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1 Introduction

The �rst speculations on the atomic nature of matter was made by Greek philo-
sophers such as Anaxagoras (500-428 BC), Empedocles (484-424 BC), Leucippus
( 450 BC) and Democritus (460-370 BC) arguing that the universe consists of
empty space and indivisible atoms. Aristotele (384-322 BC), however rejected
the atomic hypothesis and strongly supported the concept of the continuity of
matter.

This question was re-opened following the experimental discovery of gas laws
by R. Boyle in 1662, the interpretation of these laws by D. Bernoulli in 1738, and
the development of the kinetic theory of gases throughout the nineteenth century
by R. Clausius, J.C. Maxwell and L. Boltzmann. In parallel laws of chemical
combination were being discovered, such as the law of de�nite proportions (by
J.L. Proust in 1801) and the law of multiple proportions (by J. Dalton in 1807),
supporting the concept of the atomic nature of matter. During the following years
elementary units and physical constants were determined strongly related to the
atomic nature of matter:

� Avogadro's Number NA = 6.02214 · 1023 1
mol

is the number of atoms or
molecules in one mole of any substance. A mole is de�ned as the quantity
of 12C weighing µ = 12 grams, where µ is the atomic or molecular weight
of the substance.

� Faraday's constant F = 9.64853 · 104 C
mol

de�nes the existence of the
elementary unit of electricity. Faraday's laws of electrolysis, which can be
summarized by the formula,

M =
Q

F

µ

υ

where Q is the quantity of electricity and υ the valency, demonstrate that
it takes 96484.3 C to liberate for example 1.008 g of hydrogen, 35.5 g of
chlorine and 8 g of oxygen.

� Speci�c charge e
me

= 1.75881962 · 1011 C
kg

of an cathode ray measured in
Thomson's experiment (in 1897), where e is the natural unit of electricity
and me is its mass. The speci�c charge for the lightest known positive ion
(the hydrogen ion) is smaller by a factor of approximately 1840, so either
the cathode ray particles are much lighter or they carry a very large charge.



2 1 Introduction

� The charge of the electron was measured in Millikan's experiment to
be e = 1.6021773 · 10−19C. Combining these results with the value of e

me
, a

value for the mass of the electron is obtained me = 9.1093897 · 10−31kg.
During the later part of the nineteenth century, and in the early years of the

twentieth century, evidence accumulated that classical physics, i.e. Newton's laws
of motion and Maxwell's electromagnetic equations, are inadequate to describe
atomic phenomena. Most striking is the atomic or molecular picture of a number
of electrons moving and accelerating around an attracting nucleus, similar to
the planets circling around the sun in the solar system. This picture is in direct
contradiction to the stability of atoms and molecules, since accelerating charges
would continuously loose energy by emitting electromagnetic radiation, as a result
of Maxwell's equations:

−→∇ • −→B = 0 (1.1)
−→∇ ×−→E +

∂

∂t

−→
B = 0 (1.2)

−→∇ • −→D = % (1.3)
−→∇ ×−→H − ∂

∂t

−→
D =

−→
j (1.4)

with relations in homogeneous and linear media:
−→
B = µ0(

−→
H +

−→
M) → µrµ0

−→
H (1.5)

−→
D = ε0

−→
E +

−→
P → εrε0

−→
E (1.6)

Electromagnetic radiation from decelerated electrons can be observed for example
in the bremsstrahlung and one of the most powerful light sources available make
use of highly accelerated charged particles to generate broadband electromagnetic
radiation from the ultraviolet to the near infrared spectral range (Free electron
laser in Fig. 1, BESSY in, Fig. 1).

Abbildung 1.1. Light generation in a free electron laser. Note, that the lasing process is due
to stimulated emission in the direction of the moving electrons.

1.1 Planck's energy distribution law
The �rst clues to a new physics, based on the quantisation of energy, came from
a study of the properties of radiation from hot bodies. In 1879, J. Stefan showed
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1.1 Planck's energy distribution law 3

Abbildung 1.2. Top view of the electron synchrotron BESSY in Berlin-Adlershof. The elec-
trons stored on circular orbits move with relativistic velocities, emitting continuously synchro-
tron radiation.

that the total power emitted per unit area, R, called the total emissive power (or
total emittance) from a body at the absolute temperature T could be represented
by the empirical law

R = εσT 4 (1.7)
where ε is called the emissivity with ε ≤ 1. The emissivity, ε, varies with the
nature of the surface, and σ = 5.67 ·10−8 W

m2·K4 is known as Stefan's constant. The
spectral distribution of the emitted light depends strongly on the temperature
(Fig. 1.1) and exhibits a maximum value at wavelength λmax following the Wien's
displacement law, with b = 2.898 · 10−3mK:

λmaxT = b (1.8)

When a body is in thermal equilibrium with its surroundings, and therefore is
at constant temperature, it must absorb and emit the same amount of radiant
energy per time. Analogue to the emissivity, absorptivity, a, is de�ned as the
fraction of the absorbed radiant energy falling on the surface. A body having
an absorptivity equal to unity is called black body. A close approximation to
a black body is an enclosed cavity with blackened interior walls containing a

Physics of Atoms and Molecules



4 1 Introduction

small hole. Radiation that enters the hole has very little chance of escaping. If
the inside of this cavity is in thermal equilibrium it must emit as much energy
as it absorbs (on every time scale) and the emission from the hole is therefore
characteristic of the equilibrium temperature T inside the cavity. This type of
radiation is called thermal radiation. In the latter part of the nineteenth century
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Abbildung 1.3. Energy density per unit volume and wavelength as a function of wavelength
in µm for di�erent temperatures T.

experimental measurements of this spectral pro�le had already been obtained
and �tted to an empirical formula. Attempts to explain the data were based on
treating the electromagnetic radiation as a collection of oscillators, each oscillator
with its own characteristic frequency. The problem was to determine how many
oscillations at a given frequency could be �tted inside a cavity. For convenience
purposes, we choose cartesian coordinates and a cubical cavity with sides of length
L. A plane electromagnetic standing wave ei

−→
k •−→r has to satisfy the (periodic)

boundary conditions inside this cavity

eikxx = eikx(x+L); and A(0) = A(L) = 0 (1.9)

with similar equations for the y and z components of the wave. Equation 1.9 is
satis�ed if

k =
2π`

L
(1.10)

where  = {x, y, z} and k are the components of the wave vector −→k of the
oscillation and ` are integers.

−→
k = |−→k |k =

ω

c
k =

2π

λ
k (1.11)

This means for a single component the wavelength has to be λ = L
`
or k = 2π`

L
.

In the three-dimensional −→k -space, whose axes are kx, ky, and kz the possible k
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1.1 Planck's energy distribution law 5

values in the volume L3 satisfying equation 1.10 form a lattice with size of a
unit cell of (2π

L
)3. The spacing of adjacent modes in the k direction is 2π

L
and

the permitted k values are 0, 2π
L

, 4π
L

, etc., correspond to oscillation wavelengths
∞, L, L

2
, etc. The total number of modes of oscillation with |−→k | ≤ k (|−→k |-radius

in a sphere) and two distinct polarizations of the radiation �eld is

Nk = 2× volume of
−→
k − space

volume of unit cell

= 2× 4

3
πk3 × (

L

2π
)3 (1.12)

=
k3L3

3π2
(1.13)

Since k = 2πν
c

the total number of frequencies ≤ ν in the volume V = L3 is

Nν =
8πν3L3

3c3
=

8πν3V

3c3
(1.14)

The mode-density, which is the number of modes per unit volume and unit fre-
quency interval is

p̂(ν) =
1

V

dNν(ν)

dν
=

8πν2

c3
(1.15)

Rayleigh and Jeans used this type of mode-density to describe the spectral com-
position of black-body radiation by calculating the energy density

p(ν) =
8πν2

c3
ε (1.16)

where ε is the average energy in the mode with frequency ν. The energy ε of
each oscillator can take any value, independently of the frequency ν, but since
the system is in thermal equilibrium, the average energy ε can be obtained by
weighting each value of ε with the Boltzmann factor exp (−ε/(kBT )), where kB =
1.380658× 10−23JK−1 is Boltzmann's constant. With β = 1

kBT
we have

ε =

∫∞
0

εe−βεdε∫∞
0

e−βεdε
(1.17)

= − d

dβ
[ln

∫ ∞

0

e−βεdε] =
1

β
= kBT (1.18)

Inserting this value of ε into (1.16) gives the Rayleigh-Jeans distribution law

p(ν) =
8πν2

c3
kBT (1.19)

In the limit of long wavelengths the Rayleigh-Jeans result approaches the experi-
mental results. However, p(ν) does not show the observed maximum, and diverges
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6 1 Introduction

as ν →∞. This behaviour at short wavelengths is known as the 'ultra-violet ca-
tastrophe'. Planck resolved these di�culties with his quantum hypothesis. He
proposed that each oscillation mode could only take certain quantized energies

Env = (n +
1

2
)hν, n = 0, 1, 2, 3 . . . , (1.20)

where the contribution 1
2
hν is called the zero point energy, with the Planck's

constant h = 6.6260755 × 10−34Js. The probability of �nding energy En in a
particular mode of oscillation is given by classical Maxwell-Boltzmann statistics
(integration over the energy is not longer possible), i.e.,

P (n)

P (0)
=

e
−En
kBT

e
−E0
kBT

= e
−nhv
kBT (1.21)

where P(n)and P(0) are the probabilities of �nding the energy En and the lowest
energy E0 in the mode. The average energy Eν of a mode ν is now given by:

Eν =
∞∑

n=0

P (n)En =
∞∑

n=0

P (0)e
−nhν
kBT (n +

1

2
)hν (1.22)

Now, if a particular oscillation is excited it must be in one of the quantized states,
therefore the normalization relation holds

∞∑
n=0

P (n) = 1 (1.23)

∞∑
n=0

P (0)e
−nhν
kBT = 1 (1.24)

⇒ P (0) =
P (n)

e
−nhν
kBT

(1.25)

1

P (0)

∞∑
n=0

P (n) =
∞∑

n=0

e
−nhν
kBT (1.26)

⇒ P (0) =

∑∞
n=0 P (n)

∑∞
n=0 e

−nhν
kBT

(1.27)

⇒ P (0) =
1

∑∞
n=0 e

−nhν
kBT

(1.28)
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1.1 Planck's energy distribution law 7

This gives

Eν =

∑∞
n=0(n + 1

2
)hνe

−nhν
kBT

∑∞
n=0 e

−nhν
kBT

(1.29)

=
1

2
hν +

hνe
−hν
kBT + 2hνe

−2hν
kBT + · · ·+ nhνe

−nhν
kBT

1 + e
−hν
kBT + e

−2hν
kBT + · · ·+ e

−nhν
kBT

(1.30)

=
1

2
hν −

d
d(1/kBT )

(e
−hν
kBT + e

−2hν
kBT + · · · )

1

(1−e
−hν
kBT )

(1.31)

=
1

2
hν −

d
d(1/kBT )

[ 1

1−e
−hν
kBT

]

1

(1−e
−hν
kBT )

(1.32)

=
1

2
hν −

d
dβ

(1− e−βhν)−1

(1− e−βhν)−1
(1.33)

=
1

2
hν +

(1− e−βhν)−2 × hνe−βhν

(1− e−βhν)−1
(1.34)

=
1

2
hν +

hνe−βhν

(1− e−βhν)
(1.35)

Eν =
1

2
hν +

hν

eβhν − 1
(1.36)

Here, we used the mathematical 'trick' that the series in the numerator is the
derivative of a geometric series that we can sum easily. Another way to derive
the formula is:

ε =

∑∞
n=0(n + 1

2
)ε0e

−βnε0

∑∞
n=0 e−βnε0

=
1

2
ε0 − d

dβ
[ln

∞∑
n=0

e−βnε0 ] (1.37)

=
1

2
ε0 − d

dβ
[ln(

1

1− e−βε0
)] = ε0[

1

2
+

1

eβε0 − 1
] (1.38)

Here, we used ε0 = hν. Substituting the value of ε in (1.16), we �nd

p(ν) =
8πν2

c3
(hν[

1

2
+

1

eβhν − 1
]) (1.39)

The factor 1
2
comes from zero point energy that cannot be released, so the availa-

ble stored energy in the �eld is given by Planck's distribution law:

p(ν) =
8πhν3

c3
[

1

e
hν

kBT − 1
] (1.40)

Physics of Atoms and Molecules



8 1 Introduction

This is (the number of modes per volume per frequency interval) x (photon ener-
gy) x 1/(ehν/kBT−1). The quantity 1/(ehν/kBT−1) represents the average number
of photons in each mode. This is called the occupation number of the modes of
the �eld.

Physics of Atoms and Molecules



1.1 Planck's energy distribution law 9

Abbildung 1.4. Frequency ranges in di�erent units.
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10 1 Introduction

1.2 Radiative transitions in a two level system
Consider molecules with discrete energy levels shown schematically in Fig. (1.2).
Transitions of electrons from one level to the other can occur in three ways:
Spontaneous emission, stimulated emission and stimulated absorption.

Ei

Ej

Ek

E0

hνij

ν   is the frequency of the 

emitted photon
ij

E  with the lowest energy 

is the ground state
0

Abbildung 1.5. Energy levels of a particle (atom, molecule, etc.). Radiative transitions can
occur between di�erent energy levels upon absorbing or emitting photons.

1.2.1 Spontaneus Emission
An electron spontaneously undergoes a transition from a higher (occupied) energy
level Ei to a lower (unoccupied) one Ej as shown in Fig. (1.2.2). The released
energy is emitted by a photon of frequency

νij =
Ei − Ej

h
(1.41)

This photon is emitted in a random direction with arbitrary polarization in the
absence of magnetic and electric �elds. The photon carries away momentum

−→p =
h
−→
k

2π
= ~

−→
k =

h

λ
k (1.42)

|p| =
h

λ
=

hν

c
(1.43)

and the emitting particle (atom, molecule, ion, etc.) recoils in the opposite direc-
tion. The probability of the spontaneous emission process is given quantitatively
by the Einstein coe�cient Aij de�ned as the probability per second of a sponta-
neous transition from level i to level j. If the population density per unit volume
in the level i is Ni then NiAij is the probability per second and unit volume for
a transition from level i to level j (i → j). The total rate at which spontaneous
radiative transitions are made between the two levels is

dNi

dt
= −NiAij (1.44)

Physics of Atoms and Molecules



1.2 Radiative transitions in a two level system 11

Ei

Ej

hνij

 Population densityNi

Nj

Abbildung 1.6. Transition from a higher energy i level to a lower energy level j by light
emission.

The negative sign indicates that the population of the upper level is decreasing.
Generally the transition of an electron can occur to more than one unoccupied
lower level, unless it is in the �rst (lowest) excited level. The total transition rate
for transitions from level i is Ai s

−1 where
Ai =

∑
j

Aij (1.45)

The summation runs over all levels j lower in energy than the level i and the
total rate at which the population of level i changes by spontaneous emission is

dNi

dt
= −NiAi ⇒ Ni = constant × e−Ait (1.46)

with t = 0 and Ni = N0
i it is

Ni = N0
i e−Ait. (1.47)

The population Ni of the level i falls exponentially with time by spontaneous
emission. The time in which the population falls to 1/e of its initial value at
t = 0 is called the natural or radiative lifetime τi of level i, where τi = 1/Ai. The
magnitude of this lifetime is determined by the actual probabilities of transitions
from level i by spontaneous emission.

Transitions which are likely to occur are called allowed transitions, those which
are unlikely are said to be forbidden. Allowed transitions in the visible spectral
range have Aij coe�cients in the range of above 106 s−1, whereas forbidden transi-
tions in this spectral range have Aij coe�cients below 104 s−1. These probabilites
decrease as the wavelength of the transition increases. It turns out that there
are no transitions to be absolutely forbidden, but some transitions are so unli-
kely that populated levels are very long lived. They are said to be metastable.
Levels with lifetimes in excess of one hour have been observed under laboratory
conditions.

Real transitions are not in�nitely sharp, they are smeared out or broadened.
A particle in a given energy level can have any energy within a �nite range.
The frequency spectrum of the spontaneous emitted radiation is described by the
lineshape function, g(ν). This function is usually normalized for a single transition
so that ∫ ∞

0

g(ν)dν = 1 ⇒
∫ ∞

−∞
g(ν)dν = 1 (1.48)

Physics of Atoms and Molecules
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Abbildung 1.7. Lorentzian line shape with central frequency ν0.

g(ν)dν represents the spectral density of photons emitted spontaneously in the
frequency range ν + dν. The lineshape function g(ν) is usually sharply peaked
near some frequency ν0, as shown in Fig.(1.2.1), and is frequently written g(ν0, ν)
to highlight this. The integration limits ranging from −∞ to∞ because then g(ν)
can be viewed as the Fourier transform of a real function of time. For a plane
wave we introduce the concept of intensity, I, with units W m−2. The intensity is
the average amount of energy per second transported across the unit area in the
direction of the wave. The spectral distribution of the intensity, I(ν), is related
to the total intensity, I0, by

I(ν) = I0g(ν) (1.49)
Note, that real plane waves do not exist. Similarly, the spectral distribution of
the power, W (ν), is related to the total power, W0 by

W (ν) = W0g(ν) (1.50)

For a collection of identical particles with the population density Ni the total
spontaneously emitted power per frequency interval is

W (ν) = NiAihνg(ν) (1.51)

and is decreasing with time if the population density decreases.

1.2.2 Stimulated Emission
In addition to spontaneous emission, transitions can be stimulated by the action
of an external radiation �eld, as shown in Fig. (1.2.2). Let the energy density
of the externally applied radiation �eld at frequency ν be p(ν) and [p(ν)] =
Jsm−3. The rate at which stimulated emission occurs is N2B

′
21(ν) where B′

21 is a
function speci�c to the transition between the two level 2 → 1 and its frequency

Physics of Atoms and Molecules
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E2

E1

hν12

N2

N1

hν12
hν12

Abbildung 1.8. Process of stimulated emission in a two level system.

dependence is the same as the lineshape function

B′
21(ν) = B21g(ν0, ν). (1.52)

B21 is called the Einstein coe�cient for stimulated emission. The total rate of
change of population density by stimulated emission is

dN2

dt
= −N2

∫ ∞

−∞
B′

21p(ν)dν (1.53)

= −N2B21

∫ ∞

−∞
g(ν0, ν)p(ν)dν (1.54)

with units of [B21] = m3J−1s−2. The energy of a radiation �eld p(ν) is related to
the intensity I(ν) by

p(ν) =
I(ν)

c
. (1.55)

and the number of photons at given intensity is

Nphotons =
I(ν)

hν
. (1.56)

The ideal monochromatic radiation �eld at frequency ν21 has an in�nitely narrow
energy density pro�le at ν21 and the di�erential equation in (1.54) is then

dN2

dt
= −N2B21

∫ ∞

−∞
g(ν0, ν)p21δ(ν − ν21)dν = −N2B21p21g(ν0, ν21) (1.57)

Note, the rate of stimulated emissions produced by the input monochromatic
radiation is directly proportional to the value of the lineshape function at the
input frequency. If the stimulating radiation �eld has a spectrum that is broad,
and we can assume the energy density p(ν) = p(ν0) as constant where g(ν0, ν) is
signi�cant, the di�erential equation becomes

dN2

dt
= −N2B21

∫ ∞

−∞
g(ν0, ν)p(ν0)dν = −N2B21p(ν). (1.58)
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14 1 Introduction

1.2.3 Stimulated Absorption

As well as stimulating transitions in a downward direction (2 → 1), transitions
can be stimulated from a lower to a higher level (1 → 2). The rate of such
absorptions is

N1p(ν)B12g(ν0, ν) (1.59)

which gives a result similar to Eq. (1.54)

dN1

dt
= −N1B12

∫ ∞

−∞
g(ν0, ν)p(ν)dν. (1.60)

B12 is a constant speci�c to the transition and is called the Einstein coe�cient for
stimulated absorption, with p(ν) the energy density of the stimulating radiation
�eld. There is no analog in the absorption process to spontaneous emission, since
a particle cannot spontaneously gain energy without an external energy supply.
In stimulated emission the emitted photon has exactly the same frequency as the
stimulating photon. In absorption the incident photon disappears, as shown in
Fig. (1.2.3). In both processes the particle (atom, molecule, ion, etc.) recoils to
conserve linear momentum.

E2

E1

hν12

N2

N1

E2

E1

N'2

N'1

hν    = E  - E 12   2 1

Abbildung 1.9. Stimulated absorption in a two level system. The photon absorbed after the
interaction.

1.3 Relation between Einstein coe�cients
In thermal equilibrium the populations of the two levels in our two level system
N1 and N2 are constant

dN2

dt
=

dN1

dt
=

d(N1 + N2)

dt
= 0 (1.61)

and the rates of the transitions between the levels are equal. Since the energy
density of the black-body radiation �eld is nearly constant over the range of the
lineshape function where the transitions between level 2 and 1 takes place, we
calculate the di�erential equations in thermal equilibrium with (1.44), (1.54) and
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1.3 Relation between Einstein coe�cients 15

(1.60) to be
dN2

dt
= −N2B21p(ν)− A21N2 + N1B12p(ν) (1.62)

dN1

dt
= −N1B12p(ν) + A21N2 + N2B21p(ν) (1.63)

⇒ N2

N1

=
B12p(ν)

B21p(ν) + A21

(1.64)

The ratio of the population densities of two levels with energy di�erence hν is
N2

N1

= e−hν/kBT (1.65)

⇒ e−hν/kBT =
B12p(ν)

B21p(ν) + A21

(1.66)

⇒ p(ν)(B21e
−hν/kBT −B12) = −A21e

−hν/kBT (1.67)

⇒ p(ν) =
A21

B12ehν/kBT −B21

(1.68)

⇒ 8πhν3

c3(ehν/kBT − 1)
=

A21

B12ehν/kBT −B21

(1.69)

The last equality can only be satis�ed if
B12 = B21 (1.70)

and
A21 = B21

8πhν3

c3
. (1.71)

Equations (1.70) and (1.71) are called Einstein relations. The spontaneous emis-
sion rate, A21, is independent of external radiation �eld and is important for the
energy density p(ν), because with A21 = 0 it follows from (1.68)that p(ν) ≡ 0. No-
te, that contributions of the spontaneous emission increase with ν3 with respect
to contributions of stimulated emission. This is very important for the develop-
ment of lasers where a population inversion between two levels induce a strong
stimulated emission signal (LASER: Light ampli�cation by stimulated emission
of radiation).

1.3.1 Level Degeneracy
In real systems it frequently happens that a given energy level corresponds to a
number g of di�erent arrangements, where g is the degeneracy of the level. The
separate states of the system with the same energy are called sub-levels. Assume
the levels 2 and 1 consist of a number of sub-levels g2 and g1. For each of the
sub-levels of level 1 and 2 with populations n1 and n2 the ratio of populations is

n2

n1

= e−hν/kBT (1.72)
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and N1 = g1n1, N2 = g2n2. Therefore

n2

n1

=
g1N2

g2N1

(1.73)

and
N2

N1

=
g2

g1

e−hν/kBT (1.74)

and from (1.64) it gives

N2

N1

=
B12p(ν)

B21p(ν) + A21

=
g2

g1

e−hν/kBT (1.75)

⇒ p(ν)[g2B21e
−hν/kBT − g1B12] = −A21g2e

−hν/kBT (1.76)

⇒ p(ν) =
g2A21

g1B12ehν/kBT − g2B21

(1.77)

⇒ 8πhν3

c3

1

ehν/kBT − 1
=

A21
g1

g2
B12ehν/kBT −B21

(1.78)

⇒ g1

g2

B12 = B21 (1.79)

and
A21

B21

=
8πhν3

c3
. (1.80)

It is instructive to examine the relative rates at which spontaneous and stimulated
processes occur in a system at temperature T. The ratio is

R =
A21

B21p(ν)
= ehν/kBT − 1 =

1

n(ν)
. (1.81)

Here, p(ν) is the black-body radiation �eld and the average number of photons
in a mode in the case of black-body radiation is

n(ν) =
1

ehν/kBT − 1
. (1.82)

For T=300 K and λ = 500 nm or ν = 6× 1014 s−1 the ratio hν/kBT is

hν

kBT
=

6.626× 10−34 Js× 6× 1014 s−1

1.38× 10−23 JK−1 × 300 K
≈ 96. (1.83)

and so the ratio, R, of spontaneous and stimulated processes

R = e96 − 1 ≈ 5× 1041 ⇒ n(ν) = 2× 10−42 (1.84)

is very high. In the visible and near-infrared region spontaneous emission is ge-
nerally dominates unless there are several photons in a mode (n(ν) > 1).
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1.3 Relation between Einstein coe�cients 17

In a disperse medium the refractive index varies with frequency. There the
mode density p̂(ν) of a black-body cavity has to be modi�ed to

p̂(ν) =
8πν2n2ng

c3
0

(1.85)

with
ng = n + ν

dn

dν
. (1.86)

The ratio of A21/B21 changes without changing the ratio of spontaneous and
stimulated processes.

A21

B21

=
8πhν3n2ng

c3
0

. (1.87)
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1.4 Fouriertransformation
In a multitude of physical and mathematical problems it is necessary to develop
a periodic function f(t) with period of 2π by a sum of trigonometric functions.

f(t) =
a0

2
+

∞∑

k=1

(ak cos(kt) + bk sin(kt) (1.88)

Periodic processes are known from dynamic properties of music and sounds, the
movement of planets, a pendulum, etc. The trigonometric functions to descri-
be periodic processes are the sine and cosine functions, which have very nice
properties:

sin(ωt) = − sin(−ωt) (1.89)
cos(ωt) = cos(−ωt) (1.90)
cos(ωt) = sin(ωt +

π

2
) (1.91)

sin(ω1t± ω2t) = sin(ω1t) cos(ω2t)± cos(ω1t) sin(ω2t) (1.92)
cos(ω1t± ω2t) = cos(ω1t) cos(ω2t)∓ sin(ω1t) sin(ω2t) (1.93)

1 = sin2(ω1t) + cos2(ω1t) (1.94)
sin(2ω1t) = 2 sin(ω1t) cos(ω1t) (1.95)
cos(2ω1t) = cos2(ω1t)− sin2(ω1t) (1.96)

sin2(ω1t) =
1

2
(1− cos(2ω1t)) (1.97)

sin(
ω1t

2
) = ±

√
1− cos(ω1t)

2
(1.98)

cos(
ω1t

2
) = ±

√
1 + cos(ω1t)

2
(1.99)

sin(ω1t) + sin(ω2t) = 2 sin(
ω1t + ω2t

2
) cos(

ω1t− ω2t

2
) (1.100)

and properties of the derivatives:
d

dt
sin(ω1t) = ω1 cos(ω1t) (1.101)

d

dt
cos(ω1t) = −ω1 sin(ω1t) (1.102)

−→5 sin(
−→
k · −→x ) =

−→
k cos(

−→
k · −→x ) (1.103)

eiω1t = cos(ω1t) + i sin(ω1t) (1.104)

cos(ω1t) =
1

2

[
eiω1t + e−iω1t

]
(1.105)

sin(ω1t) =
1

2i

[
eiω1t − e−iω1t

]
(1.106)

∫
cos2(ω1t)dt =

1

2
t +

1

4ω1

sin(2ω1t). (1.107)
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In Hilbert space (L2) with period 2π the functions{
1√
2π

, 1√
π

sin(ω1t),
1√
π

cos(ω1t),
1√
π

sin(2ω1t),
1√
π

cos(2ω1t), . . .
}

are eigenvectors
and span the whole Hilbert space. They form an orthogonal and normalized
basis, since

1

T

T∫

−T

sin(ω1t) sin(ω2t)dt = δ(ω1 − ω2). (1.108)

For every periodic function g(t), which is a member of L2 with period 2π, the
deviation between g(t) and the trigonometric representation fn(t) becomes

lim
n→∞

π∫

−π

(g(t)− fn(t))2dt = 0 (1.109)

Equation (1.109) describes the convergence in the quadratic average. The Fourier
sum

∑
n fn(t) converges only for every single point limn→∞ fn(t) = f(t) if the

function g(t) is continous. If the function g(t) has points of discontinouity at tu,
then the Fourier sum becomes at tu (Dirichlet):

f(tu) = lim
h→0

g(tu + h) + g(tu − h)

2
(1.110)

An example for this is plotted in Fig. 1.4h. If every periodic continous function
can be expressed by the Fourier sum, the question is how to get the Fourier
coe�cients ak and bk. In Fig. 1.4 we tried to guess the Fourier coe�cients. To
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Abbildung 1.10. First steps of representing an arbitrary periodic function (black), as a sum
of trigonometric functions.

calculate the Fourier coe�cients we can make use of the orthogonality relation.
We take the function g(t) multiply it with the individual eigenfunctions, and
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integrate over the period:

ak =
1

π

π∫

−π

g(t) cos(kt)dt, k = 0, 1, 2, . . . (1.111)

bk =
1

π

π∫

−π

g(t) sin(kt)dt, k = 1, 2, . . . (1.112)

This is nothing else than projecting out the contribution of the eigenfunction
analog to (a, b, c) • ex = a.

The Fourier coe�cients of periodic function over the interval (−T, . . . , T ) is given
by

ak =
1

T

T∫

−T

g(t′) cos(
kπt′

T
)dt′, k = 0, 1, 2, . . . (1.113)

bk =
1

T

T∫

−T

g(t′) sin(
kπt′

T
)dt′, k = 1, 2, . . . (1.114)

Summing up the contributions of the Fourier coe�cients gives smooth functions
with negligible oscillatory features (Fig. 1.4). Note, if the Fourier coe�cients are
ak and bk, the phase ϕk is given by:

A2
k = a2

k + b2
k (1.115)

ak = Ak cos ϕk (1.116)
bk = Ak sin ϕk (1.117)

ϕk = tan

(
bk

ak

)
(1.118)

Note, the Fourier sum can be written as

f(t) = a0 +
∑

k

Ak cos ϕk cos(
2π

T
kt) + Ak sin ϕk sin(

2π

T
kt) (1.119)

= a0 +
∑

k

Ak cos(
2π

T
kt− ϕk) (1.120)

Fourier sums can be expanded to nonperiodic functions if the following relation
holds: ∞∫

−∞

|g(t)|dt < ∞. (1.121)

Physics of Atoms and Molecules



1.4 Fouriertransformation 21

0 2 4 6 8 10 12

-1,0

-0,5

0,0

0,5

1,0

0 2 4 6 8 10 12

-2

-1

0

1

2

0 2 4 6 8 10 12

-1

0

1

0 2 4 6 8 10 12

-2

-1

0

1

2

0 2 4 6 8 10 12
-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12
-2

-1

0

1

2

0 2 4 6 8 10 12

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 2 4 6 8 10 12

-2

-1

0

1

2

d)c)

a)

Time in s

A
m

pl
itu

de
 

b)

h)

f)e)

g)

 

 

Abbildung 1.11. a) Sine functions with frequencies 1 (black) and 2 (red); b) sum of sine
functions of a) (blue) and weighted sum of sine functions of a) with

∑
k

1
k sin(kt) (black); c) Sine

functions with frequencies 3 and 4; d) sum of functions in c) and weighted sum of functions in
c); e) sum of functions with frequencies 1 to 4; f) weighted sum of functions with frequencies 1
to 4; g) same as e) but with 12 frequencies

12∑
k=1

sin(kt); h)
12∑

k=1

1
k sin(kt).

