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1 Preface

This introductory course on biophysics introduces the principles of electrical
excitability of cell membranes, which form the basis of all information pro-
cessing in the nervous system. The course covers some of the classical results,
such as cellular membranes, ionic currents, equilibrium behavior and action
potentials. The course is intended for physics students and will therefore
have an emphasis on physical modeling.

Section 2 is an introductory chapter, where I will give an overview of
some of the basic anatomical properties of the nervous system and of nerve
cells and discuss the spiking behavior of nerve cells and their functional
relevance. In section 3, I will discuss the stationary behavior of the cell, such
as the relation between ionic concentrations inside and outside the cell, the
ionic currents and the membrane potential. In section 4, I will discuss the
mechanism for action potential generation, spike propagation, linear cable
theory and the role of myelin. In section 5, I will discuss synapses and some
aspects of learning. In section 6, I will give a brief introduction to a class of
popular neural networks, the (multi-layered) perceptrons.

Bert Kappen
Nijmegen, January 2007
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2 Introduction to neurons and the brain

Perhaps the major reason that neuro science is such an exciting field is the
wealth of fundamental questions about the human brain (and the rest of the
nervous system) that remain unanswered. Such understanding entails unrav-
eling the interconnections of large numbers of nerve cells, that are organized
into systems and subsystems.

The fact that cells are the basic element of living organisms was recog-
nized early in the nineteenth century. It was not until well into the twen-
tieth century, however, that neuro scientists agreed that nervous tissue, like
all other organs is made up of these fundamental units. Santiago Ramón
y Cajal argued persuasively that nerve cells are discrete entities and that
they communicate with one another by means of specialized contacts called
synapses. The human brain is estimated to contain 100 billion neurons and
several times as many supporting cells, called neuroglial cells.

2.1 Nerve cells

In most respects, the structure of neurons resembles that of other cells. Each
cell has a cell body containing a nucleus, endoplasmic reticulum, ribosomes,
Golgi apparatus, mitochondria, and other organelles that are essential to the
function of all cells (see fig. 2). Specific for nerve cells, is their dendritic
structure (see fig. 3. The dendrites (together with the cell body) provide
sites for the synaptic contacts made by the terminals of other nerve cells and
can thus be regarded as specialized for receiving information. The number
of inputs that a particular neuron receives depends on the complexity of
its dendrite and can range from 1 to about 100.000. The information from
the inputs that impinge on the dendrites is ’read out’ at the border of the
cell body and the axon. The axon is an extension that may reach from a
few hundred micrometers to a meter. Typical axons in the brain a a few
millimeters long. Axons in the spinal cord are about a meter long. The
axon carries electrical signals over such distances through action potentials,
a self-generating electrical wave that propagates from the cell body to the
end of the axon.

The information encoded by action potentials is passed on to the next cell
by means of synaptic transmission. The arrival of the action potential causes
the release of neurotransmitters, which in turn modify the electrical proper-
ties of the post-synaptic cell. The net effect is a change of the membrane
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Figure 1: The brain consists of network of neurons (Ramón y Cajal, 1910).
Shown is one of the original Golgi stain images of rat cortex. Only a small
fraction of neurons are stained with this technique.
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Figure 2: The major light and electron microscopical features of neurons.
A) Diagram of nerve cells and their component parts. B) Axon initial seg-
ment (blue) entering a myelin sheath (gold). C) Terminal boutons (blue)
loaded with synaptic vesicles (arrowheads) forming synapses (arrows) with a
dendrite (purple). D) Transverse section of axons (blue) ensheathed by the
processes of oligodendrocytes (gold). E) Apical dendrites (purple) of cortical
pyramidal cells. F) Nerve cell bodies (purple) occupied by large round nu-
clei. G) Portion of a myelinated axon (blue) illustrating the intervals between
adjacent segments of myelin (gold) referred to as nodes of Ranvier (arrows).
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Figure 3: Cells stained with silver salts (Golgi stain). * indicates axon. a)
muscle cell b-d) retinal cells e) Cortical pyramidal cell f) Cerebellar Purkinje
cell

potential of the post-synaptic cell.
It is thought, that glia cells do not play a primary role in information

processing in the brain. The different types of glia cells have two impor-
tant functions. The astrocytes maintain in a variety of ways the appropriate
chemical environment for the nerve cells. The oligodendrocytes or Schwann
cells lay down a laminated wrapping called myelin around some, but not all,
axons, which has important effects on the speed of action potential propaga-
tion.

2.2 The nervous system

The nervous system is traditionally divided into a central and peripheral
component (see fig. 4). The peripheral system contains the sensory neurons,
which receive information from the outside world, and the motor neurons,
that connect to muscles and glands. Sensory information is processed in
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Figure 4: The major components of the nervous system and their functional
relationships. A) The CNS (brain and spinal cord) and the PNS (spinal and
cranial nerves). B) The peripheral nervous system receives sensory input
and outputs motor commands. The central nervous system provides the
’mapping’ from sensory input to motor output.

the brain, with the ultimate goal to generate the appropriate motor actions.
Nerve cells that carry information toward the central nervous system are
called afferent neurons, nerve cells that carry information away from the
brain are called efferent neurons. Nerve cells that only participate in the
local aspects of a circuit are called inter-neurons. The simple spinal reflex
circuit in fig. 5 illustrates this terminology.

The central nervous system is usually considered to include seven basic
parts (see fig. 6): the spinal cord; the medulla, the pons and the midbrain
(collectively called the brainstem); the cerebellum; the diencephalon and the
cerebral hemispheres (collectively called the forebrain).

The thalamus relays information to the cerebral cortex from other parts
of the brain. Specialized substructures of the thalamus are engaged in motor
functions and reproduction and hormone secretion. The brainstem contains
structures, such as the superior colliculus that is involved in eye movement.
The major function of the cerebellum is coordination of motor activity, pos-
ture and equilibrium. Like the cerebral cortex, the cerebellum is covered
by a thin cortex. Another important area of the central nervous system is
the hippocampus which is thought to be involved in the storage of episodic
memories. It is not visible in fig. 6, since it is located centrally.
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Figure 5: A simple reflex circuit, the knee-jerk response, illustrates several
points about the functional organization of neural circuits. Stimulation of a
muscle stretch receptor initiates action potentials that travel centrally along
the afferent axons of the sensory neurons. This information stimulates spinal
motor neurons by means of synaptic contacts. The action potentials gen-
erated in motor neurons travel peripherally in efferent axons, giving rise to
muscle contraction. Bottom) Relative frequency of action potentials (in-
dicated by individual vertical lines). Notice the modulatory effect of the
interneuron.
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Figure 6: A) The terms anterior, posterior, superior, and inferior refer to
the long axis of the body. B) The major planes of section used in cutting
or imaging the brain. C) The subdivisions and components of the central
nervous system.
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Figure 7: Structure of the human neocortex. A) summary of the cellular
composition of the six layers of the neocortex. B) Based on variations in
thickness, cell density and other histological features of the six neo-cortical
laminae, the neocortex can be divided into areas (Brodmann 1909). These
anatomical distinctions have later been shown to relate to different functions.
Red indicates the primary motor cortex, blue the primary somatic sensory
cortex, green the primary auditory cortex and yellow the primary visual
cortex. All other Brodmann areas are considered association cortex.

2.3 Some features of the cortex

The cerebral hemispheres, also called the cerebral cortex are two convoluted
sheets of neural tissue of about 2 mm thickness and spreads over about
11 dm2 each. The sheets are connected through the corpus callosum (800
million fibers). The cortical sheet contains six layers that can be identified
anatomically (fig. 7a). This structure of six layers is remarkably uniform
through the cortex. Local differences has lead to the classification of the
cortex into cortical areas (see fig. 7b).

The cortical tissue consists for about 80 % of pyramidal cells (fig. 3) and
the remainder are so called inter-neurons. There are two types of pyramidal
neurons, the upper pyramidal neurons lying in layers II and III and the lower
pyramidal neurons which we find mainly in layer V. Both receive their input
signals from stellate cells, which are inter-neurons lying in layer IV. The lower
pyramidal neurons are output neurons; their axons make contact with the
thalamus. The upper pyramidal neurons make distant connections with the
pyramidal cells of other cortical areas. The six layer structure is schematically
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Figure 8: Canonical neo-cortical circuitry. Green arrows indicate outputs to
the major targets of each of the neo-cortical layers in humans; orange arrow
indicates thalamic input (primarily to layer IV); purple arrows indicate input
from other cortical areas: and blue arrows indicate input from the brainstem
to each layer.

drawn in fig. 8.
Neurons in the sensory parts of the cortex, such as the visual, auditory

or somatic sensory cortex, respond selectively to stimuli from the outside
world. This gives rise to the notion of a receptive field of a neuron, which is
the collection of all stimuli that elicit an electrical response in that neuron. In
Fig. 9 we see an example of a somatosensory receptive field. The use of micro-
electrodes to record action potential activity for different stimuli, provides a
cell-by-cell analysis of the receptive field of each cell and the organization of
topographic maps. In Fig. 10, we see an example of a visual receptive field.
Some neurons in the visual cortex respond selectively to the orientation of a
light bar. Each neuron has its preferred orientation.

Nearby pyramidal cells can make direct excitatory synaptic connections
or indirect inhibitory connections by connecting to an inhibitory interneu-
ron, which in turn connects to another pyramidal cell. The probability of
connection is very high for nearby pyramidal neurons and drops off at about
30 µm. Therefore, neurons within a cortical column, which is a cross-section
of the cortical sheet of about this diameter, display strongly correlated ac-
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Figure 9: Single-unit electrophysiological recording from cortical pyramidal
neuron, showing the firing pattern in response to a specific peripheral stim-
ulus. A) Typical experimental set-up. B) Defining neuronal receptive fields.

Figure 10: Neurons in the visual cortex respond selectively to oriented edges.
A) An anesthetized cat focuses on a screen, where images can be projected; an
extracellular electrode records the responses of neurons in the visual cortex.
B) Neurons in the visual cortex typically respond vigorously to a bar of light
oriented at a particular angle and weakly (or not at all) to other orientations.
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Figure 11: A) Ocular dominance stripes in LGN and layer IV primary visual
cortex. B) Pattern of ocular dominance columns in human striate cortex.

tivity. The result is that nearby neurons have similar functional roles. An
example is ocular dominance given in fig. 11. The lateral geniculate nucleus
(LGN) receives inputs from both eyes, but this information is segregated in
separate layers. In many species, including most primates, the inputs from
the two eyes remain segregated in the ocular dominance columns of layer IV,
the primary cortical target of LGN axons. Layer IV neurons send their axons
to other cortical layers; it is at this stage that the information from the two
eyes converges onto individual neurons.

Such correlated activity can also be measured in vivo. Fig. 12 shows that
neurons in the same column have identical orientation preference. Neurons in
nearby columns have similar orientation preference. Thus, this part of visual
cortex displays a topographical map, meaning that stimulus features (in this
case the orientation) are mapped continuously onto the spatial location in
the cortex.

Cortical maps are found throughout the sensory cortices and motor cor-
tex. Fig. 13 shows that nearby neurons in the auditory cortex respond prefer-
entially to nearby frequencies. Typically, maps are deformed representations,
that use more neurons to represent important regions. In fig. 14 shows the
example of the somatotopic order in the human primary somatic sensory
cortex.
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Figure 12: Columnar organization of orientation selectivity in the monkey
striate cortex. Vertical electrode penetrations encounter neurons with the
same preferred orientations, whereas oblique penetrations show a systematic
change in orientation across the cortical surface.

Figure 13: The human auditory cortex. A) Diagram showing the brain in
left lateral view. The primary auditory cortex (A1) is shown in blue. B) The
primary auditory cortex has a tonotopic organization.
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Figure 14: Somatotopic order in the human primary somatic sensory cor-
tex. A) approximate region of human cortex from which electrical activity
is recorded following mechanosensory stimulation of different parts of the
body. B)Somatotopic representation of the whole body. C) Cartoon of the
homunculus constructed on the basis of such mapping. The amount of so-
matic sensory cortex devoted to hands and face is much larger than the
relative amount of body surface in these regions.
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2.4 Summary

Although the human brain is often discussed as if it were a single organ,
it contains a large number of systems and subsystems. Various types of
neurons in these systems are assembled into interconnected circuits that relay
and process the electrical signals that are the basis of all neural functions.
Sensory components of the nervous system supply information to the central
nervous system about the internal and external environment. The integrated
effects of central processing are eventually translated into action by the motor
components. The material in this chapter is largely based on [1].

2.5 Exercises

1. Propose a neuron with its input dendritic tree connected to the retina,
such that the neuron has the receptive field property as observed in
figure 10.

2. Think about a neural network that may cause the occular dominance
patterns observed in figure 11.

(a) Consider the strenght and sign of the forward connections from
the eyes to the cortex.

