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1 INTRODUCTION

1 Introduction

1.1 Intended audience

These lecture notes outline a single semester course intended for upper division

undergraduates.

1.2 Major sources

The textbooks which I have consulted most frequently whilst developing course

material are:

Fundamentals of statistical and thermal physics: F. Reif (McGraw-Hill, New York NY,

1965).

Introduction to quantum theory: D. Park, 3rd Edition (McGraw-Hill, New York NY,

1992).

1.3 Why study thermodynamics?

Thermodynamics is essentially the study of the internal motions of many body

systems. Virtually all substances which we encounter in everyday life are many

body systems of some sort or other (e.g., solids, liquids, gases, and light). Not

surprisingly, therefore, thermodynamics is a discipline with an exceptionally wide

range of applicability. Thermodynamics is certainly the most ubiquitous subfield

of Physics outside Physics Departments. Engineers, Chemists, and Material Scien-

tists do not study relatively or particle physics, but thermodynamics is an integral,

and very important, part of their degree courses.

Many people are drawn to Physics because they want to understand why the

world around us is like it is. For instance, why the sky is blue, why raindrops are

spherical, why we do not fall through the floor, etc. It turns out that statistical
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1.4 The atomic theory of matter 1 INTRODUCTION

thermodynamics can explain more things about the world around us than all

of the other physical theories studied in the undergraduate Physics curriculum

put together. For instance, in this course we shall explain why heat flows from

hot to cold bodies, why the air becomes thinner and colder at higher altitudes,

why the Sun appears yellow whereas colder stars appear red and hotter stars

appear bluish-white, why it is impossible to measure a temperature below -273◦

centigrade, why there is a maximum theoretical efficiency of a power generation

unit which can never be exceeded no matter what the design, why high mass

stars must ultimately collapse to form black-holes, and much more!

1.4 The atomic theory of matter

According to the well-known atomic theory of matter, the familiar objects which

make up the world around us, such as tables and chairs, are themselves made up

of a great many microscopic particles.

Atomic theory was invented by the ancient Greek philosophers Leucippus and

Democritus, who speculated that the world essentially consists of myriads of tiny

indivisible particles, which they called atoms, from the Greek atomon, meaning

“uncuttable.” They speculated, further, that the observable properties of everyday

materials can be explained either in terms of the different shapes of the atoms

which they contain, or the different motions of these atoms. In some respects

modern atomic theory differs substantially from the primitive theory of Leucippus

and Democritus, but the central ideas have remained essentially unchanged. In

particular, Leucippus and Democritus were right to suppose that the properties of

materials depend not only on the nature of the constituent atoms or molecules,

but also on the relative motions of these particles.

1.5 Thermodynamics

In this course, we shall focus almost exclusively on those physical properties of

everyday materials which are associated with the motions of their constituent
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atoms or molecules. In particular, we shall be concerned with the type of motion

which we normally call “heat.” We shall try to establish what controls the flow of

heat from one body to another when they are brought into thermal contact. We

shall also attempt to understand the relationship between heat and mechanical

work. For instance, does the heat content of a body increase when mechanical

work is done on it? More importantly, can we extract heat from a body in order

to do useful work? This subject area is called “thermodynamics,” from the Greek

roots thermos, meaning “heat,” and dynamis, meaning “power.”

1.6 The need for a statistical approach

It is necessary to emphasize from the very outset that this is a difficult subject.

In fact, this subject is so difficult that we are forced to adopt a radically different

approach to that employed in other areas of Physics.

In all of the Physics courses which you have taken up to now, you were even-

tually able to formulate some exact, or nearly exact, set of equations which gov-

erned the system under investigation. For instance, Newton’s equations of mo-

tion, or Maxwell’s equations for electromagnetic fields. You were then able to

analyze the system by solving these equations, either exactly or approximately.

In thermodynamics we have no problem formulating the governing equations.

The motions of atoms and molecules are described exactly by the laws of quantum

mechanics. In many cases, they are also described to a reasonable approximation

by the much simpler laws of classical mechanics. We shall not be dealing with

systems sufficiently energetic for atomic nuclei to be disrupted, so we can forget

about nuclear forces. Also, in general, the gravitational forces between atoms and

molecules are completely negligible. This means that the forces between atoms

and molecules are predominantly electromagnetic in origin, and are, therefore,

very well understood. So, in principle, we could write down the exact laws of

motion for a thermodynamical system, including all of the inter-atomic forces.

The problem is the sheer complexity of this type of system. In one mole of a

substance (e.g., in twelve grams of carbon, or eighteen grams of water) there are
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Avagadro’s number of atoms or molecules. That is, about

NA = 6× 1023

particles, which is a gigantic number of particles! To solve the system exactly

we would have to write down about 1024 coupled equations of motion, with the

same number of initial conditions, and then try to integrate the system. Quite

plainly, this is impossible. It would also be complete overkill. We are not at all

interested in knowing the position and velocity of every particle in the system as a

function of time. Instead, we want to know things like the volume of the system,

the temperature, the pressure, the heat capacity, the coefficient of expansion, etc.

We would certainly be hard put to specify more than about fifty, say, properties

of a thermodynamic system in which we are really interested. So, the number of

pieces of information we require is absolutely minuscule compared to the number

of degrees of freedom of the system. That is, the number of pieces of information

needed to completely specify the internal motion. Moreover, the quantities which

we are interested in do not depend on the motions of individual particles, or some

some small subset of particles, but, instead, depend on the average motions of

all the particles in the system. In other words, these quantities depend on the

statistical properties of the atomic or molecular motion.

The method adopted in this subject area is essentially dictated by the enor-

mous complexity of thermodynamic systems. We start with some statistical in-

formation about the motions of the constituent atoms or molecules, such as their

average kinetic energy, but we possess virtually no information about the motions

of individual particles. We then try to deduce some other properties of the system

from a statistical treatment of the governing equations. If fact, our approach has

to be statistical in nature, because we lack most of the information required to

specify the internal state of the system. The best we can do is to provide a few

overall constraints, such as the average volume and the average energy.

Thermodynamic systems are ideally suited to a statistical approach because of

the enormous numbers of particles they contain. As you probably know already,

statistical arguments actually get more exact as the numbers involved get larger.

For instance, whenever I see an opinion poll published in a newspaper, I immedi-

ately look at the small print at the bottom where it says how many people were
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interviewed. I know that even if the polling was done without bias, which is ex-

tremely unlikely, the laws of statistics say that there is a intrinsic error of order

one over the square root of the number of people questioned. It follows that if

a thousand people were interviewed, which is a typical number, then the error

is at least three percent. Hence, if the headline says that so and so is ahead by

one percentage point, and only a thousand people were polled, then I know the

result is statistically meaningless. We can easily appreciate that if we do statistics

on a thermodynamic system containing 1024 particles then we are going to obtain

results which are valid to incredible accuracy. In fact, in most situations we can

forget that the results are statistical at all, and treat them as exact laws of Physics.

For instance, the familiar equation of state of an ideal gas,

P V = νR T,

is actually a statistical result. In other words, it relates the average pressure and

the average volume to the average temperature. However, for one mole of gas the

statistical deviations from average values are only about 10−12, according to the

1/
√
N law. Actually, it is virtually impossible to measure the pressure, volume, or

temperature of a gas to such accuracy, so most people just forget about the fact

that the above expression is a statistical result, and treat it as a law of Physics

interrelating the actual pressure, volume, and temperature of an ideal gas.

1.7 Microscopic and macroscopic systems

It is useful, at this stage, to make a distinction between the different sizes of the

systems that we are going to examine. We shall call a system microscopic if it

is roughly of atomic dimensions, or smaller. On the other hand, we shall call a

system macroscopic when it is large enough to be visible in the ordinary sense.

This is a rather inexact definition. The exact definition depends on the number

of particles in the system, which we shall call N. A system is macroscopic if

1√
N

� 1,

which means that statistical arguments can be applied to reasonable accuracy.

For instance, if we wish to keep the statistical error below one percent then a
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macroscopic system would have to contain more than about ten thousand parti-

cles. Any system containing less than this number of particles would be regarded

as essentially microscopic, and, hence, statistical arguments could not be applied

to such a system without unacceptable error.

1.8 Thermodynamics and statistical thermodynamics

In this course, we are going to develop some machinery for interrelating the sta-

tistical properties of a system containing a very large number of particles, via a

statistical treatment of the laws of atomic or molecular motion. It turns out that

once we have developed this machinery, we can obtain some very general results

which do not depend on the exact details of the statistical treatment. These re-

sults can be described without reference to the underlying statistical nature of the

system, but their validity depends ultimately on statistical arguments. They take

the form of general statements regarding heat and work, and are usually referred

to as classical thermodynamics, or just thermodynamics, for short. Historically,

classical thermodynamics was the first sort of thermodynamics to be discovered.

In fact, for many years the laws of classical thermodynamics seemed rather myste-

rious, because their statistical justification had yet to be discovered. The strength

of classical thermodynamics is its great generality, which comes about because it

does not depend on any detailed assumptions about the statistical properties of

the system under investigation. This generality is also the principle weakness of

classical thermodynamics. Only a relatively few statements can be made on such

general grounds, so many interesting properties of the system remain outside the

scope of this theory.

If we go beyond classical thermodynamics, and start to investigate the sta-

tistical machinery which underpins it, then we get all of the results of classical

thermodynamics, plus a large number of other results which enable the macro-

scopic parameters of the system to be calculated from a knowledge of its micro-

scopic constituents. This approach is known as statistical thermodynamics, and is

extremely powerful. The only drawback is that the further we delve inside the

statistical machinery of thermodynamics, the harder it becomes to perform the
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necessary calculations.

Note that both classical and statistical thermodynamics are only valid for sys-

tems in equilibrium. If the system is not in equilibrium then the problem becomes

considerably more difficult. In fact, the thermodynamics of non-equilibrium sys-

tems, which is generally called irreversible thermodynamics, is a graduate level

subject.

1.9 Classical and quantum approaches

We mentioned earlier that the motions (by which we really meant the transla-

tional motions) of atoms and molecules are described exactly by quantum me-

chanics, and only approximately by classical mechanics. It turns out that the

non-translational motions of molecules, such as their rotation and vibration, are

very poorly described by classical mechanics. So, why bother using classical me-

chanics at all? Unfortunately, quantum mechanics deals with the translational

motions of atoms and molecules (via wave mechanics) in a rather awkward man-

ner. The classical approach is far more straightforward, and, under most cir-

cumstances, yields the same statistical results. Hence, in the bulk of this course,

we shall use classical mechanics, as much as possible, to describe translational

motions, and reserve quantum mechanics for dealing with non-translational mo-

tions. However, towards the end of this course, we shall switch to a purely quan-

tum mechanical approach.
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2 Probability theory

2.1 Introduction

The first part of this course is devoted to a brief, and fairly low level, introduction

to a branch of mathematics known as probability theory. In fact, we do not need

to know very much about probability theory in order to understand statistical

thermodynamics, since the probabilistic “calculation” which underpins all of this

subject is extraordinarily simple.

2.2 What is probability?

What is the scientific definition of probability? Well, let us consider an observation

made on a general system S. This can result in any one of a number of different

possible outcomes. We want to find the probability of some general outcome X.

In order to ascribe a probability, we have to consider the system as a member of

a large set Σ of similar systems. Mathematicians have a fancy name for a large

group of similar systems. They call such a group an ensemble, which is just the

French for “group.” So, let us consider an ensemble Σ of similar systems S. The

probability of the outcome X is defined as the ratio of the number of systems in

the ensemble which exhibit this outcome to the total number of systems, in the

limit where the latter number tends to infinity. We can write this symbolically as

P(X) = ltΩ(Σ)→∞
Ω(X)

Ω(Σ)
, (2.1)

where Ω(Σ) is the total number of systems in the ensemble, and Ω(X) is the

number of systems exhibiting the outcome X. We can see that the probability

P(X) must be a number between 0 and 1. The probability is zero if no systems

exhibit the outcome X, even when the number of systems goes to infinity. This

is just another way of saying that there is no chance of the outcome X. The

probability is unity if all systems exhibit the outcome X in the limit as the number

of systems goes to infinity. This is another way of saying that the outcome X is

bound to occur.
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2.3 Combining probabilities

Consider two distinct possible outcomes, X and Y, of an observation made on

the system S, with probabilities of occurrence P(X) and P(Y), respectively. Let us

determine the probability of obtaining the outcome X or Y, which we shall denote

P(X | Y). From the basic definition of probability

P(X | Y) = ltΩ(Σ)→∞
Ω(X | Y)

Ω(Σ)
, (2.2)

where Ω(X | Y) is the number of systems in the ensemble which exhibit either

the outcome X or the outcome Y. It is clear that

Ω(X | Y) = Ω(X) +Ω(Y) (2.3)

if the outcomes X and Y are mutually exclusive (which they must be the case if

they are two distinct outcomes). Thus,

P(X | Y) = P(X) + P(Y). (2.4)

So, the probability of the outcome X or the outcome Y is just the sum of the indi-

vidual probabilities of X and Y. For instance, with a six sided die the probability

of throwing any particular number (one to six) is 1/6, because all of the possible

outcomes are considered to be equally likely. It follows from what has just been

said that the probability of throwing either a one or a two is simply 1/6 + 1/6,

which equals 1/3.

Let us denote all of the M, say, possible outcomes of an observation made on

the system S by Xi, where i runs from 1 to M. Let us determine the probability

of obtaining any of these outcomes. This quantity is clearly unity, from the basic

definition of probability, because every one of the systems in the ensemble must

exhibit one of the possible outcomes. But, this quantity is also equal to the sum

of the probabilities of all the individual outcomes, by (2.4), so we conclude that

this sum is equal to unity. Thus,

M∑

i=1

P(Xi) = 1, (2.5)
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which is called the normalization condition, and must be satisfied by any complete

set of probabilities. This condition is equivalent to the self-evident statement that

an observation of a system must definitely result in one of its possible outcomes.

There is another way in which we can combine probabilities. Suppose that

we make an observation on a state picked at random from the ensemble and

then pick a second state completely independently and make another observation.

We are assuming here that the first observation does not influence the second

observation in any way. The fancy mathematical way of saying this is that the

two observations are statistically independent. Let us determine the probability of

obtaining the outcome X in the first state and the outcome Y in the second state,

which we shall denote P(X ⊗ Y). In order to determine this probability, we have

to form an ensemble of all of the possible pairs of states which we could choose

from the ensemble Σ. Let us denote this ensemble Σ ⊗ Σ. It is obvious that the

number of pairs of states in this new ensemble is just the square of the number

of states in the original ensemble, so

Ω(Σ⊗ Σ) = Ω(Σ)Ω(Σ). (2.6)

It is also fairly obvious that the number of pairs of states in the ensemble Σ ⊗ Σ
which exhibit the outcome X in the first state and Y in the second state is just the

product of the number of states which exhibit the outcome X and the number of

states which exhibit the outcome Y in the original ensemble, so

Ω(X⊗ Y) = Ω(X)Ω(Y). (2.7)

It follows from the basic definition of probability that

P(X⊗ Y) = ltΩ(Σ)→∞
Ω(X⊗ Y)

Ω(Σ⊗ Σ)
= P(X)P(Y). (2.8)

Thus, the probability of obtaining the outcomes X and Y in two statistically inde-

pendent observations is just the product of the individual probabilities of X and

Y. For instance, the probability of throwing a one and then a two on a six sided

die is 1/6× 1/6, which equals 1/36.
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2.4 The two-state system

The simplest non-trivial system which we can investigate using probability theory

is one for which there are only two possible outcomes. There would obviously be

little point in investigating a one outcome system. Let us suppose that there are

two possible outcomes to an observation made on some system S. Let us denote

these outcomes 1 and 2, and let their probabilities of occurrence be

P(1) = p, (2.9)

P(2) = q. (2.10)

It follows immediately from the normalization condition (2.5) that

p+ q = 1, (2.11)

so q = 1 − p. The best known example of a two-state system is a tossed coin.

The two outcomes are “heads” and “tails,” each with equal probabilities 1/2. So,

p = q = 1/2 for this system.

Suppose that we make N statistically independent observations of S. Let us

determine the probability of n1 occurrences of the outcome 1 and N − n1 occur-

rences of the outcome 2, with no regard to the order of these occurrences. Denote

this probability PN(n1). This type of calculation crops up again and again in prob-

ability theory. For instance, we might want to know the probability of getting nine

“heads” and only one “tails” in an experiment where a coin is tossed ten times, or

where ten coins are tossed simultaneously.

Consider a simple case in which there are only three observations. Let us try to

evaluate the probability of two occurrences of the outcome 1 and one occurrence

of the outcome 2. There are three different ways of getting this result. We could

get the outcome 1 on the first two observations and the outcome 2 on the third.

Or, we could get the outcome 2 on the first observation and the outcome 1 on

the latter two observations. Or, we could get the outcome 1 on the first and

last observations and the outcome 2 on the middle observation. Writing this

symbolically

P3(2) = P(1⊗ 1⊗ 2 | 2⊗ 1⊗ 1 | 1⊗ 2⊗ 1). (2.12)
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This formula looks a bit scary, but all we have done here is to write out symbol-

ically what was just said in words. Where we said “and” we have written the

symbolic operator ⊗, and where we said “or” we have written the symbolic oper-

ator |. This symbolic representation is helpful because of the two basic rules for

combining probabilities which we derived earlier

P(X | Y) = P(X) + P(Y), (2.13)

P(X⊗ Y) = P(X)P(Y). (2.14)

The straightforward application of these rules gives

P3(2) = ppq+ qpp+ pqp = 3 p2 q (2.15)

in the case under consideration.

The probability of obtaining n1 occurrences of the outcome 1 inN observations

is given by

PN(n1) = CNn1,N−n1
pn1 qN−n1, (2.16)

where CNn1,N−n1
is the number of ways of arranging two distinct sets of n1 and

N − n1 indistinguishable objects. Hopefully, that this is, at least, plausible from

the example we just discussed. There, the probability of getting two occurrences

of the outcome 1 and one occurrence of the outcome 2 was obtained by writing

out all of the possible arrangements of two p s (the probability of outcome 1) and

one q (the probability of outcome 2), and then added them all together.

2.5 Combinatorial analysis

The branch of mathematics which studies the number of different ways of arrang-

ing things is called combinatorial analysis. We need to know how many different

ways there are of arranging N objects which are made up of two groups of n1
and N − n1 indistinguishable objects. This is a pretty tough problem! Let us try

something a little easier to begin with. How many ways are there of arranging N

distinguishable objects? For instance, suppose that we have six pool balls, num-

bered one through six, and we pot one each into every one of the six pockets of a

pool table (that is, top-left, top-right, middle-left, middle-right, bottom-left, and
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bottom-right). How many different ways are there of doing this? Well, let us start

with the top-left pocket. We could pot any one of the six balls into this pocket,

so there are 6 possibilities. For the top-right pocket we only have 5 possibilities,

because we have already potted a ball into the top-left pocket, and it cannot be in

two pockets simultaneously. So, our 6 original possibilities combined with these

5 new possibilities gives 6× 5 ways of potting two balls into the top two pockets.

For the middle-left pocket we have 4 possibilities, because we have already potted

two balls. These possibilities combined with our 6× 5 possibilities gives 6× 5× 4
ways of potting three balls into three pockets. At this stage, it should be clear

that the final answer is going to be 6× 5× 4× 3× 2× 1. Well, 6× 5× 4× 3× 2× 1
is a bit of a mouthful, so to prevent us having to say (or write) things like this,

mathematicians have invented a special function called a factorial. The factorial

of a general positive integer n is defined

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1. (2.17)

So, 1! = 1, and 2! = 2 × 1 = 2, and 3! = 3 × 2 × 1 = 6, and so on. Clearly, the

number of ways of potting six pool balls into six pockets is 6! (which incidentally

equals 720). Since there is nothing special about pool balls, or the number six, we

can safely infer that the number of different ways of arranging N distinguishable

objects, denoted CN, is given by

CN = N! . (2.18)

Suppose that we take the number four ball off the pool table and replace it

by a second number five ball. How many different ways are there of potting

the balls now? Well, consider a previous arrangement in which the number five

ball was potted into the top-left pocket and the number four ball was potted into

the top-right pocket, and then consider a second arrangement which only differs

from the first because the number four and five balls have been swapped around.

These arrangements are now indistinguishable, and are therefore counted as a

single arrangement, whereas previously they were counted as two separate ar-

rangements. Clearly, the previous arrangements can be divided into two groups,

containing equal numbers of arrangements, which differ only by the permutation

of the number four and five balls. Since these balls are now indistinguishable, we
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2.6 The binomial distribution 2 PROBABILITY THEORY

conclude that there are only half as many different arrangements as there were

before. If we take the number three ball off the table and replace it by a third

number five ball, we can split the original arrangements into six equal groups

of arrangements which differ only by the permutation of the number three, four,

and five balls. There are six groups because there are 3! = 6 separate permuta-

tions of these three balls. Since the number three, four, and five balls are now

indistinguishable, we conclude that there are only 1/6 the number of original

arrangements. Generalizing this result, we conclude that the number of arrange-

ments of n1 indistinguishable and N− n1 distinguishable objects is

CNn1
=
N!

n1!
. (2.19)

We can see that if all the balls on the table are replaced by number five balls then

there is only N!/N! = 1 possible arrangement. This corresponds, of course, to a

number five ball in each pocket. A further straightforward generalization tells us

that the number of arrangements of two groups of n1 andN−n1 indistinguishable

objects is

CNn1,N−n1
=

N!

n1! (N− n1)!
. (2.20)

2.6 The binomial distribution

It follows from Eqs. (2.16) and (2.20) that the probability of obtaining n1 occur-

rences of the outcome 1 inN statistically independent observations of a two-state

system is

PN(n1) =
N!

n1! (N− n1)!
pn1 qN−n1. (2.21)

This probability function is called the binomial distribution function. The reason

for this is obvious if we tabulate the probabilities for the first few possible values

of N (see Tab. 1). Of course, we immediately recognize these expressions: they

appear in the standard algebraic expansions of (p + q), (p + q)2, (p + q)3, and

(p+q)4, respectively. In algebra, the expansion of (p+q)N is called the binomial

expansion (hence, the name given to the probability distribution function), and
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n1

0 1 2 3 4

1 q p

N 2 q2 2 pq p2

3 q3 3 pq2 3 p2q p3

4 q4 4 pq3 6 p2q2 4 p3q p4

Table 1: The binomial probability distribution

can be written

(p+ q)N ≡
N∑

n=0

N!

n! (N− n)!
pn qN−n. (2.22)

Equations (2.21) and (2.22) can be used to establish the normalization condition

for the binomial distribution function:
N∑

n1=0

PN(n1) =

N∑

n1=0

N!

n1! (N− n1)!
pn1 qN−n1 ≡ (p+ q)N = 1, (2.23)

since p+ q = 1.

2.7 The mean, variance, and standard deviation

What is meant by the mean or average of a quantity? Well, suppose that we

wanted to calculate the average age of undergraduates at the University of Texas

at Austin. We could go to the central administration building and find out how

many eighteen year-olds, nineteen year-olds, etc. were currently enrolled. We

would then write something like

Average Age ' N18 × 18+N19 × 19+N20 × 20+ · · ·
N18 +N19 +N20 · · ·

, (2.24)

where N18 is the number of enrolled eighteen year-olds, etc. Suppose that we

were to pick a student at random and then ask “What is the probability of this

student being eighteen?” From what we have already discussed, this probability

is defined

P18 =
N18

Nstudents

, (2.25)
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where Nstudents is the total number of enrolled students. We can now see that the

average age takes the form

Average Age ' P18 × 18+ P19 × 19+ P20 × 20+ · · · . (2.26)

Well, there is nothing special about the age distribution of students at UT

Austin. So, for a general variable u, which can take on any one of M possible

values u1, u2, · · · , uM, with corresponding probabilities P(u1), P(u2), · · · , P(uM),

the mean or average value of u, which is denoted ū, is defined as

ū ≡
M∑

i=1

P(ui)ui. (2.27)

Suppose that f(u) is some function of u. Then, for each of the M possible

values of u, there is a corresponding value of f(u) which occurs with the same

probability. Thus, f(u1) corresponds to u1 and occurs with the probability P(u1),

and so on. It follows from our previous definition that the mean value of f(u) is

given by

f(u) ≡
M∑

i=1

P(ui) f(ui). (2.28)

Suppose that f(u) and g(u) are two general functions of u. It follows that

f(u) + g(u) =

M∑

i=1

P(ui) [f(ui)+g(ui)] =

M∑

i=1

P(ui) f(ui)+

M∑

i=1

P(ui)g(ui), (2.29)

so

f(u) + g(u) = f(u) + g(u). (2.30)

Finally, if c is a general constant then it is clear that

c f(u) = c f(u). (2.31)

We now know how to define the mean value of the general variable u. But,

how can we characterize the scatter around the mean value? We could investigate

the deviation of u from its mean value ū, which is denoted

∆u ≡ u− ū. (2.32)
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In fact, this is not a particularly interesting quantity, since its average is obviously

zero:

∆u = (u− ū) = ū− ū = 0. (2.33)

This is another way of saying that the average deviation from the mean vanishes.

A more interesting quantity is the square of the deviation. The average value of

this quantity,

(∆u)2 =

M∑

i=1

P(ui) (ui − ū)2, (2.34)

is usually called the variance. The variance is clearly a positive number, unless

there is no scatter at all in the distribution, so that all possible values of u corre-

spond to the mean value ū, in which case it is zero. The following general relation

is often useful

(u− ū)2 = (u2 − 2u ū+ ū2) = u2 − 2 ū ū+ ū2, (2.35)

giving

(u− ū)2 = u2 − ū2. (2.36)

The variance of u is proportional to the square of the scatter of u around its

mean value. A more useful measure of the scatter is given by the square root of

the variance,

∆∗u =
[

(∆u)2
]1/2

, (2.37)

which is usually called the standard deviation of u. The standard deviation is

essentially the width of the range over which u is distributed around its mean

value ū.

2.8 Application to the binomial distribution

Let us now apply what we have just learned about the mean, variance, and stan-

dard deviation of a general distribution function to the specific case of the bino-

mial distribution function. Recall, that if a simple system has just two possible

outcomes, denoted 1 and 2, with respective probabilities p and q = 1 − p, then

18
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the probability of obtaining n1 occurrences of outcome 1 in N observations is

PN(n1) =
N!

n1! (N− n1)!
pn1 qN−n1. (2.38)

Thus, the mean number of occurrences of outcome 1 in N observations is given

by

n1 =

N∑

n1=0

PN(n1)n1 =

N∑

n1=0

N!

n1! (N− n1)!
pn1 qN−n1 n1. (2.39)

This is a rather nasty looking expression! However, we can see that if the final

factor n1 were absent, it would just reduce to the binomial expansion, which we

know how to sum. We can take advantage of this fact by using a rather elegant

mathematical sleight of hand. Observe that since

n1 p
n1 ≡ p ∂

∂p
pn1, (2.40)

the summation can be rewritten as

N∑

n1=0

N!

n1! (N− n1)!
pn1 qN−n1 n1 ≡ p

∂

∂p







N∑

n1=0

N!

n1! (N− n1)!
pn1 qN−n1





 . (2.41)

This is just algebra, and has nothing to do with probability theory. The term

in square brackets is the familiar binomial expansion, and can be written more

succinctly as (p+ q)N. Thus,

N∑

n1=0

N!

n1! (N− n1)!
pn1 qN−n1 n1 ≡ p

∂

∂p
(p+ q)N ≡ pN (p+ q)N−1. (2.42)

However, p+ q = 1 for the case in hand, so

n1 = Np. (2.43)

In fact, we could have guessed this result. By definition, the probability p is

the number of occurrences of the outcome 1 divided by the number of trials, in

the limit as the number of trials goes to infinity:

p = ltN→∞
n1

N
. (2.44)
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If we think carefully, however, we can see that taking the limit as the number of

trials goes to infinity is equivalent to taking the mean value, so that

p =

(

n1

N

)

=
n1

N
. (2.45)

But, this is just a simple rearrangement of Eq. (2.43).

Let us now calculate the variance of n1. Recall that

(∆n1)2 = (n1)2 − (n1)
2. (2.46)

We already know n1, so we just need to calculate (n1)2. This average is written

(n1)2 =

N∑

n1=0

N!

n1! (N− n1)!
pn1 qN−n1 (n1)

2. (2.47)

The sum can be evaluated using a simple extension of the mathematical trick we

used earlier to evaluate n1. Since

(n1)
2 pn1 ≡

(

p
∂

∂p

)2

pn1, (2.48)

then

N∑

n1=0

N!

n1! (N− n1)!
pn1 qN−n1 (n1)

2 ≡
(

p
∂

∂p

)2 N∑

n1=0

N!

n1! (N− n1)!
pn1qN−n1

≡
(

p
∂

∂p

)2

(p+ q)N (2.49)

≡
(

p
∂

∂p

)

[

pN (p+ q)N−1
]

≡ p
[

N (p+ q)N−1 + pN (N− 1) (p+ q)N−2
]

.

Using p+ q = 1 yields

(n1)2 = p [N+ pN (N− 1)] = Np [1+ pN− p]

= (Np)2 +Npq = (n1)
2 +Npq, (2.50)

since n1 = Np. It follows that the variance of n1 is given by

(∆n1)2 = (n1)2 − (n1)
2 = Npq. (2.51)
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The standard deviation of n1 is just the square root of the variance, so

∆∗n1 =
√

Npq. (2.52)

Recall that this quantity is essentially the width of the range over which n1 is

distributed around its mean value. The relative width of the distribution is char-

acterized by
∆∗n1
n1

=

√
Npq

Np
=

√

√

√

√

q

p

1√
N
. (2.53)

It is clear from this formula that the relative width decreases like N−1/2 with

increasing N. So, the greater the number of trials, the more likely it is that an

observation of n1 will yield a result which is relatively close to the mean value

n1. This is a very important result.

2.9 The Gaussian distribution

Consider a very large number of observations,N� 1, made on a system with two

possible outcomes. Suppose that the probability of outcome 1 is sufficiently large

that the average number of occurrences afterN observations is much greater than

unity:

n1 = Np� 1. (2.54)

In this limit, the standard deviation of n1 is also much greater than unity,

∆∗n1 =
√

Npq� 1, (2.55)

implying that there are very many probable values of n1 scattered about the mean

value n1. This suggests that the probability of obtaining n1 occurrences of out-

come 1 does not change significantly in going from one possible value of n1 to an

adjacent value:
|PN(n1 + 1) − PN(n1)|

PN(n1)
� 1. (2.56)

In this situation, it is useful to regard the probability as a smooth function of n1.

Let n be a continuous variable which is interpreted as the number of occurrences
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of outcome 1 (afterN observations) whenever it takes on a positive integer value.

The probability that n lies between n and n+ dn is defined

P(n,n+ dn) = P(n)dn, (2.57)

where P(n) is called the probability density, and is independent of dn. The prob-

ability can be written in this form because P(n,n+ dn) can always be expanded

as a Taylor series in dn, and must go to zero as dn → 0. We can write
∫n1+1/2

n1−1/2

P(n)dn = PN(n1), (2.58)

which is equivalent to smearing out the discrete probability PN(n1) over the range

n1 ± 1/2. Given Eq. (2.56), the above relation can be approximated

P(n) ' PN(n) =
N!

n! (N− n)!
pn qN−n. (2.59)

For large N, the relative width of the probability distribution function is small:

∆∗n1
n1

=

√

√

√

√

q

p

1√
N

� 1. (2.60)

This suggests that P(n) is strongly peaked around the mean value n = n1. Sup-

pose that lnP(n) attains its maximum value at n = ñ (where we expect ñ ∼ n).

Let us Taylor expand lnP around n = ñ. Note that we expand the slowly varying

function lnP(n), instead of the rapidly varying function P(n), because the Taylor

expansion of P(n) does not converge sufficiently rapidly in the vicinity of n = ñ

to be useful. We can write

lnP(ñ+ η) ' lnP(ñ) + ηB1 +
η2

2
B2 + · · · , (2.61)

where

Bk =
dk lnP
dnk

∣

∣

∣

∣

∣

∣

n=ñ

. (2.62)

By definition,

B1 = 0, (2.63)

B2 < 0, (2.64)
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if n = ñ corresponds to the maximum value of lnP(n).

It follows from Eq. (2.59) that

lnP = lnN! − lnn! − ln (N− n)! + n lnp+ (N− n) lnq. (2.65)

If n is a large integer, such that n� 1, then lnn! is almost a continuous function

of n, since lnn! changes by only a relatively small amount when n is incremented

by unity. Hence,

d lnn!

dn
' ln (n+ 1)! − lnn!

1
= ln





(n+ 1)!

n!



 = ln (n+ 1), (2.66)

giving
d lnn!

dn
' lnn, (2.67)

for n� 1. The integral of this relation

lnn! ' n lnn− n+ O(1), (2.68)

valid for n � 1, is called Stirling’s approximation, after the Scottish mathemati-

cian James Stirling who first obtained it in 1730.

According to Eq. (2.65),

B1 = − ln ñ+ ln (N− ñ) + lnp− lnq. (2.69)

Hence, if B1 = 0 then

(N− ñ)p = ñ q, (2.70)

giving

ñ = Np = n1, (2.71)

since p+ q = 1. Thus, the maximum of lnP(n) occurs exactly at the mean value

of n, which equals n1.

Further differentiation of Eq. (2.65) yields

B2 = −
1

ñ
−

1

N− ñ
= −

1

Np
−

1

N (1− p)
= −

1

Npq
, (2.72)
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since p + q = 1. Note that B2 < 0, as required. The above relation can also be

written

B2 = −
1

(∆∗n1)2
(2.73)

It follows from the above that the Taylor expansion of lnP can be written

lnP(n1 + η) ' lnP(n1) −
η2

2 (∆∗n1)2
+ · · · . (2.74)

Taking the exponential of both sides yields

P(n) ' P(n1) exp



−
(n− n1)

2

2 (∆∗n1)2



 . (2.75)

The constant P(n1) is most conveniently fixed by making use of the normalization

condition
N∑

n1=0

PN(n1) = 1, (2.76)

which translates to ∫N

0

P(n)dn ' 1 (2.77)

for a continuous distribution function. Since we only expect P(n) to be significant

when n lies in the relatively narrow range n1 ± ∆∗n1, the limits of integration in

the above expression can be replaced by ±∞ with negligible error. Thus,

P(n1)

∫∞

−∞

exp



−
(n− n1)

2

2 (∆∗n1)2



 dn = P(n1)
√
2∆∗n1

∫∞

−∞

exp(−x2)dx ' 1. (2.78)

As is well-known, ∫∞

−∞

exp(−x2)dx =
√
π, (2.79)

so it follows from the normalization condition (2.78) that

P(n1) '
1√

2π∆∗n1
. (2.80)
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Finally, we obtain

P(n) ' 1√
2π∆∗n1

exp



−
(n− n1)

2

2 (∆∗n1)2



 . (2.81)

This is the famous Gaussian distribution function, named after the German math-

ematician Carl Friedrich Gauss, who discovered it whilst investigating the distri-

bution of errors in measurements. The Gaussian distribution is only valid in the

limits N� 1 and n1 � 1.

Suppose we were to plot the probability PN(n1) against the integer variable

n1, and then fit a continuous curve through the discrete points thus obtained.

This curve would be equivalent to the continuous probability density curve P(n),

where n is the continuous version of n1. According to Eq. (2.81), the probability

density attains its maximum value when n equals the mean of n1, and is also

symmetric about this point. In fact, when plotted with the appropriate ratio of

vertical to horizontal scalings, the Gaussian probability density curve looks rather

like the outline of a bell centred on n = n1. Hence, this curve is sometimes

called a bell curve. At one standard deviation away from the mean value, i.e.,

n = n1 ± ∆∗n1, the probability density is about 61% of its peak value. At two

standard deviations away from the mean value, the probability density is about

13.5% of its peak value. Finally, at three standard deviations away from the mean

value, the probability density is only about 1% of its peak value. We conclude

that there is very little chance indeed that n1 lies more than about three standard

deviations away from its mean value. In other words, n1 is almost certain to lie

in the relatively narrow range n1 ± 3∆∗n1. This is a very well-known result.

In the above analysis, we have gone from a discrete probability function PN(n1)

to a continuous probability density P(n). The normalization condition becomes

1 =

N∑

n1=0

PN(n1) '
∫∞

−∞

P(n)dn (2.82)

under this transformation. Likewise, the evaluations of the mean and variance of

the distribution are written

n1 =

N∑

n1=0

PN(n1)n1 '
∫∞

−∞

P(n)ndn, (2.83)
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and

(∆n1)2 ≡ (∆∗n1)
2 =

N∑

n1=0

PN(n1) (n1 − n1)
2 '

∫∞

−∞

P(n) (n− n1)
2 dn, (2.84)

respectively. These results follow as simple generalizations of previously es-

tablished results for the discrete function PN(n1). The limits of integration in

the above expressions can be approximated as ±∞ because P(n) is only non-

negligible in a relatively narrow range of n. Finally, it is easily demonstrated that

Eqs. (2.82)–(2.84) are indeed true by substituting in the Gaussian probability

density, Eq. (2.81), and then performing a few elementary integrals.

2.10 The central limit theorem

Now, you may be thinking that we got a little carried away in our discussion of

the Gaussian distribution function. After all, this distribution only seems to be

relevant to two-state systems. In fact, as we shall see, the Gaussian distribution is

of crucial importance to statistical physics because, under certain circumstances,

it applies to all systems.

Let us briefly review how we obtained the Gaussian distribution function in

the first place. We started from a very simple system with only two possible

outcomes. Of course, the probability distribution function (for n1) for this system

did not look anything like a Gaussian. However, when we combined very many

of these simple systems together, to produce a complicated system with a great

number of possible outcomes, we found that the resultant probability distribution

function (for n1) reduced to a Gaussian in the limit as the number of simple

systems tended to infinity. We started from a two outcome system because it was

easy to calculate the final probability distribution function when a finite number

of such systems were combined together. Clearly, if we had started from a more

complicated system then this calculation would have been far more difficult.

Let me now tell you something which is quite astonishing! Suppose that we

start from any system, with any distribution function (for some measurable quan-

tity x). If we combine a sufficiently large number of such systems together, the
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resultant distribution function (for x) is always Gaussian. This proposition is

known as the central limit theorem. As far as Physics is concerned, it is one of the

most important theorems in the whole of mathematics.

Unfortunately, the central limit theorem is notoriously difficult to prove. A

somewhat restricted proof is presented in Sections 1.10 and 1.11 of Reif.

The central limit theorem guarantees that the probability distribution of any

measurable quantity is Gaussian, provided that a sufficiently large number of

statistically independent observations are made. We can, therefore, confidently

predict that Gaussian distributions are going to crop up all over the place in

statistical thermodynamics.
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3 Statistical mechanics

3.1 Introduction

Let us now analyze the internal motions of a many particle system using proba-

bility theory. This subject area is known as statistical mechanics.