This means, that the function becomes zero for t → ∞ and t → −∞. These
points are the analogue points to the points at −T and T for periodic functions.
The continous Fourier transformation f̂(t) of f(t) is given by:

f(t) =
1√
2π

∞∫

−∞

f̂(ω)e−iωtdω (1.122)

f̂(ω) =
1√
2π

∞∫

−∞

f(t)eiωtdt (1.123)

The Fourier transformation f̂(ω) is given by the Cosine Fourier transformation
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Abbildung 1.12. Representation of the phase ϕ.

and the Sine Fourier transformation:

fc(t) =

√
2

π

∞∫

0

f̂c(ω) cos(ωt)dω (1.124)

f̂c(ω) =

√
2

π

∞∫

0

fc(t) cos(ωt)dt (1.125)

fs(t) =

√
2

π

∞∫

0

f̂s(ω) sin(ωt)dω (1.126)

f̂s(ω) =

√
2

π

∞∫

0

fs(t) sin(ωt)dt (1.127)

(1.128)

For an even function f(t) the Fourier transformation is given by f̂(t) = f̂c(t),
for an odd function the Fourier transformation is given by f̂(t) = if̂s(t). Every
function f(t) can be written as a sum of an even and an odd function:

f(t) = g(t) + h(t) (1.129)

g(t) =
1

2
[f(t) + f(−t)] (1.130)

h(t) =
1

2
[f(t)− f(−t)] (1.131)

f̂(ω) = ĝc(ω) + iĥs(ω) (1.132)
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Therefore, we can concentrate on the Cosine and Sine Fourier transformation.

The Fourier transformation has additional importance for the folding technique
of functions:

Cfg(t) =

∞∫

−∞

f(τ)g(t− τ)dτ = (f ? g)(t) (1.133)

f̂(ω)ĝ(ω) =
1

2π

∞∫

−∞

(f ? g)(t)eiωtdt (1.134)

Some examples of Fourier transformations are:

f(t) = e−at2 ⇒ f̂(ω) =
1√
2

a−
1
2 e−

ω2

4a (1.135)

f(t) = e−at ⇒ f̂(ω) =

√
2

π

a

a2 + ω2
(1.136)

f(t) =

{
1 , |t| < a
0 , else

}
⇒ f̂(ω) = 2

√
2

π

sin(aω)

ω
(1.137)

Numeric Fourier transformations are presented in the following �gures. Note, that
the intensity amplitudes in the time domain are given by the power amplitudes
A(ω)A∗(ω) of the Fourier transformation. Information on the timing of processes
are re�ected in the phase, given by the real and imaginary part of the amplitudes.
Short processes in time result in broad features in frequency and vice versa.
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Abbildung 1.13. Cosine function with frequency of 50 Hz and amplitude 1.

A phase shift of π/2 introduce a sign change in the imaginary amplitude and
a vanishing of the real amplitude (Fig. 1.4)
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Abbildung 1.14. Cosine function with frequency of 50 Hz, amplitude 1 and phase π/2.
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For a beating you need at least two frequencies (Fig. 1.4).
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Abbildung 1.15. Cosine functions with frequencies of 48 and 50 Hz and amplitudes of 1 and
1, respectively.
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Abbildung 1.16. Cosine functions with frequencies of 40 and 50 Hz and amplitudes of 0.7 and
1, respectively.
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A phase shift of π introduce a sign change in the real amplitude and a change
in the imaginary amplitude (Fig. 1.4).
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Abbildung 1.17. Cosine functions with frequencies of 40 and 50 Hz and amplitudes of 0.7 and
1, respectively. The 40 Hz Cosine oscillation is phase shifted by π.

A phase shift of π/2 introduce a strong change in the imaginary amplitude and
a vanishing in the real amplitude (Fig. 1.4).
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Abbildung 1.18. Cosine functions with frequencies of 40 and 50 Hz and amplitudes of 0.7 and
1, respectively. The 40 Hz Cosine oscillation is phase shifted by π/2.
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If the frequencies are multiples of each other the information of the amplitude
can be represented by the imaginary amplitude and the real amplitude of the
multiple frequency. Note, a quarter of the higher frequency is the lower one, and
a quarter of 2π is π/2 (Fig. 1.4). A phase shift of π/2 reverses again the real and
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Abbildung 1.19. Cosine functions with frequencies of 12.5 and 50 Hz and amplitudes of 1 and
1, respectively.

imaginary part of the 12.5 Hz amplitudes (Fig. 1.4).
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Abbildung 1.20. Cosine functions with frequencies of 12.5 and 50 Hz and amplitudes of 1 and
1, respectively. The 12.5 Hz Cosine oscillation is phase shifted by π/2.
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An exponential rise and decay time of an oscillatory signal induce frequency
broadening of the 50 Hz carrier frequency (Fig. 1.4).
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Abbildung 1.21. Carrier frequency of 50 Hz with an exponential rise time of 0.1 s and a decay
time of 0.13 s.

The timing of where the Gaussian envelope function has its maximum is given
by the imaginary amplitude (Fig. 1.4).
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Abbildung 1.22. One Gaussian envelope function with a width of σ = 0.2 and carrier fre-
quency of 50 Hz, centered around 0.7 s.
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The imaginary amplitude changes if the timing changes (Fig. 1.4).
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Abbildung 1.23. One Gaussian envelope function with a width of σ = 0.2 and carrier fre-
quency of 50 Hz, centered around 0.2 s.

The sum of both di�erently timed Gaussian functions gives the sum of all con-
tribution, including the imaginary part (Fig. 1.4). It is not trivial to see by the
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Abbildung 1.24. Sum of two Gaussian envelope functions centered around 0.2 s and 0.7 s;
widths of σ = 0.2 and carrier frequency of 50 Hz.

real and imaginary part how the timing looks like. On top of that in real Fourier
transformations, which are limited in accuracy, there is a big problem for long
time signals. If for example, in a symphony a single frequency is played all the
time and it should be o� for only one second after 20 minutes, this a�ords enor-
mous accuracy. Here, small phase shifts would not reduce but increase the single
frequency, so that other ways of storing, analyzing, and compressing are used.
Wavelet transformations are very useful for such problems. They form the basis
sets for JPG and PNG formats.

Folding integrals are important in spectroscopy. They describe the signals mea-
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sured in experiments. For example an exponential function g(t) is folded with the
system response function of the experimental set up r(t) (Fig. 1.4). The measured
signal S(t) is de�ned by the convolution function:

S(t) =

∞∫

−∞

g(τ)r(t− τ)dτ (1.138)
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Abbildung 1.25. Upper panel: Exponentials g(t) and a Gaussian function (black) r(t) for
di�erent displacement times ti. Lower panel: Folding function S(t) of the Gaussian with an
exponential. For each displacement in time ti between the exponential and Gaussian function,
the integral over the product is calculated and gives rise to S(ti). Note, the time scale is reversed
and goes from rihght to left.
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1.5 Homogeneous Line Broadening

As shown before the lifetimes of an excited state is given by the natural lifetime
τi = 1/Ai. If we consider many particles with the same lifetime excited simul-
taneously with a coherent light source, they would emit an electric �eld of the
decaying excited particles (for t ≥ 0) as

E(t) = E0e
−t/τccosω0t. (1.139)

In the case of incoherent excitation the electric �eld of a single atom is given by

E(t) = E0e
−t/τccos(ω0t + ϕ). (1.140)

The time constant τc describes the damping of the electric �eld. The intensity
I(t) emitted by an individual excited particle is

I(t) ∝ |E(t)|2 = E2
0e
−2t/τccos2(ω0t). (1.141)

For many such particles the total observed intensity is

I(t) =
∑

k

Ik(t) ∝
∑

k

E2
0e
−2t/τccos2(ω0t + ϕk) (1.142)

=
∑

k

E2
0

2
e−2t/τc [1 + cos2(ω0t + ϕk)] (1.143)

= k
E2

0

2
e−2t/τc = k

E2
0

2
e−t/τi (1.144)

We see that the lifetime τi is two times faster than the dephasing time τc = 2τi.
This is because the dephasing time is related to the electric �eld amplitude and
the lifetime to the electric �eld intensity. The electric �eld is now (for t ≥ 0)

E(t) = E0e
−t/2τicos(ω0t) =

E0

2
e−t/2τi [eiω0t + e−iω0t] (1.145)

=
E0

2
[ei(ω0+i/2τi)t + e−i(ω0−i/2τi)t] (1.146)
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The frequency distribution of the signal is given by its Fourier transform E(ω):

E(ω) =
1

2π

∫ ∞

−∞
E(t)e−iωtdt (1.147)

=
1

π

∫ ∞

0

E0

2
[ei(ω0+i/2τi)t + e−i(ω0−i/2τi)t]e−iωtdt (1.148)

=
E0

2π

∫ ∞

0

[ei(ω0−ω+i/2τi)t + e−i(ω0+ω−i/2τi)t]dt (1.149)

=
E0

2π
[

1

i(ω0 − ω + i/2τi)
(0− 1) +

1

−i(ω0 + ω − i/2τi)
(0− 1)](1.150)

=
E0

2π
[

i

(ω0 − ω + i/2τi)
− i

(ω0 + ω − i/2τi)
] (1.151)

=
E0

2π
[

i

(ω0 − ω + i/2τi)
] (1.152)

Only frequencies with ω ≥ 0 are physical. The intensity of emitted radiation is
then given by

I(ω) ∝ |E(ω)|2 = E(ω)E∗(ω) (1.153)

I(ω) ∝ E2
0

4π2
[

i(ω0 − ω) + 1/2τi

(ω0 − ω)2 + (1/2τi)2
× −i(ω0 − ω) + 1/2τi

(ω0 − ω)2 + (1/2τi)2
] (1.154)

∝ E2
0

4π2
× 1

(ω0 − ω)2 + (1/2τi)2
(1.155)

I(ν) ∝ E2
0

4π2
× 1

(ν0 − ν)2 + (1/4πτi)2
(1.156)

This type of function is called a Lorentzian. Since natural broadening is the same
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Abbildung 1.26. Lorentzian line shape with FWHM at ∆ν = 1
2πτi

.

for each particle, this broadening mechanism is called homogeneous broadening.
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The full width at half maximum height (FWHM) of this function is found from
half intensity points of I(ν) that occur at frequencies ν± 1

2
as shown in Fig. (1.5),

where
(

1

4πτi

)2 = (ν± 1
2
− ν0)

2. (1.157)

The FWHM is given by

∆ν =
1

2πτi

=

∑
j Aij

2π
with ∆ν = ν+ 1

2
− ν− 1

2
(1.158)

The normalized form of the Lorentzian lineshape function for natural broadening
(Fig. 1.5) is given by

g(ν)LN =
(2/π∆ν)

1 + [2(ν − ν0)/∆ν]2
. (1.159)

Other mechanisms of homogeneous broadening are for example:

� Soft collisions of phonons with the crystal particles, which does not abruptly
terminate the lifetime

� Pressure broadening in gaseous and liquid phase by soft collisions with
neutral or charged particles

� Stark broadening by a varying external �eld perturbing the energy levels of
the particle

� Resonance interactions reducing the lifetime by energy exchange with neigh-
boring particles.

The e�ects mention above induce phase shifts resulting in a destruction of the
macroscopic coherence of the ensemble, without reducing the population density
of the involved levels. If Xij = 1/τ ∗2 is the rate per particle per unit volume
by which collisions disturb the macroscopic coherence of the ensemble of level i
and Aij = 1/τi is the intensity rate per particle per unit volume for spontaneous
emission to state j, we can deduce the decoherence rate τc or dephasing time τ2

by
1

τc

=
1

τ2

=
∑

j

(
1

2
Aij + Xij) =

1

2τi

+
1

τ ∗2
. (1.160)

The rate τ ∗2 is called the pure dephasing time.

When the environment or properties of particles in an emitting sample are not
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identical, inhomogeneous broadening occurs. The normalized lineshape function
of an inhomogeneous broadened transition is given by

g(ν)GN =
2

∆ν

√
ln 2

π
× e−ln 2×[2(ν−ν0)/∆ν]2 (1.161)

This is a Gaussian function with FWHM of ∆ν. In a gaseous phase an inhomoge-
neous broadening mechanism is the Doppler broadening. In the condensed phase
di�erent interactions to the environment in the non-emitting ground state and
the emitting state can lead to inhomogeneous broadening.

Generally in spectroscopic experiments, the investigator disturbs the material
system with an external perturbation (force), such as exciting a particle into an
emitting state. How long a given property of the system persists until it is avera-
ged out by the microscopic motion of the particles in the system is qualitatively
described by a time-correlation function. The time-correlation function CAB(t, t′)
is the product of the pair of dynamic variables A(t) and B(t′) averaged over an
equilibrium canonical ensemble:

CAB(t, t′) = 〈A(t)B(t′)〉E (1.162)

The autocorrelation function CA(t) of a dynamic variable A(t) is de�ned by

CA(t) = 〈A(t)A(0)〉E (1.163)

The time dependence of the dynamic variable A(t) is determined by the pertur-
bations that arise from thermal motion and molecular interactions. These per-
turbations induce �uctuations of positions and momenta of particles resulting in
phase changes of A(t) over time. The time dependence of the dynamic variable
A(t) is very complex, because the environment, consisting of a large number of
atoms and molecules, �uctuates in a complex fashion. The time dependence of
A(t) will generally resemble a stochastic noise pattern generated by the inter-
action of various degrees of freedom (Fig. 1.5). A simple example of treating a
stochastic process is given by the equation

∂A(t)

∂t
= iΩ(t)A(t) (1.164)

where the time dependence of the frequency Ω(t) consists of an average part
ω0 = 〈Ω(t)〉E and a �uctuating part δΩ(t). If

Ω(t) = ω0 + δΩ(t) (1.165)

then the average of the �uctuations is

〈δΩ(t)〉E = 0. (1.166)
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Abbildung 1.27. Random �uctuations in time of the dynamic variable A.

Equations (1.164) and (1.165) de�ne the time dependence of dynamic variable
A(t) and Ω(t) in terms of ω0 and δΩ(t). The dynamics characterizing A(t) are
now incorporated in the random function δΩ(t). If δΩ(t) is known, it is possible
to extract dynamic information from A(t) and vice versa. The random variable
δΩ(t) is characterized by the variance, de�ned as

∆ =
√
〈δΩ2(0)〉E =

√
C2(δΩ(0)) (1.167)

and by the correlation time τc, given by

τc =

∫ ∞

0

〈δΩ(t)δΩ(0)〉E
〈δΩ(0)δΩ(0)〉E dt =

1

∆2

∫ ∞

0

〈δΩ(t)δΩ(0)〉Edt (1.168)

The correlation time τc is directly related to the random frequency or energy
�uctuations of the system and the time-correlation function CA(t) is related to the
line-shape function IA(ω). Furthermore, ∆ is a measure of the coupling strength
to the perturbers.

Up to now we focussed on ensemble average time-correlation functions, but in a
measurement the dynamic variable A(t) is averaged over an interval of time from
t0 to t0 + T . In an equilibrium system the average is independent of the initial
time t0 at which the measurement started. Thus, the property associated with
A(t) can be calculated to

A = lim
T→∞

1

T

∫ t0+T

t0

A(t)dt = lim
T→∞

1

T

∫ T

0

A(t)dt. (1.169)

Temporal coherence exists if the value of A(t + τ) is separated from that of A(t)
by small values of τ . The coherence is lost, however, if τ is much longer than the
correlation or coherence time. A measure of this correlation for the property A(t)
separated by a time t is given by the time-averaged time-correlation function,
which is de�ned as

A(t)A(0) = A(t)A = lim
T→∞

1

T

∫ T

0

A(t + τ)A(τ)dτ (1.170)
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In spectroscopic experiments the time-averaged time-correlation function is mea-
sured. The ensemble averaged time-correlation function and the time-averaged
time correlation function of a single particle are identical for ergodic systems

CA(t) = 〈A(t)A(0)〉E = A(t)A(0) ≡ 〈A(t)A(0)〉c. (1.171)

The time-correlation function (TCF) has the following properties:

〈A2〉c ≥ 〈A(t)A〉c (1.172)
lim
t→∞

〈A(t)A〉c = 〈A〉2c (1.173)

Equation (1.173) follows because for very long separation times the values of
A(t) are no longer correlated, and the average of products becomes the product
of averages. That means, the time-correlation function CA(t) decays in time from
〈A2〉c initially to 〈A〉2c for large values of time. The details of the time decay
depend on the dynamical nature of the physical system. When the average 〈A〉c
does not vanish, the �uctuations, δA, in A can be de�ned by

δA(t) = A(t)− 〈A(t)〉c (1.174)

and the time-correlation function of δA is then given by

〈δA(t)δA(0)〉c = 〈A(t)A(0)〉c − 〈A〉2c (1.175)

From this it is evident that the time-correlation function of δA(t) always vanishes
at long waiting times. The probable range of time where the δA(t) values are
correlated can be measured by the correlation or coherence time τc, which is
de�ned as

τc =

∫ ∞

0

〈δA(t)δA(0)〉c
〈|δA(0)|2〉c dt (1.176)

If one assumes a markovian process, i.e. no memory of the system, all time-
correlation functions higher than CA(t) are zero. Then the time-correlation func-
tion of δA(t) decays as a single exponential with relaxation time τr, so that

〈δA(t)δA(0)〉c = 〈|δA(0)|2〉c × e−t/τr (1.177)

then τc = τr and equation (1.176) provides a proper method of determining the
correlation time, which rapidly vanishes for t > τc.

According to the Wiener-Khintchine Theorem the spectral power density
for the stationary random variable A(t) is de�ned as the Fourier transform of the
time-correlation function CA(t):

IA(ω) =
1

2π

∫ ∞

−∞
e−iωτ 〈A(τ)A∗(0)〉cdτ (1.178)
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2 Waves and particles
2.1 Photons
Electromagnetic radiation (light) behaves in interference experiments as if it were
a wave and in other circumstances, such as the photoelectric e�ect or Compton
e�ect, it behaves if it were composed of particles. These particles, called photons,
carry the discrete amount of energy E and other properties associated with the
wave.

Energy E = hν =
hc

λ
(2.1)

Momentum −→p = ~
−→
k =

E

c
k =

hν

c
k =

h

λ
k (2.2)

Rest mass m = 0 (2.3)

Spin 1 ~ =
h

2π
(2.4)

There are di�erent energy and wavelength units used in the �eld of atomic and
molecular processes, such as electron volts [eV ] and wavenumbers [cm−1].

E[eV] =
12398

λ[
◦
A]

(2.5)

E[eV] = 2.418× 1014ν[Hz] (2.6)

ν̄[cm−1] =
104

λ[µm]
(2.7)

1 me = 9, 11× 10−31kg = 511
keV

c2
(2.8)

1 eV = 1.602× 10−19J (2.9)

2.2 Compton e�ect
The Compton e�ect (A.H. Compton 1923) describes the wavelength shift of in-
cident radiation after the 'collision' of photons or electromagnetic waves with
loosely bound (nearly free) electrons. In the experimental set-up a nearly mo-
nochromatic electromagnetic x-ray beam with (λ0 ≈ 1Å) was used to irradiate
a graphite target. The intensity of the scattered radiation was measured as a
function of scattering angle and wavelength. The results, illustrated in Fig. (2.2),
showed that although part of the scattered radiation had the same wavelength
λ0 as the incident radiation, there was also a second component of wavelength
λ1, where λ1 > λ0. The shift in wavelength between the incident and scattered
radiation, ∆λ = λ0−λ1 called Compton shift could not be explained by the clas-
sical models. Classical models would predict the induced dipoles to oscillate and
emit with the frequency of the incident radiation and thus no wavelength shifts
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Abbildung 2.1. Set up and scattering pattern of photons as a function of wavelength. The
data were taken for graphite crystals.

should be observed ∆λ = 0. The observed shift in wavelength was found to vary
with the angle of scattering and to be proportional to sin2(θ/2) where θ is the
scattering angle. Moreover, the Compton shift was independent of both the ma-
terial used as a scatterer and λ0, and the value of the constant of proportionality
was 0.048×10−10m. The results were interpreted with relativistic kinematics and
the use of momentum and energy conservation, with −→p0 , the momentum of the
photon before interaction, −→p1 and −→p2 the momentum of the photon and electron,
respectively, after interaction, E0 the energy of the photon, mc2 the rest mass of
the electron (here we assume a free electron with momentum zero), E1 and E2
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the photon and electron energy, respectively after interaction:
−→p0 = −→p1 +−→p2 (2.10)

E0 + mec
2 = E1 + E2 =

hc

λ1

+
√

m2
ec

4 + p2
2c

2 (2.11)
−→p2 = −→p0 −−→p1 (2.12)
p2

2 = −→p2 • −→p2 = p2
0 + p2

1 − 2p0p1 cos(θ) (2.13)

E0 − E1 = c(p0 − p1) =
√

m2
ec

4 + p2
2c

2 −mec
2 (2.14)

m2
ec

4 + p2
2c

2 = m2
ec

4 + 2mec
3(p0 − p1) + c2(p0 − p1)

2 (2.15)
p2

2 = (p0 − p1)
2 + 2mec(p0 − p1) (2.16)

2mec(p0 − p1) = −p2
0 − p2

1 + 2p0p1 + p2
0 + p2

1 − 2p0p1 cos(θ) (2.17)

mec(p0 − p1) = p0p1(1− cos(θ)) = 2p0p1 sin2(
θ

2
) (2.18)

mec(
1

p1

− 1

p0

) = 2 sin2(
θ

2
) (2.19)

mec

h
(λ1 − λ0) = 2 sin2(

θ

2
) (2.20)

∆λ = λ1 − λ0 = 2
h

mec
sin2(

θ

2
) = 2λc sin2(

θ

2
) ≥ 0. (2.21)

The wavelength λc = h
mec

is called the Compton wavelength, and a photon with
Compton wavelength λc has the energy of the rest mass of the electron mec

2 =
511 keV

Eph =
hc

λc

=
hc ·mec

h
= mec

2. (2.22)

The value of λc = 0.02426 × 10−10m ≈ 0.024Å is independent of λ0 and the
material of the scatterer and in very good agreement with the observed value.
The existence of the unmodi�ed component of the scattered radiation, which has
the same wavelength λ0 as the incident radiation, can be explained by scattering
from electrons so tightly bound that the entire atom (M À me) recoils and the
Compton shift is negligible.

The Compton e�ect is a nice experiment to demonstrate the particle character
of electromagnetic waves. On the other hand the wave behaviour of particles
has also been demonstrated, i.e. by observing the di�raction of electrons from
edges of slits (Fig. 2.2) and from scattering by a crystal (Fig. 2.2). According
to de Broglie (1924) all material particles possess wave-like characteristics. The
wavelength associated with particles is given by

λ =
h

p
. (2.23)
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Abbildung 2.2. Build up of an interfernce pattern by accumulating single electrons in a two-
slit experiment of Tonomura et al. (Tonomura, J. et al. American Journal of Physics 57, 117,
1989). Number of electrons: (a) 10; (b) 100; (c) 3000; (d) 20000; (e) 70000.

The wave aspect is also re�ected in Bohr's atomic model, characterized by Bohr's
postulate

2πr = nλ, n = 1, 2, 3, . . . (2.24)
L = rp (2.25)

that the orbital angular momentum L is quantised.

L =
nλp

2π
=

nhp

2πp
= n~ (2.26)

This mechanistic picture, which is an extension to the classical planetary model,
gives reasonable values for the energy levels of atoms, but is limited for deriving
properties.

Abbildung 2.3. Set up and di�raction pattern of an electron di�raction experiment on crystal
powder (from L. Germer).

En − Em = h(νn − νm) = −me

2~2
(
Ze2

4πε0

)2(
1

n2
− 1

m2
) (2.27)

a0 =
(4πε0)~2

mee2
= 5.29177× 10−11m, Bohr′s radius (2.28)
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Davisson and Germer con�rmed (1925) equation (2.23) by measuring the con-
structive interference of electrons. The electrons were accelerated by a potential
of voltage V, resulting in an electron kinetic energy of E = eV .

p2

2me

= eV (2.29)

p =
√

2meeV (2.30)

λ =
h√

2meeV
(2.31)

λ[
◦
A] =

12.3√
E[eV]

(2.32)

At a potential of 100 V the resulting wavelength is λ = 1.23Å, and di�raction
e�ects should appear at d ≈ λ. Davisson and Germer observed the re�ected low
energy electrons (< 400 eV) from a Ni crystal to show constructive interference
at speci�c angles θn (LEED: Low energy electron di�raction)

nλ = d sin(θn). (2.33)
At energies of 54 eV the observed angle for n = 1 was found to be θ1 = 50°. With
d = 2.15Å, known from x-ray di�raction experiments on Ni one can calculate the
wavelengths to be

λ = 2.15(sin(50◦))
◦
A= 1.65

◦
A (2.34)

λ =
h√

2meeV
=

12.3√
54

◦
A= 1.67

◦
A (2.35)

Electron di�raction experiments in transmission on thin Au and Pt �lms were
performed by G.P. Thomson (1927). He used powder samples of very small cry-
stals, so that the orientations of crystal axes were isotropically distributed. The
measured transmission powder spectrum has axial symmetry and shows Debye-
Scherrer rings (Fig. 2.2), similar x-ray di�raction experiments. The electron dif-
fraction pattern can be explained with the Bragg condition (2.33). Since the
spatial resolution of experiments depend on the wavelength of the detecting par-
ticles, the short wavelength of electrons, which can be in the range of 1 Å, are
used for electron di�raction and electron microscopy experiments resolving struc-
tural details on atomic or molecular scales.

The properties of electrons were always an important issue in physics: J.J. Thom-
son was awarded the Nobel Prize for showing that the electron is a particle. G.P.
Thomson, his son, was awarded the Prize for showing that the electron is a wave.

Neutral particles, such as neutrons and He-atoms, show also wave properties
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with di�erent wavelengths, depending on their rest mass and velocity. The ki-
netic energy of neutrons can easily be moderated by scattering in a medium of
speci�c temperature. Water is an e�cient neutron scatterer and is often used to
reduce the average kinetic energy of neutrons to room temperature

E =
3

2
kBT (2.36)

kBT ≈ 1

40
eV, at T = 293 K (2.37)

A crystal lattice can be used to select a monochromatic wavelength

λn =
h

pn

=
h√

2mn
3
2
kBT

(2.38)

Since the mass of neutrons is much bigger than the electron mass mn

me
≈ 1800,

thermal neutrons have the appropriate wavelength for structures with distances
or lattice constants of d ≈ 1 . . . 10

◦
A. Neutrons are especially useful for scattering

experiments with hydrogen atoms.

2.3 Plane waves, free particles
For an electromagnetic plane wave or photons the following equations hold

E(x, t) = ei(
−→
k •−→x−ωt) (2.39)

−→p =
h

λ
p =

h
−→
k

2π
= ~

−→
k (2.40)

E = hν = h
ω

2π
= ~ω (2.41)

E(x, t) = e
i
~ (−→p •−→x−Et) (2.42)

E = pc (2.43)
ω = kc (2.44)

Equation (2.39) is a solution of the homogeneous wave equation
∂2E(x, t)

∂x2
− 1

c2

∂2E(x, t)

∂t2
= 0, (2.45)

since inserting (2.39) gives

−k2 − 1

c2
(−ω2) = 0 (2.46)

and this is the correct dependence of E(p) and ω(k). Note, that for the wave
equation eigenvalues exist for E, p, and p2, but not for x and t.
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For plane material waves or a free particle with non vanishing rest mass we have

−→p =
h

λ
p = ~

−→
k (2.47)

E = hν = ~ω (2.48)

E =
p2

2m
(2.49)

ω =
~k2

2m
(2.50)

Now we end up in analogy with a material wave function ψ(x, t)

ψ(x, t) = ei(
−→
k •−→x−ωt) (2.51)

ψ(x, t) = e
i
~ (−→p •−→x−Et) (2.52)

To guess a wave equation like (2.45) for a free particle in analogy to E = p2

2m
we

choose the second derivative in x and a �rst derivative in t:

∂ψ(x, t)

∂x
=

i−→p
~

ψ(x, t) (2.53)
∂2ψ(x, t)

∂x2
= −p2

~2
ψ(x, t) (2.54)

∂ψ(x, t)

∂t
= − iE

~
ψ(x, t). (2.55)

Since we have a relation between energy and momentum (2.49) the guessed wave
equation for a particle, which ful�ll this equation is

− ~
2

2m

∂2ψ(x, t)

∂x2
= i~

∂ψ(x, t)

∂t
. (2.56)

Here, also Eigenvalues exist for values of E, p, and p2, but not for x and t.
Generalization for a bound particle with a potential V and the force −→F with

−→
F = −−→∇V (2.57)

and
p2

2m
+ V (x) = E (2.58)

gives

− ~
2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) = i~

∂ψ(x, t)

∂t
, 1−D (2.59)

− ~
2

2m
4ψ(−→r , t) + V (−→r )ψ(−→r , t) = i~

∂ψ(−→r , t)

∂t
, 3−D. (2.60)
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This equation is called Schrödinger equation. It is a linear and homogeneous
partial di�erential equation, and in analogy to the wave equation the superposition
principle holds.

ψ1, ψ2 solutions ⇒ c1ψ1 ± c2ψ2 solutions (2.61)

If ψ1 and ψ2 are solutions of the Schrödinger equation (SE), then the sum and
the di�erence of both ψ1±ψ2 are also solutions of the SE. This is the fundamen-
tal basis for interference e�ects. Solutions of the SE are found in L2: quadratic
integrable functions. Moreover, they should vanish for plus and minus in�nity.

