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1 Introduction

The first speculations on the atomic nature of matter was made by Greek philo-
sophers such as Anaxagoras (500-428 BC), Empedocles (484-424 BC), Leucippus
(450 BC) and Democritus (460-370 BC) arguing that the universe consists of
empty space and indivisible atoms. Aristotele (384-322 BC), however rejected
the atomic hypothesis and strongly supported the concept of the continuity of
matter.

This question was re-opened following the experimental discovery of gas laws
by R. Boyle in 1662, the interpretation of these laws by D. Bernoulli in 1738, and
the development of the kinetic theory of gases throughout the nineteenth century
by R. Clausius, J.C. Maxwell and L. Boltzmann. In parallel laws of chemical
combination were being discovered, such as the law of definite proportions (by
J.L. Proust in 1801) and the law of multiple proportions (by J. Dalton in 1807),
supporting the concept of the atomic nature of matter. During the following years
elementary units and physical constants were determined strongly related to the
atomic nature of matter:

e Avogadro’s Number N, = 6.02214 - 10%—L; is the number of atoms or
molecules in one mole of any substance. A mole is defined as the quantity
of 12C' weighing p = 12 grams, where p is the atomic or molecular weight
of the substance.

e Faraday’s constant F' = 9.64853 - 104% defines the existence of the
elementary unit of electricity. Faraday’s laws of electrolysis, which can be
summarized by the formula,

_@n

M —
Fu

where () is the quantity of electricity and v the valency, demonstrate that
it takes 96484.3 C to liberate for example 1.008 g of hydrogen, 35.5 g of
chlorine and 8 g of oxygen.

e

e Specific charge ;> = 1.75881962 - 1011k—Cg of an cathode ray measured in
Thomson’s experiment (in 1897), where e is the natural unit of electricity
and m, is its mass. The specific charge for the lightest known positive ion
(the hydrogen ion) is smaller by a factor of approximately 1840, so either
the cathode ray particles are much lighter or they carry a very large charge.



2 1 Introduction

e The charge of the electron was measured in Millikan’s experiment to
be e = 1.6021773 - 107 **C. Combining these results with the value of %, a
value for the mass of the electron is obtained m, = 9.1093897 - 10~ 31kg

During the later part of the nineteenth century, and in the early years of the
twentieth century, evidence accumulated that classical physics, i.e. Newton’s laws
of motion and Maxwell’s electromagnetic equations, are inadequate to describe
atomic phenomena. Most striking is the atomic or molecular picture of a number
of electrons moving and accelerating around an attracting nucleus, similar to
the planets circling around the sun in the solar system. This picture is in direct
contradiction to the stability of atoms and molecules, since accelerating charges
would continuously loose energy by emitting electromagnetic radiation, as a result
of Maxwell’s equations:

- -
VeB=0 (1.1)
— — 0 —
- —
VeD=p (1.3)
VxAd-2B-7 (1.4)
ot
with relations in homogeneous and linear media:
— - = —
B = po(H + M) = prpo H (1.5)
— - = —
D =¢E+ P —ee0l) (1.6)

Electromagnetic radiation from decelerated electrons can be observed for example
in the bremsstrahlung and one of the most powerful light sources available make
use of highly accelerated charged particles to generate broadband electromagnetic
radiation from the ultraviolet to the near infrared spectral range (Free electron
laser in Fig. 1, BESSY in, Fig. 1).

Abbildung 1.1. Light generation in a free electron laser. Note, that the lasing process is due
to stimulated emission in the direction of the moving electrons.

1.1 Planck’s energy distribution law

The first clues to a new physics, based on the quantisation of energy, came from
a study of the properties of radiation from hot bodies. In 1879, J. Stefan showed
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1.1 Planck’s energy distribution law 3

Abbildung 1.2. Top view of the electron synchrotron BESSY in Berlin-Adlershof. The elec-
trons stored on circular orbits move with relativistic velocities, emitting continuously synchro-
tron radiation.

that the total power emitted per unit area, R, called the total emissive power (or
total emittance) from a body at the absolute temperature T could be represented

by the empirical law
R =eoT* (1.7)

where € is called the emissivity with € < 1. The emissivity, €, varies with the
nature of the surface, and o = 5.67- 10_8% is known as Stefan’s constant. The
spectral distribution of the emitted light depends strongly on the temperature
(Fig. 1.1) and exhibits a maximum value at wavelength \,,,, following the Wien’s

displacement law, with b = 2.898 - 10 3mK:
AmaaT = b (1.8)

When a body is in thermal equilibrium with its surroundings, and therefore is
at constant temperature, it must absorb and emit the same amount of radiant
energy per time. Analogue to the emissivity, absorptivity, a, is defined as the
fraction of the absorbed radiant energy falling on the surface. A body having
an absorptivity equal to unity is called black body. A close approximation to
a black body is an enclosed cavity with blackened interior walls containing a
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4 1 Introduction

small hole. Radiation that enters the hole has very little chance of escaping. If
the inside of this cavity is in thermal equilibrium it must emit as much energy
as it absorbs (on every time scale) and the emission from the hole is therefore
characteristic of the equilibrium temperature T inside the cavity. This type of
radiation is called thermal radiation. In the latter part of the nineteenth century

Temperature T:
5000 K
—— 1000 K
— 373K
— 293K

p() (10° Jm*)
w

x 500000

Wavelength A (um)

Abbildung 1.3. Energy density per unit volume and wavelength as a function of wavelength
in um for different temperatures T.

experimental measurements of this spectral profile had already been obtained
and fitted to an empirical formula. Attempts to explain the data were based on
treating the electromagnetic radiation as a collection of oscillators, each oscillator
with its own characteristic frequency. The problem was to determine how many
oscillations at a given frequency could be fitted inside a cavity. For convenience
purposes, we choose cartesian coordinates and a cubical cavity with sides of length

L. A plane electromagnetic standing wave e'%*7 has to satisfy the (periodic)
boundary conditions inside this cavity

e — ghe(@+l).and - A(0) = A(L) =0 (1.9)

with similar equations for the y and z components of the wave. Equation 1.9 is

satisfied if
B 27l

L

H
where 3 = {x,y,2} and k, are the components of the wave vector k of the
oscillation and ¢ are integers.

k, (1.10)

2
w 27,

K =kk="k 111
B e A (1.11)
This means for a single component the wavelength has to be A, = £ or k, = 2.

H
In the three-dimensional k -space, whose axes are k,, k,, and k, the possible &,
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1.1 Planck’s energy distribution law 5

values in the volume L? satisfying equation 1.10 form a lattice with size of a
unit cell of (2£)3. The spacing of adjacent modes in the k, direction is 2% and

the permitted &, values are 0, %’T, 47”, etc., correspond to oscillation wavelengths
— —

00, L, £, etc. The total number of modes of oscillation with | k| < k (| k |-radius

in a sphere) and two distinct polarizations of the radiation field is

ﬁ
volumeof k — space

N, =
F volume of unit cell
2><4l<:3><(L)3 (1.12)
= - — .
3 2m
K33
= 52 (1.13)

Since k = 2“7” the total number of frequencies < v in the volume V = L3 is

Smvil? 8wV
N, = = 1.14
3c3 3c3 (1.14)
The mode-density, which is the number of modes per unit volume and unit fre-
quency interval is

. 1 dN,(v) 8mv?

plv) = V dv 3
Rayleigh and Jeans used this type of mode-density to describe the spectral com-
position of black-body radiation by calculating the energy density

(1.15)

8m?
p(v) = 3¢ (1.16)

where € is the average energy in the mode with frequency v. The energy ¢ of
each oscillator can take any value, independently of the frequency v, but since
the system is in thermal equilibrium, the average energy € can be obtained by
weighting each value of € with the Boltzmann factor exp (—¢/(kgT)), where kp =
1.380658 x 10723JK~! is Boltzmann’s constant. With 3 = ]%%T we have

Jee P de

= _ _ 1.17
c Jo ePede (L.17)
d[z /oo P de] LT (1.18)

= ——lin € gl=—== .

s~ Jo g
Inserting this value of € into (1.16) gives the Rayleigh-Jeans distribution law
Smv?

p(v) = = kgT (1.19)

In the limit of long wavelengths the Rayleigh-Jeans result approaches the experi-
mental results. However, p(v) does not show the observed maximum, and diverges

Physics of Atoms and Molecules



6 1 Introduction

as ¥ — o0. This behaviour at short wavelengths is known as the 'ultra-violet ca-
tastrophe’. Planck resolved these difficulties with his quantum hypothesis. He
proposed that each oscillation mode could only take certain quantized energies

1
E,, :(n+§)hl/, n=20,1,2,3..., (1.20)

where the contribution %hv is called the zero point energy, with the Planck’s
constant h = 6.6260755 x 1073*.Js. The probability of finding energy E, in a
particular mode of oscillation is given by classical Maxwell-Boltzmann statistics
(integration over the energy is not longer possible), i.e.,

—En

P kpT —nhv

Pln) _ ere” et (1.21)
0) ot

where P(n)and P(0) are the probabilities of finding the energy E,, and the lowest
energy FEy in the mode. The average energy F, of a mode v is now given by:

B, = Z P(n)E, = ZP(O)e;;hTU (n+ %)hl/ (1.22)

n=0

Now, if a particular oscillation is excited it must be in one of the quantized states,
therefore the normalization relation holds

i P(n) = 1 (1.23)

iP(O)e?ZhT” ~ 1 (1.24)
~ po) = £ (1.25)
% 2% P(n) 2% o TR (1.26)
— P(0) % (1.27)
_ P(0) Z°‘+ (1.28)

Physics of Atoms and Molecules



1.1 Planck’s energy distribution law 7

This gives
—nhv
S * (n+ HhveFsT
E, = 2nzol 2),nh,, (1.29)
ZZO:OQ kgT
—hv —2hv —nhv
1 hve*sT + 2hve*BT + --. 4+ nhre #s8T
= —hv + —hu —2hv —nhv (130)
2 1—|—ekBT—|—ekBT—|—~~~—|—ekBT
J —hv —2hy
1 —(ekBT+€kBT +)
= Shy— A/kD (1.31)
2 —Li
(1—e*BT)
d 1
1 ]
- I T (1.32)
(l—ekBT)
d _ —Bhr\—1
1 51 —e)
= —hv-— 1.33
2" T (A= e )T (1.33)
1 (1 — e P)=2 x hye=Phv
= —-h 1.34
T (1= e Phr)—1 (1.34)
1 hve B
= —h —_— 1.35
2" T ey (1.35)
— 1 hv
E, = - _ )
2hy + A 1 (1.36)

Here, we used the mathematical 'trick’ that the series in the numerator is the
derivative of a geometric series that we can sum easily. Another way to derive
the formula is:

— 2210(” + %>806_Bn€0 1 d - —Bne
E = S = %0 = %[ln§e 0] (1.37)
1 d 1 1 1
= 560 — %[ln(l_—m)] = 60[5 + 6550——1] (138)
Here, we used ¢p = hv. Substituting the value of € in (1.16), we find
8rv?, 1 1
pl) = (s + ) (1.39

The factor % comes from zero point energy that cannot be released, so the availa-
ble stored energy in the field is given by Planck’s distribution law:

B 8rhi3 1

p(v) [——] (1.40)
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8 1 Introduction

This is (the number of modes per volume per frequency interval) x (photon ener-
gy) x 1/(e"™/#8T —1). The quantity 1/(e"/*5T —1) represents the average number
of photons in each mode. This is called the occupation number of the modes of
the field.
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1.1 Planck’s energy distribution law

Photon
Frequency (Hz) energy (eV) Wavelength (m)
101 |- — 1016
1024 -
Gamma rays
10 (- -
102 —
10° |- —110"
102(] bas
104 - X-rays ~1 1071
101N -
L= Ultra-violet —110°*
10' - :
light
M— Visible light
n ; —10-° :
10" -
Infra-red
radiation 4
102 — 10
102 -
W
1074 |- Microwave — 10+
1pRE= radiation
10 - 11
10% =
Radiofrequency
10°% |- radiation —10?
10°
10710 |- —10*
10* =

Abbildung 1.4. Frequency ranges in different units.
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10 1 Introduction

1.2 Radiative transitions in a two level system

Consider molecules with discrete energy levels shown schematically in Fig. (1.2).
Transitions of electrons from one level to the other can occur in three ways:
Spontaneous emission, stimulated emission and stimulated absorption.

A
Ei — 00— Vi is the frequency of the
I emitted photon
I
RVAVAV. th
E Y
, O
/
Ex
E, with the lowest energy
E 0o—— is the ground state

Abbildung 1.5. Energy levels of a particle (atom, molecule, etc.). Radiative transitions can
occur between different energy levels upon absorbing or emitting photons.

1.2.1 Spontaneus Emission

An electron spontaneously undergoes a transition from a higher (occupied) energy
level E; to a lower (unoccupied) one E; as shown in Fig. (1.2.2). The released
energy is emitted by a photon of frequency

_ E - E

. (1.41)

Vij

This photon is emitted in a random direction with arbitrary polarization in the
absence of magnetic and electric fields. The photon carries away momentum

Wk h
7 o= 2 _pE =2k 1.42
p o 3 (1.42)
h hv
- L 1.4
Ip| N (1.43)

and the emitting particle (atom, molecule, ion, etc.) recoils in the opposite direc-
tion. The probability of the spontaneous emission process is given quantitatively
by the Einstein coefficient A;; defined as the probability per second of a sponta-
neous transition from level ¢ to level j. If the population density per unit volume
in the level 7 is N; then N;A;; is the probability per second and unit volume for
a transition from level i to level j (i — j). The total rate at which spontaneous
radiative transitions are made between the two levels is

dN;
dt

= —N;Ay; (1.44)

Physics of Atoms and Molecules



1.2 Radiative transitions in a two level system 11

E, ® N; Population density
RVAVAV: 0\
Y ,
Abbildung 1.6. Transition from a higher energy i level to a lower energy level j by light

emission.

The negative sign indicates that the population of the upper level is decreasing.
Generally the transition of an electron can occur to more than one unoccupied
lower level, unless it is in the first (lowest) excited level. The total transition rate
for transitions from level i is A; s™! where

A = ZAU (1.45)
J

The summation runs over all levels j lower in energy than the level ¢ and the
total rate at which the population of level ¢ changes by spontaneous emission is

dN; .
prai —N;A; = N, = constant x e A

with ¢ = 0 and N; = N? it is

(1.46)

N; = Nle 4, (1.47)

The population N; of the level ¢ falls exponentially with time by spontaneous
emission. The time in which the population falls to 1/e of its initial value at
t = 0 is called the natural or radiative lifetime 7; of level i, where 7, = 1/A;. The
magnitude of this lifetime is determined by the actual probabilities of transitions
from level ¢ by spontaneous emission.

Transitions which are likely to occur are called allowed transitions, those which
are unlikely are said to be forbidden. Allowed transitions in the visible spectral
range have A;; coefficients in the range of above 10° s™!, whereas forbidden transi-
tions in this spectral range have A;; coefficients below 10* s71. These probabilites
decrease as the wavelength of the transition increases. It turns out that there
are no transitions to be absolutely forbidden, but some transitions are so unli-
kely that populated levels are very long lived. They are said to be metastable.
Levels with lifetimes in excess of one hour have been observed under laboratory
conditions.

Real transitions are not infinitely sharp, they are smeared out or broadened.
A particle in a given energy level can have any energy within a finite range.
The frequency spectrum of the spontaneous emitted radiation is described by the
lineshape function, g(v). This function is usually normalized for a single transition
so that

/000 gv)dv=1 = /_Z g(v)dv =1 (1.48)

Physics of Atoms and Molecules



12 1 Introduction

0,006+

g(v)

0,003+

0,000 r r r
14800 15200 15600

Frequency (cm"1)
Abbildung 1.7. Lorentzian line shape with central frequency vy.

g(v)dv represents the spectral density of photons emitted spontaneously in the
frequency range v + dv. The lineshape function g(v) is usually sharply peaked
near some frequency vy, as shown in Fig.(1.2.1), and is frequently written g(vy,v)
to highlight this. The integration limits ranging from —oo to oo because then g(v)
can be viewed as the Fourier transform of a real function of time. For a plane
wave we introduce the concept of intensity, I, with units W m=2. The intensity is
the average amount of energy per second transported across the unit area in the
direction of the wave. The spectral distribution of the intensity, I(v), is related
to the total intensity, Iy, by

1) = Iog(v) (1.49)

Note, that real plane waves do not exist. Similarly, the spectral distribution of
the power, W (v), is related to the total power, Wy by

W(v) = Wog(v) (1.50)

For a collection of identical particles with the population density N; the total
spontaneously emitted power per frequency interval is

W(v) = N;A;hvg(v) (1.51)

and is decreasing with time if the population density decreases.

1.2.2 Stimulated Emission

In addition to spontaneous emission, transitions can be stimulated by the action
of an external radiation field, as shown in Fig. (1.2.2). Let the energy density
of the externally applied radiation field at frequency v be p(v) and [p(v)] =
Jsm™3. The rate at which stimulated emission occurs is NoBb, (v) where B, is a
function specific to the transition between the two level 2 — 1 and its frequency

Physics of Atoms and Molecules



1.2 Radiative transitions in a two level system 13

Abbildung 1.8. Process of stimulated emission in a two level system.

dependence is the same as the lineshape function
By, (v) = Baig(vo, v). (1.52)

Bo, is called the FEinstein coefficient for stimulated emission. The total rate of
change of population density by stimulated emission is

dN. o
d—tz = —NQ/ Bl p(v)dv (1.53)
= —Nngl/ g(vo, v)p(v)dv (1.54)

with units of [By] = m®J~'s72. The energy of a radiation field p(v) is related to
the intensity I(v) by

p(v) = —=. (1.55)
and the number of photons at given intensity is

I(v
Nphotons = }S,V) (156)

The ideal monochromatic radiation field at frequency v5; has an infinitely narrow
energy density profile at v5; and the differential equation in (1.54) is then

dN- >
d_152 = _N2BQI/ 9(v0, V)p2 (v — vo1)dv = — Ny Boypag(vo, va1)  (1.57)

Note, the rate of stimulated emissions produced by the input monochromatic
radiation is directly proportional to the value of the lineshape function at the
input frequency. If the stimulating radiation field has a spectrum that is broad,
and we can assume the energy density p(v) = p(vp) as constant where g(vp, V) is
significant, the differential equation becomes

dN:- *
d_752 - _Nszl/ 9(vo, v)p(ro)dv = =Nz Ba1p(v). (1.58)

Physics of Atoms and Molecules



14 1 Introduction

1.2.3 Stimulated Absorption

As well as stimulating transitions in a downward direction (2 — 1), transitions
can be stimulated from a lower to a higher level (1 — 2). The rate of such
absorptions is

Nip(v) Bi2g(vo, v) (1.59)

which gives a result similar to Eq. (1.54)

dN- o
d_tl = —N1312/ g(vo, v)p(v)dv. (1.60)

B is a constant specific to the transition and is called the Einstein coefficient for
stimulated absorption, with p(v) the energy density of the stimulating radiation
field. There is no analog in the absorption process to spontaneous emission, since
a particle cannot spontaneously gain energy without an external energy supply.
In stimulated emission the emitted photon has exactly the same frequency as the
stimulating photon. In absorption the incident photon disappears, as shown in
Fig. (1.2.3). In both processes the particle (atom, molecule, ion, etc.) recoils to
conserve linear momentum.

E2
A\ PEVAVAY: 2

N, E,—o— N

E1—Q— N1 E1 N'1

hv,, = E,- E;

Abbildung 1.9. Stimulated absorption in a two level system. The photon absorbed after the
interaction.

1.3 Relation between Einstein coefficients

In thermal equilibrium the populations of the two levels in our two level system
Ni and Ny are constant

dNy  dN;  d(Ny+ Ns)
dt— dt dt =0 (1.61)

and the rates of the transitions between the levels are equal. Since the energy
density of the black-body radiation field is nearly constant over the range of the
lineshape function where the transitions between level 2 and 1 takes place, we
calculate the differential equations in thermal equilibrium with (1.44), (1.54) and

Physics of Atoms and Molecules



1.3 Relation between Einstein coefficients 15

(1.60) to be
dN-
d_tz = —Nnglp(l/) — AglNg + NlBlgp(V) (162)
dN-
d_tl = —NyBip(v) + Agi Ny + NaBoip(v) (1.63)
Na _ __Bupl) (1.64)
Ny Bap(v) + Ag
The ratio of the population densities of two levels with energy difference hv is
Ny —hv/kpT
— = v 1.65
LK (1.65)
Biap(v)
—hw/kpT __ 12D
= e = 1.66
Boip(v) + Ax (1.66)
= p()(Bue ™/*T — Biy) = —Aye /T (1.67)
Ag
p(V> BlQ@hV/kBT . B21 ( )
87Thl/3 A21
3(ohv/kpT _ - hoJkpT _ (1.69)
c (6 B 1) Bise B By
The last equality can only be satisfied if
812 — BQl (170)
and —
mhy
A21 = B21 3 (171)

Equations (1.70) and (1.71) are called Einstein relations. The spontaneous emis-
sion rate, Ao, is independent of external radiation field and is important for the
energy density p(v), because with Ay; = 0 it follows from (1.68)that p(r) = 0. No-
te, that contributions of the spontaneous emission increase with v with respect
to contributions of stimulated emission. This is very important for the develop-
ment of lasers where a population inversion between two levels induce a strong
stimulated emission signal (LASER: Light amplification by stimulated emission
of radiation).

1.3.1 Level Degeneracy

In real systems it frequently happens that a given energy level corresponds to a
number g of different arrangements, where g is the degeneracy of the level. The
separate states of the system with the same energy are called sub-levels. Assume
the levels 2 and 1 consist of a number of sub-levels g» and ¢;. For each of the
sub-levels of level 1 and 2 with populations n; and ny the ratio of populations is

M2 _ ohw/keT (1.72)
ni
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16 1 Introduction

and N; = giny, Ny = gans. Therefore
ny _ g1\

= 1.73
n1 g2 N1 ( )
and N
2 J— 92 —hV/k}BT
~— = —¢€ 1.74
N g (1.74)
and from (1.64) it gives
E — M — %e_hl’/kBT (1_75)
Ny Boap(v) + A ¢
= p(”)[92321€7hy/k5T — 1 Bo] = — Ay goe~h/keT (1.76)
g2 A2
= = 1.77
Srhy? 1 B Ay -
3 ew/ksT _ 1 z—lBlgth/kBT — By ( : )
2
= 2B, = By (1.79)
g2
and A S8rhi?
21 v
= = . 1.80
Bor 3 (1.80)

It is instructive to examine the relative rates at which spontaneous and stimulated
processes occur in a system at temperature T. The ratio is

An sty ] (1.81)

" Bopv) ()

Here, p(v) is the black-body radiation field and the average number of photons
in a mode in the case of black-body radiation is

_ 1
For T=300 K and A\ = 500nm or v = 6 x 10 s~ ! the ratio hv/kgT is
hv 6.626 x 1073* Js x 6 x 1014 571
= — — ~ 96. (1.83)
kgT 1.38 x 10723 JK—1 x 300 K
and so the ratio, R, of spontaneous and stimulated processes
R=e®-1=5x10" = 7a)=2x10""* (1.84)

is very high. In the visible and near-infrared region spontaneous emission is ge-
nerally dominates unless there are several photons in a mode (7(v) > 1).
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1.3 Relation between Einstein coefficients 17

In a disperse medium the refractive index varies with frequency. There the
mode density p(v) of a black-body cavity has to be modified to

p(v) 3 (1.85)

U

with p
ng=mn-+ Vd—jj. (1.86)

The ratio of As;/Bs; changes without changing the ratio of spontaneous and

stimulated processes.
Ay 8mhivPn’ng

3

1.87
By 3 (1.87)
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1.4 Fouriertransformation

In a multitude of physical and mathematical problems it is necessary to develop
a periodic function f(t) with period of 27 by a sum of trigonometric functions.

F(t) = % + 3 (ag cos(kt) + by sin(kt) (1.88)
k=1

Periodic processes are known from dynamic properties of music and sounds, the
movement of planets, a pendulum, etc. The trigonometric functions to descri-
be periodic processes are the sine and cosine functions, which have very nice

properties:
sin(wt) = —sin(—wt) (1.89)
cos(wt) = cos(—wt) (1.90)
cos(wt) = Sin(wt+g) (1.91)
sin(wit £ wot) = sin(wit) cos(wat) % cos(wit) sin(wot) (1.92)
cos(wit = wot) = cos(wit) cos(wat) F sin(w;t) sin(wot) (1.93)
= sin®(wit) + cos®(wit) (1.94)
(1.95)
(1.96)
(1.97)

1
sin(2uwqt) = 2sin(wqt) cos(wit) 1.95
cos (2w t) cos? (wit) — sin®(wit) 1.96
1
sin(wit) = 5(1 — cos(2wit)) 1.97
t 1— t
sin(“ily = gy /lzoos@it) (1.98)
2 2
t 1 t
cos() = [T (199
t t t — wot
sin(wit) + sin(wyt) = QSin(W1 o )cos.(w1 5 2 ) (1.100)
and properties of the derivatives:
pr sin(wit) = wicos(wit) (1.101)
d
7 cos(wit) = —wysin(wit) (1.102)
vsin(k - 7)) = kcos(k - T) (1.103)
et cos(wit) + isin(wit) (1.104)
1. . )
cos(wit) = 5 [t + e7™t] (1.105)
1 ) .
Sjn(wlt) = 2_ [ezunt o efzwnt} (1106)
i
1 1
/cosz(wlt)dt = §t + Ton sin(2wst). (1.107)
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1.4 Fouriertransformation 19

In Hilbert space (£%) with period 27 the functions

{\/%, \/%? sin(wnt), \/%T cos(wit), \/i;r sin(2wit), \/%7 cos(2wit), . . } are eigenvectors
and span the whole Hilbert space. They form an orthogonal and normalized
basis, since

= / sin(wyt) sin(wst)dt = 6(wr — w). (1.108)

=T

For every periodic function ¢(t), which is a member of £% with period 27, the
deviation between ¢(t) and the trigonometric representation f,(t) becomes

™

Tim [ (g(t) = fu(t))*dt = 0 (1.109)

—T

Equation (1.109) describes the convergence in the quadratic average. The Fourier
sum Y fn(t) converges only for every single point lim, .. f,(t) = f(t) if the
function ¢(t) is continous. If the function g(¢) has points of discontinouity at t,,
then the Fourier sum becomes at t, (Dirichlet):

F(t,) = lim g(tu +h) +g(t, —h)

lim 5 (1.110)

An example for this is plotted in Fig. 1.4h. If every periodic continous function
can be expressed by the Fourier sum, the question is how to get the Fourier
coefficients a; and b;. In Fig. 1.4 we tried to guess the Fourier coefficients. To

0,5 a,=-04

81’0 a= 025 b =-0.15
S o = 0. ,=-0.
= 00 0,0
g.-o,s
1,0
’ -0,5
< 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Timeins

Abbildung 1.10. First steps of representing an arbitrary periodic function (black), as a sum
of trigonometric functions.

calculate the Fourier coefficients we can make use of the orthogonality relation.
We take the function ¢(t) multiply it with the individual eigenfunctions, and

Physics of Atoms and Molecules
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integrate over the period:

™

1

- —/g(t)cos(kt)dt, k=0,1,2, ... (1.111)
T
I

by = —/g(t)sm(kt)dt, k=1,2,... (1.112)
T

—Tr

This is nothing else than projecting out the contribution of the eigenfunction
analog to (a,b,c) e ex = a.

