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1 Introduction

1.1 Newtonian Dynamics

Classical mechanics has not really changed, in substance, since the days of Isaac Newton.
The essence of Newton’s insight, encoded in his second law F = ma, is that the motion of a
particle described by its trajectory, r(t), is completely determined once its initial position and
velocity are known. His famous equation, describing the second law, relates the acceleration
d2r/dt2 to the force on the particle, which is implicitly assumed to depend only on the
positions, and possible the velocities of the particles in the system. Consider a system
of N particles, whose trajectories are described by 3N coordinates rk(t), k = 1, . . . , N .
Then Newton’s laws of motion take the mathematical form of 3N second order differential
equations in time:

mk
d2rk

dt2
= F k({ri}, {ṙi}) (1)

This is the general framework, but of course for each dynamical system we also need to know
the force law. Newton himself specified his inverse square force law for gravitational systems:

F Grav
k = −mk

∑

j 6=k

Gmj(rk − rj)

|rk − rj|3
(2)

which has no dependence on the velocities of the particles. He didn’t know about magnetic
forces on moving charges, which were only understood much later. A particle of charge q
moving in an electromagnetic field experiences a force

F EM = q [E(r, t) + v × B(r, t)] (3)

The existence of magnetic forces means that we have to allow for velocity dependent forces
to hope to describe all phenomena.

Although Newton’s laws of motion were designed to describe particles and other material
bodies, the fundamental insight that dynamics should be governed by differenetial equations
that are second order in time carries over to fields such as the eletric and magnetic fields,
which satisfy second order wave equations, e.g.

(

1

c2
∂2

∂t2
−∇2

)

B = µ0J (4)

Everything we know about the physical world to date can be effectively understood in terms
of the dynamics of particles and fields.

Newton also didn’t know about Einstein’s relativity, but his law of motion, appropriately
modified carries over to this domain as well. The necessary modification is to replace ma

with dp/dt, where p is the relativistic momentum of the particle:

p ≡ mv
√

1 − v2/c2
(5)
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We see that for particles moving slowly compared to the speed of light v ≪ c, the momentum
goes approximately to its Newtonian expression p ≈ mv, so ṗ ≈ ma. But even for fully
relativistic motion the basic structure of Newtonian dynamics holds.

1.2 The Value of New Formulations

The previous subsection contains everything you need to know about Newtonian dynamics–
once you solve the equations there is nothing more to say. However, there are other ways
to look at the dynamics that reveal features of the motion that brute force solution of the
equations might leave obscure. For example in elementary physics we learn how to exploit
energy conservation when the force is the gradient of a potential F = −∇V . Then instead
of working with the second order differential equations we can use energy conservation

E =
1

2
mv2 + V (r) = Constant (6)

to immediately read off the speed of the particle in terms of its location and total energy E.
In one dimensional motion the potential energy curve tells us a lot about the types of

motion that will occur. A horizontal line of height E intersects V (x) at the “turning points”
where the particle comes to rest. Points where dV/dx = 0 tell where a particle feels zero
force. A particle placed there at rest will stay at rest: we spot the static solutions by looking
for the maxima and minima of the potential. A minimum is stable equilibrium, whereas a
maximum is unstable equilibrium.

For motion in one dimension, energy conservation implies Newton’s equations

dE

dt
= mẋẍ+ ẋ

∂V

∂x
= ẋ

(

mẍ+
∂V

∂x

)

= 0 (7)

so as long as ẋ 6= 0, Newton’s equation holds. But in two or more dimensions energy
conservation only tells us

ẋ · (mẍ + ∇V ) = 0 (8)

which only implies that mẍ + ∇V is perpendicular to ẋ. For example the magnetic force
might or might not be present:

mẍ = −∇V + qẋ × B (9)

The ideas of Lagrange, Hamilton, and Jacobi allow us to interpret general nonstatic
solutions in terms of maxima or minima of an energy-like quantity called the action. Since a
nonstatic solution is a curve in space rather than simply a point, we have to study the action
as a function of curves, which requires the concepts of the calculus of variations, which we
will develop in the course as we go.

A great advantage of the action is that by construction it is an invariant under the
symmetries of the dynamical system. It is a scalar functional of the coordinates qk(t) and
velocities q̇k(t). It therefore summarizes the dynamical content of a system in a compact
and transparent way. As we shall see, it also greatly simplifies the problem of imposing
constraints on the dynamical variables.
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2 Hamilton’s Principle of Least (Stationary) Action

2.1 Generalized coordinates

Cartesian coordinates are just fine for describing particles that can move unconstrained
throughout space. But when the motion is constrained in some way, another choice of
coordinates may be preferable. As a simple example suppose a particle is constrained to
move in a circle in the xy-plane. Then we have the constraints

z(t) = 0, x2(t) + y2(t) = R2 (10)

We could solve the constraints to eliminate the coordinate y(t) = ±
√

R2 − x2(t), but the
sign ambiguity is a nuisance. But in passing to polar coordinates x = ρ cosϕ, y = ρ sinϕ, we
see that the constraint is simply ρ = R, and ϕ gives a perfectly natural and unambiguous
description of the particle’s location. Thus in this situation it would be nice to use ϕ and
ϕ̇ as coordinate and velocity. It is standard to use qk and q̇k to denote such generalized
coordinates. There is no need to commit to a particular choice of coordinates in advance.
For example a system of N particles can be described by 3N Cartesian coordinates. If there
are k constraints, we can choose s = 3N −k independent generalized coordinates in any way
that is convenient.

2.2 The Action and Hamilton’s Principle

The action is defined as a time integral

I =

∫ t2

t1

dtL(qk(t), q̇k(t), t) (11)

where L is called the Lagrangian of the system. For the moment we don’t specify it in
detail. It is a single scalar function of the generalized coordinates and their velocities, that
determines the equations of motion according to Hamilton’s principle: The trajectory qk(t)
of the system which starts at the point q1

k at time t1 and ends up at the point q2
k at time t2

is that trajectory which minimizes the action I.
This means that if we evaluate I for a trajectory qk(t) + δqk(t) infinitesimally different

from the solution, the change in the action will be of order δq2
k. So calculate

∆I =

∫ t2

t1

dt [L(qk(t) + δqk(t), q̇k(t) + δq̇k(t), t) − L(qk(t), q̇k(t), t)]

=

∫ t2

t1

dt
∑

l

[

δql
∂L

∂ql
+ δq̇l(t)

∂L

∂q̇l

]

+O(δq2)

=
∑

l

δql
∂L

∂q̇l

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

dt
∑

l

δql

[

∂L

∂ql
− d

dt

∂L

∂q̇l

]

+O(δq2) (12)
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Now since the ends of the trajectory are fixed, δqk(t1) = δqk(t2) = 0, so qk(t) will satisfy
Hamilton’s principle if

d

dt

∂L

∂q̇l
=

∂L

∂ql
, for all l (13)

Without saying so, we have just applied what is known as the calculus of variations!
If the qk’s are Cartesian coordinates, this will be the form of Newton’s equations if

∂L

∂q̇l
= mlq̇l(t),

∂L

∂ql
= −∂V

∂ql
(14)

which tells us that the Lagrangian in that case can be taken to be

L =
1

2

∑

l

mlq̇
2
l − V (q) = T (q̇l) − V (ql) (15)

where T is the kinetic energy of the system and V is the potential energy. Note carefully
the difference of L from the total energy T + V ! there is an all important sign difference in
the second term.

The Lagrangian is not uniquely determined, because Hamilton’s principle requires that
δq(t1) = δq(t2) = 0. For this reason a different Lagrangian

L′ = L+
d

dt
f(q(t), t), I ′ = I + f(q(t2), t2) − f(q(t1), t1) (16)

will imply the same equations of motion. In other words, two Lagrangians, that differ by the
total time derivative of a function of coordinates and time, will imply the same equations of
motion.

2.3 The simple pendulum

As a familiar example of a problem with constraints consider the simple frictionless pendulum
with massless rod of length l, swinging in the xz-plane with the pivot at the origin of
coordinates. Let ϕ be the angle from the vertical. Then x = l sinϕ, z = −l cosϕ), and
T = (m/2)(ẋ2 + ẏ2) = (ml2/2)ϕ̇2 and V = −mgl cosϕ. Hence

L =
ml2

2
ϕ̇2 +mgl cosϕ (17)

and Lagrange’s equation gives the familiar ϕ̈ = −(g/l) sinϕ. Here we have solved the
constraint x2 + z2 = l2 by going to polar coordinates and setting ρ = l.

Let’s consider the same problem in terms of Cartesian coordinates. Then the uncon-
strained Lagrangian is

L =
m

2
(ẋ2 + ż2) −mgz (18)
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We have to impose the constraint x2 + z2 = l2. The method of Lagrange multipliers adds a
term λ(t)(x2 + z2 − l2) to the Lagrangian:

L→ m

2
(ẋ2 + ż2) −mgz + λ(t)(x2 + z2 − l2) (19)

We now regard λ as a generalized coordinate. Since λ̇ doesn’t appear in the Lagrangian, the
e.o.m. for λ is just

∂L

∂λ
= x2 + y2 − l2 = 0 (20)

which is seen to be precisely the constraint we wish to impose. The e.o.m’s for x, z now
involve λ:

mẍ = 2λx, mz̈ = −mg + 2λz (21)

From this we see that the force exerted by the constraint is F c = 2λρ. Passing to polar
coordinates at this point, the e.o.m’s reduce to

ϕ̈ = −g
l

sinϕ, 2λ = m(ϕ̈ cotϕ− ϕ̇2) = −m
(g

l
cosϕ+ ϕ̇2

)

(22)

F c = −m
(

g cosϕ+ lϕ̇2
)

(sinϕx̂− cosϕẑ) (23)

For example, at the bottom ϕ = 0, F c = m(g+ lϕ̇2)ẑ to compensate gravity and match m×
the centripetal acceleration. Notice that if the rod is replaced by a rope, it can only pull on
the particle, which means that it forces the constraint only when λ < 0. This is always true
if ϕ < π/2. But if ϕ > π/2 the rope will only do its job if ϕ̇2 > −(g/l) cosϕ!

2.4 The energy from the Lagrangian

We are all familiar with the conservation of energy by Newton’s equations when the forces are
conservative. In the Lagrange formulation we can generally identify an energy conservation
law when the Lagrangian has no explicit time dependence. Consider the Hamiltonian defined
by

H ≡
∑

i

q̇i
∂L

∂q̇i
− L (24)

dH

dt
=

∑

i

q̈i
∂L

∂q̇i
+
∑

i

q̇i
d

dt

∂L

∂q̇i
−
∑

i

q̇i
∂L

∂qi
−
∑

i

q̈i
∂L

∂q̇i
− ∂L

∂t

=
∑

i

q̇i

[

d

dt

∂L

∂q̇i
− ∂L

∂qi

]

− ∂L

∂t
= −∂L

∂t
(25)

by Lagrange’s equations. Thus H is conserved provided ∂L/∂t = 0. For standard Newtonian
systems where T is quadratic in the velocities and L = T − V

∑

i

q̇i
∂L

∂q̇i
= 2T (26)

so H = T + V as we expect.
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3 Conservation Laws and Symmetries of the Lagrangian

3.1 Time translation symmetry and energy conservation

We have just seen that when the Lagrangian has no explicit time dependence, ∂L/∂t = 0,
the Hamiltonian H is conserved. Since the Hamiltonian is just the energy of the system,
this connects energy conservation to time translation symmetry.

3.2 Space translation symmetry and momentum conservation

Consider a system of N particles with trajectories rk(t), and consider an overall infinitesimal
translation of the coordinate system by an amount ǫ. Then in the new system the trajectories
are rk(t) + ǫ. However the velocities are unchanged. Thus the change in the Lagrangian is

δL =
∑

k

ǫ · ∂L
∂rk

= ǫ · d
dt

∑

k

∂L

∂ṙ k
(27)

Symmetry of the Lagrangian under space translations means that δL = 0 which implies the
conservation of total momentum

P ≡
∑

k

∂L

∂ṙk
(28)

For example if the total potential energy only depends on difference of coordinate rk − rl,
total momentum will be conserved.

The more direct consequence of translation invariance is that the total force on the system
vanishes:

F =
∑

k

∂L

∂rk
= 0 (29)

For a two particle system this is just a reflection of Newton’s third law.

3.3 Galilei Invariance and the center of mass.

A Galilei transformation connects two coordinate frames moving at a uniform velocity with
respect to each other.

rk(t) → rk(t) + V t. (30)

Newton’s equations take identical form in the two frames if the force is translationally in-
variant. Under this transformation

L =
∑

k

mk

2
ṙ2
k − V

→ L+ V ·
∑

k

mkṙk +
M

2
V 2 = L+

d

dt

[

V ·
∑

k

mkrk +
M

2
V 2t

]

(31)
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Here M =
∑

kmk is the total mass in the system. The Lagrangian is not invariant but
rather changes by a total time derivative of a function of coordinates and time. Note that
though the quantity

∑

kmkrk ≡MRCM is not conserved,
∑

kmkrk −P t = MRCM −P t is
conserved. We can rewrite δL:

δL = V · d
dt

[

∑

k

mkrk − P t

]

+
(P +MV )2

2M
− P 2

2M

= V · d
dt

[

∑

k

mkrk − P t

]

+ δ
P 2

2M
(32)

so the conservation law follows from δ
[

L− P 2/2M
]

= 0. This conservation law ensures
that one can always choose the center of mass frame, RCM = 0, by a Galilei transformation
combined with a spatial translation.
Note on Relativity: In special relativity the relation between inertial frames is given by
a Lorentz transformation instead of a Galilei transformation. For example, the relation
between coordinates in a frame K ′ moving w.r.t. frame K parallel to the x-axis with speed
V is

t′ = γ(t− V x/c2), x′ = γ(x− V t), y′ = y, z′ = z (33)

in which time coordinates as well as space coordinates are changed. Here γ ≡ 1/
√

1 − V 2/c2

Taking differentials, we calculate

c2dt′2 − dx′2 − dy′2 − dz′2 = γ2c2(dt− V dx/c2)2 − γ2(dx− V dt)2 − dy2 − dz2

= γ2(c2 − V 2)dt2 − γ2(1 − V 2/c2)dx2 − dy2 − dz2

= c2dt2 − dx2 − dy2 − dz2 (34)

cdt′

√

1 − 1

c2

(

dr′

dt′

)2

= cdt

√

1 − 1

c2

(

dr

dt

)2

(35)

Recalling from problem 4 that the Lagrangian for a relativistic particle is

L = −mc2
√

1 − 1

c2

(

dr

dt

)2

, (36)

we see that

dt′L′ = dtL (37)

I.e. that the action, not the Lagrangian, is invariant under Lorentz transformations. Thus
Hamilton’s principle is valid in all Lorentz frames.
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3.4 Rotational symmetry and angular momentum conservation

A rotation can be described by fixing an axis u and specifying the angle of rotation δϕ
about that axis. We combine these into a vector δϕ = uδϕ. We take δϕ infinitesimal. It is
convenient to choose the origin of Cartesian coordinates on the axis of rotation. Then the
infinitesimal change of each coordinate vector is given by δrk(t) = δϕ × rk(t). Taking time
derivatives gives δṙk(t) = δϕ × ṙk(t), and then

δL =
∑

k

(δϕ × rk(t)) ·
∂L

∂rk
+
∑

k

(δϕ × ṙk(t)) ·
∂L

∂ṙk

= δϕ ·
∑

k

(

rk(t) ×
d

dt

∂L

∂ṙk
+ ṙk(t) ×

∂L

∂ṙk

)

= δϕ · d
dt

∑

k

rk(t) ×
∂L

∂ṙk
(38)

Then invariance of the Lagrangian, δL = 0 implies the conservation of angular momentum

J ≡
∑

k

rk(t) ×
∂L

∂ṙk
=
∑

k

rk × pk (39)

In a general inertial frame the angular momentum depends on the choice of the origin of
coordinates: under rk → rk + a,

J → J + a × P . (40)

With translational invariance, P is conserved, so the angular momentum computed about
any point is then conserved. Note that in center of mass frame (P = 0), J is independent
of the origin of coordinates. Of course under rotations J rotates as any vector.

Finally, for a given system, call S the angular momentum in the system’s center of mass
frame. Then in a frame in which the c.o.m moves with velocity V the angular momentum is

J ≡
∑

k

(rk + V t) × (pk +mkV )

=
∑

k

rk × pk + V t× P +
∑

l

mkrk × V

= S +MRCM × V = S + RCM × P (41)

Thus the total angular momentum of a system can always be decomposed into a “spin”
part S which is the angular momentum in the center of mass frame and an “orbital” part
RCM ×P . And we now appreciate that the spin part doesn’t depend on the choice of origin
of coordinates!

There can be situations with only partial symmetry. For instance, if one has translational
invariance in say the z-coordinate, then P z is conserved. Or isotropy about only one point
implies the conservation of the angular momentum wrt that point. Or yet again If there is
cylindrical symmetry about say the z-axis, Jz will be conserved.
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3.5 Scaling symmetry and Virial theorems

Suppose we scale all the coordinates of a system by the same factor, rk → λrk. Then
the Newtonian kinetic energy scales as T → λ2T . The potential energy will have a simple
scaling law if it is homogeneous in the coordinates. If the degree of homogeneity is k, then
V → λkV . We can make the Lagrangian scale by an overall factor, if we scale the time
variable, t→ λpt, where λ2−2p = λk i.e. if p = 1− k/2. Then the new L will imply the same
equations of motion as the old L.

Simple examples: (1) k = 2 (harmonic oscillator), p = 0, so the frequency is independent
of the amplitude; (2) k = −1 (Coulomb or Newtonian potential), p = 3/2, so the period of
an orbit varies as the 3/2 power of its size: T 2 ∝ R3 (Kepler’s third law; (3) k = 1 (uniform
force), p = 1/2, the time of fall varies as the square root of the distance fallen.

Looking a little more closely at the details of the scaling laws in situations where L =
T (q̇) − V (q) leads us to the virial theorem. First, the quadratic dependence of the kinetic
energy on velocities means T (λq̇n) = λ2T (q̇n). Differentiating this w.r.t. λ and setting λ = 1
implies

2T =
∑

n

q̇n
∂T

∂q̇n
=

d

dt

(

∑

n

qn
∂T

∂q̇n

)

−
∑

n

qn
d

dt

∂T

∂q̇n

=
d

dt

∑

n

qn
∂T

∂q̇n
−
∑

n

qn
d

dt

∂L

∂q̇n

2T =
d

dt

(

∑

n

qn
∂T

∂q̇n

)

−
∑

n

qn
∂L

∂qn
(42)

for these special Lagrangians. If we time average this equation and the motion is bounded,
the average of the first term vanishes and we have the Virial theorem:

2〈T 〉 = −
〈

∑

n

qn
∂L

∂qn

〉

= −
〈

∑

n

qnFn

〉

≡ Virial (43)

where we have identified the generalized force Fn = ∂L/∂q.
If V is homogeneous of degree k in the coordinates we find, by a similar argument that

kV =
∑

n

qn
∂V

∂qn
= −

∑

n

qn
∂L

∂qn
(44)

for these special Lagrangians. Then Lagrange equations imply

2T − kV =
d

dt

∑

n

qn
∂T

∂q̇n
=

d

dt

∑

n

qnmnq̇n (45)

The final step is to average this equation over a long time interval t0:

〈2T − kV 〉 ≡ 1

t0

∫ t0

0

dt(2T − kV ) =
1

t0

[

∑

n

qn(t0)mnq̇n(t0) −
∑

n

qn(0)mnq̇n(0)

]

(46)
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If the motion is bounded, e.g. planetary orbits, the right side goes to 0 when t0 → ∞. This
is the virial theorem:

〈T 〉 =
k

2
〈V 〉, Bounded Motion (47)

From energy conservation T + V = E so that

E = 〈T 〉 + 〈V 〉 =
k + 2

2
〈V 〉 =

k + 2

k
〈T 〉 (48)

Thus on time averaging the proportion of the total energy going into kinetic and potential
energy is fixed by the scaling laws. Notice that for k = −1 (Keplerian motion) this relation
implies that E = −〈T 〉 < 0, which is indeed the condition for bounded motion in that case.
Also notice that for harmonic oscillations (k = 2) the split between kinetic and potential is
precisely 50-50.