A plane wave has momentum −→p (
−→
k ), but it is not localized. A plane wave has an

in�nite length, but a precise momentum. Therefore it is not possible to calculate
a probability of �nding a plane wave at a speci�c position (no normalization).
Nevertheless, taken into account the superposition principle every function of L2

can be represented by a weighted sum of plane waves. For convenience purposes,
we go on calculating in one dimensional without limiting the generality:

ψ(x, t) =
1√
2π

∞∫

−∞

A(k, ω)ei(kx−ωt)dk. (2.62)

Every function ψ(x, t) can be described as an in�nite sum of plane waves (re-
member Fourier transformation), and the amplitude function of the wave vectors
A(k) gives the weighting of the individual plane waves. The amplitude function
can be calculated by the inverse Fourier transformation

A(k, ω) =
1√
2π

∞∫

−∞

ψ(x, t)e−i(kx−ωt)dx. (2.63)

A simple example is the sum of two cosine functions of the same amplitude as
shown in Fig. (2.3).

ψ(x, t) = ei(k1x−ω1t) + ei(k2x−ω2t) (2.64)

= ei[( k1+k2
2 )x−(ω1+ω2

2 )t] × 2 cos
1

2
(∆kx−∆ωt) (2.65)

By increasing the number of waves a more localized wavepacket with less spikes
can be generated (Fig. 2.3). Since ω = ω(k) with ω(k) = ~k2

2m
for a free particle,

a distribution A(k) (see Fig. 2.3) is equivalent to a distribution of frequencies. If
we develop ω(k) around k0, where ω(k0) = ω0:

ω(k) = ω0 + (k − k0)
dω

dk
|k0 + . . . (2.66)
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Abbildung 2.4. Sum of two cosine waves of the same amplitude and ω1 = 0.1745s−1 and
ω1 = 0.2094s−1. The amplitude is plotted versus time.

and insert this into (2.62) it becomes

ψ(x, t) =
1√
2π

∞∫

−∞

ei(k0x−ω0t)A(k, ω)ei[(k−k0)x−(k−k0) dω
dk
|k0

t]dk (2.67)

ψ(x, t) =
1√
2π

ei(k0x−ω0t)

∞∫

−∞

A(k, ω)ei(k−k0)f(x− dω
dk
|k0

t)dk. (2.68)

This means a wavepacket can be described as a product of a plane wave at k0

and carrier frequency ω0, which is moving with the phase velocity υph and an
envelope f(x− dω

dk
|k0t), which is moving with the group velocity υgr.

υph =
ω0

k0

(2.69)

υgr =
dω

dk
|k0 (2.70)

−→υgr =
−→∇kω(k) (2.71)

We can characterize the velocity of the particle or wavepacket by the group ve-
locity υgr:

ω(k) =
~k2

2m
⇒ υgr =

2~k
2m

=
~k
m

=
p0

m
⇒ υgr =

p0

m
(2.72)
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Abbildung 2.5. Left: Sum of several cosine waves of same (blue) and di�erent (black) ampli-
tudes. Right: Amplitude distributions.
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Abbildung 2.6. Fourier components centered around k0.

That is exactly what we expect for the velocity of a free particle. If we have an
amplitude function of wave vectors A(k) constant in the range from k0 −∆k to
k0 + ∆k

A(k) =

{
1

2∆bk , k0 −∆k < k < k0 + ∆k

0 , else
(2.73)
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Then we get

ψ(x, t) =
1√
2π

ei(k0x−ω0t)

k0+∆bk∫

k0−∆bk
A(k)ei(k−k0)[x− dω

dk
|k0

t]dk (2.74)

k′=k−k0=
1√
2π

ei(k0x−ω0t)

∆bk∫

−∆bk
1

2∆k̂
eik′[x− dω

dk′ |0t]dk′ (2.75)

α=x− dω
dk′ t= ei(k0x−ω0t) 1

2∆k̂iα
√

2π

[
eik′α

]∆bk
−∆bk (2.76)

= ei(k0x−ω0t) 1

2∆k̂iα
√

2π

[
ei∆bkα − e−i∆bkα

]
(2.77)

= ei(k0x−ω0t) 1√
2π

sin(∆kα)

∆kα
(2.78)

ψ(x, t) = ei(k0x−ω0t) 1√
2π

sinc(∆k[x− dω

dk
t]) (2.79)

Equation (2.79) describes the wavepacket of a particle. As a direct conclusion
from the Fourier transformation taking 2π

∆k
as the wave vector width we get:

∆x =
2π

∆k
⇒ ∆x ·∆k = 2π ⇒ ∆x ·∆px = 2π~ (2.80)

This reciprocal relation between the spread in space and momentum (or time

vector

Abbildung 2.7. Left: Amplitude of a sinc function (black) and its intensity (blue). Right: A(k)
of the distribution.

and energy) is fundamental and varies with the distribution functions of A(k).
For all distribution functions it is

∆x ·∆px ≥ ~
2

∆t ·∆E ≥ ~
2
. (2.81)
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These relations are examples of the uncertainty principle and gives an upper
limit for the localization of space and momentum or time and energy. Note,
space and time are not eigenvalues of the SE, and they are directly connected
with momentum and energy via the di�erential equations.

In equation (2.72) the group velocity of a particle is determined by its rest mass.
For photons the rest mass is zero, and the group velocity is given by

υgr =
dω

dk
|k0 =

dkc

dk
|k0 = c. (2.82)

The wavepacket consisting of photons has a group velocity c, and is not sprea-
ding out in time. This situation changes if the photon wavepacket, which is a
temporally short and spectrally broad pulse, is travelling through a dispersive
medium with n = n(λ) and the dielectric constant ε. If that is the case, the wave
vector becomes dependent on the frequency

k2(ω) =
ω2

c2
ε(ω) =

ω2

c2
n2(ω) (2.83)

k(ω) = k0 +
dk

dω
|ω0(ω − ω0) +

1

2

d2k

dω2
|ω0(ω − ω0)

2 + · · · = k0 + δk (2.84)

υgr =

(
dk

dω
|ω0

)−1

(2.85)

The term
d2k

dω2
|ω0 = − 1

υ2
gr

dυgr

dω
|ω0 = GVD(ω) (2.86)

is the group velocity dispersion (GVD) parameter and is useful for calculating
the change of transit time for a broadband pulse as a function of frequency
through a medium or an optical setup. Alternatively, it is also possible to look at
the complex phase in the frequency domain and de�ne the GVD as the second
derivative of the phase with respect to frequency. The units of the GVD is [ s2

m
] or

[ time
length·bandwidth

] = [ fs
cm·fs−1 ]. It is useful to represent the properties of the complex

electric �eld E+(t) of short light pulses by the product of a complex envelope
function E(t) and a phase term:

E+(t) =
1

2
E(t)eiΦ(t) =

1

2
E(t)eiφ(t)eiω0t (2.87)

Here, the plus at the electric �eld indicate only positive frequencies, φ(t) is the
time dependent phase and ω0 the frequency expectation value of the electric �eld.
In most practical cases of interest the spectral amplitude is centered around ω0

and has non negligible amplitudes only in a small frequency range ∆ω, with
∆ω

ω0

¿ 1. (2.88)
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For inequality (2.88) to be satis�ed, the temporal variation of E(t) and φ(t) within
an optical cycle T = 2π

ω0
has to be small (T ≈ 2 fs for visible radiation). The

Abbildung 2.8. Electric �eld, time dependent carrier frequency and spectral amplitude of an
upchriped pulse.

physical meaning of the phase function Γ(t) is the following. The �rst derivative
of the phase funtion Γ(t) is the time dependent carrier frequency choosen such
as to minimize the variation of phase φ(t).

ω(t) = ω0 +
d

dt
ϕ(t). (2.89)

For dφ
dt

= b = const, a non-zero value of b just means a correction of the carrier
frequency, which is now ω = ω0 + b. For dφ

dt
= f(t), the carrier frequency varies
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with time and the corresponding pulse is said to be frequency modulated or chir-
ped. For d2φ

dt2
> 0, the carrier frequency increases along the pulse, which is then

called up chirped (Fig. 2.3). If the carrier frequency decreases along the pulse it
is called down chirped.

The pulse duration and spectral width of a short light pulse is essential to follow
short (femtosecond) atomic and molecular dynamics. For very short and spec-
trally broad light pulses it is di�cult to determine the exact pulse shape of a
light pulse. For single pulses, the typical representative function that is readily
accessible to the experimentalist is the intensity autocorrelation:

Aint(τ) =

∞∫

−∞

I(t)I(t− τ)dt. (2.90)

This is by de�nition a symmetric function Aint(τ) = Aint(−τ) and its Fourier
transform is given by the real function:

Aint(Ω) = Ĩ(Ω)Ĩ∗(Ω). (2.91)

The most commonly cited pulse pro�les are the Gaussian, for which the temporal
dependence of the �eld is:

E(t) = E0e
−(t/τG)2 (2.92)

and the secant hyperbolic

E(t) = E0sech(t/τs) = E0
2

e(t/τs) + e−(t/τs)
(2.93)

with the parameters τG = τp
1√
2ln2

and τs = τp
1

1.76
. Since, the coherent temporal

and spectral characteristics of the �elds (and not intensities) are related to each
other through Fourier transforms, the bandwidth ∆ωp and pulse duration τp

cannot vary independently of each other. There is a minimum duration-bandwidth
product:

∆ωpτp = 2π∆νpτp ≥ 2πcB (2.94)

The numerical constant cB is called the duration-bandwidth product and is on
the order of 1, depending on the actual pulse shape. The values of ∆ωp and τp

are given by the FWHM (Full Width at Half Maximum) values. If the pulse
shape is complex one can introduce di�erent de�nitions as for example τ 2

p =
(〈t2I(t)〉 − 〈tI(t)〉2)2, using the second moment.
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For some pulse shapes the duration-bandwidth product becomes

Gaussian pulse shapes

I(t) ∝ e−1/2(t/τG)2 (2.95)
τp = τG2

√
ln2 (2.96)

I(ω) ∝ e−(ωτG)2/2 (2.97)

∆ωp =
2
√

ln2

τG

(2.98)

cB ≈ 0.441 (2.99)

Sech pulse shapes

I(t) ∝ sech2(t/τs) (2.100)
τp ≈ 1.763τs (2.101)

I(ω) ∝ sech2(πωτs/2) (2.102)

∆ωp ≈ 1.122

τs

(2.103)

cB ≈ 0.315 (2.104)

Lorentian pulse shapes

I(t) ∝ 1

(1 + (t/τL)2)2
(2.105)

τp ≈ 1.287τL (2.106)
I(ω) ∝ e−2(|ω|τL) (2.107)

∆ωp ≈ 0.693

τL

(2.108)

cB ≈ 0.142 (2.109)

Note, this equations hold for the intensity pro�les of a bandwidth limited
pulse, and the duration-bandwidth product is given for the �elds (factor

√
2). If

we introduce a linear chirp to a gaussian pro�le we get:

E(t) = E0e
−(1+ia)(t/τG)2 (2.110)

dϕ

dt
=

−2at

τ 2
G

(2.111)

⇒ ∆νpτp =
2ln2

2π

√
1 + a2 (2.112)

Ĩ(ω) ∝ E2
0 τ 2

G√
1 + a2

e
− ω2τ2

G
2(1+a2) . (2.113)

Upon introducing linear chirp to a bandwidth limited pulse the pulse duration
will become longer.
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3 Schrödinger equation
The SE (3.1) is a partial di�erential equation describing the dynamics of the wave
function ψ(−→r , t).

− ~
2

2m
4ψ(−→r , t) + V (−→r )ψ(−→r , t) = i~

∂ψ(−→r , t)

∂t
(3.1)

To interpret the meaning of the wave function ψ(−→r , t) we must remember that
ψ(−→r , t) is in general a complex function and |ψ(−→r , t)| is large where the particle is
likely to be found. The di�raction pattern made by light depend on the intensity
of the electric �eld, which is ∝ |E(ω, t)|2. In similar way, M. Born made the
fundamental postulate (1926), that if a particle is described by a wave function
ψ(−→r , t) the probability of �nding the particle within the volume element d−→r =
dxdydz about the point −→r at time t is given by:

P (−→r , t) = |ψ(−→r , t)|2d−→r = ψ∗(−→r , t)ψ(−→r , t)d−→r . (3.2)

Here P (−→r , t) is the (position) probability density. Since the probability of �nding
a particle somewhere must be unity the normalization relation must hold:

∞∫

−∞

ψ∗(−→r , t)ψ(−→r , t)d−→r = 1. (3.3)

Note, that |ψ(−→r , t)|2 is the physical quantity that is directly related to the expe-
rimental observable quantities.

3.1 Expectation values
If we consider a normalized wave function ψ(−→r , t), then the average or expectation
value of any function f(−→r ) is de�ned as:

〈f(−→r )〉 = 〈ψ∗(−→r , t)|f(−→r )ψ(−→r , t)〉 =

∞∫

−∞

ψ∗(−→r , t)f(−→r )ψ(−→r , t)d−→r . (3.4)

If we want to calculate the probability to �nd a particle described by ψ(−→r , t) at
the position −→r , we have to set f(−→r ) = −→r , and then the expectation value for
�nding the particle at position −→r is given by:

〈−→r 〉 = 〈ψ∗(−→r , t)|−→r ψ(−→r , t)〉 =

∞∫

−∞

ψ∗(−→r , t)−→r ψ(−→r , t)d−→r . (3.5)
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Since in experiments all observed quantities are expectation values, the integral
or scalar product 〈f(−→r )〉 is necessary to connect the SE with physical quantities.

∫
ψ∗(−→r , t)Φ(−→r , t)dV = 〈ψ|Φ〉 (3.6)

The square integrable functions ψ ∈ X and Φ ∈ X together with the following
properties of the scalar product 〈 | 〉 de�ne a Hilbert space:

〈Φ1 + Φ2|ψ〉 = 〈Φ1|ψ〉+ 〈Φ2|ψ〉, ∀Φi, ψ ∈ X (3.7)
〈λΦ|ψ〉 = λ∗〈Φ|ψ〉, ∀Φ, ψ ∈ X, λ ∈ C (3.8)
〈Φ|ψ〉 = 〈ψ|Φ〉∗, ∀Φ, ψ ∈ X, (3.9)
〈ψ|ψ〉 ≥ 0,∀ψ ∈ X (3.10)
〈ψ|ψ〉 = 0 ⇔ ψ = 0. (3.11)

The property of becoming complex conjugated upon exchanging the arguments
is called sesqi linear. From these properties the Schwarz relation follows:

|〈Φ|ψ〉|2 ≤ 〈Φ|Φ〉〈ψ|ψ〉 (3.12)
|〈Φ|ψ〉|2 = 〈Φ|Φ〉〈ψ|ψ〉 ⇔ Φ = λψ. (3.13)

Note, that the scalar product can also be written as a norm ‖ψ‖, which is directly
connected to a metric. A metric describes speci�c properties of the space such as
calculating and comparing distances.

‖ψ‖ ≡
√
|〈ψ|ψ〉| (3.14)

‖Φ + ψ‖2 = 〈Φ + ψ|Φ + ψ〉 (3.15)
‖Φ + ψ‖2 ≤ (‖Φ‖+ ‖ψ‖)2 (3.16)

Note, the scalar product 〈ψ|Aϕ〉 = 〈ψ̃|Ãϕ̃〉 is invariant to the Fourier transforma-
tion, with ψ̃, ϕ̃, and Ã the Fourier transformations of ψ, ϕ, and A, respectively.

3.2 Time independent SE
The SE is very often abbreviated by

Hψ(−→r , t) = i~
∂

∂t
ψ(−→r , t) (3.17)

Hψ(−→r , t) = E(−→r , t)ψ(−→r , t) (3.18)

H = − ~
2

2m
4+ V (−→r , t) (3.19)

−→p =
~
i

−→∇ (3.20)
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where H is called the Hamilton operator with the kinetic energy operator (�rst
term) and the potential operator (second term). The Hamilton operator is known
from classical mechanics to describe the energy, and now it is used to describe
the quantum mechanical energy by going from variables to operators.

H(−→p ,−→q ) 99K H(
~
i

−→∇ ,−→r ). (3.21)

If the Potential operator V (−→r , t) = V (−→r ) does not depend on time, we can use
the product solution method to solve the SE:

ψ(−→r , t) = f(t)ϕ(−→r ) (3.22)

Hψ(−→r , t) = f(t)Hϕ(−→r ) = ϕ(−→r )i~
∂

∂t
f(t) (3.23)

1

ϕ(−→r )
Hϕ(−→r ) = i~

1

f(t)

∂

∂t
f(t) ∀−→r , t; ϕ(−→r ), f(t) 6= 0 (3.24)

Equation (3.24) is only true for all t and ϕ(−→r ) if the following holds
1

ϕ(−→r )
Hϕ(−→r ) = i~

1

f(t)

∂

∂t
f(t) = const. = E (3.25)

⇒ 1

ϕ(−→r )
Hϕ(−→r ) = E (3.26)

⇒ i~
1

f(t)

∂

∂t
f(t) = E (3.27)

⇒ df(t)

f(t)
=

E

i~
dt (3.28)

⇒ f(t) = f(0)e−
iE
~ t (3.29)

⇒ HϕE(−→r ) = EϕE(−→r ) (3.30)

With the product solution method we get separate solutions for the space and
time coordinates. As a direct consequence of this the wave function is the di-
rect product of the space wave function ϕE(−→r ) for a speci�c energy E and the
time wave function or phase function f(t). The eigenfunctions for the space wa-
ve functions are given by equation (3.29) and the time dependence by equati-
on (3.30). Thus, the resulting solution of the SE for a Hamilton operator with
V (−→r , t) = V (−→r ) is given by

ψ(−→r , t) = e−
iE
~ tϕE(−→r ). (3.31)

Equation (3.31) is the solution of the stationary SE with E representing the
energy of the state and ϕE(−→r ) the time independent wave function. The phase
do not contribute to the probability density and therefore, ϕE has very similar
properties as ψ:

|ψ(−→r , t)|2 = |ϕE(−→r , t)|2 (3.32)
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3.3 Some properties of operators

In the Hilbert space an operator, such as the momentum operator −→p = ~
i

−→∇ ,
de�nes an operation on the wave function. Some operators U are called unitary,
if

U∗U = UU∗ = 1 (3.33)

some operators N are called normal if

N∗N = NN∗ (3.34)

and most importantly operators H called hermitian or self adjoint if

H∗ = H. (3.35)

For two hermitian operators S and T the following rules hold

(S + T )∗ = S∗ + T ∗ (3.36)
(λS)∗ = λ∗S∗ (3.37)
(TS)∗ = S∗T ∗ (3.38)
(T ∗)∗ = T (3.39)

〈Tψ|Φ〉 = 〈ψ|T ∗Φ〉 (3.40)

The normalization condition is physical meaningful, because the probability to
�nd an existing particle in the universe should be one. This probability should
not change with time, and the time derivative of the normalization condition has
to vanish:

d

dt
〈ψ|ψ〉 = 0 (3.41)

〈ψ̇|ψ〉+ 〈ψ|ψ̇〉 = 0 (3.42)

〈 1

i~
Hψ|ψ〉+ 〈ψ| 1

i~
Hψ〉 = 0 (3.43)

1

i~
(−〈Hψ|ψ〉+ 〈ψ|Hψ〉) = 0 (3.44)

⇒ 〈Hψ|ψ〉 = 〈ψ|Hψ〉 (3.45)
⇒ H∗ = H. (3.46)
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It follows that the Hamilton operator is hermitian. In addition one can follow
from the time independent normalization condition:

∫

V

|ψ(−→r , t)|2dV = 1 (3.47)

d

dt

∫

V

|ψ(−→r , t)|2dV = 0 (3.48)

∫

V

ψ̇∗ψ + ψ∗ψ̇dV = 0 (3.49)

∫

V

1

i~
[−(Hψ)∗ψ + ψ∗Hψ] dV = 0 (3.50)

1

i~

∫

V

−
[
− ~

2

2m
4+ V (−→r , t)

]
ψ∗ψ +

ψ∗
[
− ~

2

2m
4+ V (−→r , t)

]
ψdV = 0 (3.51)

1

i~

∫

V

~2

2m
[ψ4ψ∗ − ψ∗4ψ] dV = 0 (3.52)

i~
2m

∫

V

[ψ∗4ψ − ψ4ψ∗] dV = 0 (3.53)

i~
2m

∫

V

−→∇ •
[
ψ∗
−→∇ψ − ψ

−→∇ψ∗
]
dV = 0 (3.54)

with Gauss

∫

V

−→∇ • −→E (−→r )dV =

∮

∂V

−→
E (−→r ) • d

−→
f (3.55)

and Stokes

∫

∂F

−→
A (−→r ) • d−→r =

∫

F

−→∇ × d
−→
f (3.56)

∮

∂V

i~
2m

[
ψ∗
−→∇ψ − ψ

−→∇ψ∗
]
• d
−→
f = 0 (3.57)

∮

∂V

−→
j (−→r , t) • d

−→
f = 0 (3.58)

i~
2m

[
ψ∗
−→∇ψ − ψ

−→∇ψ∗
]

=
−→
j (−→r , t) (3.59)

⇒ ∂%

∂t
+
−→∇ • −→( j) = 0 (3.60)
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Equation (3.60) is the continuity equation, describing that the change in density
% is given by the loss of probability density −→j .

As mentioned before the expectation value of an operator −→r , given by 〈−→r 〉 or
〈−̃→r 〉 is an observable, which can be measured in experiments. The uncertainty of
an observable κ is given by its variance (or second weight) ∆κ:

∆κ =
√
〈κ2〉 − 〈κ〉2 (3.61)

It is easy to show that for a hermitian operator A

∆A ≡
√
〈ψ|A2ψ〉 − 〈ψ|Aψ〉2 ≥ 0 (3.62)

(∆A)2 = 〈ψ|(A− 〈A〉)2ψ〉 (3.63)
= 〈ψ|(A2 − 2A〈A〉+ 〈A〉2)ψ〉 (3.64)
= 〈ψ|A2ψ〉 − 2〈A〉〈A〉+ 〈A〉2 (3.65)
= 〈ψ|A2ψ〉 − 〈ψ|Aψ〉2 (3.66)
= 〈(A− 〈A〉)ψ|(A− 〈A〉)ψ〉 = ‖(A− 〈A〉‖2 ≥ 0. (3.67)

the variance is always positive and zero if ψ is eigenfunction of A and Aψ = aψ
and therefore 〈A〉 = a.

Commutators are de�ned by

[A,B] ≡ AB −BA (3.68)

and if [A,B] = 0 the commutators commute, they are independent of each other,
and have the same eigenfunctions. For the variance of two operators A and B the
following holds:

(∆A)(∆B) ≥ 1

2
|〈ϕ|[A,B]ϕ〉| (3.69)

To proof equation (3.69) we introduce two operators A' and B' with

A′ ≡ A− 〈ϕ|Aϕ〉 (3.70)
B′ ≡ B − 〈ϕ|Bϕ〉 (3.71)

⇒ 〈ϕ|A′ϕ〉 = 〈ϕ|(A− 〈A〉)ϕ〉 (3.72)
= 〈A〉 − 〈A〉 (3.73)

〈ϕ|A′ϕ〉 = 0 (3.74)
〈ϕ|B′ϕ〉 = 0 (3.75)
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58 3 Schrödinger equation

The variance and commutator of A' and B', which are hermitian has the following
properties:

[A′, B′] = [A,B] (3.76)
(∆A′)2 〈A′〉=0

= 〈ϕ|(A′)2ϕ〉 (3.77)
= 〈ϕ|(A− 〈A〉)2ϕ〉 (3.78)
= (∆A)2 (3.79)

(∆B′)2 = (∆B)2 (3.80)
With this one can show the general uncertainty relation:

(∆A′)2(∆B′)2 = 〈ϕ|(A′)2ϕ〉〈ϕ|(B′)2ϕ〉 (3.81)
= ‖A′ϕ‖2‖B′ϕ‖2 (3.82)
≥ |laA′ϕ|B′ϕ〉|2 (3.83)
≥ |=(〈A′ϕ|B′ϕ〉)|2 (3.84)

= | 1
2i

(〈A′ϕ|B′ϕ〉 − 〈A′ϕ|B′ϕ〉∗)|2 (3.85)

=
1

4
|(〈ϕ|A′B′ϕ〉 − 〈B′A′ϕ|ϕ〉∗)|2 (3.86)

=
1

4
|(〈ϕ|A′B′ϕ〉 − 〈ϕ|B′A′ϕ〉)|2 (3.87)

=
1

4
|〈ϕ|[A′, B′]ϕ〉|2 (3.88)

=
1

4
|〈ϕ|[A,B]ϕ〉|2 (3.89)

⇒ (∆A′)2(∆B′)2 ≥ 1

4
|〈ϕ|[A,B]ϕ〉|2 (3.90)

⇒ (∆A′)(∆B′) ≥ 1

2
|〈ϕ|[A,B]ϕ〉| (3.91)

For the example of the space operator −→r and the momentum operator −→p = ~
i

−→∇
equation (3.69) becomes:

[−→r ,−→p ]iΦ = [−→r ,
~
i

−→∇ ]iΦ (3.92)

=
~
i
(−→r −→∇ −−→∇−→r )iΦ (3.93)

=
~
i
(−→ri
−→∇iΦ−−→ri

−→∇iΦ− Φ
−→∇i
−→ri ) (3.94)

= −~
i
Φri (3.95)

⇒ [−→p ,−→r ]i =
~
i

(3.96)

⇒ ∆−→pi ∆
−→ri ≥ ~

2
(3.97)
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4 Particle in a box 59

So we see that it is impossible to measure the exact location and momentum of
a particle at the same time.

4 Particle in a box
Assume the most simplest way of localizing a particle in a one-dimensional (x-
axis) box of length 2a, with boundary conditions, so that the potential jumps at
the positions x = −a and x = a from zero to in�nite (Fig. 4).

V (x) =

{
0 , |x| < a
∞ , else

}
(4.1)

Since at space positions |x| ≥ a the potential is in�nite, the probability of the

0

 

+a
Space x (nm)

E
ne

rg
y

-a

Abbildung 4.1. Potential function V(x) for a particle in a box.

wave function has to vanish for those positions, i.e. the particle is trapped between
the potential walls. This leads us to the boundary conditions

Ψ(a) = Ψ(−a) = 0 (4.2)

of the SE for a particle in a box with V (x) = 0 inside of the box:

− ~
2

2m

d2

dx2
Ψ(x) = EΨ(x) (4.3)
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60 4 Particle in a box

This is the SE of a free particle with symmetric and periodic boundary conditions.
We can try to solve the SE equation with the following wave functions:

Ψg = cos(knx) (4.4)

⇒ ~2k2

2m
Ψg = EΨg (4.5)

Ψg(a) = cos(kna) = 0 (4.6)
Ψg(−a) = cos(kna) = 0 (4.7)
⇒ kna = n

π

2
, n odd (4.8)

Ψu = sin(knx) (4.9)
Ψu(a) = sin(kna) = 0 (4.10)

Ψu(−a) = − sin(kna) = 0 (4.11)
⇒ kna = n

π

2
, n even (4.12)

⇒ kn =
nπ

2a
(4.13)

⇒ En =
~2k2

n

2m
=

π2~2n2

8ma2
, n = 1, 2, . . . (4.14)

The solutions of the wave functions for the particle in a box and the energies
have the following properties:

� discrete eigenvalues for the energy En (discrete energy spectrum)

� En ∝ n2 and En ∝ a−2

� the lowest energy is E1 = π2~2
8ma2 and not zero

� with increasing n, Ψn the number of nodes increases (n-1)

� the stationary states are either even {cos(knx)} or odd {sin(knx)}. This
follows from the parity symmetry V (x) = V (−x).

� The eigenfunctions are orthogonal and complete 〈Ψn|Ψm〉 = κδn,m.

� the normalization cn has to be chosen such as
a∫
−a

c2
n cos2(nπx

2a
)dx = 1

� the position expectation value is zero 〈x〉 = 0

� the momentum expectation value is zero 〈px〉 = 0 =
a∫
−a

sin(nπx
2a

)~
i

d
dx

sin(nπx
2a

)dx

� in a classical picture the probability P (x) would be equal for every space
position P (x) = 1

2a
, whereas the quantum mechanical description exhibits

positions where the probability is zero (nodes) and positions where the
probability is higher.
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Abbildung 4.2. Wave functions Ψn with n = 1, 2, 3 of a particle in a box with energies
E1 = π2~2

8ma2 , E2, and E3.

5 Ground state of the hydrogen atom
To test whether the SE gives reasonable answers to physical problems we calculate
the ground state of a hydrogen atom, which is experimentally well characterized.
The potential operator of the hydrogen atom V (−→r ) = V (r) has radial symmetry,
so that the eigenfunction in the lowest ground state should depend only on r.
With this assumption the part in the 4 operator depending on φ and θ can be
neglected. The eigenfunction corresponding to the lowest energy E1 is ϕ1(r) and
it should solve the SE: [

− ~
2

2m
4+ V (r)

]
ϕ1(r) = E1ϕ1(r) (5.1)

[
− ~

2

2m

(
1

r2

∂

∂r
r2 ∂

∂r

)
+ V (r)

]
ϕ1(r) = E1ϕ1(r) (5.2)

− ~
2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
ϕ1(r)− Ze2

4πε0r
ϕ1(r) = E1ϕ1(r) (5.3)

If we try now the wave function ϕ1(r) ∝ e−r/a, which is square integrable, we get:

− ~
2

2m

[
1

a2
− 2

ra

]
ϕ1(r)− Ze2

4πε0r
ϕ1(r) = E1ϕ1(r) (5.4)

The wave function can only be a solution if the 1
r
terms cancel each other:

2~2

2ma
=

Ze2

4πε0

⇒ a =
4πε0~2

Ze2m
(5.5)

With Z = 1 this is exactly the Bohr's radius a0, and the energy E1 is given by:

E1 = − ~2

2ma2
= − ~

2

2m

Z2e4m2

16π2ε2
0~4

= − Z2e4m

32π2ε2
0~2

. (5.6)
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62 6 General remarks to solve the SE

The energy E1 = −13.6 eV is the same as calculated by Bohr's model. The wave

0,0 2,0 4,0 6,0
0,0

0,2

0,4

0,6

0,8

1,0

 

 

A
m

pl
itu

de

Radial distance r (a0)

Abbildung 5.1. Wave functions ϕ1(r) of a hydrogen atom (black) and the probability to �nd
an electron between r and r + dr, given by |ϕ1(r)|2r2dr (blue).

function is maximal at r = 0, but due to the polar coordinates, integration over
the volume element dV = r2drd(cos θ)dϕ introduces an additional r2 dependency,
so that the probability of �nding the electron at the nucleus is zero (Fig. 5). The
probability of �nding an electron between r and r + dr is given by

P (r, r + dr) ∝ |ϕ1(r)|2r2dr ∝ r2e−2r/a0dr. (5.7)

Here, the normalization is missing! To �nd the maximum of the probability (not
the expectation value) we have to di�erentiate:

d

dr
(r2e

− 2r
a0 ) = 2re

− 2r
a0 − 2r2

a0

e
− 2r

a0 = 0 (5.8)

⇒ 2r − 2r2

a0

= 0 (5.9)

⇒ rmax = a0 (5.10)

The energy value E1 and the dimension parameters a0 are still valid, but there is
no electron moving, now we have a stationary system with the angular momentum
start at zero.