The Fourier coefficients of periodic function over the interval (=77, ...,T) is given
by
T -
1 t
w = 7 /g(t’) cos(T)dr, k=012, (1.113)
Gy
T -
1 t
o= /g(t’) sin( ; )at', k=1,2,... (1.114)
7

Summing up the contributions of the Fourier coefficients gives smooth functions
with negligible oscillatory features (Fig. 1.4). Note, if the Fourier coefficients are
ap and by, the phase @y is given by:
A = al+b}
ar = Ak COS Qg
b, = Agsinypyg

(&)
pr = tan | —
Qg

Note, the Fourier sum can be written as

2m . . 2T
ft) = ao+ Xk: Ay, cos gy, cos(Tk‘t) + A sin gy, Sln(?k}t) (1.119)

2
= ap+ E Ay, COS(%]{?t — k) (1.120)
k

Fourier sums can be expanded to nonperiodic functions if the following relation
holds:

/ |g(t)]dt < . (1.121)
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Amplitude

Timeins

Abbildung 1.11. a) Sine functions with frequencies 1 (black) and 2 (red); b) sum of sine
functions of a) (blue) and weighted sum of sine functions of a) with Y- 1 sin(kt) (black); c) Sine
k

functions with frequencies 3 and 4; d) sum of functions in ¢) and weighted sum of functions in
¢); ) sum of functions with frequencies 1 to 4; ) weighted sum of functions with frequencies 1

12 12
to 4; g) same as e) but with 12 frequencies Y. sin(kt); h) > 1 sin(kt).
k=1 k=1

This means, that the function becomes zero for ¢t — oo and ¢ — —oo. These
points are the analogue points to the points at —7" and T for periodic functions.

~

The continous Fourier transformation f(t) of f(t) is given by:

) = \/LQ_W / Flw)e—td (1.122)

— 00

Y 1 i wt
fw) = \/—27_/ Ft)etdt (1.123)

o0

-~

The Fourier transformation f(w) is given by the Cosine Fourier transformation
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1,0

0,81

0,64 <0
NS

0,41

0,2-

0,0 T T T T 1
0,0 0,2 0,4 0,6 0,8 1,0

Abbildung 1.12. Representation of the phase .

and the Sine Fourier transformation:

10 = 2 [ Fcoston
felw) = \/goffc(t)COS(wt)dt
) = @Ofﬁmmwdw
flw) = \/g:]ofs(t)sin(wt)dt

For an even function f(t) the Fourier transformation is given by f(t) = ﬁ(t),
for an odd function the Fourier transformation is given by f(t) = if(t). Ev

(1.124)

(1.125)

(1.126)

(1.127)

(1.128)

~

ery

function f(t) can be written as a sum of an even and an odd function:

f(t) = g(t) + ()

o) = LA+ ()
M) = SLA() — F(-1)

(1.129)
(1.130)

(1.131)
(1.132)
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Therefore, we can concentrate on the Cosine and Sine Fourier transformation.

The Fourier transformation has additional importance for the folding technique
of functions:

e(t) = [ 1gtt=r)ir = ()0 (1.133)
fiew) = 5 [(Frowed (1.131)

Some examples of Fourier transformations are:
f(t) = e’c‘t2 = Afw = —a’%e’ 1a 1.135

(1.136)

ro={ Bt} = Flop =2/ 2300 (g

Numeric Fourier transformations are presented in the following figures. Note, that
the intensity amplitudes in the time domain are given by the power amplitudes
A(w)A*(w) of the Fourier transformation. Information on the timing of processes
are reflected in the phase, given by the real and imaginary part of the amplitudes.
Short processes in time result in broad features in frequency and vice versa.
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0
-1 . . . .
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Re(AW))*Im(A(w))
o
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Abbildung 1.13. Cosine function with frequency of 50 Hz and amplitude 1.

A phase shift of 7/2 introduce a sign change in the imaginary amplitude and
vanishing of the real amplitude (Fig. 1.4)

0
-1 | | | |
0 0.2 0.4 0.6 0.8 1
Time (s)
1 T
s
Z 0
-1 . . . . . .
0 10 20 30 40 50 60 70

Frequency (1/s)

Re(A(W))*Im(A(w))
o
«» =
—

0 10 20 30 40 50 60 70
Frequency (1/s)

Abbildung 1.14. Cosine function with frequency of 50 Hz, amplitude 1 and phase 7/2.
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For a beating you need at least two frequencies (Fig. 1.4).

A
o

0 0.2 0.4 0.6 0.8 1
Time (s)

A(w)
o

!
N

. .
0 10 20 30 40 50 60 70
Frequency (1/s)

Y

0 10 20 30 40 50 60 70
Frequency (1/s)

Re(AwW))*Im(A(w))
N

Abbildung 1.15. Cosine functions with frequencies of 48 and 50 Hz and amplitudes of 1 and
1, respectively.
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Frequency (1/s)
1 T T T T T

. . . /\ /\ .
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Re(AW))*Im(A(w))
o
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Abbildung 1.16. Cosine functions with frequencies of 40 and 50 Hz and amplitudes of 0.7 and
1, respectively.
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A phase shift of 7 introduce a sign change in the real amplitude and a change
in the imaginary amplitude (Fig. 1.4).

el

0
-2
0 0.2 0.4 0.6 0.8 1
Time (s)
1 T T T T
2o A
< W
-1 . . . . . .
0 10 20 30 40 50 60 70

Frequency (1/s)

N

)

. . . . .
10 20 30 40 50 60 70
Frequency (1/s)

Re(A(W))*Im(Aw))
-

o
o

Abbildung 1.17. Cosine functions with frequencies of 40 and 50 Hz and amplitudes of 0.7 and
1, respectively. The 40 Hz Cosine oscillation is phase shifted by 7.

A phase shift of 7/2 introduce a strong change in the imaginary amplitude and
a vanishing in the real amplitude (Fig. 1.4).

e

0
-2
0 02 0.4 06 038 1
Time (s)
1 ; ; ; ;
I\
S /\ /\
o
4 . . . . . .
0 10 20 30 40 50 60 70
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1 T T T T /\
0 10 20 30 40 50 60 70
Frequency (1/s)

Re(A(W))*Im(A(w))
o
u

Abbildung 1.18. Cosine functions with frequencies of 40 and 50 Hz and amplitudes of 0.7 and
1, respectively. The 40 Hz Cosine oscillation is phase shifted by /2.
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If the frequencies are multiples of each other the information of the amplitude
can be represented by the imaginary amplitude and the real amplitude of the
multiple frequency. Note, a quarter of the higher frequency is the lower one, and
a quarter of 27 is /2 (Fig. 1.4). A phase shift of 7/2 reverses again the real and

A

0
-2
0 0.2 0.4 0.6 0.8 1
Time (s)
1 T T T T
—_ A /\
B —
g0 Vo
4
-1 . . . . . .
0 10 20 30 40 50 60 70

Frequency (1/s)
T T

1 T T

N /\ ‘
0 10 20 30 40 50 60 70
Frequency (1/s)

Re(A(W))*Im(A(w))
o
o

Abbildung 1.19. Cosine functions with frequencies of 12.5 and 50 Hz and amplitudes of 1 and
1, respectively.

imaginary part of the 12.5 Hz amplitudes (Fig. 1.4).

2 T T T T
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0 0.2 0.4 0.6 0.8 1
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Abbildung 1.20. Cosine functions with frequencies of 12.5 and 50 Hz and amplitudes of 1 and
1, respectively. The 12.5 Hz Cosine oscillation is phase shifted by /2.
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An exponential rise and decay time of an oscillatory signal induce frequency
broadening of the 50 Hz carrier frequency (Fig. 1.4).

05 . . . .
0 0.2 0.4 0.6 0.8 1
Time (s)
0.1
g
sz 0 \
01 . . . . . .
10 20 30 40 50 60 70
- Frequency (1/s)
2 o001 T .
<
E
£ 0.005
S
<
3 0 . . . . . .
o 0 10 20 30 40 50 60 70

Frequency (1/s)

Abbildung 1.21. Carrier frequency of 50 Hz with an exponential rise time of 0.1 s and a decay
time of 0.13 s.

The timing of where the Gaussian envelope function has its maximum is given
by the imaginary amplitude (Fig. 1.4).

1 T T T
0

0.2 0.4 0.6 0.8 1
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Abbildung 1.22. One Gaussian envelope function with a width of ¢ = 0.2 and carrier fre-
quency of 50 Hz, centered around 0.7 s.
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The imaginary amplitude changes if the timing changes (Fig. 1.4).
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Abbildung 1.23. One Gaussian envelope function with a width of ¢ = 0.2 and carrier fre-
quency of 50 Hz, centered around 0.2 s.

The sum of both differently timed Gaussian functions gives the sum of all con-
tribution, including the imaginary part (Fig. 1.4). It is not trivial to see by the

0
2 . . . .
0 0.2 0.4 0.6 0.8 1
Time (s)
1 T T T T
b4 0
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S
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T o . . . . . .
o 0 10 20 30 40 50 60 70
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Abbildung 1.24. Sum of two Gaussian envelope functions centered around 0.2 s and 0.7 s;
widths of 0 = 0.2 and carrier frequency of 50 Hz.

real and imaginary part how the timing looks like. On top of that in real Fourier
transformations, which are limited in accuracy, there is a big problem for long
time signals. If for example, in a symphony a single frequency is played all the
time and it should be off for only one second after 20 minutes, this affords enor-
mous accuracy. Here, small phase shifts would not reduce but increase the single
frequency, so that other ways of storing, analyzing, and compressing are used.
Wavelet transformations are very useful for such problems. They form the basis
sets for JPG and PNG formats.

Folding integrals are important in spectroscopy. They describe the signals mea-
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sured in experiments. For example an exponential function g(t) is folded with the
system response function of the experimental set up r(t) (Fig. 1.4). The measured
signal S(t) is defined by the convolution function:

o0

S(t) = / g(T)r(t —7)dr (1.138)

—00

1,0
0,8
0,6
0,4
0,2
0,0

Amplitude

0.0 02 0.4 06 0.8 10

60
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301
201
101
0
01 00 01 02 03 04 05 06 07 08 09 10 1.1
Time

Amplitude of
the folding

Abbildung 1.25. Upper panel: Exponentials g(t) and a Gaussian function (black) r(t) for
different displacement times ¢;. Lower panel: Folding function S(t) of the Gaussian with an
exponential. For each displacement in time ¢; between the exponential and Gaussian function,
the integral over the product is calculated and gives rise to S(¢;). Note, the time scale is reversed
and goes from rihght to left.
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1.5 Homogeneous Line Broadening

As shown before the lifetimes of an excited state is given by the natural lifetime
7; = 1/A;. If we consider many particles with the same lifetime excited simul-
taneously with a coherent light source, they would emit an electric field of the
decaying excited particles (for t > 0) as

E(t) = Eye Y™ coswqt. (1.139)
In the case of incoherent excitation the electric field of a single atom is given by
E(t) = Eye ™ cos(wot + ¢). (1.140)

The time constant 7. describes the damping of the electric field. The intensity
I(t) emitted by an individual excited particle is

I(t) o |E(t)|]* = E2e” /™ cos?(wyt). (1.141)

For many such particles the total observed intensity is

I(t) =) L(t) < Y Ege*/™cos*(wot + o) (1.142)
k k
E2
= Z 706727&/7-6[1 + cos2(wot + pr)] (1.143)
2 2
_ pBwm g Eoun (1.144)
2 2

We see that the lifetime 7; is two times faster than the dephasing time 7, = 27;.
This is because the dephasing time is related to the electric field amplitude and
the lifetime to the electric field intensity. The electric field is now (for ¢t > 0)

Eo

E(t) — Eoeft/QTiCOS(th) — 767t/2n [eiwot + e*iu)ot] (1'145)
- %[6"(””/?“” et/ (1.146)
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The frequency distribution of the signal is given by its Fourier transform F(w):

Ew) =

1 o

— E(t)e “tdt 1.14
o | (t)e (1.147)
1/~ @[edwi/%)t 4 e womi/2m)t o it gt (1.148)
m 2
0

@ Oo[ei(wo—w—i-i/Qﬁ')t + e—i(wo+w—i/2n)t]dt (1.149)
2m Jo
Ey 1 1
=0 0—1 0—1)1.150
27r[i(wo—w—|—i/2n)( )+ —i(wo+W—i/2Ti)( i )
B, i i
=0 — 1.151
2w (wo—w+i/2ﬂ-) (W0+w—i/27i)] ( )
E .

0 ¢ ] (1.152)

27 (wp — w + 1/27;)

Only frequencies with w > 0 are physical. The intensity of emitted radiation is

then given by

I(w) x |BW)]?=EW)E*(w) (1.153)
EZ . i(wy —w)+1/27; —i(wy — w) + 1/27
Tw) o A2 (wy — w)? + (1/27;)? 8 (wo —w)? + (1/27’,~)2] (1.154)
x 20 ! (1.155)
A2 (wo —w)? + (1/27)?
I(v) £y ! (1.156)

prche (o —v)? + (1/47T;)?

This type of function is called a Lorentzian. Since natural broadening is the same

Voip Vo V12

14800

15000 15200
Frequency (cm™)

Abbildung 1.26. Lorentzian line shape with FWHM at Av = ﬁ

for each particle, this broadening mechanism is called homogeneous broadening.
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The full width at half maximum height (FWHM) of this function is found from
half intensity points of I(v) that occur at frequencies v.1 as shown in Fig. (1.5),

where
1

47T;

(=) = (var —w0)™ (1.157)

The FWHM is given by

1 A
Ay = o = o with Av = Vil — v

(1.158)

1
2

The normalized form of the Lorentzian lineshape function for natural broadening
(Fig. 1.5) is given by

(2/nAv)

9Wen = 17 20 — 1) /ATE (1.159)

Other mechanisms of homogeneous broadening are for example:

e Soft collisions of phonons with the crystal particles, which does not abruptly
terminate the lifetime

e Pressure broadening in gaseous and liquid phase by soft collisions with
neutral or charged particles

e Stark broadening by a varying external field perturbing the energy levels of
the particle

e Resonance interactions reducing the lifetime by energy exchange with neigh-
boring particles.

The effects mention above induce phase shifts resulting in a destruction of the
macroscopic coherence of the ensemble, without reducing the population density
of the involved levels. If X;; = 1/7J is the rate per particle per unit volume
by which collisions disturb the macroscopic coherence of the ensemble of level i
and A;; = 1/7; is the intensity rate per particle per unit volume for spontaneous
emission to state j, we can deduce the decoherence rate 7. or dephasing time 7
by

1 1 1 1 1

s ;(5,4” + X)) = pra (1.160)

The rate 75 is called the pure dephasing time.

When the environment or properties of particles in an emitting sample are not
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identical, inhomogeneous broadening occurs. The normalized lineshape function
of an inhomogeneous broadened transition is given by

2 In2 In2x[2(v—u 2
V)N =+ — X €~ —v0)/Av] 1.161
9)en = oA — (1.161)
This is a Gaussian function with FWHM of Av. In a gaseous phase an inhomoge-
neous broadening mechanism is the Doppler broadening. In the condensed phase
different interactions to the environment in the non-emitting ground state and
the emitting state can lead to inhomogeneous broadening.

Generally in spectroscopic experiments, the investigator disturbs the material
system with an external perturbation (force), such as exciting a particle into an
emitting state. How long a given property of the system persists until it is avera-
ged out by the microscopic motion of the particles in the system is qualitatively
described by a time-correlation function. The time-correlation function €45(¢,t')
is the product of the pair of dynamic variables A(t) and B(t') averaged over an
equilibrium canonical ensemble:

Cap(t,1') = (A[)B(t')) (1.162)
The autocorrelation function €4(¢) of a dynamic variable A(t) is defined by
Ca(t) = (A(t)A(0)) g (1.163)

The time dependence of the dynamic variable A(t) is determined by the pertur-
bations that arise from thermal motion and molecular interactions. These per-
turbations induce fluctuations of positions and momenta of particles resulting in
phase changes of A(t) over time. The time dependence of the dynamic variable
A(t) is very complex, because the environment, consisting of a large number of
atoms and molecules, fluctuates in a complex fashion. The time dependence of
A(t) will generally resemble a stochastic noise pattern generated by the inter-
action of various degrees of freedom (Fig. 1.5). A simple example of treating a
stochastic process is given by the equation

0A(t)
ot
where the time dependence of the frequency €(¢) consists of an average part
wo = (Q2(t)) g and a fluctuating part 6Q2(¢t). If

— Q) A(t) (1.164)

Qt) = wo + 00(1) (1.165)
then the average of the fluctuations is

(62(t))e = 0. (1.166)
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Abbildung 1.27. Random fluctuations in time of the dynamic variable A.

Equations (1.164) and (1.165) define the time dependence of dynamic variable
A(t) and Q(t) in terms of wy and 6€2(t). The dynamics characterizing A(t) are
now incorporated in the random function 6€2(¢). If 6€Q2(¢) is known, it is possible
to extract dynamic information from A(t) and vice versa. The random variable
0€)(t) is characterized by the variance, defined as

A = /(692(0)) p = V/&(50(0)) (1.167)

and by the correlation time 7., given by

< (6Q(t)0Q2(0)) g 1 [
= dt = — | (5Q1)6Q(0)) pdt 1.168
The correlation time 7. is directly related to the random frequency or energy
fluctuations of the system and the time-correlation function €4(t) is related to the
line-shape function I4(w). Furthermore, A is a measure of the coupling strength
to the perturbers.

Up to now we focussed on ensemble average time-correlation functions, but in a
measurement the dynamic variable A(t) is averaged over an interval of time from
to to to + 7. In an equilibrium system the average is independent of the initial
time ty, at which the measurement started. Thus, the property associated with
A(t) can be calculated to

o 1 [to+T 1 /7
A= lim —/ A(t)dt = Tlim —/ A(t)dt. (1.169)
to - 0

Temporal coherence exists if the value of A(f+ 7) is separated from that of A(t)
by small values of 7. The coherence is lost, however, if 7 is much longer than the
correlation or coherence time. A measure of this correlation for the property A(t)
separated by a time t is given by the time-averaged time-correlation function,

which is defined as

A(t)A(0) = A(t)A = lim %/T At + 1)A(T)dr (1.170)

T—00
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In spectroscopic experiments the time-averaged time-correlation function is mea-
sured. The ensemble averaged time-correlation function and the time-averaged
time correlation function of a single particle are identical for ergodic systems

€alt) = (A()A(0))z = AWAD) = (A()A(0)).. (1.171)

The time-correlation function (TCF) has the following properties:

(A%, > (A(t)A). (1.172)
Jim (A1) A)e = (A); (1.173)

Equation (1.173) follows because for very long separation times the values of
A(t) are no longer correlated, and the average of products becomes the product
of averages. That means, the time-correlation function €4(¢) decays in time from
(A%, initially to (A)? for large values of time. The details of the time decay
depend on the dynamical nature of the physical system. When the average (A).
does not vanish, the fluctuations, 0 A, in A can be defined by

JA(t) = A(t) — (A(t))e (1.174)
and the time-correlation function of 0 A is then given by

(OA)IA(0))e = (A(t)A(0))e — (A)? (1.175)
From this it is evident that the time-correlation function of 0 A(t) always vanishes
at long waiting times. The probable range of time where the JA(t) values are
correlated can be measured by the correlation or coherence time 7., which is

defined as * (5A(t)5A(0))
o /0 Wdt (1.176)

If one assumes a markovian process, i.e. no memory of the system, all time-
correlation functions higher than €4(¢) are zero. Then the time-correlation func-
tion of 0 A(t) decays as a single exponential with relaxation time 7,, so that

(BAM)SA(0))e = (FA(O))e x et/ (1.177)

then 7. = 7, and equation (1.176) provides a proper method of determining the
correlation time, which rapidly vanishes for ¢ > 7.

According to the Wiener-Khintchine Theorem the spectral power density
for the stationary random variable A(t) is defined as the Fourier transform of the
time-correlation function €4():

L) = — / T (A(F) A% (0)udr (1.178)

27 J_o
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2 Waves and particles 37

2 Waves and particles

2.1 Photons

Electromagnetic radiation (light) behaves in interference experiments as if it were
a wave and in other circumstances, such as the photoelectric effect or Compton
effect, it behaves if it were composed of particles. These particles, called photons,
carry the discrete amount of energy E and other properties associated with the
wave.

Energy E = hv= %C (2.1)
E
Momentum p = hk = —k= @k = Ek 2.2)
c c
Rest mass m = 0 (2.3)
h
Spinl h=_— 24
pin 1 =l 2.4)

There are different energy and wavelength units used in the field of atomic and
molecular processes, such as electron volts [¢V] and wavenumbers [crm 1],

12398

E[GV] = 5 (25)
AA]

EleV] = 2418 x 10"v[H7] (2.6)
I 104

Vlem™] = ] (2.7)

_ keV
1m, = 9,11 x 10 31kg:5110—2 (2.8)
leV = 1.602x107*J (2.9)

2.2 Compton effect

The Compton effect (A.H. Compton 1923) describes the wavelength shift of in-
cident radiation after the ’collision’ of photons or electromagnetic waves with
loosely bound (nearly free) electrons. In the experimental set-up a nearly mo-
nochromatic electromagnetic x-ray beam with (Ao &~ 1A) was used to irradiate
a graphite target. The intensity of the scattered radiation was measured as a
function of scattering angle and wavelength. The results, illustrated in Fig. (2.2),
showed that although part of the scattered radiation had the same wavelength
Ao as the incident radiation, there was also a second component of wavelength
A1, where Ay > Ag. The shift in wavelength between the incident and scattered
radiation, A\ = \g — A called Compton shift could not be explained by the clas-
sical models. Classical models would predict the induced dipoles to oscillate and
emit with the frequency of the incident radiation and thus no wavelength shifts
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P

Scattered photon

Incident photon

P ¢

Recoiling electron

Crystal

Lead collimating
slits

Detector

X-ray \\\

source

G Incident beam

Scatterer

6 =90°
o

Intensity
£
|
£
1
IS
“

Ao A= Ao A— Ay A=

Abbildung 2.1. Set up and scattering pattern of photons as a function of wavelength. The
data were taken for graphite crystals.

should be observed AX = 0. The observed shift in wavelength was found to vary
with the angle of scattering and to be proportional to sin®(6/2) where @ is the
scattering angle. Moreover, the Compton shift was independent of both the ma-
terial used as a scatterer and )\, and the value of the constant of proportionality
was 0.048 x 1071%m. The results were interpreted with relativistic kinematics and
the use of momentum and energy conservation, with pg, the momentum of the
photon before interaction, p; and p; the momentum of the photon and electron,
respectively, after interaction, Fy the energy of the photon, mc? the rest mass of
the electron (here we assume a free electron with momentum zero), Fy and Es
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2.2 Compton effect 39

the photon and electron energy, respectively after interaction:

P = pi+ps (2.10)
h
Ey+me® = FEy+ Fy= )\—f + 4/ m2ct + pic? (2.11)
p: = Po—pi (2.12)
p% = ]75 ° ]75 = pg + pf — 2popy cos(6) (2.13)
Ey—E1 = c(po—p1) = \/m2c* + pic? — m.c? (2.14)
m2ct + p3c? = mict +2m.c*(po — p1) + A (po — p1)? (2.15)
P = (po—p1)*+ 2mec(po — p1) (2.16)
2mec(po — p1) = —pg— i+ 2pop1 + Py + Py — 2popr cos(9)  (2.17)
.0
mec(po —p1) = popi(1 — cos(8)) = 2pop1 Sln2(§) (2.18)
1 1 0
mec(— — —) = 2sin*(=) (2.19)
P11 Do 2
e . 9,0
TeCini— o) = 2sin?(2) (2.20)
h 2
h 0 0
A=)\ — =2 in?(=) = 2\ sin?(=) > 0. 2.21
L= o= 2o () = 2, sind(3) > 0 (2.21)

The wavelength A\, = # is called the Compton wavelength, and a photon with

Compton wavelength A, has the energy of the rest mass of the electron m.c* =
511keV

he  he-mec 9

E = Mmec”. (2.22)

ph = )\_c - h
The value of A\, = 0.02426 x 107°m ~ 0.024A is independent of g and the
material of the scatterer and in very good agreement with the observed value.
The existence of the unmodified component of the scattered radiation, which has
the same wavelength Ay as the incident radiation, can be explained by scattering
from electrons so tightly bound that the entire atom (M > m,) recoils and the
Compton shift is negligible.

