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Introduction

I What is Statistical Mechanics?

I Microscopic and macroscopic descriptions.

I Statistical mechanics is used to describe systems
with a large (∼ 1023) number of degrees of freedom

I particles, spins, neurons, investors, animal
populations, early universe, processors· · ·

I Gas(∼ 1023 particles) continual collisions with each
other and container walls. Classical(Chapt. 2)

I Newton’s equations + initial conditions → evolution
of ~r , ~p is known for all time

I This implies that we know the density n(~r , t) where

n(~r , t) =
1

∆V

∫
∆V

d3rj

N∑
j=1

δ(~r −~rj(t)) (1)
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I The density counts the number of particles in the
volume ∆V in a time interval ∆t around t

I ∆V is small compared to the system size but large
compared to a particle size→ large number of
particles in ∆V (∼ 102 − 103)

I ∆t is large compared to microscopic times.
I We will refer to quantities such as ~r and ~p as

microscopic variables and those like n(~r , t) as
macroscopic variables.

I Knowing the value of all 1023 microscopic variables is
technically not feasible. Chaos. Molecular dynamics.

I Quantum mechanics is worse. Wave function
(Schrodinger equation) for 1023 particles is harder.

I We will refer to systems that have a microscopic
description as having a microstate. (models)

I Other macroscopic variables-energy, pressure,
magnetization· · ·
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I Since the microscopic description is not viable we
adopt a macroscopic approach.

I Coarse grained(macroscopic) variables leave out
information → statistical description.

I Thermodynamics-relation between macroscopic
variables is deterministic however it requires entropy.

I Entropy is a measure of statistical uncertainty.
I Entropy is not definable in terms of microscopic

variables.
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Walls

I Important variable-Energy

E =
N∑

i=1

~p2
i

2m
+

1

2

∑
i 6=j

U(~ri −~rj) (2)

I We assume forces are conservative(derivable from a
potential)

I Potential is only a function of the particle position
and is pairwise additive.

I Also assume that all masses are the same and
molecules have no internal structure.

I In an isolated system the energy is conserved.

I The classical Hamiltonian → the quantum in the
usual way.
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I Energy can be supplied to or taken from a system in
the form of heat or work.

I Once the energy is in the system we cannot tell in
which form it was added.

I Mechanical energy(work) is added by changing the
external parameters.

I Heat by radiation or conduction.

I We control how energy is added by the use of walls.

I Adiabatic wall - allows no heat transfer
I Diathermic wall allows heat transfer
I Work is generated by the change of the external

parameters, piston, electric field· · ·
I Rigid walls allow no work to be done by changing

system shape. (no piston)
I Permeable walls allow only particles to enter or

leave. Semi-permeable-selective as to particle type.
I Isolated system exchanges no energy with

surroundings
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Work, Heat Internal Energy

Quantitative development of general concepts
discussed above.

I Consider a cylinder with a piston. The position of
the piston is specified by x coordinate.(figure1)

I If F (x) is the component of the force applied by the
piston parallel to the x axis then

dW = F (x)dx (3)

WA→B =

∫ xB

xA

dxF (x) (4)

I We assume the process is quasi-static (discussed
more fully shortly) → Macroscopic (e.g. E) variables
independent of path.



Physics 541

W. Klein

Introduction

Walls

Work, Heat, Internal
Energy

Maximum Entropy

Maximum Work and
Heat Engines

Thermodynamic
potentials

Specific heats

Gibbs-Duhem

Stability conditions

I The total energy then is the sum of the two forms of
energy available - work and heat.

EB − EA = QA→B + WA→B (5)

I QA→B is the heat supplied in going from A → B.

I WA→B is the work done going from A → B.

This is often written in differential form

dQ = dE − dW (6)

This is the first law of thermodynamics.

I ∆E is independent of path whereas ∆Q and ∆W is
not.

This can be seen for the work in analogy to mechanical
work
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WA→B =

∫ B

A

~F · d~l (7)

which clearly depends on the path.

Discussion of Thermal Equilibrium

If we wait long enough the system will evolve to
a state that is independent of the past history and
time

This will be referred to as the EQUILIBRIUM
state

I Systems in equilibrium will be our focus this
semester.

I There are systems such as glasses that are not in
equilibrium but are relaxing over thousands of years.
State depends on history.
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I There are also systems that appear to be in
equilibrium but are metastable. If we wait long
enough they will spontaneously decay to a
different(usually equilibrium) state.

I Metastable states also exhibit hysteresis (figure2)

I For systems of particles with no structure(point
particles) the equilibrium state is specified by E , V
and {Ni} where V is the volume and Ni the number
of particles of type i .

I This is a statement based on experiment and will be
justified by comparison of theory with experiments.

I Often we will restrict ourselves to one kind of particle
so that the system is specified by E , V and N.

I The quantities E , V and N are extensive. That is
they are proportional to the volume V .



Physics 541

W. Klein

Introduction

Walls

Work, Heat, Internal
Energy

Maximum Entropy

Maximum Work and
Heat Engines

Thermodynamic
potentials

Specific heats

Gibbs-Duhem

Stability conditions

Postulate of Maximum Entropy

Consider an isolated system divided into two
subsystems 1 and 2.(figure3) separated by a piston.

I The subsystems are large enough that any
interaction with the walls is negligible.

I The subsystems are characterized by
E1,V1,N1,E2,V2,N2

I E = E1 + E2,V = V1 + V2,N = N1 + N2

I The piston creates the following internal constraints.

I If fixed no energy is transmitted from one subsystem
to the other in the form of work.

I If adiabatic, no heat flow.
I Impermeable, no particle flow.

I We lift the constraint by making the wall mobile,
permeable, diathermic or any combination.
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We begin with a fixed, adiabatic, impermeable piston
with both sides in equilibrium and remove one or more
constraints and ask what happens and how can we
describe it.