(b) The lateral connections within the cortex are typically of the Mex-
ican hat type: short range excitatory connections and long range
inhibitory connections. Explain their role.

3. Suppose you were a neuron and you could only communicate with your
fellow neurons through the emission of action potentials. How would
you do it? Describe two ways and discuss their respective advantage
and disadvantages.

18



Figure 15: Recording passive and active electrical signals in a nerve cell.

3 Electrical properties of cells

Nerve cells generate electrical signals that transmit information. Neurons
are not good conductors of electricity, but have evolved elaborate mecha-
nisms for generating electrical signals based on the flow of ions across their
membranes. Ordinarily, neurons generate a negative potential, called the
resting membrane potential , that can be measured by intracellular record-
ing. The action potential is a short spike in the membrane potential, making
the membrane potential temporarily positive. Action potentials are propa-
gated along the length of axons and are the fundamental electrical signal of
neurons. Generation of both the resting potential and the action potential
can be understood in terms of the nerve cell’s selective permeability to dif-
ferent ions and the relative concentrations of these ions inside and outside
the cell.

The best way to observe an action potential is to use an intracellular
microelectrode to record directly the electrical potential across the neuronal
membrane (fig. 15). Two micro-electrodes are inserted into a neuron, one of
these measures the membrane potential while the other injects current into
the neuron. Inserting the voltage-measuring microelectrode into the neuron
reveals a negative potential, the resting membrane potential. Typical values
are -60-80 mV. Injecting current through the current-passing microelectrode
alters the neuronal membrane potential. Hyper-polarizing current pulses
decrease the membrane potential and produce only passive changes in the
membrane potential. Depolarizing currents increase the membrane potential.
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Figure 16: Ion pumps and ion channels are responsible for ionic movements
across neuronal membranes.

Small currents evoke a passive response. Currents that exceed a threshold
value, evoke an action potential. Action potentials are active responses in the
sense that they are generated by changes in the permeability of the neuronal
membrane.

3.1 Ion channels

Electrical potentials are generated across the membranes of neurons (in fact
of all cells) because (1) there are difference in the concentrations of specific
ions across nerve cell membranes and (2) the membranes are selectively per-
meable to some of these ions (fig. 16). The ion concentration gradients are
established by proteins known as ion pumps, which actively move ions into or
out of cells against their concentration gradients. The selective permeability
of membranes is due largely to ion channels, proteins that allow only certain
kinds of ions to cross the membrane in the direction of their concentration
gradients. Thus, channels and pumps basically work against each other, and
in so doing they generate cellular electricity.

Membrane channels can open or close in response to changes in their di-
rect vicinity, such as a change in the membrane potential, changes in the
concentration of neurotransmitters, or sensory input. For instance, hair cells
in the cochlea (inner ear) mechanically deform in response to sound, and this
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Figure 17: Open-shut gating of an ionic channel showing 8 brief openings.
The probability of opening depends on many factors. At -140 mV applied
membrane potential, one open channel passes 6.6 pA, corresponding to a flow
of 4.1× 107 ions per second.

mechanical deformation changes the permeability of certain channels. Chan-
nels open and close rapidly in a stochastic manner (fig. 17). The macroscop-
ically observed permeability of the membrane is related to the probability
that the channel is open.

3.2 The Nernst equation

Consider a simple system in which an imaginary membrane separates two
compartments containing solutions of ions. Let both compartments contain
an amount of potassium ions (K+) and an equal amount of some negatively
charged ions A−, such that both compartments are electrically neutral. Sup-
pose that the membrane is permeable only to potassium ions. If the con-
centration of K+ on each side of the membrane is equal, then no electrical
potential across it will be measured. However, if the concentration of K+ is
not the same on the two sides (and thus the concentrations of A− differ as
well, but these cannot move), then the potassium ions will flow down their
concentration gradient and take their electrical charge with them as they go.
Therefore, an electrical potential will be generated, which will drive K+ ions
in the reverse direction. An electrochemical equilibrium will be reached when
the diffusive force equals the electromotive force (fig. 18). The positive and
negative charge excess in both compartments will concentrate against the
membrane (why?) like a capacitor. We thus conclude that the equilibrium
potential difference will be an increasing function of the ratio of concentra-
tions of K+ in the two compartments.

The electrochemical equilibrium can be quantitatively described by the
Boltzmann statistics, which states that the probability P to encounter a
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Figure 18: A-B) Electrochemical equilibrium due to selective permeability
to K+ ions. Concentration gradient drives K+ ions to the right establishing a
charge difference. In equilibrium the ionic current due to the concentration
difference balances the current in the reverse direction due to the electrical
potential difference. C) The relationship between the transmembrane con-
centration gradient and the membrane potential as predicted by the Nernst
equation Eq. 1

system in equilibrium in a state with energy u is proportional to

P ∝ exp
(
− u

kT

)
= exp

(
− U

RT

)

with u the potential energy per ion, k is the Boltzmann constant and T
is the absolute temperature. U = NAu is the potential energy per mole;
NA = 6.022 × 1023 mol−1 is Avogadro’s number; and R = kNA = 8.314 J
mol−1 K−1 is the Gas constant.

The charged ions S that can move freely through the membrane can be
in two states: in the left or right compartment, which we denote by l and r,
respectively. The potential energy is proportional to the electric potential V
and thus the potential energy per mole of an ion of valence zS is given by

Ul,r = zSeNAVl,r = zSFVl,r

with e the unit of electric charge and F = eNA = 9.648 × 104 C mol−1 is
called the Faraday constant.

Thus, for a given electrical potentials Vl and Vr in the left and right
compartment, we can compute the relative probability to encounter an S ion
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left or right:

Pl
Pr

=
exp(−zSFVl/RT )

exp(−zSFVr/RT )
= exp

(
−zSF
RT

(Vl − Vr)
)

The concentration of ions in the left and right compartment, [S]l,r, is pro-
portional to the probability Pl,r. We can invert the above expression and
express the difference in electrical potential in terms of the concentrations:

VNernst = Vl − Vr =
RT

zSF
ln

[S]r
[S]l

(1)

This expression is knows as the Nernst equation and describes both the equi-
librium concentration ratio when we apply an external potential difference,
as well as the equilibrium potential difference when we consider the above
system at fixed concentration differences. The Nernst potential depends on
temperature, the concentration ratio and valence of the freely moving ions.
In practice, it is often useful the replace the natural logarithm by the base-10
logarithm: ln = 2.3 log10. Then

VNernst =
1

zS
log10

(
[S]r
[S]l

)
× 58mV

at T = 200C.
For biological membranes, the K+ concentration is typically much higher

inside the cell than outside the cell. A typical ratio is [K+]out : [K+]in = 1 : 10,
yielding a Nernst potential of -58 mV.

The number of ions that needs to flow to generate the electrical potential
is very small (exercise). This means that the movement of ions required to
reach the Nernst potential 1) hardly affects the neutrality of the intra- and
extracellular media and 2) do not require much pumping by the ion pumps.

3.3 The Goldman equation

The Nernst equation accurately describes the relation between ion concen-
trations and the membrane potential, when only one type of ion can move
through the membrane. In reality, many types of ions are present in the in-
tra and extracellular medium, each of which has its own permeability. Some
realistic numbers are given in table 1. For instance, imagine what would
happen if the intracellular K+ and Na+ concentrations are 100 mM and 10
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Ion Intracellular Extracellular

Squid axon
K+ 400 20
Na+ 50 440
Cl− 40-150 560

Ca2+ 0.0001 10

Mammalian neuron
K+ 140 5
Na+ 5-15 145
Cl− 4-30 110

Ca2+ 0.0001 1-2

Table 1: Extracellular and intracellular ion concentrations in millimole per
liter (mM).

mM, respectively and the extracellular concentrations of K+ and Na+ are re-
versed: 10 mM for K+ and 100 mM for Na+. If the membrane would be only
permeable to K+, the membrane potential would be -58 mV. If the membrane
would be only permeable to Na+, the membrane potential would be +58 mV.
What will happen if the membrane is partially permeable for both ions?

For the case most relevant to neurons, in which K+, Na+ and Cl− are the
primary permeant ions, the general solution, called the Goldman equation,
was developed by David Goldman in 1943:

V = log10

(
PK+[K+]r + PNa+[Na+]r + PCl−[Cl−]l
PK+[K+]l + PNa+[Na+]l + PCl−[Cl−]r

)
× 58mV (2)

where V is the equilibrium voltage across the membrane, and the Pi, i =
K+,Na+,Cl− are the permeabilities of the three types of ions. We see that
in the case that the membrane is only permeable to one ion, the Goldman
equation reduces to the Nernst equation. In the following subsection, we will
derive the Goldman equation.

3.4 The Nernst-Planck equation

Consider a membrane of thickness a and let x = 0 to x = a denote the
outside and inside of the membrane, respectively. Let the electrical potential
be Vout = V (0) = 0 and Vin = V (a) = V . Let us assume that we have
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a number of different ions, labeled by i, each with its own concentration
Ci(x) and valence zi. The extracellular and intracellular concentrations are
denoted by

[Ci]out = Ci(0), [Ci]in = Ci(a) (3)

Due to the potential difference and the concentration differences, ions will
flow through the membrane. The electric force per ion of type i is −ziedV (x)

dx
.

The number of ions per liter is NACi(x), with Ci(x) in units of mol per liter.
Therefore, the electric force per unit volume is

−ziCi(x)F
dV (x)

dx

The diffusive force on ion i per unit volume is proportional to the con-
centration gradient as well as the absolute temperature. Multiplying by the
Gas constant gives the diffusive force

−RT dCi(x)

dx

in units of Newton per liter.
The force on the ions is the sum of the electric and diffusive force and

results in a movement of the ions proportional to the mobility ui of the ions.
The mobility will be soon related to the specific permeability of the membrane
to each of the ions. The direction of movement is in the direction of the
force, but the direction of charge depends again on the valence. Therefore,
the current for ions i is:

Ii = uizi

(
−RT dCi(x)

dx
− ziCi(x)F

dV (x)

dx

)
(4)

Eq. 4 is a differential equation in Ci(x), given the values of Ii and the electric
potential V (x) as a function of x and is known as the Nernst-Planck equation.
Note, that while the ion concentration and the electric potential depend on
location x, the current is independent of x. This is a consequence of the
conservation of charge and the fact that we are in one dimension.

To solve Eq. 4, we should also describe how V (x) depends on the charge
distributions Ci(x) using Gauss’ law. Instead, we will make the simplifying
assumption that the membrane potential changes linearly from the outside
to the inside of the membrane, dV/dx = V/a for 0 < x < a. Then we can
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easily solve Eq. 4 with the boundary conditions Eq. 3 (exercise 4a). The
result is

Ii =
−uiz2

i FV

a

[Ci]out − [Ci]in exp
(
zi
FV
RT

)

1− exp
(
zi
FV
RT

) (5)

Eq. 5 predicts the ion current that results from an electrical potential differ-
ence together with a ionic concentration difference. The current as a function
of the voltage behaves as a rectifier, where the effective resistance for current
in one direction is different from the other direction. The typical shape of
Ii as a function of V is shown in fig. 19. The cause for this is the difference
in ionic concentrations on the different sides of the membrane. Indeed, from
Eq. 5 we see that when [Ci]out = [Ci]in, the current voltage relation is linear
as in Ohms law.

We now consider the case where we have various ion concentrations inside
and outside the cell. If we consider Eq. 5 for i = K+,Na+,Cl− The total
current is given by

I = I+
K + I+

Na + I−Cl =
−FV
a

w − yeFV/RT
1− eFV/RT (6)

with

w = uK+[K+]out + uNa+[Na+]out + uCl−[Cl−]in

y = uK+[K+]in + uNa+[Na+]in + uCl− [Cl−]out

In the stationary case, there will be no net movement of charge and
I = dQ

dt
= 0. Then we can solve for the membrane potential V in terms of

the various concentrations inside and outside the cell. The solution is given
by the Goldman Eq. 2 (exercise).

For small currents, we can linearize Eq. 6 around the stationary solution.
The result is (exercise)

G =
dI

dV V=V0

=
F

a

wy

y − w log
w

y
(7)

I ≈ G(V − V0) +O((V − V0)2) (8)

G has units of Ω−1 per liter and is called the conductance and is the inverse
resistance. V0 the equilibrium membrane potential given by the Goldman
equation.
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Figure 19: Current voltage relation Eqs. 5 and 6 as predicted by the Nernst-
Planck equation under the assumption of constant electric force. The differ-
ence in slope for positive and negative voltage is due to the concentration
differences inside and outside the membrane.