The Compton effect is a nice experiment to demonstrate the particle character
of electromagnetic waves. On the other hand the wave behaviour of particles
has also been demonstrated, i.e. by observing the diffraction of electrons from
edges of slits (Fig. 2.2) and from scattering by a crystal (Fig. 2.2). According
to de Broglie (1924) all material particles possess wave-like characteristics. The
wavelength associated with particles is given by

A= (2.23)
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40 2 Waves and particles

Abbildung 2.2. Build up of an interfernce pattern by accumulating single electrons in a two-
slit experiment of Tonomura et al. (Tonomura, J. et al. American Journal of Physics 57, 117,
1989). Number of electrons: (a) 10; (b) 100; (¢) 3000; (d) 20000; (e) 70000.

The wave aspect is also reflected in Bohr’s atomic model, characterized by Bohr’s
postulate

2rr = nA, n=123,... (2.24)
L = rp (2.25)

that the orbital angular momentum L is quantised.

LM _nhp

= h 2.2
27 2mp " (2.26)

This mechanistic picture, which is an extension to the classical planetary model,
gives reasonable values for the energy levels of atoms, but is limited for deriving
properties.

Abbildung 2.3. Set up and diffraction pattern of an electron diffraction experiment on crystal
powder (from L. Germer).

me  Ze* ,, 1 1
E,—FE, = = Up) = — = S C—— 2.27
v En = bl ) =~ (Z - (227
4 h?
ag = %:5.29177><10’“m, Bohr's radius ~ (2.28)
mee
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2.2 Compton effect 41

Davisson and Germer confirmed (1925) equation (2.23) by measuring the con-
structive interference of electrons. The electrons were accelerated by a potential
of voltage V, resulting in an electron kinetic energy of & = eV.

p2

o =V (2.29)
p = 2meV (2.30)
oo (2.31)
2m.eV
° 12.3
AA] = ——e (2.32)
EleV]

At a potential of 100 V the resulting wavelength is A = 1.23A, and diffraction
effects should appear at d =~ \. Davisson and Germer observed the reflected low
energy electrons (< 400 eV) from a Ni crystal to show constructive interference
at specific angles 6,, (LEED: Low energy electron diffraction)

nA = dsin(6,). (2.33)

At energies of 54 eV the observed angle for n = 1 was found to be 6, = 50°. With
d = 2.15A, known from x-ray diffraction experiments on Ni one can calculate the
wavelengths to be

A = 2.15(sin(50°)) A= 1.65 A (2.34)
h 123 o

- vV2m.eV B NG A

Electron diffraction experiments in transmission on thin Au and Pt films were
performed by G.P. Thomson (1927). He used powder samples of very small cry-
stals, so that the orientations of crystal axes were isotropically distributed. The
measured transmission powder spectrum has axial symmetry and shows Debye-
Scherrer rings (Fig. 2.2), similar x-ray diffraction experiments. The electron dif-
fraction pattern can be explained with the Bragg condition (2.33). Since the
spatial resolution of experiments depend on the wavelength of the detecting par-
ticles, the short wavelength of electrons, which can be in the range of 1 A, are
used for electron diffraction and electron microscopy experiments resolving struc-
tural details on atomic or molecular scales.

A

— 167 A (2.35)

The properties of electrons were always an important issue in physics: J.J. Thom-
son was awarded the Nobel Prize for showing that the electron is a particle. G.P.
Thomson, his son, was awarded the Prize for showing that the electron is a wave.

Neutral particles, such as neutrons and He-atoms, show also wave properties
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42 2 Waves and particles

with different wavelengths, depending on their rest mass and velocity. The ki-
netic energy of neutrons can easily be moderated by scattering in a medium of
specific temperature. Water is an efficient neutron scatterer and is often used to
reduce the average kinetic energy of neutrons to room temperature

E = ngT (2.36)
kT = 4LO eV, atT =293K (2.37)

A crystal lattice can be used to select a monochromatic wavelength
LA — (2.38)

Pn . J2m, 3kpT

Since the mass of neutrons is much bigger than the electron mass = =~ 1800,
thermal neutrons have the appropriate wavelength for structures with distances

or lattice constants of d =~ 1 ... 10 A. Neutrons are especially useful for scattering
experiments with hydrogen atoms.

2.3 Plane waves, free particles

For an electromagnetic plane wave or photons the following equations hold

E(z,t) = e(FeT=w (2.39)
. h Ak -
p = XP = o = (2.40)
E = hu:h% = hw (2.41)
E(z,t) = enPe7-F) (2.42)
E = pc (2.43)
w = ke (2.44)

Equation (2.39) is a solution of the homogeneous wave equation

O?E(z,t) B l@zE(x, t)

=0 2.45
Ox? 2 Ot? ’ (2.45)
since inserting (2.39) gives
1
2 2y _
—k° — 02(_w )=0 (2.46)

and this is the correct dependence of E(p) and w(k). Note, that for the wave
equation eigenvalues exist for £, p, and p?, but not for z and t.
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For plane material waves or a free particle with non vanishing rest mass we have

h

7 = Xp:hE> (2.47)

E = hv=hw (2.48)
e

E = — 2.4
o (2.49)
hk?

- 2,
w v (2.50)

Now we end up in analogy with a material wave function v (z,t)

W(z,t) = (kT (2.51)
P(x,t) = en(PeT-EY (2.52)

—
T —

To guess a wave equation like (2.45) for a free particle in analogy to E = % we
choose the second derivative in x and a first derivative in t:

p(z,t) _ ip

% = P(z,t) (2.53)
P, t) __p?

O = e (2.54)
op(x,t)  iE

5 = —fzb(x,t). (2.55)

Since we have a relation between energy and momentum (2.49) the guessed wave
equation for a particle, which fulfill this equation is

R Pt ou(e)
2m  Ox? —! ot

(2.56)

Here, also Eigenvalues exist for values of E, p, and p?, but not for_> x and t.
Generalization for a bound particle with a potential V' and the force F' with

F=-VVv (2.57)
and

P -y 2.58
o T V(z) = (2.58)

gives

R2 92 (. t) L OY(z,t)
_%a—; FV(@)d(e, t) = zha—f, 1-D (2.59)
w2 — — — L0 _>7t

— o DT )+ V(T ) :m%, 3 D. (2.60)
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44 2 Waves and particles

This equation is called Schrédinger equation. It is a linear and homogeneous
partial differential equation, and in analogy to the wave equation the superposition
principle holds.

1, 1o solutions = ¢y £ ¢ty solutions (2.61)

If 91 and 19 are solutions of the Schrédinger equation (SE), then the sum and
the difference of both 11 £ 15 are also solutions of the SE. This is the fundamen-
tal basis for interference effects. Solutions of the SE are found in £2: quadratic
integrable functions. Moreover, they should vanish for plus and minus infinity.

A plane wave has momentum ?(?), but it is not localized. A plane wave has an
infinite length, but a precise momentum. Therefore it is not possible to calculate
a probability of finding a plane wave at a specific position (no normalization).
Nevertheless, taken into account the superposition principle every function of £2
can be represented by a weighted sum of plane waves. For convenience purposes,
we go on calculating in one dimensional without limiting the generality:

U(z,t) = \/% / Ak, w)e'*e=t (2.62)

Every function ¥(z,t) can be described as an infinite sum of plane waves (re-
member Fourier transformation), and the amplitude function of the wave vectors
A(k) gives the weighting of the individual plane waves. The amplitude function
can be calculated by the inverse Fourier transformation

17 A

Alkw) = — / z, t)e =t gy, 2.63

(k) = —= [ vt (2:63)

A simple example is the sum of two cosine functions of the same amplitude as
shown in Fig. (2.3).

¢($, t) — ei(lﬁcc—wlt) + e’i(kgx—wzt) (264)

; 1 2 wlTwo 1
= el(F52)a= (2521 9 cos E(Alm — Awt) (2.65)

By increasing the number of waves a more localized wavepacket with less spikes
can be generated (Fig. 2.3). Since w = w(k) with w(k) = Z—i for a free particle,
a distribution A(k) (see Fig. 2.3) is equivalent to a distribution of frequencies. If
we develop w(k) around kg, where w(kg) = wo:

dw
wk) =wo+ (k — ko)%bﬁo + ... (2.66)
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2.3 Plane waves, free particles

Amplitude

VAT

-400 -200 0 200 400
Time
Abbildung 2.4. Sum of two cosine waves of the same amplitude and w; = 0.1745s~! and
wy = 0.2094s~!. The amplitude is plotted versus time.
and insert this into (2.62) it becomes
1
(x,t) ilkor=w0t) A (J;, )Lk —ko)a=(k=ko) G ol g (2.67)
\/ 27T
1 . . dw
Y(x,1) = ——ehor—wot) A(k,w)e’(k_k())f(w_ﬁ|k0t)dk. (2.68)
V2

This means a wavepacket can be described as a product of a plane wave at kg
and carrier frequency wy, which is moving with the phase velocity v,, and an
envelope f(x — %2|x,t), which is moving with the group velocity v,.

w
Uph = k—(”) (2.69)
dw
Vgr = -k (2.70)
(2.71)

e = Vaw(k)

We can characterize the velocity of the particle or wavepacket by the group ve-

locity vy,
hk? 2hk hk  po Po
k — r = — = — = — r = — 272
w(k) 2m = Ya 2m m m = Ya m ( )
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r 1,0 © © o e © © O
Jok
0.8} * *
3 3 *x ok
2 2 0,6}
EL S
< E 04+ * *
0.2} * *
* *
1 1 Il Il 1 0,0 1 1 1 1 1
-400 -200 0 200 400 6 8 10 12 14
Frequency

Time

Abbildung 2.5. Left: Sum of several cosine waves of same (blue) and different (black) ampli-
tudes. Right: Amplitude distributions.
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Abbildung 2.6. Fourier components centered around k.

That is exactly what we expect for the velocity of a free particle. If we have an
amplitude function of wave vectors A(k) constant in the range from ky — Ak to

ko + Ak

ko= Ak <k < kot Ak
{ 0 SRt (2.73)

k
0 , else
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Then we get

(x,1)

(1)

k0+AE
1 . . dw
_ i(kox—wot) A(k’) i(k—ko)[x— 57 ko] dk
—€ €
V2 /
ko—Ak
Ak
k'=k—ko 1 i(kox—wot) / 1 zk’ [x—-4|0t] 777
= — e ak” 0% d
V2 ~ 2Ak
—Ak
a=r— j;:’t ei(koxfwot) 1 [eik’a] Ak
2Akio/ 2w ~Ak
_ ei(kox—wot) _ 1 [eiAEa . e—iA%oa}
2Akioy/ 2
_ silkoz—wot) 1 sin(Aka)
\ 27 Aka
dw

’ 1
_ i(kox—wot) __~ Ak
€ ——sinc
V2 (Akle - dk t)

(2.74)

(2.75)

(2.76)
(2.77)
(2.78)

(2.79)

Equation (2.79) describes the Wavepacket of a particle. As a direct conclusion

from the Fourier transformation taklng

Ax = 2n = Az - Ak =27 = Ax - Ap, = 27h

Ak

as the wave vector width we get:

(2.80)

This reciprocal relation between the spread in space and momentum (or time

T T T 0,10

1,01 sinc-function
> Ak =10 sinc’function
@ FWHM, ~ 20
S )
= 3
< 0,59 FwHM, ~0.2792 | 2 0,051
P S
3 Ak € 2ak
2 / <
E- 0,0
< 0,00

Space x

50 -40 -30 20 10 0 10 20 30 40 50
Wave vector k

Abbildung 2.7. Left: Amplitude of a sinc function (black) and its intensity (blue). Right: A (k)

of the distribution.

and energy) is fundamental and varies with the distribution functions of A(k).
For all distribution functions it is

A I

At-AE >

(2.81)
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These relations are examples of the wuncertainty principle and gives an upper
limit for the localization of space and momentum or time and energy. Note,
space and time are not eigenvalues of the SE, and they are directly connected
with momentum and energy via the differential equations.

In equation (2.72) the group velocity of a particle is determined by its rest mass.
For photons the rest mass is zero, and the group velocity is given by

dw dkc
Vgr = el = -l = c (2.82)

The wavepacket consisting of photons has a group velocity c, and is not sprea-
ding out in time. This situation changes if the photon wavepacket, which is a
temporally short and spectrally broad pulse, is travelling through a dispersive
medium with 7 = n(\) and the dielectric constant e. If that is the case, the wave
vector becomes dependent on the frequency

2 2
2 w w2
k(w) = ge(w) =5n (w) (2.83)
dk 1 d%k
k@) = ko + o=@ = wo) + 57—l (@ —wo)* 4+ = ko + 0k (2.84)
i, \
Vgr = (alwo) (2.85)
The term . L
ary 2 Wy
dw2‘wo - Ugr dw ’wo GVD(C‘J) (286)

is the group velocity dispersion (GVD) parameter and is useful for calculating
the change of transit time for a broadband pulse as a function of frequency
through a medium or an optical setup. Alternatively, it is also possible to look at
the complex phase in the frequency domain and define the GVD as the second
derivative of the phase with respect to frequency. The units of the GVD is [%] or
[1ength-t1$;edwidth] = [cm.J;SSfl

electric field ET(t) of short light pulses by the product of a complex envelope

function £(¢) and a phase term:

|. Tt is useful to represent the properties of the complex

1 . )
55(f)e“ﬁ(t)e“”m6 (2.87)
Here, the plus at the electric field indicate only positive frequencies, ¢(t) is the
time dependent phase and wy the frequency expectation value of the electric field.
In most practical cases of interest the spectral amplitude is centered around wy

and has non negligible amplitudes only in a small frequency range Aw, with
Aw

— < 1. (2.88)
Wo

E* (1) = %5@)6@@ _
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For inequality (2.88) to be satisfied, the temporal variation of £(¢) and ¢(t) within
an optical cycle T' = f}—’; has to be small (T" ~ 2 fs for visible radiation). The

Electric field

N @)=
A
/A ﬂ A E(t) = Je(DewDemt + ce.
e
\

g

154
Wy LA

w(t) Pulse chirp

wy /
w(t) = wi + $e(t)

Spectral amplitude

mn)l m«m
=

Abbildung 2.8. Electric field, time dependent carrier frequency and spectral amplitude of an
upchriped pulse.

physical meaning of the phase function I'(¢) is the following. The first derivative
of the phase funtion I'(¢) is the time dependent carrier frequency choosen such
as to minimize the variation of phase ¢(t).

d
w(t) = wo + —¢(1). (2.89)

dat”
For % = b = const, a non-zero value of b just means a correction of the carrier
frequency, which is now w = wy + b. For % = f(t), the carrier frequency varies
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with time and the corresponding pulse is said to be frequency modulated or chir-
ped. For ‘fT‘f > 0, the carrier frequency increases along the pulse, which is then
called up chirped (Fig. 2.3). If the carrier frequency decreases along the pulse it
is called down chirped.

The pulse duration and spectral width of a short light pulse is essential to follow
short (femtosecond) atomic and molecular dynamics. For very short and spec-
trally broad light pulses it is difficult to determine the exact pulse shape of a
light pulse. For single pulses, the typical representative function that is readily
accessible to the experimentalist is the intensity autocorrelation:

o0

Ap(7) = / I(H)I(t — 7)dt. (2.90)

—0o0

This is by definition a symmetric function A, (7) = Ay (—7) and its Fourier
transform is given by the real function:

A (Q) = T(Q)T*(Q). (2.91)

The most commonly cited pulse profiles are the Gaussian, for which the temporal
dependence of the field is:

E(t) = Ege~ W)’ (2.92)
and the secant hyperbolic

2
/) 1 ot/

E(t) = Epsech(t/Ts) = & (2.93)

with the parameters 7¢ = Tp\/ﬁ and 7, = Tpﬁ. Since, the coherent temporal
and spectral characteristics of the fields (and not intensities) are related to each
other through Fourier transforms, the bandwidth Aw, and pulse duration 7,
cannot vary independently of each other. There is a minimum duration-bandwidth
product:

Aw,T, = 21Av,T, > 2TCR (2.94)

The numerical constant cp is called the duration-bandwidth product and is on
the order of 1, depending on the actual pulse shape. The values of Aw, and 7,
are given by the FWHM (Full Width at Half Maximum) values. If the pulse
shape is complex one can introduce different definitions as for example TpQ =
((¢2I(t)) — (t1(t))?)?, using the second moment.
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For some pulse shapes the duration-bandwidth product becomes

Gaussian pulse shapes

I(t) o e V/2t/e) (2.95)
7, = 7162vVIn2 (2.96)
I(w) o« e e/ (2.97)
Aw, = 2\2? (2.98)
cp ~ 0441 (2.99)

Sech pulse shapes

I(t) o sech®(t/T,) (2.100)
7, ~ 17637, (2.101)
I(w) o sech?(mwT,/2) (2.102)
1.122
Aw, =~ (2.103)
Ts
cp ~ 0315 (2.104)
Lorentian pulse shapes
1
I(t —_ 2.105
R N LRk (2109
T, A~ 1.287r (2.106)
I(w) o e 2wlm) (2.107)
0.693
Aw, =~ (2.108)
TL
cp A~ 0.142 (2.109)

Note, this equations hold for the intensity profiles of a bandwidth limited
pulse, and the duration-bandwidth product is given for the fields (factor v/2). If
we introduce a linear chirp to a gaussian profile we get:

E) = Ee UHaW/m)? (2.110)
dy —2at
- = (2.111)
G
2In2
= Avyr, = 2—“ 1+a (2.112)
m
~ E2r2  _ W
Tw) \/%e ). (2.113)

Upon introducing linear chirp to a bandwidth limited pulse the pulse duration
will become longer.
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3 Schrodinger equation

The SE (3.1) is a partial differential equation describing the dynamics of the wave
function (7 ,t).

h? — — — . 8¢<77t)

%Al/)(r,t)—l—\/(r)w(r,t) —MT (3.1)
To interpret the meaning of the wave function (7 ,¢) we must remember that
Y(7,t) is in general a complex function and |1( 7, t)| is large where the particle is
likely to be found. The diffraction pattern made by light depend on the intensity
of the electric field, which is oc |F(w,t)|?. In similar way, M. Born made the
fundamental postulate (1926), that if a particle is described by a wave function
(7, t) the probability of finding the particle within the volume element d7 =
dxdydz about the point 7 at time t is given by:

P(7,t) = (7, 0)|2d7T =" (7, )(7,t)d 7. (3.2)

Here P(7,t) is the (position) probability density. Since the probability of finding
a particle somewhere must be unity the normalization relation must hold:

/ (T (T AT = 1. (3.3)

Note, that |[¢)(7,t)|? is the physical quantity that is directly related to the expe-
rimental observable quantities.

3.1 Expectation values

If we consider a normalized wave function ¢(7,t), then the average or expectation
value of any function f(7) is defined as:

(T = @ (7 )| F(F (T, 1)) = / ST OfTW(T AT, (3.4)

If we want to calculate the probability to find a particle described by (7, t) at
the position 7, we have to set f(7) = 7, and then the expectation value for
finding the particle at position 7 is given by:

(7) = (" (7, 0)[F(T 1)) = / ST OTET. 04T, (35)
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3.2 Time independent SE 53

Since in experiments all observed quantities are expectation values, the integral
or scalar product (f(7")) is necessary to connect the SE with physical quantities.

/ T DT, )V = (1] D) (3.6)

The square integrable functions ¢ € X and ® € X together with the following
properties of the scalar product (|) define a Hilbert space:

(D1 + Pofth) = (P1[Y)) + (P2]), VO, 0 €X (3.7)
D) = A (D), VP, e X,AeC (3.8)
(@) = (¥[®)", VP9 e X, (3.9)

W) > 0,V eX (3.10)

W) = 0 <« =0 (3.11)

The property of becoming complex conjugated upon exchanging the arguments
is called sesqi linear. From these properties the Schwarz relation follows:

[(@l)* < (P|2){W[¥) (3.12)
(@I)* = (2[0)(W]¢) & & = Iy (3.13)

Note, that the scalar product can also be written as a norm ||¢||, which is directly
connected to a metric. A metric describes specific properties of the space such as
calculating and comparing distances.

4] = VIl (3.14)
1@+ ¥]> = (D4 ¢[|®+ ) (3.15)
1 +4)* < (2] +[v])? (3.16)

Note, the scalar product (| Ag) = (1)|A@) is invariant to the Fourier transforma-
tion, with 1, @, and A the Fourier transformations of ¢, ¢, and A, respectively.

3.2 Time independent SE
The SE is very often abbreviated by

Hy(7 1) = z’h%w(?,t) (3.17)
Hy(7r,t) = E(7, (7 ,t) (3.18)
H = —;—mA+V(7>,t) (3.19)
7= % (3.20)
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o4 3 Schrédinger equation

where H is called the Hamilton operator with the kinetic energy operator (first
term) and the potential operator (second term). The Hamilton operator is known
from classical mechanics to describe the energy, and now it is used to describe
the quantum mechanical energy by going from variables to operators.

h

H(F,T) > HEV, 7). (3.21)
i

If the Potential operator V(7,t) = V(7°) does not depend on time, we can use

the product solution method to solve the SE:

(Tt = f(t)e(T) (3.22)
HUT 1) = fOHA(T) = o(F)ihs 1(1) (3.23)
1 ) = 4 Lg Tt e
Equation (3.24) is only true for all t and o(7”) if the following holds

! T) = i Lg = const. =

(p(?)Hgo( ) = hf(t) atf(t) t.=F (3.25)
1 I
= WHQO( r) = E (3.26)
N m%% ft) = E (3.27)
af(ty FE

= T ﬁidt | (3.28)
= f(t) = f(0)e ! (3.29)
= Hop(7) = Epp(7) (3.30)

With the product solution method we get separate solutions for the space and
time coordinates. As a direct consequence of this the wave function is the di-
rect product of the space wave function ¢z(7) for a specific energy E and the
time wave function or phase function f(¢). The eigenfunctions for the space wa-
ve functions are given by equation (3.29) and the time dependence by equati-
on (3.30). Thus, the resulting solution of the SE for a Hamilton operator with
V(7 ,t) = V(7) is given by

O(T ) = e 7 lpp(T). (3.31)

Equation (3.31) is the solution of the stationary SE with E representing the
energy of the state and ¢g(7") the time independent wave function. The phase
do not contribute to the probability density and therefore, ¢r has very similar
properties as :

(T D = low(T ) (3.32)
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3.3 Some properties of operators 55

3.3 Some properties of operators

H
In the Hilbert space an operator, such as the momentum operator p = ?V,

defines an operation on the wave function. Some operators U are called unitary,
if

U'U=0U"=1 (3.33)
some operators N are called normal if
N*N = NN* (3.34)
and most importantly operators H called hermitian or self adjoint if
H"=H. (3.35)

For two hermitian operators S and 7' the following rules hold

(S+T) = S +T (3.36)
(AS)* = A*S” (3.37)
(TS)* = S°T* (3.38)
(T = T (3.39)
(Ty|®) = (Y|T"2) (3.40)

The normalization condition is physical meaningful, because the probability to
find an existing particle in the universe should be one. This probability should
not change with time, and the time derivative of the normalization condition has
to vanish:

%WM==O (3.41)

Wl) + @) = 0 (3.42)

(o HOW) + (Wl Hy) = 0 (3.43)
= (~(H) + W) = 0 (3.44)
> (H[) = (6]HY) (3.45)

= H" =H. (3.46)
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3 Schrédinger equation

It follows that the Hamilton operator is hermitian.
from the time independent normalization condition:

/ U 1)V

/ V(T 0PV

/ G+ v

/ y o+ v
[ [——AJrV( ] v
o [~ nav(T.n) vav

1 I
7,1/2— VAU — 4 Ayl av
in :
—m/w@b—mw]dv
\%4
—m/v. wwj—wvw}dv
/

E(7)dV

q
with Gauss / \V4
1%

—

and Stokes/ A(T)edr

ov
=V - V|
:>%+V _(>j)

In addition one can follow

1 (3.47)
0 (3.48)
0 (3.49)
0 (3.50)
0 (3.51)
0 (3.52)
0 (3.53)
0 (3.54)

E(T)edf  (3.55)

ov

/ Vxdf (3.56)
0 (3.57)
0 (3.58)
TR (3.59)
0 (3.60)
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3.3 Some properties of operators 57

Equation (3.60) is the continuity equation, describing that the change in density
ﬁ
o0 is given by the loss of probability density j .

As mentioned before the expectation value of an operator 7, given by (7°) or

(7" is an observable, which can be measured in experiments. The uncertainty of
an observable k is given by its variance (or second weight) Ax:

Ak =/ (k%) — (k)2 (3.61)

It is easy to show that for a hermitian operator A

AA = (P|A%) — (Y]AY)? >0 (3.62)
(AA)? = (¥|(A—(A)*) (3.63)
= (P](A% = 24(4) + (A)*)y) (3.64)

= (Y| A%P) — 2(A)(A) + (4)° (3.65)

= (Y|A%) — (Y] Ay)® (3.66)

= (A= (A)[(A—(A)) = (A= (A|>>0.  (3.67)

the variance is always positive and zero if ¢ is eigenfunction of A and Ay = ay
and therefore (A) = a.

Commutators are defined by
[A,B] = AB — BA (3.68)
and if [A, B] = 0 the commutators commute, they are independent of each other,

and have the same eigenfunctions. For the variance of two operators A and B the
following holds:

(AA)(AB) > Ll{l[A, Bly)] (369

To proof equation (3.69) we introduce two operators A’ and B’ with

AT = A—(plAp) (3.70)

B'" = B-—(yg|By) (3.71)

= (plA'p) = (pl(A—(A))p) (3.72)
= (A)—(4) (3.73)

(plAp) = 0 (3.74)
(p|B'¢) = 0 (3.75)
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58 3 Schrédinger equation

The variance and commutator of A’ and B’, which are hermitian has the following
properties:

A, B] = [A B (3.76)
(A P (pl(4)%) (3.77)
= (l(A - {4)%) (3.75)
= (AA)? (3.79)
(AB')® = (AB)? (3.80)
With this one can show the general uncertainty relation:
(AAVABY = (ol(AVe)(el(B) ) (381)
= Al Bl? (382)
> |laA'p|B'p)|? (3.83)
> [S((A| B (381)
= I (AIBY) — (AelBo)) (389)
= (eABY) — (BAGI (3.80)
= (el ABY) — (| B AP (387)
= ella, Blo)P (3.89)
= lella, Bl (3.59)
= (APABY > Ll(llA.Blo)P (390)
= (A)(AB) > Ll{ellA, Blg) (391)

For the example of the space operator 7 and the momentum operator p = %V
equation (3.69) becomes:

TP = [T 5V 3.92)

= ?(??—??)i@ (3.93)

= ?(ﬁﬁ®—ﬁﬁ®—®ﬁﬁ) (3.94)

= —§@ri (3.95)

=[P, 7 = ? (3.96)
= Ap AT, > g (3.97)
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4 Particle in a box 59

So we see that it is impossible to measure the exact location and momentum of
a particle at the same time.