The following postulates are equivalent to the ususal
statement of the second law of thermodynamics.

I 1. For any system at equilibrium, there exists a
positive differential entropy function
S(E ,V ,N(1) · · ·N(r)) which is an increasing function
of E for a fixed V and {N(i)}.

I 2. For a system made up of M subsystems, S is
additive, or extensive: the total entropy, Stot , is the
sum of the entropies of the subsystems.

Stot =
M∑

m=1

S(Em,Vm, {N(i)}) (8)
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I 3. Suppose the global isolated system is initially
divided by internal constraints into subsystems that
are separately at equilibrium: if we lift one (or more)
constraint the final entropy, after the re-establisment
of equilibrium, must be greater or equal to the initial
entropy. The new values of Em,Vm,N i

m are such
that the entropy is increased or remains the same. In
summary: the entropy of an isolated system cannot
decrease.

I Rigorously, the entropy is only defined for a system
in equilibrium.

I If we have a system that is globally not in
equilibrium, but we can divide it into subsystems
that are almost at equilibrium with whom they
interact weakly, we can define a global entropy via
equation ??. This is important in non-equilibrium
statistical mechanics.
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Quasi-static process Transformation A → B is
quasi-static if the system stays infinitesimally close to
equilibrium.

I Process is infinitely slow since we need to wait after
each step for the system to come back into
equilibrium.

I Idealization-change in control parameters slow
compared to relaxation time.

If the transformation is (in the real world) slow
enough that the system can be thought of as going
from one equilibrium state to the other then we can
define the entropy for each time step.Stot(t)

I Stot(t) will be an increasing function of time if the
system is isolated.

For a homogeneous system the entropy is a
concave function of the extensive variables
E ,V ,N.

I Concave function f (x) has f ′′(x) ≤ 0 and

f

(
x1 + x2

2

)
≥ f (x1) + f (x2)

2
(9)
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I Convex function f ′′(x) ≥ 0 and

f

(
x1 + x2)

2

)
≤ f (x1) + f (x2)

2
(10)

Suppose for a homogeneous system S were a strictly
convex function of E instead of concave. Then from
eq.??

2S(E ) < S(E −∆E ) + S(E + ∆E ) (11)

From eq.?? (additivity of the entropy) we have
2S(E ) = S(2E ).

Then

S(2E ) < S(E −∆E ) + S(E + ∆E ) (12)

I If the system were inhomogeneous with the energies
E −∆E and E + ∆E it would have a higher entropy
(by the entropy maximum postulate) and hence the
equilibrium state would not be homogeneous
contrary to our assumption.
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I The breakdown of the concavity is a signature of a
phase transition where the system goes from
homogeneous to heterogeneous.

Intensive Variables: Temperature, Pressure,
Chemical Potential

∂S

∂E

∣∣∣∣
V ,N i

=
1

T
(13)

∂S

∂V

∣∣∣∣
E ,N i

=
P

T
(14)

∂S

∂N i

∣∣∣∣
E ,V ,N j 6=i

= −µi

T
(15)

I The variables T ,P, µi are called intensive variables.
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I Double system size extensive variables (E ,V ,N i )
double; intensive remain the same.

I These are definitions. We need to show that they
correspond to our physical intuition.

Temperature
Does eq.(??)→ thermal equilibrium?

I Assume an system divided by a fixed, impermeable,
adiabatic wall. The two subsystems have entropies
S1(E1,V1) and S2(E2,V2).

I We have suppressed the N dependence since it will
remain fixed.

I Both sides are assumed to be in equilibrium
independently since they do not interact.

I We now make the wall between subsystems
diathermic so that heat can be exchanged.

I The system will now come into equilibrium such that
the total S = S1 + S2 is maximized.
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dS =
∂S1

∂E1

∣∣∣∣
V1

dE1 +
∂S2

∂E2

∣∣∣∣
V2

dE2 = 0 (16)

I Since the total system (1 + 2) is isolated
dE = dE1 + dE2 = 0.

I From energy conservation and the definition of
temperature (eq.??)

dS =

[
1

T1
− 1

T2

]
dE1 = 0 (17)

I Since dE1 is arbitrary we must have that the final
temperatures of both sides are equal; T1 = T2 = T

When two systems are in thermal contact
equilibrium implies that they come into the
same temperature defined by eq.??

I Does heat energy flow from hot to cold?
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I Compartment 1 is initially colder than compartment
2, [T ′

1 < T ′
2] - prime denotes initial state.

I (a)Since ∂2S
∂E2 < 0 → ∂T

∂E > 0 and the process is
quasi-static.

I (b)The system will come to equilibrium with
T1 = T2

I Suppose energy flows from system 1 to system 2.
Then from (a) above T1 will decrease and T2 will
increase.

I This will make the equilibration of the temperature
in item (b) impossible.

I It will only be possible if heat flows from system
(2)(hotter) to system (1)colder.

I This implies that our definition of temperature
corresponds to what we expect physically.

Suppose that ∂2S
∂E2 = 0 over some interval of E

(function not strictly concave)
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I In this range the exchange of energy causes no
temperature change.

I Physically this corresponds to a phase transition with
a latent heat.

Pressure
Does eq.(??) → mechanical equilibrium?

I We start again with a two chamber system with each
side isolated from the other in in equilibrium.

I We now make the wall diathermic and mobile and
apply the entropy maximum principle.

dS =

[
∂S1

∂E1

∣∣∣∣
V1

dE1 +
∂S2

∂E2

∣∣∣∣
V2

dE2

]
+[

∂S1

∂V1

∣∣∣∣
E1

dV1 +
∂S2

∂V2

∣∣∣∣
E2

dV2

]
= 0 (18)
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I dE1 = −dE2 and dV1 = −dV2 since the total system
is isolated.