6 General remarks to solve the SE
For one dimensional problems we can write the SE as follows:

d2Ψ(x)

dx2
=

2m

~2
(V (x)− E)Ψ(x) (6.1)

The sign of d2Ψ(x)
dx2 determines the curvature of Ψ(x) and is given by V (x)−E. In
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Abbildung 6.1. Arbitrary potential V (x) (black) with a given energy (red) and the di�erence
of V (x)− E.

a classical potential V (x) (1-D) the probability of �nding the particle between x1

and x2 is proportional to 1
p

= 1√
2m(E−V (x))

(Fig. 6). It is maximal for the points
x1 and x2 and minimal for the minimum of V (x). In the space regions of I and
III, 1

p
is imaginary and classically forbidden. For the wave functions the regions

I and III are not forbidden (tunneling e�ect), but there the term V (x) − E ≥ 0
and the wave function shows exponential character

Ψ ∝ e±κx, with κ =
1

~
√

2m(V (x)− E) (6.2)

for slowly varying V(x). In the region II V (x)−E ≤ 0 and the wave function has
oscillatory character.

Ψ ∝ e±iκx, with κ =
1

~
√

2m(E − V (x)) (6.3)

In region I and III d2Ψ
x2 has the same sign as Ψ, so that the wave functions shape

is concave with respect to the x-axis. In region II d2Ψ
x2 has the opposite sign as

Ψ, so that the wave functions shape is convex with respect to the x-axis (Fig.
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64 7 Harmonic oscillator 1-D

6). Convex shapes lead to oscillatory signals. At the positions x1 and x2 where
V (x) = E the second derivative is zero and the sign changes. This holds also
for classical models. Upon introducing the boundary conditions the spectrum
becomes discrete with a non zero lowest energy. Discrete energy eigenvalues next
to each other have eigenfunctions di�ering in one node, with Ψn has (n-1) nodes.
With increasing n the envelope function of |Ψn|2 gets more and more similar to
the classical probability function 1

p
. As a result of those di�erences in quantum

mechanical versus classical behavior, tunneling e�ects are possible and in the
lowest state the probability is highest in the minimum of the potential.

7 Harmonic oscillator 1-D
The harmonic oscillator is well known from the mechanical spring with spring
constant k and oscillation frequency ω =

√
k
m
. With Hook's law −→

F = −k−→r it is
easy to calculate the potential energy and the Hamilton function of a harmonic
oscillator to be

V (x) =
1

2
kx2 (7.1)

H(x) = − ~
2

2m

d2Ψ

dx2
+

1

2
kx2Ψ (7.2)

HΨ = EΨ (7.3)

We perform a variable transformation

y =

√
mω

~
x (7.4)

λ =
2E

~ω
(7.5)

With this transformation the SE becomes
(

d2

dy2
− y2

)
Ψλ = −λΨλ (7.6)

Now, we calculate the following operators:
(

d

dy
+ y

)(
d

dy
− y

)
Ψλ =

(
d2

dy2
− y2 − 1

)
Ψλ (7.7)

(
d

dy
− y

)(
d

dy
+ y

)
Ψλ =

(
d2

dy2
− y2 + 1

)
Ψλ (7.8)

and de�ne the lowering operator

a =

(
d

dy
+ y

)
(7.9)
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Abbildung 7.1. Potential of an one dimensional harmonic oscillator.

and the rising operator
a+ =

(
d

dy
− y

)
(7.10)

and inserting (7.9) and (7.10) into equations (7.7)and (7.8) we get
(

d2

dy2
− y2

)
Ψλ = (aa+ + 1)Ψλ (7.11)

(
d2

dy2
− y2

)
Ψλ = (a+a− 1)Ψλ (7.12)

and we can write the SE as follows
aa+Ψλ = −(λ + 1)Ψλ (7.13)
a+aΨλ = −(λ− 1)Ψλ (7.14)

(⇒ a+a− aa+)Ψλ = 2Ψλ, ∀Ψλ (7.15)
⇒ a+a− aa+ = 2 (7.16)

If we take the following equation
a+a(aΨλ) = (2 + aa+)(aΨλ) (7.17)

= 2aΨλ + a(a+aΨλ) (7.18)
= 2aΨλ + a(−(λ− 1))Ψλ (7.19)
= −(λ− 3)aΨλ (7.20)

a+aΦ = −(λ− 3)Φ (7.21)
Thus, the equation for the eigenvalue (λ− 3) is given by

a+aΨλ−2 = (λ− 3)Ψλ−2 (7.22)
aΨλ = Φ = Ψλ−2 (7.23)

⇒ aΨλ = Ψλ−2 (7.24)
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66 7 Harmonic oscillator 1-D

Thus, the eigenfunctions of Ψλ−2 can be generated by applying the operator
a = d

dy
+ y on the eigenfunction Ψλ. With this process one can calculate the

eigenfunctions for eigenvalues of λ−2, λ−4, λ−6, . . . if we have the eigenfunction
Ψλ. In addition, this process stops at the minimal eigenvalue of λ = 2E

~ω , because
the energy of the harmonic oscillator is positive, as shown below.

(
− ~

2

2m

d2

dx2
+

1

2
kx2

)
ΨE = EΨE (7.25)

⇒
∞∫

−∞

Ψ∗
E(x)

(
− ~

2

2m

d2

dx2

)
ΨE(x)dx + (7.26)

∞∫

−∞

Ψ∗
E(x)

(
1

2
kx2

)
ΨE(x)dx = E

∞∫

−∞

Ψ∗
E(x)ΨE(x)dx

− ~
2

2m
Ψ∗

E(x)
dΨE(x)

dx

∣∣∣∣
∞

−∞
+

∞∫

−∞

dΨ∗
E(x)

dx

dΨE(x)

dx
dx + (7.27)

1

2
k

∞∫

−∞

Ψ∗
E(x)x2ΨE(x)dx = E

∞∫

−∞

Ψ∗
E(x)ΨE(x)dx

In (7.28) the �rst term is zero, because the wave function has to vanish for
lim

x→∞
Ψ(x) → 0. The second integral 〈dΨ

dx
|dΨ

dx
〉 ≥ 0 is positive, because of the

properties of the scalar product. The last integral 〈Ψ|x2Ψ〉 = 〈xΨ|xΨ〉 ≥ 0 is also
positive, so that the energy has to be ful�l E ≥ 0. The energy is zero only for the
trivial solution Ψ(x) ≡ 0. So we can conclude that there exists a minimal value
for λ

∃λM (7.28)
aΨλM

= 0 (7.29)
a+aΨλM

= −(λM − 1)ΨλM
(7.30)

= a+0 = 0 (7.31)
ΨλM

6=0⇒ λM = 1 (7.32)

So the spectrum of the eigenvalues is given by

λ = {1, 3, 5, 7, . . .} = 2n + 1, n = {0, 1, 2, . . .} (7.33)

and the eigenvalues of the energies are calculated to be

λ =
2E

~ω

En = (2n + 1)
~ω
2

= (n +
1

2
)~ω, n = 0, 1, 2, . . . (7.34)
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7 Harmonic oscillator 1-D 67

We determined the eigenvalues for the harmonic oscillator without knowing the
eigenfunctions.

In order to determine the eigenfunctions of the harmonic oscillator we make use
of the properties of the a+ operator

a+Ψλ ∝ Ψλ+2 (7.35)
a+Ψn ∝ Ψn+1. (7.36)

If we have identi�ed Ψ0 we can calculate Ψn iteratively, using

Ψn ∝ (a+)nΨ0 ∝
(

d

dy
− y

)
· · ·

(
d

dy
− y

)

︸ ︷︷ ︸
n factors

Ψ0. (7.37)

The �rst eigenfunction Ψ0 we can determine as follows

aΨ0 = 0 (7.38)(
d

dy
+ y

)
Ψ0 = 0 (7.39)

⇒ dΨ0

Ψ0

= −ydy (7.40)

⇒ Ψ0 = N0e
− y2

2 . (7.41)

Here, N0 is the normalization constant to guarantee that 〈Ψ0|Ψ0〉 = 1. The
function Ψ0 is clearly square integrable. Now, we can derive the Ψn

Ψ1 ∝ a+Ψ0 ∝ 2ye−
y2

2 (7.42)
Ψ2 ∝ (a+)2Ψ0 ∝ (4y2 − 2)e−

y2

2 (7.43)

The eigenfunctions Ψn are products of a gaussian type of function e−
y2

2 with
a Hermite polynomial. The gaussian function is even with respect to y and the
Hermite polynomial is either even or odd, so that the eigenfunctions are also even
or odd. This is a direct consequence of the potentials symmetry V (−x) = V (x).
The general description to derive Hermite polynomials is given by

Hn(y) =
(−1)n

√
2nn!

√
π

ey2

(
dn

dyn

)
e−y2 (7.44)

We can determine the unknown factor by make use of the normalization condition
∞∫

−∞

e−y2

H2
n(y)dy = 1 (7.45)
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If we transform y back we get Ψn(x)

Ψn(x) = 4

√
mω

~
e−

mωx2

2~ Hn(x

√
mω

~
) (7.46)

As a result the eigenfunction Ψ0(x) of the lowest energy eigenvalue E0 = ~ω
2

has
the following form

Ψ0(x) = 4

√
mω

~
e−

mωx2

2~ . (7.47)

This is a gaussian function with the maximum of |Ψ0(x)|2 at x = 0. At this
point the space probability density is highest. In a classical picture the space
probability density would be minimal at x = 0. Hermite polynomials

Hn(y)

√
2nn!

√
π = Ĥn(y) = (−1)ney2

(
dn

dyn

)
e−y2 (7.48)

Ĥ0(y) = 1 (7.49)
Ĥ1(y) = 2y (7.50)
Ĥ2(y) = 4y2 − 2 (7.51)
Ĥ3(y) = 8y3 − 12y (7.52)
Ĥ4(y) = 16y4 − 48y2 + 12 (7.53)
Ĥ5(y) = 32y5 − 160y3 + 120y (7.54)
Ĥ6(y) = 64y6 − 480y4 + 720y2 − 120 (7.55)
Ĥ7(y) = 128y7 − 1344y5 + 3360y3 − 1680y (7.56)
Ĥ8(y) = 256y8 − 3584y6 + 13440y4 − 13440y2 + 1680 (7.57)

The Hermite polynomials have the following properties:

Ḧn − 2yḢn + 2nHn = 0 (7.58)
2yHn − 2nHn−1 = Hn+1 (7.59)

∞∫

−∞

Hn(y)Hm(y)ey2

dy = δn,m (7.60)
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Using equation (7.58) we obtain for a+aΨn the equation

a+aΨn =

(
d2

dy2
− y2 + 1

)
Hne

−y2/2 (7.61)

=
d2

dy2
Hne−y2/2 − y2Hne

−y2/2 + Hne
−y2/2

=
d

dy

(
Ḣne−y2/2 − yHne

−y2/2
)
− y2Hne−y2/2 + Hne−y2/2

=
(
Ḧne−y2/2 − yḢne

−y2/2 − yḢne
−y2/2 −Hne

−y2/2 + y2Hne−y2/2
)

−y2Hne
−y2/2 + Hne−y2/2

= Ḧne−y2/2 − 2yḢne−y2/2

= −2nHn (7.62)

For further information see M.Abramowitz and I.A. Stegun, Handbook of ma-
thematical functions, Dover (1965), Chapter 22. The solutions of the wave func-
tions for a particle in a box and for the harmonic oscillator (Fig. 7) have some
similarities:
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Abbildung 7.2. Comparison of wave functions of the particle in a box and the harmonic
oscillator.

� Discrete solutions and eigenenergies.

� The n th wave function has n nodes.
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70 7 Harmonic oscillator 1-D

� The lowest energy has a �nite positive value E0 = ~ω
2
≥ 0. Result of the

uncertainty relation.

� The eigenfunctions of di�erent eigenvalues are orthogonal. General property
of the Hamilton operator.

7.1 Conserved quantities
In general physical quantities, which can be measured, give real values and are
therefore related to hermitian operators:

(∫
Φ∗AΦdV

)∗
=

∫
Φ∗AΦdV (7.63)

� Operator hermitian

� Eigenfunctions orthonormal AΦn = aΦn. For degenerate energies the eigen-
functions can be chosen as orthonormal.

∫
Ψ∗

mΨndV = δmn.

� The eigenfunctions form a complete set of orthonormal functions if every
function of the space can be developed as Ψ(−→r )

∑
n

cnψn(−→r ).

The closure relation (7.69)follows from the complete set of the eigenfunctions
ψn(−→r )

Ψ(−→r ) =
∑

n

cnψn(−→r ) (7.64)

〈ψm(−→r )|Ψ(−→r )〉 =
∑

n

cn〈ψm(−→r )|ψn(−→r )〉 (7.65)

=
∑

n

cnδm,n = cm=n (7.66)

⇒ Ψ(−→r )
!
=

∑

k

〈ψk(
−→
r′ )|Ψ(

−→
r′ )〉ψk(

−→r ) (7.67)

=
∑

k

∫
ψ∗k(

−→
r′ )ψk(

−→r )Ψ(
−→
r′ )d

−→
r′ (7.68)

⇒
∑

k

ψk(
−→
r′ )ψk(

−→r ) = δ(−→r −−→r′ ) (7.69)

A very important issue in physics is the identi�cation of conserved quantities.
Since we are interested in expectation values of a given operator u, the time
dependence of 〈u〉 is given by:

d〈u〉
dt

=
1

i~
〈[u,H]〉+ 〈∂u

∂t
〉 (7.70)
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If du
dt

= 0 then 〈u〉 is conserved, and it is a conserved quantity if u and H commute:

[u,H] = 0 (7.71)

Especially, if at time t = 0 the system is in an eigenstate of u with eigenvalue
ui, the system will stay in that state. The subscript i of the eigenvalue ui is
called good quantum number, because it is a conserved quantity and describes
the quantum system. The eigenvalues ui are possible observable quantities. If we
want to indicate that the eigenfunctions of the energy En are at the same time
eigenfunctions of the operator u with eigenvalue um, we have to introduce two
indices:

HΨn,m = EnΨn,m (7.72)
uΨn,m = umΨn,m (7.73)

On the other hand, if there are eigenfunctions Ψn,m of u and H, then it follows:

uHΨn,m = uEnΨn,m = EnuΨn,m = EnumΨn,m (7.74)
HuΨn,m = HumΨn,m = umHΨn,m = umEnΨn,m (7.75)

⇒ (uH −Hu)Ψn,m = 0 (7.76)
⇒ [u,H] = 0 (7.77)

If equation (7.77) is given it is easy to show that there are eigenfunctions Ψn,m

of u and H.

The same holds for every set of operators Ai. If [Ai, Aj] = 0 then Ai and Aj have
the same eigenfunctions. If additionally, [Ai, H] = 0 holds, and therefore 〈Ai〉 is
constant, the operator Ai has the same eigenfunctions as the energy operator. To
characterize the energy eigenfunctions in the best possible way, we are looking
for the maximal set of operators Aj, which commute with the Hamilton operator
and with themselves:

[Ai, Aj] = 0, ∀i, j (7.78)
[Ai, H] = 0, ∀i (7.79)

That means there are eigenfunctions of H, A1, A2, . . . at the same time and the
quantum numbers of those operators are good quantum numbers describing the
system.

A system with a potential V (−→r ) = V (r) only dependent on the length of the radi-
us |−→r |, such as the hydrogen atom, there are three pairwise commuting operators
describing the system:

H,
−→
L 2, and Lz (7.80)
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Thus, 〈−→L 2〉 and 〈Lz〉 are conserved and there are simultaneous eigenfunctions
of H, −→L 2 and Lz. The indices or quantum numbers are n, l, and ml, and the
eigenfunctions are described as

Ψn,l,ml
(7.81)

HΨn,l,ml
= EnΨn,l,ml

(7.82)
−→
L 2Ψn,l,ml

= l(l + 1)~2Ψn,l,ml
(7.83)

LzΨn,l,ml
= m~Ψn,l,ml

(7.84)

7.2 Variational method

The variational method is a very useful method to calculate or approximate wave
functions by minimizing parameters and the energy of the system. This technique
is especially useful for LCAO (Linear Combination of Atomic Orbitals) methods
in molecules. Assume we have to solve the eigenvalue equation

HΨn = EnΨn multiply with Ψ∗
n, and integrate :

⇒ En =

∫
Ψ∗

nHΨnd
−→r∫

Ψ∗
nΨnd

−→r (7.85)

We get the energy eigenvalues if we know the eigenfunctions, but what can we
do, if they are unknown? We can start to solve the equation by using a test or
trial wave function ψtr:

ε =

∫
ψ∗trHψtrd

−→r∫
ψ∗trψtrd

−→r . (7.86)

For every solution it is ε ≥ E0, with E0 is the lowest energy eigenvalue of the
system. To prove that we make use of the complete set and write the trial wave
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function as a sum of the orthonormal wave functions of the system:

ψtr(
−→r ) =

∑
n

cnΨn(−→r ) (7.87)

⇒
∫

ψ∗tr(H − E0)ψtrdV =
∑

n

∑

n′
c∗ncn′

∫
Ψ∗

n(H − E0)Ψn′dV (7.88)

=
∑

n

∑

n′
c∗ncn′(En′ − E0)

∫
Ψ∗

nΨn′dV (7.89)

=
∑

n

∑

n′
c∗ncn′(En′ − E0)δnn′ (7.90)

=
∑

n

|cn|2(En − E0) ≥ 0 (7.91)

⇒
∫

ψ∗tr(H − E0)ψtrdV ≥ 0, 〈H − E0〉 = 0 if ψtr = Ψ0 (7.92)

ε =

∫
ψ∗trHψtrd

−→r∫
ψ∗trψtrd

−→r ≥ E0 (7.93)

In order to use this variational method one chooses a trial function ψtr depending
on several parameters {a, b, . . .} and minimize the energy

ε(a, b, . . .),
∂ε

∂a
= 0,

∂ε

∂b
= 0, . . . (7.94)

for these parameters. This gives the lowest upper limit of E0 for wave functions
of type ψtr(a, b, . . .). With a well chosen eigenfunction it is possible to come very
close to E0. As an example one can chose the trial function

ψtr = e−αr,
∂ε

∂α
= 0 (7.95)

as a test wave function for the hydrogen atom. Upon optimizing the parameter α,
it becomes the reciprocal of Bohr's radius α = 1

a0
and the energy ε = E0 is exactly

the eigenvalue of the hydrogen atom. Here, we get the exact wave solution.

7.3 Angular momentum and spherical potentials
The angular momentum is classically and quantum mechanically de�ned by:

−→
L = −→r ×−→p =

∣∣∣∣∣∣

ex ey ez

x y z
px py pz

∣∣∣∣∣∣
(7.96)

−→
L =

~
i

∣∣∣∣∣∣

ex ey ez

x y z
∂
∂x

∂
∂y

∂
∂z

∣∣∣∣∣∣
(7.97)
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That means

Lx =
~
i

(
y

∂

∂z
− z

∂

∂y

)
(7.98)

Ly =
~
i

(
z

∂

∂x
− x

∂

∂z

)
(7.99)

Lz =
~
i

(
x

∂

∂y
− y

∂

∂x

)
(7.100)

The components of −→L are hermitian, but they do not commute.

[Lx, Ly]ψ =

(
~
i

)2 {(
y

∂

∂z
− z

∂

∂y

)(
z

∂

∂x
− x

∂

∂z

)
−

(
z

∂

∂x
− x

∂

∂z

) (
y

∂

∂z
− z

∂

∂y

)}
ψ (7.101)

=

(
~
i

)2 {
y

∂

∂x
+ yz

∂2

∂z∂x
− yx

∂2

∂z2
− z2 ∂2

∂y∂x
+ zx

∂2

∂y∂z

−zy
∂2

∂x∂z
+ z2 ∂2

∂x∂y
+ xy

∂2

∂z2
− x

∂

∂y
− xz

∂2

∂z∂y

}
ψ (7.102)

=
~
i

~
i

{
y

∂

∂x
− x

∂

∂y

}
ψ = −~

i
Lzψ = i~Lzψ ∀ψ (7.103)

Similar calculations can be performed for the other coordinates, leading to

[Lx, Ly] = i~Lz (7.104)
[Ly, Lz] = i~Lx (7.105)
[Lz, Lx] = i~Ly (7.106)
[Li, Lj] = i~Lk with{i, j, k} cyclic permutations (7.107)

The hermitian operators Lx, Ly, and Lz are called the angular momentum ope-
rators. Since, they do not commutate, there is no common eigenfunction of these
operators, but a single component Li commutes with the operator −→L 2. For con-
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venience purposes, we chose the operator Lz to describe the systems properties:
[
Lz,

−→
L 2

]
= [Lz, L

2
x + L2

y + L2
z] = [Lz, L

2
x] + [Lz, L

2
y] (7.108)

= LzL
2
x − L2

xLz + LzL
2
y − L2

yLz (7.109)
= (LzLx)Lx − Lx(LxLz)− Ly(LyLz) + (LzLy)Ly (7.110)
= Lx(LzLx)− Lx(LxLz)︸ ︷︷ ︸

1

+ (LzLx)Lx − (LxLz)Lx︸ ︷︷ ︸
2

+ Ly(LzLy)− Ly(LyLz)︸ ︷︷ ︸
3

+ (LzLy)Ly − (LyLz)Ly︸ ︷︷ ︸
4

(7.111)

= Lx[Lz, Lx]︸ ︷︷ ︸
1

+ [Lz, Lx]Lx︸ ︷︷ ︸
2

+ Ly[Lz, Ly]︸ ︷︷ ︸
3

+ [Lz, Ly]Ly︸ ︷︷ ︸
4

(7.112)

= i~LxLy + i~LyLx − i~LyLx − i~LxLy = 0 (7.113)

This can be shown faster by using commutator properties. The operator −→L 2 and
Lz share the same eigenfunctions. The raising and lowering operators L+ and L−,
respectively, are rather useful and de�ned as

L+ = Lx + iLy (7.114)
L− = Lx − iLy (7.115)

L+L− = (Lx + iLy)(Lx − iLy) = L2
x + L2

y − i[Lx, Ly] (7.116)
=

−→
L 2 − L2

z + ~Lz (7.117)
−→
L 2 = L+L− + L2

z − ~Lz (7.118)
−→
L 2 = L−L+ + L2

z + ~Lz (7.119)
[L±, Lz] = ∓~L± (7.120)
[L+, L−] = 2~Lz (7.121)

Now, we have to prove that

[H,
−→
L 2] = [H,Lz] = 0 (7.122)

and the operators H, −→L 2, and Lz share the same eigenfunctions, for V (−→r ) =
V (r). To show that we �rst introduce spherical coordinates and transform the
operators to spherical coordinates r, ϑ, ϕ with the transformation:

x = r sin ϑ cos ϕ (7.123)
y = r sin ϑ sin ϕ (7.124)
z = r cos ϑ (7.125)

The derivatives in spherical coordinates are given by
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x

y

z

ϕ

ϑr = 1

P=(x,y,z)

y=r sinϑ sin ϕ

x=
r s

in
ϑ

 c
os ϕ

z=
r 

co
sϑ

 

Abbildung 7.3. Spherical coordinates r, ϑ, ϕ. The coordinates can take the following values:
r ∈ [0,∞), ϑ ∈ [−π, π], ϕ ∈ [0, 2π).

∂

∂xi

=

(
∂r

∂xi

∂

∂r

)
+

(
∂ϑ

∂xi

∂

∂ϑ

)
+

(
∂ϕ

∂xi

∂

∂ϕ

)
, for xi ∈ {x, y, z} (7.126)

This leads to 9 derivatives:

∂r
∂x

= sin ϑ cos ϕ ∂ϑ
∂x

= 1
r
cos ϑ cos ϕ ∂ϕ

∂x
= − sin ϕ

r sin ϑ
∂r
∂y

= sin ϑ sin ϕ ∂ϑ
∂y

= 1
r
cos ϑ sin ϕ ∂ϕ

∂y
= − cos ϕ

r sin ϑ
∂r
∂z

= cos ϑ ∂ϑ
∂z

= − sin ϑ
r

∂ϕ
∂z

= 0

(7.127)

⇒ (7.128)
∂

∂x
= sin ϑ cos ϕ

∂

∂r
+

1

r
cos ϑ cos ϕ

∂

∂ϑ
− sin ϕ

r sin ϑ

∂

∂ϕ
(7.129)

∂

∂y
= sin ϑ sin ϕ

∂

∂r
+

1

r
cos ϑ sin ϕ

∂

∂ϑ
+

cos ϕ

r sin ϑ

∂

∂ϕ
(7.130)

∂

∂z
= cos ϑ

∂

∂r
− sin ϑ

r

∂

∂ϑ
(7.131)

If we insert (7.129, 7.130, 7.131) into the de�nition of Li we get

Lx =
~
i

(
y

∂

∂z
− z

∂

∂y

)
(7.132)
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=
~
i

{
r sin ϑ sin ϕ

(
cos ϑ

∂

∂r
− sin ϑ

r

∂

∂ϑ

)
−

r cos ϑ

(
sin ϑ sin ϕ

∂

∂r
+

1

r
cos ϑ sin ϕ

∂

∂ϑ
+

cos ϕ

r sin ϑ

∂

∂ϕ

)}

=
~
i

(
(− sin2 ϑ sin ϕ− cos2 ϑ sin ϕ)

∂

∂ϑ
− cos ϕ cos ϑ

sin ϑ

∂

∂ϕ

)

Lx =
~
i

(
− sin ϕ

∂

∂ϑ
− cos ϕ cot ϑ

∂

∂ϕ

)

In analogy to this transformation we get for the other operators

Lx =
~
i

(
− sin ϕ

∂

∂ϑ
− cos ϕ cot ϑ

∂

∂ϕ

)
(7.133)

Ly =
~
i

(
cos ϕ

∂

∂ϑ
− sin ϕ cot ϑ

∂

∂ϕ

)
(7.134)

Lz =
~
i

∂

∂ϕ
(7.135)

L+ = ~ eiϕ

(
∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

)
(7.136)

L− = ~ e−iϕ

(
− ∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

)
(7.137)

If we insert (7.136), (7.137) and (7.135) into (7.118) we get
−→
L 2 = L+L− + L2

z − ~Lz (7.138)

with L+L− = ~2eiϕ

(
∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

)
e−iϕ

(
− ∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

)

= −~2

(
∂2

∂ϑ2
+ cot ϑ

∂

∂ϑ
+ cot2 ϑ

∂2

∂ϕ2
+ i

∂

∂ϕ

)
(7.139)

Lz =
~
i

∂

∂ϕ
⇒ L2

z = −~2 ∂2

∂ϕ2
(7.140)

With the following

cot2 ϑ + 1 = sin−2 ϑ (7.141)
1

sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ
=

∂2

∂ϑ2
+ cot ϑ

∂

∂ϑ
(7.142)

we get �nally

−→
L 2 = −~2

(
1

sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
. (7.143)
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The operators −→L 2 and Lz do not depend on r or ∂
∂r
. Thus, they commute with

V (r). This is the result of V (r) being invariant under rotations around the x-, y-
or z-axis. Now, we have to transform H into spherical coordinates with4 =

−→∇•−→∇
and −→∇ in spherical coordinates

−→∇ = {∇r, ∇ϑ, ∇ϕ} =

{
∂

∂r
,

1

r

∂

∂ϑ
,

1

r sin ϑ

∂

∂ϕ

}
. (7.144)

For a vector −→F with the components −→F = {Fr, Fϑ, Fϕ}, −→∇ • −→F is given by

−→∇ • −→F =
1

r2 sin ϑ

{
∂

∂r
(r2(sin ϑ)Fr) +

∂

∂ϑ
(r(sin ϑ)Fϑ) +

∂

∂ϕ
(rFϕ)

}
. (7.145)

Using −→F =
−→∇ we have

4 =
−→∇ • −→∇

=
1

r2 sin ϑ

{
∂

∂r
(r2 sin ϑ

∂

∂r
) +

∂

∂ϑ
sin ϑ

∂

∂ϑ
+

∂

∂ϕ

1

sin ϑ

∂

∂ϕ

}
(7.146)

4 =
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2

(
1

sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
. (7.147)

The Hamilton operator is

H = − ~
2

2m
4+ V (r) (7.148)

= − ~
2

2m

1

r2

∂

∂r
r2 ∂

∂r
− ~2

2mr2

(
1

sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
+ V (r)

H = − ~
2

2m

1

r2

∂

∂r
r2 ∂

∂r
+

−→
L 2

2mr2
+ V (r). (7.149)

Since −→L 2 and Lz depend on (ϑ, ϕ, ∂
∂ϑ

, ∂
∂ϕ

, ∂2

∂ϑ2 ,
∂2

∂ϕ2 ) and V (r) and the other terms
depend on (r, ∂

∂r
, ∂2

∂r2 ) it is

[H,
−→
L 2] = 0 [H,Lz] = 0 if V (−→r ) = V (r). (7.150)

The eigenfunctions Φ(ϕ) of Lz satisfy the eigenfunction equation

LzΦ(ϕ) = m~Φ(ϕ) (7.151)

where the eigenvalues have been written as m~ for convenience. The normalized
solutions of (7.151) are

Φm(ϕ) =
1√
2π

eimϕ. (7.152)
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Since the functions Φm(ϕ) must be single-valued, we have Φm(2π) = Φm(0), and
m is restricted to positive or negative integers or zero m = {0, ±1, ±2, . . .}. The
integer m is called the magnetic quantum number with orthonormal eigenfuncti-
ons

2π∫

0

Φ∗
m′(ϕ)Φm(ϕ)dϕ = δm,m′ . (7.153)

The simultaneous eigenfunctions of−→L 2 and Lz (remember [
−→
L 2, Lz] = 0) are called

spherical harmonics and are denoted by Y` m(ϑ, ϕ). They satisfy the eigenvalue
equations

−→
L 2Y` m(ϑ, ϕ) = ` (` + 1)~2Y` m(ϑ, ϕ) (7.154)
LzY` m(ϑ, ϕ) = m~Y` m(ϑ, ϕ) (7.155)

where the eigenvalues of −→L 2 have been written as ` (` + 1)~2. The quantum
number ` is known as the orbital angular momentum quantum number. The
number ` (` +1) is dimensionless and has to be positive or zero, because it is the
eigenvalue of the squared hermitian operator. Possible values for ` are given by

L2
zY` m(ϑ, ϕ) = m2~2Y` m(ϑ, ϕ)