4 Particle in a box

Assume the most simplest way of localizing a particle in a one-dimensional (x-
axis) box of length 2a, with boundary conditions, so that the potential jumps at

the positions z = —a and = = a from zero to infinite (Fig. 4).
_J 0, Jzl<a
Viz) = { oo , else } (4.1)

Since at space positions |z| > a the potential is infinite, the probability of the

Energy

-a 0 +a
Space x (nm)

Abbildung 4.1. Potential function V(x) for a particle in a box.

wave function has to vanish for those positions, i.e. the particle is trapped between
the potential walls. This leads us to the boundary conditions

U(a) = U(—a) = 0 (4.2)

T gy = B (4.3)
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4 Particle in a box

This is the SE of a free particle with symmetric and periodic boundary conditions.
We can try to solve the SE equation with the following wave functions:

U, = cos(k,x) (4.4)
h2k?
v, = BV, (4.5)
U (a) = cos(kya) =0 (4.6)
Vy(—a) = cos(kya)=0 (4.7)
= k,a = ng, n odd (4.8)
v, = sin(k,r) (4.9)
U,(a) = sin(k,a) =0 (4.10)
Uy(—a) = —sin(k,a) =0 (4.11)
T
= kypa = ng, M even (4.12)
nm
kn, = — 4.1
= o (4.13)
R’k: w2hn?
E, = = =1,2, ... .

The solutions of the wave functions for the particle in a box and the energies
have the following properties:

discrete eigenvalues for the energy FE,, (discrete energy spectrum)

E, xn?and E, < a2

2#2
ngQ and not zero

the lowest energy is 1 =
with increasing n, ¥,, the number of nodes increases (n-1)

the stationary states are either even {cos(k,z)} or odd {sin(k,xz)}. This
follows from the parity symmetry V(z) = V(—z).

The eigenfunctions are orthogonal and complete (V,,|W,,,) = Ky, .-

a
the normalization ¢, has to be chosen such as [ ¢ cos?(%2)dx = 1

—a

the position expectation value is zero (z) =0
a

the momentum expectation value is zero (p,) = 0 = [ sin(%2)2L gin(22)dy
a

in a classical picture the probability P(x) would be equal for every space
position P(z) = %, whereas the quantum mechanical description exhibits
positions where the probability is zero (nodes) and positions where the

probability is higher.
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E,=9E

Energy
3

[
o
+
[y

Space x (nm)

Abbildung 4.2. Wave functions ¥, with n = 1,2,3 of a particle in a box with energies
E1 = n’h Eg, and E3.

8maZ2’

5 Ground state of the hydrogen atom

To test whether the SE gives reasonable answers to physical problems we calculate
the ground state of a hydrogen atom, which is experimentally well characterized.
The potential operator of the hydrogen atom V(7°) = V() has radial symmetry,
so that the eigenfunction in the lowest ground state should depend only on 7.
With this assumption the part in the /A operator depending on ¢ and 6 can be
neglected. The eigenfunction corresponding to the lowest energy FEj is ¢1(r) and
it should solve the SE:

[—%A—H/(T)} pi(r) = Eypi(r) (5.1)
o (e )+ et) = Bat)  62)
. <§_+2§) )~ i) = Baail) (53)

If we try now the wave function o1 (r) oc e/, which is square integrable, we get:

—h—z {i - 3] e1(r) — ze p1(r) = Erpi(r) (5.4)

2m |a?  ra dregr

The wave function can only be a solution if the % terms cancel each other:
2h? Ze? Amegh?
= :> a =
2ma  4me Ze2m

(5.5)

With Z =1 this is exactly the Bohr’s radius ag, and the energy Ej is given by:

72 B2 7264m2 7204
B em” e'm (5.6)

2ma?  2m16m2eht  32m2e2h?
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The energy £y = —13.6¢eV is the same as calculated by Bohr’s model. The wave

1,0

0,84

0,6

0,44

Amplitude

0,24

0,0 T T
0,0 2,0 4,0 6,0
Radial distance r (a )

Abbildung 5.1. Wave functions ¢1(r) of a hydrogen atom (black) and the probability to find
an electron between r and 7 + dr, given by |1 (r)[>r?dr (blue).

function is maximal at » = 0, but due to the polar coordinates, integration over
the volume element dV = r2drd(cos 6)dy introduces an additional r? dependency,
so that the probability of finding the electron at the nucleus is zero (Fig. 5). The
probability of finding an electron between r and r + dr is given by

P(r,r +dr) o< |@1(r)*ridr o« r2e=2r/a0 gy (5.7)

Here, the normalization is missing! To find the maximum of the probability (not
the expectation value) we have to differentiate:

%(r% 20) = 2re —a—i)e % =0 (5.8)
2

S (5.9)
o

= Traz = A0 (5.10)

The energy value E; and the dimension parameters aq are still valid, but there is
no electron moving, now we have a stationary system with the angular momentum
start at zero.

6 General remarks to solve the SE

For one dimensional problems we can write the SE as follows:

d*V(x)  2m
da? 2

(V(z) — E)¥(x) (6.1)

The sign of dzj;g” determines the curvature of ¥(z) and is given by V(z) — E. In
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Energy

1 2 Space x

Abbildung 6.1. Arbitrary potential V(z) (black) with a given energy (red) and the difference
of V(z) — E.

a classical potential V' (z) (1-D) the probability of finding the particle between

. . l — 1 . . . .
and 2 is proportional to W) (Fig. 6). It is maximal for the points

x1 and 25 and minimal for the minimum of V' (z). In the space regions of I and
I11, % is imaginary and classically forbidden. For the wave functions the regions
I and IIT are not forbidden (tunneling effect), but there the term V(z) — E > 0
and the wave function shows exponential character

1
U o e, with x = ﬁ\/Qm(V(:C) —F) (6.2)

for slowly varying V(x). In the region Il V(z) — E < 0 and the wave function has
oscillatory character.

, 1
U o e with s = ?_L\/2m(E —V(x)) (6.3)

In region I and III ‘i—,}’ has the same sign as U, so that the wave functions shape

V>E .
@ \g)z :lm:&imhon olx) for V > F and for

is concave with respect to the x-axis. In region II dj—g‘l’ has the opposite sign as
U, so that the wave functions shape is convex with respect to the x-axis (Fig.
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64 7 Harmonic oscillator 1-D

6). Convex shapes lead to oscillatory signals. At the positions z; and xs where
V(z) = E the second derivative is zero and the sign changes. This holds also
for classical models. Upon introducing the boundary conditions the spectrum
becomes discrete with a non zero lowest energy. Discrete energy eigenvalues next
to each other have eigenfunctions differing in one node, with ¥,, has (n-1) nodes.
With increasing n the envelope function of |¥,|? gets more and more similar to
the classical probability function %. As a result of those differences in quantum
mechanical versus classical behavior, tunneling effects are possible and in the
lowest state the probability is highest in the minimum of the potential.

7 Harmonic oscillator 1-D

The harmonic oscillator is well known from the mechanical spring with spring

H
constant k and oscillation frequency w = \/% With Hook’s law F = —k7 it is

easy to calculate the potential energy and the Hamilton function of a harmonic
oscillator to be

1
V(z) = 5]{::52 (7.1)
h? d?v 1
H = ———— 4+ —ka2?V
(x) 5 2 Qkx 7.2
HU = EU (7.3)

y = \/?x (7.4)

A= T (7.5)
With this transformation the SE becomes
d? 9
(= #") 1 =—am, (7.6)

Now, we calculate the following operators:
d d d?
() () o= (G- w 0
d d d?
() (o) o= () w )

and define the lowering operator

a= (% + y) (7.9)
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Energy

00 05 10 15 20
Space or Distance x

Abbildung 7.1. Potential of an one dimensional harmonic oscillator.

and the rising operator

d
+ (= _
¢ (dy y)

and inserting (7.9) and (7.10) into equations (7.7)and (7.8) we get

(d——y2> Uy = (aat +1)T,

du?
d +
(E—y>% = (a"a—1)T,
and we can write the SE as follows
aatUy = —(A+1)¥
ataly = —(A—1)U,
(=ata—aa")¥, = 20,, VU,
=ata—ast = 2

If we take the following equation

ata(a¥y) = (2+aa’)(aVy)
= 2a¥, +a(ataly)
(=

= 2a¥,+a(—(N—1))¥,
= —()\—3)&\II>\
atad = —(A—3)P

Thus, the equation for the eigenvalue (A — 3) is given by
ataly o = (A=3)¥,
aVy = &=V, ,
=a¥, = U, o
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66 7 Harmonic oscillator 1-D

Thus, the eigenfunctions of ¥,_, can be generated by applying the operator
a = di + y on the eigenfunction W,. With this process one can calculate the
eigenfunctions for eigenvalues of A—2, A\—4, A—6, ... if we have the eigenfunction
V. In addition, this process stops at the minimal eigenvalue of A = %, because
the energy of the harmonic oscillator is positive, as shown below.

2 72

" 9m dax?

N 7%(3;) ( - d—2> U (x)dx + (7.26)

/ v (z) (%W) Uy(z)de — E / W (2)0 () d

B2 dVp(z)[° [ dWi(z) dUs(z)
S .
o VD= 4 / L T + (7.27)
1 oo o
Ek/\II*E(a:)xQ\IJE(x)dx = E/\I!*E(x)\IfE(x)da:

In (7.28) the first term is zero, because the wave function has to vanish for

lim ¥(z) — 0. The second integral (££|2%) > 0 is positive, because of the

dx

properties of the scalar product. The last integral (¥|z?¥) = (z¥|z¥) > 0 is also
positive, so that the energy has to be fulfil £ > 0. The energy is zero only for the
trivial solution W(x) = 0. So we can conclude that there exists a minimal value
for A

=D YYe (7.28)
avy, = 0 (7.29)
ata¥y, = —(Ou—1T,, (7.30)
at0=0 (7.31)
I W (7.32)
So the spectrum of the eigenvalues is given by
A={1,3,57,...} =2n+1, n={0,1,2,...} (7.33)
and the eigenvalues of the energies are calculated to be
2F
AT
B, = (2n+1)%=(n+%)m, n=012. .. (7.34)
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7 Harmonic oscillator 1-D 67

We determined the eigenvalues for the harmonic oscillator without knowing the
eigenfunctions.

In order to determine the eigenfunctions of the harmonic oscillator we make use
of the properties of the a™ operator

CL+\I/)\ X \I//\+2 (735)
atW, o W,.. (7.36)
If we have identified W, we can calculate U, iteratively, using

U, o (at)" Wy o \(d% - ) (% - )1\110. (7.37)

Vo
n factors

The first eigenfunction ¥y we can determine as follows

aly = 0 (7.38)
d

— Vg = 0 7.39
() (739

dv
— = —yd 7.40
7 ydy (7.40)

y2
= \IJO = N(]@iT. (741)
Here, Ny is the normalization constant to guarantee that (V,|Wo) = 1. The

function ¥y is clearly square integrable. Now, we can derive the W,

»

U, x atW¥ o 2y T (7.42)
y2

Uy o (ah)?Wg o (4y* —2)e” 2 (7.43)

N

The eigenfunctions ¥, are products of a gaussian type of function e~z with

a Hermite polynomial. The gaussian function is even with respect to y and the
Hermite polynomial is either even or odd, so that the eigenfunctions are also even
or odd. This is a direct consequence of the potentials symmetry V(—z) = V (z).
The general description to derive Hermite polynomials is given by

H,(y) = \/% eV’ (j—;) eV’ (7.44)

We can determine the unknown factor by make use of the normalization condition

o

/ eV H2(y)dy = 1 (7.45)

—0o0
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68 7 Harmonic oscillator 1-D

If we transform y back we get ¥, (z)

U, (z) = ,4/%6— 5 (2 %) (7.46)

As a result the eigenfunction Wo(z) of the lowest energy eigenvalue Fy = % has
the following form

Uo(x) = (/| ——e 2n . (7.47)

This is a gaussian function with the maximum of |¥y(z)[* at 2 = 0. At this
point the space probability density is highest. In a classical picture the space
probability density would be minimal at = 0. Hermite polynomials

= 2 dn 2

H,(y)\/2"n!/T = H,(y) = (=1)"¢¥ (d_> eV (7.48)
yn
Ho(y) = 1 (7.49)
Hy(y) 2y (7.50)
Hy(y) = 4> -2 (7.51)
Hy(y) = 8y°—12 (7.52)
Hy(y) = 16y* — 48> + 12 (7.53)
Hs(y) = 32y° — 160y° + 120y (7.54)
He(y) = 64y° — 480y* + 720y — 120 (7.55)
H.(y) = 128y — 1344y° + 3360y° — 1680y (7.56)
He(y) = 256y° — 3584y5 + 13440y* — 13440y + 1680 (7.57)
The Hermite polynomials have the following properties:

H, —2yH, +2nH, = 0 (7.58)
2yH, —2nH, 1 = H, (7.59)
/ Hy(y) Ho(y)e'dy = bpm (7.60)
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Using equation (7.58) we obtain for ataV, the equation

d2
ata¥, = (ﬁ -yt + 1> H,e V' /2 (7.61)
Y
2
— %HneyQ/2 — y2Hne*y2/2 + Hne’y2/2
Y
= di (Hne’yQ/z — yHne’y2/2> — ?Hpe V' + Hye v'/?
Y

— (Hne—y2/2 _ yHne_y2/2 _ yHne_y2/2 _ Hne_y2/2 + yQHne—y2/2>

—y?Hpe V' 4 H,e ¥/
= H,eV/?— QyHne_y2/2
= —2nH, (7.62)

For further information see M.Abramowitz and [.A. Stegun, Handbook of ma-
thematical functions, Dover (1965), Chapter 22. The solutions of the wave func-
tions for a particle in a box and for the harmonic oscillator (Fig. 7) have some
similarities:

E,=9E, !

Energy

Energy
3
’Q)

0 +a 4 3 2 401 2 3 4
Space x (nm) Space x

Abbildung 7.2. Comparison of wave functions of the particle in a box and the harmonic
oscillator.

e Discrete solutions and eigenenergies.

e The n th wave function has n nodes.
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70 7 Harmonic oscillator 1-D

e The lowest energy has a finite positive value Ey = % > 0. Result of the
uncertainty relation.

e The eigenfunctions of different eigenvalues are orthogonal. General property

of the Hamilton operator.

7.1 Conserved quantities

In general physical quantities, which can be measured, give real values and are
therefore related to hermitian operators:

( / @*A@dv)* = / O*ADIV (7.63)

e Operator hermitian

e Eigenfunctions orthonormal A®, = a®,,. For degenerate energies the eigen-
functions can be chosen as orthonormal. f UrW,dV = 0.

e The eigenfunctions form a complete set of orthonormal functions if every
function of the space can be developed as ¥(7°) > ¢, 0, (7).
n

The closure relation (7.69)follows from the complete set of the eigenfunctions

Un(T)
BT = Bewbl) (7.64)

(Wm(T)E(T)) = ch Yo ()0 (7)) (7.65)

= ch mn = Conen (7.66)

= u(7) L iwk(?ﬂw?)ww (7.67)

_ Ek: / WY (T)(F)dr (7.68)

:Zwk Y(T) = 8T — 1) (7.69)

A very important issue in physics is the identification of conserved quantities.
Since we are interested in expectation values of a given operator u, the time
dependence of (u) is given by:

d (u) 1 ou

) (7.70)
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If Z—;‘ = 0 then (u) is conserved, and it is a conserved quantity if v and H commute:
u, H] = 0 (7.71)

Especially, if at time ¢ = 0 the system is in an eigenstate of u with eigenvalue
u;, the system will stay in that state. The subscript ¢ of the eigenvalue w; is
called good quantum number, because it is a conserved quantity and describes
the quantum system. The eigenvalues u; are possible observable quantities. If we
want to indicate that the eigenfunctions of the energy FE),, are at the same time
eigenfunctions of the operator u with eigenvalue w,,, we have to introduce two
indices:

HY,, = E, V., (7.72)
Wy = UpVy, (7.73)

On the other hand, if there are eigenfunctions V¥, ,,, of u and H, then it follows:

uHY,,, = ubV, ., =EuV, , = Eu,Y,m (7.74)
HuV,,, = HunV,m=unHYm=unE, Y, (7.75)
= (uH — Hu)V,,, =0 (7.76)
= [u,H]=0 (7.77)

If equation (7.77) is given it is easy to show that there are eigenfunctions ¥, ,,
of uw and H.

The same holds for every set of operators A;. If [A;, A;] = 0 then A; and A; have
the same eigenfunctions. If additionally, [A;, H] = 0 holds, and therefore (A;) is
constant, the operator A; has the same eigenfunctions as the energy operator. To
characterize the energy eigenfunctions in the best possible way, we are looking
for the maximal set of operators A;, which commute with the Hamilton operator
and with themselves:

[A;, Hl = 0, Vi (7.79)
That means there are eigenfunctions of H, Ay, A,,... at the same time and the

quantum numbers of those operators are good quantum numbers describing the
system.

A system with a potential V(7°) = V(r) only dependent on the length of the radi-
— . . .

us |77, such as the hydrogen atom, there are three pairwise commuting operators

describing the system:

T2

H , and L, (7.80)

Y
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H
Thus, (L?) and (L.) are conserved and there are simultaneous eigenfunctions
of H, L? and L,. The indices or quantum numbers are n, [, andmj, and the
eigenfunctions are described as

W tmy (7.81)
HY, s = EnWim, (7.82)
72 2
LVyim = UWl+1h Vo 1m (7.83)
LUt = mhW, g, (7.84)

7.2 Variational method

The variational method is a very useful method to calculate or approximate wave
functions by minimizing parameters and the energy of the system. This technique
is especially useful for LCAO (Linear Combination of Atomic Orbitals) methods
in molecules. Assume we have to solve the eigenvalue equation

HVY, = E,¥, multiply with U7, andintegrate :
[U:H,d7T

= Lo TUrw,d7

(7.85)

We get the energy eigenvalues if we know the eigenfunctions, but what can we
do, if they are unknown? We can start to solve the equation by using a test or
trial wave function 1)y,

[ HydT

For every solution it is € > Ej, with Fy is the lowest energy eigenvalue of the
system. To prove that we make use of the complete set and write the trial wave
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function as a sum of the orthonormal wave functions of the system:

V() = ) anWu(T) (7.87)

DD chew / U (H — E)¥,dV  (7.88)

n

- Z Z o (Ep — Ep) / U, dV (7.89)
= Z Z C:;Cn’(En’ - EO)énn’ (790)

= /w,’;(H — Eo)y,.dV

= /Q/JZ;(H - EO)¢trdV Z 07 <H - E0> =0if ¢tr = ‘1’0 (792)
_ fl/J:ertTd?
© T Tuigedr 20 (7.93)

In order to use this variational method one chooses a trial function v, depending
on several parameters {a,b, ...} and minimize the energy

Oe Oe

e(a,b,...), — =0,—

( ) oa b

for these parameters. This gives the lowest upper limit of E, for wave functions

of type ¥y.(a,b,...). With a well chosen eigenfunction it is possible to come very

close to Fy. As an example one can chose the trial function
Oe

= —=0 7.95

¢t7” aa ( )

as a test wave function for the hydrogen atom. Upon optimizing the parameter a,

it becomes the reciprocal of Bohr’s radius o = i and the energy € = Ej is exactly
the eigenvalue of the hydrogen atom. Here, we get the exact wave solution.

=0,... (7.94)

7.3 Angular momentum and spherical potentials

The angular momentum is classically and quantum mechanically defined by:

_ ex €y €,
L=7Tx7p = |z vy =z (7.96)
Pz Dy D:
_ n ex €y e,
L = |2 y =z (7.97)
Lo 9 B
oxr Oy Oz
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That means

h( 0 0
b = z(ya‘za—ﬁ

h 0 9]
L = _(a__"“"a_>

h 0 0
b= z(fa—y‘y%)

é
The components of L are hermitian, but they do not commute.

n\’ o 0 0 8
[Lm,Ly]w = <;) {(ya - Za—y> (Za—x — xa) —
y4
2

0 0 0 0
(<o = o02) (v = =ay)
A\’ 0 0?2 2 o
a (Z) {y% * V000 o2 Oyox * ZI@y@z
0? 0? 0? 0 0? }@D

— 2 [ _—
“Y o102 e 0x0y + oz x@y wz@z@y

L (R Y L R T
11 ox dy ?

(7.98)
(7.99)

(7.100)

(7.101)

(7.102)

(7.103)

Similar calculations can be performed for the other coordinates, leading to

L,,L,] = ihL,
[L,,L,] = ihL,
L., L,] = ihL,
[L;,L;] = ihLy with{i,j,k} cyclic permutations

The hermitian operators L,, L,, and L, are called the angular momentum ope-
rators. Since, they do not commutate, there is no common eigenfunction of these

ﬁ
operators, but a single component L; commutes with the operator L?2. For con-
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venience purposes, we chose the operator L, to describe the systems properties:

L0 T2 = (Lo L2 4+ L2 4 2] = L., L2) + [Le, L] (7.108)

= LI - LIL.+ L.L - L}L. (7.109)

= (L:Ly)Ly — Lo(Ly L) — Ly(LyL.) + (L.Ly) L, (7.110)
= Ly(L:Ly) = Lo(LyLz) + (LoLo) Ly — (LaLz) Lo
= - N y .

+ Ly(L.Ly) = Ly(LyL.) + (L.Ly) Ly — (LyL.)L, (7.111)
— 2\ —

= Ly[L., L]+ [L., Ly) Ly + Ly[L., L] + [L., L] L, (7.112)
1 IS S S

= ihLyLy + ihLyL, — ihL,L, — ihLyL, =0 (7.113)

ﬁ
This can be shown faster by using commutator properties. The operator L? and
L, share the same eigenfunctions. The raising and lowering operators L, and L_,
respectively, are rather useful and defined as

L, = L,+ilL, (7.114)
L. = L,—ilL, (7.115)
LiL_ = (Ly+iLy)(Ly —iL,) = L2+ L} —i[L,,L,]  (7.116)
= L?-I’+hL, (7.117)

_>
L?* = L L +1L?—hL, (7.118)
L? = L_L,+I*+hL, (7.119)
(7.121)

(L.,L_] = 2hL.

Now, we have to prove that
[H, L =[H,L.] =0 (7.122)
and the operators H, 32, and L, share the same eigenfunctions, for V(7’) =

V(r). To show that we first introduce spherical coordinates and transform the
operators to spherical coordinates r, 1, ¢ with the transformation:

r = rsindcosp (7.123)
= rsindsing (7.124)
z = rcost (7.125)

The derivatives in spherical coordinates are given by
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y=r sind sin @ ;’\0%
<

Abbildung 7.3. Spherical coordinates r, 9, ¢. The coordinates can take the following values:
r € [0,00), ¥ € [-m, 7], ¢ € [0,2m).

O (9N (090 (950
Ow; ((%i ar) i (ax,- 819) ! (axi aso) . fora e {ry.2} (7120

This leads to 9 derivatives:

%:sinﬁcosgo %:%cosﬁcosgo Q‘f:—%%
g—;:sinﬁsingp %:%cosﬁsingp = T reng (7.127)
% = cos v % = —snd g—ﬁ =0
N (7.128)
0 1 0 sinp 0
9 gnveosol + L costcoswl < 7.129
Oz SRSy * OV T rsing ()% ( )
0 o 1 0 cosp 0
— = sindsinp— + — ¥sin p— — 7.130
oy SIS S, - P (VIR YE) * rsind Oy ( )
0 0 sin? 0
— = V— — — 7.131
0=~ Vo T T o (7.131)
If we insert (7.129, 7.130, 7.131) into the definition of L; we get
h( 0O 0
L= (y= — 22 7.132
i <y62 Z@y) ( )
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7.3 Angular momentum and spherical potentials 7
h sind 0
_h i 19_ _
- {r sin ¥ sin ¢ (cos . 819)
. .0 1 cosp 0
7"00819(smﬂsmgoE%——cosﬁsmgo rsmﬁ@g@)}
= %_L ((— sin? 9 sin ¢ — cos 1981114,0)8819 %%)
h 0 0
L. =—(—sinp— — t ) —
.= ( sin o5 — cospco ﬁﬁgp)
In analogy to this transformation we get for the other operators
L, = ;L (— sin 90% — €os p cot 19%) (7.133)
h 0 . 0
L, = n (COS i sin ¢ cot 19%) (7.134)
h o
L, = 1
e (7.135)
Ly = he¥ (a% + i cot 0%) (7.136)
. 0 0
L. = B .
he ( 819+ZCOt19890) (7.137)
If we insert (7.136), (7.137) and (7.135) into (7.118) we get
—
L? = L,L_+L>-hL, (7.138)
(0 0 , 0 0
with L, L_ = h%" (819 —|—zcot19&p) e (—%+zcot198¢)
0? 0 0? 0
= | == t— t2 Vo +is- 1
(aﬁQ—l—co 819+CO 057 —Hago) (7.139)
h 0 82
L, = ——=L=-F_— 7.140
With the following
cot?’9+1 = sin 9 (7.141)
1 0 . 0 82 0
Sinﬁ% S1n 19% = w + cot 19% (7142)
we get finally
1 1 2
L?= R ( 9 gnvd 4 8—) . (7.143)
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H
The operators L? and L, do not depend on r or %. Thus, they commute with
V(r). This is the result of V' (r) being invariant under rotations around the x-, y-

— =

or z-axis. Now, we have to transform H into spherical coordinates with A = VeV
é

and V in spherical coordinates

(7.144)

_ o 10 1 0
vzz{vy,vg,v@}::{ }.