I Using these relations and eqs.(??) and (??) we
obtain

dS =

[
1

T1
− 1

T2

]
dE1 +

[
P1

T1
− P2

T2

]
dV1 = 0 (19)

I As before dE1 and dV1 are arbitrary → T1 = T2 and
P1 = P2.

I Suppose T1 = T2 = T then from eq.(??)

dS = (P1 − P2)
dV1

T
= 0 (20)

I If P1 is slightly bigger than P2 then from dS > 0,
dV1 > 0
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If two systems are at the same T and in
mechanical contact then the one at higher pressure
expands

Chemical potential; equilibrium of particle flux

Finally, the piston is made diathermic, fixed and
permeable to particles of type i .

dS =

[
∂S

∂E1
dE1 +

∂S

∂E2
dE2

]
+

[
∂S

∂N i
1

dN i
1 +

∂S

∂N i
2

dN i
2

]
= 0

(21)

I The obvious quantities are held constant including
the N j for the other species than the ith.

I Again dE1 = −dE2 and dN i
1 = −dN i

2 so we have

dS =

[
1

T1
− 1

T2

]
dE1−

[
µ

(i)
1

T1
−

µ
(i)
2

T2

]
dN i

1 = 0 (22)
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I Using the same reasoning as before we find that in

equilibrium µ
(i)
1 = µ

(i)
2 and that particles of type i go

from higher chemical potential to lower.
Equation of state

I Assuming N is a constant (only one species of
particle) and eqs.(??) and (??) we have

1

T
=

∂S

∂E

∣∣∣∣
V

= fT (E ,V ) (23)

P

T
=

∂S

∂V

∣∣∣∣
E

= fP(E ,V ) (24)

I Since fT is a strictly decreasing function of E for a
homogeneous system (concavity of S) we can
determine E as a function of T at fixed V .

I E = g(T ,V )

I Substituting E into eq.(??) we obtain

P = TfP(g(T ,V ),V ) = h(T ,V ) (25)
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I The relation P = h(T ,V ) is the equation of state.

Ideal gas - one mole

P =
RT

V
=

NAkBT

V
= nkBT (26)

I R is the ideal gas constant, kB is Boltzmann’s
constant, NA is Avagadro’s constatnt and n the
density.

I Experimental equation - dilute gas. Will derive from
Stat. Mech.

Quasi-static and reversible processes

I Using equations (??) - (??) we have (one kind of
particle)

dS =
1

T
dE +

P

T
dV − µ

T
dN (27)

or
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TdS = dE + PdV − µdN (28)

I Since S is an increasing function of E the mapping is
one to one so there is E (S) so we can write

dE = TdS − PdV + µdN (29)

I If there is no work because dV = 0 and there is no
change in N then dE = TdS

I From the first law of thermodynamics (eq.(??))

dQ = TdS (30)

I This is a special case of the second law of
thermodynamics which we will discuss in greater
detail later.This form is only valid for quasi static
processes.

I The pressure can be thought of as force per unit
area F/A → for piston dW = −PdV . Pressure→
quasi-static process.
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From eq.(??) if we divide both sides with respect to
dV and keep S and N constant

dE

dV
= −P (31)

or , since S and N are held constant

∂E

∂V

∣∣∣∣
S ,N

(32)

I This gives physical backing to our definition of the
pressure which we could also obtain from eq.(??).

I We want to stress that

dE = dQ + dW (33)

is always valid
I However

dE = TdS + dW (34)

depends on the notion of entropy which needs a
quasi static process.
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Reversible transformation

I A quasi-static transformation is reversible if it takes
place at constant total entropy.

I In general lifting one or more constraints on a
system increases the entropy.

I Re-imposing the constraints cannot return the
system to its original state.

I Hence the process is irreversible.

I For an isolated system removing the constraint
causes the entropy to rise until a new equilibrium is
established.

I For a reversible transition we can restore the original
state by manipulating the internal constraints.

I If a homogeneous system is isolated and the total
volume is fixed dV = dQ = 0. → if the process is
quasi-static it is reversible.

I It is possible that parts of an isolated system will
have an entropy decrease, whatever the process,
compensated by an increase in other parts.
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Maximum Work and Heat Engines

A device χ is connected to two heat sources at T1 > T2

The device supplies work to the outside.

Theorem of maximum work

I Suppose that χ receives a quantity of energy Q from
a heat source, S, at temperature T .

I We assume that S is big enough so that Q is
infinitesimal compared to the total energy in S so
that T remains unchanged.

I The process is quasi-static so the entropy change of
S is −Q/T . Such a source is called a heat reservoir

I The system χ supplies an amount of work W to the
outside world.

I The combination [χ + S] is thermally isolated.
I The energy change for χ is

∆E = Q −W (35)

I This means that the change in energy of χ is equal
to the energy added in heat minus the energy
expended in work done by χ.
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I The total entropy change, ∆Stot , of [χ + S ] (which
is isolated) must be greater than or equal to zero.
This is equal to the entropy change of χ (∆S) minus
the entropy change of the reservoir S . Hence

∆Stot = ∆S − Q

T
≥ 0 (36)

or

Q ≤ T∆S (37)

Finally using eqs(??) and (??)

W ≤ T∆S −∆E (38)

I Note that the maximum work is obtained when the
work process is reversible so that ∆Stot = 0
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The device χ functions in a cycle. It returns to the
same state.

I To obtain a cycle we will need the two heat
reservoirs at T1 and T2 with T1 > T2

Let W be the work supplied by χ during one such
cycle, Q1 the heat given to χ by the hot reservoir
and Q2 the heat given to the cold reservoir.

I During this process χ is successively in contact with
the two reservoirs. The transformations in the cycle
are assumed to be reversible.

I The entropy of χ does not change since it returns to
the same state. Hence in a cycle the entropy change
in χ is given by

Q1

T1
− Q2

T2
= 0 (39)
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I Since the work done is equal to the difference in the
energy obtained from the hot reservoir minus the
energy deposited into the cold reservoir by
conservation of energy we have using eq.(??)