3.2 Specification of the state of a many particle system

How do we determine the state of a many particle system? Well, let us, first

of all, consider the simplest possible many particle system, which consists of a

single spinless particle moving classically in one dimension. Assuming that we

know the particle’s equation of motion, the state of the system is fully specified

once we simultaneously measure the particle’s position q and momentum p. In

principle, if we know q and p then we can calculate the state of the system at

all subsequent times using the equation of motion. In practice, it is impossible to

specify q and p exactly, since there is always an intrinsic error in any experimental

measurement.

Consider the time evolution of q and p. This can be visualized by plotting the

point (q, p) in the q-p plane. This plane is generally known as phase-space. In

general, the point (q, p) will trace out some very complicated pattern in phase-

space. Suppose that we divide phase-space into rectangular cells of uniform di-

mensions δq and δp. Here, δq is the intrinsic error in the position measurement,

and δp the intrinsic error in the momentum measurement. The “area” of each

cell is

δq δp = h0, (3.1)

where h0 is a small constant having the dimensions of angular momentum. The

coordinates q and p can now be conveniently specified by indicating the cell in

phase-space into which they plot at any given time. This procedure automatically

ensures that we do not attempt to specify q and p to an accuracy greater than

our experimental error, which would clearly be pointless.
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Let us now consider a single spinless particle moving in three dimensions. In

order to specify the state of the system we now need to know three q-p pairs:

i.e., qx-px, qy-py, and qz-pz. Incidentally, the number of q-p pairs needed to

specify the state of the system is usually called the number of degrees of freedom

of the system. Thus, a single particle moving in one dimension constitutes a one

degree of freedom system, whereas a single particle moving in three dimensions

constitutes a three degree of freedom system.

Consider the time evolution of q and p, where q = (qx, qy, qz), etc. This can

be visualized by plotting the point (q, p) in the six dimensional q-p phase-space.

Suppose that we divide the qx-px plane into rectangular cells of uniform dimen-

sions δq and δp, and do likewise for the qy-py and qz-pz planes. Here, δq and

δp are again the intrinsic errors in our measurements of position and momen-

tum, respectively. This is equivalent to dividing phase-space up into regular six

dimensional cells of volume h 3
0 . The coordinates q and p can now be conve-

niently specified by indicating the cell in phase-space into which they plot at any

given time. Again, this procedure automatically ensures that we do not attempt

to specify q and p to an accuracy greater than our experimental error.

Finally, let us consider a system consisting of N spinless particles moving clas-

sically in three dimensions. In order to specify the state of the system, we need to

specify a large number of q-p pairs. The requisite number is simply the number

of degrees of freedom, f. For the present case, f = 3N. Thus, phase-space (i.e.,

the space of all the q-p pairs) now possesses 2 f = 6N dimensions. Consider a

particular pair of conjugate coordinates, qi and pi. As before, we divide the qi-pi
plane into rectangular cells of uniform dimensions δq and δp. This is equivalent

to dividing phase-space into regular 2 f dimensional cells of volume h f
0 . The state

of the system is specified by indicating which cell it occupies in phase-space at

any given time.

In principle, we can specify the state of the system to arbitrary accuracy by

taking the limit h0 → 0. In reality, we know from quantum mechanics that it is

impossible to simultaneously measure a coordinate qi and its conjugate momen-

tum pi to greater accuracy than δqi δpi = h̄. This implies that

h0 ≥ h̄. (3.2)
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In other words, the uncertainty principle sets a lower limit on how finely we can

chop up classical phase-space.

In quantum mechanics we can specify the state of the system by giving its

wave-function at time t,

ψ(q1, · · · , qf, s1, · · · , sg, t), (3.3)

where f is the number of translational degrees of freedom, and g the number of

internal (e.g., spin) degrees of freedom. For instance, if the system consists of

N spin-one-half particles then there will be 3N translational degrees of freedom,

and N spin degrees of freedom (i.e., the spin of each particle can either point up

or down along the z-axis). Alternatively, if the system is in a stationary state (i.e.,

an eigenstate of the Hamiltonian) then we can just specify f+g quantum numbers.

Either way, the future time evolution of the wave-function is fully determined by

Schrödinger’s equation.

In reality, this approach does not work because the Hamiltonian of the system

is only known approximately. Typically, we are dealing with a system consist-

ing of many weakly interacting particles. We usually know the Hamiltonian for

completely non-interacting particles, but the component of the Hamiltonian asso-

ciated with particle interactions is either impossibly complicated, or not very well

known (often, it is both!). We can define approximate stationary eigenstates us-

ing the Hamiltonian for non-interacting particles. The state of the system is then

specified by the quantum numbers identifying these eigenstates. In the absence

of particle interactions, if the system starts off in a stationary state then it stays in

that state for ever, so its quantum numbers never change. The interactions allow

the system to make transitions between different “stationary” states, causing its

quantum numbers to change in time.

3.3 The principle of equal a priori probabilities

We now know how to specify the instantaneous state of a many particle system.

In principle, such a system is completely deterministic. Once we know the ini-

tial state and the equations of motion (or the Hamiltonian) we can evolve the
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system forward in time and, thereby, determine all future states. In reality, it

is quite impossible to specify the initial state or the equations of motion to suf-

ficient accuracy for this method to have any chance of working. Furthermore,

even if it were possible, it would still not be a practical proposition to evolve

the equations of motion. Remember that we are typically dealing with systems

containing Avogadro’s number of particles: i.e., about 1024 particles. We cannot

evolve 1024 simultaneous differential equations! Even if we could, we would not

want to. After all, we are not particularly interested in the motions of individual

particles. What we really want is statistical information regarding the motions of

all particles in the system.

Clearly, what is required here is a statistical treatment of the problem. Instead

of focusing on a single system, let us proceed in the usual manner and consider a

statistical ensemble consisting of a large number of identical systems. In general,

these systems are distributed over many different states at any given time. In

order to evaluate the probability that the system possesses a particular property,

we merely need to find the number of systems in the ensemble which exhibit this

property, and then divide by the total number of systems, in the limit as the latter

number tends to infinity.

We can usually place some general constraints on the system. Typically, we

know the total energy E, the total volume V , and the total number of particles

N. To be more honest, we can only really say that the total energy lies between E

and E + δE, etc., where δE is an experimental error. Thus, we only need concern

ourselves with those systems in the ensemble exhibiting states which are consis-

tent with the known constraints. We call these the states accessible to the system.

In general, there are a great many such states.

We now need to calculate the probability of the system being found in each of

its accessible states. Well, perhaps “calculate” is the wrong word. The only way

we could calculate these probabilities would be to evolve all of the systems in the

ensemble and observe how long on average they spend in each accessible state.

But, as we have already mentioned, such a calculation is completely out of the

question. So what do we do instead? Well, we effectively guess the probabilities.

Let us consider an isolated system in equilibrium. In this situation, we would
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expect the probability of the system being found in one of its accessible states to

be independent of time. This implies that the statistical ensemble does not evolve

with time. Individual systems in the ensemble will constantly change state, but

the average number of systems in any given state should remain constant. Thus,

all macroscopic parameters describing the system, such as the energy and the

volume, should also remain constant. There is nothing in the laws of mechanics

which would lead us to suppose that the system will be found more often in one

of its accessible states than in another. We assume, therefore, that the system is

equally likely to be found in any of its accessible states. This is called the assumption

of equal a priori probabilities, and lies at the very heart of statistical mechanics.

In fact, we use assumptions like this all of the time without really thinking

about them. Suppose that we were asked to pick a card at random from a well-

shuffled pack. I think that most people would accept that we have an equal

probability of picking any card in the pack. There is nothing which would favour

one particular card over all of the others. So, since there are fifty-two cards in a

normal pack, we would expect the probability of picking the Ace of Spades, say,

to be 1/52. We could now place some constraints on the system. For instance,

we could only count red cards, in which case the probability of picking the Ace

of Hearts, say, would be 1/26, by the same reasoning. In both cases, we have

used the principle of equal a priori probabilities. People really believe that this

principle applies to games of chance such as cards, dice, and roulette. In fact,

if the principle were found not to apply to a particular game most people would

assume that the game was “crooked.” But, imagine trying to prove that the prin-

ciple actually does apply to a game of cards. This would be very difficult! We

would have to show that the way most people shuffle cards is effective at ran-

domizing their order. A convincing study would have to be part mathematics and

part psychology!

In statistical mechanics, we treat a many particle system a bit like an extremely

large game of cards. Each accessible state corresponds to one of the cards in the

pack. The interactions between particles cause the system to continually change

state. This is equivalent to constantly shuffling the pack. Finally, an observation

of the state of the system is like picking a card at random from the pack. The

principle of equal a priori probabilities then boils down to saying that we have an
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equal chance of choosing any particular card.

It is, unfortunately, impossible to prove with mathematical rigor that the prin-

ciple of equal a priori probabilities applies to many-particle systems. Over the

years, many people have attempted this proof, and all have failed miserably. Not

surprisingly, therefore, statistical mechanics was greeted with a great deal of scep-

ticism when it was first proposed just over one hundred years ago. One of the

its main proponents, Ludvig Boltzmann, got so fed up with all of the criticism

that he eventually threw himself off a bridge! Nowadays, statistical mechanics

is completely accepted into the cannon of physics. The reason for this is quite

simple: it works!

It is actually possible to formulate a reasonably convincing scientific case for

the principle of equal a priori probabilities. To achieve this we have to make use

of the so-called H theorem.

3.4 The H theorem

Consider a system of weakly interacting particles. In quantum mechanics we can

write the Hamiltonian for such a system as

H = H0 +H1, (3.4)

where H0 is the Hamiltonian for completely non-interacting particles, and H1 is

a small correction due to the particle interactions. We can define approximate

stationary eigenstates of the system using H0. Thus,

H0Ψr = ErΨr, (3.5)

where the index r labels a state of energy Er and eigenstate Ψr. In general, there

are many different eigenstates with the same energy: these are called degenerate

states.

For example, consider N non-interacting spinless particles of mass m confined

in a cubic box of dimension L. According to standard wave-mechanics, the energy
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levels of the ith particle are given by

ei =
h̄2π2

2mL2

(

n 2
i1 + n 2

i2 + n 2
i3

)

, (3.6)

where ni1, ni2, and ni3 are three (positive integer) quantum numbers. The overall

energy of the system is the sum of the energies of the individual particles, so that

for a general state r

Er =

N∑

i=1

ei. (3.7)

The overall state of the system is thus specified by 3N quantum numbers (i.e.,

three quantum numbers per particle). There are clearly very many different ar-

rangements of these quantum numbers which give the same overall energy.

Consider, now, a statistical ensemble of systems made up of weakly interacting

particles. Suppose that this ensemble is initially very far from equilibrium. For

instance, the systems in the ensemble might only be distributed over a very small

subset of their accessible states. If each system starts off in a particular stationary

state (i.e., with a particular set of quantum numbers) then, in the absence of

particle interactions, it will remain in that state for ever. Hence, the ensemble will

always stay far from equilibrium, and the principle of equal a priori probabilities

will never be applicable. In reality, particle interactions cause each system in

the ensemble to make transitions between its accessible “stationary” states. This

allows the overall state of the ensemble to change in time.

Let us label the accessible states of our system by the index r. We can ascribe

a time dependent probability Pr(t) of finding the system in a particular approxi-

mate stationary state r at time t. Of course, Pr(t) is proportional to the number of

systems in the ensemble in state r at time t. In general, Pr is time dependent be-

cause the ensemble is evolving towards an equilibrium state. We assume that the

probabilities are properly normalized, so that the sum over all accessible states

always yields ∑

r

Pr(t) = 1. (3.8)

Small interactions between particles cause transitions between the approxi-

mate stationary states of the system. There then exists some transition probabil-
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ity per unit time Wrs that a system originally in state r ends up in state s as a

result of these interactions. Likewise, there exists a probability per unit time Wsr

that a system in state s makes a transition to state r. These transition probabili-

ties are meaningful in quantum mechanics provided that the particle interaction

strength is sufficiently small, there is a nearly continuous distribution of accessi-

ble energy levels, and we consider time intervals which are not too small. These

conditions are easily satisfied for the types of systems usually analyzed via statis-

tical mechanics (e.g., nearly ideal gases). One important conclusion of quantum

mechanics is that the forward and inverse transition probabilities between two

states are the same, so that

Wrs = Wsr (3.9)

for any two states r and s. This result follows from the time reversal symmetry of

quantum mechanics. On the microscopic scale of individual particles, all funda-

mental laws of physics (in particular, classical and quantum mechanics) possess

this symmetry. So, if a certain motion of particles satisfies the classical equations

of motion (or Schrödinger’s equation) then the reversed motion, with all particles

starting off from their final positions and then retracing their paths exactly until

they reach their initial positions, satisfies these equations just as well.

Suppose that we were to “film” a microscopic process, such as two classical

particles approaching one another, colliding, and moving apart. We could then

gather an audience together and show them the film. To make things slightly

more interesting we could play it either forwards or backwards. Because of the

time reversal symmetry of classical mechanics, the audience would not be able to

tell which way the film was running (unless we told them!). In both cases, the

film would show completely plausible physical events.

We can play the same game for a quantum process. For instance, we could

“film” a group of photons impinging on some atoms. Occasionally, one of the

atoms will absorb a photon and make a transition to an “excited” state (i.e., a

state with higher than normal energy). We could easily estimate the rate constant

for this process by watching the film carefully. If we play the film backwards then

it will appear to show excited atoms occasionally emitting a photon and decaying

back to their unexcited state. If quantum mechanics possesses time reversal sym-

metry (which it certainly does!) then both films should appear equally plausible.
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This means that the rate constant for the absorption of a photon to produce an

excited state must be the same as the rate constant for the excited state to decay

by the emission of a photon. Otherwise, in the backwards film the excited atoms

would appear to emit photons at the wrong rate, and we could then tell that the

film was being played backwards. It follows, therefore, that as a consequence of

time reversal symmetry, the rate constant for any process in quantum mechanics

must equal the rate constant for the inverse process.

The probability Pr of finding the systems in the ensemble in a particular state

r changes with time for two reasons. Firstly, systems in another state s can make

transitions to the state r. The rate at which this occurs is Ps, the probability

that the systems are in the state s to begin with, times the rate constant of the

transition Wsr. Secondly, systems in the state r can make transitions to other

states such as s. The rate at which this occurs is clearly Pr times Wrs. We can

write a simple differential equation for the time evolution of Pr:

dPr

dt
=

∑

s 6=r
PsWsr −

∑

s 6=r
PrWrs, (3.10)

or
dPr

dt
=

∑

s

Wrs(Ps − Pr), (3.11)

where use has been made of the symmetry condition (3.9). The summation is

over all accessible states.

Consider now the quantity H (from which the H theorem derives its name),

which is the mean value of lnPr over all accessible states:

H ≡ lnPr ≡
∑

r

Pr lnPr. (3.12)

This quantity changes as the individual probabilities Pr vary in time. Straightfor-

ward differentiation of the above equation yields

dH

dt
=

∑

r

(

dPr

dt
lnPr +

dPr

dt

)

=
∑

r

dPr

dt
(lnPr + 1). (3.13)

According to Eq. (3.11), this can be written

dH

dt
=

∑

r

∑

s

Wrs (Ps − Pr) (lnPr + 1). (3.14)
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We can now interchange the dummy summations indices r and s to give

dH

dt
=

∑

r

∑

s

Wsr (Pr − Ps) (lnPs + 1). (3.15)

We can write dH/dt in a more symmetric form by adding the previous two equa-

tions and making use of Eq. (3.9):

dH

dt
= −

1

2

∑

r

∑

s

Wrs (Pr − Ps) (lnPr − lnPs). (3.16)

Note, however, that lnPr is a monotonically increasing function of Pr. It fol-

lows that lnPr > lnPs whenever Pr > Ps, and vice versa. Thus, in general, the

right-hand side of the above equation is the sum of many negative contributions.

Hence, we conclude that
dH

dt
≤ 0. (3.17)

The equality sign only holds in the special case where all accessible states are

equally probable, so that Pr = Ps for all r and s. This result is called the H

theorem, and was first proved by the unfortunate Professor Boltzmann.

The H theorem tells us that if an isolated system is initially not in equilibrium

then it will evolve under the influence of particle interactions in such a manner

that the quantity H always decreases. This process will continue until H reaches

its minimum possible value, at which point dH/dt = 0, and there is no further

evolution of the system. According to Eq. (3.16), in this final equilibrium state

the system is equally likely to be found in any one of its accessible states. This is,

of course, the situation predicted by the principle of equal a priori probabilities.

You may be wondering why the above argument does not constitute a mathe-

matically rigorous proof that the principle of equal a priori probabilities applies

to many particle systems. The answer is that we tacitly made an unwarranted

assumption: i.e., we assumed that the probability of the system making a transi-

tion from some state r to another state s is independent of the past history of the

system. In general, this is not the case in physical systems, although there are

many situations in which it is a pretty good approximation. Thus, the epistemo-

logical status of the principle of equal a priori probabilities is that it is plausible,
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but remains unproven. As we have already mentioned, the ultimate justification

for this principle is empirical: i.e., it leads to theoretical predictions which are in

accordance with experimental observations.

3.5 The relaxation time

The H theorem guarantees that an isolated many particle system will eventually

reach equilibrium, irrespective of its initial state. The typical time-scale for this

process is called the relaxation time, and depends in detail on the nature of the

inter-particle interactions. The principle of equal a priori probabilities is only

valid for equilibrium states. It follows that we can only safely apply this principle

to systems which have remained undisturbed for many relaxation times since

they were setup, or last interacted with the outside world. The relaxation time

for the air in a typical classroom is very much less than one second. This suggests

that such air is probably in equilibrium most of the time, and should, therefore,

be governed by the principle of equal a priori probabilities. In fact, this is known

to be the case. Consider another example. Our galaxy, the “Milky Way,” is an

isolated dynamical system made up of about 1011 stars. In fact, it can be thought

of as a self-gravitating “gas” of stars. At first sight, the “Milky Way” would seem

to be an ideal system on which to test out the ideas of statistical mechanics. Stars

in the Galaxy interact via occasional “near miss” events in which they exchange

energy and momentum. Actual collisions are very rare indeed. Unfortunately,

such interactions take place very infrequently, because there is an awful lot of

empty space between stars. The best estimate for the relaxation time of the

“Milky Way” is about 1013 years. This should be compared with the estimated age

of the Galaxy, which is only about 1010 years. It is clear that, despite its great age,

the “Milky Way” has not been around long enough to reach an equilibrium state.

This suggests that the principle of equal a priori probabilities cannot be used to

describe stellar dynamics. Not surprisingly, the observed velocity distribution of

the stars in the vicinity of the Sun is not governed by this principle.
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3.6 Reversibility and irreversibility

Previously, we mentioned that on a microscopic level the laws of physics are in-

variant under time reversal. In other words, microscopic phenomena look phys-

ically plausible when run in reverse. We usually say that these phenomena are

reversible. What about macroscopic phenomena? Are they reversible? Well, con-

sider an isolated many particle system which starts off far from equilibrium. Ac-

cording to the H theorem, it will evolve towards equilibrium and, as it does so,

the macroscopic quantity H will decrease. But, if we run this process backwards

the system will appear to evolve away from equilibrium, and the quantity H will

increase. This type of behaviour is not physical because it violates the H theorem.

So, if we saw a film of a macroscopic process we could very easily tell if it was

being run backwards. For instance, suppose that by some miracle we were able

to move all of the Oxygen molecules in the air in some classroom to one side

of the room, and all of the Nitrogen molecules to the opposite side. We would

not expect this state to persist for very long. Pretty soon the Oxygen and Nitro-

gen molecules would start to intermingle, and this process would continue until

they were thoroughly mixed together throughout the room. This, of course, is

the equilibrium state for air. In reverse, this process looks crazy! We would start

off from perfectly normal air, and suddenly, for no good reason, the Oxygen and

Nitrogen molecules would appear to separate and move to opposite sides of the

room. This scenario is not impossible, but, from everything we know about the

world around us, it is spectacularly unlikely! We conclude, therefore, that macro-

scopic phenomena are generally irreversible, because they look “wrong” when run

in reverse.

How does the irreversibility of macroscopic phenomena arise? It certainly

does not come from the fundamental laws of physics, because these laws are

all reversible. In the previous example, the Oxygen and Nitrogen molecules got

mixed up by continually scattering off one another. Each individual scattering

event would look perfectly reasonable viewed in reverse, but when we add them

all together we obtain a process which would look stupid run backwards. How

can this be? How can we obtain an irreversible process from the combined effects

of very many reversible processes? This is a vitally important question. Unfortu-
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nately, we are not quite at the stage where we can formulate a convincing answer.

Note, however, that the essential irreversibility of macroscopic phenomena is one

of the key results of statistical thermodynamics.

3.7 Probability calculations

The principle of equal a priori probabilities is fundamental to all statistical me-

chanics, and allows a complete description of the properties of macroscopic sys-

tems in equilibrium. In principle, statistical mechanics calculations are very sim-

ple. Consider a system in equilibrium which is isolated, so that its total energy is

known to have a constant value somewhere in the range E to E+ δE. In order to

make statistical predictions, we focus attention on an ensemble of such systems,

all of which have their energy in this range. Let Ω(E) be the total number of

different states of the system with energies in the specified range. Suppose that

among these states there are a number Ω(E;yk) for which some parameter y of

the system assumes the discrete value yk. (This discussion can easily be general-

ized to deal with a parameter which can assume a continuous range of values).

The principle of equal a priori probabilities tells us that all the Ω(E) accessible

states of the system are equally likely to occur in the ensemble. It follows that

the probability P(yk) that the parameter y of the system assumes the value yk is

simply

P(yk) =
Ω(E;yk)

Ω(E)
. (3.18)

Clearly, the mean value of y for the system is given by

ȳ =

∑
kΩ(E;yk)yk

Ω(E)
, (3.19)

where the sum is over all possible values that y can assume. In the above, it is

tacitly assumed that Ω(E) → ∞, which is generally the case in thermodynamic

systems.

It can be seen that, using the principle of equal a priori probabilities, all calcu-

lations in statistical mechanics reduce to simply counting states, subject to various

constraints. In principle, this is fairly straightforward. In practice, problems arise
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if the constraints become too complicated. These problems can usually be over-

come with a little mathematical ingenuity. Nevertheless, there is no doubt that

this type of calculation is far easier than trying to solve the classical equations of

motion (or Schrödinger’s equation) directly for a many-particle system.

3.8 Behaviour of the density of states

Consider an isolated system in equilibrium whose volume is V , and whose energy

lies in the range E to E+δE. LetΩ(E, V) be the total number of microscopic states

which satisfy these constraints. It would be useful if we could estimate how this

number typically varies with the macroscopic parameters of the system. The

easiest way to do this is to consider a specific example. For instance, an ideal gas

made up of spinless monatomic particles. This is a particularly simple example,

because for such a gas the particles possess translational but no internal (e.g.,

vibrational, rotational, or spin) degrees of freedom. By definition, interatomic

forces are negligible in an ideal gas. In other words, the individual particles move

in an approximately uniform potential. It follows that the energy of the gas is just

the total translational kinetic energy of its constituent particles. Thus,

E =
1

2m

N∑

i=1

p 2
i , (3.20)

where m is the particle mass, N the total number of particles, and pi the vector

momentum of the ith particle.

Consider the system in the limit in which the energy E of the gas is much

greater than the ground-state energy, so that all of the quantum numbers are

large. The classical version of statistical mechanics, in which we divide up phase-

space into cells of equal volume, is valid in this limit. The number of states

Ω(E, V) lying between the energies E and E+δE is simply equal to the number of

cells in phase-space contained between these energies. In other words, Ω(E, V)

is proportional to the volume of phase-space between these two energies:

Ω(E, V) ∝
∫E+δE

E

d3r1 · · ·d3rN d3p1 · · ·d3pN. (3.21)
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Here, the integrand is the element of volume of phase-space, with

d3r ≡ dxi dyi dzi, (3.22)

d3p ≡ dpi x dpi y dpi z, (3.23)

where (xi, yi, zi) and (pi x, pi y, pi z) are the Cartesian coordinates and momen-

tum components of the ith particle, respectively. The integration is over all coor-

dinates and momenta such that the total energy of the system lies between E and

E+ δE.

For an ideal gas, the total energy E does not depend on the positions of the

particles [see Eq. (3.20)]. This means that the integration over the position vec-

tors ri can be performed immediately. Since each integral over ri extends over the

volume of the container (the particles are, of course, not allowed to stray outside

the container),
∫
d3ri = V . There are N such integrals, so Eq. (3.21) reduces to

Ω(E, V) ∝ VNχ(E), (3.24)

where

χ(E) ∝
∫E+δE

E

d3p1 · · ·d3pN (3.25)

is a momentum space integral which is independent of the volume.

The energy of the system can be written

E =
1

2m

N∑

i=1

3∑

α=1

p 2
i α , (3.26)

since p 2
i = p 2

i 1 +p 2
i 2 +p 2

i 3 , denoting the (x, y, z) components by (1, 2, 3), respec-

tively. The above sum contains 3N square terms. For E = constant, Eq. (3.26)

describes the locus of a sphere of radius R(E) = (2mE)1/2 in the 3N-dimensional

space of the momentum components. Hence, χ(E) is proportional to the volume

of momentum phase-space contained in the spherical shell lying between the

sphere of radius R(E) and that of slightly larger radius R(E+ δE). This volume is

proportional to the area of the inner sphere multiplied by δR ≡ R(E+ δE) −R(E).

Since the area varies like R 3N−1, and δR ∝ δE/E 1/2, we have

χ(E) ∝ R 3N−1/E 1/2 ∝ E 3N/2−1. (3.27)
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Combining this result with (3.24) yields

Ω(E, V) = BVNE 3N/2, (3.28)

where B is a constant independent of V or E, and we have also made use of

N � 1. Note that, since the number of degrees of freedom of the system is

f = 3N, the above relation can be very approximately written

Ω(E, V) ∝ VfEf. (3.29)

In other words, the density of states varies like the extensive macroscopic param-

eters of the system raised to the power of the number of degrees of freedom.

An extensive parameter is one which scales with the size of the system (e.g., the

volume). Since thermodynamic systems generally possess a very large number

of degrees of freedom, this result implies that the density of states is an excep-

tionally rapidly increasing function of the energy and volume. This result, which

turns out to be quite general, is very useful in statistical thermodynamics.
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4 Heat and work

4.1 A brief history of heat and work

In 1789 the French scientist Antoine Lavoisier published a famous treatise on

Chemistry which, amongst other things, demolished the then prevalent theory

of combustion. This theory, known to history as the phlogiston theory, is so ex-

traordinary stupid that it is not even worth describing. In place of phlogiston

theory, Lavoisier proposed the first reasonably sensible scientific interpretation of

heat. Lavoisier pictured heat as an invisible, tasteless, odourless, weightless fluid,

which he called calorific fluid. He postulated that hot bodies contain more of this

fluid than cold bodies. Furthermore, he suggested that the constituent particles

of calorific fluid repel one another, causing heat to flow from hot to cold bodies

when they are placed in thermal contact.

The modern interpretation of heat is, or course, somewhat different to Lavoisier’s

calorific theory. Nevertheless, there is an important subset of problems involving

heat flow for which Lavoisier’s approach is rather useful. These problems often

crop up as examination questions. For example: “A clean dry copper calorimeter

contains 100 grams of water at 30◦ degrees centigrade. A 10 gram block of copper

heated to 60◦ centigrade is added. What is the final temperature of the mixture?”.

How do we approach this type of problem? Well, according to Lavoisier’s theory,

there is an analogy between heat flow and incompressible fluid flow under grav-

ity. The same volume of liquid added to containers of different cross-sectional

area fills them to different heights. If the volume is V , and the cross-sectional

area is A, then the height is h = V/A. In a similar manner, the same quantity of

heat added to different bodies causes them to rise to different temperatures. If Q

is the heat and θ is the (absolute) temperature then θ = Q/C, where the constant

C is termed the heat capacity. [This is a somewhat oversimplified example. In

general, the heat capacity is a function of temperature, so that C = C(θ).] Now,

if two containers filled to different heights with a free flowing incompressible

fluid are connected together at the bottom, via a small pipe, then fluid will flow

under gravity, from one to the other, until the two heights are the same. The final

height is easily calculated by equating the total fluid volume in the initial and
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final states. Thus,

h1A1 + h2A2 = hA1 + hA2, (4.1)

giving

h =
h1A1 + h2A2

A1 +A2
. (4.2)

Here, h1 and h2 are the initial heights in the two containers, A1 and A2 are the

corresponding cross-sectional areas, and h is the final height. Likewise, if two

bodies, initially at different temperatures, are brought into thermal contact then

heat will flow, from one to the other, until the two temperatures are the same.

The final temperature is calculated by equating the total heat in the initial and

final states. Thus,

θ1C1 + θ2C2 = θC1 + θC2, (4.3)

giving

θ =
θ1C1 + θ2C2

C1 + C2
, (4.4)

where the meaning of the various symbols should be self-evident.

The analogy between heat flow and fluid flow works because in Lavoisier’s

theory heat is a conserved quantity, just like the volume of an incompressible

fluid. In fact, Lavoisier postulated that heat was an element. Note that atoms

were thought to be indestructible before nuclear reactions were discovered, so

the total amount of each element in the Universe was assumed to be a constant.

If Lavoisier had cared to formulate a law of thermodynamics from his calorific

theory then he would have said that the total amount of heat in the Universe was

a constant.

In 1798 Benjamin Thompson, an Englishman who spent his early years in pre-

revolutionary America, was minister for war and police in the German state of

Bavaria. One of his jobs was to oversee the boring of cannons in the state arsenal.

Thompson was struck by the enormous, and seemingly inexhaustible, amount of

heat generated in this process. He simply could not understand where all this

heat was coming from. According to Lavoisier’s calorific theory, the heat must

flow into the cannon from its immediate surroundings, which should, therefore,

become colder. The flow should also eventually cease when all of the available
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heat has been extracted. In fact, Thompson observed that the surroundings of the

cannon got hotter, not colder, and that the heating process continued unabated as

long as the boring machine was operating. Thompson postulated that some of the

mechanical work done on the cannon by the boring machine was being converted

into heat. At the time, this was quite a revolutionary concept, and most people

were not ready to accept it. This is somewhat surprising, since by the end of

the eighteenth century the conversion of heat into work, by steam engines, was

quite commonplace. Nevertheless, the conversion of work into heat did not gain

broad acceptance until 1849, when an English physicist called James Prescott

Joule published the results of a long and painstaking series of experiments. Joule

confirmed that work could indeed be converted into heat. Moreover, he found

that the same amount of work always generates the same quantity of heat. This

is true regardless of the nature of the work (e.g., mechanical, electrical, etc.).

Joule was able to formulate what became known as the work equivalent of heat.

Namely, that 1 newton meter of work is equivalent to 0.241 calories of heat. A

calorie is the amount of heat required to raise the temperature of 1 gram of water

by 1 degree centigrade. Nowadays, we measure both heat and work in the same

units, so that one newton meter, or joule, of work is equivalent to one joule of

heat.

In 1850, the German physicist Clausius correctly postulated that the essen-

tial conserved quantity is neither heat nor work, but some combination of the

two which quickly became known as energy, from the Greek energia meaning “in

work.” According to Clausius, the change in the internal energy of a macroscopic

body can be written

∆E = Q−W, (4.5)

where Q is the heat absorbed from the surroundings, and W is the work done on

the surroundings. This relation is known as the first law of thermodynamics.

4.2 Macrostates and microstates

In describing a system made up of a great many particles, it is usually possible to

specify some macroscopically measurable independent parameters x1, x2, · · · , xn
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which affect the particles’ equations of motion. These parameters are termed the

external parameters the system. Examples of such parameters are the volume (this

gets into the equations of motion because the potential energy becomes infinite

when a particle strays outside the available volume) and any applied electric and

magnetic fields. A microstate of the system is defined as a state for which the

motions of the individual particles are completely specified (subject, of course,

to the unavoidable limitations imposed by the uncertainty principle of quantum

mechanics). In general, the overall energy of a given microstate r is a function of

the external parameters:

Er ≡ Er(x1, x2, · · · , xn). (4.6)

A macrostate of the system is defined by specifying the external parameters, and

any other constraints to which the system is subject. For example, if we are

dealing with an isolated system (i.e., one that can neither exchange heat with nor

do work on its surroundings) then the macrostate might be specified by giving the

values of the volume and the constant total energy. For a many-particle system,

there are generally a very great number of microstates which are consistent with

a given macrostate.

4.3 The microscopic interpretation of heat and work

Consider a macroscopic system A which is known to be in a given macrostate.

To be more exact, consider an ensemble of similar macroscopic systems A, where

each system in the ensemble is in one of the many microstates consistent with

the given macrostate. There are two fundamentally different ways in which the

average energy of A can change due to interaction with its surroundings. If the

external parameters of the system remain constant then the interaction is termed

a purely thermal interaction. Any change in the average energy of the system is

attributed to an exchange of heat with its environment. Thus,

∆Ē = Q, (4.7)

where Q is the heat absorbed by the system. On a microscopic level, the energies

of the individual microstates are unaffected by the absorption of heat. In fact,
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it is the distribution of the systems in the ensemble over the various microstates

which is modified.

Suppose that the system A is thermally insulated from its environment. This

can be achieved by surrounding it by an adiabatic envelope (i.e., an envelope

fabricated out of a material which is a poor conductor of heat, such a fiber glass).

Incidentally, the term adiabatic is derived from the Greek adiabatos which means

“impassable.” In scientific terminology, an adiabatic process is one in which there

is no exchange of heat. The system A is still capable of interacting with its envi-

ronment via its external parameters. This type of interaction is termed mechanical

interaction, and any change in the average energy of the system is attributed to

work done on it by its surroundings. Thus,

∆Ē = −W, (4.8)

where W is the work done by the system on its environment. On a microscopic

level, the energy of the system changes because the energies of the individual

microstates are functions of the external parameters [see Eq. (4.6)]. Thus, if the

external parameters are changed then, in general, the energies of all of the sys-

tems in the ensemble are modified (since each is in a specific microstate). Such a

modification usually gives rise to a redistribution of the systems in the ensemble

over the accessible microstates (without any heat exchange with the environ-

ment). Clearly, from a microscopic viewpoint, performing work on a macroscopic

system is quite a complicated process. Nevertheless, macroscopic work is a quan-

tity which can be readily measured experimentally. For instance, if the system

A exerts a force F on its immediate surroundings, and the change in external

parameters corresponds to a displacement x of the center of mass of the system,

then the work done by A on its surroundings is simply

W = F·x (4.9)

i.e., the product of the force and the displacement along the line of action of the

force. In a general interaction of the system A with its environment there is both

heat exchange and work performed. We can write

Q ≡ ∆Ē+W, (4.10)
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which serves as the general definition of the absorbed heat Q (hence, the equiva-

lence sign). The quantityQ is simply the change in the mean energy of the system

which is not due to the modification of the external parameters. Note that the

notion of a quantity of heat has no independent meaning apart from Eq. (4.10).

The mean energy Ē and work performed W are both physical quantities which

can be determined experimentally, whereas Q is merely a derived quantity.

4.4 Quasi-static processes

Consider the special case of an interaction of the system A with its surroundings

which is carried out so slowly that A remains arbitrarily close to equilibrium at

all times. Such a process is said to be quasi-static for the system A. In practice, a

quasi-static process must be carried out on a time-scale which is much longer than

the relaxation time of the system. Recall that the relaxation time is the typical

time-scale for the system to return to equilibrium after being suddenly disturbed

(see Sect. 3.5).

A finite quasi-static change can be built up out of many infinitesimal changes.

The infinitesimal heat d̄Q absorbed by the system when infinitesimal work d̄W is

done on its environment and its average energy changes by dĒ is given by

d̄Q ≡ dĒ+d̄W. (4.11)

The special symbols d̄W and d̄Q are introduced to emphasize that the work done

and heat absorbed are infinitesimal quantities which do not correspond to the

difference between two works or two heats. Instead, the work done and heat

absorbed depend on the interaction process itself. Thus, it makes no sense to

talk about the work in the system before and after the process, or the difference

between these.

If the external parameters of the system have the values x1, · · · , xn then the

energy of the system in a definite microstate r can be written

Er = Er(x1, · · · , xn). (4.12)

Hence, if the external parameters are changed by infinitesimal amounts, so that

xα → xα + dxα for α in the range 1 to n, then the corresponding change in the
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energy of the microstate is

dEr =

n∑

α=1

∂Er

∂xα
dxα. (4.13)

The work d̄W done by the system when it remains in this particular state r is

d̄Wr = −dEr =

n∑

α=1

Xα r dxα, (4.14)

where

Xα r ≡ −
∂Er

∂xα
(4.15)

is termed the generalized force (conjugate to the external parameter xα) in the

state r. Note that if xα is a displacement then Xα r is an ordinary force.

Consider now an ensemble of systems. Provided that the external parameters

of the system are changed quasi-statically, the generalized forces Xα r have well

defined mean values which are calculable from the distribution of systems in the

ensemble characteristic of the instantaneous macrostate. The macroscopic work

d̄W resulting from an infinitesimal quasi-static change of the external parameters

is obtained by calculating the decrease in the mean energy resulting from the

parameter change. Thus,

d̄W =

n∑

α=1

X̄α dxα, (4.16)

where

X̄α ≡ −
∂Er

∂xα
(4.17)

is the mean generalized force conjugate to xα. The mean value is calculated

from the equilibrium distribution of systems in the ensemble corresponding to

the external parameter values xα. The macroscopic work W resulting from a

finite quasi-static change of external parameters can be obtained by integrating

Eq. (4.16).

The most well-known example of quasi-static work in thermodynamics is that

done by pressure when the volume changes. For simplicity, suppose that the
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volume V is the only external parameter of any consequence. The work done

in changing the volume from V to V + dV is simply the product of the force

and the displacement (along the line of action of the force). By definition, the

mean equilibrium pressure p̄ of a given macrostate is equal to the normal force

per unit area acting on any surface element. Thus, the normal force acting on

a surface element dSi is p̄ dSi. Suppose that the surface element is subject to a

displacement dxi. The work done by the element is p̄ dSi ·dxi. The total work

done by the system is obtained by summing over all of the surface elements.

Thus,

d̄W = p̄ dV, (4.18)

where

dV =
∑

i

dSi ·dxi (4.19)

is the infinitesimal volume change due to the displacement of the surface. It

follows from (4.17) that

p̄ = −
∂Ē

∂V
, (4.20)

so the mean pressure is the generalized force conjugate to the volume V .

Suppose that a quasi-static process is carried out in which the volume is changed

from Vi to Vf. In general, the mean pressure is a function of the volume, so

p̄ = p̄(V). It follows that the macroscopic work done by the system is given by

Wif =

∫Vf

Vi

d̄W =

∫Vf

Vi

p̄(V)dV. (4.21)

This quantity is just the “area under the curve” in a plot of p̄(V) versus V .