3.5 The Hodgkin-Katz experiments

3.5.1 The role of K+

Once the ion concentration gradients across various neuronal membranes are
known, the Nernst equation can be used to calculate that the equilibrium
potential for K+ is more negative than of any other major ion. Since the
resting membrane potential of the squid neuron is approximately -65 mV,
K+ is the ion that is closest to electrochemical equilibrium when the cell is
at rest. This fact suggests that the resting membrane is more permeable to
K+ than to the other ions listed in table 1.

It is possible to test this hypothesis, by asking what happens to the
resting membrane potential as the concentration of K+ outside the cell is
altered. Assuming that the internal K+ concentration is unchanged during
the experiment and that the membrane is effectively impermeable to all other
ions, the Nernst equation predicts that the membrane potential varies linearly
with the logarithm of the external K+ concentration. The experiment was
performed by Alan Hodgkin and Bernard Katz in 1949 on a living squid
neuron. The results are shown in fig. 20. When the external K+ concentration
is raised to the level of the internal concentration, the membrane potential
is indeed found to be approximately zero.
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Figure 20: Experimental evidence that the resting membrane potential of a
squid giant axon is determined by the K+ concentration gradient across the
membrane. A) In creasing the external K+ concentration makes the resting
membrane potential more positive. B) Resting membrane potential versus
K+ concentration as found experimentally and as predicted by the Nernst
equation.

For small K+ concentrations, we observe a discrepancy between the ex-
perimental results and the predictions of the Nernst equation. This difference
can be accounted for by using the more accurate Goldman equation (exer-
cise).

In summary, Hodgkin and Katz showed that the negative resting potential
of neurons arises because 1) the membrane is more permeable to K+ than
to any other ions and 2) there is more K+ inside the neuron than outside.
The permeability to K+ is the result of K+-permeable channels that are open
when the neuron is at rest. The concentration difference is the result of
membrane pumps. Subsequent studies have shown that this basic picture is
generally valid on all neurons.

3.5.2 The role of Na+

During an action potential the membrane resting potential reverses from
negative to positive (fig. 15). What causes this? Given the data presented
in table 1, one can use the Nernst equation to calculate that the equilibrium
potential for Na+ (ENa+) is positive. Thus, if the membrane were to become
highly permeable to Na+, the membrane potential would approach ENa+.
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Figure 21: A-C) The external sodium concentration affects the size and
rise time of the action potential (squid giant axon). D) Linear relation-
ship between the amplitude of the action potential and the log of the Na+

concentration. E) Na+ concentration does not affect the resting membrane
potential.

Hodgkin and Katz tested the role of Na+ in generating the action potential
by asking what happens to the action potential when Na+ is removed from the
external medium. They found that lowering the external Na+ concentration
reduces both the rate of rise and the peak amplitude (fig. 21), with a more-
or-less linear relationship between the amplitude of the action potential and
the log of the Na+ concentration. Indeed, from the Nernst equation for Na+

we obtain when we change the external Na+ concentration from [Na+]out to
[Na+]′out

V ′Na+ − V +
Na =

RT

F
ln

[Na+]′out

[Na+]in
− RT

F
ln

[Na+]out

[Na+]in
=
RT

F
ln

[Na+]′out

[Na+]out

In contrast, the external Na+ concentration has very little effect on the
resting membrane potential. Thus, they concluded that the resting mem-
brane is only slightly permeable to Na+ and then becomes very permeable
to Na+ during the action potential. This temporary increase in Na+ perme-
ability results from the opening of Na+ selective channels that are essentially
closed in the resting state.

The fact that an action potential is accompanied with an increase of
the conductance was earlier demonstrated by Cole and Curtis in 1939 (see
fig. 22), but they did not identify the specific role of Na+ channels.
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Figure 22: Conductance increase in excitation in squid giant axon. White
band is the conductance, Dashed line is the action potential (Cole and Curtis
1939).

The time the membrane potential is near ENa+ is brief because the in-
creased membrane permeability to Na+ is short-lived. The membrane po-
tential rapidly re-polarizes and after this falling phase there is a transient
undershoot, due to an increase in the K+ permeability of the membrane,
making the membrane even more permeable to K+ than at rest.

3.5.3 Permeability changes during action potential

In the foregoing, we have not made any quantitative assumptions about
the relative permeabilities of the membrane to sodium and potassium. The
resting membrane has been considered as more permeable to potassium than
sodium, and this condition was regarded as reversed during activity. It is
natural to inquire, whether any limit can be set to the degree of selective
permeability actually present in the resting and active membranes. Some
light can be thrown on this problem if the observed potentials are compared
with those predicted by the Goldman equation Eq. 2

There are many reasons for supposing that this equation is no more than
a rough approximation, and it clearly cannot give exact results if ions enter
into chemical combination with carrier molecules in the membrane or if ap-
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preciable quantities of current are transported by ions other K+, Na+ or Cl−.
But because of its simplicity, and because it reduces to the correct Nernst
equation if only one of the ion permeabilities dominates, Hodgkin and Katz
used it anyway.

In the physiological condition of the axon that they used, the internal ion
concentrations were the following:

[K+]i = 345mM, [Na+]i = 72mM, [Cl−]i = 61mM

The experimental data against which the Goldman equation was tested are
summarized in Table 2, which shows the average change in membrane poten-
tial produced by considering various external ion concentrations. It is seen,
that there is reasonable agreement between all the results obtained with rest-
ing nerve and those predicted by the theory for P+

K : P+
Na : P−Cl = 1 : 0.04 :

0.45. These coefficients were obtained by trial and error. The value of the
resting potential predicted on the basis of these values is 59 mV, while the
observed resting potential averaged 48 mV. The difference is due to a liquid
junction potential of 11 mV between sea water and axoplasm.

The peak of the action potential can be calculated if values are assumed
for the relative permeabilities of the active membrane to sodium, potassium
and chloride ions: with P+

K : P+
Na : P−Cl = 1 : 20 : 0.45 an action potential

of -49 mV is obtained, which is roughly in agreement with the experimental
value -40 mV. These values of the permeabilities may be used to predict the
changes in potential when the external ion concentrations are changed in
solutions A-I and are in reasonable agreement with the observed values.

The third block of numbers in Table 2 gives the changes in membrane
potential recorded during the hyper-polarization of the action potential. In
this condition the nerve is in a refractory state. Hodgkin and Katz assumed
that the sodium permeability is reduced to zero and that it does not recover
its normal value until the end of the relative refractory period. Using P+

K :
P+

Na : P−Cl = 1.8 : 0 : 0.45 give good agreement between the Goldman equation
and the observed values.
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Table 2: (From [2]) showing the change in membrane potential when the exter-

nal concentrations of potassium, sodium and chlorine are changed under three

conditions: at rest, during the peak of the action potential, and after the action

potential. In each of these three conditions, the relative permeabilities of the three

ions are adjusted to obtain agreement between the experimental results and those

obtained by the Goldman equation Eq. 2. It shows that Ca2+ permeability is

highly increased during the action potential. Note, that Hodgkin and Katz used

a definition of the membrane potential that is minus the modern definition used

throughout this reader.
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3.6 Summary

The resting membrane potential is the result of different ions concentrations
inside and outside the cell and the specific permeability of the membrane
to different ions. The relation between ionic concentrations and equilibrium
membrane potential is described by the Nernst equation for single ions and by
the Goldman equation for multiple ions. At rest, the nerve cell is mainly per-
meable to K+ ions resulting in a negative resting membrane potential. During
the action potential, the Na+ permeability dominates and the membrane po-
tential reverses sign. The increased Na+ permeability is short, resulting in
a short voltage spike. After the action potential, the Na+ permeability is
reduced to zero, leading to a hyper-polarization of the membrane. During
this so-called refractory period no new action potentials can be generated.

Although we have identified the ions that flow during an action potential,
we did not establish how the membrane is able to change the ionic permeabil-
ity. As we will see in the next chapter, it is the neural membrane potential
itself that affects the membrane permeability.

The discussion of the ion channels, Nernst equation and Goldman equa-
tion is based on [1]. The derivation of the Nernst-Planck and Goldman
equations and the description of the Hodgkin-Katz experiment is from [2].

3.7 Exercises

1. Explain why in Fig. 18, all excess charge accumulates near the mem-
brane on both sides.

2. Consider the membrane of a neuron as a capacitor that can hold an
amount of charge proportional to the potential difference: Q = CV .
V is the potential difference between outside and inside of the cell and
is measured in Volt, Q the charge on either side of the membrane and
is measured in Coulomb per cm2 (C/cm2) and C is the capacitance
measured in Farad per cm2 (F/cm2).

(a) Compute the capacitance, approximating the membrane by a par-
allel plate capacitor:

C =
εε0A

d

ε0 is the polarizability of free space and is 8.85× 10−12CV −1m−1.
The dielectric constant of hydrocarbon chains is ε = 2.1. The
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thickness of the membrane is 2.3 nm.

(b) Compute the number of charged ions that are required to maintain
the Nernst potential at 58 mV.

3. (a) What would happen to the Nernst potential if in the experiment
of fig. 18 the K+ ions were replace by Na+?

(b) What would happen to the Nernst potential if in the experiment
of fig. 18 the K+ ions were replace by Ca2+ and the membrane
would be selectively permeable for Ca2+?

(c) What would happen to the Nernst potential if in the experiment of
fig. 18 the K+ ions were replace by Cl− and the membrane would
be selectively permeable for Cl−?

4. (a) Solve the Nernst-Planck Eq. 4 for constant Ii under the boundary
conditions Eq. 3 and assuming that the electrical potential changes
linearly with x within the membrane: V (x) = V x/a. Derive Eq. 5.

(b) Show the rectification behavior of Eq. 5 by computing its behavior
for large positive and negative V .

5. Derive the Goldman equation Eq. 2 for the case most relevant to neu-
rons, in which K+, Na+ and Cl− are the primary permeant ions. Use
the current voltage relations Eq. 5 and the additional condition that
no net charge is flowing,

∑
i Ii = 0,

6. Explain the deviation between the experimental curve in fig. 20 and the
theoretical prediction by the Nernst equation in terms of the Goldman
equation Eq. 2

7. (a) Derive Eq. 7 from Eq. 6

(b) Show that the conductance increases when ion concentrations in-
crease. Explain this effect in words.

8. The Nernst-Planck equations Eq. 5 and 6 relate the current to mem-
brane voltage and ion concentrations. In this exercise, we compare
experimental values with those found by Eq. 5 and 6.

(a) Some experimental measurement on the squid axon in rest shows
an average increase of the intracellular Na+ of 50 mM and an av-
erage decrease of the intracellular K+ of 72 mM during a period of
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3 hours. Express these findings in flow of ions per second through
a surface of 1 cm2, assuming a cylindrical axon with diameter of
500 µm.

(b) Eq. 5 gives the individual currents in terms of the experimentally
accessible quantities: the ion concentrations and the membrane
potential. The unknown quantity is the ion mobility ui. Use the
equation for the conductivity in the Goldman equilibrium Eq. 7 to
write Eq. 5 for K+ and Na+ such that it involves only permeability
ratios of the various ions and the membrane conductance G.

(c) Compute the theoretical value for IK+ and INa+ given the following
values. The internal ion concentrations are [K+]in = 345mM, [Na+]in =
72mM, [Cl−]in = 61mM . The external ion concentrations are
[K+]out = 10mM, [Na+]out = 455mM, [Cl−]out = 540mM . The
permeability ratios when the membrane is at rest are u+

K : u+
Na :

u−Cl = 1 : 0.04 : 0.45. The temperature is 200C (RT
F

= 25.26mV )
and membrane resistance is 1000 Ω cm2.
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4 The Hodgkin-Huxley model of action po-

tentials

4.1 The voltage clamp technique

This technique was invented by Kenneth Cole in 1940s. The device is called
a voltage clamp because it controls, or clamps, membrane potential at any
level desired by the experimenter (see fig. 23). This electronic feedback circuit
holds the membrane potential at the desired level, even in the face of per-
meability changes that would normally alter the membrane potential. Also,
the device permits the simultaneous measurement of the current needed to
keep the cell at a given voltage. Therefore, the voltage clamp technique can
indicate how the membrane potential influences ionic current flow across the
membrane. The most popular contemporary version of the voltage clamp is
the patch clamp technique (fig. 23E), which has a resolution high enough to
measure the minute electrical currents flowing through a single inn channel
(fig. 17)

4.2 Two types of voltage dependent ionic currents

In the late 1940s, Alan Hodgkin and Andrew Huxley used the voltage clamp
technique to work out the permeability changes underlying the action po-
tential. They chose to use the giant neuron of the squid because its large
size (up to 1 mm in diameter) allowed insertion of the electrodes necessary
for voltage clamping. To investigate the voltage dependent permeability of
the membrane they asked whether ionic currents flow across the membrane
when its potential is changed. Fig. 24A illustrates the currents produced by a
squid axon when its membrane potential is hyper-polarized from the resting
level of -65 mV to -130 mV. The initial response of the axon results from
the redistribution of charge across the membrane. This capacitive current is
nearly instantaneous, ending within a fraction of a millisecond. Aside from
this event, very little current flows when the membrane is hyper-polarized.
However, when the membrane potential is depolarized from -65 mV to 0 mV,
the response is quite different (fig. 24B). The axon produces a rapidly rising
inward ionic current, which later changes into an outward current. This com-
plicated relation between voltage and current suggests that the membrane
permeability is indeed voltage dependent (exercise).
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Figure 23: 1) One internal electrode measures membrane potential and is
connected to the voltage clamp amplifier. 2) Amplifier compares membrane
potential to the desired potential. 3) When different, the amplifier injects
current into the axon through a second electrode, and is measured (4).
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Figure 24: Current flow across a squid axon membrane during a voltage
clamp experiment. A) A 65 mV hyper-polarization produces only a brief
capacitive current. B) A 65 mV depolarization produces in addition a longer
lasting current that initially flows inward and later flows outward [3].
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Figure 25: A squid giant axon membrane is stepped under voltage clamp
from a holding potential of -60 mV to potentials ranging in 20 mV steps
from -10 to +90 mV. Successive current traces have been superimposed [3].