W = Q1 − Q2 = Q1

(
1− T2

T1

)
(40)

I Note that if T2 = T1 there is no work done.
If we define the efficiency η as

η =
W

Q1
= 1− T2

T1
(41)

I The entropy and hence the temperature is defined
up to a constant. This is consistent with the fact
that we can have many temperature scales. Fixing
the constant fixes the temperature scale.
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Thermodynamic potentials Assume N is constant so
that E is a function of S and V only.

I It is often convenient to have the system described
by functions of T and P rather than S and V

I The variable changes are implemented using
potentials or Massieu functions.

I These functions are Legendre transforms of the
energy and entropy.

We begin by showing how to go from the energy to
the temperature.
Remembering that N is constant we have from
eq.(??)

∂E

∂S

∣∣∣∣
V

= T (42)

I The Legendre transform, F of E with respect to S is
given by
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F (T ,V ) = E − TS (43)

Note again from eqs.(??) and (??) we have with N
fixed

dF (T ,V ) = dE − TdS − SdT (44)

dF (T ,V ) = dE − T

(
1

T
dE − P

T
dV

)
− SdT (45)

∂F

∂T

∣∣∣∣
V

= −S (46)

I From eq(??) the first two terms cancel and the third
term is zero since V is constant.

dF

dT

∣∣∣∣
(V ,N)constant

= −S (47)
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Again from eq.(??)

dF (T ,V ) = TdS − PdV − TdS − SdT (48)

If we keep T fixed and divide both sides by dV we
have

∂F

∂V

∣∣∣∣
T

= −P (49)

I Remember that N is held constant.

I The function F is called the free energy.

I Going from E to F allows us to use the temperature
rather than the entropy.

I There are other thermodynamic potentials two of
which are

H̄(S ,P) = E + PV (50)

which is called the enthalpy
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We have

∂H̄

∂S

∣∣∣∣
P

= T (51)

and

∂H̄

∂P

∣∣∣∣
S

= V (52)

I Gibbs potential

G (T ,P) = E − TS + PV (53)

From arguments similar to those above.

∂G

∂T

∣∣∣∣
P

= −S (54)

∂G

∂P

∣∣∣∣
T

= V (55)
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I These definitions and the fact that the
functions(potentials) we consider have continuous
second derivatives lead to the Maxwell relations

I The continuous second derivatives implies that the
order of the mixed partial derivatives is irrelevant.

∂2F

∂T∂V
=

∂2F

∂V ∂T
(56)

From eqs.(??) and (??) eq.(??) implies

∂S

∂V

∣∣∣∣
T

=
∂P

∂T

∣∣∣∣
V

(57)

I Similar reasoning applied to the Gibbs potential gives

∂S

∂P

∣∣∣∣
T

= −∂V

∂T

∣∣∣∣
P

(58)

I Instead of taking the Legendre transform of the
energy we can take those of the entropy and obtain
the Massieu functions.

I From eq.(??) and reasoning identical to that above
we have
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∂S

∂E

∣∣∣∣
V

=
1

T
(59)

We define the Massieu function Φ1

Φ1

(
1

T
,V

)
= S − E

T
= − 1

T
F (60)

If we keep V fixed and N (as before) then
dS = 1

T dE . Hence

dΦ1 = dS − 1

T
dE − Ed

(
1

T

)
(61)

or
∂Φ1

∂1/T
= −E (62)

Remember dS = 1
T dE + P

T dV with fixed N.
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∂Φ1

∂V

∣∣∣∣
1/T

=
P

T
(63)

I In thermodynamics the free energy F is more
commonly used than the Massieu functions and T
more commonly than 1/T . However, in statistical
mechanics we will see that 1/T and Φ1 are the more
natural functions.

I In fact Φ1 will be seen as the log of the partition
function.
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Specific heats

I Suppose we give a system a quantity of heat dQ, in
a quasi-static process, while keeping one or more of
the thermodynamic variables fixed, say y . If dT is
the increase in temperature the specific heat (or
heat capacity) at fixed y is given by

Cy =
dQ

dT

∣∣∣∣
y

= T
∂S

∂T

∣∣∣∣
y

(64)

where we have assumed a quasi-static process.
Moreover

I Note that dE = dQ + dW and (for fixed N)
dE = TdS − PdV

I Since dW = −PdV it follows that dQ = TdS .

I The classic cases are the specific heat at constant
volume CV and the specific heat at constant
pressure CP .
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CV =
dQ

dT

∣∣∣∣
V

= T
∂S

∂T

∣∣∣∣
V

=
∂E

∂T

∣∣∣∣
V

(65)

CP =
dQ

dT

∣∣∣∣
P

= T
∂S

∂T

∣∣∣∣
P

=
∂H̄

∂T

∣∣∣∣
P

(66)

I The appearance of the enthalpy H̄ follows from
H̄ = E + PV

I The quantities CV and CV are not independent. To
derive the relation we need to define the following
coefficients.

I Expansion coefficient at constant pressure

α =
1

V

∂V

∂T

∣∣∣∣
P

(67)
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I Coefficient of isothermal compressibility

κT = − 1

V

∂V

∂P

∣∣∣∣
T

(68)

I Coefficient of adiabatic compressibility
(constant entropy)

κS = − 1

V

∂V

∂P

∣∣∣∣
S

(69)

We now need the following relation between partial
derivatives. Consider a function z(x , y) and its
differential

dz =
∂z

∂x

∣∣∣∣
y

dx +
∂z

∂y

∣∣∣∣
x

dy (70)

I We now restrict ourselves to a surface of constant
z → dz = 0 so

∂z

∂x

∣∣∣∣
y

dx = −∂z

∂y

∣∣∣∣
x

dy (71)
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We can write this as

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1 (72)

I This is dependent on the fact that z is a constant.
As an example let z2 = x2 + y2.