Or’ rdY rsind dp

For a vector F' with the components F' = {F,, Fy, F,}, V e I' is given by

VeF = - slinﬁ {%( (sind)F}) + %( (sind) Fy) + %(TF@)}. (7.145)

— —
Using F' = V we have

9.
A pr—
0 0 0 o 1 0
= Tgsmﬁ{a—rsmﬁ +8_19SHH98_19 %Smﬁé)go} (7.146)
10 ,0 1 1 0 . 0 1 0?
o= r—zwa*r(—sinmm%*—sma—w)' (7.147)

The Hamilton operator is

H = —h—2A+V() (7.148)

_ _FL_Zia 22_ n? Lﬁs 196 _}_;6_2 _|_V<)
= T omr2ar or  2mr? \smoo9 o o0 sin? ¥ Op? "
K2 1 it
H = ———27“22—1— + V(r). (7.149)

2mr2or Or  2mr?

Since L2 and L. depend on (¥, ¢, 8‘29, 8‘1, 83;2, %) and V(r) and the other terms

depend on (7, ei»’ 8: ) it is

— . N
H, 2% =0 [HL]=0 if V(7)=V() (7.150)
The eigenfunctions ®(p) of L, satisfy the eigenfunction equation

L. ®(p) = mhd(p) (7.151)

where the eigenvalues have been written as mh for convenience. The normalized
solutions of (7.151) are

D,,(p) = em?. (7.152)
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Since the functions ®,,(¢) must be single-valued, we have ®,,(27) = ®,,(0), and
m is restricted to positive or negative integers or zero m = {0, £1, +2, ...}. The
integer m is called the magnetic quantum number with orthonormal eigenfuncti-

ons
2

/ DL ()P (@) dep = b - (7.153)

The simultaneous eigenfunctions of L?and L, (remember [fz, L.] = 0) are called
spherical harmonics and are denoted by Y7,,(¥, ¢). They satisfy the eigenvalue
equations

Lm0, 0) = ({0 + DRYym(D, ) (7.154)
LYy m(9,0) = mhYim(9,) (7.155)

where the eigenvalues of L? have been written as / (¢ + 1)h%. The quantum
number ¢ is known as the orbital angular momentum quantum number. The
number ¢ (¢ + 1) is dimensionless and has to be positive or zero, because it is the
eigenvalue of the squared hermitian operator. Possible values for ¢ are given by

LY (0,0) = m*R*Yn(9,¢)
H
(L2 4 L)Yim(0,9) = (L?—L2)Yem(9, )
= [0 1) — ARV (9, )
/ Vo0, ) (IR 4 L2)Yim(0, )dT = R+ 1) —m?) / Vi (0, o) Yo (0, 9) AT

(L2 + L% >0 (7.156)
00 +1)=102+/ (7.157)

= m?

IN

In equation (7.156) we used that the expectation value of a squared hermitian
ﬁ
operator is positive or zero. In equation (7.138) we expressed L ? with the lowering

ﬁ
and rising operators Ly and L_. Since L. commute with L? (L commute with
L, see exercise) it satisfy the equation

2L Yin(0,9) = LiL2in(9,¢) = Lol (0 + 1)E2Y;m(9,0)
= (0 + DALY (0, 0) (7.158)

_>
Ly and L? have the same eigenfunctions and if the lowering or rising operator

acts on Yy, (9, ¢) it does not change the eigenvalues ¢ (¢ + 1)h?* of L2 But the
operator Ly changes the eigenvalues of L., because with [Ly, L.] = FhLy it is

= (m=£ DA(LLYim(9, 0)). (7.159)
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That means L. Y, (¥, p) are eigenfunctions of L, to the eigenvalue (m+1)A. The
operator L, increases (+) or decreases (-) the value of the magnetic quantum
number by one:

The rising and lowering of m is limited by ¢ (¢ + 1), so that there is a maximum
value of m called m,,,, and a minimum value of m called m,,,;,, which satisfy the
equations

L Yom . (9,¢) =0. (7.162)

Using the operator L_, L, and equations (7.161, 7.162) we find that

T2 2
L_L“I‘ngmaz (197 (p) = (L - Lz - hLZ)}/meaz (197 (p)

L*LJrYrEmmaz (197 @) =0
LyL Vi (9,9) = (L* = L2 4 hL.)Yim,,, (9, ¢)

= I [0l +1)— m%un + Mnin] Yo (9, 9)
L+L—nmmin(’l97 30) =0

Since the eigenfunctions Y;,, (¥, ¢) are not identical zero it is

Monaz(Mmaz + 1) = C(+1)>0 (7.169)
= Mpin (Mupin — 1) "™ (= —1) = (0 +1) (7.171)

>
>

We showed already that the magnetic quantum numbers m are integers and from
equations (7.169, 7.170) we can conclude that the orbital angular momentum
quantum numbers ¢ are also integers. Since the rising and lowering operators L
and L_ increases and decreases m by one, the values of the magnetic quantum
number are

— <m< /. (7.172)

Thus, for a given orbital angular momentum quantum number ¢ the magnetic
quantum number m can take (2¢ + 1) values

m =40, £1, £2, ..., +(}. (7.173)
The eigenvalue equations are

Lom(0,9) = B +1)Yen(9, ) (7.174)
LYin(0,0) = hmYiu(d,9), —0 <m< 4L (7.175)
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Y, ¢ (9,9) or Yoe(9,p) are known, we can use the operators Ly and L_ to
generate all other eigenfunctions Yy, (¢, ¢), in analogy to the harmonic oscillator
eigenfunctions. For the maximum value of m = ¢ one has

LY (0,0) = 0

e, 0
= he'¥ {aﬁ—{—zcotﬁa ]Ym(ﬂ,go) =0 (7.176)
h 0

We know from equation (7.177) that %ng(ﬁ, ¢) does not depend on 9, and we
solve the (7.176) by using the product solution method. Setting

Yim(0,0) = F(0)®m(p) (7.178)
ST Yul.e) = P0)Bi(e) (7.179)
] 0 0
ip 4 —
he [819 + i cot 19890} Py (0)P(p) 0 (7.180)
0 0
Dy )819 4 (1) + i cot U Pf (19)%@(@) =0 (7.181)
0 _ 0
Dy )tanz?aﬁ ) = —sz(ﬁ)%q)g(np) (7.182)
0 COSI9
0 :
= obile) = el (7.185)
With equation (7.177) the constant ¢ has to be ¢ = ¢
Dy(p) o e
P/(¥) o sin®¥
= Yu(d9,0) o sin® e’ (7.186)
= Yim(0,9) o< P"(0)e™? (7.187)

Using L_ iteratively we get the complete set of 20+ 1 eigenfunctions { Yz, (¢, )}
The functions PP (cosd) are called the Legendre polynomials of degree ¢. They
are defined by the relation

¢
Py(cosv) = ﬁ d

; !m((cos 9)? — 1) (7.188)
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The Legendre polynomials (m = 0) satisty the differential equation

d2
1 —cos?¥)——— — 2cos?
(1= cos™9) d(cos )2 B T cos v

+L(0+1)| Pycos?) =0 (7.189)
with the recurrence relation
(20+1)cosv¥P,— (L +1)Ppyy —4P1 =0 (7.190)

which is also valid for ¢ = 0 if one defines P_, = 0. The orthogonality relations
read

+1
/Pg(cosﬁ)Pgl(cos W)dcos = T 164@. (7.191)
“1
One has the closure relation
1 oo
3 (20 4+ 1) Py(cos ) Py(cos V") = d(cos ¥ — cos ') (7.192)
=0

Important particular values of the Legendre polynomials are
cosd=1: P(1)=1, cost=—1: Py-1)=(-1) (7.193)

For the lowest values of ¢ one has explicitly

Py(cosv) = 1 (7.194)
Pi(cos?) = cosd (7.195)
Py(cosv) = % (3cos® ¥ — 1) (7.196)
P3(cos?) = % (5cos® ¥ — 3cos ) (7.197)
Py(cosd) = é (35 cos* ¥ — 30 cos® ¥ + 3) (7.198)
Ps(cosd) = % (63 cos® 9 — 70 cos® ¥ + 15 cos ) (7.199)

The associated Legendre functions P;"(cos)) are now defined by the relations

dm
P (cos ) = (1 — cos®9)™/? —Py(cos?), m=0,1,2,...,¢ (7.200)

d(cos 9)
They satisfy the recurrence relations

(20 +1)cosI P" = (L+1—m)P + ((+m)P", (7.201)
20+ 1)\/(1 —cos29) P = Pt — Py (7.202)
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and the orthogonality relations
/ 2 (I+m)
m m +m):
/Pg (cos V) Py (cosv)d cos ) = 210 —m) Seer (7.203)
1
The first few associated Legendre functions are given explicitly by
Pl(cos?) = (1 — cos? ) (7.204)
P)(cos?) = 34/(1 — cos? 1)) cos? (7.205)
Pj(cosd) = 3(1 — cos®¥) (7.206)
3
Pj(cos¥) = 3 (1 — cos?d)(5cos? ) — 1) (7.207)
Pi(cos?) = 15cos¥(1 — cos o)) (7.208)
Pj(cos?) = 15v1 — cos2 (1 — cos®¥)) (7.209)
Thus, the spherical harmonics Yy, (¢, ¢) with m > 0 are given by
(2¢+ 1)(1 — m)! ,
Yo (0, 0) = (=1)™ P 9)eime 21
m(@.9) = (1) \/[ Ll preosayeme (ran)

The first few spherical harmonics are given explicitly by

(20+1) Yiu(9,0)

1
1 Yooldop) = ——
47
3 3
3 Yio(0,0) = —cost = 2z
™ T
3 - 3ati
3 Vim(0,¢) = Fy/—sing e =gy | ==Y
Q0 &t r

5 (3 1 1 /5 2z —a*—y
5 Yaolhy) = 7(5 08279—5)‘2\/%7

1 15 15 (x +
5 Youi(d,p) = Fz sind cos ¥ et = F N/ M
2V 27w o
R S R S N L
5 Yoie(v,9) = 1 7Tsm e =\ 5 :
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The rising and lowering operators are

L YV, ) = —he ™ {—% +m cot 19} Yim (9, @) (7.212)
L.Yin(0,p) = —he' {a% +m cot 19} Vi (9, ) (7.213)
LiYom(0,0) = MU+ 1) —m(m£1) Yo (V,9)  (7.214)

Laltm) = hl(l+1) —m(m=E1) |[fm=£1) (7.215)

and they change the magnetic quantum number (Fig. 7.3)

L.Yn(¥,p) o he ™ {—%—l—mcotﬁ} sin Ye'? (7.216)
o Yig (7.217)
L Yy x Yi (7.218)

The absolute values of the spherical harmonics are given by the associated Le-

|=1 |:2

+1

Abbildung 7.4. Operations of the rising and lowering operator on the magnetic quantum
number m.

gendre functions |P™(J)| which are presented in Fig. 7.3. The polar plots give
the length of |P™(1)| for every angle ¥J. Since ¢ varies from 0 to 7 the polar
plots have axial symmetry with respect to the z-axis. The si of eigenfuncti-
ons {Yyn(9,p)} are eigenfunctions of the hermitian operator L2 They form a
orthonormal complete set of functions with

[ [ Vit )Y 0. ) sin v = b (7.219)
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M =2l +1

NP

K 1=t

m=+1,-1

T

0 m=+1,-1 m=+2,-2

¥ o

m=0 m=+1,-1 m=+2,-2 m=+3,-3

e L
b i e )

@*@?/\V\

Abbildung 7.5. Polar plots of the Legendre polynomials Yy, (9, ¢)| = 5=|P;"|*. For every
orbital momentum quantum number ¢ there are 2¢ 4 1 eigenfunctions.

Every square integrable function (9, ¢) can be developed by { Yz, (9, ¢)}

) +£

V0, 0) =Y > conYem(V, ) (7.220)

=0 m=—¢

Some properties of the eigenfunctions are

Yin(0,0) = (=1)"Yeem(9, ) (7.221)

P ™ = P;" bydefinitionm >0 ( )

T = =T Yiur—Y,0+7) = (=19, ¢) (7.223)
P)(cos(m —v)) = (=1)'P/(cos ) (7.224)

) (7.225)

}/Km(ﬁa @ + 27 - }/Zm(ﬁa So)eimcp = }/Zm(ﬁa 90)

The Yy, (9, ) are complex functions for m # 0. It is useful for chemical bond
orbitals to create a linear combination of Y, (9, ¢) and Y,_,, (¥, ¢) which are real
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functions. Note, they are no longer eigenfunctions of L,. Examples are

Z5Ma(0.0) = Yalh.9)) =y fmgsind (7 +e)
3 . 3 x
= Esmﬁcosw =\
1 31, . e
Ez(}/},l(ﬁ, ©)+ Y (0,9)) = 5 sind (e7*% — €'¥)
= %sinﬁsingp = %%
Yio(0,p) = %(30819: %;

(7.226)
(7.227)
(7.228)
(7.229)

(7.230)

These three linear combinations form the three orbitals in the directions of the
x-axis (p,), the y-axis (p,) and the z-axis (p,) as shown in Fig. (7.3). The few

Z

&

s function p, function
Y
X X

Z

p, function p. function
’ . a
L2
¢ . Q ;
- X

Figure 2.7  Polar diagrams of the real spherical harmonics s, p,, p, and p,.

Abbildung 7.6. Polar plots of the real spherical harmonics s, ps, py, D--
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first spherical harmonics in real form Y7, (9, ¢) are

¢ |m| Yem(9, ) (7.231)
1
00 st (7.232)
1 0 Dz % cos ¥ (7.233)
11 Dx 3 sin v cos ¢ (7.234)
4m
11 Py 3 sin ¢ sin ¢ (7.235)
4m
2 0 dygo,e: i(3 cos® ¢ — 1) (7.236)
167
15 .
2 1 dy. 1. Sin Y cos ) cos ¢ (7.237)
15 . .
2 1 dy: 1. oo Y cos ¥ sin (7.238)
5 .,
2 2 dy2_y2 — sin” ¥ cos 2¢ (7.239)
4m
2 2 dyy el sin” J'sin 2¢ (7.240)
4

Here, we have used the so-called 'spectroscopic’ notation, in which the value of the
orbital angular momentum quantum number ¢ is indicated by a letter, according
to the correspondence

Valueof ¢ 012345 ... (7.241)
1111171 ... (7.242)
Code letter spdfgh,... (7.243)

These code letters are remnants of the spectroscopist’s description of various
series of spectral lines. The letters s, p, d and f being the first letters of the
adjectives ’sharp’, 'principal’, ’diffuse’ and 'fundamental’, respectively. For values
of ¢ greater than three the letters follow in alphabetical order.

8 Hydrogen atom and central forces

8.1 Central forces

For central forces the potential V(7)) = V(r) depends only on |7°| and the
eigenfunctions are simultaneous eigenfunctions of H, L? and L,. We can solve
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88 8 Hydrogen atom and central forces

the SE with the product solution method. Setting
Unem (1,9, 0) = Rye(r)Yem (0, ) (8.1)
and substituting into (7.149) gives

[ 10,0 ?
____7”_

+ V()| Re(r)Yem (9, 0) = Enpon Rt (1) Yo (0, ©)

2mr2or Or = 2mr?

(8.2)
ﬁ
From L2Yy, = (¢ + 1)h*Y,,, we deduce

K210 ,0 (0+1)R
{_%ﬁar E + W + V(T):| an(r) - EanRnK(T) (83)

Equation (8.3) does not depend on the magnetic quantum number m. Setting
Une(1) = 1R (7) (8.4)

we find 2 s
h +1)h

{_%ﬁ + W + V(T)] ung(T) = Engung(T) (85)

The radial SE is a one dimensional differential equation in r, r € (0,00). We

define the effective potential Vs

((l+1)
2mr?

Vers(r) = Vi(r) + (8.6)
The second term is known as the ’centrifugal barrier’ potential (with 2mr? as
the moment of inertia), from the classical mechanics. With V(r) = _47TZ;)7« the
attractive potential of the Coulomb interaction is stronger than the ’centrifugal
barrier’ potential for large » — oo. For small r the 'centrifugal barrier’ potential
dominates resulting in a minimum shifting to larger » upon increasing the orbital
angular momentum quantum number ¢ (see Fig. 8.1). The probability of finding
an electron in the vicinity of the nucleus decreases with increasing .

8.2 Radial functions

The asymptotic properties of the radial functions R, are

o for r — ooitis Vegp — 0 and

2|Epplm
Upe(r) o< e "V W (8.7)
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—V_ I=1
5 V. 172
Coulomb potential

Centrifugal barrier 1=1
Centrifugal barrier 1=2

\

0 ===

T

Energy (arb.u.)

Radial component r

Abbildung 8.1. Potential components contributing to the Hamilton operator.

° forr—>0itisVeff—>MandwithEng%O

2mr?

Upe(r) oc 1 (8.8)

Thus, we find the asymptotic correct solution

Unyp /2 Epem]
Ruy = —= ocrle™ ™V a2 (8.9)
r

For a hydrogen atom (Z = 1) and similar atom ions the Coulomb potential is

given by
Ze
Vir) = — 1
(T) dregr (8 0)

There are two ways of solving the partial differential equation

1) describing H as a product of a and a™

2) using u,e and its power series one finds the differential equation

d? d
zd—;g—k(c—z)d—l;—awzo (8.11)
which is called the Kummer-Laplace differential equation and can be solved

for c = 1 and a = 0. The functions which satisfy the differential equation

are called the associated Laguerre polynomials Lfﬁ}l(ang r) given explicitly
by
1y _ N (ke [(n +0)2r*
L = —1)F : . 8.12
e (1) kz_o( L iy By gy 8 TG gy S 7 (8.12)
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The Laguerre polynomials are special solutions only for hydrogen atoms and
similar atomic ions and the radial functions are given explicitly by

Rné(p) - j\\fné : (p)f Liﬁ—?l(p) e—p/Q (813)
) mM aogm 27r Z
with p Y . p na, and « nae (8.14)
Rue(r) = Ny- (oznr)Z Lff:}l(Zanr) e an” (8.15)
mZ2e* h2a?
ith £, = — - _ n ‘
With En \/ 2h%(4meg)?n? 2m (8.16)
1 o
— = %, characteristic length ag = 0.529 A (8.17)
0,
3
Z\2 _zr
Rip(r) = 2 <a_0> e % (8.18)
3
Z \? Zr\ _zr
R = 2 _— 1 R 2a 1
20 (T) (2@0) ( 2a0> e 0 (8 9)
3
2

mat) = 2 (L) (Z)o% (520

a
7Z\? 207r 272
2 r r _Zr
R = 2= 1- 2= 3a 8.21
a0(r) 3a0) ( a0 | 27a2 ) c (8:21)
3
A2 [ Z \z [ Zr Zr _zr
R?,l('r) = T <3—a0) (3—a0 (]_ — 6—%)) e 3a0 (822)

Ras(r) = 2v2 < z )g (ZTYe?iE (8.23)

3ag) \3ao

Because the spherical harmonics are normalized on the unit sphere the norma-
lization condition implies that

/ Ru(r)r*dr =1 (8.24)

The radial functions has the properties

e The Laguerre polynomial is of the power (n — ¢ — 1) (see (8.12) and has
(n — ¢ — 1) radial nodes (without r = 0).

e The probability P.(r) = r?|R?,| has (n — () maxima.
e For (¢ = n — 1) the radial functions P, ,_(r) 7"2”6_% show only one

nag
7 -

maximum at e =
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2,0 0,5
n=1,1=0 n=1,1=0
15 0.4
0,3
1,0
0,2
0,5
0,1
0,0 0.0
N 0 5 10 15 20 25 0 5 10 15 20 25
m/\o 2,0 mo
®© N _ _ _
N 18| n=2,1=0,1= o n=2,1=0,1=1
~ (@]
S 10 £ 10
I c
= =]
[ 0,5
=] £ o5
£ o0 — =
’: =
\-/E ND: 0,0
o 0 5 10 15 20 25 o 0 5 10 15 20 25
2,0
n=3,1=0, 1=1,1=2 3/n=3,1=0, 1=1,1=2
1,5
1,0 2
0,5
1
0,
0 5 10 15 20 25 0 5 10 15 20 25
Radiusrin a, Radiusrin a,

Abbildung 8.2. Radial functions R,(r) and the probability r2R?,(r) of finding an electron
in (r+ Ar)—r.

e For a given n the orbital angular momentum quantum numbers ¢ can only
range from {0, 1, ..., (n—1)} (see 8.12) and for a given ¢ there are (2(+1)
magnetic quantum numbers m. E,, does not depend on ¢ and m, which is a
consequence of the symmetry of V(r) = —% and the independence of Ry(r)
of m, respectively.

e The degeneracy is given by

1
L

(20 +1) =n? (8.25)

I
o
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e The expectation value for r, (r) is

<Tk>n€m = /rkRZZ(T)TQdT (8'26)
(Fnim = 2“—;[3712—5(“1)] (8.27)

e For r — 0 the radial functions are R,,(r) oc 7. For a given n larger values
of R,e(r) occur for smaller ¢ at a given r (see Fig. 8.2).

e Only radial functions R,(r) with ¢ = 0 (s-orbitals) are non zero at r = 0.
This is important for the Mossbauer effect where the orbital overlap of
the electronic wave function with the nucleus is responsible for the signal.

3
|thnool® = %‘Rno(OHQ - mifag

~ 10 I:)30
= — P,
N —P,
G
2
S5 0,5
£
D_E
0,0 v T v 1 T T T 1
0 1 2 3 4

Radius r in units of a,

Abbildung 8.3. Probability r>R2,(r) of finding an electron in (r + Ar) — r for very small r.
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8.3 Hydrogen atom wave functions

=0 =1 =2 i=3 I=d i=5 i=B

Abbildung 8.4. First wave functions of the hydrogen atom (and similar atomic ions) with
m = 0.
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2 +/-1 2,4/-2
00

3+/1 3+/2

Ay
a0

Abbildung 8.5. First wave functions of the hydrogen atom (and similar atomic ions), inserted:
quantum numbers.
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n=2;1=1; m=+1/-1

00

n=3; 1=1; m=+1/-1

Abbildung 8.6. Some wave functions of the hydrogen atom (and similar atomic ions) plotted
together with the quantum numbers. The solid black line represents the radial function, the
plots with a fixed radius the spherical harmonics.
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8.4 Angular momentum

The functions Yy, (9, ¢) are simultaneously eigenfunctions of T2 and L. with
eigenvalues ¢(¢ + 1)h* and mh, respectively. The angular momentum value
VUl +1)h > (h is always greater than the maximum eigenvalue of L, = (h.
This means the direction of the vector T is never parallel to the z-axis. Moreo-
ver, the Yy, (¥, ¢) are no eigenfunctions of (L,) and (L,) and it is

)

(8.28)

Yoml L2Yom) = (Yom|LyYem) = 5[(€+1) — m?]i%. (8.29)

1
2
We note that the expectation values vanish, but the squares do not vanish (for
¢ # 0). The angular momentum f 'precesses’ around the z-axis in the presence

of a magnetic field with its projection on the z-axis to be Am and its length
h/€( + 1) (Fig. 8.4). With increasing ¢ and m = [ the relative difference between

Orbital angular momentum Spin angular momentum
S, 1.0 s=1/2
05— —
10 05 05 1,0
05— —
-110,

Abbildung 8.7. Projections of the orbital angular momentum and spin angular momentum
on the z-axis.

(¢ +1) and ¢ becomes smaller approximating the classical case, where the
angular momentum is parallel to the z-axis and the particle moves in the x-y
plane.

The summation over all absolute squared spherical harmonics for a given orbital
angular momentum quantum number ¢ results in a value independent of ¥ and ¢

241
Z Vi (9, )| €4+ (8.30)

This means that addition of all 2¢ + 1 functions |Y;,|? leads to an isotropic
function. Since the radial eigenfunctions depend only of n and ¢, the charge
distribution of a filled or closed shell (¢-shell) has radial symmetry.
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8.5 Spin angular momentum

Electrons possess an intrinsic degree of freedom, the spin, which behaves like an
angular momentum in the way it couples with a magnetic field (see Stern-Gerlach
experiment). The z component of this spin angular momentum can only take on
two values mgh, where my, = i%. Therefore, the electron spin cannot be described
by the orbital angular momentum operator f, since the z component of T only
takes on the values mh, with m = —¢, —¢+ 1, ..., ¢ and £ = 0, 1, 2,.... We
assume that all angular momentum operators, whether orbital or spin, satisfy
commutation relations of the form (7.107). Thus, if S,, S, and S, are the three
Cartesian components of the electron spin angular momentum operator ?, they
must satisfy the commutation relations

ihS. = [S.,S,] (8.31)
ihS, = [S,,5.] (8.32)
ihS, = [S.,S.]. (8.33)

The properties of the spin angular momentum and the simultaneous spin eigen-
functions xsm, of S 2 and S, are

ap) 2
S Xsme = S(s+ 1) Xsm, (8.34)
SiXsime = MshXsm.- (8.35)

Since mg = i% for an electron we must have s = %, and we say the electron spin

is one-half. There are two different normalized spin eigenfunctions X, namely

@ = X212 B =X1/2-1/2- (8.36)

Using these equations we get

S = 2712@ (8.37)
525 = Zh% (8.38)
S,a = ga (8.39)
5.0 = o5 (8.40)

The spin eigenfunctions a and 3 are said to correspond respectively to the spin
up (1) and spin down () states. General spin-1/2 functions x are linear super-
positions of the spin states o and (3. That is

X =X+ + x5 (8.41)
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where y, and y_ are the complex coefficients and |y |* the probability of finding
an electron in the 'spin up’ (+) « or ’spin down’ (-) [ state. Some important
properties are

(xIx) 1 (8.42)
P | (8.43)
(ala) = (BIB) = (8.44)

(Bla)y = (Bla) = (8.45)

52 = Zh? (8.46)

Sy = S,+iS, (8.47)

Sia = S_8= (8.48)

S_a = hj (8.49)

S8 = ha (8.50)

S = gﬁ (8.51)

S0 = ga (8.52)

S,a = %% (8.53)

S8 = —%a (8.54)

S.a = ga (8.55)

5.5 = gg (8.56)

h2
Si=5=5 = T (8.57)

Since there are only two basic spin eigenfunctions a and (3, they exist in a two-
dimensional ’spin space’. The normalized spin 1/2 eigenfunctions o and 3 can be
considered as basis vectors given by two-component column vectors (also called
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spinors)
1 0
a = (0); ﬁz(l) (8.58)
oda = =1 (8.59)
ol = pla= (8.60)
(8.61)

( - ) (8.62)

5, = h(g é) (5.63)
S - h((l) 8) (8.64)
s, — g’((l) (1)) (.65)
S, = g’(? _i) (8.66)

The matrices can also be defined by S; = U,, where the matrices o; are called
the Pauli spin matrices. Using the explicit form (8.58) of the basic spinor a and
B, an arbitary spin-1/2 function may be written as the spinor

() e (8.67

It is worth noting that if the electron is in a pure ’spin up’ state « or ’spin down’
state (3, the expectation values of (S7) and (S7) do not vanish (see vector model

Fig. 8.4). The quantum number m; can take on 2s+1 values {—s, —s+1, ..., s—
1, s}.