4.5 Exact and inexact differentials

In our investigation of heat and work we have come across various infinitesimal

objects such as dĒ and d̄W. It is instructive to examine these infinitesimals more

closely.
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Consider the purely mathematical problem where F(x, y) is some general func-

tion of two independent variables x and y. Consider the change in F in going from

the point (x, y) in the x-y plane to the neighbouring point (x+ dx, y+ dy). This

is given by

dF = F(x+ dx, y+ dy) − F(x, y), (4.22)

which can also be written

dF = X(x, y)dx+ Y(x, y)dy, (4.23)

where X = ∂F/∂x and Y = ∂F/∂y. Clearly, dF is simply the infinitesimal difference

between two adjacent values of the function F. This type of infinitesimal quantity

is termed an exact differential to distinguish it from another type to be discussed

presently. If we move in the x-y plane from an initial point i ≡ (xi, yi) to a final

point f ≡ (xf, yf) then the corresponding change in F is given by

∆F = Ff − Fi =

∫ f

i

dF =

∫ f

i

(Xdx+ Y dy). (4.24)

Note that since the difference on the left-hand side depends only on the initial

and final points, the integral on the right-hand side can only depend on these

points as well. In other words, the value of the integral is independent of the

path taken in going from the initial to the final point. This is the distinguishing

feature of an exact differential. Consider an integral taken around a closed circuit

in the x-y plane. In this case, the initial and final points correspond to the same

point, so the difference Ff − Fi is clearly zero. It follows that the integral of an

exact differential over a closed circuit is always zero:
∮

dF ≡ 0. (4.25)

Of course, not every infinitesimal quantity is an exact differential. Consider

the infinitesimal object

d̄G ≡ X ′(x, y)dx+ Y ′(x, y)dz, (4.26)

where X ′ and Y ′ are two general functions of x and y. It is easy to test whether

or not an infinitesimal quantity is an exact differential. Consider the expression
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(4.23). It is clear that since X = ∂F/∂x and Y = ∂F/∂y then

∂X

∂y
=
∂Y

∂x
=

∂2F

∂x∂y
. (4.27)

Thus, if
∂X ′

∂y
6= ∂Y ′

∂x
(4.28)

(as is assumed to be the case), then d̄G cannot be an exact differential, and is

instead termed an inexact differential. The special symbol d̄ is used to denote an

inexact differential. Consider the integral of d̄G over some path in the x-y plane.

In general, it is not true that
∫ f

i

d̄G =

∫ f

i

(X ′ dx+ Y ′ dy) (4.29)

is independent of the path taken between the initial and final points. This is the

distinguishing feature of an inexact differential. In particular, the integral of an

inexact differential around a closed circuit is not necessarily zero, so
∮

d̄G 6= 0. (4.30)

Consider, for the moment, the solution of

d̄G = 0, (4.31)

which reduces to the ordinary differential equation

dy

dx
= −

X ′

Y ′ . (4.32)

Since the right-hand side is a known function of x and y, the above equation

defines a definite direction (i.e., gradient) at each point in the x-y plane. The

solution simply consists of drawing a system of curves in the x-y plane such that

at any point the tangent to the curve is as specified in Eq. (4.32). This defines a

set of curves which can be written σ(x, y) = c, where c is a labeling parameter. It

follows that
dσ

dx
≡ ∂σ

∂x
+
∂σ

∂y

dy

dx
= 0. (4.33)
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The elimination of dy/dx between Eqs. (4.32) and (4.33) yields

Y ′ ∂σ

∂x
= X ′ ∂σ

∂y
=
X ′ Y ′

τ
, (4.34)

where τ(x, y) is function of x and y. The above equation could equally well be

written

X ′ = τ
∂σ

∂x
, Y ′ = τ

∂σ

∂y
. (4.35)

Inserting Eq. (4.35) into Eq. (4.26) gives

d̄G = τ

(

∂σ

∂x
dx+

∂σ

∂y
dy

)

= τdσ, (4.36)

or
d̄G

τ
= dσ. (4.37)

Thus, dividing the inexact differential d̄G by τ yields the exact differential dσ. A

factor τ which possesses this property is termed an integrating factor. Since the

above analysis is quite general, it is clear that an inexact differential involving

two independent variables always admits of an integrating factor. Note, however,

this is not generally the case for inexact differentials involving more than two

variables.

After this mathematical excursion, let us return to physical situation of interest.

The macrostate of a macroscopic system can be specified by the values of the

external parameters (e.g., the volume) and the mean energy Ē. This, in turn,

fixes other parameters such as the mean pressure p̄. Alternatively, we can specify

the external parameters and the mean pressure, which fixes the mean energy.

Quantities such as dp̄ and dĒ are infinitesimal differences between well-defined

quantities: i.e., they are exact differentials. For example, dĒ = Ēf − Ēi is just

the difference between the mean energy of the system in the final macrostate f

and the initial macrostate i, in the limit where these two states are nearly the

same. It follows that if the system is taken from an initial macrostate i to any

final macrostate f the mean energy change is given by

∆Ē = Ēf − Ēi =

∫ f

i

dĒ. (4.38)
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However, since the mean energy is just a function of the macrostate under consid-

eration, Ēf and Ēi depend only on the initial and final states, respectively. Thus,

the integral
∫
dĒ depends only on the initial and final states, and not on the

particular process used to get between them.

Consider, now, the infinitesimal work done by the system in going from some

initial macrostate i to some neighbouring final macrostate f. In general, d̄W =∑
X̄α dxα is not the difference between two numbers referring to the properties

of two neighbouring macrostates. Instead, it is merely an infinitesimal quantity

characteristic of the process of going from state i to state f. In other words, the

work d̄W is in general an inexact differential. The total work done by the system

in going from any macrostate i to some other macrostate f can be written as

Wif =

∫ f

i

d̄W, (4.39)

where the integral represents the sum of the infinitesimal amounts of work d̄W

performed at each stage of the process. In general, the value of the integral does

depend on the particular process used in going from macrostate i to macrostate

f.

Recall that in going from macrostate i to macrostate f the change ∆Ē does

not depend on the process used whereas the work W, in general, does. Thus,

it follows from the first law of thermodynamics, Eq. (4.10), that the heat Q, in

general, also depends on the process used. It follows that

d̄Q ≡ dĒ+d̄W (4.40)

is an inexact differential. However, by analogy with the mathematical example

discussed previously, there must exist some integrating factor, T , say, which con-

verts the inexact differential d̄Q into an exact differential. So,

d̄Q

T
≡ dS. (4.41)

It will be interesting to find out what physical quantities correspond to the func-

tions T and S.
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Suppose that the system is thermally insulated, so that Q = 0. In this case, the

first law of thermodynamics implies that

Wif = −∆Ē. (4.42)

Thus, in this special case, the work done depends only on the energy difference

between in the initial and final states, and is independent of the process. In fact,

when Clausius first formulated the first law in 1850 this is how he expressed it:

If a thermally isolated system is brought from some initial to some final state
then the work done by the system is independent of the process used.

If the external parameters of the system are kept fixed, so that no work is done,

then d̄W = 0, Eq. (4.11) reduces to

d̄Q = dĒ, (4.43)

and d̄Q becomes an exact differential. The amount of heat Q absorbed in going

from one macrostate to another depends only on the mean energy difference

between them, and is independent of the process used to effect the change. In

this situation, heat is a conserved quantity, and acts very much like the invisible

indestructible fluid of Lavoisier’s calorific theory.
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5 Statistical thermodynamics

5.1 Introduction

Let us briefly review the material which we have covered so far in this course.

We started off by studying the mathematics of probability. We then used prob-

abilistic reasoning to analyze the dynamics of many particle systems, a subject

area known as statistical mechanics. Next, we explored the physics of heat and

work, the study of which is termed thermodynamics. The final step in our investi-

gation is to combine statistical mechanics with thermodynamics: in other words,

to investigate heat and work via statistical arguments. This discipline is called

statistical thermodynamics, and forms the central subject matter of this course.

This section is devoted to the study of the fundamental concepts of statistical

thermodynamics. The remaining sections will then explore the application and

elucidation of these concepts.

5.2 Thermal interaction between macrosystems

Let us begin our investigation of statistical thermodynamics by examining a purely

thermal interaction between two macroscopic systems, A and A ′, from a micro-

scopic point of view. Suppose that the energies of these two systems are E and E ′,

respectively. The external parameters are held fixed, so that A and A ′ cannot do

work on one another. However, we assume that the systems are free to exchange

heat energy (i.e., they are in thermal contact). It is convenient to divide the en-

ergy scale into small subdivisions of width δE. The number of microstates of A

consistent with a macrostate in which the energy lies in the range E to E + δE

is denoted Ω(E). Likewise, the number of microstates of A ′ consistent with a

macrostate in which the energy lies between E ′ and E ′ + δE is denoted Ω ′(E ′).

The combined system A(0) = A + A ′ is assumed to be isolated (i.e., it neither

does work on nor exchanges heat with its surroundings). It follows from the first

law of thermodynamics that the total energy E(0) is constant. When speaking of

thermal contact between two distinct systems, we usually assume that the mutual
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interaction is sufficiently weak for the energies to be additive. Thus,

E+ E ′ ' E(0) = constant. (5.1)

Of course, in the limit of zero interaction the energies are strictly additive. How-

ever, a small residual interaction is always required to enable the two systems

to exchange heat energy and, thereby, eventually reach thermal equilibrium (see

Sect. 3.4). In fact, if the interaction between A and A ′ is too strong for the

energies to be additive then it makes little sense to consider each system in iso-

lation, since the presence of one system clearly strongly perturbs the other, and

vice versa. In this case, the smallest system which can realistically be examined in

isolation is A(0).

According to Eq. (5.1), if the energy of A lies in the range E to E+ δE then the

energy of A ′ must lie between E(0) − E − δE and E(0) − E. Thus, the number of

microstates accessible to each system is given by Ω(E) and Ω ′(E(0) − E), respec-

tively. Since every possible state of A can be combined with every possible state

of A ′ to form a distinct microstate, the total number of distinct states accessible

to A(0) when the energy of A lies in the range E to E+ δE is

Ω(0) = Ω(E)Ω ′(E(0) − E). (5.2)

Consider an ensemble of pairs of thermally interacting systems, A and A ′,

which are left undisturbed for many relaxation times so that they can attain ther-

mal equilibrium. The principle of equal a priori probabilities is applicable to this

situation (see Sect. 3). According to this principle, the probability of occurrence

of a given macrostate is proportional to the number of accessible microstates,

since all microstates are equally likely. Thus, the probability that the system A

has an energy lying in the range E to E+ δE can be written

P(E) = CΩ(E)Ω ′(E(0) − E), (5.3)

where C is a constant which is independent of E.

We know, from Sect. 3.8, that the typical variation of the number of accessible

states with energy is of the form

Ω ∝ Ef, (5.4)
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where f is the number of degrees of freedom. For a macroscopic system f is an

exceedingly large number. It follows that the probability P(E) in Eq. (5.3) is the

product of an extremely rapidly increasing function of E and an extremely rapidly

decreasing function of E. Hence, we would expect the probability to exhibit a very

pronounced maximum at some particular value of the energy.

Let us Taylor expand the logarithm of P(E) in the vicinity of its maximum

value, which is assumed to occur at E = Ẽ. We expand the relatively slowly

varying logarithm, rather than the function itself, because the latter varies so

rapidly with the energy that the radius of convergence of its Taylor expansion is

too small for this expansion to be of any practical use. The expansion of lnΩ(E)

yields

lnΩ(E) = lnΩ(Ẽ) + β(Ẽ)η−
1

2
λ(Ẽ)η2 + · · · , (5.5)

where

η = E− Ẽ, (5.6)

β =
∂ lnΩ

∂E
, (5.7)

λ = −
∂2 lnΩ

∂E2
= −

∂β

∂E
. (5.8)

Now, since E ′ = E(0) − E, we have

E ′ − Ẽ ′ = −(E− Ẽ) = −η. (5.9)

It follows that

lnΩ ′(E ′) = lnΩ ′(Ẽ ′) + β ′(Ẽ ′) (−η) −
1

2
λ ′(Ẽ ′) (−η)2 + · · · , (5.10)

where β ′ and λ ′ are defined in an analogous manner to the parameters β and λ.

Equations (5.5) and (5.10) can be combined to give

ln [Ω(E)Ω ′(E ′)] = ln [Ω(Ẽ)Ω ′(Ẽ ′)]+ [β(Ẽ)−β ′(Ẽ ′)]η−
1

2
[λ(Ẽ)+λ ′(Ẽ ′)]η2+ · · · .

(5.11)

At the maximum of ln [Ω(E)Ω ′(E ′)] the linear term in the Taylor expansion must

vanish, so

β(Ẽ) = β ′(Ẽ ′), (5.12)
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which enables us to determine Ẽ. It follows that

lnP(E) = lnP(Ẽ) −
1

2
λ0 η

2, (5.13)

or

P(E) = P(Ẽ) exp

[

−
1

2
λ0 (E− Ẽ)2

]

, (5.14)

where

λ0 = λ(Ẽ) + λ ′(Ẽ ′). (5.15)

Now, the parameter λ0 must be positive, otherwise the probability P(E) does not

exhibit a pronounced maximum value: i.e., the combined system A(0) does not

possess a well-defined equilibrium state as, physically, we know it must. It is

clear that λ(Ẽ) must also be positive, since we could always choose for A ′ a

system with a negligible contribution to λ0, in which case the constraint λ0 > 0

would effectively correspond to λ(Ẽ) > 0. [A similar argument can be used to

show that λ ′(Ẽ ′) must be positive.] The same conclusion also follows from the

estimate Ω ∝ Ef, which implies that

λ(Ẽ) ∼
f

Ẽ2
> 0. (5.16)

According to Eq. (5.14), the probability distribution function P(E) is a Gaus-

sian. This is hardly surprising, since the central limit theorem ensures that the

probability distribution for any macroscopic variable, such as E, is Gaussian in

nature (see Sect. 2.10). It follows that the mean value of E corresponds to the

situation of maximum probability (i.e., the peak of the Gaussian curve), so that

Ē = Ẽ. (5.17)

The standard deviation of the distribution is

∆∗E = λ
−1/2
0 ∼

Ē√
f
, (5.18)

where use has been made of Eq. (5.4) (assuming that system A makes the dom-

inant contribution to λ0). It follows that the fractional width of the probability

distribution function is given by

∆∗E

Ē
∼
1√
f
. (5.19)
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Hence, if A contains 1 mole of particles then f ∼ NA ' 1024 and ∆∗E/Ē ∼ 10−12.

Clearly, the probability distribution for E has an exceedingly sharp maximum. Ex-

perimental measurements of this energy will almost always yield the mean value,

and the underlying statistical nature of the distribution may not be apparent.

5.3 Temperature

Suppose that the systems A and A ′ are initially thermally isolated from one an-

other, with respective energies Ei and E ′
i. (Since the energy of an isolated system

cannot fluctuate, we do not have to bother with mean energies here.) If the two

systems are subsequently placed in thermal contact, so that they are free to ex-

change heat energy, then, in general, the resulting state is an extremely improb-

able one [i.e., P(Ei) is much less than the peak probability]. The configuration

will, therefore, tend to change in time until the two systems attain final mean

energies Ēf and Ē ′
f which are such that

βf = β ′
f, (5.20)

where βf ≡ β(Ēf) and β ′
f ≡ β ′(Ē ′

f). This corresponds to the state of maximum

probability (see Sect. 5.2). In the special case where the initial energies, Ei and

E ′
i, lie very close to the final mean energies, Ēf and Ē ′

f, respectively, there is no

change in the two systems when they are brought into thermal contact, since the

initial state already corresponds to a state of maximum probability.

It follows from energy conservation that

Ēf + Ē ′
f = Ei + E

′
i. (5.21)

The mean energy change in each system is simply the net heat absorbed, so that

Q ≡ Ēf − Ei, (5.22)

Q ′ ≡ Ē ′
f − E ′

i. (5.23)

The conservation of energy then reduces to

Q+Q ′ = 0 : (5.24)
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i.e., the heat given off by one system is equal to the heat absorbed by the other

(in our notation absorbed heat is positive and emitted heat is negative).

It is clear that if the systems A and A ′ are suddenly brought into thermal

contact then they will only exchange heat and evolve towards a new equilibrium

state if the final state is more probable than the initial one. In other words, if

P(Ēf) > P(Ei), (5.25)

or

lnP(Ēf) > lnP(Ei), (5.26)

since the logarithm is a monotonic function. The above inequality can be written

lnΩ(Ēf) + lnΩ ′(Ē ′
f) > lnΩ(Ei) + lnΩ ′(E ′

i), (5.27)

with the aid of Eq. (5.3). Taylor expansion to first order yields

∂ lnΩ(Ei)

∂E
(Ēf − Ei) +

∂ lnΩ ′(E ′
i)

∂E ′ (Ē ′
f − E ′

i) > 0, (5.28)

which finally gives

(βi − β
′
i)Q > 0, (5.29)

where βi ≡ β(Ei), β
′
i ≡ β ′(E ′

i), and use has been made of Eq. (5.24).

It is clear, from the above, that the parameter β, defined

β =
∂ lnΩ

∂E
, (5.30)

has the following properties:

1. If two systems separately in equilibrium have the same value of β then the systems
will remain in equilibrium when brought into thermal contact with one another.

2. If two systems separately in equilibrium have different values of β then the systems
will not remain in equilibrium when brought into thermal contact with one another.
Instead, the system with the higher value of β will absorb heat from the other
system until the two β values are the same [see Eq. (5.29)].
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Incidentally, a partial derivative is used in Eq. (5.30) because in a purely thermal

interaction the external parameters of the system are held constant whilst the

energy changes.

Let us define the dimensionless parameter T , such that

1

k T
≡ β ≡ ∂ lnΩ

∂E
, (5.31)

where k is a positive constant having the dimensions of energy. The parameter

T is termed the thermodynamic temperature, and controls heat flow in much the

same manner as a conventional temperature. Thus, if two isolated systems in

equilibrium possess the same thermodynamic temperature then they will remain

in equilibrium when brought into thermal contact. However, if the two systems

have different thermodynamic temperatures then heat will flow from the system

with the higher temperature (i.e., the “hotter” system) to the system with the

lower temperature until the temperatures of the two systems are the same. In

addition, suppose that we have three systems A, B, and C. We know that if

A and B remain in equilibrium when brought into thermal contact then their

temperatures are the same, so that TA = TB. Similarly, if B and C remain in

equilibrium when brought into thermal contact, then TB = TC. But, we can then

conclude that TA = TC, so systems A and C will also remain in equilibrium when

brought into thermal contact. Thus, we arrive at the following statement, which

is sometimes called the zeroth law of thermodynamics:

If two systems are separately in thermal equilibrium with a third system then
they must also be in thermal equilibrium with one another.

The thermodynamic temperature of a macroscopic body, as defined in Eq. (5.31),

depends only on the rate of change of the number of accessible microstates with

the total energy. Thus, it is possible to define a thermodynamic temperature

for systems with radically different microscopic structures (e.g., matter and ra-

diation). The thermodynamic, or absolute, scale of temperature is measured in

degrees kelvin. The parameter k is chosen to make this temperature scale accord

as much as possible with more conventional temperature scales. The choice

k = 1.381× 10−23 joules/kelvin, (5.32)
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ensures that there are 100 degrees kelvin between the freezing and boiling points

of water at atmospheric pressure (the two temperatures are 273.15 and 373.15

degrees kelvin, respectively). The above number is known as the Boltzmann con-

stant. In fact, the Boltzmann constant is fixed by international convention so as

to make the triple point of water (i.e., the unique temperature at which the three

phases of water co-exist in thermal equilibrium) exactly 273.16◦ K. Note that the

zero of the thermodynamic scale, the so called absolute zero of temperature, does

not correspond to the freezing point of water, but to some far more physically

significant temperature which we shall discuss presently.

The familiar Ω ∝ Ef scaling for translational degrees of freedom yields

k T ∼
Ē

f
, (5.33)

using Eq. (5.31), so k T is a rough measure of the mean energy associated with

each degree of freedom in the system. In fact, for a classical system (i.e., one

in which quantum effects are unimportant) it is possible to show that the mean

energy associated with each degree of freedom is exactly (1/2) k T . This result,

which is known as the equipartition theorem, will be discussed in more detail later

on in this course.

The absolute temperature T is usually positive, since Ω(E) is ordinarily a very

rapidly increasing function of energy. In fact, this is the case for all conventional

systems where the kinetic energy of the particles is taken into account, because

there is no upper bound on the possible energy of the system, and Ω(E) conse-

quently increases roughly like Ef. It is, however, possible to envisage a situation

in which we ignore the translational degrees of freedom of a system, and concen-

trate only on its spin degrees of freedom. In this case, there is an upper bound

to the possible energy of the system (i.e., all spins lined up anti-parallel to an

applied magnetic field). Consequently, the total number of states available to the

system is finite. In this situation, the density of spin states Ωspin(E) first increases

with increasing energy, as in conventional systems, but then reaches a maximum

and decreases again. Thus, it is possible to get absolute spin temperatures which

are negative, as well as positive.

In Lavoisier’s calorific theory, the basic mechanism which forces heat to flow
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from hot to cold bodies is the supposed mutual repulsion of the constituent par-

ticles of calorific fluid. In statistical mechanics, the explanation is far less con-

trived. Heat flow occurs because statistical systems tend to evolve towards their

most probable states, subject to the imposed physical constraints. When two bod-

ies at different temperatures are suddenly placed in thermal contact, the initial

state corresponds to a spectacularly improbable state of the overall system. For

systems containing of order 1 mole of particles, the only reasonably probable fi-

nal equilibrium states are such that the two bodies differ in temperature by less

than 1 part in 1012. The evolution of the system towards these final states (i.e.,

towards thermal equilibrium) is effectively driven by probability.

5.4 Mechanical interaction between macrosystems

Let us now examine a purely mechanical interaction between macrostates, where

one or more of the external parameters is modified, but there is no exchange

of heat energy. Consider, for the sake of simplicity, a situation where only one

external parameter x of the system is free to vary. In general, the number of

microstates accessible to the system when the overall energy lies between E and

E+ δE depends on the particular value of x, so we can write Ω ≡ Ω(E, x).

When x is changed by the amount dx, the energy Er(x) of a given microstate

r changes by (∂Er/∂x)dx. The number of states σ(E, x) whose energy is changed

from a value less than E to a value greater than E when the parameter changes

from x to x + dx is given by the number of microstates per unit energy range

multiplied by the average shift in energy of the microstates. Hence,

σ(E, x) =
Ω(E, x)

δE

∂Er

∂x
dx, (5.34)

where the mean value of ∂Er/∂x is taken over all accessible microstates (i.e., all

states where the energy lies between E and E + δE and the external parameter

takes the value x). The above equation can also be written

σ(E, x) = −
Ω(E, x)

δE
X̄ dx, (5.35)
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where

X̄(E, x) = −
∂Er

∂x
(5.36)

is the mean generalized force conjugate to the external parameter x (see Sect. 4.4).

Consider the total number of microstates between E and E + δE. When the

external parameter changes from x to x+ dx, the number of states in this energy

range changes by (∂Ω/∂x)dx. This change is due to the difference between the

number of states which enter the range because their energy is changed from a

value less than E to one greater than E and the number which leave because their

energy is changed from a value less than E + δE to one greater than E + δE. In

symbols,
∂Ω(E, x)

∂x
dx = σ(E) − σ(E+ δE) ' −

∂σ

∂E
δE, (5.37)

which yields
∂Ω

∂x
=
∂(ΩX̄)

∂E
, (5.38)

where use has been made of Eq. (5.35). Dividing both sides by Ω gives

∂ lnΩ

∂x
=
∂ lnΩ

∂E
X̄+

∂X̄

∂E
. (5.39)

However, according to the usual estimateΩ ∝ Ef, the first term on the right-hand

side is of order (f/Ē) X̄, whereas the second term is only of order X̄/Ē. Clearly, for

a macroscopic system with many degrees of freedom, the second term is utterly

negligible, so we have
∂ lnΩ

∂x
=
∂ lnΩ

∂E
X̄ = β X̄. (5.40)

When there are several external parameters x1, · · · , xn, so thatΩ ≡ Ω(E, x1, · · · ,
xn), the above derivation is valid for each parameter taken in isolation. Thus,

∂ lnΩ

∂xα
= β X̄α, (5.41)

where X̄α is the mean generalized force conjugate to the parameter xα.

66



5.5 General interaction between macrosystems 5 STATISTICAL THERMODYNAMICS

5.5 General interaction between macrosystems

Consider two systems, A and A ′, which can interact by exchanging heat energy

and doing work on one another. Let the system A have energy E and adjustable

external parameters x1, · · · , xn. Likewise, let the system A ′ have energy E ′ and

adjustable external parameters x ′1, · · · , x ′n. The combined system A(0) = A+A ′ is

assumed to be isolated. It follows from the first law of thermodynamics that

E+ E ′ = E(0) = constant. (5.42)

Thus, the energy E ′ of system A ′ is determined once the energy E of system

A is given, and vice versa. In fact, E ′ could be regarded as a function of E.

Furthermore, if the two systems can interact mechanically then, in general, the

parameters x ′ are some function of the parameters x. As a simple example, if the

two systems are separated by a movable partition in an enclosure of fixed volume

V (0), then

V + V ′ = V (0) = constant, (5.43)

where V and V ′ are the volumes of systems A and A ′, respectively.

The total number of microstates accessible to A(0) is clearly a function of E and

the parameters xα (where α runs from 1 to n), so Ω(0) ≡ Ω(0)(E, x1, · · · , xn). We

have already demonstrated (in Sect. 5.2) that Ω(0) exhibits a very pronounced

maximum at one particular value of the energy E = Ẽ when E is varied but the

external parameters are held constant. This behaviour comes about because of

the very strong,

Ω ∝ Ef, (5.44)

increase in the number of accessible microstates of A (or A ′) with energy. How-

ever, according to Sect. 3.8, the number of accessible microstates exhibits a sim-

ilar strong increase with the volume, which is a typical external parameter, so

that

Ω ∝ Vf. (5.45)

It follows that the variation ofΩ(0) with a typical parameter xα, when all the other

parameters and the energy are held constant, also exhibits a very sharp maximum

at some particular value xα = x̃α. The equilibrium situation corresponds to the
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configuration of maximum probability, in which virtually all systems A(0) in the

ensemble have values of E and xα very close to Ẽ and x̃α. The mean values of

these quantities are thus given by Ē = Ẽ and x̄α = x̃α.

Consider a quasi-static process in which the system A is brought from an equi-

librium state described by Ē and x̄α to an infinitesimally different equilibrium

state described by Ē + dĒ and x̄α + dx̄α. Let us calculate the resultant change

in the number of microstates accessible to A. Since Ω ≡ Ω(E, x1, · · · , xn), the

change in lnΩ follows from standard mathematics:

d lnΩ =
∂ lnΩ

∂E
dĒ+

n∑

α=1

∂ lnΩ

∂xα
dx̄α. (5.46)

However, we have previously demonstrated that

β =
∂ lnΩ

∂E
, β X̄α =

∂ lnΩ

∂xα
(5.47)

[from Eqs. (5.30) and (5.41)], so Eq. (5.46) can be written

d lnΩ = β



dĒ+
∑

α

X̄α dx̄α



 . (5.48)

Note that the temperature parameter β and the mean conjugate forces X̄α are

only well-defined for equilibrium states. This is why we are only considering

quasi-static changes in which the two systems are always arbitrarily close to equi-

librium.

Let us rewrite Eq. (5.48) in terms of the thermodynamic temperature T , using

the relation β ≡ 1/k T . We obtain

dS =



dĒ+
∑

α

X̄α dx̄α





/

T, (5.49)

where

S = k lnΩ. (5.50)

Equation (5.49) is a differential relation which enables us to calculate the quan-

tity S as a function of the mean energy Ē and the mean external parameters x̄α,
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assuming that we can calculate the temperature T and mean conjugate forces X̄α
for each equilibrium state. The function S(Ē, x̄α) is termed the entropy of system

A. The word entropy is derived from the Greek en + trepien, which means “in

change.” The reason for this etymology will become apparent presently. It can be

seen from Eq. (5.50) that the entropy is merely a parameterization of the number

of accessible microstates. Hence, according to statistical mechanics, S(Ē, x̄α) is es-

sentially a measure of the relative probability of a state characterized by values

of the mean energy and mean external parameters Ē and x̄α, respectively.

According to Eq. (4.16), the net amount of work performed during a quasi-

static change is given by

d̄W =
∑

α

X̄α dx̄α. (5.51)

It follows from Eq. (5.49) that

dS =
dĒ+d̄W

T
=
d̄Q

T
. (5.52)

Thus, the thermodynamic temperature T is the integrating factor for the first law

of thermodynamics,

d̄Q = dĒ+d̄W, (5.53)

which converts the inexact differential d̄Q into the exact differential dS (see

Sect. 4.5). It follows that the entropy difference between any two macrostates

i and f can be written

Sf − Si =

∫ f

i

dS =

∫ f

i

d̄Q

T
, (5.54)

where the integral is evaluated for any process through which the system is

brought quasi-statically via a sequence of near-equilibrium configurations from

its initial to its final macrostate. The process has to be quasi-static because the

temperature T , which appears in the integrand, is only well-defined for an equi-

librium state. Since the left-hand side of the above equation only depends on the

initial and final states, it follows that the integral on the right-hand side is inde-

pendent of the particular sequence of quasi-static changes used to get from i to

f. Thus,
∫f
i
d̄Q/T is independent of the process (provided that it is quasi-static).

All of the concepts which we have encountered up to now in this course, such

as temperature, heat, energy, volume, pressure, etc., have been fairly familiar to
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us from other branches of Physics. However, entropy, which turns out to be of

crucial importance in thermodynamics, is something quite new. Let us consider

the following questions. What does the entropy of a system actually signify?

What use is the concept of entropy?

5.6 Entropy

Consider an isolated system whose energy is known to lie in a narrow range. Let

Ω be the number of accessible microstates. According to the principle of equal

a priori probabilities, the system is equally likely to be found in any one of these

states when it is in thermal equilibrium. The accessible states are just that set

of microstates which are consistent with the macroscopic constraints imposed on

the system. These constraints can usually be quantified by specifying the values

of some parameters y1, · · · , yn which characterize the macrostate. Note that these

parameters are not necessarily external: e.g., we could specify either the volume

(an external parameter) or the mean pressure (the mean force conjugate to the

volume). The number of accessible states is clearly a function of the chosen

parameters, so we can write Ω ≡ Ω(y1, · · · , yn) for the number of microstates

consistent with a macrostate in which the general parameter yα lies in the range

yα to yα + dyα.

Suppose that we start from a system in thermal equilibrium. According to sta-

tistical mechanics, each of the Ωi, say, accessible states are equally likely. Let us

now remove, or relax, some of the constraints imposed on the system. Clearly,

all of the microstates formally accessible to the system are still accessible, but

many additional states will, in general, become accessible. Thus, removing or

relaxing constraints can only have the effect of increasing, or possibly leaving un-

changed, the number of microstates accessible to the system. If the final number

of accessible states is Ωf, then we can write

Ωf ≥ Ωi. (5.55)

Immediately after the constraints are relaxed, the systems in the ensemble are

not in any of the microstates from which they were previously excluded. So the
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systems only occupy a fraction

Pi =
Ωi

Ωf

(5.56)

of the Ωf states now accessible to them. This is clearly not a equilibrium situa-

tion. Indeed, if Ωf � Ωi then the configuration in which the systems are only

distributed over the original Ωi states is an extremely unlikely one. In fact, its

probability of occurrence is given by Eq. (5.56). According to the H theorem (see

Sect. 3.4), the ensemble will evolve in time until a more probable final state is

reached in which the systems are evenly distributed over the Ωf available states.

As a simple example, consider a system consisting of a box divided into two

regions of equal volume. Suppose that, initially, one region is filled with gas

and the other is empty. The constraint imposed on the system is, thus, that the

coordinates of all of the molecules must lie within the filled region. In other

words, the volume accessible to the system is V = Vi, where Vi is half the volume

of the box. The constraints imposed on the system can be relaxed by removing

the partition and allowing gas to flow into both regions. The volume accessible

to the gas is now V = Vf = 2Vi. Immediately after the partition is removed,

the system is in an extremely improbable state. We know, from Sect. 3.8, that at

constant energy the variation of the number of accessible states of an ideal gas

with the volume is

Ω ∝ VN, (5.57)

where N is the number of particles. Thus, the probability of observing the state

immediately after the partition is removed in an ensemble of equilibrium systems

with volume V = Vf is

Pi =
Ωi

Ωf

=

(

Vi

Vf

)N

=

(

1

2

)N

. (5.58)

If the box contains of order 1 mole of molecules thenN ∼ 1024 and this probability

is fantastically small:

Pi ∼ exp
(

−1024
)

. (5.59)

Clearly, the system will evolve towards a more probable state.

This discussion can also be phrased in terms of the parameters y1, · · · , yn of

the system. Suppose that a constraint is removed. For instance, one of the pa-
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rameters, y, say, which originally had the value y = yi, is now allowed to vary.

According to statistical mechanics, all states accessible to the system are equally

likely. So, the probability P(y) of finding the system in equilibrium with the pa-

rameter in the range y to y+ δy is just proportional to the number of microstates

in this interval: i.e.,

P(y) ∝ Ω(y). (5.60)

Usually, Ω(y) has a very pronounced maximum at some particular value ỹ (see

Sect. 5.2). This means that practically all systems in the final equilibrium ensem-

ble have values of y close to ỹ. Thus, if yi 6= ỹ initially then the parameter y

will change until it attains a final value close to ỹ, where Ω is maximum. This

discussion can be summed up in a single phrase:

If some of the constraints of an isolated system are removed then the param-
eters of the system tend to readjust themselves in such a way that

Ω(y1, · · · , yn) → maximum. (5.61)

Suppose that the final equilibrium state has been reached, so that the systems

in the ensemble are uniformly distributed over theΩf accessible final states. If the

original constraints are reimposed then the systems in the ensemble still occupy

these Ωf states with equal probability. Thus, if Ωf > Ωi, simply restoring the

constraints does not restore the initial situation. Once the systems are randomly

distributed over the Ωf states they cannot be expected to spontaneously move

out of some of these states and occupy a more restricted class of states merely in

response to the reimposition of a constraint. The initial condition can also not

be restored by removing further constraints. This could only lead to even more

states becoming accessible to the system.

Suppose that some process occurs in which an isolated system goes from some

initial configuration to some final configuration. If the final configuration is such

that the imposition or removal of constraints cannot by itself restore the initial

condition then the process is deemed irreversible. On the other hand, if it is such

that the imposition or removal of constraints can restore the initial condition then

the process is deemed reversible. From what we have already said, an irreversible

process is clearly one in which the removal of constraints leads to a situation
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where Ωf > Ωi. A reversible process corresponds to the special case where the

removal of constraints does not change the number of accessible states, so that

Ωf = Ωi. In this situation, the systems remain distributed with equal probability

over these states irrespective of whether the constraints are imposed or not.

Our microscopic definition of irreversibility is in accordance with the macro-

scopic definition discussed in Sect. 3.6. Recall that on a macroscopic level an ir-

reversible process is one which “looks unphysical” when viewed in reverse. On a

microscopic level it is clearly plausible that a system should spontaneously evolve

from an improbable to a probable configuration in response to the relaxation of

some constraint. However, it is quite clearly implausible that a system should

ever spontaneously evolve from a probable to an improbable configuration. Let

us consider our example again. If a gas is initially restricted to one half of a box,

via a partition, then the flow of gas from one side of the box to the other when

the partition is removed is an irreversible process. This process is irreversible

on a microscopic level because the initial configuration cannot be recovered by

simply replacing the partition. It is irreversible on a macroscopic level because

it is obviously unphysical for the molecules of a gas to spontaneously distribute

themselves in such a manner that they only occupy half of the available volume.

It is actually possible to quantify irreversibility. In other words, in addition to

stating that a given process is irreversible, we can also give some indication of

how irreversible it is. The parameter which measures irreversibility is just the

number of accessible states Ω. Thus, if Ω for an isolated system spontaneously

increases then the process is irreversible, the degree of irreversibility being pro-

portional to the amount of the increase. If Ω stays the same then the process is

reversible. Of course, it is unphysical for Ω to ever spontaneously decrease. In

symbols, we can write

Ωf −Ωi ≡ ∆Ω ≥ 0, (5.62)

for any physical process operating on an isolated system. In practice, Ω itself is a

rather unwieldy parameter with which to measure irreversibility. For instance, in

the previous example, where an ideal gas doubles in volume (at constant energy)

due to the removal of a partition, the fractional increase in Ω is

Ωf

Ωi

' 10 2 ν×1023

, (5.63)
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where ν is the number of moles. This is an extremely large number! It is far more

convenient to measure irreversibility in terms of lnΩ. If Eq. (5.62) is true then it

is certainly also true that

lnΩf − lnΩi ≡ ∆ lnΩ ≥ 0 (5.64)

for any physical process operating on an isolated system. The increase in lnΩ

when an ideal gas doubles in volume (at constant energy) is

lnΩf − lnΩi = νNA ln 2, (5.65)

where NA = 6 × 1023. This is a far more manageable number! Since we usu-

ally deal with particles by the mole in laboratory physics, it makes sense to pre-

multiply our measure of irreversibility by a number of order 1/NA. For historical

reasons, the number which is generally used for this purpose is the Boltzmann

constant k, which can be written

k =
R

NA
joules/kelvin, (5.66)

where

R = 8.3143 joules/kelvin/mole (5.67)

is the ideal gas constant which appears in the well-known equation of state for

an ideal gas, P V = νR T . Thus, the final form for our measure of irreversibility is

S = k lnΩ. (5.68)

This quantity is termed “entropy”, and is measured in joules per degree kelvin.

The increase in entropy when an ideal gas doubles in volume (at constant energy)

is

Sf − Si = νR ln 2, (5.69)

which is order unity for laboratory scale systems (i.e., those containing about one

mole of particles). The essential irreversibility of macroscopic phenomena can be

summed up as follows:

Sf − Si ≡ ∆S ≥ 0, (5.70)

for a process acting on an isolated system [this is equivalent to Eqs. (5.61),

(5.62), and (5.64)]. Thus, the entropy of an isolated system tends to increase
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with time and can never decrease. This proposition is known as the second law of

thermodynamics.

One way of thinking of the number of accessible states Ω is that it is a mea-

sure of the disorder associated with a macrostate. For a system exhibiting a high

degree of order we would expect a strong correlation between the motions of the

individual particles. For instance, in a fluid there might be a strong tendency for

the particles to move in one particular direction, giving rise to an ordered flow

of the system in that direction. On the other hand, for a system exhibiting a low

degree of order we expect far less correlation between the motions of individ-

ual particles. It follows that, all other things being equal, an ordered system is

more constrained than a disordered system, since the former is excluded from

microstates in which there is not a strong correlation between individual particle

motions, whereas the latter is not. Another way of saying this is that an ordered

system has less accessible microstates than a corresponding disordered system.

Thus, entropy is effectively a measure of the disorder in a system (the disorder

increases with S). With this interpretation, the second law of thermodynamics

reduces to the statement that isolated systems tend to become more disordered

with time, and can never become more ordered.

Note that the second law of thermodynamics only applies to isolated systems.