∂z

∂x

∣∣∣∣
y

=
x

z

∂z

∂y

∣∣∣∣
x

=
y

z

∂x

∂y

∣∣∣∣
z

= −y

x

Using [
∂z

∂y

∣∣∣∣
x

]−1

=
∂y

∂z

∣∣∣∣
x

we get the result in eq.(??).
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I These equations also apply under cyclic
permutations of the variables.
We apply the result to the variables T ,V ,P which
are related through the equations of state.

∂T

∂P

∣∣∣∣
V

∂P

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
P

= −1 (73)

We now use

dS(T ,P) =
∂S

∂T

∣∣∣∣
P

dT +
∂S

∂P

∣∣∣∣
T

dP (74)

where we have kept N constant. Using eq.(??)

TdS = CPdT + T
∂S

∂P

∣∣∣∣
T

dP (75)

Using eq.(??) we have

TdS = CPdT−T
∂V

∂T

∣∣∣∣
P

dP = CPdT−TVαdP (76)
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Where we have used eq.(??).

Dividing both sides of eq.(??) by dT

T
∂S

∂T

∣∣∣∣
V

= CP − TVα
∂P

∂T

∣∣∣∣
V

(77)

where we have kept V constant.

Using eq.(??) we replace ∂P
∂T

∣∣∣∣
V

by - ∂P
∂V

∣∣∣∣
T

∂V
∂T

∣∣∣∣
P

But

∂P

∂V

∣∣∣∣
T

= − 1

VκT

and

∂V

∂T

∣∣∣∣
P

= Vα

I Using these relations in eq.(??) we obtain
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T
∂S

∂T

∣∣∣∣
V

= CP − TV
α2

κT
(78)

Remembering that

CV = T
∂S

∂T

∣∣∣∣
V

we obtain

CP − CV =
TVα2

κT
(79)

Another relation which will be assigned for homework
is

CP

CV
=

κT

κS
(80)
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GIbbs-Duhem

We now consider the situation where the number of
particles can change.

If we scale all the extensive variables by the factor λ we
obtain

E → λE V → λV N → λN (81)

The entropy is also extensive will also scale S → λS .
Hence

λS(E ,V ,N) = S(λE , λV , λN) (82)

We now differentiate both sides of eq.(??) with
respect to λ to obtain

S =
E

T
+

PV

T
− µN

T
(83)
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or remembering the Gibbs potential G eq.(??)

µN = E − TS + PV = G (84)

Therefore the chemical potential µ is the Gibbs
potential per particle.

From eqs.(??) - (??) and eq.(??) we have

− SdT + VdP + µdN = µdN + Ndµ (85)

or

Ndµ + SdT − VdP = 0 (86)

which is known as the Gibbs-Duhem relation.

If we take dT = 0, from eq.(??) we have

∂P

∂µ

∣∣∣∣
T

= n (87)

where n is the density.
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I The volume per particle v = V /N = 1/n

1

κT
= −v

∂P

∂v

∣∣∣∣
T

= n
∂P

∂n

∣∣∣∣
T

= n
∂P

∂µ

∣∣∣∣
T

∂µ

∂n

∣∣∣∣
T

(88)

Hence

1

κT
= n2 ∂µ

∂n

∣∣∣∣
T

(89)

where we have used eq.(??).
Therefore

∂µ

∂n

∣∣∣∣
T

=
1

n2κT
(90)
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Stability conditions

Concavity of entropy and convexity of energy

We now discuss the conditions under which
thermodynamic systems are stable. For simplicity we will
take N constant for this analysis.

I Let S(2E , 2V ) be the entropy of an isolated,
homogeneous system at equilibrium.

I We divide the system into two subsystems with
energy E ±∆E and volumes V ±∆V .

I Suppose that the entropy is convex.(see eqs.(??) and
(??).)

S(E + ∆E ,V + ∆V ) + S(E −∆E ,V −∆V )

> 2S(E ,V ) = S(2E , 2V ) (91)

I If the entropy were convex this would imply hat the
inhomogeneous system would have a lower entropy
than the homogeneous system. That is the removal
of an internal constraint would lower the entropy.
This means that the entropy must be concave.
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I Note that there is a special case ∆E/E = ∆V /V
where the energy density does not become
inhomogeneous.

I Concavity means

S(E + ∆E ,V + ∆V ) + S(E −∆E ,V −∆V )

≤ 2S(E ,V ) (92)

The condition can also be written

(∆S)(E ,V ) ≤ 0 (93)

which denotes that the imposition of internal
constraints on a system of fixed E and V can only
decrease the entropy.

I To look at the linear stability of the system we
expand the entropy to second order in ∆E and ∆V
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S(E ±∆E ,V ±∆V ) ∼ S(E ,V )±∆E
∂S

∂E
±∆V

∂S

∂V

+
1

2
(∆E )2

∂2S

∂E 2
+

1

2
(∆V )2

∂2S

∂V 2
+ ∆E∆V

∂2S

∂E∂V 2
(94)

Inserting the expansion into eq.(??)

(∆E )2
∂2S

∂E 2
+ (∆V )2

∂2

∂V 2
+ 2∆E∆V

∂2S

∂E∂V
≤ 0 (95)

I The concavity condition on the entropy can be
transformed to a convexity condition on the energy.
Consider an isolated system with energy E and a
volume V - divide into two subsystems.

E = E1 + E2 V = V1 + V2 (96)

We now apply an internal constraint where

E1 → E1 + ∆E E2 → E2 −∆E (97)
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V1 → V1 + ∆V V2 → V2 −∆V (98)

Remembering eq.(??)