8.6 Total angular momentum

The total angular momentum can be written as

- =

_
J=L+8 (8.68)

The orbital angular momentum T =7 x 7 operates only in ’ordinary’ space and
satisfies the commutation relations (7.107). On the other hand the spin angular
momentum S satisfies the commutation relations (8.33) and operates only in the
'spin space’. All its components therefore commute with those of 7 and 7', and
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— —
hence with all those of L. As a result, the total angular momentum J satisfies
the commutation relations

ihJy = [Ji, J;]  with {4, j, k} cyclic permutating. (8.69)

ﬁ
This characterizes an angular momentum operator J satisfying the eigenvalue
equations

72 o 2
J 2 jm;, = G+ 1R, (8.70)
Jz¢jmj = mjhg/)jmj (871)

) 99 90
m; = —J, —i—i— 1, ..., 5 — 1, 7. Since all the components of L commute with

where j is an integer (including zero) or a half-odd integer (j =0, %, 2, ...) and
—

= —
all those of S, the operators L2, L., S2, and S, mutually commute, and have
simultaneous eigenfunctions

wfsmgms - Yvémg (197 @)Xsms . (872)

—. =, —
The simultaneous eigenfunctions of L2, S?2, J?2 and J, are linear combinations
of the functions v¢sm,m,. For a given value of £ and s the possible values of j are
given by j = {|¢ —s|, [¢ —s| + 1, ..., + s} and the quantum number m; can
take on 25 + 1 values (see above).

In general, the wave functions depend on the radial coordinate, the angular mo-
mentum, the spin and on the time ¢. For example, in the case of a spin-1/2 particle
(for example, an electron), a general expression for the wave function is

U(g,t) =V (7, Ha+V_(7,1)8 = ( gj ) (8.73)

where ¢ denotes the ensemble of the continuous spatial variable 7 and the discrete
spin variable (my = £3) of the particle. The probability density for finding at time
t the particle at 7 with "spin up’ is |V, (7, ¢)|? (and for 'spin down’ |¥_(7",¢)|?).

Physics of Atoms and Molecules



9 Interaction of atoms with electromagnetic radiation 101

9 Interaction of atoms with electromagnetic
radiation

The electromagnetic field E ind magnetic field B can be generated from scalar
and vector potentials ¢ and A by

E(T,t) = ~Vo(T ) = 2 AT 1) (9.1)
B(T,t) = V x A(T,1). (9.2)

The potentials are not completely defined by (9.1, 9.2), smce the ﬁelds E and

B are 1nvarlant under the (classical) gauge tmnsformatwns A A + V@ and
b — d— 8t , where © is any real, differentiable function of 7 and t. The freedom
implied by this gauge invariance allows us to choose

- —

V-A = 0, Coulomb gauge (9.3)
- — 0P
V-A+ 5 0, Lorentz gauge. (9.4)

Using the Coulomb b gauge is convenient when no sources are present and therefore
o(t) = 0. When A satisfies the Coulomb gauge, one may take & = 0, and A
satisfies the wave equation

1A
H
0 = V?A- 9.5
2 o2 (9:5)
Z(?,t) = 2A)(w) € cos(? T —wt+ @) 9.6
2(7’75) _ Ao(w) & ei(?-?—wt—f—cp) +e i( kT —wtt+e) 9.7
- — R
0 = V-A =¢&-k =0, waveis transverse (9.8)
ﬁ
2w
?(7, t) = Ep(w) i sin(? T —wt+ ), with Ey(w) = wAg(LY)
w
: 1 . |B]? 2 =
Energy density 2(60]E] + ) =eoEysin*(k - 7T —wt + @) (9.10)
Ho
1 &
I(w) = plw)e = 55000153@) = th(w)VO (9.11)
e _ = z(?? wt+p)
A(r,t) = € | Ag(w)e dw (9.12)
X(T), t) = 5/ Ap(w) cos(z> CT = wt + p)dw (9.13)
0
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Here, ¢ is a random phase and for a given fixed direction of € the electromagnetic
field is linear polarized.

The Hamiltonian of a spinless particle of charge ¢ and mass m in an electroma-

gnetic field is

Ignoring small spin-dependent terms the time-dependent SE is

1 [(h= — _, 2 _ Ze? — N OU(T 1)
[% (;V +€A( r ,t)) +6(I)( r 7t) - 47‘(‘507“ ¢< r ,t) = ’LhT (915)

Assuming time independent fields A (7 ,¢t) = A(7") and ® = ®(7") the Hamilton
operator becomes time independent and the wave function is

V(T 1) =e m (7)) (9.16)

h? ihe— —= ihe= — €% — — Ze?
—AN—-—A —— V- A+—(A-A)— (7 = F
[ 2m m v Zm&_fo-’ 2m< ) dregr c®(T)| ¥ v
=0 h? ihe— —= €2 — — Ze?
——AN——A-V+—(A-A)— = B¢y (9.17)
2m m 2m dmegr
In a constant magnetic field we can write
1
A = 5(§>< 7) (9.18)
1 1
ALY = (B xT)-V (9.19)
m 2m
the— _, = e = —
P —_ .3 — = .
Here we used the definition L = " X p —th'r” x V of the orbital angular

A A 62(§ x 77)?
om 8m (9.21)
62 N —>: 62B2
_ %(32 2_(B-7)) °=* o (22 + 4?) (9.22)
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Here we choose the axis of the magnetic field to be parallel to the z-axis. If we
ﬁ
compare the terms linear and quadratic in A we find

e = — eh
— B - L ~ — 1 9.23
- B (923
e’ B? e’ B?
- (22 +1%) = g Z (2 (9.24)
(2)  eaq3B 6 L
- = 107°B thBinT 9.25
0 oF , wi in (9.25)

Therefore, the second term is negligible and term (1) describes the potential

energy of a magnetic dipole moment 7/ in a magnetic field B. The magnetic
dipole moment 77 is defined by

T=-"T= 2 (9.26)
n= om "~ KB n .
With Bohr’s magneton up:
h
fp = 26— ~ 0.27408 x 107 Am?,  (Joule/Tesla). (9.27)
m

Now we define this small interaction to be a perturbation H’ to the system

é
L
H =-B 7 ~046695 - —on™, Bin Tesla (9.28)
and the SE becomes
h? Ze?
——A - H = B 9.29
2m 4meor + v v ( )

For H' = 0 we know the eigenfunctions ©,s,, of the hydrogen atom, that are

also eigenfunctions of L2 and L,. If we choose the magnetic field parallel to the
z-axis we have e

H' = —BL,. 9.30

5 (9-30)

With this setting the SE is readily solved without perturbation theory, since the

eigenfunctions s, are eigenfunctions of the perturbation L, also

mZ%e eB mZ2et
Ep=——-r-—-——"—-—+—hy=—7———+hw . 9.31
‘ 2h?(4meg)?n? * om 2h?(4meg)?n? i (9:31)
The magnetic quantum numbers can take on values —/¢, ..., ¢, and wy, is called
Larmor frequency.
b (9.32)
wr, = — )
Y om
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// Ezﬁ(o ml:i
=2 ==~

\:\ - -1
=~ L -2
I AN / 1
ﬂégi___v__- 4 0
I 2N 4 1

Am|:+1

Am = -1

Abbildung 9.1. In the presence of a magnetic field the 2¢ + 1 states are not degenerate

any more. The energy spacing is AE = 52%'7 and the transitions are connected to different

polarizations for 7 and o.

We observe a term splitting for the 2¢ 4 1 terms, that are no longer degenerate.
Note, only in hydrogen atoms the degeneracy of states with the same n and
my is still valid. For a magnetic field of 1 Tesla (Lab magnet) the splitting is
approximately 9.27 x 10724 J ~ 0.58 x 10~4eV, which is small compared to the
ground state energy of the hydrogen atom (13.6 eV). Possible transitions between
the energy levels obey selection rules. Selection rules state which transitions are
allowed (other transitions are forbidden). Here, the selection rules are

Amy = 0 (7) (9.33)
Amy, = £1 (o). (9.34)

Thus, three transitions are allowed. They are called Lorentz triplet (1896). They
were observed in an experiment called the normal Zeeman effect that is shown in
Fig. 9. Moreover, the number of observable transitions depend on the direction of
observation. For observation directions perpendicular to the magnetic field, three
optical transitions are detectable with linear polarizations along the z-axis ()
and the y-axis (o). Detection along the z-axis (longitudinal) result in two optical
transitions absorbing circular polarized light (o~ and ™).
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Abbildung 9.2. Normal Zeeman effect: If no magnetic field (B = 0) is applied to the set-
up, only a single absorption line is observed along the z-axis (L) and x-axis (T). When a
constant magnetic field is directed along the z-axis, two absorption signals are observed along
the longitudinal direction (L) and three absorption signals along the transversal direction (T).
The polarization of the absorbed fields are circular (¢~ and o) for the longitudinal direction
and parallel (7 and o) along the transversal direction. The energy splitting between the three

levels is ijf each.

If we would take into account the additional interaction of the spin with the

. =
magnetic moment fig
—

S
B = —guiin (9.35)

ﬁ
we would find an additional term in the SE with — B - jz;. In such experiments
— —
with a weak magnetic field the L - S coupling introduces an additional term into

the SE leading to the anomalous Zeeman effect. For ]?\ = 0 the normal Zeeman
effect will be observed.

The transitions between specific energy levels are due to the interaction of the
atoms with the electromagnetic field. Since, the electromagnetic field is described

ﬁ
by a time-dependent vector potential A (t) the perturbation H’ is no longer time-
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independent and the SE becomes

[Ho+ AH'(t)] ¢ = @'h%—@f (9.36)

9.1 Time-dependent perturbation theory

The time-dependent perturbation theory is used for situations where the per-
turbation to the system AH'(t) is small and time dependent. The unperturbed
system has the eigenfunctions {1, } of the SE Hyi, = E%),. The perturbation
is time-dependent and in our case given by

, he— —
AH(t) = —im A1) F (9.37)
— _Z@zo ez(?~7}—wt) +€—i(?~7—wt):| 3 6) (938)
m

Since the eigenfunctions {t¢,} are orthonormal and define a complete set, the
general solution ¢(7,t) of
(7, 1)

[Ho + XH' ()] (7, t) = mT (9.39)

can be expanded by

BT 1) = D ealt)e ™y, (7) (9.40)

where ¢,(t) are time-dependent coefficients describing the amplitude changes
changes of the eigenfunctions with time. To find the coefficients, equation (9.40)
is inserted into the SE (9.39), and we have

| de,
S ) B [y, + AH (8] = ihY (ée-”ﬁ”)t/%n (9.41)

n

iE? _E©®
_Tcn(t)e En t/hwn)
‘ de, .
A ca()H (£)e By, = ih d—ie*’Eﬁo)t/%n (9.42)
. dey
PE NS a0 B | (1) = B (9.43)
w _Em By de i
N ihd—;” = A ca(t)e i (1) (9.44)

The system of coupled differential equations (9.44) is completely equivalent to the
original SE ih% = Hv(7,t), and no approximations has been made thus
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far. However, if the perturbation NH’ is weak, we can expand the coefficients ¢,
and c¢,, in powers of the parameter A\ as

en() =) + AV (t) + NP () + ... (9.45)

Substituting this expansion into the system (9.44) and equating the coefficients
of equal powers of A\, we find that

(O = 0 (9.46)
1 ‘

&= = D H,,, (e (9.47)
ih ~
1 .

¢ = - O H! (t)eomnt (9.48)
1

: L |
'(5+1) — _ (S) ! twmnt

Thus, the original system (9.44) has been decoupled in such a way that the equa-
tions can now in principle be integrated successively to any given order. The first
equation (9.46) simply confirms that the coefficients 07(3) are time-independent.
Since we want to describe transitions from an initial state 1; to a final state
¢, we assume that for t < ty the system is in the initial state ¢ (t < to) = ¢,
with energy EY and the perturbation H'(t) is switched on at time ¢y = 0. The
probability of finding the system in the state m is |c,, (t)|?

dCS) L, t
L ety 9.50
t
1
) = o)+ 5 [ Hie) (951)
to
t
1 o !
(1) = o)+ / et () dt (9.52)

to

where the integration constants in (9.52 and 9.51) has be chosen in such a way
that c,(%)(t) = cgl)(t) vanish at ¢ = tg, before the perturbation is applied. To
first order in the perturbation, the transition probability corresponding to the
transition ¢ — m is therefore given by

2

t
1 1 iwmit’ .
PO = [OF = 3 | [ HuOdat|  itm (053
to
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108 9 Interaction of atoms with electromagnetic radiation

The coefficient ¢; of the state 7 is given to first order in perturbation by

o(t) = <0>+c<1><t> (9.54)
~ 1+—/H’ ()dt (9.55)

& [
~ e o (9.56)

so that |c;(¢)|* &~ 1 and the main effect of the perturbation is to change the phase
of the initial state.

9.1.1 Time-independent perturbation

If H' is time-independent, except for being switched on suddenly at a given time
to = 0. We then have

1

(1) /
() = —HLt 9.57
D) = (9.57)
H' . .
D) = —m% (1—e™mt), m#i (9.58)
Wmi
(1) Wz 2l
Pri(t) = lew (OF = =5 F(t wmi) (9.59)
1 — cos(wmit)  2sin®(wit/2)
F(t?wmi) = o2 = o2 (960)

The height of the peak of the function F(t,w) is proportional to ¢2, while its
width is approximately 27 /t. Setting wt/2 = x we have

/ F(t,w)dw = t/ SH; Tdw = wt, (9.61)

and for t — oo we have F(t,w) ~ mté(w) and for w — 0 we have F(t,w) — (%)2
From that we can conclude for the transition probability

e At a fixed time ¢, F'(t,w) has a sharp peak of width 27/t about the value
wmi = 0. It is clear that transitions to m for which w,,; does not deviate
form zero by more than dw,,; ~ 27/t will be strongly favoured. Therefore
the transitions ¢ — m will occur mainly towards those final states m whose
energy is located in a band of width 0F =~ 27h/t

e If the transition is such that w,,; =0, E,, = E;, and the states are degene-
rate, then the transition probability is given by

|2

PO () = 2 (9.62)
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and at sufficient length of time the quantity Pﬁi) (t) will no longer satisfy

the inequality P,Si)(t) < 1 required by the perturbation approach. Hence,
the perturbation method cannot be applied to degenerate systems which
are perturbed over long periods of time.

o If w,,; # 0 we have

‘t) (9.63)

2|H,, |2
h22

mi

and P(l)( t) oscillates with a period 27 /|w,,;| about the average value

If the perturbation H’ is sufficient weak, the inequality P! )( t) < 1 can
always be satisfied. Note, for times ¢ small with respect to the period of
oscillation one has

. AH! |2 wmit ) £
tsmall : PU(t) ~ s (5 ) Al (9.64)

e If we consider transitions involving a group of states n whose energy F,, lies
within (ET(,S) —n, EY + n) centered about EY and we denote pn(E,) the
density of levels on the energy scale, so that p,(FE,)dE, is the number of
final states n in an 1nterval dE, containing the energy FE,. The first-order
transition probability P ( ) from the initial state ¢ to the group of final
states n is then given by

4\H P [ sin?(2st)
PP = Sldvp = ek [T (5, @69

Wh
B 40
2
= / | [P F (¢, wni) pu(En)d B, (9.66)
B —n
2 I T
2m 1
= pa(Bn) [ Hylt (9.68)

If t is large enough so that n > 27wh/t the dominating part of the integral
arises from transitions which conserve the energy (within 0 E = 27h/t), and
we have

2
PO = T PouBY = W= [ HuPpu(E)  (9.69)

with W,,; is the transition probability per unit time or transition rate. This
is called 'the Golden Rule’ of perturbation theory.
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110 9 Interaction of atoms with electromagnetic radiation

9.1.2 Periodic perturbation

Let us now consider a periodic perturbation
H'(t) = Ve + V*e ™!, (9.70)

With this definition H'(t) is hermitian, and the system is initially (for ¢ < 0) in
the unperturbed bound state ¢§0)’ of energy Ei(o), so that the initial conditions
are ¢;(t <0) =1 and ¢,,(t < 0) = 0 for m # i. To calculate ¢,,(t) we substitute
(9.70) into (9.52) and use the fact that ¢y = 0. This gives

t t
1 . , . ,
() = — |V / elomt gy 4 v, / ellomi= I qi!
2
0 0
1 — B ~EL +hoyt/n

hwmi=EY B
=

Vmi

ED B9 + hw

1 — (BB —nw)t/n 2

Vini (9.71)

EY — B — hw

Only one of the two terms contribute to the transition probability. For EY =
Efo) + hw the second term will have an appreciable magnitude, and the corre-
sponding transition probability being given by

2
Pl (1) = Vil P F (t wimi — w). (9.72)
The two terms describe the physical processes of
hw = EW— Ei(o), Absorption (9.73)
hw+E® = E©  Emission (9.74)

and for discrete transitions the density of states becomes p, (E) = 5(E§,?) - Ei(o) F
hw). The main difference to the time-independent case is that w,,; is replaced
by wmi — w. We see that the transition probability will only be significant if
E,, = E; 4+ hw and the system has absorbed an amount of energy given by Aw. If
we take into account that the electric field is a vector we can write

Vo= —25-7 (9.75)
= —gfo-?(eww‘i“t) (9.76)
1— |
Hy,(t) = —Qﬁo (e + e7™") (e T 95) (9.77)
Emi = (YmleT) (9.78)
1 | |
Hyy(t) = —5Bo- Wi (6 + 7). (9.79)
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The vector E,m is called transition dipole moment for the transition ¢ — m. The

coefficient \cfﬁ) (t)|? is given for long times as
1 —
|c£71) (zf)]2 = ﬁ\Eo . Emi|2(7r5(w + Wii) + T (W — wii) ). (9.80)

The energy conservation is fulfilled by the delta functions for absorption and
emission. The Probability is given by

2
E_g . Emz ei(wmi—w)t -1

R OP = | (9.81)
—
|Eo - 1 mil® 28in? (Wi — w)t/2)
- =L D (9.82)
Eol2 T mil? sin? (., —
| Eol?| 1 mil” sin® ((wimi — w)t/2)
2 T (9.83)

Here, we used an isotropic distribution of transition dipole moments. For conti-
nuous distribution of states with nearly constant density of states about w,,,; = w
we have the transition probability integrated over the frequencies

¢}

1 —

P,(t) = WEO\ZIEW-]Qp(w)/F(t,wmi—w)dw (9.84)
i —

— WEO\Z]EmiPp(w)t (9.85)

and we can finally calculate the transition rate

P,(t T —
) B l0l) (9.56)

that is constant and given by the transition dipole moment and the strength of
the electric field. The transition rates for absorption and emission are equal since
the dipole operator >_, ey is hermitian (¢,,|e 7 1;) = (Vile T V).

Wmi -

9.2 Absorption and emission

Using a perturbation of the form

H (1) = —m%Z v (9.87)
the equation for the coefficient becomes
t
() = % / (| A - Tyl eom? g’ (9.88)
0
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112 9 Interaction of atoms with electromagnetic radiation

Inserting (9.13) we have

o) t
e = = . ’
() = —Q—/Ao(w)dw P (Pmlett T E Vwi)/e’(“’m !
0 0
¢
—ip kT (Wi +w)t! 74
+e " (Ymle e-Viy) [ e at'| . (9.89)

0

The first term describes absorption, the second one emission. The probability for
the system to be in the m state at time t (with initial conditions |c,,(t < 0)|> = 0
and |c;(t < 0)]> =1) is

e’

ﬁAg (Wini )| Mo (wimi )| *2. (9.90)

lem(t)]* =

Thus the probability increases linearly with time and the transition rate for ab-
sorption (integrated over w) can be defined in first-order perturbation theory
as

A e* T (wmz)

Wmi - Mmz mi 2 9.91
m2co dmey W2, | (i)l ( )
4m2ah? 9

where o = €?/(4meohcy) ~ 1/137 is the fine structure constant. The term o,,; is
called the absorption cross-section which is the rate of absorption of energy (per
atom) divided by I(wp,;). It has the dimensions area divided by time.

Evaluating the second term gives the transition rate for emission (integrated over

w):

M;,, = —-M:. (9.93)

- 4?2 e? I(w )
VVim - o Mzm mi 2 9.94
T ——Y | (Wimi)| (9.94)
Wim = Wi (9.95)
Tim = Omi (9.96)

Wi

Bpi = —™ —ery|? 9.97
P 3h2 47r5 |Z eral (9:97)

Here, we see that the absorption rate is the same as the emission rate as found
before, and the absorption and emission cross-sections are also the same. This is
consistent with the principle of detailed balancing, which says that in an enclosure
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containing atoms and radiation in equilibrium, the transition from ¢ to f is the
same as that from f to ¢, where f and ¢ are any pair of states. The Einstein
coefficients B,,; depend on the matrix element M,,; which determines the strength
of a transition.

9.3 Selection rules

H
Having neglected the term A? in the interaction of matter with light, the SE
may be written as

ih%/}(?, t) = [Ho + H'(t)]0(7, 1) (9.98)

If we assume a time-dependent perturbation caused by an oscillating electroma-
gnetic field (light wave) with polarization direction £, the perturbation becomes

H
eV + e (9.99)
The time-dependent term with e™! is analogous to the periodic perturbation,
which we already calculated in equation (9.86). Now we concentrate on the other
part

H . / W (P F Dz T (7)dV. (9.100)
For the phase factor ei(F-T) it is
H
=, (N (k-
IR :ZM (9.101)
n!

For most of the experiments the atoms are much smaller than the wavelength
_>
(except for x-rays) and the phase is constant over the atom (| k - 7| < 1 and
ﬁ
= A > ap). We can set i(k - 7°) = 0 and the phase term is unity. This is called

the dipole approximation (ei(’“'?) = 1), and the next higher approximation the
(k-7

H
quadrupole approximation (e ) =ik - 7). With the dipole approximation

the integeral becomes

/ Ui (T)E - T (T)dV = 2 / L)V e(T)AV (9.102)

Hy, 7). (9.103)
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Inserting (9.103) into (9.102), using Hyy, = Egy, we have

/¢ zpz )V = e- — /¢ )[Ho, 7 )0i(7)dV  (9.104)

- ( BED - E) e [T u(T)av

= mwmz / V()T (T)aV (9.105)
(0) (0) - L
Here we used (Ew’ — E;) = wy;h.If we insert the vector potential A we have

h mi \ *

. = —"a, (-mw ) g /@wm(?)?m(?)dv (9.106)
m h
— . —>

= eE(wmi%/wmrwidV (9.107)
= —E (W) i (9.108)

where 9.108 describes the interaction of the electromagnetic field with the tran-
sition dipole moment. For (for ¢ = m) it is the potential energy of an electric
dipole in an electric field. The transition dipole moment is given by

Wmi = —e€ / O T dV (9.109)

n N
— /% <_e Z T +e Z Z,E,i) YidV . (9.110)
(=1 k=1

The intensities in dipole approximation are found

I(wpmi) = |é - /1/} (—eZw—i—eZZkRk) bidVE =16 Wonal* (9.111)

where € is the polarization vector of the electromagnetic field. The selection rules
say that transitions are forbidden if 7/ Kmi = 0. To test if transitions are forbid-
den symmetry arguments are used and the term é - 7 is expressed by spherical
harmonics with £ =1 and m =0, +1:

A =

E-1 = ggsindcosy+egysindsing + ¢, cos? (9.112)

A (ex+ iay) (—5;,; + i€y> }
= — Y 1+ | —— | Y11+ &Y, 9.113
V3 {( 7 1,-1 7 141 10 ¢ (9.113)

Now we investigate the transition from the initial state 1; = 1y, s, m, to the final
state 1y = wnf,gf’mfi

(6-7) = / e T pdV (9.114)

[ By (Y, 00902 T R 1)V (0. 9) T AV (9105
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Inserting (9.113) we find

//Yéj,mef (0, ©)Y1m(0, Sp)nhmgi (9, p).d cos Idy (9.116)
2
/eimeflpeimcpeimzisodcp — 5m+mzi—mef»0 (9117)
0

The integral (9.117) does not vanish if m;, —my, = m = 0, £1. Thus, our first
selection rule in dipole approximation is

Amy =0, 1. (9.118)

The next selection rule follows from inversion symmetry. The integral I(7") should
not vanish going from 7 — — 7

/ VT d T o / n’;,méf7}/gi’m[idcosﬁdg0. (9.119)

Since Yo (7)) — (—1) Yy m(— ) the integral is not zero if

[(=r) = (-4 (=1)(=1)%I(7) > 0. (9.120)
This is only the case if £+ ¢; +1 = 0, £2, ... and we can directly conclude that
AL #0. (9.121)

To specify the selection rule for the quantum number ¢ further we remember,
that we can write the product of two spherical harmonics with ¢; and /5 as a sum
of spherical harmonics with quantum numbers ¢ ranging from [¢5 — ¢1] to (a4 ¢4].