4 Solving the Equations of Motion

4.1 Motion in One Dimension

The Lagrangian for a Newtonian particle moving in one dimension is simply

L =
1

2
mẋ2 − V (x, t) (49)

If V (x) is independent of time, energy is conserved and we can write immediately

ẋ2 =
2(E − V (x)

m
≥ 0 (50)

We see that motion is only possible in regions where V (x) ≤ E. since this is a first order
equation we can directly integrate it to obtain

t = ±
√

m

2

∫ x(t)

x(0)

dx′
√

E − V (x′)
(51)

The particle comes to rest at points where V (x) = E, called turning points of the motion
where the velocity reverses. Oscillatory motion occurs when there are two turning points,
say x1 < x2. Then the period of an oscillation is just twice the travel time from x1 to x2:

T =
√

2m

∫ x2

x1

dx′
√

E − V (x′)
(52)

As an example, take the simple harmonic oscillator potential V (x) = kx2/2. The turning
points are x± = ±

√

2E/k, and the period is

T =

√

4m

k

∫ x+

−x+

dx′
√

x2
+ − x2

=
4

ω

∫ 1

0

du√
1 − u2

=
2π

ω
(53)
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Independent of the amplitude x+. Letting the upper endpoint be variable we solve the
equations of motion for this case directly:

t =
1

ω

∫ x(t)/x+

x(0)/x+

du√
1 − u2

ωt = sin−1 x(t)

x+

− sin−1 x(0)

x+

x(t) = x+ sin

(

ωt+ sin−1 x(0)

x+

)

(54)

a familiar result!
The pendulum provides a less trivial example.

L =
1

2
ml2ϕ̇2 +mgl cosϕ, E =

1

2
ml2ϕ̇2 −mgl cosϕ

Necessarily E ≥ −mgl. To simplify the writing, define ω =
√

g/l, ǫ = E/ml2 ≥ −g/l. so
that

ǫ =
1

2
ϕ̇2 − ω2 cosϕ

ϕ̇2 = 2(ǫ+ ω2 cosϕ)

t =

∫ ϕ

0

dϕ′
√

2(ǫ+ ω2 cosϕ′)
=

∫ ϕ

0

dϕ′
√

2(ǫ+ ω2 − 2ω2 sin2(ϕ′/2))
(55)

There are two qualitatively different motions. If ǫ > ω2 the mass goes “over the top” and
keeps circling indefinitely (assuming the absence of friction!). If ǫ < ω2 the pendulum reaches
a maximum angle ϕ0 given by cosϕ0 = −lǫ/g. Note that if 0 < ǫ < ω2 ϕ0 > π/2; and if
−ω2 < ǫ < 0, ϕ0 < π/2.

In the first case ǫ > ω2, we can rearrange and change integration variables u = sin(ϕ′/2):

t
√

2(ǫ+ ω2) =

∫ ϕ

0

dϕ′
√

1 − k2 sin2(ϕ′/2)
= 2

∫ sin(ϕ/2)

0

du√
1 − u2

√
1 − k2u2

k2 ≡ 2ω2

ǫ+ ω2
< 1 (56)

The integral here cannot be expressed in terms of elementary functions. But it turns
out that we can use it to define elliptic functions which are higher transcendental functions
which generalize trigonometric. Jacobi introduced a version of them which has gained wider
acceptance than other and earlier versions. The Jacobi elliptic function sn(z, k2) can be
defined by the integral

z =

∫ sn(z,k2)

0

du√
1 − u2

√
1 − k2u2

(57)
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With this new function we can write the solution of the pendulum motion with ǫ > ω2 as
follows:

sin
ϕ(t)

2
= sn

(

t

√

ǫ+ ω2

2
,

2ω2

ǫ+ ω2

)

, ǫ > ω2 (58)

The period of this motion is twice the time it takes for the bob to go from bottom to top:

T =
4

√

2(ǫ+ ω2)

∫ 1

0

du√
1 − u2

√
1 − k2u2

≡ 4K
√

2(ǫ+ ω2)
(59)

When ǫ < ω2, the pendulum oscillates between ϕ = ±ϕ0. We can write ǫ = −ω2 cosϕ0,
so that k2 = 1/ sin2(ϕ0/2) > 1. Then it is convenient to change variables to v = ku =
u/ sin(ϕ0/2). leading to

ωt =

∫ sin(ϕ/2)/ sin(ϕ0/2)

0

dv
√

1 − sin2(ϕ0/2)v2
√

1 − v2
(60)

sin
ϕ

2
= sin

ϕ0

2
sn
(

ωt, sin2 ϕ0

2

)

(61)

The motion is oscillatory between −ϕ0 and ϕ0. The period of oscillation is 4 times the time
it takes to rise from ϕ = 0 to ϕ0:

ωT = 4

∫ 1

0

dv
√

1 − sin2(ϕ0/2)v2
√

1 − v2
= 4K

(

sin
ϕ0

2

)

(62)

Mathematical properties of elliptic functions. Compare the definition of sn(z, k2) to
a similar definition of sin z:

z =

∫ sin z

0

du√
1 − u2

(63)

We see that sn(z, k2) → sin z for k → 0. Recall that the sine function is periodic under
z → z + 2π: it is singly periodic. It turns out that sn(z, k2) has two periods. The ratio of
the two periods in this case is actually imaginary, that is the periodicities are in different
directions in the complex z-plane. Fig. 1 compares the function sn(xK, k2) for two values of
k = 0.05, 0.999. As k → 1 the maxima flatten out more and more.

Differentiating both sides of the integral defining sn with respect to z implies the differ-
ential equation

sn′ =
√

1 − sn2
√

1 − k2sn2 (64)

sn′′ = −(1 + k2)sn + 2k2sn3 (65)

which can be used in exploring its properties.
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Figure 1: Plots of sn(xK(k), k) versus x for k = 0.05, 0.999

The parameter k is known as the modulus of the elliptic function. The periods of sn can
be expressed using k and the conjugate modulus k′ ≡

√
1 − k2. Define the Complete elliptic

integrals

K(k) ≡
∫ 1

0

du√
1 − u2

√
1 − k2u2

, K ′(k) ≡
∫ 1

0

du√
1 − u2

√
1 − k′2u2

(66)

Then the two periods of sn(z, k) are 4K and 2iK ′. Notice that, in the limit k → 0, K → π/2
and K ′ → ∞, in accord with the single periodicity of sin z. The proof of these periodicities
is difficult.

In a sense elliptic functions are to the complex plane what trig functions are to the real
line. One can tile the complex plane with rectangles of dimensions 4K × 2K ′ and the values
of sn assumed at corresponding points in each rectangle are the same.

Just as there are several useful trig functions, so are there several useful elliptic functions:
Three are sn, cn, dn related by

sn2 + cn2 = 1, k2sn2 + dn2 = 1 (67)

These definitions allow us to write, for instance, sn′ = cn dn. Evaluating these functions at
K, we have

sn(K, k) = 1, cn(K, k) = 0, dn(K, k) =
√

1 − k2 = k′. (68)

From a fundamental mathematical point of view the elliptic functions are defined as doubly
periodic functions analytic everywhere with the exception of a finite number of poles in each
period rectangle.
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Using the integral definition of sn we can immediately see that sn → ∞ at finite values
of z because the integral converges as u→ ∞. (This is in contrast to the integral definition
of sin because the integral diverges as u→ ∞.)

4.2 Motion in a General Central Potential V (r)

We now consider motion in a potential that depends only on the radial distance from the
central point of attraction. More generally we can start with two particles under the influence
of a mutual interaction potential that depends only on the distance between the two particles,

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − V (r1 − r2) (69)

But as we already have discussed, we can remove the motion of the system as a whole by
going to the center of mass frame. So we change coordinates

R =
m1r1 +m2r2

m1 +m2

, r = r1 − r2

r1 = R +
m2

M
r, r2 = R − m1

M
r (70)

L =
M

2
Ṙ

2
+
m1m2

2M
ṙ2 − V (r) (71)

where M = m1 +m2. The dynamics of R is completely independent of the dynamics of r,
which is just the dynamics of a particle with reduced mass m = m1m2/M moving in the
potential V (r).

From now on we restrict V to be central i.e. to depend only on r = |r|. Thus we consider
the Lagrangian

L =
1

2
mṙ2 − V (r) (72)

Because the system is rotationally invariant about r = 0, Both energy E and angular
momentum J = r × p = mr × ṙ are conserved. Since both r and ṙ are perpendicular to
the constant direction J , the trajectory of the particles stays within a fixed plane. Finally
since the cross product of two vectors has magnitude equal to the area of the parallelogram
spanned by the two vectors, the constancy of J implies that the trajectory sweeps out equal
areas in equal times (Kepler’s Second Law).

To go further let’s use spherical polar coordinates with z-axis chosen parallel to J . Then
the orbit lies in the xy-plane, i.e. the angle θ = π/2. The position vector of the particle is
then r = r(t)(cosϕ(t), sinϕ(t), 0),

J = mr2ϕ̇ẑ, ϕ̇ =
J

mr2
, ṙ2 = ṙ2 + r2ϕ̇2 = ṙ2 +

J2

m2r2
(73)

The Lagrangian in polar coordinates is

L =
m

2
ṙ2 +

m

2
r2ϕ̇2 − V (r) (74)
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Note that the e.o.m for ϕ is simply that r2ϕ̇ = constant which is nothing but angular
momentum conservation. The dynamics of the radial coordinate is then completely given by
energy conservation

E =
m

2
ṙ2 +

J2

2mr2
+ V (r) = Constant (75)

We can think of the radial motion as a particle moving in one dimension in the effective
potential

Veff ≡ J2

2mr2
+ V (r) (76)

with solution

t =

√

m

2

∫ r(t)

rmin

dr′
√

E − Veff(r′)
(77)

If the input potential V (r) is negative approaching 0 less rapidly than 1/r2 at r = ∞, and
J 6= 0 the effective potential goes to +∞ at r = 0, goes negative at a finite r reaches a
negative minimum Vmin and thence rises to 0. For E = Vmin, r is a constant and we have a
circular orbit. Then ϕ(t) = (J/mr2)t and the period of the orbit is 2πmr2/J .

When E > Vmin there are two turning points for r(t), rmin and rmax. If E stays very close
to Vmin, we can approximate Veff by a quadratic

Veff(r) ≈ Veff(r0) +
1

2
(r − r0)

2V ′′
eff(r0) (78)

So we see that r will undergo simple harmonic motion of angular frequency ω =
√

V ′′
eff(r0)/m.

We can also find the orbit r(ϕ) by noticing

dϕ

dr
=

ϕ̇

ṙ
=

J

r2
√

2m
√

E − Veff(r′)
(79)

ϕ =
J√
2m

∫ r(ϕ)

rmin

dr′

r′2
√

E − Veff(r′)
(80)

notice that there is no mathematical reason that a bound orbit should close on itself. That
simply means that r(π) need not be rmax. This will only happen for very special potentials,
in fact only for V (r) ∝ 1/r or r.

So for a generic potential which allows bounded orbits we can calculate the total change
in ϕ when after r goes from rmin to rmax and back to rmin:

∆ϕ = 2
J√
2m

∫ rmax

rmin

dr′

r′2
√

E − Veff(r′)
= 2

J√
2m

∫ 1/rmin

1/rmax

du
√

E − Veff(1/u)
(81)

where the second form obtained, by the change of variables u = 1/r′, can be very useful
especially if V (r) is a negative power of r. If by good fortune ∆ϕ = 2π, the orbit is a simple
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closed curve encircling the origin. More generally if ∆ϕ = 2πp/q for integers p, q, the orbit
will close after q revolutions.

In the case of a nearly circular orbit of radius r0 = 1/u0, it is convenient to use the
approximation

Veff(1/u) = Veff(1/u0) +
1

2
(u− u0)

2d
2Veff(1/u)

du2

∣

∣

∣

∣

u=u0

(82)

Then the turning points in u are given by

u± = u0 ±

√

√

√

√2(E − Veff(1/u0))

(

d2Veff(1/u)

du2

∣

∣

∣

∣

u=u0

)−1

Then we write

∆ϕ ≈ 2
J√
m

(

d2Veff(1/u)

du2

∣

∣

∣

∣

u=u0

)−1/2
∫ u+

−u+

du
√

u2
+ − u2

= 2π
J√
m

(

d2Veff(1/u)

du2

∣

∣

∣

∣

u=u0

)−1/2

≈ 2π

(

1 +
m

J2

d2V (1/u)

du2

∣

∣

∣

∣

u=u0

)−1/2

(83)

which we see immediately is 2π when V ∝ 1/r = u. When V = kr2/2 = k/2u2 on the other
hand d2V/du2 = 3k/u4. But then u4

0 = km/J2, so ∆ϕ = π in this case, so the orbit closes
after r goes from min to max to min twice.

4.3 Motion in the 1/r potential

Now we turn our attention to the important special case of a 1/r potential, the famous
Kepler problem. We put V (r) = −k/r = −ku, with k > 0. Plugging this into the formula
for ϕ:

ϕ =
J√
2m

∫ 1/rmin

1/r(ϕ)

du
√

E + ku− J2u2/2m
(84)

This is an elementary integral which we identify by completing the square

E + ku− J2u2/2m = E +
mk2

2J2
− J2

2m
(u−mk/J2)2

=
J2

2m
[(1/rmin −mk/J2)2 − (u−mk/J2)2] (85)
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Thus

ϕ =

∫ 1/rmin

1/r(ϕ)

du
√

(1/rmin −mk/J2)2 − (u−mk/J2)2

=
π

2
− sin−1 1/r −mk/J2

1/rmin −mk/J2)
(86)

1

r
=

mk

J2
+

(

1

rmin

− mk

J2

)

cosϕ (87)

This is the generic equation for a conic section

r(ϕ) =
p

1 + e cosϕ
(88)

where the latus rectum p and the eccentricity are given by

p =
J2

mk
, e =

√

1 +
2EJ2

mk2
(89)

When e < 1 (E < 0) the motion stays bounded and we can expect it to be an ellipse.
In this case we see that for fixed E < 0 there is a maximum possible angular momentum
Jmax = k

√

−m/2E, which occurs when e = 0, i.e. for circular motion. If e ≥ 1 (E > 0) the
motion is unbounded and will be a hyperbola or if e = 1 (E = 0) a parabola.

To see this equation in Cartesian coordinates, we use x = r(ϕ) cosϕ and the polar
equation to get r = p− ex. Then

y2 = r2 sin2 ϕ = r2 − x2 = (p− ex)2 − x2 = p2 − 2pex− (1 − e2)x2 (90)

which clearly shows three cases e < 1, e = 1, e > 1. By completing the square, in the case
e 6= 1,

y2 = p2 − (1 − e2)

(

x− ep

e2 − 1

)2

+
e2p2

1 − e2

p2

1 − e2
= y2 + (1 − e2)

(

x− ep

e2 − 1

)2

, (91)

we see that the center of the conic is at the point (−ep/(1− e2), 0), which is on the negative
(positive) x-axis for e < 1, e > 1. We can put this in the standard form

(x− x0)
2

a2
± y2

b2
= 1, a =

p

|1 − e2| , b =
p

√

|1 − e2|
, x0 =

ep

e2 − 1
(92)

where the sign is defined by 1 − e2 = ±|1 − e2|.

Ellipse, e < 1: An ellipse is defined as the set of points such that the the sum of the distances
of each point to two fixed points, called the foci, is a constant. With the representation r(ϕ)
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given above for e < 1, one focus is at the origin. The nearest point (perihelion) on the curve
to this focus is the point ϕ = 0, r = p/(1 + e). The furthest point (aphelion) is ϕ = π,
r = p/(1 − e) (in Cartesian coordinates the aphelion is (x, y) = (−p/(1 − e), 0) and the
perihelion is at (p/(1 + e), 0). The major axis of the ellipse is the line from perihelion to
aphelion. Its length 2a is given by

2a =
p

1 + e
+

p

1 − e
=

2p

1 − e2
(93)

The semi-major axis length is a. By symmetry the second focus is a distance p/(1+e) to the
right of the aphelion: the Cartesian point (−2ep/(1 − e2), 0). The sum of the distances of
the perihelion, and of the aphelion from the two foci is 2a. Consider a general point on the
curve r(ϕ). Its distance from the focus at the origin is clearly r(ϕ). Its Cartesian location
is (r(ϕ) cosϕ, r(ϕ) sinϕ). The square of its distance from the other focus is then

d2 = [r(ϕ) cosϕ+ 2ep/(1 − e2)]2 + r2(ϕ) sin2 ϕ

= r2(ϕ) + 4
epr(ϕ) cosϕ

1 − e2
+ 4

e2p2

(1 − e2)2

= r2(ϕ) + 4
p(p− r)

1 − e2
+ 4

e2p2

(1 − e2)2

= r2 − 4pr

1 − e2
+

4p2

(1 − e2)2

=

(

2p

1 − e2
− r

)2

= (2a− r)2 (94)

Thus d = 2a − r so that r + d = 2a in accordance with the geometrical definition of an
ellipse. Finally the minor axis of the ellipse is the diameter perpendicular to the major axis
at its midpoint, which has Cartesian coordinates (−ep/(1 − e2), 0) = (−ea, 0). its length is
2b, where b =

√
a2 − e2a2 = a

√
1 − e2 = p/

√
1 − e2

Hyperbola, e > 1: A hyperbola is the set of points such that the difference of the distances
of each point from two foci is constant. This defines two disjoint curves in the xy-plane.
Again, using the polar coordinate description, r = p/(1 + e cosϕ), the origin is at one focus,
the center is at (ep/(e2 − 1), 0), and the second focus is at the point (2ep/(e2 − 1), 0). The
distance of a point on the curve from the first focus is r(ϕ). The squared distance to the
other focus is

d2 = [r(ϕ) cosϕ− 2ep/(e2 − 1)]2 + r2(ϕ) sin2 ϕ

=

(

2p

1 − e2
− r

)2

=

(

2p

e2 − 1
+ r

)2

(95)

by identical algebra to the ellipse case. Thus d = r + 2p/(e2 − 1) and d − r = 2p/(e2 − 1),
confirming that the curve r(ϕ) for e > 1 traces out one of the two branches of a hyperbola.
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The other branch is traced out by the formula

r(ϕ) =
p

−1 + e cosϕ
, cosϕ ≥ 1

e
(96)

It solves the equation of motion for the potential V (r) = +k/r (we always assume k > 0),
for which the energy is always positive E > 0, and the quantity under the square root is

E − ku− J2u2/2m = E +
mk2

2J2
− J2

2m
(u+mk/J2)2

=
J2

2m
[(1/rmin +mk/J2)2 − (u+mk/J2)2] (97)

so the change of variables that enables the integration is u = (−1 + e cosϕ)/p with e =
√

1 + 2EJ2/mk2 and p = J2/mk given by the same formulas as before.
To understand the hyperbolic trajectory far from the center of force, examine the Carte-

sian equation for large x − x0, y. We find that y ∼ ±(b/a)(x − x0) which describes two
straight lines of slopes ±b/a intersecting at the center of the hyperbola. The two branches of
the hyperbola approach these straight lines asymptotically. By considering similar triangles
one can see that the distance of closest approach of these straight lines to one of the foci
is precisely b. If we interpret the trajectory as that followed by a particle with momentum√

2mE launched from a great distance toward the center of force along one of these asymp-
totic lines, we call this distance of closest approach the impact parameter. The conserved
angular momentum of this initial state is clearly b

√
2mE. For the 1/r potential of either

sign, this quantity reduces to

b
√

2mE =
p√
e2 − 1

√
2mE =

J2/mk
√

2EJ2/mk2

√
2mE = J (98)

confirming this interpretation. Specifying E, b is a way of characterizing the initial state
in a general potential. Whatever the potential, the particle of definite energy and impact
parameter will follow a definite trajectory eventually arriving at a great distance traveling in
a new direction, making an angle θ(b, E) with the initial momentum direction. Consulting
the geometry of the hyperbola, we can see that

tan
π − θ

2
=

b

a
= b

e2 − 1

p
= b

2E

k
, b(θ, E) =

k

2E
cot

θ

2
(99)

To link the properties of these trajectories to the physics of the motion, we recall the
relations of p, e to J,E. We immediately see that e < 1 for E < 0, e > 1 for E > 0, and
e = 1 for E = 0. The semi major axis length for an elliptical orbit is

a =
p

1 − e2
=

J2/mk

−2EJ2/mk2
=

k

−2E
(100)
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which is seen to depend only onE not on J . The semi minor axis length is b = a
√

−2EJ2/mk2.