Fig. 25 shows how the transient inward current and the sustained outward
current depend on the clamp potential. Increasing the clamp potential from
the resting value first shows an increase in the magnitude of the inward
current up to approximately 0 mV, but this current decreases as the potential
is depolarized further. In contrast, the late current increases monotonically
with increasingly positive membrane potentials.

These different responses to membrane potential can be seen more clearly
when the magnitudes of the two current components are plotted as a function
of membrane potential (fig. 26). Note, that the early inward current becomes
zero when the membrane is clamped at +52 mV. For the squid axon studied
by Hodgkin and Huxley, the external Na+ concentration is 440 mM and the
internal Na+ concentration is 50 mM. The corresponding Nernst potential
for Na+ (see section 3.2) is computed as +55 mV. This equilibrium potential
is by definition the potential at which there is no net Na+ current across
the membrane. The proximity of these two values suggests that the inward
transient current is caused by Na+ ions.
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Figure 26: Relationship between current amplitude and membrane potential,
taken form experiment such as in fig. 25. Whereas the late outward current
increases steeply with increasing depolarization, the early inward current first
increases in magnitude, but then decreases and reverses to outward current
at about +50 mV [3].
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Figure 27: Dependence of the early inward current on sodium. In the pres-
ence of a normal external concentration of Na+, depolarization of a squid
axon to -9 mV produces an inward initial current. However, reduction of the
external Na+ removes the early inward current. The external Na+ concen-
tration does not affect the late outward current [4].

An even more compelling way to test whether Na+ carries the early inward
current is to examine the behavior of this current after reducing the external
Na+ concentration by a factor of 10. In this case, both internal and external
Na+ concentrations are approximately equal and the Na+ Nernst potential is
close to 0 mV. In fig. 27, we see indeed that under this condition a voltage
step to -9 mV does not evoke the early transient current, in agreement with
the Na+ hypothesis. Notice also that the reduction of external Na+ has no
effect on the outward current. This shows that the late outward current
must be due to the flow of an ion other than Na+. Several lines of evidence
presented by Hodgkin, Huxley ad others showed that this late current is
caused by K+ exiting the neuron. Modern evidence that there are distinct
mechanisms for Na+ and K+ come from pharmacological studies using drugs
that specifically affect these two currents (fig. 28).

Hodgkin and Huxley used a simple relation between current and voltage
such as eq. 8 to calculate the dependence of the conductance on voltage:

Ii = gi(V, t)(V − Vi), i = K+,Na+ (9)

with Vi the reversal potential for ion i, V the membrane potential and Ii
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Figure 28: Pharmacological separation of Na+ and K+ currents. Panel 1
shows the current that flows when the membrane potential of a squid axon is
depolarized to -10 mV in control conditions. 2) Treatment with tetrodotoxin
causes the early Na+ currents to disappear but spare the late K+ currents. 3)
Addition of tetraethyl-ammonium blocks the K+ currents without affecting
the Na+ currents [5, 6]
.
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the ion current. Some examples of the current voltage relations are given
in fig. 29. A and B show the passive case, where the conductance does
not depend on voltage nor time, for different gi and Vi. C and D show what
shapes can occur when the conductance is voltage dependent but independent
of time. Note the similarity in shape between figs. 29E and 26.

From fig. 26 and eq. 9 and from the known reversal potentials Vi one
can compute the conductance gi(V ) as a function of voltage. The result is
shown in fig. 30. Hodgkin and Huxley concluded that both conductances are
voltage dependent and increase sharply when the membrane is depolarized.

In addition, Hodgkin and Huxley showed that the conductances change
over time. For example, both Na+ and K+ conductances require some time to
activate. In particular, the K+ conductance has a pronounced delay, requiring
several milliseconds to reach its maximum (see fig. 31). The more rapid
activation of the Na+ conductance allows the resulting inward Na+ current
to precede the delayed outward K+ current. The Na+ current quickly declines
even though the membrane potential is kept at a depolarized level. This fact
shows that depolarization not only causes the Na+ conductance to activate,
but also cause it to decrease over time, or inactivate. The K+ conductance of
the squid axon does not inactivate in this way. Thus, while Na+ and K+ both
show time dependent activation, only the Na+ conductance in-activates. The
time course of the Na+ and K+ conductances are also voltage dependent, with
the speed of both activation and inactivation increasing at more depolarized
potentials.

4.3 The Hodgkin-Huxley model

Hodgkin and Huxley’s goal was to account for ionic fluxes and permeability
changes in terms of molecular mechanisms. However, after intensive consid-
eration of different mechanisms, they reluctantly concluded that still more
needed to be known before a unique mechanism could be proven. Instead,
they determined an empirical kinetic description that would be sufficiently
good to predict correctly the major features of excitability. This is called the
Hodgkin Huxley (HH) model.

The HH model is given in fig. 32. It consists of the Na+ and K+ cur-
rents, a capacitative term and a leakage term. The Na+ and K+ currents
are each described by eq. 9. These currents are zero when the membrane
potential is equal to their respective reversal potentials Vi, i = Na+,K+. The
conductances of these currents are both voltage and time dependent as we
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Figure 29: A) Conductance increases when more channels are open; B)
Nernst or reversal potential differs for different ions or same ion in differ-
ent bathing solutions; C-D) Conductance is voltage dependent.
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Figure 30: Depolarization increases Na+ and K+ conductances of the squid
giant axon. The peak magnitude of Na+ conductance and steady-state value
of K+ conductance both increase steeply as the membrane potential is depo-
larized [7].
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Figure 31: Membrane conductance changes underlying the action potential
are time- and voltage-dependent. Both peak Na+ and K+ conductances in-
crease as the membrane potential becomes more positive. In addition, the
activation of both conductances occur more rapidly with larger depolariza-
tions [7].
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Figure 32: The Hodgkin Huxley model for the squid giant axon describes the
membrane as an electrical circuit with four parallel branches.

will describe shortly.
The leakage term is of the similar form eq. 9 but with a passive con-

ductance (time-independent and voltage independent). The leakage reversal
potential is empirically determined to be close to 0 mV 1

In addition, there is a capacitative branch. As we discuss in exercise
1, the concentration difference of the ions results in a charge build-up with
opposite charge on either side of the membrane. To lowest order, the charge
is proportional to the potential difference:

Q = CV

with Q the charge in Coulomb per unit area and C the capacitance. Because
the membrane is so thin (a ≈ 2 nm), we can safely treat the membrane as

1The leakage conductance is the inverse of the resistance. The resistance is proportional
to the thickness of the membrane. Also, the resistance of a sheet of membrane will decrease
when we consider a larger area. Thus, we define the resistivity ρ as a property of the
membrane material so that the resistance of a membrane of thickness a and area A is

R =
ρa

A
.
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two parallel planes, separated by a distance a. Then the capacitance is given
by

C =
εε0A

d
(10)

For hydrocarbon ε ≈ 2, this results in a very high specific capacitance of
≈ 1µF/cm2. The current through the capacitor is

Ic = C
dV

dt
, (11)

where V is the membrane potential relative to the resting potential Vrest.
We will now model the time and voltage dependence of the K+ and Na+

currents. Because it is simpler, we first consider the K+ conductance.

4.3.1 The K+ conductance

The time and voltage dependence of gK+ is empirically given in fig. 31. HH
proposed to write the conductance as

g+
K = ḡK+n4 (12)

with ḡK+ the maximal conductance when all K+ channels are open. n is a
dynamic quantity and its differential equation is given by

τn(V )
dn

dt
= n∞(V )− n (13)

τn and n∞ are the characteristic time constant for change in n and its station-
ary value, respectively. Both are voltage dependent (but time independent),
as we see from fig. 31. The detailed dependence of τn and n∞ on the mem-
brane potential is given in fig. 33.

The response of eqs. 12 and 13 to a depolarizing voltage step is shown
in fig. 34. It is seen, that the exponent 4 ensures that the K+ conductance
increases with slope zero in agreement with experiment. Instead, if gK+ were
proportional to n it would increase with non-zero slope. The exponent 4 was
found at the time to give the best numerical fit. It was hypothesized by HH
that the K+ channel is controlled by four independent gates. All gates must
be open for the channel to be open. If n denotes the probability that one of
the gates is open, this reasoning explains the exponent 4 in eq. 12.
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Figure 33: Dependence of the characteristic time constants τm,h,n and steady
state values m∞, h∞ and n∞ on the squid axon membrane potential. These
values produce the solid lines in fig. 31.

Figure 34: Response of n, h and m to a depolarizing and re-polarizing po-
tential.
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Figure 35: Inactivation of sodium current. A) Sodium currents elicited by
test pulses to -15 mV after 50 milliseconds pre-pulses to three different levels.
The current is decreased by depolarizing pre-pulses. B) The relative peak size
of the sodium current versus the pre-pulse potential, forming the steady state
inactivation curve of the HH model. Bell-shaped curve shows the voltage
dependence of the exponential time constant of the inactivation process.

4.3.2 The Na+ conductance

The Na+ conductance is more complicated than the K+ conductance, be-
cause there are independent activation and inactivation processes at work.
The effect of Na+ inactivation is shown in fig. 35. In this experiment, the
dependence of the Na+ current on the resting potential before the voltage
step is shown. The membrane potential is first clamped to -60, -67.5 or -75
mV for 50 milliseconds. Subsequently, the membrane potential is raised to
-15 mV. The figure shows that the peak value of the resulting Na+ current
decreases with increasing pre-step membrane potential. The explanation of
this phenomenon is the Na+ inactivation. As a result of the pre-step clamp-
ing, the voltage dependent Na+ inactivation will settle to different values.
The equilibrium inactivation 1 − h∞ is an increasing function of the mem-
brane potential: For hyper-polarized membrane potential, inactivation is zero
(h∞ = 1) and activation of the channel yields the largest current. For a par-
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tially depolarized membrane potential, the inactivation settles to a non-zero
value and thus h∞ < 1.

Hodgkin and Huxley postulated that the Na+ conductance is given by

gNa+ = ḡNa+m3h (14)

with ḡNa+ the maximal conductance when all Na+ channels are open. m and
h are dynamic quantities similar to n. Their differential equation is given by

τm(V )
dm

dt
= m∞(V )−m (15)

τh(V )
dh

dt
= h∞(V )− h (16)

τm,h are the characteristic time constants for change in m and h, respectively.
m∞ and h∞ are their stationary values. All are voltage dependent, as we see
from fig. 33.

For the resting membrane, the activation variable m∞ and the inactiva-
tion variable 1− h∞ are close to zero. During a spike, m increases from zero
to one, while h decreases from 1 to zero. As a result, the product m3h shows
a peak with a shape similar to the early transient Na+ current (fig. 34).

4.3.3 Action potentials

We can now summarize the Hodgkin Huxley model. From fig. 32 we have

Ic + INa+ + IK+ + Ileak + Iext = 0

where we have added an external current, that we can use to provide current
input to the cell. Combining eqs. 9-16, we obtain

C
dV

dt
= −m3hḡNa+(V − VNa+)− n4ḡK+(V − VK+)

−ḡleak(V − Vleak)− Iext(t)

τn
dn

dt
= n∞ − n

τm
dm

dt
= m∞ −m

τh
dh

dt
= h∞ − h (17)
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Figure 36: A) The solution of the Hodgkin-Huxley eqs. 17 for the membrane
potential V and the conductances ḡK+n4 and ḡNa+m3h as a function of time.
Membrane depolarization rapidly opens Na+ channels, causing an inrush of
Na+ ions, which in turn further depolarized the membrane potential. Slower
inactivation of Na+ and activation of K+ channels restores the membrane
potential to its resting value. B) Local current flows associated with propa-
gation. Inward current at the excited region spreads forward inside the axon
to bring the unexcited regions above the firing threshold.

where Vi and ḡi, i = K+,Na+, leak are constants and τn,m,h and n∞, m∞
and h∞ are voltage dependent as given in fig. 33. Thus, the HH equations
constitute a coupled set of 4 non-linear first order differential equations.