The entropy of a non-isolated system can decrease. For instance, if a gas expands

(at constant energy) to twice its initial volume after the removal of a partition,

we can subsequently recompress the gas to its original volume. The energy of the

gas will increase because of the work done on it during compression, but if we

absorb some heat from the gas then we can restore it to its initial state. Clearly, in

restoring the gas to its original state, we have restored its original entropy. This

appears to violate the second law of thermodynamics because the entropy should

have increased in what is obviously an irreversible process (just try to make a

gas spontaneously occupy half of its original volume!). However, if we consider

a new system consisting of the gas plus the compression and heat absorption

machinery, then it is still true that the entropy of this system (which is assumed

to be isolated) must increase in time. Thus, the entropy of the gas is only kept

the same at the expense of increasing the entropy of the rest of the system, and

the total entropy is increased. If we consider the system of everything in the
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Universe, which is certainly an isolated system since there is nothing outside it

with which it could interact, then the second law of thermodynamics becomes:

The disorder of the Universe tends to increase with time and can never de-
crease.

An irreversible process is clearly one which increases the disorder of the Uni-

verse, whereas a reversible process neither increases nor decreases disorder. This

definition is in accordance with our previous definition of an irreversible process

as one which “does not look right” when viewed backwards. One easy way of

viewing macroscopic events in reverse is to film them, and then play the film

backwards through a projector. There is a famous passage in the novel “Slaugh-

terhouse 5,” by Kurt Vonnegut, in which the hero, Billy Pilgrim, views a pro-

paganda film of an American World War II bombing raid on a German city in

reverse. This is what the film appeared to show:

“American planes, full of holes and wounded men and corpses took off back-
wards from an airfield in England. Over France, a few German fighter planes
flew at them backwards, sucked bullets and shell fragments from some of the
planes and crewmen. They did the same for wrecked American bombers on
the ground, and those planes flew up backwards and joined the formation.

The formation flew backwards over a German city that was in flames. The
bombers opened their bomb bay doors, exerted a miraculous magnetism
which shrunk the fires, gathered them into cylindrical steel containers, and
lifted the containers into the bellies of the planes. The containers were stored
neatly in racks. The Germans had miraculous devices of their own, which were
long steel tubes. They used them to suck more fragments from the crewmen
and planes. But there were still a few wounded Americans, though, and some
of the bombers were in bad repair. Over France, though, German fighters
came up again, made everything and everybody as good as new.”

Vonnegut’s point, I suppose, is that the morality of actions is inverted when you

view them in reverse.
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What is there about this passage which strikes us as surreal and fantastic?

What is there that immediately tells us that the events shown in the film could

never happen in reality? It is not so much that the planes appear to fly backwards

and the bombs appear to fall upwards. After all, given a little ingenuity and a

sufficiently good pilot, it is probably possible to fly a plane backwards. Likewise,

if we were to throw a bomb up in the air with just the right velocity we could, in

principle, fix it so that the velocity of the bomb matched that of a passing bomber

when their paths intersected. Certainly, if you had never seen a plane before it

would not be obvious which way around it was supposed to fly. However, certain

events are depicted in the film, “miraculous” events in Vonnegut’s words, which

would immediately strike us as the wrong way around even if we had never seen

them before. For instance, the film might show thousands of white hot bits of

shrapnel approach each other from all directions at great velocity, compressing

an explosive gas in the process, which slows them down such that when they meet

they fit together exactly to form a metal cylinder enclosing the gases and moving

upwards at great velocity. What strikes us as completely implausible about this

event is the spontaneous transition from the disordered motion of the gases and

metal fragments to the ordered upward motion of the bomb.

5.7 Properties of entropy

Entropy, as we have defined it, has some dependence on the resolution δE to

which the energy of macrostates is measured. Recall that Ω(E) is the number of

accessible microstates with energy in the range E to E + δE. Suppose that we

choose a new resolution δ∗E and define a new density of states Ω∗(E) which is

the number of states with energy in the range E to E + δ∗E. It can easily be seen

that

Ω∗(E) =
δ∗E

δE
Ω(E). (5.71)

It follows that the new entropy S∗ = k lnΩ∗ is related to the previous entropy

S = k lnΩ via

S∗ = S+ k ln
δ∗E

δE
. (5.72)
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Now, our usual estimate that Ω ∼ Ef gives S ∼ kf, where f is the number of

degrees of freedom. It follows that even if δ∗E were to differ from δE by of order

f (i.e., twenty four orders of magnitude), which is virtually inconceivable, the

second term on the right-hand side of the above equation is still only of order

k ln f, which is utterly negligible compared to kf. It follows that

S∗ = S (5.73)

to an excellent approximation, so our definition of entropy is completely insen-

sitive to the resolution to which we measure energy (or any other macroscopic

parameter).

Note that, like the temperature, the entropy of a macrostate is only well-

defined if the macrostate is in equilibrium. The crucial point is that it only makes

sense to talk about the number of accessible states if the systems in the ensem-

ble are given sufficient time to thoroughly explore all of the possible microstates

consistent with the known macroscopic constraints. In other words, we can only

be sure that a given microstate is inaccessible when the systems in the ensemble

have had ample opportunity to move into it, and yet have not done so. Note

that for an equilibrium state, the entropy is just as well-defined as more familiar

quantities such as the temperature and the mean pressure.

Consider, again, two systemsA andA ′ which are in thermal contact but can do

no work on one another (see Sect. 5.2). Let E and E ′ be the energies of the two

systems, and Ω(E) and Ω ′(E ′) the respective densities of states. Furthermore, let

E(0) be the conserved energy of the system as a whole andΩ(0) the corresponding

density of states. We have from Eq. (5.2) that

Ω(0)(E) = Ω(E)Ω ′(E ′), (5.74)

where E ′ = E(0) −E. In other words, the number of states accessible to the whole

system is the product of the numbers of states accessible to each subsystem, since

every microstate of A can be combined with every microstate of A ′ to form a

distinct microstate of the whole system. We know, from Sect. 5.2, that in equilib-

rium the mean energy of A takes the value Ē = Ẽ for which Ω(0)(E) is maximum,

and the temperatures of A and A ′ are equal. The distribution of E around the
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mean value is of order ∆∗E = Ẽ/
√
f, where f is the number of degrees of free-

dom. It follows that the total number of accessible microstates is approximately

the number of states which lie within ∆∗E of Ẽ. Thus,

Ω
(0)
tot '

Ω(0)(Ẽ)

δE
∆∗E. (5.75)

The entropy of the whole system is given by

S(0) = k lnΩ
(0)
tot = k lnΩ(0)(Ẽ) + k ln

∆∗E

δE
. (5.76)

According to our usual estimate, Ω ∼ Ef, the first term on the right-hand side is

of order kf whereas the second term is of order k ln(Ẽ/
√
f δE). Any reasonable

choice for the energy subdivision δE should be greater than Ẽ/f, otherwise there

would be less than one microstate per subdivision. It follows that the second term

is less than or of order k ln f, which is utterly negligible compared to kf. Thus,

S(0) = k lnΩ(0)(Ẽ) = k ln[Ω(Ẽ)Ω(Ẽ ′)] = k lnΩ(Ẽ) + k lnΩ ′(Ẽ ′) (5.77)

to an excellent approximation, giving

S(0) = S(Ẽ) + S ′(Ẽ ′). (5.78)

It can be seen that the probability distribution for Ω(0)(E) is so strongly peaked

around its maximum value that, for the purpose of calculating the entropy, the

total number of states is equal to the maximum number of states [i.e., Ω
(0)
tot ∼

Ω(0)(Ẽ)]. One consequence of this is that the entropy has the simple additive

property shown in Eq. (5.78). Thus, the total entropy of two thermally interacting

systems in equilibrium is the sum of the entropies of each system in isolation.

5.8 Uses of entropy

We have defined a new function called entropy, denoted S, which parameterizes

the amount of disorder in a macroscopic system. The entropy of an equilibrium

macrostate is related to the number of accessible microstates Ω via

S = k lnΩ. (5.79)
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On a macroscopic level, the increase in entropy due to a quasi-static change in

which an infinitesimal amount of heat d̄Q is absorbed by the system is given by

dS =
d̄Q

T
, (5.80)

where T is the absolute temperature of the system. The second law of thermo-

dynamics states that the entropy of an isolated system can never spontaneously

decrease. Let us now briefly examine some consequences of these results.

Consider two bodies, A and A ′, which are in thermal contact but can do no

work on one another. We know what is supposed to happen here. Heat flows from

the hotter to the colder of the two bodies until their temperatures are the same.

Consider a quasi-static exchange of heat between the two bodies. According to

the first law of thermodynamics, if an infinitesimal amount of heat d̄Q is absorbed

by A then infinitesimal heat d̄Q ′ = −d̄Q is absorbed by A ′. The increase in

the entropy of system A is dS = d̄Q/T and the corresponding increase in the

entropy of A ′ is dS ′ = d̄Q ′/T ′. Here, T and T ′ are the temperatures of the two

systems, respectively. Note that d̄Q is assumed to the sufficiently small that the

heat transfer does not substantially modify the temperatures of either system.

The change in entropy of the whole system is

dS(0) = dS+ dS ′ =

(

1

T
−
1

T ′

)

d̄Q. (5.81)

This change must be positive or zero, according to the second law of thermody-

namics, so dS(0) ≥ 0. It follows that d̄Q is positive (i.e., heat flows from A ′ to

A) when T ′ > T , and vice versa. The spontaneous flow of heat only ceases when

T = T ′. Thus, the direction of spontaneous heat flow is a consequence of the

second law of thermodynamics. Note that the spontaneous flow of heat between

bodies at different temperatures is always an irreversible process which increases

the entropy, or disorder, of the Universe.

Consider, now, the slightly more complicated situation in which the two sys-

tems can exchange heat and also do work on one another via a movable partition.

Suppose that the total volume is invariant, so that

V (0) = V + V ′ = constant, (5.82)

80



5.8 Uses of entropy 5 STATISTICAL THERMODYNAMICS

where V and V ′ are the volumes of A and A ′, respectively. Consider a quasi-

static change in which system A absorbs an infinitesimal amount of heat d̄Q

and its volume simultaneously increases by an infinitesimal amount dV . The

infinitesimal amount of work done by system A is d̄W = p̄ dV (see Sect. 4.4),

where p̄ is the mean pressure of A. According to the first law of thermodynamics,

d̄Q = dE+d̄W = dE+ p̄ dV, (5.83)

where dE is the change in the internal energy ofA. Since dS = d̄Q/T , the increase

in entropy of system A is written

dS =
dE+ p̄ dV

T
. (5.84)

Likewise, the increase in entropy of system A ′ is given by

dS ′ =
dE ′ + p̄ ′ dV ′

T ′ . (5.85)

According to Eq. (5.84),

1

T
=

(

∂S

∂E

)

V

, (5.86)

p̄

T
=

(

∂S

∂V

)

E

, (5.87)

where the subscripts are to remind us what is held constant in the partial deriva-

tives. We can write a similar pair of equations for the system A ′.

The overall system is assumed to be isolated, so conservation of energy gives

dE+ dE ′ = 0. Furthermore, Eq. (5.82) implies that dV + dV ′ = 0. It follows that

the total change in entropy is given by

dS(0) = dS+ dS ′ =

(

1

T
−
1

T ′

)

dE+





p̄

T
−
p̄ ′

T ′



 dV. (5.88)

The equilibrium state is the most probable state (see Sect. 5.2). According to

statistical mechanics, this is equivalent to the state with the largest number of

accessible microstates. Finally, Eq. (5.79) implies that this is the maximum en-

tropy state. The system can never spontaneously leave a maximum entropy state,
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since this would imply a spontaneous reduction in entropy, which is forbidden

by the second law of thermodynamics. A maximum or minimum entropy state

must satisfy dS(0) = 0 for arbitrary small variations of the energy and external

parameters. It follows from Eq. (5.88) that

T = T ′, (5.89)

p̄ = p̄ ′, (5.90)

for such a state. This corresponds to a maximum entropy state (i.e., an equilib-

rium state) provided




∂2S

∂E2





V

< 0, (5.91)





∂2S

∂V2





E

< 0, (5.92)

with a similar pair of inequalities for system A ′. The usual estimate Ω ∝ EfVf,

giving S = kf lnE+ kf lnV + · · ·, ensures that the above inequalities are satisfied

in conventional macroscopic systems. In the maximum entropy state the systems

A and A ′ have equal temperatures (i.e., they are in thermal equilibrium) and

equal pressures (i.e., they are in mechanical equilibrium). The second law of

thermodynamics implies that the two interacting systems will evolve towards this

state, and will then remain in it indefinitely (if left undisturbed).

5.9 Entropy and quantum mechanics

The entropy of a system is defined in terms of the number Ω of accessible mi-

crostates consistent with an overall energy in the range E to E+ δE via

S = k lnΩ. (5.93)

We have already demonstrated that this definition is utterly insensitive to the res-

olution δE to which the macroscopic energy is measured (see Sect. 5.7). In classi-

cal mechanics, if a system possesses f degrees of freedom then phase-space is con-

ventionally subdivided into cells of arbitrarily chosen volume h f
0 (see Sect. 3.2).
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The number of accessible microstates is equivalent to the number of these cells in

the volume of phase-space consistent with an overall energy of the system lying

in the range E to E+ δE. Thus,

Ω =
1

h f
0

∫

· · ·
∫

dq1 · · ·dqf dp1 · · ·dpf, (5.94)

giving

S = k ln

(

∫

· · ·
∫

dq1 · · ·dqf dp1 · · ·dpf
)

− kf lnh0. (5.95)

Thus, in classical mechanics the entropy is undetermined to an arbitrary additive

constant which depends on the size of the cells in phase-space. In fact, S increases

as the cell size decreases. The second law of thermodynamics is only concerned

with changes in entropy, and is, therefore, unaffected by an additive constant.

Likewise, macroscopic thermodynamical quantities, such as the temperature and

pressure, which can be expressed as partial derivatives of the entropy with respect

to various macroscopic parameters [see Eqs. (5.86) and (5.87)] are unaffected by

such a constant. So, in classical mechanics the entropy is rather like a gravita-

tional potential: it is undetermined to an additive constant, but this does not

affect any physical laws.

The non-unique value of the entropy comes about because there is no limit to

the precision to which the state of a classical system can be specified. In other

words, the cell size h0 can be made arbitrarily small, which corresponds to spec-

ifying the particle coordinates and momenta to arbitrary accuracy. However, in

quantum mechanics the uncertainty principle sets a definite limit to how accu-

rately the particle coordinates and momenta can be specified. In general,

δqi δpi ≥ h, (5.96)

where pi is the momentum conjugate to the generalized coordinate qi, and δqi,

δpi are the uncertainties in these quantities, respectively. In fact, in quantum

mechanics the number of accessible quantum states with the overall energy in

the range E to E + δE is completely determined. This implies that, in reality, the

entropy of a system has a unique and unambiguous value. Quantum mechanics

can often be “mocked up” in classical mechanics by setting the cell size in phase-

space equal to Planck’s constant, so that h0 = h. This automatically enforces the
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most restrictive form of the uncertainty principle, δqi δpi = h. In many systems,

the substitution h0 → h in Eq. (5.95) gives the same, unique value for S as that

obtained from a full quantum mechanical calculation.

Consider a simple quantum mechanical system consisting ofN non-interacting

spinless particles of mass m confined in a cubic box of dimension L. The energy

levels of the ith particle are given by

ei =
h̄2π2

2mL2

(

n 2
i1 + n 2

i2 + n 2
i3

)

, (5.97)

where ni1, ni2, and ni3 are three (positive) quantum numbers. The overall energy

of the system is the sum of the energies of the individual particles, so that for a

general state r

Er =

N∑

i=1

ei. (5.98)

The overall state of the system is completely specified by 3N quantum numbers,

so the number of degrees of freedom is f = 3N. The classical limit corresponds

to the situation where all of the quantum numbers are much greater than unity.

In this limit, the number of accessible states varies with energy according to our

usual estimate Ω ∝ Ef. The lowest possible energy state of the system, the so-

called ground-state, corresponds to the situation where all quantum numbers

take their lowest possible value, unity. Thus, the ground-state energy E0 is given

by

E0 =
f h̄2π2

2mL2
. (5.99)

There is only one accessible microstate at the ground-state energy (i.e., that

where all quantum numbers are unity), so by our usual definition of entropy

S(E0) = k ln 1 = 0. (5.100)

In other words, there is no disorder in the system when all the particles are in

their ground-states.

Clearly, as the energy approaches the ground-state energy, the number of ac-

cessible states becomes far less than the usual classical estimate Ef. This is true
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for all quantum mechanical systems. In general, the number of microstates varies

roughly like

Ω(E) ∼ 1+ C (E− E0)
f, (5.101)

where C is a positive constant. According to Eq. (5.31), the temperature varies

approximately like

T ∼
E− E0

k f
, (5.102)

provided Ω � 1. Thus, as the absolute temperature of a system approaches

zero, the internal energy approaches a limiting value E0 (the quantum mechanical

ground-state energy), and the entropy approaches the limiting value zero. This

proposition is known as the third law of thermodynamics.

At low temperatures, great care must be taken to ensure that equilibrium ther-

modynamical arguments are applicable, since the rate of attaining equilibrium

may be very slow. Another difficulty arises when dealing with a system in which

the atoms possess nuclear spins. Typically, when such a system is brought to a

very low temperature the entropy associated with the degrees of freedom not

involving nuclear spins becomes negligible. Nevertheless, the number of mi-

crostates Ωs corresponding to the possible nuclear spin orientations may be very

large. Indeed, it may be just as large as the number of states at room tempera-

ture. The reason for this is that nuclear magnetic moments are extremely small,

and, therefore, have extremely weak mutual interactions. Thus, it only takes a

tiny amount of heat energy in the system to completely randomize the spin orien-

tations. Typically, a temperature as small as 10−3 degrees kelvin above absolute

zero is sufficient to randomize the spins.

Suppose that the system consists of N atoms of spin 1/2. Each spin can have

two possible orientations. If there is enough residual heat energy in the system to

randomize the spins then each orientation is equally likely. If follows that there

are Ωs = 2N accessible spin states. The entropy associated with these states is

S0 = k lnΩs = νR ln 2. Below some critical temperature, T0, the interaction be-

tween the nuclear spins becomes significant, and the system settles down in some

unique quantum mechanical ground-state (e.g., with all spins aligned). In this sit-

uation, S → 0, in accordance with the third law of thermodynamics. However,

for temperatures which are small, but not small enough to “freeze out” the nu-
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clear spin degrees of freedom, the entropy approaches a limiting value S0 which

depends only on the kinds of atomic nuclei in the system. This limiting value is

independent of the spatial arrangement of the atoms, or the interactions between

them. Thus, for most practical purposes the third law of thermodynamics can be

written

as T → 0+, S → S0, (5.103)

where 0+ denotes a temperature which is very close to absolute zero, but still

much larger than T0. This modification of the third law is useful because it can

be applied at temperatures which are not prohibitively low.

5.10 The laws of thermodynamics

We have now come to the end of our investigation of the fundamental postulates

of classical and statistical thermodynamics. The remainder of this course is de-

voted to the application of the ideas we have just discussed to various situations

of interest in Physics. Before we proceed, however, it is useful to summarize the

results of our investigations. Our summary takes the form of a number of general

statements regarding macroscopic variables which are usually referred to as the

laws of thermodynamics:

Zeroth Law: If two systems are separately in thermal equilibrium with a third
system then they must be in equilibrium with one another (see Sect. 5.3).

First Law: The change in internal energy of a system in going from one
macrostate to another is the difference between the net heat absorbed by the
system from its surroundings and the net work done by the system on its
surroundings (see Sect. 4.1).

Second Law: The entropy of an isolated system can never spontaneously
decrease (see Sect. 5.6).

Third Law: In the limit as the absolute temperature tends to zero the
entropy also tends to zero (see Sect. 5.9).
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6 Classical thermodynamics

6.1 Introduction

We have learned that macroscopic quantities such as energy, temperature, and

pressure are, in fact, statistical in nature: i.e., in equilibrium they exhibit ran-

dom fluctuations about some mean value. If we were to plot out the probability

distribution for the energy, say, of a system in thermal equilibrium with its sur-

roundings we would obtain a Gaussian with a very small fractional width. In fact,

we expect
∆∗E

E
∼
1√
f
, (6.1)

where the number of degrees of freedom f is about 1024 for laboratory scale

systems. This means that the statistical fluctuations of macroscopic quantities

about their mean values are typically only about 1 in 1012.

Since the statistical fluctuations of equilibrium quantities are so small, we can

neglect them to an excellent approximation, and replace macroscopic quantities,

such as energy, temperature, and pressure, by their mean values. So, p → p̄, and

T → T , etc. In the following discussion, we shall drop the overbars altogether, so

that p should be understood to represent the mean pressure p̄, etc. This prescrip-

tion, which is the essence of classical thermodynamics, is equivalent to replacing

all statistically varying quantities by their most probable values.

Although there are formally four laws of thermodynamics (i.e., the zeroth to

the third), the zeroth law is really a consequence of the second law, and the third

law is actually only important at temperatures close to absolute zero. So, for

most purposes, the two laws which really matter are the first law and the second

law. For an infinitesimal process, the first law is written

d̄Q = dE+d̄W, (6.2)

where dE is the change in internal energy of the system, d̄Q is the heat absorbed

by the system, and d̄W is the work done by the system on its surroundings. Note

that this is just a convention. We could equally well write the first law in terms of
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the heat emitted by the system or the work done on the system. It does not really

matter, as long as we are consistent in our definitions.

The second law of thermodynamics implies that

d̄Q = T dS, (6.3)

for a quasi-static process, where T is the thermodynamic temperature, and dS is

the change in entropy of the system. Furthermore, for systems in which the only

external parameter is the volume (i.e., gases), the work done on the environment

is

d̄W = pdV, (6.4)

where p is the pressure, and dV is the change in volume. Thus, it follows from

the first and second laws of thermodynamics that

T dS = dE+ pdV. (6.5)

6.2 The equation of state of an ideal gas

Let us start our discussion by considering the simplest possible macroscopic sys-

tem: i.e., an ideal gas. All of the thermodynamic properties of an ideal gas are

summed up in its equation of state, which determines the relationship between

its pressure, volume, and temperature. Unfortunately, classical thermodynamics

is unable to tell us what this equation of state is from first principles. In fact,

classical thermodynamics cannot tell us anything from first principles. We always

have to provide some information to begin with before classical thermodynamics

can generate any new results. This initial information may come from statistical

physics (i.e., from our knowledge of the microscopic structure of the system under

consideration), but, more usually, it is entirely empirical in nature (i.e., it is the

result of experiments). Of course, the ideal gas law was first discovered empiri-

cally by Robert Boyle, but, nowadays, we can justify it from statistical arguments.

Recall (from Sect. 3.8), that the number of accessible states of a monotonic ideal

gas varies like

Ω ∝ VNχ(E), (6.6)
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where N is the number of atoms, and χ(E) depends only on the energy of the gas

(and is independent of the volume). We obtained this result by integrating over

the volume of accessible phase-space. Since the energy of an ideal gas is inde-

pendent of the particle coordinates (because there are no interatomic forces), the

integrals over the coordinates just reduced to N simultaneous volume integrals,

giving the VN factor in the above expression. The integrals over the particle mo-

menta were more complicated, but were clearly completely independent of V ,

giving the χ(E) factor in the above expression. Now, we have a statistical rule

which tells us that

Xα =
1

β

∂ lnΩ

∂xα
(6.7)

[see Eq. (5.41)], where Xα is the mean force conjugate to the external parameter

xα (i.e., d̄W =
∑

α Xαdxα), and β = 1/k T . For an ideal gas, the only external

parameter is the volume, and its conjugate force is the pressure (since d̄W =

pdV). So, we can write

p =
1

β

∂ lnΩ

∂V
. (6.8)

If we simply apply this rule to Eq. (6.6), we obtain

p =
NkT

V
. (6.9)

However, N = νNA, where ν is the number of moles, and NA is Avagadro’s

number. Also, kNA = R, where R is the ideal gas constant. This allows us to

write the equation of state in its usual form

pV = νR T. (6.10)

The above derivation of the ideal gas equation of state is rather elegant. It is

certainly far easier to obtain the equation of state in this manner than to treat

the atoms which make up the gas as little billiard balls which continually bounce

of the walls of a container. The latter derivation is difficult to perform correctly

because it is necessary to average over all possible directions of atomic motion. It

is clear, from the above derivation, that the crucial element needed to obtain the

ideal gas equation of state is the absence of interatomic forces. This automatically

gives rise to a variation of the number of accessible states with E and V of the
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form (6.6), which, in turn, implies the ideal gas law. So, the ideal gas law should

also apply to polyatomic gases with no interatomic forces. Polyatomic gases are

more complicated that monatomic gases because the molecules can rotate and

vibrate, giving rise to extra degrees of freedom, in addition to the translational

degrees of freedom of a monatomic gas. In other words, χ(E), in Eq. (6.6),

becomes a lot more complicated in polyatomic gases. However, as long as there

are no interatomic forces, the volume dependence of Ω is still VN, and the ideal

gas law should still hold true. In fact, we shall discover that the extra degrees of

freedom of polyatomic gases manifest themselves by increasing the specific heat

capacity.

There is one other conclusion we can draw from Eq. (6.6). The statistical

definition of temperature is [Eq. (5.31)]

1

k T
=
∂ lnΩ

∂E
. (6.11)

It follows that
1

k T
=
∂ lnχ

∂E
. (6.12)

We can see that since χ is a function of the energy, but not the volume, then the

temperature must be a function of the energy, but not the volume. We can turn

this around and write

E = E(T). (6.13)

In other words, the internal energy of an ideal gas depends only on the tem-

perature of the gas, and is independent of the volume. This is pretty obvious,

since if there are no interatomic forces then increasing the volume, which effec-

tively increases the mean separation between molecules, is not going to affect the

molecular energies in any way. Hence, the energy of the whole gas is unaffected.

The volume independence of the internal energy can also be obtained directly

from the ideal gas equation of state. The internal energy of a gas can be consid-

ered as a general function of the temperature and volume, so

E = E(T, V). (6.14)

It follows from mathematics that

dE =

(

∂E

∂T

)

V

dT +

(

∂E

∂V

)

T

dV, (6.15)
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where the subscript V reminds us that the first partial derivative is taken at con-

stant volume, and the subscript T reminds us that the second partial derivative

is taken at constant temperature. Thermodynamics tells us that for a quasi-static

change of parameters

T dS = dE+ pdV. (6.16)

The ideal gas law can be used to express the pressure in term of the volume and

the temperature in the above expression. Thus,

dS =
1

T
dE+

νR

V
dV. (6.17)

Using Eq. (6.15), this becomes

dS =
1

T

(

∂E

∂T

)

V

dT +

[

1

T

(

∂E

∂V

)

T

+
νR

V

]

dV. (6.18)

However, dS is the exact differential of a well-defined state function, S. This

means that we can consider the entropy to be a function of temperature and

volume. Thus, S = S(T, V), and mathematics immediately tells us that

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV. (6.19)

The above expression is true for all small values of dT and dV , so a comparison

with Eq. (6.18) gives
(

∂S

∂T

)

V

=
1

T

(

∂E

∂T

)

V

, (6.20)

(

∂S

∂V

)

T

=
1

T

(

∂E

∂V

)

T

+
νR

V
. (6.21)

One well-known property of partial differentials is the equality of second deriva-

tives, irrespective of the order of differentiation, so

∂2S

∂V∂T
=

∂2S

∂T∂V
. (6.22)

This implies that
(

∂

∂V

)

T

(

∂S

∂T

)

V

=

(

∂

∂T

)

V

(

∂S

∂V

)

T

. (6.23)
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The above expression can be combined with Eqs. (6.20) and (6.21) to give

1

T





∂2E

∂V∂T



 =



−
1

T 2

(

∂E

∂V

)

T

+
1

T





∂2E

∂T∂V







 . (6.24)

Since second derivatives are equivalent, irrespective of the order of differentia-

tion, the above relation reduces to
(

∂E

∂V

)

T

= 0, (6.25)

which implies that the internal energy is independent of the volume for any gas

obeying the ideal equation of state. This result was confirmed experimentally by

James Joule in the middle of the nineteenth century.

6.3 Heat capacity or specific heat

Suppose that a body absorbs an amount of heat ∆Q and its temperature conse-

quently rises by ∆T . The usual definition of the heat capacity, or specific heat, of

the body is

C =
∆Q

∆T
. (6.26)

If the body consists of νmoles of some substance then the molar specific heat (i.e.,

the specific heat of one mole of this substance ) is defined

c =
1

ν

∆Q

∆T
. (6.27)

In writing the above expressions, we have tacitly assumed that the specific heat

of a body is independent of its temperature. In general, this is not true. We can

overcome this problem by only allowing the body in question to absorb a very

small amount of heat, so that its temperature only rises slightly, and its specific

heat remains approximately constant. In the limit as the amount of absorbed heat

becomes infinitesimal, we obtain

c =
1

ν

d̄Q

dT
. (6.28)
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In classical thermodynamics, it is usual to define two specific heats. Firstly, the

molar specific heat at constant volume, denoted

cV =
1

ν

(

d̄Q

dT

)

V

, (6.29)

and, secondly, the molar specific heat at constant pressure, denoted

cp =
1

ν

(

d̄Q

dT

)

p

. (6.30)

Consider the molar specific heat at constant volume of an ideal gas. Since

dV = 0, no work is done by the gas, and the first law of thermodynamics reduces

to

d̄Q = dE. (6.31)

It follows from Eq. (6.29) that

cV =
1

ν

(

∂E

∂T

)

V

. (6.32)

Now, for an ideal gas the internal energy is volume independent. Thus, the above

expression implies that the specific heat at constant volume is also volume inde-

pendent. Since E is a function only of T , we can write

dE =

(

∂E

∂T

)

V

dT. (6.33)

The previous two expressions can be combined to give

dE = ν cV dT (6.34)

for an ideal gas.

Let us now consider the molar specific heat at constant pressure of an ideal gas.

In general, if the pressure is kept constant then the volume changes, and so the

gas does work on its environment. According to the first law of thermodynamics,

d̄Q = dE+ pdV = ν cV dT + pdV. (6.35)
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The equation of state of an ideal gas tells us that if the volume changes by dV ,

the temperature changes by dT , and the pressure remains constant, then

pdV = νRdT. (6.36)

The previous two equations can be combined to give

d̄Q = ν cV dT + νRdT. (6.37)

Now, by definition

cp =
1

ν

(

d̄Q

dT

)

p

, (6.38)

so we obtain

cp = cV + R (6.39)

for an ideal gas. This is a very famous result. Note that at constant volume all of

the heat absorbed by the gas goes into increasing its internal energy, and, hence,

its temperature, whereas at constant pressure some of the absorbed heat is used

to do work on the environment as the volume increases. This means that, in the

latter case, less heat is available to increase the temperature of the gas. Thus, we

expect the specific heat at constant pressure to exceed that at constant volume,

as indicated by the above formula.

The ratio of the two specific heats cp/cV is conventionally denoted γ. We have

γ ≡ cp

cV
= 1+

R

cV
(6.40)

for an ideal gas. In fact, γ is very easy to measure because the speed of sound in

an ideal gas is written

cs =

√

√

√

√

γp

ρ
, (6.41)

where ρ is the density. Table 2 lists some experimental measurements of cV and

γ for common gases. The extent of the agreement between γ calculated from

Eq. (6.40) and the experimental γ is quite remarkable.

94



6.4 Calculation of specific heats 6 CLASSICAL THERMODYNAMICS

Gas Symbol cV γ γ

(experiment) (experiment) (theory)

Helium He 12.5 1.666 1.666

Argon Ar 12.5 1.666 1.666

Nitrogen N2 20.6 1.405 1.407

Oxygen O2 21.1 1.396 1.397

Carbon Dioxide CO2 28.2 1.302 1.298

Ethane C2H6 39.3 1.220 1.214

Table 2: Specific heats of common gases in joules/mole/deg. (at 15◦C and 1 atm.) From Reif.

6.4 Calculation of specific heats

Now that we know the relationship between the specific heats at constant vol-

ume and constant pressure for an ideal gas, it would be nice if we could calculate

either one of these quantities from first principles. Classical thermodynamics can-

not help us here. However, it is quite easy to calculate the specific heat at constant

volume using our knowledge of statistical physics. Recall, that the variation of

the number of accessible states of an ideal gas with energy and volume is written

Ω(E, V) ∝ VNχ(E). (6.42)

For the specific case of a monatomic ideal gas, we worked out a more exact ex-

pression for Ω in Sect. 3.8: i.e.,

Ω(E, V) = BVNE 3N/2, (6.43)

where B is a constant independent of the energy and volume. It follows that

lnΩ = lnB+N lnV +
3N

2
lnE. (6.44)

The temperature is given by

1

k T
=
∂ lnΩ

∂E
=
3N

2

1

E
, (6.45)

so

E =
3

2
Nk T. (6.46)

95



6.5 Isothermal and adiabatic expansion 6 CLASSICAL THERMODYNAMICS

Since, N = νNA, and NA k = R, we can rewrite the above expression as

E =
3

2
νR T, (6.47)

where R = 8.3143 joules/mole/deg. is the ideal gas constant. The above formula

tells us exactly how the internal energy of a monatomic ideal gas depends on its

temperature.

The molar specific heat at constant volume of a monatomic ideal gas is clearly

cV =
1

ν

(

∂E

∂T

)

V

=
3

2
R. (6.48)

This has the numerical value

cV = 12.47 joules/mole/deg. (6.49)

Furthermore, we have

cp = cV + R =
5

2
R, (6.50)

and

γ ≡ cp

cV
=
5

3
= 1.667. (6.51)

We can see from the previous table that these predictions are borne out pretty

well for the monatomic gases Helium and Argon. Note that the specific heats

of polyatomic gases are larger than those of monatomic gases. This is because

polyatomic molecules can rotate around their centres of mass, as well as translate,

so polyatomic gases can store energy in the rotational, as well as the translational,

energy states of their constituent particles. We shall analyze this effect in greater

detail later on in this course.

6.5 Isothermal and adiabatic expansion

Suppose that the temperature of an ideal gas is held constant by keeping the gas

in thermal contact with a heat reservoir. If the gas is allowed to expand quasi-

statically under these so called isothermal conditions then the ideal equation of

state tells us that

pV = constant. (6.52)
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This is usually called the isothermal gas law.

Suppose, now, that the gas is thermally isolated from its surroundings. If the

gas is allowed to expand quasi-statically under these so called adiabatic condi-

tions then it does work on its environment, and, hence, its internal energy is

reduced, and its temperature changes. Let us work out the relationship between

the pressure and volume of the gas during adiabatic expansion.

According to the first law of thermodynamics,

d̄Q = ν cV dT + pdV = 0, (6.53)

in an adiabatic process (in which no heat is absorbed). The ideal gas equation of

state can be differentiated, yielding

pdV + V dp = νRdT. (6.54)

The temperature increment dT can be eliminated between the above two expres-

sions to give

0 =
cV

R
(pdV + V dp) + pdV =

(

cV

R
+ 1

)

pdV +
cV

R
V dp, (6.55)

which reduces to

(cV + R)pdV + cV V dp = 0. (6.56)

Dividing through by cV pV yields

γ
dV

V
+
dp

p
= 0, (6.57)

where

γ ≡ cp

cV
=
cV + R

cV
. (6.58)

It turns out that cV is a very slowly varying function of temperature in most gases.

So, it is always a fairly good approximation to treat the ratio of specific heats γ

as a constant, at least over a limited temperature range. If γ is constant then we

can integrate Eq. (6.57) to give

γ lnV + lnp = constant, (6.59)
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or

pV γ = constant. (6.60)

This is the famous adiabatic gas law. It is very easy to obtain similar relationships

between V and T and p and T during adiabatic expansion or contraction. Since

p = νR T/V , the above formula also implies that

T V γ−1 = constant, (6.61)

and

p 1−γ T γ = constant. (6.62)

Equations (6.60)–(6.62) are all completely equivalent.

6.6 Hydrostatic equilibrium of the atmosphere

The gas which we are most familiar with in everyday life is, of course, the Earth’s

atmosphere. In fact, we can use the isothermal and adiabatic gas laws to explain

most of the observable features of the atmosphere.

Let us, first of all, consider the hydrostatic equilibrium of the atmosphere.

Consider a thin vertical slice of the atmosphere of cross-sectional area A which

starts at height z above ground level and extends to height z + dz. The upwards

force exerted on this slice from the gas below is p(z)A, where p(z) is the pressure

at height z. Likewise, the downward force exerted by the gas above the slice is

p(z+dz)A. The net upward force is clearly [p(z)−p(z+dz)]A. In equilibrium, this

upward force must be balanced by the downward force due to the weight of the

slice: this is ρAdzg, where ρ is the density of the gas, and g is the acceleration

due to gravity. In follows that the force balance condition can be written

[p(z) − p(z+ dz)]A = ρAdzg, (6.63)

which reduces to
dp

dz
= −ρg. (6.64)

This is called the equation of hydrostatic equilibrium for the atmosphere.
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We can write the density of a gas in the following form,

ρ =
νµ

V
, (6.65)

where µ is the molecular weight of the gas, and is equal to the mass of one mole

of gas particles. For instance, the molecular weight of Nitrogen gas is 28 grams.

The above formula for the density of a gas combined with the ideal gas law

pV = νR T yields

ρ =
pµ

R T
. (6.66)

It follows that the equation of hydrostatic equilibrium can be rewritten

dp

p
= −

µg

R T
dz. (6.67)

6.7 The isothermal atmosphere

As a first approximation, let us assume that the temperature of the atmosphere is

uniform. In such an isothermal atmosphere, we can directly integrate the previous

equation to give

p = p0 exp

(

−
z

z0

)

. (6.68)

Here, p0 is the pressure at ground level (z = 0), which is generally about 1 bar,

or 1 atmosphere (105 N m−2 in SI units). The quantity

z0 =
R T

µg
(6.69)

is called the isothermal scale-height of the atmosphere. At ground level, the tem-

perature is on average about 15◦ centigrade, which is 288◦ kelvin on the absolute

scale. The mean molecular weight of air at sea level is 29 (i.e., the molecular

weight of a gas made up of 78% Nitrogen, 21% Oxygen, and 1% Argon). The

acceleration due to gravity is 9.81m s−2 at ground level. Also, the ideal gas con-

stant is 8.314 joules/mole/degree. Putting all of this information together, the

isothermal scale-height of the atmosphere comes out to be about 8.4 kilometers.
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We have discovered that in an isothermal atmosphere the pressure decreases

exponentially with increasing height. Since the temperature is assumed to be

constant, and ρ ∝ p/T [see Eq. (6.66)], it follows that the density also decreases

exponentially with the same scale-height as the pressure. According to Eq. (6.68),

the pressure, or density, decreases by a factor 10 every ln10 z0, or 19.3 kilometers,

we move vertically upwards. Clearly, the effective height of the atmosphere is

pretty small compared to the Earth’s radius, which is about 6, 400 kilometers. In

other words, the atmosphere constitutes a very thin layer covering the surface

of the Earth. Incidentally, this justifies our neglect of the decrease of g with

increasing altitude.