}/vl,m}/éi,mgi = a’}/éi—&-l,mgﬁrm + 6ni,mgi+m + Py}/ﬁi—l,mgi-f—m (9122)

Inserting this into (9.116) we have

/ /}/l;,mzf (a}/&-‘rl,mei-f-m + 6Y€i7mei+m + ’}/ngi_l,mgi_}_m)dCOS 19dg0 (9123)

Using the orthonormality of {Y7,,} the integral does not vanish for

O = {t;+1, 4, 0—1} (9.124)
= Al = +1 (9.125)

In summary we have selection rules for dipole approximation

Am = 0, %1 (9.126)
Al # 0 (9.127)
Al = +1. (9.128)
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If we apply these rules to the normal Zeeman effect we have to analyze the integral

/Yffvmef {( V2 ) Yio1+ ( /2 ) Yia+ 5zY1,0} Yzi,meidCOS Ydy

(9.129)
with the magnetic field B is parallel to the z-axis (see experimental setup).

For longitudinal (L) observation direction we have €, = 0, since the electroma-
gnetic field is a transverse wave.

e my, = my,+1: Polarization vector is given by 1/v/2(e,—ie,), which describes
(right handed) circular polarized light o_.

e my, =my,—1: Polarization vector is given by 1/v/2(e,+is,), which describes
(left handed) circular polarized light o.

Note, the definition of left handed and right handed circular polarized light is
sometimes used the other way around (o for right handed circular polarization
and vice versa).

Along the z-axis the observed transitions are circular polarized. In this expe-
rimental geometry the angular momentum of the photon is parallel to the k
direction (in z-direction). We have conservation of angular momentum or spin
with the spin of the photon to be my; = +h. Thus, the case m = 0 is not possi-
ble, because upon absorption/emission the angular momentum will change. For

m,=-1

Y K
B k
h
s-Orbital - °
o 1: v
I \J} l :
O+
T 4 helicity + o_
h .
H left handed helicity - i’
\J circular polarized light right handed

circular polarized light

Abbildung 9.3. Interaction of right and left handed circular polarized light with matter.
Since we have conservation of angular momentum or spin only such transitions are allowed
which result in spin changes of Ahmy pp,.

photon absorption of m, = 1 we have Am, = 1, for photon emission Am, = —1.
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For photon absorption of my; = —1 we have Am, = —1, for photon emission
Amg = —|—1

For transverse (T) observation direction we have €, = 0, since the electroma-
gnetic field is a transverse wave. Now we have three terms resulting in transitions:

e my, = my,, here only the term with ¢, # 0 is relevant; the light is linearly
polarized in z-direction.

o my, =my +1 the contributing term is Y7 4; and the light is linearly pola-
rized in y-direction.

Another way to argue is that if one applies light polarized in z-direction (¢, = 0),
only transitions with Am = 0 (with Yj,,) are possible. Light polarized in
y-direction (¢, = 0) can result in transitions to Am = £1 (depending on the
frequencies).

Yio \')

p-Orbital
8 Am =1
Ao

e O ]

Am =0
Am, =-1 |

Y1,1

s-Orbital

Abbildung 9.4. Interaction of light polarized in €, and ¢, direction with a s-orbital.

e The vector /i, indicates a charge redistribution going from |t;]? to |¢)|?
described by the transition dipole moment. Upon absorption the atomic
'size’ is growing.

e The developing parameter in kT is ? -7, which is approximately of the
size

? N wag  hwag

crxkay=——= .
Co he

(9.130)
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With the transition energy of AF ~ Smad in a hydrogen atom we find

- h2 QAo
ET Ao 9.131
: 2ma3 he ( )
h h 2 2 1
~ - e © o~ (9.132)
magcy  mcodmegh?  4meghcy 137

with a the fine structure constant, which is a fundamental constant for the

coupling strengths between charged particles and the electromagnetic field.

zkr

In the development of e every next term will result in contributions of

order
O(a®) ~ 1074 (9.133)

The next term after the dipole approximation contains the electric quadru-
pole and magnetic dipole contributions, which have different selection rules
than the electric dipole transitions, e.g. A¢ = 2. But the intensities of those
transitions are weaker by a factor of ~ 1074

/zp;;(?)@'(? CFYE -V )d T (9.134)
inserting p o V we find
F TP = 5 [(F-TEP)+ETIF D)
b5 [(F 7)) - - 7I(F - 7)) 0139)
= I+41I
= I+%(?xé)-(?x$’) (9.136)

Since (? X €) x ?, and (77 x p) L the second term (I1) gives

=]

"B

|
D:J
\
<
&,3
7;
[wy)
sl
<
&.
=]
|
vy
—
<
&,3

x € =5 — —
(% X P )dT .
(9.137)
This is the interaction of the magnetic field with the magnetic transition
dipole moment ﬁ)fi, leading to the splitting of the degenerate levels of m
in a hydrogen atom in the Zeeman experiment. The first term (I) can also
be transformed using p = [Ho, 7]%, Hyyy, = Eyty, and ¥ -2 =0 and we
have

3
I oo Y kigiQi (9.138)
ij=1
Q{jm = _6/¢;(3$ixj — 1203 omd T (9.139)
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@ is the electronic quadrupole transition moment for transitions from m —
ﬁ

f with k;é; being the components of the gradient of E (21 = 2z, zy =

Yy, v3 = z. Both terms I and I result in new selection rules for electronic

quadrupole transitions and magnetic dipole transitions.

e The parity operator P is also a very useful operator, that commutes with
—
V, H, L? and L,. The quantum number « of the parity operator, here
acting on the spherical harmonics is

PY, = aYim = (—1) Y. (9.140)

Eigenvalues of the parity operator are @ = £1.

10 Spin of the electron

We already introduced the Spin of an electron to be s = % The Spin operator Kl
operates in a two dimensional spin space an exhibits the properties of an angu-
lar momentum operator with quantum numbers m, = j:%. Several experiments
result in the hypothesis of the electron spin. The Stern Gerlach experiment is
shown in Fig. 10, the anomalous Zeeman effect (with the Na D doublet) and the
general doublet structure of spectral lines. The new effects found in those expe-

Inhomogeneous
magnetic field 2

Atomic beam (Ag)

[l
@u:/

Abbildung 10.1. Stern Gerlach experiment. An atomic beam splits in two parts in an in-
homogeneous magnetic field along the z-axis which is parallel to the average magnetic field
direction.

riments were explained by an additional interaction to the magnetic moment of
the electron spin. In Stern Gerlach experiment silver atoms were sent through an
inhomogeneous magnetic field resulting in a splitting of two spots, with a split-
ting proportional to the field grad_i)ent. The explanation for this observation is the
interaction of the magnetic field B (here in z-direction) with a magnetic moment

H
I s

V = %, B (10.1)
— — -, =
F = -VV=Y(7 B) (10.2)
)
F. = p, —B.. 10.
z ILLSzaZ z ( 03)
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In a classical picture all possible magnetic dipole directions would be allowed and
no distinct spots would be visible in the experiment. Quantum mechanically the
magnetic moment 1 is correlated with the orbital angular momentum quantum
number ¢ which can take on 2(¢ 4 1) distinct values (odd number). The two
spots observed in the Stern Gerlach experiment could not be explained with
the orbital angular momentum. Additionally, experiments with hydrogen (¢ = 0)
show similar results, so that a magnetic moment 7/, due to the spin of an electron
was introduced
K
s = —Gshn—r (10.4)
2

gs = ﬂ1+§%—03%%§+”J:QOM$&ﬂM® QED (10.5)

gs = 2.002319314(7) Experiment (1971) (10.6)
. T
W= —guis— (10.7)

The g-factor is the gyromagnetic ratio of the magnetic moment (in up) to the
angular momentum (in /). The Stern Gerlach experiment shows that 77, ~ +up

and thus g; =~ 2. As a result_t}he different angular momenta T and S add to a
general angular momentum J

— = =
J=L+5. (10.9)

The magnetic moments add up to 77

PoT 5.

ﬁJ:IZ;%ﬁsz_7gu;+zmn3 (10.10)

ﬁ
Note, J and 7/ s are not parallel (if there is an effective spin). All atoms with
a single outermost electron in the s-orbital show the same splitting in the Stern
Gerlach experiment. Therefore, the magnetic moments of the other spins in a

¢
closed shell cancel each other out. This is in accordance with Y [V;,.|* = c.

m=—/
The spin introduces two additional terms to the SE
Hppy = ~Te Bea (10.11)
= 1 1dV—- — - —
Hg, = — W s+ Borpit = W;%L S =&)L - S (10.12)

ﬁ
The term (10.12) is the potential energy of 71 s in the internal magnetic field B o4
introduced by the 'moving’ electron itself. In the system where the electron is at
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the origin with velocity zero, the nucleus is ‘'moving’ and creates a magnetic field

- 1 1dVT - . Ze? . . : :
of B « 5% L with the potential V' = — 25— This term is called spin-orbit
or

interaction, explaining the doublet structure of spectral lines.

Alkali metals_) ha_v)e only one valence electron and if ¢ # 0 we have to take into
accg)lnt the L - S term. The electron spin can be oriented parallel or antiparallel
to L.

Example Na with 11 electrons (one valence electron):
[(15)%](25)*(2p2)*(2py)* (2p2 ) |3s]

Since the inner shells screen the nucleus charges the effective potential for the
valence electron is

Vi = — (10.13)

r

For small distances the potential is the Coulomb potential with nucleus charge Z,
and for large distan_c)es_)the effective nucleus charge is Z = 1. Assuming a transition
from 3p — 3s the L - S coupling introduces a splitting of the ¢ degenerated states
and we find a doublet structure of transitions (see Fig. 10). In sodium atoms we

/ 3psp
3p ——— i
’ P s —— 3P
/ —_
3§ ——— —_ 35

Abbildung 10.2. Screening of the nucleic charge by the inner electrons; green: Coulomb po-
tential with Z = 1; black: Coulomb potential with Z; red: effective potential due to screening.
Degenerate transitions from the 3p — 3s orbital will split because the total angular momentum
quantum number is j =f+s=1+ % and allows two terms.

find two transitions from 3p — 3s with D;, 589.59 nm and D, 588.96 nm (3s do
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not split). An estimation of the spin-orbit interaction strength for atoms is

e? dVv B e?

V = - = — = — 10.14
(r) dtegr dr  4mwegr? ( )
L Ve = e
2m2c2 r dr 8regm2cirs
1 1
ith (<)nmor=1 = —— 10.15
wi <r3> 2,0=1 (3ag)? ( )
Wy Bop ~ 0410738~ 0251074 eV ~0.2cm™  (10.16)
with ps, ~ pup~ 1072 Am? (10.17)
- 10723 )
= Borbit ~ m ~ 1TeSla (1018)

The internal magnetic field leading to spin-orbit interaction is of the strength of
external magnetic fields (Zeeman effect).

10.1 Spin-orbit and additional couplings

é
The orbital angular momentum operator L acts on the spatial coordinates, while
ﬁ
the spin operator S acts only on the spin coordinates. Therefore both operators
ﬁ
commute and we can add them to the general angular momentum operator J

- —
[L, S} ~ 0 (10.19)
— - =
J = T+38 (10.20)
[Ji, J;] = ihdy, (i=xy,2;j=Yy,2,x k=12%,y). (10.21)

H
There exist simultaneous eigenfunctions 9, of J 2 and J,

— iy : 1 3
T jm, = GG+ DY, §=1{0, 5.1, 5, .} (10.22)
szjmj = mjhwjmj m; = {_J7 —J + 1, ceey J} (1023)
— —
Without coupling L - S = 0 the wave functions are
¢n€mgsms X Rné(r>§/€m(79a SO)Xsms (1024)

1 0
X1/21/2 = ( 0 ) ;o Xi/2-12 = ( 1 ) : (10.25)

With -5 # 0 the quantum numbers m, and m; are no good quantum numbers
any more, since [Hy, L,] # 0 and [Hy, S;] # 0. We need a new basis of simulta-

. . —>2 _)2 —>2 . .
neous eigenfunctions of the operators L=, S=, J~=, J,, which commute with each
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- —
other and with L - S, and Hy. The new eigenfunctions are of the type ¥y m, e,
and for a given ¢ the possible values for j are (vector model)

0—s| <j<|l+s] (10.26)

If we take H§,; as a perturbation

Hy = ¢nL-S (10.27)
(72 -T2-5?) (10.28)

with t,jm;es as the eigenfunctions of the unperturbed system with eigenvalues of
E,, j(G+1)h* m;h, £(L+1)R?, s(s+1)h? then we can calculate the energy shifts
in first order perturbation theory for the hydrogen atom.

a) b)
S i
S T Enl — ﬁ -
=0 T,
—
L T 2j+1;
j=1/2 _
j=1+1/2 ! 2 T 2p3n  2x3)2+1=4
j=1-1/2 =1 e
20, )
n 201 2x12+1=2

Abbildung 10.3. Spin-orbit coupling in a hydrogen atom. a) possible relative orientations of
vectors L and S to each other; b) level splitting due to spin-orbit interaction and the number
of degeneracy (2j+1) for each level.

A-ESL = /1/}ijst {§(T>%(72 - z)2 - §>2)} wnjmjésd? (1029)
h2

3

= Dlig+ ey -3 on, (10.30)
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For a hydrogen atom (£(r)) can be calculated exactly

<l> _ z (10.31)
/o B adndl(0+ 3)(C+1) '

1 Ze? Z3
_ 10.32
(&) 2m2c§ dmeg agnl(l + 5)(0 + 1) ( )
RN (10.33)

- 3
PO Gy — 1) — =t (10.34)

—t 3
POV Gy — e+ 1) — L=l (10.35)

1\* amc\ 3 e?
S _ ith o — 10.
(ao) ( h > ’ W @ 4W€0h60 ( 0 36)
mc*(Za)t 14 j=0+1
AE — : ) 2(10.37
St <4n3e(z+§)(£+1)) {—6—1, j = 11037
Gt
. 1
AEsr 1172 = £ e, j=L+ 3 (10.38)
, 1

AESL,€—1/2 = _(5 + 1) Cnes Jg=Ll- 5 (10-39)

The energy splitting is proportional to the 4th power of the nuclear charge and
4th power of the fine structure constant AFgy, o (Za)4. The term (¢ is always
positive so that we have a splitting in two levels, one is energetically higher (j =
4+ %) and the other one is energetically lower (j = ¢ — %) Thus, the degeneracy
due to £ is reduced, but there is still some degeneracy left (254 1). The splitting in
two levels was thought to explain the doublet line structure, but the calculations
do not fit with the experimental results! This is because of the fact that the
SE does not contain any relativistic corrections. The relativistic expression for
the kinetic energy of an electron is Ey;, = \/p?c3 + m?c — mcZ, which can be
developed in a Taylor expansion. Relativistic corrections are included in the Dirac
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equation (next order correction terms)

n = RA(E' —V(r)=
By = |-y ¢ )G
4 QmV Vi) + 4m?2c3
1 dV— — n: dv o
- YT gt Y 10.40
2m2c3r dr 4m2c3 dr Or 4 ( )
P’ 7!
H = 2 ive)-
om (r) 8m3ca
I
1 dV—- —= Th?Ze? N
——L - S+ —55—9 10.41
2m2c3r dr - 2m2ctdme (7) ( )
bt 11
E = E,o+AErs+ AE,.. + AFEpg,, (10.42)
mci(Za)* 1 3
AE,, = ——2 - 10.43
. 2 {n3(€ +3) 4n4} ( )
me (Za) ) _
AEDm‘ = 20 nd £=0 (1044)
0, else
(Za)? 1 3
E.,, = FE,|1 : - — 10.4
! { L j+1/2 4n (10.45)

2
7
Efgm = mc? 1+ a -1
n—j—1/24 /([ +1/2)? — Z2a?

The term [ is the second term of the Taylor expansion and the next term for
relativistic corrections to the kinetic energy and does not act on the spin varia-
b_l)e. Terrg 11 is the spin-orbit coupling, introducing an explicit coupling between
L and S. Term [I] is called Darwin term and is only relevant for £ = 0 where
§(7") is not vanishing. This term does not act on the spin variable.

The exact solution Eﬁ?“t is obtained by solving the Dirac equation for the Cou-
lomb potential. F,,; agrees with the exact solution up to order (Za)?. The energy
levels depend only on the principal quantum number n and the total angular
momentum quantum number j, with j = 1/2, 3/2, ..., n—1/2. To each value of
j correspond two possible values of ¢ given by ¢ = j+1/2, except for j =n—1/2
where we find only one state. For example the levels 2p, 2s are split by the spin-
orbit coupling and relativistic corrections in 2 levels (doublets) as shown in Fig.
10.1. However, experiments show that there is a (very small) additional splitting
of degenerate levels called Lamb shift. In Q.E.D. ’radiative corrections’ to the
Dirac theory are obtained by taken into account the interaction of the electron
with the quantised electromagnetic field. A qualitative explanation given by T.A.
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2p3)
2P, 2 25/
1=0,1 2py),
n=2 2P,/
. ) 12
L-S —_— 2Py5i25p 2.,

T:? + rel. Lamb shift

Abbildung 10.4. Spin-orbit coupling in an atom with electron spin 1/2. The spin - orbit
coupling alone would split the 2s and the 2p levels into three different levels, but since the total
corrections (including relativistic effects) depend only on n and j we end up with two levels
of different total angular momentum quantum number j. Additional splitting of the levels is
introduced due to the Lamb shift.

Welton (1948) is that a quantised radiation field in its lowest energy state is not
zero, but there exist zero-point oscillations. This means that even in the vacuum
there are fluctuations in this zero-point radiation field which can act on the elec-
tron, causing it to execute rapid oscillatory motions so that the charge is ’smeared
out’. If the electron is bound by a non-uniform electric fiel, as in atomic systems,
it will therefore experience a potential which is slightly different from that corre-
sponding to its mean position. In particular, the electron in a one-electron atom
is not so strongly attached to the nucleus at short distances. As a result, s states
(which are most sensitive to short-distance modifications because [(0)* # 0
for these states) are raised in energy with respect to other states, for which the
corresponding modifications are much smaller. The Lamb shift decreases with
increasing ¢. The modifications of the s1/, level is roughly 10% of the energy
difference of p3/» — p1/2, so that the sy, level lies higher than the p; /5 level. The
p3/2 energy levels are shifted about 0.2% of the energy difference ds/» — ds/o of
the ds/o and ds/5 levels, resulting in an upshift of the ps/, level with respect to
the ds3/; level. The resulting Lamb shifts are of the order of 0.03 cm™ L

ﬁ
Since the dipole operator D = —e 7 does not depend on the spin, the selecti-
on rules derived above for the quantum number ¢ (in the dipole approximation)
remains

Al = +1 (10.46)
Aj = 0, £l (10.47)

For example we see from Fig. 10.1 that the multiplet np—n’s has two components.
Thus each line of the Lyman series (hydrogen atom, lower state n = 1) is split
by the fine structure into a pair of lines called a doublet, corresponding to the
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transitions

npiz — 1812, npgp — sy (10.48)

We see that in the case of the Balmer series (lower state n = 2) the mulitplet

ndsp — j=5/2

NP3p —o— j=3/2 nds, j=3/2
NP 1,2 j=1/2

n'p3/ Y v j=3/2
n's,;, XX j=1/2 nN'pyp, X—— j=1/2

Abbildung 10.5. Transitions of the Lyman series of hydrogen.

nd — n’p has three components and we find seven transitions in total. However,
since the levels ns;/, and np,,; coincide, as well as the levels nps/» and nds),
the Balmer line (see Fig. 10.1) contains five distinct components (without Lamb
shift). Since the radial integrals are the same for both transitions nps, — n'sy /2
and np; /2 — n's1 /9, it is easy to obtain from the angular parts of those integrals,
(that is from angular momentum considerations) the ratio of the two transition
probabilities, which is found to be equal to 2. More generally, the ratios of the
transition probabilities for the most important special cases are

S1/2 — P3/2
S1/2 — P1/2
pd trans. :  psjo —dsje i P32 —dsja i prje —dzp=9:1:5 (10.50)
df trans. : dsj2 — frj2 1 dsja — fs72 1 d3jo — f52 =20 :1:14. (10.51)

sp trans. =2:1 (10.49)

Under most circumstances the initial states are excited in proportion to their
statistical weights, that is the (25 + 1) degenerate levels corresponding to an
initial state are equally populated. In this case the ratios of line intensities are
the same as those of the corresponding transition probabilities (for different values
of mj).

In the case of the anomalous Zeeman effect the internal field or the spin-orbit
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Feinstruktur n=3
, 00361 35/,
¥ 3p3y,.3dy),
I\ : - 351/2
4 3
0l082 00105 P12
Lamb
Shift
ca. 16 000 T
2P3/2 ——.‘I i‘_-
2 Lamb Shift
0.3652 n=
1 s
00353 2Py
Lamb
Shlft T T l T T T T ‘ T 1
e q 4
Av/GHz

Abbildung 10.6. Structure of the H,, lines of hydrogen and term scheme. The expected optical
spectrum is shown at the bottom of the picture, thicker lines correspond to stronger transitions.
Energies are given in wavenumbers.

coupling is dominant and the external magnetic field is weak and is treated as
the perturbation. The unperturbed Hamiltonian is

h? Ze? - -
HO = —%A — 471‘50’[" + g(?”) L . S (1052)

with jm;es eigenfunctions of the unperturbed system and eigenfunctions of
—, =, =
{J?% L? S2 J.}. The perturbation is

H = -7, B=-7,-B-T7s-B (10.53)
— %B (L, +28,) = /%BBZ(JZ +S.) (10.54)

To first order perturbation theory the energy shift is

AFE =

B, »
Mh /wnjmjﬁs(‘]z + ‘S(Z)wnjmjﬁsd7> (1055)

The first term is easy to evaluate (m;h) but the second term is problematic and
is a result of gg = 2.

:LLBZ *
AE = By + M [ 6550 (S bnimped T (10.56)
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To analyze the second term we use the following operator identity and examine
its expectation value in the Dirac notation

s
2ihV
72V

°l
|

2

|

(Csjm;]
3G + 1R (Csjm;|

—

N
J
-
V J#|lsjm;)

| lsjm;)

L@l <

3G+ DR (simy| S .|lsjm;)

30+ DR*(S:)

and we can conclude

(jm;ls|S,|jm;ls) = hmj]

e S —
IxV+VxJ (10.57)
—_ @ —— —_ = —
2R3 (JPV +V J2) —4R*(V - J)J (10.58)
2(55jm3|(‘—/ : 7)7]63]7@} (10.59)
- = =
2(bsgmy| (S - J) J L|lsjm;) (10.60)
72 _ T2 NS
2hm; (Csjm;]| 5 [0sjm;) (10.61)

hmj<jmjfs|%2[j(j +1) = L€+ 1) + s(s + 1)][jmyls)

Inserting (10.63) we find the energy shift

AEmj = uBBzmj—i—

(10.62)
(J+1)—l(l+1)+s(s+1)
TRy . (10.63)
BBDs i 0615, jmsts) (10.64)

h

2j(j+1)

_ MBBij{1+j(j+1)—£(€+1)+s(s+1)} (10.65)

= QJMBBzmj

-~

9J

(10.66)

and the term g¢; in (10.66) is called Landé factor. We found the interaction term

for perturbation theory which is

Ve = —Jye B (10.67)
5

ﬁJ,eff = _QJ,UB% (10.68)

Vg = gj%?ﬁ (10.69)

= gsppB.m; (10.70)

— . - — . -
The vector 1 ; is not parallel to J, but 1 j.s¢ is parallel to J. In the case of
s = 0 the Landé factor becomes g; =1 = gz, and if £ =0 then it is g; = 2 = g5.
In general this is not the case and we have g; # 1, 2. For a single electron we
have j = [ 4+ 1/2 and the energy shifts are

AE,, =

20+2 - 1
s Bamy, j=10+3

(10.71)
20

s Bamy, j=10—3

Physics of Atoms and Molecules



130 10 Spin of the electron

In contrast to the normal Zeeman effect (s = 0) the splitting of the levels are not
equidistant any more, because the g-factor is different for different levels. This
result in more different transitions.

e (=0 (s-state), gy =2 = gg

Ol

3
J =2
o (=1 (p-state), g; =

1

J=3

W

The selection rules are (dipole approximation)
Amy=0,+1 = Am; =0, +1 (10.72)

The scheme in Fig. (10.1) explains the observed additional splitting of the so-
dium D; and D, lines upon transitions from 3p;; — 3s1/2 and 3p3/2 — 3512,
respectively.

The connectlon between J ,u sand 70 u Jeff can be explained as follows: The vec-

tors T and T are coupled via Hgy, to J and precesses about the vector J with

hlgh velocity w = FEgr/h. The magnetic moment 7 ; also precesses fz fast about
%

the J direction. J itself precesses slowly about the magnetic field B (z-axis),
since the external field is much weaker than the internal field leading to spin-orbit
coupling. Averaged over the slow precession only the component of 77 that is

—

ﬁ
parallel to J is not averaged out, because during the slow precession about B
. —_ - . .
we average over many round trips of i ; about J. Taking this model we can
— . — s
calculate 1 ;¢ as the projection of 1/ ;on J.