The HH equations were developed to describe the voltage and time de-
pendence of the K+ and Na+ conductances in a voltage clamp experiment.
However, they can in fact also generate the form and time course of the ac-
tion potential with remarkable accuracy (fig. 36). The initial depolarization
of the membrane is due to the stimulus. This increases the Na+ permeability,
which yields a large inward Na+ current, further depolarizing the membrane,
which approaches the the Na+ Nernst potential VNa+. The rate of depolar-
ization subsequently falls both because the electrochemical driving force on
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Na+ decreases and because the Na+ conductance in-activates. At the same
time, depolarization slowly activates the K+ conductance, causing K+ ions to
leave the cell and re-polarizing the membrane potential toward VK+. Because
the K+ conductance becomes temporarily higher than it is in the resting con-
dition, the membrane potential actually becomes briefly more negative than
the normal resting potential (the undershoot). The hyper-polarization of
the membrane potential causes the voltage-dependent K+ conductance (and
any Na+ conductance not in-activated) to turn off, allowing the membrane
potential to return to its resting level.

4.4 Spike propagation

The voltage dependent mechanisms of action potential generation also ex-
plains the long-distance transmission of these electrical signals. This trans-
mission forms the basis of information processing between neurons in the
brain. Table 37 shows some conduction velocities for different types of nerve
fibers. As we see, thick axons and myelinated fibers conduct much faster than
thin and unmyelinated fibers, as we will explain below. Spike propagation is
an active process, more like burning a fuse than electrical signaling in a cop-
per wire. The latter is impossible because the axon longitudinal resistance
is exceedingly high due to its small diameter. Therefore, one needs repeated
amplification along the axon, which is what the spikes do. However, we first
discuss passive current flow.

4.4.1 Passive current flow

Current conduction by wires, and by neurons in the absence of action poten-
tials, is called passive current flow. It plays a central role in action potential
propagation, synaptic transmission and all other forms of electrical signaling
in nerve cells. For the case of a cylindrical axon, such as the one depicted
in Fig. 38, subthreshold current injected into one part of the axon spreads
passively along the axon until the current is dissipated by leakage out across
the axon membrane.

Radial currents (through the membrane) as well as axial currents (along
the axon axis) result from ion movement, which is due to the electric field as
well as due to diffusion. We assume that we can safely ignore the contribution
due to diffusion, ie. Ohms law is valid (see discussion of the Nernst-Planck
equation in section 3.4). The axial current is much larger than the radial
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Figure 37: Neural information processing depends on spike propagation from
one cell to the next. The action potential lasts about 1 µsec and travels at
1-100 m/sec.
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Figure 38: Linear cable model models the passive electrical properties of the
axon.

current due to the fact that the membrane resistance is much higher than
the intracellular resistance. Due to the small extracellular resistance, the
external potential differences are small. Therefore, we assume a constant
external potential independent of space and time.

As we will derive in exercise 5, the membrane potential, axial and ra-
dial membrane currents satisfies the following partial differential equations,
known as the cable equation2:

λ2∂
2V

∂x2
= τm

∂V

∂t
+ V − rmiinj

∂V

∂x
(x, t) = −raIi(x, t)

im(x, t) = −∂Ii
∂x

(x, t) (18)

with V = Vi−Vrest the internal membrane potential with respect to the mem-
brane resting potential; Ii is the axial current; ra∆x is the axial resistance of
a cylinder of length ∆x; im(x, t)∆x is the radial membrane current through

2These equations played an important role in the early 20th century for computing the
transmission properties of transatlantic telephone cables.
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a ring of thickness ∆x; rm/∆x is its resistance and cm∆x is it capacitance.
λ2 = rm/ra and τm = rmcm the space and time constants.

Suppose, a constant current is injected at x = 0. The membrane potential
reaches the steady-state solution satisfying

λ2d
2V (x)

dx2
= V (x)− rmiinj(x)

iinj(x) = I0δ(x)

The solution is given by

V (x) = V0 exp(−|x|/λ)

We can compute V0 by observing that dV
dx x=0

= −V0

λ
= −raIi(x = 0) = raI0

2

or

V0 =
raI0λ

2
=

√
rarm
2

I0

The membrane potential decreases with distance following a simple exponen-

tial decay, with characteristic length scale λ =
√
rm/ra. Hence, to improve

the passive flow of current along an axon, the resistance of the membrane
should be as high as possible and the resistance of the axoplasm should be
low.

Due to the membrane capacitance, there is a time delay of the membrane
potential response to a chance in the input current. As a simplest example,
consider the case that the potential is independent of location. If at t = 0
the injected current is changed from zero to a constant value I, the voltage
response is easily computed from eq. 18:

V (t) = V∞(1− exp(−t/τm))

with V∞ = Irm. We see that V (t) changes with the characteristic time
constant τm = rmcm. In general, with more complex geometries than the
cylindric axon and a membrane potential that changes with x, the time
course of the change in membrane potential is not simply exponential, but
nonetheless depends on the membrane time constant.

We can easily get a rough idea of the conduction velocity in the passive
cable as a function of the axon diameter d. First note, that since rm/∆x
is the resistance through a ring of diameter d in radial direction, rm ∝ d−1.
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Secondly, since ra∆x is the resistance through a ring of diameter d in axial
direction, ra ∝ d−2. Thus, the characteristic length scale λ depends on the
diameter as

λ =

√
rm
ra
∝
√
d

The capacitance of the ring is cm∆x. Approximating the membrane as two
parallel plates, the capacitance is proportional to the area of the ring: cm ∝ d.
Thus, the characteristic time scale τm depends on the diameter as

τm = rmcm ∝ d−1d = constant

We therefore estimate that the propagation velocity depends on the diameter
of the axon as

v ∝
√
d (19)

This requires very thick axons for fast propagation (eg. squid giant axon).
From the examples of unmyelinated axons from table 37 we see indeed that
they approximately follow this square root law. Fig. 39 summarizes the
passive properties of the axon.

4.4.2 Spike propagation

If the experiment shown in Fig. 39 is repeated with a depolarizing current
pulse sufficiently large to produce an action potential, the result is dramat-
ically different (Fig. 40). In this case, an action potential occurs without
decrement along the entire length of the axon, which may be a distance of
a meter or more. Thus, action potentials somehow circumvent the inherent
leakiness of neurons.

How, then, do action potentials traverse great distances along such a poor
passive conductor? This is easy to grasp now we know how action potentials
are generated and how current passively flows along an axon (Fig. 41). A
depolarizing stimulus (synaptic input in in vivo situations or injected current
pulse in an experiment) locally depolarize the axon, thus opening the voltage
sensitive Na+ channels in that region. The opening of Na+ channels causes
an action potential at that site. Due to the potential difference between that
site and neighboring sites, current will flow to neighboring sites (as in passive
conductance). This passive flow depolarizes the membrane potential in the
adjacent region of the axon thus triggering an action potential in this region,
and so forth. It is the active process of spike generation that boosts the
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Figure 39: Passive current flow in an axon. A current passing electrode pro-
duces a subthreshold change in membrane potential, which spreads passively
along the axon. With increasing distance from the site of current injection,
the amplitude of the potential change is attenuated.
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Figure 40: Propagation of a action potential. An electrode evokes an action
potential by injecting a supra-threshold current. Potential response recorded
at the positions indicated by micro-electrodes is not attenuated, but delayed
in time.
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signal at each site, thus ensuring the long-distance transmission of electrical
signals.

After the action potential has passed a site, the Na+ channels are in-
activated and the K+ channels are activated for a brief time (the refractory
period) during which no spike can be generated. The refractoriness of the
membrane in the wake of the action potential explains why action potentials
do not propagate back toward the point of their initiation as they travel along
an axon.

4.4.3 Myelin

Fast information processing in the nervous system require fast propagation of
action potentials. Because action potential propagation requires passive and
active flow of current, the rate of action potential propagation is determined
by both of these phenomena. One way of improving passive current flow is
to increase the diameter of the axon as we saw in section 4.4.1. However,
this requires very thick axons for fast conduction.

Another strategy to improve the passive flow is to insulate the axonal
membrane. For this reason, nerve fibers in vertebrates, except the smallest,
are surrounded by a sheath of fatty material, known as myelin. The myelin
sheath is interrupted at regular intervals, known as the nodes of Ranvier
(Fig. 42). At these sites only, action potentials are generated. (If the en-
tire surface of the axon were insulated, there would be no place for action
potential generation.) An action potential generated at one node of Ranvier
elicits current that flows passively within the myelinated segment until the
next node is reached. The local current then generates an action potential
in the next node of Ranvier and the cycle is repeated. Because action poten-
tials are only generated at the nodes of Ranvier this type of propagation is
called saltatory, meaning that the action potential jumps from node to node.
As a result, the propagation speed of action potentials is greatly enhanced
(Fig. 43).

This results in a marked increase in speed due to the increased speed of
the passive conduction (see Exercise 6) and the time-consuming process of
action potential generation occurs only at the nodes of Ranvier. Whereas
unmyelinated axon conduction velocities range from about 0.5 to 10 m/s,
myelinated axons can conduct at velocities up to 150 m/s.

Not surprisingly, loss of myelin, as occurs in disease such as multiple
sclerosis, causes a variety of serious neurological problems.
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Figure 41: Action potential conduction requires both active and passive cur-
rent flow. Depolarization at one point along an axon opens Na+ channels
locally (Point 1) and produces an action potential at this point (A) of the
axon (time point t=1). The resulting inward current flows passively along
the axon (2), depolarizing the adjacent region (Point B) of the axon. At a
later time (t=2), the depolarization of the adjacent membrane has opened
Na+ channels at point B, resulting in the initiation of the action potential at
this site and additional inward current that again spreads passively to an ad-
jacent point (Point C) farther along the axon (3). This cycle continues along
the full length of the axon (5). Note that as the action potential spreads, the
membrane potential re-polarizes due to K+ channel opening and Na+ channel
inactivation, leaving a ”wake” of refractoriness behind the action potential
that prevents its backward propagation (4).
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Figure 42: A) Diagram of a myelinated axon. B) Local current in response
to action potential initiation at a particular site flows locally, as described
in Fig. 41. However, the presence of myelin prevents the local current from
leaking across the internodal membrane; it therefore flows farther along the
axon than it would in the absence of myelin. Moreover, voltage-gated Na+

channels are present only at the nodes of Ranvier. This arrangement means
that the generation of active Na+ currents need only occur at these unmyeli-
nated regions. The result is a greatly enhanced velocity of action potential
conduction. Bottom) Time course of membrane potential changes at the
points indicated.
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Figure 43: Comparison of speed of action potential conduction in unmyeli-
nated (upper) and myelinated (lower) axons.
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Figure 44: Equivalent electrical model of a nerve cell. The rest membrane
potential is represented by a battery Vrest. The resistance R = 1/G, with G
the linearized approximation Eq. 7. The capacitance is given by Eq. 10.

4.5 Summary

Contemporary understanding of membrane permeability is based on evidence
obtained by the voltage clamp technique, which permits detailed characteri-
zation of permeability changes as a function of membrane potential and time.
For most types of axons, these changes consist of a rapid and transient rise
in the sodium permeability, followed by a slower but more sustained rise in
the potassium permeability. Both permeabilities are voltage-dependent, in-
creasing as the membrane potential depolarizes. The kinetics and voltage
dependence of Na+ and K+ permeabilities provide a complete explanation of
action potential generation. A mathematical model that describes the be-
havior of these permeabilities predicts virtually all of the observed properties
of action potentials. The discussion of the voltage clamp method and the
identification of the K+ and Na+ currents is based on [1] and the original
papers [4, 7]. The discussion of the Hodgkin-Huxley model is based on [8].

4.6 Exercises

1. Passive properties of the nerve cell. If we ignore the spike generation
mechanism of the nerve cell, we can describe the electrical behavior by
an equivalent linear electronic circuit, as shown in fig. 44. The current
through the resistor is equal to Ir = V/R and the current through the
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Figure 45: An experiment showing the passive electrical properties of a cell.
The cell is impaled with two intracellular electrodes. One of them passes
steps of current. The other records the changes of membrane potential.

capacitance is given by C dV
dt

, with the capacitance is given by Eq. 10.
In addition, there may be an externally supplied current Iext.

Conservation of current implies

0 = Ic + Ir − Iext = C
dV

dt
+
V

R
− Iext τ

dV

dt
= −V + IextR

with τ = RC the membrane time constant.