One of the highest points in the United States of America is the peak of Mount

Elbert in Colorado. This peak lies 14, 432 feet, or about 4.4 kilometers, above sea

level. At this altitude, our formula says that the air pressure should be about 0.6

atmospheres. Surprisingly enough, after a few days acclimatization, people can

survive quite comfortably at this sort of pressure. In the highest inhabited regions

of the Andes and Tibet, the air pressure falls to about 0.5 atmospheres. Humans

can just about survive at such pressures. However, people cannot survive for any

extended period in air pressures below half an atmosphere. This sets an upper

limit on the altitude of permanent human habitation, which is about 19, 000 feet,

or 5.8 kilometers, above sea level. Incidentally, this is also the maximum altitude

at which a pilot can fly an unpressurized aircraft without requiring additional

Oxygen.

The highest point in the world is, of course, the peak of Mount Everest in

Nepal. This peak lies at an altitude of 29, 028 feet, or 8.85 kilometers, above sea

level, where we expect the air pressure to be a mere 0.35 atmospheres. This ex-

plains why Mount Everest was only conquered after lightweight portable oxygen

cylinders were invented. Admittedly, some climbers have subsequently ascended

Mount Everest without the aid of additional oxygen, but this is a very foolhardy

venture, because above 19, 000 feet the climbers are slowly dying.

Commercial airliners fly at a cruising altitude of 32, 000 feet. At this altitude,

we expect the air pressure to be only 0.3 atmospheres, which explains why air-

line cabins are pressurized. In fact, the cabins are only pressurized to 0.85 atmo-
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spheres (which accounts for the “popping” of passangers ears during air travel).

The reason for this partial pressurization is quite simple. At 32, 000 feet, the pres-

sure difference between the air in the cabin and that outside is about half an

atmosphere. Clearly, the walls of the cabin must be strong enough to support

this pressure difference, which means that they must be of a certain thickness,

and, hence, the aircraft must be of a certain weight. If the cabin were fully pres-

surized then the pressure difference at cruising altitude would increase by about

30%, which means that the cabin walls would have to be much thicker, and,

hence, the aircraft would have to be substantially heavier. So, a fully pressurized

aircraft would be more comfortable to fly in (because your ears would not “pop”),

but it would also be far less economical to operate.

6.8 The adiabatic atmosphere

Of course, we know that the atmosphere is not isothermal. In fact, air temper-

ature falls quite noticeably with increasing altitude. In ski resorts, you are told

to expect the temperature to drop by about 1 degree per 100 meters you go

upwards. Many people cannot understand why the atmosphere gets colder the

higher up you go. They reason that as higher altitudes are closer to the Sun they

ought to be hotter. In fact, the explanation is quite simple. It depends on three

important properties of air. The first important property is that air is transpar-

ent to most, but by no means all, of the electromagnetic spectrum. In particular,

most infrared radiation, which carries heat energy, passes straight through the

lower atmosphere and heats the ground. In other words, the lower atmosphere

is heated from below, not from above. The second important property of air is

that it is constantly in motion. In fact, the lower 20 kilometers of the atmosphere

(the so called troposphere) are fairly thoroughly mixed. You might think that this

would imply that the atmosphere is isothermal. However, this is not the case

because of the final important properly of air: i.e., it is a very poor conductor of

heat. This, of course, is why woolly sweaters work: they trap a layer of air close

to the body, and because air is such a poor conductor of heat you stay warm.

Imagine a packet of air which is being swirled around in the atmosphere. We
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would expect it to always remain at the same pressure as its surroundings, other-

wise it would be mechanically unstable. It is also plausible that the packet moves

around too quickly to effectively exchange heat with its surroundings, since air is

very a poor heat conductor, and heat flow is consequently quite a slow process.

So, to a first approximation, the air in the packet is adiabatic. In a steady-state

atmosphere, we expect that as the packet moves upwards, expands due to the re-

duced pressure, and cools adiabatically, its temperature always remains the same

as that of its immediate surroundings. This means that we can use the adiabatic

gas law to characterize the cooling of the atmosphere with increasing altitude. In

this particular case, the most useful manifestation of the adiabatic law is

p 1−γ T γ = constant, (6.70)

giving
dp

p
=

γ

γ− 1

dT

T
. (6.71)

Combining the above relation with the equation of hydrostatic equilibrium, (6.67),

we obtain
γ

γ− 1

dT

T
= −

µg

R T
dz, (6.72)

or
dT

dz
= −

γ− 1

γ

µg

R
. (6.73)

Now, the ratio of specific heats for air (which is effectively a diatomic gas) is

about 1.4 (see Tab. 2). Hence, we can calculate, from the above expression, that

the temperature of the atmosphere decreases with increasing height at a constant

rate of 9.8◦ centigrade per kilometer. This value is called the adiabatic lapse rate

of the atmosphere. Our calculation accords well with the “1 degree colder per

100 meters higher” rule of thumb used in ski resorts. The basic reason why

air is colder at higher altitudes is that it expands as its pressure decreases with

height. It, therefore, does work on its environment, without absorbing any heat

(because of its low thermal conductivity), so its internal energy, and, hence, its

temperature decreases.

According to the adiabatic lapse rate calculated above, the air temperature at

the cruising altitude of airliners (32, 000 feet) should be about −80◦ centigrade
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(assuming a sea level temperature of 15◦ centigrade). In fact, this is somewhat of

an underestimate. A more realistic value is about −60◦ centigrade. The explana-

tion for this discrepancy is the presence of water vapour in the atmosphere. As

air rises, expands, and cools, water vapour condenses out releasing latent heat

which prevents the temperature from falling as rapidly with height as the adia-

batic lapse rate would indicate. In fact, in the Tropics, where the humidity is very

high, the lapse rate of the atmosphere (i.e., the rate of decrease of temperature

with altitude) is significantly less than the adiabatic value. The adiabatic lapse

rate is only observed when the humidity is low. This is the case in deserts, in the

Arctic (where water vapour is frozen out of the atmosphere), and, of course, in

ski resorts.

Suppose that the lapse rate of the atmosphere differs from the adiabatic value.

Let us ignore the complication of water vapour and assume that the atmosphere

is dry. Consider a packet of air which moves slightly upwards from its equilibrium

height. The temperature of the packet will decrease with altitude according to

the adiabatic lapse rate, because its expansion is adiabatic. We assume that the

packet always maintains pressure balance with its surroundings. It follows that

since ρ T ∝ p, according to the ideal gas law, then

(ρ T)packet = (ρ T)atmosphere. (6.74)

If the atmospheric lapse rate is less than the adiabatic value then Tatmosphere >

Tpacket implying that ρpacket > ρatmosphere. So, the packet will be denser than its im-

mediate surroundings, and will, therefore, tend to fall back to its original height.

Clearly, an atmosphere whose lapse rate is less than the adiabatic value is sta-

ble. On the other hand, if the atmospheric lapse rate exceeds the adiabatic value

then, after rising a little way, the packet will be less dense than its immediate sur-

roundings, and will, therefore, continue to rise due to buoyancy effects. Clearly,

an atmosphere whose lapse rate is greater than the adiabatic value is unstable.

This effect is of great importance in Meteorology. The normal stable state of the

atmosphere is for the lapse rate to be slightly less than the adiabatic value. Oc-

casionally, however, the lapse rate exceeds the adiabatic value, and this is always

associated with extremely disturbed weather patterns.

Let us consider the temperature, pressure, and density profiles in an adiabatic
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atmosphere. We can directly integrate Eq. (6.73) to give

T = T0

(

1−
γ− 1

γ

z

z0

)

, (6.75)

where T0 is the ground level temperature, and

z0 =
R T0

µg
(6.76)

is the isothermal scale-height calculated using this temperature. The pressure

profile is easily calculated from the adiabatic gas law p 1−γ T γ = constant, or

p ∝ T γ/(γ−1). It follows that

p = p0

(

1−
γ− 1

γ

z

z0

)γ/(γ−1)

. (6.77)

Consider the limit γ → 1. In this limit, Eq. (6.75) yields T independent of height

(i.e., the atmosphere becomes isothermal). We can evaluate Eq. (6.77) in the

limit as γ → 1 using the mathematical identity

ltm→0 (1+mx)
1/m ≡ exp(x). (6.78)

We obtain

p = p0 exp

(

−
z

z0

)

, (6.79)

which, not surprisingly, is the predicted pressure variation in an isothermal at-

mosphere. In reality, the ratio of specific heats of the atmosphere is not unity,

it is about 1.4 (i.e., the ratio for diatomic gases), which implies that in the real

atmosphere

p = p0

(

1−
z

3.5 z0

)3.5

. (6.80)

In fact, this formula gives very similar results to the exponential formula, Eq. (6.79),

for heights below one scale-height (i.e., z < z0). For heights above one scale-

height, the exponential formula tends to predict too low a pressure. So, in an

adiabatic atmosphere, the pressure falls off less quickly with altitude than in an

isothermal atmosphere, but this effect is only really noticeable at pressures sig-

nificantly below one atmosphere. In fact, the isothermal formula is a pretty good
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approximation below altitudes of about 10 kilometers. Since ρ ∝ p/T , the varia-

tion of density with height goes like

ρ = ρ0

(

1−
γ− 1

γ

z

z0

)1/(γ−1)

, (6.81)

where ρ0 is the density at ground level. Thus, the density falls off more rapidly

with altitude than the temperature, but less rapidly than the pressure.

Note that an adiabatic atmosphere has a sharp upper boundary. Above height

z1 = [γ/(γ−1)] z0 the temperature, pressure, and density are all zero: i.e., there is

no atmosphere. For real air, with γ = 1.4, z1 ' 3.5 z0 ' 29.4 kilometers. This be-

haviour is quite different to that of an isothermal atmosphere, which has a diffuse

upper boundary. In reality, there is no sharp upper boundary to the atmosphere.

The adiabatic gas law does not apply above about 20 kilometers (i.e., in the

stratosphere) because at these altitudes the air is no longer strongly mixed. Thus,

in the stratosphere the pressure falls off exponentially with increasing height.

In conclusion, we have demonstrated that the temperature of the lower atmo-

sphere should fall off approximately linearly with increasing height above ground

level, whilst the pressure should fall off far more rapidly than this, and the den-

sity should fall off at some intermediate rate. We have also shown that the lapse

rate of the temperature should be about 10◦ centigrade per kilometer in dry air,

but somewhat less than this in wet air. In fact, all off these predictions are, more

or less, correct. It is amazing that such accurate predictions can be obtained from

the two simple laws, pV = constant for an isothermal gas, and pV γ = constant

for an adiabatic gas.

6.9 Heat engines

Thermodynamics was invented, almost by accident, in 1825 by a young French

engineer called Sadi Carnot who was investigating the theoretical limitations on

the efficiency of steam engines. Although we are not particularly interested in

steam engines, nowadays, it is still highly instructive to review some of Carnot’s

arguments. We know, by observation, that it is possible to do mechanical work w
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upon a deviceM, and then to extract an equivalent amount of heat q, which goes

to increase the internal energy of some heat reservoir. (Here, we use small letters

w and q to denote intrinsically positive amounts of work and heat, respectively.)

An example of this is Joule’s classic experiment by which he verified the first law

of thermodynamics: a paddle wheel is spun in a liquid by a falling weight, and the

work done by the weight on the wheel is converted into heat, and absorbed by the

liquid. Carnot’s question was this: is it possible to reverse this process and build

a device, called a heat engine, which extracts heat energy from a reservoir and

converts it into useful macroscopic work? For instance, is it possible to extract

heat from the ocean and use it to run an electric generator?

There are a few caveats to Carnot’s question. First of all, the work should not

be done at the expense of the heat engine itself, otherwise the conversion of heat

into work could not continue indefinitely. We can ensure that this is the case if the

heat engine performs some sort of cycle, by which it periodically returns to the

same macrostate, but, in the meantime, has extracted heat from the reservoir and

done an equivalent amount of useful work. Furthermore, a cyclic process seems

reasonable because we know that both steam engines and internal combustion

engines perform continuous cycles. The second caveat is that the work done by

the heat engine should be such as to change a single parameter of some external

device (e.g., by lifting a weight) without doing it at the expense of affecting the

other degrees of freedom, or the entropy, of that device. For instance, if we are

extracting heat from the ocean to generate electricity, we want to spin the shaft of

the electrical generator without increasing the generator’s entropy; i.e., causing

the generator to heat up or fall to bits.

Let us examine the feasibility of a heat engine using the laws of thermody-

namics. Suppose that a heat engine M performs a single cycle. Since M has

returned to its initial macrostate, its internal energy is unchanged, and the first

law of thermodynamics tell us that the work done by the engine w must equal

the heat extracted from the reservoir q, so

w = q. (6.82)

The above condition is certainly a necessary condition for a feasible heat engine,

but is it also a sufficient condition? In other words, does every device which satis-
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fies this condition actually work? Let us think a little more carefully about what

we are actually expecting a heat engine to do. We want to construct a device

which will extract energy from a heat reservoir, where it is randomly distributed

over very many degrees of freedom, and convert it into energy distributed over

a single degree of freedom associated with some parameter of an external de-

vice. Once we have expressed the problem in these terms, it is fairly obvious that

what we are really asking for is a spontaneous transition from a probable to an

improbable state, which we know is forbidden by the second law of thermody-

namics. So, unfortunately, we cannot run an electric generator off heat extracted

from the ocean, because it is like asking all of the molecules in the ocean, which

are jiggling about every which way, to all suddenly jig in the same direction, so as

to exert a force on some lever, say, which can then be converted into a torque on

the generator shaft. We know from our investigation of statistical thermodynam-

ics that such a process is possible, in principle, but is fantastically improbable.

The improbability of the scenario just outlined is summed up in the second

law of thermodynamics. This says that the total entropy of an isolated system

can never spontaneously decrease, so

∆S ≥ 0. (6.83)

For the case of a heat engine, the isolated system consists of the engine, the

reservoir from which it extracts heat, and the outside device upon which it does

work. The engine itself returns periodically to the same state, so its entropy is

clearly unchanged after each cycle. We have already specified that there is no

change in the entropy of the external device upon which the work is done. On

the other hand, the entropy change per cycle of the heat reservoir, which is at

absolute temperature T1, say, is given by

∆Sreservoir =

∮
d̄Q

T1
= −

q

T1
, (6.84)

where d̄Q is the infinitesimal heat absorbed by the reservoir, and the integral

is taken over a whole cycle of the heat engine. The integral can be converted

into the expression −q/T1 because the amount of heat extracted by the engine

is assumed to be too small to modify the temperature of the reservoir (this is
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the definition of a heat reservoir), so that T1 is a constant during the cycle. The

second law of thermodynamics clearly reduces to

−q

T1
≥ 0 (6.85)

or, making use of the first law of thermodynamics,

q

T1
=
w

T1
≤ 0. (6.86)

Since we wish the work w done by the engine to be positive, the above rela-

tion clearly cannot be satisfied, which proves that an engine which converts heat

directly into work is thermodynamically impossible.

A perpetual motion device, which continuously executes a cycle without ex-

tracting heat from, or doing work on, its surroundings, is just about possible

according to Eq. (6.86). In fact, such a device corresponds to the equality sign in

Eq. (6.83), which means that it must be completely reversible. In reality, there is

no such thing as a completely reversible engine. All engines, even the most effi-

cient, have frictional losses which make them, at least, slightly irreversible. Thus,

the equality sign in Eq. (6.83) corresponds to an asymptotic limit which reality

can closely approach, but never quite attain. It follows that a perpetual motion

device is thermodynamically impossible. Nevertheless, the U.S. patent office re-

ceives about 100 patent applications a year regarding perpetual motion devices.

The British patent office, being slightly less open-minded that its American coun-

terpart, refuses to entertain such applications on the basis that perpetual motion

devices are forbidden by the second law of thermodynamics.

According to Eq. (6.86), there is no thermodynamic objection to a heat engine

which runs backwards, and converts work directly into heat. This is not surpris-

ing, since we know that this is essentially what frictional forces do. Clearly, we

have, here, another example of a natural process which is fundamentally irre-

versible according to the second law of thermodynamics. In fact, the statement

It is impossible to construct a perfect heat engine which converts heat directly
into work
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is called Kelvin’s formulation of the second law.

We have demonstrated that a perfect heat engine, which converts heat directly

into work, is impossible. But, there must be some way of obtaining useful work

from heat energy, otherwise steam engines would not operate. Well, the reason

that our previous scheme did not work was that it decreased the entropy of a

heat reservoir, at some temperature T1, by extracting an amount of heat q per

cycle, without any compensating increase in the entropy of anything else, so the

second law of thermodynamics was violated. How can we remedy this situation?

We still want the heat engine itself to perform periodic cycles (so, by definition,

its entropy cannot increase over a cycle), and we also do not want to increase

the entropy of the external device upon which the work is done. Our only other

option is to increase the entropy of some other body. In Carnot’s analysis, this

other body is a second heat reservoir at temperature T2. We can increase the

entropy of the second reservoir by dumping some of the heat we extracted from

the first reservoir into it. Suppose that the heat per cycle we extract from the

first reservoir is q1, and the heat per cycle we reject into the second reservoir is

q2. Let the work done on the external device be w per cycle. The first law of

thermodynamics tells us that

q1 = w+ q2. (6.87)

Note that q2 < q1 if positive (i.e., useful) work is done on the external device.

The total entropy change per cycle is due to the heat extracted from the first

reservoir and the heat dumped into the second, and has to be positive (or zero)

according to the second law of thermodynamics. So,

∆S =
−q1

T1
+
q2

T2
≥ 0. (6.88)

We can combine the previous two equations to give

−q1

T1
+
q1 −w

T2
≥ 0, (6.89)

or
w

T2
≤ q1

(

1

T2
−
1

T1

)

. (6.90)

It is clear that the engine is only going to perform useful work (i.e., w is only

going to be positive) if T2 < T1. So, the second reservoir has to be colder than the
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first if the heat dumped into the former is to increase the entropy of the Universe

more than the heat extracted from the latter decreases it. It is useful to define

the efficiency η of a heat engine. This is the ratio of the work done per cycle on

the external device to the heat energy absorbed per cycle from the first reservoir.

The efficiency of a perfect heat engine is unity, but we have already shown that

such an engine is impossible. What is the efficiency of a realizable engine? It is

clear from the previous equation that

η ≡ w

q1
≤ 1−

T2

T1
=
T1 − T2

T1
. (6.91)

Note that the efficiency is always less than unity. A real engine must always re-

ject some energy into the second heat reservoir in order to satisfy the second

law of thermodynamics, so less energy is available to do external work, and the

efficiency of the engine is reduced. The equality sign in the above expression cor-

responds to a completely reversible heat engine (i.e., one which is quasi-static).

It is clear that real engines, which are always irreversible to some extent, are

less efficient than reversible engines. Furthermore, all reversible engines which

operate between the two temperatures T1 and T2 must have the same efficiency,

η =
T1 − T2

T1
, (6.92)

irrespective of the way in which they operate.

Let us consider how we might construct one of these reversible heat engines.

Suppose that we have some gas in a cylinder equipped with a frictionless piston.

The gas is not necessarily a perfect gas. Suppose that we also have two heat

reservoirs at temperatures T1 and T2 (where T1 > T2). These reservoirs might

take the form of large water baths. Let us start off with the gas in thermal contact

with the first reservoir. We now pull the piston out very slowly so that heat energy

flows reversibly into the gas from the reservoir. Let us now thermally isolate the

gas and slowly pull out the piston some more. During this adiabatic process the

temperature of the gas falls (since there is no longer any heat flowing into it to

compensate for the work it does on the piston). Let us continue this process until

the temperature of the gas falls to T2. We now place the gas in thermal contact

with the second reservoir and slowly push the piston in. During this isothermal

110



6.9 Heat engines 6 CLASSICAL THERMODYNAMICS

2
T

V ->

p
 -

>

c

a

d

b

T
1

q

q
2

1

Figure 1: An ideal gas Carnot engine.

process heat flows out of the gas into the reservoir. We next thermally isolate

the gas a second time and slowly compress it some more. In this process the

temperature of the gas increases. We stop the compression when the temperature

reaches T1. If we carry out each step properly we can return the gas to its initial

state and then repeat the cycle ad infinitum. We now have a set of reversible

processes by which a quantity of heat is extracted from the first reservoir and

a quantity of heat is dumped into the second. We can best evaluate the work

done by the system during each cycle by plotting out the locus of the gas in a

p-V diagram. The locus takes the form of a closed curve—see Fig. 1. The net

work done per cycle is the “area” contained inside this curve, since d̄W = pdV

[if p is plotted vertically and V horizontally, then pdV is clearly an element of

area under the curve p(V)]. The engine we have just described is called a Carnot

engine, and is the simplest conceivable device capable of converting heat energy

into useful work.

For the specific case of an ideal gas, we can actually calculate the work done

per cycle, and, thereby, verify Eq. (6.92). Consider the isothermal expansion

phase of the gas. For an ideal gas, the internal energy is a function of the temper-

ature alone. The temperature does not change during isothermal expansion, so

the internal energy remains constant, and the net heat absorbed by the gas must
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equal the work it does on the piston. Thus,

q1 =

∫b

a

pdV, (6.93)

where the expansion takes the gas from state a to state b. Since pV = νR T , for

an ideal gas, we have

q1 =

∫b

a

νR T1
dV

V
= νR T1 ln

Vb

Va
. (6.94)

Likewise, during the isothermal compression phase, in which the gas goes from

state c to state d, the net heat rejected to the second reservoir is

q2 = νR T2 ln
Vc

Vd
. (6.95)

Now, during adiabatic expansion or compression

T V γ−1 = constant. (6.96)

It follows that during the adiabatic expansion phase, which takes the gas from

state b to state c,

T1 V
γ−1
b = T2 V

γ−1
c . (6.97)

Likewise, during the adiabatic compression phase, which takes the gas from state

d to state a,

T1 V
γ−1
a = T2 V

γ−1
d . (6.98)

If we take the ratio of the previous two equations we obtain

Vb

Va
=
Vc

Vd
. (6.99)

Hence, the work done by the engine, which we can calculate using the first law

of thermodynamics,

w = q1 − q2, (6.100)

is

w = νR (T1 − T2) ln
Vb

Va
. (6.101)
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Thus, the efficiency of the engine is

η =
w

q1
=
T1 − T2

T1
(6.102)

which, not surprisingly, is exactly the same as Eq. (6.92).

The engine described above is very idealized. Of course, real engines are far

more complicated than this. Nevertheless, the maximum efficiency of an ideal

heat engine places severe constraints on real engines. Conventional power sta-

tions have many different “front ends” (e.g., coal fired furnaces, oil fired furnaces,

nuclear reactors), but their “back ends” are all very similar, and consist of a steam

driven turbine connected to an electric generator. The “front end” heats water ex-

tracted from a local river and turns it into steam, which is then used to drive the

turbine, and, hence, to generate electricity. Finally, the steam is sent through a

heat exchanger so that it can heat up the incoming river water, which means that

the incoming water does not have to be heated so much by the “front end.” At this

stage, some heat is rejected to the environment, usually as clouds of steam es-

caping from the top of cooling towers. We can see that a power station possesses

many of the same features as our idealized heat engine. There is a cycle which

operates between two temperatures. The upper temperature is the temperature

to which the steam is heated by the “front end,” and the lower temperature is

the temperature of the environment into which heat is rejected. Suppose that the

steam is only heated to 100◦ C (or 373◦ K), and the temperature of the environ-

ment is 15◦ C (or 288◦ K). It follows from Eq. (6.91) that the maximum possible

efficiency of the steam cycle is

η =
373− 288

373
' 0.23. (6.103)

So, at least 77% of the heat energy generated by the “front end” goes straight

up the cooling towers! Not be surprisingly, commercial power stations do not

operate with 100◦ C steam. The only way in which the thermodynamic efficiency

of the steam cycle can be raised to an acceptable level is to use very hot steam

(clearly, we cannot refrigerate the environment). Using 400◦ C steam, which is

not uncommon, the maximum efficiency becomes

η =
673− 288

673
' 0.57, (6.104)
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which is more reasonable. In fact, the steam cycles of modern power stations are

so well designed that they come surprisingly close to their maximum thermody-

namic efficiencies.

6.10 Refrigerators

Let us now move on to consider refrigerators. An idealized refrigerator is an

engine which extracts heat from a cold heat reservoir (temperature T2, say) and

rejects it to a somewhat hotter heat reservoir, which is usually the environment

(temperature T1, say). To make this machine work we always have to do some

external work on the engine. For instance, the refrigerator in your home contains

a small electric pump which does work on the freon (or whatever) in the cooling

circuit. We can see that, in fact, a refrigerator is just a heat engine run in reverse.

Hence, we can immediately carry over most of our heat engine analysis. Let q2
be the heat absorbed per cycle from the colder reservoir, q1 the heat rejected per

cycle into the hotter reservoir, and w the external work done per cycle on the

engine. The first law of thermodynamics tells us that

w+ q2 = q1. (6.105)

The second law says that
q1

T1
+

−q2

T2
≥ 0. (6.106)

We can combine these two laws to give

w

T1
≥ q2

(

1

T2
−
1

T1

)

. (6.107)

The most sensible way of defining the efficiency of a refrigerator is as the ratio

of the heat extracted per cycle from the cold reservoir to the work done per cycle

on the engine. With this definition

η =
T2

T1 − T2
. (6.108)

We can see that this efficiency is, in general, greater than unity. In other words,

for one joule of work done on the engine, or pump, more than one joule of
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energy is extracted from whatever it is we are cooling. Clearly, refrigerators

are intrinsically very efficient devices. Domestic refrigerators cool stuff down to

about 4◦ C (277◦ K) and reject heat to the environment at about 15◦ C (288◦ K).

The maximum theoretical efficiency of such devices is

η =
277

288− 277
= 25.2. (6.109)

So, for every joule of electricity we put into a refrigerator we can extract up to 25

joules of heat from its contents.
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7 Applications of statistical thermodynamics

7.1 Introduction

In our study of classical thermodynamics, we concentrated on the application of

statistical physics to macroscopic systems. Somewhat paradoxically, statistical ar-

guments did not figure very prominently in this investigation. In fact, the only

statistical statement we made was that it was extremely unlikely that a macro-

scopic system could violate the second law of thermodynamics. The resolution of

this paradox is, of course, that macroscopic systems contain a very large number

of particles, and their statistical fluctuations are, therefore, negligible. Let us now

apply statistical physics to microscopic systems, such as atoms and molecules. In

this study, the underlying statistical nature of thermodynamics will become far

more apparent.

7.2 Boltzmann distributions

We have gained some understanding of the macroscopic properties of the air

around us. For instance, we know something about its internal energy and spe-

cific heat capacity. How can we obtain some information about the statistical

properties of the molecules which make up air? Consider a specific molecule:

it constantly collides with its immediate neighbour molecules, and occasionally

bounces off the walls of the room. These interactions “inform” it about the macro-

scopic state of the air, such as its temperature, pressure, and volume. The sta-

tistical distribution of the molecule over its own particular microstates must be

consistent with this macrostate. In other words, if we have a large group of such

molecules with similar statistical distributions, then they must be equivalent to

air with the appropriate macroscopic properties. So, it ought to be possible to

calculate the probability distribution of the molecule over its microstates from a

knowledge of these macroscopic properties.

We can think of the interaction of a molecule with the air in a classroom as

analogous to the interaction of a small system A in thermal contact with a heat
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reservoir A ′. The air acts like a heat reservoir because its energy fluctuations

due to any interactions with the molecule are far too small to affect any of its

macroscopic parameters. Let us determine the probability Pr of finding system A

in one particular microstate r of energy Er when it is thermal equilibrium with

the heat reservoir A ′.

As usual, we assume fairly weak interaction between A and A ′, so that the

energies of these two systems are additive. The energy of A is not known at this

stage. In fact, only the total energy of the combined system A(0) = A + A ′ is

known. Suppose that the total energy lies in the range E(0) to E(0) + δE. The

overall energy is constant in time, since A(0) is assumed to be an isolated system,

so

Er + E ′ = E(0), (7.1)

where E ′ denotes the energy of the reservoir A ′. Let Ω ′(E ′) be the number of

microstates accessible to the reservoir when its energy lies in the range E ′ to

E ′ + δE. Clearly, if system A has an energy Er then the reservoir A ′ must have an

energy close to E ′ = E(0) − Er. Hence, since A is in one definite state (i.e., state

r), and the total number of states accessible to A ′ is Ω ′(E(0) − Er), it follows that

the total number of states accessible to the combined system is simply Ω ′(E(0) −

Er). The principle of equal a priori probabilities tells us the the probability of

occurrence of a particular situation is proportional to the number of accessible

microstates. Thus,

Pr = C ′Ω ′(E(0) − Er), (7.2)

where C ′ is a constant of proportionality which is independent of r. This constant

can be determined by the normalization condition
∑

r

Pr = 1, (7.3)

where the sum is over all possible states of system A, irrespective of their energy.

Let us now make use of the fact that system A is far smaller than system A ′.

It follows that Er � E(0), so the slowly varying logarithm of Pr can be Taylor

expanded about E ′ = E(0). Thus,

lnPr = lnC ′ + lnΩ ′(E(0)) −





∂ lnΩ ′

∂E ′





0

Er + · · · . (7.4)

117



7.2 Boltzmann distributions 7 APPLICATIONS OF STATISTICAL THERMODYNAMICS

Note that we must expand lnPr, rather than Pr itself, because the latter function

varies so rapidly with energy that the radius of convergence of its Taylor series is

far too small for the series to be of any practical use. The higher order terms in

Eq. (7.4) can be safely neglected, because Er � E(0). Now the derivative




∂ lnΩ ′

∂E ′





0

≡ β (7.5)

is evaluated at the fixed energy E ′ = E(0), and is, thus, a constant independent of

the energy Er of A. In fact, we know, from Sect. 5, that this derivative is just the

temperature parameter β = (k T)−1 characterizing the heat reservoir A ′. Hence,

Eq. (7.4) becomes

lnPr = lnC ′ + lnΩ ′(E(0)) − βEr, (7.6)

giving

Pr = C exp(−βEr), (7.7)

where C is a constant independent of r. The parameter C is determined by the

normalization condition, which gives

C−1 =
∑

r

exp(−βEr), (7.8)

so that the distribution becomes

Pr =
exp(−βEr)∑
r exp(−βEr)

. (7.9)

This is known as the Boltzmann probability distribution, and is undoubtably the

most famous result in statistical physics.

The Boltzmann distribution often causes confusion. People who are used to the

principle of equal a priori probabilities, which says that all microstates are equally

probable, are understandably surprised when they come across the Boltzmann

distribution which says that high energy microstates are markedly less proba-

ble then low energy states. However, there is no need for any confusion. The

principle of equal a priori probabilities applies to the whole system, whereas the

Boltzmann distribution only applies to a small part of the system. The two results

are perfectly consistent. If the small system is in a microstate with a compara-

tively high energy Er then the rest of the system (i.e., the reservoir) has a slightly
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lower energy E ′ than usual (since the overall energy is fixed). The number of

accessible microstates of the reservoir is a very strongly increasing function of

its energy. It follows that when the small system has a high energy then signifi-

cantly less states than usual are accessible to the reservoir, and so the number of

microstates accessible to the overall system is reduced, and, hence, the configu-

ration is comparatively unlikely. The strong increase in the number of accessible

microstates of the reservoir with increasing E ′ gives rise to the strong (i.e., expo-

nential) decrease in the likelihood of a state r of the small system with increasing

Er. The exponential factor exp(−βEr) is called the Boltzmann factor.

The Boltzmann distribution gives the probability of finding the small system A

in one particular state r of energy Er. The probability P(E) that A has an energy

in the small range between E and E + δE is just the sum of all the probabilities

of the states which lie in this range. However, since each of these states has

approximately the same Boltzmann factor this sum can be written

P(E) = CΩ(E) exp(−βE), (7.10)

where Ω(E) is the number of microstates of A whose energies lie in the appro-

priate range. Suppose that system A is itself a large system, but still very much

smaller than system A ′. For a large system, we expect Ω(E) to be a very rapidly

increasing function of energy, so the probability P(E) is the product of a rapidly

increasing function of E and another rapidly decreasing function (i.e., the Boltz-

mann factor). This gives a sharp maximum of P(E) at some particular value of

the energy. The larger system A, the sharper this maximum becomes. Eventually,

the maximum becomes so sharp that the energy of system A is almost bound to

lie at the most probable energy. As usual, the most probable energy is evaluated

by looking for the maximum of lnP, so

∂ lnP

∂E
=
∂ lnΩ

∂E
− β = 0, (7.11)

giving
∂ lnΩ

∂E
= β. (7.12)

Of course, this corresponds to the situation in which the temperature of A is

the same as that of the reservoir. This is a result which we have seen before
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(see Sect. 5). Note, however, that the Boltzmann distribution is applicable no

matter how small system A is, so it is a far more general result than any we have

previously obtained.

7.3 Paramagnetism

The simplest microscopic system which we can analyze using the Boltzmann dis-

tribution is one which has only two possible states (there would clearly be little

point in analyzing a system with only one possible state). Most elements, and

some compounds, are paramagnetic: i.e., their constituent atoms, or molecules,

possess a permanent magnetic moment due to the presence of one or more un-

paired electrons. Consider a substance whose constituent particles contain only

one unpaired electron. Such particles have spin 1/2, and consequently possess

an intrinsic magnetic moment µ. According to quantum mechanics, the mag-

netic moment of a spin 1/2 particle can point either parallel or antiparallel to an

external magnetic field B. Let us determine the mean magnetic moment µB (in

the direction of B) of the constituent particles of the substance when its abso-

lute temperature is T . We assume, for the sake of simplicity, that each atom (or

molecule) only interacts weakly with its neighbouring atoms. This enables us to

focus attention on a single atom, and treat the remaining atoms as a heat bath at

temperature T .

Our atom can be in one of two possible states: the (+) state in which its spin

points up (i.e., parallel to B), and the (−) state in which its spin points down (i.e.,

antiparallel to B). In the (+) state, the atomic magnetic moment is parallel to the

magnetic field, so that µB = µ. The magnetic energy of the atom is ε+ = −µB. In

the (−) state, the atomic magnetic moment is antiparallel to the magnetic field,

so that µB = −µ. The magnetic energy of the atom is ε− = µB.

According to the Boltzmann distribution, the probability of finding the atom

in the (+) state is

P+ = C exp(−βε+) = C exp(βµB), (7.13)

where C is a constant, and β = (k T)−1. Likewise, the probability of finding the
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atom in the (−) state is

P− = C exp(−βε−) = C exp(−βµB). (7.14)

Clearly, the most probable state is the state with the lowest energy [i.e., the (+)

state]. Thus, the mean magnetic moment points in the direction of the magnetic

field (i.e., the atom is more likely to point parallel to the field than antiparallel).

It is clear that the critical parameter in a paramagnetic system is

y ≡ βµB =
µB

k T
. (7.15)

This parameter measures the ratio of the typical magnetic energy of the atom to

its typical thermal energy. If the thermal energy greatly exceeds the magnetic

energy then y� 1, and the probability that the atomic moment points parallel to

the magnetic field is about the same as the probability that it points antiparallel.

In this situation, we expect the mean atomic moment to be small, so that µB ' 0.
On the other hand, if the magnetic energy greatly exceeds the thermal energy

then y � 1, and the atomic moment is far more likely to point parallel to the

magnetic field than antiparallel. In this situation, we expect µB ' µ.

Let us calculate the mean atomic moment µB. The usual definition of a mean

value gives

µB =
P+ µ+ P− (−µ)

P+ + P−

= µ
exp(βµB) − exp(−βµB)

exp(βµB) + exp(−βµB)
. (7.16)

This can also be written

µB = µ tanh
µB

k T
, (7.17)

where the hyperbolic tangent is defined

tanhy ≡ exp(y) − exp(−y)

exp(y) + exp(−y)
. (7.18)

For small arguments, y� 1,

tanhy ' y−
y3

3
+ · · · , (7.19)
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whereas for large arguments, y� 1,

tanhy ' 1. (7.20)

It follows that at comparatively high temperatures, k T � µB,

µB ' µ2B

k T
, (7.21)

whereas at comparatively low temperatures, k T � µB,

µB ' µ. (7.22)

Suppose that the substance containsN0 atoms (or molecules) per unit volume.

The magnetization is defined as the mean magnetic moment per unit volume, and

is given by

M0 = N0 µB. (7.23)

At high temperatures, k T � µB, the mean magnetic moment, and, hence, the

magnetization, is proportional to the applied magnetic field, so we can write

M0 ' χB, (7.24)

where χ is a constant of proportionality known as the magnetic susceptibility. It is

clear that the magnetic susceptibility of a spin 1/2 paramagnetic substance takes

the form

χ =
N0 µ

2

k T
. (7.25)

The fact that χ ∝ T−1 is known as Curie’s law, because it was discovered exper-

imentally by Pierre Curie at the end of the nineteenth century. At low tempera-

tures, k T � µB,

M0 → N0 µ, (7.26)

so the magnetization becomes independent of the applied field. This corresponds

to the maximum possible magnetization, where all atomic moments are lined up

parallel to the field. The breakdown of the M0 ∝ B law at low temperatures (or

high magnetic fields) is known as saturation.

The above analysis is only valid for paramagnetic substances made up of spin

one-half (J = 1/2) atoms or molecules. However, the analysis can easily be
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Figure 2: The magnetization (vertical axis) versus B/T (horizontal axis) curves for (I) chromium

potassium alum (J = 3/2), (II) iron ammonium alum (J = 5/2), and (III) gadolinium sulphate

(J = 7/2). The solid lines are the theoretical predictions whereas the data points are experimental

measurements. From W.E. Henry, Phys. Rev. 88, 561 (1952).
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generalized to take account of substances whose constituent particles possess

higher spin (i.e., J > 1/2). Figure 2 compares the experimental and theoretical

magnetization versus field-strength curves for three different substances made

up of spin 3/2, spin 5/2, and spin 7/2 particles, showing the excellent agreement

between the two sets of curves. Note that, in all cases, the magnetization is

proportional to the magnetic field-strength at small field-strengths, but saturates

at some constant value as the field-strength increases.

The previous analysis completely neglects any interaction between the spins

of neighbouring atoms or molecules. It turns out that this is a fairly good approx-

imation for paramagnetic substances. However, for ferromagnetic substances, in

which the spins of neighbouring atoms interact very strongly, this approximation

breaks down completely. Thus, the above analysis does not apply to ferromagnetic

substances.

7.4 Mean values

Consider a system in contact with a heat reservoir. The systems in the represen-

tative ensemble are distributed over their accessible states in accordance with the

Boltzmann distribution. Thus, the probability of occurrence of some state r with

energy Er is given by

Pr =
exp(−βEr)∑
r exp(−βEr)

. (7.27)

The mean energy is written

E =

∑
r exp(−βEr)Er∑
r exp(−βEr)

, (7.28)

where the sum is taken over all states of the system, irrespective of their energy.