(L2
x + L2

y)Y` m(ϑ, ϕ) = (
−→
L 2 − L2

z)Y` m(ϑ, ϕ)

= [` (` + 1)−m2]~2Y` m(ϑ, ϕ)∫
Y ∗

` m(ϑ, ϕ)(L2
x + L2

y)Y` m(ϑ, ϕ)d−→r = ~2[` (` + 1)−m2]

∫
Y ∗

` m(ϑ, ϕ)Y` m(ϑ, ϕ)d−→r
= 〈L2

x + L2
z〉 ≥ 0 (7.156)

⇒ m2 ≤ ` (` + 1) = ` 2 + ` (7.157)

In equation (7.156) we used that the expectation value of a squared hermitian
operator is positive or zero. In equation (7.138) we expressed−→L 2 with the lowering
and rising operators L+ and L−. Since L± commute with −→L 2 (L± commute with
Lz see exercise) it satisfy the equation

−→
L 2L±Y` m(ϑ, ϕ) = L±

−→
L 2Y` m(ϑ, ϕ) = L±` (` + 1)~2Y` m(ϑ, ϕ)

= ` (` + 1)~2L±Y` m(ϑ, ϕ) (7.158)

L± and −→L 2 have the same eigenfunctions and if the lowering or rising operator
acts on Y` lm(ϑ, ϕ) it does not change the eigenvalues ` (` + 1)~2 of −→L 2. But the
operator L± changes the eigenvalues of Lz, because with [L±, Lz] = ∓~L± it is

Lz(L±Y` m(ϑ, ϕ)) = L±LzY` m(ϑ, ϕ)± ~L±Y` m(ϑ, ϕ)

= (m± 1)~(L±Y` m(ϑ, ϕ)). (7.159)
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That means L±Y` m(ϑ, ϕ) are eigenfunctions of Lz to the eigenvalue (m+1)~. The
operator L± increases (+) or decreases (-) the value of the magnetic quantum
number by one:

L±Y` m(ϑ, ϕ) ∝ Y` (m±1)(ϑ, ϕ) (7.160)
The rising and lowering of m is limited by ` (` + 1), so that there is a maximum
value of m called mmax and a minimum value of m called mmin which satisfy the
equations

L+Y` mmax(ϑ, ϕ) = 0 (7.161)
L−Y` mmin

(ϑ, ϕ) = 0. (7.162)

Using the operator L−, L+ and equations (7.161, 7.162) we �nd that

L−L+Y` mmax(ϑ, ϕ) = (
−→
L 2 − L2

z − ~Lz)Y` mmax(ϑ, ϕ) (7.163)
= ~2[` (` + 1)−m2

max −mmax]Y` mmax(ϑ, ϕ) (7.164)
L−L+Y` mmax(ϑ, ϕ) = 0 (7.165)
L+L−Y` mmin

(ϑ, ϕ) = (
−→
L 2 − L2

z + ~Lz)Y` mmin
(ϑ, ϕ) (7.166)

= ~2[` (` + 1)−m2
min + mmin]Y` mmin

(ϑ, ϕ) (7.167)
L+L−Y` mmin

(ϑ, ϕ) = 0 (7.168)

Since the eigenfunctions Y` m(ϑ, ϕ) are not identical zero it is

mmax(mmax + 1) = ` (` + 1) ≥ 0 (7.169)
mmin(mmin − 1) = ` (` + 1) ≥ 0 (7.170)

⇒ mmin(mmin − 1)
mmin =−`

= −` (−` − 1) = ` (` + 1) (7.171)

We showed already that the magnetic quantum numbers m are integers and from
equations (7.169, 7.170) we can conclude that the orbital angular momentum
quantum numbers ` are also integers. Since the rising and lowering operators L+

and L− increases and decreases m by one, the values of the magnetic quantum
number are

−` ≤ m ≤ ` . (7.172)
Thus, for a given orbital angular momentum quantum number ` the magnetic
quantum number m can take (2` + 1) values

m = {0, ±1, ±2, . . . , ±` }. (7.173)

The eigenvalue equations are
−→
L 2Y` m(ϑ, ϕ) = ~2` (` + 1) Y` m(ϑ, ϕ) (7.174)
LzY` m(ϑ, ϕ) = ~mY` m(ϑ, ϕ), −` ≤ m ≤ +` (7.175)
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If Y` ,−` (ϑ, ϕ) or Y` ` (ϑ, ϕ) are known, we can use the operators L+ and L− to
generate all other eigenfunctions Y` m(ϑ, ϕ), in analogy to the harmonic oscillator
eigenfunctions. For the maximum value of m = ` one has

L+Y` ` (ϑ, ϕ) = 0

⇒ ~eiϕ

[
∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

]
Y` ` (ϑ, ϕ) = 0 (7.176)

LzY` ` (ϑ, ϕ) =
~
i

∂

∂ϕ
Y` ` (ϑ, ϕ) = ~ ` Y` ` (ϑ, ϕ) (7.177)

We know from equation (7.177) that ∂
∂ϕ

Y` m(ϑ, ϕ) does not depend on ϑ, and we
solve the (7.176) by using the product solution method. Setting

Y` m(ϑ, ϕ) = Pm
` (ϑ)Φm(ϕ) (7.178)

m = `⇒ Y` ` (ϑ, ϕ) = P `
` (ϑ)Φ`(ϕ) (7.179)

~eiϕ

[
∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

]
P `

` (ϑ)Φ`(ϕ) = 0 (7.180)

Φ`(ϕ)
∂

∂ϑ
P `

` (ϑ) + i cot ϑP `
` (ϑ)

∂

∂ϕ
Φ`(ϕ) = 0 (7.181)

Φ`(ϕ) tan ϑ
∂

∂ϑ
P `

` (ϑ) = −iP `
` (ϑ)

∂

∂ϕ
Φ`(ϕ) (7.182)

tan ϑ

P `
` (ϑ)

∂

∂ϑ
P `

` (ϑ) =
−i

Φ`(ϕ)

∂

∂ϕ
Φ`(ϕ) = c (7.183)

⇒ ∂

∂ϑ
P `

` (ϑ) = c
cos ϑ

sin ϑ
P `

` (ϑ) (7.184)

⇒ ∂

∂ϕ
Φ`(ϕ) = ic Φ`(ϕ) (7.185)

With equation (7.177) the constant c has to be c = `.

Φ`(ϕ) ∝ ei`ϕ

P `
` (ϑ) ∝ sin` ϑ

⇒ Y``(ϑ, ϕ) ∝ sin` ϑei`ϕ (7.186)
⇒ Y`m(ϑ, ϕ) ∝ Pm

` (ϑ)eimϕ (7.187)

Using L− iteratively we get the complete set of 2`+1 eigenfunctions {Y`m(ϑ, ϕ)}.
The functions P 0

` (cos ϑ) are called the Legendre polynomials of degree `. They
are de�ned by the relation

P`(cos ϑ) =
1

2` `!

d`

d(cos ϑ)`
((cos ϑ)2 − 1)`. (7.188)
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The Legendre polynomials (m = 0) satisfy the di�erential equation
[
(1− cos2 ϑ)

d2

d(cos ϑ)2
− 2 cos ϑ

d

d cos ϑ
+ `(` + 1)

]
P`(cos ϑ) = 0 (7.189)

with the recurrence relation

(2` + 1) cos ϑP` − (` + 1)P`+1 − `P`−1 = 0 (7.190)

which is also valid for ` = 0 if one de�nes P−` = 0. The orthogonality relations
read

+1∫

−1

P`(cos ϑ)P`′(cos ϑ)d cos ϑ =
2

2` + 1
δ``′ . (7.191)

One has the closure relation

1

2

∞∑

`=0

(2` + 1)P`(cos ϑ)P`(cos ϑ′) = δ(cos ϑ− cos ϑ′) (7.192)

Important particular values of the Legendre polynomials are

cos ϑ = 1 : P`(1) = 1, cos ϑ = −1 : P`(−1) = (−1)` (7.193)

For the lowest values of ` one has explicitly

P0(cos ϑ) = 1 (7.194)
P1(cos ϑ) = cos ϑ (7.195)

P2(cos ϑ) =
1

2

(
3 cos2 ϑ− 1

)
(7.196)

P3(cos ϑ) =
1

2

(
5 cos3 ϑ− 3 cos ϑ

)
(7.197)

P4(cos ϑ) =
1

8

(
35 cos4 ϑ− 30 cos2 ϑ + 3

)
(7.198)

P5(cos ϑ) =
1

8

(
63 cos5 ϑ− 70 cos3 ϑ + 15 cos ϑ

)
(7.199)

The associated Legendre functions Pm
` (cos ϑ) are now de�ned by the relations

Pm
` (cos ϑ) = (1− cos2 ϑ)m/2 dm

d(cos ϑ)m
P`(cos ϑ), m = 0, 1, 2, . . . , `. (7.200)

They satisfy the recurrence relations

(2` + 1) cos ϑ Pm
` = (` + 1−m)Pm

`+1 + (` + m)Pm
`−1 (7.201)

(2` + 1)
√

(1− cos2 ϑ)Pm−1
` = Pm

`+1 − Pm
`−1 (7.202)
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and the orthogonality relations

1∫

−1

Pm
` (cos ϑ)Pm

`′ (cos ϑ)d cos ϑ =
2

2` + 1

(l + m)!

(l −m)!
δ` `′ (7.203)

The �rst few associated Legendre functions are given explicitly by

P 1
1 (cos ϑ) =

√
(1− cos2 ϑ) (7.204)

P 1
2 (cos ϑ) = 3

√
(1− cos2 ϑ) cos ϑ (7.205)

P 2
2 (cos ϑ) = 3(1− cos2 ϑ) (7.206)

P 1
3 (cos ϑ) =

3

2

√
(1− cos2 ϑ)(5 cos2 ϑ− 1) (7.207)

P 2
3 (cos ϑ) = 15 cos ϑ(1− cos2 ϑ) (7.208)

P 3
3 (cos ϑ) = 15

√
1− cos2 ϑ(1− cos2 ϑ) (7.209)

Thus, the spherical harmonics Y`m(ϑ, ϕ) with m ≥ 0 are given by

Y`m(ϑ, ϕ) = (−1)m

√[
(2` + 1)(l −m)!

4π(l + m)!

]
Pm

` (cos ϑ)eimϕ (7.210)

Y`−m(ϑ, ϕ) = (−1)mY ∗
`m(ϑ, ϕ) (7.211)

The �rst few spherical harmonics are given explicitly by

(2` + 1) Y`m(ϑ, ϕ)

1 Y0 0(ϑ, ϕ) =
1√
4π

3 Y1 0(ϑ, ϕ) =

√
3

4π
cos ϑ =

√
3

4π

z

r

3 Y1±1(ϑ, ϕ) = ∓
√

3

8π
sin ϑ e±iϕ = ∓

√
3

8π

x± iy

r

5 Y2 0(ϑ, ϕ) =

√
5

4π

(
3

2
cos2 ϑ− 1

2

)
=

1

2

√
5

4π

2z2 − x2 − y2

r2

5 Y2±1(ϑ, ϕ) = ∓1

2

√
15

2π
sin ϑ cos ϑ e±iϕ = ∓1

2

√
15

2π

(x± iy)z

r2

5 Y2±2(ϑ, ϕ) =
1

4

√
15

2π
sin2 ϑ e±2iϕ =

1

4

√
15

2π

(
x± iy

r

)2
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The rising and lowering operators are

L−Y`m(ϑ, ϕ) = −~e−iϕ

[
− ∂

∂ϑ
+ m cot ϑ

]
Y`m(ϑ, ϕ) (7.212)

L+Y`m(ϑ, ϕ) = −~eiϕ

[
∂

∂ϑ
+ m cot ϑ

]
Y`m(ϑ, ϕ) (7.213)

L±Y`m(ϑ, ϕ) = ~
√

`(` + 1)−m(m± 1) Y`m±1(ϑ, ϕ) (7.214)
L±|`m〉 = ~

√
`(` + 1)−m(m± 1) |`m± 1〉 (7.215)

and they change the magnetic quantum number (Fig. 7.3)

L−Y11(ϑ, ϕ) ∝ ~e−iϕ

[
− ∂

∂ϑ
+ m cot ϑ

]
sin ϑeiϕ (7.216)

∝ Y10 (7.217)
L−Y10 ∝ Y1−1 (7.218)

The absolute values of the spherical harmonics are given by the associated Le-

l = 1 l = 2

m0 0

+1 +1

+2

-2

-1-1
L+

L-

Abbildung 7.4. Operations of the rising and lowering operator on the magnetic quantum
number m.

gendre functions |Pm
l (ϑ)| which are presented in Fig. 7.3. The polar plots give

the length of |Pm
l (ϑ)| for every angle ϑ. Since ϑ varies from 0 to π the polar

plots have axial symmetry with respect to the z-axis. The set of eigenfuncti-
ons {Y`m(ϑ, ϕ)} are eigenfunctions of the hermitian operator −→L 2. They form a
orthonormal complete set of functions with

∫ ∫
Y ∗

`m(ϑ, ϕ)Y`′m′(ϑ, ϕ) sin ϑdϑdϕ = δ``′δmm′ . (7.219)
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m=0

m=0

m=0

m=0

m=+1, -1

m=+1, -1

m=+1, -1

m=+2, -2

m=+2, -2 m=+3, -3

l = 0

l = 1

l = 2

l = 3

1:

3:

5:

7:

M = 2l +1

Abbildung 7.5. Polar plots of the Legendre polynomials |Y`m(ϑ, ϕ)| = 1
2π |Pm

` |2. For every
orbital momentum quantum number ` there are 2` + 1 eigenfunctions.

Every square integrable function ψ(ϑ, ϕ) can be developed by {Y`m(ϑ, ϕ)}

ψ(ϑ, ϕ) =
∞∑

`=0

+∑̀

m=−`

c`mY`m(ϑ, ϕ) (7.220)

Some properties of the eigenfunctions are

Y ∗
`m(ϑ, ϕ) = (−1)mY`−m(ϑ, ϕ) (7.221)

P−m
` = Pm

` by definition m ≥ 0 (7.222)
−→r → −−→r Y`m(π − ϑ, ϕ + π) = (−1)`Y`m(ϑ, ϕ) (7.223)

P 0
` (cos(π − ϑ)) = (−1)`P 0

` (cos ϑ) (7.224)
Y`m(ϑ, ϕ + 2π) = Y`m(ϑ, ϕ)eimϕ = Y`m(ϑ, ϕ) (7.225)

The Y`m(ϑ, ϕ) are complex functions for m 6= 0. It is useful for chemical bond
orbitals to create a linear combination of Y`m(ϑ, ϕ) and Y`−m(ϑ, ϕ) which are real
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functions. Note, they are no longer eigenfunctions of Lz. Examples are

1√
2
(Y1−1(ϑ, ϕ)− Y11(ϑ, ϕ)) =

√
3

4π

1

2
sin ϑ

(
e−iϕ + eiϕ

)
(7.226)

=

√
3

4π
sin ϑ cos ϕ =

√
3

4π

x

r
(7.227)

1√
2
i(Y1−1(ϑ, ϕ) + Y11(ϑ, ϕ)) =

√
3

4π

1

2
i sin ϑ

(
e−iϕ − eiϕ

)
(7.228)

=

√
3

4π
sin ϑ sin ϕ =

√
3

4π

y

r
(7.229)

Y10(ϑ, ϕ) =

√
3

4π
cos ϑ =

√
3

4π

z

r
(7.230)

These three linear combinations form the three orbitals in the directions of the
x-axis (px), the y-axis (py) and the z-axis (pz) as shown in Fig. (7.3). The few

Abbildung 7.6. Polar plots of the real spherical harmonics s, px, py, pz.
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8 Hydrogen atom and central forces 87

�rst spherical harmonics in real form rY`m(ϑ, ϕ) are

` |m| rY`m(ϑ, ϕ) (7.231)

0 0 s :
1√
4π

(7.232)

1 0 pz :

√
3

4π
cos ϑ (7.233)

1 1 px :

√
3

4π
sin ϑ cos ϕ (7.234)

1 1 py :

√
3

4π
sin ϑ sin ϕ (7.235)

2 0 d3z2−r2 :

√
5

16π
(3 cos2 ϕ− 1) (7.236)

2 1 dxz :

√
15

4π
sin ϑ cos ϑ cos ϕ (7.237)

2 1 dyz :

√
15

4π
sin ϑ cos ϑ sin ϕ (7.238)

2 2 dx2−y2 :

√
15

4π
sin2 ϑ cos 2ϕ (7.239)

2 2 dxy :

√
15

4π
sin2 ϑ sin 2ϕ (7.240)

Here, we have used the so-called 'spectroscopic' notation, in which the value of the
orbital angular momentum quantum number ` is indicated by a letter, according
to the correspondence

Value of ` 0 1 2 3 4 5 . . . (7.241)
l l l l l l . . . (7.242)

Code letter s p d f g h, . . . (7.243)

These code letters are remnants of the spectroscopist's description of various
series of spectral lines. The letters s, p, d and f being the �rst letters of the
adjectives 'sharp', 'principal', 'di�use' and 'fundamental', respectively. For values
of ` greater than three the letters follow in alphabetical order.

8 Hydrogen atom and central forces
8.1 Central forces
For central forces the potential V (−→r ) = V (r) depends only on |−→r | and the
eigenfunctions are simultaneous eigenfunctions of H,

−→
L 2 and Lz. We can solve
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88 8 Hydrogen atom and central forces

the SE with the product solution method. Setting

ψn`m(r, ϑ, ϕ) = Rn`(r)Y`m(ϑ, ϕ) (8.1)

and substituting into (7.149) gives
[
− ~

2

2m

1

r2

∂

∂r
r2 ∂

∂r
+

−→
L 2

2mr2
+ V (r)

]
Rn`(r)Y`m(ϑ, ϕ) = En`mRn`(r)Y`m(ϑ, ϕ)

(8.2)

From −→
L 2Y`m = `(` + 1)~2Y`m we deduce

[
− ~

2

2m

1

r2

∂

∂r
r2 ∂

∂r
+

`(` + 1)~2

2mr2
+ V (r)

]
Rn`(r) = En`mRn`(r) (8.3)

Equation (8.3) does not depend on the magnetic quantum number m. Setting

un`(r) = rRn`(r) (8.4)

we �nd [
− ~

2

2m

∂2

∂r2
+

`(` + 1)~2

2mr2
+ V (r)

]
un`(r) = En`un`(r) (8.5)

The radial SE is a one dimensional di�erential equation in r, r ∈ (0,∞). We
de�ne the e�ective potential Veff

Veff (r) = V (r) +
`(` + 1)

2mr2
(8.6)

The second term is known as the 'centrifugal barrier' potential (with 2mr2 as
the moment of inertia), from the classical mechanics. With V (r) = − Ze

4πε0r
the

attractive potential of the Coulomb interaction is stronger than the 'centrifugal
barrier' potential for large r →∞. For small r the 'centrifugal barrier' potential
dominates resulting in a minimum shifting to larger r upon increasing the orbital
angular momentum quantum number ` (see Fig. 8.1). The probability of �nding
an electron in the vicinity of the nucleus decreases with increasing `.

8.2 Radial functions
The asymptotic properties of the radial functions Rn` are

� for r →∞ it is Veff → 0 and

un`(r) ∝ e−r
q

2|En`|m
~2 (8.7)
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0

-5

0

5

 V
eff

 l=1 
 V

eff
 l=2

 Coulomb potential
 Centrifugal barrier l=1
 Centrifugal barrier l=2

E
ne

rg
y 

(a
rb

.u
.)

Radial component r

Abbildung 8.1. Potential components contributing to the Hamilton operator.

� for r → 0 it is Veff → `(`+1)~2
2mr2 and with En` ≈ 0

un`(r) ∝ r`+1 (8.8)

Thus, we �nd the asymptotic correct solution

Rn` =
un`

r
∝ r`e−r

q
2|En`m|
~2 (8.9)

For a hydrogen atom (Z = 1) and similar atom ions the Coulomb potential is
given by

V (r) = − Ze

4πε0r
(8.10)

There are two ways of solving the partial di�erential equation
1) describing H as a product of a and a+

2) using un` and its power series one �nds the di�erential equation

z
d2w

dz2
+ (c− z)

dw

dz
− aw = 0 (8.11)

which is called the Kummer-Laplace di�erential equation and can be solved
for c = 1 and a = 0. The functions which satisfy the di�erential equation
are called the associated Laguerre polynomials L2`+1

n+` (αn` r) given explicitly
by

L2`+1
n+` (r) =

n−`−1∑

k=0

(−1)k+1 [(n + `)!]2 rk

(n− `− 1− k)!(2` + 1 + k)!k!
. (8.12)
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The Laguerre polynomials are special solutions only for hydrogen atoms and
similar atomic ions and the radial functions are given explicitly by

Rn`(ρ) = N̂n` · (ρ)` L2`+1
n+` (ρ) e−ρ/2 (8.13)

with µ =
mM

m + M
, aµ =

a0m

µ
ρ =

2Zr

naµ

and αn =
Z

na0

(8.14)

Rn`(r) = Nn` · (αnr)` L2`+1
n+` (2αnr) e−αnr (8.15)

with En = −
√

mZ2e4

2~2(4πε0)2n2
= −~

2α2
n

2m
(8.16)

1

αn

=
na0

Z
, characteristic length a0 = 0.529

◦
A (8.17)

R10(r) = 2

(
Z

a0

) 3
2

e
−Zr

a0 (8.18)

R20(r) = 2

(
Z

2a0

) 3
2
(

1− Zr

2a0

)
e
− Zr

2a0 (8.19)

R21(r) =
2√
3

(
Z

2a0

) 3
2
(

Zr

2a0

)
e
− Zr

2a0 (8.20)

R30(r) = 2

(
Z

3a0

) 3
2
(

1− 2Zr

3a0

+
2Z2r2

27a2
0

)
e
− Zr

3a0 (8.21)

R31(r) =
4
√

2

3

(
Z

3a0

) 3
2
(

Zr

3a0

(
1− Zr

6a0

))
e
− Zr

3a0 (8.22)

R32(r) =
2
√

2

3
√

5

(
Z

3a0

) 3
2
(

Zr

3a0

)2

e
− Zr

3a0 (8.23)

Because the spherical harmonics are normalized on the unit sphere the norma-
lization condition implies that

∞∫

0

Rn`(r) r2 dr = 1 (8.24)

The radial functions has the properties

� The Laguerre polynomial is of the power (n − ` − 1) (see (8.12) and has
(n− `− 1) radial nodes (without r = 0).

� The probability Pn`(r) = r2|R2
n`| has (n− `) maxima.

� For (` = n − 1) the radial functions Pn,n−1(r) ∝ r2ne
− 2Zr

na0 show only one
maximum at rmax = n2a0

Z
.
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Abbildung 8.2. Radial functions Rn`(r) and the probability r2R2
n`(r) of �nding an electron

in (r + ∆r)− r.

� For a given n the orbital angular momentum quantum numbers ` can only
range from {0, 1, . . . , (n−1)} (see 8.12) and for a given ` there are (2`+1)
magnetic quantum numbers m. En does not depend on ` and m, which is a
consequence of the symmetry of V (r) = −1

r
and the independence of Rn`(r)

of m, respectively.

� The degeneracy is given by

n−1∑

`=0

(2` + 1) = n2 (8.25)
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� The expectation value for r, 〈r〉 is

〈rk〉n`m =

∞∫

0

rkR2
n`(r)r

2 dr (8.26)

〈r〉n`m =
a0

2Z
[3n2 − `(` + 1)] (8.27)

� For r → 0 the radial functions are Rn`(r) ∝ r`. For a given n larger values
of Rn`(r) occur for smaller ` at a given r (see Fig. 8.2).

� Only radial functions Rn`(r) with ` = 0 (s-orbitals) are non zero at r = 0.
This is important for the Mössbauer e�ect where the orbital overlap of
the electronic wave function with the nucleus is responsible for the signal.
|ψn00|2 = 1

4π
|Rn0(0)|2 = Z3

πn3a3
0

0 1 2 3 4
0,0

0,5

1,0

P
nl
(r

) i
n 

un
its

 o
f (

Z/
a 0)3/

2

Radius r in units of a0

 P30

 P31

 P32

Abbildung 8.3. Probability r2R2
n`(r) of �nding an electron in (r + ∆r)− r for very small r.
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8.3 Hydrogen atom wave functions

Abbildung 8.4. First wave functions of the hydrogen atom (and similar atomic ions) with
m = 0.
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n=1

n=2 0,0 1,0 1,+/-1

n=3 0,0 1,0 1,+/-1

2,0 2,+/-1 2,+/-2

n=4 0,0 1,0 1,+/-1

2,0 2,+/-1 2,+/-2

3,0 3,+/-1 3,+/-2 3,+/-3

Abbildung 8.5. First wave functions of the hydrogen atom (and similar atomic ions), inserted:
quantum numbers.
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n = 1;  l = 0 ;  m = 0 n = 2;  l = 1 ;  m = 0 n = 2;  l = 1 ;  m = +1 / -1

n = 3;  l = 0 ;  m = 0 n = 3;  l = 1 ;  m = 0

n = 3;  l = 1 ;  m = +1 / -1

n = 3;  l = 2 ;  m = +1 / -1

x 60

x 60

x 60

x 40

x 40

x 40

x 40

x 1

x 1x 1

x 1

x 1

Abbildung 8.6. Some wave functions of the hydrogen atom (and similar atomic ions) plotted
together with the quantum numbers. The solid black line represents the radial function, the
plots with a �xed radius the spherical harmonics.
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8.4 Angular momentum
The functions Y`m(ϑ, ϕ) are simultaneously eigenfunctions of −→L 2 and Lz with
eigenvalues `(` + 1)~2 and m~, respectively. The angular momentum value√

`(` + 1)~ > `~ is always greater than the maximum eigenvalue of Lz = `~.
This means the direction of the vector −→L is never parallel to the z-axis. Moreo-
ver, the Y`m(ϑ, ϕ) are no eigenfunctions of 〈Lx〉 and 〈Ly〉 and it is

〈Y`m|LxY`m〉 = 〈Y`m|LyY`m〉 = 0 (8.28)

〈Y`m|L2
xY`m〉 = 〈Y`m|L2

yY`m〉 =
1

2
[`(` + 1)−m2]~2. (8.29)

We note that the expectation values vanish, but the squares do not vanish (for
` 6= 0). The angular momentum −→

L 'precesses' around the z-axis in the presence
of a magnetic �eld with its projection on the z-axis to be ~m and its length
~
√

`(` + 1) (Fig. 8.4). With increasing ` and m = l the relative di�erence between

Spin angular momentumOrbital angular momentum

Abbildung 8.7. Projections of the orbital angular momentum and spin angular momentum
on the z-axis.
√

`(` + 1) and ` becomes smaller approximating the classical case, where the
angular momentum is parallel to the z-axis and the particle moves in the x-y
plane.

The summation over all absolute squared spherical harmonics for a given orbital
angular momentum quantum number ` results in a value independent of ϑ and ϕ

∑̀

−`

|Y`m(ϑ, ϕ)|2 =
2` + 1

4π
. (8.30)

This means that addition of all 2` + 1 functions |Y`m|2 leads to an isotropic
function. Since the radial eigenfunctions depend only of n and `, the charge
distribution of a �lled or closed shell (`-shell) has radial symmetry.
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8.5 Spin angular momentum
Electrons possess an intrinsic degree of freedom, the spin, which behaves like an
angular momentum in the way it couples with a magnetic �eld (see Stern-Gerlach
experiment). The z component of this spin angular momentum can only take on
two values ms~, where ms = ±1

2
. Therefore, the electron spin cannot be described

by the orbital angular momentum operator −→L , since the z component of −→L only
takes on the values m~, with m = −`, −` + 1, . . . , ` and ` = 0, 1, 2, . . .. We
assume that all angular momentum operators, whether orbital or spin, satisfy
commutation relations of the form (7.107). Thus, if Sx, Sy and Sz are the three
Cartesian components of the electron spin angular momentum operator −→S , they
must satisfy the commutation relations

i~Sz = [Sx, Sy] (8.31)
i~Sx = [Sy, Sz] (8.32)
i~Sy = [Sz, Sx]. (8.33)

The properties of the spin angular momentum and the simultaneous spin eigen-
functions χs,ms of −→S 2 and Sz are

−→
S 2χs,ms = s(s + 1)~2χs,ms (8.34)
Szχs,ms = ms~χs,ms . (8.35)

Since ms = ±1
2
for an electron we must have s = 1

2
, and we say the electron spin

is one-half. There are two di�erent normalized spin eigenfunctions χs,ms , namely

α = χ1/2,1/2 β = χ1/2,−1/2. (8.36)

Using these equations we get

−→
S 2α =

3

4
~2α (8.37)

−→
S 2β =

3

4
~2β (8.38)

Szα =
~
2
α (8.39)

Szβ = −~
2
β (8.40)

The spin eigenfunctions α and β are said to correspond respectively to the spin
up (↑) and spin down (↓) states. General spin-1/2 functions χ are linear super-
positions of the spin states α and β. That is

χ = χ+α + χ−β (8.41)
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where χ+ and χ− are the complex coe�cients and |χ±|2 the probability of �nding
an electron in the 'spin up' (+) α or 'spin down' (-) β state. Some important
properties are

〈χ|χ〉 = 1 (8.42)
|χ+|2 + |χ−|2 = 1 (8.43)

〈α|α〉 = 〈β|β〉 = 1 (8.44)
〈β|α〉 = 〈β|α〉 = 0 (8.45)
−→
S 2 =

3

4
~2 (8.46)

S± = Sx ± iSy (8.47)
S+α = S−β = 0 (8.48)
S−α = ~β (8.49)
S+β = ~α (8.50)

Sxα =
~
2
β (8.51)

Sxβ =
~
2
α (8.52)

Syα =
i~
2

β (8.53)

Syβ = − i~
2

α (8.54)

Szα =
~
2
α (8.55)

Sxβ =
~
2
β (8.56)

S2
x = S2

y = S2
z =

~2

4
(8.57)

Since there are only two basic spin eigenfunctions α and β, they exist in a two-
dimensional 'spin space'. The normalized spin 1/2 eigenfunctions α and β can be
considered as basis vectors given by two-component column vectors (also called
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spinors)

α =

(
1
0

)
; β =

(
0
1

)
(8.58)

α†α = β†β = 1 (8.59)
α†β = β†α = 0 (8.60)
−→
S 2 =

3

4
~2

(
1 0
0 1

)
(8.61)

Sz =
1

2
~

(
1 0
0 −1

)
(8.62)

S+ = ~
(

0 1
0 0

)
(8.63)

S− = ~
(

0 0
1 0

)
(8.64)

Sx =
~
2

(
0 1
1 0

)
(8.65)

Sy =
~
2

(
0 −i
i 0

)
(8.66)

The matrices can also be de�ned by Si = ~
2
σi, where the matrices σi are called

the Pauli spin matrices. Using the explicit form (8.58) of the basic spinor α and
β, an arbitary spin-1/2 function may be written as the spinor

χ =

(
χ+

χ−

)
; χ† = (χ∗+ χ∗−). (8.67)

It is worth noting that if the electron is in a pure 'spin up' state α or 'spin down'
state β, the expectation values of 〈S2

x〉 and 〈S2
y〉 do not vanish (see vector model

Fig. 8.4). The quantum number ms can take on 2s+1 values {−s, −s+1, . . . , s−
1, s}.