In the cell in fig. 45 one measures the voltage change as a function of
the amount of injected current. Assume that the cell can be described
as an RC circuit

(a) At t < 0 the membrane potential is at rest and the current I(t) =
0. Derive an expression for the membrane potential as a function
of time if for t > 0 the current has a constant value Iext(t) = I0.

(b) Estimate approximately from fig. 45 the resistance of the cell and
the RC time. Use these estimates to compute the surface area of
the cell (assume the capacitance C = 1µF/cm2).

2. Consider the voltage clamp experiment in fig. 24. How would the cur-
rent response be if the membrane permeability were not voltage depen-
dent? Sketch the current response in fig. 24A and B.
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3. Numerical simulation of the HH model in Matlab. For an introduction
to Matlab see http://www.mines.utah.edu/gg_computer_seminar/

matlab/matlab.html?. Download the software of numerical simula-
tion of the HH model from www.snn.kun.nl/~bert/biofysica/fcns/

spikes.zip. Unzip the file spikes.zip and go to the subdirectory
spikes. The program hh.m simulates the Hodgkin-Huxley equations.
In this program, V − 60 denotes the membrane potential in mV. The
parameters αi and βi are related to the parameters τi, i = n,m, h and
n∞, m∞ and h∞ in Eq. 17 as

τi =
1

αi + βi
, i = n,m, h

n∞ = αnτn

m∞ = αmτm

h∞ = αhτh

The program hh functions.m shows the dependence of these functions
on membrane potential. By editing the program hh.m, we can study
the behavior of the neuron as we change several parameters.

Study how the spiking of the neuron depends on the external current
Iext, by varying Iext. Make a table of the spike frequency of the neuron
versus the external current for Iext = 0, 5, 10, 40, 200µA/cm2. What is
the minimal value of the current for repetitive spiking? What happens
to the frequency and amplitude for large current values?

4. In this excersize we compare the electrical resistance of an axon wire
to a copper wire.

(a) Compute the resistance of one meter of axon if the axon resistivity
ρ = 100Ωcm.

(b) To how many meters of copper wire does this correspond if one
meter of copper wire has a resistance of approximately 0.1 Ω?

5. Derive the cable equations 18 using Fig. 38.

6. Using a reasoning similar to that leading to eq. 19, derive an expression
for the passive propagation velocity in myelinated axons as a function
of the membrane thickness and axon diameter.
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5 Synapses

5.1 Introduction

The human brain contains at least 100 billion neurons, each with the abil-
ity to influence many other cells. Clearly, highly sophisticated and efficient
mechanisms are needed to enable communication among this astronomical
number of elements. Such communication is made possible by synapses,
the functional contacts between neurons. Although there are many kinds
of synapses within the brain, they can be divided into two general classes:
electrical synapses and chemical synapses. Electrical synapses permit direct,
passive flow of electrical current from one neuron to another. The current
flows through gap junctions, which are specialized membrane channels that
connect the two cells. In contrast, chemical synapses enable cell-to-cell com-
munication via the secretion of neurotransmitters: the chemicals released by
the presynaptic neurons produce change the electrical conductance of the
post-synaptic membrane by activating specific receptor molecules.

It is generally believed that the strength of chemical synapses can change
through learning as a function of behavioral experience. Chemical synapses
have therefore received most attention in the study of how networks of neu-
rons can realize biological function. However, recently it has become clear
that also electrical synapses may play an important role in neural informa-
tion processing. In this chapter, however, we will restrict our attention to
chemical synapses.

5.2 Chemical synapses

Chemical synapses come in a large variety and have a complex internal dy-
namics. Synapses typically connect the axon of one cell to the dendrite of
another cell, but dendro-dendritic synapses also occur. Autapses, an axon
making connection onto its own dendritic tree, are rare on pyramidal cells,
but occur more frequently on some classes of cortical inhibitory inter-neurons.

Synapses are small: about 0.5-1.0 µm in diameter and are densely packed
in the brain. If their size is 1 µm, one mm3 full of synapses would contain
109 synapses. In fact, the experimental estimate is very close to this: 8× 108

synapses/mm3 in mouse cortex. In addition, one mm3 of brain tissue contains
100000 neurons, 4.1 km of axon (d ≈ 0.3µ) and 456 m of dendrite (d ≈ 0.9µ).
Thus, the average neuron in the mouse cortex is connected to 8000 other
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neurons and uses 4 mm of dendrite wire and 4 cm of axon wire to connect to
other cells. Since the total cortical surface in humans is about 100000 mm2

and 2 mm thick, there are about 2× 1010 neurons and 2× 1014 synapses in
the human brain. Fig. 2 shows some examples of chemical synapses in adult
cat visual cortex.

The space between the pre-and postsynaptic neurons is called the synap-
tic cleft. The key feature of all chemical synapses is the presence of small
(30-40 nm diameter), membrane-bounded organelles called synaptic vesicles
within the presynaptic terminal. These vesicles are filled with one or more
neurotransmitters. These chemical agents act as messengers between the
communicating neurons that gives this type of synapse its name.

Transmission at chemical synapses is based on an elaborate sequence
of events (Fig. 46). 1) Action potential causes an inrush of Ca2+ ions via
voltage dependent Ca channels. 2) Elevated Ca2+ concentration allows one
or more vesicles to fuse with the presynaptic neuron membrane, releasing its
neurotransmitter. 3) The neurotransmitter binds to postsynaptic receptors,
increasing the permeability of post-synaptic ion channels. An in- or out-rush
of current temporarily changes the post-synaptic potential (PSP).

5.3 The post-synaptic potential

Upon activation of a chemical synapse one can observe a rapid and transient
change in the postsynaptic potential. The response can be either excita-
tory (EPSP) or inhibitory (IPSP). These EPSPs and IPSPs are caused by
excitatory and inhibitory post-synaptic currents (EPSCs and IPSCs).

The synaptic current rises fast and decays to zero in 20-30 msec. We see
from Fig. 47 that the peak can be either positive or negative, depending on
the clamping potential. The peak current is linearly related to the membrane
potential. This suggest that:

Isyn(t) = gsyn(t)(Vm − Vsyn)

The post-synaptic current is caused by a temporary increase in the membrane
conductance, modeled by gsyn(t). Vsyn is the clamp voltage for which the
response changes sign. Its value is synapse specific.

Electrical properties of a membrane with synapse can be very simply
described by an RC circuit as depicted in Fig. 48. Conservation of current
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Figure 46: Canonical chemical synapse model. Action potential causes an
inrush of Ca2+ ions via voltage dependent Ca channels. 2) Elevated Ca2+

concentration allows one or more vesicles to fuse with the presynaptic neuron
membrane, releasing its neurotransmitter. 3) The neurotransmitter binds
to postsynaptic receptors, increasing the permeability of post-synaptic ion
channels. An in- or out-rush of current temporarily changes the post-synaptic
potential (PSP).

Figure 47: Activation of synapses made by the mossy fibers onto CA3 pyra-
midal cells in the rodent hippocampus. A) The pyramidal cell is voltage
clamped to different values and the clamp current is recorded.
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Figure 48: Equivalent electrical circuit for fast voltage dependent chemical
synapse.

gives

C
dVm
dt

+ gsyn(t)(Vm − Vsyn) +
Vm − Vrest

R
= 0

τ
dV

dt
= − (1 +Rgsyn)V − Rgsyn (Vrest − Vsyn)

with V = Vm − Vrest and τ = RC.
When Vsyn > Vrest the current will depolarize the membrane. An example

is the excitatory synapse using the neurotransmitter glutamate with Vsyn −
Vrest=80mV. When Vsyn < Vrest the current will hyper-polarize the membrane.
An example is the inhibitory synapse using the neurotransmitter GABAB

that lets K ions out of the cell with Vsyn − Vrest=-10-30mV. The situation is
illustrated in Fig. 49

Shunting inhibition occurs when Vrest = Vsyn. There is no synaptic current,
but such synapses reduce the effect of other synapses. Consider one shunting
synapse and one excitatory synapse:

τ
dV

dt
= − (1 +Rgsyn +Rgsh)V − Rgsyn (Vrest − Vsyn)

The term Rgsh reduces the peak response of V . An example is the GABAA

synapse that increases the conductance to Cl ions with a reversal potential
near the resting potential of many cells.

The summation of EPSPs and IPSPs by a postsynaptic neuron permits a
neuron to integrate the electrical information provided by all the inhibitory
and excitatory synapses acting on it at any moment. If the sum of all input
results in a depolarization of sufficient amplitude to raise the membrane
potential above threshold, then the postsynaptic cell will produce an action
potential (Fig. 50).
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Figure 49: Reversal potentials and threshold potentials determine postsynap-
tic excitation and inhibition. A, C) If the reversal potential for a PSP (Erev)
is more positive than the action potential threshold (-40 mV), the effect of
a transmitter is excitatory, and it generates an EPSP. B) If the reversal po-
tential for a PSP is more negative than the action potential threshold, the
transmitter is inhibitory and generates IPSPs.

Figure 50: Summation of postsynaptic potentials
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Figure 51: Histogram of 198 miniature EPSPs after presynaptic stimulation
and 78 spontaneous EPSPs (inset).

5.4 Stochastic PSPs

Much of the evidence leading to the present understanding of chemical synap-
tic transmission was obtained from experiments at the neuromuscular junc-
tion. These synapses between spinal motor neurons and skeletal muscle
cells are simple, large, and peripherally located, making them particularly
amenable to experimental analysis [9].

Stimulation of the presynaptic motor neuron under normal conditions
leads to a post synaptic action potential and contraction of the muscle. How-
ever, also in the absence of stimulation, one can observe post-synaptic EPSPs,
so-called miniature EPSPs, that are the result of spontaneous neurotransmit-
ter release. Measuring the size of these events shows that they are always
more or less of the same magnitude (Fig. 51 inset). This suggests that these
EPSPs are the result of the release of a single vesicle of neurotransmitter.

To test this hypothesis, Katz measured the post synaptic potential re-
sulting from presynaptic stimulation when the concentration of Ca2+ in the
extracellular medium is strongly reduced. In that case, the post-synaptic
cell does not generate an action potential and a sub-threshold post synaptic
response is observed instead. The magnitude of the response differs from
trial to trial and the response is displayed as a histogram in Fig. 51. It is
seen that the responses are clustered around multiples of 0.4 mV, which is
the mean size of the spontaneous (’quantal’) release mentioned above. Thus,
pre-synaptic stimulation can lead to the opening of zero, one, two or up to
five vesicles of neurotransmitter. On average m = 2.33 vesicles are released.

We can model this process by assuming that the junction has n release
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k np(k) Observed

0 19 18
1 44 44
2 52 55
3 40 36
4 24 25
5 11 12
6 5 5
7 2 2
8 1 1
9 0 0

Table 3: Numerical comparison between observed quantal response of
synapse in neuro-muscular junction and prediction from binomial distribu-
tion. n = 198, m = 2.33.

sites (n is a few hundred for neuro-muscular junction), each having an in-
dependent probability p of releasing a vesicle after pre-synaptic stimulation.
p depends of course on the Ca2+ concentration. The probability that the
synapse releases k quanta is then given by the binomial distribution

p(n, k) =

(
n
k

)
pk(1− p)n−k

m = 〈k〉 = np

σ2 =
〈
k2
〉
−m2 = np(1− p)

In the limit, p → 0, n → ∞ with m = pn constant, the binomial distri-
bution can be approximated by the Poisson distribution

p(n, k)→ p(k) =
mk

k!
exp(−m)

and the number of events for each k is given by np(k). As is demonstrated
in exercise 1, np(k) reproduces these experimental findings very well.

With m = 2.33, the expected results for each k are compared with the
experimentally observed results in Table 3 and we see that the agreement is
excellent.

m = 2.33� n due to low external Ca. In normal operation m = O(n).
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Figure 52: Left. EPSC in CA 1 pyramidal cells. Only 3 out of 9 presynaptic

stimuli produce a response. In addition, the response is variable in strength.

Right. Rat visual cortex. 4 EPSPs resulting from identical stimulation.

Whereas the neuro-muscular junction has many hundreds of synaptic
contact, in cortex one finds mostly mono-synaptic connections and 0.1 <
p < 0.9. Thus, information transmission between individual neurons is noisy
and unreliable, as is illustrated in fig. 52.

5.5 Learning

The earliest learning experiments are from the psychology literature. First
there is the phenomenon of habituation using Pavlov’s dog. In this exper-
iment a bell rings (CS) and the dog turns her head (CR). After several
repetitions, the dog stops paying attention to the bell. Thus, the same stim-
ulus leads to a change in the response from ’head turn’ to ’no head turn’
(fig. 53b).