S(E1 + ∆E ,V1 + ∆V ) + S(E2 −∆E ,V2 −∆V )

≤ S(E ,V ) (99)

We expect (except at some phase transitions) that the
entropy is a continuous and increasing function of E .
Hence there is a value of E = Ẽ where

S(E1 + ∆E ,V1 + ∆V ) + S(E2 −∆E ,V2 −∆V )

= S(Ẽ ,V ) (100)

I If we now release the internal constraints to go back
to the homogeneous system in equilibrium the
entropy and energy return to their original values.
Hence the entropy returns to

S(E1 + E2,V1 + V2) = S(E ,V )
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where
E ≥ Ẽ

This means that the energy is a convex function of S and
V i.e.

(∆E )(S ,V ) ≥ 0 (101)

Stability conditions and their consequences

The convexity condition can be expressed as

E (S1 + ∆S ,V1 + ∆V ) + E (S2 −∆S ,V2 −∆V )

≥ E (S ,V ) (102)

where
S1 + S2 = S V1 + V2 = V (103)

I As we did with the entropy we can expand
E (S ±∆S ,V ±∆V ) in a power series in ∆S and
∆V to second order and insert it into the convexity
equation written as
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E (S + ∆S ,V + ∆V ) + E (S −∆S ,V −∆V )

≥ 2E (S ,V ) (104)

to obtain

(∆S)2
∂2E

∂S2
+ (∆V )2

∂2E

∂V 2
+ 2∆S∆V

∂2E

∂S∂V

≥ 0 (105)

This can be more conveniently expressed in matrix form.
We introduce

ε =

(
∂2E
∂S2

∂2E
∂S∂V

∂2E
∂V∂S

∂2E
∂V 2

)
=

(
E ′′SS E ′′SV

E ′′VS E ′′VV

)
(106)

I Since E (S ,V ) is continuous and differentiable,
E ′′SV = E ′′VS in eq.(??) and ε is real and symmetric.



Physics 541

W. Klein

Introduction

Walls

Work, Heat, Internal
Energy

Maximum Entropy

Maximum Work and
Heat Engines

Thermodynamic
potentials

Specific heats

Gibbs-Duhem

Stability conditions

We introduce the two component vector

x = (∆S ,∆V ) (107)

and its transpose xT . The stability condition in eq.(??)
can be written as

xT εx ≥ 0 (108)

Since ∆S and ∆V are arbitrary this implies that ε is
a positive definite matrix.

I A positive definite matrix satisfies eq.(??) for any
vector.

I Since ε is Hermetian (real and symmetric) all its
eigenvalues are real and it can be diagonalized by a
unitary transformation R where

RTR = RRT = 1 (109)
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We have
xTRRT εRRT x ≥ 0 (110)

Since Λ = RT εR is diagonal and y = RT x is
arbitrary

yTΛy =
N∑
j

λjy
2
j ≥ 0 (111)

implies that the eigenvalues λj ≥ 0.

Consider an arbitrary real 2× 2 symmetric matrix

A =

(
a b
b c

)
(112)

The eigenvalues are defined from the usual
determinant and must satisfy the equation

(a− λ)(c − λ)− b2 = 0 (113)

I A is Hermetian so λj is real
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The solution for the eigenvalues is

2λ = (a + c)±
[
(a + c)2 − 4(ac − b2)

]1/2
(114)

I Since λ is real we know that the interior of the
bracket is positive.

I Hence a + c ≥ 0 or choosing the - sign from the ±
would generate a negative .

I We must have ac − b2 ≥ 0 or choosing the - sign
will again make λ negative.

I These two conditions imply that both a ≥ 0 and
c ≥ 0.

I In this case a = ∂2E
∂S2 and c = ∂2E

∂V 2 are positive.
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I For ∂2E
∂S2 , V is held constant for both derivatives. N

is assumed constant.

I Since ∂E
∂S

∣∣∣∣
V ,N

= T ,

a = ∂T
∂S

∣∣∣∣
V ,N

= T
CV

≥ 0 → CV ≥ 0 from eq.(??).

I Since ∂2E
∂V 2

∣∣∣∣
S ,V

≥ 0 and ∂E
∂V

∣∣∣∣
S ,V

= −P from eq.(??)

we have κS ≥ 0
As we have seen the entropy S is concave in both E
and V and the energy E is convex in both S and V .
For the free energy F we have at constant T

F (V + ∆V ) + F (V −∆V ) =

E (V+∆V )+E (V−∆V )−T [S(V+∆V )+S(V−∆V )]
(115)
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From the convexivity of the energy

E (V + ∆V ) + E (V −∆V ) ≥ E (2V ) (116)

From the concavity of the entropy

− T [S(V + ∆V ) + S(V −∆V )] ≥ −TS(2V ) (117)

I From eqs.(??), (??) and (??)

F (V + ∆V ) + F (V −∆V ) ≥ F (2V ) (118)

I Remember that T is fixed.

I The convexivity implies that

∂2F

∂V 2
= − ∂P

∂V

∣∣∣∣
T

=
1

VκT
≥ 0 (119)

I Therefore the isothermal compressibility κT ≥ 0 for
stability.
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We have shown for that for stability

CV ≥ 0 κT ≥ 0 κS ≥ 0 (120)

However eq.(??) is

CP

CV
=

κT

κS
→ CP ≥ 0

I From eq.(??)

CP − CV =
TVα2

κT

and the positivity conditions we obtain

CP ≥ CV (121)

Finally, solving for CP
CV

in eq.(??) and using eq.(??)
we have
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κT

κS
− 1 =

TVα2

κT
(122)

Since the right hand side is positive we have

κT ≥ κS (123)

We have the following potentials and their convexity
(concavity) properties.