8.6 Total angular momentum
The total angular momentum can be written as

−→
J =

−→
L +

−→
S (8.68)

The orbital angular momentum −→
L = −→r ×−→p operates only in 'ordinary' space and

satis�es the commutation relations (7.107). On the other hand the spin angular
momentum −→

S satis�es the commutation relations (8.33) and operates only in the
'spin space'. All its components therefore commute with those of −→r and −→p , and
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hence with all those of −→L . As a result, the total angular momentum −→
J satis�es

the commutation relations

i~Jk = [Ji, Jj] with {i, j, k} cyclic permutating. (8.69)

This characterizes an angular momentum operator −→J satisfying the eigenvalue
equations

−→
J 2ψjmj

= j(j + 1)~2ψjmj
(8.70)

Jzψjmj
= mj~ψjmj

(8.71)

where j is an integer (including zero) or a half-odd integer (j = 0, 1
2
, 3

2
, . . .) and

mj = −j, −j + 1, . . . , j − 1, j. Since all the components of −→L commute with
all those of −→S , the operators −→L 2, Lz,

−→
S 2, and Sz mutually commute, and have

simultaneous eigenfunctions

ψ`sm`ms = Y`m`
(ϑ, ϕ)χsms . (8.72)

The simultaneous eigenfunctions of −→L 2,
−→
S 2,

−→
J 2 and Jz are linear combinations

of the functions ψ`sm`ms . For a given value of ` and s the possible values of j are
given by j = {|` − s|, |` − s| + 1, . . . , ` + s} and the quantum number mj can
take on 2j + 1 values (see above).

In general, the wave functions depend on the radial coordinate, the angular mo-
mentum, the spin and on the time t. For example, in the case of a spin-1/2 particle
(for example, an electron), a general expression for the wave function is

Ψ(q, t) = Ψ+(−→r , t)α + Ψ−(−→r , t)β =

(
Ψ+

Ψ−

)
(8.73)

where q denotes the ensemble of the continuous spatial variable−→r and the discrete
spin variable (ms = ±1

2
) of the particle. The probability density for �nding at time

t the particle at −→r with 'spin up' is |Ψ+(−→r , t)|2 (and for 'spin down' |Ψ−(−→r , t)|2).
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9 Interaction of atoms with electromagnetic
radiation

The electromagnetic �eld −→E and magnetic �eld −→B can be generated from scalar
and vector potentials φ and −→A by

−→
E (−→r , t) = −−→∇φ(−→r , t)− ∂

∂t

−→
A (−→r , t) (9.1)

−→
B (−→r , t) =

−→∇ ×−→A (−→r , t). (9.2)

The potentials are not completely de�ned by (9.1, 9.2), since the �elds −→E and−→
B are invariant under the (classical) gauge transformations −→A → −→

A +
−→∇Θ and

Φ → Φ− ∂Θ
∂t
, where Θ is any real, di�erentiable function of −→r and t. The freedom

implied by this gauge invariance allows us to choose
−→∇ · −→A = 0, Coulomb gauge (9.3)

−→∇ · −→A +
∂Φ

∂t
= 0, Lorentz gauge. (9.4)

Using the Coulomb gauge is convenient when no sources are present and therefore
%(t) = %. When −→A satis�es the Coulomb gauge, one may take Φ = 0, and −→A
satis�es the wave equation

0 =
−→∇2−→A − 1

c2
0

∂
−→
A 2

∂t2
(9.5)

−→
A (−→r , t) = 2 A0(ω) ε̂ cos(

−→
k · −→r − ωt + ϕ) (9.6)

−→
A (−→r , t) = A0(ω) ε̂

[
ei(
−→
k ·−→r −ωt+ϕ) + e−i(

−→
k ·−→r −ωt+ϕ)

]
(9.7)

0 =
−→∇ · −→A ⇒ ε̂ · −→k = 0, wave is transverse (9.8)

−→
B (−→r , t) = E0(ω)

−→
k × ε̂

ω
sin(

−→
k · −→r − ωt + ϕ), with E0(ω) = ωA0(ω)(9.9)

Energy density :
1

2
(ε0|E|2 +

|B|2
µ0

) = ε0E
2
0 sin2(

−→
k · −→r − ωt + ϕ) (9.10)

I(ω) = ρ(ω)c0 =
1

2
ε0c0E

2
0(ω) = ~ωN(ω)

c0

V
(9.11)

−→
A (−→r , t) = ε̂

∞∫

−∞

A0(ω)ei(
−→
k ·−→r −ωt+ϕ)dω (9.12)

−→
A (−→r , t) = ε̂

∞∫

0

A0(ω) cos(
−→
k · −→r − ωt + ϕ)dω (9.13)
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Here, ϕ is a random phase and for a given �xed direction of ε̂ the electromagnetic
�eld is linear polarized.

The Hamiltonian of a spinless particle of charge q and mass m in an electroma-
gnetic �eld is

H =
1

2m
(−→p − q

−→
A )2 + qΦ (9.14)

Ignoring small spin-dependent terms the time-dependent SE is
[

1

2m

(
~
i

−→∇ + e
−→
A (−→r , t)

)2

+ eΦ(−→r , t)− Ze2

4πε0r

]
ψ(−→r , t) = i~

∂ψ(−→r , t)

∂t
(9.15)

Assuming time independent �elds−→A (−→r , t) =
−→
A (−→r ) and Φ = Φ(−→r ) the Hamilton

operator becomes time independent and the wave function is

ψ(−→r , t) = e−i Et
~ ψ(−→r ) (9.16)

and the SE becomes with −→∇ · (−→Aψ) = (
−→∇ · −→A )ψ +

−→
A · −→∇ψ

[
− ~

2

2m
4− i~e

m

−→
A · −→∇ − i~e

2m

−→∇ · −→A︸ ︷︷ ︸
=0

+
e2

2m
(
−→
A · −→A )− Ze2

4πε0r
+ eΦ(−→r )

]
ψ = Eψ

Φ=0⇒
[
− ~

2

2m
4− i~e

m

−→
A · −→∇ +

e2

2m
(
−→
A · −→A )− Ze2

4πε0r

]
ψ = Eψ (9.17)

In a constant magnetic �eld we can write

−→
A =

1

2
(
−→
B ×−→r ) (9.18)

−i~e
m

−→
A · −→∇ = − i~e

2m
(
−→
B ×−→r ) · −→∇ (9.19)

= − i~e
2m

−→
B · (−→r ×−→∇) =

e

2m

−→
B · −→L . (9.20)

Here we used the de�nition −→L = −→r × −→p = −i~−→r × −→∇ of the orbital angular
momentum operator. The quadratic term −→

A · −→A is

e2−→A · −→A
2m

=
e2(
−→
B ×−→r )2

8m
(9.21)

=
e2

8m
(B2r2 − (

−→
B · −→r )2)

−→
B=Bz=

e2B2

8m
(x2 + y2) (9.22)
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Here we choose the axis of the magnetic �eld to be parallel to the z-axis. If we
compare the terms linear and quadratic in −→A we �nd

e

2m

−→
B · −→L ≈ e~

2m
B, (1) (9.23)

e2B2

8m
(x2 + y2) ≈ e2B2

4m
a2

0, (2) (9.24)

⇒ (2)

(1)
=

ea2
0B

2~
≈ 10−6B, with B in T (9.25)

Therefore, the second term is negligible and term (1) describes the potential
energy of a magnetic dipole moment −→µ in a magnetic �eld −→B . The magnetic
dipole moment −→µ is de�ned by

−→µ = − e

2m

−→
L = −µB

−→
L

~
. (9.26)

With Bohr's magneton µB:

µB =
e~
2m

≈ 9.27408× 10−24 Am2, (Joule/Tesla). (9.27)

Now we de�ne this small interaction to be a perturbation H ′ to the system

H ′ = −−→B · −→µ ≈ 0.4669
−→
B ·

−→
L

~
cm−1, B in Tesla (9.28)

and the SE becomes
[
− ~

2

2m
4− Ze2

4πε0r
+ H ′

]
ψ = Eψ. (9.29)

For H ′ = 0 we know the eigenfunctions ψn`m`
of the hydrogen atom, that are

also eigenfunctions of −→L 2 and Lz. If we choose the magnetic �eld parallel to the
z-axis we have

H ′ =
e

2m
BLz. (9.30)

With this setting the SE is readily solved without perturbation theory, since the
eigenfunctions ψn`m`

are eigenfunctions of the perturbation Lz also

Enm`
= − mZ2e4

2~2(4πε0)2n2
+

eB

2m
~m` = − mZ2e4

2~2(4πε0)2n2
+ ~ωLm`. (9.31)

The magnetic quantum numbers can take on values −`, . . . , `, and ωL is called
Larmor frequency.

ωL =
eB

2m
(9.32)
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l = 2

l = 1

∆m  = +1
l

∆m  = 0
l

∆m  = -1
l

m  = 2
l

 1

 0

 -1

 -2

 1

 0

 -1

σ σπ

E=hω

Abbildung 9.1. In the presence of a magnetic �eld the 2` + 1 states are not degenerate
any more. The energy spacing is ∆E = eB~

2m and the transitions are connected to di�erent
polarizations for π and σ.

We observe a term splitting for the 2` + 1 terms, that are no longer degenerate.
Note, only in hydrogen atoms the degeneracy of states with the same n and
m` is still valid. For a magnetic �eld of 1 Tesla (Lab magnet) the splitting is
approximately 9.27 × 10−24 J ≈ 0.58 × 10−4eV, which is small compared to the
ground state energy of the hydrogen atom (13.6 eV). Possible transitions between
the energy levels obey selection rules. Selection rules state which transitions are
allowed (other transitions are forbidden). Here, the selection rules are

∆m` = 0 (π) (9.33)
∆m` = ±1 (σ). (9.34)

Thus, three transitions are allowed. They are called Lorentz triplet (1896). They
were observed in an experiment called the normal Zeeman e�ect that is shown in
Fig. 9. Moreover, the number of observable transitions depend on the direction of
observation. For observation directions perpendicular to the magnetic �eld, three
optical transitions are detectable with linear polarizations along the z-axis (π)
and the y-axis (σ). Detection along the z-axis (longitudinal) result in two optical
transitions absorbing circular polarized light (σ− and σ+).
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B
z

x

y

z

L

T

T

L

π σσ

B = 0 :

B > 0 :

σσ
- +

Energy

r l

Abbildung 9.2. Normal Zeeman e�ect: If no magnetic �eld (B = 0) is applied to the set-
up, only a single absorption line is observed along the z-axis (L) and x-axis (T). When a
constant magnetic �eld is directed along the z-axis, two absorption signals are observed along
the longitudinal direction (L) and three absorption signals along the transversal direction (T).
The polarization of the absorbed �elds are circular (σ− and σ+) for the longitudinal direction
and parallel (π and σ) along the transversal direction. The energy splitting between the three
levels is e~B

2m each.

If we would take into account the additional interaction of the spin with the
magnetic moment −→µs

−→µs = −gsµB

−→
S

~
(9.35)

we would �nd an additional term in the SE with −−→B · −→µs. In such experiments
with a weak magnetic �eld the −→L ·−→S coupling introduces an additional term into
the SE leading to the anomalous Zeeman e�ect. For |−→S | = 0 the normal Zeeman
e�ect will be observed.

The transitions between speci�c energy levels are due to the interaction of the
atoms with the electromagnetic �eld. Since, the electromagnetic �eld is described
by a time-dependent vector potential −→A (t) the perturbation H ′ is no longer time-
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independent and the SE becomes

[H0 + λH ′(t)] ψ = i~
∂ψ

∂t
(9.36)

9.1 Time-dependent perturbation theory
The time-dependent perturbation theory is used for situations where the per-
turbation to the system λH ′(t) is small and time dependent. The unperturbed
system has the eigenfunctions {ψn} of the SE H0ψn = E0

nψn. The perturbation
is time-dependent and in our case given by

λH ′(t) = −i
~e
m

−→
A (t) · −→∇ (9.37)

= −i
~e
m

−→
A 0

[
ei(
−→
k ·−→r −ωt) + e−i(

−→
k ·−→r −ωt)

]
· −→∇ (9.38)

Since the eigenfunctions {ψn} are orthonormal and de�ne a complete set, the
general solution ψ(−→r , t) of

[H0 + λH ′(t)] ψ(−→r , t) = i~
∂ψ(−→r , t)

∂t
(9.39)

can be expanded by

ψ(−→r , t) =
∑

n

cn(t)e−iE
(0)
n t/~ψn(−→r ) (9.40)

where cn(t) are time-dependent coe�cients describing the amplitude changes
changes of the eigenfunctions with time. To �nd the coe�cients, equation (9.40)
is inserted into the SE (9.39), and we have

∑
n

cn(t)e−iE
(0)
n t/~ [

H0ψn + λH ′(t)ψn

]
= i~

∑
n

(
dcn

dt
e−iE

(0)
n t/~ψn (9.41)

−iE0
n

~
cn(t)e−iE

(0)
n t/~ψn

)

λ
∑

n

cn(t)H ′(t)e−iE
(0)
n t/~ψn = i~

∑
n

dcn

dt
e−iE

(0)
n t/~ψn (9.42)

R
ψ∗[...]⇒ λ

∑
n

cn(t)e−iE
(0)
n t/~〈ψm|H ′(t)ψn〉 = i~

dcm

dt
e−iE

(0)
m t/~ (9.43)

ωmn=
E0

m−E0
n

~⇒ i~
dcm

dt
= λ

∑
n

cn(t)eiωmntH ′
mn(t) (9.44)

The system of coupled di�erential equations (9.44) is completely equivalent to the
original SE i~∂ψ(−→r ,t)

∂t
= Hψ(−→r , t), and no approximations has been made thus
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far. However, if the perturbation λH ′ is weak, we can expand the coe�cients cn

and cm in powers of the parameter λ as

cn(t) = c(0)
n (t) + λc(1)

n (t) + λ2c(2)
n (t) + . . . . (9.45)

Substituting this expansion into the system (9.44) and equating the coe�cients
of equal powers of λ, we �nd that

ċ(0)
m = 0 (9.46)

ċ(1)
m =

1

i~
∑

n

c(0)
n (t)H ′

mn(t)eiωmnt (9.47)

ċ(2)
m =

1

i~
∑

n

c(1)
n (t)H ′

mn(t)eiωmnt (9.48)

... ...
ċ(s+1)
m =

1

i~
∑

n

c(s)
n (t)H ′

mn(t)eiωmnt (9.49)

Thus, the original system (9.44) has been decoupled in such a way that the equa-
tions can now in principle be integrated successively to any given order. The �rst
equation (9.46) simply con�rms that the coe�cients c

(0)
m are time-independent.

Since we want to describe transitions from an initial state ψi to a �nal state
ψf , we assume that for t ≤ t0 the system is in the initial state ψ(t ≤ t0) = ψi

with energy E0
i and the perturbation H ′(t) is switched on at time t0 = 0. The

probability of �nding the system in the state m is |cm(t)|2

⇒ dc
(1)
m

dt
=

1

i~
eiωmitH ′

mi(t) (9.50)

c
(1)
i (t) = c

(1)
i (t0) +

1

i~

t∫

t0

H ′
ii(t

′)dt′ (9.51)

c(1)
m (t) = c(1)

m (t0) +
1

i~

t∫

t0

eiωmit
′
H ′

mi(t
′)dt′ (9.52)

where the integration constants in (9.52 and 9.51) has be chosen in such a way
that c

(1)
m (t) = c

(1)
i (t) vanish at t = t0, before the perturbation is applied. To

�rst order in the perturbation, the transition probability corresponding to the
transition i → m is therefore given by

P
(1)
mi (t) = |c(1)

m (t)|2 =
1

~2

∣∣∣∣∣∣

t∫

t0

H ′
mi(t)e

iωmit
′
dt′

∣∣∣∣∣∣

2

, i 6= m (9.53)
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The coe�cient ci of the state i is given to �rst order in perturbation by

ci(t) = c
(0)
i + c

(1)
i (t) (9.54)

≈ 1 +
1

i~

t∫

t0

H ′
ii(t

′)dt′ (9.55)

≈ e
− i
~

tR
t0

H′
ii(t

′)dt′

(9.56)

so that |ci(t)|2 ≈ 1 and the main e�ect of the perturbation is to change the phase
of the initial state.

9.1.1 Time-independent perturbation
If H ′ is time-independent, except for being switched on suddenly at a given time
t0 = 0. We then have

c
(1)
i (t) =

1

i~
H ′

iit (9.57)

c(1)
m (t) =

H ′
mi

ωmi~
(
1− eiωmit

)
, m 6= i (9.58)

P
(1)
mi (t) = |c(1)

m (t)|2 =
2|H ′

mi|2
~2

F (t, ωmi) (9.59)

F (t, ωmi) =
1− cos(ωmit)

ω2
mi

=
2 sin2(ωmit/2)

ω2
mi

(9.60)

The height of the peak of the function F (t, ω) is proportional to t2, while its
width is approximately 2π/t. Setting ωt/2 = x we have

∞∫

−∞

F (t, ω)dω = t

∞∫

−∞

sin2 x

x2
dx = πt, (9.61)

and for t →∞ we have F (t, ω) ≈ πtδ(ω) and for ω → 0 we have F (t, ω) → (
t
2

)2.
From that we can conclude for the transition probability

� At a �xed time t, F (t, ω) has a sharp peak of width 2π/t about the value
ωmi = 0. It is clear that transitions to m for which ωmi does not deviate
form zero by more than δωmi ≈ 2π/t will be strongly favoured. Therefore
the transitions i → m will occur mainly towards those �nal states m whose
energy is located in a band of width δE ≈ 2π~/t

� If the transition is such that ωmi = 0, Em = Ei, and the states are degene-
rate, then the transition probability is given by

P
(1)
mi (t) =

|H ′
mi|2
~2

t2 (9.62)
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and at su�cient length of time the quantity P
(1)
mi (t) will no longer satisfy

the inequality P
(1)
mi (t) ¿ 1 required by the perturbation approach. Hence,

the perturbation method cannot be applied to degenerate systems which
are perturbed over long periods of time.

� If ωmi 6= 0 we have

P
(1)
mi (t) =

4|H ′
mi|2

~2ω2
mi

sin2(
ωmit

2
) (9.63)

and P
(1)
mi (t) oscillates with a period 2π/|ωmi| about the average value 2|H′

mi|2
~2ω2

mi
.

If the perturbation H ′ is su�cient weak, the inequality P
(1)
mi (t) ¿ 1 can

always be satis�ed. Note, for times t small with respect to the period of
oscillation one has

t small : P
(1)
mi (t) ≈

4|H ′
mi|2

~2ω2
mi

(
ωmit

2

)2

≈ |H ′
mi|2

t2

~2
(9.64)

� If we consider transitions involving a group of states n whose energy En lies
within (E(0)

m − η, E
(0)
m + η) centered about E

(0)
m and we denote ρn(En) the

density of levels on the energy scale, so that ρn(En)dEn is the number of
�nal states n in an interval dEn containing the energy En. The �rst-order
transition probability P

(1)
ni (t) from the initial state i to the group of �nal

states n is then given by

P
(1)
ni (t) =

∑
n

|c(1)
n (t)|2 =

4|H ′
ni|2
~2

∞∫

−∞

sin2(ωnit
2

)

ω2
ni

ρn(En)~dωn (9.65)

=
2

~2

E
(0)
m +η∫

E
(0)
m −η

|H ′
ni|2F (t, ωni)ρn(En)dEn (9.66)

≈ 2

~
ρn(En)|H ′

ni|2
∞∫

−∞

F (t, ωni)dωn (9.67)

=
2π

~
ρn(En)|H ′

ni|2t (9.68)

If t is large enough so that η À 2π~/t the dominating part of the integral
arises from transitions which conserve the energy (within δE = 2π~/t), and
we have

P
(1)
ni (t) =

2π

~
|H ′

ni|2ρn(E)t ⇒ Wni =
2π

~
|H ′

ni|2ρn(E) (9.69)

with Wni is the transition probability per unit time or transition rate. This
is called 'the Golden Rule' of perturbation theory.
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9.1.2 Periodic perturbation
Let us now consider a periodic perturbation

H ′(t) = V eiωt + V ∗e−iωt. (9.70)

With this de�nition H ′(t) is hermitian, and the system is initially (for t ≤ 0) in
the unperturbed bound state ψ

(0)
i , of energy E

(0)
i , so that the initial conditions

are ci(t ≤ 0) = 1 and cm(t ≤ 0) = 0 for m 6= i. To calculate cm(t) we substitute
(9.70) into (9.52) and use the fact that t0 = 0. This gives

c(1)
m (t) =

1

i~


Vmi

t∫

0

ei(ωmi+ω)t′dt′ + V ∗
mi

t∫

0

ei(ωmi−ω)t′dt′




~ωmi=E
(0)
m −E

(0)
i⇒ P

(1)
mi (t) =

∣∣∣∣∣Vmi
1− ei(E

(0)
m −E

(0)
i +~ω)t/~

E
(0)
m − E

(0)
i + ~ω

+

V ∗
mi

1− ei(E
(0)
m −E

(0)
i −~ω)t/~

E
(0)
m − E

(0)
i − ~ω

∣∣∣∣∣

2

(9.71)

Only one of the two terms contribute to the transition probability. For E
(0)
m =

E
(0)
i + ~ω the second term will have an appreciable magnitude, and the corre-

sponding transition probability being given by

P
(1)
mi (t) =

2

~2
|V ∗

mi|2F (t, ωmi − ω). (9.72)

The two terms describe the physical processes of

~ω = E(0)
m − E

(0)
i , Absorption (9.73)

~ω + E(0)
m = E

(0)
i , Emission (9.74)

and for discrete transitions the density of states becomes ρn(E) = δ(E
(0)
m −E

(0)
i ∓

~ω). The main di�erence to the time-independent case is that ωmi is replaced
by ωmi − ω. We see that the transition probability will only be signi�cant if
Em = Ei + ~ω and the system has absorbed an amount of energy given by ~ω. If
we take into account that the electric �eld is a vector we can write

V = −e

2

−→
E · −→r (9.75)

= −e

2

−→
E0 · −→r

(
eiωt + e−iωt

)
(9.76)

H ′
mi(t) = −1

2

−→
E0

(
eiωt + e−iωt

) 〈ψm|e−→r ψi〉 (9.77)
−→µ mi = 〈ψm|e−→r ψi〉 (9.78)

H ′
mi(t) = −1

2

−→
E0 · −→µ mi

(
eiωt + e−iωt

)
. (9.79)
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The vector −→µ mi is called transition dipole moment for the transition i → m. The
coe�cient |c(1)

m (t)|2 is given for long times as

|c(1)
m (t)|2 =

1

~2
|−→E0 · −→µ mi|2(πδ(ω + ωmi) + πδ(ω − ωmi))t. (9.80)

The energy conservation is ful�lled by the delta functions for absorption and
emission. The Probability is given by

|c(1)
m (t)|2 =

∣∣∣∣∣
−→
E0 · −→µ mi

2~
ei(ωmi−ω)t − 1

ωmi − ω

∣∣∣∣∣

2

(9.81)

=
|−→E0 · −→µ mi|2

2~2

2 sin2((ωmi − ω)t/2)

(ωmi − ω)2
(9.82)

=
|−→E0|2|−→µ mi|2

3~2

sin2((ωmi − ω)t/2)

(ωmi − ω)2
(9.83)

Here, we used an isotropic distribution of transition dipole moments. For conti-
nuous distribution of states with nearly constant density of states about ωmi = ω
we have the transition probability integrated over the frequencies

Pm(t) =
1

6~2
|−→E0|2|−→µ mi|2ρ(ω)

∞∫

−∞

F (t, ωmi − ω)dω (9.84)

=
π

6~2
|−→E0|2|−→µ mi|2ρ(ω)t (9.85)

and we can �nally calculate the transition rate

Wmi =
Pm(t)

t
=

π

6~2
|−→E0|2|−→µ mi|2ρ(ω) (9.86)

that is constant and given by the transition dipole moment and the strength of
the electric �eld. The transition rates for absorption and emission are equal since
the dipole operator

∑
k e−→rk is hermitian 〈ψm|e−→r ψi〉 = 〈ψi|e−→r ψm〉.

9.2 Absorption and emission
Using a perturbation of the form

H ′
mi(t) = −i~

e

m

−→
A · −→∇ (9.87)

the equation for the coe�cient becomes

c(1)
m (t) =

1

i~

t∫

0

〈ψm|−→A · −→∇ψi〉ei(ωmi)t
′
dt′. (9.88)
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Inserting (9.13) we have

c(1)
m (t) = − e

2m

∞∫

0

A0(ω)dω


eiϕ〈ψm|ei

−→
k ·−→r ε̂ · −→∇ψi〉

t∫

0

ei(ωmi−ω)t′dt′

+e−iϕ〈ψm|e−i
−→
k ·−→r ε̂ · −→∇ψi〉

t∫

0

ei(ωmi+ω)t′dt′


 . (9.89)

The �rst term describes absorption, the second one emission. The probability for
the system to be in the m state at time t (with initial conditions |cm(t ≤ 0)|2 = 0
and |ci(t ≤ 0)|2 = 1) is

|cm(t)|2 =
πe2

2m2
A2

0(ωmi)|Mmi(ωmi)|2t. (9.90)

Thus the probability increases linearly with time and the transition rate for ab-
sorption (integrated over ω) can be de�ned in �rst-order perturbation theory
as

Wmi =
4π2

m2c0

e2

4πε0

I(ωmi)

ω2
mi

|Mmi(ωmi)|2 (9.91)

σmi =
4π2α~2

m2ωmi

|Mmi(ωmi)|2 (9.92)

where α = e2/(4πε0~c0) ' 1/137 is the �ne structure constant. The term σmi is
called the absorption cross-section which is the rate of absorption of energy (per
atom) divided by I(ωmi). It has the dimensions area divided by time.

Evaluating the second term gives the transition rate for emission (integrated over
ω):

M̄im = −M∗
mi (9.93)

W̄im =
4π2

m2c0

e2

4πε0

I(ωmi)

ω2
mi

|M̄im(ωmi)|2 (9.94)

W̄im = Wmi (9.95)
σ̄im = σmi (9.96)

Bmi =
Wmi

ρ
=

4π2

3~2

1

4πε0

|
∑

n

−e−→rn |2 (9.97)

Here, we see that the absorption rate is the same as the emission rate as found
before, and the absorption and emission cross-sections are also the same. This is
consistent with the principle of detailed balancing, which says that in an enclosure
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containing atoms and radiation in equilibrium, the transition from i to f is the
same as that from f to i, where f and i are any pair of states. The Einstein
coe�cients Bmi depend on the matrix element Mmi which determines the strength
of a transition.

9.3 Selection rules
Having neglected the term −→

A 2 in the interaction of matter with light, the SE
may be written as

i~
∂

∂t
ψ(−→r , t) = [H0 + H ′(t)]ψ(−→r , t) (9.98)

If we assume a time-dependent perturbation caused by an oscillating electroma-
gnetic �eld (light wave) with polarization direction ε̂, the perturbation becomes

H ′(t) = −i~e
m

A0e
i(
−→
k ·−→r −ωt)ε̂ · −→∇ + c.c. (9.99)

The time-dependent term with eiωt is analogous to the periodic perturbation,
which we already calculated in equation (9.86). Now we concentrate on the other
part

H ′
mi ∝

∫
ψ∗m(−→r )ei(

−→
k ·−→r )ε̂ · −→∇ψi(

−→r )dV. (9.100)

For the phase factor ei(
−→
k ·−→r ) it is

ei(
−→
k ·−→r ) =

∞∑
n=0

(i)n(
−→
k · −→r )n

n!
. (9.101)

For most of the experiments the atoms are much smaller than the wavelength
(except for x-rays) and the phase is constant over the atom (|−→k · −→r | ¿ 1 and
⇒ λ À a0). We can set i(

−→
k · −→r ) = 0 and the phase term is unity. This is called

the dipole approximation (ei(
−→
k ·−→r ) = 1), and the next higher approximation the

quadrupole approximation (ei(
−→
k ·−→r ) = i

−→
k · −→r ). With the dipole approximation

the integeral becomes
∫

ψ∗m(−→r )ε̂ · −→∇ψi(
−→r )dV = ε̂ ·

∫
ψ∗m(−→r )

−→∇ψi(
−→r )dV (9.102)

The Heisenberg equation of motion reads

−→p =
im

~
[H0,

−→r ] ⇒ −→∇ =
i−→p
~

= −m

~2
[H0,

−→r ]. (9.103)
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Inserting (9.103) into (9.102), using H0ψk = E0ψk we have

ε̂ ·
∫

ψ∗m(−→r )
−→∇ψi(

−→r )dV = ε̂ ·
(
−m

~2

) ∫
ψ∗m(−→r )[H0,

−→r ]ψi(
−→r )dV (9.104)

=
(
−m

~2
(E(0)

m − E
(0)
i )

)
ε̂ ·

∫
ψ∗m(−→r )−→r ψi(

−→r )dV

=
(
−mωmi

~

)
ε̂ ·

∫
ψ∗m(−→r )−→r ψi(

−→r )dV (9.105)

Here we used (E
(0)
m − E

(0)
i ) = ωmi~.If we insert the vector potential −→A we have

H ′
mi = −i~e

m
A0

(
−mωmi

~

)
ε̂ ·

∫
ψ∗m(−→r )−→r ψi(

−→r )dV (9.106)

= e
−→
E (ωmi) ·

∫
ψ∗m
−→r ψidV (9.107)

= −−→E (ωmi) · −→µ mi (9.108)
where 9.108 describes the interaction of the electromagnetic �eld with the tran-
sition dipole moment. For (for i = m) it is the potential energy of an electric
dipole in an electric �eld. The transition dipole moment is given by

−→µ mi = −e

∫
ψ∗m
−→r ψidV (9.109)

=

∫
ψ∗m

(
−e

n∑

`=1

−→r` + e

N∑

k=1

Zk
−→
Rk

)
ψidV . (9.110)

The intensities in dipole approximation are found

I(ωmi) ≈ |ε̂ ·
∫

ψ∗m

(
−e

n∑

`=1

−→r` + e

N∑

k=1

Zk
−→
Rk

)
ψidV |2 = |ε̂ · −→µ mi|2 (9.111)

where ε̂ is the polarization vector of the electromagnetic �eld. The selection rules
say that transitions are forbidden if −→µ mi ≡ 0. To test if transitions are forbid-
den symmetry arguments are used and the term ε̂ · −→r is expressed by spherical
harmonics with ` = 1 and m = 0, ±1:

ε̂ · −→r = εx sin ϑ cos ϕ + εy sin ϑ sin ϕ + εz cos ϑ (9.112)

=

√
4π

3

{(
εx + iεy√

2

)
Y1,−1 +

(−εx + iεy√
2

)
Y1,+1 + εzY1,0

}
.(9.113)

Now we investigate the transition from the initial state ψi = ψni,`i,mi
to the �nal

state ψf = ψnf ,`f ,mf
:

〈ε̂ · −→r 〉 =

∫
ψ∗f ε̂ · −→r ψidV (9.114)

=

∫
R∗

nf ,`f
(r)Y ∗

`f ,m`f
(ϑ, ϕ)ε̂ · −→r Rni,`i

(r)Y`i,m`i
(ϑ, ϕ)−→r dV (9.115)
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Inserting (9.113) we �nd
∫ ∫

Y ∗
`f ,m`f

(ϑ, ϕ)Y1,m(ϑ, ϕ)Y`i,m`i
(ϑ, ϕ).d cos ϑdϕ (9.116)

2π∫

0

e−im`f
ϕeimϕeim`i

ϕdϕ = δm+m`i
−m`f

,0 (9.117)

The integral (9.117) does not vanish if m`f
−m`i

= m = 0, ±1. Thus, our �rst
selection rule in dipole approximation is

∆m` = 0, ±1. (9.118)

The next selection rule follows from inversion symmetry. The integral I(−→r ) should
not vanish going from −→r → −−→r :

I(−→r ) = e

∫
ψ∗f
−→r ψid

−→r ∝
∫

Y ∗
`f ,m`f

−→r Y`i,m`i
d cos ϑdϕ. (9.119)

Since Y`,m(−→r ) → (−1)`Y`,m(
−→−r) the integral is not zero if

I(
−→−r) = (−1)`f (−1)(−1)`iI(−→r ) > 0. (9.120)

This is only the case if `f + `i + 1 = 0, ±2, . . . and we can directly conclude that

∆` 6= 0. (9.121)

To specify the selection rule for the quantum number ` further we remember,
that we can write the product of two spherical harmonics with `1 and `2 as a sum
of spherical harmonics with quantum numbers ` ranging from |`2−`1| to |`2 +`1|.

