-zero baryon chemical potential. Quantum simulation, i.e. the use of
special purpose quantum analog computers, is currently arising as a promising tool
that may eventually help us to overcome such problems.

F.11 Different Layers of Reality and Limits of

Physics

As we have discussed, in physics we patch together effective theories valid at different
length scales. Indeed there are different layers of physical reality, each with its own
appropriate mathematical description. While the dynamics at the shortest presently
accessible distances are described by the Standard Model of particle physics, atomic
nuclei are described by their own effective field theory valid at larger distance scales.
Stepping further up in length scale, we reach atoms, molecules, and then condensed
matter, which are all described by their own effective theories. While the resulting
“quilt” of effective theories may eventually cover all physical phenomena, it is very
unlikely to cover even a small fraction of other layers of reality. After all, the success
of physics relies on the identification of subsystems with a sufficiently structured dy-
namics in space and time that can be described mathematically. While mathematics
is a universal language that even Nature uses to express herself in, it is not a useful
tool for talking about other layers of reality, such as art and poetry, or mind, con-
sciousness, and free will. Those are very unlikely to ever become subjects of physics,
just because mathematics is not an appropriate language for communicating about
these emergent concepts which cannot be appropriately described, for example, in
terms of space-time coordinates. While the subjects of physics are thus somewhat
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limited, the Universe is such a rich and diverse place that there is no reason to think
that physics will be exhausted any time soon.

F.12 Understanding our own Brain

As suggested above, by means of physicists the Universe is “thinking” about itself,
thus enabling an understanding of part of the system from within. This all hap-
pens thanks to the wonderful device we carry around in our head. Will physicists,
biologists, or neuroscientists ever be able to understand the brain itself, essentially
by using it to think hard enough about itself? While Gödelian self-referential situ-
ations are likely to prevent complete understanding, there may be no reason to be
overly pessimistic. In particular, numerical simulations of certain brain functions
should be possible. Except for that, however, the brain is probably the last system
a typical physicist is well prepared to deal with. First of all, due to its large in-
terconnectedness, the structure of the brain is to a large degree spatially non-local.
Due to long-term memories stored in the brain, locality in time is disfigured as well.
Furthermore, due to a lack of obvious hierarchies in length scales, it seems difficult
to identify relevant degrees of freedom that can be separated from the rest of the
system. In other words, the physicist’s most powerful tool of effective field theory
is not expected to work in an environment as complex as the brain itself.

F.13 Neuroscience as a “Theory of Everything”

related to Neuronal Activity?

In recent years, some influential neuroscientists including Gerhard Roth and Wolf
Singer have come to the conclusion that free will is an illusion, because conscious
decisions are preceded by sub-conscious neuronal events in the brain. This has
even led them to argue that law should be rewritten, in order to take into account
that people cannot be held responsible for their actions. As a physicist working
with effective field theories applied to different layers of physical reality, I find these
arguments rather absurd. The neuronal scale “effective theory” of the neuroscientist
has not been properly matched to the framework of mind and free will used in the
humanities. Cross-communication between these different layers of reality is hence
not possible in a truly meaningful way. A neuroscientist, who claims that free will
is an illusion, uses his neuronal scale “effective theory” as a “Theory of Everything”
related to neuronal activity. While emergent concepts like free will or consciousness
should indeed not be inconsistent with fundamental theories underlying neuronal
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activity, they can neither be derived nor disproved by these theories. Therefore, the
“Theory of Everything” concerning neuronal activity is very likely at the same time
a “Theory of Nothing” relevant to legislation. Interestingly, based on arguments of
a similar nature, some philosophers including Peter Bieri, David Chalmers, Joseph
Levine, and Thomas Nagel have reached the same conclusion.