I H̄(S ,P) = E + PV convex in E - concave in P

I F = E − TS concave in T - convex in V

I G = E − TS + PV concave in T - concave in P
Note that the Legendre transformation changes the
convex(concave) property of the potential.
General discussion
Suppose we have a function f (x) which is convex in
x . That is

f ′′(x) ≥ 0 (124)
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The Legendre transformation to g(u) is given by

g(u) = f (x(u))− ux(u) (125)

where f ′(x) = u. To obtain the derivative of g(u) we
write

dg = f ′dx − xdu − udx (126)

Since f ′(x) = u →
dg

du
= −x(u) (127)

d2g(u)

du2
= −x ′(u) = − 1

f ′′(x(u))
≤ 0 (128)

The relation between x ′ and f ′′ above follows from
f ′(x) = u

This implies that the Legendre transformation of a
convex function (f (x)) is concave in the transform
variable.
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I This result implies the results we saw above on the
relation between thermodynamic potentials and their
Legendre transforms.

Third law of thermodynamics
The statement of the third law is

(limT → 0)(limV →∞)
1

V
S(V ) = 0 (129)

I The first limit is the thermodynamic limit which
takes the V →∞ keeping the density and other
intensive variables constant.

I Thermodynamics and statistical physics of systems
such as liquids gases and solids deal with the physics
of electrons
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I There is a residual entropy at the nuclear level at the
temperatures we normally reach.

I This implies that a more useful statement of the
third law is.

(limT → 0)(limV →∞)
1

V
S(V ) = So (130)

I So is a reference entropy that is independent of
chemical composition, pressure, crystalline form · · ·

I Nuclear spins are insensitive to these parameters at
the temperatures we are discussing.

Application to metastable states
Consider a system that can exist in two crystalline
forms (a) and (b) one stable and one metastable.
What is a metastable state?
Consider a system that can exist in the solid, liquid
and gas phase.

I For a fixed temperature the equilibrium state
minimizes the free energy.
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I The free energy is

F = E − TS

I Since the energy is a minimum and the entropy a
maximum for a fixed temperature (T ) F is a
minimum.

I Suppose T = 0 → F = E and the only consideration
is minimizing the energy.

I Suppose T = ∞→ F = −TS and the only
consideration is maximizing the entropy.

I For a finite temperature (not zero or infinity) there is
a competition between maximizing the entropy and
minimizing the energy.

I Consider a simple substance in the liquid phase.
Lowering the temperature enough causes freezing
into a crystal (lower energy-lower entropy)

I Raising T enough will cause the solid to melt.

I This phase transition is represented mathematically
by the switch from (solid) minimizing energy at low
T to (liquid) maximizing the entropy at high T .
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I The equilibrium phase transition (for fixed pressure
and density) will always occur at the same
temperature.

I What does a system at the phase transition
temperature TP look like?
At the phase transition both phases are equally likely
since we expect the low temperature phase(solid)
slightly below TP and the high temperature
phase(liquid) slightly above TP .

I The free energy then must have two minima at the
phase transition temperature.

I One minimum represents the solid phase and one
the liquid.

What happens to the liquid(solid) minimum when
the temperature is raised(lowered)?

I Since we expect the free energy to be a continuous
function of the temperature one minimum will be
higher than the other.(figure4)
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I Since the stable state is the free energy minimum;
What is the relative minimum correspond
to?-metastable state

I Metastable states exist between all phases

I liquid-solid
I liquid-gas
I gas-solid

How do we understand metastability?

I Suppose the system is in a metastable state. →
There exists a lower minimum corresponding to the
stable state.
We make the following assumptions .

I The metastable state can be treated with
equilibrium methods.(we will return to this )

I Fluctuations about the mean value of say the density
(think liquid-gas) are compact - have a well defined
surface and volume.

I The metastable and stable minima are at about the
same depth. The stable minimum is only slightly
lower.
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I Probability of a droplet is low so we can assume that
they are independent.

I The free energy cost of creating the surface between
the droplet and the background metastable state is
independent of the “distance” into the metastable
state.(quench depth) (figure5)

I The free energy density (∆f ) in the interior of the
droplet is the same as that of the stable state.
What is the free energy cost of a droplet?

FD = −|∆f |ld + σld−1 (131)

I The first term is the contribution from the droplet
interior. Since the stable phase has a lower free
energy ∆f < 0.

I The second term is the free energy cost of creating
the surface between the interior of the droplet and
the metastable state. The surface free energy density
(σ) is usually called the surface tension. σ > 0
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I Since the volume term is negative and the surface
term is positive the free energy cost increases and
then decreases as l increases.(figure6)

I The maximum of the FD(l) curve is found by
differentiating FD(l) with respect to l and setting it
equal to zero.

lc =
d − 1

d

σ

|∆f |
(132)

I The probability of a critical droplet PCD(∆f , σ) is

PCD(∆f , σ) ∝ exp
[
−βFD(lc)

]
=

exp

[
−β

1

d

[d − 1

d

]d−1 σd

|∆f |d−1

]
(133)

I The probability that there is a droplet being
proportional to the exponential of the negative of
the free energy will be discussed later.
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I The fact that the probability of the droplet is
independent of interaction of droplets comes from
the assumption of low probability. This will be true if
|∆f | << 1.

I In this regime the metastable state is long lived and
can be treated as an equilibrium state.
Latent heat
If we lower the temperature by removing heat from
liquid water the system will be totally liquid water at
0 degrees centigrade if we remove no more heat once
we reach 0 degrees.

I For a quasi static process dQ = TdS so if we have a
latent heat L we have

L

TP
= S (b) − S (a) (134)

where S (a)(T ) and S (b)(T ) are the entropies of the
states (a) and (b) at temperature T .
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I To calculate the entropy at TP of each phase we can
integrate the specific heats at fixed y from 0 to TP .

S (a)(TP) = So +

∫ TP

o
dT

C
(a)
y (T )

T
(135)

and

S (b)(TP) = So +

∫ TP

o
dT

C
(b)
y (T )

T
(136)

Remember So is the residual entropy at T = 0 which
is independent of the crystalline form.