Y1,mY`i,m`i
= αY`i+1,m`i

+m + βY`i,m`i
+m + γY`i−1,m`i

+m (9.122)

Inserting this into (9.116) we have
∫ ∫

Y ∗
lf ,m`f

(αY`i+1,m`i
+m + βY`i,m`i

+m + γY`i−1,m`i
+m)d cos ϑdϕ. (9.123)

Using the orthonormality of {Y`,m} the integral does not vanish for

`f = {`i + 1, `i, `i − 1} (9.124)
⇒ ∆` = ±1 (9.125)

In summary we have selection rules for dipole approximation

∆m = 0, ±1 (9.126)
∆` 6= 0 (9.127)
∆` = ±1. (9.128)

Physics of Atoms and Molecules



116 9 Interaction of atoms with electromagnetic radiation

If we apply these rules to the normal Zeeman e�ect we have to analyze the integral
∫

Y ∗
`f ,m`f

{(
εx + iεy√

2

)
Y1,−1 +

(−εx + iεy√
2

)
Y1,+1 + εzY1,0

}
Y`i,m`i

d cos ϑdϕ

(9.129)
with the magnetic �eld −→B is parallel to the z-axis (see experimental setup).

For longitudinal (L) observation direction we have εz = 0, since the electroma-
gnetic �eld is a transverse wave.

� m`f
= m`i

+1: Polarization vector is given by 1/
√

2(εx−iεy), which describes
(right handed) circular polarized light σ−.

� m`f
= m`i

−1: Polarization vector is given by 1/
√

2(εx+iεy), which describes
(left handed) circular polarized light σ+.

Note, the de�nition of left handed and right handed circular polarized light is
sometimes used the other way around (σ+ for right handed circular polarization
and vice versa).

Along the z-axis the observed transitions are circular polarized. In this expe-
rimental geometry the angular momentum of the photon is parallel to the −→k
direction (in z-direction). We have conservation of angular momentum or spin
with the spin of the photon to be ms = ±~. Thus, the case m = 0 is not possi-
ble, because upon absorption/emission the angular momentum will change. For

k

h

m  = +1l

S

σ
+

helicity + h

left handed 

circular polarized light

k

h

m  = -1l

S

σ
−

helicity - h

right handed 

circular polarized light

k

h
S

s-Orbital

B

p-Orbital

Abbildung 9.3. Interaction of right and left handed circular polarized light with matter.
Since we have conservation of angular momentum or spin only such transitions are allowed
which result in spin changes of ∆~ms,ph.

photon absorption of ms = 1 we have ∆m` = 1, for photon emission ∆m` = −1.
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For photon absorption of ms = −1 we have ∆m` = −1, for photon emission
∆m` = +1.

For transverse (T) observation direction we have εx = 0, since the electroma-
gnetic �eld is a transverse wave. Now we have three terms resulting in transitions:

� m`f
= m`i

, here only the term with εz 6= 0 is relevant; the light is linearly
polarized in z-direction.

� m`f
= m`i

± 1 the contributing term is Y1,±1 and the light is linearly pola-
rized in y-direction.

Another way to argue is that if one applies light polarized in z-direction (εy = 0),
only transitions with ∆m = 0 (with Y1,m) are possible. Light polarized in
y-direction (εz = 0) can result in transitions to ∆m = ±1 (depending on the
frequencies).

s-Orbital

p-Orbital

∆ m  = 0 l

∆ m  = -1 l

∆ m  = 1l

Y1,0
Y1,1

Y1,-1

Abbildung 9.4. Interaction of light polarized in εy and εz direction with a s-orbital.

� The vector −→µ mi indicates a charge redistribution going from |ψi|2 to |ψf |2
described by the transition dipole moment. Upon absorption the atomic
'size' is growing.

� The developing parameter in ei
−→
k ·−→r is −→k ·−→r , which is approximately of the

size −→
k · −→r ≈ ka0 =

ωa0

c0

=
~ωa0

~c
. (9.130)
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With the transition energy of ∆E ≈ ~2
2ma2

0
in a hydrogen atom we �nd

−→
k · −→r ≈ ~2

2ma2
0

a0

~c0

(9.131)

≈ ~
ma0c0

=
~

mc0

me2

4πε0~2
=

e2

4πε0~c0

= α ' 1

137
(9.132)

with α the �ne structure constant, which is a fundamental constant for the
coupling strengths between charged particles and the electromagnetic �eld.
In the development of ei

−→
k ·−→r every next term will result in contributions of

order
O(α2) ≈ 10−4. (9.133)

� The next term after the dipole approximation contains the electric quadru-
pole and magnetic dipole contributions, which have di�erent selection rules
than the electric dipole transitions, e.g. ∆` = 2. But the intensities of those
transitions are weaker by a factor of ≈ 10−4:

∫
ψ∗m(−→r )i(

−→
k · −→r )(ε̂ · −→∇)ψid

−→r (9.134)

inserting −→p ∝ −→∇ we �nd

(
−→
k · −→r )(ε̂ · −→p ) =

1

2

[
(
−→
k · −→r )(ε̂ · −→p ) + (ε̂ · −→r )(

−→
k · −→p )

]

+
1

2

[
(
−→
k · −→r )(ε̂ · −→p )− (ε̂ · −→r )(

−→
k · −→p )

]
(9.135)

= I + II

= I +
1

2
(
−→
k × ε̂) · (−→r ×−→p ). (9.136)

Since (
−→
k × ε̂) ∝ −→

B , and (−→r ×−→p ) ∝ −→
L the second term (II) gives

−−→B · −→µ fi = −−→B ·
∫

ψ∗f (−µB

−→
L

~
)ψid

−→r =
−→
B ·

∫
ψ∗f (

e

2m
−→r ×−→p )ψid

−→r .

(9.137)
This is the interaction of the magnetic �eld with the magnetic transition
dipole moment −→µ fi, leading to the splitting of the degenerate levels of m
in a hydrogen atom in the Zeeman experiment. The �rst term (I) can also
be transformed using −→p = [H0,

−→r ] im
~ , H0ψk = E0ψk, and

−→
k · ε̂ = 0 and we

have

I ∝
3∑

i,j=1

kiε̂jQij (9.138)

Qfm
ij ≡ −e

∫
ψ∗f (3xixj − r2δij)ψmd−→r . (9.139)
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Q is the electronic quadrupole transition moment for transitions from m →
f with kiε̂j being the components of the gradient of −→E (x1 = x, x2 =
y, x3 = z. Both terms I and II result in new selection rules for electronic
quadrupole transitions and magnetic dipole transitions.

� The parity operator P is also a very useful operator, that commutes with
V , H, −→L 2, and Lz. The quantum number α of the parity operator, here
acting on the spherical harmonics is

PYl,m = αYl,m = (−1)`Ylm. (9.140)

Eigenvalues of the parity operator are α = ±1.

10 Spin of the electron
We already introduced the Spin of an electron to be s = 1

2
. The Spin operator −→S

operates in a two dimensional spin space an exhibits the properties of an angu-
lar momentum operator with quantum numbers ms = ±1

2
. Several experiments

result in the hypothesis of the electron spin. The Stern Gerlach experiment is
shown in Fig. 10, the anomalous Zeeman e�ect (with the Na D doublet) and the
general doublet structure of spectral lines. The new e�ects found in those expe-

Inhomogeneous 

magnetic field

Atomic beam (Ag)
B

Abbildung 10.1. Stern Gerlach experiment. An atomic beam splits in two parts in an in-
homogeneous magnetic �eld along the z-axis which is parallel to the average magnetic �eld
direction.

riments were explained by an additional interaction to the magnetic moment of
the electron spin. In Stern Gerlach experiment silver atoms were sent through an
inhomogeneous magnetic �eld resulting in a splitting of two spots, with a split-
ting proportional to the �eld gradient. The explanation for this observation is the
interaction of the magnetic �eld −→B (here in z-direction) with a magnetic moment−→µ s

V = −−→µ s · −→B (10.1)
−→
F = −−→∇V =

−→∇(−→µ s · −→B ) (10.2)

Fz = µsz

∂

∂z
Bz. (10.3)
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In a classical picture all possible magnetic dipole directions would be allowed and
no distinct spots would be visible in the experiment. Quantum mechanically the
magnetic moment −→µ is correlated with the orbital angular momentum quantum
number ` which can take on 2(` + 1) distinct values (odd number). The two
spots observed in the Stern Gerlach experiment could not be explained with
the orbital angular momentum. Additionally, experiments with hydrogen (` = 0)
show similar results, so that a magnetic moment −→µ s due to the spin of an electron
was introduced

−→µ s = −gsµB

−→
S

~
(10.4)

gs = 2(1 +
α

2π
− 0.328

α2

π2
+ . . .) = 2.002319310(6) Q.E.D (10.5)

gs = 2.002319314(7) Experiment (1971) (10.6)

−→µ = −gLµB

−→
L

~
(10.7)

gL = 1. (10.8)

The g-factor is the gyromagnetic ratio of the magnetic moment (in µB) to the
angular momentum (in ~). The Stern Gerlach experiment shows that −→µ sz ≈ ±µB

and thus gs ≈ 2. As a result the di�erent angular momenta −→L and −→S add to a
general angular momentum −→

J

−→
J =

−→
L +

−→
S . (10.9)

The magnetic moments add up to −→µ J

−→µ J = −→µ L +−→µ s ≈ −µB

~
[
−→
L + 2.0023

−→
S ]. (10.10)

Note, −→J and −→µ J are not parallel (if there is an e�ective spin). All atoms with
a single outermost electron in the s-orbital show the same splitting in the Stern
Gerlach experiment. Therefore, the magnetic moments of the other spins in a
closed shell cancel each other out. This is in accordance with

∑̀
m=−`

|Y`m|2 = c.

The spin introduces two additional terms to the SE

H ′
mag = −−→µ s · −→B ext (10.11)

H ′
SL = −−→µ s · −→B orbit =

1

2m2c2

1

r

dV

dr

−→
L · −→S = ξ(r)

−→
L · −→S (10.12)

The term (10.12) is the potential energy of−→µ s in the internal magnetic �eld−→B orbit

introduced by the 'moving' electron itself. In the system where the electron is at
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the origin with velocity zero, the nucleus is 'moving' and creates a magnetic �eld
of −→B ∝ 1

2m2c2e
1
r

dV
dr

−→
L with the potential V = − Ze2

4πε0r
. This term is called spin-orbit

interaction, explaining the doublet structure of spectral lines.

Alkali metals have only one valence electron and if ` 6= 0 we have to take into
account the −→L ·−→S term. The electron spin can be oriented parallel or antiparallel
to −→L .

Example Na with 11 electrons (one valence electron):
[(1s)2|(2s)2(2px)

2(2py)
2(2pz)

2|3s]
Since the inner shells screen the nucleus charges the e�ective potential for the
valence electron is

Veff = −α(r)

r
. (10.13)

For small distances the potential is the Coulomb potential with nucleus charge Z,
and for large distances the e�ective nucleus charge is Z = 1. Assuming a transition
from 3p → 3s the −→L ·−→S coupling introduces a splitting of the ` degenerated states
and we �nd a doublet structure of transitions (see Fig. 10). In sodium atoms we

L  S
3p

3s

3p

3s

3p

3/2

1/2

Abbildung 10.2. Screening of the nucleic charge by the inner electrons; green: Coulomb po-
tential with Z = 1; black: Coulomb potential with Z; red: e�ective potential due to screening.
Degenerate transitions from the 3p → 3s orbital will split because the total angular momentum
quantum number is j = `± s = 1± 1

2 and allows two terms.

�nd two transitions from 3p → 3s with D1, 589.59 nm and D2, 588.96 nm (3s do
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not split). An estimation of the spin-orbit interaction strength for atoms is

V (r) = − e2

4πε0r
⇒ dV

dr
=

e2

4πε0r2
(10.14)

1

2m2c2

1

r

dV

dr

−→
L · −→S ≈ e2

8πε0m2c2
0r

3
~2

with 〈 1

r3
〉n=2,`=1 =

1

(3a0)3
(10.15)

−−→µ s · −→B orbit ≈ 0.4 10−23 J ≈ 0.25 10−4 eV ≈ 0.2 cm−1 (10.16)
with µs ≈ µB ≈ 10−23 Am2 (10.17)

⇒ −→
B orbit ≈ 10−23 J

10−23 Am2
≈ 1 Tesla (10.18)

The internal magnetic �eld leading to spin-orbit interaction is of the strength of
external magnetic �elds (Zeeman e�ect).

10.1 Spin-orbit and additional couplings
The orbital angular momentum operator −→L acts on the spatial coordinates, while
the spin operator −→S acts only on the spin coordinates. Therefore both operators
commute and we can add them to the general angular momentum operator −→J

[−→
L ,
−→
S

]
= 0 (10.19)

−→
J =

−→
L +

−→
S (10.20)

[Ji, Jj] = i~Jk, (i = x, y, z; j = y, z, x; k = z, x, y). (10.21)

There exist simultaneous eigenfunctions ψjmj
of −→J 2 and Jz

−→
J 2ψjmj

= j(j + 1)~2ψjmj
j = {0, 1

2
, 1,

3

2
, . . .} (10.22)

Jzψjmj
= mj~ψjmj

mj = {−j, −j + 1, . . . , j}. (10.23)

Without coupling −→L · −→S = 0 the wave functions are

ψn`m`sms ∝ Rn`(r)Y`m(ϑ, ϕ)χsms (10.24)

χ1/2,1/2 =

(
1
0

)
; χ1/2,−1/2 =

(
0
1

)
. (10.25)

With −→L ·−→S 6= 0 the quantum numbers m` and ms are no good quantum numbers
any more, since [H0, Lz] 6= 0 and [H0, Sz] 6= 0. We need a new basis of simulta-
neous eigenfunctions of the operators −→L 2,

−→
S 2,

−→
J 2, Jz, which commute with each
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other and with −→L · −→S , and H0. The new eigenfunctions are of the type ψnjmj`s

and for a given ` the possible values for j are (vector model)

|`− s| ≤ j ≤ |` + s|. (10.26)

If we take H ′
SL as a perturbation

H ′
SL = ξ(r)

−→
L · −→S (10.27)

= ξ(r)
1

2
(
−→
J 2 −−→L 2 −−→S 2) (10.28)

with ψnjmj`s as the eigenfunctions of the unperturbed system with eigenvalues of
En, j(j +1)~2, mj~, `(`+1)~2, s(s+1)~2 then we can calculate the energy shifts
in �rst order perturbation theory for the hydrogen atom.

j = l + 1/2

j = l - 1/2

j = 1/2

l = 0

S

L

l ζnl

-(l+1) ζnl

Enl

1ζnl

-2 ζ nl

2p

a) b)

l = 1

2p3/2

2p1/2

2 x 3/2 +1 = 4

2 x 1/2 +1 = 2

2 j +1:

Abbildung 10.3. Spin-orbit coupling in a hydrogen atom. a) possible relative orientations of
vectors L and S to each other; b) level splitting due to spin-orbit interaction and the number
of degeneracy (2j+1) for each level.

∆ESL =

∫
ψ∗njmj`s

{
ξ(r)

1

2
(
−→
J 2 −−→L 2 −−→S 2)

}
ψnjmj`sd

−→r (10.29)

=
~2

2

[
j(j + 1)− `(` + 1)− 3

4

]
〈ξ(r)〉. (10.30)

Physics of Atoms and Molecules



124 10 Spin of the electron

For a hydrogen atom 〈ξ(r)〉 can be calculated exactly

〈
1

r3

〉

n`m

=
Z3

a3
0n

3`(` + 1
2
)(` + 1)

(10.31)

〈ξ(r)〉 =
1

2m2c2
0

Ze2

4πε0

Z3

a3
0n

3`(` + 1
2
)(` + 1)

(10.32)

`=0 j=1/2⇒ ∆ESL = 0 (10.33)
` 6=0 j=`+1/2⇒ j(j + 1)− `(` + 1)− 3

4
= ` (10.34)

` 6=0 j=`−1/2⇒ j(j + 1)− `(` + 1)− 3

4
= −`− 1 (10.35)

(
1

a0

)3

=
(αmc

~

)3

, with α =
e2

4πε0~c0

(10.36)

∆ESL =

(
mc2(Zα)4

4n3`(` + 1
2
)(` + 1)

)

︸ ︷︷ ︸
ζn`

·
{

`, j = ` + 1
2

−`− 1, j = `− 1
2

(10.37)

∆ESL,`+1/2 = ` ζn`, j = ` +
1

2
(10.38)

∆ESL,`−1/2 = −(` + 1) ζn`, j = `− 1

2
(10.39)

The energy splitting is proportional to the 4th power of the nuclear charge and
4th power of the �ne structure constant ∆ESL ∝ (Zα)4. The term ζn` is always
positive so that we have a splitting in two levels, one is energetically higher (j =
` + 1

2
) and the other one is energetically lower (j = `− 1

2
). Thus, the degeneracy

due to ` is reduced, but there is still some degeneracy left (2j+1). The splitting in
two levels was thought to explain the doublet line structure, but the calculations
do not �t with the experimental results! This is because of the fact that the
SE does not contain any relativistic corrections. The relativistic expression for
the kinetic energy of an electron is Ekin =

√
p2c2

0 + m2c4
0 − mc2

0, which can be
developed in a Taylor expansion. Relativistic corrections are included in the Dirac
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equation (next order correction terms)

E ′ψ =

[
− ~

2

2m

−→∇2 + V (r) +
~2(E ′ − V (r))

4m2c2
0

−→∇2

+
1

2m2c2
0r

dV

dr

−→
L · −→S − ~2

4m2c2
0

dV

dr

∂

∂r

]
ψ (10.40)

H =
−→p 2

2m
+ V (r)−

−→p 4

8m3c2
0︸ ︷︷ ︸

I

+

1

2m2c2
0r

dV

dr

−→
L · −→S

︸ ︷︷ ︸
II

+
π~2Ze2

2m2c2
04πε0

δ(−→r )

︸ ︷︷ ︸
III

(10.41)

E = En` + ∆ELS + ∆Erel. + ∆EDar (10.42)

∆Erel. = −mc2
0(Zα)4

2

[
1

n3(` + 1
2
)
− 3

4n4

]
(10.43)

∆EDar =

{
mc20
2

(Zα)4

n3 , ` = 0
0, else

(10.44)

Enj = En

[
1 +

(Zα)2

n

(
1

j + 1/2
− 3

4n

)]
(10.45)

Eexact
nj = mc2





√√√√1 +

(
Zα

n− j − 1/2 +
√

(j + 1/2)2 − Z2α2

)2

− 1





.

The term I is the second term of the Taylor expansion and the next term for
relativistic corrections to the kinetic energy and does not act on the spin varia-
ble. Term II is the spin-orbit coupling, introducing an explicit coupling between−→
L and −→S . Term III is called Darwin term and is only relevant for ` = 0 where
δ(−→r ) is not vanishing. This term does not act on the spin variable.

The exact solution Eexact
nj is obtained by solving the Dirac equation for the Cou-

lomb potential. Enj agrees with the exact solution up to order (Zα)2. The energy
levels depend only on the principal quantum number n and the total angular
momentum quantum number j, with j = 1/2, 3/2, . . . , n− 1/2. To each value of
j correspond two possible values of ` given by ` = j±1/2, except for j = n−1/2
where we �nd only one state. For example the levels 2p, 2s are split by the spin-
orbit coupling and relativistic corrections in 2 levels (doublets) as shown in Fig.
10.1. However, experiments show that there is a (very small) additional splitting
of degenerate levels called Lamb shift. In Q.E.D. 'radiative corrections' to the
Dirac theory are obtained by taken into account the interaction of the electron
with the quantised electromagnetic �eld. A qualitative explanation given by T.A.
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2p, 2s

l = 0, 1

 n = 2

2p
3/2

2s
1/2

2p
1/2

2p
3/2

2p      ;
1/2

2s
1/2

L  S.

L  S. + rel. Lamb shift

2p     
1/2

2s
1/2

Abbildung 10.4. Spin-orbit coupling in an atom with electron spin 1/2. The spin - orbit
coupling alone would split the 2s and the 2p levels into three di�erent levels, but since the total
corrections (including relativistic e�ects) depend only on n and j we end up with two levels
of di�erent total angular momentum quantum number j. Additional splitting of the levels is
introduced due to the Lamb shift.

Welton (1948) is that a quantised radiation �eld in its lowest energy state is not
zero, but there exist zero-point oscillations. This means that even in the vacuum
there are �uctuations in this zero-point radiation �eld which can act on the elec-
tron, causing it to execute rapid oscillatory motions so that the charge is 'smeared
out'. If the electron is bound by a non-uniform electric �el, as in atomic systems,
it will therefore experience a potential which is slightly di�erent from that corre-
sponding to its mean position. In particular, the electron in a one-electron atom
is not so strongly attached to the nucleus at short distances. As a result, s states
(which are most sensitive to short-distance modi�cations because |ψ(0)|2 6= 0
for these states) are raised in energy with respect to other states, for which the
corresponding modi�cations are much smaller. The Lamb shift decreases with
increasing `. The modi�cations of the s1/2 level is roughly 10% of the energy
di�erence of p3/2 − p1/2, so that the s1/2 level lies higher than the p1/2 level. The
p3/2 energy levels are shifted about 0.2% of the energy di�erence d5/2 − d3/2 of
the d5/2 and d3/2 levels, resulting in an upshift of the p3/2 level with respect to
the d3/2 level. The resulting Lamb shifts are of the order of 0.03 cm−1.

Since the dipole operator −→D = −e−→r does not depend on the spin, the selecti-
on rules derived above for the quantum number ` (in the dipole approximation)
remains

∆` = ±1 (10.46)
∆j = 0, ±1 (10.47)

For example we see from Fig. 10.1 that the multiplet np−n′s has two components.
Thus each line of the Lyman series (hydrogen atom, lower state n = 1) is split
by the �ne structure into a pair of lines called a doublet, corresponding to the
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transitions
np1/2 − 1s1/2, np3/2 − 1s1/2. (10.48)

We see that in the case of the Balmer series (lower state n = 2) the mulitplet

n's

np

np

1/2

1/2

3/2 j = 3/2

j = 1/2

j = 1/2 n'p

nd

nd

1/2

3/2

5/2 j = 5/2

j = 3/2

j = 1/2

n'p3/2 j = 3/2

Abbildung 10.5. Transitions of the Lyman series of hydrogen.

nd − n′p has three components and we �nd seven transitions in total. However,
since the levels ns1/2 and np1/2 coincide, as well as the levels np3/2 and nd3/2,
the Balmer line (see Fig. 10.1) contains �ve distinct components (without Lamb
shift). Since the radial integrals are the same for both transitions np3/2 − n′s1/2

and np1/2 − n′s1/2, it is easy to obtain from the angular parts of those integrals,
(that is from angular momentum considerations) the ratio of the two transition
probabilities, which is found to be equal to 2. More generally, the ratios of the
transition probabilities for the most important special cases are

sp trans. :
s1/2 − p3/2

s1/2 − p1/2

= 2 : 1 (10.49)

pd trans. : p3/2 − d5/2 : p3/2 − d3/2 : p1/2 − d3/2 = 9 : 1 : 5 (10.50)
df trans. : d5/2 − f7/2 : d5/2 − f5/2 : d3/2 − f5/2 = 20 : 1 : 14. (10.51)

Under most circumstances the initial states are excited in proportion to their
statistical weights, that is the (2j + 1) degenerate levels corresponding to an
initial state are equally populated. In this case the ratios of line intensities are
the same as those of the corresponding transition probabilities (for di�erent values
of mj).

In the case of the anomalous Zeeman e�ect the internal �eld or the spin-orbit
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Abbildung 10.6. Structure of the Hα lines of hydrogen and term scheme. The expected optical
spectrum is shown at the bottom of the picture, thicker lines correspond to stronger transitions.
Energies are given in wavenumbers.

coupling is dominant and the external magnetic �eld is weak and is treated as
the perturbation. The unperturbed Hamiltonian is

H0 = − ~
2

2m
4− Ze2

4πε0r
+ ξ(r)

−→
L · −→S (10.52)

with ψnjmj`s eigenfunctions of the unperturbed system and eigenfunctions of
{−→J 2,

−→
L 2,

−→
S 2, Jz}. The perturbation is

H ′ = −−→µ J · −→B = −−→µ L · −→B −−→µ S · −→B (10.53)
=

µB

~
Bz(Lz + 2Sz) =

µB

~
Bz(Jz + Sz) (10.54)

To �rst order perturbation theory the energy shift is

∆E =
µBz

~

∫
ψ∗njmj`s(Jz + Sz)ψnjmj`sd

−→r (10.55)

The �rst term is easy to evaluate (mj~) but the second term is problematic and
is a result of gS = 2.

∆E = µBzmj +
µBz

~

∫
ψ∗njmj`s(Sz)ψnjmj`sd

−→r (10.56)
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To analyze the second term we use the following operator identity and examine
its expectation value in the Dirac notation

2i~
−→
V =

−→
J ×−→V +

−→
V ×−→J (10.57)[−→

J 2, [
−→
J 2,

−→
V ]

]
= 2~2(

−→
J 2−→V +

−→
V
−→
J 2)− 4~2(

−→
V · −→J )

−→
J (10.58)

〈`sjmj|−→V −→J 2|`sjmj〉 = 2〈`sjmj|(−→V · −→J )
−→
J |`sjmj〉 (10.59)

j(j + 1)~2〈`sjmj|−→S z|`sjmj〉 = 2〈`sjmj|(−→S · −→J )
−→
J z|`sjmj〉 (10.60)

j(j + 1)~2〈`sjmj|−→S z|`sjmj〉 = 2~mj〈`sjmj|
−→
J 2 −−→L 2 +

−→
S 2

2
|`sjmj〉 (10.61)

j(j + 1)~2〈Sz〉 = ~mj〈jmj`s|~
2

2
[j(j + 1)− `(` + 1) + s(s + 1)]|jmj`s〉

(10.62)
and we can conclude

〈jmj`s|Sz|jmj`s〉 = ~mj
j(j + 1)− `(` + 1) + s(s + 1)

2j(j + 1)
. (10.63)

Inserting (10.63) we �nd the energy shift

∆Emj = µBBzmj +
µBBz

~
〈jmj`s|Sz|jmj`s〉 (10.64)

= µBBzmj

{
1 +

j(j + 1)− `(` + 1) + s(s + 1)

2j(j + 1)

}

︸ ︷︷ ︸
gJ

(10.65)

= gJµBBzmj (10.66)
and the term gJ in (10.66) is called Landé factor. We found the interaction term
for perturbation theory which is

VB = −−→µ J,eff · −→B (10.67)

−→µ J,eff = −gJµB

−→
J

~
(10.68)

VB = gJ
µB

~
−→
J · −→B (10.69)

= gJµBBzmj (10.70)

The vector −→µ J is not parallel to −→J , but −→µ J,eff is parallel to −→J . In the case of
s = 0 the Landé factor becomes gJ = 1 = gL, and if ` = 0 then it is gJ = 2 = gS.
In general this is not the case and we have gJ 6= 1, 2. For a single electron we
have j = l ± 1/2 and the energy shifts are

∆Emj
=





2`+2
2`+1

µBBzmj, j = ` + 1
2

2`
2`+1

µBBzmj, j = `− 1
2

(10.71)
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In contrast to the normal Zeeman e�ect (s = 0) the splitting of the levels are not
equidistant any more, because the g-factor is di�erent for di�erent levels. This
result in more di�erent transitions.

� ` = 0 (s-state), gJ = 2 = gS

� ` = 1 (p-state), gJ =





4
3
, j = 3

2

2
3
, j = 1

2

The selection rules are (dipole approximation)

∆m` = 0, ±1 ⇒ ∆mj = 0, ±1 (10.72)

The scheme in Fig. (10.1) explains the observed additional splitting of the so-
dium D1 and D2 lines upon transitions from 3p1/2 → 3s1/2 and 3p3/2 → 3s1/2,
respectively.