Time Dependence: Finally we turn to the time dependence of the trajectories in Keplerian
motion. We have by direct integration

t =

∫ r(t)

rmin

mdr′√
2m
√

E + k/r′ − J2/2mr′2
=

∫ r(t)

rmin

mr′dr′√
2mEr′2 + 2mkr′ − J2

(101)

This is an elementary integral that we can identify by completing the square

2mEr′2 + 2mkr′ − J2 = 2mE(r′ + k/2E)2 −mk2/2E + (1 − e2)mk2/2E

= 2mE(r′ − a)2 − 2mEe2a2 (102)

If e < 1 (E < 0) we make the substitution r′ = a+ ea sin θ in the integral:

t = m

∫

dθ
a+ ea sin θ√

−2mE
= m

(θ + π/2)a− ea cos θ√
−2mE

=
a3/2

√

k/m
(θ + π/2 − e cos θ)

r(t) = a+ ea sin θ (103)

The minimum r value occurs when θ = −π/2 and the maximum when θ = +π/2, and we
have defined the integration constants so that r is at its minimum at t = 0. In particular,
the period of the orbit is twice the value of t at θ = π/2:

T =
−2πkm

2E
√
−2mE

=
2πa3/2

√

k/m
(104)

When E > 0 corresponding to a hyperbolic trajectory, the distance between the two branches
of the hyperbola at their closest approach is 2d = −2a = k/E, and the quantity under the
square root in the integrand is now

2mEr′2 + 2mkr′ − J2 = 2mE(r′ + d)2 − 2mEe2d2 (105)

and the integral is done with the hypertrig substitution r′ = −d+ ed coshλ:

t = m

∫

dλ
−d+ ed coshλ√

2mE
= m

−λd+ ea sinhλ√
2mE

=
d3/2

√

k/m
(e sinhλ− λ)

r(t) = −d+ ed coshλ (106)

Clearly t = 0 corresponds to λ = 0 for which r = rmin. Late time is achieved at large λ from
which we can infer that r(t) ∼ t

√

k/md = t
√

2E/m = vt as t→ ∞.

Runge-Lenz Vector: The 1/r potential is very special in that bound orbits close. You
may recall that in quantum mechanics the energy levels in an attractive 1/r potential are
degenerate are degenerate, with states of differing angular momentum having the same
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energy. Such unexpected degeneracies frequently point to a new symmetry and associated
conservation law. In fact there is a new quantity, the Runge-Lenz vector:

A = p × J −mk
r

r
. (107)

Let’s check that it is conserved:

Ȧ = (ṗ) × J −mk
ṙ

r
+mkṙ

r

r2
= − k

r3
(r × (r × p)) −mk

ṙ

r
+mkṙ

r

r2

= − k

r3
(m(r · ṙ)r −mr2ṙ) −mk

ṙ

r
+mkṙ

r

r2
= −mkr

r3

d

dt

1

2
r2 +mkṙ

r

r2

= −mkr
r3

rṙ +mkṙ
r

r2
= 0 (108)

We can relate the magnitude of A to J,E:

A2 = (p × J) · (p × J) − 2mk

r
r · (p × J) +m2k2

= J2

(

p2 − 2mk

r

)

+m2k2 = 2mEJ2 +m2k2 = m2k2

(

1 +
2EJ2

mk2

)

(109)

To see what A is with respect to the elliptical orbit, calculate

r · A = rA cosϕ = r · (p × J) −mkr = (r × (p) · J) −mkr = J2 −mkr

r =
J2

mk + A cosϕ
=

p

1 + (A/mk) cosϕ
(110)

which is the familiar polar equation for the elliptical orbit with e = A/mk!

4.4 From Center of Mass to a general inertial frame

We started our discussion with the motion of two particles under a mutual interaction
governed by a potential V (r1 − r2). We then noticed that the change of variables to
R = (m1r1 + m2r2)/M , r = r1 − r2 reduced the nontrivial dynamics to that of a sin-
gle particle of the reduced mass m = m1m2/M , and position r. Then we chose the center of
mass system of coordinates with R = 0 and solved for r. If we ask what is the motion of the
individual particles in the center of mass we note that r2 = −m1r1/m2, so r = (1+m1/m2)r1

or

r1 =
m2

M
r, r2 = −m1

M
r (111)

Thus for E < 0 each particle executes an elliptic orbit about the center of mass as focus,
with the size of each orbit scaled by a factor m2/M for particle 1 and m1/M for particle 2.
If the system is moving as a whole at uniform velocity V , we simply add V t to each right
side

r1 =
m2

M
r + V t, r2 = −m1

M
r + V t (112)
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From these we can get the momenta:

p1 = mṙ +m1V = mṙ +
m1

M
(p1 + p2)

p2 = −mṙ +m2V = −mṙ +
m2

M
(p1 + p2) (113)

5 Scattering Processes

5.1 Scattering from a fixed central potential

Classical trajectories that are unbounded are interpreted physically in terms of scattering
processes. One aims a particle toward a target a great distance away and then observes the
resulting situation at a much later time when the incident particle is again at great distances
from the target particle, which generally recoils and ends up with altered momentum.

In the center of mass system the momentum of the incident particle is at any time
p1(t) = mṙ(t) and that of the target particle is p2(t) = −mṙ(t) where r = r1 − r2 and
m = m1m2/(m1 +m2) is the reduced mass. The initial momenta are p1 = mṙ(−∞) = −p2

and the final momenta are p′
1 = mṙ(+∞) = −p′

2.
In a scattering experiment one does not scatter one particle at a time but rather prepares

a beam of many similar particles all having as nearly as possible the same initial momentum,
and spread out uniformly over its cross section. Let us first consider the target to be a fixed
center of a central potential V (r). Then the classical trajectory is determined by

ϕ = J

∫ 1/r

0

du
√

2m(E − V (1/u)) − J2u2
(114)

It will be symmetric about its point of closest approach rmin, which is a zero of the argument
of the square root. Let us define Φ as ϕ at r = rmin

Φ = J

∫ 1/rmin

0

du
√

2m(E − V (1/u)) − J2u2
(115)

Then the angle between the final and initial momentum of the incident particle is just
θ = π − 2Φ.

Definition of Scattering Cross Section An incident beam of particles can be charac-
terized by the flux F : number of particles per unit area per unit time crossing a given
plane perpendicular to the beam. The number of particles per unit time passing through an
element of area at impact parameter b is

Fbdbdϕ = Fb(θ, E)
db

dθ
dθdϕ = F

1

sin θ
b(θ, E)

db

dθ
dΩ (116)

All these particles will end up at angle θ, ϕ so the counting rate at a detector at subtending
solid angle dΩ will be

F
1

sin θ
b(θ, E)

db

dθ
dΩ ≡ FdΩ

dσ

dΩ
(117)
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which defines the differential scattering cross section dσ/dΩ. Multiplied by the incident flux,
it gives the number of particles scattered per unit solid angle, in direction (θ, ϕ).

dσ

dΩ
=

1

sin θ
b(θ, E)

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

(118)

Recall that for the potential V (r) = ±k/r we determined for a hyperbolic trajectory that

b(θ, E) =
k

2E
cot

θ

2
,

db

dθ
= − k

4E sin2(θ/2)
(119)

so

dσ

dΩ
=

k2

16E2 sin4(θ/2)
(120)

which is the famous formula for Rutherford scattering. Although we obtained it in classical
mechanics, the formula also applies unmodified for quantum mechanics.

5.2 The scattering cross section for elastic two body scattering

The result of the previous section applies unaltered to two body scattering in the center
of mass system R = 0, provided we use the reduced mass m = m1m2/(m1 + m2) for m.
This is because in this frame the momentum of the incident particle is mṙ(t) at any time
t. The target particle has momentum −mṙ(t) at the same time. Furthermore the energy
and angular momentum of the two body system in this frame are the same as used in the
previous section:

p2
1

2m1

+
p2

2

2m2

+ V (|r1 − r2|) =
p2

1

2m
+ V (r) =

1

2
mṙ2 + V (r) = E (121)

r1 × p1 + r2 × p2 = r × p1 = mr × ṙ = J (122)

In the center of mass the target is moving toward the incident particle so the flux of incident
particles on the target is determined by the relative velocity v1 − v2 = ṙ. In short every
aspect of the two body scattering in the center of mass is correctly described by the effective
one body problem treated in the previous section.

However, in other inertial frames some reinterpretation of scattering angle is necessary.
The most important other such frame is the Lab frame, in which the target particle is initially
at rest. The scattering angle in the Lab system can be worked out in terms of that in the
center of mass by considering the relation of the corresponding momentum vectors.

p′
1 = mṙ(+∞) +

m1

M
p1

p′
2 = −mṙ(+∞) +

m2

M
p1 (123)

Initially ṙ(−∞) = ṙ1(−∞) − ṙ2(−∞) = ṙ1(−∞) = p1/m1 since particle 2 is initially at
rest. Conservation of energy in the center of mass system guarantees that the initial and final
kinetic energies are equal (since V = 0 at r = ∞) and therefore that |ṙ(−∞)| = |ṙ(+∞)| ≡
v. Then the vectors are related as in the figure:
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p’ p’

1        2
m mv/m mv

1 2

θ1 θ θ2

From the figure we see that the scattering angle θ1 of the incident particle in the lab is
related to the scattering angle θ in the center of mass by

tan θ1 =
m2 sin θ

m1 +m2 cos θ
, θ2 =

π − θ

2
(124)

The trig identity 1 + tan2 = sec2 leads to the alternative relation

cos θ1 =
m1 +m2 cos θ

√

m2
1 +m2

2 + 2m1m2 cos θ
(125)

The figure makes clear some general features of the scattering. For m1 < m2, as θ sweeps
through 2π θ1 also sweeps through 2π. However if m1 > m2 the left vertex of the trian-
gle lies outside the circle so that θ1 reaches a maximum when p′

1 becomes tangent to the
circle, and subsequently decreases as θ increases. This maximum occurs when sin θmax

1 =
mv/(m1mv/m2) = m2/m1. From the figure we see that in the equal mass case the max-
imum actually corresponds to p′1 = 0: that is the incident particle comes to rest and the
target particle exits with the momentum of the incident particle. For equal mass elastic
scattering, θmax

1 = π/2, occurring when θ = π, and further the angle between the directions
of the final particles is always π/2.

The formula for the scattering cross section in the Lab system is obtained by writing

Fbdbdϕ = F
1

sin θ 1
b(θ, E)

db

dθ1

dΩ1 ≡ F
dσLab

dΩ1

dΩ1 (126)

so that

dσLab

dΩ1

=
1

sin θ1

b(θ(θ1), E)
db

dθ

dθ

dθ1

=
dσCM

dΩ

sin θ

sin θ1

dθ

dθ1

=
dσCM

dΩ

d cos θ

d cos θ1

(127)
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If we like we can evaluate the relative factor explicitly

d cos θ1

d cos θ
=

m2
√

m2
1 +m2

2 + 2m1m2 cos θ
−m1m2

m1 +m2 cos θ

(m2
1 +m2

2 + 2m1m2 cos θ)3/2

=
m3

2 +m1m
2
2 cos θ

(m2
1 +m2

2 + 2m1m2 cos θ)3/2
(128)

5.3 Total Cross Section

The total cross section is defined as the integral of the differential cross section ove all angles

σ ≡
∫

dΩ dσ
dΩ

=
∫ 2π

0
dϕ
∫ bmax

0
bdb = πb2max. (129)

If V (r) 6= 0 for all r, no matter how rapidly it falls to zero as r → ∞, bmax = ∞. The total
cross section is finite only when the potential is strictly zero outside of some radius.

5.4 Inelastic scattering

In classical particle scattering there is no explicit mechanism for loss of energy in a scattering
process, though we know that such physical mechanisms abound: friction, radiation, and
chemical changes of state, to name a few. One can take these possibilities into account by
allowing some kinetic energy to be transformed into heat of some other kind of energy. In
the center of mass, the upshot is that the the relative momenta initially and finally have
different magnitudes |p′| 6= |p|. This translates to a modified formula for the lab scattering
angle:

tan θ1 =
m2p

′ sin θ

m1p+m2p′ cos θ
=

sin θ

m1p/(m2p′) + cos θ
(130)

which reduces to the elastic scattering formula when p′ = p.
In relativistic scattering processes, on the other hand, it is the total energy

∑

γimic
2

that is conserved, not the kinetic energy K =
∑

(γi − 1)mic
2. Only in processes where the

total rest mass
∑

mi is conserved will K be conserved. In practice this only happens if the
particles in the final state are the same as those in the initial state. As a simple example of a
relativistic inelastic process, consider e+e− pair production by the scattering of two photons
in the center of mass system. the photon momenta are back to back with total energy 2pγc.
conservation of energy gives pγc =

√

p2
ec

2 +m2
ec

4.

6 Small Oscillations

For generic systems with several degrees of freedom the equations of motion are intractable
and approximations must be made to make progress. One important approximation method
is to linearize the equations of motion. In general linear equations cannot be approximately
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valid for a long time, but an exception occurs when there is a stable equilibrium state
of the system. Such a state exists for configurations for which the potential energy has
a minimum. Then a departure from equilibrium will induce a restoring force tending to
return the system to equilibrium. For small departures from equilibrium the equations
of motion can be linearized (equivalently the Lagrangian is expanded to quadratic order
in the small displacements and velocities), and the system oscillates harmonically about
its equilibrium. Corrections to the approximation remain small for all time and may be
calculated in perturbation theory.

6.1 Oscillations in one dimension

We start with a one dimensional system

L =
1

2
mẋ2 − V (x) (131)

A possible equilibrium point x0 satisfies V ′(x0) = 0. The equilibrium is stable if V ′′(x0) > 0.
Then expanding V about x0 to second order gives

V (x) = V (x0) +
1

2
(x− x0)

2V ′′(x0) + · · · ≡ V (x0) +
k

2
(x− x0)

2 + · · · (132)

where we have defined the spring constant by k = V ′′(x0) > 0. Writing x = x0 + q(t) we
have

L = −V (x0) +
m

2
q̇2 − k

2
q2 +O(q3) (133)

Small oscillations are controlled by the approximate Lagrangian

L0 =
m

2
q̇2 − k

2
q2 =

m

2
(q̇2 − ω2

0q
2). (134)

The equations of motion are simply mq̈ = −kq = −mω2
0q and the general solution can be

written

q(t) = |A| cos(ω0t− δ) = Re |A|eiδe−iω0t (135)

The complex number A = |A|eiδ contains all the initial data information. Representing
the oscillations by the complex exponential e−iω0t will turn out to be extremely convenient
when we include damping and periodic forcing terms. Indeed one can introduce the complex
conjugate combinations

a± = q̇ ± iω0q, q̇ = Rea±, q = ± 1

ω0

Ima± (136)

Then using the equations of motion we find

ȧ± = q̈ ± iω0q̇ = −ω2
0q ± iω0q̇ = ±iω0(q̇ ± iω0q) = ±iω0a± (137)
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So the a± satisfy first order differential equations in time, with solutions e±iω0t. Notice also
that the energy or Hamiltonian is

E = H =
m

2
(q̇2 + ω2

0q
2) =

m

2
|a+|2 (138)

Forced oscillations without damping A driving force enters the Lagrangian as a term
qF (t) or in the equation of motion as

q̈ + ω2
0q =

1

m
F (t) (139)

The effect of the forcing term on the a± is simple to work out

ȧ± = q̈ ± iω0q̇ = ±iω0a± +
F (t)

m
d

dt
(a±e

∓iω0t) =
F (t)

m
e∓iω0t (140)

which can be directly integrated

a±(t)e∓iω0t − a±(0) =

∫ t

0

dt′
F (t′)

m
e∓iω0t′

a±(t) = a±(0)e±iω0t +

∫ t

0

dt′
F (t′)

m
e±iω0(t−t′) (141)

Of course energy is not conserved in the presence of F (t). In fact we have

H(t) =
m

2
|a+|2 =

m

2

∣

∣

∣

∣

a±(0) +

∫ t

0

dt′
F (t′)

m
e−iω0t′

∣

∣

∣

∣

2

(142)

Suppose F (t) = 0 for early and late times, and suppose also that the oscillator is unexcited
at early times. Then the total energy delivered to the system after F has turned off is simply

E =
1

2m

∣

∣

∣

∣

∫ ∞

−∞
dt′F (t′)e−iω0t′

∣

∣

∣

∣

2

(143)

expressed in terms of the Fourier transform of the force. If the force is active over a time
much shorter than 1/ω0, this expression reduces to the square of the impulse

∫

dtF (t) divided
by 2m. Of course by Newton’s law the impulse is equal to the change in momentum of a
particle.

Going to complex notation we can represent a periodic force as F0e
−iωt. Making the

complex ansatz q = q0e
−iωt we find a particular solution

q(t) =
F0/m

ω2
0 − ω2

e−iωt (144)
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and the general solution

q(t) = Ae−iω0t +
F0/m

ω2
0 − ω2

e−iωt (145)

We see that q(t) generally possesses two frequencies, the driving frequency and the natural
frequency, the latter being absent if A = 0. To get the actual motion from the complex
solution, we simply take the real part, putting A = |A|eiδ0 , F0 = |F0|eiδ we have

q(t) = Re q(t) = |A| cos(ω0t− δ0) +
|F0|/m
ω2

0 − ω2
cos(ωt− δ) (146)

Clearly we have to rethink what happens when we try to drive the system at its natural
frequency, when the second term blows up.

Resonance When ω = ω0 we get a particular solution in the form q(t) = te−iω0t:

q(t) = t
F0

−2imω0

e−iω0t = t
F0

2mω0

e−iω0t+πi/2 (147)

and the general solution can have Ae−iω0t added on the right side. We can describe this
solution as a oscillation at the natural frequency with an amplitude increasing linearly with
time. Notice the phase shift of the response compared to the force: with F0 real the force
behaves as cosω0t whereas the response behaves as sinω0t.

Damping: The indefinitely growing amplitude we have just seen at resonance is only valid
if there is no friction or dissipative mechanism in which energy is lost to the environment:
the driving force is delivering energy to the system and it has nowhere to go except into
the amplitude of oscillation. Friction and dissipation take us outside the framework of pure
classical mechanics unless we greatly complicate the system to include the environment.
However, by adding drag terms to the equation of motion we can take friction into account
in a phenomenological way. In the context of small oscillations the simplest drag force is
linear in the velocity: FDrag = −mγq̇.

q̈ + γq̇ + ω2
0q =

F (t)

m
(148)

Note that we can’t add a term to a Lagrangian with no explicit time dependence beyond
that in F (t)2 that will generate this term in Lagrange’s equation

2However the time dependent Lagrangian

Lγ = eγt

(

m

2
q̇2 − k

2
q2 + qF (t)

)

(149)

does imply this equation of motion. Its time dependence signifies that energy will not be conserved when
F (t) = 0: dH/dt = −∂L/∂t = −γL − qḞ eγt → −γL for F = 0.
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To explore the consequences of this term, we first seek a (complex) solution of the ho-
mogeneous equation (F = 0), with time dependence eαt. Then α satisfies the quadratic
equation

α2 + αγ + ω2
0 = 0, α =

−γ ±
√

γ2 − 4ω2
0

2
= −γ

2
± i

√

ω2
0 −

γ2

4
(150)

We can identify two damping regimes, under and over damping:

q(t) = Ae−γ/2e±iω
′

0
t, γ < 2ω0, ω′

0 =
√

ω2
0 − γ2/4 < ω0 (151)

q(t) = A+e
−γ+t/2 + A−e

−γ−t/2, γ > 2ω0, γ± = γ ±
√

γ2 − 4ω2
0 (152)

In the first case we identify an oscillatory factor with reduced frequency with exponentially
damped amplitude. In the second case there is no oscillatory behavior, just two possible
exponentially damped terms, the slowest damping corresponding to γ−. In the critical case
γ = 2ω0, γ− = γ+ = γ and the two damping behaviors are e−γt/2 and te−γt/2.