-
J
Hoersl = o5 (10.73)
- =
— J - B
Ep = _ﬁ)Jﬁff'B:_‘FJ@fﬂ (10.74)
J\(7-B
_ :
_ R N B 10.
(uj J) b ) (10.75)

J

= S (10.77)
— — — —
Bz J2—|—l J2—|— 52_ L2
- “2 @{ 2(_% ) (10.78)
7
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m:
iy j
Splitting: —_— e

—_— 1412
j=1+1/2
-1-1/2
l,s=1/2
+1-1/2
j=1-1/2 -1+1/2
LS +rel. Zeeman
Transitions: ™)
— 32
12
P3/2 -1/2
-3/2
- 1/2
$1/2 Y p
p sy s
Dm=0 Dm = +1
Dm = -1
6 lines

Abbildung 10.7. Splitting of energy levels and transitions induced by the anomalous Zeeman
effect. The different energy levels split by different Landé factors. For example the p3/; level
split in 4 new levels displaced by 4/3upB.. The s; /5 level split in two levels displaced by 2upB..
As a result the 6 transitions have different energies and we observe 6 transitions in total.

— -, =
If we insert the eigenvalues of J? = h%j(j + 1) and of S?, L? and J, we find

B _ pB., B JG+D+ 3G +1) +s(s+1) —L(0+1)]

o) = A = W{ iG+1) }
JG+1)+s(s+1)—L(L+1)

2j(j+1)

= gyupB.m; (10.80)

(10.79)

= uBBzmj |:1 +
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10.2 Spin of a nucleus

In addition to the magnetic moment of the spin of the electron the protons and
neutrons of the nucleus have also a total angular momentum I called nuclear
1

spin. The nuclear spin of a proton or neutron is / = 5 and [ is the nuclear spin

quantum number. The eigenvalues of the operator T2 are I(I+1)k?. The eigenva-
lues of the operator I, have possible values of M;h, with M; = -1, —I+1, ..., I.
A nucleus may possess 2¥-pole moments, with k odd for magnetic moments and
k even for electric moments. Here we consider the nucleus as a pomt dipole with

a magnetic dipole moment J1; proportional to the nuclear spin I

—

I

W = e (10.81)
eh Me 1

— — - 10.82

M= on, ~ M T 1836150 (10.82)

pr = 5.05078 x 107*JT 1 (10.83)

(W1): = gruxma (10.84)

Values of the spin, Landé factor and magnetic moment of the nucleons and some
nuclei are

Nucleus ‘ Spin ‘ Landé factor g; ‘ wr (in pp) ‘ Natural abundance (%) ‘
proton p 1/2 | 5.588 2.792 99.88
neutron n 1/2 | -3.826 -1.913 -
deuteron 2D 1 0.857 0.857 -
SHe 1/2 | -4.255 -2.127 -
ife 0 |- 0 ;
120 0 |- 0 ;
130 1/2 | 1.404 0.702 1.1
160 0 |- 0 ;
i 1/2 | 5.257 2.628 100
51p 1/2 | 2.263 1.131 100
19977 1/2 | 1.005 0.502 ;
2017y 3/2 | -0.371 -0.556 ;

The contributions of the angular momenta were added to a total angular
H
momentum F

— — =
F = J+1 (10.85)
F| = h/F(F+1) (10.86)
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The quantum number F' can take on values FF=7+1,5+1—1, ...

,j—1.In

total 21 + 1 or 25 + 1 possibilities, depending whether [ is bigger than j or vice
versa. Knowing one of the numbers (I or j) one can determine the other one by
counting the number levels in the hyperfine structure. The additional magnetic
interaction energy from the hyperfine coupling is

AEnrs

|wn00(0) ’2

AFEpy — AEp

ﬁ
—Wr By

H
—M[BJ COS(Z ﬁ)[, BJ)

F(F+1)—I(I+1)—J(J+1)

gk By

a
2
g By

J(J+1)

2p0pBII K —

2

1

jG+1)

ZB
mnia}
a(F +1).

JJ+1)

[F(F+1)— I(I+1)— J(J +1)]

|,‘7Z)n00(0) |2

(10.87)
(10.88)

(10.89)

(10.90)

(10.91)
(10.92)

(10.93)
(10.94)

The magnetic field B is the magnetic field induced by the internal electrons at
the nucleus. For some atoms the magnetic field is (in Tesla)

’ ‘H‘251/2‘2P1/2‘2P3/2‘
Na | 3 | 45 4.2 2.5
K 4|63 7.9 4.6
Rb | 5| 130 16 8.6
Cs | 6| 210 28 13

e The constant a is called hyperfine separation constant and can be calculated
for j = 1/2 by equation (10.92). For s-orbitals the probability density at the
nucleus does not vanish and the magnetic field induced by the s-electrons
at the nucleus interact with the nucleic magnetic moment. This interaction
is called Fermi contact interaction and is isotropic. In the case of £ > 0 the
probability density vanishes at the nucleus and the interacting magnetic
field B results from dipole-dipole interaction between magnetic moment of
the electrons and magnetic moment of the nucleus. The hyperfine separation
constant becomes anisotropic.

Bj; and AEgrg are bigger the smaller the distant of the electrons form the
nucleus is. They increase with increasing Z, and decreasing n and /.
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e The hyperfine splitting is zero for I =0 or J =0

e For a hydrogen atom the hyperfine separation constant is a = 1420 MHz =
0.0475cm™! = 5.9-10" %V

e The hyperfine splitting of spectral lines is small. For 25, /2 of Li the splitting
is 0.027 cm ™!

e Without external magnetic field the degeneracy is (2F + 1), with magnetic
quantum number mg.

e The selection rules for optical transitions are AF = 0, +1.

S
al4

=0 saa | 00475 cm-
=172 (A=21cm)

— r=o |

Abbildung 10.8. Hyperfine separation of a hydrogen atom in the ground state. The spin of
electron and proton can be oriented parallel (F=1) or antiparallel (F=0). The splitting due to
hyperfine interaction (1.420 GHz) is about six times smaller than the Lamb shift.

The energy difference can be measured either directly upon absorption of the
matching high frequency radiation leading to a spin flip or by determining the
splitting of the spectral lines. By measuring of the energy difference one can
calculate the gg value of the electron to be 2.0023 (magnetic moment of proton
and electron is known).

10.2.1 Hyperfine splitting in an external magnetic field

An important tool to investigate the hyperfine structure is applying an external
magnetic field §0 in addition to the internal field. The resulting splitting of states
depend on the relative strengths of both fields. The case of weak external fields
BO in comparrson to B J 1s called Zeeman-effect of the hyperﬁne structure Here,
the couphng)of T , J, and F is r@rntalned and the vectors of 1 ind T precesses
about the F' vector around the B direction. The frequency of I and J about
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— — —
F' is fast in comparison to the precession frequency of F' about B,. Therefore,

the remaining components are the F, = mph components (§0 parallel to the
z-axis) with mp = F, FF —1,..., —F. The selection rules are AF = 0, +1 and
Ampg = 0, £1. The energy splitting of the Zeeman hyperfine splitting is

- =
AEzprs = —pr- Bo (10.95)
AEzurs = gripBomp (10.96)
FIF+1)+JJ+1)—-I(I+1)
gr = 49J
2F(F + 1)
F(F+1)+I1(I+1)—-JJ+1
PP I+ ) =T oo
KB 2F(F +1)

Since pup > pug the second term is negligible.

If the external rnagnetic_}ﬁelg> becomes stronger, the vectors T and J do not
couple any more. The L - S coupling is stronger (coupling of electrons) and
remains, while the coupling between the nucleic magnetic moment and the elec-
tronic magnetic moment is strongly reduced. This effect is called Paschen-Back
effect of the hyperfine interaction.

B
o = _JIHEDT (10.98)
T+ 1)
AFEpprrs = gspusmyBo+amymr — grpx Bomy (10.99)

10.2.2 Electron spin resonance (EPR)

The technique of electron paramagnetic resonance (EPR) gives information on
structure and dynamics of paramagnetic atoms and molecules. Especially the
detection of triplet states (next chapter) is possible with EPR. Generally the
molecules are diamagnetic and show no EPR signal. Paramagnetic molecules are

e Molecules with paramagnetic atoms such as Fe** or [Fe(CN),)]*~ which are
still paramagnetic with paired valence electrons.

e Radicals with an unpaired electron. There are stable radicals such as DPPH
(Diphenyl-Picryl-Hydracyl) and radicals which can be created upon illumi-
nation or chemical reactions.

e Molecules in the triplet state. For some molecules the electronic ground
state is a triplet state (O2, NO, NO,) and other molecules relax into a
metastable triplet state after light excitation, such as naphthaline, chlo-
rophylls, corroles, etc. The lifetime of the excited triplet states are in the
range of 10 Cs.
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BO +al4 112g11By mg m|

A T— +1/12 +1/2
T +1/2g,ukBg
1126138 -al T e 1
+1/2g,uBg
talh |e— pap ————
-1/2gugB -
B°0 al4 -112g,uBo
T— -1/2 +1/2
Zeeman energy Hyperfine ~ Zeeman energy Magnetic dipole
of the electron interaction  of the nucleus transitions
9ugMsBo ammg -9k Bo a
Bo Bo

Abbildung 10.9. Hyperfine structure of a hydrogen atom in strong magnetic field and hy-
perfine structure of the EPR. Lower panel: left: EPR spectrum of a free electron; right: EPR
spectrum of proton bound electron in a strong magnetic field.

An electron with the magnetic moment || = upgsy/s(s + 1) has two possible
é
orientations my; = £1/2 in a magnetic field By with energy difference AFE

Applying an electromagnetic field perpendicular to the magnetic field with the
frequency v = 2.8026 - 10'° By can induce transitions between the spin levels
of a ’free electron’. Selection rules for the magnetic dipole transitions are

Am, = +1. (10.101)

For magnetic fields in the range of 0.1T to 1T the frequencies are in the range
of microwaves (frequencies of GHz). The g-factor of the paramagnetic electron
can be determined by EPR. Generally the g-factor is a tensor and has different
values along different axes. This is because of the interaction with the magnetic
fields induced by the ’local currents’ of the neighboring electrons (in chemical
bonds). Thus, different chemical bonds can produce different chemical shifts.
Nevertheless, the g-factor is often very similar to gg (free electron).

More important are the contributions from the hyperfine interaction with the
é

nuclear spin I . The external and internal magnetic fields add up for the electron,

where dipole-dipole interactions between nucleic and electronic magnetic dioples
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are averaged out in solution (rotation of the molecules). The remaining part is
the Fermi contact interaction

Bloc = BQ +amy (10102)
hv = gup <B + g) (10.103)
Am, =+1, Amy=0 (10.104)

In an experiment with N equivalent protons interacting with one electron (e.g.

mj
+1/2

-1/2

AN

\

-1/2

+1/2

b/

Bo

Abbildung 10.10. Hyperfine interaction of the magnetic moments of an electron and a nucleus
(I = 1/2). In total there are four levels and two resulting transitions. Because of the experi-
mental setup the measured signals are derivatives of absorption signals. They are separated by
the hyperfine separation constant.

benzene-radical) we find N + 1 equivalent hyperfine lines with intensity ratios
given by the Pascal triangle (1:6:15:20:15:6:1). Here we have to count all possible
orientations of the equivalent spins.

Interaction between two different electron spins introduce a dipole-dipole inter-
action term Hp

S8, 3(S. T (S T
Hp = 92;%{ 173 e T?E) 2 “2} (10.105)
1

=
N

~—

—~

12
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which connects the distance between the two spins with its relative orientation
to the interaction strengths. This dipole-dipole interaction term shifts the ener-
gy levels and the energetic positions of the resonance frequencies. The shifts are
proportional to 7%3 and give information about the averaged distances of the in-
teracting electrons. This is especially useful in super-molecules such as proteins
(photosystems).

10.2.3 Nuclear magnetic resonance (NMR)

In NMR experiments the Lamor frequency of the nuclear spins were measu-
red. Since the magnetic moment of a nuclear spin is about 2000 times smal-
ler than the magnetic moment of an electron, the magnetic field of the electron
has to vanish at the nuclei of the investigated atoms and molecules. This is
the case for atoms such as Hg, Cu, C, and S as well as for many molecules li-
ke HoO, CaO, LiCl, CO,, Hy, NH3 and most biological molecules. The potential

H
energy of the nucleic magnetic moment within the magnetic field By is

=

Enur = —1- Bo (10.106)

= —grix Bomy (10.107)

Am; = =+1 (10.108)

|AENmR| = grpixBo (10.109)

UNMR = gl}LLLKBo (10.110)

WNME = gI;;KBo:’YBo (10.111)

pr = grlmeoix (10.112)
M1 [Hz]

= 762.3—B . 10.113

Y I ~?[Gauss] ( )

Equation (10.113) is the resonance condition for r.f. absorption in units of Hz /
Gauss (1 Tesla = 10 kGauss) leading to spin flip processes. The ratio of absorption
(N7 — N3) and emission depends on the population ratio given by Boltzmann
statistics
N, — N, 1 — e~ 911k Bo/(kBT) grivx Bo
Ny + N, - 1 4+ =910k Bo/(kBT) ~ 2kpT

Protons in different electronic environments experience different amounts of shiel-
ding o, and the resonance absorption of light energy will occur at different values
for the applied field or irradiating light frequency. These changes are referred to
as chemical shifts.

(10.114)

Beff = BO - Binduced (10115)
Berp = Bo— 0B (10.116)
hv = grpurBiocal = grptre Bo(1 — o). (10.117)
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_r.f.
1
N S
-
B0

Abbildung 10.11. NMR setup; The sample (green) is positioned in a homogeneous and con-
stant magnetic field By; perpendicular to By an additional magnetic field B; is generated with
a high frequency generator (r.f.); absorption of the r.f. field result in nuclear spin flips and in
reducing the power of the induction coil, which is the measured quantity.

A possible NMR setup is presented in Fig. 10.2.3. In the static magnetic field
along the z-axis, all nuclear magnetic spins precesses about the z-axis. Applying
a NMR pulse of duration 7, and rotation angle 8 with 8 = —vB;7, rotates the
equilibrium magnetization M, about the direction of the applied r.f. field B;. For
an r.f. field applied along the y-axis, the initial magnetization after the pulse is

M,(0) = Mosin g (10.118)
M,(0) = 0 (10.119)
M.(0) = Mjcosp. (10.120)

The subsequent free induction decay can be described in terms of two components

M,(t) = Mysin(B)cos(Qt)e /™ (10.121)
M,(t) = Mjysin(pB)sin(Qt)e "™ (10.122)
M(t) = M,(t) 4+ iM,(t) = Mysin fe"*=4/™. (10.123)

The complex signal s(¢) obtained by simultaneous observation of both x- and
y-components by quadrature detection, is directly proportional to the complex
magnetization M (t). This signal may be subjected to a complex Fourier trans-
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formation

e}

Sw) = / s(t)e ™ dw (10.124)

0

S(w) = v(w)+iu(w) (10.125)

v(w) = Mpsin [ a(Aw) (10.126)

u(w) = —Mysin [ d(Aw) (10.127)

Aw = w—0 (10.128)

a(Aw) = L/ (10.129)
(1/72)* + (Aw)?

d(Aw) = Aw (10.130)

(1/72)? + (Aw)?

The equations (10.129) and (10.130) represent absorption and dispersion signals,
respectively. Obviously, the maximum signal amplitude is obtained for a pulse
rotation angle 3 = 7/2. The transverse relaxation time 7, gives the width of the
absorption spectra.

Some properties of NMR spectroscopy are
e The energy differences are very small of about 107% to 107% eV.

e In NMR magnetic dipole transitions were detected (not electric dipole tran-
sitions).

e The wavelength of the used radiation is big with respect to the sample
dimensions. Thus, all nuclei can be excited coherently with the same phase.

As a result of the small energy differences a reference standard - the molecule te-
tramethylsilane (C'H3)4Si commonly abbreviated TMS - is measured in addition
to the sample of interest. The detected resonance frequencies are expressed as ¢
in ppm
v; — U
§; = ——TM5 105 ppm. (10.131)
Yo
In addition to the chemical shift of protons, one can also measure the chemical
shift of the carbons. In methane it is -2.1 ppm, and the chemical shift of the two
equivalent C'Hs carbons in ethane is 5.9 ppm.

Direct magnetic dipole-dipole interaction between nuclei A and B change the
magnetic field at the nucleus B. The magnetic field from the nucleus A at the
position of nucleus B depend to the third power on the distance between the
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nuclei, and depend on the orientation of the angle ¥ with respect to the vector
7 4p and is given by

1
Ba = —’u—ngmI (1 — 3cos® ). (10.132)
dm s

Assuming nucleus A to have spin 1/2, we have two orientations of the spin with
respect to the external magnetic field By &= B4 for parallel and antiparallel orien-
tations. The nucleus B can see two different magnetic fields By + B4 or By — Ba,
leading to a resonance doublet of splitting 28 4. The same interaction is acting
on the nucleus A. The energy splitting of the doublet is called spin-spin interac-
tion J (see Fig. 10.2.3). In solid state samples the magnetic field B4 induced by
spin-spin coupling can be as big as 10~* T (for distances of 0.2 nm). In liquid
samples the molecules rotate and move very fast, so that the term (1 —3cos?¥) is
averaged out and becomes zero. In super-molecules, such as proteins the rotation
is very slow and the dipole-dipole interaction does not vanish. Therefore, in big
molecules we can make use of the dipole-dipole interaction to extract distances
and orientations from the spin-spin couplings. Indirect spin-spin coupling mecha-
nisms also exist. They are smaller than the direct coupling mechanisms and can
result from polarization of an electron magnetic moment by a nucleic magnetic
moment and vice versa. If the chemical shift is the same for several identical

Ad

Va VB

AB  VaB VBA Vga

TT (L

Abbildung 10.12. Splitting of NMR lines by spin-spin coupling J. The magnetic field of spin
A influences the local field of spin B and vice versa. Here, J < 4.

nuclei, then the nuclei are called equivalent. The two protons in a C'Hs group
and the three protons in a C'Hs group are equivalent. They have identical reso-
nance lines (single line in the spectrum). If both group are part of one molecule
(CH3CH,OH), the different equivalent protons can interact with each other and
the 3 protons of the C'Hj3 group split into 3 lines with intensity ratio 1:2:1, due
to the coupling to the two protons of C'Hs. The coupling of the 3 C'H3 protons
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with one proton of the C'H, introduce a splitting into two lines and the coupling
with the other proton again into two lines with the same coupling constant J (—
three lines). The two protons of the C'Hy group split into 4 lines with intensity
ration 1:3:3:1. The direct and indirect spin-spin interactions do not depend on the
external magnetic field. The spin-spin interaction can be isolated by measuring
at different external field strengths.

The nuclear magnetic resonance technique is very successful in visualizing the
consistence of a human body (Magnetic Resonance Tomography) and in re-
solving three dimensional structures of proteins on atomic resolution. The latter
uses coherence spectroscopy by exciting with two resonance fields wy and ws. For
short times (¢ < 73) the two spins can interact coherently with each other resul-
ting in cross-peaks. The interaction strength gives information on the distance
and orientations of the spins.

Abbildung 10.13. Homonuclear 2D correlation spectrum of basic pancreatic trypsin inhibitor
(BPTI, with 58 amino-acid residues). Absolute mode.
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(b)

Abbildung 10.14. Absolute-value 2D NOE spectrum of the protein seminal inhibitor IT A.
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10.3 Lifetimes of excited states

As we saw in the sections above, most experiments deal with dipole approximation
or dipole interactions. We learned that the intensity of a transition between a pair
of states f and i is proportional, in the dipole approximation, to the quantity
|7 4i|?. The relative intensities of a series of transitions from a given initial state
¢ to various final states f are determined by the quantity f;; called oscillator

strength
P = i 10.133
[ o |7 il ( )
with wy; = (Ef— E;)/h. Note, that fi; > 0 for absorption and f;; < 0 for emission
processes. The oscillator strengths obey the sum rule, due to Thomas, Reiche and

Kuhn

> fri=1 (10.134)
f

where the sum is over all states, including the continuum. The transition rates for
spontaneous emission in the dipole approximation are given in terms of oscillator

strengths by

s 2ha
W3, = @wfci\fﬂy (10.135)

For hydrogenic atoms the oscillator strengths and transition probabilities decrease
as the principal quantum number n of the upper level increases.

10.3.1 Atomic lifetimes

If N(t) atoms are in an excited state i at a particular time ¢, the rate of change
of N(t) is
N(t)=-N(t)> W}, (10.136)
f

where W, is the transition rate for spontaneous emission and the sum is over
all states f, of lower energy, to which decay is allowed by the selection rules. On
integration, N(t) can be expressed by

N(t) = N(t = 0)e /" (10.137)

where 7; is called the lifetime of level 7z and is
1 S
o= > Wi (10.138)
!

For example, the lifetime of the 2p level of a hydrogenic atom is seen to be

7 = %2107 %. For higher nucleic charges is
1
2)= S (10.139)
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Average oscillator strengths for some transitions in hydrogenic atoms and ions
are shown below

Initial | Final Continuum

level |level [ n=1|n=2|n=3|n= > spectrum
n=>5

1s np - 0.416 | 0.079 | 0.029 | 0.041 | 0.435

2s np - - 0.435 | 0.103 | 0.111 | 0.351

2p ns -0.139 | - 0.014 | 0.003 | 0.003 | 0.008

2p nd - - 0.696 | 0.122 | 0.109 | 0.183

The lifetime of some levels of atomic hydrogen (in 107%s) are
Level 2p 3s | 3p 3d 4s | 4p 4d 4f
lifetime | 0.16 | 16 | 0.54 | 1.56 | 23 | 1.24 | 3.65 | 7.3

10.4 Density operator

The density matrix of a pure quantum state [¢)) is defined as:

p= V)Y, (10.140)
when we expand ¥ in a basis |n), we find
W = D calnl (10.141)
) = > clm) (10.142)
) = Y e inim (10.143)
Pom = Zﬁnrmm):cnc;. (10.144)

The expectation value of an operator A is defined as:

(A) = (@A) =D pumAum. (10.145)

n,m

With the definition of the trace we have

Tr(Ap) = Z(Ap)nn:Z(ZAnmpmn) (10.146)
Tr(A) = Y Aw (10.147)
A) = Tr(Ap) (10.148)
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The trace is invariant to unitary transformations (i.e. invariant to basis transfor-
mations). The time evolution of the density operator is given by

o= ool = (1o i+ ) (). (10.149)
Inserting this into the SE we find
Sy = —2HY) (10.150)
Sl = +eHWl (10.151)
Co = —THW) + ) (lH (10.152)
_ _%Hp+%pg (10.153)
= %o = —1[H.) (10.154)

Equation (10.154) is called Liouville von Neumann equation and describes the
time evolution of the system. Since the probability Py of finding the system in
the state ¢ is given by Py = (¢|p|¢) (if ¢ is normalized), two systems are identical
if they have the same density operator.

The density operator can describe pure states p = [1) (1|, but also mixed states.
Equations

d 1 d i
S0y = —THI) & Sp=—T[H,] (10.155)

are identical, as long as p is the density matrix of a pure state. However, in general
we have statistical ensembles and there is no way to write down a wave function
of a statistical average, but we can write down the density matrix of a statistical
average. Let P, be the probability of a system being in a pure state |¢), then the
density matrix is defined as:

p o= > P)(¥ (10.156)

with P, > 0 (10.157)
b =1 (10.158)
Prm = Prn (10.159)

pom = >0 (10.160)
Tr(p) = 1 (10.161)
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Let for example [¢)) be one of the basis states

) = la) (10.162)
1
L, = (O)(1 0) (10.163)
10
p = ( 00 ) (10.164)
or [¢) = 1b) (10.165)
0
—p = (1)(01) (10.166)
00
p = ( 01 ) (10.167)
and a coherent superposition state of both (which is still a pure state) is
1
= —(la)+ b 10.168
|¥) \/§(| ) +10) ( )
1 1 1
= Pom = —= — (11 10.169
(12
= cpc = < 12 12 ) . (10.170)
On the other hand, for a statistical average between both states with P, = P, =
0.5 we get
(1/2 0
p= ( 0 1/2 ) . (10.171)

The diagonal elements are the same in both cases, but the off-diagonal elements
which describe the coherence between both states are different. Note, there is
no wave function [¢) which would give a density matrix as in equation (10.171).
Assume we have a Hamilton operator with eigenstate basis so that we have

. €1 0
H = (0 62) (10.172)

dfpn p2) _ _ e 0 pui piz \ [ P11 pr2 e 0
dt \ p21 p22 0 e P21 P22 P21 P22 0 e

St .

i 0 (€1 — €2)p12
= —— 10.173
h ( (€2 —€1)pa 0 ( )
,bn =0 = p11<t) = p11(0) (10174)
P2 = 0 = paat) = p2(0) (10.175)
. Z. _7:6 —€
P12 = _7_1(61 —e)pr = pult)=c T pp(0) (10.176)
. i Z»G —€
par = _5(62 —e)pu = pau(t) =e"TF py(0).  (10.177)
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The diagonal elements are stationary in time (as expected) while the off-diagonal
elements oscillate with the frequency splitting w = Ae/h = (€; — €2)/h. In spec-
troscopic experiments the dephasing of an ensemble of molecules is observed. The
simplest approach to describe dephasing I' (I' real and positive) phenomenologi-
cally is:

l

ﬂlg = _E,(El — 62)p12 — Fplg (10178)
pa(t) = e TE e T 0(0) (10.179)

) 1

P21 = ﬁ<62 — 61),021 - Fpgl (10180)
por(t) = e F ey (0). (10.181)

In the wave function picture it is not possible to describe dephasing. If we intro-
duce an interaction with an optical light field E(t):

H=Hy+E(t)- 7~ Hy+ Eo (¢ + ) - I7, (10.182)
and we get
H
H = ela)(a] +el0)(0] — & - E(t)(|a) (0] + [b)(al) (10.183)

Nonlinear Optics: . _
The electric displacement D and the macroscopic polarization P is given by

— - =
D = gE+P (10.185)
= n7 QOBR OBER
P = e (\VE+y?EE+\¥PEEE +... (10.186)
.
P(t) = Tr(gpet) = (@o(t)), (10.187)

and for the example of a two level system we get

po= ( 0 %2> (10.188)

l—L21
(po(t)) = prapy, + papi,, (10.189)
PM(t) = (pp™(t)) (10.190)
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