If it exists, free will should indeed not be inconsistent with fundamental theories
underlying the brain. Isn’t this the case if neuronal activity precedes our conscious
decisions? As pointed out before, the brain itself is a highly non-local structure
both in space and in time. Indeed, it is a wonderful device that turns chemical
energy, which can be described mathematically by an effective theory using space-
time coordinates, into concepts of the mind, which are subjects of the humanities
that exist beyond space and time. Since a conscious decision is an emergent phe-
nomenon which is not associated with a unique time-coordinate, it does not really
make sense to say that it was preceded by some specific neuronal activity. Since
the fundamental theories of physics are based on quantum uncertainty rather than
classical determinism, they are consistent with free will as well, but cannot derive
it either. At the moment, we simply don’t know how to match the two separate
layers of reality in which we can talk about either mind or matter, but not about
the relations between both of them.

F.14 Matching the Mind and Matter Layers of

Reality

The mind-body problem, i.e. to understand how mind and matter are related, and,
if possible, to explain how mind emerges from matter, has been around for a long
time. Since effective field theory does not work for a structure as complex and non-
local as the brain, physics is currently nowhere near contributing to the solution
of the mind-body problem. As argued before, neuroscience or any other natural
science isn’t either. Perhaps simulation by very powerful future computers (either
involving classical randomness or quantum indeterminacy) may eventually mimic
something like a “brain”. While this may contribute to bridging the gap between
mind and matter, it will not necessarily lead to deep understanding. In physics,
renormalization group theory leads to deep understanding and enables us to match
the different layers of physical reality separated by different length scales. Similarly,
one may speculate that a future “Theory of Mind and Matter” may be able to match
the natural sciences’ space-time description of matter with the humanities’ descrip-
tion of mind beyond space and time. Developing such a theory, and thus eventually
solving the mind-body problem, is a tremendous challenge for both natural science
and the humanities. Most likely, time is not ripe yet for this endeavor, because the
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individual disciplines still need to sharpen their tools before they can address the
problem in a meaningful manner. However, it seems very well worth keeping the
solution of the mind-body problem on the agenda, as a potential common long-term
goal of natural science and the humanities. Negating the problem, by declaring
neuroscience as the “Theory of Everything” related to neuronal activity, is much
easier but completely misleading.

F.15 Evolution, Brain Chemistry, and Physics

After this exploration of the limits of physics and other sciences (including neu-
roscience), let us return to the question why physics exists. While all necessary
conditions for physics are indeed fulfilled in our Universe, we should not forget that
physics exists also because it is a lot of fun. Indeed it is the pleasure of figuring
things out that is driving many new discoveries. The reward system in our brain,
which evolved in order to help our ancestors outsmart predators as well as prey, also
seems to encourage the creativity that one needs today as a physicist. However, in
order not to paint a too naive picture of what drives physicists, we should also not
forget that the power of physics to advance technology, unfortunately including the
one used to fight other nations, has also motivated numerous research projects. In
any case, mankind’s well-being for the rest of the century is likely to benefit from
physicists whose imagination is spurred by more honorable causes, including, for
example, advancing climate research or medical applications of physics. Still, based
on my own experience, I think that curiosity-driven basic research in physics benefits
tremendously from our brain chemistry.

F.16 Summary

To summarize, as far as I understand, physics crucially depends on the existence of
mathematical structures, space-time locality, as well as large hierarchies of length
scales. These may all be necessary prerequisites for the existence of curious minds
and capable brains of potential physicists as well. Invoking the anthropic princi-
ple, taking into account that physics in 4-d is not too difficult and can actually be
quite useful, and knowing that it is a pleasure to figure things out, it is perhaps not
surprising that physics does indeed exist. To a large extent, the success of physics
relies on the powerful tool of effective theories. Model building and numerical simu-
lation are very important tools as well, which are about to be enriched by quantum
simulators. Of course, as usual when one invokes the anthropic principle, many
questions remain unanswered. As curious minds, we still urge to understand why
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there are mathematical structures, space and time, locality, as well as large hierar-
chies. There is no reason not to think about these deep questions. Understanding
why there are curious minds seems even harder, and may require a future “Theory
of Mind and Matter” that matches the mathematical language of natural science to
the concepts of the humanities. While the subjects of physics cover only a small
fraction of reality, as far as I’m concerned, there is plenty for a life-time of a curious
mind. Finally, taking part in the process of the Universe “thinking” about itself,
together with colleagues all around the world, is a fascinating and most rewarding
experience (not only in the brain chemistry sense).