Forced oscillation with damping: When damping is present all solutions of the homoge-
neous equation of motion (without a forcing term) are exponentially damped. This means
that when we construct the general solution of the forced oscillator with damping those
terms, necessary to set up the initial conditions die away after a long enough time t≫ 1/γ.
That is why they are called transients: no matter what initial conditions are applied, the
system eventually settles down to the unique terms oscillating with the driving frequency ω.
For periodic forcing, F = F0e

−iωt, we find that (after a long time) the solution only displays
the driving frequency with an amplitude proportional to F0 which we assume is real and
positive, so Re F (t) = F0 cosωt.

q(t) =
F0/m

ω2
0 − ω2 − iωγ

e−iωt =
F0/m

√

(ω2
0 − ω2)2 + ω2γ2

eiδe−iωt,

tan δ =
ωγ

ω2
0 − ω2

(153)

Damping has produced a small negative imaginary part in the denominator, so that at
resonance the amplitude oscillating at frequency ω stays finite as ω → ω0. Of course if
damping is small the amplitude becomes quite large. Going back to real q, we have

Re q(t) =
F0/m

√

(ω2
0 − ω2)2 + ω2γ2

cos(ωt− δ) (154)

The phase δ measures the lag of the response relative to the driving force. Notice that at
resonance δ → π/2 and q(t) → F0 sinωt/mω0γ. That is, at resonance the steady state
response is out of phase with the driving force by 90◦.

32 c©2012 by Charles Thorn



6.2 Systems with several degrees of freedom

We turn now to small oscillations in a general dynamical system with any number of degrees
of freedom described by generalized coordinates qi(t), and a Lagrangian L(qi, q̇i). We assume
that there is a state of stable equilibrium, and choose the qi so that this state is described
by qi = 0 for all i. Then the small oscillation approximation starts by expanding L up to
quadratic order in qi, q̇i:

L = L0 +
1

2

∑

ij

Mij q̇iq̇j +
∑

ij

Aij q̇iqj −
1

2

∑

ij

Kijqiqj +O(q3) (155)

There are no linear terms in this expansion because qi = 0 is assumed to be a static equilib-
rium solution:

∂L

∂qi
=

d

dt

∂L

∂q̇i
= 0, for qi = 0. (156)

Of course a term linear in q̇i would be a total derivative and hence can be dropped from the
Lagrangian without altering the Lagrange equations of motion.

We see that the dynamics is parameterized by the three matrices M,A,K each of size
n× n where n is the number of degrees of freedom. Because we can write

q̇iqj =
1

2
(q̇iqj − q̇jqi) +

1

2

d

dt
(qiqj) (157)

and the second term, which is a total time derivative, can be dropped from the Lagrangian,
we can assume that A is an antisymmetric matrix: Aij = −Aji. Furthermore, since M
and K both multiply quantities symmetric in ij, we may assume they are both symmetric:
Mij = Mji and Kij = Kji.

The next step is to derive the equations of motion

d

dt
(Mkj q̇j + Akjqj) = q̇jAjk −Kkjqj

Mkj q̈j + 2Akj q̇j +Kkjqj = 0 (158)

where we have used the symmetry properties of the matrices, and we have adopted the
summation convention that repeated indices are always summed over j = 1 · · ·n. Finally
we look for the normal modes by putting qj(t) = aje

−iωt and plugging into the equations of
motion:

(−ω2Mij − 2iωAij +Kij)aj ≡ Hijaj = 0 (159)

Regarding the aj as the components of an n vector a and Hij as the components of an n×n
matrix H, this equation can be written Ha = 0. If detH 6= 0 this equation would imply
that a = 0 i.e. the equations of motion would have no solution. In other words, the normal
mode frequencies ω must satisfy the 2n-order polynomial equation

detH = det(−ω2M − 2iωA+K) = 0, for normal modes (160)
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So far we have imposed no physical requirements on the real matrices M,A,K. All we have
noticed is that M,K are symmetric and A is antisymmetric: in particular M, iA,K are all
hermitian matrices. By now you have certainly encountered hermitian matrices in quantum
mechanics, and know that their eigenvalues are real and the eigenstates form a basis.

One physical consequence of the A terms is that they are odd under time reversal, which
is a very good symmetry in nature, broken very weakly. Certainly for molecular and atomic
systems assuming time reversal invariance in the absence of external fields is essentially
exact. Magnetic fields are odd under time reversal, so the presence of external magnetic
fields will break the symmetry and allow the A terms. Indeed these A terms are exactly of
the form coming from a magnetic term qṙ · A in the Lagrangian. But we can control the
magnetic field and in particular turn it off, in which case we would have A = 0.

Thus the M and K terms must satisfy the assumption we made at the beginning that
we were expanding about a point of stable equilibrium. Consider first the kinetic terms. We
can always rotate coordinates to bring the matrix M into diagonal form

M =













m1 0 0 · · · 0
0 m2 0 · · · 0
· · · · · · 0
· · · · · · ·
· · · · · · mn













(161)

Stability requires that all these mass eigenvalues mk > 0. They must all be nonzero and
positive. A matrix M that satisfies this condition is said to be positive definite. If one of the
mass eigenvalues were zero, it would mean that there are fewer than n degrees of freedom
since at least one equation of motion would be a constraint. In our discussion we assume
that all constraints have already been implemented.

A similar requirement is made for spring constant matrix K, however we only require
that the eigenvalues of K be non-negative. A vanishing eigenvalue of K would signify that
there is a direction in which V ′′ = 0. Either there is no restoring force at all or it is higher
than linear as x → 0. In summary we can say that M must be positive definite and K
merely positive.

Since M is positive definite its square root
√
M and inverse are well defined. This allows

us to redefine generalized coordinates

q =
1√
M
q′ (162)

so that

L =
1

2

∑

k

q̇′2k +
∑

kl

A′
klq̇

′
kq

′
l −

1

2

∑

kl

Ω2
ijq

′
kq

′
l

A′ =
1√
M
A

1√
M
, Ω2 =

1√
M
K

1√
M

(163)

Another way of saying this is that we lose no generality in assuming that the kinetic term
of the Lagrangian is diagonal, that each degree of freedom has unit mass. Then the spring
constant matrix is simply the frequency squared matrix.
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For the rest of this section we assume that A = 0 (no magnetic fields), and that the mass
matrix is the identity matrix:

L =
1

2

∑

k

q̇2
k −

1

2

∑

kl

Ω2
klqkql (164)

Since Ω2 is a real symmetric matrix, we can always rotate the coordinates in such a way
that it is diagonal, with diagonal entries ω2

k. This problem of finding the normal modes of
oscillation is mathematically the eigenvalue problem

Ω2Vl = ω2
l Vl (165)

familiar from quantum mechanics. The eigenvalues must satisfy the characteristic equation

det(Ω2 − ω2
l I) = 0 (166)

The left side is a polynomial of order n in the variable ω2
l . Generically there will be precisely n

roots, though some of them may coincide (degeneracy). Our stability assumption guarantees
that all the roots are positive.

For each root ω2
l of the characteristic equation, we plug it back into the eigenvalue

equation to determine the eigenvector Vl. The simplest situation is nondegeneracy: there
are n distinct eigenvalues ω2

l and to each one a unique eigenvector Vl. We recall the proof
that eigenvectors belonging to distinct eigenvalues are orthogonal:

V i
l2
Ω2
ijV

j
l1

= ω2
l1
V i
l2
V i
l1
, V i

l1
Ω2
ijV

j
l2

= ω2
l2
V i
l1
V i
l2

0 = V i
l2
Ω2
ijV

j
l1
− V i

l1
Ω2
ijV

j
l2

= (ω2
l1
− ω2

l2
)V i

l2
V i
l1

V i
l2
V i
l1

= 0, if ω2
l1
6= ω2

l2
(167)

where the second line uses the symmetry of Ω. When there is no degeneracy the n mutually
orthogonal eigenvectors Vl form a basis which spans the n dimensional coordinate space. It
is convenient to normalize these vectors to one so that

V T
l Vl′ ≡∑i V

i
l V

i
l′ = δll′ (168)

Then we can expand the coordinates qi(t) in this basis:

qi(t) =
∑

l

Ql(t)V
i
l , Ql(t) =

∑

i

V i
l qi(t) (169)

The Ql(t) are called the normal coordinates. If we choose them as our generalized coordi-
nates, the Lagrangian simplifies to a sum of independent one dimensional Lagrangians:

L =
1

2

n
∑

l=1

(Q̇2
l − ω2

lQ
2
l ) (170)
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When some of the eigenfrequencies are degenerate, there is ambiguity in the selection of
an eigenbasis. Suppose ω2 is d-fold degenerate. This means that the eigenvalue equation
Ω2V = ω2V has d independent solutions. These solutions are not automatically mutually
orthogonal, but it is always possible to choose (in many different ways) linear combinations
of them that are. Making such a choice one comes back to the Lagrangian (170) with the
understanding that the ωl need not all be distinct.

A simple example As a concrete example consider the motion of three particles moving
in a line with harmonic potential interactions:

L =
m

2
(ẋ2

1 + ẋ2
2 + ẋ2

3) −
k

2
((x1 − x2)

2 + (x2 − x3)
2)

=
m

2
(ẋ2

1 + ẋ2
2 + ẋ2

3) −
k

2
(x2

1 + x2
3 + 2x2

2 − 2x1x2) (171)

The frequency squared matrix is

Ω2 =
k

m





1 −1 0
−1 2 −1
0 −1 1



 (172)

In this system it is easy to guess the normal modes: (1) Motion of the center of mass with
no oscillations (x1, x2, x3) = Q0(1, 1, 1)/

√
3. It is easy to check





1 −1 0
−1 2 −1
0 −1 1









1
1
1



 = 0, ω2
0 = 0. (173)

(2) Particle 2 at rest and particles 1 and 2 opposite (x1, x2, x3) = Q1(1, 0,−1)/
√

2:




1 −1 0
−1 2 −1
0 −1 1









1
0
−1



 =





1
0
−1



 , ω2
1 =

k

m
. (174)

(3) Particles 1 and 3 move together and opposite to particle 2, (x1, x2, x3) = Q2(1,−2, 1)/
√

6:




1 −1 0
−1 2 −1
0 −1 1









1
−2
1



 = 3





1
−2
1



 , ω2
1 = 3

k

m
. (175)

Then

L =
m

2

(

Q̇2
0 + Q̇2

1 − ω2
1Q

2
1 + Q̇2

2 − ω2
2Q

2
2

)





x1

x2

x3



 = Q0V0 +Q1V1 +Q2V2, xCM =
1

3
(x1 + x2 + x3) =

Q0√
3

(176)
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6.3 M particle long chain

A tractable example of a many body system that has interesting applications in many areas
of physics is a chain of M particles rk, of equal mass m, organized in a long chain interacting
with nearest neighbor harmonic potentials. This system generalizes the simple example we
just discussed to an arbitrary number of particles all moving in 3 dimensions:

L =
m

2

M
∑

l=1

ṙ2
l −

k

2

M−1
∑

l=1

(rl+1 − rl)
2 (177)

Note that the particles at the end of the chain, particles l = 1 and l = M only interact with
one particle. The chain is free to move about in space as a whole. To find the normal modes
we derive the equations of motion

r̈l = − k

m
(2rl − rl+1 − rl−1), l = 2, . . . ,M − 1

r̈1 = − k

m
(r1 − r2), r̈M = − k

m
(rM − rM−1) (178)

Assuming harmonic time dependence rk = ake
−iωt, the normal modes are determined by

ω2al =
k

m
(2al − al+1 − al−1), l = 2, . . . ,M − 1

ω2a1 =
k

m
(a1 − a2), ω2aM =

k

m
(aM − aM−1) (179)

The first equation can be diagonalized with the ansatz aeiλl which solves the equation pro-
vided

ω2 = (k/m)(2 − eiλ − e−iλ) = 4(k/m) sin2(λ/2) (180)

Since this is even in λ it follows that another solution of the first equation with the same
ω2 is be−iλ. We will need to use a linear combination of these two solutions to meet the
l = 1,M equations. Put al = aeilλ + be−ilλ and find

(

2 − eiλ − e−iλ
)

(aeiλ + be−iλ) = aeiλ(1 − eiλ) + be−iλ(1 − e−iλ)
(

2 − eiλ − e−iλ
)

(aeiMλ + be−iMλ) = (aeiMλ(1 − e−iλ) + be−iMλ(1 − eiλ) (181)

The first equation gives b = −a(eiλ − 1)/(e−iλ − 1) = eiλa, after which the second equation
gives

0 =
(

1 − eiλ
)

aeiMλ +
(

1 − e−iλ
)

be−iMλ) =
(

1 − eiλ
) (

eiMλ − e−iMλ)
)

(182)

Or e2iMλ = 1. This last condition is met if λ = nπ/M , which gives ω2 = 4(k/m) sin2(nπ/2M).
Choosing n = 0, · · · ,M − 1 gives M distinct values of ω2 which shows that these are all the
normal modes. The normal mode eigenvectors are

V l = a(eilλ + e−i(l−1)λ) = 2aeiλ/2 cosλ

(

l − 1

2

)

(183)
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The constant is arbitrary, so we choose the normalized vectors

V l
n =

√

2

M
cos

nπ

M

(

l − 1

2

)

, n = 1, · · · ,M − 1

V l
0 =

1√
M

M
∑

l=1

V l
nV

l
n′ = δnn′ ,

M−1
∑

n=0

V l
nV

l′

n = δll′ (184)

Then we can expand the coordinates of the particles in the chain in normal modes as follows:

rl(t) =
M−1
∑

n=0

Qn(t)V
l
n, Qn(t) =

M
∑

l=1

rl(t)V
l
n (185)

and of course Qn oscillates with frequency ωn = 2ω0 sin(nπ/2M). The center of mass
coordinate is RCM =

∑

l rl/M :

RCM =
1

M

∑

l

rlV
l
0

√
M =

Q0√
M

(186)

when M is very large, the normal modes with low n have very small frequency ωn ∼ ω0nπ/M
for large M . (Here ω0 ≡

√

k/m.) If we consider that a macroscopic sample of matter has
Avogadro’s number of particles in it, we realize that using this chain as a model of a string,
M could be of order 108, and these low frequencies would be that factor smaller than the
molecular scale frequencies of the constituent atoms. This gives a qualitative explanation of
why macroscopic frequencies are so much smaller than the fundamental frequencies of the
underlying dynamics.

To summarize this subsection, we express the Lagrangian in terms of normal mode coor-
dinates

L =
m

2

M−1
∑

n=0

(Q̇2
n − ω2

nQ
2
n), ωn = 2 sin

nπ

2M
(187)

It is also easy to give the energy and angular momentum in terms of normal mode coordinates:

H =
m

2

M−1
∑

n=0

(Q̇
2

n + ω2
nQ

2
n)

J = m
∑

l

rl × ṙl = m
M−1
∑

n=0

Qn × Q̇n (188)

An interesting special motion is the n = 1 mode with Q1 = Q(cosω1t, sinω1t, 0). Then
Q̇1 = ω1Q(− sinω1t, cosω1t, 0). Then H = mω2

1Q
2 and J = ẑmω1Q

2 so that E = H = ω1J .
For this motion

rl(t) = Q1(t)

√

2

M
cos

π

M

(

l − 1

2

)

(189)
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At t = 0 the particles are lined up on the x-axis between x = −Q
√

2/M and x = +Q
√

2/M
and this line rotates about the z-axis at angular frequency ω1, pinwheel fashion.

6.4 Forcing and damping with several degrees of freedom

We first turn to the application of driving terms to coupled oscillator problems, first without
damping. Let ql be the original generalized coordinates of the system, before finding the
normal modes. Then a general forcing term in the Lagrangian has the form

∑

k Fk(t)qk. We
can immediately apply our knowledge of normal modes to rewrite this term as

∑

k

Fk(t)qk =
∑

k

Fk(t)
∑

l

Ql(t)V
k
l =

∑

l

Ql(t)fl(t) (190)

fl(t) =
∑

k

Fk(t)V
k
l (191)

In other words the effect of external driving forces on the system can be evaluated indepen-
dently on each normal mode.

Q̈l + ω2
lQl = fl(t) (192)

and the discussion reverts to our discussion of oscillations in one degree of freedom! For a
harmonic driving term f 0

l e
−iωt the general solution for each normal mode coordinate is

Ql(t) = Ale
−iωlt +

f 0
l

ω2
l − ω2

e−iωt (193)

it is now a simple matter to return to the original coordinates

qk(t) =
∑

l

AlV
k
l e

−iωlt +
∑

l

f 0
l

ω2
l − ω2

V k
l e

−iωt (194)

The new feature here is that the amplitude of the response of one of the original coordinates
to the driving term shows resonance at all of the normal mode frequencies coupling to that
coordinate. Because we have neglected damping the response amplitude blows up at each
resonant frequency. But just as in the case of one degree of freedom, we know that the
solution for ω = ωl doesn’t literally blow up but acquires a factor of t

qk(t) →
∑

l

A′
lV

k
l e

−iωlt + it
f 0
l

2ωl
V k
l e

−iωlt, ω = ωl (195)

We again note the π/2 phase shift between response and driving driving force at resonance.

Damping with several degrees of freedom For the case of one degree of freedom, we
introduced a damping force −mγq̇ linear in the single velocity of the degree of freedom.
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With several degrees of freedom the obvious generalization of the damping of coordinate k
is

Fk = −
∑

j

√
mk Γkj

√
mj q̇j (196)

We recall that a similar force term appeared in small oscillations when time reversal was
violated by an external magnetic field:

mkq̈k + 2
∑

j

Akj q̇j +
∑

j

√
mkmjΩ

2
kjqj = 0 (197)

But in this case A is an antisymmetric matrix. For this reason that force term does no work:

∑

kj

q̇kq̇jAkj = −
∑

kj

q̇kq̇jAkj = 0 (198)

Similarly the antisymmetric part of Γkj is non-dissipative. Thus no generality is lost in
assuming Γ is a symmetric matrix. The most general small oscillation equation of motion
including damping and external forcing is

mkq̈k + 2
∑

j

Akj q̇j +
∑

j

√
mkmj Ω2

kjqj +
∑

j

√
mkmj Γkj q̇j = Fk(t) (199)

As always with homogeneous linear differential equations with constant coefficients the Fk =
0 case can be converted to algebra by assuming the time dependence ert leading to the
characteristic equation

det
{

r2mI + r(2A+
√
m Γ

√
m) +

√
m Ω2

√
m
}

= 0 (200)

With general A,Γ this equation quickly becomes unwieldy: even for only 2 degrees of freedom
it is a general quartic equation in r. If A = 0 and Γ commutes with Ω2, we can bring Γ and
Ω2 simultaneously into diagonal form, in which case each normal mode simply has its own
damping constant γ. Then driving the system at frequency ω leads to the solution

qk(t) =
∑

l

AlV
k
l e

−γl/2e−iω
′

l
t +
∑

l

f 0
l

ω2
l − ω2 − iωγl

V k
l e

−iωt (201)

showing damped resonances at potentially all normal mode frequencies.
In general damping represents the loss of energy by a subsystem into its environment.