Note that ∑

r

exp(−βEr)Er = −
∑

r

∂

∂β
exp(−βEr) = −

∂Z

∂β
, (7.29)

where

Z =
∑

r

exp(−βEr). (7.30)
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It follows that

E = −
1

Z

∂Z

∂β
= −

∂ lnZ

∂β
. (7.31)

The quantity Z, which is defined as the sum of the Boltzmann factor over all

states, irrespective of their energy, is called the partition function. We have just

demonstrated that it is fairly easy to work out the mean energy of a system using

its partition function. In fact, as we shall discover, it is easy to calculate virtually

any piece of statistical information using the partition function.

Let us evaluate the variance of the energy. We know that

(∆E)2 = E2 − E
2

(7.32)

(see Sect. 2). Now, according to the Boltzmann distribution,

E2 =

∑
r exp(−βEr)E

2
r∑

r exp(−βEr)
. (7.33)

However,

∑

r

exp(−βEr)E
2
r = −

∂

∂β





∑

r

exp(−βEr)Er



 =

(

−
∂

∂β

)2




∑

r

exp(−βEr)



 .

(7.34)

Hence,

E2 =
1

Z

∂2Z

∂β2
. (7.35)

We can also write

E2 =
∂

∂β

(

1

Z

∂Z

∂β

)

+
1

Z2

(

∂Z

∂β

)2

= −
∂E

∂β
+ E

2
, (7.36)

where use has been made of Eq. (7.31). It follows from Eq. (7.32) that

(∆E)2 = −
∂E

∂β
=
∂2 lnZ

∂β2
. (7.37)

Thus, the variance of the energy can be worked out from the partition function

almost as easily as the mean energy. Since, by definition, a variance can never be

negative, it follows that ∂E/∂β ≤ 0, or, equivalently, ∂E/∂T ≥ 0. Hence, the mean
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energy of a system governed by the Boltzmann distribution always increases with

temperature.

Suppose that the system is characterized by a single external parameter x (such

as its volume). The generalization to the case where there are several external

parameters is obvious. Consider a quasi-static change of the external parameter

from x to x+ dx. In this process, the energy of the system in state r changes by

δEr =
∂Er

∂x
dx. (7.38)

The macroscopic work d̄W done by the system due to this parameter change is

d̄W =

∑
r exp(−βEr)(−∂Er/∂x dx)∑

r exp(−βEr)
. (7.39)

In other words, the work done is minus the average change in internal energy of

the system, where the average is calculated using the Boltzmann distribution. We

can write
∑

r

exp(−βEr)
∂Er

∂x
= −

1

β

∂

∂x





∑

r

exp(−βEr)



 = −
1

β

∂Z

∂x
, (7.40)

which gives

d̄W =
1

βZ

∂Z

∂x
dx =

1

β

∂ lnZ

∂x
dx. (7.41)

We also have the following general expression for the work done by the system

d̄W = Xdx, (7.42)

where

X = −
∂Er

∂x
(7.43)

is the mean generalized force conjugate to x (see Sect. 4). It follows that

X =
1

β

∂ lnZ

∂x
. (7.44)

Suppose that the external parameter is the volume, so x = V . It follows that

d̄W = pdV =
1

β

∂ lnZ

∂V
dV (7.45)
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and

p =
1

β

∂ lnZ

∂V
. (7.46)

Since the partition function is a function of β and V (the energies Er depend

on V), it is clear that the above equation relates the mean pressure p to T (via

β = 1/k T) and V . In other words, the above expression is the equation of state.

Hence, we can work out the pressure, and even the equation of state, using the

partition function.

7.5 Partition functions

It is clear that all important macroscopic quantities associated with a system can

be expressed in terms of its partition function Z. Let us investigate how the

partition function is related to thermodynamical quantities. Recall that Z is a

function of both β and x (where x is the single external parameter). Hence,

Z = Z(β, x), and we can write

d lnZ =
∂ lnZ

∂x
dx+

∂ lnZ

∂β
dβ. (7.47)

Consider a quasi-static change by which x and β change so slowly that the sys-

tem stays close to equilibrium, and, thus, remains distributed according to the

Boltzmann distribution. If follows from Eqs. (7.31) and (7.41) that

d lnZ = β d̄W − Edβ. (7.48)

The last term can be rewritten

d lnZ = β d̄W − d(Eβ) + βdE, (7.49)

giving

d(lnZ+ βE) = β(d̄W + dE) ≡ β d̄Q. (7.50)

The above equation shows that although the heat absorbed by the system d̄Q

is not an exact differential, it becomes one when multiplied by the temperature
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parameter β. This is essentially the second law of thermodynamics. In fact, we

know that

dS =
d̄Q

T
. (7.51)

Hence,

S ≡ k (lnZ+ βE). (7.52)

This expression enables us to calculate the entropy of a system from its partition

function.

Suppose that we are dealing with a system A(0) consisting of two systems A

and A ′ which only interact weakly with one another. Let each state of A be

denoted by an index r and have a corresponding energy Er. Likewise, let each

state of A ′ be denoted by an index s and have a corresponding energy E ′
s. A state

of the combined system A(0) is then denoted by two indices r and s. Since A and

A ′ only interact weakly their energies are additive, and the energy of state rs is

E(0)
rs = Er + E ′

s. (7.53)

By definition, the partition function of A(0) takes the form

Z(0) =
∑

r,s

exp[−βE(0)
rs ]

=
∑

r,s

exp(−β [Er + E ′
s])

=
∑

r,s

exp(−βEr) exp(−βE ′
s)

=





∑

r

exp(−βEr)









∑

s

exp(−βE ′
s)



 . (7.54)

Hence,

Z(0) = ZZ ′, (7.55)

giving

lnZ(0) = lnZ+ lnZ ′, (7.56)

where Z and Z ′ are the partition functions of A and A ′, respectively. It follows

from Eq. (7.31) that the mean energies of A(0), A, and A ′ are related by

E
(0)

= E+ E
′
. (7.57)
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It also follows from Eq. (7.52) that the respective entropies of these systems are

related via

S(0) = S+ S ′. (7.58)

Hence, the partition function tells us that the extensive thermodynamic functions

of two weakly interacting systems are simply additive.

It is clear that we can perform statistical thermodynamical calculations using

the partition function Z instead of the more direct approach in which we use the

density of states Ω. The former approach is advantageous because the partition

function is an unrestricted sum of Boltzmann factors over all accessible states,

irrespective of their energy, whereas the density of states is a restricted sum over

all states whose energies lie in some narrow range. In general, it is far easier to

perform an unrestricted sum than a restricted sum. Thus, it is generally easier to

derive statistical thermodynamical results using Z rather thanΩ, althoughΩ has

a far more direct physical significance than Z.

7.6 Ideal monatomic gases

Let us now practice calculating thermodynamic relations using the partition func-

tion by considering an example with which we are already quite familiar: i.e.,

an ideal monatomic gas. Consider a gas consisting of N identical monatomic

molecules of mass m enclosed in a container of volume V . Let us denote the po-

sition and momentum vectors of the ith molecule by ri and pi, respectively. Since

the gas is ideal, there are no interatomic forces, and the total energy is simply the

sum of the individual kinetic energies of the molecules:

E =

N∑

i=1

p 2
i

2m
, (7.59)

where p 2
i = pi ·pi.

Let us treat the problem classically. In this approach, we divide up phase-space

into cells of equal volume h f
0 . Here, f is the number of degrees of freedom, and h0

is a small constant with dimensions of angular momentum which parameterizes
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the precision to which the positions and momenta of molecules are determined

(see Sect. 3.2). Each cell in phase-space corresponds to a different state. The

partition function is the sum of the Boltzmann factor exp(−βEr) over all possible

states, where Er is the energy of state r. Classically, we can approximate the

summation over cells in phase-space as an integration over all phase-space. Thus,

Z =

∫

· · ·
∫

exp(−βE)
d3r1 · · ·d3rN d3p1 · · ·d3pN

h 3N
0

, (7.60)

where 3N is the number of degrees of freedom of a monatomic gas containing N

molecules. Making use of Eq. (7.59), the above expression reduces to

Z =
VN

h 3N
0

∫

· · ·
∫

exp[−(β/2m)p 2
1 ]d3p1 · · · exp[−(β/2m)p 2

N]d3pN. (7.61)

Note that the integral over the coordinates of a given molecule simply yields the

volume of the container, V , since the energy E is independent of the locations

of the molecules in an ideal gas. There are N such integrals, so we obtain the

factor VN in the above expression. Note, also, that each of the integrals over

the molecular momenta in Eq. (7.61) are identical: they differ only by irrelevant

dummy variables of integration. It follows that the partition function Z of the gas

is made up of the product of N identical factors: i.e.,

Z = ζN, (7.62)

where

ζ =
V

h 3
0

∫

exp[−(β/2m)p2]d3p (7.63)

is the partition function for a single molecule. Of course, this result is obvious,

since we have already shown that the partition function for a system made up

of a number of weakly interacting subsystems is just the product of the partition

functions of the subsystems (see Sect. 7.5).

The integral in Eq. (7.63) is easily evaluated:
∫

exp[−(β/2m)p2]d3p =

∫∞

−∞

exp[−(β/2m)p 2
x ]dpx

∫∞

−∞

exp[−(β/2m)p 2
y ]dpy

×
∫∞

−∞

exp[−(β/2m)p 2
z ]dpz
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=





√

√

√

√

2 πm

β





3

, (7.64)

where use has been made of Eq. (2.79). Thus,

ζ = V





2 πm

h 2
0 β





3/2

, (7.65)

and

lnZ = N ln ζ = N



lnV −
3

2
lnβ+

3

2
ln





2 πm

h 2
0







 . (7.66)

The expression for the mean pressure (7.46) yields

p =
1

β

∂ lnZ

∂V
=
1

β

N

V
, (7.67)

which reduces to the ideal gas equation of state

pV = NkT = νR T, (7.68)

where use has been made of N = νNA and R = NA k. According to Eq. (7.31),

the mean energy of the gas is given by

E = −
∂ lnZ

∂β
=
3

2

N

β
= ν

3

2
R T. (7.69)

Note that the internal energy is a function of temperature alone, with no depen-

dence on volume. The molar heat capacity at constant volume of the gas is given

by

cV =
1

ν





∂E

∂T





V

=
3

2
R, (7.70)

so the mean energy can be written

E = ν cV T. (7.71)

We have seen all of the above results before. Let us now use the partition

function to calculate a new result. The entropy of the gas can be calculated quite

simply from the expression

S = k (lnZ+ βE). (7.72)
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Thus,

S = νR



lnV −
3

2
lnβ+

3

2
ln





2 πm

h 2
0



 +
3

2



 , (7.73)

or

S = νR

[

lnV +
3

2
ln T + σ

]

, (7.74)

where

σ =
3

2
ln





2 πmk

h 2
0



 +
3

2
. (7.75)

The above expression for the entropy of an ideal gas is certainly new. Unfortu-

nately, it is also quite obviously incorrect!

7.7 Gibb’s paradox

What has gone wrong? First of all, let us be clear why Eq. (7.74) is incorrect.

We can see that S → −∞ as T → 0, which contradicts the third law of ther-

modynamics. However, this is not a problem. Equation (7.74) was derived using

classical physics, which breaks down at low temperatures. Thus, we would not

expect this equation to give a sensible answer close to the absolute zero of tem-

perature.

Equation (7.74) is wrong because it implies that the entropy does not behave

properly as an extensive quantity. Thermodynamic quantities can be divided into

two groups, extensive and intensive. Extensive quantities increase by a factor α

when the size of the system under consideration is increased by the same fac-

tor. Intensive quantities stay the same. Energy and volume are typical extensive

quantities. Pressure and temperature are typical intensive quantities. Entropy is

very definitely an extensive quantity. We have shown [see Eq. (7.58)] that the

entropies of two weakly interacting systems are additive. Thus, if we double the

size of a system we expect the entropy to double as well. Suppose that we have a

system of volume V containing ν moles of ideal gas at temperature T . Doubling

the size of the system is like joining two identical systems together to form a new
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system of volume 2V containing 2 ν moles of gas at temperature T . Let

S = νR

[

lnV +
3

2
ln T + σ

]

(7.76)

denote the entropy of the original system, and let

S ′ = 2 νR

[

ln 2V +
3

2
ln T + σ

]

(7.77)

denote the entropy of the double-sized system. Clearly, if entropy is an extensive

quantity (which it is!) then we should have

S ′ = 2 S. (7.78)

But, in fact, we find that

S ′ − 2 S = 2 νR ln 2. (7.79)

So, the entropy of the double-sized system is more than double the entropy of the

original system.

Where does this extra entropy come from? Well, let us consider a little more

carefully how we might go about doubling the size of our system. Suppose that

we put another identical system adjacent to it, and separate the two systems by a

partition. Let us now suddenly remove the partition. If entropy is a properly ex-

tensive quantity then the entropy of the overall system should be the same before

and after the partition is removed. It is certainly the case that the energy (another

extensive quantity) of the overall system stays the same. However, according to

Eq. (7.79), the overall entropy of the system increases by 2 νR ln 2 after the par-

tition is removed. Suppose, now, that the second system is identical to the first

system in all respects except that its molecules are in some way slightly different

to the molecules in the first system, so that the two sets of molecules are distin-

guishable. In this case, we would certainly expect an overall increase in entropy

when the partition is removed. Before the partition is removed, it separates type

1 molecules from type 2 molecules. After the partition is removed, molecules of

both types become jumbled together. This is clearly an irreversible process. We

cannot imagine the molecules spontaneously sorting themselves out again. The

increase in entropy associated with this jumbling is called entropy of mixing, and
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is easily calculated. We know that the number of accessible states of an ideal

gas varies with volume like Ω ∝ VN. The volume accessible to type 1 molecules

clearly doubles after the partition is removed, as does the volume accessible to

type 2 molecules. Using the fundamental formula S = k lnΩ, the increase in

entropy due to mixing is given by

S = 2 k ln
Ωf

Ωi

= 2Nk ln
Vf

Vi
= 2 νR ln 2. (7.80)

It is clear that the additional entropy 2 νR ln 2, which appears when we dou-

ble the size of an ideal gas system by joining together two identical systems, is

entropy of mixing of the molecules contained in the original systems. But, if the

molecules in these two systems are indistinguishable, why should there be any

entropy of mixing? Well, clearly, there is no entropy of mixing in this case. At this

point, we can begin to understand what has gone wrong in our calculation. We

have calculated the partition function assuming that all of the molecules in our

system have the same mass and temperature, but we have never explicitly taken

into account the fact that we consider the molecules to be indistinguishable. In

other words, we have been treating the molecules in our ideal gas as if each car-

ried a little license plate, or a social security number, so that we could always tell

one from another. In quantum mechanics, which is what we really should be us-

ing to study microscopic phenomena, the essential indistinguishability of atoms

and molecules is hard-wired into the theory at a very low level. Our problem is

that we have been taking the classical approach a little too seriously. It is plainly

silly to pretend that we can distinguish molecules in a statistical problem, where

we do not closely follow the motions of individual particles. A paradox arises

if we try to treat molecules as if they were distinguishable. This is called Gibb’s

paradox, after the American physicist Josiah Gibbs who first discussed it. The res-

olution of Gibb’s paradox is quite simple: treat all molecules of the same species

as if they were indistinguishable.

In our previous calculation of the ideal gas partition function, we inadvertently

treated each of the N molecules in the gas as distinguishable. Because of this, we

overcounted the number of states of the system. Since the N! possible permu-

tations of the molecules amongst themselves do not lead to physically different
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situations, and, therefore, cannot be counted as separate states, the number of

actual states of the system is a factor N! less than what we initially thought. We

can easily correct our partition function by simply dividing by this factor, so that

Z =
ζN

N!
. (7.81)

This gives

lnZ = N ln ζ− lnN!, (7.82)

or

lnZ = N ln ζ−N lnN+N, (7.83)

using Stirling’s approximation. Note that our new version of lnZ differs from

our previous version by an additive term involving the number of particles in

the system. This explains why our calculations of the mean pressure and mean

energy, which depend on partial derivatives of lnZ with respect to the volume

and the temperature parameter β, respectively, came out all right. However, our

expression for the entropy S is modified by this additive term. The new expression

is

S = νR



lnV −
3

2
lnβ+

3

2
ln





2 πmk

h 2
0



 +
3

2



 + k (−N lnN+N). (7.84)

This gives

S = νR

[

ln
V

N
+
3

2
ln T + σ0

]

(7.85)

where

σ0 =
3

2
ln





2 πmk

h 2
0



 +
5

2
. (7.86)

It is clear that the entropy behaves properly as an extensive quantity in the above

expression: i.e., it is multiplied by a factor α when ν, V , and N are multiplied by

the same factor.

7.8 The equipartition theorem

The internal energy of a monatomic ideal gas containingN particles is (3/2)NkT .

This means that each particle possess, on average, (3/2) k T units of energy. Mon-
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atomic particles have only three translational degrees of freedom, corresponding

to their motion in three dimensions. They possess no internal rotational or vi-

brational degrees of freedom. Thus, the mean energy per degree of freedom in a

monatomic ideal gas is (1/2) k T . In fact, this is a special case of a rather general

result. Let us now try to prove this.

Suppose that the energy of a system is determined by some f generalized co-

ordinates qk and corresponding f generalized momenta pk, so that

E = E(q1, · · · , qf, p1, · · · , pf). (7.87)

Suppose further that:

1. The total energy splits additively into the form

E = εi(pi) + E ′(q1, · · · , pf), (7.88)

where εi involves only one variable pi, and the remaining part E ′ does not

depend on pi.

2. The function εi is quadratic in pi, so that

εi(pi) = bp 2
i , (7.89)

where b is a constant.

The most common situation in which the above assumptions are valid is where pi
is a momentum. This is because the kinetic energy is usually a quadratic function

of each momentum component, whereas the potential energy does not involve

the momenta at all. However, if a coordinate qi were to satisfy assumptions 1

and 2 then the theorem we are about to establish would hold just as well.

What is the mean value of εi in thermal equilibrium if conditions 1 and 2 are

satisfied? If the system is in equilibrium at absolute temperature T ≡ (kβ)−1

then it is distributed according to the Boltzmann distribution. In the classical

approximation, the mean value of εi is expressed in terms of integrals over all

phase-space:

εi =

∫∞

−∞ exp[−βE(q1, · · · , pf)] εi dq1 · · ·dpf∫∞

−∞ exp[−βE(q1, · · · , pf)]dq1 · · ·dpf
. (7.90)
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Condition 1 gives

εi =

∫∞

−∞ exp[−β (εi + E
′)] εi dq1 · · ·dpf∫∞

−∞ exp[−β (εi + E ′)]dq1 · · ·dpf

=

∫∞

−∞ exp(−βεi) εi dpi
∫∞

−∞ exp(−βE ′)dq1 · · ·dpf∫∞

−∞ exp(−βεi)dpi
∫∞

−∞ exp(−βE ′)dq1 · · ·dpf
, (7.91)

where use has been made of the multiplicative property of the exponential func-

tion, and where the last integrals in both the numerator and denominator extend

over all variables qk and pk except pi. These integrals are equal and, thus, cancel.

Hence,

εi =

∫∞

−∞ exp(−βεi) εi dpi∫∞

−∞ exp(−βεi)dpi
. (7.92)

This expression can be simplified further since

∫∞

−∞

exp(−βεi) εi dpi ≡ −
∂

∂β





∫∞

−∞

exp(−βεi)dpi



 , (7.93)

so

εi = −
∂

∂β
ln





∫∞

−∞

exp(−βεi)dpi



 . (7.94)

According to condition 2,
∫∞

−∞

exp(−βεi)dpi =

∫∞

−∞

exp(−βbp 2
i )dpi =

1√
β

∫∞

−∞

exp(−by2)dy, (7.95)

where y =
√
βpi. Thus,

ln

∫∞

−∞

exp(−βεi)dpi = −
1

2
lnβ+ ln

∫∞

−∞

exp(−by2)dy. (7.96)

Note that the integral on the right-hand side does not depend on β at all. It

follows from Eq. (7.94) that

εi = −
∂

∂β

(

−
1

2
lnβ

)

=
1

2β
, (7.97)
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giving

εi =
1

2
k T. (7.98)

This is the famous equipartition theorem of classical physics. It states that the

mean value of every independent quadratic term in the energy is equal to (1/2) k T .

If all terms in the energy are quadratic then the mean energy is spread equally

over all degrees of freedom (hence the name “equipartition”).

7.9 Harmonic oscillators

Our proof of the equipartition theorem depends crucially on the classical approx-

imation. To see how quantum effects modify this result, let us examine a par-

ticularly simple system which we know how to analyze using both classical and

quantum physics: i.e., a simple harmonic oscillator. Consider a one-dimensional

harmonic oscillator in equilibrium with a heat reservoir at temperature T . The

energy of the oscillator is given by

E =
p2

2m
+
1

2
κ x2, (7.99)

where the first term on the right-hand side is the kinetic energy, involving the

momentum p and massm, and the second term is the potential energy, involving

the displacement x and the force constant κ. Each of these terms is quadratic

in the respective variable. So, in the classical approximation the equipartition

theorem yields:

p2

2m
=

1

2
k T, (7.100)

1

2
κ x2 =

1

2
k T. (7.101)

That is, the mean kinetic energy of the oscillator is equal to the mean potential

energy which equals (1/2) k T . It follows that the mean total energy is

E =
1

2
k T +

1

2
k T = k T. (7.102)
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According to quantum mechanics, the energy levels of a harmonic oscillator

are equally spaced and satisfy

En = (n+ 1/2) h̄ω, (7.103)

where n is a non-negative integer, and

ω =

√

κ

m
. (7.104)

The partition function for such an oscillator is given by

Z =

∞∑

n=0

exp(−βEn) = exp[−(1/2)β h̄ω]

∞∑

n=0

exp(−nβ h̄ω). (7.105)

Now,

∞∑

n=0

exp(−nβ h̄ω) = 1+ exp(−β h̄ω) + exp(−2β h̄ω) + · · · (7.106)

is simply the sum of an infinite geometric series, and can be evaluated immedi-

ately,
∞∑

n=0

exp(−nβ h̄ω) =
1

1− exp(−β h̄ω)
. (7.107)

Thus, the partition function takes the form

Z =
exp[−(1/2)β h̄ω]

1− exp(−β h̄ω)
, (7.108)

and

lnZ = −
1

2
β h̄ω− ln[1− exp(−β h̄ω)] (7.109)

The mean energy of the oscillator is given by [see Eq. (7.31)]

E = −
∂

∂β
lnZ = −



−
1

2
h̄ω−

exp(−β h̄ω) h̄ω

1− exp(−β h̄ω)



 , (7.110)

or

E = h̄ω





1

2
+

1

exp(β h̄ω) − 1



 . (7.111)
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Consider the limit

β h̄ω =
h̄ω

k T
� 1, (7.112)

in which the thermal energy k T is large compared to the separation h̄ω between

the energy levels. In this limit,

exp(β h̄ω) ' 1+ β h̄ω, (7.113)

so

E ' h̄ω

[

1

2
+

1

β h̄ω

]

' h̄ω

[

1

β h̄ω

]

, (7.114)

giving

E ' 1

β
= k T. (7.115)

Thus, the classical result (7.102) holds whenever the thermal energy greatly ex-

ceeds the typical spacing between quantum energy levels.

Consider the limit

β h̄ω =
h̄ω

k T
� 1, (7.116)

in which the thermal energy is small compared to the separation between the

energy levels. In this limit,

exp(β h̄ω) � 1, (7.117)

and so

E ' h̄ω [1/2+ exp(−β h̄ω)] ' 1

2
h̄ω. (7.118)

Thus, if the thermal energy is much less than the spacing between quantum states

then the mean energy approaches that of the ground-state (the so-called zero

point energy). Clearly, the equipartition theorem is only valid in the former limit,

where k T � h̄ω, and the oscillator possess sufficient thermal energy to explore

many of its possible quantum states.

7.10 Specific heats

We have discussed the internal energies and entropies of substances (mostly ideal

gases) at some length. Unfortunately, these quantities cannot be directly mea-
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sured. Instead, they must be inferred from other information. The thermody-

namic property of substances which is the easiest to measure is, of course, the

heat capacity, or specific heat. In fact, once the variation of the specific heat

with temperature is known, both the internal energy and entropy can be easily

reconstructed via

E(T, V) = ν

∫ T

0

cV(T, V)dT + E(0, V), (7.119)

S(T, V) = ν

∫ T

0

cV(T, V)

T
dT. (7.120)

Here, use has been made of dS = d̄Q/T , and the third law of thermodynamics.

Clearly, the optimum way of verifying the results of statistical thermodynamics

is to compare the theoretically predicted heat capacities with the experimentally

measured values.

Classical physics, in the guise of the equipartition theorem, says that each

independent degree of freedom associated with a quadratic term in the energy

possesses an average energy (1/2) k T in thermal equilibrium at temperature T .

Consider a substance made up of N molecules. Every molecular degree of free-

dom contributes (1/2)NkT , or (1/2)νR T , to the mean energy of the substance

(with the tacit proviso that each degree of freedom is associated with a quadratic

term in the energy). Thus, the contribution to the molar heat capacity at constant

volume (we wish to avoid the complications associated with any external work

done on the substance) is

1

ν





∂E

∂T





V

=
1

ν

∂[(1/2)νR T ]

∂T
=
1

2
R, (7.121)

per molecular degree of freedom. The total classical heat capacity is therefore

cV =
g

2
R, (7.122)

where g is the number of molecular degrees of freedom. Since large compli-

cated molecules clearly have very many more degrees of freedom than small

simple molecules, the above formula predicts that the molar heat capacities of

substances made up of the former type of molecules should greatly exceed those
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of substances made up of the latter. In fact, the experimental heat capacities

of substances containing complicated molecules are generally greater than those

of substances containing simple molecules, but by nowhere near the large fac-

tor predicted by Eq. (7.122). This equation also implies that heat capacities are

temperature independent. In fact, this is not the case for most substances. Ex-

perimental heat capacities generally increase with increasing temperature. These

two experimental facts pose severe problems for classical physics. Incidentally,

these problems were fully appreciated as far back as 1850. Stories that physi-

cists at the end of the nineteenth century thought that classical physics explained

absolutely everything are largely apocryphal.

The equipartition theorem (and the whole classical approximation) is only

valid when the typical thermal energy k T greatly exceeds the spacing between

quantum energy levels. Suppose that the temperature is sufficiently low that

this condition is not satisfied for one particular molecular degree of freedom. In

fact, suppose that k T is much less than the spacing between the energy levels.

According to Sect. 7.9, in this situation the degree of freedom only contributes the

ground-state energy, E0, say, to the mean energy of the molecule. The ground-

state energy can be a quite complicated function of the internal properties of

the molecule, but is certainly not a function of the temperature, since this is a

collective property of all molecules. It follows that the contribution to the molar

heat capacity is
1

ν





∂[NE0]

∂T





V

= 0. (7.123)

Thus, if k T is much less than the spacing between the energy levels then the de-

gree of freedom contributes nothing at all to the molar heat capacity. We say that

this particular degree of freedom is frozen out. Clearly, at very low temperatures

just about all degrees of freedom are frozen out. As the temperature is gradually

increased, degrees of freedom successively “kick in,” and eventually contribute

their full (1/2)R to the molar heat capacity, as k T approaches, and then greatly

exceeds, the spacing between their quantum energy levels. We can use these

simple ideas to explain the behaviours of most experimental heat capacities.

To make further progress, we need to estimate the typical spacing between

the quantum energy levels associated with various degrees of freedom. We can
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Radiation type Frequency (Hz) Trad(◦K)

Radio < 109 < 0.05

Microwave 109 – 1011 0.05 – 5

Infrared 1011 – 1014 5 – 5000

Visible 5× 1014 2× 104

Ultraviolet 1015 – 1017 5× 104 – 5× 106

X-ray 1017 – 1020 5× 106 – 5× 109

γ-ray > 1020 > 5× 109

Table 3: Effective “temperatures” of various types of electromagnetic radiation

do this by observing the frequency of the electromagnetic radiation emitted and

absorbed during transitions between these energy levels. If the typical spacing

between energy levels is ∆E then transitions between the various levels are asso-

ciated with photons of frequency ν, where hν = ∆E. We can define an effective

temperature of the radiation via hν = k Trad. If T � Trad then k T � ∆E, and

the degree of freedom makes its full contribution to the heat capacity. On the

other hand, if T � Trad then k T � ∆E, and the degree of freedom is frozen

out. Table 3 lists the “temperatures” of various different types of radiation. It is

clear that degrees of freedom which give rise to emission or absorption of radio

or microwave radiation contribute their full (1/2)R to the molar heat capacity at

room temperature. Degrees of freedom which give rise to emission or absorption

in the visible, ultraviolet, X-ray, or γ-ray regions of the electromagnetic spectrum

are frozen out at room temperature. Degrees of freedom which emit or absorb

infrared radiation are on the border line.

7.11 Specific heats of gases

Let us now investigate the specific heats of gases. Consider, first of all, trans-

lational degrees of freedom. Every molecule in a gas is free to move in three

dimensions. If one particular molecule has massm and momentum p = m v then

its kinetic energy of translation is

K =
1

2m
(p 2
x + p 2

y + p 2
z ). (7.124)
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The kinetic energy of other molecules does not involve the momentum p of

this particular molecule. Moreover, the potential energy of interaction between

molecules depends only on their position coordinates, and, thus, certainly does

not involve p. Any internal rotational, vibrational, electronic, or nuclear degrees

of freedom of the molecule also do not involve p. Hence, the essential conditions

of the equipartition theorem are satisfied (at least, in the classical approxima-

tion). Since Eq. (7.124) contains three independent quadratic terms, there are

clearly three degrees of freedom associated with translation (one for each di-

mension of space), so the translational contribution to the molar heat capacity of

gases is

(cV)translation =
3

2
R. (7.125)

Suppose that our gas is contained in a cubic enclosure of dimensions L. Ac-

cording to Schrödinger’s equation, the quantized translational energy levels of an

individual molecule are given by

E =
h̄2π2

2mL2

(

n 2
1 + n 2

2 + n 2
3

)

, (7.126)

where n1, n2, and n3 are positive integer quantum numbers. Clearly, the spacing

between the energy levels can be made arbitrarily small by increasing the size of

the enclosure. This implies that translational degrees of freedom can be treated

classically, so that Eq. (7.125) is always valid (except very close to absolute zero).

We conclude that all gases possess a minimum molar heat capacity of (3/2)R due

to the translational degrees of freedom of their constituent molecules.

The electronic degrees of freedom of gas molecules (i.e., the possible config-

urations of electrons orbiting the atomic nuclei) typically give rise to absorption

and emission in the ultraviolet or visible regions of the spectrum. It follows from

Tab. 3 that electronic degrees of freedom are frozen out at room temperature.

Similarly, nuclear degrees of freedom (i.e., the possible configurations of protons

and neutrons in the atomic nuclei) are frozen out because they are associated

with absorption and emission in the X-ray and γ-ray regions of the electromag-

netic spectrum. In fact, the only additional degrees of freedom we need worry

about for gases are rotational and vibrational degrees of freedom. These typically

give rise to absorption lines in the infrared region of the spectrum.
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The rotational kinetic energy of a molecule tumbling in space can be written

K =
1

2
Ixω

2
x +

1

2
Iyω

2
y +

1

2
Izω

2
z , (7.127)

where the x-, y-, and z-axes are the so called principle axes of inertia of the

molecule (these are mutually perpendicular), ωx, ωy, and ωz are the angular

velocities of rotation about these axes, and Ix, Iy, and Iz are the moments of in-

ertia of the molecule about these axes. No other degrees of freedom depend on

the angular velocities of rotation. Since the kinetic energy of rotation is the sum

of three quadratic terms, the rotational contribution to the molar heat capacity

of gases is

(cV)rotation =
3

2
R, (7.128)

according to the equipartition theorem. Note that the typical magnitude of a

molecular moment of inertia ismd2, wherem is the molecular mass, and d is the

typical interatomic spacing in the molecule. A special case arises if the molecule

is linear (e.g. if the molecule is diatomic). In this case, one of the principle axes

lies along the line of centers of the atoms. The moment of inertia about this axis

is of order ma2, where a is a typical nuclear dimension (remember that nearly

all of the mass of an atom resides in the nucleus). Since a ∼ 10−5 d, it follows

that the moment of inertia about the line of centres is minuscule compared to the

moments of inertia about the other two principle axes. In quantum mechanics,

angular momentum is quantized in units of h̄. The energy levels of a rigid rotator

are written

E =
h̄2

2 I
J(J+ 1), (7.129)

where I is the moment of inertia and J is an integer. Note the inverse dependence

of the spacing between energy levels on the moment of inertia. It is clear that for

the case of a linear molecule, the rotational degree of freedom associated with

spinning along the line of centres of the atoms is frozen out at room temperature,

given the very small moment of inertia along this axis, and, hence, the very widely

spaced rotational energy levels.

Classically, the vibrational degrees of freedom of a molecule are studied by

standard normal mode analysis of the molecular structure. Each normal mode
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behaves like an independent harmonic oscillator, and, therefore, contributes R to

the molar specific heat of the gas [(1/2)R from the kinetic energy of vibration and

(1/2)R from the potential energy of vibration]. A molecule containing n atoms

has n − 1 normal modes of vibration. For instance, a diatomic molecule has just

one normal mode (corresponding to periodic stretching of the bond between the

two atoms). Thus, the classical contribution to the specific heat from vibrational

degrees of freedom is

(cV)vibration = (n− 1)R. (7.130)

Figure 3: The infrared vibration-absorption spectrum of H Cl.

So, do any of the rotational and vibrational degrees of freedom actually make

a contribution to the specific heats of gases at room temperature, once quantum

effects are taken into consideration? We can answer this question by examin-

ing just one piece of data. Figure 3 shows the infrared absorption spectrum of

Hydrogen Chloride. The absorption lines correspond to simultaneous transitions

between different vibrational and rotational energy levels. Hence, this is usu-

ally called a vibration-rotation spectrum. The missing line at about 3.47 microns

corresponds to a pure vibrational transition from the ground-state to the first

excited state (pure vibrational transitions are forbidden: H Cl molecules always

have to simultaneously change their rotational energy level if they are to couple

effectively to electromagnetic radiation). The longer wavelength absorption lines
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correspond to vibrational transitions in which there is a simultaneous decrease

in the rotational energy level. Likewise, the shorter wavelength absorption lines

correspond to vibrational transitions in which there is a simultaneous increase in

the rotational energy level. It is clear that the rotational energy levels are more

closely spaced than the vibrational energy levels. The pure vibrational transition

gives rise to absorption at about 3.47 microns, which corresponds to infrared ra-

diation of frequency 8.5 × 1011 hertz with an associated radiation “temperature”

of 4400 degrees kelvin. We conclude that the vibrational degrees of freedom of

H Cl, or any other small molecule, are frozen out at room temperature. The ro-

tational transitions split the vibrational lines by about 0.2 microns. This implies

that pure rotational transitions would be associated with infrared radiation of

frequency 5× 1012 hertz and corresponding radiation “temperature” 260 degrees

kelvin. We conclude that the rotational degrees of freedom of H Cl, or any other

small molecule, are not frozen out at room temperature, and probably contribute

the classical (1/2)R to the molar specific heat. There is one proviso, however.

Linear molecules (like H Cl) effectively only have two rotational degrees of free-

dom (instead of the usual three), because of the very small moment of inertia of

such molecules along the line of centres of the atoms.

We are now in a position to make some predictions regarding the specific heats

of various gases. Monatomic molecules only possess three translational degrees

of freedom, so monatomic gases should have a molar heat capacity (3/2)R =

12.47 joules/degree/mole. The ratio of specific heats γ = cp/cV = (cV + R)/cV
should be 5/3 = 1.667. It can be seen from Tab. 2 that both of these predictions

are borne out pretty well for Helium and Argon. Diatomic molecules possess three

translational degrees of freedom and two rotational degrees of freedom (all other

degrees of freedom are frozen out at room temperature). Thus, diatomic gases

should have a molar heat capacity (5/2)R = 20.8 joules/degree/mole. The ratio

of specific heats should be 7/5 = 1.4. It can be seen from Tab. 2 that these are

pretty accurate predictions for Nitrogen and Oxygen. The freezing out of vibra-

tional degrees of freedom becomes gradually less effective as molecules become

heavier and more complex. This is partly because such molecules are generally

less stable, so the force constant κ is reduced, and partly because the molec-

ular mass is increased. Both these effect reduce the frequency of vibration of
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the molecular normal modes [see Eq. (7.104)], and, hence, the spacing between

vibrational energy levels [see Eq. (7.103)]. This accounts for the obviously non-

classical [i.e., not a multiple of (1/2)R] specific heats of Carbon Dioxide and

Ethane in Tab. 2. In both molecules, vibrational degrees of freedom contribute

to the molar specific heat (but not the full R because the temperature is not high

enough).

Figure 4: The molar heat capacity at constant volume (in units of R) of gaseous H2 versus tempera-

ture.

Figure 4 shows the variation of the molar heat capacity at constant volume

(in units of R) of gaseous hydrogen with temperature. The expected contribution

from the translational degrees of freedom is (3/2)R (there are three translational

degrees of freedom per molecule). The expected contribution at high tempera-

tures from the rotational degrees of freedom is R (there are effectively two ro-

tational degrees of freedom per molecule). Finally, the expected contribution at

high temperatures from the vibrational degrees of freedom is R (there is one vi-

brational degree of freedom per molecule). It can be seen that as the temperature

rises the rotational, and then the vibrational, degrees of freedom eventually make

their full classical contributions to the heat capacity.
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7.12 Specific heats of solids

Consider a simple solid containing N atoms. Now, atoms in solids cannot trans-

late (unlike those in gases), but are free to vibrate about their equilibrium posi-

tions. Such vibrations are called lattice vibrations, and can be thought of as sound

waves propagating through the crystal lattice. Each atom is specified by three

independent position coordinates, and three conjugate momentum coordinates.

Let us only consider small amplitude vibrations. In this case, we can expand the

potential energy of interaction between the atoms to give an expression which

is quadratic in the atomic displacements from their equilibrium positions. It is

always possible to perform a normal mode analysis of the oscillations. In effect,

we can find 3N independent modes of oscillation of the solid. Each mode has

its own particular oscillation frequency, and its own particular pattern of atomic

displacements. Any general oscillation can be written as a linear combination of

these normal modes. Let qi be the (appropriately normalized) amplitude of the

ith normal mode, and pi the momentum conjugate to this coordinate. In normal

mode coordinates, the total energy of the lattice vibrations takes the particularly

simple form

E =
1

2

3N∑

i=1

(p 2
i +ω 2

i q
2
i ), (7.131)

whereωi is the (angular) oscillation frequency of the ith normal mode. It is clear

that in normal mode coordinates, the linearized lattice vibrations are equivalent

to 3N independent harmonic oscillators (of course, each oscillator corresponds

to a different normal mode).

The typical value ofωi is the (angular) frequency of a sound wave propagating

through the lattice. Sound wave frequencies are far lower than the typical vibra-

tion frequencies of gaseous molecules. In the latter case, the mass involved in the

vibration is simply that of the molecule, whereas in the former case the mass in-

volved is that of very many atoms (since lattice vibrations are non-localized). The

strength of interatomic bonds in gaseous molecules is similar to those in solids,

so we can use the estimate ω ∼
√

κ/m (κ is the force constant which measures

the strength of interatomic bonds, and m is the mass involved in the oscillation)

as proof that the typical frequencies of lattice vibrations are very much less than
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the vibration frequencies of simple molecules. It follows from ∆E = h̄ω that

the quantum energy levels of lattice vibrations are far more closely spaced than

the vibrational energy levels of gaseous molecules. Thus, it is likely (and is, in-

deed, the case) that lattice vibrations are not frozen out at room temperature,

but, instead, make their full classical contribution to the molar specific heat of

the solid.