Depending on the type of stimulus, habituation occurs or not. If the
dog is show a piece of meat (US), the dog will salivate (UR). UR) on sight
of meat (US). No matter how often the stimulus is presented, the dog will
always respond (fig. 53c).
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Figure 53: Habituation experiments
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Now, consider two stimuli CS (bell) and US (meat). By itself CS does
not yield a response, but US does. Classical conditioning is the phenomenon
that when CS and US are presented together for some time, the dog will
start responding to CS alone.

This phenomenon can be explained by assuming a simple model that
captures the relation between stimuli and response:

R = Θ(JuSu + JcSc − θ)

Θ(x) is a threshold function that returns 1 for x > 0 and zero otherwise.
R = 1, 0 denotes the response of the dog salivating or not, u = 1, 0 denotes
the presence of the unconditioned stimulus (meat) and c = 1, 0 denotes
the presence of the conditioned stimulus (bell). Ju and Jc are connections
modulating the dependence of R on u and c, respectively. If this model is
operational in the brain somewhere, Ju and Jc can be thought of as effective
synaptic connections between neurons or groups of neurons.

Before the experiment the bell by itself does not yield a response, but
the meat does. Therefore: J c < θ and Ju > θ. After the experiment both
bell and meat yield the response. Therefore: J c > θ and Ju > θ. We can
understand the change in Jc by the so-called Hebbian learning paradigm

∆J ∝ RS
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The synaptic strength J is only increased when the post-synaptic response
R coincide with the pre-synaptic stimulus S. In the absence of the meat
stimulus, the bell stimulus never yields a response R = 1 and therefore the
connection Jc between bell and salivate is not strengthened. When both
bell and meat are presented, the meat stimulus by itself will make the dog
salivate (R = 1). The Hebbian learning rule will then strengthen both the
connections Jc and Ju. When Jc grows in this way and exceeds θ, the dog
will start salivating when only the bell is presented. The strengthening of Ju
has no effect since its value is larger than θ from the beginning.

5.6 Long term potentiation

Many synapses in the mammalian central nervous system exhibit long-lasting
forms of synaptic plasticity that are plausible substrates for learning, memory
and permanent changes in behavior.

One experimentally observed pattern of synaptic activity is known as
long-term potentiation (LTP). LTP has been studied most in the hippocam-
pus, an area of the brain that is especially important in the formation and/or
retrieval of some forms of memory.

The progress in understanding LTP has relied heavily on in vitro studies
of slices of living hippocampus. The hippocampus contains several regions,
the major ones being CA1 and CA3. Much of the work on LTP has focused
on the synaptic connections between the Schaffer collaterals (axons of CA3
pyramidal cells) and and CA1 pyramidal cells. The experimental setup is
illustrated in Fig. 54. A stimulus electrode can activate a Schaffer collateral.
Single stimuli applied to a Schaffer collateral evokes EPSPs in the post-
synaptic CA1 neuron. These stimuli alone do not elicit any change in synaptic
strength. However, when the CAI neuron’s membrane potential is briefly
depolarized (by applying current pulses through the recording electrode) in
conjunction with the Schaffer collateral stimuli, there is a persistent increase
in the EPSPs, which can last for hours or days. LTP occurs not only at the
excitatory synapses of the hippocampus, but at many other synapses in a
variety of brain regions, including the cortex, amygdala and cerebellum.

LTP is a specific strengthening of synaptic connection, without strength-
ening other synapses that contact the same neuron (Fig. 55A). Another im-
portant property is associativity (Fig. 55B). As noted, weak stimulation of
a pathway will not by itself trigger LTP. However, if one pathway is weakly
activated at the same time that a neighboring pathway onto the same cell is
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Figure 54: Pairing presynaptic and postsynaptic activity causes LTP.

strongly activated, both synaptic pathways undergo LTP. Note, that this is
a cellular analog of the previously discussed mechanism for classical condi-
tioning.

5.7 Hebbian learning

The simplest plasticity rule that follows the spirit of Hebb’s conjecture takes
the form

τw
dw

dt
= vu− λv (20)

where w is the synaptic strength, τw is a time constant that controls the
rate at which the weights change, and u and v are the neural activity of the
pre- and post-synaptic cell, respectively. The first term on the right hand
side of Eq. 20 is the Hebbian term and increases the synapses proportional
to the product of pre- and post-synaptic activity. Hebbian plasticity is a
positive-feedback process because effective synapses are strengthened, mak-
ing them even more effective. This tends to increase post-synaptic firing
rates excessively.

The second term is an effective way of controlling this instability and
decreases the synapse proportional to the total post-synaptic activity. λ is
an adjustable constant. For one presynaptic neuron and one post-synaptic
neuron the net effect is that the synapse is increased (decreased) when the
pre-synaptic activity u > λ (u < λ).

When u and v are changing with time, w will also change with time
according to Eq. 20. A nice simplification can be made when we assume that
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Figure 55: A) Strong activity initiates LTP at active synapses without ini-
tiating LTP at nearby inactive synapses. B) Weak stimulation of pathway
2 alone does not trigger LTP. However, when the same weak stimulus to
pathway 2 is activated together with strong stimulation of pathway 1, both
sets of synapses are strengthened.

u and v are randomly drawn from a probability distribution p(u, v). In this
case the average synaptic weight satisfies

τw
dw

dt
= 〈vu〉 − λ 〈v〉

with 〈uv〉 =
∫
dudvp(u, v)uv and 〈v〉 =

∫
dudvp(u, v)v.

When a neuron receives input from n synapses with strength wi, the
deterministic rule becomes

τw
dwi
dt

= vui − λv, i = 1, . . . , n (21)

Note, that the change of each synapse depends on the value of all other
synapses through v. For instance, if we assume that v depends linearly on
the inputs v =

∑n
i=1 wiui.

5.7.1 Ocular dominance

Hebbian plasticity is often used to model the development and activity-
dependent modification of neuronal selectivity to various aspects of a sen-
sory input, for example the selectivity of visually responsive neurons to the
orientation of a visual image. This typically requires competition between
synapses, so that the neuron becomes unresponsive to some features while
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growing more responsive to others. The above Hebbian rule Eq. 21 introduces
such competition, as we will show now.

We consider the highly simplified case of a single layer 4 neuron that
receives input from just two LGN neurons with activity ui, i = 1, 2. Two
synaptic weights wi, i = 1, 2 describe the synaptic connection strengths of
the LGN neurons with the cortical neuron. The output activity we assume
simply linear:

v =
2∑

i=1

wiui (22)

Thus, Eq. 21 becomes

τw
dwi
dt

=
∑

j

Qijwj − λ(w1 〈u1〉+ w2 〈u2〉)

Qij = 〈uiuj〉 (23)

Using the symmetry property that both eyes are equal, we can parameterize
the matrix as Q11 = Q22 = qs, Q12 = Q21 = qd and 〈u1〉 = 〈u2〉 = 〈u〉.
We can solve Eq. 23 by changing to the basis of eigenvectors of Q. Stated
differently, the dynamical equations for w1 + w2 and w1 − w2 decouple:

τw
d(w1 + w2)

dt
= (qs + qd − 2λ 〈u〉)(w1 + w2) (24)

τw
d(w1 − w2)

dt
= (qs − qd)(w1 − w2) (25)

For λ sufficiently large, the first equation will yield the asymptotic solution
w1 + w2 = 0. Under normal circumstances, the cross correlation between
eyes qd is smaller than the autocorrelation qs. Therefore, qs − qd > 0 and
w1 − w2 will grow indefinitely. In reality, there will be non-linearities in the
system (in Eq. 20 and Eq. 22) that will prevent this indefinite growth. The
final solution is then

w1 = −w2 = w∞ (26)

with w∞ a positive or negative value depending on the sign of the initial
value w1(0)−w2(0). For w∞ > 0, the cortical neuron will be sensitive to eye
1 and insensitive to eye 2, and vise versa. Thus, we have shown that ocular
dominance can explained as a consequence of Hebbian learning.
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5.8 Summary

There are chemical and electrical synapses. Chemical synapses are thought
to be implied in learning. Synapses can be excitatory, inhibitory or shunting
depending on the reversal potential of the synapse relative to the membrane
resting potential. Synapses are stochastic elements: a presynaptic action po-
tential yields a postsynaptic response with a certain probability. The most
important mechanism for learning is called Hebbian learning. The strength
of a synapse increases when pre- and postsynaptic cell fire at the same time.
This is in agreement with the psychological phenomenon of classical condi-
tioning and also found as a mechanism for synaptic plasticity in the brain.
Hebbian learning can be used to explain the receptive field properties of
many neurons, such as for instance ocular dominance. This chapter is based
on [10, 1, 11].

5.9 Exercises

1. This exercize is about the quantal release of neurotransmitter at the
neuro-muscular junction.

(a) Show that the binomial distribution reduces to the Poisson distri-
bution in the limit p→ 0, n→∞ with m = pn constant.

(b) Check the numerical agreement between the Poisson distribution
and the experimental values

(c) Discuss the shape of the distribution when the Ca2+ is restored to
its normal physiological value. Compute the mean and variance
and explain why under these conditions the presynaptic spike gives
a deterministic post-synaptic response.
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Figure 56: A) Simple Perceptron B) Multi-layered Perceptron

6 Perceptrons

Perceptrons are feed-forward neural networks. Examples are given in Fig. 56.
Consider a simple perceptron with one output:

o = g(h) = g




n∑

j=1

wjξj − θ

 = g




n∑

j=0

wjξj




with weights wj and inputs ξj. ξ0 = −1 and θ = w0. g is a non-linear
function.

Learning: Given a number of input-output pairs (ξµj , ζ
µ), µ = 1, . . . , P ,

find wj such that the perceptron output o for each input pattern ξµ is equal
to the desired output ζµ:

oµ = g




n∑

j=0

wjξ
µ
j


 = ζµ, µ = 1, . . . , P

6.1 Threshold units

Consider the simplest case of binary threshold neurons:

g(h) = sign(h)

Then, the learning condition becomes

sign(w · ξµ) = ζµ, µ = 1, . . . , P
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Since ζµ = ±1, we have

sign(w · ξµζµ) = 1 or w · xµ > 0

with xµj = ξµj ζ
µ.

6.2 Linear separation

Classification depends on sign of w · ξ. Thus, decision boundary is hyper
plane:

0 = w · ξ =
n∑

j=1

wjξj − θ

Perceptron can solve linearly separable problems. An example of a linearly
separable problem is the AND problem: The output of the perceptron is 1 if
all inputs are 1, and -1 otherwise (see Fig. 57).

By definition, problems that are not linearly separable need more than
one separating hyper plane to separate the two classes. An example of a
non-linearly separable problem is the XOR problem: The output is equal
to the product of the input values (see Fig. 57A). Other problems that are
not linearly separable occur when three or more input patterns are linearly
dependent (see Fig. 57B).
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Figure 57: The AND problem for two inputs is linearly separable.

6.3 Perceptron learning rule

We have seen that the desired weight vector satisfies

w · xµ > 0, all patterns (27)

We define the following perceptron learning rule:

wnew
j = wold

j + ∆wj

∆wj = ηΘ(−w · xµ)ξµj ζ
µ = ηΘ(−w · xµ)xµ (28)

η is the learning rate. This learning rule is Hebbian in the sense that the
change in weight is proportional to the product of input and output activity.
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Figure 58: The perceptron learning rule in action. Learning rule Eq. 28
is applied to all patterns in some random or given order. Learning stops,
when a weight configuration is found that has positive inner product with all
training patterns.

The function Θ is 1 for positive arguments and zero otherwise: When pre-
senting pattern µ, learning only occurs, when the condition w · xµ > 0 is not
satisfied for that pattern.

In Fig. 58 we show the behavior of the perceptron learning rule with
η = 1. The dataset consists of three data patterns x1, x2 and x3. The
initial weight vector is w. Presenting pattern x1, we note that w · x1 < 0
and therefore learning occurs. The resulting weight vector is w′ = w + x1.
Presenting pattern x2 and x3 also result in learning steps and we end up in
weight configuration w′′′. This weight vector has positive inner product with
all training patterns and learning terminates.

Depending on the data, there may be many or few solutions to the learn-
ing problem, or non at all! In Fig. 59 we give examples of two data sets and
their solutions Eq. 27. In Fig. 59A there are more admissible weight vectors
and they can have a larger inner product with all training patterns than in
Fig. 59B. We define the quality of the solution w by the pattern that has the
smallest inner product with w. Since the solution does not depend on the
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Figure 59: Two examples of data sets and the sets of w that satisfy condition
Eq. 27. A) Many solutions B) Few solutions.

norm of w, we define the quality as

D(w) =
1

‖w‖ min
µ
w · xµ

The best solution is given by Dmax = maxwD(w).
In Fig. 60, we illustrate this for a given data set and two admissible

solutions w and w′ and their values of D respectively. Since D(w′) > D(w),
w′ is the preferred solution.

If we can find a w such that D(w) > 0 the problem is linearly separable
and learnable by the perceptron learning rule. If the problem is not linearly
separable not such solution exists.