These losses can be identified as heat and/or electromagnetic radiation. In any case we
should expect that the damping terms should be responsible for a decrease in the energy of
the subsystem. Including damping, the Lagrange equations are modified to

d

dt

∂L

∂q̇k
− ∂L

∂qk
= F damping

k (202)

40 c©2012 by Charles Thorn



which we use to calculate the time derivative of the Hamiltonian

dH

dt
=

∑

k

q̈k
∂L

∂q̇k
+
∑

k

q̇k

(

∂L

∂qk
+ F damping

k

)

−
∑

k

q̈k
∂L

∂q̇k
−
∑

k

q̇k
∂L

∂qk

=
∑

k

q̇kF
damping
k → −

∑

kj

q̇kq̇j
√
mkmj Γkj ≡ −2F (203)

where the last form specializes to our expression for the damping forces we assumed for
small oscillations. The function F(q̇) = (1/2)

∑

kj q̇kq̇j
√
mkmjΓkj is Rayleigh’s dissipation

function. Its physical interpretation makes clear that it should be a positive definite bilinear
form (meaning the eigenvalues of the coefficient matrix are all positive). In the current
context of small oscillations we see that

F damping
k = −∂F

∂q̇k
(204)

but it can be used to model damping forces more generally.

6.5 Parametric resonance

There is one other phenomenon in driven oscillations that is important. The driving forces
we have studied so far have been independent of the coordinates. When they are allowed to
be linear in the coordinates, their effect can be thought of as giving time dependence to the
parameters of the oscillation. We consider the simplest situation of one degree of freedom in
which the frequency is given time dependence ω(t). Then resonance effects can occur when
this time dependence is itself periodic, for example ω2(t) = ω2

0(1 + δ cosωt), with δ ≪ 1.

q̈ + ω2
0(1 + δ cosωt)q = 0 (205)

Resonance can be expected when the frequency displayed in the driving terms matches those
in the other terms in the equation. Since the coefficient of cosωt is q which in the limit δ = 0
oscillates at frequency ω0, as does the q̈ term, we want cosωt cosω0t to have an oscillatory
contribution close to ω0. this will be the case if ω ≈ 2ω0. We then try a solution of the form

q(t) = a(t) cos
ωt

2
+ b(t) sin

ωt

2
(206)

where a, b are slowly varying in t. Computing time derivatives

q̇ =
(

ȧ+
ω

2
b
)

cos
ωt

2
+
(

ḃ− ω

2
a
)

sin
ωt

2

q̈ =

(

ä+ ωḃ− ω2

4
a

)

cos
ωt

2
+

(

b̈− ωȧ− ω2

4
b

)

sin
ωt

2
(207)

Writing out the equations of motion

0 =

(

ä+ ωḃ− ω2 − 4ω2
0

4
a+

aδω2
0

2

)

cos
ωt

2
+

(

b̈− ωȧ− ω2 − 4ω2
0

4
b− bδω2

0

2

)

sin
ωt

2

+
aδω2

0

2
cos

3ωt

2
+
bδω2

0

2
sin

3ωt

2
(208)
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The terms on the last line can be cancelled by including higher frequency terms, with am-
plitude of order δ compared to the terms we kept, in the ansatz for q(t). The terms on the
the first line will be zero if the coefficients are both zero. Putting a(t) = aert, b(t) = bert

leads to the algebraic equations

r2a+ rωb− ω2 − 4ω2
0

4
a+

aδω2
0

2
= 0

r2b− rωa− ω2 − 4ω2
0

4
b− bδω2

0

2
= 0 (209)

For ω2 − 4ω2
0, δ ≪ 1 we can neglect r2 and find

r2ω2 =

(

−δω
2
0

2
− ω2 − 4ω2

0

4

)(

−δω
2
0

2
+
ω2 − 4ω2

0

4

)

=
δ2ω4

0

4
−
(

ω2 − 4ω2
0

4

)2

(210)

Exponentially growing behavior, signifying parametric resonance will occur if r is real which
means

−δ
2
<
ω2 − 4ω2

0

4ω2
0

<
δ

2
(211)

This is just one of several parametric resonance frequencies for this case, and the simplest to
analyze. More generally parametric resonance occurs for ω ≈ 2ω0/n for integer n, but n > 1
are much more complicated to analyze and also turn out to be weaker than the n = 1 case.

7 Rigid body motion

By a rigid body we mean an extended physical structure which makes no change in shape
or size throughout its motion. If r1 and r2 are any two points in the rigid body, defined in a
coordinate system fixed in the body, r1 − r2 is strictly constant. Rigid bodies are a fiction.
Their existence would contradict relativity3. But even in the nonrelativistic domain there is
inevitably some elasticity or compressibility in matter. But there are clearly many structures
for which the distortions under sufficiently mild stress are negligible, so it is reasonable to
devote a few classes to understanding their motion in some detail.

The first step in the description is to uniquely specify the coordinate configuration of
the rigid body. We can specify the location of the center of mass by the three center of
mass coordinates R with respect to some coordinate system fixed in space. It remains to
specify the orientation of the body. For this purpose we attach an orthonormal coordinate
system to the body which moves and rotates with the body. It is usually convenient, but
not mandatory, to choose the center of mass as the origin of this body-fixed system. Then
we can specify the body’s orientation by the orientation of the body axes, relative to the
fixed axes, by the some rotation about the body origin. Every rotation can be described by
specifying a rotation axis û (say in the direction θ, ϕ) and a rotation angle φ. All together
the configuration is completely specified by 6 coordinates, R, û, θ.

3Consider for example the pole vaulter paradox.
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7.1 Angular velocity, moment of inertia, and angular momentum

The dynamical state of a rigid body also requires the specification of 6 velocities. Three of
these are given by the velocity of the center of mass V = Ṙ. But we also need 3 angular
velocities. To get these, think of an infinitesimal displacement in the fixed system of a general
point, with coordinates r in the body system, of the rigid body. It is the vector sum of a
displacement of the center of mass dR and the vector displacement ûdφ×r due to a rotation
about the center of mass.

vdt = dR + dφû× r ≡ dt(V + ω × r) (212)

In this formula v is the velocity of the considered point in the fixed (inertial) system, V is
the velocity of the center of mass and the angular velocity ω is implicitly defined by this
equation.

Suppose we had chosen a different origin for our body axes, say the point a. Then the
velocity of this new origin is V ′ = V + ω × a and the coordinates of the point r in the new
system are r′ = r − a. Then we could seemingly define a different angular velocity ω′ by

v = V ′ + ω′ × r′ = V + ω × a − ω′ × a + ω′ × r (213)

But this has to equal V + ω × r which implies that ω′ = ω. This confirms that the
angular velocity defined this way doesn’t depend on the choice of body coordinates, so it is
a meaningful physical property of the rigid body. From now on we will take the body origin
at the center of mass.

We are now in a position to write down the kinetic energy of a rigid body in terms of V

and ω. It is clearest to imagine that the rigid body is made up of a large number of point
particles of masses mk and positions rk referred to the body axes. Then the velocity of the
kth particle is given by

vk = V + ω × rk (214)

Then the kinetic energy is given by

T =
1

2

∑

k

mkv
2
k =

1

2

∑

k

mk(V + ω × rk)
2

=
1

2
V 2
∑

k

mk +
1

2

∑

k

mk(ω × rk)
2 + (V × ω) ·

∑

k

mkrk

=
M

2
V 2 +

1

2

∑

k

mk(ω × rk)
2 +M(V × ω) · R (215)

where M =
∑

lmk is the total mass of the system and R = (1/M)
∑

kmkrk is the center
of mass relative to the body axes. This shows the convenience of choosing the origin of the
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body axes to be the center of mass. In that case R = 0 and the kinetic energy reduces to

T =
M

2
V 2 +

1

2

∑

k

mk(ω × rk)
2 =

M

2
V 2 +

1

2

∑

k

mk[ω
2r2

k − (ω · rk)2]

= TCM +
1

2

∑

ab

ωaωbIab, Iab ≡
∑

k

mk(δabr
2
k − rakr

b
k) (216)

Here Iab is called the moment of inertia tensor, and TCM is the kinetic energy of a mass
M concentrated at the center of mass. Unless explicitly stated otherwise the moment of
inertia tensor will always be referred to the center of mass.

To calculate the kinetic energy in a given application, we obviously need an expression
for the angular velocity in terms of the natural coordinates for the problem. The needed
information is contained in the formula

v = V + ω × r (217)

Giving the velocity, v, as measured in the inertial frame, of any point r in the body,
measured relative to the body-fixed axes. But sometimes it is much easier to use
different body axes to infer ω, particularly axes whose origin is instantaneously at rest
V ′ = 0. In that case

v = ω × r′ (218)

where we exploited the fact that ω′ = ω! A common example is an object rolling on a
surface without slipping. Then the points of contact are always instantaneously at rest, and
can be easily identified.

The moment of inertia is calculated in the body-fixed system. Since it is symmetric in
its indices Iab = Iba, one can always rotate the body axes to a frame where it is diagonal
Iab = Iaδab. These are the principal axes and are clearly a convenient choice for body axes:

T = TCM +
1

2

∑

a

ωa2Ia = TCM +
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3), principal axes (219)

where I remind you that this formula only holds if origin of the body system is the center of
mass, and the axes are the principal axes.

If all Ia are distinct the body can be called an asymmetrical top: this is dynamically
the most complex situation. If one pair are equal, say I1 = I2, the rigid body is called a
symmetrical top. Finally if I1 = I2 = I3 ≡ I we have the spherical top. In the last case any
set of orthonormal axes are principal axes, and the internal kinetic energy is simply Iω2/2.
In the case of the symmetrical top, I1 = I2, the direction of the x3 principal axis is unique
but the x1x2 principal axes are arbitrary. Please note that if the mass distribution within
the rigid body is not uniform these symmetries may not be evident from the geometrical
shape of the object. On the other hand, if the mass distribution is uniform the symmetry
of a geometrical shape will imply the corresponding symmetries of Ia. So a uniform sphere
will be a spherical top, and one with an axis of symmetry will be a symmetrical top.

44 c©2012 by Charles Thorn



A collinear rigid system of masses is called a rotor or rotator. Choosing the 3-axis to pass
through the masses, one finds that I1 = I2 and I3 = 0. There are only two rotational degrees
of freedom since rotation about the 3-axis is meaningless. Another special configuration is a
coplanar one. Obviously the center of mass is in the plane and the line through the center
of mass perpendicular to the plane is a principal axis, say the 3-axis. the other two principal
axes are in the plane. Then I1 =

∑

kmkx
k2
2 , I2 =

∑

kmkx
k2
1 , and I3 = I1 + I2.

It is also possible (and sometimes easier) to calculate Iab in a system translated by a
displacement d from the center of mass. Calling the moments in this system I ′ab we have

I ′ab =
∑

k

mk

[

(rk − d)2δab − (rak − da)(rbk − db)
]

= Iab +M(d2δab − dadb) (220)

which we can interpret as the sum of the moment of inertia tensor in the center of mass plus
the moment of inertia of a point mass M located at the center of mass.

Angular Momentum: Let’s call the angular momentum of the rigid body about its center
of mass the spin S. Then by definition

S = J − R × P =
∑

k

mkrk × vk

=
∑

k

mkrk × (V + ω × rk) =
∑

k

mkrk × (ω × rk) (221)

where the last form used the fact that rk is the position of particle k relative to the center
of mass, i.e.

∑

kmkrk = 0. Expanding out the triple vector product and writing out the
components of the equation,

Sa =
∑

k

mk(ω
ar2

k − rakω · rk) =
∑

b

ωb
∑

k

mk(r
2
kδab − rakr

b
k) =

∑

b

Iabω
b (222)

If we resolve S,ω into components along body fixed axes which are also principal axes, the
relation between the components is simply

S1 = I1ω
1, S2 = I2ω

2, S3 = I3ω
3 (223)

Be warned that these components will be time dependent even if the spin is conserved,
because they are referred to time dependent axes!

7.2 Equations of motion

Since a rigid body has 6 degrees of freedom, we obviously need 6 equations of motion. We
can take three of them to be Newton’s law for the center of mass motion, which specifies the
rate of change of the total momentum of the system:

dP

dt
=

∑

k

dpk
dt

=
∑

k

fk ≡ F (224)
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The f k include both external forces as well as the forces of interaction between the parts
of the rigid body. But the latter all cancel out, because when the external forces are zero
the total momentum of the system is conserved. This cancelation can also be ascribed to
Newton’s third law.

It is natural to take the remaining 3 equations to specify the rate of change of the
angular momentum of the rigid body. This is also a consequence of Newton’s equations for
the individual constituents of the rigid body. Let us begin by calculating the time derivative
of the total angular momentum in the space-fixed system of coordinates. For this purpose
we call r0

k the position vector in this space-fixed system. Then

dJ

dt
=

d

dt

∑

k

r0
k × pk =

∑

k

r0
k × ṗk =

∑

k

r0
k × fk ≡ N 0 (225)

where we used the fact that ṙ0
k × pk = 0 since pk is parallel to ṙ0

k. The right side is the
total torque N 0 on the body about the origin of the space-fixed system. In many rigid body
problems there is a constraint that one point of the body is fixed. For example a compound
pendulum or a top anchored to a fixed point. In this case the configuration of the body is
specified by three rotation angles about the fixed point, so we only require three equations
of motion. In these cases we can dispense with the equation of motion for the center of mass
and take the 3 equations to be the ones just given, with the origin of the space-fixed system
coinciding with the fixed point: both J and N 0 are calculated about the fixed point which
is not necessarily the center of mass.

In the general situation, when the body as a whole participates in the motion, it is
convenient to write the rotational equations of motion in terms of the spin S, the angular
momentum about the center of mass. We have, defining rk = r0

k −R as the position vector
from the center of mass:

J =
∑

k

(R + rk) × pk = R × P +
∑

k

mkrk × (V + ω × rk)

= R × P +
∑

k

mkrk × (ω × rk) = R × P + S (226)

where we used
∑

kmkrk = 0. Then

dS

dt
=

dJ

dt
− Ṙ × P − R × Ṗ = N 0 − R × F (227)

But

N 0 =
∑

k

(R + rk) × fk = R × F +
∑

k

rk × fk (228)

Then we have finally the 6 equations of motion

dS

dt
=

∑

k

rk × fk ≡ N ,
dP

dt
= F (229)

where N is the torque about the center of mass.
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7.3 Free motion of Rigid bodies

When no external forces or torques act on a rigid body, the equation of motion simply say
that momentum and spin are conserved. Momentum conservation just means that the center
of mass moves freely R = R0 +V t, with V = P /M . Thus no generality is lost by assuming
that the center of mass is at rest r = 0.

Depending on the principal moments of inertia, the conservation of spin allows some
intricate motions. For a spherical top, I1 = I2 = I3 = I, ω = S/I, and the motion is simple
rotation about any axis through the center of mass. A rotor I3 = 0, I1 = I2 is similarly
treated because the only meaningful motions are rotations about an axis perpendicular to
the rotor, so again we have S = I1ω⊥.

A symmetrical top I1 = I2 6= I3 allows for more interesting possibilities. Of course S

is still a constant, but ω need not be parallel to S. If we resolve these vectors into their
components along the principal body fixed axes, we have ω1 = S1/I1, ω2 = S2/I1, ω3 = S3/I3.
Because the principal axes are rotating, both the ωa and Sa can depend on time. However,
there are two conservation laws: S2 and the kinetic energy T are independent of time:

S2
1 + S2

2 + S2
3 = S2,

S2
1 + S2

2

I1
+
S2

3

I3
= 2T (230)

Together these two conservation laws imply that S3 is a constant. Since S3 = S cos θ where
θ is the angle between the principal 3-axis and S, we conclude that θ is fixed throughout
the motion.The only possible motion is a precession of the 3-axis about the fixed direction
S, as the top rotates about its 3-axis with angular velocity ω3 = S3/I3 = (S/I3) cos θ. To
go further notice that the projection into the 12-plane, S⊥ is parallel to ω⊥. This means
that S,ω and the 3-axis all lie in the same plane which therefore rotates about S with the
3-axis. The velocity of a point r on the 3-axis is of course v = ω × r, and it will always be
perpendicular to the rotating plane. Thus the point describes a circle of radius r sin θ about
S. The precession frequency is thus

ωpre =
v

r sin θ
=
ω sinφ

sin θ
=
ω3 tanφ

sin θ
=
S3 tanφ

I3 sin θ
=
S tanφ

I3 tan θ
(231)

where φ is the angle between ω and the 3-axis, ω cosφ = ω3 = S3/I3. Now tanφ = ω⊥/ω3 =
(I3/I1)(S⊥/S3) = (I3/I1) tan θ so we conclude

ωpre =
S

I1
, ω3 =

S

I3
cos θ (232)

Notice that the precession frequency is independent of the angle θ. In this formula we see that
in the limit I3 → 0 we must have θ = π/2, i.e. the rotor rotates about an axis perpendicular
to its axis, in accord with our previous conclusion.

The most complex free motion is that of an asymmetrical top, with all three principal
moments of inertia distinct. For definiteness let us assume that I1 < I2 < I3. Now the two
conservation laws read

S2
1 + S2

2 + S2
3 = S2,

S2
1

2TI1
+

S2
2

2TI2
+

S2
3

2TI3
= 1 (233)
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In the space described by coordinates (S1, S2, S3) these two equations imply that this point
lies on the intersection of a sphere of radius S with an ellipsoid with semi-axes a =

√
2TI3,

b =
√

2TI2, c =
√

2TI1, c < b < a. This intersection will be non-empty provided c ≤ S ≤ a.
When S ≈ c the intersection is a small closed curve encircling the x1 axis. Similarly when
S ≈ a is is a small closed curve encircling the x3 axis. In these two cases the motion stays
near these respective axes throughout. In contrast when S ≈ b, the intersection is a closed
curve that travels far from the x2-axis. In this sense rotation about the 1 or 3 axes is stable
whereas that about the 3-axis is unstable. We have to defer more details about the motion
in this case till after a more detailed analysis of the general equations of motion.

7.4 Eulerian angles: specifying the top’s configuration in space

The Eulerian angles are a fairly standard choice. Start with the fixed body axes x1x2x3

coincident with the space axes XY Z. (1) Rotate the body axes an angle ϕ about the z, x3-
axis. (2) Rotate the body axes an angle θ about the new x1 axis (called the line of nodes).
(3) Rotate the body axes an angle ψ about the new x3 axis. The final x3 axis is now in the
spherical polar direction θ, ϕ, and ψ completes the specification of the body fixed axes with
respect to rotations about this direction. The range of these angles is 0 < ϕ,ψ < 2π and
0 < θ < π. These definitions involve arbitrary choices of axes for each step, and represent
one among several conventions in use. In quantum mechanics the second step is usually a
rotation about the new x2-axis instead of the new x1 axis.

To use the Eulerian angles to describe the motion of rigid bodies, we need to relate
the angular velocity ω to θ̇, ϕ̇, ψ̇. We begin by constructing the angular velocity vectors
corresponding to only one of these time derivatives non-zero:

ωθ = θ̇(cosψ,− sinψ, 0), ωψ = ψ̇(0, 0, 1), ωϕ = ϕ̇(sin θ sinψ, sin θ cosψ, cos θ)

Adding these up we find the total angular velocity and kinetic energy

ω = (θ̇ cosψ + ϕ̇ sin θ sinψ,−θ̇ sinψ + ϕ̇ sin θ cosψ, ψ̇ + ϕ̇ cos θ) (234)

T =
I1
2

(θ̇ cosψ + ϕ̇ sin θ sinψ)2 +
I2
2

(−θ̇ sinψ + ϕ̇ sin θ cosψ)2 +
I3
2

(ψ̇ + ϕ̇ cos θ)2

where we have taken the body axes to be principal axes.
In the case of a symmetrical top, the ψ dependence cancels in T

T =
I1
2

(θ̇2 + ϕ̇2 sin2 θ) +
I3
2

(ψ̇ + ϕ̇ cos θ)2, I1 = I2 (235)

Although we have already solved for the free motion of a symmetrical top based on the
conservation laws, it is instructive to confirm that the same results follow from the free
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Lagrangian L = T . The Lagrange equations are

d

dt

∂L

∂ψ̇
= I3

d

dt
(ψ̇ + ϕ̇ cos θ) =

∂L

∂ψ
= 0

d

dt

∂L

∂ϕ̇
=

d

dt
(I1ϕ̇ sin2 θ + I3 cos θ(ψ̇ + ϕ̇ cos θ)) =

∂L

∂ϕ
= 0

d

dt

∂L

∂θ̇
= I1θ̈ =

∂L

∂θ
=
(

I1ϕ̇ cos θ − I3(ψ̇ + ϕ̇ cos θ)
)

ϕ̇ sin θ (236)

The first equation simply states that S3 = I3ω3 = I3(ψ̇+ ϕ̇ cos θ) =constant. That ∂L/∂ψ̇ =
S3 is evident because ψ measures the angle of rotation about the 3-axis. Similarly, the fact
that ϕ measures the angle of rotation about the z-axis of the fixed coordinate system implies
that ∂L/∂ϕ̇ = S · ẑ so the second equation says simply that S · ẑ is a constant. Of course we
know that for free rotation S is conserved as a vector. If we choose the fixed system z-axis
parallel to S, S · ẑ = S is just the magnitude of the spin vector, which is conserved by the
second equation. With that choice S3 = S cos θ, and the first equation implies that θ is a
constant, i.e. that the 3-axis precesses about S. The first two equations read as conservation
laws

S3 = S cos θ = I3(ψ̇ + ϕ̇ cos θ) = I3ω3, ω3 =
S

I3
cos θ

S = I1ϕ̇ sin2 θ + S3 cos θ, ωpre = ϕ̇ =
S(1 − cos2 θ)

I1 sin2 θ
=
S

I1
(237)

in agreement with our previous calculation. Of course plugging these results into the right
side of the third equation shows that it vanishes, as constant θ would require.