If the lattice vibrations behave classically then, according to the equipartition

theorem, each normal mode of oscillation has an associated mean energy k T

in equilibrium at temperature T [(1/2) k T resides in the kinetic energy of the

oscillation, and (1/2) k T resides in the potential energy]. Thus, the mean internal

energy per mole of the solid is

E = 3Nk T = 3 νR T. (7.132)

It follows that the molar heat capacity at constant volume is

cV =
1

ν





∂E

∂T





V

= 3 R (7.133)

for solids. This gives a value of 24.9 joules/mole/degree. In fact, at room temper-

ature most solids (in particular, metals) have heat capacities which lie remarkably

close to this value. This fact was discovered experimentally by Dulong and Petite

at the beginning of the nineteenth century, and was used to make some of the

first crude estimates of the molecular weights of solids (if we know the molar

heat capacity of a substance then we can easily work out how much of it corre-

sponds to one mole, and by weighing this amount, and then dividing the result by

Avogadro’s number, we can obtain an estimate of the molecular weight). Table 4

lists the experimental molar heat capacities cp at constant pressure for various

solids. The heat capacity at constant volume is somewhat less than the constant

pressure value, but not by much, because solids are fairly incompressible. It can

be seen that Dulong and Petite’s law (i.e., that all solids have a molar heat capaci-

ties close to 24.9 joules/mole/degree) holds pretty well for metals. However, the

law fails badly for diamond. This is not surprising. As is well-known, diamond

is an extremely hard substance, so its intermolecular bonds must be very strong,

suggesting that the force constant κ is large. Diamond is also a fairly low density
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Solid cp Solid cp

Copper 24.5 Aluminium 24.4

Silver 25.5 Tin (white) 26.4

Lead 26.4 Sulphur (rhombic) 22.4

Zinc 25.4 Carbon (diamond) 6.1

Table 4: Values of cp (joules/mole/degree) for some solids at T = 298◦ K. From Reif.

substance, so the mass m involved in lattice vibrations is comparatively small.

Both these facts suggest that the typical lattice vibration frequency of diamond

(ω ∼
√

κ/m) is high. In fact, the spacing between the different vibration energy

levels (which scales like h̄ω) is sufficiently large in diamond for the vibrational

degrees of freedom to be largely frozen out at room temperature. This accounts

for the anomalously low heat capacity of diamond in Tab. 4.

Dulong and Petite’s law is essentially a high temperature limit. The molar

heat capacity cannot remain a constant as the temperature approaches absolute

zero, since, by Eq. (7.120), this would imply S → ∞, which violates the third

law of thermodynamics. We can make a crude model of the behaviour of cV at

low temperatures by assuming that all the normal modes oscillate at the same

frequency, ω, say. This approximation was first employed by Einstein in a paper

published in 1907. According to Eq. (7.131), the solid acts like a set of 3N

independent oscillators which, making use of Einstein’s approximation, all vibrate

at the same frequency. We can use the quantum mechanical result (7.111) for a

single oscillator to write the mean energy of the solid in the form

E = 3N h̄ω





1

2
+

1

exp(β h̄ω) − 1



 . (7.134)

The molar heat capacity is defined

cV =
1

ν





∂E

∂T





V

=
1

ν





∂E

∂β





V

∂β

∂T
= −

1

ν k T 2





∂E

∂β





V

, (7.135)

giving

cV = −
3NA h̄ω

k T 2



−
exp(β h̄ω) h̄ω

[exp(β h̄ω) − 1]2



 , (7.136)
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which reduces to

cV = 3 R

(

θE

T

)2 exp(θE/T)

[exp(θE/T) − 1]2
. (7.137)

Here,

θE =
h̄ω

k
(7.138)

is called the Einstein temperature. If the temperature is sufficiently high that

T � θE then k T � h̄ω, and the above expression reduces to cV = 3 R, after

expansion of the exponential functions. Thus, the law of Dulong and Petite is

recovered for temperatures significantly in excess of the Einstein temperature.

On the other hand, if the temperature is sufficiently low that T � θE then the

exponential factors in Eq. (7.137) become very much larger than unity, giving

cV ∼ 3 R

(

θE

T

)2

exp(−θE/T). (7.139)

So, in this simple model the specific heat approaches zero exponentially as T → 0.

In reality, the specific heats of solids do not approach zero quite as quickly as

suggested by Einstein’s model when T → 0. The experimentally observed low

temperature behaviour is more like cV ∝ T 3 (see Fig. 6). The reason for this

discrepancy is the crude approximation that all normal modes have the same

frequency. In fact, long wavelength modes have lower frequencies than short

wavelength modes, so the former are much harder to freeze out than the lat-

ter (because the spacing between quantum energy levels, h̄ω, is smaller in the

former case). The molar heat capacity does not decrease with temperature as

rapidly as suggested by Einstein’s model because these long wavelength modes

are able to make a significant contribution to the heat capacity even at very low

temperatures. A more realistic model of lattice vibrations was developed by the

Dutch physicist Peter Debye in 1912. In the Debye model, the frequencies of

the normal modes of vibration are estimated by treating the solid as an isotropic

continuous medium. This approach is reasonable because the only modes which

really matter at low temperatures are the long wavelength modes: i.e., those

whose wavelengths greatly exceed the interatomic spacing. It is plausible that

these modes are not particularly sensitive to the discrete nature of the solid: i.e.,

the fact that it is made up of atoms rather than being continuous.
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Consider a sound wave propagating through an isotropic continuous medium.

The disturbance varies with position vector r and time t like exp[−i (k· r −ωt)],

where the wave-vector k and the frequency of oscillation ω satisfy the dispersion

relation for sound waves in an isotropic medium:

ω = k cs. (7.140)

Here, cs is the speed of sound in the medium. Suppose, for the sake of argument,

that the medium is periodic in the x-, y-, and z-directions with periodicity lengths

Lx, Ly, and Lz, respectively. In order to maintain periodicity we need

kx (x+ Lx) = kx x+ 2 πnx, (7.141)

where nx is an integer. There are analogous constraints on ky and kz. It follows

that in a periodic medium the components of the wave-vector are quantized, and

can only take the values

kx =
2π

Lx
nx, (7.142)

ky =
2π

Ly
ny, (7.143)

kz =
2π

Lz
nz, (7.144)

where nx, ny, and nz are all integers. It is assumed that Lx, Ly, and Lz are

macroscopic lengths, so the allowed values of the components of the wave-vector

are very closely spaced. For given values of ky and kz, the number of allowed

values of kx which lie in the range kx to kx + dkx is given by

∆nx =
Lx

2π
dkx. (7.145)

It follows that the number of allowed values of k (i.e., the number of allowed

modes) when kx lies in the range kx to kx+dkx, ky lies in the range ky to ky+dky,

and kz lies in the range kz to kz + dkz, is

ρd3k =

(

Lx

2π
dkx

) (

Ly

2π
dky

) (

Lz

2π
dkz

)

=
V

(2π)3
dkx dky dkz, (7.146)
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where V = LxLyLz is the periodicity volume, and d3k ≡ dkx dky dkz. The quantity

ρ is called the density of modes. Note that this density is independent of k,

and proportional to the periodicity volume. Thus, the density of modes per unit

volume is a constant independent of the magnitude or shape of the periodicity

volume. The density of modes per unit volume when the magnitude of k lies in

the range k to k+dk is given by multiplying the density of modes per unit volume

by the “volume” in k-space of the spherical shell lying between radii k and k+dk.

Thus,

ρk dk =
4πk2 dk

(2π)3
=
k2

2π2
dk. (7.147)

Consider an isotropic continuous medium of volume V . According to the above

relation, the number of normal modes whose frequencies lie between ω and

ω + dω (which is equivalent to the number of modes whose k values lie in the

range ω/cs to ω/cs + dω/cs) is

σc(ω)dω = 3
k2 V

2π2
dk = 3

V

2π2 c 3s
ω2 dω. (7.148)

The factor of 3 comes from the three possible polarizations of sound waves in

solids. For every allowed wavenumber (or frequency) there are two indepen-

dent torsional modes, where the displacement is perpendicular to the direction

of propagation, and one longitudinal mode, where the displacement is parallel to

the direction of propagation. Torsion waves are vaguely analogous to electromag-

netic waves (these also have two independent polarizations). The longitudinal

mode is very similar to the compressional sound wave in gases. Of course, torsion

waves can not propagate in gases because gases have no resistance to deforma-

tion without change of volume.

The Debye approach consists in approximating the actual density of normal

modes σ(ω) by the density in a continuous medium σc(ω), not only at low fre-

quencies (long wavelengths) where these should be nearly the same, but also

at higher frequencies where they may differ substantially. Suppose that we are

dealing with a solid consisting of N atoms. We know that there are only 3N

independent normal modes. It follows that we must cut off the density of states

above some critical frequency, ωD say, otherwise we will have too many modes.
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Thus, in the Debye approximation the density of normal modes takes the form

σD(ω) = σc(ω) for ω < ωD

σD(ω) = 0 for ω > ωD. (7.149)

Here, ωD is the Debye frequency. This critical frequency is chosen such that the

total number of normal modes is 3N, so
∫∞

0

σD(ω)dω =

∫ωD

0

σc(ω)dω = 3N. (7.150)

Substituting Eq. (7.148) into the previous formula yields

3V

2π2 c 3s

∫ωD

0

ω2 dω =
V

2π2 c 3s
ω 3
D = 3N. (7.151)

This implies that

ωD = cs

(

6π2
N

V

)1/3

. (7.152)

Thus, the Debye frequency depends only on the sound velocity in the solid and the

number of atoms per unit volume. The wavelength corresponding to the Debye

frequency is 2π cs/ωD, which is clearly on the order of the interatomic spacing

a ∼ (V/N)1/3. It follows that the cut-off of normal modes whose frequencies

exceed the Debye frequency is equivalent to a cut-off of normal modes whose

wavelengths are less than the interatomic spacing. Of course, it makes physical

sense that such modes should be absent.

Figure 5 compares the actual density of normal modes in diamond with the

density predicted by Debye theory. Not surprisingly, there is not a particularly

strong resemblance between these two curves, since Debye theory is highly ide-

alized. Nevertheless, both curves exhibit sharp cut-offs at high frequencies, and

coincide at low frequencies. Furthermore, the areas under both curves are the

same. As we shall see, this is sufficient to allow Debye theory to correctly account

for the temperature variation of the specific heat of solids at low temperatures.

We can use the quantum mechanical expression for the mean energy of a single

oscillator, Eq. (7.111), to calculate the mean energy of lattice vibrations in the
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Figure 5: The true density of normal modes in diamond compared with the density of normal modes

predicted by Debye theory. From C.B. Walker, Phys. Rev. 103, 547 (1956).

Debye approximation. We obtain

E =

∫∞

0

σD(ω) h̄ω





1

2
+

1

exp(β h̄ω) − 1



 dω. (7.153)

According to Eq. (7.135), the molar heat capacity takes the form

cV =
1

ν k T 2

∫∞

0

σD(ω) h̄ω





exp(β h̄ω) h̄ω

[exp(β h̄ω) − 1]2



 dω. (7.154)

Substituting in Eq. (7.149), we find that

cV =
k

ν

∫ωD

0

exp(β h̄ω) (β h̄ω)2

[exp(β h̄ω) − 1]2
3V

2π2 c 3s
ω2 dω, (7.155)

giving

cV =
3V k

2π2 ν (cs β h̄)3

∫β h̄ωD

0

exp x

(exp x− 1)2
x4 dx, (7.156)

in terms of the dimensionless variable x = β h̄ω. According to Eq. (7.152), the

volume can be written

V = 6 π2N

(

cs

ωD

)3

, (7.157)
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so the heat capacity reduces to

cV = 3R fD(β h̄ωD) = 3 R fD(θD/T), (7.158)

where the Debye function is defined

fD(y) ≡ 3

y3

∫y

0

exp x

(exp x− 1)2
x4 dx. (7.159)

We have also defined the Debye temperature θD as

k θD = h̄ωD. (7.160)

Consider the asymptotic limit in which T � θD. For small y, we can approxi-

mate exp x as 1+ x in the integrand of Eq. (7.159), so that

fD(y) →
3

y3

∫y

0

x2 dx = 1. (7.161)

Thus, if the temperature greatly exceeds the Debye temperature we recover the

law of Dulong and Petite that cV = 3 R. Consider, now, the asymptotic limit in

which T � θD. For large y,

∫y

0

exp x

(exp x− 1)2
x4 dx '

∫∞

0

exp x

(exp x− 1)2
x4 dx =

4π4

15
. (7.162)

The latter integration is standard (if rather obscure), and can be looked up in any

(large) reference book on integration. Thus, in the low temperature limit

fD(y) →
4π4

5

1

y3
. (7.163)

This yields

cV ' 12π4

5
R

(

T

θD

)3

(7.164)

in the limit T � θD: i.e., cV varies with temperature like T 3.

The fact that cV goes like T 3 at low temperatures is quite well verified exper-

imentally, although it is sometimes necessary to go to temperatures as low as
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Solid θD from low temp. θD from sound speed

Na Cl 308 320

K Cl 230 246

Ag 225 216

Zn 308 305

Table 5: Comparison of Debye temperatures (in degrees kelvin) obtained from the low temperature

behaviour of the heat capacity with those calculated from the sound speed. From C. Kittel, Introduc-

tion to solid-state physics, 2nd Ed. (John Wiley & Sons, New York NY, 1956).

0.02 θD to obtain this asymptotic behaviour. Theoretically, θD should be calcu-

lable from Eq. (7.152) in terms of the sound speed in the solid and the molar

volume. Table 5 shows a comparison of Debye temperatures evaluated by this

means with temperatures obtained empirically by fitting the law (7.164) to the

low temperature variation of the heat capacity. It can be seen that there is fairly

good agreement between the theoretical and empirical Debye temperatures. This

suggests that the Debye theory affords a good, thought not perfect, representa-

tion of the behaviour of cV in solids over the entire temperature range.

Figure 6: The molar heat capacity of various solids.

Finally, Fig. 6 shows the actual temperature variation of the molar heat ca-
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pacities of various solids as well as that predicted by Debye’s theory. The pre-

diction of Einstein’s theory is also show for the sake of comparison. Note that

24.9 joules/mole/degree is about 6 calories/gram-atom/degree (the latter are

chemist’s units).

7.13 The Maxwell distribution

Consider a molecule of mass m in a gas which is sufficiently dilute for the inter-

molecular forces to be negligible (i.e., an ideal gas). The energy of the molecule

is written

ε =
p2

2m
+ εint, (7.165)

where p is its momentum vector, and εint is its internal (i.e., non-translational)

energy. The latter energy is due to molecular rotation, vibration, etc. Transla-

tional degrees of freedom can be treated classically to an excellent approxima-

tion, whereas internal degrees of freedom usually require a quantum mechanical

approach. Classically, the probability of finding the molecule in a given internal

state with a position vector in the range r to r + dr, and a momentum vector in

the range p to p+dp, is proportional to the number of cells (of “volume” h0) con-

tained in the corresponding region of phase-space, weighted by the Boltzmann

factor. In fact, since classical phase-space is divided up into uniform cells, the

number of cells is just proportional to the “volume” of the region under consid-

eration. This “volume” is written d3rd3p. Thus, the probability of finding the

molecule in a given internal state s is

Ps(r,p)d3rd3p ∝ exp(−βp2/2m) exp(−βεint
s ) d3rd3p, (7.166)

where Ps is a probability density defined in the usual manner. The probability

P(r,p)d3rd3p of finding the molecule in any internal state with position and mo-

mentum vectors in the specified range is obtained by summing the above expres-

sion over all possible internal states. The sum over exp(−βεint
s ) just contributes

a constant of proportionality (since the internal states do not depend on r or p),

so

P(r,p)d3rd3p ∝ exp(−βp2/2m)d3rd3p. (7.167)

159



7.13 The Maxwell distribution 7 APPLICATIONS OF STATISTICAL THERMODYNAMICS

Of course, we can multiply this probability by the total number of molecules N

in order to obtain the mean number of molecules with position and momentum

vectors in the specified range.

Suppose that we now want to determine f(r, v)d3rd3v: i.e., the mean number

of molecules with positions between r and r + dr, and velocities in the range v

and v + dv. Since v = p/m, it is easily seen that

f(r, v)d3rd3v = C exp(−βmv2/2)d3rd3v, (7.168)

where C is a constant of proportionality. This constant can be determined by the

condition ∫

(r)

∫

(v)

f(r, v)d3rd3v = N : (7.169)

i.e., the sum over molecules with all possible positions and velocities gives the to-

tal number of molecules, N. The integral over the molecular position coordinates

just gives the volume V of the gas, since the Boltzmann factor is independent

of position. The integration over the velocity coordinates can be reduced to the

product of three identical integrals (one for vx, one for vy, and one for vz), so we

have

CV





∫∞

−∞

exp(−βmv 2z /2)dvz





3

= N. (7.170)

Now,

∫∞

−∞

exp(−βmv 2z /2)dvz =

√

√

√

√

2

βm

∫∞

−∞

exp(−y2)dy =

√

√

√

√

2π

βm
, (7.171)

so C = (N/V)(βm/2π)3/2. Thus, the properly normalized distribution function

for molecular velocities is written

f(v)d3rd3v = n

(

m

2πk T

)3/2

exp(−mv2/2 k T)d3rd3v. (7.172)

Here, n = N/V is the number density of the molecules. We have omitted the

variable r in the argument of f, since f clearly does not depend on position. In

other words, the distribution of molecular velocities is uniform in space. This is

hardly surprising, since there is nothing to distinguish one region of space from
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another in our calculation. The above distribution is called the Maxwell velocity

distribution, because it was discovered by James Clark Maxwell in the middle of

the nineteenth century. The average number of molecules per unit volume with

velocities in the range v to v + dv is obviously f(v)d3v.

Let us consider the distribution of a given component of velocity: the z-component,

say. Suppose that g(vz)dvz is the average number of molecules per unit volume

with the z-component of velocity in the range vz to vz + dvz, irrespective of the

values of their other velocity components. It is fairly obvious that this distribution

is obtained from the Maxwell distribution by summing (integrating actually) over

all possible values of vx and vy, with vz in the specified range. Thus,

g(vz)dvz =

∫

(vx)

∫

(vy)

f(v)d3v. (7.173)

This gives

g(vz)dvz = n

(

m

2πk T

)3/2
∫

(vx)

∫

(vy)

exp[−(m/2k T)(v 2x + v 2y + v 2z )]dvx dvy dvz

= n

(

m

2πk T

)3/2

exp(−mv 2z /2 k T)





∫∞

−∞

exp(−mv 2x /2 k T)





2

= n

(

m

2πk T

)3/2

exp(−mv 2z /2 k T)







√

√

√

√

2π k T

m







2

, (7.174)

or

g(vz)dvz = n

(

m

2πk T

)1/2

exp(−mv 2z /2 k T)dvz. (7.175)

Of course, this expression is properly normalized, so that
∫∞

−∞

g(vz)dvz = n. (7.176)

It is clear that each component (since there is nothing special about the z-

component) of the velocity is distributed with a Gaussian probability distribution

(see Sect. 2), centred on a mean value

vz = 0, (7.177)
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with variance

v 2z =
k T

m
. (7.178)

Equation (7.177) implies that each molecule is just as likely to be moving in the

plus z-direction as in the minus z-direction. Equation (7.178) can be rearranged

to give
1

2
mv 2z =

1

2
k T, (7.179)

in accordance with the equipartition theorem.

Note that Eq. (7.172) can be rewritten

f(v)d3v

n
=





g(vx)dvx

n









g(vy)dvy

n









g(vz)dvz

n



 , (7.180)

where g(vx) and g(vy) are defined in an analogous way to g(vz). Thus, the prob-

ability that the velocity lies in the range v to v + dv is just equal to the product

of the probabilities that the velocity components lie in their respective ranges. In

other words, the individual velocity components act like statistically independent

variables.

Suppose that we now want to calculate F(v)dv: i.e., the average number of

molecules per unit volume with a speed v = |v| in the range v to v + dv. It is

obvious that we can obtain this quantity by adding up all molecules with speeds

in this range, irrespective of the direction of their velocities. Thus,

F(v)dv =

∫

f(v)d3v, (7.181)

where the integral extends over all velocities satisfying

v < |v| < v+ dv. (7.182)

This inequality is satisfied by a spherical shell of radius v and thickness dv in

velocity space. Since f(v) only depends on |v|, so f(v) ≡ f(v), the above integral

is just f(v) multiplied by the volume of the spherical shell in velocity space. So,

F(v)dv = 4πf(v) v2 dv, (7.183)
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which gives

F(v)dv = 4πn

(

m

2πk T

)3/2

v2 exp(−mv2/2 k T)dv. (7.184)

This is the famous Maxwell distribution of molecular speeds. Of course, it is prop-

erly normalized, so that ∫∞

0

F(v)dv = n. (7.185)

Note that the Maxwell distribution exhibits a maximum at some non-zero value

of v. The reason for this is quite simple. As v increases, the Boltzmann fac-

tor decreases, but the volume of phase-space available to the molecule (which

is proportional to v2) increases: the net result is a distribution with a non-zero

maximum.

Figure 7: The Maxwell velocity distribution as a function of molecular speed in units of the most

probable speed (vmp) . Also shown are the mean speed (c̄) and the root mean square speed (vrms).

The mean molecular speed is given by

v =
1

n

∫∞

0

F(v) v dv. (7.186)

Thus, we obtain

v = 4π

(

m

2πk T

)3/2
∫∞

0

v3 exp(−mv2/2 k T)dv, (7.187)
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or

v = 4π

(

m

2πk T

)3/2 (2 k T

m

)2 ∫∞

0

y3 exp(−y2)dy. (7.188)

Now ∫∞

0

y3 exp(−y2)dy =
1

2
, (7.189)

so

v =

√

√

√

√

8

π

k T

m
. (7.190)

A similar calculation gives

vrms =
√

v2 =

√

√

√

√

3 k T

m
. (7.191)

However, this result can also be obtained from the equipartition theorem. Since

1

2
mv2 =

1

2
m (v 2x + v 2y + v 2z ) = 3

(

1

2
k T

)

, (7.192)

then Eq. (7.191) follows immediately. It is easily demonstrated that the most

probable molecular speed (i.e., the maximum of the Maxwell distribution func-

tion) is

ṽ =

√

√

√

√

2 k T

m
. (7.193)

The speed of sound in an ideal gas is given by

cs =

√

√

√

√

γp

ρ
, (7.194)

where γ is the ratio of specific heats. This can also be written

cs =

√

√

√

√

γk T

m
, (7.195)

since p = nk T and ρ = nm. It is clear that the various average speeds which we

have just calculated are all of order the sound speed (i.e., a few hundred meters

per second at room temperature). In ordinary air (γ = 1.4) the sound speed is

about 84% of the most probable molecular speed, and about 74% of the mean
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molecular speed. Since sound waves ultimately propagate via molecular motion,

it makes sense that they travel at slightly less than the most probable and mean

molecular speeds.

Figure 7 shows the Maxwell velocity distribution as a function of molecular

speed in units of the most probable speed. Also shown are the mean speed and

the root mean square speed.

It is difficult to directly verify the Maxwell velocity distribution. However,

this distribution can be verified indirectly by measuring the velocity distribution

of atoms exiting from a small hole in an oven. The velocity distribution of the

escaping atoms is closely related to, but slightly different from, the velocity dis-

tribution inside the oven, since high velocity atoms escape more readily than low

velocity atoms. In fact, the predicted velocity distribution of the escaping atoms

varies like v3 exp(−mv2/2 k T), in contrast to the v2 exp(−mv2/2 k T) variation

of the velocity distribution inside the oven. Figure 8 compares the measured and

theoretically predicted velocity distributions of potassium atoms escaping from

an oven at 157◦ C. There is clearly very good agreement between the two.

Figure 8: Comparison of the measured and theoretically predicted velocity distributions of potassium

atoms escaping from an oven at 157◦ C. Here, the measured transit time is directly proportional to

the atomic speed.
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8 Quantum statistics

8.1 Introduction

Previously, we investigated the statistical thermodynamics of ideal gases using a

rather ad hoc combination of classical and quantum mechanics (see Sects. 7.6

and 7.7). In fact, we employed classical mechanics to deal with the translational

degrees of freedom of the constituent particles, and quantum mechanics to deal

with the non-translational degrees of freedom. Let us now discuss ideal gases

from a purely quantum mechanical standpoint. It turns out that this approach

is necessary to deal with either low temperature or high density gases. Further-

more, it also allows us to investigate completely non-classical “gases,” such as

photons or the conduction electrons in a metal.

8.2 Symmetry requirements in quantum mechanics

Consider a gas consisting of N identical, non-interacting, structureless particles

enclosed within a container of volume V . Let Qi denote collectively all the coor-

dinates of the ith particle: i.e., the three Cartesian coordinates which determine

its spatial position, as well as the spin coordinate which determines its internal

state. Let si be an index labeling the possible quantum states of the ith particle:

i.e., each possible value of si corresponds to a specification of the three momen-

tum components of the particle, as well as the direction of its spin orientation.

According to quantum mechanics, the overall state of the system when the ith

particle is in state si, etc., is completely determined by the complex wave-function

Ψs1,···,sN(Q1, Q2, · · · , QN). (8.1)

In particular, the probability of an observation of the system finding the ith par-

ticle with coordinates in the range Qi to Qi + dQi, etc., is simply

|Ψs1,···,sN(Q1, Q2, · · · , QN)|2 dQ1 dQ2 · · · dQN. (8.2)

One of the fundamental postulates of quantum mechanics is the essential in-

distinguishability of particles of the same species. What this means, in practice, is
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that we cannot label particles of the same species: i.e., a proton is just a proton—

we cannot meaningfully talk of proton number 1 and proton number 2, etc. Note

that no such constraint arises in classical mechanics. Thus, in classical mechan-

ics particles of the same species are regarded as being distinguishable, and can,

therefore, be labelled. Of course, the quantum mechanical approach is the correct

one.

Suppose that we interchange the ith and jth particles: i.e.,

Qi ↔ Qj, (8.3)

si ↔ sj. (8.4)

If the particles are truly indistinguishable then nothing has changed: i.e., we have

a particle in quantum state si and a particle in quantum state sj both before and

after the particles are swapped. Thus, the probability of observing the system in

a given state also cannot have changed: i.e.,

|Ψ(· · ·Qi · · ·Qj · · ·)|2 = |Ψ(· · ·Qj · · ·Qi · · ·)|2. (8.5)

Here, we have omitted the subscripts s1, · · · , sN for the sake of clarity. Note that

we cannot conclude that the wave-function Ψ is unaffected when the particles

are swapped, because Ψ cannot be observed experimentally. Only the probability

density |Ψ|2 is observable. Equation (8.5) implies that

Ψ(· · ·Qi · · ·Qj · · ·) = AΨ(· · ·Qj · · ·Qi · · ·), (8.6)

where A is a complex constant of modulus unity: i.e., |A|2 = 1.

Suppose that we interchange the ith and jth particles a second time. Swapping

the ith and jth particles twice leaves the system completely unchanged: i.e., it is

equivalent to doing nothing to the system. Thus, the wave-functions before and

after this process must be identical. It follows from Eq. (8.6) that

A2 = 1. (8.7)

Of course, the only solutions to the above equation are A = ±1.

We conclude, from the above discussion, that the wave-function Ψ is either
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completely symmetric under the interchange of particles, or it is completely anti-

symmetric. In other words, either

Ψ(· · ·Qi · · ·Qj · · ·) = +Ψ(· · ·Qj · · ·Qi · · ·), (8.8)

or

Ψ(· · ·Qi · · ·Qj · · ·) = −Ψ(· · ·Qj · · ·Qi · · ·). (8.9)

In 1940 the Nobel prize winning physicist Wolfgang Pauli demonstrated, via

arguments involving relativistic invariance, that the wave-function associated

with a collection of identical integer-spin (i.e., spin 0, 1, 2, etc.) particles satis-

fies Eq. (8.8), whereas the wave-function associated with a collection of identical

half-integer-spin (i.e., spin 1/2, 3/2, 5/2, etc.) particles satisfies Eq. (8.9). The for-

mer type of particles are known as bosons [after the Indian physicist S.N. Bose,

who first put forward Eq. (8.8) on empirical grounds]. The latter type of particles

are called fermions (after the Italian physicists Enrico Fermi, who first studied the

properties of fermion gases). Common examples of bosons are photons and He4

atoms. Common examples of fermions are protons, neutrons, and electrons.

Consider a gas made up of identical bosons. Equation (8.8) implies that the in-

terchange of any two particles does not lead to a new state of the system. Bosons

must, therefore, be considered as genuinely indistinguishable when enumerating

the different possible states of the gas. Note that Eq. (8.8) imposes no restriction

on how many particles can occupy a given single-particle quantum state s.

Consider a gas made up of identical fermions. Equation (8.9) implies that

the interchange of any two particles does not lead to a new physical state of

the system (since |Ψ|2 is invariant). Hence, fermions must also be considered

genuinely indistinguishable when enumerating the different possible states of the

gas. Consider the special case where particles i and j lie in the same quantum

state. In this case, the act of swapping the two particles is equivalent to leaving

the system unchanged, so

Ψ(· · ·Qi · · ·Qj · · ·) = Ψ(· · ·Qj · · ·Qi · · ·). (8.10)

However, Eq. (8.9) is also applicable, since the two particles are fermions. The

only way in which Eqs. (8.9) and (8.10) can be reconciled is if

Ψ = 0 (8.11)
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wherever particles i and j lie in the same quantum state. This is another way

of saying that it is impossible for any two particles in a gas of fermions to lie in

the same single-particle quantum state. This proposition is known as the Pauli

exclusion principle, since it was first proposed by W. Pauli in 1924 on empirical

grounds.

Consider, for the sake of comparison, a gas made up of identical classical

particles. In this case, the particles must be considered distinguishable when

enumerating the different possible states of the gas. Furthermore, there are no

constraints on how many particles can occupy a given quantum state.

According to the above discussion, there are three different sets of rules which

can be used to enumerate the states of a gas made up of identical particles. For a

boson gas, the particles must be treated as being indistinguishable, and there is no

limit to how many particles can occupy a given quantum state. This set of rules is

called Bose-Einstein statistics, after S.N. Bose and A. Einstein, who first developed

them. For a fermion gas, the particles must be treated as being indistinguishable,

and there can never be more than one particle in any given quantum state. This

set of rules is called Fermi-Dirac statistics, after E. Fermi and P.A.M. Dirac, who

first developed them. Finally, for a classical gas, the particles must be treated as

being distinguishable, and there is no limit to how many particles can occupy a

given quantum state. This set of rules is called Maxwell-Boltzmann statistics, after

J.C. Maxwell and L. Boltzmann, who first developed them.

8.3 An illustrative example

Consider a very simple gas made up of two identical particles. Suppose that

each particle can be in one of three possible quantum states, s = 1, 2, 3. Let us

enumerate the possible states of the whole gas according to Maxwell-Boltzmann,

Bose-Einstein, and Fermi-Dirac statistics, respectively.

For the case of Maxwell-Boltzmann (MB) statistics, the two particles are con-

sidered to be distinguishable. Let us denote them A and B. Furthermore, any

number of particles can occupy the same quantum state. The possible different
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states of the gas are shown in Tab. 6. There are clearly 9 distinct states.

1 2 3

AB · · · · · ·
· · · AB · · ·
· · · · · · AB

A B · · ·
B A · · ·
A · · · B

B · · · A

· · · A B

· · · B A

Table 6: Two particles distributed amongst three states according to Maxwell-Boltzmann statistics.

For the case of Bose-Einstein (BE) statistics, the two particles are considered

to be indistinguishable. Let us denote them both as A. Furthermore, any number

of particles can occupy the same quantum state. The possible different states of

the gas are shown in Tab. 7. There are clearly 6 distinct states.

1 2 3

AA · · · · · ·
· · · AA · · ·
· · · · · · AA

A A · · ·
A · · · A

· · · A A

Table 7: Two particles distributed amongst three states according to Bose-Einstein statistics.

Finally, for the case of Fermi-Dirac (FD) statistics, the two particles are consid-

ered to be indistinguishable. Let us again denote them both as A. Furthermore,

no more than one particle can occupy a given quantum state. The possible dif-

ferent states of the gas are shown in Tab. 8. There are clearly only 3 distinct

states.

It follows, from the above example, that Fermi-Dirac statistics are more restric-

tive (i.e., there are less possible states of the system) than Bose-Einstein statistics,
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1 2 3

A A · · ·
A · · · A

· · · A A

Table 8: Two particles distributed amongst three states according to Fermi-Dirac statistics.

which are, in turn, more restrictive than Maxwell-Boltzmann statistics. Let

ξ ≡ probability that the two particles are found in the same state

probability that the two particles are found in different states
. (8.12)

For the case under investigation,

ξMB = 1/2, (8.13)

ξBE = 1, (8.14)

ξFD = 0. (8.15)

We conclude that in Bose-Einstein statistics there is a greater relative tendency

for particles to cluster in the same state than in classical statistics. On the other

hand, in Fermi-Dirac statistics there is less tendency for particles to cluster in the

same state than in classical statistics.

8.4 Formulation of the statistical problem

Consider a gas consisting of N identical non-interacting particles occupying vol-

ume V and in thermal equilibrium at temperature T . Let us label the possible

quantum states of a single particle by r (or s). Let the energy of a particle in state

r be denoted εr. Let the number of particles in state r be written nr. Finally, let

us label the possible quantum states of the whole gas by R.

The particles are assumed to be non-interacting, so the total energy of the gas

in state R, where there are nr particles in quantum state r, etc., is simply

ER =
∑

r

nr εr, (8.16)
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where the sum extends over all possible quantum states r. Furthermore, since

the total number of particles in the gas is known to be N, we must have

N =
∑

r

nr. (8.17)

In order to calculate the thermodynamic properties of the gas (i.e., its internal

energy or its entropy), it is necessary to calculate its partition function,

Z =
∑

R

e−βER =
∑

R

e−β (n1 ε1+n2 ε2+···). (8.18)

Here, the sum is over all possible states R of the whole gas: i.e., over all the

various possible values of the numbers n1, n2, · · ·.

Now, exp[−β (n1 ε1 + n2 ε2 + · · ·)] is the relative probability of finding the gas

in a particular state in which there are n1 particles in state 1, n2 particles in state

2, etc. Thus, the mean number of particles in quantum state s can be written

n̄s =

∑
R ns exp[−β (n1 ε1 + n2 ε2 + · · ·)]

∑
R exp[−β (n1 ε1 + n2 ε2 + · · ·)] . (8.19)

A comparison of Eqs. (8.18) and (8.19) yields the result

n̄s = −
1

β

∂ lnZ

∂εs
. (8.20)

Here, β ≡ 1/k T .

8.5 Fermi-Dirac statistics

Let us, first of all, consider Fermi-Dirac statistics. According to Eq. (8.19), the

average number of particles in quantum state s can be written

n̄s =

∑
ns
ns e−βns εs

∑(s)
n1,n2,··· e

−β (n1 ε1+n2 ε2+···)
∑

ns
e−βns εs

∑(s)
n1,n2,··· e

−β (n1 ε1+n2 ε2+···)
. (8.21)

Here, we have rearranged the order of summation, using the multiplicative prop-

erties of the exponential function. Note that the first sums in the numerator and
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denominator only involve ns, whereas the last sums omit the particular state s

from consideration (this is indicated by the superscript s on the summation sym-

bol). Of course, the sums in the above expression range over all values of the

numbers n1, n2, · · · such that nr = 0 and 1 for each r, subject to the overall con-

straint that ∑

r

nr = N. (8.22)

Let us introduce the function

Zs(N) =

(s)∑

n1,n2,···
e−β (n1 ε1+n2 ε2+···), (8.23)

which is defined as the partition function forN particles distributed over all quan-

tum states, excluding state s, according to Fermi-Dirac statistics. By explicitly

performing the sum over ns = 0 and 1, the expression (8.21) reduces to

n̄s =
0+ e−βεs Zs(N− 1)

Zs(N) + e−βεs Zs(N− 1)
, (8.24)

which yields

n̄s =
1

[Zs(N)/Zs(N− 1)] eβεs + 1
. (8.25)

In order to make further progress, we must somehow relate Zs(N−1) to Zs(N).

Suppose that ∆N� N. It follows that lnZs(N− ∆N) can be Taylor expanded to

give

lnZs(N− ∆N) ' lnZs(N) −
∂ lnZs

∂N
∆N = lnZs(N) − αs∆N, (8.26)

where

αs ≡
∂ lnZs

∂N
. (8.27)

As always, we Taylor expand the slowly varying function lnZs(N), rather than the

rapidly varying function Zs(N), because the radius of convergence of the latter

Taylor series is too small for the series to be of any practical use. Equation (8.26)

can be rearranged to give

Zs(N− ∆N) = Zs(N) e−αs ∆N. (8.28)
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Now, since Zs(N) is a sum over very many different quantum states, we would

not expect the logarithm of this function to be sensitive to which particular state

s is excluded from consideration. Let us, therefore, introduce the approximation

that αs is independent of s, so that we can write

αs ' α (8.29)

for all s. It follows that the derivative (8.27) can be expressed approximately

in terms of the derivative of the full partition function Z(N) (in which the N

particles are distributed over all quantum states). In fact,

α ' ∂ lnZ

∂N
. (8.30)

Making use of Eq. (8.28), with ∆N = 1, plus the approximation (8.29), the

expression (8.25) reduces to

n̄s =
1

eα+βεs + 1
. (8.31)

This is called the Fermi-Dirac distribution. The parameter α is determined by the

constraint that
∑

r n̄r = N: i.e.,

∑

r

1

eα+βεr + 1
= N. (8.32)

Note that n̄s → 0 if εs becomes sufficiently large. On the other hand, since

the denominator in Eq. (8.31) can never become less than unity, no matter how

small εs becomes, it follows that n̄s ≤ 1. Thus,

0 ≤ n̄s ≤ 1, (8.33)

in accordance with the Pauli exclusion principle.

Equations (8.20) and (8.30) can be integrated to give

lnZ = αN+
∑

r

ln (1+ e−α−βεr), (8.34)

where use has been made of Eq. (8.31).
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8.6 Photon statistics

Up to now, we have assumed that the number of particles N contained in a given

system is a fixed number. This is a reasonable assumption if the particles possess

non-zero mass, since we are not generally considering relativistic systems in this

course. However, this assumption breaks down for the case of photons, which

are zero-mass bosons. In fact, photons enclosed in a container of volume V ,

maintained at temperature T , can readily be absorbed or emitted by the walls.

Thus, for the special case of a gas of photons there is no requirement which limits

the total number of particles.