6.3.1 Convergence of Perceptron rule

In this section we show that if the problem is linearly separable, the percep-
tron learning rule converges in a finite number of steps. We start with initial
value w = 0. At each iteration, w is updated only if w · xµ < 0. After some
number of iterations, let Mµ denote the number of times pattern µ has been
used to update w. Thus,

w = η
∑

µ

Mµxµ

M =
∑
µM

µ is the total number of iterations in which the weight vector
is updated. If the learning rule converges, it means that M is finite and does
not grow indefinitely.
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Figure 60: Two admissible solutions w and w′ and their values of D respec-
tively. Since D(w′) > D(w), w′ is the preferred solution.

The proof goes as follows. Assume that the problem is linearly separable,
so that there is a solution w∗ with D(w∗) > 0. We will show that

O(
√
M) ≤ w · w∗

‖w‖‖w∗‖ ≤ 1

where the second inequality follows simply from the definition of the inner
product, and we will show the first inequality below. Thus, M can not grow
indefinitely and the perceptron learning rule converges in a finite number of
steps.

The proof of the first inequality is elementary:

w · w∗ = η
∑

µ

Mµxµ · w∗ ≥ ηM min
µ
xµ · w∗ = ηMD(w∗)‖w∗‖

∆‖w‖2 = ‖w + ηxµ‖2 − ‖w‖2 = 2ηw · xµ + η2‖xµ‖2 ≤ η2‖xµ‖2 = η2N

The inequality in the second line makes use of the fact that for each training
pattern where learning takes place w ·xµ < 0. The norm of w is thus bounded
by

‖w‖2 ≤ η2NM
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Combining these two inequality, we obtain Thus,

w · w∗
|w||w∗| ≥

√
M
D(w∗)√

N
(29)

which completes the proof. Note, that the proof makes essential use of the
existence of w∗ with D(w∗) > 0. If D(w∗) < 0 the bound Eq. 29 becomes a
trivial statement and does not yield a bound on M .

If the problem is linearly separable, we can in conclude that the number
of weight updates:

M ≤ N

D2(w∗)

where N is some trivial constant. We see that convergence takes longer for
harder problems (for which D(w∗) is closer to zero).

6.4 Linear units

We now turn to a possibly simpler case of linear units:

oµ =
∑

j

wjξ
µ
j

Desired behavior is that the perceptron output equals the desired output for
all patterns: oµ = ζµ, µ = 1, . . . , P . In this case, we can compute an explicit
solution for the weights. It is given by

wj =
1

N

∑

ρν

ζρ
(
Q−1

)
ρν
ξνj , Qρν =

1

N

∑

j

ξρj ξ
ν
j (30)

Q is a matrix with dimension P ×P and contains the inner products between
the input patterns.

To verify that Eq. 30 solves the linear perceptron problem, we simply
check for one of the input patterns (ξµ) whether it gives the desired output:

∑

j

wjξ
µ
j =

1

N

∑

ρ,u,j

ζρ
(
Q−1

)
ρν
ξuj ξ

µ
j

=
∑

ρ,u

ζρ
(
Q−1

)
ρν
Qνµ

=
∑

ρ

ζρδρµ = ζµ
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For this solution to exist, Q must be invertible. Therefore, the input pat-
terns must be linearly independent. Because otherwise Q is not of maximal
rank. Therefore, the number of patterns cannot exceed the number of input
dimensions: P ≤ N . 3

When P < N the solution wj = 1
N

∑
ρν ζ

ρ (Q−1)ρν ξ
u
j is not unique. In

fact, there exists a linear space of dimension N − P of solutions w. Namely,
let

w0
j =

1

N

∑

ρν

ζρ
(
Q−1

)
ρν
ξuj

wj = w0
j + ξ⊥

with ξ⊥ an n-dimensional vector that is perpendicular to all training patterns:
ξ⊥ ⊥ {ξµ}. Then the output of the perceptron is unaffected by ξ⊥:

ζµ =
∑

j

wjξ
µ
j =

∑

j

(w0
j + ξ⊥j )ξµj =

∑

j

w0
j ξ
µ
j

6.4.1 Gradient descent learning

Often P > N , and thus patterns are linearly dependent. In general, one can
define a learning rules through a cost function, that assigns a cost or quality
to each possible weight vector. A common cost function is the quadratic cost:

E(w) =
1

2

∑

µ


ζµ −

∑

j

wjξ
µ
j




2

3If the input patterns are linearly dependent, solution Eq. 30 does not exist. Linear
dependence of the inputs implies that there exists αµ such that

∑

µ

αµξµj = 0

This implies that

∑

µ

αµζµ =
∑

µj

wjα
µξµj = 0

in other words, that the outputs cannot be chosen at freely. For problems with linearly
dependent inputs and matched linearly dependent output Eq. 30 can be used by restricting
the training set to a linearly independent subset that spans the training set, and computing
Q for this subset.
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which is minimized when the actual perceptron output
∑
j wjξ

µ
j is as close as

possible to the desired output ζµ for all patterns µ.
The cost function can be minimized by the so-called gradient descent

procedure. We start with an initial random value of the weight vector w and
we compute the gradient in this point:

∂E

∂wi
= −

∑

µ


ζµ −

∑

j

wjξ
µ
j


 ξµi

We change w according to the ’learning rule’

wi = wi + ∆wi ∆wi = −η ∂E
∂wi

(31)

and repeat this until the weights do not change any more.
When η is sufficiently small, it is easy to verify that this gradient descent

procedure converges. The proof consists of two observations. One is that
for small η, E(w) decreases in each step, and the other is that E(w) is
bounded from below, so that it has a smallest value. Therefore E cannot
continue decreasing indefinitely and must converge to some stationary value
(see Exercises).

6.4.2 The value of η

What is a good value form η? Clearly, when η is very small, convergence
is guaranteed, but in practice it may take a very long time. If η is too
large, however, convergence is no longer guaranteed. The problem is further
complicated by the fact that the optimal choice of η is different for different
components of the weight vector w. This is illustrated in Fig. 61, where E as
a function of w is drawn. This valley has a unique minimal value for E, but
the curvature in two directions is very different. In the long (flat) direction,
large steps can be made, but in the orthogonal direction only small steps are
allowed. We can analyze the problem, by assuming that the energy has the
form

E(w) =
1

2

∑

i

ai (wi − w∗i )2 + E0

with w∗ the location of the minimum, and ai the curvatures in the two
directions i = 1, 2. Eq. 31 becomes

∆wi = −η ∂E
∂wi

= −2ηai (wi − w∗i ) = −2ηaiδwi
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Figure 61: Cost landscape E(w) with different curvatures in different direc-
tions.

with δwi = wi − w∗u. The effect of learning step on δwi is

δwnew
i = wnew

i − w∗i = wold
i − 2ηaiδw

old
i − w∗i = (1− 2ηai)δw

old
i

thus, δwi converges asymptotically to zero iff

|1− 2ηai| < 1. (32)

We must find an η that satisfies Eq. 32 for all i. When 1 − 2ηai < 0, δwi
changes sign in each iteration. The behavior is illustrated in Fig. 62 with
E(w1, w2) = w2

1 + 20w2
2 for different values of η.

6.5 Non-linear units

We can extend the gradient descent learning rule to the case that the neuron
has a non-linear output:

oµ = g(hµ), hµ =
∑

j

wjξ
µ
j

We use again the quadratic cost criterion:

E1(w) =
1

2

∑

µ

(ζµ − oµ)2
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Figure 62: Behavior of the gradient descent learning rule Eq. 31
for the quadratic cost function E(w1, w2) = w2

1 + 20w2
2 for η =

0.02, 0.0476, 0.049, 0.0505.

∆wi = −η ∂E
∂wi

=
∑

µ

(ζµ − oµ) g′(hµ)ξµi

When the function g is a monotonous function, it is invertible and one
could also formulate a different cost criterion by observing the identity

ζµ = g(hµ)⇔ g−1(ζµ) = hµ

E2(w) =
1

2

∑

µ

(
g−1(ζµ)− hµ

)2

Note, that E2 has a quadratic dependence on w, as in the linear case (but
with transformed targets g−1(ζµ) instead of ζµ). In general, optimizing either
E1 or E2 yield different optimal solutions.

6.6 Multi-layered perceptrons

The gradient descent learning procedure can be trivially extended to the
perceptron with multiple layers and multiple outputs as shown in Fig. 56B.
In addition to the input variables ξk and the output variable oi, we have a
layer of hidden variables vj for which no training data are observed. The
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value of the hidden variables is computed in terms of the input variables,
and the outputs are computed in terms of the hidden variables:

oi = g


∑

j

wijvj


 = g


∑

j

wijg

(∑

k

wjkξk

)
 (33)

The output is now a complex function of the input pattern ξk and the weights
wjk in the first layer of the network and the weights wij in the second layer
of the network.

Given a set of P training patterns (ξµk , ζ
µ
i ), µ = 1, . . . , P , we again use

the gradient descent procedure to find the weights that minimize the total
quadratic error:

E(w) =
1

2

∑

i

∑

µ

(oµi − ζµi )
2

(34)

with oµi the output on node i for input pattern ξµ as given by Eq. 33.
For large neural networks with many hidden units, the simple gradient

descent procedure can be quite slow. However, there exist well-known algo-
rithms that significantly accelerate the convergence of the gradient descent
procedure. One such method is the conjugate gradient method. Treatment
of this method is beyond the scope of this course (see however [12] or Matlab
for further details).

Note, that the optimal solution that is found depends on the number
of hidden units in the network. The more hidden units, the more complex
functions between input and output can be learned. So, for a given data set,
we can make the error Eq. 34 as small as we like by increasing the number
of hidden units. In fact, one can show that the multi-layered perceptron can
learn any smooth function, given a sufficiently large number of hidden units.

However, the objective of a learning algorithm is to use the neural network
to predict the output on novel data, that were not previously seen. Increasing
the number of hidden units does not necessarily improve the prediction on
novel data. The situation is illustrated in Fig. 63 for the case of one input
variable and one output variable. The crosses denote the data points that
were used for training and the smooth curve is the neural network solution.
For a small number of hidden units, the solution may look something like
Fig. 63A. The solution does not pass through all the data points. For a larger
number of hidden units, the solution may look something like Fig. 63B.
The solution does pass through all the data points and is more complex.
However, the prediction of the more complex network is less accurate than
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Figure 63: Network output versus network input. A) Network with a small
number of hidden units. B) Network with a large number of hidden units.
Networks with more hidden units can implement more complex functions
and can better fit a given training set. However, more complex networks do
not necessarily generalize better on novel data.

the simple network for the data point indicated by the circle, which was not
part of the training set. The extend to which the trained neural network is
capable of predicting on novel data is called the generalization performance.
The network with the optimal generalization performance must balance two
opposing criteria: minimization of the error on the training data requires
a large number of hidden units, but the solution should also be sufficiently
smooth to give good prediction.
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6.7 Summary

This chapter is based on [12]. Perceptrons are simple models of feed-forward
computation in a network of neurons. Binary perceptrons can be used for
classification problems. Learning is done using the perceptron learning rule.
The learning rule converges in a finite number of iterations if and only if the
problem is linearly separable.

Perceptrons can also be constructed with continuous output, either using
a linear or non-linear transfer function. These perceptrons can be learned us-
ing the gradient descent method. Gradient descent converges asymptotically
for any data set.

The quality of the perceptron can be significantly improved by using
multiple layers of hidden units. The multi-layered perceptron can learn any
function by using a sufficiently large number of hidden units. However, pre-
diction quality on novel data does not generally increase with the number
of hidden units. Optimal generalization is obtained for a finite number of
hidden units.

6.8 Exercises

1. Check dat Dmax = 1√
3

voor het AND probleem en Dmax = − 1√
3

voor
het XOR probleem. Het AND probleem in de ξi = ±1 codering is
gedefinieerd als ζ = 1 als ξ1 = ξ2 = 1 and ζ = −1 in alle overige
gevallen. Het XOR probleem is gedefinieerd als ζ = ξ1 ∗ ξ2. Gebruik
voor de gewichten vector w = (w0, w1, w2). (Hint: gebruik w1 = w2

vanwege symmetrie).

2. Beschouw gradient descent in een kostenlandschap gegeven door E =
a1x

2 + a2y
2. Bereken de leerparameter η zodanig dat de convergentie

in zowel x als y richting even snel is.

3. Beschouw een lineair perceptron (sectie 6.4) om de AND functie te
leren.

• wat zijn de optimale gewichten en drempels? wat is de optimale
kosten E?

• laat zien dat E > 0 impliceert dat de inputpatronen lineair afhanke-
lijk zijn.
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4. Toon aan dat het gradient descent algoritme Eq. 31 asymptotisch con-
vergeert.
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