7.5 Symmetrical top with fixed point moving under gravity

Using Eulerian angles we can set up the Lagrangian for a top with its lowest point fixed in
space. For simplicity we assume a symmetrical top, I1 = I2. To obtain the kinetic energy
for this application we need the moment of inertia relative to the fixed point. Let I1 = I2, I3
be the principal moments of inertia about the center of mass. The center of mass lies on the
axis of symmetry, say a distance a from the fixed point. Then the moments of inertia about
the fixed point are I ′1 = I ′2 = I1 +Ma2, and I ′3 = I3. Thus the Lagrangian of this top is

L′ =
I ′1
2

(θ̇2 + ϕ̇2 sin2 θ) +
I3
2

(ψ̇ + ϕ̇ cos θ)2 −Mga cos θ (238)

The absence of ψ, ϕ from the Lagrangian implies the two conservation laws

J3 =
∂L′

∂ψ̇
= I3(ψ̇ + ϕ̇ cos θ), Jz = I1ϕ̇ sin2 θ + J3 cos θ (239)
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In addition of course energy is conserved

E =
I ′1
2

(θ̇2 + ϕ̇2 sin2 θ) +
I3
2

(ψ̇ + ϕ̇ cos θ)2 +Mga cos θ

=
I ′1
2
θ̇2 +

J2
3

2I3
+

(Jz − J3 cos θ)2

2I ′1 sin2 θ
+Mga cos θ ≡ I ′1

2
θ̇2 +

J2
3

2I3
+mga+ Veff(θ)

Veff(θ) =
(Jz − J3 cos θ)2

2I ′1 sin2 θ
−Mga(1 − cos θ) (240)

The range of motion in θ is limited to those values for which

E ≥ J2
3

2I3
+mga+ Veff(θ) (241)

When J3 6= ±Jz this inequality excludes θ near 0, π because Veff → ∞ at those points. The
equality is attained for cos θ a root of a cubic polynomial. There is either one real root
and a complex conjugate pair or three real roots. More simply, notice that the effective
potential is a rational function f(z) of the variable z = cos θ, which is restricted to the range
−1 < z < +1.

f(z) =
(Jz − J3z)

2

2I ′1(1 − z2)
−Mga(1 − z) =

(Jz − J3)
2

4I ′1(1 − z)
+

(Jz + J3)
2

4I ′1(1 + z)
− J2

3

2I ′1
−Mga(1 − z)(242)

By direct calculation we find

f ′′ =
(Jz − J3)

2

2I ′1(1 − z)3
+

(Jz + J3)
2

2I ′1(1 + z)3
(243)

which is manifestly positive for all −1 < z < +1. Thus its graph is concave upward in this
interval going to +∞ at both ends. Thus there is a unique minimum of f and hence of
Veff for some 0 < θmin < π. When E = J2

3/2I3 + mga + Veff(θmin), θ will be fixed at θmin

throughout the motion: this is simple precession about the vertical. However when E is
greater than this, there will be precisely two turning points θ1,2 and θ will oscillate between
them. This oscillation is called nutation and the motion is called precession with nutation.

The way the nutation appears in space depends on whether or not

ϕ̇ =
Jz − J3 cos θ

I1 sin2 θ
(244)

changes sign as θ varies between θ1 and θ2. If it does not the nutation involves a monotonic
advance. If it does change sign there is a looping effect.

7.6 Euler’s Equations

For a general rigid body, it is desirable to exploit the simplification achieved by choosing
principal axes, which requires us to formulate the equations of motion in a body fixed frame,
which is non-inertial. We formulated the equations of motion in an inertial frame

dP

dt
= F ,

dS

dt
= N (245)
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Let us consider the time dependence of a vector resolved into components along the body
fixed axes A =

∑3
a=1Aa(t)ea(t):

dA

dt
=

3
∑

a=1

Ȧa(t)ea(t) +
3
∑

a=1

Aa(t)
dea(t)

dt
(246)

The contribution of the second term arises from the rotating body-fixed axes. Recall that
the angular velocity of a rigid body was defined implicitly by vk = V + ω × rk where the
second term is due to the rotation of the body. This equation holds with the same ω for
every constituent of the rigid body. In particular the displacement ∆ = r1 − r2 between
any points fixed in the rigid body has time derivative

d∆

dt
= ω × ∆ (247)

A little thought shows that any vector fixed in the rigid body will satisfy the same equation,
in particular

dea
dt

= ω × ea (248)

thus for any vector we have

dA

dt
=

3
∑

a=1

Ȧa(t)ea(t) + ω × A ≡ d∗A

dt
+ ω × A (249)

where the ∗ on the derivative signifies that the time derivative only acts on the components
of the vector along the body-fixed axes. So we can cast the equations of motion to involve
only quantities specified in the body-fixed system:

d∗P

dt
+ ω × P = F ,

d∗S

dt
+ ω × S = N (250)

dP1

dt
+ ω2P3 − ω3P2 = F1,

dP2

dt
+ ω3P1 − ω1P3 = F2,

dP3

dt
+ ω1P2 − ω2P1 = F3

dω1

dt
+
I3 − I2
I1

ω2ω3 =
N1

I1
,

dω2

dt
+
I1 − I3
I2

ω1ω3 =
N2

I2
,

dω3

dt
+
I2 − I1
I3

ω1ω2 =
N3

I3

The equations on the last line are Euler’s equations for the ωa. Once ωa are obtained, they
can be plugged into the equations on the second line to determine the motion of the center
of mass.

Once we have the ωa(t), we can find the Euler angles of the top orientation as a function
of time by solving the differential equations:

θ̇ cosψ + ϕ̇ sin θ sinψ = ω1(t)

−θ̇ sinψ + ϕ̇ sin θ cosψ = ω2(t)

ψ̇ + ϕ̇ cos θ = ω3(t) (251)
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Let us first reproduce the free motion of a symmetrical top, I2 = I1 and N = 0. the
third Euler equation says simply that ω3 =constant. Then defining Ω = (I3 − I1)ω3/I1, the
first two Euler equations are

dω1

dt
= −Ωω2,

dω2

dt
= Ωω1

d

dt
(ω1 − iω2) = −iΩ(ω1 − iω2), ω1 − iω2 = Ae−iΩt (252)

Choosing A real, we have ω1 = A cos Ωt and ω2 = A sin Ωt.
To compare with our earlier solution using Euler angles, recall that we found that θ̇ = 0,

ϕ̇ = S/I1 and ψ̇ = ω3 − ϕ̇ cos θ = ω3(1 − I3/I1) = −Ω. Thus ψ = −Ωt and

ω1 =
S sin θ

I1
sinψ = −ω⊥ sin(Ωt), ω2 =

S sin θ

I1
cosψ = ω⊥ cos(Ωt) (253)

in agreement with the analysis of Euler’s equations.

7.7 Free rotation of an asymmetrical top

For definiteness take I1 < I2 < I3. The Euler equations with Na = 0 can be quickly used to
confirm that

S2 = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3 = S2

1 + S2
2 + S2

3

2T = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 =

S2
1

I1
+
S2

2

I2
+
S2

3

I3
(254)

are both independent of time (i.e. conserved). As mentioned earlier the solution (S1, S2, S3)
of this pair of constraints lies on the intersection of a sphere of radius S with an ellipsoid
of semi axes a =

√
2TI3, b =

√
2TI2, and c =

√
2TI1. A non-empty intersection requires√

2TI1 < S <
√

2TI3.
We can now use these conservation laws to express, ω1, ω3 in terms of ω2:

I2
1ω

2
1 = S2 − I2

2ω
2
2 − I2

3ω
2
3

2TI1 = S2 + I2(I1 − I2)ω
2
2 + I3(I1 − I3)ω

2
3

ω3 =

√

S2 − 2TI1 − I2(I2 − I1)ω2
2

I3(I3 − I1)

ω1 =

√

S2 − I2
2ω

2
2

I2
1

− I3
I2
1 (I1 − I3)

(2TI1 − S2 − I2(I1 − I2)ω2
2)

=

√

2TI3
I1(I3 − I1)

− S2

I1(I3 − I1)
− I2

2ω
2
2

I2
1

(

1 − I3
I2(I1 − I3)

((I1 − I2))

)

=

√

2TI3 − S2 − I2(I3 − I2)ω2
2

I1(I3 − I1)
(255)
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Notice that we have arranged the argument of each square root to be manifestly positive in
the allowed range of S.

Finally ω2 satisfies the zero torque Euler equation

dω2

dt
=

I3 − I1
I2

ω1ω3

dt = I2
√

I1I3
dω2

√

2TI3 − S2 − I2(I3 − I2)ω2
2

√

S2 − 2TI1 − I2(I2 − I1)ω2
2

(256)

We recognize the right side as the integrand of an elliptic integral. To put it in standard
form we first compare the two ratios

R1 =
I2(I2 − I1)

S2 − 2TI1
, R3 =

I2(I3 − I2)

2TI3 − S2
(257)

Then define k2 = R</R>, and we change variables to u =
√
R>ω2, after which

t =

√

I1I3I2
2

(S2 − 2TI1)(2TI3 − S2)R>

∫ ω2

√
R>

0

du√
1 − u2

√
1 − k2u2

=

√

I1I3R<

(I2 − I1)(I3 − I2)

∫ ω2

√
R>

0

du√
1 − u2

√
1 − k2u2

ω2(t) =
1√
R>

sn(Ωt), Ω =

√

(I2 − I1)(I3 − I2)

I1I3R<

(258)

The remaining angular velocities are

ω3 =

√

S2 − 2TI1
I3(I3 − I1)

√

1 − R1

R>

sn2(Ωt) (259)

ω1 =

√

2TI3 − S2

I1(I3 − I1)

√

1 − R3

R>

sn2(Ωt) (260)

The elliptic function sn(z) is periodic with period 4K where

K =

∫ 1

0

du√
1 − u2

√
1 − k2u2

(261)

So all the ωa have the period 4K/Ω.
To infer the motion of the top in space, we set up Euler angles with the space-fixed z-axis

in the direction of the conserved spin S = Sẑ. Then recall that the components of ẑ on the
body fixed axes are

ẑ = (sin θ sinψ, sin θ cosψ, cosθ) (262)
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So we have

S1 = I1ω1 = S sin θ sinψ, S2 = I2ω2 = S sin θ cosψ, S3 = I3ω3 = S cos θ

cos θ =
I3ω3

S
, tanψ =

I1ω1

I2ω2

(263)

it remains to determine ϕ(t). For that we solve the two equations

θ̇ cosψ + ϕ̇ sin θ sinψ = ω1(t)

−θ̇ sinψ + ϕ̇ sin θ cosψ = ω2(t)

ϕ̇ sin θ = ω1 sinψ + ω2 cosψ =
I1

S sin θ
ω2

1 +
I2

S sin θ
ω2

2

ϕ̇ = S
I1ω

2
1 + I2ω

2
2

S2 − S2
3

= S
I1ω

2
1 + I2ω

2
2

I2
1ω

2
1 + I2

2ω
2
2

(264)

which determines ϕ(t) as an integral over a rational function of elliptic functions.

7.8 The tippy top

As a preliminary to understanding the behavior of the tippy top consider Fig. 2, which
shows two configurations of a spinning sphere whose center of mass is displaced from the

θ

θ

Figure 2: Spinning balls with displaced center of mass. The axis of rotation is
through the center of mass and the rotation is counterclockwise viewed from
the top. The force of friction is into the page in the left figure and out of the
page in the right figure.

geometrical center. The torque due to friction at the point of contact differs when computed
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about the vertical axis through the center of mass and about the body’s symmetry axis.
When the center of mass is in the upper hemisphere, as shown in the left figure, the torque
about the vertical axis is downward, in accord with the fact that friction should slow down
the rotation. The torque about the body symmetry axis is larger and directed from the
geometrical center to the center of mass. This would increase the angular velocity about
that axis which means the angle θ between that axis and the vertical would decrease. To see
this let us assume the angular velocity starts out in the vertical direction so its body fixed
components are

ω = ω(sin θ sinψ, sin θ cosψ, cos θ) (265)

If we assume ω ≫
√

g/R, it is reasonable to assume that the x and y components of the
torque average to zero. thus since we set the top spinning with ωx = ωy = 0 we can assume
that ωx,y remain negligible, and hence ω3 ≈ ω cos θ throughout the motion. Thus increasing
ω3 relative to ω implies that θ decreases.

In the configuration on the right the torque about the vertical axis is still down. The
torque about the body axis is from the geometrical center to the center of mass, but now
this is directed downward. The tippy top is set in motion with the body axis vertical and
the center of mass in the lower hemisphere. With a small perturbation the configuration
on the right is assumed and the torque will decrease the initial angular velocity about the
body symmetry axis more than the decrease of the angular velocity about the vertical axis,
causing the angle θ to increase. In both configurations the effect of friction is to increase
the height of the center of mass. The closer the center of mass is to the geometrical center
the more pronounced is the effect on the body axis compared to the vertical axis. In the
approximation used here, the angular velocity in the space-fixed frame remains parallel to ẑ
throughout the motion, slowly decreasing in magnitude due to friction. Meanwhile ω3 starts
out near ω decreases through zero, changes sign and ends up near −ω.

In the final phase of the tippy top’s behavior consider now Fig. 3. This will cause a
dramatic reduction in the angular velocity about the vertical with practically no effect on
the angular velocity about the symmetry axis. Thus θ will decrease more dramatically
tipping the top onto its post.

7.9 Dynamics in non-inertial frames of reference.

When we consider the motion of rigid bodies from the point of view of body-fixed axes, we
are actually viewing the dynamics from non-inertial frames, This is something we can do
with any physical system: it is merely a change of coordinates.

r0(t) = r(t) + R(t), ṙ0 =
dr

dt
+ Ṙ(t) ≡ dr

dt
+ V (t) (266)

if there is in addition to the translation R(t) also a rotation with angular velocity ω we will
further express

dr

dt
=

d∗r

dt
+ ω × r (267)
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θ

Figure 3: Spinning tippy top. Now the moment arm of friction about the
vertical axis is huge, and that about the symmetry axis is tiny.

where the ∗ signifies that only the components of r on the rotating axes are differentiated.
Then the kinetic energy of a particle is

m

2
ṙ2

0 =
m

2

(

d∗r

dt
+ ω × r

)2

+mV · dr
dt

+
m

2
V 2

=
m

2

(

d∗r

dt
+ ω × r

)2

−mr · dV
dt

+
d

dt
(mr · V ) +

m

2
V 2 (268)

The last two terms can be deleted from the Lagrangian, so we can take the Lagrangian in
the non-inertial frame to be

L =
m

2
ṙ2 +mṙ · (ω × r) +

m

2
(ω × r)2 −mr · A − V

=
m

2
ṙ2 +mṙ · (ω × r) +

m

2
(ω2r2 − (ω · r)2) −mr · A − V (269)

where it is understood in this formula that ṙ ≡ d∗r/dt. Thus all of the vectors in the
Lagrangian can be resolved along the rotating axes:

r(t) =
∑

a

ra(t)ea(t), ṙ(t) =
∑

a

ṙa(t)ea(t), ω =
∑

a

ωa(t)ea(t) (270)

and the Lagrangian is a function of these components. Next we work out Lagrange’s equa-
tions:

∂L

∂ṙa
= mṙa +mǫabcωbrc

mr̈a +mǫabcω̇brc +mǫabcωbṙc = −∂V
∂ra

−mAa +mǫabcωcṙb +m(ω2ra − r · ωωa)(271)
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or in vector notation

mr̈ = −∂V
∂r

−mA −mω̇ × ṙ + 2mṙ × ω +mω × (r × ω) (272)

The fourth term on the right is called the Coriolis force and the last term is called the
centrifugal force, which is directed radially outward. These are fictitious forces due to the
rotation of the coordinate frame relative to an inertial frame. If the frame is uniformly
rotating without translational acceleration, the second and third terms are absent.

In this case the energy (Hamiltonian) of the particle in the rotating frame is

E = H = mṙ · (ṙ + ω × r) − L =
m

2
ṙ2 − m

2
(ω × r)2 + V (273)

For example the effect of earth’s rotation on motion near its surface can be calculated using
this simplification:

mr̈ = −∇V + 2mṙ × ω +mω × (r × ω) (274)

We could set up an earth fixed coordinate system with the z axis vertically up, the x-axis
to the east and the y axis to the north. Then if the the angle between z and the earth’s axis
is θ (the latitude is π/2 − θ), then ωz = ω cos θ, ωy = ω sin θ, and ωx = 0.
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8 Hamiltonian Formulation of Mechanics.

By now we have seen the application of Lagrangian mechanics to many situations. The
fact that all of the dynamics of a system is encoded in a single scalar Lagrangian has been
particularly helpful in situations where non-Cartesian coordinates are the best way to attack
the equations of motion, and especially in situations where nontrivial constraints are imposed
on the system. We are now going to develop a third formulation of mechanics which is not
so much useful in solving practical problems, but rather exposes in an insightful way the
underlying fundamental structure of classical dynamics. In particular this new formulation
reveals the clearest analogies between quantum and classical dynamics.

8.1 Hamilton’s Equations

The Lagrange equations are second order in time, which means that two initial conditions, say
qk(0), q̇k(0), for each degree of freedom are required to uniquely determine each solution. We
can say that knowing these two quantities for each degree of freedom completely determines
the state of the system. Mathematically one can always convert a second order equation to
a pair of first order ones, for instance by giving a name yk = q̇k. Then q̈k = ẏk so we double
the number of variables to yk, qk, the original equation of motion becomes first order and
the definition q̇k = yk is the second first order equation. But this is not the most insightful
approach. From the structure of Lagrange’s equations

d

dt

∂L

∂q̇k
=
∂L

∂qk
(275)

we see that it is better to choose pk = ∂L/∂q̇k instead of yk as the new variable. This
equation can be implicitly solved for q̇(q, p, t). Then the Lagrange equation reads

ṗk =
∂L

∂qk

∣

∣

∣

∣

q̇

(q, q̇(q, p, t), t) (276)

here the subscript indicates that the q̇l are all fixed when the partial w.r.t. qk is taken. But
if we take q, p as variables, holding p fixed is more natural. So calculate

∂L

∂qk

∣

∣

∣

∣

p

=
∂L

∂qk

∣

∣

∣

∣

q̇

+
∑

l

∂q̇l
∂qk

∂L

∂q̇l
=
∂L

∂qk

∣

∣

∣

∣

q̇

+
∑

l

∂q̇l
∂qk

pl =
∂L

∂qk

∣

∣

∣

∣

q̇

+
∂

∂qk

∣

∣

∣

∣

p

∑

l

q̇lpl

∂L

∂qk

∣

∣

∣

∣

q̇

=
∂

∂qk

∣

∣

∣

∣

p

(L−
∑

l

q̇lpl) = −∂H
∂qk

∣

∣

∣

∣

p

(277)

This is the first of Hamilton’s equations: ṗk = −∂H/∂qk. The second Hamilton’s equation
comes from considering the derivative of H wrt pk:

∂H

∂pk

∣

∣

∣

∣

q

= q̇k +
∑

l

pl
∂q̇l
∂pk

−
∑

l

∂L

∂q̇l

∂q̇l
∂pk

= q̇k (278)
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We have arrived at Hamilton’s equations:

pk ≡ ∂L

∂q̇l
, H(q, p) ≡

∑

l

q̇lpl − L (279)

ṗk = −∂H
∂qk

, q̇k =
∂H

∂pk
(280)

The definitions on the top line constitute what is known mathematically as a Legendre
transformation L→ H. This transformation may be executed more transparently as follows.
Write out the differential dL in terms of its variables:

dL =
∑

k

dqk
∂L

∂qk
+
∑

k

dq̇k
∂L

∂q̇k

=
∑

k

dqkṗk +
∑

k

pkdq̇k =
∑

k

dqkṗk −
∑

k

dpkq̇k + d
∑

k

pkq̇k (281)

d(L−
∑

k

pkq̇k) = −dH =
∑

k

dqkṗk −
∑

k

dpkq̇k (282)

You may recognize these manipulations as analogous to the relationship, in thermodynamics,
of different thermodynamic potentials to each other.