The connection between −→J , −→µ J and −→µ J,eff can be explained as follows: The vec-
tors −→L and −→L are coupled via HSL to −→J and precesses about the vector −→J with
high velocity ω = ESL/~. The magnetic moment −→µ J also precesses fast about
the −→J direction. −→J itself precesses slowly about the magnetic �eld −→B (z-axis),
since the external �eld is much weaker than the internal �eld leading to spin-orbit
coupling. Averaged over the slow precession only the component of −→µ J that is
parallel to −→J is not averaged out, because during the slow precession about −→B
we average over many round trips of −→µ J about −→J . Taking this model we can
calculate −→µ J,eff as the projection of −→µ J on −→J .

|−→µ J,eff | = −→µ J ·
−→
J

J
(10.73)

EB = −−→µ J,eff · −→B = −|−→µ J,eff |
−→
J · −→B

J
(10.74)

= −
(
−→µ J ·

−→
J

J

)(−→
J · −→B

J

)
(10.75)

= −µB

~

(
(
−→
J +

−→
S ) ·

−→
J

J

)(−→
J · −→B

J

)
(10.76)

=
µBBz

~
Jz

(
−→
J 2 +

−→
S ) · −→J

|−→J 2|
(10.77)

=
µBBz

~
Jz

{−→
J 2 + 1

2
(
−→
J 2 +

−→
S 2 −−→L 2)

−→
J 2

}
(10.78)
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l, s = 1/2

j = l + 1/2

j = l - 1/2

mj

+ l + 1/2

- l - 1/2

+ l -1 + 1/2

+ l - 1/2

- l + 1/2

LS + rel. Zeeman 

p3/2

mj

3/2

1/2

-1/2s1/2

1/2

-1/2

-3/2

s-s+p

Dm = 0

Dm = -1

Dm = +1

6 lines

Splitting:

Transitions:

Abbildung 10.7. Splitting of energy levels and transitions induced by the anomalous Zeeman
e�ect. The di�erent energy levels split by di�erent Landé factors. For example the p3/2 level
split in 4 new levels displaced by 4/3µBBz. The s1/2 level split in two levels displaced by 2µBBz.
As a result the 6 transitions have di�erent energies and we observe 6 transitions in total.

If we insert the eigenvalues of −→J 2 = ~2j(j + 1) and of −→S 2, −→L 2 and Jz we �nd

〈EB〉 = ∆Emj
=

µBBz

~
~mj

~2

~2

{
j(j + 1) + 1

2
[j(j + 1) + s(s + 1)− `(` + 1)]

j(j + 1)

}

= µBBzmj

[
1 +

j(j + 1) + s(s + 1)− `(` + 1)

2j(j + 1)

]
(10.79)

= gJµBBzmj (10.80)
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10.2 Spin of a nucleus
In addition to the magnetic moment of the spin of the electron, the protons and
neutrons of the nucleus have also a total angular momentum −→

I , called nuclear
spin. The nuclear spin of a proton or neutron is I = 1

2
and I is the nuclear spin

quantum number. The eigenvalues of the operator −→I 2 are I(I+1)~2. The eigenva-
lues of the operator Iz have possible values of MI~, with MI = −I, −I+1, . . . , I.
A nucleus may possess 2k-pole moments, with k odd for magnetic moments and
k even for electric moments. Here we consider the nucleus as a point dipole with
a magnetic dipole moment −→µI proportional to the nuclear spin −→I .

−→µ I = gIµK

−→
I

~
(10.81)

µK =
e~

2Mp

=
me

Mp

µB =
1

1836.15
µB (10.82)

µK = 5.05078× 10−27JT−1 (10.83)
(−→µ I)z = gIµKmI (10.84)

Values of the spin, Landé factor and magnetic moment of the nucleons and some
nuclei are

Nucleus Spin I Landé factor gI µI (in µB) Natural abundance (%)
proton p 1/2 5.588 2.792 99.88
neutron n 1/2 -3.826 -1.913 -
deuteron 2

1D 1 0.857 0.857 -
3
2He 1/2 -4.255 -2.127 -
4
2He 0 - 0 -
12
6 C 0 - 0 -
13
6 C 1/2 1.404 0.702 1.1
16
8 O 0 - 0 -
19
9 F 1/2 5.257 2.628 100
31
15P 1/2 2.263 1.131 100
199
80 Hg 1/2 1.005 0.502 -
201
80 Hg 3/2 -0.371 -0.556 -

The contributions of the angular momenta were added to a total angular
momentum −→

F

−→
F =

−→
J +

−→
I (10.85)

|−→F | = ~
√

F (F + 1). (10.86)
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The quantum number F can take on values F = j + I, j + I − 1, . . . , j − I. In
total 2I + 1 or 2j + 1 possibilities, depending whether I is bigger than j or vice
versa. Knowing one of the numbers (I or j) one can determine the other one by
counting the number levels in the hyper�ne structure. The additional magnetic
interaction energy from the hyper�ne coupling is

∆EHFS = −−→µ I · −→B J (10.87)
= −µIBJ cos(∠−→µ I ,

−→
B J) (10.88)

= gIµKBJ
F (F + 1)− I(I + 1)− J(J + 1)

2
√

J(J + 1)
(10.89)

=
a

2
[F (F + 1)− I(I + 1)− J(J + 1)] (10.90)

a =
gIµKBJ√
J(J + 1)

(10.91)

= 2µ0µBgIµK
1

j(j + 1)
|ψn00(0)|2 (10.92)

|ψn00(0)|2 =
Z3

πn3a3
0

(10.93)

∆EF+1 −∆EF = a(F + 1). (10.94)

The magnetic �eld BJ is the magnetic �eld induced by the internal electrons at
the nucleus. For some atoms the magnetic �eld is (in Tesla)

n 2S1/2
2P1/2

2P3/2

Na 3 45 4.2 2.5
K 4 63 7.9 4.6
Rb 5 130 16 8.6
Cs 6 210 28 13

� The constant a is called hyper�ne separation constant and can be calculated
for j = 1/2 by equation (10.92). For s-orbitals the probability density at the
nucleus does not vanish and the magnetic �eld induced by the s-electrons
at the nucleus interact with the nucleic magnetic moment. This interaction
is called Fermi contact interaction and is isotropic. In the case of ` > 0 the
probability density vanishes at the nucleus and the interacting magnetic
�eld BJ results from dipole-dipole interaction between magnetic moment of
the electrons and magnetic moment of the nucleus. The hyper�ne separation
constant becomes anisotropic.

� BJ and ∆EHFS are bigger the smaller the distant of the electrons form the
nucleus is. They increase with increasing Z, and decreasing n and `.
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� The hyper�ne splitting is zero for I = 0 or J = 0

� For a hydrogen atom the hyper�ne separation constant is a = 1420 MHz =
0.0475 cm−1 = 5.9 · 10−6eV

� The hyper�ne splitting of spectral lines is small. For 2S1/2 of Li the splitting
is 0.027 cm−1.

� Without external magnetic �eld the degeneracy is (2F + 1), with magnetic
quantum number mF .

� The selection rules for optical transitions are ∆F = 0, ±1.

n = 1

l = 0

j = 1/2

a/4

3a/4

F = 1

F = 0

0.0475 cm-1

 (λ = 21 cm)

 e- p

Abbildung 10.8. Hyper�ne separation of a hydrogen atom in the ground state. The spin of
electron and proton can be oriented parallel (F=1) or antiparallel (F=0). The splitting due to
hyper�ne interaction (1.420 GHz) is about six times smaller than the Lamb shift.

The energy di�erence can be measured either directly upon absorption of the
matching high frequency radiation leading to a spin �ip or by determining the
splitting of the spectral lines. By measuring of the energy di�erence one can
calculate the gS value of the electron to be 2.0023 (magnetic moment of proton
and electron is known).

10.2.1 Hyper�ne splitting in an external magnetic �eld
An important tool to investigate the hyper�ne structure is applying an external
magnetic �eld −→B 0 in addition to the internal �eld. The resulting splitting of states
depend on the relative strengths of both �elds. The case of weak external �elds−→
B 0 in comparison to −→B J is called Zeeman-e�ect of the hyper�ne structure. Here,
the coupling of −→I , −→J , and −→F is maintained and the vectors of −→I and −→J precesses
about the −→F vector around the −→B 0 direction. The frequency of −→I and −→J about
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−→
F is fast in comparison to the precession frequency of −→F about −→B 0. Therefore,
the remaining components are the Fz = mF~ components (−→B 0 parallel to the
z-axis) with mF = F, F − 1, . . . , −F . The selection rules are ∆F = 0, ±1 and
∆mF = 0, ±1. The energy splitting of the Zeeman hyper�ne splitting is

∆EZHFS = −−→µ F · −→B 0 (10.95)
∆EZHFS = gF µBB0mF (10.96)

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

−gI
µK

µB

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
(10.97)

Since µB À µK the second term is negligible.

If the external magnetic �eld becomes stronger, the vectors −→I and −→J do not
couple any more. The −→L · −→S coupling is stronger (coupling of electrons) and
remains, while the coupling between the nucleic magnetic moment and the elec-
tronic magnetic moment is strongly reduced. This e�ect is called Paschen-Back
e�ect of the hyper�ne interaction.

a =
gIµKBJ√
J(J + 1)

(10.98)

∆EPBHFS = gJµBmJB0 + amJmI − gIµKB0mI (10.99)

10.2.2 Electron spin resonance (EPR)
The technique of electron paramagnetic resonance (EPR) gives information on
structure and dynamics of paramagnetic atoms and molecules. Especially the
detection of triplet states (next chapter) is possible with EPR. Generally the
molecules are diamagnetic and show no EPR signal. Paramagnetic molecules are

� Molecules with paramagnetic atoms such as Fe3+ or [Fe(CN)6)]
3− which are

still paramagnetic with paired valence electrons.

� Radicals with an unpaired electron. There are stable radicals such as DPPH
(Diphenyl-Picryl-Hydracyl) and radicals which can be created upon illumi-
nation or chemical reactions.

� Molecules in the triplet state. For some molecules the electronic ground
state is a triplet state (O2, NO, NO2) and other molecules relax into a
metastable triplet state after light excitation, such as naphthaline, chlo-
rophylls, corroles, etc. The lifetime of the excited triplet states are in the
range of 10−6s.
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B0

1/2gµBB0

-1/2gµBB0

+a/4

+a/4

-a/4

-a/4
+1/2gIµKB0

+1/2gIµKB0

-1/2gIµKB0

-1/2gIµKB0
ms mI

+1/2 +1/2

+1/2 -1/2

-1/2 -1/2

-1/2 +1/2

Zeeman energy

 of the electron 

     gµ
B
mSB0

Hyperfine 

interaction  

   am
I
mS

Zeeman energy

 of the nucleus 

     -gIµK
mIB0

Magnetic dipole

    transitions

            

B0 B0

 a

Abbildung 10.9. Hyper�ne structure of a hydrogen atom in strong magnetic �eld and hy-
per�ne structure of the EPR. Lower panel: left: EPR spectrum of a free electron; right: EPR
spectrum of proton bound electron in a strong magnetic �eld.

An electron with the magnetic moment |−→µs| = µBgS

√
s(s + 1) has two possible

orientations ms = ±1/2 in a magnetic �eld −→B 0 with energy di�erence ∆E

∆E = gsµBB0 (10.100)

Applying an electromagnetic �eld perpendicular to the magnetic �eld with the
frequency ν = 2.8026 · 1010B0

Hz
T

can induce transitions between the spin levels
of a 'free electron'. Selection rules for the magnetic dipole transitions are

∆ms = ±1. (10.101)

For magnetic �elds in the range of 0.1T to 1T the frequencies are in the range
of microwaves (frequencies of GHz). The g-factor of the paramagnetic electron
can be determined by EPR. Generally the g-factor is a tensor and has di�erent
values along di�erent axes. This is because of the interaction with the magnetic
�elds induced by the 'local currents' of the neighboring electrons (in chemical
bonds). Thus, di�erent chemical bonds can produce di�erent chemical shifts.
Nevertheless, the g-factor is often very similar to gS (free electron).

More important are the contributions from the hyper�ne interaction with the
nuclear spin −→I . The external and internal magnetic �elds add up for the electron,
where dipole-dipole interactions between nucleic and electronic magnetic dioples
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are averaged out in solution (rotation of the molecules). The remaining part is
the Fermi contact interaction

Bloc = B0 + amI (10.102)
hν = gµB

(
B ± a

2

)
(10.103)

∆ms = ±1, ∆mI = 0 (10.104)

In an experiment with N equivalent protons interacting with one electron (e.g.

B0

mI

+1/2

-1/2

B0

 a

+1/2

-1/2

Abbildung 10.10. Hyper�ne interaction of the magnetic moments of an electron and a nucleus
(I = 1/2). In total there are four levels and two resulting transitions. Because of the experi-
mental setup the measured signals are derivatives of absorption signals. They are separated by
the hyper�ne separation constant.

benzene-radical) we �nd N + 1 equivalent hyper�ne lines with intensity ratios
given by the Pascal triangle (1:6:15:20:15:6:1). Here we have to count all possible
orientations of the equivalent spins.

Interaction between two di�erent electron spins introduce a dipole-dipole inter-
action term HD

HD = g2µ2
B

{−→
S 1 · −→S 2−→r 3

12

− 3(
−→
S 1 · −→r 12)(

−→
S 2 · −→r 12)−→r 5

12

}
(10.105)
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which connects the distance between the two spins with its relative orientation
to the interaction strengths. This dipole-dipole interaction term shifts the ener-
gy levels and the energetic positions of the resonance frequencies. The shifts are
proportional to 1

r3 and give information about the averaged distances of the in-
teracting electrons. This is especially useful in super-molecules such as proteins
(photosystems).

10.2.3 Nuclear magnetic resonance (NMR)
In NMR experiments the Lamor frequency of the nuclear spins were measu-
red. Since the magnetic moment of a nuclear spin is about 2000 times smal-
ler than the magnetic moment of an electron, the magnetic �eld of the electron
has to vanish at the nuclei of the investigated atoms and molecules. This is
the case for atoms such as Hg, Cu, C, and S as well as for many molecules li-
ke H2O, CaO, LiCl, CO2, H2, NH3 and most biological molecules. The potential
energy of the nucleic magnetic moment within the magnetic �eld −→B 0 is

ENMR = −−→µ I · −→B 0 (10.106)
= −gIµKB0mI (10.107)

∆mI = ±1 (10.108)
|∆ENMR| = gIµKB0 (10.109)

νNMR =
gIµK

h
B0 (10.110)

ωNMR =
gIµK

~
B0 = γB0 (10.111)

µI = gIImaxµK (10.112)

ν = 762.3
µI

I
B0

[Hz]

[Gauss]
. (10.113)

Equation (10.113) is the resonance condition for r.f. absorption in units of Hz /
Gauss (1 Tesla∼= 10 kGauss) leading to spin �ip processes. The ratio of absorption
(N1 → N2) and emission depends on the population ratio given by Boltzmann
statistics

N1 −N2

N1 + N2

=
1− e−gIµKB0/(kBT )

1 + e−gIµKB0/(kBT )
≈ gIµKB0

2 kBT
. (10.114)

Protons in di�erent electronic environments experience di�erent amounts of shiel-
ding σ, and the resonance absorption of light energy will occur at di�erent values
for the applied �eld or irradiating light frequency. These changes are referred to
as chemical shifts.

Beff = B0 −Binduced (10.115)
Beff = B0 − σB0 (10.116)

hν = gIµKBlocal = gIµKB0(1− σ). (10.117)
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B0

r.f.

N S

B1

Abbildung 10.11. NMR setup; The sample (green) is positioned in a homogeneous and con-
stant magnetic �eld B0; perpendicular to B0 an additional magnetic �eld B1 is generated with
a high frequency generator (r.f.); absorption of the r.f. �eld result in nuclear spin �ips and in
reducing the power of the induction coil, which is the measured quantity.

A possible NMR setup is presented in Fig. 10.2.3. In the static magnetic �eld
along the z-axis, all nuclear magnetic spins precesses about the z-axis. Applying
a NMR pulse of duration τp and rotation angle β with β = −γB1τp rotates the
equilibrium magnetization M0 about the direction of the applied r.f. �eld B1. For
an r.f. �eld applied along the y-axis, the initial magnetization after the pulse is

Mx(0) = M0 sin β (10.118)
My(0) = 0 (10.119)
Mz(0) = M0 cos β. (10.120)

The subsequent free induction decay can be described in terms of two components

Mx(t) = M0 sin(β) cos(Ωt)e−t/τ2 (10.121)
My(t) = M0 sin(β) sin(Ωt)e−t/τ2 (10.122)
M(t) = Mx(t) + iMy(t) = M0 sin βeiΩt−t/τ2 . (10.123)

The complex signal s(t) obtained by simultaneous observation of both x- and
y-components by quadrature detection, is directly proportional to the complex
magnetization M(t). This signal may be subjected to a complex Fourier trans-
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formation

S(ω) =

∞∫

0

s(t)e−iωtdω (10.124)

S(ω) = v(ω) + iu(ω) (10.125)
v(ω) = M0 sin β a(∆ω) (10.126)
u(ω) = −M0 sin β d(∆ω) (10.127)
∆ω = ω − Ω (10.128)

a(∆ω) =
1/τ2

(1/τ2)2 + (∆ω)2
(10.129)

d(∆ω) =
∆ω

(1/τ2)2 + (∆ω)2
(10.130)

The equations (10.129) and (10.130) represent absorption and dispersion signals,
respectively. Obviously, the maximum signal amplitude is obtained for a pulse
rotation angle β = π/2. The transverse relaxation time τ2 gives the width of the
absorption spectra.

Some properties of NMR spectroscopy are

� The energy di�erences are very small of about 10−4 to 10−8 eV.

� In NMR magnetic dipole transitions were detected (not electric dipole tran-
sitions).

� The wavelength of the used radiation is big with respect to the sample
dimensions. Thus, all nuclei can be excited coherently with the same phase.

As a result of the small energy di�erences a reference standard - the molecule te-
tramethylsilane (CH3)4Si commonly abbreviated TMS - is measured in addition
to the sample of interest. The detected resonance frequencies are expressed as δ
in ppm

δi =
νi − νTMS

ν0

× 106 ppm. (10.131)

In addition to the chemical shift of protons, one can also measure the chemical
shift of the carbons. In methane it is -2.1 ppm, and the chemical shift of the two
equivalent CH3 carbons in ethane is 5.9 ppm.

Direct magnetic dipole-dipole interaction between nuclei A and B change the
magnetic �eld at the nucleus B. The magnetic �eld from the nucleus A at the
position of nucleus B depend to the third power on the distance between the
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nuclei, and depend on the orientation of the angle ϑ with respect to the vector−→r AB and is given by

BA = −µ0

4π
gIµKmI

1

r3
AB

(1− 3 cos2 ϑ). (10.132)

Assuming nucleus A to have spin 1/2, we have two orientations of the spin with
respect to the external magnetic �eld B0±BA for parallel and antiparallel orien-
tations. The nucleus B can see two di�erent magnetic �elds B0 +BA or B0−BA,
leading to a resonance doublet of splitting 2BA. The same interaction is acting
on the nucleus A. The energy splitting of the doublet is called spin-spin interac-
tion J (see Fig. 10.2.3). In solid state samples the magnetic �eld BA induced by
spin-spin coupling can be as big as 10−4 T (for distances of 0.2 nm). In liquid
samples the molecules rotate and move very fast, so that the term (1−3 cos2 ϑ) is
averaged out and becomes zero. In super-molecules, such as proteins the rotation
is very slow and the dipole-dipole interaction does not vanish. Therefore, in big
molecules we can make use of the dipole-dipole interaction to extract distances
and orientations from the spin-spin couplings. Indirect spin-spin coupling mecha-
nisms also exist. They are smaller than the direct coupling mechanisms and can
result from polarization of an electron magnetic moment by a nucleic magnetic
moment and vice versa. If the chemical shift is the same for several identical

∆δ

νA νB

J J

νAB νAB νBA νBA

Abbildung 10.12. Splitting of NMR lines by spin-spin coupling J. The magnetic �eld of spin
A in�uences the local �eld of spin B and vice versa. Here, J < δ.

nuclei, then the nuclei are called equivalent. The two protons in a CH2 group
and the three protons in a CH3 group are equivalent. They have identical reso-
nance lines (single line in the spectrum). If both group are part of one molecule
(CH3CH2OH), the di�erent equivalent protons can interact with each other and
the 3 protons of the CH3 group split into 3 lines with intensity ratio 1:2:1, due
to the coupling to the two protons of CH2. The coupling of the 3 CH3 protons
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with one proton of the CH2 introduce a splitting into two lines and the coupling
with the other proton again into two lines with the same coupling constant J (→
three lines). The two protons of the CH2 group split into 4 lines with intensity
ration 1:3:3:1. The direct and indirect spin-spin interactions do not depend on the
external magnetic �eld. The spin-spin interaction can be isolated by measuring
at di�erent external �eld strengths.

The nuclear magnetic resonance technique is very successful in visualizing the
consistence of a human body (Magnetic Resonance Tomography) and in re-
solving three dimensional structures of proteins on atomic resolution. The latter
uses coherence spectroscopy by exciting with two resonance �elds ω1 and ω2. For
short times (t < τ2) the two spins can interact coherently with each other resul-
ting in cross-peaks. The interaction strength gives information on the distance
and orientations of the spins.

Abbildung 10.13. Homonuclear 2D correlation spectrum of basic pancreatic trypsin inhibitor
(BPTI, with 58 amino-acid residues). Absolute mode.
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Abbildung 10.14. Absolute-value 2D NOE spectrum of the protein seminal inhibitor II A.
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10.3 Lifetimes of excited states
As we saw in the sections above, most experiments deal with dipole approximation
or dipole interactions. We learned that the intensity of a transition between a pair
of states f and i is proportional, in the dipole approximation, to the quantity
|−→r fi|2. The relative intensities of a series of transitions from a given initial state
i to various �nal states f are determined by the quantity ffi called oscillator
strength

ffi =
2mωfi

e~
|−→r fi|2 (10.133)

with ωfi = (Ef−Ei)/~. Note, that fki > 0 for absorption and fki < 0 for emission
processes. The oscillator strengths obey the sum rule, due to Thomas, Reiche and
Kuhn ∑

f

ffi = 1 (10.134)

where the sum is over all states, including the continuum. The transition rates for
spontaneous emission in the dipole approximation are given in terms of oscillator
strengths by

W s
fi =

2~α
mc2

ω2
fi|ffi|. (10.135)

For hydrogenic atoms the oscillator strengths and transition probabilities decrease
as the principal quantum number n of the upper level increases.

10.3.1 Atomic lifetimes
If N(t) atoms are in an excited state i at a particular time t, the rate of change
of N(t) is

Ṅ(t) = −N(t)
∑

f

W s
fi (10.136)

where W s
fi is the transition rate for spontaneous emission and the sum is over

all states f , of lower energy, to which decay is allowed by the selection rules. On
integration, N(t) can be expressed by

N(t) = N(t = 0)e−t/τi . (10.137)

where τi is called the lifetime of level i and is
1

τi

=
∑

f

W s
fi. (10.138)

For example, the lifetime of the 2p level of a hydrogenic atom is seen to be
τ = 0.16

Z4 10−8s. For higher nucleic charges is

τ(Z) =
1

Z4
τZ=1. (10.139)
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Average oscillator strengths for some transitions in hydrogenic atoms and ions
are shown below
Initial Final Continuum
level level n = 1 n = 2 n = 3 n = 4

∞∑
n=5

spectrum
1s np - 0.416 0.079 0.029 0.041 0.435
2s np - - 0.435 0.103 0.111 0.351
2p ns -0.139 - 0.014 0.003 0.003 0.008
2p nd - - 0.696 0.122 0.109 0.183

The lifetime of some levels of atomic hydrogen (in 10−8s) are
Level 2p 3s 3p 3d 4s 4p 4d 4f
lifetime 0.16 16 0.54 1.56 23 1.24 3.65 7.3

10.4 Density operator
The density matrix of a pure quantum state |ψ〉 is de�ned as:

ρ = |ψ〉|〈ψ|, (10.140)

when we expand ψ in a basis |n〉, we �nd

〈ψ| =
∑

n

cn〈n| (10.141)

|ψ〉 =
∑
m

c∗m|m〉 (10.142)

ρ =
∑
n,m

cnc∗m|n〉〈m| (10.143)

ρn,m ≡ 〈n|ρ|m〉 = cnc∗m. (10.144)

The expectation value of an operator A is de�ned as:

〈A〉 ≡ 〈ψ|A|ψ〉 =
∑
n,m

ρnmAnm. (10.145)

With the de�nition of the trace we have

Tr(Aρ) =
∑

n

(Aρ)nn =
∑

n

(
∑
m

Anmρmn) (10.146)

Tr(A) =
∑

n

Ann (10.147)

〈A〉 = Tr(Aρ) (10.148)
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The trace is invariant to unitary transformations (i.e. invariant to basis transfor-
mations). The time evolution of the density operator is given by

d

dt
ρ =

d

dt
(|ψ〉〈ψ|) =

(
d

dt
|ψ〉

)
〈ψ|+ |ψ〉

(
d

dt
〈ψ|

)
. (10.149)

Inserting this into the SE we �nd

d

dt
|ψ〉 = − i

~
H|ψ〉 (10.150)

d

dt
〈ψ| = +

i

~
H〈ψ| (10.151)

d

dt
ρ = − i

~
H|ψ〉〈ψ|+ i

~
|ψ〉〈ψ|H (10.152)

= − i

~
Hρ +

i

~
ρH (10.153)

⇒ d

dt
ρ = − i

~
[H, ρ]. (10.154)

Equation (10.154) is called Liouville von Neumann equation and describes the
time evolution of the system. Since the probability Pφ of �nding the system in
the state φ is given by Pφ = 〈φ|ρ|φ〉 (if φ is normalized), two systems are identical
if they have the same density operator.

The density operator can describe pure states ρ = |ψ〉〈ψ|, but also mixed states.
Equations

d

dt
|ψ〉 = − i

~
H|ψ〉 ⇔ d

dt
ρ = − i

~
[H, ρ] (10.155)

are identical, as long as ρ is the density matrix of a pure state. However, in general
we have statistical ensembles and there is no way to write down a wave function
of a statistical average, but we can write down the density matrix of a statistical
average. Let Pn be the probability of a system being in a pure state |ψ〉, then the
density matrix is de�ned as:

ρ =
∑

n

Pn|ψ〉〈ψ| (10.156)

with Pn ≥ 0 (10.157)∑
n

Pn = 1 (10.158)

ρnm = ρ∗mn (10.159)
ρnn = ≥ 0 (10.160)

Tr(ρ) = 1 (10.161)
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Let for example |ψ〉 be one of the basis states

|ψ〉 = |a〉 (10.162)

→ ρ =

(
1
0

) (
1 0

)
(10.163)

ρ =

(
1 0
0 0

)
(10.164)

or |ψ〉 = |b〉 (10.165)

→ ρ =

(
0
1

) (
0 1

)
(10.166)

ρ =

(
0 0
0 1

)
(10.167)

and a coherent superposition state of both (which is still a pure state) is

|ψ〉 =
1√
2
(|a〉+ |b〉) (10.168)

⇒ ρnm =
1√
2

(
1
1

)
1√
2

(
1 1

)
(10.169)

= cnc
∗
m =

(
1/2 1/2
1/2 1/2

)
. (10.170)

On the other hand, for a statistical average between both states with P1 = P2 =
0.5 we get

ρ =

(
1/2 0
0 1/2

)
. (10.171)

The diagonal elements are the same in both cases, but the o�-diagonal elements
which describe the coherence between both states are di�erent. Note, there is
no wave function |ψ〉 which would give a density matrix as in equation (10.171).
Assume we have a Hamilton operator with eigenstate basis so that we have

H =

(
ε1 0
0 ε2

)
(10.172)

d

dt

(
ρ11 ρ12

ρ21 ρ22

)
= − i

~

[(
ε1 0
0 ε2

)(
ρ11 ρ12

ρ21 ρ22

)
−

(
ρ11 ρ12

ρ21 ρ22

) (
ε1 0
0 ε2

)]

= − i

~

(
0 (ε1 − ε2)ρ12

(ε2 − ε1)ρ21 0

)
(10.173)

ρ̇11 = 0 ⇒ ρ11(t) = ρ11(0) (10.174)
ρ̇22 = 0 ⇒ ρ22(t) = ρ22(0) (10.175)

ρ̇12 = − i

~
(ε1 − ε2)ρ12 ⇒ ρ12(t) = e−i

ε1−ε2
~ tρ12(0) (10.176)

ρ̇21 = − i

~
(ε2 − ε1)ρ21 ⇒ ρ21(t) = e+i

ε2−ε1
~ tρ21(0). (10.177)

Physics of Atoms and Molecules



148 10 Spin of the electron

The diagonal elements are stationary in time (as expected) while the o�-diagonal
elements oscillate with the frequency splitting ω = ∆ε/~ = (ε1 − ε2)/~. In spec-
troscopic experiments the dephasing of an ensemble of molecules is observed. The
simplest approach to describe dephasing Γ (Γ real and positive) phenomenologi-
cally is:

ρ̇12 = − i

~
(ε1 − ε2)ρ12 − Γρ12 (10.178)

ρ12(t) = e−i
ε1−ε2
~ te−Γtρ12(0) (10.179)

ρ̇21 =
i

~
(ε2 − ε1)ρ21 − Γρ21 (10.180)

ρ21(t) = ei
ε2−ε1
~ te−Γtρ21(0). (10.181)

In the wave function picture it is not possible to describe dephasing. If we intro-
duce an interaction with an optical light �eld E(t):

H = H0 +
−→
E (t) · −→µ ' H0 +

−→
E 0

(
eiωt + e−iωt

) · −→µ , (10.182)

and we get

H = ε1|a〉〈a|+ ε2|b〉〈b| − −→µ · −→E (t)(|a〉〈b|+ |b〉〈a|) (10.183)

H =

(
ε1 −−→µ · −→E (t)

−−→µ · −→E (t) ε2

)
(10.184)

Nonlinear Optics:
The electric displacement −→D and the macroscopic polarization −→P is given by

−→
D = ε0

−→
E +

−→
P (10.185)

−→
P = ε0

(
χ(1)−→E + χ(2)−→E−→E + χ(3)−→E−→E−→E + . . .

)
(10.186)

−→
P (t) = Tr(−→µ ρ(t)) ≡ 〈−→µ ρ(t)〉, (10.187)

and for the example of a two level system we get

µ =

(
0 µ

12

µ
21

0

)
(10.188)

〈µρ(t)〉 = ρ12µ21
+ ρ21µ12

(10.189)
P (n)(t) = 〈µρ(n)(t)〉 (10.190)
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