I We can measure the entropy difference in two ways.
I Measure the latent heat and calculate the entropy

difference from eq.(??.
I calculate the specific heat integrals and subtract.

I If the two methods give the same result this is
evidence that two crystalline structures indeed have
the same residual entropy So

I This has been verified by measurements. See
example in book: grey tin.
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Low temperature behavior of specific heats

I The third law constrains the behavior of the specific
heats as T → 0. We begin with

S(T ;P,V )− So =

∫ T

0
dT ′CP,V (T ′)

T ′ (137)

where the P or V is held constant. Note that CP,V

is referred to as the specific heat but it is often
referred to as the heat capacity. The specific heat is
the heat capacity divided by V . Hence the heat
capacity is extensive as is the entropy.

I If we divide both sides of eq.(??) by V , S/V must
be finite → the integral must converge.

I This, in turn, implies that the specific heat go to
zero as T → 0
Without proof we state three other results that
follow from the third law as T → 0



Physics 541

W. Klein

Introduction

Walls

Work, Heat, Internal
Energy

Maximum Entropy

Maximum Work and
Heat Engines

Thermodynamic
potentials

Specific heats

Gibbs-Duhem

Stability conditions

α =
1

V

∂V

∂T

∣∣∣∣
P

→ 0
∂P

∂T

∣∣∣∣
V

→ (138)

CP − CV

CP
∼ αT (139)

Ideal gas

We want to consider some properties of the
gas-liquid system as described by the equation of state.

I First we look at the ideal gas equation.
I From experiment on low density-high temperature

gases lead(as we have seen earlier) to the following
equation of state

PV = NKBT (140)

or
Pv = KBT (141)

where v is the volume per particle.
I As we will see when we do statistical mechanics this

is an equation that describes a system of particles
that do not interact.
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What kind of interactions can we expect in realistic
systems?

I Hard core repulsion at short range and an attraction
at longer ranges.

I The hard core reduces the volume per particle v .
I The reduction of volume per particle is represented

by v → (v − b) where b is a positive constant.

I The attractive part of the potential reduces the
pressure.

I The pressure reduction is represented by
P → (P + aρ2) = (P + a

v2 ).

Putting these terms together we have the van der
Waals equation

(P +
a

v2
)(v − b) = KBT (142)

We can rewrite this as

P =
ρKBT

1− ρb
− aρ2 (143)
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We plot the pressure P as a function of the density ρ
for a fixed temperature T .

I For low temperature there is a maximum and
minimum in the pressure vs the density

I When the temperature is high the maximum and
minimum disappear.

I The temperature at which the maximum and
minimum disappear is a critical point.(second order
phase transition)

I It is also the end point of a line of first order phase
transitions.

To understand this we go back to the Gibbs potential
eq.(??) and the Gibbs-Duhem relation eq.(??)

I Gibbs potential

G = µN = E − TS + PV

I Gibbs-Duhem

Ndµ + SdT − VdP = 0
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From the Gibbs-Duhem for constant T we have

∂µ

∂P

∣∣∣∣
T

= v (144)

The chemical potential µ then is

µ(P) =

∫ P

0
dP ′v(P ′) (145)

I The figure7 is µ vs P. From the figure7 we see that
G is a concave function of P over A → B → C .

I From the figure7 G is convex from D → E
What is the meaning of the part of the curve
B → D or E → B?
Let’s look again at

G = µN = E − TS + PV = F + PV

I For a fixed P and V , F is a minimum in the stable
phase → G is a minimum.
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I This implies that the B → D and E → B parts of
the curve are metastable states. (concave G but not
the lowest value of G in a concave region)

I The circuit B → E → B returns the system to the
same value of the Gibbs potential G .

I In the P vs v or P vs ρ diagram this is the equal
area construction.

I In the figure8 we plot the locus of the ends of the
Maxwell construction as a function of temperature.

I This is the coexistence curve.

I In the figure8 we plot the locus of the maximum and
minimum of the P vs ρ curve as a function of T .

I This is the the spinodal curve.

I Inside the spinodal the system is on the curve
D → E and is convex→ unstable.
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I As the spinodal is approached

1

κT
= −v

∂P

∂v

∣∣∣∣
T

→ 0 (146)

I This implies that the isothermal compressibility
diverges as the spinodal is approached

If we want to stay in stable equilibrium then the path
B → D → E must be avoided.

I This implies that we follow the Maxwell
construction. → The density has a jump with no
change in the pressure.

I This is referred to as a first order phase transition
I It is called first order because there is a discontinuity

in the order parameter as a function of the pressure.
I As the temperature is raised the size of the jump in

the density decreases and vanishes at Tc the critical
point.

I At the critical point the minimum and maximum in
P vs ρ coalesce and there is an inflection point at
the critical point.
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We have then

∂P

∂ρ

∣∣∣∣
TC ,ρC

= 0
∂2P

∂ρ2

∣∣∣∣
TC ,ρC

= 0 (147)

From eq.(??) we have

KBTC

(1− ρCb)2
= 2aρC (148)

and
2bKBTC

(1− ρCb)3
= 2a (149)

Solving for a and b

a =
9

8

KBTC

ρC
b =

1

3ρC
(150)

The van der Waals equation can be written as

P =
3ρρCKBT

3ρC − ρ
− 9

8

KBTCρ2

ρC
(151)
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Taking the derivative of P with respect to ρ and
setting ρ = ρC we obtain

∂P

∂ρ

∣∣∣∣
ρC

=
9

4
KB(T − TC ) (152)

I From eq.(??) and some simple manipulation we have
that the isothermal compressibility diverges as

κT ∼ |T − TC |−1 (153)

I This is an example of a critical exponent that
characterizes the physics at the critical point.

I There are several other critical exponents that we
will encounter later in the semester.

I The van der Waals equation is a meanfield
description of a system. We will also discuss this
later in the semester.