The phase space variables pk(t), qk(t) characterize the state of the system. pk and qk are
canonically conjugate variables. We speak of pk as the momentum canonically conjugate to
pk or more simply as the momentum conjugate to qk. Hamilton’s equations relate the phase
space variables at time t+ dt to those at time t. Solving the equations then gives the state
of the system at time t2 in terms of the state of the system at time t1.

We have already encountered the Hamiltonian H as the energy of a dynamical system.
We also recall that energy is conserved if the Lagrangian does not depend explicitly upon
the time: Ḣ = −∂L/∂t. Let us calculate Ḣ using Hamilton’s equations:

dH

dt
=

∑

k

ṗk
∂H

∂pk
+
∑

k

q̇k
∂H

∂qk
+
∂H

∂t
=
∂H

∂t
(283)

SoH is conserved ifH does not depend explicitly on the time. Comparing the two conclusions
we see that

∂H

∂t

∣

∣

∣

∣

p,q

= −∂L
∂t

∣

∣

∣

∣

q̇,q

(284)

Notice that the partial time derivatives on either side hold different sets of variables fixed!
In fact a relation of the last type is true of the derivative wrt any parameter appearing

in the dynamics by the nature of the Legendre transformation:

∂H

∂λ

∣

∣

∣

∣

p,q

=
∑

k

pk
∂q̇k
∂λ

−
∑

k

∂L

∂q̇k

∂q̇k
∂λ

− ∂L

∂λ

∣

∣

∣

∣

q̇,q

= −∂L
∂λ

∣

∣

∣

∣

q̇,q

(285)
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As an example let us take the Lagrangian for a particle moving in an electromagnetic field

L =
m

2
ṙ2 +Qṙ · A(r, t) −Qφ(r, t) (286)

p = mṙ +QA, H =
(p −QA)2

2m
+Qφ (287)

Now let’s directly calculate

∂L

∂Q

∣

∣

∣

∣

r,ṙ

= ṙ · A(r, t) − φ(r, t) = A · p −QA

m
− φ

∂H

∂Q

∣

∣

∣

∣

r,p

= −A · p −QA

m
+ φ (288)

Which confirms the equality. Notice however that because there is q dependence in the
relation of p to ṙ, H depends quadratically on q whereas L depends linearly on q. This
means that the second derivatives differ:

∂2L

∂Q2

∣

∣

∣

∣

r,ṙ

= 0,
∂2H

∂Q2

∣

∣

∣

∣

r,p

=
A2

m
(289)

As another example consider the Lagrangian of a relativistic particle

L = −mc2
√

1 − ṙ2/c2, p = m
ṙ

√

1 − ṙ2/c2
, H =

√

p2c2 +m2c4 (290)

∂L

∂m

∣

∣

∣

∣

r,ṙ

= −c2
√

1 − ṙ2/c2 = −c
2

γ
= −mc

4

H
,

∂H

∂m

∣

∣

∣

∣

r,p

=
mc4

√

p2c2 +m2c4
=
mc4

H
(291)

8.2 Cyclic variables in the Hamiltonian formulation

With in the Lagrangian description we have learned that if the Lagrangian does not depend
on a coordinate q, then the momentum conjugate to q is conserved. The Hamiltonian derived
from such a Lagrangian is also independent of q, so the first Hamilton equation immediately
says ṗ = 0. In this situation we can eliminate the degree of freedom q by simply substituting
the desired value of p in the Hamiltonian and treating it as simply a parameter in the
dynamics of the remaining degrees of freedom.

This is an improvement over the Lagrangian approach, where errors would be introduced
by substituting the information from the values of a conserved quantity in the Lagrangian.
Recall the example of motion of a particle in a central potential, where we restrict the motion
to the xy-plane:

L =
m

2
ṙ2 + r2ϕ̇2 − V (r)

pr = mṙ, pϕ = mr2ϕ̇ ≡ J, H =
p2
r

2m
+

J2

2mr2
+ V (r) =

p2
r

2m
+ Veff(r) (292)

60 c©2012 by Charles Thorn



Treating J as a fixed parameter, we can now safely use the Hamiltonian to correctly give
the dynamics of the single coordinate r(t).

Routh has introduced a procedure that performs the Legendre transformation only with
respect to the cyclic coordinates, leaving the remaining coordinates in Lagrange formulation.
In the case just discussed the Routhian would be

R = ϕ̇pϕ − L = Veff(r) − m

2
ṙ2 (293)

This is a correct way to eliminate cyclic variables from the Lagrangian without going to
the full Hamiltonian formalism, but the advantages of doing only this are limited, and we
will not dwell on it. We lose relatively little by simply going to the complete Hamiltonian
formulation.

8.3 Hamilton’s principle in Hamilton’s formulation of mechanics

We have started with the Lagrangian and transformed to the Hamiltonian. But we can
reverse this procedure, defining the Lagrangian by

L =
∑

k

q̇kpk −H(p, q, t) (294)

and defining the action in phase space:

I =

∫ t2

t1

dt

(

∑

k

q̇kpk −H(p, q, t)

)

(295)

We can now state Hamilton’s principle in phase space: The equations of motion are ob-
tained by finding qk(t), pk(t) which make the action stationary under infinitesimal changes
δqk(t), δpk(t) which satisfy δqk(t1) = δqk(t2) = 0. Notice that there need be no such condi-
tions put on the δpk.

δI =

∫ t2

t1

dt
∑

k

(

q̇k −
∂H

∂pk

)

δpk +
d

dt
(
∑

k

δqkpk) −
∑

k

δqk

(

ṗk −
∂H

∂qk

)

= (
∑

k

δqkpk)

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

dt
∑

k

(

q̇k −
∂H

∂pk

)

δpk −
∑

k

δqk

(

ṗk +
∂H

∂qk

)

=

∫ t2

t1

dt
∑

k

(

q̇k −
∂H

∂pk

)

δpk −
∑

k

δqk

(

ṗk +
∂H

∂qk

)

(296)

Clearly δI = 0 for arbitrary variations only if Hamilton’s equations hold.
Because ṗk do not appear in I it would be legitimate to use the equation from the δpk

variation

q̇k =
∂H

∂pk
(297)

to determine the pk’s as functions of the qk’s and the q̇sk and eliminate them from the action
principle–this returns us to the original Lagrange form of Hamilton’s principle.
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8.4 Poisson Brackets

Hamilton’s equations instruct us how to calculate the time derivatives of the canonical phase
space variables q, p. But any physical quantity is a function of the phase space variables
f(q, p, t) and we can easily evaluate its time derivative as well

df

dt
=

∑

k

q̇k
∂f

∂qk
+
∑

k

ṗk
∂f

∂pk
+
∂f

∂t

=
∑

k

∂H

∂pk

∂f

∂qk
−
∑

k

∂H

∂qk

∂f

∂pk
+
∂f

∂t
≡ {f,H} +

∂f

∂t
(298)

after using Hamilton’s equations. The terms involving f and H on the right of the last
equation are a fundamental new quantity in the canonical formalism called the Poisson
bracket {f,H}. It is defined for any two functions f(q, p, t), g(q, p, t) as follows

{f, g} ≡
∑

k

(

∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)

(299)

If a conserved quantity has no explicit time dependence its Poisson bracket with the Hamil-
tonian is zero. For the case of the canonical variables themselves they reduce to

{qk, ql} = {pk, pl} = 0, {qk, pl} = δkl (300)

Poisson brackets satisfy a number of important properties, most of which are immediate
consequences of their definitions:

{f, g} = −{g, f}, {f, gh} = {f, g}h+ g{f, h} (301)

the second equation is sort of a Leibnitz rule. The Poisson bracket is linear in either of its
entries {c1f1 + c2f2, g} = c1{f1, g} + c2{f2, g}.

A more subtle property is the Jacobi identity involving double Poisson brackets:

{f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0. (302)

It can be proved by a straightforward but tedious slog. To appreciate its importance notice
that the Poisson bracket of two functions of phase space is itself a function of phase space.
So we can consider its time derivative

d

dt
{f, g} = {{f, g}, H} +

∂

∂t
{f, g}

= −{{H, f}, g} − {{g,H}, f} +

{

∂f

∂t
, g

}

+

{

f,
∂g

∂t

}

=

{

∂f

∂t
+ {f,H}, g

}

+

{

f,
∂g

∂t
+ {g,H}

}

=

{

df

dt
, g

}

+

{

f,
dg

dt

}

(303)

The Jacobi identity was used to get from the first line to the second line! This is a powerful
statement: the time derivative of the Poisson bracket of two quantities is related by a Leibnitz
rule to the Poisson brackets of each quantity with the time derivative of the other. As a
particular case, suppose that f and g are two conserved quantities. Then it follows that
{f, g} is also a conserved quantity. (Poisson’s theorem).
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8.5 Canonical Transformations

The Lagrangian formulation of mechanics takes the same form for all choices of generalized
coordinates: redefining qk → Qk(q, t) leaves Lagrange’s equations invariant in form. In the
Hamiltonian formulation we can ask a similar question: If we change canonical variables to
Pk(q, p, t), Qk(q, p, t), are Hamilton’s equations invariant in form? The answer is yes if the
transformation is canonical.

We define canonical transformations to be those that leave Poisson brackets invariant:

{f, g}Q.P = {f, g}q.p, Canonical Transform. (304)

Note that the definition of canonical transformations does not refer in any way to the Hamil-
tonian of the system. We shall see that they nonetheless leave Hamilton’s equations invariant.
Working in q, p coordinates we can calculate

Q̇k = {Qk, H}p.q +
∂Qk

∂t
= {Qk, H}P.Q +

∂Qk

∂t
=
∂H

∂Pk
+
∂Qk

∂t
(305)

Ṗk = {Pk, H}p.q +
∂Pk
∂t

= {Pk, H}P.Q +
∂Pk
∂t

= − ∂H

∂Qk

+
∂Pk
∂t

(306)

Evidently if the canonical transformations are time independent, it is immediate that the
form of Hamilton’s equations is invariant, with the same Hamiltonian (expressed in different
coordinates) for both sets of coordinates. We shall shortly see that if the canonical trans-
formations are time dependent Hamilton’s equations will e preserved provided a change is
allowed in the Hamiltonian. At least for time independent transforms the converse is true:
If Hamilton’s equations are invariant in form under a time independent transformation for
a generic Hamiltonian, the transformation is canonical. Indeed invariance requires that the
particular Poisson brackets {f,H} be invariant. But if this is required for any Hamiltonian
H, all Poisson brackets must be invariant.

To investigate canonical transformations further we appeal to Hamilton’s principle, which
implies Hamilton’s equations. For the two coordinates systems to yield the same equations
of motion, the two Lagrangians should differ by a total time derivative:

∑

k

q̇kpk −H =
∑

k

Q̇kPk − H̄ +
dF

dt

dF =
∑

k

pkdqk −
∑

k

PkdQk + (H̄ −H)dt (307)

This condition will hold if the transformation is such that F (q,Q, t) and

pk =
∂F

∂qk
, Pk = − ∂F

∂Qk

, H̄ = H +
∂F

∂t
(308)

Now if F does not depend explicitly on time, the first equation determines Qk(q, p) and
then the second determines Pk(q, p). Since Hamilton’s equations will be invariant under this
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transformation for any H it follows that any such transformation preserves Poisson brackets
and hence is canonical.

But since the Poisson brackets are defined in terms of derivatives with respect to q, p but
not with respect to t, the transformation generated by a time dependent F (q,Q, t) will also
be canonical. In that case the above argument shows that Hamilton’s equations will still be
valid if one takes a new Hamiltonian H̄ = H + ∂F/∂t. The function F (q,Q, t is called the
generating function of the canonical transformation.

In general for a system with s degrees of freedom a generating function depends on s
old variables s new variables and time. Of the s old or new variables only one is selected
from each conjugate pair. In the case just discussed the variables are chosen to be the
old and new coordinates. We can just as well choose the old and new momenta, the old
coordinates and new momenta, of the old momenta and new coordinates, or indeed any
hybrid mixture we wish. We illustrate the four main choices obtained from F (q,Q, t) via
Legendre transformations.

F1(q,Q, t) = F : pk =
∂F1

∂qk
, Pk = − ∂F1

∂Qk

, H̄ = H +
∂F1

∂t
(309)

F2(q, P, t) = F +QP : pk =
∂F2

∂qk
, Qk =

∂F2

∂Pk
, H̄ = H +

∂F2

∂t
(310)

F3(p,Q, t) = F − qp : qk = −∂F3

∂pk
, Pk = − ∂F3

∂Qk

, H̄ = H +
∂F3

∂t
(311)

F4(p, P, t) = F2 − qp : qk = −∂F4

∂pk
, Qk =

∂F4

∂Pk
, H̄ = H +

∂F4

∂t
(312)

Let’s consider some examples. First the generating function for the identity is F2 =
∑

k qkPk.
More generally consider

F2 =
∑

kl

qkMklPl : pk = MklPl, Ql = qkMkl (313)

Qk = MT
klql, Pk = M−1

kl pl (314)

If M = RT is an orthogonal matrix, RRT = I, this canonical transformation is just a rotation
Q = Rq, P = Rp.

As another important example, consider an infinitesimal canonical transformation F2 =
∑

k qkPk + ǫG(q, P, t):

Qk = qk + ǫ
∂G

∂Pk
, pk = Pk + ǫ

∂G

∂qk
(315)

δpk = Pk − pk = −ǫ ∂G
∂qk

→ ǫ{pk, G}

δqk = Qk − qk = ǫ
∂G

∂Pk
→ ǫ{qk, G} (316)

Where on the right of the last two equations, we have set Pk = pk in G and identified
the derivatives with Poisson brackets. In this way we see that the infinitesimal generator
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ǫG induces infinitesimal canonical transformations via Poisson brackets. We can reach a
finite canonical transformation by a sequence of infinitesimal transformations by solving the
differential equation

dΩ

dǫ
= {Ω, G} (317)

for any function Ω(q, p). We recognize this as a Hamilton-type equation where the param-
eter ǫ plays the role of time. Indeed, we can interpret Hamilton’s equations themselves as
a canonical transformation obtained by integrating infinitesimal canonical transformations
whose infinitesimal generator is the Hamiltonian!

In quantum mechanics the analog of a canonical transformation is a unitary transforma-
tion U = e−iǫG/~ where G is the infinitesimal generator. Quantum operators transform as
follows

Ω(ǫ) = U †ΩU,
dΩ

dǫ
=

1

i~
U †[Ω, G]U =

1

i~
[Ω(ǫ), G] (318)

Here we see clearly the parallel between canonical transformations in classical mechanics and
unitary transformations in quantum mechanics in which P.B.↔ (−i/~)commutator,

8.6 Hamilton-Jacobi Theory

We have learned that a finite canonical transformation can be built up as a concatenation
of infinitesimal canonical transformations by solving a differential equation. This diff eq is
identical in form to Hamilton’s equations for qk, pk or indeed any function f(q, p) without
explicit time dependence

df

dt
= {f,H}. (319)

In other words the solution of Hamilton’s equations can be regarded as an evolving canoni-
cal transformation. Specifically the transformation qk(0), pk(0) → qk(t), pk(t) is a canonical
transformation. If we can find the generating function of this canonical transformation, we
have another route to the solution of the equations of motion. Let us regard the initial
coordinates as the new canonical variables qk(0) = Qk, pk(0) = Pk and qk(t) = qk, pk(t) = pk
as the old variables. Since the initial conditions are constants of the motion, the Hamilto-
nian governing the new variables should be independent of the new variables, so we seek a
canonical transformation such that the new Hamiltonian H̄ = 0. From H̄ = H + ∂F/∂t this
means that

∂F

∂t
+H(p, q, t) = 0 (320)

Let us take an F2 style generating function F2(q, P, t) ≡ S(q, P, t). then to interpret this
equation we must eliminate pk = ∂F2/∂qk from the Hamiltonian:

∂F2

∂t
+H

(

∂F2

∂q
, q, t

)

= 0 (321)
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This is the Hamilton-Jacobi equation that determines the generating function for the canon-
ical transformation that maps the variables at time t to there values at t = 0. The solution
of this equation is called Hamilton’s principal function and is customarily denoted by the
letter S(q, t).

∂S(q, t)

∂t
= −H

(

∂S

∂q
, q, t

)

Hamilton − Jacobi (322)

To completely determine S we need an initial condition. For example we might want the
canonical transformation to be simply the identity at t = 0. Then in the F2(q, P, t) form
of generating function we would specify F2(q, 0) =

∑

k qkPk. If we solve don’t specify the
initial condition then the solution would generate a canonical transformation which includes
an initial redefinition of variables.

As a simple example, consider a free particle moving in one dimension H = p2/2m. Then

∂S(q, t)

∂t
= − 1

2m

(

∂S

∂x

)2

(323)

We can solve this equation by putting S = S0(x) − Et where ∂S/∂x =
√

2mE, so S(x, t) =
x
√

2mE−Et = xP − P 2

2m
t. Here we have identified the initial momentum P =

√
2mE where

E is the conserved energy. We can find another solution in the form S = m(x − X)2/2t
because then

∂S

∂t
= −m(x−X)2

2t2
,

∂S

∂x
= m

x−X

t
(324)

The two solutions we have found are

S1 = m
(x−X)2

2t
, S2 = xP − P 2

2m
t (325)

They in fact generate the same canonical transformations

p =
∂S1

∂x
= m

x−X

t
, P = −∂S1

∂X
= m

x−X

t
, x = X +

P

m
t, p = P

p =
∂S2

∂x
= P, X =

∂S2

∂P
= x− P

m
t, x = X +

P

m
t (326)

In fact S2 is just the Legendre transform of S1:

P = −∂S1

∂X
= m

x−X

t
, S2 = XP + S1 = P

(

−Pt
m

+ x

)

+
P 2

2m
t = xP − P 2

2m
t

As a less trivial example let us apply Hamilton-Jacobi to the harmonic oscillator H =
p2/2m+mω2/2

∂S

∂t
= − 1

2m

(

∂S

∂x

)2

−mω2x2/2 (327)
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Again since there is no explicit time dependence we put S = S0 − Et and solve

∂S0

∂x
=

√
2mE −m2ω2x2

S(x, t) =

∫ x

0

dx′
√

2mE −m2ω2x′2 − Et (328)

The integral may be done with the change of variables x′ =
√

2E/mω2 sin θ

S(x, t) =
2E

ω

∫

dθ cos2 θ =
E

ω
sin−1 ωx

√

2E/m
+
x

2

√
2mE −m2ω2x2 − Et (329)

to interpret S as the generating function of the canonical transformation x(t), p(t) → Q,P
with H̄ = 0, we identify P = E, so

Q =
∂S

∂E
=

1

ω
sin−1 ωx

√

2E/m
− t

x(t) =
1

ω

√

2E

m
sinω(t+Q), p(t) =

√
2mE −m2ω2x2 =

√
2mE cosω(t+Q)(330)

Notice that the canonical transformation at t = 0 is not the identity:

x(0) =
1

ω

√

2P

m
sinωQ, p(0) =

√
2mP cosωQ (331)

Indeed, with hindsight, we could have done this latter canonical transformation at each time
to find

x(t) =
1

ω

√

2P (t)

m
sinωQ(t), p(t) =

√

2mP (t) cosωQ(t), H̄ = H = P (t) (332)

Then Hamilton’s equations would tell us Ṗ = 0, Q̇ = 1.