It follows, from the above discussion, that photons obey a simplified form of

Bose-Einstein statistics in which there is an unspecified total number of particles.

This type of statistics is called photon statistics.

Consider the expression (8.21). For the case of photons, the numbers n1, n2, · · ·
assume all values nr = 0, 1, 2, · · · for each r, without any further restriction. It

follows that the sums
∑(s)

in the numerator and denominator are identical and,

therefore, cancel. Hence, Eq. (8.21) reduces to

n̄s =

∑
ns
ns e−βns εs

∑
ns

e−βns εs
. (8.35)

However, the above expression can be rewritten

n̄s = −
1

β

∂

∂εs





ln
∑

ns

e−βns εs





 . (8.36)

Now, the sum on the right-hand side of the above equation is an infinite geometric

series, which can easily be evaluated. In fact,

∞∑

ns=0

e−βns εs = 1+ e−βεs + e−2βεs + · · · =
1

1− e−βεs
. (8.37)

Thus, Eq. (8.36) gives

n̄s =
1

β

∂

∂εs
ln (1− e−βεs) =

e−βεs

1− e−βεs
, (8.38)
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or

n̄s =
1

eβεs − 1
. (8.39)

This is known as the Planck distribution, after the German physicist Max Planck

who first proposed it in 1900 on purely empirical grounds.

Equation (8.20) can be integrated to give

lnZ = −
∑

r

ln (1− e−βεr), (8.40)

where use has been made of Eq. (8.39).

8.7 Bose-Einstein statistics

Let us now consider Bose-Einstein statistics. The particles in the system are as-

sumed to be massive, so the total number of particles N is a fixed number.

Consider the expression (8.21). For the case of massive bosons, the numbers

n1, n2, · · · assume all values nr = 0, 1, 2, · · · for each r, subject to the constraint

that
∑

r nr = N. Performing explicitly the sum over ns, this expression reduces to

n̄s =
0+ e−βεs Zs(N− 1) + 2 e−2βεs Zs(N− 2) + · · ·
Zs(N) + e−βεs Zs(N− 1) + e−2βεs Zs(N− 2) + · · ·, (8.41)

where Zs(N) is the partition function forN particles distributed over all quantum

states, excluding state s, according to Bose-Einstein statistics [cf., Eq. (8.23)].

Using Eq. (8.28), and the approximation (8.29), the above equation reduces to

n̄s =

∑
s ns e−ns (α+βεs)

∑
s e−ns (α+βεs)

. (8.42)

Note that this expression is identical to (8.35), except that βεs is replaced by α+

βεs. Hence, an analogous calculation to that outlined in the previous subsection

yields

n̄s =
1

eα+βεs − 1
. (8.43)
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This is called the Bose-Einstein distribution. Note that n̄s can become very large in

this distribution. The parameter α is again determined by the constraint on the

total number of particles: i.e.,

∑

r

1

eα+βεr − 1
= N. (8.44)

Equations (8.20) and (8.30) can be integrated to give

lnZ = αN−
∑

r

ln (1− e−α−βεr), (8.45)

where use has been made of Eq. (8.43).

Note that photon statistics correspond to the special case of Bose-Einstein

statistics in which the parameter α takes the value zero, and the constraint (8.44)

does not apply.

8.8 Maxwell-Boltzmann statistics

For the purpose of comparison, it is instructive to consider the purely classical

case of Maxwell-Boltzmann statistics. The partition function is written

Z =
∑

R

e−β (n1 ε1+n2 ε2+···), (8.46)

where the sum is over all distinct states R of the gas, and the particles are treated

as distinguishable. For given values of n1, n2, · · · there are

N!

n1!n2! · · ·
(8.47)

possible ways in which N distinguishable particles can be put into individual

quantum states such that there are n1 particles in state 1, n2 particles in state 2,

etc. Each of these possible arrangements corresponds to a distinct state for the

whole gas. Hence, Eq. (8.46) can be written

Z =
∑

n1,n2,···

N!

n1!n2! · · ·
e−β (n1 ε1+n2 ε2+···), (8.48)
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where the sum is over all values of nr = 0, 1, 2, · · · for each r, subject to the

constraint that ∑

r

nr = N. (8.49)

Now, Eq. (8.48) can be written

Z =
∑

n1,n2,···

N!

n1!n2! · · ·
(e−βε1)n1 (e−βε2)n2 · · · , (8.50)

which, by virtue of Eq. (8.49), is just the result of expanding a polynomial. In

fact,

Z = (e−βε1 + e−βε2 + · · ·)N, (8.51)

or

lnZ = N ln





∑

r

e−βεr



 . (8.52)

Note that the argument of the logarithm is simply the partition function for a

single particle.

Equations (8.20) and (8.52) can be combined to give

n̄s = N
e−βεs

∑
r e−βεr

. (8.53)

This is known as the Maxwell-Boltzmann distribution. It is, of course, just the

result obtained by applying the Boltzmann distribution to a single particle (see

Sect. 7).

8.9 Quantum statistics in the classical limit

The preceding analysis regarding the quantum statistics of ideal gases is sum-

marized in the following statements. The mean number of particles occupying

quantum state s is given by

n̄s =
1

eα+βεs ± 1, (8.54)
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where the upper sign corresponds to Fermi-Dirac statistics and the lower sign

corresponds to Bose-Einstein statistics. The parameter α is determined via

∑

r

n̄r =
∑

r

1

eα+βεr ± 1 = N. (8.55)

Finally, the partition function of the gas is given by

lnZ = αN±
∑

r

ln (1± e−α−βεr). (8.56)

Let us investigate the magnitude of α in some important limiting cases. Con-

sider, first of all, the case of a gas at a given temperature when its concentration is

made sufficiently low: i.e., whenN is made sufficiently small. The relation (8.55)

can only be satisfied if each term in the sum over states is made sufficiently small;

i.e., if n̄r � 1 or exp (α+ βεr) � 1 for all states r.

Consider, next, the case of a gas made up of a fixed number of particles when

its temperature is made sufficiently large: i.e., when β is made sufficiently small.

In the sum in Eq. (8.55), the terms of appreciable magnitude are those for which

βεr � α. Thus, it follows that as β → 0 an increasing number of terms with large

values of εr contribute substantially to this sum. In order to prevent the sum from

exceeding N, the parameter α must become large enough that each term is made

sufficiently small: i.e., it is again necessary that n̄r � 1 or exp (α+ βεr) � 1 for

all states r.

The above discussion suggests that if the concentration of an ideal gas is made

sufficiently low, or the temperature is made sufficiently high, then αmust become

so large that

eα+βεr � 1 (8.57)

for all r. Equivalently, this means that the number of particles occupying each

quantum state must become so small that

n̄r � 1 (8.58)

for all r. It is conventional to refer to the limit of sufficiently low concentration, or

sufficiently high temperature, in which Eqs. (8.57) and Eqs. (8.58) are satisfied,

as the classical limit.
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According to Eqs. (8.54) and (8.57), both the Fermi-Dirac and Bose-Einstein

distributions reduce to

n̄s = e−α−βεs (8.59)

in the classical limit, whereas the constraint (8.55) yields
∑

r

e−α−βεr = N. (8.60)

The above expressions can be combined to give

n̄s = N
e−βεs

∑
r e−βεr

. (8.61)

It follows that in the classical limit of sufficiently low density, or sufficiently high

temperature, the quantum distribution functions, whether Fermi-Dirac or Bose-

Einstein, reduce to the Maxwell-Boltzmann distribution. It is easily demonstrated

that the physical criterion for the validity of the classical approximation is that

the mean separation between particles should be much greater than their mean

de Broglie wavelengths.

Let us now consider the behaviour of the partition function (8.56) in the clas-

sical limit. We can expand the logarithm to give

lnZ = αN±
∑

r

(

±e−α−βεr
)

= αN+N. (8.62)

However, according to Eq. (8.60),

α = − lnN+ ln





∑

r

e−βεr



 . (8.63)

It follows that

lnZ = −N lnN+N+N ln





∑

r

e−βεr



 . (8.64)

Note that this does not equal the partition function ZMB computed in Eq. (8.52)

from Maxwell-Boltzmann statistics: i.e.,

lnZMB = N ln





∑

r

e−βεr



 . (8.65)
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In fact,

lnZ = lnZMB − lnN!, (8.66)

or

Z =
ZMB

N!
, (8.67)

where use has been made of Stirling’s approximation (N! ' N lnN − N), since

N is large. Here, the factor N! simply corresponds to the number of different

permutations of the N particles: permutations which are physically meaningless

when the particles are identical. Recall, that we had to introduce precisely this

factor, in an ad hoc fashion, in Sect. 7.7 in order to avoid the non-physical conse-

quences of the Gibb’s paradox. Clearly, there is no Gibb’s paradox when an ideal

gas is treated properly via quantum mechanics.

In the classical limit, a full quantum mechanical analysis of an ideal gas re-

produces the results obtained in Sects. 7.6 and 7.7, except that the arbitrary

parameter h0 is replaced by Planck’s constant h = 6.61× 10−34 J s.

A gas in the classical limit, where the typical de Broglie wavelength of the

constituent particles is much smaller than the typical inter-particle spacing, is

said to be non-degenerate. In the opposite limit, where the concentration and

temperature are such that the typical de Broglie wavelength becomes comparable

with the typical inter-particle spacing, and the actual Fermi-Dirac or Bose-Einstein

distributions must be employed, the gas is said to be degenerate.

8.10 The Planck radiation law

Let us now consider the application of statistical thermodynamics to electromag-

netic radiation. According to Maxwell’s theory, an electromagnetic wave is a cou-

pled self-sustaining oscillation of electric and magnetic fields which propagates

though a vacuum at the speed of light, c = 3× 108 m s−1. The electric component

of the wave can be written

E = E0 exp[ i (k·r −ωt)], (8.68)

181



8.10 The Planck radiation law 8 QUANTUM STATISTICS

where E0 is a constant, k is the wave-vector which determines the wavelength

and direction of propagation of the wave, and ω is the frequency. The dispersion

relation

ω = k c (8.69)

ensures that the wave propagates at the speed of light. Note that this dispersion

relation is very similar to that of sound waves in solids [see Eq. (7.140)]. Electro-

magnetic waves always propagate in the direction perpendicular to the coupled

electric and magnetic fields (i.e., electromagnetic waves are transverse waves).

This means that k ·E0 = 0. Thus, once k is specified, there are only two pos-

sible independent directions for the electric field. These correspond to the two

independent polarizations of electromagnetic waves.

Consider an enclosure whose walls are maintained at fixed temperature T .

What is the nature of the steady-state electromagnetic radiation inside the en-

closure? Suppose that the enclosure is a parallelepiped with sides of lengths Lx,

Ly, and Lz. Alternatively, suppose that the radiation field inside the enclosure is

periodic in the x-, y-, and z-directions, with periodicity lengths Lx, Ly, and Lz, re-

spectively. As long as the smallest of these lengths, L, say, is much greater than the

longest wavelength of interest in the problem, λ = 2π/k, then these assumptions

should not significantly affect the nature of the radiation inside the enclosure.

We find, just as in our earlier discussion of sound waves (see Sect. 7.12), that the

periodicity constraints ensure that there are only a discrete set of allowed wave-

vectors (i.e., a discrete set of allowed modes of oscillation of the electromagnetic

field inside the enclosure). Let ρ(k)d3k be the number of allowed modes per unit

volume with wave-vectors in the range k to k + dk. We know, by analogy with

Eq. (7.146), that

ρ(k)d3k =
d3k

(2π)3
. (8.70)

The number of modes per unit volume for which the magnitude of the wave-

vector lies in the range k to k + dk is just the density of modes, ρ(k), multiplied

by the “volume” in k-space of the spherical shell lying between radii k and k+dk.

Thus,

ρk(k)dk =
4π k2 dk

(2π)3
=
k2

2π2
dk. (8.71)
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Finally, the number of modes per unit volume whose frequencies lie between ω

and ω+ dω is, by Eq. (8.69),

σ(ω)dω = 2
ω2

2π2 c3
dω. (8.72)

Here, the additional factor 2 is to take account of the two independent polariza-

tions of the electromagnetic field for a given wave-vector k.

Let us consider the situation classically. By analogy with sound waves, we

can treat each allowable mode of oscillation of the electromagnetic field as an

independent harmonic oscillator. According to the equipartition theorem (see

Sect. 7.8), each mode possesses a mean energy k T in thermal equilibrium at

temperature T . In fact, (1/2) k T resides with the oscillating electric field, and

another (1/2) k T with the oscillating magnetic field. Thus, the classical energy

density of electromagnetic radiation (i.e., the energy per unit volume associated

with modes whose frequencies lie in the range ω to ω+ dω) is

u(ω)dω = k T σ(ω)dω =
k T

π2 c3
ω2 dω. (8.73)

This result is known as the Rayleigh-Jeans radiation law, after Lord Rayleigh and

James Jeans who first proposed it in the late nineteenth century.

According to Debye theory (see Sect. 7.12), the energy density of sound waves

in a solid is analogous to the Rayleigh-Jeans law, with one very important differ-

ence. In Debye theory there is a cut-off frequency (the Debye frequency) above

which no modes exist. This cut-off comes about because of the discrete nature

of solids (i.e., because solids are made up of atoms instead of being continuous).

It is, of course, impossible to have sound waves whose wavelengths are much

less than the inter-atomic spacing. On the other hand, electromagnetic waves

propagate through a vacuum, which possesses no discrete structure. It follows

that there is no cut-off frequency for electromagnetic waves, and so the Rayleigh-

Jeans law holds for all frequencies. This immediately poses a severe problem.

The total classical energy density of electromagnetic radiation is given by

U =

∫∞

0

u(ω)dω =
k T

π2 c3

∫∞

0

ω2 dω. (8.74)
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This is an integral which obviously does not converge. Thus, according to classical

physics, the total energy density of electromagnetic radiation inside an enclosed

cavity is infinite! This is clearly an absurd result, and was recognized as such

in the latter half of the nineteenth century. In fact, this prediction is known

as the ultra-violet catastrophe, because the Rayleigh-Jeans law usually starts to

diverge badly from experimental observations (by over-estimating the amount of

radiation) in the ultra-violet region of the spectrum.

So, how do we obtain a sensible answer? Well, as usual, quantum mechanics

comes to our rescue. According to quantum mechanics, each allowable mode of

oscillation of the electromagnetic field corresponds to a photon state with energy

and momentum

ε = h̄ω, (8.75)

p = h̄ k, (8.76)

respectively. Incidentally, it follows from Eq. (8.69) that

ε = p c, (8.77)

which implies that photons are massless particles which move at the speed of

light. According to the Planck distribution (8.39), the mean number of photons

occupying a photon state of frequency ω is

n(ω) =
1

eβ h̄ω − 1
. (8.78)

Hence, the mean energy of such a state is given by

ε̄(ω) = h̄ω n(ω) =
h̄ω

eβ h̄ω − 1
. (8.79)

Note that low frequency states (i.e., h̄ω� k T) behave classically: i.e.,

ε̄ ' k T. (8.80)

On the other hand, high frequency states (i.e., h̄ω� k T) are completely “frozen

out”: i.e.,

ε̄� k T. (8.81)
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The reason for this is simply that it is very difficult for a thermal fluctuation to cre-

ate a photon with an energy greatly in excess of k T , since k T is the characteristic

energy associated with such fluctuations.

According to the above discussion, the true energy density of electromagnetic

radiation inside an enclosed cavity is written

ū dω = ε(ω)σ(ω)dω, (8.82)

giving

u(ω)dω =
h̄

π2 c3
ω3 dω

exp(β h̄ω) − 1
. (8.83)

This is famous result is known as the Planck radiation law. The Planck law ap-

proximates to the classical Rayleigh-Jeans law for h̄ω � k T , peaks at about

h̄ω ' 3 k T , and falls off exponentially for h̄ω� k T . The exponential fall off at

high frequencies ensures that the total energy density remains finite.

8.11 Black-body radiation

Suppose that we were to make a small hole in the wall of our enclosure, and

observe the emitted radiation. A small hole is the best approximation in Physics

to a black-body, which is defined as an object which absorbs, and, therefore,

emits, radiation perfectly at all wavelengths. What is the power radiated by the

hole? Well, the power density inside the enclosure can be written

u(ω)dω = h̄ω n(ω)dω, (8.84)

where n(ω) is the mean number of photons per unit volume whose frequencies

lie in the range ω to ω+ dω. The radiation field inside the enclosure is isotropic

(we are assuming that the hole is sufficiently small that it does not distort the

field). It follows that the mean number of photons per unit volume whose fre-

quencies lie in the specified range, and whose directions of propagation make an

angle in the range θ to θ+ dθ with the normal to the hole, is

n(ω,θ)dωdθ =
1

2
n(ω)dω sin θdθ, (8.85)
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where sin θ is proportional to the solid angle in the specified range of directions,

and ∫π

0

n(ω,θ)dωdθ = n(ω)dω. (8.86)

Photons travel at the velocity of light, so the power per unit area escaping from

the hole in the frequency range ω to ω+ dω is

P(ω)dω =

∫π/2

0

c cos θ h̄ω n(ω,θ)dωdθ, (8.87)

where c cos θ is the component of the photon velocity in the direction of the hole.

This gives

P(ω)dω = c u(ω)dω
1

2

∫π/2

0

cos θ sin θdθ =
c

4
u(ω)dω, (8.88)

so

P(ω)dω =
h̄

4π2 c2
ω3 dω

exp(β h̄ω) − 1
(8.89)

is the power per unit area radiated by a black-body in the frequency range ω to

ω+ dω.

A black-body is very much an idealization. The power spectra of real radiating

bodies can deviate quite substantially from black-body spectra. Nevertheless,

we can make some useful predictions using this model. The black-body power

spectrum peaks when h̄ω ' 3 k T . This means that the peak radiation frequency

scales linearly with the temperature of the body. In other words, hot bodies tend

to radiate at higher frequencies than cold bodies. This result (in particular, the

linear scaling) is known as Wien’s displacement law. It allows us to estimate the

surface temperatures of stars from their colours (surprisingly enough, stars are

fairly good black-bodies). Table 9 shows some stellar temperatures determined

by this method (in fact, the whole emission spectrum is fitted to a black-body

spectrum). It can be seen that the apparent colours (which correspond quite well

to the colours of the peak radiation) scan the whole visible spectrum, from red to

blue, as the stellar surface temperatures gradually rise.

Probably the most famous black-body spectrum is cosmological in origin. Just

after the “big bang” the Universe was essentially a “fireball,” with the energy as-
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Name Constellation Spectral Type Surf. Temp. (◦ K) Colour

Antares Scorpio M 3300 Very Red

Aldebaran Taurus K 3800 Reddish

Sun G 5770 Yellow

Procyon Canis Minor F 6570 Yellowish

Sirius Canis Major A 9250 White

Rigel Orion B 11,200 Bluish White

Table 9: Physical properties of some well-known stars

sociated with radiation completely dominating that associated with matter. The

early Universe was also pretty well described by equilibrium statistical thermo-

dynamics, which means that the radiation had a black-body spectrum. As the

Universe expanded, the radiation was gradually Doppler shifted to ever larger

wavelengths (in other words, the radiation did work against the expansion of

the Universe, and, thereby, lost energy), but its spectrum remained invariant.

Nowadays, this primordial radiation is detectable as a faint microwave background

which pervades the whole universe. The microwave background was discovered

accidentally by Penzias and Wilson in 1961. Until recently, it was difficult to mea-

sure the full spectrum with any degree of precision, because of strong microwave

absorption and scattering by the Earth’s atmosphere. However, all of this changed

when the COBE satellite was launched in 1989. It took precisely nine minutes to

measure the perfect black-body spectrum reproduced in Fig. 9. This data can be

fitted to a black-body curve of characteristic temperature 2.735 ◦ K. In a very real

sense, this can be regarded as the “temperature of the Universe.”

8.12 The Stefan-Boltzmann law

The total power radiated per unit area by a black-body at all frequencies is given

by

Ptot(T) =

∫∞

0

P(ω)dω =
h̄

4π2 c2

∫∞

0

ω3 dω

exp(h̄ω/k T) − 1
, (8.90)

or

Ptot(T) =
k4 T 4

4π2 c2 h̄3

∫∞

0

η3 dη

expη− 1
, (8.91)
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Figure 9: Cosmic background radiation spectrum measured by the Far Infrared Absolute Spectrome-

ter (FIRAS) aboard the Cosmic Background Explorer satellite (COBE).

where η = h̄ω/k T . The above integral can easily be looked up in standard

mathematical tables. In fact,

∫∞

0

η3 dη

expη− 1
=
π4

15
. (8.92)

Thus, the total power radiated per unit area by a black-body is

Ptot(T) =
π2

60

k4

c2 h̄3
T 4 = σ T 4. (8.93)

This T 4 dependence of the radiated power is called the Stefan-Boltzmann law,

after Josef Stefan, who first obtained it experimentally, and Ludwig Boltzmann,

who first derived it theoretically. The parameter

σ =
π2

60

k4

c2 h̄3
= 5.67× 10−8 W m−2 K−4, (8.94)

is called the Stefan-Boltzmann constant.

We can use the Stefan-Boltzmann law to estimate the temperature of the Earth

from first principles. The Sun is a ball of glowing gas of radius R� ' 7 × 105 km

188



8.13 Conduction electrons in a metal 8 QUANTUM STATISTICS

and surface temperature T� ' 5770◦ K. Its luminosity is

L� = 4πR 2
� σ T

4
� , (8.95)

according to the Stefan-Boltzmann law. The Earth is a globe of radius R⊕ ∼

6000 km located an average distance r⊕ ' 1.5× 108 km from the Sun. The Earth

intercepts an amount of energy

P⊕ = L�
πR 2

⊕/r
2
⊕

4π
(8.96)

per second from the Sun’s radiative output: i.e., the power output of the Sun

reduced by the ratio of the solid angle subtended by the Earth at the Sun to the

total solid angle 4π. The Earth absorbs this energy, and then re-radiates it at

longer wavelengths. The luminosity of the Earth is

L⊕ = 4πR 2
⊕ σ T

4
⊕ , (8.97)

according to the Stefan-Boltzmann law, where T⊕ is the average temperature of

the Earth’s surface. Here, we are ignoring any surface temperature variations

between polar and equatorial regions, or between day and night. In steady-state,

the luminosity of the Earth must balance the radiative power input from the Sun,

so equating L⊕ and P⊕ we arrive at

T⊕ =

(

R�
2 r⊕

)1/2

T�. (8.98)

Remarkably, the ratio of the Earth’s surface temperature to that of the Sun de-

pends only on the Earth-Sun distance and the solar radius. The above expression

yields T⊕ ∼ 279◦ K or 6◦ C (or 43◦ F). This is slightly on the cold side, by a few

degrees, because of the greenhouse action of the Earth’s atmosphere, which was

neglected in our calculation. Nevertheless, it is quite encouraging that such a

crude calculation comes so close to the correct answer.

8.13 Conduction electrons in a metal

The conduction electrons in a metal are non-localized (i.e., they are not tied to

any particular atoms). In conventional metals, each atom contributes a single
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such electron. To a first approximation, it is possible to neglect the mutual inter-

action of the conduction electrons, since this interaction is largely shielded out by

the stationary atoms. The conduction electrons can, therefore, be treated as an

ideal gas. However, the concentration of such electrons in a metal far exceeds the

concentration of particles in a conventional gas. It is, therefore, not surprising

that conduction electrons cannot normally be analyzed using classical statistics:

in fact, they are subject to Fermi-Dirac statistics (since electrons are fermions).

Recall, from Sect. 8.5, that the mean number of particles occupying state s

(energy εs) is given by

n̄s =
1

eβ (εs−µ) + 1
, (8.99)

according to the Fermi-Dirac distribution. Here,

µ ≡ −k T α (8.100)

is termed the Fermi energy of the system. This energy is determined by the con-

dition that ∑

r

n̄r =
∑

r

1

eβ (εr−µ) + 1
= N, (8.101)

where N is the total number of particles contained in the volume V . It is clear,

from the above equation, that the Fermi energy µ is generally a function of the

temperature T .

Let us investigate the behaviour of the Fermi function

F(ε) =
1

eβ (ε−µ) + 1
(8.102)

as ε varies. Here, the energy is measured from its lowest possible value ε = 0. If

the Fermi energy µ is such that βµ� 1 then β (ε− µ) � 1, and F reduces to the

Maxwell-Boltzmann distribution. However, for the case of conduction electrons

in a metal we are interested in the opposite limit, where

βµ ≡ µ

k T
� 1. (8.103)

In this limit, if ε� µ then β (ε− µ) � 1, so that F(ε) = 1. On the other hand, if

ε � µ then β (ε − µ) � 1, so that F(ε) = exp[−β (ε − µ)] falls off exponentially
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ε −>0
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0
µ

T = 0 K

T > 0 KF
 -

>

kT

Figure 10: The Fermi function.

with increasing ε, just like a classical Boltzmann distribution. Note that F = 1/2

when ε = µ. The transition region in which F goes from a value close to unity to

a value close to zero corresponds to an energy interval of order k T , centred on

ε = µ. This is illustrated in Fig. 10.

In the limit as T → 0, the transition region becomes infinitesimally narrow.

In this case, F = 1 for ε < µ and F = 0 for ε > µ, as illustrated in Fig. 10.

This is an obvious result, since when T = 0 the conduction electrons attain their

lowest energy, or ground-state, configuration. Since the Pauli exclusion principle

requires that there be no more than one electron per single-particle quantum

state, the lowest energy configuration is obtained by piling electrons into the

lowest available unoccupied states until all of the electrons are used up. Thus,

the last electron added to the pile has quite a considerable energy, ε = µ, since all

of the lower energy states are already occupied. Clearly, the exclusion principle

implies that a Fermi-Dirac gas possesses a large mean energy, even at absolute

zero.

Let us calculate the Fermi energy µ = µ0 of a Fermi-Dirac gas at T = 0. The
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energy of each particle is related to its momentum p = h̄ k via

ε =
p2

2m
=
h̄2 k2

2m
, (8.104)

where k is the de Broglie wave-vector. At T = 0 all quantum states whose energy

is less than the Fermi energy µ0 are filled. The Fermi energy corresponds to a

Fermi momentum pF = h̄ kF which is such that

µ0 =
p 2F
2m

=
h̄2 k 2F
2m

. (8.105)

Thus, at T = 0 all quantum states with k < kF are filled, and all those with k > kF
are empty.

Now, we know, by analogy with Eq. (7.146), that there are (2π)−3 V allowable

translational states per unit volume of k-space. The volume of the sphere of

radius kF in k-space is (4/3)πk 3F . It follows that the Fermi sphere of radius kF
contains (4/3)πk 3F (2π)−3 V translational states. The number of quantum states

inside the sphere is twice this, because electrons possess two possible spin states

for every possible translational state. Since the total number of occupied states

(i.e., the total number of quantum states inside the Fermi sphere) must equal the

total number of particles in the gas, it follows that

2
V

(2π)3

(

4

3
π k 3F

)

= N. (8.106)

The above expression can be rearranged to give

kF =

(

3 π2
N

V

)1/3

. (8.107)

Hence,

λF ≡
2π

kF
=

2π

(3π2)1/3

(

V

N

)1/3

, (8.108)

which implies that the de Broglie wavelength λF corresponding to the Fermi en-

ergy is of order the mean separation between particles (V/N)1/3. All quantum

states with de Broglie wavelengths λ ≡ 2π/k > λF are occupied at T = 0, whereas

all those with λ < λF are empty.
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According to Eq. (8.105), the Fermi energy at T = 0 takes the form

µ0 =
h̄2

2m

(

3 π2
N

V

)2/3

. (8.109)

It is easily demonstrated that µ0 � k T for conventional metals at room temper-

ature.

The majority of the conduction electrons in a metal occupy a band of com-

pletely filled states with energies far below the Fermi energy. In many cases, such

electrons have very little effect on the macroscopic properties of the metal. Con-

sider, for example, the contribution of the conduction electrons to the specific

heat of the metal. The heat capacity CV at constant volume of these electrons

can be calculated from a knowledge of their mean energy Ē(T) as a function of

T : i.e.,

CV =





∂Ē

∂T





V

. (8.110)

If the electrons obeyed classical Maxwell-Boltzmann statistics, so that F ∝ exp(−βε)

for all electrons, then the equipartition theorem would give

Ē =
3

2
Nk T, (8.111)

CV =
3

2
Nk. (8.112)

However, the actual situation, in which F has the form shown in Fig. 10, is very

different. A small change in T does not affect the mean energies of the major-

ity of the electrons, with ε � µ, since these electrons lie in states which are

completely filled, and remain so when the temperature is changed. It follows

that these electrons contribute nothing whatsoever to the heat capacity. On the

other hand, the relatively small number of electrons Neff in the energy range

of order k T , centred on the Fermi energy, in which F is significantly different

from 0 and 1, do contribute to the specific heat. In the tail end of this region

F ∝ exp(−βε), so the distribution reverts to a Maxwell-Boltzmann distribution.

Hence, from Eq. (8.112), we expect each electron in this region to contribute

roughly an amount (3/2) k to the heat capacity. Hence, the heat capacity can be
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written

CV ' 3

2
Neff k. (8.113)

However, since only a fraction k T/µ of the total conduction electrons lie in the

tail region of the Fermi-Dirac distribution, we expect

Neff '
k T

µ
N. (8.114)

It follows that

CV ' 3

2
Nk

k T

µ
. (8.115)

Since k T � µ in conventional metals, the molar specific heat of the con-

duction electrons is clearly very much less than the classical value (3/2)R. This

accounts for the fact that the molar specific heat capacities of metals at room

temperature are about the same as those of insulators. Before the advent of

quantum mechanics, the classical theory predicted incorrectly that the presence

of conduction electrons should raise the heat capacities of metals by 50 percent

[i.e., (3/2)R] compared to those of insulators.

Note that the specific heat (8.115) is not temperature independent. In fact,

using the superscript e to denote the electronic specific heat, the molar specific

heat can be written

c
(e)
V = γ T, (8.116)

where γ is a (positive) constant of proportionality. At room temperature c
(e)
V is

completely masked by the much larger specific heat c
(L)
V due to lattice vibrations.

However, at very low temperatures c
(L)
V = AT 3, where A is a (positive) constant

of proportionality (see Sect. 7.12). Clearly, at low temperatures c
(L)
V = AT 3 ap-

proaches zero far more rapidly that the electronic specific heat, as T is reduced.

Hence, it should be possible to measure the electronic contribution to the molar

specific heat at low temperatures.

The total molar specific heat of a metal at low temperatures takes the form

cV = c
(e)
V + c

(L)
V = γ T +AT 3. (8.117)
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Figure 11: The low temperature heat capacity of potassium, plotted as CV/T versus T2. From

C. Kittel, and H. Kroemer, Themal physics (W.H. Freeman & co., New York NY, 1980).

Hence,
cV

T
= γ+AT 2. (8.118)

If follows that a plot of cV/T versus T 2 should yield a straight line whose intercept

on the vertical axis gives the coefficient γ. Figure 11 shows such a plot. The fact

that a good straight line is obtained verifies that the temperature dependence of

the heat capacity predicted by Eq. (8.117) is indeed correct.

8.14 White-dwarf stars

A main-sequence hydrogen-burning star, such as the Sun, is maintained in equi-

librium via the balance of the gravitational attraction tending to make it collapse,

and the thermal pressure tending to make it expand. Of course, the thermal en-

ergy of the star is generated by nuclear reactions occurring deep inside its core.

Eventually, however, the star will run out of burnable fuel, and, therefore, start to

collapse, as it radiates away its remaining thermal energy. What is the ultimate

fate of such a star?

A burnt-out star is basically a gas of electrons and ions. As the star collapses,

its density increases, so the mean separation between its constituent particles

decreases. Eventually, the mean separation becomes of order the de Broglie

wavelength of the electrons, and the electron gas becomes degenerate. Note,
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that the de Broglie wavelength of the ions is much smaller than that of the elec-

trons, so the ion gas remains non-degenerate. Now, even at zero temperature,

a degenerate electron gas exerts a substantial pressure, because the Pauli exclu-

sion principle prevents the mean electron separation from becoming significantly

smaller than the typical de Broglie wavelength (see the previous section). Thus,

it is possible for a burnt-out star to maintain itself against complete collapse un-

der gravity via the degeneracy pressure of its constituent electrons. Such stars

are termed white-dwarfs. Let us investigate the physics of white-dwarfs in more

detail.

The total energy of a white-dwarf star can be written

E = K+U, (8.119)

where K is the total kinetic energy of the degenerate electrons (the kinetic energy

of the ion is negligible) and U is the gravitational potential energy. Let us assume,

for the sake of simplicity, that the density of the star is uniform. In this case, the

gravitational potential energy takes the form

U = −
3

5

GM2

R
, (8.120)

where G is the gravitational constant, M is the stellar mass, and R is the stellar

radius.

Let us assume that the electron gas is highly degenerate, which is equivalent

to taking the limit T → 0. In this case, we know, from the previous section, that

the Fermi momentum can be written

pF = Λ

(

N

V

)1/3

, (8.121)

where

Λ = (3π2)1/3 h̄. (8.122)

Here,

V =
4π

3
R3 (8.123)
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is the stellar volume, and N is the total number of electrons contained in the

star. Furthermore, the number of electron states contained in an annular radius

of p-space lying between radii p and p+ dp is

dN =
3V

Λ3
p2 dp. (8.124)

Hence, the total kinetic energy of the electron gas can be written

K =
3V

Λ3

∫pF

0

p2

2m
p2 dp =

3

5

V

Λ3
p 5F
2m

, (8.125)

where m is the electron mass. It follows that

K =
3

5
N
Λ2

2m

(

N

V

)2/3

. (8.126)

The interior of a white-dwarf star is composed of atoms like C12 andO16 which

contain equal numbers of protons, neutrons, and electrons. Thus,

M = 2Nmp, (8.127)

where mp is the proton mass.

Equations (8.119), (8.120), (8.122), (8.123), (8.126), and (8.127) can be

combined to give

E =
A

R2
−
B

R
, (8.128)

where

A =
3

20

(

9π

8

)2/3 h̄2

m





M

mp





5/3

, (8.129)

B =
3

5
GM2. (8.130)

The equilibrium radius of the star R∗ is that which minimizes the total energy E.

In fact, it is easily demonstrated that

R∗ =
2A

B
, (8.131)
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which yields

R∗ =
(9π)2/3

8

h̄2

m

1

Gm
5/3
p M1/3

. (8.132)

The above formula can also be written

R∗
R�

= 0.010

(

M�
M

)1/3

, (8.133)

where R� = 7 × 105 km is the solar radius, and M� = 2 × 1030 kg is the solar

mass. It follows that the radius of a typical solar mass white-dwarf is about

7000 km: i.e., about the same as the radius of the Earth. The first white-dwarf to

be discovered (in 1862) was the companion of Sirius. Nowadays, thousands of

white-dwarfs have been observed, all with properties similar to those described

above.

8.15 The Chandrasekhar limit

One curious feature of white-dwarf stars is that their radius decreases as their

mass increases [see Eq. (8.133)]. It follows, from Eq. (8.126), that the mean

energy of the degenerate electrons inside the star increases strongly as the stellar

mass increases: in fact, K ∝ M4/3. Hence, if M becomes sufficiently large the

electrons become relativistic, and the above analysis needs to be modified. Strictly

speaking, the non-relativistic analysis described in the previous section is only

valid in the low mass limit M � M�. Let us, for the sake of simplicity, consider

the ultra-relativistic limit in which p� mc.

The total electron energy (including the rest mass energy) can be written

K =
3V

Λ3

∫pF

0

(p2 c2 +m2 c4)1/2 p2 dp, (8.134)

by analogy with Eq. (8.125). Thus,

K ' 3V c

Λ3

∫pF

0



p3 +
m2 c2

2
p+ · · ·



dp, (8.135)
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giving

K ' 3

4

V c

Λ3

[

p 4F +m2 c2 p 2F + · · ·
]

. (8.136)

It follows, from the above, that the total energy of an ultra-relativistic white-

dwarf star can be written in the form

E ' A− B

R
+ CR, (8.137)

where

A =
3

8

(

9π

8

)1/3

h̄ c





M

mp





4/3

, (8.138)

B =
3

5
GM2, (8.139)

C =
3

4

1

(9π)1/3
m2 c3

h̄





M

mp





2/3

. (8.140)

As before, the equilibrium radius R∗ is that which minimizes the total energy

E. However, in the ultra-relativistic case, a non-zero value of R∗ only exists for

A−B > 0. When A−B < 0 the energy decreases monotonically with decreasing

stellar radius: in other words, the degeneracy pressure of the electrons is inca-

pable of halting the collapse of the star under gravity. The criterion which must

be satisfied for a relativistic white-dwarf star to be maintained against gravity is

that
A

B
> 1. (8.141)

This criterion can be re-written

M <MC, (8.142)

where

MC =
15

64
(5π)1/2

(h̄ c/G)1/2

m 2
p

= 1.72M� (8.143)

is known as the Chandrasekhar limit, after A. Chandrasekhar who first derived it

in 1931. A more realistic calculation, which does not assume constant density,

yields

MC = 1.4M�. (8.144)
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Thus, if the stellar mass exceeds the Chandrasekhar limit then the star in question

cannot become a white-dwarf when its nuclear fuel is exhausted, but, instead,

must continue to collapse. What is the ultimate fate of such a star?

8.16 Neutron stars

At stellar densities which greatly exceed white-dwarf densities, the extreme pres-

sures cause electrons to combine with protons to form neutrons. Thus, any star

which collapses to such an extent that its radius becomes significantly less than

that characteristic of a white-dwarf is effectively transformed into a gas of neu-

trons. Eventually, the mean separation between the neutrons becomes compara-

ble with their de Broglie wavelength. At this point, it is possible for the degen-

eracy pressure of the neutrons to halt the collapse of the star. A star which is

maintained against gravity in this manner is called a neutron star.

Neutrons stars can be analyzed in a very similar manner to white-dwarf stars.

In fact, the previous analysis can be simply modified by letting mp → mp/2 and

m → mp. Thus, we conclude that non-relativistic neutrons stars satisfy the mass-

radius law:
R∗
R�

= 0.000011

(

M�
M

)1/3

, (8.145)

It follows that the radius of a typical solar mass neutron star is a mere 10 km.

In 1967 Antony Hewish and Jocelyn Bell discovered a class of compact radio

sources, called pulsars, which emit extremely regular pulses of radio waves. Pul-

sars have subsequently been identified as rotating neutron stars. To date, many

hundreds of these objects have been observed.

When relativistic effects are taken into account, it is found that there is a

critical mass above which a neutron star cannot be maintained against gravity.

According to our analysis, this critical mass, which is known as the Oppenheimer-

Volkoff limit, is given by

MOV = 4MC = 6.9M�. (8.146)

A more realistic calculation, which does not assume constant density, does not

treat the neutrons as point particles, and takes general relativity into account,
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gives a somewhat lower value of

MOV = 1.5—2.5M�. (8.147)

A star whose mass exceeds the Oppenheimer-Volkoff limit cannot be maintained

against gravity by degeneracy pressure, and must ultimately collapse to form a

black-hole.
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