Hamilton’s principal function from the action. Consider the action
∫ t2
t1
dtL evaluated

for the solution of Lagrange’s equations satisfying the conditions qk(t1) = qk1 and q2(t2) = qk2.
Call the result S(q2, t2; q1, t1) which is a function of the initial and final coordinates and times.
Now calculate the change in S that ensues if we change q2 → q2 + δq2. this means we will
need to find a slightly different solution of Lagrange’s equations qk(t) + δqk(t) satisfying
δqk(t1) = 0 and δqk(t2) = δqk2. Then

δS =

∫ t2

t1

dt
∑

k

(

δq̇k
∂L

∂q̇k
+ δqk

∂L

∂qk

)

=
∑

k

δqk2
∂L

∂q̇k

∣

∣

∣

∣

t=t2

(333)

after an integration by parts and use of Lagrange’s equations. Thus ∂S/∂qk2 = pk(t2).
Similarly considering a change in qk1 shows that ∂S/∂qk1 = −pk(t1). These equations confirm
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that S is the generating function for the canonical transformation that maps qk(t2), pk(t2)
to qk(t1), pk(t1). Furthermore we can calculate the change in S under t2 → t2 + δt2:

δS = δt2L+
∑

k

δqk(t2)pk(t2) = δt2

(

L−
∑

k

q̇k(t2)pk(t2)

)

= −δt2H(t2) (334)

where we used the requirement that qk2 = qk(t2 + δt2) + δqk(t2) to infer that δqk(t2) =
−q̇k(t2)δt2. Thus ∂S/∂t2 = −H(q(t2), p(t2)), i.e. H satisfies the Hamilton-Jacobi equation!
In summary,

∂S

∂q2
= p2,

∂S

∂q1
= −p1,

∂S

∂t2
= −H(t2),

∂S

∂t1
= H(t1) (335)

As an example lets take a free particle for which the solution is x(t) = X+(x−X)t/(t2−t1).
Then

S =
m

2

∫ t2

t1

dtẋ2 =
m

2

(x−X)2

t2 − t1
(336)

which, with t = t2 − t1 is the second form of Hamilton’s principal function discussed above.

8.7 Separation of Variables

When we simply consider the Hamilton-Jacobi equation, it is not necessary to impose a
specific initial condition, but it is necessary to find a solution that depends on a number
of independent constants equal to the number of degrees of freedom. If the Hamiltonian
does not depend explicitly on the time, One can always separate the time dependence of
S(q, t) = S0(q) − Et so that the H-J equation reduces to

E = H(q,∇qS0) →
∑

k

1

2mk

(

∂S0

∂qk

)2

+ V (q) (337)

when the dynamics is described by a potential. If there are any cyclic coordinates–those
that don’t appear in the Hamiltonian, they can be immediately separated in the same way
time was separated: by writing S0 = S ′

0 +
∑

k=cyclic qkpk where pk is the constant conjugate
momentum and S ′

0 is independent of all the cyclic qk’s. Then we have

E −
∑

k=cyclic

p2
k

2mk

=
∑

l

1

2ml

(

∂S0

∂ql

)2

+ V (q) (338)

The simplest example of this is a particle moving in one dimension under a potential energy
with no explicit time dependence. Then we can seek a solution in the form S(q, t) = S0(q)−
Et so that

E =
1

2m

(

∂S0

∂q

)2

+ V (q), S0(q) =

∫ q

0

dq′
√

2m(E − V (q′)) + S0(0) (339)

68 c©2012 by Charles Thorn



In this case E is the necessary parameter. (S0(0) does not count because it has no influence
on the generated canonical transformation. Then

S = S0(q, E) − Et (340)

can be interpreted as the generating function of the canonical transformation from q(t), p(t)
to Q,P = E, which are time independent. E is the total energy and

Q =
∂S

∂E
=
∂S0

∂E
− t (341)

The statement that Q is independent of time then becomes

√

m

2

∫ q

0

dq′
1

√

E − V (q′)
= t+ Constant (342)

which is seen to be the standard solution by quadratures.
Notice that S0(q, E ≡ P ) may be regarded in its turn as the generating function of a

time independent canonical transformation

p =
√

2m(P − V (q), Q =
∂S0

∂P
=

√

m

2

∫ q

0

dq′
√

P − V (q′)
(343)

In this case the new Hamiltonian is H̄ = H = P . And Q(t) is no longer a constant but
satisfies Q̇ = 1 so that Q = t+constant.

With more degrees of freedom it becomes increasingly more difficult to find the sufficiently
general solution, except in the case where separation of variables is possible. This happens,
for example, when the potential is the sum of terms that each depend on one variable.

An important example is a 3 dimensional central potential V (r). Then in spherical
coordinates

2mE =

(

∂S0

∂r

)2

+
1

r2

(

∂S0

∂θ

)2

+
1

r2 sin2 θ

(

∂S0

∂ϕ

)2

+ 2mV (r) (344)

Then we can try a solution S0 = R(r) + Θ(θ) + ϕJϕ. Then we get a solution if

(

dΘ

dθ

)2

+
J2
ϕ

sin2 θ
= J2 (345)

(

dR

dr

)2

+
J2

r2
= 2m(E − V (r)) (346)

This is sufficiently general because the three constants E, Jϕ, J can be taken as the 3 new
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momenta. Solving these equations

R(r) =

∫ r

0

dr′
√

2mE − 2mV (r′) − J2/r′2

Θ(θ) =

∫ θ

sin−1(Jϕ/J)

dθ′
√

J2 − J2
ϕ/ sin2 θ′

=



J tan−1

√

J2 sin2 θ − J2
ϕ

J cos θ
− Jϕ tan−1

√

J2 sin2 θ − J2
ϕ

Jϕ cos θ





QE =

√

m

2

∫ r

0

dr′
√

E − V (r′) − J2/2mr′2
− t

QJ =

∫ r

0

−Jdr′
r′2
√

2mE − 2mV (r′) − J2/r′2
+

∫ θ

sin−1(Jϕ/J)

dθ′
J

√

J2 − J2
ϕ/ sin2 θ′

QJϕ
= ϕ−

∫ θ

sin−1(Jϕ/J)

dθ′
Jϕ/ sin2 θ′

√

J2 − J2
ϕ/ sin2 θ′

(347)

Note that from the explicit formula for Θ we can evaluate the limit θ → π/2 to get Θ(π/2) =
π(J − Jϕ)/2. This will be useful later when we discuss action-angle variables.

To put the plane of the orbit at θ = π/2, requires Jϕ → J . In this limit the last equation
shows that the second term in the fourth equation can be replaced by ϕ − QJϕ

, so that
equation just reproduces our old result for the orbit. The third equation then gives the old
result for t as a function of r.

Finally let’s consider the free symmetrical top

L =
I1
2

(θ̇2 + ϕ̇2 sin2 θ) +
I3
2

(ψ̇ + ϕ̇ cos θ)2

pθ = I1θ̇, pϕ = I1ϕ̇ sin2 θ + I3 cos θ(ψ̇ + ϕ̇ cos θ), pψ = I3(ψ̇ + ϕ̇ cos θ)

H =
p2
θ

2I1
+
p2
ψ

2I3
+

(pϕ − pψ cos θ)2

2I1 sin2 θ
(348)

Since ϕ and ψ are cyclic variables the H-J equation will separate with the ansatz S0 =
ϕpϕ + ψpψ + Θ(θ)

Θ′2 = 2I1E −
I1p

2
ψ

I3
− (pϕ − pψ cos θ)2

sin2 θ

Θ(θ) =

∫ θ

dθ′

√

2I1E −
I1p2

ψ

I3
− (pϕ − pψ cos θ)2

sin2 θ
(349)
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8.8 The Jacobian of a Canonical Transform: Liouville’s Theorem

The volume of phase space is invariant under a canonical transformation. for a single degree
of freedom this can be seen by a direct calculation of the Jacobian

det







∂Q

∂q

∂Q

∂p
∂P

∂q

∂P

∂p






=

∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
= {Q,P}p,q = 1 (350)

With many degrees of freedom one can change variables in two steps so that the Jacobian is
a product:

∂(Q1 · · ·Qs, P1 · · ·Ps)
∂(q1 · · · qs, p1 · · · ps)

=
∂(Q1 · · ·Qs, P1 · · ·Ps)
∂(q1 · · · qs, P1 · · ·Ps)

∂(q1 · · · qs, P1 · · ·Ps)
∂(q1 · · · qs, p1 · · · ps)

(351)

The second factor on the right describes the transformation of the old p’s to the new P ’s
holding the old q’s fixed, and the first factor describes the subsequent transformation of the
old q’s to the new Q’s holding the new P ’s fixed. In each of these two factors the variables
held fixed can simply be deleted from the Jacobian since they are unaltered:

∂(Q1 · · ·Qs, P1 · · ·Ps)
∂(q1 · · · qs, p1 · · · ps)

=
∂(Q1 · · ·Qs)

∂(q1 · · · qs)
∂(P1 · · ·Ps)
∂(p1 · · · ps)

(352)

Now describe the canonical transformation with a generating function F2(q, P ). Then

∂(Q1 · · ·Qs)

∂(q1 · · · qs)
= det

(

∂2F2

∂q∂P

)

,
∂(p1 · · · ps)
∂(P1 · · ·Ps)

= det

(

∂2F2

∂P∂q

)

(353)

The two determinants are of matrices that are simply transposes of each other and are
therefore equal to each other. Thus

∂(Q1 · · ·Qs, P1 · · ·Ps)
∂(q1 · · · qs, p1 · · · ps)

=
∂(Q1 · · ·Qs)

∂(q1 · · · qs)

(

∂(p1 · · · ps)
∂(P1 · · ·Ps)

)−1

= 1 (354)

What is known as Liouville’s theorem is that if you follow the time evolution of a region
of phase space, each point of which moves according to Hamilton’s equations, the region
can move and change its shape, but always in such a way that its volume is constant. This
follows from the invariance of the volume of phase space under canonical transformations
and the fact that the time evolution of a point of phase space is a canonical transformation.

8.9 Action-Angle Variables

When the motion of a system stays within a finite region of phase space, the separation of
variables in the Hamilton-Jacobi equation, can be put into a convenient and canonical form.
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Assuming complete separability, coordinates can be chosen so that Hamilton’s principal
function can be written

S(q, t) = S0 − Et =
∑

k

Sk(qk) − Et, pk =
∂S

∂qk
=
dSk
dqk

(355)

where each term Sk =
∫ qk pk(q

′
k)dq

′
k depends on only one variable. If the motion stays finite,

each qk will go through repeated cycles, either returning to its original value, or if qk is an
angular variable increasing by a fixed amount each cycle, e.g. ϕ → ϕ + 2π. In this case we
can define canonical action variables Ik

Ik ≡
∮

pkdqk
2π

(356)

where
∮

means an integration over one cycle. Notice that from the definition of Ik, the change
in S when qk goes through one cycle, with the other variables held fixed is ∆S = ∆Sk = 2πIk.

One reason the action variables are important and interesting physical quantities is that
when a system undergoes very slow time evolution, adiabatic change, the action variables are
distinguished as variables that are constant under such change: they are adiabatic invariants.
If the change is sufficiently slow they don’t change even after a long enough time to cause
an order 1 change in other quantities.

To see how the action variables are calculated, we return to the central potential problem,
which we separated in spherical coordinates, specialized to the Coulomb potential V (r) =
−k/r. Since we must have finite motion we assume E < 0. We have already separated
variables in spherical coordinates. We have an action variable for each coordinate.

Iϕ =

∫ 2π

0

Jϕ
dϕ′

2π
= Jϕ (357)

Iθ =

∮

dθ

2π

√

J2 −
J2
ϕ

sin2 θ
=

4

2π
Θ
(π

2

)

= J − Jϕ (358)

Ir =

∮

dr

2π

√

2mE +
2mk

r
− J2

r2
= −J +

k
√
m√

−2E
(359)

An efficient technique for evaluating Ir is to extend r to a complex variable z and interpret
the integral as a closed contour integral in the complex z-plane. Consider the integrand

√
−2mEz2 − 2mkz + J2

z
=

√
−2mE

2πz

√

(z − r+)(z − r−) (360)

where the roots r− < r+ are the turning points of the radial motion. For real z > r+ we
specify the right side as positive. Clearly it must also be positive for large real negative z,
so there we should write the integrand as

√
−2mE

−2πz

√

(−z + r+)(−z + r−) (361)
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and this form is valid for all Rez < r−. Cut the complex z-plane from r− to r+. Then in
the region r− < z < r+ the integrand is i×positive above the cut and −i×positive below the
cut. Thus a closed contour integral of this integrand with the loop enclosing the cut in a
clockwise sense becomes +iIr when the contour collapses around the cut. On the other hand
the contour can be deformed to a large circular contour of radius R plus a counterclockwise
contour integral about the pole at z = 0. The latter integral evaluates to −i√−2mEr+r−.
Putting z = Reiφ, the large circular integral becomes

− i

2π

√
−2mE

∫ 2π

0

dφReiφ
(

1 − r+ + r−
2R

e−iφ + O
(

r2
±
R2

))

→ i

2
(r+ + r−) (362)

Thus Ir = (r+ + r−)
√
−2mE/2 −√−2mEr+r−. Now r± are roots of the polynomial

z2 +
k

E
z − J2

2me
= z2 − (r+ + r−)z + r+r− (363)

r+ + r− = − k

E
, r+r− = − J2

2mE
(364)

Ir = (r+ + r−)
√
−2mE/2 −

√

−2mEr+r− =
k
√
m√

−2E
− J (365)

The first two equations, which would apply to any central potential, determine J = Iϕ + Iθ.
The last equation determines E = −mk2/2(Ir + Iθ + Iϕ)

2. This last equation shows that
the frequencies ∂E/∂Ir, ∂E/∂Iθ, ∂E/∂Iϕ associated with motion in r, θ, ϕ are all the same,
reflecting the fact that finite motion in the Kepler problem is strictly periodic.

Let’s next turn to a system with just one degree of freedom, a particle moving in a one
dimensional potential V (q):

S0(q) =

∫ q

0

dq′
√

2m(E − V (q′)) (366)

The requisite finite motion occurs between two turning points V (q1,2) = E. Then the action
variable is 1/2π times the integral defining S0 about a complete cycle from q1 to q2 and back
to q1:

I = 2

∫ q2

q1

dq

2π

√

2m(E − V (q′)) (367)

This formula gives I(E) as a function of E, but we can imagine inverting it to give E(I)
as a function of I. Since the energy depends only on I, the coordinate w conjugate to I is
a cyclic variable. Since S0 generates a time independent canonical transformation, the new
Hamiltonian is just the energy E(I). Hamilton’s equations then give İ = 0 and

ẇ =
∂E

∂I
=
dE

dI
= constant (368)

Thus the w’s depend linearly on the time w(t) = (dE/dI)t+w(0). Now recall that as q goes
through one cycle S0 changes by an amount ∆S0 = 2πI. Since w ≡ ∂S0/∂I, we conclude
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that under this cycle w changes by ∆w = ∂(∆S0/∂I) = 2π. This justifies calling w an angle
variable, since it advances by a fixed amount 2π with each cycle of the motion. When we
express single valued physical quantities in terms of action angle variables, they must be
periodic functions of w with period 2π.

Notice that the definition of the action variable as a closed loop integral in phase space
(here the q, p plane) gives the interpretation of the action variable as the area of the region
in phase space enclosed by the loop. As an example, notice that the phase space motion for
a harmonic oscillator is determined by the equation

p2

2mE
+
mω2q2

2E
= 1. (369)

This is an ellipse with semi axes
√

2mE,
√

2E/mω2. The area πab of this ellipse is

π
√

2mE
√

2E/mω2 = 2πE/ω.

Thus the action variable for the harmonic oscillator is I = E/ω, so E(I) = ωI. We learn
immediately that ẇ = dE/dI = ω!. Sometimes we can figure out how E depends on the
action variables without obtaining a complete solution of the problem. Then we are in a
position to simply read off the angular frequencies of the motion by taking derivatives of E
with respect to the action variables.

We can define an action variable for each qk, pk pair of the system of coordinates for
which the H-J equation is completely separable. We have one for each degree of freedom
and it is natural to choose them as the new momenta in a Hamilton-Jacobi approach. The
canonical transformation generated by S0(q, I) where all of the constants of integration are
expressed as functions of the Ik then gives the transformation from the original variables
to the action-angle variables. As we shall see, this language stems from the fact that the
coordinates conjugate to the Ik, wk = ∂S0/∂Ik have the character of angle variables.

With the Kepler example in mind, we return to the completely separable case S0 =
∑

k Sk(qk), assuming we have found a solution of the H-J equation with one integration
constant αk for each degree of freedom. Then the formulas for the action variables will
give Ik(α) which we can invert to obtain αk(Ik). Thus we can regard the Ik as the new mo-
menta in the canonical transformation generated by Hamilton’s principle function S(q, I, t) =
S0(q, I) − E(I)t. We can also implement a time independent canonical transformation
qk, pk → wk, Ik using S0 =

∑

k Sk(qk, I1, · · · Is) as the generating function. Note that each
Sk can in general depend on all of the I’s even though it depends on one q. Then the angle
variables

wk =
∂S0

∂Ik
=
∑

l

∂Sl(ql)

∂Ik
(370)

can each get contributions from several Sl. However, when qk undergoes one complete cycle,
we still have the condition that S0 changes by 2πIk, so that wk changes by 2π while wl for
l 6= k does not change. This justifies calling the wk angle variables. Since the canonical
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transformation generated by S0 is time independent, the new Hamiltonian is just the old one
expressed in terms of action angle variables, namely H̄ = E(I1, · · · Is) and it is independent
of the angle variables! The Hamilton equations for the action angle variables are thus İk = 0
and ẇk = ∂E/∂Ik =constant. This confirms that the Ik are indeed constants of the motion
and wk(t) = (∂E/∂Ik)t =constant.

Since the wk are multi-valued, i.e. wk + 2π corresponds to the same configuration as
wk, single valued physical quantities must be periodic in the wk with period 2π. In other
words they can be expanded in a multiple Fourier series as a linear combination of complex
exponentials

exp

{

i
∑

k

nkwk

}

, nk = integers (371)

Each term in the linear combination will oscillate with the angular frequency

ω =
∑

k

nk
∂E

∂Ik
(372)

but since these possible frequencies are not commensurable, physical property will not nec-
essarily be strictly periodic. Of course it is possible that very special degenerate systems will
display commensurable frequencies, and may show some periodic properties. Completely
degenerate systems will display strictly periodic motion. In this regard, recall that for a
central potential the energy only depended on Iθ and Iϕ in the combination Iθ+ Iφ, meaning
that the frequencies of motion in θ and ϕ are identical. Further for the coulomb potential
all three action variables only entered the energy in the combination Ir + Iθ + Iϕ, i.e. all
three frequencies are identical: complete degeneracy.

A particular advantage of the change to action-angle variables is that one can quickly
identify the fundamental frequencies of the system. In the early days of quantum physics,
before Heisenberg, Schroedinger, and Dirac, quantization rules were assigned to adiabatic
invariants such as the action variables: they were required to be integer multiples of ~. These
ad hoc rules met with a certain amount of success, and we can see them coming out of specific
approximation schemes to true quantum mechanics such as the WKB approximation. In the
case of the Coulomb potential, assigning integer values to Ir,θ,ϕ/~ leads to Bohr’s energy
quantization rules

En1n2n3
→ − mk2

2~2(n1 + n2 + n3)2
(373)

Recalling that k = e2/4πǫ = α~c, this gives the ground state energy of hydrogen EG =
−mα2c2/2, fortuitously identical to that predicted by the Schroedinger equation.
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